
--- ------ ----- ---- - ---- - - ----------_ .-

GC34-0133-0

51-25

IBM Series/1
FORTRAN IV

Language Reference
Program Numbers 5719-F01

5719-F03

PROGRAM
PRODUCT

~(c

a lEF :cg 10

II
1IIIUIli

a []

11

a []J a II]

1111111111111111111 ~
[J [])I

II 11111111111 II 1111111111111111 1I111111HIIIIIII I

Series/1

--- ------ ----- ---- - ---- - - ----------_.-

GC34-0133-0 PROGRAM

c

c

51-25

IBM Series/1

FORTRAN IV

Language Reference

Program Numbers 5719-F01
5719-F03

PRODUCT

Series/1

This publication is for planning purposes only. The information herein is subject to change before
the products described become available.

First Edition (February 1977)

This edition applies to IBM Series/l FORTRAN IV (compiler and object support library), Program
Number S719-F01, and IBM Series/l Realtime Subroutine Library, Program Number S719-F03.

Significant changes or additions to the contents of this publication will be reported in subsequent
revisions or Technical Newsletters. Requests for copies of IBM publications should be made to your
IBM representative or the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
send your comments to IBM Corporation, Systems Publications, Department 27T, P. O. Box 1328, Boca
Raton, Florida 33432. Comments become the property ofIBM.

© Copyright International Business Machines Corporation 1977

ii GC34-0133

o

(' .,

c

c

o

Preface v
Associated Publications v

Chapter 1. FORTRAN IV Statements 1-1
Coding FORTRAN IV Program 1-1
Elements of the Language 1-2
Order of a FORTRAN IV Program 1-3

Chapter 2. Constants, Variables, and Arrays 2-1
Constants 2-1

Integer Constants 2-1
Real Constants 2-1
Logical Constants 2-3
Hexadecimal Constants 2-3
Literal Constants 2-3

Variable s 24
Variable Names 24
Variable Types 2-4
Predefined Specification 2-5
Implicit Specifica tion 2-5
Explicit Specification 2-5

Arrays 2-5
Arrangement of Arrays in Storage 2-7

Chapter 3. Assignment Statements and Expressions 3-1
Arithmetic Assignment Statements 3-1
Arithmetic Expressions 3-1

Arithmetic Operation Symbols 3-1
Rules for Constructing Expressions 3-2

Types in an Arithmetic Assig nment Statemen t 3-3
Logical Assignment Statements and Expressions 3-4

Logical Ex pressions 3-4
Rela tional Ex pressions 3-4
Logical Operators 3-5

Chapter 4. Control Statements 4-1
Unconditional GO TO Statement 4-1
Computed GO TO Statement 4-1
ASSIGN and Assigned GO TO Statements 4-2
Logical IF Statement 44
Arithmetic IF Statement 44
DO Statement 4-5

Looping and the DO Statement 4-5
CONTINUE Statement 4-10
PAUSE Sta tement 4-10
STOP Statement 4-11
END Sta tement 4-11

Chapter 5. Input/Output Statements 5-1
Sequential Input/Output Statements 5-1
The RE AD Sta temen t 5-1
The WRITE Statement 5-2
Lists for Transmission of Data 5-3

Implied DO SpeCification in Input/Output Lists 5-4
Additional Details of Input/Output Lists 5-5

END FILE Statement 5-5
REWIND Statement 5-5
BACKSPACE Statement 5-6
FORMAT Statement 5-6

Contents

Conversion of Numeric Data 5-11
I-Conversion (aIw) 5-12
D- and E-Conversion (aDw.d), (aEw.d) 5-13
F-Conversion (aFw.d) 5-14
Scale Factor (nPaDw.d, nPaEw.d, or nPaFw.d) 5-14
L-Format Code (2Lw) 5-15
Z-Conversion (aZw) 5-16
Examples of Numeric Format Codes 5-16

Handling of Alphameric Data 5-17
A-Conversion (aAw) 5 -17
H-Conversion (wH) and Literals Enclosed in Apostrophes 5-18

Skipping Fields in a Record (X-Format Code) 5-18
Tabulating the Record (T-Format Code) 5-19
List-Directed Input Data 5-20
List-Directed Output Data 5-21
Direct-Access Input/Output Statements 5-21

DEFINE FILE Statement 5-22
Direct-Access Programming Considerations 5-23
READ Statement 5-24
WRITE Statement 5-25
FIND Statement 5-26
General Example-Direct-Access Operations 5-27

Chapter 6. Data Initialization Statement 6-1

Chapter 7. Specification Statements 7-1
Type Statements 7-1

IMPLICIT Statement 7-1
Explicit Specification Statement 7-2

DIMENSION Statement 7-3
DOUBLE PRECISION statement 7-4
COMMON Statement 7-4

Blank and Labeled Common 7-6
Programming Considerations 7-7

EQUIVALENCE Statement 7-7
Other Specification Statements 7-9

Otapter 8. Subprograms 8-1
Naming Subprograms 8-1
Functions 8-2

Function Definition 8-2
Function Reference 8-2
Statement Functions 8-2

FUNCTION Subprograms 8-3
SUBROUTINE Subprograms 8-5

CALL State ment 8-6
RETURN and END Statements in Subprograms 8-7
Dummy Argumen ts in Subprograms 8-8
Multiple Entry into a Subprogram 8-9
EXTERNAL Statement 8-11
BLOCK DATA Subprograms 8-12
Inter-Program Communication 8-13

P ROG RAM State me nt 8-13
INVOKE Statement 8-13
GLOBAL Statement 8-13

Appendix A. Source Program Characters A-I

Contents iii

Appendix B. FORTRAN IV-Supplied and Optional
Procedures B-1

Section I: Basic Procedures B-2
Mathematical Functions B-2
Service Subroutines B-3
Bit Manipulator and Interrogator Functions B-4
Address Constant (ADCON) Function B4

Section II: Series/1 FORTRAN IV Realtime Subroutine
Library B-5

Date and Time Information B-5
Executive Function Subroutine B-6
Process Input and Output Subroutines B-6
System Service Interface Subroutines B-7

Appendix C. Non-Standard Integer Lengths with the
NOCMPAT Option C-1

Appendix D. Debug Facility D-1
DEBUG Facility Statements 0.1

DEBUG Specification Statement D-1
AT Debug Packet IdentUica tion Statement D-2
TRACE ON Statement D-2
TRACE OFF Statement D-2

Programming Considerations D-3
Programming Examples D-3

Appendix E. Sample Programs E-1
Sample Program 1 E-1
Sample Program 2 E-2

Appendix F. Comparison with Other FORTRAN IVs F-I

Appendix G. Glossary G-I

Index X-I

iv GC34-0133

c

c~

(

Associated Publications

c

Preface

This publication describes the Series/1 FORTRAN IV language. The language is
a subset of American National Standard FORTRAN, X3. 9-1966, and includes all
of American National Standard (ANS) Basic FORTRAN, X3.10-1966, with the
exception of object-time formats, adjustable dimensions, COMPLEX data type,
G-format specifications, and two-level FORMAT parenthesis. Also included are
IBM extensions to the -language.

This publication, a language reference for the FORTRAN IV programmer who
is developing realtime and batch applications for the Series/1 computer, presents
the rules for coding FORTRAN IV statements and constructing the various kinds
of program units. It is assumed that the reader is familiar with the basic coding
techniques of FORTRAN programming.
Topics are presented in the following sequence:

1. General information about FORTRAN IV statements and how to code them.
2. Information pertaining to the values within a program: constants, variables,

and arrays.
3. Descriptions and examples of:

• Logical and arithmetic assignment statements and expressions
• Control statements
• Input/output statements
• Data initialization statement
• Specification statements.

4. Descriptions of FORTRAN IV subprograms and inter-program
communication.

The appendixes include reference information regarding source program
characters; FORTRAN IV -supplied mathematical functions, service subroutines,
bit manipulator and interrogator functions, and address constant function;
FORTRAN IV Realtime Subroutine Library, a program product proViding
realtime system support; non-standard integer lengths when using the
NOCMPAT language compatibility option; a debug facility; sample programs; a
comparison between Series/1 FORTRAN IV and other FORTRAN languages;
and a glossary.

IBM Series/l FORTRAN IV: Introduction, GC34-0132
IBM Series/l Realtime Programming System: Introduction and Planning Guide,
GC34-0102
IBM Series/l Program Preparation Subsystem: Introduction, GC34-0121
IBM Series/l Mathematical and Functional Subroutine Library: Introduction,
GC34-0138
IBM Series/l FORTRAN IV: User's Guide (available July] 977)
IBM Series/l Mathematical and Functional Subroutine Library: User's Guide
(available July 1977)

Preface v

vi GC34-0133

(

c

Chapter 1. FORTRAN IV Statements

FORTRAN IV source programs consist of a set of statements from which the
compiler generates execution-time instructions, constants, and storage areas. A
given FORTRAN IV statement performs one of three functions:

• Causes certain operations to be performed
• Specifies the nature of the data being handled
• Specifies the characteristics of the source program

FORTRAN IV statements are composed of certain FORTRAN IV key words
used with the elements of the language: constants, variables and expressions.

There are two broad classes of FORTRAN IV statements: executable and
nonexecutable.

Executable statements may cause calculations to be performed, enable the user
to transfer data between main storage and an input/output device, control the
operation of those devices, change the order of execution of other statements in
the program, or terminate J;iG~ram execution. An example of an executable
statement is:

A = 96.0

This statement, an assignment statement, sets the variable named A to the value
96.0.

Nonexecutable statements may provide initial values for variables and array
elements, specify the form in which data appears in FORTRAN IV records,
define the properties of variables, arrays, and functions, declare the operations to
be performed by statement functions, and name and specify arguments for
subprograms. An example is:

DATA 1/10/

This statement, a DATA statement, initializes the variable named I with a value
of 10.

Some other examples of FORTRAN IV statements and their effects are:

GO TO 1 0 This statement says that the next statement to be executed is the
one with the label 10.

C=A/3

Coding FORTRAN IV Programs

The slash (/) indicates division. Thus, this statement means
divide A by 3 and set C equal to the result. Using the data of
the previous example, C would be given the value 32.

Although the usual form of input to the computer is a sequential data set of
card images, the initial coding of FORTRAN IV statements is generally on a
coding sheet. The statements of a FORTRAN IV source program can be written
on the standard FORTRAN IV coding form, GX28-7327.

The Series/1 FORTRAN IV compiler will accept an 80-column card image as
input; however, the FORTRAN IV statement must be written only in columns
7-72 of each line of the coding form. Columns 1-5 may be used to write
unsigned integer numbers by which the statement may subsequently be
referenced. These statement numbers may be assigned in any order. Blanks and
leading zeros in statement numbers are ignored by the FORTRAN IV compiler.

FORTRAN IV Statements 1 - 1

Thus, where b denotes a blank,

00090
901)1)1)
091)01)
1)1)901)

are equivalent. However, a given statement number may appear in the label field
only once in a program unit.

Columns 73-80 may be us~d for any desired identifying information. These
columns are not analyzed by the compiler.

If a statement is too long for one line, it may be continued on as many as 19
successive lines by placing any character from the FORTRAN IV character set
other than zero or blank in column 6. Column 1 of a continuation line may
contain any character from the FORTRAN IV character set except the character
'C'. (The character 'C' is reserved for comments. See below for explanation.)
Each of columns 2-5 of a continuation line may contain any character from the
FORTRAN IV character set. In practice, columns 1-5 of a continuation line
usually contain the blanks. However, the statement label bf an initial line may be
repeated in columns 1-5 of its respective continuation lines. These labels are not
processed by the FORTRAN IV compiler, but are printed on its program listing.
(If desired, the characters in column 6 may be used to indicate the order of
continuation lines; that is, the character A may be inserted for the first
continuation line, B for the second, etc.) Otherwise, column 6-for initial lines of
a statement-must be blank or zero.

Blanks may be used to improve the readability of a FORTRAN IV program
because the compiler ignores blanks except in certain limited cases (literal fields
of statements and in column 6 of a card).
Thus,

A=B(I,J)-D-(C/E)-F**K

and

A1)=1)B1)(1)I1),DJ1»)1)-1)D1)-1)(1)C1)/1)E1»)1)-1)F1)*1)*1)K

are equivalent.
Comments to explain the program may be written in columns 2-72 of a line

having a C in column 1. (The C in column 1 may be part of the comment.)
Comments should not appear between continuation lines of a statement.
Comments are not processed by the FORTRAN IV compiler, but are printed on
its program listing.

Elements of the Language

1 - 2 GC34-0133

In order to write FORTRAN IV programs, it is necessary to learn the rules for
writing:

• Constants, such as 27 or 3.14159
• Variables, such as X or Y
• Array elements, such as XCI) or Y(3,2)
• Mathematical expressions, such as A + B or 3 * J
• Assignment statements, which cause mathematical computations, such as

a=b/c, which is written in FORTRAN IV as A=B/C
• Control statements, such as DO and GO TO, which affect the order in which

statements are executed
• Specification statements, such as IMPLICIT, DATA, and COMMON, which

provide the FORTRAN IV processor with information about the data used in
the source program, and the amount of storage required for it

(.:

c

c

• Input/output statements, such as READ, WRITE, and FORMAT, which are
used for getting data into the computer and for producing external results

• Subprogram statements, such as FUNCTION, which allow the programmer to
cause specific processing to be performed without specifying each instruction
every time the processing is to be done.

Order of a FORTRAN IV Program
The order of a FORTRAN IV program is as follows:

1. Subprogram statement for a subprogram. PROGRAM statement, if any, for a
main program.

2. IMPLICIT statement, if any.
3. Other specification statements, if any.
4. Statement function definitions, if any, to describe statement functions.
5. Executable statements, at least one of which must be present.
6. END statement, to indicate the end of the program.

FORMAT and DATA statements (and ENTRY statements in a subprogram)
may appear anywhere after IMPLICIT statement, if present, and before the END
statement. DATA statements, however, must follow any specification statements
that contain the same variable or array names. DEFINE FILE statements may
appear anywhere after the IMPLICIT statement, but only in a main program.
(See Appendix D for the order of debug statements.)

FORTRAN IV Statements 1 - 3

()

1 - 4 GC34-0133

c
Constants

Integer Constallts

c

Real COlIStallts

c

Chapter 2. Constants, Variables, and Arrays

Values within a program may take the form of constants, variables, or arrays.

A constant is a number which is used in computations without change from one
execution of the program to the next. It appears in its actual numerical form in
the source statement. For example, in the statement

J=3*X

3 is a constant, since it appears in actual numerical form.
Five types of constants may be specified in FORTRAN IV: integer constants

(which are written without a decimal point or exponent), real constants (which
are written with a decimal point or an exponent), logical constants, hexadecimal
constants, and literal constants (which are strings of alphabetic, numeric, or
special characters).

The rules for writing each of these constants are given in the following
sections.

An integer constant is a whole number written without a decimal point. A
preceding + or - sign is optional. An unsigned constant is assumed to be
positive.

All integer constants occupy four bytes of main storage. See Appendix C for a
description of the NOCMP AT compile option. The magnitude of a four-byte
integer constant (INTEGER*4) may not exceed 2147483647, or 231-1.

Examples:

Valid integer constants:

o
+9
186
-327

6
45
123f>456 (blank is ignored by compiler)

Invalid integer constants:

4.321 (contains a decimal point)
- 3,675 (contains a comma)
5436578656 (exceeds the magnitude permitted)

• A basic real constant which is a number written with a decimal point, using
the decimal digits 0, 1, ... , 9. A preceding + or - sign is optional. An
unsigned constant is assumed to be positive.

• A basic real constant followed by a D or E, followed by a signed or unsigned
one- or two-digit integer constant, which is the exponent. An unsigned
exponent is assumed to be positive.

•. An integer constant followed by a D or E, followed by a signed or unsigned
one- or two-digit integer constant, which is the exponent.

Constants, Variables, and Arrays 2 - 1

2 - 2 GC34-0133

In the exponent, the letter E specifies a single-precision constant occupying
four bytes and the letter D specifies a double-precision constant occupying eight
bytes. Unless it contains a D exponent, a real constant always occupies four
bytes.

Magnitude:

Precision:

Single-precision and double-precision constants have the same
magnitude limitations: 0, or 16-65 (approximately 10-78) through
1663 (approximately 1075).

Single-precision-6 hexadecimal digits, or approximately 7.2
decimal digits.
Double-precision-14 hexadecimal digits, or approximately 16.8
decimal digits.

The decimal exponent permits the expression of a real constant as the product
of a basic real constant or integer constant times 10 raised to a desired power.

Examples:

Valid real constants (single-precision) and equivalents

+0.

-999.9999
7.0E+0

19761.25E+1

7.E3

7.0E3
7.0E+03
7E-03

21.4354657687

(7 . 0 x 1 0° = 7 . 0)

(19761 .25 x 101 = 197612.5)
(7 .0 x 103 = 7000.0)

(7 . 0 x 103 = 7000.0)

(7 .0 x 103 = 7000.0)
(7 .0 x 10-3 = 0.007)

(Note. This level of precision
cannot be accommodated in four
bytes. FORTRAN IV truncates
excess precision from the
right.)

Valid real constants (double-precision) and equivalents
1234567890123456.0-93

7.9003
7.90+0
7.90+3
7.900
7003

(. 1 2 34 567890 1 2 3456 x 1 0 - 77)

(7.9 x 103 7900.0)
(7.9 x 103 7900.0)
(7 . 9 x 103 7900.0)
(7 . 9 x 1 0° 7 . 9)
(7 . 0 x 103 7000.0)

Invalid real constants

3,471 .1

1.E

1 . 2E+ 113

23.5E+97

21.3E-90

(Missing a decimal point or exponent)
(Embedded comma)
(Missing a decimal exponent
following the E)
(E is followed by a three-digit
integer constant)
(Magnitude outside the allowable
range; 23.5 x 1097 greater than
1663)

(Magnitude outside the allowable
range; 21.3 x 10-90 less than
16-65)

1 "

Logical COlISta"ts

HexadecilfUll Co"sta"ts

Literal COllsta1lts

c

A constant that specifies a logical value true or false. There are two logical
constants:
.TRUE .
. FALSE.

Each occupies four bytes of storage. The words TRUE and FALSE must be
preceded and followed by periods.

Hexadecimal constants are base 16 numbers that may only be used in the DATA
initialization or explicit specification statements for specifying initial values for
variables and array elements.

A hexadecimal constant consists of the character Z followed by a hexadecimal
number formed from the set 0, 1, ... , 9, A, B, C, D, E, F.

In Series/I, one word contains four hexadecimal digits (two bytes). REAL,
LOGICAL, and INTEGER *4 variables, therefore, would contain eight
hexadecimal digits, and INTEGER*2 variables would contain four.

The internal form of each of the 16 possible digits is as follows:

o - 0000 4 - 0100 8 - 1000 C - 1100
1 - 0001 5 - 0101 9 - 1001 D - 1101
2-0010 6-0110 A-1010 E-1110
3 - 0011 7 - 0111 B - 1011 F - 1111

If the number of digits is greater than the maximum, the leftmost hexadecimal
digits are truncated; if the number of digits is less than the maximum,
hexadecimal zeros are supplied on the left.

Examples:

The eight-digit number ZlC49A2F1 represents the bit string

00011100010010011010001011110001

The seven-digit number ZBADF ADE represents the bit string

00001011101011011111101011011110

where the first four zero bits are implied because an odd number of hexadecimal
digits was written.

Further information about hexadecimal constants will be found in the section
dealing with the DATA initialization statement.

A literal constant is a string of alphabetic, numeric and/or special characters,
delimited as follows:

• The string can be enclosed in apostrophes.
• The string can be preceded by wH where w is the number of characters in the

string.

Each character requires one byte of storage. Note that the blank is considered
a character. If apostrophes delimit the literal, a single apostrophe within the
literal is represented by two apostrophes. If wH precedes the literal, a single
apostrophe within the literal is represented by a single apostrophe.

Literals can be used in CALL statements or actual argument lists, as data
initialization values, or in FORMAT statements. The first form, a string enclosed
in apostrophes, may be used in PAUSE statements.

Constants, Variables, and Arrays 2 - 3

Variables

Variable Names

Variable Types

2 - 4 GC34-0133

Examples:

'X-COORDINATE Y-COORDINATE
'3.14159'
'FRANCIS BACON' 's "HAMLET'"

Z-COORDINATE'

A FORTRAN IV variable is a data item, identified by a name, that occupies a
storage area. The value specified by the name is always the current value stored
in the area.

For example, in the statement

A=5.0+B

both A and B are variables. The value of B has been determined by some
previously executed statement. The value of A is calculated when the above
statement is executed, and depends on the previously calculated value of B.

As with constants, a variable may be integer, real, or logical depending on
whether the value it is to represent will be integer, real, or logical, respectively.
Additionally, since a variable represents an area of storage, it is also assigned a
length, either implicitly or explicitly. A real variable (REAL *4) has a length of
four bytes. An integer variable can have a length of either two or four bytes
(INTEGER *2 or INTEGER *4, respectively). A logical variable (LOGICAL *4)
has a length of four bytes.

In order to distinguish between variables which will derive their value from an
integer, as opposed to a real number, the rules for naming each type of variable
are different, although these rules can be overridden.

A variable name consists of from 1 to 6 alphabetic or numeric characters, of
which the first must be alphabetic. Blanks in a variable name are ignored.

Examples:

Innnnn
ABCDnn
BILL23
I$2nnn
ITEMln
InTnEnMn1
ITEMnl

In the above list, the last three names are considered to be identical.
The rules for naming variables allow for extensive selectivity. In general, it is

easier to follow the flow of a program if meaningful names are used wherever
possible. For instance, to compute distance it would be possible to use the
statement:

A=B*C

but it might be more meaningful to write:

D=R*T

or

DIST RATE * TIME

The type of a variable corresponds to the type of the data the variable
represents. Variable type can be specified in three ways: predefined, implicitly, or
explicitly. (~ :

Predefined .spec;! icatio"

c

E.tplh:it Spec;,f katirm

(

c

;. " (, ~ ~", .

"-..\.ttL':n\

type .c)f
c;;-cr: ;;'j,d

R ';\'.
R:,,',), /..
Rc,\ 1

P,,"""

i 1.(

), "

1 ,)

U!

I' ','r ,I :,·,,· .. \.\1

) {":' \ ~ ""; '_ ' T· r I ~" • ~ t 1 J , • ~

.\' . I'

I'

'.1'

[.,. " .,..... t '! ' •. ~ , • ""'''', \, " '':'""";.1i' 1'\ '. ~ '\:', ~

-, ., 11"

l :/"._

2 - 6 GC34-0133

Suppose it is desired to refer to the number in row 2, column 3; this would be

where JO(2,3)

2 and 3 are the subscripts. Thus,

JO(2,3) has the value 14
JO(4, 1) has the value 24

Similarly, ordinary mathematical notation might use 10ij to represent any
element of the set 10. In FORTRAN IV, this might be written as 10(1,1) where
I equals 1, 2, 3, 4, or 5, and 1 equals 1, 2, or 3.

The following rules apply to the construction of subscript quantities. (See the
section "Arithmetic Expressions" for additional information.)

• Subscript quantities may consist of any arithmetic constant, arithmetic variable,
arithmetic array element, or arithmetic expression.

• Mixed-mode expressions within subscript quantities are evaluated according to
normal FORTRAN IV rules. If the evaluated expression is real, it is converted
to integer.

• The evaluated result of a subscript quantity should always be greater than
zero.

• In a subscript used in an I/O list, exponentiation and function references may
not appear.

Examples:

Valid Array Elements:

ARRAY (IHOLD)
NEXT (19)
MATRIX (1-5)
BAK (I,J((K+1)*L,.3*A(M,N)))
ARRAY (I,J/4*K**2)

Invalid Array Elements:

ARRAY (1-5)
LOT (0)

ALL (. TRUE.)

(A subscript quantity may not be negative)
(A subscript quantity may not be nor
assume a value of zero)
(A subscript quantity may not assume a
true or false value)

Series/1 FORTRAN IV allows arrays of up to seven dimensions (seven
subscript quantities).

The use of an array in the source program must be preceded by its declaration
in either a DIMENSION statement, a COMMON or GLOBAL statement, or a
type specification statement specifying the size of the array. These statements
will be explained later.

c
An-a"gemellt of An-ays ill Storage

An array is stored in ascending storage locations, with the value of the first of its
subscript quantities increasing most rapidly, and the value of the last increasing
least rapidly.

For example, the array named A, described by one subscript quantity which
varies from 1 to 5, appears in storage as follows:

A(1) A(2) A(3) A(4) A(5)

The array named B, described by two subscript quantities, with the first
varying from 1 to 5 and the second from 1 to 3, appears in storage as follows:
B(1 , 1) B(2, 1) B(3, 1) B(4, 1) B(5, 1) B(1 ,2) B(2,2) B(3,2)

B(4,2) B(5,2) B(1 ,3) B(2,3) B(3,3) B(4,3) B(5,3)

Note that B(1,2) and B(1,3) follow in storage B(5,1) and B(5,2), respectively.
The following list is the order of a three-dimensional array, C(3,3,3):

C(1 , 1 , 1) C(2, 1 , 1) C(3, 1 , 1) C(1 ,2, 1) C(2,2, 1) C(3,2, 1) C(1 ,3, 1)
C(2,3, 1) C(3,3, 1) C(1 , 1 ,2) C(2, 1 ,2) C(3, 1 ,2) C(1 ,2,2) C(2,2,2)
C(3,2,2) C(1 ,3,2) C(2,3,2) C(3,3,2) C{ 1 , 1 ,3) C(2, 1 ,3) C (3, 1 ,3)
C(1,2,3) C(2,2,3) C(3,2,3) C(1,3,3) C(2,3,3) C(3,3,3)

Constants, Variables, and Arrays 2 - 7

2 - 8 GC34-0133

(;

(

Chapter 3. Assignment Statements and Expressions

Assignment statements and expressions are of two general types: arithmetic and
logical.

Arithmetic Assignment Statements

Arithmetic Expressions

The arithmetic assignment statement defines a numerical calculation; it very
closely resembles a conventional arithmetic formula.

General Form of an Arithmetic Assignment Statement

a=b

where:

• a is a variable or array element
• b is an expression as defined below.

Examples:

The following are valid arithmetic assignment statements:

A=B+C
D(I)=E(I)+2.

In an arithmetic assignment statement, the equal sign means "is to be
replaced" rather than "is equivalent to". An assignment statement is not an
equation. This distinction is important. For example, suppose an integer variable I
has the value 3. Then, the valid statement

1=1+1

would give I the value 4. This feature enables the programmer to keep counts
and perform other required operations in the solution of a problem.

The following is an example of a series of arithmetic assignment statements:

A=3.0 Store the value 3.0 in A
B=2.0
C=A+B

C=C+1.

Store the value 2.0 in B
Add the values in A and B and store in C
(3.+2.=5.)
Add 1. to the value C (5.+ 1.=6.)

An expression in FORTRAN IV is a sequence of constants, variables, array
elements, and operation symbols which indicate a quantity or a series of
calculations. It must be formed according to the rules for constructing
expressions. It may include parentheses and may also include functions (which
will be discussed later). It may appear on the right-hand side of arithmetic
assignment statements, in certain types of control and 110 statements, and as a
subscript quantity.

Arithmetic Operation Symbols
Operation symbols used in FORTRAN IV are:

+ Addition
Subtraction

Assignment Statements and Expressions 3 - 1

*
/

Multiplication
Division

* * Exponentiation

To express the arithmetic operation A = B divided by 1.7, the following
statement may be used:

A=B/1 . 7

To express the operation 1 equals the product of K and L, this statement may
be used:

J=K*L

Rules for Constructing Expressions

3 - 2 GC34-0133

Since constants, variables, and array elements may be integer or real quantities,
expressions may contain integer or real quantities; that is, two types may appear
in the same expression. (In the following discussion, no mention is made of the
rules for using integer and real quantities in functions. These rules will be stated
when functions are discussed and will be considered as addenda to the following
rules.)

1. The simplest expression consists of a single constant, variable or array
element. If the quantity is an integer quantity, the expression is said to be of
the integer type. If the quantity is a real quantity, the expression is said to be
of the real type.

Examples:

Expression Type of Quantity Type of Expression

3 Integer constant Integer
3.0 Real constant Real
I Integer variable Integer
A(1) Real variable Real
1(1) Integer array element Integer
A(J) Real array element Real

In the last example, note that the subscript, which must be an integer
quantity, does not affect the mode of the expression. The mode of the
expression is determined solely by the type of the quantity itself.

2. Quantities may be preceded by plus or minus signs (+ or -), or may be
connected by any of the operation symbols (+, -, *, /, **) to form
expressions, provided:
a. No two operation symbols appear consecutively. Quantities connected

need not all be the same mode but will be converted to the higher mode
(in the order 1*2, 1*4, R *4, R *8) before the expression is evaluated. For
example, in A+I, if A is real and I is integer, I will be converted to real
before the addition. Figure 3-1 shows the type and length of the result of
arithmetic operations.

b. No operation symbols are assumed to be present; that is, no two
quantities appear consecutively.

Valid expressions:

-A+B
B+C-J
I/J
K*L

Invalid expressions:

A+-B (must be written as A+(-B»
31 (must be written as 3*1 if multiplication is intended)

f ",

o

Parentheses may be used to specify the order of operations in an expression. In
the absence of parentheses, operations with the same order of precedence are
executed from left to right; successive exponentiations are evaluated from right to
left.

Arithmetic Symbol
**
* and /
+ and-

Function

Exponentiation
Multiplication and division
Addition and subtraction

For example, the expression

A+ B *C/D+E**F-G*H

will be taken to mean

B*C F
A + - - - + E - (G* H)

D

Using parentheses, the expression

(A+ B)*C/ D+E* *F- G*H

will be taken to mean

(A+B)*C
F

-------+E - (G*H)
D

A unary plus or minus has the same hierarchy as a plus or minus in addition or
subtraction. Thus,

A=-B
A=-B*C
A=-B+C

is treated as A=O- B
is treated as A=O-(B*C)
is treated as A=(O-B)+C

~ term Integer Integer
First (2) (4)
term

Integer Integer Integer
(2) (2) (4)

Integer Integer Integer
(4) (4) (4)

Real Real Real
(4) (4) (4)

Real Real Real
(8) (8) (8)

Real Real
(4) (8)

Real Real
(4) (8)

Real Real
(4) (8)

Real Real
(4) (8)

Real Real
(8) (8)

Figure 3-\. Determining the type and length of the results of arithmetic operations

Types in an Arithmetic Assignment Statement
Expressions must be integer or real; however, the variable on the left-hand side
of the equal sign in an arithmetic statement need not be of the same type as the
expression on the right-hand side.

If the variable on the left is of type integer and the expression on the right is
real, the expression will first be evaluated as a real quantity, the fractional
portion will be dropped, and the remaining portion will be converted to an
integer quantity. Thus, if the result is +3.872, the integer stored will be +3, not
+4. If the variable on the left is real and the expression on the right is integer,

Assignment Statements and Expressions 3 - 3

the latter will be evaluated as an integer expression, and the result will be
converted to real.

Examples:

Arithmetic Statement

A=3/2
A=3./2
1=3/2
1=3./2.
1=3'/2

Result of Calculation

A=l.
A=1.5
1=1
1=1
1=1

Logical Assignment Statements and Expressions

Logical Expressions

Relational Expressions

3 - 4 GC34-0133

The logical assignment statement is similar in form to the arithmetic assignment
statement.

General Form of the Logical Assignment Statement

a=b

where:

• b is a logical expression
• a is either a logical variable or an element in a logical array.

The simplest form of logical expression is a single logical primary. A logical
primary can be a logical constant, logical variable, logical array element, logical
function reference, relational expression, or logical expression enclosed in
parentheses. A logical primary, when evaluated, always has the value true or
false.

Examples:

QTEST = .FALSE.
R(17)=B

where:

• QTEST and B are logical variables, and R is a logical array.
More complicated logical expressions may be formed by using logical operators

to combine logical primaries.

Relational expressions are formed by combining two arithmetic expressions with
a relational operator. The six relational operators, each of which must begin and
end with a period, are as follows:

Relational Operator Definition

· GT . Greater than (»
· GE. Greater than or equal to (~)
· LT. Less than «)
· LE . Less than or equal to (:5)

· EQ. Equal to (=)
· NE . Not equal to (#:)

The relational operators express a relational condition existing between two
arithmetic quantities which can be pither true or false. The relational operators
may be used to compare two integer expressions, two real expressions, or a real

I \

Logical Operators

c

and an integer expression. The result of the relational expression is a logical
value.

Examples:

Assume that the type of the following variables has been specified as follows:

Variable Names Type

ROOT, E
A, I,F
L

Real variables
Integer variables
Logical variable

Then the following examples illustrate valid and invalid relational expressions.

Valid relational expressions:

E .LT. I
E**2.7 .LE. (5*ROOT+4)
.5 .GE. .9*ROOT
E .EQ. 27.3E+05

Invalid relational expressions:

L . EQ. (A+F) (Logical quantities cannot be
joined by relational operators)

E * * 2 . LT 97 . 1 E 1 (Period missing immediately after
the relational operator)

. GT. 9 (Arithmetic expression missing before
the relational operator)

The three logical operators, each of which must begin and end with a period, are
as follows (where A and B represent logical expressions):

Logical
Operator

.NOT.

.AND.

.OR.

Use

.NOT.A

A.AND.B

A.OR.B

Meaning

If A is true, then .NOT.A has the value false; if
A is false, then .NOT.A has the value true.
If A and B are both true, then A.AND.B has
the value true; if either A or B or both are false,
then A.AND.B has the value false.
If either A or B or both are true, then A.OR.B
has the value true; if both A and B are false,
then A.OR.B has the value false.

The only valid sequences of two logical operators are .AND .. NOT. and
.OR .. NOT. (the sequence .NOT .. NOT. is invalid unless used as unary operators).

Only those expressions which, when evaluated, have the value true or false
may be combined with the logical operators to form logical expressions.

Examples:

Assume that the type of the following variables has been specified as follows:

Variable Names Type

ROOT, E Real variables
A, I, F Integer variables
L, W Logical variables

Then the following examples illustrate valid and invalid logical expressions
using both logical and relational operators.

Assignment Statements and Expressions 3 - 5

3 - 6 GC34-0133

Valid logical expressions:

(ROOT*A .GT. A) .AND. w
L .AND. .NOT. (r .GT. F)
(E+5.9E2 . GT. 2*E) .OR . L
. NOT. W .AND . .NOT. L
L .AND. .NOT. W . OR. r .GT . F
(A**F .GT. ROOT . AND. .NOT . r .EQ.

Invalid logical expressions:

A . AND. L (A is not a logical expression)
. OR. W (.OR. must be preceded by a logical

expression)
NOT. (A . GT. F) (Missing period before the logical

operator .NOT.
L . AND. . OR. w (The logical operators .AND. and

.OR. must always be separated by
a logical expression)

. AND. L (.AND. must be preceded by a
logical expression)

Order of Computations in Logical Expressions
The order in which the operations are performed is:

Operation

Evaluation of functions
Exponentiation (**)
Multiplication and division (* and /)
Addition and subtraction (+ and -); unary
plus and minus
Relationals (.GT.,.GE.,.LT.,.LE.,.EQ.,.NE.)
.NOT.
.AND.
.OR.

For example, the expression:

A.GT.D**B.AND .. NOT.L.OR.N

is effectively evaluated in the following order:

Hierarchy

1 st (highest)
2nd
3rd
4th

5th
6th
7th
8th

E)

1. O**B Call the result W (exponentiation)
2. A.GT.W Call the result X (relational operator)
3. .NOT.L Call the result Y (highest logical operator)
4. X.ANO.Y Call the result Z (second highest logical operator)
5. Z.OR.N Final operation

Note. Logical expressions may not require that all parts be evaluated.
Functions within logical expressions mayor may not be called. For example, in
the expression A.OR.LGF(.TRUE.), it should not be assumed that the LGF
function is always invoked, since it is not necessary to do so to evaluate the
expression when A has the value true.

I "\ , j

c

(

c

Use of Parentheses in Logical Expressions:
Parentheses may be used in logical expressions to specify the order in which
operations are to be performed. The innermost pair of parentheses is evaluated
first. For example, the logical expression:

.NOT.((B.GT.C.OR.K).AND.L)

is evaluated in the following order:

1. B.GT.C Call the result X
2. X.OR.K Call the result Y
3. Y.AND.L Call the result Z
4. .NOT.Z Final operation

.NOT.«X.OR.K).AND.L)

.NOT.(Y.AND.L)

.NOT.Z

The logical expression to which the logical operator. NOT. applies must be
enclosed in parentheses if it contains two or more quantities. For example,
assume that the values of the logical variables, A and B, are false and true,
respectively. Then the following two expressions are not equivalent:

.NOT.(A.OR.B)

.NOT.A.OR.B

In the first expression, A.OR.B is evaluated first. The result is true; but
.NOT.(.TRUE.) is the equivalent of .FALSE .. Therefore, the value of the first
expression is false.

In the second expression, .NOT.A is evaluated first. The result is true; but
.TRUE .. OR.B is the equivalent of .TRUE .. Therefore, the value of the second
expression is true. Note that the value of B is irrelevant to the result in this
example. Thus, if B were a function reference, it would not have to be evaluated.

Assignment Statements and Expressions 3 - 7

3 - 8 GC34-0133

c

Chapter 4. Control Statements

Normally, FORTRAN IV statements are executed sequentially. However, it is
often undesirable to proceed with each statement in this manner. This chapter
will discuss some of the statements used to alter sequential execution, and why
this may be desirable.

Unconditional GO TO Statement .
This statement is used to interrupt sequential execution; it indicates the statement
that is to be executed next.

General Form of the Unconditional GO TO Statement

GO TO n

where:

• n is the statement number of an executable statement.

This statement causes the statement whose number is n to be executed next.

Examples:

GO TO 16
GO TO 137

A coding example is shown below:

•
•
•
A=3.
B=4.
GO TO 7

12 B=2.*A
7 A=2.*B

•
•
•

Statement 12 will not be executed. After the GO TO statement is executed,
statement 7 will be evaluated and A will be assigned the value 8.0.

Any executable statement immediately following the unconditional GO TO
statement should have a statement number; otherwise, it can never be referred to
or executed.

Computed GO TO Statement
This statement also indicates the statement that is to be executed next. However,
it allows that statement to be different at various stages in the program.

General Form of the Computed GO TO Statement

GO TO (n1 , n 2 , ••• ,nm), i

where:

• n l' ~, ... ,nm are statement numbers of executable statements and i is an
integer variable, not an array element, normally having a value between 1 and
m, inclusive.

Control Statements 4 - 1

The parentheses enclosing the statement numbers, the commas separating the
statement numbers, and the comma following the right parenthesis are all
required punctuation.

This statement causes transfer of control to the 1st, 2nd, 3rd, etc., statement in I ~

the list depending on whether the value of i is 1, 2, 3, ... , etc. If i has a value less \. y

than 1 or greater than the number of items in the list, the statement following
the GO TO statement is executed next. The value that i has at any given time
must be set by a preceding statement.

Examples:

GO TO (5 , 7 , 8 , 2 , 4) , J

GO TO (4 , 4 , 4 , 7 , 8 , 9) , MAX

If J is 3, transfer control to statement 8.
This example illustrates the fact that several
values of i may cause a transfer of control to the
same statement. In this case, when MAX has the
values 1, 2, or 3, transfer of control will be
made to statement number 4.

Further use of the computed GO TO is illustrated below:

•
•
•
A=3.
B=4.
c=s.
K=O
K=K+1
GO TO (10,20,30),K
•
•
•

30 F=A-B
GO TO 12

20 E=A-C
GO TO

10 D=8-C
GO TO
•
•
•

12 CONTINUE

As a study of this example will show, D, E and F are computed, in that order,
and control proceeds to statement 12. Of course, the example itself is highly
simplified; if these were the only required calculations in this series, the
programmer would just compute D, E, and F sequentially, in any desired order
and without using the computed GO TO.

ASSIGN and Assigned GO TO Statements

4 - 2 GC34-0133

General Form of the ASSIGN and Assigned GO TO Statements

ASSIGN i TO k
•
•
•
GO TO k, (n l , n2 , ••• nm)

where:

• i is the number of an executable statement. It must be one of the numbers n l ,

n2 , n3,···,nm ·

c

c

• Each n is the number of an executable statement in the program unit
containing the GO TO statement.

• k is an integer variable (not an array element) of length 4 which is assigned
one of the statement numbers: nt' ~, n3, ... ,nm. See Appendix C for a
description of the NOCMPAT compile option.

The assigned GO TO statement causes control to be transferred to the
statement numbered nt' ~, n3, ... , or nm, depending on whether the current
assignment of k is nt' ~, n3' ... ' or nm, respectively. For example, in the
statement:

GO TO n, (10, 25, 8)

If the current assignment of the integer variable n is statement number 8, then
the statement numbered 8 is executed next. If the current assignment of n is
statement number 10, the statement numbered 10 is executed next. If n is
assigned statement number 25, statement 25 is executed next.

At the time of execution of an assigned GO TO statement, the current value
of k must have been defined to be one of the values nt' ~, ... nm by the previous
execution of an ASSIGN statement. Note that ASSIGN 10 TO I is not the same
as I = 10.

Any executable statement immediately following this statement should have a
statement number; otherwise, it can never be referred to or executed.

Example 1:

•
•
ASSIGN 50 TO NUMBER

1 0 GO TO NUMBER, (35, 50, 25, 1 2, 1 8)
•
•
•

50 A=B+C
•
•
•

In Example 1, statement 50 is executed immediately after statement 10.

Example 2:

•
•
ASSIGN 10 TO ITEM
•
•
•

13 GO TO ITEM, (8,12,25,50,10)
•
•
•

8 A=B+C
•
•
•

10 B=C+D
ASSIGN 25 TO ITEM
GO TO 13
•
•
•

25 C=E**2
•
•

Control Statements 4 - 3

Logical IF Statement

Arithmetic IF Statement

4 - 4 GC34-0133

In Example 2, the first time statement 13 is executed, control is transferred to
statement 10. On the second execution of statement 13, control is transferred to
statement 25.

The logical IF statement permits the programmer to execute or skip an associated
statement depending on the value-true or false-of a relational expression.

General Form of the Logical IF Statement

IF (a) s

where:

• a is a logical expression and s is any executable statement except a DO
statement or another logical IF statement.

Examples:

IF(A .GT. 1.0) GO TO 50
IF(A-B .LT. A+C) A=B
IF (A .GT. B .OR. C .LT. D) GO TO 10

The associated statement is executed if the logical expression is true. Otherwise
the statement following the IF statement is executed next. In the second example,
if the logical expression is true, A is set equal to B and then the statement
following the IF statement is executed.

Suppose a series of records, each containing a variable code number, I, is being
read and processed. Certain of the records, appearing at random but with special
code numbers greater than 99, are to be processed differently. The FORTRAN
IV statements to accomplish this might be as follows:

•
•
•
IF(I.GT. 99) GO TO 20
•
•
•

20 A=B+C
•
•
•

This statement permits a programmer to change the sequence of statement
execution, depending upon the value of an arithmetic expression.

General Form of the Arithmetic IF Statement

IF (a)

where:

n n n
"I' "2' "3

• a is an arithmetic expression and n l , n2 , and n3 are the statement numbers of
executable statements.
The expression, a, must be enclosed in parentheses; the statement numbers

must be separated from one another by commas. The same statement number
may be specified more than once.

c

c

c

DO Statement

Examples:

IF(A-B)10,10,7

IF (A (I) /D) 1 , 2 , 3

Control is transferred to statement number nt' ~, or n3 depending on whether
the value of a is less than, equal to, or greater than zero, respectively. Note that
in the first example, the same statement, numbered 10, is to be executed if A - B
is less than or equal to O.

As another example, suppose a value, A, is being computed. Whenever this
value is positive, it is desired to proceed with the program. Whenever the value
of A is negative, an alternative route starting at statement 12 is to be followed,
and if A is zero, an error routine at statement 72 is to be executed. This may be
coded as:

•
•
•
A=(B+C)/(D**E)-F
IF(A)12, 72,10

10 •
•
•

12 •
•
•

72 •

General Forms of the DO Statement

DO n i mt , ~

DO n i = mt , m2 ' m3

where:

• n is a statement number, i is an integer variable not an array element, and m t ,

~, and m3 are each either an unsigned integer constant or integer variable,
not an array element, whose values are greater than O. If m3 is not stated, it is
taken to be 1. The commas separating the parameters are required.

Examples:

DO 20 JBNO
DO 20 JBNO
DO 20 JBNO

1 , 10
1, 10, 2
K, L, 3

The DO statement is a command to execute repeatedly the statements which
follow, up to and including the statement having statement number n. The first
time, the statements are executed with i=m t • For each succeeding execution of
the statements, i is increased by m3. After the statements have been executed
with i equal to the highest value of this sequence which does not exceed m2 ,

control passes to the statement following the last statement in the range of the
DO (the statement after statement n). Upon completion of the DO, the DO
variable is undefined and may not be used until assigned a value (e.g., in an
arithmetic assignment statement).

Looping and tile DO Statement
The ability of a computer to repeat the same operations with different data,
called looping, is a powerful tool which greatly reduces programming effort.
There are several ways to accomplish this looping; one way is to use an IF
statement. For example, assume that a plant carries 1,000 parts in inventory.
Periodically it is necessary to compute stock on hand of each item (lNV), by
subtracting stock withdrawals of that item (lOUT) from previous stock on hand.

Control Statements 4 - 5

4-6 GC34-0133

It would be wasteful to write a program which would indicate each separate
subtraction by a separate statement. The same results could be achieved by the
following statements:

•
•
•

5 J=O
10 J=J+l
25 INV(J)=INV(J)-IOUT(J)
15 IF(J .LT. 1000) GO TO 10
20 •

•
•

An index, J, is established which will be increased by 1 each time statement 10
is executed. Statement 5 initializes J to zero so that statement 10 will set J equal
to 1 for the first execution of statement 25.

Statement 25 will compute the current stock on hand by subtracting the stock
withdrawal from the previous stock on hand. The first time statement 25 is
executed, the stock on hand of the first item in inventory, INV(l), will be
computed by subtracting the stock withdrawal 'of that item, IOUT(1). Statement
15 tests whether all items in stock have been updated. If not, J will be less than
1000 and the program will transfer to statement 10, which will increment J by 1.
Statement 25 will be executed again, this time for the stock on hand of item 2,
INV(2), and the stock withdrawal of item 2, IOUT(2). This procedure will be
repeated until the stock of item 1000 has been updated. At this point, J will not
be less than 1000, causing execution to continue with statement 20.

Notice that three statements (5, 10 and 15) were required for this looping; this
could have been accomplished with a single DO statement.

Not only does the DO simplify the programming of loops, it also provides
greater flexibility in looping. Thus, the DO statement:

• Establishes an index which may be used as a subscript or in computations
• Causes looping through any desired series of statements, as many times as

required
• Increases the index (by any positive amount that the programmer specifies) for

each separate execution of the series of statements in the loop.

Example:

•
•
•

15 DO 25 J=1,1000
25 INV(J)=INV(J)-IOUT(J)
35 •

•
•

Statement 15 is a command to execute the following statements up to and
including statement 25. The first time J will be 1; thereafter 1 will he increased
by 1 for each execution of the loop until the loop has been executed with 1 equal
to 1000. After the loop has been executed with 1 equal to 1000, the statement
following statement 25 will be executed.

The following is a comparison of statement 15 with the general form of the
DO, and an introduction of some of the terms used in discussing DO statements:

I '"
\ ,

it 0

c

c

DO n m l , m2 , •. m3

DO 25 J 1, 1000
,.-A-... ,.-A-... ,.-A-... ,.-A-... ~

Range Index Initial Test Increment
value value

The range is the series of statements to be executed repeatedly. It consists of
all statements following the DO, up to and including statement n. In this case,
statement n is statement 25, and the range consists of only one statement. The
range can consist of any number of statements.

The index is the integer variable whose value will change for each execution of
the range. In the example, this index was used as a subscript; in another problem
it might be used in computations, etc. (The index need not be used in the range,
although it usually is.)

The initial value is the value of the index for the first execution of the range.
Although the initial value was 1 for this example, in another problem it might be
some different integer quantity. Often, the initial value will change at different
times within the program. In such cases it may be stated as an integer variable.
The variable must then be assigned a value before the DO is executed.

The test value is the value which the index may not exceed. After the range
has been executed with the highest value of the index which does not exceed the
test value, the DO is satisfied, and the program continues with the first statement
following the range. In the example, the DO was satisfied after the range was
executed with the index equal to the test value. In some cases, the DO is
satisfied before the test value is reached. Consider, for example, the following
DO:

DO 5 K=l, 9, 3
•
•

5 •

In this example, the range will be executed with K equal to 1, 4 and 7. The next
value of K would be 10; since this exceeds the test value, control passes to the
statement following statement 5 after the range is executed with K equal to 7.
The test value may also be written as an integer variable.

The increment is the amount by which the value of the index will be increased
after each execution of the range. In the example, this is not coded because the
increment desired is 1, and the general form permits omission of the increment
when it is 1. As with the initial value, the increment may be written as an integer
variable.

As a further example, consider the following program:

•
•
•
K=O
L=10
DO 5 JOB=l, L, 2
K=K+l

5 M(JOB=N(JOB)-K*JOB

This would cause the following computations:

M(1)=N(1)-1 *1
M(3)=N(3)-2*3
M(5) = N(5)-3 *5
M(7)=N(7)-4*7
M(9)=N(9)-5*9

When using DO statements, the following rules must be followed:

Control Statements 4 - 7

4 - 8 GC34-0133

1. The indexing parameters of a DO statement (i, m1, ~, m3) should not be
changed by a statement within the range of the DO loop.

2. There may be other DO statements within the range of a DO statement. All
statements in the range of an inner DO must be in the range of each outer "
DO. A set of DO statements satisfying this rule is called a nest of DO's. , J

Example 1:

DO 50 I = 1,4

A(I) = BO)**2

DO 50 J= 1,5

50 C(I,l) = A(I)

Example 2:

DO 10 1= L, M

N= I + K

}

Range of
inner DO

DO 15 J = 1, 100, 2

15 TABLE(J, I) = SUM(J,N)-1

10 B(N) = A(N)

I Range of
outer DO

}
Range of
inner DO

\

Range of
outer DO

/

3. A transfer out of the range of any DO loop is permissible at any time. The
DO variable is defined when such a transfer is executed, and its value is the
value it has when the transfer is executed.

4. The extended range of a DO is defined as those statements that are executed
between the transfer out of the innermost DO of a set of completely nested
DO's and the transfer back into the range of this innermost DO. In a set of
completely nested DO's, the first DO is not in the range of any other DO,
and each succeeding DO is in the range of every DO which precedes it. The
following restrictions apply:

Transfer into the range of a DO is permitted only if such a transfer is
from the extended range of the DO.
The extended range of a DO statement must not contain another DO
statement that has an extended range if the second DO is within the same
program unit as the first.
The indexing parameters (i, m t , m2 , m) cannot be changed in the
extended range of the DO.

(:

c

Example 3:

DO

DO

DO

~
• • •

5. A statement that is the end of the range of more than one DO statement is
within the innermost DO. The statement label of such a terminal statement
may not be used as the branch target of any statement except those within
the range of the innermost DO with that terminal statement.

Example 4:

DO

~---D0

• 2

DO

~ _____________ D_O~ 4
DO

5

In the preceding example, the transfers specified by the numbers 1, 2, and 3
are permissible, whereas those specified by 4, 5, 6, and 7 are not.

6. The indexing parameters (i, m1, m2 , m3) may be changed by statements
outside the range of the DO statement only if no transfer is made back into
the range of the DO statement that uses those parameters.

7. The last statement in the range of a 00 loop (statement x) must be an
executable statement. It cannot be a GO TO statement of any form, or a
PAUSE, STOP, RETURN, arithmetic IF statement, another DO statement,
or a logical IF statement containing any of these forms.

8. The use of a subprogram within any DO loop (that is either in a nest of
DO's or an extended range) is permitted.

Control Statements 4 - 9

CONTINUE Statement

PAUSE Statement

4 - \0 GC34-0133

This statement is primarily used as the last statement in the range of a DO where
the last statement would otherwise violate DO rules.

General Form of a CONTINUE Statement

CONTINUE

As an example of a program which requires a CONTINUE, consider the
following:

•
•
•

1 0 DO 1 2 1= 1, 1 00
IF (ARG.EQ.VALUE(I)) GO TO 20

12 CONTINUE
•
•
•

This program will scan the 100-element VALUE array until it finds an entry
which equals the value of the variable ARG, whereupon it will transfer control to
statement 20 with the value of I available for use. If no entry in the array equals
the value of ARG, a normal exit to the statement following the CONTINUE will
occur.

Note that a CONTINUE statement (when used as above) is meaningless
without a statement number.

A CONTINUE statement may appear anywhere in the source program (where
an executable statement may appear) without affecting the sequence of
execution.

This statement will cause a halt of the execution of the program and the display
of a message. PAUSE, PAUSE n, or PAUSE 'message' is displayed, depending
on how the source statement was coded.

General Forms of the PAUSE Statement

PAUSE
PAUSE n

PAUSE 'message'

where:

• n is an unsigned integer constant not greater than 99999, and 'message' is a
literal constant, enclosed in apostrophes, containing up to 56 alphmeric and/or
special characters.

The program issuing the PAUSE remains in a wait state until the operator
responds by either striking the return key or typing any single character. (The
character typed is not transmitted as data to the program.) The program then
resumes executing at the next FORTRAN IV statement following the PAUSE.

STOP Statement

c

END Statement

c

o

This statement terminates the execution of the program, and displays a halt code
if an integer constant is specified (such as described under "PAUSE Statement"
above).

General Forms of the STOP Statement

STOP
STOP n

where:

• n is an unsigned integer constant not greater than 99999.

If n is specified, the constant will be displayed.

General Form of the END Statement

END

The END statement is a nonexecutable statement that defines the end of a main
program or subprogram. Physically, it must be the last statement of each program
unit. The END statement may not have a statement number and it may not be
continued. The END statement does not terminate program execution. To
terminate execution a STOP or RETURN statement in the main program is
required.

Control Statements 4 - 11

4 - 12 GC34-0133

1"\ , }

c

Chapter 5. Input/Output Statements

Input/ output statements are used to transfer and control the flow of data
between internal storage and an input/output device, such as a programmer
console or a disk storage unit.

Series/1 FORTRAN IV provides two types of input/output statements:
sequential and direct access. Sequential I/O statements read or write records
consecutively. Direct-access I/O statements read or write records in any chosen
order.

Certain input/output devices are sequential. Only sequential I/O statements
can be used in conjunction with the keyboard, paper tape unit, or a printer.
However, on a disk storage unit, records can also be read or written directly; that
is, in an order determined by the programmer. When records are to be read or
written directly, direct-access I/O statements must be used. Note, however, that
unformatted sequential I/O statements can be used to read or write records
sequentially on the disk and that direct-access I/O statements can also be used
on disk for reading or writing records sequentially.

A data set reference number in each input/output statement specifies which
input/ output device or data set on a device is to be used in the operation. Data
set reference numbers identify data set definitions.

Input/ output statements in FORTRAN IV are primarily concerned with the
transfer of data between storage locations defined in a FORTRAN IV program
and records which are external to the program. On input, data is taken from a
record and placed into storage locations that are not necessarily contiguous. On
output, data is gathered from diverse storage locations and placed into a record.
An I/O list is used to specify which storage locations are used. The I/O list can
contain the names of variables, array elements, or arrays, or a form called an
implied DO.

Sequential Input/ Output Statements

The READ Statement

Sequential READ and WRITE statements may process formatted records,
unformatted records, or list-directed records.

A formatted record has a FORMAT statement associated with it. A FORMAT
statement specifies the form of data on the external medium. (The FORMAT
statement will be explained in greater detail later in this section after the 1/ 0
statements themselves have been described.) Any number of records may be read
or written with one execution of a formatted READ or WRITE statement. The
data in the records are converted according to specifications listed in the
FORMAT statement and are assigned to, or taken from, elements listed in the
READ or WRITE statement, respectively.

An unformatted record has no FORMAT statement associated with it. Only
one record may be transmitted per execution of an unformatted READ or
WRITE statement. The unformatted READ is generally used to read records
which have been written on a disk by an unformatted WRITE statement.

A list-directed record is similar to an unformatted record in that it has no
FORMAT statement associated with it. However, it is used to transmit records to
and from unit-record devices such as a keyboard.

General Forms of the READ Statement

READ (u,f,END=s,ERR=t) list
READ (u,END=s,ERR=t) list
READ (u,*,END=s,ERR=t) list

Input/Output Statements 5 - 1

The WRITE Statement

5 - 2 GC34-0133

where:

• u is an unsigned integer constant or integer variable of length 4 which is the
data set reference number of the device to be read from. See Appendix C for
a description of the NOCMP A T compile option. ("

• * specifies list-directed data mode for unit-record devices without use of a \. j

FORMAT statement.
• f is the statement number of the FORMAT statement describing the data

items to be read.
• END=s is optional and specifies the number (s) of an executable statement to

which control is to be transferred if end-of-file is encountered. Statement s
must be in the same program unit as the READ statement.

• ERR=t is optional and specifies the number (t) of an executable statement to
which control is to be transferred if a transmission error occurs during the
data transfer. Statement t must be in the same program unit as the READ
statement.

• If END or ERR is not specified, the preceding comma is omitted.
• list is an 110 list and is optional.

Although the END and ERR parameters need not be specified, if an
end-of-file condition is encountered or a transmission error occurs and the
appropriate parameter is not present, execution of the program may terminate.
(See the discussion of the service subprogram ERRXIT in Appendix B.) END
and ERR may appear in any order within the parentheses, but must follow the
data set reference number and FORMAT statement number, if present.

Examples:

READ(9,100) D,E,F

This formatted READ statement causes data to be read from the data set whose
reference number is 9 into the variables D, E, and F, in the format specified by
the FORMAT statement numbered 100.

READ (J) A,B,C

This unformatted READ statement causes data to be read from the data set
whose reference number is the current value of J into the variables A, B, and C.

READ (1, *, END=200) (ARRAY(I) , 1= 1 ,25) , B(1) , C(6)

This list-directed READ statement causes data to be read from the data set
whose reference number is 1 into the 27 array elements specified by the list. If
an end-of -file record is encountered, control is transferred to the statement
numbered 200.

General Forms of the WRITE Statement
WRITE (u,f,ERR=t) list
WRITE (u,ERR=t) list
WRITE (u,*) list

where:

• u is an unsigned integer constant or integer variable of length 4 which is the
data set reference number of the device to be written to. See Appendix C for
a description of the NOCMP A T compile option.

(:

C:

c

c

• * specifies list-directed data mode for unit record devices without use of a
FORMAT statement.

• f is the statement number of the FORMAT statement that describes the data
items to be written.

• ERR=t is optional and specifies the number (t) of an executable statement to
which control is to be transferred if a transmission error occurs during the
data transfer. Statement t must be in the same program unit as the WRITE
statement.

• If ERR is not specified, the preceding comma is omitted.
• The END parameter may not be specified in the WRITE statement.
• list is an I/O list required on unformatted WRITE and optional on formatted

WRITE.

Although the ERR parameter need not be specified, if a transmission error
occurs, and the ERR parameter is not present, execution of the program will
terminate, unless the ERRXIT has been called prior to executing the WRITE
statement. (See the discussion of the service subprogram ERRXIT in Appendix
B.) ERR must follow the data set reference number and FORMAT statement
number, if present.

If the I/O list is specified, it will be treated as one record.

Example:

WRITE (2,75) A, B, C

This formatted WRITE statement causes data to be written from the variables A,
B, and C onto the data set whose reference number is 2 according to the format
specified by the FORMAT statement whose number is 75.

Example:

WRITE (4) ZEE

This unformatted WRITE statement causes data in the variable ZEE to be
written onto the data set whose reference number is 4. Since the record is
unformatted, no FORMAT statement number is given and none should be
specified when the record is read back into storage.

Example:

WRITE (5,10,ERR=999) Al,A2

This formatted WRITE statement causes data in the variables A 1 and A2 to be
written onto the data set whose reference number is 5 according to the format
specified by the FORMAT statement whose number is 10. If a transmission error
occurs during the data transfer, control is transferred to the executable statement
numbered 999 (specified by ERR=999 in WRITE statement).

WRITE (2,*) I,N(I)

This list-directed WRITE statement causes the data in the variable I and the
array element N(I) to be written on the device whose data set reference number
is 2.

Lists For Transmission Of Data
The list in an input/output statement specifies what elements are to be
transmitted. For example, assume that a sequential data set residing on diskette
contains the following data:

Input/Output Statements 5 - 3

Column 7 13 19 25
I , I

, , , , I
I , , , , , , , , , , I I , , , , ,
~~25~~b102~~-101~~~~10~~~~5

Further assume that the following statement appears in the source program
(and 1 specifies the data set reference number):

READ(1,100) I,J,K,L,M

100 FORMAT(516)

The data set will be read and the program will operate upon the data as
though the following statements had been written:

1=25
J=102
K=-101
L=10
M=5

If control passes back to the READ statement, I, J, K, L, and M will receive
new values depending upon what is contained in the next record to be read.

Implied DO Specificatioll ill Input/Output Lists

5 - 4 GC34-0133

DO-type notation may be used in lists for the transmission of data. For example,
suppose it is desired to transmit the five quantities A(1), A(2), A(3), A(4), and
A(5). This may be accomplished by writing:
10 FORMAT(SF8.0)

1 2 READ (1 , 1 0) (A (I) , 1=1 , 5)

The above statements cause a record to be read and cause the value contained
in the first eight positions of the record to be converted to a real number and
stored into A(1), the next eight positions into A(2), etc.
This is equivalent to writing:

12 READ(1 , 10)A(1), A(2) ,A(3) ,A(4) ,A(5)

In other words, I would be given the value 1 and the first quantity would
become the value of A(1). I would then be increased by 1, and the second
quantity would become the value of A(2). This would continue until the fifth
quantity to be read becomes the value of A(5).

As with DO statements, a third indexing parameter may be used to specify the
amount by which the index is to be incremented at each iteration. Thus,

READ(1 ,50) (A(I),1= 1 , 10,2)

causes transmission of values for A(1), A(3), A(5),A(7), and A(9).

General Form of Implied DO Notation

(Y t' Y2'···' Y n' i=ffi t , ffi2, ffi3)

where:

• Each y is a list element.
• mt , ~ and m3 are each either an unsigned integer constant or an integer

variable. If m3 is not stated, it is taken to be 1.

As with DOs, i is the index, m t is the initial value, m2 is the test value, and m3
is the increment. In addition, this notation may be nested.

Example:

((C(I, J) ,D(I, J) ,1= 1 ,5) ,J= 1 ,4)

(-l , I

f ,

(

c

c

would transmit data in the form:
C(1 , 1), D(1 , 1), C(2, 1), D(2, 1), ... , C(5, 1),

D(5, 1), C(1 ,2), D(1 ,2), ... , C(5,4), D(5,4)

Additional Details 0/ /npllt/OIItpllt Lists

END FILE Statement

REWIND Statement

Any number of quantities may appear in a single list. Integer, real, and logical
quantities may be transmitted by the same statement. However, each quantity
must have the correct format as specified in a corresponding FORMAT
statement if formatted I/O is used.

For formatted READ, only the quantities specified in the list are transmitted;
the remaining quantities are ignored. Thus, if a record contains three quantities
and a list contains two, the third quantity is not used by the program.

For unformatted READ, a list must not contain more quantities than the input
record.

When an array name appears in a list in non-subscripted form, all of the
quantities of the array receive data or are transmitted. For example, if A is an
array with 25 elements, the statement

READ(1,100)A

causes all of the quantities A(1), ... A(25) to receive data.
A more complex list is:

A, B(3) , (C(I) , D(I, K) , 1= 1 , 10) ,

((E(I, J) , 1= 1 , 10,2) , F(J, 3) , J= 1 , K)

This list would receive or transmit data in the order:
A, B(3) , C(1), D(1 , K) , C(2) , D(2, K) , ... ,
C(10) , D(10, K) , E(1 , 1), E(3, 1),
... ,E(9,1),F(1,3),E(1,2),E(3,2), ... ,
E(9,2) , F(2,3), ... , E(9, K), F(K, 3)

Note that each item in the list is separated by a comma, that the range of the
implied DO statement is clearly defined by means of parentheses, and that
constants do not appear in the list except as indexing parameters or subscripts.
The variable indexing parameter (K) is assumed to have been previously defined
by the program, although in an input list it could have been defined by an item
in the list itself, providing that it appeared before its use as an index.

Subscripts appearing in I/O lists may not contain exponentiation (**) or
function references.

General Form of the END FILE Statement

END FILE i

where:

• i is an unsigned integer constant or integer variable of length 4 which is a data
set reference number. See Appendix C for a description of the NOCMPA T
compile option.

The END FILE statement causes an end-of-file record to be written.

Examples:

END FILE 10

END FILE K

General Form of the REWIND Statement

REWIND i

Input/Output Statements 5 - 5

where:

• i is an unsigned integer constant or integer variable of length 4 which is the
data set reference number. See Appendix C for a description of the
NOCMPAT compile option. r'\
The REWIND statement causes unit i to be positioned at the first record of \, J

the data set.

Examples:

REWIND 10
REWIND K

BACKSPACE Statement

FORMAT Statement

5 - 6 GC34-0t33

General Form of the BACKSPACE Statement

BACKSPACE i

where:

• i is an unsigned integer constant or integer variable of length 4 which is the
data set reference number. See Appendix C for a description of the
NOCMP A T compile option.

The BACKSPACE statement causes the unit i to backspace one record.

Examples:

BACKSPACE 10
BACKSPACE K

General Form of a FORMAT Statement

xxxxx FORMAT (C l 8 1 C 2 •• .cn)

where:

• xxxxx is a statement number (1 through 5 digits).
• c is a format code (described below).
• s is a separator, which may be either a comma or any number of slashes.

Slashes are used to indicate the beginning of a new record. Any number of
slashes may precede the first or follow the last format code.

The format codes are:

alw
aDw.d
aEw.d
nPaDw.d
nPaEw.d
aFw.d
nPaFw.d
aLw
aEw.d
aAw
wH
literal
wX

Tr

a(...)

Describes integer data fields
Describes double-precision data fields
Describes real data fields
Describes double-precision data fields and specifies a scale factor
Describes real data fields and specifies a scale factor
Describes real data fields
Describes real data fields and specifies a scale factor
Describes logical data fields
Describes hexadecimal data fields
Describes character data fields
Describes literal data
Describes literal data
Indicates that afield is to be skipped on input or filled with
blanks on output
Indicates the position in a FORTRAN IV record where transfer
of data is to begin
Indicates a group format specification

c

c

where:

• a is optional and is a repeat count, an unsigned integer constant that specifies
the number of times the code is to be repeated. If a is omitted, the code is
used once.

• w is an unsigned, nonzero integer constant that specifies the number of
characters in the field.

• d is an unsigned integer constant specifying the number of decimal places to
the right of the decimal point, that is, the fractional portion. The decimal point
between wand d portions of the specification is required punctuation.

• n is a negative or unsigned integer constant which is the scale factor; if the
constant is unsigned, it is assumed to be positive.

• r is an unsigned integer constant designating a character position in a record.
• (...) is a group format specification. Within the parentheses are format codes,

which are separated by commas or slashes.

In order for data to be transmitted from an external storage medium to the
computer or from the computer to an external medium, it is necessary that the
computer know the form in which the data exists. The FORMAT statement
describes the form of the data on the external medium. The FORMAT statement
is used with the number of items in the I/O list in the READ and WRITE
statements to specify the structure of FORTRAN IV records and the form of the
data fields within the records. In the FORMAT statement, the data fields are
described with format codes. Delimiters between these format codes specify the
structure of the FORTRAN IV records. The I/O list gives the names of the data
items in the fields which make up the records. The length of the list, in
conjunction with the FORMAT statement, specifies the number of records.

The following are general rules for using the FORMAT statement:

1. FORMAT statements are not executed; their function is to supply
information to the object program. They may be placed anywhere in a
program unit (other than a BLOCK DATA subprogram) subject to the rules
for the placement of the FUNCTION, SUBROUTINE, IMPLICIT, and END
statements.

2. Field width may be specified greater than required in order to provide
spacing. Thus, if a number is to be converted by I-type conversion and the
number does not exceed five characters including sign, a specification of I 1 0
will supply five leading blanks.

3. A specification preceded by an unsigned integer constant may be repeated as
many times as desired (within the limits of the device). Thus, FORMAT
(2Fl0.4) is equivalent to FORMAT (FI0.4,FlO.4).

4. Succeeding specifications are written in a single FORMAT statement
separated by a comma. Thus, FORMAT (I2,ElO.2) might be used to convert
two separate quantities, the first being integer and the second real.

S. To deal with more than one record in a single FORMAT statement, a slash
(/) is used to indicate the end of a record. Thus,

2 FORMAT (3F9.2,2112/8El0.5)

would specify two records, the first of which would be written according to
the format 3F9.22I12 and the second 8ElO.S.
Blank lines may be introduced into the output by the use of consecutive
slashes in a FORMAT statement. At the beginning of a FORMAT
statement, n consecutive slashes produce n blank lines. In the body of the
statement, n consecutive slashes produce n-l blank lines; at the end of the
statement, n slashes produce n blank lines.
Consecutive slashes in a FORMAT statement on input cause records to be
skipped. The number of records skipped is determined by the position of the
slashes in the FORMAT statement. Thus, at the beginning and at the end of
the FORMAT statement, n consecutive slashes cause n records to be

Input/Output Statements 5 - 7

5 - 8 GC34-0133

skipped. In the body of the FORMAT statement, n consecutive slashes cause
n - 1 records to be skipped.

6. When formatted records are prepared for printing, the first character of the
record can be treated as a carriage control character. By specifying this
option, certain printer controls are available. The carriage control character is 0
generally specified with a literal format code: either c or lHc, where c is one
of the following:

c

blank
o
1

+

Meaning

Advance one line before printing
Advance two lines before printing
Advance to first line of next page
No advance

If the carriage control option has been specified, the first character of the
record is not interpreted as part of the data field but is always used for
carriage control, whether or not it is specified directly in the FORMAT
statement. Thus, formatting records without considering the carriage control
may cause problems. For example, if the first field of a record is numeric and
produces a 1 as the first character of the record, it will cause an advance to
the first line of the next page on the printer.

Format codes that may affect carriage control are listed below:

• literals: (no associated I/O list item)

Example:

WRITE (2,100) I
100 FORMAT ('lPAGE' ,IS)

These statements position a 1 in the first character of the record, causing a
page eject.

T- and X-format codes: (no associated I/O list item). These formats can ~ "
produce leading blanks in the first character of a record. Since the first r
character is not printed, it is necessary, when using the T -format code, to
tab to n + 1 to start printing in the nth print position. For example, to
start printing in print position 3, the T code is T4.

Example:

WRITE
10 FORMAT (T61, 'TABULATING')

These statements would cause the word TABULATING to be printed in
positions 60 through 69. The 61 leading blanks include a blank in the first
position of the record, which causes the carriage to advance one line before
printing.

Example:

WRITE (2,15) I,J
15 FORMAT (20X,2110)

These statements would cause the carriage to advance one line and then print
the two integer fields defined by I and J in positions 20 through 40.

A-conversion: (with associated I/O list item)

Example:

DATA ICARR/'+'/
WRITE (2,20) ICARR,AX

20 FORMAT (A1,F10.2)

(,:

c

c

c

These statements cause no advance of the printer before printing the value of
the real variable AX in print positions 1-10.

I-conversion: (for 0, 1, and leading blanks)

Example:

WRITE (2,30) I,J
30 FORMAT (14,16)

where 1=14739
These statements cause the printer to advance to a new page before printing
473 in print positions 1-3 followed by the value of the integer variable J.

E- or F-conversion: (with a field long enough to produce leading blanks
or with a shorter field to produce a 0 or 1 in the first position)

Example:

WRITE (2,20) Al,A2
20 FORMAT (F8.2,F10.4)

where Al=7678.2
These statements cause the printer to advance to a new line because a blank is
in the first position of the Al field and then prints 7678.20 in print positions
1-7 followed by the value of A2.

Z-conversion: (with a field that produces leading blanks, or a leading 0
or 1)

Example:

DATA HEX/Z04BC61D2/
WRITE (2,70) HEX

70 FORMAT (Z8)

These statements cause the printer to advance two lines before printing
4BC61D2 in print positions 1-7.

7. The specifications in a FORMAT statement must have correspondence in type
with the items in the input/output statements: integer quantities require
I-conversion, REAL *4 quantities require E- or F-conversion, REAL *8
quantities require D-conversion, and logical quantities require L-format code.
A- or Z-conversions can correspond to any type in the I/O list.
Thus, the following statements are compatible:

WRITE (3,2) A,B,I
2 FORMAT (2F6.4,I10)

The following statements are incompatible:
WRITE (3,2) A, B, c, A, B, and C are real variables

2 FORMAT (2F6. 4, 110) I specifies integer conversion
8. When defining a FORTRAN IV record by a FORMAT statement, it is

important to consider the maximum size record allowed on the input/output
medium. For example, if a 78-character record is to be written, the
FORMAT statement must not define a record longer than 78 characters. If
the record is to be printed on the programmer console, its length must not be
longer than the keyboard's line length. For input, the FORMAT statement
must not define a FORTRAN IV record longer than the actual input record.

9. Successive items in the input/output list are transmitted by successive
corresponding specifications in the FORMAT statement until all items in the
list are transmitted. If there are more items in the list than there are
specifications, the record is ended and control transfers to the last preceding
left parenthesis of the FORMAT statement for the next record. This will be
either the left parenthesis at the beginning of the FORMAT statement or, if
grouping was used, the left parenthesis of the last group in the FORMAT
statement.

Input/Output Statements 5 - 9

5 - 10 GC34-0133

For example, suppose the following statements are written into a program:

WRITE (3,10) A,B,C,D,E,F,G
10 FORMAT (F10.3,E12.6,F12.2)

Then the following table shows the variable transmitted in the column on the ('\
left and the specification by which it is converted in the column on the right. 'j
Variable Transmitted Specification

A F10.3

~ B E12.6 first record
C F12.2
D F10.3

~ E E12.6 second record
F F12.2
G F10.3 third record

If the FORMAT statement is coded

10 FORMAT (F10.3,E12.6,2(F12.2))

the results would be as follows:

Variable Transmitted

A
B
C
D
E
F
G

Specification

~~~~~ l first record 
F12.2 
F12.2 
F12.2} second record 
F12.2 
F12.2 third record 

10. A limited grouping by parentheses is permitted in order to enable repetition 
of data fields according to certain format specifications within a longer 
FORMAT statement specification. Thus, FORMAT (2(EI0.5,EI2.6),I4) is 
equivalent to FORMAT (E10.5,E12.6,E10.5,E12.6,I4). An additional level 
of parentheses is not permitted. Thus, FORMAT (2(3(16,18))) is invalid. 
However, FORMAT (2(12),2(14)) is valid because additional parentheses are 
invalid only within group parentheses. 

11. The maximum value of a repeat factor, whether of the form aEw.d or 
a(Ew.d), is 255 characters. 

12. Numeric input data to be read by means of a READ statement when the 
object program is executed must be in the same format as given in the 
previous examples. Thus, a record to be read according to FORMAT 
(l2,EI2.4,F10.4) might be created: 

270-0.9321Eo02000-0.0076 

Within each field, all information is taken to be right justified; embedded 
blanks and trailing blanks in numeric fields are read as zeros and will affect 
the item's value. Plus signs may be omitted or indicated by a +. Minus signs 
must be present if the number is negative or has a negative exponent. 
Certain variations in input data format are permitted. 
• Numbers of D- and E-conversion need not have 4 columns devoted to the 

exponent field. The start of the exponent field must be marked by a D or 
E, or if that is omitted, by a + or - (not a blank). Thus, E2, E+2, +2, 
+02, E02, and E+02 are all permissible exponent fields. 

• Numbers for D-, E-, and F-conversion need not have decimal points. If 
they are not written, the format specification will supply them. For 
example, the number -69321 + 2 with the code E 12.4 will be treated as 
though the decimal point had been supplied between the 6 and the 9. If 
the decimal point is supplied, its position overrides the position indicated ( 
in the FORMAT statement. " " 



c 

Example: 

WRITE (1,5) I,A,J 
5 FORMAT (I5,F8.4/20X,I5) 

This format specifies two records. The first record would be written 
according to the format I5,F8.4 and describes two fields. The first field 
allows five columns for an integer and the second field allows eight columns 
(four following the decimal point) for a real number. 
The second record is written according to the format 20X,IS. This causes 20 
blanks to precede a five-digit integer. 

Example: 

WRITE (1,10) NUM 
10 FORMAT (' THE ANSWER IS ',110) 

This causes the output to be written THE ANSWER IS and allows a 
ten-digit integer to follow. 

Example: 

READ (1,33) A,I,B,C,J,D,E 
33 FORMAT (F6.2,2( I3,2F2.1)) 

This format defines a record in which the first six columns contain a real 
number (three before the decimal point, one for the decimal point, two 
following the decimal point), followed by a three-column integer and two 
real numbers of length two (one column for the decimal point and one 
column following the decimal point), a three-column integer and two real 
numbers of length two. 

Example: 

WRITE (2,100,ERR=999) A,B,C 
100 FORMAT (1 H 1 , 2F 10.3/' 0' , E 12.4 ) 

This format defines two records that will be printed (assuming the 2 in the 
WRITE statement corresponds to the printer) using the carriage control 
character option. The first record consists of two fields preceded by a 
carriage control field containing the character I. This carriage control 
character causes the printer to advance to the first line of the next page and 
then print the two fields described by A and B, according to the format 
2FIO.3. This format causes ten columns to be printed for each field (six 
before the decimal point, one for the decimal point, three following the 
decimal point). 

The second record is also preceded by a carriage control character. 
Designating 0 as the first character of the record causes the printer to 
advance two lines before printing the real number C in the format E 12.4. 
This format allows twelve columns to be printed (three before the decimal 
point, one for the decimal point, four following the decimal point, and four 
for the exponent). 

Conversion of Numeric Data 
Four types of conversion for numeric data are: 

Internal 

Real 
Real 
Real 
Integer 

Conversion 
Code 

F 
E 
D 

External 

Real (without exponent) 
Real (with exponent; single precision) 
Real (with exponent; double precision) 
Integer 

Input/Output Statements 5 - 11 



I-Conversion (aI..,) 

5 - 12 GC34-0133 

Numbers printed by F-conversion are printed as output in a decimal notation 
without an exponent. Typical output might be: 

12.3 
-17.2 
289.1 

-0.726 
1.318 
0.009 

102. 
-968. 
721. 

Numbers printed by D- and E-conversion are printed as a decimal number 
with a power of 10. If the scale factor equals zero, these numbers are 
normalized; that is, their first significant digit is to the right of the decimal point. 
For example: 

232.3 is printed as 0.2323E+03 
.003 is printed as 0.30E-02 
17.4 is printed as 0.174E+02 

For Fw.d format specifications, w should exceed d by at least 1 for positive 
numbers and 2 for negative numbers; for Ew.d, w should exceed d by at least 5 
for positive numbers and 6 for negative numbers. 

Numbers printed by I-conversion are printed as integers. Typical output might 
be: 

12 
-17 
2342 

Programming Note: If an integer input field (I format) contains a number 
whose absolute value exceeds 2,147,483,647, or if a real input field (E-, F-, or 
D-format) contains a number whose absolute value is less than .539 x 10-79 or 
greater than .723 x 1075 , the results are unpredictable. 

No error message is issued for any of the above-mentioned error cases, but the 
user can determine if an error has occurred by calling FCTST. If incorrect data 
was entered, FCTST will return error code 128. The user may then take 
additional action within his program. 

If the mantissa of a single-precision input number exceeds 9 digits or the 
mantissa of a double-precision input number exceeds 18 digits, the least 
significant digits will be truncated and the exponent will be adjusted to reflect 
the number of digits truncated. This is not considered an error condition. 

I-conversion must be used to read integer data or to print a number which exists 
in the computer as an integer quantity. 

Input: w characters are read from an input device. Leading, embedded, and 
trailing blanks are treated as zeros. If the number is too large to be contained in 
an INTEGER *2 or INTEGER *4 variable, only the leftmost digits are used, and 
computations involving this variable will be meaningless. 

The following examples show the internal values of the given quantities if read 
under the 13 format code: 

External Form Internal Value 

3bb 300 
bbb 0 
b3b 30 
b-2 -2 

Output: w print positions are reserved for the number. It is printed in a 
w-space field right-justified (that is, the units position is at the extreme right). If 
the number converted is greater than w positions, asterisks are printed instead of 
the number. If the number has fewer than w digits, the leftmost spaces are filled 

(--" 

\ , 

in with blanks. If the quantity is negative, the space preceding the leftmost digit I' ~ 
\ Ji 



( 
.. 

-."" ... 

J 

c 

will contain a minus sign; w must be large enough to allow a position for this 
minus sign. 

The following examples show how each of the quantities on the left is printed 
according to the specification I3 (tJ is used to indicate blanks): 

Internal Value 

721 
-721 
-12 
9 
8114 
o 
-5 

D- and E-Conversion (aDw.d), (aEw.d) 

Printed Form 

721 
*** 
-12 
tJ tJ9 
*** 
tJ tJO 
tJ-5 

D- and E-format codes are used to transmit real ot double-precision data. 
Input: The number may have a decimal point, a 0, an E, or a signed integer 

constant exponent. Exponents must be preceded by a constant, that is, an 
optional sign followed by at least one decimal digit (with or without a decimal 
point). If the decimal point is present, its position overrides the position indicated 
by the d portion of the format specification. In addition, the number of positions 
specified by w must include a place for it. Since leading, trailing, and embedded 
blanks are treated as zeros, any embedded and trailing blank will affect the value 
of the item. 

The D, E, and signed integer constant exponent specifications for input data 
are interchangeable. For example, given aREAL *4 item in an input list and E 
format specification, the exponent specification in the data item may be a 0, an 
E, or a signed integer constant, or have no exponent. The data item will be 
treated as aREAL *4 constant in any case. Similarly, if the list item is REAL *8 
and the FORMAT specification is 0, the data item will be treated as a 
double-precision constant regardless of its exponent specification, if any. Note 
that the type and length of the list item must agree with that of the specification. 

Output: Unless a scale factor is present (the scale factor changes the location 
of the decimal point in real numbers and its use is explained later in this section), 
output consists of an optional sign (required if the value is negative), a decimal 
point, the number of significant digits specified by d, and a ° or E exponent 
requiring four positions: the ° or E, a + or - sign, and a two-digit exponent. 
The w specification must provide spaces for all of these positions. Thus, its value 
should always be at least d + 5, or d + 6 if the number can be negative. If 
additional space is available, a leading zero will be written before the decimal 
point. If the value of w is not sufficient to print a decimal point and a 
four-position exponent (and a minus sign if the value is negative), asterisks will 
be printed instead of the number. Fractional digits in excess of the number 
specified by d are dropped after rounding. 

Example: 

El0.S 

This format, on input, causes the following: 
+56789.0E2 is converted to internal equivalent of 
-5678934E5 is converted to internal equivalent of 
5678.900EO is converted to internal equivalent of 
567891 E-O 1 is converted to internal equivalent of 
+567.893+3 is converted to internal equivalent of 
+56.789E-3 is converted to internal equivalent of 
+56789.100 is converted to internal equivalent of 

5678900. 
-5678934. 
5678.900 
.567891 
567893. 
.056789 
56789.1 

Input/Output Statements 5 - 13 



F-Conversion (aFw.d) 
F-conversion is used to transmit real data fields. 

Input: w is the total field width including the exponent, if any, and d is the 
number of places to the right of the decimal point (the fractional portion). If a 
decimal point is present in the data, its position overrides the d specification in 
the format code. Either an E or a signed integer exponent is acceptable as input 
with an F-format code. Blanks are treated as zeros; thus, embedded and trailing 
blanks will affect the value of the number. 

For example, the following items will be interpreted as having the value 1000: 

Field Description 

FS.O 
FS.6 

Input Record 

DDDD1DDD 
DDD1DDD. 

Output: w must provide sufficient space for the integer part if it is other than 
zero, a fractional part containing d digits, a decimal point, and, if the output 
value is negative, a sign. Thus, the value of w should be at least 1 greater than 
the value of d and at least 2 greater if the number can be negative. If insufficient 
positions are provided for the sign (if minus), integer portion, decimal point, and 
d-digit fraction, asterisks are written instead of the number. If excess positions 
are provided, the number is preceded by blanks. Fractional digits in excess of the 
number specified by d are dropped after rounding. 

The following example shows how each of the quantities on the left is printed 
according to the specification F5.2: 

Internal Value Printed Form 

12.125 12.13 
-41.5 ***** 
-0.25 -0.25 
7.375 b7.38 
-1. -1.00 

9.03125 b9.03 
187.625 ***** 
0.00390625 bO.OO 
0.0078125 bO.01 

Scale Factor (nPaDw.d, IIPaEw.d, or IIPaFw.d) 
The P scale factor may be specified as the first part of a D, E, or F field 
descriptor to change the location of the decimal point in real numbers. 

Unless there is an exponent in the external input or output data field, the 
effect of the scale factor for F-conversion is external number = internal number 
x lon, where n is the scale factor-the number preceding P. 

Input: The scale factor in the format specification is ignored for any data item 
with an exponent in the external field. Otherwise, a positive scale factor 
decreases the magnitude of the data item and a negative scale factor increases its 
magnitude. For example, if the input data is in the form xx.xxxx and is to be 
used internally in the form .xxxxxx, then the format code used to effect this 
change is 2PF7.4. Or, if the same input is to be used in the form xxxx.xx, then 
the format code used to effect this change is - 2PF7.4. 

Output: The scale factor can be specified for F-, D-, or E-conversion. For 
F-conversion, the effect of the scale factor is the opposite of that for input; a 
positive scale factor increases the magnitude of the number and a negative scale 
factor decreases the magnitude. For example, if the number has the internal form 
xx.xxxx and it is to be written out in the form xxxx.xx, the format code used to 
effect this change is 2PF7. 2. 

For D- or E-conversion, the exponent is adjusted so that the magnitude of the 
number does not change. For example, if the internal number 238.50 is printed 

-"'\ ( " 
\ j 



c 

L-Format Code (2Lw) 

o 

according to the format ElO.3, it appears as 0.238E+03. If it is printed 
according to the format lPElO.3, it appears as 2.38SE+02. 

Once a scale factor has been established, it applies to all subsequently 
interpreted D-, E-, and F-format codes in the FORMAT statement until another 
scale factor is established. A factor of 0 may be used to discontinue the effect of 
a previous scale factor. If no scale factor is given, 0 is used for all F-, D-, or 
E-conversion. 

Example: 

30 FORMAT (E8.3,2PE10.4,E7.2,I5) 

No scale factor applies to E8.3. The scale factor 2 applies to both the EIO.4 
and the E7.2 specifications. If five data items were read using this code, scale 
factor 2 would also apply to the E8.3 code, which would be used to interpret the 
fifth item. To discontinue the effect of the code after the E 1 0.4 specification, the 
statement should be coded: 

30 FORMAT (E8.3,2PE10.4,OPE7.2I5) 

To discontinue it after the E7.2 code if more than four data items are to be 
read using the FORMAT statement, the statement should read: 

30 FORMAT (OPE8.3,2PE10.4,E7.2,I5) 

Note that the OPE8.3 specification is not necessary to discontinue the effect of 
a scale factor in a previous FORMAT statement or in the previous use of this 
FORMAT statement. 

The L-format code is used in transmitting logical variables. 
Input: The input field in the data consists of optional blanks, followed by a T 

or F, followed by optional characters for true or false, respectively. The T or F 
causes a value of true or false to be assigned to the logical variable in the input 
list. 

For example, assume the following statements: 

25 FORMAT (4L8) 
READ (3,25) Ql,Q2,Q3,Q4 

and the input data: 

\7 \/ 

8 16 24 32 
)SJ:SJ:S)5MJ:ST)S)S~FALSEJ:S~~~J:SF~~~TRUE 

I I I I 

Then logical variables Q 1 and Q4 would be given the values true and Q2 and Q3 
the values false. 

Output: A T or F is inserted in the output record depending upon whether the 
value of the logical variable in the I/O list is true or false, respectively. The 
single character is right-justified in the output data field and preceded by w-l 
blanks. 

Input/Output Statements 5 - 15 



Z-Conversion (aZw) 
The Z-format code is used in transmitting hexadecimal data. 

Input: Scanning of the input field proceeds from right to left. Leading, 
embedded, and trailing blanks in the field are treated as zeros. One word in 
internal storage contains four hexadecimal digits. Therefore, if an input field 
contains an odd number of digits, the number is padded on the left with a 
hexadecimal zero when it is stored. If the storage area is too small for the input 
data, the data is truncated and high-order digits are lost. 

Output: If the number of hexadecimal digits in the variable is less than w, the 
leftmost print positions are filled with blanks. If the number of characters in the 
storage location is greater than w, the leftmost digits are truncated and the rest 
of the number is printed. 

Example: 

25 FORMAT (4Z5) 

specifies four hexadecimal fields containing five columns each. 

Examples of Numeric Format Codes 

5 - 16 GC34-0133 

The following examples illustrate the use of the format codes I, F, E, D, and Z. 

Example: 

75 FORMAT (I3,F5.2,2El0.3) 
READ (5,75) N,A,B,C 

• A record containing four input fields is described in the FORMAT statement 
and four variables are in the I/O list. Therefore, each time the READ 
statement is executed, one input record is read from the data set associated 
with data set reference number 5. 

• When an input record is read, the number from the first field of the record 
(three columns) is stored in integer format in location N. The number from 
the second field of the input record (five columns) is stored in real format in 
location A. The next two numbers from the third and fourth fields are stored 
in real format in locations Band C. 

• If one more variable (M, for example) were added to the I/O list, another 
record would be read and the number from the first three columns of that 
record would be stored in integer format in location M. The rest of the record 
would be ignored. 

• If one variable (C, for example) were deleted from the list, one format 
specification E 1 0.3 would be ignored. 

Example: 

75 FORMAT (Z4,Dl0.3,2F8.3) 
READ (5,75) A,B,C,D 

where A, C, and D are REAL *4 and B is REAL *8 and, on successive executions 
of the READ statement, the following input records are read: 

Column: 5 15 23 31 
I I I 
I I 

I I 
I I I I 
I I I I , , , , , 

{ )S3FlI564321)+02)S)S123.4245 781315 
Input 2AF3155381 +02}S'-~87 5619146. 7345 
records 

3AC)5346.18D-03}flS+.145614.67345 

'-v-' '--v-' '--v-~ 
Format: Z4. DI0.3 F8.3 1"8.3 

o ., 

t", 
\ .' 



c 

C 

c 

then the variables A, B, C, and D receive values as if the following data had 
been read: 

A 

03Fl 
2AF3 
3ACO 

B 

156.432D02 
155.381 +20 
346.18D-03 

C 

123.42 
-875.619 
.1456 

D 

45781.315 
146.7345 
14.67345 

• Leading, trailing, and embedded blanks in an input field are treated as zeros. 
Therefore, since the value for B on the second input card was not right 
justified in the field, the exponent is 20 rather than 2. 

• If an explicit decimal point appears in the input field, it overrides the d field, 
of the Ew.d, Dw.d, or Fw.d specification. 

Example: 

7 6 FORMAT (' " F 6 . 2 , E 1 2 . 3 , IS) 

WRITE (6,76),A,B,N 

where the variables A, B, and N are the internal equivalent of the following 
values on successive executions of the WRITE statement: 

A B N 

34.40 123.380E+02 31 
31. 1156.1E+02 130 
-354.32 834.621 E-04 428 
1.132 83.121E+06 

then, the following records are created by successive executions of the WRITE 
statement: 

Column: 7 19 24 
I I , 

I 
I , , I 

I I I , , , 
34.40 0.123E+05 31 

31.10 0.116E+06 130 

****** 0.835E+00 428 

1.13 0.831 E+08 0 

• The integer portion of the third value of A exceeds the format specification, 
so asterisks are printed instead of a value. The fractional portion of the fourth 
value of A exceeds the format specification, so the fractional portion is 
rounded. 

• Note that, for the variable B, the decimal point is printed to the left of the 
first significant digit and that only three significant digits are printed because 
of the format specification E 12.3. Excess digits are rounded off from the right. 

Handling of Alphameric Data 

A-Conversion (aAw) 

There are three specifications available for input/output of alphameric 
information: A-conversion, H-conversion, and literals enclosed in apostrophes. 

The specification aAw causes w characters to be read into, or written from, a 
variable or array element. The type of the variable or array is immaterial. since 
no conversion takes place. Thus, the A-format code can be used for numeric 
fields but not for numeric fields requiring arithmetic. The maximum width of 
w is 255. 

Input/Output Statements 5 - 17 



Input: The number of characters stored in internal storage depends on the 
length of the variable in the 110 list. If w is greater than the variable length (v, 
for example) then the leftmost w-v characters in the field of the input card are 
skipped and the remaining v characters are read and stored in the variable; 
truncation occurs on the left. If w is less than v, then w characters from the field 
in the input card are read and the remaining rightmost characters in the variable 
are filled with blanks. 

Output: If w is greater than the length (v) of the variable in the 110 list, then 
the output field will contain v characters right-justified in the field and preceded 
by leading blanks. If w is less than v, the leftmost w characters from the variable 
will be printed and the rest of the data will be truncated; truncation occurs on 
the right. 

H-Conversion (wH) and Literals Enclosed in Apostrophes 
The specification wH is followed in the FORMAT statement by a string of w 
alphameric characters. For example: 

24HnTHISnISnALPHAMERICnDATA 

This specification may also be coded using apostrophes to enclose the string of 
characters: 

'bTHISbISbALPHAMERICnDATA' 

The apostrophe specification method may be more convenient for specifying 
long character strings. 

The count begins with the character immediately following the H. Note that 
blanks are considered alphameric characters and must be included as part of the 
count w. 

The effect of wH or literal specification depends on whether it is used with 
input or output. 

Input: w characters, or as many characters as are enclosed in apostrophes, are 
extracted from the input record and replace the characters written in the 
FORMAT statement. 

Output: The string of characters following the specification or the literal string 
is written as part of the output record unless characters have replaced them as a 
result of an input operation, in which case the replacement characters are written. 

For example, suppose that the following statements are executed: 

WRITE (3,2) 
2 FORMAT (20HTIME/QUANTITYnREPORT) 

These would cause the following output to be written: 

TIME/QUANTITY REPORT 

N ow assume that a record containing the characters b NOb b 238 is read using 
these statements: 

READ (1,1 ) I 
1 FORMAT ( 'YES' , IS) 

The statement 

WRITE (3, 1 )I 

would create the following output: 

bNOnb238 

Skipping Fields in a Record (X-Format Code) 
Blank characters may be provided in an output record or characters of an input 

o 

record may be skipped by using the specification wX, where w is the number of 1"-
blanks provided or characters skipped. \...., 

5 - 18 GC34-0133 



c. 

c 

For example, if a record has six 10-column fields for integers and it is not 
desired to read the second quantity, then the statement 

10 FORMAT (I10,10X,4I10) 

may be used along with the appropriate READ statement. The T -format code 
can also be used for this purpose, as described below. 

Tabulating the Record (T-Fonnat Code) 
The FORMAT statement processes the data in a record from left to right, 
according to the specifications given within the FORMAT statement. Often, it 
may be useful to start writing in other than record position 1 or to write data at 
specific record locations. The T -format code can be used for this purpose. 

The T -format code is specified as 

Tr 

where r is an unsigned integer constant specifying the position in the record 
where data transfer is to begin. 

A blank is inserted into any character position that has not been previously 
filled. 

Example: 

1 FORMAT (T61,'CALCULATION') 

This statement would cause the word CALCULATION to be inserted in 
positions 61 through 71 of the external record and positions 1 through 60 to be 
filled with blanks. 

Example: 

2 FORMAT (T21,E20.7) 

This statement would cause the data item whose specification is E20.7 to be 
inserted starting at position 21. 

More than one T specification may be used in a FORMAT statement. The 
print positions specified need not be sequential. 

Example: 

3 FORMAT (T2, 'MINUS' ,T40, 'PLUS') 

This statement would cause MINUS to be written starting at position 2 and 
PLUS to be written starting at position 40. Position 1 and positions 7 through 39 
would be blank. 

The positions of all codes following a T specification are governed by that 
specification until another T specification is encountered. 

Input/Output Statements 5 - 19 



Example: 

5 FORMAT (T1,'ANS=' ,T20,E9.3,T35,F10.3,I10,'NOTE 1') 

This statement would result in the following line being written: 

ANS= 0.354E 02 111082.986 536453 NOTE 1 , , , , , 
I I I 
I I 

, 
I , , I , 
Position Position Position Position Position 
1 20 35 45 55 

When formatting a line using the T specification, care must be taken not to 
overlap print positions. 

The T specification can also be used for input. 

Example: 

READ (1,6) INPUT 
6 FORMAT (T15,I5) 

These statements would cause five columns of the input record, beginning at 
column 15, to be transmitted to the variable INPUT. 

If you specify the carriage control option, the first character of the record is 
not treated as data but is interpreted as the carriage control character. (It is 
necessary to tab to n + 1 to start printing in the nth print position.) 

Example: 

WRITE (2, 10 ) 
10 FORMAT (T61, 'TABULATING' 

These statements would cause the word TABULATING to be inserted in print 
positions 60 through 69. 

List-Directed Input Data 

5 - 20 GC34-0133 

A record containing list-directed input data consists of an alternation of constants 
and separators. The record may be read only from a sequential data set; for 
example, a keyboard device. 

An input constant may be of any valid FORTRAN IV numeric data type. 
Blanks may not be embedded in any list-directed constant since they would be 
interpreted as separators. Numeric constants may optionally be signed, but there 
must be no embedded blanks between the sign and the constant. 

Each constant must agree in type with the corresponding list element. The 
decimal point may be omitted from a real constant. If omitted, it is assumed to 
follow the rightmost digit of the constant. 

With the exceptions noted below, a separator is either a comma or a blank. In 
addition, for console input, an end indicator is a separator. Blanks may optionally 
occur between the comma and the carriage return or end-of -card. 

A separator may be surrounded by any number of blanks, horizontal tabs, or 
carriage returns. Any such combination (with no intervening constants) 
constitutes a single separator. When execution of a list-directed READ statement 
begins, a preceding separator is assumed and initial blanks, horizontal tabs, or 
carriage returns, if present, are considered part of that separator. 

A null item is represented by two consecutive commas with no intervening 
constant. Any number of blanks, horizontal tabs, or carriage returns, may be 
embedded between the commas. If a null item is specified, the corresponding list 
item is skipped; its current value remains unaltered. 

(_ .. "'\ 
;i Ii , I 



c~ 

c' 

c 

A repeat factor may be specified for a constant or null item. For a constant, 
the form is 

i*constant 

and for a null item, the form is 

i* 

In each instance, i is a nonzero, unsigned integer constant, indicating that the 
following constant or null item is to occur i times. Neither of these forms may 
contain embedded blanks. The separators surrounding a repeated null item need 
not be commas. 

A slash (/) serves as a special-purpose separator, indicating that no more data 
is to be read during the current execution of a READ statement. If the list has 
not been satisfied, the values of the remaining list elements are unaltered. If the 
list has been satisfied, the slash is optional. 

List-Directed Output Data 
List-directed output data may be directed to any unit-record output device such 
as a printer and may contain any producible form of data which is readable as 
list-directed input. However, certain forms which are permissible as list-directed 
input are not produced as list-directed output. These forms are: null items, i* 
repeat factor, and / special-purpose separator. 

In list-directed output, the width of the data field depends upon the type of 
variable to be written. 

Type of Variable 

REAL*8 
REAL*4 
INTEGER*4 
INTEGER*2 

Width of Data Field 

24 characters 
14 characters 
11 characters 
6 characters 

A blank is inserted as a separator between data fields. The total width of the 
data fields plus separators must be considered when output is going to 
unit-record devices. 

Direct-Access Input/Output Statements 
The direct-access statements permit you to read and write records randomly from 
any location within a data set. They contrast with the sequential input/output 
statements, which process records from the beginning of a data set to its end. 
With the direct-access statements, you can go directly to any point in the data 
set, process a record, and go directly to any other point without having to 
process all the records in between. 

There are four direct-access input/output statements: DEFINE FILE, READ, 
WRITE, and FIND. DEFINE FILE is a non-executable statement which 
describes the characteristics of the data sets to be used during a direct-access 
operation. The FIND statement is used to point to the next record required. The 
READ and WRITE statements cause transfer of data into or out of internal 
storage. These statements allow you to specify the location within a data set from 
which data is to be read or into which data is to be written. 

In addition to these four statements, the FORMAT statement (described 
previously) specifies the form in which data is to be transmitted. All data set 
reference numbers referenced by direct-access READ, WRITE, and FIND 
statements must be defined by a DEFINE FILE statement. 

Each record in a direct-access file has a unique record number associated with 
it. You must specify in the READ, WRITE, and FIND statements not only the 
data set reference number, as for sequential input/output statements, but also the 

Input/Output Statements 5 - 21 



DEFINE FILE Statement 

5 - 22 GC34-0133 

number of the record to be read, written, or found. Specifying the record number 
permits operations to be performed on selected records of the data set instead of 
on records in their sequential order. 

The number of the record physically following the one just processed is made 
available to the program in an integer variable known as the associated variable. ( , 
Thus, if the associated variable is used in a READ or WRITE statement to , ) 
specify the record number, sequential processing is automatically secured. The 
associated variable is specified in the DEFINE FILE statement, which also gives 
the number, size, and type of the records in the direct-access data set. 

To use the direct-access READ, WRITE, and FIND statements in a program, the 
data sets to be operated on must be described with DEFINE FILE statements. 
Each direct-access data set must be described once and only once in the main 
program. 

General Form of the DEFINE FILE Statement 

DEFINE FILE u t (rt' s1' ft' v t ), 

u2 ( r 2' S2 ' f 2' V 2 ) , ••• , 

un(rn,sn,fn,vn ) 

where: 

• Each u is an unsigned integer constant that is the data set reference number. 
• Each r is an integer constant that specifies the number of records in the data 

set associated with u. 
• Each s is an integer c{)nstant that specifies the maximum size of each record 

associated with u. The record size is measured in bytes or double words (four 
bytes). The method used to measure the record size depends upon the 
specification for f. 

• Each f specifies that the data set is to be read or written either with or 
without format control; f may be one of the following letters: 
- L to indicate that the data set is to be read or written either with or 

without format control and that the maximum record size is measured in 
number of bytes. 

- E to indicate that the data set is to be read or written with format control 
(as specified by a FORMAT statement) and that the maximum record size 
is measured in number of bytes. 
U to indicate that the data set is to be read or written without format 
control and that the maximum record size is measured in number of 
doublewords. 

• Each v is an integer variable (not an array element) called an associated 
variable. At the conclusion of each read or write operation, v is set to a value 
that points to the record that immediately follows the last record transmitted. 
At the conclusion of a find operation, v is set to a value that points to the 
record found. The associated variable must be set to a value prior to the first 
read or write operation on the data set. 

The associated variable cannot appear in the II 0 list of a READ or WRITE 
statement for a data set with which it is associated. 

Example: 

DEFINE FILE 8( 50, 100,L,I2 },9( 100,50,L,J3) 

This DEFINE FILE statement describes two data sets, identified by reference 
numbers 8 and 9. The data in the first data set consists of 50 records, each with 
a maximum length of 100 bytes. The L specifies that the data is to be 
transmitted either with or without format control. 12 is the associated variable t " 
that serves as a pointer to the next record. .. , 



c 

c 

The data in the second data set consists of 100 records, each with a maximum 
length of SO bytes. The L specifies that the data is to be transmitted either with 
or without format control. J3 is the associated variable that serves as a pointer to 
the next record. 

If an E is substituted for each L in the preceding DEFINE FILE statement, a 
FORMAT statement is required and the data is transmitted under format control. 
If the data is to be transmitted without format control, the DEFINE FILE 
statement can be written as: 

DEFINE FILE 8( 50,25,U,I2 ),9( 100, 13,U,J3) 

Direct-Access Programmillg COllsiderations 
When programming for direct-access input/output operations, you must establish 
a correspondence between FORTRAN IV records and the records described by 
the DEFINE FILE statement. All conventions discussed in the section 
"FORMAT Statement" apply. 

For example, to process the data set described by the statement 

DEFINE FILE 8( 10,48,L,K8) 

the FORMAT statement used to control the reading or writing could not specify 
a record longer than 48 bytes. The statements 

FORMAT(4F12.1 ) 
FORMAT(I12,9F4.2) 

define a FORTRAN IV record that corresponds to those records described by 
the DEFINE FILE statement. The records can also be transmitted under format 
control by substituting an E for the L and rewriting the DEFINE FILE statement 
as: 

DEFINE FILE 8( 10,48,E,K8) 

To process a direct-access data set without format control, the number of 
storage locations specified for each record must be greater than or equal to the 
maximum number of storage locations in a record to be written by any WRITE 
statement referring to the file. For example, if the I/O list of the WRITE 
statement specifies transmission of the contents of 100 bytes (25 doublewords), 
the DEFINE FILE statement can be either of the following: 

DEFINE FILE 8(50,100,L,K8) 
DEFINE FILE 8(50,25,U,K8) 

Programs may share an associated variable as a COMMON or GLOBAL 
variable. The following example shows how this can be accomplished. 

COMMON IUAR 
DEFINE FILE 8( 100,10,L,IUAR) 
• 
• 
• 
ITEMP=IUAR 
CALL SUBI(ANS,ARG) 

4 IF (IUAR-ITEMP) 20,16,20 
• 
• 
SUBROUTINE SUBI(A,B) 
COMMON IUAR 
• 
• 
• 

In this example, the program and the subprogram share the associated variable 
IUAR. An input/output operation that is performed on data set number 8 and is 
performed in the subroutine causes the value of the associated variable to be 
changed. The associated variable is then tested in the main program in statement 

Input/Output Statements 5 - 23 



READ Statement 

5 - 24 GC34-0133 

4. An associated variable should be passed to a subprogram in a CALL 
statement. 

The READ statement causes data to be transferred from a direct-access device 
into internal storage. The data set being read must be defined with a DEFINE 
FILE statement. 

General Form of the Direct-Access READ Statement 

READ (u'r,f,ERR=s) list 

where: 

• u is an unsigned integer constant or an integer variable (not an array element) 
that is of length 4 and represents a data set reference number; u must be 
followed by an apostrophe ('). See Appendix C for a description of the 
NOCMP AT compile option. 

• r is an integer expression that represents the relative position of a record 
within the data set associated with u. The relative record number of the first 
record of a direct-access data set is 1. 

• f is optional and, if given, specifies the statement number of the FORMAT 
statement that describes the data being read. 

• ERR=s is optional and s is the number of an executable statement in the 
same program unit as the READ statement to which control is given when a 
device error condition is encountered during data transfer from device to 
storage. 

• list is an I/O list and is optional. 

The I/O list must not contain the associated variable defined in the DEFINE 
FILE statement for data set u. 

() 

to. ill 



c 

c 

WRITE Statemellt 

c 

Example: 

DEFINE FILE 8(500,100,L,IDl ),9( 100,28,L,ID2) 

DIMENSION M( 10) 

• 
• 
• 
ID2 

• 
• 
• 

21 

10 FORMAT (5120) 
9 READ (8' 1 6 , 1 0) (M ( K ) , K = 1 , 1 0 ) 

• 
• 
• 

13 READ (9'ID2+5) A,B,C,D,E,F,G 

READ statement 9 transmits data from the data set, identified by reference 
number 8, under control of FORMAT statement 10; transmission begins with 
record 16. Ten data items of 20 bytes each are read as specified by the I/O list 
and FORMAT statement 10. Two records are read to satisfy the I/O list, 
because each record, as defined by the FORMAT statement, contains only five 
data items (100 bytes). The associated variable IDI is set to a value of 18 at the 
conclusion of the operation. 

READ statement 13 transmits data from the data set, identified by reference 
number 9, without format control; record 26 is read, and data is transmitted until 
the I/O list for statement 13 is satisfied. Because the DEFINE FILE statement 
for data set 9 specified the record length as 28 bytes, the I/O list of statement 
13 calls for the same amount of data (the seven variables are type real and each 
occupies four-bytes). The associated variable ID2 is set to a value 27 at the 
conclusion of the operation. If the value of ID2 is unchanged, the next execution 
of statement 13 reads record 32. 

The DEFINE FILE statement in the previous example can also be written as: 

DEFINE FILE 8( 500, 100,E,ID1 ),9( 100,7 ,U,ID2) 

The FORMAT statement may also control the point at which reading starts. 
For example, if statement lOin the example is 

10 FORMAT (//5120) 

records 16 and 17 are skipped, record 18 is read, records 19 and 20 are skipped, 
record 21 is read, and ID 1 is set to a value of 22 at the conclusion of the read 
operation in statement 9. 

The WRITE statement causes data to be transferred from internal storage to the 
disk. The data set being written must be defined with a DEFINE FILE 
statement. 

General Form of the Direct-Access WRITE Statement 

WRITE (u'r,f,ERR=s) list 

where: 

• u is an unsigned integer constant or an integer variable (not an array element) 
that is of length 4 and represents a data set reference number; u must be 
followed by an apostrophe ('). See Appendix C for a description of the 
NOCMP AT compile option. 

• r is an integer expression that represents the relative position of a record 
within the data set associated with u. 

• f is optional and, if given, specifies the statement number of the FORMAT 
statement that describes the data being written. 

Input/Output Statements 5 - 25 



FIND Statement 

5 - 26 GC34-0133 

• ERR=s is optional and s is the number of an executable statement in the 
same program unit as the WRITE statement to which control is given when a 
device error condition is encountered during data transfer from storage to 
device. * 

• list is an 110 list. It is optional if f is specified. 

*The ERR parameter need not be specified; however, if a transmission error 
occurs and the ERR parameter is not coded, execution of the program may be 
terminated. (See the discussion of the service program ERRXIT in Appendix B.) 
If coded, ERR must follow the data set reference number, the relative record 
number, and the FORMAT statement number. 

The I/O list must not contain the associated variable defined in the DEFINE 
FILE statement for data set u. 

Example: 

DEFINE FILE 8( 500, 100,L,ID1 ),9( 100,28,L,ID2) 
DIMENSION M( 10) 

• 
• 
• 
ID2=21 

• 
• 
• 

10 FORMAT (5120) 
8 WRITE (8'16,10) (M(K),K=1,10) 

• 
• 
• 

11 WRITE (9'ID2+5) A,B,C,D,E,F,G 

WRITE statement 8 transmits data into the data set, identified by reference 
number 8, under control of FORMAT statement 10; transmission begins with 
record 16. Ten data items of 20 bytes each are written as specified by the I/O 
list and FORMAT statement 10. Two records are written to satisfy the I/O list 
because each record contains 5 data items (100 bytes). The associated variable 
ID 1 is set to a value of 18 at the conclusion of the operation. 

WRITE statement 11 transmits data into the data set, identified by reference 
number 9, without format control; transmission begins with record 26. The 
contents of 14 words are written as specified by the I/O list for statement II. 
The associated variable ID2 is set to a value of 27 at the conclusion of the 
operation. Note the correspondence between the records described (14 words per 
record) and the number of items called for by the I/O list (7 variables, type real, 
each occupying four-bytes). 

The DEFINE FILE statement in the example can also be written as: 

DEFINE FILE 8(500,100,E,ID1 ),9( 100,7,U,ID2) 

As with the READ statement, a FORMAT statement may also be used to 
control the point at which writing begins. 

The FIND statement causes the associated variable to be updated to the value of 
the record number in the FIND statement. The record is brought into main 
storage and made available so that a later READ statement may more quickly fill 
an I/O list. 

() 



c 

c 

c 

General Form of the FIND Statement 

FIND (u'r) 

where: 

• u is an unsigned integer constant or an integer variable (not an array element) 
that is of length 4 and represents a data set reference number; u must be 
followed by an apostrophe ('). See Appendix C for a description of the 
NOCMP AT compile option. 

• r is an integer expression that represents the relative position of a record 
within the data set associated with u. 

The data set on which the record is being found must be defined with a 
DEFINE FILE statement. 

Example: 

DEFINE FILE S( 1000,SO,L,IVAR) 
10 FIND (S'50) 

• 
• 

15 READ (S'50) A,B 

After the FIND statement is executed, the value of IV AR is 50. After the 
READ statement is executed, the value is 51. 

Ge"eral Emmple-Direct-Access Operatio"s 
DEFINE FILE S( 1000,72,L,IDS) 
DIMENSION A( 100 ) , B( 100 ) ,C( 100 ) ,D( 100 ) ,E( 100 ) ,F( 100 ) 

15 FORMAT (6F12.4) 
FIND (S'5) 

50 IDS=l 
DO 100 1=1,100 

100 READ (S'IDS+4,15)A(I),B(I),C(I),D(I),E(I),F(I) 
• 
• 
DO 200 1=1,100 

200 WR I TE (S' IDS + 4, 1 5 ) A ( I ) , B ( I ) , C ( I ) , D ( I ) , E ( I ) , F ( I ) 
• 
• 
END 

The general example illustrates the ability of direct-access statements to gather 
and disperse data in an order you designated. The first DO loop in the example 
fills arrays A through F with data from the 5th, 10th, 15th, ... , and SOOth 
records of the data set identified by reference number 8. Array A receives the 
first value in every fifth record, B the second value, and so on, as specified by 
FORMAT statement 15 and the I/O list of the READ statement. At the end of 
the read operation, the records have been dispersed into arrays A through F. At 
the conclusion of the first DO loop, ID8 has a value of 501. 

The second DO loop in the example groups the data items from each array as 
specified by the I/O list of the WRITE statement and FORMAT statement 15. 
Each group of data items is placed in the data set identified by reference number 
8. Writing begins at the 505th record and continues at intervals of five until 
record 1000 is written, if ID8 is not changed between the last READ statement 
and the first WRITE statement. 

Input/Output Statements 5 - 27 



() 

" , 

5 - 28 GC34-0133 



C~ 

c 

o 

Chapter 6. Data Initialization Statement 

A DATA statement is a non-executable data initialization statement that is used 
to define initial values of variables, array elements, and arrays. 

General Form of the DATA Statement 

DATA k1/d1/, k2/d2/ , ... , kn/dn/ 

where: 

• Each k is a list containing variables, array elements (in which case the 
subscript quantities must be unsigned integer constants), or array names. 
Dummy arguments may not appear in the list. 

• Each d is a list of constants (integer, real, logical, hexadecimal, or literal), any 
of which may be preceded by i*. Each i is an unsigned integer constant. When 
the form i* appears before a constant, it indicates that the constant is to be 
specified i times. 

There must be a one-to-one correspondence between the total number of 
elements specified or implied by the list k and the total number of constants 
specified by the corresponding list d after application of any replication 
factors (i). 

For real, integer, and logical types, each constant must agree in type with the 
variable or array element it is initializing. Any type of variable or array element 
may be initialized with a literal or hexadecimal constant. 

An initially defined variable, array, or array element may not be located in a 
blank common or global area. They may be defined in a labeled common area, 
but only in a BLOCK DATA subprogram. 

This statement cannot precede a PROGRAM, SUBROUTINE, FUNCTION, 
or IMPLICIT statement. Otherwise, a DATA statement can appear anywhere in 
the program after any specification statements that refer to the initialized data 
item. 

Examples: 

DIMENSION 0(5,10) 
DATA A, B, C/5.0,6.1,7.3/,D,E/25*1 .0,25*2.0,5.1/ 

The DATA statement indicates that the variables A, B, and C are to be 
initialized to the values 5.0, 6.1, and 7.3, respectively. In addition, the statement 
specifies that the first 25 elements of the array D are to be initialized to the 
value 1.0, the remaining 25 elements of D to the value 2.0, and the variable E to 
the value 5.1. 

DIMENSION A(5), B(3,3) 
DATA A/5*1.0/,B/9*2.0/,C/'FOUR'/ 

The DATA statement specifies that all the elements in the arrays A and Bare 
to be initialized to the values 1.0 and 2.0, respectively. In addition, the variable 
C is to be initialized with the literal data constant 'FOUR'. 

Data Initialization Statement 6 - I 



() 

• II 

(. .. , 

6 - 2 GC34-0133 



o 

Type Statements 

IMPLICIT Statement 

c 

c 

Chapter 7. Specification Statements 

The specification statements are non-executable statements that provide the 
compiler with information about the nature of data used in the source program. 
In addition, they supply the information required to allocate locations in storage 
for this data. Specifications must precede statement function definitions, which 
must precede the program part containing at least one executable statement. 

There are two kinds of type statements: the IMPLICIT specification statement; 
and the REAL, INTEGER, and LOGICAL explicit specification statements. 

The IMPLICIT statement enables you to: 

• Specify the type (including length) of all variables, arrays, and user-supplied 
functions whose names begin with a particular letter 

The explicit specification statements enable you to: 

• Specify the type (including length) of a variable, array, or user-supplied 
function of a particular name 

• Specify the dimensions of an array 

The explicit specification statements override the IMPLICIT statement, which, 
in turn, overrides the predefined convention for specifying type. 

General Form of the IMPLICIT Statement 

IMPLICIT type l *Sl ( all' a 12 , ... ), 

... ,typen*sn( a nl ,an2 ,··· ) 

where: 

• Type is INTEGER, REAL, or LOGICAL. 
• Each *s is optional and represents one of the permissible length specifications 

for its associated type. 
• Each a is a single alphabetic character or a range of characters drawn from the 

set A, B, ... ,Z, $, in that order. The range is denoted by the first and last 
characters of the range separated by a minus sign (for example, (A-D). 

The IMPLICIT specification statement, if present, must be the first statement 
in a main program (the second if a PROGRAM statement is present) and the 
second statement in a subprogram. There can be only one IMPLICIT statement 
per program or subprogram. The IMPLICIT specification statement enables you 
to declare the type of the variables appearing in your program (integer or real) 
by specifying that variables beginning with certain designated letters are of a 
certain type. Furthermore, the IMPLICIT statement allows you to declare the 
number of bytes to be allocated for each in the group of specified variables. The 
types that a variable may assume, along with the permissible length 
specifications, are as follows: 

Type Length 

INTEGER 2 or 4 

REAL 
LOGICAL 

4 or 8 
4 

Specification (in bytes) 

(standard length is 4. See Appendix C for a 
description the NOCMP AT compile option) 
(standard length is 4) 

Specification Statements 7 - 1 



If the standard length specification is desired, the *s may be omitted. If the 
optional length specification is desired, the *s must be included within the 
IMPLICIT statement. 

Examples: 

IMPLICIT INTEGER (A-H, 0-$), REAL (I-N) 

All variables beginning with the characters A through Hand 0 through $ are 
declared as INTEGER. Since no length specification is explicitly given (the *s 
was omitted), four bytes, the standard length for INTEGER, are allocated for 
each variable (see Appendix C). 

All other variables (those beginning with the characters I through N) are 
declared as REAL with four bytes allocated for each. 

Note that the statement in this example exactly reverses the predefined 
convention. 

IMPLICIT INTEGER*2(A-H), REAL(I-K) 

All variables beginning with the characters A through H are declared as integer 
with two bytes allocated for each. All variables beginning with the characters I 
through K are declared as real with four bytes allocated for each. 

Since the remaining letters of the alphabet, L through Z (and $), are left 
undefined by the IMPLICIT statement, the predefined convention will remain in 
effect. Thus, variables beginning with the letters L, M, and N are integer, each 
with a standard length of four bytes (see Appendix C), and variables beginning 
with the letters 0 through $ are real, each with a standard length of four bytes. 

Explicit Specification Statement 

7 - 2 GC34-0133 

General Form of the Explicit Statement 

type*s at *St ( k t )/x t/ , 
a 2*s2( k2 ) 

/x2/,··· ,an*sn( k n )/xn/ 

where: 

• type is INTEGER, REAL, or LOGICAL. 
• Each *s is optional and represents one of the permissible length specifications 

for its associated type. 
• Each a is a variable, array, or function name (see the section "Subprograms"). 
• Each k is optional and gives dimension information for arrays. Each k is 

composed of one through seven unsigned integer constants, separated by 
commas, representing the maximum value of each subscript in the array. 

• Each I xl is optional and represents initial data values. Dummy arguments may 
not be assigned initial values. 

The explicit specification statements declare the type (INTEGER, REAL, or 
LOGICAL) of a particular variable or array by its name rather than by its initial 
character. This differs from the other ways of specifying the type of a variable or 
array (that is, predefined convention and the IMPLICIT statement). In addition, 
the information necessary to allocate storage for arrays (dimension information) 
may be included within the statement. 

Initial data values may be assigned to variables or arrays by use of I xl, where 
x is a constant or list of constants separated by commas. The x provides 
initialization only for the immediately preceding variable or array. The data must 
be of the same type as the variable or array, except that literal or hexadecimal 
data may be used for any type. Lists of constants are used only to assign initial 
values to array elements. Successive occurrences of the same constant can be 
represented by the form i* constant, as in the DATA statement. If initial data 
values are assigned to an array in an explicit specification statement, the 
dimension information for the array must be in the explicit specification 

() 



c 

c 

statement or in a preceding DIMENSION, GLOBAL, or COMMON statement. 
An initial data value may not be assigned to a function name, but a function 
name may appear in an explicit specification statement. 

Initial data values cannot be assigned to variables or arrays in blank common 
or global. The BLOCK DATA subprogram must be used to assign initial values 
to variables and arrays in labeled common or global. 

In the same manner in which the IMPLICIT statement overrides the 
predefined convention, the explicit specification statements override the 
IMPLICIT statement and predefined convention. If the length specification is 
omitted (that is, *s), the standard length per type is assumed. 

Examples: 

INTEGER*2 ITEM/76/, VALUE 

This statement declares that the variables ITEM and VALUE are of type 
integer, each with two bytes of storage reserved. In addition, the variable ITEM 
is initialized to the value 76. 

REAL BAKER, HOLD, VALUE, ITEM(5,5) 

This statement declares that the variables BAKER, HOLD, VALUE, and the 
array named ITEM are of type real. In addition, it declares the size of the array 
ITEM. The variables BAKER, HOLD, and VALUE have four bytes of storage 
reserved; and the array named ITEM has 100 bytes of storage reserved. 

REAL A(5,5)/20*6.9E2,5*1.0/,B( 100)/100*0.0/ 

This statement declares the size of each array, A and B, and their type (real). 
The array A has 100 bytes of storage reserved (four for each element in the 
array) and the array B has 400 bytes of storage reserved (four for each element). 
In addition, the first 20 elements in the array A are initialized to the value 6.9E2 
and the last five elements are initialized to the value 1.0. All 100 elements in the 
array B are initialized to the value 0.0. 

INTEGER*2 AE, BE*4, CE(5) 

This statement declares AE to be INTEGER *2, BE to be INTEGER *4, and 
CE to be an INTEGER *2 array consisting of five elements. 

DIMENSION Statement 
General Form of the DIMENSION Statement 

DIMENSION at ( k t ) , a 2 ( k2 ) , ••• ant kn ) 

where: 

• Each a is an array name. 
• Each k is composed of one through seven unsigned integer constants, 

separated by commas, representing the maximum value of each subscript in 
the array. 

The information necessary to allocate storage for arrays used in the source 
program may be provided by the DIMENSION statement. (It may also be 
provided by a type statement or a COMMON statement.) The following 
examples illustrate how this information may be declared. 

Examples: 

DIMENSION A( 10),ARRAY (5,S,S), L1ST( 10,100) 
DIMENSION B(25,25),TABLE (5,10,15) 

The first statement defines three arrays: A, ARRAY, and LIST. fhe array A is 
a single dimension array consisting of ten elements, the array ARRAY is a 
three-dimensional array, and LIST is a two-dimensional array. The second 

Specification Statements 7 - 3 



statement defines a two-dimensional array, B, and a three-dimensional array, 
TABLE. 

DOUBLE PRECISION Statement 

COMMON Statement 

7 - 4 GC34-0133 

General Form of the DOUBLE PRECISION Statement 

DOUBLE PRECISION al,(kl),a2(k2),a3(k3)'·· .,an 

where: 

• Each a represents a variable, array, or function name (see the section 
"Subprograms"). 

• Each k is optional and is composed of one through seven unsigned integer 
constants, separated by commas, that represent the maximum value of each 
subscript in the array. 

The DOUBLE PRECISION statement explicitly specifies that each of the 
variables a is of type double-precision. This statement overrides any specification 
of a variable made by either the predefined convention or the IMPLICIT 
statement. The specification is identical to that of type REAL *8, but it cannot be 
used to define initial data values. 

General Form of the COMMON Statement 

COMMON/r1/a ll ( k ll ) ,a12 ( k12 ), ... / 
rn/an1 (kn1 )an2 ( kn2 ), ... 

where: 

• Each a is a variable name or array name that is not a dummy argument. 
• Each k is optional and is composed of one through seven unsigned integer 

constants, separated by commas, representing the maximum value of each 
subscript in the array. 

• Each r represents an optional common block name consisting of one through 
six alphameric characters, the first of which is alphabetic. These names must 
always be enclosed in slashes. 

• The form / / (with no characters except possibly blanks between the slashes) 
may be used to denote blank common. If r 1 denotes blank common, the first 
two slashes are optional. 

The COMMON statement is used to cause the sharing of storage by two or 
more program units and to specify the names of variables and arrays that are to 
occupy this area. Storage sharing can be used for two purposes: to conserve 
storage, by avoiding more than one allocation of storage for variables and arrays 
used by several program units; and to implicitly transfer arguments between a 
calling program and a subprogram. Arguments passed in a common area do not 
appear in the argument lists of either the calling program or subprogram. 
Arguments in common are subject to the same rules with regard to type, length, 
etc., as arguments passed in an argument list. (These rules are described in the 
section dealing with subprograms.) 

Since the entries in a common area share storage locations, the order in which 
they are entered is significant when the common area is used to transmit 
arguments. 

o 



c 

c 

c 

Examples: 
Main Program Subprogram 

COMMON A, B, c, R( 100) 
REAL A,B,C 

SUBROUTINE MAPMY 
COMMON X, Y, Z, S( 100) 
REAL X,Y,Z INTEGER*4 R 

• 
• 
• 
CALL MAP MY 
• 
• 
• 

INTEGER*4 S 
• 
• 
• 
• 
• 
• 

The statement COMMON A,B,C,R(100) in the main program would cause 
206 words of storage (four bytes per variable or array element) to be reserved in 
the following order: 

Beginning of common area 

[~~ ---~ ~~~~ -------~~: 
I B I 
~--------------_i 
I C I 
.... ---------- -----1 
I R (1) 1 
.... - - - - -- - - - - - - - --I 
I R (2) I 
'---------------; 1 
I 
I 
I • 
I • I 
~---------------~ 
I R (100) 1 L _______________ ~ 

, 
I 
I 

4 bytes 
, 
I 
I 

The statement COMMON X, Y, Z, S(100) in the subprogram would then 
cause the variables X, Y, Z, and S(1), ... ,S(100) to share the same storage space 
as A, B, C, and R(1), ... ,R(100), respectively. 

Assume a common area is defined in a main program and in three subprograms 
as follows: 

Main Program: COMMON A,B,C (where A and B have previously 
been declared as INTEGER *4, and 
C as INTEGER*2) 

Subprogram 1: COMMON D,E,F (where 0 and E have previously 
been declared as INTEGER*4, and 
F as INTEGER*2) 

Subprogram 2: COMMON Q,R,S,T,U (where all have previously been 
declared as INTEGER * 2) 

Subprogram 3: COMMON V,W,X,Y,Z (where all have previously been 
declared as INTEGER * 2) 

The correspondence of these variables within common can be illustrated as 
follows: 

Specification Statements 7 - 5 



Main program 

COMMON A,B,C 

Subprogram 1 

COMMON D,E,F 

Subprogram 2 

COMMON Q,R,S,T,U 

Subprogram 3 

COMMON V,W,X,Y,Z 

,--------, r-------I r------., r------, 
1 1 1 I 1 Q I~- - - - ~I V I 
1--- -A----I~---..~-- -D ---"1 t-- - - - - - ~ r- - - - - - --1 
1 1 1 I I R I~- - -~I W I 
I ________ .J L _______ I ~------_I .-------1 
1 I 1 1 I S ,~----~I X I 
~--- B ---i~- -~~---E---.J L __ -- - - -I r- - -- - --I 
I 1 1 liT I~-_-- ~I Y 1 r------, ~------..J L ______ J r------I 
1 C I~---~I F I~---~I U I~-- - - ~I Z 1 L ______ ... L ______ J L. ______ I L ______ .J 

2 bytes 2 bytes 2 bytes 2 bytes 

The main program can transmit values for A, B, and C to subprogram 1. 
However, the main program and subprogram 1 cannot, by assigning values to the 
variables A and B, or D and E, transmit values to the variables Q, R, S, and T in 
subprogram 2 or V, W, X, and Y in subprogram 3, because the lengths of their 
common variables differ. Likewise, subprograms 2 and 3 cannot transmit values 
to variables A and B, or D and E. 

Values can be transmitted between variables C, F, U, and Z. Values can also 
be transmitted between Q and V, Rand W, S and X, and T and Y. Note, 
however, that assignment of values to A or D destroys any values assigned to Q, 
R, V, and W (and vice versa) and that assignment to Band E destroys the 
values of S, T, X, and Y (and vice versa). 

Bialik alld Labeled Commoll 

7 - 6 GC34-0133 

In the preceding example, the common storage area (common block) is called a 
blank common area, that is, no particular name was given to that area of storage. 
The variables that appeared in the COMMON statement were assigned locations 
relative to the beginning of this blank common area. However, variables and 
arrays may be placed in separate common areas. Each of these separate areas (or 
blocks) is given a name consisting of one through six alphameric characters (the 
first of which is alphabetic); those blocks having the same name occupy the same 
storage space. This permits a calling program to share one common block with 
one subprogram and another common block with another subprogram and also 
facilitates program documentation. 

The differences between blank and labeled common are: 

• There is only one blank common in an executable program, and it has no 
user-assigned name; there may be many labeled commons, each with its own 
name. 

• Each program unit which uses a given labeled common must define it to be of 
the same length; blank common may have different lengths in different 
program units. 

• Variables and array elements in blank common cannot be assigned initial 
values; variables and array elements in labeled common may be assigned initial 
values by DATA statements or explicit specification statements only in a 
BLOCK OAT A subprogram. 

Those variables that are to be placed in labeled (named) common are preceded 
by a common block name enclosed in slashes. For example, the variables A, B, 
and C will be placed in the labeled common area, HOLD, by the following 
statement: 

COMMON/HOLD/A,B,C 

In a COMMON statement, blank common is distinguished from labeled 
common by placing two consecutive slashes before the variables in blank 
common or, if the variables appear at the beginning of the COMMON statement, 
by omitting any block name. For example, in the following statement: 

o 



c 

c 

COMMON A, B, C /ITEMS/ X, Y, Z / / D, E, F 

the variables A, B, C, D, E, and F will be placed in blank common in that order; 
the variables X, Y, and Z will be placed in the common area labeled ITEMS. 

Blank and labeled common entries appearing in COMMON statements are 
cumulative throughout the program. For example, consider the following two 
COMMON statements: 

COMMON A, B, C /R/ D, E /S/ F 
COMMON G, H /S/ I, J /R/P//W 

These two statements have the same effect as the single statement: 

COMMON A, B, C, G, H, W /R/ D, E, P /s/ F, I, J 

Programmillg COllsideratiolls 
1. There is no restriction as to the number of program units which may have 

COMMON statements, but a COMMON statement in only one program unit 
serves no purpose other than strictly ordering the arrangement of variables in 
common. It would normally have at least one counterpart in another program 
unit. 

2. There may be more than one COMMON statement in a program unit. A 
variable or array name may not appear more than once in a COMMON 
statement, in more than one COMMON statement in the same program unit, 
or in both a COMMON and GLOBAL statement. 

3. It may arise that not all program units need refer to all of the variables and 
arrays in common. Thus, in order to maintain correct positioning, so-called 
dummy variables can be inserted into the COMMON statement list. These 
dummy variables are not referenced anywhere else in the program unit. Their 
function is simply to allow you to position variable and array names that 
otherwise would be in the wrong locations in a COMMON statement. 

Example: 

Subprogram Main Program 

COMMON A, B, C, D COMMON DUMMY1, BETA,DUMMY3,DELTA 

4. Because the main program and subprograms have access to common storage 
locations via the COMMON statement, they have, in effect, a way of 
communicating with each other. This means that a value computed in one 
program unit and placed in common storage can be used by another program 
unit in much the same manner as if it were passed as an argument. This idea 
will become clearer when CALL statements and function references are 
discussed in Chapter 8. 

EQUIVALENCE Statement 
General Form of the EQUIVALENCE Statement 

EQUIVALENCE (all' a 12 , aJ3' •.. ), 

( a 21 ' a 22 ' a 23 , • . • ), • . . 

where: 

• Each a is a variable or array element. It may not be a dummy argument. The 
subscripts of array elements may have either of two forms: 

If the array element has a single subscript quantity, it refers to the linear 
position of the element in the array (that is, its position relative to the first 
element in the array: 3rd element, 17th element, 259th element). 

If the array element is multi-subscripted (with the number of subscript 
quantities equal to the number of dimensions of the array), it refers to 
position in the same manner as in an arithmetic or logical expression (that 

Specification Statements 7 - 7 



7 - 8 GC34-0133 

is, its position relative to the first element of each dimension of the array). 
In either case, the subscripts themselves must be integer constants. 

All the elements within a single set of parentheses share the same storage 
locations. The order of appearance of names within an equivalence group is 
immaterial. 

The EQUIVALENCE statement provides the option for controlling the 
allocation of data storage within a single program unit. In particular, when the 
logic of the program permits it, the number of storage locations used can be 
reduced by causing locations to be shared by two or more variables of the same 
or different types. Equivalence between variables implies storage sharing. 
Mathematical equivalence of variables or array elements is implied only when 
they are of the same type, when they share exactly the same storage, and when 
the value assigned to the storage is of that type. 

Since arrays are stored in a predetermined order as discussed previously, 
equivalencing two elements of two different arrays will implicitly equivalence 
other elements of the two arrays. (The one exception occurs when the first 
element of an array is equivalenced to the last element of another array.) The 
EQUIV ALENCE statement must not contradict itself or any previously 
established equivalences. 

Note that the EQUIVALENCE statement is the only statement in which a 
single subscript may be used to refer to an element (or elements) in a 
multi-dimensional array. 

Variables that appear in COMMON or GLOBAL statements cannot be 
equivalenced to each other. However, a variable can be made equivalent to a 
variable in a COMMON or GLOBAL statement in the same program unit. If a 
variable that is so equivalenced is an element of an array, the implicit 
equivalencing of the rest of the elements of the array can extend the size of 
common or global as shown below. But the size of common or global cannot be 
extended so that elements are added before the beginning of the established 
common or global area. 

Examples: 

Assume that in the initial part of a program, an array C of size lOx lOis 
needed; in the final stages of the program, C is no longer used, but arrays A and 
B of sizes 5x5 and 10, respectively, are used. The elements of all three arrays are 
of the type REAL *4. Storage space can then be saved by using the statements: 

DIMENSION C( 10,10 ), A( 5,5 ), B( 10) 

EQUIVALENCE (C( 1 ), A( 1 ) ), (C( 26 ), B( 1 ) ) 

The array A, which has 25 elements, can occupy the same storage as the first 
25 elements of array C since the arrays are not both needed at the same time. 
Similarly, the array B can be made to share storage with elements 26 through 35 
of array C. 

DIMENSION B( 5 ), C( 10, 10 ), D( 5, 10, 15 ) 

EQUIVALENCE (A, B( 1 ), C( 5,3 ) ), (D( 5, 10,2 ), E) 

This equivalence statement specifies that the variables A. B( 1), and C(5,3) are 
assigned the same storage locations and that variables 0(5,10,2) and E are 
assigned the same storage locations. It also implies that the array elements B(2) 
and C(6,3), etc., are assigned the same storage locations. Note that further 
equivalence specification of B(2) with any element of array C other than C(6,3) 
is invalid. 

COMMON A, B, C 
DIMENSION D(3) 

EQUIVALENCE (B,D( 1)) 

() 
\..J 



c 

c 

c 

This would cause a common area to be established containing the variables A, 
B, and C. The EQUIVALENCE statement would then cause the variable 0(1) 
to share the same storage location as B, 0(2) 
to share the same storage location as C, and 0(3) would extend the size of the 
common area, in the following manner: 

A (lowest location of the common area) 
B,O(1) 
C,0(2) 
0(3) (highest location of the common area) 

The following EQUIVALENCE statement is invalid: 
GLOBAL A, B, C 
DIMENSION D(3) 
EQUIVALENCE (B, D(3)) 

because it would force O( 1) to precede A, as follows: 

0(1) 
A, 0(2) (lowest location of the common area) 
B,0(3) 
C (highest location of the common area) 

Other Specification Statements 
There are three other specification statements: EXTERNAL, PROGRAM, and 
GLOBAL. These statements are discussed in Chapter 8. 

Specification Statements 7 - 9 



7 - 10 GC34-0133 



c 

c 
Naming Subprograms 

c 

Chapter 8. Subprograms 

It is sometimes desirable to write a program which, at various points, requires the 
same computation to be performed with different data for each calculation. It 
would simplify the writing of that program if the statements required to perform 
the desired computation could be written only once and then could be referred to 
freely, with each subsequent reference having the same effect as though these 
instructions were written at the point in the program where the reference was 
made. 

For example, to take the cube root of a number, a program must be written 
with this object in mind. If a general program were written to take the cube root 
of any number, it would be desirable to be able to combine that program (or 
subprogram) with other programs where cube root calculations are required. 

The FORTRAN IV language provides for this situation through the use of 
subprograms. There are two classes of subprograms: FUNCTION subprograms 
and SUBROUTINE subprograms. In addition, there is a group of FORTRAN IV 
subprograms supplied by the Series/1 Mathematical and Functional Subroutine 
Library program product and the Series/1 FORTRAN IV Realtime Subroutine 
Library. See Appendix B for descriptions of these libraries. FUNCTION 
subprograms differ from SUBROUTINE subprograms in that FUNCTION 
subprograms return at least one value to the calling program, whereas 
SUBROUTINE subprograms need not return any. In addition, the method of 
referring to the two kinds of subprograms is different. 

A subprogram must never refer to itself directly or indirectly. 
Statement functions are also discussed in this section since they are similar to 

FUNCTION subprograms. The difference is that subprograms are not in the 
same program unit as the program unit referring to them, whereas statement 
function definitions and references are in the same program unit. 

A subprogram name consists of from one to six alphameric characters, the first 
of which must be alphabetic. A subprogram name cannot contain special 
characters. 
Type Declaration of a Statement Function: Such declaration may be 
accomplished by the predefined convention, by the IMPLICIT statement, or by 
the explicit specification statements. Thus, the rules for declaring the type of 
variables apply to statement functions. 
Type Declaration of FUNCTION Subprograms: The declaration may be made 
by the predefined convention, by the IMPLICIT statement, by an explicit 
specification in the FUNCTION statement, or by an explicit specification 
statement within the FUNCTION subprogram. Note that if the predefined 
convention is not used, the function must be typed both in the function 
subprogram and in each program unit that refers to the function. 

No type is associated with a SUBROUTINE name because the types of results 
that are returned to the calling program are dependent only on the types of the 
variable names appearing in the argument list of the calling program and the 
implicit arguments in common or global. 

Subprograms 8 - 1 



Functions 

Function Definition 

Function Reference 

Statemellt FUllctions 

8 - 2 GC34-0133 

A function is a statement of the relationship between a number of variables. To 
use a function in FORTRAN IV, it is necessary to: 

• Define the function (that is, specify which calculations are to be performed) (') 
• Refer to the function by name where required in the program , J 

There are three steps in the definition of a function in FORTRAN IV: 

1. The function must be assigned a name by which it can be called. 
2. The dummy arguments of the function must be stated. 
3. The procedure for evaluating the function must be stated. 

Items 2 and 3 are discussed in detail in the sections dealing with the specific 
subprogram, "Statement Functions" and "FUNCTION Subprograms". 

When the name of a function, followed by a list of its arguments, appears in any 
FORTRAN IV expression, it refers to the function and causes the computations 
to be performed as indicated by the function definition. The resulting quantity 
(the function value) replaces the function reference in the expression and 
assumes the type of the function. The type of the name used for the reference 
must agree with the type of the name used in the definition. 

A statement function definition specifies operations to be performed whenever 
that statement function name appears as a function reference in another 
statement in the same program unit. 

General Form of a Statement Function Definition 

name(a t ,a2 ,a3 , ••• ,an)=expression 

where: 

• name is the statement function name. The name consists of from one to six 
alphabetic or numeric characters, the first of which must be alphabetic. 

• Each a is a dummy argument. It must be a distinct variable (that is, it may 
appear only once within the list of arguments). There must be at least one 
dummy argument. 

• expression is any arithmetic or logical expression that does not contain array 
elements. Any statement function appearing in this expression must have been 
defined previously. 

The expression to the right of the equal sign defines the operations to be 
performed when a reference to this function appears in a statement elsewhere in 
the program unit. The expression defining the function must not contain a 
reference to the function. 

The dummy arguments (enclosed in parentheses) following the function name 
are dummy variables. The arguments given in the function reference are 
substituted for the dummy variables when the function reference is encountered. 
The same dummy arguments may be used in more than one statement function 
definition and may be used as variables outside the statement function 
definitions. An actual argument in a statement function reference may be any 
expression of the same type as the corresponding dummy argument. 

All statement function definitions to be used in a program must precede the 
first executable statement of the program. 



c 

c 

Example: 

FUNC(A,B)=3.*A+B**2.+X+Y+z 

This statement defines the statement function FUNC, where FUNC is the 
function name and A and B are the dummy arguments. The expression to the 
right of the equal sign defines the operations to be performed when the function 
reference appears in an arithmetic statement. 

The function reference might appear in a statement as follows: 

C=FUNC(D,E) 

This is equivalent to: 

C=3.*D+E**2.+X+Y+Z 

Note the correspondence between the dummy arguments A and B in the function 
definition and the actual arguments D and E in the function reference. 

The following are valid statement function definitions and statement function 
references: 

Definition 

SUM(A,B,C,D)=A+B+C+D 
FUNC(Z)=A+X*Y*Z 

Reference 

NET=X-SUM(Tl,T2,T3,T4) 
ANS=FUNC(RESULT) 

The following are invalid statement function definitions: 

SUBPRG( 3,J, K )=3*I+J**3 (Arguments must be variables) 
SOMEF( A( I ), B )=A( I )/B+3. (Arguments must not be array elements) 
SUBPROGRAM( A,B )=A**2+B**2 (Function name exceeds limit of six 

characters) 
3FUNC( D )=3. 14*E (Function name must begin with an 

alphabetic character) 
ASF( A )=A+B( I ) (Expression may not contain an array 

element) 
BAD( A, B )=A+B+BAD( C, D) (Definition not permitted to refer to 

itself) 
NOGOOD(A,A)=A*A (Arguments are not distinct variable 

names) 

The following are invalid statement function references (the functions are 
defined as above): 

WRONG=SUM(COUNT1,COUNT2) 

MIX=FUNC(I) 

FUNCTION Subprograms 

(Number of arguments does not agree 
with above definition) 
(Type of argument does not agree 
with above definition) 

The FUNCTION subprogram is a FORTRAN IV subprogram consisting of a 
FUNCTION statement followed by other statements including a RETURN 
statement and an END statement. It is an independently written program that is 
executed wherever its name is referred to in another program. 

General Form of the FUNCTION Statement 

type FUNCTION name*s .(a t ,a2 ,a3 ,· •• ,an ) 

where: 

• type is INTEGER, REAL, DOUBLE PRECISION, or LOGICAL. Its 
inclusion is optional. 

• name is the name of the FUNCTION, which consists of from one to six 
alphabetic or numeric characters, the first of which must be alphabetic. 

Subprograms 8 - 3 



8 - 4 GC34-0t33 

• s represents one of the permissible length specifications for its associated type. 
It may be included optionally only when type is specified. 

• Each a is a dummy argument. It must be a distinct variable or array name 
(that is, it may appear only once within the statement) or a dummy name of a (~ .~., .. 
SUBROUTINE or other FUNCTION subprogram. There must be at least one , 
argument in the argument list. 

A type declaration for a function name may be made by the predefined 
convention, by an IMPLICIT statement, by an explicit specification in the 
FUNCTION statement, or by an explicit specification statement within the 
FUNCTION subprogram. The function name must also be typed in the program 
units which refer to it if the predefined convention is not used. 

Since the FUNCTION is a separate program unit, there is no conflict if the 
variable names and statement numbers within it are the same as those in other 
program units. 

The FUNCTION statement must be the first statement in the subprogram. The 
FUNCTION subprogram may contain any FORTRAN IV statement except a 
PROGRAM statement, another FUNCTION statement, a SUBROUTINE 
statement, a BLOCK DATA statement, or a DEFINE FILE statement. If an 
IMPLICIT statement is used in a FUNCTION subprogram, it must immediately 
follow the FUNCTION statement. 

The name of the function, or one of the entry names (see "Multiple Entry into 
a Subprogram" in this chapter), must be assigned a value at least once in the 
subprogram-as the variable name to the left of the equal sign in an arithmetic 
or logical assignment statement, as an argument of a CALL statement or external 
function reference that is assigned a value by the subroutine or function referred 
to, or in the list of a READ statement within the subprogram. 

The FUNCTION subprogram may also use one or more of its arguments or 
any quantity in common or global to return a value to the calling program. 

The dummy arguments of the FUNCTION subprogram (that is, al'a2,a3, ... ,an ) 

may be considered to be dummy names. These are associated at the time of 
execution by the actual arguments supplied in the function reference in the 
calling program. Additional information about arguments is in the section 
"Dummy Arguments in a FUNCTION or SUBROUTINE Subprogram". 

The relationship between variable names used as arguments in the calling 
program and the dummy variables used as arguments in the FUNCTION 
subprogram is illustrated in the following example: 



c 

Calling Program 

• 
• 
• 
ANS=ROOT1*CALC(X,Y,I) 
• 
• 
• 
• 

FUNCTION Subprogram 
FUNCTION CALC (A,B,J) 

• 
• 
• 
I=J*2 
• 
• 
• 
CALC=A**I/B 
RETURN 
END 

In this example, the values of X, Y, and I are used in the FUNCTION 
subprogram as the values of A, B, and J, respectively. The value of CALC is 
computed, and this value is returned to the calling program, where the value of 
ANS is computed. The variable I in the argument list of CALC in the calling 
program is not the same as the variable I appearing in the subprogram. 

Calling Program FUNCTION Subprogram 

INTEGER*2 CALC INTEGER FUNCTION CALC*2(I,J,K) 
• 
• 
• 
ANS=ROOT1*CALC(N,M,L) 
• 
• 
• 

• 
• 
• 
CALC=I+J+K**2 
• 
• 
• 
RETURN 
END 

In this example, the FUNCTION subprogram CALC is declared as type 
INTEGER of length 2. 

SUBROUTINE Subprograms 
The SUBROUTINE subprogram is similar to the FUNCTION subprogram in 
many respects. The rules for naming FUNCTION and SUBROUTINE 
subprograms are similar. They both require a RETURN statement and an END 
statement, and they both contain the same sort of dummy arguments. Like the 
FUNCTION subprogram, the SUBROUTINE subprogram is a set of commonly 
used computations. Unlike the FUNCTION subprogram, it need not return any 
results to the calling program. The SUBROUTINE subprogram is referenced by 
the CALL statement. 

General Form of the SUBROUTINE Statement 

SUBROUTINE name (a l ,a2 ,a3 , ••• ,an) 

where: 

• name is the SUBROUTINE name, which consists of from one to six 
alphabetic or numeric characters, the first of which must be alphabetic. 

• Each a is a distinct dummy argument (it may appear only once within the 
statement). There need not be any arguments, in which case the parentheses 
must be omitted. Each argument used must be a variable array name, the 
dummy name of another SUBROUTINE or FUNCTION subprogram, or an 
asterisk, where the character * denotes a return point specified by a statement 
number in the calling program. See the section "Dummy Arguments in 
Subprograms" . 

Since the subprogram is a separate program unit, there is no conflict if the 
variable names and statement numbers within it are same as those in other 
program units. 

Subprograms 8 - 5 



CALL Statement 

R - 6 GC34-0\33 

The SUBROUTINE statement must be the first statement in the subprogram. 
The SUBROUTINE subprogram may contain any FORTRAN IV statement 
except a PROGRAM statement, another SUBROUTINE statement, a 
FUNCTION statement, a BLOCK DATA statement, or a DEFINE FILE 
statement. 

The SUBROUTINE subprogram may use one or more of its arguments to 
return values to the calling program. An argument so used will appear on the left 
side of an arithmetic or logical assignment statement, in the list of a READ 
statement within the subprogram, or as an argument in a CALL statement or 
function reference that is assigned a value by the subroutine referred to. The 
subroutine name must not appear in any other statement in the SUBROUTINE 
subprogram. 

The dummy arguments (al' a2, a3, •.. ,an) may be considered dummy names that 
are associated at the time of execution with the actual arguments supplied in the 
CALL statement. Additional information about dummy arguments is in the 
section dealing with dummy arguments in a FUNCTION· or SUBROUTINE 
subprogram. 

General Form of the CALL Statement 

CALL name (a1 ,a2 ,a3 ,·· .,an ) 

where: 

• name is the name of a SUBROUTINE subprogram or an ENTRY name in the 
subprogram. 

• Each a is an actual argument that is being supplied to the SUBROUTINE 
subprogram. The argument may be a variable name, array element name, array 
name, literal, arithmetic or logical expression, or subprogram name. 
(Subprogram names passed as arguments must be specified in an EXTERNAL 
statement. ) 

• a may also be of the form & n, where n is a statement number of an 
executable statement in the calling program to which control may be returned. 
& indicates that n is a statement number instead of an integer constant. 

The CALL statement is used to call a SUBROUTINE subprogram. 

Examples: 

CALL OUT 
CALL MATMPY (X,S,40,Y,7,2) 
CALL QDRTIC (X,Y,Z,ROOT1,ROOT2) 
CALL SUB1(X+Y*S,ABDF,SINE) 
CALL SUB(A,B,&SO,&70,&8S) 

The CALL statement transfers control to the SUBROUTINE subprogram and 
associates the dummy variables with the value of the actual arguments that 
appear in the CALL statement. 

Calling Program SUBROUTINE Subprogram 

UIMENSIUN Xl 100),Y( 100) 
• 
• 
• 
CALL COPY (X,Y,100) 
• 
• 
• 

SUBROUTINE COPY(A,B,N) 
DIMENSION A( 100),B( 100) 
DO 10 1=1, N 
10 B(I)=A(I) 
RETURN 
END 

The relationship between variable names used as arguments in the calling 
program and the dummy variables used as arguments in the SUBROUTINE 
subprogram is illustrated. 

() 

, , 



c 

C 

o 

Subroutine COpy copies array A into array B within the subprogram. In this 
particular call, the subroutine arrays A and B are associated with the calling 
program arrays X and Y, respectively, and the variable N in the subroutine is 
associated with the value 100. Thus, a call to subroutine COpy in this instance 
results in the 100 elements of array X being copied into the 100 elements of 
array Y. 

RETURN and END Statements in Subprograms 
All FUNCTION and SUBROUTINE subprograms must contain an END 
statement and at least one RETURN statement. The END statement specifies the 
physical end of the subprogram; the RETURN statement signifies a logical 
conclusion of the computation and returns the computed function value and 
control to the calling program. (In a main program, a RETURN statement serves 
the same function as a STOP statement.) 

The form of the END statement is given above under "Control Statements". 

General Form of the RETURN Statement 
RETURN 
RETURN i 

where: 

• i is an integer constant or variable of length 4 (see Appendix C for a 
description of the NOCMP AT compile option) whose value (n, for example,) 
denotes the nth statement number in the argument list of a SUBROUTINE 
statement; i may be specified only in a SUBROUTINE subprogram. 

Examples: 

FUNCTION DAV (D,E,F) 
IF (D-E) 10, 20, 30 

10 A=D+2.0*E 
• 
• 
• 

5 A=F+2.0*E 
• 
• 
• 

20 DAV=A+D**2 
• 
• 
• 
RETURN 

30 DAV=D**2 
• 
• 
• 
RETURN 
END 

If the result of (D-E) is negative or zero, the first RETURN statement will be 
executed. If the result is positive, the second RETURN will be executed. 

The normal sequence of execution following the RETURN statement of a 
SUBROUTINE subprogram is to the next statement following the CALL in the 
calling program. It is also possible to return to any numbered statement in the 
calling program by using a return of the type RETURN i. Returns of the type 
RETURN may be made in either a SUBROUTINE or FUNCTION subprogram 
(see "RETURN and END Statements in Subprograms"). Returns of the type 
RETURN i may only be made in a SUBROUTINE subprogram. The value of i 
must be within the range of the argument list. 

Subprograms 8 - 7 



Calling Program Subprogram 

• SUBROUTINE SUB (X, Y , Z, *, * ) 

• • 
• • 
10 CALL SUB (A,B,C, &30, &40) • 
20 Y=A+B 100 IF (M) 200,300,400 
• 200 RETURN 
• 300 RETURN 1 
• 400 RETURN 2 
30 Y=A+C END 
• 
• 
• 
40 Y=B+C 
• 
• 
• 
END 

In the preceding example, execution of statement lOin the calling program 
causes entry into subprogram SUB. When statement 100 is executed, the return 
to the calling program will be to statement 20, 30, or 40, if M is less than, equal 
to, or greater than zero, respectively. 

A CALL statement that uses a RETURN i form may be best understood by 
comparing it to a CALL and computed GO TO statement in sequence. For 
example, the following CALL statement: 

CALL SUB (P,&20,Q,&35,R,&22) 

is equivalent to: 

CALL SUB (P,Q,R,I) 
GO TO (20,35,22),1 

where: 

• the index I is assigned a value of 1, 2, or 3 in the called subprogram. 

Dummy Arguments in Subprograms 
The dummy arguments of a subprogram appear after the FUNCTION or 
SUBROUTINE name and are enclosed in parentheses. They are associated at the 
time of execution with the actual arguments supplied in the CALL statement or 
function reference in the calling program. The dummy arguments must 
correspond in number, order, and type to the actual arguments. For example, if 
an actual argument is an integer constant, then the corresponding dummy 
argument must be an integer variable of the same length. If a dummy argument is 
an array, the corresponding actual argument must be (1) an array or (2) an array 
element. In the first instance, the size of the dummy array must not exceed the 
size of the actual array. In the second, the size of the dummy array must not 
exceed the size of that portion of the actual array which follows and includes the 
designated element. 

The actual arguments can be: 

• A literal, arithmetic, or logical constant 
• Any type of variable or array element 
• Any type of array name 
• Any type of arithmetic or logical expression 
• The name of a FUNCTION or SUBROUTINE subprogram or an entry name 

in a subprogram 
• A statement number (for a SUBROUTINE subprogram using RETURN i). 

() 

An actual argument which is the name of a subprogram or entry must be 
identified by an EXTERNAL statement in the calling program unit containing (--

" "' 

8 - 8 GC34-0t33 



c 

c 

o 

that name. Hexadecimal constants cannot be actual arguments. If a literal is 
passed to a function or subroutine, the argument passed is the literal as defined, 
without delimiting apostrophes or the preceding wH specification. 

A dummy argument is an array when an appropriate DIMENSION or explicit 
specification statement appears in the subprogram. None of the dummy 
arguments may appear in an EQUIVALENCE, COMMON, or GLOBAL 
statement. 

The subprogram may use one or more of its arguments or any quantity in 
common or global to return a value to the calling program. 

If a dummy argument is assigned a value in a subprogram, the corresponding 
actual argument must be a variable, an array element, or an array. A constant or 
expression should not be written as an actual argument unless you are certain 
that the corresponding dummy argument is not assigned a value in the 
subprogram. 

A referenced subprogram cannot assign new values to dummy arguments which 
are associated with other dummy arguments within the subprogram or with 
variables in common or global areas. For example, if the subroutine DERIV is 
defined as 

SUBROUTINE DERIV (X,Y,Z) 
COMMON W 

and if the statements 

COMMON B 
• 
• 
• 
CALL DERIV (A,B,A) 

are included in the calling program, then X, Y, Z, and W cannot be assigned new 
values by the subroutine DERIV. Dummy arguments X and Z cannot be defined 
because they are both associated with the same argument, A; dummy argument 
Y cannot because it is associated with an argument, B, which is in COMMON; 
and the variable W cannot because it is also associated with B. 

Multiple Entry into a Subprogram 
The standard entry into a SUBROUTINE subprogram from the calling program 
is made by a CALL statement that refers to the subprogram name. The standard 
entry into a FUNCTION subprogram is made by a function reference in an 
arithmetic expression. Entry is made at the first executable statement following 
the SUBROUTINE or FUNCTION statement. 

It is also possible to enter a subprogram (either SUBROUTINE or 
FUNCTION) by a CALL statement or a function reference that references an 
ENTRY statement in the subprogram. Entry is made at the first executable 
statement following the ENTRY statement. 

General Form of the ENTRY Statement 

ENTRY name (a1 ,a2 ,a3 ,·· .an ) 

where: 

• name is the name of an entry point (see the section "Naming Subprograms"). 
• Each a is a dummy argument corresponding to an actual argument in a CALL 

statement or in a function reference (see the section "Dummy Arguments in 
Subprograms"). In functions, each array name must be of the same type as the 
function name. 

An entry in a subroutine must be referred to by a CALL statement; an entry 
in a function must be referred to by a function reference. 

Subprograms 8 - 9 



8 - 10 GC34-0133 

ENTRY statements are non-executable and do not affect control sequencing 
during execution of a subprogram. A subprogram must not refer to itself directly 
or indirectly or through any of its entry points. Entry cannot be made into the 
range of a DO. The appearance of an ENTRY statement does not alter the rule 
that statement functions in subprograms must precede the first executable 
statement of the subprogram. 

The dummy arguments in the ENTRY statement need not agree in order, type, 
or number with the dummy arguments in the SUBROUTINE or FUNCTION 
statement or any other ENTRY statement in the subprogram. However, the 
arguments for each CALL or function reference must agree in order, type, and 
number with the dummy arguments in the SUBROUTINE, FUNCTION, or 
ENTRY statement to which it refers. 

Entry into a subprogram associates actual arguments with the dummy 
arguments of the referenced ENTRY statement. Thus, all appearances of these 
arguments in the whole subprogram become associated with actual arguments. A 
function reference, and hence any ENTRY statement in a FUNCTION 
subprogram, must have at least one argument. 

A dummy argument must not be used in any executable statement in the 
subprogram unless it has been previously defined as a dummy argument in an 
ENTRY, SUBROUTINE, or FUNCTION statement. 

All arguments in Series/1 FORTRAN IV are passed by name. This means that 
when an argument is accessed, its current value in the calling program is used. 
Similarly, when an argument is changed, the current value in the calling program 
is also immediately changed. 

In a FUNCTION subprogram, the types of the function name and entry name 
are determined by the predefined convention, by an IMPLICIT statement, by an 
explicit-type statement, or by a type in the FUNCTION statement. The types of 
these variables (that is, the function name and entry names) must be the same; 
the variables are treated as if they were equivalenced. 

When there is an ENTRY statement in a function subprogram, either the 
function name or one of the entry names must be assigned a value. 

Upon exit from a FUNCTION subprogram, the value returned is the value last 
assigned to the function name or any entry name. It is returned as though it were 
assigned to the name in the current function reference. 

Examples: 

Calling Program 

5 

REAL TABLE( 100), W( 100) 
• 
• 
• 
TABLE( 1 )=FUNC(W( 1 ),X,Y,Z) 
DO 5 1=2,100 
TABLE(I)=ENT(W(I)) 
• 
• 
• 
CONTINUE 
• 
• 
• 
END 

Subprogram 

FUNCTION FUNC(T,A,B,C) 
• 
• 
• 
ENTRY ENT(T) 
• 
• 
• 
FUNC=A * B+C ** T 
RETURN 
• 
• 
• 

The FUNCTION subprogram is entered once at entry point FUNC and the 
dummy arguments become associated with the corresponding actual arguments. 
Thereafter, the FUNCTION subprogram is entered at entry point ENT, and only 
T becomes associated with the new actual argument. 

Each time, the result of the FUNCTION subprogram is returned to the main 
program function by the variable FUNC. 

() 



c 

c EXTERNAL Statement 

Calling Program Subprogram 

• SUBROUTINE SUB1 (U,V,W,X,Y,Z) 

• 
• 

RETURN 
ENTRY SUB2 (T,*,*) 

CALL SUB1 (A,B,C,D,E,F) U=V* W+T 
• ENTRY SUB3 (*,*) 
• X=Y**Z 
• 50 IF (W) 100, 200, 300 
CALL SUB2 (G,&10,&20) 100 RETURN 1 
Y=G 200 RETURN 2 
• 300 RETURN 
• END 
• 
CALL SUB3 (&10,&20) 
Y=A+B 
• 
• 
• 

10 Y=C+Dy 
• 
• 
• 

20 Y=E+F 
• 
• 
• 

In this example, a call to SUB 1 merely performs initialization. A subsequent 
call to SUB2 or SUB3 causes execution of a different section of the SUB 1 
subroutine. Then, depending upon the result of the arithmetic IF statement at 
statement 50, control returns to the calling program at statement 10, 20, or the 
statement following the call. 

General Form of the EXTERNAL Statement 

EXTERNAL a t ,aZ ,a3,.·. ,an 

where: 

• Each a is a name of a subprogram that is passed as an argument to other 
subprograms. 

The EXTERNAL statement is a specification statement, and must precede 
statement function definitions and all executable statements. 

If the name of a FORTRAN IV -supplied intrinsic function is used in an 
EXTERNAL statement, the function is not used from the FORTRAN 
IV -supplied library when it appears as a function reference. Instead, it is assumed 
that the function is supplied by the user. 

The name of any subprogram that is passed as an argument to another 
subprogram must appear in an EXTERNAL statement in the calling program. 
For example, assume that SUB and MUL T are subprogram names in the 
following statements: 

Subprograms 8 - 11 



Calling Program 

EXTERNAL MULT 

• 
• 
• 
CALL SUB(J,MULT,C) 
• 
• 
• 

Subprogram 

SUBROUTINE SUB(K,M,Z) 

IF (K) 4,6,6 
4 D=M(K,Z**2) 
• 
• 
• 
6 RETURN 
END 

In this example, the function name MUL T is used as an argument in the 
subroutine SUB. The function name MUL T is passed to the dummy variable M 
and the variables J and C are passed to the dummy variables K and Z, 
respectively. The function MULT is executed only if the value of K is negative. 

Calling Program 

• 
• 
• 
CALL SUB(A,B,MULT(C,D),37) 
• 
• 
• 

Subprogram 

SUBROUTINE SUB(W,X,M,N) 
• 
• 
• 
RETURN 
END 

In this example, an EXTERNAL statement is not required because the 
function MUL T is not an argument; it is executed first and the result becomes 
the argument. 

BLOCK DATA Subprograms 

8 - 12 GC34-0133 

To initialize variables in a labeled (named) common block, a separate 
subprogram must be written. This separate subprogram contains only the 
BLOCK DATA, DATA, COMMON, DIMENSION, EQUIVALENCE, and type 
statements associated with the data being defined, as well as the END statement. 
Data may not be initialized in unlabeled common or global, labelled or 
unlabelled. 

General Form of the BLOCK DATA Statement 

BLOCK DATA 

• The BLOCK DATA subprogram may not contain any executable statements, 
statement function definitions, or FORMAT, GLOBAL, DEFINE FILE, 
PROGRAM, FUNCTION, SUBROUTINE, ENTRY, or DEBUG statements. 

• The BLOCK DATA statement must be the first statement in the subprogram. 
If an IMPLICIT statement is used in a BLOCK DATA subprogram, it must 
immediately follow the BLOCK DATA statement. Statements which provide 
initial values for data items cannot precede the COMMON statements which 
define those data items. 

• Any main program or subprogram using a common block must contain a 
COMMON statement defining that block. If initial values are to be assigned, a 
BLOCK DATA subprogram is necessary. 

• All elements of a common block must be listed in the COMMON statement, 
even though they are not all initialized. 

• Data may be entered into more than one common block in a single BLOCK 
DATA subprogram. 

• Only one BLOCK DATA subprogram may be used to enter data into a 
particular common block. 

• The BLOCK DATA subprogram must end with an END statement. 

() 

f 

( 
" F 



(-

c 

c 

Inter-Program Communication 

PROGRAM Statemellt 

INVOKE Statemellt 

GLOBAL Statement 

Series/1 FORTRAN IV allows you to construct applications or jobs that consist 
of multiple main programs executing. An application can contain one or more 
sequential steps. Each step executes a task set in a Realtime Programming System 
partition. A task set comprises one or more asynchronous tasks. A task is a single 
thread of execution through a unit of code. A FORTRAN IV task is a main 
program and its subprograms. 

The Series/1 FORTRAN IV Realtime Subroutine Library provides a set of 
routines that can be called by FORTRAN IV programs to implement 
communications between asynchronously executing tasks and task sets. These 
routines are listed in Appendix B under "System Service Interface Subroutines". 
In addition, Series/1 FORTRAN IV provides the PROGRAM, INVOKE, and 
GLOBAL statements to aid in building multitask and multitask set applications. 

General Form of the PROGRAM Statement 

PROGRAM name 

where: 

• name is the name assigned to the main program. It consists of from one to six 
alphabetic or numeric characters, the first of which must be alphabetic. 

A PROGRAM statement, if it appears, must be the first statement in a main 
program. It may not appear in a subprogram. If no PROGRAM statement 
appears in a main program, the program's name becomes MAIN by default. 
There is no type associated with a program name. 

General Form of the INVOKE Statement 

INVOKE name 

where: 

• name is the 1 to 6-character task set. 

Execution of the INVOKE statement causes the named program to overlay the 
invoking program and receive control. The INVOKE statement may appear only 
in a main program. See the Series/l FORTRAN IV: User's Guide for additional 
information. 

A program which is invoked begins execution at its first executable instruction, 
that is, at the first executable statement of the main program. 

The GLOBAL statement is used to define a storage area in much the same 
manner as a COMMON statement. The difference is that GLOBAL is used to 
communicate or share values among routines which may be executed 
asynchronously and/or between main programs which are invoked. 

General Form of the GLOBAL Statement 

GLOBAL /rt/a tt ( k l1 ) ,a t2 ( k t2 ), ... 

/rn/ant ( knt ), a n2 ( kn2 ), ... 

where: 

• Each a is a variable name or array name that is a dummy argument. 
• Each k is optional and is composed of one to seven unsigned integer 

constants, separated by commas, representing the maximum value of each 
subscript in the array. 

Subprograms 8 - 13 



8 - 14 GC34-0133 

• Each r represents an optional global name consisting of one to six alphameric 
characters, the first of which is alphabetic. These names must always be 
enclosed in slashes . 

• The form / / (with no characters except possibly blanks between the slashes) 
may be used to denote blank global. If r 1 denotes blank global, the first two () 
slashes are optional. 

The GLOBAL statement may appear in a main program or a subprogram. A 
program unit may contain any number of GLOBAL statements. All variables and 
arrays in these statements are strung together in the order of their appearance. A 
variable or array name may not appear more than once in a GLOBAL statement, 
in more than one GLOBAL statement, or in both a GLOBAL and a COMMON 
statement. 

The global data area is for inter-program communication, although a main 
program may share a global data area with a subprogram. The local COMMON 
statement may still be used for this intra-program communication. 

The global data area may be either blank or labeled, exactly as a common data 
area; however, variables in a global area may not be initialized in a BLOCK 
DATA subprogram. 

Rules regarding the use of EQUIVALENCE are the same for a global data 
area as for a common data area. 

(' 

" 



C 

C 

o 

A lphabetic Characters 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
p 

Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 
$ 

Appendix A. Source Program Characters 

Numeric Characters 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Special Characters 

(blank) 

+ 

/ 

* 

, (apostrophe) 
& 

The 49 characters listed above constitute the set of characters acceptable by 
FORTRAN IV, except in literal data, where any valid card code is acceptable. 

Source Program Characters A-I 



() 

\ 

A - 2 GC34-0133 



c 

c 

Appendix B. FORTRAN IV-Supplied and Optional Procedures 

Series/l FORTRAN IV, in conjunction with the Series/l Mathematical and 
Functional Subroutine Library: Program Product 5719-LMl, and the Series/l 
FORTRAN IV Realtime Subroutine Library: Program Product 5719-F03, 
supplies you with the following types of procedures: 

• Mathematical functions 
• Service subroutines 
• Bit interrogator functions 
• Address constant function 
• System service interface subroutines 
• Subroutines which conform to the Instrument Society of America 

specifications ISA -S61.1-197 6 
Executive function 
Process I/O 

- Time and Date 
Bit interrogator and manipulator functions 

FORTRAN IV procedures may be "in-line" or "out-of-line". In-line 
procedures are those functions which are inserted by the FORTRAN IV compiler 
at any point in the program where the function is referenced. An out-of-line 
procedure is located in a library, and the compiler generates an external reference 
to it. All subroutines are out-of-line procedures. 

This appendix lists all procedures provided by FORTRAN IV, the 
Mathematical and Functional Subroutine Library (MFSL) and the FORTRAN IV 
Realtime Subroutine Library. The lists of procedures are arranged in two 
sections: 

• Section I lists mathematical functions, service subroutines, the address constant 
function, and all bit interrogator/manipulator functions, including those bit 
manipulation functions specified in the Instrument Society of America (ISA) 
S61.1 standard. The procedures listed in Section I form the basic set of 
procedures supplied by FORTRAN IV and the MFSL. Detailed descriptions of 
the out-of-line mathematical functions and the FCTST, DVCHK, and 
OVERFL service subroutines are given in the MFSL publications. Detailed 
descriptions of all other out-of-line procedures are given in the Series/l 
FORTRAN IV: User's Guide. 

• Section II lists those procedures provided in the optional FORTRAN IV 
Realtime Subroutine Library. These procedures include the executive function, 
process I/O, system service interface, time, and date subroutines. Detailed 
descriptions of these procedures are given in the Series/l FORTRAN IV: 
User's Guide. 

FORTRAN IV-Supplied and Optional Procedures B-1 



Section I: Basic Procedures 
Matlaematical FUllctions 

The mathematical functions are described in Figure B-1, parts I and II. 

Arguments Function value returned 
General Entry In line (I) 
function name Definition No. Type 2 Range l

,2 Type 2 Range l ,2 Out of line (0) 

Absolute lABS y =IXI 1 INTEGER Any INTEGER INTEGER 
value argument 

ABS 1 REAL *4 Any REAL *4 I 
DABS 1 REAL *8 REAL REAL *8 

argument 

Fix IFIX Convert 1 REAL *4 Any REAL INTEGER 
from REAL argument I 
to INTEGER 

Float FLOAT Convert 1 INTEGER Any REAL *4 
DFLOAT from INTEGER 1 INTEGER INTEGER REAL *8 I 

to REAL argument 

Maximum y = max (x I , ... ,xn) Any INTEGER 
and MAXO ~ 2 INTEGER argument INTEGER 
minimum AMAXO ~ 2 INTEGER REAL *4 
values MAXI ~ 2 REAL *4 Any INTEGER 

AMAXI ~ 2 REAL *4 REAL REAL *4 
DMAXI ~ 2 REAL *8 argument REAL *8 

0 
y - min (XI , ... ,xn) Any INTEGER 

MINO ~ 2 INTEGER argument INTEGER 
AMINO ~ 2 INTEGER REAL *4 
MINI ~ 2 REAL *4 Any INTEGER 
AMINI ~ 2 REAL *4 REAL REAL *4 
DMINI ~ 2 REAL *8 argument REAL *8 

Modulo MOD y - remainder 2 INTEGER x 2 =F 0 INTEGER 
arithmetic AMOD (::)' i.e., 2 REAL *4 REAL *4 

0 
DMOD 2 REAL *8 REAL *8 

y = XI (modulo x 2 ) 

Obtain SNGL I REAL *8 Any REAL REAL *4 
most argument I 
significan t 
part of 
a REAL 
argument 

Positive IDIM y = XI - min(x i'x 2 ) 2 INTEGER Any INTEGER INTEGER 
difference argument 

DIM 2 REAL *4 Any REAL REAL *4 0 

argument 

Precision DBLE I REAL *4 Any REAL REAL *8 
I 

increase argument 

Transfer ISIGN y - (sign x 2 ) . X I 2 INTEGER Any INTEGER INTEGER 
of sign XI =F 0 argument 

0 
SIGN 2 RFA.L*4 A.nyRFA.J RFA.J*4 
DSIGN 2 REAL *8 argument REAL *8 

Truncation AINT y = (sign x) . n 1 REAL *4 Any REAL *4 
INT where n is the I REAL *4 REAL INTEGER 

I 
IDINT largest integer I REAL *8 argument INTEGER 

<; X 

Notes. 

1. 'Y = 1663 • (11 6 -6) for single precision and 16 63 
. (1-16 -14) for double precision. 

2. If type or range is INTEGER and your program has been compiled in the CMPAT mode, the type/range must be INTEGER *4; if in the 
NOCMPAT mode, the type/range must be INTEGER *2. 

Figure B-1. (Part 1 of 2) Mathematical functions 

B-2 GC34-0133 

o 

f , 



c 

c 

Arguments Function value returned 
General Entry In line (I) 
function name Definition No. Type Range' Type Range' Out of line (0) 

Arctangent ATAN y = arctan x 1 REAL *4 Any REAL REAL *4 1T 1T 

argument (in radians) - 2';;; Y .;;; 2 
DATAN 11 REAL *8 REAL *8 

(in radians) 0 
ATAN2 y = arctan~ 2 REAL *4 Any REAL REAL *4 -1T<y';;;1T 

x2 arguments (in radians) 
DATAN2 2 REAL *8 except (0,0) REAL *8 

(in radians) 

Exponential EXP y = eX 1 REAL *4 -180.21S.;;; x.;;; REAL *4 O';;;y';;;'Y 0 
DEXP 1 REAL *S 174.673 REAL *8 

Hyperbolic TANH eX- e-x 1 REAL *4 Any REAL REAL *4 - 1 .;;; y .;;; 1 0 
tangent DTANH 

y =;x:;:-;x 
1 REAL *8 argument REAL *8 

Natural and y = logex 1 x>O 
common ALOG or 1 REAL *4 REAL *4 -180.218 .;;; y .;;; 
logarithm DLOG y = In x 1 REAL *8 REAL *8 174.673 0 

y = log,ox 1 x >0 
ALOG10 1 REAL *4 REAL *4 - 78.268';;; y .;;; 
DLOGI0 1 REAL *8 REAL *8 75.859 

Sine and SIN y = sin x 1 REAL *4 Ixl < (2 18 
• 1T) REAL *4 - 1 .;;; y .;;; 1 

cosine (in radians) 
DSIN 1 REAL *8 Ixi < (250 '1T) REAL *8 

(in radians) 0 
COS y = cos x 1 REAL *4 Ixl < (2 18 

• 1T) REAL *4 - 1 .;;; Y .;;; 1 
(in radians) 

DCOS 1 REAL *8 Ixl < (250 . 1T) REAL *8 
(in radians) 

Square SQRT y = VX or 1 REAL *4 x;;.O REAL *4 0.;;;y';;;'Y1/2 
root DSQRT y = x1/ 2 1 REAL *8 REAL *S 0 

Notes. 

1. 'Y = 16 63 . (l-16-=-6) fer single precision and 16 63 . (1-16 -14) for double precision. 

Service S"broll tines 

Figure 8-1. (Part 2 of 2) Mathematical functions 

Six service subroutines are available via the CALL statement: OVERFL, 
DVCHK, ERRXIT, FCTST, CLOSE, and EXIT. OVERFL, DVCHK, and 
FCTST are provided by the MFSL. ERRXIT, CLOSE, and EXIT are provided 
by FORTRAN IV. 

1. OVERFL: This subroutine tests to determine if an overflow or underflow 
exception has occurred during execution. The source language statement is: 

CALL OVERFL (i) 

where: 

i is an integer variable set by the subroutine 
i= 1 indicates a floating-point overflow condition has occurred 
i=2 indicates neither a floating-point overflow nor underflow condition 
has occurred 
i=3 indicates a floating-point underflow condition has occurred 

If more than one such condition has occurred, the last one takes precedence. 
After execution of the call, the indicator is reset to 2. 

2. DVCHK: This subroutine tests to determine if a floating-point divide-check 
exception has occurred during execution. The source language statement is: 

CALL DVCHK (i) 

FORTRAN IV-Supplied and Optional Procedures 8 - 3 



where: 
i is an integer set by the subroutine 
i= 1 indicates a divide-check exception has occurred 
i=2 indicates no divide-check exception has occurred ( .. ) .. 

After execution of the CALL, the indicator is reset to 2. .. 
3. ERRXIT: This subroutine is used to supply the name of the user-written 

subroutine to be given control if an error occurs during execution of an 1/0 
statement. The source language statement is: 

CALLERRXIT (sub) 

where: 
sub is the name of the user-written subroutine. This subroutine must also 
be declared in an EXTERNAL statement. The subroutine must have one 
INTEGER *2 dummy argument, which will be given the number of the 
error condition when FORTRAN IV passes it control. If the argument is 
zero, the effect of previous calls to ERRXIT is negated. 

4. FCTST: This subroutine is used to determine if an illegal argument has been 
passed to a FORTRAN IV -supplied mathematical function, or invalid data 
has been read with F, E, D, I, or Z FORMAT codes. The source language 
statement is: 

CALL FCTST (j,k) 

where: 
• j and k are integers set by the subroutine 
• j = 1 indicates one or more errors has occurred 

j=2 indicates no errors have occurred 
k= the value of the error code or codes 

After execution of the CALL, the indicator j is reset to 2. 
5. CLOSE: This subroutine is used to close a data set. The source language 

statement is: 

CALL CLOSE (i) 

where: 
i is an integer constant or variable set that you set to indicate the data 
set reference number of the data set you want to close. 

6. EXIT: A call to the subroutine has essentially the same effect as the STOP 
statement. Both statements halt execution, but a CALL EXIT statement is 
not recognized as a logical end of the program by the compiler as is the 
STOP statement. 

Bit Manipulator alld Illterrogator Functiolls 
Figure B-2 describes the bit manipulator and interrogator functions. These 
functions allow access to individual bits within variables. They produce 
INTEGER *2 results and require INTEGER *2 arguments. (They are available 
only when a program is compiled with the NOCMPAT option.) In-line functions 
are supplied by FORTRAN IV. Out-of-line functions are provided by the MFSL. 

Address Constant (ADCON) Fllnctioll 

B - 4 GC34-0133 

This function produces the value of the location of the argument in main storage 
at execution time-its absolute address. This function is available only when a 
program is compiled with the NOCMP A T option. The function is of the form: 

IADDR (arg) 

where: 

• arg is the entity whose address is desired 

IADDR is compiled as an in-line function. 

, J 



o 

c 

o 

Function 
Arguments value 

Entry returned In line (I) Bit value 
name Definition No. Type Type Out of line (0) arg.l arg.2 result 

lOR Value of inclusive 2 INTEGER *2 INTEGER *2 I 0 0 0 
OR of argl and arg2 0 1 1 

1 0 1 
1 1 1 

IEOR Value of exclusive 2 INTEGER *2 INTEGER *2 I 0 0 0 
OR of argl and arg2 0 1 1 

1 0 1 
1 1 0 

lAND Value of logical AND 2 INTEGER *2 INTEGER *2 0 0 0 0 
for argl and arg2 0 1 0 

1 0 0 
1 1 1 

ICOMP Value of logical 1 INTEGER *2 INTEGER *2 I 0 - 1 
or complement of arg 1 - 0 
NOT 

ISHFT Shifts argl by the 2 INTEGER *2 INTEGER *2 0 Not applicable 
count and direction 
of arg2; arg2 < 0 
means shift right, 
arg2 > 0 means 
shift left, arg2=0 
means no shift 

BTEST If lAND (argl,2arg2) 2 INTEGER *2 INTEGER *2 0 Not applicable 
= 0, result is false. 
Else resul t is true. 

IBSET Result = lOR (argl, 2 INTEGER *2 INTEGER *2 0 Not applicable 
2arg2) 

IBCLR Result = lAND (argl, 2 INTEGER *2 INTEGER *2 0 Not applicable 
NOT(2arg2) 

Figure B-2. Bit manipulator and interrogator functions 

Section II: Series/l FORTRAN IV Realtime Subroutine Library 
The Series/1 FORTRAN IV Realtime Subroutine Library program product 
provides realtime system support for you. The procedures contained in this 
library are available only when a program is compiled with the NOCMP AT 
option. They require additional system support; therefore, only a summary of 
these procedures is available in this publication. See the Series/ J FORTRAN IV: 
User's Guide for information on using the FORTRAN IV Realtime Subroutine 
Library. 

Date and Time Information 
Obtain Time of Day 
This subroutine allows a program to determine the current time of day. The form 
of this call is: 

CALL TIME (j) 

where: 

• j designates an integer array into whose first three elements the absolute time 
of day will be placed. The contents of these elements shall be as follows: 

First Element-Hours 0 to 23 
Second Element-Minutes 0 to 59 
Third Element-Seconds 0 to 59 

FORTRAN IV-Supplied and Optional Procedures B - 5 



Obtain Date 
This subroutine allows a program to determine the current calendar date. The 
form of this call is: 

CALL DATE (j) 

where: 

• j designates an integer array into whose first three elements the date will be 
placed. The contents of these elements shall be as follows: 

First Element-AD year since zero 
Second Element-Month 1 to 12 
Third Element-Day 1 to 31 

Executive Function Subroutines 
The executive function subroutines provide you with the ability to start, stop, or 
delay the execution of programs. The calling sequences of the three executive 
function subroutines are similar in format and, therefore, they have been 
summarized as follows: 

START Requests execution of a specified program either immediately or 
after a time delay 

TRNON Requests execution of a specified program at a specified time of 
day 

WAIT Permits a program to suspend its own execution, gives control to 
the system, and resumes execution after a specified time delay 

The format of the calling sequence is: 

CALL START (i,j,k,m) 
CALL TRNON (i,j,m) 
CALL WAIT (j,k,m) 

where: 

• i specifies the name of the program to be executed 
• j for START and WAIT specifies length of time, in units as specified by k, to 

delay before beginning or continuing execution of a program 
• j for TRNON requests time of day designated by an array whose first three 

elements specify the hour, minute, and second 
• k specifies units of time as either basic system clock counts, milliseconds, 

seconds, or minutes 
• m return code indicating either a successful call or an error condition 

Process Input and Output S"brolltines 

Analog 

B - 6 GC34-0133 

The process I/O subroutines allow you to access analog and digital points for 
both input and output. These subroutines return control to the calling program 
after the requested I/O operation is completed. The calling sequences of the 
process I/O subroutines are similar in format. The subroutines are summarized in 
the following sections. 

AISQW Reads any number of analog input points in the sequence of the 
hardware interface 

AIRDW Reads analog input points in a sequence specified by the user 
AOW Writes analog output registers in a sequence specified by the user 

The format of the calling sequence is: 

CALL AISQW (i,j,k,mJ 
CALL AIRDW (i,j,k,m) 
CALL AOW (i,j,k,m) 

c 



c 

c 

o 

Digital 

where: 

• i specifies the number of analog input/output points to be read or written 
• j specifies hardware or software acquisition, conversion, or transmission 

information for analog input/output points 
• k designates an array name which either contains analog input/output values 

or stores the converted analog input/output values 
• m return code indicates either a successful call or an error condition 

DIW 
DOMW 

DOLW 

Reads digital input registers 
Sets (turns on)user-selected DO points and, after a 
user-specified length of time, resets (turns off) the selected 
DO points 
Sets or resets user selected DO groups 

The format of the calling sequence is: 

CALL DIW (i,j,k,rn) 
CALL DOMW (i,j,k,l,rn) 
CALL DOLW (i,j,k1 ,k2 ,rn) 

where: 

• i specifies the number of digital input/output words to be either read, written, 
or latched 

• j specifies hardware or software acquisition, conversion, or transmission 
information for each digital input/output word 

• k designates an array name which either contains the image words to be 
output or stores the converted digital input/output words 

• kl designates an array name whose contents are the image words to be output 
• ~ designates an array whose contents define digital outputs which can be 

changed by the subroutine 
• 1 designates the number of millisecond intervals that are to occur between 

setting and resetting of the groups 
• m return code indicates either a successful call or an error condition 

System Service Illterface Sllbrollti"es 
FORTRAN IV provides access to system services through interface subroutines. 
These subroutines are entered via a CALL and require special parameter types, 
which are described in the Series/l FORTRAN IV: User's Guide. Supported 
functions are as follows: 

$ATACH 
$AWAIT 
$CON 
$DEQUE 
$DFNEV 
$DFNQU 
$DFNRS 
$DISCN 
$DLTEV 
$DLTQU 
$DLTRS 
$DTACH 
$ENQUE 
$MDSST 
$MDSTT 
$POST 
$RDTOD 

Attach a new task 
Wait on completion of an event 
Connect issuing task to PI interrupt 
Remove an element from a queue 
Define an event 
Define a storage queue 
Define a resource 
Disconnect from PI interrupt 
Delete an event 
Delete a queue 
Delete resource 
Detach (terminate) task 
Add an element to a queue 
Modify system scheduler table 
Modify system task set table 
Post completion of an event 
Read time-of -day 

FORTRAN IV-Supplied and Optional Procedures B - 7 



B - 8 GC34-0133 

$RELRS 
$REQRS 
$SERXT 
$SETRL 
$TSQUE 
$TSSTP 
$WRTOD 

Release resource 
Request resource 
Set task error exit 
Set ROLLIN/ROLLOUT status 
Queue task set for execution 
Terminate task set execution 
Write time-of-day 

(
., 

I 



c 

c~ 

o 

Appendix C. Non-Standard Integer Lengths with the NOCMPAT Option 

If a FORTRAN IV program is compiled with the NOCMPAT option, every 
integer-whether constant, variable, array, or function-is compiled as 
INTEGER *2, unless explicitly declared by you as INTEGER *4 in a type 
statement. (The INTEGER*2 length for constants cannot be overridden.) The 
NOCMP A T option affects all standard definitions given in the main body of this 
manual for appearances of integers. Thus, in the READ, WRITE, FIND, END 
FILE, BACKSPACE, computed GO TO, ASSIGN, assigned GO TO, and 
RETURN statements, the integers used may be either INTEGER*2 or 
INTEGER*4. 

As explained in Appendix B, the bit manipulator and interrogator functions are 
only available when the NOCMPAT option is used. 

The maximum magnitude of an INTEGER*2 number is 32767. 

Non-Standard Integer Lengths with the NOCMPA T Option C - 1 



() 

C-2 GC34-0t33 



c 

o 

Appendix D. Debug Facility 

The debug facility is a programming aid that enables you to locate errors in a 
FORTRAN IV source program. The debug facility provides for tracing, at 
execution time, the flow within a program and between programs .. 

The debug facility consists of a DEBUG specification statement, an AT debug 
packet identification statement, and two TRACE statements (TRACE ON and 
TRACE OFF). These statements are used to define the desired debugging 
operations for a single program unit in source language. (A program unit is a 
single main program or a subprogram.) 

The DEBUG specification statement is similar to the END statement in that 
the statement preceding it must follow the same rules as those for the END 
statement. Thus, a STOP statement, an arithmetic IF, a GO TO, or a RETURN 
statement is required. 

The source deck arrangement consists of the source language statements that 
constitute the program, followed by the DEBUG specification statement, 
followed by the debug packets, followed by the END statement. 

The statements that make up a program debugging operation must be grouped 
in one or more debug packets. A debug packet consists of an AT specification 
statement, followed by a TRACE ON or TRACE OFF statement and/or 
FORTRAN IV source language statements, and is terminated by either another 
debug packet or the END statement of the program unit. 

DEBUG Facility Statements 
The specification statement (DEBUG) sets the conditions for operation of the 
debug facility and designates debugging operations that apply to the entire 
program unit (such as subscript checking). The debug packet identification 
statement (AT) identifies the beginning of the debug packet and the statement in 
the program at which tracing is to begin. The two executable statements 
(TRACE ON and TRACE OFF) designate actions to be taken at specific points 
in the program. 

DEBUG Specification Statement 
There must be one and only one DEBUG statement for each program or 
subprogram to be debugged, and it must immediately precede the first debug 
packet. 

The options in a DEBUG specification statement may be given only once, may 
appear in any order, and must be separated by commas. 

General Form of the DEBUG Statement 

DEBUG list 

where: 

• list is optional and may contain one or both of the following (with a 
separating comma, if both): 

TRACE This option must be in the DEBUG specification statement of 
each program or subprogram for which tracing is desired. If this 
option is omitted, there can be no display of program flow by 
statement number within this program. Even when this option is 

Debug Facility D - 1 



SUBTRACE 

used, a TRACE ON statement must appear in the first debug 
packet in which tracing is desired. 
This option specifies that the name of the subprogram in which 
this DEBUG statement appears is to be displayed whenever it is 
entered. A message is to be displayed whenever execution of the 
subprogram is completed. 

AT Debug Packet Identification Statement 

TRACE ON Statement 

TRACE OFF Statement 

D - 2 GC34-0133 

The AT statement identifies the beginning of a debug packet and indicates the 
point in the program at which debugging is to begin. There must be one AT 
statement for each debug packet; there may be many debug packets for one 
program or subprogram. 

General Form of the AT Statement 

AT statement number 

where: 

• statement number is an executable statement number in the program or 
subprogram to be debugged. 

The debugging operations specified within the debug packet are performed 
immediately prior to the execution of the statement indicated by the statement 
number in the AT statement. 

The TRACE ON statement initiates the display of program flow by statement 
number. Each time a statement with an external statement number is executed, a 
record of the statement number is made on the debug output file. This statement 
has no effect unless the TRACE option is specified in the DEBUG specification 
statement. 

General Form of the TRACE ON Statement 

TRACE ON 

For a given debug packet, the TRACE ON statement takes effect immediately 
before the execution of the statement specified in the AT statement; tracing 
contiLues until a statement referred to by a TRACE OFF is encountered. The 
TRACE ON stays in effect through any level of subprogram call or return. 
However, if a TRACE ON statement is in effect and control is given to a 
program in which the TRACE option was not specified, the statement numbers 
in that program are not traced. Trace output is placed in the debug output file. 

This statement may not appear as the conditional part of a logical IF 
statement. 

The TRACE OFF statement may appear anywhere within a debug packet and 
stops the recording of program flow by statement number 

General Form of the TRACE OFF Statement 

TRACE OFF 

This statement may not appear as the conditional part of a logical IF 
statement. 

(J 



o 

Programming Considerations 

Programming Examples 

The following precautions must be taken when setting up a debug packet: 

Any DO loops initiated within a debug packet must be wholly contained 
within that packet. 

• Statement numbers within a debug packet must be unique. They must be 
different from statement numbers within other debug packets and within the 
program being debugged. 
An error in a program should not be corrected with a debug packet; when 
the debug packet is removed, the error remains in the program. 
The following statements must not appear in a debug packet: 
PROGRAM 
SUBROUTINE 
FUNCTION 
ENTRY 
IMPLICIT 
COMMON 
GLOBAL 
EQUIV ALENCE 
BLOCK DATA 
INVOKE 
statement function definition 
type statement 
The program being debugged must not transfer control to any statement 
number defined in a debug packet; however, control may be returned to any 
point in the program from a packet. In addition, a debug packet may contain 
a RETURN or STOP statement. 
If debugging is desired in any subprogram, the main program must also 
contain a DEBUG statement. 

The following examples show the use of a debug packet to test the operation of 
a program. 

Examples: 

INTEGER SOLON, GFAR, EWELL 
• 
• 
• 

10 SOLON = GFAR * SQRT(FLOAT(EWELL)) 
11 IF (SOLON) 40, 50, 60 

• 
• 
• 
DEBUG 
AT 11 
WRITE (1,21) GFAR, SOLON, EWELL 

21 FORMAT (lX, 'GFAR=' ,Il0,'SOLON=' ,110, 'EWELL=' ,110) 
END 

The values of SOLON, GFAR, and EWELL are to be examined as they were 
at the completion of the arithmetic operation in statement 10. Therefore, the 
statement number entered in the AT statement is 11. 

The debugging operation indicated is carried out just before execution of 
statement 11. If statement number 10 had been entered in the AT statement, the 
values of SOLON, GFAR, and EWELL would be written as they were before 
execution of statement 10. 

Debug Facility D - 3 



o - 4 GC34-0133 

DIMENSION STOCK( 1000),OUT(1000) 
• 
• 
• 
DO 30 I = 1, 1000 

25 STOCK (I) = STOCK (I) - OUT (I) 
30 CONTINUE 
35 A = B + C 

• 
• 
• 
DEBUG 
AT 35 
WRITE( 1,20) STOCK 

20 FORMAT STOCK( 'VALUES OF STOCK ARE'/(4E16.8)) 
END 

The value of each element in the array STOCK is to be displayed. When 
statement 35 is encountered, the debugging operation designated in the debug 
packet is executed. The values of STOCK at the completion of the DO loop are 
written out. 
10 A 1.5 
12 L = 1 
15 B = A + 1.5 
20 DO 22 1=1.5 

• 
• 
• 

22 CONTINUE 
25 C = B + 3.16 
30 D = C/2 

STOP 
• 
• 
• 
DEBUG TRACE 

C DEBUG PACKET 
AT 10 
TRACE ON 

C DEBUG PACKET 
AT 20 
TRACE OFF 

C DEBUG PACKET 
AT 30 
TRACE ON 
END 

NUMBER 1 

NUMBER 2 

NUMBER 3 

When statement lOis encountered, tracing begins as indicated by debug packet 
1. When statement 20 is encountered, tracing stops as indicated by the TRACE 
OFF statement in debug packet 2. When statement 30 is encountered, debug 
packet 3 commences tracing again. 

In this example, trace output is produced for statement numbers 10, 12, 15, 
and 30. No debug output. is produced for statement numbers 20, 22, and 25. 

() 

c 



c 
Sample Program 1 

c 

o 

Appendix E. Sample Programs 

This sample program (Figure E-l) is designed to find all of the prime numbers 
between 2 and 1000. A prime number is an integer greater than 1 that cannot be 
evenly divided by any integer except itself and 1. Thus 2, 3, 5, 7, 11, ... are 
prime numbers. The number 9 is not a prime number since it can be evenly 
divided by 3. 

IBM FORTRAN eOlhng Form 

I"'" I I I I I I I lu~" Jo •. 

t-- --
. ~ .-

-- ~ - .-

.- f-~ . 

·f 
- .-

I 

I--~ t------ .. . 
f . 

I :' 
. ~~~...l..... ___ L __ -. ~ _ ___L._-~.-. __ ...L._-_-_-~ _+=-_ . 

Figure E-I. Sample program I 

Sample Programs E - 1 



Sample Program 2 

E-2 GC34-0133 

The n points (xi, Yi) are to be used to fit an m-degree polynomial by the least-squares method. 

y = ao + at x + a2 X2 + • • • + amxm 

In order to obtain the coefficients ao ' at, ... , am, it is necessary to solve the normal equations: 

(1) woao + wta t + • • • + Wmam = Z 

(2) wtaO +w2a t + ••• +2m+ t am=Zt 

• 
• 
(m+1) wmao + wm+ 1 a l + • • • + w2 mam = zm 

where: 

• 
• 
• 

n 

w21ll = ~ xi 21ll 

i = I 

Zo = ~ Yi 
j = I 

n 

ZI = ~ YiXj 
i = I 

n 

Z2 = ~ Yixi2 

i = 1 

• 
• 
• 
n 

zm = L YiXjm 
j = 1 

After the w's and z's have been computed, the normal equations arc solved by the method of elimina
tion which is illustrated by the following solution of the norl11al equations for a second-degree poly
nomial (m = 2). 

(1) woa o + WI a l + w2a 2 = Zo 

(2) wlao + w 2 a l + w3 a2 = ZI 

(3 ) w 2 a O + w 3 a l 
+ w4 a 2 = Z2 

The forward solution is as follows: 

1. Divide equation (1) by wO' 
2. Multiply the equation resulting from step 1 by WI and subtract from equation (2). 
3. Multiply the equation resulting from step I by w2 and subtract from equation (3). 

(: 



c 

c 

o 

The resulting equations are: 

(4) ao + b 1 2 a 1 + b 1 3 az = b 1 4 

(5) 

(6) 

where: 

bZZa i + b Z3 aZ = bZ4 

b 3 z a ~ + b3 3 az = b34 

biZ=wi/wo' b 13 =Wzlwo , b 14 =Zo/wo 

bzz = wZ-b i ZWl> bZ3 =W3-b 13 WP bZ4 =zl-b 14 Wi 

b 3Z =w3-b iZ wZ' b33 =w4-b13 WZ' b 34 =ZZ-b14 WZ 

Steps 1 and 2 are repeated using equations (5) and (6), with bz z and bs z instead of Wo and Wi. The 
resulting equations are: 

(7) a i + Cz 3 az = Cz 4 

(8) c33 aZ = C34 

where: 

Cz 3 = bz 3 Ibz z ' Cz 4 = bz 4 Ibz Z 

C33 = b 3 3-C Z 3 b 3 Z' c3 4 = b3 4 -cz 4 b 3 z 

The backward solution is as follows: 

(9) az = C34 /c 3 3 

(10) a i = Cz 4-CZ 3 az 

(11) aO=b14-biZai-b13aZ 

from equation (8) 

from equation (7) 

from equation (4) 

Figure 1-5 is a sample FORTRAN program for carrying out the calculations for the case: n = 100, 

m,;;;; 10. Wo, Wi' Wz ,· .. , Wzm, are stored in W(1), W(2), W(3), ... , W(2M+1), respectively. zO' 
Zi , zZ' ... , zm are stored in Z(1), Z(2), Z(3), ... , Z(M+l), respectively. 

---I -- -

! 

1 1-1 

- -- -- -

-

-----

---

f-+--+T--- - - - t--- -- --- --~--- --t---j----

Figure E-2. (Part 1 of 3) Sample program 2 

Sample Programs E - 3 



E - 4 GC34-0133 

IBM FORTRAN CodIng Form 

00 ZI2IK=lbLl 
>-+-_+4"-J~. --j!K-'-,'-+-"'I---j __ lc--______ +__-+--- -t---- - - f----- -

2() HK,IL= WlJ-ll) 
)0 22. K"il')Ll 

-- ---~- t--- - t------

III • L+l 
-----t--~ ---~+__-+___--+___----

, II I:, L~ l 

Figure E-2. (Part 2 of 3) Sample program 2 

II ,.. 1'-1' 
--- --t-----+---+---+---

------

- ------

NI) - --- -+---+-----+----+-----+---------1 
-- --- --------+----+----j-----t-~-______i 

--- --r--------r--------+~---------1 

--- - -----je----f-- - ---- ------- 1-------- ~----

--------- -----

-- -- -- ---

H----H--+ ------ - - - - ------ -
t---- f---~ 

.. . . .. ~.~ -~~;-- .l~- ---c---f----=-----+----__ -__ --------I __ 

f------ - I---t--

f----- f----- --- -

---- f-----

Figure E-2. (Part 3 of 3) Sample program 2 

--

----- -- - 1---------- ------

--- -- I-------r--- - - - -- ---- ---- --

The elements of the W array, except W(1), are set equal to zero. W(1) is set 
equal to N. For each value of I, X(I) and Y(I) are selected. The powers of X(I) 
are computed and accumulated in the correct W counters. The powers of X(I) 
are multiplied by yO), and the products are accumulated in the correct Z 
counters. In order to save machine time when the object program is being run, 
the previously computed power of X(I) is used when computing the next power 
of X(I). Note the use of variables as index parameters. By the time control has 
passed to statement 17, the counters have been set as follows: 

() 

(~ 



c 

o 

W(I) = N 

N 
W(2) = ~ X(I) 

1= 1 

N 
W(3) = ~ X(1)2 

1= 1 

• 
• 
• 
• 
• 

• 
N 

W(2M+ 1) = ~ X(1)2 m 
1= 1 

N 
Z(1) = ~ Y(I) 

1= 1 

N 
Z(2) = ~ (Y(I)X(I) 

J = 1 

N 
Z(3) = ~ Y(I)X(J)2 

1=1 

• 

N 
Z(M+ 1) = ~ Y(I)X(l)m 

1=1 

By the time control has passed to statement 23, the values of wO' wl' ... ,w2m have 
been placed in the storage locations corresponding to columns 1 through M + 1 , 
rows 1 through M+ 1, of the B array, and the values of zO' zl'""zm have been 
stored in the locations corresponding to the column M+2 of the B array. For 
example, for the illustrative problem (M=2), columns 1 through 4, rows 1 
through 3, of the B array would be set to the following computed values: 

This matrix represents equations (1), (2), and (3), the normal equations for 
M=2. 

The forward solution, which results in equations (4), (7), and (8) in the 
illustrative problem, is carried out by statements 23 through 3 1. By the time 
control has passed to statement 33, the coefficients of the A(I) terms in the 
M + 1 equations which would be obtained in hand calculations have replaced the 
contents of the locations corresponding to columns 1 through M + 1, rows 1 
through M + 1, of the B array, and the constants on the right-hand side of the 
equations have replaced the contents of the locations corresponding to column 
M+2, rows 1 through M+l, of the B array. For the illustrative problem, columns 
1 through 4, rows 1 through 3, of the B array would be set to the following 
computed values: 
1 b t2 b t3 b t4 
o 1 cn Cu 
o 0 c33 C 34 

This matrix represents equations (4), (7), and (8). 
The backward solution, which results in equations (9), (10), and (11) in the 

illustrative problem, is carried out by statements 33 through 40. By the time 
control has passed to statement 41, which prints the values of the A(I) terms, the 
values of the M + 1 A(I) terms have been stored in the M + 1 locations of the A 
array. For the illustrative problem, the A array would contain the following 
computed values for ~, at, and ao respectively. 

Sample Programs E - 5 



E - 6 GC34-0133 

Location Contents 

A( 3 ) c 34/ c 33 
A( 2 ) c 24-c23a 2 

A( 1 ) b14-b12al-b13a2 

The resulting values of the A(I) terms are then printed according to the format 
specification in statement 2. 

:i 

(: 



c' 

c 

o 

Appendix F. Comparison with Other FORTRAN IVs 

The following Series/1 FORTRAN IV features are not available in IBM Basic 
FORTRAN IV: 

ASSIGN 
Assigned GO TO 
BLOCK DATA 
DATA 
Debug facility 
ENTRY 
ERR and END parameters in a READ 
ERR parameter in a WRITE 
EXECUTIVE functions 
Generalized subscript form 
IMPLICIT 
Initial data values in explicit specification statements 
INVOKE 
L-and Z-format codes 
Labeled COMMON 
Length of variables and arrays as part of type specifications 
Literal as actual argument in CALL and function reference 
LOGICAL 
Logical, literal, and hexadecimal constants 
Logical IF 
PAUSE with literal 
Process I/O subroutines 
RETURN i (i not a blank) 
Up to seven dimensions in an array 

The following Series/1 FORTRAN IV features are not available in American 
National Standard (ANS) FORTRAN: 

Direct-access input/output statements 
ENTRY 
ERR and END parameters in a READ 
ERR parameter in a WRITE 
Function names in type statements 
Generalized subscripts 
GLOBAL 
Hexadecimal constant 
IMPLICIT 
Initial data values in explicit specification statements 
Integer*2 data type 
INVOKE 
Length of variables and arrays as part of type specifications 
Length specification in type statement 
Literal as actual argument in function reference 
Literal enclosed in apostrophes 
Mixed-mode expressions 
MUltiple exponentiation without parentheses to indicate order of computation 
PAUSE "message' 
PROGRAM 
RETURN i 
T -and Z-format codes 
Up to seven dimensions in an array 

The following Series/1 FORTRAN IV features are not available in IBM 
System/360 and System/370 full FORTRAN IV: 
ERR parameter in a WRITE 
GLOBAL 
PROGRAM 
INVOKE 

Comparison with Other FORTRAN IVs F - 1 



F - 2 GC34-0133 

The following IBM System/360 and System/370 full FORTRAN IV features 
are not available in Series/1 FORTRAN IV: 
LOGICAL*l 
COMPLEX 
NAMELIST 
Adjustable (object-time) dimensioning 
PRINT 
PUNCH 
READ b,list 
DEBUG with UNIT, INIT, or SUBCHK 
DISPLAY 
Exponentiation or function reference in subscripts 
appearing in 110 lists 
Subprogram dummy arguments enclosed in slashes FORMAT with G specification, or more 
than one level of parentheses, or adjustable (object time) format specification. 

In addition, the following FORTRAN IV H Extended features are not 
supported: asynchronous I/O, extended precision, EXTERNAL extension, and 
GENERIC. A subset of the FORTRAN IV H Extended list-directed I/O is not 
supported. 

All arguments in Series/1 FORTRAN IV are passed by name. To ensure 
compatible results when using the same program with System/360 and Series/1 
full FORTRAN IV compilers, all arguments in FUNCTION, SUBROUTINE, and 
ENTRY statements should be enclosed in slashes. 

() 



c 

c 

o 

alphabetic character. A character of the set A, B, C, ... , Z, $. 

alphameric character. A character of the set which includes the 

alphabetic characters and the numeric characters. 

argument. A parameter passed between a calling program and a 

subprogram or statement function. 

arithmetic expression. A combination of arithmetic operators 

and arithmetic primaries. 

arithmetic operator. One of the symbols +, -, *, /, **, used to 

denote, respectively, addition, subtraction, mUltiplication, 

division, and exponentiation. 

arithmetic primary. An irreducible arithmetic unit; a single 

constant, variable, array element, function reference, or 

arithmetic expression enclosed in parentheses. 

array. An ordered set of data items, identified by a single name 

and defined in a DIMENSION, COMMON, GLOBAL, or 

explicit specification statement. 

array element. A data item in an array, identified by the array 

name followed by a subscript indicating its position in the 

array. 

array name. The name of an ordered set of data items. 

assignment statement. An arithmetic variable or array element, 

followed by an equal sign (=), followed by an arithmetic 

expression. 

basic real constant. A string of decimal digits containing a 

decimal point. 

blank commOD. An unlabeled (unnamed) common block. 

blank global. An unlabeled (unnamed) global block. 

common block. A storage area that may be referred to by a 

calling program and one or more subprograms. 

compilation time. The point in time during which a source 

program is compiled, that is, translated from a high level 

language to a machine language program. 

compile. To prepare a machine language program from a 

computer program written in a higher level programming 

language. 

constant. A fixed and unvarying quantity. The four classes of 

constants specify numbers (numerical constants), logical values 

(logical constants), literal data (literal constants), and 

hexadecimal data (hexadecimal constants). 

control statement. Any of the several forms of GO TO, IF, and 

DO statements, or the PAUSE, CONTINUE, and STOP 

statements, used to alter the normally sequential execution of 

FORTRAN IV statements or to terminate the execution of the 

FORTRAN IV program. 

data item. A constant, variable, or array element. 

data set. A named collection of data which resides on a device. 

Appendix G. Glossary 

data set reference number. A constant or variable used in an 

input/ output statement to identify the data set which is to be 

operated upon. 

data type. The mathematical properties and internal 

representation of data and functions. The three types are 

integer, real, and logical. 

direct-access file. A file from which records may be retrieved, 

or to which records may be written, in a nonsequential 

manner. 

00 loop. Repetitive execution of the same statement or 

statements by use of a DO statement. 

00 variable. A variable, specified in a DO statement, which is 

initialized or incremented prior to each execution of the 

statement or statements within a DO loop. It is used to 

control the number of times the statements within the DO loop 

are executed. 

double precision. Pertaining to the use of two computer words 

to represent a number. 

dummy argument. A variable within a FUNCTION, 

SUBROUTINE, or ENTRY statement, or statement function 

definition, with which actual arguments from the CALL 

statement or function reference are associated. 

executable program. A program that can be used as a 

self-contained procedure. It consists of a main program and, 

optionally, one or more subprograms or non-FORTRAN 

IV-defined external procedures or both. 

executable statement. A statement which specifies action to be 

taken by the program; for example, causes calculations to be 

performed, conditions to be tested, flow of control to be 

altered. 

extended range of a 00 statement. Those statements that are 

executed between the transfer out of the innermost DO of a 

completely nested group of DO statements and the transfer 

back into the range of the innermost DO. 

external function. A function whose definition is external to the 

program unit which refers to it. 

external procedure. A procedure subprogram or a procedure 

defined by means other than FORTRAN IV statements. 

file. An ordered collection of one or more records; a data set. 

formatted record. A record which is transmitted with the use of 

a FORMAT statement. 

function subprogram. An external function defined by 

FORTRAN IV statements and headed by a FUNCTION 

statement. It returns a value to the calling program unit at the 

point of reference. 

global area. A data area that permits communication between 

two or more programs. 

Glossary G-l 



hexadecimal constant. The character Z followed by a 

hexadecimal number, formed from the set 0 through 9 and A 

through F. 

hierarchy of operations. Relative priority assigned to arithmetic 

or logical operations which must be performed. 

implied 00. The use of an indexing specification similar to a 

DO statement (but without specifying the word DO and with a 

list of data elements, rather than a set of statements, as its 

range). 

integer constant. A string of decimal digits containing no 

decimal point. 

I/O list. A list of variables, in an I/O statement, specifying the 

storage locations into which data is to be read or from which 

data is to be written. 

labeled common. A named common block. 

labeled global. A named global block. 

length specification. An indication, by the use of the form *s, of 

the number of bytes to be occupied by a variable or array 

element. 

literal constant. A string of alphameric and! or special characters 

enclosed in quotation marks or preceded by a wH 

specification. 

logical constant. A constant that specifies a truth value: true or 

false. 

logical expressioll. A combination of logical primaries and 

logical operators. 

logical operator. Any of the set of three operators; .NOT., 

.AND., .OR .. 

logical primary. An irreducible logical unit: a logical constant, 

logical variable, logical array element, logical function 

reference, relational expression, or logical expression enclosed 

in parentheses, having the value true or false. 

looping. Repetitive execution of the same statement or 

statements; usually controlled by a DO statement. 

main program. A program not containing a FUNCTION, 

BLOCK DATA, or SUBROUTINE statement and containing 

at least one executable statement. A main program is required 

for program execution. 

name. A string of from one to six alphameric characters, the 

first of which must be alphabetic, used to identify a variable, 

an array, a function, a subroutine, an entry point, or a 

common or global block. 

nested 00. A DO loop whose range is entirely contained by 

the range of another DO loop. 

nonexecutable statement. A statement which describes the use or 

extent of the program unit, the characteristics of the operands, 

editing information, statement functions, or data arrangement. 

numeric character. Anyone of the set of characters 0, 1, 2, ... , 

9. 

numeric constant. An integer or real constant. 

object module. A module that is the output of an assembler or 

compiler and is the input to the application builder. 

G-2 GC34-0133 

predef"med specification. The FORTRAN IV-defined type and 

length of a variable; based on the initial character of the 

variable name in the absence of any specification to the 

contrary. The characters I-N are typed INTEGER *4 (see 

Appendix C); the characters A-H, O-Z, and $ are typed 

REAL*4. 

procedure subprogram. A function or subroutine subprogram. 

program unit. A main program or a subprogram. 

range of a 00 statement. Those statements which physically 

follow a DO statement, up to and including the statement 

specified by the DO statement as being the last to be executed 

in the DO loop. 

real constant. A string of decimal digits which must have either 

a decimal point or a decimal exponent and may have both. 

relational expression. An arithmetic expression, followed by a 

relational operator, followed by an arithmetic expression. The 

expression has the value true or false. 

relational operator. Any of the set of operators which expresses 

an arithmetic condition that can be either true or false. The 

operators are: .GT., .GE., .LT., .LE., .EQ., .NE., and are 

defined as greater than, greater than or equal to, less than, less 

then or equal to, equal to, and not equal to, respectively. 

scale factor. A specification in a FORMAT statement whereby 

the location of the decimal point in a real number (and, if 

there is no exponent, the magnitude of the number) can be 

changed. 

sequential file. A file from which records are retrieved, or to 

which records are written, solely on the basis of their 

sequential order. 

single precision. Pertaining to the use of one computer word to 

represent a number. 

source program. A computer program written in a source 

language; for example, a program written in FORTRAN IV. 

specification statement. One of the set of statements which 

provides the compiler with information about the data used in 

the source program. In addition, the statement supplies 

information required to allocate storage for this data. 

specification subprogram. A subprogram headed by a BLOCK 

DATA statement and used to initialize variables in labeled 

(named) common or global blocks. 

statement. The basic unit of a FORTRAN IV program; 

composed of a line or lines containing some combination of 

names, operators, constants, or words whose meaning is 

predefined to the FORTRAN IV compiler. Statements fall into 

two broad classes: executable and nonexecutable. 

statement function. A function defined by a function definition 

within the program unit in which it is referenced. 

statement function definition. A name, followed by a list of 

dummy arguments, followed by an equal sign (=), followed by 

an arithmetic expression. 

statement function reference. A reference in an arithmetic or 

logical expression to a previously defined statement function. 

statement number. A number of from one to five decimal digits 

placed within columns t to 5 of the initial line of a statement. 

It is used to identify a statement uniquely for the purpose of 

o 

c 



c 

c 

o 

transferring control, defining a DO loop range, or referring to 

a FORMAT statement. 

subprogram. A program unit headed by a FUNCTION, 

SUBROUTINE, or BLOCK DATA statement. 

subroutine subprogram. A subroutine consisting of FORTRAN 

IV statements, the first of which is a SUBROUTINE 

statement. It optionally returns one or more parameters to the 

calling program unit. 

subscript. A subscript quantity or set of subscript quantities 

enclosed in parentheses and used in conjunction with an array 

name to identify a particular array element. 

subscript quantity. A component of a subscript written as an 

arithmetic constant, arithmetic variable, arithmetic array, or 

arithmetic expression. 

type declaration. The explicit specification of the type and, 

optionally, length of a variable or function by use of an explicit 

specification statement. 

unfonnatted record. A record for which no FORMAT statement 

exists; transmitted with a one-to-one correspondence between 

internal storage locations and external positions in the record. 

variable. A data item that is not an array or array element; 

identified by a symbolic name. 

Glossary G-3 



() 

<: 
G-4 GC34-0133 



c 

c 

o 

/, as division symbol 3-2 

-, as subtraction symbol 3-1 

+, as addition symbol 3-1 

& 

$ 

* 

as source character A-I 
in CALL statement 8-6 

as source character A-I 
in CALL statement 8-6 

as exponentiation symbol 3-2 
as multiplication symbol 3-2 
in SUBROUTINE statement 8-5 

A code in FORMAT statement 5-6,5-17 
ABS function B-2, B-2 
accessing analog and digital I/O 

(see Process I/O subroutines) 
actual arguments 

in functions 8-4 
in subroutines 8-6 

adcon function B-4 
addition, operation symbol for 3-2 
address constant function B-4 
adjustable arrays F-l 
adjustable formats F-l 
AIRDW function B-6 
AISQW function B-6 
ALOG function B-3, B-3 
alphabetic characters A-I, G-l 
alphameric 

characters G-l 
data 5-17 

American National Standard FORTRAN F-l 
ampersand (&) 

as source character A-I 
in CALL statement 8-6 

analog input functions 
(see AIRDW and AISQW) 

analog output function 
(see AOW) 

ANS FORTRAN F-l 
AOW function B-6 
apostrophe 

in direct-access I/O statements 5-25 
in literal data definition 4-10, 5-18 

arctangent function B-3 

arguments 
in CALL statement 8-6 
in common 7-4 
in ENTRY statement 8-9 
in FUNCTION subprogram 8-4 
in global 8-13 
in statement function 8-2 
in SUBROUTINE subprogram 8-5 
passing by name F-l 

arithmetic assignment statement 3-1 
defined G-l 
examples 3-1 

arithmetic expression 3-1 
arithmetic IF statement 4-4 
arithmetic operators 3-2 
arithmetic primary G-l 
arrangement in storage 

(see also equivalence groups) 
of arrays 2-7 
of common blocks 7-4 
of global blocks 8-13 

arrays 2-5 
defining in specification statements 7-2 
dummy arguments in 8-8 
equivalencing 7-7 

ASSIGN statement 4-2 
assigned GO TO statement 4-2 
assignment statements 

arithmetic 3-1 
logical 3-4 

associated variable 5-20,5-22 
asterisk (*) 

as exponentiation symbol 3-2 
as multiplication symbol 3-2 
in SUBROUTINE statement 8-5 

AT statement, debug option D-2 
AT AN function B-3 

BACKSPACE statement 5-6 
Basic FORTRAN IV F-I 
BCD source program characters A-I 
binary coded decimal characters A-I 
bit functions B-4 
blank character 

in literal constant 2-3 
in numeric input field 5-14 
in output field 5-18 
in source program A-I, 1-1 

blank common 7-6 
blank global 8-13 
BLOCK DATA subprogram 8-12 
branch targets in DO loops 4-9 
bytes in word 2-3 

c, to define comments 1-2 
calculations 

arithmetic 3-1 
FORTRAN IV -supplied B-2 

Index 

Index X-I 



c, to define comments 1-2 
calculations 

arithmetic 3-1 
FORTRAN IV-supplied B-2 
logical 3-4 

CALL statement 8-6 
carriage control 

character 5-7 
examples 5-20 
rules for specifying 5-7 
vs. format codes, precautions 5-7 

character set A-I 
character string (literal constant) 2-3 
CLOSE subroutine B-3 
coding form 1-1 
columns 

in an array 2-5 
in formatted output 5-19 
on source input cards 1-1 

comma A-I 
comments 1-2 
common block 

(see also COMMON statement) 
arguments in 7-4 
defined G-l, 7-4 
illustrated 7-4, 7-6 
relationship to EQUIVALENCE statement 7-7 

common logarithmic functions B-3 
COMMON statement 7-4 

(see also COMMON statement) 
contrasted wtih GLOBAL statement 8-13 
summarized G-l 

comparison of FORTRAN languages F-l 
compilers 

others F-l 
Series/l FORTRAN IV C-l, 1-1 

complement function (ICOMP , NOT) B-5 
computed GO TO statement 4-1 
consecutive slashes in FORMAT statement 
constant 

defined G-l, 2-1 
floating-point (real) 2-1 
hexadecimal 2-3 
in arithmetic expression 3-1 
in logical expression 3-4 
integer 2-1 
literal 2-3 
logical 2-3 
real 2-1 

CONTINUE statement 4-10 
continuing FORTRAN IV statements 1-2 
control characters, carriage 5-7 
control statements G-l,4-l 
conversion codes for numeric data 5-7 

5-7 

conversion rules in arithmetic assIgnment statements 3-2 
corresponding arguments in subprograms 8-8 
COS function B-3, B-3 
cosine function B-3 

data input 5-7 
data set 5-1 

X-2 GC34-0133 

data set reference number 
(see also individual input/output statements) 
statements G-l 

DATA statement 1-2,6-1 
data type 

defined G-l 
eq uivalencing 7 -7 

debug facility D-l 
DEBUG statement D-l 
decimal point 

(see real constant, real variable, P scale factor) 
declaration of arrays 2-6, 7-3 
DEFINE FILE statement 5-22,5-22 
defining disk data sets 5-20 
detached function described 8-3 
digital input function (see DIW) 
digital output functions (see DOLW, DOMW) 
DIMENSION statement 7-3 
dimensions of arrays 2-5, 7-3 
direct-access input/output 

defining data sets for 5-22 
example of 5-26 
FIND statement 5-26 
formats for 5-25 
READ statement 5-24 
WRITE statement 5-25 

disk storage module (5022) 5-1 
divide check subroutine (DVCHK) B-3 
division, operation symbol for 3-2 
DIW function B-7 
DO, nested G-2,4-8 
DO loop 4-5 
DO statement 4-5 

extended range of 4-8 
increment in 4-7 
index in 4-7 
initial value in 4-7 
looping with 4-5 
nested 4-8 
rules for use of 4-8 
test value in 4-7 
variable (index) 4-7 

DO-type notation in I/O lists 5-4 
dollar sign ($) 

as source character A-I 
in CALL statement 8-6 

DOLW function B-7 
DOMW function B-7 
double precision 7-4 
dummy arguments 

defined G-l 
relationship to arguments in CALL statement 8-6 
restrictions with 8-8 
specifying 

in function definition statement ~-2 

in FUNCTION statement 8-4 
in SUBROUTINE statement 8-5 

DVCHK subroutine B-3 

E code 
in DEFINE FILE statement 5-22 
in FORMAT statement 5-6,5-13 

elements 
of an array 2-5 
of FORTRAN IV language 1-2 

.. 
\. ; 

c 



c 

c 

o 

embedded blanks (see blank character) 
enq execution 

with statement 
with subroutine 

END FILE statement 

4-10,4-11 
B-4 

5-5 
end-of-file 

controlling with END parameter 5-1 
creating with END FILE statement 5-5 

END parameter in READ statement 5-1 
END statement 4-11,8-7 
entry into subprograms (see also CALL statement) 8-9 
ENTRY statement 8-9 
EQ relational operator 3-4 
eq ual sign 3-1 
equivalence groups 7-7 
EQUIVALENCE statement 7-7 
ERR parameter 

in READ statements 
direct-access 5-24 
sequential 5-1 

in WRITE statements 
direct-access 5-25 
sequential 5-2 

error handling by user 
handled in ERRXIT subroutine B-3 
tested in FCTST subroutine B-3 

ERRXIT subroutine B-3 
evaluation 

of expressions 
arithmetic 3-3 
logical 3-6 

of functions 8-2 
exceptions 

divide-check B-3 
exponent overflow B-3 
exponent underflow B-3 

executive functions 
START B-6 
TRNON B-6 
WAIT B-6 

EXIT 
statement 4-10 
subroutine B-4 

EXP function B-3, B-3 
explicit specification 2-5, 7-2 
exponent specification in real numbers 

constants 2-1 
input data 5-6,5-7 

exponential functions B-3 
exponentiation, operation symbol for 3-2 
expressions 

arithmetic 3-1 
logical 3-4 
relational 3-4 

extended range of DO 4-8 
external functions, mathematical 8-3 
EXTERNAL statement 8-11 

F code in FORMAT statement 5-6,5-14 
FALSE, as logical valve 2-3 

FCTST subroutinp- B-3 
field descriptors 5-6 
me (see data set) 
FIND statement 5-26 
fix function (lFIX) B-2 
FLOA T function B-2, B-2 
floa ting-poin t 

calculations 3-1 
constants 2-1 
exceptions 

divide-check B-3 
overflow B-3 
underflow B-3 

variables 2-4 
format indicators in DEFINE FILE statement 5-20 
FORMAT statement 5-1 

codes 5-6 
description 5-6 
number, specifying 

in READ statement 5-1,5-24 
in WRITE statement 5-2, 5-25 

record size restriction 5-7 
rules 

for specifying 5-7 
for using 5-7 

formatted READ statement 
direct-access 5-24 
sequential 5-1 

formatted records 5-1,5-7 
formatted WRITE statement 

direct-access 5-25 
sequential 5-2 

FORTRAN IV 
coding form 1-1 
comparisons F-1 
glossary of terms G-1 
language, summary of I-I 
program 

order of 1-2 
sample E-1, £-1 

statements 
classes of 1-1 
coding of 1-1 
functions of 1-1 

FORTRAN IV -supplied procedures B-1 
fractional portion of real number 5-6,5-7 
full FORTRAN IV F-1 
function 

describing detached 8-4 
FORTRAN IV -supplied B-2,8-4 
user-written 8-4 

function definition statements 8-2 
function error subroutine (FCTST) B-4 
FUNCTION statement 8-3 
FUNCTION subprogram 8-4 

defined G-1 
description 8-4 
dummy arguments 8-8 
END statement in 8-7 
RETURN statement in 8-7 

Index X-3 



GE relational operator 3-4 
global area 

(see also GLOBAL and PROGRAM statements) 
(see also GLOBAL statement) 
defined G-l,8-13 
relationship to EQUIVALENCE statement 7-7 
use of 8-12 

GLOBAL statement 8-13 
(see also global area) 
contrasted with common statement 8-13 
summarized G-l 

glossary of terms G-l 
GO TO statements 

assigned 4-2 
computed 4-1 
restrictions with DO statements 4-9 
unconditional 4-1 

group format specifications 5-6 
GT relational operator 3-4 
GX28-7327 coding form 1-1 

H code in FORMAT statement 5-18 
halt code 

for PAUSE statement 4-10 
for STOP statement 4-11 

hexadecimal constant 
defined 2-3 
example of 2-4 

hierarchy of operations 
arithmetic 3-3 
logical 3-6 

hyperbolic tangent function B-3 

I code in FORMAT statement 5-6,5-7 
I/O (see input/output statements) 
I/O lists 5-2 
lABS function B-2 
IADDR function B-4 
lAND function B-5 
lCOMP function B-5 
IEOR function B-5 
IF statement 

arithmetic 4-4 
logical 4-4 
restrictions with DO statement 4-9 
use in looping 4-5 

IrIX function B-2, B-2 
implicit specification 3-3 
IMPLICIT statement 7-1 
implied DO specification 5-4 
increment in DO statement 4-7 
index in DO statement 4-7 
mdexmg parameters in DO sta tement 4-5, 4-9 
indicator test subroutines B-3 
initial values 

as constants 2-1 
in DO statements 4-7 
of variables and arrays 6-1,7-2 

X-4 GC34-0133 

input 
to compiler 1-1 
to object program 5-7 

input error 
ERR parameter to control 
user subroutine to control 

input/output statements 5-1 
direct-access 5-22 
FORMAT 5-25 
lists in 5-2 

5-1,5-24 
B-3 

relationship to data sets and devices 5-1 
sequential 5-1 

integer 
calculations 3-1 
constants 2-1 
data 5-7 
options C-1 
typing in specification statements 7-1 
variables 2-4 

inter-program communication 
statements) 8-12 

intrinsic functions 8-3 
lOR function B-5 
ISHFT function B-5 
lSIGN function B-2 

L code 
in DErINE FILE statement 5-22 
in FORMAT statement 5-6,5-16 

labeled common 7-6 
labeled global 8-13 
labels (statement numbers) 1-1 
language elements, summary of 1-2 
LE relational operator 3-4 
leading zeros (see zeros) 
length specification 

non-standard C-l 
standard 2-4, 7-1 

library (see FORTRAN IV -supplied procedures) 
list-directed input 5-20 
list-directed output 5-21 
lists in I/O statements 5-2 
literal 

constant G-2,2-4 
data 5-18 

logarithmic function B-3 
logical 

assignment statement 3-4 
constant 2-3 
expression 3-4 
IF statement 4-4 
opera tors 3-5 
primary 3-4 
unit number (see data set reference lIumbeI) 
values 2-3 
variable 2-4 

looping 4-5 
LT relational operator 3-4 

f 



c 

c 

o 

machine indicator test subroutines B-3 
magnitude 

of input to variables 5-7 
of integer constant 2-1 
of real constant 2-1 

main program 8-13 
manipulating and interrogating bit functions 8-4 
mathematical functions, FORTRAN IV -supplied 

basic external 8-1 
faulty input to B-3 
formatted 5-6 
in trinsic 8-1 

messages 
DEBUG D-l 
PAUSE 4-10 
STOP 4-11 

minus character 3-2 
mixed-mode expressions 3-2 
mode 

of arithmetic expressions 3-2 
of compilation C-l 
of functions 8-1 

module, object G-2 
multi-dimensional array, examples of 2-5, 2-6 
multi-record format 5-7 
multiple entry into subprogram 8-9 
multiplication, operation symbol for 3-2 

named (labeled) common 7-6 
named (labeled) global 8-13 
names 

defined G-2 
of programs 8-13 
of variables 2-4 

natural logarithmic function 8-3 
NE relational operator 3-4 
negative quantIties 2-1,3-3 
nested DO G-2,4-8 
NOCMPAT compile option C-l 
non-executable statements G-2, I-I 
non-standard integer lengths C-l 
non-standard return (RETURN i) 8-7 
NOT function 8-5, B-5 
numbers (see constants) 
numeric data, conversion of 5-7 

object module G-2 
object-time dimensions 1'-1 
object-time format F-l 
operators 

arithmetic 3-2 
logical 3-5 
rela tional 3-4 

optional integer length C-l 
order 

in arrays 2-7 
in common blocks 7-4 
in equivalence groups 7-7 
in global blocks 8-13 
of arithmetic computations 3-3 
of logical computations 3-6 
of source program statements 1-2 

output 
(see also messages) 
from WRITE statements 

sequential 5-2 
of compiler 1-1 

OVERFL subroutine 8-3 
overt1ow exceptions 8-3 
overt1ow indicator subroutine (OVERFL) B-3 
overriding predefined lengths C-l 
overriding predefined names 2-5 

P scale factor 5-6,5-14 
paper tape 5-1 
parameter lists (see arguments) 
parentheses in arithmetic expressions 3-3 
passing information (see arguments) 
PAUSE statement 4-10 

in order of program 1-2 
restrictions in DO loop 4-9 

plus character 3-2 
polynomial sample program E-I 
precedence of operations 

arithmetic 3-3 
logical 3-6 

predefined specification G-2, 2-5 
primary 

(see also individual input/output statements) 
arithmetic G-I 
logical 3-4 

PRINT statement F-I 
printer control, specifiying 

(see carriage control) , 
process I/O subroutines 

AIRDW B-6 
AISQW 8-6 
AOW 8-6 
DIW 8-7 
DOLW 8-7 
DOMW B-7 

processor (see compiler) 
program, FORTRAN 

order of statements in 1-2 
samples E-I 

program data 5-2 
program exception B-3 
program output 

debug tracing D-l 
messages 

PAUSE 4-10 
STOP 4-11 

WRITE data 5-2 
PROGRAM statement 8-13 
program unit G-2 
PUNCH statement F-l 

random access (see direct-access) 
range of DO loop G-2,4-7 
READ statement 

direct-access 5 -24 
lists in 5-2 
seq uential 5-1 

Index X-5 



real 
arguments 

in FUNCTION subprogram 8-4 
in SUBROUTINE subprogram 8-6 

constant 2-1 
data 

conversion codes for 5-6,5-7 
scale factor in 5-14 

typing 
in FORMAT statement 5-6,5-7 
in specification statements 7-1 

variables 2-4 
record 

format codes for 5-6 
formatted G-l 
length of 

direct-access 5-22 
seq uential 5-5 

unformatted 5-1 
record number (see relative record number) 
relational expression G-2, 3-4 
relational operators G-2, 3-4 
relative record number in direct-access I/O 

in FIND statement 5-26 
in READ statement 5-24 
in WRITE statement 5-25 

repeat factor 
in format specification 5-6,5-7 
in I/O lists 5-4 
maximum value 5-7 

RETURN statement 8-7 
REWIND statement 5-5 
rows in an array 2-5 

sample FORTRAN IV programs 
scale factor 5-6,5-14 
sequential input/output 

BACKSPACE statement 5-6 
data sets 5-1 
devices 5-1 
END FILE statement 5-5 
FORMAT statement 5-1 
READ statement 5-1 
REWIND statement 5-5 
WRITE statement 5-2 

service subroutines B-3 
set of data items (see array) 
sharing data areas 7-3,8-13 
shift function (lSHFT) B-5 
SIGN function B-2 
sign transfer functions B-2 
SIN function B-3 
sine function B-3 
single precision 
size 

of arrays 2-5, 7-4 
of constants 2-1 
of records 

direct-access 5-22 
sequential 5-5 

of variables 2-4 

X-6 GC34-0133 

skipping fields in a record 5-18 
skipping statements (see GO TO and IF statements) 
slashes 

as division symbol 3-2 
in COMMON statement 7-4 
in DATA statement 6-1 
in ENTRY statement F-l 
in FORMAT statement 5-6,5-7 
in FUNCTION statement F-l 
in GLOBAL statement 8-13 
in SUBROUTINE statement F-l 

source program G-2,1-1 
special characters A-I 
specification statements 

defined G-2,7-1 
DIMENSION 7-3 
explicit 7-2 
IMPLICIT 7-1 

SQRT function B-3 
square root function B-3 
ST AR T function B-6 
statement, FORTRAN IV 

coding 1-1 
types of 1-1 

statement function 8-2 
statement number 1-1 
STOP statement 4-11 
storage 

of arrays 
sharing 

2-7 
7-3,8-13 

subprograms 
arguments in 

actual 8-4, 8-6 
dummy 8-8 

assigned names to 8-1 

BLOCK DATA 8-12 
defined G-3,8-1 
FUNCTION 8-4 
mathematical B-1 
multiple entry into 
passing arguments to 
service B-1 
SUBROUTINE 8-5 

8-9 
8-4,8-6 

SUBROUTINE statement 8-5 
SUBROUTINE subprogram 

calling 8-6 
dummy arguments in 8-8 
END statement in 8-7 
RETURN statement in 8-7 

subscript of array element 4, 2-5 
SUBTRACE debug option 0-2 
subtraction, operation symbol for 3-2 
successive exponentiation 3-3 
symbolic names (see variable names) 
symbols for arithmetic operations 3-2 
System/360 and System/370 FORTRAN IV 

T code in FORMAT statement 5-6,5-19 
tabulating records 5-19 
tangent functions B-3 

{<'-I 



c 

c 

o 

TANH function B-3, B-3 
tape,paper 5-1 
termination of program 

with STOP statement 4-11 
test value in DO statement 4-7 
TRACE debug option D-2 
TRACE OFF Debug option D-2 
TRACE ON debug option D-2 
transfer of control (see GO TO statement) 
transfer of sign functions B-2 
transmission error, handling 

ERR parameter 
in READ statement 5-1,5-24 
in WRITE statement 5-2, 5-25 

service subroutines B-3 
TRNON functio"n B-6 
TRUE, as logical value 2-3 
truncation 

function (lFIX) B-2 
in arithmetic assignment statements 3-4 
of hexadecimal values 2-3,5-16 

truth values 2-3 
type statements 

explicit specification 7-2 
IMPLICIT 7-1 

U code in DEFINE FILE statement 5-22 
unary operators 3-3, 3-5 
unconditional GO TO statement 4-1 
underflow exceptions B-3 
unformatted input/output 

READ statements 5-1, 5-24 
record G-3,5-1 
WRITE statements 5-2,5-25 

unit number (see data set reference number) 
unit-record devices 5-1 
unlabeled (blank) common 7-6 
unlabeled (blank) global 8-13 
user-written error handling subroutine B-3 
utility subprograms B-3 

variable (adjustable) specifications F-l 
variables 

arrangement 
in common 7-4 
in equivalence groups 7-7 
in global 8-13 

defined G~3 

general 2-4 
length specification 2-4 
names 2-4 
type specification 2-4 

WAIT function B-6 
WRITE statement 

direct-access 5-25 
sequential 5-2 

X code in FORMAT statement 5-18 

Z code in FORMAT statement 5-6,5-16 
zero 

in FORTRAN IV statement numbers 1-1 
in hexadecimal constants 2-3 
substituted for blanks in input 5-7 

Index X-7 



" , 

X-8 GC34-0133 



c 

(") 

s 
0 ..., 
'T1 
0 
a:: 
» 

C 
0" 
::J 
to 

,e 
::J 
CD 

o 

FORTRAN IV: 
Language Reference 

GC34-0133-0 

YOUR COMMENTS, PLEASE . .. 

Your comments assist us in improving the usefulness of our publications; they are an 

important part of the input used in preparing updates to the publications. All comments 

and suggestions become the property of IBM. 

Please do not use this form for technical questions about the system or for requests 

for additional publications; this only delays the response. Instead, direct your 

inquiries or requests to your I BM representative or to the I BM branch office serving 
your locality. 

Corrections or clarifications needed: 

Page Comment 

READER'S 
COMMENT 
FORM 

What is your occupation? ______________________________________________________________ _ 

Number of latest Technical Newsletter (if any) concerning this publication: ______________ _ 

Please indicate your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 



GC34-01 33-0 

Your comments, please _ .. 

This manual is part of a library that serves as a reference source for IBM systems. 
Your comments on the other side of this form will be carefully reviewed by the 
persons responsible for writing and publishing this material. All comments and 

suggestions become the property of IBM. 

Fold 

Fold 

--- -----= :..: =-== - - ---- - - -------------

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

I BM Corporation 
Systems Publications, Dept 27T 
P.O. Box 1328 
Boca Raton, Florida 33432 

I nternational Business Machines Corporation 
General Systems Division 
57750 Glenridge Drive N.E. 
P.O. Box 2150, Atlanta, Georgia 30301 
(U.S.A. only) 

Fold 

First Class 
Permit 40 
Armonk 
New York 

-- -
Fold 

0; 
S; 
r/) 

~ 
[ 
." 
0 
JJ 
-I 
JJ 
» z 
~ 
r 
Q) 

:::l 
IC 
c: 
Q) 
IC 
CD 

JJ 
~ 
~ 
CD 
:::l 
(') 
CD 

~ 
~ 
CD 
Q. 

5° 
C 
en 
~ 
C) 
(") 
w 
~ 

~ 
w 
w 
6 

(J 

c! , 

, J 



--- ------ ----- ---- ----- - - ----------_ .-
(!> 

International Business Machines Corporation 

General Systems Division 
57750 Glenridge Drive N. E. 
P. O. Box 2150 
Atlanta, Georgia 30301 
(U.S.A. only) 

GC34-0133-0 

" o 
:II 
-t 
:II » z 
< 

-


