
Through LKED with Gun and Camefa:
Object/Load Modules, Link Edjtors,

Loaders, and What They Do for You

SHARE 83, Session 4 8 l l

John R. Ehrman

IBM Santa Teresa Laboratory
555 Bailey Avenue, B16/D3

San Jose, CA 95141
1-408-463-3543

EHRMAN@VNET.IBM.COM or USIBM9WH@IBMMAIL[.COM]

© IBM Corporation 1994

10 Aug 94

v-- J
.......................

T a b le o f C o n te n ts C o n te n ts -1

Introduction: 1
Topic Overview2
What Happens to Your Program? 3
Why is Linking Needed?6
Putting the Pieces Back Together.................. 7
Some General Definitions 9

Translator Output: Object Modules11
Some IBM-Specific Definitions 12
Translator Output: The Object Module 13
Object Module External Symbol Dictionary (ESD) 14
Origins of External Symbol Dictionary Items 15
Object Module Machine-Language Text (TXT) 16
Object Module Relocation Dictionary (RLD) 17
Object Module Internal Symbol Dictionary (SYM) 18
Object Module End-of-Module (E N D)......... 19
Other Object Module Records (CMS) 20

Combining Object Modules with the Batch Loader21
Combining Object Modules: a Simple Exam ple................ _____ 22
Combining Object Modules: First Object Module23
Combining Object Modules: Second Object Module24
Combining Object Modules: Batch Loader Actions25

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

V________ ___ J

1

mailto:EHRMAN@VNET.IBM.COM

Table of Contents Contents-2

Combining Object Modules: Resulting Program 26

Saving Linked Programs: Load Modules
What and Why are Load Modules? . . .
What Is In a Load M odule?..................
Schematic of a “Normal” Load Module
Linkage Editor Inputs and Outputs . . .
Linkage Editor Processing
Pseudo-Registers
Peculiarities of Load Modules

Overlay Modules
What and Why are Overlays?
Example of an Overlay Structure . .
Arranging an Overlay Structure . . .
An Overlay Structure In More Detail

Bringing Load Modules into Storage: Program Fetch
Program Fetch - A Relocating Loader

Looking Backward ...
Some History
Assumptions and Constraints on 1963 Designs
Limitations and Extensions....................... ..

27
28
29
30
31
32
33
34

35
36
37
38
39

40
41

42
43
44
45

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

V.__________________________ __ _________________ ________ _

SHARE 83, Session 4812
10 Aug 94

J

T a b le o f C o n te n ts C o n te n ts -3

What Are The Problems?46

Looking Forward ...
The DFSMS/MVS Binder and Loader

.............................. ____ 52

....... 53

Summary
What We've Discussed
References

54
55
56

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

2

/ ---------------------------- ■s
1

Introduction

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

__ J

r

Topic Overview 2

• What happens to programs “on the way to execution”

• Why program linking is needed

• What assemblers and compilers produce: object modules

• What program linking does with object modules

• Saving the results of linking: load modules

• What happens when load modules are put into storage

• Why the Linkage Editor and Loader are the way they are

• The future: the good things the new Binder does for you

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

J

What Happens to Your Program?

1. The Beginner's View

Hy Program

2. The After-a-Little-Experience View

We learn to distinguish between compile time and run time

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

' ------------------------------- ---

SHARE 83, Session 4812
10 Aug 94

r

What Happens to Your Program? ... 4

3. The After-Some-More-Experience View

We learn to distinguish among compile, link, and run times

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

4

What Happens to Your Program? ...

4. Our View

Our Concerns: The Program Linking Process

Our focus will be almost entirely on the five items in the “ Link Time” box

We will refer to some compile-time and run-time topics and issues

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

^ __ ____________________________ ... _ _
SHARE 83, Session 4812

10 Aug 94
J

r
Why is Linking Needed? 6

Anything that gets “big” is hard to manage
The world's oldest paradigm for handling big problems:
— “ Divide and Conquer": break the problem into manageable pieces
— Many dignified names have been given to this: Analysis, Modular

Decomposition, Top-Down Analysis, Program Partitioning, Structured
Programming...

— As your mother told you,
“Don't try to eat that whole thing! Cut it into pieces first!”

Naturally leads to the question:
— How do I put the divided and conquered pieces back together again?
— “Synthesis” is the dignified name
— As your mother told you,

“ If you took it apart, it's up to you to put it back together!”

Program linking and loading are fundamental to any system
— Linker capabilities (or shortcomings) have profound and widespread impacts

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

5

Putting the Pieces Back Together

Putting the pieces back together (“binding”) can occur at many times
— Compile time -- compile all needed items from source

— Link Edit (pre-execution) time -- everything “ bound” prior to execution

— Program initiation time -- everything “bound” immediately prior to execution
— Execution time -- pieces “ bound” only if required

Choice of “binding time” implies trade-offs:
— Earlier times: efficiency vs. inflexibility

— Later times: efficiency, flexibility, modifiability vs. costs

— “Efficiency” is measured in many dimensions...!

Program re-composition requires additional information:
— A way to name the pieces to be bound
— A way for the pieces to refer to one another

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

V _______________ :___

SHARE 83, Session 4812
10 Aug 94
__ J

Putting the Pieces Back Together ...

f----------
0°

• In this discussion:
— Information to assist with “ re-composition" (or “ binding”)

— External names: used to name the pieces to be bound

— External names, address constants: let the pieces refer to one another

• Our concerns, and the program re-composition tools involved:
— Link-edit (pre-execution) time: Linkage Editor

— Program initiation time: Batch Loader

— Execution time: Operating System Program Fetch services

• Understanding the pieces, and how they were bound
— Link Editor and Batch Loader MAPs? AMBLIST?

— DFSMS/MVS Binder is much more informative (more about this, later)

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

6

Some General Definitions

Note: many of these terms are used quite flexibly in this industry...

• Load, loading
— Place a module into central storage

• Link, linking
— Resolve symbolic (external) names into offsets or addresses
— Combine multiple (input) name spaces into a single (output) name space
— Sometimes called “ binding” (but that term is much more general)

• Absolute loader
— Places a module into storage at a fixed address, without relocating anything
— Example: CMS's “traditional” non-relocatable MODULES

• Relocate, relocation
— Assign actual-storage or module-origin-relative addresses to address constants

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

V ___

SHARE 83, Session 4812
10 Aug 94

r
Some General Definitions ... 10

• Relocating loader
— Places modules into storage and updates (relocates) addresses to their actual

“ final” value
— Example: Program Fetch, CMS Loader

• Linker, Linkage Editor
— Creates linked relocatable modules for later loading
— Example: Linkage Editor

• Linking loader
— Places modules into storage with linking immediately prior to program execution
— Example: MVS Batch Loader

• Dynamic loading
— Place modules into storage (with relocation) during program execution
— Examples: parts of modules loaded by overlay, or modules loaded via LOAD,

LINK, XCTL, ATTACH
• Dynamic linking

— Place modules into storage with linking during program execution
— Example: TSS

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

7

/ ---------------------------- -----------------------------\
11

Translator Output: Object

Modules

• For the exciting details, see Appendix C of SC26-4941,

High Level Assembler/MVS & VM & VSE Programmer's Guide

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

J

Some IBM-Specific Definitions 12

Control Section (CSECT, for short)
— A collection of program elements, all bearing fixed positional relationships to one

another
— A unit whose addressing and/or placement relative to all other Control Sections

does not affect the program's run time logic
— The basic unit of program linking
— Types: Ordinary (CSECT), Read-Only (RSECT), Common (COM)

External Symbol (a “Public” symbol; internal symbols are “Private”)
— A name known at program linking time
— A symbol whose value is intentionally not resolved at translation time

Address Constant (“Adcon”)
— A field within a Control Section into which an actual address will be placed

during program relocation

Pseudo-Register (or, External Dummy Section)
— A special type of external symbol with a separate “ name space”
— More about these, later

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

8

. - - — --V

Translator Output: The Object Module 13

• 80-character (card-image) records, with 3-character ID in columns 2-4

ESD External Symbol Dictionary

TXT Machine Language instructions and data (“Text”)

RLD Relocation Dictionary

SYM Internal Symbols

END End of Object Module, with IDR (Identification Record) data

• One object module per Compilation Unit

• “Batch” translations may produce multiple object modules

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

v---

SHARE 83, Session 4812
10 Aug 94

__J

Object Module External Symbol Dictionary (ESD)
\

14

• Describes external symbols (1 to 3 16-byte items per record)
• Numbered sequentially within each object module, starting at 1

— The (16-bit) number is called the ESDID
• Four basic classes of external symbol:

SD,CM Section Definition: the name of a control section
- Data: ESDID, length, section-origin address, AMODE & RMODE
- Blank SD name sometimes called Private Code (PC)
- Common (CM) handled differently from SD items

LD Label Definition: the name of a position at a fixed offset within
a Control Section; typically, an Entry Point
- Data: Address of the label, and ESDID of the section it's in

ER,WX External Reference: the name of a symbol defined
“elsewhere” to which this module wants to refer
—■ Data: ESDID

PR Pseudo Register: name of a Pseudo Register
(the Assembler calls it XD, External Dummy Section)
- Data: ESDID, PR length and alignment requirement

• ESD records must appear first in each object module

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

J

Origins of External Symbol Dictionary Items 15

• ESD items originate in various language constructs, such as:

ESD item Assembler VS Fortran OS PL/I VS COB. II C/370
SD Csect,

Rsect
Routine,
Block Data

Procedure Outermost
program

R/W data

CM Com Common External
static

ER Extrn,
V-con

Call,
Common

Call, data
reference

Static Call
Literal

Call, data
reference

LD Entry Entry Entry Entry Function
PR, XD DXD,

Q-con +
Dsect

File,
Fetchable,
Controlled

Writable
static

WX Wxtrn

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

Object Module Machine-Language Text (TXT) 16

• Contains machine language instructions and data

— Up to 56 bytes per record

• Data:

1. How many bytes of text data are in this record

2. ESDID of the control section it belongs in

3. Address within that control section where the text is to be placed

• Always a contiguous string of bytes

— Discontinuities in the “text” stream start a new TXT record

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

10

— --N

Object Module Relocation Dictionary (RLD) 17

• Packed stream of 2-byte or 4-byte RLD items
• Information about relocatable (and Q, CXD) address constants

— Where the constant is to be found
— What value should be in the constant (what it should point to)

• Each RLD item has 6 pieces of information:
1. R Pointer: ESDID of the name whose "target address" it should contain

— I.e., what it points to
2. P Pointer: ESDID of the section where the constant resides

— I.e., where to find it
3. Address: the address at which the constant resides within its section (as

specified by the P pointer)
4. Length: the constant's length (in bytes)
5. Type: whether it's an A-type (data), V-type (branch), Q-type {PR offset), or CXD

(PR “Cumulative Length”)
Warning!! A- and V-type constants can be very different!! (More later...)

6. Direction: whether the target address should be added or subtracted for A-type
constants

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994
__ __________________________________ .___.___________ .. _

SHARE 83, Session 4812
10 Aug 94

____ ___>

Object Module Internal Symbol Dictionary (SYM)
-- >

18

• Contains infernal symbols used by source translator
— Produced by Assembler, VS Fortran

• SYM information is (sometimes) useful for debugging

• Ghastly bit-squeezing packed format (details are truly impressive)
— Maximum symbol length is 8 characters

• Linkage Editor doesn't make SYM records convenient to use
— Copies SYM (and SD,CM info from ESD) records to front of load module

— No system facilities for retrieving them easily!

• Recommend using High Level Assembler SYSADATA output instead
— More information, in a more usable format

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

V._________________________ . __)

11

Object Module End-of-Module (END) 19

Primary function is to signal the end of the object module

Some additional (optional) information may be provided:
- Requested execution-time entry point

— By ESDID and address, or by external name

— These requests may be overridden by other factors or controls

- Actual length of a Control Section whose length was not specified on its ESD
record

— This feature saves effort in some compilers

- Identification (IDR) data (0, 1, or 2 19-byte IDR items)

— Translator's product number, with version and modification level

— Date (YYDDD format) of the translation

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

V __

SHARE 83, Session 4812
10 Aug 94
______J

r
Other Object Module Records (CMS)

"N
20

• CMS LOAD has meager control-statement capabilities
— Only ENTRY and LIBRARY statements

• Object-like records can be used for some control functions
REP Replacement text: behaves like a TXT record, but hex values

are specified in EBCDIC for ease of preparation
- Also used by the VSE Linkage Editor

Loader Terminate: last record of a group of object modules,
with optional indication of an entry address and SETSSI info
Include Control Section: placed ahead of an object module to
override the original length of a named control section
Set Location Counter: sets the (absolute virtual) load address at
which the following modules will start loading
Set Page Boundary: sets the loader's location counter to the
next page boundary: may appear before/after any module

See the CMS LOAD command description for further details

LDT

ICS

SLC

SPB

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

12

21

Combining Object Modules with

the Batch Loader

• A simple example of initiation-time linking

• Illustrates the basic principles involved in linking
— Applicable to CMS, also

• It can do a lot more than this example shows

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

V______________________________________
SHARE 83, Session 4812

10 Aug 94
J

r
Combining Object Modules: a Simple Example

\
22

Suppose a program consists of two source modules:
Module 1 Module 2

Loc Loc
000 MAIN

COMMON /WORK/ ...
000 SUB

COMMON /WORK/ ...
EXTERNAL ZDATA

CALL SUB --- •

- - - 700 Addr(WORK)
200 Addr(SUB) 704 Addr(ZDATA)
204
208

Addr(WORK)
Addr(ZDATA)

ENTRY ZDATA
260 ZDATA

—
(For this example, values
are given in decimal)

— Program MAIN contains a ZDATA entry point, and refers to the COMMON area
named WORK

— Subprogram SUB refers to the external name ZDATA, and to the COMMON area
named WORK

Translation produces two object modules

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

13

Combining Object Modules: First Object Module 23

The object module for Module 1 would look roughly like this:

ESD SD ID-1 MAIN Addr-000 Len-300
ESD CM ID-2 WORK Addr*000 Len-600
ESD LD ID* 1 ZDATAi Addr*260
ESD ER ID-3 SUB
TXT ID-1 Addr*

ooo

'abcdefghij k'
TXT ID-1 . .. etc.
TXT ID-1 Addr-100 'mnopqrstuvw'
TXT ID-1 Addr*260 '01234567890'
TXT ID-1 »• • etc.
RLD PID-1 RID*3 Addr-200 Len=4 Dir-+
RLD PID-1 RID-2 Addr=204 Len=4 Dir-+
RLD PID-1 RID-1 Addr-208 Len-4 Dir-+
END Entry-MAIN

SO for CSECT MAIN, ESDID-1, Len=300
CM for COMMON WORK, ESDID-2, Len*600
LD for Entry ZDATA, ESDID-1, Addr=Z60
ER for reference to SUB, ESDID-3
Text for MAIN, address 000
Text for MAIN
Text for MAIN, address 100
Text for MAIN, address 260
Text for MAIN
RLD item for Addr(SUB)
RID item for Addr(WORK)
RLD item for Addr(ZDATA)
End of module, entryname-MAIN

• ESD defines two control sections (MAIN and WORK), one entry
(ZDATA), one external reference (SUB)

• RLD contains information about three address constants

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

-̂------------------ --
SHARE 83, Session 4812

10 Aug 94
___ J

Combining Object Modules: Second Object Module 24

The object module for Module 2 would look roughly like this:

ESD SD ID-1 SUB Addr-i000 Len-800
ESD CM ID-2 WORK Addr-i00Q Len-400
ESD ER ID-3 ZDATA
TXT ID-1 Addr-040 'qweruiopasd'
TXT ID-1 • * • etc.
TXT ID-1 Addr-180 ' jklzxcvbnm'
TXT ID-1 ... etc.
RLD PID-1 RID-2 Addr-700 Len*4 Dir*+
RLD PID-1 RID-3 Addr-704 Len*4 Dir*+
END

SO for CSECT SUB, ESDID-1, Len*800
CM for COMMON WORK, ESDID-2, Len-400
ER for reference to ZDATA, ESDID-3
Text for SUB, address 040
Text for SUB
Text for SUB, address 180
Text for SUB
RLD item for Addr(WORK)
RLD item for Addr(ZDATA)
End of module

• ESD defines two control sections (SUB and WORK), one external
reference (ZDATA)

• RLD contains information about two address constants

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

14

Combining Object Modules: Batch Loader Actions 25

The Batch Loader
1. Builds a single (“Composite") ESD

— Merges ESD information from the object
modules

— Renumbers ESDIDs, assigns adjusted
address values to all symbols

2. Places text in storage at designated
addresses

3. Determines length of COMMON (retains
longest length)
— Allocates storage for it

4. Relocates address constants
5. Sets entry point address
6. Enters loaded program

Suppose initial program load address
is 123500

Composite ESD

Name Type ESDID Addr Length

MAIN SD 01 123500 300
ZDATA LD 01 123760
SUB SD 02 123800! 800
WORK CM 03 124600 ‘ 600

(end) 125200

entry 0! 123500

(For this example, values are
given in decimal)

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

_ _ ___J

Combining Object Modules: Resulting Program
A

26

The resulting program, loaded into storage for execution:
123500 (MAIN) 123800 (SUB) 124600 (WORK) 125200

(end)

Storage is allocated for three control sections (two SD, one CM)
Address constants are resolved to designated addresses
Entry point is at address of MAIN (123500)

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

15

27

Saving Linked Programs: Load

Modules

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

v*__ ______________________________ ___________________________ _

SHARE 83, Session 4812
10 Aug 94

r

What and Why are Load Modules? 28

Basic executable unit for MVS-like systems
— The world's longest-surviving form of “executable binary”

Designed for
1. Loading into storage with minimal overhead

— Binary (zero-origin) program.image, requiring only relocation

2. Editing
— Retains enough information to permit

— Replacement of any component
— Restructuring of the entire module
— Renaming of (almost!) any element

— Unless you tell the Linkage Editor not to keep it! (NE option)

3. Minimal run-time storage requirements
— Only “necessary” items are in storage
— Complex overlay structures are supported

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

16

What Is In a Load Module? 29

• Load module structure very similar to object module's
— Simplifies processing of each

• Basic contents (analogous to object module records)
CESD Composite External Symbol Dictionary
Text Machine language instructions and data
RLD Relocation Dictionary
SYM Object-module records copied directly into load modules
IDR Identification records (from object modules, Linkage Editor,

user, and ZAP)
EOM End of module

• Additional items having no object-module analogs
CTL Control records, for reading and relocating text records
SEGTAB Segment table, for overlay structures
ENTAB Entry table, for overlay structures
EOS End of Segment, for overlay structures

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

V J

Schematic of a “Normal” Load Module 30

Basic format is called “block format” or “block loaded”

SYH

CESD

1DR

CTL

Text

CTL/RLD

Only if TEST option, and SYM info is present in inputs
(May also contain some ESD data)

Omitted if NE option

Info about first text record

First text record, placed at module load address

Relocate first text record, and read second text record
at specified offset from module load address

Text

EOM/RLD

Last text record

Relocate last text record, signal end of module

Location of first text record kept in PDS directory £ *)TTR)

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

17

Linkage Editor Inputs and Outputs 31

• Inputs
— Object modules

— Load modules

— Control statements to direct the Linkage Editor
— Where to get additional inputs:

INCLUDE, LIBRARY

— What to do with all the pieces:
REPLACE, CHANGE, INSERT, ORDER, PAGE, OVERLAY, EXPAND

— How to describe and name the output module:
ENTRY, NAME, SETSSI, IDENTIFY, SETCODE, MODE, ALIAS

• Outputs
— Load module(s)

— Listing, terminal messages

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994
____________________________ _____ .___________

SHARE 83, Session 4812
10 Aug 94

____ J
f

Linkage Editor Processing 32

Two-pass process (very much like an assembler!)
Pass 1
— Read all inputs (explicitly or implicitly designated)

— If not NCAL, unresolved ERs cause library search (WXs never do)
— Build symbol table (CESD) by merging ESD/CESD items from all inputs
— Determine lengths, orderings, offsets, etc.

— First SD wins, longest CM wins, all nonzero-length PC items kept, etc.

Intermediate processing
— Resolve interdependences
— Assign relative addresses
— Write module MAP (and XREF, if entire module is in storage)

Pass 2
— Write out all the pieces in the correct order, with relocation data
— STOW directory entry (or entries, if ALIASes)
— Write XREF (if module didn't fit in storage)

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

18

Pseudo-Registers 33

• Allow sharing by name in separately translated re-entrant programs
• PRs have their own name space

— Separate from all other external symbols
— PR names may be identical to other types of ESD name without “collision”

• PR items refer to offsets in a “link-time Dummy Control Section”
— Hence the Assembler's name, “External Dummy” (XD)
— The dummy section is also called the “ Pseudo-Register Vector” (PRV; up to 1024

more “ registers”)
• Resolved somewhat like commons:

— But: no storage allocated at link time, as for commons
— If multiple definitions, longest length and strictest alignment win
— Accumulated length/alignment of PRV items then determine offsets
— Offset value placed in Q-type address constants referencing PR name
— Total size of the “ link-time DSECT” is placed in a “CXD” adcon item

• Runtime code must allocate a storage area of the right (CXD) size
• Runtime references access fields at desired offsets in that area, using

the Q-con contents for “displacements”

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

Peculiarities of Load Modules 34

• SYM and IDR put affront of module, to simplify Link Editor logic
• CESD is at front of module, to simplify re-processing of load modules
• PDS directory info allows Program Fetch to skip this stuff

— First text record's length and disk location; storage needed; attributes; etc.

• Small record sizes
— SYM < 244; CESD < 248; IDR, CTL RLD < 256; Text < track length

• If first “real” text is not at relative zero, write a 1-byte record at zero!
• “Directory name space” (PDS directory names) unrelated to external

(CESD) names (which may be unrelated to internal names, too!)
— Can assign member and alias names unrelated to CESD names

— Object module item named AA, renamed to BB in load module, PDS member is CC
— Alice would be at home in this Wonderland!

— TSS Linkage Editor didn't allow this confusion

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

19

r ■-------------- >
35

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

V _____ __

SHARE 83, Session 4812
10 Aug 94

J

r

What and Why are Overlays?
A

36

• Overlays are more complex than block-format modules
— Different parts of a module may share the same storage

— At different times, of course!
— Require special Linkage Editor considerations

• Pros:
— Faster initiation: only part of the program need be loaded to start
— Economical storage use: only load what's needed, when it's needed
— Can always re-link to block format if there's enough storage

— But: Behavior may be different, due to loss of re-initializations!

• Cons:
— Programs cannot be shared (no re-enterability)
— More complex to specify, greater care needed in coding

— Local data may or may not be “persistent” across calls
— Distinction between V-type and A-type adcons is important
— External data sharing may be more complicated

— Additional overhead in calls to segments needing to be loaded
— Calls among certain modules may be forbidden (or wrong)

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

20

Example of an Overlay Structure 37

• Suppose MAIN calls SUBA
and SUBB
— Neither calls the other

• In “block format,” they
would appear in storage as

MAIN
CALL SUBA
CALL SUBB

SUBA
Do SUBA stuff
Return

SUBB
Do SUBB stuff
Return

• SUBA and SUBB might be
overlaid, like this:

MAIN
CALL SUBA
CALL SUBB

SUBA
Do SUBA stuff
Return

SUBB
Do SUBB stuff
Return

• SUBA and SUBB share the
same storage

• The overlay supervisor must
(help) make this work!

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

Arranging an Overlay Structure 38

• Figure out what modules
can share storage

• Draw an “overlay tree” of
the structure

SEGTAB

Entry— > MAIN
Point

Root
Seg
ment

— Structured as a tree, with
root at top (low address)

— Control statements describe
desired structure

. — In this example, three
overlay nodes: A, B, C

• Root segment is always
present
— Contains entry point,

autocalled sections,
Segment Table (SEGTAB
tells what segments are in
storage)

AUT01
AUT02

Overlay A

SUBA

SUBJ

— Overlay B

SUBB

Overlay C.-

SUBV SUBW
SUBR SUBS

SUBT

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

21

An Overlay Structure In More Detail 39

OK/oiriê y

L - ♦ ! ENTAB? I Entry
--------- -j A(Su3!) | Table

I A(Sü3R) |— i
H a (s u b s)| j
I Isvc I |
t t

i--- V -r"----- j
| SUBS | | SU0R j
|V(SUBT)(| | |
I M l I
I I | IV(SUBJ)(— 11-----111-------1

Entry
I---1A(SUBV) | Table
I jA(SUBW)j] Q
i Isvc I V

SUBV
---- 1------ 1

| SUBW |

A(WORK)
I I

h '------1

WORK J □

H SUBTI__ M Q

• Each segment with subsidiary
segments is suffixed with an Entry

Jtc'̂ 5 Table to assist loading of the
“lower” segments
— SVC instructions call Overlay

Supervisor

• _\Mype adcons may resolve to an
ENTAB, not to the named symbol!
— V-cons for SUBs in lower segments

resolve to ENTAB (Q)
— V-con for call in same or higher

segment resolves directly (0)

• A-cons always resolve directly
— Addresses in ENTAB resolve directly

to SUBs (Q)
— Sections in same segment { Q)

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

J
r A

40

Bringing Load Modules into

Storage: Program Fetch

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

22

Program Fetch -- A Relocating Loader 41

Used for all module loading from disk (LOAD, LINK, XCTL, ...)
— Except during IPL...

Skip over everything preceding the first control record
— SYM, IDR, CESD (PDS directory info makes the skipping simple)
— Therefore, no linking! (CESD info has been ignored)

Control records tell length and relative address of following text record
— May also have RLD information for preceding text block

A,V-cons relocated using only address information in RLD
— R and P pointers ignored; RLD information discarded after relocation
— Q-cons and CXD were completed at linkage-edit time

Note: two levels of relocation are involved:
1. Linkage Editor adjusts addresses relative to module zero origin
2. Program Fetch adjusts addresses relative to module's “ load address”

Overlay Supervisor
— SEGTAB and ENTABs manage segment traffic; Program Fetch loads segments

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

^___ ___________ J

r --- N

42

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

23

Some History 43

• Linkage Editor
— Written in 1963-65 by small team in IBM Poughkeepsie

— Program Fetch, Overlay Supervisor done at the same time

— PDS's, BLDL, STOW, etc. added to OS in response to LKED needs

— Initial release ran in 18KB (32KB machines were big!)

• OS Batch Loader
— Written much later (about 1972)

— Appeared with OS/360 Release 17

• Very advanced technology for that time
— Long ago, in a far away galaxy, ...

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

V.__

SHARE 83, Session 4812
10 Aug 94

J

Assumptions and Constraints on 1963 Designs
i

44

Early-binding philosophy: systems are expensive, people are cheap
— Programs run for long periods between needed changes
— Therefore: recompile “deltas” and re link them into the application module
Re-linking is cheaper than re-building from scratch
— Therefore: keep enough info within the module to make “editing” possible

DASD is slow, and central storage is precious and expensive
— Therefore: short records are a good thing
— Therefore: packing module pieces tightly is a good thing
— Therefore: overlay structures are a very good thing
24-bit addresses and lengths are adequate for a very long time
— Therefore: Everything must be smaller than 16MB
— Therefore: AMODE and RMODE were “ patched in”
— Therefore: no “ scatter loading” by RMODE; entry points don't have own AMODE
8-character upper-case EBCDIC names are adequate for a very long
time
Central storage is real (not virtual)

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

24

Limitations and Extensions 45

• Many current limitations that products must cope with:
- Short names, 16MB size, mono-modal modules, rigid formats, inadequate ESD

types, no room for descriptive data, internal table limits, strange loopholes, ...

• Some products invent “private” object formats, overload ESD names
— Feed their output through a “ pre-linker” ahead of the Linkage Editor

Additional Linking Step

— Updates may force complete re-link from private objects
— May have to “ play games” to fool some existing tools (e.g. CMS TXTLIB)

We must consider new formats for translator outputs
— Many languages need more function: C, Ada, Fortran-90, anything 0-0

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

J

What Are The Problems?
\

46

• One hardly knows where to start!

• Some problems are generic, some are particular to each record type

• General problems:

— Fixed format of records and fields

— 16MB size/length limits due to 24-bit length and address fields

— Inefficient use of file space

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

25

What Are The Problems? ... 47

• ESD records:
— Long names are impossible to accommodate (without loophole games)
— 16 MB size/length limit on everything
— Inadequate range of ESD types
— Mono-modal modules and entry points

— Entry points in a CSECT can't have different AMODEs

— No properties information
— Is it really RENT? Movable? REFR? REUS? Read-Only? Is it R/O data (constants)?

Pure code? Code and R/W data?

— No way to specify section alignment
— CM/PR “ownership” very muddled
— No data can be specified for CM items
— No attributes of modules or entries

— Code? Data? (Should A or V point to this?)

— No way to provide descriptive data

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

What Are The Problems? ... 48

• TXT records:

— Maximum of 70% utilization

— No way to specify text attributes

- Is it code/data? Is it RO/RW/XO?

— Do pieces have different R MODEs?

— Can't specify initializations for holes/gaps

— Can't request data encoding or compression

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

26

What Are The Problems? ... 49

• RLD records:

- Available “type info” is often abused (or not respected) by coders

— A-type and V-type adcons (mis-)used as essentially equivalent

- No checking is done between pointer/pointee

- Cannot specify addressing modes for pointers

- Cannot assign attributes for references

— E.g. this is a pointer to data; to code; etc.

- No “extended attributes” to allow interface-conformance checking

Linkage Editing, Loading, Object & Load Modules
(0 IBM Corporation 1994

V.___

SHARE 83, Session 4812
10 Aug 94
___ _ __J

What Are The Problems? ... 50

• SYM records:
— Painfully complex, hard-to-use data formats

— Symbolic names are truncated to 8 characters

— No XREF and reference information is provided

— No tie-backs from code and symbols to source statements
— No source statements are retained, either!

— Writing listing-scanners is not a very good approach...

• END records:
— No way to specify entry point's AMODE

— Cannot specify more than one deferred length

— No provision for richer (and more useful) IDR data

Linkage Editing, Loading, Object & Load Modules
(0 IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

27

What Are The Problems? 51

• And then there are Load Modules:

— Inherit all the shortcomings of object modules

— Short names, single modes, 16 MB limits, etc.

— And add some new ones, too...

— Peculiar module structures

— Inefficient record sizes

— When re-linking, some items are “sticky”

• PCs with code, CM lengths, PR length/alignment, SYM, IDR, ...

— System can't LOAD SYM, IDR data even if you want to!

• It's amazing that all this has worked (somehow) for so long a time!

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

V ___ ____J
\

52

Looking Forward

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

28

The DFSMS/MVS Binder and Loader 53

Totally new product and new technology
— Binder replaces Linkage Editor, Batch Loader
— Loader replaces Program Fetch
— Answers a very large set of customer requirements

Fixes a vast array of usability and performance problems
— Many new messages, added information, and detailed diagnostics
— Almost all internal constraints removed
— Linkage Editor is quirky, far too forgiving of errors, full of loopholes

Supports a new “execution unit” - a Program Object
— Enhances performance, flexibility, integrity
— Internal structure not externalized; data-access interfaces provided
— Stored in PDSE's, which fix almost all PDS problems (space, integrity,

compression, performance, sharability, etc.)

Base for future enhancements
Available March 1993, in DFSMS/MVS 1.1

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

_____ .____ .___ ____ ______J
f A

54

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994

SHARE 83, Session 4812
10 Aug 94

29

f--- —
What We've Discussed 55

• Why program linking is a Good Thing

• What is in object modules, and where they come from

• How inter-module references are resolved to form an executable
program

• What is in load modules, and how they are built by the Linkage Editor

• How load modules are loaded into storage and relocated

• Some history

• Where this technology is going

Linkage Editing, Loading, Object & Load Modules SHARE 83, Session 4812
© IBM Corporation 1994 10 Aug 94

V ___ __ ___ J

r

References 56

1: DFSMS/MVS V1R1 Program Management (SC26-4916)

2. Linkage Editor and Loader User's Guide

3. Linkage Editor, Loader Program Logic manuals

4. High Level Assembler/MVS & VM & VSE Language Reference
(SC26-4940)

5. High Level Assembler/MVS & VM & VSE Programmer's Guide
(SC26-4941)

• These Assembler publications describe the most basic forms of language
elements that create inputs to the Linkage Editor, Loader, and Binder.

6. Linkers and Loaders, by Leon Presser and John R. White, ACM
Computing Surveys, Vol. 4 No. 3, Sept. 1972, pp. 149-167.

Linkage Editing, Loading, Object & Load Modules
© IBM Corporation 1994 Rev. 20 Jun 94, 1630

SHARE 83, Session 4812
10 Aug 94

30

¥

V

