
--- ------ - ---- ---- - ---- - - ----------_ .-

1 ,

.. •

SL23-0090-0
File No. S1 -14

LICENSED
PROGRAM

IBM Series/1 EDX Communications Facility

Series/1

Work Session Controller High-Level Language Subroutines
Programmer's Guide

--- ------ ------ _ -- - ---- - - ----------_.-

o

o

S L23-0090-0
File No. S1-14

LICENSED
PROGRAM

IBM Series/1 EDX Communications Facility

Series/1

Work Session Controller High-Level Language Subroutines
Programmer's Guide

First Edition (February 1982)

This edition applies to Version 1.0 of the Licensed Program IBM Series/ I Event Driven Executive
Communications Facility, Program Number 5719-CFI, and to all subsequent releases of this
program unless otherwise indicated in new editions or technical newsletters.

Information in this publication is subject to significant change. Any such changes will be reported
in new editions or technical newsletters. Before using this publication, consult the latest IBM
Series/] Publications Directory, GC34-036 I , and the technical newsletters that amend the
directory, to be sure the edition you have is applicable and current. Use this publication only for the
purposes mentioned under "About This Book."

It is possible that this material may contain references to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country. Such
references or information must not be construed to mean that IBM intends to announce such IBM
products, programming, or services in your country.

Direct all requests for copies of IBM publications to your IBM representative or to the IBM branch
office that serves your locality.

Any names of individuals, companies, brands, and products in the examples in this book are
fictitious and any similarity to the name of an actual business enterprise is entirely coincidental.

This publication may contain technical or typographical errors. Forms for readers' comments are
provided at the back of the book. If the forms have been removed, address your comments to IBM
Corporation, Series/I Program Product Development, PAS5, 1501 California Avenue, PO Box
10500, Palo Alto, CA 94304. IBM may use and distribute any of the information you supply in any
way it believes appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

© Copyright International Business Machines Corporation 1982

o

c

o

c

o

ABOUT THIS BOOK

This book is intended for programmers who are going to code programs to
communicate with Event Driven Executive (EDX) terminals through calls to
subroutines that are supplied with the IBM Series/l Event Driven Executive
Communications Facility.

The subroutines provide an easy-to-use, high-level interface to the functions of
the Communications Facility's work session controller. Calls to the subroutines
can come from programs written in COBOL and in the Event Driven Executive
Language (EDL). The subroutine calls are compatible with corresponding
Multiple Terminal Manager subroutine calls; Multiple Terminal Manager
applications can be readily converted to run under the Communications
Facility.

This book assumes that you already understand the work session controller's
functions, know how a Communications Facility system is organized, and know
the purpose of the program you plan to code. If you need introductory
information about the Communications Facility, refer to IBM Series/} Event
Driven Executive Communications Facility Introduction, GL23-0071. For
information about the work session controller, see IBM Series/} Event Driven
Executive Communications Facility Programmer's Guide, SL23-0074
(referred to in this manual simply as the Programmer's Guide. For detailed
information about the structure of a Communications Facility system, see IBM
Series/) Event Driven Executive Communications Facility Design and
Installation Guide, SL23-0073.

Other Communications Facility manuals you may want to refer to are IBM
Series/} Event Driven Executive Communications Facility: Operator's Guide,
SL23-007S, which explains how to use the operator commands and utilities,
and IBM Series/1 Event Driven Executive Communications Facility:
Debugging Guide, LL23-0076, which gives the formats of control blocks and
describes the EDL language extensions that are intended for internal system
use.

This book assumes that you know either the Event Driven Executive language
(EDL) which is presented in IBM Series/} Event Driven Executive Language
Reference, SC34-1706, or EDX COBOL, which is presented in IBM Series/}
Event Driven Executive COBOL Language Reference, GC34-0392.

This book also assumes you know how to use the facilities of the EDX system,
Version 3, as explained in:

IBM Series/} Event Driven Executive System Guide, SC34-1702

IBM Series/} Event Driven Executive Messages and Codes, SC34-0403

IBM Event Driven Executive Program Preparation Guide, SC34-1704

IBM Event Driven Executive Communications and Terminal Applications
Guide, SC34-170S.

This book will give you the information you need to code programs that use the
work session controller high-level language subroutines.

About This Book 3

To that end, it has these chapters:

• "Using the High-Level Language Subroutines" explains the functions you
can perform, in a user program, through the high-level language subroutines.
It explains what your program gets as input; what the various subroutines
do; how to get your program installed and running; and what design
considerations apply to a program that uses the subroutines.

• "Using the Subroutines in an EDL Program" explains what work session
controller functions you can use from an EDL program, how to call each
function, what parameters you get on entry, and what you get as output. It
explains how to link-edit the required programs. It presents sample programs
that make use of various subroutines.

• "Using the Subroutines in a COBOL Program" explains what work session
controller functions you can use from a COBOL program, how to call each
function, what parameters you get on entry, and what you get as output. It
explains how to link-edit the required programs. It presents sample programs
that make use of various subroutines.

• "Debugging Your Program" explains how to use the $DEBUG utility to
debug an application program that uses the work session controller
high-level language subroutines.

• "Glossary-Index" combines a glossary of technical Communications Facility
terms with a conventional index to the publication.

4 Series/1 Communications Facility WSC HLL Subroutines

o

o

o

o

o

Using the High-Level Language Subroutines 9
Introducing the Subroutines 9

Work Session Controller Functions 9
Multiple Terminal Manager Call Formats 9
Images in $.WSCIMG 9
Access through $.WSMENU 10
Support Programs 10

Calling the Subroutines 10
Terminal Management 10
Program Management 11
File Management 11

Open/Close 11
Indexed File Support 12

Passing Parameters 12
Structuring Your Application Program 12

Input Buffer Address 13
Output Buffer Address 13
Terminal Environment Block (TEB) Address 13
Interrupt Information Byte (lIB) Address 13
Data Save Area Address 13
EDL Stub Program Coding 13

Using the Input and Output Buffers 14
Entering Your Program into $.SYSPD 15
How Users Access Your Program 16

Program Loading 16
Reserved Program Function Keys 17

Application Program Design Considerations 17

Using the Subroutines in an EDL Program 19
ED L Programming Considerations 19

Format of Subroutine Calls 19
Creating Your Save Area 19

ACTION-Perform Terminal I/O 21
CALL ACTION Format 21

BEEP-Sound Tone 23 '
CALL BEEP Format 23

CHGPAN-Change Panel 25
CALL CHGPAN Format 25
CALL CHGPAN Coding Example 25

CYCLE-Swap Out 27
CALL CYCLE Format 27

FILEIO-Perform Disk I/O 29
CALL FILEIO Format 29
FILEIO Indexed Access Method Considerations 29
FILEIO Return Codes 31
CALL FILEIO Direct Access Coding Example 32
CALL FILEIO Indexed Access Coding Example 32

FTAB-Build Unprotected Field Table 33
CALL FTAB Format 33
FTAB Return Codes .33
CALL FT AB Coding Example 34

GETCUR-Get Cursor Position 35

CONTENTS

Contents 5

CALL GETCUR Format 35
CALL GETCUR Coding Example 35

LINK-Transfer Control to Another Program 37
CALL LINK Format 37
CALL LINK Coding Example 37

LINKON-Transfer Control to Another
Program with Output Cycle 39
CALL LINKON Format 39
CALL LINKON Coding Example 39

MENU-Return to Primary Menu 41
CALL MENU Format 41

SETCUR-Set Cursor Position 43
CALL SETCUR Format 43
CALL SETCUR Coding Example 43

SETPAN-Write Buffer to Screen 45
CALL SETPAN Format 45
SETPAN Return Codes 45
CALL SETPAN Coding Example 45

Link Editing Your Programs 46
Sample Programs 46
Screen Display Techniques 46

Screen Retrieval and Display 46
Dynamic Screen Creation 47

Updating an Indexed File 48
File Maintenance Transaction Application 49

Using the Subroutines in a COBOL Program 61
COBOL Programming Considerations 61

Format of Subroutine Calls 61
Creating Your Save Area 61

ACTION---'Perform Terminal I/O 63
CALL ACTION Format 63

BEEP-Sound Tone 65
CALL BEEP Format 65

CHGPAN-Change Panel 67
CALL CHGPAN Format 67
CALL CHGPAN Coding Example 67

CYCLE-S~ap Out 69
CALL CYCLE Format 69

FAN-COBOL Return Interface 71
CALL FAN Format 71
CALL FAN Coding Example 71

FILEIO-Perform Disk I/O 73
CALL FILEIO Format 73
FILEIO Indexed Access Method Considerations 75
FILEIO Return Codes 76
CALL FILEIO Direct Access Coding Example 76
CALL FILEIO Indexed Access Coding Example 76

FT AB-Build Unprotected Field Table 77
CALL FT AB Format 77
FTAB Return Codes 77
CALL FT AB Coding Example 78

GETCUR-Get Cursor Position 79
CALL GETCUR Format 79
CALL GETCUR Coding Example 79

LINK-Transfer Control to Another Program 81

6 Series/l Communications Facility WSC HLL Subroutines

o

o

o

o

o

0 ",
"

CALL LINK Format 81
CALL LINK Coding Example 81

LINKON-Transfer Control to Another
Program with Output Cycle 83
CALL LINKON Format 83
CALL LINKON Coding Example 83

MENU-Return to Primary Menu 85
CALL MENU Format 85

SETCUR-Set Cursor Position 87
CALL SETCUR Format 87
CALL SETCUR Coding Example 87

SETPAN-Write Buffer to Screen 89
CALL SETPAN Format 89
SETPAN Return Codes 89
CALL SETPAN Coding Example 89

Link Editing Your Programs 90
Sample Programs 90

Debugging Your Program 97
$DEBUG Usage Considerations 97
Adjusting $DEBUG Addresses 97

Glossary-Index 99

Contents 7

o

o
8 Series/l Communications Facility WSC HLL Subroutines

o

o

o

USING THE HIGH-LEVEL
LANGUAGE SUBROUTINES

The Communications Facility work session controller high-level language
subroutines allow you to write interactive application programs to communicate
with EDX terminals anywhere in the network. Such programs can
communicate with 4978,4979, and 3101 terminals, and 4973, 4974, and 4975
printers. The interactive application program can communicate with multiple
terminals, which can be attached to any Series/l in the network. The terminals
need not be defined to the Communications Facility, but they must be defined
toEDX.

Introducing the Subroutines
This section presents an overview of the work session controller high-level
language subroutines. It explains how the subroutines are related to the work
session controller, other parts of the Communications Facility, and the multiple
terminal manager.

Work Session Controller Functions

The Communications Facility program that allows you to communicate with
EDX terminals is called the work session controller. You can communicate
with the work session controller through calls to a set of subroutines from
COBOL or EDX programs. You issue a call that indicates what you want done
at the terminal-for example, reading data, writing data, or sounding a tone.
The work session controller, running in the Series/l to which the terminal is
physically attached, uses EDX I/O instructions to perform the function you
requested.

Alternatively, you can communicate with the work session controller by means
of transactions. You send the work session controller a transaction specifying
what you want done at the terminal. It sends another transaction as an
acknowledgment. If you want to communicate with the work session controller
through transactions, see the Communications Facility Programmer's Guide.

Multiple Terminal Manager Call Formats

Images in $.WSCIMG

The work session controller high-level language subroutines are named, and the
subroutine calls are designed, to be compatible with the corresponding multiple
terminal manager subroutine calls. The menu from which the terminal user
selects an application is identical to the corresponding multiple terminal
manager menu. Thus, if you have multiple terminal manager applications, you
can readily adapt them to run under the Communications Facility.

Images displayed through the work session controller are built through
$IMAGE and stored in the partitioned data set $.WSCIMG. "Storing Images
in the Image Library" in the Programmer's Guide explains how to convert
$IMAGE images to work session controller images.

Using the High-Level Language Subroutines 9

Access through $.WSMENU

Support Programs

Calling the Subroutines

Terminal Management

The Communications Facility includes a program, $.WSMENU, that starts
communication between your application and its users. "Using $. WSMENU to
Start Using the Work Session Controller" in the Programmer's Guide
describes $. WSMENU.

Besides the subroutines themselves, the call interface to the work session
controller includes:

• A primary application load program. This program presents terminal users
with a primary menu screen, from which they select the application they
want to run.

• Four interface programs (two each for COBOL and EDL: one for systems
that use the Indexed Access Method and one for systems that don't), which
process the various subroutine calls.

To make an I/O request, you call one of the work session controller high-level
language subroutines. There are 11 different calls; you use tbem to specify
what you want done. The chapters "Using the Subroutines in a COBOL
Program" and "Using the Subroutines in an EDL Program" give the formats
and parameters of the subroutine calls.

Seven of the subroutine calls specify what is to be done at the terminal:

ACfION
Enables the application program to display a screen on the terminal and then
obtain the operator's response to that display.

BEEP
Enables the application program to sound the tone, if the terminal has this
feature, on the next output as a signal to the terminal operator.

CHGPAN
Enables the application program to modify the terminal screen image
dynamically. It writes protected information.

SETPAN
Enables the application program to retrieve a specified screen from the
$.WSCIMG data set and display it on the terminal.

FrAB
Sets up a table that describes the unprotected input fields placed in the input
buffer after a SETP AN is issued. This function is useful in cursor
positioning.

GETCUR
Enables the application program to obtain the current position of the cursor
on 4978,4979, and 3101 displays.

SETCUR
Enables the application program to set the position of the cursor on 4918,
4979, and 3101 displays.

10 Series/l Communications Facility WSC HLL Subroutines

o

o

Program Management

o

File Management

o

Open/CloSe

o

Five of the subroutine calls enable you to manage your program and allow it to
run in synchronization with other interactive applications:

CYCLE
Enables an application program to suspend its execution to allow other
applications to become active.

FAN
This must be coded as the first instruction in a COBOL application program
to allow for COBOL environment initiatization.

LINK
Enables an application program to complete its own execution by loading
and executing some other application program ..

LINKON
Enables an application to request an operator action and, when this action is
complete, load and execute some other application program.

MENU
Enables the application program to end its own operation and return control
to the primary application load program. The program selection menu is
then displayed on the terminal.

One subroutine call provides common support for all disk data transfer
operations needed by the application programs. It supports both indexed and
direct files under the control of a single callable function:

FILEIO
Enables the application program to perform read and write operations to
disk or diskette using either indexed or direct accessing.

All requests for disk and diskette I/O are by means of a call to the FILEIO
routine. FILEIO provides the following functions:

• Automatic open and close of the requested data set

• Support for direct-access files, where records are accessed by a relative
record number (RRN)

• Support for Indexed Access Method files, providing a high-level language
interface to most Indexed Access Method services. (If Indexed Access
Method files are used, the Event Driven Executive Indexed Access Method
(5719-AM3 or 5719-AM4) is required.)

• Data integrity, through automatic close and automatic writeback of data
buffers.

Data sets are located and pre-bound from the PROGRAM statement of the
EDL stub program when $.PD (the Communications Facility program
dispatcher) is loaded. This process limits application programs to 9 data sets for
EDL and 8 data sets for COBOL.

When you're using lAM data sets, the interface program automatically opens

Using the High-Level Language Subroutines 11

Indexed File Support

Passing Parameters

files requested by the first FILEIO operation performed in your application
programs. It releases record locks across a CALL ACTION to prevent
deadlocks from occurring.

Applica tion programs can access indexed files by calling the FILEIO routine.
The functions supported are listed in the description of the FILEIO format.
You must create an Indexed Access Method file.

Some features of the indexed file support are:

• Records can be retrieved sequentially or by key.

• The key can be a generic key (the first n bytes of the actual key).

• Records can be added or deleted by key.

• It takes the same time to retrieve added records as original records.

If an application requires access to a file sequentially, and also directly by
alphameric keys, indexed files are required.

You pass parameters to these subroutines just as you would to any other
subroutine.

For example:

CALL SETPAN,CSCRNX),CRC)

•
•
•

SCRNX DC CL8'SCRN10' SCREEN NAME

RC DC F'O' RETURN CODE FIELD

•
•
•

This example passes the addresses of the screen name and return code field to
the SETP AN routine.

Note that you can't use the software registers (#1 and #2) in calls to these
subroutines. However, the contents of #1 and #2 are maintained across calls in
your program.

Structuring Your Application Program
You must code your application in two parts: an EDL stub program, and your
application itself, which can be written in either COBOL or EDL.

The EDL stub program defines data sets and defines the sizes of input/output
buffers. It sets up a list of five (for COBOL) or four (for EDL) parameters,
which are passed to the application itself upon initiation:

• Input buffer address
• Output buffer address
• Terminal environment block address
• Interrupt information byte address
• Data save area address (COBOL only)

12 Series/} Communications Facility WSC HLL Subroutines

o

o

o

o

o

Input Buffer Address

Output Buffer Address

The input buffer address is the address of a buffer used to contain the data
input from the terminal after an ACTION. After the operator presses ENTER
or a PF key, ACTION reads the data in the unprotected fields of the terminal
into the input buffer. The input data fields are contiguous and start at the
beginning of the buffer.

The output buffer address is the address of a buffer that is used for two
purposes.

First, your application program can place data in the output buffer. A
subsequent call to ACTION writes the data from the buffer to the unprotected
fields of the screen. If there are more characters are in the output buffer than
unprotected positions on the screen, the excess characters are lost. The output
buffer is set to blanks after a return from CALL ACTION.

Second, the output buffer is used for passing data between programs, when one
links to another. Before a LINK to another program, your program may store
data in the output buffer; The second program will find that data in its output
buffer.

Terminal Environment Block (TEB) Address

This is the address of a word that will be 0 if the terminal is a 4978 or 4979,
and 1 if it is a 3101. It is useful for systems with both type of terminals to be
able to determine if FTAB (field table definitions) are needed or not.

Interrupt Information Byte (lIB) Address

Data Save Area Address

EDL Stub Progralt) Coding

For a 4978, 4979, or 3101, this is the address of a word containing a numeric
value that represents the interrupting key which the operator pressed.

This is the address, passed to a COBOL application program, of a save area
defined in the EDL stub program for saving modified data between calls to the
subroutines. "Creating Your Save Area" gives details about use of the save
area.

The EDL stub program for a COBOL application is shown in Figure 1; the
EDL stub program for an EDL application is shown in Figure 2.

The INPUT and OUTPUT statements define the input and output buffers for
the application program. They need be only as large as the total of unprotected
data bytes defined on the largest screen the application program uses.

There are two copy code modules on ASMLIB, one of which must be included
in the EDL stub program for either COBOL or EDL applications:

HLSCCC-Copy code for a COBOL application
HLSCCE-Copy code for an EDL application

The copy code modules contain ENTRY and EXTRN statements as well as
code necessary for application initialization.

Using the High-Level Language Subroutines 13

CFKTK PROGRAM START,DS=«COLTRDS,EDX002),(FILENAME,EDX003»
COPY HLSCCC

INPUT DEFINE BUFFER,SIZE=500
OUTPUT DEFINE BUFFER,SIZE=500
TEB DATA F'O'
lIB DATA
SAVEAREA DATA

DATA
ENDSAVE EQU

ENDPROG
END

F'O'
A(ENDSAVE-SAVEAREA)
100F'O'

•

Note that the data set "COLTRDS,EDX002" must be specified for COBOL. stub programs.

Figure 1. EDL Stub Program for a COBOL Application

CFKTK PROGRAM START,DS-«CUSTFILE,EDX003),(PAYFILE,EDX003»
COPY HLSCCE

INPUT DEFINE BUFFER,SIZE-500
OUTPUT DEFINE BUFFER,SIZE-500
TEB DATA F'O'
lIB DATA F'O'

ENDPROG
END

Note that the compiler output module name of the EDL stub program must match the EDL stub
name in the associated link control data set.

Figure 2. EDL Stub Program for an EDL Application

Your application program is compiled as a COBOL or EDL subroutine
program and will be linked with the EDL stub program and other software
modules for execution.

Using the Input and Output Buffers
The subroutines use the input and output buffers as a staging area to build
work session controller transactions.

When defining the input and output buffer sizes in the EDL stub program, note
these considerations:

• The input and output buffers must both be as large as the total number of
protected characters defined on the largest screen image used by the
application.

• The subroutines use the work session controller save data and restore data
functions between calls (for example, calls to ACTION and CYCLE) to
save the modified data in the program's save area. The total input/output
buffer size must be as large as the save area, rounded up to a multiple of 256
bytes, plus 40 bytes.

For example, if the save area is 400 bytes, the total buffer size must be 512
(the next higher multiple of 256) plus 40, or 552 bytes.

14 Series/1 Communications Facility WSC HLL Subroutines

o

o

o

o

o

• If CALL CHGPAN commands are used, the total input/output buffer size
must be as large as the length parameter on the call statement plus 40 bytes.

For example, if your program includes this code:

CALL CHGPAN,(ROW),(COL),(LEN),DATA

•
•
•

LEN DATA P'SOO'

then the total of the input and output buffers must be 540 bytes (500 + 40).

Figure 3 shows a programmer's view of the contents of the input and output
buffers on entry to the application program.

Figure 4 shows the action the subroutines take on the buffer contents. '

Entering Your Program into $.SYSPD

Buffer Contents Upon Entry to
Application Program

From CALL ACTION

From CALL CYCLE

From CALL LINK

From CALL LINKON

Your application program must be defined to the Communications Facility as a
transaction-processing program. You must make an entry for it in the
$.SYSPD data set.

Use an EDX editor to add the following TID (transaction identifier) statement
to the data set:

TID tranid pgm, vol,part 32,P

tranid
is the 1- to 4-character transaction identifier.

pgm
is the 1- to 8-character name of the program that is to process the
transaction.

Input Buffer Output Buffer

Unprotected data read from screen Blanks (X'40')

Blanks (X'40') Unchanged

Blanks (X'40') Unchanged from calling program

Unprotected data read from screen Blanks (X'40')

Figure 3. Buffer Contents on Entry to ApplicationPtogram

Action Taken Upon Buffer Contents Input Buffer Output Buffer

By CALL ACTION In all cases, written protected if CALL Written into unprotected fields on
SETPAN has been issued; no action if screen.

By CALL CYCLE CALL SETPAN has not been issued. Saved.

By CALL LINK Saved ..

By CALL LINKON Written into unprotected fields on
screen.

Figure 4. Buffer Contents' During Terminal I/O Operations

Using the High-Level Language Subroutines 15

vol
is the 1- to 6-character volume name of the program. The default is the
volume where the message dispatcher resides.

part

32

p

is the number of the partition where the program is to be loaded. You can
specify any of the following:

1 to 8
means that the specified partition is used.

o
means that any available partition is used.

-1 to-8
means that any available partition is used except the one specified.

CF
means that the $.CF partition is used.

NCF
means that any partition is used except the $.CF partition.

is the transaction type, discussed under "Determining the Transaction's
Type" in the Programmer's Guide.

indicates that the program may be stopped to make its storage available to
other transaction-processing programs.

This is an example of a $.SYSPD to which three transaction identifiers
(MTM2, MTM3, and MTM4) have been added:

TID HMU $.HMU 22
TID WSC $.WSC 42
TID USR4 $.WSCHLS 32,P
TID MTM2 CFMTM2,EDX003,4 32,P
TID MTM3 CFMTM3,,4 32,P
TID MTM4 CFMTM4 32,P

Note that the "TID USR4 $. WSCHLS" transaction identifier is required to
allow users to gain access to your program from the $. WSMENU program.

How Users Access Your Program

Program Loading

A user can select your application programs by selecting a transaction identifier
from the primary menu or through a program call to LINK or LINKON. The
primary menu is used only for program selection. The terminal operator need
only specify the transaction identifier name associated with the program
selected for execution.

The subroutine interface responds to an interrupt from a terminal by loading
the requested program specified by the transaction identifier. It routes
subsequent operator entries to the associated program.

Multiple terminals using the same program use a single copy of the program. If
different terminals are using different programs, the interface program will
load separate copies for simultaneous program execution. When the terminal
operator initially requests a program for execution, a copy of the program is

16 Series/l Communications Facility WSC HLL Subroutines

o

o

o

o

o

Resened Program Function Keys

loaded into any partition that meets the specifications of the program's TID
entry.

Two program function keys are reserved:

• PF3 signals the interface program to terminate the current program and
display the primary menu screen.

• PF6 signals the Event Driven Executive to print the contents of the current
screen on the device specified by the HDCOPY parameter of the
TERMINAL statement (for 4978/4979 terminals only). Normally, this
device is the device specified for SSYSPRTR. Note that for the 3101
terminal, PF6 does not print the screen.

Application Program Design Considerations
Your applications are processed as independent Communications Facility
transaction-processing programs, and loaded by the Communications Facility
high-speed loader. Data sets are pre-bound as part of the initialization of S.PD
during the startup of the Communications Facility.

Your application programs should adhere to the following conventions:

• No subtasks should be active across calls to the interface program.

• No system-wide resources should be enqueued across calls to the interface
program.

• Application programs cannot use overlays or segmentation.

• Application programs must be written as subroutines named MTMSUB and
designed to receive four parameters at initiation: input buffer, output buffer,
TEB 'address, and lIB address. COBOL applications receive a fifth
parameter, save area address.

• Application programs should use the interface program for all terminal I/O
(other than spooled output) and disk I/O.

• All I/O should be complete before any call to the subroutines.

• Application programs should terminate only through calls to the interface
program (CALL MENU) and should not issue any STOP RUN (COBOL),
PROGSTOP, ENDTASK,or DETACH (EDL) instructions.

• Error exit routines should terminate with a CALL MENU.

Using the High-Level Language Subroutines 17

o

o
18 Series/l Communications Facility WSC HLL Subroutines

o

o

o

USING THE SUBROUTINES
IN AN EDL PROGRAM

This chapter explains EDL coding considerations, shows how to issue each
subroutine call from an EDL program, and gives EDL sample programs.

EDL Programming Considerations

Format of Subroutine Calls

Creating Your Save Area

Your EDL application must be written as a subroutine, and must be defined to
accept four parameters (input buffer, output buffer, TEB, and lIB). In
addition, your program must use EXTRN statements to identify the
subroutines. The subroutine name MTMSUB must also appear on the ENTRY
statement. For example:

ENTRY MTMSUB

EXTRN ACTION,BEEP,CHGPAN,CYCLE,FAN

EXTRN FILEIO,FTAB,GETCUR,LINK,LINKON,MENU

EXTRN SETCUR,SETPAN

SUBROUT MTMSUB,INPUT,OUTPUT,TEB,IIB

You use the EDL CALL statement to call the subroutines. For example, the
statement to call SETP AN is:

CALL SETPAN,(dsname), (code)

This call passes the parameters dsname and code to the interface program.

Note that the buffer used for requests must be large enough to hold the largest
possible record. The interface program does not truncate records if they are too
large for the buffer. It reads or writes the requested size record regardless of
the size of the buffer.

When your program requests a response from the terminal operator, your
program is purged out of storage so other terminals may use the storage area
while the operator is keying in new data. When the operator response is
complete and storage is available, your program is reloaded into storage and
given control at the next sequential instruction after the instruction that caused
the program to be purged.

To maintain modified data for an application program that has been purged
from storage, the interface program will save a specified data area in the
program. You must collect the data you want saved in a save area defined in
your EDL stub program. The save area must be large enough to contain all the
data constants required for saving by the EDL application program.

You build the save area by specifying an ENTRY statement with the name
SA VEAREA. The save area in the program would be coded as follows:

SAVEAREA DATA A(ENDSAVE-SAVEAREA)

COUNT

PROGRAM

ENDSAVE

DATA p'o'

DATA CL8'

EQU *

SAVED RECORD COUNT

NAME OF PROGRAM

Using the Subroutines in an EDL Program 19

Note that the interface program reads and writes the save area to disk in the
$. WSCIMG partitioned data set. The input and output buffers in the EDL stub
program are used as temporary storage transfer areas. Therefore, be sure that
the total size of the input and output buffers is greater than the size of the
defined save area. Further, there is a restriction that the total save area can be
no larger than 1920 bytes.

20 Series/l Communications Facility WSC HLL Subroutines

o

o

o

o

o

ACTION-Perform Terminal I/O

CALL ACTION Format

ACTION begins the cycle of writing prompts to the terminal and receiving
responses from the user. If a CALL SETPAN has been executed previously
during this session, it writes the screen image from the $.WSCIMO data set to
the screen and scatter-writes the output buffer into the unprotected fields on
the screen. If no SETPAN precedes the ACTION, ACTION writes only the
output buffer. The terminal then waits for operator input and reenters your
application (with operator input in the input buffer) at the next sequential
instruction after CALL ACTION.

[label] CALL ACTION

Using the Subroutines in an EDL Program 21

o

;r-.... ""

U

o
22 Series/l Communications Facility WSC HLL Subroutines

BEEP-Sound Tone

o
CALL BEEP Format

o

o

BEEP sounds the tone (if the terminal has this feature) following the next
output cycle. If the terminal doesn't have the feature, or if the terminal is a
4979 (which has no tone feature), this request is ignored. The current display
and cursor position for the 4978, 4979, and 3101 are not affected.

[label] CALL BEEP

Using the Subroutines in an EDL Program 23

o

o

o
24 Series/l Communications Facility WSC HLL Subroutines

o

o

o

CHGPAN

CHGP AN-Change Panel

CALL CHGPAN Format

After a CALL SETP AN, the protected characters of the screen panel specified
have been displayed at the terminal. You can add data to the image before the
next output cycle; the data is displayed as protected data. If you do add data,
you must also use CALL CHGPAN to inform the interface program of the
row, column, and data to be written in the protected area of the screen. This
process allows applications to develop protected screen panels dynamically.

[label] CALL CHGPAN,(row),(eol),(len),(data)

row
is the label of a word that contains the number of the row where the data is
to be displayed on the terminal. Allowable row numbers are 0-23; row 0 is
the top line of the screen.

col
is the label of a word that contains the number of the column where the data
is to be displayed on the terminal. Allowable column numbers are 0-79;
column 79 is the rightmost position of a row.

length
is the label of a word that contains the number of characters in the data
field. Allowable lengths are 1-1920.

data
is the label of the data field to be displayed on the terminal.

CALL CHGPAN Coding Example

CALL CHGPAN, (ROW), (COL), (LBN),(SBTBRR)

•
•
•

SBTBRR DATA

ROW DATA

COL DATA

LBN DATA

CL12'SBTPAN BRROR'

1"5'

1"0'

1" 12'

Using the Subroutines in an EDL Program 25

o
26 Series/1 Communications Facility WSC HLL Subroutines

o CYCLE-Swap Out

CALL CYCLE Format

o

o

When CALL CYCLE is executed, the program may be made available to other
terminals. The program save area is preserved. SETPAN or CHGPAN
instructions will be executed to display written data.

After the program has processed input from all other terminals, control returns
to the instruction after the CALL CYCLE.

[label] CALL CYCLE

Using the Subroutines in an EDL Program 27

o

o
28 Series/ I Communications Facility WSC HLL Subroutines

o

o

'4'"=1[11
FILEIO-Perform Disk I/O

CALL FILEIO Format

FILEIO performs disk I/0 on direct and indexed files.

[label] CALL FILEIO,(fea),(bufJ),(re)

fea
is the label of a file control area (FCA)-a table containing the parameters
that describe the requested I/0 operations. The meaning of some of the
fields depends on the request type specified.

The FCA format for direct files is shown in Figure 5; the FCA format for
indexed files is shown in Figure 6.

buff

re

is the name of the user program I/O buffer. This buffer contains the record
to be written or receives the record read.

is the name of the 2-byte field to contain the return code returned by
FILEIO. This can be a FILEIO return code, a system error code, or a code
passed from the Indexed Access Method.

Byte Displacement Field Contents Description

0 Request type A 2-byte EBCDIC request (valid request types
are shown in Figure 7).

4 Data Set Name An 8-byte EBCDIC data set name,
left-justified and padded with blanks.

12 Number of Records A word specifying the number of 256-byte
records to be read or written.

14 EOD Record The 2-word system-maintained logical EOD
record number passed back to the application
after each direct file READ or WRITE.

18 Relative Record Number A 2-word value for the RRN. The first record
(RRN) is record number 1.

22 Volume Name A 6-byte EBCDIC volume name, left-justified
and padded with blanks.

Figure 5. FILEIO FCA Format for Direct Files

CALL FILEIO Indexed Access Method Considerations

FILEIO uses the parameters provided to create a parameter list for an Indexed
Access Method supervisor call. Therefore, it is important to u"derstand
Indexed Access Method operation.

FILEIO executes a file cleanup routine after each call to ACTION, LINK,
LINKON, or CYCLE. If any record locks have not been released, the cleanup
routine releases these records to prevent any deadlock situations.

Using the Subroutines in an EDL Program 29

lill:U.'

Byte Displacement Field Contents Description o
0 Request type A 2-byte EBCDIC request (valid request types

are shown in Figure 7).

4 Data Set Name An 8-byte EBCDIC data set name,
left-justified and padded with blanks.

12 Key Relation A 2-byte EBCDIC key relation operator, either
. GT, GE, or EQ (required only if request type is

GETD, GETS, GTDU, or GTSU).

14 Key Length A word specifying the length of the key to be
used for retrieval. If the length specified is less
than the actual key length, the first n bytes of
the key are used.

16 Key Location The address of the key to be used.

18 Reserved Must be O.

22 Volume Name A 6-byte EBCDIC volume name, left-justified
and padded with blanks.

Figure 6. FILEIO FCA Format for Indexed Files

Direct File Request Types

READ Read the record defined by the RRN field of the FCA into the
user-provided buffer.

SEOD Set the system-maintained EOD pointer to the record number provided in
the RRN field of the FCA. This number should range from 1 to the EOF
record of the file. This request is normally issued after the last record is
written to the data set, but you may issue it any time you want to establish a
logical end-of-file (EOF).

WRIT Write the record defined by the RRN field of the FCA into the
user-provided buffer.

Indexed File Request Types

GETD Get operation, direct read (GET)I

GETS Get operation, sequential read (GETSEQ)

GTDU/GTRU Direct get, update mode (GET)

GTSU Sequential get, update mode (GETSEQ)

ICLS Close an indexed data set (DISCONN)

IDEL Delete operation (DELETE)

PUTD Put operation, delete mode (PUTDE)

PUTN Put operation, new mode, add a record to the file (PUT)

PUTU Put operation, update mode (PUTUP)

RELR Release a record held for update (RELEASE)

RELS Release from sequential processing mode (ENDSEQ)

IIndexed file requests call the Indexed Access Method function shown in parentheses. Files are
accessed in the PROCESS mode and are shared.

Figure 7. File Request Types

o
30 Series/l Communications Facility WSC HLL Subroutines

o

FILEIO Return Codes

o

o

'i":I[··
This procedure will ensure data integrity on update:

1. Get record.
2. Save record contents.
3. Display to operator.
4. Get with update.
5. Ensure that record contents are unchanged.
6. Put with update.
7. Display to operator.

If sequential processing has been initiated on any indexed files, the FILEIO
cleanup routine also releases those files from sequential processing mode. Thus,
to continue sequential processing from the same key, the application should
save the last key before calling ACTION, CYCLE, LINK, or LINKON. If .
you want to get sequential records and any of these CALL functions intervene,
use GETD with the greater than key relation.

You can scan an indexed file from beginning to end by use of a sequence of
"get sequential" (GETS) operations. The first GETS in a sequence should
specify a key of all nulls (X'OO') and a key relational operator of greater than
(C'GT'). When executed, this initial GETS operation will receive the first
record in the file (following the record, if any, for which the key is all nulls.)
Subsequent GETS will retrieve the records following the first, in sequence.

-1 Successful operation.

201 Data set not found.

203 No file table entries are available; all have updates outstanding.

206 Invalid function request type (this is returned for a valid Indexed Access
Method function if the Indexed Access Method link module is not linked
with the interface program).

207 Invalid key operator.

208 SEOD record number greater than data set length

Other return codes may be returned by the Indexed Access Method or by the
system data management support.

Using the Subroutines in an EDL Program 31

•

'i,·:U.1

CALL FILEIO Direct Access Coding Example (File Scan)

This example reads record number 1 to obtain the logical end-of-data. It then
sets the record number to 1 and reads record 1, and successively higher records,
until logical end-of-file is reached.

* GET EOD (RETURNED BY READ OPERATION)

HOVE RRN,1,DWORD

CALL PILEIO,(PCA),(BUPPER),(RC)

* PROCESS PILE PROH RRN-1 TO EOD

HOVE RRN,O,DWORD

LOOP ADD RRN,1,PREC-D

IP (RRN,GT,EOD,DWORD),GOTO,EXIT

CALL PILEIO,(PCA),(BUPPER),(RC)

•
•
•

GOTO LOOP

BNDIP

EXIT EOU *
•
•
•

* FILE CONTROL AREA

FCA EOU *
REOTYPE DATA CL4'READ'

DSNAHE DATA CL8'A'

NUHREC DATA p' 1 '

EOD DATA D'O'

RRN DATA D'O'

VOLNAHE DATA CL6'EDXOO2'

CALL FILEIO Indexed Access Coding Example
In this example, change data set name, key length, and key location if you are
using secondary keys.

CALL FILEIO,(FCA),(BUFFER),(RC)

•
•
•

* FILE CONTROL AREA

FCA EOU *
REOTYPE DATA CL4'GETD'

DSNAHE DATA CL8'CUSTHAST'

RELOP DATA CL2'EO'

KEYLEN DATA F'6'

KEYLOC DATA A(KEYPLD)

DATA 2P'O'

VOLNAHE DATA CL6'EDXOO3'

•
•
•

KEYFLD DATA C;L6'069592'

BUFFER DATA 256X'O'

RC DATA p'o'

32 Series/l Communications Facility WSC HLL Subroutines

•

()

(-\

~)

0

o

o

o

FTAB-Build Unprotected Field Table

CALL FTAB Format

FTAB Return Codes

FT AB sets up a table that describes the unprotected action field areas in the
input buffer following a CALL ACTION operation. You can use this table to
format the output buffer before a CALL ACTION and to position the cursor to
a specific field or to a precise location within a field.

FT AB is time-consuming; use it with care. If possible, perform the CALL
SETPAN and CALL FTAB operations in the beginning of the application
outside the normal looping operation of CALL ACTION and CALL FILEIO.

Note that you must define the FTAB data table in the program's save area to
be saved between calls to ACTION, CYCLE, etc.

[label] CALL FTAB,(table),(size),(code)

table
The table operand is made up of a sequence of 3-word entries. Each 3-word
entry describes an unprotected field of the screen image in the input buffer.
The first word is the row position; the second word is the column position;
and the third word is the length. The sequence begins at the location of the
variable named in the table operand; it is repeated for each successive field
of the screen.

This is an example of the table format:

TABLE row (word 1 of the first field)
column (word 2 of the first field)
length (word 3 of the first field)

TABLE+6 row (second field)
column
length

TABLE+I2 row (third field)
column
length

• •
• •
• •
n

where n is equal to the vJilue of the size operand.

Unused fields in the FT AB table are always set to zero.

size
is 1 word long and contains the number of entries in the table. This decimal
value can be in the range 1 to 32767.

code
is the name of a I-word field reserved for a return code from FT AB.

-1 Successful return.

1 No data fields found.

2 Data table truncated.

Using the Subroutines in an EDL Program 33

IjtJ:1

CALL FTAB Coding Example

CALL FTAB,CTABLE),CSIZE),CRC)

•
•
•
TABLE DATA 30F'O'

SIZE DATA F' 10'

RC DATA F'O'

•
•
•

34 Series/1 Communications Facility WSC HLL Subroutines

o

(.\. ~.)

o

o

o

o

GET CUR

GETCUR-Get Cursor Position

CALL GETCUR Format

GETCUR gets the cursor position returned to the program after a CALL
ACTION.

[label] CALL GETCUR,(row),(column)

row
is the label of a word to contain the row number of the cursor. Possible row
numbers are 0-23; row 0 is the top line of the screen.

column is the label of a word to contain the column number of the cursor.
Possible column numbers are 0-79; column 79 is the rightmost position of a
row.

CALL GETCUR Coding Example

*
ROW

COLUMN

CALL ACTION

CALL GETCUR,(ROW),(COLUMN)

DATA

DATA

F'O'

F'O'

CURSOR ROW POSITION

CURSOR COLUMN POSITION

Using the Subroutines in an EDL Program 35

c:)

o
36 Series/ I Communications Facility WSC HLL Subroutines

o

o

o

I!I~IM

LINK-Transfer Control to Another Program

CALL LINK Format

A call to LINK causes the named application program, which uses the work
session controller high-level language subroutines, to be loaded and executed
(replacing the current program). If a SETPAN or CHGPAN precedes the
LINK, the contents of the input buffer are displayed for 4978, 4979, or 3101
terminals and the buffer is freed. The output buffer is passed unchanged to the
linked-to program.

If the transaction identifier is invalid or cannot be found, control returns to the
caller; therefore, any return to your program from CALL LINK is an error
condition.

[label] CALL LINK,(tid)

tid
is the name of a variable that contains the 4-byte name of a transaction
identifier in the $.SYSPD data set. The TID specifies the
transaction-processing program to be linked to (right padded with blanks, if
necessary) .

CALL LINK Coding Example

PROG

CALL LINK, (PROG)

GOTO ERROR

•
•
•

DATA C'HTH4'

Using the Subroutines in an EDL Program 37

o

o
38 Series/1 Communications Facility WSC HI,.L Subroutines

o

o

o

LINKON-Transfer Control to
Another Program with Output Cycle

CALL LINKON Format

A call to LINKON provides the same function as CALL LINK, except that a
~creen is displayed and the interface program waits for an operator response.
The named program is then entered at its entry point with the input buffer
containing the unprotected characters from the screen.

If the transaction identifier is invalid or cannot be found, control returns to the
caller; therefore, any return to your program from CALL LINK is an error
condition.

[label] CALL LINKON,(tid)

tid
is the name of a variable that contains the 4-byte name of a transaction
identifier in the $.SYSPD data set. The TID specifies the
transaction-processing program to be linked to (right padded with blanks, if
necessary) .

CALL LINKON CQding Example

CALL LINKON,(LNKPGK)

•
•
•

LNKPGK DATA 'KTK4'

•
•
•

Using the Subroutines in an EDL Program 39

o

o
40 Series/} Communications Facility WSC HLL Subroutines

o

o

o

MENU-Return to Primary Menu

CALL MENU Format

CALL MENU immediately terminates the current program and causes the
primary menu screen to be displayed. The operator can get back to the primary
menu at any time by pressing PF3 on a 4979, 4978, or 3101.

[label] CALL MENU

Using the Subroutines in an EDL Program 41

o

o
42 Series/l Communication.s Facility WSC HLL Subroutines

o

c

o

SETCUR

SETCUR-Set Cursor Position

CALL SETCUR Format

SETCUR specifies the position at which the cursor is to be displayed for the
next output cycle. The cursor position is expressed as a pair of row and column

• coordinates on the screen.

Each screen panel specifies a cursor position to be used while the screen is
active (until the next SETPAN or CHGPAN). CALL SETCUR permits you
to override the cursor position established by a previous SETPAN or
CHGPAN. The cursor is moved on the next output cycle.

[label] CALL SETCUR,(row),(co/)

row
is the label of a word that contains the number of the row at which the
cursor is to be set. Allowable row numbers are 0-23; row 0 is the top line of
the screen.

col
is the label of a word that contains the number of the column at which the
cursor is to be set. Allowable column numbers are 0-79; column 79 is the
rightmost position of a row.

CALL SETCUR Coding Example

To set the cursor position to row 1, column 12 of a static-screen display:

•
ROW

COLUMN

CALL SETCUR,(ROW),(COLUMN)

DATA

DATA
F' "
F' 12'

ROW 1

COLUMN 12

Using the Subroutines in an EDL Program 43

o

o
44 Seties/l Communications Facility WSC HLL Subroutines

o

o

o

SETPAN

SETP AN-Write Buffer to Screen

CALL SETPAN Format

SETPAN Return Codes

SETPAN causes the specified screen format name to be saved and sets a switch
to cause the screen format to be written to the screen during the next output
cycle. Any nulls in the screen image will be written unprotected; all other
characters will be written protected. The cursor position for the next display
after SETPAN will be set to the first unprotected character position.
Unprotected defaults that were specified when the screen was built are not
displayed by SETPAN.

[label] CALL SETPAN,(dsname),(code)

dsname
is the name of a variable that contains the 8-byte data set name of the screen
format in the $. WSCIMG data set.

code
is the label of a word in which SETPAN will place a return code.

-1 Successful, new panel in buffer.

CALL SETPAN Coding Example

CALL SETPAN,(SCREEN01),(RC)

•
•
•

SCREEN01 DATA

RC DATA

C' SCRNTST 1 '

F'O'

Using the Subroutines in an EDL Program 45

Link Editing Your Programs

Sample Programs

Screen Display Techniques

Screen Retrieval and Display

You need to link edit your EDL application program, your EDL stub program,
and the interface program. You can choose from two versions of the interface
program: O$HLSE if you don't use the indexed access method, and O$HLSEI
if you do. If you choose O$HLSEI, your link control data set must include an
INCLUDE IAM,ASMLIB statement.

Your link control data set must also include either an INCLUDE
O$SEOD,ASMLIB statement (if your program uses the SEOD function) or an
INCLUDE O$NOSEOD,ASMLIB statement (if it doesn't). O$SEOD
requires approximately 3700 bytes of additional storage in the application
program.

Figure 8 shows the link control data set for an EDL application without the
indexed access method.

INCLUDE O$BASEE,EDX003 EDL STUB PROGRAM
INCLUDE O$MTMSUB,EDX003 EDL APPLICATION SUBROUTINE
INCLUDE O$HLSE,ASMLIB INTERFACE MODULE
INCLUDE O$SEOD,ASMLIB SEOD MODULE

*INCLUDE O$NOSEOD,ASMLIB NO SEOD MODULE
LINK CFMTM4,EDX002 REPLACE END UPDATE CONTROL STATEMENT

Figure 8. Link Control Data Set (No lAM)

Figure 9 shows the link control data set for an EDL application with the
indexed access method.

INCLUDE· O$BASEE,EDX003
INCLUDE O$MTMSUB,EDX003

EDL STUB PROGRAM
EDL APPLICATION SUBROUTINE

INCLUDE O$HLSEI,ASMLIB INTERFACE MODULE
*INCLUDE O$SEOD,ASMLIB SEOD MODULE

INCLUDE O$NOSEOD,ASMLIB NO SEOD MODULE
INCLUDE IAM,ASMLIB lAM STUB
LINK CFMTM4,EDX002 REPLACE END UPDATE CONTROL STATEMENT

Figure 9. Link Control Data Set (lAM)

This section presents sample EDL programs that use the work session controller
high-level language subroutines.

This section shows EDL coding examples of some screen display techniques.

In this example, a program retrieves a screen created by $IMAGE, displays it,
and reads operator input. It retrieves a screen image is retrieved through a
CALL SETPAN.

A subsequent call to ACTION performs terminal output and input. ACTION
displays the contents of the output buffer as unprotected data on the static
screen from the call to SETP AN. After the operator presses ENTER or a
program function key, ACTION reads the operator input into the input buffer.

46 Series/1 Communications Facility WSC HLL Subroutines

o

o

o

0

o

ACTION also places a program function key identifier into the interrupt
information byte (lIB).

The following example shows an application that retrieves a screen image,
displays it, and manipulates the operator input data that has been read into the
input buffer. It also checks whether the operator has pressed a program
function key. In the example, a screen image MAINSCRN is displayed on the
terminal from the data set $.WSCIMG. A return code of -1 indicates
successful completion.

* *
*

RETRIEVE AND DISPLAY SCREEN, ACCEPT OPERATOR INPUT, AND

CHECK IF PROGRAM FUNCTION KEY USED. *

Dynamic Screen Creation

SUBROUT MTMSUB,INBUFF,OUTBUFF,TEB,PFKEY

ENTRY MTMSUB

EXTRN

•
•
•

CALL

IF

•
•
•

ENDIF

CALL

MOVE

IF

IF

•
•
•

ENDIF

•
•
•

SETPAN,ACTION

SETPAN,(MAINSCRN),(RC) DISPLAY SCREEN FROM $.WSCIMG

(RC,NE,-1) IF SETPAN ERROR

ACTION

,1,PKFEY

((0 , • 1) , EQ , ")
(RC,NE,-1)

ENDIF

GET RESPONSE

GET PF KEY ADDRESS

IF PF KEY FOUR

IF SETPAN ERROR

ENDIF

* DATA AREAS AND EQUATES *

MAINSCRN DATA CL8'MAINSCRN'

F'O'

SCREEN MEMBER NAME

RETURN CODE FIELD RC DC

•
•
•

The following example shows how to modify a screen dynamically. This
technique is especially useful for one-line error messages; you can put the
message in the appropriate place on the screen with a CALL CHGPAN. For
example, the following code displays the message "SETPAN ERROR" on the
fifth line of a terminal.

Using the Subroutines in an EDL Program 47

* MODIFY SCREEN DYNAMICALLY *

SUBROUT MTMSUB,INBUFF,OUTBUFF,TEB,PFKEY

•
•
•

CALL CHGPAN,(ROW), (COL), (LEN), (SETERR) CHANGE SCREEN

CALL ACTION DISPLAY MSG, GET RBSP

•
•
•

* DATA ARBAS AND EQUATES. *

SETERR DATA

ROW DATA

CL12'SETPAN ERROR'

F'S'

F'O'

F' 12'

MESSAGE TO BE DISPLAYED

DISP TO FIFTH LINE OF SCREEN

COL

LEN

Updating an Indexed File

DATA

DATA

•
•
•

You might want an application to update indexed data sets based on operator
input. This process requires a get for update (FILEIO GTDU), a screen write
and read (SETPAN and ACTION), and then a put for update (FILEIO
PUTU).

Applications must release data sets from update mode before an ACTION is
performed; therefore, the program must perform a get direct without update
before the ACTION, and a get direct for update after the ACTION.

A problem might arise because the ACTION can cause the issuing program to
be swapped out. If another program were to update the record during that time,
the update that program makes would be lost when the original program
updates the file. To avoid this problem, each program should ensure that any
record it modifies has not been modified during the ACTION, as shown in the
following example.

48 Series/ I Communications Facility WSC HLL Subroutines

o

o

o

o

o

•••
• UPDATE INDEXED FILE •
•••

•
•
•

MOVE

CALL

CALL

CALL

MOVE

CALL

IF

CALL

ENDIF

MOVE

MOVE

MOVE

CALL

•
•
•

REQTYPE,GETD,(4,BYTES)

FILEIO,(FCA), (OLDBUF), (RC)

SETPAN, ••.

ACTION

REQTYPE,GTDU,(4,BYTES)

FILEIO,(FCA), (NEWBUF), (RC)

(OLDBUl",NE,NEWBUF,80)

ALERT

,1,INBUl"

NEWBUF,(0,,1),(•.• ,BYTES)

REQTYPE,PUTU,(4,BYTES)

l"ILEIO,(l"CA), (NEWBUl"), (RC)

SET UP GET DIRECT

GET RECORD

RETRIEVE SCREEN

DISP SCREEN, ACCEPT INPUT

SET UP GET DIR UPDATE MODE

GET RECORD FOR UPDATE

IF RECORD HAS CHANGED

CALL ERROR ROUTINE

ENDIl"

GET INPUT BUFFER ADDRESS

SAVE RECORD

SET UP PUT UPDATE

UPDATE RECORD

•••
• DATA AREA • •
•••
GETD DATA

GTDU DATA

PUTU DATA

RC DATA

•
•
•

CL4'GETD'

CL4'GTRU'

CL4'PUTU'

1"'0'

GET DIRECT l"CA CODE

GET DIRECT l"CA CODE

PUT UPDATE l"CA CODE

RETURN CODE FIELD

File Maintenance Transaction Application

This example consists of a pair of programs that perform a simple file
maintenance task. It reads or writes a single record, or sets an end of data
(EOD) marker.

The fir-st program displays a screen that requests the file parameters, which
include data set name and relative record number. It then issues a CALL
LINK to execute the second program, passing the file parameters.

The second program builds a file control area (FCA) from the file parameters
and performs the requested file I/O operation. The results of the operation are
displayed on the screen, and the program ends.

Note: The examples in this section operate only on data sets of less than 32K
bytes.

The following is a detailed explanation of each program statement in the
sample program listing and the effects of program execution of the application.

The first statements in the first program are declarations:

EXTRN BEEP, SETPAN,MENU,ACTION, LINK

ENTRY MTMSUB,SAVEAREA

SUBROUT MTMSUB,INBADDR,OUTBADDR,TEBADDR,IIBADDR

Using the Subroutines in an EDL Program 49

EXTRN declares the subroutine functions as external, so the application can
access them. ENTRY declares the application as an entry point and locates the
user save area for the interface program. The application is a subroutine, as
shown in the SUBROUT statement, called MTMSUB. It accepts four
parameters, the addresses of the input buffer, output buffer, terminal
environment block and interrupt information byte.

The next instructions put the buffer addresses into registers 1 and 2:

MOVE '1,INBADDR

MOVE .2,OUTBADDR

Inithil data is loaded into the output buffer for display when the CALL
ACTION is issued:

MOVE (14"2),INITDATA,(8,BYTES)

•
•
•

INITDATA DATA CL8'READ0001'

The terminal is prepared to sound the audible alarm:

CALL BEEP

A screen image is retrieved from a disk data set and written to the terminal:

CALL SETPAN, (REQSCRN), (RC)

•
•
•

RC DATA F'O'

REQSCRN DATA CL8'REQ'

A screen image consists of protected data, which may be considered a screen
template or form. The protected data is a screen-sized (24 by 80) image
consisting of character data which is displayed, and fields of nulls used for data
entry. Default data in the output buffer is written by the ACTION call into
these null fields, and operator input is read from them.

After the call to SETP AN, the terminal screen contains the screen as shown in
SCREEN 1, with five null fields as shown by dollar signs. The $ is just to
illustrate where the fields are on the screen; null fields are actually displayed as
blanks.

50 Series/1 Communications Facility WSC HLL Subroutines

o

o

o

o

o

SCREEN 1

DATA SET, VOLUME NAME =->$SSSSS$$:,SSS$

REQUEST (READ, WRIT, SEOD) -->$$S$

RELATIVE RECORD NUMBER -->$$$$

NUMBER OF RECORDS -->1

DATA TO BE WRITTEN:

SS$SSSSSS$S

The output buffer contains data used to initialize unprotected input fields. It
consists of 14 blanks, followed by READOOO 1, followed by 80 blanks. When
written to the unprotected portion of the screen, the terminal appears as shown
in SCREEN 2.

A test of the return code from SETP AN is done. If the return code does not
indicate a successful return, the program ends by giving control to the primary
menu routine:

IF (RC,NE,-1)

CALL MENU

ENDIF

The active terminal type can be determined by testing the TEB. Since 3101
terminals require that a CALL FT AB be issued and 4978 terminals do not
because they support scatter write, the following code will make the program
more efficient:

MOVE

IF

CALL

ENDIF

,1,TEBADDR

((0 , • 1) , EQ, 1)

FTAB,(TABLE),(SIZE),(RC)

The next instruction calls the ACTION routine to display the contents of the
output buffers, and reads the operator response:

CALL ACTION

The effects of CALL ACTION are:

• Write the output buffer contents, if any, into the null fields as unprotected
characters.

• Wait for the operator to enter data and press ENTER or a PF key.

• Read the contents of the unprotected fields (the operator input) into the
input buffer.

This results in SCREEN 2 appearing on the terminal, where the default
characters are highlighted (shown by underlining here).

Using the Subroutines in an EDL Program 51

•

•

SCREEN 2

DATA SET, VOLUME NAME =->

REQUEST (READ, WRIT, SEOD) ==>READ

RELATIVE RECORD NUMBER ==>0001

NUMBER OF RECORDS ==>1

DATA TO BE WRITTEN:

The operator then enters data, changing the default data associated with
relative record number. For example, to read the third record of data set 'K" ,
on volume EDX013, the underlined data on SCREEN 3 would be entered.

SCREEN 3

DATA SET, VOLUME NAME ==>! ,EDX013

REQUEST (READ, WRIT, SEOD) =->READ

RELATIVE RECORD NUMBER ==>0003

NUMBER OF RECORDS ==>1

DATA TO BE WRITTEN:

The operator signals that the input is ready by pressing ENTER or a PF key.
ACTION then completes the input cycle by reading the contents of the
unprotected fields into the input buffer:

K EDX013READ0003 (SO blanks)

For the second program to receive the file parameters, they must be passed
through the output buffer. The next instruction moves the input data from the
input buffer to the output buffer:

MOVE (O,12),(O,11),(106,BYTES)

52 Series/l Communications Facility WSC HLL Subroutines

()

c:)

o

o

o

o

Finally, a CALL LINK to MTM3 is made. The transaction identifier is
referened in the IOPROG statement.

CALL LINK, (IOPROG)

•
•
•

IOPROG DATA CL8'PROG2'

A call to MENU to terminate the transaction is placed after the LINK, in case
the LINK is unsuccessful:

CALL HBNU

The first four lines of PROG2 are similar to those of PROG 1, except that other
functions are declared external, and only register 2 is assigned a buffer address:

BXTRN FILBIO,SBTPAN,HBNU,ACTION

BNTRY HTHSUB,SAVBARBA

SUBROUT HTHSUB,INBADDR,OUTBADDR,TBBADDR,IIBADDR

HOVB '2,OUTBADDR

At this point the output buffer (pointed to by register #2) contains various file
parameters. A file control area (FCA) is constructed using these parameters.
For example, the request type is moved from the output buffer to the FCA:

HOVB FCARBQ, (RBQTYPB,,2), (4,BYTBS)

•
•
•

FCARBQ DATA CL4"

•
•
•

RBQTYPB BQU 14

Using the Subroutines in an EDL Program 53

Similarly,.other fields must be moved, and relative record number must be
converted to numeric:

* SET UP FILE CONTROL AREA AND BUFFER.

MOVE FCAREQ,(REQTYPE"2),(4,BYTES) REQUEST TYPE

MOVE FCADSN,(DSNAME,,2),(S,BYTES) DATA SET NAME

MOVE FCANUM,1 NUMBER OF RECS

CONVTD FCARRN,(RRN,,2),FORHAT-(4,0,I) CONVERT RRN

MOVE FCAVOL, (VOLNAME,,2), (6,BYTES) VOLUME NAME

MOVE BUFFER, (BUFFDISP"2),(SO,BYTES) DATA BUFFER

•
•
•

* FILE CONTROL AREA.

FCA EQU *
FCAREQ DATA CL4' ,

REQUEST TYPE

FCADSN DATA CLS'
,

DATA SET NAME

FCANUM DATA F' 1 ' NUMBER OF RECORDS

DATA F'O'

FCAEOD DATA F'O' EOD RELATIVE RECORD NUMBER

DATA F' 0'

FCARRN DATA F' 0' RELATIVE RECORD NUMBER

FCAVOL DATA CL6' ,
VOLUME NAME

•
•
•

* EQUATES FOR OUTPUT BUFFER DATA.

DSNAME EQU 0 DATA SET NAME

VOLNAME EQU S VOLUME NAME

REQTYPE EQU 14 REQUEST TYPE

RRN EQU 1S RELATIVE RECORD NUMBER

BUFFDISP EQU 22 BUFFER DISPLACEMENT

EODRRN EQU 102 EOD RRN DISPLACEMENT

RCDISP EQU 106 RETURN CODE DISPLACEMENT

A screen image with which to display the file data is retrieved, and the return
code is checked. This screen is similar to the previous screens shown with the
addition of two new fields.

CALL SETPAN,(LISTSCRN),(RC)

IF (RC,NE,-1)

CALL MENU

ENDIF

•
•
•

LISTSCRN DATA CLS'LST'

At this point the image depicted in SCREEN 4 is in the buffers. Since there is
no default data, the output buffer is empty.

54 Series/l Communications Facility WSC HLL Subroutines

0·

' .'
I I

~-~'\

(I ,yl

0_'\·
' . I

o

'0

o

SCREEN 4

DATA SET, VOLUME NAME ==>

REQUEST (READ, WRIT, SEOD) =->

RELATIVE RECORD NUMBER -->

NUMBER OF RECORDS -->1

DATA TO BE WRITTEN:

EOD RELATIVE RECORD NUMBER -->

RETURN CODE -->

The actual FILEIO operation is performed, specifying the FCA, a buffer, and a
return code:

RC

BUFFER

CALL FILEIO,(FCA),(BUFFER),(RC)

•
•
•

DATA

DATA

F'O'

2S6X'O'

Note that the buffer is 256 bytes in length (the length of an Event Driven
Executive record) even though only the first 80 bytes are used.

Now that all the file data is available, it is placed in the output buffer so that it
can be displayed. The data is taken from the FCA, the buffer and return code,
and concatenated so that it may be written into the unprotected fields of the
screen image:

* PUT DATA INTO OUTPUT BUFFER SO IT WILL BE DISPLAYED.

MOVE (REQTYPE"2),FCAREQ,(4,BYTES) REQUEST TYPE

MOVE (DSNAME"2),FCADSN,(S,BYTES) DATA SET NAME

CONVTB (EODRRN"2),FCAEOD,FORMAT-(4,O,I) CONV EOD RRN

CONVTB (RRN"2),FCARRN,FORMAT-(4,O,I) CONVERT RRN

MOVE (VOLNAME"2),FCAVOL,(6,BYTES) VOLUME NAME

MOVE (BUFFDISP,,2),BUFFER,(SO,BYTES) DATA

CONVTB (RCDISP,,2),RC,FORMAT-(4,O,I) CONV RET CODE

The output buffer now looks as follows:

! EDX013READ0003RECORD 1(72 blanks)OOOS-001

Both input and output buffers are displayed on the screen by the following call:

CALL ACTION

Using the Subroutines in an EDL Program SS

SCREEN 5

DATA SBT, VOLUMB NAMB -->~ ~,BDX013

RBQUBST (RBAD, WRIT, SBOD) -->:RBAD

RBLATIVB RBCORD NUMBBR -->0003

NUMBBR OF RBCORDS -->1

DATA TO BB WRITTBN:

BOD RBLATIVB RBCORD NUMBBR -->0005

RBTURN CODB -->-001

A call to ACTION waits for operator input followed by an ENTER or PF key.
In this case, no input is solicited; however, the use of ACTION allows the user
to view the screen and press ENTER after the contents have been read. At that
point the program ends.

CALL MBNU

The following pages contain the applications used to perform the example
previously shown.

56 Series/l Communications Facility WSC HLL Subroutines

o

o

EDL Sample Program 1

o

o

o

BXTRN BBBP,SBTPAN,MBNU,ACTION,LINK,FTAB

BNTRY MTMSUB,SAVBARBA

SUBROUT MTMSUB,INBADDR,OUTBADDR,TBBADDR,IIBADDR

MOVB ,1,INBADDR GBT INPUT BUFF ADDRBSS

MOVB ,2,OUTBADDR GBT OUTPUT BUFF ADDRBSS

• MOVB INITIAL DATA TO OUTPUT BUFFBR.

MOVB (14"2),INITDATA,(S,BYTBS)

• BBBP UPON TBRMINAL I/O.
CALL BBBP

• RBTRIBVB SCRBBN lMAGB AND ABORT IF BRROR.
CALL SBTPAN,(RBQSCRN),(RC) GBT SCRBBN lMAGB

IF

CALL

BNDIF

(RC,NB,-1)

MBNU

OK?

NO

• TBST FOR TBRMINAL TYPB, CALL FTAB IF 3101.

MOVB

IF

CALL

BNDIF

,1,TBBADDR

((0 , • 1) , BQ, 1)

FTAB,(TABLB),(SIZB),(RC)

• D·ISPLAY SCRBBN lMAGB, RBAD OPBRATOR RBSPONSB.

CALL ACTION

• MOVB DATA FROM INPUT BUFFBR TO OUTPUT BUFFBR (106 BYTBS).
MOVB (O,,2),(0"1),(106,BYTBS)

• LINK TO PROGRAM WHICH WILL PBRFORM FILB I/O.

CALL LINK, (IOPROG)

• ABORT IF LINK FAILS.
CALL MBNU

•••
•
• DATA ITBMS

•

•
•
•

•••
INITDATA DATA CLS'RBADOO01'

RBQSCRN DATA CLS'RBQ' NAMB or RBQUBST SCRBBN

IOPROG DATA CLS'MTM3' NAMB or I/O PROG TID

RC DATA F'O' RBTURN CODB

SAVBARBA DATA A(BNDSAVB-SAVBARBA)

SIZB DATA F' 10'

TABLB BUFFBR 30,WORDS

BNDSAVB BQU •
BNDPROG

BND

Using the Subroutines in an EDL Program 57

EDL Sample Program 2

EXTRN FILEIO,SETPAN,MENU,ACTION

ENTRY MTMSUB,SAVEAREA

SUBROUT MTMSUB,INBADDR,OUTBADDR,TEBADDR,IIBADDR

MOVE '2,OUTBADDR GET o/p BUFFER ADDR

• SET UP FILE CONTROL AREA AND BUFFER.

MOVE FCAREQ,CREQTYPE,'2),C4,BYTES) REQST TYPE

MOVE FCADSN,CDSNAME,'2),CS,BYTES) DATA SET NAME

MOVE FCANUM,1 NUMBER OF RECS

CONVTD FCARRN,CRRN,'2),FORMAT=C4,0,I) CONVERT RRN

MOVE FCAVOL,CVOLNAME"2),C6,BYTES) VOLUME NAME

MOVE BUFFER,CBUFFDISP,'2),CSO,BYTES) DATA BUFFER

• RETRIEVE LISTING SCREEN AND ABORT IF ERROR.
CALL SETPAN,CLISTSCRN),CRC)

IF CRC,NE,-1)

CALL MENU

ENDIF

GOT SCREEN IMAGE OK?

NO

• TEST FOR TERMINAL TYPE, CALL FTAB IF 3101.

MOVE '1,TEBADDR

IF CCO,,1},EQ,1)

CALL FTAB,CTABLE),CSIZE),CRC)

ENDIF

• PERFORM FILE I/O.
CALL FILEIO,CFCA),CBUFFER),CRC)

• PUT DATA INTO OUTPUT BUFFER SO IT WILL BE DISPLAYED.

CREQTYPE,'2),FCAREQ,C4,BYTES) REQUEST TYPE MOVE

MOVE

CONVTB

CONVTB

MOVE

CDSNAME,'2),FCADSN,CS,BYTES) DATA SET NAME

CEODRRN,'2),FCAEOD,FORMAT=C4,0,I) CONV EOD RRN

CRRN,'2),FCARRN,FORMAT-C4,0,I)

CVOLNAME,,2},FCAVOL,C6,BYTES)

MOVE CBUFFDISP,'2),BUFFER,CSO,BYTES)

CONVTB CRCDISP,'2),RC,FORMAT-C4,0,I)

CONVERT RRN

VOLUME NAME

DATA

CONV RET CODE

• DISPLAY SCREEN IMAGE AND DATA.
CALL ACTION

• END PROGRAM.
CALL MENU

••• * •••••••••••••
•
• DATA ITEMS

•

•
•
•

•••
•
LISTSCRN DATA

RC DATA

BUFFER DATA

• FILE CONTROL

FCA EQU

FCAREQ DATA

FCADSN DATA

FCANUM DATA

DATA

FCAEOD DATA

DATA

FCARRN DATA

FCAVOL DATA

CLS'LST'

F' 0'

2S6X'0'

AREA.

•
CL4' ,

CLS' ,

F' 1 '

F'O'

F' 0'

F'O'

F'O'
CL6' ,

NAME OF LISTING SCREEN

RETURN CODE

DATA BUFFER

REQUEST TYPE

DATA SET NAME

NUMBER OF RECORDS

EOD RELATIVE RECORD NUMBER

RELATIVE RECORD NUMBER

VOLUME NAME

58 Series/l Communications Facility WSC HLL Subroutines

o

o

o

o

o

• EQUATES FOR OUTPUT BUFFER DATA.

DSNAME EQU 0 DATA SET NAME

VOLNAME EQU

REQTYPE EQU

RRN EQU

BUFFDISP EQU

EODRRN EQU

RCDISP EQU

SAVEAREA DATA
SIZE DATA

TABLE BUFFER

ENDSAVE EQU

ENDPROG

END

8 VOLUME NAME

14 REQUEST TYPE

18

22

102

RELATIVE RECORD NUMBER

BUFFER DISPLACEMENT

EOD RRN DISPLACEMENT

106 RETURN CODE DISPLACEMENT

A(ENDSAVE-SAVEAREA)
F' 10 I

30,WORDS

•

Using the Subroutines in an EDL Program 59

o

o
60 Series/1 Communications Facility WSC HLL Subroutines

o

o

o

USING THE SUBROUTINES
IN A COBOL PROGRAM

This chapter shows how to issue each subroutine call from a COBOL program;
gives COBOL coding considerations; and includes a COBOL sample program.

COBOL Programming Considerations

Format of Subroutine Calls

Creating Your Save Area

The PROGRAM·ID for all COBOL applications must be "MTMSUB". All
parameters passed to the interface program must be level 01 or 77. The five
parameters passed to the application (input buffer, output buffer, TEB, lIB,
and save area), must be defined in the program's LINKAGE SECTION. The
PROCEDURE DIVISION must contain the USING clause followed by the
names given to the input buffer, output buffer, TEB, lIB, and save area, in that
order.

You use the COBOL CALL statement to call the subroutines. For example, the
statement to call SETP AN is:

CALL "SETPAN" USING SCREEN, RC.

This call passes the addresses of SCREEN and RC to the interface program.

The WORKING·STORAGE SECTION would include:

77 SCREEN PICTURE X(S) VALUE "SCRNNAME".

77 RC PICTURE 99 COMPo

Note that the buffer used for requests must be large enough to hold the largest
possible record. The interface program does not truncate records if they are too
large for the buffer. It reads or writes the requested size record regardless of
the size of the buffer.

When your program requests a response from the terminal operator, your
program is purged out of storage so other terminals may use the storage area
while the operator is keying in new data. When the operator response is
complete and storage is available, your program is reloaded into storage and
given control at the next sequential instruction after the instruction that caused
the program to be purged.

To maintain modified data for an application program that has been purged
from storage, the interface program will save a specified data area in the
program. You must collect the data you want saved in a save area defined in
your EDL stub program. The save area must be large enough to contain all the
data constants required for saving by the COBOL program. The modified data
values and constants must be defined in the LINKAGE SECTION of the
COBOL program. The PROCEDURE DIVISION USING statement must
contain the keyword SA VEAREA.

Figure 10 shows how to code your save area.

Note that the interface program reads and writes the save area to disk in the
$.WSCIMG partitioned data set. The input and output buffers in the EDL stub
program are used as temporary storage transfer areas. Therefore, be sure that

Using the Subroutines in a COBOL Program 61

DATA DIVISION.
WORKING STORAGE SECTION.

LINKAGE SECTION.
01 INPUT-BUFFER.

01 OUTPUT-BUFFER.

77 TEB
77 lIB
01 SAVEAREA.

05 COUNT
05 PROG-NAME

PROCEDURE DIVISION

PIC
PIC

PIC
PIC

S99 COMPo
S99 COMPo

S99 COMPo
XeS) •

USING INPUT-BUFFER, OUTPUT-BUFFER, TEB, lIB, SAVEAREA.
CALL "FAN".

Figure 10. Save Area Coding

the total size of the input and output buffers is greater than the size of the
defined save area. Further, there is a restriction that the total save area can be
no larger than 1920 bytes.

62 Series/1 Communications Facility WSC HLL Subroutines

o

o

o

o

o

ACTION-Perform Terminal I/O

CALL ACTION Format

ACTION begins the cycle of writing prompts to the terminal and receiving
responses from the user. If a CALL SETPAN has been executed previously
during this session, it writes the screen image from the $.WSCIMG data set to
the screen and scatter-writes the output buffer into the unprotected fields on
the screen. If no SETPAN precedes the ACTION, ACTION writes only the
output buffer. The terminal then waits for operator input and reenters your
application (with operator input in the input buffer) at the next sequential
instruction after CALL ACTION.

[label] CALL" ACTION" .

Using the Subroutines in a COBOL Program 63

o

o

o
64 Series/l Communications Facility WSC HLL Subroutines

BEEP-Sound Tone

o
CALL BEEP Format

o

o

I:J33:1

BEEP sounds the tone (if the terminal has this feature) following the next
output cycle. If the terminal doesn't have the feature, or if the terminal is a
4979 (which has no tone feature), this request is ignored. The current display
and cursor position for the 4978, 4979, and 3101 are not affected.

[label] CALL "BEEP".

Using the Subroutines in a COBOL Program 6S

66 Series/! Communications Facility WSC HLL Subroutines

o

(---\
~)

o

o

o

o

CHGPAN

CHGP AN-Change Panel

CALL CHGPAN Format

After a CALL SETP AN, the protected characters of the screen panel specified
have been displayed at the terminal. You can add data to the image before the
next output cycle; the data is displayed as protected data. If you do add data,
you must also use CALL CHGPAN to inform the interface program of the
row, column, and data to be written in the protected area of the screen. This
process allows applications to develop protected screen panels dynamically.

[label] CALL "CHGPAN" USING row, col, len, data.

row
is the label of a word that contains the number of the row where the data is
to be displayed on the terminal. Allowable row numbers are 0-23; row 0 is
the top line of the screen.

col
is the label of a word that contains the number of the column where the data
is to be displayed on the terminal. Allowable column numbers are 0-79;
column 79 is the rightmost position of a row.

len
is the label of a word that contains the number of characters in the data
field. Allowable lengths are 1-1920.

data
is the label of the data field to be displayed on the terminal.

CALL CHGPAN Coding Example

WORKING-STORAGE SECTION.

77 ROW PIC S99 COMP VALUE O.
77 COLUMN

77 LENGTH

77 DATA

•
•
•

PIC S99 COMP VALUE 1.

PIC S99 COMP VALUE 12.

PIC X(12) VALUE 'SETPAN ERROR'.

CALL "CHGPAN" USING ROW, COLUMN, LENGTH, DATA.

Using the Subroutines in a COBOL Program 67

0,
Ij I.

o
68 Series/ I Communications Facility WSC HLL Subroutines

CYCLE-Swap Out o

CALL CYCLE Format

o

o

When CALL CYCLE is executed, the program may be made available to other
terminals. The program save area is preserved. SETPAN or CHGPAN
instructions will be executed to display written data.

After the program has processed input from all other terminals, control returns
to the instruction after the CALL CYCLE.

[label] CALL "CYCLE".

Using the Subroutines in a COBOL Program 69

o

C)

o
70 Series/l Communications Facility WSC HLL Subroutines

o

o

o

FAN-COBOL Return Interface

CALL FAN Format

In a COBOL application, CALL FAN must be coded as the first executable
CALL statement in the PROCEDURE DIVISION. Upon a return from a
CALL ACTION, CALL FAN will transfer control to the next sequential
instruction following that call.

CALL "FAN".

CALL FAN Coding Example

PROCEDURE DIVISION USING IN-REC, OUT-REC, TEB, lIB, SAVEAREA.

BEGIN PROCESSING.

CALL "PAN".

Using the Subroutines in a COBOL Program 71

o

o
72 Series/l Communications Facility WSC HLL Subroutines

o

o

0

'41':U.'

FILEIO-Perform Disk I/O

CALL FILEIO Format

FILEIO performs disk I/O on direct and indexed files.

[label] CALL" FILEIO" USING fea, buff, re.

~ ~
is the label of a file control area (FCA)-a table containing the parameters
that describe the requested I/O operations. The meaning of some of the
fields depends on the request type specified.

The FCA format for direct files is shown in Figure 11; the FCA format for
indexed files is shown in Figure 12.

buff

re

is the name of the user program I/O buffer. This buffer contains the record
to be written or receives the record read.

is the name of the 2-byte field to contain the return code returned by
FILEIO. This can be a FILEIO return code, a system error code, or a code
passed from the Indexed Access Method.

Byte Displacement Field Contents Description

0 Request type A 2-byte EBCDIC request (valid request types
are shown in Figure 13).

4 Data Set Name An 8-byte EBCDIC data set name,
left-justified and padded with blanks.

12 Number of Records A word specifying the number of 256-byte
records to be read or written.

14 EOD Record The 2-word system-maintained logical EOD
record number passed back to the application
after each direct file READ or WRITE.

18 Relative Record Number A 2-word value for the RRN. The first record
(RRN) is record number 1.

22 Volume Name A 6-byte EBCDIC volume name, left-justified
and padded with blanks.

Figure 11. FILEIO FCA Format for Direct Files

This example shows an FCA for indexed files that would read a record
associated with a 4-character key "XXXX".

01 FILE-CONTROL-AREA.

05 REQUEST-TYPE PIC X(4) VALUE "GETD".

05 DATA-SET-NAMP: PIC X(S).

05 KEY-REL-OP PIC XX VALUE "EQ".

05 KEY-LENGTH PIC 8999 COMP VALUE 4.

05 KEY-LOCATION PIC 8999 COMP VALUE O.

05 FILLER PIC X(4).

05 VOLUME-NAME PIC X(6).

05 KEY PIC X(4) VALUE "xxxx".

Using the Subroutines in a COBOL Program 73

'i":U"

Byte Displacement Field Contents Description

0 Request type A 2-byte EBCDIC request (valid request types
are shown in Figure 13).

4 Data Set Name An 8-byte EBCDIC data set name,
left-justified and padded with blanks.

12 Key Relation A 2-byte EBCDIC key relation operator, either
GT, GE, or EQ (required only if request type is
GETD, GETS, GTDU, or GTSU).

14 Key Length A word specifying the length of the key to be
used for retrieval. If the length specified is less
than the actual key length, the first n bytes of
the key are used.

16 Reserved Must be O.

18 Reserved Must be O.

22 Volume Name A 6-byte EBCDIC volume name, left-justified
and padded with blanks.

28 Key Field The location of the key}

I If the key location equals 0 and key length is not equal to 0, the file manager assumes that the
key immediately follows the FCA. This is primarily to facilitate COBOL programs, which
cannot code addresses.

Figure 12. FILEIO FCA Format for Indexed Files

FILEIO Indexed Access Method Considerations

FILEIO uses the parameters provided to create a parameter list for an Indexed
Access Method supervisor call. Therefore, it is important to understand
Indexed Access Method operation.

FILEIO executes a file cleanup routine after each call to ACTION, LINK,
LINKON, or CYCLE. If any record locks have not been released, the cleanup
routine releases these records to prevent any deadlock situations.

This procedure will ensure data integrity on update:

1. Get record.
2. Save record contents.
3. Display to operator.
4. Get with update.
5. Ensure that record contents are unchanged.
6. Put with update.
7. Display to operator.

If sequential processing has been initiated on any indexed files, the FILEIO
cleanup routine also releases those files from sequential processing mode. Thus,
to continue sequential processing from the same key, the application should
save the last key befor~ calling ACTION, CYCLE, LINK, or LINKON. If
you want to get sequential records and any of these CALL functions intervene,
use GETD with the greater than key relation.

You can scan an indexed file from beginning to end by use of a sequence of
"get sequential" (GETS) operations. The first GETS in a sequence should
specify a key of all nulls (X·OO') and a key relational operator of greater than
(C'GT'). When executed, this initial GETS operation will receive the first
record in the file (following the record, if any, for which the key is all nulls.)
Subsequent GETS will retrieve the records following the first, in sequence.

74 Series/l Communications Facility WSC HLL Subroutines

o

o

o

o
FILEIO Return Codes

o

'iI'!:I[,1

Direct File Request Types

READ Read the record defined by the RRN field of the FCA into the
user-provided buffer.

SEOD Set the system-maintained EOD pointer to the record number provided in
the RRN field of the FCA. This number should range from 1 to the EOF
record of the file. This request is normally issued after the last record is
written to the data set, but you may issue it any time you want to establish a
logical end-of-file (EOF).

WRIT Write the record defined by the RRN field of the FCA into the
user-provided buffer.

Indexed File Request Types

GETD Get ~eration, direct read(GET~

GETS Get operation, sequential read (GETSEQ)

GTDUjGTRU Direct get, update mode (GET)

GTSU Sequential get, update mode (GETSEQ)

ICLS Close an indexed data set (DISCONN)

IDEL Delete operation (DELETE)

PUTD Put operation, delete mode (PUT DE)

PUTN Put operation, new mode, add a record to the file (PUT)

PUTU Put oj)eration, uJl<tate mode (PUTUP)

RELR Release a record held for update (RELEASEl

RELS Release from sequential processing mode (ENDSEQ)

IIndexed file requests call the Indexed Access Method function shown in parentheses. Files are
accessed in the PROCESS mode and are shared.

Figure 13. File Request Types

-1 Successful operation.

201 Data set not found.

203 No file table entries are available; all have updates outstanding.

206 Invalid function request type (this is returned for a valid Indexed Access
Method function if the Indexed Access Method link module is not linked
with the interface program).

207 Invalid key operator.

208 SEOD record number greater than data set length

Other return codes may be returned by the Indexed Access Method or by the
system data management support.

Using the Subroutines in a COBOL Program 75

'ill:U ••

CALL FILEIO Direct Access Coding Example

WORKING-STORAGE SECTION.

77 RC PIC S99 COMPo

77 BUFFER PIC X(2S6).

01 FILE-CONTROL-AREA.

05 REQUEST-TYPE PIC X(4).

05 DATA-SET-NAME PIC X(S).

05 NUMBER-OF-RECORDS PIC 999 USAGE COMP VALUE 1.

05 EOD PIC 99999 USAGE IS COMPo

05 RRN PIC 99999 USAGE IS COMPo

05 VOLUME-NAME PIC X(6).

•
•
•

CALL "FILEIO" USING FILE-CONTROL-AREA, BUFFER, RC.

CALL FILEIO Indexed Access Coding Example

In this example, change data set name, key length, and key location if you are
using secondary keys.

WORKING-STORAGE SECTION.

01 FILE-CONTROL-AREA.

05 REQUEST-TYPE PIC X(4) VALUE "GETD".

05 DATA-SET-NAME PIC X(S) VALUE "CUSTMAST".

05 RELATIONAL-OP PIC X(2) VALUE "EQ".

05 KEY-LENGTH PIC S999 COMP VALUE 6.

05 KEY-LOCATION PIC S999 COMP VALUE O.

05 FILLER PIC X(4).

05 VOLUME-NAME PIC X(6) VALUE "EDX003".

05 KEY-FIELD PIC X(6) VALUE "069592".

01 BUFFER PIC X(2S6) .

01 RC PIC S99 COMPo

•
•
•

CALL "FILEIO" USING FILE-CONTROL-AREA, BUFFER, RC.

76 Series/l Communications Facility WSC HLL Subroutines

o

1---\
1,/

o

o

o

o

'it':1

FT AB-Build Unprotected Field Table

CALL FTAB Format

FTAB Return Codes

FT AB sets up a table that describes the unprotected action field areas in the
input buffer following a CALL ACTION operation. You can use this table to
format the output buffer before a CALL ACTION and to position the cursor to
a specific field or to a precise location within a field.

FT AB is time-consuming; use it with care. If possible, perform the CALL
SETPAN and CALL FTAB operations in the beginning of the application
outside the normal looping operation of CALL ACTION and CALL FILEIO.

Note that you must define the FTAB data table in the program's save area to
be saved between calls to ACTION, CYCLE, etc.

[label] CALL" FT AB" USING table, size, code.

table
The table operand is made up of a sequence of 3-word entries. Each 3-word
entry describes an unprotected field of the screen image in the input buffer.
The first word is the row position; the second word is the column position;
and the third word is the length. The sequence begins at the location of the
variable named in the table operand; it is repeated for each successive field
of the screen.

This is an example of the table format:

TABLE row (word I of the first field)
column (word 2 of the first field)
length (word 3 of the first field)

TABLE+6 row (second field)
column
length

TABLE+12 row (third field)
column
length

• •
• •
• •
n

where n is equal to the value of the size operand.

Unused fields in the FTAB table are always set to zero.

size
is I word long and contains the number of entries in the table. This decimal
value can be in the range I to 32767.

code
is the name of a I-word field reserved for a return code from FT AB.

-I Successful return.

No data fields found.

2 Data table truncated.

Using the Subroutines in a COBOL Program 77

lil;1:1

CALL FTAB Coding Example

WORKING-5TORAGE 5ECTION.

77 RETURN-CODE PIC 59999 COMPo

77 FTAB-5IZE PIC 59999 COMP VALUE s.

LINKAGE 5ECTION.

01

01

01

INPUT-BUFFER

•
•
•

PFKEY

5AVEAREA.

OS ROW1

OS COL1

OS LEN1

OS ROW2

OS COL2

OS LEN2

OS ROWJ

OS COL3

OS LENJ

OS ROW"

OS COL"

OS LEN"
OS COLs

OS LENS

OS ROWS

•
•
•

PIC X(2s0).

PIC 599 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

PIC 59999 COMPo

CALL "FTAB" U5ING 5AVEAREA, FTAB-5IZE, RETURN-CODE.

78 Series/l Communications Facility WSC HLL Subroutines

o

o

o

o

o

GETCUR

GETCUR-Get Cursor Position

CALL GETCUR Format

GETCUR gets the cursor position returned to the program after a CALL
ACTION.

[label] CALL "GETCUR" USING row, column.

row
is the 18 bel of a word to contain the row number of the cursor. Possible row
numbers are 0-23; row 0 is the top line of the screen.

column is the label of a word to contain the column number of the cursor.
Possible column numbers are 0-79; column 79 is the rightmost position of a
row.

CALL GETCUR Coding Example

WORKING-STORAGE SECTION.

77 ROW PIC S99 COMPo

77 COLUMN PIC S99 COMPo

•
•
•

CALL "GETCUR" USING ROW, COLUMN.

Using the Subroutines in a COBOL Program 79

C)
.... 1

o
80 Series/ I Communications Facility WSC HLL Subroutines

o

o

o

LINK-Transfer Control to Another Program

CALL LINK Format

A call to LINK causes the named application program, which uses the work
session controller high-level language subroutines, to be loaded and executed
(replacing the current program). If a SETPAN or CHGPAN precedes the
LINK, the contents of the input buffer are displayed for 4978, 4979, or 3101
terminals and the buffer is freed. The output buffer is passed unchanged to the
linked-to program.

If the transaction identifier is invalid or cannot be found, control returns to the
caller; therefore, any return to your program from CALL LINK is an error
condition.

[label] CALL "LINK" USING tid.

tid
is the name of a variable that contains the 4-byte name of a transaction
identifier in the $.SYSPD data set. The TID specifies the
transaction-processing program to be linked to (right padded with blanks, if
necessary) .

CALL LINK Coding Example

WORKING-STORAGE SECTION.

77 LINK-TO-PGM PIC X(4) VALUE "MTM4".

•
•
•
CALL "LINK" USING LINK-TO-PGM.

Using the Subroutines in a COBOL Program 81

o

()

o
82 Series/l Communications Facility WSC HLL Subroutines

o

o

o

LINKON-Transfer Control to
Another Program with Output Cycle

CALL LINKON Format

A call to LINKON provides the same function as CALL LINK, except that a
screen is displayed and the interface program waits for an operator response.
The named program is then entered at its entry point with the input buffer
containing the unprotected characters from the screen.

If the transaction identifier is invalid or cannot be found, control returns to the
caller; therefore, any return to your program from CALL LINK is an error
condition.

[label] CALL" LINKON" USING tid.

tid
is the name of a variable that contains the 4-byte name of a transaction
identifier in the $.SYSPD data set. The TID specifies the
transaction-processing program to be linked to (right padded with blanks, if
necessary) .

CALL LINKON Coding Example

WORKING-STORAGE SECTION.

77 LINKON-TO-PGM PIC X(4) VALUE "~TM4".

•
•
•
CALL "LINKON" USING LINKON-TO-PGM.

Using the Subroutines in a COBOL Program 83

o

()

o
84 Series/l Communications Facility WSC HLL Subroutines

o

o

o

MENU-Return to Primary Menu

CALL MENU Format

CALL MENU immediately terminates the current program and causes the
primary menu screen to be displayed. The operator can get back to the primary
menu at any time by pressing PF3 on an 4979, 4978, or 3101.

[label] CALL "MENU".

Using the Subroutines in a COBOL Program 85

o

o
86 Series/l Communications Facility WSC HLL Subroutines

o

o

o

SETCUR

SETCUR-Set Cursor Position

CALL SETCUR Format

SETCUR specifies the position at which the cursor is to be displayed for the
next output cycle. The cursor position is expressed as a pair of row and column
coordinates on the screen.

Each screen panel specifies a cursor position to be used while the screen is
active (until the next SETPAN or CHGPAN). CALL SETCUR permits you
to override the cursor position established by a previous SETPAN or
CHGPAN. The cursor is moved on the next output cycle.

[label] CALL" SETCUR" USING row, col.

row
is the label of a word that contains the number of the row at which the
cursor is to be set. Allowable row numbers are 0-23; row 0 is the top line of
the screen.

col
is the label of a word that contains the number of the column at which the
cursor is to be set. Allowable column numbers are 0-79; column 79 is the
rightmost position of a row.

CALL SETCUR Coding Example

To set the cursor position to row 1, column 12 of a static-screen display:

WORKING-STORAGE SECTION.

77 ROW-ONE PIC S99 COMP VALUE 1.

77 COLUMN-TWELVE PIC S99 COMP VALUE 12.

•
•
•
CALL "SETCUR" USING ROW-ONE, COLUMN-TWELVE.

Using the Subroutines in a COBOL Program 87

o

o
88 Series/i Communications Facility WSC HLL Subroutines

o

o

o

SETPAN

SETP AN-Write Buffer to Screen

CALL SETPAN Format

SETPAN Return Codes

SETPAN causes the specified screen format name to be saved and sets a switch
to cause the screen format to be written to the screen during the next output
cycle. Any nulls in the screen image will be written unprotected; all other
characters will be written protected. The cursor position for the next display
after SETP AN will be set to the first unprotected character position.
Unprotected defaults that were specified when the screen was built are not
displayed by SETPAN.

[label] CALL "SETPAN" USING dsname, code.

dsname
is the name of a variable that contains the 8-byte data set name of the screen
format in the $.WSCIMG data set.

code
is the label of a word in which SETPAN will place a return code.

-1 Successful, new panel in buffer.

CALL SETPAN Coding Example

WORKING-STORAGE SECTION.

77 S1 PIC X(S) VALUE "SCRNTST1".

77 RC PIC S99 COMPo

•
•
•
CALL "SETPAN" USING S1, RC.

Using the Subroutines in a COBOL Program 89

Link Editing Your Programs

Sample Programs

You need to link edit your COBOL application program, your EDL stub
program, and the interface program. You can choose from two versions of the
interface program: O$HLSC if you don't use the indexed access method, and
O$HLSCI if you do. If you choose O$HLSCI, your link control data set must
include an INCLUDE IAM,ASMLIB statement.

Your link control data set must also include either an INCLUDE
O$SEOD,ASMLIB statement (if your program uses the SEOD function) or an
INCLUDE O$NOSEOD,ASMLIB statement (if it doesn't). O$SEOD
requires approximately 3700 bytes of additional storage in the application
program.

Figure 14 shows the link control data set for a COBOL application without the
indexed access method.

AUTOCALL COKAUTO,ASMLIB COBOL AUTO LINK MODULE
INCLUDE O$BASEC,EDX003 EDL STUB PROGRAM
INCLUDE MTMSUB",edx003 COBOL APPLICATION SUBROUTINE
INCLUDE O$HLSC,ASMLIB INTERFACE MODULE
INCLUDE O$SEOD,ASMLIB SEOD MODULE

*INCLUDE O$NOSEOD,ASMLIB NO SEOD MODULE
LINK CFMTM4,EDX002 REPLACE END UPDATE CONTROL STATEMENT

Figure 14. Link Control Data Set (No lAM)

Figure 15 shows the link control data set for a COBOL application with the
indexed access method.

AUTOCALL COKAUTO,ASMLIB
INCLUDE O$BASEC,EDX003
INCLUDE MTMSUB",EDX003
INCLUDE O$HLSCI,ASMLIB

*INCLUDE O$SEOD,ASMLIB
INCLUDE O$NOSEOD,ASMLIB

COBOL AUTO LINK MODULE
EDL STUB PROGRAM
COBOL APPLICATION SUBROUTINE
INTERFACE MODULE
SEOD MODULE
NO SEOD MODULE

INCLUDE IAM,ASMLIB lAM STUB
LINK CFMTM4,EDX002 REPLACE END UPDATE CONTROL STATEMENT

Figure 15. Link Control Data Set (lAM)

This example consists of a pair of programs that perform a simple file
maintenance task. It reads or writes a single record, or sets an end of data
(EOD) marker.

The first program displays a screen that requests the file parameters, which
include data set name and relative record number. It then issues a CALL
LINK to execute the second program, passing the file parameters.

The second program builds a file control area (FCA) from the file parameters
and performs the requested file I/O operation. The results of the operation are
displayed on the screen, and the program ends.

Note: The examples in this section operate only on data sets of less than 32K
bytes.

90 Series/l Communications Facility WSC HLL Subroutines

o

()

o

o

o

o

These sample programs perform the same functions as the sample file
maintenance programs in the chapter "Using the Subroutines in an EDL
Program." That chapter includes more detailed commentary about what each
step of each program does.

Using the Subroutines in a COBOL Program 91

COBOL Sample Program 1

*

*

IDENTIFICATION DIVISION.

PROGRAM-ID.

MTMSUB.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER.

IBM-S 1.

OBJECT-COMPUTER.

IBM-S 1.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 REQUEST-SCREEN PIC XeS) VALUE "REQ

77 IO-PROGRAM

77 RC

PIC Xes) VALUE "PROG2 "

·77 FTAB-SIZE

LINKAGE SECTION.

01 INPUT-BUFFER.

PIC S99 USAGE IS COMPUTATIONAL.

PIC S9999 COMP VALUE 5.

*

05 DATA-SET-NAME PIC xes) •
05 VOLUME-NAME PIC X(6) •

05 REQUEST-TYPE PIC X(4) •

05 RELATIVE-RECORD-NUMBER PIC 9999.

05 BUFFER-DATA PIC X(SO).

01 OUTPUT-BUFFER.

05 DATA-SET-NAME PIC xes) .
05 VOLUME-NAME PIC X(6) •

05 REQUEST-TYPE PIC X(4) •

05 RELATIVE-RECORD-NUMBER PIC 9999.

05 BUFFER-DATA PIC X(SO) •

05 EOD-RRN PIC 9999.

05 RETURN-CODE PIC -999.

01 TEB PIC S99 COMPo

01 lIB PIC S99 COMPo

01 SAVEAREA.

05 ROW1 PIC S9999 COMPo

05 COL1 PIC S9999 COMPo

05 LEN1 PIC S9999 COMPo

•
•
•

05 ROW 5 PIC S9999 COMPo

05 COL 5 PIC S9999 COMPo

05 LEN 5 PIC S9999 COMPo

PROCEDURE DIVISION

USING INPUT-BUFFER, OUTPUT-BUFFER, TEB, lIB,

SAVEAREA.

BEGIN.

CALL "FAN".

* BEEP UPON TERMINAL 1/0.

CALL "BEEP".

* RETRIEVE SCREEN IMAGE AND ABORT IF ERROR.

CALL "SETPAN" USING REQUEST-SCREEN, RC.

92 Series/l Communications Facility WSC HLL Subroutines

()

(""\
"'-./

o

o

o

o

IF RC IS NOT EQUAL TO -1,

CALL "MENU".

IF TEB EQUAL 1,

CALL "FTAB" USING SAVEAREA, FTAB-SIZE, RC.

IF RC NOT EQUAL TO -1,

CALL "MENU".

* DISPLAY SCREEN IMAGE, READ OPERATOR RESPONSE.

CALL "ACTION".

* MOVE DATA FROM INPUT BUFFER TO OUTPUT BUFFER.

MOVE CORRESPONDING INPUT-BUFFER TO OUTPUT-BUFFER.

* LINK TO PROGRAM WHICH WILL PERFORM FILE I/O.

CALL "LINK" USING IO-PROGRAM.

* ABORT IF LINK FAILS.

CALL "MENU".

Using the Subroutines in a COBOL Program 93

COBOL Sample Program 2

*

*

IDENTIFICATION DIVISION.

PROGRAM-ID.

MTMSUB.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER.

IBM-S 1.

OBJECT-COMPUTER.

IBM-S 1.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 LIST-SCREEN PIC XeS) VALUE "LST

77 RC PIC S99 USAGE IS COMPo

77 BUFFER PIC X(2s6).

77 FTAB-SIZE PIC S9999 COMP VALUE 10.

01 FILE-CONTROL-AREA.

05 REQUEST-TYPE PIC X(4).

05 DATA-SET-NAME PIC xes).
05 NUMBER-OF-RECORDS PIC S999 USAGE COMP VALUE 1.

05 EOD-RRN PIC S99999 USAGE IS COMPo

05 RELATIVE-RECORD-NUMBER PIC S99999 USAGE COMPo

05 VOLUME-NAME PIC X(6).

LINKAGE SECTION.

01 INPUT-BUFFER PIC X(500).

01 OUTPUT-BUFFER.

01

01

01

05 DATA-SET-NAME PIC xes) .
05 VOLUME-NAME PIC X(6) •

05 REQUEST-TYPE PIC X(4) .

05 RELATIVE-RECORD-NUMBER PIC 9999.

05 NUMBER-OF-RECORDS PIC 9.

05 BUFFER-DATA PIC X(SO).

05 EOD-RRN PIC 9999.

05 RETURN-CODE PIC -999.

TEB PIC S99 COMPo

lIB PIC S99 COMPo

SAVE AREA.

05

05

05

•
•
•

05

05

05

ROW1

COL1

LEN1

ROW10

COL10

LEN10

PIC S9999 COMPo

PIC S9999 COMPo

PIC S9999 COMPo

PIC S9999 COMPo

PIC S9999 COMPo

PIC S9999 COMPo

*
PROCEDURE DIVISION

USING INPUT-BUFFER, OUTPUT-BUFFER, TEB, lIB,

SAVEAREA.

BEGIN.

CALL "FAN".

* SET UP FILE CONTROL AREA.

94 Series/1 Communications Facility WSC HLL Subroutines

(',~ y

o

o

o

o

MOVE CORRESPONDING OUTPUT-BUFFER

TO FILE-CONTROL-AREA.

MOVE BUFFER-DATA TO BUFFER.

* RETRIEVE LISTING SCREEN AND ABORT IF ERROR.

CALL "SETPAN" USING LIST-SCREEN, RC.

IF RC IS NOT EQUAL TO -1.

CALL "MENU".

IF TEB EQUAL 1,

CALL "FTAB" USING SAVEAREA, FTAB-SIZE, RC.

IF RC NOT EQUAL TO -1,

CALL "MENU".

* PERFORM FILE I/O.

CALL "FILEIO" USING FILE-CONTROL-AREA, BUFFER, RC.

* PUT DATA INTO OUTPUT BUFFER SO IT WILL BE DISPLAYED.

MOVE CORRESPONDING FILE-CONTROL-AREA

TO OUTPUT-BUFFER.

MOVE BUFFER TO BUFFER-DATA OF OUTPUT-BUFFER.

MOVE RC TO RETURN-CODE OF OUTPUT-BUFFER.

* DISPLAY SCREEN IMAGE.

CALL "ACTION".

* END PROGRAM.

CALL "MENU".

Using the Subroutines in a COBOL Program 95

o

o
96 Series/1 Communications Facility WSC HLL Subroutines

o

o

o

DEBUGGING YOUR PROGRAM

You can use the EDX debug utility (SDEBUG) to interactively debug
application programs that use the work session controller high-level language
subroutines. This section explains special considerations that you should take
into account when using SDEBUG with this type of application. This discussion
assumes that you are familiar with the command structure and use of
SDEBUG.

SDEBUG Usage Considerations
Programs that use the high-level language subroutines are standard
Communications Facility transaction-processing programs and can be
debugged using the program dispatcher test and trace techniques.

The PD command:

> PD F TID xxxx TE ON

must be used to stop execution of the program so that SDEBUG can be
activated. (xxxx is the transaction identifier.) Refer to the section of the
Programmer's Guide that explains tracing and testing transaction-processing
programs.

Adjusting SDEBUG Addresses
Addresses used by SDEBUG are relative to the program load point (where the
application stub is). Debugging is much easier if addresses are made relative to
the beginning of the application code, so that the addresses appearing on the
program listing can be used. This is done by use of the SDEBUG QUALIFY
command, which adjusts the base address to which all SDEBUG addresses are
relative. Add the program load point address (given by SDEBUG or the SA
system command) to the offset address of the application code (given by the
application link map). Enter their sum as the operand of the QUALIFY·
command. After this command is entered, SDEBUG can be used in the
conventional manner.

For example, suppose that an application named TEST is to be debugged, and
that it loaded and stopped by the PD test command. Assume that it is loaded in
partition 2. Load SDEBUG into partition 2 and specify:

> $CP ~

> $L $DEBUG

PGM NAME: TEST

TEST IS ALREADY LOADED AT 3800

SHOULD A NEW COPY BE LOADED?

NO

The load point of TEST is hexadecimal 3800. From the link map for TEST,
you can get the offset to the application code. In the following example, assume
that the offset is hexadecimal 570. The QUALIFY command can now be
issued, specifying the sum of 3800 and 570.

> Q 3D70

You can now debug TEST using conventional SDEBUG techniques.

Debugging Your Program 97

o

C)

o
98 Series/1 Communications Facility WSC HLL Subroutines

o

o

o

This Glossary-Index combines a conventional index to this

publication with a glossary of technical Communications Facility

terms that appear in the book. Only terms unique to the

Communications Facility are defined here. For definitions of Event

Driven Executive terms, consult the EDX System Guide; for

definitions of 3270 terms, see the 3270 Component Description

manual.

A
about this book 3
access to application programs 16
ACTION. The work session controller high-level language

subroutine that enables the application program to display
a screen on the terminal and then obtain the operator's
response to that display.

call format
COBOL 63
EDL 21

overview 10
adjusting $DEBUG addresses 97
application program design considerations 17

B
BEEP. The work session controller high-level language

subroutine that enables the application program to sound
the tone, if the terminal has this feature, on the next output
as a signal to the terminal operator.

call format
COBOL 65
EDL 23

overview 10
buffers

c

overview 13
size 15
using 14

calling the subroutines 10
changing a panel

call format
COBOL 67
EDL 25

overview 10
CHGPAN. The work session controller high-level language

subroutine that enables the application program to modify
the terminal screen image dynamically.

call format
COBOL 67
EDL 25

overview 10
closing data sets 11
COBOL programming considerations 61
copy code modules 13
creating a save area

COBOL 61
EDL 19

cursor position
getting

COBOL 79

GLOSSARY -INDEX

EDL 35
setting

COBOL 85
EDL 43

CYCLE. The work session controller high-level language
subroutine that enables an application program to suspend
its execution to allow other applications to become active.

call format
COBOL 67
EDL 27

overview 11

D
data integrity, preserving on update

COBOL 75
EDL 31

data save area address, COBOL 13
debugging 97
design considerations 17
devices supported 9
direct files

FCA format
COBOL 73
EDL 29

FILEIO example
COBOL 76
EDL 32

disk/diskette I/O 11
display techniques sample program, EDL 46
dynamic screen creation sample program, EDL 47

E
ED L programming considerations 19
ending your program 17
example programs

F

COBOL 90
EDL 46

FAN. The work session controller high-level language subroutine
call that must be coded as the first instruction in COBOL
application program to allow for COBOL environment
initiatization.

coding example 15
format 69
overview 11

FCA(file control area) format, FILEIO
COBOL 73
EDL 29

field table. A table of information about the fields in a panel.
building

COBOL 77
EDL 33

overview 10
file control area (FCA) format, FILEIO

COBOL 73
EDL 29

FILEIO. The work session controller high-level language
subroutine that enables the application program to perform
read and write operations to disk or diskette.

call format

Glossary-Index 99

COBOL 73
EDL 29

examples
COBOL 76
EDL 32

indexed access method considerations
COBOL 75
EDL 29

overview 11
return codes

COBOL 76
EDL 31

file maintenance sample program
COBOL 90
EDL 49

file management overview 11
file request types

COBOL 74
EDL 30

format of subroutine calls
COBOL 61
EDL 19

FT AB. The work session controller high-level language
subroutine that sets up a table that describes the
unprotected input fields placed in the input buffer after a
SETP AN is issued.

G

coding example
COBOL 78
EDL 34

format
COBOL 77
EDL 33

overview 10
return codes

COBOL 77
EDL 33

GETCUR. The work session controller high-level language
subroutine that enables the application program to obtain
the current position of the cursor on 4978,4979, and 3101
displays.

I

coding example
COBOL 79
EDL 35

format
COBOL 79
EDL 35

overview 10

interrupt information byte (lIB) 13
image library 9. A library of screen images in data set

$.WSCIMG that can be displayed through the work session
controller BI command.

Indexed Access Method
FILEIO considerations

COBOL 73
EDL 29

support 11
indexed file support

FCA format
COBOL 74
EDL 30

FILEIO examples

100 Series/l Communications Facility WSC HLL Subroutines

COBOL 76
EDL 32

overview 12
sample program, EDL 47

input buffer
overview 13
using 14

integrity, preserving on update
COBOL 75
EDL 31

interrupt information byte (lIB) 13

L
LINK. The work session controller high-level language

subroutine that enables an application program to complete
its own execution by loading and executing some other
application program.

coding example
COBOL 81
EDL 37

format
COBOL 81
EDL 37

overview 11
link editing

COBOL 90
EDL 46

LINKON. The work session controller high-level language
subroutine that enables an application to request an
operator action and, when this action is complete, load and
execute some other application program.

coding example
COBOL 83
EDL 39

format
COBOL 83
EDL 39

overview 11
loading, program 16

M
MENU. The work session controller high-level language

subroutine that enables the application program to end its
own operation and return control to the primary
application load program.

format
COBOL 85
EDL 41

overview 11
MTMSUB 17
multiple terminal manager, compatibility with 9

o
opening data sets 11
output buffer

overview 13
using 14

O$HLSC 90
O$HLSCI 90
O$HLSE 46
O$HLSEI 46
O$NOSEOD 46, 90
O$SEOD 46, 90

o

o

o

o

o

p
parameters

passing 12
receiving 12

PF keys, reserved 17
preface 3
primary application load program 10. The work session controller

high-level language subroutine program that presents users
with a screen from which they select the application they
want to run.

primary menu screen. The work session controller high-level
language subroutines menu from which users select the
application they want to run.

overview 10
return to

COBOL 85
EDL 41

program function keys, reserved 17
program loading 16
program management overview 11
program structure 12
publications list 3

R
register usage 12
reserved program function keys 17

s
sample programs

COBOL 90
EDL 46

save area
creating

COBOL 61
EDL 19

receiving address, COBOL 13
size restriction

COBOL 62
EDL 20

screen display sample program, EDL 46
SETCUR. The work session controller high-level language

subroutine that enables the application program to set the
position of the cursor on 4978.4979. and 3101 displays.

coding example
COBOL 87
EDL 43

format
COBOL 87
EDL 43

overview 10
SETPAN. The work session controller high-level language

subroutine that enables the application program to retrieve
a specified screen from the $. WSCIMG data set and
display it on the terminal.

coding example
EDL 45
COBOL 87

format
EDL 45
COBOL 89

overview 10
return codes

COBOL 89
EDL 45

stub program, EDL 12, 13
structuring your program 12
subroutine call format

T

COBOL 61
EDL 19

TEB (terminal environment block) 13
terminal environment block (TEB) 13
terminals

management 10
supported 9

terminating your program 17
tone, sounding

call format
COBOL 65
EDL 23

overview 10
TID (transaction identifier) 15. The 4-character name of a

transaction.
TID 15. A statement in $.SYSPD that defines a transaction.
transaction. A special-format. user-defined message. routed

through the Communications Facility network by the
program dispatcher and processed at its destination by a
specific transaction-processing program.

transaction identifier (TID) 15. The 4-character name 'Of a
transaction.

transferring control to another program
coding example

COBOL 81
EDL 37

format
COBOL 81
EDL 37

overview 11
transaction-processing program 15.A program designed to process

transactions. The program dispatcher controls loading and
execution of transaction-processing programs as it receives
transactions.

transaction type. A 2-character indicator of the actions that occur
when a transaction is entered: loading one of four types of
program. creating a station. and/or sending the transaction
message to the station.

u
updating an indexed file, EDL sample program 48

w
work session controller (S.WSC) 9. The part of the

Communications Facility that allows an application
program to control multiple EDX devices attached to any
Series/1 in the network.

work session controller data set (S.WSCIMG) 9. A data set that
contains images that can be displayed through the work
session controller and members used to save datafor
transaction-processing programs.

work session controller high-level language subroutines. A set of
subroutines that allow an EDL or COBOL program access
to work session controller functions through subroutine
calls rather than through the WSC transaction.

work session controller terminal. A terminal managed by the work
session controller and accessed from an application
program by means of work session controller transactions.

writing a buffer to the screen

Glossary-Index 101

$

COBOL 89
EDL 45

SDEBUG considerations 97
SIMAGE 9
S.SYSPD A data set containing CP commands, path definitions,

transaction definitions, and transactions that are to be
processed when the program dispatcher is started.

entering programs into 15
$.WSC 9. The work session controller,· the part o/the

Communications Facility that allows an application
program to control multiple terminals attached to any
Series/] in the network.

S. WSCHLS transaction 16
S.WSMENU 10. A sample application program, distributed as

part o/the Communications Facility, that demonstrates
how to communicate with EDX terminals through the work
session controller.

102 Series/l Communications Facility WSC HLL Subroutines

o

o

o

o

o

READER'S COMMENT FORM

IBM Seriesl1 EDX Communications Facility
Work Session Controller High-Level Language Subroutines
Programmer's Guide

S L23-0090-0

This form may be used to comment on the usefulness and readability of this publication, suggest additions
and deletions, and list specific errors and omissions (give page numbers).

IBM may use and distribute any of the information you supply in any way it believes appropriate without

incurring any obligation whatever. You may, of course, continue to use the information you supply.

If you wish a reply, be sure to include your name and address.

COMMENTS

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

FOLD ON TWO LINES, SEAL AND MAIL

Fold and tape Please do not staple Fold and tape

... :

IIIIII
Business Reply Mail

First Class Permit 40 Armonk New York

Postage will be paid by:

International Business Machines Corporation
System Products Division
Dept 24W/037 - PAS5
1501 California Avenue
P. O. Box 10500
Palo Alto, CA 94304

No postage

necessary

if mailed

in the U.S.A.

..

Fold and tape Please do not staple Fold and tape

o

o

o

o

o

o

READER'S COMMENT FORM

IBM Series/1 EDX Communications Facility
Work Session Controller High-Level Language Subroutines
Programmer's Guide

S L23-0090-0

This form may be used to comment on the usefulness and readability of this publication, suggest additions
and deletions, and list specific errors and omissions (give page numbers).

IBM may use and distribute any of the information you supply in any way it believes appropriate without
incurring any obligztion whatever. You may, of course, continue to use the information you supply.

If you wish a reply, be sure to include your name and address.

COMMENTS

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

FOLD ON TWO LINES, SEAL AND MAIL

Fold and tape Please do not staple Fold and tape

... :

I" II
Business Reply Mail

First Class Permit 40 Armonk New York

Postage will be paid by:

International Business Machines Corporation
System Products Division
Dept 24W/037 - PAS5
1501 California Avenue
P. O. Box 10500
Palo Alto, CA 94304

No postage

necessary

if mailed

in the U.S.A.

..

Fold and tape Please do not staple Fold and tape

o

o

o

o

o

READER'S COMMENT FORM

IBM Series/1 EDX Communications Facility
Work Session Controller High-Level Language Subroutines
Programmer's Guide

SL23-0090-0

This form may be used to comment on the usefulness and readability of this publication, suggest additions
and deletions, and list specific errors and omissions (give page numbers).

IBM may use and distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.

If you wish a reply, be sure to include your name and address.

COMMENTS

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

FOLD ON TWO LINES, SEAL AND MAIL

Fold and tape Please do n~t staple Fold and tape

I ••

111111

Business Reply Mail

First Class Permit 40 Armonk New York

Postage will be paid by:

International Business Machines Corporation
System Products Division
Dept 24W/037 - PAS5
1501 California Avenue
P. O. Box 10500
Palo Alto, CA 94304

No postage

necessary

if mailed

in the U.S.A.

..

Fold and tape Please do not staple Fold and tape

o

o

o

o

o

READER'S COMMENT FORM

IBM Series/1 EDX Communications Facility
Work Session Controller High-Level Language Subroutines
Programmer's Guide

S L23-0090-0

This form may be used to comment on the usefulness and readability of this publication, suggest additions
and deletions, and list specific errors and omissions (give page numbers).

IBM may use and distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.

If you wish a reply, be sure to include your name and address.

COMMENTS

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

FOLD ON TWO LINES, SEAL AND MAIL

Fold and tape Please do not sta'ple

11111

Business Reply Mail

First Class Permit 40 Armonk New York

Postage will be paid by:

International Business Machines Corporation
System Products Division
Dept 24W/037 - PAS5
1501 California Avenue
P. O. Box 10500
Palo Alto, CA 94304

Fold and tape

No postage

necessary

if mailed

in the U.S.A.

..

Fold and tape Please do not staple Fold and tape

o

o

o

o

READER'S COMMENT FORM

IBM Series/1 EDX Communications Facility
Work Session Controller High-Level Language Subroutines
Programmer's Guide

SL23-0090-0

This form may be used to comment on the usefulness and readability of this publication, suggest additions
and deletions, and list specific errors and omissions (give page numbers).

IBM may use and distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.

If you wish a reply, be sure to include your name and address.

COMMENTS

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

FOLD ON TWO LINES, SEAL AND MAIL

Fold and tape Please do not staple

I II II

Business Reply Mail

First Class Permit 40 Armonk New York

Postage will be paid by:

International Business Machines Corporation
System Products Division
Dept 24W/037 - PAS5
1501 Ca1ifornia Avenue
P. O. Box 10500
Palo Alto, CA 94304

Fold and tape

No postage

necessary

if mailed

in the U.S.A.

'

Fold and tape Please do not staple Fold and tape

o

--- ------ - ---- ---- - ---- - - ----------_ .-

International Business Machines Corporation

'General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/ International

44 South Broadway
White Plains, New York 10601
(I nternational)

i.

SL23-0090-0

Pr inted in U.S.A.

/

