
--------- - - --- - -- - ---- - - ----------- ·-
Systems Network Archrtectu re
Distribution Services

Reference

SC30-3098-3

·-------- ----- - -- - ---- - - ------ -----·-.®

Systems Network Architecture
Distribution Services

Reference

SC30-3098-3

Fourth Edition (June 1989)

This is the fourth edition, SC30-3098-3; it applies until otherwise indicated in a new edition. Consult
Part 3 of the latest edition of IBM System/370, 30xx, and 4300 Processors - Bibliography, GC20-0001, for
current information on this communication architecture.

The following sentence does not apply to the United Kingdom or any country where such provisions
are inconsistent with local law: International Business Machines provides this publication "As Is"
without warranty of any kind, either express or implied, including, but not limited to, the implied war
ranties of merchantability or fitness for a particular purpose. Within the United States, some states do
not allow disclaimer of express or implied warranties in certain transactions; therefore, this statement
may not apply to you.

Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

A form for your comments is provided at the back of this publication. If the form has been removed,
address your comments to:

IBM Corporation
Department E74
P.O. Box 12195
Research Triangle Park, North Carolina 27709, U.S.A.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the infor
mation in any way it believes appropriate without incurring any obligation to you or restricting your use
of it.

Note to US Government users - Documentation related to Restricted Rights - Use, duplication, and dis
closure is subject to restrictions set forth in GSA ADP Schedule contract With IBM Corp.

©Copyright International Business Machines Corporation 1984, 1985, 1989
All Rights Reserved

Special Notices

References in this publication to IBM products, programs or services do not
Imply that IBM intends to make these available in all countries in which IBM
operates.

Any reference to an IBM licensed program or other IBM product in this publica
tion is not intended to state or imply that only IBM's program or other product
may be used.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license
to use these patents. You can send license inquiries, in writing, to the IBM
Director of Commercial Relations, IBM Corporation, Purchase, New York 10577.

IBM is a registered trademark of the International Business Machines Corpo
ration.

Special Notices Ill

Iv SNA/Distribution Services Reference

Preface

This manual describes Systems Network Architecture/Distribution Services
(SNA/DS) at the implementation level. This manual does not describe any spe
cific machines or programs that may implement SNA, nor does it describe any
implementation-specific subsets or deviations from the architectural description
that may appear within any IBM SNA product. These matters, as well as infor
mation on SNA product installation and system definition, are described in the
appropriate publications for the particular IBM SNA machines or programs to
be used.

Prerequisite Publications
• SNA Concepts and Products, GC30-3072

• SNA Technical Overview, GC30-3073

• SNA Transaction Programmer's Reference Manual for LU Type 6.2,
GC30-3084

Related Publications
• SNA Formats, GA27-3136

• SAA Common Programming Interface: Communications Reference,
SC26-4399

• SNA LU 6.2 Reference: Peer Protocols, SC31-6808

• SNA Type 2.1 Node Reference, SC30-3422

Preface V

VI SNA/Distribution Services Reference

Contents

Chapter 1. Concepts and Facilities
Introduction

The Interface to the Distribution Service
Agents
Agent Requests
The Agent Protocol Boundary
Agent Names
The Transfer of Responsibility

Distribution Service Users
User Roles
User Names
User's View of the Distribution Service

Distributions
Distribution Copies
Types of Information in a Distribution
Distribution Transport Message Units
Distribution Report Message Units
The Distribution Identification . .
OS Format Sets

Distribution Service Unit (DSU)
DSU Roles
DSU Names
The DSU/User Relationship
Environment of the DSU

DSU Directories and Routing Tables
A DSU's Directory
A DSU's Routing Table

Simple Networks
Fully-Connected OS Networks

Simple Directing in Fully-Connected Networks
Simple Routing in Fully-Connected OS Networks
MU Flows for Typical Distributions

OS Networks with Intermediate DSUs
Simple Directing in Networks with Intermediate DSUs
Simple Routing in Networks with Intermediate DSUs .
MU Flows for Typical Distributions ...
Advantages of Using Intermediate DSUs

Full-Function OS Networks
Distribution Service Parameters

Service Parameters and Service Levels
Default Service Levels
Combinations of Service Levels
Uses of Distribution Service Parameters

Sublayering in OS Networks
Processes Performed in the DS Sublayers
Sublayer Diagrams

Redirection
Default Directing
Default Routing

1
1
2
2
2
3
3
4
4
5
5
6
6
7
7
7
8
8
8
8
9
9
9
9

10
10
12
12
13
13
14
15
18
19
20
21
22
23
23
24
25
26
26
32
32
34
35
36
38

Contents vii

Alternate Routing . 39
The Intervention List . 40

Servers and Objects . 40
Introduction . 40
General and Specific Servers . 42
Server Exceptions and Reporting . 45

Early Acceptance of the Serier Object 46
Direct Fetch and Store . 47

Exception Handling with Direct Fetch and Store 48
Server Access Descriptors and Specific Server Information 48
Agent vs. Server Objects . 49
The Server Protocol Boundary . 50

OS and LU 6.2 51
The Distribution Transport Sublayer . 51
OS's Use of LU 6.2 Verbs - Format Set 2 Implementations 53
Levels of Integrity for Distributions . 54
OS's Use of LU 6.2 Verbs - Format Set 1 Implementations 54

Agent Protocol Boundary Verbs . 55
Verb Overview-Originating Distributions . 55
Verb Overview-Receiving Distributions and Reports 55
Sending Sequences . 55

Sample Sending Sequences . 56
Receiving Sequences . 61

Sample Receiving Sequences . 61
Exception Occurrences and Conditions . 63

Exception Analysis . 64
Exception HandHng . 65
Mid-MU Restart . 66
Distribution Reporting . 66
Distribution Report Message Units . 66
Service Parameters in the DRMU . 67
The Report-To Agent . 67
Third-Party Reporting . 68

Operations . 68
Managing Distributions . 68
Managing Connections . 68
Maintaining OSU Definitions . 69
Managing Logs . 70

Chapter 2. Overview of SNA/DS Protocols . 71
The OS Distribution Transport Sublayer . 71

Data Structures at the Sending DSU . 72
Data Structures at the Receiving DSU . 73
The MU_ID Registries . 73
Defining Connections . 74

OS Protocol for Transmitting Distributions . 74
Integrity of Distributions . 75
Use of LU 6.2 Verbs-High Integrity . 76
Use of LU 6.2 Verbs-Basic Integrity . 78
Parallel Sessions . 79
Throughput Control . : . 79

Management of Message Unit IDs . 81

VIII SNA/Distributlon Services Reference

States and State Changes . 81
States of MU_IDs at DS_Send . 82
States of MU_IDs at DS_Receive . 83

MU_ID States--Active and Inactive . 85
MU_ID States and DSU Responsibility . 85
MU_ID Instance Numbers . 86
Removing MU_IDs from the MU_ID registry 86
The MU_ID registry . 86
Synchronization of MU_ID Registries at Sender and Receiver 88

Exceptions Detected by the Distribution Transport Sublayer 89
Exceptions Detected by DS_Send . 89

The Sender-Exception Message Unit (SEMU) 89
Effects of a Sender-Detected Exception on DS_Send 90
Actions of DS_Receive in Response to Send_Error 91
Actions of DS_Receive in Response to a SEMU 91
Actions of DS_Send in Response to a Conversation Failure 91
Actions of DS_Send in Response to an Operator Purge 92

Exceptions Detected by DS_Receive . 92
The Receiver-Exception Message Unit {REMU) 92
Effects of a Receiver-Detected Exception on DS_Receive 92
Actions of DS_Send in Response to Send_Error 93
Actions of DS_Send in Response to a REMU 93
Actions of DS_Recelve in Response to a Conversation Failure 94

Other Control MUs {CQMU, CRMU, PRMU) . 94
Completion Query Message Unit (CQMU) 94

Actions of DS_Receive In Response to a CQMU 95
Completion Report Message Unit (CRMU) 95

Actions of DS_Send in Response to a CRMU 95
Purge-Report Message Unit (PRMU) . 96

Actions of DS_Receive in Response to a PRMU 96
Lost Messages . 97
Mid-MU Restart . 98

Example 99
Formal Description of MU_ID State Transitions 102

DS_SEND_MU_STATE_DESCRIPTION . • 102
DS_RCV_MU_STATE_DESCRIPTION . 104

Chapter 3. Implementation Model . 107
Introduction . 107

The Structure of a DSU . 107
Examples of DSU Activity . 110

Origin of Distribution with Local Destinations 110
Origin of Distribution with Remote Destinations 112
Destination of Distribution . 114
Processing a Received Distribution with a Routing Exception 116
Accessing Logged Exception . 118

Presentation Services Sublayer 119
Send_Distribution . 119
Query_Distribution_Sending . 119
Sending_Sequence_Completed . 120
Receive_Distribution, Receive_Distribution_Report 120
Receivlng_Sequence_Completed . 120

Contents Ix

Obtain_Local_Server_Report
Operations Verbs .

Routing and Directing Sublayers
Routing and Directing Overview .

FSM_ROUTING_DIRECTING_MGR
Directing FSMs

FSM_DIRECTING_MGR
FSM_LOCAL_SCHED

Routing FSMs .
FSM_ROUTING_MGR
FSM_REMOTE_SCHED

Routing and Directing Utility FSMs
FSM_ORIGIN_CHECK
FSM_DEST_DSU_CHECK
FSM_DIR_LOOKUP
FSM_LOCAL_ CHECK .
FSM_NEXT_LOCAL_QUEUE
FSM_COUNT_EXCEPTS
FSM_DSU_CHECK
FSM_RTG_LOOKUP
FSM_NEXT_DSU

Distribution Transport Sublayer-Format Set 2
DS _Send FSMs .

Data Structures
Program Structure
DS_SEND_MANAGER
DS_SEND_SENDING
DS_SEND_SEND_DIST
DS_SEND_BUILD_SENO_OMU
DS_SEND_CLEANUP_DMU
DS_SEND_DMU_EXCEPT_NOT_SENDING
DS_SEND_DMU_ENCOOE_EXCEPT
DS_SEND_CLEANUP _EXCEPT
DS_SEND_PROG_ERROR_RECEIVED
DS_SEND_DMU_PROTOCOL_ERROR
DS_SEND_MU_ID_STATE_ERROR
DS_SEND_SEND_DMU_NO_MU_ID
DS_SEND_EXCEPT_NO_MU_ID
DS_SEND_SEND_CONTROL_MU
DS_SEND_RECEIVING
DS_SENO_CRMU_HANOLER
DS_SEND_RELEASE_ON_CRMU
DS_SEND_PURGE_ON_CRMU
DS_SEND_RETRY_ON_CRMU
DS_SEND_ISSUE_SEMU_ON_CRMU
DS_SEND_REMU_HANDLER
DS_SEND_QUERY_ON_REMU
DS_SEND_RETRY_ON_REMU
DS_SEND_CHECK_CONV_FAIL
DS_SEND_TERMINATE_DIST
DS_SEND_RETAIN_DIST
DS_SEND_DISCARD_OIST

X SNA/Distribution Services Reference

121
121
121
121
124
128
128
132
136
136
140
144
144
144
144
144
145
145
145
145
146
146
146
146
146
154
156
159
163
166
168
170
172
174
176
178
181
185
188
190
192
196
198
200
202
204
208
210
212
214
216
218

DS_SEND_SEND_CONVERSATION_MGR
DS_SEND_CONVERSATION_CONTROL
DS_SEND_MU_ID_REGISTRY
UPM_CHECK_DUP_CONV_FAIL_REPORT

OS Receive FSMs
Data Structures
Program Structure
DS_RCV _MANAGER
DS_RCV _SENDING
OS RCV RECEIVING
DS_RCV _RECEIVE_DMU
DS_RCV_MU_ID_HANDLER
DS RCV SEND ERR - - -
DS_RCV _SEND_ERR_REMU
DS_RCV_SUSP_TERM
DS_RCV _SEND_ERR_SUSP _TERM_REMU
DS_RCV_REMU_SUSP_TERM
DS_RCV_SEND_ERR_CRMU
DS_RCV _RECEIVE_DMU_NO_MU_ID
DS_RCV _ENQ_SCHED
DS_RCV _CQMU_HANDLER
DS_RCV _SEMU_HANDLER
DS_RCV _PRMU_HANDLER
DS_RCV _SUSP _DIST
DS_RCV_DISCARD_DIST
DS_RCV _SEND_CONVERSATION_MGR
OS_RCV_MU_IO_REGISTRY
PREPARSER

FSMs Providing Common Services for FS2 Transport
RCV _BUFFER_MGR
IOLE_DETECTOR
UPM_EXCEPT_RECOVERY _ACTION

Distribution Transport Sublayer-Format Set 1
OS Send FSMs

DS Send Overview
ProgramStructu~
FSM_SEND_MGR
FSM_OIST _ENCODE_ CONTROL
FSM_SRVR_OBJECT_READ
FSM_SEND_CONVERSATION_MGR
FSM_SEMU_ENCODE
FSM_REMU_DECODE

OS Receive FSMs .
OS Receive Overview .
Program Structure
FSM_RECEIVE_MGR
FSM_DIST _DECODE_ CONTROL
FSM_RCV_ENQ_SCHED
FSM_SRVR_OBJECT_WRITE
FSM_RCV_CONVERSATION_MGR
FSM_SEMU_OECODE
FSM_REMU_ENCODE

220
222
223
224
224
224
225
232
234
237
240
244
246
248
250
252
254
256
259
262
265
269
272
274
276
278
280
280
281
282
284
285
285
285
285
286
288
296
300
302
304
306
310
310
310
313
320
324
328
330
334
338

Contents XI

Common Services . 340
Operations . 341

FSM_OPERATIONS_MGR . 342
FSM_EXCEPT _TYPE . 348
FSM_QUEUE_CONTROL . 348
FSM_MESSAGE . 348
FSM_REPORT. 349
FSM_LOG ; 349

Scheduler . 350
FSM_SCHED_MGR . 351
FSM_ CHECK_ TP . 354
FSM_ CHECK_ TOD . 354
FSM_CHECK_QUEUE_DEPTH . 354
UPM_START_TP . 354

SERVER_MGR . 354
QUEUE_MGR . 357
BUILDER . 359
PARSER . 359

Appendix A. Acronyms and Abbreviations 361

Appendix B. Introduction to Finite-State Machines 363
Introduction to FSMs . 363

Appendix C. Implementation Alternatives 365
Categories of Choices . 365
Protocol Boundary Exposure . 366

The Choice of Open or Closed . 366
Rules for Closed Protocol Boundaries . 366
Rules for Open Protocol Boundaries . 367

Role . 368
Rules for Origin Role . 368
Rules for Destination Role . 368
Rules for Intermediate-only Role . 369

Base and Option Sets of Functions . 370
Base and Option Set Diagram . 370
General Rules for Base and Option Sets 370
Rules for the Base Set . 371

Base PB Verbs . 371
Base Service Parameters . 371
Base Reporting . 372
Base Encoding Support . 372
Base Scheduling , 373
Base Protocol . 373
Base Routing and Directing . 373
Base Operations . 374
Base Receive-time Checks . 375
Base Up-level Co-existence Capabilities 375

Enhanced Character Strings Option Set 375
Format Set 1 Support Option Set . 376
Security Option Set . 376
Operator Rerouting Option Set . 376

XII SNA/Distribution Services Reference

Enhanced Connection Operations Option Set
Distribution Logging Option Set

Electives
Electives within Base Function
Electives within the Format Set 1 Support Option Set

Specializations
Optimizations

Appendix D. FS1/FS2 Coexistence
General Introduction to the Coexistence Strategy

General Actions for Handling Format Set 1 and Format Set 2
Coexistence .

Coexistence Plan Constraints
Existing Functions .
Topology
End-User to End-User Connectivity .
DSU-to-DSU Connectivity

Determining Partner's Encoding Level
Detailed Actions for FS1/FS2 Coexistence

Inputs
Next Hop
Actions
Placement of Conversion Actions .

Transport Mapping
OS Report Mapping .

FS1 Specific OS Reports .
DIA Report Mapping .
Null RGN Handling
FS1 Atomic Structures Not Present in FS2
FS2 Atomic Structures Not Present in FS1

Appendix E. Exception Handling
Introduction

Types of Reporting Actions .
Local-Agent Reporting .
MU-Level Reporting .
Distribution Reporting .
Local-Operator Reporting .

Characteristics of Exception Conditions
Retriable Conditions .
Non-Retriable Condition .
Condition Scope .

SNACR Usage, OS Report Codes, and Reports
OS Usage of SNACR .
SNA-Registered OS Conditions .
Generating a Distribution Report ..•....................

Bilingual Node: Mapping SNA Report Codes and FS1 Condition Codes
Exception Handling and Analysis .

Exception Conditions Detected During the Sending Process
Exception Conditions Detected During the Receiving Process
Exception Conditions Detected while Performing Routing and Directing

Exception Handling for Format Set 1 .

377
377
377
377
379
380
381

383
383

383
384
384
384
385
385
385
386
386
387
387
389
389
391
393
395
397
401
402

405
405
405
405
405
405
406
407
407
407
407
408
408
409
413
414
416
417
421
427
429

Contents Xiii

Exception Conditions . 429
Exception Actions . 430
FS1 Exception Conditions Detected by DS_Send 431
FS1 Exception Conditions Detected by DS_Receive 434
Exception Codes for a SEMU (Type FS1) 436
Exception Codes for a REMU (Type FS1) 437

Appendix F. Protocol Boundary Definitions 439
Introduction . 439
Verb Description Table . 439

Column Descriptions . 439
Supplied Parameter Name . 439
Returned Parameter Name . 439
Parameter Reference Page (Parm Ref Page) 440
Length . 440
Occurrences . 440
Children . 440

Parameter Description . 440
Distribution Verbs . 441

VERB: Obtain_Local_Server_Report . 441
VERB: Query_Distribution_Sending . 442
VERB: Receive_Distribution . 444
VERB: Receive_Distribution_Report . 446
VERB: Receiving_Sequence_Completed 448
VERB: Send_Distribution . 449
VERB: Sending_Sequence_Completed . 450

Operations Verbs . 451
VERB: Add_DSU_Data . 451
VERB: Get_Distribution_lnfo . 452
VERB: Get_Distribution_Log_Entry . 453
VERB: Get_Exception_Log_Entry . 454
VERB: Hold_Distribution_Copy . 454
VERB: List_Adjacent_DSUs . 455
VERB: List_Connections . 456
VERB: List_Control_MU_Queue . 457
VERB: List_ Conversations . 457
VERB: List_Distributions_Being_Received 458
VERB: List_Dlstributions_Belng_Sent . 458
VERB: List_DSU_Data . 459
VERB: List_Queue_Entries· . 460
VERB: List_Queues_Containing_Distrlbution 461
VERB: Modlfy_DSU_Data . 462
VERB: Purge_Queue_Entry . 463
VERB: Release_Distribution_Copy . 463
VERB: Remove_DSU_Data . 464
VERB: Reroute_Distribution_Copies . 464
VERB: Reset_MU_ID_Registry . 465
VERB: Start_ Connection . 465
VERB: Terminate_Connection . 466
VERB: Terminate_Conversation . 466

Server Verbs . 467
VERB: Assign_Read_Access : 467

XIV SNA/Distribution Services Reference

VERB: Backout_Server_Object
VERB: lnitiate_Read
VERB: lnitiate_Write
VERB: Query_Last_Byte_Received
VERB: Read
VERB: Release_Read_Access
VERB: Terminate_Read
VERB: Terminate_Restartability
VERB: Terminate_Write
VERB: Write .

Subtables
SUBTABLE: Agent_ List_ Entry
SUBTABLE: Connection_Definitions_Entry
SUBTABLE: Date
SUBTABLE: Destination
SUBTABLE: Directory _Entry
SUBTABLE: Distribution_ID
SUBTABLE: DSU_Definition_Entry
SUBTABLE: lntervention_List_Entry
SUBTABLE: MU_ID_Registry_Entry
SUBTABLE: Next-DSU_ Queue_Definitions_Entry
SUBTABLE: Queue_ID
SUBTABLE: Report_Service_Parms
SUBTABLE: Reported-On_Destination
SUBTABLE: Routing_Table_Entry
SUBTABLE: Server _List_Entry
SUBTABLE: Service_Parms
SUBTABLE: SNA_Condition_Report
SUBTABLE: Time .

Parameter descriptions .

Appendix G. Encodings
Introduction
Structure Classifications .

Length-bounded Structures
Atomic Structures
Parent and Child Structures .
Length-Bounded Parent Structures .
Delimited Parent Structures
Implied Parent Structures .
Segmented Structures

Properties of Parent Structures
Order
Unrecognized Children
Number of Children

Header Description Table .
Structure Name
Structure Reference (Struct Ref)
Structure Class (Struct Class)
ID/T
Length
Occurrences .

468
469
470
471
471
472
472
473
473
474
474
474
475
476
476
477
478
479
479
480
481
482
482
483
484
485
485
486
487
487

555
555
555
555
555
555
556
556
556
556
556
556
557
557
557
557
557
557
558
558
558

Contents XV

Children . • . 558
Structure Description . 559

Header Description Tables for FS2 Message Units :-. 560
DISTRIBUTION TRANSPORT MESSAGE UNIT (DTMU) 560
DISTRIBUTION REPORT MESSAGE UNIT (DRMU) 562
DISTRIBUTION CONTINUATION MESSAGE UNIT (DCMU) 563
SNA CONDITION REPORT . 564
SENDER EXCEPTION MESSAGE UNIT (SEMU) : . 565
RECEIVER EXCEPTION MESSAGE UNIT (REMU) 565
COMPLETION QUERY MESSAGE UNIT (CQMU) 566
COMPLETION REPORT MESSAGE UNIT (CRMU) 566
PURGE REPORT MESSAGE UNIT (PRMU) 566
RESET REQUEST MESSAGE UNIT (RRMU) 567
RESET ACCEPTED MESSAGE UNIT (RAMU) 567

FS2 Structure Descriptions . 568
Header Description Tables for FS1 Message Units 606

DISTRIBUTION MESSAGE UNIT (DIST _MU) 606
DIST REPORT OPERANDS . 608
SENDER EXCEPTION MESSAGE UNIT (TYPE FS1) 609
RECEIVER EXCEPTION MESSAGE UNIT (TYPE FS1) 609

FS1 Structure Descriptions . 610
Graphic Character Sets 1134 and 930 . 629
Transaction Program and Server Names . 631
Code Points Used by SNA/OS FS2 . 632
Code Points Used by SNA/OS FS1 . 633
Terminology Mappings . 635

Glossary . 639

Index . 645

XVI SNA/Oistrlbution Services Reference

Figures

1. SNA/Distribution Services Network 2
2. A OS Network Showing Agents . 4
3. User's View of the Distribution Service . 6
4. Structure of the Distribution Transport Message Unit 8
5. Environment of the DSU . 10
6. Sample Network #1 . 13
7. Directories and Routing Tables for Sample Network #1 15
8. Single-Destination Distribution . 16
9. Multiple-Destination Distribution with Origin Fan-out 17

10. Multiple-Destination Distribution with Destination Fan-out 18
11. Sample Network #1 Showing Underlying Path Control Network 19
12. Directories and Routing Tables for Sample Network #2 20
13. Single-Destination Distribution Through an Intermediate DSU 21
14. Multiple-Destination Distribution with Intermediate Fan-out 22
15. Sample Network #3 Showing Different Routes for Different Priorities . 27
16. The Paris DSU's Directory and Routing Table for Sample Network #3 28
17. The Paris Section of Sample Network #3 Showing Two Queues for One

Connection . 30
18. The Paris DSU's Routing Table with Two Queues for One Connection 31
19. OS Sublayering Diagram--lntermediate Routing 34
20. Directories Illustrating Temporary Redirection 35
21. OS Sublayering Diagram--Redirecting . 36
22. Sample Network #4--Directories with Default Entries 37
23. Routing Table with Default Entries . 39
24. Simple Agent-Server-DSU Interaction . 42
25. OS's Use of Servers--General Model . 44
26. The General Server at an Intermediate DSU 45
27. Flow of Agent and Server Objects . 50
28. Multiple Instances of DS_Send and DS_Receive 53
29. Distribution Report Message Unit Structure 67
30. Parallel Session Usage Between Two DSUs 71
31. Components of the OS Distribution Transport Sublayer 72
32. The Three-Step Flow for High-Integrity Distributions 76
33. Protocol for Transmitting High-Integrity Distributions 78
34. Protocol for Transmitting Basic-Integrity Distributions 79
35. Use of the Terminate_Conversation Flag-One DMU Sent per

Conversation . 80
36. The MU_ID Registry at DS_Recelve for a Multiple-session Connection 87
37. Example--Mid-MU Restart . 100
38. Structure of a DSU . 108
39. Processing at the Origin of a Distribution with Local Destinations . . 111
40. Processing at the Origin of a Distribution with Remote Destinations 112
41. Processing a Received Distribution at the Destination 114
42. Processing a Received Distribution with a Routing Exception 116
43. Accessing a Logged Exception . 118
44. DS_Router_Director FSM Hierarchy . 123
45. OS_Send Logical Structure . 153
46. DS_Receive Logical Structure . 231
47. DS_Send FSM Hierarchy . 287

Figures XVII

48. Classification of NOT-OK Return Codes by
FSM_SEND_CONVERSATION_MGR. 302

49. Ds_Receive FSM Hierarchy . 312
50. Classification of NOT-OK Return Codes by

FSM_RCV_CONVERSATION_MGR . 330
51. Operations FSM Hierarchy . 341
52. Scheduler Manager FSM Hierarchy . 350
53. Syntax of an FSM State-Transition Matrix and Output Codes 364
54. Base and Option Set Diagram . 370
55. Effect of PB and Rote Choices on Specialization Potential 380
56. Summary of Detailed Actions of a Bilingual DSU 388
57. FS2 to FS1 Mapping for Transport MUs 389
58. FS1 to FS2 OS Report Mapping . 392
59. Groupings of OS FS1 Condition Codes 394
60. FS2 DTMU to FS1 Dist_MU type Report (DIA Report) Mapping 395
61. Coexistence Mapping of FS1 DIA Report to DTMU Server Object 397
62. Null RGN Handling Example-Network, DSUs, and Users 398
63. Null RGN Handling Example-Data Structures 400
64. Null RGN Handling Example-Distribution Flow 401

XVIII SNA/Oistribution Services Reference

Tables

1.

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

Portion of the Distribution Affected by a Reportable Condition and the
Detecting TP
SNA-Registered Report Codes for OS and SNACR Contents
FS2 SNA Report Code to FS1 Condition Code Mappings
FS1 Condition Code to FS2 SNA Report Code Mappings
Exception Processing When Conditions Are Detected by DS_Send
Exception Processing When Conditions Are Detected by DS_RECEIVE.
Exception Processing While Performing Routing and Directing
FS1 Exception Processing When Conditions are Detected by DS_Send
FS1 Exception Processing When Conditions Are uetected by
OS Receive
Obtain_Local_Server_Report
Query _Distribution_Sending
Receive_Distribution
Receive_Distribution_Report
Receiving_Sequence_Completed
Send Distribution
Sending_Sequence_Completed
Add_DSU_Data
Get_Distribution_lnfo
Get_Distribution_Log_Entry
Get_Exception_Log_Entry
Hold_Distribution_Copy
List_Adjacent_DSUs
List_ Connections .
List_Control_MU_Queue
List Conversations
List_Distributions_Being_Received
List_Distributions_Being_Sent
List_DSU_Data
List_ Queue_Entries
List_ Queues_ Containing_Distribution
Modify_DSU_Data
Purge_Queue_Entry
Release_Distribution_Copy
Remove_DSU_Data
Reroute_Distribution_Copies
Reset_MU_ID_Registry
Start_Connection
Terminate Connection .
Terminate Conversation
Assign_Read_Access
Backout_Server_Object
Initiate _Read
lnitiate_Write . :
Query_Last_Byte.:._Received
Read
Release_Read_Access
Terminate_Read

408
409
414
416
417
421
427
431

434
441
442
444
446
448
449
450
451
452
453
454
454
455
456
457
457
458
458
459
460
461
462
463
463
464
464
465
465
466
466
467
468
469
470
471
471
472
472

Tables xix

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.

Terminate_Restartability
Terminate_Write
Write
Agent_List_Entry
Connection_Definitions_Entry
Date
Destination .
Directory_Entry
Distribution_ID
DSU_Definition_Entry
lntervention_List_Entry
MU_ID_Registry_Entry
Next-DSU_Queue_Definitions_Entry
Queue_ID
Report_Service_Parms
Reported-On_Destination
Routing_Table_Entry
Server _List_Entry
Service_Parms
SNA_Condition_Report
Time
Distribution Transport Message Unit
Distribution Report Message Unit
Distribution Continuation Message Unit
SNA Condition Report .
Sender Exception Message Unit
Receiver Exception Message Unit
Completion Query Message Unit
Completion Report Message Unit .
Purge Report Message Unit .
Reset Request Message Unit .
Reset Accepted Message Unit
Distribution Message Unit (DIST _MU)
Distribution Report Operands
Sender Exception Message Unit (type FS1)
Receiver Exception Message Unit (type FS1)
Graphic Character Sets 1134 and 930
Terminology Mappings

XX SNA/Distribution Services Reference

473
473
474
474
475
476
476
477
478
479
479
480
481
482
482
483
484
485
485
486
487
560
562
563
564
565
565
566
566
566
567
567
606
608
609
609
629
635

Chapter 1.

Introduction

Concepts and Facilities

SNA/Oistribution Services (SNA/OS, or simply OS) provides a general-purpose,
connectionless communications service to applications that use it. A
connectionless service is one in which communication is performed without the
establishment of a direct connection between (or among) the communicating
parties. Such a service is also commonly known as a messaging service. In
contrast, a connection-oriented service is one that does provide a direct con
nection between the communicating parties. OS is connectionless at the trans
action services layer of SNA; from the OS perspective, an SNA session (or more
precisely, an LU 6.2 conversation) between two application programs is an
example of a direct connection between those programs.

OS allows application programs to communicate without requiring that the
origin and destination of the communications both be active simultaneously.
The architecture allows the nodes at which the origin and destination applica
tion programs reside (not those application programs themselves) to communi
cate via direct sessions. Alternatively, those nodes may communicate via
intermediate nodes that provide a store-and-forward function. Traffic is queued,
if necessary, before being sent from one node to the next.

The connectionless nature of the service does not necessarily imply long delays
in completing the processing of requests. It does imply that the communicating
application programs do not interact and therefore that responsibility for the
unit of work cannot be shared but must be shifted. The originating application
program transfers responsibility for a request to the distribution service, which
subsequently tra!'lsfers the request to the destination application program.
Once the distribution service has accepted the request, it is independently
responsible for carrying it out, perhaps within milliseconds, perhaps not for
hours.

The distribution service (Figure 1 on page 2) consists of a network of nodes
known as distribution service units (OSUs). This network may be thought of ini
tially as occupying a geographic area of no particular shape. The entities that
use the distribution service are outside the boundary of that area. The service
accepts requests from, and makes deliveries to, those entities across that
boundary.

The unit of work performed by the service is termed a distribution. A distrib
ution begins at one OSU and may spread out to many. The work performed on
a 'distribution includes the acceptance of the request at the origin, the gener
ation and movement of copies of the distributed material across the network,
and the delivery of those copies to the specified destinations. Various levels of
service may be requested for distributions: for example, higher or lower priori
ties.

Chapter 1. Concepts and Facilities 1

SNA/DS utilizes and complements the services provided by the lower layers of
SNA. Distribution service units communicate with one another via LU 6.2 basic
conversations. Users of OS perceive the distribution service as just part of the
overall SNA services.

DSU

DSU
osu

DSU

Figure 1. SNA/Distrlbution Services Network

osu

Dfstrfbutfon Services
Network

osu

The Interface to the Distribution Service

Agents

Agent Requests

OS performs services in response to requests issued by application transaction
programs. These application transaction programs are known as agents.
Agents exist outside the boundary of the OS network (Figure 2 on page 4), and
provide users and/or service functions with access to OS services. Agents may
send distributions, receive distributions, or issue operations commands on
behalf of their users. There is a many-to-many relationship between users and
agents; that Is, an agent is typically capable of acting on behalf of a variety of
users, and users typically make use of a variety of agents.

The originating agent requests that OS perform a distribution. The request
specifies the data object (or objects) that is to be distributed, and specifies the
name of the agent that is to be invoked at the destination(s) to process the dis
tribution.

The request also specifies one or more destinations, which may be either users
or OSUs or a mixture of both. (Similarly, a user (or a DSU) could receive dis
tributions originated on behalf of other users or on behalf of DSUs.) An origi
nator would specify a user as a destination to send information to that
particular user. The originator need not know the locations of users; OS deter
mines the location of each destination user specified. The originator would
specify a DSU as a destination in order to send information to a particular
location in the network, perhaps to a service function (not a user) at that
location.

2 SNA/Distribution Services Reference

If the originator supplies a user name as a destination, the destination is
referred to as a user destination. If the originator supplies a OSU name as a
destination, the destination is referred to as a node destination.

Small objects to be distributed may be imbedded directly in the originator's
request. Larger objects are typically not passed directly to OS by the agent, but
are referred to by name or location so that OS can access them when needed.

Several other parameters are included in the request, some required, some
optional. This chapter introduces certain key parameters. For a complete
description, refer to Appendix F.

The Agent Protocol Boundary

Agent Names

The interfaces across which OS interacts with non-OS entities are called pro
tocol boundaries (PBs). The particular interface across which OS interacts with
agents and operators is called the agent protocol boundary. Other protocol
boundaries defined by OS are the server protocol boundary and the queue pro
tocol boundary. In addition, OS communicates with LU 6.2 via the LU 6.2 basic
conversation protocol boundary.

A protocol boundary defines the functions provided by and expected by the
components on either side of that boundary. It does not necessarily define the
precise syntax of requests issued across it. For more information on the pro
tocol boundaries defined by OS, see Appendix F. For more information on the
LU 6.2 basic conversation protocol boundary, see the Transaction Programmer's
Reference Manual for LU Type 6.2.

The information contained in requests made by agents across the agent pro
tocol boundary is formally defined in OS by several protocol boundary verbs.
The two basic verbs are:

1. Send_Oistribution. This verb is issued by an agent to request that a distrib
ution be performed. Its parameters include the destination users or DSUs
and the name of the agent to be invoked at the destination to receive the
distribution.

2. Receive_Oistribution. This verb is issued by an agent that is activated at
the destination to accept delivery of a distribution.

In addition, several other verbs provide variations of the basic sending and
receiving capabilities. Refer to "Agent Protocol Boundary Verbs" on page 55
and to Appendix F for further information about agent protocol boundary verbs.

Agents have names. At any given location in the network, an agent name
uniquely identifies a specific application program. (There may, however, be
multiple instances of a particular agent at a particular location.) Typically, a
given agent name is known at multiple locations, and there ar.e many instances
of that particular agent throughout the network. Agents may be either user
written or architecturally defined.

A requesting agent must specify the name of the destination agent that will be
activated to receive the distribution on behalf of the destination users or OSUs.

Chapter 1. Concepts and Facilities 3

There is only one destination agent per request, no matter how many destina
tions are specified.

The Transfer of Responslblllty
When the originating agent requests that OS perform a distribution, the agent
transfers responsibility for the distribution to OS. Once the distribution service
has accepted responsibility for a request, It performs the distribution Independ
ently; the originating agent Is no longer Involved.

While OS has responsibility for the distribution, exceptions may occur. If the
originating agent has so specified, exception reports will be generated and sent
to a specified user or OSU. When the report arrives, an agent will be invoked
to handle It; this agent may be a different Instance of the originating agent or a
completely different agent. Reporting is thus performed asynchronously. This
contrasts with synchronous exchanges that occur between transaction pro
grams that communicate entirely within one conversation.

.••.••••••..•• . Agent ••. Protocol ..• Boundary •.•..•... I Agyent 11 Agxent J

osu

DSU
DSU

DSU

Figure 2. A OS Network Showing Agents

Distribution Service Users

osu

Distribution Services
Network

osu

Users of OS are defined as addressable entities on whose behalf agents can
originate or accept delivery of distributions. Users may include individuals,
departments, application programs, and data bases. Users of OS may include
individuals or application programs with responsibilities for system and network
operations or for Installation and maintenance of network definition information.

4 SNA/Oistrlbutlon Services Reference

User Roles

User Names

Users are referred to as originating users or originators when they request (via
their agents) that a distribution be performed, and as destination users when
distributions are delivered to them. Most users are capable of either role;
however, it is possible for a user such as a data base to serve only as a desti
nation.

DS users have names that are unique within the DS network. A user name
consists of two parts, each of which can be up to eight bytes long. The two
parts are known as the distribution_group_name (DGN) and the
distribution_element_name (DEN). Each element name is unique within its
group, and each group name is unique within the network.

Users, or their agents, must know the names of all the other distribution service
users to whom they wish to send distributions. To facilitate this, user names
could be publicized throughout an organization, exchanged over the phone, and
Included on letterheads.

An organization assigns group names based on whatever structure is most
natural for it. Divisions or departments might be convenient group names; last
names might be convenient element names. For example, Harry Chase in the
Operations department could be OPS.CHASE, and Ellen Piaf in the Marketing
department could be MKT.PIAF.

Users, however, are not necessarily people. For example, there might be a sta
tistics data base in manufacturing to which various plants routinely ship data. It
could have MFG.DBASE as Its user name. Other user names might identify
departments (BIGBANK.LOANS), applications (ACCTG.PAYROLL), or titles of positions
(DEPTX.MGR).

Users in the same group (i.e., with the same DGN) need not be located near
one another In the network. Furthermore, members of several groups might
reside at the same location In the network. For example, at Paris, there might
be users in the loans (LOANS.PIERRE), payroll (PAYROLL.PORTER), and personnel
(PER.PEDRO) departments. Other users in these same departments could be
located throughout the network; for example, PAYROLL.CHARLES might be located
in Chicago, and PAYROLL.NORTON might be located in New York.

OS user names are location-independent. When installations select user names
with no suggestion of location, users can be moved from one computer system
to another without needing to change their names. Since OS does not tie user
names to particular locations, users with location-oriented names could also be
moved without changing their names, but it would be confusing to continue to
refer to someone as CHICAGO.SMITH after he had moved to Atlanta.

Chapter 1. Concepts and Facilities 5

User's View of the Distribution Service

Distributions

The user's view of the distribution service is shown in Figure 3. The user
names are all unique, and are scattered around the periphery of the network
with no regard to location. The agent names are not unique; numerous agent
instances exist for each agent name.

When users request distributions with no server objects (a concept discussed
later), user names and agent names are the only names of which users need
be aware. When server objects are involved, the users (or their agents) must
be aware of certain other additional names. These are discussed in "Servers
and Objects" on page 40.

r;;;;i r;;;;i ~ [IT] ~ r;;;;i r;;;;i ~ r;;;;i
r;;;;i t:J iITJ ~ r;;;;i r;;;;i r;;;;i ~ l':1J l:'J lB.3J
~ ~ LrJ~LrJ Ea~ Agent Agent

:··············Agent ••• Protocol ... Boundary : Y X

1··:"j l":"I Ea . DSU • ····;;;· ••••• ··:

DSU
osu

osu

Figure 3. User's View of the Distribution Service

DSU

Dfstrfbutfon Servfces
Network

A distribution is the unit of work performed by OS. The distribution starts as a
request made by the originating agent, and continues through when the distrib
uted material is delivered. If the agent requests notification on the status of the
distribution, OS generates distribution reports to provide such notification. Dis
tribution reports are considered part of the same unit of work (i.e., the distrib
ution) as the agent's request.

Agents may make distribution requests on behalf of eith~r users or the DSUs at
which the agents reside, and may specify destinations that are either users or
OSUs. When multiple destinations are specified, OS provides, or arranges
access to, a copy of the distributed material in a machine-readable form (on
disk storage, for example) for each of the named destinations.

6 SNA/Distribution Services Reference

Distribution Copies
From the perspective of the originator, a distribution includes the delivery of a
copy to every destination on the destination list. From the perspective of a par
ticular destination, the distribution consists of one delivery. Different points in
the OS network may deal with different subsets of the original list of destina
tions. In summary, therefore, a distribution refers to work being done upon
one, some, or all of its copies, depending on the perspective.

Types of Information In a Distribution
A distribution contains essentially two types of information: the "application"
information that the agent has submitted to OS for distribution, and the OS
control information that flows along with and encloses the application informa
tion. The distinction between these two is analogous to the distinction between
the pages of a letter and the envelope that encloses them. The OS control
information is analogous to the name, address, and handling instructions
written on the envelope. When the distribution flows across the network, the
application information is clearly separated from the control information; that is,
it is contained inside the "envelope."

Distribution Transport Message Units
OS uses Distribution Transport Message Units (DTMUs) to transport the origina
tor's information to the destinations named in the distribution request. Whereas
a distribution is thought of as flowing through a network, possibly through
several DSUs, a DTMU is thought of as existing only between adjacent DSUs.
That is, the OTMU is "born" when it is encoded at a particular DSU; it is then
transmitted to an adjacent OSU, and "dies" when it is decoded by that DSU and
converted to an internal format {such as a data structure).

The structure of a DTMU is shown in Figure 4 on page 8. The DTMU is intro
duced by a prefix and concluded by a suffix. The OS control information for the
distribution is contained in the command; the names of the users or DSUs for
which this particular copy of the distribution is destined are encoded in the des
tination list.

The information submitted for distribution by the originator is contained in the
agent and/or server objects. The agent object is intended for small amounts of
data that can be stored by OS and passed directly to the destination agent.
Larger amounts of data, or data that requires a particular kind of handling
{encryption, for example, or specialized parsing) usually flow in the server
object. Agent and server objects will be discussed further under the section
"Servers and Objects" on page 40.

A detailed description of the encoding for OS message units is given in
Appendix G.

The layers of SNA below OS may divide OS message units (MUs) into smaller
pieces or assemble several small OS MUs into a single large piece, but OS is
unaware of such manipulations. No direct relationship exists between seg
menting performed by OS and the techniques used by lower layers of SNA.

Chapter 1. Concepts and Facilities 7

.--~--.~~~~--.-~~~~~---.-~~~,.-~~~~1 ;·~--.~~~

Server I I I Sufff x I
Object I I

Pref f x C011111and Destinatfon
List

Agent
Object

~~~~~~~~~~~~~~~~~-'--~~~-/ /~~__.....~~~ 

Figure 4. Structure of the Distribution Transport Message Unit 

Distribution Report Message Units 
As part of the distribution request, the originator may ask that OS provide feed
back on the status of the distribution. For example, the originator might wish to 
be informed if OS is unable to deliver the distribution. OS sends such feedback 
information in distribution reports, which flow through the network in Distrib
ution Report Message Units (DRMUs). The structure of DRMUs differs from that 
of DTMUs. OS reporting and DRMUs are discussed in the section "Distribution 
Reporting" on page 66. 

The term distribution message unit (OMU) is sometimes used to refer to either a 
OTMU or a ORMU. 

The Distribution Identification 

DS Format Sets 

Each distribution in the OS network Is uniquely identified by a combination of 
fields carried in the OTMU. These fields are known collectively as the distrib
ution identification (dist_ID). The dist_ID is composed of the name of the origi
nating agent, the name of the DSU at which the distribution was originated, the 
name of the user, if any, on whose behalf the distribution request was made, 
the date of the distribution, and a sequence number. 

Sequence number counters are maintained for each user-agent combination; 
that is, a different sequence number counter is kept for each combination of 
local user and local agent name. An additional counter is kept for each local 
agent that may originate distributions on behalf of the OSU itself (with no origin 
user Involved). 

Previous implementations of OS have used a different set of encoding rules for 
distribution message units. The earlier encoding for DMUs is referred to as OS 
Format Set 1; the current set of encodings is referred to as OS Format Set 2. 
Both sets of encodings are documented in Appendix G. The rules that allow 
these two format sets to coexist are documented in Appendix 0. 

Distribution Service Unit (DSU) 
A distribution service unit (DSU) is the collection of transaction programs and 
data structures that provide the distribution service at any given location in a 
OS network. These transaction programs are distinct from application trans
action programs such as those that issue requests to OS. The OS transaction 
programs are examples of SNA service transaction programs. 

8 SNA/Distributlon Services Reference 



DSU Roles 

DSU Names 

OSUs have roles that vary with each distribution they service. The OSU at 
which a distribution request originates is the origin DSU for that distribution. 
The same OSU would have the role of destination DSU for a distribution sent to 
users located at that OSU. Alternatively, the OSU may perform a purely inter
mediate role. In this case, distributions are received and stored at the interme
diate DSU, then forwarded to other OSUs. 

A OSU may perform multiple roles for a distribution. For example, a user at a 
OSU might send a distribution to another user at the same OSU. The OSU, in 
that case, would be both the origin and the destination of that distribution. 

OSU names consist of two parts, each of which can be up to eight bytes long. 
The two parts are known as the routing group name (RGN) and the routing 
element name (REN). Each element name is unique within its group, and each 
group name is unique within the OS network. Typically, the names will be 
assigned to be meaningful to systems programmers and operations people, not 
to the user population. A OSU includes its unique OSU name in all distributions 
it originates. 

The DSU/User Relationship 
Every OS user attaches to the OS network at a OSU. Typically, a OSU has 
several users, although it is possible for OSUs to have no users. 

The OSU is not aware of anything above the protocol boundary it has with appli
cation transaction programs other than the names of its users, agents, and 
certain control information used to deliver distributions to them. The users 
themselves may be physically remote from the processor containing their OSU, 
but as far as OS is concerned they are located at that OSU. 

Environment of the DSU 
Figure 5 on page 10 illustrates the various entities with which a OSU interacts. 
Pictured above the OSU are those entities that issue commands to it. The 
agent is an application program that requests OS services. The operator issues 
commands to perform system or network maintenance functions. 

OS interacts with servers in ortler to access large data objects for distribution. 
The server provides storage of objects that the OSU receives in distributions; it 
retrieves objects to be sent in outbound distributions. 

OSUs communicate with one another via LU 6.2 basic conversations; they rely 
on the local operating system for facilities such as queue handling. 

Subsequent sections of this chapter will explore the OSU's relationship to each 
of these components. A detailed description of the various protocol boundaries 
is given in Appendix F. OS's usage of LU 6.2 basic conversation verbs is docu
mented in Chapter 2. 

Chapter 1. Concepts and Facilities 9 



Server S 
E 
R 
v 
E 
R. 

AGENT 

Send Distribution 
Recelve_Oistribution 

osu 

+-+--+- Read, Write, etc. 
p 
B 

~ ••• , q,,,,, '''· 

t QUEUE PB---+-----

Operating 
System, 
Queue Manager 

Figure 5. Environment of the OSU 

DSU Directories and Routing Tables 

A DSU's Directory 

OPERATOR 

Modify_System_ 
Data, etc. 

AGENT PB 

Send Data, etc. 

LU 6.2 BCPB 

LU 6.2 (APPC) 
Lower Layers 

PB • Protocol 
Boundary 

The DSU directory includes certain information for each OS user. (Directories 
shared with other functions might contain other information of which DS would 
be unaware). The directory entries for local users contain information used for 
DS delivery to those users (for example, a local queue name). Entries for users 
at other DSUs usually contain the name of the DSU at which they are located. 
Exceptions to this are discussed in "Redirection" on page 35. 

The number of users in the network can be much larger than can be conven
iently contained in the directory of a particular DSU. See "Default Directing" on 
page 36 to learn how distributions can be directed in cases where the origin 
DSU's directory does not contain entries for the destination users. 

Users need not be aware of the names of DSUs at which other users reside. 
Users specify only the user names to which a particular distribution is to be 
sent; DS uses the directory to map those user names to DSU names. 

When organizations set up their user names appropriately (that is, with no 
location or DSU implications), users can be moved from one DSU to another 
without having to change their names. For example, in large networks, groups 
of users are often shifted from one computer system to another because of 
office space rearrangements, or in order to balance loads on computing equip-

10 SNA/Distribution Services Reference 



ment. The impact of such changes is confined to the directories. The DSU 
name for each affected user is changed, but the user name itself is not 
changed. This means that user names can be completely insulated from the 
DSU name change and can be published or otherwise disseminated throughout 
an organization without concern for obsolescence due to system changes. 

User names themselves may change from time to time. However, if they are 
appropriately assigned, those changes would be the ones of which other users 
should normally be aware. For example, if a user's department were part of a 
user name and the user changed departments, then the user's name would 
have to be changed. Users throughout the network would have to be notified, 
but it is likely that those users would need to know about the job change 
anyway (and change their distribution requests accordingly). 

Implementations may allow directory entries to be subdivided by agent name. 
That is, instead of one entry per user, the directory might have several entries 
per user, each of which identifies a different combination of user name and 
agent name. At a destination DSU, such entries might allow distributions for a 
particular user to be delivered to different local delivery queues, based on the 
destination agent name. 

In addition to the entries for users, directories may contain an entry for the 
omitted user name. During the directing process, any destination for which no 
user name is specified (i.e., a node destination) would match such an entry. 
Like user name entries, an entry for the omitted user name may be subdivided 
by agent name. 

User Aliases: To DS, user names represent only entries in the directory. 
Installations can assign user names to entities in any manner they wish. Ali
asing is an interesting illustration of how such assignments could be made. 

An individual can be given more than one user name. DS cannot tell when this 
has been done. It "sees" different users because each name has its own inde
pendent entry in the directory. When the two entries have the same local 
delivery information, distributions for either name are delivered to the same 
individual. For example, DEPT72.MGR and EMPN0.x12345 could both be defined in 
the directories so that local delivery was made to Harry Jones. Other users 
interested in the work of department 72 would probably use DEPT72.MGR. Users 
in Personnel or Payroll would probably use EMPNO.x12345. 

If Harry Jones were to be transferred to another job at another location, the 
EMPNO.X12345 directory entries would be updated with his new DSU name. The 
DEPT72.MGR name, on the other hand, would probably be reassigned to the 
person who replaced him. 

User Names vs. Nicknames: DS user names are not to be confused with nick
names. For reasons of convenience, or perhaps some system limitation, it is 
often desirable to refer to users by other, usually shorter, names. For example, 
an originating user might not wish, or might not be able, to logon to his system 
with a 16-byte name. Also, he might not wish to enter 16-byte names for the 
destination users, particularly those to whom he sends things frequently. In 
such cases, nickname files can be used. Such files are not part of DS. The 

Chapter 1. Concepts and Facilities 11 



nicknames would not flow in OS MUs, except perhaps as part of the user's data. 
The nicknames would be unique only within a DSU or perhaps only for one 
user. 

Nickname flies are not defined by the OS architecture, but they would need to 
contain the full network-unique OS user name for each nickname. The origin 
agent might access the nickname file to obtain the OS user name that would be 
included in the distribution request. OS, however, would be unaware that such 
flies existed. The complete OS user name flows over the network and is used 
in exception reporting. The users are aware, not only of local nicknames, but 
also of complete user names, both their own and those of others to whom they 
wish to send distributions. 

The overall responsibility for the creation and maintenance of the directories 
would usually be the system administrator's. In a large organization, this could 
be a major task. The two-part user name and default directing (see "Default 
Directing" on page 36) can be used to allocate this responsibility by group 
name. For example, if the DGNs were departments, each department could be 
made responsible for Its own set of DENs. 

A DSU's Routing Table 
In the simplest case, the routing table consists of one entry for each destination 
OSU. Each entry Identifies the connection to be used to send distributions to 
that particular destination. The routing table and the directory serve distinctly 
different purposes. The directory indicates where a user is located; the routing 
table indicates how to get there-that is, which direction to go. 

Refer to "Distribution Service Parameters" on page 23 and "Default Routing" 
on page 38 for a more complete description of the routing table entries. 

The creation and maintenance of routing tables is the responsibility of the 
system administrator. Like directory maintenance, this is a significant task. 
Although a typical network could have 10 to 100 times more users than DSUs, 
the number of routing tables in which each OSU name appeared would be 
much greater than the number of directories in which the typical user name 
appeared. Default routing allows the number of entries in the routing tables to 
be considerably reduced. With default routing, a distribution may be routed to a 
larger DSU which would have a more complete routing table. The use of 
default routing Is described in "Default Routing" on page 38. 

Simple Networks 
A OS network Is a collection of two or more DSUs and the connections between 
them. A OS connection Is the set of actual or potential LU 6.2 conversations, 
using a particular LU 6.2 mode name, between two DSUs. OS connections 
share the underlying path control network with sessions belonging to other 
applications. A OS connection may consist of one or more than one LU 6.2 con
versation. 

12 SNA/Dlstribution Services Reference 



Fully-Connected OS Networks 
A fully-connected OS network is one in which every OSU has a connection to 
every other OSU. Networks can be set up this way if the underlying layers of 
the SNA network provide total interconnectability. We will use a very simple 
fully-connected network (Sample Network #1, Figure 6) to illustrate the con
cepts of simple directing and routing. 

There are four users in sample network #1, located in three cities. Their names 
are listed by department under their cities. The boundary of the OS network is 
shown intersecting three boxes, one in each city. The boxes represent 
processors; the portion of each processor that is inside the OS boundary 
includes a OSU. Each OSU is labeled with its OSU name. 

The small boxes inside each DSU represent a user directory and a routing 
table. The portion of the OS boundary that Intersects each processor is the 
agent protocol boundary in that processor. The lines connecting the DSUs are 
OS connections, and are identified in Figure 6 by the pair of names of the two 
OSUs they connect. 

o CHICAGO 
Manufacturing Dept. 

Child 
Operatfons Dept. 

Chase 

IAgentj 

Agent PB 

juser Dfr.1 

'Rtg Table' 

US.CHISYS2 

(US.CHISYS2-US.NYCSVS1) 

o NEW YORK 
Marketing Dept. 

Neff 

I Agent I 
Agent PB 

juser Dir.j 

jRtg Table] 

US.NVCSVSl 

'---~~(US.NVCSVSl-EUR.PARSVSl) 

SNA Distribution Services 
Sample Network #1 

o PARIS 
Market fng Dept. 

Piaf 

I Agent I 
Agent PB 

luser Dfr.1 

IRtg Tablel 

EUR.PARSVSl 

~---------(US.CHISVS2-EUR. PARSYSl)---~ 

Figure 6. Sample Network #1 

Slmple Directing In Fully-Connected Networks 
The directing function is the process of associating a aestination location name 
with a destination user name. In the mail analogy, it would be the process of 
adding the address to the addressee's name on the envelope. In OS, it is the 
process of associating either a OSU name or local delivery information with 
every user name in the distribution. 

Chapter 1. Concepts and Facilities 13 



The simplest kind of directing occurs when every DSU has a complete directory 
of all users. The following discussion presumes that. In practice, such a 
simple situation would probably never occur. The more sophisticated kinds of 
directing are described in "Redirection" on page 35 and "Default Directing" on 
page 36. 

At the origin, the directory is used to obtain the corresponding destination DSU 
name for each destination user name in the distribution. Both the user names 
and the corresponding DSU names are then included in the control information 
that flows in the distribution. Directing is bypassed at the origin for node desti
nations. 

At the destination, the directory is used to obtain the information needed to 
deliver the distribution. This information is used locally only; therefore, it is not 
defined by the OS architecture. Typically, it would consist of a queue identifier; 
different queues would be used to deliver distributions to different users. 
Directing is performed at the destination DSU for both user and node destina
tions. 

Figure 7 on page 15 illustrates the directories and routing tables for sample 
network #1. Recall that directories may contain an entry for the omitted user 
name; note the entry at us.NYCSYS1 for "omitted." The significance of this entry 
is that a distribution with an entry in the destination list specifying us.NYCSYS1 

(no destination user name), when received at New York, would be delivered to 
the local queue svsQ1. 

Simple Routing in Fully-Connected DS Networks 
Routing is the determination of the next route segment on which a distribution 
is to be sent, and the scheduling of or enqueuing for the sending activity. 

The simplest kind of routing occurs when every DSU's routing table contains 
entries for all other DSUs. The following discussion presumes that to be the 
case. More sophisticated routing is described in "Default Routing" on page 38. 

Each entry in the routing table identifies the OS connection over which distrib
utions are to be sent in order to reach a particular destination DSU. In this 
illustration (Figure 7), with only one type of OS traffic, the connections can be 
uniquely identified by the pair of names of the OS Us they connect; however, in 
the routing table of one DSU only the name of the other DSU is required. This 
is contained in the column labeled "Next DSU." There is no particular DS defi
nition of connection identifiers, so implementations may use different identifiers. 

14 SNA/Distribution Services Reference 



CHICAGO NEW YORK PARIS 

USER DIRECTORY USEk DIRECTORY USER DIRECTORY 

Destination Destination Destination Destination Destination Destination 
User Name DSU Name User Name DSU Name User Name DSU Name 

MFG.CHILD local-UserQl MFG.CHILD US.CHISYS2 MFG.CHILD US.CHISYS2 
HKT.NEFF US.NYCSYSl HKT.NEFF local-UserQl MKT.NEFF US.NYCSYSl 
MKT.PIAF EUR. PARSYSl HKT.PIAF EUR.PARSYSl HKT.PIAF local-UserQl 
OPS.CHASE local-UserQ2 OPS.CHASE US.CHISYS2 OPS.CHASE US.CHISYS2 
(omitted) local-SYSQl (omitted) local-SYSQl (omitted) local-SYSQl 

ROUTING TABLE ROUTING TABLE ROUTING TABLE 

Destination Connection Destination Connection Destination Connection 
DSU (Next DSU) DSU (Next DSU) DSU (Next DSU) 

EUR.PARSYSl EUR.PARSYSl EUR.PARSYSl EUR.PARSYSl US.CHISYS2 US.CHISYS2 
US.NYCSYSl US.NYCSYSl US.CHISYS2 US.CHISYS2 US.NYCSYSl US.NYCSYSl 

1us.CHISYS2 1us.NYCSYS1 lEUR.PARSYSl 

Figure 7. Directories and Routing Tables for Sample Network #1 

MU Flows for Typlcal Distributions 
A Single-Destination (Non-Local) Distribution: In Paris, Piaf in Marketing wishes 
to send a message to Chase in Operations. Her agent requests a distribution, 
identifying the originating user as MKT.PIAF, the destination user as OPS.CHASE, 

and the destination agent as agent X. The DSU at Paris consults its directory 
and determines that OPS.CHASE is at US.CHISYS2. The destination US.CHISYS2 is 
then used to determine from the routing table the connection for which the dis
tribution should be enqueued. In Figure 8 on page 16, the box labeled DTMU-A 
represents the DTMU that flows. Only the control information pertinent to this 
discussion is depicted in DTMU-A. 

Chapter 1. Concepts and Facilities 15 



CHICAGO 

Agent PB 

juser Dir.j 

jRtg Table! 

US.CHISVS2 

NEW YORK 

Agent PB 

juser Dir.j 

jRtg Table! 

US.NVCSVSl 

THU-A,---------~ 

----; .. from HKT.PIAF at EUR.PARSVSl ... to 
OPS.CHASE at US.CHISVS2 •• Dest Agent=X 

PARIS 

Agent PB 

juser Dir.j 

jRtg Table! 

EUR. PARSVSl • 

Sample Network #1 • 

Figure 8. Single-Destination Distribution 

A Multi-Destination Distribution Fanned Out at the Origin: In Paris, Piaf 
requests that a message be sent to Chase in operations and Neff in Marketing. 
As In the single-destination example, the DSU at Paris determines the destina
tion OSU names and uses them to determine the routing. In this case, 
however, there are two destination DSUs. The OSU at Paris therefore sends 
two copies of the distribution as shown in Figure 9 on page 17. Notice that the 
control Information in the DTMUs depends on the destination. The process of 
creating additional copies of a distribution is known as "fan-out." 

16 SNA/Distribution Services Reference 



CHICAGO 

Agent X 

Agent PB 

I user Dir. J 

JRtg Table! 

US.CHISYS2 

NEW YORK 

Agent PB 

luser Dir.I 

IRtg Tablel 

US.NYCSYSl 

OTHU-B---------~ 

•• from HKT.PIAF at EUR.PARSYSl •• to 
HKT.NEFF at US.NYCSYSl •. Dest Agent•X 

DTHU-A----------., 
+----i .. from HKT. PIAF at EUR. PARSYSl ... to 

OPS.CHASE at US.CHISYS2 •• Dest Agent•X 

PARIS 

Agent PB 

luser Oir.1 

IRtg Tablel 

EUR.PARSYSl 

Sample Network #1 • 

Figure 9. Multiple-Destination Distribution with Origin Fan-out 

A Distribution Fanned Out at the Destination: In Paris, Piaf requests that a 
message be sent to the DSU at New York, with copies to Child in manufacturing 
and Chase in operations. The Paris DSU consults the directory for the two user 
destinations (MFG.CHILD, OPS.CHASE) and discovers that MFG.CHILD is at the same 
DSU as OPS.CHASE. It therefore sends only one DTMU to us.cH1svs2 and includes 
both user names in it. Refer to Figure 10 on page 18 and notice the contents of 
DTMU-A. 

No directing is performed at the origin for node destinations, since the origi
nator has already supplied the DSU name. Thus for the destination us.Nvcsvs1, 
no directing is necessary. The routing table is consulted to determine the con
nection to use for us.Nvcsvs1. 

Since Child and Chase each have their own queues, the Chicago DSU creates 
an extra copy of the distribution. It places one copy in queue USERQ1 and the 
other in queue USERQ2. In some systems, users might be able to share the 
same copy of the distri~ution and there would be no need for the copying step. 
If Child and Chase happ'ened to share the same queue, OS would make a single 
delivery containing both user names. 

At New York, the distribution copy destined for us.Nvcsvs1 is received. Directing 
is invoked; since there is no user name for this destination, the entry for 
"omitted" is matched. The distribution is placed in queue SYSQ1, the destination 
agent x is started, and the distribution is passed to it. 

Chapter 1. Concepts and Facilities 17 



CHICAGO 

luser Dir., 

jRtg Table' 

US.CHISYS2 

NEW YORK 

Agent PB 

juser Dir. j 

IRtg Table! 

US.NYCSYSl 

DTMU-B:-----------, 
•• from MKT.PIAF at EUR.PARSYSl •• 
•• to US.NYCSYSl •••• Dest Agent•X 

THU-A------------, 
•• from HKT.PIAF at EUR.PARSYSl •• to OPS.CHASE, 
•• MFG.CHILD at US.CHISYS2 ••• Dest Agent•X 

PARIS 

Agent PB 

luser Dfr.j 

IRtg Table' 

EUR.PARSYSl , 

Sample Network #1 • 

Figure 10. Multiple-Destination Distribution with Destination Fan-out 

DS Networks with Intermediate DSUs 
This type of OS network differs from the simple type discussed above in that the 
DSUs are not fully connected. In order for distributions to travel between 
certain DSUs, other DSUs must perform an intermediate role. The use of inter
mediate DSUs to forward distributions provides functional and performance 
advantages. 

The sessions used by OS connections sometimes span multiple path control 
(PC) intermediate routing nodes (IRNs). In these cases, the PCIRNs are often 
geographically close to a node containing a DSU. For example, consider 
sample network #1 in Figure 6 on page 13. The processor in New York that 
contains the DSU is a System/370. Directly attached to that processor Is a com
munication controller, through which the sessions used by the 
(EUR.PARsvs1-us.cH1svs2) connection pass. This is illustrated in Figure 11 on 
page 19. The components of the path control network are depicted by dotted 
lines. The presence of the PCIRNs is transparent to OS; the DSU sees only the 
direct session to its partner DSU. 

18 SNA/Distribution Services Reference 



New York 

Chicago 
I Agent I 

.Path 

IAgentl 

Agent PB 

luserDfr.j 

IRtg Table! 

US.CHISYS2 

Path Control. 
(PC) fn node. 
wfth DSU 

• PC 
IRN 

.Control (US.CHISYS2-US.NYCSYS1) • 
• (PC) 
• Intermediate •••••••••••••••••••••••• 
• Routing Node • 
• (IRN) 

Agent PB 

luser Dfr.j 

IRtg Table! 

US.NYCSYSl 

PC in node • 
with DSU 

(US.NYCSYSl-EUR.PARSYSl) 
(US.CHISYS2-EUR.PARSYS1) 

Paris 

I Agent I 

......... PC 
IRN 

Agent PB 

luser Dir. j 

IRtg Tablel 

EUR.PARSYSl 

PC In node • 
with DSU 

Figure 11. Sample Network #1 Showing Underlying Path Control Network 

In the case of the distribution from Piaf at Paris to Neff at New York and Chase 
at Chicago, two copies of the one distribution travel across the same 
transatlantic link (the dotted connection between the PCIRNs in Figure 11). For 
large distributions, such. duplication is rather wasteful. 

To avoid this inefficiency, large distributions destined for us.cH1svs2 are sent 
first to us.Nvcsvs1, where they are received completely and then forwarded. 
The direct OS connection between EUR.PARsvs1 and us.cH1svs2 in sample 
network #1 is broken into two shorter ones. The two-connection version of the 
network is shown as sample network #2 in Figure 13 on page 21. 

Simple . Directing In Networks with Intermediate DSUs 
Directing in this type of network at the origin and destination DSUs is the same 
as in fully-connected networks. In the simple case, directing is not invoked at 
intermediate DSUs. The routing function is all that is involved at a DSU per
forming a purely intermediate role. An exception to this is described in 
"Redirection" on page 35. 

Chapter 1. Concepts and Facilities 19 



Slmple Routing In Networks with Intermediate DSUs 
In this type of OS network, the structure of the routing tables Is the same as in 
a fully-connected one. That is, each entry identifies the connection over which 
distributions are to be sent in order to reach a particular destination OSU .. The 
difference is that, for a route involving intermediate nodes, the connection iden
tified In the entry does not connect the origin and destination OSUs. For 
example, refer to Figure 12. In Chicago, the entry for EUR.PARsvs1 identifies a 
connection with us.Nvcsvs1; In Paris, the entry for us.cH1svs2 identifies a con
nection with us.Nvcsvs1. The New York routing table remains the same as in 
sample network #1. 

CHICAGO NEW YORK PARIS 

USER DIRECTORY USER DIRECTORY USER DIRECTORY 

DEST USER DEST DSU DEST USER DEST DSU DEST USER OEST DSU 

MFG.CHILD local-UserQl MFG.CHILD US.CHISYS2 MFG.CHILO US.CHISYS2 
MKT.NEFF US.NYCSYSl HKT.NEFF local-UserQl HKT.NEFF US.NVCSYSl 
MKT.PIAF EUR.PARSYSl HKT.PIAF EUR.PARSYSl MKT.PIAF local-UserQl 
OPS.CHASE 1oca1-UserQ2 OPS.CHASE US,CHISYS2 OPS.CHASE US.CHISYS2 
(omitted) local-SYSQl (omitted) local-SYSQl (omitted) local-SYSQl 

ROUTING TABLE ROUTING TABLE ROUTING TABLE 

Destination Connection Destination Connection Destination Connection 
DSU (Next DSU) DSU (Next DSU) DSU (Next DSU) 

EUR. PARSYSl US.NYCSYSl EUR.PARSYSl EUR.PARSYSl US.CHISYS2 US.NVCSYSl 
US.NYCSYSl US.NYCSYSl US.CHISYS2 US.CHISYS2 US.NYCSYSl US.NYCSYSl 

1us.CHISYS2 1us.NYCSYS1 1EUR. PARSYSl 

Figure 12. Directories and Routing Tables for Sample Network #2 

This slight difference in content reflects a significant difference in concept. In 
OS, a route is defined as the sequence of OSUs through which a distribution 
has traveled when it arrives at Its destination OSU. The routing function is per
formed independently at each OSU. At any particular OSU, the routing function 
does not select a route in its entirety (except where there happens to be a 
direct connection). The routing function actually selects a route segment. The 
notion of route segment differs from the notion of connection in that segments 
of more than one route may use the same connection. In sample network #2, 
the connection EUR.PARsvs1-us.Nvcsvs1 is used by segments of two routes, one 
from EUR.PARSYS1 to US.NYCSYS1 and the other from EUR.PARSYS1 to US.CHISYS2. 

Because, in some Implementations, operators could change routing tables as 
distributions move through the network, the route for any particular distribution 
cannot be reliably predicted at its origin OSU. Each distribution .finds its own 
way across the network, one route segment after another. Two distributions 
from the same origin might find different routes to the same destination. 

20 $NA/Distribution Services Reference 



MU Flows for Typical Distributions 
Single Destination Through an Intermediate DSU: Figure 13 shows the two
connection network (sample network #2) with a single-destination distribution 
flowing from Paris to Chicago. The DSU at Paris determines that distributions 
for Chicago should be sent on the connection to New York. When the DSU at 
New York receives the distribution, it examines the destination list and dis
covers that there is no local destination. It then uses its routing table to 
forward the distribution on the connection to Chicago. 

NEW YORK 

CHICAGO Agent PB 

Agent PB 

j User Dir. I 
US.NVCSVSl 

jRtg Tabtej 

PARIS 

Age'lt PB 

juser Dfr. j 

jRtg Tablej 

EUR.PARSYSl 

US.CHISYS2 OTHU-A,.--------------. 
•• from HKT.PIAF at EUR.PARSYSl ••• to 

OPS.CHASE at US.CHISYS2 •• Dest Agent•X 

DTHU-B:-----------. 
•• from HKT.PIAF at EUR.PARSYSl •• to 

OPS.CHASE at US.CHISVS2 ••• Dest Agent•X 
Sample Network #2 

Figure 13. Single-Destination Distribution Through an Intermediate DSU 

Distribution Fanned Out at an Intermediate DSU: In the two-connection network 
(sample network #2), the distribution from Piaf in Paris to the DSU in New York 
and Chase and Child in Chicago is not fanned out by the Paris DSU. When the 
DSU determines that distributions for us.cH1svs2 should be sent to us.Nvcsvs1, it 
sends only one copy over the transatlantic link (see Figure 14 on page 22). In 
New York, the .DSU delivers one copy of the message (for the node destination 
us.Nvcsvs1) to the destination agent x, and forwards another copy to us.cH1svs2. 

Notice how the control information in DTMU-B differs from that in DTMU-A. The 
us.Nvcsvs1 destination information is stripped out when the distribution goes 
through the intermediate DSU. 

Chapter 1. Concepts and Facilities 21 



CHICAGO 

juserDir.j 

jRtg Table! 

NEW YORK 

Agent PB 

juser Dir.j 

IRtg Tablel 

US.NYCSYSl 

PARIS 

Agent PB 

juser Dfr.1 

IRtg Tablel 

EUR. PARSYSl • 

US.CHISYS2 DTMU-A--------------. 
•• from MKT.PIAF at EUR.PARSYSl •• to US.NYCSYSl; 
OPS.CHASE, MFG.CHILD at US.CHISYS2 •• Dest Agent•X 

DTMU-8,-----------~ 

•• from HKT.PIAF at EUR.PARSYSl •• to OPS.CHASE, 
•• MFG.CHILD at US.CHISYS2 ••• Dest Agent•X 

Sample Network #2 • 

Figure 14. Multiple-Destination Distribution with Intermediate Fan-out 

Advantages of Using Intermediate DSUs 
Reduced Connectivity Costs: The number of possible direct connections in a 
network is (n(n-1))12, where n is the number of OSUs. If it is desired that direct 
sessions be used for all OS communication, this is the number of connections 
required. 

OS networks could contain thousands of OSUs. If full interconnection is desired, 
millions of sessions would be required. Each OSU would need to have thou
sands of sessions. Only a small fraction would be active at any given time, but. 
nonetheless, the resources required would be unreasonably large. 

Intermediate OSUs can be used to reduce this cost. If, instead of a fully inter
connected network, all OSUs are connected to just one intermediate OSU, the 
total number of connections is n-1. When n is large, the savings In connection 
resources are dramatic. With 1000 OSUs the number of sessions needed is 
reduced from 499,500 to 999, a factor of 500 (i.e., n/2). In practice, rather than 
one intermediate OSU, a backbone network of 10 or 20 intermediate OSUs 
would be used and more sessions, perhaps another 200, would be needed. 
Even so, the resource savings are dramatic. 

Improved Link Utlllzatlon: It Is expected that some types of OS traffic will travel 
on sessions having lower transmission priority than the sessions that handle 
interactive traffic. Interactive loads fluctuate; the low-priority sessions serving 
OS traffic are expected to use whatever link capacity is available during lulls In 
the interactive loads. 

22 SNA/Distribution Services Reference 



When low-priority OS sessions span multiple links, the lulls in the interactive 
loads on all those links must be concurrent, or nearly so, for significant 
amounts of the OS traffic to flow. If one link spanned by the session is heavily 
utilized, it sets a limit on the throughput of the low-priority session over its 
entire length, and may prevent the low-priority traffic from using otherwise 
available capacity on the other links. Path control intermediate routing nodes 
(PCIRNs) have some buffering capacity, and can usually handle short delays 
caused by bursts of interactive traffic on a link. For longer delays, however, the 
PCIRNs may have to reduce the flow on the low-priority session. 

The throughput between two OSUs may be increased by adding intermediate 
OSUs between them, so that low-priority OS sessions need not span so many 
links. Traffic is then able to flow over a particular session to an intermediate 
OSU while there is a lull on that session, even if the next "hop" to the destina
tion happens to be busy because of interactive traffic. When there is a lull on 
the next "hop," the low-priority traffic can continue on its way. 

In other words, the more links spanned by a low-priority session, the smaller is 
the probability that there will be concurrent lulls on all of them. If any link is 
fully utilized by high-priority sessions, the flow on the low-priority session is 
slowed to a trickle. The use of intermediate OSUs that provide a store-and
forward function may reduce transit times and increase throughput compared to 
direct connections. 

Full-Function DS Networks 

Distribution Service Parameters 
OS is designed to provide a variety of types and levels of service. Originators 
may specify, as parameters on the verb by which they request a distribution, 
the levels of each type of service that the particular distribution requires. The 
values are included in the OS control information that flows through the 
network, and are used to condition the processing of the distribution at each 
OSU through which it flows. Each type of service requested is specified as a 
service parameter. 

Service parameters may be used to map particular types of OS traffic to partic
ular classes of service offered by the lower layers of SNA. They may be used 
to map different types of traffic to different routes through the OS network. At a 
particular OSU, the service parameters may be used to determine how to 
handle a distribution--for example, whether it must be safe-stored on nonvola
tile storage. 

Implementations are allowed to select, according to architecturally defined 
rules, those portions of the OS architecture that they implement. The subsetting 
rules for the architecture are defined in Appendix C. Certain implementation 
choices may result in networks in which the DSUs offer different levels of capa
bility. The distribution service parameters are used to route distributions 
through only those DSUs capable of providing the requested service. 

Chapter 1. Concepts and Facilities 23 



Service Parameters and Service Levels 
OS allows the specification of many different service parameters. Certain 
parameters are defined by the architecture; others may be defined by particular 
implementations. Up to 10 different service parameters may be carried in one 
distribution. 

Each service parameter is specified as a triplet. The triplet consists of 

• the parameter type-architecturally defined parameter types are 

priority 
protection 
capacity 
security 

• a comparison operator--the only comparison operator used by Format Set 2 
implementations is REQUIRE_LEVEL_GE. Format Set 1 implementations use an 
additional comparison operator, REQUIRE_SUPPORT_FOR. 

• a value--architecturally defined values vary by parameter type. They are 
discussed below. 

The combination of comparison operator and value describes the level of 
service required by the distribution. For example, the originator might request 
a certain level of service (priority, perhaps) as a minimum, but be quite happy if 
the distribution traveled at a higher level. This request would be expressed as 
a comparison operator of REQUIRE_LEVEL_GE and a value indicating the minimum 
level acceptable. 

The service parameters defined by the architecture are listed below, with a 
description of the comparison operators and values that may be specified for 
each. 

The priority service parameter allows an originator to specify the relative 
urgency of a particular distribution. OS favors higher priority distributions when 
there is contention for resources. For example, when distributions are queued 
for sending, the higher priority ones are serviced first. In some cases, higher 
OS-priority distributions may flow on (path control layer) virtual routes with 
higher transmission priority. In general, the higher the OS priority, the more 
quickly the distribution flows through the network. 

Any one of 16 different DATA priority values (DATA_1 through DATA_16, with 
DATA_16 being the highest priority) may be specified for ordinary distributions. 
Some implementations group DATA_1 through DATA_a as DATALO and DATA_9 
through DATA_16 as DATAHI. Above the DATA priority values are other values. In 
order of increasing priority, they are: CONTROL, which is used only for distrib
ution reports (i.e., it may not be specified on an agent's request), and FAST, 
which is used for short, urgent types of messages. 

The protection service parameter is used to specify whether the distribution 
must be stored on nonvolatile storage while a DSU has responsibility for it. 
One of two values may be specified--LEVEL1 or LEVEL2. LEVEL2 indicates that the 
distribution is safe-stored In nonvolatile storage; LEVEL1 indicates that safe
storage is not performed. 

24 SNA/Distribution Services Reference 



If the distribution needs to be protected in case of processor failure, the distrib
ution request specifies protection (REQUIRE_LEVEL_GE LEVEL2). If the distribution 
does not require this level of protection, the request specifies protection 
(REQUIRE_LEVEL_GE LEVEL1). 

An implementation may choose the level of protection it provides. The advan
tage of requesting a less demanding level of protection for a distribution is that 
there may be more DSUs capable of providing it, and therefore more routing 
possibilities. In addition, the processing time within a DSU might be decreased. 

Some DSUs are able to handle only distributions whose DMU lengths are less 
than some specified maximum. The capacity service parameter allows DSUs 
with larger capacity to route large distributions around smaller-capacity DSUs 
that may not be able to handle them. Any route that passes through a size
limited DSU is appropriate only for distributions no larger than the maximum 
that the most limited DSU on the route can handle. This smallest maximum is 
the capacity of the route. 

The values that an originator may specify for the capacity parameter indicate 
the minimum capacity of the DSUs through which the distribution should be 
routed. Often, all distributions generated by a particular agent specify the same 
capacity. If the distributions vary widely in size the agent would specify an 
appropriate capacity for each distribution. 

The architecturally defined values are 

ZERO 

1MB (one megabyte) 
4MB 
16MB 

The capacity parameter indicates the size of the server object contained in the 
distribution. Although a distribution with no server object might specify a 
capacity requirement of ZERO, the distribution could still contain an agent object. 

The security service parameter is used to specify that the distribution is to be 
safeguarded from unauthorized access while it is being sent through the OS 
network. Two levels, LEVEL1 and LEVEL2, may be specified. LEVEL1 indicates that 
security is not required for the distribution. LEVEL2 indicates that OS should 
route the distribution only on sessions that are designated secure. (Typically, 
LU 6.2 session-level security would be used on such sessions.) When a distrib
ution specifying LEVEL2 as the security value is stored at a particular DSU, the 
DSU and its general server (see "Servers and Objects" on page 40) ensure its 
security. 

Default Service Levels 
Any or all of the service parameters may be omitted from the DMU. The archi
tecture defines a default service level for each parameter. A DSU processing a 
distribution uses the default service level for any parameter that is omitted from 
the DMU. The default values for each service parameter are given in 
Appendix G. 

Chapter 1. Concepts and Facilities 25 



Combinations of Service Levels 
The OS architecture allows a level to be specified for each service parameter, 
independent of the levels specified for other parameters. Applications may 
choose either to specify service parameters independently on a per-distribution 
basis or to routinely use certain combinations of parameters. 

Uses of Distribution Service Parameters 
From the time OS accepts responsibility for a distribution request until the dis
tribution is delivered, the distribution service parameters may, and in some 
cases must, be used by all the OSUs to condition their processing of the distrib
ution. The effects of the service parameters are apparent both in the routing of 
the distribution and the local handling of it. 

Service Parameters In the Routing Table: Each entry in a OSU's routing table 
includes the levels of service that the route is able to provide. Each distribution 
carries the levels of service specified by the originator. When the distribution is 
routed, the requested levels are compared to the levels available. 

To illustrate this process with a sample network, assume that a connection 
between EUR.PARsvs1 and us.cH1svs2 is to be reserved for small, high-priority 
traffic. Another connection, also reserved for small, high-priority traffic, is 
required between us.Nvcsvs1 and us.cH1svs2. The resulting five-connection 
network appears as shown in Figure 15 on page 27. Notice that there are two 
connections between the same pair of OSUs, EUR.PARsvs1 and us.Nvcsvs1. In 
order to distinguish between them, their identifiers must be qualified by a char
acterization of their service level capabilities. In this illustration, FAST and DATA 
are used. 

26 SNA/Distribution Services Reference 



New York 

IAgentj Paris 

Chicago 

IAgentj 

t---Agent PB-

I User Dir., 
t--i 

!Rtg Table' .. 
US.CHISYS2 ~. 

f--1 
PC in node • 
with DSU ..... ... ............. • PC 

'--. .IRN 

..... 
.... ..... . ....................... 

(US.CHISYS2-US.NYCSYS1-DATA) 
~cus.CHISYS2-US.NYCSYS1-FAST)....J 

PC IRN 

~ 

Agent PB 

!user Dir.I 

!Rtg Table' 

US.NYCSYSl 

PC in node • 
with DSU • 

(US.NYCSYSl-EUR.PARSYSl-DATA) 
(US.NYCSYSl-EUR.PARSYSl-FAST) 
(US.CHISYS2-EUR.PARSYS1-FAST) 

PC ~ Path Control 

I Agent I 

PC 
!RN 

Agent PB 

!user Dir., 

IRtg Table' 

EUR.PARSYSl 

PC in node • 
with DSU , 

IRN • Intennediate Routing Node 

Figure 15. Sample Network #3 Showing Different Routes for Different Priorities 

The routing table in EUR.PARsvs1 contains entries as shown in Figure 16 on 
page 28. In addition to the connection identification of next-DSU name, the 
table entries include route service capabilities, queue identifiers, and the LU 
name and mode name (symbolized by "Fast" or "Slow") that identify the group 
of sessions used by the connection. 

Each entry represents a route segment. The service capabilities describe the 
minimum capabilities that will be found along the route of which this particular 
route segment is part. Several route segments can share one queue. Several 
queues can share one connection. Generally, there is a one-to-one corre
spondence between a connection and the mode name of the session or group 
of sessions it uses. 

When a distribution is to be routed, the combination of destination DSU and 
requested service parameters are used to scan the routing table in a serial 
fashion. The first entry for the destination DSU that provides acceptable service 
is used to identify the next-DSU queue into which the distribu~ion is placed. 
After the distribution is placed in the next-DSU queue, a DS transaction 
program will retrieve it and send it on the connection to which that particular 
queue maps. 

Chapter 1. Concepts and Facilities 27 



PARIS 

USER DIRECTORY 

Destination Destfnatfon 
User Name osu 

MFG.CHILD US.CHISYS2 
MKT.NEFF US.NYCSYSl 
MKT.PIAF local 
OPS.CHASE US.CHISYS2 

R o u t i n g T a b 1 e 

Destination R o u t e Segment I n f o r m a t f o n 
osu 

Route Service Parm Capabilities Next- Connection Session(s) Jsed 
DSU 

Prot- Queue Next OSU- LU name-Mode name 
Priority ection Capacity Security Connection Name 

US.CHISYS2 FAST LEVEL! ZERO LEVEL! US.CHISYS2-FAST US.CHISYS2-Fast 
US.CHISYS2 1-16 LEVEL2 16MB LEVEL2 US.NYCSYSl-DATA US.NYCSYSl-Slow 
US.NYCSYSl FAST LEVELl ZERO LEVEL! US.NYCSYSl-FAST US.NYCSYSl-Fast 
US.NYCSYSl 1-16 LEVEL2 l6MB LEVEL2 US.NYCSYSl-OATA US.NYCSYSl-Slow 

DSU name: EUR.PARSYSl 
LU name: EUR.PARSYSl 

Figure 16. The Paris DSU's Directory and Routing Table for Sample Network #3 

These entries do not represent a formal definition of what is included in the 
routing table. Implementations arrange their table structures in whatever way 
is most appropriate for them. In particular, the network-unique DSU names and 
LU names shown in the illustration are not required. Local values such as 
pointers and offsets may be used. 

The DSU name and the LU name need not be the same. For example, to facili
tate network changes, it may be desirable to give one DSU multiple DSU 
names, but it would still have only one LU name. When the same value is used 
for the DSU name and LU name, installation and operations complexities are 
reduced. 

Selecting Next DSU with Service Parameters: Notice the two entries for 
us.cH1svs2 in Figure 16. The first entry describes a route segment of a route 
with a priority capability of FAST connecting directly to the destination DSU. 
The second entry describes a route segment with a priority capability of DATA_1 

through DATA_16 connecting to an intermediate DSU. If Piaf requests FAST for a 
single destination distribution to Chase in Chicago, the distribution is routed 
directly to us.cH1svs2. If, on the other hand, Piaf requests a priority between 
DATA_1 and DATA_16, the distribution is routed via the intermediate DSU 
US.NYCSYS1. 

A multi-destination distribution sent from Piaf at EUR.PARSYS1 to us.Nvcsvs1 and 
to Chase in Chicago is fanned out at the origin if priority FAST is specified, as 
shown earlier in Figure 9 on page 17. On the other hand, if priority DATA_4 is 

28 SNA/Distributlon Services Reference 



specified, the fan-out occurs at the intermediate OSU. This comparison illus
trates how the use of direct sessions that bypass intermediate OSUs may 
shorten transit times but increase the amount of duplicate transmission. OS 
connections using sessions assigned to multi-link virtual routes should there
fore be used sparingly, except for high-priority traffic. The larger the object 
being distributed, the greater is the benefit of intermediate fan-out. 

Selecting a Session Using Service Parameters: In many cases, parallel (2 or 
more) sessions will exist between OSUs. The sessions will typically offer dif
ferent classes of service. OS uses the LU 6.2 mode name to distinguish 
between the various kinds of sessions. For example, at the basic LU 6.2 layers 
of SNA, the session to us.Nvcsvs1 with mode name "Fast" would be assigned a 
higher transmission priority than the session with mode name "Slow." OS 
would take advantage of the higher transmission priority by mapping a OS route 
of priority FAST to an LU 6.2 session with mode name "Fast." 

Selecting Send Order Using Service Parameters: In some cases, only one 
session is available for a connection. Even when parallel sessions are avail
able, it is generally desirable to limit the number of sessions used, particularly 
for low-priority, high-volume traffic. With limited numbers of sessions, in times 
of heavy loads on the network, the OS distributions will build up In queues for 
whatever next-OSU they must be sent to. These queues are called next-OSU 
queues. 

The OS processes that access the routing table and put the distributions into 
next-OSU queues belong to the routing sublayer of OS. The processes that 
service the queues by sending the distributions out on the conversations belong 
to the distribution transport sublayer. The queues themselves can be viewed 
as straddling the protocol boundary of these two sublayers. Figure 17 on 
page 30 illustrates this. 

Chapter 1. Concepts and Facilities 29 



PARIS 

US.NYCSYSl US.NYCSYSl US.CHISYS2 
slow queues fast queue fast queue 

---tr-~ ----lr- -----l!J- --

T ~~-' ~ 

/ .................................. . . 
/-(US.NYCSYSl-EUR. PARSYSl-DATA);L .... ;· 
/-(US.NYCSYSl-EUR. rARSYSl-FAST):-J ~ .. .. 

~~~~~:~~~~:~~~~~~:~~~~:~~~~~~~~~~~~:~~~~ 
'C(TPF2)
••••••••• I PC

• IRN

EUR. PARSYSl

Path Control In
node wl th DSU

Routing
Sublayer

Distribution
Transport
Sublayer

Figure 17. The Paris Section of Sample Network #3 Showing Two Queues for One Con
nection

Managing the next-DSU queues is an important part of the OS function.
Requests specifying the same priority are queued on a first-in, first-out basis.
Requests of higher priority may be assigned to the same sessions but are sent
before those of lower priority.

One way this can be achieved is to maintain multiple queues for each con
nection and assign different priorities to separate queues. In the example
shown in Figure 17, two queues exist for the DATA connection to us.Nvcsvs1.

The number suffix in the queue name represents the order in which the queues
are serviced; that is, all the distributions in queue A 1 are to be sent before any
from queue A2. The routing table for EUR.PARsvs1 showing the next-DSU queue
identifiers is given in Figure 18 on page 31.

30 SNA/Distributlon Services Reference

PARIS

USER DIRECTORY

Destination Destination
User Name DSU

MFG.CHILD US.CHISYS2
HKT.NEFF US.NYCSYSl
HKT.PIAF local
OPS.CHASE US.CHISYS2

R o u t i n g T a b 1 e

Destination R o u t e S e g m e n t I n f o r m a t i o n
DSU

Route Service Pann Capabilities Next- Connection
DSU

Prot- Queue Next DSU-
Priority ection Capacity Security Connection Name

US.CHISYS2 FAST LEVEL! ZERO LEVEL! Cl US.CHISYS2-FAST
US.CHJSYS2 9-16 LEVEL2 16HB LEVEL2 Al US.NYCSYSl-DATA
US.CHISYS2 1-B LEVEL2 16HB LEVEL2 AZ US.NYCSVSl-DATA
US.NYCSYSl FAST LEVEL! ZERO LEVEL! Bl US.NYCSYSl-FAST
US.NYCSYSl 9-16 LEVELZ 16HB LEVEL2 Al US.NYCSYSl-DATA
US.NYCSYSl 1-B LEVELZ 16HB LEVEL2 A2 US.NYCSYSl-DATA

Session(s) used

LU name-Mode name

US.CHISYS2-Fast
US.NYCSYSl-Slow
US.NYCSYSl-Slow
US.NYCSYSl-Fast
US.NYCSYSl-Slow
US.NVCSYSl-Slow

DSU name: EUR.PARSYSl
LU name: EUR.PARSYSl

Figure 18. The Paris DSU's Routing Table with Two Queues for One Connection

The connection and session information shown in Figure 18 are not truly
needed in the routing table. The queue name alone would suffice. The
required relationships to connections and groups of sessions could be estab
lished by various additional tables and pointers. The example illustrates how
distributions with DATA_N priorities flow over sessions with a mode name of
"slow," which, in turn, can be assigned (at the path control level) to a virtual
route with a transmission priority field (TPF) value of 0, the lowest of the three
TPF values available.

Implementation Alternatives: The above example shows one way of ordering
the sending by priority. Various implementations might choose other ways,
such as maintaining one queue but keeping the entries in it sorted by priority.

Some implementations delay the decision of which connection to use for a dis
tribution. Distributions can be queued by routing table entry. The determi
nation of which connection should be used to service which queue can be
deferred. In other words, the static relationships depicted in the routing tables
illustrated here would be partly replaced by a dynamically determined relation
ship. The determination could be triggered by some event or condition. For
dial-up networks, the determination might be triggered by the activation of the
connection.

Chapter 1. Concepts and Facilities 31

Local Handling of Distributions: Service parameters are also used to condition
the DSU's local handling of distributions. For example, if a distribution request
specifies protection (REQUIRE_LEVEL_GE LEVEL2), the DSU is required to store it in
nonvolatile storage before accepting responsibility for it. If a distribution
request specifies security (REQUIRE_LEVEL_GE LEVEL2), the DSU may use additional
parameters on the commands it issues to the server to access the distribution
(see "Servers and Objects" on page 40 for a discussion of servers). Complete
information on the actions taken by DSUs in response to specified service
parameters is given in Appendix C.

Sublayering In DS Networks
OS is modeled as part of the transaction services layer of SNA, but is itself
composed of sublayers. The notion of the distribution transport and routing
sublayers was introduced in Figure 17 on page 30. Two more DS sublayers
are defined: an uppermost sublayer that handles requests from agents, called
the OS presentation sublayer, and a sublayer between OS presentation and
routing that provides the directing process. Hence, DS consists of four sub
layers existing network wide, each sublayer existing in every DSU. The sub
layers are:

OS Presentation
Directing
Routing
Distribution Transport

Most implementations of OS employ queues at the boundaries between the
presentation and directing sublayers, and between the routing and transport
sublayers. There is less need for queuing between directing and routing, and it
is not considered in this document.

Processes Performed In the DS Sublayers
The processes that perform the OS functions can be placed in, or in some
cases across, the sub layers. Each DSU contains instances of the various proc
esses, provided by a collection of service transaction programs. A detailed
model of the internal structure of a DSU is given in Chapter 3.

• The processes in the OS presentation sublayer are called OS presentation
services (PS).1 Agents interact with PS to use OS services. The following
interactions are supported:

A Send_Distribution verb initiates a distribution to one or more destina
tions. PS validates the request before accepting it. If PS accepts the
request, it enqueues the distribution for processes in the directing sub
layer.

A Receive_Distribution verb provides the destination agent with access
to the distribution.

1 The OS presentation services (PS) sublayer is distinct from the SNA layer below the transaction services layer
(in which OS resides), which is also called presentation services. The latter layer processes the LU 6.2 basic
conversation verbs issued in OS, whereas OS PS processes OS verbs issued by application transaction pro
grams. In this book, .. PS, ... unqualified, generally refers to the OS sublayer.

32 SNA/Oistribution Services Reference

Other variations of the basic send and receive verbs provide agents with
additional capabilities. The other verbs are discussed in "Agent Protocol
Boundary Verbs" on page 55 and Appendix F.

Operations verbs provide access to enqueued distributions or to OS
resources, such as the routing table, to display or change them. Oper
ations verbs also provide access to logged exception information. The
operations verbs are described in "Operations" on page 68 and
Appendix F.

Verbs and parameters are passed across the protocol boundary to OS.
Return codes are passed back indicating that the function has been com
pleted, successfully or not, as indicated by the code.

• The processes in the directing sublayer perform the following functions:

Determine the destination DSU names corresponding to destination
user names and add them to the distribution--this is done at the origin
of the distribution.

Determine the local queues and application program identifiers for dis
tributions at their destinations.

Change the destination DSU names for users whose destination DSU is
the local one, but who are not, in fact, local users--the redirection case
(see "Redirection" on page 35).

Directing then invokes routing for nonlocal destinations.

When a distribution Is to be placed on more than one local queue, it is
"fanned out" by directing.

• The processes in the routing sublayer perform the following functions:

Identify inbound distributions for which at least one destination DSU
name is local. Directing is invoked for these destinations.

Use the routing table to select appropriate next-DSU queues for out
bound distributions. Routing may perform "fan-out" in the case where
the distribution is placed on more than one queue.

• The processes in the distribution transport sublayer manage the communi
cation between DSUs to send a distribution from one DSU to the next. The
queues into which the routing processes place distributions are accessed in
predetermined order. This sublayer performs the encoding of the distrib
ution into a distribution message unit and handles the OS protocol for the
transmission of the message unit. Protocols to exchange exception infor
mation are handled by this sublayer as well. LU 6.2 basic conversation
verbs are issued and return codes and parameters are analyzed to accom
plish the transmission.

The processes in the distribution transport sublayer invoke a facility known
as a server to gain access to the server object when sending, and to store
the received server object when receiving. The concepts of servers and
server objects are explained in "Servers and Objects" on page 40.

Processes in this sublayer manage the transfer of responsibility for a DMU.
The sending DSU is responsible until the receiving DSU has signaled via a
OS protocol that it has accepted responsibility.

Chapter 1. Concepts and Facilities 33

Sublayer Diagrams
All the sublayers of OS exist as part of the transaction services layer of SNA.
The upper edge of OS is the OS agent protocol boundary (agent PB). This PB
makes up only a part of the total PB offered to users by SNA services. The
lower edge of OS is the basic conversation protocol boundary of LU 6.2.

OS uses the basic conversation protocol boundary of LU 6.2 for sending and
receiving its OM Us. OS shares the use of this PB with other service transaction
programs. In the following diagrams, that protocol boundary is depicted as a
solid line labeled LU 6.2 BCPB. It should not be confused with the mapped con
versation protocol boundary used by application transaction programs. A more
detailed illustration of the structure of a DSU can be found in Chapter 3.

As an example, once again assume that Piaf wants to send a low-priority dis
tribution (single destination) to Chase. The distribution is sent through
us.Nvcsvs1, where only the routing function is involved. From a sublayering
standpoint, the distribution is handled as shown in Figure 19.

CHICAGO NEW YORK PARIS

t----Agent PB
Presentation

Directing

Routing

Distribution
US.CHISYS2 US.NYCSYSl Transport EUR.PARSYSl

,_____,,.__,LU 6.2 BCPB - -i---or----LU 6.2 BCPB - - - - i---o~--LU 6.2 BCPB -

DTHU-81-------~

•• from HKT.PIAF at EUR.PARSYSl ••
•• to OPS.CHASE at US.CHISYS2 •••

Lower Layers
of SNA

DTHU-A-------~

..from MKT.PIAF at EUR.PARSYSl ••
..to OPS.CHASE at US.CHISYS2 ••

Figure 19. OS Sublayering Diagram-Intermediate Routing

34 SNA/Distributlon Services Reference

Redirection
Looking once again at sample network #2, particularly the directories in
Figure 12 on page 20, assume that Neff in marketing is transferred to Chicago
for a brief assignment, not long enough for the network administrators to want
to change all the directories in the network. The redirection capability of the
DSU in New York simplifies the required directory changes. Only the directo
ries at Neff's old and new locations need be changed. Refer to Figure 20 and
contrast the directory entries for MKT.NEFF with those in Figure 12 on page 20.

CHICAGO NEW YORK PARIS

USER DIRECTORY USER DIRECTORY USER DIRECTORY

Destination Destination Destfnatfon Destination Destination Destination
User Name DSU User Name DSU User Name DSU

MFG.CHILD local MFG.CHILD US.CHISYS2 MFG.CHILD US.CHISYS2
MKT.NEFF local HKT.NEFF US.CHISYS2 MKT.NEFF US.NYCSYSl
MKT. PIAF EUR. PARSYSl MKT.PIAF EUR.PARSYSl MKT.PIAF local
OPS.CHASE local OPS.CHASE US.CHISYS2 OPS.CHASE US.CHISYS2

ROUTING TABLE ROUTING TABLE ROUTING TABLE

Destination Connection Destination Connection Destination Connection
DSU (Next DSU) DSU (Next DSU) DSU (Next DSU)

EUR.PARSYSl US.NYCSYSl EUR.PARSYSl EUR.PARSYSl US.CHISYS2 US.NYCSYSl
US.NYCSYSl US.NYCSYSl US.CHISVS2 US.CHISYS2 US.NYCSYSl US.NYCSYSl

US.CHISYS2 US.NYCSYSl EUR.PARSYSl

Figure 20. Directories Illustrating Temporary Redirection

Suppose that Piaf in Paris sends a distribution to MKT.NEFF. The DSU in Paris
associates the destination DSU US.NYCSYS1 with MKT.NEFF. When DTMU-A
arrives at us.Nvcsvs1, the routing function there recognizes its own name, pre
sumes that it is the destination DSU, and passes the distribution up to the
directing sublayer. The directing function accesses the user directory and
finds, instead of local delivery information, another DSU name. It then replaces
us.Nvcsvs1 with the new name, us.cH1svs2, and passes the modified control
information back down to routing. Routing then queues the distribution for
US.CHISYS2.

From a sublayering standpoint, the distribution is handled as shown in
Figure 21 on page 36. The routing process invokes the directing process
because the destination DSU name is local. Directing, after determining that
the destination user is not local and after changing the destination DSU name,
invokes routing.

Chapter 1. Concepts and Facilities 35

Default Directing

CHICAGO NEW YORK PARIS

f----Agent PB
Presentation

Directing

Routing

Dfstrfbutfon
US.CHISYS2 US.NYCSYSl Transport EUR.PARSVSl

o----+--LU 6.2 BCPB - _,___._-LU 6.2 BCPB - - - - .__..r----LU 6.2 BCPB -

DTHU-8:------~

•• from HKT.PIAF at EUR.PARSVSl.
•• to HKT.NEFF at US.CHISYS2 ••

Lower Layers
of SNA

T~-A,------~

•• from HKT.PIAF at EUR.PARSVSl •
..to HKT.NEFF at US.NYCSVSl .•

Figure 21. OS Sublayering Diagram-Redirecting

The redirection processing at the intermediate DSU, us.Nvcsvs1, should be com
pared to Figure 19 on page 34, which depicts pure routing at the intermediate
DSU.

In the example above, the redirection occurred at the most convenient point.
Suppose, however, that Chase had moved to New York. A message from Piaf
to him would be redirected at US.CHISYS2 back to US.NYCSYS1. the DSU through
which it had just been routed. In networks of reasonable complexity, some
occurrences of redirection may result in routing inefficiency. System adminis
trators must use care to keep this to a minimum.

A DSU refers to its directory for any distribution whose destination list includes
that DSU's name. A DSU also refers to its directory If the destination list
includes any of the DSU names in the DSU's intervention list (see "The Inter
vention List" on page 40). In either case, redirection may result.

In large networks, the number of users makes it impractical to have an explicit
entry for every user in every DSU's directory. Instead, default "tokens" (the "*#

In this documentation) can be used in place or parts of the user name; that is,
either the DEN, or both the DGN and the DEN. The default token is like a wild
card that can assume any value. User names for which a complete explicit
match (that is, an exact match on both DGN and DEN) cannot be found are
matched against the entries with explicit DGNs and * for DENs. User names
that fail to match any DGN.* entry must by definition match the*.* entry, which is

36 SNA/Distribution Services Reference

simply the equivalent of "unable to find any match." In other words, assuming
that the directory is in collating sequence and the search algorithm is serial,
the default tokens mean "none of the preceding" matched.

Whatever DSU name is found at a default entry is used exactly the same way
as the DSU name found at an explicit entry. That is, it is associated with the
user name and is used for routing through the network. In some cases, the
DSU name assigned by default will prove to be correct. In other cases, redi
rection will occur at the default DSU. In properly defined networks, the directo
ries at the default DSUs would have more explicit entries and, therefore, would
be better able to direct distributions explicitly--that is, to direct them to the DSU
where the user really is.

The sample networks discussed earlier In this chapter have all had only four
users, an extreme simplification employed to minimize table sizes in the exam
ples. To illustrate default directing, it is helpful to imagine a network with the
same three DSUs, but serving more users. This network is only slightly larger
than sample network #1. The following example is a complete network and not
a fragment of a larger one.

o CHICAGO
Manufacturing Dept.

Child
Marketing Dept.

Chapin
Operations Dept.

Chase
Chalk

USER DIRECTORY

Oestinatfon Destination
User Name DSU

MFG.CHILO local
MFG.* US.NYCSYSl
MKT.CHAPIN local
MKT.NEFF US.NYCSYSl
HKT.PIAF EUR. PARSYSl
MKT.* US.NYCSYSl
OPS.CHASE local
OPS.CHALK local
OPS.PLACE EUR.PARSYSl
OPS.* error
. US.NYCSYSl

ROUTING TABLE

Destination Connection
osu (Next DSU)

EUR.PARSYSl US.NYCSYSl
US.NYCSYSl US.NYCSYSl

US.CHISYS2

o NEW YORK
Manufacturing Dept.

North
Marketing Dept.

Neff
Nelson
Nesbit

USER DIRECTORY

Destination Destination
User Name osu

MFG.CHILD US.CHISYS2
MFG.NORTH local
MFG.* error
MKT.CHAPJN US.CHISYS2
MKT.NEFF local
MKT.NELSDN local
MKT NESBIT local
MKT.PIAF EUR.PARSYSl
MKT.* error
OPS. PLACE EUR.PARSYSl
OPS.* US.CHISYS2
. error

ROUTING TABLE

Destination Connection
osu (Next OSU)

EUR.PARSYSl EUR.PARSYSl
US.CHISYS2 US.CHISYS2

US.NYCSYSl

o PARIS
Marketing Dept.

Piaf
Operations Dept.

Place

USER DIRECTORY

Destination Destination
User Name osu

HKT.NEFF US.NYCSYSl
HKT.NESBIT US.NYCSYSl
MKT.PIAF local
MKT.* US.NYCSYSl
OPS.CHASE US.CHISYS2
DPS. PLACE local
OPS.* US.CHISYS2
. US.NYCSYSl

ROUTING TABLE

Destination Connection
osu (Next OSU)

US.CHISYS2 US.NYCSYSl
US.NYCSYSl US.NYCSYSl

EUR.PARSYSl

Figure 22. Sample Network #4--Directories with Default Entries

Chapter 1. Concepts and Facilities 37

Default Routing

Figure 22 depicts the directories for sample network #4. The directory at
EUR.PARsvs1 contains default DEN entries for two DGNs, MKT and OPS, pointing
to US.NYCSYS1 and US.CHISYS2, respectively. The directory at US.NYCSYS1 contains
default DEN entries for all three DGNs. At us.Nvcsvs1, however, MFG.* and MKT.*
are errors. This means that the lists of explicit entries for those DGNs are
exhaustive. If a DEN other than those listed occurs, it must be in error. The
OPS.* points to us.cH1svs2 where the directory for OPS is exhaustive. In this
example, therefore, there is a complete set of DENs for every DGN in at least
one DSU's directory.

The directory at EUR.PARSYS1 contains no explicit entry for the DGN MFG. Any
user names beginning with MFG (or any DGN other than MKT or OPS) will match
the*.* entry at the bottom of the directory and be directed to us.Nvcsvs1. The
directory at EUR.PARSYS1 will never detect an invalid user name. The directory
at us.cH1svs2 will detect invalid DENs within the OPS DGN but any unrecognized
DGNs will be directed to us.Nvcsvs1. Because the directory at us.Nvcsvs1 is the
only one with a *.* error entry, it is the only place at which completely invalid
user names will be detected.

Customers should define their networks so that every DGN has a complete set
of explicit entries--that is, every DEN for that DGN--in a directory somewhere in
the network. Similarly, at least one directory should contain a complete set of
DGNs. Also, every DSU's directory should be complete in the sense that any
valid user name not explicitly matched will be redirected. Thus, the service can
distribute from any OS-defined user to any other OS-defined user, always
detecting invalid user names (for example, misspelled names) as such.

Note that a *.* default entry is different from an entry for omitted user names (as
shown in Figure 7 on page 15). The latter matches destinations for which no
user name was specified in the distribution request (i.e., node destinations).
The former matches user destinations (those for which a user name was speci
fied in the request) that cannot be found in the local directory.

In large networks, it is also impractical to maintain routing tables in every DSU
with explicit entries for every other DSU. Default tokens can be used in the
routing table in exactly the same way as in the directory. It would not be an
error or even unusual to have an explicit entry in the directory that returned a
destination DSU for which no explicit entry exists in the routing table.

Looking again at sample network #3, Figure 17 on page 30, and ttie routing
table in Figure 18 on page 31, it can be seen that the routing table has six
entries, although EUR.PARSYS1 has only four queues for three sessions. The
routing table could be shortened by the use of default routing tokens as shown
in Figure 23 on page 39.

38 SNA/Distribution Services Reference

Alternate Routing

PARIS

USER DIRECTORY

Destination Destination
User Name DSU

MFG. CHILD US.CHISYS2
MKT.NEFF US.NYCSYSl
MKT.PIAF local
OPS.CHASE US.CHISYS2

R o u t i n g T a b l e
--

Destina t 1on R o u t e Segment I n f o r m a t i o n
DSU

Route Service Parm Capabilities Next- Connection Session(s) used
DSU

Prat- Queue Next DSU- LU name-Mode name
Priority ection Capacity Security Connection Name

US.CHISYS2 FAST LEVEL! ZERO LEVEL! Cl US.CHISYS2-FAST US.CHISYS2-Fast
US.NYCSYSl FAST LEVELl ZERO LEVELl Bl US.NYCSYSl-FAST US.NYCSYSl-Fast
US.* 9-16 LEVEL2 16MB LEVEL2 Al US.NYCSYSl-DATA US.NYCSYSl-Slow
US.* 1-8 LEVEL2 16MB LEVEL2 A2 US.NYCSYSl-DATA US.NYCSYSl-Slow
. any any any any error

DSU name: EUR.PARSYSl
LU name: EUR.PARSYSl

Figure 23. Routing Table with Default Entries

Notice that there is an explicit entry for fast priority traffic to us.cH1svs2, but no
other explicit entries for us.CHISYS2. The us.* entries will cause any distribution
with an unrecognized REN (the low order part of the DSU name), and a priority
of DATA_1 to DATA_16 to be routed to us.NYCSYS1. The*.* entry catches any unrec
ognized DSU names. Since this routing table is complete (i.e., any distribution
for either of the other OS Us in the network will be handled by one of the
entries), the *.* entry maps to an error condition. Alternatively, the *.* entry
could be used to route all distributions destined for unrecognized DSU names
elsewhere, just as a *.* entry in the directory causes distributions for unrecog
nized user names to be directed elsewhere.

Network administrators should ensure that every routing table is complete in
the sense that it contains either an explicit match or a default match for every
destination DSU.

Implementations may provide a mechanism to perform alternate routing when
connections are unavailable. For example, the routing table might contain two
entries for the same destination DSU and service parameter combination, with
each entry identifying a different next-DSU. Assuming that the routing table is
scanned in a serial fashion, the first entry would normally be matched, and all
distributions would be sent to that next-DSU. If the connection to that next-DSU
became unavailable, the DSU could mark its routing table entry unavailable.

Chapter 1. Concepts and Facilities 39

The routing lookup process could then bypass that entry, and subsequent dis
tributions would be routed to the next-DSU named in the second entry. Since
the specific contents of an implementation's routing table are not defined by
OS, such a mechanism is outside the scope of the architecture.

The Intervention List
A DSU may intervene in traffic destined for other DSUs. The intervention list
specifies the names of other DSUs for which the DSU is to process traffic.
These DSU names may or may not be the names of other DSUs in the network.
A DSU name may appear in the intervention list of one or more DSUs.

A DSU checks the intervention list when a distribution is received. The DSU
invokes the directing process for traffic addressed to any of the DSU names in
its intervention list, just as it does for traffic addressed to its real name. This
feature can be used to facilitate network rearrangements. For example, when
DSUs are combined, the resulting DSU would have the names of the eliminated
DSUs in its intervention list.

Another use of the intervention list is to facilitate "Big Brother/Little Brother"
implementations. For example, suppose that a particular implementation has
only very limited resources to allocate to a directory and routing table, and that
it supports only a small number of local users. The directory can be set up to
define only the local users, and to route traffic (by default) for all other users to
a partner DSU whose directory contains information for remote users.

Since its directory would not contain information for remote users, redirection
performed by the smaller DSU would be inefficient. An effective solution is to
define the small implementation in the intervention list of the adjacent partner.
The partner then processes all traffic destined for the smaller DSU as it does its
own; the partner can perform redirection as necessary before sending traffic to
the smaller DSU.

Servers and Objects

Introduction
Large amounts of data that are to be distributed through the OS network are
typically accessed via application programs called servers. Such data is
encoded in the DTMU as the server object.

When an agent issues a distribution request that is to contain a server object, it
normally does not include the object itself in the request, but rather points to
where the object can be found. The pointer to the object is stored by the DSU
as part of the control information for the distribution. When the DSU is ready to
send the distribution, it uses the server to read the object, one piece at a time.
As each piece is retrieved, the DSU issues LU 6.2 basic conversation verbs to
feed it into the network. The partner DSU receives the object, one piece at a
time, and uses a server to store it away. The origin agent is responsible for
specifying a server appropriate for the object to be distributed.

40 SNA/Distribution Services Reference

Server Names: The name of the server to be used at the origin and destination
OSUs is specified as part of the request when the request refers to a server
object. Server names are taken from the same name space as agent names.

OS is unaware of an implementation's internal packaging of servers. A single
piece of implementation structure might be able to responsibly store and
retrieve objects for a wide variety of server names. From the OS perspective,
that single piece would be viewed as multiple servers.

Origin Servers: OS uses the origin server to access the object for sending. No
direct interaction takes place between the requesting agent and the origin
server it specifies, either when the request is made or when the OTMU is sent.
(The requesting agent stores the object using the origin server before issuing a
distribution request to OS.) OS acts as the intermediary while processing the
distribution. OS is unaware of interactions that take place between agents and
servers when distribution requests are not involved.

Destination Servers: The server name is put into the OTMU and flows through
the network to all the destinations. Only one server name exists for the server
object, no matter how many destinations are specified. The destination server
is used at the destination OSU to store the object in application space (for
example, a library shared by several users).

Server Implementations: Servers may be of a unique kind implemented as part
of the same application as the agent, or they may be general-purpose servers
included in the supporting environment.

Reversible Servers: A reversible server is one that can be invoked either for
storing or retrieving. When instructed to retrieve an object that it has previ
ously stored, it retrieves the same byte stream it stored earlier. This does not
mean that the byte stream must actually be stored in a byte-stream image, but
it does mean that the server is able to reverse any transformations it might
have performed upon the byte stream. Typically, servers would be reversible.
An example of a nonreversible server would be one that printed hard copy.

A OSU invokes a nonreversible server only if it has determined that the object
will never need to be retrieved for forwarding or delivering multiple copies.

Use of Servers: Figure 24 on page 42 gives a simple illustration of the inter
actions among the agent, server, and OSU. At some point before issuing a dis
tribution request, the agent interacts with the server to store an object (arrow
1). The agent then issues a request to OS, specifying the server name (arrow
2). When a connection is available to the next-OSU, OS invokes the server to
read the server object (arrow 3), builds the OTMU, and sends it.

The adjacent OSU receives the OTMU from its partner·, invoke.s a server to store
the object (arrow 4), and subsequently starts the destination agent. When the
agent receives the distribution, which includes the destination server informa
tion (arrow 5), OS's responsibility for the distribution is fulfilled. The agent may
use the server information to access the object at a later time (arrow 6).

Chapter 1. Concepts and Facilities 41

Agent Agent

(6) (1)
(5) (2)

Server (4) osu osu (3) Server

Figure 24. Simple Agent-Server-DSU Interaction

OS considers the server object to be the byte stream passed across the server
protocol boundary via the .Read and Write verbs. OS numbers the bytes in this
stream beginning at 1. A server object may be presented to the user or stored
in safe storage in a form very different from that seen by OS, but these other
forms are irrelevant to OS. For example, a 10-character text string might be
compressed into six bytes when stored on disk, and encrypted into a 20-byte
string for transmission. OS knows nothing of the 10-character text message, or
the 6-byte compressed form stored on disk; it knows only about a 20-byte
server object. OS numbers the bytes in this object from 1 to 20.

General and Specific Servers
Specific servers store and retrieve objects into and from users' or applications'
private space. They are so named because they often perform some type of
application-specific handling of the objects on which they operate; for example,
a specific server might provide encryption and decryption of data, or it might
perform specialized parsing of the objects passed to it. A specific server may
be closely affiliated with one particular agent that uses it, or it may provide ser
vices to several agents.

Specific servers may be sensitive to the contents of the byte stream passed to
them. They may reject the object because it violates application-specific rules.
They are not expected to cope with byte streams other than those defined for
them.

The general server is a server that OS uses to store server objects in OS's
storage space. It is. a reversible server that is completely Insensitive to the
contents of the objects it stores.

OS perceives the objects it transports as no more than streams of bytes.
Whenever a OSU Is uncertain as to whether or not an object will have to be
retrieved for forwarding or creating additional local copies, the OSU stores the
object with a reversible server. If the OSU has available to it the destination
server named In the distribution, and if that server is reversible, the DSU may
use it to store the object without having to determine its role for the distribution.

42 SNA/Distribution Services Reference

In general, however, there will be distributions received with destination server
names that the DSU does not have. (This implies that the DSU's role for the
distribution in question is purely intermediate, since it could not make any local
deliveries.) In such cases, the DSU invokes a general server, totally ignoring
the destination server name. In some implementations, the program invoked
might be the same as that used to provide a specific server function. The name
specified in the server protocol boundary verbs, however, would be that of the
general server. To OS, therefore, it would be a different server.

The general server is not sensitive to the contents of the byte stream passed to
it. It cannot reject an object because of its contents. Typically, the space into
which a general server stores its objects is associated with the system rather
than a particular user or application.

The general server's name is used in server protocol boundary verbs but
usually does not flow in DTMUs. The server name specified in the distribution
request (which then flows in the DTMU) is usually a specific server name. The
originating agent might, however, choose to specify the general server name
for objects that have no significant internal structure and can conveniently be
accessed by the destination agent as a serial byte stream. This implies that the
space into which the general server stores objects is accessible to the origin
and destination agents.

The most general model of OS's use of servers is illustrated in Figure 25 on
page 44. In this model, the agent's request (arrow 1) names a specific server
to be used at the origin and destination. (Arrow 0 indicates the agent's inter
action with the server before invoking OS.) The DSU copies the server object
from the user's (or agent's) private space (arrow 2) into system space (arrow
3), invoking the origin specific server to read the object and the general server
to write it. Depending on parameters specified on the agent's request, the DSU
may or may not make this copy before returning control to the agent. Once the
object has been copied into OS space by the general server, OS has responsi
bility for the distribution request. When a connection is available to send the
distribution to the adjacent OSU, OS invokes the general server to read the
object (arrow 4), builds the object into the OTMU, and sends it to the partner
DSU.

The partner DSU, upon receiving the DTMU, stores the server object into
system (OS) storage space using the general server (arrow 5). If the DSU dis
covers, during the routing and directing process, that the distribution contains
destinations local to the OSU, it copies the server object into the destination
user's (or agent's) private storage space, invoking the general server to read
the object (arrow 6) and the destination specific server (named in the distrib
ution) to write it (arrow 7). The destination server information is passed to the
destination agent when it receives the distribution (arrow 8). The agent may
then access the object using the specific server at a later time (arrow 9).

At an intermediate node, the DSU receives the DTMU and stores the object
using its general server. When the distribution is to be sent to the next DSU,
the general server is invoked to retrieve the object for sending (Figure 26 on
page 45). Since the DSU is not a destination for the distribution, the object is
not copied to the specific server.

Chapter 1. Concepts and Facilities 43

(9)

Specific
Server

NEW YORK

(8)

-Agent PB
Presentation

PARIS

(1) (0)

--Agent PB

•••••••(2)•••••••••• Specfffc
•••••••(3)••••••• Server

"yyy•
(Dest)

- •xxx•
(Orfgfn)

Dfrectfng

General
Server

Rout fng ..,. Genera 1

...... (5)·····

US.NYCSYSl

Distrfbutf on
Transport

Server

............... (4)········

EUR.PARSYSl
- - - - -1----- -LU 6.2 BCPB - - - - -

Lower Layers
of SNA

---LU 6.2 BCPB - - - -

-----'-----+------'-----......... -------~----

DTHU-A-----------------.
•• from HKT.PIAF at EUR.PARSYSl ••••••••••
•• to HKT.NEFF at US.NYCSYSl •• using server yyy,,

Figure 25. OS's Use of Servers-General Model

44 SNA/Distribution Services Reference

NEW YORK

- - - - - - -1-----Agent PB.-----+- - - - -

General
Server

Presentation

Directing

Routing

••(2)•••••··~ Distribution
I Transport

"4•(1)········· ••••••••••• .__,
US.NYCSYSl

- - - - - - -1-- -LU 6.2 BCPB-- - - - - -
Lower Layers
of SNA

-------~-+------+----·------

DTMU-8:-----------,
,,from HKT.PIAF at EUR.PARSYSl ••
•• to OPS.CHASE at US.CHISYS2 •••
••• using server yyy •••••••••••

DTHU-A----------,
,,from MKT.PIAF at EUR.PARSYSl ••
..to OPS.CHASE at US.CHISYS2 ••
••• using server yyy ••••••••••

Figure 26. The General Server at an Intermediate DSU

Server Exceptions and Repor11ng
Errors or exceptions may occur during any of the server operations that are
performed as part of a distribution. The actions that OS takes and the excep
tion reports that it generates vary, depending on which server detects the
exception. Specific servers are viewed as belonging to a using application (as
are agents); the general server is viewed as belonging to OS. OS's actions in
response to an exception Indication from a server reflect this notion.

The most general model of OS's use of servers is illustrated in Figure 25 on
page 44. At the origin, the server object is copied from the origin specific
server to the general server. At the destination, the object is copied from the
general server to the destination specific server. These copy-making steps are
referred to as auxiliary server operations.

Auxiliary server operations are performed by OS as a service to the application
program, prior to accepting responsibility for the request at the origin and after
receiving the distribution at the destination. An exception that occurs during an
auxiliary operation is reported via either a distribution report or a local server
report, depending on whether the general or the specific server detects the
exception.

Chapter 1. Concepts and Facilities 45

An exception that involves OS or the general server is reported via a distrib
ution report. An exception that involves the specific server is reported to the
local agent via a local server report.

At the origin, an exception detected by the specific server results in the delivery
of a local server report to the local agent. The distribution is aborted (it could
not be accepted by OS, since the server object could not be read).

Once the object has been successfully copied to the general server at the origin
and OS has accepted responsibility, any exceptions detected by the general
server or OS are reported via distribution reports. Whether at an intermediate
OSU or at the destination OSU, if the general server is unable to store the
object upon receipt of the distribution, OS generates a rer>ort and sends it to the
"report-to" destination specified by the originator (see "Distribution Reporting"
on page 66).

After the distribution has been received by the destination DSU and the server
object has been successfully stored by the general server, an auxiliary opera
tion is performed to copy the object from the general server to the specific
server (arrows 6 and 7 in Figure 25 on page 44). An exception during this
operation is treated similarly to a failure during the auxiliary operation at the
origin. If the exception involves OS or the general server, the exception is
reported via a distribution report, and the distribution is terminated. If the
exception involves the specific server, it is reported via a local server report to
the local agent, and the distribution is delivered to the destination agent.

The rules for reporting server exceptions reflect the notion that the specific
server belongs to the application and the general server belongs to OS. Since
a successful general-server operation means that OS has been able to trans
port the object through the network to the destination, a subsequent specific
server exception during the auxiliary server operation is deemed to be the
responsibility of the application; it Is thus reported locally to the destination
agent on the Receive_Distribution verb.

Early Acceptance of the Server Object
The essence of the reporting rules described above is that, at both the origin·
and the destination, specific servers report exceptions to their agents, through
OS. A specific server could have· a variety of reasons for reporting to its agent.
Even if the auxiliary operation is. completely successful, a report might be
required.

A more general case is that of a partially successful operation. For example,
the origin server might be unable to find all the items listed in the distribution
request. If the origin server decides to send the distribution despite the
missing items, it simply indicates to OS a normal completion of the server oper
ation. Only the server would know that the DTMU contains less than the
Send_Distribution verb requested. A responsible origin server would then
report its partial failure to the origin agent via a Ice.al server report. Such a
report has nothing to do with OS, except that OS delivers it to the agent across
the agent protocol boundary.

46 SNA/Distribution Services Reference

At the destination as well, the specific server may encounter a partially suc
cessful operation. It may then choose whether or not to continue receiving the
object.

If it chooses to continue the operation, perhaps discarding whatever portions of
the server object it cannot handle, OS is unaware of any abnormality. Only the
server knows that the original Send_Oistribution is not completely successful. It
is responsible for reporting this to the destination agent via a local server
report.

Alternatively, the specific server may choose to notify OS of the partially suc
cessful operation. It does so by returning an "early acceptance" indication
(more precisely, a SPECIFIC_SERVER_EXCEPTION return code) followed by a server
report. Upon receipt of this indication, OS continues processing the distribution
normally, but terminates the auxiliary server operation. OS delivers the server
report to the destination agent on the Receive_Oistribution verb.

OS does not terminate the distribution because of a specific-server exception at
the destination. Since OS has succeeded in transporting the distribution
through the OS network, termination of the distribution because of an applica
tion (server) condition is not appropriate. OS continues processing the distrib
ution normally, and reports the specific-server exception to the local agent.

Direct Fetch and Store
Implementations may choose not to perform auxiliary server operations at the
origin and destination. At the origin, the copy-making step from the specific
server to the general server may be bypassed, so that the server object is not
retrieved from the specific server until .OS is ready to send the distribution into
the network. This implementation elective is referred to as direct fetch.
Because of the potential reporting complexity, direct fetch is performed only for
distributions that do not require fan-out at the origin. If a distribution requires
origin fan-out, the origin OSU copies the server object to the general server
before sending the distribution.

An implementation elective corresponding to direct fetch may be performed by
a destination OSU. The destination OSU may choose to store an incoming
object directly into an application's (or user's) private space as the OTMU is
being received. This elective is referred to as direct store.

The time during which a OTMU is being received at a OSU is referred to as
receive time. The corresponding time at the sending OSU is referred to as send
time. If any type of direct storing is to be performed, the command portion of
the OTMU must be analyzed at receive time to determine the destination server
name. If direct storing by a nonreversible server is to be performed, the desti
nation list must also be analyzed at receive time to determine whether or not
all the destinations are local. This implies that both the routing and directing
functions are at least partially performed while the OTMU is being received.
For some OSUs, such an analysis might be difficult. For others, such as a OSU
with only one user, it might be trivial.

Chapter 1. Concepts and Facilities 47

If the destination server name Is not supported by the OSU or, for nonreversible
servers, if some of the destination users turn out not to be local, then direct
storing is unachievable and the general server is invoked at receive time.

Exception Handllng with Direct Fetch and Store
If direct fetch or direct store is used in place of an auxiliary operation, OS
reports exceptions based on the same rules that apply to auxiliary operations.
Specific-server exceptions are reported via local server reports; OS exceptions
result In distribution reports.

At the origin, an exception detected by the specific server results in a local
server report; the distribution is aborted (it could not be accepted by OS, since
the server object could not be obtained). An exception detected by OS results
In a distribution report.

At the destination, an exception detected by OS results In the termination of the
distribution and the generation of a distribution report. An exception detected
by the specific server results in a local server report; the distribution Is not ter
minated, but is delivered to the destination agent.

The destination server returns an "early acceptance" indication (i.e., a
SPECIFIC_SERVER_EXCEPTION return code) during direct store to Inform OS that an
exception has occurred and that the server does not wish to receive the
remainder of the server object. The receiving OSU may then choose whether
or not to inform the sending OSU. If the receiving DSU does not inform the
sending DSU, the receiving OSU discards the server object as It Is received
rather than writing It to the server. Alternatively, the receiver may inform the
sender via a Receiver Exception Message Unit. The two OSUs then use
mid-MU restart protocols to continue the transfer of the remainder of the OTMU.
If the remainder of the DTMU is transferred successfully, the destination OSU
passes the server report to the destination agent as part of the
Receive_Oistribution verb.

Server Access Descriptors and Specific Server Information
If a specific-server object is to be included in the distribution, the originating
agent includes the specific server name in the distribution request. The agent
also includes one of two additional parameters: server _access or
specific_server_info. The server_access parameter is used to specify a "pointer"
to the server object. The specific_server_info parameter is used to specify
instructions for the specific server to use to process the object prior to pre
senting it to OS.

OS uses server_access or specific_server_info in much the same way, pre
senting the parameter to the specific server on the lnitiate_Read verb. The
server uses the parameter to return a stream of bytes (the object) to OS. If one
or more of the destinations of the distribution are local to the ortgin OSU,
however, OS may treat the server object differently depending on whether
server_access or specific_server_info is supplied.

The server _access parameter implies that the operation performed by the origin
specific server is one of simple retrieval. If the distribution contains destina
tions local to the origin OSU, OS may choose to bypass the specific server

48 SNA/Distribution Services Reference

operation for those destinations, and merely supply the server _access param
eter to the destination agent on the Receive_Distribution verb. No specific
server operation would be performed to store the specific server object on
behalf of the local destinations.

The specific_server_info parameter implies that the specific server performs
some sort of application-specific processing of the object prior to presenting it
to DS. If this parameter is specified, DS does not bypass the specific server
operation for local destinations. OS invokes the specific server to "read" the
object and perform the application-specific processing indicated by
specific_server_info. (In some cases, the specific_server_info might contain all
the data returned on the Read verb.) DS then invokes the specific server again
to store the object for the local destinations.

DS issues access-management verbs to control access to specific server
objects described by server_access. No access-management verbs are used
when specific_server_info is supplied in the distribution request.

Agent vs. Server Objects
Small amounts of data that the origin agent wishes to transfer directly to the
destination agent are encoded in the agent object. Although the destination
server is allowed read-only access to this data, the agent object is not deliv
ered directly to the destination server nor to general servers at intermediate
DSUs. The server object is intended for larger objects, or objects that require
application-specific processing by servers. The origin application program may
use both the agent and server objects to achieve a "double-barreled" flow to
the destination agent and server: the origin agent sends information to the des
tination agent in the agent object; the origin server sends information to the
destination server in the server object. This is Illustrated in Figure 27 on
page 50.

Chapter 1. Concepts and Facilities 49

NEW YORK

- - - - -1----1-Agent PB

Specfff c
Server
•yyy"
(Dest)

US.NYCSYSl SNA/DS
- - - - -1----t-1-LU 6.2 BCPB - - - - - -

Lower Layers
of SNA

PARIS

.-------1Specf fie

EUR.PARSYSl

Server
"xxx"

(Origin)

- --LU 6.2 BCPB - - - -

- - - - -~---+-----~- - - - - -'--Ir-+------~- - - -

DTH11h--.--.----....---..---.
Agent Server
Object Object

Figure 27. Flow of Agent and Server Objects

The Server Protocol Boundary
Servers are outside the OS architecture. Between the servers (there could be
several) and the OS processes is a protocol boundary much like the agent pro
tocol boundary. Instead of requests and deliveries, the server protocol
boundary has server objects and certain control information passed across it.

The verbs that define the functions of passing the server object across the
server protocol boundary are:

• lnitiate_Read

• Read

• Terminate_Read

• lnitiate_Write

• Write

• Termlnate_Write

If an exception occurs after an object has been completely stored (and ,
Terminate_ Write has beeh issued), the OSU may have to instruct the server to
delete the object previously stored and back out any application-specific proc
essing performed during the storing operation. The OSU issues this instruction
via the verb

50 SNA/Distribution Services Reference

DS and LU 6.2

• Backout_Server_Object

Before OS accepts responsibility for distributing an object, it establishes
"access rights" to prevent any rewriting or deletion of the object before OS is
finished sending it out. Two access verbs provide this capability:

• Assign_Read_Access

• Release_Read_Access

These access verbs are used by OS and the agent (originator or destination) to
accomplish the transfer of responsibility for the server object, and to ensure
that the object is maintained by the server while the agent or OS requires
access to it.

Once a server object has been created and the first read-access rights have
been assigned, the object cannot be modified or deleted until all read-access
rights have been released. The general server automatically deletes a server
object in its space when the object's read-access list becomes empty. The
deletion action for specific server objects depends upon the specific server.

OS uses two additional verbs to exchange information with the server regarding
mid-MU restart of the server object:

• Query_Last_Byte_Received

• Terminate_Restartability

OS implementations capable of byte-count restart (see "Mid-MU Restart" on
page 66) specify a restartability parameter on the lnitiate_Read and
lnitiate_Write verbs to request that the server maintain a count of the number of
bytes processed. The DSU queries the restart information by using the
Query_Last_Byte_Received verb. When the restart information is no longer
needed, the DSU issues Terminate_Restartability to allow the server to discard
it.

The Distribution Transport Sublayer
The OS distribution transport sublayer consists of two transaction programs:
OS_Send and DS_Receive. These transaction programs issue LU 6.2 basic con
versation verbs to control the sending and receiving of OMUs over LU 6.2 con
versations. OS_Send is specialized to act as the sender of OMUs; OS_Receive
is specialized to act as the receiver of DMUs.

Each instance of os_send or OS_Receive acts as the endpoint of a single LU
6.2 conversation. OS is designed to operate efficiently on a single-session con
nection, but to exploit parallel sessions if they are available. If the LU at which
a OSU resides offers parallel sessions, the DSU may activate multiple instances
of OS_Send and OS_Receive to make use of all the available sessions.

Chapter 1. Concepts and Facilities 51

The OS transaction program that performs the directing and routing functions is
called "DS_Router_Director." As the router-director operates on outbound dis
tributions, it places those distributions on next-DSU queues. For the purposes
of this discussion, all the distributions that are awaiting transmission to a par
ticular LU using a particular LU 6.2 mode name may be viewed as residing on a
single next-DSU queue for that LU name, mode name combination (see
"Selecting Send Order Using Service Parameters" on page 29 for more about
next-DSU queues).

When DS_Router_Director places a distribution on a next-DSU queue, it checks
that an instance of DS_Send is available to send the distribution to the partner
DSU. Depending on the implementation, the number of sessions available for
use by OS, and the number of instances of DS_Send already active, a new
instance may or may not be started. Implementations monitor the number of
active instances of DS_Send so that a session is available before activating an
additional instance.

When an instance of OS_ Send is started locally (i.e., rather than via an Attach
from DS_Receive) for a particular LU name, mode name connection, it allocates
a conversation with an instance of DS_Receive at the partner DSU. DS_Send
then scans the next-DSU queue serving that LU name and mode name, and
retrieves the highest-priority distribution from the queue. It encodes the distrib
ution as a DMU and sends it to DS_Receive. If it is able to successfully send
the distribution and if OS_Receive accepts responsibility for it, DS_Send returns
to the next-DSU queue, retrieves the next-highest-priority distribution, and con
tinues the process.

DS_Send's algorithm for selecting entries from the next-DSU queue means that
distributions of higher priority are serviced before distributions of lower priority,
and that distributions of the same priority are serviced in first-in, first-out (FIFO)
order. OS_Send continues sending distributions until the next-OSU queue is
empty or until an exception causes the conversation to be deallocated.

If multiple instances of DS_Send are active for the same LU name, mode name
combination, each one returns to the next-DSU queue independently to retrieve
and ship the next waiting distribution. Figure 28 on page 53 illustrates this
parallel-session scenario, with several instances of DS_Send serving the
next-DSU queue for a connection.

OS traffic flow is normally "push oriented." In other words, the flow of DMUs is
normally initiated by DS_Send, when new traffic arrives at a DSU. A new
instance of DS_Send is started, if necessary; DS_Send then allocates a conver
sation and begins sending DMUs.

It is also possible, however, for OS_Receive to "pull" traffic from a partner
DS_Send. To do so, DS_Receive simply allocates a conversation to DS_Send
and enters receive state. When DS_Send is placed in send state, it begins
sending any traffic on its next-DSU queues. DS_Receive is responsible for
soliciting traffic in this manner after it has reported a recoverable exception to
DS_Send. The recoverable exception causes DS_Send to stop sending traffic;
DS_Receive starts the traffic flow again when the exception condition has been

52 SNA/Distribution Services Reference

remedied. DS_Receive might also choose to solicit traffic in other situations,
such as when a switched connection is being used.

DS_Send and DS_Receive issue LU 6.2 basic conversation verbs according to
precise protocols defined by the OS architecture. The protocols differ for
Format Set 1 and Format Set 2 implementations.

NEW YORK PARIS

1-----------1- - - - - - -r-------Agent PB
Presentation

Directing

Routing

Distribution
Transport

next-DSU

>-----+-----+----+---<--LU 6.2 BCPB- -1---t----t---+----1- - -

Lower Layers
of SNA

~--+----!---+--~- - - - - - -~-+----!---+---~- - -

Figure 28. Multiple Instances of DS_Send and DS_Receive

DS's Use of LU 6.2 Verbs ·- Format Set 2 Implementations
OS Format Set 2 implementations use a three-way now to transfer responsibility
for a high-integrity distribution from OS_Send to DS_Receive. This protocol not
only allows DS_Receive to confirm receipt of the OMU, but also allows the two
cooperating DSUs to prevent the generation of duplicate transmissions in cases
of network or processor failure. In simplified terms, the protocol works as
follows. OS_Send transmits the distribution to OS_Receive, and OS_Receive
returns a report confirming that it was received successfully. This report indi
cates DS_Receive's acceptance of responsibility for the distribution. OS_Send
then discards its copy of the distribution, and sends a notification to
DS_Receive that the distribution has been discarded. OS_Send may then
retrieve and send another distribution, or it may deallocate the conversation.

OS_Send transmits the OMU to DS_Receive by means of one or more LU 6.2
Send_Data verbs. The number of Send_Data verbs required depends on the

Chapter 1. Concepts and Facilities 53

size of the DMU and the size of the implementation's buffers. OS_Receive
issues Receive_And_Wait verbs to receive the DMU. When DS_Send has sent
the last part of the DMU, it issues a Receive_And_Wait verb to place
DS_Receive in send state. DS_Receive then issues Send_Oata to send a Com
pletion Report MU to DS_Send. The Completion Report indicates that
DS_Receive has accepted responsibility for the distribution. DS_Receive then
returns to receive state by issuing Receive_And_Wait. DS_Send issues
Send_Data to transmit a Purge Report MU, confirming that it has discarded its
copy of the distribution, and may then begin sending the next distribution.
When there are no more distributions to send, DS_Send issues Deallocate
Type(FLUSH).

The OS protocol allows for a wide range of throughput. Implementations may
send varying amounts of traffic per conversation, depending on choices made
by the sender and receiver. The protocol used varies slightly from that
described above, depending on those choices.

Levels of Integrity for Distributions
Originators may request one of two levels of integrity for distributions--basic or
high. The three-way flow is used for distributions that specify high integrity.
For this type of distribution, DS_Send assigns a number to the DMU before
beginning to send it to DS_Receive. This number, known as the MU_ID, is
unique for the LU name, mode name combination on which the DMU is being
sent. It is used for recovery of aborted transmissions and for the prevention of
duplicate transmissions in case of network failures. A new MU_ID is used for
each connection on which the distribution is sent.

If the distribution specifies basic integrity, DS_Send does not assign an MU_ID
to the DMU before beginning transmission, and DS_Send and DS_Receive do
not exchange the Completion Report MU and the Purge Report MU. DS_Send
transmits the DMU on a "best-effort" basis, and the handling of lost messages
or duplicates is left to the using application (the agents).

DS's Use of LU 6.2 Verbs -- Format Set 1 Implementations
Format Set 1 implementations use a protocol similar to that described above.
However, instead of confirming the transmission of a DMU with the three-way
flow, they use the LU 6.2 Confirm/Confirmed (two-way) flow. That is, after
issuing the Send_Data verbs to transmit the DMU, DS_Send Issues Confirm. If
DS_Receive accepts the DMU, It replies with Confirmed. DS_Send then pro
ceeds with the next DMU.

Format Set 1 implementations do not use the MU_ID for distributions. They use
the Confirm/Confirmed protocol for all DMUs.

The use of Confirm/Confirmed normally provides a reliable transfer of responsi
bility for the DMU from OS_ Send to DS_Recelve. Some resource failure cases,
however, may result in the generation of duplicate distributions. The use of the
MU_ID and control MUs by Format Set 2 implementations allows these imple
mentations to detect and prevent duplicate transmissions.

54 SNA/Distribution Services Reference

A complete discussion of OS's use of LU 6.2 basic conversation verbs is given
in Chapter 2.

Agent Protocol Boundary Verbs
The agent protocol boundary allows use of two types of verbs: those for sending
and receiving distributions and those for controlling operations. This section
discusses the verbs used by agents to send and receive distributions. The
verbs used by agents and operators to control traffic and perform network defi
nition are discussed in "Operations" on page 68.

Verb Overview--Originating Distributions
Agents originate a distribution by issuing a sequence of one or more of the fol-
lowing verbs: ·

• Send_Distribution initiates a distribution. It is issued either by an origin
agent directly on behalf of a user, or by an origin agent performing higher
level function for the DSU. All sending sequences initiated by the origin
agent include a Send_Distribution.

• Query_Distribution_Sending is issued by a sending agent to determine the
current state of a distribution. In particular. the information returned on this
verb informs the agent whether the sending DSU has completed any neces
sary auxiliary server operations.

• Sending_Sequence_Completed is issued by a sending agent to complete
the sending sequence for a high-integrity distribution.

Verb Overview--Receiving Distributions and Reports
Agents use the following verbs to receive distributions and reports from OS:

• Receive_Distribution is issued by the agent to receive a distribution. The
distribution is returned to the agent in response to the Receive_Distribution
verb.

• Receive_Distribution_Report is issued by an agent to receive a distribution
report.

• Receiving_Sequence_Completed is issued after the receiving agent has
completed any application-specific processing necessary to store the
received distribution.

• Obtain_Local_Server_Report is issued by an agent to obtain a report gener
ated by a local specific server.

Sending Sequences
The sequence of verbs that an agent issues to originate a distribution is called
a sending sequence. The verbs and parameters included in a· sending
sequence vary depending on the level of integrity requested for the distribution
and the type of server object involved (if any).

The originating agent initiates a sending sequence by issuing Send_Distribution.
On the Send_Distribution verb, the agent includes all the control information for

Chapter 1. Concepts and Facilities 55

the distribution. OS processes the Send_Oistribution verb and returns control to
the agent.

The remainder of the sending sequence varies depending on the level of integ
rity requested for the distribution and the type of server object involved. If no
specific-server object is involved (e.g., the distribution contained a general
server object or no server object at all), OS is able to take responsibility for the
distribution immediately. It indicates this by returning sending_ state COMMITTED

on the Send_Oistribution verb. If a specific-server object is involved, OS returns
sending_state SPEC_SERVER_PENDING instead, because OS cannot "commit" itself
to delivering the distribution until the specific-server operation to read in the
server object is completed. The sending_state for the distribution is changed to
COMMITTED after the server object has been successfully retrieved from the spe
cific server.

If the sending_state returned on Send_Oistribution is SPEC_SERVER_PENDING, the
agent must query OS to find out when sending_state has been changed to COM

MITTED. It does so by issuing Query_Oistribution_Sending. The sending state is
returned to the agent in response to Query_Oistribution_Sending. For a high
integrity distribution, the originating agent Is expected to finish the sending
sequence by issuing Sending_Sequence_Completed after OS has returned
sending_state COMMITTED In response to either Send_Oistribution or
Query_Oistribution_Sending. Sending_Sequence_Completed completes the
high-integrity transfer of the distribution from the agent to OS. When the agent
issues Sending_Sequence_Completed, OS changes sending_state to COMPLETED,

Indicating that OS has responsibility for the distribution and that the sending
sequence is complete.

For a basic-Integrity distribution, the agent does not issue
Sending_Sequence_Completed. When the specific server operation has been
completed, the sending_ state for the distribution is changed from
SPEC_SERVER_PENDING to COMPLETED. The agent may issue
Query_Oistribution_Sending to inquire about the state of the distribution.

The agent supplies the distribution identification and includes it on each verb of
the sending sequence. The distribution identification (origin OSU; origin user, if
any; origin agent; date; and sequence number) uniquely identifies the distrib
ution.

Sample Sending Sequences
This section presents sample sending sequences for basic- and high-integrity
distributions with various types of server objects.

Basic-Integrity Distribution wHh No Server Obfect

1. The agent issues Send_Oistribution specifying

• distribution _identification
• integrity BASIC

2. OS returns from Send_Oistributlon immediately with

• return_code OK

• sending_state COMPLETED

56 SNA/Distribution Services Reference

Since the distribution specifies basic integrity, the agent does not issue
Sending_Sequence_Completed. Responsibility for the distribution has been
transferred to OS.

Basic-Integrity Distribution with General-Server Object

1. The agent writes the object into the general server's space using the
lnitiate_Write, Write, and Terminate_Write verbs.

2. The agent allows OS to have access to the server object by issuing
Assign_Read_Access (os). Eventually the agent will issue
Release_Read_Access (agent_name) to allow the general server to free the
storage space.

3. The agent issues Send_Oistribution specifying

• distribution_identification
• server GENERAL

• server_access (access_descriptor)
• integrity BASIC

4. OS prevents the server object from being prematurely deleted by issuing
Assign_Read_Access (os).

5. OS returns from Send_Oistribution with

• return_code OK

• sending_state COMPLETED

Responsibility for the distribution has been transferred to OS. The agent
does not issue Sending_Sequence_Completed.

6. The agent issues Release_Read_Access (os), since it can assume OS
issued Assign_Read_Access for itself before returning control from
Send_Oistribution.

7. After sending the distribution, OS issues Release_Read_Access (os).

Basic-Integrity Distribution with SpecHlc-Server Object

1. The agent stores the object using the specific server, and makes the object
available to OS by issuing Assign_Read_Access (os) to the specific server.

2. The agent issues Send_Oistribution specifying

• distribution _identification
• server (specific_server_name)
• server _access (access_descriptor)
• integrity BASIC

3. OS prevents the server object from being prematurely deleted by issuing
Assign_Read_Access (OS) to the specific server.

4. OS returns from Send_Oistribution with

• return_code OK

• sending_state SPEC_SERVER_PENDING

5. OS performs an auxiliary operation to copy the server object from the spe
cific server to the general server. After acquiring access to the object in
the general server, OS issues Release_Read_Access (os) to the specific

Chapter 1. Concepts and Facilities 57

server. When the copy is completed, OS changes the sending state to COM·

PLETED.

Alternatively, OS may perform direct fetch, deferring its invocation of the
specific server until it sends the OTMU. The sending state is not changed
to COMPLETED until after the object has been read from the specific server.

6. The agent does not issue Sending_Sequence_Completed. It may issue
Query_Oistribution_Sending to inquire about the state of the distribution.

7. The agent issues Release_Read_Access (os) to the specific server.

8. OS issues Release_Read_Access (os) to the appropriate server after the
distribution has been sent.

Basic-Integrity Distribution with Specific-Server Information

1. The agent, by application-specific means, makes the server object (if any)
available when needed. No access verbs are issued when specific server
information is supplied instead of an explicit access descriptor (i.e., the
server _access parameter) for a server object.

2. The agent issues Send_Oistribution with

• distribution_identification
• server (specific_server_name)
• specific _server _info (information)
• Integrity BASIC

3. OS returns control from Send_Oistributlon Immediately with

• return_code OK

• sending_state SPEC_SERVER_PENDING

4. OS performs an auxiliary server operation to read the specific server object
from the specific server and write it to the general server. When the auxil
iary operation has completed, OS changes the sending state to COMPLETED.

OS issues access management verbs to the general server, but not to the
specific server. If OS performs direct fetch instead of an auxiliary operation,
the sending state is not changed to COMPLETED until the direct fetch is com
pleted.

5. The agent does not issue Sending_Sequence_Completed for the basic integ
rity distribution. The agent may issue Query_Oistributlon_Sending to
inquire about the state of the distribution.

High-Integrity Distribution with No Server Object

1. The agent issues Send_Oistribution specifying

• distribution_identification
• integrity HIGH

2. OS returns from Send_Oistributlon immediately with

• return_code OK

• sending_state COMMITIED

3. The agent completes the transfer of responsibility for the distribution by
issuing Sendlng_Sequence_Completed.

58 SNA/Distribution Services Reference

4. OS returns from Sending_Sequence_Completed with

• return_code OK

• sending_state COMPLETED

High-Integrity Distribution with General-Server Object

1. The agent writes the object into the general server's space using the
lnitiate_Write, Write, and Terminate_Write verbs.

2. The agent allows OS to have access to the server object by issuing
Assign_Read_Access (Ds). Eventually, the agent will issue
Release_Read_Access (agent_name) to allow the general server to free the
storage space.

3. The agent issues Send_Oistribution specifying

• distribution_identification
• server GENERAL

• server_access (access_descriptor)
• integrity HIGH

4. OS prevents the server object from being prematurely deleted by issuing
Assign_Read_Access (Ds).

5. OS returns from Send_Oistribution with

• return_code OK

• sending_state COMMITTED

6. The agent completes the transfer of responsibility for the distribution by
issuing Sending_Sequence_ Completed.

7. OS returns from Sending_Sequence_Completed with

• return_code OK

• sending_state COMPLETED

8. The agent issues Release_Read_Access (Ds), since OS has issued
Assign_Read_Access for itself.

9. After sending the distribution, OS issues Release_Read_Access (Ds).

High-Integrity Distribution with SpecHlc-Server Object

1. The agent stores the object using the specific server, and makes the object
available to OS by issuing Assign_Read_Access (Ds) to the specific server.

2. The agent issues Send_Distribution specifying

• distribution _identification
• server (specific_server_name)
• server _access (access_descriptor) .
• Integrity HIGH

3. OS prevents the server object from being prematurely deleted by issuing
Assign_Read_Access (Ds) to the specific server.

4. OS returns from Send_Distribution with

• return_code OK

• sending_state SPEC_SERVER_PENDING

Chapter 1. Concepts and Facilities 59

5. OS performs an auxiliary operation to copy the server object from the spe
cific server to the general server. After acquiring access to the object In
the general server, OS issues Release_Read_Access (os) to the specific
server. When the copy is completed, OS changes the sending state to COM

MITTED.

Alternatively, OS may perform direct fetch, deferring its invocation of the
specific server until it sends the OTMU. The sending state is not changed
to COMMITTED until after the object has been read from the specific server.

6. The agent determines the state of the distribution by Issuing
Query_Oistribution_Sending, specifying the distribution_identification. The
agent may have to issue Query_Olstribution_Sending more than once, until
sending_state is returned as COMMITTED.

7. When OS returns sending_state COMMITTED in response to
Query_Oistribution_Sending, the agent completes the high-integrity transfer
of responsibility by issuing Sending_Sequence_Completed.

8. OS returns from Sending_Sequence_Completed with

• return_code OK

• sending_state COMPLETED

9. The agent issues Release_Read_Access (Os) to the specific server.

10. OS issues Release_Read_Access (os) to the appropriate server after the
distribution has been sent.

Hlgh-lntegrHy Distribution with SpecHlc-Server Information

1. The agent, by application-specific means, makes the server object (if any)
available when needed. No access verbs are issued when specific server
Information is supplied instead of an explicit access descriptor for a server
object.

2. The agent issues Send_Oistribution with

• distribution_identification
• server (specific_server_name)
• specific_server_info (information)
• Integrity HIGH

3. OS returns control from Send_Oistribution Immediately with

• return_ code OK

• sending_state SPEC_SERVER_PENDING

4. OS performs an auxiliary server operation to read the specific server object
from the specific server and write it to the general server. When the auxil
iary operation has completed, OS changes the sending state to COMMITTED.

OS issues access management verbs to the general server, but not to the
specific server. If OS performs direct fetch instead of an auxiliary operation,
the sending state is not changed to COMMITTED until the direct fetch is com
pleted.

5. The agent determines the state of the distribution by issuing
Query_Oistribution_Sending, specifying the distributlon_ldentification. The

60 SNA/Distribution Services Reference

agent may have to issue Query_Distribution_Sending more than once, until
sending_state is returned as COMMITTED.

6. When OS returns sending_state COMMITTED in response to
Query_Distribution_Sending, the agent completes the high-integrity transfer
of responsibility by issuing Sending_Sequence_Completed.

7. DS returns from Sending_Sequence_Completed with

• return_code OK

• sending_state COMPLETED

Receiving Sequences
The sequence of verbs that an agent issues to receive a distribution is called a
receiving sequence. The agent initiates a receiving sequence by issuing
Receive_Distribution. OS passes the distribution to the agent in response to the
Receive_Distribution verb. After performing any necessary handling and
storage of the distribution, the agent issues Receiving_Sequence_Completed.
The Receiving_Sequence_Completed verb completes the transfer of responsi
bility for the distribution from OS to the agent.

Distribution reports are received using a similar receiving sequence. The agent
issues Receive_Distribution_Report to obtain the distribution report. After
storing the report, the agent issues Receiving_Sequence_Completed to com
plete the transfer of responsibility.

Sample Receiving Sequences
The two-verb receiving sequence described above is used for both basic- and
high-integrity distributions. Sample sequences are given below for the various
types of server objects that may be involved in a distribution. Distribution
reports are received using a sequence similar to that for a distribution with no
server object.

Distribution with No Server Object

1. The agent issues Receive_Distribution. The agent specifies the identifier of
the local queue frorri which the distribution is to be received. The agent
may also specify the distribution_identification of a particular distribution to
be received. If no dlstribution_identification is specified, the first entry in
the queue is returned.

2. OS returns from the Receive_Distribution with the control information (i.e.,
the DS command and the destination list) for the distribution and the agent
object (if present).

3. After performing the appropriate agent-specific actions for handling and
storing the distribution, the agent issues Receiving_Sequence_Completed.
Responsibility for the distribution has been transferred to the receiving
agent.

Chapter 1. Concepts and Facilities 61

Distribution with General-Server ObJect

1. The agent issues Receive_Oistributlon specifying

• queue _identifier
• {optionally) distribution_identificatlon

2. OS returns from Receive_Oistribution with the control information for the
distribution (including the server access information).

3. The agent issues Assign_Read_Access (agent_name) so that the object is
not deleted prematurely. OS has previously issued Assign_Read_Access
(agent_name) to allow the agent to access the object.

4. The agent issues Receiving_Sequence_Completed to complete the transfer
of responsibility.

5. After the last copy of the distribution has been accepted by the agent (there
could be multiple copies if destination fan-out has been performed), OS
issues Release_Read_Access (agent_name), since OS can assume that the
agent acquired access for itself before issuing
Receiving_Sequence_Completed. OS issues Release_Read_Access (os) to
notify the server that OS no longer requires access to the object.

Distribution with Specific-Server Object

1. The agent issues Receive_Oistribution specifying

• queue _identifier
• (optionally) distribution_identificatlon

2. OS returns from Receive_Oistribution with the control information for the
distribution (including the server and access control information). OS has
previously stored the object using the specific server.

3. The agent issues Assign_Read_Access (agent_name) to acquire access to
the object. OS has previously issued Assign_Read_Access (agent_name) to
allow the agent to access the object.

4. The agent issues Receivlng_Sequence_Completed to complete the transfer
of responsibility.

5. After the last copy of the distribution has been accepted by the agent (there
could be multiple copies if destination fan-out has been performed), OS
issues Release_Read_Access (agent_name), since the agent has acquired
access for itself. OS issues Release_Read_Access (os) to notify the server
that OS no longer requires access to the object.

Distribution with Specific-Server Information

1. The agent issues Receive_Oistribution specifying

• queue_identifier
• (optionally) distribution_identification

2. OS returns from Receive_Oistribution with the control information for the
distribution (including specific_server_info). The specific server has previ
ously returned specific_server_info to OS in response to the
Terminate_Write verb.

62 SNA/Distribution Services Reference

3. Access management verbs between the server and DS are not used when
specific _server _info is returned instead of server _access.

4. The agent issues Receiving_Sequence_Completed to complete the transfer
of responsibility.

Exception Occurrences and Conditions
In DS, exception occurrences include both conditions detected by various enti
ties at a DSU and intervention by operators. Most types of exceptions consist
ently produce particular observable conditions.

Some types of exceptions have results that depend on timing conditions or con
currency of events. Such results are difficult to reproduce or even to detect.
An example of a timing-dependent exception condition is the generation of
duplicate distributions, which is possible in Format Set 1 implementations
(Format Set 2 protocols allow implementations to prevent duplicate generation).

DS exception conditions can be classified according to the layer in which they
are detected or caused:

• Application--agents and servers

• DS--the DSU itself

• LU 6.2

Application Exceptions: Because of OS's interaction with the application, DS is
often aware of exception conditions that are detected or caused at the applica
tion layer. For example, a specific-server exception is considered, from the DS
perspective, to be an exception at the application layer. If a server exception
occurs while DS has responsibility for the distribution, DS may have to termi
nate the distribution (if told to do so by the server) and, perhaps, report the
exception.

OS Exceptions: Exception conditions detected by the DS layer fall into two cat
egories:

• Exceptions detected in the verbs at the protocol boundaries

• Exceptions detected, or operator intervention performed, after DS has
accepted responsibility for the distribution.

Exceptions are detected when the control information in the distribution cannot
be reconciled with the information in a DSU's tables, or when a resource fails.
The exceptions that may be detected are

• Routing exception
• Directing exception
• Format exception
• Function not supported
• System exception
• Others

Chapter 1. Concepts and Facilities 63

OSUs are required to perform certain minimal checks before accepting a dis
tribution. These checks are performed by OS presentation services before
accepting a distribution from an agent across the agent protocol boundary, and
by OS_Receive before accepting a distribution from another OSU. Implementa
tions may choose to perform additional checks before accepting responsibility
for distributions. The minimal set of required checks is described in
Appendix C.

See Appendix E for a complete list of the exceptions that may be detected by
OS.

LU 6.2 Exceptions: OS is aware of LU 6.2 exception conditions because OS
must be prepared to accept a variety of responses to the LU 6.2 basic conver
sation verbs it issues.

Exception Analysis
Within the OSU, exception conditions may be detected at any of the four OS
sublayers. As discussed above, an exception may originate within the OSU
itself, in the application (the agent or server), or in the LU. The actions taken in
response to a particular exception depend on the nature of the exception, the
detector of the exception, and the scope of the exception.

Detector: Any of four OS components may detect an exception:

• OS presentation services: The exception is detected at the protocol
boundary, while OS is processing a request from an agent.

• OS_Router_Oirector: The exception is detected while OS is performing
routing or directing functions.

• OS_Send: The exception is detected during the sending process.

• OS_Receive: The exception is detected during the receiving process.

Responses to exceptions detected by OS presentation services are discussed in
Appendix F. Responses to exceptions detected by other OS sublayers are dis
cussed in Appendix E.

Scope: The scope of the exception condition may be any of the following:

• The OSU: The condition affects all distributions at the OSU.

• The connection: The condition affects all distributions being transmitted, or
enqueued for transmission, on a certain connection (LU name, mode name).

• The distribution copy: The condition affects one entire distribution copy and
is unrelated to the destination list.

• Some but not all destinations of the OMU: One or more destinations are
directly affected by the exception, and one or more destinations are unaf
fected.

• All destinations of the OMU: All destinations in the destination list are
equally affected. This is different from a scope of the distribution copy only
because the exception is per destination; all destinations happen to be
affected.

64 SNA/Distribution Services Reference

• Local destinations only: The condition affects only destinations that are
local to the DSU.

• To be determined: A temporary condition has occurred that will not affect
the distribution (or DSU) unless, after an implementation-defined number of
retries has been attempted, the condition is deemed unrecoverable.

As a result of implementation choices concerning role, electives, and optimiza
tions, as described in Appendix C, the exception information generated for a
particular condition may vary slightly from one implementation to another. All
implementations must be prepared to receive any of the valid report codes, as
listed in Appendix E.

Exception Handling
Exception conditions detected by the DS presentation services sublayer are
generally reported to the agent as returned parameters on a protocol boundary
verb. For exception conditions detected by the routing, directing, or transport
sublayers, exception handling procedures may include any of several actions:

• Hold or release the next-DSU queue for the connection, so that transmission
to the adjncent DSU is stopped or started. The hold condition placed on the
next-DSU queue in response to an exception is termed an exception-hold.
An exception-hold is released by operator action or by the initiation of a
new instance of DS_Send. This contrasts with an operator-hold, which is
placed on a distribution or a queue by an operator and is released only by
operator action.

• Perform MU-level reporting to inform the adjacent DSU, possibly termi
nating the DMU transmission. For DS_Send, this means sending a Sender
Exception MU. For DS_Receive, this means sending a Receiver Exception
MU.

• Log the exception condition and notify the operator.

• Abort the distribution, generate a distribution report describing the excep
tion condition, and send it to the report-to DSU or user specified in the dis
tribution.

• Abort the distribution and return a specific-server report to the local agent.

• Purge the distribution from the queue and purge the associated server
object, if any.

Any of these actions may be allowed, required, or precluded for a particular
exception condition. The tables in Appendix E give the prescribed actions for
exceptions detected at various points during the processing of a distribution.

The DSU may perform any of several types of reporting in handling an excep
tion condition. The types of reporting performed by OS are

• Local-agent reporting
• MU-level reporting
• Distribution reporting
• Reporting to the local operator

The types of reporting are described in more detail in Appendix E.

Chapter 1. Concepts and Facilities 65

Mid-MU Restart
Conversation failures or resource failures may occur during the transmission of
a DTMU. Format Set 2 DS implementations are capable of restarting a failed
DTMU at or near the point of failure, rather than having to retransmit the entire
DTMU. The term for this capability is mid-MU restart.

OS implementations provide two types of mid-MU restart. All Format Set 2
implementations provide the capability to resume the transmission of a failed
DTMU at the beginning of any of the highest-level structures following the agent
object. Since the highest-level structures of a DTMU are sometimes referred to
as LLIDs (because of the format of their encoding) this type of mid-MU restart is
referred to as LLID restart.

OS implementations may elect to provide an additional type of mid-MU restart
called byte-count restart. A DSU that provides byte-count restart is capable of
restarting a transmission at any byte position within the server object.

To provide mid-MU restart, DSUs maintain knowledge of the high-level struc
tures of the DTMU already received. Implementers of byte-count restart, in con
junction with their servers, also maintain knowledge of the number of bytes of
the server object already received. After a failure during the transmission of a
DTMU, the receiver notifies the sender of the last structure it received and,
optionally, of the last byte within the server object it received. The sender then
continues the transmission based on that information.

Further Information on the mid-MU restart elective is given in the implementa
tion model in Chapter 3 and in Appendix C.

Distribution Reporting
In OS, two kinds of reports are returned to agents. One kind is the local server
report, which is generated by a specific server and given to the local agent by
OS. Local-server reports inform the agent of an application-specific condition
detected by the specific server.

The other kind of report is the distribution report. The originator may specify, in
the distribution request, that DS is to report on the condition of the distribution.
For example, the originator may wish to be informed if OS is unable to deliver
the distribution. Then, if an exception occurs, DS generates a report and
delivers it to the report-to user (or DSU) named in the request.

Distribution reporting may be requested for high-integrity distributions only (not
for basic-integrity distributions).

Distribution Report Message Units
When distribution reports are sent through the network, OS encodes them as
distribution report message units (ORMUs). The structure of a DRMU is shown
in Figure 29 on page 67. Like a DTMU, a ORMU is introduced by a prefix and
concluded by a suffix. The command contains the control information for the
DRMU; the report information and SNA Condition Report describe the particular
condition being reported. The report-to DSU/user is the DSU or user to which
the report is being sent.

66 SNA/Distribution Services Reference

Prefix Co11111and Report-To
DSU/User

Report
lnfonnation

SNA Condition
Report

Suffix

Figure 29. Distribution Report Message Unit Structure

Service Parameters in the DRMU
Like the DTMU, the DRMU carries service parameters that specify handling
instructions for the distribution report. The parameters that may be specified in
the DRMU are priority, protection, and security. There is no capacity parameter
in the DRMU because the DRMU does not carry a server object. Any or all of
the service parameters may be omitted from the DRMU. Default service levels
are defined (see Appendix G) for each service parameter; DSUs processing the
DRMU assume the default values for any parameters that are omitted.

The originator of the distribution may specify report service parameters explic
itly in the distribution request. If report service parameters are specified, they
are used as the service parameters in any DRMUs that are generated as part of
the distribution.

If the originator does not specify one or more of the report service parameters,
a DSU that generates a report derives appropriate service parameters for the
DRMU from the service parameters in the DTMU. For the protection and secu
rity parameters, the comparison operator and value derived are the same as
those specified (either explicitly or via defaults) in the DTMU. For example, if
the DTMU specified protection (REQUIRE_LEVEL_GE LEVEL2), the same parameter is
used in the DRMU.

For the priority service parameter, the value derived is either FAST or CONTROL

FAST is used if the DTMU specified FAST priority; CONTROL is used if the DTMU
specified a DATA_N priority. CONTROL priority is used only in DRMUs; it may not
be specified for the priority service parameter in a DTMU.

The originator explicitly specifying a report service parameter for priority may
specify a value of FAST, CONTROL, or DATA_N.

The Repor1-To Agent
If the originating agent requests reporting on a distribution, it may specify the
particular agent that is to be invoked to receive any distribution reports. If no
report-to agent is specified, the agent invoked will be the same as the origin
agent for the distribution.

A report-to agent might be specified if the origin agent is not appropriate for
receiving report information. For example, if a large number of destinations is
specified, it might be desirable to have a special registry agent keep track of all
the destinations, noting any errors encountered as reports are received. The
originator could then get a consolidated report on the entire distribution.

Chapter 1. Concepts and Facilities 67

Third-Party Reporting

Operations

Besides specifying the destination of the distribution, the originating agent may
specify a third party to which all distribution reports are to be sent. This
report-to party may be a user or a DSU. If no report-to user or DSU is speci
fied, reports are sent to the originating user or DSU. The originator specifying
a third party for reporting should be reasonably confident that both the report-to
DSU/user and a route to that DSU/user exist.

The agent protocol boundary consists of two types of verbs. Verbs used to
send and receive distributions are discussed in "Agent Protocol Boundary
Verbs" on page 55. The architecture also defines operations verbs, which are
used by agents and operators to manage OS traffic, manage OS connections,
and maintain DSU definitions. The operations verbs are listed below.

Managing Distributions
Operations verbs permit agents to manage the distributions they have origi
nated or that have been queued for delivery to them.

• List_Queues_Containing_Distribution returns the queue identifier of every
queue that contains a copy of the specified distribution.

• List_Queue_Entries returns a list of the entries in a specified queue.

• Get_Distribution_lnfo returns the control information for a specified distrib
ution.

• Purge_Queue_Entry deletes a copy of a given entry from a given queue.

• Hold_Distribution_Copy places a hold on a given copy of a given distribution
on a given queue.

• Release_Distribution_Copy releases the hold on a given copy of a given dis
tribution on a given queue.

Managing Connections
Some OS implementations choose to exercise close control over the number
and usage of a connection's conversations (and underlying sessions). These
verbs for managing connections are limited to operations agents; they are not
meant to be issued by ordinary user agents.

• List_Conversations lists the number of active conversations, both sending
and receiving, for a connection, or an adjacent DSU, or for all adjacent
OS Us.

• List_Distributions_Being_Sent lists the IDs, including size of the yet-to-be
sent portion of the server object, for all the distributions currently in the
process of being sent on a connection, or on all connections to an adjacent
DSU, or on all active connections.

• List_Distributions_Being_Received lists the IDs and attributes, including the
size of the already-received portion of the server object, for all distributions
currently in the process of being received on a connection, or on all con
nections to an adjacent DSU, or on all active connections.

68 SNA/Distribution Services Reference

• List_Adjacent_DSUs lists selectively the DSUs adjacent to the local DSU.

• List_ Connections lists selectively the connections available to the DSU.

• List_Control_MU_Queue lists the entries on a specified Control MU queue.

• Start_ Connection causes the appropriate number of DS_Send instances to
be started. A parameter of this verb can be used to set the maximum
number of instances of DS Send that the DSU is allowed to start.

• Reset_MU_ID_Registry allows an operator to resynchronize the MU_ID reg
istry for a connection.

• Terminate_Connection causes every conversation on the connection to be
stopped, either abruptly, or with a suspend, or as the MU in progress com
pletes.

• Terminate_ Conversation causes a particular conversation to be stopped,
either abruptly, or with a suspend, or as the MU in progress completes.

• Reroute_Distribution_Copies causes all, or a selection of, the distribution
copies found on a next-DSU queue to be reprocessed through the routing
logic. Typically, the next-DSU queue will have been placed in the inactive
state and the rerouting will queue the distributions for alternate next-DSUs.

Maintaining DSU Definitions
The DS system-definition verbs are used to create and maintain the various
tables and miscellaneous values that constitute the definition of a particular
DSU. The verbs are described below as they would be issued at the local oper
ations protocol boundary.

The verbs used to support DSU definition are the following:

• List_DSU_Data is used to display to the operator the value of a specified
system parameter or the entries in a defined table.

• Add_DSU_Data is used to add an entry containing one or more data param
eters to a data structure that can contain a list of entries.

• Remove_DSU_Data is used to remove an entry containing one or more data
parameters from a data structure that can contain a list of entries.

• Modify_DSU_Data is used to change the value of one or more data parame
ters in a data structure. This verb is used for mandatory parameters of the
DSU definition, such as the DSU name. It may also be used to modify a
portion of an existing list entry.

The OS data-structures that constitute the definition of a DSU and are main
tained by the above verbs are the following:

• Directory
• Routing table
• Intervention list
• DSU definition
• Connection definitions
• Next-DSU queue definitions
• Agent list
• Server list

Chapter 1. Concepts and Facilities 69

Managing Logs

• MU ID registry

• Get_Exception_Log_Entry returns a given exception logged by OS.

• Get_Distribution_Log_Entry returns the message-unit control i.nformatlon
logged by OS.

70 $NA/Distribution Services Reference

Chapter 2. Overview of SNA/DS Protocols

The DS Distribution Transport Sublayer
This chapter describes OS's use of LU 6.2 for Format Set 2 implementations.
For a detailed model of OS's use of LU 6.2, refer to Chapter 3.

A brief introduction to the OS distribution transport sublayer is given in
Chapter 1. This sublayer is composed of two transaction programs called
DS Send and DS Receive. Each instance of OS Send or DS Receive acts as - - - -
the endpoint of a single LU 6.2 conversation. Parallel conversation usage is
achieved via multiple instances of the transaction programs.

In general, traffic is sent in both directions between a pair of DSUs. Instances
of DS_Send at each DSU transmit distributions to instances of DS_Receive at
the partner. The sessions between the DSUs may be grouped according to
mode name. Figure 30 shows two DSUs communicating over parallel sessions
with two different mode names. Distributions are sent in only one direction on
a given conversation, from DS_Send to DS_Receive. Control message units
may flow in either direction on the conversation, from DS_Send to DS_Receive
or from DS_Receive to DS_Send.

DSU: A
LU: A

To DSU B, Mode X

To DSU B, Mode Y

~ --+---r-'----,

To DSU A, Mode Y

Figure 30. Parallel Session Usage Between Two DSUs

DSU: B
LU: B

To simplify the following discussion, Figure 31 on page 72 illustrates the main
components of the distribution transport sublayer for a single direction of
transfer on a single mode name (FAST). At DSU A, three instances of DS_Send
are sending traffic on a connection to DSU B. The connection is identified by
the combination of the name of the LU at which the partner DSU resides and
the mode name of the conversations over which the DSUs communicate.
Except for the Router-Director queue, separate instances of the data structures

Chapter 2. Overview of SNA/DS Protocols 71

shown in Figure 31 are maintained for each connection (i.e., each LU name,
mode name pair).

Data Structures at the Sending DSU
All three instances of DS_Send obtain the distributions that they send to their
partner from the same next-DSU queue. As discussed in Chapter 1, an imple
mentation might use one or more than one next-DSU queue for each con
nection. For the purposes of this discussion, assume all distributions awaiting
transmission on a particular connection reside on a single queue.

Besides the DMUs they transmit to the partner DSU, the DS_Send instances
generate and transmit control MUs, which they use to inform the partner DSU
about the status of DMUs. In the OS mode.I in this document, control MUs are
placed on a separate queue (the control-MU queue) when they are generated,
and are transmitted by the first instance of DS_Send that becomes available.
Whenever an instance of DS_Send enters send state, it checks the control-MU
queue; if it finds entries there, it transmits them. If the control-MU queue is
empty, DS_Send checks the next-DSU queue and transmits the highest-priority
distribution it finds there.

OSU: A DSU: 8
Next-OSU LU: A LU: 8 Router-Director
Queue for Queue

LU 8, Mode FAST

~ ~
LJ Hfd-HU LJ Queue . .

for LU A,
Mode FAST

Control HU

LJ Queue LJ LJ
Control HU

for LU 8, Queue for
Mode FAST LU A, Mode FAST

Conversations for Mode FAST

Figure 31. Components of the OS Distribution Transport Sublayer

Each instance of DS_Send transmits MUs over a single LU 6.2 conversation to a
partner instance of DS_Receive. DS_Send is specialized to send DMUs;
DS_Receive Is specialized to receive DMUs. Both DS_Send and DS_Receive
send and receive various types of control MUs.

72 SNA/Distribution Services Reference

Data Structures at the Receiving DSU
At the partner DSU, Instances of DS_Receive (three, in the sample configuration
in Figure 31) receive DMUs and control MUs from the corresponding instances
of DS_Send. After an instance of DS_Receive successfully receives a DMU, it
enqueues a control block representing the DMU on the router-director queue for
further processing.

The instances of DS_Receive share a control-MU queue for the connection,
from which they transmit control MUs to the instances of DS_Send. Whenever
an instance of DS_Receive enters send state, it obtains the first entry on the
control MU queue and transmits it to DS_Send. It continues sending control
MUs until the control-MU queue is empty, and then returns to receive state.

The instances of DS_Receive also share a mid-MU restart queue for the con
nection. When DS_Receive begins receiving a DMU, it makes an entry for that
DMU on the mid-MU restart queue. As DS_Receive receives the DMU, it
updates its control block on the mid-MU restart queue. If an exception occurs
and the DSUs decide to attempt mid-MU restart, DS_Receive informs DS_Send
of the point at which retransmission should begin based on the information in
the mid-MU restart queue entry. When DS_Receive receives the continuation of
the DMU, it finds the queue entry and continues updating it. Finally, when the
DMU has been completely received, DS_Receive enqueues its control block on
the router-director queue and removes it from the mid-MU restart queue.

The MU_ID Registries
Each DSU shown in Figure 31 on page 72 contains an MU_ID registry for the
connection. The MU_ID registry tracks the state of each MU_ID currently in use
by the DSU. An MU_ID is a number representing a particular piece of work in
progress between the transport sublayers of the two DSUs.

MU_IDs are used only when transmitting distributions that specify high integrity.
Since no confirmation flows are exchanged for basic-integrity distributions,
MU_IDs are not assigned to them. Basic-integrity distributions are transmitted
on a best-effort basis; exceptions that occur during transmission may cause a
basic-integrity distribution to be lost.

If a distribution on the next-DSU queue specifies high integrity, it is assigned an
MU_ID by the sender when it is first selected for transmission to the partner
DSU. The MU_ID uniquely identifies the distribution until the two DSUs agree
that they have finished (successfully or unsuccessfully) the piece of work
represented by that MU_ID. At any time during the transmission of the distrib
ution, the MU_ID is in a particular state; when the DSUs finish using it, it is
marked PURGED by both DSUs. Each DSU updates the state of the MU_ID as it
processes the distribution, and as it receives control MUs containing informa
tion about the MU_ID from the partner. Refer to "Management of Message Unit
IDs" on page 81 for more information about the use of MU_IDs and their states.

Figure 31 on page 72 illustrates the transport sublayer for a single connection
(LU name, mode name combination). Except for the router-director queue (of
which there is typically only one per DSU), each DSU contains an instance of
each data structure shown in Figure 31 for each connection (LU name, mode
name pair) over which it communicates.

Chapter 2. Overview of SNA/DS Protocols 73

Defining Connections
A DS connection is defined as the set of LU 6.2 sessions using a particular
mode name over which a DSU communicates with another DSU. A connection
is identified by both the LU name of the partner DSU and the mode name of the
LU 6.2 sessions used to communicate with the partner. A connection may
consist of one or more than one session. Multiple connections using different
mode names may exist between two DSUs.

LU 6.2 control operator verbs allow an operator to define to the LU the
maximum number of sessions allowed for a given connection (by specifying the
LU name and mode name), the contention-winner polarity of the sessions, and
the number of sessions that are to be automatically activated by the -LU. The
OS operations verb, Start_ Connection, allows the operator to define to the DSU
the maximum number of instances of DS_Send that may be active on the con
nection. Since each active instance of DS_Send uses one session, and since
typically each DSU uses its contention-winner sessions for sending, the value of
the max_DS_Sends parameter should normally be less than or equal to the
number of contention-winner sessions defined for the DSU on the connection.

OS Protocol for Transmitting Distributions
DS_Send and DS_Receive issue LU 6.2 basic conversation verbs to transmit
message units between DSUs. The message units they transmit are of two
general types: distribution message units (DMUs) and control message units
(CMUs). Distribution message units contain distributions (or portions of distrib
utions); control message units contain information about DMUs and conversa
tion control information.

The information contained in DMUs typically travels through more than one
DSU as it makes its way through the network. The information contained in
CMUs, however, is used strictly between adjacent DSUs to manage the traffic
between those DSUs.

The various types of DMUs sent from DS_Send to DS_Receive are:

• Distribution-Transport MU (DTMU): OS uses DTMUs to move distributions
through the OS network.

• Distribution-Report MU (DRMU): OS uses DRMUs to send distribution
reports.

• Distribution-Continuation MU (DCMU): OS uses DCMUs to resume trans
mission of suspended DTMUs.

The various types of CMUs exchanged between DS_Send and DS_Receive are
listed below:

• Sender-Exception MU (SEMU): The SEMU is sent from DS_Send to
DS_Receive to inform DS_Receive that DS_Send has encountered an excep
tion condition.

• Receiver-Exception MU (REMU): The REMU is sent from DS_Receive to
DS_Send to inform DS_Send that DS_Receive has encountered an exception
condition.

74 SNA/Distribution Services Reference

• Completion-Query MU (CQMU): The CQMU is sent from OS_Send to
OS_Receive to inquire about the state of an MU_IO.

• Completion-Report MU (CRMU): The CRMU is sent from OS_Receive to
DS_Send to inform OS_Send of the state of an MU_ID or to control traffic
flow on a conversation.

• Purge-Report MU (PRMU): The PRMU is sent from OS_Send to OS_Receive
to inform DS_Receive that the piece of work represented by a particular
MU_ID is ended, and that the MU_ID has been marked PURGED.

• Reset-Request MU (RRMU): The RRMU is sent from OS_Send to DS_Receive
to request that DS_Receive reinitialize its MU_IO registry.

• Reset-Accepted MU (RAMU): The RAMU is sent from OS_Receive to
DS_Send after OS_Receive has reinitialized its MU_ID registry in response
to an RRMU.

Each of these control MUs will be discussed in detail in subsequent sections.

Integrity of Distributions
OS uses a three-step flow to transfer high-integrity DMUs from OS_Send to
OS_Receive. Figure 32 on page 76 gives a conceptual description of the mes
sages sent between the DSUs to accomplish a single transfer.

After transmitting the OMU, the sender issues a "Responsibility-Transfer
Requested" message. In the DS protocol, the suffix of the DMU carries the
"Responsibility-Transfer Requested" semantics. By sending the suffix, OS_Send
informs OS_Receive that it has sent the entire DMU, and requests that
OS_Receive accept responsibility for it.

Once the sender has issued "Responsibility-Transfer Requested," it awaits
notification as to whether the receiver has accepted or rejected the DMU. The
sender takes no action (such as rerouting the distribution or sending a distrib
ution report) that might result in a duplicate DMU until it has been informed that
the receiver has not accepted the DMU.

If DS_Receive is able to complete the processing for the DMU, it returns a
"Responsibility Accepted" message. "Responsibility-Accepted" is denoted in
OS by the Completion-Report MU specifying that the MU_IO is COMPLETED. The
CRMU (COMPLETED) notifies OS_Send to delete its copy of the distribution, since
DS_Receive has safely received it.

After deleting its copy of the distribution, OS_Send issues a "Responsibility
Relinquished" message to DS_Receive. OS uses the Purge-Report MU to
convey the "Responsibility-Relinquished" message. The PRMU informs
DS_Receive that it need no longer retain explicit memory of the state of the
MU_IO, because the unit of work represented by the MU_IO is finished.

The three-step flow allows implementations to prevent the loss or duplication of
distributions, because any of the three messages may be re-sent at any time. If
the original transmission is lost, DS_Send may retry it (after querying
DS_Receive to check that it has not been received). If the CRMU (COMPLETED) is
lost, OS_Receive may send another (perhaps in response to a query from

Chapter 2. Overview of SNA/DS Protocols 75

DS_Send). If the PRMU is lost, DS_Receive may re-issue the CRMU
(COMPLETED) to solicit another PRMU. Each DSU retains the Information
required to re-send its messages until it is sure that the partner has received
them.

The three-step flow is used only for high-integrity distributions. No confirmation
flows are exchanged for basic-integrity traffic.

DS_SEND Conversation

(Data)

Responsibility Transfer •
Requested (DMU suffix) ----..

Responsibfl ity
Relinquished (PRHU) --+

DS_RECEIVE

Responsibility Accepted
(CRMU)

Figure 32. The Three-Step Flow for High-Integrity Distributions

Use of LU 6.2 Verbs--High Integrity
Figure 33 on page 78 shows the sequence of LU 6.2 basic conversation verbs
that DS_Send and DS_Receive issue to transfer a single DMU for a high
integrity distribution. In this example, DS_Send allocates the conversation; sub
sequently, it retrieves a distribution from the next-DSU queue. It encodes the
distribution as a DMU and Issues one or more Send_Data verbs to send the
DMU to DS_Receive. After sending the last portion of the DMU, DS_Send
issues Recelve_And_Wait to place DS_Receive in send state.

When DS_Receive is attached by DS_Send, it begins issuing Receive_And_Wait
verbs to receive the DMU. It enqueues a control block representing the DMU
on the mid-MU restart queue. As DS_Receive receives each buffer of data, it
parses the data and updates the control block. When it receives the DMU
suffix, DS_Receive enqueues the DMU control block on the router-director
queue, removes it from the mid-MU restart queue, and starts
DS_Router_Director. After DS_Receive successfully receives the DMU and per
forms the required receive-time checking (see Appendix C), it accepts respon
sibility for the DMU.

When DS_Receive accepts responsibility for the DMU, it builds a Completion
Report MU (CRMU) specifying that the MU_ID is COMPLETED and enqueues it on
the control-MU queue. When DS_Receive is placed in send state (as a result of
DS_Send's issuing Receive_And_Wait), it sends the CRMU (and all other control
MUs that are waiting on the queue). The CRMU {COMPLETED) informs DS_Send

76 SNA/Distribution Services Reference

that DS_Receive has accepted responsibility for the DMU. When the control-MU
queue is empty, DS_Receive issues Receive_And_Wait to return to receive
state.

DS_Send issues Receive_And_Wait verbs to receive the control MUs from
DS_Receive. As it receives each control MU, it updates the MU_ID registry and
the DMU control block to which the control MU refers. When it receives the
CRMU (COMPLETED), it deletes the entry for the DMU from the next-DSU queue
and deletes any server object associated with the DMU (if appropriate). After
marking the MU_ID PURGED, it generates a Purge-Report MU (PRMU) and
enqueues it on the control-MU queue.

When DS_Send returns to send state (as a result of DS_Receive's issuing
Receive_And_Wait), it sends any queued control MUs to DS_Receive, including
the PRMU. When DS_Receive receives the PRMU, it marks the MU_ID PURGED.

After sending the PRMU, DS_Send may continue sending another DMU or deal
locate the conversation.

Each time DS_Send enters send state (including the first time, when it begins
executing) it sends all queued control MUs to DS_Receive. (This is not shown
in Figure 33 on page 78. Before sending the DMU, DS_Send would send any
control MUs on its queue.) When the control-MU queue is empty, DS_Send
selects a distribution and sends it. After sending the distribution, DS_Send may
again check the control-MU queue and send any new queued control MUs.
Since control MUs, in general, allow the DSUs to resolve outstanding work
items, each partner sends all its queued control MUs whenever possible.
Before sending another DMU, however, DS_Send enters receive state to allow
DS_Receive to send its control MUs.

Chapter 2. Overview of SNA/DS Protocols 77

DS_SEND Co,nvtrsation DS_RECEIVE

Allocate

Build DTHU
Send_Data(Preffx,HU_ID•l)----..,

Send_Data (Suffix)

Recefve_And_Waf t

(Completion Report
MU, MU' ID•l)

discard"'.° d.istrf buti on
mark HU_ID 1 Purged

Receive And Waft
(Send Indication)

Send Data (Purge Report -----.,
MU, HU ID-1)

' -
Send Data(Preffx,HU 10•2)----...
(or Deallocate TYPE(FLUSH)) •

(attached)

Recefve_And_Wait

(DHU)

Receive_And_Wait

(DHU Suffix)
responsibility accepted
purge from Hi~U restart queue
put on router-director queue

Receive And Wait
(Send Indication)

Send_Data(Completfon Report
MU, MU_ID•l Completed)

Recefve_And_Wait

----(Purge Report HU,HU_ID•l)
Hark HU_ID 1 Purged

4-----~·Receive_And_Waft

----.(Prefix, MU_ID•2)
(or Oeallocate_Normal)

Figure 33. Protocol for Transmitting High-Integrity Distributions

Use of LU 6.2 Verbs--Basic Integrity
The verb protocol us,ed to transfer basic-integrity DMUs is similar to that used
for high-integrity DMUs. However, the OSUs do not exchange control MUs to
confirm the transfer of basic-integrity traffic. After sending the suffix of a basic
integrity DMU, DS_Send discards the distribution and issues ~eceive_And_Wait
to allow DS_Receive to send any queued control MUs. These control MUs
might contain conversation control information (see "Throughput Control" on
page 79) or information about other high-integrity DMUs, but DS_Receive does
not generate a CRMU for the basic-integrity DMU it received from DS_Send.
After sending any queued control MUs, DS_Receive issues Receive_And_Wait
to return os_send to send ,state. DS_Send then continues with another DMU or
deallocates the conversation. No PRMU is sent for the basic-Integrity DMU.

Figure 34 on page 79 illustrates a basic-integrity transfer.

78 SNA/Distribution Services Reference

Parallel Sessions

DS_SEND Conversation DS_RECEIVE

Allocate

Build DTHU
Send_Data(Prefix)

Send Data (Suffix) _______..,
discard distribution
Recef ve_And_Waf t ---+

(Contro 1 HUs)

Receive And Waft
(Send I;dicatfon)

Send Data(Preffx)
(or-Dea Hocate TYPE(FLUSH)).

(attached)

Receive_And_Waft

(DHU)

Receive_And_Waf t

(OHU Suffix)
responsibility accepted
put on router-director queue

+--- Receive And Wait
(Send I;dication)

Send_Data (Control HUs,
if any)·

Recefve_And_Waft

Receive_And_Wait

(Prefix)
(or Deallocate_Normal)

Figure 34. Protocol for Transmitting Basic~lntegrity Distributions

The examples given above show all the· exchanges between DS_Send and
DS_Receive occurring on a single conversation. In general, two DSUs may
communicate using parallel sessions. In this environment, the control MUs per
taining to a DMU are placed on a control-MU queue and sent by the first avail
able instance of DS_Send or DS_Receive. The CRMU and PRMU referring to a
DMU may thus be sent on conversations different from the one on which the
DMU was sent. In general, any control MU may flow on a conversation different
from that of the DMU to which it refers.

Throughput Control
DS_Send may send an unlimited number of DMUs on a conversation before
deallocating. If DS_Receive is unable to receive an unlimited number of DMUs,
it may instruct DS_Send to stop sending via the terminate_conversation flag.

If OS_Receive returns a CRMU with the terminate_conversation flag set ON,

DS_Send stops sending DMUs on the conversation. DS_Send may, however,
continue sending control MUs until the control-MU queue is empty. When
DS_Send has no more control MUs to send, it deallocates the conversation.

Chapter 2. Overview of SNA/DS Protocols 79

DS_Receive may use the terminate_conversation flag to achieve as low a level
of throughput {DMUs received) on the conversation as it desires. For example,
if DS_Receive is prepared to accept only one DMU per conversation, it sets
terminate_conversation ON in the first CRMU it returns to DS_Send. Figure 35
on page 80 illustrates this scenario. DS_Send allocates the conversation and
sends the first DMU to DS_Receive; DS_Receive returns the CRMU (COMPLETED)

with terminate_conversation set ON. DS_Send then sends the PRMU and deallo
cates the conversation.

DS_Receive may return the terminate_conversation indication in the first CRMU
it sends to DS_Send or in any subsequent CRMU.

os_SENO Conversation OS_RECEIVE

Allocate

Build OTHU
Send_Oata(Prefix,HU_ID•l)--1>,

Send_Data (Suffix)

Recefve_And_Wait

(Completion Report MU___,
HU ID•l)

discard distribution
mark MU_ID 1 Purged

Receive And Wait
(Send Indication)

Send_Data (Purge Report ----..
HU, MU_ID•l)

Deallocate (TYPE(FLUSH)) --1>,

(attached)

Receive_And_Wait

(DHU)
Receive_And_Wait

(DMU Suffix)
responsibility accepted
purge from Hid-MU restart queue
put on router-director queue

+--- Receive And Wait
(Send Indication)

----Send_Data (Completion Report HU,
HU_ID=l Completed

Terminate_Conversation (YES))

Receive_And_Wait

(Purge Report HU HU_ID•l)
Hark HU_ID 1 Purged

Receive_And_Wait

(Deallocate_Normal)

Figure 35. Use of the Terminate_Conversation Flag--One DMU Sent per Conversation

80 SNA/Distribution Services Reference

...

Management of Message Unit IDs

States and State Changes
A high-integrity DMU being transmitted from an instance of DS_Send to the
partner instance of DS_Receive passes through several logical states. For
example, while flowing over the LU 6.2 conversation, the MU is "Being
Transmitted." In the period of time after it has been completely sent by
DS_Send but before the transfer of responsibility messages have been
exchanged, the MU is "Pending-Transfer."

Since the sending and receiving DSUs use MU_IDs to correlate transmission
control and exception-handling information, it is the state of an MU_ID rather
than the state of an MU that is of formal interest. An MU_ID represents a par
ticular piece of work in progress between the transport sublayers of the two
DSUs. When a distribution is selected for processing by DS_Send, it is
assigned a particular MU_ID; while it is being processed, the MU_ID uniquely
identifies it.

The two DSUs refer to the distribution using its MU_ID until they eventually
agree to terminate the "unit of work" represented by that MU_ID; at that time,
they both mark the MU_ID PURGED. The purging of the MU_ID (i.e., the termi
nation of the "unit of work"), however, does not imply anything in particular
about the distribution itself. The DSUs might decide to purge the MU_ID
because the distribution has been successfully transferred to the receiver;
because the distribution has failed and is being terminated; or because the dis
tribution will be retried, but will be assigned a different MU_ID.

MU_IDs are used only for high-integrity distributions. Basic-integrity distrib
utions are not assigned MU_IDs.

A DSU maintains a distinct MU_ID registry for each connection (i.e., the set of
sessions it uses having the same LU name, mode name combination) on which
it sends or receives traffic. Furthermore, the set of sequential MU_IDs repres
ented in one MU_ID registry is used only for DMUs flowing in one direction. In
other words, partner DSUs that send DMUs to one another for a particular
mode name use two sets of MU_IDs to identify traffic on each mode name; one
set for traffic flowing in one direction, the other set for traffic flowing in the
other direction. An MU_ID, therefore, is unique for a particular direction of
traffic flow on a particular connection. There Is no inter-relationship between
MU_ID registries for different connections, or between a DSU's sending and
receiving registries for a particular connection.

This section presents an overview of the states of an MU_ID, and the possible
state transitions that may occur at both DS_Send and DS_Receive. The states
used by DS_Send and DS_Receive to track MU_IDs are different, since DS_Send
and DS_Receive encounter different circumstances while processing the DMU.
For a formal description of the MU_ID state transitions at DS_Send and
DS_Receive, refer to "Formal Description of MU_ID State Transitions" on
page 102.

Chapter 2. Overview of SNA/DS Protocols 81

States of MU_IDs at DS_Send
The states of an MU_ID at DS_Send are:

• NOT_ASSIGNED

This is the "uninitialized" or "reset" state. No association exists between
the given MU_ID and any distribution.

• IN_TRANSIT

This state is entered from NOT_ASSIGNED or SUSPENDED. When entered from
NOT_ASSIGNED state, it indicates that an MU_ID has been assigned to a par
ticular distribution. The transition from NOT_ASSIGNED to IN_TRANSIT marks
the beginning of the MU transfer to the partner DSU, regardless of when the
first Send_Data verb is issued. When entered from SUSPENDED state,
JN_ TRANSIT indicates that retransmission of the MU using the same MU_ID
has begun, with a DCMU.

Any interruption of the transmission of a OMU that is detected by the
sender is accompanied by a SEMU, regardless of whether any data has
actually been sent to LU 6.2. In other words, any exception condition occur
ring on an MU_ID in IN_TRANSIT state is reported to the partner via a SEMU,
regardless of whether any portion of the DMU has actually been trans
mitted.

• TRANSFER_PENDING

This state is entered from IN_TRANSIT. It indicates that the DMU suffix (which
carries the "Responsibility-Transfer Requested" semantics) has been
passed to LU 6.2 for transmission to the partner DSU, and that DS_Send
awaits a CRMU (COMPLETED). The CRMU (COMPLETED) carries the "Responsi
bility Accepted" semantics.

DS_Send may receive REMUs and unsuccessful CRMUs (e.g., CRMU (TERMI

NATED)) for an MU_ID that is in TRANSFER_PENDING state; DS_Send takes
appropriate exception-handling actions base.d on the contents of the REMU
or CRMU.

• CQMU_PENDING

This Is primarily a system-failure restart state. Whenever an instance of
DS_Send terminates abnormally (or is aborted), some number of MU_IDs
might be left in states other than NOT_ASSIGNED, SUSPENDED, or PURGED. The
DSU issues CQMUs for such MU_IDs to solicit CRMUs, from which it learns
the state of each MU_ID at the partner. The DSU may also issue a CQMU
for an MU_ID if it has been awaiting a CRMU for an unacceptably long
period of time, and assumes that the CRMU has been lost.

While an MU_ID is in CQMU_PENDING state, DS_Send may receive CRMUs or
REMUs for it. DS_Send takes appropriate recovery actions based on the
contents of the CRMU or REMU.

• TERMINATION_PENDING

This exception-processing state is entered from IN_TRANSIT, and indicates
that DS_Send has detected an exception and will not retry the transmission.
DS_Send informs DS_Receive of the exception, and awaits a REMU or
CRMU from DS_Receive. After receiving the REMU or CRMU, DS_Send ter-

82 $NA/Distribution Services Reference

minates the distribution, generates a distribution report (DRMU) if appro
priate, marks the MU_ID PURGED, and sends a PRMU to DS_Receive.

• RETRY_PENDING

This is also an exception recovery state entered from IN_TRANSIT. It indi
cates either that DS_Send detected an exception and intends to retransmit
the MU, or that OS_ Send received a Prog_Error indication from DS_Receive.

Before continuing work on the DMU, DS_Send awaits a REMU or CRMU
from DS_Receive. Based on the contents of the REMU or CRMU, DS_Send
may decide to restart the transmission (via a DCMU), retry the MU using a
different MU_ID, or terminate the distribution and generate a distribution
report (if appropriate).

• SUSPENDED

This state Is entered from TRANSFER_PENDING, CQMU_PENDING or
RETRY_PENDING. It indicates that a CRMU (SUSPENDED) was received, and that
the transmission of the MU is to be resumed via a DCMU.

• PURGED

This state may be entered from any state other than NOT_ASSIGNED or
IN_TRANSIT. It indicates that the DSUs have finished processing the "piece of
work" represented by the MU_ID, and that the association between the
MU_ID and the distribution has been broken. The MU_ID will not be reused
until the Next-MU_ID-Counter for the connection is reset. PURGED implies
nothing about the distribution itself. The distribution may have been suc
cessfully transferred; the distribution may have been terminated and a dis
tribution report generated (if appropriate); or the distribution may be left on
the next-DSU queue to be transmitted i:igain, using another MU_ID.

MU_IDs in the PURGED state may be removed from the MU_ID registry.

The typical progression of MU_ID states at DG_Send in an exception-free sce
nario is NOT_ASSIGNED, IN_TRANSIT, TRANSFER_PENDING, PURGED.

States of MU_IDs at DS_Recelve
The states of an MU_ID at DS_Receive are:

• NOT _RECEIVED

This is the "uninitialized" state for an MU_ID at DS_Receive.

• IN_TRANSIT

This state Is entered from NOT_RECEIVED when DS_Receive receives the first
part of a DTMU or DRMU, or from SUSPENDED when DS_Receive receives the
first part of a DCMU. The IN_TRANSIT state indicates that the DMU is being
received from the partner DSU.

• SUSPENDED

This state is entered from IN_TRANSIT when mid-MU restart capability is
available for resuming transmission of the distribution and either:

A retriable exception is detected by DS_Receive; or

A Prog_Error indication is received from DS_Send.

Chapter 2. Overview of SNA/DS Protocols 83

The partially received distribution is held in a non-volatile mid-MU restart
queue, and the partially received server object is maintained in the server.

• TERMINATED

This state may be entered from NOT_RECEIVED, IN_TRANSIT, or SUSPENDED.

From NOT_RECEIVED, it is entered when DS_Receive receives a SEMU. From
IN_TRANSIT, it is entered when DS_Receive detects any non-retriable excep
tion, when DS_Receive detects a retriable exception but mid-MU restart is
not appropriate, or when DS_Receive receives a Prog_Error indication from
DS_Send and mid-MU restart is not appropriate. From SUSPENDED, it is
entered when DS_Receive receives a SEMU indicating a non-retriable
exception.

The TERMINATED state indicates that both of the following are true:

DS_Receive will not accept a retransmission (DCMU) of the DMU using
the same MU_ID. DS_Send will not reuse an MU_ID that DS_Receive
has marked TERMINATED until the Next-MU_ID-Counter for the connection
is reset (and all MU_IDs are recycled).

DS_Send has not yet notified DS_Receive that it has purged the MU_ID.

DS_Receive may discard the partially received distribution and its server
object, but must maintain the MU_ID and its TERMINATED status.

• COMPLETED

This state is entered from IN_TRANSIT. It indicates that DS_Receive has
accepted responsibility for the distribution and that DS_Send may discard
its copy. The COMPLETED state is entered after receiving a DMU's suffix,
which carries the "Responsibility-Transfer Requested" semantics.

Before placing the MU_ID in COMPLETED state, OS_Receive must have suc
cessfully received and stored the DMU, performed at least the minimum
receive-time checks, placed the distribution on the router-director queue,
and scheduled DS_Router_Dlrector. After placing the MU_ID in COMPLETED

state, DS_Receive generates a CRMU.

The receiving DSU may then forward the distribution to its next hop, deliver
it locally, or generate a distribution report, as appropriate. However, the
DSU must maintain the MU_ID and its COMPLETED state until the
"Responsibility-Relinquished" signal is received from the partner (via a
PRMU).

• PURGED

This state Is entered from SUSPENDED, TERMINATED, or COMPLETED when
DS_Receive receives a PRMU. It indicates that DS_Send has placed the
MU_ID in PURGED state, and thus that DS_Send will not reuse the MU_ID
until the Next-MU_ID-Counter for the connection is reset. Once an MU_ID
has been placed in PURGED state, It may be aged out of the MU_ID registry.

The typical progression of MU_ID states at DS_Receive in an exception-free
scenario is NOT_RECEIVED, IN_TRANSIT, COMPLETED, PURGED.

84 SNA/Dlstrlbution Services Reference

MU_ID States--Active and Inactive
Each MU_ID state used by DS_Send or DS_Receive may be categorized as
either active or inactive. Active states require that DS_Send or DS_Receive
keep an explicit record of the MU_ID; inactive states do not require that explicit
knowledge be kept. The initial and final states for both DS_Send and
DS_Receive (i.e., NOT_ASSIGNED, NOT_RECEIVED and both PURGED states) are inac
tive; all other states are active. The MU_ID registry, therefore, contains an
entry for each MU_ID in an active state. MU_IDs numbered above the current
MU_ID counter are considered NOT_ASSIGNED or NOT_RECEIVED. MU_IDs num
bered below the oldest MU_ID in the MU_ID registry are considered PURGED.

MU_ID States and DSU Responsibility
At any given time, exactly one DSU Is responsible for a distribution. The
responsible DSU must either deliver or forward the distribution, or terminate it
and generate a distribution report (if appropriate). For DS_Receive, the COM

PLETED state indicates that the receiving DSU is responsible for the distribution;
all other active states (IN_TRANSIT, SUSPENDED, and TERMINATED) indicate that the
sending DSU is responsible. DS_Receive moves from not being responsible to
being responsible at the same time that the MU_ID moves from IN_TRANSIT state
to COMPLETED state.

The IN_TRANSIT and SUSPENDED states clearly indicate that responsibility belongs
to DS_Send. In general, however, responsibility is not as clear-cut for DS_Send
as It is for DS_Receive, because DS_Send cannot determine exactly when
DS_Receive accepts responsibility. For example, the MU_ID at DS_Send moves
from IN_TRANSIT state to TRANSFER_PENDING state before the MU_ID at
DS_Receive moves from IN_TRANSIT state to COMPLETED state, because buffering
and transmission of the DMU suffix by the underlying SNA layers take a certain
amount oltime. While the MU_ID at DS_Receive is IN_TRANSIT, DS_Send is
responsible; immediately after DS_Receive changes the MU_ID to COMPLETED,

DS_Send is not responsible. In both cases, the MU_ID at DS_Send is in
TRANSFER_PENDING state.

The active states at DS_Send that have a Hresponsibility unclear# connotation
are TRANSFER_PENDING, TERMINATION_PENDING, RETRY_PENDING, and CQMU_PENDING.

DS_Send moves to "not responsible" only when a "Responsibility Accepted"
message is received from DS_Receive in the form of a CRMU (COMPLETED).

Upon receipt of this message, DS_Send immediately discards the distribution
and places the MU_ID in PURGED state. If DS_Receive returns any other type of
REMU or CRMU, DS_Send retains responsibility and responds to the MU_ID
state indicated by the REMU or CRMU.

DS_Send uses the MU_ID state to record its intentions for handling the distrib
ution. For example, RETRY_PENDING and TERMINATION_PENDING both indicate that
an exception has occurred. RETRY_PENDING indicates that DS_Send intends to
retry the transmission (either by sending a DCMU or by assigning a new MU_ID
and retransmitting from the beginning). TERMINATION_PENDING indicates that
DS_Send will not retry the transmission, but intends to terminate it.

Before carrying out its intentions, however, DS_Send awaits a control MU
(REMU or CRMU) from DS_Receive. DS_Send thus is aware of the MU_ID state
at DS_Receive, and avoids inappropriate recovery actions.

Chapter 2. Overview of SNA/DS Protocols 85

MU_ID Instance Numbers
DSUs using mid-MU restart capability may transmit one or more DCMUs to
complete the transmission of a DTMU. Since the DTMU and related DCMUs
carry the same MU_ID, DS_Send places an instance number in each DMU. The
instance number is set to 1 in the DTMU, and is incremented each time a
DCMU is sent. The instance numbers allow DS_Send and DS_Receive to ignore
control MUs that apply to previously sent DMUs.

DS_Send is responsible for storing the current instance number for each MU_ID
and transmitting it in DMUs, SEMUs, and CQMUs. PRMUs do not carry instance
numbers. If DS_Send receives a control MU containing an instance number
less than the instance number currently in use for the MU_ID, it discards the
control MU.

DS_Receive examines the instance number in each MU (DMU or control MU) it
receives. If the instance number is greater than or equal to the current
instance number in use for the MU_ID, DS_Receive processes the MU normally;
if the instance number is less than the current instance number DS_Receive
discards the MU. If the instance number is greater than the current instance
number in use for the MU_ID, DS_Receive updates the current instance number
to match the received instance number. DS_Receive returns the current
instance number in each control MU (REMU or CRMU) that it sends to
DS_Send.

Removing MU_IDs from the MU_ID registry
Once an MU_ID is marked PURGED, the DSUs need no longer keep an explicit
entry for it in their MU_ID registries. However, an MU_ID may be removed from
the registry only if all MU_IDs numbered below it have been marked PURGED (or
have been previously removed from the registry). This method of removal
allows the DSUs to keep track of the MU_IDs they have successfully transferred
and to detect MUs that may have been lost.

For example, the receiver might find that its oldest MU_ID entry is NOT_RECEIVED,

but that several higher-numbered entries have been marked PURGED. It might
then assume that an MU has been lost, and issue a CRMU for the NOT_RECEIVED

MU_ID to solicit its transmission. Refer to "Lost Messages" on page 97 for a
further discussion of the mechanisms used to solicit MUs.

The MU_ID registry
The MU_ID registry may be viewed as a sliding window into the MU_ID space.
The following example shows a registry for an n-session connection at
DS_Receive.

86 SNA/Distribution Services Reference

high MU_ID values

!l '-----+!
HU-ID Registry1

"space
entri es running-

out"
slots

highest active or
purged entry ________..

lowest active or ~I
purged entry ~-----~

1 ow HU_ID va 1 ues

next "expected" n
HU_ID is in entries
this range

Figure 36. The MU_ID Registry at DS_Receive for a Multiple-session Connection

The lowest numbered entries in the registry would typically be marked PURGED,

representing MU_IDs on which processing has been completed but which have
not yet been "aged out" of the registry. Above those entries would be entries
for some number of MU_IDs that are currently being processed. These MU_IDs
might be in any state, active or inactive. For example, MU_ID x might be COM

PLETED. MU_ID x+ 1, perhaps representing a shorter DMU, might already be
PURGED, and MU_ID x+2 might be IN_TRANSIT.

Above the entries for the MU_IDs currently being processed are entries for
MU_IDs that are NOT_RECEIVED. If n parallel sessions are active for the con
nection, the receiver is prepared to receive any MU_ID up ton higher than the
highest active or purged entry. If an MU_ID higher than that is received, it indi
cates that an MU_ID in the "next-expected" range has been lost.

At the top of the registry are n entries representing a "space-running-out" area.
If DS_Receive receives an MU_ID in the "space-running-out" range, it rejects
the DMU and marks the MU_ID TERMINATED. The exception information returned
to DS_Send indicates that the DMU was not accepted because the registry is
out of space.

The most common cause of an "out-of-space" condition at DS_Receive is that a
very old MU_ID remains active instead of being PURGED. Perhaps a PRMU was
lost, leaving the MU_ID COMPLETED rather than PURGED, or perhaps the MU_ID is
SUSPENDED and has not been resumed because of higher-priority traffic. Since
the registry at DS_Receive must maintain a contiguous block of MU_ID values,
and since only PURGED MU_IDs may be dropped from the bottom of the registry,
an old MU_ID can prevent the registry from sliding up the MU_ID space to
include higher values. The solution to this problem is for DS_Send to stop

Chapter 2. Overview of SNA/DS Protocols 87

transmitting distributions and take whatever actions are necessary to move the
old MU_ID into PURGED state.

Whenever DS_Receive detects the "registry-running-out-of-space" condition, it
issues CRMUs for its oldest active or NOT_RECEIVED MU_IDs. If these MU_IDs
are in SUSPENDED state, DS_Receive either converts them to TERMINATED (and
recovers the server object and partially received distribution resources) before
issuing the CRMU or notifies the operator of the condition and requests inter
vention.

If DS_Send receives a REMU indicating a "registry-full" condition followed by
CRMU (SUSPENDED) messages, and has distributions with higher priority than
those specified by the CRMUs, it purges the SUSPENDED MU_IDs, issues PRMUs
for them, and retries the distributions later with new MU_IDs.

Synchronization of MU_ID Registries at Sender and Receiver
In order for a sender and a receiver to manage the traffic being transmitted
between them, their MU_ID registries must be synchronized. That is, assuming
there are no DMUs to transmit at a given time, the next MU_ID to be used by
the sender should match the next MU_ID expected by the receiver. The sender
is responsible for initiating a resynchronization protocol when the "next-MU_ID"
values need to be reset. Both sender and receiver maintain a date/time stamp
that indicates the "time of last reset" of their MU_ID registries.

The sender initiates an MU_ID resynchronization when a connection is first
established between two DSUs. The initial conversation on the connection may
be allocated by either sender or receiver, but DS_Send always initiates the
resynchronization sequence. The sender also performs resynchronization when
it has used all the allowed values in its MU_ID registry. In addition, the sender
may initiate resynchronization in response to operator action, or if it determines
that an exception has caused its registry to be out of synchronization with that
of the receiver {perhaps indicated by different "time-of-last-reset" values at
sender and receiver).

When the sender wishes to request re-initialization of the receiver's MU_ID reg
istry, It stops transmitting DMUs on the connection. The sender then checks
that each MU_ID in its (the sender's) MU_ID registry is in an inactive state (i.e.,
In either NOT_ASSIGNED or PURGED state).

In the case of a normal resynchronization (I.e., DS_Send has not detected an
"out-of-synch" condition), DS_Send follows normal protocols to move active
MU_IDs to PURGED state. If DS_Send has detected an "out-of-synch" condition, it
notifies operations. Operations then decides on the appropriate action to take
for each active MU_ID. For MU_IDs in a "responsibility-unclear" state. oper
ations would typically change the MU_ID to PURGED state, but retain the distrib
ution on the next-DSU queue for retransmission later.

After checking that all MU_IDs in its registry are in NOT_ASSIGNED or PURGED

state, the sender transmits a Reset-Request MU. The Reset-Request MU con
tains the MU_ID that the sender will transmit nex:t--i.e., the value that the
receiver should expect next-and a time stamp. The sender stores the time
stamp as the "time of last reset" of its MU_ID registry.

88 SNA/Dlstribution Services Reference

Upon receiving the Reset-Request MU, the receiver checks to see whether any
MU_IDs in its registry are in an active state (any state other than NOT_RECEIVED

or PURGED). If it finds any such MU_IDs, the receiver refuses the Reset Request
MU by returning CRMUs indicating the state of each active MU_ID. The sender
responds to each CRMU with a PRMU, to allow the receiver to mark all MU_IDs
PURGED. After responding to all the CRMUs, the sender sends another Reset
Request MU with a new time stamp.

If, upon receipt of the Reset-Request MU, the receiver finds that all MU_IDs in
its registry are in inactive states, it re-initializes its MU_ID registry such that its
"next-expected" MU_ID is the MU_ID value sent in the Reset-Request MU. It
stores the time stamp from the Reset-Request MU as the "time of last reset" of
its MU_ID registry. The receiver then transmits a Reset-Accepted MU to the
sender. In the Reset-Accepted MU, it echoes the MU_ID and time stamp from
the Reset-Request MU.

When the sender receives a Reset-Accepted MU in response to its last Reset
Request MU (Indicated by the time stamp In the Reset-Accepted MU matching
the time stamp stored by the sender) it re-initializes its MU_ID registry such
that its "next-to-be-sent" MU_ID matches the value in the Reset-Accepted MU.
If the sender receives a Reset-Accepted MU whose time stamp does not match
the sender's time stamp, it discards the MU.

The "time-of-last-reset" time stamps may be used to detect out-of
synchronization conditions between the two MU_ID registries. For example,
when DS_Receive receives an MU_ID outside the range of MU_IDs that it is pre
pared to accept (i.e., the MU_ID is either too high or too low), it returns a REMU
containing the MU_ID it received, the MU_ID it expected, and the time stamp of
its MU_ID registry. DS_Send can then compare the time stamp with its own
"time of last reset." If the time stamps do not match, DS_Send assumes that
the registries are out of synchronization and initiates resynchronization.

Exceptions Detected by the Distribution Transport Sublayer

Exceptions Detected by DS_Send
DS_Send informs DS_Receive that it has detected an exception by issuing a
Send_Error verb to LU 6.2 and sending a Sender-Exception Message Unit
(SEMU). The processing performed by DS_Send and DS_Receive in response
to a sender-detected exception is described below.

The Sender-Exception Message Unit (SEMU)
The SEMU is sent from DS_Send to DS_Receive. It is used to inform
DS_Receive that DS_Send has detected an exception while processing a partic
ular DMU. SEMUs are always generated for sender-detected exceptions that
involve high-integrity DMUs. A SEMU may be generated for a basic-integrity
DMU, but is not required. A SEMU contains the MU_ID of the (high-integrity)
DMU to which it pertains, along with a report code describing the exception
condition. Appendix E lists the report codes used by OS.

Chapter 2. Overview of SNA/DS Protocols 89

Any exception that occurs after an MU_ID has been assigned to a particular dis
tribution is reported to DS_Receive via a SEMU, whether DS_Send has begun
transmitting the DMU or not.

DS_Send builds a SEMU at the time it detects an exception. DS_Send may also
generate a SEMU if it detects that a previously issued SEMU has been lost. For
example, suppose that DS_Receive inquires, via a CRMU, about an MU_ID that
it has not received. If DS_Send has placed that MU_ID in TERMINATION_PENDING

state, it assumes that the SEMU it previously sent was lost; DS_Send then
rebuilds an identical SEMU and sends it to DS_Receive. See "Actions of
DS_Send in Response to a CRMU" on page 95 for a description of DS_Send's
actions on receiving a CRMU.

Effects of a Sender-Detected Exception on DS_Send
When DS_Send detects an exception, it first determines whether the exception
is recoverable or nonrecoverable. Exceptions that are inherently recoverable
may be considered nonrecoverable after an implementation-defined number of
transmission retries have been attempted.

If the exception is inherently recoverable, DS_Send places an exception-hold on
the next-DSU queue for the connection. This hold condition precludes all cur
rently active instances of DS_Send from retrieving distributions for trans
mission. The exception-hold condition may be lifted by operator intervention or
by the attaching of a new instance of DS_Send by DS_Receive at the partner
DSU. If the exception is inherently nonrecoverable, DS_Send does not place a
hold on the next-DSU queue.

If DS_Send is not currently processing a distribution (or if it has finished
sending an entire distribution), it takes no further action. If DS_Send is proc
essing a high-integrity distribution, it places the MU_ID in either
TERMINATION_PENDING or RETRY_PENDING state depending on whether the excep
tion is nonrecoverable or recoverable, respectively. The state of the MU_ID
indicates the intentions of DS_Send (i.e., either termination of the distribution or
retransmission) pending knowledge of the state of the MU_ID at DS_Receive.

If DS_Send is processing a basic-integrity distribution, it discards the distrib
ution if the exception is unrecoverable. If the exception is recoverable,
DS_Send leaves the distribution on the queue to be retried later.

If DS_Send has been reading an object from the server during transmission, it
issues a verb to the server to terminate its access to the object.

DS_Send then informs DS_Receive of the exception. If it has begun transmitting
the DMU to DS_Receive, it informs DS_Receive by issuing Send_Error. If
DS_Send has not begun transmitting the DMU, it does not issue Send_Error.
For a high-integrity DMU, DS_Send builds a SEMU (whether it has begun trans
mission of the DMU or not) describing the exception condition arid enqueues it
on the Control MU queue. For a basic-integrity DMU, DS_Send may generate a
SEMU but is not required to.

Finally, DS_Send logs the exception condition. It leaves the distribution on the
next-DSU queue for further processing.

90 SNA/Distribution Services Reference

Actions of DS_Recelve In Response to Send_Error
The Send_Error verb issued by OS_Send results in the receipt of either a
Prog_Error_ Trunc or a Prog_Error_No_Trunc indication by OS_Receive. When
OS_Receive receives the Prog_Error indication on a high-integrity OMLI, its
actions depend on whether or not mid-MU restart is appropriate.

If OS_Receive decides that mid-MU restart is appropriate, it saves the partially
received OMLI on its mid-MU restart queue. It saves the partially received
server object in the server space. It places the MU_IO in SUSPENDED state,
pending receipt of the continuation of the OMLI (i.e., pending receipt of a
OCMU).

If mid-MU restart is not appropriate, OS_Receive discards the partially received
OMLI and its server object. It places the MU_IO in TERMINATED state. If OS_Send
attempts retransmission, it will do so using a new MU_IO.

When OS_Receive receives a Prog_Error on a basic-integrity OMU, it discards
the partially received OMLI.

Actions of DS_Receive In Response to a SEMU
When OS_Receive receives a SEMU, the actions it takes depend on the state of
the MU_IO specified in the SEMU. If the MU_IO is NOT_RECEIVED, OS_Receive
changes it to TERMINATED. If the MU_IO is SUSPENDED, OS_Receive examines the
exception code in the SEMU. If the exception is inherently recoverable, the
MU_ID is left in SUSPENDED state; if not, OS_Receive discards the partially
received OMLI (and any object associated with it) and changes the state of the
MU_IO to TERMINATED. If the MU_IO is in any other state, the state is left
unchanged.

After performing the above actions, as appropriate, OS_Receive generates a
CRMU to inform DS_Send of the state of the MU_IO (and the restart position, if
the MU_IO is SUSPENDED). Finally, OS_Receive logs the information received in
the SEMU.

If OS_Receive receives a SEMU that does not contain an MU_IO (probably gen
erated while processing a basic-integrity DMU) it logs the receipt of the SEMU.

Actions of DS_Send in Response to a Conversation Failure
If OS_Send detects a conversation failure while transmitting a control MU, it
leaves the control MU on the queue to be sent later. If the conversation failure
occurs while DS_Send is transmitting a high-integrity OMU, OS_Send places the
MU_ID in RETRY_PENDING state, terminates its access to the distribution and the
server object, and generates a SEMU. The SEMU initiates recovery protocols
with OS_Receive. If OS_Send is transmitting a basic-integrity OMU, it simply
leaves the DMU on the queue to be retried later.

Chapter 2. Overview of SNA/DS Protocols 91

Actions of DS_Send in Response to an Operator Purge
An operator-initiated purge of an already-started distribution (i.e., a distribution
that has already been assigned an MU_ID) is handled like a nonrecoverable
exception. DS_Send issues Send_Error followed by a SEMU, and places the
MU_ID in TERMINATION_PENDING state. Following the receipt of a CRMU (TERMI

NATED), DS_Send will purge the distribution and issue a PRMU.

Exceptions Detected by DS_Receive
DS_Receive informs DS_Send that it has detected an exception by issuing a
Send_Error verb to LU 6.2 PS and sending a Receiver-Exception Message Unit
(REMU). The processing performed by DS_Send and DS_Receive in response
to a receiver-detected exception is described below.

The Receiver-Exception Message Unit (REMU)
The REMU is sent from DS_Receive to DS_Send. It is used to inform DS_Send
that DS_Receive has detected an exception condition while processing a partic
ular DMU. A REMU contains the MU_ID (for high-integrity traffic) of the DMU to
which it pertains, an SNA_Condition_Report describing the exception condition,
and certain other fields used by DS_Send to respond to the exception.

The REMU is used to report both recoverable and nonrecoverable exceptions.
DS_Receive always generates REMUs for receiver-detected exceptions that
involve high-integrity DMUs. DS_Receive may generate REMUs for exceptions
Involving basic-integrity traffic but is not required to do so.

Effects of a Receiver-Detected Exception on DS_Receive
When DS_Receive detects an exception, it first informs DS_Send by issuing
Send_Error (assuming the conversation is still available-- if the conversation
has failed, it cannot issue Send_Error). For high-integrity DMUs, the actions of
DS_Receive following the Send_Error depend on whether the exception condi
tion is recoverable, and whether or not mid-MU restart is appropriate.

If the exception is recoverable and DS_Receive decides that mid-MU restart is
appropriate, DS_Receive Issues a Terminate_Write verb to terminate its access
to the partially received server object. It leaves the partially received DMU on
the mid-MU restart queue. It places the MU_ID in SUSPENDED state, pending
continuation of the transmission.

If the exception is not recoverable or if DS_Receive decides not to attempt
mid-MU restart, DS_Receive discards the partially received DMU and its server
object. It places the MU_ID in TERMINATED state; if DS_Send attempts
retransmission, it will do so using a different MU_ID.

Finally, DS_Receive enqueues a REMU describing the exception condition on its
control-MU queue, and logs the exception.

For exceptions involving basic-integrity DMUs, DS_Receive simply discards the
partially received DMU after issuing Send_Error.

92 SNA/Oistribution Services Reference

Actions of DS_Send In Response to Send_Error
The Send_Error verb issued by DS_Receive results in the receipt of a
Prog_Error_Purging indication by DS_Send. When DS_Send receives
Prog_Error_Purging, it places the MU_ID in RETRY_PENDING state, pending the
receipt of the REMU from DS_Receive. If DS_Send has been reading a server
object during transmission, it issues a server verb to terminate its access to the
object; the server verb instructs the server to retain its mid-MU restart check
point information (if the server provides mid-MU restart capability). DS_Send
leaves the distribution on the next-DSU queue for further processing. If
DS_Send receives a Prog_Error_Purging indication while sending a basic
integrity DMU, it discards the DMU.

Actions of DS_Send in Response to a REMU
The actions taken by DS_Send in response to a REMU depend on the type of
exception reported in the REMU. If the exception is not recoverable, DS_Send
terminates the distribution (and any associated object), marks the MU_ID
PURGED, sends a PRMU to DS_Receive, and generates a distribution report, if
appropriate, to inform the report-to DSU or user that the distribution was not
delivered.

If the exception is inherently recoverable, DS_Send places an exception-hold on
all next-DSU queues for the connection. The hold will be removed by operator
action or by DS_Receive's attaching another instance of DS_Send.

If the exception is recoverable but the retry count has been exhausted for the
DMU, DS_Send then treats the exception just as it would a non-recoverable
exception.

If the exception is recoverable and DS_Send decides to attempt mid-MU restart,
DS_Send issues a CQMU to determine the location in the DMU at which
retransmission should begin. If the exception is recoverable but DS_Send
decides not to attempt mid-MU restart, DS_Send marks the MU_ID PURGED,

sends a PRMU so that DS_Receive can mark the MU_ID PURGED, and leaves the
distribution on the next-DSU queue so that it can be retried later, with a dif
ferent MU_ID.

However, if DS_Receive encounters a recoverable exception and DS_Send
encounters a non-recoverable exception, DS_Send proceeds as it would for the
non-recoverable exception. For example, suppose that DS_Send determines
that the exception reported in the REMU is recoverable, but finds that the
MU_ID has previously been placed in TERMINATION_PENDING state. After
receiving the REMU, DS_Send would terminate the distribution.

If the REMU indicates that the received MU_ID is a duplicate, DS_Send checks
the MU_ID registry information returned in the REMU. If the MU_ID registries
are synchronized, DS_Send discards the duplicate DMU. If the MU_tD registries
are out of synchronization, DS_Send initiates a resynchronization sequence
(see "Synchronization of MU_ID Registries at Sender and Receiver" on
page 88).

After completing the processing of the REMU as appropriate, DS_Send logs the
receipt of the REMU.

Chapter 2. Overview of SNA/DS Protocols 93

If both DS_Send and DS_Receive detect a conversation failure while processing
a particular MU_ID, DS_Send may receive a REMU informing it of a conversa
tion failure of which it is already aware. In such a case, DS_Send discards the
redundant REMU.

If DS_Send receives a REMU that does not contain an MU_ID (probably gener
ated while processing a basic-integrity DMU) it logs the receipt of the REMU.

Actions of DS_Recelve In Response to a Conversation Failure
If DS_Receive detects a conversation failure while receiving a high-integrity
DMU, its actions depend on whether mid-MU restart is appropriate. If it decides
that mid-MU restart is appropriate, DS_Receive saves the partially received dis
tribution and server object and places the MU_ID In SUSPENDED state. Other
wise, it discards the distribution and server object and places the MU_ID in
TERMINATED state. In either case, it generates a REMU and places it on the
control-MU queue. The REMU notifies DS_Send of the particular MU_ID that
was interrupted by the conversation failure.

If DS_Receive detects a conversation failure while receiving a basic-integrity
DMU, It discards the partially received DMU.

Other Control MUs (CQMU, CRMU, PRMU)
OS_ Send and DS_Receive use three other types of control MUs to exchange
information about high-integrity DMUs. These MUs are not used to exchange
information about basic-integrity MU_IDs (although DS_Receive may use the
CRMU to send conversation control information (i.e., the terminate_conversation
flag) while receiving basic-integrity traffic).

Completion Query Message Unit (CQMU)
The CQMU is sent from DS_Send to DS_Receive. DS_Send uses the CQMU to
inquire about the state of a particular MU_ID at the adjacent DSU. A CQMU
contains the MU_ID about which DS_Send is inquiring. A CQMU requests
DS_Receive to return a CRMU describing the state of the MU_ID.

CQMUs are not sent in normal exception-free situations. DS_Send issues an
implicit request for a CRMU by sending a (high-integrity) DMU suffix or a SEMU;
if the CRMU arrives in a timely manner, DS_Send has no need to send a
CQMU. If the CRMU does not arrive in a timely manner, DS_Send issues a
CQMU to solicit another CRMU.

DS_Send may also generate a CQMU in response to a REMU. If the exception
reported in the REMU is recoverable, and if DS_Send wishes to attempt mid-MU
restart, it issues a CQMU to determine the location at which it should begin its
retransmission.

A CQMU may also be generated if the sending DSU is restarted after a failure;
the DSU may send a CQMU for any MU_ID if it is unsure of the state of that
MU_ID at DS_Receive.

94 SNA/Distribution Services Reference

Actions of DS_Recelve In Response to a CQMU
If DS_Receive is able to find the entry in its MU_ID registry for the MU_ID speci
fied in the CQMU, it simply generates a CRMU to inform DS_Send of the state
of that MU_ID. If the state of the MU_ID is SUSPENDED, the CRMU also contains
an indication of the point at which retransmission should begin.

If DS_Receive is not able to find the entry in its MU_ID registry because the
entry has been aged out, it returns a CRMU indicating that the MU_ID has been
PURGED. If DS_Receive is not able to find the entry in its MU_ID registry
because the entry has not yet been used, it returns a CRMU indicating that the
MU_ID is NOT_RECEIVED.

Completion Report Message Unit (CRMU)
The Completion Report Message Unit (CRMU) is sent from DS_Receive to
DS_Send. It is used by DS_Receive to inform DS_Send of the state of a partic
ular MU_ID, and to control the traffic flow on the conversation. A CRMU may
contain an MU_ID and flags indicating the state of that MU_ID at DS_Receive.
For an MU_ID in SUSPENDED state, the CRMU also contains the ID of the last
high-level LLID structure received and the byte count of the last byte of that
structure that was received.

DS_Receive also uses the CRMU to instruct DS_Send to stop sending traffic on
a conversation. See "Throughput Control" on page 79 for further details.

DS_Receive generates a CRMU whenever it receives a request for one from
DS_Send. A request for a CRMU may be either explicit or implicit. DS_Send
explicitly requests a CRMU by sending a CQMU; DS_Receive responds to the
CQMU by generating a CRMU. DS_Send implicitly requests a CRMU by fin
ishing a particular transmission of a (high-integrity) DMU, that is, by sending
either the suffix of a DMU or a SEMU. DS_Receive responds to a DMU suffix or
a SEMU by generating a CRMU.

DS_Receive may also generate a CRMU if it detects that a transmission from
DS_Send has been lost. See "Lost Messages" on page 97 for further informa
tion on lost messages.

Actions of DS_Send In Response to a CRMU
A CRMU with MU_ID state COMPLETED acts as a confirmation to DS_Send that
DS_Receive has accepted responsibility for the DMU. When DS_Send receives
the CRMU (COMPLETED), it discards its copy of the distribution and marks the
MU_ID PURGED. After doing so, it informs DS_Receive by sending a Purge
Report MU (PRMU). The PRMU informs DS_Receive that it may mark the
MU_ID PURGED, since DS_Send will not use that MU_ID in subsequent trans
missions.

A CRMU with MU_ID state TERMINATED informs DS_Send that an exception was
encountered during the processing of the DMU, and that mid-MU restart is not
possible. If DS_Send has previously placed the MU_ID in TERMINATION_PENDING

state, it terminates the distribution, generates a distribution report if appro
priate, marks the MU_ID PURGED, and sends a PRMU to DS_Receive. If the
MU_ID is in any other state, DS_Send retries the transmission with a new

Chapter 2. Overview of SNA/DS Protocols 95

MU_ID. It marks the current MU_ID PURGED, sends a PRMU, and leaves the dis
tribution on the next-DSU queue to be retried later, using a different MU_ID.

A CRMU with MU_ID state SUSPENDED Informs DS_Send that an exception was
encountered during the processing of the DMU, and that from DS_Receive's
point of view, mid-MU restart is possible. If DS_Send has placed the MU_ID in
TERMINATION_PENDING state, it terminates the distribution, generates a distrib
ution report if appropriate, marks the MU_ID PURGED, and sends a PRMU to
DS_Receive. If the MU_ID is in any other state and DS_Send wishes to attempt
recovery using mid-MU restart protocols, it saves the restart position indicated
in the CRMU and places the MU_ID in SUSPENDED state. DS_Send may then
begin retransmission at a later time. If DS_Send chooses to re-send the entire
DMU rather than to attempt recovery using mid-MU restart protocols, it marks
the MU_ID PURGED, sends a PRMU, and leaves the distribution on the next-DSU
queue; it will be retried later using another MU_ID.

A CRMU with MU_ID state IN_TRANSIT informs DS_Send that the indicated DMU
is still being received. DS_Send ignores the CRMU unless it has placed the
MU_ID in TERMINATION_PENDING or RETRY_PENDING states; for an MU_ID in either of
those states, DS_Send issues a CQMU to solicit another CRMU.

A CRMU with MU_ID state NOT_RECEIVEO informs DS_Send that DS_Receive has
not received any part of the indicated DMU, nor has it received a SEMU indi
cating an error. DS_Send ignores the CRMU if the MU_ID is in
TRANSFER_PENDING state; it issues a SEMU if the MU_ID is in CQMU_PENDING or
PURGED state. If the MU_ID is in TERMINATION_PENDING or RETRY_PENDING state,
DS_Send assumes the SEMU it sent earlier has been lost, and re-sends an
identical SEMU.

Purge-Report Message Unit (PRMU)
The Purge-Report Message Unit (PRMU) is sent from DS_Send to DS_Receive.
It informs DS_Receive that DS_Send has marked a particular MU_ID PURGED.

The PRMU contains the MU_ID that has been purged.

DS_Send never sends a PRMU unless DS_Receive has solicited it via a REMU
or CRMU. DS_Send may mark an MU_ID PURGED either because DS_Receive
has accepted responsibility for the DMU or because an exception has occurred
and DS_Send has decided not to attempt recovery using the same MU_ID.

Actions of DS_Recelve In Response to a PRMU
The PRMU informs DS_Recelve that DS_Send has marked the specified MU_ID
PURGED, and therefore that DS_Send has terminated the piece of work repres
ented by that MU_ID. Consequently, DS_Receive need no longer retain an
explicit memory of the state of that piece of work. If the state of that MU_ID at
DS_Receive is anything other than SUSPENDED, DS_Receive simply marks the
MU_ID PURGED. DS_Receive may then "age out" the entry for the MU_ID from
its MU_ID registry. If the state of the MU_ID is SUSPENDED, DS_Receive discards
its partial copy of the DMU as well as marking the MU_ID PURGED.

The PRMU does not imply anything in particular about the disposition of the dis
tribution itself, merely that the MU_ID has been marked PURGED. The distrib
ution may have been successfully transferred, it may have been terminated and

96 SNA/Distribution Services Reference

Lost Messages

a distribution report generated, or DS_Send may have decided to retry it with a
different MU_ID.

The transfer of a high-integrity distribution from one DSU to another normally
involves three messages. The sender sends the DMU itself; the receiver
answers by sending a CRMU; the sender sends the PRMU. So long as none of
these MUs is lost, their exchange keeps MU_IDs staging through each DSU's
MU_ID registry. Each MU_ID moves from NOT_ASSIGNED (or NOT_RECEIVED) state
to (eventually) PURGED state, and the oldest MU_IDs are "aged out" of the reg
istry.

· If one of the three MUs (DMU, CRMU, or PRMU) is lost, the result Is an MU_ID
that does not move to PURGED state in a timely manner. In particular, a DSU
assumes that an MU has been lost if it finds an inappropriately "old" entry in its
MU_ID registry for an MU_ID in an active state. If the state of the MU_ID indi
cates that a response regarding the MU_ID is expected from the partner, and if
that response is not forthcoming, the DSU attempts to solicit the response.

At DS_Send, the MU_ID states that indicate that a response Is expected from
the partner are TRANSFER_PENDING, CQMU_PENDING, TERMINATION_PENDING, and
RETRY_PENDING. If the DSU finds that an MU_ID remains in one of these states
for an inappropriately long period of time, it issues a CQMU for the MU_ID. The
CQMU requests DS_Receive to return a CRMU indicating the state of the MU_ID
at DS_Receive. Upon receipt of the CRMU, DS_Send is able to continue work
on the MU_ID as appropriate.

At DS_Receive, the MU_ID states that indicate that a response is expected from
DS_Send are SUSPENDED, TERMINATED, and COMPLETED. In addition, the
NOT_RECEIVED state may indicate that a DMU is expected from the partner, if
DMUs with MU_IDs numbered above the NOT_RECEIVED MU_ID have already
been received and marked PURGED. If an MU_ID remains in a "response
pending" state for too long, DS_Receive Issues a CRMU indicating the state of
the MU_ID. The CRMU requests DS_Send to send a DMU, SEMU, or PRMU, as
appropriate.

In general, the objective of each DSU is to reduce its number of "to-be-purged"
MU_IDs, while at the same time exercising restraint so as not to flood the con
nection with CQMUs or CRMUs. The period of time that an MU_ID is allowed to
remain in a "response-pending" state varies with the properties of the con
nection.

On a single-session connection, for example, only two MU_ID entries might be
needed in the receiver's registry: one marked NOT_RECEIVED, the other marked
PURGED. If an MU_ID greater than the current NOT_RECEIVED MU_ID were sent by
DS_Send, DS_Receive could reject it and issue a CRMU (NOT_RECEIVED) to solicit
the MU_ID it expected.

On a busy parallel-session connection, on the other hand, work might proceed
on many MU_IDs concurrently. DS_Receive could find an entry in its MU_ID
registry in NOT_RECEIVED state, even if several entries numbered above that

Chapter 2. Overview of SNA/DS Protocols 97

Mid-MU Restart

entry had already been received and marked PURGED. The NOT_RECEIVED MU_ID
might simply have been delayed while making its way across one of the par
allel sessions. DS_Receive would therefore wait longer before issuing the
CRMU (NOT_RECEIVED) on the parallel-session connection than on the single
session connection.

DS_Send solicits lost messages with CQMUs and DS_Receive solicits lost mes
sages with CRMUs. DS_Send and DS_Receive may issue as many CQMUs and
CRMUs as necessary, until a response is received from the partner. Since
DS_Receive replies to a CQMU by sending a CRMU, and since DS_Send typi
cally replies to a CRMU by sending a PRMU (even if the MU_ID has previously
been purged, or even aged out of the registry), duplicate CQMUs or CRMUs
cause no harm. Each DSU exercises appropriate restraint in sending CQMUs
and CRMUs, however, to avoid flooding the connection with control messages.

If an exception occurs during the transmission of a DTMU or DCMU, and if
DS_Receive has successfully received the DMU at least through the
destination_list, DS_Receive may inform DS_Send that mid-MU restart is pos
sible. The use of mid-MU restart allows the two DSUs to resume the failed
transmission at or near the point of failure.

The receiver uses the last_structure_received and the /ast_byte_received fields
in the CRMU to inform the sender of the portion of the DMU that was success
fully received. If the receiver supports only LLID restart (i.e., It supports restart
only at LLID boundaries, not within LLIDs), it informs the sender of the last high
level LLID structure that was completely received by specifying the ID of that
structure in last_structure_received. It indicates that the structure was received
in its entirety in one of two ways: either by specifying a value of
X'FFFFFFFFFFFFFFFF' for last_byte_received or by omitting the /ast_byte_received
field entirely (the two methods are equivalent).

If the receiver supports the byte-count restart elective, it may choose to inform
the sender that restart within a structure is possible. It does so by specifying
the ID of the last high-level LLID structure that was partially received in
last_structure_received. It indicates the number of bytes of that structure that
were successfully received (not including the LLID header bytes) in the
last_byte_received field.

Upon receipt of the CRMU containing mid-MU restart information, DS_Send
builds a DCMU to continue the transmission of the distribution. If the CRMU
indicates that the last_structure_received was received in its entirety (i.e., if
/ast_byte_received is omitted or has a value of X'FFFFFFFFFFFFFFFF'), DS_Send is
expected to build a DCMU that begins with the structure immediately following
the /ast_structure_received. However, DS_Send may choose to restart with an
earlier LLID structure.

If the CRMU indicates a restart position within the /ast_structure_received (i.e.,
if /ast_byte_received is present and contains a value other than
X'FFFFFFFFFFFFFFFF'), and If DS_Send is capable of byte-count restart, DS_Send
builds a DCMU that begins with the portion of the /ast_structure_received imme-

98 SNA/Distribution Services Reference

Example

diately following the /ast_byte_received. If DS_Send does not support the byte
count restart elective, it ignores the value in last_byte_received and restarts at
the beginning of the /ast_structure_received.

DS_Receive accepts a DCMU restarting the distribution at the position that was
indicated in the CRMU. If the CRMU indicated that restart should begin at a
particular LLID boundary, DS_Receive also accepts a DCMU restarting at a dif
ferent (earlier) LLID boundary. If the DCMU begins with an earlier LLID struc
ture, DS_Receive receives and discards the redundant transmission of the
earlier structure(s).

If the CRMU indicated that restart should begin at a particular byte location
within the last_structure_received. DS_Receive accepts either a DCMU
restarting at that location or a DCMU restarting at the beginning of the
/ast_structure_received. If the DCMU indicates a restart position within the
last_structure_received different from that specified in the CRMU, DS_Receive
may reject the DCMU.

Figure 37 on page 100 illustrates the use of control MUs to accomplish mid-MU
restart following a conversation failure. DS_Send allocates the conversation
and begins sending, issuing verbs to the server to read the server object.
Before DS_Receive receives the DTMU suffix, a conversation failure occurs.

After allocating a new conversation (or on another already-active conversation),
DS_Send issues a CQMU to query the state of the MU_ID at DS_Receive.
DS_Receive issues Query_Last_Byte_Received to its server to determine the
last byte of the server object that was received. DS_Receive then transmits a
CRMU specifying last_structure_received as SERVER_OBJECT and
/ast_byte_received as the byte number supplied by the server. If DS_Receive
has not received any part of the server object or if the receiving DSU does not
support the byte-count restart elective, DS_Receive returns the ID of the last
high-level LLID structure it has fully received (either the agent object or an
unrecognized field) in last_structure_received, and indicates that the structure
was fully received either by specifying a value of X'FFFFFFFFFFFFFFFF' for
/ast_byte_received or by omitting the /ast_byte_received field entirely.

Upon receipt of the CRMU, DS_Send issues server verbs specifying restart
information to begin reading the server object at the byte following the byte
specified by last_byte_received. DS_Send encodes a DCMU containing the
remainder of the server object and sends it to DS_Receive. DS_Receive issues
server verbs specifying restart information to store the remainder of the server
object, and, upon receipt of the DTMU suffix, accepts responsibility for the dis
tribution. DS_Receive then transmits a CRMU (COMPLETED) and receives a
PRMU.

If the CRMU (SUSPENDED) specifies a /ast_byte_received value other than
X'FFFFFFFFFFFFFFFF' but DS_Send does not support the byte-count restart elec
tive, OS_ Send ignores the /ast_byte_received value and restarts at the begin
ning of the server object.

Chapter 2. Overview of SNA/DS Protocols 99

Server DS_SEND Conversation

Allocate

Send_Data(Preffx)

- Initfate_Read
- Read
- Tennf nate Read

Send_Data(DTHU)

Send Data(DTHU Suffix) ______.,
Receive_And_Waft

DS_RECEIVE

Recefve_And_Waft

Recefve_And_Waft

Receive_And_Waft
Initiate_Wrfte
Write

Server

********************************** Conversation Failure **********************************

Send Data(CQHU)
Receive_And_Waft

Receive And Wait
- Initiate Read
- Read -

Send_Data (DCHU)

- Read
- Tennf nate Read

Send_Data(DCHU Suffix) ______.,

Receive_And_Waft

Send_Data (PRHU)

Figure 37. Example--Mid-MU Restart

100 SNA/Distribution Services Reference

Receive And Wait
Query Last Byte Rcvd___..
Send Oata(CRHU,-
Suspended at Byte X)

Receive_And_Wait

Receive And Waft
Inftiate_write
Write

Recefve_And_Waft
Tennfnate_Wrf te _________..

Receive And Wait
Send Data(CRHU,
Completed)

Recefve_And_Waft

Chapter 2. Overview of SNA/DS Protocols. 101

Formal Description of MU_ID State Transitions

DS_SEND_MU_STATE_DESCRIPTION

Functioa:

Notes:

This finite-state machine describes the MU_ID state transitions that occur at DS_Send. Actions
accompanying the state changes (such as generating a Distribution Report for a distribution
entering Purged state) are not given here. See the FSMs describing DS_Send for further detail.

The CRMU input signals indicate that a CRMU was received with the indicated MU_ID state. If
the MU_ID state in the CRMU is SUSPENDED, processing differs depending on whether or not
Mid-MU Restart is appropriate. The SEMU input signals indicate that DS_Send encountered an
exception (retriable or not, as indicated) and generated a SEMU. The REMU input signals indi
cate that a REMU was received indicating an exception (retriable or not, as indicated).

102 SNA/Distribution Services Reference

States

NOT IN TRAN SF CQMU TERM RETRY SUS-
ASS'N'D TRAN PEND PEND PEND PEND PENDED PURGED

Inputs 01 02 03 04 05 06 07 08

MU ID ASSIGNED 2 I I I I I I I

SUFFIX SENT I 3 I I I I I I

RESENDING WITH DCMU I I I I I I 2 I

FAILURE RECOVERY STARTUP . 4 4 . . 4 . .

CRMU-NOT RECEIVED I I

CRMU-IN TRANSIT I I I -
CRMU-SUSPENDED
MID MU RESTART I I 7 7 8 7 - -
CRMU-SUSPENDED
NO MID MU RESTART I I 8 8 8 8 - -
CRMU-TERMINATED I I 8 8 8 8 8 -
CR MU-COMPLETED I I 8 8 8 8 I -
CRMU-PURGED I I I I I I I -
CONVERSATION FAILURE
RETRY I 6 I I I I I I

CONVERSATION FAILURE
NO RETRY I 5 I I I I I I

SEMU-NO RETRY I 5 I I I I I I

SE MU-RETRY
MID MU RESTART I 6 I I I I I I

SE MU-RETRY
NO MID MU RESTART I 6 I I I I I I

SEMU-RETRY EXHAUSTED I 5 I I I I I I

PROG ERROR RECEIVED I 6 I I I I I I

REMU-DUPLICATE
CONV FAIL REPORT I I I I - - I -
REMU-NO RETRY I I 8 8 8 8 I -
REMU-RETRY
MID MU RESTART I I 4 - 8 4 I -
REMU-RETRY
NO MID MU RESTART I I 8 8 8 8 I -
REMU-RETRY EXHAUSTED I I 8 8 8 8 I -

Chapter 2. Overview of SNA/DS Protocols 103

DS_RCV _MU_STATE_DESCRIPTION

Function:

Notes:

This finite-state machine describes the MU_ID state transitions that occur at DS_Receive.
Actions accompanying the state changes are not given here. See the FSMs describing
DS_Receive for further detail. ·

The After Failure Restart, Conv Fail, and Prog Err Recvd input signals indicate the exception
condition that was detected and whether or not Mid-MU Restart was appropriate. The SEMU
input signals indicate that a SEMU was received indicating an exception (retriable or not, as
indicated). The REMU input signals indicate that an exception was detected (retriable or not, as
indicated) and a REMU generated.

104 SNA/Oistrlbution Services Reference

States

NOT RCVD IN TRANS SUSP TERM COMPLETE PURGED

Inputs 01 02 03 04 05 06

PREFIX RECEIVED(DTMU,DRMU) 2 - I - I -
PREFIX RECEIVED(DCMU) I - 2 - I -
DIST ACCEPTED I 5 I I I I

AFTER FAIL RESTART
MID MU RESTART - 3 - - - -
AFTER FAIL RESTART
NO MID MU RESTART - 4 - - - -
CONVERSATION FAILURE
MID MU RESTART I 3 I I I I

CONVERSATION FAILURE
NO MID MU RESTART I 4 I I I I

PROG ERROR RECEIVED
MID MU RESTART I 3 I I I I

PROG ERROR RECEIVED
NO MID MU RESTART I 4 I I I I

PRMU I I 6 6 6 -
SEIVIU-NO RETRY 4 - 4 - - -
SEMU-RETRY
MID MU RESTART 4 - - . - -
SEMU-RETRY
NO MID MU RESTART 4 - I - - -
REMU-NO RETRY I 4 I I I I

RE MU-RETRY
MID MU RESTART I 3 I I I I

REMU-RETRY
NO MID MU RESTART I 4 I I I I

Chapter 2. Overview of SNA/OS Protocols 105

106 SNA/Distribution Services Reference

Chapter 3.

Introduction

Implementation Model

This chapter presents an implementation model of a distribution service unit.
The introductory section presents an overview of the transaction programs and
data structures that comprise the DSU. The functions of the DSU are organized
by DS sublayers. Diagrams illustrate the components of the DSU and the
relationship of the OSU to the other parts of the network--the agents that use
OS and the LU at which the OSU resides. The LU makes the services of the
underlying communication network available to the DSU.

Following the introduction are groups of finite-state machines (FSMs) that illus
trate the structure of the OSU in greater detail. The finite-state machines are
grouped by DS sublayer. When the FSMs are executed, they generate
sequences conforming to OS protocols.

The Structure of a DSU
Figure 38 on page 108 illustrates the components of the OSU and their relation
ship to the OS sublayers. (For simplification, the later diagrams do not show
the OS sublayers.) The functions of the DS presentation services sublayer are
provided by a DS presentation services program. The functions provided by the
directing and routing sublayers are provided by the service transaction program
OS_Router_Oirector. The functions of the distribution transport sublayer are
provided by two service transaction programs, OS_Send and OS_Receive. An
explanation of the numbered components of the OSU follows the figure.

The local-delivery queues are associated with both the presentation services
and directing sublayers. The router-director queue is associated with both the
directing and routing sublayers. The next-OSU queues are associated with both
the routing and distribution transport sublayers.

The OS operations functions are associated with all OS sublayers. The pro
grams that perform the operations functions for exception processing are
invoked from the programs that detect the exception conditions.

Chapter 3. Implementation Model 107

Users (1)

~(2)

L::JJ
1-------~----~-Agent PB- (3) -----------<

Server

PRESENTATION
SUBLAYER

Server (4)
PB

DIRECTING
SUBLAYER

ROUTING
SUBLAYER

DISTRIBUTION
TRANSPORT
SUBLAYER

OS
Presentation (5)
Services

(8)

u local-
delivery --
queues

Directory (9)

DS_ROUTER_ §
u- DIRECTOR

Routing
router- Tab 1 e {HJ)
director

§ queue

~ next-OSU
queues

(13) (12)

OS_RECEIVE LJ
LU 6.2- (14)
Basic Conversation
PB

Figure 38. Structure of a OSU

The numbered components are:

OS
Op er-
at ions

(15)

Exception
Log (16)

§

1. The users: Users interact with transaction programs known as agents to
send and receive distributions and to invoke operations functions.

2. The agents: The agents are above the OS protocol boundary. They interact
with OS by issuing protocol boundary verbs. For outbound traffic, an agent
issues a sequence of verbs known as a sending sequence. For distributions

108 SNA/Distribution Services Reference

to be delivered locally, DS selects the appropriate local-delivery queue
according to contents of the directory and schedules the specified destina
tion agent. The agent then issues a sequence of verbs known as a
receiving sequence to receive the distribution. Further detail on the agent
protocol boundary, sending sequences, and receiving sequences may be
found in Chapter 1 and Appendix F.

3. The agent protocol boundary: It provides the interface between the agents
and DS.

4. The server protocol boundary: It provides the interface between DS and the
servers. For outbound distributions, DS gets read access to the server
object by issuing verbs to the server across this boundary. For inbound dis
tributions, DS issues verbs to store the server object.

5. OS presentation services: Presentation services validates the requests from
the agents, schedules further distribution functions, and provides return
codes and parameters to the agents.

6. The router-director queue: This queue contains distributions originated
locally (placed on the queue by presentation services) or received from
remote DSUs (placed on the queue by DS_Receive). When DS is required
to generate distribution reports, DS operations places them on the queue.
The queue is serviced by DS_Router_Director.

7. The local-delivery queues: These queues contain distributions awaiting
delivery by DS presentation services to local agents. The directing function
of DS_Router_Director places distributions on the queues; it selects the
appropriate queue based on parameters in the directory and information in
the distribution. Presentation services services the queue when an agent
issues Receive_Distribution.

8. DS_Router_Director: This service transaction program performs the func
tions associated with both the routing and directing sublayers. It services
the router-director queue, accesses the directory and the routing tables,
and places distributions on the local-delivery queues or next-DSU queues.

9. The directory: It contains information that enables DS_Router_Director to
associate a destination DSU name with a destination user and local delivery
information with a local user.

10. The routing table: It contains information that enables DS_Router_Director
to select the appropriate next-DSU queue for outbound distributions.

11. The next-DSU queues: These contain distributions to be transmitted to
remote DSUs. DS_Router_Director places entries on the queues. DS_Send
services the queues.

12. DS_Send: This service transaction program performs the functions required
to send distributions to adjacent DSUs.

13. DS_Receive: This service transaction program performs the functions
required to receive distributions from adjacent DSUs. It uses server verbs
to store server objects and places distributions on the router-director
queue.

14. The LU 6.2 basic conversation protocol boundary: This interface enables DS
to issue LU 6.2 verbs to send and receive distributions.

Chapter 3. Implementation Model 109

15. DS operations: These programs perform functions required when
exceptions are detected or when operations users display or change OSU
information. These programs can be Invoked from any of the other OS
transaction programs.

16. The exception log: This log contains information concerning exception inci
dents detected by OS. OS creates the entries. OS operations programs
access the entries for operators.

Examples of DSU Activity
The diagrams in this section show the interaction of the components described
in "The Structure of a OSU" on page 107 for various distribution activities.

Origin of Distribution with Local Destinations
Figure 39 on page 111 shows the interaction of the OSU components when a
user sends a distribution to another user or users, all local to the same DSU.

Refer to Figure 39 on page 111 for the following interactions.

1. The user interacts with an agent to initiate a distribution request.

2. The agent issues Send_Oistribution to OS. Presentation services programs
analyze the request Information and accept it.

3. Presentation services signals SERVER_MGR to increment the OS lock count
for the server object. SERVER_MGR issues Assign_Read_Access to the
server.

4. The distribution is placed on the router-director queue and
DS_Router_Director is scheduled.

5. An OK return cod.e is returned to the agent. The agent issues
Sending_ Sequence_ Completed.

6. DS_Router_Director accesses the distribution on the router-director q1i.1eue.
It recognizes that the distribution Is at its origin and invokes directing.

7. Directing reads the directory and determines that all destination users are
local.

8. Information in the directory is. used to select the appropriate local-delivery
queues for the distribution. The destination agent is scheduled. The iden
tification of the queue is supplied to the agent.

9. The agent issues Receive_Distribution.

10. Presentation services accesses the named local-delivery queue and reads
the distribution information.

11. The distribution information is returned to the agent. The agent issues
Receiving_Sequence_Completed.

12. The agent provides the distribution information to the user.

110 $NA/Distribution Services Reference

Server

Users

(1) j (12)

Agents

t (9) (11)
(2) (5) i

Agent PB
(3) OS

'--------<Presentation
Services

~(1') Server
PB

(4)

(B)

U local
delfvery
queues

Directory (6) rn7)
· n._ROOTER_ u , DIRECTOR

router
di rector
queue

DS_RECEIVE

U ne.xt-DSU
queues

Routing
Table

OS
Dper
at ions

Exception
Log

1---------------LU 6.2•~--------------1
Basic Conversation
PB

Figure 39. Processing at the Origin of a Distribution with Local Destinations

Chapter 3. Implementation Model 111

Origin of Distribution with Remote Destinations
Figure 40 shows the component interaction at the origin of a distribution that
has remote destinations.

server

Users i (1)

l

Agents

(2) (5)

(3) OS
1-------1Presentation

Services
Server

PB

(4) U local
delfvery
queues

Directory (6) rn7)
~-ROUTER_ u DIRECTOR

router
director
queue

(12)

(9)

Routing
Table

e___r=i
next-~:~ L=J
queues

(10)

----(13)-----.

DS_RECEIVE '-----l os_SEND

(11) (14)

OS
Oper
at Ions

Exception
Log

1-------------LU6.2----------------<
Basic Conversation
PB

Figure 40. Processing at the Origin of a Distribution with Remote Destinations

112 SNA/Distribution Services Reference

1. The user interacts with an agent causing it to initiate a distribution request.

2. The agent issues Send_Oistribution to OS. The request information is
accepted by presentation services programs.

3. Presentation services signals the server manager to increment the OS lock
count for the server object. The server manager issues
Assign_Read_Access to the server.

4. The distribution is placed on the router-director queue, and
OS_Router_Oirector is scheduled.

5. An OK return code is returned to the agent.

6. OS_Router_Oirector accesses the distribution on the router-director queue.
It recognizes that the distribution Is at its origin.

7. The directory contents are read to determine the destination OSU for each
destination user. The distribution is passed to routing.

8. The routing table is accessed to determine the next-OSU queue for the dis
tribution.

9. The information is placed on the selected next-OSU queue, and OS_Send is
scheduled.

10. OS_Send accesses the next-OSU queue.

11. OS_Send starts a conversation via LU 6.2 with OS_Receive at the adjacent
OSU. That OSU may or may not be the destination; the sending process is
the same.

12. A server verb is issued to read the server object.

13. The server object is retrieved from the server and encoded as part of the
OTMU. Multiple Read verbs may be required to read the entire server
object.

14. The OTMU is transmitted to the adjacent DSU.

Chapter 3. Implementation Model 113

Destination of Distribution
Figure 41 illustrates the processing when a DSU receives a distribution whose
destinations are local.

Users
~

(12)

l

Agents
t-

• (9) (11
t

1------~--'---~--Agent PB:-----------1

Server

Server
PB

(5)

(3)

(4)

OS
Presentation
Services

(lEI)

~
U local-

(8) . delivery
queues

Directory

(6) m7) n,,_ . .,.,,._ . u DIRECTOR .

router
di rec tor
queue

DS_RECEIVE

(1) (2)

U next-DSU
queues

Routing
Table

OS
Dper
at ions

Exception
Log

>------~-~----LU6.2--------------t

Basic Conversation
PB

Figure 41. Processing a Received Distribution at the Destination

1. DS_Receive is attached by LU 6.2 as a result of activity Initiated by
DS_Send in the sending DSU (not shown).

114 SNA/Distribution Services Reference

2. The DTMU is received. Multiple LU 6.2 verbs may be issued to receive the
entire DTMU.

3. DS_Receive issues server verbs to allocate space for the server object.

4. The server object is stored by the server.

5. The distribution is placed on the router-director queue and
DS_Router_Director is scheduled.

6. DS_Router_Director accesses the distribution. Routing determines that the
local DSU is a destination for the distribution and invokes directing.

7. Directing accesses the directory, determines that the distribution is to be
delivered locally, and gets the local delivery information (local-delivery
queue identifier and parameters).

8. Directing places the distribution on the appropriate local-delivery queue and
schedules the destination agent. The queue identifier is passed to the
agent.

9. The agent issues Receive_Distribution.

10. A presentation services program accesses the indicated local-delivery
queue and reads the distribution.

11. The distribution information is returned to the agent.

12. The agent returns information to the user.

Chapter 3. Implementation Model 115

Processing a Received Distribution with a Routing Exception

Users Operator

1-------.-------..--A,gent PB:--------1-----1

Server

Server

DS
Presentation
Services

(11)
PB---------------------~

r--------.1 l
(19)

OS

(12)

U loca1-
de11very
queues

Ope rat ions (9)

Directory
(6)

~ +~_ROUTER_ u DIRECTOR
r-(B)-----.

router- Routing
director Table
queue

LJM':~su I I queues
(5)

(3) DS_RECEIVE

LJ (4)

•
(1) (2)

Exception
Log

1-----~--'-----LU&.2•---------------1

Basic Conversation
PB

Figure 42. Processing a Received Distribution with a Routing Exception

116 SNA/Dlstributlon Services Reference

Figure 42 on page 116 illustrates the processing performed by the DSU when a
routing exception occurs during the processing of a distribution. For this illus
tration, assume that the routing table accessed by DS_Router _Director has an
error so that the destination DSU is not listed in it. This could result from to an
error in building the table or because the table has been improperly changed.

1. DS_Receive is attached by LU 6.2 as a result of activity (not shown) initiated
by DS_Send in the sending DSU.

2. The DTMU is received. Multiple LU 6.2 verbs may be issued to receive the
entire DTMU.

3. DS_Receive issues server verbs to allocate space for the server object.

4. The server object is stored by the server.

5. The distribution is placed on the router-director queue and
DS_Router_Director is scheduled.

6. DS_Router_Director accesses the distribution. The destination DSU name
in the distribution is not local.

7. DS_Router_Director accesses the routing table to select the next-DSU
queue for the distribution. The destination DSU and service level required
are not found in the routing table.

8. DS_Router_Director invokes DS Operations to process the exception condi
tion.

9. OS Operations records exception information in the exception log.

10. OS Operations creates a distribution report, places it on the router-director
queue, and schedules DS_Router_Director. From this point, the distribution
report is processed the same as any other distribution on the router
director queue.

11. DS Operations releases the server object by issuing server verbs.

12. OS Operations issues a message to the operator indicating the exception.

13. An agent displays exception information to an operator.

Chapter 3. Implementation Model 117

Accessing Logged Exception
Figure 43 illustrates the processing when an operator accesses the exception
information on the exception log.

Operator

(1) l (7)

Agents

(2) (6)

1---------,r---~--.---Agent PB:--------------1

Server

Server
PB

M 0)
Presentation
Services

u
router-
di rec tor
queue

DS_RECEIVE

(3)

U local
delivery
queues

DS_ROUTER_
DIRECTOR

U next-DSU
queues

Directory

Routing
Table

(4)

Operations OS l
Exception

Log

1-----------~LU 6.2-----------------l
Basic Conversation
PB

Figure 43. Accessing a Logged Exception

118 SNA/Distribution Services Reference

1. An operator interacts with an agent to access the contents of the exception
log for a particular distribution.

2. The agent issues the Get_Exception_Log_Entry verb, identifying the distrib
ution. A presentation services program accepts the verb.

3. The presentation services program invokes DS Operations to access the
exception log with the identification of the required distribution.

4. DS Operations accesses the exception log and locates the distribution infor
mation.

5. DS Operations returns the information to the presentation services
program.

6. The presentation services program returns the exception information to the
requesting agent.

7. The agent formats the information for the operator.

Presentation Services Sublayer

Send_Distribution

This section presents a description of the functions performed by the presenta
tion services sublayer in response to the various verbs that an agent may
issue.

Presentation services performs the following actions in response to a
Send_Distribution verb:

• The syntax of the verb and dependencies among the parameters are
checked.

• The parameters of the verb are validated. For information on the required
protocol boundary checking performed by all implementations, see
Appendix C.

• The DS lock count for the server object is incremented.
Assign_Read_Access is issued to the server, to ensure that DS has read
access to the server object and that the server object will not be prema
turely deleted.

• The distribution is placed on the router-director queue.

• DS_Router_Director is scheduled.

• The sending state for the distribution is updated. For a description of the
possible values of the sending state, see Appendix F.

• Control is returned to the agent.

Query _Distribution_ Sending
Presentation services performs the following actions in response to a
Query_Distribution_Sending verb:

• The syntax of the verb and dependencies among the parameters are
checked.

• The parameters of the verb are validated.

Chapter 3. Implementation Model 119

• The control block for the distribution is located and the distribution control
information is obtained.

• Control is returned to the agent along with the appropriate distribution infor·
mation.

Sending_ Sequence_ Completed
PS performs the following actions in response to a
Sending_Sequence_ Completed verb:

• The syntax of the verb and dependencies among the parameters are
checked.

• The parameters of the verb are validated.

• The sending state is checked to see that the Sending_Sequence_Completed
verb is appropriate.

• The distribution control block is located.

• The sending state for the distribution is updated as appropriate.

• Control is returned to the agent.

Recelve_Dlstrlbutlon, Recelve_Dlstrlbutlon_Report
PS performs the following actions in response to a Receive_Distribution or a
Receive_Distribution_Report verb:

• The syntax of the verb and dependencies among the parameters are
checked.

• The parameters of the verb are validated.

• The distribution is retrieved from the local delivery queue.

• The distribution control block is marked as received and a time stamp Is
saved.

• The distribution information Is returned to the agent.

Receiving_ Sequence_ Completed
PS performs the following actions in response to a
Receiving_Sequence_Completed verb:

• The syntax of the verb and dependencies among the parameters are
checked.

• The parameters of the verb are validated.

• The distribution control block is located and checked to see that the distrib·
ution has previously been received.

• The agent lock count is decremented for the server object. If both the OS
and agent lock counts are 0 following the decrement operation,
Release_Read_Access is issued to the server to release access for both DS
and the agent.

• The distribution copy is dequeued from the local delivery queue.

120 SNA/Distribution Services Reference

• If Receiving_Sequence_Completed has been issued for all copies of the dis
tribution, the distribution control block is deleted.

• Control is returned to the agent.

Obtaln_Local_ Server _Report

Operations Verbs

PS performs the following actions in response to an
Obtain_Local_Server_Report verb:

• The syntax of the verb and dependencies among the parameters are
checked.

• The parameters of the verb are validated.

• The server report is obtained from the appropriate local delivery queue.

• The server report is returned to the agent.

For a description of the operations verbs, see Chapter 1 and Appendix F. PS
performs the following actions in response to an operations verb:

• The syntax of the verb and dependencies among the parameters are
checked.

• The parameters of the verb are validated.

• The requested operation is performed.

• The results of the verb are returned to the agent.

Routing and Directing Sublayers

Routing and Directing Overview
The formal model groups these functions together under a single transaction
program, but DS implementations may choose other groupings. This model
also shows some option subsets, which implementations may or may not
decide to support. However, all DS implementations provide the base DS func
tions, as described in Appendix C.

The machines in this section correspond to the transaction program
DS_Router_Director. A manager machine controls lower-level machines in the
hierarchy. The manager machine loops, removing distributions from the router
director queue, and signals lower-level machines to perform either the routing
function or the directing function.

DS_Router_Director has the responsibility of enqueuing a distribution either
locally for delivery, or on a next-DSU queue from which it will be transmitted to
an adjacent DSU.

There are two components:

• Routing processes distributions originating locally or remotely, examines
the DSU names, and either gives them to directing for local handling, or
queues them again for transmission onward.

Chapter 3. Implementation Model 121

• Directing performs directory lookup and local delivery functions. For distrib
utions that were originated locally, it supplies DSU names for user destina
tions that are to be transmitted for delivery elsewhere. Directing also
delivers distributions locally; that is, it puts them on local queues and
causes designated local agents to gain control. Another function of
directing is that of redirection. In performing this function, the distribution is
passed from routing to directing and back to routing with new destination
OSUs for some user destinations. This communication takes place through
the manager machine.

122 SNA/Distribution Services Reference

FSM_SClHED_MGR

START_TRANSACTION

FSM_ROUTING_OIRECTING_MGR

FSM_ FSM_ QUEUE_MGR FSM OEST
ORIGIN_ DIRECTING_ DSU=CHECK
CHECK * MGR * *

l l l
FSM_ FSM_ FSM FSM_
DIR_ LOCAL_ LOCAL_ OPERAT-
LOOKUP* CHECK * SCH ED IONS_MGR

I I l
FSM_NEXT_ FSM_ SERVER_ QUEUE_ FSM_ FSM_
LOCAL_ COUNT_ MGR MGR SCHED_ NEXT_
QUEUE * EXCEPT* * * HGR DSU

SERVER_ FSM_ FSM_
MGR ROUTING_ OPERATIONS -* MGR MGR

I l J
FSM_ FSM_ FSM_ FSM_
osu_ RTG_ REMOTE_ OPERAT-
CHECK * LOOKUP* SCH ED IONS_MGR

I I I l
FSM_ SERVER_ QUEUE_ FSM_
COUNT MGR MGR SCHED_

* EXCEPT* * * MGR

* Indicates those finite-state machines not formally specified.

For more details regarding the finite-state machines, see:

• "FSM_ROUTING_DIRECTING_HGR" on page 124 • "QUEUE_MGR" on page 357
• "FSM_LOCAL_SCHED" on page 132 • "FSM_COUNT_EXCEPTS" on page 145
• "FSM_DIRECTING_MGR" on page 128
• "FSH_REMOTE_SCHED" on page 140

• "FSM DEST DSU CHECK" on page 144
• "FS(DSU_CHECK" on page 145

• "FSM_ROUTING_MGR" on page 136
• "FSM_SCHED_MGR" on page 351

• "SERVER MGR" on page 354
• "FSM_RTG_LOOKUP" on page 145

• "FSM_OPERATIONS_MGR" on page 342 • "FSM_DIR_LOOKUP" on page 144
• "FSM_ORIGIN_CHECK" on page 144 • "FSM_NEXT_DSU" on page 146
• "FSH_NEXT_LOCAL_QUEUE" on page 145 • "FSM_LOCAL_CHECK" on page 144

Figure 44. DS_Router_Director FSM Hierarchy

Chapter 3. Implementation Model 123

FSM_ROUTING _DIRECTING _MGR
This machine controls the sequence of routing and directing functions for each
distribution. It uses information in the distribution, and signals lower-level
machines to accomplish its functions. In the case of exceptions reported by
lower-level machines, this machine takes exception information passed from
those machines and gives it to FSM_OPERATIONS_MGR for processing.

FSM_ROUTING_DIRECTING_MGR is started by a signal from FSM_SCHED_MGR.
It processes entries on the router-director queue until the queue is empty.
First, it signals QUEUE_MGR to remove a distribution from the router-director
queue. When the distribution is dequeued, FSM_ROUTING_DIRECTING_MGR
determines whether it originated locally and has at least one user destination.
If it originated locally and at least one user destination is present, the distrib
ution is passed to the directing manager, which performs local distribution and
fills in DSUs for remote user destinations.

When FSM_ROUTING_DIRECTING_MGR receives the DIRECTING_ COMPLETE
signal, it passes the distribution to the routing manager, if distribution copies
for remote destinations are to be processed. If, however, all the destinations
happen to be local, it decrements the server-object OS lock count, which was
incremented when the distribution entered the DSU, and asks for the next dis
tribution on the router-director queue.

If the distribution originated at a remote DSU, FSM_ROUTING_DIRECTING_MGR
passes the distribution to the routing manager first. If any of the destination
DSUs are local, the routing manager requests that the directing function be per
formed on the distribution. If no DSUs are local, the routing manager puts the
distributions on the appropriate next-DSU queues.

When FSM_ROUTING_DIRECTING_MGR receives the DIRECTING_COMPLETE
signal, the distribution has been enqueued for delivery to any local users or
agents, and these local destinations have been removed from the distribution.
There may or may not be destinations remaining. When
FSM_ROUTING_DIRECTING_MGR receives the ROUTING_COMPLETE signal, no
more destinations are to be serviced for the distribution and
DS_Router_Director processing is complete. Any fan-out is performed by the
routing manager and the directing manager.

Only two exceptions are reported to FSM_ROUTING_DIRECTING_MGR: a
server exception and a queue exception. In both these cases, it signals
FSM_OPERATIONS_MGR to log the exception and send a message to the oper
ator so that the affected resources can be repaired.

Exceptions in directing and routing are handled by FSM_DIRECTING_MGR and
FSM_ROUTING_MGR. The DIRECTING_COMPLETE and the
ROUTING_COMPLETE signals imply that any exceptions have been processed
and that erroneous user names and DSUs, or destinations for which delivery
could not be made, have been erased from the distribution.

124 SNA/Oistribution Services Reference

Function: This finite-state machine describes the sequence of routing and directing functions in
DS_Router_Director. For a further description, see "FSM_ROUTING_DIRECTING_MGR" on
page 124.

This FSM gets control from one of the following:

• Signals from finite-state machines providing common services:

START_TRANSACTION from FSM_SCHED_MGR
QUEUE_OK from QUEUE_MGR

- QUEUE_NOT_OK from QUEUE_MGR
QUEUE_EMPTY from QUEUE_MGR

- OPERATIONS_COMPLETE from FSM_OPERATIONS_MGR
- OBJECT_OK from SERVER_MGR
- OBJECT_NOT_OK from SERVER_MGR

• Signals from lower-level routing and directing finite-state machines:

- ORIGIN_REQUEST_USER_NAME from FSM_ORIGIN_CHECK
- ORIGIN_REQUEST_NO_USER_NAME from FSM_ORIGIN_CHECK

NOT_ORIGIN_REQUEST from FSM_ORIGIN_CHECK
- DIRECTING_ COMPLETE from FSM_DIRECTING_MGR

ROUTING_COMPLETE from FSM_ROUTING_MGR
ROUTING_RESET from FSM_ROUTING_MGR
DIRECTING_REQUIRED from FSM_ROUTING_MGR
DEST_DSUS_REMAINING from FSM_DEST_DSU_CHECK
NO_DEST_DSUS_REMAINING from FSM_DEST_DSU_CHECK

Chapter 3. Implementation Model 125

States

READ
QUE ORIG DSUS DEC DEQ OPER RESET

RESET PEND CHK DIR RTG PEND LOCK PEND ERP PEND RTG

Inputs 01 02 03 04 05 06 07 08 09 10 11

START TRANSACTION 2a I I I I I I I I I I

QUEUE OK I 3b I I I I I 2a I I I

QUEUE NOT OK I 9f I I I I I 9f I I I

QUEUE EMPTY I 1 I I I I I I I I I

ORIGIN REQUEST
USER NAME I I 4c I I I I I I I I

ORIGIN REQUEST
NO USER NAME I I 5d I I I I I I I I

NOT ORIGIN REQUEST I I 5d I I l I I I I I

DIRECTING COMPLETE I I I 6g I I I I I I I

ROUTING COMPLETE I I I I 7e I I I I I I

DIRECTING REQUIRED I I I I 4c I I I I I I

ROUTING RESET I I I I I I I I I I 7e

DEST DSUS REMAINING I I I I I 5d I I I I I

NO DEST DSUS
REMAINING I I I I I 11i I I I I I

OBJECT OK I I I I I I 8h I I I I

OBJECT NOT OK I I I I I I 10f I I I I

OPERATIONS COMPLETE I I I I I I I I 2a 8h I

126 SNA/Distribution Services Reference

Output Function
Code
a Signal QUEUE_MGR with READO to read the next available entry from the router-director queue.

b Signal FSM_ORIGIN_CHECK with CHECK_FOR_ORIGIN to determine if the distribution is at the
origin.

c Signal FSM_DIRECTING_MGR with DIRECT to determine the DSU for each destination.

d Signal FSM_ROUTING_MGR with ROUTE to determine local and remote destinations, perform
fan-out, and perform scheduling for remote destinations, if all destinations are remote.

e Signal SERVER_MGR with DECREMENT_OBJ_LOCK to decrement the OS lock count for the server
object. If no server object exists, SERVER_MGR returns OBJECT_OK.

f Signal FSM_OPERATIONS_MGR with LOG_MESSAGE_EXCEPT to perform logging and to display an
operator message. Any asynchronous reporting required was generated from either directing or
routing.

g Signal FSM_DEST_DSU_CHECK with CHECK_DSUS to determine if any destination DSUs remain to
be handled by routing.

h Signal QUEUE_MGR with DEQ to remove the entry processed from the Router-Director queue.

i Signal FSM_ROUTING_MGR with ALL_LOCAL to indicate no more DSUs remain to be processed.

Chapter 3. Implementation Model 127

Directing FSMs

FSM_DIRECTING_MGR
The directing manager accesses the user directory and handles the local
delivery and redirection functions. The directing manager:

• Looks up user names and agents in the directory and obtains DSUs and
local-delivery queue information where necessary.

• Signals the OS operations manager to handle any exceptions found In the
destination list.

• Checks whether any local recipients are in the destination list.

• Puts the distribution on local-delivery queues for local recipients and
removes them from the destination list.

• Passes any redirected destinations back to the
FSM_ROUTING_DIRECTING_MGR.

The directing manager receives one of two types of input from the
FSM_ROUTING_DIRECTING_MGR:

• A distribution that originated locally.

• A distribution that originated at a remote DSU, and that the routing
manager has determined to have at least one destination local to this DSU.
This type of distribution is assumed to have the apparent local destination
DSUs and user names marked for the directing manager.

For destination users and agents, the directing manager first signals
FSM_DIR_LOOKUP to access the user directory. Next, the directing manager
signals FSM_LOCAL_CHECK to check the queue information appended by
FSM_DIR_LOOKUP to determine if the distribution can be delivered locally.
FSM_LOCAL_CHECK will fan out the distribution If necessary.

If no queue information was appended, then no local deliveries are to be made,
and directing signals the FSM_ROUTING_DIRECTING_MGR that the directing
function is complete. If local deliveries are to be made, the directing manager
machine signals FSM_LOCAL_SCHED to queue the distribution to each of the
local recipients in the destination· list. When FSM LOCAL SCHED is done, the - -
directing manager signals back to the FSM_ROUTING_DIRECTING_MGR that
directing is done.

If exceptions are found in the directing operation, the directing manager
machine signals the operations manager to handle the exceptions. Operations
is given a list of the exception destinations, logs the exception, builds the dis
tribution exception report, and notifies the operator if necessary.

Upon signalling back to FSM_ROUTING_DIRECTING_MGR, the directing
manager has pruned all local recipients from the destination list, so that either
no recipient remains, or only recipients at remote DSUs remain. Either all local
recipients have had the distribution enqueued, or, if there were exceptions, the
proper exception recovery action was taken.

128 SHA/Distribution Services Reference

Chapter 3. Implementation Model 129

Function: This finite-state machine describes the functional processing in directing. For a further
description, see "FSM_DIRECTING_MGR" on page 128.

Inputs
DIRECT

This FSM gets control from one of the following:

• Signals from higher-level routing and directing finite-state machines:

- DIRECT from FSM_ROUTING_DIRECTING_MGR

• Signals from lower-level routing and directing finite-state machines:

DIR_LOOKUP _COMPLETE_NO_EXPTS from FSM_DIR_LOOKUP
DIR_LOOKUP _COMPLETE_EXPTS from FSM_DIR_LOOKUP
DIRECTING_LOCALS from FSM_LOCAL_CHECK

- DIRECTING_NO_LOCALS from FSM_LOCAL_CHECK
- DIRECTING_LOCALS_COPY_EXPT from FSM_LOCAL_CHECK

LOCAL_SCHED_COMPLETE from FSM_LOCAL_SCHED
LOCAL_SCHED_COMPLETE_EXPTS from FSM_LOCAL_SCHED

• Signals from finite-state machines providing common services:

- OPERATIONS_COMPLETE from FSM_OPERATIONS_MGR

States

DIR LCL COPY
RESET LOOKUP DIR EXPT PEND ERP

01 02 03 04 05

2a I I I I

DIR LOOKUP COMPLETE NO EXPTS I 4b I I I

DIR LOOKUP COMPLETE EXPTS I 3c I I I

DIRECTING LOCALS I I I 6e I

DIRECTING NO LOCALS I I I 1d I

DIRECTING LOCALS COPY EXPT I I I Sc I

LOCAL SCHED COMPLETE I I I I I

LOCAL SCHED COMPLETE EXPTS I I I I I

OPERATIONS COMPLETE I I 4b I 1d

130 SNA/Distribution Services Reference

LCL
SCH ED

06

I

I

I

I

I

I

1d

7c

I

SCH ED
ERP

07

I

I

I

I

I

I

I

I

1d

Output Function
Code
a Signal FSM_DIR_LOOKUP with FIND_DSU to determine the CSU for the user names that are not

local, and local queue information for local user names and agents.

b Signal FSM_LOCAL_CHECK with CHECK_LOCALS to determine if local queue information exists for
any destinations. If local destinations exist, FSM_LOCAL_CHECK makes a copy of the server object,
using the appropriate server.

c Signal FSM_OPERATIONS_MGR with ROUTING_DIRECTING_EXCEPT to notify the operator, generate
any requested reports, and to log.

d Signal FSM_ROUTING_DIRECTING_MGR with OIRECTING_COMPLETE to indicate that all destination
users have been completed with OSUs, any local distribution has been performed, and any
exceptions have been processed by FSM_OPERATIONS_MGR.

e Signal FSM_LOCAL_SCHED with LOCAL_DISTRIBUTIONS to schedule the destination agent for proc-
essing of local distributions.

Chapter 3. Implementation Model 131

FSM_LOCAL_SCHED
This machine shows the sequence of functions comprising the local delivery
mechanism in OS. FSM_LOCAL_SCHED uses the local-delivery queue informa
tion and the copies of the distribution that FSM_LOCAL_ CHECK made.

The directing manager machine signals FSM_LOCAL_SCHED when it deter
mines that it has local destinations for the distribution. For each local-delivery
queue identifier, FSM_LOCAL_SCHED does the following:

• Requests the next queue identifier and a copy of the distribution from
FSM_NEXT _LOCAL_ QUEUE.

• Increments the server object agent lock count.

• Enqueues the copy of the distribution on the local-delivery queue specified
by the queue identifier.

• Schedules the destination agent identified in the distribution.

• Makes the queue entry available to the agent by a RELEASEQ signal to
QUEUE_MGR.

If an exception occurs during the processing, FSM_LOCAL_SCHED does the fol
lowing:

• Reverses any operation that has been done on the distribution up to that
point.

For example, If the server object agent lock count has been Incremented
and the distribution put on the local-delivery queue, FSM_LOCAL_SCHED
dequeues the distribution and decrements the server-object agent lock
count.

• Adds the destinations in the destination list of the reported-on distribution to
a general exception list to be passed back to the directing manager
machine.

When all the local-delivery queue identifiers are exhausted,
FSM_LOCAL_SCHED checks for any exceptions that have occurred in the
process, and returns the list of destinations for which the distribution could not
be enqueued. If no exceptions were found, FSM_LOCAL_SCHED reports
LOCAL_SCHED_COMPLETE back to the directing manager machine.

Although it is not shown in this machine, for an unsuccessful server, queue, or
scheduling function, FSM_OPERATIONS_MGR should also be signalled with
MESSAGE_TO_OPERATOR and passed the message that the operation could
not be completed, and that, in handling the exception, another exception
occurred.

132 SNA/Distribution Services Reference

Chapter 3. Implementation Model 133

Function: This finite-state machine describes the functional processing for local delivery in directing. For
a further description, see "FSM_LOCAL_SCHED" on page 132.

This FSM gets control from one of the following:

• Signals from higher-level routing and directing finite-state machines:

- LOCAL_DISTRIBUTIONS from FSM_DIRECTING_MGR

• Signals from lower-level routing and directing finite-state machines:

NEXT_QUEUE_ID from FSM_NEXT_LOCAL_QUEUE
END_QUEUE_IDS from FSM_NEXT_LOCAL_QUEUE
SCHED_NO_EXCEPTS from FSM_COUNT_EXCEPTS
SCHED_EXCEPTS from FSM_COUNT_EXCEPTS

• Signals from finite-state machines providing common services:

OBJECT_OK from SERVER_MGR
OBJECT_NOT_OK from SERVER_MGR
QUEUE_OK from QUEUE_MGR
QUEUE_NOT_OK from QUEUE_MGR

- SCHED_FUNCTION_OK from FSM_SCHEO_MGR
- SCHEO_FUNCTION_NOT_OK from FSM_SCHED_MGR

States

LOCAL
QUEUE LOCK ENQ SCH ED

RESET ENTRY PEND PEND PEND

Inputs 01 02 03 04 05

LOCAL DISTRIBUTIONS 2a I I I I

NEXT QUEUE ID I 3b I I I

END QUEUE IDS I Sh I I I

OBJECT OK I I 4c I I

OBJECT NOT OK I I 2e I I

QUEUE OK I I I Sf I

QUEUE NOT OK I I I 7d I

SCHED FUNCTION OK I I I I 6k

SCHED FUNCTION NOT OK I I I I 7g

SCHED NO EXCEPTIONS I I I I I

SCHED EXCEPTIONS I I I I I

134 SNA/Distributlon Services Reference

RELQ
PEND

06

I

I

I

I

I

2a

7d

I

I

I

I

EXPT
ERP CNT

07 08

I I

I I

I I

2e I

2e I

-d I

-d I

I I

I I

I 1 i

I 1j

Output Function
Code
a Signal FSM_NEXT_LOCAL_QUEUE with FIND_NEXT_QUEUE_ID to determine the next local-delivery

queue for which there is a distribution.

b Signal SERVER_MGR with INCREMENT_OBJ_LOCK to increment the agent lock count for the server
object. If no server object exists, SERVER_MGR returns OBJECT _OK.

c Signal QUEUE_MGR with WRITEQ to place the distribution on the local-delivery queue.

d Signal SERVER_MGR with DECREMENT_OBJ_LOCK to decrement the agent lock count for the server
object. If no server objects exists, SERVER_MGR returns OBJECT_OK.

e Add exception to exception-user information. Signal FSM_NEXT_LOCAL_QUEUE with
FIND_NEXT_QUEUE_ID to determine the next local-delive1y queue for wh'ch there is a distribution.

f Signal FSM_SCHED_MGR with START_REQUEST to schedule the destination agent.

g Signal QUEUE_MGR with DEQ to remove the distribution from the local-delivery queue.

h Signal FSM_COUNT_EXCEPTS with COUNT_SCHED_EXCEPTS to determine if exceptions existed in
any of the local scheduling process.

i Signal FSM_DIRECTING_MGR with LOCAL_SCHED_COMPLETE to signal directing that the local
scheduling process was completed successfully.

j Signal FSM_DIRECTING_MGi1 with LOCAL_SCHED_COMPLETE_EXPTS to signal directing that
exceptions existed in the local scheduling process.

k Signal QUEUE_MGR with RELEASEQ to remove the in-use mark from the queue entry in the local-
delivery queue. The entry will then be available to the destination agent for processing.

Chapter 3. Implementation Model 135

Routing FSMs

FSM_ROUTING_MGR
The routing manager sequences the functions necessary to put a distribution on
one or more next-DSU queues for transmission to adjacent DSUs. The input to
this machine is the destination list. The output depends on whether there are
any local DSUs In the destination list.

The routing manager generates two main processing sequences:

• When the routing manager determines that at least one local DSU is in the
destination list, it signals DIRECTING_REQUIRED to
FSM_ROUTING_DIRECTING_MGR. The output is the distribution with all the
local destinations marked In the destination list.

• When the routing manager determines that no local DSUs are in the desti
nation list, It sequences the routing table lookup, fan-out functions, and the
enqueuing and scheduling functions. In this case, all copies of the distrib
ution are put on the appropriate next-DSU queues.

The routing manager is aware of two kinds of exceptions: routing table lookup
exceptions and scheduling exceptions. If routing table lookup exception condi
tions exist for all the destination DSUs, the routing manager machine signals
the operations manager to process the exceptions and terminates processing.
If exception conditions exist for only some of the DSUs, the routing manager
handles the exceptions by a signal to the operations manager, and then tries to
enqueue and schedule the distribution for the non-exception destinations. In
the case of exceptions reported by FSM_REMOTE_SCHED, the routing manager
passes the exception list to the operations manager. It assumes that all the
non-exception copies of the distribution have been enqueued and scheduled.

136 SHA/Distribution Services Reference

Chapter 3. Implementation Model 137

Function: This finite-state machine describes the functional processing in routing. For a further
description, see "FSM_ROUTING_MGR" on page 136.

This FSM gets control from one of the following:

• Signals from higher-level routing and directing finite-state machines:

- ALL_LOCAL from FSM_ROUTING_DIRECTING_MGR
- ROUTE from FSM_ROUTING_DIRECTING_MGR

• Signals from lower-level routing and directing finite-state machines:

- ALL_REMOTE from FSM_DSU_CHECK
- AT_LEAST_ONE_LOCAL from FSM_DSU_CHECK
- RTG_LOOKUP _COMPLETE from FSM_RTG_LOOKUP
- RTG_LOOKUP _COMPLETE_EXPTS from FSM_RTG_LOOKUP
- RTG_LOOKUP _COMPLETE_ALL_EXPTS from FSM_RTG_LOOKUP
- REMOTE_SCHED_COMPLETE from FSM_REMOTE_SCHED
- REMOTE_SCHED_COMPLETE_EXPTS from FSM_REMOTE_SCHED

• Signals from finite-state machines providing common services:

- OPERATIONS_COMPLETE from FSM_OPERATIONS_MGR

States

NEXT RTG RMT
RESET DSU CHK DSU EXPT SCH ED

Inputs 01 02 03 04 05

ROUTE 2a I I I I

ALL LOCAL -g I I I I

ALL REMOTE I 3b I I I

AT LEAST ONE LOCAL I 7c I I I

RTG LOOKUP COMPLETE I I 5d I I

RTG LOOKUP COMPLETE EXPTS I I 4e I I

RTG LOOKUP COMPLETE
ALL EXPTS I I Se I I

REMOTE SCHED COMPLETE I I I I 1f

REMOTE SCHED COMPLETE EXPTS I I I I 6e

OPERATIONS COMPLETE I I I 5d I

138 SNA/Distribution Services Reference

ERP

06

I

I

I

I

I

I

I

I

I

1f

DIR
PEND

07

3b

1g

I

I

I

I

I

I

I

I

Output Function
Code
a Signal FSM_DSU_CHECK with CHECK_LOCAL_REMOTE to determine if both local and remote desti-

nations exist in the distribution.

b Signal FSM_RTG_LOOKUP with FIND_NEXT_DSU to determine the next DSU connection information
for the destination DSUs in the distribution. Hop counts are set if the DSU is the origin, or decre-
mented and validated if the DSU is not the origin.

c Signal FSM_ROUTING_DIRECTING_MGR with DIRECTING_REQUIRED to indicate that destinations
local to the DSU exist, and require local delivery or redirection.

d Signal FSM_REMOTE_SCHED with REMOTE_DISTRIBUTIONS to schedule the sending of distributions
to next DSUs.

e Signal FSM_OPERATIONS_MGR with ROUTING_DIRECTING_EXCEPT to notify the operator, generate
any requested reports, and log.

f Signal FSM_ROUTING_DIRECTING_MGR with ROUTING_COMPLETE to indicate that all remote desti-
nations in the distribution have been fanned-out and the resulting distributions have been scheduled
for sending to the next DSUs.

g Signal FSM_ROUTING_DIRECTING_MGR with ROUTING_RESET to indicate that routing has been
reset.

Chapter 3. Implementation Model 139

FSM_REMOTE_SCHED
This machine performs the sequence of functions necessary to enqueue a dis
tribution for transmission to a remote destination. Its input is the distribution,
and, in particular, the destination list. Its output is a list of DSUs that could not
be sent, and copies of the distribution put on the correct next-DSU queues. It
causes DS_Send to gain control to transmit the queued distributions.

For each next-DSU queue name in the list associated with the distribution,
FSM_REMOTE_SCHED does the following:

• Requests a next-DSU queue name and a copy of the distribution from
FSM_NEXT_DSU.

• Requests that the server manager increment the OS lock count for the
server object. This creates a lock on the server object for each copy of the
distribution that must be transmitted.

• Requests that the queue manager put a copy of the server object on the
named next-DSU queue.

• Requests that the scheduler start DS_Send, as appropriate to the sched
uling algorithms.

If an exception occurs, the operations that have been performed on the distrib
ution up to that point are reversed. FSM_REMOTE_SCHED adds the exception
DSUs to a list that It passes back to the routing manager machine. In general,
if, during the exception recovery process, another exception occurs, it is noted,
but no other action is taken.

When FSM_REMOTE_SCHED has no more next-DSU queues to which to route
the distribution, it signals FSM_COUNT_EXCEPTS to check whether the excep
tion list is empty.

If it is not empty, FSM_REMOTE_SCHED signals the routing manager machine
with REMOTE_SCHED_COMPLETE_EXCEPTS so that the routing manager can
signal operations. Otherwise, FSM_REMOTE_SCHED signals
REMOTE_ SCHED _COMPLETE.

Although it is not shown in this machine, for an unsuccessful server, queue, or
scheduling function, FSM_OPERATIONS_MGR should also receive a
MESSAGE_TO_OPERATOR signal and the message that the function could not
be completed and that in handling the exception, another exception occurred.

140 SNA/Distribution Services Reference

Chapter 3. Implementation Model 141

Function: This finite-state machine describes the functional processing for remote destinations in routing.
For a further description, see "FSM_REMOTE_SCHED" on page 140.

This FSM gets control from one of the following:

• Signals from higher-level routing and directing finite-state machines:

- REMOTE_DISTRIBUTIONS from FSM_ROUTING_MGR

• Signals from lower-level routing and directing finite-state machines:

NEXT_DSU from FSM_NEXT_DSU
END_NEXT_DSUS from FSM_NEXT_DSU
SCHED_NO_EXCEPTS from FSM_COUNT_EXCEPTS
SCHED_EXCEPTS from FSM_COUNT_EXCEPTS

• Signals from finite-state machines providing common services:

OBJECT_OK from SERVER_MGR
OBJECT_NOT_OK from SERVER_MGR

- OUEUE_OK from QUEUE_MGR
QUEUE_NOT_OK from QUEUE_MGR
SCHED_FUNCTION_OK from FSM_SCHED_MGR
SCHED_FUNCTION_NOT_OK from FSM_SCHED_MGR

States

NEXT
DSU LOCK WRITEQ SCH ED

RESET ENTRY PEND PEND PEND

Inputs 01 02 03 04 05

REMOTE DISTRIBUTIONS 2a I I I I

NEXT DSU I 3b I I I

END NEXT DSUS I Sh I I I

OBJECT OK I I 4c I I

OBJECT NOT OK I I 2e I I

QUEUE OK I I I Sf I

QUEUE NOT OK I I I 7d I

SCHED FUNCTION OK I I I I 6k

SCHED FUNCTION NOT OK I I I I 7g

SCHED NO EXCEPTIONS I I I I I

SCHED EXCEPTIONS I I I I I

142 SNA/Distribution Services Reference

RELQ
PEND

06

I

I

I

I

I

2a

7d

I

I

I

I

EXPT
ERP CNT

07 08

I I

I I

I I

2e I

2e I

-d I

-d I

I I

I I

I 1i

I 1j

Output Function
Code
a Signal FSM_NEXT_DSU with FIND_NEXT_DSU to determine the next DSU for which there is a distrib-

ution.

b Signal SERVER_MGR with INCREMENT_OBJ_LOCK to increment the DS lock count for the server
object. If no server object exists, SERVER_MGR returns OBJECT_OK.

c Signal QUEUE_MGR with WRITEQ to place the distribution on the next-DSU queue.

d Signal SERVER_MGR with DECREMENT_OBJ_LOCK to decrement the DS lock count for the server
object. If no server object exists, SERVER_MGR returns OBJECT_OK.

e Add exception to exception-user information. Signal FSM_NEXT_DSU with FIND_NEXT_DSU to deter-
mine the next DSU for which there is a distribution.

f Signal FSM_SCHED_MGR with START_REQUEST to schedule the DS_Send transaction program to
send distributions to the next DSU.

g Signal QUEUE_MGR with DEQ to remove the distribution from the next-DSU queue.

h Signal FSM_COUNT_EXCEPTS with COUNT_SCHED_EXCEPTS to determine if exceptions occurred in
any part of the remote scheduling process.

i Signal FSM_ROUTING_MGR with REMOTE_SCHED_COMPLETE to indicate to routing that the remote
scheduling process was completed successfully.

j Signal FSM_ROUTING_MGR with REMOTE_SCHED_COMPLETE_EXPTS to indicate to routing that
exceptions occurred in the remote scheduling process.

k Signal QUEUE_MGR with RELEASEQ to remove the in-use mark from the queue entry in the
next-DSU queue. The entry is then available to DS_Send for processing.

Chapter 3. Implementation Model 143

Routing and Directing Utility FSMs

FSM_ORIGIN_CHECK
This FSM determines whether the distribution passed to it originated locally or
at a remote DSU, and whether user destinations are present.
FSM_ORIGIN_CHECK reports the results of this operation to
FSM_ROUTING_DIRECTING_MGR by signalling either
ORIGIN_REQUEST_USER_NAMES if the distribution originated at the local DSU
and if at least one user name Is in the destination list. It returns
ORIGIN_REQUEST_NO_USER_NAMES if the distribution originated at the local
DSU, but the destination list includes only node destinations. It returns
NOT_ORIGIN_REQUEST otherwise. FSM_ROUTING_DIRECTING_MGR decides
on the basis of these signals whether to signal the directing manager or the
routing manager first.

FSM_DEST_DSU_CHECK

FSM_DIR_LOOKUP

This FSM determines whether any destinations remain in the distribution to be
serviced. FSM_ROUTING_DIRECTING_MGR manager signals this machine after
the directing manager is finished in order to decide whether to signal the
routing manager. If the destination list is empty, the directing manager has
delivered the distribution locally, and no recipients remain. In this case, it
signals NO _DEST _DSUS_REMAINING back to FSM_ROUTING_DIRECTING_MGR.
If the list is not empty, then there are recipients at remote DSUs to which the
distribution must be routed. In this case, it signals DEST_DSUS_REMAINING
back to FSM_ROUTING_DIRECTING_MGR.

If the distribution originated locally, the directory lookup produces DSU names
for all user names that are not local, and local-delivery queue information for
the user names that are local. For a distribution that originated at another
OSU, the directory lookup returns a new OSU name if redirection has taken
place, or local-delivery queue information if the user name is truly local.

If the directory lookup produces an exception (for example, ENTRY_NoT_FOUND),

then the user name producing the exception is recorded. When all the user
directory accesses are done, the user names producing exceptions and the
valid user names are returned to the directing manager machine with the signal
DIR_LOOKUP _COMPLETE_EXPTS.

If no exceptions are encountered, the destination list is returned with the signal
DIR_LOOKUP _COMPLETE_NO_EXPTS.

FSM_LOCAL_ CHECK
This machine determines from the destination list whether local-delivery queue
information has been appended.

In addition, FSM_LOCAL_CHECK makes a copy of the distribution control infor
mation for each queue identifier found, and consolidates the user names for
each queue identifier. That is, only one copy of the distribution is made for
each queue, and the destination list contains all the destinations associated
with that queue and service parm. FSM_LOCAL_CHECK also makes a (single)

144 SNA/Distribution Services Reference

copy of the server object using the destination server name specified in the dis
tribution control information.

If there is local-delivery queue information, FSM_LOCAL_CHECK signals
DIRECTING_LOCALS back to the directing manager machine; otherwise, it
signals DIRECTING_NO_LOCALS. If an exception was encountered while a
copy of the server object was being made, this machine signals
DIRECTING_LOCALS_COPY_EXPT.

FSM_NEXT_LOCAL_QUEUE
This FSM passes the next local-delivery queue identifier and a copy of the dis
tribution to FSM_LOCAL_SCHED for processing. The input to this machine is a
list of local delivery information that corresponds to the local users in the desti
nation list, and copies of the distribution, one for each queue identifier. The
local delivery information is obtained by the FSM_DIR_LOOKUP. The copies of
the distribution are made by FSM_LOCAL_CHECK. When the list is exhausted,
the signal END_QUEUE_IDS is sent to FSM_LOCAL_SCHED.

FSM_COUNT_EXCEPTS

FSM_DSU_CHECK

This FSM scans the list of exception destinations created by
FSM_LOCAL_SCHED or FSM_REMOTE_SCHED. If the list is empty, it reports
SCHED_NO_EXCEPTS to FSM_LOCAL_SCHED or FSM_REMOTE_SCHED. Other
wise, it returns the signal SCHED_EXCEPTS. It is the mechanism used by the
scheduling machines to decide whether to signal an exception to the directing
manager or the routing manager.

This FSM scans the DSU names in the destination list, and checks them against
a table containing all the names of the local DSU. The input to this FSM is the
destination list of the distribution that is being routed. If a match is found, this
machine signals the routing manager machine with AT_LEAST_ONE_LOCAL;
otherwise, it signals ALL_REMOTE.

FSM_RTG_LOOKUP
This machine scans the DSU names in the destination list and matches them
against entries in the routing tables containing the next-DSU queue name and
connection information. The input that it uses is the destination list of the dis
tribution being routed. For each unique next-DSU queue name found, this
machine associates with it all the DSUs mapped by the routing tables to that
next-DSU queue. This machine decrements the hop count of the distribution
copy so that loops in the network can be detected. It also makes a copy of the
distribution for each unique next-DSU queue name found. The output of
FSM_RTG_LOOKUP is the next-DSU queue information and the copies of the
distribution.

This machine sends three signals back to the routing manager machine.
RTG_LOOKUP _COMPLETE signifies that all DSUs in the destination list have
been assigned a next-DSU queue. RTG_LOOKUP _COMPLETE_EXPTS means
that at least one DSU in the destination list could not be assigned a queue, but
at least one DSU in the list could be assigned a queue, and that it is recorded
in a list of exception destinations.

Chapter 3. Implementation Model 145

FSM_NEXT_DSU

RTG_LOOKUP _COMPLETE_ALL_EXPTS means that no DSU in the destination
list could be routed.

This machine scans the list of next-DSU queue names created by
FSM_RTG_LOOKUP and returns the next queue name and a copy of the distrib
ution to FSM_REMOTE_SCHED. The input to this machine is a list of queue
names corresponding to the remote DSUs in the destination list, and copies of
the distribution, one for each queue identifier. If no more names are in the list,
it reports END_NEXT_DSUS back to FSM_REMOTE_SCHED.

Distribution Transport Sublayer-Format Set 2

DS_Send FSMs

Data structures

Program Structure

DS_Send uses the following data structures:

MU_ID Registry: The MU_ID registry is a safe-stored data structure that
records MU_/D-to-next-DSU-queue-entry mappings. It may be viewed as an
array, with each element containing four entries. The first entry is an MU_ID.
The second is a "distribution locator," which is used to locate the distribution
associated with the entry's MU_ID on any next-DSU queue during error
recovery processing. The third is the MU_ID state, and the fourth is the current
instance number.

MU_/Ds are assigned sequentially. Only contiguous blocks of entries in PURGED

state containing the Registry's lowest MU_/Ds and null distribution locators may
be removed from the Registry automatically (and their space reclaimed). All
other entries must be retained, unless explicitly removed by an operator.

Queue Entries: Each next-DSU queue entry maintains its MU_ID or a null value
indicating that no MU_ID has been assigned.

A logical decomposition of DS_Send is given in Figure 45 on page 153. The
following classes of routines exist in DS_Send:

• DS_Send Manager

The only FSM in this class of routines is "DS_SEND_MANAGER" on
page 154. It manages the transition between the LU 6.2 send and receive
states, and also checks for the conversation idle condition, which causes
the conversation to be deallocated.

• Send-State Manager

The only FSM in this class of routines is "DS_SEND_SENDING" on
page 156. This FSM is active whenever DS_Send is in the LU 6.2 send
state, and it controls the sending of DMUs and CMUs to the partner DSU.
The factors influencing this FSM include not only the MUs queued for the
partner, but the partner DSU's flow control wishes (as indicated in the last

146 SNA/Oistribution Services Reference

CRMU). These concepts are discussed in detail in "Throughput Control" on
page 79.

• Receive-State Manager

The only FSM in this class of routines is "DS_SEND_RECEIVING" on
page 190. This routine manages DS_Send while in the LU 6.2 receive state.
It repeatedly receives REMUs and CRMUs from the partner, parses them
and signals the appropriate handler. The terminate_conversation bit from
the CRMU is passed to the appropriate conversation control routine (even if
the CRMU contains no MU_ID). Exception conditions (including receiving
the send indication from the partner) are returned to the caller.

• Distribution Sending

The only FSM in this class of routines is "DS_SEND_SEND_DIST" on
page 159, which also implements part of the high-integrity actions. The dis
tribution sending function requires only getting the distribution from the
next-DSU queue and then examining it to determine if high-integrity actions
or basic-integrity actions are required. If basic-integrity actions are
required, this routine signals DS_SEND_SEND_DMU_NO_MU_ID. If high
integrity actions are required, this routine also assigns the MU_ID (if appro
priate), and changes the MU_ID state to tN_TRANSIT before signalling
DS_SEND_BUILD_SEND_DMU.

• Control MU Sending

The only FSM in this class of routines is "DS_SEND_SEND_CONTROL_MU"
on page 188. This routine is called repeatedly to read the next CMU from
the control MU queue, send it, and discard it. If an exception occurs, the
MU is not discarded, but is left on the queue to be resent later.

• REMU Receiving

The only FSM in this class of routines is "DS_SEND_REMU_HANDLER" on
page 204. This routine handles REMUs. The actions taken for a particular
REMU depend on the status of the distribution (not found, retriable with a
new MU_ID, or restartable with a DCMU), the MU_ID state
(TRANSFER_PENDING, CQMU_PENDING, etc.), and the exception classification (not
retriable or retriable). Potential actions include

Querying the partner to determine the Mid-MU Restart position.
Purging the MU_ID and retrying the distribution with a new MU_ID at a
later time.
Terminating the distribution.

REMUs with old instance numbers are simply discarded, as are REMUs
reporting already-detected conversation failures and REMUs with no MU_ID.

• CRMU Receiving

The only FSM in this class of routines is "DS_SEND_CRMU_HANDLER" on
page 192. This routine processes the values from the CRMU's MU_ID state
indication. The specific actions taken for a given distribution and CRMU
depend on DS_Send's MU_ID state, the partner's MU_ID state as reported in
the CRMU, and DS_Send's ability to re-attempt the transmission (with or
without mid-MU restart). The actions include

Chapter 3. Implementation Model 147

Purging the distribution because the partner has accepted responsi
bility.
Marking the distribution to be restarted later using a DCMU.
Purging the MU_ID and retrying the distribution with a new MU_ID at a
later time. ·
Querying the partner for an updated MU_ID state.
Reissuing a lost SEMU.
Issuing a SEMU to recover from a lost DMU.
Reissuing a lost PRMU.
Terminating the distribution.

CRMUs with old Instance numbers are simply discarded.

• Basic-Integrity Actions

The only FSM in this class of routines is
"DS_SEND_SEND_DMU_NO_MU_ID" on page 181. It builds and sends to
the partner the basic-integrity distribution MU. When the suffix has been
sent, the distribution is discarded. Exceptions are handled by
"DS_SEND_EXCEPT_NO_MU_ID" on page .185.

• High-Integrity Actions

These routines associate an MU_ID to a distribution, set the MU_ID state to
IN_TRANSIT, encode the distribution into the appropriate DMU (DTMU, DCMU
or DRMU), send It to the partner, and (in the absence of exception condi
tions) set the MU _ID state to TRANSFER_PENDING.

The FSMs in this class are:

"OS_SEND_SEND_DIST" on page 159.

This routine also Implements the distribution sending function discussed
above. The high-integrity actions It performs are to assign the dis
tribution's MU_ID, if appropriate, and set the MU_ID state to IN_TRANSIT.

It then signals OS_SEND_BUILD_SEND_DMU, which processes the dis
tribution and returns the results of the transmission.

"DS_SEND_BUILD_SEND_DMU" on page 163.

This routine encodes the distribution, reads the server object and sends
the DMU to the partner DSU. Immediately before sending the suffix, it
also changes the MU_ID state to TRANSFER_PENDING. Exceptions
encountered during processing are passed to the appropriate
exception-handling FSM. After the suffix has been sent,
DS_SEND_CLEANUP _DMU is signalled to perform the required post
transmission processing.

"DS_SEND_CLEANUP_DMU" on page 166.

This FSM simply replaces the distribution on the next-OSU queue.
Exceptions cause the appropriate exception-handling FSM to be sig
nalled.

148 SHA/Distribution Services Reference

• Pre-Sending Exception Actions

The only FSM in this class of routines is
"DS_SEND_DMU_EXCEPT_NOT_SENDING" on page 168. Exceptions occur
ring before the DMU's prefix is passed to LU 6.2 are known as pre-sending
exceptions. There are three types of pre-sending exceptions:

A queue exception occurs on the READO that gets the distribution from
the next-DSU queue.
An MU_ID registry exception occurs on the inspection of the MU_ID
state.
An MU_ID registry exception occurs when a new MU_ID is assigned to
the distribution or an existing MU_ID state is set to IN_TRANSIT.

All three exceptions result in the next-DSU queues being held, which pre
vents any other distribution transmissions from being attempted. When
queue exceptions are encountered, CMU traffic continues, if possible;
MU_ID registry exceptions cause the immediate termination of DS_Send.

• REMU Actions

The actions that may be performed in response to a REMU are listed above,
under nREMU Receiving." The FSMs in this class are:

"DS_SEND_QUERY_ON_REMU" on page 208.

This FSM is signalled when a REMU reporting a retriable exception is
received, mid-MU restart is possible, and the sender's MU_ID state is
either TRANSFER_PENDING or RETRY_PENDING. In the former case (i.e., the
sender's MU_ID state is TRANSFER_PENDING), DS_Send completed
sending the distribution before receiving the partner's Prog_Error indi
cation. In the latter case, DS_Send received the Prog_Error indication
while sending the DMU, and set the MU_ID state to RETRY_PENDING in
anticipation of receiving a REMU that reported a retriable exception.

This FSM retains the distribution (i.e., it signals
DS_SEND_RETAIN_o1sn. holds the next-DSU queues, sets the MU_ID
state to CQMU_PENDING, and issues a CQMU to query the partner.

"DS_SEND_RETRY_ON_REMU" on page 210.

This FSM is signalled when the distribution in question is to be retried
with a new MU_/D. To state these conditions more precisely,
DS_Send's MU_ID state is TRANSFER_PENDING, CQMU_PENDING or
RETRY_PENDING, mid-MU restart via a DCMU is not available, and the
REMU from partner reports a retriable exception.

Preparing a distribution for retry with a new MU_/D involves purging the
(existing) MU_ID from the registry, sending a PRMU, and marking the
distribution as having no MU_ID. The next-DSU queues are also held.

"DS_SEND_CHECK_CONV_FAIL" on page 212.

This FSM determines if a just-received REMU is reporting an already
detected conversation failure. Conversation failures may cause the loss
of a partial or complete MU, and are unusual in that the affected
MU_/Ds might be detected by either, neither, or both DS_Send and
DS_Receive. Because either DS_Send or DS_Receive may be the only
detector of the failure, they both initiate exception recovery actions by

Chapter 3. Implementation Model 149

sending a SEMU or REMU (respectively). This leads to the conversation
failures that are detected by both DS_Send and DS_Receive being
reported by both a SEMU and a REMU. In such cases, the SEMU is pre
ferred and the REMU is discarded.

(If an MU_ID affected by a conversation failure is detected by neither
DS_Send nor DS_Receive, then either or both of the OS Us will eventu
ally grow impatient at the MU_ID state being active. If DS_Receive
grows impatient, it will send an unsolicited CRMU; if DS_Send grows
impatient, it will send a CQMU.)

This FSM is called whenever the just-received REMU might be redun
dant, and returns either an indication that the REMU is redundant (and
has thus been discarded) or the recovery action (Not Retriable,
Retriable With Mid-MU, Retriable Without Mid-MU, or Retriable Retry
Exhausted).

• Shared REMU/CRMU Actions

The only FSM in this class of routines is "DS_SEND_TERMINATE_DIST" on
page 214. It is called when a REMU or CRMU is received and DS_Send
determines that an exception condition makes reattempting transmission of
the distribution inappropriate. Terminating a distribution involves the fol
lowing actions:

Holding the next-DSU queues (if requested to do so),
Generating a distribution report (if appropriate),
Setting the MU_ID state to PURGED,
Signalling DS_SEND_DISCARD_DIST.
Generating a PRMU to the partner.

• CRMU Actions

The actions that may be performed in response to a CRMU are listed
above, under "CRMU Receiving." The FSMs in this class are:

"DS_SEND_RELEASE_ON_CRMU" on page 196.

This FSM is signalled under a variety of conditions and with a variety of
input conditions, but its primary function is simply to release the distrib
ution for later processing. A CQMU is generated, if requested.

"DS_SEND_PURGE_ON_CRMU" on page 198.

This FSM is signalled when the partner DSU accepts responsibility for
the distribution (i.e., a CRMU(cOMPLETED) is received), or when a PRMU
has been lost and a new PRMU must be generated. It changes the
MU_ID state to PURGED and issues a PRMU to the partner. If requested,
the distribution is also discarded.

"DS_SEND_RETRY _ON_CRMU" on page 200.

ff a distribution's transfer to the partner is interrupted by an exception,
DS_Send determines whether to terminate the distribution or to attempt
to recover from the exception. If DS_Send decides to attempt recovery,
this FSM is signalled. It either suspends the distribution by setting the
MU_ID state to SUSPENDED, or it purges the MU_ID and prepares the dis
tribution to be retried later with a new MU_ID.

150 SNA/Distribution Services Reference

"DS_SEND_ISSUE_SEMU_ON_CRMU" on page 202.

This FSM issues a SEMU and releases the distribution for further proc
essing. It is called when DS_Send perceives a lost SEMU, or DMU.
Lost SEMUs are merely regenerated.

• Basic-Integrity Exception Actions

The only FSM in this class of routines is "DS_SEND_EXCEPT_NO_MU_ID"
on page 185. It is signalled to process all exception conditions encountered
during the transmission of basic-integrity distributions. Depending on the
exception, the distribution is either discarded or retained to be retried
(without mid-MU restart) later. The next-DSU queues are held, if appro
priate.

• High-Integrity Exception Actions

These FSMs handle the exception conditions detected in
"DS_SEND_BUILD_SEND_DMU" on page 163. The FSMs in this class are:

"DS_SEND_DMU_ENCODE_EXCEPT" on page 170.

This FSM is signalled by DS_SEND_BUILD_SEND_DMU and handles
builder or server exceptions encountered after the first Send_ Data LU
6.2 verb has been issued. A Send_Error LU 6.2 verb is issued, and
DS_SEND_CLEANUP _EXCEPT is signalled to process the distribution
and MU_ID.

"DS_SEND_CLEANUP _EXCEPT" on page 172.

This FSM is signalled by DS_SEND_BUILD_SEND_DMU when an excep
tion is encountered while building the first part of a DMU, or when a
conversation failure is detected. It is also signalled by
DS_SEND_DMU_ENCODE_EXCEPT. This FSM

Retains the distribution with or without holding the next-DSU
queues, as appropriate.
Sets the MU_ID state to TERMINATION_PENDING or RETRY_PENDING, as
appropriate.
Issues a SEMU to the partner describing the exception.

"DS_SEND_PROG_ERROR_RECEIVED" on page 174.

This FSM is signalled whenever a Prog_Error indication is received from
LU 6.2. It retains the distribution (without holding the next-DSU queues),
and sets the MU_ID state to RETRY_PENDING.

"DS_SEND_DMU_PROTOCOL_ERROR" on page 176.

This FSM is signalled if, while transmitting a DMU, DS_Send detects the
partner DSU violating the DS usage of the LU 6.2 basic conversation
protocol boundary. In this model, the affected distribution is retained,
the MU_ID state set to TERMINATE_PENDING and the conversation imme
diately deallocated. Instead of merely deallocating the conversation,
implementations may issue a Send_Error LU 6.2 verb, generate a
SEMU, flush their control MU queue, and deallocate the conversation.

Chapter 3. Implementation Model 151

"DS_SEND_MU_ID_STATE_ERROR" on page 178.

This FSM is signalled if the MU _ID state cannot be set to
TRANSFER_PENDING before the suffix is sent to the partner. The distrib
ution is retained and the next-DSU queues are held.

• DS_Send Utility Routines

These utilities are signalled by many of the DS_Send FSMs. The FSMs in
this class are:

"DS_SEND_RETAIN_DIST" on page 216.

When processing on a distribution is halted temporarily, this FSM is sig
nalled to terminate any server operations in progress and to clear the
distribution's in-use mark, making the distribution available for further
processing. Retaining a distribution involves the following actions:

Holding the next-DSU queues, if requested.
Issuing a Terminate_Read verb to the server. The restartability of
the server (if originally requested) is maintained.
Signalling the queue manager with RELEASEQ to remove the in-use
mark from the distribution. The distribution will then be available to
other DS_Send processes.

"DS_SEND_DISCARD_DIST" on page 218.

Discarding a distribution involves the following actions:

Deleting the server object for this distribution, if one exists. This
involves:

• Issuing the Terminate_Read server verb if the server object was
being read.

• Issuing the Terminate_Restartability server verb if restartability
had been requested.

• Decrementing the OS lock count for the server object.
Signalling the queue manager with DEQ to remove the distribution
from the next-DSU queue.

"DS_SEND_CONVERSATION_CONTROL" on page 222.

This FSM records what DS_Send may send to the partner DSU at any
particular time. For example, DS_Send

May be able to send only control MUs,
May be able to send both control MUs and a single distribution MU,
May be required to terminate the conversation after any waiting
control MUs have been sent.

"DS_SEND_SEND_CONVERSATION_MGR" on page 220

This FSM sends a single buffer to the partner DSU by issuing an LU 6.2
Send_Data verb. The outcome of the Send_Data. (i.e., LU 6.2 accepted
the data without detecting an exception, a conversation failure was
detected, or the partner DSU issued a Send_Error) is returned to the
caller.

152 SNA/Distribution Services Reference

Distribution
MU Sending

Basic
Integrity
Actions

Basf c
Integrfty
Exception
Actions

Send-State
Manager

Hfgh
Integrf ty
Actions

High
Integrfty
Exception
Actions

"DS_SEND_MU_ID_REGISTRY" on page 223

This procedure manages DS_Send's access to the MU_ID registry. An
MU_ID state may be assigned or inspected, or a just-received instance
number may be compared to the instance number in the registry. (MUs
containing an instance number lower than the registry's are ignored.)

"UPM_CHECK_DUP _CONV_FAIL_REPORT" on page 224

As discussed earlier (see the discussion for
DS_SEND_CHECK_CONV_FAIL above, under "Program Structure" on
page 146), some conversation failures cause both DS_Send and
DS_Receive to initiate exception processing for the same MU_ID. This
procedure is signalled by DS_SEND_CHECK_CONV_FAIL to determine if
a given REMU does or does not represent such a duplicate (and extra
neous) exception report for an already-known conversation failure.

Control HU
Sending

DS_SEND_HGR

Pre-Sending
Exception
Actions

REHU
Actions

CRMU
Receiving

Shared
REHU/CRHU
Actfons

CRHU
Actions

Figure 45. DS_Send Logical Structure

Chapter 3. Implementation Model 153

DS_SEND _MANAGER

Function:

Note:

This finite-state machine describes the functional processing for DS_Send. It is started by the
DS_Router_Director via a START_TRANSACTION signal, by LU 6.2 on receiving an Attach, or
by the operator via START_TRANSACTION. If DS_Send is started by LU 6.2 via Attach, it is
initially in the LU 6.2 receive state. Otherwise, it is initially in the LU 6.2 send state.

The primary processing of this FSM is done in states 4 (SEND), 5 (RCV) and 6 (IDLE). When in
RCV state (state 5), DS_Send is in the LU 6.2 receive state and is receiving control MUs from
the partner. If DS_Send then receives the change direction indication from LU 6.2, it imme
diately attempts to send any waiting MUs to the partner by signalling DS_SEND_SENDING.

When in SEND state (state 4), DS_Send is in the LU 6.2 send state, and is sending MUs to the
partner. The lower-level FSMs signal DS_Send to enter the LU 6.2 receive state by returning
CHANGE_DIRECTION. DS_SEND_MANAGER first checks to determine if an idle conversation
exists by signalling IDLE_DETECTOR. If an idle conversation does exist, the conversation is
simply deallocated. If the conversation is not idle, DS_Send goes into the LU 6.2 receive state
by signalling DS_SEND_RECEIVING.

An idle conversation exists whenever both of the following conditions hold:

• When DS_Send was last in the LU 6.2 receive state, it received no CMUs from the partner.
• DS_Send, which is currently in the LU 6.2 send state, has no MUs (distribution or control

MUs) to send to the partner DS_Receive.

Upon detecting a conversation failure, implementations attempt to reactivate the session once.

This FSM gets control from one of the following:

• Signals from higher-level finite-state machines or procedures:

- from "FSM_SCHED_MGR" on page 351
- START_TRANSACTION

• Signals from lower-level DS_Send finite-state machines:

from "DS_SEND_SENDING" on page 156
CHANGE_DIRECTION
DEALLOC_LOCAL
DEALLOC_ABEND
DEALLOC_FLUSH

from "DS_SEND_RECEIVING" on page 190
CHANGE_DIRECTION
DEALLOC_LOCAL
DEALLOC_FLUSH
DEALLOC_ABEND

• Signals from machines providing common services:

from "IDLE_DETECTOR" on page 284
- CHANGE_DIRECTION
- DEALLOC_FLUSH

• Signals from LU 6.2 presentation services

ATTACH
OK
ALLOC_PARM_ERROR
ALLOCATION_ ERROR

154 SNA/Distribution Services Reference

States

RESET ALLOC GET ATT SEND RCV IDLE END

Inputs 01 02 03 04 05 06 07

START TRANSACTION 2a I I I I I I

ATTACH 3b I I I I I I

OK I 4c Sf I I I 1

ALLOC PARM ERROR I 1d I I I I I

ALLOCATION ERROR I 7e I I I I I

CHANGE DIRECTION I I I 6g 4c Sf I

DEALLOC LOCAL I I I 7h 7h I I

DEALLOC FLUSH I I I 7i 7i 7i I

DEALLOC ABEND I I I 7j 7j I I

Output Function
Code
a Signal LU 6.2 presentation services with ALLOCATE to establish the conversation with DS_Receive.

b Signal LU 6.2 presentation services with GET_ATTRIBUTES to determine the LU name and mode
name of the partner.

c Signal DS_SEND_SENDING with START.

d Notify operations of the exception condition.

e Notify operations of the exception condition.
Signal LU 6.2 presentation services with DEALLOCATE specifying type(LOCAL).

f Signal DS_SEND_RECEIVING with START.

g Signal IDLE_DETECTOR with CHANGE_DIRECTION.

h Signal LU 6.2 presentation services with DEALLOCATE specifying type(LOCAL).

i Signal LU 6.2 presentation services with DEALLOCATE specifying type(FLUSH).

j Signal LU 6.2 presentation services with DEALLOCATE specifying type(ABEND).

Chapter 3. Implementation Model 155

DS_SEND_SENDING

Function: This finite-state machine describes the functional processing for DS_Send while in the LU 6.2
send state. It first checks the flow control status of the connection, which will be .. send control
MU, .. "'send distribution,"' or "'terminate conversation:" If no control MUs are waiting and the
flow control status is "send distribution;" then a distribution (DTMU, DRMU, or DCMU) is sent.
The above sequence is repeated until the caller is signalled either to change direction, or deal
locate the conversation.

Multiple CMUs may be sent both immediately before and after the distribution, before the
change direction.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND_MANAGER" on page 154
- START

• Signals from lower-level DS_Send finite-state machines:

from "DS_SEND_CONVERSATION_CONTROL" on page 222
SEND_CONTROL_MU

- SEND_DISTRIBUTION
- TERMINATE_CONVERSATION
from "DS_SEND_SEND_CONTROL_MU" on page 188

CONTROL_MU_SENT
CONTROL_MU_QUEUE_EMPTY
PROTOCOL_ERROR
CONVERSATION_ FAILURE
DS_SEND_SYSTEM_ERROR
PROG_ERROR

from "DS_SEND_SEND_DIST" on page 159
DISTRIBUTION_ COMPLETE
DISTRIBUTION_QUEUES_EMPTY
PROTOCOL_ERROR
CONVERSATION_FAILURE
SEND_SIDE_EXCEPT
PROG_ERROR
DS_SEND_SYSTEM_ERROR

156 SNA/Distribution Services Reference

States

CONV CNTL MU CNTL MU CNTL MU
RESET CNTL FIRST DIST ONLY FLUSH

Inputs 01 02 03 04 05 06

START 2a I I I I I

SEND DISTRIBUTION I 3b I I I I

SEND CONTROL MU I 5b I I I I

TERMINATE CONVERSATION I 6b I I I I

CONTROL MU SENT I I 2a I 2a 2a

CONTROL MU QUEUE EMPTY I I 4d I 1c 1g

DISTRIBUTION COMPLETE I I I 2a I I

DISTRIBUTION QUEUES EMPTY I I I 1c I I

PROTOCOL ERROR I I 1e 1e 1e 1e

CONVERSATION FAILURE I I 1f 1f 1f 1f

SEND SIDE EXCEPT I I I 2a I I

PROG ERROR I I 1c 1c 1c 1c

OS SEND SYSTEM ERROR I I 1e 1e 1e 1e

Output Function
Code
a Signal DS_SEND_CONVERSATION_CONTROL with QUERY_FLOW_CONTROL

b Signal DS_SEND_SEND_CONTROL_MU with SEND.

c Signal caller with CHANGE_DIRECTION.

d Signal DS_SEND_SEND_DIST with START.

e Signal caller with DEALLOCATE_ABEND for protocol or system errors.

f Signal caller with DEALLOCATE_LOCAL

g Signal caller with DEALLOCATE_FLUSH.

Chapter 3. Implementation Model 157

158 SNA/Distribution Services Reference

DS_SEND_SEND_DIST

Function: This finite-state machine initiates the transmission of a distribution to the partner. If the distrib
ution requires only basic integrity, then DS_SEND_SEND_DMU_NO_MU_ID is signalled to
transmit the distribution. If high integrity is required, then the MU_/D state is changed to
IN_TRANSIT, and DS_SEND_BUILD_SEND_DMU is signalled.

A failure on the initial READO will cause a HOLD to be placed on the next-DSU queues and a
SEND_SIDE_EXCEPT to be returned to the caller, who will continue sending CMUs. Eventually,
all CMUs will be transmitted and this routine will again be called to send a distribution. At this
point, the HOLD placed on the next-DSU queues will cause this routine to return
DISTRIBUTION_QUEUES_EMPTY.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND_SENDING" on page 156
- START

• Signals from lower-level DS_Send finite-state machines:

from "DS_SEND_DMU_EXCEPT_NOT_SENDING" on page 168
- SEND_SIDE_EXCEPT
from "DS_SEND_SEND_DMU_NO_MU_ID" on page 181

PROG_ERROR
CONVERSATION_FAI LU RE
PROTOCOL_ERROR
SEND_SIDE_EXCEPT
DISTRIBUTION_ COMPLETE

from "DS_SEND_BUILD_SEND_DMU" on page 163
PROG_ERROR
CONVERSATION_FAI LU RE
PROTOCOL_ERROR
SEND_ SIDE_EXCEPT
DISTRIBUTION_COMPLETE
DS_SEND_SYSTEM_ERROR

from "DS_SEND_MU_ID_REGISTRY" on page 223
NOT_ASSIGNED
SUSPENDED
MU_ID_NOT_USED
MU_ID_OP _OK
MU_ID_OP _NOT_OK

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
QUEUE_ OK
QUEUE_EMPTY
QUEUE_NOT_OK

Chapter 3. Implementation Model 159

States

MU_ID ASSGN
RESET RDQ DIST STATE MU_ID PROC DMU

Inputs 01 02 03 04 05

START 2a I I I I

QUEUE OK I 3b I I I

QUEUE EMPTY I 1c I I I

QUEUE NOT OK I 5d I I I

NOT ASSIGNED I I 4e I I

SUSPENDED I I 4f I I

MU ID NOT USED I I 5g I I

MU ID OP OK I I I 51 I

MU ID OP NOT OK I I Sh 5h I

PROG ERROR I I I I 1j

CONVERSATION FAILURE I I I I 1k

PROTOCOL ERROR I I I I 1m

DISTRIBUTION COMPLETE I I I I 1n

SEND SIDE EXCEPT I I I I 1o

DS SEND SYSTEM ERROR I I I I 1p

160 $NA/Distribution Services Reference

Output Function
Code
a Signal QUEUE_MGR with READO specifying queue(NEXT·DSU-QUEUE)

where_MU_/O_state_is(NOT_ASSIGNED, or SUSPENDED) to get the next distribution to be sent. The HOLD
flag is respected for this operation; if the HOLD indication is set for this queue, QUEUE_MGR returns
QUEUE_EMPTY, even if other queue exception conditions are present.

b Signal DS_SEND_MU_ID_REGISTRY with INSPECT. If the distribution uses basic integrity, processing
continues with the MU_ID_NOT_USED input.

c Signal caller with DISTRIBUTION_QUEUES_EMPTY.

d Signal DS_SEND_DMU_EXCEPT_NOT_SENDING with QUEUE_ACCESS_EXCEPT.

e Signal DS_SEND_MU_ID_REGISTRY with ASSIGN.

f Signal DS_SEND_MU_ID_REGISTRY with IN_TRANSIT to set the MU_/D state and update the instance
number.

g Signal DS_SEND_SEND_DMU_NO_MU_ID with START.

h Signal DS_SEND_DMU_EXCEPT_NOT_SENDING with REGISTRY_EXCEPT.

i Signal DS_SEND_BUILD_SEND_DMU with START.

j Signal caller with PROG_ERROR.

k Signal caller with CONVERSATION_FAILURE to indicate that an error has occurred in the conversa-
tion between DS_Send and DS_Receive.

m Signal caller with PROTOCOL_ERROR.

n Signal caller with DISTRIBUTION_COMPLETE to indicate that the MU has bE>en encoded and sent to
DS_Receive.

0 Signal caller with SEND_SIDE_EXCEPT.

p Signal caller with DS_SEND_SYSTEM_ERROR.

Chapter 3. Implementation Model 161

162 SNA/Distribution Services Reference

DS_SEND_BUILD_SEND_DMU

Function: This finite-state machine encodes and sends a high-Integrity distribution. States 3 and 4 are a loop which
builds and sends the distribution pieces. States 4, 5 and 6 are a loop which reads, builds and sends the
server object pieces Before sending the suffix, the MU _ID state Is changed to TRANSFER_PENDING.

This FSM gets control from one of the following:

• Signals from higher-level finite-state machines or procedures:

from "DS_SEND_SEND_DIST" on page 159
- START
from the operator
- OP_SUSP

• Signals from lower-level DS_Send finite-state machines:

from "DS_SEND_SEND_CONVERSATION_MGR" on page 220
OK
PROG_ERROR
PROTOCOL_ERROR
CONVERSATION_FAILURE

from "DS_SEND_CLEANUP _DMU" on page 166
- DISTRIBUTION_COMPLETE
- SEND_SIDE_EXCEPT
from "DS_SEND_DMU_ENCODE_EXCEPT" on page 170

PROG_ERROR
CONVERSATION_FAILURE
PROTOCOL_ERROR
SEND_SIDE_EXCEPT
DS_SEND_SYSTEM_ERROR

from "DS_SEND_PROG_ERROR_RECEIVED" on page 174
- PROG_ERROR
from "DS_SEND_DMU_PROTOCOL_ERROR" on page 176
- PROTOCOL_ERROR
from "DS_SEND_CLEANUP _EXCEPT" on page 172
- DS_SEND_SYSTEM_ERROR
- SEMU_SENT
from "DS_SEND_MU_ID_STATE_ERROR" on page 178
- DS_SEND_SYSTEM_ERROR
- SEMU_SENT
from "DS_SEND_MU_ID_REGISTRY" on page 223
- MU_ID_OP _OK
- MU_ID_OP _NOT_OK

• Signals from machines providing common services:

from "IDLE_DETECTOR" on page 284
- no signals returned from this FSM.
from "SERVER_MGR" on page 354

OBJECT_OK
NO_OBJECT_EXISTS
OBJECT_EOD
OBJECT_NOT_OK

• from "BUILDER" on page 359

BUILD_OK
BU ILD_OK_GET _OBJECT
BUILD_COMPLETE
BUILD_NOT_OK

Chapter 3. Implementation Model 163

States

SEND
SEND READ

ENC BUILD BUILD GET TRANS SEND CLEAN CONV
RESET FIRST LOOP BUILD LOOP OBJ PEND LAST UP FAIL

Inputs 01 02 03 04 05 06 07 08 09 10

START 2a I I I I I I I I I

BUILD OK I 3b I 3g I I I I I I

BUILD OK GET OBJECT I Sb I 5g I I I I I I

BUILD COMPLETE I 7c I 7h I I I I I I

BUILD NOT OK I 9d I 9i I I I I I I

OK I I 4a I 6j I I 9m I I

PROG ERROR I I 9e I 9e I I 9e 1n I

CONVERSATION FAILURE I I 10d I 10d I I 10d 1o I

PROTOCOL ERROR I I 9f I 9f I I 9f 1p I

OBJECT OK I I I I I 4a I I I I

NO OBJECT EXISTS I I I I I 4k I I I I

OBJECT EOD I I I I I 4k I I I I

OBJECT NOT OK I I I I I 9i I I I I

MU ID OPOK I I I I I I 8g I I I

MU ID OP NOT OK I I I I I I 9t I I I

DISTRIBUTION COMPLETE I I I I I I I I 1q I

SEND SIDE EXCEPT I I I I I I I I 1r I

OS SEND SYSTEM ERROR I I I I I I I I 1s 1o

SEMU SENT I I I I I I I I tr 1o

OP SUSP - 9d 9i 9i 9i 9i - - - -

164 SHA/Distribution Services Reference

Output Function
Code
a Signal BUILDER with BUILD to start or continue building the DTMU, DRMU or DCMU.

b Signal IDLE_DETECTOR with SOMETHING_SENT.
Signal DS_SEND_SEND_CONVERSATION_MGR with SEND_BUFFER to send the MU information to LU
6.2.

c Signal IDLE_DETECTOR with SOMETHING_SENT.
Signal DS_SEND_MU_ID_REGISTRY with TRANSFER_PEND.

d Signal DS_SEND_CLEANUP _EXCEPT with START to clean up the distribution and generate a SEMU.
(But no Send_Error will be issued.)

e Signal DS_SEND_PROG_ERROR_RECEIVED with PROG_ERROR_RECEIVED to clean up the distrib-
ution before handling the PROG_ERROR from the partner DSU.

f Signal DS_SEND_DMU_PROTOCOL_ERROR with PROT_ERROR_DETECTED to clean up the distrib-
ution before handling the protocol error from the partner DSU.

g Signal DS_SEND_SEND""'"CONVERSATION_MGR with SEND_BUFFER to send the MU information to LU
6.2.

h Signal DS_SEND_MU_ID_REGISTRY with TRANSFER_PEND.

i Signal DS_SEND_DMU_ENCODE_EXCEPT with START to take appropriate error-handling actions.

j Signal SERVER_MGR with READ to read the object and perform any initialization for reading, if not
yet performed.

k Signal BUILDER with END_OBJECT to indicate that the server has returned EOD and the last
segment of the object should be built, or, if no object exists, the length of the data will be 0.

m Signal DS_SEND_CLEANUP _DMU with START.

n Signal caller with PROG_ERROR.

0 Signal caller with CONVERSATION_FAILURE to indicate that an error has occurred in the conversa-
tion between DS_Send and DS_Receive.

p Signal caller with PROTOCOL_ERROR.

q Signal caller with DISTRIBUTION_COMPLETE to indicate that the MU has been encoded and sent to
DS_Receive.

r Signal caller with SEND_SIDE_EXCEPT.

s Signal caller with DS_SEND_SYSTEM_ERROR.

t Signal DS_SEND_MU_ID_STATE_ERROR with START to clean up the distribution after the failed
attempt to set the MU_ID state to TRANSFER_PENDING.

Chapter 3. Implementation Model 165

DS_SEND_CLEANUP_DMU

Function: This finite-state machine describes the functional processing for tidying up a distribution once it
has been sent to the partner and the MU _ID state set to TRANSFER_PENDING.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND_BUILD_SEND_DMU" on page 163
- START

• Signals from lower-level DS_Send finite-state machines:

from "DS_SEND_RETAIN_DIST" on page 216
DIST _RETAINED
RELQ_FAILED
TERM_READ_FAILED
TERM_READ_RELQ_FAILED

from "DS_SEND_CONVERSATION_CONTROL" on page 222
- No signals are returned from this FSM.

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
QUEUE_ OK
QUEUE_NOT_OK

States

RESET RETAIN DIST

Inputs 01 02

START 2a I

DIST RETAINED I 1b

RELQ FAILED I 3c

TERM READ FAILED I 3c

TERM READ RELQ FAILED I 3c

QUEUE OK I I

QUEUE NOT OK I I

166 SNA/Distribution Services Reference

HOLDQ

03

I

I

I

I

I

1d

1d

Output Function
Code
a Signal DS_SEND_CONVERSATION_CONTROL with DMU_SENT.

Signal DS_SEND_RETAIN_DIST with NO_HOLDQ.

b Signal caller with DISTRIBUTION_COMPLETE to indicate that the MU has been encoded and sent to
DS_Receive.

c Signal QUEUE_MGR with HOLD to place an exception-hold on all next-DSU queues for this con-
nection; no more distributions are sent to the partner DSU. The control MU queue is not held.

d Signal caller with SEND_SIDE_EXCEPT.

Chapter 3. Implementation Model 167

DS_SEND_DMU_EXCEPT _NOT _SENDING

Function:

Inputs

This finite-state machine describes the functional processing for non-builder exceptions
detected in a DMU before any portion of the DMU is transferred to the partner DSU. Pre
sending exceptions are of three types:

• A queue exception occurs on the READO that gets the distribution from the next-DSU
queue.

• An MU_ID registry exception occurs on the inspection of the MU_ID state.
• An MU_ID registry exception occurs when a new MU_ID is assigned to the distribution or

an existing MU_ID state is set to IN_TRANSIT.

All three exceptions result in an exception-hold being placed on the next-DSU queues, which
prevents any distributions from being sent. If this FSM is signalled becausP. of a queue excep
tion, and if the next-DSU queue hold operation completes successfully, then
SEND_SIDE_EXCEPT is returned, and CMUs will continue to be exchanged with the partner. If
the hold operation on the next-DSU queues fails, or this FSM is signalled because of an MU_ID
registry exception, DS_SEND_SYSTEM_ERROR is returned, and the conversation is terminated
immediately.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

from "DS_SEND_SEND_DIST" on page 159
- REGISTRY _EXCEPT
- QUEUE_ACCESS_EXCEPT

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
QUEUE_ OK
QUEUE_NOT_OK

States

REG ERR
RESET HOLD

01 02

RELQ

03

QUE ERR
HOLD

04

REGISTRY EXCEPT 2a I I I

QUEUE ACCESS EXCEPT 4a I I I

QUEUE OK I 3b 1c 1d

QUEUE NOT OK I 3b 1c 1c

168 SNA/Distribution Services Reference

Output Function
Code
a Signal QUEUE_MGR with HOLD to place an exception-hold on all next-DSU queues for this con-

nection; no more distributions are sent to the partner DSU. The control MU queue is not held.

b Signal QUEUE_MGR with RELEASEQ to remove the in-use mark from the entry on the next-DSU
queue. Following the RELEASEQ, the entry will be available for processing.

c Notify operations of the exception condition.
Signal caller with OS_SEND_SYSTEM_ERROR.

d Notify operations of the exception condition.
Signal caller with SEND_SIDE_EXCEPT.

Chapter 3. Implementation Model 169

DS_SEND_DMU_ENCODE_EXCEPT

Function: This finite-state machine describes the functional processing for errors detected while the DMU
is being transferred to the partner DSU.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND_BUILD_SEND_DMU" on page 163
- START

• Signals from lower-level DS_Send finite-state machines:

- from "DS_SEND_CLEANUP _EXCEPT" on page 172.

Inputs
START

OK

- SEMU_SENT
- DS_SEND_SYSTEM_ERROR

• Signals from LU 6.2 presentation services

- OK
- ALLOCATION_ERROR
- DEALLOCATE_ABEND
- PROG_ERROR

SVC_ERROR
- RESOURCE_FAILURE

RESET SEND ERR

01 02

2a I

I 3b

RESOURCE FAILURE I 4b

PROG ERROR I 5b

SVC ERROR I 6b

ALLOC ERROR I 4b

DEALLOC ABEND I 4b

SEMU SENT I I

OS SEND SYSTEM ERROR I I

170 SNA/Distribution Services Reference

States

SEND SEMU
SEMU CONVFAIL

03 04

I I

I I

I I

I I

I I

I I

I I

1c 1e

1d 1e

SEMU
PROG ERR

05

I

I

I

I

I

I

I

1f

1d

SEMU
PROT ERR

06

I

I

I

I

I

I

I

1g

1d

Output Function
Code
a Signal LU 6.2 presentation services with SEND_ERROR.

b Signal DS_SEND_CLEANUP _EXCEPT with START.

c Notify operations of the exception condition.
Signal caller with SEND_SIDE_EXCEPT.

d Notify operations of the exception condition.
Signal caller with DS_SEND_SYSTEM_ERROR.

e Notify operations of the exception condition.
Signal caller with CONVERSATION_FAILURE.

f Notify operations of the exception condition.
Signal caller with PROG_ERROR.

g Notify operations of the exception condition.
Signal caller with PROTOCOL_ERROR.

Chapter 3. Implementation Model 171

DS_SEND_CLEANUP_EXCEPT

Function: This finite-state machine describes the functional processing for cleaning up a distribution after
an exception has been detected during the MU's transfer to the partner DSU. This FSM

• Retains the distribution with or without holding the next-DSU queues, as appropriate .
• Sets the MU_ID state to TERMINATION_PENDING or RETRY_PENDING, as appropriate.
• Issues a SEMU to the partner describing the exception.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

from "DS_SEND_DMU_ENCODE_EXCEPT" on page 170
- START
from "DS_SEND_BUILD_SEND_DMU" on page 163
- START

• Signals from lower-level DS_Send finite-state machines:

from "DS_SEND_MU_ID_REGISTRY" on page 223
- MU_ID_OP _OK
- MU_ID_OP_NOT_OK
from "DS_SEND_RETAIN_DIST" on page 216

DIST _RETAINED
RELQ_FAILED
TERM_READ _FAILED
TERM_READ _RELQ_FAILED
HOLDQ_FAILED
HOLDQ_RELQ _FAILED
HOLDQ_TERM_READ_-fAlbED
HOLDQ_ TERM_READ _RELQ_FAILED

• Signals from machines providing common services:

from "UPM_EXCEPT_RECOVERY_ACTION" on page 285
NOT _RETRIABLE
RETRIABLE_WITHOUT_MID_MU
RETRIABLE_WITH_MID_MU
RETRIABLE_RETRY _EXHAUSTED

from "QUEUE_MGR" on page 357
QUEUE_ OK
QUEUE_NOT_OK

172 SNA/Distribution Services Reference

States

RETAIN RETAIN
RETRY DIST NO DIST MU_ID SEMU

RESET ACT RETRY RETRY STATE SEMU SYS ERR

Inputs 01 02 03 04 05 06 07

START 2a I I I I I I

NOT RETRIABLE I 3b I I I I I

RETRIABLE WITHOUT MID MU I 4e I I I I I

RETRIABLE WITH MID MU I 4e I I I I I

RETRIABLE RETRY EXHAUSTED I 3e I I I I I

DIST RETAINED I I Sd Sc I I I

RELQ FAILED I I Sd Sc I I I

TERM READ FAILED I I Sd Sc I I I

TERM READ RELQ FAILED I I Sd Sc I I I

HOLDQ FAILED I I Sd Sc I I I

HOLDQ RELQ FAILED I I Sd 5c I I I

HOLDQ TERM READ FAILED I I 5d 5c I I I

HOLDQ TERM READ RELQ FAILED I I 5d 5c I I I

MU ID OP OK I I I I Sf I I

MU ID OP NOT OK I I I I 7f I I

QUEUE OK I I I I I 1g 1h

QUEUE NOT OK I I I I I 1h 1h

Output Function
Code
a Signal UPM_EXCEPT_RECOVERY_ACTION with the exception code.

b Signal DS_SEND_RETAIN_DIST with NO_HOLOQ.

c Signal DS_SEND_MU_ID_REGISTRY with RETRY_PEND.

d Signal DS_SENO_MU_ID_REGISTRY with TERM_PEND.

e Signal DS_SEND_RETAIN_DIST with HOLDQ.

f Build a SEMU describing the exception and signal QUEUE_MGR with WRITEQ specifying
queue(CONTROL_MU_QUEUE). Implementations may choose to suppress this SEMU if the exception was
an LU 6.2 ALLOCATION_ERROR. In this case, processing continues as though QUEUE_MGR returned
QUEUE_ OK.

g Signal caller with SEMU_SENT.

h Notify operations of the exception condition.
Signal caller with DS_SEND_SYSTEM_ERROR.

Chapter 3. Implementation Model 173

DS_SEND _PROG_ERROR_RECEIVED

Function: This finite-state machine describes the actions taken to suspend the transmission of a distrib
ution upon the receipt of a Prog_Error indication from the partner DSU. The distribution is
retained (without holding the next-DSU queues), and the MU_ID state is set to RETRY_PENDING.

This FSM gets control from one of the following:

• Signals from higher-level DS~Send finite-state machines or procedures:

- from "DS_SEND_BUILD_SEND_DMU" on page 163
- PROG_ERROR_RECEIVED

• Signals from lower-level DS_Send finite-state machines:

- from "DS_SEND_RETAIN_DIST" on page 216
DIST_RETAINED
RELQ_FAILED
TERM_READ_FAILED
TERM_READ _RELQ_FAILED
HOLDQ_FAILED
HOLDQ_RELQ_FAILED
HOLDQ_ TERM_READ _FAILED
HOLDQ_TERM_READ_RELQ_FAILED

- from "DS_SEND_MU_ID_REGISTRY" on page 223
MU_JD_OP _OK
MU_ID_OP _NOT_OK

'
RESET

Inputs 01

PROG ERROR RECEIVED 2a

DIST RETAINED I

RELQ FAILED I

TERM READ FAILED I

TERM READ RELQ FAILED I

HOLDQ FAILED I

HOLDQ RELQ FAILED I

HOLDQ TERM READ FAILED I

HOLDQ TERM READ RELQ FAILED I

MU ID OP OK I

MU ID OP NOT OK I

17 4 SNA/Distribution Services Reference

States

RETAIN DIST

02

I

3b

3b

3b

3b

3b

3b

3b

3b

I

I

RETRY PEND

03

I

I

I

I

I

I

I

I

I

1c

1d

Output Function
Code
a Signal DS_SEND_RETAIN_DIST with NO_HOLDQ.

b Signal DS_SEND_MU_ID_REGISTRY with RETRY_PEND.

c Notify operations of the exception condition.
Signal caller with PROG_ERROR.

d Notify operations of the exception condition.
Signal caller with DS_SEND_SYSTEM_ERROR.

Chapter 3. Implementation Model 175

DS_SEND _DMU_PROTOCOL_ERROR

Function: This finite-state machine describes the actions taken if a violation of the OS usage of the LU 6.2
basic conversation verbs is detected from the partner DSU. The next-DSU queues are held,
and the MU _ID state changed to TERMINATION_PENDING.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND_BUILD_SEND_DMU" on page 163
- PROT _ERROR_DETECTED

• Signals from lower-level DS_Send finite-state machines:

- from "DS_SEND_RETAIN_DIST" on page 216
DIST _RETAINED
RELQ_FAILED
TERM_READ_FAILED
TERM_READ _RELQ_FAILED
HOLDQ_FAILED
HOLDQ_RELQ_FAILED
HOLDQ_ TERM_READ _FAILED
HOLDQ_ TERM_READ _RELQ_FAILED

from "DS_SEND_MU_ID_REGISTRY" on page 223
MU_ID_OP _OK
MU_ID_OP _NOT_OK

RESET

Inputs 01

PROT ERROR DETECTED 2a

DIST RETAINED I

RELQ FAILED I

TERM READ FAILED I

TERM READ RELQ FAILED I

HOLDQ FAILED I

HOLDQ RELQ FAILED I

HOLDQ TERM READ FAILED I

HOLDQ TERM READ.RELQ FAILED I

MU ID OP OK I

MU ID OP NOT OK I

176 SNA/Distribution Services Reference

States

RETAIN DIST

02

I

3b

3b

3b

3b

3b

3b

3b

3b

I

I

TERM PEND

03

I

I

I

I

I

I

I

I

I

1c

1d

Output Function
Code
a Signal DS_SEND_RETAIN_DIST with HOLDQ.

b Signal DS_SEND_MU_ID_REGISTRY with TERM_PEND.

c Notify operations of the exception condition.
Signal caller with PROTOCOL_ERROR.

d Notify operations of the exception condition.
Signal caller with DS_SEND_SYSTEM_ERROR.

Chapter 3. Implementation Model 177

DS_SEND_MU_ID_STATE_ERROR

Function: This finite-state machine is signalled if an MU_ID Registry exception prevents an MU_ID state
from being set to TRANSFER_PENDING before the suffix is sent to the partner. The distribution is
retained, and an exception-hold is placed on the next-DSU queues. DS_SEND_SYSTEM_ERROR
is returned, which will eventually cause the conversation to be deallocated.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND_BUILD_SEND_DMU" on page 163
- START

• Signals from lower-level DS_Send finite-state machines:

- from "DS_SEND_RETAIN_DIST' on page 216
DIST_RETAINED
RELQ_FAILED
TERM_READ _FAILED
TERM_READ_RELQ_FAILED
HOLDQ_FAILED
HOLDQ_RELQ_FAILED
HOLDQ_ TERM_READ_FAILED
HOLDQ_ TERM_READ _RELQ_FAILED

States

RESET RETAIN DIST

Inputs 01 02

START 2a I

DIST RETAINED I 1b

RELQ FAILED I 1b

TERM READ FAILED I 1b

TERM READ RELQ FAILED I 1b

HOLDQ FAILED I 1b

HOLDQ RELQ FAILED I 1b

HOLDQ TERM READ FAILED I 1b

HOLDQ TERM READ RELQ FAILED I 1b

178 SNA/Distribution Services Reference

Output Function
Code
a Signal DS_SEND_RETAIN_DIST with HOLDQ, specifying that an exception-hold is to be placed on the

next-DSU queues.

b Notify operations of the exception condition.
Signal caller with DS_SEND_SYSTEM_ERROR.

Chapter 3. Implementation Model 179

180 SNA/Distribution Services Reference

DS_SEND_SEND_DMU_NO_MU_ID

Function: This finite-state machine describes the functional processing for controlling the encoding and
sending of a basic integrity DMU. States 3 and 4 represent a loop that repeatedly builds and
sends parts of the distribution. States 4, 5 and 6 represent a loop that repeatedly reads from
the server and builds and sends the server object. After the suffix has been sent successfully,
the distribution is discarded (without confirmation of it being accepted by the partner).
Exceptions are handled by "DS_SEND_EXCEPT_NO_MU_ID" on page 185.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND __ SEND_DIST" on page 159
- START

• Signals from lower-level DS_Send finite-state machines:

from "DS_SEND_DISCARD_DIST" on page 218
DIST_DISCARDED
QUEUE_FAILED
SERVER_FAILED
QUEUE_AND_SERVER_FAILED

from "DS_SEND_EXCEPT_NO_MU_ID" on page 185
SEND_SIDE_EXCEPT
PROG_ERROR
PROTOCOL_ERROR
CONVERSATION_FAILURE

• Signals from machines providing common services:

from "DS_SEND_SEND_CONVERSATION_MGR" on page 220
OK
PROG_ERROR
PROTOCOL_ERROR
CONVERSATION_FAILURE

from "IDLE_DETECTOR" on page 284
- no signals returned from this FSM.
from "SERVER_MGR" on page 354

OBJECT_OK
NO_OBJECT_EXISTS
OBJECT_EOD
OBJECT_NOT_OK

• from "BUILDER" on page 359:

BUILO_OK
BUILD_OK_GET_OBJECT
BUILD_COMPLETE
BUILD_COMPLETE_NO_DATA
BUILD_NOT_OK

Chapter 3. Implementation Model 181

States

SEND,
SEND, READ,

ENC BUILD, BUILD, READ SEND CLEAN ERR
RESET FIRST LOOP BUILD LOOP OBJ LAST UP HAND

Inputs 01 02 03 04 05 06 07 08 09

START 2a I I I I I I I I

BUILD OK I 3b I 3g I I I I I

BUILD OK GET OBJECT I Sb I 5g I I I I I

BUILD COMPLETE I 7b I 7g I I I I I

BUILD NOT OK I 9c I 91 I I I I I

OK I I 4a I 6j I Sh I I

PROG ERROR I I 9d I 9d I 9d I 1m

CONVERSATION FAILURE I I 9e I 9e I 9e I 1n

PROTOCOL ERROR I I 9f I 9f I 9f I 1o

OBJECT OK I I I I I 4a I I I

NO OBJECT EXISTS I I I I I 4k I I I

OBJECT EOD I I I I I 4k I I I

OBJECT NOT OK I I I I I 91 I I I

SEND SIDE EXCEPT I I I I I I I I 1p

DIST DISCARDED I I I I I I I 1q I

QUEUE FAILED I I I I I I I 1q I

SERVER FAILED I I I I I I I 1q I

QUEUE AND SERVER FAILED I I I I I I I 1q I

182 SNA/Distribution Services Reference

Output Function
Code
a Signal BUILDER with BUILD to start building the DTMU.

b Signal IDLE_DETECTOR with SOMETHING_SENT.
Signal DS_SEND_SEND_CONVERSATION_MGR with SEND_BUFFER to send the MU information to LU
6.2.

c Signal DS_SEND_EXCEPT_NO_MU_ID with ERROR_NO_DATA_SENT.

d Signal DS_SEND_EXCEPT_NO_MU_ID with PROG_ERR_RCVD.

e Signal DS_SEND_EXCEPT_NO_MU_ID with CONV_FAIL_RCVD.

f Signal DS_SEND_EXCEPT_NO_MU_ID with PROTO_ERR __ RCVD.
"-·.

g Signal DS_SEND_SEND_CONVERSATION_MGR with SEND_BUFFER to send the MU information to LU
6.2.

h Signal DS_SEND_CONVERSATION_CONTROL with DMU_SENT.
Signal DS_SEND_DISCARD_DIST with START.

i Signal DS_SEND_EXCEPT_NO_MU_ID with SEND_SIDE_EXCEPT.

j Signal SERVER_MGR with READ to read the object and perform any initialization for reading, if not
yet performed.

k Signal BUILDER with END_OBJECT to indicate that the server has returned EOD and the last
segment of the object should be built, or if no object exists the length of the data will be 0.

m Signal caller with PROG_ERROR.

n Signal caller with CONVERSATION_FAILURE to indicate that an error has occurred in the conversa-
tion between DS_Send and DS_Receive.

0 Signal caller with PROTOCOL_ERROR.

p Signal caller with SEND_SIDE_EXCEPT.

q Signal caller with DISTRIBUTION_COMPLETE to indicate that the MU has been encoded and sent to
DS_Receive.

Chapter 3. Implementation Model 183

184 SNA/Distribution Services Reference

DS_SEND_EXCEPT_NO_MU_ID

Function: This finite-state machine describes the functional processing for errors detected while a basic
Integrity DMU is being transferred to the partner DSU. Depending on the exception, the distrib
ution is either discarded or retained to be retried (without mid-MU restart) later. The next-DSU
queues are held, if appropriate.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

from "DS_SEND_SEND_DMU_NO_MU_ID" on page 181
SEND_SIDE_EXCEPT
ERROR_NO_DATA_SENT
CONV _FAIL_RCVD
PROG_ERR_RCVD
PROTO_ERR_RCVD

• Signals from lower-level DS_Send finite-state machines:

from "DS_SEND_DISCARD_DISr' on page 218
DIST _DISCARDED
QUEUE_FAILED
SERVER_FAILED
OU EU E_AN D _ SERVER_FAI LED

from "DS_SEND_RETAIN_DIST" on page 216
DIST_RETAINED
RELQ_FAILED
TERM_READ_FAILED
TERM_READ_RELQ_FAILED
HOLDQ_FAILED
HOLDQ_RELQ_FAILED
HOLDQ_ TERM_READ _FAILED
HOLDQ_ TERM_READ_RELQ_FAILED

• Signals from machines providing common services:

from "UPM_EXCEPT _RECOVERY _ACTION" on page 285
NOT _RETRIABLE

- RETRIABLE_WITHOUT _MID_MU
- RETRIABLE_RETRY _EXHAUSTED
from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK

• Signals from LU 6.2 presentation services

OK
ALLOCATION_ERROR
DEALLOCATE_ABEND
PROG_ERROR
SVC_ERROR
RESOURCE_FAILURE

Chapter 3. Implementation Model 185

States

HOLD DISC KEEP KEEP HOLD DISC
SEND EXCP SEND SEND SEND CONV CONV CONV CONV PROG PROT

RST ERR ACT SIDE SIDE SIDE FAIL FAIL FAIL FAIL ERR ERR

Inputs 01 02 03 04 05 06 07 08 09 10 11 12

SEND SIDE EXCEPT 2a I I I I I I I I I I I

ERROR NO DATA SENT 3b I I I I I I I I I I I

CONV FAIL RCVD 7b I I I I I I I I I I I

PROG ERR RCVD 11c I I I I I I I I I I I

PROTO ERR RCVD 12c I I I I I I I I I I I

OK I 3b I I I I I I I I I I

ALLOCATION ERROR I 7b I I I I I I I I I I

DEALLOCATE ABEND I 7b I I I I I I I I I I

PROG ERROR I 11c I I I I I I I I I I

SVC ERROR I 12c I I I I I I I I I I

RESOURCE FAILURE I 7b I I I I I I I I I I

NOT RETRIABLE I I 4i I I I 9i I I I I I

RETRIABLE WITHOUT
MIDMU I I 6d I I I 8d I I I I I

RETRIABLE RETRY
EXHAUSTED I I 4i I I I 9i I I I I I

QUEUE OK I I I Sc I I I I 10c I I I

QUEUE NOT OK I I I Sc I I I I 10c I I I

DIST DISCARDED I I I I 1e I I I I 1f 1g 1h

QUEUE FAILED I I I I 1e I I I I 1f 1g 1h

SERVER FAILED I I I I 1e I I I I 1f 1g 1h

QUEUE AND SERVER
FAILED I I I I 1e I I I I 1f 1g 1h

DIST RETAINED I I I I I 1e I 1f I I I I

RELQ FAILED I I I I I 1e I 1f I I I I

TERM READ FAILED I I I I I 1e I 1f I I I I

TERM READ RELQ
FAILED I I I I I 1e I 1f I I I I

HOLDQ FAILED I I I I I 1e I 1f I I I I

HOLDQ RELQ FAILED I I I I I 1e I 1f I I I I

HOLDQ TERM READ
FAILED I I I I I 1e I 1f I I I I

HOLDQ TERM READ
RELQ FAILED I I I I I 1e I 1f I I I I

186 SNA/Distribution Services Reference

Output Function
Code
a Signal LU 6.2 presentation services with SEND_ERROR.

b Signal UPM_EXCEPT _RECOVERY _ACTION with the exception code.

c Signal DS_SEND_DISCARD_DIST with START.

d Signal DS_SEND_RETAIN_DIST with HOLDQ.

e Signal caller with SEND_SIDE_EXCEPT.

f Signal caller with CONVERSATION_FAILURE.

g Signal caller with PROG_ERROR.

h Signal caller with PROTOCOL_ERROR.

i Signal QUEUE_MGR with HOLD to set an exception-hold for all next-DSU queues for this connection.
No distributions will sent to the partner DSU until the cause of the exception is corrected. The
control MU queue is not held.

Chapter 3. Implementation Model 187

DS_SEND_SEND_CONTROL_MU

Function: This finite-state machine describes the functional processing for sending a single control MU
(PRMU, SEMU or CQMU). This routine reads the next CMU from the control MU queue, sends
it, and discards it. If an exception occurs, the MU is not discarded, but is left on the queue to
be resent later.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND_SENDING" on page 156
- SEND

• Signals from machines providing common services:

- from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK
- QUEUE_EMPTY
from "IDLE_DETECTOR" on page 284
- No signals are returned from this FSM.

from "DS_SEND_SEND_CONVERSATION_MGR" on page 220
OK
CONVERSATION_FAILURE
PROG_ERROR
PROTOCOL_ERROR

States

SEND DEQ RET CONV PROG
RESET CMU CMU SENT FAIL ERR

Inputs 01 02 03 04 05 06

SEND 2a I I I I I

QUEUE OK I 3b I 1g 1h 1i

QUEUE NOT OK I 7c I 7c 9c 7c

QUEUE EMPTY I 1d I I I I

OK I I 4e I I I

CONVERSATION FAILURE I I 5f I I I

PROG ERROR I I 6f I I I

PROTOCOL ERROR I I Sf I I I

188 SNA/Distribution Services Reference

RET
SYS
ERR

07

I

1j

1j

I

I

I

I

I

RET RET
PROT CONV
ERR FAIL

08 09

I I

1k 1h

1k 1h

I I

I I

I I

I I

I I

Output Function
Code
a Signal QUEUE_MGR with READO specifying queue(coNTROL_MU_QUEUE).

b Signal IDLE_DETECTOR with SOMETHING_SENT.
Signal DS_SEND_SEND_CONVERSATION_MGR with SEND_BUFFER to send the control MU to the
partner DSU.

c Notify operations of the exception condition. No DRMU will be generated because no distribution
was involved.
Signal QUEUE_MGR with HOLD to place an exception-hold on all next-DSU queues and also on the
control MU queue for this connection. No more MUs will be sent to the partner DSU.

d Signal caller with CONTROL_MU_QUEUE_EMPTY.

e Signal QUEUE_MGR with DEQ, discarding the control MU.

f Signal QUEUE_MGR with RELEASEQ, freeing the control MU for resending later.

g Signal caller with CONTROL_MU_SENT.

h Signal caller with CONVERSATION_FAILURE.

i Signal caller with PROG_ERROR.

j Signal caller with DS_SEND_SYSTEM_ERROR.

k Notify operations of the exception condition.
Signal caller with PROTOCOL_ERROR.

Chapter 3. Implementation Model 189

DS_SEND _RECEIVING

Function: This finite-state machine receives control MUs from the partner DSU. The FSM loops, receiving
a CRMU or a REMU from the partner, parsing it and signalling the appropriate handler. The
CRMU's terminate_conversation bit is also passed to DS_SEND_CONVERSATION_CONTROL.
The FSM returns to the caller upon entering the LU 6.2 send state, detecting a conversation
failure or deallocation, or encountering a violation of the OS usage of the LU 6.2 verbs. A
PROG_ERROR indication (indicating that the partner issued a Send_Error verb) leaves the partner
in send state and is simply Ignored.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND_MANAGER" on page 154
- START

• Signals from lower-level DS_Send finite-state machines:

from "DS_SEND_REMU_HANDLER" on page 204
- REMU_OK
- DS_SEND_SYSTEM_ERROR
from "DS_SEND_CRMU_HANDLER" on page 192
- CRMU_OK
- DS_SEND_SY&TEM_ERROR
from "DS_SEND_CONVERSATION_CONTROL" on page 222
- no signals are received from this FSM

• Signals from "PARSER" on page 359:

REMU
- CRMU
- PARSE_NOT_OK

• Signals from machines providing common services:

from "RCV _BUFFER_MGR" on page 282
OK
CONVERSATION_FAILURE
CHANGE_DIRECTION
PROG_ERROR
PROTOCOL_ERROR
DEALLOCATE_ NORMAL

from "IDLE_DETECTOR" on page 284
- no signals are received from this FSM

190 SNA/Distribution Services Reference

States

HANDLE HANDLE
RESET RCV BUFFER PARSE MU CRMU REMU

Inputs 01 02 03 04 05

START 2a I I I I

OK I 3b I I I

CONVERSATION FAILURE I 1c I I I

CHANGE DIRECTION I 1d I I I

PROG ERROR I -a I I I

PROTOCOL ERROR I 1e I I I

DEALLOCATE NORMAL I 1c I I I

CRMU I I 4f I I

REMU I I 5g I I

PARSE NOT OK I I 1e I I

CRMU OK I I I 2a I

REMU OK I I I I 2a

DS SEND SYSTEM ERROR I I I 1e 1e

Output Function
Code
a Signal DS_SEND_CONVERSATION_CONTROL with RECEIVING.

Signal RCV _BUFFER_MGR with RECEIVE_BUFFER.

b Signal PARSER with PARSE.

c Signal caller with DEALLOCATE_LOCAL

d Signal caller with CHANGE DIRECTION.

e Notify operations of the exception condition.
Signai caller with DEALLOCATE_ABEND.

f Signal IDLE_DETECTOR with SOMETHING_RECEIVED.
Signal DS_SEND_CONVERSATION_CONTROL with the terminate_conversation flag from the CRMU.
Signal DS_SEND_CRMU_HANDLER with START.

g Signal IDLE_DETECTOR with SOMETHING_RECEIVED.
Signal DS_SEND_REMU_HANDLER with START.

Chapter 3. Implementation Model 191

DS_SEND_CRMU_HANDLER

Function: This finite-state machine processes a CRMU's MU_/D state indication, which may be COMPLETE,
IN_TRANSIT, NOT_RECEIVED, TERMINATED, SUSPENDED, or PURGED.

In states 1-3, the FSM finds the specified distribution on the next-DSU queue, or discovers that
the specified distribution does not exist. The queue hold indication may be ignored for this
operation, since the hold is intended to prevent distributions from being sent, not to prevent
CMU processing. CRMUs without MU_/Ds are simply logged; those with old instance numbers
are discarded.

In states 4-11, the specific actions taken for a given distribution and CRMU depend on the
MU_ID state, whether the distribution can be retried (with a new MU_ID or with a DCMU), and
the partner's state. The actions include purging the distribution because the partner has
accepted responsibility, marking the distribution to be restarted later using a DCMU, purging
the MU_ID and retrying later with a new MU_ID, and terminating the distribution. If the speci
fied distribution does not exist and DS_Send's MU_ID state is PURGED, a PRMU is generated; if
DS_Send's MU_/D state is NOT_ASSIGNED, the CRMU's MU_/D state is examined to determine if
an MU sequence error has been detected. If so, an exception-hold is placed on the next-DSU
queues.

Receiving a CRMU(1N_TRANSIT) may indicate a hung conversation, and should be reported to
operations. At other times, the CRMU(IN_TRANSIT) probably indicates a race condition in which a
SEMU was received before its accompanying Send_Error. In the latter cases, a CQMU is
issued to solicit a CRMU(TERMINATED) or CRMU(susPENDED).

A CRMU(NOT_RECEIVED) may also indicate a hung conversation, or it may indicate a lost SEMU
or DMU. A SEMU is perceived to be lost when an MU_ID with an MU_ID state of
TERMINATION_PENDING or RETRY_PENDING is reported by the partner as NOT_RECEIVED; such a SEMU is
simply reissued. A DMU is perceived to be lost when an MU_ID with an MU_ID state of
CQMU_PENDING or TRANSFER_PENDING is reported by the partner as NOT_RECEIVED. Lost DMUs are
handled by issuing a SEMU; the partner will respond to the SEMU with a CRMU(TERMINATED),
which, in turn, solicits a PRMU.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

from "DS_SEND_RECEIVING" on page 190
- START

192 SNA/Distribution Services Reference

• Signals from lower-level DS_Send finite-state machines or procedures:

- from "DS_SEND_MU_ID_REGISTRY" on page 223
NOT_ASSIGNED
TRANSF _PEND
CQMU_PEND
TERM_PEND
RETRY_PEND
SUSPENDED
INSTANCE_NUM_OK
INSTANCE_NUM_NOT_OK
MU_ID_OP_NOT_OK

- from "DS_SEND_RELEASE_ON_CRMU" on page 196
- CMU_OK
- DS_SEND_SYSTEM_ERROR

- from "DS_SEND_PURGE_ON_CRMU" on page 198
- CMU_OK
- DS_SEND_SYSTEM_ERROR

- from "DS_SEND_RETRY_ON_CRMU" on page 200
- CMU_OK
- DS_SEND_SYSTEM_ERROR

- from "DS_SEND_TERMINATE_DIST" on page 214
- CMU_OK
- DS_SEND_SYSTEM_ERROR
from "DS_SEND_ISSUE_SEMU_ON_CRMU" on page 202
- CMU_OK
- DS_SEND_SYSTEM_ERROR

• Signals from machines providing common services:

- from "QUEUE_MGR" on page 357
QUEUE_ OK
QUEUE_ENTRY _IN_USE
QUEUE_EMPTY
QUEUE_NOT_OK

Chapter 3. Implementation Model 193

States

FND INS INS TRN CQM TRM RTR NOT NOT
RST DIS NUM REG PND PND PND PND SUS FND RET ASN HLD

Inputs 01 02 03 04 05 06 07 08 09 10 11 12 13

START 2a I I I I I I I I I I I I

QUEUE OK I 3b I I I I I I I I I I 1e

QUEUE ENTRY IN USE I 1c I I I I I I I I I I I

QUEUE EMPTY I 10f I I I I I I I I I I I

QUEUE NOT OK I 1q I I I I I I I I I I 1q

INSTANCE NUM OK I I 4f I I I I I I I I I I

INSTANCE NUM
NOT OK I I 11g I I I I I I I I I I

NOT ASSIGNED I I I I I I I I I 12d I I I

TRANSF PEND I I I 5d I I I I I I I I I

CQMU PEND I I I 6d I I I I I I I I I

TERM PEND I I I 7d I I I I I I I I I

RETRY PEND I I I 8d I I I I I I I I I

SUSPENDED I I I 9d I I I I I I I I I

PURGED I I I I I I I I I 11p I I I

MU ID OP NOT OK I I 11s 11s I I I I I I I I I

CRMU(NOT RECEIVED) I I I I 11h 11m 11m 11m I I I 1c I

CRMU(IN TRANSIT) I I I I 11h 11h 11n 11n I I I 13r I

CRMU(SUSPENDED) I I I I 11i 11 i 110 11i 11i I I 13r I

CRMU(TERMINATED) I I I I 11j 11j 110 11j 11j I I 11p I

CRMU(COMPLETED) I I I I 11k 11k 11k 11k 11k I I 13r I

CRMU(PURGED) I I I I I I I I I I I 13r I

CMUOK I I I I I I I I I I 1c I I

OS SEND SYSTEM
ERROR I I I I I I I I I I 1q I I

194 SNA/Distribution Services Reference

Output Function
Code
a Signal QUEUE_MGR with READO specifying queue(NEXT·DSU-QUEUE) to get the distribution specified by

the CRMU. The hold flag may be ignored for this operation. If no MU_ID is specified in the CRMU,
the CRMU is logged, reported to the operator, and processing continues as if QUEUE_MANAGER had
returned QUEUE_ENTRY_IN_USE.

b Signal DS_SEND_MU_ID_REGISTRY with INSTANCE_NUMBER to compare the CRMU's instance
number with the current MU_ID registry instance number. If they do not match, then
INSTANCE_NUM_NOT_OK is returned.

c Signal caller with CRMU_OK.

d Interrogate the MU_ID state of the CRMU.

e Notify operations of the exception condition.
Signal caller with CRMU_OK.

f Signal DS_SEND_MU_ID_REGISTRY with INSPECT.

g Signal DS_SEND_RELEASE_ON_CRMU with NO_ACTION.

h Signal DS_SEND_RELEASE_ON_CRMU with NO_ACTION. Implementations may chose to notify oper-
ations that a hung conversation may exist.

i Signal DS_SEND_RETRY _ON_CRMU with RETRY.

j Signal DS_SEND_RETRY_ON_CRMU with RETRY_NO_MID_MU.

k Signal DS_SEND_PURGE_ON_CRMU with DISCARD_AND_PURGE.

m Signal DS_SEND_ISSUE_SEMU_ON_CRMU with START.

n Signal DS_SEND_RELEASE_ON_CRMU with QUERY. This output code is usually used to handle a
race condition in which a SEMU has outrun a Send_Error. However, in some circumstances, a hung
conversation may exist, and implementations may notify the operator.

0 Signal DS_SEND_TERMINATE_DIST with REPORT_AND_PURGE.

p Signal DS_SEND_PURGE_ON_CRMU with PURGE.

q Signal caller with DS_SEND_SYSTEM_ERROR.

r An MU sequence error has been detected. Signal QUEUE_MGR with HOLD to place an exception-
hold on all next-DSU queues.

s Signal DS_SEND_RELEASE_ON_CRMU with MU_ID_EXCEPT.

Chapter 3. Implementation Model 195

DS_SEND_RELEASE_ON_CRMU

Function:

Inputs
QUERY

NO ACTION

MU ID EXCEPT

QUEUE OK

QUEUE NOT OK

This finite-state machine is signalled when no processing is to be performed on the distribution
or MU_ID. It is signalled in the following cases:

• The CRMU's instance number is low, and the CRMU is to be discarded.
• An MU_ID Registry exception has occurred.
• The partner OSU is perceived to be impatient, and has sent a CRMU(NOT_Rece1veo) for an

MU_/D that is either NOT_ASSIGNED or IN_ TRANSIT.
• The partner DSU is perceived to be impatient, and reports an MU_ID as IN_TRANSIT when

DS_Send expects some other active state.

A CQMU is issued, if requested.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

from "DS_SEND_CRMU_HANDLER" on page 192
QUERY

- NO_ACTION
- MU_IO_EXCEPT

• Signals from machines providing common services:

from "OUEUE_MGR" on page 357
QUEUE_ OK
QUEUE_ NOT_ OK

States

RESET BUILD CQMU

01 02

2a I

3b I

4b I

I 3b

I 1c

RELQ

03

I

I

I

1d

1e

MU_ID
EXCEPT

04

I

I

I

1c

1c

196 SNA/Oistribution Services Reference

Output Function
Code
a Build the CQMU and signal QUEUE_MGR with WRITEQ specifying queue(CONTROL_MU_QUEUE) to deter-

mine the restart position.

b Notify operations of the exception condition.
Signal QUEUE_MGR with RELEASEQ to remove the in-use mark from the entry on the next-DSU
queue. Following the RELEASEQ, the entry will be available for processing.

c Signal caller with DS_SEND_SYSTEM_ERROR.

d Signal caller with CMU_OK.

e Notify operations of the exception condition.
Signal caller with CMU_OK.

Chapter 3. Implementation Model 197

DS_SEND_PURGE_ON_CRMU

Function: This finite-state machine changes the MU_ID state to PURGED, and issues a PRMU to notify the
partner that the MU_/D has been purged. It optionally discards the distribution. This FSM is
called whenever the partner has taken responsibility for the distribution by Issuing a
CRMU(COMPLETE), or when the partner reports as active an MU_ID that DS_Send has purged.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

from "DS_SEND_CRMU_HANDLER" on page 192
- PURGE
- DISCARD_AND_PURGE

• Signals from lower-level DS_Send finite-state machines or procedures:

from "DS_SEND_DISCARD_DIST' on page 218
DIST _DISCARDED

- QUEUE_FAILED
- SERVER_FAILED
- QUEUE_AND_SERVER_FAILED

from "DS_SEND_MU_IO_REGISTRY" on page 223
- MU_IO_OP _OK
- MU_ID_OP _NOT_OK

• Signals from machines providing common services:

- from "QUEUE_MGR" on page 357
QUEUE_ OK
QUEUE_NOT_OK

States

PURGE
RESET MU_ID DISC DIST

Inputs 01 02 03

PURGE 2a I I

DISCARD AND PURGE 3e I I

MU ID OP OK ' I 5c I

MU ID OP NOT OK I 1d I

QUEUE OK I I I I

QUEUE NOT OK 1 I I I

DIST DISCARD~ I I 4a

QUEUE FAILED 1 I I 1f

SERVER FAILED I I 4a

QUEUE AND SERVER FAILED I I 1f

198 SNA/Distribution Services Reference

DISC PURGE
MU_ID

04

I

I

Sc

1d

I

I

I

I

I

I

PRMU

05

I

I

I

I

1b

1d

I

I

I

I

Output Function
Code
a Signal DS_SEND_MU_ID_REGISTRY with PURGE. If the MU_/D has already been purged,

DS_SEND_MU_ID_REGISTRY returns MU_ID_OP _OK.

b Signal caller with CMU_OK.

c Build the PRMU and signal QUEUE_MGR with WRITEQ specifying queue(CONTROL_MU_QUEUE) to purge
the partner's knowledge of the MU_ID.

d Signal caller with DS_SEND_SYSTEM_ERROR.

e Signal DS_SEND_DISCARD_DIST with START.

f Notify operations of the exception condition.
Signal caller with CMU_OK.

Chapter 3. Implementation Model 199

DS_SEND_RETRY_ON_CRMU

Function: If a distribution's transfer to the partner is interrupted by an exception, DS_Send determines
whether to terminate the distribution or to attempt to recover from the exception. If DS_Send
decides to recover, this FSM is called. It either suspends the distribution by setting the MU_ID
state to SUSPENDED, or it purges the MU_ID and prepares the distribution to be retried later with
a new MU_ID.

Suspending the distribution merely involves setting the MU_ID state to SUSPENDED, recording the
appropriate restart position for the DCMU, and issuing a RELEASEQ signal to the queue
manager. Depending on implementation-defined circumstances (e.g., the exception may have
been caused by an operator suspending this transmission), implementations may put special
hold conditions on the distribution.

Purging the MU_/D involves setting the MU_ID state to PURGED and issuing a PRMU to inform
the partner. Preparing the distribution to be retried with a new MU _ID involves terminating the
server's restartability (if appropriate), and issuing the RELEASEQ signal to the queue manager.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

from "DS_SEND_CRMU_HANDLER" on page 192
- RETRY
- RETRY_NO_MID_MU

• Signals from lower-level DS_Send finite-state machines or procedures:

from "DS_SEND_MU_ID_REGISTRY" on page 223
- MU_ID_OP _OK
- MU_ID_OP _NOT_OK
from "UPM_EXCEPT_RECOVERY_ACTION" on page 285
- RETRIABLE_WITH_MID_MU
- RETRIABLE_WITHOUT_MID_MU

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK
from "SERVER_MGR" on page 354

OBJECT_OK
OBJECT _NOT _OK

200 SNA/Distribution Services Reference

States

SYS
SUSP PURGE TERM NOT ERR

RESET SUSP RELQ MU_ID REST ASSIGN PRMU RELQ RELQ

Inputs 01 02 03 04 05 06 07 08 09

RETRY 2a I I I I I I I I

RETRY NO MID MU 4b I I I I I I I I

RETRIABLE WITH MID MU I 3c I I I I I I I

RETRIABLE WITHOUT MID MU I 4b I I I I I I I

MU ID OP OK I I 7d I 6f I I I I

MU ID OP NOT OK I I Bd I Bd I I I I

OBJECT OK I I I Se I I I I I

OBJECT NOT OK I I I Se I I I I I

QUEUE OK I I I I I 9d 1g 1h 1g

QUEUE NOT OK I I I I I Bd 1g 1h 1h

Output Function
Code
a Signal UPM_EXCEPT_RECOVERY _ACTION with the receiver's restart position.

b Signal SERVER_MGR with TERMINATE_RESTARTABILITY.

c Signal DS_SEND_MU_ID_REGISTRY with SUSPENDED.

d Notify operations of the exception condition.
Signal QUEUE_MGR with RELEASEQ to remove the in-use mark from the entry on the next-DSU
queue. Depending on the circumstances surrounding the distribution's continuation (for example,
the distribution's transfer may have been suspended by an operator), implementations may mark the
distribution with an operator-hold. An operator-hold must be explicitly released by the operator
before it can be continued. If no operator-hold is placed on the distribution, then following the
RELEASEQ it will ,be available for processing.

e Signal DS_SEND_MU_ID_REGISTRY with PURGE.

f Build the PRMU and signal QUEUE_MGR with WRITEQ specifying queue(CONTROL_MU_QUEUE) to purge
the MU_JD value in the partner DSU.

g Notify operations of the exception condition.
Signal caller with CMU_OK.

h Notify operations of the exception condition.
Signal caller with DS_SEND_SYSTEM_ERROR.

Chapter 3. Implementation Model 201

DS_SEND_ISSUE_SEMU_ ON_ CRMU

Function:

Inputs
START.

QUEUE OK

This finite-state machine issues a SEMU and releases the distribution for later processing. The
SEMU may have been lost (or at least appears to have been lost), or may be issued to termi
nate an apparently lost distribution.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND_CRMU_HANDLER" on page 192
- START

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
QUEUE_ OK
QUEUE_NOT_OK

RESET

01

2a

I

States

SEMU

02

I

3b

RELQ

03

I

1d

QUEUE NOT OK I 1c 1e

Output Function
Code
a If a SEMU has been previously issued for this distribution, then rebuild an exact copy of the original

SEMU and signal QUEUE_MGR with WRITEQ specifying queue(CONTROL_MU_QUEUE) to send it. If a
SEMU has not been issued previously, or no such distribution exists, then build a SEMU using SNA
Report Code *System Exceptlon--ldentifiable* and signal QUEUE_MGR with WRITEQ specifying
queue(CONTROL_MU_QUEUE) to send it.

b Notify operations of the exception condition.
Signal QUEUE_MGR with RELEASEQ to remove the in-use mark from the entry on the next-DSU
queue. Following the RELEASEQ, the entry will be available for processing.

c Signal caller with DS_SEND_SYSTEM_ERROR.

d Signal caller with CMU_OK.

e Notify operations of the exception condition.
Signal caller with CM U _OK.

202 SNA/Distribution Services Reference

Chapter 3. Implementation Model 203

DS_SEND_REMU_HANDLER

Function: This finite-state machine handles REMUs. In states 1-3, the FSM finds the specified distribution
on the next-DSU queue. The queue hold indication is ignored for this operation, since the hold
is intended to prevent more distributions from being sent, not to prevent control processing of
distributions with active MU_ID states. If no MU_ID is specified, the REMU is logged, but no
other action is taken. If the specified distribution does not exist and the MU_ID state is PURGED,

the REMU is discarded; if the MU_ID state is NOT_ASSIGNED, the partner has committed an MU
sequence error, and an exception-hold is placed on the next-DSU queues. If the instance
number given in the REMU does not match that in the distribution, the REMU is discarded.
REMUs reporting already-detected conversation failures are discarded, since the recovery
processing for these failures has already been initiated by a SEMU.

In states 4-10, the specific actions taken for a given distribution and Rl:MU depend on the
MU_ID state, the ability of the DSU to retry the distribution with a new MU_ID or restart it with
a DCMU, and the REMU's exception condition. The actions include querying the partner to
determine the restart position, purging the MU_/D and retrying the distribution with a new
MU_ID at a later time, and terminating the distribution. Retriable exceptions always result in
the next-DSU queues being held.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND_RECEIVING" on page 190
- START

• Signals from lower-level DS_Send finite-state machines:

from "DS_SEND_MU_ID_REGISTRY" on page 223
TRANSF _PEND
CQMU_PEND
TERM_PEND
RETRY_PEND
INSTANCE_NUM_OK
INSTANCE_NUM_NOT_OK
MU_ID_OP _NOT_OK

from "DS_SEND_QUERY_ON_REMU" on page 208
- CMU_OK
- DS_SEND_SYSTEM_ERROR
from "DS_SEND_RETRY_ON_REMU" on page 210
- CMU_OK
- DS_SEND_SYSTEM_ERROR
from "DS_SEND_TERMINATE_o1sr· nn page 214
- CMU_OK
- DS_SEND_SYSTEM_ERROR
from "DS_SEND_CHECK_CONV_FAIL" on page 212

NOT _RETRIABLE
RETRIABLE_WITH_MID_MU
RETRIABLE_WITHOUT_MID_MU
RETRIABLE_RETRY _EXHAUSTED
DUP _CONV_FAIL_REPORT

204 SNA/Distribution Services Reference

• Signals from machines providing common services:

from "UPM_EXCEPT_RECOVERY_ACTION" on page 285
NOT _RETRIABLE
RETRIABLE_WITH_MID_MU
RETRIABLE_WITHOUT_MID_MU
RETRIABLE_RETRY _EXHAUSTED

- from "QUEUE_MGR" on page 357
QUEUE_ OK
QUEUE_EMPTY
QUEUE_ENTRY _IN_USE
QUEUE_NOT_OK

Chapter 3. Implementation Model 205

States

CQ· MU
INST MUID TRAN MU TERM RTRY SYS NO SEQ

RST READ NUM STAT PEND PEND PEND PEND RET RELQ ERR DIS ERR

Inputs 01 02 03 04 05 06 07 08 09 10 11 12 13

START 2a I I I I I I I I I I I I

QUEUE OK I 3b I I I I I I I 1c 1n I 1p

QUEUE EMPTY I 12e I I I I I I I I I I I

QUEUE ENTRY IN USE I -d I I I I I I I I I I I

QUEUE NOT OK I 1n I I I I I I I 1c 1n I 1p

INSTANCE NUM OK I I 4e I I I I I I I I I I

INSTANCE NUM
NOT OK I I 10f I I I I I I I I I I

NOT STARTED I I I I I I I I I I I 130 I

TRANSF PEND I I I 5g I I I I I I I I I

CQMU PEND I I I 6g I I I I I I I I I

TERM PEND I I I 7h I I I I I I I I I

RETRY PEND I I I 8h I I I I I I I I I

SUSPENDED I I I 10f I I I I I I I I I

PURGED I I I I I I I I I I I 1c I

MU ID OP NOT OK I I 11f 11f I I I I I I I I I

NOT RETRIABLE I I I I 9i 9i 9i 9i I I I I I

RETRIABLE
WITH MID MU I I I I 9j 10f 9m 9j I I I I I

RETRIABLE
WITHOUT MID MU I I I I 9k 9k 9m 9k I I I I I

RETRIABLE
RETRY EXHAUSTED I I I I 9m 9m 9m 9m I I I I I

CMUOK I I I I I I I I 1c I I I I

OS SEND SYSTEM
ERROR I I I I I I I I 1n I I I I

DUP CONY FAIL
REPORT I I I I I I 1c 1c I I I I I

206 SNA/Distribution Services Reference

Output Function
Code
a Signal OUEUE_MANAGER with READO specifying queue(NEXT-DSU-QUEUE) to get the distribution speci-

tied in the REMU. The HOLD indication is ignored for this operation. If no MU_ID is specified in the
REMU, the REMU is logged, reported to the operator, and processing continues as if
OUEUE_MANAGER had returned OUEUE_EMPTY and the MU_ID state was PURGED.

b Signal DS_SEND_MU_ID_REGISTRY with INSTANCE_NUMBER to compare the REMU's instance
number with the the current MU_ID registry instance number. If they do not match, then
INSTANCE_NUM_NOT_OK is returned.

c Signal caller with REMU_OK.

d Signal OUEUE_MANAGER with READO specifying queue(NEXT-DSU-QUEUE) suspend to get the distrib-
ution. Implementations may set a timer to avoid suspending for too long. If the timer expires before
the distribution is available, the operator is notified that a potential hung session exists, and proc-
essing continues as though OUEUE_EMPTY had been returned and the MU_ID state were PURGED.

Implementations unable to suspend for the READO may set a timer and retry the READO when the
timer expires. If this subsequent READO fails, the operator is notified and processing continues as
though OUEUE_EMPTY had been returned and the MU_/D state were PURGED.

e Signal DS_SEND_MU_ID_REGISTRY with INSPECT.

f Signal OUEUE_MGR with RELEASEO to remove the in-use mark from the entry on the next-DSU
queue. Following the RELEASEO, the entry will be available for processing.

g Signal UPM_EXCEPT_RECOVERY_ACTION with the relevant fields from the REMU.

h Signal DS_SEND_CHECK_CONV_FAIL with START.

i Signal DS_SEND_TERMINATE_DIST with REPORT_AND_PURGE.

j Signal DS_SEND_OUERY_ON_REMU with START.

k Signal DS_SEND_RETRY_ON_REMU with START.

m Signal DS_SEND_TERMINATE_DIST with HOLD_AND_REPORT_AND_PURGE.

n Signal caller with DS_SEND_SYSTEM_ERROR.

0 An MU sequence error has been detected. Signal OUEUE_MGR with HOLD to hold all next-DSU
queues.

p Notify operations of the exception condition.
Signal caller with REMU_OK.

Chapter 3. Implementation Model 207

DS_SEND_QUERY_ON_REMU

Function: This finite-state machine retains the distribution (i.e., Terminate_Read server verbs and the
RELEASEQ queue operation are performed), holds the next-DSU queues with an exception-hold,
sets the MU_ID state to CQMU_PENOING, and issues a CQMU to query the partner. This FSM is
signalled when a REMU reporting a retriable exception is received, mid-MU restart is possible,
and the sender's MU_ID state is TRANSFER_PENOING or RETRY_PENOING.

Failures involving the MU_ID registry or the control MU queue cause
DS_SEND_SYSTEM_ERROR to be returned. Otherwise, CMU_OK is returned.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND_REMU_HANDLER" on page 204
- START

• Signals from lower-level DS_Send finite-state machines:

from "DS_SEND_RETAIN_DIST' on page 216
DIST_RETAINED
RELQ_FAILED
TERM_READ _FAILED
TERM_READ_RELQ_FAILED
HOLDQ_FAILED
HOLDQ_RELQ_FAILED
HOLDQ_ TERM_READ _FAILED
HOLDQ_ TERM_READ _RELQ_FAILED

from "DS_SEND_MU_ID_REGISTRY'' on page 223
- MU_ID_OP _OK
- MU_ID_OP _NOT_OK

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
QUEUE_ OK
QUEUE_NOT_OK

208 SNA/Distribution Services Reference

States

RESET CQMU PEND RETAIN DIST CQMU

Inputs 01 02 03 04

START 2a I I I

DIST RETAINED I 3b I I

RELQ FAILED I 3b I I

TERM READ FAILED I 3b I I

TERM READ RELQ FAILED I 3b I I

HOLDQ FAILED I 3b I I

HOLDQ RELQ FAILED I 3b I I

HOLDQ TERM READ FAILED I 3b I I

HOLDQ TERM READ RELQ FAILED I 3b I I

MU ID OP OK I I 4c I

MU ID OP NOT OK I I 1e I

QUEUE OK I I I 1d

QUEUE NOT OK I I I 1e

Output Function
Code
a Signal DS_SEND_RETAIN_DIST with HOLOQ.

b Signal DS_SENO_MU_IO_REGISTRY with CQMU_PENDING to set the MU_ID state.

c Build the CQMU and signal QUEUE_MGR with WRITEQ specifying queue(coNTROL_Mu_QUEUE) to deter-
mine the restart position. If the sender had detected an exception previously and issued a SEMU,
implementations may choose to suppress this CQMU, since the SEMU will solicit a CRMU. In such
cases, processing continues as though QUEUE_OK had been returned.

d Notify operations of the exception condition.
Signal caller with CMU_OK.

e Notify operations of the exception condition.
Signal caller with DS_SEND_SYSTEM_ERROR.

Chapter 3. Implementation Model 209

DS_SEND_RETRY_ON_REMU

Function: This FSM prepares a distribution for retry with a new MU_ID. The (existing) MU_/D is purged
from the registry, a PRMU is sent, the next-DSU queues are held with an exception-hold, and
the MU_/D state is changed to NOT_ASSIGNED. A subsequent invocation of DS_Send will assign a
new MU _ID to this distribution and resend it.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND_REMU_HANDLER" on page 204
- START

• Signals from lower-level DS_Send finite-state machines:

from "OS_SEND_RETAIN_DIST" on page 216
DIST _RETAINED
RELQ_FAILED
TERM_READ_FAILED
TERM_READ_RELQ_FAILED
HOLDQ_FAILED
HOLDQ_RELQ_FAILED
HOLDQ_TERM_READ_FAILED
HOLDQ_TERM_READ_RELQ_FAILED

from "DS_SEND_MU_ID_REGISTRY" on page 223
- MU_IO_OP _OK
- MU_ID_OP _NOT_OK

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK
from "SERVER_MGR" on page 354

OBJECT_OK
OBJECT_NOT_OK

210 SNA/Distribution Services Reference

States

PURGE TERM
RESET MU_ID RESTART RETAIN DIST PRMU

Inputs 01 02 03 04 05

START 2a I I I I

MU ID OP OK I 3b I I I

MU ID OP NOT OK I 1c I I I

OBJECT OK I I 4d I I

OBJECT NOT OK I I 4d I I

DIST RETAINED I I I 5e I

RELQ FAILED I I I 5e I

TERM READ FAILED I I I 5e I

TERM READ RELQ FAILED I I I 5e I

HOLDQ FAILED I I I 5e I

HOLDQ RELQ FAILED I I I Se I

HOLDQ TERM READ FAILED I I I Se I

HOLDQ TERM READ RELQ FAILED I I I 5e I

QUEUE OK I I I I 1f

QUEUE NOT OK I I I I 1c

Output Function
Code
a Signal DS_SEND_MU_ID_REGISTRY with PURGE.

b Signal SERVER_MGR with TERMINATE_RESTARTABILITY, if applicable.

c Notify operations of the exception condition.
Signal caller with DS_SEND_SYSTEM_ERROR.

d Signal DS_SEND_RETAIN_DIST with HOLDQ.

e Build the PRMU and signal QUEUE_MGR with WRITEQ specifying queue(CONTROL_MU_QUEUE) to purge
the partner's knowledge of the MU_ID.

f Notify operations of the exception condition.
Signal caller with CMU_OK.

Chapter 3. Implementation Model 211

DS_SEND_CHECK_CONV_FAIL

Function: This finite-state machine determines if the just-received REMU is reporting an already-detected
conversation failure. If so, the REMU will be discarded. If not, this routine returns the appro
priate retry action. This FSM is signalled whenever a REMU is received for an MU_ID state of
TERMINATION_PENDING or RETRY_PENOING.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

- from "DS_SEND_REMU_HANDLER" on page 204.
- START

• Signals from lower-level OS_Send finite-state machines:

from "UPM_CHECK_DUP_CONV_FAIL_REPORT" on page 224
- DUP _CONV _FAIL_REPORT
- NOT _OUP _ CONV _FAIL_REPORT

• Signals from machines providing common services:

from "UPM_EXCEPT_RECOVERY_ACTION" on page 285
NOT _RETRIABLE
RETRIABLE_WITH_MID_MU
RETRIABLE_WITHOUT _MID _MU
RETRIABLE_RETRY _EXHAUSTED

from "QUEUE_MGR" on page 357
QUEUE_ OK
QUEUE_NOT_OK

RESET

Inputs 01

START 2a

DUP CONV FAIL REPORT I

NOT DUP CONV FAIL REPORT I

QUEUE OK I

QUEUE NOT OK I

NOT RETRIABLE I

RETRIABLE WITH MID MU I

RETRIABLE WITHOUT MID MU I

RETRIABLE RETRY EXHAUSTED I

212 SNA/Oistribution Services Reference

States

CONV FAIL
CHECK

02

I

3b

4c

I

I

I

I

I

I

RELQ

03

I

I

I

1d

1d

I

I

I

I

RETRY
ACTION

04

I

I

I

I

I

1e

1f

1g

1h

Output Function
Code
a Signal UPM_CHECK_DUP _CONV_FAIL_REPORT with START. If DS_Send detected a conversation

failure on this distribution and sent a SEMU reporting conversation failure, and if the just-received
REMU reports conversation failure, then the UPM returns DUP_CONV_FAIL_REPORT. Otherwise,
NOT_DUP_CONV_FAIL_REPORT is returned.

b Signal QUEUE_MGR with RELEASEQ to remove the in-use mark from the entry on the next-DSU
queue. Following the RELEASEQ, the entry will be available for processing.

c Signal UPM_EXCEPT_RECOVERY _ACTION with the relevant fields from the REMU.

d Signal caller with DUP _CONV _FAIL_REPORT.

e Signal caller with NOT_RETRIABLE.

f Signal caller with RETRIABLE_WITH_MID_MU.
.. -·

g Signal caller with RETRIABLE_WITHOUT_MID_MU.

h Signal caller with RETRIABLE_RETRY _EXHAUSTED.

Chapter 3. Implementation Model 213

DS_SEND_ TERMINATE_DIST

Function: This finite-state machine is called when a REMU or CRMU is received and DS_Send determines
that an exception condition makes reattempting transmission of the distribution inappropriate.
Terminating a distribution involves

• Holding the next-DSU queues (if requested to do so).
• Generating a distribution report (if appropriate).
• Setting the MU _ID state to PURGED.

• Signalling DS_SEND_DISCARD_DIST to
Remove the distribution from the next-DSU queue and discard it.

- Terminate the server's restartability for the server object (if appropriate).
- Decrement the server's OS lock count for the server object (if appropriate).

• generating a PRMU to the partner.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

from "DS_SEND_REMU_HANDLER" on page 204
- HOLD_AND_REPORT_AND_PURGE
- REPORT_AND_PURGE
from "DS_SEND_CRMU_HANDLER" on page 192
- REPORT_AND_PURGE

• Signals from lower-level DS_Send finite-state machines:

from "DS_SEND_DISCARD_DIST" on page 218
DIST _DISCARDED
QUEUE_FAILED
SERVER_FAILED
QUEUE_ANO_SERVER_FAILED

from "DS_SEND_MU_IO_REGISTRY" on page 223
- MU_ID_OP _OK
- MU_ID_OP_NOT_OK

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
QUEUE_ OK
QUEUE_NOT_OK

214 SNA/Distribution Services Reference

States

PURGE
RESET HOLDQ DRMU MU_ID DISC DIST PRMU

Inputs 01 02 03 04 05 06

HOLD AND REPORT AND PURGE 2a I I I I I

REPORT AND PURGE 3b I I I I I

QUEUE OK I 3b 4c I I 1g

QUEUE NOT OK I 3b 4c I I 1e

MU ID OP OK I I I 5d I I

MU ID OP NOT OK I I I 1e I I

DIST DISCARDED I I I I 6f I

QUEUE FAILED I I I I 1g I

SERVER FAILED I I I I 6f I

QUEUE AND SERVER FAILED I I I I 1g I

Output Function
Code
a Signal QUEUE_MGR with HOLD specifying an exception-hold for all next-DSU queues for this con-

nection. No distributions should be sent to the partner DSU until the cause of the exception is cor-
rected. The control MU queue is not held.

b Generate the distribution report, if appropriate, and signal QUEUE_MGR with WRITEQ specifying
queue(ROUTER_DIRECTOR_QUEUE). If a report is not appropriate, QUEUE_MGR returns QUEUE_OK.

c Signal DS_SEND_MU_ID_REGISTRY with PURGE.

d Signal DS_SEND_DISCARD_DIST with START.

e Notify operations of the exception condition.
Signal caller with DS_SEND_SYSTEM_ERROR.

f Build the PRMU and signal QUEUE_MGR with WRITEQ specifying queue(coNTROL_MU_QUEUE) to purge
the partner's knowledge of the MU_ID.

g Notify operations of the exception condition.
Signal caller with CMU_OK.

Chapter 3. Implementation Model 215

DS_SEND_RETAIN_DIST

Function: When processing on a distribution is halted temporarily, this FSM is signalled to terminate any
server operations in progress and to clear the distribution's in-use mark, making the distrib
ution available for further processing. Retaining a distribution involves the following actions:

• The next-DSU queues are held with an exception-hold, if requested.
• A Terminate_Read verb is issued to the server, but the restartability of the server (if ori

ginally requested) is maintained.
• A RELEASEQ signal is sent to queue manager to remove the in-use mark from the distrib

ution. The distribution will then be available to other DS_Send processes.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

from "DS_SEND_CLEANUP _DMU" on page 166.
- NO_HOLDQ

from "DS_SEND_CLEANUP _EXCEPT" on page 172.
- HOLDQ
- NO_HOLDQ

from "DS_SEND_PROG_ERROR_RECEIVED" on page 174.
- NO_HOLDQ

from "DS_SEND_DMU_PROTOCOL_ERROR" on page 176.
- HOLDQ
from "DS_SEND_EXCEPT_NO_MU_ID" on page 185.
- HOLDQ
from "DS_SEND_QUERY_ON_REMU" on page 208.
- HOLDQ
from "OS_SEND_RETRY_ON_REMU" on page 210.
- HOLDQ
- NO_HOLOQ

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK
from "SERVER_MGR" on page 354

OBJECT_OK
OBJECT_NOT_OK

218 SNA/Distribution Services Reference

States

TERM HOLD HOLD BOTH
TERM FAIL FAIL FAIL FAIL

RESET HOLDQ READ RELQ RELQ TERM RELQ RELQ

Inputs 01 02 03 04 05 06 07 08

HOLDQ 2a I I I I I I I

NO HOLDQ 3b I I I I I I I

QUEUE OK I 3b I 1d 1f I 1h 1j

QUEUE NOT OK I Sb I 1e 1g I 1 i 1k

OBJECT OK I I 4c I I 7c I I

OBJECT NOT OK I I Sc I I 8c I I

Output Function
Code
a Signal QUEUE_MGR with HOLD specifying an exception-hold on all next-OSU queues for this con-

nection; no more distributions should be sent to the partner DSU. The control MU queue is not held.

b Signal SERVER_MGR with TERMINATE_READ specifying SUSPEND. If no lnitiate_Read has opened the
server object or no server object exists for this distribution, SERVER_MGR returns OBJECT_OK.

c Signal QUEUE_MGR with RELEASEQ to remove the in-use mark from the entry on the next-DSU
queue. Following the RELEASEQ, the entry will be available for processing.

d Signal caller with DIST_RETAINED.

e Notify operations of the exception condition.
Signal caller with RELQ_FAILED.

f Notify operations of the exception condition.
Signal caller with TERM_READ_FAILED.

g Notify operations of the exception condition.
Signal caller with TERM_READ_RELQ_FAILED.

h Notify operations of the exception condition.
Signal caller with HOLDQ_FAILED.

i Notify operations of the exception condition.
Signal caller with HOLDQ_RELQ_FAILED.

j Notify operations of the exception condition.
Signal caller with HOLDQ_TERM_READ_FAILED.

k Notify operations of the exception condition.
Signal caller with HOLDQ_TERM_READ_RELQ_FAILED.

Chapter 3. Implementation Model 217

DS_SEND_DISCARD_DIST

Function:

Inputs
START

OBJECT OK

OBJECT NOT OK

QUEUE OK

QUEUE NOT OK

This finite-state machine describes the functional processing for deleting a distribution from the
OSU. This involves the following actions:

• If a server object exists for this distribution, it is deleted. This may involve:
A Terminate_Read or Terminate_Restartability server verb is issued, if appropriate.
The OS lock count for the server object is decremented by the server manager, and the
server object may be deleted from non-volatile storage if both the agent and OS lock
counts are 0.

• The queue manager is signalled with OEQ to remove the distribution from the next-OSU
queue.

This FSM gets control from one of the following:

• Signals from higher-level OS_Send finite-state machines or procedures:

from "OS_SENO_SENO_OMU_NO_MU_ID" on page 181
- START
from "OS_SENO_EXCEPT_NO_MU_IO" on page 185
- START
from "OS_SENO_PURGE_ON_CRMU" on page 198
- START
from "DS_SENO_TERMINATE_OIST" on page 214
- START

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK
from "SERVER_MGR" on page 354

OBJECT_OK
OBJECT _NOT _OK

States

RESET TERM DEC DEQ FAIL DEC

01 02 03 04 05

2a I I I I

I 3b 4c I 6c

I Sb 6c I 6c

I I I 1d I

I I I 1e I

FAIL DEQ

06

I

I

I

1f

1g

218 SNA/Oistribution Services Reference

Output Function
Code
a If appropriate, signal SERVER_MGR with TERMINATE_READ terminating restartability of the server

object.
If a Terminate_Read specifying SUSPEND has been issued previously, then signal SERVER_MGR with
TERMINATE_RESTARTABILITY, if appropriate.
If no lnitiate_Read has opened the server object or no server object exists for this distribution,
SERVER_MGR returns OBJECT_OK.

b Signal SERVER_MGR with DECREMENT_OBJ_LOCK to decrement the OS lock count on the server
object. If no server object exists, OBJECT_OK is returned.

c Signal QUEUE_MGR with DEQ to remove the distribution from the next-DSU queue.

d Signal caller with DIST_DISCARDED.

e Notify operations of the exception condition.
Signal caller with QUEUE_FAILED.

f Notify operations of the exception condition.
Signal caller with SERVER_FAILED.

g Notify operations of the exception condition.
Signal caller with QUEUE_AND_SERVER_FAILED.

Chapter 3. Implementation Model 219

DS_SEND_SEND_CONVERSATION_MGR

Function: This finite-state machine describes the functional processing for sending a buffer to LU 6.2
presentation services using the the Send_Data verb.

Inputs
SEND BUFFER

OK

This FSM gets control from one of the following:

• Signals from higher-level finite-state machines:

from "DS_SEND_BUILD_SEND_DMU" on page 163
- SEND_BUFFER
from "DS_SEND_SEND_DMU_NO_MU_ID" on page 181
- SEND_BUFFER

- from "DS_SEND_SEND_CONTROL_MU" on page 188
- SEND_BUFFER

• Signals from lower-level finite-state machines:

- from "DS_SEND_CONVERSATION_CONTROL" on page 222
- no signals received from this FSM.

• Signals from LU 6.2 presentation services:

- ALLOCATION_ERROR
- DEALLOCATE_ABEND

PROG_ERROR
- SVC_ERROR
- RESOURCE_FAILURE
- OK

DEALLOCATE ABEND

RESOURCE FAILURE

PROG ERROR

SVC ERROR

ALLOCATION ERROR

220 SNA/Distribution Services Reference

States

RESET SEND DATA

01 02

2a I

I 1b

I 1c

I 1c

I 1d

I 1e

I 1c

Output Function
Code
a Signal LU 6.2 presentation services with Send_Data to send the encoded information to the partner

osu.
b Signal caller with OK to indicate that the LU 6.2 request was completed successfully.

c Signal caller with CONVERSATION_FAILURE to indicate that some error has occurred on the conver-
sation between DS_Send and DS_Receive.

d Signal caller with PROG_ERROR to indicate that the partner DSU has signalled that an error has
occurred.

e Signal caller with PROTOCOL_ERROR to indicate a violation of OS use of the LU 6.2 basic conversa-
tion verbs has occurred between DS_Send and OS_Receive.

Chapter 3. Implementation Model 221

DS_SEND_CONVERSATION_CONTROL

Function: This finite-state machine remembers if DS_Send is allowed to send a distribution, send only
control MUs, or must terminate the conversation. OPERATOR_QUIESCE_CONVERSATION
shows the actions for handling an operator command to prevent further distribution traffic over
the conversation. After any waiting CMUs have been exchanged, the conversation will be deal
located.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines or procedures:

from "DS_SEND_SENDING" on page 156
- QUERY _FLOW_CONTROL
from the Operator
- OPERATOR_ QUIESCE_CONVERSATION
from "DS_SENO_CLEANUP _OMU" on page 166
- DMU_SENT
from "OS_SEND_SEND_DMU_NO_MU_ID" on page 181
- OMU_SENT
from "DS_SEND_RECEIVING" on page 190

RECEIVING
- CRMU(TERM_CONVERSATION bit)

States

RESET CMU TERM CONV

Inputs 01 02 03

QUERY FLOW CONTROL -a -b -c

RECEIVING - 1 -
OPERATOR QUIESCE CONVERSATION 4 4 4

CRMU(TERM CONV=YES) 3 3 -
CRMU(TERM CONV= NO) - 1 1

DMU SENT 2 I -

Output Function
Code
a Signal caller with SEND_DISTRIBUTION.

b Signal caller with SEND_CONTROL_MU.

c Signal caller with TERMINATE_CONVERSATION.

222 SNA/Distribution Services Reference

QUIESCE

04

-b

-
-
-
-
-

DS_SEND_MU_ID_REGISTRY
This FSM manages DS_Send's MU_ID registry for a single connection. Its
inputs and actions are listed below. All inputs except INSPECT and
INSTANCE_NUMBER return either MU_ID_OP_OK or MU_ID_OP_NOT_OK.

• Assign

Allocates an entry in the MU_ID registry and assigns to it the next available
MU_/D value, enters the distribution location information, sets the MU_ID
state to IN_ TRANSIT and sets the instance number to ONE (1). The MU_ID field
in the appropriate next-DSU queue entry is also updated.

• Suspend

Sets the MU _ID state to be SUSPENDED.

• CQMU_Pending

Sets the MU_ID state to be CQMU_PENDING.

• In_ Transit

Sets the MU_ID state to be IN_TRANSIT and increments the instance number.

• Inspect

Returns the designated MU_ID state (NoT_ASSIGNED, IN_TRANSIT,

TRANSFER_PENDING, CQMU_PENDING, RETRY_PENDING, TERMINATION_PENDING, SUS

PENDED or PURGED) or, if the MU_ID registry is inaccessible,
MU_ID_OP _NOT_OK. MU_/Ds less than the smallest MU_ID contained in
the registry return PURGED. MU_/Ds greater than the highest MU_ID con
tained in the registry return NOT_ASSIGNED.

• Purge

Sets the MU_ID state to be PURGED and removes the MU_ID entry's distrib
ution location information. Also, the MU_ID field in the appropriate
next-DSU queue entry is set to null. Note that setting an MU_ID state to
PURGED signifies only the breaking of the MU _ID-to-distribution association;
nothing is implied about the fate of the distribution. The distribution may be
retried with a different MU_/D, or the operator may reroute It, or the DSU
may terminate it and issue a distribution report (if appropriate), or the DSU
may simply discard it because the partner has accepted responsibility.

Entries containing the MU_ID state PURGED may be aged out of the registry.

• Retry_Pending

Sets the MU_/D state to be RETRY_PENDING.

• Termination_Pending

Sets the MU_/D state to be TERMINATION_PENDING.

• Transfer_Pending

Sets the MU _ID state to be TRANSFER_PENDING.

Chapter 3. Implementation Model 223

• lnstance_Number

Compares the caller's and MU_ID registry's instance numbers. MU_ID reg
istry failures preventing the comparison result in MU_ID_OP_NOT_OK being
returned to the caller. If the caller's value Is less than that in the registry,
INSTANCE_NUM_NOT_OK is returned. If the MU_ID owning the instance
number is not in the registry (it is not yet in the registry because its value is
too high, or it was once in the registry but has been aged out),
INSTANCE_NUM_OK Is returned. Otherwise, INSTANCE_NUM_OK Is
returned.

UPM_CHECK_DUP _CONV _FAIL_REPORT

DS Receive FSMs

Data Structures

This procedure is not explicitly specified. As discussed elsewhere (see the dis
cussion for OS_SEND_CHECK_CONV_FAIL, under "Program Structure" on
page 146), some conversation failures cause both DS_Send and DS_Receive to
initiate exception processing for the same MU_ID. This procedure is signalled
by DS_SEND_CHECK_CONV_FAIL to determine whether a given REMU repres
ents such a duplicate (and extraneous) exception report for an already-known
conversation failure.

If the just-received REMU is reporting a conversation failure, and MU _ID state is
TERMINATION_PENDING or RETRY_PENDING, and DS_Send's last action for this MU_JD
was to send a SEMU reporting conversation failure, then
OUP_CONV_FAIL_REPORT is returned to the caller. Otherwise,
NOT_DUP_CONV_FAIL_REPORT is returned.

DS_RCV uses the following data structures:

MU_ID Registry: The MU_ID registry is a safe-stored data structure that
records MU_ID, MU_ID state and MU_ID-to-next_DSU_queue-entry mappings. It
may be viewed as an array, each element of which contains four entries. The
first entry is an MU_ID. The second is the state of the MU_ID. The third is a
distribution locator, which Is used to locate the distribution in the Mid-MU
Restart queue. The fourth is the MU_/D's Instance number.

When a DTMU prefix is received, the MU_ID is entered in the MU_ID registry,
and the entry written to safe store. As the MU changes states, this entry is
updated. When the distribution is purged, the distribution locator is replaced by
a null entry.

MU _IDs are assigned sequentially by the partner. Only contiguous blocks of
entries containing the registry's lowest MU_/Ds that are In the PURGED state and
have null distribution locators are purged from the registry automatically (and
their space reclaimed). All other entries are retained, unless explicitly purged
by an operator.

224 SNA/Distribution Services Reference

Program Structure
A logical decomposition of DS_Receive is given in figure Figure 46 on
page 231. The following classes of routines exist in DS_Receive:

• DS_Receive Manager

The only FSM in this class of routines is "DS_RCV _MANAGER" on
page 232. It manages the transition between the LU 6.2 send and receive
states, and also checks for the conversation idle condition, which causes
the conversation to be terminated.

• Receive-State Manager

The only FSM in this class of routines is "DS_RCV_RECEIVING" on
page 237. This routine manages D~_Receive while in the LU 6.2 receive
state. It repeatedly receives DTMUs, DRMUs, DCMUs, SEMUs, CQMUs, and
PRMUs from the partner DSU, parses them, and signals the appropriate
handler. This routine returns to the caller only when the conversation ter
minates (normally or abnormally) or DS_Receive enters the LU 6.2 send
state.

• Send-State Manager

The only FSM in this class of routines is "DS_RCV _SENDING" on page 234.
This routine is active whenever DS_Receive Is in the LU 6.2 send state. It
repeatedly reads CRMUs and REMUs from the control MU queue, and
sends them to the partner DSU. When the control MU queue is empty, it
returns control to the partner.

• Distribution Receiving

Different actions must be taken depending on the distribution's high- or
basic-integrity classification. These FSMs determine the distributions integ
rity (by checking for the presence or absence of the MU _ID value) and
trigger the appropriate actions. The FSMs in this class are:

"DS_RCV_RECEIVE_DMU" on page 240.

This FSM implements some high-integrity actions as well as some dis
tribution receiving actions. The distribution receiving action performed
by this FSM is simply to signal "DS_RCV_RECEIVE_DMU_NO_MU_ID" on
page 259. if the distribution uses basic integrity.

"DS_RCV_MU_ID_HANDLER" on page 244.

This FSM implements some high-integrity actions as well as some dis
tribution receiving actions. The distribution receiving action performed
by this FSM is simply to return a signal indicating that the distribution
uses only basic integrity. Basic integrity is indicated by the lack of an
MU_ID in the distribution's encoding.

• CQMU Receiving

The only FSM in this class of routines is "DS_RCV_CQMU_HANDLER" on
page 265. This routine generates a CRMU containing the MU_ID state of
the MU_ID contained in the just-received CQMU. MU_IDs higher than the
registry's highest received MU_ID are considered to be NOT_RECEIVED.

MU_/Ds already purged from the registry are considered to be PURGED.

Chapter 3. Implementation Model 225

• SEMU Receiving

The only FSM in this class of routines is "DS_RCV_SEMU_HANDLER" on
page 269. This routine first checks the SEMU's instance number; if the
instance number is too low, the SEMU is discarded and no further actions
are taken. If the instance number is acceptable, the actions taken in
response to a SEMU depend on the MU_ID state (e.g., NOT_RECEIVED, TERMI
NATED, or SUSPENDED) and the retriability or non-retriability of the SEMU's
report code. Upon return from this FSM, the distribution will be either sus
pended or terminated. If suspended, the distribution is waiting to be
restarted via a DCMU, the MU_ID state is SUSPENDED and a CRMU(sus
PENDED) has been generated. If terminated, the distribution has been
deleted from the mid-MU restart queue, the server object has been deleted,
the MU_ID state is TERMINATED and a CRMU(TERMINATED) has been gener
ated.

• PRMU Receiving

The only FSM in this class of routines is "DS_RCV_PRMU_HANDLER" on
page 272. This routine examines DS_Receive's MU _ID state of the PRMU's
MU_ID. If DS_Receive's MU_ID state is COMPLETED, TERMINATED or
SUSPENDED, DS_Receive changes its MU_ID state to PURGED. Otherwise, the
PRMU is ignored.

• Bad/Unknown MU Receiving

The only FSM in this class of routines is "DS_RCV_SEND_ERR_REMU" on
page 248. (This FSM is also used for some high-integrity exception actions,
which are discussed below.) This FSM is called when a just-received MU
does not fall into any of the known MU categories (DTMU, DRMU, DCMU,
SEMU, CQMU, or PRMU). The exception action is to issue an LU 6.2
Send_Error, generate and send a REMU reporting the exception (and any
other CMUs awaiting transmission), and deallocate the conversation.

• Basic-Integrity Actions

The only FSM in this class of routines is
"DS_RCV_RECEIVE_DMU_NO_MU_ID" on page 259. This routine is similar
to DS_RCV_RECEIVE_DMU, except that all MU_ID and mid-MU restart proc
essing is omitted, any exceptions cause the distribution to be discarded and
no CMUs are used to report the success or failure of the distribution
transfer.

• High-Integrity Actions

These FSMs receive high-integrity distributions from the partner DSU. This
involves

Checking the distribution's MU_ID and instance number.
Entering the MU_ID into the MU_ID registry (if appropriate).
Setting the MU_ID state to IN_TRANSIT.
Receiving and processing the entire distribution.
Signalling the responsibility acceptance FSMs.

All exceptions are handled by the appropriate exception-handling routine,
and the results of the reception are returned to the caller. The FSMs in this
class are:

226 SNA/Distribution Services Reference

"DS_RCV_RECEIVE_DMU" on page 240.

This FSM, assuming the MU_ID can be honored correctly, repeatedly
receives, parses, and processes the distribution. An entry is made on
the mid-MU restart queue and manipulated as appropriate. The server
object is written to the server. After the suffix has been received, the
responsibility acceptance actions are performed to take responsibility
for the distribution. Exceptions are processed by the appropriate excep
tion handler, and the success or failure of the transmission is returned
to the caller.

"DS_RCV_MU_ID_HANDLER" on page 244.

This routine is signalled by DS_RCV_RECEIVE_DMU to process the dis
tribution's MU _ID and instance number. If the MU is a DTMU or a
DRMU, the MU_ID state must be NOT_RECEIVED and the instance number
must be ONE (1). If the MU is a DCMU, the MU_ID state must be SUS

PENDED, and the Instance number must be greater than the previously
received instance number. If the MU _ID and instance number are
acceptable, the MU_ID state is changed to IN_TRANSIT. The success or
failure of the MU _ID operations are returned to the caller. If the MU _ID
is invalid, DS_Receive will inform its partner DSU of the exception and
deallocate the conversation. Low instance numbers will cause the
caller to ignore the distribution. Failures of the MU_ID registry will
cause DS_Receive to deallocate the conversation immediately.

• High-Integrity Exception Actions

These FSMs take the appropriate recovery actions for any exception that
might occur while a distribution is being received from the partner DSU.
The FSMs in this class are:

"DS_RCV_SEND_ERR_REMU" on page 248.

This FSM issues an LU 6.2 Send_Error verb to interrupt the partner's
transmission and generates a REMU describing an exception condition
detected by DS_Receive. It is used for "unrecognized MU type," "MU_ID
terminated,# and "MU_ID state mismatch exceptions," since the excep
tion actions for these cases are identical. "Bad," or unrecognized MUs
are discussed above under "Bad/Unknown MU Receiving." An MU_ID
state mismatch exists for a DTMU or DRMU if the MU _ID state is sus
PENDED. An MU_ID state mismatch exists for a DCMU ifthe MU_ID state
is NOT_RECEIVED. An "MU_ID terminated" condition exists for a DTMU,
DRMU or DCMU if the MU_ID state is TERMINATED. The exception actions
taken by this FSM are:

To stop the partner's transmission by using a Send_Error LU 6.2
verb.
To generate a REMU informing the partner of the exception.

In addition to these actions, "MU_ID state mismatch" condition causes
DS_Receive to send all waiting CMUs to the partner, and deallocate the
conversation.

"DS_RCV_SEND_ERR_CRMU" on page 256.

This FSM issues an LU 6.2 Send_Error verb to interrupt the partner's
transmission and generates a CRMU informing the partner that the

Chapter 3. Implementation Model 227

MU_ID just received is in either the COMPLETED or PURGED state. The
exception actions taken by this FSM are:

To stop the partner's transmission by using a Send_Error LU 6.2
verb.
To generate a CRMU informing the partner of the MU_ID state.

"DS_RCV_SEND_ERR" on page 246.

This FSM issues an LU 6.2 Send_Error verb to interrupt the partner's
transmission. When using parallel sessions, network delays may cause
MUs to arrive at the receiving DSU in an order different from the order
sent by the partner DSU. When such MUs are associated with different
MU _IDs, the reordering is Inconsequential. When reordered MUs refer
to the same MU_ID, the reordering may affect the processing of the
MU_ID. If the reordered MUs are only CMUs, the protocols are robust
enough to recover and allow the MU _IDs to be processed properly (pos
sibly at the cost of extra CMUs being generated). If the reordering
involves distribution MUs, the situation is more serious. For example,
suppose a tardy REMU were associated with the wrong DCMU: the
DS_Send process might Initiate exception processing and attempt toter
minate the distribution while DS_Receive was forwarding it on to the
destination. To handle this latter case, each DMU is assigned an
instance number, and CMUs carry the instance number of the DMU to
which they refer. CMUs with obsolete instance numbers are simply
Ignored.

DMUs with obsolete instance numbers are ignored logically. An LU 6.2
Send_Error verb is issued to terminate the transmission (to save band
width), but no REMU is generated. Of course, DS_Receive enters the
LU 6.2 send state upon issuing the Send_Error, and thus gets the oppor
tunity to send any waiting CMUs.

"DS_RCV_SUSP_TERM" on page 250.

This FSM suspends or terminates (as appropriate) a distribution. When
a DS_Send is transmitting a DMU and encounters an exception condi
tion, it issues an LU 6.2 Send_Error verb to inform DS_Receive that the
DMU's transmission is being interrupted. Upon receiving this
Send_Error, this FSM is signalled to attempt suspending the distribution
for later restart via a DCMU. If this suspension is successful, the MU_ID
state Is set to SUSPENDED. If such a suspension is not possible,
DS_Receive deletes the distribution and puts the MU_ID into TERMINATED

state.

This FSM is also signalled if, while receiving a distribution, DS_Receive
detects that the partner DSU has violated OS's use of the LU 6.2 basic
conversation verbs. An example of such a protocol error is for
DS_Send to issue a Receive_And_Wait verb while transmitting a distrib
ution. The distribution being received is discarded; the MU_ID is put
Into TERMINATED state.

"DS_RCV_SEND_ERR_SUSP _TERM_REMU" on page 252.

This FSM issues an LU 6.2 Send_Error verb to interrupt the partner's
transmission, suspends or terminates the distribution (as appropriate),
and generates a REMU describing the exception condition detected by

228 SNA/Distribution Services Reference

DS_Receive. It is signalled if DS_Receive, while receiving a distribution,
detects an exception in the queue manager, parser, or server. It is also
signalled if DS_Receive, after successfully receiving a distribution, fails
to accept responsibility for it.

An LU 6.2 Send Error is issued to terminate the distribution's trans
mission. If the exception is restartable via a DCMU, and DS_Receive is
capable of restarting the distribution, the distribution is suspended on
the mid-MU restart queue, the server object is saved, and the MU_ID is
put into SUSPENDED state. Otherwise, the distribution is discarded and
the MU_ID is put into TERMINATED state. A REMU is generated to inform
the partner DSU of the exception.

"DS_RCV _REMU_SUSP _TERM" on page 254.

This FSM generates a REMU describing an exception condition detected
by DS_Receive, and suspends the distribution {to be restarted via a
DCMU) or discards it {if suspension is not possible or appropriate). It is
signalled whenever DS_Receive is receiving a distribution and the LU
6.2 conversation with the partner fails. Such failures can be detected
not only from the Receive_And_Wait verbs issued to receive the DMU,
but from Send_Error verb issued during
DS_RCV _SEND_ERR_SUSP _TERM_REMU processing.

If the distribution can be restarted via a DCMU, it and the associated
server object are saved and the MU_JD put into SUSPENDED state. Other
wise, the distribution is discarded and the MU_ID put into TERMINATED
state.

• Responsibility Acceptance Actions

The only FSM in this class of routines is "DS_RCV _ENQ_SCHED" on
page 262. This FSM is signalled to accept responsibility of a distribution
(either basic or high integrity) that has been received successfully. It
creates a router-director queue entry for the distribution, schedules
DS_Router_Director, changes the MU_JD state to COMPLETED and releases
the just-created router-director queue entry. If all these operations
succeed, a CRMU(coMPLETED) is generated. If any of the above operations
fail, the distribution is left unchanged, just as it was when the FSM was
signalled--no entry is left on the router-director queue, and the MU_ID state
is left in IN_TRANSIT. {And any operations that were attempted are backed
out.)

• DS_Receive Utility Routines

These FSMs perform relatively simple, well-defined functions that are
needed by various other FSMs in DS_Receive. The FSMs in this class are:

"DS_RCV _SUSP _DIST" on page 274.

This FSM suspends a partially received distribution. That is, the dis
tribution's entry in the mid-MU restart queue is releas.ed {so that it may
be accessed later, probably by a different instance of DS_Receive), and
a Terminate_Write server verb is issued {so that the server object may
be accessed later).

Chapter 3. Implementation Model 229

"DS_RCV_DISCARD_DIST" on page 276.

This FSM discards a distribution. The server object is deleted (and
restartability terminated), and the distribution's mid-MU restart queue
entry is dequeued and discarded.

"DS_RCV_SEND_CONVERSATION_MGR" on page 278.

This FSM sends a single buffer to the partner DSU by issuing an LU 6.2
Send_Data verb. The outcome of the Send_ Data (LU 6.2 accepted the
data without detecting an exception, a conversation failure was
detected, the partner DSU issued a Send_Error, etc.) is returned to the
caller.

"DS_RCV_MU_ID_REGISTRY" on page 280.

This procedure manages DS_Receive's access to the MU_ID registry.
An MU_ID state may be assigned or inspected, or a just-received
instance number may be compared to the instance number in the reg
istry. (An MU containing an instance number that is too low is ignored.)

"PREPARSER" on page 280

This procedure inspects the initial LLID of an MU and returns the MU
type (DTMU, DRMU, DCMU, SEMU, PRMU, or CQMU). It also identifies
and returns the MU_/D and instance number, if appropriate. CMUs are
parsed completely; if the CMU contains a format exception, or if an
MU_ID or instance number is missing when required or otherwise
invalid, BAD_MU is returned. If the initial LL's ID is not recognized,
UNKNOWN_MU is returned.

230 SNA/Distribution Services Reference

DS_RECEIVE_HGR

Recef ve-State

Distrfbutlon
Recefving

CQHU
Receiving

SEHU
Receiving

Basic
Integrity
Actions

High
Integrity
Actions

Respons I bi 11 ty
Acceptance
Actions

High-Integrity
Exception
Actions

Figure 46. DS_Receive Logical Structure

Send-State
Manager

PRHU
Receiving

Bad/Unknown
HU Receiving

Chapter 3. Implementation Model 231

DS_RCV _MANAGER

Function: This finite-state machine describes the functional processing for DS_Receive. This FSM is
started by LU 6.2 on receiving an Attach, or by the operator via a START_ TRANSACTION. If
DS_Receive is started by LU 6.2 via Attach, it is initially in the LU 6.2 receive state. Otherwise,
it Is initially in the LU 6.2 send state.

The primary processing of this FSM is done in states 3 (RECEIVING), 4 (SENDING) and 5 (IDLE
TEST). When in RECEIVING state (state 3), DS_Receive is in the LU 6.2 receive state and is
receiving distribution and control MUs from the partner. If DS_Receive then receives the
change direction indication from LU 6.2, it immediately attempts to send any waiting control
MUs to the partner by signalling DS_RCV_SENDING.

When in SENDING state (state 4), DS_Receive is in the .LU 6.2 send state, and is sending CMUs
to the partner. The lower-level FSMs signal DS_Receive to enter the LU 6.2 receive state by
returning CHANGE_DIRECTION. DS_RCV_MANAGER first checks to determine if an idle conver
sation exists by signalling IDLE_DETECTOR. If an idle conversation does exist, the conversation
is simply deallocated. If the conversation is not idle, DS_Receive goes into the LU 6.2 receive
state by signalling DS_RCV_RECEIVING.

An idle conversation exists whenever both of the following conditions hold:

• When DS_Receive was last in the LU 6.2 receive state, it received no MUs from the partner
DS_Send.

• DS_Receive, which is currently in the LU 6.2 send state, has had no control MUs to send to
the partner DS_Send.

This FSM gets control from one of the following:

• Signals from higher-level finite-state machines or procedures:

- from "FSM_SCHED_MGR" on page 351
- START_TRANSACTION

• Signals from lower-level DS_Receive finite-state machines:

from "DS_RCV_SENDING" on page 234
CHANGE_DIRECTION
DEALLOCATE_LOCAL
DEALLOCATE_FLUSH
DEALLOCATE_ABEND

from "DS_RCV_RECEIVING" on page 237
CHANGE_DIRECTION
DEALLOCATE_LOCAL
DEALLOCATE_ABEND
SEND_CMU~AND_DEALLOCATE

• Signals from machines providing common services:

from "IDLE_DETECTOR" on page 284
- CHANGE_DIRECTION
- DEALLOCATE_FLUSH

• Signals from LU 6.2 presentation services

OK
ATTACH
ALLOCATION_ERROR
ALLOC_PARM_ERROR

232 SNA/Distribution Services Reference

States

IDLE SEND DEALL
RESET ALLOC REC'VING SENDING TEST CMU PEND

Inputs 01 02 03 04 05 06 07

START TRANSACTION 2a I I I I I I

ATTACH 3b I I I I I I

OK I 4c I I I I 1

ALLOCATION ERROR I 7d I I I I I

ALLOC PARM ERROR I 1e I I I I I

CHANGE DIRECTION I I 4c 5h 3j 7i I

DEALLOCATE LOCAL I I 7f 7f I 7f I

DEALLOCATE FLUSH I I I 7i 7i 7i I

DEALLOCATE ABEND I I 7g 7g I 7f I

SEND CMU AND DEALLOCATE I I 6c I I I I

Output Function
Code
a Signal LU 6.2 presentation services with ALLOCATE to establish the conversation with DS_Send.

b Signal LU 6.2 presentation services with GET_ATTRIBUTES.
Signal DS_RCV_RECEIVING with START.

c Signal DS_RCV_SENDING with SEND.

d Notify operations of the exception condition.
Signal LU 6.2 presentation services with DEALLOCATE specifying type(LOCAL).

e Notify operations of the exception condition.

f Signal LU 6.2 presentation services with DEALLOCATE specifying type(LOCAL).

g Signal LU 6.2 presentation services with DEALLOCATE specifying type(ABEND).

h Signal IDLE_DETECTOR with CHANGE_DIRECTION.

i Signal LU 6.2 presentation services with DEALLOCATE specifying type(FLUSH).

j Signal DS_RCV_RECEIVING with START.

Chapter 3. Implementation Model 233

DS_RCV_SENDING

Function:

Inputs
SEND

QUEUE OK

QUEUE NOT OK

QUEUE EMPTY

OK

This finite-state machine describes the functional processing for DS_Receive while it is in the
LU 6.2 send state. This FSM repeatedly finds a CMU on the control MU queue, sends it, and
discards the queue entry. FSM IDLE_DETECTOR is also signalled. When the queue is emptied,
a CHANGE_DIRECTION signal is returned to the caller.

If the LU 6.2 conversation failure is detected, the CMU being sent is left on the queue to be
sent by another instance of DS_Receive.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines or procedures:

- from "DS_RCV_MANAGER" on page 232
- SEND

• Signals from machines providing common services:

from "DS_RCV.._SEND_CONVERSATION_MGR" on page 278
OK
CONVERSATION_ FAILURE
PROG_ERROR
PROTOCOL_ ERROR

from "QUEUE_MGR" on page 357
QUEUE_ OK

- QUEUE_NOT_OK
- QUEUE_EMPTY
from "IDLE_DETECTOR" on page 284
- nothing returned from this FSM

States

....

RESET READQ SEND CMU DISC CMU

01 02 03 04

2a I I I

I 3b I 2a

I 1c I 1c

I 1d I I

I I 4e I

CONVFAIL

05

I

1g

1h

I

I

PROTO
ERROR

06

I

1 i

1j

I

I

CONVERSATION FAILURE I I 5f I I I

PROG ERROR I I 6f I I I

PROTOCOL ERROR I I 6f I I I

234 SNA/Distribution Services Reference

Output Function
Code
a Signal QUEUE_MGR with READO, specifying queue(CONTROL_MU_QUEUE).

b Signal IDLE_DETECTOR with SOMETHING_SENT.
Signal DS_RCV_SEND_CONVERSATION_MGR with SEND_BUFFER to send the control MU to the
partner DSU.

c Notify operations of the exception condition.
Signal QUEUE_MGR with HOLD specifying queue(CONTROL_MU_Queue) for this connection. Nothing is
to be sent to the partner DSU. Signal caller with DEALLOCATE_FLUSH.

d Signal caller with CHANGE_DIRECTION.

e Signal QUEUE_MGR with DEQ to discard the control MU.

f Signal QUEUE_MGR with RELEASEQ, freeing the control MU for resending later.

g Signal caller with DEALLOCATE_LOCAL.

h Notify operations of the exception condition.
Signal QUEUE_MGR with HOLD specifying queue(CONTROL_MU_Queue) for this connection. Nothing is
to be sent to the partner DSU. Signal caller with DEALLOCATE_LOCAL

i Notify operations of the exception condition.
Signal caller with DEALLOCATE_ABEND.

j Notify operations of the exception condition.
Signal QUEUE_MGR with HOLD specifying queue(CONTROL_Mu_Queue) for this connection. Nothing is
to be sent to the partner DSU. Signal caller with DEALLOCATE_ABEND.

Chapter 3. Implementation Model 235

236 SNA/Distribution Services Reference

DS_RCV _RECEIVING

Function: This finite-state machine controls DS_Receive in the LU 6.2 receive state. A buffer is received
from LU 6.2, and the initial LLID examined (states 1 and 2). This LLID indicates that the MU
being received is a DTMU, DCMU, DRMU, CQMU, PRMU, SEMU, or an unknown MU type. An
appropriate handler is called for each MU type (state 3). The handler's results are returned to
the caller. If an exception occurs (such as an LU 6.2 conversation failure), it is also returned to
the caller.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines or procedures:

- from "DS_RCV_MANAGER" on page 232

• Signals from lower-level DS_Receive finite-state machines:

- from "DS_RCV_RECEIVE_DMU" on page 240
MU_OK
CONVERSATION_FAILURE
SEND_SIDE_EXCEPT
RCV _SIDE_EXCEPT
PROTOCOL_ ERROR
MU_ID_STATE_MISMATCH
DS_RCV_SYSTEM_ERROR

- from "PREPARSER" on page 280
DMU
CQMU
PRMU
SEMU
UNKNOWN_MU
BAD_CMU

from "DS_RCV_CQMU_HANDLER" on page 265
- MU_OK
- MU_NOT_OK

- from "DS_RCV_PRMU_HANDLER" on page 272
- MU_OK
- MU_NOT_OK
from "DS_RCV_SEMU_HANDLER" on page 269
- MU_OK
- MU_NOT_OK
from "DS_RCV_SEND_ERR_REMU" on page 248

CONVERSATION_FAILURE
- UNREC_MU_TYPE
- DS_RCV_SYSTEM_ERROR

• Signals from machines providing common services:

from "RCV_BUFFER_MGR" on page 282
OK
CHANGE_DIRECTION
CONVERSATION_FAILURE
PROG_ERROR
PROTOCOL_ ERROR
DEALLOCATE_NORMAL

- from "IDLE_DETECTOR" on page 284
- no signals received from this FSM

Chapter 3. Implementation Model 237

States

BAD
RCV MU MU

RESET BUFF. TYPE DMU CQMU PRMU SEMU MU_ID

Inputs 01 02 03 04 05 06 07 08

START 2a I I I I I I I

OK I 3b I I I I I I

CHANGE DIRECTION I 1c I I I I I I

PROG ERROR I -a I I I I I I

DEALLOCATE NORMAL I 1d I I I I I I

CONVERSATION FAILURE I 1d I 1d I I I 1d

PROTOCOL ERROR I 1e I 1e I I I I

SEND SIDE EXCEPT I I I 2a I I I I

RCV SIDE EXCEPT I I I 1c I I I I

OS RCV SYSTEM ERROR I I I 1e I I I 1e

MU ID STATE MISMATCH I I I 1k I I I I

UNREC MU TYPE I I I I I I I 1k

DMU I I 4f I I I I I

CQMU I I 5g I I I I I

PRMU I I 6h I I I I I

SEMU I I 71 I I I I I

UNKNOWN MU I I 8j I I I I I

BAD CMU I I 1e I I I I I

MUOK I I I 2a 2a 2a 2a I

MU NOT OK I I I I 1e 1e 1e I

238 SNA/Distrlbution Services Reference

Output Function
Code
a Signal RCV_BUFFER_MGR with RECEIVE_BUFFER.

b Signal IDLE_DETECTOR with SOMETHING_RECEIVED.
Signal PREPARSER with RETURN_MU_TYPE. (For control MUs, the PREPARSER either parses the
CMU completely, or signals the parser to complete the parsing.)

c Signal caller with CHANGE_DIRECTION.

d Signal caller with DEALLOCATE_LOCAL.

e Notify operations of the exception condition.
Signal caller with DEALLOCATE_ABEND.

f Signal DS_RCV_RECEIVE_DMU with DECODE.

g Signal DS_RCV_CQMU_HANDLER with START.

h Signal DS_RCV_PRMU_HANDLER with START.

i Signal DS_RCV_SEMU_HANDLER with START.

j Signal DS_RCV_SEND_ERR_REMU with UNREC_MU_TYPE.

k Notify operations of the exception condition.
Signal caller with SEND_CMU_AND_DEALLOCATE.

Chapter 3. Implementation Model 239

DS_RCV _RECEIVE_DMU

Function: This is DS_Receive's .. distribution handler."' It receives and parses a high-integrity DTMU,
DRMU or DCMU, or signals DS_RCV_RECEIVE_DMU_NO_MU_ID to handle a basic-integrity
DTMU or DRMU. The major processing in this FSM is in two loops: states 4 and 5 are a loop
for receiving and parsing the DMU. States 4, 5 and 6 are a loop for receiving and writing the
server object. When the DMU's suffix has been received successfully, a Terminate_Write
server verb is issued and DS_RCV_ENQ_SCHED is signalled to accept responsibility for the dis
tribution.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines:

- from "DS_RCV_RECEIVING" on page 237
- DECODE

• Signals from lower-level DS_Receive finite-state machines:

from "DS_RCV_ENQ_SCHED" on page 262
ENQ_SCHED_OK

- ENQ_SCHED_NOT_OK
- ENQ_SCHED_OK_DEALLOCATE
from "DS_RCV_MU_ID_HANDLER" on page 244

MU_ID_OK
BAD _I NSTANCE_N UM
MU_ID_NOT_USED
DS_RCV_SYSTEM_ERROR
MU_ID_STATE_MISMATCH
MU_ID_TERMINATED
MU_ID_COMP_PURG

from "DS_RCV_SEND_ERR_REMU" on page 248.
CONVERSATION_FAILURE
MU_ID_STATE_MISMATCH
DS_RCV_SYSTEM_ERROR
MU_ID_TERMINATED

from "DS_RCV_SEND_ERR_CRMU" on page 256.
CONVERSATION_FAILURE

- MU_ID_COMP _PURG
- DS_RCV_SYSTEM_ERROR
from "DS_RCV_RECEIVE_DMU_NO_MU_ID" on page 259.

MU_OK
DS_RCV_SYSTEM_ERROR
RCV_SIDE_EXCEPT
SEND_SIDE_EXCEPT
CONVERSATION_FAILU RE
PROTOCOL_ ERROR

from "DS_RCV_SEND_ERR" on page 246.
- SEND_ERROR_GENERATED
- CONVERSATION_FAILURE
from "DS_RCV_SEND_ERR_SUSP _TERM_REMU" on page 252.

DS_RCV_SYSTEM_ERROR
SEND_ERR_SUSP _ TERM_REMU
CONVERSATION_FAILURE

240 SNA/Distribution Services Reference

- from "DS_RCV_SUSP_TERM" on page 250.
PROG_ERR_RCVD

- DS_RCV_SYSTEM_ERROR
- PROTOCOL_ERROR_RCVD

- from "DS_RCV_REMU_SUSP _TERM" on page 254.
- DS_RCV_SYSTEM_ERROR
- REMU_SUSP _TERM

• Signals from machines providing common services:

- from "RCV_BUFFER_MGR" on page 282
OK
CONVERSATION_FAILURE
PROTOCOL_ ERROR
DEALLOCATE_NORMAL
PROG_ERROR
CHANGE_DIRECTION

- from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK

- "SERVER_MGR" on page 354
OBJECT_OK

- OBJECT_NOT_OK
- SPECIFIC_SERVER_EXCEPTION

• Signals from "PARSER" on page 359:

- PARSE_OK
- PARSE_OK_OBJECT

PARSE_ COMPLETE
- PARSE_NOT_OK

Chapter 3. Implementation Model 241

States

MID
MU CHECK RCV OBJ END ACC PROC NO

RESET REST MU_ID PARS NEXT PEND DMU PEND ERR MU_ID

Inputs 01 02 03 04 05 06 07 ---OS --og - 10

DECODE 2a I I I I I I I I I

MU IDOK I 3b I I I I I I I I

MU ID TERMINATED I 9c I I I I I I 1s I

MU ID STATE MISMATCH I 9v I I I I I I 1w I

MU ID COMP PURG I 9x I I I I I I 1s I

MU ID NOT USED I 10d I I I I I I I I

BAD INSTANCE NUM I se I I I I I I I I

QUEUE OK I I 4g I I I I I I I

QUEUE NOT OK I I 9h I I I I I I I

PARSE OK I I I 51 I I I I I I

PARSE OK OBJECT I I I 6j I I I I I I

PARSE COMPLETE I I I 7k I I I I I I

PARSE NOT OK I I I 9h I I I I I I

OK I I I I 4g I I I I I

PROG ERROR I I I I Sm I I I I I

CONVERSATION FAILURE I I I I 9n I I I 1r 1r

PROTOCOL ERROR I I I I 90 I I I I 1u

DEALLOCATE NORMAL I I I I Sn I I I I I

CHANGE DIRECTION I I I I 9o I I I I I

OBJECT OK I I I I I Si Sp I I I

OBJECT NOT OK I I I I I 9h 9h I I I

SPECIFIC SERVER EXCEPTION I I I I I 9h I I I I

ENQ SCHED OK I I I I I I I 1q I I

ENQ SCHED OK DEALLOC I I I I I I I 1f I I

ENQ SCHED NOT OK I I I I I I I 9h I I

REMU SUSP TERM I I I I I I I I 1r 1r

SEND ERR SUSP TERM REMU I I I I I I I I 1s 1s

RCV SIDE EXCEPT I I I I I I I I 1s 1s

PROG ERR RCVD I I I I I I I I 1t 1t

SEND SIDE EXCEPT I I I I I I I I 1t 1t

PROTOCOL ERROR RCVD I I I I I I I I 1u I

DS RCV SYSTEM ERROR I 1f I I I I I I 1f 1f

SEND ERROR GENERATED I I I I I I I I 1s I

MUOK I I I I I I I I I 1q

242 SNA/Distribution Services Reference

Output Function
Code
a Signal DS_RCV_MU_ID_HANDLER with the MU type (DTMU, DRMU or DCMU).

b If the MU is a DTMU and mid-MU restart capability is provided, then signal QUEUE_MGR with
WRITEQ, specifying queue(MID_MU_RESTART_QUEUE). If this operation fails, implementations may reject
the distribution. Or, they may choose to receive the distribution without mid-MU restart capability.
The former case is modeled.
If the MU is a DCMU, then signal QUEUE_MGR with READO specifying queue(MtD_MU_RESTART_QUEUE)

to fetch the previously-received portion of the distribution.
If the MU is a DRMU, or a DTMU where no mid-MU restart capability is provided, then processing
continues as though QUEUE_MGR returned QUEUE_OK.

c Signal DS_RCV_SEND_ERR_REMU with MU_ID_TERMINATED.

d Signal DS_RCV_RECEIVE_DMU_NO_MU_ID with START.

e Signal DS_RCV_SEND_ERR with START.

f Signal caller with DS_RCV_SYSTEM_ERROR.

g Signal PARSER with PARSE to parse information received.

h Signal DS_RCV_SEND_ERR_SUSP_TERM_REMU with START to process the error appropriately.

i Signal RCV_BUFFER_MGR with RECEIVE_BUFFER to receive information from LU 6.2.

j Signal SERVER_MGR with WRITE to write the just-received portion of the server object.
SERVER_MGR will issue a lnitiate_Write, if appropriate.

k Signal SERVER_MGR with TERMINATE_WRITE with termination_type NORMAL to terminate
restartability. If no server object has been processed (and therefore no lnitiate_Write has been
issued), processing continues with OBJECT_OK.

m Signal DS_RCV_SUSP _TERM with PROG_ERR to process the error appropriately.

n Signal DS_RCV_REMU_SUSP_TERM with START to process the error appropriately.

0 Signal DS_RCV _SUSP _TERM with PROT _ERR.

p Signal DS_RCV_ENQ_SCHED with ENQ_SCHED to place the distribution on the router-director queue,
schedule DS_Router_Director, set the MU_ID registry entry and build and enqueue the CRMU on the
control MU queue.

q Signal caller with MU_OK to indicate that a DMU has been completely received.

r Signal caller with CONVERSATION_FAILURE.

s Signal caller with RCV_SIDE_EXCEPT.

t Signal caller with SEND_SIDE_EXCEPT to indicate that an error has occurred in DS_Send and that
the sender exception protocols should be followed.

u Signal caller with PROTOCOL_ERROR to indicate that a protocol error has occurred in the conversa-
tion between DS_Send and DS_Receive.

v Signal DS_RCV_SEND_ERR_REMU with MU_ID_STATE_MISMATCH.

w Signal caller with MU_ID_STATE_MISMATCH to indicate that the received MU (or an MU_ID_state
implied by the MU) is inconsistent with the MU_ID_state in the registry.

x Signal DS_RCV_SEND_ERR_CRMU with MU_ID_COMP _PURG to indicate that the received MU_ID
has an MU_ID state of COMPLETED or TERMINATED.

Chapter 3. Implementation Model 243

DS_RCV _MU_ID_HANDLER

Function: This finite-state machine does the initial MU_ID processing when a distribution MU is first
received. If no MU_ID is present in a DTMU or DRMU, the caller is informed that the distrib
ution does not use MU_/Ds. If the MU is a OTMU or a DRMU, the MU_ID state should be
NOT_RECEIVED. Otherwise an error exists. ·

For OCMUs, the instance number Is checked; if it is less than or equal to the instance number
in the MU_ID registry, the DCMU is considered tardy, and ignored. If the instance number is
greater than the one in the registry, the MU_ID state is checked to see that it is SUSPENDED.

Otherwise, an error exists.

This FSM gets control from one of the following:

• Signals from higher-level DS_Recelve finite-state machines or procedures:

from "OS_RCV _RECEIVE_OMU" on page 240
DTMU

- DRMU
- OCMU

• Signals from lower-level DS_Receive finite-state machines:

from "DS_RCV_MU_IO_REGISTRY" on page 280
NOT _RECEIVED
IN_ TRANSIT
SUSPENDED
TERMINATED
COMPLETE
PURGED
INSTANCE_NUM_OK
INSTANCE_NUM_EQUAL
INSTANCE_NUM_LOW
MU_ID_OP _OK
MU_ID_OP _NOT_OK
MU_ID_NOT_USED

• Signals from machines providing common services:

from system operator
OP _CONTINUE
OP_ABORT

244 SNA/Distrlbutlon Services Reference

States

CONTINUE
RESET INST NUM MU NEW MU MU_ID OP

Inputs 01 02 03 04 05

DTMU 4a I I I I

DRMU 4a I I I I

DCMU 2b I I I I

INSTANCE NUM HIGH I 3a I I I

INSTANCE NUM EQUAL I 1c I I I

INSTANCE NUM LOW I 1c I I I

NOT RECEIVED I I 1e 5f I

SUSPENDED I I 5f 1e I

TERMINATED I I 1i 1i I

COMPLETE I I 1j 1j I

PURGED I I 1j 1j I

MU ID NOT USED I I I 1g I

MU ID OP OK I I I I 1h

MU ID OP NOT OK I 1d 1d 1d 1d

Output Function
Code
a Signal DS_RCV_MU_ID_REGISTRY with INSPECT.

b Signal DS_RCV_MU_ID_REGISTRY with INSTANCE_NUMBER to compare the DCMU's instance
number with the MU_ID registry's instance number. The DCMU's instance number must be greater
than the MU_ID registry's instance number, and the MU_ID registry's number is updated to be equal
to the DCMU's.

c Notify operations of the exception condition.
Signal caller with BAD_INSTANCE_NUM.

d Signal caller with DS_RCV_SYSTEM_ERROR.

e Notify operations of the exception condition.
Signal caller with MU_ID_STATE_MISMATCH.

f Signal DS_RCV_MU_ID_REGISTRY with IN_TRANSIT.

g Signal caller with MU_ID_NOT_USED.

h Signal caller with MU_ID_OK.

i Notify operations of the exception condition.
Signal caller with MU_ID_TERMINATED.

j Signal caller with MU_ID_COMP _PURG to indicate that the just-received MU_ID has an MU_ID state
of COMPLETED or PURGED.

Chapter 3. Implementation Model 245

DS_RCV_SEND_ERR

Function:

Inputs
START

OK

This finite-state machine is signalled when an exception is encountered while receiving a dis
tribution and the immediate exception action is simply to issue a Send_Error LU 6.2 verb. The
Send_Error verb terminates the transmission. (No REMU is generated, the distribution in ques
tion is not suspended or discarded, and the MU_ID state is not modified.) This FSM is signalled
when:

• A DCMU with an obsolete instance number is received. Effectively, the DCMU is ignored,
but no REMU is generated.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines or procedures:

- from "DS_RCV_RECEIVE_DMU" on page 240
- START

• Signals from LU 6.2 presentation services

OK
DEALLOCATE_NORMAL
RESOURCE_FAILURE

States

RESET SEND ERR

01 02

2a I

I 1b

DEALLOCATE NORMAL I 1c

RESOURCE FAILURE I 1c

Output Function
Code
a Signal LU 6.2 presentation services with SEND_ERROR.

b Signal caller with SEND_ERROR_GENERATED.

c Signal caller with CONVERSATION_FAILURE.

246 SNA/Distribution Services Reference

Chapter 3. Implementation Model 247

DS_RCV_SEND_ERR_REMU

Function: This finite-state machine is signalled when an exception has been encountered while receiving
a distribution and the immediate exception action is to issue an LU 6.2 Send_Error verb to
terminate the transmission, and generate a REMU informing the partner DSU of the exception
code. Eventually, DS_Receive will send this REMU (and any other CMUs waiting to be sent) to
the partner. The conversation will be deallocated (if appropriate). This FSM is signalled in the
following cases:

• by DS_RCV_RECEIVING when an MU of an unrecognized type is received.
• by DS_RCV_RECEIVE_DMU when an MU with an MU_ID state mismatch is detected. MU_ID

state mismatches most often reflect an incompatibility between the OMU and the MU_ID
registry. For example, receiving a DTMU whose MU_ID state is anything other than
NOT_RECEIVED or TERMINATED is such an incompatibility. Receiving a OCMU with a correct
instance number and an MU_ID state of other than SUSPENDED or TERMINATED is another
example.

• by DS_RCV_RECEIVE_OMU when an MU_ID-terminated condition is detected. This condi
tion exists whenever a DMU is received, but the MU_ID state is TERMINATED. This condition
may be the result of a simple race condition, in which a SEMU outruns its associated DMU.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines or procedures:

from "DS_RCV_RECEIVING" on page 237
- UNREC_MU_TYPE
from "DS_RCV_RECEIVE_DMU" on page 240
- MU_ID_STATE_MISMATCH
- MU_ID_TERMINATED

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK

• Signals from LU 6.2 presentation services

OK
ALLOCATION_ERROR
RESOURCE_FAILURE

248 SNA/Oistribution Services Reference

States

SEND
SEND SEND SEND SEND SEND REMU REMU
ERR REMU ERR MU REMU ERR ERR CONV

RESET UN REC UN REC SEQ MU SEQ TERM TERM FAIL

Inputs 01 02 03 04 05 06 07 08

UNREC MU TYPE 2a I I I I I I I

MU ID STATE MISMATCH 4a I I I I I I I

MU ID TERMINATED 6a I I I I I I I

OK I 3b I 5b I 7b I I

DEALLOCATE NORMAL I Sb I Sb I Sb I I

RESOURCE FAILURE I Sb I Sb I Sb I I

QUEUE OK I I 1c I 1f I 1g 1e

QUEUE NOT OK I I 1d I 1d I 1d 1e

Output Function
Code

a Signal LU 6.2 presentation services with SEND_ERROR.

b Build a REMU with the appropriate exception code and enqueue it on the control MU queue by sig-
nalling QUEUE_MGR with WRITEQ specifying queue(CONTROL_MU_QUEUE).

c Signal caller with UNREC_MU_TYPE.

d Signal caller with OS_RCV_SYSTEM_ERROR.

e Signal caller with CONVERSATION_FAILURE.

f Signal caller with MU_IO_STATE_MISMATCH.

g Signal caller with MU_ID_TERMINATED.

Chapter 3. Implementation Model 249

DS_RCV_SUSP_TERM

Function: This finite-state machine is signalled when an exception has been encountered while receiving
a distribution and the immediate exception action is to suspend or discard the distribution
(depending on the specific exception and whether the distribution could be restarted with a
DCMU). This FSM is signalled when:

• DS_RCV_RECEIVE_DMU expected DMU data from an LU 6.2 Receive_And_Wait verb, but
received a PROG_ERROR indication instead. The PROG_ERROR indicates that the partner DSU
has encountered some exception condition preventing it from continuing to transmit the
DMU. The partner will transmit details of the exception in a SEMU, but until the SEMU is
received, DS_Receive interrupts its processing of this distribution.

DS_Receive presumes that the exception will be retriable, suspending the distribution if
possible, and setting the MU_ID state to SUSPENDED. This allows the distribution to be
restarted via a DCMU if the partner so chooses.

Otherwise, the distribution is discarded, and the MU_ID state set to TERMINATED. In this
case, if the exception is retriable, the partner retries it from the beginning with a different
MU_ID.

• DS_RCV_RECEIVE_DMU detects that the partner DSU has violated OS use of the LU 6.2
basic conversation protocol boundary. Protocol errors are not retriable. The distribution is
discarded, and the MU_ID state changed to TERMINATED. DS_Receive will deallocate the con
versation.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines or procedures:

from "DS_RCV_RECEIVE_DMU" on page 240
- PROG_ERR
- PROT_ERR

• Signals from lower-level DS_Receive finite-state machines:

from "DS_RCV_SUSP_DIST" on page 274
- DIST_SUSPENDED
- SUSPEND_FAILED
from "DS_RCV_DISCARD_DISr' on page 276
- DIST_DISCARDED
- DISCARD_FAILED
from "DS_RCV_MU_ID_REGISTRY" on page 280
- MU_ID_OP _OK
- MU_ID_OP _NOT_OK
from "UPM_EXCEPT_RECOVERY_ACTION" on page 285

RETRIABLE_WITH_MID_MU
RETRIABLE_WITHOUT_MID_MU

250 SNA/Distribution Services Reference

States

DISC MU_ID DISC MU_ID
SUSP DIST STATE DIST STATE

RESET REC ACT DIST PROG PROG PROT PROT

Inputs 01 02 03 04 05 06 07

PROG ERR 2a I I I I I I

PROT ERR 6c I I I I I I

RETRIABLE WITH MID MU I 3b I I I I I

RETRIABLE WITHOUT MID MU I 4c I I I I I

DIST SUSPENDED I I 5d I I I I

SUSPEND FAILED I I 4c I I I I

DIST DISCARDED I I I 5e I 7e I

DISCARD FAILED I I I 5e I 7e I

MU ID OP OK I I I I 1f I 1h

MU ID OP NOT OK I I I I 1g I 1g

Output Function
Code
a Signal UPM_EXCEPT_RECOVERY_ACTION with the error code.

b Signal DS_RCV_SUSP _DIST with START.

c Signal DS_RCV_DISCARD_DIST with START.

d Signal DS_RCV_MU_ID_REGISTRY with SUSPENDED.

e Signal DS_RCV_MU_ID_REGISTRY with TERMINATED.

f Signal caller with SEND_SIDE_EXCEPT.

g Signal caller with OS_RCV_SYSTEM_ERROR.

h Signal caller with PROTOCOL_ERROR_RCVO.

Chapter 3. Implementation Model 251

DS_RCV_SEND_ERR_SUSP_TERM_REMU

Function: This finite-state machine is signalled when an exception is encountered while receiving a dis
tribution and the immediate exception action is to issue an LU 6.2 Send_Error verb, generate a
REMU informing the partner DSU of the report code, and suspend the distribution (if appro
priate) or discard it (if suspension is not appropriate).

The FSM first issues an LU 6.2 Send_Error verb (state 1). If the distribution can be restarted
via a DCMU, the distribution is retained and the MU_ID state changed to SUSPENDED (FSM states
3 and 4). Otherwise, the distribution is discarded and the MU_ID state set to TERMINATED (FSM
states 3 and 5). A REMU is generated to inform the partner DSU of the exception report code
(state 6). This FSM is signalled when

• DS_RCV_RECEIVE_DMU detects a queue, parser or server exception while receiving a
DMU.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines or procedures:

- from "DS_RCV_RECEIVE_DMU" on page 240
- START

• Signals from lower-level DS_Receive finite-state machines:

from "DS_RCV_SUSP _DIST" on page 274
- DIST_SUSPENDED
- SUSPEND_FAILED
from "DS_RCV_DISCARD_DIST" on page 276
- DIST _DISCARDED
- DISCARD_FAILED

from "DS_RCV_MU_ID_REGISTRY" on page 280
- MU_ID_OP _OK
- MU_ID_OP_NOT_OK
from "DS_RCV_REMU_SUSP_TERM" on page 254
- DS_RCV_SYSTEM_ERROR
- SUSP_TERM
"UPM_EXCEPT_RECOVERY_ACTION" on page 285

NOT _RETRIABLE
- RETRIABLE_WITH_MID_MU
- RETRIABLE_WITHOUT_MID_MU

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK

• Signals from LU 6.2 presentation services

OK
DEALLOCATE_NORMAL
RESOURCE_FAILURE

252 SNA/Distribution Services Reference

States

SEND REC SUSP DISC MU_ID CONV
RESET ERR ACT DIST DIST STATE REMU FAIL

Inputs 01 02 03 04 05 06 07 08

START 2a I I I I I I I

OK I 3b I I I I I I

DEALLOCATE NORMAL I 8c I I I I I I

RESOURCE FAILURE I 8c I I I I I I

NOT RETRIABLE I I 5d I I I I I

RETRIABLE WITH MID MU I I 4e I I I I I

RETRIABLE WITHOUT MID MU I I 5d I I I I I

DIST SUSPENDED I I I 6f I I I I

SUSPEND FAILED I I I Sd I I I I

DIST DISCARDED I I I I 6g I I I

DISCARD FAILED I I I I 6g I I I

MU ID OP OK I I I I I 7h I I

MU ID OP NOT OK I I I I I 1 i I I

QUEUE OK I I I I I I 1j I

QUEUE NOT OK I I I I I I 1 i I

SUSP TERM I I I I I I I 1k

Output Function
Code
a Signal LU 6.2 presentation services with SEND_ERROR.

b Signal UPM_EXCEPT_RECOVERY_ACTION with the error code.

c Signal DS_RCV_REMU_SUSP _TERM with START.

d Signal DS_RCV_DISCARD_DIST with START.

e Signal DS_RCV_SUSP _DIST with START.

f Signal DS_RCV_MU_ID_REGISTRY with SUSPENDED.

g Signal DS_RCV_MU_ID_REGISTRY with TERMINATED.

h Build a REMU with the appropriate exception code and enqueue it on the control MU queue by sig-
nalling QUEUE_MGR with WRITEQ specifying queue(coNTROL_MU_Queue).

i Signal caller with DS_RCV_SYSTEM_ERROR.

j Signal caller with SEND _ERR_SUSP _ TERM_REMU.

k Signal caller with CONVERSATION_FAILURE.

Chapter 3. Implementation Model 253

DS_RCV_REMU_SUSP _TERM

Function: This finite-state machine is signalled whenever an exception is detected while receiving a dis
tribution, and the immediate exception action is to generate a REMU informing the partner of
the report code, and to suspend or discard the distribution. The distribution is suspended if the
exception is retriable and the distribution can be restarted with a DCMU. Otherwise, the dis
tribution is discarded.

In states 2 and 3, the distribution is suspended and the MU _ID state is set to SUSPENDED if the
exception is retriable and the distribution can be restarted via a DCMU. Otherwise, the distrib
ution is discarded and the MU_ID state set to TERMINATED (FSM states 2 and 4). Finally, a REMU
is generated (state 6).

This FSM is signalled when

• A conversation failure is detected during receipt of a DMU or during a DMU's exception
processing. The REMU generated here will be sent to the partner by a different instance of
DS_Receive, and on a different conversation. (Even though conversation failure is
retriable, this FSM handles NOT _RETRIABLE exceptions because the conversation failure
might occur during a non-retriable exception's processing. In such a case, the distribution
is discarded.)

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines or procedures:

from "DS_RCV_RECEIVE_DMU" on page 240
- START
from "DS_RCV_SEND_ERR_SUSP _TERM_REMU" on page 252
- START

• Signals from lower-level DS_Receive finite-state machines:

from "DS_RCV _SUSP _DIST" on page 274
- DIST_SUSPENDED
- SUSPEND_FAILED
from "OS_RCV_DISCARD_DIST" on page 276
- DIST _DISCARDED
- DISCARD_FAILED
from "DS_RCV_MU_ID_REGISTRY" on page 280
- MU_ID_OP_OK
- MU_ID_OP_NOT_OK
from "UPM_EXCEPT _RECOVERY _ACTION" on page 285

NOT _RETRIABLE
- RETRIABLE_WITH_MID_MU
- RETRIABLE_WITHOUT_MID_MU

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
QUEUE_ OK
QUEUE_NOT_OK

254 SNA/Distribution Services Reference

States

MU_ID
RESET REC ACT SUSP DIST DISC DIST STATE REMU

Inputs 01 02 03 04 05 06

START 2a I I I I I

NOT RETRIABLE I 4b I I I I

RETRIABLE WITH MID MU I 3c I I I I

RETRIABLE WITHOUT MID MU I 4b I I I I

DIST SUSPENDED I I Sd I I I

SUSPEND FAILED I I 4b I I I

DIST DISCARDED I I I Se I I
-·

DISCARD FAILED I I I Se I I

MU ID OP OK I I I I Sf I

MU ID OP NOT OK I I I I 1g I

QUEUE OK I I I I I 1h

QUEUE NOT OK I I I I I 1g

Output Function
Code
a Signal UPM_EXCEPT_RECOVERY_ACTION with the error code.

b Signal DS_RCV_DISCARD_DIST with START.

c Signal DS_RCV_SUSP _DIST with START.

d Signal DS_RCV_MU_ID_REGISTRY with SUSPENDED.

e Signal DS_RCV_MU_ID_REGISTRY with TERMINATED.

f Build a REMU with the appropriate exception code and signal QUEUE_MGR with WRITEQ specifying
queue(CONTROL_MU_QUEUE).

g Notify operations of the exception condition.
Signal caller with REMU_SUSP _TERM.

h Signal caller with REMU_SUSP _TERM.

Chapter 3. Implementation Model 255

DS_RCV_SEND_ERR_CRMU

Function:

Inputs

This finite-state machine is signalled when an exception has been encountered while receiving
a distribution and the immediate exception action is to issue an LU 6.2 Send_Error verb to
terminate the transmission, and generate a CRMU informing the partner DSU that the MU_/D
state was already COMPLETED or PURGED. Eventually, DS_Receive will send this CRMU (and any
other CMUs waiting to be sent) to the partner. The conversation will be deallocated (if appro
priate). This FSM is signalled by DS_RCV_RECEIVE_DMU when an MU whose MU_ID state is
already COMPLETED or PURGED is received.

This FSM gets control from one of the following:

• Signals from higher-level DS_Recelve finite-state machines or procedures:

- from "DS_RCV_RECEIVE_DMU" on page 240
- MU_ID_COMP _PURG

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK

• Signals from LU 6.2 presentation services

OK
ALLOCATION_ ERROR
RESOURCE_FAILURE

States

RESET SEND ERR SEND CRMU

01 02 03

SEND CRMU
CONV FAIL

04

MU_ID COMP PURG 2a I I I

OK I 3b I I

DEALLOCATE NORMAL I 4b I I

RESOURCE FAILURE I 4b I I

QUEUE OK I I 1c 1e

QUEUE NOT OK I I 1d 1e

256 SNA/Distribution Services Reference

Output Function
Code
a Signal LU 6.2 presentation services with SEND_ERROR.

b Build a CRMU with the appropriate exception code and enqueue it on the control MU queue by sig-
nalling QUEUE_MGR with WRITEQ specifying queue(CONTROL_MU_QUEUE).

c Signal caller with MU_ID_COMP _PURG.

d Signal caller with DS_RCV_SYSTEM_ERROR.

e Signal caller with CONVERSATION_FAILURE.

Chapter 3. Implementation Model 257

258 SNA/Distribution Services Reference

DS_RCV _RECEIVE_DMU_NO _MU_ID

Function:

Note:

This finite-state machine is signalled to control the receiving and parsing of a basic-integrity
DTMU or DRMU. States 2 and 3 form a loop receiving and parsing the DMU's control informa
tion. States 2, 3 and 4 form a loop receiving and storing the server object. State 5 signals
DS_RCV_ENQ_SCHED to accept responsibility for the distribution, putting it on the router
director queue, and scheduling DS_Router_Director.

A basic-integrity distribution does not use an MU_ID or CMUs to control its transfer from one
DSU to the next. Any exception (including exceptions unrelated to the distribution, such as
conversation failure) results in the distribution being discarded.

An elective (not shown in this model) allows a REMU to be generated or. receiver-detected
errors (i.e., those for which RCV_SIDE_EXCEPT CONVERSATION_FAILURE or
PROTOCOL_ERROR are returned to the caller). No MU_/D will be included in this REMU.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines:

- from "DS_RCV_RECEIVE_DMU" on page 240
- START

• Signals from lower-level DS_Receive finite-state machines:

from "DS_RCV_ENQ_SCHED" on page 262
ENQ_SCHED_OK

- ENQ_SCHED_NOT_OK
- ENQ_SCHED_OK_DEALLOCATE
from "DS_RCV_DISCARD_DIST" on page 276
- DIST_DISCARDED
- DISCARD_FAILED

• Signals from finite-state machines providing common services:

from "RCV_BUFFER_MGR" on page 282
OK
CONVERSATION_FAILURE
PROTOCOL_ERROR
DEALLOCATE_ NORMAL
PROG_ERROR
CHANGE_DIRECTION

"SERVER_MGR" on page 354
OBJECT_OK

- OBJECT_NOT_OK
- SPECIFIC_SERVER_EXCEPTION

• Signals from LU 6.2 presentation services

OK
ALLOCATION_ ERROR
DEALLOCATE_NORMAL
RESOURCE_FAILURE

• Signals from "PARSER" on page 359:

PARSE_ OK
PARSE_ OK_ OBJECT
PARSE_ COMPLETE
PARSE_NOT_OK

Chapter 3. Implementation Model 259

States

RCV
RCV WRIT END ENQ SEND SIDE PROG CONY PROT

RESET PARS NEXT OBJ OBJ SCHD ERR ERR ERR FAIL ERR

Inputs 01 02 03 04 05 06 07 08 09 10 11

START 2a I I I I I I I I I I

PARSE OK I 3b I I I I I I I I I

PARSE OK OBJECT I 4c I I I I I I I I I

PARSE COMPLETE I 5d I I I I I I I I I

PARSE NOT OK I 7e I I I I I I I I I

OK I I 2a I I I 8f I I I I

PROG ERROR I I 9f I I I I I I I I

CONVERSATION FAILURE I I 10f I I I I I I I I

PROTOCOL ERROR I I 11f I I I I I I I I

DEALLOCATE NORMAL I I 10f I I I 10f I I I I

CHANGE DIRECTION I I 11f I I I I I I I I

RESOURCE FAILURE I I I I I I 10f I I I I

OBJECT OK I I I 3b 6g I I I I I I

OBJECT NOT OK I I I 7e 7e I I I I I I

SPECIFIC SERVER
EXCEPTION I I I 3b I I I I I I I

ENQ SCHED OK I I I I I 1h I I I I I

ENQ SCHED OK DEALLOC I I I I I 1i I I I I I

ENQ SCHED NOT OK I I I I I 7e I I I I I

DIST DISCARDED I I I I I I I 1j 1k 1m 1n

DISCARD FAILED I I I I I I I 1j 1k 1m 1n

260 SNA/Distribution Services Reference

Output Function
Code
a Signal PARSER with PARSE to parse information received.

b Signal RCV_BUFFER_MGR with RECEIVE_BUFFER to receive information from LU 6.2.

c Signal SERVER_MGR with WRITE to write the just-received portion of the server object.
SERVER_MGR will issue a lnitiate_Write, if appropriate.

d Signal SERVER_MGR with TERMINATE_WRITE. If no server object has been processed (and there-
fore no initiate write has been issued), processing continues with OBJECT_OK.

e Signal LU 6.2 presentation services with SEND_ERROR.

f Signal DS_RCV_DISCARD_DIST with START to discard the partially-received distribution and its
server object (if any).

g Signal DS_RCV_ENQ_SCHED with ENQ_SCHED to place the distribution on the router-director queue
and schedule DS_Router_Director.

h Signal caller with MU_OK to indicate that a DMU has been completely received.

i Signal caller with DS_RCV _SYSTEM_ERROR.

j Signal caller with RCV_SIDE_EXCEPT.

k Signal caller with SEND_SIDE_EXCEPT to indicate that an error has occurred in DS_Send and that
the sender exception protocols should be followed.

m Signal caller with CONVERSATION_FAILURE.

n Signal caller with PROTOCOL_ERROR to indicate that a protocol error has occurred in the conversa-
tion between DS_Send and DS_Receive.

Chapter 3. Implementation Model 261

DS_RCV_ENQ_SCHED

Function: This finite-state machine describes the functional processing in DS_Receive to accept responsi
bility for a distribution. In states 1-4, it places the distribution on the router-director queue,
updates the MU_/D state to COMPLETED, and schedules the OS_Router_Director. If any of these
operations fails, the others are either not attempted or backed out. State 5 removes the dis
tribution from the mid-MU restart queue.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines:

from "DS_RCV_RECEIVE_DMU" on page 240
- ENQ_SCHED
from "DS_RCV_RECEIVE_DMU_NO_MU_ID" on page 259
- ENQ_SCHED

• Signals from lower-level DS_Receive finite-state machines:

- "DS_RCV_MU_ID_REGISTRY" on page 280
- see output code D.

• Signals from finite-state machines providing common services:

from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK
from "FSM_SCHED_MGR" on page 351

SCHED_FUNCTION_OK
SCHED _FUNCTION_NOT _OK

States

ENQ SCH ED DEQ MID
RESET PEND PEND ACCEPT MU

Inputs 01 02 03 04 05

ENQ SCHED 2a I I I I

QUEUE OK I 3b I I 6g

QUEUE NOT OK I 1c I I 6h

SCHED FUNCTION OK I I 4d I I

SCHED FUNCTION NOT OK I I 7e I I

ATOMIC OPERATION SUCCESSFUL I I I Sf I

ATOMIC OPERATION FAILED I I I 7e I

262 SNA/Distribution Services Reference

CRMU ACCEPT

06 07

I I

1i 1c

1j 1c

I I

I I

I I

I I

Output Function
Code
a Signal QUEUE_MGR with WRITEQ specifying queue(ROUTER_DIRECTOR_QUEUE) to place the distribution

on the router-director queue.

b Signal FSM_SCHED_MGR with START_REQUEST to schedule DS_Router_Director.

c Signal caller with ENQ_SCHED_NOT_OK to indicate that an error occurred in placing the distribution
on the router-director queue, or in scheduling DS_Router_Director. Cleanup of the router-director
queue has taken place.

d As an atomic operation (i.e., all or none of the following operations must succeed), perform the fol-
lowing actions:

If the distribution is using MU_/Ds, then signal DS_RCV_MU_ID_REGISTRY with INSPECT; if its
value is IN_TRANSIT, then change the entry to COMPLETE.

Signal QUEUE_MGR with RELEASEQ specifying queue(ROUTER_DIRECTOR_QUEUE) to remove the
in-use mark from the entry on the router-director queue. The entry is then available for proc-
essing by DS_Router_Director.

e Signal QUEUE_MGR with DEQ specifying queue(ROUTER_DIRECTOR_QUEUE) to remove the distribution
from the router-director queue.

f Signal QUEUE_MGR with DEQ specifying queue(MID_MU_RESTART_QUEUE) to discard the copy of the dis-
tribution on the mid-MU restart queue if mid-MU restart is available. If mid-MU restart is not avail-
able, processing continues as though QUEUE_MGR returned QUEUE_OK.

g Build a CRMU specifying the MU_ID state as COMPLETE and signal QUEUE_MGR with WRITEQ speci-
fying queue(CONTROL_MU_QUEUE) if MU_/Ds are being used. If MU _IDs are not being used, generating
the CRMU is optional; if no CRMU is generated, processing continues as though QUEUE_MGR
returned QUEUE_OK.

h Notify operations of the exception condition.
Build a CRMU specifying the MU_ID state as COMPLETE and signal QUEUE_MGR with WRITEQ speci-
fying queue(CONTROL_MU_QUEUE).

i Signal caller with ENQ_SCHED_OK to indicate that the distribution was successfully placed on the
router-director queue and that DS_Router_Director was scheduled.

j Notify operations of the exception condition.
Signal caller with ENQ_SCHED_OK_DEALLOCATE to indicate that the distribution was successfully
placed on the router-director queue, that DS_Router_Director was scheduled and that a subsequent
system error has occurred that should cause the conversation to be aborted.

Chapter 3. Implementation Model 263

264 SNA/Distribution Services Reference

DS_RCV_CQMU_HANDLER

Function: This finite-state machine describes the functional processing for DS_Receive receiving a CQMU
from its partner DSU. In state 2, the instance number is checked. If it is too low, the CQMU is
discarded with no further action. If the instance number is acceptable, the MU_ID state is
inspected and used to generate a CRMU. MU_/Ds lower than the lowest directory entry are
considered NOT_RECEIVED, and those higher than the highest directory entry are considered
PURGED.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines or procedures:

- from "DS_RCV_RECEIVING" on page 237
- START

• Signals from lower-level DS_Receive finite-state machines:

from "DS_RCV_MU_ID_REGISTRY" on page 280
NOT _RECEIVED
IN_ TRANSIT
SUSPENDED
TERMINATED
COMPLETE
PURGED
INSTANCE_NUM_HIGH
INSTANCE_NUM_EQUAL
INSTANCE_NUM_LOW
MU_ID_AGED_OUT
MU_ID_UNINITIALIZED
MU_ID_NOT_OK

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK
from "SERVER_MGR" on page 354

OBJECT_OK
OBJECT _NOT _OK

Chapter 3. Implementation Model 265

States

MU_ID QUERY BYTE
RESET INST NUMB STATE NUM RETURN

Inputs 01 02 03 04 05

START 2a I I I I

INSTANCE NUM HIGH I 3b I I I

INSTANCE NUM EQUAL I 3b I I I

INSTANCE NUM LOW I 1c I I I

NOT RECEIVED I I Se I I

IN TRANSIT I I Se I I

SUSPENDED I I 4h I I

TERMINATED I I 5e I I

COMPLETED I I 5e I I

PURGED I I 5e I I

MU ID AGED OUT I I Sf I I

MU ID UNINITIALIZED I I 5g I I

MU ID OP NOT OK I 1d 1d I I

OBJECT OK I I I Se I

OBJECT NOT OK I I I Si I

QUEUE OK I I I I 1c

QUEUE NOT OK I I I I 1d

266 SNA/Distribution Services Reference

Output Function
Code
a Signal DS_RCV_MU_ID_REGISTRY with INSTANCE_NUMBER to compare the CQMU's instance

number with the registry's instance number. The CQMU's instance number is acceptable if it is
greater than or equal to the registry's value. If the CQMU's instance number is less than the regis-
try's, INSTANCE_NUM_LOW is returned (and the CQMU will be discarded). If the CQMU's instance
number is greater than the registry's instance number, the registry's number is updated to be equal
to the CQMU.

b Signal DS_RCV_MU_ID_REGISTRY with INSPECT.

c Signal the caller with MU_OK.

d Signal the caller with MU_NOT_OK.

e Build a CRMU and signal QUEUE_MGR with WRITEQ specifying queue(coNTROL_MU_QUEUE).

f Build a CRMU and signal QUEUE_MGR with WRITEQ specifying queue(CONTROL_MU_QUEUE). The
CRMU specifies that the designated MU_ID state is PURGED.

g Build a CRMU and signal QUEUE_MGR with WRITEQ specifying queue(CONTROL_MU_QUEUE). The
CRMU specifies that the designated MU_ID state is Nor_RECEIVED.

h Signal SERVER_MGR with QUERY_LAST_BYTE_RCVD to get the correct byte number for the CRMU.
If the DTMU was not suspenrJed in the server object, processing continues as though OBJECT_OK
was returned.

i Build a CRMU and signal QUEUE_MGR with WRITEQ specifying queue(CONTROL_MU_QUEUE). The
CRMU specifies that the designated MU_ID state is TERMINATED.

Chapter 3. Implementation Model 267

268 SNA/Distribution Services Reference

DS_RCV_SEMU_HANDLER

Function: This finite-state machine describes the functional processing for DS_Receive receiving a SEMU
from its partner DSU. In state 2, the instance number and the presence of an MU_ID are
checked. SEMUs with instance numbers lower than the instance number of the MU_ID registry
are considered tardy and simply discarded. A SEMU without an MU_ID is logged, and no other
action is taken. In state 3, the MU_ID state from the registry is inspected, and the appropriate
exception actions initiated (states 4, 5, 6 and 7). If the MU_ID state is NOT_RECEIVED, the SEMU is
informing DS_Receive that the partner will never use that MU_ID, and the MU_ID state is
changed to TERMINATED. For SUSPENDED MU_/Ds, the exception code is examined (state 4) to
determine if the sender's exception is retriable or not. If not, the distribution is discarded and
the MU_ID state changed to TERMINATED. A CRMU reporting the MU_ID state is generated as the
last exception action.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines or procedures:

- from "DS_RCV_RECEIVING" on page 237
- START

• Signals from lower-level DS_Receive finite-state machines:

from "DS_RCV_DISCARD_DIST" on page 276
- DIST _DISCARDED
- DISCARD_FAILED

from "DS_RCV_MU_ID_REGISTRY" on page 280
NOT _RECEIVED
IN_ TRANSIT
SUSPENDED
TERMINATED
COMPLETE
PURGED
INSTANCE_NUM_HIGH
INSTANCE_NUM_EQUAL
INSTANCE_NUM_LOW
MU_ID_OP _OK
MU_ID_OP _NOT_OK

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK
from "SERVER_MGR" on page 354
- OBJECT_OK
- OBJECT_NOT_OK
from "UPM_EXCEPT_RECOVERY_ACTION" on page 285

NOT_RETRIABLE
RETRIABLE_WlTH_MID _MU

Chapter 3. Implementation Model 269

States

QUERY
INST FIND LAST DISC

RESET NUM MU_ID SUSP BYTE DIST TERM CRMU

Inputs 01 02 03 04 05 06 07 08

START 2a I I I I I I I

INSTANCE NUM HIGH I 3b I I I I I I

INSTANCE NUM EQUAL I 3b I I I I I I

INSTANCE NUM LOW I 1c I I I I I I

NO MU ID IN MU I 1c I I I I I I

NOT RECEIVED I I 7e l I I I I

IN TRANSIT I I Bf I I I I I

SUSPENDED I I 4g I I I I I

TERMINATED I I Bf I I I I I

COMPLETED I I Bf I I I I I

PURGED I I 8f I I I I I

NOT RETRIABLE I I I 6h I I I I

RETRIABLE WITH MID MU I I I 5i I I I I

OBJECT OK I I I I 8f I I I

OBJECT NOT OK I I I I 6h I I I

DIST DISCARDED I I I I I 7e I I

DISCARD FAILED I I I I I 7e I I

MU ID OP OK I I I I I I 8f I

MU ID OP NOT OK I 1d 1d I I I 1d I

QUEUE OK I I I I I I I 1c

QUEUE NOT OK I I I I I I I 1d

270 SNA/Distribution Services Reference

Output Function
Code
a Signal DS_RCV_MU_ID_REGISTRY with INSTANCE_NUMBER to compare the SEMU's instance

number with the registry's instance number. The SEMU's instance number is acceptable if it is
greater than or equal to the registry's value. If the SEMU's instance number is less than the regis-
try's, INSTANCE_NUM_LOW is returned. If the SEMU's instance number is greater than the regis-
try's instance number, the registry is updated. If the SEMU contains no MU_ID, processing
continues with the NO_MU_ID_IN_MU signal.

b Signal DS_RCV_MU_ID_REGISTRY with INSPECT.

c SEMUs containing no MU_ID are reported to operations. Signal the caller with MU_OK.

d Signal the caller with MU_NOT_OK.

e Signal DS_RCV_MU_ID_REGISTRY with TERMINATED.

f Build a CRMU specifying the MU_ID's state and signal QUEUE_MANAGER with WRITEQ specifying
queue(CONTROL_MU_QUEUE).

g Signal UPM_EXCEPT_RECOVERY_ACTION with the error code.

h Signal DS_RCV_DISCARD_DIST with START.

I Signal SERVER_MGR with QUERY_LAST_BYTE_RCVD

Chapter 3. Implementation Model 271

DS_RCV _PRMU_HANDLER

Function: This finite-state machine describes the functional processing for DS_Receive receiving a PRMU
from its partner DSU. If the MU_/D state in the registry is SUSPENDED, TERMINATED or COMPLETED,

it is changed to PURGED as a result of receiving the PRMU. If the MU_ID state was SUSPENDED

prior to receiving the PRMU, the server object is deleted, and any other resources dedicated to
the distribution (e.g. control blocks and mid-MU restart queue entries) may be reclaimed as
part of the PRMU processing.

If the MU_ID state was NOT_RECEIVED or IN_ TRANSIT prior to receiving the PRMU, the MU_ID state
is not changed and the PRMU ignored. If the MU_ID state was already PURGED when the PRMU
was received, no actions are taken.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines or procedures:

- from "DS_RCV_RECEIVING" on page 237
- START

• Signals from lower-level DS_Receive finite-state machines:

from "DS_RCV_DISCARD_DIST" on page 276
- DIST_DISCARDED
- DISCARD_FAILED
from "DS_RCV_MU_ID_REGISTRY" on page 280

SUSPENDED
TERMINATED
COMPLETE
PURGED
MU_ID_AGED_OUT
MU_ID_OP _OK
MU_ID_OP _NOT_OK

272 SNA/Distribution Services Reference

States

CLEANUP
RESET MU_ID STATE DIST PURGE

Inputs 01 02 03 03

START 2a I I I

NOT RECEIVED I 3f I I

IN TRANSIT I 3f I I

SUSPENDED I 3b I I

TERMINATED I 4c I I

COMPLETED I 4c I I

PURGED I 1d I I

MU ID AGED OUT I 1d I I

MU ID OP OK I I I 1d

MU ID OP NOT OK I 1e I 1e

DIST DISCARDED I I 4c I

DISCARD FAILED I I 4c I

Output Function
Code
a Signal DS_RCV_MU_ID_REGISTRY with INSPECT.

b Signal DS_RCV_DISCARD_DIST with START.

c Signal DS_RCV_MU_ID_REGISTRY with PURGE.

d Signal the caller with MU_OK.

e Signal the caller with MU_NOT_OK.

f Notify operations of the exception condition (that is, the unsolicited PRMU).
Signal the caller with MU_OK.

Chapter 3. Implementation Model 273

DS_RCV _SUSP _DIST

Function:

Inputs
START

QUEUE OK

This finite-state machine suspends a distribution which has been partially received. Processing
of the distribution may be resumed later, possibly by a different instance of DS_Receive. The
mid-MU restart queue entry is released (so that it may be found later by a READO queue oper
ation), and a Terminate_Write server verb is issued, if necessary.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines or procedures:

from "DS_RCV_SUSP _TERM" on page 250
- START
from "DS_RCV_SEND_ERR_SUSP _TERM_REMU" on page 252
- START
from "DS_RCV_REMU_SUSP _TERM" on page 254
- START

• Signals from machines providing common services:

from "SERVER_MGR" on page 354
- OBJECT_OK
- OBJECT _NOT_ OK
from "QUEUE_MGR" on page 357

QUEUE_ OK
QUEUE_NOT_OK

States

RETRY
RESET ACTION TERM WRITE

01 02 03

2a I I

I 3b !

RELQ FAILED

04

I

I

QUEUE NOT OK I 4b I I

OBJECT OK I I 1c 1d

OBJECT NOT OK I I 1d 1d

Output Function
Code
a Signal QUEUE_MGR with RELEASEQ specifying queue(MID_MU_RESTART_QUEUE).

b Signal SERVER_MGR with TERMINATE_WRITE specifying type(suSPEND) to preserve the partially-
received server object, if appropriate. If this distribution does not have a server object, processing
continues with the QUEUE_OK signal.

c Signal caller with DIST_SUSPENDED.

d Signal caller with SUSPEND_FAILED.

274 SNA/Distribution Services Reference

Chapter 3. Implementation Model 275

DS_RCV _DISCARD_DIST

Function:

Note:

This finite-state machine describes the functional processing for deleting a partially-received
distribution. It is called after an exception has been detected during the distribution's transfer
from partner DSU to DS_Receive, and after DS_Receive has determined that restarting the
transmission with a DCMU is not possible.

This FSM assumes that the general server is being used to store the server object, and that a
later auxiliary operation will copy the server object from the general server to the specific
server, if necessary. If, instead, DS_Receive directly stores the server object into the specific
server, then DS_Receive signals the server manager with either BACKOUT (if Terminate_Write
has already been issued) or with TERMINATE_WRITE specifying ABORT. DS_Receive then
queues for the destination agent any specific server report that was returned from server
manager, and signals server manager with DECREMENT_OBJECT_LOCK.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines or procedures:

from "DS_RCV_RECEIVE_DMU_NO_MU_ID" on page 259
- START
from "DS_RCV_SUSP_TERM" on page 250
- START

from "DS_RCV_SEND_ERR_SUSP_TERM_REMU" on page 252
- START
from "DS_RCV_REMU_SUSP_TERM" on page 254
- START
from "DS_RCV_SEMU_HANDLER" on page 269
- START
from "DS_RCV_PRMU_HANDLER" on page 272
- START

• Signals from machines providing common services:

from "QUEUE_MGR" on page 357
- QUEUE_OK
- QUEUE_NOT_OK
from "SERVER_MGR" on page 354

OBJECT_OK
OBJECT_NOT_OK

278 SNA/Distribution Services Reference

States

TERM FAIL TERM FAIL
RESET TERM DEC DEQ DEC DEQ

Inputs 01 02 03 04 05 06

START 2a I I I I I

OBJECT OK I 3b 4c I 6c I

OBJECT NOT OK I 5b 6c I 6c I

QUEUE OK I I I 1d I 1e

QUEUE NOT OK I I I 1e I 1e

Output Function
Code

a If appropriate, signal SERVER_MGR with TERMINATE_WRITE terminating restartability of the server
object.
If a Terminate_Write specifying SUSPEND has been issued previously, then signal SERVER_MGR with
TERMINATE_RESTARTABILITY, if appropriate.
If no lnitiate_Write has opened the server object or no server object exists for this distribution,
SERVER_MGR returns OBJECT_ OK.

b Signal SERVER_MGR with DECREMENT_OBJ_LOCK to decrement the OS lock count on the server
object. If no server object exists, OBJECT_OK is returned.

c Signal QUEUE_MGR with DEQ specifying queue(MID_MU_RESTART_Queue) to remove the partial distrib-
ution. If mid-MU restart capability is not being used for this distribution, QUEUE_OK is returned.

d Signal caller with DIST_DISCARDED.

e Notify operations of the exception condition.
Signal caller with DISCARD_FAILED.

Chapter 3. Implementation Model 277

DS_RCV_SEND_CONVERSATION_MGR

Function: This finite-state machine describes the functional processing for sending a buffer to LU 6.2
presentation services using the the Send_Data verb.

Inputs
SEND BUFFER

OK

This FSM gets control from one of the following:

• Signals from higher-level finite-state machines:

- from "DS_RCV_SENDING" on page 234
- SEND_BUFFER

• Signals from LU 6.2 presentation services:

- ALLOCATION_ERROR
- DEALLOCATE_ABEND
- PROG_ERROR

SVC_ERROR
- RESOURCE_FAILURE
- OK
- OK_AND_REOUEST_TO_SEND

DEALLOCATE ABEND

RESOURCE FAILURE

PROG ERROR

OK AND REQUEST TO SEND

SVC ERROR

ALLOCATION ERROR

278 SNA/Distribution Services Reference

States

RESET SEND DATA

01 02

2a I

I 1b

I 1c

I 1c

I 1d

I 1e

I 1e

I 1c

Output Function
Code
a Signal LU 6.2 presentation services with SEND_DATA to send the encoded information to the partner

DSU.

b Signal caller with OK to indicate that the LU 6.2 request was completed successfully.

c Signal caller with CONVERSATION_FAILURE to indicate that some error has occurred on the conver-
sation between DS_Send and DS_Receive.

d Signal caller with PROG_ERROR to indicate that the partner DSU has signalled that an error has
occurred.

e Signal caller with PROTOCOL_ERROR to indicate that an error in the protocols has occurred
between DS_Send and DS_Receive.

Chapter 3. Implementation Model 279

DS_RCV _MU_ID_REGISTRY

PREPARSER

This FSM manages DS_Receive's MU.JD registry for a single connection. Its
inputs and actions are listed below. All inputs except INSPECT and
INSTANCE_NUMBER return either MU_ID_OP_OK or MU_ID_OP_NOT_OK.

• IN_ TRANSIT

This input sets the MU_ID state to IN_TRANSIT.

• SUSPENDED

This input sets the MU_ID state to SUSPENDED.

• TERMINATED

This input sets the MU _ID state to TERMINATED.

• COMPLETED

This input sets the MU_ID state to COMPLETED.

• PURGED

This input sets the MU _ID state to PURGED.

• INSPECT

This input returns the MU_ID state of the designated MU_ID (NOT_RECEIVED,

SUSPENDED, TERMINATED, COMPLETED, or PURGED) or MU_ID_OP_NOT_OK, indi
cating an error in accessing the MU_ID registry.

• INSTANCE_NUMBER

Compares a just-received instance number with that stored in the MU_ID
registry. If the just-received number is less than the registry's value,
INSTANCE_NUMBER_LOW is returned. If the values are equal,
INSTANCE_NUMBER_EQUAL is returned. If the just-received number is
greater than the registry's value, INSTANCE_NUMBER_HIGH is returned,
and the registry's instance number is replaced by the just-received value. If
an MU_ID registry failure prevents the registry from being accessed or
updated, MU_ID_OP _NOT_OK is returned.

This procedure inspects the initial LLID to identify the MU type (DTMU, DCMU,
DRMU, CQMU, PRMU, or SEMU), the MU_ID and instance number (if appro
priate). If the initial LL's ID is unrecognized, UNKNOWN_MU is returned. CMUs
are parsed completely (by having the preparser signal PARSER if necessary). If
an MU_ID or instance number is improperly specified or missing when required,
or if a CMU contains a format exception, then BAD_MU is returned.

280 SNA/Distribution Services Reference

FSMs Providing Common Services for FS2 Transpor1
These FSMs are utilities used by both OS_Send and OS_Receive. They receive
data from LU 6.2, detect conversation-idle conditions, and manage the server
protocol boundary and queue interface.

The procedures in this class are:

• "RCV_BUFFER_MGR" on page 282

This FSM issues all LU 6.2 Receive_And_Wait verbs used in the OS trans
port sublayer. The what_received parameter returned from LU 6.2 is simpli
fied to be specific to OS. For example, a what_received value of CONFIRM,

CONFIRM_SEND, CONFIRM_DEALLOCATE, and SVC_ERROR all represent an invalid
usage of the LU 6.2 PB by the partner, and so are collapsed to
PROTOCOL_ERROR before returning to the caller.

• "IOLE_OETECTOR" on page 284

This FSM detects the "conversation Idle" condition, which indicates that the
conversation should be deallocated because OS has no traffic to send over
it. The conversation idle condition exists when the partner sent nothing
when it w::is last In LU 6.2 send state, and this OSU has nothing to send
currently. In such cases, the conversation is deallocated instead of a
Receive_And_Wait being issued. This condition is checked by both
OS_Send and OS_Receive. For example, if DS_Send receives the send indi
cation and has nothing to send, it issues a Receive_And_Wait, giving
DS_Receive the send indication. If DS_Receive has nothing to send, it deal
locates. Conversely, if DS_Receive receives the send indication and has
nothing to send, it issues a Receive_And_Wait. If OS_Send has nothing to
send, it deallocates.

• "QUEUE_MGR" on page 357

This procedure is not explicitly specified. It provides a single means for the
OS FSMs to access the various queues. QUEUE_MGR performs the speci
fied operation and returns a success or failure indication.

• "SERVER_MGR" on page 354

This procedure is not explicitly specified. It provides a single means for the
OS FSMs to access the server verbs. The verb, with its associated parame
ters are passed to the server and a success or failure indication is
returned.

• "UPM_EXCEPT _RECOVERY _ACTION" on page 285

This procedure is not explicitly specified. It takes as input parameters an
exception condition and the distribution to which the exception relates, and
returns a recommended recovery action (such as Not_Retriable,
Retriable_Without_Mid_MU, Retriable_With_Mid_MU, or
Retriable_Retry_Exhausted).

Chapter 3. Implementation Model 281

RCV _BUFFER_MGR

Function: This finite-state machine describes the functional processing to control receiving the data from
the partner DSU via LU 6.2. In state 1, a Receive_And_Wait LU 6.2 verb is issued. In state 2,
the what_received parameter is mapped into a OS-specific return code for the partner. For
example, if what_received is CONFIRM, CONFIRM_SEND, CONFIRM_DEALLOCATE, or SVC_ERROR, the
partner has violated OS's use of the LU 6.2 basic conversation PB, and PROTOCOL_ERROR is
returned to the caller.

Deallocate ABEND causes a CONVERSATION_FAILURE to be returned to the caller because, for
whatever reason, no conversation exists to transmit information to or receive information from
the partner.

This FSM gets control from one of the following:

• Signals from higher-level finite-state machines:

from "DS_SEND_RECEIVING" on page 190
- RECEIVE_BUFFER
from "DS_RCV_RECEIVING" on page 237
- RECEIVE_BUFFER
from "DS_RCV_RECEIVE_DMU_NO_MU_ID" on page 259
- RECEIVE_BUFFER
from "DS_RCV_RECEIVE_DMU" on page 240
- RECEIVE_BUFFER

• Signals from LU 6.2 presentation services:

RCV_AND_WAIT_DATA_COMPLETE
RCV_AND_WAIT_DATA_INCOMPLETE
RCV_AND_WAIT_LL_TRUNCATED
RCV _AND_WAIT _SEND
RCV_AND_WAIT_CONFIRM_SEND
RCV_AND_WAIT_CONFIRM
RCV_AND_WAIT_CONFIRM_DEALLOCATE
ALLOCATION_ERROR
DEALLOCATE_NORMAL
DEALLOCATE_ABEND
PROG_ERROR
SVC_ERROR
RESOURCE_FAILURE

282 SNA/Distribution Services Reference

States

RESET RCV

Inputs 01 02

RECEIVE BUFFER 2a I

RCV AND WAIT DATA COMPLETE I 1b

RCV AND WAIT DATA INCOMPLETE I 1b

RCV AND WAIT LL TRUNCATED I -a

RCV AND WAIT SEND I 1c

RCV AND WAIT CONFIRM SEND I 1d

RCV AND WAIT CONFIRM I 1d

RCV AND WAIT CONFIRM DEALLOCATE I 1d

ALLOCATION ERROR I 1e

DEALLOCATE NORMAL I 1f

DEALLOCATE ABEND I 1e

PROG ERROR I 1g

SVC ERROR I 1d

RESOURCE FAILURE I 1e

Output Function
Code
a Signal LU 6.2 presentation services with RECEIVE_AND_WAIT to indicate to the LU that data can be

accepted.

b Signal caller with OK to indicate that the LU 6.2 request completed successfully.

c Signal caller with CHANGE DIRECTION.

d Signal caller with PROTOCOL_ERROR to indicate that the partner has violated the OS protocols.

e Signal caller with CONVERSATION_FAILURE to indicate that an error occurred on the conversation
between OS_ Send and OS _Receive.

f Signal caller with DEALLOCATE_NORMAL Receiving a DEALLOCATE_NORMAL in all except the
first buffer of any MU is a protocol error, but is treated as a conversation failure because the con-
versation resource is no longer available.

g Signal caller with PROG_ERROR to indicate that the partner has encountered an error.

Chapter 3. Implementation Model 283

IDLE_DETECTOR

Function: This finite-state machine describes the functional processing for detecting that a conversation
is idle and should be deallocated. An idle condition exists when the partner DSU sent nothing
when it last had the send indication, and the local DSU has nothing to send. Either DS_Send or
DS_Receive may deallocate the conversation.

Inputs

This FSM gets control from one of the following:

• Signals from higher-level finite-state machines or procedures:

from "DS_SEND_MANAGER" on page 154
- CHANGE_DIRECTION
from "DS_SEND_BUILD_SEND_DMU" on page 163
- SOMETHING_SENT
from "DS_SEND_SEND_DMU_NO_MU_ID" on page 181
- SOMETHING_SENT
from "DS_SEND_SEND_CONTROL_MU" on page 188
- SOMETHING_SENT
from "DS_SEND_RECEIVING" on page 190
- SOMETHING_RECEIVED
from "DS_RCV_MANAGER" on page 232
- CHANGE_DIRECTION
from "DS_RCV_SENDING" on page 234
- SOMETHING_SENT
from "DS_RCV_RECEIVING" on page 237

SOMETHING_RECEIVED

CHANGE DIRECTION

SOMETHING SENT

SOMETHING RECEIVED

Output Function
Code
a Signal caller with CHANGE_DIRECTION.

b Signal caller with DEALLOCATE_FLUSH.

284 SNA/Distribution Services Reference

States

RESET PEND

01 02

2a 1b

- 1

- 1

UPM_EXCEPT _RECOVERY _ACTION
This procedure is not explicitly specified. Its input parameters include an
exception condition, the SENDER_RETRY _ACTION from the REMU (if signalled
from DS_Send) and the distribution to which the exception relates. The excep
tion itself is classified as "retriable" or "not retriable" (see "Characteristics of
Exception Conditions" on page 407). If the exception is retriable, the dis
tribution's retry count may or may not be exhausted. If the exception is
retriable and the retry count has not been exhausted, DS_Send or DS_Receive
may or may not be able to restart transmitting the distribution with a DCMU.
This procedure's return codes are:

• NOT RETRIABLE

The exception is not retriable. In this case, questions of retry counts and
restarting with a DCMU are irrelevant. The distribution will not be retried,
but will be terminated (and a DRMU generated, as appropriate). The MU_ID
will be purged.

• RETRIABLE_WITH_MID_MU

The exception is retriable, the retry count has not been exhausted, and the
distribution can be restarted via a DCMU.

• RETRIABLE_WITHOUT_MID_MU

The exception is retriable, the retry count has not been exhausted, but the
distribution cannot be restarted with a DCMU. In this case, the MU_ID will
be purged, and the distribution will be retransmitted from the beginning
with a new MU_ID.

• RETRIABLE_RETRY _EXHAUSTED

The exception is retriable, but DS_Send's retry count for this distribution
has been exhausted. The distribution will not be retried, but will be termi
nated (and a DRMU generated, as appropriate). The MU_/D will be purged.

Distribution Transport Sublayer-Format Set 1

DS Send FSMs

OS Send Overview
DS_Send is shown here as a set of machines that send FS1 DMUs across an LU
6.2 conversation to an instance of DS_Receive in an adjacent DSU. The exe
cution of these machines results in all the OS FS1 protocols for sending OM Us,
and all the exception protocols for both sender- and receiver-detected
exceptions. There are several points to note about these protocols.

• Deallocate type(SYNC_LEVEL) is not issued by the formal m9del, although
product implementations may elect to do so.

• The number of Send_Data verbs issued to LU 6.2 in order to transmit a OS
MU is an implementation optimization choice. It will be dependent on the
buffer sizes at the nodes at which the DSU resides.

Chapter 3. Implementation Model 285

Program Structure

• Each machine that issues verbs to LU 6.2 is listed below, with a summary of
its function. All OS implementations follow the protocols embodied in these
machines.

FSM_SEND_MGR-controls allocation and deallocation of the conversa
tion resource for DS_Send. It handles an Attach from DS_Receive as
well as sending an Attach to OS_Receive. It also issues the proper
deallocation type for all situations, both exception and normal.

DS_SENO_CONVERSATION_MGR-Controls the normal sending of data
and the Confirm request. It reports exception conditions to higher-level
FSMs for proper exception handling protocols and conversation deallo
cation.

FSM_SEMU_ENCOOE-Controls the exception protocols for exceptions
detected by the local conversation partner (OS_Send), and handles any
further exceptions that may occur during this processing.

FSM_REMU_DECOOE-Controls the receiving, via LU 6.2, of the
Receiver Exception Message Unit (REMU) from the remote conversation
partner, and handles any further exceptions that may occur during this
processing.

Although the structure of these machines is peculiar to the formal model, all OS
implementations generate these protocols. In addition, all OS implementations
generate an asynchronous report in the case of nonretriable exceptions.

These FSMs are structured so that a manager machine (FSM_SENO_MGR) both
allocates and deallocates the conversation. Once the conversation is started,
machines lower in the hierarchy sequence the functions necessary to send a
distribution coded in OMU format. The manager machine receives reports on
the progress of the transmission. If exceptions are detected, the manager
machine causes one of two exception protocol machines to start. The excep
tion protocol machines report on the progress of the exception information
being transferred. If an exception occurs during an exception protocol, the
manager machine takes appropriate action.

As each piece of the OMU is encoded, FSM_SEND_CONVERSATION_MGR is
signalled to issue the appropriate LU 6.2 verb to send the data across the con
versation. The manager machine and the exception protocol machines issue
their own LU 6.2 verbs. The conversation state is kept in LU 6.2 presentation
services. The state of the protocol is kept by a combination of machines and
states in OS.

288 SNA/Oistribution Services Reference

LU 6.2 FSM_SCJHED_MGR

START_ TRANSACT! ON j ATTACH when allocated
by DS_Receive

FSM_SEND_MGR

l l

QUEUE_MGR FSM_OIST_ENCODE_ SERVER_MGR

" CONTROL "

J l
BUILDER FSM SRVR FSM SEND

OBJECT_ - CON VERSA:

* READ TION_MGR

SERVER_
MGR

*

[LU 6.2 Presentation Services

* indicates those finite-state machines not formally specified.

For more details regarding the finite-state machines, see:

• "FSM_SEND_MGR" on page 288
• "FSM_REMU_DECODE" on page 386
• "FSM_OPERATIONS_MGR" on page 342
• "FSM_SRVR_OBJECT_READ" on page 388
• "FSM_DIST_EHCODE_COHTROL" on page 296
• "FSM_SEND_COHVERSATIOH_HGR" on page 382

Figure 47. DS.:..Send FSM Hierarchy

FSM_OPERATIONS_MGR

l l
FSM_SEMU_ENCODE FSM REMU

DECODE-

BUILDER PARSER

* *

l

• "FSM_SEMU_ENCODE" on page 384
• LU 6.2 presentation services
• "FSM_SCHED_MGR" on page 351
• "PARSER" on page 359
• "SERVER_MGR" on page 354
• "BUILDER" on page 359
• "QUEUE_MGR" on page 357

Chapter 3. Implementation Model 287

FSM_SEND_MGR
This machine sequences the operations required to send DMUs from DS_Send
at one DSU on an LU 6.2 conversation to DS_Receive at another DSU. The
request for this function is from DS_Router_Director, the local operator, or
DS_Receive.

The sequences of functions controlled by FSM_SEND_MGR are:

• Allocation of the conversation to DS_Receive, or receiving the indication to
send if DS_Send is attached by DS_Receive.

• Accessing the next available queue entry from the next-DSU queues in pri-
ority order.

• Encoding the distribution in DMU format.

• Sending the DMU on the LU 6.2 conversation using OS protocols.

• Taking the entry from the next-DSU queue when DS_Receive has accepted
responsibility for it.

• Decrementing the OS lock count placed on the server object by presenta
tion services or DS_Receive.

• Deallocation of the conversation when the queues are empty or an excep
tion has occurred.

Processing stops when any of the following occurs:

• The conversation cannot be allocated, or DS_Send does not receive the
indication to send, if DS_Receive performs the allocation.

• An exception occurs while the queue is being accessed.

• The queues are held by another instance of DS_Send.

• DS_Receive encounters an exception and notifies DS_Send.

• DS_Send encounters an exception while building the DMU or accessing the
server object.

• An exception on the conversation occurs.

For exceptions detected by DS_Send, FSM_SEND_MGR signals machines to
pass exception information to DS_Receive. For exceptions detected by
DS_Receive, FSM_SEND_MGR signals machines to receive exception informa
tion from DS_Receive. For all exceptions, FSM_SEND_MGR performs the
appropriate deallocation, and signals FSM_OPERATIONS_MGR for logging,
operator messages, setting of queue control, and generating asynchronous
report, if appropriate.

The FSM_SEND_MGR has three key states that determine DS actions in excep
tion situations detected by the sending side of the conversation. In the fol
lowing text, "local conversation partner" refers to the DSU sending the DMU,
and "remote conversation partner" refers to the DSU receiving the DMU.

FSM_SEND_MGR-ENC State: In this state, the local conversation manager
waits for a report on the encoding and sending of the DMU. The signals
received in this state have the following meanings:

288 SNA/Distribution Services Reference

• DMU_ABORT-No data has been sent so far on the conversation. An
exception was detected on the first call to the builder. This is neither an
exception in the distribution, nor an exception in the conversation. OS
issues an LU 6.2 Deallocate type(FLUSH) verb to terminate the conversation.

• SEND_SIDE_EXCEPT-Another machine in the hierarchy detected an excep
tion during the encoding of the DMU or the reading of the server object.
This is a purely local exception, not a conversation exception. In this case,
FSM_SEND_MGR signals another machine, FSM_SEMU_ENCODE. to handle
the OS exception protocol. This includes informing the conversation partner
of the exception and transmitting a SEMU .

• RCV_SIDE_EXCEPT-LU 6.2 PS returned a PROG_ERROR_PURGING on a verb
issued by the local conversation partner, indicating that the remote conver
sation partner has detected an exception. FSM_SEND_MGR signals another
machine, FSM_REMU_DECOOE, to handle the exception protocol, which
includes receiving an REMU from the remote conversation partner.

• CONVERSATION_FAILURE-LU 6.2 PS returns one of the following return
codes on a verb that OS issued:

ALLOCATION_ERROR-A conversation could not be allocated, but OS has
begun to pass records to LU 6.2 PS.

DEALLOCATE_ABEND_PROG-The remote conversation partner has detected
an exception preventing further communication, and has issued a Deal
locate type(ABEND_PROO), or the remote LU has signalled a remote
program abend condition.

RESOURCE_FAILURE-The session has been lost.

In each of these cases, the conversation no longer exists, and OS issues a
Deallocate type(LOCAL) to terminate the local side of the conversation.

FSM_SEND_MGR-SND_EXPT State: In this state, FSM_SEND_MGR is waiting
for a report on the progress of the exception protocol following the detection of
an exception at the local DSU.

• SEND_SIDE_EXCEPT- FSM_SEMU_ENCODE has encountered an exception
in encoding the SEMU. The exception protocol cannot be completed, and
OS terminates the conversation by issuing Deallocate type(ABEND_PROO).

• RCV_SIDE_EXCEPT-The local and remote conversation partners have both
issued Send_Error verbs. The remote conversation partner purges every
thing received from the local conversation partner, including the FMH-7
from the local's Send_Error verb. The result is that the remote conversa
tion partner is in send state when the exchange is complete. LU 6.2 PS
returned a PROO_ERROR_PURGING return code in reply to the Send_Error or in
reply to the Send_Data verb that the local conversation partner issued.
FSM_SEND_MGR signals another machine, FSM_REMU_DECODE, to handle
the exception protocol, which includes receiving an REMU from the remote
conversation partner.

• CONVERSATION_FAILURE-LU 6.2 PS returns one of the following return
codes on a verb that OS issued:

Chapter 3. Implementation Model 289

ALLOCATION_ERROR-A conversation could not be allocated, but OS has
begun to pass records to LU 6.2 PS.

DEALLOCATE_ABEND_PROG-The remote conversation partner has detected
an exception preventing further communication, and has issued a Deal
locate type(ABEND_PROG), or the remote LU has signalled a remote
program abend condition.

RESOURCE_FAILURE-The session has been lost.

In each of these cases, the conversation no longer exists, and OS issues a
Deallocate type(LOCAL) to terminate the local side of the conversation.

• ERP_COMPLETE- FSM_SEMU_ENCODE has completed the exception pro
tocol successfully. FSM_SEND_MGR closes the conversation by issuing
Deallocate type(FLUSH).

FSM_SEND_MGR-RCV_EXPT State: In this state, the FSM_SEND_MGR is
waiting for a report on the progress of the exception protocol following the
detection of an exception at the remote conversation partner.

• SEND_SIDE_EXCEPT- FSM_REMU_DECODE has encountered an exception
in parsing the REMU. The rest of the REMU Is ignored, and the remote con
versation partner has terminated the conversation normally. The
FSM_SENO_MGR issues a Deallocate type(LOCAL).

• PROTOCOL_ERROR-LU 6.2 PS returned a PROG_ERROR_TRUNC,
PROG_ERROR_NO_TRUNC, what_received(SEND), or what_received(CONFIRM), to a
Receive_And_Wait verb that FSM_REMU_DECODE has issued. These return
codes indicate that the partner DSU has Issued a sequence of LU 6.2 verbs
that, although legitimate under LU 6.2 rules of usage, is not legitimate under
DS rules of usage.

In addition, after the REMU has been received completely,
what_received(DATA) becomes an improper DS usage of LU 6.2. The local
conversation partner must assume that reliable communication cannot con
tinue with the remote conversation partner. The FSM_SEND_MGR issues a
Deallocate type(ABEND_PROG) to terminate the conversation abnormally.

• CONVERSATION_FAILURE-LU 6.2 PS returns one of the following return
codes on a verb that OS issued:

DEALLOCATE_ABEND_PROG-The remote conversation partner has detected
an exception preventing further communication, and has issued a Deal
locate type(ABEND_PROG), or the remote LU has signalled a remote
program abend condition.

RESOURCE_FAILURE-The session has been lost.

In each of these cases, the conversation no longer exists, and OS issues a
Deallocate type(LOCAL) to terminate the local side of the conversation. If LU
6.2 PS returns a Deallocate NORMAL before the REMU is received com
pletely, it is an improper OS usage of LU 6.2, but because the conversation
no longer exists, FSM_REMU_DECODE signals a CONVERSATION_FAILURE
to the FSM_SEND_MGR. This exception is still reported and logged as an
improper OS usage of LU 6.2.

290 SNA/Distribution Services Reference

• ERP _COMPLETE- FSM_REMU_DECODE has completed the exception pro
tocol successfully. FSM_SEND_MGR closes the conversation by issuing
Deallocate type(LOCAL).

Chapter 3. Implementation Model 291

292 SNA/Distribution Services Reference

Function: This finite-state machine describes the functional processing for the send manager of DS_Send.
For a further description, see "FSM_SEND_MGR" on page 288.

This FSM gets control from one of the following:

• Signals from finite-state machines providing common services:

START_TRANSACTION from FSM_SCHED_MGR
OPERATIONS_COMPLETE from FSM_OPERATIONS_MGR
OBJECT_OK from SERVER_MGR
OBJECT_NOT_OK from SERVER_MGR

• Signals from LU 6.2 presentation services:

ATTACH from LU 6.2 when DS_Receive issues Allocate
OK from Allocate, Deallocate FLUSH, Deallocate LOCAL, Deallocate ABEND

ALLOC_PARAM_ERROR from Allocate
ALLOCATION_ERROR from Allocate, Receive_And_Wait
RCV_AND_WAIT_SEND from Receive_And_Wait
RCV_AND_WAIT_CONFIRM from Receive_And_Wait
RCV_AND_WAIT_CONFIRM_DEALLOCATE from Receive_And_Wait
RCV_AND_WAIT_DATA_COMPLETE from Receive_And_Wait
RCV_AND_WAIT_DATA_INCOMPLETE from Receive_And_Wait
RCV_AND_WAIT_LL_TRUNCATED from Receive_And_Wait
DEALLOCATE_NORMAL from Receive_And_Wait
DEALLOCATE_ABEND from Receive_And_Wait
PROG_ERROR from Receive_And_Wait
RESOURCE_FAILURE from Receive_And_Wait

• Signals from lower-level DS_Send machines:

QUEUE_EMPTY from QUEUE_MGR
QUEUE_OK from QUEUE_MGR
QUEUE_NOT_OK from QUEUE_MGR
DMU_COMPLETE from FSM_DIST_ENCODE_CONTROL
DMU_ABORT from FSM_DIST_ENCODE_CONTROL
SEND_SIDE_EXCEPT

from FSM_DIST _ENCODE_CONTROL
- from FSM_SEMU_ENCODE
- from FSM_REMU_DECODE
RCV_SIDE_EXCEPT from FSM_DIST_ENCODE_CONTROL, FSM_SEMU_ENCODE
PROTOCOL_ERROR from FSM_SEMU_ENCODE, FSM_REMU_DECODE
CONVERSATION_FAILURE

from FSM_DIST _ENCODE_CONTROL
- from FSM_SEMU_ENCODE
- from FSM_REMU_DECODE

ERP _COMPLETE from FSM_SEMU_ENCODE, FSM_REMU_DECODE

Chapter 3. Implementation Model 293

States

DEC SND RCV MU NMU
RST ALLC RCV RDQ ENC DEQ LCK EXPT EXPT EXPT EXPT OPS END

Inputs 01 02 03 04 05 06 07 08 09 10 11 12 13

START TRANSACTION 2a I I I I I I I I I I I I

ATTACH 3b I I I I I I I I I I I I

OK I 4c I I I I I I I 12g 12d I 1

ALLOC PARAM ERROR I 12g I I I I I I I I I I I

ALLOCATION ERROR I 1oe I I I I I I I I I I I

RCV AND WAIT SEND I I 4c I I I I I I I I I I

RCVAND WAIT
CONFIRM I I 11f I I I I I I I I I I

RCVANDWAIT
CONFIRM
DEALLOCATE I I 11f I I I I I I I I I I

RCV AND WAIT DATA
COMPLETE I I 11f I I I I I I I I I I

RCV AND WAIT DATA
INCOMPLETE I I 11f I I I I I I I I I I

RCV AND WAIT LL
TRUNCATED I I 11f I I I I I I I I I I

DEALLOC NORMAL I I 11e I I I I I I I I I I

DEALLOC ABEND I I 11e I I I I I I I I I I

PROG ERROR I I 11f I I I I I I I I I I

RESOURCE FAILURE I I 11e I I I I I I I I I I

QUEUE EMPTY I I I 13h I I I I I I I I I

QUEUE OK I I I Si I 7n I I I I I I I

QUEUE NOT OK I I I 11h I 11h I I I I I I I

DMU COMPLETE I I I I 6m I I I I I I I I

DMU ABORT I I I I 10h I I I I I I I I

SEND SIDE EXCEPT I I I I 8-j I I 10f 10e I I I I

RCV SIDE EXCEPT I I I I 9k I I 9k I I I I I

PROTOCOL ERROR I I I I I I I I 10f I I I I

CONVERSATION
FAILURE I I I I 10e I I 10e 10e I I I I

ERP COMPLETE I I I I I I I 10h 10e I I I I

OPERATIONS
COMPLETE I I I I I I I I I I I 1 I

OBJECT OK I I I I I I 4c I I I I I I

OBJECT NOT OK I I I I I I 11h I I I I I I

294 SNA/Distribution Services Reference

Output Function
Code
a Signal LU 6.2 presentation services with ALLOCATE to establish the conversation with DS_Receive.

b Signal LU 6.2 presentation services with GET_ATTRIBUTES and RECEIVE_AND_WAIT to determine
the LU name, mode name, and to receive the indication from the partner to send.

c Signal QUEUE_MGR with READO to retrieve the appropriate next-DSU queue entry to be selected
based on priority of traffic.

d Signal FSM_OPERATIONS_MGR with LOG_MESSAGE_EXCEPT for logging and operator messages.
No report is requested because no MU was involved or DS_Receive had already accepted responsi-
bility for the distribution.

e Signal LU 6.2 presentation services with DEALLOCATE_LOCAL to deallocate the conversation
locally.

f Signal LU 6.2 presentation services with DEALLOCATE_ABEND to deallocate the conversation abnor-
mally.

g Signal FSM_OPERATIONS_MGR with SEND_MU_EXCEPT to log, generate report if appropriate, set
queue control, and for operator messages.

h Signal LU 6.2 presentation services with DEALLOCATE specifying FLUSH to signal the partner that no
more DMUs will be sent.

i Signal FSM_DIST_ENCODE_CONTROL with ENCODE to control the building and the sending of the
DMU to DS_Receive.

j Signal FSM_SEMU_ENCODE with ENCODE_SEMU to control the exception protocols for an exception
encountered by DS_Send.

k Signal FSM_REMU_DECODE with DECODE_REMU to control the receipt of the REMU that resulted
from an exception encountered by DS_Receive.

m Signal QUEUE_MGR with DEQ to remove the entry from the next-DSU queue following successful
processing of the entry.

n Signal SERVER_MGR with DECREMENT_OBJ_LOCK to decrement the OS lock count on the server
object. DS_Receive has accepted responsibility for the distribution. If no object exists,
SERVER_MGR returns OBJECT_OK.

Chapter 3. Implementation Model 295

FSM_DIST _ENCODE_CONTROL
Controls the building of the distribution in DMU format, and the sending of the
DMU on the conversation to DS_Receive. The request for this function is from
FSM_ SEND _MGR.

This machine signals machines to build and send the DMU. Upon successful
completion of building and sending the DMU, this machine signals the
FSM_SEND_CONVERSATION_MGR to send the Confirm to DS_Receive. When
DS_Receive sends Confirmed, this machine notifies FSM_SEND_MGR that
responsibility for the distribution has been accepted by DS_Receive. Exceptions
in encoding are reported by the builder. If the builder returns BUILD_NOT_OK
on the first call, this machine signals DMU_ABORT to "FSM_SEND_MGR" on
page 288. If the builder returns BUILD_NOT_OK on any subsequent call, this
machine signals SEND_SIDE_EXCEPT to FSM_SEND_MGR. Exceptions in
DS_Receive receiving the DMU result in RCV_SIDE_EXCEPT to
FSM_SEND_MGR, and exceptions on the conversation result in
CONVERSATION_FAILURE to FSM_SEND_MGR. This machine passes the avail
able exception information to the signalling machine. For a further description
of these exceptions, refer to "FSM_SEND_MGR-ENC State" on page 288.

296 SNA/Oistribution Services Reference

Chapter 3. Implementation Model 297

Function: This finite-state machine describes the functional processing for controlling the encoding and
sending of the DMU. For a further description, see ''FSM_DIST_ENCODE_CONTROL" on
page 296.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines:

- ENCODE from FSM_SEND_MGR

• Signals from lower-level DS_Send finite-state machines:

- OBJECT_OK from FSM_SRVR_OBJECT_READ
- NO_OBJECT_EXISTS from FSM_SRVR_OBJECT_READ
- OBJECT_EOD from FSM_SRVR_OBJECT_READ
- OBJECT_NOT_OK from FSM_SRVR_OBJECT_READ

OK from FSM_SEND_CONVERSATION_MGR
- RCV_SIDE_EXCEPT from FSM_SEND_CONVERSATION_MGR
- CONVERSATION_FAILURE from FSM_SEND_CONVERSATION_MGR

• Signals from BUILDER

- BUILD_OK
- BUILD_OK_GET_OBJECT
- BUILD_COMPLET!;

BUILD_NOT_OK

BLD
RESET FIRST SND

Inputs 01 02 03

ENCODE 2a I I

OK I I 4a

RCV SIDE EXCEPTION I I 9e

CONVERSATION FAILURE I I 10e

BUILD OK I 3b I

BUILD OK GET OBJECT I Sb I

BUILD COMPLETE I 7b I

BUILD NOT OK I 1c I

OBJECT OK I I I

NO OBJECT EXISTS I I I

OBJECT EOD I I I

OBJECT NOT OK I I I

298 SNA/Distribution Services Reference

BLD

04

I

I

I

I

3b

Sb

7b

11e

I

I

I

I

States

SND
GET OBJ SND CON· RCV
OBJ PND LST FIRM ERP

05 06 07 08 09

I I I I I

6f I 8g 1h I

9e I 9e 9e I

10e I 10e 10e I

I I I I I

I I I I I

I I I I I

I I I I I

I 4a I I 1j

I 4i I I 1j

I 4i I I I

I 1d I I 1j

CNV SND
ERP ERP

10 11

I I

I I

I I

I I

I I

I I

I I

I I

1k 1d

1k 1d

I I

1k 1d

Output Function
Code
a Signal BUILDER with BUILD to build the DMU information.

b Signal FSM_SEND_CONVERSATION_MGR with SEND_BUFFER to send the DMU information to LU 6.2
PS.

c Signal FSM_SEND_MGR with DMU_ABORT to indicate that an exception has occurred in building the
DMU. No portion of the DMU has been sent; therefore, normal send side exception processing does
not take pl ace.

d Signal FSM_SEND_MGR with SEND_SIDE_EXCEPT to indicate that an exception has occurred in the
encoding process and that the sender exception protocols should be followed.

e Signal FSM_SRVR_OBJECT_READ with CLEANUP _OBJECT to terminate any access to the object, if
one exists.

f Signal FSM_SRVR_OBJECT_READ with READ_OBJECT to read the object and perform any initializa-
tion for reading, if not yet performed.

g Signal FSM_SEND_CONVERSATION_MGR with END_DMU to indicate that the Confirm should be sent
to DS_Receive.

h Signal FSM_SEND_MGR with DMU_COMPLETE to indicate that the DMU has been encoded and sent
to DS_Receive. Also, the Confirm has been sent to DS_Receive and OK to Confirm has been
received.

i Signal BUILDER with END_OBJECT to indicate that the server has returned eoo and the last segment
of the object should be built, or if no object exists the length of the data will be 0.

j Signal FSM_SEND_MGR with RCV_SIDE_EXCEPT to indicate that an exception has occurred in
DS_Receive and that the receiver exception protocols should be followed.

k Signal FSM_SEND_MGR with CONVERSATION_FAILURE to indicate that an exception has occurred in
the conversation between DS_Send and DS_Receive.

Chapter 3. Implementation Model 299

FSM_SRVR_OBJECT_READ
This machine controls the reading of the server object. The request for this
function is from FSM_DIST_ENCODE_CONTROL signalling READ_OBJECT or
CLEANUP _OBJECT, and passing the descriptor of the server object, the origin
server name, and parameters (if the DSU is the origin DSU).

For an input signal of READ_OBJECT, this machine issues Read to
SERVER_ MGR. For an input signal of CLEANUP_ OBJECT prior to a successful
lnitiate_Read operation, this machine signals OBJECT_ OK to the calling
machine. For any subsequent input signal of CLEANUP _OBJECT, this machine
issues Terminate_Read to SERVER_MGR and returns OBJECT_NOT_OK.

Exceptions can occur in accessing the server object. For any exception, if an
lnitiate_Read verb has been issued, then a Terminate_Read verb must be
issued to close the access path. In case of an exception from the server in
attempting to close the access path, FSM_SRVR_OBJECT_READ should signal
FSM_OPERATIONS_MGR with MESSAGE_TO_OPERATOR. This machine does
not show that signal.

Exceptions in accessing the server object result in an OBJECT_NOT_OK signal
to FSM_DIST_ENCODE_CONTROL and, in turn, a SEND_SIDE_EXCEPT signal to
FSM_SEND_MGR. This machine passes the available exception information to
FSM_DIST_ENCODE_CONTROL. The processing performed for this exception is
described in "FSM_SEND_MGR-ENC State" on page 288.

300 SNA/Distribution Services Reference

Function:

Inputs

This finite-state machine describes the functional processing for reading the server object. For
a further description, see "FSM_SRVR_OBJECT_READ" on page 300.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines:

- READ_OBJECT from FSM_DIST_ENCODE_CONTROL
- CLEANUP _OBJECT from FSM_DIST_ENCODE_CONTROL

• Signals from machines providing common services:

OBJECT_OK from SERVER_MGR
OBJECT_EOD from SERVER_MGR
OBJECT_NOT_OK from SERVER_MGR
NO_OBJECT_EXISTS from SERVER_MGR

RESET READ

01 02

States

SEND PEND

03

TRM READ ERP

04 05

READ OBJECT 2b I 2b I I

CLEANUP OBJECT 1a I 7e I I

NO OBJECT EXISTS I 1c I I I

OBJECT OK I 3a I 1f 1d

OBJECT EOD I 4e I I I

OBJECT NOT OK I Se I 1d 1d

Output Function
Code
a Signal FSM_DIST_ENCODE_CONTROL with OBJECT_OK to indicate that the portion of the object has

been read. If no object exists and the signal is CLEANUP _OBJECT, then OBJECT_OK is signalled.

b Signal SERVER_MGR with READ to read a portion of the object, performing any initialization, if nee-
essary. If no server object exists, then NO_OBJECT_EXISTS is returned.

c Signal FSM_DIST_ENCODE_CONTROL with NO_OBJECT_EXISTS to indicate that there is no object to
be sent.

d Signal FSM_DIST_ENCODE_CONTROL with OBJECT_NOT_OK to indicate that an exception has
occurred during the accessing of the object.

e Signal SERVER_MGR with TERMINATE_READ to terminate any access to the object.

f Signal FSM_DIST_ENCODE_CONTROL with OBJECT_EOD to indicate that the object has been read to
completion, and access to the object has been terminated.

Chapter 3. Implementation Model 301

FSM_SEND_CONVERSATION_MGR

Return Code

ALLOCATION ERROR
DEALLOCATE ABEND PROG

PROG ERROR PURGING
RESOURCE FAILURE

This machine issues the Send_Data and Confirm verbs to LU 6.2 presentation
services, and classifies the conversation exceptions. The request for the send
function is from FSM_DIST_ENCODE_CONTROL signalling SEND_BUFFER. The
request to send Confirm is from FSM_DIST_ENCODE_CONTROL signalling
END_DMU.

Figure 48 classifies the possible exceptions returned from LU 6.2 PS.

Reported as Explanation

CONVERSATION_FAILURE Conversation was never allocated.
CONVERSATION_FAILURE DS_Receive or the remote LU has tennfnated the

conversation abnonnally.
RCV_SIDE_ERROR DS_Receive Issued a Send_Error verb to signal error.
CONVERSATION FAILURE Conversation was Jost because the session was Jost.

Figure 48. Classification of NOT-OK Return Codes by FSM_SEND_CONVERSATION_MGR.

302 SNA/Distribution Services Reference

Function:

Inputs

This finite-state machine describes the functional processing for interacting with each encode
machine for the sending of the DMU to DS_Receive. For a further description, see
"FSM_SEND_CONVERSATION_MGR" on page 302.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines:

- SEND_BUFFER from FSM_DIST_ENCODE_CONTROL
- END_DMU from FSM_DIST_ENCODE_CONTROL

• Signals from LU 6.2 presentation services:

ALLOCATION_ERROR from Send_Data, Confirm
DEALLOCATE_ABEND from Send_Data, Confirm
PROG_ERROR from Send_Data, Confirm
RESOURCE_FAILURE from Send_Data, Confirm
OK from Send_Data, Confirm

States

RESET SEND CONFIRM

01 02

SEND BUFFER 2a I

END DMU 2b I

ALLOCATION ERROR I 1c

DEALLOCATE ABEND I 1c

PROG ERROR I 1d

RESOURCE FAILURE I 1c

OK I 1e

Output Function
Code
a Signal LU 6.2 presentation services with SEND_DATA to send the encoded information to the partner

DSU.

b Signal LU 6.2 presentation services with CONFIRM to synchronize the processing between DS_Send
and DS_Receive, following the sending of the DMU.

c Signal FSM_DIST_ENCODE_CONTROL with CONVERSATION_FAILURE to indicate that some excep-
tion has occurred on the conversation between DS_Send and DS_Receive.

d Signal FSM_DIST_ENCODE_CONTROL with RCV_SIDE_EXCEPT to Indicate that DS_Receive has sig-
nalled that an exception has occurred on the receive side.

e Signal FSM_DIST_ENCODE_CONTROL with OK to indicate that the LU 6.2 request was completed
successfully.

Chapter 3. Implementation Model 303

FSM_SEMU_ENCODE
The function of this machine is to indicate to DS_Receive that an exception has
occurred and the remainder of the DMU is not to follow. This function is
requested from FSM_S!=ND_MGR signalling ENCODE"'"SEMU. The exception
information required for building the exception code is passed to this machine.

The OS protocol for this processing is as follows:

• Issue a Send_Error to LU 6.2 presentation services.
• Build a SEMU indicating a forward abort. The SEMU contains the exception

information.
• Issue a Send_Data, containing the SEMU, to LU 6.2 presentation services.

Exceptions can occur in the encoding process, and in sending the SEMU on the
LU 6.2 conversation. For a further description of these exceptions and the proc
essing that results, refer to "FSM_SEND_MGR-SND_EXPT State" on page 289.

304 SNA/Distribution Services Reference

Function:

Inputs

This finite-state machine describes the functional processing for exception processing in
DS_Send when the exception occurred on the sending side. For a further description, see
"FSM_SEMU_ENCODE" on page 304.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines:

- ENCODE_SEMU from FSM_SEND_MGR

• Signals from LU 6.2 presentation services:

OK from Send_Error, Send_Data
ALLOCATION_ERROR from Send_Error, Send_Data
RESOURCE_FAILURE from Send_Error, SencJ_Data
PROG_ERROR from Send_Error, Send_Data
DEALLOCATE_ABEND from Send_Error, Send_Data

RESET

01

States

SEND_ERR
PEND SEND SEMU

02 03

ENCODE SEMU 2a I I

OK I 3b 1c

ALLOCATION ERROR I 1e 1e

DEALLOCATE ABEND I 1e 1e

PROG ERROR I 1d 1d

RESOURCE FAILURE I 1e 1e

Output Function
Code
a Signal LU 6.2 presentation services with SEND_ERROR to Indicate to the partner that an exception

has been encountered on the sending side.

b Build the SEMU and signal LU 6.2 presentation services with SEND_DATA to send the encoded infor-
mation to the partner DSU.

c Signal FSM_SEND_MGR with ERP _COMPLETE to indicate that exception processing has been com-
pleted and that appropriate deallocation should take place.

d Signal FSM_SEND_MGR with RCV_SIDE_EXCEPT to indicate that while performing exception proc-
essing for an exception encountered on the sending side, the receiving side has indicated an excep-
ti on.

e Signal FSM_SEND_MGR with CONVERSATION_FAILURE to Indicate that an exception occurred on
the conversation while the exception information was being sent to DS_Receive.

Chapter 3. Implementation Model 305

FSM_REMU_DECODE
The function of this machine is to receive exception information from
DS_Receive after DS_Receive has encountered an exception in receiving or
parsing a DMU. This function is requested from FSM_SEND_MGR signalling
DECODE_REMU.

The OS protocol for this exception is as follows:

• Issue Receive_And_Wait for the REMU.
• Parse the REMU containing the exception information.
• Issue Receive_And_Wait for the indication of Deallocate NORMAL

Once FSM_REMU_DECODE receives and parses the REMU, it passes the REMU
exception fields to FSM_SEND_MGR with the signal ERP_COMPLETE.

If an exception occurs in parsing the REMU, this machine issues
Receive_And_Wait verbs until enough data has been received to comprise a
complete REMU. If the next Receive_And_Wait verb does not return a Deallo
cate NORMAL as the return code, then it is treated as an abnormal case and
logged as an improper OS usage of LU 6.2. Exceptions can occur while the MU
is being received on the LU 6.2 conversation or in parsing the REMU. For a
further description of these exceptions and the processing that results, see
"FSM_SEND_MGR-RCV_EXPT State" on page 290.

306 SHA/Distribution Services Reference

Chapter 3. Implementation Model 307

Function: This finite-state machine describes the functional processing for exception processing in
DS_Send when the exception occurred on the receiving side. For a further description, see
"FSM_REMU_DECODE" on page 306.

This FSM gets control from one of the following:

• Signals from higher-level DS_Send finite-state machines:

- DECODE_REMU from FSM_SEND_MGR

• Signals from PARSER

PARSE_NOT_OK-on PARSE_NOT_OK, Receive_And_Wait is issued until enough data
has been received to comprise a complete REMU.
PARSE_ COMPLETE

• Signals from LU 6.2 presentation services:

RCV_AND_WAIT_SEND
RCV _AND_WAIT _CONFIRM
RCV_AND_WAIT_CONFIRM_DEALLOCATE
RCV_AND_WAIT_DATA_COMPLETE
RCV_AND_WAIT_OATA_INCOMPLETE
RCV_AND_WAIT_LL_TRUNCATED
RESOURCE_FAILURE
PROG_ERROR
DEALLOCATE_ABEND
DEALLOCATE_ NORMAL

RESET RCV

Inputs 01 02

DECODE REMU 2a I

RCV AND WAIT DATA COMPLETE I 3b

RCV AND WAIT DATA INCOMPLETE I 3b

RCV AND WAIT LL TRUNCATED I -a

RCV AND WAIT SEND I 1c

RCV AND WAIT CONFIRM I 1c

RCV AND WAIT CONFIRM
DEALLOCATE I 1c

DEALLOCATE NORMAL I 1d

DEALLOCATE ABEND I 1d

PROG ERROR I 1c

RESOURCE FAILURE I 1d

PARSE NOT OK I I

PARSE COMPLETE I I

308 SNA/Distribution Services Reference

States

DEALLOC
PARSE REMU EXPT PEND

03 04 05

I I I

I -a 1c

I -a 1c

I -a 1c

I 1c 1c

I 1c 1c

I 1c 1c

I 1e 1f

I 1d 1d

I 1c 1c

I 1d 1d

4a I I

Sa I I

Output Function
Code
a Signal LU 6.2 presentation services with RECEIVE_AND_WAIT to receive exception information from

DS_Receive.

b Signal PARSER with PARSE_REMU to parse the REMU.

c Signal FSM_SEND_MGR with PROTOCOL_ERROR to indicate that the proper exception protocols
were not followed for exception processing.

d Signal FSM_SEND_MGR with CONVERSATION_FAILURE to indicate that exception processing was
not successfully completed.

e Signal FSM_SEND_MGR with SEND_SIDE_EXCEPT to indicate that an exception occurred in parsing
the REMU.

f Signal FSM_SEND_MGR with ERP _COMPLETE to indicate that exception processing has been com-
pleted, and that appropriate deallocation should take place.

Chapter 3. Implementation Model 309

DS Receive FSMs

DS Receive Overview

Program Structure

DS_Receive is shown here as a complex of machines whose function it is to
receive DMUs on an LU 6.2 conversation from an instance of DS_Send in an
adjacent DSU. These machines execute all the FS1 OS protocols for receiving
DMUs, and all the protocols for both sender-and receiver-detected exceptions.
There are several points to note about these protocols.

• Deallocate type(SYNC_LEVEL) is not issued by the formal model when
sending, but all receivers can property handle what_received{coNFIRM) and
what_received(CONFtRM_DEALLOCATE) as parameters returned on the
Receive_And_Wait verb.

• The number of Receive_And_Wait verbs issued in order to receive a OS MU
is an implementation optimization choice. It will depend on the buffer sizes
at the nodes at which the DSU resides, and on whether fi//(BUFFER) or fi//(LL)
is used by the implementation.

• Each machine that issues verbs to LU 6.2 PS is listed below, with a
summary of its function. All OS implementations follow the protocols
embodied in these machines.

FSM_RECEIVE_MGR-Controls allocation and deallocation of the con
versation resource for DS_Receive. It handles an Attach from DS_Send
as well as sending an Attach to DS_Send. Some implementations may
not send an Attach to DS_Send. It also issues the proper deallocation
type for all situations, both exception and normal.

FSM_RCV_CONVERSATION_MGR-Controts the normal receiving of
data and the Confirmed reply. It reports exception conditions to higher
level FSMs for proper exception-handling protocols and conversation
deallocation.

FSM_SEMU_DECODE-Controls the protocols for exceptions detected by
the remote conversation partner, (DS_Send) and handles any further
exceptions that may occur during this processing.

FSM_REMU_ENCODE-Controls the sending, via LU 6.2 PS, of the REMU
by the local conversation partner, and handles any further exceptions
that may occur during this processing.

Although the structure of these machines may be peculiar to the formal model,
all OS implementations generate these protocols.

These machines are structured so that a manager machine
(FSM_RECEIVE_MGR) both allocates and deallocates the conversation. Once
the conversation is started, machines lower in the hierarchy sequence the func
tions necessary to receive a distribution and parse the DMU. The manager
machine receives reports on the progress of the transmission. If exceptions
are detected, the manager machine causes one of two exception protocol
machines to start. The exception protocol machines report on the progress of
the exception information being transferred. If an exception occurs during an
exception protocol, the manager machine takes appropriate action.

310 SNA/Distrlbution Services Reference

As each piece of the DMU is decoded, FSM_RCV_CONVERSATION_MGR is sig
nalled to issue the appropriate LU 6.2 verb to retrieve the data from the LU.
The manager machine and the exception protocol machines issue their own LU
6.2 verbs. The conversation state is kept in LU 6.2 PS. The state of the pro
tocol is kept by a combination of machines and states in DS.

Chapter 3. Implementation Model 311

FSM SCHEO MGR LU 6.2 - ! START_TRANSACTION I ATTACH when allocated
t by DS_Send

FSM _OPERATIONS_ MGR
FSM_RECEIVE_MGR

l
1

FSM_OIST_DECOOE FSM_SEMU_ FSM_REMU_ENCOOE
CONTROL DECODE -

PARSER BUILDER

* *

c
PARSER FSM_RCV_ FSM SRVR SERVER_ FSM_RCV_

OBJECT_ -CONVERSA- MGR

" TION_MGR WRITE

SERVER
MGR

*

[LU 6.2 Presentation Services

* indicates those finite-state machines not formally specified.

For more deta11s regarding the finite-state machines, see:

• "FSM_RECEIVE_MGR" on page 313
• "FSM_SRVR_OBJECT_WRITE" on page 328
• "FSM_OPERATIONS_MGR" on page 342
• "FSM RCV CONVERSATION MGR" on page 338
• "FSM)IST_OECODE_CONTROL" on page 329
• "FSM_RCV_ENQ_SCHED" on page 324
• "FSM_SEMU_DECODE" on page 334

Figure 49. Ds_Receive FSM Hierarchy

312 SNA/Distribution Services Reference

ENQ_

* SCHEO

L
QUEUE_ SERVER_ FSM
MGR MGR SCHED_

* * MGR
'--- ._____ '---

• "FSM_SCHED_MGR" on page 351
• "FSM REMU ENCODE" on page 338
• LU 6:2 pr;sentation services
• "PARSER" on page 359
• "SERVER_MGR" on page 354
• "BUILDER" on page 359
• "QUEUE_MGR" on page 357

FSM_RECEIVE_MGR
Sequences the functions required to receive and accept responsibility for a
DMU sent from DS_Send over an LU 6.2 conversation to an instance of
DS_Receive at another DSU. The request for this function can be from the local
operator, or from DS_Send issuing an Allocate for DS_Receive.

The functions controlled by FSM_RECEIVE_MGR are:

• Allocation of the conversation to DS_Send, if started locally.

• Decoding the DMU format of the distribution and scheduling further proc
essing.

• Deallocating the conversation when DS_Send signals that there are no
more DMUs to flow on the conversation.

• Handling exception situations.

Processing stops when:

• An exception occurs while the conversation is being allocated.

• An exception occurs during the decoding of the DMU, or during the
accessing of the server object or scheduling of further processing.

• An exception occurs during the accessing of the queues.

• An exception occurs on the conversation.

For exceptions detected by DS_Receive, FSM_RECEIVE_MGR signals a machine
to handle the building and sending of the REMU to DS_Send. For exceptions
detected by DS_Send, and reported to DS_Receive on the conversation,
FSM_RECEIVE_MGR signals a machine to handle the decoding of the SEMU that
contains exception information from DS_Send. For all exceptions,
FSM_RECEIVE_MGR issues the correct form of the Deallocate verb to terminate
the conversation, and signals FSM_OPERATIONS_MGR to log the exception and
to notify the operator.

FSM_RECEIVE_MGR has 3 key states that determine OS actions in exception
situations. In what follows, "local conversation partner" refers to the DSU
receiving the DMU on the conversation, and "remote conversation partner"
refers to the DSU sending the DMU on the conversation.

FSM_RECEIVE_MGR-DEC_PEND State: In this state, the receive manager
waits for other machines to report on whether all the DMUs were received or
whether an exception occurred while a DMU was being received. The signals
in this state have the following meanings:

• SEND_SIDE_EXCEPT-LU 6.2 returned a PROG_ERROR_TRUNC or
PROG_ERROR_No_TRUNC on a verb issued by the local conversation partner,
indicating that the remote conversation partner has detected an exception.
FSM_RECEIVE_MGR signals another machine, FSM_SEMU_DECODE, to
handle the exception protocol, including receiving the SEMU from DS_Send.

• RCV _SIDE_EXCEPT-Another machine in the hierarchy detected an excep
tion while parsing the DMU, storing the server object or enqueuing the dis
tribution. This is not an exception on the conversation, but rather an

Chapter 3. Implementation Model 313

exception detected at the local DSU. FSM_RECEIVE_MGR signals another
machine, FSM_REMU_ENCODE, to handle the exception protocol, which
includes sending a REMU to the remote conversation partner over the con
versation.

• PROTOCOL_ERROR-lf detected before the DMU is received completely,
then LU 6.2 PS returned either what_received(SEND) or
what_received(CONFIRM) to a Receive_And_Wait verb. If detected after the
DMU has been received completely, then LU 6.2 PS returned either
what_received(SEND) or what_received(DATA) to a Receive_And_Wait verb.
The local conversation partner must assume that reliable communication
cannot continue with the remote conversation partner. FSM_RECEIVE_MGR
issues a Deallocate type(ABEND_PROG) to LU 6.2 PS to terminate the conver
sation abnormally.

• CONVERSATION_FAILURE-LU 6.2 PS returns one of the following return
codes on a verb that OS has issued:

ALLOCATION_ERROR-A conversation could not be allocated, no data has
been able to flow.

DEALLOCATE_NORMAL-Although this is an improper OS usage of LU 6.2,
the conversation is no longer available, and the condition is signalled
as a CONVERSATION_FAILURE. It is logged at the local DSU as an
improper OS usage of LU 6.2, however.

Deallocate ABEND_PROG-The remote conversation partner has detected
an exception that prevents further communication and has issued a
Deallocate type(ABEND_PROG), or the remote LU has signalled a remote
program abend condition.

RESOURCE..:.FAILURE-The session carrying the conversation has been lost.

In each of these cases, the conversation is no longer active, and OS issues
a Deallocate type(LOCAL) to terminate the local side of the conversation.

FSM_RECEIVE_MGR-SND_EXPT State: In this state, the receive manager
waits for a report on the progress of the exception protocol following the
detection of an exception by the remote conversation partner. The signals in
this state have the following meanings:

• RCV_SIDE_EXCEPT- FSM_SEMU_DECODE detected an exception while
parsing the SEMU. This is not an exception on the conversation, but rather
an exception detected at the local DSU. FSM_SEMU_DECODE does not
return this signal until a Deallocate NORMAL is returned by LU 6.2 PS to a
Receive_And_Wait verb. FSM_RECEIVE_MGR completes the protocol by
issuing a Deallocate type(LOCAL) verb.

• PROTOCOL_ ERROR-If detected before the SEMU is received completely,
then LU 6.2 PS returned either what_received(SEND) or
what_received(CONFIRM) to a Receive_And_Wait verb. If detected after the
SEMU has been received completely, then LU 6.2 PS returned
what_received(SEND), what_received(CONFIRM), or what_received(DATA) to a
Receive_And_Wait verb. This exception can also occur if LU 6.2 PS returns
a PROG_ERROR_PURGING, PROG_ERROR_TRUNC, or PROG_ERROR_NO_TRUNC to a
Recelve_And_Wait verb. The local conversation partner must assume that

314 SNA/Distribution Services Reference

reliable communication cannot continue with the remote conversation
partner. FSM_RECEIVE_MGR issues a Deallocate type(ABEND_PROG) to ter
minate the conversation abnormally.

• CONVERSATION_FAILURE-LU 6.2 PS returns one of the following return
codes on a verb that OS has issued:

Deallocate NORMAL-(if received before the SEMU is received com
pletely). Although this is an improper OS usage of LU 6.2, the conversa
tion is no longer available, and the condition is signalled as a
CONVERSATION_FAILURE. It is logged at the local DSU as an improper
OS usage of LU 6.2, however.

Deallocate ABEND_PROG-The remote conversation partner has detected
an exception that prevents further communication and has issued a
Deallocate type(ABEND_PROG), or the remote LU has signalled a remote
program abend condition.

RESOURCE_FAILURE-The session carrying the conversation has been lost.

In each of these cases, the conversation is no longer active, and OS issues
a Deallocate type(LOCAL) to terminate the local side of the conversation.

• ERP _COMPLETE-A SEMU has been received successfully, and the remote
conversation partner has terminated the conversation, which is indicated by
a Deallocate NORMAL being returned by LU 6.2 PS to a Receive_And_Wait
verb. FSM_RECEIVE_MGR terminates the local side of the conversation
with Deallocate type(LOCAL) and logs the exception information sent by the
remote conversation partner.

FSM_RECEIVE_MGR-RCV _EXPT State: In this state, the receive manager
waits for a report on the progress of the exception protocol following the
detection of an exception by the local conversation partner. The signals in this
state have the following meanings:

• RCV_SIDE_EXCEPT- FSM_REMU_ENCODE detected an exception in
building the REMU. This is not an exception on the conversation, but rather
an exception detected at the local DSU. The exception protocol cannot con
tinue and FSM_RECEIVE_MGR issues a Deallocate type(ABEND_PROG) to
signal this to the remote conversation partner.

• PROTOCOL_ERROR-This exception occurs if LU 6.2 PS returns a
PROG_ERROR_PURGING to a Send_Data verb used by FSM_REMU_ENCODE.
The local conversation partner must assume that reliable communication
cannot continue with the remote conversation partner. FSM_RECEIVE_MGR
issues a Deallocate type(ABEND_PROG) to terminate the conversation abnor
mally.

• CONVERSATION_FAILURE-LU 6.2 PS returns one of the following return
codes on a verb that OS has issued:

Deallocate ABEND_PROG-The remote conversation partner has detected
an exception that prevents further communication, and has issued a
Deallocate type(ABEND_PROG), or the remote LU has signalled a remote
program abend condition.

RESOURCE_FAILURE-The session carrying the conversation has been lost.

Chapter 3. Implementation Model 315

Deallocate NORMAL-This return code is returned as a conversation
exception in the following circumstances:

The local and remote conversation partners have both issued
Send_Error verbs, but the exception indication is not received by the
remote conversation partner until it (the remote conversation partner)
issues a Deallocate type(FLUSH). In this case, the conversation is gone,
but no improper DS usage of LU 6.2 has occurred. The local conversa
tion partner cannot send the REMU, and must simply log the exception
locally.

In each of the CONVERSATION_FAILURE cases, the conversation is no
longer active, and DS issues a Deallocate type(LOCAL) to terminate the local
side of the exception.

• ERP _COMPLETE-A REMU has been sent successfully to the remote con
versation partner. DS issues a Deallocate type(FLUSH) to terminate the con
versation and signal the remote conversation partner that the exception
protocol is complete.

316 SNA/Distribution Services Reference

Chapter 3. Implementation Model 317

Function: This finite-state machine describes the functional i:;rocessing for the receive manager of
DS_Receive transaction program. For a further description, see "FSM_RECEIVE_MGR" on
page 313.

This FSM gets control from one of the following:

• Signals from finite-state machines providing common services:

- START_TRANSACTION from FSM_SCHED_MGR
- OPERATIONS_COMPLETE from FSM_OPERATIONS_MGR

• Signals from LU 6.2 presentation services:

ATTACH from LU 6.2 when DS_Send issues Allocate
OK from Allocate, Deallocate FLUSH, Deallocate LOCAL, Deallocate ABEND

- ALLOC_PARAM_ERROR from Allocate
ALLOCATION_ERROR from Allocate

• Signals from lower-level DS_Receive finite-state machines:

END_DMUS from FSM_DIST_DECODE_CONTROL
SEND_SIDE_EXCEPT from FSM_DIST_DECODE_CONTROL

- RCV_SIDE_EXCEPT
from FSM_DIST_DECODE_CONTROL

- from FSM_REMU_ENCODE
- from FSM_SEMU_DECODE
PROTOCOL_ ERROR

from FSM_DIST _DECODE_ CONTROL
- from FSM_REMU_ENCODE
- from FSM_SEMU_DECODE

- CONVERSATION_FAILURE
from FSM_DIST_DECODE_CONTROL

- from FSM_REMU_ENCODE
- from FSM_SEMU_DECODE
ERP _COMPLETE from FSM_SEMU_DECODE, FSM_REMU_ENCODE

318 SNA/Distribution Services Reference

States

DEC SND RCV OPS
RESET ALLOC PEND EXPT EXPT ERP PEND END

Inputs 01 02 03 04 05 06 07 08

ATTACH 3i I I I I I I I

START TRANSACTION 2a I I I I I I I

OK I 3b I I I 7c I 1
--

ALLOC PARAM ERROR I 7c I I I I I I

ALLOCATION ERROR I 6d I I I I I I

END DMUS I I 8d I I I I I

SEND SIDE EXCEPTION I I 4e I I I I I.

RCV SIDE EXCEPTION I I Sf 6d 6g I I I

PROTOCOL ERROR I I 6g 6g 6g I I I

CONVERSATION FAILURE I I 6d 6d 6d I I I

ERP COMPLETE I I I 6d 6h I I I

OPERATIONS COMPLETE I I I I I I 1 I

Output Function
Code
a Signal LU 6.2 presentation services with ALLOCATE to establish the conversation with DS_Send.

b Signal FSM_DIST_DECODE_CONTROL with DECODE to control the receiving and decoding of the
DMU from DS_Send.

c Signal FSM_OPERATIONS_MGR with LOG_MESSAGE_EXCEPT for logging and operator messages.

d Signal LU 6.2 presentation services with DEALLOCATE_LOCAL to deallocate the conversation
locally.

e Signal FSM_SEMU_DECODE with DECODE_SEMU to control the protocols for an exception encount-
ered by DS_Send.

f Signal FSM_REMU_ENCODE with ENCODE_REMU to control the building and sending of the REMU
used to provide exception information from DS_Receive to DS_Send.

g Signal LU 6.2 presentation services with DEALLOCATE_ABEND to deallocate the conversation abnor-
mally.

h Signal LU 6.2 presentation services with DEALLOCATE_FLUSH to signal the partner that no more
DMUs should be sent.

i Signal LU 6.2 presentation services with GET_ATTRIBUTES. Signal FSM_DIST_DECODE_CONTROL
with DECODE to control the receiving and decoding of the DMU from DS_Send.

Chapter 3. Implementation Model 319

FSM_DIST _DECODE_CONTROL
This machine sequences the receiving of the OMU at a DSU and responds prop
erly to the Confirm request from the remote conversation partner.

This machine checks that the parts of the OMU are received and that they can
be parsed without exceptions. Once the entire OMU has been received and
parsed, the machine waits for a Confirm from the remote conversation partner
(OS_Send) and causes the distribution to be put on the router-director queue.
After these operations have been successfully completed, Confirmed is sig
nalled to the remote conversation partner.

Exceptions in decoding result in a RCV _SIDE_EXCEPT signal to
FSM_RECEIVE_MGR. Exceptions detected by OS_Send Indicating that
DS_Receive has violated the OS protocols regarding usage of LU 6.2 result in a
PROTOCOL_ERROR signal to FSM_RECEIVE_MGR. Any other exceptions
detected by DS_Send during transmission of the DMU result in a
SEND_SIDE_EXCEPT signal to FSM_RECEIVE_MGR, and exceptions on the con
versation result in a CONVERSATION_FAILURE signal to FSM_RECEIVE_MGR.

Exceptions in receiving a DMU are reported by
FSM_RCV_CONVERSATION_MGR. If the initial call to
FSM_RCV_CONVERSATION_MGR does not return a signal of OK, this machine
passes the available exception information to FSM_RECEIVE_MGR. If a subse
quent call to FSM_RCV_CONVERSATION_MGR results in an exception, this
machine signals FSM_SRVR_OBJECT_WRITE with CLEANUP_OBJECT to delete
any portion of the server object that may exist.

When a OMLI/Confirm/Confirmed sequence is complete, this machine enters a
state to wait for the next DMU to flow on the LU 6.2 conversation. When the
remote conversation partner deallocates the conversation normally, this
machine signals FSM_RECEIVE_MGR with END_DMUS to indicate the conversa
tion should be terminated locally.

If FSM_RCV_CONVERSATION_MGR returns a signal of DEALLOCATE_NORMAL
before the OMLI/Confirm/Confirmed sequence is complete, this machine signals
FSM_RECEIVE_MGR with CONVERSATION_FAILURE.

The exceptions that can be signalled from this machine are
SEND_SIDE_EXCEPT, RCV_SIDE_EXCEPT, CONVERSATION_FAILURE, and
PROTOCOL_ ERROR. The handling of these exceptions is described in
"FSM_RECEIVE_MGR-DEC_PEND State" on page 313. Although it is not
shown in this machine, for an unsuccessful server function,
FSM_OPERATIONS_MGR should also be signalled with
MESSAGE_TO_OPERATOR and passed the message that the OS lock count on
the server object could not be successfully decremented.

320 SNA/Distribution Services Reference

Function: This finite-state machine describes the functional processing for controlling the receiving and
parsing of the DMUs. For a further description, see "FSM_DIST_DECODE_CONTROL" on
page 320.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines:

- DECODE from FSM_RECEIVE_MGR

• Signals from lower-level DS_Receive finite-state machines:

OBJECT_OK from FSM_SRVR_OBJECT_WRITE
OBJECT_NOT_OK from FSM_SRVR_OBJECT_WRITE
OK from FSM_RCV_CONVERSATION_MGR
SEND_SIDE_EXCEPT from FSM_RCV_CONVERSATION_MGR
CONVERSATION_FAILURE from FSM_RCV_CONVERSATION_MGR
PROTOCOL_ERROR from FSM_RCV_CONVERSATION_MGR
END_DMUS from FSM_RCV_CONVERSATION_MGR
ENQ_SCHED_OK from FSM_RCV_ENQ_SCHED
ENQ_SCHED_NOT_OK from FSM_RCV_ENQ_SCHED

• Signals from finite-state machines providing common services:

- OBJECT_OK from SERVER_MGR
- OBJECT_NOT_OK from SERVER_MGR

• Signals from "PARSER" on page 359

PARSE_ OK
PARSE_ OK_ OBJECT
PARSE_ COMPLETE
PARSE_NOT_OK

Chapter 3. Implementation Model 321

States

CON·
RCV OBJ END FIRM ENQ CON- SEND CONV PROT RCV

RST FIRST RCV PARS PEND DMU PEND SCHD FMED ERP ERP ERP ERP

Inputs 01 02 03 04 05 06 07 08 09 10 11 12 13

DECODE 2a I I I I I I I I I I I I

OK I 4b 4b I I I Sf I 2a I I I I

SEND SIDE EXCEPTION I 1h 10m I I I 100 I I I I I I

CONVERSATION
FAILURE I 1i 11m I I I 110 I I I I I I

PROTOCOL ERROR I 1j 12m I I I 120 I I I I I I

END DMUS I 1k 11m I I I I I I I I I I

PARSE OK I I I 3a I I I I I I I I I

PARSE OK OBJECT I I I 5c I I I I I I I I I

PARSE COMPLETE I I I 6d I I I I I I I I I

PARSE NOT OK I I I 13m I I I I I I I I I

OBJECT OK I I I I 3a 7e I I I 1h 1 i 1j 1n

OBJECT NOT OK I I I I 1n 1n I I I 1h 11 1j 1n

ENQ SCHED OK I I I I I I I 9g I I I I I

ENQ SCHED NOT OK I I I I I I I 1n I I I I I

322 SNA/Distribution Services Reference

Output Function
Code
a Signal FSM_RCV_CONVERSATION_MGR with RECEIVE_BUFFER to receive information from LU 6.2

PS.

b Signal PARSER with PARSE to parse information received.

c Signal FSM_SRVR_OBJECT_WRITE with WRITE_OBJECT to write the information and initialize for
writing if not yet initialized.

d Signal FSM_SRVR_OBJECT_WRITE with END_DMU to terminate writing.

e Signal FSM_RCV_CONVERSATION_MGR with WAIT_CONFIRM to indicate that a DMU has been com-
pletely received and that the CONFIRM indicator should be the next indicator from DS_Send.

f Signal FSM_RCV_ENQ_SCHED with ENQ_SCHED to place the distribution on the router-director
queue and schedule DS_Router_Director.

g Signal FSM_RCV_CONVERSATION_MGR with CONFIRMED to indicate that DS_Receive has accepted
responsibility for the DMU and that Confirmed should be sent to DS_Send.

h Signal FSM_RECEIVE_MGR with SEND_SIDE_EXCEPT to indicate that an exception has occurred in
DS_Send and that the sender exception protocols should be followed.

i Signal FSM_RECEIVE_MGR with CONVERSATION_FAILURE to indicate that an exception has
occurred in the conversation between DS_Send and DS_Receive.

j Signal FSM_RECEIVE_MGR with PROTOCOL_ERROR to indicate that a protocol exception has
occurred in the conversation between DS_Send and DS_Receive.

k Signal FSM_RECEIVE_MGR with END_DMUS to indicate that the Deallocate NORMAL return code has
been received from DS_Send indicating that DS_Send will send no more DMUs.

m Signal FSM_SRVR_OBJECT_WRITE with CLEANUP _OBJECT to delete any portion of the object that
may exist. This is for exception cleanup and consists of a Terminate_Write, if necessary, followed by
decrementing the OS lock count.

n Signal FSM_RECEIVE_MGR with RCV_SIDE_EXCEPT to indicate that an exception has occurred in
parsing or in scheduling further processing, and that the receiver exception protocols should be fol-
lowed.

0 Signal SERVER_MGR with DECREMENT_OBJ_LOCK to indicate that the OS lock count should be dee-
remented and the object deleted if the lock count reaches 0. If no server object exists,
SERVER_MGR returns OBJECT_OK.

Chapter 3. Implementation Model 323

FSM_RCV_ENQ_SCHED
This machine controls the placing of the distribution on the router-director
queue and the scheduling of DS_Router_Director. The request for this function
is from FSM_DIST_DECODE_CONTROL.

The sequence of functions performed is as follows:

• Issue WRITEQ to put the distribution on the router-director queue.
• Issue the request to start the DS_Router_Director transaction program.
• Issue RELEASEQ to remove the in-use mark from the entry on the router

director queue so that it is available for processing.

Exceptions can occur in enqueuing or scheduling. For enqueuing or scheduling
exceptions, this machine signals to SERVER_MGR to decrement the server
object DS lock count, and delete the server object if both the DS and agent lock
counts are 0. For scheduling exceptions, the queue entry is dequeued.

For any exception, this machine signals ENQ_SCHED_NOT_OK to
FSM_DIST_DECODE_CONTROL. Although it is not shown in this machine, for
an unsuccessful server, queue, or scheduling function,
FSM_OPERATIONS_MGR should also be signalled with
MESSAGE_TO_OPERATOR and passed the message that the function could not
be completed, and that, while FSM_RCV _ENQ_SCHED was handling the excep
tion, another exception occurred.

324 SNA/Distribution Services Reference .

Chapter 3. Implementation Model 325

Function: This finite-state machine describes the functional processing in DS_Receive to place the distrib
ution on the router-director queue and schedule DS_Router _Director. For a further description,
see "FSM_RCV_ENQ_SCHED" on page 324.

Inputs
ENQ SCHED

QUEUE OK

QUEUE NOT OK

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines:

- ENQ_SCHED from FSM_DIST_DECODE_CONTROL

• Signals from finite-state machines providing common services:

OBJECT_OK from SERVER_MGR
OBJECT_NOT_OK from SERVER_MGR
QUEUE_OK from QUEUE_MGR
QUEUE_NOT_OK from QUEUE_MGR
SCHED_FUNCTION_OK from FSM_SCHED_MGR
SCHED_FUNCTION_NOT_OK from FSM_SCHED_MGR

States

SCH ED RELQ
RESET ENQ PEND PEND PEND

01 02 03 04

2a I I I

I 3b I 1d

I Sc I 5c

SCHED FUNCTION OK I I 4g I

SCHED FUNCTION NOT OK I I 6e I

OBJECT OK I I I I

OBJECT NOT OK I I I I

326 SNA/Distribution Services Reference

ERP REL ERP DEQ

05 06

I I

I Sc

I Sc

I I

I I

1f I

1f I

Output Function
Code
a Signal QUEUE_MGR with WRITEQ to place the distribution on the router-director queue.

b Signal FSM_SCHED_MGR with START_REQUEST to schedule DS_Router_Director.

c Signal SERVER_MGR with DECREMENT_OBJ_LOCK to indicate that the OS lock count should be dee-
remented and the object deleted if both the OS and agent lock counts reach 0. If no server object
exists, SERVER_MGR returns OBJECT_OK.

d Signal FSM_DIST_DECODE_CONTROL with ENQ_SCHED_OK to indicate that the distribution was sue-
cessfully placed on the router-director queue and that DS_Router_Director was scheduled.

e Signal QUEUE_MGR with DEQ to remove the distribution from the router-director queue.

f Signal FSM_DIST_DECODE_CONTROL with ENQ_SCHED_NOT_OK to indicate that an exception
occurred in placing the distribution on the router-director queue, or in scheduling
DS_Router_Director. Cleanup of the queues and the object has taken place.

g Signal QUEUE_MGR with RELEASEQ to remove the in-use mark from the entry on the router-director
queue. The entry is then available for processing by DS_Router _Director.

Chapter 3. Implementation Model 327

FSM_SRVR_ OBJECT_ WRITE
This machine controls the writing of the server object. The request for this
function is from FSM_OIST_OECOOE_CONTROL.

For an input signal of WRITE_ OBJECT, this machine signals WRITE to the server
manager. For an input signal of ENO_OMU, this machine signals
TERMINATE_WRITE to the server manager. For an input signal of
CLEANUP _OBJECT, prior to a successful lnitiate_Write operation, this machine
signals OBJECT_OK. For any subsequent signal of CLEANUP _OBJECT, this
machine signals CLEANUP _OBJECT to SERVER_MGR to perform a
Terminate_Write operation and decrement the OS server object lock.

The general server is used to write the server object. If direct store is to be
performed, the receive-time processing required for direct store is performed
prior to writing the server object. Based on the receive-time processing, the
specific server can be used to store the server object rather than the general
server. For a description of direct store, see Chapter 1. The server name is
passed to SERVER_MGR.

Exceptions can occur in writing the server object. For any exception occurring
after the initial WRITE, a Terminate_Write is issued and the OS lock count dec
remented. In case of a failure from the server, FSM_OPERATIONS_MGR is sig
nalled with MESSAGE_TO_OPERATOR to notify the operator that a server object
cannot be accessed as requested. This function is not shown in this machine.

Exceptions in writing result in an OBJECT_NOT_OK signal to
FSM_OIST_OECOOE_CONTROL and RCV_SIOE_EXCEPT signal to
FSM_RECEIVE_MGR. For a further description of these exceptions and the
processing that results, see "FSM_RECEIVE_MGR-OEC_PENO State" on
page 313.

328 SNA/Distribution Services Reference

Function:

Inputs

This finite-state machine describes the functional processing for writing the object. For a
further description, see "FSM_SRVR_OBJECT_WRITE" on page 328.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines:

WRITE_OBJECT from FSM_DIST_OECOOE_CONTROL
- END_OMU from FSM_DIST_OECODE_CONTROL
- CLEANUP_OBJECT from FSM_OIST_OECOOE_CONTROL

• Signals from machines providing common services:

- OBJECT_OK from SERVER_MGR
OBJECT_NOT_OK from SERVER_MGR

States

RESET WRT RCV PEND

01 02 03

TRM WRT ERP

04 05

WRITE OBJECT 2a I 2a I I

END DMU -b I 4f I I

CLEANUP OBJECT -b I Se I I

OBJECT OK I 3b I 1b 1d

OBJECT NOT OK I Se I 5c 1d

Output Function
Code
a Signal SERVER_MGR with WRITE to write a portion of the object.

b Signal FSM_OIST_OECODE_CONTROL with OBJECT_OK to indicate that the portion of the object has
been written, and the access terminated if the end of the DMU has been reached. If no object exists,
OK is also signalled.

c Signal SERVER_MGR with OECREMENT_OBJ_LOCK to decrement the OS lock count.

d Signal FSM_OIST_OECODE_CONTROL with OBJECT_NOT_OK to indicate that an exception has
occurred during the writing of the object.

e Signal SERVER_MGR with CLEANUP _OBJECT to delete any portion of the object that may exist. This
is for exception cleanup and consists of a Terminate_Write, if necessary, followed by decrementing
the OS lock count.

f Signal SERVER_MGR with TERMINATE_WRITE to terminate the access to the object.

Chapter 3. Implementation Model 329

FSM_RCV _CONVERSATION_MGR

Return Code

ALLOCATION ERROR
DEALLOCATE NORMAL

DEALLOCATE ABEND PROG

PROG ERROR TRUNC
PROG ERROR NO TRUNC
RESOURCE FAILURE

FSM_RCV_CONVERSATION_MGR issues Receive_And_Wait for receiving the
DMU and the confirm indicator, and issues Confirmed to indicate that
DS_Receive accepts responsibility for the DMU. This machine receives input
signals from FSM_DIST _DECODE_ CONTROL.

Figure 50 classifies the possible exceptions.

Reported As Explanation

CONVERSATION_FAILURE Conversation was never allocated.
CONVERSATION_FAILURE In some cases, a protocol error was detected;

conversation tennlnated,
CONVERSATION_FAILURE Abend condition or protocol error was detected by

partner TP.
SEND_SIDE_ERROR DS_Send issued a Send_Error Indicating an error.
SEND SIDE ERROR DS_Send issued a Send_Error indicating an error.
CONVERSATION_FAILURE Conversation was lost because the session was lost.

Figure 50. Classification of NOT-OK Return Codes by FSM_RCV_CONVERSATION_MGR

330 SNA/Distribution Services Reference

Chapter 3. Implementation Model 331

Function: This finite-state machine describes the functional r::rocessing to control receiving the data from
an adjacent DSU. For a further description, see "FSM_RCV_CONVERSATION_MGR" on
page 330.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines:

- RECEIVE_BUFFER from FSM_DIST_DECODE_CONTROL
- WAIT_CONFIRM from FSM_DIST_DECODE_CONTROL
- CONFIRMED from FSM_DIST_DECODE_CONTROL

• Signals from LU 6.2 presentation services:

ALLOCATION_ERROR from Receive_And_Walt
RESOURCE_FAILURE from Receive_And_Wait

- PROG_ERROR from Receive_And_Wait
DEALLOCATE_ABEND from Receive_And_Wait
DEALLOCATE_NORMAL from Receive_And_Wait
RECEIVE_AND_WAIT_DATA_COMPLETE from Receive_And_Wait
RECEIVE_AND_WAIT _DATA_INCOMPLETE from Receive_And_Wait

- RECEIVE_AND_WAIT_LL_TRUNCATED from Receive_And_Wait
RECEIVE_AND_WAIT_SEND from Receive_And_Wait

- RECEIVE_AND_WAIT_CONFIRM from Receive_And_Walt
RECEIVE_AND_WAIT _CONFIRM_DEALLOCATE from Receive_And_Wait

States

CONFIRM
RESET RCV PEND

Inputs 01 02 03

RECEIVE BUFFER 2a I I

WAIT CONFIRM 3a I I

CONFIRMED -b I I

RCV AND WAIT DATA COMPLETE I 1c 1e

RCV AND WAIT DATA INCOMPLETE I 1c 1e

RCV AND WAIT LL TRUNCATED I -a 1e

RCV AND WAIT SEND I 1e 1e

RCV AND WAIT CONFIRM I 1e 1c

RCV AND WAIT CONFIRM DEALLOCATE I 1e 4c

ALLOCATION ERROR I 1d I

DEALLOCATE NORMAL I 1f 1d

DEALLOCATE ABEND I 1d 1d

PROG ERROR I 1g 1g

RESOURCE FAILURE I 1d 1d

332 SNA/Distribution Services Reference

DEALLOC

04

1f

I

I

I

I

I

I

I

I

I

I

I

I

I

Output Function
Code
a Signal LU 6.2 presentation services with RECEIVE_AND_WAIT to indicate that data can be accepted.

b Signal LU 6.2 presentation services with CONFIRMED to indicate that responsibility for the DMU has
been accepted by DS_Receive.
Signal FSM_DIST_DECODE_CONTROL with OK to indicate that the LU 6.2 request completed sue-
cessfully.

c Signal FSM_DIST_DECODE_CONTROL with OK to indicate that the LU 6.2 request completed sue-
cessfully.

d Signal FSM_DIST_DECODE_CONTROL with CONVERSATION_FAILURE to indicate that an exception
occurred on the conversation between DS_Send and OS_ Receive.

e Signal FSM_DIST_DECODE_CONTROL with PROTOCOL_ERROR to indicate that an error in the proto-
cols has occurred between DS_Send and DS_Receive.

f Signal FSM_DIST_DECODE_CONTROL with END_DMUS. This indicates that either a Deallocate
NORMAL has been received from DS_Send, or the conversation is already deallocated; i.e., DS_Send
issued Deallocate TYPE(SYNC_LEVEL) on the previous DMU. Receiving a Deallocate NORMAL after the
prefix is a protocol error, but is treated as a conversation failure because the conversation resource
is no longer available.

g Signal FSM_DIST_DECODE_CONTROL with SEND_SIDE_EXCEPT to indicate that DS_Send has
encountered an exception.

Chapter 3. Implementation Model 333

FSM_SEMU_DECODE
This machine receives exception information from DS_Send after DS_Send has
encountered an exception in building or sending a DMU. This function is
requested from FSM_RECEIVE_MGR signalling DECODE_SEMU.

The OS protocol for this exception is:

• Issue Receive_And_Wait for the SEMU forward abort indicator.
• Parse the SEMU containing the exception information.·
• Issue Receive_And_Wait for the Deallocate NORMAL

Once FSM_SEMU_DECODE receives and parses the SEMU, it passes the excep
tion fields to FSM_RECEIVE_MGR with the signal ERP _COMPLETE. Exceptions
can occur in receiving the SEMU on the LU 6.2 conversation or in parsing the
exception information. For a further description of these exceptions and the
processing that results, see "FSM_RECEIVE_MGR-SND_EXPT State" on
page 314.

334 SNA/Distribution Services Reference

Chapter 3. Implementation Model 335

Function: This finite-state machine describes the functional processing for exception processing in
OS_Receive when the exception occurred on the sending side. For a further description, see
"FSM_SEMU_DECODE" on page 334.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines:

- DECODE_SEMU from FSM_RECEIVE_MGR

• Signals from PARSER:

- PARSE_NOT_OK
- PARSE_COMPLETE

• Signals from LU 6.2 presentation services:

- RCV_AND_WAIT_SEND
RCV_AND_WAIT_CONFIRM
RCV_AND_WAIT_CONFIRM_DEALLOCATE
RCV_AND_WAIT_DATA_COMPLETE
RCV_AND_WAIT_DATA_INCOMPLETE
RCV _AND _WAIT _LL_ TRUNCATED
RESOURCE_FAILURE

- PROG_ERROR
DEALLOCATE_ABEND
DEALLOCATE_NORMAL

RESET

Inputs 01

DECODE SEMU 2a

RCV AND WAIT DATA COMPLETE I

RCV AND WAIT DATA INCOMPLETE I

RCV AND WAIT LL TRUNCATED I

RCV AND WAIT SEND I

RCV AND WAIT CONFIRM I

RCV AND WAIT CONFIRM
DEALLOCATE I

DEALLOCATE NORMAL I

DEALLOCATE ABEND I

PROG ERROR I

RESOURCE FAILURE I

PARSE NOT OK I

PARSE COMPLETE I

336 SNA/Distribution Services Reference

RCV

02

I

3b

-a

-a

1c

1c

1c

1e

1e

1c

1e

I

I

States

DECODE
SEMU

03

I

I

I

I

I

I

I

I

I

I

I

5a

4a

DEALLOC RCV ERP

04 05

I I

1c 1c

1c 1c

1c 1c

1c 1c

1c 1c

1c 1c

1d 1f

1e 1e

1c 1c

1e 1e

I I

I I

Output Function
Code
a Signal LU 6.2 presentation services with RECEIVE_AND_WAIT to receive exception information from

DS_Send.

b Signal PARSER with PARSE_SEMU to parse the SEMU.

c Signal FSM_RECEIVE_MGR with PROTOCOL_ERROR to indicate that the proper protocols were not
followed for exception processing.

d Signal FSM_RECEIVE_MGR with ERP _COMPLETE to indicate that exception processing completed
and that appropriate deallocation should take place.

e Signal FSM_RECEIVE_MGR with CONVERSATION_FAILURE to indicate that exception processing did
not successfully complete.

f Signal FSM_RECEIVE_MGR with RCV_SIDE_EXCEPT to indicate that an exception occurred in parsing
the SEMU.

Chapter 3. Implementation Model 337

FSM_REMU_ENCODE
This machine indicates to DS_Send that an exception has occurred during the
receiving or parsing of the DMU and passes to DS_Send the exception informa
tion in the REMU. The function is requested by FSM_RECEIVE_MGR signalling
ENCODE_REMU. The exception information required for building the REMU is
passed to FSM_REMU_ENCODE.

The OS protocol for this processing is:

• Issue a Send_Error to LU 6.2 presentation services.
• Build an REMU containing the exception information and the name of the

DSU detecting the exception.
• Issue Send_Data(s) to LU 6.2 presentation services for the REMU.

Exceptions can occur in the encoding process, and in sending the REMU on the
LU 6.2 conversation. For a further description of these exceptions and the proc
essing that results, refer to "FSM_RECEIVE_MGR-RCV_EXPT State" on
page 315.

338 SNA/Distribution Services Reference

Function:

Inputs

This finite-state machine describes the functional processing for exception processing in
DS_Receive when the exception occurred on the receiving side. For a further description, see
"FSM_REMU_ENCODE" on page 338.

This FSM gets control from one of the following:

• Signals from higher-level DS_Receive finite-state machines:

- ENCODE_REMU from FSM_RECEIVE_MGR

• Signals from LU 6.2 presentation services:

OK from Send~Error, Send_Data
RESOURCE_FAILURE from Send_Error, Send_Data
PROG_ERROR from Send_Data
DEALLOCATE_ABEND from Send_Error, Send_Data
DEALLOCATE_NORMAL from Send_Error

RESET

01

States

SEND_ERR
PEND SEND REMU

02 03

ENCODE REMU 2a I I

OK I 3b 1c

DEALLOCATE ABEND I 1d 1d

PROG ERROR I I 1e

RESOURCE FAILURE I 1d 1d

DEALLOCATE NORMAL I 1d I

Output Function
Code
a Signal LU 6.2 presentation services with SEND_ERROR to indicate to the partner that an exception

was encountered on the receiving side.

b Build a REMU with the appropriate exception code (using a prefix correlation if one existed in the
DMU prefix), and signal LU 6.2 presentation services with SEND_DATA to send the encoded informa-
tion to the partner DSU.

c Signal FSM_RECEIVE_MGR with ERP _COMPLETE to indicate that exception processing has been
completed and that appropriate deallocation should take place.

d Signal FSM_RECEIVE_MGR with CONVERSATION_FAILURE to indicate that an exception has
occurred in the conversation between DS_Send and DS_Receive.

e Signal FSM_RECEIVE_MGR with PROTOCOL_ERROR to indicate that the proper exception protocols
were not followed for exception processing.

Chapter 3. Implementation Model 339

Common Services
These machines provide functions to all the other machines in the formal
model. Some implementations will provide some of these functions as part of
their runtime environment; others will package them differently. Some of these
functions are provided by all OS implementations:

• FSM_OPERATIONS_MGR

All OS implementations support some form of the release and hold func
tions for the queues, if queues are supported at the OS level of imple
mentation.

All OS implementations provide some logging when exceptions are
detected. See Appendix C and Appendix E for rules for logging, and
when logging takes place.

• FSM_SCHEO_MGR

The formal model presents two scheduling triggering mechanisms: Sched
uling based on the time of day, and scheduling based on the number of
next-OSU queue entries. These scheduling mechanisms are electives. See
Appendix C for electives.

340 SNA/Distribution Services Reference

Operations

FSM_OPERATIONS_MGR

FSM_ QUEUE_ FSM_ FSM_ SERVER_ FSM_ FSM_
EXCEPT_ MGR QUEUE_ SCHED_ MGR MESSAGE REPORT
TYPE * * CONTROL* MGR * * *

L L i
QUEUE_ FSM_ FSM_
MGR SCHED_ LOG

* MGR * .___ '--- .____

* indicates those finite-state machines not formally specfied.

For more details regarding the finite-state machines see:

• "FSM_OPERATIONS_MGR" on page 342
• "FSM SCHED MGR" on page 351
• "FSM)XCEPT_TYPE" on page 348
• "QUEUE_MGR" on page 357
• "FSM_QUEUE_CONTROL" on page 348

• "SERVER_MGR" on page 354
• "FSM_MESSAGE" on page 348
• "FSM_REPORT" on page 349
• "FSH_LOG" on page 349

Figure 51. Operations FSM Hierarchy

FSM_LOG
*

l
FSM_
MESSAGE

*

Chapter 3. Implementation Model 341

FSM_ OPERATIONS_MGR
This machine controls the logging of exceptions, messages to the operator,
queue control, and generation of reports. FSM_OPERATIONS_MGR signals
other FSMs to perform each of the functions. The requests for these functions
are as follows:

1. Exceptions in DS_Receive

FSM_RECEIVE_MGR signals FSM_OPERATIONS_MGR with
LOG_MESSAGE_EXCEPT to perform the following:

• Logging of an exception encountered in DS_Receive or indicated to
DS_Receive by DS_Send.

• Sending a message to the operator.

2. Exceptions in DS_Send

FSM_SEND_MGR signals FSM_OPERATIONS_MGR with:

a. SEND_MU_EXCEPT to perform the following:
• Logging of an exception encountered in DS_Send or indicated to

DS_Send by DS_Receive.
• Sending a message to the operator.
• Queue control.
• Determination of retriable and nonretriable exceptions.
• Releasing of the queue entry if retriable.
• Removing of the queue entry, decrementing the server object OS

lock count, and generating a report if nonretriable.
b. LOG_MESSAGE_EXCEPT, to perform the following, ifthe exception is

not on a particular MU:
• Logging of the exception condition.
• Sending a message to the operator.

3. Exceptions in DS_Router_Director

FSM_ROUTING_DIRECTING_MGR signals this machine with
LOG_MESSAGE_EXCEPT, to perform the following, if the exception is not on
a particular MU:

• Logging of the exception condition.
• Sending a message to the operator.

FSM_DIRECTING_MGR and FSM_ROUTING_MGR signal
FSM_OPERATIONS_MGR with ROUTING_DIRECTING_EXCEPT to perform the
following:

• Logging of the exception condition.
• Sending a message to the operator.
• Generation of a report.

4. Exceptions during exception processing

Any machine signals FSM_OPERATIONS_MGR with
MESSAGE_TO_OPERATOR when exception processing is being performed,
and an exception occurs during this processing. FSM_OPERATIONS_MGR
signals FSM_MESSAGE to send a message to the operator. This generally
signals conditions that the DSU cannot recover and that require assistance
from the operator to clear up.

342 SNA/Distribution Services Reference

5. Other applications

An operator signals FSM_OPERATIONS_MGR with SEND_RELEASE_HOLD,
or RCV_RELEASE_HOLD to start DS_Send or DS_Receive transaction pro
grams.

\

Chapter 3. Implementation Model 343

344 SNA/Distribution Services Reference

Function: This finite-state machine describes the functional processing in operations for generating
reports, logging, sending operator messages, and handling queue control. For a further
description, see "FSM_OPERATIONS_MGR" on page 342.

This FSM gets control from one of the following:

• Signals from routing and directing finite-state machines:

ROUTING_DIRECTING_EXCEPT from FSM_ROUTING_MGR, FSM_DIRECTING_MGR
LOG_MESSAGE_EXCEPT from FSM_ROUTING_DIRECTING_MGR
MESSAGE_TO_OPERATOR from any routing and directing finite-state machines needing
to report an exception on an exception

• Signals from distribution transport finite-state machines:

SEND_MU_EXCEPT from FSM_SEND_MGR
LOG_MESSAGE_EXCEPT from FSM_RECEIVE_MGR, FSM_SEND_MGR
MESSAGE_TO_OPERATOR from any distribution transport finite-state machines needing
to report an exception on an exception

• Signals from other applications (UPM):

- SEND_RELEASE_HOLD from UPM_MSG_FROM_OPERATOR
- RCV_RELEASE_HOLD from UPM_MSG_FROM_OPERATOR

• Signals from lower-level operations finite-state machines:

RETRIABLE_EXCEPT from FSM_EXCEPT_TYPE
NONRETRIABLE_EXCEPT from FSM_EXCEPT_TYPE
QUEUE_CONTROL_COMPLETE from FSM_QUEUE_CONTROL
LOGGING_OK from FSM_LOG
MESSAGE_OK from FSM_MESSAGE
REPORT_COMPLETE from FSM_REPORT

• Signals from finite-state machines providing common services:

QUEUE_OK from QUEUE_MGR
QUEUE_NOT_OK from QUEUE_MGR
SCHED_FUNCTION_OK from FSM_SCHED_MGR
SCHED_FUNCTION_NOT_OK from FSM_SCHED_MGR
OBJECT_OK from SERVER_MGR
OBJECT NOT OK from SERVER_MGR

Chapter 3. Implementation Model 345

States

QUEUE EXPT DEC START
RESET CTRL TYPE RELQ DEQ. LOCK REPT LOG MSG TRAN

Inputs 01 02 03 04 05 06 07 08 09 10

SEND MU EXCEPTION 2b I I I I I I I I I

LOG MESSAGE EXCEPTION Sc I I I I I I I I I

ROUTING DIRECTING
EXCEPTION 7e I I I I I I I I I

MESSAGE TO OPERATOR 9d I I I I I I I I I

SEND RELEASE HOLD 10h I I I I I I I I I

RCV RELEASE HOLD 10i I I I I I I I I I

RETRIABLE EXCEPTION I I 4k I I I I I I I

NONRETRIABLE EXCEPTION I I 5f I I I I I I I

REPORT COMPLETE I I I I I I Sc I I I

QUEUE CONTROL COMPLETE I 3a I I I I I I I I

LOGGING OK I I I I I I I 9d I I

MESSAGE OK I I I I I I I I 1g I

QUEUE OK I I I Sc 6m I I I I I

QUEUE NOT OK I I I Sc 6m I I I I I

SCHED FUNCTION OK I I I I I I I I I 1g

SCHED FUNCTION NOT OK I I I I I I I I I 1j

OBJECT OK I I I I I 7e I I I I

OBJECT NOT OK I I I I I 7e I I I I

348 SNA/Oistribution Services Reference

Output Function
Code
a Signal FSM_EXCEPT_TYPE with EXCEPTION_COOE to determine if the exception is retriable or

nonretri able.

b Signal FSM_QUEUE_CONTROL with SET_QUEUE_CONTROL to determine if the queues for the con-
nection should be held, and, if so, then setting the hold.

c Signal FSM_LOG with LOG_EXCEPT to log the appropriate operands for the exception.

d Signal FSM_MESSAGE with DISPLAY_MESSAGE to display an exception message to the operator.

e Signal FSM_REPORT with GENERATE_REPORT to generate any requested asynchronous reports.

f Signal QUEUE_MGR with DEQ to remove the distribution from the next-DSU queue. The exception
was determined to be nonretriable.

g Signal calling machine with OPERATIONS_COMPLETE to indicate that the appropriate operations
functions have been completed. These may not have been completed successfully.

h Signal FSM_SCHED_MGR with OPR_START_SEND to indicate that an operator has requested that
the send side be released and a DS_Send transaction program be scheduled.

i Signal FSM_SCHED_MGR with OPR_START_RECEIVE to indicate that an operator has requested that
DS_Receive be scheduled so that the flow of DMUs can be resumed from DS_Send.

j Signal calling machine with OPERATIONS_NOT_OK to indicate that the appropriate operations tune-
tions have not been completed successfully.

k Signal QUEUE_MGR with RELEASEQ to remove the in-use mark from the entry on the next-DSU
queue. The exception was determined to be retriable and, following the RELEASEQ, the entry will be
available to DS_Send for processing.

m Signal SERVER_MGR with DECREMENT_OBJ_LOCK to decrement the OS lock count on the server
object. If no server object exists, SERVER_MGR returns OBJECT_OK.

Chapter 3. Implementation Model 347

FSM_EXCEPT _TYPE
Determines if an exception is retriable or nonretriable. The request for this
function is from FSM_OPERATIONS_MGR, and the exception information is
passed for analysis.

FSM_EXCEPT_TYPE determines from the exception information ifthe DMU can
possibly be transmitted at a later time, and, if so, signals
FSM_OPERATIONS_MGR with RETRIABLE_EXCEPT. If the exception is such
that something in the DMU is incorrect, and will never successfully be sent until
the DMU changes (for example, the server name), FSM_EXCEPT_TYPE signals
FSM_ OPERATIONS_MGR with NONRETRIABLE_EXCEPT.

For retriable exceptions, FSM_EXCEPT_TYPE logs the DMU unique identifier in
a retry log. On subsequent exceptions, FSM_EXCEPT _TYPE searches the retry
log, and if the exception is tried and fails some specified number of times,
FSM_EXCEPT_TYPE signals FSM_OPERATIONS_MGR with
NONRETRIABLE_EXCEPT.

FSM_QUEUE_CONTROL

FSM_MESSAGE

This machine determines if the next-DSU queues for the connection should be
held based on the exception encountered, and, if so, sets the exception-hold
indicator. The request for this function is from FSM_OPERATIONS_MGR and
the exception information is passed.

FSM_QUEUE_CONTROL examines the exception, and determines if It is reason
able that other DMUs can successfully be transmitted on the connection speci
fied. If so, the exception-hold is not set, and this machine signals
FSM_OPERATIONS_MGR with QUEUE_CONTROL_COMPLETE. An example of
this is an unknown server name that flows in the DMU. This exception does not
necessarily affect the next DMU that may flow.

If FSM_QUEUE_CONTROL examines the exception and determines that it Is
likely that more DMUs will fail, FSM_QUEUE_CONTROL sets the exception-hold
indicator on the queues for the specified connection in a table containing infor
mation about these queues. FSM_QUEUE_CONTROL signals
FSM_OPERATIONS_MGR with QUEUE_CONTROL_COMPLETE. An example of
an exception that Implies that other DMUs will likely fail is an out-of-space con
dition on the receiver side.

This machine sends a message to the operator concerning the current excep
tion condition. The request for this function is from FSM_OPERATIONS_MGR or
FSM_REPORT signalling DISPLAY _MESSAGE. The exception information
needed to format the message is passed.

FSM MESSAGE formats the message, then sends the message by signalling
UPM-=_MsG_TO_OPERATOR. FSM_MESSAGE signals the calling "machine with
MESSAGE_OK.

348 SNA/Distribution Services Reference

FSM_REPORT

FSM_LOG

This machine generates a distribution report for exceptions encountered in
DS_Router_Director, or exceptions in DS_Send that are nonretriable. The
request for this function is from FSM_OPERATIONS_MGR signalling
GENERATE_REPORT. The exception information plus the distribution on which
the exception occurred is passed. This includes the list of exception destina
tions.

FSM_REPORT manages the following:

• Issuing WRITEQ to put the distribution on the router-director queue.
• Issuing the request to schedule the transaction DS_Router_Director.
• Issuing RELEASEQ to remove the in-use mark from the queue entry on the

router-director queue to make it available for processing.

If exceptions occur in the queue or scheduling function, FSM_REPORT signals
FSM_LOG to log the failure, and FSM_MESSAGE to notify the operator. In the
case of a scheduling exception, FSM_REPORT also signals QUEUE_MGR with
DEQ to remove the entry from the router-director queue.

In addition to the above, if FSM_OPERATIONS_MGR was signalled by
FSM_DIRECTING_MGR and if the distribution could not be enqueued for
delivery to any of the local destinations, then SERVER_MGR is signalled with
BACKOUT, and any returned server report is queued for the destination agent.

FSM_REPORT signals FSM_OPERATIONS_MGR with REPORT_COMPLETE in
any case.

This machine logs the exception in the DMU exception log. The request for this
function is from FSM_OPERATIONS_MGR or from FSM_REPORT signalling
LOG_EXCEPT. The exception information is passed. The information logged for
a given condition is listed in Appendix E.

FSM_LOG signals the calling machine with LOGGING_OK.

Chapter 3. Implementation Model 349

Scheduler

FSM_SCHED_MGR

FSM_CHECK_TP FSM_CHECK_TDD FSM_CHECK_
QUEUE_DEPTH

* * *

* indicates those finite-state machines not for11ally specified.

For more details regarding the finite-state machines, see:

UPM_START_TP

*

• "FSH_SCHED_MGR" on page 351
• "FSM CHECK TP" on page 354

• "FSM_CHECK_QUEUE_DEPTH" on page 354

• "FS(CHECK)oo• on page 354 • "UPM_START_TP" on page 354

Figure 52. Scheduler Manager FSM Hierarchy

350 SNA/Distrlbution Services Reference

FSM_ SCHED _MGR
The scheduler manager issues START_TRANSACTION to UPM_START_TP for
any DS transaction program and for any destination agent program specified.
The signalling machine passes the name of the transaction program to start
and the queue identifier, if appropriate.

FSM_SCHED_MGR processes the following signals:

• OPR_START_RECEIVE to start DS_Receive.
• OPR_START_SEND to start DS_Send.
• ST ART _REQUEST to start:

DS_Router _Director.
An agent.
DS_Send.

For DS_Send, one or both of the following occur:
FSM_SCHED_MGR signals FSM_CHECK_TOD to determine ifthere
is any scheduling by time of day for the next-DSU queue. If there is,
the time of day is specified on the ST ART_ TRANSACTION and the
system resource manager starts the transaction program at the
specified time.
If no time of day is specified, FSM_SCHED_MGR signals
FSM_CHECK_QUEUE_DEPTH to determine ifthere is a q1..ieue depth
trigger for starting DS_Send for the specified next-DSU queue. If the
queue depth has been reached or no queue depth is set,
FSM_SCHED_MGR issues START_TRANSACTION for DS_Send. If
the queue depth has not been reached, this machine returns without
issuing a ST ART_ TRANSACTION.

If START_TRANSACTION is not successful, FSM_SCHED_MGR signals the
calling machine SCHED_FUNCTION_NOT_OK and passes the available excep
tion information.

Chapter 3. Implementation Model 351

Function: This finite-state machine describes the functional processing for scheduling DS_Router_Director
service transaction program, DS_Send service transaction program, DS_Receive service trans
action program, or the destination agent. For a further description, see "FSM_SCHED_MGR"
on page 351.

This FSM gets control from one of the following:

• Signals from presentation services, DS_Router _Director, OS_ Send, DS_Receive:

- START_REQUEST from FSM_LOCAL_SCHED, FSM_REMOTE_SCHED,
FSM_RCV_ENQ_SCHED, DS_RCV_ENQ_SCHED

• Signals from finite-state machines providing common services:

- OPR_START_SEND from FSM_OPERATIONS_MGR
- OPR_START_RECEIVE from FSM_OPERATIONS_MGR

• Signals from lower-level finite-state machines:

DS_ROUTER_DIRECTOR from FSM_CHECK_TP
- DS_SEND from FSM_CHECK_TP

AGENT from FSM_CHECK_TP
TOD_SET from FSM_CHECK_TOD
NO_TOD_SET from FSM_CHECK_TOD
QUEUE_DEPTH_REACHED from FSM_CHECK_QUEUE_DEPTH
NO_QUEUE_DEPTH_SET from FSM_CHECK_QUEUE_DEPTH
QUEUE_DEPTH_NOT_REACHED from FSM_CHECK_QUEUE_DEPTH
START_TRANSACTION_OK from UPM_START_TP
START_TRANSACTION_NOT_OK from UPM_START_TP

States

QUEUE
RESET TP CHECK TOD CHECK DEPTH START PEND

Inputs 01 02 03 04 05

START REQUEST 2a I I I I

OPR START SEND Sb I I I I

OPR START RECEIVE Sc I I I I

OS ROUTER DIRECTOR I Sd I I I

OS SEND I 3e I I I

AGENT I Sf I I I

TOD SET I I Sh I I

NO TOD SET I I 4i I I

QUEUE DEPTH REACHED I I I Sb I

QUEUE DEPTH NOT REACHED I I I 1g I

NO QUEUE DEPTH SET I I I Sb I

START TRANSACTION OK I I I I 1g

START TRANSACTION NOT OK I I I I 1j

352 SNA/Distribution Services Reference

Output Function
Code
a Signal FSM_CHECK_TP with CHECK_TP to determine what transaction program is being requested.

b Signal UPM_START_TP with START_TRANSACTION passing os_SEND as the target_tpn and
WHEN_sess10N_PREALLOCATED as the indicator of when the TP should be started.

c Signal UPM_START_TP with START_ TRANSACTION passing os_RECEIVE as the target_tpn and
WHEN_sess10N_PREALLOCATED as the indicator of when the TP should be started.

d Signal UPM_START_TP with START_TRANSACTION passing DS_ROUTER_DIRECTOR as the target_tpn
and NO_PREALLOCATION_REQUIRED as the indicator of when the TP should be started.

e Signal FSM_CHECK_TOD with CHECK_ TOD to determine if time of day scheduling has been defined
for this next-DSU queue.

f Signal UPM_START_TP with START_TRANSACTION passing the agent as the target_tpn and
NO_PREALLOCATION_REQUIRED as the indicator of when the TP should be started.

g Signal calling machine with SCHED_FUNCTION_OK to indicate that the scheduling request has been
made if a transaction program is to be started, or that currently no TP is to be started.

h Signal UPM_START_TP with START_TRANSACTION passing os_sEND as the target_tpn and
WHEN_sess10N_PREALLOCATED and the time of day as indicators of when the TP should be started.

i Signal FSM_CHECK_QUEUE_DEPTH with CHECK_QUEUE_DEPTH to determine if the scheduled queue
depth has been reached to indicate that os_send should be scheduled.

j Signal calling machine with SCHED_FUNCTION_NOT_OK to indicate that the scheduling request did
not receive an OK return code.

Chapter 3. Implementation Model 353

FSM_CHECK_ TP

FSM_ CHECK_ TOD

Determines the transaction program name to be started. The transaction
program name passed to FSM_SCHED_MGR is passed to this machine with the
signal CHECK_ TP.

The output of this machine is one of the following signals to FSM_SCHED_MGR:

• DS_ROUTER_DIRECTOR
• DS_SEND
• AGENT

For the signal AGENT, the transaction program name is passed.

Determines if any time of day scheduling is defined for the specified LU name,
and mode name, and, if so, passes the time of day to FSM_SCHED~MGR. The
request for this function is from FSM_SCHED_MGR.

This machine examines a table that contains attributes for the LU name, mode
name passed. If a time of day list is defined, the next time of day following the
current time is chosen, FSM_CHECK_TOD signals FSM_SCHED_MGR with
TOD_SET and passes the time of day.

If no time of day is defined, FSM_CHECK_TOD signals FSM_SCHED_MGR with
NO_TOD_SET.

FSM_CHECK_QUEUE_DEPTH

UPM_START _ TP

SERVER_MGR

Determines if queue-depth scheduling is defined for the specified LU name, and
mode name, and if so, checks whether the queue depth has been reached. The
request for this function is from FSM_SCHED_MGR.

This machine examines a table that contains attributes for the LU name, mode
name passed to this machine. If a schedule queue depth is defined, it is com
pared to the current queue depth. If the current queue depth is equal to or
greater than the schedule queue depth, FSM_CHECK_QUEUE_DEPTH signals
FSM_SCHED_MGR with QUEUE_DEPTH_REACHED. If not, this machine signals
QUEUE_DEPTH_NOT_REACHED.

If a schedule queue depth is not defined, this machine signals
NO_ QUEUE_DEPTH_SET.

This is an undefined protocol machine. It starts a transaction program. This
function is embedded in the local execution environment of OS.

The server manager controls access to the server object. All the machines
needing access to the server object send signals representing server verbs to
the server manager, and receive back an indication of the success or failure of
the requested operation. The signals back may or may not have data associ
ated with them. The signals to the server manager have the server object
information from the distribution. The name of the server is assumed to be

354 SNA/Distribution Services Reference

passed to the server manager along with the other associated parameters. The
input signals are handled as follows:

• INCREMENT_OBJ_LOCK

The server manager checks to determine whether a server object exists. If
not, the server manager signals back OK. If a server object does exist, the
server manager inspects the DS or agent (as appropriate) lock count, and if
it is 0, issues an Assign_Read_Access server verb and sets the appropriate
lock count to 1. Otherwise, it simply increments the OS or agent (as
requested) lock count. The server manager then reports the results of the
operations and returns parameters to the signalling machine. The state of
the server object after the successful completion of the verb is read-locked.

• READ

The server manager issues the Read verb or an lnitiate_Read/Read
sequence of verbs (as appropriate) with the supplied parameters to the
appropriate server. The server manager reports the results and returns
parameters to the calling machine. The possible return codes are
OBJECT_ OK (indicating the successful completion of the verb and return of
server object data), NO_ OBJECT _EXISTS (indicating that the distribution has
no server object), OBJECT _EOD (indicating that no more server object data
remains) and OBJECT_NOT_OK.

The server return code of SPECIFIC_SERVER_EXCEPTION is mapped to
OBJECT_NOT_OK. In this case, distribution reports are suppressed, and
any specific server reports supplied by the server are delivered to the
origin agent.

• WRITE

The server manager issues the Write verb or an lnitiate_Write/Write
sequence of verbs with the supplied parameters to the appropriate server.
The server manager reports the results and returns parameters to the sig
nalling machine. The possible return coaes are OBJECT_OK,
OBJECT_NOT_OK and SPECIFIC_SERVER_EXCEPTION.

• TERMINATE_READ

The server manager issues the Terminate_Read verb (if appropriate) with
the parameters supplied with the signal into the server manager machine.
The server manager reports the results and returns parameters to the sig
nalling machine. The possible return codes are OBJECT_OK and
OBJECT_NOT_OK. If no server object exists, or if no lnitiate_Read verb was
issued for the server object previously, the Terminate_Read verb is sup
pressed and the SERVER_MGR simply returns OBJECT_ OK.

• TERMINATE_RESTARTABILITY

The server manager issues the Terminate_Restartability verb (if appro
priate) with the parameters supplied with the signal into the server
manager machine. The server manager reports the results and returns
parameters to the signalling machine. The possible return codes are
OBJECT_OK and OBJECT_NOT_OK. If no server object exists, or if restart
capability was not specified in the lnitiate_Read or lnitiate_Write verb, the
Terminate_Restartability verb is suppressed and the SERVER_MGR simply
returns OBJECT_ OK.

Chapter 3. Implementation Model 355

• TERMINATE_WRITE

The server manager issues the Terminate_Write verb (if appropriate) with
the parameters supplied with the signal into the server manager machine.
The server will assign read access to OS upon completion of the
Terminate_Write, and server manager sets the OS lock count to 1. The
server manager reports the results and returns parameters to the signalling
machine. The possible return codes are OBJECT_OK and
OBJECT_NOT_OK. If no server object exists, or if no lnitiate_Write verb was
issued for the server object previously, the Terminate_Write verb is sup
pressed and the SERVER_MGR simply returns OBJECT_OK.

• DECREMENT_OBJ_LOCK

The server manager checks the server object information in the distribution
to determine if a server object exists. If no server object exists, the server
manager signals back OK.

If a server object exists, the server manager decrements the OS or agent
(as appropriate) lock count. If the agent lock count is decremented from 1
to 0, the server manager issues a Release_Read_Access verb for the agent.
If, after the decrementing operation, both the OS and agent lock counts are
0, the server manager issues a Release_Read_Access verb for OS. The
server manager then reports the results, and returns parameters to the sig
nalling machine.

• BACKOLIT

This signal causes SERVER_MGR to issue a Backout_Server_Object server
verb. Any returned server report is passed back to the caller. OBJECT_OK
is returned to the caller in any event.

• QUERY_LAST_BYTE_RCVO

This signal causes SERVER_MGR to issue a Query_Last_Byte_Received
server verb. The byte count returned by the server is passed back to the
caller to be included in a CRMU(SUSPENDED). OBJECT_OK or
OBJECT_NOT_OK is returned, as appropriate.

Output signals

• OBJECT_OK

The requested operation was performed successfully, or was not necessary.

• NO_OBJECT_EXISTS

This return code indicates that a READ operation has been issued for a dis
tribution which contains no server object. This condition will be detected on
the initial READ for the distribution.

• OBJECT EOD

This return code indicates that a Read verb has encountered the "end-of
data" condition for the server object. Previous Read verbs have already
exhausted the server object data, and no data remains to be returned to the
caller when this condition is detected.

356 SNA/Distribution Services Reference

QUEUE_MGR

• OBJECT_NOT_OK

The requested operation failed. On READ operations,
SPECIFIC_SERVER_EXCEPTION is mapped to this return code. In this case, dis
tribution reports are suppressed, and any specific server reports supplied
by the server are delivered to the origin agent.

• SPECIFIC_SERVER_EXCEPTION

This is returned only on WRITE operations. The specific server accepted
the server object before receiving the complete object.

The QUEUE_MGR provides a common service for all the FSMs in the DSU for
controlling the router-director queue, the local delivery queues, the next-DSU
queues, the control MU queue, and the mid-MU restart queue. It also incre
ments the queue depth (a scheduling mechanism) for each of the next-DSU
queues when an element is enqueued, and resets the queue depth when the
queue is empty or held. It takes as input queue-operation signals and associ
ated supplied parameters, and returns the success or failure of the operation as
well as the associated output parameters. The input signals are:

• HOLD

The queue manager holds the designated queues, so that subsequent
READQ signals return QUEUE_EMPTY. The type of hold to be set must be
supplied:

Exception-holds are set automatically when a retriable exception is
encountered, and cleared automatically by the first READQ of a new
instance of DS_Send.

Operator-holds are set and cleared only by explicit operator action.

If the HOLD is successful, QUEUE_OK is returned; if the HOLD fails,
QUEUE_NOT_OK is returned.

• DEQ

The queue manager removes the distribution from the queue and returns it
to the machine issuing the signal. The data accompanying this signal
includes the name of the queue, and the identifier of the distribution to be
dequeued. If the distribution is dequeued successfully, QUEUE_ OK is
returned; if the dequeueing operation fails, QUEUE_NOT_OK is returned.

• WRITEQ

The queue manager places the distribution at the end of the queue. The
data accompanying this signal includes the name of the queue and the
entry to be enqueued. This function marks the queue entry (the distrib
ution) as being in-use. The distribution cannot be read when it is marked
in-use. If the distribution is successfully written to the queue, QUEUE_ OK is
returned; if the write operation fails, QUEUE_NOT _OK is returned.

Chapter 3. Implementation Model 357

• READQ

The queue manager reads the distribution on the queue, but does not
remove it from the queue. The data accompanying this signal include the
name of the queue and the identifier of the distribution, or an indication that
the "next available" distribution is to be read. The first READQ for the
next-DSU queues issued by DS_Send will clear an exception-hold indicator,
if it is set on. On subsequent READQ signals, QUEUE_EMPTY is returned if
either the exception- or operator-hold Indicator is on.

If the "next available" distribution is to be read, the distributions available
for transmission to the partner are scanned, and the highest priority distrib
ution is chosen. If no available distributions are on the queue (the queue
may be empty, all distributions may be in-use, or the queue may be held),
READQ returns QUEUE_EMPTY.

If the request specifies a particular distribution, but the distribution's in-use
mark is set, QUEUE_ENTRY _IN_USE is returned unless suspend is specified.
A caller specifying a specific distribution with suspend is suspended for a
period of time if the distribution is in-use. If the distribution becomes avail
able while the caller is suspended, the caller's READQ completes success
fully; if the distribution does not become available, QUEUE_ ENTRY _IN_ USE
is returned.

Otherwise, the output of this function is the information from the distribution
and a return code of QUEUE_ OK. This function marks the queue entry (the
distribution) as being in-use. If the operation fails, QUEUE_NOT_OK is
returned.

• RELEASEQ

The queue manager removes the in-use mark from the distribution. The
data accompanying this signal includes the queue name and the identifier
of the distribution. If the in-use mark is successfully removed, QUEUE_ OK
is returned; if not, QUEUE_NOT _OK is returned.

Output signals

• QUEUE_OK

The requested operation was performed successfully.

• QUEUE_NOT_OK

This return code indicates that the requested operation failed because of an
exception condition in the queue service.

• QUEUE_ENTRY_IN_USE

This return code indicates that a particular distribution could not be read
because its in-use mark is set.

• QUEUE_EMPTY

This return code indicates that no queue entry satisfying the READQ's
search criteria can be found.

358 SNA/Distribution Services Reference

BUILDER

PARSER

The transport services MU builder encodes FS1 and FS2 DMUs, REMUs,
SEMUs, CRMUs, CQMUs and PRMUs. The builder is signalled by:

• DS_SEND_BUILD_SEND_DMU and DS_SEND_SEND_DMU_NO_MU_ID with
BUILD and END_OBJECT to build FS2 DMUs.

• DS_SEND_CLEANUP _EXCEPT and DS_SEND_ISSUE_SEMU_ON_CRMU to
build FS2 SEMUs.

• DS_RCV _SEND_ERR_REMU, DS_RCV _SEND_ERR_SUSP _TERM_REMU and
DS_RCV_REMU_SUSP_TERM to build FS2 REMUs.

• DS_RCV_SEND_ERR_CRMU, DS_RCV_SEMU_HANDLER,
DS_RCV_ENQ_SCHED and DS_RCV_CQMU_HANDLER to build FS2 CRMUs.

• DS_SEND_RELEASE_ON_CRMU to build FS2 CQMUs.

• DS_SEND_RETRY_ON_REMU, DS_SEND_TERMINATE_DIST,
DS_SEND_PURGE_ON_CRMU and DS_SEND_RETRY_ON_CRMU to build FS2
PRMUs.

• FSM_DIST_ENCODE_CONTROL with BUILD and END_ OBJECT to build FS1
DMUs.

• FSM_SEMU_ENCODE, with BUILD_SEMU to build FS1 SEMUs.

• FSM_REMU_ENCODE with BUILD_REMU to build FS1 REMUs.

The builder encodes the MUs as defined in Appendix G. To indicate that the
builder has successfully encoded a portion of the MU, this machine signals
BUILD_OK. To indicate that the next portion of the MU to be sent on the con
versation contains part of the data server object, this machine signals
BUILD_OK_GET_OBJECT. When the builder has completed the encoding of an
MU, this machine signals BUILD_COMPLETE.

The information needed to encode the MUs (for example, buffer of data from
reading the server object, exception information for either the SEMU or the
REMU) is passed to the builder.

Exceptions from the builder cause the signal BUILD_NOT_OK and information
about the exception to be returned to the caller.

The transport services MU parser decodes FS1 and FS2 DMUs, REMUs, CRMUs,
CQMUs and PRMUs. The parser is signalled by:

• DS_RCV_RECEIVE_DMU and DS_RCV_RECEIVE_DMU_NO_MU_ID with
PARSE to decode FS2 DMUs.

• DS_SEND_RECEIVING with PARSE to decode FS2 CRMUs and REMUs.

• PREPARSER to decode FS2 CQMUs, PRMUs and SEMUs.

• FSM_DIST_DECODE_CONTROL with DECODE to decode FS1 DMUs.

• FSM_SEMU_DECODE with PARSE_SEMU to decode FS1 SEMUs.

• FSM_REMU_DECODE with DECODE_REMU to decode FS1 REMUs.

Chapter 3. Implementation Model 359

The parser decodes the MUs as defined in Appendix G and builds a control
block containing the MU's information. The parser may return the following
return codes:

• PARSE_OK

The MU passed to the parser is a DMU, and the parser successfully
decoded the portion of the DMU passed to it.

• PARSE_OK_OBJECT

The portion of the DMU passed to the parser contains a portion of the
server object, which should be passed to the server.

• PARSE_COMPLETE

The DMU passed to the parser was successfully and completely decoded.

• PARSE_NOT_OK

An exception was detected while decoding the MU.

• CRMU

The MU passed to the parser is a CRMU, which was successfully parsed.

• REMU

The MU passed to the parser is a REMU, which was successfully parsed.

360 SNA/Distribution Services Reference

Appendix A. Acronyms and Abbreviations

API

APPC

BCPB

CGCSGID

CMU

CQMU

CRMU

DCMU

DEN

DGN

DIA

DMU

DRMU

DS

DSU

DTM

DTMU

ECS

FIFO

FSM

FS1

FS2

GEN

GMT

IRN

LU

MB

MU

NAU

PB

PC

PCIRN

Application Program Interface

Advanced Program-to-Program Communication

Basic Conversation Protocol Boundary

Coded Graphic Character Set Global Identifier

Control Message Unit

Completion Query Message Unit

Completion Report Message Unit

Distribution Continuation Message Unit

Distribution Element Name

Distribution Group Name

Document Interchange Architecture

Distribution Message Unit

Distribution Report Message Unit

Distribution Services

Distribution Service Unit

Date/Time

Distribution Transport Message Unit

Enhanced Character String

First-In, First-Out

Finite-State Machine

Format Set 1

Format Set 2

General Server

Greenwich Mean Time

(Path Control) Intermediate Routing Node

Logical Unit

Megabytes

Message Unit

Network Addressable Unit

Protocol Boundary

Path Control

Path Control Intermediate Routing Node

Appendix A. Acronyms and Abbreviations 361

PRMU Purge Report Message Unit

PS Presentation Services

RBP Restart Byte Position

RAMU Reset Accepted Message Unit

REMU Receiver Exception Message Unit

REN Routing Element Name

RGN Routing Group Name

RRMU Reset Request Message Unit

SEMU Sender Exception Message Unit

SNA Systems Network Architecture

SNACR SNA Condition Report

SNA/DS SNA/Oistribution Services

TP Transaction Program

TPN Transaction Program Name

TPF Transmission Priority Field

UPM Undefined Protocol Machine

362 SNA/Distribution Services Reference

Appendix B. Introduction to Finite-State Machines

Introduction to FSMs
A finite-state machine (FSM) is represented as a state-transition matrix con
sisting of a set of states, a set of input signals, a set of output codes, a next
state function, and an output function. The states are a small number of named
values (the state names). An FSM's execution depends on a combination of
processing and memory, where the memory consists of one of the states of the
FSM. The processing is defined by the state-transition matrix, each cell (row
column intersection) of which shows the new state of the FSM, and the output
code to be executed. Within this matrix, each state is given a number, as well
as a name, for notational convenience.

The syntax of the state-transition matrix is shown in Figure 53 on page 364.
The column headings give the FSM state names, while the row headings give
the input signals. The matrix cells define the state transitions and output codes
when the FSM is in the given states and receives the given input signals.

If the next-state indicator is a number n, the FSM enters state n. If the next
state indicator is a cannot-occur indicator(/), this is an execution-time error:
calls of the FSM cannot encounter this indicator because previous logic has fil
tered out the input for that state of the FSM. If the next-state indicator is a no
state-change indicator (-), the FSM remains in its same state.

In the state-transition matrix, double horizontal lines are used to group input
lines together to improve readability. Their location has no bearing on the FSM
function. For compactness, mnemonic abbreviations are used in the matrices.

An FSM comes into existence initialized to state 1. If another state is to be the
initial state, the FSM is initialized explicitly by signalling the FSM with an appro
priate input signal.

An FSM always has at least one state and one input signal. Consequently, the
state-transition matrix always has at least one row and one column. Output
codes may be absent entirely.

Appendix B. Introduction to Finite-State Machines 363

fname

Inputs
le

le

le

Output Function
Code
oc Output logic statements

oc Output logic statements

Legend:

fname = FSM name
sna = state name
snu == state number
le = Input signal name
ac = action code
oc = output code

An action code (ac) has the following possible syntax:

n normal state transition to state n (corresponding to some snu)

noc normal state transition to state n (corresponding to some snu)
and execution of the function Identified by oc

same-state transition (remain In the same state)

-oc same-state transition (remain In the same state)
and execution of the fUnctlon Identified by oc

I "'cannot occur"' condition, no state change

Figure 53. Syntax of an FSM State-Transition Matrix and Output Codes

384 SNA/Distribution Services Reference

States

ana 1na

snu snu

ac ac

ac ac

ac ac

Appendix C. Implementation Alternatives

Because an architecture can be implemented in equipment of different sizes to
serve various application purposes, it is not unusual for a given implementation
to choose to implement less than the complete architecture. Certain functions
can be omitted without harming the overall network; others cannot. Therefore,
the architecture defines the rules under which implementations may choose to
omit functions.

The effect of these choices upon the total size of the implementation can be
very significant. The smallest compliant implementation might be about 1/50
the size of the largest.

References to these choices will be found in other parts of this document.
Anyone interested only in a general understanding of the architecture can
safely ignore such references and need not read this appendix. Anyone inter
ested in designing an implementation of the architecture should read and thor
oughly understand this appendix.

Categories of Choices
There are six categories of choices. In decreasing order of importance, they
are:

1. Protocol boundary exposure

2. Role

3. Base and option sets

4. Electives

5. Specializations

6. Optimizations (no observable function omitted)

Every implementation makes choices in each of the categories. A choice made
in one category, or a combination of choices in several categories, may often
restrict the possible choices in other categories.

Implementations may have an internal structure that differs from the architec
ture model. Provided this choice of internal structure has no externally per
ceived effects, it is not subject to architectural compliance rules and is
considered an optimization. Some optimizations that are especially appropriate
in highly specialized implementations are mentioned in this document.
However, they are intended only as helpful suggestions.

Appendix C. Implementation Alternatives 365

Protocol Boundary Exposure

The Choice of Open or Closed
Implementations have either open or closed protocol boundaries (PBs). Typi
cally, an open PB is implemented as an application program interface (API).
Alternatively, some PB functions can be implemented as an end-user
interface--in other words, in the form of screens and keyboard inputs. The
latter form of PB is suitable for operations verbs but is not suitable for
Send_Distribution or Receive_Distribution: these verbs require sequence
numbers and may contain encoded agent objects.

Open agent and server protocol boundaries allow any agents and servers to
interact with OS. Assuming that the user, agent, and server names are known
by the OS network in one or more OSUs, any distribution request, within the
base set of functions described below, will be successfully serviced.

Implementations not offering an open protocol boundary may, depending on
other choices, find their implementation responsibilities significantly reduced.
Such implementations have a closed protocol boundary, since they provide only
a restricted set of services to restricted sets of users, agents, and servers.

The operations protocol boundary cannot be closed. Whatever operations func
tions are supported by an implementation are available, by one means or
another, to the operations and maintenance staff serving the network as a
whole. For example, a central operator at one OSU might obtain operations
information from another OSU by telephoning the operator at that OSU who
obtains the desired information by means of an interactive end-user interface.
Unattended OSUs may have remote interactive end-user interfaces, or if they
are expected to require limited operational interaction, they may use simpler
remote techniques such as downloading their software or microcode and
retrieving their logs and dumps. In other words, an open operations PB means
that an operator, not necessarily at the OSU, must be able to control the OSU's
operation by means that are appropriate for the frequency of required inter
ventions.

The agent protocol boundary and the server protocol boundary are either both
open or both closed.

Rules for Closed Protocol Boundaries
Implementations with closed protocol boundaries:

• May limit their originating and delivering functions.

May restrict their set of users to 0.
May restrict their set of agents to 1.
May restrict the services provided to only those needed by the
restricted set of users or agents.
May restrict their support to only one object, agent, or server.
When supporting server objects may restrict their set of server names
to 1, which could be the default (general server).

366 SNA/Dlstrlbution Services Reference

• Never generate any protocol on behalf of their privately integrated applica
tion that an equivalent application using an open protocol boundary cannot
generate using the defined PB verbs.

• Are able to exchange traffic with equivalent applications using open pro
tocol boundaries, regardless of whether the communication is direct or via
intermediate DSUs. Closed PB implementations need not implement func
tion equivalent to any PB parameters other than whatever is necessary to
comply with this rule.

• Are able to exchange traffic with copies of themselves, regardless of
whether the communication is direct or via intermediate DSUs.

• Are able to interconnect with any other DS implementation. (Intercon
nection to older FS1-only implementations requires support of the FS1
option subset.)

Are able to send MUs requiring base services through any intermediate
FS2 DSUs.
Are able to send MUs requiring optional services through any interme
diate FS2 DSUs that provide the required services.

Rules for Open Protocol Boundaries
Implementations with open protocol boundaries:

• Support the base semantics of both agent and server PBs.

• Support, for each optional subset they choose to implement, whatever addi
tional PB semantics the subset requires.

• Do not restrict their originating and delivering function.

Support as many users as their largest equipment configuration can
reasonably support.
Support a variety of architecturally-defined and installation-defined
agents.
Support a variety of architecturally-defined and installation-defined
servers.
Contain installation-defined tables or lists against which the destination
agent and destination server names in the incoming MU can be com
pared.
Originate or accept for delivery any distribution requiring services
defined in the base or any chosen option sets that specifies user, agent,
and server names defined for the DSU.

• Are able to interconnect with any other DS implementation. (Intercon
nection to older FS1-only implementations requires support of the FS1
option subset.)

Appendix C. Implementation Alternatives 367

Role
Implementations may limit their DSUs to certain roles only. The choices are:

1. Origin-only: closed PB only

2. Destination-only: closed PB only

3. Origin and Destination (End-only): open or closed PB

4. Intermediate-only: closed PB (no application program interface at all)

5. All roles: open or closed PB

Combinations such as origin and intermediate are possible but too unlikely to
justify discussion. The end-only and all-roles combinations are the most usual.
The rules for the elementary roles are given below. Rules for combinations are
the union of the rules for the appropriate elementary roles.

Rules for Origin Role
• Origin role implementations with a closed PB and appropriately specialized

applications or devices, such as a card reader, may restrict themselves to
only originating distributions.

• Implementations that provide an open protocol boundary are able to
process distribution-originating verbs passed across the agent PB. Open
PB implementations also support the receiving verbs and, therefore, cannot
be origin-only.

• Implementations with closed protocol boundaries may limit the types of
traffic they originate, but they never generate MUs that other DSUs cannot
process normally.

• Implementations are able to generate distribution reports, unless they have
a closed PB and are specialized in traffic that never requests reporting.

Rules for Destination Role
• Destination role implementations with a closed PB and appropriately spe

cialized applications or devices, such as a line printer, may restrict them
selves to serving only as destinations.

• Implementations that provide an open protocol boundary are able to
process distribution-delivery verbs passed across the agent PB. Open PB
implementations also support the sending verbs and therefore cannot be
destination-only.

• An Implementation in the destination role accepts any MU requiring base or
selected option set function that specifies a known destination agent and
server, stores the object using the specified server, and delivers the distrib
ution to the specified agent by making an entry in the appropriate queue.
Then, if possible, It initiates the specified destination agent.

• Implementations in the destination role reject any MUs containing unrecog
nized structures within parents that preclude them but accept and ignore
unrecognized structures within parents that allow them.

368 SNA/Distribution Services Reference

• Implementations in the destination role reject MUs containing any flag bits
they don't understand in the first two bytes of the distribution flags.

• Implementations in the destination role reject MUs that do not meet the
minimum parsing checks.

• Implementations in the destination role may reject MUs that do not meet
optional parsing checks.

• Implementations in the destination role reject MUs containing any service
parameters they don't understand.

• Implementations in the destination role process the distribution in a manner
consistent with the specified service parameters.

• Implementations are able to generate distribution reports, unless they have
a closed PB and are specialized in traffic that never requests reporting.

Rules for Intermediate-only Role
• Implementations in the intermediate role completely receive an MU, and

depending on the integrity and protection specified for the distribution, store
it and any objects it may contain before forwarding it.

• When an intermediate node receives a multiple-destination distribution
whose destinations are reached over different outgoing connections, imple
mentations generate multiple outgoing MUs, each containing byte-perfect
copies of the objects and a portion of the received destination list.

• Implementations in the intermediate role reject MUs that do not meet the
minimum parsing checks.

• Implementations In the intermediate role may reject MUs that do not meet
optional parsing checks.

• Implementations in the intermediate role reject MUs specifying service
parameters that they cannot provide.

• Implementations in the intermediate role process the distribution in a
manner consistent with the specified service parameters.

• Implementations in the intermediate role pass through, unchanged, any
unrecognized structures occurring within parent structures where unrecog
nized children are allowed.

• Implementations in the intermediate role reject MUs containing non
understood flag bits in the first byte of the distribution flags.

• Implementations are able to generate distribution reports, unless they have
a closed PB and are specialized in traffic that never requests reporting.

Appendix C. Implementation Alternatives 369

Base and Option Sets of Functions
In OS, as in other architectures, the notion exists of a mandatory or base set of
the functions that all implementations support except insofar as their choices of
PB exposure, role, and specialization may have made the functions Inappli
cable. Individual functions not included in the base set are options that imple
mentations may select, but not on an individual function-by-function basis. The
number of optional functions is so large that if implementations were free to
select them individually, it is unlikely that any two implementations would select
exactly the same set. As a result, connectivity between them would be
Impaired or impossible. To avoid this, the optional functions are grouped into
named sets.

Base and Option Set Diagram
A convenient way to represent the option sets is with a diagram (see
Figure 54). The complete set of functions described by the architecture is the
union of all the rectangles in the diagram. The option sets that an implementa
tion may omit are represented by smaller rectangles inside the full diagram.
An option set that is located underneath another set is a prerequisite for the
upper set and cannot be omitted unless all the sets above it are also omitted.

FORMAT SET 1
SUPPORT
Option Set

ENHANCED SECURITY
CHARACTER Option OPERATOR CONNECTION DISTRIBUTION
STRINGS Set REROUTING CONTROL LOGGING
Option Option Option Option
Set Set Set Set

BASE FUNCTION
Mandatory Set

Figure 54. Base and Option Set Diagram

General Rules for Base and Option Sets
1. DS implementations include all the functions defined in the base that apply

to their choices of role, PB exposure, and specialization.

2. Each option set must be implemented completely.

3. Implementations never provide a function defined in a set in some way dif
ferent from that defined by OS. Implementations always provide that func
tion and all other functions in the set only as specified by the architecture.

Summaries of the major features of each set follow.

370 SNA/Distribution Services Reference

Rules for the Base Set

Base PB Verbs
• Implementations with open PBs accept both high- and basic-integrity verb

sequences for sending and receiving distributions using the following verbs:

Send_Distribution
Query_ Distribution_ Sending
Sending_ Sequence_ Completed
Receive _Distribution
Receiving_ Sequence_ Completed

• Implementations with open PBs receive reports from either the distribution
service or from the server using the following verbs:

- Receive_Distribution_Report
- Obtain_Local_Server_Report

• Implementations with open PBs interact with the server using the following
verbs:

Assign_Read_Access
Release_Read_Access
lnitiate_Read
Read
Terminate_Read
lnitiate_Write
Write
Terminate_Write
Backout_ Server_ Object

• Implementations with open PBs perform the following checks on each verb
at the protocol boundary when originating distributions:

All structures in the verb are checked for consistency with the length,
contents, and conditions of presence as defined in Appendix F.

If an origin user is specified, the DSU checks that that user is local.

The destination list is examined and duplicate destinations are elimi
nated.

If reporting is requested, the DSU determines whether or not reports
will be returned to it, and if so, checks that the report-to user and agent
are local. If not, the DSU confirms that its local directory and routing
table contain entries that allow it to honor its reporting responsibilities.

If a specific server is specified, the DSU checks that the server exists
locally.

Base Service Parameters
Implementations are able to receive MUs and accept PB requests (for open PB
implementations) with, and provide the required services for, the following
service parameter specifications:

1. priority: REQUIRE_LEVEL_GE for any of 18 levels: FAST, CONTROL, DATA_16, ..• ,

DATA_1. When sending on a given connection, implementations send all dis-

Appendix C. Implementation Alternatives 371

Base Reporting

tributions of priority n before sending any of priority n - 1 (unless they have
elected to fold the data priorities as described in "Electives" on page 377).

2. protection:

a. REQUIRE_LEVEL_GE LEVEL2. Implementations store both the OS control
information and the objects on non-volatile storage.

b. REQUIRE_LEVEL_GE LEVEL1. Implementations may provide either LEVEL1 or
LEVEL2 protection.

3. capacity:

a. REQUIRE_LEVEL_GE ZERO. Implementations are able to selectively route
based on this capacity service level. Network administrators may
define DSUs that will not accept distributions with server objects pro
vided that the routing tables of the surrounding DSUs are appropriately
defined so that only zero-capacity distributions are routed to them.

b. REQUIRE_LEVEL_GE 1MB, 4MB, 16MB. Base implementations in the interme
diate role can, in normal operation, store and forward server objects of
up to 16MB in size. Base implementations can selectively route on any
of the three nonzero capacity service levels.

Network administrators may define DSUs that will not accept distrib
utions with server objects larger than either of the lower levels, 1 MB or
4MB. If so, they define the routing tables of the surrounding DSUs so
that distributions are routed appropriately.

Implementations may optimize their storage management on the
assumption that the server object will not exceed the specified size. At
the PB the server object size is validated against the capacity
requested only if server_object_byte_count is supplied. When receiving
an MU, if the receiving process determines that the server object size
exceeds the capacity requested, the DSU may either abort the transfer
process at that point or attempt to receive it despite its size. If the dis
tribution is successfully received, the capacity service parameter Is set
to the appropriate higher level before the distribution is forwarded.

4. security: REQUIRE_LEVEL_GE LEVEL1. LEVEL1 security requires no special action.

Implementations are able to honor the reporting requirements for exception
reporting.

Base Encoding Support
Implementations are able to send and receive the following types of FS2
message units:

• DTMU
• DCMU, except:

When sending, the restart position needs to be only the beginning of the
LLID following the last LLID received (sender restarting within an object
is an electlve--Sender Byte-Count Restart elective).
When receiving, DCMUs that restart in mid-object may be rejected
(receiver restarting within an object is an elective-Receiver Byte-Count
Restart elective).

• DRMU

372 SNA/Distribution Services Reference

Base Scheduling

Base Protocol

• CRMU, except that byte-position information need not be generated and
may be ignored on receipt.

• CQMU
• PRMU
• SEMU
• REMU
• RRMU
• RAMU

• Implementations are able, subject to possible scheduling constraints, to ini
tiate the SNA service transaction programs that perform the sending when
ever distributions are ready to be sent.

• Implementations allow other DSUs to initiate either their receiving or
sending SNA service transaction programs (DS_Receive or DS_Send) by
means of an LU 6.2 Attach FM header.

• Before sending any DMUs on a newly defined or discovered connection, the
partner DSUs initialize MU-ID registries for the connection using an
RRMU-RAMU exchange. On existing connections, RRMU-RAMU exchanges
should be performed at least monthly.

• Each implementation supports the base FS2 protocol and gracefully toler
ates any elective choices that differ from its own.

• Successful FS2 high-integrity transfers are completed by a CRMU-PRMU
exchange.

• Unsuccessful transfers detected by the sender are indicated by the sender
with a Send_Error followed by a SEMU.

• Unsuccessful transfers detected by the receiver are indicated by the
receiver with a Send_Error followed by a REMU.

• Implementations support Mid-MU Restart at any of the highest-level LUO
boundaries after the Dest_ List, including LLID structures they do not recog
nize.

Base Routing and Directing
• Implementations maintain queues of traffic and requests whenever

resources are busy. When resources are unavailable, implementations are
able to either queue the traffic or take other action appropriate to the type
of traffic.

• Implementations (except end-only, closed PB ones) either provide or are
provided access to a user directory. This implies a tabular directory in
which any DGN.DEN can be associated with any RGN.REN or error indi
cator. It also implies that DGN.* or*.* can be associated with any RGN.REN
or error indicator.

• Re-direction Responsibilities

Base Implementations (except end-only, closed PB ones):

Appendix C. Implementation Alternatives 373

Base Operations

Change the destination DSU for any user destination found not to be
local to the re-directing DSU.

Do not change the destination DSU for any node-destinations. A node
destination is identified by a destination list entry that contains no
users.

Support the Intervention List. When a distribution is received containing
any DSU name that matches an entry in the intervention list, the
directing process is invoked.

Implementations support the following connection control verbs:

• Start_Connection
• Reset_MU_ID_Registry
• List_Control_MU_Queue
• Terminate_Connection

Implementations provide the operator with the functions defined for the fol
lowing distribution control verbs:

• List_ Queues_ Containing_Distribution
• List_Queue_Entries
• Get_Distribution_lnfo
• Purge_Queue_Entry
• Hold_Distribution_Copy
• Release_Distribution_Copy

Implementations also support the following operations verbs that list, add, and
remove DSU operations information:

• List_DSU_Data
• Add_DSU_Data
• Remove_DSU_Data
• Modify_DSU_Data

for the following DSU data structures:

• Directory
• Routing table
• Intervention list
• DSU definition
• Connection definitions
• Next-DSU queue definitions
• Agent list
• Server list
• MU_ID registry

Implementations log exception condition reports in an exception log and
support the Get_Exception_Log_Entry verb to display the logged information.

374 SNA/Distribution Services Reference

Base Receive-time Checks
DSUs identify distributions for which they must accept responsibility at the PB
by the high-integrity parameter and from other DSUs by the presence of the
MU_ID. Before a DSU accepts responsibility for a distribution, it checks that it
either can successfully process it or, if unsuccessful, can report the failure.

• The encoding structure specifying the types and levels of service required
must be parsed and compared with the capabilities of the receiving DSU to
ensure that it is capable of successfully processing the request.

• The encoding structure specifying the reporting requested must be parsed
and examined.

• If reporting is requested, the encoding structures comprising the distribution
identification, agent carrel, and report-to information must be parsed and
checked for consistency with lengths, contents, and conditions of presence,
as defined in Appendix G.

Base Up-level Co-existence Capabilitles
In order to coexist gracefully in future networks containing DSUs with addi
tional, yet-to-be-imagined function, current implementations must provide
certain toleration features.

• Implementations must gracefully reject any MU types they do not recognize.

• Implementations of certain electives, such as byte-count restart, must
gracefully accept rejections of their elective protocols.

• Implementations of certain option sets, such as FS1 support, must accept,
adjust to, and remember rejections received from adjacent DSUs.

• Implementations must, within limits, gracefully pass through unrecognized
structures when they are present within a parent defined as capable of con
taining unrecognized children. These structures must be passed in
encodings that are transferred to adjacent DSUs. The limits of number of
unrecognized children and their total lengths are defined in Appendix F and
Appendix G.

• Implementations must ignore unrecognized flags in the distribution flag
bytes that are not mandatory for the particular role and reject distributions
that have unrecognized flags in the bytes that are mandatory for the partic
ular role.

Enhanced Character Strings Option Set
Implementations designed to share a network with FS1-only DSUs, whether or
not they plan to connect directly to them with the FS1 Support Option Set, may
choose this option set to ensure any-to-any connectivity. Newly assigned user
names do not contain any characters outside CGCSGID 01134-00500.

Implementations supporting this option set have the ability to .send, receive, and
contain in their internal tables user names comprised of the character set, and
observing the string conventions, specified in Appendix G.

For closed protocol boundary implementations in networks that contain terminal
devices that cannot support the full character set, the network administrator

Appendix C. Implementation Alternatives 375

constrains the choice of characters to those that are common to all terminals in
the network to allow any-user-to-any-user communication.

Implementations of this option set also tolerate the enhanced character strings
in DSU names they receive, routing the MUs and forwarding the DSU names
unchanged. Except for products with special migration requirements, however,
DSU names do not use the enhanced character string convention. Newly
assigned DSU names do not contain characters outside CGCSGID 01134-00500.

Format Set 1 Support Option Set
• An implementation supporting this set is able to build MUs in either format

set. If an adjacent DSU is only FS1-capable, this implementation will build
FS1 MUs when sending to it, and will parse the FS1 MUs received from it.

• Implementations of this option set support four OS transport servic':3 TPs:

FS2 OS Send
FS2 DS_Receive
FS1 OS Send
FS1 DS_Receive

• Implementations of this option set can receive a distribution in an FS1 MU
and forward it in an FS2 MU. Any and all function expressible in an FS1
MUs can also be conveyed in FS2. (In some reporting cases, one FS1
DRMU will be split into multiple FS2 DRMUs.)

• Implementations of this option set can receive certain FS2 MUs and forward
them as FS1 MUs. Not all the function expressible in an FS2 MU can be
expressed in an FS1 MU. The restrictions that apply to distributions that
must be able to flow through FS1-only DSUs are described in Appendix D.

• Implementations of this option set support the capacity service parameter
REQUIRE_SUPPORT_FOR X'FF' in FS1 MUs. This means they are able to receive
distributions of any size until their storage resources are overrun. FS2
capacity service parameters of REQUIRE_LEVEL_GE 16MB (OR 1MB OR 4MB) are
converted to REQUIRE_SUPPORT_FOR INDEF in FS1 and vice versa.

Security Option Set
Implementations of this option set support distributions that require security, as
well as those that do not, in OS networks containing a mix of trusted and
untrusted DSUs.

Distributions with a security service parameter of REQUIRE_LEVEL_GE LEVEL2 can
be received and responsibly routed.

Operator Rerouting Option Set
This set consists of the function implied by the operations verb
Reroute _Distribution_ Copies.

378 SNA/Distribution Services Reference

Enhanced Connection Operations Option Set
Implementations of this set support the following verbs:

• List_Conversations
• Terminate_Conversation
• List_Distributions_Being_Sent
• List_Distributions_Being_Received
• List_Adjacent_DSUs
• List_Connections

Distribution Logging Option Set

Electives

Implementations supporting this set tog the distributions that pass through the
DSU. Each distribution copy Is accounted for, either by an entry that consol
idates the recording of each copy or by individual MU logs. When distributions
are togged for cases other than exception conditions, the amount of information
togged includes whatever is needed to support the Get_Distribution_Log_Entry.
Implementations supporting this set will typically provide the installation with
some means of limiting the amount of togging performed.

Certain functions may be implemented in more than one way. In some cases
the different implementations will result in differences that can be perceived
outside the DSU. If other implementations, either of OS or of the architectures
that use it, must make any effort to cope with these differences, then that
choice is defined in the architecture as an elective.

Electives have relatively minor effects on partner DSUs. All implementations
can cope with whichever choices their partners make. If an implementation's
choice differs from its partner's choice, its responsibility is limited to tolerating
the effect of its partner's choice. Typically, this means gracefully ignoring
certain actions the partner DSU takes. If it has made the same choice, its
responsibility will usually be greater, and the two DSUs may achieve much
better performance as a result.

Electives are not optional functions. Optional functions are defined in option
sets. Electives are choices as to how or when a function is provided. Imple
mentations make elective choices for performance or development cost
reasons.

Alt electives are documented in the architecture because they, at least poten
tially, affect connectivity. The list of OS electives is as follows.

Electives within Base Function
1. Folding data priorities. Implementations may elect to fold the 16 DATA pri

orities into 2 groups: 1 through 8, and 9 through 16. The 1 through 8 group
is called DATALO. When DATALO is used at the PB as a priority service level,
it is the equivalent of DATA_4. Similarly, 9 through 16 are called DATAHI, the
equivalent of DATA_12. Within each group, the distributions are sent on a
first-in, first-out basis.

Appendix C. Implementation Alternatives 377

2. Receive-time enhancements. Implementations may elect to perform syntax
checking, routing, and directing functions at receive time and, when appro
priate, report exception conditions to the sending DSU by a REMU. Any
exception conditions so detected and reported must apply to the entire dis
tribution, not to only some of its destinations. Since the sending DSU still
has responsibility for the distribution, it performs whatever OS reporting is
required.

3. Next-DSU queue scheduling. Implementations may elect not to initiate
sending as soon as a distribution is placed in a next-DSU queue. For
example, time-of-day or queue depth are criteria that could inhibit the initi
ation of sending. Any such inhibiting controls can be removed by operator
action.

4. Protocol electives. These electives do not apply to the protocols used in
the FS1 option set.

a. Single-session. Implementations may elect to restrict their connections
to a single session: that is, they may elect not to provide support for
parallel sessions on that connection. This means that inbound and out
bound conversations must serially share the single session. This
choice is made to reduce development effort at the cost of performance.
The MU_ID management required for high-integrity traffic is consider
ably reduced by the single-session restriction, since only one MU_ID is
in progress at a time.

b. Receiver-limited conversation. After receiving the first DTMU on a con
versation, the receiver can control how many more, if any, it will accept
on that conversation. After sending the first DTMU, the sender turns the
conversation around, allowing the receiver to indicate that the conver
sation should be ended by sending a CRMU with the
terminate_conversation flag turned on. This leaves the conversation up,
so that any outstanding control MUs can be exchanged, after which the
sender deallocates. If no high-integrity traffic has been received on the
connection, and therefore no control MUs are being exchanged, the
receiver may deallocate the conversation directly.

c. Sender-limited conversation. After the first DMU, if the receiver has not
specified that the conversation be terminated, the sender has the choice
of sending another DMU after the PRMU. If the receiver continues to
accept additional DMUs indefinitely, it becomes the sender's responsi
bility to determine when to end the conversation. Typically, it sends
until the queue is empty. This is usually the best choice, since starting
conversations can be time and resource consuming. When the sender
does decide to end the conversation, it sends any pending control MUs
and deallocates the conversation.

d. Receiver byte-count restart

Implementations of this elective support the byte-count parameters of
the mid-MU restart CRMU and interact with the storing server with the
following verbs:

• lnitiate_Write with the restartability, restart_ID, and restart_byte
parameters

• Query_Last_Byte_Received

378 SHA/Distribution Services Reference

• Terminate_Restartability

Sending implementations that do not support byte-count restart ignore
the receiver-supplied byte-count and restart at the LLID.

e. Sender byte-count restart

Implementations of this elective support the byte-count parameters of
the MU restart protocols and interact with the fetching server with the
following verbs.

• lnitiate_Read with the restartability, restart_ID, and restart_byte
parameters

• Terminate_Restartability

f. Sending SEMUs for basic-integrity traffic

When a sender detects an exception condition and aborts the transfer of
a DMU with a Send_Error, it may or may not choose to follow-up with a
SEMU. If it does, the SEMU will not contain an MU_ID. Receivers must
tolerate either choice.

5. Multiple local-delivery queues. Implementations may elect to have multiple
local-delivery queues for each user. For example, each combination of user
and agent can have its own queue. Within a user/agent combination,
queues could be further differentiated by service parameters, for example,
by priority.

6. Selective local-delivery. Usually, the local-delivery queues will be set up to
accept any service parameters; however, the architecture allows the distrib
ution to be rejected because there is no appropriate local-delivery queue
for a particular service parameter. For example, a distribution specifying
security: REQUIRE_LEVEL_GE LEVEL2 might not be deliverable to some of its
user destinations because those users were not cleared for LEVEL2 and
would not have LEVEL2 local delivery queues.

7. Informing sender when receiving server terminates before end-of-object. A
specific server can return object acceptance before the complete server
object has been delivered. DS_Receive can then either continue to receive,
and discard the server object, or it can send a REMU to DS_Send with a
retry_action of X'03'. The mid-MU restart CQMU/CRMU exchange will
cause the distribution to be continued following the server object.

Electives within the Format Set 1 Support Option Set
1. LU 6.2 Deallocate (Type = svNc_LEVEL). FS1 implementations may elect to

send a separate Confirm flow or combine it with the Deallocate.

Appendix C. Implementation Alternatives 379

Specializations
Depending upon their role and PB choices, implementations can specialize,
both in the network configuration they support and the types of traffic they can
handle. The following table illustrates how those choices interact to provide
greater or lesser potential for specialization.

Role A) Closed PB B) Open PB

1) Origin-only Specialization can very This combination of
greatly reduce required choices is precluded
function architecturally

2) Destination- Specialization can very This combination of
only greatly reduce required choices is precluded

function arc hi tectura l ly

3) Origin and Specialization can Configuration special-
Destination greatly reduce required ization can reduce
(End-only) function required function

4) Intermediate- Application interface is This combination of
on 1 y (no 1 oca 1 eliminated by definition choices is precluded by
applications) definition

5) All Roles Traffic specialization No specialization--
can reduce application base (and chosen
interface requirements option sets) must be

fully implemented

Figure 55. Effect of PB and Role Choices on Specialization Potential

Choosing not to provide an open PB (column A in the table) has the greatest
effect on specialization potential. It means that the originating and delivery
interfaces with the applications can be highly specialized, and, for some roles,
completely omitted.

Choice of role further affects specialization potential. The following specializa
tions are identified by the cells of the table (1A, 38, etc.) to which they apply.

• No through traffic (1A, 2A, and 3A)

DSUs that do not have to pass traffic between one connection and another-
that is, the intermediate role--or between an open PB and the OS network,
can specialize in only the types of traffic and services needed by their
private applications. Properly set up routing tables and correctly specified
distribution requests ensure that such DSUs will never be sent anything
outside their speciality. If such a DSU were to receive inappropriate traffic,
it would reject it, probably at receive time. The following specializations
derive from the no-through-traffic situation.

Single-user traffic (2A, and 3A)

DSUs that are so configured that they never can have more than one
local user will never be called upon to perform destination fan-out.

No user traffic (1A, 2A, and 3A)

380 SNA/Distribution Services Reference

Optimizations

DSUs that are specialized for applications that never specify user desti
nations will never have to make reference to a user directory, and
neither generate nor accept distributions with user names in them.

Specialization by service parameters

Closed PB, end-only DSUs that are specialized in a limited set of
service types and levels will never be called upon to originate or deliver
distributions requesting any other services.

• Closed PB specializations (1A, 2A, 3A, and SA)

1. Specialization by server (1A, 2A, 3A, and SA)

Closed PB DSUs that are specialized in distributions for only one type of
specific server will never be called upon to deliver distributions to
another type of specific server or to the general server.

2. Distributions with no specific server name (1A, 2A, 3A, and SA)

Closed PB, destination DSUs that are specialized in distributions for
only the general server will never be called upon to deliver distributions
to any type of specific server.

3. Distributions with no server objects (1A, 2A, 3A, and SA)

4. Specialization by agent (1A, 2A, 3A, and SA)

Closed PB DSUs that are specialized in distributions for a particular
agent will never be called upon to deliver distributions to any other
agent.

• No routing needed

No out-going traffic (2A)

Destination-only DSUs are never called upon to make outgoing routing
decisions and therefore do not need to support a routing table.

Single connection configuration (1A, 3A, and 3B)

End-only DSUs that are always so configured that they have only one
connection will never be called upon to make any route selection, and
therefore do not need to support a routing table.

Optimizations can be either perceptible outside the DSU or not. If they are not,
then, by definition, they cannot be of interest to architecture or other implemen
tations.

If the effects of the optimization are perceptible outside the DSU but other
implementations need make no effort to cope with those effects, then that
choice is categorized as an optimization. This contrasts with electives, which
do impose efforts on other implementations.

Examples of perceptible optimizations occur most frequently in exception proc
essing and reporting. Two implementations could differ in the sequences of
their checks and, as a result, might report the same condition with different

Appendix C. Implementation Alternatives 381

report codes, or; when multiple exceptions were present, might detect and
report different ones. A common partner could perceive the differences in the
reports. Provided that the common partner did not have to make any special
effort to handle either of the two reports, the choice would be categorized as an
optimization.

Sometimes implementations will take different actions in certain exception con
ditions. For example, one implementation might deallocate a conversation
immediately, where another would not. Since the partner has to be able to
cope with a deallocation anyway, this difference would require no extra effort
on its part.

This does not entitle implementations to be unreasonable .. Field service
requires report codes that are helpful in diagnosing a problem. Network opera
tors require that conversations and sessions are not taken down arbitrarily.

In summary, optimizations are choices made by an implementation that do not
affect the connectivity of implementations and are therefore not subject to
precise architectural compliance rules. Therefore, they are not constrained by
the architecture.

382 SNA/Distribution Services Reference

Appendix D. FS1 /FS2 Coexistence

General Introduction to the Coexistence Strategy
The FS1/FS2 coexistence plan is based on a "translation" scheme, whereby a
distribution encoded initially in one format set may be mapped to the other
format set. For example, a user on an FS1-only product may send a distribution
to a user on an FS2-only product. At some DSU along its route, the distribution
is received in FS1 and forwarded on to the next hop in FS2. The information in
the distribution is not changed, but its bit-level representation is redefined.

FS1 products are oriented toward DIA and S/3X Object Distribution agents.
Implementations with no requirement to connect directly to FS1 products may
choose to provide only FS2 support. Implementations with a requirement to
connect directly to FS1 products provide both FS1 and FS2 support. That is,
new DS implementations supporting DIA or S/3X Object Distribution applica
tions with a migration requirement to communicate directly with the FS1 DIA
and S/3X Object Distribution products will support FS1 as well as FS2. Other
products need support only FS2.

Some new FS2-only DS implementations may support local DIA or S/3X Object
Distribution agents. End users on these new implementations can communi
cate with end users on FS1-only implementations if an FS1- and FS2-supporting
DSU is along the di.stribution's path, and if the distribution does not exploit any
FS2-unique function (which cannot be encoded in FS1).

To summarize the coexistence plan, certain DSUs will support both FS1 and
FS2. These DSUs are said to be bilingual. Bilingual DSUs act as gateways
between FS1-only portions of the DS network and FS2-supporting portions,
translating between the format sets as necessary. This appendix describes
how the bilingual DSU determines whether translation is possible, when it is
required, and how it is accomplished.

General Actions for Handling Format Set 1 and Format Set 2 Coexistence
An FS1-encoding DSU can send and receive only FS1 MUs. Similarly, an
FS2-encoding DSU can send and receive only FS2 MUs. Bilingual DSUs accept
both FS1 and FS2 MUs. The "coexistence" problem, therefore, can be reduced
to a simple question: What does a bilingual DSU do, and how does it know to
do it?

The "how" portion of the above question depends on the distribution being
processed and the capabilities of the DSU to which the distribution is to be
sent. This topic is discussed in "Determining Partner's Encoding Level" on
page 385.

The "what" portion of the question is discussed in "Detailed Actions for FS1/FS2
Coexistence" on page 386. The basic approach is a translation scheme, but
using Format Set 2 whenever possible. Format Set 1 MUs are translated to
Format Set 2 whenever possible, and Format Set 2 MUs are translated to

Appendix D. FS1/FS2 Coexistence 383

Format Set 1 as required. For example, if a bilingual DSU receives an FS1
Dist_MU type TRANSPORT and sends the distribution to another bilingual DSU, it
uses Format Set 2 flows.

Coexistence Plan Constraints

Existing Functions

Topology

All restrictions of the coexistence plan are related directly to one or more of the
following points:

1. FS2 supports function that cannot be supported in FS1.

2. Most (if not all) new applications are expected to exploit some FS2-only
function.

3. Current FS1 implementations are application-specific, suoporting DIA and
S/3X Object Distribution applications.

4. New OS implementations are expected to support FS2.

The coexistence plan is tailored to the use made of FS1 implementations by DIA
and S/3X Object Distribution applications. Certain architectural features of FS1
that have not been used by DIA or S/3X Object Distribution agents (e.g., FS1
application-report distributions for applications other than DIA) are not sup
ported by the coexistence plan. New DIA and S/3X Object Distribution agents
may exploit FS2-only function, but these new features cannot be translated into
FS1 and will typically cause distributions exploiting them to be terminated
should they attempt to enter an FS1 network.

Since FS1 cannot support all of the function in FS2, new applications cannot, in
general, communicate over a route containing any FS1-only DSUs. This, com
bined with the orientation of the coexistence plan to DIA and S/3X Object Dis
tribution leads to the following topologies being supported:

• FS1 to FS2
• FS2 to FS1
• FS1 through FS2 to FS1

Since FS2 supplies more function than FS1, and since new applications will typi
cally exploit this increased function, FS2-to-FS2 traffic must, in general, flow
over an all-FS2 route. Occasionally, however, a system administrator may wish
merely to continue using the FS1 applications, and not to use any new applica
tions. For such system administrators, the coexistence plan supports the fol
lowing topology:

• FS2 through FS1 to FS2 for existing (FS1) applications using function avail
able only in FS1

Unpredictable results may occur if system administrators configure their
networks so that new FS2 applications attempt to communicate using an
FS1 DSU as an intermediate DSU. Usually, distributions exploiting FS2-only
features cannot be sent through FS1 intermediate DSUs, and will be
rejected by the bilingual DSU attempting the translation.

384 SNA/Distribution Services Reference

End-User to End-User Connectivity
This coexistence plan allows full end-user-to-end-user connectivity for existing
FS1 applications. An end user supported by an FS1-only, FS2-only, or bilingual
DSU can communicate with any other end user, without knowledge of the
encoding-support level of the destination (or any other nonlocal) DSU. The
encoding-support level of the origin DSU is not affected by (and does not affect)
the encoding-support level of the destination DSU.

DSU-to-DSU Connectivity
A Format Set 1 DSU may connect directly to a Format Set 1 DSU or a bilingual
DSU. A Format Set 2 DSU may connect directly to a Format Set 2 DSU or a
bilingual DSU. A bilingual DSU may connect directly to a Format Set 1, Format
Set 2, or bilingual DSU.

Determining Partner's Encoding Level
Each bilingual DSU must know the encoding-level capabilities of its logically
adjacent DSUs (i.e., any DSU that can be a "next hop"). This knowledge is kept
as a data_stream_format field for each next hop, and has a value of FORMAT SET

1, FORMAT SET 2 or ERROR.

The transaction program names for FS2 DS_Send and DS_Receive are different
from those for FS1 DS_Send and DS_Receive. (See "Transaction Program and
Server Names" on page 631 for the registered values.) A bilingual DSU takes
the following steps to discover the encoding-support level of each of its logically
adjacent DSUs. Discovering that the partner is an FS1-only DSU occurs prior to
the FS2 MU_ID Registry synchronization process. which initializes the OS con
nection (see Chapter 2 for details of this synchronization process).

1. The default value for the data_stream_format field is FORMAT SET 2.

2. If the value of the data_stream_format field is FORMAT SET 2, a bilingual DSU
Issues an Allocate verb using the Format Set 2 TP names for DS_Send and
DS_Receive.

3. If a verb after the Allocate fails because the attached TP name does not
exist (return_code = ALLOCATION ERROR, TP NAME NOT RECOGNIZED), the bilin
gual DSU resets the data_stream_format field for the partner DSU to FORMAT

SET 1 and retries the Allocate (see step 4).

4. If the value of the data_stream_format field is FORMAT SET 1, a bilingual DSU
issues an Allocate verb using the Format Set 1 TP names for DS_Send and
DS_Receive.

5. If a verb after the Allocate fails because the attached TP name does not
exist (return code = ALLOCATION ERROR, TP NAME NOT RECOGNIZED), the bilin
gual DSU resets the data_stream_format field to ERROR and notifies the oper
ator.

6. All FORMAT SET 1 values for the data_stream_format variables are period
ically reset to FORMAT SET 2. The purpose of resetting these variables is to
discover whether any logically adjacent DSUs have been upgraded to be
bilingual. The exact mechanism for resetting these FORMAT SET 1 values is
left to the discretion of the implementation. A suggested method is to auto
matically reset the values once a month (or some other appropriate period).
Other methods include having the system operator reset the values period-

Appendix D. FS1/FS2 Coexistence 385

ically, or having the implementation always attempt to allocate a conversa
tion using the Format Set 2 TP name (i.e., on each conversation).

7. If a bilingual DSU is attached by a Format Set 2 TP name, it resets its own
data_stream_format field for the attaching DSU to FORMAT SET 2.

8. If a bilingual DSU is attached by a Format Set 1 TP name, it does not reset
its own data_stream_format field for the attaching DSU to FORMAT SET 1.

(Simply stated, the FS2 encodings are preferred. News that the partner
DSU is capable of sending FS2 (see step 7) is sufficient reason to attempt to
send FS2 to that partner; news that the partner DSU is capable of sending
FS1 is not a sufficient reason to restrict communication to the partner to
FS1.)

Detailed Actions for FS1/FS2 Coexistence

Inputs

Figure 56 on page 388 summarizes the actions of a bilingual DSU. for any given
combination of inputs and next hops.

In general, the protocol boundary and the distribution transport sublayer pass
the same information into and out of the DSU. For example, a DSU may receive
input from either a Send_Distribution verb or from DS_Receive. This does not
mean that a single mechanism controls both the Send_Distribution verb and
DS_Receive, nor does it imply that the same format is used across the agent
protocol boundary and the LU 6.2 basic conversation protocol boundary. The
important point is that the information content of the distribution is essentially
the same, whether it enters the DSU via the Send_Distribution verb or via
OS_Receive.

For this discussion, therefore, no distinction is made between data received
across the agent protocol boundary and data received from a partner OSU.
Similarly, the data carried out of the DSU by the Receive_Distribution verb and
the data carried out by the DS_Send process are considered identical.

The following are the possible inputs to a bilingual OSU:

• Constrained transport information (without DIA report information)

Constrained transport information is whatever can be held in an FS1
Oist_MU type TRANSPORT. If a distribution is encoded in FS2, no non-FS1
features may be exploited:

The origin and all destinations of the distribution must be users: the
report-to destination, if specified, must also be a user.
The agent_object must be less than 512 bytes.
The dest_agent, if specified, must be DIA or DIASTATUS.

Neither the supplemental_dist_info1 field nor the supp/ementa/_dist_info2
field may be specified.
The seqno field must have a value between 1 and 9999 (inclusive).

386 SNA/Distribution Services Reference

Next Hop

Actions

• Constrained FS2 distribution report information

This contains only OS report information. Constrained FS2 distribution
report information is whatever can be held in an FS1 Dist_MU type REPORT

containing only DS report information. If a distribution is encoded in FS2,
no non-FS1 features may be exploited:

The reported-on destinations and the report-to destination must be
users.
A reported-on_dest_agent other than DIASTATUS may not be specified.
Neither the reported-on_supp_dist_infot nor the
reported-on_supp_dist_info2 field may be specified.

• Unconstrained FS2 information

These distributions exploit one or more FS2-only features and therefore
cannot be encoded in FS1. Attempting to send an unconstrained distrib
ution to an FS1 DSU results in the distribution being terminated with an
exception code of nFunction conflicts with FS1 encodingsn (X'1003 001C').

• DIA report

In FS1, this information is encoded as a Dist_MU type REPORT with only DIA
report information. If any DS report information were included in the DMU,
the application (DIA) report information would be discarded. If an FS1
Dist_MU type REPORT contains only application report information (i.e., no
OS report information) and the application is not DIA, the distribution cannot
be translated into FS2 and is therefore terminated.

Unlike FS1, FS2 treats agent-to-agent exception flows no differently from any
other agent-to-agent exchanges, and DIA report information is encoded as a
constrained DTMU with origin_agent set to DIA and dest_agent set to
DIASTATUS.

• FS 1 OS report

This is an FS1 Dist_MU type REPORT with OS report information. If applica
tion (DIA) report information is also present in the Dist_MU, it is discarded.

The next hop of a bilingual DSU is either an FS1 DSU or an FS2 DSU. Because
the default action is to use FS2 encodings, adjacent DSUs that are bilingual
appear to be FS2-only DSUs.

The referenced notes refer to the list below the table.

Appendix 0. FS1/FS2 Coexistence 387

Actions of Bilingual DSU where
INPUT Next Hop Is FSl Next Hop 1s FS2

Constrained Transport Send distribution fn FSl Send distribution in FS2
Infonnation (See Note 1) (See Note S)

Constrained FS2 DRHU (See Note 2) Send distribution In FS2

Unconstrained FS2 Tenninate distribution Send distribution In FS2
Infonnatlon (See Note 3)

DIA Report (See Note 4) (See Note 6)
Infonnatlon

FSl DS Report Send distribution In FSl (See Note 7)

Figure 56. Summary of Detailed Actions of a Bilingual DSU

Notes:

1. The DSU builds an FS1 Dist_MU type TRANSPORT. If an FS2 DTMU was
received, then see section "Transport Mapping" on page 389 for the
structure-by-structure mapping.

2. The DSU builds a single FS1 Dist_MU type REPORT with gen_SNADS_report.
See section "OS Report Mapping" on page 391 for further detail.

3. Any unconstrained information in a distribution causes the entire distrib
ution copy to be terminated. For example, if a DTMU with multiple destina
tions is received and one of the destinations is a node, rather than a user,
the entire distribution copy is terminated for all destinations-user and node
destinations alike.

4. If an FS1 Dist_MU type REPORT with DIA report information is received, the
DSU simply forwards the DMU on to the next hop.

If a constrained FS2 DTMU is received, DIA report information is present
when the destination agent is DIASTATUS. The DSU builds an FS1 Dist_MU
type REPORT with a DIA report. The DIA report portion of the FS1
dist_command is taken via simple byte-by-byte copy from the server_object
of the input FS2 MU. The FS1 MU does not contain a server _object. See
section "DIA Report Mapping" on page 395 for further detail.

5. The DSU builds an FS2 DTMU. If an FS1 Dist_MU was received, then see
section "Transport Mapping" on page 389 for the structure-by-structure
mapping.

6. If an FS2 DTMU is received, the DSU simply forwards the DMU on to the
next hop, handling this case exactly as it would any other FS2 MU, regard
less of the agent specified.

If an FS1 Dist_MU type REPORT with DIA report information is received, the
DSU builds an FS2 DTMU specifying the dest_agent as DIASTATUS. The
portion of the FS1 command containing the DIA report is inserted via simple
byte-by-byte copy into the server_object. See section "DIA Report
Mapping" on page 395 for further detail.

388 SHA/Distribution Services Reference

7. The DSU generates one to four FS2 DRMUs from the FS1 Dist_MU type
REPORT with OS report (and discards any DIA report information). See
section "OS Report Mapping" on page 391 for further detail.

Placement of Conversion Actions
The placement of the FS1/FS2 mapping functions described below depends on
the implementation. However, this appendix is written assuming that all
mapping functions will be performed in the FS1 distribution transport sublayer
(i.e. the FS1 DS_Send and DS_Receive processes). There is no reason to treat
any distribution that is received in FS2 and forwarded on to the next hop in FS2
differently from any other FS2-only distribution.

Transport Mapping
All distributions received as FS1 MUs can be built in FS2. Some distributions
received as FS2 DTMUs, however, may exploit function that cannot be con
tained in FS1. Such distributions are termed "unconstrained"; if an attempt is
made to send them to an FS1-only DSU, they are terminated by the bilingual
DSU with an SNA_report_code of "Function conflicts with FS1 encodings"
(X'1003 001C'). Constrained distributions can be mapped from FS2 to FS1.

This section gives the structure-by-structure mapping between Format Set 1 and
Format Set 2 for Transport MUs. Since the supported mappings are reversible,
Figure 57 suffices for both the FS1 to FS2 and the FS2 to FS1 mappings.

Transport Atomic Structure Mappings

FS2 Structure FSl Structure

HOP_COUNT HOP COUNT
OIST_FLAGS DIST FLAGS
SERVICE_PARHS SERVICE_PARHS
SERVER OBJ BYTE COUNT SERVER_OBJ_BYTE_COUNT
DRIGIN=AGENT - OEST_AGENT
SERVER SERVER
DRIGIN_RGN DRIGIN_RGN
ORIGIN_ REN DRIGIN_REN
DRIGIN_DGN DRIGIN_DGH
ORIGIN DEN ORIGIN_DEN
SEQNO_i}TH ORIGIH_SEQNO, DRIGIH_DTH
AGENT_CORREL AGENT_CORREL
REPORT-TD_RGN REPORT-TD_RGN
REPORT-TO REN REPORT-TD_REN
REPDRT-T(DGN REPORT-TD_DGN
REPORT-TO_DEN REPORT-TO_DEN
REPORT_SERVICE_PARHS REPORT_SERVICE_PARHS
REPORT-TO_AGENT REPORT-TD_AGEHT
DEST_RGN DEST_RGH
DEST_REN DEST_REN
DEST_DGN DEST_DGH
DEST DEN DEST_DEN
AGENT_OBJECT AGENT_OBJECT
SERVER_ OBJECT SERVER_ OBJECT

Figure 57. FS2 to FS1 Mapping for Transport MUs

Appendix D. FS1/FS2 Coexistence 389

Notes on execution-time checks and actions, FS2-to-FS1:

1. Unless otherwise noted, the FS2 structure values are simply copied to their
FS1 counterparts.

2. An FS2 OTMU with third-party reporting might specify a report-to_user with
no report-to_DSU. In this case, the bilingual DSU uses its own OSU name
as the report-to_DSU for the Format Set 1 MU.

3. The Format Set 2 agent_correl field will be truncated to 44 bytes, if neces
sary.

4. Unrecognized fields in the command or at the highest level are ignored
(and discarded).

5. The exception_report flag of an FS2 DTMU is mapped to the
correspondingly-named counterpart flag in the FS1 MU. The FS1
distribution_type flag (i.e., TRANSPORT or REPORT) is set based on the
dest_agent of the Format Set 2 MU; see section "DIA Report Mapping" on
page 395 for further details. Unused bits in the Format Set 2 dist_f/ags byte
4 are ignored (whatever their value). The Format Set 2 dist_flags byte 3,
bits 0-7, and dist_flags byte 2, bits 1-7 must be O; otherwise, the distribution
is terminated.

6. The FS1 protection service parameter is set to YES.

7. If the FS2 capacity service parameter is REQUIRE_LEVEL_GE ZERO or the FS2
priority is greater than DATA16, then the FS1 capacity is ZERO. Otherwise,
the FS1 capacity is INDEFINITE.

8. If the date/time stamp of the DTMU contains GMT plus local offset, the FS1
MU is given the origin's "local" time. That is, the local-time offset is added
to the GMT time to yield the date/time stamp of the FS1 MU.

9. If a dest_agent of DIA or DIASTATUS is specified, the FS1 agent is DIA.

Notes on execution-time checks and actions, FS1-to-FS2:

1. Unless otherwise noted, the FS1 structure values are simply copied to their
FS2 counterparts.

2. If the FS1 distribution specifies the capacity service parameter as INDEFINITE,

the FS2 distribution capacity is set to REQUIRE_LEVEL_GE 16MB.

3. The server_object_byte_count field, if supplied in the Format Set 1 MU, is
assumed to be correct and copied to the Format Set 2 MU. No checking is
performed.

4. Bits 3-7 of the FS1 dist_flags must be 0, or the distribution is terminated. Bit
2 is ignored, whatever its value. The exception_report flag of a Format Set
1 DMU is mapped to the correspondingly named counterpart flag in the
Format Set 2 MU. The Format Set 1 distribution_type flag (i.e., TRANSPORT or
REPORT) is not carried over directly into the Format Set 2 MU; see section
"DIA Report Mapping" on page 395 for further details. All unassigned flags
in the Format Set 2 MU are set to 0.

5. The server _parms field is not supported in FS2. If it is present in the FS1
MU, the distribution is terminated.

390 SNA/Distribution Services Reference

6. The date/time stamp of the FS1 MU is used as the date/time stamp for the
FS2 MU, and is considered "local" time only (that is, not GMT or
GMT-pl us-offset).

7. The FS2 distribution is sent with high integrity.

DS Report Mapping
This section discusses in detail the Format-Set-1/Format-Set-2 mappings for DS
reports.

All distributions received in FS1 can be built in FS2. Distributions received in
FS2, however, may exploit function that cannot be contained in FS1. In such
cases, the DSU terminates the distribution and logs the error with the
SNA_report_code of "Function conflicts with FS1 encodings0 (X'1003 001C').

FS2 reports carry both origin and report-to agent information, if both are speci
fied. FS1 reports carry only one agent name, and that agent must reflect the
report-to agent, if specified. Therefore, if a distribution

1. originates in an FS2 subnet

2. and exploits the report-to_agent parameter

3. and has a distribution report that is generated in or passes through an FS1
subnet

the report will indicate that the distribution was originated by the report
to_agent instead of the true originating agent.

Also, if a distribution specifies a report-to_user, then the
reported-on_origin_DSU field will be absent from the FS2 DRMU.

The mapping between the Format Set 1 Dist_MU type REPORT and the FS2
DRMU is given in Figure 58 on page 392.

Appendix D. FS1/FS2 Coexistence 391

OS Report Atomic Structure Mappings

FS2 Structure FSl Structure

HDP_COUNT HOP_COUNT
SERVICE_PARMS SERVICE_PARMS
REPORT-TO AGENT ORIGIN_AGENT
REPORTIN(RGN ORIGIN_RGN
REPORTING REN ORIGIN_ REN
REPORT DTM ORIGIN_DTH
REPORT:TO_RGN DEST_RGN
REPORT-TO_REN DEST_REN
REPORT-TO DGN DEST_DGN
REPORT-T(DEN DEST DEN
REPORTED-ON ORIGIN DGN REPORTED-ON ORIGIN DGN
REPORTED-ON-ORIGIN-DEN REPORTED-ON=ORIGIN~DEN
REPORTED-ON=SEQNO_DTM REPORTED-ON_SEQNO
REPORTED-ON_SEQNO_DTM REPORTEO-ON_DTH
REPORTED-ON_AGENT_CORREL REPORTEO-ON_AGENT_CORR
REPORTED-ON DEST DGN REPORTED-ON_DEST_DGN
REPORTED-ON=DEST=DEN REPORTED-ON_DEST_DEN
RECEIVING_RGN DETECTING_RGN
RECEIVING_REN DETECTING_REN
SNA_REPORT_CODE GEN_SNADS_COND_CODE

Figure 58. FS1 to FS2 OS Report Mapping

Notes on execution-time checks and actions, FS2-to-FS1:

1. Unless otherwise noted, the FS2 structure values are simply copied to their
FS1 counterparts.

2. The destination of the DRMU must be a user rather than a node. If the FS2
DRMU specifies the report-to_DSU_user as a node, the distribution is termi
nated.

3. Unrecognized fields In the report_command or report_/nformation or at the
highest level are discarded.

4. The presence of either the reported-on_supp_dist_info1 or the
reported-on_supp_dist_info2 field causes the distribution to be terminated.

5. The reported-on_origin_RGN and the reported-on_origin_REN parameters
are discarded. (The reported-on_origin_DGN and reported-on_origin_DEN
must be present.)

6. The origin_seqno parameter Is set to X'FOFOFOFO,' as specified in
Appendix G.

7. The dist_flags are set to indicate type (REPORT), exception_report (No).

8. The SNA_report_code is mapped to a OS condition code. See Appendix E
for the exact mappings.

9. The reported-on_dest_DSU structure is ignored.

10. The reported-on_agent_correl structure is truncated to 44 bytes, if neces
sary.

11. If the reported-on_seqno is greater than 9999, the distribution is terminated.

12. The protection service parameter is set to YES, and the capacity is set to
ZERO.

392 SNA/Distribution Services Reference

13. The reported-on_origin_agent, if present, is ignored.

Notes on execution-time checks and actions, FS1-to-FS2:

1. Unless otherwise noted, the FS1 structure values are simply copied to their
FS2 counterparts.

2. The origin_user field in the Format Set 1 Dist_MU type REPORT should not be
present. If present, it is discarded; only the origin_DSU is carried in the FS2
MU.

3. Exception reporting is handled differently in FS1 and FS2. FS1 allows a dif
ferent OS condition code to be reported for each destination, but provides
minimal diagnostic report information. In FS2, a single MU reports only one
exception, but extensive reporting information may be provided.

If a bilingual DSU receives an FS1 MU with multiple condition codes, it gen
erates multiple FS2 DRMUs, one DRMU for each unique condition code.
This can be done by sorting the FS1 condition codes, and generating an FS2
DRMU for each unique code. A single FS1 Dist_MU type REPORT with a OS
Report may cause a bilingual DSU to generate up to four FS2 DRMUs. For
more detail of this process, refer to "FS1 Specific OS Reports."

4. The OS condition code is mapped to an SNA_report_code. See section
Appendix E. for the exact mappings.

5. The origin_seqno field is ignored (and discarded).

6. The dist_flags are set to specify exception_report (NO).

7. The presence of a server_object or agent_object in the FS1 MU causes the
distribution to be terminated.

8. All reported-on destinations are users. However, the reported-on_dest_RGN
and reported-on_dest_REN are omitted within the reported-on_dest_DSU.

9. The FS2 distribution is sent with high integrity.

FS1 Specific OS Reports
As mentioned earlier, a single FS1 Dist_MU type REPORT with a OS report may
contain different condition codes. In practice, multiple exceptions rarely occur
simultaneously for a single distribution, so typically the report contains only one
condition code. Nonetheless, to understand how many unique condition codes
may occur in a single FS1 OS report, divide the condition codes into three
groups (see Figure 59 on page 394.) The first group contains only Routing
Exception and Unknown User Name, which are the FS1 exception conditions
having a scope of "Destinations" as described in Appendix E. If an FS1 OSU
receives a distribution and checks for these exceptions, some destinations
might have a Routing Exception, some others might have an Unknown User
Name, and others may have neither exception condition.

The second group of condition codes contains Unknown Resource
Name-Specific Server, Invalid Server Parameters, Unknown Resource
Name-Agent TP and Specific Server Exception. The scope of these exceptions
is "Local-only Destinations." These exceptions can occur only at the destination
OSU. Each of these conditions must apply to all of the local destinations or

Appendix D. FS1/FS2 Coexistence 393

none of the local destinations. For example, if the specific server is unknown
for one local user, it will be unknown for all local users.

The third group of condition codes includes all the other exception conditions,
each having the scope of "Distribution Copy." Each of these conditions applies
either to all destinations or no destinations of an MU. For example, Hop Count
Exhausted is in this third group. Since the hop count is maintained on a distrib
ution copy basis, the Hop Count Exhausted exception will affect all destinations
in that distribution copy.

Given any distribution, an FS1 DSU may detect either or both codes from group
1, but at most one from group 2 and at most one from group 3. Thus, the FS1
DSU may report up to four condition codes for any given MU.

Codes that might apply to some destinations and not others:
Routing exception
Unknown user name

Codes that apply only at destination OSUs, and apply to all destinations or no destinations:
Unknown resource name-specific server
Invalid server parameters
Unknown resource name-agent TP
Specific server exception

Codes that must apply to all destinations or no destinations:
Hop count exhausted
Format exception
Function not supported
Operator Intervention-purged
User names lost
Resource not available
System exception
Insufficient resource
Storage-medium exception
REMU exception
Server object size Incompatible with capacity level

Figure 59. Groupings of OS FS1 Condition Codes

For example, suppose that a DSU with a DSU name of 01 receives a Dist_MU
type TRANSPORT. Also, assume that the DSU names 02, 03, and 04 appear in the
intervention list at 01. Further, suppose that the DMU's received hop count
value was 1, that a format exception was detected during receipt, and that
neither the agent nor the server specified in the DMU exists at this DSU. The
destination list (and the errors associated with each destination) is given below:

• User=u1, DSU=o1. The directory indicates that u1 is an unknown user
name.

• User= u2, DSU = 02. The directory indicates that u2 is an unknown user
name.

• User= U3, DSU = 03. This is a valid local user.

• User= U4, DSU = 04. This is a valid local user.

• User= us, DSU = os. The routing table indicates that os is a routing error.

• User= us, DSU = 06. The routing table indicates that 06 is a routing error.

• User=u1, DSU=o7. The directory indicates that U7 is an unknown user
name. The routing table indicates that 01 Is a routing error.

394 SNA/Oistribution Services Reference

• User= us, DSU = DS. The directory indicates that us is an unknown user
name. The routing table indicates that DS is a routing error.

• User= U9, DSU = D9. This is a valid remote user.

This DSU happens to check for exceptions in the order given in Figure 59 on
page 394. Routing exceptions are checked first, and destinations us, us, U7 and
us are flagged. Unknown user names are checked next, and u1 and u2 are
flagged. Users U7 and us would have been flagged for unknown user names,
but they were previously flagged as being routing exceptions. The check for
Unknown Resource Name-Specific Server causes the remaining local users to
be flagged, U3 and U4. Unknown Resource Name-Agent TP will not be
reported, since all of the valid local users (U3 and U4) have already been
flagged as having Unknown Resource Name-Specific Server. Since the
received hop count is 1, the distribution cannot be forwarded because a Hop
Count Exhausted condition exists. All of the remaining remote users (only u0 in
this example) will thus be flagged with Hop Count Exhausted. Format Exception
will not be reported because no valid destinations remain. Thus, in spite of the
fact that six exception conditions exist, only four (Routing Exception, Unknown
User Name, Unknown Resource name-Specific Server and Hop Count
Exhausted) will be reported.

DIA Report Mapping
This section discusses in detail the Format-Set-1/Format-Set-2 mappings for DIA
reports. This mapping is unusual in that an FS1 report flow is mapped to (or
from) an FS2 transport flow. Figure 60 shows the atomic structures not directly
related to the DIA report, and Figure 61 on page 397 shows how FS2 DTMUs
contain an FS1-style DIA report in a mixed network.

A DSU supporting an open protocol boundary makes the DIASTATUS and DIA

agent names available to the local DIA application program. This application
program should send DIA report information using a Send_Distribution verb
with origin_agent set to DIA, dest_agent set to DIASTATUS and server set to DIA.

FS2 DTHU to FSl DIA Report Structure Happfngs

FS2 Structure FSl Structure

HOP_COUNT HOP_COUNT
OIST_FLAGS OIST_FLAGS
SERVICE PARMS SERVICE_PARHS
ORIGIN_AGENT/DEST_AGENT DEST_AGENT
SERVER SERVER
ORIGIN_RGN ORIGIN_RGN
ORIGIN REN ORIGIN_REN
ORIGI(DGN ORIGIN_DGN
ORIGIN_ DEN ORIGIN_DEN
SEQNO_OTH ORIGIN_SEQNO, ORIGIN_OTH
AGENT CORREL AGENT_CORREL
DESTjiGN DEST_RGN
DEST_REN DEST_REN
OEST_OGN DEST_DGN
DEST_OEN DEST_OEN

Figure 60. FS2 DTMU to FS1 Dist_MU type Report (DIA Report) Mapping

Appendix D. FS1/FS2 Coexistence 395

Notes on execution-time checks and actions, FS2-to-FS1:

1. Unless otherwise noted, the FS2 structure values are simply copied to their
FS1 counterparts.

2. The fields of the FS1 Dist_MU type REPORT that are not specifically devoted
to agents or report information (e.g., origin_RGN and origin_REN of the FS1
Dist_MU type REPORT), are mapped from FS2 DTMU's prefix, command, and
destination_list portions according to the rules given above for transport MU
mapping (see section "Transport Mapping" on page 389).

3. If the DTMU's priority service parameter is less than CONTROL, the FS1 MU's
priority is set to CONTROL FS1 protection is set to YES, capacity is set to
ZERO.

4. The contiguous section of the FS1 Dist_ MU type REPORT consisting of the
dist_report_operands (see Figure 57 on page 389) is copied from the FS2
MU's server_object.

• The byte stream to be copied to the FS1 Dist_MU type REPORT begins
with the first LLID inside the server_object, which must be ID=C340 or
ID= C361. (Otherwise, the translation is terminated.)

• Subsequent LLIDs of the server _object are also copied into the FS1
Oist_MU type REPORT without modification, until the termination condi
tion is detected.

• The termination condition is two consecutive LLIDs with LL=S,
ID=C351. The two terminating LLIDs are included in the FS1 Dist_MU
type REPORT.

• Exhaustion of the server_ object without detecting the termination condi
tion causes the translation (and distribution) to be terminated.

• Any data left in the server_object is discarded.

5. The FS1 dest_agent is set to DIA. The distributlon_type bit Is set to REPORT.

6. No FS1 server is specified.

7. The server_object_byte_count Is ignored (if supplied).

Notes on execution-time checks and actions, FS1-to-FS2:

1. Unless otherwise noted, the FS1 structure values are simply copied to their
FS2 counterparts.

2. The fields of the FS2 DTMU prefix, command, and destination_list that are
not specifically devoted to agents or report information are mapped to the
FS1 Dist_MU type REPORT according to the rules given above for transport
MU mapping {see section "Transport Mapping" on page 389).

3. If the FS1 priority is CONTROL, then the FS2 priority is set to REQUIRE_LEVEL_GE

DATA16. FS2 capacity is set to REQUIRE_LEVEL_GE 16MB.·

4. The F.S1 Dist_MU structure dist_report_operands (see Figure 61 on
page 397) is copied to the FS2 MU's server _object. {This means that the
first ID of the server _object will be either C340 or C361; the last two IDs of
the server _object will be identical: LL= 5, ID= C351.)

396 SNA/Distribution Services Reference

5. The FS2 DTMU's dest_agent is DIASTATUS, the origin_agent is DIA and the
Server is DIA. The exception_report flag is set to NO.

6. Bilingual DSUs may calculate the length of the server_object and supply the
server_ object_byte _count.

7. The FS2 distribution is sent with high integrity.

FSl DMU (Type Report) with DIA Report

DIA
Px ... Qnd.. • Report • • • Sx

Format Set 1 DHU (Type Report)
DIA Report Atomic Structures

REPORT CORRELATION
REPDRTED-ON_ORIGIN_DGN
REPORTED-ON_ORIGIN_DEN
REPORTED-ON_SEQNO
REPORTED-ON_ORIGIN_DTM
REPORTED-ON_AGENT_CORR
GEN_DIA_TYPE
GEN_DIA_CONTENTS
BEGIN_REPORT_DGN_LIST
REPORTED-ON_DEST_DGN
BEGIN_REPORT_DEN_LIST
REPORTED-ON OEST DEN
SPEC_DIA_TYPE -
SPEC_DIA_CONTENTS
END_REPORT_DEN_LIST
END REPORT DGN LIST

(other LLIDs may occur fn FS2 flow, and will be truncated)

Format Set 2 DTHU
Server Object

l
J

Server
Px ••• and ••• DL. •• Object Sx

FS2 OTMU with DIA-Report Coexistence Indicated by Agent=OIASTATUS

Figure 61. Coexistence Mapping of FS1 DIA Report to DTMU Server Object

Null RGN Handling
One subtle, but significant, difference between FS1 and FS2 involves RGNs. FS1
allows a "null RGN" to be used, in which no RGN value is given. A null RGN is
encoded with an LT that has a length of 2 and no atomic data (see Appendix G
for further details). The FS1 assumption is that, just as a RGN may have a

Appendix D. FS1/FS2 Coexistence 397

value of, say, A, NETS, or usco1Ns, it may also have an empty (or null) string as
its value. In this last case, the RGN is said to be null. FS2 does not allow null
RGNs, but requires that a non-null RGN value be used in all MUs whenever a
DSU name is specified. (Usually this RGN value will merely be the appropriate
network ID.)

To allow FS1 implementations using null RGNs to coexist with FS2 implementa
tions, which consider null RGNs to be illegal, the system administrator should
define a specific (i.e., non-null) value to the FS2 implementations for the FS1
null RGN. This special RGN value is inserted by a bilingual DSU's FS1
DS_Receive process whenever a null RGN is received, and transformed into a
null RGN by the bilingual DSU's FS1 DS_Send process.

This is most easily understood by the following example: Let "<null>" denote
a null RGN, and suppose the system administrator has chosen NRGNVAL to be
the FS2 name for the FS1 null RGN. User (DGN=DEPTA, DEN=ALICE) is located
at an FS1-only DSU named (RGN= <null>, REN=SYSTEMA). User
(DGN=DEPTB, DEN=BILL) is located at an FS2-only DSU named (RGN=NETWKB,
REN=svsTEMB). The bilingual DSU between the FS1 and FS2 subnets is known
by two DSU names, (RGN = NETWKC, REN= svsrEMC) and (RGN = <null>,
REN=svsTEMC) This network is shown in Figure 62.

FSl Network

User=DeptA.Alice
• I
DSU•<null>.SystemA

I
DSU=<null>.SystemD

DSU=NetwkC.SystemC

I
User•DeptB.Bill

• I
DSU•NetwkB.SystemB

FS2 Network

Figure 62. Null RGN Handling Example-Network, OSUs, and Users

The following system data structures exist in the various DSUs:

• At DSU (<null> .svsrEMA)

The directory contains

DeptB.*
DeptA.Alice

'<null>.SystemD
' local user queue #5

The routing table contains

<null>.SystemD '<null>.SystemD

• At the bilingual DSU (NETWKC.SYSTEMC)

The directory contains

DeptB.Bill ' NetwkB.SystemB

398 SNA/Distribution Services Reference

The routing table contains

NRGNVAL.SystemA 4 <null>.SystemA
NetwkB.SystemB 4 NetwkB.SystemB

The intervention list contains

NRGNVAL.SystemD

The "null RGN value" is defined as NRGNVAL.

• At DSU (NETWKB.SYSTEMB)

The directory contains

DeptB.Bill 4 local user queue #8
OeptA.Alice 4 NRGNVAL.SystemA

The routing table contains

NRGNVAL.* 4 NetwkC.SystemC

These tables are shown in Figure 63 on page 400.

Appendix D. FS1/FS2 Coexistence 399

•Directory

• •DeptB.* + <null>.SystemD
• •DeptA.Alice + local user queue #5• •

•Routing Table

• •<null>.SystemD + <null>.SystemD • •

•Directory
FSl Network

l :
• •DeptB.Bill + NetwkB.SystemB

• ~···•••••••••••••••• •Routing Table

I : :~~~~~;~:~;;;~;··:·:~~;;;:~;;;~;: :
•••••••••••••••••••••••••• •NetwkB.SystemB + NetwkB.SystemB• •

•

•
-"-r

FS2 Network •

•Intervention List

• •NRGNVAL.SystemD

•Directory

• ·DeptB.Bill + local user queue #8• •
• •DeptA.Alice + NRGNVAL.SystemA

•Routing Table

• •NRGNVAL.* + NetwkC.SystemC

Figure 63. Null RGN Handling Example-Data Structures

If DEPTA.ALICE sends a distribution to DEPTB.BILL, the Dist_MU sent from the origin
to the bilingual DSU will contain the following values.

Origin User: DGN=DeptA DEN=Alice
Origin DSU: RGN=<null> REN=SystemA
Dest User: DGN=DeptB DEN=Bill
Dest DSU: RGN=<null> REN=SystemD

The distribution will be received by the bilingual DSU, and the null RGN values
will be replaced with NRGNVAL in the FS1 DS_Receive process. The bilingual
DSU will then redirect the distribution since the destination DSU
(NRGNVALSYSTEMD) is in the DSU's intervention list. The directing sublayer will
determine that the destination user, DEPTB.BILL, is located at NETWKB.SYSTEMB.

The distribution as forwarded on to NETWKB.SYSTEMB from the bilingual DSU will
have the following fields:

400 SNA/Distribution Services Reference

Origin User: DGN=DeptA DEN=Alice
Origin DSU: RGN=NRGNVAL REN=SystemA
Dest User: DGN=DeptB DEN=Bill
Dest DSU: RGN=NetwkB DEN=SystemB

The distribution will be received at NETWKB.SYSTEMB and delivered to DEPTB.BILL

as would any other distribution. This example is shown in Figure 64.

• Origin: OeptA.Alice
at <null>.SystemA •

FSl Network
~---· Oest: DeptB.8111

at <null>.SystemO • •..................................

: I
t • Origin: OeptA.Alice

'------• at NRGNVAL. SystemA•

•••••••••••••• Oest: DeptB.Bill

~'. '.".'.':":~:~~'.'.':~.:

FS2 Network

Figure 64. Null RGN Handling Example-Distribution Flow

Now suppose that DEPTB.BILL sends a distribution to DEPTA.ALICE. The distrib
ution as originated from Bill's DSU will have the following fields:

Origin User: DGN=DeptB DEN=Bill
Origin DSU: RGN=NetwkB REN=SystemB
Dest User: DGN=DeptA DEN=Alice
Oest DSU: RGN=NRGNVAL REN=SystemA

At the bilingual DSU, the distribution will not be redirected. The RGN = NRGNVAL

field will be converted to a null RGN by the bilingual DSU's FS1 DS_Send
process, and the distribution as sent by the bilingual DSU and received by
DEPTA.ALICE'S DSU will have the following fields:

Origin User: DGN=DeptB DEN=Bill
Origin DSU: RGN=NetwkB REN=SystemB
Dest User: DGN=DeptA DEN=Alice
Dest DSU: RGN=<null> REN=SystemA

Null RGNs in the report_to_RGN field are handled analogously.

FS1 Atomic Structures Not Present in FS2
The following Dist_MU type TRANSPORT atomic structures from FS1 are not
mapped into FS2:

• server_object_ind

This structure is unnecessary in FS2. The presence of a server object is
signalled by the presence of the server object LLID.

Appendix D. FS1/FS2 Coexistence 401

• server _parms

This structure was not used by FS1 applications.

The following FS1 Dist_MU type REPORT atomic structures are not mapped into
FS2:

• origin_seqno

This structure has a constant value in FS1 report flows. It may be assumed
by bilingual DSUs.

• agent_correl

This is not the same structure as reported-on_agent_corre/. It was not used
by FS1 applications, and is unnecessary in FS2 since reports are originated
by the DSU (and no agent is involved to supply an agent_corre/).

• server _object_ind

This structure was not used by FS1 applications, and is unnecessary in FS2.

• gen_SNADS_type

This structure is necessary in FS1 because OS and DIA reports may flow in
a single MU. In FS2, only OS reports flow in the DRMU, and this structure is
unnecessary.

• spec_DS_* (all OS specific report fields)

FS2 uses only general reports.

• dist_flags

The appropriate values for these flags are assumed in FS2 without an
explicit structure.

FS2 Atomic Structures Not Present in FS1
The following atomic structures in FS2 are not mapped into FS1.

• MU_ID

This structure is not part of the distribution, but is used only for the
hop-to-hop transfer of the DTMU or DRMU. FS1 uses the LU 6.2
Confirm/Confirmed verbs to transfer a DMU from one hop to the next.

• MU_instance_number

This structure is used in FS2 only in conjunction with the MU_JD, discussed
above.

The following DTMU atomic structures in FS2 are not mapped into FS1:

• supp/emental_dist_info1

• supp/emental_dist_info2

The following DRMU atomic structures in FS2 are not mapped into FS1:

• reported-on_origin_RGN

402 SNA/Distribution Services Reference

• reported-on_origln_REN

• reported-on_dest_agent

• reported-on_supp _dist_info 1

• reported-on_supp_dist_info2

• reported-on_ dest _agent

• reported-on_origin_agent

• SNA_condition_report (all atomic structures except SNA_report_code,
reported-on_dest_DGN and reported-on_dest_DEN)

Appendix D. FS1/FS2 Coexistence 403

404 SNA/Distribution Services Reference

Appendix E.

Introduction

Exception Handling

This appendix describes protocols for reporting OS-detected conditions. In so
doing, this appendix includes both references to DS encoding constructs
described in Appendix G and references to the introduction on exception han
dling presented in Chapter 1.

DS exception conditions can be detected at any of the four DS sublayers, and
the exception can be reported in a variety of ways depending upon the detector
and characteristics of the condition. This appendix identifies reportable condi
tions and describes the reporting and exception actions. For implementations
where FS1 and FS2 functions coexist, exception-code translation tables are pro
vided to translate the FS1 condition codes to the FS2 report codes. The
remainder of this appendix presents a summary of exception conditions that are
detected by the routing, directing, and transport sublayers. Exception condi
tions detected by the presentation services sublayer are described in detail in
Appendix F and are not specifically addressed in this appendix.

Types of Reporting Actions
Given a reportable condition, the reporting action DS takes in response to the
condition depends upon the detector and the characteristics of the condition.
listed below are the types of reporting actions DS may perform.

Local-Agent Reporting
Local reporting refers to reports that are delivered, either synchronously or
asynchronously, only to the local agent (i.e., the agent local to the reporting
OSU). Local reporting is used to report exception conditions that occur before
OS has accepted responsibility for a distribution or when DS is performing an
application-specific operation (i.e., a specific server operation at the origin or
destination). The report is delivered to the agent across the agent protocol
boundary.

MU-Level Reporting
DS informs the adjacent DSU whenever a condition is detected while in conver
sation with that OSU. MU-level reporting is performed when an exception is
detected at the transport sublayer, and the condition is reported to the partner
DSU by a SEMU (if DS_Send detects the exception) or by a REMU (if
DS_Receive detects the exception). The specific protocols are defined in
Chapter 2 and Chapter 3.

Distribution Reporting
Distribution reporting refers to the feedback on the condition of a distribution
and is requested as part of the original distribution request. If the originator
requests reporting on the condition of a distribution, OS will generate and send
a distribution report to the report-to DSU/user whenever the responsible DSU
has detected or has been informed of a condition that interferes with successful
delivery of the distribution. The SNA_condition_report (SNACR) is provided as

Appendix E. Exception Handling 405

part of the distribution report and contains specific information about the excep
tion. Since distribution reporting is requested as part of the distribution
request, distribution reporting is appropriate only for DTMUs and DCMUs and is
not performed for failed DRMUs or for any control MUs.

Note: If the report-to DSU/user is local to the reporting DSU, the distribution
report is passed across the protocol boundary on the
Receive_Distribution_Report verb. In the non-local case, the distribution report
will flow through the network as a DRMU.

Local-Operator Reporting
Whenever an exception condition has triggered a distribution report or a local
operator report, the DSU logs the exception condition in the exception log and
informs the local operator, if an operator is available at that DSU.

When the DSU is capable of rerouting distributions, the operator may be noti
fied without creating a distribution report. In these cases, the operator is given
an opportunity to reroute distributions that would fail in a less capable DSU.
The following conditions fall into this category:

• Routing exception
• Function not supported
• System exception (condition is at adjacent node)
• MU sequence exception
• Repeated conversation problems

Note: The rerouting function gives the operator the ability to retry conditions
that are not usually considered retriable (i.e., routing exception).

Exception Logging: When the DSU detects an exception condition, it creates an
entry in the exception log that describes the condition encountered. The fol
lowing information is logged for every condition.

• Name of the transaction program that detected the exception
• Date
• Time
• SNA_report_code
• Additional exception information

Depending upon the exception, the following additional information is logged
whenever appropriate.

• distribution_ID
• MU_ID
• reported-on_ destinations
• Session information
• LU 6.2 information
• SEMU
• REMU
• Implementation-specific information

406 SNA/Distribution Services Reference

Characteristics of Exception Conditions

Retrlable Conditions
Reportable conditions are either retriable or non-retriable. Retriable conditions
are not message-unit-specific. The same message unit might have been suc
cessfully processed had it arrived a moment earlier or later; therefore it is
expected that the message unit can still be successfully processed when it is
retried a moment later. Given their characteristic transience, it is not appro
priate for these retriable conditions to immediately trigger a local report, dis
tribution report, or operator notification.

If a retriable condition is detected by either DS_Send or DS_Receive, MU-level
reporting is used to inform the partner about the condition encountered. Then
the distribution may be retried again later. If DS_Receive detects the exception
and determines that it is retriable, DS_Send may or may not choose to honor
the receiver's recommended retry action. Only when the retry count has been
exhausted does the responsible DSU generate a distribution report.

If the exception detected by DS_Receive is a temporary condition at the
receiving DSU (i.e., temporary storage medium exception), DS_Send places a
hold on the next-DSU queues for that connection. When the temporary condi
tion has been resolved, an instance of DS_Receive at the receiving DSU is
expected to allocate a conversation to DS_Send at the sending DSU. The
attached instance of DS_Send releases the exception-hold and begins sending
traffic again.

Non-Retriable Condition

Condition Scope

Non-retriable conditions are message-unit-specific. The nature of the condition
is such that the distribution cannot proceed without a change to the message
unit. These conditions result in a distribution report, an operator notification, or
a local report.

For a non-retriable condition detected by either DS_Send or DS_Receive,
MU-level reporting is used to inform the partner of the exception and a distrib
ution report is generated to inform the report-to DSU/user. For those conditions
detected outside the transport sublayer, distribution reporting is performed (if
requested). However, for conditions that are outside the responsibility of DS
(i.e., specific server exceptions), distribution reporting is not appropriate
(although the exception may be reported to the local agent).

For each reportable condition, some portion of the distribution is affected. For
each reportable condition and for all subcodes of the condition, the portion of
the distribution affected and the TPs that may detect the exception are identified
in Table 1.

Appendix E. Exception Handling 407

Table 1. Portion of the Distribution Affected by a Reportable Condition and the Detecting TP

What's Affected Detecting TP
Condition Con· Dist Local DSU

nectlon Copy Dests
Dests Send Rev Rtr· Dir

Insufficient Resource x x x x x
Specific Server Exception x x x x x
Unknown Resource Name x x x x x
System Exception x x x x x x
Unable to Register MU_ID x x x x
Operator Intervention x x x x x
Storage Medium Exception x x x x x
Server Object Not Found x x x x x
Function Not Supported x x x
OS Conversation Exception x x x x
Unknown User Name x x x x
Format Exception x x x x x
Unrecognized Message Unit x x x
Directing Exception x x x x
Improper OS Usage of LU 6.2 x x x x x
MU Sequence Exception x x x x x
Invalid Restart Byte-Position x x
Routing Exception x x x x
Hop Count Exhausted x x x x x

SNACR Usage, DS Report Codes, and Reports

DS Usage of SNACR
The SNA_condition_report is a means by which exception information for any
type of SNA condition can be reported. The SNACR contains an SNA-registered
report code and a defined structure identification; therefore, the reason for the
exception and the location at which the exception was detected can be fully
described.

The following list identifies which of the highest-level structures within the
SNA_condition_report are used by OS:

• SNA_report_code

Is a 4-byte SNA-registered code that identifies the detected condition.

• structure _report

Identifies the header and (conditionally) the contents of OS encoding con
structs that are relevant to the specified SNA_report_code.

• reported-on_dest_list

408 SNA/Distribution Services Reference

Identifies the list of destinations affected by the SNA_report_code. This
structure is required by OS in any SNA_condition_report that appears in a
DRMU. This structure is precluded in the REMU.

• supp/emental_report

Contains the additional exception data that is relevant to the report code.

Further detail regarding OS's use of the SNA_condition_report is described in
the sections that follow.

SNA-Registered DS Conditions
The following table provides a condensed description for each SNA-registered
OS condition. The table identifies, for each OS condition, the corresponding
SNA-registered report code, the contents of the SNACR report structures, and
the recommended retry action. A formal description of the SNA-registered
report codes and contents of the report structures can be found in the "Sense
Data" chapter of the SNA Formats manual. Unless otherwise stated, the sug
gested retry actions for sender-detected conditions are identical to the receiv
er's recommended actions.

Table 2 (Page 1 of 5). SNA-Registered Report Codes for OS and SNACR Contents

SNA Report Code Structure Report

Condition Number
Structure

Supplemental Suggested

Code Subcode of Report Retry Action

Reports
Contents

Insufficient Resource

Insufficient resource 0812 0011 0 NIA NIA Expected

Specific-Server Exception

Specific-server exception 085A 0000 0 NIA NIA Precluded

Unknown Resource Name

Server
0858 0001 0 NIA

Unknown
Precluded

Server Name

Agent
0858 0002 0 NIA NIA Precluded

(See Note 4)

System Exception

Unidentifiable 085C 0000 0 NIA NIA Expected

Identifiable 085C 0001 0 N/A N/A Expected

Permanent 085C 0002 0 NIA NIA Precluded

Unable to Register MU_ID

Duplicate MU_ID MU_ID
0850 0001 0 NIA Registry Precluded

Values

MU_IO greater than expected MU_ID
0850 0002 0 NIA Registry Expected

Values

MU_ID not accepted due to a
0850 0003 0 N/A NIA Expected

temporary registry condition

Appendix E. Exception Handling 409

Table 2 (Page 2 of 5). SNA-Registered Report Codes for DS and SNACR Contents

SNA Report Code Structure Report

Condition Number
Structure

Supplemental Suggested

Code Subcode of Report Retry Action

Reports
Contents

MU_ID not accepted due to a
085D 0004 0 NIA NIA Precluded

permanent registry condition

MU_ID registry is not initial-
085D 0005 0 NIA NIA Precluded

ized

Operator Intervention

Suspending 085E 0001 0 NIA NIA Expected

Purging
085E 0002 0 NIA NIA

Expected
(See Note 6)

Storage-Medium Exception

Temporary storage-medium
0879 0001 0 NIA NIA Expected

exception

Permanent storage-medium
0879 0002 0 NIA NIA Precluded

exception

Server Object Not Found

Server object not found 08A6 0001 0 NIA NIA Precluded

Function Not Supported

Service parameter not sup-
1003 0016 0 NIA

Service
Precluded

ported triplet(s)

Service parameter level not
1003 0017 0 NIA

Service
Precluded

supported triplet(s)

Destination-role function not
supported 1003 0018 1 Data value (See Note 5) Precluded
(See Note 3)

All-role function not sup-
ported 1003 0019 1 Data value (See Note 5) Precluded
(See Note 3)

Reserved 1003 001A NIA NIA NIA NIA

Unable to initiate agent (See
1003 0018 0 NIA NIA Precluded

Note 4)

Function conflicts with FS1
1003 001C 1 Data value NIA Precluded

encodings

Reserved 1003 001D NIA NIA NIA NIA

Reserved 1003 001E NIA NIA NIA NIA

Multiple-destination traffic not
1003 001F 1 NIA NIA Precluded

supported

OS Conversation Exception

Unable to allocate a conver-
1008 6046 0 NIA NIA Expected

sation

Detected a RESOURCE FAILURE 1008 6047 0 NIA NIA Expected

Detected a Deallocate
1008 6048 0 NIA NIA Expected

Type(ABEND) return code

410 SNAIDistribution Services Reference

Table 2 (Page 3 of 5). SNA-Registered Report Codes for OS and SNACR Contents

SNA Report Code Structure Report

Condition Number
Structure

Supplemental Suggested
Code Subcode of Report Retry Action

Reports
Contents

Unknown User Name

Unknown user name 100A 0001 0 NIA NIA Precluded

Format Exception

Required structure absent 1008 0001 1 NIA NIA Precluded

Precluded structure present 1008 0002 1 NIA NIA Precluded

Multiple occurrences of a Data value of
non-repeatable structure 1008 .0003 1 2nd occur- NIA Precluded

rence

Excessive occurrences of a Data value of
repeatable structure 1008 0004 1 max+ 1 occur- Max value Precluded

rence

Unrecognized structure
1008 0005

1 (See
Data value NIA Precluded

present where precluded Note 1)

Length outside specified
1008 0006 1 Data value Max in range Precluded range

Length exception 1008 0007 1 Data value NIA Precluded

Required combination of
1008 0008 >1 NIA NIA Precluded

structures absent

Precluded combination of
1008 0009 >1 NIA NIA Precluded

structures present

Required combination of
structures and data values 1008 OOOA >1 Data value NIA Precluded
absent

Precluded combination of
structures and data values 1008 0008 >1 Data value NIA Precluded
present

Unknown or unsupported data 1008 oooc 1 Data value NIA Precluded
value

Incompatible data values 1008 0000 >1 Data value NIA Precluded

Precluded character present
1008 OOOE

1 (See
Data value NIA Precluded

Note 2)

Data value out of range 1008 OOOF 1 Data value Max in range Precluded

Segmentation occurred when
1008 0010 1 NIA NIA Precluded

precluded

Precluded data value 1008 0011 1 Data value NIA Precluded

Recognized but unsupported
1008 0012 1 NIA NIA Precluded

structure

None of several possible
1008 0013

1 (See Data value
NIA Precluded

structures found Note 1) possible

Incorrect order of child struc- Header of the
tures found 1008 0014 1 parent struc- NIA Precluded

tu re

Appendix E. Exception Handling 411

Table 2 (Page 4 of 5). SNA-Registered Report Codes for OS and SNACR Contents

SNA Report Code Structure Report

Condition Number Structure
Supplemental Suggested

Code Subcode of Report Retry Action

Reports
Contents

Unrecognized Message Unit

Unrecognized message unit
100C 0001

1 (See
Message unit NIA Precluded

Note 1)

Directing Exception (See Note 4)

Agent name known but not
100E 0001 0 NIA NIA Precluded

supported for user destination

Agent name known but not
supported for DSU destina- 100E 0002 0 NIA NIA Precluded
ti on

Agent name known but is not
100E 0003 0 NIA NIA Precluded

available

Improper DS Usage of LU 6.2

Improper OS usage of LU 6.2 100F 0001 0 NIA NIA Precluded

MU Sequence Exception

MU_ID already terminated 1018 0001 0 NIA NIA Expected

MU_ID state mismatch 1018 0002 0 NIA NIA Precluded

Reserved 1018 0003 NIA NIA NIA Precluded

Terminate conversation
1018 0004 0 NIA NIA Precluded

ignored

RRMU not followed by a
1018 0005 0 NIA NIA Precluded

CHANGE_DIRECTION Indicator

Invalid Restart Byte Position (RBP)

RBP > 1 plus
1019 0001 0 NIA RBP Values Precluded

last_byte_received value.

Byte-count restart elective is
1019 0002 0 NIA RBP Values Precluded

not supported.

Unable to restart at indicated
1019 0003 0 NIA RBP Values Precluded

RBP.

Routing Exception

Unknown RGN 8019 0001 0 NIA NIA Precluded

Unknown RGN, REN combina-
8019 0002 0 NIA NIA Precluded

ti on

Reserved 8019 0003 NIA NIA NIA Precluded

No connection for specified
8019 0004 1

Service
NIA Precluded

service level triplets

Hop Count Exhausted

Hop count exhausted 801C 0001 0 NIA NIA Precluded

Conditions for Specific FS1 Exceptions

User names lost 0849 0000 0 NIA NIA Precluded

412 SNAIDlstribution Services Reference

Table 2 (Page 5 of 5). SNA-Registered Report Codes for OS and SNACR Contents

SNA Report Code Structure Report

Condition Number
Structure

Supplemental Suggested

Code Subcode of Report Retry Action

Reports
Contents

Resource not available 084F 0000 0 NIA NIA Precluded

Server object size incompat-
1000 0001 0 NIA NIA Precluded

ible with capacity level

REMU exception 1012 0000 0 NIA NIA Precluded

Invalid server parameters 1013 0000 0 NIA NIA Precluded

Notes:

1. For these conditions, the sibling_list may be included within the SNACR.

2. For these conditions, the structure_byte_offset and structure_segment_number may be included within the
SNACR.

3. For these conditions, the structure_byte_offset is present whenever the corresponding structure_contents
does not represent the beginning of the structure. The structure_segment_number is present if the
reported-on structure is not contained in the first segment.

4. For these conditions, a supplementaf_report is not present, because the DRMU contains the appropriate
report fields.

5. For these conditions, the supplemental_report is present whenever the structure_report does not identify the
unsupported functions.

6. If the partially received distribution is purged by an operator at the receiving DSU, retry is expected.
However, if the operator purges the distribution copy from the sender's queue, retry is precluded.

Generating a Distribution Report
Whenever a condition is detected for which a distribution report is generated,
certain information specified in the distribution request is used to create the
distribution report. Listed below is an explanation of how a distribution report
is constructed.

• The hop_count is set for the report.

• The service_parms in the DRMU are set to the specified
report_service_parms in the DTMU. If they are absent, the service_parms
are derived by the reporting DSU from the values specified in the DTMU.

• The report-to_agent is set to the report-to_agent value in the DTMU. If the
report-to_agent is absent in the DTMU, it defaults to the origin_agent value.

• The reporting_DSU is set to the name of the DSU generating the report.

• The report_DTM is set to the date and time the report was generated.

• The report-to_DSU_user is set to the specified report-to_DSU and report
to_user values in the DTMU. If these fields are absent, it is set to the
origin_DSU and origin_ user values in the DTMU.

• If the report is to be sent to a DSU other than the origin_DSU specified in
the DTMU, the reported-on_origin_DSU field is generated and is set to the
origin_DSU value of the DTMU.

Appendix E. Exception Handling 413

• If the report is to be sent to a user other than the origin_user specified in
the OTMU, the reported-on_origin_user field is generated and is set to the
origin_user value of the OTMU.

• The reported-on_seqno_DTM is set to the seqno_DTM value in the OTMU.

• The reported-on_supp_dist_info1 field is set to the supp/emental_dist_infof
value in the OTMU.

• The reported-on_agent_correl is set to the agent_correl value in the OTMU.

• The reported-on_origin_agent is set to the value of the origin_agent if the
report-to_agent value in the DRMU is different from the origin_agent value
in the OTMU.

• The reported-on_dest_agent is set to the value of the dest_agent if
dest_agent is specified in the OTMU.

• The receiving_DSU is set to the name of the DSU that detected the excep
tion if different from the reporting_DSU name.

• The SNA_condition_report is constructed according to the type of condition
detected.

• The reported-on_supp_dist_info2 is set to the value of
supplemental_dist_info2 if it is present in the DTMU.

Bilingual Node: Mapping SNA Report Codes and FS1 Condition
Codes

The following tables describe the translation of exception codes between
Format Set 1 and Format Set 2. In FS1, the OS condition codes were described
by a 2 byte, OS-unique code. The OS condition codes were very general and
did not provide a detailed method of reporting exception conditions. In FS2, the
exception conditions are described by a 4-byte, SNA-unique code, which con
sists of a primary code and subcode. By using SNA-registered report codes,
exception conditions can be categorized and a more precise description of the
condition can be reported.

Table 3 (Page 1 of 2). FS2 SNA Report Code to FS1 Condition Code Mappings

Condition
SNA Report Code FS1 Condition

Code Subcode Code

Insufficient Resource 0812 0011 0010

User Names Lost 0849 0000 0000

Resource Not Available 084F 0000 OOOE

Specific-Server Exception 085A 0000 0006

Unknown Resource Name

Server 0858 0001 0007

Agent 0858 0002 0009

System Exception

All subcodes 085C ssss OOOF

414 $NA/Distribution Services Reference

Table 3 (Page 2 of 2). FS2 SNA Report Code to FS1 Condition Code Mappings

Condition
SNA Report Code FS1 Condition

Code Subcode Code

Unable to Register MU_ID

All subcodes 0850 ssss OOOF

Operator Intervention

All subcodes 085E ssss oooc
Storage-Medium Exception

All subcodes 0879 ssss 0011

Server Object Not Found

All subcodes 08A6 ssss OOOE

Function Not Supported

All subcodes 1003 ssss 0005

OS Conversation Exception

Allocation exception 1008 6046 OOOE

Resource Failure 1008 6047 OOOF

Deallocate Type(ABEND) 1008 6048 OOOF

Unknown User Name 100A 0001 0002

Format Exception

All subcodes 1008 ssss 0004

Unrecognized Message Unit 100C 0001 0004

Server-Object Size Incompatible with 1000 0001 0013
Capacity Level

Directing Exception

All subcodes 100E ssss 0002

Improper OS Usage of LU 6.2 PS 100F 0001 OOOF

REMU Exception 1012 0000 0012

Invalid Server Parameters 1013 0000 0008

MU Sequence Exception

All Subcodes 1018 ssss OOOF

Invalid Restart Byte-Position

All Subcodes 1019 ssss 0004

Routing Exception

All subcodes 8019 ssss 0001

Hop Count Exhausted 801C 0001 0003

Appendix E. Exception Handling 415

Table 4. FS1 Condition Code to FS2 SNA Report Code Mappings

Condition
FS1 Condition SNA Report Code

Code Code Subcode

Routing Exception 0001 8019 0000

Unknown User Name 0002 100A 0001

Hop Count Exhausted 0003 801C 0001

Format Exception 0004 1008 0000

Function Not Supported 0005 1003 0000

Specific-Server Exception 0006 085A 0000

Unknown Resource Name

Server 0007 0858 0001

Agent 0009 0858 0002

Invalid Server Parameters 0008 1013 0000

Operator Intervention

Purging oooc 085E 0002

User Names Lost 0000 0849 0000

Resource Not Available OOOE 084F 0000

System Exception OOOF 085C 0000

Insufficient Resource 0010 0812 0011

Storage-Medium Exception 0011 0879 0001

REMU Exception 0012 1012 0000

Server-Object Size Incompatible with 0013 1000 0001
Capacity Level

Note: If the condition was receiver-detected and the receiver provided
exception_and_reply _data in the FS 1 REMU, the exception_and_repfy _data is encoded
within the supplemental_report of the SNA_condition_report for FS2 reporting. If the
condition was sender-detected or detected outside of a conversation context and the
detecting component routinely generates exception_and_reply _data to log, the logged
exception_and_reply_data is also encoded within the supplemental_report of the
SNA_condition_report for FS2 reporting.

Exception Handling and Analysis
The tables that follow provide a summary of exception conditions that can be
detected by DS_Send, DS_Receive, and DS_Router_Director. The conditions
are presented in a logical processing order in which the exceptions could be
detected. The analysis tables describe exception handling only for those dis
tributions for which high integrity was specified. No examples of basic-integrity
traffic are shown. In the analysis tables, each exception condition is associated
with each of the following:

• The portion of the distribution affected by the condition. The exception may
affect the entire distribution copy, all destinations, or local destinations;
however, the condition may affect not only the distribution but also the con
nection between DSUs or an entire DSU.

• The appropriate retry and reporting responsibilities. This describes
whether the condition is retriable or non-retriable and indicates the corre
sponding reporting actions.

416 SNA/Distribution Services Reference

• The registered SNA_report_code that identifies the condition.

• The exception handling actions to perform in order to recover from the
exception.

Note: For a more detailed discussion about exception handling performed by
DS_Send and DS_Receive refer to "Exceptions Detected by the Distribution
Transport Sublayer" on page 89. For a discussion of server-related exceptions
see "Servers and Objects" on page 40.

Exception Conditions Detected During the Sending Process

Table 5 (Page 1 of 5). Exception Processing When Conditions Are Detected by DS_Send

What's Retry I Reporting
SNA

Other Exception
Exception Conditions Report

Affected Actions
Code

Actions

Exception conditions detected by LU 6.2 when DS_Send attempts to allocate a conversation with DS_Receive.

LU 6.2 was unable to allocate a con- Connection Retry is allowed. Log 1008-6046 Attempt to re-allocate
versation with DS_Receive because the exception. the conversation.
no sessions were available.

LU 6.2 was unable to allocate a con- Connection Retry is precluded. Log 1008-6046 Await operator action.
versation with DS_Receive, because the exception and
the parameters were incorrect, the inform the operator.
TP was unknown, or a remote or
local LU exception has occurred.

Exception conditions detected by LU 6.2 while DS_Send is in conversation with DS_Receive.

DS_Send detects from LU 6.2 a Connection Retry is allowed. Log 1008-6047 Attempt to re-allocate
return code of RESOURCE_FAILURE. the exception, inform the conversation.

the operator, and send
a SEMU to the partner.

When retry is 1008-6047 Hold the queues and
exhausted, log the await operator action.
exception, inform the
operator, and send a
SEMU to the partner.

DS_Send detects from LU 6.2 a Connection Retry is allowed. Log 1008-6048 Attempt to re-allocate
return code of Deallocate the exception, inform the conversation.
Type(ABEND). the operator, and send

a SEMU to the partner.

When retry is 1008-6048 Hold the queues and
exhausted, log the await operator action.
exception, inform the
operator, and send a
SEMU to the partner.

DS_Send has detected that the Connection Retry is precluded. Log 100F-0001 Issue Deallocate
receiving DSU has issued an the exception and Type(ABEND).
improper sequence of LU 6.2 verbs. inform the operator.

Exception conditions detected by the DSU's queue service when reading an entry from the next-DSU queue.

The storage medium detected a DSU Retry is allowed. Log 0879-0001 Attempt to perform the
temporary failure. the exception and 1/0 operation again.

inform the operator.

Appendix E. Exception Handling 417

Table 5 (Page 2 of 5). Exception Processing When Conditions Are Detected by DS_Send

What's Retry I Reporting
SNA

other Exception
Exception Conditions Report

Affected Actions
Code

Actions

The storage medium detected a per- DSU Retry is precluded. Log 0879-0002 Hold the next-DSU
manent failure. the exception and queues and await oper-

inform the operator. ator action.

Operator has suspended further DSU Retry is allowed when 085E-0001 Hold the next-DSU
processing for this connection. the operator releases queue and await'oper-

the connection. Log ator action.
the exception.

Queue service encounters an excep- DSU Retry is allowed. Log 085C-0001 Attempt to read the
tion that prevents further processing the exception and queue entry again.
of this queue. inform the operator.

When retry is 085C-0001 Hold the next-DSU
exhausted, log the queues and await oper-
exception, and inform ator action.
the operator.

Exception conditions detected by the DSU when DS_Send attempts to process control MUs.

An exception was encountered when Connection Retry is allowed. Log 085C-0001 Issue Deallocate
attempting to enqueue the control the exception. Type(ABEND).
MU on the control MU queue.

An exception condition was encount- Connection Retry is allowed. Log 085C-0001 Hold the queues and
ered when attempting to send a the exception and issue Deallocate
control MU. inform the operator. Type(ABEND).

An exception occurs that prevents Connection Retry is allowed. Log 085C-0001 Issue Deallocate
further· processing of this control the exception. Type(ABEND).
MU.

A CRMU was received with an Connection Retry is precluded. Log 1018-0002 Hold the queues and
MU_ID IN-TRANSIT, SUSPENDED, COM- the exception and await operator action
PLETED, or PURGED state, but the inform the operator.
MU_ID registry indicates a
NOT-ASSIGNED state.

A REMU was received for which the Connection Retry is precluded. Log 1018-0002 Hold the queues and
MU_ID is in NOT-ASSIGNED state. the exception and await operator action

inform the operator.

Exception conditions detected by the DSU when attempting to begin the MU transfer to the partner.

An MU_ID registry exception Connection Retry is precluded. Log 085D-0004 Hold the next_DSU
occurred when attempting to assign the exception and queues and issue Deal-
an MU_ID to the DMU. inform the operator. locate Type(ABEND).

Hop count is 0. Dist Copy Retry is precluded. Log 801C-0001 Terminate the distrib-
the exception, inform ution copy.
the operator, send a
SEMU to the partner,
and deliver a dist
report to the specified
DSU/user.

418 SNA/Distribution Services Reference

Table 5 (Page 3 of 5). Exception Processing When Conditions Are Detected by DS_Send

What's Retry I Reporting
SNA

Other Exception
Exception Conditions Report

Affected Actions
Code

Actions

Local resources temporarily unavail- Dist Copy Retry is allowed. Log 0812-0011 Attempt mid-MU restart
able to continue transfer to the the exception, inform when appropriate; oth-
partner. the operator, and send erwise, retry with new

a SEMU to the partner. MU_ID.

When retry is 0812-0011 Terminate the distrib-
exhausted, log the ution copy and hold the
exception, inform the next-DSU queues.
operator, send a SEMU
to the partner, and
deliver a dist report to
the specified DSU/user.

Operator has purged this distrib- Dist Copy Retry is precluded. Log 085E-0002 Terminate the distrib-
ution copy. (See Note 1) the exception, send a ution copy.

SEMU to the partner,
and deliver a dist
report to the specified
DSU/user.

Exception conditions detected by the builder when attempting to encode the DMU.

The DMU cannot be encoded due to Dist Copy Retry is precluded. Log 1008-ssss Terminate the distrib-
format exceptions. the exception, inform ution copy.

the operator, send a
SEMU to the partner,
and deliver a dist
report to the specified
DSU/user.

Builder exception occurs that pre- Dist Copy Retry is allowed. Log 085C-0001 Attempt mid-MU restart
vents further processing of the the exception, inform when appropriate; oth-
DMU. the operator, and send erwise ,retry with new

a SEMU to the partner. MU-ID.

When retry is 085C-0001 Terminate distribution
exhausted, log the copy and hold the
exception, inform the next-DSU queues.
operator, send a SEMU
to the partner, and
deliver a dist report to
the specified DSU/user.

Exception conditions detected by the general server when attempting to read the server object.

The storage medium detected a DSU Retry is allowed. Log 0879-0001 Attempt to perform the
temporary failure. The server the exception, inform 1/0 operation again.
return code was 110 EXCEPTION. the operator, and send

a SEMU to the partner.

The storage medium detected a per- DSU Retry is precluded. Log 0879-0002 Hold the next-DSU
manent failure. The server return the exception, inform queues and await aper-
code was 1/0 EXCEPTION. the operator, send a ator action.

SEMU to the partner,
and deliver a dist
report to the specified
DSU/user.

Appendix E. Exception Handling 419

Table 5 (Page 4 of 5). Exception Processing When Conditions Are Detected by DS_Send

What's Retry I Reporting
SNA

Other Exception
Exception Conditions Report

Affected Actions
Code

Actions

Insufficient local resources available Dist Copy Retry is allowed. Log 0812-0011 Attempt mid-MU restart
to process the object. The server the exception, inform when appropriate; oth-
return code was TEMPORARY SERVER the operator, and send erwise retry with new
EXCEPTION. a SEMU to the partner. MU-ID.

When retry is 0812-0011 Terminate the distrib-
exhausted, log the ution copy.
exception, inform the
operator, send a SEMU
to the partner, and
deliver a dist report to
the specified DSU/user.

The server object specified in the Dist Copy Retry is precluded. Log 08A6-0001 Terminate the distrib-
distribution request cannot be found. the exception, inform ution copy.
The server return code was OBJECT the operator, send
NOT FOUND. SEMU to the partner,

and deliver a dist
report to the specified
DSU/user.

Exception conditions detected only by the specific server when OS Is attempting to read the server object.
(Direct Fetch)

The specific-server name specified Dist Copy Retry is precluded. Log 0858-0001 Terminate the distrib-
in the distribution is unknown. the exception, inform ution.

the operator, and send
a SEMU to the partner.

The specific server has detected an Dist Copy Retry is precluded. Log 085A-OOOO Terminate the distrib-
exception that prevents further the exception, inform ution.
processing of the distribution copy. the operator, send a
The server return code was SEMU to the partner,
SPECIFIC-SERVER EXCEPTION. and deliver a server

report to the local
agent.

Exception conditions detected by the DSU when decoding control MUs from DS_Receive.

The Parser is unable to decode the Connection Log the exception. 1008-ssss Issue Deallocate
control MU from DS_Receive. or Type(ABEND).

100C-0001

The control MU received contained Not Appli- No retry or reporting No Code Discard the control MU.
an instance number that is below cable actions.
the current instance number for the
MU_ID.

Exception conditions detected by the DSU's queue service when deleting an entry from the next-DSU queue
following successful transmission of the DMU.

The storage device detected a DSU Log the exception and 0879-ssss Await operator action.
failure. inform the operator.

Operator has suspended further DSU Retry is suspended. 085E-0001 Hold the connection
processing for this connection. Log the exception. and await operator

action.

420 SNA/Distribution Services Reference

Table 5 (Page 5 of 5). Exception Processing When Conditions Are Detected by DS_Send

What's Retry I Reporting
SNA

Other Exception
Exception Conditions Report

Affected Actions
Code

Actions

The queue service encounters an DSU Log the exception and 085C-0001 Await operator action.
exception that prevents further inform the operator.
processing of the distribution copy.

Notes:

1. Because the operator has purged the distribution copy from the sender's queue, retry is precluded.

Exception Conditions Detected During the Receiving Process

Table 6 (Page 1 of 6). Exception Processing When Conditions Are Detected by DS_RECEIVE.

What's Receiver's Retry
SNA

Other Exception
Exception Conditions Report

Affected Recommendations
Code

Actions

Exception conditions detected by LU 6.2 when DS_Recelve attempts to allocate a conversation with DS_Send.

LU 6.2 was unable to allocate a con- Connection Retry is allowed. Log 1008-6046 Attempt to re-allocate
versation with DS_Send because no the exception and the conversation.
sessions were available. inform the operator.

LU 6.2 was unable to allocate a con- Connection Retry is precluded. Log 1008-6046 Stop DS_Receive and
versation with DS_Send, because the exception and await operator action.
the parameters were incorrect, the inform the operator.
TP was unknown, or a remote or
local LU exception has occurred.

Exception conditions detected by LU 6.2 while DS_Receive is in conversation with DS_Send.

DS_Receive detects from LU 6.2 a Connection Retry is allowed. Log 1008-6047 Attempt to re-allocate
return code of RESOURCE_FAILURE. the exception, inform the conversation.

the operator, and send
a REMU to the partner.

When retry is 1008-6047 Await retry.
exhausted, log the
exception, inform the
operator, and send a
REMU to the partner.

DS_Receive detects from LU 6.2 a Connection Retry is allowed. Log 1008-6048 Attempt to re-allocate
return code of Deallocate the exception, inform the conversation.
Type(ABEND). the operator, and send

a REMU to the partner.

When retry is 1008-6048 Await retry~
exhausted, log the
exception, inform the
operator, and send a
REMU to the partner.

DS_Receive has detected that the Connection Retry is precluded. Log 100F-0001 Issue Deallocate
sending DSU has issued an the exception and Type(ABEND).
improper sequence of LU 6.2 verbs. inform the operator.

Appendix E. Exception Handling 421

Table 6 (Page 2 of 6). Exception Processing When Conditions Are Detected by DS_RECEIVE.

What's Receiver's Retry
SNA

Other Exception
Exception Conditions Report

Affected Recommendations
Code

Actions

Exception conditions detected by DS_RECEIVE while receiving DMUs.

A DMU was received but the MU_ID Dist Copy Retry is allowed. Log 1018-0001 Discard the MU and
has already been terminated. the exception, inform continue as normal.

the operator, and issue
the Send_Error verb.
Optionally a REMU may
be sent to the partner.

A DTMU was received with an Dist Copy Retry is precluded. Log 1018-0002 Discard the MU, send
MU_ID in the SUSPENDED state. the exception, inform all waiting control MUs,

the operator, and issue and deallocate the con-
the Send_Error verb. versation.
Optionally a REMU may
be sent to the partner.

A DTMU was received with an Dist Copy Retry is precluded. Log 1018-0002 Discard the MU.
MU_ID in the COMPLETED or PURGED the exception and
state. inform the operator.

Optionally a Send_Error
verb may be issued.

A DCMU was received with an Dist Copy Retry is precluded. Log 1018-0002 Discard the MU, send
MU_ID in the NOT-RECEIVED state. the exception, inform all waiting control MUs,

the operator, and issue and deallocate the con-
the Send_Error verb. versation.
Optionally a REMU may
be sent to the partner.

A DCMU was received with an Dist Copy Retry is precluded. Log 1018-0002 Discard the MU.
MU_ID in the COMPLETED or PURGED the exception and
state. inform the operator.

Optionally a Send_Error
verb may be issued.

DS_Receive has detected that the Dist Copy Retry is precluded. Log 1018-0004 Discard the MU, send
sending DSU has ignored a previous the exception, inform all waiting control MUs,
terminate-conversation indication. the operator, and issue and deallocate the con-

the Send_Error verb. versation.
Optionally a REMU may
be sent to the partner.

Exception Conditions detected by the parser when attempting to decode the DMU.

The MU type is not recognized. Dist Copy Retry is precluded. Log 100C-0001 Discard the MU, send
the exception, inform all waiting control MUs
the operator, issue the and deallocate the con-
Send_Error verb, and versation.
send a REMU to the
partner.

The MU cannot be decoded due to Dist Copy Retry is precluded. Log 1008-ssss Discard the MU.
format exceptions. the exception, inform

the operator, and send
a REMU to the partner.

422 SNA/Distribution Services Reference

Table 6 (Page 3 of 6). Exception Processing When Conditions Are Detected by DS_RECEIVE.

What's Receiver's Retry
SNA

Other Exception Exception Conditions Report Affected Recommendations
Code

Actions

DMU specifies multiple destinations, Dist Copy Retry is precluded. Log 1003-001 F Discard the MU.
but multiple destination traffic is not the exception, inform
supported. the operator, and send

a REMU to the partner.

Parser exception occurs that tempo- Dist Copy Retry is allowed. Log 085C-0001 Await retry action from
rarily prevents further processing of the exception, inform the sender.
the DMU. the operator, and send

a REMU to the partner.

Exception Conditions detected by the parser when attempting to decode a DCMU.

The restart_byte_position value is 0. Dist Copy Retry is precluded. Log 1008-000F Discard the MU.
the exception, inform
the operator, and send
a REMU to the partner.

The restart_byte_position value is Dist Copy Retry is precluded. 1019-0001 Discard the MU.
greater than one plus the Log the exception,
last_byte_received value in the inform the operator,
CRMU. and send a REMU to

the partner.

The receiver does not support the Dist Copy Retry is precluded. Log 1019-0002 Discard the MU.
byte-count restart elective and the the exception, inform
RBP is not the beginning of the LLID the operator, and send
following the last successfully a REMU to the partner.
received LLID.

The byte-count restart elective is Dist Copy Retry is precluded. Log 1019-0003 Discard the MU.
supported; the RBP ':#= 1; and the the exception, inform
RBP S last_byte_received value the operator, and send
value in the CRMU, but the receiver a REMU to the partner.
is unable to restart at the indicated
RBP. (See Note 3)

Exception condition detected by the DSU's queue service when attempting to fetch a partially received DMU
from the mid-MU restart queue.

Unable to locate the partially Dist Copy Retry is precluded. Log 085C-0002 Await retransmission
received DMU in the mid-MU restart the exception, Inform with a new MU_ID.
queue. the operator, and send

a REMU to the partner.

Exception conditions detected by the DSU, when decoding the control information of the DMU, but before storing
the object.

A duplicate MU_ID has been Dist Copy Retry is precluded. Log 085D-0001 Discard the MU.
received. the exception, inform

the operator, and send
a REMU to the partner.

The MU_ID is above the acceptable Dist Copy Retry is precluded. Log 085D-0002 Discard the MU.
value. the exception, inform

the operator, and send
a REMU to the partner.

Appendix E. Exception Handling 423

Table 6 (Page 4 of 6). Exception Processing When Conditions Are Detected by DS_RECEIVE.

What's Receiver's Retry
SNA

Other Exception
Exception Conditions Report

Affected Recommendations
Code Actions

The DCMU received contained an Not Appli- Issue the Send_Error No Code Discard the DCMU.
instance number that was less than cable verb. No retry or
or equal to the current instance reporting actions.
number.

The function requested is not sup- Dist Copy Retry is precluded. Log 1003-ssss Discard the MU.
ported by this DSU. the exception, inform

the operator, and send
a REMU to the partner.

Local resources temporarily unavail- Dist Copy Retry is allowed. Log 0812-0011 Await sender retry
able to receive the DMU from the the exception, inform action.
partner. the operator, and send

a REMU to the partner.

The operator has purged the par- Dist Copy Retry is allowed. Log 085E-0002 Discard the partially
tially received distribution. (See the exception and send received MU and await
Note 1) a REMU to the partner. sender retry action.

Additional exception conditions detected by the DSU when receive-time enhancements are implemented.

Hop count has reached 0 and one or Non-local Log the exception. 801C-0001 Deliver the local copies
more destinations are non-local. Des ts Accept responsibility and terminate the non-

for the dist copy and local copies.
deliver a dist report, to
the specified DSU/user,
for the terminated local
dist copies.

This DSU does not provide the Dests Retry is precluded. Log 1003-0017 Discard the MU.
service level requested. the exception, inform

the operator, and send
a REMU to the partner.

The agent or server is unknown at local Log the exception. 0858-ssss Forward the interme-
this DSU and some destinations are Des ts Accept responsibility diate copies and termi-
not local. (If all destinations are for the dist copy and nate the local copies.
local, refer to Note 2.) deliver a dist report to

the specified DSU/user,
for the terminated local
dist copies.

The agent is not supported for the Local Log the exception. 100E-ssss Forward the interme-
destination DSU or user and some Dests Accept responsibility diate copies and termi-
destinations are not local. (If all for the dist copy and nate the local copies.
destinations are local, refer to Note deliver a dist report to
2.) the specified DSU/user,

for the terminated local
dist copies.

No entry was found in the routing Some Log the exception. 8019-ssss Forward copies con-
table that satisfies the destination Dests Accept responsibility taining valid dests and
DSU name. for the dist copy and terminate copies con-

deliver a dist report, to taining invalid dests.
the specified DSU/user,
for the terminated dist
copies.

424 SNA/Distribution Services Reference

Table 6 (Page 5 of 6). Exception Processing When Conditions Are Detected by DS_RECEIVE.

What's Receiver's Retry
SNA

Other Exception
Exception Conditions Report Affected Recommendations

Code
Actions

Destination user name is unknown Local Log the exception. 100A-0001 Terminate the dist
to the local directory at the destina- Des ts Accept responsibility copies for the unknown
tion DSU, and the directory is for the dist copy and local dests and forward
exhaustive on the DGN. deliver a dist report, to the remaining valid

the specified DSU/user, dests.
for the terminated local
copies.

Exception conditions detected by the general server when attempting to write the distribution object.

The storage medium detected a DSU Retry is allowed. Log 0879-0001 Discard the MU.
temporary failure. The server the exception, inform
return code was 110 EXCEPTION. the operator, and send

a REMU to the partner.

The storage medium detected a per- DSU Retry is precluded. Log 0879-0002 Discard the MU.
manent failure. The server return the exception, inform
code was 1/0 EXCEPTION. the operator, and send

a REMU to the partner.

Insufficient local resources were Dist Copy Retry is allowed. Log 0812-0011 Await sender retry
available to process the object. The the exception, inform action.
server return code was TEMPORARY the operator, and send
SERVER EXCEPTION. a REMU to the partner.

The server attempted to write the Dist Copy Retry is precluded. Log 08A6-0001 Discard the MU.
server object, but no server object the exception, inform
could be found. The server return the operator, and send
code was OBJECT NOT FOUND a REMU to the partner.

Exception conditions detected by the specific server when attempting to store the object. (Direct Store)

The specific-server name specified Local Retry is precluded. Log 0858-0001 Discard the MU
in the distribution is unknown. Dests the exception, inform

the operator, and send
a REMU to the partner.

The specific server has detected an Dist Copy Mid-MU restart is 085A-OOOO Await DCMU from
exception that prevents further expected at the LLID sender.
processing of the server object. The following the server
server return code was object. Log the excep-
SPECIFIC-SERVER EXCEPTION. tion, inform the aper-

ator, and send a REMU
to the partner. A
server report will be
delivered to the local
agent.

The specific server has failed to Des ts Retry is precluded. Log 085A-OOOO Discard the MU.
back out the server object. the exception, inform

the operator, and
deliver a server report
to the local agent.

Appendix E. Exception Handling 425

Table 6 (Page 6 of 6). Exception Processing When Conditions Are Detected by DS_RECEIVE.

What's Receiver's Riatry
SNA

Other Exception
Exception Conditions Report

Affected Recommendations
Code

Actions

Exception conditions detected by the DSU's queue service when enqueulng the DMU control block onto the
router-director queue.

The storage medium detected a DSU Retry is allowed. Log 0879-0001 Discard the MU.
temporary failure. the exception, inform

the operator, and send
a REMU to the partner.

The storage medium detected a per· DSU Retry is precluded. Log 0879-0002 Discard the MU.
manent failure. the exception, inform

the operator, and send
a REMU to the partner.

Queue service encounters a tempo- Des ts Retry is allowed. Log 085C-0001 Await sender retry
rary exception that prevents further the exception, inform action.
processing of this queue. the operator, and send

a REMU to the partner.

Exception condition detected by the DSU when scheduling the DS_Router_Dlrector.

DSU encounters an exception that Des ts Retry is precluded. Log 085C-0002 Discard the MU.
prevents the scheduling of the exception, inform
DS_Router_Director. the operator, and send

a REMU to the partner.

Exception conditions detected by the DSU when attempting to process control MUs.

Parser was unable to decode the Connection Log the exception and 1008-ssss Issue Deallocate
Control_MU from DS_Send. inform the operator. Type(ABEND).

An exception was encountered when Connection Retry is allowed. Log 085C-0001 Issue Deallocate
attempting to enqueue the control the exception. Type(ABEND).
MU on the control MU queue.

An exception condition was encount· Connection Retry is allowed. Log 085C-0001 Issue Deallocate
ered when attempting to send a the exception and Type(ABEND).
control MU. inform the operator.

An exception occurs that prevents Connection Retry is allowed. Log 085C-0001 Issue Deallocate
further processing of this control the exception and Type(ABEND).
MU. inform the operator.

The control MU received contained Not Appli· No retry or reporting No Code Discard the control MU.
an instance number that is below cable actions.
the current instance number for the
MU_ID.

An RRMU was followed by some- Connection Retry is precluded. Log 1018-0005 Issue Deallocate
thing other than a CHANGE_DIRECTION the exception and Type(ABEND).
indicator inform the operator.
(i.e., WHAT_RECEIVED=SEND).

Notes:

1. Because the operator has purged the distribution copy from the receiver's queue, retry is expected.

2. In cases where all destinations are local, the receiver may choose to log the exception, inform the operator,
send a REMU to the partner, and then discard the partially received DMU.

3. In this exception case, the receiver may reject the DCMU or accept the DCMU by discarding the excessive
bytes and continuing as normal.

426 SNA/Distribution Services Reference

Exception Conditions Detected while Performing Routing and Directing

Table 7 (Page 1 of 2). Exception Processing While Performing Routing and Directing

What's Reporting
SNA

Other Exception Exception Conditions Report Affected Responsibilities
Code

Actions

Exception conditions detected by the DSU's queue service when reading an entry from the router-director
queue.

The storage medium has detected a DSU Log the exception, 0879-ssss Terminate the distrib-
failure. inform the operator, ution copy.

and deliver a dist
report to the specified
DSU/user.

The queue service encounters an Dist Copy Log the exception, 085C-0001 Terminate the distrib-
exception that prevents further inform the operator, ution copy.
processing of the distribution copy. and deliver a dist

report to the specified
DSU/user.

Exception conditions detected by the DSU when attempting to route the distribution to the next DSU.

Hop count is 0 and one or more des- Non-local Log the exception, 801C-0001 Deliver the local copies
tinations are non-local. Des ts inform the operator, and terminate the non-

and deliver a dist local copies.
report to the specified
DSU/user.

At this DSU, no connection is avail- Non-local Log the exception, 8019-0004 Deliver the local copies
able for the specified service level. Des ts inform the operator, and terminate the non-

and deliver a dist local copies.
report to the specified
DSU/user.

No entry was found in the routing Some Log the exception, 8019-0001 Forward copies con-
table that satisfies the DSU name. Des ts inform the operator, or taining valid dests and

and deliver a dist 8019-0002 terminate copies con-
report to the specified taining invalid dests.
DSU/user.

Exception conditions detected by the DSU when attempting to perform local delivery at this DSU.

Destination user name is unknown Local Log the exception, 100A-0001 Terminate the dist
to the local directory at the destina- Des ts inform the operator, copies for the unknown
tion DSU, and the directory is and deliver a dist local dests and forward
exhaustive on the DGN. report to the specified the remaining valid

DSU/user. des ts.

The agent is unknown at this DSU. Local Log the exception, 0858-0002 Terminate the dist
Des ts inform the operator, copies for local dests

and deliver a dist and forward the dist
report to the specified copies for non-local
DSU/user. dests.

The agent is known at the DSU, but Local Log the exception, 100E-0003 Terminate the dist
is unavailable. Dests inform the operator, copies for local dests

and deliver a dist and forward dist copies
report to the specified for the non-local dests.
DSU/user.

Appendix E. Exception Handling 427

Table 7 (Page 2 of 2). Exception Processing While Performing Routing and Directing

What's Reporting
SNA

Other Exception Exception Conditions Report Affected Responsibilities
Code Actions

The agent is known, but is not sup- Local Log the exception, 100E-0001 Terminate the dist
ported for the user or DSU destina- Des ts inform the operator, or copies for local dests
tion. and deliver a dist 100E-0002 and forward the dist

report to the specified copies for non-local
DSU/user. des ts.

Exception conditions detected by the general server when performing auxiliary operations.

The storage medium has detected a DSU Log the exception, 0879-ssss Terminate the distrib-
failure. inform the operator, ution copy.

and deliver a dist
report to the specified
DSU/user.

Insufficient local resources available Dist Copy Log the exception, 0812-0011 Terminate the distrib-
to process the object. The server inform the operator, ution copy.
return code was TEMPORARY SERVER and deliver a dist
EXCEPTION. report to the specified

DSU/user.

The server attempted to process the Dist Copy Log the exception, 08A6-0001 Terminate the distrib-
object, but no server object was or Local inform the operator, ution copy.
found. The server return code was Des ts and deliver a dist
OBJECT NOT FOUND. report to the specified

DSU/user.

Exception conditions detected by the specific server when performing auxlllary operations.

The specific-server name specified Dist Copy Log the exception and 0858-0001 At the origin, terminate
in the distribution is unknown at this inform the operator. At the auxiliary operation
DSU. the origin, deliver a and terminate the dist

local report to the origi- copy. At the destina-
nator. At the destina- tion, terminate the aux-
tion, deliver a dist iliary operation and
report to the specified purge the distribution
DSU/user. copy.

A specific-server exception occurs Dist Copy Log the exception, 085A-OOOO At the origin, terminate
that prevents further processing of inform the operator, the auxiliary operation
the distribution. and deliver a specific and terminate the dist

server report to the copy. At the destina-
local agent. tion, terminate the aux-

iliary operation and
deliver the distribution.

428 SNA/Distribution Services Reference

Exception Handling for Format Set 1
This section provides an analysis of exception conditions that can be detected
in the transport sublayer for FS1 protocols.

Exception Conditions
The tables that follow provide an exhaustive list of exception conditions that are
detected by DS_Send and DS_Receive in the logical processing order in which
they could be detected. (The abbreviations used in the tables are explained in
the following discussion.) The mapping between exception conditions and their
associated recovery actions is defined within the context of each exception
occurrence as characterized by:

1. Which TP detected the exception?

• OS Send: The exception is detected during the sending process.

• DS_Receive: The exception is detected during the receiving process.

2. Given that an exception is detected by DS_Send or DS_Receive, when is
that exception detected with respect to the DMU transfer?

• BT (Before Transfer): Either DS_Send has not yet issued the first
Send_Data, or DS_Send is issuing LU 6.2 basic conversation verbs but
the conversation has not yet been allocated (DS_Send is notified by an
LU 6.2 PS return code).

• OT (During Transfer): The conversation has been successfully allo
cated. DS_Send has issued its first Send_Data and DS_Receive has
issued its first Receive_And_Wait.

• AT (After Transfer): A complete DMU has been confirmed by the
receiver, no new transfer has been initiated by the sender, and the con
versation is still active.

3. What is the scope of the exception condition?

• DMU: The exception condition affects the entire DMU and is unrelated
to the list of destination users.

DMU(A): An LU 6.2 PS exception condition prior to conversation
establishment will affect the first entry on the appropriate next-DSU
queue if the retry count Is exhausted.

• ..., ALL Dest: One or more destination users or destination DSUs are
directly affected by the exception condition, and one or more destination
users or destination DSUs are unaffected.

• ALL Dest: All destination users or all destination DSUs, for a particular
DMU, are affected equally by the exception condition.

• - (To be determined): A temporary exception condition will not affect
the DMU (or DSU) unless, after an implementation-defined number of
retries, the exception condition is considered to be unrecoverable.

The actions required during retry are specified on the "-" line. If retry
fails, the scope of, and actions for, the resulting permanent exception
condition are specified on the following line.

Appendix E. Exception Handling 429

Exception Actions

Note: Whenever all destination users or all destination DSUs are
affected, the entire DMU is affected. A scope of ALL is distinguishable
from a scope of the DMU only because ALL implies that the underlying
exception condition is per destination but, in this case, all destinations
are affected.

As a result of implementation choices concerning role, electives, and optimiza
tions, the set of FS1 condition codes generated may vary slightly from one
implementation to another. All implementations must be prepared to receive
any of the valid FS1 condition codes (Including any codes that the implementa
tion does not generate).

Exception conditions detected by the transport sublayers exception handling
procedures result in the following five possible exception actions (the abbrevi
ations defined below are used in the following tables):

• H/R: Hold/release queue

• Inform the adjacent OSU:

- SEMU: Send a SEMU.
- REMU: Send a REMU.

• Log/Msg: Log and notify operator.

• Report: Generate a distribution report.

• Purge: Remove the distribution request from the queue and purge the
associated object file.

The tables In this appendix specify the appropriate exception actions for each
FS1 exception condition occurring in a given context. Every exception action is
classified by one of the following:

• NI A: The corresponding exception action is not applicable, given the
exception condition and retry status, regardless of the exception scope.

• 0: The corresponding exception action is neither required nor disallowed
by FS1-defined exception-handling procedures. In these cases, the imple
mentation decides whether or not the action will be performed.

• R: The corresponding exception action is required on behalf of all destina
tion users specified in the OMU.

• R-1: The corresponding exception action is required on behalf of only
those users directly affected by the exception condition.

If the set of appropriate actions for a particular exception condition includes
sending of a distribution report, the exception table specifies the FS1 condition
code value that will be encoded into the resulting MU. An exhaustive list of the
FS1 condition-code values and whether each code is valid in an REMU, Dist_MU
type status, or both, is specified in Appendix G.

If the set of appropriate actions for a particular exception condition includes the
sending of an REMU or SEMU, the exception table 3pecifies the exception class
that is encoded into the resulting transmission. The exception class for any

430 SNA/Distribution Services Reference

sender-detected exception has the hexadecimal value CS. The exception class
for a receiver-detected exception has one of the following values that will be
used by the sender to determine sender actions:

• C2 or C3 (syntax or semantic exception, respectively): The nature of this
class of exceptions is such that sender retry is not likely to succeed. Typi
cally, the sender will dequeue the DMU, create a distribution report if
requested, purge the DMU, log the error, and notify the operator.

• C4 (processing exception, unrelated to any particular DMU): Sender retry
is recommended for this class of exceptions. Typically, the sender will hold
the queues for an implementation-determined time interval, after which
retransmission is attempted.

FS1 Exception Conditions Detected by DS_Send

Table 8 (Page 1 of 3). FS1 Exception Processing When Conditions are Detected by DS_Send

FS1
Excp

Exception Actions

Exception Description When Cond Scope
Code

Class H/R SEMU REMU
Log

Report Purge
Msg

Queue exception conditions when reading an entry from the next-DSU queue.

110 device experiences hard- BT N/A N/A DSU NIA NIA NIA R NIA R
ware failure.

Any queue error occurs in BT - - - R NIA NIA 0 NIA NIA
the system that prevents

BT NIA NIA DSU NIA N/A NIA R NIA R further processing for this
DMU (i.e., queue cannot be
found).

Builder exception conditions when encoding the command portion of the DMU.

The DMU cannot be encoded. BT 0004 NIA DMU NIA NIA NIA R R R

OT 0004 cs DMU NIA R NIA R R R

LU 6.2 PS exception conditions when allocating a conversation with DS_Receive.

Allocation parameters were BT OOOF NIA DMU(A) NIA NIA NIA R R R
incorrectly specified.

LU 6.2 cannot allocate the BT - - - R NIA NIA 0 NIA NIA
requested conversation at

BT OOOE NIA DMU(A) NIA NIA NIA R R R this time because either
there are no available ses-
sions or LU 6.2 is temporarily
unable to start an instance of
DS_Receive.

LU 6.2 is unable to allocate BT - - - R NIA NIA 0 NIA NIA
the requested conversation

BT OOOF NIA DMU(A) NIA NIA NIA R R R because of local or remote
LU exceptions.

Appendix E. Exception Handling 431

Table 8 (Page 2 of 3). FS1 Exception Processing When Conditions are Detected by DS_Send

FS1
Excp

Exception Actions

Exception Description When Cond Scope Log
Code

Class H/R SEMU REMU Report Purge
Msg

LU 6.2 PS exception conditions when sending one or more DMUs across the conversation.

Receives an LU 6.2 return BT, - - - R NIA NIA 0 NIA NIA
code of RESOURCE_FAILURE or OT, or
Deallocate Type(ABEND). AT

BT, OOOF NIA DMU NIA NIA NIA R R R
OT, or

AT

The receiving DSU has vio- DT - - - R NIA NIA 0 NIA NIA
lated the FS1 protocols

DT OOOF NIA DMU NIA NIA NIA R R R regarding usage of LU 6.2.

Parser exception conditions when decoding the REMU.

The parser is unable to OT - - - R NIA NIA 0 NIA NIA
decode the REMU.

DT 0012 NIA DMU NIA NIA NIA R R R

Specific-server exception conditions when attempting to read the server object.

Origin server cannot be OT 0007 C5 DMU NIA R NIA R R R
found at the origin DSU.

Origin-server parameters DT 0008 C5 DMU NIA R NIA R R R
were incorrectly specified.

Object contents are incom· DT 0006 C5 DMU NIA R NIA R R R
patible with file server.

General-server exception conditions when attempting to read the server object.

General server cannot be DT OOOF C5 DMU NIA R NIA R R R
found at this DSU.

General-server parameters DT OOOF C5 DMU NIA R NIA R R R
were incorrectly specified.

Any server exception occurs DT OOOF C5 DMU NIA R NIA R R R
that permanently prevents
further processing for this
DMU.

Specific· or general-server exception conditions when reading the server object.

Server experiences a tempo- DT - C5 - R R N/A 0 NIA NIA
rary condition that is

DT 0010 C5 DMU NIA R NIA R R R expected to reset shortly so
that retransmitting of the
DMU can be attempted (i.e.,
another process currently
has the data set open or
locked).

110 device experiences hard· DT 0011 C5 DMU NIA R NIA R R R
ware failure.

Specific-server exception conditions when attempting to decrement the object lock count after transmission Is
complete.

Origin server not found at the AT NIA NIA DMU NIA NIA NIA 0 NIA NIA
origin DSU.

432 SNA/Distribution Services Reference

Table 8 (Page 3 of 3). FS1 Exception Processing When Conditions are Detected by DS_Send

FS1
Excp

Exception Actions
Exception Description When Cond Scope Log

Code
Class H/R SEMU REMU Report Purge

Msg

Origin-server parameters AT N/A NIA DMU NIA NIA NIA 0 N/A NIA
were incorrectly specified.

Any server exception occurs AT NIA NIA DMU NIA NIA N/A 0 NIA NIA
that permanently prevents
further processing for this
DMU.

General-server exception conditions when attempting to decrement the object lock count after transmission Is
complete.

General server not found. AT NIA NIA DMU NIA NIA NIA 0 NIA NIA

General-server parameters AT NIA NIA DMU NIA NIA NIA 0 NIA NIA
were incorrectly specified.

Any server exception occurs AT NIA NIA DMU NIA NIA NIA 0 NIA NIA
that permanently prevents
further processing for this
DMU.

Specific- or general-server exception conditions when decrementing the object lock count after transmission Is
complete.

1/0 device experiences hard- AT NIA NIA DMU NIA NIA NIA 0 NIA NIA
ware failure.

Any server error occurs in AT NIA NIA DMU NIA NIA NIA 0 NIA NIA
the system that temporarily
prevents further processing
for this DMU.

Queue exception conditions when deleting an entry from the next-DSU queue following a successful trans-
mission of a DMU.

1/0 device experiences hard- AT N/A NIA osu NIA NIA NIA 0 NIA NIA
ware failure.

Any queue error occurs in AT NIA NIA DSU NIA NIA NIA 0 NIA NIA
the system that prevents
further processing for this
DMU (i.e., queue cannot be
found or in-use flag is not
on).

Appendix E. Exception Handling 433

FS1 Exception Conditions Detected by DS_Receive

Table 9 (Page 1 of 3). FS1 Exception Processing When Conditions Are Detected by DS_Receive

FS1
Excp

Exception Actions

Exception Description When Cond Scope Log
Code

Class H/R SEMU REMU Report Purge
Msg

LU 6.2 PS exception conditions when allocating a conversation with DS_Send.

Allocation parameters were BT NIA NIA DSU NIA NIA NIA 0 NIA NIA
incorrectly specified.

LU 6.2 cannot allocate the BT NIA NIA DSU NIA NIA NIA 0 NIA NIA
requested conversation at
this time because either
there are no available ses-
sions or LU 6.2 is temporarily
unable to start an instance of
DS_Receive.

LU 6.2 is unable to allocate BT NIA NIA DSU NIA NIA NIA 0 NIA NIA
the requested conversation
because of other local or
remote LU exceptions.

LU 6.2 PS exception conditions when receiving one or more DMUs across the conversation.

Receives an LU 6.2 return BT, NIA NIA DSU NIA NIA NIA 0 NIA R
code of RESOURCE_FAILURE or OT, or
Deallocate Type(ABEND). AT

The sending DSU has vio- OT or NIA NIA DSU NIA NIA NIA R NIA R
lated the FS1 protocols AT
regarding usage of LU 6.2.

DSU exception conditions when performing mandatory receive-time checks.

Structure of the DMU does OT 0004 C2 DMU NIA NIA R R NIA R
not match Appendix G.

This DSU does not provide a OT 0005 C3 DMU NIA NIA R R NIA R
service level specified as
mandatory for a particular
DSU.

DSU exception conditions when receiver wishes to temporarily restrict the traffic It accepts based on an
Implementation-dependent cause. In these cases, the exception object will always be the command, encoded as
X'07'. See Appendix G.

A resource is not available. OT OOOE C4 DMU NIA NIA R 0 NIA R

DSU exception conditions when receive-time enhancements are implemented.

Hop count has reached 0 and OT NIA NIA -.ALL NIA NIA NIA NIA NIA NIA
one or more destination Dest
users are non-local.

OT 0003 C3 All Dest NIA NIA R R NIA R

Destination transaction OT NIA NIA -.ALL NIA NIA NIA NIA NIA NIA
program is unknown at the Dest
destination DSU.

OT 0009 C3 All Dest NIA NIA R R NIA R

Destination user name is OT NIA NIA -.All NIA NIA NIA NIA NIA NIA
unknown to the directory at Dest
the destination DSU. (See

OT 0002 C3 All Dest NIA NIA R R NIA R
Note 1)

434 SNA/Distribution Services Reference

Table 9 (Page 2 of 3). FS1 Exception Processing When Conditions Are Detected by DS_Receive

FS1
Excp

Exception Actions

Exception Description When Cond Scope Log
Code

Class H/R SEMU REMU Report Purge
Msg

Destination DSU name not DT NIA NIA -.ALL NIA NIA NIA NIA NIA NIA
found in routing table, and, Dest
therefore, next-DSU cannot DT 0001 C3 All Dest NIA NIA R R NIA R
be determined.

DSU exception condition when the object size, as perceived by the receiving DSU, exceeds the requested
capacity service level.

Server object size is incom- DT 0013 C3 DMU NIA NIA R R NIA R
patible with capacity level.

Specific-server exception conditions when receive-time enhancements are supported and direct storing of the
object, using the destination server, Is attempted.

Server specified in the DMU DT NIA NIA -.ALL NIA NIA NIA NIA NIA NIA
is unknown at the destina- Dest
ti on. DT 0007 C3 All Dest NIA NIA R R NIA R

Destination-server parame· DT NIA NIA -.ALL NIA NIA NIA NIA NIA NIA
ters were incorrectly speci- Dest
tied. DT 0008 C3 All Dest NIA NIA R R NIA R

Object contents are incom· OT NIA NIA -.ALL NIA NIA NIA NIA NIA NIA
patible with file server. Dest

DT 0006 C3 All Dest NIA NIA R R NIA R

General-server exception conditions when attempting to write the distribution object.

General server cannot be DT OOOF C4 DMU NIA NIA R 0 NIA R
found at this DSU.

General-server parameters DT OOOF C4 DMU NIA NIA R 0 NIA R
were incorrectly specified.

Any server exception occurs OT OOOF C4 DMU NIA NIA R 0 NIA R
that permanently prevents
further processing for this
DMU.

Specific- or general-server exception conditions when writing the distribution object.

Temporarily unable to write OT OOOE C4 DMU NIA NIA R 0 NIA R
due to insufficient capacity.

Server experiences a tempo- OT 0010 C4 DMU NIA NIA R 0 NIA R
rary condition that is
expected to reset shortly so
that retransmitting of the
DMU can be attempted (i.e.,
another process currently
has the data set open or
locked).

110 device experiences hard· DT 0011 C4 DMU NIA NIA R 0 NIA R
ware failure.

Queue exception conditions when enqueueing the DMU control block onto the router-director queue.

110 device experiences hard· DT 0011 C4 DMU NIA NIA R 0 NIA R
ware failure.

Appendix E. Exception Handling 435

Table 9 (Page 3 of 3). FS1 Exception Processing When Conditions Are Detected by OS_Receive

FS1
Excp

Exception Actions

Exception Description When Cond Scope Log
Code

Class H/R SEMU REMU Report Purge
Msg

Any queue error occurs in OT OOOF C4 DMU NIA NIA R 0 NIA R
the system that prevents
further processing for this
DMU (i.e., queue cannot be
found).

DSU exception conditions when scheduling DS_Router_Dlrector.

OS_Router_Director is tern- OT OOOE C4 DMU NIA NIA R 0 NIA R
porarily unavailable.

Any other DSU exception OT OOOF C4 DMU NIA NIA R 0 N/A R
occurs that prevents the
scheduling of
DS_Router _Director.

Parser exception conditions when decoding a SEMU.

The parser is unable to OT NIA NIA DMU NIA NIA NIA 0 NIA NIA
decode the SEMU.

Note:

1. An end-only-role OSU specialized in accepting single-destination traffic is permitted to send a REMU with
the specified FS1 condition code if a multiple-destination DMU is received.

Exception Codes for a SEMU (Type FS1)
If DS_Send detects an exception while sending a DMU, DS_Send notifies
DS_Receive by sending a SEMU (Type FS1). The SEMU (Type FS1) contains the
exception information pertaining to the condition and indicates to the receiver
that the remainder of the DMU will not be transmitted. The following table illus
trates the exceptions that DS_Send may detect and the corresponding contents
of the SEMU (Type FS1).

Exception Code

Error Condition Exception
Exception

Exception Sender Action
Condition

Class
Code

Object

System Exception cs 06 (See page Recoverable
623)

Insufficient Resource cs OB 1B Recoverable

Storage-Medium Exception cs OB (See page Unrecoverable
623)

Specific-Server Exception cs 18 1B Unrecoverable

Format Exception cs OF 07 Unrecoverable

Note: Refer to Appendix G, page 623, for a description of the exception code GOS
values and for the allowable values for the exception object.

436 SNA/Oistribution Services Reference

Exception Codes for a REMU (Type FS1)
If DS_Receive detects an exception while receiving a DMU, DS_Receive notifies
DS_Send by sending a REMU (Type FS1). The REMU (Type FS1) contains the
exception information pertaining to the condition and the DSU name of the
receiver. The following table illustrates the exceptions that DS_Receive may
detect and the corresponding contents of the REMU (Type FS1).

FS1
Exception Code

Error Condition Condition Exception
Exception

Exception Exception Sender Action
Code Class

Condition
Object Data

Code

Routing Exception 0001 C3 02 09 Dest DSU Ur.recoverable
and

Service
Parms

Unknown User Name 0002 C3 02 09 DGN and Unrecoverable
DEN

Hop Count Exhausted 0003 C3 11 09 - Unrecoverable

Format Exception 0004 C2 (See page (See page LLIDF Unrecoverable
625) 625) Received

Function Not Supported 0005 C3 (See page (See page LLIDF Unrecoverable
625) 625) Received

Specific-Server Exception 0006 C3 18 18 - Unrecoverable

Unknown Resource Name - 0007 C3 02 1A DOP Unrecoverable
Server
Invalid Server Parameters 0008 C3 17 1A DOP Unrecoverable

Unknown Resource Name - 0009 C3 02 09 Agent TP Unrecoverable
Agent
Resource Not Available OOOE C4 04 (See page - Recoverable

625)
System Exception OOOF C4 06,0B (See page - Recoverable

625)
Insufficient Resource 0010 C4 04, OB 18 - Recoverable

Storage-Medium Exception 0011 C4 08 (See page - Recoverable
625)

Server Object Size lncompat- 0013 C3 11 18 - Unrecoverable
ible with Capacity Level

Note: Refer to Appendix G, page 625, for a description of the exception code GOS values and for the allow-
able values for the exception object.

Appendix E. Exception Handling 437

438 SNA/Distribution Services Reference

Appendix F.

Introduction

Protocol Boundary Definitions

The term protocol boundary is used generally to refer to the semantic definition
of the data and control exchanges between two components in an SNA node.
This appendix focuses on the protocol boundaries between OS and the applica
tion transaction programs that interact with OS. These are the agents that
request services, the servers that work with OS to fetch and store objects, and
agents that control the OS operation.

These protocol boundaries are described generically here in the form of pre
cisely defined verbs. IBM products implementing OS do not necessarily provide
a OS programming interface; however, the OS functions performed by the
implementations are equivalent to the functions described in this appendix. For
information about the correspondence between an implementation's OS func
tions and the protocol boundaries described in this appendix, refer to the
appropriate IBM product publication. For an introductory discussion on the pro
tocol boundary, refer to Chapter 1.

The OS protocol boundary verbs are formally described in verb description
tables and parameter descriptions. A verb description table contains the
primary syntax for each parameter associated with a particular verb. A param
eter description contains a prose description of the parameter, enumeration
values, and any conditions of presence associated with a particular parameter.

Verb Description Table

Column Descriptions

Supplied Parameter Name
The first column of the verb description tables, which begin on page 441, identi
fies the parameters supplied on the invocation of a particular verb, and illus
trates their hierarchical relationship by indentation of the column entries. For
example, in the Send_Oistribution table on page 449, Report-To_RGN is shown
indented underneath Report-To_DSU; this shows that Report-To_RGN is a child
parameter contained by the Report-To_DSU parent parameter.

Returned Parameter Name
The returned_parameter name identifies the parameters returned as a result of
the invocation of a particular verb, and illustrates their hierarchical relationship
by indentation of the column entries.

Appendix F. Protocol Boundary Definitions 439

Parameter Reference Page (Parm Ref Page)

Length

Occurrences

Children

As syntax is described In the particular verb description table, the semantics,
enumeration values, and other characteristics are described formally in the
parameter description. The parameter reference page column in the verb
description table contains a reference page number to where this parameter
information Is found.

The range of length values specifies the minimum and maximum lengths of
parameters that an implementation is required to accept across the protocol
boundary. Sometimes the length is described as an enumeration (ENUM),
which means the parameter may be implemented as an integer, character
string, pointer, or any implementation choice.

Multiple occurrences of parameters may or may not be permitted. A value of "1
- <some number>" in this column indicates the allowed range of occurrences
of the corresponding parameter. A value of "~1" indicates that there is no
architecturally defined maximum. A value of "1" in this column indicates that
only a single instance of the corresponding parameter is appropriate. A value
of "O - 1" indicates that an instance of the corresponding parameter is optional.

Note: An asterisk denotes special presence rules for a particular parameter.
These presence rules are detailed in the corresponding parameter description.

Number (Num): Each parent parameter contains a certain number of different
children. This column specifies the minimum and maximum number of different
children for a particular parent parameter. This column also specifies mutual
exclusion among a set of optional children. If all children are optional ("0-1")
and the parent parameter contains "1" for children number, one of the set of
children occurs within that particular parent. This column does not account for
multiple occurrences of a particular child within the parent parameter. Multiple
occurrences of a particular parameter are indicated in the "Occurrences"
column. ·

Subtable (Subtab): Sometimes the need to divide large tables into subtables
becomes apparent, particularly when common parameters appear frequently
within different parameter description tables. This column contains a reference
page number to the page on which these common parameters are described.

Parameter Description
This description Is referenced by a page number appearing in the "Parameter
Reference Page" column corresponding to each parameter in the verb
description table. The parameter description (see page 487, for example) con
tains information pertaining to a particular parameter. Prose descriptions,
presence rules, enumeration values, and semantics associated with the corre
sponding entry In the verb description table may appear in the parameter
description.

440 SNA/Distribution Services Reference

Distribution Verbs

VERB: Obtain_Local_Server_Report
Obtain_Local_Server_Report is issued by an agent to obtain a report generated
by a specific server. It is used for those server reports that can not be returned
on the normal sequences on Send_Distribution, Receive_Distribution, or
Query_Distribution_Sending. Typically, these are reports of server problems,
and are not related to a specific distribution.

Table 10. Obtain_Local_Server_Report

Parm Chlldren
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Recelvlng_Agent 529 1-8 1 - -
Distribution_ Queue_ID 505 - 1 1 482

Queue_Entry_ID 528 32 0-1 1 - -
Returned Parameter Name

Return_Code 2 540 ENUM 1 - -
Queue_Entry_ID 528 32 0-1 1 - -
Speclfic_Server_Report 549 1-32767 1 - -
Notes:

1. When queue_entry_ID is used as a supplied parameter, it is not returned. If it is
not used as a supplied parameter, then it is returned.

2. If the value of return_code is not OK, then all other expected parameters are not
returned, except specific_server _report may still be returned.

Appendix F. Protocol Boundary Definitions 441

VERB: Query _Distrlbutlon_Sendlng
Query_Distribution_Sending is issued by a sending agent to determine the state
of the sending operations for the specified distribution.

This verb is required in several sending sequences and can also be issued in a
stand-alone sequence when an agent wishes to determine if the distribution has
been sent.

Table 11. Query_Distribution_Sending

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Distrlbution_ID 504 - 1 4-5 478

Returned Par.ameter Name

Return_ Code 540 ENUM 1 - -
Sending_ State 544 ENUM 1 - -
SpecHic_Server _Report 549 1-32767 0-1 - -

442 SNA/Distribution Services Reference

Appendix F. Protocol Boundary Definitions 443

VERB: Recelve_Distributlon
Receive_Distribution receives a distribution, either the first one in the specified
local delivery queue, or a particular one of the distributions in the queue. A
specific copy of a distribution being received Is identified uniquely by three
parameters. They are the distribution_ID, the dlstribution_queue_ID, and the
queue_entry_ID. Supplying distribution_queue_ID retrieves the first entry from
the specified local delivery queue. Supplying either queue_entry_ID or
distribution_ID in addition to distribution_queue_ID retrieves a specific entry
from the specified local delivery queue.

Table 12 (Page 1 of 2). Receive_Distribution

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Recelvlng_Agent 529 1-8 1 - -
Distrlbution_Queue_ID 505 - 1 1 482

Dlstribution_ID 504 - 0-1 1 4-5 478

Queue_Entry _ID 528 32 0-1 2 - -

444 $NA/Distribution Services Reference

Table 12 (Page 2 of 2). Receive_Distribution

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Returned Parameter Name

Return_Code 3 540 ENUM 1 - -
Dest_Agent 500 1-8 0-1 - -
Dlstrlbutlon_ID 504 - 0-1 1 4-5 478

Agent_ Correl 489 1-128 0-1 - -
Service_Parms 547 - 1 8 485

Destination 503 - 1-256 1-2 476

Agent_ Object 490 1-32763 0-1 - -
Server 545 1-8 0-1 - -
Server _Access 545 1-64 0-1* - -
Server_ Object_Byte_ Count 547 8 0-1 - -
Specific_Server_lnfo 549 1-32767 0-1* - -
Exception_Report_Req 506 ENUM 1 - -
Report-To_osu 532 - 0-1 2 -

Report-To_RGN 533 1-8 1 - -
Report-To_REN 532 1-8 1 - -

Report-To_ User 533 - 0-1 2 -
Report-To_DGN 532 1-8 1 - -
Report-To_DEN 531 1-8 1 - -

Report-To_Agent 531 1-8 0-1 - -
Report_Service_Parms 534 - 0-1 6 482

Specific_Server _Report 549 1-32767 0-1 - -
Previously _Received_Date_ Time 525 - 0-1 2 -

Prevlously_Recelved_Date 524 - 1 3 476

Previously_Recelved_ Time 525 - 1 5 487

Queue_Entry_ID 528 32 0-1 2 - -
Distribution_ Time 505 - 1 5 487

Integrity 509 ENUM 1 - -
Notes:

1. When distribution_ID is used as a supplied parameter, it is not returned. If it is not
used as a supplied parameter, it is returned.

2. When queue_entry_/D is used as a supplied parameter, it is not returned. If it is
not used as a supplied parameter, it is returned.

3. If the value of return_code is not OK, then all other expected parameters are not
returned.

Appendix F. Protocol Boundary Definitions 445

VERB: Receive_Distribution_Report
Receive_Distribution_Report is issued by a specially started instance of the
report-to agent (which will often have defaulted to the origin agent) to receive a
report on the DS condition of a distribution. A distribution report being received
is identified uniquely by three parameters. They are the distribution_ID, the
distribution_queue_/D, and the queue_entry_ID. Supplying
distribution_queue_ID retrieves the first entry from the specified local delivery
queue. Supplying either queue_entry_ID or distribution_ID in addition to
distribution_queue_ID retrieves a specific entry from the specified local delivery
queue.

Table 13 (Page 1 of 2). Receive_Distribution_Report

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Receiving_Agent 529 1-8 1 - -
Distribution_Queue_ID 505 - 1 1 482

Distribution_ID 504 - 0-1 1 4-5 478

Queue_Entry_ID 528 32 0-1 2 - -

446 SNA/Distribution Services Reference

Table 13 (Page 2 of 2). Receive_Distribution_Report

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Returned Parameter Name

Return_Code 3 540 ENUM 1 - -
Report-To_Agent 531 1-8 1 - -
Dlstribution_ID 504 - 0-1 1 4.5 478
Servlce_Parms 547 - 1 6 485
Reporting_DSU 537 - 1 2 -

Reportlng_RGN 538 1-8 1 - -
Reporting_REN 538 1-8 1 - -

Report_ Date 533 - 1 3 476
Report_ Time 534 - 1 5 487
Agent_ Correl 489 1-128 0-1 - -
Report-To_DSU 532 - 1 2 -

Report-To_RGN 533 1-8 1 - -
Report-To_REN 532 1·8 1 - -

Report-To_User 533 - 0-1 2 -
Report-To_DGN 532 1-8 1 - -
Report-To_DEN 531 1-8 1 - -

Receiving_DSU 530 - 0-1 2 -
Receiving_RGN 530 1-8 1 - -
Recelving_REN 530 1-8 1 - -

Previously _Recelved_Date_ Tlme 525 - 0-1 2 -
Prevlousty _Recelved_Date 524 - 1 3 476
Previously _Received_ Time 525 - 1 5 487

Queue_Entry _ID 528 32 0-1 2 - -
Reported-On_ Time 537 - 1 5 487
Reported-On_Dest_Agent 534 1-8 0-1* - -
SNA_ Conditlon_Report 548 - 1 1-4 486
Integrity 509 ENUM 1 - -
Notes:

1. When distribution_ID is used as a supplied parameter, it is not returned.

2. When queue_entry_/D is used as a supplied parameter, it is not returned.

3. If the value of return_code is not OK, then all other expected parameters are not
returned.

Appendix F. Protocol Boundary Definitions 447

VERB: Receiving_Sequence_Completed
Receiving_Sequence_Completed completes the transfer of responsibility from
the DSU to the agent on a receiving sequence. This verb can be used to follow
up either a Receive_Distribution or a Receive_Distribution_Report.

Table 14. Receiving_ Sequence_ Completed

Parm Children
Parameter Name Ref Length Occurrences

Num J Subtab Page

Supplied Parameter Name

Distribution_ Queue_ID 505 - 1 1 1 482

Queue_Entry _10 528 32 1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - l -

448 SNA/Distribution Services Reference

VERB: Send_Distribution
Send_Distribution initiates a distribution within a DS network. In high-integrity
verb sequences, the sequence number and date must be supplied. The
methods of specifying destinations are:

1. The originating agent may choose to specify one or more users in the desti
nation parameter. If so, the DSU determines for each user the DSU to
which the distribution should be sent.

2. The originating agent might specify one or more DSUs as destinations. If
so, the distribution service has no need to determine what DSU to send it
to, either at the origin or as it travels through the network.

The originating agent may choose to specify a mix of (1) and (2).

Table 15 (Page 1 of 2). Send_Distribution

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Distributlon_ID 504 - 1 4-5 478

Agent_ Correl 489 1-128 0-1 - -
Service_Parms 547 - 1 8 485

Exception_Report_Req 506 ENUM 1 - -
Report-To_osu 532 - 0-1 2 -

Report-To_RGN 533 1-8 1 - -
Report-To_REN 532 1-8 1 - -

Report-To_User 533 - 0-1 2 -
Report-To_DGN 532 1-8 1 - -
Report-To_DEN 531 1-8 1 - -

Report-To _Agent 531 1-8 0-1 - -
Report_Service_Parms 534 - 0-1 6 482

Dest_Agent 500 1-8 0-1 - -
Destination 503 - 1-256 1 476

Agent_ Object 490 1-32763 0-1 - -
Server 545 1-8 0-1 - -
Server_Access 545 1-64 0-1* - -
Specific_Server _Info 549 1-32767 0-1· - -
Server_Object_Byte_Count 547 8 0-1 - -
Integrity 509 ENUM 1 - -

Appendix F. Protocol Boundary Definitions 449

Table 15 (Page 2 of 2). Send_Distribution

Parm Children
Parameter Name llef Length Occurrences

Page Num Subtab

Returned Parameter Name

Return_ Code 540 ENUM 1 - -
Seqno_ To_Clean_Up 544 - 0-1 3 -

Clean_Up_Seqno 494 4 1 - -
Clean_Up_Date 494 - 1 3 476

Sending_ State 544 ENUM 1 - -
Sending_ State 544 ENUM 1 - -
Speclflc_Server _Report 549 1-32767 0-1 - -
Distribution_ Time 505 - 1 5 487

VERB: Sending_Sequence_ Completed
Sending_Sequence_Completed is used only on high-integrity sequences after
the agent has learned that the DSU has accepted responsibility for the distrib
ution. After Sending_Sequence_Completed has been issued, the DSU may then
purge its awareness of the distribution when it has completed sending.

Table 16. Sending_Sequence_Completed

Parm Children
Parameter Name Ref Length Occurrences

Num l Subtab Page

Supplied Parameter Name

Dlstribution_ID 504 - 1 4-5 l 478

Returned Parameter Name

Return_ Code 540 ENUM 1 -l -

450 SNA/Distribution Services Reference

Operations Verbs

VERB: Add_DSU_Data
Add_DSU_Data adds a new row to a system data structure.

Table 17. Add_DSU_Data

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Data_Structure 498 ENUM 1 - -
New_Row 517 - 1 1 -

Agent_Llst_Entry 489 - 0-1 2-3 474
Connection_Definitlons_Entry 496 - 0-1 14 475
Directory _Entry 504 - 0-1 3-6 477
DSU _Definition_Entry 505 - 0-1 7 479
lntervention_Llst_Entry 509 - 0-1 2 479
MU_ID_Registry_Entry 515 - 0-1 6-8 480
Next-DSU _Queue_Definltlons_Entry 518 - 0-1 4-5 481
Routing_ Table_Entry 542 - 0-1 5-14 484
Server _List_Entry 546 - 0-1 3-4 485

Returned Parameter Name

Return_ Code 540 ENUM 1 - -

Appendix F. Protocol Boundary Definitions 451

VERB: Get_Dlstribution_lnfo
Get_Distribution_lnfo gives all the distribution control information for a specified
distribution. The specified distribution may be in any of the DSU's queues.

Table 18. Get_Distribution_lnfo

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Queue_ID 529 - 1 1 482

Queue_Entry _ID 528 32 1 - -
Returned Parameter Name

Return_Code t 540 ENUM 1 - -
Dlstrlbution_ID 504 - 1 4-5 478

Agent_ Correl 489 1-128 0-1 - -
Servlce_Parms 547 - 1 8 485

Destination 503 - 1-256 1 476

Dest_Agent 500 1-8 0-1 - -
Agent_ Object 490 1-32763 0-1 - -
Server 545 1-8 0-1 - -
Server _Access 545 1-64 0-1* - -
Server _Object_Byte_ Count 547 8 0-1 - -
Speclflc_Server _Info 549 1-32767 0-1* - -
Exceptlon_Report_Req 506 ENUM 1 - -
Report-To_DSU 532 - 0-1 2 -

Report-To_RGN 533 1-8 1 - -
Report-To_REN 532 1-8 1 - -

Report-To_ User 533 - 0-1 2 -
Report-To_DGN 532 1-8 1 - -
Report-To_DEN 531 1-8 1 - -

Report· To_Agent 531 1-8 0-1 - -
Report_Servlce_Parms 534 - 0-1 6 482

Hop_Count 508 4 1 - -
Speclflc_Server_Report 549 1-32767 0-1 - -
Previously _Received_Date_ Time 525 - 0-1 2 -

Prevlously _Received_Date 524 - 1 3 476

Previously _Received_ Time 525 - 1 5 487

Distribution_ Time 505 - 1 5 487

Integrity 509 ENUM 1 - -
MU_ID 515 4 0-1 - -
Note:

1. If the value of return_code Is not OK, then all other expected parameters are not
returned.

452 SNA/Distribution Services Reference

VERB: Get_Distributlon_Log_Entry
Get_Distribution_Log_Entry obtains a message (DTMU) recorded by a DSU in
the distribution log.

Table 19. Get_Distribution_Log_Entry

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Dlstrlbutlon_ID 504 - 0-1 1-5 478

Requested_Entry_Number 538 4 1 - -
Returned Parameter Name

Return_Code 1 540 ENUM 1 - -
Number_ Of_Matchlng_Entrles 519 4 1 - -
Logglng_Date 511 - 1 3 476

Logging_ Time 512 - 1 5 487

Program_Name 527 1-8 1 - -
Sesslon_Reference 547 - 0-1 4 -

Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -
Direction 503 ENUM 1 - -

Accessed_ Queue_ID 487 - 0-1 1 482

Product_Speciflc_Data 526 1-256 0-1 - -
Dlstrlbutlon_ID 504 - 1 4-5 478

MU_ID 515 4 0-1 - -
Destination 503 - 1-256 1 476

Dlstribution_Log_Data 505 1-32767 0-1 - -
Note:

1. If the value of return_code is not OK, then all other expected parameters are not
returned.

Appendix F. Protocol Boundary Definitions 453

VERB: Get_Exceptlon_Log_Entry
Get_Exceptlon_Log_Entry returns the exception information recorded In the
exception log.

Table 20. Get_Exception_log_Entry

Parm Children
Parameter Name Ref Length Occurrence•

Page Num Subtab

Supplied Parameter Name

Dlstrlbutlon_ID 504 - 0-1 1-5 478

Requested_Entry_Number 538 4 1 - -
Returned Parameter Name

Return_Code 1 540 ENUM 1 - -
Number_Of_Matchlng__Entrles 519 4 1 - -
Logging_ Date 511 - 1 3 476

Logging_ Time 512 - 1 5 487

Program_Name 527 1-8 1 - -
Sesslon_Reference 547 - 0-1 4 -

Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -
Direction 503 ENUM 1 - -

Accessed_Queue_ID 487 - 0-1 1 482

Product_Speclflc_Data 526 1-256 0-1 - -
Dlstributlon_ID 504 - 0-1 2-5 478

SNA_Report_Code 548 4 1 - -
MU_ID 515 4 0-1 - -
Reported·On_Destlnatlon 537 - ~ 1-2 483

Exceptlon_Log_Data 506 1-32767 0-1 - -
Note:

1. If the value of return_coqe is not OK, then all other expected parameters are not
returned.

VERB: Hold_Dlstributlon_ Copy
Hold_Dlstributlon_Copy holds a specified distribution copy on a specified queue.

Table 21. Hold_Distribution_Copy

Parm Children
Parameter Name Ref Length Occurrence•

Page Num Subtab

Supplied Parameter Name

Queue_ID 529 - 1 1 482

Queue_Entry_ID 528 32 1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -

454 SNA/Distribution Services Reference

VERB: Llst_Adjacent_DSUs
List_Adjacent_DSUs lists the names of all DSUs that are shown in the routing
table as being adjacent to the specified DSU.

Table 22. Ust_Adjacent_DSUs

Parm Children
Parameter Name Ref Length Occurrences

Page Hum Subtab

Supplied Parameter Name

Servlce_Panns 547 - 0-1 2-8 485

Returned Parameter Name

Return_Code 540 ENUM 1 - -
Adjacent_DSU 487 - 0-64 2 -

Ad)acent_RGN 488 1-8 1 - -
Adjacent_REN 488 1-8 1 - -

Appendix F. Protocol Boundary Definitions 455

VERB: List_Connections
List_ Connections returns the connection names and their send/hold states for
one or more connections. Connections can be specified individually by LU and
mode, or collectively for all connections to an adjacent DSU. Connections can
also be specified by a destination DSU, optionally qualified by service parame
ters.

Table 23. Llst_Connections

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Connection 496 - 0-64 1 2-3 -
Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 0-1 - -

Route 542 - 0-1 1 1-2 -
Dest_DSU 501 - 1 2 -

Dest_RGN 502 1-8 1 - -
Dest_REN 502 1-8 1 - -

Service_Parms 547 - 0-1 2-8 485

Returned Parameter Name

Return_ Code 540 ENUM 1 - -
Connection 496 - 0-64 4 -

Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -
Hold_ State 507 ENUM 1 - -

Note:

1. The connection and route supplied parameters are mutually exclusive.

456 SNA/Distribution Services Reference

VERB: List_Control_MU_Queue
List_Control_MU_Queue lists all control MUs present in a specified queue.

Table 24. List_ Control_M U _Queue

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -
Direction 503 ENUM 1 - -
Starting_Queue_Entry_ID 549 32 0-1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -
Control_lnfo 497 - ~o 2-3 -

MU_Type 516 ENUM 1 - -
MU_ID 515 4 0-1 - -
Queue_Entry_ID 528 32 1 - -

Next_ Queue_Entry _ID 518 32 0-1 - -

VERB: List_Conversatlons
List_Conversations lists the active conversations, both sending and receiving,
for a specified connection or group of connections.

Table 25. List_Conversations

Parm Children
Parameter Name Ref Lerigth Occurrences

Page Num Subtab

Supplied Parameter Name

Connection 496 - 0-1 2-3 -
Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 0-1 - -

Returned Parameter Name

Return_ Code 540 ENUM 1 - -
Conversation_lnfo 497 - ~o 5 -

Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -
Conversatlon_ID 497 4 1 - -
Direction 503 ENUM 1 - -

Appendix F. Protocol Boundary Definitions 457

VERB: Ust_Dlstributlons_Belng_Recelved
Llst_Distributlons_Belng_Recelved lists the distribution control information for
distributions being received on a specified connection. Optionally, the verb can
request the number of bytes already received by the server.

Table 28. Ust_Distributions_Being_Rec:eived

Parm Chldren
Parameter Name Ref Length Oc:currenaa•

Page Num Subtab

Supplled Parameter N

Connection 496 - 0.1 3 -
Net JD 517 1..S 1 - -
W_N_,. 512 1-8 1 - -
Mode_N 513 1..S 1 - -

Server_Bytn_Recelnd 545 ENUM 1 - -
Returned Parameter Name

Retum_Code 540 ENUM 1 - -
DWrlbutlon_lnfo 504 - ~ 2-3 -

Dlstributlon_ID 504 - 1 4-5 478
DWrlbutlon_Tlme 505 - 1 5 487
Recelved......_Server_Bytn 529 8 0.1 - -

VERB: Llst_Dlstributlons_Belng_Sent
Llst_Distributions_Being_Sent lists the distribution control information for dis
tributions being sent on a specified connection. Optionally, the information can
be expanded to report the number of server object bytes yet to be sent.

Table 27. Ust_Disbibutions_Being_Sent

Parm Chlldren
Parameter N Ref Length Oc:currenca

Page Num Subtab

Supplled Parameter Name

Connection 496 - 0.1 3 -
Net_ID 517 1-8 1 - -
W_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -

Server_Bytn_Remalnlng 546 ENUM 1 - -
Returned Parameter Name

Retum_Code 540 ENUM 1 - -
DWrlbutlonJnfo 504 - ~ 2-3 -

DWrlbutlonJD 504 - 1 4-5 478
DWrlbutlon_11me 505 - 1 5 487
Remalnlng_Server_8ytH 530 8 0.1 - -

458 SNA/Distribution Services Reference

VERB: Llst_DSU _Data
Llst_DSU _Data Is used to display to the operator the value of one or more rows
of a system data structure.

Table 28. Ust_DSU_Data

Parm Children
Parameter Name Ref Length Occurrence•

Paga Num Subtab

Supplied Parameter Name

Data_ Structure 498 ENUM 1 - -
Row_Salactlon_Crlterla 542 - 0-1 1 -

Agent_Llst_Entry 489 - 0-1 1-3 474

Connectlon_Deflnltlons_Entry 496 - 0-1 1-14 475

Directory _Entry 504 - 0-1 1-6 477

DSU _Deflnltlon_Entry 505 - 0-1 1-7 479

lnterventlon_Llst_Entry 509 - 0-1 1-2 479

MU _ID _Reglstry_Entry 515 - 0-1 1-8 480

Next-DSU _Queue_Deflnltlons_Entry 518 - 0-1 1-5 481

Routing_ Table_Entry 542 - 0-1 1-14 484

Servar _Llst_Entry 546 - 0-1 1-4 485

Column_ To_Be_Llsted 494 ENUM 0-14 - -
Startlng_Row _Number 549 4 0-1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -
Selected_Row 544 - 0-64 1 -

Agent_Llst_Entry 489 - 0-1 1-3 474

Connectlon_Deflnltlons_Entry 496 - 0-1 1-14 475

Directory _Entry 504 - 0-1 1-6 477

DSU _Deflnltlon_Entry 505 - 0-1 1-7 479

lnterventlon_Llst_Entry 509 - 0-1 1-2 479

MU _ID _Reglstry_Entry 515 - 0-1 1-8 480

Naxt-DSU _Queua_Deflnltlons_Entry 518 - 0-1 1-5 481

Routing_ Table_Entry 542 - 0-1 1-14 484

Sarvar _Llst_Entry 546 - 0-1 1-4 485

New_Row_Number 517 4 0-1 - -

Appendix F. Protocol Boundary Definitions 459

VERB: List_ Queue_Entries
List_Queue_Entries lists the distributions, the distribution reports, and server
reports for a specified queue.

Table 29. List_Queue_Entries

Parm Children
Parameter Name Ref Length Occurrences

Page Num Sub tab

Supplied Parameter Name

Queue_ID 529 - 1 1 482

Queue_Entry _Type 528 ENUM 0-1 - -
Distributlon_ID 504 - 0-1 1-5 478

Querylng_Agent 528 1-8 1 - -
After_Date 488 - 0-1* 3 476

After_Tlme 488 - 0-1* 5 487

Before_Date 492 - 0-1* 3 476

Before_ Time 492 - 0-1* 5 487

Starting_Queue_Entry_ID 549 32 0-1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -
Dlstrlbutlon_lnfo 504 - ~o 3-6 -

Dlstrlbution_ID 504 - 0-1 4-5 478

Queue_Entry_ID 528 32 1 - -
Queue_Entry_Type 528 ENUM 1 - -
Distribution_ Time 505 - 0-1 5 487

Previously _Received_ Date_ Time 525 - 0-1 2 -
Prevlously _Received_Date 524 - 1 3 476

Previously _Received_ Time 525 - 1 5 487

Hold_ State 507 ENUM 1 - -
Next_ Queue_Entry _10 518 32 0-1 - -

480 SNA/Distribution Services Reference

VERB: List_ Queues_ Containing_Distribution
List_Queues_Containing_Distribution lists the queue identifiers of all queues
that contain a copy of the specified distribution.

Table 30. Li st_ Queues_ Containing_ Distribution

Parm Children
Parameter Name Ref Length Occurrences

Num I Subtab Page

Supplied Parameter Name

Distributlon_ID 504 - 1 4-5 I 478

Returned Parameter Name

Return_ Code 540 ENUM 1 - I -
Queue_ID 529 - 0-64 1 482

Note:

1. If the value of return_code is not OK, then all other expected parameters are not
returned.

Appendix F. Protocol Boundary Definitions 461

VERB: Modlfy_DSU_Data
Modlfy_OSU_Data changes the value of one or more rows In a system data
structure. This verb must be used for parameters that must always exist, such
as the OSU name. ft may also be used to modify an existing list entry.

Table 31. Modity_osu_oata

Parm Children
Parameter Name Ref Length Occurrence•

Page Num Subtab

Supplied Parameter Name

Data_Structure 498 ENUM 1 - -
Row_Selectlon_Crlterfa 542 - 1 1 -

Agent_u.t_Entry 489 - 0-1 1-3 474

Connectlon_Deflnltlon1_Entry 496 - 0-1 1-14 475

Directory _Entry 504 - 0-1 1-6 477

DSU _Deflnltlon_Entry 505 - 0-1 1-7 479

lnterventlon_Ult_Entry 509 - 0-1 1-2 479

MU _ID _Reglltry_Entry 515 - 0-1 1-8 480

Next-DSU _Queue_Deflnltlon1_Entry 518 - 0-1 1-5 481

Routlng_Table_Entry 542 - ()..1 1-14 484

Server _Lilt_Entry 548 - 0-1 1-4 485

Modlfled_Row 514 - 1 1 -
Agent_Lllt_Entry 489 - 0-1 2-3 474

Connectlon_Deflnltlon1_Entry 498 - 0-1 14 475

Directory _Entry 504 - 0-1 3-6 477

DSU_Deflnltlon_Entry 505 - 0-1 7 479

tnterventlon_u.t_Entry 509 - 0-1 2 479

MU _ID _lteglltry_Entry 515 - 0-1 6-8 480

Next-DSU _Queue_Deflnltlone_Entry 518 - 0-1 4-5 481

Routlng_Tabte_Entry 542 - 0-1 5-14 484

Server _Ult_Entry 548 - 0-1 3-4 485

ff_Nonunlque_Key 508 ENUM 1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -

482 SNA/Dlltrlbution Servlcet Reference

VERB: Purge_Queue_Entry
Purge_Queue_Entry deletes a queue entry from a specified queue and causes
appropriate reporting.

Table 32. Purge_Oueue_Entry

Parm Children
Parameter Name Ref Length Occurrence•

Page Num Subtab

Supplied Parameter Name

Queue_ID 529 - 1 1 482

Queue_Entry_ID 528 32 1 - -
Returned Parameter Name

Return_Code 540 ENUM 1 - -

VERB: Release_Distribution_Copy
Release_Distribution_Copy releases a specified distribution copy on a specified
queue.

Table 33. Release_Distribution_Copy

Parm Children
Parameter Name Ref Length Occurrence•

Page Num Subtab

Supplied Parameter Name

Queue JD 529 - 1 1 482

Queue_Entry_ID 528 32 1 - -
Returned Parameter Name

Retum_Code 540 ENUM 1 - -

Appendix F. Protocol Boundary Definitions 483

VERB: Remove_DSU_Data
Remove_DSU_Data removes one or more rows from a system data structure.

Table 34. Remove_DSU_Data

Parm Children
Parameter Name Ref Length ~ Occurrences

Page Num Subtab

Supplied Parameter Name

Data_Structure 498 ENUM 1 - -
Row _Selection_ Criteria 542 - 1 1 -

Agent_Llst_Entry 489 - 0-1 1-3 474

Connection_Definltions_Entry 496 - 0-1 1-14 475

Directory _Entry 504 - 0-1 1-6 477

DSU _Definltlon_Entry 505 - 0-1 1-7 479

lnterventlon_List_Entry 509 - 0-1 1-2 479

MU_ID_Registry_Entry 515 - 0-1 1-8 480

Next-DSU _Queue _Deflnitlons_Entry 518 - 0-1 1-5 481

Routing_ Table_Entry 542 - 0-1 1-14 484

Server _List_ Entry 546 - 0-1 1-4 485

lf_Nonunlque_Key 508 ENUM 1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -

VERB: Reroute_Distribution_Copies
Reroute_Distribution_Copies reroutes one or more distribution copies found in a
specified queue.

Table 35. Reroute_Distribution_Copies

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Connection 496 - 0-64 2-3 -
Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 0-1 - -

Distribution_ID 504 - 0-1 4-5 478

Service_Parms 547 - 0-1 2-8 -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -

464 SNA/Distribution Services Reference

VERB: Reset_MU_ID_Registry
Reset_MU_ID_Registry causes the MU_ID registry for a connection to be resyn
chronized. Issuing this verb causes a Reset Request MU to be sent on the
specified connection.

Table 36. Reset_ MU _ID _Registry

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Connection 496 - 1 3 -
Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -

Next_MU_ID 518 4 1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -

VERB: Start_Connection
Start_ Connection activates a connection by causing the persistent sessions, if
any, to be bound, setting the OS_Send control values, and checking that the
appropriate routing segments are in the active state.

Table 37. Start_Connection

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplled Parameter Name

Connection 496 - 1 3 -
Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -

Max_os_sends 513 4 1 - -
Max_os_Recelves 512 4 1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -

Appendix F. Protocol Boundary Definitions 465

VERB: Tennlnate_Connection
Termlnate_Connectlon terminates a connection by terminating all active conver
sations on It.

Table 38. Terminate_Connection

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Connection 496 - 1 3 -
Nat_ID 517 1-8 1 - -
LU_Naune 512 1-8 1 - -
Mode_Name 513 1-8 1 - -

MU_Ac:tlon 514 ENUM 1 - -
Returned Parameter Name

Ratum_Code 540 ENUM 1 - -

VERB: Tennlnate_Conversation
Terminate_ Conversation terminates a conversation.

Table 39. Terminate_Conversation

Parm Children
Parameter Name Ref Length Occurrence•

Page Num Subtab

Supplied Panuneter Name

Canveratlon_ID 497 4 1 - -
MU_Actlon 514 ENUM 1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -

481 SNA/Di&bibution Services Reference

Server Verbs

VERB: Assign_Read_Access
Assign_Read_Access creates entries in the access list. Any process that has
been assigned read access to a particular server object can issue this verb.
The issuer of the verb is identified in each entry as the assigning process.
When the assigning and the assigned-to processes are the same, the entry is
called a self assignment. When they are different, the entry is called an other
assignment. Typically, a process will issue this as soon as it has been given an
access descriptor to confirm access and to create its own self-assignment
entry. OS does this before returning control on a Send_Distribution verb.

Every time this verb is issued, an entry is created and it is the responsibility of
the assigning process to eventually issue a Release_Read_Access to delete the
entry. The access list may contain multiple entries with the same contents.

Table 40. Assign_Read_Access

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Assigning_Process 491 1-8 1 - -
Current_Unit_Of_Work_ID 498 - 1 1 -

Distribution_ID 504 - 0-1 4-5 478

Agent_Unit_Of_Work_ID 490 1-256 0-1 - -
Assigned_Process 490 1-8 1 - -
New_Unit_Of_Work_ID 518 - 0-1 1 -

Distribution_ID 504 - 0-1 4-5 478

Agent_Unlt_Of_Work_ID 490 1-256 0-1 - -
Assign_Unlt_Of_Work_ID 490 ENUM 1 - -
Server 545 1-8 1 - -
Server _Access 545 1-64 1 - -
Returned Parameter Name

Retum_Code 540 ENUM 1 - -

Appendix F. Protocol Boundary Definitions 467

VERB: Backout_Server_Object
Backout_Server_Object Informs the server that it should back out a server
object that has been successfully written, because the distribution will not be
delivered.

Table 41. Backout_Server_Object

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Requestlng_Process 538 1-8 1 - -
Server 545 1-8 1 - -
Server _Access 545 1-64 0-1* - -
Speciflc_Server_Report 549 1-32767 0-1 - -
Speclfic_Server _Info 549 1-32767 0-1* - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -
Speclflc_Server _Report 549 1-32767 0-1 - -

468 SNA/Distribution Services Reference

VERB: lnitiate_Read
lnitiate_Read creates and initializes the control block used during the reading of
the server object.

Table 42. lnitiate_Read

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Requesting_Process 538 1-8 1 - -
Server 545 1-8 1 - -
Unit_Of_Work_ID 554 - 1 1 -

Dlstributlon_ID 504 - 0-1 2-5 478

Agent_Unit_Of_Work_ID 490 1-256 0-1 - -
Agent_ Correl 489 1-128 0-1 - -
Agent_ Object 490 1-32763 0-1 - -
Speclfic_Server _Info 549 1-32767 0-1* - -
Server _Access 545 1-64 0-1 * - -
Restartability 540 ENUM 1 - -
Restart_ID 539 - 0-1 4 -

Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -
MU_ID 515 4 1 - -

Restart_ Byte 539 8 0-1 - -
Returned Parameter Name

Return_Code 1 540 ENUM 1 - -
Server _Instance _l D 546 4 1 - -
Specific_ Server _Report 549 1-32767 0-1 - -
Note:

1. If the value of return_code is not OK, then all other expected parameters are not
returned, except specific_server _report may still be returned.

Appendix F. Protocol Boundary Definitions 469

VERB: lnitiate_Write
lnitiate_Write creates and initializes the control block used during the writing of
the server object. An exclusive-write lock is set to indicate that no reading,
other writing, or deletion may take place.

As long as the exclusive-write lock for an object is set, no read access can be
assigned. Thus, any Assign_Read_Access issued while the exclusive-write lock
is set results in an error condition.

Table 43. Initiate_ Write

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Requesting_Process 538 1-8 1 - -
Server 545 1-8 1 - -
Server_ Object_Byte_ Count 547 8 0-1 - -
Unit_ Of_ Work_ID 554 - 1 1 -

Distribution_ID 504 - 0-1 4-5 478

Agent_Unit_ Of_ Work_ID 490 1-256 0-1 - -
Agent_ Correl 489 1-128 0-1 - -
Agent_ Object 490 1-32763 0-1 - -
Restartability 540 ENUM 1 - -
Restart_ID 539 - 0-1 4 -

Net_ ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -
MU_ID 515 4 1 - -

Restart_ Byte 539 8 0-1 - -
Returned Parameter Name

Return_Code 1 540 ENUM 1 - -
Server _lnstance_ID 546 4 1 - -
Specific_Server_Report 549 1-32767 0-1 - -
Note:

1. If the value of return_code is not OK, then all other expected parameters are not
returned, except specific_server_report may still be returned.

470 SNA/Distribution Services Reference

VERB: Query_Last_Byte_Received

VERB: Read

Query_Last_Byte_Received returns the last byte that was successfully written
by the server.

Table 44. Query_Last_Byte_Received

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Requestlng_Process 538 1-8 1 - -
Server 545 1-8 1 - -
Restart;._ID 539 - 1 4 -

Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -
MU_ID 515 4 1 - -

Returned Parameter Name

Return_Code 1 540 ENUM 1 - -
Last_Byte_Recelved 510 8 1 - -
Note:

1. If the value of return_code is not OK, then all other expected parameters are not
returned.

Read returns a contiguous stream of bytes as a part of the server object.

Table 45. Read

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Server 545 1-8 1 - -
Server_lnstance_ID 546 4 1 - -
Buffer _Length 493 8 1 - -
Buffer 492 1-32767 1 - -
Returned Parameter Name

Return_Code 540 ENUM 1 - -
Data_Length 498 8 1 - -

Appendix F. Protocol Boundary Definitions 471

VERB: Release_Read_Access
Release_Read_Access is issued by an assigning process to cause an entry to
be deleted from the access list. It must be issued once for every
Assign_Read_Access that the assigning process has issued, including the
Asslgn_Read_Access implied by the Terminate_Write verb. Typically, a process
will delete its self-assignment entry only after assigning read access to another
process. It will delete its other-assignment entries only after the assigned-to
process has had an opportunity to create its self-assignment entry. When all
access list entries are deleted, the server will delete the object.

Table 46. Release_Read_Access

Parm Children
Parameter Name Ref Length Occ1.1rrences

Page Num Subtab

Supplied Parameter Name

Asslgnlng_Process 491 1-8 1 - -
Unlt_ Of_ Work_ID 554 - 1 1 -

Dlstrlbution_ID 504 - 0-1 4-5 478

Agent_Unit_ Of_ Work_ID 490 1-256 0-1 - -
Assigned_Process 490 1-8 1 - -
Server 545 1-8 1 - -
Server _Access 545 1-64 1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -

VERB: Termlnate_Read
Terminate_Read deallocates the control block used during the reading of the
server object.

Table 47. Terminate_Read

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Server 545 1-8 1 - -
Server _lnstance_ID 546 4 1 - -
Termination_ Type 554 ENUM 1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -
Speclflc_Server _Report 549 1-32767 0-1 - -

472 SNA/Distrlbution Services Reference

VERB: Terminate_Restartability
Terminate_Restartability informs the server that the identified server object will
not be restarted. (That is, no lnitiate_Write or lnitiate_Read verbs using the
restart_byte parameter will be issued.)

Table 48. Terminate_Restartability

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Requesting_Process 538 1-8 1 - -
Server 545 1-8 1 - -
Restart_ID 539 - 1 4 -

Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -
MU_ID 515 4 1 - -

Returned Parameter Name

Return_ Code 540 ENUM 1 - -
Speclfic_Server_Report 549 1-32767 0-1 - -

VERB: Terminate_Write
Terminate_Write deallocates the control block used for the writing of the server
object, releases the exclusive-write lock, and generates the first entry in the
read access list. This entry is a self-assignment entry for the requesting
process that issued the Initiate_ Write and contains the unit of work specified on
that verb, if any.

Table 49. Terminate_Write

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Server 545 1-8 1 - -
Server_lnstance_ID 546 4 1 - -
Termination_ Type 554 ENUM 1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -
Speclfic_Server_Report 549 1-32767 0-1 - -
Server _Access 545 1-64 0-1* - -
Speclflc_Server_lnfo 549 1-32767 0-1* - -

Appendix F. Protocol Boundary Definitions 473

VERB: Write
Write passes to the server a part of a server object.

Table 50. Write

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Supplied Parameter Name

Server 545 1-8 1 - -
Server _lnstance_ID 546 4 1 - -
Buffer 492 1-32767 1 - -
Data_Length 498 8 1 - -
Returned Parameter Name

Return_ Code 540 ENUM 1 - -

Subtables

SUBTABLE: Agent_List_Entry
Table 51. Agent_List_Entry

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Agent_Llst_Entry 1 489 - - 2-3 2 -
Agent 489 1-8 1 - -
Local_ Queue_ Type 511 ENUM 1 - -
Local_lnfo 510 1-64 0-1 - -

Notes:

1. The agent_list_entry parameter is supplied on Add_DSU_Data, List_DSU_Data,
Modify_DSU_Data, and Remove_DSU_Data.

It is returned on List_DSU_Data.

2. When agent_list_entry occurs as a child of row_selection_criteria or selected_row,
any children of agent_list_entry may be used for selection, therefore nullifying the
occurrences column.

474 SNA/Distribution Services Reference

SUBTABLE: Connection_Definitions_Entry
Table 52. Connection_Definitions_Entry

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Connection_Deflnitlons_Entry 1 496 - - 14 2 -
Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -
Direction 503 ENUM 1 - -
Max_Ds_sends 513 4 0-1· - -
Max_DS _Receives 512 4 0-1· - -
Data_Stream_Format 498 ENUM 1 - -
Year 3 554 4 1 - -
Month 3 514 4 1 - -
Day 3 499 4 1 - -
Hours 3 508 4 1 - -
Minutes 3 513 4 1 - -
Seconds 3 543 4 1 - -
Hundredths 3 508 4 1 - -
Local_Or_GMT_Flag 3 510 ENUM 1 - -

Notes:

1. The connection_definitions_entry parameter is supplied on Add_DSU_Data,
List_DSU_Data, Modify_DSU_Data, and Remove_DSU_Data.

It is returned on List_DSU_Data.

2. When connection_definitions_entry occurs as a child of row_selection_criteria or
se/ectedJOW, any children of connection_definitions_entry may be used for
selection, therefore nullifying the occurrences column.

3. The date and time parameters indicate the last time the MU_ID Registry was reset
for this connection. This is the date and time that appeared in the RRMU.

Appendix F. Protocol Boundary Definitions 475

SUBTABLE: Date
Table 53. Date

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Date 1 - - - 3 -
Year 554 4 1 - -
Month 514 4 1 - -
Day 499 4 1 - -

Note:

1. A date is supplied, as after_date and before_date, on Llst_Queue_Entries.

It is returned on Get_Distribution_lnfo (previously_received_date),
Get_Distribution_Log_Entry (logging_date), Get_Exception_Log_Entry
(logging_date), Llst_Queue_Entries (previously_received_date),
Receive_Distribution (previously _received_date), Receive_Distribution_Report
(report_date, previously _received_date), and Send_Distribution (clean_up_date).

It is also found in the distribution_identification subtable as origin_date.

SUBTABLE: Destination
Table 54. Destination

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Destination 1 503 - - 1-2· -
Dest_Dsu 501 - 0-1 2 -

Dest_RGN 502 1-8 1 - -
Dest_REN 502 1-8 1 - -

Dest_User 502 - 0-1 2 -
Dest_DGN 501 1-8 1 - -
Dest_DEN 500 1-8 1 - -

Note:

1. The destination parameter is supplied on Send_Distribution.

It is returned on Get_Distribution_lnfo, Get_Distribution_Log_Entry, and
Receive _Distribution.

476 SNA/Distributlon Services Reference

SUBTABLE: Directory_Entry
Table 55. Oirectory_Entry

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Directory_Entry 1 504 - - 3-6 2 -
DGN 503 1-8 0-1 3 - -
DEN 499 1-8 0-1 3 - -
Agent 489 1-8 1 3 - -
RGN 541 1-8 0-1 4 - -
REN 531 1-8 0-1 4 - -
Local_ Queue_ Type 511 ENUM 0-1 4 - -
Local_lnfo 510 1-64 0-1 4 - -
Next_Seqno 519 4 0-1 4 - -

Notes:

1. The directory_entry parameter is supplied on Add_DSU_Data, List_DSU_Data,
Modify_DSU_Data, and Remove_DSU_Data.

It is returned on List_DSU_Data.

2. When directory_entry occurs as a child of row_se/ection_criteria or selected_row,
any children of directory _entry may be used for selection, therefore nullifying the
occurrences column.

3. The DGN and DEN must be specified as a pair. The agent, the DEN, or the DGN
and DEN may be specified with a system-specific value that matches any token for
default directing.

4. A given entry contains either RGN and REN or loca/_queue_type and next_seqno;
however, an entry never contains both pairs of parameters. An entry that con
tains /ocal_queue_type and next_seqno may also contain local_info.

Appendix F. Protocol Boundary Definitions 477

SUBTABLE: Distribution_ID
Table 56. Distribution_! D

Parm Children
Parameter Name Ref Occurrences Length

Page Num Subtab

Dlstrlbutlon_ID 1 504 - - 4-5 2 -
Orlgln_DSU 521 - 0-1 3 2 -

Orlgin_RGN 521 1-8 1 - -
Origin_ REN 521 1-8 1 - -

Origin_ User 522 - 0-1 2 -
Orlgln_DGN 520 1-8 1 - -
Origin_DEN 520 1-8 1 - -

Origln_Agent 519 1-8 1 - -
Or.igin_Seqno 522 4 1 - -
Orlgln_Date 520 - 1 3 476

Notes:

1. The distribution_identification parameter is supplied on Assign_Read_Access,
Get_Distribution_Log_Entry, Get_Exception_Log_Entry, lnitiate_Read,
lnitiate_Write, List_Queue_Entries, List_Queues_Containing_Distribution,
Query_Distribution_Sending, Receive_Distribution, Receive_Distribution_Report,
Release_Read_Access, Reroute_Distribution_Copies, Send_Distribution, and
Sending_ Sequence_ Completed.

It is returned on Get_Distribution_lnfo, Get_Distribution_Log_Entry,
Get_Exception_Log_Entry, List_Distributions_Being_Received,
List_Distributions_Being_Sent, List_Queue_Entries, Receiye_Dlstribution, and
Receive_Distribution_Report.

2. The number of children of distribution_identification is shown on some verbs as
1-5. On these verbs, any of the children of distribution_identiflcation may be used
as selection criteria.

3. The origin_DSU will always be present in a distribution_identification except in two
cases:

• The distribution_identification.is being used as a selection criteria, as
described In Note 2.

• The distribution_identification was transported in an FS1 Dist_MU type REPORT.

In this case, origin_user will always be. present.

478 SNA/Distribution Services Reference

SUBTABLE: DSU_Definition_Entry
Table 57. DSU _Definition_Entry

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

DSU_Deflnltlon_Entry 1 505 - - 72 -
RGN 541 1-8 1 - -
REN 531 1-8 1 - -
Default_Hop_Count 499 2 1 - -
Logging 511 ENUM 1 - -
GMT_ Offset_Hours 507 4 1 - -
GMT_ Offset_Mlnutes 507 4 1 - -
GMT_ Offset_Dlrection 506 ENUM 1 - -

Notes:

1. The DSU_definition_entry parameter is supplied on Add_DSU_Data,
Ust_DSU_Data, Modify_DSU_Data, and Remove_DSU_Data.

It is returned on List_DSU_Data.

2. When DSU_definition_entry occurs as a child of row_selection_criteria or
se/ectedJOW, any children of DSU_definition_entry may be used for selection,
therefore nullifying the occurrences column.

SUBTABLE: lntervention_List_Entry
Table 58. lntervention_Ust_Entry

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

lntervention_List_Entry 1 509 - - 22 -
RGN 541 1-8 1 - -
REN 531 1-8 1 - -

Notes:

1. The intervention_list_entry parameter is supplied on Add_DSU_Data,
List_DSU_Data, Modify_DSU_Data, and Remove_DSU_Data.

It is returned on List_DSU_Data.

2. When intervention_list_entry occurs as a child of row_selection_criteria or
se/ectedJOW, any children of intervention_Jist_entry may be used for selection,
therefore nullifying the occurrences column.

Appendix F. Protocol Boundary Definitions 479

SUBTABLE: MU_ID_Registry_Entry
Table 59. MU _ID _Registry _Entry

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

MU_ID_Reglstry_Entry 1 515 - - 6-8 2 -
Net_ ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -
Direction 503 ENUM 1 - -
MU_ID 515 4 1 - -
MU_ID_State 515 ENUM 1 - -
MU_lnstance_Number 516 4 0-1 - -
Queue_Entry_ID 528 4 0-1 - -

Notes:

1.

a. The MU_ID_registry_entry parameter is supplied on Add_DSU_Data,
List_DSU_Data, Modify_DSU_Data, and Remove_DSU_Data.

It is returned on List_DSU_Data.

b. The model of the protocol boundary assumes one MU_ID Registry for an entire
DSU.

2. When MU _ID _registry _entry occurs as a child of row _se/ection_criteria or
selected_row, any children of MU_ID_registry_entry may be used for selection,
therefore nullifying the occ\M'"rences column.

480 SNA/Distribution Services Reference

SUBTABLE: Next-DSU_ Queue_Definitions_Entry
Table 60. Next-DSU_Queue_Definitions_Entry

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Next-DSU_Queue_Definitions_Entry 1 518 - - 4-5 2 -
Scheduling_Data 542 1-256 0-1 - -
Hold_ State 507 ENUM 1 - -
Net_ ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -

Notes:

1.

a. The next-DSU_queue_definitions_entry parameter is supplied on
Add_DSU_Data, List_DSU_Data, Modify_DSU_Data, and Remove_DSU_Data.

It is returned on List_DSU_Data.

b. The model of the protocol boundary assumes one next-DSU queue per con-
nection.

2. When next-DSU_queue_definitions_entry occurs as a child of row _se/ection_criteria
or selected_row, any children of next-DSU_queue_definitions_entry may be used
for selection, therefore nullifying the occurrences column.

Appendix F. Protocol Boundary Definitions 481

SUBTABLE: Queue_ID
Table 61. Queue_ID

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Queue_ID 1 529 - - 1 -
Connection 496 - 0-1 5 -

Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -
Direction 503 ENUM 1 - -
Connection_ Queue_ Type 497 ENUM 1 - -

Dest_User 502 - 0-1 2 -
Dest_DGN 501 1-8 1 - -
Dest_DEN 500 1-8 1 - -

Dest_Agent 500 1-8 0-1 - -
Note:

1. The queue _identifier parameter is supplied, under various names, on several
verbs. It is supplied on Get_Distribution_lnfo (queue_ID), Hold_Distribution_Copy
(queue_ID), List_Queue_Entries (queue_/D), Obtain_Local_Server_Report
(distribution_queue_ID), Purge_Queue_Entry (queue_/D), and
Release_ Distribution_ Copy (queue _ID), Receive_ Distribution
(distribution_ queue _ID), Receive _Distribution_ Report (distribution_ queue _ID), and
Receiving_ Sequence_ Completed (distribution_queue _ID).

It is returned on Get_Distribution_Log_Entry (accessed_queue_/D),
Get_Exception _Log_ Entry (accessed_ queue _ID), and
Li st_ Queues_ Containing_ Distribution (queue _ID).

SUBTABLE: Report_Service_Parms
Table 62. Report_Service_Parms

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Report_Servlce_Parms 1 534 - - 6 -
Priority 525 ENUM 1 - -
Priorlty_Comp_Op 526 ENUM 1 - -
Protection 527 ENUM 1 - -
Protection_ Comp_ Op 527 ENUM 1 - -
Security 543 ENUM 1 - -
Security_ Comp_ Op 543 ENUM 1 - -

Note:

1. The report_service_parameters parameter is supplied on Send_Distribution.

It is returned on Get_Distribution_lnfo and Receive_Distribution.

482 SNA/Distribution Services Reference

SUBTABLE: Reported-On_Destination
Table 63. Reported-On_Destination

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Reported-On_Destlnatlon 1 537 - - 1-2 -
Reported-On_Dest_osu 536 - 0-1* 2 -

Reported-On_Dest_RGN 536 1-8 1 - -
Reported-On_Dest_REN 536 1-8 1 - -

Reported-On_Dest_User 537 - 0-1 2 -
Reported-On_Dest_DGN 535 1-8 1 - -
Reported-On_Dest_DEN 535 1-8 1 - -

Note:

1. The reported-on_destination parameter is returned on Get_Exception_log_Entry.

It is also found in the SNA_conditionJeport subtable.

Appendix F. Protocol Boundary Definitions 483

SUBTABLE: Routing_ Table_Entry
Table 64. Routing_ Table_Entry

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Routing_ Table_Entry 1 542 - - 5-14 2 -
Dest_RGN 4 502 1-8 1 - -
Dest_REN 4 502 1-8 1 - -
Priority 525 ENUM 0-1 3 - -
Priority_ Comp_ Op 526 ENUM 0-1 - -
Protection 527 ENUM 0-1 3 - -
Protection_Comp_Op 527 ENUM 0-1 - -
Capacity 493 ENUM 0-1 3 - -
Capaclty_Comp_Op 494 ENUM 0-1 - -
Security 543 ENUM 0-1 3 - -
Securlty_Comp_Op 543 ENUM 0-1 - -
Originating_Hop_ Count 522 4 . 0-1 - -
Net_ID 517 1-8 1 - -
LU_Name 512 1-8 1 - -
Mode_Name 513 1-8 1 - -

Notes:

1. The routing_table_entry parameter is supplied on Add_DSU_Data, List_DSU_Data,
Modify_DSU_Data, and Remove_DSU_Data.

It is returned on List_DSU_Data.

2. When routing_table_entry occurs as a child of row_se/ection_criteria or
se/ected_row, any children of routing_table_entry may be used for selection, there-
fore nullifying the occurrences column.

3. The presence of each service parameter is dependent upon the presence of its
corresponding comparison operator.

4. The dest_REN, or the dest_RGN and dest_REN may be specified with a system-
specific value that matches any token for default routing.

484 SNA/Distribution Services Reference

SUBTABLE: Server_List_Entry
Table 65. Server_List_Entry

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Server_Llst_Entry 1 546 - - 3-4 2 -
Server 545 1-8 1 - -
Local_lnfo 510 1-64 0-1 - -
Restart_ Capable 539 ENUM 1 - -
Auxiliary_ Operations 491 ENUM 1 - -

Notes:

1. The server_list_entry parameter is supplied on Add_DSU_Data, List_DSU_Data,
Modify_DSU_Data, and Remove_DSU_Data.

It is returned on List_DSU_Data.

2. When server _list_entry occurs as a child of row_selection_criteria or selected_row,
any children of server _list_entry may be used for selection, therefore nullifying the
occurrences column.

SUBTABLE: Service_Parms
Table 66. Service_Parms

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Service_Parms 1 547 - - 8 2 -
Priority 525 ENUM 1 - -
Prlorlty_Comp_Op 526 ENUM 1 - -
Protection 527 ENUM 1 - -
Protection_ Comp_ Op 527 ENUM 1 - -
Capacity 493 ENUM 1 3 - -
Capacity_ Comp_Op 494 ENUM 1 3 - -
Security 543 ENUM 1 - -
Security_ Comp_ Op 543 ENUM 1 - -

Notes:

1. The service_parameters parameter is supplied on List_Adjacent_DSUs,
List_Connections, Reroute_Distribution_Copies, and Send_Distribution.

It is returned on Get_Distribution_lnfo, Receive_Distribution, and
Receive_Distribution_Report.

2. When service_parms are returned on Receive_Distribution_Report, capacity and
capacity_comp_op are not used.

3. When used as selection criteria, a minimum of one service parameter/comparison
operator combination may be specified.

Appendix F. Protocol Boundary Definitions 485

SUBTABLE: SNA_ Condition_Repor1
Table 67. SNA_Condition_Report

Parm Children
Parameter Name Ref Length Occurrence a

Page Num Subtab

SNA_Condltlon_Report 1 548 - - 1-4 -
SNA_Report_ Code 548 4 1 - -
Structure_Report 552 - 0-10* 2-7 -

Structure_State 553 4 1 - -
Structure_ Contents 551 1-98 0-1* - -
Parent_ Spec 524 - 0-7 2-4 -

Parent_ID_Or_T 523 1-2 1 - -
Parent_ Class 523 ENUM 1 - -
Parent_Posltion 524 2 0-1 - -
Parent_lnstance 523 2 0-1 - -

Structure_Spec 553 - 0-1* 1-4 -
Structure_ID_or_T 551 1-2 0-1* - -
Structure_Class 550 ENUM 1 - -
Structure_Positlon 552 2 0-1 - -
Structure_lnstance 551 2 0-1 - -

Structure_Segment_Num 552 2 0-1* - -
Structure_Byte_ Offset 550 2 0-1 - -
Sibling 548 1 0-98* - -

Reported-On_Destlnatlon 537 - ~1 1-2 483

Supplemental_Report 553 1-253 0-5* - -
Note:

1. The SNA_condition_report parameter is returned on Receive_Distribution_Report.

486 SNA/Distribution Services Reference

SUBTABLE: Time
Table 68. Time

Parm Children
Parameter Name Ref Length Occurrences

Page Num Subtab

Time 1 - - - 5 -
Hours 508 4 1 - -
Minutes 513 4 1 - -
Seconds 543 4 1 - -
Hundredths 508 4 1 - -
Local_ Or_ GMT _Flag 510 ENUM 1 - -

Note:

1. A time is supplied, as after_time and before_time, on List_Queue_Entries.

It is returned on Get_Distribution_lnfo (previously _received_time,
distribution_time), Get_Distribution_Log_Entry (logging_time),
Get_Exception_Log_Entry (logging_time), List_Distributions_Being_Received
(distribution_time), List_Distributions_Being_Sent (distribution_time),
List_ Queue_Entries (distribution_time, previously _received_time),
Receive_Distribution (previously _received_time, distribution_time),
Receive_Distribution_Report (report_time, previously _received_time, reported-
on_time), and Send_Distribution (distribution_time).

Parameter descriptions

Accessed_Queue_ID ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description: The accessed_queue_identlfier Is the queue containing the logged distribution,
if any is applicable.

Verbs Supplied on: None

Verbs Returned on: Get_Distribution_Log_Entry, Get_Exception_Log_Entry

Ad)acent_osu ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

Description: An adjacent_DSU is a DSU with which this DSU has an active connection or a
DSU with which this DSU routinely establishes a connection.

Verbs Supplied on: None

Verbs Returned on: List_Adjacent_DSUs

Appendix F. Protocol Boundary Definitions 487

Ad)acent_REN -------------------------------.

Description: The adjacent_REN is the second part of the name of the adjacent DSU. This is
typically, but not necessarily, the LU name.

Verbs Supplied on: None

Verbs Returned on: List_Adjacent_DSUs

Format: Character string

CGCSGID:

String Conventions:

01134-00500 (Character Set AR)

Leading, imbedded, and trailing space (X'40') characters
are not allowed.

Ad)acent_RGN -------------------------------..

Description: The adjacent_RGN is the first part of the name of the adjacent DSU. This is
typically, but not necessarily, the network ID.

Verbs Supplied on: None

Verbs Returned on: List_Adjacent_DSUs

Format: Character string

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X' 40') characters
are not allowed.

After_Date ----------------------------------.

Description: The after _date parameter, along with the after _time parameter, limits the
selection of distributions to be listed to those that were originated after a
certain date and time.

Verbs Supplied on: List_Queue_Entries

Verbs Returned on: None

Presence Rule: Occurs when after _time is present.

After_Time ----------------------------------.

Description: The after_time parameter, along with the after_date parameter, limits the
selection of distributions to be listed to those that were originated after a
certain date and time.

Verbs Supplied on: List_ Queue_Entries

Verbs Returned on: None

Presence Rule: Occurs when after _date is present.

488 SNA/Distribution Services Reference

Agent ~~~~~~------------------------------.

Description: The agent is an application transaction program that interacts with OS on
behalf of a user or a DSU.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: agent_list_entry, directory_entry

Format: Character string, except for first byte

CGCSGID:

String Conventions:

01134-00500 (Character Set AR)

Leading, imbedded, and trailing space (X'40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X' 41' to X'FF', the transaction
program is not SNA registered. X' 40' is not a valid first
byte.

Agent_Correl ~-----------------------------~

Description: The agent_corre/ation is a string supplied by the origin agent. OS is not
aware of its contents.

Verbs Supplied on: lnitiate_Read, lnitiate_Write, Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution, Receive_Distribution_Report

Format: Undefined byte string

Agent_Llst_Entry ----------------------------~

Description: The agent_list_entry describes one row in the Agent List data structure.

Verbs Supplied on: Add_DSU_Data, List_DSU_Data, Modify_DSU_Data, Remove_DSU_Data

Verbs Returned on: List DSU Data

Appendix F. Protocol Boundary Definitions 489

Agent_Object-------------------------------.

Description: The agent_object is directly supplied by the origin agent. It is never parsed by
the distribution service and is directly delivered, unchanged, to the agent at
each destination.

Verbs Supplied on: lnitiate_Read, lnitiate_Write, Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution, Receive_Distribution_Report

Format: Undefined byte string

Agent_Unlt_Of_Worlc_ID --------------------------,

Description: The agent_unit_of_work_identifier is an agent-defined byte string that the
agent uses to identify a server unit of work.

Verbs Supplied on: Assign_Read_Access, lnitiate_Read, lnitiate_Write, Release_Read_Access

Verbs Returned on: None

Format: Undefined byte string

Asslgn_Unlt_Of_Worlc_ID --------------------------

Description: The assign_unit_of_work_identifier flag indicates whether a new unit-of-work
identifier is being assigned to a server unit of work.

Verbs Supplied on: Assign_Read_Access

Verbs Returned on: None

Format: Enumeration

YES

NO

Meaning

A new unit of work is being used when assigning access
to a process.

The old unit of work is being used when assigning
access to a process.

Asslgned_Process --------------------------------.

Description: The assigned_process is the process that is being assigned read access to a
server object.

Verbs Supplied on: Assign_Read_Access, Release_Read_Access

Verbs Returned on: None

Format: Character string, except for first byte

490 SNA/Distribution Services Reference

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X' 41' to X'FF', the transaction
program is not SNA registered. X'40' is not a valid first
byte.

Asslgnlng_Process ------------------------------.

Description: The assigning_process is the process that ls assigning read access to a server
object, either to another process or to itself.

Verbs Supplied on: Assign_Read_Access, Release_Read_Access

Verbs Returned on: None

Format: Character string, except for first byte

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X' 40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X'41' to X'FF', the transaction
program is not SNA registered. X'40' is not a valid first
byte.

Auxiliary_Operations -----------------------------.

Description: The auxiliary_operations parameter indicates whether a specific server typi-
cally uses direct fetch and direct store or whether it uses auxiliary operations.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: server_list_entry

Format: Enumeration

Appendix F. Protocol Boundary Definitions 491

Value Mean Ina

DIRECT _OPERATIONS This server always works by using direct fetch and
direct store. This value is only allowed for servers at
end-only role DSUs.

AUXILIARY_OPERATIONS This server always does auxiliary operations to copy
server objects to and from the general server.

EITHER This server is capable of doing either direct fetch and
direct store or performing auxiliary operations to copy to
and from the general server.

Before_Date ~--------------------------------.

Description: The before_date parameter, along with the before_time parameter, limits the
selection of distributions to be listed to those that were originated before a
certain date and time.

Verbs Supplied on: List_Queue_Entries

Verbs Returned on: None

Presence Rule: Occurs when before_time is present.

Before_Tlme -------------------------------....

Description: The before_date parameter, along with the before_time parameter, limits the
selection of distributions to be listed to those that were originated before a
certain date and time.

Verbs Supplied on: List_Queue_Entries

Verbs Returned on: None

Presence Rule:

Description:

Occurs when before_date is present.

The buffer holds a portion of the server object to be read or written by a
server.

Verbs Supplied on: Read, Write

Verbs Returned on: None

Format: Undefined byte string

492 SNA/Oistribution Services Reference

Buffer_Length ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

Description: The buffer_length is the maximum amount of the server object a server can
write into a buffer.

Verbs Supplied on: Read

Verbs Returned on: None

Format: Unsigned binary integer (1-origin); maximum: 2**64 - 2

Capacity ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---,

Description: The capacity service parameter indicates the capacity requirements for the
distribution. The combination of this parameter and the
capacity_ comparison_ operator yields the permitted levels of capacity for the
distribution.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: routing_table_entry, service_parms

Format: Enumeration

ZERO

1 MB

4 MB

16 MB

Meaning

No server object present

Route through DSUs capable of handling at least
1-megabyte server objects.

Route through DSUs capable of handling at least
4-megabyte server objects.

Route through DSUs capable of handling at least
16-megabyte server objects.

Appendix F. Protocol Boundary Definitions 493

Capaclty_Comp_Op -----------------------------.

Description: The capacity_comparison_operator parameter is used to allow a range of
capacity service levels for a distribution. The combination of this parameter
and the capacity parameter yields the permitted levels of capacity for the dis
tribution.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: routing_table_entry, service_parms

Format: Enumeration

Possible Values

REQUIRE_LEVEL_GE

Clean_Up_Date --------------------------------.

Description: The clean_up_date is the date portion of the sequence_number_to_clean_up.

Verbs Supplied on: None

Verbs Returned on: Send_Distribution

Clean_Up_Seqno -------------------------------.

Description: The clean_up_sequence_number is the sequence number portion of the
sequence _number _to_ clean_up.

Verbs Supplied on: None

Verbs Returned on: Send_Distribution

Format: Signed binary integer (1-origin)

Column_To_Be_Llsted -----------------------------.

Description: A co/umn_to_be_listed is one of the columns of a DSU data structure that
should be returned on a List_DSU_Data verb. It is used to limit the display of
a data structure to only those columns that are of interest to the issuer of the
verb.

Verbs Supplied on: List_DSU_Data

Verbs Returned on: None

Format: Enumeration

494 SNA/Distribution Services Reference

AGENT

AUXILIARY _OPERATIONS

CAPACITY

CAPACITY_COMP _OP

DATA_STREAM_FORMAT

DAY

DEFAULT_HOP _COUNT

DEN

DEST_REN

DEST_RGN

DGN

DIRECTION

GMT_OFFSET_DIRECTION

GMT _OFFSET _HOURS

GMT _OFFSET _MINUTES

HOLD_STATE

HOURS

HUNDREDTHS

LOCAL_INVOCATION_INFO

LOCAL_OR_GMT _FLAG

LOCAL_QUEUE_TYPE

LOGGING

LU_NAME

MAX_DS_RECEIVES

MAX_DS_SENDS

MINUTES

MODE_NAME

MONTH

MU_ID

MU_ID_STATE

MU_ID_INSTANCE_NUMBER

Data Structure Found In

Agent List and Directory

Server List

Routing Table

Routing Table

Connection Definitions

Connection Definitions

DSU Definition

Directory

Routing Table

Routing Table

Directory

Connection Definitions and MU_ID Registry

DSU Definition

DSU Definition

DSU Definition

Next-DSU Queue Definitions

Connection Definitions

Connection Definitions

Agent List, Directory, and Server List

Connection Definitions

Agent List and Directory

DSU Definition

Connection Definitions, MU_ID Registry, Next-DSU
Queue Definitions, and Routing Table

Connection Definitions

Connection Definitions

Connection Definitions

Connection Definitions, MU_ID Registry, Next-DSU
Queue Definitions, and Routing Table

Connection Definitions

MU_ID Registry

MU_ID Registry

MU_ID Registry

Appendix F. Protocol Boundary Definitions 495

NET_ID

NEXT_SEQNO

ORIGINATING_HOP _COUNT

PRIORITY

PRIORITY_COMP _OP

PROTECTION

PROTECTION_ COMP _OP

QU EU E_ENTRY _1 D

REN

RESTART_CAPABLE

RGN

SCHEDULING_DATA

SECONDS

SECURITY

SECURITY _COMP _OP

SERVER

YEAR

Connection Definitions, MU_ID Registry, Next-DSU
Queue Definitions, and Routing Table

Directory

Routing Table

Routing Table

Routing Table

Routing Table

Routing Table

MU_ID Registry

Directory, DSU Definition, and Intervention List

Server List

Directory, DSU Definition, and Intervention List

Next-DSU Queue Definitions

Connection Definitions

Routing Table

Routing Table

Server List

Connection Definitions

Connection -----------------------------------.

Description: A connection is a set of active or potential conversations between this DSU
and an adjacent DSU using a given mode name.

Verbs Supplied on: List_ Connections, List_ Conversations, List_Distributions_Being_Received,
List_Distributions_Being_Sent, Reroute_Distribution_Copies,
Reset_MU_ID_Registry, Start_Connection, Terminate_Connection

Verbs Returned on: List_Connections

Subtables Found in: queue_ID

Connectlon_Deflnltlons_Entry ----------------------------.

Description: The connection_definitions_entry describes one row in the Connection Defi
nitions data structure.

Verbs Supplied on: Add_DSU_Data, List_DSU_Data, Modify_DSU_Data, Remove_DSU_Data

Verbs Returned on: List_DSU_Data

496 SNA/Distribution Services Reference

Connectlon_Queue_Type ------------------------------.

Description: The connection_queue_type indicates the type of queue that is being selected.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: queue_ID

Format: Enumeration

Possible Values

NEXT-DSU

CONTROL_MU

MID_MU_RESTART

ROUTER_DIRECTOR

Control_lnfo -----------------------------------,

Description: The control_information parameter provides the relevant information about an
entry on a Control MU queue.

Verbs Supplied on: None

Verbs Returned on: List_Control_MU_Queue

Conversation_ID -----------------------------~

Description: The conversation_identifier is a system-specific method for identifying a spe
cific conversation.

Verbs Supplied on: Terminate_Conversation

Verbs Returned on: List_Conversations

Format: Undefined byte string

Conversatlon_lnfo ---------------------------------.

Description: The conversation_information parameter contains the relevant information for
a specific conversation.

Verbs Supplied on: None

Verbs Returned on: List_Conversations

Appendix F. Protocol Boundary Definitions 497

Current_Unlt_Of_Work_ID ---------------------------.

Description: The current_unit_of_work_identifier gives the present unit_of_work_identifier.
If a new_unit_of_work_identifier is also supplied on an Assign_Read_Access
verb, it replaces the current_unit_of_work_identifier.

Verbs Supplied on: Assign_Read_Access

Verbs Returned on: None

Data_Length -----------------------------~
Description: The data_length is the length of a portion of the server object found in the

buffer. For a server reading an object into the buffer, it can be no longer than
buffer _length.

Verbs Supplied on: Write

Verbs Returned on: Read

Format: Unsigned binary integer (1-origin); maximum: 2**64 - 2

Data_Stream_Format---------------------------~

Description: The data_stream_format flag indicates the type of data stream that should be
used on a specified connection. For more details, see Appendix 0.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: connection_definitions_entry

Format: Enumeration

Possible Values

FORMAT_SET_1

FORMAT_SET_2

ERROR

Data_Structure ------------------------------~

Description: The data_structure is one of the DSU data structures that can be viewed and
changed with the OS system-definition verbs.

Verbs Supplied on: Add_DSU_Data, List_DSU_Data, Modify_DSU_Data, Remove_DSU_Data

Verbs Returned on: None

Format: Enumeration

498 SNA/Distribution Services Reference

Possible Values

AGENT_LIST

CON NECTION_DEFI N ITIONS

DIRECTORY

DSU_DEFINITION

INTERVENTION_LIST

MU_ID_REGISTRY

NEXT-DSU_QUEUE_DEFINITIONS

ROUTING_TABLE

SERVER_ LIST

Day~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.

Description: The day parameter gives the day portion of the date.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: connection_definitions_entry, date

Format: Signed binary integer (1-origin}

Default_Hop_Count ~~~~~~~~~~~~~~~~~~~~~~~~~~~~----..

Description: The default_hop_count is the hop count used on all distributions originated at
this DSU, unless overridden by an originating_hop_count for a specific route
segment in the routing table.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: DSU_definition_entry

Format: Signed binary integer (1-origln}

Description: The DEN is the second part of the user name.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: directory_entry

Format: Character string

Appendix F. Protocol Boundary Definitions 499

CGCSGIDs:

String Conventions:

01134-00500 (Base), 00930-00500 (Enhanced Char Set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space (X' 40') characters are disal
lowed, trailing space (X'40') characters are
not significant, and imbedded space (X' 40')
characters are significant.

Dest_Agent~--.

Description: The destination_agent is the transaction program at the destination OSU to
which the distribution is to be delivered.

Verbs Supplied on: Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution

Subtables Found in: queue_ID

Format: Character string, except for first byte

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges In value from X'OO' to X'3F'. When the first
byte ranges in value from X' 41' to X'FF', the transaction
program is not SNA registered. X'40' is not a valid first
byte.

Dest_ DEN --.

Description: The destlnation_DEN is the second part of the name of a destination user.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found In: destination, queue_ID

Format: Character string

500 SNA/Distribution Services Reference

CGCSGIDs:

String Conventions:

01134-00500 (Base), 00930-00500 (Enhanced Char Set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space (X'40') characters are disal
lowed, trailing space (X' 40') characters are
not significant, and imbedded space (X'40')
characters are significant.

Dest_DGN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description: The destination_DGN is the first part of the name of a destination user.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: destination, queue_ID

Format: Character string

CGCSGIDs:

String Conventions:

01134-00500 (Base), 00930-00500 (Enhanced Char Set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space (X' 40') characters are disal
lowed, trailing space (X'40') characters are
not significant, and imbedded space (X' 40')
characters are significant.

Dest_osu ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description: The destination_DSU is the name of one of the DSUs to which the distribution
is to be sent.

Verbs Supplied on: List_Connections

Verbs Returned on: None

Subtables Found in: destination

Appendix F. Protocol Boundary Definitions 501

Dest_REN ---.

Description: The destination_REN is the second part of a destination DSU name. This is
typically, but not necessarily, the LU name.

Verbs Supplied on: List_Connections

Verbs Returned on: None

Subtables Found in: destination, routing_table_entry

Format: Character string

CGCSGID:

String Conventions:

01134-00500 (Character Set AR)

Leading, imbedded, and trailing space (X' 40') characters
are not allowed.

Dest_RGN --~

Description: The destination_RGN is the first part of a destination DSU name. This is typi-
cally, but not necessarily, the network ID.

Verbs Supplied on: List_Connectlons

Verbs Returned on: None

Subtables Found in: destination, routing_table_entry

Format: Character string

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X' 40') characters
are not allowed.

Dest_ User ---.

Description: The destination_ user is the name of one of the users to which the distribution
is to be sent.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: destination, queue_ID

502 SNA/Distribution Services Reference

Destination ---------------------------------.

Description: The destination is one of the intended recipients of a distribution.

Verbs Supplied on: Send Distribution

Verbs Returned on: Get_Distribution_lnfo, Get_Distribution_Log_Entry, Receive_Distribution

Note: For Send_Distribution, either dest_DSU or dest_user is specified. For
Get_Distribution_lnfo, Get_Distribution_Log_Entry, and Receive_Distribution,
dest_DSU is always present and dest_user is optional.

Description: The DGN is the first part of the user name.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: directory_entry

Format: Character string

CGCSGIDs:

String Conventions:

01134-00500 (Base), 00930-00500 (Enhanced Char Set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space (X'40') characters are disal
lowed, trailing space (X' 40') characters are
not significant, and imbedded space {X' 40')
characters are significant.

Direction ----------------------------------.

Description: The direction flag tells whether a particular conversation or connection is
being used for sending or receiving.

Verbs Supplied on: List_Control_MU_Queue

Verbs Returned on: Get_Distribution_Log_Entry, Get_Exception_Log_Entry, List_Conversations

Subtables Found in: connection_definitions_entry, MU_ID_registry_entry, queue_ID

Format: Enumeration

Appendix F. Protocol Boundary Definitions 503

SENDING

RECEIVING

Meaning

This conversation or connection is being used by
DS_Send for sending MUs.

This conversation or connection is being used by
DS_Receive for receiving MUs.

Directory_Entry ------------------------------~

Description: The directory _entry describes one row in the Directory data structure.

Verbs Supplied on: Add_DSU_Data, List_DSU_Data, Modify_DSU_Data, Remove_DSU_Data

Verbs Returned on: List_DSU_Data

Dlstributlon_ID --------------------------------.

Description: The distribution_identification is the unique identifier for a distribution. It is
assigned at the origin DSU, and is used for all references to that distribution
as it moves through the network. The distribution_identification applies to all
copies of the distribution that may be generated by fan-out, and to any reports
that are generated during the progress of the distribution.

Verbs Supplied on: Assign_Read_Access, Get_Distribution_Log_Entry, Get_Exception_Log_Entry,
lnitiate_Read, lnitiate_Write, List_Queue_Entries,
List_Queues_Containing_Distribution, Query_Distribution_Sending,
Receive_Distribution, Receive_Distribution_Report, Release_Read_Access,
Reroute_Distribution_Copies, Send_Oistribution,
Sending_ Sequence_ Completed

Verbs Returned on: Get_Distribution_lnfo, Get_Distributlon_Log_Entry, Get_Exception_Log_Entry,
List_Distributions_Being_Received, List_Distributions_Being_Sent,
List_Queue_Entries, Receive_Distribution, Receive_Distribution_Report

Dlstributlon_lnfo -------------------------------.

Description: The distribution_information parameter provides the relevant information on a
distribution.

Verbs Supplied on: None

Verbs Returned on: List_Distributions_Being_Sent, List_Distributions_Being_Received,
List_ Queue_Entries

504 SNA/Distribution Services Reference

Dlstrlbutlon_Log_Data ---------------------------~

Description: The distribution_log_data contains the data that was logged with a distrib
ution.

Verbs Supplied on: None

Verbs Returned on: Get_Distribution_Log_Entry

Format: Product defined byte string

Dlstrlbutlon_Queue_ID ---------------------------~

Description: The distribution_queue_identifier is the name of a local delivery queue. It is
either a user name or an agent name.

Verbs Supplied on: Obtain_Local_Server_Report, Receive_Distribution,
Receive_Distribution_Report, Receiving_Sequence_Completed

Verbs Returned on: None

Dlstrlbutlon_Time -----------------------------~

Description: The distribution_time is the time at which the distribution originated.

Verbs Supplied on: None

Verbs Returned on: Get_Distribution_lnfo, List_Distributions_Being_Received,
List_Distributions_Being_Sent, List_Queue_Entries, Receive_Distribution,
Send_Distribution

DSU_Deflnltlon_Entry ---------------------------~

Description: The DSU_definition_entry describes the fields in the DSU Definition data struc
ture.

Verbs Supplied on: Add_DSU_Data, List_DSU_Data, Modify_DSU_Data, Remove_DSU_Data

Verbs Returned on: List_DSU_Data

Appendix F. Protocol Boundary Definitions 505

Exception_Log_Data ------------------------------.

Description: The exception_Jog_data contains the data that was logged for an exception.

Verbs Supplied on: None

Verbs Returned on: Get_Exception_Log_Entry

Format: Undefined byte string

Exceptlon_Report_Req -----------------------------.

Description: The exception_report_requested parameter indicates whether or not exception
reports were requested on a distribution.

Verbs Supplied on: Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution

Format: Enumeration

YES

NO

Meaning

Exception reporting is requested. This value is allowed
only for high-integrity distributions.

Exception reporting is not requested.

GMT_Offset_Dlrection ----------------------------.

Description: The GMT_offset_direction parameter indicates whether a DSU's local time is
earlier or later than GMT.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: DSU_deflnition_entry

Format: Enumeration

EARLIER

LATER

508 SNA/Distribution Services Reference

Meaning

Local time is earlier than GMT.

Local time is later than GMT.

GMT_Offset_Hours -------------------------------.

Description: The GMT _offset_ hours is the hours portion of the local DSU's offset from GMT.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: DSU_definition_entry

Format: Signed binary integer (1-origin)

GMT_Offset_Mlnutes -------------------------------.

Description: The GMT_offset_minutes is the minutes portion of the local DSU's offset from
GMT.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: DSU_definition_entry

Format: Signed binary integer (1-origin)

Hold_ State -------------------------------~

Description: The hold_state indicates whether a hold has been put on a next-DSU queue,
and if so, whether the hold was generated in response to an exception or gen
erated by an operator.

Verbs Supplied on: None

Verbs Returned on: List_Connections, List_Queue_Entries

Subtables Found in: next-DSU_queue_definitions_entry

Format: Enumeration

NOT_HELD

EXCEPTION_ HELD

OPERATOR_HELD

Meaning

No hold has been placed on this queue.

A hold has been placed on this queue by the DSU as the
result of an exception.

A hold has been placed on this queue by the operator.

Appendix F. Protocol Boundary Definitions 507

Hop_Count----------------------------------,

Description: The hop_count is the remaining number of hops that may be traversed by a
OS distribution on its way toward its destination DSU(s). The hop_count is set
by the origin DSU for a distribution and by the reporting DSU for a distribution
report. The hop_count is decremented by 1 in every DSU through which the
distribution passes. If the hop_count reaches 0 at an intermediate DSU,
exception processing is invoked.

Verbs Supplied on: None

Verbs Returned on: Get_Distribution_lnfo

Format: Signed binary integer (1-origin); maximum: 32,767

Hours ------------------------------------.
Description: The hours parameter gives the hours portion of the time.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found In: connection_deflnitions_entry, time

Format: Signed binary integer (1-orlgin)

Hundredths ---~-----------------------------.

Description: The hundredths parameter gives the hundredths-of-a-second portion of the
time.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: connection_deflnitions_entry, time

Format: Signed binary integer (1-origin)

lf_Nonunlque_Key -----------------------------...,

Description: The if_nonunique_key flag instructs the DSU on how to proceed if a request to
change a DSU data structure finds more than one row that match the key
given on the request.

Verbs Supplied on: Modify_DSU_Data, Remove_DSU_Data

Verbs Returned on: None

Format: Enumeration

508 SNA/Distribution Services Reference

MODIFY_ALL

MODIFY_FIRST

MODIFY_AND_REMOVE

MODIFY_NONE

REMOVE_ALL

REMOVE_FIRST

REMOVE_ NONE

Meaning

Modify all existing rows that match the key to have the
new row values.

Modify only the first matching row to have the new row
values.

Modify the first matching row to have the new row
values; remove all other matching rows.

Do not modify any rows.

Remove all existing rows that match the key.

Remove the first matching row.

Do not remove any rows.

Integrity ------------------------------------.

Description: The integrity flag indicates whether OS should use confirmation protocols on
the conversation and at the PB to prevent losses or duplications of this distrib
ution. For more details, see Chapter 2.

Verbs Supplied on: Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution, Receive_Distribution_Report

Format: Enumeration

HIGH

BASIC

Meaning

The sending agent uses Sending_Sequence_Completed
to manage the transfer of the distribution from the agent
to the DSU. Also, the DSU uses confirmation flows and
MU_IDs when sending the distribution from one hop to
the next.

All responsibility for preventing losses and duplicates of
the distribution rests with the agent. The distribution
service makes no extra effort to guard against losses
and duplicates during transmission of the distribution.
Exception reporting can not be requested for a basic
integrity distribution.

lnterventlon_Llst_Entry ---------------------------~

Description: The intervention_list_entry describes one row in the Intervention List data
structure.

Verbs Supplied on: Add_DSU_Data, List_DSU_Data, Modify_DSU_Data, Remove_DSU_Data

Verbs Returned on: List_DSU_Data

Appendix F. Protocol Boundary Definitions 509

Last_Byte_Recelved -----,....------------------------.

Description: The last_byte_received is the last byte received by the receiving DSU before
the MU was suspended. The byte count begins with the first byte of atomic
data within the encompassing structure. A byte count of X'FFFFFFFFFFFFFFFF'
indicates that the structure was fully received. The byte count contains only
atomic data and does not contain the segmenting Lls for segmented struc
tures.

Verbs Supplied on: None

Verbs Returned on: Query_Last_Byte_Received

Format: Unsigned binary Integer (1-origin)

Local_lnfo --------------------------------.

Description: The /ocal_lnfo is the Information that is kept for a local program, such as an
agent or server. This could be a module name, default parameters, or any
other required system-specific Information.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found In: agent_/ist_entry, directory_entry, server_lis(entry

Format: Undefined byte string

Local_or_GMT_Flag ---------------------------..

Description: The local_or_GMT_flag tells how a time value that passes across the protocol
boundary should be interpreted.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found In: connection_deflnltions_entry, time

Format: Enumeration

LOCAL

GMT

ORIGIN_L.OCAL

510 SNA/Distribution Services Reference

Meaning

The time is the local time value for this DSU.

· The time is a GMT time value.

The time is the local time value at the origin DSU of the
distribution. ·

Local_Queue_Type ------------------------------.

Description: The local_queue_type is the type of queue that is used to deliver distributions
to a specific user by a specific agent.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: agent_list_entry, directory_entry

Format: Enumeration

AGENT

USER

Meaning

The queue is identified by the agent name.

The queue is identified by the user name.

Logging --------------------------------.

Description: The logging flag specifies whether or not the DSU is currently doing optional
distribution logging.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: DSU_deflnition_entry

Format: Enumeration

YES

NO

Mun Ing

Perform optional distribution logging.

Do not perform optional distribution logging.

Logglng_Date ----------------~-----------~

Oescri ption: The logging_ date, along with the logging_time, specifies the date and time a
log entry was generated.

Verbs Supplied on: None

Verbs Returned on: Get_Distribution_Log_Entry, Get_Exception_Log_Entry

Appendix F. Protocol Boundary Definitions 511.

Logglng_Tlme ---------------------------------.

Description: The logging_time, along with the /ogging_date, specifies the date and time a
log entry was generated.

Verbs Supplied on: None

Verbs Returned on: Get_Distribution_Log_Entry, Get_Exception_Log_Entry

LU_Name --------------------------------~

Description: The logical_unit_name is the second part of a network-qualified LU-name. It is
usually, though not always, the same as the REN.

Verbs Supplied on: lnitiate_Read, lnitiate_Write, List_Connections, List_Control_MU_Queue,
List_ Conversations, List_Distributions _Being_Received,
List_ Distributions_ Being_ Sent, Query_ Last_ Byte_ Received,
Reroute _Distribution_ Copies, Reset_ MU _ID _Registry, Start_ Connection,
Terminate_Connection, Terminate_Restartability

Verbs Returned on: Get_Distribution_Log_Entry, Get_Exception_Log_Entry, List_Connections,
List_ Conversations

Subtables Found in: connection_ definitions_ entry, MU _ID _registry _entry,
next-DSU_queue_definitions_entry, queue_ID, routing_table_entry

Format: Character string

CGCSGID:

String Conventions:

01134-00500 (Character Set AR)

Leading, imbedded, and trailing space (X' 40') characters
are not allowed.

Max_DS_Recelves --------------------------------,

Description: The maximum_DS_Receives is the largest number of instances of DS_Receive
that can be active on a connection.

Verbs Supplied on: Start_Connection

Verbs Returned on: None

Subtables Found in: connection_definitions_entry

Presence Rule: Occurs when the value of direction is RECEIVING.

Format: Signed binary integer (1-origin)

512 SNA/Distributlon Services Reference

Max_DS_Sends ------------------------------~

Description: The maximum_DS_Sends is the largest number of instances of DS_Send that
can be active on a connection. It should typically be less than or equal to the
number of conwinner sessions the DSU has for that connection.

Verbs Supplied on: Start_Connection

Verbs Returned on: None

Subtables Found in: connection_definitions_entry

Presence Rule:

Format:

Occurs when the value of direction is SENDING.

Signed binary integer (1-origin)

Minutes -----------------------------------.

Description: The minutes parameter gives the minutes portion of the time.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: connection_definitions_entry, time

Format: Signed binary integer (1-origin)

Mode_Name -------------------------------~
Description: The mode_name identifies the type of traffic that is appropriate for a specific

conversation.

Verbs Supplied on: lnitiate_Read, lnitiate_Write, List_Connections, List_Control_MU_Queue,
List_Conversations, List_Distributions_Being_Received,
List_Distributions_Being_Sent, Query_Last_Byte_Received,
Reroute_Distribution_Copies, Reset_MU_ID_Registry, Start_Connection,
Terminate_Connection, Terminate_Restartability

Verbs Returned on: Get_Distribution_Log_Entry, Get_Exception_Log_Entry, List_Connections,
List_ Conversations

Subtables Found in: connection_definitions_entry, MU_ID_registry_entry,
next-DSU _queue_ definitions_ entry, queue _ID, routing_table _entry

Format: Undefined byte string

Appendix F. Protocol Boundary Definitions 513

Modffled_Row ----------------------------

Description: A modifled_row replaces one or more rows specified by row _selectlon_crlter/s
on a Modlfy_DSU_Data verb.

Verbs Supplied on: Modlfy_DSU_Data

Verbs Returned on: None

Month ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

Description: The month parameter gives the month portion of the date.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found In: connect/on_definltlons_entry, date

Format: Signed binary Integer (1-orlgln)

MU_Action ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description: The message_unlt_actlon flag indicates what action should be taken on distrib
utions that are currently being sent or received on a conversation (or con
nection) that is being terminated.

Verbs Supplied on: Terminate_Connection, Termlnate_Conversatlon

Verbs Returned on: None

Format: Enumeration

ABORT

COMPLETE

SUSPEND

514 SNA/Distribution Services Reference

Mean Ina

Abort all distributions being sent or received on the con
versation or connection.

Complete any distributions currently being sent or
received on the conversation or connection, but do not
begin any new distributions.

Suspend any distributions currently being sent or
received on the conversation or connection for later
restart.

MU_ID ~~~~~~~~~~~~~~~~~~~~~~~~-~-~~-----.

Description: The message_unit_identifier is a number that uniquely identifies a distribution
MU throughout its existence. An MU exists for only one hop, from one DSU to
the adjacent DSU. An MU_ID is unique only for a particular LU name, mode
name combination.

Verbs Supplied on: lnitiate_Read, lnitiate_Write, Query_Last_Byte_Received,
Terminate_Restartability

Verbs Returned on: Get_Distribution_lnfo, Get_Distribution_Log_Entry, Get_Exception_Log_Entry,
List_Control_MU_Queue

Subtables Found in: MU_ID_registry_entry

Format: Signed binary integer (1-origin)

MU_ID_Reglstry_Entry ---------------------------.

Description: The MU_ID_registry_entry describes one row in the MU_ID Registry data
structure.

Verbs Supplied on: Add_OSU_Data, List_osu_oata, Modify_DSU_Data, Remove_DSU_Data

Verbs Returned on: List_DSU_Data

MU_ID_State ------------------------------.

Description: The message_unit_identifier_state indicates the state of processing, on either
the send or receive side, for an MU_ID. For details of the meaning of each
state, see Chapter 2.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: MU_ID_registry_entry

Format: Enumeration

COMPLETED

CQMU_PENDING

IN_ TRANSIT

NOT _ASSIGNED

NOT _RECEIVED

PURGED

Send or Receive Side Occurrence

Receive side

Send side

Both send and receive Sides

Send side

Receive side

Both send and receive sides

Appendix F. Protocol Boundary Definitions 515

RETRY _PENDING Send side

SUSPENDED Both send and receive sides

TERMINATED Receive side

TERMINATION_PENDING Send side

TRANSFER_PENDING Send side

MU_lnstance_Number ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description: The message_unit_instance_number identifies the instance of a particular dis-
tribution message unit and its corresponding MU_ID.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: MU_ID_registry_entry

Format: Signed binary integer (1-origin)

MU_Type ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

Description: The MU_type indicates the type of MU that is found on a Control MU queue.

Verbs Supplied on: None

Verbs Returned on: List_Control_MU_Queue

Format: Enumeration

Value Meaning

SEMU Sender-Exception Message Unit

REMU Receiver-Exception Message Unit

CQMU Completion-Query Message Unit

CRMU Completion-Report Message Unit

PRMU Purge-Report Message Unit

RRMU Reset-Request Message Unit

RAMU Reset-Accepted Message Unit

516 SNA/Distribution Services Reference

Net_ ID ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description: The network_identifier is the first part of a network-qualified LU-name. It is
usually, though not always, the same as the RGN.

Verbs Supplied on: lnitiate_Read, lnitiate_Write, List_Connections, List_Control_MU_Queue,
List_ Conversations, List_ Distributions_ Being_ Received,
List_Distributions_Being_Sent, Query_Last_Byte_Received,
Reroute_Distribution_ Copies, Reset_MU _ID _Registry, Start_ Connection,
Terminate_Connection, Terminate_Restartability

Verbs Returned on: Get_Distribution_Log_Entry, Get_Exception_Log_Entry, List_Connections,
List_ Conversations

Subtables Found in: connection_definitions_entry, MU_ID_registry_entry,

Format:

next-DSU _queue_definitions_entry, queue_ID, routing_table_entry

Character string

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

New_Row ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description: A new _row is a row being added to a DSU data structure by the
Add_DSU_Data verb.

Verbs Supplied on: Add_DSU_Data

Verbs Returned on: None

Description: The new_row_number is the next row that matches the row_se/ection_criteria
specified on a List_DSU_Data verb. It is used when there are too many
matching rows to return on one invocation of the List_DSU_Data verb. To
obtain further information, the agent reissues List_DSU_Data, using the value
returned in new _row _number as the starting_row _number.

Verbs Supplied on: None

Verbs Returned on: List_DSU_Data

Format: Signed binary integer (1-origin)

Appendix F. Protocol Boundary Definitions 517

New_Unlt_Of_Work_ID -----------------------------....

Description: The new_unit_of_work_identifler provides the value that should replace the
current_ unit_ of _work_identifler.

Verbs Supplied on: Assign_Read_Access

Verbs Returned on: None

Next·DSU_Queue_Deflnltlons_Entry -------------------------.

Description: The next-DSU_queue_deflnitions_entry describes one row in the Next-DSU
Queue Definitions data structure.

Verbs Supplied on: Add_DSU_Data, List_DSU_Data, Modify_DSU_Data, Remove_DSU_Data

Verbs Returned on: List_DSU_Data

Next_MU_ID --.

Description: The next_message_unit_identifler indicates which MU_ID should be expected
next when the two MU_ID registries for a connection are synchronized.

Verbs Supplied on: Reset_MU_ID_Registry

Verbs Returned on: None

Format: Signed binary integer (1-origin)

Next_Queue_Entry_ID ----------------------------....

Description: The next_queue_entry_identifler indicates the next queue_entry_identifier to be
listed on a List_Queue_Entries verb. It occurs when there were too many dis
tributions to be listed on one invocation of the List_Queue_Entries verb.

Verbs Supplied on: None

Verbs Returned on: List_Control_MU_Queue, List_Queue_Entries

Format: Undefined byte string

518 SNA/Oistribution Services Reference

Next_ Seq no ---------------------------------.

Description: The next_sequence_number is the sequence number to be used on the next
distribution sent on this date for a specific user by a specific agent. The
sequence number is reset to 1 for the first distribution each day.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: directory _entry

Format: Signed binary integer (1-origin)

Number_Of_Matchlng_Entries ------------------------~

Description: The number_of_matching_entries indicates how many log entries match the
given distribution identification.

Verbs Supplied on: None

Verbs Returned on: Get_Distribution_Log_Entry, Get_Exception_Log_Entry

Format: Signed binary integer (1-origin)

Origln_Agent--..,

Description: The orlgln_agent is the transaction program at the origin DSU that originated
the distribution.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: distributionjD

Format: Character string, except for first byte

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X'41' to X'FF', the transaction
program is not SNA registered. X'40' is not a valid first
byte.

Appendix F. Protocol Boundary Definitions 519

Orlgln_Date ---------------------------------.

Description: The origin_date is the date on which the distribution originated.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: distribution_ID

Orlgln_DEN ------------------------------.

Description: The origin_DEN is the second part of the user name of the distribution origi
nator.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: distribution_ID

Format: Character string

CGCSGIDs:

String Conventions:

01134-00500 (Base), 00930-00500 (Enhanced Char Set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space (X' 40') characters are disal
lowed, trailing space (X'40') characters are
not significant, and imbedded space (X'40')
characters are significant.

Orlgin_DGN ------------------------------.

Description: The origln_DGN is the first part of the user name of the distribution originator.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: distribution_ID

Format: Character string

520 SNA/Distribution Services Reference

CGCSGIDs:

String Conventions:

01134-00500 (Base), 00930-00500 (Enhanced Char Set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space (X' 40') characters are disal
lowed, trailing space (X'40') characters are
not significant, and imbedded space (X'40')
characters are significant.

Orlgln_DSU -----------------------------~

Description: The origin_DSU is the name of the DSU at which the distribution originated.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: distribution_ID

Origin_REN --------------------------------.,

Description: The origin_REN is the second part of the name of the DSU at which the distrib-
ution originated. This is typically, but not necessarily, the LU name.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: distribution_ID

Format: Character string

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

Origin_RGN ---------------------------------.,

Description: The origin_RGN Is the first part of the name of the DSU at which the distrib-
ution originated. This is typically, but not necessarily, the network ID.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: distribution_ID

Format: Character string

Appendix F. Protocol Boundary Definitions 521

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

Origln_Seqno ~---.
Description: The origin_sequence_number is the number assigned to the distribution by the

origin agent as part of the distribution_identification. For FS2, the number
ranges from 1 to (2**31)-1. For FS1, the number ranges from O {for report
MUs) to 9999. Refer to Appendix D for migration details.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: distribution_ID

Format: Signed binary integer (1-origin)

Origin_User--------------------------------.

Description: The origin_user is the user name of the originator of the distribution.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: distribution_ID

Orlglnatlng_Hop_Count --------------------------.......

Description: The originating_hop_count specifies the hop count to be used for distributions
on a particular route segment. It overrides the default_hop_count for the DSU.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: routing_table_entry

Format: Signed binary integer (1-origin)

522 SNA/Distribution Services Reference

Parent_Class ---------------------------------.

Description: The parent_class is the class of a parent structure. For more details on the
classes of structures, see Appendix G.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Format: Enumeration

Possible Values

LENGTH_BOUNDED_LLID

LENGTH_BOUNDED_LT

DELIMITED_LLID

DELIMITED_LT

IMPLIED_LLID

IMPLIED_LT

Parent_ID_Or_T-------------------------------.

Description: The parent_ID_or_T is the ID or T value of a parent structure. ID's are the
registered GOS codepoints and are referred to In SNA Formats. T's are
architecture-specific values relative to the encompassing ID.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Format: Undefined byte string

Parent_lnstance ---------------------------------.

Description: The parent_instance Is used when a parent structure occurs multiple times.
The value of parent_instance identifies the particular instance within a posi
tion.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found In: SNA_condition_report

Format: Signed binary integer {1-origin)

Appendix F. Protocol Boundary Definitions 523

Parent_Positlon --------------------------------.

Description: The parent_position is the position of this parent structure within its parent (if
one exists) in this particular MU. Multiple consecutive instances of a repeat
able parent structure share a single position; they can be distinguished by
parent_instance.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Format: Signed binary integer (1-origin)

Parent_Spec -------------------------------~

Description: The parent_specification contains the identifier (ID or T) and the class of a
parent structure. For a parent structure that occurs multiple times, the
instance may also be included. The value of the parent_instance identifies the
particular instance. The position of this parent structure within its parent (if
one exists) may also be included. This would typically be done when this
parent structure is an unordered child of its parent.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Prevlously_Recelved_Date ---------------------------.

Description: The previously_received_date is the date portion of the
previously _received_ date_ time.

Verbs Supplied on: None

Verbs Returned on: Get_Distribution_lnfo, List_Queue_Entries, Receive_Distribution,
Receive_Distribution_Report

524 SNA/Distribution Services Reference

Prevlously_Recelved_Date_Tlme ------------------------~

Description: The previous/y_received_date_time indicates when this distribution or report
had been earlier received. The previous receive verb was never acknowl
edged with a Receiving_Sequence_Completed verb, and the DSU is now trying
to account for this failure to acknowledge receipt of the distribution or report.

Verbs Supplied on: None

Verbs Returned on: Get_Distribution_lnfo, List_Queue_Entries, Receive_Distribution,
Receive_Distribution_Report

Prevlously_Recelved_Time ---------------------------~

Description: The previously _received_time is the time portion of the
previously _received_date_time.

Verbs Supplied on: None

Verbs Returned on: Get_Distribution_lnfo, List_Queue_Entries, Receive_Distribution,
Receive_Distribution_Report

• Priority------------------------------~

Description:

Verbs Supplied on:

The priority service parameter indicates the priority requirements for the dis
tribution. The combination of this parameter and the
priority _comparison_operator yielrls the permitted levels of priority for the dis
tribution.

None

Verbs Returned on: None

Subtables Found in: report_service_parms, routing_table_entry, service_parms

Format:

Note:

Enumeration

For the Folding Data Priorities elective, DATAHI replaces DATA_a through
DATA_16 and DATALO replaces DATA_1 through DATA_8.

Appendix F. Protocol Boundary Definitions 525

Possible Values

FAST

CONTROL

DATA_16

DATA_15

DATA_14

DATA_13

DATA_12

DATA_11

DATA_10

DATA_9

DATA_8

DATA_7

DATA_6

DATA_5

DATA_4

DATA_3

DATA_2

DATA_1

Priority_Comp_Op~~~~~~~~~~~~~~~~~~~~~~~~~~---.

Description: The priority _comparison_operator parameter is used to allow a range of pri
ority service levels for a distribution. The combination of this parameter and
the priority parameter yields the permitted levels of priority for the distrib
ution.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: report_service_parms, routing_tab/e_entry, service_parms

Format: Enumeration

Possible Values

REQUIRE_LEVEL_GE

Product_Speclflc_Data ~~~~~~~~~~~~~~~~~~~~~~~~~~--.

Description: The product_speciflc_data speclfles product data that is associated with the
distribution, or which could be helpful in problem determination.

Verbs Supplied on: None

Verbs Returned on: Get_Distribution_Log_Entry, Get_Exceptlon_Log_Entry

Format: Undefined byte string

526 SNA/Distribution Services Reference

Program_Name -------------------------------.

Description: The program_name specifies the name of the program that generated the log
entry.

Verbs Supplied on: None

Verbs Returned on: Get_Distrlbution_Log_Entry, Get_Exception_Log_Entry

Format: Character string, except for first byte

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X'41' to X'FF', the transaction
program is not SNA registered. X'40' is not a valid first
byte.

Protection ----------------------------------.

Description: The protection service parameter indicates the protection requirements for the
distribution. The combination of this parameter and the
protection_comparison_operator yields the permitted levels of protection for
the distribution.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: report_service_parms, routing_table_entry, service_parms

Format: Enumeration

LEVEL1

LEVEL2

Meaning

Safe store is not performed.

Safe store must be performed.

Protection_Comp_Op -----------------------------,

Description: The protection_comparison_operator parameter is used to allow a range of
protection service levels for a distribution. The combination of this parameter
and the protection parameter yields the permitted levels of protection for the
distribution.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: report_service_parms, routing_table_entry, service_parms

Format: Enumeration

Appendix F. Protocol Boundary Definitions 527

Possible Values

REQUIRE_LEVEL_GE

Querylng_Agent ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----.

Description: The querying_agent is the agent that issues a List_Queue_Entries verb. It
might not be the same agent that originated the distribution.

Verbs Supplied on: List_Queue_Entries

Verbs Returned on: None

Format: Character string, except for first byte

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X' 40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X'41' to X'FF', the transaction
program is not SNA registered. X'40' is not a valid first
byte.

Queue_Entry_ID ~~~~~~~~~~~~~~~~~~~~~~~~~~~~----.

Description: The queue_entry _identifier specifies one particular entry in a given queue.
The combination of queue_identifier and queue_entry_identifier uniquely iden
tify any distribution copy in the DSU.

Verbs Supplied on: Get_Distribution_lnfo, Hold_Distribution_Copy, Obtain_Local_Server_Report,
Purge_Queue_Entry, Receive_Distribution, Receive_Distribution_Report,
Receiving_ Sequence_ Completed, Release _Distribution_ Copy

Verbs Returned on: List_Control_MU_Queue, List_Queue_Entries, Obtain_Local_Server_Report,
Receive_Distribution, Receive_Distribution_Report

Subtables Found in: MU_ID_registry_entry

Format: Undefined byte string

Queue_Entry_Type ~~~~~~~~~~~~~~~~~~~~~~~~~~~~---.

Description: The queue_entry_type specifies what is found in a given queue entry.

Verbs Supplied on: List_Queue_Entries

Verbs Returned on: List_Queue_Entries

Format: Enumeration

528 SNA/Distribution Services Reference

Possible Values

DISTRIBUTION

DISTRIBUTION_ REPORT

SERVER_REPORT

Queue_ID --------------------------------~

Description: The queue_identifier specifies one particular local delivery queue or next-DSU
queue. The combination of queue_identifier and queue_entry_identifier
uniquely identify any distribution copy in the DSU.

Verbs Supplied on: Get_Distribution_lnfo, Hold_Distribution_ Copy, List_ Queue_Entries,
Purge_Queue_Entry, Release_Distribution_Copy

Verbs Returned on: List_Queues_Containing_Distribution

Recelved_Server_Bytes ----------------------------.

Description: The received_server _bytes parameter indicates how many bytes of the server
object have been received. This parameter is applicable only to a distribution
currently being received at this DSU.

Verbs Supplied on: None

Verbs Returned on: List_Distributions_Being_Received

Format: Unsigned binary integer (1-origin); maximum: 2**64 - 2

Recel~ng_Agent--------------------------------.

Description: The receiving_agent is the agent that receives a distribution, distribution
report, or server report.

Verbs Supplied on: Obtain_Local_Server_Report, Receive_Distribution,
Receive_Distribution_Report

Verbs Returned on: None

Format: Character string, except for first byte

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X'41' to X'FF', the transaction
program is not SNA registered. X'40' is not a valid first
byte.

Appendix F. Protocol Boundary Definitions 529

Recel~ng_DSU ------------------------------.

Description: The receiving_DSU is the name of the DSU that was receiving a distribution
about which a report is being generated.

Verbs Supplied on: None

Verbs Returned on: Receive_Distrlbutlon_Report

Recelvlng_REN -------------------------------..

Description: The recelving_REN is the second part of the name of the DSU that was
receiving a distribution about which a report is being generated. This is t'/pi
cally, but not necessarily, the LU name.

Verbs Supplied on: None

Verbs Returned on: Receive_Distribution_Report

Format: Character string

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

Recelvlng_RGN -------------------------------.

Description: The receiving_RGN Is the first part of the name of the DSU that was receiving
a distribution about which a report is being generated. This is typically, but
not necessarily, the network ID.

Verbs Supplied on: None

Verbs Returned on: Recelve_Distribution_Report

Format: Character string

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

Remainlng_Server_Bytes ----------------------------..

Description: The remaining_server _bytes parameter indicates how many bytes of the
server object remain to be sent. This parameter is applicable only to a dis
tribution currently being sent by this DSU.

Verbs Supplied on: None

Verbs Returned on: List_Dlstributions_Being_Sent

Format: Unsigned binary integer (1-origin); maximum: 2*'64 - 2

530 SNA/Distribution Services Reference

Description: The REN is the second part of the DSU name. This is typically, but not neces-
sarily, the LU name.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: directory_entry, DSU_definition_entry, intervention_list_entry

Format: Character string

CGCSGID:

String Conventions:

01134-00500 (Character Set AR)

Leading, imbedded, and trailing space (X'40') characters
are not allowed.

Repon-To_Agent ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

Description: The report-to _agent is the name of the application transaction program to be
started after the report is queued for delivery.

Verbs Supplied on: Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution, Receive_Distribution_Report

Format: Character string, except for first byte

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X'41' to X'FF', the transaction
program is not SNA registered. X' 40' is not a valid first
byte.

Repon-To_DEN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description: The report_to_DEN is the second part of the user name to which distribution
reports are to be sent.

Verbs Supplied on: Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution, Receive_Distribution_Report

Format: Character string

Appendix F. Protocol Boundary Definitions 531

CGCSGIDs:

String Conventions:

01134-00500 (Base), 00930-00500 (Enhanced Char Set)

Base Leading, imbedded, and trailing space (X' 40')
characters are not allowed.

ECS Leading space (X' 40') characters are disal
lowed, trailing space (X' 40') characters are
not significant, and imbedded space (X' 40')
characters are significant.

Report-To_DGN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~---.

Description: The report_to _DGN is the first part of the user name to which distribution
reports are to be sent.

Verbs Supplied on: Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution, Receive_Distribution_Report

Format: Character string

CGCSGIDs:

String Conventions:

01134-00500 (Base), 00930-00500 (Enhanced Char Set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space (X' 40') characters are disal
lowed, trailing space (X' 40') characters are
not significant, and imbedded space (X'40')
characters are significant.

Report-To_DSU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~---.

Description: The report-to_DSU is the name of the DSU to which distribution reports are to
be sent.

Verbs Supplied on: Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution, Receive_Distribution_Report

Report-To_REN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~----.

Description: The report-to_REN is the second part of the DSU name to which distribution
reports are to be sent. This is typically, but not necessarily, the LU name.

Verbs Supplied on: Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution, Receive_Distribution_Report

Format: Character string

532 SNA/Distribution Services Reference

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

Repon-To_RGN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~----.

Description: The report-to_RGN is the first part of the DSU name to which distribution
reports are to be sent. This is typically, but not necessarily, the network ID.

Verbs Supplied on: Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution, Receive_Distribution_Report

Format: Character string

CGCSGID:

String Conventions:

01134-00500 (Character Set AR)

Leading, imbedded, and trailing space (X' 40') characters
are not allowed.

Repon-To_User ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----.

Description: The report-to_user is the name of the user to which distribution reports are to
be sent.

Verbs Supplied on: Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution, Receive_Distribution_Report

Repon_Date ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---.

Description: The report_date contains the date on which the reporting_DSU generated the
report.

Verbs Supplied on: None

Verbs Returned on: Receive_Distribution_Report

Appendix F. Protocol Boundary Definitions 533

Report_Servlce_Parms ~~~~~~~~~~~~~~~~~~~~~~~~~~~-.

Description: The report_service_parameters describe the service requested for the distrib
ution report by the origin agent when the agent wants to override the service
parameters that would be routinely generated by the reporting DSU for the
report MU. If report service parameters are specified, they are used as the
service parameters in any DRMUs that are generated as part of the distrib
ution. If the origin agent does not provide report service parameters, a DSU
that generates a report derives service parameters for the DRMU from the
service parameters in the DTMU.

Verbs Supplied on: Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution

Report_Tlme ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---.

Description: The report_time contains the time at which the reporting_DSU generated the
report.

Verbs Supplied on: None

Verbs Returned on: Receive_Distribution_Report

Reported-On_Dest_Agent ~~~~~~~~~~~~~~~~~~~~~~~~~--.

Description: The reported-on_destination_agent is the name of the intended destination
agent of the distribution that is being reported on.

Verbs Supplied on: None

Verbs Returned on: Receive_Distribution_Report

Presence Rule:

Format:

Occurs when dest_agent was specified in the reported-on distribution.

Character string, except for first byte

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, lmbedded, and trailing space (X'40') characters
are not allowed.

The first byte of an SNA-registered transaction program·
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X'41' to X'FF', the transaction
program is not SNA registered. X'40' is not a valid first
byte.

534 SNA/Distribution Services Reference

Reporied-On_Dest_DEN ~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description: The reported-on_destination_DEN is the second part of the name of one of the
original destination users being reported on.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: reported_on_destination

Format: Character string

CGCSGIDs:

String Conventions:

01134-00500 (Base), 00930-00500 (Enhanced Char Set)

Base Leading, imbedded, and trailing space (X' 40')
characters are not allowed.

ECS Leading space (X' 40') characters are disal
lowed, trailing space (X' 40') characters are
not significant, and imbedded space (X' 40')
characters are significant.

Reporied·On_Dest_DGN ~~~~~~~~~~~~~~~~~~~~~~~~~---.

Description: The reported-on_destination_DGN is the first part of the name of one of the
original destination users being reported on.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: reported_on_destination

Format: Character string

CGCSGIDs:

String Conventions:

01134-00500 (Base), 00930-00500 (Enhanced Char Set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space (X' 40') characters are disal
lowed, trailing space (X' 40') characters are
not significant, and imbedded space (X' 40')
characters are significant.

Appendix F. Protocol Boundary Definitions 535

Reported-On_Dest_DSU -------------------------~~

Description: The reported-on_destination_DSU is one of the original destination DSUs
being reported on.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: reported_on_destination

Presence Rule: Always present, unless the report passed through an FS1 subnet.

Reported-On_Dest_REN --------------------------~

Description: The reported-on_destination_REN is the second part of the name of one of the
original destination DSUs being reported on. This is typically, but not neces
sarily, the LU name.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: reported_on_destination

Format: Character string

CGCSGID:

String Conventions:

01134-00500 (Character Set AR)

Leading, imbedded, and trailing space (X' 40') characters
are not allowed.

Reported-On_Dest_RGN ----------------------------.

Description: The reported-on_destination_RGN is the first part of the name of one of the
original destination DSUs being reported on. This is typically, but not neces
sarily, the network ID.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: reported_on_destination

Format: Character string

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

536 SNA/Distribution Services Reference

Reported-On_Dest_User --------------------------~

Description: The reported-on_destination_user is the name of one of the original destina
tion users being reported on.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: reported_on_destination

Reported-On_Destlnation -----------------------------.

Description: The reported-on_destination is one of the distribution destinations that is
being reported on.

Verbs Supplied on: None

Verbs Returned on: Get_Exception_Log_Entry

Subtables Found in: SNA_condition_report

Reported-On_Tlme --------------------------------,

Description: The reported-on_time is the distribution_time that was returned on
Send_Distribution.

Verbs Supplied on: None

Verbs Returned on: Receive_Distribution_Report

Reportlng_DSU ----------------------------~

Description: The reporting_DSU is the name of the DSU that generated the report.

Verbs Supplied on: None

Verbs Returned on: Receive_Distribution_Report

Appendix F. Protocol Boundary Definitions 537

Reporllng_REN ------------------------------.

Description: The reporting_REN is the second part of the name of the DSU that generated
the report. This is typically, but not necessarily, the LU name.

Verbs Supplied on: None

Verbs Returned on: Receive_Distribution_Report

Format: Character string

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

Reponlng_RGN ---------------------------~

Description: The reporting_RGN Is the first part of the name of the DSU that generated the
report. This is typically, but not necessarily, the network ID.

Verbs Supplied on: None

Verbs Returned on: Receive_Distribution_Report

Format: Character string

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

Requested_Entry_Number ----------------------------.

Description: The requested_entry _number indicates which log entry to return when there
are more than one with the same distribution identifi.cation. For example, a
requested_ entry _number of 4 would retrieve the fourth log entry for a specified
distribution identification.

Verbs Supplied on: Get_Distribution_Log_Entry, Get~Exception_Log_Entry

Verbs Returned on: None

Format: Signed binary integer (1-origin)

Requestlng_Process ------------------------------.

Description: The requesting_process is the process that is requesting a server action.

Verbs Supplied on: Backout_Server_Object, lnitiate_Read, lnitiate_Write,
Query_Last_Byte_Received, Terminate_Restartability

Verbs Returned on: None

Format: Character string, except for first byte

538 SNA/Distribution Services Reference

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space {X'40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X'41' to X'FF', the transaction
program is not SNA registered. X'40' is not a valid first
byte.

Restart_Byte -------------------------------~

Description: The restart_byte indicates where the sender is beginning retransmission of
the server object.

Verbs Supplied on: lnitiate_Read, lnitiate_Write

Verbs Returned on: None

Format: Unsigned binary integer (1-origin); maximum: 2**64 - 2

Restart_Capable -------------------------------..,

Description: The restart_capable flag indicates whether a server is capable of Byte-Count
Restart.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: server_list_entry

Format: Enumeration

YES

NO

Meaning

Server is capable of Byte-Count Restart.

Server is not capable of Byte-Count Restart.

Restart_ ID -------------------------------___,

Description: The restart_ID identifies a server object being read or written for restart pur
poses.

Verbs Supplied on: lnitiate_Read, lnitiate_Write, Query_Last_Byte_Received,
Terminate_Restartability

Verbs Returned on: None

Appendix F. Protocol Boundary Definitions 539

Restartabllity ----------------------------~

Description: The restartability parameter indicates whether a server should keep check
points on an object that it is reading or writing, in preparation for a later
restart.

Verbs Supplied on: lnitiate_Read, lnitiate_Write

Verbs Returned on: None

Format: Enumeration

YES

NO

Meanina

If possible, keep checkpoints on this object beir.g
read/written to allow mid-server object restart.

Do not keep checkpoints on this object.

Retum_Code ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----.

Description: The return_code indicates the result of a verb that was issued by an agent or
by OS.

Verbs Supplied on: None

Verbs Returned on: All

Format: Enumeration

Distribution Return Codes

OK

PARAMETER_ CHECK

INVALID_ORIGIN_USER_NAM-E

INVALID_REPORT-TO_DEST

UNSUPPORTED_SERVICE_LEVEL

INVALID_SERVER_NAME

INVALID_SERVER_PARAMETER

INVALID_QUEUE_IDENTIFIER

110 _EXCEPTION

QUEUE_EMPTY

TEMPORARY _SERVER_EXCEPTION

SPECIFIC_SERVER_EXCEPTION

AGENT _NOT _DEF! NED

TEMPORARY _EXCEPTION

TOO_MANY_OUTSTANDING_SEQNOS

540 SNA/Distribution Services Reference

Operations Return Codes

OK

PARAMETER_CHECK

llO_EXCEPTION

TEMPORARY _EXCEPTION

MORE_DATA_TO_COME

QUEUE_ENTRY_NOT_FOUND

QUEUE_ENTRY _IN_USE

QUEUE_EMPTY

DUPLICATE_QUEUE_ENTRY_CREATED

CONNECTION_NOT_FOUND

INVALID_DATA_STRUCTURE_NAME

INVALID_KEY

INVALID_STARTING_POSITION

DATA_ENTRY_NOT_FOUND

DATA_ENTRY _IN_USE

DATA_STRUCTURE_EMPTY

DATA_STRUCTURE_FULL

DATA_ENTRY_ALREADY_EXISTS

Server Return Codes

OK

PARAMETER_ CH ECK

END_OF _DATA (EOD)

SPECIFIC_SERVER_EXCEPTION

l/O_EXCEPTION

TEMPORARY _SERVER_EXCEPTION

INVALID_SERVER_NAME

ACCESS_LIST_ENTRY_NOT_FOUND

NOT_RESTART_CAPABLE

RESTART _ID_NOT _FOUND

CAN NOT _RESTART _AT _BYTE_POSITION

OBJECT _NOT _FOUND

Note: The PARAMETER_CHECK, l/O_EXCEPTION, TEMPORARY_EXCEPTION, and
OBJECT_NOT_FOUND return codes are issued only by the general server, while
SPECIFIC_SERVER_EXCEPTION is issued only by a specific server.

Description: The RGN is the first part of the DSU name. This is typically, but not neces-
sarily, the network ID.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: directory_entry, DSU_definltion_entry, intervention_list_entry

Format: Character string

Appendix F. Protocol Boundary Definitions 541

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

Route ---------------------~-------------.
Description: The route parameter is used to choose among the various route segments

from this DSU. It is composed of a destination_DSU and the service_parms to
be used to route to that destination DSU ..

Verbs Supplied on: List_Connections

Verbs Returned on: None

Routlng_Table_Entry ---------------------------.

Description: The routing_tabte_entry describes one row in the Routing Table data struc
ture.

Verbs Supplied on: Add_DSU_Data, List_DSU_Data, Modify_DSU_Data, Remove_DSU_Data

Verbs Returned on: List_DSU_Data

Row_Selectlon_Criteria -----------------------------.

Description: The row_selection_criterla are used to allow the OS system definition verbs to
operate on only a portion of a DSU data structure. The row_selection_criteria
takes the form of a row of the table with some or all of its column values
specified. The DSU restricts Its operations on the data structure to those rows
that match the row_selection_criteria.

Verbs Supplied on: List_DSU_Data, Modify_DSU_Data, Remove_DSU_Data

Verbs Returned on: None

Schedullng_Data -------------------------------.

Description: The scheduling_data provides the data necessary to do time-of .. day scheduling
for a next-DSU queue.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: next-DSU_queue_definitions_entry

Format: Undefined byte string

542 SNA/Distribution Services Reference

Seconds ~----------------------------------.

Description: The seconds parameter gives the seconds portion of the time.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: connection_definitions_entry, time

Format: Signed binary integer (1-origin)

Security ~-------------------------------~

Description: The security service parameter indicates the security requirements for the dis
tribution. The combination of this parameter and the
security _comparison_ operator yields the permitted levels of security for the
distribution.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: report_service_parms, routing_table_entry, service_parms

Format: Enumeration

LEVEL1

LEVEL2

Meaning

Security is not required.

Security is requir~d.

Security_Comp_Op -----------------------------.

Description: The security_comparison_operator parameter is used to allow a range of
security service levels for a distribution. The combination of this parameter
and the security parameter yields the permitted levels of security for the dis
tribution.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: report_service_parms, routing_table_entry, service_parms

Format: Enumeration

Possible Values

REQUIRE_LEVEL_GE

Appendix F. Protocol Boundary Definitions 543

Selected_Row -------------------------------

Description: A selected_row is one of the rows that match the row_selection_criteria.

Verbs Supplied on: None

Verbs Returned on: List_DSU_Data

Sending_State -------------------------------.

Description: The sending_state indicates the current state of a distribution being sent, from
the DSU's perspective.

Verbs Supplied on: None

Verbs Returned on: Query_Distribution_Sending, Send_Distribution

Format: Enumeration

Value Meaning

NOT_ASSIGNED There has been no activity on the referenced distrib
ution; the sequence number is a valid, unassigned
value.

IN_ TRANSIT The agent has issued the sending verb for this distrib
ution, and processing of the verb has not yet completed.

SPEC_SERVER_PENDING The DSU has returned control to the agent after proc
essing the sending verb, but specific server operations
have not yet been completed.

COMMITTED The DSU has accepted responsibility for the distribution
after completing specific server operations (if any).

TERMINATED The distribution could not be sent, and the agent has not
yet issued Sending_Sequence_Completed on this distrib
ution.

COMPLETED The agent has issued Sending_Sequence_Completed.
At this point, the DSU can stop tracking this distribution.

Seqno_To_Clean_Up ----------------------------....,

Description: The sequence_number_to_clean_up identifies a distribution which has been
sent by the DSU, but for which the sending agent has not issued
Sending_ Sequence_ Completed to acknowledge the transfer of responsibility.

Verbs Supplied on: None

Verbs Returned on: Send_Distribution

Format: Signed binary integer (1-origin)

544 SNA/Distrlbution Services Reference

Server ------------------------------------.

Description: The server is the name of the transaction program to be used to read the
server object at the origin and to store the server object at the destination.
Server name values are assigned according to the rules of SNA Transaction
Program names.

Verbs Supplied on: Assign_Read_Access, Backout_Server_Object, lnitiate_Read, lnitiate_Write,
Query_Last_Byte_Received, Read, Release_Read_Access, Send_Distribution,
Terminate_Read, Terminate_Restartability, Terminate_Write, Write

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution

Subtables Found in: server_list_entry

Format: Character string, except for first byte

CGCSGID: 01134-00500 (Character Set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X'41' to X'FF', the transaction
program is not SNA registered. X'40' is not a valid first
byte.

Server_Access --------------------------------,

Description: The server _access parameter gives the server the information it needs to
access the server object.

Verbs Supplied on: Assign_Read_Access, Backout_Server_Object, lnitiate_Read,
Release _Read_Access, Send_Distributlon

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution, Terminate_Write

Presence Rule:

Format:

May occur only if specific_server_info is absent.

Undefined byte string

Server_Bytes_Recelved ----------------------------.

Description: The server_bytes_received flag indicates whether an agent that issues
List_Distributions_Being_Received is interested in how many bytes of the
server object have been received for each distribution.

Verbs Supplied on: List_Distributions_Being_Received

Verbs Returned on: None

Format: Enumeration

Appendix F. Protocol Boundary Definitions 545

YES

NO

Meaning

Indicate how many server object bytes have been
received for each distribution.

Do not indicate how many server object bytes have been
received for each distribution.

Server_Bytes_Remalnlng --...,.------------------~--------.

Description: The server_bytes_remaining flag indicates whether an agent that issues
List_Disttibutions_Being_Sent Is interested in how many bytes of the server
object remain to be sent for each distribution.

Verbs Supplied on: List_Distributions_Belng_Sent

Verbs Returned on: None

Format: Enumeration

YES

NO

Meaning

Indicate how many server object bytes remain to be sent
for each distribution.

Do not indicate how many server object bytes remain to
be sent for each distribution.

Server_lnstance_ID -------------..,-------------------.

Description: The server_instance_identifier indicates which copy of the specified server is
reading or writing a particular server object.

Verbs Supplied on: Read, Terminate_Read, Terminate_Write, Write

Verbs Returned on: lnltiate_Read, lnitiate_Write

Format: Undefined byte string

Server_Llst_Entry -------------------------------.

Description: The server_Jist_entry describes one row In the Server List data structure.

Verbs Supplied on: Add_DSU_Data, List_DSU_Data, MOdify_DSU_Data, Remove_DSU_Data

Verbs Returned on: List_DSU_Data

546 SNA/Distribution Services Reference

Server_ObJect_Byte_Count --------------~------------.

Description: The server_object_byte_count is the number of bytes of all the segments of
the server object. An FS2-capable DSU originating a distribution must either
supply a correct byte count or omit the field completely; for FS1, the byte
count need not be accurate.

Verbs Supplied on: lnitiate_Write, Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution

Format: Unsigned binary integer (1-origin); maximum: 2**64 - 2

Servlce_Parms -------------------------------.

Description: The service_parameters describe the types and levels of service requested for
the distribution. These parameters are provided by the sending agent.

Verbs Supplied on: List_Adjacent_DSUs, List_Connections, Reroute_Distribution_Copies,
Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution, Receive_Distribution_Report

Sesslon_Reference ---------------------------------.

Description: The session_reference identifies the session for a log entry. It may be either a
sending or receiving session for which the distribution or the exception is
being logged.

Verbs Supplied on: None

Verbs Returned on: Get_Distribution_Log_Entry, Get_Exception_Log_Entry

Appendix F. Protocol Boundary Definitions 547

Sibling---------------------------------,

Description: The sibling is one of the ID (or T) values necessary to describe the detected
condition. The structure identified by sibling is a child of the parent identified
in parent_spec or a sibling of the structure identified in structure_spec. The
class of the sibling structure is the same as structure_class. The expected
position, when applicable, is given by structure_position.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Presence Rule:

Format:

Presence is governed by the SNA_report_code. The maximum number of
occurrences is governed by structure_class. For LENGTH_BOUNDED_LT, the
maximum number is 98; for LENGTH_BOUNDED_LLID, the maximum number is 49.

Undefined byte string

SNA_Condltion_Report ---------------------------

Description: The SNA_condition_report describes the condition being reported. The condi
tion is always identified by an SNA_report_code.

Certain conditions can be more fully described by supplementary information.
Conditions pertaining to one or more structures in a format can have the
location and contents of each of those structures specified by a
structure_report. Certain conditions arise from inconsistencies among mul
tiple portions of the MU. Each portion is described by a separate
structure_report. Other information related to the condition can be specified
in a supp/emental_report.

Verbs Supplied on: None

Verbs Returned on: Receive_Distrlbution_Report

SNA_Report_Code --------------------------~

Description: The SNA_report_code is an SNA-registered code identifying the condition that
is being reported. Refer to Appendix E for allowable values and descriptions.

Verbs Supplied on: None

Verbs Returned on: Get_Exception_Log_Entry

Subtables Found in: SNA_condition_report

Format: Byte string, see SNA Formats for further description.

548 SNA/Distribution Services Reference

Speclflc_Server_lnfo ----------------------------......

Description: The specific_server _information contains control information that is passed to
a specific server to allow it to build a server object.

Verbs Supplied on: Backout_Server_Object, lnitiate_Read, Send_Distribution

Verbs Returned on: Get_Distribution_lnfo, Receive_Distribution, Terminate_Write

Presence Rule:

Format:

Never present when server_access is present.

Undefined byte string

Speciflc_Server_Report ----------------------------.

Description: The specific_server_report reports on the actions of a specific server. It is
passed from the server to the agent by SNA/DS, either as a returned param
eter on a distribution request verb, or on the stand-alone verb
Obtain_Local_Server_Report. SNA/DS has no control over or knowledge of its
contents.

Verbs Supplied on: Backout_Server_Object

Verbs Returned on: Backout_Server_Object, Get_Distribution_lnfo, lnitiate_Read, lnitiate_Write,
Obtain_Local_Server_Report, Query_Distribution_Sending,
Receive_Distribution, Send_Distribution, Terminate_Read,
Terminate_Restartability, Terminate_Write

Format: Undefined byte string

Startlng_Queue_Entry_ID -----------------------------.

Description: The starting_queue_entry _identifier indicates the first queue entry identifier to
be considered when processing a List_Queue_Entries verb.

Verbs Supplied on: List_Control_MU_Queue, List_Queue_Entries

Verbs Returned on: None

Format: Undefined byte string

Startlng_Row_Number---------------------------~

Description: The starting_row _number indicates the first row of a DSU data structure that
the DSU should consider in listing a data structure.

Verbs Supplied on: List_DSU_Data

Verbs Returned on: None

Format: Signed binary integer (1-origin)

Appendix F. Protocol Boundary Definitions 549

Structure_Byta_Offset----------------------------.

Description: The structure_byte_offset marks the start of structure_contents within the
reported-on structure. If structure_segment_num is present, this value is the
offset from the start of the indicated segment; otherwise, it is the offset from
the beginning of the structure.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Format: Signed binary integer (1-origin)

Structure_Class ------------------------------..........,

Description: The structure_c/ass is the class of the reported-on structure and of any sib
lings identified in sibling. For more details on the classes of structures, see
Appendix G.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Format: Enumeration

Possible Values

LENGTH_BOUNOED_LLID

LENGTH_BOUNDED_LT

DELIMITED_LLID

DELIMITED_LT

IMPLIEO_LLID

IMPLIED_LT

550 SNA/Distribution Services Reference

Structure_Contents --------------------------------.

Description: The structure_contents is the portion of the MU that is relevant to the detected
condition. Typically, the structure_contents will contain the header of the
structure and at least the beginning of its contents. When the condition can
be isolated to a portion of the structure, the structure_contents will contain
only that portion of the structure relevant to the condition. In this case, the
structure_segment_num and structure_byte_offset locate the portion of the
structure relevant to the condition.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Presence Rule:

Format:

Allowed only when structure_state has the value PRESENT.

Undefined byte string

Structure_ID_Or_T ------------------------------...,

Description: The structure_ID _or _Tis the ID or T value of the structure. IDs are the regis
tered GOS codepoints and are referred to in SNA Formats. T values are
architecture-specific values relative to the encompassing ID.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Presence Rule: Required except when the siblings contain all pertinent ID (or T) values. In
this case, the structures specified by each sibling are the structures being
reported on.

Format: Undefined byte string

Structure_lnstance -------------------------------.,

Description: The structure_instance is used when the structure is one of multiple occur
rences of a repeatable structure. The value of structure_instance identifies
the particular instance within a position.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Format: Signed binary integer (1-origin)

Appendix F. Protocol Boundary Definitions 551

Structure_Positlon --------------------------------.

Description: The structure_position is either the actual or expected position of this struc
ture within its parent in this particular MU. Multiple consecutive instances of
a repeatable structure share a single position; they can be distinguished by
structure _instance.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Format:

Description:

Signed binary integer (1-origin)

The structure_report reports on a structure involved in a format-related condi
tion. Depending on the condition, the structure_report may describe a struc
ture that was present in or absent from the reported-on MU.

A format condition has its location in the MU pinpointed by a structure_spec
and a list of parent_spec parameters that define a line-of-descent. The line-of
descent begins with the MU and continues down the parent-child hierarchy to
a level as low as the particular condition warrants. A registered ID must
appear in a structure_report; if the reported-on structure is not itself a regis
tered ID, its line-of-descent must be traced up to include a registered
ancestor.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Presence Rule: Presence governed by the SNA_report_code.

Structure_Segment_Num -----------------------------.

Description: The structure_segment_number is the segment of the structure in which the
condition was detected.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Presence Rule:

Format:

Occurs when the beginning of structure_contents was not contained in the first
segment of the reported-on structure.

Signed binary integer (1-origin)

552 SNA/Distribution Services Reference

Structure_Spec ------------------------------~

Description: The structure_specification contains the identifier (ID or T) and the class of a
structure. For a structure that occurs multiple times, the instance may also be
included. The value of the structure_instance identifies the particular
instance. The position of this structure within its parent structure may also be
included. This would typically be done when the parent structure contains
unordered children.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found In: SNA_condition_report

Presence Rule: Absent only when structure_class has the value LENGTH_BOUNDED_LT and the
repeated values for sibling contain all the pertinent T values.

Structure_State ------------------------------~

Description: The structure_state indicates whether the reported-on structure was present
or absent.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Format: Enumeration

ABSENT

PRESENT

Meanina

The structure being reported on was absent.

The structure being reported on was present.

Supplemental_Report --------------------------------.

Description: The supp/emental_report contains other information pertaining to a condition.
The contents of supp/emental_report are governed by the SNA_report_code.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: SNA_condition_report

Presence Rule:

Format:

Presence governed by the SNA_report_code.

Undefined byte string

Appendix F. Protocol Boundary Definitions 553

Termlnation_Type -----------~-----------------------.
Description: The termination_type flag indicates the action the server is expected to take

regarding the object it has just completed reading or writing.

Verbs Supplied on: Terminate_Read, Terminate_Write

Verbs Returned on: None

Format: Enumeration

NORMAL

SUSPEND

ABORT

Meanina

The reading or writing of the server object completed
normally; any saved checkpoints can be discarded.

The reading or writing of the server object is being tem
porarily suspended. Any checkpoints that have been
taken should be saved to allow Byte-Count Restart. This
is the typical value for a Terminate_Read, since Byte
Count Restart may be required despite normal com
pletion of send-side server operations.

The reading or writing of the server object completed
abnormally; any saved checkpoints can be discarded.

UnH_Of_Work_ID ------------------------------.

Description: The unlt_of_work_identifier identifies a unit of work for a server. It is assigned
by the caller, either an agent or OS, on the lnitiate_Write verb. The
unit_of_work_identifler for OS is always the dlstribution_identification; for an
agent, it can be any agent-specific byte string.

Verbs Supplied on: lnitiate_Read, lnitiate_Write, Release_Read_Access

Verbs Returned on: None

Year------------------------------------~

Description: The year parameter gives the year portion of the date.

Verbs Supplied on: None

Verbs Returned on: None

Subtables Found in: connection_definitions_entry, date

Format: Signed binary integer (1-origin)

554 SNA/Distribution Services Reference

Appendix G.

Introduction

Encodings

This appendix contains the format descriptions of the FS1 and FS2 message
units. The format descriptions are comprised of two parts: header description
tables and structure descriptions. A header description table contains the
header information for each structure associated with a particular message
unit. A structure description contains a prose description of the structure, bit
level representations, and any presence rules or length restrictions associated
with a particular structure.

The definition of SNA/Oistribution Services (OS) requires a byte-accurate
description of the formats that must be understood by all OSUs. The OS
formats are described in terms of encoded fields referred to as Nstructuresn and
the hierarchical relationship between these structures. In this appendix, the
header description tables show each structure and its header. Elsewhere in
this book, the header length is assumed not to be part of the overall structure
length (e.g., SNA_report_code).

Structure Classifications
Fields and groupings of fields are known as structures. They are categorized in
terms of their hierarchical position ("atomic,N Nchild," or "parent"), the method
by which their beginning and endings are determined, (length-bounded, delim
ited, or implied) and which kind of header is used to identify them (LT or LLIO).
Only certain combinations of characteristics are possible.

Length-bounded Structures

Atomic Structures

Length-bounded structures consist of a header and usually some following
information. A header may be either two bytes in length, referred to as an "LT"
(length and type), or four bytes in length, referred to as an "LUO" (length and
GOS codepoint). In either case, the length bytes include the length of the
header itself and the following information, if any. For FS1, a header may be
either two bytes in length, referred to as an "LT," or five bytes in length,
referred to as an "LLIOF" (length, GOS codepoint, and format byte).

In many cases, a structure consists only of its own header followed by data.
These structures cannot be decomposed, and therefore they are called
"atomic." Atomic structures are always length-bounded and may have either
LT or LLIO headers.

Parent and Child Structures
Structures can contain other structures within them. The containing structure is
known as a parent structure and the contained structures are known as
children. These terms are relative, since a nonatomic child structure itself con
tains other structures and is a parent to them. Children of the same parent are
siblings of each other. Parent structures may be length-bounded, delimited, or
implied; and may be identified by l Ts or LLIOs.

Appendix G. Encodings 555

Length-Bounded Parent Structures
In this case, the parent structure has its own header, either an LT or an LLID.
Its length includes the lengths of all its children plus the length of its own
header. A length-bounded parent exists both as a logical grouping of its chil
dren and as an explicit encoded structure at its own encoding level.

Delimited Parent Structures
Sometimes it is convenient to define a group of related structures as existing
within a parent structure without having that parent structure appear as a
length-bounded structure in the message. The beginning and end of the parent
are defined by its first and last children. These children are known as delim
iters, the first child is the prefix delimiter and the last is the suffix delimiter.
Delimiter children are length-bounded and must be present. They may be null,
that is, with an LT of length =2 or an LLID of length =4. When the children's
headers are L Ts, the parent is classified as a delimited LT structure. When
they are LLIDs, the parent is a delimited LLID structure.

Implied Parent Structures
It is possible to define a set of related structures as children of a parent struc
ture where the existence and boundaries of the parent are implied by the exist
ence and order of certain child structures. This set of children may occur
within the parent structure, either ordered or unordered, until a structure occurs
that is not an element of this set. This break in sequence implies the boundary
between parent structures. Depending on its children's headers, an implied
parent is classified as either implied LT or implied LLID.

Segmented Structures
Length-bounded LLID Structures may be either segmentable or non
segmentable. For segmentable structures, the most significant bit of the LL
bytes indicates whether any particular segment is the last (bit is equal to 0) or
not last (bit is equal to 1) segment of the structure. The ID bytes of the
segmentable structure are present on the first segment only.

For FS1, segmentation is indicated by the contents of the F byte (the fifth byte
of the LLIDF header). Structures may be segmented when the most significant
bit of the F byte is on. If the most significant bit is on, then three more bytes,
the ISS bytes, follow the LLIDF h'3ader. The ISS bytes indicate whether a
particular segment is the last segment of a structure. In each segment except
the last segment of a structure, the I byte contains X'20'. In the last segment of
a structure, the I byte contains X'OO'. The SS bytes contain X'OOOO'.

Properties of Parent Structures

Order
A parent structure may have either ordered or unordered children. Ordered
children occur in the parent structure in the same order as they are described
in the format description table. Unordered children may occur in the parent
structure in any order.

556 SNA/Oistribution Services Reference

Unrecognized Children
Future enhancements to the formats might add structures that will not be recog
nized by implementations of the current format definitions. The current format
must specify for each parent whether or not unrecognized child structures are
allowed. If they are allowed, the definition must specify how long they might
be. When unrecognized structures are found where they are allowed, they
must be passed through without change at intermediate locations and grace
fully ignored at final destinations. Unrecognized structures are identified by
either LT or LLID headers, being of the same type as their siblings.

Number of Children
The number of children within a parent may range from a required minimum to
an allowed maximum. For example, a parent might have several children, each
defined with an occurrence of 0-1, and a number of children defined as 1. This
means that any one, but only one, child is allowed.

Header Description Table

Structure Name

The header information and primary syntax associated with each structure are
formally described in tabular form. These header description tables represent
the formatting information required to either parse or build DS structures.

The first column of the header description table identifies OS structures, by
name, and illustrates their hierarchical relationship by indentation of the
column entries. The order of the structure entries in the table represents,
unless specified otherwise, the order in which the structures appear in a DS
message unit.

Structure Reference (Struct Ref)
As header information and primary syntax are described in the header
description of a particular table, the semantics, bit representations, presence
rules, and other characteristics are described formally in the structure
description. This column contains a reference page number to where this
structure information is found.

Structure Class (Struct Class}
Structures are classified as either length-bounded LLIDs (ID). length
bounded L Ts (T). delimited LLIDs (Del-ID), delimited L Ts (Del-T), implied LLIDs
(Imp-ID), or implied l Ts (lmp-T).

A structure classified as delimited must contain at least two required, length
bounded children that act as the prefix (pfx) and suffix (sfx) of the delimited
structure. The "/pfx" notation indicates the length-bounded child struc
ture that serves as the prefix for its parent delimited structure. The "/sfx"
notation Indicates the length-bounded structure that serves as the suffix for
its parent delimited structure.

A structure classified as implied uses an identified child to identify the begin
ning of a sequence of children. The "/idc" notation indicates the length
bounded structure that serves as an identified child of its parent implied
structure.

Appendix G. Encodings 557

ID/T

Length

Occurrences

Children

The same notation is applied to the Format Set 1 encodings. Structures in
FS1 are classified as either length-bounded LLIDFs (IDF), length
bounded LTs (T), delimited LLIDFs (Del-IDF), delimited LTs (Del-T), implied
LLIDFs (lmp-IDF), or implied LTs (lmp-T).

The "/seg" notation indicates that segmentation is allowed.

This column contains the ID or T value within the header, in hexadecimal. To
indicate that a delimited structure is identified by its prefix, the notation "pfx" is
used. To indicate that an implied structure is identified by one of its children,
the notation "idc," for identified child, is used.

This column describes the length verification that would be appropriate at pres
entation services time. The range of length values specifies the minimum and
maximum lengths of structures that an implementation is required to receive.
For structures that allow unrecognized children, the maximum length value
accommodates the possibility of these yet-to-be-defined structures. On the
sending side, the maximum length value for a particular structure may be
determined by subtracting the unrecognized reserve, if unrecognized children
are allowed, from the maximum length.

Note: An asterisk denotes length restrictions for a particular structure. Length
restrictions are detailed in the corresponding structure description.

Multiple occurrences of DS structures may or may not be permitted. A value of
"1 - <some number>" in this column indicates the allowed range of occur
rences of the corresponding structure. A value of "2!1" indicates that there is
no architecturally defined maximum. A value of.111" in this column indicates
that only a single instance of the corresponding structure is appropriate. A
value of "O - 1" indicates that an instance of the corresponding structure is
optional.

Note: An asterisk denotes presence rules for a particular structure. Presence
rules are detailed in the corresponding structure description.

Unrecognized Children Allowed (Unrec): An entry of "Y" in the "Un rec" column
indicates that the corresponding structure tolerates unrecognized child struc
tures. An entry of "N" indicates that the particular structure tolerates only the
architecturally-defined child structures. An entry of"-" indicates that unrecog
nized children are not applicable to the particular structure. By definition,
atomic structures do not contain children, recognized or not.

Order: A value of "Y" in this column indicates that children are ordered, a
value of "N" indicates that children are unordered, and a value of"-" indicates
that no children are present.

Note: If a structure is atomic, this column is not applicable.

558 SNA/Distribution Services Reference

Number (Num): Each parent structure contains a certain number of different
children. This column specifies the minimum and maximum number of different
children for a particular parent structure. The maximum number also accounts
for unrecognized children, if they are allowed within the parent structure. This
column does not account for multiple occurrences of a particular child structure
within the parent structure. The number of occurrences of each child is indi
cated in the "Occurrences" column.

Subtable: Sometimes the need to divide large tables into subtables becomes
apparent, particularly when common children appear frequently within different
header description tables. This column contains a reference page number to
where these common children are described.

Structure Description
The structure description is referenced by a page number appearing in the
"Structure Reference" column corresponding to each structure in the header
description table. This description contains information pertaining to the data
portion of a particular structure. Prose descriptions, presence rules, and
semantics associated with the corresponding entry in the header description
table may appear in the structure description.

Appendix G. Encodings 559

Header Description Tables for FS2 Message Units

DISTRIBUTION TRANSPORT MESSAGE UNIT (DTMU)

Table 69 (Page 1 of 2). Distribution Transport Message Unit

Children

Structure Name
Struct Struct

10/T Length
Occur-

Ref Pg Class rences Un rec Order Num
Sub

Table

Dist_ Transport_ MU 568 Del-ID pfx ~53* 1 y y 4-12 -
Transport_ Prefix 568 ID/pfx 1570 8-18 1 N y 1-3 -

Hop_Count 568 T 01 4 1 - - - -
MU_ID 568 T 03 6 0-1· - - - -
MU_lnstance_Number 568 T 06 4 0-1· - - - -

Transport_ Command 569 ID/seg 1571 29-4096· 1 y y 3-30 -
Dist_ Flags 569 T 01 5 0-1 - - - -
Service_Parms 570 T 02 5-32 0-1 - - - -
Server_ Obj_ Byte_ Count 573 T 03 10 0-1* - - - -
Origin_Agent 573 T 04 3-10 1 - - - -
Server 573 T 05 3-10 0-1· - - - -
Origin_DSU 573 T 06 8-22 1 N y 2 -

Origin_RGN 574 T 01 3-10 1 - - - -
Origin_ REN 574 T 02 3-10 1 - - - -

Origin_ User 574 T 07 8-22 0-1 N y 2 -
Origin_DGN 574 T 01 3-10 1 - - - -
Origin_DEN 575 T 02 3-10 1 - - - -

Seqno_DTM 575 T 08 14.17• 1 - - - -
Supplemental_Dist_lnfo1 576 T 09 3-10 0-1 - - - -
Agent_ Correl 577 T OA 3-130 0-1 - - - -
Report-To_DSU 577 T OB 8-22 0-1 N y 2 -

Report-To_RGN 577 T 01 3-10 1 - - - -
Report-To_REN 577 T 02 3-10 1 - - - -

Report-To_User 578 T oc 8-22 0-1 N y 2 -
Report-To_DGN 578 T 01 3-10 1 - - - -
Report-To_DEN 578 T 02 3-10 1 - - - -

Report_Service_Parms 579 T OD 5-32 0-1 - - - -
Report-To_Agent 581 T OE 3-10 0-1 - - - -
Dest_Agent 582 T OF 3-10 0-1 - - - -
Unrecognized_Reserve 605 T - 2-3728 - - - - -

Dest_ List 582 ID/seg 1572 12-11268 1 N y 1 -
Dest 582 lmp-T idc 8-5654 ~1 N y 1-2 -

Dest_DSU 582 T/idc 01 8-22 1 N y 2 -
Dest_RGN 583 T 01 3-10 1 - - - -

560 SNA/Distribution Services Reference

Table 69 (Page 2 of 2). Distribution Transport Message Unit

Children

Structure Name
Struct Struct

ID/T Length
Occur-

Ref Pg Class rences Unrec Order Num
Sub

Table

Dest_ REN 583 T 02 3-10 1 - - - -
Dest_ User 583 T 02 8-22 ~o N y 2 -

Dest_DGN 583 T 01 3-10 1 - - - -
Dest_DEN 584 T 02 3-10 1 - - - -

Agent_ Object 584 ID/seg 1573 5-32767 0-1 - - - -
Server_ Object 584 ID/seg 1574 ~5 0-1 - - - -
Supplemental_Dist_lnfo2 584 ID/seg 1580 5-32767 0-1 - - - -
Unrecognized_ Reserve 605 ID/seg - 4-32767 - - - - -
DS_Suffix 584 ID/sfx 157F 4 1 - - - -

Note: * Refer to FS2 Structure Descriptions starting on page 568 for presence rules and length restrictions.

...

Appendix G. Encodings 561

DISTRIBUTION REPORT MESSAGE UNIT (DRMU)

Table 70 (Page 1 of 2). Distribution Report Message Unit

Children

Structure Name
Struct Struct ID/T Length

Occur-
Ref Pg Class rences Unrec Order Num

Sub
Table

Dist_Report_MU 585 Del-ID pfx ?!77" 1 y y 6-12 -
Report_Preflx 585 ID/pfx 157C 8-18 1 N y 1-3 -

Hop_Count 568 T 01 4 1 - - - -
MU_ID 568 T 03 6 0-1 - - - -
MU _lnstance_Number 568 T 06 4 0·1" - - - -

Report_Command 585 ID/seg 1575 25-4096" 1 y y 3-20 -
Service_Parms 570 T 02 5-32 0-1 - - - -
Report-To_Agent 581 T 04 3-10 1 - - - -
Reporting_DSU 585 T 06 8-22 1 N y 2 -

Reporting_RGN 585 T 01 3-10 1 - - - -
Reporting_ REN 585 T 02 3-10 1 - - - -

Report_DTM 586 T 09 10-13" 1 - - - -
Unrecognized_Reserve 605 T - 2-4015 - - - - -

Report-To_Osu _user 587 ID 1583 12-48 1 N y 1-2 -
Report-To_Dsu 577 T 01 8-22 1 N y 2 -

Report-To_RGN 577 T 01 3-10 1 - - - -
Report-To_REN 577 T 02 3-10 1 - - - -

Report-To_User 578 T 02 8-22 0-1 N y 2 -
Report·To_OGN 578 T 01 3-10 1 - - - -
Report-To_OEN 578 T 02 3-10 1 - - - -

Report_lnformation 588 10/seg 1576 18-4096 1 y y 1-24 -
Reported-On_ Origin_DSU 588 T 06 8-22 0-1" N y 2 -

Reported-On_ Origin_RGN 588 T 01 3-10 1 - - - -
Reported-On_ Origin_ REN 588 T 02 3-10 1 - - - -

Reported-On_ Origin_ User 589 T 07 8-22 0-1" N y 2 -
Reported-On_ Origin_DGN 589 T 01 3-10 1 - - - -
Reported-On_ Origin_OEN 589 T 02 3-10 1 - - - -

Reported-On_Seqno_OTM 590 T 08 14-17 1 - - - -
Reported-On_Supp_Oist_lnfo1 592 T 09 3-10 0-1" - - - -
Reported-On_Agent_ Correl 592 T OA 3-130 0-1 - - - -
Reported-On_Origin_Agent 592 T OB 3-10 0-1* - - - -
Reported-On_Oest_Agent 592 T oc 3-10 0-1" - - - -
Receiving_DS U 601 T 10 8-22 0·1 N y 2 -

Receiving_RGN 601 T 01 3-10 1 - - - -
Receiving_ REN 602 T 02 3-10 1 - - - -

Unrecognized_Reserve 605 T - 2-3849 - - - - -
SNA_ Condition_Report 593 10/seg 1532 10-32767 1 y y 1-10 564

Reported-On_Supp_Dist_lnfo2 593 10/seg 1582 5-32767 0-1* - - - -
Unrecognized_Reserve 605 10/seg - 4-32767 - - - - -

562 SNA/Oistribution Services Reference

Table 70 (Page 2 of 2). Distribution Report Message Unit

Children

Structure Name
Struct Struct

IDIT Length
Occur·

Ref Pg Class ranees Unrec Order Num
Sub

Table

DS_Suffix 584 ID/sfx 157F 4 1 - - - -
Note: * Refer to FS2 Structure Descriptions starting on page 568 for presence rules and length restrictions.

DISTRIBUTION CONTINUATION MESSAGE UNIT (DCMU)

Table 71. Distribution Continuation Message Unit

Children

Structure Name
Struct Struct

IDIT Length
Occur·

Ref Pg Class rences Unrec Order Num
Sub

Table

Dist_ Continuation_ MU 593 Del-ID pfx ~18 1 y y 2-10 -
Continuation_Prefix 593 ID/pfx 1578 14-24 1 N y 2-3 -

MU_ID 568 T 03 6 1 - - - -
MU _lnstance_Number 568 T 06 4 1 - - - -
Restarting_Byte_Position 593 T 02 10 0-1 - - - -

Agent_ Object 584 ID/seg 1573 5-32767 0-1 - - - -
Server_ Object 584 ID/seg 1574 ~5 0-1 - - - -
Supplemental_Dist_lnfo2 576 ID/seg 1580 5-32767 0-1* - - - -
Unrecognized_Reserve 605 ID/seg - 4-32767 - - - - -
DS_Suffix 584 ID/sfx 157F 4 1 - - - -

Note: * Refer to FS2 Structure Descriptions starting on page 568 for presence rules.

Appendix G. Encodings 563

SNA CONDITION REPORT

Table 72. SNA Condition Report

Children

Structure Name
Struct Struct

10/T Length
Occur-

Ref Pg Class rences Unrec Order Num
Sub

Table

SNA_Condition_Report 593 ID 1532 10-32767 1 y y 1-10 -
SNA_Report_Code 594 T 70 6 1 - - - -
Structure_Report 594 T 01 14-255 0-10* y y 2-10 -

Structure_ State 594 T 01 3 1 - - - -
Structure_ Contents 595 T 02 3-100 0-1* - - - -
Parent_ Spec 595 T 03 5-17 0-7 N y 1-4 -

Parent_ID_Or_T 595 T 01 3-4 1 - - - -
Parent_ Class 595 T 02 3 0-1* - - - -
Parent_Position 596 T 03 4 0-1 - - - -
Parent_lnstance 596 T 04 4 0-1 - - - -

Structure_Spec 596 T 04 5-17 0-1* N y 1-4 -
Structure_ID_Or_T 596 T 01 3-4 0-1* - - - -
Structure_ Class 597 T 02 3 0-1* - - - -
Structure_Position 597 T 03 4 0-1 - - - -
Structure_lnstance 597 T 04 4 0-1 - - - -

Structure_ Segment_Number 597 T 05 4 0-1* - - - -
Structure_Byte_Offset 598 T 06 4 0-1 - - - -
Sibling_ List 598 T 07 3-100 0-1* - - - -
Unrecognized_Reserve 605 T - 2-241 - - - - -

Reported-On_Dest_List 598 Del-T pfx 12-11268 0-1· N y 3 -
Reported-On_Oest_Prefix 598 T/pfx 08 2 1 - - - -
Reported-On_Dest 598 lmp/T idc 8-5654 ~1 N y 1-2 -

Reported-On_Dest_DSU 598 T/idc 09 2-22 1 N y 0-2 -
Reported-On_Dest_RGN 599 T 01 3-10 0-1* - - - -
Reported-On_Dest_REN 599 T 02 3-10 0-1* - - - -

Reported-On_Dest_ User 599 T OA 8-22 ~o N y 2 -
Reported-On_Dest_DGN 600 T 01 3-10 1 - - - -
Reported-On_Dest_DEN 600 T 02 3-10 1 - - - -

Reported-On_ Dest_ Suffix 600 T OB 2 1 - - - -
Supplemental_Report 600 T 03 3-255 0-5* - - - -
Unrecognized_Reserve 605 T - 2-17664 - - - - -

Note: * Refer to FS2 Structure Descriptions starting on page 568 for presence rules and length restrictions.

564 SNA/Distribution Services Reference

SENDER EXCEPTION MESSAGE UNIT (SEMU)

Table 73. Sender Exception Message Unit

Children

Structure Name
Struct Struct

ID/T Length
Occur-

Ref Pg Class rences Unrec Order Num
Sub

Table

Sender _Exception_M U 601 ID 1578 10-256 1 y y 1-10 -
SNA_Report_Code 594 T 7D 6 1 - - - -
MU_ID 568 T 03 6 0-1 - - - -
MU_lnstance_Number 568 T 06 4 0-1* - - - -
Unrecognized Reserve 605 T - 2-236 - - - - -

Note: • Refer to FS2 Structure Descriptions starting on page 568 for presence rules.

RECEIVER EXCEPTION MESSAGE UNIT (REMU)

Table 74. Receiver Exception Message Unit

Children

Structure Name
Struct Struct

ID/T Length
Occur-

Ref Pg Class rences Un rec Order Num
Sub

Table

Receiver _Exception_MU 601 Del-ID pfx 0::25 1 y y 2-10 -
Receiver _Exception_ Command 601 ID/pfx 1577 15-512 1 y y 2-8 -

Sender _Retry _Action 601 T 01 3 1 - - - -
MU_ID 568 T 03 6 0-1 - - - -
MU_lnstance_Number 568 T 06 4 0-1* - - - -
Receiving_DSU 601 T 16 8-22 1 N y 2 -

Receiving_RGN 601 T 01 3-10 1 - - - -
Receiving_REN 602 T 02 3-10 1 - - - -

Unrecognized_Reserve 605 T - 2-473 - - - - -
Unrecognized_Reserve 605 ID - 0::4 - - - - -
SNA Condition Report 593 ID/sfx 1532 10-1024 1 y y 1-10 564

Note: • Refer to FS2 Structure Descriptions starting on page 568 for presence rules.

Appendix G. Encodings 565

COMPLETION QUERY MESSAGE UNIT (CQMU)

Table 75. Completion Query Message Unit

Children
Structure Name

Struct Struct
10/T Length Occur·

Ref Pg Class ranees Un rec Order Num
Sub

Table

Completlon_Query_MU 602 ID 1579 14-256 1 y y 2·10 -
MU_ID 568 T 03 6 1 - - - -
MU _lnstance_Number 568 T 06 4 1 - - - -
Unrecognized_Reserve 605 T - 2-242 - - - - -

COMPLETION REPORT MESSAGE UNIT (CRMU)

Table 76. Completion Report Message Unit

Children
Structure Name

Struct Struct
10/T Length

Occur•
Ref Pg Class rences Unrec Order Num

Sub
Table

Completion_Report_MU 602 ID 157A 7-256 1 y y 1-10 -
lndicator_Flags 602 T 01 3 1 - - - -
MU_ID 568 T 03 6 0·1 - - - -
MU_lnstance_Number 568 T 06 4 0-1* - - - -
Last_Structure_Received 603 T 04 4 0-1* - - - -
Last_Byte_Received 603 T 05 10 0-1* - - - -
Unrecognized_Reserve 605 T - 2-225 - - - - -

Note: * Refer to FS2 Structure Descriptions starting on page 568 for presence rules.

PURGE REPORT MESSAGE UNIT (PRMU)

Table 77. Purge Report Message Unit

Children

Structure Name
Struct Struct

ID/T Length
Occur·

Ref Pg Class rences Unrec Order Num
Sub

Table

Purge_Report_MU 603 ID 157E 10-256 1 y y 1-10 -
MU_ID 568 T 03 6 1 - - - -
Unrecognized_Reserve 605 T - 2-246 - - - - -

566 SNA/Distribution Services Reference

RESET REQUEST MESSAGE UNIT (RRMU)

Table 78. Reset Request Message Unit

Children
Structure Name Struct Struct IDJT Length

Occur-
Ref Pg Class rences Unrec Order Num

Sub
Table

Reset_Request_MU 603 ID 1585 21-23 1 N y 2 -
MU_ID 568 T 03 6 1 - - - -
Reset_DTM 603 T 09 11-13 1 - - - -

RESET ACCEPTED MESSAGE UNIT (RAMU)

Table 79. Reset Accepted Message Unit

Children

Structure Name
Struct Struct

IDJT Length
Occur-

Ref Pg Class ranees Unrec Order Num
Sub

Table

Reset_Accepted_MU 604 ID 1586 21-23 1 N y 2 -
MU_ID 568 T 03 a 1 - - - -
Reset DTM 603 T 09 11-13 1 - - - -

Appendix G. Encodings 567

FS2 Structure Descriptions

Dlst_Transport_MU ---------------------------~

Description: The distribution_transport_message_unit transports agent and/or server
objects for distribution to one or more users or application programs.

Length Restriction: The minimum length of a dist_transport_MU originated by an FS2 DSU is 54
bytes. This is due to the length restriction on the Seqno_DTM.

Transport_Preflx ----------------------------~
Description: The transport_preflx Identifies the beginning of the dist_transport_MU. This

structure carries information that changes from DSU to DSU.

Hop_Count --------------------------------.

Description:

Format:

The hop_count is the remaining number of hops that may be traversed by a
OS distribution on its way toward its destination DSUs. The hop_count is set
by the origin DSU in the DTMUs and by the reporting DSUs for the DRMUs.
The hop_count is decremented by 1 in every DSU through which the
distribution passes. If the hop_count reaches 0 at an intermediate DSU,
exception processing is invoked.

Signed binary integer (1-origin)

MU_ID ---------------------------------.
Description:

Presence Rule:

Format:

Description:

Presence Rule:

Format:

The message_unit_identifier is a number that uniquely Identifies a distribution
MU throughout its existence. An MU exists for only one hop, from one DSU to
the adjacent DSU. In REMUs and SEMUs, the MU_ID refers to a distribution
MU. An MU_ID is unique only for a particular LU name, mode name combina
tion.

If the MU_ID is absent, exception reporting may not be requested.

Signed binary integer (1-origin)

The message_unit_instance_number identifies the instance of a particular dis
tribution message unit and its corresponding MU_ID.

Precluded if an MU_ID is not present; otherwise, required.

Signed binary integer (1-origin)

568 SNA/Distribution Services Reference

Transpon_Command ----------------------------~

Description: The transport_command contains the control information used by the distrib
ution service to transport the distribution.

Length Restriction: The minimum length of a transport_command originated by an FS2 DSU is 30
bytes. This is due to the length restriction on the Seqno_DTM.

Dlst_Flags ------------------------------------.

Description:

Note:

Format:

The distribution_flags indicate services requested by the origin agent.

If exception reporting is requested, the MU_ID is always present.

Bit string

Byte Bit Content

0-1 LT header

2 Flags (bits 0-7) that must be understood and honored by
all DSUs

0 Exception report flag indicating whether an exception
report is to be sent if the distribution is aborted:
0 no exception report to be sen~ (default)
1 exception report to be sent

1-7 Reserved

3 Flags (bits 0-7) that must be understood and honored by
destination DSUs, but that can be ignored by interme-
diate DSUs

0-7 Reserved

4 Flags (bits 0-7) that are ignored by DSUs if not under-
stood

0-7 Reserved

Appendix G. Encodings 569

Servlce_Parms ------------------------------~

Description:

Format:

The service_parameters structure describes the types and levels of service
requested for the distribution. The parameters in this structure are provided
by the origin agent. The service_parameters used in the DTMU and the DRMU
are similar; the differences in such usage and the default values used for
absent service_parameter (SP) triplets are discussed under the individual trip
lets below. Refer to Appendix C for details on the base and option subsets
for service_parameters. The default values specified below are assumed for
absent service_parameter (SP) triplets.

In FS1, the service_parameters are specified by the origin agent in Dist_MU
type TRANSPORT. The specification for deriving the service_parameters for
Dist_MU type REPORT is found in the description of report_service_parameters
on page 579.

Special format consisting of ordered, optional, SP triplets of the following
general structure:

Byte Bit

0

1
0-3

4-7

2

Content

Parameter type:
All parameter type byte values are defined by or
reserved for SNA/DS.

Comparison operator:
1100 REQUIRE_LEVEL_GE

1110 REQUIRE_SUPPORT_FOR

Note: All other values for bits 0-3 are reserved.
Reserved

Value:
The meaning of this byte depends on the parameter
type.

Byte Content

0-1 LT header

2-31 Up to 10 different service_parameter (SP) triplets may be carried in
one distribution. Each triplet, when present, appears in ascending
sequence of parameter type. For FS2, the capacity triplet is not
used in the DRMU. For FS1, the capacity triplet is used. For FS2,
all service parameters are optional in both the DTMU and the

. DRMU. For FS1, the first three parameters are present in both
Dist_MU types TRANSPORT and REPORT. The architecturally defined
service parameters are given below:

570 SNA/Distribution Services Reference

Priority SP Triplet

Byte Content

0 X'01'

1 X'CO' REQUIRE_LEVEL_GE

2 X'FO' FAST (default)
X'DO' CONTROL

X'80' DATA_16 (can be treated as DATAHI)

X'78' DATA_15 (can be treated as DATAHI)

X'70' DATA_14 (can be treated as DATAHI)

X'68' DATA_13 (can be treated as DATAHI)

X'60' DATA_12 (DATAHI)

X'58' DATA_11 (can be treated as DATAHI)

X'50' DATA_10 (can be treated as DATAHI)

X'48' DATA_9 (can be treated as DATAHI)

X'40' DATA_8 (can be treated as DATALO)

X'38' DATA_7 (can be treated as DATALO)

X'30' DATA_6 (can be treated as DATALO)

X'28' DATA_5 (can be treated as DATALO)

X'20' DATA_4 (DATALO)

X'18' DATA_3 (can be treated as DATALO)

X'10' DATA_2 (can be treated as DATALO)

X'08' DATA_1 (can be treated as DATALO)

Note: All other values are reserved.

Protection SP Triplet

Byte Content

O X'02'

1 X'CO' REQUIRE_LEVEL_GE

2 X'10' LEVEL1 (default when Priority SP is GE X'EO'):
safe store may be performed.

X'30' LEVEL2 (default when Priority SP is LT X'EO'):
safe store must be performed.

Note: All other values are reserved.

Appendix G. Encodings 571

Capacity SP Triplet

Byte Content

0 X'03'

1 X'CO' REQUIRE_LEVEL_GE

2 Capacity value is the exponent of the power of 2 that represents
the value of the required capacity for the server _object in the
DTMU:

X'OO' ZERO

X'14' 1MB

X'16' 4MB

(default when Priority SP is GE X'EO')
used if there is no server_ object
in dist_transport_MU.
one megabyte

X'18' 16MB (default when Priority SP is LT X'EO')
Note: All other values are reserved.

1. In FS2, the Capacity SP triplet occurs only in a
DTMU.

2. Receiving FS2 OSUs are always able to
receive a capacity level of INDEFINITE (designated
by X'EOFF' in bytes 1-2).
Originating FS2 DSUs never generate the
capacity level of INDEFINITE. The level
replacing INDEFINITE is 16MB (X'C018').

3. The capacity requirement is for the
server_object, and does not include the
capacity needed to store and handle the
other structures of the DTMU.

4. Implementations may accept other capacity
levels as long as they can route the
distribution responsibly.

Security SP Triplet

Byte Content

0 X'04'

1

2

X'CO' REQUIRE_LEVEL_GE

X'01' LEVEL1 (default): security is not required.
X'20' LEVEL2: security is required.
Note: All other values are reserved:

572 SNA/Distribution Services Reference

Server_ObJ_Byte_Count ---------------------------.

Description:

Presence Rule:

Format:

The server_object_byte_count is the number of bytes of all the segments of
the server_object. An FS2-capable DSU originating a distribution either sup
plies a correct byte count, or omits the field completely; for FS1, the byte
count need not be accurate.

Optional when the server_object is present; otherwise, precluded.

Unsigned binary integer (1-origin)

Orlgln_Agent -------------------------------.

Description:

Format:

The origin_agent is the transaction program at the DSU at which the distrib
ution originated.

Character string, except for first byte

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges In value from X'OO' to X'3F'. When the first
byte ranges in value from X'41' to X'FF', the transaction
program is not SNA registered. X'40' is not a valid first
byte.

Server~---------------------------------.

Description:

Presence Rule:

Format:

The server Is the name to be used to store the server_object at the destina
tion.

In FS2, optional when the server_object is present; otherwise, precluded. If
optional and absent, the general server TP name is the default. In FS1,
required when the server_object Is present.

Character string, except for first byte

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, imbedded, and trailing space (X' 40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X'41' to X'FF', the transaction
program is not SNA registered. X'40' is not a valid first
byte.

Orlgln_osu --------------------------------.

Description: The origin_DSU is the name of the DSU at which the distribution originated.

Appendix G. Encodings 573

Orlgln_RGN -----------------------------.....

Description:

Format:

The origin_RGN is the first part of the name of the DSU at which the distrib
ution originated. This is typically, but not necessarily, the network ID.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

Orlgln_REN -----------------------------....,

Description:

Format:

The origin_REN is the second part of the name of the DSU at which the distrib
ution originated. This is typically, but not necessarily, the LU name.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed. ·

Origin_ User------------------------------.....

Description: The origln_user is the user name of the originator of the distribution.

Orlgln_DGN ------------------------------.

Description:

Note:

Format:

The origin_DGN is the first part of tha user name of the distribution originator.

For FS1, when the Dist_ MU is of type REPORT and the distribution report was
generated by OS, null user names will occur.

Character string

CGCSGIDs:

String Conventions:

01134-00500 (base), 00930-00500 (enhanced character set)

Base Leading, lmbedded, and trailing space (X' 40')
characters are not allowed.

ECS Leading space (X' 40') characters are not
allowed, trailing space characters are not sig~
nificant, and imbedded space characters are
significant.

574 SNA/Distribution Services Reference

Orlgln_DEN ------------------------------..

Description:

Note:

Format:

The origin_DEN is the second part of the user name of the distribution origi
nator.

For FS1, when the Dist_MU is of type REPORT and the distribution report was
generated by OS, null user names will occur.

Character string

CGCSGIDs:

String Conventions:

01134-00500 (base), 00930-00500 (enhanced character set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space (X'40') characters are not
allowed, trailing space characters are not sig
nificant, and imbedded space characters are
significant.

Seqno_DTM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.

Description: The sequence_number/date-time, in combination with the origin_agent,
origin_user, and origin_DSU, uniquely identifies the distribution. The
sequence number is the number assigned to the distribution by the origin
agent. For FS2, the number ranges from 1 to (2**31)-1. For FS1, the number
ranges from 0 (for report MUs) to 9999. Refer to Appendix D for migration
details. The date of the distribution is assigned by the origin agent; the time
of the distribution is assigned by the origin DSU. The offset from GMT for
local time is included.

Note: FS2 tolerates sequence numbers with value 0 in message units that had, at
some point, come from an FS1 network and had already specified a sequence
number of 0 (i.e., DIA application status reports). However, sequence
numbers with value 0 are never originated from within an FS2 network.

Length Restriction: Originating FS2 DSUs generate a GMT-based time. The minimum length for
seqno_DTM is therefore 15 (1-origin).

Format: Byte string

Appendix G. Encodings 575

Byte Content

0-1 LT header

SEQ NO
2-5 Signed binary integer limited to (2**31)-1

DATE
6-7 Year, in binary (e.g., 1989 is encoded as X'07C5')
8 Month of the year, in binary (values from 1 to 12 are valid)
9 Day of the month, In binary (values from 1 to 31 are valid)

TIME
10 Hour of the day, in binary (values from Oto 23 are valid)
11 Minute of the hour, in binary (values from 0 to 59 are valid)
12 Second of the minute, in binary (values from 0 to 59 are valid)
13 Hundredth of the second, in binary (values from Oto 99 are valid)

GMT FLAGS
14 Indicates that specified TIME is GMT and identifies whether offsets

from GMT are required to calculate local time. (Equivalent EBCDIC
characters are shown In parentheses.)
X'E9' (z) no offset required
X' 4E' (+) add required offset to GMT to get

local time
X'60' (-) subtract required offset from GMT to get

local time
Note: All other values are reserved.

15 Hour offset from GMT, in binary, occurs when GMT flag -:I: X'E9'
(values from 0 to 23 are valid)

16 Minute offset from GMT, in binary, occurs when GMT flag -:I: X'E9'
(values from 0 to 59 are valid)

Examples:

A 9-byte date-time encoding is a date-time followed immediately by an EBCDIC
"Z" and is considered to be GMT. Thus, 12:00GMT on 2 January 1988 would be

X107C401020C000000E9 1

yyyyMMddHHmmsshhZ

An 11-byte date-time encoding is a date-time followed immediately by an
EBCDIC"+" or"-" and two 1-byte binary numbers, and Is considered to be
GMT and the offset from GMT to local time. Thus, 7:00am on 2 January 1988 in
New York would be 12:00GMT - 5 hours, or

X107C401020C000000600500 1

yyyyMMddHHmmsshh- HHmm

Supplemental_Dlst_lnfo1 ---------------------------.

Description:

Format:

The supplemental_dist_infot structure is reserved for future use.

Character string

576 $NA/Distribution Services Reference

Agent_Correl ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----.

Description:

Format:

The agent_correlation is a string supplied by the origin agent. OS is not
aware of its contents.

Undefined byte string

Repon-To_DSU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~----.

Description: The report-to_DSU is the name of the DSU to which distribution reports are to
be sent. If both report-to_DSU and report-to_user are absent in the DTMU, the
values generated in the DRMU for these structures default to the origin. If
only report-to_DSU is present in the DTMU, then any report is sent to that
DSU. If only report-to_user is present in the DTMU, then the reporting DSU
will refer to its directory to determine report-to_DSU. For FS1, this information
Is valid only if Dist_ MU is of type TRANSPORT.

Repon-To_RGN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~---.

Description:

Format:

The report-to_RGN is the first part of the DSU name to which distribution
reports are to be sent. For FS1, this information is valid only if Dist_MU is of
type TRANSPORT. This is typically, but not necessarily, the network ID.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

Repon-To_REN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description:

Format:

The report-to_REN is the second part of the DSU name to which distribution
reports are to be sent. For FS1, this information is valid only if Dist_MU is of
type TRANSPORT. This is typically, but not necessarily, the LU name.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, lmbedded, and trailing space (X' 40') characters
are not allowed.

Note: If a product chooses to implement DGN =REN, the
enhanced character set (ECS) subset is implemented in a
particular network, and any DGN contains an ECS char
acter that is not an element of character set AR, then ECS
characters may occur in this structure.

Appendix G. Encodings 577

Repon-To_User ~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

Description: The report-to_user is the name of the user to which distribution reports are to
be sent. If both report-to_user and report-to_DSU are absent in the DTMU, the
values generated in the DRMU for these structures default to the origin. If
only report-to_user is present in the DTMU the reporting DSU refers to its
directory to determine report-to_DSU. For FS1, this information is valid only if
Dist_MU is of type TRANSPORT.

Repon-To_DGN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~---.

Description:

Format:

The report-to_DGN is the first part of the user name to which distribution
reports are to be sent. For FS1, this information is valid only if Dist_MU is of
type TRANSPORT.

Character string

CGCSGIDs:

String Conventions:

01134-00500 (base), 00930-00500 (enhanced character set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space (X' 40') characters are not
allowed, trailing space characters are not sig
nificant, and imbedded space characters are
significant.

Repon-To_DEN ~~~~~~~~~~~~~~~~~~~~~~~~~~~---.

Description:

Format:

The report-to_DEN is the second part of the user name to which distribution
reports are to be sent. For FS1, this information is valid only if Dist_MU is of
type TRANSPORT.

Character string

CGCSGIDs:

String Conventions:

01134-00500 (base), 00930-00500 (enhanced character set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space (X'40') characters are not
allowed, trailing space characters are not sig
nificant, and imbedded space characters are
significant.

578 SNA/Distrlbution Services Referenee

Report_Servlce_Parms ------------------------------.

Description:

Format:

The report_service_parameters structure describes the service requested for
the distribution report by the origin agent when the agent wants to override
the service_parameters that would be routinely generated by the reporting
DSU for the report MU. If report_service_parameters are specified, they are
used as the service_parameters in any DRMUs that are generated as part of
the distribution. If the origin agent does not specify one or more of the
report_service_parameters, a DSU that generates a report derives appropriate
service_parameters for the DRMU from the service_parameters in the DTMU.

For FS2, the comparison operators and values derived for the protection and
security parameters are the same as those specified (explicitly or implicitly) in
the DTMU. For FS1, the comparison operators and values derived for the pro
tection, capacity, and security parameters are the same as those specified in
the Dist_MU type TRANSPORT.

For the priority service parameter, the value derived is either FAST or CONTROL

FAST is used if the DTMU specified FAST priority; CONTROL is used if the DTMU
specified a DATA_N priority. CONTROL priority is used only in DRMUs; it may not
be specified for the priority service parameter in a DTMU. If the origin agent
explicitly specifies a value for the priority report service parameter, the value
may be FAST, CONTROL, or DATA_N. The comparison operator for the priority
service parameter is always REQUIRE_LEVEL_GE.

Special format consisting of ordered, optional report_service_parameter trip
lets of the same general structure as for service_parameters. See
service _parameters on page 570.

Byte Content

0-1 LT header

2-31 Up to 10 different report_service_parameter (RSP) triplets may be
carried in one distribution. Each triplet, when present, appears in
ascending sequence of parameter type. For FS2, the capacity
triplet is not used in the DRMU, and therefore the capacity RSP is
never specified. For FS1, the capacity triplet is used. For FS2, all
service parameters are optional in both the DTMU and the DRMU.
For FS1, the first three parameters-priority, protection, and
capacity-are present if report service parameters are to be speci-
fied. ·

Appendix G. Encodings 579

Priority RSP Triplet

Byte Content

0 X'01'

1 X'CO' REQUIRE_LEVEL_GE

2 X'FO' FAST

X'DO' CONTROL

X'80' DATA_16 (can be treated as DATAHt)

X'78' DATA_15 (can be treated as DATAHt)

X'70' DATA_14 (can be treated as DATAHt)

X'68' DATA_13 (can be treated as DATAHI)

X'60' DATA_12 (DATAHI)

X'58' DATA_11 (can be treated as DATAHI)

X'50' DATA_10 (can be treated as DATAHI)

X'48' DATA_9 (can be treated as DATAHI)

X'40' DATA_8 (can be treated as DATALO)

X'38' DATA_7 (can be treated as DATALO)

X'30' DATA_6 (can be treated as DATALO)

X'28' DATA_5 (can be treated as DATALO)

X'20' DATA_4 (DAT ALO)

X'18' DATA_3 (can be treated as DATALO)

X'10' DATA_2 (can be treated as DATALO)

X'08' DATA_1 (can be treated as DATALO)

Note: All other values are reserved.

Protection RSP Triplet

Byte Content

O X'02'

1

2

X'CO' REQUIRE_LEVEL_GE

X'10' LEVEL1: safe store may be performed.
X'30' LEVEL2: safe store must be performed.
Note: All other values are reserved.

580 SNA/Distribution Services Reference

Description:

Format:

Capacity RSP Triplet (not present In FS2)

Byte Content

0 X'03'

1 X'CO' REQUIRE_LEVEL_GE

2 X'OO' ZERO

Notes: All other values are reserved.
Also, All FS1 implementations are able to receive
distribution reports of FOUR_K capacity (X'OC').
New FS1 implementations always send
distribution reports of ZERO capacity.

Security RSP Triplet

Byte Content

0 X'04'

1 X'CO' REQUIRE_LEVEL_GE

2 X'01' LEVEL1: security is not required.
X'20' LEVEL2: security is required.
Note: All other values are reserved.

The report-to_agent is the name of the application transaction program to be
started after the report is queued for delivery. If report-to_agent is absent in
the DTMU, the value specified in the DTMU for origin_agent is used in the
DRMU for report-to_agent.

Character string, except for first byte.

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X'41' ~o X'FF', the transaction
program is not SNA registered. X'40' is"not a valid first
byte.

Appendix G. Encodings 581

Dest_Agent-------------------------------~

Description:

Format:

The destination_agent is the transaction program at the destination DSU
to which the distribution is to be delivered. If dest_agent is absent in
the DTMU, the value specified for origin_agent is assumed to be the
dest_agent.

Character string, except for first byte

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When 'ihe first
byte ranges in value from X'41' to X'FF', the transaction
program is not SNA registered. X'40' is not a valid first
byte.

Dest_ List ----------------------------------.

Description:

Description:

The destination_list is the list of destinations for the distribution, which can
contain up to 256 destinations. Each destination is a dest_DSU with or without
a dest_user, expressed as (dest_DSU (,dest_user)). For single-destination dis
tributions and distribution reports, the dest_list contains only one destination.

Either a flat destination list, of the form

(dest_DSU (dest_user)), ... , (dest_DSU (dest_user)), ...

or a factored destination list, of the form

(dest_DSU (dest_user, dest_user, ...)), (dest_DSU (destuser, ...))

may be present. For example, a flat destination list might contain

(DSU_A USER_1), (DSU_A USER_2), (DSU_A), (DSU_B USER_3), (DSU_B USER_4)

whereas a factored destination list would contain

(DSU_A (USER_1, USER_2}), (DSU_A), (DSU_B (USER_3, USER_4)).

The destination associates dest_users with a dest_DSU. For flat destination
lists, there are zero or one user names per dest. For factored destination
lists, there can be multiple user names per dest.

Dest_DSU ----------------------------------.

Description: The destination_DSU is the name of one of the DSUs to which the distribution
is to be sent.

582 SNA/Distribution Services Reference

Dest_RGN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description:

Format:

The destination_RGN is the first part of a dest_DSU name. This is typically,
but not necessarily, the network ID.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: leading, imbedded, and trailing space (X' 40') charac
ters are not allowed.

Dest_REN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description:

Format:

The destination_REN is the second part of a dest_DSU name. This is typically,
but not necessarily, the LU name.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, imbedded, and trailing space (X' 40') characters
are not allowed.

Note: If a product chooses to implement DGN =REN, the
enhanced character set (ECS) sub~et is implemented in a
particular network, and any DGN contains an ECS char
acter that is not an element of character set AR, then ECS
characters may occur in this structure.

Dest_User~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~__,

Description: The destination_user is the name of one of the users to which the distribution
is to be sent.

Dest_DGN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description:

Format:

The destination_DGN Is the first part of the name of a dest_user.

Character string

CGCSGIDs:

String Conventions:

01134-00500 (base), 00930-00500 (enhanced character set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space (X' 40') characters are not
allowed, trailing space characters are not sig
nificant, and imbedded space characters are
significant.

Appendix G. Encodings 583

Dest_DEN ---------------------------------.

Description:

Format:

The destination_DEN Is the second part of the name of a dest_user.

Character string

CGCSGIDs:

String Conventions:

01134-00500 (base), 00930-00500 (enhanced character set)

Base Leading, lmbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space (X' 40') characters are not
allowed, trailing space characters are not sig
nificant, and imbedded space characters are
significant.

Agent_Ob)ect ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---.

Description:

Format:

The agent_object is directly supplied by the origin agent. It is never parsed by
the distribution service and is directly delivered, unchanged, to the agent at
each destination.

Undefined byte string

Server_Ob)ect~----------------------------_,

Description: The server_object Is Identified by the origin agent and Is fetched by the origin
server when sending the dist_transport_MU. For FS1, the server_object Is
fetched by the origin server during transmission of the Dist_MU type TRANS

PORT. At each destination, the server _object is stored by the destination
server and a notification of its receipt is delivered to the destination agent.

Length Restriction: The maximum segment size for FS1 is 32511.

Format: Undefined byt!3 string

Supplemental_Dlst_lnfo2 ---------------------------,

Description:

Format:

The supplemental_dist_info2 structure is reserved for future use.

Undefined byte string

DS_Sufflx ~---------------------------------.

Description: The distribution_services_suffix contains no information and marks the end of
the dist_transport_MU, dist_report_MU, or dist_contlnuation_MU.

584 SNA/Distribution Services Reference

Dlst_Repon_MU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

Description: The distribution_report_message_unit carries information reporting on the
state of the distribution. Typically, for a multiple destination distribution, a
dist_report_MU will report on only a portion of the distribution. The report is
delivered to the report-to destination if one was specified in the reported-on
DTMU; otherwise, it is delivered to the distribution originator.

Length Restriction: The minimum length of a dist_report_MU originated by an FS2 DSU is 78
bytes. This is due to the length restriction on the Report_DTM.

Repon_Preflx ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description: The report_prefix identifies the beginning of dist_report_MU. This structure
carries information that changes from DSU to DSU.

Repon_Command ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description: The report_command contains the control information for the distribution
report.

Length Restriction: The minimum length of a dist_report_MU originated by an FS2 DSU is 26
bytes. This is due to the length restriction on the Report_DTM.

Reponlng_DSU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~----.

Description: The reporting_DSU is the name of the DSU that generated the report.

Reportlng_RGN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description:

Format:

The reporting_RGN is the first part of the name of the DSU that generated the
report. This is typically, but not necessarily, the network ID.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, trailing, and imbedded space (X'40') characters
are not allowed.

Reportlng_REN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.

Description:

Format:

The reporting_ REN is the second part of the name of the DSU that generated
the report. This is typically, but not necessarily, the LU name.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, trailing, and imbedded space (X'40') characters
are not allowed.

Appendix G. Encodings 585

Report_DTM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description: The report_date-time contains the date and time at which the reporting DSU
generated the report. FS2 products support the offset from GMT for local
time.

Length Restriction: Originating FS2 DSUs always generate a GMT-based time. The minimum
length for report_DTM is therefore 11 (1-origin).

Format: Byte string

586 SNA/Distribution Services Reference

Description:

Byte Content

0-1 LT header

DATE
2-3 Year, in binary (e.g., 1989 is encoded as X'07C5')
4 Month of the year, in binary (values from 1 to 12 are valid)
5 Day of the month, in binary (values from 1 to 31 are valid)

6
7
8
9

TIME
Hour of the day, in binary (values from 0 to 23 are valid)
Minute of the hour, in binary {values from 0 to 59 are valid)
Second of the minute, in binary (values from 0 to 59 are valid)
Hundredth of the second, in binary (values from 0 to 99 are valid)

GMT FLAGS
10 Indicates that specified TIME is GMT and identifies whether offsets

from GMT are required to calculate local time. (Equivalent EBCDIC
characters are shown in parentheses.)
X'E9' (Z) no offset required
X' 4E' (+) add required offset to GMT to get

local time
X'60' {-) subtract required offset from GMT to get

local time
Note: All other values are reserved.

11 Hour offset from GMT, in binary, occurs when GMT flag -::/= X'E9'
(values from 0 to 23 are valid)

12 Minute offset from GMT, in binary, occurs when GMT flag -::/= X'E9'
{values from 0 to 59 are valid)

Examples:

A 9-byte date-time encoding is a date-time followed immediately by an EBCDIC
"Z" and is considered to be GMT. Thus, 12:00GMT on 2 January 1988 would be

x•e7c4e1e2eceeeeeeE9'
yyyyMMddHHrmnsshhZ

An 11-byte date-time encoding is a date-time followed immediately by an
EBCDIC"+" or"-" and two 1-byte binary numbers, and is considered to be
GMT and the offset from GMT to local time. Thus, 7:00am on 2 January 1988 in
New York would be 12:00GMT - 5 hours, or

X'07C401020C000000600500'
yyyyMMddHHrmnsshh- HHmm

The report-to_DSU_user is the DSU or user to which the distribution report is
being sent.

Appendix G. Encodings 587

Report_lnformation -------------------------------.

Description: The report_information identifies the distribution (or portion thereof) being
reported on.

Reported-On_Orlgln_osu ---------------------------.

Description:

Presence Rules:

The reported-on_origin_DSU is the name of the DSU at which the distribution
was originated.

If reported-on_origin_DSU is present, and reported-on_origin_user is absent,
then the distribution was originated by a DSU; if reported-on_origin_user is
present and reported-on_DSU is absent, then the report either originated in or
passed through an FS1 subnetwork. If both reported-on_origin_DSU and
reported-on_origin_user are present, then the report is not going to the origi
nator of the distribution; if both reported-on_origin_DSU and reported
on_origin_user are absent, then they default to report-to_DSU and, if
applicable, report-to _user.

Reported·On_Orlgln_RGN --------------------------,

Description:

Format:

The reported-on_origin_RGN is the first part of the DSU name at which the dis
tribution originated. This is typically, but not necessarily, the network ID.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, trailing, and imbedded space (X'40') characters
are not allowed.

Reported-On_Orlgln_REN ---------------------------.

Description:

Format:

The reported-on_origin_REN is the second part of the DSU name at which the
distribution originated. This is typically, but not necessarily, the LU name.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, trailing, and imbedded space (X'40') characters
are not allowed.

588 SNA/Distribution Services Reference

Reported-On_Orlgln_User ---------------------------·

Description:

Presence Rules:

The reported-on_origin_user is the name of the user that originated the dis
tribution.

If reported-on_origin_DSU is present, and reported-on_origin_user is absent,
then the distribution was originated by a DSU; if reported-on_origin_user is
present and reported-on_DSU is absent, then the report either originated in or
passed through an FS1 subnetwork. If both reported-on_origin_DSU and
reported-on_origin_user are present, then the report is not going to the origi
nator of the distribution; if both reported-on_origin_DSU and reported
on_origin_user are absent, then they default to report-to_DSU and, if
applicable, report-to _user.

Reported-On_Origin_DGN ---------------------------~

Description:

Format:

The reported-on_origin_DGN is the first part of the name of the user that origi
nated the distribution.

Character string

CGCSGIDs:

String Conventions:

01134-00500 (base), 00930-00500 (enhanced char set)

Base Leading, trailing, and imbedded space (X' 40')
characters are not allowed.

ECS Leading space (X' 40') characters are disal
lowed, trailing space characters are not signif
icant, and imbedded space characters are
significant.

Reported-On_Origln_DEN ----------------------------.

Description:

Format:

The reported-on_origin_DEN is the second part of the name of the user that
originated the distribution.

Character string

CGCSGIDs:

String Conventions:

01134-00500 (base), 00930-00500 (enhanced char set)

Base Leading, trailing, and imbedded space (X' 40')
characters are not allowed.

ECS Leading space (X' 40') characters are disal
lowed, trailing space characters are not signif
icant, and imbedded space characters are
significant.

Appendix G. Encodings 589

Description: The reported-on_sequence_number/date-time, in combination with the origin
agent, origin DSU, and origin user, is the unique identifier of the distribution.
The origin agent, origin DSU, and origin user are specified in the appropriate
reported-on or report-to structures. The sequence number is the number
assigned to the distribution by the origin agent. For FS2, the number ranges
from 1 to {2**31)-1. For FS1, the number ranges from 1 to 9999. Refer to
Appendix D for migration details. The date-time is the date and time gener
ated at the origin of the distribution. FS2 products support the offset from
GMT for local time.

Length Restriction: Originating FS2 DSUs always generate a GMT-based time. The minimum
length for reported-on_seqno_DTM is 15 {1-origin).

Format: Byte string

590 SNA/Distribution Services Reference

Byte Content

0-1 LT header

SEQ NO
2-5 Signed binary integer limited to (2**31)-1

DATE
6-7 Year, in binary (e.g., 1989 is encoded as X'07C5')
8 Month of the year, in binary (values from 1 to 12 are valid)
9 Day of the month, in binary (values from 1 to 31 are valid)

TIME
10 Hour of the day, in binary (values from Oto 23 are valid)
11 Minute of the hour, in binary (values from 0 to 59 are valid)
12 Second of the minute, in binary (values from 0 to 59 are valid)
13 Hundredth of the second, in binary (values from 0 to 99 are valid)

GMT FLAGS
14 Indicates that specified TIME is GMT and identifies whether offsets

fr.:>m GMT are required to calculate local time. (Equivalent EBCDIC
characters are shown in parentheses.)
X'E9' (Z) no offset required
X'4E' (+) add required offset to GMT to get

local time
X'60' (-) subtract required offset from GMT to get

local time
Note: All other values are reserved.

15 Hour offset from GMT, in binary, occurs when GMT flag =I= X'E9'
(values from 0 to 23 are valid)

16 Minute offset from GMT, in binary, occurs when GMT flag =I= X'E9'
(values from Oto 59 are valid)

Examples:

A 9-byte date-time encoding is a date-time followed immediately by an EBCDIC
nzn and is considered to be GMT. Thus, 12:00GMT on 2 January 1988 would be

x•e7c4e1e2eceeeeeeE9'
yyyyMMddHHmmsshhZ

An 11-byte date-time encoding is a date-time followed immediately by an
EBCDIC n+n or n_,, and two 1-byte binary numbers, and is considered to be
GMT and the offset from GMT to local time. Thus, 7:00am on 2 January 1988 in
New York would be 12:00GMT - 5 hours, or

x•e7c4e1e2eceeeeee6eesee 1

yyyyMMddHHmmsshh- HHmm

Appendix G. Encodings 591

Reported-On_Supp_Dist_lnfo1 -------------------------,

Description:

Format:

The reported-on_supp_dlst_infof structure is reserved for future use.

Character string

Reported-On_Agent_Correl ----------------------------.

Description:

Format:

The reported-on_agent_correlation is a string that was supplied by the origin
agent at the origin DSU.

Undefined byte string

Reported-On_Orlgln_Agent ---------------------------,

Description:

Presence Rule:

Format:

The reported-on_origin_agent is the name of the transaction program at the
origin DSU that originated the distribution that is being reported on.

Occurs when report-to_agent is different from origin_agent. If third-party
reporting has been requested and a report was generated in or flowed
through an FS1 subnetwork, the reported-on_origin_agent structure is dis
carded.

Character string, except for first byte

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, trailing, and imbedded space (X' 40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X'41' to X'FF', the transaction
program is not SNA registered. X' 40' is not a valid first
byte.

Reported-On_Dest_Agent --------------------------___,

Description:

Presence Rule:

Format:

The reported-on_destination_agent is the name of the transaction program at
the destination DSU that was specified for the reported-on distribution.

Occurs when dest_agent was specified in the reported-on DTMU.

Character string, except for first byte

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, trailing, and imbedded space {X' 40') characters
are not allowed.

The first byte of an SNA-registered transaction program
name ranges in value from X'OO' to X'3F'. When the first
byte ranges in value from X' 41' to X'FF', the transaction
program is not SNA registered. X' 40' is not a valid first
byte.

592 $NA/Distribution Services Reference

Reported·On_Supp_Dlst_lnfo2 ----------------------------.

Description:

Format:

The reported-on_supp_dist_info2 structure is reserved for future use.

Undefined byte string

Dlst_Continuatlon_MU ----------------------------~

Description: The distribution_continuation_message_unit is used by a sending DSU to con
tinue transmission of a suspended MU.

Continuation_Preflx -----------------------------~

Description: The continuation_prefix identifies the beginning of a DCMU.

Restarting_Byte_Positlon ----------------------------.

Description:

Format:

The restarting_byte_position indicates where the sender is beginning
retransmission of the first structure being re-sent. The byte count begins with
the first byte of atomic data (i.e., no Lls included) within the encompassing
structure. Absence of this structure is equivalent to the presence of a 1 in this
structure, implying that the first structure present in the DCMU is being
re-sent in its entirety. 0 is not allowed.

Unsigned binary integer (1-origin)

SNA_Condition_Report -----------------------------.

Description: The SNA_condition_report describes the condition being reported. The condi
tion is always identified by an SNA_report_code.

Certain conditions can be more fully described by supplementary information.
Conditions pertaining to one or more structures in a format can have the
location and contents of each of those structures specified by a
structure_report. Certain conditions arise from inconsistencies among mul
tiple portions of the MU. Each portion is described by a separate
structure _report.

Appendix G. Encodings 593

Description:

Format:

The SNA_report_code is an SNA registered code identifying the condition that
is being reported. Refer to Appendix E for allowable values and descriptions.

Byte string

Byte Content

0-1 LT header

2-3 Primary report code

4-5 Subcode

Structure_Report--.

Description:

Presence Rule:

The structure_report reports on a structure Involved In a format-related condi
tion. Depending on the condition, the structure_report may describe a struc
ture that was present in, or absent from, the reported-on MU.

A format condition has its location in the MU pinpointed by a structure_spec
and a list of parent_specs that define a line-of-descent. The line-of-descent
begins with the MU and continues down the parent-child hierarchy to a level
as low as the particular condition warrants. A registered ID always appears
in a structure _report; if the reported-on structure is not itself a registered ID,
its line-of-descent is traced up to include a registered ancestor.

Presence governed by the SNA_report_code.

Structure_State ------------------------------.

Description:

Format:

The structure_state indicates whether the reported-on structure was present
or absent.

Hexadecimal code

Byte Content

0-1 LT header

2 X'01' STRUCTURE_PRESENT
X'02' STRUCTURE_ABSENT
Note: All other values are reserved.

594 SHA/Distribution Services Reference

Structure_Contents -------------------------------.

Description:

Presence Rule:

Format:

The structure_contents is the portion of the MU that is relevant to the detected
condition. Typically, the structure_contents contains the header of the struc
ture and at least the beginning of its contents. When the condition can be
isolated to a portion of the structure, the structure_contents contains only that
portion of the structure relevant to the condition. In this case, the
structure_segment_number and structure_byte_offset locate the portion of the
structure relevant to the condition.

Allowed only when structure_state = STRUCTURE_PRESENT.

Undefined byte string

Parent_Spec -------------------------------~

Description: The parent_specification contains the identifier (ID or T) and the class of a
parent structure. For a parent structure that occurs multiple times, the
instance may also be included. The value of the parent_instance identifies the
particular instance. The position of this parent structure within its parent (if
one exists) may also be included. This would typically be done when this
parent structure is an unordered child of its parent.

Parent_ID_Or_T ---------------------------------.

Description:

Format:

The parent_ID _or _T is the ID or T value of a parent structure. ID values are
the registered GOS codepoints. T values are architecture-specific values rela
tive to the encompassing ID.

Undefined byte string

Parent_Class ----------------------------------.

Description:

Presence Rule:

Format:

The parent_class is the class of a parent structure.

If absent, defaults to LENGTH-BOUNDED_LT_STRUCTURE.

Hexadecimal code

Byte Content

0-1 LT header

2 LENGTH-BOUNDED_LLID_STRUCTURE (ID)

LENGTH-BOUNDED_LT_STRUCTURE (T) (default)
DELIMITED_LLID_STRUCTURE (DEL-ID)

DELIMITED_LT_STRUCTURE (DEL-T)"

IMPLIED_LLID_STRUCTURE (IMP-ID)

IMPLIED_LT_STRUCTURE (IMP-T)

X'01'
X'02'
X'03'
X'04'
X'OS'
X'06'
Note: All other values are reserved.

Appendix G. Encodings 595

Parent_Posltlon ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---.

Description:

Format:

The parent_position is the position of this parent structure within its parent (if
one exists) in this particular MU. Multiple consecutive instances of a repeat
able parent structure share a single position, and can be distinguished by
parent_instance.

Signed binary integer

Parent_lnstance ---~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description:

Format:

The parent_instance Is used when a parent structure occurs multiple times.
The value of parent_instance Identifies the particular instance within a posi
tion.

Signed binary integer

Structure_Spec ---~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description:

Presence Rule:

The structure_specification contains the identifier (ID or T) and the class of a
structure. For a structure that occurs multiple times, the instance may also be
included. The value of the structure_instance identifies the particular
instance. The position of this structure within its parent structure may also be
included. This would typically be done when the parent structure contains
unordered children.

Absent only when the structure_class is the default and the sibling_list con
tains all pertinent ID or T values.

Structure_ID_Or_T -----------------------------.

Description:

Presence Rule:

Format:

The structure_JD _or _T is the ID or T value of the structure. ID values are the
registered GOS codepoints. T values are architecture-specific values relative
to the encompassing ID.

Required except when sibling_list contains all pertinent ID or T values. In this
case, the structures specified by sib/ing_Jist are the structures being reported
on.

Undefined byte string

596 $NA/Distribution Services Reference

Structure_Class ---------------------------------.

Description:

Presence Rule:

Format:

The structure_class is the class of ttie reported-on structure and any siblings
Identified in sibling_/lst.

If absent, defaults to LENGTH-BOUNDED_LT_STRUCTURE.

Hexadecimal code

Byte Content

0-1 LT header

2 X'01'
X'02'
X'03'
X'04'

LENGTH-BOUNDED_LLID_STRUCTURE (ID)

LENGTH-BOUNDED_LT_STRUCTURE (T) (default)
DELIMITED_LLID_STRUCTURE (DEL-ID)

DELIMITED_LT_STRUCTURE (DEL-T)

X'05' IMPLIED_LLID_STRUCTURE (IMP-ID)

X'06' IMPLIED_LT_STRUCTURE (IMP-T)

Note: All other values are reserved.

Structure_Posltlon -----------------------------.

Descri ptlon:

Format:

The structure_position is either the actual or expected position of this struc
ture within its parent in this particular MU. Multiple consecutive instances of
a repeatable structure share a single position, and can be distinguished by
structure _instance.

Signed binary integer (1-origin)

Structure_lnstance -------------------------------.

Description:

Format:

The structure_instance is used when the structure is one of multiple occur
rences of a repeatable structure. The value of structure_instance identifies
the particular instance within a position.

Signed binary integer (1-origin)

Suucture_Segment_Number ---------------------------.

Description:

Presence Rule:

Format:

The structure_segment_number is the segment of the structure in which the
condition was detected.

Occurs when the beginning of structure_contents was not contained in the first
segment of the reported-on structure.

Signed binary integer (1-origin)

Appendix G. Encodings 597

Structure_Byte_Offset -----------------------------.

Description:

Format:

The structure_byte_o/fset marks the start of structure_contents within the
reported-on structure. If structure_segment_number is present, this value is
the offset from the start of the indicated segment; otherwise, it is the offset
from the beginning of the structure.

Signed binary integer (0-origln)

Sibling_List ------------------------------

Description:

Presence Rule:

Format:

The sibling_list contains a string of ID or T values necessary to describe the
detected condition. The structures identified in sibling_list are children of the
parent identified in parent_spec and/or siblings of the structure identified in
structure_spec. The class of the sibling structures is the same as
structure_class. The expected position, when applicable, is given by
structure _position.

Presence is governed by the SNA_report_code.

Byte string

Reported·On_Dest_Llst ---------------------------

Description:

Presence Rule:

The reported-on_destination_list contains the portion of the distribution desti
nations that are being reported on.

Presence is governed by the SNA_report_code.

Reported-On_Dest_Prefix ---------------------------....

Description: The reported-on_destination_prefix is the prefix of the reported
on_destination_list.

Reported-On_Dest ------------------------------.

Description: The reported-on_destination associates reported-on_dest_users with a
reported-on_dest_DSU for those destinations specified in the original distrib
ution request being reported on. For flat destination lists (I.e., lists containing
only DSUs and/or DSU-user pairs), there are zero or one user names per DSU
list. For factored destination lists, there can be multiple user names per DSU
list.

Reported-On_Dest_osu -----------------------------.

Description: The reported-on_destination_DSU is one of the original destination DSUs
being reported on.

598 SNA/Distribution Services Reference

Description:

Presence Rule:

Format:

Description:

Presence Rule:

Format:

Description:

The reported-on_destination_RGN is the first part of the name of one of the
original destination DSUs being reported on. This is typically, but not neces
sarily, the network ID.

Absent when passed through an FS1 subnetwork.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

The reported-on_destination_REN is the second part of the name of one of the
original destination DSUs being reported on. This is typically, but not neces
sarily, the LU name.

Absent when passed through an FS1 subnetwork.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, imbedded, and trailing space (X'40') characters
are not allowed.

Note: If a product chooses to implement DGN =REN, the ECS
subset is implemented in a particular network, and any
DGN contains an ECS character that is not an element of
Character Set AR, then ECS characters may occur in this
structure.

The reported-on_destination_user is the name of one of the original destina
tion users being reported on.

Appendix G. Encodings 599

Description:

Note:

Format:

Description:

Note:

Format:

The reported-on_destination_DGN is the first part of the name of one of the
original destination users being reported on.

In FS1, for a OS condition code of X'OOOD' {lost user names), user names will
be null.

Character string

CGCSGID:

String Conventions:

01134-00500 {base), 00930-00500 {enhanced character set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space {X'40') characters are not allowed,
trailing space characters are not significant, and
imbedded space characters are significant.

The reported-on_destination_DEN is the second part of the name of one of the
original destination users being reported on.

In FS1, for a OS condition code of X'OOOD' {lost user names), user names will
be null.

Character string

CGCSGID:

String Conventions:

01134-00500 {base), 00930-00500 (enhanced character set)

Base Leading, imbedded, and trailing space (X'40')
characters are not allowed.

ECS Leading space {X'40') characters are not allowed,
trailing space characters are not significant, and
imbedded space characters are significant.

Reported-On_Dest_sumx ---------------------------.

Description: The reported-on_destination_suffix is the suffix of the reported
on_destination_list.

Supplemental_Report ------------------------------,

Description:

Presence Rule:

The supp/ementa/_report contains other information pertaining to a condition.
The contents of the supplementa/_report are governed by the
SNA_report_code.

Presence is governed by the SNA_report_code.

600 SNA/Distribution Services Reference

Sender_Exception_MU ----------------------------~

Description: The sender_exception_MU is sent from the sender to the receiver when the
sender detects an exception while sending a dist_transport_MU, a
dist_report_MU, or a dist_continuation_MU.

Receiver_Exception_MU ---------------------------~

Description: The receiver_exception_MU is sent from the receiver to the sender when the
receiver detects an exception while receiving a dist_transport_MU, a
dist_report_MU, or a dist_continuation_MU.

Recelver_Exception_Command ---------------------------.

Description: The receiver_exception_command is the prefix identifying the
receiver _exception_MU.

Sender_Retry_Action -----------------------------~

Description:

Format:

The sender_retry_action is the receiver's recommendation to the sender as to
whether to retry the transmission of the MU.

Hexadecimal code

Byte Content

0-1 LT header

2 X'01'
X'02'
X'03'

RETRY_PRECLUDED

RETRY _ALLOWED

RETRY_EXPECTED_USING_DCMU

Note: All other values are reserved.

Recelving_DSU ---------------------------------.

Description: The receiving_DSU is the name of the DSU to which a distribution was being
sent.

Receiving_RGN -----------------------------~

Description:

Format:

The receiving_RGN is the first part of the name of the DSU to which a distrib
ution was being sent. This is typically, but not necessarily, the network ID.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, imbedded, and trailing space (X' 40') characters
are not allowed.

Appendix G. Encodings 601

Recelvlng_REN -------------------------------.

Description:

Format:

The receiving...:.REN is the second part of the name of the DSU to which a dis
tribution was being sent. This is typically, but not necessarily, the LU name.

Character string

CGCSGID: 01134-00500 (character set AR)

String Conventions: Leading, imbedded, and trailing space (X' 40') characters
are not allowed.

Note:· If a product chooses to implement DGN =REN, the
enhanced character set (ECS) subset is implemented in a
particular network, and any DGN contains an ECS char
acter that is not an element of SNA Character Set AR,
then ECS characters may occur in this structure.

Completlon_Query_MU -----------------------------,

Description: The completion_query_message_unit is sent by the sending DSU to query the
completion status of a particular MU at the receiving DSU.

Completlon_Report_MU ----------------------------.

Description: The completion_report_message_unit is sent by the receiving DSU to report on
the completion status of a particular MU or to control traffic flow on a conver
sation.

lndicator_Flags -------------------------------.

Description:

Format:

Note:

The indicator_flags structure contains a 1-byte flag, to indicate the completion
status of the MU_ID identified in a comp/etion_report_MU, or to control traffic
flow on a conversation.

Bit string

Conversation control flags (bits 2 and 3) may be used in conjunction with flow
control flags (Not Received, In Transit, Suspended, Terminated, Completed,
Purged).

Bit Map Architecturally-Defined

0 1 2 3 4 5 6 7 Value

x x 0 0 x x x x Default-Normal OS flow
x x 0 1 x x x x Terminate Conversation

0 x x x 0 0 0 0 Not Received
0 x xx0001 In Transit
0 x x x 0 0 1 0 Suspended
0 x x x 0 0 1 1 Completed
0 x x x 0 1 0 1 Terminated
1 x x x x x x x Purged
Note: x - any value

602 SNA/Dlstribution Services Reference

Last_Structure_Received -------------------------------.

Description:

Presence Rule:

Format:

Last_structure_received is the codepoint of the structure the receiving DSU
identifies as the last structure received before the MU was suspended. This
structure must be a length-bounded LLID structure at the highest level of the
MU.

If indicator _flags = SUSPENDED, then /ast_structure_received is present.

Hexadecimal code

Last_Byte_Recelved ------------------------------.

Description:

Presence Rules:

Format:

Last_byte_received is the last byte received by the receiving DSU before the
MU was suspended. The byte count begins with the first byte of atomic data
within the encompassing structure. A byte count of X'FFFFFFFFFFFFFFFF' indi
cates that the structure was fully received. The byte count contains only
atomic data and does not contain the segmenting Lls for segmented struc
tures.

If indicator_flags = SUSPENDED, /ast_structure_received is present, and
/ast_byte_received is absent, then the structure was received.

Unsigned binary integer (1-origin)

Purge_Report_MU ---------------------------------.

Description: The purge_report_message_unit indicates to the receiving DSU that the
sending DSU has marked a particular MU_ID PURGED, and that the receiving
DSU may flag that MU _ID as PURGED.

Reset_Request_MU -----------------------------~

Description: The reset_request_message_unit is sent from DS_Send to DS_Receive.
DS_Send issues the reset_request_MU to request that DS_Receive reset its
MU_ID registry.

Reset_DTM -------------------------------~

Description: The reset_date-time contains the date and time at which the reset_request_MU
was generated. Both sender and receiver store it as the "time of last reset" of
their MU_ID registries.

Length Restriction: Originating FS2 DSUs always generates a GMT-based time. The minimum
length for reset_DTM is 11 (1-origin).

Format: Byte string

Appendix G. Encodings 603

Byte Content

0-1 LT header

DATE
2-3 Year, in binary (e.g., 1989 is encoded as X'07C5')
4 Month of the year, in binary (values from 1 to 12 are valid)
5 Day of the month, in binary (values from 1 to 31 are valid)

6
7
8
9

TIME
Hour of the day, in binary (values from 0 to 23 are valid)
Minute of the hour, in binary (values from O to 59 are valid)
Second of the minute, in binary (values from 0 to 59 are valid)
Hundredth of the second, in binary (values from 0 to 99 are valid)

GMT FLAGS
10 Indicates that specified TIME is GMT and identifies whether offsets

from GMT are required to calculate local time. (Equivalent EBCDIC
characters are shown in parentheses.)
X'E9' (Z) no offset required
X'4E' (+) add required offset to GMT to get

local time
X'60' (-) subtract required offset from GMT to get

local time
Note: All other values are reserved.

11 Hour offset from GMT, in binary, occurs when GMT flag =/:: X'E9'
(values from 0 to 23 are valid)

12 Minute offset from GMT, in binary, occurs when GMT flag =/:: X'E9'
(values from 0 to 59 are valid)

Examples:

A 9-byte date-time encoding is a date-time followed immediately by an EBCDIC
HZ" and is considered to be GMT. Thus, 12:00GMT on 2 January 1988 would be

X'07C401020C000000E9'
yyyyMMddHHmmsshhZ

An 11-byte date-time encoding is a date-time followed immediately by an
EBCDIC "+Hor"-" and two 1-byte binary numbers, and is considered to be
GMT and the offset from GMT to local time. Thus, 7:00am on 2 January 1988 in
New York would be 12:00GMT - 5 hours, or

x•e1c4e1020ceeeeee6e0see•
yyyyMMddHHmmsshh- HHmm

Reset_Accepted_MU ---------------------------....,

Description: The reset_accepted_message_unit is sent from DS_Receive to DS_Send.
DS_Receive issues the reset_accepted_MU in response to a reset_request_MU
to inform DS_Send that DS_Receive has reset its MU_ID Registry.

604 $NA/Distribution Services Reference

Description:

Format:

The unrecognized_reserve is the number of bytes reserved for unrecognized
structures. An unrecognized structure occurs within its parent structure.
The number of unrecognized structures allowable for a particular parent
structure is limited by the number of children allowable for that parent
structure.

Intermediate FS2 DSUs pass unrecognized_reserve structures through
unchanged in outgoing DMUs.

Undefined byte string

Appendix G. Encodings 605

Header Description Tables for FS1 Message Units

DISTRIBUTION MESSAGE UNIT (DIST_MU)

Table 80 (Page 1 of 2). Distribution Message Unit (DIST_MU)

Children

Structure Name
Struct Struct

IDF/T Length
Occur-

Ref Pg Class ranees Unrec Order Num
Sub

Table

Dist_ MU 610 Del-IDF pfx ~148 1 N y 3-4 -
Prefix 610 IDF/pfx C00102 5-21 1 - - - -
Dist_ Command 610 IDF/seg C10502 138-32511 1 N y 2-3 -

Service_Desc_Operands 610 lmp-IDF idc 58-774 1 N N 2-5 -
Dist_ID 610 IDF/idc C34041 28-107 1 N N 5-7 -

Origin_RGN 574 T 01 3-10 0-1 - - - -
Origin_REN 574 T 02 3-10 1 - - - -
Origin_DGN 574 T 03 2-10 1 - - - -
Origin_DEN 575 T 04 2·10 1 - - - -
Origin_Seqno 611 T 05 6 1 - - - -
Origin_DTM 611 T 06 10 1 - - - -
Agent_ Correl 577 T 07 3-46 0-1 - - - -

Dist_ Gen_ Options 611 IDF C33041 30-58 1 N N 5 -
Dist_Flags (FS1) 612 T 01 3 1 - - - -
Hop_Count 568 T 02 4 1 - - - -
Service_Parms 570 T 03 11-32 1 - - - -
Server _Object_lnd 612 T 04 4 1 - - - -
Origin_Agent 573 T 05 3-10 1 - - - -

Report-To _Address 612 IDF C36041 14-45 0-1* N N 3-4 -
Report-To_RGN 577 T 01 3-10 0-1 - - - -
Report-To_REN 577 T 02 3-10 1 - - - -
Report-To_DGN 578 T 03 3-10 1 - - - -
Report-To_DEN 578 T 04 3-10 1 - - - -

Report-To_ Options 613 IDF C34341 8-47 0-1* N N 1-2 -
Report_Service_Parms 579 T 01 11-32 0-1 - - - -
Report-To_Agent 581 T 02 3-10 0-1 - - - -

Agent_ Object 584 IDF C32D01 6-517 0-1 - - - -
Destination_ Operands 613 lmp-IDF idc ~75 1 N y 3 -

Begin_Dest_Operands 614 IDF/idc C35001 8 1 - - - -
Dest_RGN_List 614 lmp-IDF idc ~62 ~1 N y 4 -

Dest_RGN 583 IDF/idc C35201 5-13 1 - - - -
Begin_REN_List 614 IDF C35001 8 1 - - - -
Dest_ REN_ List 614 lmp-IDF idc ~44 ~1 N y 4 -

Dest_ REN 583 IDF/idc C35301 6-13 1 - - - -
Begin_DGN_List 615 IDF C35001 8 1 - - - -
Dest_DGN_List 615 Del-IDF pfx ~25 ~1 N y 4 -

606 SNA/Distribution Services Reference

Table 80 (Page 2 of 2). Distribution Message Unit (DIST_MU)

Children

Structure Name
Struct Struct

IDF/T Length
Occur-

Ref Pg Class rences Unrec Order Num
Sub

Table

Dest_DGN 583 IDF/pfx C35401 6-13 1 - - - -
Begin_DEN_List 615 IDF C35001 8 1 - - - -
Dest_DEN 584 IDF C35501 6-13 ;?1 - - - -
End_DEN_List 615 IDF/sfx C35101 5 1 - - - -

End_DGN_List 615 IDF C35101 5 1 - - - -
End_REN_List 615 IDF C35101 5 1 - - - -

End_ Dest_ Operands 615 IDF C35101 5 1 - - - -
Dist_Report_Operands 616 lmp-IDF idc ;?63 0-1* N y 2-4 608

Dist_ Server_ Operands 615 lmp-IDF idc ;?14 0-1* N y 2 -
Server _Prefix 615 IDF/idc C90A41 8-280 1 N N 1-3 -

Server_ Obj_ Byte_ Count 573 T 01 10 0-1 - - - -
Server 573 T 02 3-10 1 - - - -
Server _Parms 616 T 03 3-255 0-1 - - - -

Server_ Object 584 IDF/seg C90801 ;?6* 1 - - - -
OS Suffix (FS1) 616 IDF CF0100 5 1 - - - -

Note:

• * Refer to FS1 Structure Descriptions starting on page 610 for presence rules and length restrictions.

• Dist_Report_Operands does not occur for Dist_MU type TRANSPORT.

• Agent_Correl, Report·To_Address, Report·To_Options, Agent_Object, and Dist_Server_Operands do not occur
for Dist_MU type REPORT.

• Dest_RGN_List, Dest_REN_List, Dest_DGN_List, and Dest_DEN occur only one time for Dist_MU type REPORT.

Appendix G. Encodings 807

DIST REPORT OPERANDS

Table 81. Distribution Report Operands

Children

Structure Name
Struct Struct IDFIT Length

Occur-
Ref Pg Class ranees Un rec Order Num

Sub
Table

Dist_ Report_ Operands 616 lmp-IDF idc 2::63 0-1 N y 2-4 -
Report_ Operands 616 lmp-IDF idc 27-112 1 N N 1-2 -

Report_ Correl a ti on 616 IDF/idc C34041 27-87 1 N N 4-5 -
Reported-On_ Origin_DGN 589 T 03 3-10 1 - - - -
Reported-On_Origin_DEN 589 T 04 3-10 1 - - - -
Reported-On_ Seqno 616 T 05 6 1 - - - -
Reported-On_DTM 617 T 06 10 1 - - - -
Reported-On_Agent_ Correl 592 T 07 3-46 0-1 - - - -

Receiving_DSU 601 IDF C36141 8-25 0-1 N N 1-2 -
Receiving_RGN 601 T 01 3-10 0-1 - - - -
Receiving_ REN 602 T 02 3-10 1 - - - -

Gen_SNADS_Report 617 lmp-IDF idc 16 0-1* N y 2 -
Gen_SNADS_Type 617 IDF/idc C35601 7 1 - - - -
Gen_SNADS_Contents 618 IDF C35741 9 1 N y 1 -

Gen_SNADS_Cond_Code 618 T 01 4 1 - - - -
Gen_DIA_Report 618 lmp-IDF idc 14-524 0-1* N y 2 -

Gen_DIA_ Type 619 IDF/idc C35601 7 1 - - - -
Gen_DIA_ Contents 619 IDF C35741 7-517* 1 - - - -

Specific_Report 619 lmp-IDF idc 2::36 1 N y 3 -
Begin_Report_DGN_List 619 IDF/idc C35001 8 1 - - - -
Report_DGN_List 619 lmp-IDF idc 2::23 2::1 N y 4 -

Reported-On_Dest_DGN 600 IDF/idc C35401 5-13 1 - - - -
Begin_Report_DEN_List 619 IDF C35001 8 1 - - - -
Report_DEN_List 620 lmp-IDF idc 5-553 2::1 N y 1-3 -

Reported-On_ Dest_ DEN 600 IDF/idc C35501 5-13 1 - - - -
Spec_SNADS_Report 620 lmp-IDF idc 16 0-1* N y 2 -

Spec_SNADS_Type 620 IDF/idc C35601 7 1 - - - -
Spec_SNADS_Cont 620 IDF C35741 9 1 N y 1 -

Spec_SNADS_CC 621 T 01 4 1 - - - -
Spec_DIA_Report 621 lmp-IDF idc 14-524 0-1* N y 2 -

Spec_DIA_ Type 622 IDF/idc C35601 7 1 - - - -
Spec_DIA_Contents 622 IDF C35741 7-517* 1 - - - -

End_Report_DEN_List 622 IDF C35101 5 1 - - - -
End_Report_DGN_List 622 IDF C35101 5 1 - - - -

Note: * Refer to FS1 Structure Descriptions starting on page 610 for presence rules and length restrictions.

608 $NA/Distribution Services Reference

SENDER EXCEPTION MESSAGE UNIT (TYPE FS1)

Table 82. Sender Exception Message Unit (type FS1)

Children

Structure Name
Struct Struct

IDF/T Length
Occur·

Ref Pg Class rences Unrec Order Num
Sub

Table

Sender _Exception_MU (FS1) 623 IDF CF0201 8 1 - - - -

RECEIVER EXCEPTION MESSAGE UNIT (TYPE FS1)

Table 83. Receiver Exception Message Unit (type FS1)

Children

Structure Name
Struct Struct

IDF/T Length Occur-
Ref Pg Class rences Un rec Order Num

Sub
Table

Receiver _Exception_MU (FS1) 601 Del-IDF pfx 59-863 1 N y 3 -
Prefix 610 IDF/pfx C00102 5 1 - - - -
Receiver _Exception_ Command 623 IDF C10101 49-853 1 N y 2 -

Receiver _Exception_ Correl 624 IDF C32801 7-23 1 - - - -
Exception_And_Reply _Data 624 lmp-IDF idc 37-825 1 N N 2 -

Receiver _Exception_ Code 625 IDF/idc C32201 8-255 1 - - - -
Reply_Data 626 IDF C34501 29-570 1 N y 2-3 -

Receiving_DSU 601 IDF C36141 8-25 1 N N 1-2 -
Receiving_RGN 601 T 01 3-10 0-1 - - - -
Receiving_ REN 602 T 02 3-10 1 - - - -

SNADS_Report 626 lmp-IDF idc 16 1 N y 2 -
SNADS_Report_Type 626 IDF/idc C35601 7 1 - - - -
SNADS_Report_Cont 626 IDF C35741 9 1 N y 1 -

SNADS_Report_cc 627 T 01 4 1 - - - -
DIA_Report 627 lmp-IDF idc 14-524 0-1 N y 2 -

DIA_ Report_ Type 627 IDF/idc C35601 7 1 - - - -
DIA_ Report_ Cont 628 IDF C35741 7-517 1 - - - -

DS_Suffix (FS1) 616 IDF/sfx CF0100 5 1 - - - -

Appendix G. Encodings 609

FS1 Structure Descriptions

Dlst_MU --------------------~------------.

Description:

Description:

Format:

The dlstribution_message_unit transports user information to one or more dis
tribution service users. A Dist_MU can be one of two types based on the
value of dist_flags (type FS1): TRANSPORT or REPORT. A Dist_ MU type TRANS

PORT transports agent and/or server objects. A Dist_MU type REPORT trans·
ports information reporting on the state of the distribution.

The prefix identifies the beginning of a message unit and may contain a
message-unit identifier.

Undefined byte string

Dist_ Command ------------------------------.....

Description: The distribution_command contains all information used by each DSU to trans
port the distribution for a Dist_MU type TRANSPORT. For a Dist_MU type
REPORT, the distribution_ command contains the control information for the dis
tribution report.

Service_Desc_Operands ----------------------------.

Description: The service_description_operands contain all the information, except for the
destination list, required by each DSU to transport the distribution.

Dist_ ID ---------------------------------.

Description: The distribution_identifier contains information corresponding to the distrib
ution originator.

610 SNA/Distribution Services Reference

Origln_Seqno ----------------------------------.

Description:

Format:

The origin_sequence_number is the number assigned to the distribution by the
orlgin_DSU. The value ranges from 1 to 9999 for a Dist_MU type TRANSPORT,

and is always O for a Dist_MU type REPORT.

Character string; each character is the EBCDl.C representation of one digit of
the sequence number.

Byte Content

0-1 LT header
2-5 Sequence number
Notes:

• For Dist_MU type TRANSPORT, values range from X'FOFOFOF1' to X'F9F9F9F9' .
• For Dist_MU type REPORT, value is X'FOFOFOFO'.

Orlgln_DTM --------------------------------.

Description:

Format:

The origin_date-time is the date and time the distribution was originated by
the origin DSU. Time is assumed to be local.

Byte string

Byte Content

0-1 LT header

DATE
2-3 Year, in binary (e.g., 1989 is encoded as X'07C5')
4 Month of the year, in binary (values from 1 to 12 are valid)
5 Day of the month, in binary (values from 1 to 31 are valid)

6
7
8
9

TIME
Hour of the day, in binary (values from 0 to 23 are valid)
Minute of the hour, in binary (values from Oto 59 are valid)
Second of the minute, in binary (values from 0 to 59 are valid)
Hundredth of the second, in binary (values from O to 99 are valid)

Example:

The date-time encoding for 12:00 noon on 2 January 1988 is:

X107C401020C000000'
yyyyMMddHHmmsshh

Dist_Gen_Optlons ------------------------------.

Description: The distribution_general_options contains structures used by OS to condition
its processing of the distribution.

Appendix G. Encodings 811

Dlst_Flags (type FS1) --------------------------.

Description:

Format:

The distribution_flags indicate reporting services requested by the origin
agent.

Bit Content

O Exception Report bit:
0 OS is requested to generate a report in case

of an exception.
1 A report will not be generated by OS for this

distribution.
1 Distribution Message Unit type bit:

0 Distribution is of type TRANSPORT.

1 Distribution is of type REPORT.

2-7 Reserved

Byte Content

0-1 LT header

2 X'OO'
X'80'
X'CO'
Note:

Dist_MU type TRANSPORT with report requested
Dist_MU type TRANSPORT with no report requested
Dist_MU type REPORT with no report requested

All other values are reserved.

Server_Object.Jnd ---------------------------~

Description:

Presence Rule:

Format:

The server_object_indicator indicates whether a server_object is present or
not. The only values supported are 0 and 1.

Contains X'0001' only for Dist_MU type TRANSPORT.

Hexadecimal code

Byte Content

0-1 LT header

2-3 X'OOOO' no server_object present in this MU
X'0001' a server_object present in this MU
Note: All other values are reserved.

Repon-To_Addrass -------------------------------.

Description:

Presence Rule:

The report-to_address contains the name of the DSU and user to which any
distribution reports are sent.

This information may be present only in Dist_MU type TRANSPORT.

612 SNA/Dlstrlbution Services Reference

Repor1-To_Options ------------------------------.

Description:

Presence Rule:

The report-to_options contains information involved in processing any reports
generated as part of the distribution.

This information may be present only in Dist_MU type TRANSPORT.

Destinatlon_Operands --------------------------~

Description: The destination_ operands are the list of destinations for the distribution. Up to
256 destinations are allowed if the distribution is of type TRANSPORT; exactly
one destination, if the distribution is of type REPORT. The destinations are
encoded as a fully factored, partially factored, or unfactored list of users and
DSUs (see the following example).

Example: The following is a list of destinations (qualified by RGN.REN.DGN.DEN):
A.K.DA.U1, A.K.DA.U2, A.K.DB.U3, A.K.DB.U4,
A.LDC.US, A.L.DC.U6, A.L.DD.U7, A.L.DD.U8,
B.M.DE.U9, B.M.DE.U10, B.M.DF.U11, B.M.DF.U12,
B.N.DG.U13, B.N.DG.U14, B.N.DH.U15, and B.N.DH.U16.

The list may appear factored in destination_ operands as follows:

• Fully factored:
A(K(DA(U1

U2)
DB(U3

U4))
L(DC(U5

U6)
DD(U7

U8)))
B(M(DE(U9

U10)
DF(U11

U12))
N(DG(U13

U14)
DH(U15

U16))))

• Partially factored:
(A(K(DA(U1)

DA(U2)
DB(U3

U4))
L(DC(U5

U6))
L(DD(U7

U8)))
B(M(DE(U9

U10)
DF(U11

U12))

Appendix G. Encodings 613

N{DG(U13))
N(DG(U14))
N(DH{U15

U16))))

• Unfactored, equivalent to the initial list:
{A{K(DA{U1)))
A{K(DA{U2)))
A(K(DB(U3)))
A(K(DB{U4)))
A(L{DC(U5)))
A(L{DC(U6)))
A(L{DD(U7)))
A(L{DD{U8)))
B(M(DE(U9)))
B(M(DE{U10)))
B{M{DF{U11)))
B{M{DF{U12)))
B{N{DG(U13)))
B(N{DG{U14)))
B(N{DH{U15)))
B{N(DH{U16))))

In the above lists, "(" represents begin_dest_operands, begin_REN_list, begin_DGN_list, or
begin_DEN_list. ")" represents end_DEN_list, end_DGN_list, end_REN_list, or end_dest_operands.
{Inner parentheses have precedence over outer parentheses.)

Begin_Dest_Operands ---------------------------.

Description:

Format:

The beginning_of_the_destination_operands marks the beginning of the
destination _list.

Constant byte string; value is X'C35201'

Dest_RGN_List -----------------------------.

Description: The destination_RGN_list associates one destination RGN with at least one
destination REN.

Begin_REN_List ------------------------------.

Description:

Format:

The beginning_of_the_destination_REN_list marks the beginning of a list of one
or more dest_REN(s).

Constant byte string; value is X'C35301'

Dest_REN_List ------------------------------.

Description: The destination_REN_list associates one destination REN with at least one
destination DGN.

614 SNA/Distribution Services Reference

Begln_DGN_Llst ----------------------------

Description:

Format:

The beginning_of_the_destinati.on_DGN_/ist marks the beginning of a list of
one or more dest_DGN(s).

Constant byte string; value is X'C35401'

Dest_DGN_Llst -----------------------------~

Description: The destination_DGN_list associates one dest_DGN with at least one
dest_DEN.

Begln_DEN_Llst --------------------------------.

Description:

Format:

The beginning_of_the_destination_DEN_list marks the beginning of a list of one
or more dest_DEN(s).

Constant byte string; value is X'C35501'

End_DEN_Llst------------------------------,

Descri ption: The end_destination_DEN_list marks the end of the list begun by the corre
sponding begin_DEN_list.

End_DGN_Llst ------------------------------.

Description: The end_destination_DGN_list marks the end of the list begun by the corre
sponding begin_DGN_/ist.

End_REN_Llst-------------------------------.

Descri ption:

Description:

The end_destination_REN_list marks the end of the list begun by the corre
sponding begin_REN_list.

The end_destination_operands marks the end of the destination_list.

Dlst_Server_Operands -----------------------------,

Description:

Presence Rule:

The distribution_server _operands structure contains the server _prefix and the
server_ object.

This information occurs only in Dist_MU type TRANSPORT when
server_object_ind =X'0001'.

Server_Prefix ----------------------------------.

Description: The server_prefix contains information associated with the server_object.

Appendix G. Encodings 615

Server_Parms ---------------------------------.

Description:

Format:

The server _parameters structure contains parameters passed by OS to the
destination server. This structure is never sent, and is retired in FS2.

Undefined byte string

DS_Sufflx(FS1) ~~~~~~~~~~~~~~~~~~~~~~~~~~~

Description: The distribution_services_suffix contains no information and marks the end of
the message unit.

Dlst_Report_Operands ------------------------------.

Description:

Presence Rule:

The distribution_report_operands structure contains all the report information
describing the condition of a particular distribution.

This information occurs only when Dist_MU is of type REPORT.

Report_Operands -----------------------------~

Description: The report_operands structure contains all information pertaining to the origi
nator of the distribution and the detector of an exception.

Report_Correlatlon -------------------------------.

Description: The report_correlation contains information that uniquely identifies a distrib
ution being reported on.

Reported·On_Seqno ----------------------------~

Description:

Format:

The reported-on_origin_sequence_number is the sequence number of the dis
tribution being reported on.

Character string; each character represents the EBCDIC representation of
one digit of the sequence number.

Byte Content

0-1 LT header

2-5 Sequence number
Note: Values range from X'FOFOFOF1' to X'F9F9F9F9'.

616 SNA/Distribution Services Reference

Description:

Description:

Note:

Presence Rule:

Description:

Format:

The reported-on_date-time is the date and time the distribution was originated.

Byte Content

0-1 LT header

DATE
2-3 Year, in binary (e.g., 1989 is encoded as X'07C5')
4 Month of the year, in binary (values from 1 to 12 are valid)
5 Day of the month, in binary (values from 1 to 31 are valid)

6
7
8
9

TIME
Hour of the day, in binary (values from 0 to 23 are valid)
Minute of the hour, in binary (values from O to 59 are valid)
Second of the minute, in binary (values from Oto 59 are valid)
Hundredth of the second, in binary (values from O to 99 are valid)

Example:

The date-time encoding for 12:00 noon on 2 January 1988 is:

X107C401020C000000 1

yyyyMMddHHmmsshh

The general_SNADS_report contains the OS report applicable to each user
specified in specific_report for which a spec_SNADS_report is not supplied.

Older DSUs may generate both gen_SNADS_report and gen_DIA_report in a
single MU. All DSUs are able to receive such MUs. However, DSUs may
ignore gen_DIA_report if gen_SNADS_report is present. A sending DSU never
generates both a DIA report and a OS report for multiple destinations.

This information occurs when gen_SNADS_type = X'0001'.

The general_SNADS_type indicates that a OS condition is being reported.

Hexadecimal code

Byte Content

0-4 LLIDF header

5-6 X'0001' OS report
Note: Any other value indicates that this is not a
gen_SNADS _report.

Appendix G. Encodings 617

Description:

Description:

Format:

The general_SNADS_contents contains information describing the condition
being reported on.

The general_SNADS_condition_code is the particular condition being reported
on.

Hexadecimal code

Byte Content

0-1 LT header

2-3 X'0001'
X'0002'
X'0003'
X'0004'
X'OOOS'
X'0006'
X'0007'
X'0008'
X'0009'
X'OOOC'
X'OOOD'
X'OOOE'
X'OOOF'
X'0010'
X'0011'
X'0012'
X'0013'

routing exception
unknown user name
hop count exhausted
format exception
function not supported
specific-server exception
unknown resource name (specific server)
invalid server parameters
unknown resource name (destination agent)
operator intervention (purging)
user names lost
resource not available
system exception
insufficient resource
storage-medium exception
REMU exception
server object size incompatible with capacity
level

Note: All other values are reserved.

Gen_DIA_Repon ~~~~~~~~~~~~~~~~~~~~~~~~~~~~---.

Description:

Note:

Presence Rule:

The general_DIA_report describes an application-layer condition. The
gen_DIA_report applies to all users specified in specific_report. The inter
action between gen_DIA_report and spec_DIA_report is defined by DIA.

Older DSUs may generate both gen_SNADS_report and gen_DIA_report in a
single MU. All DSUs can receive such MUs. However, DSUs may ignore
gen_DIA_report if gen_SNADS_report is present. A sending DSU never gener
ates both a DIA report and a OS report for multiple destinations.

This information occurs when gen_DIA_type ::P X'0001'.

618 SNA/Distribution Services Reference

Gen_DIA_Type -------------------------------..

Description:

Format:

The genera/_DIA_type indicates the type of DIA condition being reported.

Hexadecimal code

Byte Content

0-4 LLIDF header

5-6 X'0001' indicates this is not a gen_DIA_report
X'0200' DIA application exceptions
X'FEFF' reserved for 5520 migration
Note: All other values are reserved.

Gen_DIA_Contents ----------------------------~

Description: The general_DIA_contents structure contains a DIA-defined byte string.

Length Restriction: Older DSUs may generate MUs with length of up to 517. All DSUs receive
such MUs without generating an exception. However, DSUs may modify such
MUs to force the length to be 69 or less. For gen_DIA_type of X'0200' (DIA
application exceptions). the truncation algorithm is given in the DIA Trans
action Programmer's Gulde. The length is at least 7, since gen_DIA_contents
contains at least a null LT (an LT of length 2).

Format: Undefined byte string

Speclflc_Repon -----------------------------~

Description: The specific_report contains the portion of the destination users that are being
reported on. Any specific OS and/or DIA reports are also specified within this
structure.

Begln_Repon_DGN_Llst ------------------------~

Description:

Format:

The beginning_of_report_DGN_list marks the beginning of the specific_report.

Constant byte string; value is X'C35401'

Report_DGN_Llst----------------------------~

Description: The report_DGN_list associates one reported-on_dest_DGN with at least
one reported-on_dest_DEN.

Begln_Repon_DEN_List --------------------------~

Description:

Format:

The beginning_of_report_DEN_list marks the beginning of a list of one or more
reported-on_ dest _ DENs.

Constant byte string; value is X'C35501'

Appendix G. Encodings 619

Repon_DEN_Llst~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

Description:

Description:

Note:

Presence Rule:

Description:

Format:

The report_DEN_list associates one reported-on_dest_DEN with a specific OS
and/or DIA report.

The specific_SNADS_report is a report on one particular user. This report
overrides the gen_SNADS_report, if one exists, for that particular user.

Older DSUs may generate both spec_SNADS_report and spec_DIA_report in a
single MU. All DSUs can receive such MUs. However, DSUs may ignore
spec_DIA_report if spec_SNADS_report is present. A sending DSU never gen
erates both a DIA report and a OS report for multiple destinations.

This information occurs when spec_SNADS_type = X'0001'.

The specific_SNADS_type indicates that a OS condition is being reported.

Hexadecimal code

Byte Content

0-4 LLIDF header

5-6 X'0001' OS report
Note: Any other value indicates that this is not a
spec_ SN ADS _report.

Spec_SNADS_Cont ~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

Description: The specific_SNADS_contents contains information describing a condition
being reported on.

620 SNA/Distrlbution Services Reference

Description:

Format:

Description:

Note:

Presence Rule:

The specific_SNADS_condition_code describes the particular condition being
reported on.

Hexadecimal code

Byte Content

0-1 LT header

2-3 X'0001'
X'0002'
X'0003'
X'0004'
X'OOOS'
X'0006'
X'0007'
X'0008'
X'0009'
X'OOOC'
X'OOOD'
X'OOOE'
X'OOOF'
X'0010'
X'0011'
X'0012'
X'0013'

routing exception
unknown user name
hop count exhausted
format exception
function not supported
specific-server exception
unknown resource name (specific server)
invalid server parameters
unknown resource name (destination agent)
operator intervention (purging)
user names lost
resource not available
system exception
insufficient resource
storage-medium exception
REMU exception
server object size incompatible with capacity
level

Note: All other values are reserved.

The specific_DIA_report describes a DIA-specific report on one particular
user.

Older DSUs may generate both spec_SNADS_report and spec_DIA_report in a
single MU. All DSUs can receive such MUs. However, DSUs may ignore
spec_DIA_report if spec_SNADS_report is present. A sending DSU never gen
erates both a DIA report and a OS report for multiple destinations.

This information occurs when spec_DIA_type + X'0001'.

Appendix G. Encodings 621

Spec_DIA_Type ------------------------------..

Description:

Format:

The specific_DIA_type indicates the type of DIA condition being reported.

Hexadecimal code

Byte Content

0-4 LLIDF header

5-6 X'0001' indicates this is not a spec_DIA_report
X'0200' DIA application exceptions
X'FEFF' reserved for 5520 migration
Note: All other values are reserved.

Spec_DIA_Contents ----------------------------~

Description: The specific_DIA_contents structure contains a DIA-defined byte string.

Length Restriction: Older DSUs may generate MUs with length of up to 517. All DSUs receive
such MUs without generating an exception. However, DSUs may modify such
MUs to force the length to be 69 or less. For spec_DIA_type of X'0200' (DIA
application exceptions), the truncation algorithm is given in the DIA Trans
action Programmer's Gulde. The length Is at least 7, since spec_DIA_contents
contains at least a null LT (an LT of length 2).

Format: Undefined byte string

End_Report_DEN_Llst ----------------------------..

Description: The end_report_DEN_list marks the end of the list begun by
begin_report_DEN_list.

End_Report_DGN_Llst ---------------------------.

Description: The end_report_DGN_list marks the end of the specific_report.

622 SNA/Distribution Services Reference

Sender_Exception_MU (Type FS1) -----------------------.

Description:

Format:

The sender_exception_MU (type FS1) is sent from the sender to the receiver
when the sender detects an exception while sending a Dist_MU.

Byte string

Byte Bit Content

0-4 LLIDF header

5 Severity:
0-1 11 catastrophic

Class:
2-7 000101 sender

6 Exception condition code:
X'06' execution terminated
X'OB' 1/0 error
X'OF' length invalid
X'18' content error

7 Exception object:
X'01' IU prefix
X'07' command
X'OC' document unit
X'13' IU suffix
X'17' unknown subfield
X'1A' distribution object prefix
X'1B' distribution object data

Note: Other values and their corresponding meanings are represented under
receiver _exception_code.

Receiver_Exception_MU (Type FS1) ---------------------~

Description: The receiver_exception_MU (type FS1) is sent from the receiver to the sender
when the receiver detects an exception while receiving a Dist_MU.

Receiver_Exceptlon_Command ------------------------~

Description: The receiver_exception_command contains all information used for identifying
the exception that occurred.

Appendix G. Encodings 623

Recelver_Exceptlon_Correl -----------------------------.

Description:

Format:

The receiver_exception_correlation contains the prefix ID value from the
rejected Dist_MU.

Byte string

Byte Content

0-4 LLIDF header

5 Correlation field:
X'OO'
Note: All other values are reserved.

6 Command sequence number:
X'01'
Note: All other values are reserved.

7-22 Correlation MU ID; value from the prefix of the Dist_MU

Exceptlon_And_Reply_Data ----------------------------.

Description: The exceptlon_and_reply _data contains Information pertaining to the exception
causing the rejection of the Dist_MU.

824 SNA/Distrlbution Services Reference

Recelver_Exceptlon_Code --------------------------~

Description:

Format:

The receiver_exception_code identifies the type of exception encountered and,
conditionally, the portion of the Dist_ MU containing the exception.

Byte string

Byte

0-4

5

6

7

Bit Content

LLIDF header

Severity:
0-1 11 catastrophic

Note: All other values for bits 0-1 are reserved.

Class:
2-7 000010 syntactic

000011 semantic
000100 process
Note: All other values for bits 2-7 are reserved or
defined elsewhere.

Exception condition code
(indicates reason for exception):
X'01' function not supported
X'02' data not supported
X'04' resource not available
X'06' execution terminated
X'07' data not found
X'08' segmentation
X'OA' sequence
X'OB' 1/0 error
X'OC' ID invalid
X'OE' format invalid
X'OF' length invalid
X'10' indicator invalid
X'11' range exceeded
X'15' subfield length invalid
X'16' subfield type invalid
X'17' invalid parameters
X'18' content error
Note: All other values are reserved.

Exception object
(indicates the syntactical entity in error):
X'01' IU prefix
X'02' IU identifier
X'07' command
X'08' command operand
X'09' operand value
X'OC' document unit
X'OD' document unit identifier

Appendix G. Encodings 625

Byte Bit

8-254

Content
X'OE'
X'OF'
X'10'
X'11'
X'12'
X'13'

document profile
document profile parameter
document content introducer
document content control
document content data
IU suffix

X'14' segment
X'16' unsupported subfield
X'17' unknown subfield
X'1A' distribution object prefix
X'1B' distribution object data
Note: All other values are reser1ed.

Exception data
contains the Dist_MU structures in error

Reply_Oata ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.

Description: The reply _data describes which DSU rejected the Dist_MU and why the
Dist_MU was rejected.

SNADS_Repon~~~~~~~~~~~~~~~~~~~~~~~~~~~----.

Description:

Description:

Format:

The SNADS_report contains information describing the particular OS exception
that caused the Dist_MU to be rejected.

The SNADS_report_type indicates that a OS exception is being reported.

Hexadecimal code

Byte Content

0-4 LLIDF header

5-6 X'0001' OS report
Note: Any other value indicates that this is not a SNADS_report.

SNADS_Repon_Cont ~~~~~~~~~~~~~~~~~~~~~~~~~~-----.

Description: The SNADS_report_contents structure contains information describing the type
of OS condition in the Oist_MU.

626 SNA/Oistribution Services Reference

Description:

Format:

The SNADS_report_condition_code describes the particular OS condition that
caused the Dist_MU to be rejected.

Hexadecimal code

Byte Content

0-1 LT header

2-3 X'0001' routing exception
X'0002' unknown user name
X'0003' hop count exhausted
X'0004' format exception
X'OOOS' function not supported
X'0006' specific-server exception
X'0007' unknown resource name (specific server)
X'0008' invalid server parameters
X'0009' unknown resource name (destination agent)
X'OOOE' resource not available
X'OOOF' system exception
X'0010' insufficient resource
X'0011' storage-medium exception
X'0013' server object size incompatible with capacity

level
Note: All other values are reserved.

DIA_Report ~~~~~~~~~~--~~---------~~~~--~--.

Description:

Note:

Presence Rule:

The DIA_report describes a DIA condition being reported.

When generating a Dist_MU type REPORT with report information supplied by a
REMU (type FS1), the reporting DSU may ignore DIA_report.

This information occurs when gen_DIA_type =I= X'0001'.

DIA_Report_Type -----------------------------.

Description:

Format:

The DIA_report_type indicates the type of DIA condition being reported.

Hexadecimal code

Byte Content

0-4 LLIDF header

5-6 X'0001' indicates this is not a DIA_report
X'0200' DIA application exceptions
X'FEFF' reserved for 5520 migration
Note: All other values are reserved.

Appendix G. Encodings 627

Description:

Format:

The DIA_report_contents structure contains a DIA-defined byte string.

Undefined byte string

628 SNA/Dlstribution Services Reference

Graphic Character Sets 1134 and 930

Table 84 (Page 1 of 2). Graphic Character Table 84 (Page 1 of 2). Graphic Character
Sets 1134 and 930 Sets 1134 and 930

Hex Gra· Set

Code phic
Description

1134 930
Hex Gra- Set

Code phlc
Description

1134 930

40 Space x 92 k k, Small

48 Period x 93 I I, Small

so & Ampersand x 94 m m,Small

S9 Sharps x 9S n n, Small

SB $ Dollar Sign x 96 0 o, Small

60 . Minus Sign x 97 p p, Small

61 I Slash x 98 q q, Small

62 A Circumflex, Capital x 99 r r, Small

63 A Diaeresis, Capital x 9A a Underscore, Small x
64 A Grave, Capital x 98 o Underscore, Small x
6S A Acute, Capital x 9E AE Dipthong, Capital x
66 A Tilde, Capital x AO Micro, Mu x
67 A Overcircle, Capital x A2 s s, Small

68 C Cedilla, Capital x A3 t t, Small

69 N Tilde, Capital x A4 u u, Small

68 '
Comma x AS v v, Small

71 E Acute, Capital x A6 w w, Small

72 E Circumflex, Capital x A7 x x, Small

73 E Diaeresis, Capital x AS y y, Small

74 E Grave, Capital x A9 z z, Small

7S I Acute, Capital x AC D Stroke, Capital x
76 I Circumflex, Capital x AD Y Acute, Capital x
77 I Diaeresis, Capital x AE Thorn, Capital x
78 I Grave, Capital x C1 A A, Capital x x
78 # Number Sign x C2 B B, Capital x x
7C @ At Sign x C3 c C, Capital x x
70

,
Apostrophe x C4 D D, Capital x x

80 0 Slash, Capital x cs E E, Capital x x
81 a a, Small C6 F F, Capital x x
82 b b, Small C7 G G, Capital x x
83 c c, Small cs H H, Capital x x
84 d d, Small C9 I I, Capital x x
SS e e, Small D1 J J, Capital x x
86 f f, Small D2 K K, Capital x x
87 g g, Small D3 L L, Capital x x
88 h h, Small D4 M M, Capital x x
89 i i,Small OS N N, Capital x x
91 j j, Small D6 0 0, Capital x x

Appendix G. Encodings 629

Table 84 (Page 2 of 2). Graphic Character

Hex
Code

07

08

09

OF

E2

E3

E4

E5

E6

E7

ES

E9

EB

EC

ED

EE

EF

FO

F1

F2

F3

F4

F5

F6

F7

F8

F9

FB

FC

FD

FE

Sets 1134 and 930

Gra- Set

phic
Description

1134 930

p P, Capital x x
Q Q, Capital x x
R R, Capital x x

y Diaeresis, Small x
s S, Capital x x
T T, Capital x x
u U, Capital x x
v V, Capital x x
w W, Capital x x
x X, Capital x x
y Y, Capital x x
z Z, Capital x x

0 Circumflex, Capital x
0 Diaeresis, Capital x
0 Grave, Capital x
0 Acute, Capital x
0 Tilde, Capital x

0 Zero x x
1 One x x
2 Two x x
3 Three x x
4 Four x x
5 Five x x
6 Six x x
7 Seven x x
8 Eight x x
9 Nine x x

U Circumflex, Capital x
U Diaeresis, Capital x
U Grave, Capital x
U Acute, Capital x

Note: Character set A, CGCSGID (00961-00500), is a superset of
character set 1134. Character set A also contains "$" (X'5B'), "#" (X'7B')
and "@" (X'7C'). New OS implementations are able to receive
structures using character set A.

Character set AE, CGCSGID (01130-00500), is a superset of character
set 1134. Character set AE also contains"." (X'4B'), "$" (X'5B'), "#"
(X'78'), "@" (X'7C'), and all lower-case alphabetics (a-z).
New OS implementations are able to receive structures using character
set AE.

630 SNA/Distribution Services Reference

Transaction Program and Server Names
Following is a list of all transaction program and server names defined for
SNA/DS, in the FM header 5 (Attach), in the Distribution MU, or used internally
in the distribution service unit (DSU).

Code

X'20FOFOFO'

X'20FOFOF1'

X'20FOFOF2'

X'21FOFOF1'

X'21 FOFOF2'

X'21FOFOF3'

X'21FOFOF6'

X'21FOFOF7'

X'21 FOFOFS'

X'23FOFOFO'

X'24FOFOFO'

X'30FOFOF2'

X'30FOFOF3'

Meaning

DIA process destination transaction program name

DIA server name

DIASTATUS transaction program name

DS_SEND transaction program name (FS1)

DS_RECEIVE transaction program name (FS1)

DS_ROUTER_DIRECTOR transaction program name

SNA/OS general server name

DS_SEND transaction program name (FS2)

DS_RECEIVE transaction program name (FS2}

SNA/MS Change Management agent TP name

SNA/File Services server name

Object Distribution transaction program for IBM System 36 and
System 38.

Object Distribution server transaction program for IBM System
36 and System 38.

Appendix G. Encodings 631

Code Points Used by SNA/DS FS2
The values of the ID component of the LLID structure as used for SNA/DS GOS
variables are shown below:

ID Structure Name

1532 SNA Condition Report

1570 Transport Prefix

1571 Transport Command

1572 Destination List

1573 Agent Object

1574 Server Object

1575 Report Command

1576 Report Information

1577 Receiver Exception Command

1578 Sender Exception Message Unit (type FS2)

1579 Completion Query Message Unit

157A Completion Report Message, Unit

1578 Continuation Prefix

157C Report Prefix

157E Purge Report Message Unit

157F Suffix

1580 Supplemental Distribution lnfo2

1582 Reported-On Supplemental Distribution lnfo2

1583 Report-To DSU/User

1585 Reset Request Message Unit

1586 Reset Accepted Message Unit

632 SNA/Distribution Services Reference

Code Points Used by SNA/DS FS1
The values of the ID component of the LLIDF structure as used for SNA/DS GOS
variables are shown below:2

ID Structure Name

C001* In DIA, MU PREFIX; in OS, Prefix within DIST_MU or within REMU (type
FS1)

C101* in DIA, MU CMD NO REPLY ACKNOWLEDGE; in OS, Command within
REMU (type FS1)

C105 Command, DIST_MU

C322* in DIA, MU OPERAND IMM DATA EXCEPTION-CODE; in OS, Exception
Code, within REMU (type FS1)

C328* in DIA, MU OPERAND IMM DATA DATA CORRELATION; in OS, Corre
lation, within REMU (type FS1)

C32D* in DIA, MU OPERAND IMM DATA USER-DATA; in OS, Agent Object
within DIST_MU

C33D* in DIA, MU OPERAND IMM DATA STATUS-INFORMATION; in OS, Dis
tribution General Options, within DIST _MU

C340* in DIA, MU OPERAND IMM DATA DISTRIBUTION-IDENTIFIER; in OS,
Distribution Identifier, within DIST _MU

C343* in DIA, MU OPERAND IMM DATA GENERAL-ROUTING-DATA; in OS,
Report-To Options within DIST_MU

C345* in DIA, MU OPERAND IMM DATA REPLY DATA; in OS, Reply Data,
within REMU (type FS1)

C350 Beginning of Destination Operand Lists, of the Specific Report Lists,
within DIST _MU

C351 End of Destination Operands Lists, of the Specific Report Lists, within
DIST_MU

C352 Routing Group Name (RGN) of Destination Operands, within DIST _MU

C353 Routing Element Name (REN) of REN List, within DIST_MU

C354 Distribution Group Name (DGN) of DGN List, within DIST _MU

C355 Distribution Element Name (DEN) of DEN List, within DIST _MU

C356 Report Type, within DIST _MU

C357 Report Contents, within DIST _MU

C360 Report-To Address, within DIST_MU

C361 Receiving DSU, within DIST_MU or within REMU (type FS1)

2 The asterisk following the ID indicates that that identifier is used by both DIA (Document Interchange Architec
ture) and OS.

Appendix G. Encodings 633

C908 Server Object, within DIST_MU

C90A Server Prefix, within DIST_MU

CF01* in DIA, MU SUFFIX NORMAL-TERMINATION; in OS, Suffix within
DIST _MU or within REMU (type FS1)

CF02* in DIA, MU SUFFIX ABNORMAL-TERMINATION; in OS, SEMU (type FS1)

634 SNA/Distribution Services Reference

Terminology Mappings

Table 85 (Page 1 of 3). Terminology Mappings

FS2 TERMINOLOGY Current FS1 TERMINOLOGY Old FS1 TERMINOLOGY

Dist_ Transport_M U Dist_MU (type Transport) Dist_IU (type Data)

Transport_Prefix Prefix Prefix

Hop_Count Hop_Count Dist_ Dest_ Hops

MU_ID - -
Transport_ Command Dist_ Command Dist_CMD

Dist_ Flags Dist_Flags (FS1) Dist_ Flags

Service_Parms Service_Parms DSL

Server _Obj_Byte_Count Server_ Obj_ Byte_ Count Data_Size

Origin_Agent Origin_Agent Dest_TPN

Server Server Server _Name

Origin_DSU - -
Origin_RGN Origin_RGN Orig_RGN

Origin_REN Origin_ REN Orig_ REN

Origin_ User - -
Origin_DGN Origin_DGN Orig_DGN

Origin_DEN Origin_ DEN Orig_ DEN

Seqno_DTM Origin_Seqno, Origin_DTM Orig_Seqno, Orig_DTM

Supplemental_Dist_lnfo1 - -
Agent_ Correl Agent_ Correl Orig_ Correl

Report-To_DSU - -
Report-To_RGN Report-To_RGN Fdbk_RGN

Report-To_REN Report-To_REN Fdbk_REN

Report-To_User - -
Report-To_DGN Report-To_DGN Fdbk_DGN

Report-To_DEN Report-To_DEN Fdbk_DEN

Report_ Service_Parms Report_Service_Parms Fdbk_DSL

Report-To_Agent Report-To_Agent Fdbk_TPN

Dest_Agent - -
Unrecognized_Reserve - -
Dest_List Destination_ Operands Destination_ Operands

Dest - -
Dest_DSU - -
Dest_RGN Dest_RGN Dest_RGN

Dest_REN Dest_ REN Dest_REN

Dest_ User - -
Dest_DGN Dest_DGN Dest_DGN

Dest_DEN Dest_DEN Dest_ DEN

Agent_ Object Agent_ Object Dest_Appl_Parms

Server_ Object Server_ Object Distrib_Object_Data

Supplemental_Dist_lnfo2 - -

Appendix G. Encodings 635

Table 85 (Page 2 of 3). Terminology Mappings

FS2 TERMINOLOGY Current FS1 TERMINOLOGY Old FS1 TERMINOLOGY

DS_Suffix DS_Suffix Suffix

Dist_Report_MU Dist_MU (type Report) Dist_IU (type Status)

Report_ Prefix - -
Report_ Command - -
Reporting_DSU - -
Reporting_RGN - -
Reporting_ REN - -
Report_DTM - -
Report-To_DSU_User - -
Report_lnformation - -
Reported-On_ Origin_DSU - -
Reported-On_Origin_RGN - -
Reported-On_ Origin_REN - -
Reported-On_ Origin_ User - -
Reported-On_ Origin_DGN Reported-On_Origin_DGN Orig_DGN

Reported-On_ Origin_DEN Reported-On_Origin_DEN Orig_ DEN

Reported-On_Seqno_DTM Reported-On_ Seqno, Orig_Seqno, Orig_DTM
Reported-On_DTM

Reported-On_Supp_Dist_lnfo1 - -
Reported-On_Supp_Dist_lnfo2 - -
Reported-On_Agent_ Correl Reported-On_Agent_ Correl Orig_ Correl

Reported-On_Dest_Agent - -
SNA_ Condition_Report - -
SNA_Report_ Code - -
Structure_Report - -
Structure_ State - -
Structure_ Contents - -
Parent_ Spec - -
Parent_ID_Or_T - -
Parent_ Class - -
Parent_ Position - -
Parent_lnstance - -
Structure_Spec - -
Structure_ID_Or_T - -
Structure_Class - -
Structure_Position - -
Structure _Instance - -
Structure_Segment_Num - -
Structure_ Byte_ Offset - -
Sibling_List - -
Reported-On_Dest_Ust Specific_Report Specific_Status

Reported-On_Dest_Pfx - -
Reported-On_Dest - -

636 SNA/Distribution Services Reference

Table 85 (Page 3 of 3). Terminology Mappings

FS2 TERMINOLOGY Current FS1 TERMINOLOGY Old FS1 TERMINOLOGY

Reported-On_Dest_DSU - -
Reported-On_Dest_RGN - -
Reported-On_Dest_REN - -
Reported-On_Dest_ User - -
Reported-On_Dest_DGN Reported-On_Dest_DGN Stat_DGN

Reported-On_Dest_DEN Reported-On_Dest_DEN Stat_ DEN

Reported-On_Dest_ Sfx - -
Supplemental_Report - -
Dist_Continuation_MU - -
Continuation_Prefix - -
Restarting_ Byte _Position - -
Sender _Exception_MU Sender _Exception_MU Suffix (type 2)

Receiver _Exception_ MU Receiver _Exception_M U Ack_IU

Receiver _Exception_ Command Receiver _Exception_ Command Ack_Cmd

Sender _Retry _Action - -
Receiving_DSU Receiving_DSU Rcv_DSUN

Receiving_RGN Receiving_RGN Rcv_DSUN_RGN

Receiving_ REN Receiving_ REN Rcv_DSUN_REN

Completion_ Query _MU - -
Completion_Report_MU - -
Indicator _Flags - -
Last_Structure_Received - -
Last_Byte_Received - -
Purge_Report_MU - -
Reset_Request_MU - -
Reset_DTM - -
Reset_ Accepted_ MU - -

Appendix G. Encodings 637

638 SNA/Distribution Services Reference

Glossary

Glossary terms are defined as they are used in this
book. If you cannot find a term in this glossary, refer
to the index or to the glossary in SNA Technical Over
view, GC30-3073.

A
Agent. An application program that submits and
receives information to and from the distribution
service, across the agent protocol boundary.

Agent Object. Small amounts of data submitted for
distribution by the origin agent. The agent object is
stored and distributed by OS and passed directly to
the destination agent. Larger amounts of data, or
data that requires a particular kind of handling
(encryption, for example, or specialized parsing)
usually flow in the server object.

Agent Protocol Boundary. The logical interface
between agents or operators and SNA/DS.

Alternate Routing. An implementation-defined mech
anism that provides an alternate route in the routing
table when connections are unavailable for a partic
ular combination of destination DSU and service
parameters.

Auxiliary Server Operation. The copy-making steps
performed when transferring the server object
between the specific server and the general server.

B

Bilingual DSU. A DSU that acts as a gateway
between FS1-only portions of the OS network and
FS2-supporting portions, translating between the
format sets as necessary.

Byte-Count Restart. A type of Mid-MU restart
whereby the transmission of the server object can be
restarted at any byte position.

c
Capacity Service Parameter. The service parameter
that describes the required storage capacity for the
distribution.

Completion Query Message Unit (CQMU). A control
message unit sent by the sending DSU to query the

completion status of a particular message unit at the
receiving DSU.

Completion Report Message Unit (CRMU). A control
message unit sent by the receiving DSU to report on
the completion status of a particular message unit.

Connection. In SNA/DS, the set of concurrent conver
sations with a particular partner LU using a particular
mode name. A connection mny consist of one or
more than one conversation.

Connection-Oriented Service. A communications
service that provides a direct connection between the
communicating parties.

Connectionless Service. A service that performs
communication without the establishment of a direct
connection between (or among) the communicating
parties.

Control Message Unit (CMU). A type of message unit
containing information about a conversation or about
a DMU. The control information is used strictly by
adjacent DSUs to manage traffic between the DSUs.
CQMUs, CRMUs, PRMUs, RAMUs, REMUs, RRMUs,
and SEMUs are referred to collectively as control
message units.

D

Default Directing. The use of default "tokens .. (the •
in this documentation) in place of parts of the user
name. Default directing alleviates the need to specify
every user name or every agent name in every local
directory throughout the network.

Default Routing. The use of default "tokens" (the • in
this documentation) in place of parts of the DSU
name. Default routing alleviates the need to specify
every DSU name in every routing table throughout
the network.

Destination. One of the intended recipients of a dis
tribution. A destination may be either a user or DSU
(node).

Destination DSU. A DSU at which one or more recipi
ents of a distribution reside.

Destination Server. A server used at the destination
DSU to store the server object in an application's
private storage space.

Glossary 639

Direct Fetch. An implementation elective that
bypasses the auxiliary server operation from the spe
cific server to the general server. The outgoing
server object is directly retrieved using the specific
server at send time.

Direct Store. An implementation elective that
bypasses the auxiliary server operation from the
general server to the specific server. The incoming
server object is directly stored into an application's
(or user's) private space at receive time.

Directing Sublayer. The OS sublayer responsible for
associating a DSU name with every destination user
name in a distribution and for determining, at the
destination(s) of a distribution, local delivery informa
tion for each destination.

Distribution. (1) In general, the function of trans
porting information from an origin to one or more
destinations in a OS network; a distribution is the
result of a specific request for distribution service. (2)
A synonym for the actual data transported by DSUs in
honoring such a request; see distribution m~ssage
unit (DMU).

From the perspective of the user or agent, a distrib
ution is the complete set of results of a request. It
may sometimes be appropriate from that perspective
to refer to the parts of the distribution flowing along
different routes as distribution copies.

From the perspective of a particular Distribution
Service Unit (DSU), a distribution may be complete or
it may be only a copy of a larger distribution. From
that DSU's perspective every distribution copy being
processed through it is referred to as a distribution.
A receiving DSU cannot determine whether or not it
has received the only copy of a particular distribution.
Therefore, every distribution copy being processed by
that DSU is referred to as a distribution.

Distribution Continuation Message Unit (DCMU). A
distribution message unit used by a sending DSU to
continue transmission of a suspended message unit.

Distribution Copy. The result of transmitting a dis
tribution. Each distribution copy contains some or all
of the complete set of destinations for the entire dis
tribution.

Distribution Element Name (DEN). The second part of
a distribution-user name. The user element name
(DEN) is unique within its particular group (DGN).

Distribution Group Name (DGN). The first part of a
distribution-user name. The distribution group name

640 SNA/Oistribution Services Reference

(OGN) is unique throughout the OS network. The OGN
is intended to be a convenient and natural grouping of
names, with no reference to a location.

Distribution Identification. The collection of struc
tures in the DTMU that uniquely identifies a distrib
ution in the OS network. The dist_ID consists of the
origin DSU name, origin user name (if any), origin
agent name, a sequence number, and a date.

Distribution Message Unit (DMU). A type of
message unit used to convey distribution information
between DSUs. DTMUs, DRMUs, and OCMUs are
referred to collectively as distribution message units.

Distribution Report. Information, provided in a
DRMU by the detecting DSU in the OS network, on
the condition of a distribution.

Distribution Report Message Unit (DRMU). A distrib
ution message unit containing a distribution report.

Distribution Services (DS). See SNA/Distribution
Services.

Distribution Service Unit (DSU). The collection of
distribution transaction programs and data structures
(e.g., queues, routing tables, user directory) that
provide the distribution service at a particular
location in a OS network.

Distribution Transport Message Unit (DTMU). A dis
tribution message unit used to deliver the information
given in a distribution request to the specified desti
nations.

Distribution Transport Sublayer. The OS sublayer
responsible for sending and receiving MUs between
adjacent DSUs. This sublayer manages the LU 6.2
conversations and provides encoding and decoding of
MUs.

DSU Name. The name of a distribution service unit.
The DSU name consists of two parts, the routing
group name and the routing element name. It identi
fies a specific location in the OS network. Users typi
cally are not aware of DSU names (i.e., RGNs and
RENs).

DSU Role. The function performed by a DSU while
processing a particular distribution. A DSU may play
any of several roles, depending upon the distribution
(e.g., the DSU at which a distribution is originated
plays the role of the origin; a DSU that receives a dis
tribution and forwards it to another DSU plays the
role of an intermediate DSU).

E
Early Acceptance. The process by which a specific
server reports a partially successful server operation
to the local agent, and allows OS to process the
remainder of the distribution normally.

Elective. An implementation choice as to how or
when a function is provided, made for performance or
development cost reasons. All permissible electives
are defined by the architecture, since the effects of an
elective are observable outside the OSU.

Exception Hold. The process of holding the next-OSU
queue to stop transmission to the adjacent OSU,
because an exception condition was encountered.
The hold can be released by the operator or by the
initiation of a new instance of OS_Send.

F

Fan-Out. The process of creating copies of a distrib
ution to be delivered locally or to be sent through the
network.

Format Set 1 (FS1). The earlier version of the OS
formats and protocols.

Format Set 2 (FS2). The current version of the OS
formats and protocols.

G

General Server. A server that DS uses to store and
retrieve server objects in DS storage space,

I

Intermediate DSU. A DSU through which a distrib
ution passes on its way from the origin DSU to the
destination OSU(s). An intermediate DSU receives,
routes, and may redirect the distribution before for
warding it.

L

LLID. The introducer of a length-bounded encoding
structure whose identifier is two bytes long.

LLID Restart. A type of Mid-MU restart whereby the
transmission is resumed at the beginning of an LLID
structure in the OMU.

Local Reports. Information provided to the agent on
a condition that occurred before DS accepted respon
sibility for the distribution request or when DS was

performing some application-specific operation (e.g., a
specific server operation). Local reports are deliv
ered to the agent across the agent protocol boundary.

Location-Independent. The property of a user name
whereby it does not depend on the OSU at which the
user resides. This provides the ability to move users
from one DSU to another without changing their user
names.

LT. The introducer of a length-bounded encoding
structure whose identifier is one byte long.

LU 6.2 Conversation. In SNA, a logical connection
between two transaction programs using an LU 6.2
session. Conversations are delimited by brackets to
gain exclusive use of a session.

LU 6.2 Protocol Boundary. The logical interface
between LU 6.2 and OS across which information is
passed.

M
Message Unit (MU). In general, an architecturally
defined structure for information communicated from
one process to another. In OS, the entity that flows
between distribution service units.

Mid-MU Restart. The capability of restarting a failed
transmission at or near the point of failure, rather
than retransmitting from the beginning.

N
Node Destination. See Destination.

0
Operator. A person or program that interacts with
the OSU by issuing commands to perform such tasks
as system or network maintenance functions.

Operator Hold. The process of holding a distribution
or the next-DSU queue in response to operator action.

Option Set. An architecturally defined group of OS
functions. All OS implementations support the base
set of OS functions, and may choose which option
sets to support, if any.

Origin DSU. The DSU at which the originator of a dis
tribution resides.

Origin server. The server, named in the distribution
request, from which OS is to obtain the server object
to distribute.

Glossary 641

Other-Assignment. The name given to the action of
assigning read access to the server object, whenever
the issuer of the Assign_Read_Access verb specifies
a different value for the assigning_process and
assigned_process.

p

Presentation Services Sublayer. The OS sublayer
with which agents and operators interact.

Priority Service Parameter. The service parameter
used to specify the relative urgency of a particular
distribution.

Protection Service Parameter. The service parameter
used to specify whether the distribution must be
stored on non-volatile storage while a OSU has
responsibility for it.

Protocol Boundary. A logical interface that defines
the interactions between OS and another entity. The
boundary defines the functions provided by and
expected by the entities on either side of the
boundary.

Protocol Boundary Verb. A logical command or
request issued across a protocol boundary.

Purge Report Message Unit (PRMU). A control
message unit transmitted by the sending OSU to
inform the receiving OSU that the sender has marked
a particular MU_IO as PURGED in its MU_ID registry.

Q

Queue Protocol Boundary. The logical interface
between the queue manager and OS across which
information is passed.

R
Receive Time. The period of time required by a OSU
to receive a DMU.

Receiving Sequence. A sequence of verbs issued by
an agent to receive a distribution.

Receiver Exception Message Unit (REMU). A control
message unit transmitted by the receiving OSU to
the sending OSU when the receiver detects an excep·
tion while receiving a OMU.

Redirection. The process whereby OS receives a dis·
tribution, changes one or more OSU names (for one
or more destinations), and forwards the distribution.

642 SNA/Oistribution Services Reference

Report Service Parameters. The parameters supplied
by the origin agent to specify the level of service
requested for the distribution report. The origin agent
supplies report service parameters when it wants to
override the service parameters that would be rou
tinely generated for the report by the reporting OSU.

Report-to Agent. The agent, specified by the origi
nator, that will be invoked to receive the distribution
report. If an agent is not explicitly defined, the origin
agent will be invoked to receive the distribution
report.

Reset Accepted Message Unit (RAMU). A control
message unit sent by the receiving OSU, in response
to an RRMU, to inform the sending OSU that the
MU_IO registry at the receiving OSU has been reset.

Reset Request Message Unit (RRMU). A control
message unit sent by the sending OSU to request the
receiving OSU to reset its MU_ID registry.

Responsible DSU. For a distribution on which
reporting has been requested, the DSU that must gen
erate the distribution report in the event of an excep
tion.

Reversible Server. A server that can store an object
and later retrieve a byte-perfect copy of the object.

Routing Element Name (REN). The second part of the
two-part OSU name. The routing element name (REN)
must be unique within its particular group (RGN).

Routing Group Name (RGN). The first part of the
two-part DSU name. This is typically, but not neces
sarily, the network ID.

Routing Sublayer. The OS sublayer that determines
where to send distributions based on the OSU names
in the destination list. For local destinations, the dis·
tribution is passed to the directing sublayer; for
remote destinations, the distribution is placed on the
appropriate next-OSU queue(s).

Routing Table. A table which defines the connection
to be used to forward a distribution to a particular
destination at a particular level of service.

s
Security Service Parameter. The service parameter
used to specify whether the distribution is to be
routed through the SNA/OS network using only ses
sions defined as secure.

Self-Assignment. The name given to the action of
assigning read access to the server object, whenever
the issuer of the Assign_Read_Access verb specifies

the same value for the assigning_process and
assigned _process.

Send Time. The period of time required by a DSU to
send a DMU.

Sender Exception Message Unit (SEMU). A control
message unit transmitted by the sending DSU to
inform the receiving DSU that the sending DSU has
encountered an exception while sending a DMU.

Sending Sequence. A sequence of verbs issued by
an agent to originate a distribution.

Server. The process that fetches and stores server
objects and controls access to them.

Server Access. Information provided to a server that
is used to access the server object.

Server Object. Data specified by the originator of the
distribution that is to be retrieved and stored using a
server.

Server Protocol Boundary. The logical interface
between servers and the distribution service across
which distribution objects are passed.

Service Parameters. The parameters used to map
particular types of OS traffic to particular classes of
service offered by the lower layers of SNA.

SNA Condition Report (SNACR). A standard struc
ture used by SNA components to report exception
information. The structure contains the report code
describing the condition and may provide additional
supporting information.

SNA/Distribution Services (SNA/DS). A
connectionless communications service that distrib
utes objects over a network of LU 6.2 connections.

Specific Server. A server that stores objects into and
fetches objects from an application's private storage
space. A specific server may be sensitive to the con
tents of the byte streams it processes.

Specific Server Information. Instructions provided for
the specific server to build and process the object
prior to presenting it to OS.

T

Transaction Programs. In OS, the processes that
provide the distribution service, as well as the agents
and servers with which the distribution service inter
acts.

u
User Destination. See Destination.

User Directory. From the perspective of a particular
distribution service unit (DSU), a local table of entries
that relates a remote user name to the name of the
distribution service unit at which the user can receive
distributions.

From the perspective of the network, the directory is
the collection of the individual user directories from
all the DSUs in the network. Every distribution user
must have at least one entry in the collective user
directory.

The directory may include additional user information
not related to the distribution service. The directory
may also include entries for users not associated with
the distribution service.

User Name. A two-part name for distribution users.
It is intended to be a convenient and reasonably
friendly name for users, e.g., ACCT.JONES or MKT.SMITH.

It is not intended to include any reference to the
user's location in the network.

Glossary 643

644 SNA/Distribution Services Reference

Index

A
access descriptor 48
agent 2

scheduling 132
agent correlation 577
agent object 49
agent protocol boundary 3, 55, 366
alias 11
all-roles 368
alternate routing 39
application program interface 366
architecture model 107, 365
assigned-to process 467
assigning process 467
auxiliary server operation 45

exceptions 428

B
base and option sets 370
base FS2 protocol 373
base function 370
basic integrity 78, 379
bilingual DSU 383
bilingual node exception processing 387
builder 359
builder exceptions

FS1 431
FS2 419

byte-count restart 66, 378, 379

c
capacity service parameter 25, 372, 572
categories of implementation choices 365
central operator 366
character set 375, 629

1134 (AR) 629
930 629

child 555
closed protocol boundary 366

specializations 380
code points

FS1 633
FS2 632

coexistence 375
actions 387
constraints on 384, 387
DIA report mapping 395
OS report mapping 391, 414
FS 1 and FS2 386

coexistence (continued)
transport mapping 389

combined roles 368
comparison operator 24, 570
completed MU_ID state 84
Completion Query Message Unit (CQMU) 94, 566
Completion Report Message Unit (CRMU) 95, 566
compliance rules 365, 382
condition codes (FS1) 416
Confirm verb 54
Confirmed verb 54
connection

control verbs 68, 374
definitions 74

connection-oriented service
connectionless service 1
connectivity 375, 377
constrained FS2 report information 387
constrained transport information 386
control message unit (CMU) 74, 372

processing exceptions 418, 420, 426
conversation

exceptions 417, 421
failure 91, 94

conwinner 74
CQMU 94, 566
CQMU_Pending MU_ID state 82
creating a distribution report 413
CRMU 95, 566
CRMU-PRMU exchange 75

D
data structures

list of 69
of transport sublayer 72, 146, 224

DCMU 98, 563
default directing 36
default routing 38
delete a queue entry 357
dequeue

from control MU queue 189, 235
from local-delivery queue 120
from Mid-MU Restart queue 263, 277
from next-OSU queue 219, 295, 347
from Router-Director queue 127

designing an implementation 365
destination

list 582
role 368
types 2

Index 645

destination-only role 368
DIA 384
DIA report 387
differences in reporting 382
direct fetch 47, 420
direct store 47, 425
directing 13, 373

exceptions 427
FSMs 128

Directory 10
distribution 6

copy 7
flags 569
identification 8
log 377
report 66, 372, 405

Distribution Continuation Message Unit (DCMU) 98,
563

distribution control information 7
distribution control verbs 68, 374
Distribution Element Name (DEN) 5
Distribution Group Name (DGN) 5
Distribution Message Unit (DMU) 8, 606
Distribution Report Message Unit (DRMU) 8, 66, 562
Distribution Report Operands 608
distribution service unit (DSU) 8

bilingual 383
definition 69
directing sublayer 128
finite state machines 107, 363
name 9
presentation services 119
role 9
routing sublayer 136
structure of 107
transport sublayer

FS1 285
FS2 146

unattended 366
distribution transport 71

FS1
DS_Receive 310
DS_Send 285

FS2
DS_Receive 224
DS_Send 146

Distribution Transport Message Unit (DTMU) 7, 560
distribution transport sublayer 71, 146, 285
DMU 8, 606
DRMU 8, 66, 562
DS usage of LU 6.2 76, 78
DSU 8
DS_Receive 71

FS1
exception handling 434
FSMs 310

646 SNA/Distribution Services Reference

DS_Receive (continued)
FS2

exception handling 421
FSMs 224

DS _Router _Director
exception handling 427
FSMs 121

DS_Send 71
FS1

exception handling 431
FSMs 285

FS2
exception handling 417
FSMs 146

DTMU 7, 560
duplicate destinations 371

E
early acceptance 46
effects of optimizations 381
elective 377
end user interface 366
end-only role 368
enhanced character strings (930) 375
enhanced connection operations 377
enqueue

to local-delivery queue 135
to mid-MU Restart queue 243
to next-DSU queue 143
to Router-Director queue 119, 263, 327

exception
detected by transport sublayer 89, 94

exception action (FS1) 430
exception analysis (FS2) 64, 416
exception condition characteristics 407
exception conditions (FS1) 429
exception handling (FS1) 429
exception hold 407
exceptionlog 406
exception processing 63, 65

distribution transport 89
exception protocols 89

exception report
flag 569

F
fan-out 16

FSMs 132, 136
fetching server 379
finite state machines

BUILDER 359
DS_RCV_CQMU_HANDLER 265
DS_RCV_DISCARD_DIST 276
DS_RCV_ENQ_SCHED 262

finite state machines (continued)
DS_RCV_MANAGER 232
DS_RCV_MU_ID_HANDLER 244
DS_RCV_MU_ID_REGISTRY 280
DS_RCV_MU_STATE_DESCRIPTION 104
DS_RCV_PRMU_HANDLER 272
DS_RCV_RECEIVE_DMU 240
DS_RCV_RECEIVE_DMU_NO_MU_ID 259
DS_RCV_RECEIVING 237
DS_RCV_REMU_SUSP _TERM 254
DS_RCV_SEMU_HANDLER 269
DS_RCV_SENDING 234
DS_RCV_SEND_CONVERSATION_MGR 278
DS_RCV_SEND_ERR 246
DS_RCV_SEND_ERR_CRMU 256
DS_RCV_SEND_ERR_REMU 248
DS_RCV_SEND_ERR_SUSP_TERM_REMU 252
DS_RCV_SUSP_DIST 274
DS_RCV_SUSP _TERM 250
DS_SEND_BUILD_SEND_DMU 163
DS_SEND_CHECK_CONV_FAIL 212
DS_SEND_CLEANUP _DMU 166
DS_SEND_CLEANUP_EXCEPT 172
DS_SEND_CONVERSATION_CONTROL 222
DS_SEND_CRMU_HANDLER 192
DS_SEND_DISCARD_DIST 218
DS_SEND_DMU_ENCODE_EXCEPT 170
DS_SEND_DMU_EXCEPT_NOT_SENDING 168
DS_SEND_DMU_PROTOCOL_ERROR 176
DS_SEND_EXCEPT_NO_MU_ID 185
DS_SEND_ISSUE_SEMU_ON_CRMU 202
DS_SEND_MANAGER 154
DS_SEND_MU_ID_REGISTRY 223
DS_SEND_MU_ID_STATE_ERROR 178
DS_SEND_MU_STATE_DESCRIPTION 102
DS_SEND_PROG_ERROR_RECEIVED 174
DS_SEND_PURGE_ON_CRMU 198
DS_SEND_QUERY_ON_REMU 208
DS_SEND_RECEIVING 190
DS_SEND_RELEASE_ON_CRMU 196
DS_SEND_REMU_HANDLER 204
DS_SEND_RETAIN_DIST 216
DS_SEND_RETRY_ON_CRMU 200
DS_SEND_RETRY_ON_REMU 210
DS_SEND_SENDING 156
DS_SEND_SEND_CONTROL_MU 188
DS_SEND_SEND_CONVERSATION_MGR 220
DS_SEND_SEND_DIST 159
DS_SEND_SEND_DMU_NO_MU_ID 181
DS_SEND_TERMINATE_DIST 214
FSM_CHECK_QUEUE_DEPTH 354
FSM_CHECK_TOD 354
FSM_CHECK_TP 354
FSM_COUNT_EXCEPTS 145
FSM_DEST_DSU_CHECK 144
FSM_DIRECTING_MGR 128

finite state machines (continued)
FSM_DIR_LOOKUP 144
FSM_DIST _DECODE_CONTROL 320
FSM_DIST _ENCODE_CONTROL 296
FSM_DSU_CHECK 145
FSM_EXCEPT_TYPE 348
FSM_LOCAL_CHECK 144
FSM_LOCAL_SCHED 132
FSM_LOG 349
FSM_MESSAGE 348
FSM_NEXT_DSU 146
FSM_NEXT_LOCAL_QUEUE 145
FSM_OPERATIONS_MGR 342
FSM_ORIGIN_CHECK 144
FSM_QUEUE_CONTROL 348
FSM_RCV_CONVERSATION_MGR 330
FSM_RCV_ENQ_SCHED 324
FSM_RECEIVE_MGR 313
FSM_REMOTE_SCHED 140
FSM_REMU_DECODE 306
FSM_REMU_ENCODE 338
FSM_REPORT 349
FSM_ROUTING_DIRECTING_MGR 124
FSM_ROUTING_MGR 136
FSM_RTG_LOOKUP 145
FSM_SCHED_MGR 351
FSM_SEMU_DECODE 334
FSM_SEMU_ENCODE 304
FSM_SEND_CONVERSATION_MGR 302
FSM_SEND_MGR 288
FSM_SRVR_OBJECT_READ 300
FSM_SRVR_OBJECT_WRITE 328
IDLE_DETECTOR 284
introduction 363
PARSER 359
PREPARSER 280
QUEUE_MGR 357
RCV_BUFFER_MGR 282
SERVER_MGR 354
UPM_CHECK_DUP _CONV_FAIL_REPORT 224
UPM_EXCEPT_RECOVERY_ACTION 285
UPM_START_TP 354

flag bits 369
folding data priorities 377
format set 1 (FS1)

DS_Receive 310
DS_Send 285
message units 606
structure descriptions 610
support 384
terminology 635

format set 2 (FS2)
DS_Receive 224
DS_Send 146
message units 560
structure descriptions 568

Index 647

format set 2 (FS2) (continued)
support 384
terminology 635

format sets 8, 383
FSMs providing common services

builder 359
operations 342
parser 359
queue manager 357
scheduler 351
server manager 354

FS1 to FS2 mapping
DIA report 396
OS report 393, 416
transport 390

FS1-capable 383
FS1-only DSUs 383
FS2 to FS 1 mapping

G

DIA report 396
OS report 392, 414
transport 390

GOS code points
FS1 633
FS2 632

general server 42
exceptions

FS1 432,435
FS2 419, 425,428

GMT offset 575, 576, 591
graphic character set 629

1134 (AR) 629
930 629

H
header description table 557

children
number 559
order 558
subtable 559
unrecognized children allowed 558

ID/T 558
length 558
occurrences 558
structure class 557
structure name 557
structure reference 557

high integrity 76, 375
high integrity sending sequence 58, 61
hold queue

exception 65, 357
operator 65, 357

648 $NA/Distribution Services Reference

I
implementation choices 365
in-use flag 358
input signal

of FSM 363
instance number 146, 224

definition 86
FSMs using 224, 280

integrity
levels of 54, 75

intermediate DSU 18
intermediate role 368
intermediate-only role 368
Intervention List 40, 374
ln_Transit MU_ID state

L

of DS_Receive 83
of DS_Send 82

LLID 555
LLI D Restart 66
local agent reporting 405
local delivery queue 379

FSM usage 120, 135
local operator reporting 406
lock

agent 355, 356
decrement 356
OS 355, 356
increment 355

LT 555
LU name 574
LU 6.2

basic conversation protocol boundary 3
Deallocate (Type Sync_Level) 285
receive state

FS1 306, 320, 334
FS2 190, 237

send state

M

FS1 302, 304, 338
FS2 156, 234

use of by OS 51, 55, 76-78

mapping FS1 and FS2 codes 414
maximum DS_Sends 74
message unit (MU)

identifier 568
instance number 86, 568
sequence exceptions 422
types 74

mid-MU restart 66, 98-99
exceptions 423

minimum parsing checks 369
MU-level reporting 405
multiple local-delivery queues 379
MU_ID

definition 73, 568
DS_Receive FSM 224
DS_Send FSM 146
element of 146, 224
exceptions 418, 423
FSMsusing 161,244
registry 86, 146, 224

removal from 86
states of 81, 85
synchronization of 88

MU_ID state

N

FSMs using 223, 280
of DS_Receive 83
of OS_ Send 82

network identifier 574
next-DSU queue 29

exception hold 407
FSM usage 143, 161, 295
operator hold 357
scheduling 378

nickname 11
no out-going traffic 381
no server objects 381
no through-traffic 380
no-routing specialization 381
no-user traffic 380
node destination 3, 374
non-retriable exception 407
nonvolatile storage 24, 372
Not_Assigned MU_ID state 82
Not_Received MU_ID state 83
NOT _RETRIABLE input condition 285
null RGN 397

0
object 7

agent vs. server 49
open protocol boundary 366, 367
operations 374

and maintenance staff 366
FSMs interfacing with 342
protocol boundary 68, 366
verbs 68, 374,451

operator
hold 65, 357
rerouting 376, 406

optimizations 365, 381

optimizing storage management 372
option set 370
optional parsing checks 369
origin

role 368
origin-only role 368
other assignment 467
output code

of FSM 363

p
parallel sessions

use of by OS 79
parameter description 487
parent

structure 555
parser 359

exceptions 422
FSM 359

perceivable optimizations 381
preparser 280
prerequisite option set 370
presentation services

model of 119
priority service parameter 24, 371, 571
PRMU 96, 566
protection service parameter 24, 372, 571
protocol boundary 3

agent 3, 55, 441
checks 371
exposure 366
server 50, 467
verbs 441

protocol electives 378
Purge Report Message Unit (PRMU) 96, 566
purged MU_ID state

Q

of DS_Receive 84
of DS_Send 83

queue

R

control MU 72, 189, 235
mid-MU restart 73
next-DSU 27
service exception

FS1 431,433,435
FS2 417,423,427

RAMU 89, 567
Read verb 355
READO 358

Index 649

receive time
checks 375
elective exceptions 378

FS1 434
FS2 424

enhancements 378
receiver byte-count restart 378
Receiver Exception Message Unit (REMU) 92

FS1 609
FS2 565

receiver limited conversation 378
Receive_And_Wait verb 76
receiving DSU

responsibilities 372, 375
receiving sequence

definition of 61
examples 61

recommended retry action 407
redirection of distribution 35, 373

FSMs implementing 128
RELEASEQ 358
REMU 92

FS1 609
FS2 565

report
CRMU 95
distribution 66
DRMU 66
generation of 413
PRMU 96

report codes 409
report service parameters 67, 579

derivation of from service_parms 67, 579
report-to

agent 67
DSU 68
user 68

reporting
responsibilities 372

Reset Accepted Message Unit (RAMU) 89, 567
reset MU_ID registry 88
Reset Request Message Unit (RRMU) 88, 567
responsibility, transfer of 4, 262
restart

byte 98
LLID 98

restartability (of the server) 379
restricted services 366
restricted set

of agents 366
of servers 366
of users 366

restrictions 376
retriable exception 407
RETRIABLE_RETRY _EXHAUSTED input condition 285

650 SNA/Distribution Services Reference

RETRIABLE_WITHOUT_MID_MU input condition 285
RETRIABLE_WITH_MID_MU input condition 285
Retry_Pending MU_ID state 83
roles 368
route segment 20
router-director queue

FSM usage 127
presentation services 119
router-director 127
transport services 263, 327

routing 14, 373
exceptions 427
FSMs 136
table 12

FSM usage 145
Routing Element Name (REN) 9
Routing Group Name (RGN) 9
RRMU 88, 567
RRMU-RAMU exchange 88

s
scheduling 373

FSM model 350
of distribution sending

queue depth 354
time of day 354

START_TRANSACTION 354
scope of a condition 64, 407
security service parameter 25, 376, 572
selective local-delivery 379
self-assignment 467
SEMU 89

FS1 609
FS2 565

sender byte-count restart 379
Sender Exception Message Unit (SEMU) 89

FS1 609
FS2 565
sending for basic integrity 379

sender-limited conversation 378
sending DSU responsibilities 372
sending sequence

definition of 55
examples 56

Send_Data 76
FSM usage

FS1 303,305, 339
FS2 221, 279

Send_Error 91, 93
sense codes 409
sequence number 575
server 40

exception processing 45
FSMs using 354
general 42

server (continued)
manager 354
object

byte count 372
protocol boundary 50, 366, 467
report 356
specific 42

service parameters 23, 32, 570
signal

of FSM 363
single connection 381
single session restriction 378
single-user traffic 380
SNA condition report (SNACR) 408, 564
SNA report code 594
specialization 380

by agent 381
by server 381
by service parms 381
potential 380

specialized applications 381
specific server 42

exceptions 46
FS1 432, 435
FS2 420,425,428

report 276, 356
START_TRANSACT10N 354
state number

of FSM 363
state-transition matrix

of FSM 363
storing server 378
structure

classification 555
atomic 555
child 555
delimited parent 556
implied parent 556
length-bounded 555
length-bounded parent 556
parent 555
segmented 556

description 559
properties of parent 556

number of children 557
order 556
unrecognized children 557

structure names
Agent_ Correl 577
Agent_ Object 584
Begin_DEN_List 615
Begin_Dest_Operands 614
Begin_DGN_List 615
Begin_REN_List 614
Begin_Report_DEN_List 619
Begin_Report_DGN_List 619

structure names (continued)
Completion_Query_MU 602
Completion_Report_MU 602
Continuation_Prefix 593
Dest 582
Destination_Operands 613
Dest_Agent 582
Dest_DEN 584
Dest_DGN 583
Dest_DGN_List 615
Dest_DSU 582
Dest_List 582
Dest_REN 583
Dest_REN_List 614
Dest_RGN 583
Dest_RGN_List 614
Dest_User 583
DIA_Report 627
DIA_Report_Cont 628
DIA_Report_Type 627
Dist_Command 610
Dist_Continuation_MU 593
Dist_Flags 569
Dist_Flags (FS1) 612
Dist_Gen_Options 611
Dist_ID 610
Dist_MU 610
Dist_Report_MU 585
Dist_Report_Operands 616
Dist_Server_Operands 615
Dist_ Transport_M U 568
DS_Suffix 584
DS_Suffix (FS1) 616
End_DEN_List 615
End_Dest_Operands 615
End_DGN_List 615
End_REN_List 615
End_Report_DEN_List 622
End_Report_DGN_List 622
Exception_And_Reply_Data 624
Gen_DIA_Contents 619
Gen_DIA_Report 618
Gen_DIA_Type 619
Gen_SNADS_Cond_Code 618
Gen_SNADS_Content 618
Gen_SNADS_Report 617
Gen_SNADS_Type 617
Hop_Count 568
Indicator _Flags 602
Last_Byte_Received 98, 603
Last_Structure_Received 98, 603
MU_ID 568
MU_lnstance_Number 568
Origin_Agent 573
Origin_DEN 575
Origin_DGN 574

Index 651

structure names (continued)
Origin_DSU 573
Origin_DTM 611
Origin_REN 574
Origin_RGN 574
Origin_Seqno 611
Origin_User 574
Parent_Class 595
Parent_ID_Or_T 595
Parent_lnstance 596
Parent_Position 596
Parent_Spec 595
Prefix 610
Purge_Report_MU 603
Receiver _Exception_ Code 625
Receiver _Exception_ Command 601
Receiver_Exception_Command (FS1) 623
Receiver _Exception_ Correl 624
Receiver _Exception_M U 601
Receiver_Exception_MU (Type FS1) 623
Recelving_DSU 601
Receiving_REN 602
Receiving_RGN 601
Reply _Data 626
Report-To_Address 612
Report-To_Agent 581
Report-To_DEN 578
Report-To_DGN 578
Report-To_DSU 577
Report-To_DSU_User 587
Report-To_Options 613
Report-To_REN 577
Report-To_RGN 577
Report-To_User 578
Reported-On_Agent_ Correl 592
Reported-On_Dest 598
Reported-On_Dest_Agent 592
Reported-On_Dest_DEN 600
Reported-On_Dest_DGN 600
Reported-On_Dest_DSU 598
Reported-On_Dest_List 598
Reported-On_Dest_Prefix 598
Reported-On_Dest_REN 599
Reported-On_Dest_RGN 599
Reported-On_Dest_Suffix 600
Reported-On_Dest_User 599
Reported-On_DTM 617
Reported-On_ Origin_Agent 592
Reported-On_ Origin_DEN 589
Reported-On_Origin_DGN 589
Reported-On_Origin_DSU 588
Reported-On_Origin_REN 588
Reported-On_Origin_RGN 588
Reported-On_Origin_User 589
Reported-On_Seqno 616
Reported-On_Seqno_DTM 590

852 SNA/Distribution Services Reference

structure names (continued)
Reported-On_Supp_Dist_lnfo1 592
Reported-On_Supp_Dist_lnfo2 593
Reporting_DSU 585
Reporting_REN 585
Reporting_RGN 585
Report_Command 585
Report_Correlation 616
Report_DEN_List 620
Report_DGN_List 619
Report_DTM 586
Report_lnformation 588
Report_Operands 616
Report_Prefix 585
Report_Service_Parms 67, 579
Reset_Accepted_MU 604
Reset_DTM 603
Reset_Request_MU 603
Restarting_Byte_Position 593
Sender_Exception_MU 601
Sender_Exception_MU (Type FS1) 623
Sender_Retry_Action 601
Seqno_DTM 575
Server 573
Server_ Object 584
Server_ Object_lnd 612
Server_ObLByte_Count 573
Server_Parms 616
Server _Prefix 615
Service_Desc_Operands 610
Service_Parms 570
Sibling_List 598
SNADS_Report 626
SNADS_Report_CC 627
SNADS_Report_Cont 626
SNADS_Report_Type 626
SNA_Condition_Report 593
SNA_Report_Code 594
Specific_Report 619
Spec_DIA_Contents 622
Spec_DIA_Report 621
Spec_DIA_Type 622
Spec_SNADS_CC 621
Spec_SNADS_Cont 620
Spec_SNADS_Report 620
Spec_SNADS_Type 620
Structure_Byte_Offset 598
Structure_Class 597
Structure_Contents 595
Structure_ID_Or_T 596
Structure_lnstance 597
Structure_Position 597
Structure_Report 594
Structure_Segment_Number 597
Structure_Spec 596
Structure_State 594

structure names (continued)
Supplemental_Dist_lnfo1 576
Supplemental_Dist_lnfo2 584
Supplemental_Report 600
Transport_Command 569
Transport_Prefix 568
Unrecognized_Reserve 605

sublayer 32
Suspended MU_ID state

of DS_Receive 83
of DS_Send 83

T
Terminated MU_ID state 84
terminate_conversation flag 79
TERMINATE_REAO signal 355
TERMINATE_WRITE signal 356
terminating before end-of-object 379
Termination_Pending MU_ID state 82
terminology 635
throughput control 79
toleration features 375
transfer of responsibility 4
Transfer_Pending MU_ID state 82
types of traffic 368, 380

u
unconstrained FS2 information 387
unrecognized structures

definition 557
handling responsibilities 368, 369, 375

unsuccessful transfers 373
user 4

v

name 5, 10-12
omitted 11

verb parameters
Accessed_Queue_ID 487
Adjacent_DSU 487
Adjacent_REN 488
Adjacent_RGN 488
After _Date 488
After_ Time 488
Agent 489
Agent_Correl 489
Agent_List_Entry 489
Agent_Object 490
Agent_Unit_Of_Work_ID 490
Assigned_Process 490
Assigning_Process 491
Assign_Unit_Of_Work_ID 490
Auxiliary_ Operations 491

verb parameters (continued)
Before_Date 492
Before_ Time 492
Buffer 492
Buffer _Length 493
Capacity 493
Capacity_Comp_Op 494
Clean_Up_Date 494
Clean_Up_Seqno 494
Column_To_Be_Listed 494
Connection 496
Connection_Definitions_Entry 496
Connection_Queue_Type 497
Control_lnfo 497
Conversation_ID 497
Conversation_lnfo 497
Current_Unit_Of_Work_ID 498
Data_Length 498
Data_Stream_Format 498
Data_Structure 498
Day 499
Default_Hop_Count 499
DEN 499
Destination 503
Dest_Agent 500
Dest_DEN 500
Dest_DGN 501
Dest_DSU 501
Dest_REN 502
Dest_RGN 502
Dest_User 502
DGN 503
Direction 503
Directory _Entry 504
Distribution_ID 504
Distribution_lnfo 504
Distribution_Log_Data 505
Distribution_ Queue_l D 505
Distribution_ Time 505
DSU_Definition_Entry 505
DS_Control_Mod_Allowed
Exception_Log_Data 506
Exception_Report_Req 506
GMT_Offset_Direction 506
GMT_Offset_Hours 507
GMT_Offset_Minutes 507
Hold State 507
Hop_Count 508
Hours 508
Hundredths 508
lf_Nonunique_Key 508
Integrity 509
lntervention_List_Entry 509
Last_Byte_Received 510
Local_lnfo 510
Local_Or_GMT_Flag 510

Index 653

verb parameters (continued)
Local_Queue_Type 511
Logging 511
Logging_Oate 511
Logging_Time 512
LU_Name 512
Max_DS_Receives 512
Max_OS_Sends 513
Minutes 513
Mode_Name 513
Modified_Row 514
Month 514
MU_Action 514
MU_ID 515
MU_ID_Registry_Entry 515
MU_IO_State 515
MU_lnstance_Number 516
MU_Type 516
Net_ID 517
New_Row 517
New_Row_Number 517
New_Unit_Of_Work_ID 518
Next_OSU_Queue_Definitions_Entry 518
Next_MU_IO 518
Next_Queue_Entry_IO 518
Next_Seqno 519
Number_Of_Matching_Entries 519
Originating_Hop_Count 522
Origin_Agent 519
Origin_Date 520
Origin_DEN 520
Origin_DGN 520
Origin_OSU 521
Origin_REN 521
Origin_RGN 521
Origin_Seqno 522
Origin_User 522
Parent_Class 523
Parent_ID_Or_T 523
Parent_lnstance 523
Parent_Position 524
Parent_Spec 524
Previously _Received_Oate 524
Previously _Received_Date_ Time 525
Previously_Received_Time 525
Priority 525
Priority_Comp_Op 526
Product_Specific_Data 526
Program_Name 527
Protection 527
Protection_Comp_Op 527
Querying_Agent 528
Queue_Entry_ID 528
Queue_Entry_Type 528
Queue_IO 529
Received_ Server _Bytes 529

654 SNA/Distribution Services Reference

verb parameters (continued)
Receiving_Agent 529
Receiving_DSU 530
Receiving_REN 530
Receiving_RGN 530
Remaining_Server_Bytes 530
REN 531
Report-To_Agent 531
Report-To_DEN 531
Report-To_DGN 532
Report-To_DSU 532
Report-To_REN 532
Report-To_RGN 533
Report-To_User 533
Reported-:'.}n_Destination 537
Reported-On_Dest_Agent 534
Reported-On_Dest_DEN 535
Reported-On_Dest_DGN 535
Reported-On_Dest_DSU 536
Reported-On_Dest_REN 536
Reported-On_Dest_RGN 536
Reported-On_Dest_User 537
Reported-On_ Time 537
Reporting_DSU 537
Reporting_REN 538
Reporting_RGN 538
Report_Date 533
Report_Service_Parms 534
Report_ Time 534
Requested_Entry_Number 538
Requesting_Process 538
Restartability 540
Restart_Byte 539
Restart_Capable 539
Restart_ID 539
Return_Code 540
RGN 541
Route 542
Routing_ Table_Entry 542
Row_Selection_Criteria 542
Scheduling_Data 542
Seconds 543
Security 543
Security_Comp_Op 543
Selected_Row 544
Sending_State 544
Seqno_To_Clean_Up 544
Server 545
Server_Access 48, 545
Server_Bytes_Received 545
Server _Bytes_Remaining 546
Server_lnstance_ID 546
Server_List_Entry 546
Server_ Object_ Byte_ Count 547
Service_Parms 547
Session_Reference 547

verb parameters (continued)
Sibling 548
SNA_Condition_Report 548
SNA_Report_Code 548
Specific_Server_lnfo 48, 549
Specific_Server_Report 549
Starting_Queue_Entry_ID 549
Starting_Row_Number 549
Structure_Byte_Offset 550
Structure_Class 550
Structure_Contents 551
Structure_ID_Or_T 551
Structure_lnstance 551
Structure_Position 552
Structure_Report 552
Structure_Segment_Num 552
Structure_Spec 553
Structure_State 553
Supplemental_Report 553
Termination_Type 554
Unit_Of_Work_ID 554
Year 554

verbs
Add_DSU_Data 374, 451
Assign_Read_Access 371, 467
Backout_Server_Object 371, 468
Get_Distribution_lnfo 374, 452
Get_Distribution_Log_Entry 377, 453
Get_Exception_Log_Entry 374, 454
Hold_Distribution_Copy 374, 454
lnitiate_Read 371, 469
lnitiate_Write 371, 470
List_Adjacent_DSUs 377, 455
List_Connections 377, 456
List_Control_MU_Queue 374, 457
List_Conversations 377, 457
List_Distributions_Being_Received 377, 458
List_Distributions_Being_Sent 377, 458
List_OSU_Data 374, 459
List_Queues_Containing_Distribution 374, 461
List_Queue_Entries 374, 460
Modify_DSU_Data 374, 462
Obtain_Local_Server_Report 371, 441
Purge_Queue_Entry 374, 463
Query_Distribution_Sending 371, 442
Query_Last_Byte_Received 378, 471
Read 371, 471
Receive_Distribution 371, 444
Receive_Distribution_Report 371, 446
Receiving_Sequence_Completed 371, 448
Release_Distribution_Copy 374, 463
Release_Read_Access 371, 472
Remove_DSU_Data 374, 464
Reroute_Distribution_Copies 464
Reset_MU_ID_Registry 374, 465
Sending_ Sequence_ Completed 371, 450

verbs (continued)
Send_Distribution 371, 449
Start_Connection 374, 465
Terminate_Connection 374, 466
Terminate_Conversation 377, 466
Terminate_Read 371, 472
Terminate_Restartability 379, 473
Terminate_Write 371, 473
Write 371, 474

w
WRITEQ 357

z
zero capacity distributions 372

Index 655

Printed in U.S.A.

Reader's Comment Form

Systems Network Architecture
Distribution Services
Reference

Publication No. SC30-3098-3

This manual is part of a library that serves as a reference source for systems
analysts, programmers, and operators of IBM systems. You may use this form to
communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM Publications are not stocked at the location to which this form
is addressed. Please direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM
branch office serving your locality.

Possible topics for comment are: clarity, accuracy, completeness, organization,
coding, retrieval, and legibility.

Comments:

Wht:tt Is your occupation?

If you wish a reply, give your name, company, maiUng address, and date:

Thank you for your cooperation. No postage stamp necessary if mailed in the
U.S.A. (Elsewhere, an IBM office representative will be happy to forward your
comments or you may mail directly to the address in the Edition Notice on the back
of the title page.)

SC30-3098-3

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL

Fold and tape

--...- .---- -___ ,....
---- -. ---- - - ------ --_ _.._' -

®

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. E74
P.O. Box 12195
Research Triangle Park, N.C. 27709-9990

Please Do Not Staple

Fold and tape

l "%ii~:;:~; IF MAILED
INTHE

UNITED STATES

Fold and tape

Reader's Comment Form

Systems Network Architecture
Distribution Services
Reference

Publication No. SC30·3098·3

This manual is part of a library that serves as a reference source for systems
analysts, programmers, and operators of IBM systems. You may use this form to
communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM Publications are not stocked at the location to which this form
is addressed. Please direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM
branch office serving your locality.

Possible topics for comment are: clarity, accuracy, completeness, organization,
coding, retrieval, and legibility.

Comments:

What is your occupation?

If you wish a reply, give your name, company, mailing address, and date:

Thank you for your cooperation. No postage stamp necessary if mailed in the
U.S.A. (Elsewhere, an IBM office representative will be happy to forward your
comments or you may mail directly to the address in the Edition Notice on the back
of the title page.)

SC30-3098-3

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL

Fold and tape

--...- ------ ----- - -- -...... -- -----------_ _.._
®

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. E74
P.O. Box 12195
Research Triangle Park, N.C. 27709-9990

Please Do Not Staple

Fold and tape

I ·%~i~:;:;~ IF MAILED
INTHE

UNITED STATES

Fold and tape

--------- - - --- - -- - ---- - - ----------- ·-
Publication Number
SC30-3098-3

Printed in USA

~.

SC30-3098-3

