
(1")

1:,,)
C"J

18. Murray, W. D.; Moss, C.E.; Parr, W.H. and Cox, C., A radiation and
industrial hygiene survey of video display terminal operations, Human
Factors, 1981, 23 (4), 413-420.

19. Quick, M. J., 1982, "Information Systems Requirements for Development
Engineering Productivity," Task Force Report, Internal IBM Report,
Kingston, New York. Cited in Minicucci, R. A., sub-second response
time, a way to improve interactive user productivity, IBM STL, 28, 1982.

20. Rosenthal, S.G., and Ghundy, J.W., Avoiding eye problems with VDU's,
Physics Technology, 1980, II 175-186.

21. Rouse,- W. B., 1975, Design of man-computer interfaces for on-.iine
interactive systems. Proceedings of the IEEE, 63 (6), 847-857.

22.

23.

24.

25.

26.

27.

Shneiderman, B., 1979, Human factors experiments in designing
interactive systems, Computer, 12, 9-19.

Smith, M. J., Cohen, B. G., F. Stammerjohn, L.W. Jr., and Happ, A., An
investigation of health complaints and job stress in video display
operations. Human Factors, 1981, 3l, 387-400.

Smith, W.A., Jr., 1967, Data Collection - Systems - Part 1:
Characteristics of Errors. Journal of Industrial Engineering,
18 (12), 703-707.

Stewart, T.F.M., Displays and the software interface, Ergonomics,
1976, 7 (3), 137-146.

Thadhani, A.J., 1981, "Interactive User Productivity, II IBM Systems
Journal, 20 (4), 407-423.

Tomeski, E.A., 1975, Building human factors into computer applications:
computer profession must overcome a "jackass fallacy"! Management
Datamatics, 4 (4), 115-120.

28. Treu, S., 1975, Interactive command language design based on required
mental work. International Journal of Man-Machine Studies, 7, 135-149.

29. Welyczkowsky, G. D., 1982, "A Study in Interactive User Productivity:
The Effect of Remote Transmission Delay on TSO Productivity," Internal
IBM Report, Poughkeepsie, New York. Cited in Minicucci, R. A., sub
second response time, a way to improve interactive user productivity,
IBM STL, 28, 1982.

14

SESSION REPORT ~SHARE~ ----.:
61 M973 File Transfer Protocols Used at Universities ____________ ___
SHARE NO. SESSION NO. SESSION TITLE ATTENDANCE

Unive~y Information Exchange Project Sandra Ward ---.RAT...---
PROJECT SESSION CHAIRMAN INST. CODe

Dept. of Computing Services, Univ of Waterloo, Waterloo, Ontario N2L 3Gl, 519-885-1211

seSSION CHAIRMAN'S CONl'ANV. ADDRESS. and PHONE NUMBER

1. KERMIT - The File Transfer Protocol Used at Columbia

Daphne Tzoar

Columbia University
Center for Computing Activities
612 West 115th Street
New York, NY 10025

Installation Code: BWY

2. YTERM!PCTRANS FILE TRANSFER PROTOCOL

Josh Auerbach

Computing Center
Yale University
New Haven, Connecticut

Installation Code: YU

SHRM-730-1/Bl

c:J')

(.:)

-,1

THE KERMIT FILE TRANSFER PROTOCOL

Everyone wants to get different computers talking to each other. At Columbia, we have
been doing this with great success. File transfer is performed with a protocol we call
"Kermit". Kermit is also the name of a family of programs that use the protocol to
provide error-free file transfer between various types of computers -- word processors,
microcomputers, minicomputers and large mainframes. We connect the two systems over
TTY lines thus tricking each computer into thinking the other is a terminal.

Kermit was originally developed at Columbia two years ago for students with limited
on-line storage allocations. Kermit enabled them to keep their work on floppies. We
provided Intertec SuperBrains and the means by which they could transfer files to and
from the micro and our DEC-20. Since then and the proliferation of many different
micros, and due to the needs of our users in the university community, we expanded the
protocol and implemented Kermit for numerous mainframes and micros, with contributions
from several sites other than Columbia, most notably Stevens Institute of Technology. To
date, Kermit has been shipped to over 250 sites in the US, Canada, and overseas -- it has
been well tested to be sure!1 It is used by many educational institutions, companies,
research laboratories and several dial-up databases.

You might ask why do we need a protocol? There are two major reasons why a protocol
is necessary: (1) Noise - data can become garbled in transmission. The longer the wire,
and the faster the baud rate of the line, the more the data is prone to noise and error.
Noise corrupts the data often in subtle ways. Therefore, we use a protocol - we
intermingle control information with data to achieve data integrity. (21 Synchronization
- One computer may be faster or have larger buffers than the other. If it sends data
faster than the other can receive, data will be lost Built in flow control mechanisms such
as XON/XOFF cannot be guaranteed to work, because different computers may not honor
the same conventions. The protocol therefore uses packetizing and checksumming
techniques. By packetizing I mean that Kermit sends data in numbered chunks or packets.
The packet size varies between 20 and 96 characters. We use relatively short packets,
since they are more likely to arrive in one piece than are long ones. Sequence numbers are
used to detect missing or extra packets. A checksum is used to allow detection of
corrupted packets.

Currently, there are two versions of the protocol. In Version 1. the basiC version, all
commands to the remote host (like "send"l are typed in by the user who must then return
to the local system and issue the complementary command (like "receive''!. In Version 2,
the user starts a server on the remote system and returns to the local host From that
point on, all commands to the remote host are from the local Kermit (Example - send me
the file ABC DEFI. Version 2 is upward compatible with version 1.

Design goSls were that the protocol be simple enough to be implemented easily and
general enough to run on a wide variety of micros and mainframes requiring only the most
common hardware features. The protocol then is portable, not necessarily the program. It
is important to realize that any Kermit can communicate with any other once a connection
is established. More advanced features, like data compression, are automatically disabled
unless both sides agree to use them. Therefore, new versions of Kermit can talk to older
ones, perhaps without being able to take advantage of the newer functions.

In light of these goals, Kermit assumes very little about the other host No embedded sign
on procedures or special knowledge of the remote hosts file or command structure are

2

included so Kermit's use is uniform across any two systems. The protocol makes no
assumption about speed, duplex or flow control. It does assume, however, that: (a) all
printable ASCII characters are accepted as input to the host and will not be transformed,
(b) a single non-printable character can be used for synchronization (generally, Control-A),
and (c) if a host requires a line terminator for terminal input, it is a single ASCII character
(like CR or LFI. As implied, all transmission is done in ASCII. If a system uses anything
else (EBCDIC, for example), it is its responsibility to convert all data. So, the CMS version
does ASCII/EBCDIC and EBCDIC/ ASCII translations.

The protocol is designed for character oriented transmission over serial telecommunication
lines. It allows for restrictions and peculiarities of different operating systems (buffering.
duplex, parity, and so on.) For example, when receiving a packet from the IBM. it knows
to wait for the XON before sending the next packet

In designing the protocol, we wanted the flexibility to talk to our half-duplex IBM system
in addition to the full duplex DEC-20. And we wanted to avoid bombarding our DEC-20
front end with continuous data - it assumes that all incoming data comes from a person
typing at the keyboard. It cannot allocate buffers quickly enough to accomodate streams
of data coming to it and hence data can be lost Therefore, we developed Kermit to be
not truly full duplex or asynchronous. The protocol does not allow for "stacked" packets
and long packets are not sent For every packet of data that gets sent, Kermit expects a
response before the next packet is sent So while Kermit does not have transfer rates as
high as truly asynchronous full-duplex protocols, we usually achieve 50-80% efficiency
(that is, user bits / baud rate.)

Kermit is generally used for file transfer between a mainframe and a micro, although host
to host and micro to micro file transfer are possible.

We have two types of Kermits - dumb ones and smart ones. The smart Kermits are
capable of timing out when waiting to receive data from the serial port That means, they
can detect remote system crashes or protocol deadlocks where part of a packet is lost· in
transmission. The dumb Kermits do not have. the timeout facility and will sit forever
waiting for data. One smart partner is enough to prevent such deadlocks. If two dumb
Kermits are talking to each other and a deadlock arises, the situation can be handled via
manual intervention - typing a carriage return to "wake up" the transmission. Your micro
will act as though it received a negative acknowledgement from the host and retransmit the
last packet This problem arises when talking to VM/CMS from a "dumb" micro: you cannot
interrupt a read on the VM/CMS "console", so you cannot time out You must manually
intervene on the micro if you suspect a deadlock has occured by typing the carriage
return.

The packet is the basic tool used in the file transfer. Much consideration was given to its
design - it had to be small enough to avoid buffer overflow problems, yet large enough to
be efficient The fields with the control information had to be informative without taking
up too much space in the packet Because of these restrictions, each control field of
information is a single printable byte of data. Since there are 95 printable ASCII
characters, we can represent values from 0 to 94 in each field.

Many protocol definitions view the packets as layers of information which pass through a
hierarchy of levels, with each adding its own information to the ends of outbound packets
and stripping off relevant information from the ends of incoming packets. The remainder
is then passed on to the next level. Each level must be able to identify and interpret the
pertinent fields. Such is the case with the Kermit protocol.

First some preliminaries before describing the packets. Kermit uses three special functions

c:l':!
,:)
CO

3

to transform characters (numbers are in decimal, characters are in ASCII):

(a) char (x) = x + 32 (32 == spacel
Make the integer "x" printable. "x" is assumed to be between
o and 94. For example, 1 becomes "!".

(b) unchar(x) = x - 32
Revert the (printable) character to its original form. For
example, "!" becomes 1.

(cl ctl(x) = x XOR 64
This function maps between control characters and printables,
preserving the hi order bit So, "A --> A. "Y --> Y. Note,
ctl (ctl (x)) = x.

Frequently used keywords:

(d) ACK -- Acknowledge receipt of a correct packet
(e) NAK -- Negatively acknowledge. Packet was received in bad condition
(bad checksum, incorrect packet number, and so on)

Kemt t packet!
<mark> <char(count» <cha,.. (seq». <type> <data> <char (chksum»

I I
I I

:_ appl tcatton _I
I
I ______ sesston __ I

data ltnk _______ _

The mark character indicates the start of a packet. generally .JA, although it can be
redefined. It must be a single control character that can be easily identified as the packet
header - one that is not usually found in text files. It must be in the beginning of all
packets. All data between packets will be ignored until Kermit finds the SOH character. If
the "A is lost then the entire packet will be missed. Also, note that messages sent to you
will be interpreted as interpacket data and thrown away.

The count is the number of characters in the packet following this field, not including any
end-of-line character or padding. This field must contain a single, printable character, thus
the maximum value is 94.

Next is the sequence number modulo 64. The sequence number is used to detect
duplicate or miSSing packets.

The packet type is one of the following:

D data

Y acknowledge, ACK

N negative acknowledge, NAK

S send initiate

B

F

z

E

R

G

C

l

F

D

T

C

x

4

break transmission

file header

end of file, EOF

error

receive initiate - Ask server to send specified file(s)

generic Kermit command - Single character in the data field specifying
command. Some examples:

login

C~2"ge working directory

logout

Finish (shut down server, but don't logoutl

Directory

Type

host command - Data field contains a string that is to be executed as
a command by the host

text header - Response to "C" or "G" packet Is like file transfer but
the destination is the screen. As an example, if you send the generic
command "directory", the "X" packets would consist of the list of all
your files.

The last four packet types are used in conjuction with the server mode of the protocol.
Not all have been implemented.

The next field is the data. The contents of the data field varies depending on the state of
the transmission. In some cases, the data field is empty. Normally, though, the data is the
contents of the file being transferred. The data field includes the quoting of non-printable
characters. Control characters are converted to prevent the host or front end from acting
upon them accidentally. We do not want data characters interpreted; for example, the
carriage return in the data must be distinguished from the carriage return terminating the
packet For control characters and delete, we use the CTl function mentionned earlier and
convert "A to A. The other side de-controllifies the data. To distinguish the real "A" from
the controllified "A" we use a quote prefix, typically #. Note, the quote character must also
be quoted if used within text and quoted sequences may not be broken across packets.
Other prefixes can be used if quoting is requested for eight-bit quantities and repeated
quantities. Typically, the quote character for eight bit quantities is "&" and "_" for repeated
characters. Some examples:

A --> A
AA --> NA
'A --> &A

'''A --> &IIA
--> ##

'/I --> &1111

... denotes a cont,..,,1 Character
I! is the quote character

denotes the ht order bit ts on
& t 5 the quote character

~
r;.)
CO

& --> N&
'& --> &#&

5

This quoting scheme is inefficient for binary files. In fact, it leaves us with 50% overhead.
But it is used only when necessary. Binary file transfer is performed without quoting as
long as both sides can control parity, as is generally the case between two micros. Only
if this is not the case is the prefix character used. Note, this is not a primary concern
since the most common type of transfer between unlike computers is printable files.

The final field is a checksum of all d.ata between but not including the SOH and the
checksum character, modulo 64. Together with the packet length, it is used to insure data
integrity. Since both sides must agree on this value we can detect corrupted, missing, or
extra characters. The protocol allows for three different types of checksum. The default
is the single character arithmetic sum, which is currently used and has proven adequate.
We calculate it as follows: If "5" is the sum of characters, then

checksum • [s + « S AND CO) /40)] AND 3F (constants are I n HEX).

For eX8....,'., if the paCket consisted of:

AA) S-(P-NU

the checksum would be calculated as follows:

")" + n II + IIS" + "_" + "(II + + l'fI" + + "#"
28 + 20 + 53 + 7E + 28 + 20 + 40 + 20 + 23

lF2 + « lF2 AND CO) / 40) •
lF2 + 3 • lF5
lF5 AND 3F • 35
35 + 20 s 55 = IIU" (do the CHAR function)

lF2

Only 6 bits of the arithmetic sum are used. In order that all data bits in the packet
contribute to the checksum, we add the value of bits 6 and 7 to the quantity formed by
bits 0 through 5.

Two fancier types of checksum can be used only if both sides agree to do so. They are
a two character arithmetic sum and a three cr.aracter 16-bit CRC. So far, no one has
found it necessary to resort to these techniques.

The packet may be accompanied by a line terminatqr if required by the host This is
necessary for systems that cannot do single character input from the terminal. Without the
carriage return, VM/CMS for example, would never "see" the incoming packet If the
system is capable of reading one character at a time, however, the count field can be used
to determine the number of characters to read in for the packet The end of line
character is not part of the packet nor is it included in the count or the checksum. If
used, it must be a single character and is specified during initialization, by default a carriage
return.

It can be seen, then, that the packets do indeed have a layered design as described by the
ISO model: the outermost fields are used by the data link layer to verify data integrity (that
is, the MARK, the COUNT, and the CHECKSUM), the next by the session layer to verify
continuity (the SEQUENCE number), and finally the TYPE and the DATA itself at the highest
level, that is the application layer.

File transfer is the goal of the protocol. Kermit is a cooperation between two programs,

6

one running on the micro and one on the host It does not involve simply grabbing data as
it comes in over the line. One side sends a packet and waits for an acknowledgement or
a negative acknowledgement before the next packet is sent If Kermit gets a NAK, for
instance because of a bad checksum, the packet is retransmitted. It is also resent if the
packet sequence number indicates a packet was lost somewhere or if Kermit times out
waiting for the next packet

The two sides begin the transfer with the sender (the side where the file exists) sending a
send-init packet of the format:

bufsiz, timout, npad, padchar, eol, ~ote. a-bit quote
chktype, repeat. reserved fields

Filling in the fields of the init packet is optional. If data is not supplied, defaults will be
used.

The fields are interpreted as follows (where "I" refers to the Kermit sending the init packet
and "you" to the Kermit receiving it):

bufsiz

timout

npad

padchar

eol

quote

The maximum packet size I can accept If none specified, the default
value of 96 (decimal) is assumed. The other side should send packets
no longer than this length. Shorter lengths can be used to circumvent
buffering problems or to get packets across noisy lines with a
greater chance of success (and less overhead in recovering from
errors.)

The number of seconds after which I want you to time out if no
packets have been successfully received provided you are capable of
timeouts. The normal value is in the 5-15 second range. A value of
o means "don't time me out". This value is taken as a guideline rather
than an absolute, and may .be adjusted on a per-packet basis
depending upon system load.

The number of padding characters I need preceding each packet.
Some systems may require padding; for instance, some half duplex
systems may need some time to "turn the line around". If none
specified, or a value of 0 is specified, no padding is done and the
contents of the next field is ignored.

The character I want used for padding, normally NUL (ASCII 0). If
npad is non-zero but pad is omitted, NULL will be used as the
padding character.

The desired line terminator I need for incoming packets. Only a single
control character is permitted in this field. Hosts cannot specify
printable terminators or multi-character terminator sequences. If none
specified, carriage return is used.

The printable. ASCII character I will use when quoting control
characters. If none is specified, "II" is used.

The following are newer parameters and not implemented in all versions of Kermit.
Specifying values for these parameters is optional since two communicating Kermit's will
use the lowest common denominator of parameters. So if a newer Kermit is talking to an
older one, the newer partner will use only those features implemented in the older Kermit

C1':I
t,",
c:;;,

8-Bit-Quote

7

Specify quoting mechanism for 8-bit quantities. A quoting mechanism
is necessary when sending binary· files to hosts which prevent use of
the 8th bit for data. Most IBM systems fall into this category. When
elected, the quoting mechanism will be used by both hosts. The
quoting character must be different from the control-quoting
character. This field is interpreted as follOWS:

Y I agree to 8-bit quoting if you request it

N I will not do 8-bit quoting

& (or any other character in the allowed range besides Y and N) I
want to do 8-bit quoting using this character. It will be done if
you put a Y in this field. The recommended 8th-bit quoting
prefix character is "&".

Anything Else
8-bit quoting will not be done.

The default is not to do 8-bit quoting. The quoting is undesirable and the parity bit should
be used if possible. Again, I stress that it should not be necessary to
do much eight bit quoting since file transfer between unlike systems
is mainly for printable data

chktype

repeat

The type of block check. The only values presently allowed in this
field are "I", "2", and "3", though future implementations may allow
others. The default is one. These values specify the single and
double character .-ithmetic checksums, or the three character CRC;
however at this time only the one character checksum is implemented.
The sender would request the desired type of checksum in this field;
if the receiver replies with the same type in its ACK then the
requested type will be used, otherwise the single-character arithmetic
checksum must be used. Both sides, of course, must use the same
type of checksum.

The prefix character to be used to indicate a repeated character. This
can be any printable character other than blank (which denotes no
repeat count prefix!. but "_" is recommended. Both sides must agree
on the prefix to be used, otherwise repeat counts will not be done.
Groups of 4 identical characters or more may be transmitted more
efficiently using a repeat count, though an individual implementation
may wish to set a higher threshhold. The repeat prefix can produce a
big savings in transmission for binary files (which typically contain lots
of zeroes!. highly indented structured programs, and so on. The
default is no repeat count processing.

The Kermit receiving this packet responds with an ACK packet containing its specifications
for the init parameters. From then on, the two are 'configured' to talk to each other. If
all goes well, the file name, data and end-of-file are sent This can be followed by
another file header if sending more than one file, for instance when the user used a
'wildcard" to specify a file group. When all files have been sent, an end-of-transmission
packet is sent Only the filename and the contents of the file are sent No attributes (such
as creation date, record length and so on) are transmitted to the other system. If at any
point a NAK is received, Kermit retries sending the current packet up to a certain
threshold, like 5 (more times if it is the initialization packet). If the current packet is not

8

sent successfully within the retry limit, transmission is aborted.

Note that all initializing must be done in one exchange of packets. Parameter values are
negotiated, but it is done only once per transfer and in a single step. The send-init
packet, however, may not get through if incorrect assumptions are made about the other
systlim. (For example, it may require a different end-of-line character than the default in
order to read incoming packets.) In such a situation, the user must issue the SET command
to change the default end-of-line character. .

Essentially then, the Kermit protocol consists of a set of states and rules indicating how
one gets from one state to another.

Many interesting situations can crop up as packets fly back and forth. A few heuristics
are necessary to cope with them. Some examples:

- A NAK for the current packet is equivalent to an ACK for the previous packet
(except when the previous packet was the send init with transmission
parameters). This covers the common situation in which a packet is
successfully received, and then ACK'd, but the ACK is lost The ACKing side
then times out waiting for the next packet and NAKs it. The side that
receives a NAK for packet n+ 1 while waiting for an ACK for packet n simply
sends packet n+ 1.

- If packet n arrives more than once, simply ACK it and discard it This can
happen when the first ACK was lost. Resending the ACK is necessary and
sufficient -- don't write the packet out to the file, because it's already there!

- When opening a comection, discard the contents of the line's input buffer
before reading or sending the first packet This is especially important if the
other side is acting as a server, in which case it has been sending out
periodic NAKs. If you don't do this, you may find that there are sufficient
awaiting NAKs to prevent the transfer -- you send a SEND-INIT, read the
response, which is an old NAK, so you send another SEND-INIT, read the next
old NAK, and so forth, up to the retransmission limit, and give up before
getting to the ACKs that are waiting in line behind all the old NAKs. If the
number of NAKs is below the cutoff, then each packet may be transmitted a
number of times.

- Similarly, after reading a packet (successfully or not), you should clear the
input buffer. There should be nothing there for you anyway, since the other
side must normally wait for you to send your packet in response. Failure to
clear the buffer could result in propogating the repeated sending of a packet
caused by stacked-up NAKs. .

- Finally, it should be noted that while a local Kermit is in charge of the screen,
the remote Kermit is not If an error occurs and the remote Kermit tries to
print a message to the terminal, ·it will go to the local Kermit as interpacket
data and will be ignored. Therefore, the host should send the text of the
message in the form of an error packet to the local Kermit before aborting.
This allows the local Kermit to print the error message on the screen and
terminate gracefully rather than wait forever for the packet that will never
come. An example of such a situation would be the host trying to write to a
full or read-only disk.

To give you a better idea of what the packets really look like, let us assume we have a

C':\
C.)
~

9

file called SHARE.TXT that contains the following lines:

Hi the,.."
How are you'?
I am OK,

Here ts what the packets would look like for" sending this file
(the semi"colons followed by text are connents):

AA) S-(f'-HU
AA) Y_(.-H[
AA, ! FSHARE, TXTT
"AI/!V?
.... AO"DHt tnere. NMN.J.
"'All "V •
.... A3NDHow are you?NM#'-'[
AANHYA
AA/SOI am OK,HMHJ5
AANSYB
AAK%zD
AAII%YC
AAN&B-
AAN&yD

Send-init
ACK with ;nit parameters

Fi \e naoe
ACK
Data 1 tne one

Data 1 tne two

Data 1; ne thr-ee

End-of -f t 1 e packet

Break transmission
OK

Take data line two for example. First is the Control-A synchronization character. Next is
the packet size after the CHAR function has been performed To interpret this field, we

" must perform the UNCHAR funtion. So, the actual size is ASCII 3 which is (in decimal) 51
\ - 32 or 19, which you will notice is the eKact number of characters following this field.

The packet sequence number, after UNCHAR, is ASCII "#" (351 minus 32 = 3. And, note
this is the fourth packet in the transfer. Next is the packet type, 0 for data. Then the
teKt, including the transformation of the control characters carriage return and line feed to
#M and #J respectively. Lastly, is the checksum, after the CHAR function. Of course, had
any of the ACK's above been a NAK, the previous packet would have been resent.

The file in the example contained actual carriage return-line feeds. If it existed on a
system using the concept of records, however, such as CMS, accomodations would have
to be made so that the file would be readable on another system. Because of this,
Kermit-CMS deletes trailing blanks and adds CRLF to the end of all outgoing records and
strips the CRLF from all incoming lines to create records.

I should mention at this point that a separate terminal emulator program is not necessary in
order to start the file transfer. Although it is not within the bounds of the protocol, the
Kermit program for all micros and some mainframes does terminal emulation which allows
you to log in to anot~er host and initiate the transfer,

In conclusion, the protocol has proven to be very successful. We are able to transfer
files between unlike computers with ease. In addition, implementing new versions while not
trivial, is not an extended project The protocol, moreover, can be used in areas other
than file transfer. Consider the case where workstations have dedicated connections to a
host and the host has a dedicated Kermit server on each line. The best system for this
would be UNIX since it allows 1/0 redirection. The user could perform host functions,
including accessing his files on the mainframe, from the workstation. He need never be
directly involved with the host. This connection could be initiated by the user or done
behind his back as part of the micro operating system. As another example, terminals and
plotters could implement the protocol in firmware. Then, a user would not have to worry
about a noisy line sending random characters to his graph or listing. He would no longer

10

be concerned with spurious characters being added arbitrarily to data files. Another
application is creating a Kermit PROM for a microcomputer. Then, instead of using a disk
or tape, you could transfer a file from a foreign host directly to memory and execute
your program from the specified memory location. Many more applications may arise in
the future.

Finally, I leave you with a list of major versions of Kermit

DEC-l0 DEC-20 IBM VM/CMS UNIX VAX/VMS RT-ll

CP/M PC DOS App \ e OOS

YTERM/PCTRANS FILE TRANSFER PROTOCOL

This document describes the protocol used by YTERM and PCTRANS to exchange
(primarily) data files over asynchronous communication lines. Where appro
priate, planned extensions of the protocol are mentioned. The protocol is
based on a set of IIclean" constructs which, howev,er, are modified in some
places to accommodate to "dirty" reality. In particular, the protocol must
be capable of dealing with the peculiar environment presented by a Series/l
minicomputer running the Yale ASCII Terminal Communication System.

NOTE, this document may be printed on an EBCDIC device which does not cor
rectly represent the ASCII IIbackslash ll character. If the character in
parentheses here (¢) looks like something other than backs lash (cent-sign,
probably) bear that in mind in reading the document.

Protocol Layers

The protocol has two distinct layers. Each is designed to be complete at
its own level and it should be possible to use one without the other. In
terms of the popular OSI Reference Model (ISO/DIS 7498), the lower layer
deals with issues at the "transport layer" and below. Its goal is the
efficient and "apparently error free" transmission of arbitrarily long
strings of ASCII characters with the ability to encode all 128 7-bit char-

m acters. The higher layer deals with issues above the "transport layer"
t.) such as the representation of binary data, the representation of file names
f,,:O' and other requests, and the conversational details of file transfer.

THE LINK-TRANSPORT PROTOCOL

Character set

Although the character set can ENCODE all 128 7-bit ASCII characters it
does not use them all. The following are the characters it uses.

1. Graphics plus blank (ASCII codes 20-7E hex, 040-176 octal). These
characters can be used as data.

2. ASCII Escape (code IB hex, 33 octal). This character can be used in
conjunction with the first set for control purposes.

3. XON (11 hex, 21 octal) and XOFF (13 hex, 23 octal). These characters
are used, optionally, where possible, to provide pacing control. All
implementations of the protocol should attempt (if possible) to monitor
received data during transmission. If an XOFF is received, trans
mission should be suspended until an XON is received. While receiving

YTERM/PCTRANS File Transfer Protocol

data, an implementation may choose to send an XOFF if its buffer is
nearly full. In this case, an XON is used to signal the ability to
accept more data.

In the current YTERM/PCTRANS implementation, YTERM sends XOFF/XON in an
attempt to preserve orderly data flow. PCTRANS, when running under
Yale ASCII, respects these. However, PCTRANS does not send, nor does
YTERM respect, these pacing characters.

4. Carriage return (OD hex, 15 octal) is used in certain circumstances.

a. YTERM ends every buffer of data with a CR when sending to PCTRANS.

b. YTERM ends every acknowledgment with a CR while receiving data from
PCTRANS if (but only if) it is running in lIB" or IIHI! mode. In uF"
mode, YTERM does not chase acknowledgements with CR.

5. All other control characters are irrelevant to the protocol. YTERM
does not send "stray" controls, but PCTRANS does and YTERM discards
them according to the following rules,

a. Control characters other than ESC and RS (IE hex, 36 octal) are
simply ignored.

b. If RS is received, it and the next two characters are ignored.

c. If ESC is received, YTERM checks to see if it is followed by a
character which forms a sequence SIGNIFICANT in terms of the proto
col. If so, it take action accordingly. If not, it removes the
ESC and the following character and ignores them.

d. If the character following an ESC is a left square bracket ([),
YTERM will also ignore subsequent characters up to and including
the next control sequence final character (see ANSI standard X3.64;
final characters are in the range 40-7E hex, 100-176 octal).

Framing

All transmissions which are part of the protocol should be distinguishable
from things which are not. In a terminal emulation environment this is
essential. In general, things which fall cleanly outside the "frames"
established by the protocol should be reflected to the emulated terminal
screen. Things which fall within framed areas but are not legal in the
character set repertoire of the protocol should be discarded. Because the
terminal emulation environment of YTERM conforms to ANSI standard X3.64 and
we expect that standard to carry increasing weight in the future, we will
use X3.64 recommendations wherever possible.

1. YTERM enters file transfer mode upon receipt of the three character
sequence <ESC>Py (that is, escape, capital P, lower case y). The
<ESC>P is a device control string (DCS) introducer, the y qualifies the
device control string to be one obeying this protocol. Currently, if

YTERM/PCTRANS File Transfer Protocol 2

YTERM sees <ESC>P but does not see lower case y, it assumes it is being
sent an unimplemented device control string. It ignores subsequent
characters until it receives <ESC>¢ (string terminator). During this
process, it indicates rejection via a message on the 25th line.

2. All subsequent graphic characters received by YTERM are considered part
of the protocol until <ESC>¢ (normal termination) or <ESC>O (abort and
discard) is received. Logically, this "string" can be indefinitely
long. Actually, the string is packetized and periodic error checks are
performed.

3. Eventually, the protocol will be made symmetrical. Currently, as an
implementation convenience, it is not. PCTRANS always sends a string
to YTERM first. If the higher protocol layer calls for YTERM to
respond, he does so. When YTERM sends a "string" to PCTRANS, the open
ing "frame" (the <ESC>Py) is elided. YTERM simply begins sending data,
knowing that PCTRANS expects it. The "string" is terminated exactly as
described above, however.

While one of the partners is sending data, the other is periodically
acknowledging (at specific points, to be defined presently). The sequences
to be used for acknowledgment are,

1. <ESC>l -- This means that data has been correctly received and further
transmission is encouraged.

2. <ESC>2 -- This means that a correctable error has occurred and the
sender should retransmit the preceding unit of data.

Q 3.
(.",

<ESC>3 -- This means that an uncorrectable error has occurred or that a
retry counter has been exhausted (it is the receiver's responsibility
to maintain a retry count). Transmission of the string should be con
sidered to be at an end. In practice, PCTRANS (but not YTERM) will
echo the <ESC>3 sequence with one of its own. This is done to cleanly
terminate file transfer in case the <ESC>3 was typed by a human user to
break a deadlock.

w

4. <ESC>5 -- Means that the string was rejected by the higher protocol
layer. Both implementations of the protocol begin to pass data to the
higher level as soon as a packet has been error checked. Allovling the
higher layer to reflect a rejection through the protocol avoids lots of
unnecessary transmission if the higher layer determines early on that
it doesn't want the string.

PCTRANS always just sends its acknowledgments without a follOl;ing carriage
return. So does YTERM when running in "F" mode. In the other modes, YTERM
follOl;s its acknowledgments with a carriage return.

Basic encoding

Between <ESC>Py and <ESC>¢ the only protocol-significant characters are
from the set 20 hex through 7E hex. With the exception of number sign (II,

YTERM/PCTRANS File Transfer Protocol 3

23 hex, 43 octal), each of these characters represents itself.

The II character is used as a "knockdown indicator" to aid in representing
the remaining 33 characters in the 128 character set. The "knockdown" of a
character is the code for the character plus 40 hex modulo 80 hex (we could
also say "plus 100 octal modulo 200 octal" or "plus 64 decimal modulo 128
decimal"). For example, the knockdown of CNTRL-A is A. A character out
side the protocol-set is represented by II followed by the knockdown of the
character. This same encoding must also be used to represent II itself. II
is represented as IIc (number sign followed by lower case c).

A double number sign (1111) is also special to the protocol. The result of
applying the knockdown resolution rule to this combination yields a lower
case c, which could have been sent as a single character. This condition
is used to signal that the next four characters contain error control
information and (usually) that an acknowledgement is desired.

Special numeric encoding

In several places it becomes convenient to represent binary numbers. When
ever there is this need within the YCC "link/transport" protocol, we will
use an encoding based on the characters 30-6F hex. These characters repre
sent the numbers 0-63, respectively (six-bit significance). Where it is
necessary to represent more than six bits of significance, more than one
character is used. The number of characters (and hence the maximum signif
icance) is determined by context.

Error checking and confirmation

Error checking in this protocol is based on a 16 bit CRC. The algorithm
for the CRC is taken from the IBM Personal computer Basic I/O System Cas
sette I/O routine, which, in turn, borrowed the algorithm from the
well-researched CRC used by the SDLC protocol. YTERM/PCTRANS use an ini
tial value of 0, rather than OFFFFH, for the CRC. Here is a detailed
statement on how to implement the CRC.

1. The <ESC>Py and <ESC>¢ which are used for framing are NOT part of the
set subject to CRC computation. CRC computation begins with the first
character following the <ESC>Py.

2. The characters which are input to the algorithm are the characters
BEFORE knockdown encoding for the sender and AFTER knockdown decoding
for the receiver. That is, where two characters are used to represent
one, only the ONE is input to the CRC.

3. The CRC algorithm is a bit-wise algorithm. Each ASCII character is
seven bits. The least significant bit is input to the algorithm FIRST
and the most significant bit is input to the algorithm last. Any
eighth bit is assumed to be for parity checking at a lower protocol

YTERM/PCTRANS File Transfer Protocol 4

layer. It is assumed to be arbitrary and irrelevant. It is NOT input
to the CRC algorithm.

4. The CRC starts out (at start of transmission or after being cleared by
an error check confirmation) as sixteen bits of zero. As each bit is
input to the algorithm, the CRC advances according to the following
procedure:

m
(,. .. ,
"'"',

a. The input bit is compared to the most significant bit of the cur
rent CRC.

b. If the bits are unequal:

1) The current CRC is "exclusive or'd" with the bit pattern
0000100000010000 (0810 hex).

2) The "increment" (explained momentarily) is set to one.

c. On the other hand, if the input bit is equal to the KSB of the CRC,
the CRC is not changed at this point and the "increment" is set to
zero.

d. Now, the CRC is "shifted left" by one bit (multiplied by 2, the
result taken module 2**16) and the "increment" determined in the
preceding step is added.

e. The process is repeated for each of the 7 bits of each of the n
characters until the time comes for error checking and
confirmation.

Both the sender and the receiver must keep track of the CRC as charac
ters are sent and received.

Error checking is always requested by the sender. The request takes
the form of two consecutive number signs (##) followed by four bytes of
ASCII, using the "special numeric encoding" described above.
Currently, PCTRANS includes an error check request every 512 bytes;
YTERM includes one every 128 bytes.

a. First, the sender computes the sequence number for this check. The
sequence number is a number between 0 and IS. The first check in
each string has a sequence number of zero. Subsequent checks have
sequence numbers which increment by one each time. For long
strings, the sequence number will wrap to zero after the number IS
is used.

b. In order assure correct delivery of the sequence number, the sender
represents the sequence number as a seven bit quantity and inputs
it to the CRC process as if it were a transmitted character.

c. The sender now forms a 24 bit number by concatenating bits as fol
lows:

1) Four bits of zero (reserved for possible future use).

YTERM/PCTRANS File Transfer Protocol 5

2) The four bit sequence number.

3) The sixteen bits of the CRC.

d. The sender now splits this 24 bit number into four six-bit numbers.
He uses the special numeric encoding to represent these six-bit
numbers as four ASCII characters in the range 30-GF (see above).

e. The sender sends two number signs followed by the four bytes just
computed. Note that the sequence number has been input to the CRC
but the two number signs and the four characters resulting from the
encoding have not. After sending the check request, the sender
WAITS for confirmation. Actually, YTERM always follows the check
request with a carriage return. PCTRANS does not.

S. After unpacking the error check request, the receiver should input the
sequence number to his CRC process and then compare the CRC to the CRC
he has been compiling and the sequence number to the expected sequence
number (NOTE: the six raw bytes of the error check request are NOT
input to the CRC algorithm). If everything agrees, he now has good
data, as far as it goes. The data is passed to the higher protocol
layer.

a. If the data is acceptable to the higher layer, he sends <ESC>1 and
prepares to receive the next segment.

b. If the data is unacceptable to the higher layer, he sends <ESC>S.
He then regards the received string as terminated.

In any case, we are assuming good data transmission. Eventually, the
sender sends the next bunch of data. Both CRCs have been reset to
zero. The next error check uses the next sequence number. Eventually,
the end of the string is signaled by <ESC>¢ or <ESC>O.

All of the above assumes good, clean transmission. Letls consider what can
go wrong.

1. Let's assume that the ## sequence is correctly sent but some part of
the data is garbled. In this case, the error check occurs, the CRC
doesn't agree. ACTION: receiver sends <ESC>2, sender retransmits the
sequence in error. Both PCTRANS and YTERM will request retransmission
of a packet up to 5 times.

2. If the 5th retransmission of a packet is not error free or if a more
profound sort of environmental error occurs, the receipient sends
<ESC>3. This ends the transmission of the string.

3. Let's assume that the ## characters are garbled. In this case, the
sender is waiting for acknowledgment, the receiver is waiting for more
data (doesn't know the sender wants an error check). Ideally, time outs
should handle this case. In the YTERM/PCTRANS implementation, this
deadlock must be broken by a human being. If YTERM is rece1v1ng, an
<ESC>2 will free things up. If YTERM is sending, a carriage return
will do the same.

YTERM/PCTRANS File Transfer Protocol 6

4. Occasionally, a positive acknowledgment may be mistakenly felt to be
negative. Or, the acknowledgment got lost and the human being sent a
negative one, causing the sender to retransmit.

The receiver, seeing by the sequence number that the last sequence has
been retransmitted, should send <ESC>1 and discard the data. This will
allow the protocol to proceed.

5. Less likely, but still conceivable, is that the sender THINKS he has
gotten <ESC>l when, in fact, the intent was something else. In that
case, the sender would go on to the next sequence while the receiver
would not be expecting that. The receiver then sees a sequence number
which is too high, or <ESC>¢, meaning that the sender is happy even
though he shouldn't be. This is currently a nonrecoverable error.

Special pacing issues when YTERM sends.

The basic operation of the protocol has now been described. There are some
additional issues which arrise when YTERM is sending.

1.

G':I
(,.:J
c.;,2.

When YTERM is sending in "line model! (IiRlI or HB") he waits for on XON
character to tell him that the host is ready to receive. In !IF" mode
we waits for a lower case y character to do the same thing. This char
acter is searched for AFTER the acknowedgement of the preceding write.
It is also waited for before sending an acknowledgment sequence if
YTERM is the nominal receiver.

When YTERM is sending DATA (as opposed to acknowledgements) in the "F"
mode, it waits for every graphic character to be echoed before sending
another. Furthermore, it will retransmit a character if it receives a
BEL (07 hex or octal) prior to the character being echoed. Before
retransmitting the character, it sends the DC2 character (12 hex, 22
octal) which is the default "error reset" character for Yale ASCII.

This echoing process takes place at the lowest level and is a source of
both inefficiency and potential "hangs" in the process. We hope to
eliminate or moderate the need for this by eventual changes to Yale
ASCII.

3. Echo waits do not occur in the HHII or lIB" modes. characters are not
echoed by the remote host (generally) in "H" mode; in "B" mode echoed
characters are simply discarded when received and no synchronization is
done on them.

THE YALE "FILE TRANSFER" PROTOCOL

This protocol provides a syntax and semantics for strings delivered by the
link/transport protocol. This is a separate protocol built on top of the
first.

YTERM/PCTRANS File Transfer Protocol

1. Strings begin (following the <ESC>Py) with a three character request
code. So far we have identified the following codes as being useful:

2.

a. WSA -- I am writing a file using "standard ASCII"; prepare to
receive.

b. RSA -- I want to read a file using "standard ASCII"; send please.

c.

d.

e.

f.

W43 -- I am writing a file using "4 for 3 binary"; prepare to
receive.

R43 want to read a file using "4 for 3 binaryll; send please.

SCK Here is the time and date where I am.

ERS Erase file (! see below).

g •. REN Rename file (! see below).

h. DIR I want a list of files matching this pattern.

i. DRL Here is a list of files matching your pattern.

The request code is followed by optional operands which are specific to
the code as follows:

a. For all writes: file-name; file-data

b. For all reads and ERS: file-name;

c. For SCK: YYMMDDHHMMSS (using printable ASCII numerics)

d. For REN: old-file-name;new-file-name;

e. For DIR: file-pattern;

f. For DRL: file-pattern;list-of-files

Most of these are self-explanatory. The list-of-files in DRL takes the
form of a pseudo-file whose format is described in the YTERM User's
Guide.

It is assumed that a READ request, if not aborted, will be responded to
with a symmetric write and that a DIR (if not aborted) will be responded to
with a DRL. YTERM and PCTRANS always use the DOS (not host) file name and
the response filename must equal the request filename exactly.

Finally, it is assumed that ERS and REN are for master-to-slave communi
cations in a terminal-emulation environment. Most other environments would
refuse to execute these requests.

The "standard ASCII 1' encoding described above means character-for-character
7-bit ASCII at the application level. Of course, knockdown coding is used
by the link/transport layer.

YTERM/PCTRANS File Transfer Protocol 8

The "4 for 3" encoding described above means that four 6 bit numbers are
used to send three 8 bit bytes of binary data. The three 8 bit bytes are
concatenated to form a 24 bit number which is then resubdivided into four 6
bit numbers. The "special numeric encoding" mentioned previously is then
used here (strictly speaking, this is unnecessary at this layer since all
128 7-bit characters are usable; however, we know that use of zero-origin
for numbers will be inefficient due to knockdown encoding while use of 30
origin is more efficient).

Only the "file data" part of a string is subject to 4 for 3 encoding.

When file data is not a multiple of 3 bytes in length, there will be one or
two bytes left over in a 4 for 3 encoding. This residual should be padded
on the right with zeros to make 24 bits before the final application of the
4 for 3 transformation. The resulting four character substring should then
be truncated on the right according to the length of the source string:
three characters are sent to represent two and two to r~present one.

C)

v;
Co

YTERMjPCTRANS File Transfer Protocol 9

