GC30-3084-2

Systems
Network
Architecture

Transaction Programmer’s
Reference Manual For
LU Type 6.2

GC30-3084-2
File No. 370/4300/8100-30

Third Edition (November 1985)

This edition, 6C30-3084-2, is & major revision of the previous edition, GC30-3084-1,
and obsoletes that edition.

Changes are periodically made to the information in IBM systems publications. Before
using this publication in connection with the operation of IBM systems, consult your
IBM representative to find out which editions are applicable and current. For a sum-
mary of the changes in this book, see page v.

Any reference to an IBM program product in this document is not intended to state or
imply that only IBM's program product may be used. Any functionally equivalent pro-
gram may be used instead.

It is possible that this material may contain references to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such products, programming, or services in your country.

This book is not intended for production use and is furnished as is. IBM assumes no
aesggnsibility for the use of the functions as described in this book in any pro-
uction manner.

Publications are not stocked at the address below; requests for 1IBM publications

?houigtbe made to your IBM representative or to the IBM branch office serving your
ocality.

A form for reader's comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Information Develop-
ment, Department E02, P.0. Box 12195, Research Triangle Park, North Carolina 27709,
U.S.A. 1IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

(:) Copyright International Business Machines Corporation 1982, 1983, 1985

ii SNA Transaction Programmer's Reference Manual for LU Type 6.2

CHAPTERS

This book presents detailed information on the functions that Systems
Network Architecture (SNA) logical unit type 6.2 (LU 6.2) provides to
system and application programs. This book is written for individuals
that design system or application programs for use on an implementa-
tion of LU 6.2. The information in this book applies to all IBM pro-
ducts that implement LU 6.2, not to any specific IBM product.!® This
book should be used with the applicable product publications for the
IBM products that implement LU 6.2.

LU 6.2 provides for interprogram communication between two or more
programs, such that:

U The programs can be distributed among multiple SNA nodes within an
SNA netuwork.

U The SNA products that make up the network can be different from
one another.

. The programs c»r. be designed independently of where in the netuwork
they are located and of the SNA products on which they are run.

This book describes the functions that allow programs to communica‘e
zjth each other independent of the underlvying SNA network configura-
ion.

The processing of transactions typically involves several programs
distributec. over a network communicating with each other. When used
in conjunction with applicable IBM product publications, this book is
especially useful to those who design transactions and the programs
that process the transactions.

This book assumes that the reader is familiar with the SNA concepts
presented in Systems_ Netwo chitecture Conce Products,
GC30-3072. The related publications, listed at the end of the pre-
face, are also helpful in understanding the material in this book.

The material in the first three chapters of this book is organized so
that one may read the material straight through. Successive sections
in these chapters build on the material presented in preceding
sections. The material in the remaining chapters is organized for
ease of reference. These chapters contain the detailed descriptions
of the functions, called verbs, used to invoke LU 6.2 services.

The chapters of this book are:

"Chapter 1. Introduction™ provides an introduction to LU type 6.2 and
its services.

"Chapter 2. LU 6.2 Protocol Boundary™ presents a general description
of the LU 6.2 protocol boundary.

"Chapter 3. Transaction Program Verbs™ gives an overview of the func-
tions available to the programmer for interacting with resources.

1 This book provides a general description of LU 6.2 functions.
Implementation of some of the functions is optional. Optional
functions may not be available on all IBM products that implement
LU 6.2. All IBM products implementing a particular LU 6.2 func-
tion provide that function as described in this book; however, the
programming interface that a product provides to invoke that
;unﬁtion may differ in syntax from the syntax represented in this

ook.

-to
-t
-t

Preface

"Chapter 4. Conversation Verbs"™ contains a detailed description of
the conversation verbs.

"Chapter 5. Control-Operator Verbs"™ contains a detailed description
of the control operator verbs.

APPENDIXES
The appendixes to this book are:
"Appendix A. Base and Option Sets for Product Support™ gives a break-
down of the product-support requirements for implementing the verbs.
"Appendix B. Examples Using Basic Conversation Verbs"™ provides exam-
ples of the use of some of the basic conversation verbs. These are
examples only; they represent no specific application.
"Appendix C. Symbol String Conventions" defines the symbol strings
referred to throughout the manual.
"Appendix D. List of SNA Service Transaction Programs™ contains a list
of SNA service transaction programs.
"Appendix E. Conversation State Matrices" provides matrix represent-
ations of the state transitions and state-check conditions that occur
at the conversation protocol boundary for programs using the basic and
type-independent conversation verbs.

PREREQUISITE PUBLICATION

Systems Network Architecture Concepts and Products, GC30-3072

RELATED PUBLICATIONS

Svstems Network Architecture Referenge Summary, GAZ7-3136
Systems Network Archiltucture Technical Overview, GC30-3073
Svstams Network Architecture E mat_and Protocol Reference Manual:
Architecture Logic for LU Type 6 ,g. S$C30-3269.
Systems Netwo Architectu at a t e :
Distribution Services, SC30- 3098.
Systems etwork Architectu ma 0co al:
Architectural lLogic, SC30-3112.
S ems tuwor chitectu S ion. Betuee oqi its,
6020 1868.
Document Interchange Architecture: Technical Reference, SC23-0781.
nterchange Architecture: change Document P i -

thﬂ_ér 5C23- 076‘)

cument Inte a itecture: nsaction Programmer's Guida,
§C23-0763.

iv SNA Transaction Programmer's Reference Manual for LU Type 6.2

MA

This edition includes the following new functions, technical changes,
and editorial changes:

New Functions:
U 2ession-leve1 LU-LU verification has been added to LU 6.2 securi-
V.

* The SECURITY_USER_ID and SECURITY_PROFILE parameters have been
added to the MC_GET_ATTRIBUTES and GET_ATTRIBUTES verbs.

The MC_RECEIVE_IMMEDIATE and MC_TEST mapped conversation verbs
have added.

ng §ECEIVE_IMMEDIATE and TEST basic conversation verbs have been
added.

. The CONFIRM argument has been added to the TYPE parameter of the
MC_DEALLOCATE, MC_PREPARE_TO_RECEIVE, DEALLOCATE, and PRE-
PARE_TO_RECEIVE verbs.

The DATA_TRUNCATED and FMH_DATA_TRUNCATED indications have been
added to the WHAT_RECEIVED parameter of the MC_RECEIVE_AND_WAIT
and MC_RECEIVE_IMMEDIATE verbs.

J Theb FORCE parameter has been added to the RESET_SESSION_LIMIT
verb.

Technical Changes:

] gonversation-level security has been enhanced for LU 6.2 securi-
V.

. The definition of the base and option sets for product support of
the verbs, parameter, return codes, and what-received indications
has been changed.

] The character set used for SNA-defined transaction program names
has been changed.

. The list of return codes for the MC_TEST, TEST, and WAIT verbs has
been expanded.

L The way in which the (LU,mode) session limit for single-session
connections is specified on the INITIALIZE_SESSION_LIMIT verb has
been changed.

J The DEFINE and DISPLAY verbs have been expanded into a set of four
DESIgE verbs and four DISPLAY verbs, and a DELETE verb has been
added.

ori es:
. The material in this book has been reorganized:

- The verb syntax diagrams have been modified to express cer-
tain parameters as syntactically optional.

- The mapped and basic conversation verbs have been combined
into a single chapter, and the verbs that apply to both con-
versation types have keen sepacnt2azd into their own section of
the chapter.

- The descriptions of the conversation states for all of the

conversation verbs have been consolidated into one section of
the chapter.

Summary of Amendments v

- The descriptions of the return codes for all of the conversa-
t;‘\ont verbs have been consolidated into one section of the
chapter.

- The base- and option-set definition for product support of
all the verbs—conversation verbs and control operator
verbs—has been consolidated into an appendix.

. A clarification has been added to the list of product option sats
to diffarentiate between those for which only local support is
needed for their use, and those for which both local and remote
support is needed.

. A list is added showing the SNA-defined transaction program names
assigned for use by LU 6.2 products.

L ﬁ chgr:Eis added showing the hexadecimal codes for character sets
an .

[An appendix has been added containing a matrix representation of
the state transitions that occur at the conversation protocol
boundary for programs using the basic and type-independent con-
versation verbs.

U Other less significant editorial improvements have been made.

All these additions and changes, excluding the reorganization of
material, are indicated in the left margin with a vertical line.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Chapter 1. Introduction e o o o o o o o

Systems Network Architecture

Logical Unit Type 6.2 . e o e e s e e s
Transaction Program e e e e e o e e o o
Protocol Boundary . . e e e s e s e e
Interprogram c°mmun1catlon e e e o & o o

Chapter 2. LU 6.2 Protocol Boundary o o o

Interprogram Communication e o e o o o o o
Protocol Boundary Structure e e e s o o o

Chapter 3. Transaction Program Verbs . o

Transaction Program Structure and Execution
Verb Overview . e o e o o s o o o o s
Conversation Verbs . . e e e e e
Mapped Conversation Verbs e e . .
Type-Independent Conversation Verbs
Basic Conversation Verbs . .
Control-Operator Verbs P .
Change Number of Sessions Verbs
Session Control Verbs
LU Definition Verbs .
ABEND Conditions . .
Product-Support Subsettlng
Verb Description Format .

e o o o o o

e o

e o o 0 o o o &
.

e & o o o
e o o o
e o o o
o o o o o
o« o o s o

Chapter 4. cConversation verhs .

L]
L
L]
L]
*

Verb Descriptions . .
Mapped Conversation Verbs
MC_ALLOCATE .
MC_CONFIRM . .

MC_CONFIRMED
MC_DEALLOCATE
MC_FLUSH .
MC_GET_ ATTRIBUTES
MC_POST_ON_RECEIPT
MC_PREPARE_TO_RECEIVE
MC_RECEIVE_AND_WAIT .
MC_RECEIVE_IMMEDIATE .
MC_REQUEST_TO_SEND . o .
MC_SEND_DATA e e e e e e
MC_SEND_ERROR e e e e e
MC_TEST .
Type-Independent Conversatlon Ver
BACKOUT e e e s o e e
GET_TYPE e e e e e e e s
SYNCPT e o o s & o o o @
WAIT . N
Basic Conversatwon Verbs
ALLOCATE e e s e e
CONFIRM e e e e
CONFIRMED . o e
DEALLOCATE . e e
FLUSH . .
GET_ ATTRIBUTES
POST_ON_RECEIPT
PREPARE_TO_RECEIVE
RECEIVE_AND_WAIT
RECEIVE_IMMEDIATE
REQUEST_TO_SEND .
SEND_DATA e e s e
SEND_ERROR . e e e
TEST e e e e e e e

e o o o o

o o o o o
e o o o o o

o s e o o 0 0
.

e & o o o 0

® 6 0 o o o s o o o o

e e & ¢ & o+ o & o o o

e o o o+ o o o

e o o o
e 6 6 o o 2 * 2 e 6 2 s ¢ o o 0
.

e e 6 & o & 9 8 0 0 0 0 0 s o o

® @ o o o ® o 0 0 0 0 o o

.

oo.ooa'ooooo

e o o o o o
" o e ¢ v o o

e ¢ o o o o

e o & 6 o 0 0 0 o 0 0 o o o
e o o o o o

.
e o o * & ¢ e o o o
® 6 o 0 o s 0 0 s 6 " s 0 s s e o

® 6 o o o ¢ e o o & o o o 0

.
® 6 0 o 4 @ 0 o e ¢ 0 0 9 s 0 e e 0 0 »
.

e o o o o 0 o e o s 0 & o+ 0
O 6 0 0 & 6 ¢ & o o 0 0 o o
e & o o o o o 0 0 9 e

o o o o o o
o o ¢ o

e o ¢ o o o 6 0 o 0 0 0

e e o 0 o o & e o s 0

® 9 @ o o 0 0 e 6 & o o 0 o o 0 0 0 o o 0

e o o o

® o o o 0 o o o o o 0 o 0

@ 8 6 e 6 6 9 6 6 0 6 0 @ s s 6 s 0 e e 0 0 0 ¢ s & e 0 0 b s 0 s s o o

e o o ¢ 0 0 0 0 & o o o o

@ 6 o o 6 @ 0 0 8 9 6 6 6 0 0 0 0 0+ 0 4 0 0 0 6 6 0 0 2 0 0 0 0 0 0 0 0

® 6 6 0 8 0 0 @ 0 & 0 0 % s 0 6 . 0 8 6 0 0 4 o s 0 e 0 0 s e s o s 0

e o 6 o 0 0 0 o o o 0 s 0

e o o o
e o o o
s o e o
e e o .
e o o o
. o . o
e o e o
* o e o
e o o o
e o o o
e e o o
e o o o
e o o .
. L] L 2 L]
. .
. .
. .
. .
. .
. .
. .
. .
. .
. 3

.

.

.

.

® 8 @ o @ 8 6 & ° 9 5 6 9 6 0 06 0 o O 4 0 e e e & 2 O 4 e 0 s 6 e v 0 0
® 6 6 9 e 0 @ & 06 9 0 P B 6 2 0 . 6 0 4 0 % % e 9 e 6 6 0 0 0 0 0 s 0 o

® 8 6 6 0 6 o 6 6 0 0 0 6 0 o 2 % 0 e 0t 0 s 0 e e 0

@ 6 8 6 9 o 0 0 6 9 0 e ¢ s 2 e e 2 e 2 e 0

Contents

e & 5 o 0 0 0 0 o+ o 0 o 0

e ® & @ 6 4 0 O & 0 % 2 0 0 e 06 4 0 0 S 0 6 0 0 0 o s 0 0 0 0 0]

e o o o

3-3

N = OONNNOOTIPUW

1
-
-]

VOO0 NNNOATARTIVIUIVIAD LD DUHUWULNINN
DPONAINNUOOONNFROVUNONOOVIPHOOWNPOPO

vii

-t
-t
-t

Conversation States e 4 e e e e e e e e e e e e e e e e
Return Codes e e e e e e s e e e e e e e e e e e e e e e e

chapter 5. Control-Operator Verbs e ¢ o o o o o o o o o o

LU-LU Sessions . .
Single and Parallel Sess1ons
Contention-Winner Polarlty .

Verb Descriptions .

Change Number of Sessxons Verbs
CHANGE_SESSION_LIMIT . o s
INITIAUIZE_SESSION_LIMIT .
RESET_SESSION_LIMIT .
PROCESS_SESSION_LIMIT

Session Control Verbs
ACTIVATE_SESSION .
DEACTIVATE_SESSION

LU Definition Verbs
DEFINE_LOCAL_LU .
DEFINE_REMOTE_LU .
DEFINE_MODE e e .
DEFINE_TP . .
DISPLAY_LOCAL LU
DISPLAY_REMOTE_LU
DISPLAY_MODE .
DISPLAY_TP . .
DELETE e e e e

Return Codes . e e

" e e e
.
» e e o o

e o o o 8 & ° e © 0 0 6 0 o o o o
e & o o 6 ® o e o 6 o o o o o @

.
.
e o o & o 0 0 & o o 0 s 0 e e e o

o o o o

e o o o

e o o o o 0 0 e o o o o 0

e o o ¢ o 0 o o o e e o o o

e o o o 8 8 & ° * o e & o o o o

e o o 0 0 e & o e o

® 6 9 0 6 0 o o o+ 0 0 0 8 0 0 0 0 0

o o o o o o o 8 s " e 6 e 6 0 s o o

@ & 0 6 6 9 0 6 o e 6 6 o 8 9 6 e o s o o o 0
® & o o 6 9 6 & o o 0 0 9 e 0 o o o

@ 8 o 8 e o 8 e 2 s e 6 0 0 & s o e s 0 s o 0
@ 8 9 o ° e & o ¢ 0 o e ¢ o 2 s o o s s & o+ 0
e o o o o o

@ ® o o 6 0 0 @ ¢ o 2 ° 0 e 0 0 e 0 s 0 o o o
@ o o o & o & o o ¢ o o 0 o o+ o o

@ o o o o 6 o o o o » ® ® e s e e e 6 6 o o o
o o o s o o o

® & ¢ 9 o e o o o 0 0 e e e e e 0+ o 0 s s e 0
@ & o 8 4 0 8 e s e 6 o 0 v e e s o s 0 s 0

Appendix A. Base and Option Sets for Product Support

Support for Mapped Conversation Verbs and Parameters . .
Support for Type-Independent Conversation Verbs and Parameters
Support for Basic Conversation Verbs and Parameters e e e e
Support for Conversation Return Codes and What-Received
Indications . e e e e e e e e e e e e e e e
Support for Control Operator Verbs and Parameters for CNOS .
Sgpp:rtlfor Control-Operator Verbs and Parameters for Session
ontro . e e e e e e e e e e e e e e e
Support for Control Operator Verbs and Parameters for LU
Definition s o o o o 4 o o o e o o o & o »
Support for Control Operator Return Codes e e e e e e e o
Notes on Implementation Details e e e e e e e e e e e e e

Appendix B. Examples Using Basic conversation verbs e o o o
Appendix C. Symbol String Conventions ¢ o o o o 6 o o o o o

Symbol String Type e
Symbol String Length e 6 s e s e e e e e e e e e e e e e e

Appendix D. List of SNA Service Transaction Programs e o o

SNA Service Transaction Program Names .
Scheduler e e e e o o o o @
Queue e e e e e e e e e e e
DL71 . . “ e e e s e

Change Number of Sesstons)
Resynchronization . . .

Distributed Data Management :
Document Interchange Architecture

e o o o o
e o o o o o

SNA Distribution Services .
Product Oriented e e e e o e

. .

® o o o o 0 o o o
.
e o o o o o o o o o
e o o o o o o o o o
* e o 6 e e o o o o
o o o o o o o o o o
e o o o & o o o o o
.

e o o o ¢ 0 s e o o

Appendix E. Conversation State Matrices e o o o o o o o o

Index ® @ e e e e o o o ° o e o 9 o & * o © o © o O o o o o

SNA Transaction Programmer's Reference Manual for LU Type 6.2

HPH
[]
O O
o~

[IRC RO RS AV NC JC V)] ?
(™

1 USSR
N OO DUN ==

WWMWTTWMUUW
CGINNNN ==
oK

=40
5-42
5-44
5-47
5-49
5-51

A-1
A-5
A-8
A-9
A-12
A-14
A-15

A-16
A-19
A-20

O w
11
g

o0
11
[

UUUU??UUU o
NNVNNNNNNE - = D

X m o
O
=

LIST OF FIGURES

Chapter 1. Introduction

Figure 1-1. Transaction Programs and SNA Resources . .

Chapter 2. LU 6.2 Protocol Boundary
Figure 2-1. Program-to-Program Connection Through the SNA
Network o .
Figure 2-2. Effective Program-to Program Connectton . .
Figure 2-3. A Configuration of Interconnected Programs
Chapter 3. Transaction Program Verbs

Figure 3-1. Format Box for Representing Verb Syntax . .

Chapter 4. cConversation Verbs
Figure 4-1. Correlation of Conversation Verbs to the

Conversation States Allowing Their Issuance
Figure 4-2. Correlation of Return Codes to Verbs . . .

Chapter 5. Control-Operator Verbs

Figure 5-1. Correlation of Return Codes to Verbs e e

Appendix A. Base and Option Sets for Product Support

Figure A-1. Support for Mapped Conversation Verbs and

Parameters (Part 1 of 3)
Figure A-2. Support for Mapped Conversation Verbs and
Parameters (Part 2 of 3) . e e .
Figure A-3. Support for Mapped Conversation Verbs and
Parameters (Part 3 of 3) . . .
Figure A-4%. Support for Type-Independent Conversatlon Verbs
and Parameters
Figure A-5. Support for Basic Conversatton Verbs and
Parameters (Part 1 of 3) . . .
Figure A-6. Support for Basic Conversation Verbs and
Parameters (Part 2 of 3) . . .
Figure A-7. Support for Basic Conversat1on Verbs and
Parameters (Part 3 of 3) . . e e e

Figure A-8. Support for Conversation Return Codes “ e e
Figure A-9. Support for Conversation What-Received

Indications e e e e e e e e e e e e e e e
Figure A-10. Support for Control Operator Verbs and

Parameters for CNOS « e .
Figure A-11. Support for Control Operator Verbs and

Parameters for Session Control . e e e

Figure A-12. Support for Control Operator Verbs and
Parameters for LU Definition (Part 1 of 3)
Figure A-13. Support for Control Operator Verbs and
Parameters for LU Definition (Part 2 of 3)
Figure A-14. Support for Control Operator Verbs and
Parameters for LU Definition (Part 3 of 3)
Figure A-15. Support for Control Operator Return Codes .

Appendix B. Examples Using Basic Conversation verhs

Figure B-1. ALLOCATE, SEND_DATA, DEALLOCATE --
SYNC_LEVEL (NONE) e e e e e e e e e e e

List of Figures

1-2

3-10

%4-98
4-105

5-54%

A-5
A-6
A-7
A-8
A-9
A-10

A-11
A-12

A-13
A-14
A-15
A-16
A-17

A-18
A-19

B-2

X

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Appendix
Figure

Figure
Figure

Appendix

Appendix
Figure
Figure
Figure

Figure

U
.

SYNC_LEVEL (CONFIRM)

[} 4
UNHOVRI~NOUID L N

SYNC_LEVEL (CONFIRM)

CONFIRM .

SEND_ERROR tn Send State
SEND_ERROR in Receive State
REQUEST_TO_SEND e e e e e
POST_ON_RECEIPT, WAIT . .
POST_ON_RECEIPT, TEST .
SYNCPT e e e e e e & o
SYNCPT, BACKOUT e e e e

IUTGT@U = W
e o o 0 s o o

wunfw
s et et |

¢. symbol string Conventions

C-1. Character Sets A and AE .
C-2. Symbol-String Types . o
C-3. Symbol-String Lengths . .

.

e o o o o o

ALLOCATE, SEND_DATA, DEALLOCATE -
RECEIVE_AND_WAIT, DEALLOCATE —--

.

e ¢ o o

.

.

o« s o o 0

PREPARE_TO_RECEIVE -- éYNC LEVEL(NONE) '
PREPARE_TO_RECEIVE == SYNC_LEVEL(CONFIRM)

o & o o o o o o

D. List of SNA Service Transaction Programs

E. Conversation State Matrices

¢« o o o

e e o

e 6 o o o o o

* o & o o o o o

e 6 e o o o o o o
e & o o o 0 & o s e 0

E-1. Conversation State Transition Matrix (Part 1 of

3 e
E-2. Conversation State Transition Matrix (Part 2 of

3)

E-3. anversatlon State Trans;tlon Matrtx (Part 3 of

E-%. Conversation State Check Matrlx)

SNA Transaction Programmer's Reference Manual for LU Type 6.2

e o o o o

11 ¢ 11
AP NOAPNON N

RUUWTNEQU
NNVNN = = |

E-2
E-4

E-6
E-8

CHAPTER 1. INTRODUCTION

This chapter introduces the reader to general concepts used through-
out the book.

S OR C CTUR

Systems Network Architecture (SNA) is the description of the logical
structure, formats, protocols, and operational sequences for trans-
mitting information units through networks and for controlling the
configuration and operation of networks. A formal description of SNA
is provided in SNA Format and Protocol Reference Manual: Architec-
tural lLogic. The description of SNA in this book is limited to the
saervices that SNA logical-unit type 6.2 (LU 6.2) provides to trans-
action programs. A formal description of LU 6.2 is provided in SNA
ormat_and ocol Reference Manual: Architec oqgic for LU T

LOGIC PE 6.

In SNA, the physical network consists of actual processors, called
nodes, and data links between the nodes. The logical network consists
of logical processors, called logical units (LUs),! and logical con-
nections, called sessions. One or more sessions connect one LU to
another LU. Information is transmitted from one LU to another LU over
a session.

LU 6.2 is a particular type of SNA logical unit. LU 6.2 provides a
connection, or port, between its transaction programs and network
resources. Each LU 6.2 makes a set of resources available to its
transaction programs. The exact set is product- and
configuration-dependent; examples are processor machine cycles and
main storage, files on magnetic disk or tape, input/output devices
such as keyboard and display terminals, and logical resources such as
sessions, queues, and data-base records. Some of these resources are
local to a program, that is, attached to the same LU as the program.
Other resources are remote, that is, attached to other LUs (remote is
defined in terms of the logical configuration of the network; the LUs
can be within the same physical node).

Resource allocation and control is a central function of LU 6.2. Pro-
grams can request the LU for access to a resource. The LU schedules
allocation to serially-reusable resources, creating new copies of
logical resources, such as sessions, when necessary. The LU provides
resource control in order to nasure integrity of the program's access
to the resource. For example, the LU maintains a state? represen-
tation of the resource, allowing the program to perform an operation
on the resource only when the resource is in the appropriate state for
that operation. The LU may also provide other resource-related serv-~-
ices to its programs, such as resource synchronization-point process-
ing that synchronizes committed changes to resources.

IRANSACTION PROGRAM

Transaction programs process transactions. A transaction is a type of
application. It usually involves a specific set of input data and
triggers the execution of a specific process or job. One example is

1 Other logical processors, such as physical units (PUs) and system
sarvices ccatrol points (SSCPs), also exist and are described in
SNA Concepts and Products.

< A specific operating condition of the resourca as it appears to
the program at a particular time of access. Over time, the
resource changes from one state to another in accord with the pro-
gram's operations on the resource.

Chapter 1. Introduction 1-1

the entry of a customer's deposit and the updating of the customer's
balance. A second example is the process of recording item sales,
arriving at the amount to be paid by or to a customer, verifying
checks before accepting them as tender, and receiving payment for the
merchandise. A third example is the transfer of a message to one or
more destination points.

A transaction oqram, as the term is used in this publication, is a
program that is executed by or within LU 6.2 and performs services
related to the processing of a transaction. For example, the program
may be an application program that processes a transaction or is one
of several programs that make up a transaction processing applica-
tion, or it may be a system program that performs system services for
an application program processing a transaction.

Distributed processing of a transaction within an SNA network occurs

when transaction programs communicate by exchanging information over

the sessions between their LUs, treating the session as a resource

that is shared between the programs. Figure 1-1 illustrates the con-

zﬁctioCUof two programs to SNA resources, including a session between
eir S.

Program A

|
LU 6.2 SNA Network
[X X J l . -
« e e e e . Other .
. Other . .Resources.
.Resources. —— Session —m—— . for .
. for . .Program B.
.Program A. e e e e e
e e e e o @ I 'YX
LU 6.2

i
Program B

Figure 1-1. Transaction Programs and SNA Resources

The "other resources™ shown in the figure may include other sessions
as well as local files and devices. The other sessions allow program
A or program B to communicate with other programs. During the commu-
nication between two programs, one program may send a message over the
session to another program, requesting access to a local resource of
the other program. In this way, a local resource of program B, for
example, may become a remote resource of program A.

PROTOCOL BOUNDARY

1-2

The LU 6.2 protecol boundary, as the term is used in this publication,
is the generic description of the transaction program's logical
interface to an SNA network, from the perspective of the transaction
program; LU 6.2 provides the protocol boundary between the program and
the network. The description is generic in the sense that it provides
a syntactical representation of the functions common to all IBM pro-
ducts that implement LU 6.2; the syntactical description is not neces-
sarily of any specific IBM product. IBM products implementing LU 6.2
may provide a programming interface that differs in syntax from the
protocol boundary described herein; however, the results achieved are
functionally equivalent to the results described in this book. For
information about the functional correspondence between the product's
programming interface and the protocol boundary described in this
book, refer to the IBM product publication describing the product's
programming interface.

SNA Transaction Programmar's Reference Manual for LU Type 6.2

The generic protocol boundary described herein represents the trans-
action program's logical interface to SNA and its services, and is the
primary subject of this book. The value of a generic description is
that the transaction program des:gner may plan an application that
spans many different products using a single generic interface, and
then map the design to the individual product-dependent interfaces.

Notg: Products may provide additional <functions for their trans-
action programs, that is, product-unique functions that are not
qescribed in this book. A given product-unique function may cause
information to be sent on an LU 6.2 session, depending on the func-
tion; however, the formats and protocols used on the LU 6.2 seSSIOn
are unchanged. (See NA Fo and Protoco eference Manual: Arc
tecture lLogic for LU Tvpe 6.2 for a definition of the formats and pro-
tocols associated with LU 6.2 sessions.) When designing an
application that may be executed on different products, the trans-
action program designer should not depend on the product-specific
functions being available across the different products.

G COMMUNICATION

Among the services that SNA and, in particular, LU 6.2 provides is
interprogram communication. IBM products implementing LU 6.2 provide
this service as Advanced Proqram—-to-Proqram Com ication (APPC).
Refer to the individual IBM product publications for details of their
APPC implementations.

Interprogram communication permits distribution of the processing of
a transaction among multiple programs within a network. The programs
coordinate the distributed processing by exchanging control informa-
tion or data. The protocol boundary provides the structure for pro-
grams to communicate with one another in order to process a
transaction. This structure meets the following requirements,
described in terms of their SNA realization:

Simultaneous activation — Many distributed applications require
their component programs to be active simultaneously. If the
sender of a request waits for the reply, the sending program is
depending upon timely execution by its partner. SNA achieves this
by simply carrying the program name in the request and letting the
receiving LU create an instance of the desired partner program.
This concept is recognizably that of transactions, so in SNA the
communicating programs are called transaction programs. It fol-
lows that distributed transactions are executed by distributed
transaction programs.

Efficient allocation — Just as programs use local resources by
asking the LU for access to them, programs ask the LU for access
to sessions for use as interprogram communication resources.
However, the program is not really concerned with the session,
which is (usually) a long-term connection between LUs. Nor is the
program concerned with the possibility of other programs using
the session before or after its own use. What the program asks
the LU for is a period of exclusive use of a session, that is, for
an abstract resource that is the unit of sharing of the session
resource. This resource is called a conversation.

conversation overhead — Conversations should be efficient in
allocation, data transfer, and deallocation. For instance, what
the programs see as two short messages, perhaps an inquiry and its
reply, should result in two short messages flowing in the network.
The LU achieves this by multiplexing conversations over a pool of
sassions, scheduling each session as a serially reusable
resource.

conversation lifetime — Conversations last for a time that is
determined only by the communicating programs. So, conversations
vary from a single, short message to many exchanges of long or
short messages. A conversation could continue indefinitely, ter-
minated only by failures.

Two-nay alternate data transfer — Conversations wuse two-way
alternate (half duplex) data transfer. This makes it easiar to

Chapter 1. Introduction 1-3

1-4

write transaction programs, in contrast to two-way simultaneous
(full duplex) transfer of data which experience shows leads to
more complicated and error-prone programs.

Attention mechanism — Conversations include an attention mech-
anism to handle asynchronous, but non-error, events.

Error notification — Conversations provide each program with a
method to notify its partner of errors when they are detected.

commitment control — When errors occur, recovery is greatly sim-
plified if the changes that a program has been making to its
resources can be made to appear atomic; for example, if resources
A and B are changed, then after a failure, B will be observed to
have changed if and only if A is also observed to have changed.
Committing changes atomically is a service that SNA extends to
distributed transaction programs. SNA calls this the sync point?
service. Conversations are defined to the sync point service in
each LU as either being protected by sync point or as being unpro-
tected. In the latter case, the transaction programs are them-
selves responsible for error recovery synchronization.

symmatry — Conversations are allocated by one active program,
but all other protocols (data transfer, attention, error notifi-
cation, and deallocation) are fully symmetric.

Mode of service — The program allocating the conversation names
the desired mode of transmission service, such as "interactive”
or "batch," to be provided by the network.

Levels of conversations — In order to adequately serve the needs
of system programs and application. transactions, two levels of
conversations exist: basic conversations, for system transaction
programs, and mapped conversations, for application transaction
programs.

Subset definition — A subsetting is defined for LU 6.2 by a base
set of functions and a limited number of option sets. IBM pro-
ducts that implement LU 6.2 all provide the base set of functions,
and may provide any of the option sets.

Sync point is a shortened term for synchronization point.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

E

2.

0G

2 0COL _BOUNDA

The LU 6.2 protocol boundary is a generic interface between trans-
action programs and the SNA network. The protocol boundary permits
access to SNA services and resources, especially the services and
resources associated with interprogram communication. By means of
interprogram communication, distributed transactions can be designed
and implemented.

The distributed processing of a transaction also requires access to
system services and resources not related to interprogram communi-
cation; however, such services and resources are product-dependent.
The reader should refer to the individual product publications for
information about a particular product's programming interface to
rasources such as disk or tape files, input/output devices, and
pfgcessor main storage, and to non-SNA services that the product pro-
vides.

COMMUNIC

The protocol boundary permits transaction programs to communicate
with one another without being involved in the interactions that take
place within the network. Figure 2-1 shows two programs connected
through the SNA network. The LUs are connected by an LU-LU session,
and the programs are connected by a conversation allocated on the ses-
sion. For each LU-LU session, one LU is the contention winner of the
session and the other LU is the contention loser of the session.
These terms relate to how contention is resolved when the two LUs
attempt to allocate a conversation on the session at the same time.

Specific detalls are glven in NA Egcmat and Protocol Reference Manu-
al: Are ct c fo UuT

Program A

SNA Network
LU 6.2

LU 6.2

Program B

Figure 2-1. Program-to-Program Connection Through the SNA Network

From the programs' view, only the conversation is visible. The acti-
vation of the session and actual messages that the LUs exchange on
that session are hidden from the programs. Only the dalays associated
with the buffering and transmission of information within the network
are apparent to the programs. The program-to-program connection can
therefore be represented as shown in Figure 2-2.

Chapter 2. LU 6.2 Protocol Boundary 2~-1

ROTACO

2-2

Program A Program B

Figure 2-2. Effective Program-to-Program Connection

This view of program—-to-program connection can be extended to a more
general configuration of interconnected programs. Figure 2-3 shous
an example of one way in which seven programs can be interconnected.
The interconnection is logical; the physical configuration of the
network is not apparent to the programs.

Program E

Program B
Program F

Program A Program C
Program D Program G

Figure 2-3. A Configuration of Interconnected Programs

The configuration of interconnected programs changes over time. In
ghﬁlexample shown in Figure 2-3, the configuration may have evolved as
ollows:

1. Program A connects to Program B, then to Program C, and then to
Program D.

2. Program B connects to Program E and then to Program F.
3. Program D connects to Program G.

This configuration may have evolved in other ways, as well, and it may
be an interim configuration that ultimately grows to a much larger

configuration of interconnected programs. All configurations of
interconnected programs, however large, are made up of program-to-

program connections between pairs of programs. One program initiates

;he inte{connection process; in Figure 2-3, the initiating program is
rogram A.

DARY_S U

The protocol boundary is a structured interface. It is defined by
means of formatted functions, called verbs, and the protocols for the
verbs. The protocols are the allowed sequences of verbs, that is, the
order in which a transaction program can issue verbs. The protocols
are defined in terms of resource states. A transaction program can
issue a particular verb only when the the resource to which that verb
applies is in the appropriate state for that verb.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Tha verbs and states that represent the LU 6.2 protocol boundary ena-
ble the user to design distributed transactions, processed by dis-
tributed transaction programs. The number of transaction programs
can be small, involving only two programs, or large, involving many
programs. The transaction can have & fixed structure in which the
processing by all programs is predetermined at design time, such as a
single inquiry and reply between two programs. In contrast, the
transaction can have a flexible structure in which the programs
involved and the processing are determined at execution time, possi-
bly varying from one invocation of the transaction to the next; an
example is the updating of information in a distributed data base.

An overview description of the verbs is given in "Chapter 3. Trans-
action Program Verbs". The detailed descriptions of the verbs are
given in “Chapter 4. Conversation Verbs" and "Chapter 5.
Control-Operator Verbs". Resource states associated with the conver~
sation verbs are described in "Chapter 4. Conversation Verbs".

Chapter 2. LU 6.2 Protocol Boundary 2-3 -

This page intentionally left blank

2-4 SNA Transaction Programmer's Reference Manual for LU Type 6.2

CHAPTE TRANSACGTION PROG ERB

The LU 6.2 protocol boundary is defined by verbs that request the LU
to perform services. The verbs are described from the transactlon
programmer's view of the LU 6.2 protocol boundary. Events occurring
below the protocol boundary and not apparent at the boundary are not
described. Refer to § Format and a c anual : i=

T for details of events that occur below
the protocol boundary.

TRANSACTION PROGRAM STRUCTURE AND EXECUTION

All transaction programs have the following general structure:

name: PROCEDURE (resource-id [,pipl [,... [,piPn] 1 1])3

U verbs and other program statements
[]

RETURN;
END name;

The elements of the transaction program structure are:

name is the name of the transaction program. The transaction pro-
gram name is carried in the allocation request sent by a partner
program. The LU receiving the request locates the program by name
and creates a new instance,! or executable copy, of the program.
The location of the program, such as in a program library, is
product-dependent.

PROCEDURE begins the main procedure of the transaction program.

resource-id is the name of the variable in which tha LU places the
resource ID of the conversation on which the allocation request
was received. The conversation connects this transaction program
to the partner program that sent the allocation request.

Note: The description in this book assumes that transaction pro-
grams are always started by means of an allocation request
received on a conversation. The manner in which a product starts
the first program of an interconnected configuration of programs
is product-dependent. For example, the first program may be
started in response to a "load" request from an operator.

PiPly...,PiPN are the names of the variables in which the LU
places program initialization parameters (PIPs) 1 through n.
Product send and receive support of PIPs is optional; see Fig-
ure C-3 in "Appendix C. Symbol String Conventions" for details.
The PIPs are supplied by the allocating program. The contents of
the PIPs have meaning only to the transaction programs—they are
not examined or acted upon by the LU.

verbs and other program statements represent the combination of
verbs, described in this book, and othar programming-language
statements that make up the transaction-processing portion of the
program. Thus, the program's processing of a transaction begins

1 When it is n~ambiguous to do so, a program instance is simply
refarre? to as a program.

Chapter 3. Transaction Program Verbs 3-1

3-2

with the first varb or other program statement after the PROCEDURE
statement. It ends with the last verb or other program statement
preceding the RETURN statement, or with the processing implied by
the RETURN statement (discussed next).

RETURN ends execution of the program by returning control to the
LU. As part of the LU's processing of the RETURN statement, it
deallocates all conversations (and other resources) that the pro-
gram has not, itself, deallocated. Depending on the product, the
LU may perform other resource-related functions, including the
execution of verb functions for conversations still allocated,
before deallocating the resources.

END name identifies the physical end of the program. It is the
last statement in the program.

Note: The PROCEDURE, RETURN, and END statements are not
described elsewhere in this book. They are presented here only to
illustrate the general structure of all transaction programs.
IBM products implementing LU 6.2 may provide programming language
statements that differ in syntax from this description. However,
the functions of the product programming language statements are
equivalent to the functions described here.

Program execution, in terms of the verbs, occurs when the transaction
program issues a verb and the LU executes it; verbs are issued and
executed one at a time. When the program issues a verb, the program's
processing is suspended while the LU executes the verb. The program
resumes processing when the LU returns control to the program. The
program may then issue another verb.

Conversations use two-way alternate data transfer. Once a conversa-
tion is allocated, send-receive relationship is established between
the programs connected to the conversation. One program issues verbs
to send data and the other program issues verbs that receive the data.
When the sending program finishes sending data, it transfers control
of sending data to the other program.

The LUs at each end of a conversation have a buffer for sending and
receiving the data on the conversation. When the program issues a
verb that sends data, it specifies an area containing the data. The
LU moves the data to its d buffer, accumulating the data behind any
data from previous verbs. The LU transmits the data, or flushes its
send buffer, when either it accumulates a sufficient amount for trans-
mission, or the program issues a verb that explicitly causes the LU to
transmit the accumulated data. The amount of data sufficient for
transmission is determined by the maximum size request unit that can
be sent on the session on which the conversation is allocated. The
amount can vary from one session to another, and therefore from one
conversation to another.

As incoming data arrives on a conversation, the LU places the data in
its receive buffer, accumulating the data behind any it previously
received. When the program issues a verb that receives data, it spec-
ifies an area in which the LU is to place the data. The LU moves the
requested amount of data from the front of its receive buffer to tho
area specified by the program. In this way, the LU can accumulate
incoming data in its receive buffer in advance of the program issuing
tha verb, or verbs, that receive the data.

Verbs are defined that send information other than data. These verbs
cause the LU to flush its send buffer and then place the information
at the front of the buffer, behind which it accumulates data from sub-
sequent verbs. The receiving LU accumulates this information in its
receive buffer in the order it is received, with reference to other
information including data.

Program execution ends when the program returns control to the LU at
tzetcomptetion of the transaction. This is accomplished by the RETURN
statement.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

VERB QOVERVIEW

This saection presents an overview of the verbs in terms of their indi-
vidual functions. The verbs are divided into categories. These cate-
gories are:

Conversation verbs
Control-operator verbs

Each category defines a major subdivision of the LU 6.2 protocol
boundary. The conversation verbs define the means for program-to-
program communication. The control-operator verbs define the means
for program or operator control of the LU's resources.

In the following overview, and in the remaining chapters of this book,
the verbs are described from the perspactive of the transaction pro-
gram issuing the verb. From this point of view, the program issuing
the verb is referred to as the local program, and the program at the
other end of the conversatton is referred to as the rem

Slmllarly, the LU processing the local program is referred to as the
local LU, and the LU processing the remote program is referred to as
the remote LU.2 The overview description of the conversation verbs and
control-operator verbs follows.

CONVERSATION VERBS

The conversation verbs provide program-to-program communication by
means of conversations between programs. The following conversation
types are defined:

Mapped
Basic

The verbs defining the conversation protocol boundary are divided
igto sgbcategories based on the conversation type. The subcategories
of verbs are:

Mapped conversation verbs
Type-independent conversation verbs
Basic conversation verbs

An overview of the conversation verbs follows.

Mapped Conversation Verbs

The mapped conversation verbs are intended for use by application
transaction programs. These verbs provide functions that are suit-
able for application programs written in high-level programming lan-
guages. A brief description of the mapped conversation verbs follows.

MC_ALLOCATE allocates a mapped conversation connecting the local
transaction program to a remote transaction program. A unique
resource ID is assigned to the mapped conversation. This verb is
issued prior to any verbs that refer to the mapped conversation.

MC_CONFIRM sends a.confirmation request to the remote transaction
program and waits for a reply, in order for the two programs to
synchronize their procesciag.

MC_CONFIRMED sends a confirmation reply to the remote transaction
prograa, in order for the two programs to synchronize their proc-
essing. The program issues the verb in response to receiving a
confirmation request.

MC_DEALLOCATE deallocates a mapped conversation resource from the
transaction program. The program issues this verb when it is fin-
ished using the mapped conversation.

2 When it is unambiguous to do so, the local program is simply
refa:rﬁﬁjto as the program, and the local LU is simply referred to
as the .

Chapter 3. Transaction Program Verbs 3-3

MC_FLUSH transmits all information that the LU has buffered, such
as data records from preceding MC _SEND_DATASs.

MC_GET_ATTRIBUTES returns information pertaining to a mapped con-
versation. Examples of information that may be requested are the
mode name, the name of the LU at which the remote transaction pro-
gram is located, or the synchronization level allocated for the
mapped conversation.

MC_POST_ON_RECEIPT requests posting of the specified mapped con-
versation when information is available for the program to
receive. The information can be a data record, mapped conversa-
tion status, or a request for confirmation or sync point.

MC_PREPARE_TO_RECEIVE changes the mapped conversation from send
state to receive state in preparation to receive data. A SEND
indication is sent to the remote program. The remote program's
end of the mapped conversation changes to send state when the pro-
gram receives the SEND indication.

MC_RECEIVE_-AND_UWAIT waits for information to arrive on the mapped
conversation and then receives the information. If information
is already available, the program receives it without waiting.
The information can be a data record, mapped conversation status,
or a request for confirmation or sync point. Control is returned
to the program with an indication of the type of information. The
verb can be issued when the mapped conversation is in send state.
In this case, the verb first sends a SEND indication to the remote
program, changing the mapped conversation to receive state, and
then waits for information to arrive.

MC_RECEIVE_IMMEDIATE receives any information that is available
from the specified mapped conversation, but does not wait for
information to arrive. The information (if any) can be a data
record, mapped conversation status, or a request for confirmation
or sync point. Control is returned to the program with an indi-
cation of whether any information was received and, if so, the
type of information.

MC_REQUEST_TO_SEND notifies the remote program that the local
program is requesting to enter send state for the mapped conversa-
tion. The mapped conversation will be changed to send state when
the local program subsequently receives a SEND indication from
the remote program.

MC_SEND_DATA sends one data record to the remote transaction pro-
gram. The data record consists entirely of data. The program can
specify data mapping as a function of the verb, or it can indicate
that the data record includes FM headers.

MC_SEND_ERROR informs the remote transaction program that the
local program has detected an application error. For example, the
local program can issue this verb to inform the remote program of
an error it detected in a data record it received, or to reject a
confirmation request. Upon successful completion of the verb,
the local program is in send state for the mapped conversation and
the remote program is in receive state.

MC_TEST tests the mapped conversation to determine whether it has
been posted, as a result of a praceding MC_POST _ON_RECEIPT verb,
or whether a request-to-send notification has been received.

Type-Independent conversation Verbs

3-6

The type-independent conversation verbs are intended for use with
both mapped and basic conversations. These verbs provide functions
that span both conversation types. A brief description of the
type-independent verbs follows.

BACKOUT restores all protected resources throughout a distributed
transaction to their status as of the last synchronization point.
Protected resources are those that are protacted by the sync point
service of LU 6.2.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

GET_TYPE returns the type of resource. For mapped conversations
the type is MAPPED_CONVERSATION, and for basic conversations the
type is BASIC_CONVERSATION.

SYNCPT advances all protected resources throughout a distributed
transaction to the next synchronization point.

WAIT waits for posting to occur on any mapped or basic conversa-
tion from among a list of mapped and basic conversations. The
posting of mapped conversations is performed as a result of a pre-
ceding MC_POST_ON_RECEIPT verb issued for each of the mapped con-
versations. Similarly, the posting of basic conversations is
performed as a result of a preceding POST_ON_RECEIPT verb issued
for each of the basic conversations.

Basic conversation Verhs

The basic conversation verbs are intended for use by LU services pro-
grams. The LU services programs can provide end-user services or pro-
tocol boundaries for end-user application transaction programs. For
example, the mapped conversation LU services component issues basic
conversation verbs during its processing of mapped conversation
verbs. A brief description of the basic conversation verbs follows.

ALLOCATE allocates a conversation connecting the local trans-
action program to a remote transaction program. The conversation
type can be basic or mapped. A unique resource ID is assigned to
the conversation. This verb is issued prior to any verbs that
refar to the conversation.

CONFIRM sends a confirmation request to the remote program and
waits for a reply, in order for the two programs to synchronize
their processing.

CONFIRMED sends a confirmation reply to the remote program, in
order for the two programs to synchronize their processing. The
prograg issues this verb in response to receiving a confirmation
request.

DEALLOCATE deallocates a conversation from the transaction pro-
gram. The program issues this verb when it is finished using the
conversation.

FLUSH transmits all information that the LU has buffered, such as
data from preceding SEND_DATAs.

GET_ATTRIBUTES returns information pertaining to a conversation.

Examples of information that may be requested are the mode name,

the name of the LU at which the remote transaction program is

tgcated, or the synchronization level allocated for the conversa-
ion.

POST_ON_RECEIPT requests posting of the specified conversation
when information is available for the program to receive. The
information can be data, conversation status, or a request for
confirmation or sync point.

PREPARE_TO_RECEIVE changes the conversation from send state to
receive state in preparation to receive data. A SEND indication
is sent to the remote program. The remote program's ead of the
conversation changes to send state when the program receives the
SEND indication.

RECEIVE_AND_WAIT waits for information to arrive on the conversa-
tion and then receives the information. If information is already
available, the program receives it without waiting. The informa-
tion can be data, conversation status, or a request for confirma-
tion or sync point. Control is returned to the program with an
indication of the type of information. The verb can be issued
when the conversation is in send state. In this case, the verb
first sends a SEND indication to the remote program, changing the
conversation to receive state, and then waits for information to
arrive.

Chapter 3. Transaction Program Verbs 3-5

RECEIVE_IMMEDIATE receives any information that is available from
the specified conversation, but does not wait for information to
arrive. The information (if any) can be data, conversation sta-
tus, or a request for confirmation or sync point. Control is
returned to the program with an indication of whether any informa-
tion was received and, if so, the type of information.

REQUEST_TO_SEND notifies the remote program that the local pro-
gram is requesting to enter send state for the conversation. The
conversation will be changed to send state when the local program
subsequently receives a SEND indication from the remote program.

SEND_DATA sends data to a remote program. The data format con-
sists of logical records. The amount of data is specified inde-
pendently of the data format. A logical record contains a length
field and a data field. The length field is 2 bytes long; the
data field can be any length within the range of 0 to 32765 bytes.

SEND_ERROR informs the remote program that the local program has
detected an error. For example, the local program can issue this
verb to truncate an incomplete logical record it is sending, to
inform the remote program of an error it detected in data it
received, or to reject a confirmation request. Upon successful
completion of the verb, the local program is in send state for the
conversation and the remote program is in receive state.

TEST tests the conversation to determine whether it has been
posted, as a result of a preceding POST_ON_RECEIPT verb, or wheth-
er a request-to-send notification has been received.

CONTROL-OPERATOR VERBS

The control-operator verbs are intended for use by control-operator
transaction programs, that is, programs that assist the control oper-
ator in performing functions related to the control of an LU. The
varbs defining the control-operator protocol boundary are divided
into subcategories based on their functions. The subcategories are:

Change number of sessions verbs
Session control verbs
LU definition verbs

An overview of the control-operator verbs follows.

change Numbher of Sessions Verbs

3-6

This subcategory of control-operator verbs consists of four verbs

called the change-number-of-sessions, or CNOS, verbs. The CNOS verbs

change the (LU,mode) session limit, which controls the number of LU-LU

sessions per mode name that are available betuween two LUs for allo-

cation to conversations. In conjunction with changing the (LU,mode)

:ﬁsséon SJmit. the CNOS verbs change related operating parameters of
e two s.

The two LUs may cooperate in the execution of the CNOS verbs by means
of a CNOS request and CNOS reply. The LU executing the control-oper-
ator transaction program sends a CNOS request to the partner LU. The
partner LU invokes an SNA service transaction program called the "CNOS
service transaction program" (see "Appendix D. List of SNA Service
Transaction Programs"), which causes the partner LU to process the
CNOS request and send back a CNOS reply.

The CNOS verbs that a control-operator transaction program may issue
are:

CHANGE_SESSION_LIMIT changes the (LU,mode) session limit from one
nonzero value to another nonzero value.

INITIALIZE_SESSION_LIMIT changes the (LU,mode) session limit from
0 to a value greater than 0.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

RESET_SESSION_LIMIT changes the (LU,mode) session limit from a
value greater than 0 to 0.

The CNOS verb that the CNOS service transaction program issues is:

PROCESS_SESSION_LIMIT causes the LU receiving the CNOS request to
process the request and send back a CNOS reply to the partner LU.

session _Control Verbs

This subcategory of control-operator verbs consists of two verbs used
for session control, one that activates an LU-LU session and one that
deactivates an LU-LU session. These verbs are:

ACTIVATE_SESSION activates an LU-LU session between the local LU
and a specified LU.

DEACTIVATE_SESSION deactivates a specified LU-LU session. The
type of deactivation can be cleanup or normal.

LU Definition Verbs

This subcategory of control-operator verbs is used to define or modify
the local LU's operating parameters, examine the parameters, and
delete the parameters. These verbs are:

DEFINE_LOCAL_LU initializes or modifies parameter values that
control the operation of the local LU.

DEFINE_REMOTE_LU initializes or modifies parameter values that
control the operation of the local LU in conjunction with a remote

.

DEFINE_MODE initializes or modifies parameter values that control
the operation of the local LU in conjunction with a group of ses-
sions with a remote LU, the group being identified by a mode name.

DEFINE_TP initializes or modifies parameter values that control
the operation of the local LU in conjunction with a local trans-
action program.

DISPLAY_LOCAL_LU returns parameter values that control the opera-
tion of the local LU.

DISPLAY_REMOTE_LU returns parameter values that control the oper-
ation of the local LU in conjunction with the remote LU.

DISPLAY_MODE returns parameter values that control the operation
of the local LU in conjunction with a group of sessions with a
remote LU, the group being identified by a mode name.

DISPLAY_TP returns parameter values that control the operation of
the local LU in conjunction with a local transaction program.

DELETE deletes the local LU's operating-parameter values that
have been defined by means of the DEFINE verbs.

ABEND CONDITIONS

Certain errors related to the execution of the verbs can cause an
abnormal ending (ABEND) of the transaction program. These ABEND con-
ditions are a direct consequence of an invalid specification or exe-
cution of a verb. When the LU terminates a program because of an
ABEND condition, it deallocates all of the program's active conversa-
tions. Depending on the product, the LU may abnormally deallocate the
conversations, or deallocate the conversations in the same way it does
for the RETURN statement (see the RETURN statement under "Transaction
Program Structure and Execution™ on page 3-1).

The ABEND conditions are:

Chapter 3. Transaction Program Verbs 3-7

3-8

Parameter Check occurs when the program issues a verb for which
local support is not available, or when the program specifies a
verb parameter with an invalid argument. The source of the inval-
id argument is considered to be part of the program definition.
(Contrast this definition with the definition of the return code,
PARAMETER_ERROR, in the section "Return Codes" in Chapter 4.) The
detailed verb descriptions list the applicable parameter checks.

The omission of a required parameter, the specification of an
undefined parameter, and the specification of an undefined argu-
ment on a parameter that requires one of a defined set of keyuwords
are also parameter check conditions. The parameter checks for the
omission of a required parameter and for the specification of an
undefined parameter apply to all verbs. The parameter check for
an undefined keyword argument applies to all verbs that specify
one or more parameters with keyword arguments. These parameter
checks are not explicitly listed with each detailed verb
description.

state Check occurs when the program attempts to issue a verb for a
conversation that is in a state in which the verb is not allowed.
The section "Conversation States" in Chapter 4 defines the allow-
able states for each conversation verb. The control-operator
verbs do not have states associated with them and therefore do not
have any state checks defined.

Ibe individual verk aescriptions list the applicable ABEND condi-
ions.

Note: 1In lieu of treating these ABEND conditions as described here,
products may provide a different mathod for handling the ABEND condi-
tions. For example, a product may return an error indication to the
program when it attempts to issue a verb in a state in which the verb
is not permitted., allowing the program to continue processing, or a
product may provide a compile-time check for the specification of
optional verbs and parameters that the product does not support.
Refer to the individual product's publications for details about how
it treats these conditions.

UBSETTING

Product-support subsetting of the verbs is defined by means of func-
tional groups, or sets. A set consists of all the functions that
together represent an indivisible group for products to implement.
That is, a product implementing a particular set implements all of the
functions within that set.

All products implement a subset of LU 6.2 functions called the base
set. The functions that are not part of the base set are optional.

The base set and option sets are defined in terms of the LU 6.2 proto-
col boundary, as follous:

Base set is the set of LU 6.2 verbs, parameters, return codes, and
what-received indications that all products support.

option sets are the sets of LU 6.2 verbs, parameters, return
codes, and what-received indications that a product may support,
depending on the product. A product may support any number of
option sets, or none. For each option set supported, all verbs,
parameters, return codes, and what-received indications in that
sat are supported.

The base set and option sets are further defined in terms of local
support and remote support.

Local support is the support of LU 6.2 verbs, parameters, return
codes, and what-received indications that the product provides at
the local end of a conversation, as seen by the local transaction
program. The program may issue an optional verb or parameter only
when the local product supports the option set. An attempt by the
program to issue an optional verb or parameter for which local
support is not available is considered an ABEND condition (see

SNA Transaction Programmer's Reference Manual for LU Type 6.2

"ABEND Conditions™ on page 3-7). An optional return code or
what-received indication can be reported to the program only when
the local product supports the option set.

Remote support is the support of verbs and parameters that the
product provides at the remote end of a conversation, as seen by
the local transaction program. (Remote support does not apply to
the return codes and what-received indications.) Only certain
verbs and parameters invoke processing at the remote end of the
conversation; the other verbs and parameters are processed
entirely at the local end of the conversation. When the program
issues a verb or parameter that invokes remote processing, and the
remote product does not provide remote support for the verb or
parameter, a return code indicating the lack of support is
reported to the program. The return code can be reported on the
verb for which remote support is not available or on a later verb,
depending on the verb.

The base and optional support for the conversation verbs and control-
operator verbs is defined in "Appendix A. Base and Option Sets for
Product Support™.

Note: The base- and option-set definition for product support
described in this book applies only to LU 6.2 products that provide an
application programming interface (API) for user-uritten programs
that is equivalent to the conversation verbs. The definition does not
apply to LU 6.2 products that are not user-programmable, or to pro-
ducts that are user-programmable but do not provide an API equivalent
to the conversation verbs; such products need support only the LU 6.2
functions required for their applications.

VERB DESCRIPTION FORMAT
This section explains the format used to describe the verbs in the
following chapters. The verb descriptions are presented alphabet-
ically, by name, in terms of each verb's function, syntactic format,
parameters, state changes, ABEND conditions, and usage notes.

The description of each verb begins with a brief explanation of its
function.

The verb's syntax is described next using a format box. The general
representation of the format box is shoun in Figure 3-1 on page 3-10.

Chapter 3. Transaction Program Verbs 3-9

3-10

Su ied Parameters:
verb-name parameter (argument)

parameter (argument)
(argument)

parameter (argument argument ... argument)

[parameter (argument)]

(argument)

[parameter (default-argument)]

Supplied-and-Returned Parameters:

parameter (argument)

Returned Parameters:

parameter (argument)

[parameter (argument)]

.
?

Figure 3-1. Format Box for Representing Verb Syntax

As shown in the preceding general format box, the syntax description
for each verb includes a verb name, verb parameters, and the ending
delimiter ";" (semicolon). The number of verb parameters depends on
the verb, and a verb may not have any parameters.

Parameter names are shown as uppercase keywords. Parameter arguments
are shown as uppercase keywords, as "variables,"™ or as a combination
of keyuwords and "variables." An argument keyword is used to show a
specific argument value associated with the parameter. An argument
“"variable" is used to show that the argument value can vary; it can be
program data, for example.

Some parameters show a vertical list of argument keywords (possibly
combinaed with "variables"). The vertical list means the arguments are
limited to those within the list, one of which is specified when the
verb is issued. Other parameters show an argument list as "variablel
... variablen."” The number of arguments in the argument list depends
on the verb; the number may be constant or it may vary from one issu-
ance of the verb to the next.

The parameters are grouped as Ysupplied parameters,"
"supplied-and-returned parameters," or "returned parameters."

o Supplied parameters contain arguments whose values are supplied
by the program when it issues the verb.

. Supplied-and-returned parameters contain arguments whose values
are supplied by the program when it issues the verb and whose val-
ues are returned to the program when it resumes processing.

. Returned parameters contain arguments whose values are returned
to the program when it resumes processing.

Soma parameters are shown within brackets. The bracket notation is
used to show which parameters may be omitted when the verb is issued.
It it also used for cross-publication reference purposes, so that oth-

SNA Transaction Programmer's Reference Manual for LU Type 6.2

er SNA and product publicatinrs that refer to the verbs in this book
may omit references to the bracketed parameters. In particular:

U Some bkracketed supplied parameters have multiple arguments with
one being a default argument, shown as underscored. Omission of
any of these parameters is treated as if the default argument wa.
specified on the perameter.

. Other bracketed supplied parameters have no default argument.
Omissicn of any of these parameters is treated as described for
the parameter.

[If a bracketed returned parameter is omitted, the argument value
is not returned.

Following the syntax is a description of the verb's parameters.
Included is a list of the return codes that can be returned to the
transaction program when it resumes processing.

The changes, if any, to the state of the conversation at the protocol
boundary are described next. The state changes occur as a result of
executing the verb.

Aftar the description of state changes, the ABEND conditions are given
for each verb.

Finally, notes are given to describe certain aspects of the verb's
usage in order to further clarify the actions of the verb.

Notes:

1. Products may provide application programming interfacas (APIs)
that differ from the verb syntax described in this book. For
example, a product may have different names for operations that
are equivalent to the verbs and parameters described herein; it
may combine the functions of certain verbs into one operation,
such as the functions of MC_SEND_DATA and MC_CONFIRM; and it may
separate the functions of a single verb into distinct operations,
such as separating the functions of MC_ALLOCATE into an operation
that acquires the session and an operation that allocates the con-
versation on the session. These are syntactical, not functional,
di fferences.

2. The bracket notation used in the syntax diagrams is unrelated to
the product-support subsetting described in this book. See
"Product-Support Subsetting™ on page 3-8 and "Appendix A. Base
and Option Sets for Product Support"™ in Appendix A for details
about product support. The bracket notation is also unrelated to
any product's API definition. The product may allow a different
set of parameters to be omitted, if any, and have different
defaults for the supplied parameters. Refer to the product's pro-
gramming publications for details of its API.

Chapter 3. Transaction Program Verbs 3-11

This page intentionally left blank

3-12 SNA Transaction Programmer's Reference Manual for LU Type 6.2

APT CONVERSATION VERBS

This chapter describes the category of verbs called conversation
verbs. The conversation verbs define the LU 6.2 conversation protocol
boundary. These verbs are used for program-to-program comnunications
over a conversation connecting two programs. Each conversation is of
a specific type:

Mapped
Basic

The conversation verbs are divided into subcategories, based on the
conversation type to which they apply:

Mapped conversation verbs
Type-independent conversation verbs
Basic conversation verbs

The mapped conversation verbs apply to mapped conversations. The
type-independent conversation verbs apply to both mapped and basic
conversations. The basic conversation verbs apply to basic conversa-
tions, and to mapped conversations for use by the mapped conversation
LU services component. Refer to SNA_Format an otoc Reference
Manual: rchi ture Logi or LU Type 6.2 for a description of the
mapped conversation LU services component.

Following the descriptions of the conversation verbs is a description

of conversation states that allow issuance of the verbs, and a
description of the return codes that apply to the conversation verbs.

VERB DESCRIPTIONS

The detailed descriptions of the mapped, type-independent, and basic
conversation verbs follouw.

Chapter 4. Conversation Verbs -1

MAPPED CONVERSATION VERBS

6-2

This section describes the subcategory of conversation verbs called
mapped_conversation verbs. These verbs are intended for use by appli-
cation transaction programs. They provide functions, such as data
mapping (a product option), that make the verbs suitable for applica-
tion programs written in a high-level programming language. Addi-
tionally, these verbs conceal from the application program the
logical-record data-stream format that a program using the basic con-
versation verbs must manage. The detailed descriptions of the mapped
conversation verbs follow.

Note: Every conversation is either a mapped or basic conversation.
The mapped conversation verbs are used for operations only on mapped
conversations. Thus, throughout the descriptions of the mapped con-
varsation verbs, references are made only to mapped conversations.
The program allocates a mapped conversation when it issues the
MC_ALLOCATE verb. Contrast this with the basic conversation verb,
QLLQCATE, which can allocate a conversation of either type, mapped or
asic.

SNA Transaction Programmer's Reference Manual for LU Typae 6.2

Mapped conversation verbs

MC_ALLOCATE
Allocates a session between the local LU and a remote LU, and on that
session allocates a mapped conversation between the local transaction
program and a remote transaction program. A resource ID is assigned
to the mapped conversation. This verb is issued prior to any verbs
that refer to the mapped conversation.)
supplied Parameters: .
MC_ALLOCATE LU_NAME (OWN)

(OTHER (variable))
MODE_NAME (variable)
TPN (variable)

-
{ WHEN SESSION ALLOCATED)

RETURN_CONTROL (DELAYED_ALLOCATION_PERMITTED)
(IMMEDIATE)

(NONE)
SYNC_LEVEL (CONFIRM)
(SYNCPT)

{ NONE)
SECURITY (SAME) .
(PGM (USER_ID (variable) PASSWORD (variable)
PROFILE (variable)))

PIP (NO)

(YES (variablel variable2 ... variablen))]

Returned Parameters:
RESOURCE ({ variable)
RETURN_CODE (variable)

supplied Paramaters:

LU_NAME specifies the name of the remote LU at which the remote trans-
action program is located. This LU name is any name by which the
local LU knows the remote LU for the purpose of allocating a mapped
conversation. The local LU transforms this locally-known LU name to
an LU name used by the network, if the names are different.

U OUN specifies that the remote transaction program is located at
the same LU as the local program.

. OTHER specifies that the remote transaction program is located at
another LU. The specified variable contains the LU name.

MODE_NAME specifies the mode name designating the network properties
for the session to be allocated for the mapped conversation. The net-
work properties include, for example, the class of service to be used,
and whether data is to be enciphered or translated to ASCII before it
is sent. The SNA-defined mode name, SNASVCMG, is not allowed to be
speggfied on the MC_ALLOCATE verb (contrast this with the ALLOCATE
verb).

TPN specifies the name of the remote transaction program to be con-
nected at the other end of the mapped conversation. TPN cannot speci-
fy an SNA service transaction program name at the mapped conversation
protocol boundary. (See "Appendix D. List of SNA Service Transaction

Chapter 4. Conversation Verbs 4-3

MC_ALLOCATE

Progra?s" for more details about SNA service transaction program
names.

RETURN_CONTROL specifies when the local LU is to return control to the
local program, in relation to the allocation of a session for the
mapped conversation. An allocation error resulting from the local
LU's failure to obtain a session for the mapped conversation is
reported either on this verb or a subsequent verb, depending on the
argument specified for this parameter. An allocation error resulting
from the remote LU's rejection of the allocation request is reported
on a subsequent verb.

. WHEN_SESSION_ALLOCATED specifies to allocate a session for the
mapped conversation before returning control to the program. An
error in allocating a session is reported on this verb.

. DELAYED_ALLOCATION_PERMITTED specifies to allocate a session for
the mapped conversation after returning control to the program.
An error in allocating a session is reported on a subsequent verb.

. IMMEDIATE specifies to allocate a session for the mapped conver-
sation if a session is immediately available, and return control
tglthetpaogram with a return code indicating whether a session is
allocated.

- A return code of OK indicates a session is immediately avail-
able and is allocated for the mapped conversation. A session
is immediately available when it is active, it is not allo-
cated to another mapped conversation, and the local LU is the
contention winner for the session.

- A return code of UNSUCCESSFUL indicates a session is not imme-
diately available. Allocation is not performed.

An error in allocating a session that is immediately available is
reported on this verb.

SYNC_LEVEL specifies the synchronization level that the local and
remote transaction programs can use on this mapped conversation.

. NONE specifies that the transaction programs will not perform
confirmation or sync point processing on this mapped conversa-
tion. The programs will not issue any verbs and will not recog-
nize any returned parameters relating to these synchronization
functions.

. CONFIRM specifies that the transaction programs can perform con-
firmation processing but not sync-point processing on this mapped
conversation. The programs may issue verbs and will recognize
returned parameters relating to confirmation, but they will not
issue any verbs and will not recognize any returned parameters
relating to sync point.

L SYNCPT specifies that the transaction programs can perform both
confirmation and sync-point processing on this mapped conversa-
tion. The programs may issue verbs and will recognize returned
parameters relating to confirmation or sync point. For
sync-point processing, a mapped conversation allocated with this
synchronization level is a protected resource.

SECURITY specifies access security information that the remote LU
uses to verify the identity of the end user and validate access to the
remote program and its resources. The access security information
consists of a user ID, a password, and a profile.

. NONE specifies to omit access security information on this allo-
cation request.

. SAME specifies to use the user ID and profile (if present) from
the allocation request that initiated execution of the local pro-
gram. The passuword (if present) is not used; instead, the user 1D
is indicated as being already verified. If the allocation request
that initiated execution of the local program contained no access

4-4 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation verbs

security information, then access security information is omitted
on this allocation request.

PGM specifies to use the access security information that the
local transaction program provides on this parameter. The local
program provides the information by means of the following argu-
ments:

- USER_ID specifies the variable containing the user ID. The
remote LU uses this value and the password to verify the iden-
tity of the end user making the allocation request. In addi-
tion, the remote LU may use the user ID for auditing or
accounting purposes, or it may use the user ID, together with
the profile (if present), to determine which remote programs
the local program may access and which resources the remote
program may access.

- PASSHORD specifiaes the variable containing the password. The
remote LU uses this value and the user ID to verify the iden-
tity of the end user making the allocation request.

- PROFILE specifies the variable containing the profile. The
remote LU may use this value, in addition to or in place of
the user ID, to determine which remote programs the local pro-
gram may access, and which resources the remote program may
access.

Specifying a null value for any of the access security arguments
is equivalent to omitting the argument.

PIP specifies program initialization parameters for the remote trans-
action program.

[

NO specifies that PIP data is not present.
YES specifies that PIP data is present.

- variablel variable2 ... variablen contain the PIP data to be
sent to the remote transaction program. The PIP data consists
of one or more subfields, each of which is specified by a sep-
arate variable; variables 1 through n correspond to subfields
1 through n. If a variable is omitted in the PIP parameter or
it is of null value, the corresponding PIP subfield is made to
be of zero length. The number of PIP subfields must agree
with the number of PIP variables specified on the remote pro-
gram's PROC statement (see "Transaction Program Structure and
Execution®™ in Chapter 3).

Returned Parameters:

RESOURCE specifies the variable in which the resource ID is to be
returnad. The length and actual format of the resource ID is product
dependent. The resource ID is returned to the program when the return
code is either OK or ALLOCATION_ERROR.

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
axecution. The RETURN_CONTROL parameter determines which of the fol-
lowing return codes can be returned to the program.

If RETURN_CONTROL(WHEN_SESSION_ALLOCATED) is specified, one of
the following return codes is returned:

- oK

- ALLOCATION_ERROR (with onae of the following subcodes)
— ALLOCATION_FAILURE_NO_RETRY
— ALLOCATION_FAILURE_RETRY
— SYNC_LEVEL_NOT_SUPPORTED_BY_LU

- PARAMETER_ERROR (for one of the following reasons)
— Invalid LU name
— Invalid mode name

If RETURN_CONTROLCDELAYED_ALLOCATION_PERMITTED) is specified,
one of the following return codes is returned:

Chapter 4. Conversation Verbs 4%-5

MC_ALLOCATE

0K
- PARAMETER_ERROR (for one of the following reasons)
= Invalid LU name
— Invalid mode name

If RETURN_CONTROL(IMMEDIATE) is specified, one of the following
return codes is returned:

- 0K
- ALLOCATION_ERROR (with the following subcode)
— SYNC_LEVEL_NOT_SUPPORTED_BY_LU
- PARAMETER_ERROR (for one of the following reasons)
— Invalld LU name
— Invalid mode name
- UNSUCCESSFUL (for the following reason)
— Session not immediately available

State Changes (when RETURN CODE indicates 0K):
Send state is entered.

ABEND Conditions:
Parameter Check

L K N N J ® o060 00

The program does not have mapped conversation support defined.
LU_NAME(OKN) is specified and not supported.

MODE_NAME specifies the SNA-defined mode name, SNASVCMG.

TPN specifies an SNA service transactlon program.

TPN specifies a null (zero length) va

RETURN_CONTROL (DELAYED_ALLOCATION PERMITTED) is specified and
not supported.

RETURN_CONTROL (IMMEDIATE) is specified and not supported.

SYNC_ LEVEL(SYNCPT) is specified and not supported

SECURITY(SAME) is specified and not supported
SECURITY(PGM(USER_ID(variable) PASSNORD(varlable))) is specified
and not supported.

SECURITY(PGM(PROFILE(variable))) is specified and not supported.
PIP(YES(variable)) is specified and not supported.

state Check

None

Notes:

1'

Depending on the product, the LU may send the allocation request
to the remote LU as soon as it allocates a session for the mapped
conversation. Alternatively, the LU may buffer the allocation
request until it accumulates from the PIP parameter of this verb
or from one or more subsequent MC_SEND_DATA verbs a sufficient
amount of information for transmission, or until the local pro-
gram issues a subsequent verb other than MC_SEND_DATA that
explicitly causes the LU to flush its send buffer. The amount of
information that is sufficient for transmission depends on the
characteristics of the sessici allceczted for the mapped conversa-
tion, and can vary from une session to another.

The)ncal program can ensure that the remote program is connected
ag AffggATgs possible by issuing MC_FLUSH immediately after

Two LUs connected by a session may both attempt to allocate a
mappaed conversation on the session at the same time. This is
called contention. Contention is resolved by making one LU the
contantion winner of the session and the other LU the contention
loser of the session. The contention-winner LU allocates a mapped
conversation on a session without asking permission from the con-
tention-loser LU. Conversaly, the contention-loser LU requests
permission from the contention-winner LU to allocate a mapped
conversation on the session, and the contention-winner LU aither
grants or raejects the raquest.

4-6 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation verbs

If the program issues MC_ALLOCATE with the parameter
RETURN_CONTROL(DELAYED_ ALLOCATION _PERMITTED), the LU delays
allocation of the session until it flushes its send buffer. At
that time the LU allocates the session and transmits the allo-
cation request to the remote LU. The program is unaffected by the
delayed allocation of the session, with one exception: When the
LU allocates a contention-loser session, it does so by transmit-
ting the allocation request and then waiting for information to
arrive before returning control to the program. This can affect
the sequence of tha verbs that the program can issue.

Fonaexample. suppose the program has the following sequence of
verbs:

MC_ALLOCATE with
RETURN_CONTROL (DELAYED_ALLOCATION_PERMITTED)

MC_PREPARE_TO_RECEIVE with TYPE (FLUSH)
MC_REQUEST_TO_SEND

In this example, assume the program is using MC_REQUEST_TO_SEND
to prompt the remote program to begin sending information,
instead of requesting send control. However, if the LU allocates
a contention-loser session (and an allocation error or resource
failure does not occur), control is not returned to the program
after it issues the MC_PREPARE_TO_RECEIVE until the remote pro-
gram sends some information. If the remote program waits for the
REQUEST_TO_SEND notification before sending any information, a
deadlock condition occurs. This deadlock can be avoided by issu-

the MC_ALLOCATE with either RETURN_CONTROL
(NHEN SESSION_ ALLOCATED) or RETURN_CONTROL C(IMMEDIATE).

SYNC_LEVEL(SYNCPT) permits use of the SYNCPT and BACKOUT verbs
and the Resynchronization transaction program (an SNA service
transaction program), to aid in maintaining consistency across
all protected resources within a distributed logical unit of
work. The Resynchronization program performs sync point resyn-
chronization, which maintains this consistency when session fail-

ure and reinitiation occurs. See SNA Eormag and Protocol
Reference Manual: Architecture logic for LU Tvpe 6.2 for more

details of syne point resynchronization.

Each LU indicates at session activation time whether it will
accept LU security parameters on allocation requests the partner
LU sends. If the remote LU will not accept any security parame-
ters from the local LU, and the local program specifias SECURI-
TY(SAME) or SECURITY(PGM(...)), the local LU downgradas the
spacification to SECURITY(NONE). Similarly, if tha remote LU
will not accept the local LU's verification of the user ID and
password, and the local program specifies SECURITY(SAME), the
local LU downgrades the specification to SECURITY(NONE).

The remote program is connected to the other end of the mapped
convarsation in receive state.

The program uses the resource ID, returned to the program on the
RESOURCE parameter, on all subsequent mapped conversation verbs
it issues for this mapped conversation.

References in this verb description to a program being in a par-

tjcular state are only in terms of the allocated mapped conversa-
ion.

Chapter 4. Conversation Varbs 4-7

MC_CONFIRM

Sends a confirmation request to a remote transaction program and waits
for a reply. This verb allows the local and remote programs to syn-
chronize their processing with one another. The LU flushes its send
buffer as a function of this verb.

MC_CONFIRM

Su ie arameters:
RESOURCE (variable)

e ed Parameters:
RETURN_CODE (variable)
REQUEST_TO_SEND_RECEIVED (variable)

H

supplied Pa et H

RESOURCE specifies the variable containing the resource ID. The
mapped conversation must be allocated with a synchronization level of
CONFIRM or SYNCPT.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to th:.local program. The return code indicates the result of verb
execution.

0K (remote program replied MC_CONFIRMED)
ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been receivad. The indi-
cation is either YES or NO

¢ 0 00000 060 00

. YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued MC_REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state.

o NO indicates a REQUEST_TO_SEND notification has not been
received.

Stat anges ETURN CO indicates 0KJ:

Receive state is entered when the verb is issued in defer state fol-
lowing MC_PREPARE_TO_RECEIVE.

Reset state is entered when the verb is issued in defer state follow-
ing MC_DEALLOCATE.

No state change occurs when the verb is issued in send state.
ABEND Conditions:
Parameter Check

. This mapped conversation was allocated with SYNC_LEVEL(NONE).
° RESOURCE specifies an unassigned resource ID.

4-8 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped conversation verbs

State Check

The mapped conversation is not in send or defer state.

Notes:

1.

The program may use this verb for various application-level func-
tions. For example:

. The program may issue this verb immediately following an
MC_ALLOCATE in order to determine whether the allocation of
the mgpped conversation is successful before sending any data
records.

. The program may issue this verb as a request for acknowledge-
ment of data records it sent to the remote program. The
remote program may respond by issuing MC_CONFIRMED as an
indication that it received and processed the data records
without error, or by issuing MC_SEND_ERROR as an indication
that it encountered an error.

When REQUEST_TO_SEND_RECEIVED indicates YES, the remote program
requests the local program to enter receive state and thereby
place the remote program in send state. A program enters receive
state by means of the MC_PREPARE_TO_RECEIVE or
MC_RECEIVE_AND_MWAIT verb. The partner program enters the corre-
sponding send state when it issues an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb and receives the SEND indication (on
the WHAT_RECEIVED parameter).

References in this verb ‘description to a program being in a par-

:jcular state are only in terms of the specified mapped conversa-
ion.

Chapter 4. Conversation Verbs 4-9

MC_CONFIRMED

Sends a confirmation reply to the remote transaction program. This
verb allows the local and remote programs to synchrontze_therr proc-
essing with one another. The local program can issue this verb when
it receives a confirmation request (see the WHAT_RECEIVED parameter
of the MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE verb).

MC_CONFIRMED

supplied Parameters:
RESOURCE (variable)

H

Sy

ied Parameters:

RESOURCE specifies the variable containing the resource ID.

State Changaes:

Receive state is entered when CONFIRM was received on the preceding
MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE.

Send state is entered when CONFIRM_SEND was received on the preceding
MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE.

Deallocate state is entered when CONFIRM_DEALLOCATE was received on
the preceding MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE.

ABEND Conditions:
Parameter Check

RESOURCE specifies an unassigned resource ID.

State Check

The mapped conversation is not in confirm state.

Notes:

1.

2.

The program can issue this verb only as a reply to a confirmation
requaest; the verb cannot be issued at any other timea.

The program may use this verb for various application-level func-
tions. For example, the remote program may send some data records
followed by a confirmation request. When the local program
receives the confirmation request, it may issue this verb as an
ingication that it received and processed the data records with-
out error.

References in this verb description to a program being in a par-

:jcular state are only in terms of the specified mapped conversa-
ion.

4-10 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped conversation verbs

MC_DEALLOCATE
Deallocates the specified mapped conversation from the transaction
program. The deallocation can be either completed as part of this
verb, or deferred until the program issues an MC_ FLUSH, MC_CONFIRM, or
SYNCPT verb. When it is completed as part of this verb it can include
the function of the MC_FLUSH or MC_CONFIRM verb. The resource ID
becomes unassigned when deallocation is complete.
supplied Parameters:
MC_DEALLOCATE RESOURCE (variable)

ABEND
LOCAL

S!HO LEVEL) }

{
(

TYPE % OONFIRH)
(

Returned Parameters:
RETURN_CODE (variable)
H

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID of the
mapped conversation to be deallocated.

TYPE specifies the type of deallocation to be performed.

L SYNC_LEVEL specifies to perform deallocation based on the syn-
chronization level allocated to this mapped conversation:

- If SYNC_LEVEL(NONE), execute the function of the MC_FLUSH
vaerb and deallocate the mapped conversation normally.

- If SYNC_LEVEL(CONFIRM), exaecute the function of the
MC_CONFIRM verb and if it is successful (as indicated by a
return code of 0K on this MC_DEALLOCATE verb), deallocate the
mapped conversation normally; if it is not successful, the
stgte of the mapped conversation is determined by the return
code.

- If SYNC_LEVEL(SYNCPT), defer the deallocation until the pro-
gram issues a SYNCPT, or the program issues an MC_CONFIRM or
MC_FLUSH for this mapped conversation. If the SYNCPT or
MC_CONFIRM is successful (as indicated by a return code of 0K
on that verb) or MC_FLUSH is issued, the mapped conversation
is then deallocated normally; otheruwise, the state of the
mapped conversation is determined by the return code.

. FLUSH specifies to execute the function of the MC_FLUSH verb and
deallocate the mapped conversation normally.

. CONFIRM specifies to execute the function of the MC_CONFIRM verb
and if it is successful (as indicated by a return code of 0K on
this MC_DEALLOCATE verb), deallocate the mapped conversation
normally; if it is not successful, the state of the mapped conver-
sation is determined by the return code.

. ABEND specifies to execute the function of the MC_FLUSH verb when
the mapped conversation is in send or defer state, and deallocate
the mapped conversation abnormally. Data purging can occur uwhen
the mapped conversation is in receive state.

. LOCAL specifies to deallocate the mapped conversation locally.

This type of deallocation must be specified if, and only if, the
mapped conversation is in deallocate state. Deallocate state is

Chapter 4. Conversation Verbs 4-11

MC_DEALLOCATE

entaered when the program receives on a previously issued verb a
return code indicating the mapped conversation has been deallo-
cated (see "Return Codes" on page 4-99).

The execution of the MC_FLUSH or MC_CONFIRM function as part of this
verb includes the flushing of the LU's send buffer. When, instead,
the deallocation is deferred, the LU also defers flushing its send
buffe;.until the program issues a subsequent verb for this mapped con-
versation.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
execution. The TYPE parameter determines which of the following
return codes can be returned to the program.

U If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this mapped conversation is NONE, or TYPE(FLUSH),
TYPECABEND), or TYPE(LOCAL) is specified, the following return
code is returned:

- 0K (deallocation is complete)

. If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this mapped conversation is CONFIRM, or
TY:E(COEFIRM) is specified, one of the following return codes is
returned:

0K (deallocation is complete)
ALLOCATION_ERROR
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

U] If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this mapped conversation is SYNCPT, the following
return code is returned:

- 0K (deallocation is deferred)

State changes (uhen RETURN CODE indicates OK):

pefer state is entered when TYPE(SYNC_LEVEL) is specified and the syn-
chronization level is SYNCPT.

Reset state is entered when TYPE(FLUSH), TYPE(CONFIRM), TYPE(LOCAL),
or TYPE(ABEND) is specified, or when TYPE(SYNC_LEVEL) is specified
and the synchronization level is NONE or CONFIRM.

ABEND Conditions:
Parameter Check

. RESOURCE specifies an unassigned resource ID.
. TYPE(CONFIRM) is specified and the mapped conversation is allo-
cated with SYNC_LEVEL(NONE).

State Check

. TYPECFLUSH), TYPE(CONFIRM), or TYPE(SYNC_LEVEL) is specified and
the mapped conversation is not in send state.

L TYPECABEND) is specified and the mapped conversation is not in
send, defer, receive, confirm, or sync point state.

. TYPE(LOCAL) is specified and the mapped conversation is not in
deallocate state.

4-12 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbs

Notes:

1.

When the deallocation is deferred (see the TYPE parameter), the LU
buffers the deallocation information to be sent to the remote LU
until the local program issues a verb that causes the LU to flush
its send buffer.

The TYPE(SYNC_LEVEL) parameter is intended to be used by the
transactlon program in order to deallocate the mapped conversa-
tion based on the synchronization level allocated to the mapped
conversation.

. If the synchronization level is NONE, the mapped conversation
is unconditionally deallocated.

. If the synchronization level is CONFIRM, the mapped conversa-
tion is deallocated when the remote program responds to the
confirmation request by issuing MC_CONFIRMED. The mapped
conversation remains allocated when the remote program
responds to the confirmation request by issuing
MC_SEND_ERROR.

. If the synchronization level is SYNCPT, the mapped conversa-
tion is deallocated when the local program subsequently
issues SYNCPT and all programs throughout the transaction,
connected to conversations having the synchronization level
of SYNCPT, respond to the sync point request by issuing
SYNCPT. The mapped conversation remains allocated when the
remote program responds to the sync point request by issuing
226255?‘ERR0R’ or one or more programs respond by issuing

The TYPE(FLUSH) parameter is intended to be used by the trans-
action program in order to unconditionally deallocate the mapped
conversation regardless of its synchronization level.
TYPE(FLUSH) is functionally equivalent to:

U TYPE(SYNC_LEVEL) with a synchronization level of NONE.

o TYPE(SYNC_LEVEL) with a synchronization level of SYNCPT, fol-
lowed by the MC_FLUSH verb.

The TYPE(CONFIRM) parameter is intended to be used by the trans-
action program in order to conditionally deallocate the mapped
conversation, depending on the remote program's response, when
the synchronization level is CONFIRM or SYNCPT. TYPE(CONFIRM) is
functionally equivalent to:

. TYPE(SYNC_LEVEL) with a synchronization level of CONFIRM.

. TYPE(SYNC_LEVEL) with a synchronization level of SYNCPT, fol-
lowed by the MC_CONFIRM verb.

The mapped conversation is deallocated when the remote program
responds to the confirmation request by issuing MC_CONFIRMED.
The mapped conversation remains allocated when the remote program
responds to the confirmation request by issuing MC_SEND_ERROR.

The TYPE(ABEND) parameter is intended to be used by tha trans-
action program in order to unconditionally deallocate the mapped
conversation regardless of its synchronization level and its cur-
rent state. Specifically, the parameter is intended to be used
when the program detects an error condition that prevents further
usaeful communications, that is, communications that would lead to
successful completion of the transaction. The specific use and
meaning of ABEND are program-defined.

The TYPE(LOCAL) parameter is intended to be used by the trans-
action program in order to complete the program's deallocation of
the mapped conversation after receiving an indication that tha
mapped conversation has been deallocated from the session, an
ingicatiog such as a DEALLOCATE_NORMAL or RESOURCE_FAILURE_RETRY
return code.

Chapter 4. Conversation Verbs 4-13

MC_DEALLOCATE

The remote transaction program receives the deallocate notifica-
gigg by means of a return code or what-received indication, as
ollows:

. DEALLOCATE_NORMAL return code: The local program specified
either TYPE(FLUSH); TYPE(SYNC_LEVEL) and the synchronization
level is NONE; or TYPE(SYNC_LEVEL), the synchronization level
;g FEJ?&PT’ and the local program subsequently issued

. CONFIRM_DEALLOCATE what-received indication: The local pro-
gram specified either TYPE(CONFIRM); TYPE(SYNC_LEVEL) and the
synchronization level is CONFIRM; or TYPE(SYNC_LEVEL), the
synchronization level is SYNCPT, and the local program subse-
quently issued MC_CONFIRM.

L TAKE_SYNCPT_DEALLOCATE what-received indication: The local
program specified TYPE(SYNC_LEVEL), the synchronization level
is SYNCPT, and the local program subsequently issued SYNCPT.

U DEALLOCATE_ABEND return code: The local program specified
TYPECABEND), with the following exception: If the remote
program has issued MC_SEND_ERROR in receive state, a DEALLO-
82;5‘2g§nﬁL return code is reported instead of DEALLO-

MC_DEALLOCATE with TYPE(ABEND) resets or cancels posting. If
posting is active and the mapped conversation has been posted,
posting is reset. If posting is active and the mapped conversa-
tion has not been posted, posting is canceled (posting will not
occ:f). See the MC_POST_ON_RECEIPT verb for more details about
posting.

References in this verb description to a program being in a par-

:jcular state are only in terms of the specified mapped conversa-
ion.

4~-16 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation verbs

MC_FLUSH

Flushes the local LU's send buffer. The LU sends any information it
has buffaered to the remote LU. Information the LU buffers can come
from MC_ALLOCATE, MC_DEALLOCATE, MC_SEND_DATA,
MC_PREPARE_TO_RECEIVE, or MC_SEND_ERROR. Refer to the descriptions
of these verbs for details of the information the LU buffers and when
buffering ocecurs.

Supplied Parameters:

MC_FLUSH RESOURCE (variable)

H

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID.

state Changes:

Receive state is entered when the verb is issued in defer state fol-
lowing MC_PREPARE_TO_RECEIVE.

Reset state is entered when the verb is issued in defer state follow-
ing MC_DEALLOCATE.

No state change occurs when the vaerb is issued in send state.
ABEND Conditions:
Parameter Check

. This verb is not supported.
. RESOURCE specifies an unassigned resource ID.

state Check
The mapped convaersation is not in send or defer state.
otes?

1. This verb is useful for optimization of processing between the
local and remote programs. The LU normally buffers the data
records from consecutive MC_SEND_DATAs until it has a sufficient
amount for transmission. At that time it transmits the buffered
data records. However, the local program can issue MC_FLUSH in
order to cause the LU to transmit the buffered data records. In
this way, the local program can minimize the delay in the remote
program's processing of the data records.

2. This verb can be issued after MC_DEALLOCATE with TYPE(SYNC_LEVEL)
when the synchronization level for the mapped conversation is
SYNCPT. The effect to the remote program is the same as issuing
MC_DEALLOCATE with TYPE(FLUSH). The mapped conversation is deal-
located at tha completion of the MC_FLUSH verb.

3. This verb can be issued after MC_PREPARE_TO_RECEIVE with
TYPE(SYNC_LEVEL) when the synchronization level for the mapped
convearsation is SYNCPT. The effect to the remote program is the
same as issuing MC_PREPARE_TO_RECEIVE with TYPE(FLUSH). The
mapped conversation enters receive state at the completion of the
MC_FLUSH verb.

4. The LU flushes its send buffer only when it has some information
to transmit. If the LU has no information in its send buffer,
nothing is transmitted to the remote LU.

5. References in this verb description to a program being in a par-

:jcular state are only in terms of the specified mapped conversa-
jon.

Chapter 4. Conversation Verbs 4-15

MC_GET_ATTRIBUTES

Returns information pertaining to the specified mapped convaersation.

MC_GET_ATTRIBUTES RESOURCE (variable)

Supplied Parameters:

et ed Par [H

-

OWN_FULLY_QUALIFIED_LU_NAME (variable)]

PARTNER_LU_NAME (variable)]
PARTNER_FULLY_QUALIFIED_LU_NAME (variable)]
MODE_NAME (variable)]

SYNC_LEVEL (variable)]

SECURITY_USER_ID (variable)]

[SECURITY_PROFILE (variable)]

LUN_IDENTIFIER (variable)]

CONVERSATION_CORRELATOR (variable)]

4-16

sSu ied Parameters:

RESOURCE specifies the variable containing the resource ID of the
mapped conversation of which the attributes are desired.

Returned Parameters:

OUN_FULLY_QUALIFIED_LU_NAME specifies the variable for returning the
fully qualified name of the LU at which the local transaction program
is located. If the local fully qualified LU name is not knoun, a null
value is returned.

PARTNER_LU_NAME specifies the variable for returning the name of the
LU at which the remote transaction program is located. This is a name
by which the local LU knows the remote LU for the purpose of allocat-
ing a mapped conversation. Refer to the description of the LU_NAME
parameter of MC_ALLOCATE for more details.

PARTNER_FULLY_QUALIFIED_LU_NAME specifies the variable for returning
the fully qualified name of the LU at which the remote transaction
program is located. If the partner's fully qualified LU name is not
knouwn, a null value is returned.

MODE_NAME specifies the variable for returning the mode name for the
session on which the mapped conversation is allocated.

SYNC_LEVEL specifies the variable for returning the lavel of synchro-
nization processing being used for the mapped conversation. The syn-
chronization levels ara:

. NONE
U CONFIRM

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbs
. SYNCPT

SECURITY_USER_ID specifies the variable for returning the user ID
carried on the allocation request that initiated execution of the
local program. A null value is returned if the allocation request did
not contain a user ID.

SECURITY_PROFILE specifies the variable for returning the profile
carried on the allocation request that initiated execution of the
local program. A null value is returned if the allocation request did
not contain a profile.

LUH_IDENTIFIER specifies the variable for returning the logical unit
of work (LUW) identifier associated with the mapped conversation. The
LUWN identifier is created and maintained by the LU. The LU uses it to
identify the most recent sync point and for accounting purposes. If
notLUN ;dentifier is used on the mapped conversation, a null value is
returned.

CONVERSATION_CORRELATOR specifies the variable for returning the con-
versation correlator. The conversation correlator is created and
maintained by the LU. The LU uses it during sync point resynchroniza-
tion. If no conversation correlator is used on the mapped conversa-
tion, a null value is returned.

state Changes:

None

ABEND Conditions:
Parameter Check

This verb is not supported.

RESOURCE specifies an unassigned resource ID.
SECURITY_USER_ID is specified and not supported.
SECURITY_PROFILE is specified and not supported.
LUW_IDENTIFIER is specified and not supported.
CONVERSATION_CORRELATOR is specified and not supported.

State Check

® © 0 000

None
oxes:

1. The program may issue this verb in order to obtain the attributes
of the mapped conversation, including the one by which the program
was started.

2. Specifying SECURITY_USER_ID or SECURITY_PROFILE returns the user
ID or profile carried on the allocation request that initiated
execution of the local program, regardless of which resource 1ID is
supplied on the RESOURCE parameter.

3. The LU creates the LUW identifier for its use during sync point
processing, and for accounting purposes. For sync point, the LUW
idgn:ifier uniquely identifies the most recent synchronization
point.

4. The LU creates the conversation correlator for its use during sync
point resynchronization. For sync point resynchronization, the
conversation correlator correlates the logical unit of work to
the sync point states associated with the current instance of the
local program.

Chapter 4. Conversation Verbs 4-17

MC_POST_ON_RECEIPT

Causes the LU to post the specified mapped conversation when informa-
tion is available for the program to receive. The information can be
data, mapped conversation status, or a request for conflrmation or
sync point. WAIT should be issued after MC_POST_ON_RECEIPT in order
to wait for posting to occur. Alternatively, MC TEST may be issued
following MC_POST_ON_RECEIPT in order to determine when posting has
occurred.

MC_POST_ON_RECEIPT | RESOURCE (variable)

Supplied Parameters:

LENGTH (variable)

.
?

4-18

Supplied Parameters:
RESOURCE specifies the variable containing the resource ID.

LENGTH specifies the variable containing a length value, which is the
maximum length data record that the program can receive. This parame-
ter is used to determine when to post the mapped conversation for the
receipt of a data record.

State Changes:

None

ABEND Conditions:
Parameter Check

. This verb is not supported.
. RESOURCE specifies an unassigned resource ID.

State Check

The mapped conversation is not in receive state.
Notes:

1. This verb is intended to be used in conjunction with MC_TEST or
WAIT. The use of this verb and WAIT allows a program to perform
synchronous receiving from multiple mapped conversations, wherea
the program issues this verb for each of the mapped conversations
and then issues WAIT (for each mapped conversation) to wait until
information is available to be received on the mapped conversa-
tions. The use of this verb and MC_TEST allows a program to con-
tinue 1its processing and test the mapped conversations to
determine when information is available to be received.

2. Posting occurs when the LU has any information that the program
can receive, such as a data record, mapped conversation status, or
a request for confirmation or sync point. Refer to the
MC_RECEIVE_AND_WAIT verb for a description of the types of infor-
mation a program can receive.

3. Posting is active for a mapped conversation when
MC_POST_ON_RECEIPT has been issued for the mapped conversation
and posting has not yvet been reset or cancelled.

Posting is reset when any of the following verbs is issued for the
same mapped conversation as specified on MC_POST_ON_RECEIPT after
the mapped conversation is posted:

BACKOUT

MC_DEALLOCATE with TYPE(ABEND)
MC_RECEIVE_AND_WAIT
MC_RECEIVE_IMMEDIATE

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation verhs

MC_SEND_ERROR
MC_TEST
WAIT

Posting is cancelled when any of the following verbs is issued for
the same mapped conversation as specified on MC_POST_ON_RECEIPT
before the mapped conversation is posted:

BACKOUT

MC_DEALLOCATE with TYPECABEND)
MC_RECEIVE_IMMEDIATE
MC_SEND_ERROR

In order for the program to activate posting again after posting
has been reset or cancelled, the program issues another
MC_POST_ON_RECEIPT.

Any number of MC_POST_ON_RECEIPTs may be issued for a given mapped
conversation before posting is reset or cancelled. The last
MC_POST_ON_RECEIPT issued for a mapped conversation is the one
that determines when posting will occur for data. For example, if
a program issues MC_POST_ON_RECEIPT with LENGTH(1000) in prepara-
tton to receive a 1000 byte data record, and then issues the verb
again with LENGTH(500), posting will occur when 500 bytes of the
data record are available.

MC_POST_ON_RECEIPT with LENGTH(0) has no special significance.
It specifies that posting for a data record is to occur upon
receipt of any amount of the data record of one byte or more. It
is equivalent to MC_POST_ON_RECEIPT with LENGTH(1).

References in this verb description to a program being in a par-

:fcular state are only in terms of the specified mapped conversa-
ion.

Chapter 4. Conversation Verbs 4-19

MC_PREPARE_TO_RECEIVE

Changes the mapped conversation from send to receive state in prepara-
tion to receive data. The change to receive state can be either com-
pleted as part of this verb, or deferred until the program issues an
MC_FLUSH, MC_CONFIRM, or SYNCPT verb. When it is completed as part of
this verb it includes the function of the MC_FLUSH or MC_CONFIRM verb.

MC_PREPARE_TO_RECEIVE | RESOURCE (variable)

Supplied Parameters:

(SYNC_LEVEL)
TYPE (FLUSH)

L (CONFIRM)

(LONG)

[LOCKS (SHORT)]

Returned Parameters:
RETURN_CODE (variable)
H

4-20

] 1i arameters:
RESOURCE specifies the variable containing the resource ID.

TYPE specifies the type of prepare-to-receive to be performed for this
mapped conversation.

L SYNC_LEVEL specifies to perform the prepare-to-receive based on
the synchronization level allocated to this mapped conversation:

- If SYNC_LEVEL(NONE), execute the function of the MC_FLUSH
verb and enter receive state.

= If SYNC_LEVEL(CONFIRM), wexecute the function of the
MC_CONFIRM verb and if it is successful (as indicated by a
return code of 0K on this MC_PREPARE_TO_RECEIVE verb), enter
receive state; if it is not successful, the state of the
mapped conversation is determined by the return code.

- If SYNC_LEVEL(SYNCPT), enter defer state until the program
issues a SYNCPT, or the program issues an MC_CONFIRM or
MC_FLUSH for this mapped conversation. If the SYNCPT or
MC_CONFIRM is successful (as indicated by a return code of 0K
on that verb) or MC_FLUSH is issued, receive state is then
entered for this mapped conversation; otherwise, the state of
the mapped conversation is determined by the return code.

L FLUSH specifies to execute the function of the MC_FLUSH verb and
enter receive state.

. CONFIRM specifies to execute the function of the MC_CONFIRM verb
and, if it is successful (as indicated by a return code of 0K on
this MC_PREPARE_TO_RECEIVE verb), enter receive state; if it is
not successful, the state of the mapped conversation is deter-
mined by the return code.

The execution of the MC_FLUSH or MC_CONFIRM function as part of this
varb includes the flushing of the LU's send buffer. When, instead,
defer state is entered, the LU defers flushing its send buffer until
the program issues a subsequent verb for this mapped conversation.

LOCKS specifies when control is to be returned to the local program
following execution of the CONFIRM function of this verb or following
execution of an MC_CONFIRM verb issued subsequent to this verb. This

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation verbs

parameter is significant only when TYPE(CONFIRM) is also specified or
when TYPE(SYNC_LEVEL) is also specified and the synchronization level
for this mapped conversation is CONFIRM; or when TYPE(SYNC_LEVEL) is
also specified, the synchronization level for this mapped conversa-
tion is SYNCPT, and a subsequent MC_CONFIRM is issued. Otherwise,
this parameter has no meaning and is ignored.

. SHORT specifies to return control when an affirmative reply is
received, as follows:

- When the synchronization level is CONFIRM, return control
from_ e:fcution of this verb when an MC_CONFIRMED reply is
received.

- When the synchronization level is SYNCPT, return control
immediately from execution of this verb; return control from
execution of a subsequent MC_CONFIRM verb when a correspond-
ing MC_CONFIRMED reply is received.

. LONG specifies to return control when information, such as data,
is received from the remote program following an affirmative
reply, as follows:

- When the synchronization level is CONFIRM, return control
from execution of this verb when information is received fol-
lowing an MC_CONFIRMED reply.

- When the synchronization level is SYNCPT, return control
immediately from execution of this verb; return control from
execution of a subsequent MC_CONFIRM verb when information is
received following a corresponding MC_CONFIRMED reply.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
exaecution. The TYPE parameter determines which of the following
return codes can be returned to the program.

. If TYPE(FLUSH) is specified, or if TYPE(SYNC_LEVEL) is specified
and the synchronization level allocated to this mapped conversa-
tion is NONE, the following return code is returned:

- 0K

L If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this mapped conversation is CONFIRM, or
TY:E(COZFIRM) is specified, one of the following return codes is
returned:

0K

ALLOCATION_ERROR
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT__FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

. If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this mapped conversation is SYNCPT, the following
return code is returned:

- 0K
state Changes (uhen RETURN CODE indicates 0K):

Defer state is entered when TYPE(SYNC_LEVEL) is specified and the syn-
chronization level is SYNCPT.

Chapter 4. Conversation Verbs 4-21

MC_PREPARE_TO_RECEIVE

Receive state is entered when TYPE(FLUSH) or TYPE(CONFIRM) is.spegi-
fiad, or when TYPE(SYNC_LEVEL) is specified and the synchronization
lavel is NONE or CONFIRM.

ABEND Conditions:

Parameter Check

4-22

This verb is not supported.

RESOURCE specifies an unassigned resource ID. .
TYPE(CONFIRM) is specified and the conversation is allocated with
SYNC_LEVEL(NONE).

LOCKS(LONG) is specified and not supported.

state Chack

The mapped conversation is not in send state.

Notes:

1.

The TYPE(SYNC_LEVEL) parameter is intended to be used by the
transaction program in order to transfer send control to the
remote program based on the synchronization level allocated to
the mapped conversation.

. If the synchronization level is NONE, send control is trans-
ferred to the remote program without any synchronizing
acknouledgment.

L If the synchronization level is CONFIRM, send control is
transferrad to the remote program with confirmation
requested.

) If the synchronization level is SYNCPT, transfer of send con-
trol is deferred. When the local program subsequently issues
SYNCPT, send control is transferred to the remote program
with syne point requestead.

The TYPE(FLUSH) parameter is intended to be used by the trans-
action program in order to transfer send control to the remote
program without any synchronizing acknowledgment. TYPE(FLUSH) is
functionally equivalent to:

. TYPE(SYNC_LEVEL) with a synchronization level of NONE.

U TYPE(SYNC_LEVEL) with a synchronization laval of SYNCPT, fol-
lowed by tha MC_FLUSH verb.

The TYPE(CONFIRM) parameter is intended to be used by the trans-
action program in order to transfer send control to the remote
program wWith confirmation requested. TYPE(CONFIRM) is func-
tionally equivalent to:

. TYPE(SYNC_LEVEL) with a synchronization lavel of CONFIRM.

. TYPE(SYNC_LEVEL) with a synchronization level of SYNCPT, fol-
lowed by the MC_CONFIRM verb.

The remote transaction program receives send control by means of a
what-received indication of SEND, CONFIRM_SEND, or
TAKE_SYNCPT_SEND, as follows:

. SEND: The local program specified either TYPE(FLUSH);
TYPE(SYNC_LEVEL) and the synchronization level is NONE; or
TYPE(SYNC_LEVEL), the synchronization level is SYNCPT, and
the local program subsequently issued MC_FLUSH.)

. CONFIRM_SEND: The local program specified ei ther
TYPE(CONFIRM); TYPE(SYNC_LEVEL) and the synchronization level
is CONFIRM; or TYPE(SYNC_LEVEL), the synchronization level is
SYNCPT, and the local program subsequently issued MC_CONFIRM.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbs

J TAKE_SYNCPT_SEND: The local program specified
TYPE(SYNC_LEVEL), the synchronization level is SYNCPT, and
thae local program subsequently issuad SYNCPT.

If TYPE(SYNC_LEVEL) is specified and the synchronization level
for the mapped conversation is SYNCPT, the LU buffers the SEND
notification to be sent to the remote LU until the local program
issues a verb that causaes the LU to flush its send buffer.

The mapped conversation for the remote program enters the corre-
sponding send state when it issues an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb and receives tha SEND indication (on
the WHAT_RECEIVED parameter). Tha remote program can then send
data to the local program.

References in this verb description to a program being in a par-

tjcular state are only in terms of the specified mapped conversa-
ion.

Chapter 4. Conversatiorn Verbs 4-23

MC_RECEIVE_AND_UWAIT

Waits for information to arrive on the specified mapped conversation
and then receives the information. If information is already avail-
able, the program receives it without waiting. The information can be
a data record, mapped conversation status, or a request for confjrm§-
tion or sync point. Control is returned to the program with an indi-
cation of the type of information.

The program can issue this verb when the mapped conversation is in
send state. In this case, the LU flushes its send buffer, sending all
buffered information and the SEND indication to the remote program.
This changes the mapped conversation to receive state. The LU then
waits for information to arrive. The remote program can send data to
the local program after it receives the SEND indication.

MC_RECEIVE_AND_WAIT | RESOURCE (variable)

Supplied Parameters:

Supplied-and-Returned Parameters:
LENGTH (variable)

Returned Paramaters:

RETURN_CODE (variable)
REQUEST_TO_SEND_RECEIVED (variable)
DATA (variable)

WHAT_RECEIVED (variable)

[MAP_NAME (variable)]

4-26

Su ied Parame :

RESOURCE specifies the variable containing the resource 1ID.

supplied-and-Returned Parameters:

LENGTH specifias the variable containing a length value that is the
maximum amount of the data record the program is to receive. When
control is returned to the program this variable contains the actual
amount of the data record the program received, up to the maximum. If
the program receives information other than data, this variable
remains unchanged.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of verb exe-
cution. The return codes that can be returned depend on the state of
the mapped conversation at the time this verb is issued.

. If this verb is issued in send state, the following return codes
can be returned:

oK

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_PURGING

SNA Transaction Programmer's Referenca Manual for LU Type 6.2

Mapped Conversation verbs

— RESOURCE_FAILURE_NO_RETRY
— RESOURCE_FAILURE_RETRY

. If this verb is issued in receive state, the following return
codes can be returned:

0K

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
DEALLOCATE_NORMAL
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an undtcatlon of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO

. YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued MC_REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state

. NO indicates a REQUEST_TO_SEND notification has not been
received.

DATA specifies the variable in which the program is to receive the
data. When the program receives information other than data, as indi-
cg}ed by the WHAT_RECEIVED parameter, nothing is placed in this vari-
able.

WHAT_RECEIVED spacifies the variable in which is returned an indi-
cation of what the transaction program receives. Tha program should
examine this variable only when RETURN_CODE indicates O0OK; otheruise,
nothing is placed in this variable.

L DATA_COMPLETE indicates the program received a complete data
record or the last remaining portion of the record.

. DATA_TRUNCATED indicates the program received less than a com-
pleteddata record, and the LU discarded the remainder of the data
record.

. DATA_INCOMPLETE indicates the program received less than a com-
plete data record, and the LU retained the remainder of the data
record. The program may receive the remainder of the data record
by issuing another MC_RECEIVE_AND_WAIT (or possibly multiple
MC_RECEIVE_AND_WAITs).

. FMH_DATA_COMPLETE indicates the program received a complete data
record or the last remaining portion of the record, and the data
record contains FM headers.

. FMH_DATA_TRUNCATED indicates the program received less than a
complete data record containing FM headers, and the LU discarded
the remainder of the data record.

. FMH_DATA_INCOMPLETE indicates the program received less than a
complete data record containing FM headers, and the LU retained
the remainder of the data record. The program mav receive the
remainder of the data record by uing anothar
MC_RECEIVE_AND_WAIT (or possibly multiple Mc RECEIVE AND_MWAITSs).

U SEND indicates the remote program has entered receive state,

placing the local program in send state. The local program may
now issue MC_SEND_DATA.

Chapter 4. Conversation Verbs 4-25

MC_RECEIVE_AND_WAIT

4-26

U CONFIRM indicates the remote program has issued MC_CONFIRM,
requesting the local program to respond by issuing MC_CONFIRMED.
The program may respond, instead, by issuing a verb other than
MC_CONFIRMED, such as MC_SEND_ERROR.

L4 CONFIRM_SEND indicates the remote program has issued
MC_PREPARE_TO_RECEIVE with TYPECCONFIRM); or wWith
TYPE(SYNC_LEVEL), and either the synchronization level is CON-
FIRM, or it is SYNCPT and. the remote program subsequently.lssged
MC_CONFIRM. The local program may respond by issuing
MC_CONFIRMED, or by issuing another verb such as MC_SEND_ERROR.

. CONFIRM_DEALLOCATE indicates the remote program has issued
MC_DEALLOCATE with TYPE(CONFIRM); or with TYPE(SYNC_LEVEL), and
either the synchronization level is CONFIRM, or it is SYNCPT and
the remote program subsequently issued MC_CONFIRM. .The local
program may respond by issuing MC_CONFIRMED, or by issuing anoth-
er verb such as MC_SEND_ERROR.

. TAKE_SYNCPT indicates the remote program has issued _SYNCPT;
requesting the local program to respond by issuing SYNCPT in order
to perform the sync-point function on all protected resources
throughout the transaction. Issuing the SYNCPT verb also causes
an affirmative reply to be returned to the remote program if the
sync-point function is successful. The program may respond,
instead, by issuing a verb other than SYNCPT, such as BACKOUT or
MC_SEND_ERROR.

° TAKE_SYNCPT_SEND indicates the remote program has issued
MC_PREPARE_TO_RECEIVE with TYPE(SYNC_LEVEL), the synchronization
level is SYNCPT, and the remote program subsequently issued
SYNCPT. The local program may respond by issuing SYNCPT, or by
issuing another verb such as BACKOUT or MC_SEND_ERROR.

L TAKE_SYNCPT_DEALLOCATE indicates the remote program has issued
MC_DEALLOCATE with TYPE(SYNC_LEVEL), the synchronization level is
SYNCPT, and the remote program subsequently issued SYNCPT. The
local program may respond by issuing SYNCPT, or by issuing another
verb such as BACKOUT or MC_SEND_ERROR.

MAP_NAME specifies the variable in which is returned the name of the
format (such as the name of a DSECT or DECLARE) that defines the
structure of the data record. A null value returned means the data
record has not been mapped. That is, mapping of this data record is
suppressed.

When the program receives information other than data, as indicated by
the WHAT_RECEIVED parameter, nothing is placed in this variable.

State Changes (uhen RETURN CODE indicates 0K):

Receive state is entered when the verb is issued in send state and
WHAT_RECEIVED indicates DATA_COMPLETE, DATA_INCOMPLETE,
FMH_DATA_COMPLETE, or FMH_DATA_INCOMPLETE.

send state is entered when WHAT_RECEIVED indicates SEND.

confirm state is entered when WHAT_RECEIVED indicates CONFIRM, CON-
FIRM_SEND, or CONFIRM_DEALLOCATE.

sync-point state is entered when WHAT_RECEIVED indicates TAKE_SYNCPT,
TAKE_SYNCPT_SEND, or TAKE_SYNCPT_DEALLOCATE.

No state change occurs when the verb is issued in receive state and
WHAT_RECEIVED indicates DATA_COMPLETE, DATA_INCOMPLETE,
FMH_DATA_COMP.LETE, or FMH_DATA_INCOMPLETE.

ABEND Conditions:

Parameter Check

° RESOURCE specifies an unassigned resource ID.
. MAP_NAME is specified and not supported.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbs

State Check

The mapped conversation is not in send or receive state.

Notes:

1.

10.

When the program issues MC_RECEIVE_AND_WAIT in send state, the LU
implicitly executes an MC_PREPARE_ TO_RECEIVE with TYPE(FLUSH)
before executing the MC_ RECEIVE AND_WAIT. Refer to the
description of MC_PREPARE_TO_RECEIVE for details of its function.

Ihe mapped conversation protocol boundary provides for the send-
ing and receiving of data records. Unlike the logical records
defined for the basic conversation protocol boundary, data
records contain only data; they do not contain the logical record
length field.

The MC_RECEIVE_AND_WAIT verb can receive only as much of the data
record as specified by the LENGTH parameter. The WHAT_RECEIVED
parameter indicates whether the program has received a complete
or incomplete data record, as follows:

. The WHAT_RECEIVED parameter Indlcates DATA_COMPLETE or
FMH_DATA_COMPLETE when the program receives a complete data
record or the last remaining portion of a data record. The
length of the record or portion of the record is equal to or
less than the length specified on the LENGTH parameter.

. The WHAT_RECEIVED parameter indicates DATA_TRUNCATED,
DATA_INCOMPLETE, FMH_DATA_TRUNCATED, or FMH_DATA_INCOMPLETE
when the program recelves a portion of a data record other
than the last remaining portion. The data record is incom-
plete because the length of the record is greater than the
length specified on the LENGTH parameter; the amount received
equals the length specified.

Whether the LU discards or retains the remainder of an incomplete-
ly received data record depends on the product and the data-record
format indicated by the format name returned on the MAP_NAME
parameter. A product may imply by some or all of its format names
(including the null value) that the remaining data is discarded,
rather than retained.

MC_RECEIVE_AND_WAIT with LENGTH(0) has no special significance.
The type of information available is indicated by the RETURN_CODE
and WHAT_RECEIVED parameters, as usual. However, the program
receives no data.

The program receives only one kind of information at a time. For
example, it may receive data or a CONFIRM request, but it does not
receive both at the same time. The RETURN_CODE and WHAT_RECEIVED
parameters indicate to the program the kind of information the
program receives.

MC_RECEIVE_AND_WAIT includes posting. If posting is already
active when this verb is issued, this verb supersedes the prior
MC_POST_ON_RECEIPT function. Posting is reset at the completion
of this verb. See the MC_POST_ON_RECEIPT verb for more details
about posting.

It is the responsibility of both sending and receiving installa-
tions to maintain the map-name definitions referenced by their
application transaction programs.

The function of FM headers in the data record is significant only
to the transaction programs; the sending and receiving LUs per-
form no FM-header related processing other than indicating that
the data record contains FM headers. The presence of FM headers
in the data record is specified by the remote transaction program
by means of the FMH_DATA parameter of the MC_SEND_DATA that sent
the data record.

The REQUEST_TO_SEND notlflcatlon is usually received when the
local transaction program is in send state, and reported to the

Chapter 4. Conversation Verbs 4-27

MC_RECEIVE_AND_UWAIT

4-28

11.

12.

program on an MC_ SEND_DATA verb or on an MC_SEND_ERROR verb issued
in send state. However, the notification can be received when the
program is in receive state under the following conditions:

. When the local program just entered receive state and the
remgtet zrogram issued MC_REQUEST_TO_SEND before it entered
send state.

L When the remote program has just entered receive state by
means of the MC_PREPARE_TO_RECEIVE verb (not
MC_RECEIVE_AND_WAIT), and then issued MC_REQUEST_TO_SEND
before the local program enters send state. This can occur
because the REQUEST_TO_SEND is transmitted as an expedited
request and can therefore arrive ahead of the request carry-
ing the SEND indication. Potentially, the local program can-
not distinguish this case from the first. This ambiguity is
avoided when the remote program waits until it receives
information from the local program before it issues the
MC_REQUEST_TO_SEND.

U When the remote program issues the MC REQUEST TO_SEND in send
state (see "Notes on Implementation Details"™ in Appendix A).

The REQUEST_TO SEND notification is returned to the program in
addition to (not in place of) the information indicated by the
RETURN_CODE and WHAT_RECEIVED parameters.

References in this verb description to a program being in a par-
:jcular state are only in terms of the specified mapped conversa-
ion.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbhs
| MC_RECEIVE_IMMEDIATE

Receives any information that is available from the speclfled mapped
conversation, but does not wait for information to arrive. The infor-
mation (if any) can be data, mapped conversation status, or a request
for confirmation or sync point. Control is returned to the program
with an indication of whether any information was received and, if so,
the type of information.

Supplied Paramaters:
MC_RECEIVE_IMMEDIATE | RESOURCE (variable)

supplied-and-Returned Parameters:
LENGTH (variable)

Returned Parameters:

RETURN_CODE (variable)
REQUEST_TO_SEND_RECEIVED (variable)
DATA (variable)

WHAT_RECEIVED (variable)

[MAP_NAME (variable)]

ied Param (-
RESOURCE specifies the variable containing the resource ID.

supplied-and-Returned Parameters:

LENGTH specifies the variable containing a length value that is the
maximum amount of the data record the program is to receive. When
control is returned to the program this variable contains the actual
amount of the data record the program received, up to the maximum. If
the program receives information other than data, or no information at
all, this variable remains unchanged.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
totthe program. The return code indicates the result of verb exe-
cution.

oK

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
DEALLOCATE_NORMAL
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_| RETRY
UNSUCCESSFUL - There is nothing to receive.

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an tndicatlon of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO.

® 6 00000000 ¢ 000

Chapter 4. Conversation Verbs 4-29

MC_RECEIVE_IMMEDIATE

4-30

J YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
1ssued MC_REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state

. NG indicates a REQUEST_TO_SEND notification has not been
received.)

DATA specifies the variable in which the program is to receive the
data. When the program receives information other than data, as indi-
ca{ed by the WHAT_RECEIVED parameter, nothing is placed in this vari-
able.

WHAT_RECEIVED specifies the variable in which is returned an indi-
cation of what the transaction program received. The program should
examine this variable only when RETURN_CODE indicates 0K; otherwise,
nothing is placed in this variable.

. DATA_COMPLETE indicates the program received a complete data
raecord or the last remaining portion of the record.

. DATA_TRUNCATED indicates the program received less than a com-
pleteddata record, and the LU discarded the remainder of the data
record.

. DATA_INCOMPLETE indicates the program received less than a com-
plete data record, and the LU retained the remainder of the data
record. The program may receive the remainder of the data record
by issuing another MC_RECEIVE_IMMEDIATE (or possibly multiple
MC_RECEIVE_IMMEDIATEs).

. FMH_DATA_COMPLETE indicates the program received a complete data
record or the last remaining portion of the record, and the data
record contains FM headers.

. FMH_DATA_TRUNCATED indicates the program received less than a
complete data record containing FM headers, and the LU discarded
the remainder of the data record.

. FMH_DATA_INCOMPLETE indicates the program received less than a
complete data record containing FM headers, and the LU retained
the remainder of the data record. The program may receive the
remainder of the data racord by issuing another
MC_RECEIVE_IMMEDIATE (or possibly multiple
MC_RECEIVE_IMMEDIATEs).

. SEND indicates the remote program has entered receive state,
placing the local program in send state. The local program may
nouw issue MC_SEND_DATA.

. CONFIRM indicates the remote program has issued MC_CONFIRM,
requasting the local program to respond by issuing MC CONFIRMED
The program may respond, instead, by issuing a verb other than
MC_CONFIRMED, such as MC_SEND_ERROR.

. CONFIRM_SEND indicates the remote program has issued
MC_PREPARE_TO_RECEIVE with TYPE(CONFIRM); or with
TYPE(SYNC_LEVEL), and either the synchronization level is CON-
FIRM, or it is SYNCPT and the remote program subsequently issued
MC_CONFIRM. The 1local program may respond by issuing
MC_CONFIRMED, or by issuing another verb such as MC_SEND_ERROR.

. CONFIRM_DEALLOCATE indicates tha remote program has issued
MC_DEALLOCATE with TYPE(CONFIRM); or with TYPECSYNC_LEVEL), and
either the synchronization level is CONFIRM, or it is SYNCPT and
the remote program 5ubsequent1y issued MC_| CONFIRN. The local
program may respond by issuing MC CONFIRNED, or by issuing anoth-
er varb such as MC_SEND_ERROR.

. TAKE_SYNCPT indicates the remote program has issued SYNCPT,
requesting the local program to respond by issuing SYNCPT in ordar
to perform the sync-point function on all protected resources
throughout the transaction. Issuing the SYNCPT verb alse causes
an affirmative reply to be returned to the remote program if the

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbs

sync-point function is successful. The program may respond,
instead, by issuing a verb other than SYNCPT, such as BACKOUT or
MC_SEND_ERROR.

. TAKE_SYNCPT_SEND indicates the remote program has issued
MC_PREPARE_TO_RECEIVE with TYPE(SYNC_LEVEL), the synchronization
level 1is SYNCPT, and the remote program subsequently issued
SYNCPT. The local program may respond by issuing SYNCPT, or by
issuing another verb such as BACKOUT or MC_SEND_ERROR.

. TAKE_SYNCPT_DEALLOCATE indicates the remote program has issued
MC_DEALLOCATE with TYPE(SYNC_LEVEL), the synchronization lavel is
SYNCPT, and the remote program subsequently issued SYNCPT. The
local program may respond by issuing SYNCPT, or by issuing another
vaerb such as BACKOUT or MC_SEND_ERROR.

MAP_NAME specifies the variable in which is returned the name of the
format (such as the name of a DSECT or DECLARE) that defines the
structure of the data record. A null value returned means the data
record has not been mapped. That is, mapping of this data record is
suppressed.

When the program receives information other than data, as indicated by
the WHAT_RECEIVED parameter, nothing is placed in this variable.

state Changes (uhen RETURN CODE indicates 0K):
send state is entered when WHAT_RECEIVED indicates SEND.

confirm state is entered when WHAT_RECEIVED indicates CONFIRM, CON-
FIRM_SEND, or CONFIRM_DEALLOCATE.

sync-point state is entered when WHAT_RECEIVED indicatas TAKE_SYNCPT,
TAKE_SYNCPT_SEND, or TAKE_SYNCPT_DEALTOCATE.

No state change occurs when WHAT_RECEIVED indicates DATA_COMPLETE,
DATA_INCOMPLETE, FMH_DATA_COMPLETE, or FMH_DATA_INCOMPLETE.

ABEND Condjtions:
Parameter Check

U This verb is not supported.
. RESOURCE specifies an unassigned resource ID.
. MAP_NAME is specified and not supported.

state Check
Tha mapped conversation is not in receive state.
es:

1. The mapped conversation protocol boundary providaes for the send-
ing and receiving of data records. Unlike the logical records
defined for the basic conversation protocol boundary, data
records contain only data; they do not contain the logical record
length field.

2. The MC_RECEIVE_IMMEDIATE verb can receive only as much of the data
raecord as specified by the LENGTH parameter. Thae WHAT_RECEIVED
parameter indicates whether the program has receivad a complete
or incomplete data record, as follows:

U The WHAT_RECEIVED parameter indicatas DATA_COMPLETE or
FMH_DATA_COMPLETE when the program receives a complete data
record or the last remaining portion of a data record. The
length of the record or portion of tha record is equal to or
less than the length specified on the LENGTH paramater.

. The WHAT_RECEIVED parameter indicates DATA_TRUNCATED,
DATA_INCOMPLETE, FMH_DATA_TRUNCATED, or FMH_DATA_INCOMPLETE
when the program receivas a portion of a data record other
than the last raemaining portion. The data record is incom-
pleta because:

Chapter 4. Convarsation Verbs 4-31

MC_RECEIVE_IMMEDIATE

4-32

10.

- The length of the record is greater than the length speci-
fied on the LENGTH parameter; in this case the amount
received equals the length specified.

- Only a portion of the data record is available, the por-
tion being equal to or less than the length specified on
the LENGTH parameter.

Whether the LU discards or retains the remainder of an incomplete-
ly received data record depends on the product and the data-record
format indicated by the format name returned on the MAP_NAME
parameter. A product may imply by some or all of its format names
(including the null value) that the remaining data is discarded,
rather than retained.

MC_RECEIVE_IMMEDIATE with LENGTH(0) has no special significance.
The type of information available, if any, is indicated by the
RETURN_CODE and WHAT_RECEIVED parameters, as usual. However, the
program receives no data.

The program receives only one kind of information at a time. For
example, it may receive data or a CONFIRM request, but it does not
receive both at the same time. The RETURN_CODE and WHAT_RECEIVED
parameters indicate to the program the kind of information the
program receives, if any.

MC_RECEIVE_IMMEDIATE resets or cancels posting. If posting is
active and the mapped conversation has been posted, posting is
reset. If posting is active and the mapped conversation has not
been posted, posting is cancelled (posting will not occur). See
the MC_POST_ON_RECEIPT verb for more details about posting.

It is the responsibility of both sending and receiving installa-
tions to maintain the map-name definitions referenced by their
application transaction programs.

The function of FM headers in the data record is significant only
to the transaction programs; the sending and receiving LUs per-
form no FM-header related processing other than indicating that
the data record contains FM headers. The presence of FM headers
in the data record is specified by the remote transaction program
by means of the FMH_DATA parameter of the MC_SEND_DATA that sent
the data record.

The REQUEST_TO_SEND notification is usually received when the
local transaction program is in send stata, and reported to the
program on an MC_SEND_DATA verb or on an MC_SEND_ERROR verb issued
in send state. Houwever, the notification can be received when the
program is in receive state under the following conditions:

L When the local program just entered receive state and the
remgtet zrogram issued MC_REQUEST_TO_SEND before it entered
send state.

. When the remote program has just entered receive state by
means of the MC_PREPARE_TO_RECEIVE verb (not
MC_RECEIVE_AND_WAIT), and then issued MC_REQUEST_TO_SEND
before the local program enters send state. This can occur
because the MC_REQUEST_TO_SEND is transmitted as an expedited
request and can therefore arrive ahead of the request carry-
ing the SEND indication. Potentially, the local program can-
not distinguish this case from the first. This ambiguity is
avoided when the remote program waits until it receives
information +from the local program before it issues the
MC_REQUEST_TO_SEND.

° When the remote program issues tha MC_REQUEST_TO_SEND in send
state (see "Notes on Implementation Details™ in Appendix A).

The REQUEST_TO_SEND notification is returned to the program in
addition to (not in place of) the information indicated by the
RETURN_CODE and WHAT_RECEIVED parameters.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped conversation verbs
11. References in this verb description to a program being in a par-

:jcular state are only in terms of the specified mapped conversa-
ion.

Chapter 4. Conversation Verbs 4-33

MC_REQUEST_TO_SEND

Notifies the remote program that the local program is requesting to
enter send state for the mapped conversation. The mapped conversation
will be changed to send state when the leccal program subsequently
receives a SEND indication from the remote program.

MC_REQUEST_TO_SEND

Supplied Parameters:
RESOURCE (variaple)

H

4-34

supplied Parameters:

RESOURCE specifies the variable containing the resource ID.

State Changes:

None
ABEND Conditions:
Parameter Check

RESOURCE specifies an unassigned resource ID.

state Check

Thetmapped conversation is not in receive, confirm, or sync-point
state.

Notes:

1.

The REQUEST_TO_SEND notification is indicated to the remote pro-
gram by means of the REQUEST_TO_SEND_RECEIVED parameter. When
the REQUEST TO_SEND_RECEIVED parameter is set to YES, the remote
program is requested to enter receive state and thereby place the
local program in send state. A program enters receive state by
means of the MC_RECEIVE_AND_WAIT or MC_PREPARE_TO_RECEIVE verb.
The partner program enters the corresponding send state when it
issues an MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE verh and
receives the SEND indication (on the WHAT_RECEIVED parameter).

The REQUEST_TO_SEND_RECEIVED indication of YES is normally
returned to the remote program when it is in send state, that is,
on an MC_SEND_DATA or on an MC_SEND_ERROR issued in send state.
However, it can be returned on an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb; the description of
MC_RECEIVE_AND_WAIT or MC_ RECEIVE IMMEDIATE for details about
when this can occur.

When the remote LU receives the REQUEST_TO_SEND notlflcatlon, it
retains the notification until the remote program issues a verb on
which the notification can be indicated, that is, a verb with the
REQUEST_TO_SEND_RECEIVED parameter. The remote LU will retain
only one REQUEST_TO_SEND notification at a time (per mapped con-
versation); additional notifications are discarded until the
retained notification is indicated to the remote program. It is
therefore possible for the local program to issue the
MC_REQUEST_TO_SEND verb more times than are indicated to the
remote program.

References in this verb description to a program being in a par-
:icular state are only in terms of the specified mapped conversa-
ion.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

MC_SEND_DATA

Mapped Conversation verbs

Sends one data record to the remote transaction program. The data
record consists entirely of data. The program can specify data map-
ping as a function of this verb, and it can indicate whether the data
record includes FM headers.

MC_SEND_DATA

supplied Parameters:
RESOURCE (variable)

DATA (variable)

LENGTH (variable)
MAP_NAME (NO)
[(YES (variable))]

FMH_DATA (NO)
(YES)

Returned Parameters:
RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)

H

supplied Parameters:

RESOLIRCE specifies the variable containing the resource ID of the
mapped conversation on which the data record is to be sent.

DATA specifies the vas'iable containing the data record to be sent.
The data record consists entirely of data.! The length of the data
record is given by the LENGTH paramater.

LENGTH specifies the variable containing the length of the data record
to be sent. The length may be zero or greatar. If zero, a null data
record is sent.

MAP_NAME specifies whether the data record is to be mapped:

. NO specifies that data mapping is to be suppressed. The data
record is sent as is, without being mapped.

. YES specifies that the data record is to be mapped using the map
name contained in the variable. The map name is a non-null
user-defined name that identifies the format of the data record
andtthe mapping to be performed on the data record before it is
sent.

FMH_DATA specifies whether the data record contains FM headers.

. NO specifias that FM headers are not present in the data record.

. YES specifies that tha data record contains FM headers.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned

to the local program. The return code indicates the result of verb
execution.

1 The data format for the basic conversation verb, SEND_DATA, con-
sists of logical records, which include a length field. See the
dascription of SEND_DATA for more datails.

Chapter 4. Conversation Verbs 4-35

MC_SEND_DATA

1.4

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO.

. YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued MC_REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state.

U] NO indicates a REQUEST_TO_SEND notification has not been
received.

® ¢ ¢ 000000 0o

tat hanges (ihen R RN CODE indi s 0K):

None

ABEND Conditions:
Parameter Chack

L RESOURCE specifies an unassigned resource ID.
] MAP_NAME(YES(variable)) is specified and not supported.
. FMH_DATA(YES) is specified and not supported.

State Check
The mapped conversation is not is send state.
Notes:

1. The mapped conversation protocol boundary provides for the send-
ing and receiving of data records. Unlike the logical records
defined for the basic conversation protocol boundary, data
records contain only data; they do not contain the logical record
length field.

2. The MC_SEND_DATA verb sends one complete data record. Thus, the
sending program cannot truncate a data record.

3. The LU buffers the data to be sent to the remote LU until it accu-
mulates from one or more MC_SEND_DATA verbs a sufficient amount
for transmission, or until the local program issues a verb that
causes the LU to flush its send buffer. The amount of data that
is sufficient for transmission depends on the characteristics of
the session allocated for the mapped conversation, and can vary
from one session to another.

4. The MAP_NAME parameter is used to specify data mapping. The data
mapping function uses the MAP_NAME parameter as follows:

. MAP_NAME(NO) is used to generate a null (zero-length) value
for the map name, which suppresses data mapping.

. MAP_NAME(YES(variable)) is used to specify a non-null map
name, which invokes data mapping.

The data mapping may be performed by the local LU, remote LU, or
both, depending on the data mapping function. When a mapped con-
versation is started, data mapping is initially suppressed until
MAP_NAME(YES(variable)) is specified, at which time data mapping
is invoked. During the remainder of the conversation data mapping

%-36 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation verbs

of each data record is either invoked or suppressed as the
MAP_NAME parameter specifies.

The data mapping function underlying the mapped conversation pro-
tocol boundary includes the sending of the map name to the remote
LU. The local LU sends the map name when data mapping is first
invoked on the mapped conversation, and thereafter whenever the
one to be sent differs from the one praviously sent. This proto-
col for sending the map name and data applies independently in
each direction on the mapped conversation.

The data mapping function underlying the mapped conversation pro-
tocol boundary may include mapping of the map name itself, depend-
ing on the mapping function. Consequently, the local program may
specify a map name that differs from the map name the remote pro-
gram receives. For example, the DATA parameter may specify a
high-level-language data structure, which the local LU must seri-
alize for transmission. Correspondingly, the remote LU may have
to map the serialized data into a (possibly different)
high-level-language data structure for the remote program. In
this example, the local LU maps the program-specified map name to
a second map name that describes the format of the serialized
data, and sends the second map name together with the serialized
data to the remote LU. The remote LU maps the second map name to a
third map name that describes the structure of the data passed to
the remote program.

It is the responsibility of both sending and receiving installa-
tions to maintain the map-name definitions referred to by their
application transaction programs.

The function of FM headers in the data record is significant only
to the transaction programs; the sending and receiving LUs per-
form no FM-header related processing other than indicating that
the data record contains FM headers. The presence of FM headers
in the data record is indicated to the remote transaction program
by means of the WHAT_RECEIVED parameter of the
MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE verb that receives
the data record.

When REQUEST_TO_SEND_RECEIVED indicates YES, the remote program
is requesting the local program to enter receive state and thereby
place the remote program in send state. A program enters receive
state by means of the MC_PREPARE_TO_RECEIVE or
MC_RECEIVE_AND_WAIT verb. The partner program enters the corre-
sponding send state when it issues an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb and receives the SEND indication (on
the WHAT_RECEIVED parameter).

References in this verb description to a program being in a par-

:jcular state are only in terms of the specified mapped conversa-
jon.

Chapter 6. Conversation Verbs 4-37

MC_SEND_ERROR

Informs the remote transaction program that the local progranm
detected an application error. If the mapped conversation is in send
state, the LU flushes its send buffer.

Upon successful completion of this verb, the local program is in send
state and the remote program is in receive state. Further action is
defined by transaction program-logic.

MC_SEND_ERROR

sSupplied Parameters:
RESOURCE (variable)

Returned Parameters:
RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)
; y

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
execution. The return codes that can be returned depend on the state
of the mapped conversation at the time this verb is issued:

. If this verb is issued in send state, the following return codes
can be returned:

oK

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE

. If this verb is issued in receive state, the following return
codes can be returned:

oK

DEALLOCATE_NORMAL
RESQURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

. If this verb is issued in confirm state or sync-point state, the
following return codes can be returned:

0K
= RESOURCE_FAILURE_NO_RETRY
= RESOURCE_FAILURE_RETRY

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO.

. YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued MC_REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state.

4-38 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped conversation verbs

NO indicates a REQUEST_TO_SEND notification has not been
received.

state Changes (when RETURN CODE indicates 0K):

send state is entered when the verb is issued in receive, confirm, or
sync-point state.

No state change occurs when the verb is issued in send state.

ABEND Conditions:
Parameter Check

RESOURCE specifies an unassigned resource ID.

state Check

The mapped conversation is not in send, receive, confirm, or
sync-point state.

Notes:

1.

The LU may send the error notification to the remote LU immediate-
ly, that is, during the processing of this verb, or the LU may
defer sending the notification until a later time. The determi-
nation is made as follows:

] If the local product does not support the MC_FLUSH verb (see
"Notes on Implementation Details™ in Appendix A), then the LU
sends the error notification immediately.

° If the local product does support the MC_FLUSH verb, then the
LU may or may not send the notification immediately, depend-
ing on the product. If the LU defers sending the notifica-
tion, it buffers the notification until it accumulates a
sufficient amount of information for transmission, or until
the local program issues a verb that causes the LU to flush
its send buffer. The amount of information that is sufficient
for transmission depends on the characteristics of the ses-
sion allocated for the mapped conversation, and can vary from
one session to another.

The local program can ensure that the remote program receives the
error notification as soon as possible by issuing MC_FLUSH imme-
diately after MC_SEND_ERROR.

MC_SEND_ERROR is reported to the remote transaction program as
one of the following return codes:

] PROG_ERROR_NO_TRUNC - The local program issued MC_SEND_ERROR
in send state. No da'a truncation occurs at the mapped con-
versation protocol boundary.

. PROG_ERROR_PURGING - The local program issued MC_SEND_ERROR
in receive state and all data sent by the remote program and
not yet received by the local program, if any, has been
purged; or the local program issued MC_SEND_ERROR in confirm
or sync-point state, in which case no purging has occurred.

When MC_SEND_ERROR is issued in receiva state, purging of incom-
ing information occurs. The incoming information that is purged
includes the following return code indications:

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING

® © 0006 0 0 00

Chapter 4. Conversation Verbs 4-39

MC_SEND_ERROR

The return code DEALLOCATE_NORMAL is reported instead of ALLO-
CATION_ERROR or DEALLOCATE_ABEND. The return code OK is reported
instead of the other return codes. When the return code
BACKED_OUT is purged, the remote LU resends the BACKED_OUT indi-
cati:n ang the local program receives the return code on a subse-
quent verb.

The other kinds of incoming information that are purged are:
U Data, sent by means of the MC_SEND_DATA verb.
. Map name, sent by means of the MC_SEND_DATA verb.

. Confirmation request, sent by means of the MC_CONFIRM,
MC_PREPARE_TO_RECEIVE, or MC_DEALLOCATE verb.

. Sync point request, sent by means of the SYNCPT,
MC_PREPARE_TO_RECEIVE, or MC_DEALLOCATE verb.

If the confirmation or sync point request was sent in conjunction
with the MC_DEALLOCATE verb (by means of its TYPE(CONFIRM) or
TYPE(gYNC_LEVEL) parameter), the deallocation request is also
purged.

Incoming information that is not purged is the REQUEST_TO_SEND
indication. This indication is reported to the program when it
issues a verb that includes the REQUEST_TO_SEND_RECEIVED parame-
er.

When REQUEST_TO_SEND_RECEIVED indicates YES, the remote program
is requesting the local program to enter receive state and thereby
place the remote program in send state. A program enters receive
state means of the MC_RECEIVE_AND_WAIT or
MC_ PREPARE TO _RECEIVE verb. The partner program enters the cor-
responding send state when .it issues an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb and receives the SEND indication (on
the WHAT RECEIVED parameter).

The program may use this verb for various application-level func-
tions. For example, the program may issue this verb to inform the
remote program of an error it detected in the data records it
received, or to reject a confirmation or sync-point request.

MC_SEND_ERROR resets or cancels posting. If posting is active and
the mapped conversation has been posted, posting is reset. If
posting is active and the mapped conversation has not been posted,
posting is canceled (posting will not occur). See the
MC_POST_ON_RECEIPT verb for more details about posting.

References in this verb description to a program being in a par-
:jcular state are only in terms of the specified mapped conversa-
ion.

4-40 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Cconversation Verbs

MC_TEST
Tests the specified mapped conversation for a condition. The return
code indicates the result of the test.
Supplied Parameters:
MC_TEST RESOURCE (variable)

[TEST

(POSTED)
{ REQUEST_TO_SEND_RECEIVED)

Returned Parameters:
RETURN_CODE (variable)

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID.

TEST specifies the condition to be tested.

L]

POSTED specifies to test whether the mapped conversation has been
posted. The return code indicates whether posting has occurred.

REQUEST_TO_SEND_RECEIVED specifies to test whether
REQUEST_TO_SEND notification has been received from the remote
transaction program. The return code indicates whether the
notification has been received.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of the test.
The TEST parameter determines which of the following return codes can
be returned to the program.

If TEST(POSTED) is specified, one of the following return codes is
returned:

- oK

— DATA

— NOT_DATA
POSTING_NOT_ACTIVE
UNSUCCESSFUL
ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_NORMAL
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAP_EXECUTION_FAILURE
MAP_NOT_FOUND
MAPPING_NOT_SUPPORTED
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

If TEST(REQUEST_TO_SEND_RECEIVED) is specified, one of the fol-
lowing return codes is returned:

tretrrtrerrenrtd

0K
— UNSUCCESSFUL

State Changes (ihen RETURN CODE indicates 0K):

None

Chapter 4. Conversation Verbs 4-41

MC_TEST

4-62

ABEND Conditions:
Parameter Check

® o 00

This verb is not supported.

TEST(POSTED) is specified and not supported.
TEST(REQUEST_TO_SEND_RECEIVED) is specified and not supported.
RESOURCE specifies an unassigned resource ID.

state Check

TEST(POSTED) is specified and the mapped conversation is not in
receive state.

TEST(REQUEST_TO_SEND_RECEIVED) is specified and the mapped con-
versation is not in send, defer, or receive state.

Notes:

—_—

-

The TEST(POSTED) parameter on this verb is intended to be used in
conjunction with MC_POST_ON_RECEIPT. The use of
MC_POST_ON_RECEIPT and this verb allows a program to continue its
processing while waiting for information to become available,
where the program issues MC_POST_ON_RECEIPT for one or more
mapped conversations and then issues this verb for each mapped
convgrsgtion to determine when information is available to be
received.

For TEST(POSTED), the return code indicates whether posting has
occurred, as follous:

. OK indicates posting was active for the mapped conversation
and it has been posted. Posting is now reset. The subcode of
the 0K return code indicates why the mapped conversation has
been posted.

- DATA indicates data is available for the program to
receive.

- NOT_DATA indicates information other than data, such as a
SEND, CONFIRM, or TAKE_SYNCPT indication, is available
for the program to receive.

The program should issue MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE in order to receive the information.
The program may use the subcode to determine whether it needs
to specify the DATA parameter on the MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb.

° POSTING_NOT_ACTIVE indicates posting is not active for the
mapped conversation.

. UNSUCCESSFUL indicates posting is active for the mapped con-
versation and it has not been posted. Posting remains active.

The remaining return codes indicate posting was active for the
mapped conversation and it has been posted for the reason indi-
cated by the specific return code. Posting is nouw reset.

Posting is active for a mapped conversation when
MC_POST_ON_RECEIPT has been issued for the mapped conversation
and posting has not been reset or canceled (see the
MC_POST_ON_RECEIPT verb).

The TEST(REQUEST_TO_SEND_RECEIVED) parameter specifies to test
whether REQUEST_TO_SEND notification has been received from the
remote transaction program. The return code indicates whether
the notification has been received, as follous:

. 0K indicates REQUEST_TO_SEND has been received. The remote
program has issued MC_REQUEST_TO_SEND, requesting the local
program to enter receive state and thereby place the remote
program in send state. A program enters receive state by
means of the MC_RECEIVE_AND_WAIT or MC_PREPARE_TO_RECEIVE
verbh. The partner program enters the corresponding send

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbs
state when it issues an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb and receives the SEND indication
(on the WHAT_RECEIVED parameter).

J UNSUCCESSFUL indicates REQUEST_TO_SEND has not been received.

References in this verb description to a program being in a par-
ticular state are only in terms of the specified mapped conversa-

tion.

Chapter 4. Conversation Verbs 4-43

TYPE-INDEPENDENT CONVERSATION VERBS

6-44

This section describes the subcategory of conversation verbs called
tvpe-independent conversation verbs. These verbs are intended for
use on both mapped conversations and basic conversations. In partic-
ular, the BACKOUT, SYNCPT, and WAIT verbs can be issued against multi-
ple conversations, which can consist of either mapped or basic
conversations or both. The GET_TYPE verb is issued against a single
conversation, either mapped or basic.

The detailed descriptions of the type-independent conversation verbs
follow. References to verbs that can be either mapped or basic con-
versation verbs are shown with the "[MC_1" prefix in the verb name.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

BACKOUT

Type-Independent conversation verbs

Restores all protected resources to their status as of the last syn-
chronization point. Protected resources are those currently allo-
cated to the transaction with a synchronization level of SYNCPT. The
last synchronization point is either the start of the transaction, or
the completion of the last successful sync point function if one was
executed since the start of the transaction. As part of the backout
function, the LU flushes its send buffers for all protected resources
that are in send or defer state.

BACKOUT

Parameters:

No parameters are defined for this verb.

state Changes:

The state of each protected resource at the completion of this verb is
th? {?ame as it was immediately following the last synchronization
point.

ABEND Conditions:
paramater Check

This verb is not supported.
state Check

At least one protected resource is not in send, defer, receive,
confirm, sync point, or backed-out state.

1. The BACKOUT verb causes the local LU to restore all local pro-
tected resources to their status as of the last synchronization
point, and to send a backed-out indication on all protected con-
versations. (A protected conversation is one that is allocated
with a synchronization level of SYNCPT.)

2. Any program throughout the distributed transaction may initiate
the backout function, that is, may be the first to issue BACKOUT
since the last synchronization point. It does so when it deter-
minas that an error or exceptional condition exists that requires
restoring all protected resources to their last synchronization
point. The program can initiate the backout function as a
response to a sync point request, or at other times unrelated to a
sync point request. All other programs interconnected by pro-
tected conversations are informed, by means of the BACKED_OUT
return code, that the backout function has been initiated.

3. A program must issua this verb whenever it receives a BACKED_OUT
return code, in order to extend the backout function to all pro-
tected resources throughout the transaction.

4. BACKOUT resets or cancels posting. If posting is active and the
resource has been posted, posting is reset. If posting is active
and the resource has not been posted, posting is canceled (posting
will not occur). See the I[MC_lPOST_ON_RECEIPT verb for details
about posting of a conversation.

Chapter 4. Conversation Verbs 4-45

GET_TYPE

Returns the type of resource to which the specified rasource ID is
assigned.

GET_TYPE | RESOURCE (variable)

Supplied Parameters:

Returned Parameters:
TYPE (variable)
H

4-46

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID of the
resource of which the type is desired.

Returned Parameters:

TYPE specifies the variable for returning the type of resource that is
allocated. The types are:

] BASIC_CONVERSATION
. MAPPED_CONVERSATION

State Changes:
None

ABEND condjtions:
Parameter Check

o This verb is not supported.
. RESOURCE specifies an unassigned resource ID.

state Check
None

1. A program that can be processed at either the basic conversation
protocol boundary or the mapped conversation protocol boundary
issues this verb in order to determine which category of verbs,

basic conversation or mapped conversation, it is to use for the
resource.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Type-Independent conversation Verbs

SYNCPT
Advances all protected resources to the next synchronization point.
Protected resources are those currently allocated to the transaction
with a synchronization level of SYNCPT. As part of the sync point
function, the LU flushes its send buffers for all protected resources
that are in send or defer state.
Returned Parameters:
SYNCPT RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of the sync
point function.

° 0K (sync point is successful)
] BACKED_OUT
U HEURISTIC_MIXED

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO.

. YES indicates a REQUEST_TO_SEND notification has been received
from one or more remote programs.

. NO indicates a REQUEST_TO_SEND notification has not been
received.

Changes (uhe TU CODE_indica 0K):

Reset state is entered when the verb is issued in the defer state
entered by the preceding [MC_IDEALLOCATE verb.

Receive state is entered when the verb is issued in the defer state
entered by the preceding [MC_IPREPARE_TO_RECEIVE verb, or when the
verb is issued in the sync point state entered by receipt of
TAKE_SYNCPT on the preceding [MC_JRECEIVE_AND_WAIT or
[MC_JRECEIVE_IMMEDIATE verb.

send state is entered when the verb is issued in the sync point state
entered by receipt of TAKE_SYNCPT_SEND on the preceding
[MC_JRECEIVE_AND_WAIT or [MC_IRECEIVE_IMMEDIATE verb.

Deallocate state is entered when the verb is issued in the sync point
state entered by receipt of TAKE_SYNCPT_DEALLOCATE on the preceding
[MC_IRECEIVE_AND_WAIT or [MC_JRECEIVE_IMMEDIATE verb.

No state change occurs when the verb is issued in send state.

ABEND Conditions:

Parameter Check

. This verb is not supported.

state Check

D A protected resource is not in send, defer, or sync point state.

J A protected resource is in send state, and the program started but
did not finish sending a basic conversation logical record.

Chapter 4. Conversation Verbs G6-47

SYNCPT

4-48

Notes:

1.

The program may issue SYNCPT when all protected conversations are
in send, defer, or sync point state, or a combination of these
states; however, only one conversation can be in sync point state.
(A protected conversation is one that is allocated with a synchro-
nization level of SYNCPT.) The remote programs receive the sync
point request by means of the WHAT_RECEIVED parameter of the
[MC JRECEIVE_AND_WAIT or [MC_JRECEIVE_IMMEDIATE verb, as follous:

. On conversations for which the local program is in send state,
the remote programs receive the TAKE_SYNCPT indication.

L On conversations in defer state entered by means of a preced-
ing [MC_JPREPARE_TO_RECEIVE verb, the remote programs receive
the TAKE_SYNCPT_SEND indication.

. On conversations in defer state entered by means of a preced-
ing [MC_JDEALLOCATE verb, the remote programs receive the
TAKE_SYNCPT_DEALLOCATE indication.

In a distributed transaction, one program (usually chosen during
transaction design) is the initiator for sync point processing.
The other programs each cooperate in propagating the sync point
processing throughout the distributed transaction. The program
initiating sync point processing issues SYNCPT, which causes its
LU to send a sync point request on all of the protected conversa-
tions allocated to the program. Each program receiving the sync
point request may issue SYNCPT, thereby propagating the request
throughout the transaction. When all participating programs
respond. to the sync point request by issuing SYNCPT, their LUs and
the initiating program's LU advance their respective local
resources to the next synchronization point.

All protected resources, including conversations, allocated to

the local transaction program must be in send, defer, or sync

point state when the program issues SYNCPT. If one or more pro-

tected conversations are in receive state, the program may issue

gMCT]REQUEST_TO_SEND on those conversations to request send con-
rol.

The return code indicates whether the sync point function was suc-
cessful.

L 0K indicates all protected resources have been advanced to
the next synchronization point.

. BACKED_OUT indicates all protected resources are to be
restored to their status as of the last synchronization
point. The program must issue BACKOUT, which causes the back-
out function to be performed on all protected resources
throughout the transaction.

. HEURISTIC_MIXED indicates that some protected resources
throughout the distributed transaction have been advanced to
the next synchronization point and others have been restored
to the previous synchronization point as a result of an error
during the sync point processing. This mixed status of pro-
tected resources occurs when an LU operator intervenes in an
attempt to recover from the error. See SNA Formag and Proto-
col Reference Manual: Architecture Logic_ _for LU Tvpe 6.2 for

more details.

Use of sync point ensures consistency of the protected resources
involved in a distributed transaction. Consistency means that if
the return code, 0K, is returned to the transaction program that
issued the first SYNCPT verb (called the initiator), 0K will also
have been returned to the dependent SYNCPT verbs issued by every
other transaction program participating in the distributed log-

ical unit of work. '

Similarly, consistency means that if the BACKED_OUT return code
is received on any protected conversation in a distributed trans-

SNA Transaction Programmer's Reference Manual for LU Typa 6.2

Type-Independent Conversation vVerbs

action, BACKED_OUT will be received on all protected conversa-
tions in the distributed transaction. Further, all protected
local resources that share in the distributed logical unit of work
wil% be backed out to the most recent point of successful commit-
ment.

Of particular importance are updates to files or data bases. For
example, take the case of a fund transfer from an account main-
tained at one node to an account maintained at another node; use
of SYNCPT will ensure, except when 'heuristic decisions must be
made, that the debit from one account will be credited to the oth-
er.

The processing of unprotected resources is the program's respon-
sibility. If the sync point function is successful, the program
should advance all unprotected resources associated with the
transaction to a consistent state. If the sync point function is
unsuccessful, the unprotected resources should be restorad to a
state consistent with the previous synchronization point.

When REQUEST_TO_SEND_RECEIVED indicates YES, one or morae remote
programs are requesting the local program to enter receive state
and thereby placa the remote programs in send state. For each
resource on which a REQUEST_TO_SEND notification was received,
the notification will also be reported to the local program on the
next resource-specific verb it issues that has the
REQUEST_TO_SEND_RECEIVED parameter.

References in this verb description to a program being in a par-
ticular state are only in terms of each resource.

Chapter 4. Conversation Verbs 4-49

WAIT

Waits for posting to occur on any basic or mapped conversation from
among a list of conversations. Posting of a conversation occurs when
posting is active for the conversation and the LU has any information
that the program can receive, such as data, conversation status, or a
request for confirmation or sync point.

supplied Parameters:
WAIT | RESOURCE_LIST (variablel variable2 ... variablen)
Returned Parameters:
RETURN_CODE (variable)
RESOURCE_POSTED (variable)
H

supplied Parameters:

RESOURCE_LIST specifies the variables containing the resource IDs of

the conversations for which posting is expected.

. variablel variable2 ... variablen are the variables containing
the individual resource IDs. One or more resource IDs may be
specified.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned

to the program. The return code indicates the result of verb exe-

cution. The type of conversation posted determines which of the
return codes can be returned to the progranm.

. If a mapped conversation is posted, one of the following return
codes is returned:

- oK
— DATA
— NOT_DATA
- POSTING_NOT_ACTIVE
- ALLOCATION_ERROR
- BACKED_OUT
- DEALLOCATE_ABEND
- DEALLOCATE_NORMAL
- FMH_DATA_NOT_SUPPORTED
. MAP_EXECUTION_FAILURE
- MAP_NOT_FOUND
- MAPPING_NOT_SUPPORTED
- PROG_ERROR_NO_TRUNC
- PROG_ERROR_PURGING
- RESOURCE_FAILURE_NO_RETRY
- RESOURCE_FAILURE_ RETRY
U If a basic conversation is posted, one of the following return
codes is returned:
- 0K
— DATA
— NOT_DATA
- POSTING_NOT_ACTIVE
- ALLOCATION_ERROR
- BACKED_OUT
- DEALLOCATE_ABEND_PROG
- DEALLOCATE_ABEND_SVC
- DEALLOCATE_ABEND_TIMER
- DEALLOCATE NORMAL
- PROG_ERROR_NO_TRUNC
- PROG_ERROR_PURGING
- PROG_ERROR_TRUNC
4-50 SNA Transaction Programmer's Reference Manual for LU Type 6.2

RESO
post

Type-Independent Conversation Verbs

SYC_ERROR_NO_TRUNC
SVC_ERROR_PURGING
SVYC_ERROR_TRUNC
RESQURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

URCE_POSTED specifies the variable in which the resource ID of the
ed conversation is returned to the program.

State Changes (when RETURN CODE indicates OK):

None

ABEND Conditions:

Para

Stat

0
1‘

mater Check

This verb is not supported.
RESOURCE_LIST specifies an unassigned resource ID.

e Check
None
This verb is intended to be wused in conjunction with

[MC_IPOST_ON_RECEIPT. The use of [MC_IPOST_ON_RECEIPT and this
verb allows a program to perform synchronous receiving from mul-
tiple conversations, where the program issues
[MC_JPOST_ON_RECEIPT for each of the conversations and then
issues this verb (for each conversation) to wait until informa-
tion is available to be received on the conversations.

The RESOURCE_LIST parameter may specify any combination of basic

and mapped conversations. Posting for each conversation may be

active or not active. This verb waits for posting to occur only

on the conversations for which posting is active. When a conver-
sation is posted, the resource ID of the posted conversation is
;eturned to the program by means of the RESOURCE_POSTED parame-
er.

Ihe return code indicates whether posting has occurred, as fol-
OUHS:

o OK indicates posting was active for a conversation and it has
been posted. Posting is now reset for the conversation. The
subcode of the 0K return code indicates why the conversation
has been posted.

- DATA indicates data is available for the program to
receive.

- NOT_DATA indicates information other than data, such as a
SEND, CONFIRM, or TAKE_SYNCPT indication, is available
for the program to receive.

The program should issue [MC_IRECEIVE_AND_WAIT or
[MC_IRECEIVE_IMMEDIATE in order to receive the information.
The program may use the subcode to determine whether it needs
to specify the DATA parameter on the [MC_IRECEIVE_AND_WAIT or
[MC_JRECEIVE_IMMEDIATE verb.

. POSTING_NOT_ACTIVE indicates posting is not active for any
and all of the conversations.

The remaining return codes indicate posting was active for a con-
versation and it has been posted for the reason indicated by the
specific return code. Posting is now reset for the conversation.

Posting is active for a conversation when [MC_]POST_ON_RECEIPT

has been issued for the conversation and posting has not been
reset or canceled (see the [MC_JPOST_ON_RECEIPT verb).

Chapter 4. Conversation Verbs 4-51

BASIC CONVERSATION VERBS

4-52

This section describes the subcategory of conversation verbs called
basic conversation_ verbs. These verbs are intended for use by LU
sepvices programs. The LU services programs can provide end-user
services or protocol boundaries for end-user application transaction
programs. Examples of LU services programs are:

. The LU services component programs that process mapped conversa-
tion verbs and control—-operator verbs. These verbs define the LU
6.2 %rotocol boundary for mapped conversations and the control
operator.

. SNA service transaction programs. These programs provide
end-user protocol boundaries that are defined by the specific IBM
product implementations of the service programs. Refer to the IBM
product publications for a description of the SNA service pro-
grams and their protocol boundaries that each product provides.
The names of some SNA service transaction programs that have gen-
eral applicability are listed in "Appendix D. List of SNA Service
Transaction Programs"™.

The detailed descriptions of the basic conversation verbs follou.

Note: Every conversation is either a basic or mapped conversation.
The basic conversation verbs can be used for operations on both types.
The mapped conversation verbs can be used for operations only on a
mapped conversation. The capability to use basic conversation verbs
on mapped conversations is provided for implementation of a mapped
conversation LU services component program. Throughout the
descriptions of the basic conversation verbs, references to a basic
conversation or mapped conversation are made only when it is necessary
to make a distinction between them. Otherwise, references are made
simply to conversations.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

tasic conversation Verbs

ALLOCATE
Allocates a session between the local LU and a remote LU, and on that
session allocates a basic or mapped conversation between the local
program and a remote program. A resource ID is assigned to the con-
versation. This verb is issued prior to any verbs that refer to the
conversation.
Supplied Parameters:
ALLOCATE LU_NAME (OWN)

MODE_NAME (variable)
TPN (variable)

-
TYPE (BASIC CONVERSATION)]

(OTHER (variable))

(MAPPED_CONVERSATION)

(WHEN SESSION ALLOCATED)
RETURN_CONTROL (DELAYED_ALLOCATION_PERMITTED)
{ IMMEDIATE)

(NONE)
SYNC_LEVEL (CONFIRM)
(SYNCPT) '

(NONE)
SECURITY (SAME)
(PGM (USER_ID (variable) PASSWORD (variable)
. PROFILE (variable)))

PIP (NO)

(YES (variablellvariablez «es vVariablen))]

Returned Parameters:
RESOURCE (variable)

RETURN_CODE (variable)

3

supplied Parameters:

LU_NAME specifies the name of the remote LU at which the remote trans-
action program is located. This LU name is any name by uwhich the
local LU knows the remote LU for the purposae of allocating a conversa-
tion. The local LU transforms this locally-known LU name to an LU
name used by the network, if the names are different.

U OUN specifies that the remote program is located at the same LU as
the local program.

. OTHER specifies that the remote program is located at another LU.
The specified variable contains the LU name.

MODE_NAME specifies the mode name designating the network proparties
for the session to be allocated for the conversation. The network
properties include, for example, the class of sarvice to be used, and
whether data is to be enciphered or translated to ASCII before it is
sent. The SNA-defined mode name, SNASVCMG, may be specified, but only
by an LU services program.

Chapter 4. Conversation Verbs 4-53

ALLOCATE

4-54

TPN specifies the name of the remote transaction program to be con-
nected at the other end of the conversation. A transaction program
that has the appropriate privilege may specify the name of an SNA
service transaction program. Privilege is an identification that a
product or installation defines in order to differentiate LU services
transaction programs from other programs, such as application trans-
action programs. (See "Appendix D. List of SNA Service Transaction
Progra?s" for more details about SNA service transaction program
names.

TYPE specifies the type of conversation to be allocated.
J BASIC_CONVERSATION specifies to allocate a basic conversation.

. MAPPED_CONVERSATION specifies to allocate a mapped conversation.
This argument is used in support of mapped conversation verbs. It
may be specified only by a mapped conversation LU services pro-
gram.

RETURN_CONTROL specifies when the local LU is to return control to the
local program, in relation to the allocation of a session for the con-
vaersation. An allocation error resulting from the local LU's failure
to obtain a session for the conversation is reported either on this
verb or a subsequent verb, depending on the argument specified for
this parameter. An allocation error resulting from the remote LU's
raejection of the allocation request is reported on a subsequent verb.

. WHEN_SESSION_ALLOCATED specifies to allocate a session for the
conversation before returning control to the program. An error in
allocating a séssion is reported on this verb.

. DELAYED_ALLOCATION_PERMITTED specifies to allocate a session for
the conversation after returning control to the program. An error
in allocating a session is reported on a subsequent verb.

. IMMEDIATE specifies to allocate a session for the conversation if
a session is immediately available, and return control to the pro-
gram with a return code indicating whether a session is allocated.

- A return code of 0K indicates a session is immediately avail-
able and is allocated for the conversation. A session is
immediately available when it is active, it is not allocated
to another conversation, and the local LU is the contention
winner for the session.

- A return code of UNSUCCESSFUL indicates a session is not imme-
diataely available. Allocation is not performed.

An error in allocating a session that is immediately available is
reported on this verb.

SYNC_LEVEL specifies the synchronization level that the local and
remote programs can use on this conversation.

. NONE specifies that the programs will not perform confirmation or
sync point processing on this conversation. The programs will not
issue any verbs and will not recognize any returned parameters
relating to these synchronization functions.

. CONFIRM specifies that the programs can perform confirmation
processing but not sync-point processing on this conversation.
The programs may issue verbs and will recognize returned parame-
ters relating to confirmation, but they will not issue any verbs
and :ill not recognize any returned parameters relating to sync
point.

. SYNCPT specifies that the programs can perform both confirmation
and sync-point processing on this conversation. The programs may
issue verbs and will recognize returned parameters relating to
confirmation or sync point. For sync-point processing, a conver-
sation allocated with this synchronization level is a protected
resource.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation ver.c

SECURITY specifies access security information that the remote LU
uses to verify the identity of the end-user and validate access to the
remote program and its resources. The access security information
consists of a user 1D, a password, and a profile.

o NONE specifies to omit access security information on this allo-
cation request.

. SAME specifies to use the user ID and profile (if present) from
the allocation request that initiated execution of the local pro-
gram. The password (if present) is not used; instead, the user ID
is indicated as being already verified. If the allocation request
that initiated execution of the local program contained no access
security information, then access security information is omitted
on this allocation request.

JJ PGM specifies to use the access security information that the
local program provides on this parameter. The local program pro-
vides the information by means of the following arguments:

= USER_ID specifies the variable containing the user ID. The
remote LU uses this value and the password to verify the iden-
tity of the end-user making the allocation request. In addi-
tion, the remote LU may use the user ID for auditing or
accounting purposes, or it may use the user ID, together with
the profile (if present), to determine which remote programs
the local program may access and which resources the remote
program may access.

- PASSUWORD specifies the variable containing the password. The

remote LU uses this value and the user ID to verify the iden- .

tity of the end-user making the allocation request.

- PROFILE specifies the variable containing the profile. The
remote LU may use this value, in addition to or in place of
the user ID, to determine which remote programs the local pro-
gram may access, and which resources the remote program may
access.

Specifying a null value for any of the access security arguments
is equivalent to omitting the argument.

PIP specifies program initialization parameters for the remote pro-
gram.

. NO specifies that PIP data is not present.
. YES specifies that PIP data is present.

- variablel variable2 ... variablen contain the PIP data to be
sent to the remote program. Tha PIP data consists of one or
more subfields, each of which is specified by a separate vari-
able; variables 1 through n correspond to subfields 1 through
n. If a variable is omitted in the PIP parameter or it is of
null value, the corresponding PIP subfield is made to be of 0
length. The number of PIP subfields must agree with the num-
ber of PIP variables specified on the remote program's PROC
statement (see "Transaction Program Structure and Execution"
in Chapter 3).

e ed ameters:

RESOURCE specifies the variable in which the resource ID is to be
returned. The length and actual format of the resource ID is product
dependent. The resource ID is returned to the program when the return
code is either 0K or ALLOCATION_ERROR.

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
execution. The RETURN_CONTROL parameter determines which of the fol-
lowing return codes can be returned to the program.

[If RETURN_CONTROLCWHEN_SESSION_ALLOCATED) is specified, one of
the following return codes is returned:

Chapter 4. Conversation Verbs 4-55

ALLOCATE

4-56

‘0K
— ALLOCATION_ERROR (with one of the following subcodes)
— ALLOCATION_FAILURE_NO_RETRY
— ALLOCATION_FAILURE_RETRY
— SYNC_LEVEL_NOT_SUPPORTED_BY_LU
- PARAMETER ERROR (for the following reasons)
— Invalid LU name
— Invalid mode name

If RETURN_CONTROL(DELAYED_ALLOCATION_PERMITTED) is specified,
one of the following return codes is returned:

0K
- PARAMETER_ERROR (for one of the following reasons)
— Invalid LU name
— Invalid mode name

If RETURN_chTROL(IMMEDIATE) is specified, one of the following
return codes is returned:

oK
- ALLOCATION_ERROR (with the following subcode)
— SYNC_LEVEL_NOT_SUPPORTED_BY_LU
- PARAMETER_ERROR (for one of the following reasons)
— Invalid LU name
— Invalid mode name
- UNSUCCESSFUL (for the following reason)
— Session not immediately available

State changes (when RETURN CODE indicates 0K):

send state is entered.

ABEND Conditions:
Parameter Check

® e 00 [4

LU_NAME(OUWN) is specified and not supported.

MODE_NAME specifies SNASYVCMG and the local program is not an LU
services program.

TPN specifies an SNA service transaction program name and the
local program does not have the appropriate privilege to allocate
a conversation to an SNA service program.

TPN specifies a null (0 length) value.

TYPE(BASIC_CONVERSATION) is specified and the local program does
not have basic conversation support defined.
TYPE(MAPPED_CONVERSATION) is specified and the local program is
not a mapped conversation LU services program.
RETURN_CONTROL(DELAYED_ALLOCATION_PERMITTED) is specified and
not supported.

RETURN_CONTROL(IMMEDIATE) is specified and not supported.
SYNC_LEVEL(SYNCPT) is specified and not supported.

SECURITY(SAME) is specified and not supported.
SECURITY(PGM(USER_ID(variable) PASSWORD(variable))) is specified
and not supported.

SECURITY(PGM(PROFILE(variable))) is specified and not supported.
PIP(YES(variable)) is specified and not supported.

- state Check

N
1.

None

es:

This verb is used by a transaction program to allocata a basic
conversation. It is also used by an LU services component program
to allocate either a basic conversation or a mapped conversation,
depending on the function that the component program provides.
For example, a component program that processes control oparator
verbs usas this verb to allocate a basic conversation, and a com-
ponent program that processes mapped conversation verbs uses this
verb to allocate a mapped conversation.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation Verbs

Depending on the product, the LU may send the allocatlon request
to the remote LU as soon as it allocates a session for the conver-
sation. Alternatively, the LU may buffer the allocation request
until it accumulates from the PIP parameter of this verb or from
one or more subsequent SEND_DATA verbs a sufficient amount of
information for transmission, or until the local program issues a
subsequent verb other than SEND_DATA that explicitly causes the
LU to flush its send buffer. The amount of information that is
sufficient for transmission depends on the characteristics of the
session allocated for the conversation, and can vary from one ses-
sion to another.

The local program can ensure that the remote program is connected
as soon as possible by issuing FLUSH immediately after ALLOCATE.

Two LUs connected by a session may both attempt to allocate a con-
versation on the session at the same time. This is called con-
tention. Contention is resolved by making one LU the contention
winner of the session and the other LU the contention loser of the
sassion. The contention-winner LU allocates a conversation on a
session without asking permission from the contention-loser LU.
Conversely, the contention-loser LU requests permission from the
contention-winner LU to allocate a conversation on the session,
and tze contention-winner LU either grants or rejects the
request.

If the program issues ALLOCATE with the parameter
RETURN_ CONTROL(DELAYED ALLOCATION_PERMITTED), the LU delays
allocation of the session until it flushes its send buffer. At
that time the LU allocates the session and transmits the allo-
cation request to the ramote LU. The program is unaffected by the
delayed allocation of the session, with one exception: When the
LU allocates a contention-loser session, it does so by transmit-
ting the allocation request and then waiting for information to
arrive before returning control to the program. This can affect
the sequence of the verbs that the program can issue.

Forb example, suppose the program has the following sequence of
verbs:

ALLOCATE with RETURN_CONTROL(DELAYED_ALLOCATION_PERMITTED)
PREPARE_TO_RECEIVE with TYPE(FLUSH)
REQUEST_TO_SEND

In this example, assume the program is using REQUEST_TO_SEND to
prompt the remote program to begin sending information, instead
of requesting send control. However, if the LU allocates a con-
tention-loser session (and an allocation error or resource fail-
ure does not occur), control is not returned to the program after
it issues the PREPARE_TO_RECEIVE until the remote program sends
some information. If the remote program waits for the
REQUEST_TO_SEND notification before sending any information, a
deadlock condition occurs. This deadlock can be avoided by issu-

the ALLOCATE with either RETURN_CONTROL
(NHEN SESSION_ALLOCATED) or RETURN_ CONTROL (IMMEDIATE).

SYNC_LEVEL(SYNCPT) permits use of the SYNCPT and BACKOUT verbs
and the Resynchronization transaction program (an SNA service
transaction program), to aid in maintaining consistency across
all protected resources within a distributed logical unit of
work. The Resynchronization program performs sync point resyn-
chronization, which maintains this consistency when session fail-
ure and reinitiation occurs. See mat and Protoco

Reference Manual: Architecture logic for LU Tvpe 6.2 for more

details of sync point resynchronization.

Each LU indicates at session activation time whether it will
accept LU security parameters on allocation requests the partner
LU sends. If the remote LU will not accept any security parame-
ters from the local LU, and the local program specifies SECURI-
TY(SAME) or SECURITY(PGM(...)), the 1local LU doungrades the
specification to SECURITY(NONE). Similarly, if the remote LU

Chapter 4. Conversation Verbs 4-57

ALLOCATE

4-58

10.

will not accept the local LU's verification of the user ID and
password, and the local program specifies SECURITY(SAME), the
local LU doungrades the specification to SECURITY(NONE).

The remote program is connected to the other end of the conversa-
tion in receive state.

The program uses the resource ID, returned to the program on the
RESOURCE parameter, on all subsequent basic conversation verbs it
issues for this conversation.

References in this verb description to a program being in a par-
ticular state are only in terms of the allocated conversation.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation Verbs

CONFIRM
Sends a confirmation request to a remote transaction program and waits
for a reply. This verb allows the local and remote programs to syn-
chronize their processing with one another. The LU flushes its send
buffer as a function of this verb.
Sy ied Parametars:
CONFIRM RESOURCE (variable)

Returned Parameters:
RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)

H

supplied Parameters:

RESOURCE specifies the variable containing the resource ID. The con-
§$ﬁgg¥ion must be allocated with a synchronization level of CONFIRM or

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to th:.local program. The return code indicates the result of verb
execution.

0K (remote program replied CONFIRMED)
ALLOCATION_ERROR

BACKED_OUT

DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY
SVC_ERROR_PURGING

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an lndlcatlon of whether REQUEST_TO_SEND has been raeceived. The indi-
cation is either YES or NO.

. YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state.

° NO indicates a REQUEST_TO_SEND notification has not been
received.

state Cha s (when RETURN CODE jndi es 0K):

Receive state is entered when the verb is issued in defer state fol-
lowing PREPARE_TO_RECEIVE.

Reset state is entered when the verb is issued in defer state follow-
ing DEALLOCATE.

No state change occurs when the verb is issued in send state.
ABEND Conditions:
Parameter Check

U The conversation was allocated with SYNC_LEVEL(NONE).
U RESOURCE specifies an unassigned resource ID.

Chapter 4. Conversation Verbs 4-59

CONFIRM
state Check

v The conversation is not in send or defer state.
. The conversation is in scnd state, and the program started but did
not finish sending a logical reccrd.

1. The program may use this verb for various application-level func-
tions. For example:

. The program may issue this verb immediately following an
ALLOCATE in order to determine whether the allocation of the
convearsation is successful before sending any data.

. The program may issue this verb as a request for acknowledge-
ment of data it sent to the remote program. The remote pro-
gram may respond by issuing CONFIRMED as an indication that it
received and processed the data without error, or by issuing
SEND_ERROR as an indication that it encountered an error.

2. When REQUEST_TO_SEND_RECEIVED indicates YES. the remote program
requests the local program to enter receive state and thareby
place the remote program in send state. A program enters receive
state by means of the PREPARE_TO_RECEIVE or RECEIVE_AND_WAIT
verb. The partner program enters the corresponding send state
when it issues a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb and
receives the SEND indication (on the WHAT_RECEIVED parameter).

3. References in this verb description to a program being in a par-
ticular state are only in terms of the specified conversation.

%4-60 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic Conversation Verhs
CONFIRMED

Sends a confirmation reply to the remote transaction program. This
ver@ allows the local and remote programs to synchronize their proc-
essing with one another. The local program can issue this verb when
it receives a confirmation request (see the WHAT_RECEIVED parameter
of the RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb).

Supplied Parameters:
CONFIRMED RESOURCE (variable)

3

sSu ied Paranme - H
RESOURCE specifies the variable containing the resource ID.

sState Changes:

Receive state is entered when CONFIRM was received on the preceding
RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE.

send state is entered when CONFIRM_SEND was received on the preceding
RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE.

Deallocate state is entered when CONFIRM_DEALLOCATE was received on
the preceding RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE.

ABEND Conditions:
Parameter Check

RESOURCE specifies an unassigned resource ID.
state Check

The conversation is not in confirm state.
Notes:

1. The program can issue this verb only as a reply to a confirmation
request; the verb cannot be issued at any other time.

2. The program may use this verb for various application-level func-
tions. For example, the remote program may send data followed by
a confirmation request. When the local program receives the con-
firmation request, it may issue this verb as an indication that it
received and processed the data without error.

3. References in this verb description to a program being iq a par-
ticular state are only in terms of the specified conversation.

Chapter 4. Conversation Verbs 4-61

DEALLOCATE

Deallocates the specified conversation from the transaction program.
The deallocation can be either completed as part of this verb, or
deferred until the program issues a FLUSH, CONFIRM, or SYNCPT verb.
When it is completed as part of this verb it can include the function
of the FLUSH or CONFIRM verb. The resource ID becomes unassigned when
deallocation is complete.

DEALLOCATE

Supplied Parameters:
RESOURCE (variable)

SYNC LEVEL)
FLUSH
CONFIRM)
ABEND_PROG)
ABEND_SVC)
ABEND_TIMER)

i LOCAL)

TYPE

PN P p P PN PN

LOG_DATA (NO)
(YES (variable))

Returned Parameters:
RETURN_CODE (variable)

H

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID of the con-
vaersation to be deallocated.

TYPE specifies the type of deallocation to be performed.

® SYNC_LEVEL specifies to perform deallocation based on the syn-
chronization level allocated to this conversation:

- If SYNC_LEVEL(NONE), execute %he function of the FLUSH verb
and deallocate the conversation normally.

- If SYNC_LEVEL(CONFIRM), execute the function of the CONFIRM
verb and if it is successful (as indicated by a return code of
0K on this DEALLOCATE verb), deallocate the conversation
normally; if it is not successful, the state of the conversa-
tion is determined by the return code.

- If SYNC_LEVEL(SYNCPT), defer the deallocation until the pro-
gram issues a SYNCPT, or the program issues a CONFIRM or FLUSH
for this conversation. If the SYNCPT or CONFIRM is successful
(as indicated by a return code of 0K on that verb) or FLUSH is
issued, the conversation is then deallocated normally; other-
wise, the state of the conversation is determined by the
raeturn code.

° FLUSH specifies to execute the function of the FLUSH verb and
deallocate the conversation normally.

L CONFIRM specifies to execute the function of the CONFIRM verb and
if it is successful (as indicated by a return code of 0K on this
DEALLOCATE verb), deallocate the conversation normally; if it is
no: succegsful, the state of the conversation is determined by the
return code.

. ABEND_PROG, ABEND_SVC, or ABEND_TIMER specifies to execute the
function of the FLUSH verb when the conversation is in send or
defer state, and deallocate the conversation abnormally.

4-62 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic Conversation Verbs

Logical-record truncqtion can occur when the conversation is in
send state; data purging can occur when it is in receive state.

. LOCAL specifies to deallocate the conversation locally. This
type of deallocation must be specified if, and only if, the con-
versation is in deallocate state. Deallocate state is entered
when ?he'program receives on a previously issued verb a return
code indicating the conversation has been deallocated (see "Re-
turn Codes™ on page 4-99).

The execution of the FLUSH or CONFIRM function as part of this verb
includes the flushing of the LU's send buffer. When, instead, the
deallocation is deferred, the LU also defers flushing its send buffer
until the program issues a subsequent verb for this conversation.

LOG_DATA specifies whether product-unique error information is to be
placed in the system error logs of the LUs supporting this conversa-
tion. This parameter can be specified only when TYPE(ABEND_PROG),
TYPECABEND_SVC), or TYPE(ABEND_TIMER) is also specified.

. NO specifies that no error information is to be placed in the sys-
tem error logs.

) YES specifies that product-unique error information is to be
placed in the system error logs of the local and remote LUs. The
specified variable contains the product-unique error information,
in the format of the Error Log GDS variable. See SNA Format and
Protocol Reference Manual: Architecture Logic for L e 6.2 for
a definition of the Error Log GDS variable.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
execution. The TYPE parameter determines which of the following
return codes can be returned to the program.

. If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this conversation is NONE; or TYPE(FLUSH),
TYPE(ABEND_PROG), TYPECABEND_SVC), TYPECABEND_TIMER), or
TYPECLOCAL) is specified; the following return code is returned:

- 0K (deallocation is complete)

U If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this conversation is CONFIRM, or TYPE(CONFIRM) is
specified, one of the following return codes is returned:

0K (deallocation is complete)
ALLOCATION_ERROR
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
PROG_ERROR_PURGING
SVC_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

. If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this conversation is SYNCPT, the following return
code is returned:

rreteevre
1

- 0K (deallocation is deferred)

state Changes (isthen RETURN CODE indicates 0K):

Defer state is entered when TYPE(SYNC_LEVEL) is specified and the syn-
chronization level is SYNCPT.

Reset state is entered when TYPE(FLUSH), TYPE(CONFIRM), TYPE(LOCAL),
TYPECABEND_PROG), TYPECABEND_SVC), or T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>