Systems

GC27-6998-0
File No. S370-30

Virtual Telecommunications
Access Method (VTAM)

DOS/VS
0S/VSti
0Ss/Vs2

GC27-6998-0
File No. $370-30

Systems VTAM Concepts and Planning

Virtual Telecommunications
Access Method (VTAM)

DOS/VS
0S/VSi
0S/VS2

BBV

First Edition (May, 1974)

This edition applies to the initial release of VTAM on DOS/VS and OS/VS, except
where noted otherwise.

This edition is for planning purposes only. Specifications in this publication are subject
to change, and such changes will be reported in subsequent revisions or technical
newsletters.

Copies of this and other IBM publications can be obtained through your IBM
representative or the IBM branch office serving your locality .

A form has been provided at the back of this publication for readers’ comments. If this

form has been removed, address comments to: IBM Corporation, Department 63T,
Neighborhood Road, Kingston, New York 12401

© Copyright International Business Machines Corporation 1974

PREFACE

This publication provides a guide to planning for the installation and use of the Virtual
Telecommunications Access Method (VTAM). The publication provides an introduction
to VTAM, describes VTAM’s major concepts and facilities, and provides detailed planning
considerations. It is directed primarily to data processing managers and system
programmers of installations that are considering installing a VTAM telecommunication
system. This publication enables prospective users of VTAM to prepare for using VTAM.
It is directed to both DOS/VS and OS/VS users.

This publication provides detailed information needed to plan a VTAM system and design
VTAM application programs. (Refer to the publication Introduction to VTAM,
GC27-6987, for a more general description of VTAM.)

This publication is organized as follows:

e Chapters 1 and 2 provide an introduction to VTAM and include descriptions of
VTAM’s major concepts and facilities. Complex concepts are introduced in these
chapters and detailed in subsequent chapters.

e Chapters 3, 4, and 5 describe the primary interfaces to VTAM. Chapter 3 describes
how VTAM can be used to define and tailor the telecommunication system. Chapter 4
describes how VTAM can be used to control the system, and Chapter 5 defines how
VTAM is used by application programs for telecommunications.

e Chapter 6 describes VTAM’s reliability, availability, and serviceability features.

e Chapter 7 provides hardware and software requirements for VITAM and discusses
planning considerations for functions such as telecommunication security.

The reader should be familiar with basic teleprocessing concepts. These may be found in
the publication Introduction to Teleprocessing, SC20-8095.

References are made in this publication to the NCP Generation publication. The most
current edition of NCP Generation is titled:

IBM 3704 and 3705 Communications Controllers Network Control Program/VS
Generation and Utilities Guide and Reference Manual (for OS/VS TCAM Users),
GC30-3007.

When used in reference to VTAM, this NCP Generation publication must be used only for
planning purposes.

Other publications referred to in this publication are:

DOS/VS Serviceability Aids and Debugging Procedures, GC33-5380.

Introduction to DOS/VS, GC33-5370.

Introduction to the IBM 3704 and 3705 Communications Controllers, GA27-3051.
OS/VS Dynamic Support System, GC28-0640.

OS/VS1 Planning and Use Guide,GC24-5090.

OS/VS1Service Aids, GC28-0665.

OS/VS2 System Programming Library: Service Aids, GC28-0633.

i

Availability of VTAM Facilities

iv

This publication applies to the initial release of VTAM on each of the three operating

systems (DOS/VS, OS/VS1, and OS/VS2). In addition, the following VTAM facilities are

described in this publication but are not planned to be distributed with the initial release

of VTAM:

e Remote attachment of the IBM 3704 and 3705 Communications Controllers in a
DOS/VS system.

o VTAM network-operator capability to change line-scheduling parameters in DOS/VS.

In addition the following teleprocessing subsystems will not be available with the initial
release of VTAM: The IBM 3650 Retail Store System, the IBM 3660 Supermarket
System, and the IBM 3790 Communication System.

Contents

Prefaceo e e e e
Availability of VTAM Facilities

Chapter 1. Introductionto VIAM
Whatis VTAM? o v vttt e e e

VTAM Provides System Coordination of Telecommunications Activity

VTAM Provides a Telecommunication Base
System Requirements for Using VTAM

Chapter 2. VTAM’s Role in a Telecommunication System
Functionsof VTAM o000
Teleprocessing—An Overview « ¢« « v e e 0.
A VTAM Telecommunication System « . . .

Application Programs Using VTAM T

Communications Controllers in a VTAM Telecommunication Network

Terminals in a VTAM Telecommunication Network
Distributed Function00
Data Flow Through a VTAM Telecommunication System
Sharing Resources—An Introduction .,
Overview of VTAM o0 n s

Four Views of a VTAM System

VTAMinOperation « v v v v v v v v v v

Installinga VTAM System

Creating the System
Controlling the Network
Designing VTAM Application Programs &
Establishing Procedures for Using the System

Chapter 3. Creating a Telecommunication System with VTAM
VTAM Definition o000 e
Generating VIAMo e e
Defining the Network oL
Defining NCPs for Communications Controllers
Defining Locally Attached 3270s
Defining Application Programs
Tailoring a VTAM System SN
Defining VTAM Start Options
Defining Logons e e e e
The Network Solicitor
Coding and Including Installation Exit-Routines
VTAM Node Structure o . .. o000
Node—A Definitiono
Node Structure—Application Programs
Node Structure—Local 3270s,
Node Structure—Local NCP
Node Structure—Remote NCP
Using the VTAM Node Structure
NamingNodeso 0.
VTAM Bufferingo
VTAM Buffers and Connected Terminals e e
Specifying Buffer Sizes and Thresholds
Controlling VTAM Buffering
Characteristics of Logons
Logon Types e e e e e e e e e e e e
AutomaticLogon o 0000
Terminal-Initiated Logon e e e
Application-Program Logon
Network-Operator Logon
Comparing Typesof Logons e
Logoffs oo e e e e e

Chapter 4. Controllinga VTAM System
Levelsof Control
VTAM Commands o oo
Starting VTAMo e
Starting VTAMinDOS/VS
Starting VTAMinOS/VS

vi

Halting VTAM 0 0 i v it e e e e e e e e e e e e e e 53

Orderly Closedown v v v i v e e e e e e e e e e e 53
Quick Closedown v v e e e e e e e e e e e 53
Designing TPEND for the HALT Command 53
Monitoring VTAM Status o v o 0 v i e e e e e e e e e 54
Activating and DeactivatingNodes o000 . 55
Starting and Stopping an Application Program 57
Activating and Deactivating Local 3270s 57
Activating and Deactivatingan NCP 58
Activating and Deactivating Remote Attachments 59
Activating and Deactivating Switched Networks 60
Activating and Deactivating Teleprocessing Subsystems 61
Special Considerations for Activation 61
Initiating Requests for Connection 62
Starting and Stopping VTAM Facilities 62
Starting and Stopping the Network Solicitor 63
Starting and Stopping Traces e v e e e e e e 63
Starting the Trace-Print Utility Program 63
Starting VTAM’s Dump Utility Program 64
Starting TOLTEP Testing e e e e e e e 64
Changing Line-Scheduling Specifications 64
Considerations for Network-Operator Control 65
Chapter 5. VTAM Application Programs « . . v o v v . .. 67
A VTAM Application Program Overview o« v v v v v . 67
The VTAM Application Program in Relation to the VTAM System 67
The VTAM Application Program« ... 67
The Processing Part L. ... oL o e 67
The TelecommunicationPart o000 68
VTAM . . . o e e e e e e e e e e e e e e 69
The Network Control Programo ... 69
The Logical Unit o o o v v e e e e 69
The Terminal Operator« v v v v v v v v v e e e 69
A Summary of VTAM Macro Instructions 69
Connection Macro Instructionso 0oL 70
Communication Macro Instructionso .. 70
Control-Block Macro Instructions ¢ . . o v ot v 0. 70
Support Macro Instructions oL L0000 o0 71
A Brief Comparison with TCAMand BTAM R)
VTAM Compared with TCAM R ¥
VTAM Compared with BTAM v v v v v v v v e v 72
Application Program Concepts and Facilities 72
Introduction to the Concepts and Facilities 72
General Concepts and Facilities o000, 73
Overlapping VTAM Requests with Other Processing 74
Application Program Exit-Routines, 77
Error Notification e e e e e e e 78
Opening the Application Program 81
COMMECHON « + + v v v v v v e 81
Acceptance L . L o o e e e e e e e e e e e e e e e e e e 82
Acquisition e e e e e e e e e e e e e e e 83
Queuing Connection Requests 0. 84
Disconnection e e e e e e e e e 84
Communication ¢ . . 0 v v e e e e e e e e e e e e 86
Messagesand Responses e v i i i 86
RRN and FME Responses ¢ o v v v v v v v v e e e e 89
Sequencingand Chaining00 o0 oo e e 92
Quiescing L . ..o Lo o e e e e “ .. 93
Facilities for Ensuring Orderly Communication 94
Sequence Number Recovery e e e 96
ReceivingInput oL Lo s e e e e e e e 100
SpecificMode and Any-Mode oL 0w e e e e e e e 101
Continue-Any and Continue-SpecificModes « 102
Identifying Logical Units« o o o0 102
Handling Overlength InputData« oo v .. 104
Communicating with the 3270 Information Display System 105
Communicating with Start-Stop and BSC Terminals ". 105

The VTAM Language « « « v v v v v v v v v o v v v . 109
Introduction to the VTAM Language « . « o o v o v v o v 110
The VTAM Macro Instructions« . . o o o .. . 110

The Connection Macro Instructions+ « v « v v v v v o o 110
The Communication Macro Instructions 111
The Control-Block Macro Instructions o . .. 111
" The Support Macro Instructions o0 ... 112
Relating VTAM Control Blocks to Executable Macro Instructions 113
Opening The Application Program 113
Connecting Logical Units« . o o« o v v oo 114
Disconnecting Logical Units o o o000 114
Communicating with Logicat Units 114
Handling Control Blocks, I/O Areas and Work Areas 115
Coordinating I/O Activity 0 oo e e e . . 115
Communicating with Start-Stop and BSC Terminals 116
Distinguishing Between Logical Units and Start-Stop/BSC Terminals 116
The LDO Control Block e e e e e e e e e e e e e 116
The CHANGE Macro Instruction« .« .« o o 116
The Basic-Mode Communication Macro Instructions 117

Sample Programs L0 0 u e e e e e e e e e e e e e 117
Introduction to the Sample Programs L. .0 117
Sample Program 1 o L. e e e e e e e e e e e 118

The Logic of Sample Program 1o 118
Sample Program 2 o Lo e e e e e e e e e e e e e e 123
The Organization and Flow of Sample Program2 126
The Logic of the 3600 I/O Routine 131
The Logic of the 3600 Chaining-Output Routine 133
The Logic of the 3270 /O Routine« o ... 136
The Logic of the RESP Exit-Routine 137
The Logic of the DFASY Exit-Routine AP .. 139
Choosing Programming Alternatives Discussed in the Sample Programs 140

Chapter 6. Reliability, Availability, Serviceability 143

VTAM s RAS Strategy . . « + ¢ ¢« v v v v v v v v vt e e e e e e e e e 143

VTAM’s RAS Facilities o v v v v v i i e e e e e 144
Serviceability Aids L. L e e e e e . . 144

ErrorRecording o000 .. 144
Traces o . . e e e e e e e e e e e e e e e e . . 145
Dumps oL e e e e e e e e e e e e e e e . . 146
Teleprocessing Online Test Executive Program (TOLTEP) 147
Reliability and Availability Support 148
Error Detection and Feedback, 149
NCPInitial Test o o o o o v v v vt e e . 149
Storage Managemento Lo e w e e e e e e 149
ErrorRecovery oo e e e e e e e e 150
NCPSlowdown o v v v v v vt et e e e e e e e e e 151
Configuration Restart 151

Chapter 7. VTAM Planning Considerations and Requirements 153

Machine Requirementso . 153
CPUSUPPOIt v v v v e e e e e e e e e e e e e e e 153
Locally Attached 32708 o v . i e e e e e e e e e e e e e e 153
Requirements for Communications Controllers 153
Remotely Attached Terminals 154

Operating System Requirements 155
Upward Compatibility o0 o e e 155
Requirements for DOS/VS 155
Requirements forOS/VSo, . 156

Network Control Program Requirements e e e e e e e e e 156
Introduction to the Network Control Program 156
NCP Functions Required by VTAM 156
Definingthe NCP 157
Support for Switched Networks 159

Call-in Terminals 0 vt e e e e e e e e e e e 160
Callout Terminals o o v v v v i e e e e e e e 161
Call-in/Call-out Terminals o« v v v i e e 161
Partitioned Emulation Programming (PEP) Considerations 161

vii

viii

VIAMDataSets v v v v v v v v v v v e e e e e e e e e e e 162

Data Sets for VTAM Under OS/VS & v v i v e e e e i e e e e 162
Data Requirements for VTAM Under DOS/VS 165
Sharing Telecommunication Resources v v v v 4 v o v o v v v o v 166
Resources That CanBe Shared oo o oo 166
Sharing and Managing ReSOUICES . . + v v v v v v v v v 4 ¢« o v o o v 0 e .. 166
Managing Resources Through VTAM Definition 167
Managing Resources Through NCP Generation 168
Managing Resources Through Application Programs 168
Telecommunication Security Through VTAM 169
Introducing Telecommunication Security 169
Identification Verification0 L0000 0. 170
Controlling Connections « . . v v v v v v v v v e e e e e e e 171
Authorization Exit-Routine 0. 171
Acquiring and Passing Connections0 o 00 .. 172
Controlling Logon Requests « ¢ v v v v v v v vt e e e e e e 172
SymbolicNames e e e e e e e e e e 175
Controlling Access to VTAM o v i i v i v i e e 175
Controlling the Use of VTAM Facilities 175
Protecting Sensitive Data0t 0 e e e e e e e e e 176
Other Telecommunication Access Methods : 176
TCAM Programs Under VTAM« ¢« v v v v i it e v e v e u 177
DOS/VS Coexistence . . . v v ¢ o v o o o v o o » e e e e e e e e e e e e 178
OS/VSCoEXiStENnce . « v v v v v v v v e e e e e e e e e e e e e e e e 178
Appendix A, Local 3270 SupportList o o000 181
Appendix B. Remotely Attached Terminals 183
Synchronous Data Link Control (SDLC) Devices v v v v v v v o . 183
Start-Stop Terminals vt e e e e e e e e e e e e e e e 184
Binary Synchronous Communications (BSC) Terminals 186
Appendix C. Remote Station Versus Remote Controlter 191
Appendix D, Summary of Application Program Indicators 195
GIOSSAIY i it e 199
Index e e e e e e e e e e e e e e e e e 205

Figures

Figure 2-1. A VTAM Telecommunication System 7
Figure 2-2. Nodesina VTAM System« v v v v v v v v v v o v o 8
Figure 2-3. Types of VTAM Terminals« . o ¢ o v o v v o 11
Figure 24. Correlation Between VTAM Logic Units and Teleprocessing Subsystems . . . 13
Figure 2-5. Data Flow Through a VTAM Telecommunication System 14
Figure 2-6. Sharing Resources « v v v o v v v v v v v u e e e e 15
Figure 2-7. Four Views of a VTAM Telecommunication System 17
Figure 3-1. Defininga VTAM System (Part10of2) 23
Figure 3-1. Defining a VTAM System (Part20f2) 24
Figure 3-2. Generating NCP Support in a VTAM Telecommunication System 27
Figure 3-3. Grouping Locally Attached 3270s into Logical Sets 28
Figure 34. Providing Control Information for Processing Logon Requests from

Start-Stop and BSC Terminals 33
Figure 3-5. Processing a Terminal-Initiated Logon with the Network Solicitor 36
Figure 5-1. VTAM Application Programs in Relation to the Telecommunication

B 7=1 1 1 68
Figure 5-2. Relationship of VTAM’s Control Blocks in an Application Program 71
Figure 5-3. Relationship of TCAMto VIAM 73
Figure 5-4. Major Similarities and Differences Between VTAM and BTAM Application

Programs (Part 10f2) o o oo o000 74
Figure 54. Major Similarities and Differences Between VTAM and BTAM Application

Programs (Part 20f2) v v v v v v i v e e e e e e e 75
Figure 5-5. Processing Pattern for a SynchronousRequest 76
Figure 5-6. Processing Pattern When an ECB is Used with an Asynchronous Request . . 77
Figure 5-7. Processing Pattern When an RPL Exit-Routine is Used with an

Asynchronous Request 000 00w e e e 78
Figure 5-8. A Possible Processing Pattern When Asynchronous Requests are Issued

in RPLExit-Routines oo o oo o0 79
Figure 5-9. Processing Pattern for Reporting Errors During an Asynchronous

Operation v .t e e e e e e e e e e e e e e e e e e e 80
Figure 5-10. Queued and Unqueued Connection Resuests 85
Figure 5-11. Exchanging Messages and Responses 87
Figure 5-12. Scheduled Output oo v oo 88
Figure 5-13. Responded Output« v v v v v v v v v 0 89
Figure 5-14. Two VTAM ResponsestoMessages« « .« o .. 90
Figure 5-15. Two Possible Uses of the Response Types 91
Figure 5-16. An Example of Message Chaining 93
Figure 5-17. An Example of Quiesce Communication 94
Figure 5-18. An Example of Change-Direction Communication 96
Figure 5-19. An Example of Bracket Communication 97
Figure 5-20. Indicators Used to Direct the Flowof Data 98

Figure 5-21.
Figure 5-22.

Figure 5-23.

An Example of Start-Data-Traffic and Clear Indicators. 99
Types of Information Exchanged Between an Application Program and

Logical Unit v v v v v v e b e e e e e e e e e e 101
Using a Combination of Any-Mode and Specific-Mode to Obtain Data . . . 103

Figure 5-24. Using the Continue-Any and Continue-Specific Modes to Handle Concurrent

Inquiries 0 e e e e e e e e e e e e e e e 104
Figure 5-25. Implicit and Explicit Solicitation in the Basic-Mode 107
Figure 5-26. Basic-Mode Messages and Transmissions from an RJE Station Vary

InLength« o @ v v i e e e e e e e e e e e e 109
Figure 5-27. The Logic of Sample Program 1 119
Figure 5-28. Hypothetical Network-Configuration for Sample Program2 124
Figure 5-29. Organization and Flow of Sample Program2 125
Figure 5-30. The Logic of the 3600 I/ORoutine 132
Figure 5-31. The Logic of the 3600 Chaining-Output Routine 134
Figure 5-32. The Logic of the 3270I/ORoutine 135
Figure 5-33. The Logic of the RESP Exit-Routine 138
Figure 5-34. The Logic of the DFASY Exit-Routine 139
Figure 7-1. Table of Data Sets Used by VTAM Under OS/VS (Part 1 of2) 163
Figure 7-1. Table of Data Sets Used by VTAM Under OS/VS (Part2of2) 164
Figure 7-2. Table of Files Used by VTAM Under DOS/VS 165
Figure 7-3. VTAM’s Use of Libraries Under DOS/VS 166
Figure 74. Communications Controllers and Transmission Control Units in a

Telecommunication Network 177

Figure 7-5. DOS/VS Coexistence v v v v v v v v v v v v e e 179
Figure 76. OS/VS Coexistence v v v v v v v v e e e e e e e 180
Figure B-1. Summary of Terminals That Can Operate in a VTAM Network 190
Figure C-1. A Remotely Attached Communications Controller 193
Figure C-2. Communications Controllers Attached as Part of Remote Stations 193

ix

CHAPTER 1. INTRODUCTION TO VTAM

What is VTAM?

This chapter summarizes the IBM Virtual Telecommunications Access Method (VTAM).
It briefly tells what VTAM is and what it does.

The IBM Virtual Telecommunications Access Method (VTAM) directs the transmission of
data between application the connections between application programs and VTAM
terminals. VTAM is a direct-control access method, and it enables application programs to
communicate with VTAM terminals without concern for intermediate connections such
as control units and telecommunication lines. Note: A VTAM terminal can be an
application program in a teleprocessing subsystem (such as the IBM 3600 Finance
Communication System), as well as terminals using start-stop or binary-
synchronous-communications (BSC) line control.

VTAM performs the following services:

e Establishes, terminates, and controls access between application programs and
terminals.

. Transfers data between application programs and terminals.

e Permits application programs to share communication lines, communications controll-
ers, and terminals.

® Permits the operation of the telecommunication network to be monitored and altered.

e Permits the configuration of the telecommunication network to be changed while the
network is being used.

Various users have access to these services:
o The application programmer can use the connection and data transfer services.

e The terminal operator and teleprocessing subsystems (such as the 3600 Finance
Communication System) can use VTAM’s services for logging onto application
programs.

o The network operator can use VIAM’s services for monitoring and controlling the
telecommunication network.

e The system programmmer can use VTAM’s services for configuring the telecommuni-
cation network.

VTAM executes under the DOS/VS, OS/VS1, and OS/VS2 operating systems.

VTAM supports the local attachment of the IBM 3270 Information Display Station, and
it uses the facilities of IBM 3704 or 3705 Communications Controllers with the network
control program (NCP) in network control mode to control remotely attached devices.
VTAM uses the NCP with or without the partitioned emulation programming (PEP)
extension. It also supports the remotely attached communications controller.

VTAM supports the IBM teleprocessing subsystems that use synchronous data line
control (SDLC). VTAM is designed to use the remote computing capability of these
subsystems and the full-duplex capability of SDLC. VTAM also supports some of the
terminals that use start-stop or BSC line disciplines.

VTAM allows application programs written for TCAM to be executed in a VTAM system,
using VTAM facilities and resources; these application programs use VTAM through

Introduction to VTAM 1

TCAM. VTAM can coexist with BTAM; that is, application programs written for BTAM
can be executed in a data processing system containing VTAM, but they must use a
network of terminals separate from the VTAM network. VTAM and BTAM can share a
3704 or 3705 Communications Controller by using an NCP with the PEP extension.

- VT AM Provides System Coordination of Telecommunication Activity

VTAM assists in providing a system solution to telecommunication problems. Using the

- facilities of the operating system, of NCPs, and of teleprocessing subsystems, VTAM
manages a telecommunication network and enables data to be transmitted between
application programs in the central computer and remote locations.

VTAM supports the distribution of function outward from the central computer to
devices suci as the 3704 and 3705 Communications Controllers and SDLC cluster
controllers (for example, the IBM 3601 Finance Controller). By distributing function, less
of the central computer’s capacity needs to be devoted to activities associated with
controlling the telecommunication network and more of its capacity can be applied to
the processing of data.

VTAM enables application programs in the central computer to communicate with
application programs in SDLC cluster controllers. It provides a method of communication
for the transmission of data independently of how devices are attached to the central
computer and independently of the type of subsystem being used. This same method of’

" communication can be used with IBM 3270 Information Display Systems; thus,3270s can
be treated, in many respects, like the application programs in SDLC cluster controllers.

In addition to enabling application programs in the central computer to communicate
with applications in SDLC cluster controllers, VTAM enables these same application
programs in the central computer to communicate with certain start-stop and BSC
terminals. VTAM offers direct-control communication with the applications in the SDLC
cluster controllers and with the start-stop and BSC terminals. If queued control is needed,
applications in the central computer can use VTAM through TCAM. Communication with
start-stop and BSC terminals is device-dependent.

In a VTAM system, the application program in the central computer:
e Js independent of line activities (such as line scheduling).

e Is independent of attachment concerns (such as whether a terminal is locally or
remotely attached).

e [s capable of referencing terminals and application programs in SDLC cluster
controllers symbolically.

o Communicates with terminals and application programs in SDLC cluster controllers
on a real-time basis.

VTAM Provides a Telecommunication Base

VTAM is designed to use advanced hardware and software including System/370 virtual
storage, the IBM communications controllers, DOS/VS, OS/VS1, OS/VS2, and the
teleprocessing subsystems that use the SDLC line discipline (such as the IBM 3600
Finance Commmunicaton System). With the IBM Virtual Storage Access Method
(VSAM), VTAM can be used to provide a complementary data base/data communication
facility. In addition to its primary role of data transmission, VTAM has features that-
establish it as a base for building telecommunication systems ranging in size from small to
large. These features are:

¢ Sharing of network resources, which reduces line costs and makes more efficient use of
the network. ’

e Concurrent execution of TCAM and VTAM application programs using the same
telecommunication network.

e Services required for interactive applications (for example, online inquires and
updates). :

e Operation of the IBM 3704 and 3705 Communications Controllers to reduce the
number of functions performed in the central computer for remote devices.

¢ Generation options for tailoring the telecommunication system to user’s needs.
o Support for remotely attached central processing units (CPUs).

e Support for teleprocessing subsystems, such as the IBM 3600 Finance Communication
System.

e Support for many different terminals which use different line disciplines (start/stop,
binary synchronous control, and synchronous data link control).

e Reliability, availability, and serviceability aids to assist in reducing the incidence of
errors in the telecommunication system, in reducing the impact of errors that do
occur, and in maintaining the telecommunication system.

System Requirements for Using VTAM

VTAM is a component of the DOS/VS, the OS/VS1, and the OS/VS2 operating systems.
DOS/VS systems must have DOS/VS multiprogramming support.

The System/370 instruction set must include the Compare and Swap and the Compare
Double and Swap instructions. These instructions are part of a hardware feature available

on System/370 CPUs.

VTAM requires a 3704 or a 3705 in network control mode to support remotely attached
devices. Appendixes A and B list devices that can be used by VTAM.

Introduction to VTAM 3

CHAPTER 2. VTAM’S ROLE IN A TELECOMMUNICATION SYSTEM

This chapter discusses the role of VTAM in a telecommunication system and explains
how VTAM relates to the other components in the system. Basic VTAM characteristics
and concepts are also introduced.

Functions of VTAM

VTAM manages the activities of a telecommunication system. It allocates resources and
manages the flow of data between the central processor and the remote locations in the
telecommunication system. To accomplish this, VTAM provides the following functions:

e Initiation and termination: VTAM enables an installation to define the telecommuni-
cation system and some of its characteristics. Once the system is defined, VTAM can
be started and the system initialized. VTAM can also be used to shut down the
telecommunication system in an orderly fashion.

® Dynamic configuration: VTAM enables the network operator to monitor the use of
the resources within the telecommunication system and to alter the network as
necessary.

e Allocation: VTAM controls the allocation of network resources. By owning and
controlling all resources, VIAM provides a focal point within the system for
controlling the network; yet, at the same time, it enables the installation to use its
network efficiently.

e J/O processing: VTAM manages the transmission of data between application programs
and terminals. It enables application programs and terminals to communicate witi
each other independently of how the terminal is connected to the central processing
unit. VTAM also relies upon the distributed intelligence throughout the network (in
communications controllers, cluster control units, etc.) to reduce the processing
requirements in the central processing unit.

® Reliability, availability, serviceability (RAS): VTAM offers a design and facilities that
reduce the incidence of problems in the telecommunication system, reduce the impact
of errors that do occur, and assist in maintaining the telecommunication system.

These functions provide a flexible, dynamic telecommunication system—a system that
is responsive to varying installation needs, that allows extensive sharing of network
resources, and that provides central control for important activities such as
telecommunication security.

Understanding how VTAM works requires familiarity with how the access method fits
into a teleprocessing system and a telecommunication network. To provide that
understanding is the purpose of the next two sections.

Teleprocessing—An Overyiew

The purpose of a teleprocessing system is to make the power of a central computer
available to a number of users working at remote locations. To achieve this aim, a
teleprocessing system must do two main things:

e Transmit data between the central computer and the remote locations.

e Process data in the central computer.

VTAM is directly involved in the transmission of data. But the processing of data in the
central computer is not a function of VITAM; instead, it is the responsibility of the
application program using VTAM to transmit data.

VTAM’s Role in a Telecommunication System 5§

That part of a teleprocessing system devoted to the transmission of data between the
central computer and the remote locations is referred to as the telecommunication
system. Figure 2-1 depicts the major elements in a VT AM telecommunication system.

The core of the telecommunication system is the central computer, which comprises a
central processing unit (referred to as the host CPU), channels, and auxiliary storage. In a
VTAM system, the CPU must be a System/370. The major components in the CPU are
the operating system (DOS/VS, OS/VS1, or OS/VS2), VTAM, and the application
programs that use VTAM.

Besides the central computer, the other major component of the system is the
telecommunication network. The network is composed of communications controllers,
telecommunication lines, control units, and terminals.

A VTAM Telecommunication System

A telecommunication system can be viewed as a network of nodes coordinated by the
telecommunication access method. (Nodes are addressable points in the telecommunica-
tion system, including application programs and terminals.) This network of nodes is
shown in Figure 2-2.

An application program and a terminal can communicate with each other only through

. VTAM. To communicate, these two nodes must be connected. Connection is the
allocation process by which VTAM establishes a path between an application program
and a terminal. The path is composed of other nodes (including lines, communications
controllers, and cluster control units) needed to transmit data between the application
program and the terminal.

Note: For VTAM, a cluster control unit is one of the following: the IBM 2972 Station
Control Unit, the IBM 3271 Control Unit, the IBM 3275 Display Station, and the control
units for the teleprocessing subsystems (for example, the IBM 3601 Finance Communica-
tion Controller). The phrase cluster control unit is used in this publication when no
distinction is needed between the BSC and the SDLC control units. When a reference is
made to only the SDLC control units, the term SDLC cluster controller is used.

A terminal is connected to an application program for as long as explicitly requested by
the application program, but intermediate nodes are allocated (but not connected) only
for the duration of a single data-transfer operation (such as a single read or write
operation). Consequently, intermediate nodes can be available simultaneously for paths
to other terminals.

In providing the mechanism for transmitting data between application programs and
terminals, VTAM removes much of the responsibility of network management from the
application programs. The primary task involved in network management is resource
allocation.

As network manager, VTAM handles the allocation of resources; that is, VTAM controls
who uses what resources. The only aspects of resource allocation of direct concern to
application programs are: (1) issuance of requests to have terminals connected to them
and (2) acceptance of requests by terminals (logon) to be connected to an application
program. Other aspects of allocation, including the control and use of intermediate nodes,
are handled by VTAM. The number, type, and disposition of intermediate nodes are
transparent to the terminals and to the application programs. (For more details on the
concept of connection, see “Application Program Concepts and Facilities,” in Chapter 5.)

Central r "
Computer | Host CPU |
l Application |
| Programs l
! |
: VTAM |
I Operating '
| System |
| |
I |
' Auxiliary |
| Storage '
' |
' |
F D D SIS GEEND NN CENEED IR D S— - G D GERNNS D G NN NN CENED G WS —'
Telecommunication Iég:r?ll'nunications |
Network | .Local Controller |
' 3270
NCP |
' I
' |
| Point-to-PointI
| VTAM Remote Line
Terminals Communications |
| Controlier |
| NCP |
| Multipoint I
| Line |
| |
| |
l |
' |
| [
SR |

Figure 2-1. A VTAM Telecommunication System

The more significant nodes in a VTAM system include:
e Application programs.
e Network control programs (NCPs) for communications controllers.

e Terminals.

These nodes are discussed below. Additional details on VTAM nodes are provided under
“VTAM Node Structure,” in Chapter 3.

VTAM’s Role in a Telecommunication System 7

APPLICATION
PROGRAMS
IN HOST CPU

VTAM

TELECOMMUNICATION
NETWORK

/|

Legend:
Nodes

VTAM Terminal

VTAM Application Program

Cluster Control Units and
Communications Controllers

Figure 2-2. Nodes in a VTAM System

Appiication Programs
Using VTAM

Communications
Controllers in a
VTAM
Telecommunication
Network

Each application program that uses VTAM establishes access to VTAM by a special
control block. This control block, the access-method control block (ACB), is built by the
application program.

The program must identify itself to VI'AM prior to using any of VTAM’s facilities; this
identification is completed when the application program successfully opens its ACB
(that is, initializes its ACB by issuing an OPEN macro instruction) and results in the
application connecting to VTAM. As long as the ACB is open, the application program
can request VTAM services. Such VTAM services can include:

e Allocating terminals to the application program.

o Transmitting data between a terminal and the application program.

A VTAM application program is any program that uses VTAM and its macro instructions
to communicate with a terminal. The VTAM application program could be a program
that both communicates with a terminal and processes its data. On the other hand, the
VTAM application program could be an installation-written service program that handles
the I/O requests of other application programs and does not process data. The use of the
term application program throughout this book is not meant to imply one type of
program over the other.

Note: Communication between application programs in the host CPU is not supported
by VTAM; although such communication may be possible via other components of the
operating system.

VTAM is designed to use the IBM 3704 and 3705 Communications Controllers. These
controllers can be either locally attached (that is, connected to the host CPU via a data
channel) or remotely attached (that is, connected to a locally attached communications
controller via a telecommunication line).

Communications controllers link VTAM with the remote portions of the network and
control the flow of information between terminals and VTAM.

The communications controllers are programmable devices; the program that controls

. these devices for VTAM is called the network control program/VS (referred to as NCP in

this publication).The NCP has generation options that allows a communications controller
to be operated in different modes. When operated in network control mode, the
communication controller allows its network resources to be shared. Communications
controllers can also be operated in emulation mode; when operated in this mode, they
emulate the IBM 2701 Data Adapter Unit and the IBM 2702 and 2703 Transmission
Control units. In addition, an NCP can be generated with the partitioned emulation
programming (PEP) extension, which allows a communication controller to handle
separate telecommunication lines in either network control or emulation mode at the
same time. VTAM uses only the network control mode of the NCP, with or without PEP.

The NCP allows some functions previously performed entirely in the host CPU to be
performed in the communications controller. Among the functions now provided by the
communications controller are:

e Controlling lines.

¢ Controlling dynamic buffering.

Deleting and inserting line control characters.

Translating character codes.

Detecting machine checks.

VTAM’s Role in a Telecommunication System 9

Terminals in a VTAM
Telecommunication
Network

10

¢ Detecting permanent line errors.

e Gathering line statistics.

e Activating and deactivating lines.

¢ Closing down the network.

¢ Handling recoverable errors.

* Stamping dates and times.

e Providing error statistics to VTAM.

By performing these functions outside the host CPU and by allowing much of the
network traffic to be controlled in the network, the NCP conserves central computing
resources.

Although these activities are actually performed in the communications controllers, they
are controlled by VTAM. For example, when the NCP is to deactivate a line, the
command to deactivate comes from VTAM. VTAM, in turn, is controlled by the
installation’s definition of the system, by the network operator, and by the VTAM
application programs.

VTAM supports remotely attached terminals (that is, terminals connected to a
communications controller via a telecommunication line) that use the following line
disciplines:

e Start-stop.

e Binary synchronous communications (BSC).

e Synchronous data link.control (SDLC).

The type of line discipline used depends upon the terminal. Appendix B is a list of
remotely attached devices supported by VTAM for each line discipline.

In addition to supporting remotely attached terminals, VTAM provides telecommuni-
cation support for the local attachment of the IBM 3270 Information Display System. A
locally attached 3270 is a 3270 terminal whose cluster control unit (a 3272) is attached
to the host CPU directly via a data channel.

In text about VTAM, the word terminal has a particular meaning. A terminal is a point in
the telecommunication network from which data can enter or leave the network. A
VTAM terminal can therefore be a single start-stop or BSC input/output device (such as
the IBM 2741 Communication Terminal), a CPU complex (such as a System/370
Processor Station operating as a remote station), or a logical unit of a teleprocessing
subsystem (such as a work station of an IBM 3600 Finance Communication System).
Figure 2-3 shows the three types of terminals in the VTAM telecommunication network.

In VTAM, a logical unit is that entity of a teleprocessing system that is treated as a
terminal by VTAM. (Logical units are treated as terminals in that VTAM treats both as
points in the network at which data can leave or enter the network.) The exact
composition of a logical unit depends upon the subsystem being supported. Figure 24
specifies the teleprocessing subsystems supported by VTAM and the composition of the
logical units for each.

In short, the boundary of the telecommunication network for VIAM appears as a
terminal to VTAM. In some cases this boundary is also the physical limit of the network;
in others, it is not. For example, as shown in Figure 2-3, a 2741 terminal is a terminal to

Start - Stop or BSC Terminal

Host CPU

VTAM

Teleprocessing Subsystem

Communications
Controller

NCP

Logical Units

Remote Station

This figure shows four VTAM terminals: a 2741, two logical units (referred
to as work stations in 3600 publications), and a remote station.

Figure 2-3. Types of VTAM Terminals

VTAM; it is also the physical end of the network. For the 2741, there is a one-for-one
relationship between the VTAM terminal and the physical device. On the other hand, the
relationship between the VTAM terminal and the physical device is not as precise for a
teleprocessing subsystem or a remote station. In a teleprocessing subsystem, V TAM treats
each logical unit as a separate terminal; for example, in the IBM 3600 Finance
Communication System, each work station is defined to VTAM and is treated as a
separate terminal. In a remote station, VTAM treats each CPU and its attached devices as
a single terminal. See Appendix C for details on VTAM’s support of a remote station as a

VTAM’s Role in a Telecommunication System 11

Distributed Function

terminal. Note: As used in this publication and unless stated otherwise, terminal also
applies to NCP components.

In understanding VTAM’s management of a telecommunication system, what is
important to note is that VTAM is responsible for the transfer of data between the nodes
in only the VTAM portion of a telecommunication system. VTAM application programs
and terminals mark the limits of the VTAM system. Control of the data flow beyond
these limits is the responsibility of nodes at those limits.

In a VTAM system, control functions may be distributed among nodes; rather than
concentrated in the host CPU, some control functions have been distributed to nodes
such as NCPs in communications controllers, cluster control units, and logical units.
VTAM’s management of the system takes advantage of this distribution; for example:

e By using the NCP to perform activities such as line-scheduling and polling, much of the
network control and host CPU processing can be performed simultaneously.

e By relying on processing capabilities of logical units and remote stations, the
composition and function of the network beyond these nodes are transparent to
VTAM.

In effect, the system under VTAM’s direct control is only a subset of the total
telecommunication system; the remainder of the system is controlled by nodes at the
edge of the VTAM system. But, while VTAM directly controls only a subset, the access
method can be used to coordinate the activities of the entire system. The remainder of
this publication describes VTAM’s operation within that subset. The terms relecommun-
ication system and telecommunication network are used in the remainder of this
publication to refer to only the areas controlled by VTAM, unless stated otherwise.

Data Flow Through a VTAM Telecommunication System

12

Note, that even though logical units and remote stations may be terminals to VTAM, they
do not necessarily mark the physical end of the telecommunication network. Figure 2-5
shows how data flows between application programs and terminals. Segment A of Figure
2-5 is a generalized data-flow diagram, valid for any of the three types of terminals.
VTAM manages the flow of data:

e Between itself and the application program.

e Between the CPU (using the I/O facilities of the operating system) and the
communications controller.

e Between the communications controller (using the facilities of the NCP) and the
terminal.

In a telecommunication system that contains teleprocessing subsystems or remote
stations, there are additional communication connections. For example, Segment B of
Figure 2-5 shows the data flow for a VTAM system in which the VTAM terminal is a
logical unit (in this example, a 3600 work station with two physical devices).

Note that, in Segment B, VTAM manages only part of the actual data transfer required in
this system: the transfer of data between the application program and the VITAM
terminal (the logical unit in this case). The logical unit is responsible for the transfer of

data between the IBM 3601 Finance Communication Controller and the physical
input/output devices (3604 and 3610, in this example), which mark the end of the
physical network.

Any data transfer activity in which the application program uses auxiliary storage devices
is the responsibility of the application program. (The application program can use an
access method such as IBM’s Virtual Storage Access Method (VSAM) to access auxiliary
storage of the host CPU.)

Sharing Resources—An Introduction

Overview of VTAM

Because VTAM allocates network resources, it permits parts of the network to be shared
among the application programs being executed in the host CPU. Shared resources
include:

e Communications controllers, cluster control units, and lines—which may be used by
more than one application program. Actually, an application program is unaware of
communications controllers, cluster control units, and lines; it communicates only
with terminals. By sharing these items, several application programs may communicate
with different terminals on the same multipoint line. Also, the terminals on a single
multipoint line may communicate with any of the application programs using VTAM.

e Terminals—which may be used by more than one application program. Any one
terminal may communicate with any one of the application programs that is using
VTAM. However, once a terminal and an application program are connected, the
terminal can communicate with only that application program until released by the
program.

Figure 2-6 shows how resources can be shared in a VTAM telecommunication network.
Through VTAM, TCAM application programs can share resources in the same manner as
VTAM application programs. For more details on resource sharing through VTAM, see
“Sharing Telecommunication Resources,” in Chapter 7.

This section describes the relationship among the major elements of a VTAM system. It
also introduces concepts that must be understood for proper planning and use of VTAM.
These concepts are expanded later in this manual.

Teleprocessing Subsystems Subsystem Components Treated
Supported by VTAM by VTAM as Logical Units

IBM 3600 Finance Work Station

Communication System

IBM 3650 Retail Store System 3650 Application Program in the 3651
Controller

IBM 3660 Supermarket System 3660 Application Program in the 3651
Controller '

IBM 3790 Communication 3790 Application Program in the 3791

System Controller '

Figure 2-4. Correlation Between VTAM Logic Units and Teleprocessing Subsystems

VTAM’s Role in a Telecommunication System 13

14

SEGMENT A
(General Flow of Data)

CPU

Application
Program

\

VTAM

A

' Operating
System

Communications

Controller
NCP
VTAM
Terminal +

SEGMENT B
(Flow of Data to a Logical Unit)

Auxiliary
Storage

|
CPU Y

Application
Program

I

VTAM

A

Operating
System

Communications
Controller

NCP

Logical Unit

P+

3601 Y

l
|
|
d

|
|
|
|
S
|
|

r
|

|

I

|

|

l

L

-¢———p Flow of data under VTAM’s control
~4—— = Flow of data outside of VTAM's control

Figure 2-5. Data Flow through a VTAM Telecommunication System

For example . . .

this program

A

can use VTAM'
to communicate
with

these terminals,

Later. . .

this program

can use VTAM
to communicate
with

this terminal,

Figure 2-6. Sharing Resources

while this program

can use VTAM
to communicate
with

these terminals.

while this program

D

can use VTAM
to communicate
with

these terminals.

VTAM’s Role in a Telecommunication System 15

Four Views of a
VTAM System

16

To understand VTAM fully, a user should know what the system looks like from four
viewpoints. These viewpoints are shown in Figure 2-7, which depicts the system: (a) as
seen in terms of its physical components, (b) as seen by the operating system, (c) as seen
by VTAM, and (d) as seen by application programs.

Section A of Figure 2-7 shows a possible physical configuration of the system. A VTAM
system includes a central processing unit (referred to as the host CPU) with a system
console (labeled S1). The system console is used to enter VTAM operator commands
(called network-operator commands) to control the telecommunication system. Also
attached to the host CPU are auxiliary storage devices that contain data sets used by
VTAM.

The network shown in Section A includes two locally attached 3270s (labeled L1 and L2)
and one locally attached communications controller. Attached to the local communica-
tions controller are three terminals (labeled T1, T2, and T3) and a remote communica-
tions controller. T1 is attached via a point-to-point line. T2 and T3 are logical units (work
stations for the 3600 system). T2 includes two 3600 devices; T3 includes one 3600
device. Attached to the remote communications controller are three terminals (labeled
T4, T5, and T6). T4 is attached via a point-to-point line; T5 and T6 are attached via the
same multipoint line.

A telecommunication system has a definite physical configuration, but it is defined to,
and used by, the operating system, VTAM, and application programs—each differently.
Section B, C, and D of Figure 2-7 depict these differences.

Section B of Figure 2-7 depicts the telecommunication system as viewed by the operating
system.

Support is generated in the operating system for only the system console, the auxiliary
storage devices, and the locally attached devices of the telecommunication network (the
locally attached 3270s and the locally attached communications controller). Support of
remotely attached devices need not be generated at system generation if these
attachments are to be used only through VTAM. Such support is generated within
VTAM, as explained later.

The number of auxiliary storage devices used by VTAM depends upon data requirements
that, in turn, are influenced by factors such as the size and complexity of the
telecommunication system. In general, data used by or generated by VTAM falls into one
of three categories. As shown in Section B of Figure 2-7, these categories are as follows:

o VTAM libraries which contain VTAM load modules, descriptions of the telecommuni-
cation system, and operational specifications of the installation.

e NCP libraries, which contain NCP load modules and dump records.

® RAS libraries, which contain records to assist in error recording and maintenance of
the VTAM system. R AS stands for reliability, availability, and serviceability.

VTAM and NCP libraries include VTAM, NCP, and operating system data sets; most of
the library requirements for RAS involve operating system data sets. The composition
and organization of these libraries depend upon the operating system under which VTAM
is executing. (See Chapter 7 for details on operating system requirements and on data set
requirements for VTAM.)

Section C of Figure 2-7 depicts the telecommunication system as viewed by VTAM.

LT Wo)sAS UONEIIUNWIWIOISAL, & Ul 9]0y S, WV.LA

W93SAS UOBOIUNWWIO[3], IWV.LA B JO SM3IA IN0q °/-7 2Indig

A PHYSICAL CONFIGURATION OF A TELECOMMUNICATION SYSTEM

CcPU

System 370x
Console
(Remote) |
Local .
3270s Multipoint

Line

——;__H Point - to - Point
Line

3601

T2

————
Auxiliary | T3 -,
Storage
Devices

Note: T2 and T3 are 3600 Work Stations

B THE TELECOMMUNICATION SYSTEM VIEWED BY THE

OPERATING SYSTEM

Operating
System

Application

VTAM
Program

370x
——1 (Local)
- |
————— VTAM Libraries
‘_)

NCP Libraries

RAS Libraries

C THE TELECOMMUNICATION SYSTEM VIEWED BY VTAM

D THE TELECOMMUNICATION SYSTEM VIEWED BY

APPLICATION PROGRAMS

Application VTAM Operating
Program System 370x o Application | | ., | Operating
_______ - "@ NCP - Program System
I I (Remote) | — —— —_— — —_
/ S~
T6
At y D [[B R
/ -
TR e
— e e amn —— o NCP - ———--——————__ﬂ
(Local) :——-—”
———m—]——— 13
——fF———t——=- VTAM Libraries ———1—= —————
__.._____Bvcpubraries ————tm g ———
-—— —--——-.-—-l RAS Libraries —_———— _
Legend:

Terminal

Channel

- —a Telecommunication

Line

= == —— Logical Connection

j Auxiliary Storage Device

370x = 3704 or 3705 Communications Controller

18

The host CPU must contain the operating system (DOS/VS, OS/VS1, or 0S/VS2),
VTAM, and one or more application programs. To VTAM, an active application program
is an open (that is, an initialized) access-method control block (ACB). As shown in
Section B, all locally attached devices are initially “owned” by the operating system, but
(as indicated in section C) when VTAM is started and begins activating parts of the

. telecommunication network, VTAM acquires the use of these devices. Some of the

devices are allocated explicitly to VTAM, some are allocated implicitly, and others are
used by VTAM but remain allocated to the operating system.

Devices that are explicitly allocated to VTAM include the locally attached 3270s and the
locally attached communications controller. These devices are explicitly allocated because
support for these devices is generated in the operating system, and this support is
extended to VTAM. When one of these devices is allocated to VTAM, VTAM becomes its
sole “owner”; the only access to the device is through VTAM. Locally attached devices
not allocated to VTAM remain available for allocation by the operating system to other,
non-VTAM users. i

The remote attachments (terminals T1 through T6, the remote communications
controller, and the 3601 controller in Figure 2-7, Section C) are implicitly allocated to
VTAM. They are implicitly allocated because the only access to these devices is through
the local communications controller, and VTAM controls access to this controller. Note:
In the case of an NCP with PEP, VTAM only controls the access to that part of the
remote network serviced by the network control mode of the NCP.

Also allocated to VTAM are the data sets on the auxiliary storage devices. These data sets
contain the VTAM libraries, the NCP libraries, and some of the RAS libraries. RAS
libraries not allocated directly to VTAM are used by VTAM through the RAS facilities of
the operating system.

The system console is used by VTAM but not actually allocated to VTAM.
Communication is established between VTAM and the network operator through this
console. The network operator enters VTAM commands through this console, and VTAM
transmits messages to the network operator at this console.

As noted previously, a primary purpose of VTAM is to provide the communication link
between application programs and terminals. VTAM uses the operator services of the
operating system to communicate with the network operator at the system console; it
uses the operating system’s data management services and, in some cases, its RAS
facilities, to gain access to the libraries on the auxiliary storage devices; but
communication with terminals in the telecommunication network and with application
programs in the host CPU are handled directly by VTAM.

Section D of Figure 2-7 shows the telecommunication system as viewed by the
application program. This view results from VTAM’s ownership of all nodes in the
network and from the way VTAM allocates the use of these nodes. VTAM connects
application programs to only terminals; the other, intermediate, nodes are allocated only
for the time needed to satisfy a specific transmission request.

~ As shown in Section D of the figure, application programs connect with terminals and

need not be concerned with intermediate connections such as channels, communications
controllers (and NCPs), and telecommunication lines. Application programs are also not
directly concerned with the system console used by the network operator or with the
VTAM, the NCP, or the RAS libraries.

VTAM in Operation

Installing a VTAM
System

Activities that pertain to VTAM include defining the telecommunication system,
controlling the activities of VTAM from the network-operator’s console, and executing
application programs that use VTAM for data transmission. Operating in conjunction
with each other, these activities provide a functioning telecommunication system.

Defining the system to VT AM involves identifying and describing all of the nodes in the
system. These node descriptions are collected and filed as members in OS/VS, or books in
DOS/VS, in a VTAM library. Activating a node in VTAM includes using the description
to establish a definition of, and control information for, the node. VTAM uses this
information to control the allocation of the node.

When VTAM is started, its initiation function establishes the telecommunication system
according to the specifications of the installation.

Once VTAM has been started, active application programs can connect with active
terminals in the telecommunication network. As long as a terminal is connected to an
application program, it can communicate with that application program.

To form a connection with a terminal, an application program must first identify itself to
VTAM. Once identified, the application program can request connection to a specific
terminal (or list of terminals). An application program can either acquire or accept a
connection. When it acquires a connection, the initiative for the connection originates in
the application program; when it accepts a connection, the connection is initiated via a
logon. When a logon is requested, the terminal is “queued” to the application program;
that is, the connection process is initiated but not completed. The application program
must accept the terminal to complete the connection. Connection is made to the
terminal, not the line. When the connection request is completed, the application
program is able to transmit data (via input/output requests) to the terminal.

In transmitting data to a terminal, the data is moved from the application program’s
output data areas to VTAM buffers. VTAM then transmits the data to the terminal (via
the NCP for remotely attached devices).

Input from the terminals travels the same (but reverse) route. The transmission moves
from the terminal to VTAM (via the NCP for remotely attached devices). VTAM then
moves the information to the application program input areas.

When an application program no longer needs a terminal, it can disconnect from the
terminal. VT AM can then reallocate the terminal to another application program.

When the telecommunication system is to be closed down, VTAM’s termination function
enables the installation to orderly terminate VT AM processing and to cease telecommuni-
cation activity.

From the time that VTAM is started to the time it is terminated, the VTAM
network-operator facilities enable the installation to control and monitor the telecom-
munication system. Most modifications to the network can be made dynamically,
without having to terminate VTAM.

The steps involved in installing an operating telecommunication system with VTAM are
discussed in “Installing a VT AM System,” below.

To install a VTAM system, it must be created, procedures should be defined for using it,
the active system must be controlled, and application programs must be designed and
coded for the host CPU. These steps are discussed below.

VTAM’s Role in a Telecommunication System 19

Creating the System

Controlling the
Network

Designing VTAM
Application Programs

Establishing Procedures
for Using the System

20

A VTAM telecommunication system is created through a process called VTAM definition,
which includes generating VTAM, defining nodes in the telecommunication system, and
tailoring VTAM.

Generating VTAM is part of the system generation process of the operating system.
Defining nodes to VTAM is a separate process of identifying and describing them and
then filing these definitions in a VTAM library. Tailoring VTAM includes coding
exit-routines that perform functions such as checking the validity of connection requests
between application programs and terminals, collecting information, and structuring
VTAM’s logon facility to the installation’s specifications.

See Chapter 3 for detailed information on using VTAM to create a telecommunication
system. Chapter 3 also contains more detailed information on nodes, VTAM buffering,
and logons.

VTAM enables a network operator to dynamically control the telecommunication
network. The network operator can start and stop VTAM, monitor the activity of the
telecommunication system, activate and deactivate nodes, and start and stop specified
VTAM facilities. To perform these functions, the network operator is provided with a set
of VTAM commands. Working within the confines of the network created through
VTAM definition, the operator uses these commands to monitor and dynamically
configure the network.

See Chapter 4 for detailed information on the responsibilities and actions of the
network operator and for a description of the VTAM network operator facilities. Chapter
4 also contains detailed information on activation of nodes.

VTAM enables application programs to request connection with specific terminals and to
request the transfer of data between the applications and their connected terminals.
VTAM also provides facilities for application programs to process requests synchronously
or asynchronously. Other facilities include exits that are scheduled upon the completion
of specified events and an extensive error notification scheme.

Chapter 5 introduces the VTAM facilities available to the application program, and it
provides suggestions on designing VTAM application programs. It also provides more
detail on VTAM concepts pertinent to application programs—such as connection,
communication, and synchronous and asynchronous processing.

Once a VTAM telecommunication system has been started, it is available to application
programs, terminal operators, and the network operator. To ensure that the telecommuni-
cation system is used effectively and efficiently, the installation needs to establish
procedures to be followed by the users of the system and to institute controls that
monitor these procedures. ‘

Procedures should be established for the network operator for starting, stopping, and
manipulating the VTAM system. The network operator needs to know how and when to
activate and deactivate nodes and specific VTAM functions. The network operator also
must know what to do when error conditions are encountered and what action to take to
avoid unnecessary down-time. (These actions might include responding to error messages,
collecting status information, or correcting the problem.)

The application programmer needs to know the conventions to be followed waen
connecting with VTAM and with terminals. Procedures should also be established for the
interaction between the application program and the rest of the system. Such procedures
might encompass passing terminal connections between application programs and reacting
to system closedown.

The terminal operator may need to know how to log onto and log off from application
programs.

Controls should be established to ensure that only authorized users can actually gain
access to VTAM resources. VT AM facilities can be used to control connection to VTAM
and between application programs and terminals. Facilities are also available to restrict
the use of certain VTAM functions to only authorized users and to protect confidential
data.

Chapter 6 discusses the RAS capabilities of VTAM. Chapter 7 describes various VTAM
planning considerations. The exact procedures defined by an installation depends upon
the needs and requirements of the installation itself coupled with the functions and
facilities of VTAM as addressed in this publication.

VTAM’s Role in a Teleccommunication System 21

CHAPTER 3. CREATING A TELECOMMUNICATION SYSTEM WITH VTAM

This chapter describes how a VT AM telecommunication system is created and tailored to
the installation’s requirements. This chapter also contains a detailed description of nodes,
VTAM buffering, and logons.

VTAM Definition

Before a telecommunication network can be used by VTAM, it must be defined to
VTAM. The process of defining the network to VTAM is called VTAM definition. VTAM
definition includes describing the physical configuration of the network, selecting the
functions to be available in the telecommunication system, and otherwise tailoring the
system to the installation’s requirements. VTAM definition is the process of:

A. Generating VTAM.

B. Defining the network.

C. Tailoring a VTAM system.

Figure 3-1 illustrates the three steps involved in defining a VTAM system. Steps B and C
in Figure 3-1 can be repeated as often as needed without requiring a repetition of step A.

The remainder of this section describes in detail each of the steps shown in Figure 3-1.

A VTAM Generation

VTAM
Load Module
) Library
Operating
Syste VT
G?ne::tion systemt. n Lo:iM
Deck generatio Modules

(Including the statement
to generate VTAM)

m
B Network Definition

4 VTAM Definition
Deck Library (Each
(eckn deck is stored in a
P o separate member
perating system or book.)
r Deck 2 filing utility -
y o program

Deck 1

VTAM Definition Decks
(One for each NCP, each set
of application programs, and
each set of local 3270s)

Figure 3-1 (Part 1 of 2). Defining a VTAM System

Creating a Telecommunication System with VTAM 23

C Tailoring VTAM

VTAM
Start Options.

Operating system
filing utility
program

(These options are
used to initialize
VTAM.)

Z

Interpret
Tables

Operating system
assembler

(Each table entry describes a valid

logon message. Each entry also includes the name
of the application program to which each logon is
passed or the name of a logon - interpret routine

to determine the application’s name.)

.-

Modification to
Logon Monitor

Operating system
assembler

These modifications are made via
VTAM’s NETSOL macro instruction.

p.d

(

2z

Exit
Routines

Operating system
assembler

(The installation can code three

types of exit routines: logon -interpret
[link - edited with the interpret tables,

see above] , authorization, and accounting.)

Figure 3-1 (Part 2 of 2). Defining a VTAM System

Interpret
Tables

Network
Solicitor

Authorization

Accounting

VTAM Definition
Library (Multiple
set of options can
be filed, each in

" a separate member

or book.)

VTAM Load
Module Library
(More than one
table can be
filed.)

VTAM Load
Module Library

(if the network
solicitor operates
as a VTAM facility;
otherwise, user’s
own library.)

VTAM Load
Module Library
(These two
routines replace
IBM - supplied
modules.)

Generating VTAM

Defining the Network

Defining NCPs
for Communications
Controllers

During system generation, VTAM modules are generated and included in the operating
system. To generate the VTAM modules and the required support in the operating
system, the following are specified in the input stream for the first stage of system
generation:

o VTAM is specified as a parameter of the TP operand of the SUPVR macro instruction
for DOS/VS, or VTAM is specified as a parameter of the ACSMETH operand of the
DATAMGT macro instruction for OS/VS.

e Control-unit and device statements are specified only for locally attached devices to be
used by VTAM; that is, only for locally attached 3270s and locally attached
communications controllers.

Note: Remotely attached devices are not specified during system generation. These
devices are specified and described during network definition. Remember that network
definition can be done online, without disrupting other jobs in the operating system. (See
“Defining the Network,” below, for a description of network definition.)

Additional operating-system support for VTAM can be included at system generation. See
“Operating System Requirements,” in Chapter 7, for details on operating-system support.

Network definition is the process of describing the network configuration to VTAM.
These descriptions are coded in VTAM definition statements; the coded definitions are
then filed in the VTAM definition library. This library is SYSSLB for DOS/VS and
SYS1.VTAMLST for OS/VS. See “VTAM Data Sets,” in Chapter 7, for a detailed
description of this library.

As part of the network definition, the four types of major nodes in the telecommuni-

- cation system are defined to VTAM:

e NCPs for locally attached communications controllers, including their attached
terminals.

e NCPs for remotely attached communications controllers, including their attached
terminals.

e Sets of locally attached 3270s. ,
o Sets of application programs that use VTAM.

The definition of each major node is filed as a separate member (specifically, a member in
0OS/VS or a book in DOS/VS) of the VTAM definition library. When VTAM activates a
major node, it uses the filed definition of that node as a description of the node’s
configuration. The defining of a major node can occur anytime following system
generation but prior to the first use of that node by VTAM. See “VTAM Node
Structure,” later in this chapter, for a description of nodes and a detailed definition of
major node.

At least one group of definition statements must be provided to VTAM for each
communications controller in the VTAM network. To aid in defining the remote network
for a communications controller, the same deck of macro instructions used to generate an
NCP can be used as the node definition by VITAM. Using this deck both for NCP
generation and for VTAM network definition requires additions to the NCP generation
macro instructions. These additions include statements and parameters that are used only
by VTAM. See Chapter 7 for VTAM requirements for an NCP.

An NCP configuration is defined by filing the NCP generation deck as a unique member
(member in OS/VS, book in DOS/VS) of the VT AM definition library. The member name

Creating a Telecommunication System with VTAM 25

Defining Locally
Attached 3270s

26

is thereafter used when addressing the NCP through VTAM. Each NCP defined to VT AM
is called a major node. See “VTAM Node Structure,” later in this chapter, for a detailed
definition of major node. '

If an NCP is modified (regenerated), it must be redefined to VTAM. It is redefined by
refiling the altered or new NCP generation deck. Thus, remote network configurations
can be modified without requiring a new or partial system generation of the operating
system.

Figure 3-2 depicts the steps for generating NCP support in a VTAM telecommunication
system. The steps are as follows:

1. Planning the NCP. Keep VTAM requirements, restrictions, and considerations in mind.

2. Coding the NCP generation statements. Include the pArameters and definitions
~ statements required by VTAM as well as those used to generate the NCP.

3. Generating the NCP. Use the statements coded in step 2. Include those parameters and
definition statements that are used only by VTAM; these parameters and statements,
though not used to generate the NCP, undergo an initial verification by the NCP
generation process.

4. Verifying that the generation is successful. If the NCP is not generated, successfully,
correct the generation deck and repeat step 3.

5. Filing the generation deck. File the deck as part of a member (member in OS/VS,
book in DOS/VS) of the VTAM definition library. This deck is the same deck that was
coded in step 2 and used in step 3. When VTAM activates this NCP, VTAM extracts -
the information it needs from the filed definition and from the generated NCP itself.

Using the same deck to generate an NCP and to define it to VTAM ensures that the
generated NCP and its VTAM definition agree. The deck is filed on the definition
library using a utility of the operating system.

Including the VTAM-only information in the generation deck permits an initial
verification of these specifications during NCP generation. Generating the NCP prior
to filing the deck ensures that the NCP generated is the one that is defined. If the deck
is filed first and an error is encountered in the generation process, the updated deck
would have to be refiled.

Note: The statements used to generate the NCP can be referred to as macro instructions
because they are assembled and generate communications controller instructions. As used
by VTAM, these same statements are not assembled and do not generate instructions.
Therefore, in this publication, they are referred to as statements, not macro instructions.

Each locally attached 3270 terminal must be defined to VTAM, either individually or as
part of a logical set of locally attached 3270s. Definitions of locally attached 3270s are
provided in VTAM’s LOCAL definition statements. A LOCAL statement defines one
terminal (a printer or a display unit), and each locally attached terminal in a VTAM
network must be defined by at least one LOCAL statement.

A logical set of locally attached terminals can be defined by filing the LOCAL statements,
one for each terminal in the set, along with an LBUILD statement as a member (member
in OS/VS, book in DOS/VS) of the VTAM definition library. (The LBUILD statement
identifies a major node—a term that is defined in “VTAM Definition,” later in this
chapter.) A terminal can be included in more than one logical set, as shown in Figure 3-3.

1 Plan NCP and VTAM
requirements.

2 Code NCP generation

statements, including
VTAM's NCP

definition statements.

3 Use statements t0 —q—) *5 File statements
generate the NCP. for VTAM's use.

4 If an error is encountered in NCP
generation, recode erroneous
statements and regenerate NCP.

NCP Load VTAM
IV!odule Definition
Library Library

NCP
Statements

NCP
Modules

Figure 3-2. Generating NCP Support in a VTAM Telecommunication System

The following information is provided via the LOCAL statements:

The symbolic name of the terminal.

The channel and unit address of the terminal.

The features that are available on the terminal.

The name of the logon description (interpret table) to be used when analyzing logon
requests for the terminal. A terminal’s interpret table is also inspected whenever an
INTRPRET macro instruction is issued by an application program for that terminal.
(See “Tailoring a VTAM System,” later in this chapter, for a description of defining
logons in interpret tables. See “The VTAM Language,” in Chapter 5, for a description
of VTAM’s INTRPRET macro instruction.)

The name of an application program to which VTAM is to .automatically transmit a
logon, on behalf of the terminal, whenever the terminal is available for connection. See
“Tailoring a VTAM System,” later in this chapter, for a description of automatic
logon.

Whether the terminal is to be considered active or inactive when the logical set of
which it is a part is activated.

The buffer limit for the terminal (an option in OS/VS only). See “VTAM Buffering,”
later in this chapter, for a description of how buffer limits are established using this
specification.

Creating a Telecommunication System with VTAM 27

28

PHYSICAL CONFIGURATION
CPU

Terminals (locally
attached 3270s)

NETWORK DEFINITION

Definition Statements

(Terminal 3
LOCAL -
Statements (Terminal 2
(Terminal 1
LBUILD
(Terminal 6
LOCAL -
Statements (Terminal 5
{ Terminal 4
LBUILD
LOCAL (Terminal4
Statements (Terminal 2
LBuILD ||

VTAM
Definition
Library

A logical set of locally attached 3270s is defined
to VTAM by filing an LBUILD statement along
with the LOCAL statements for the terminals in
the set. In this example, three logical sets of
local 3270s are defined.-

Figure 3-3. Grouping Locally Attached 3270s into Logical Sets

Defining Application
Programs

Tailoring a VTAM
System

Application programs must also be defined to VTAM. They are defined with VTAM’s
APPL definition statement. The name specified in the APPLID field of the ACB points to
a name stored in the application program that must match the name of an APPL
statement. To VTAM, an application program is an open access-method control block
(ACB). '

APPL statements can be filed as separate members (members for OS/VS, books for
DOS/VS) of the VTAM definition library, or they can be grouped in various
combinations and filed as sets.

The APPL definition statement can provide the following information:

e The symbolic name to be referenced by APPLID in the ACB. _
¢ The password to be specified by the application program when the ACB is opened.

e The buffer factor for the application program (an option for OS/VS only). See
“VTAM Buffering,” later in this chapter, for a description of how buffer limits are
established using the buffer factor of the application program.

e The specification of those VTAM facilities that an application program using this
APPL definition is allowed to use.

An application program can be authorized (via its APPL statement) to perform each of
the following through VTAM:

® Request input data from start-stop or BSC terminals in blocks instead of in messages
or transmissions.

e Pass connections to another application program. (That is, issue a CLSDST macro
instruction with the PASS option.)

o Initiate connection requests for terminals. (That is, issue the OPNDST macro
instruction with the ACQUIRE option or issue the SIMLOGON macro instruction.)

An APPL statement must be defined for each unique ACB, although the same APPL
statement can be named by only one open ACB at any one time. Like locally attached
3270s, an application program can be defined as part of more than one logical set of
application programs; that is, the same APPL statement can be filed in more than one
member of the VTAM definition library. (See Chapter 5 for descriptions of the ACB and
the OPNDST, CLSDST, and the SIMLOGON macro instructions.)

A logical set of application programs filed in the same member of the VITAM definition
library is called a major node. See “VTAM Node Structure,” later in this chapter, for a
definition of major node.

The installation can tailor VTAM by modifying IBM-supplied facilities. Tailoring activities
include:

® Defining VTAM start options. The installation can specify selected functions that are
to be activated when VTAM is started.

e Defining logons. The installation can define logon messages and can indicate the
application programs to which each logon request is to be routed.

® Modifying the network solicitor. The installation can use the IBM-supplied facility,
called the network solicitor, or can create its own facility for processing logons from
start-stop and BSC terminals (including locally attached 3270s). A default network
solicitor is generated when VTAM is generated, during system generation. Options are
also available to tailor or replace the network solicitor.

Creating a Telecommunication System with VTAM 29

Defining VTAM Start
Options

30

e Coding and including installation exit-routines. The installation can code three types
of exit-routines to control or coliect statistics on network operation.

Each of these tailoring activities is discussed below.

When VTAM is started, options can be used to define the initial VTAM network and to
select optional VTAM facilities. These start options can be specified by the operator as
part of the START command (in OS/VS only) or as a response to the prompting of
VTAM. The options can also be predefined and filed on the VTAM definition library.
(See “Starting VTAM,” in Chapter 4, for information on specifying options via the
system operator’s console.)

The VTAM start options are used to tailor VTAM to the installation’s needs each time the
telecommunication system is started. Predefining start options relieves the network
operator of handling this activity. In addition, more than one version of the start options
can be predefined, each version specifying a different VTAM configuration. With
different sets of predefined options, the installation can initialize a particular VTAM
system merely by selecting the appropria.e set of options.

The predefined start options are stored under the member name ATCSTRxx (where xx
and a data set must be filed under this name even if it does not contain any options.
Other ATCSTRxx data sets can be created, but the specific data set required is specified
by the installation at VT AM start-time.

The following start information can be supplied in the ATCSTRxx data set:

o Whether the VTAM logon monitor facility for start-stop and BSC terminals (referred
to as the network solicitor) is to be started when VTAM is started.

e Which nodes are to be traced by the VTAM trace facility.
e Which major nodes are to be activated during start processing (VTAM initialization).
e The size of VTAM storage pools.

¢ The maximum number of NCP and local 3270 major nodes that will be active at any
one time.

e Whether prompting messages should be sent to the network operator to obtain
additional start information.

If the network solicitor is activated, it begins monitoring the active terminals assigned to
it for logons. See “The Network Solicitor,” later in this chapter, for a description of the
network solicitor.

The trace facility is activated for specified terminals, and the trace continues for as long
as the terminals are active or until the network operator stops the trace for the terminals.
See “Starting and Stopping VTAM Facilities,” in Chapter 4, for information on stopping
the VTAM traces. See ““‘Serviceability Aids,” in Chapter 6, for a description of VTAM’s
trace facility.

The names of major nodes to be activated when VTAM is started are stored as a member
of the VTAM definition library. These names must be stored under the member name
ATCCONxx (where xx is a two-character identification created by the installation).
ATCCONOQO is a default member name; other ATCCONxx member names must be
specified by the installation during start processing. All ATCCONxx members must be
created and filed by the installation. See “VTAM Node Structure,” later in this chapter,
for a definition of a major node.

Defining Logons

To activate major nodes during VTAM start processing, an ATCCONxx member is
specified as a start option. This member then contains a list of the major nodes to be
activated. This option enables the installation to specify the initial telecommunication
configuration.

Storage pools are used by VTAM to allocate space for control blocks, buffers, and
channel programs. Pools are established in both fixed and pageable storage. See “VTAM
Buffering,” later in this chapter, for more information on specifying storage pools and on
VTAM’s use of these pools.

If the network operator is to be prompted, VTAM transmits messages to the system
operator’s console requesting that start options be entered from the console. The network
operator is prompted only (1) if prompting is requested in the ATCSTROO data set and
(for OS/VS) no start parameters are entered with the START command or (2) if an error
is encountered by VTAM during VTAM initialization. See “Starting VTAM,” Chapter 4,
for information on the role of the network operator in starting VTAM.

An installation can prepare and file multiple start-parameter members and multiple
node-name members. Various combinations of these parameters can thus be used during
start-time to initialize a tailored VTAM system.

This section describes how automatic and terminal-initiated logon procedures and
messages can be set up. It also provides suggestions on how to define logoff procedures.
The reader can refer to “Logon Types,” later in the chapter, for detailed explanations of
the types of logons recognized by VTAM.

Defining Automatic Logons: An installation can specify that a logon request is to be
automatically generated on behalf of a terminal for a selected application program
whenever that terminal is available. This specification is made by coding the name of the
program in the terminal’s GROUP, LINE, CLUSTER, VTERM, TERMINAL, LU, or
LOCAL definition statement. The application program name is the name specified for
that application program on its APPL definition statement, or in the case of
terminal-initiated logons from start-stop or BSC terminals (including locally attached
3270s), it is the name, NETSOL, of the logon monitor facility (network solicitor) of
VTAM. Note, however, that NETSOL is never specified in an LU statement because
logical units are not handled by the network solicitor.

See “Network Control Program Requirements,” in Chapter 7, for descriptions of
GROUP, LINE, CLUSTER, VTERM, TERMINAL, and LU definition statements. See
“Defining Locally Attached 3270s,” earlier in this chapter, for a definition of the LOCAL
statement. See “Activating and Deactivating Nodes,” in Chapter 4, for a detailed
description of an active terminal.

Defining Terminal-Initiated Logons: Defining terminal-initiated logons for start-stop and
BSC terminals (including locally attached 3270) is slightly different from defining them
for logical units; thus, the definition processes are discussed separately below.

Terminal-Initiated Logons For Start-Stop and BSC Terminals: To enable a terminal
operator to issue a logon request from a start-stop or BSC terminal (including locally
attached 3270s), the steps are as follows:

1. Modify the VTAM logon monitor facility for start-stop and BSC terminals (referred to
as the network solicitor). (This step is optional.)

2. Define terminal operator logon procedures and messages to VTAM.

3. Activate the network solicitor.

Creating a Telecommunication System with VTAM 31

32

4. Activate the terminal.

5. Enter a logon request to be processed by the network solicitor.

Steps 1 and 2 are done as part of VTAM definition. (See “The Network Solicitor,” later
in this chapter, for details on step 1; step 2 is part of the process of logon definition and
is discussed below.) Steps 3 and 4 are completed by the network operator, although the
degree of network-operator involvement depends upon the VTAM-definition options
selected. (See Chapter 4 for details on activating the network solicitor and terminals.)
Step 5 is accomplished by the terminal operator.

To use VTAM’s network solicitor, the installation must define:
A. Which terminals are to be handled by VTAM’s network solicitor.

B. What is the format and content of each logon message and what is the name of each
application program to be notified for each logon request.

C. Which logon messages can be used by each terminal.

An installation can use VTAM’s automatic logon capability to accomplish item A. Instead
of specifying an application program name for automatic logon in a terminal’s GROUP,
LINE, CLUSTER, VTERM, TERMINAL, or LOCAL definition statement, the installa-
tion specifies VTAM’s network solicitor. Whenever a terminal so designated is available,
the network solicitor monitors it for a logon request. The installation can also use the
network-operator logon option to temporarily assign a terminal to the network solicitor.
The network operator can assign a terminal to the network solicitor by logging the
terminal on the network solicitor. See “Characteristics of Logon,” later in this chapter for
a description of the network-operator logon.

Interpret tables define valid logon messages to VTAM and indicate which application
programs are to be notified of the connection request for each valid logon message (item
C). In OS/VS, VTAM also provides a standard logon message that does not use an
interpret table. See “Specifying Interpret Tables,” below, for details on setting up
interpret tables. See “Establishing Standard Logons,” below, for details on the standard
logon message.

Item C is accomplished by naming in-a terminal’s GROUP, LINE, CLUSTER, VTERM,
TERMINAL, or LOCAL definition statement the interpret table to be used to validate
logon messages from this terminal. Figure 3-4 shows how control information for
processing terminal-initiated logons are defined to VTAM for start-stop and BSC
terminals. :

Termingl-Initiated Logons for Logiéal Units: The steps involved in enabling and
executing a terminal-initiated logon from a logical unit are as follows:

L Define logon procedures and messages to VTAM.

2. Activate the terminal.
3. Enter a logon request to be processed by VTAM.

Step 1 is part of VTAM definition and is described below. Step 2 is completed by the
network operator, although the degree of network-operator involvement depends upon
the VT AM-definition options selected. (See Chapter 4 for details on activating terminals
at start time and dynamically while VTAM is executing.) Step 3 is a function of the
logical unit.

Terminal-initiated logons from logical units are not processed by VIAM’s network
solicitor; although, as noted above, logon procedures and messages must be established

Terminal Includes the logon information
Definition for a terminal (See note 1)

| 5 NETSOL Specifies that VTAM’s network solicitor is
to monitor the terminal for logons

INTAB Defines a set of logon messages
Macro Instruction | (The set is called an interpret table.)

LOGCHAR Defines a valid logon request
Macro Instruction | (More than one request can be
defined for each interpret table.)

Indicates the application program to
receive this request (See note 2)

o Describes the logon message for
this request

Notes:

1. The logon information can be specified in the GROUP, LINE, CLUSTER,
VTERM, TERMINAL, or LOCAL statement.

2. This parameter can point to an actual application program or to an
_installation - coded exit-routine (the interpret-logon routine) that
determines the application program to receive the request.

Figure 3-4. Providing Control Information for Processing Logon Requests
from Start-Stop and BSC Terminals

Creating a Telecommunication System with VTAM 33

34

during VTAM definition. To enable VTAM to process logons from logical units, the

installation must define: '

A. What is the format and content of each logon message and what is the name of each
application program to be notified for each logon request.

B. Which logon messages can be issued by each terminal.

Interpret tables define valid logon messages to VTAM and indicate which application
programs are to to be notified of the connection request for each logon message (item A).
VTAM also provides a standard logon message that does not use an interpret table. See
“Specifying Interpret Tables,” below, for details on setting up interpret tables. See
“Establishing Standard Logons,” below, for details on the standard logon message.

Item B is accomplished by naming in a logical unit’s GROUP, LINE, CLUSTER, or LU
definition statement the interpret table to be used to validate logon messages from this

- terminal.

Specifying Interpret Tables: Interpret tables are constructed by using VTAM’s INTAB,
ENDINTAB, and LOGCHAR macro instructions. For purposes of defining logon
messages, the LOGCHAR macro instruction describes a single logon message. The INTAB
and ENDINTAB macro instructions specify a group of logon messages, each message
defined by a LOGCHAR macro instruction. This group is called an interpret table. Each
interpret table must be assembled and filed as a separate member (member in OS/VS or
book in DOS/VS) in the VTAM load module library. The name assigned to the member
or book is the name assigned (via the INTAB macro instruction) to the interpret table.

Thus, the INTAB and the ENDINTAB macro instruction are used to define a group of
logon message definitions and to provide a name for that group. The LOGCHAR macro
instruction describes a specific message and can be used to indicate the following:

e Whether the logon request is a character string or a program function key on a 3270.
e If a program key, which key.

o If a character string, what character string. The characters specified in the LOGCHAR
macro instruction are only the characters to be checked by VTAM at the beginning of
the message. The actual message entered from the terminal can contain additional data
to be used, for example, for password protection or accounting by the application
program. This additional data must not be specified in the LOGCHAR macro
instruction.

e The name of the application program to receive this logon request.

For each message, the installation can specify in the LOGCHAR macro instruction either
the name of an application program or the name of a routine (a logon-interpret routine)
that is to determine the appropriate application program. All logon-interpret routines
specified in the same interpret table must be link-edited with that interpret table.

The contents of an interpret table are accessed via VTAM’s application-program
INTRPRET macro instruction.

The network solicitor uses the INTRPRET macro instruction to validate logon requests.
(The macro instruction can be used similarly by application programs.) The following
description of the network solicitor’s use of the INTRPRET macro instruction and of the
interpret tables is provided as an explanation of a possible use of VTAM’s interpret
function.

The network solicitor invokes INTRPRET while specifying a logon message received from
a terminal and the name of that terminal. INTRPRET then determines if an interpret

table is specified for that terminal. (If one is not specified, INTRPRET returns to the
network solicitor, with an indication that a table is not specified.)

If a table is specified, INTRPRET checks for a match between the message passed to it
and one defined by a LOGCHAR macro instruction for the table. (If no match is found,
INTRPRET returns to the network solicitor, with an indication that the logon message is
not in the table.)

If a match is found, INTRPRET determines whether an application program or a
logon-interpret routine is specified in the LOGCHAR macro instruction. If an application
program is specified, INTRPRET returns the name of the program to the network
solicitor.

If a logon-interpret routine is specified, INTRPRET invokes the routine. This routine is
installation coded and should validate the logon request. The logon-interpret routine
should specify the name of the application program to receive the logon request;
otherwise, it should specify that the logon request is invalid. If valid, the output from the
routine is returned to the network solicitor.

Upon entry to a logon-interpret routine, the following information is available:

¢ The name of the terminal requesting the logon.

e The logon message.

Output from a logon-interpret routine should be:

¢ An indication of whether the logon is valid.
e The name of the application program to receive the logon if it is valid.

The message given a logon-interpret routine as input is the message from the terminal, and
can therefore contain more data than is specified in the associated LOGCHAR macro
instruction. The routine can use this additional data to determine the application-program
name. In addition, this data might also contain information such as a password which is
verified by the routine.

Although the interpret tables are intended primarily for validating terminal-initiated
logon messages, they are also available to application programs through VTAM’s
INTRPRET macro instruction. See “The VTAM Language,” in Chapter 5, for additional
information on this macro instruction.

Establishing Standard Logons: VTAM also provides a standard logon format that can be
used in place of logons defined in interpret tables. In DOS/VS, this standard format is
available to only logical units. In OS/VS, this standard format is available to start-stop
and BSC terminals (including locally attached 3270s), as well as to logical units.

To enter a standard logon, a start-stop or BSC terminal must be assigned (via automatic
logon) to the network solicitor, and no interpret table can be specified for the terminal. If
the network solicitor encounters a logon message from a terminal that does not have an
interpret table specified, it assumes the message is a standard logon. A standard logon
message must have the word LOGON as the first word. The name of the application
program to receive the logon request must also be included in the message. Optionally,
the installation can also define data to be entered as part of the logon message. The
network solicitor does not check the data, if entered. This installation-defined data could
therefore be used by the application program as a password, for accounting, or for other
purposes.

Creating a Telecommunication System with VTAM 35

The Network Solicitor

36

The standard logon for a logical unit specifies the name of the application program as part
of the logon request and can include installation-defined data. A standard logon can only
be issued by a logical unit for which no interpret table is specified.

Defining Logoffs: No logoff data is defined for VTAM. Logoff is a function of the
application program, and because of this, the installation may want to establish
procedures to be followed by the terminal operators and by the application programmers
for logging off. See “Logoffs,” later in this chapter, for suggested logoff processing.

This section describes VTAM’s logon monitor facility for start-stop and BSC terminals
(referred to as the network solicitor) and describes how it can be modified.

The network solicitor monitors start-stop and BSC terminals (including locally attached
3270s) for logons and passes terminals with valid logons to the appropriate application
programs. Using the network solicitor, an installation can permit terminal-initiated logons
for start-stop and BSC terminals.

Network Solicitor—A Description: Figure 3-5 shows how the network solicitor functions.
Terminals are monitored by the network solicitor if they are assigned to it (via the
automatic logon specification) and only when they are active but not connected, or
queued for connection, to an application program.

Terminal operator enters logon from
active start-stop or BSC terminal.

l NETWORK SOLICITOR

The network solicitor compares the
logon from the terminal operator to
the logon definition for that
terminal. (See Figure 3-4 for a

description of how logons are
defined to VTAM.) '

Does the logon request
match a logon defined
for the terminal?

No Yes "
]

Inform terminal operator of g— | I__.. Pass the request to the

. . application program specified
invalid request. through the logon definition.
The network solicitor passes
the request only if the
application program has an
open ACB with MACRF=
LOGON specified and has
issued a SETLOGON macro
instruction with the OPTCD=
START specified.

Figure 3-5. Processing a Terminal-Initiated Logon with the Network Solicitor

When a terminal being monitored by the network solicitor enters a message, the network
solicitor determines whether the message is a valid logon request. The message is validated
in one of two ways:

e If an interpret table is specified for the terminal, a search is made in that table for an
entry corresponding to the message. :

e If no interpret table is specified and’ the operating system is OS/VS, the message is
checked for standard format.

See “Defining Logons,” earlier in this chapter, for a description of defining valid logons.

If the logon is valid, the terminal is passed to the appropriate application program if the
application is active and accepting logons. The application program is the one specified
for that logon message via the interpret table, or in the case of a standard logon, it is the
application program named in the message itself.

If the logon message is invalid, if the application program is not active, or if the
application program is not accepting logons, the terminal operator is notified that the
logon has been rejected and is invited to enter another logon message. VTAM writes error
messages to the network-operator’s console if the terminal is not supported by the
network solicitor, if the terminal is input only, or if the network solicitor is to be
terminated.

Network Solicitor—Modifying: A default network solicitor is automatically included in
VTAM during system generation. This network solicitor functions as described above, in
“Network Solicitor—A Description”. The default network solicitor has the name
NETSOL and can release terminals to requesting application programs (as explained
under “Network Solicitor Release Request,” below). The default network solicitor can
also be started and stopped via VTAM’s network-operator facilities.

~ An installation has the option of retaining this default network solicitor, of modifying the
network solicitor, or of replacing the network solicitor with its own logon monitor. If the
default network solicitor is to be used, the installation need only establish logon
capabilities for start-stop and BSC terminals as described in “Defining Terminal-Initiated
Logons,” earlier in this chapter. The network solicitor can be modified through the use of
VTAM’s NETSOL macro instruction as explained below. Replacing VTAM’s network
solicitor by an installation-written logon monitor is discussed below, under “Replacing
the Network Solicitor”.

The network solicitor is modified by coding, assembling, and link-editing VTAM’s
NETSOL macro instruction. If a NETSOL macro instruction is not assembled and
link-edited to replace the default network solicitor, VTAM’s default network solicitor
remains available for use.

A modified network solicitor is generated by coding and assembling VTAM’s NETSOL
macro instruction. The modified network solicitor can replace, or be used in addition to,
the default network solicitor. If the modified network solicitor is to be a replacement, it
must be link-edited with the VTAM modules in the VT AM load module library.

Using the NETSOL macro instruction, an installation can tailor the following facets of
the network solicitor: '

® Network solicitor name. The installation can change the name of the network solicitor.

® Messages. The network solicitor writes messages to the terminal if unusual conditions
are encountered while processing a logon. The IBM-supplied messages can be replaced
by ones specified by the installation.

Créating a Telecommunication System with VTAM 37

38

|

® Release request. The installation can specify whether the network solicitor should
release terminals to application programs that are attempting to acquire them.

® Password. The installation can specify a password to be included in the network
solicitor’s ACB. '

More detailed information on the NETSOL specifications is provided below.

Network Solicitor’s Name: The name of the default network solicitor is NETSOL. If the
modified network solicitor is to replace the default network solicitor, this name can be
retained. (Note: Only the network solicitor that runs in VTAM’s partition or private
address space can use the name NETSOL.) If any other name is specified, the modified
network solicitor is treated as an application program by VTAM. That is, the network
solicitor must run in its own partition or private address space, the installation must
supply an APPL definition statement for it, and it must be started and stopped like an
application program. VTAM’s start options and MODIFY command cannot be used to
start or stop a network solicitor with a name other than NETSOL. See Chapter 4 for
using the start options or the MODIFY commands with the network solicitor.

The name specified on the NETSOL macro instruction is the name in the automatic-logon
specification for each terminal to be monitored by the network solicitor.

The load module name of the network solicitor is ISTNSCOO; this load module name
must be used when modifying the default network solicitor.

Network Solicitor Messages: The network solicitor issues a message if any of the
following conditions is encountered: '

e The application program specified in the logon request is unavailable for logons. The
application program is unavailable if it is inactive, closing down, or not accepting logon
requests.

o The logon message is invalid; that is, it does not match any entry in the specified
interpret table or (for OS/VS only) it is not in standard format.

e No interpret table is specified (DOS/VS only) or no interpret table is available for the
terminal.

® The telecommunication system is closing down.
® An input error is encountered.
e The logon request is rejected by the authorization facilities of VTAM.

e The terminal is not supported by the network solicitor.
For each of these conditions, the installation can replace the IBM-supplied message with
one of its own.

Network Solicitor Release Request: If an installation authorizes application programs to
acquire terminals, the network solicitor should probably be able to release, upon request,
terminals it is monitoring. If release request is specified in the NETSOL macro
instruction, the network solicitor is generated with a RELREQ (release request)
exit-routine like the one in the default network solicitor. Whenever this exit-routine is
scheduled, the network solicitor releases the requested terminal unless a logon request is
being processed. (See Chapter 5 for details on the RELREQ exit and how it is invoked
and on acquiring terminals.)

Password: If the installation wants the ACB for the modified network solicitor to
contain a password, this password must be specified in the NETSOL macro instruction. If
a password is specified, the modified network solicitor is treated as an application

Coding and Including
Installation
Exit-Routines

program by VTAM,; that is, it must run its own partition or private address space, the
installation must supply an APPL definition statement for it, and it must be started and
stopped like an application program. VTAM’s start options and MODIFY command
cannot be used to start or stop a network solicitor with a password.

Replacing the Network Solicitor: If an installation does not want to use the
IBM-supplied network solicitor, but does want a general-purpose terminal-initiated logon
facility for start-stop and BSC terminals, an installation can code an application program
to perform the network-solicitor functions. Such an application program would need to
monitor terminals for logons and pass valid logons to the appropriate application
programs. The monitoring program would be treated like an application program by
VTAM: an APPL definition statement would have to be filed for it, and it would have to
be activated and deactivated as an application program. (See “Activating and Deactivating
Nodes,” in Chapter 4, for details on activating application programs.) As an application
program, though, the installation-coded monitoring program would still have access to the
interpret tables via the application-program INTRPRET macro instruction.

VTAM provides two types of exits: application-program exits and installation exits. The
application-program exit-routines are coded and identified in each application program
that uses VTAM. These exit-routines are executed as part of the application program and
are under the control of the application program. The installation exit-routines for VTAM
are coded and included in VTAM as part of VTAM definition. These routines are
executed as part of VTAM and are not under the control of application programs.
Information on the application-program exits is provided in “Application Program
Facilities,” in Chapter 5. The remainder of this section provides information on codmg
and using the installation exit-routines, and on including them in VTAM.

VTAM provides three types of installation exits:

® An authorization exit—to validate connection, disconnection, and logon requests.
¢ An accounting exit—to collect accounting information.

o Logon-mterpret exits—to determine the appropriate application program to receive a
logon.

VTAM provides for one authorization and one accounting exit-routine. If the installation
does not provide its own exit-routines, IBM-supplied modules are used. One logon-
interpret routine can be coded for each LOGCHAR macro instruction, although the same
routine can also be used for more than one LOGCHAR instruction. Logon-interpret
routines are not provided with VTAM,; if these routines are needed, they must be supplied
by the installation. Each type of exit-routine is described below.

Authorization Exit-Routine: VTAM provides an exit that permits the installation to

“authorize connections between application programs and terminals. (Authorization

performed in the authorization exit-routine is in addition to that performed by VTAM.)
This exit is scheduled whenever a terminal is to be queued for logon to, connected to, or
disconnected from an application program. (See “Application Program Concepts and
Facilities,” in Chapter 5, for the distinction between connection and queuing for logon.)
Thus, the routine at this exit is executed whenever a connection is to be made or broken
as a result of an OPNDST or CLSDST macro instruction in the application program, or
whenever a terminal is to be queued as the result of a logon. (See “Characteristics of
Logons,” later in this chapter, for a description of VTAM logons.)

Creating a Telecommunication System with VTAM 39

40

Upon entry to this exit-routine, the following information is available:

e The type of request that has been made; that is, whether the request is for a
connection, a disconnection, or a logon. Also, if it is a connection request, VTAM
specifies whether it is an accept or an acquire. If it is a logon request, VTAM specifies
the type of logon.

e The names of the terminal and the application program to be connected, disconnected,
or queued. Also, if the operation is a logon resulting from a CLSDST macro
instruction with the PASS option, VTAM also provides the name of the application
program issuing the pass request.

Using this input, an installation-coded authorization routine can determine whether each
connection, disconnection, or logon request should be processed by VTAM. For example,
each request might be compared against a predefined, installation-specified table of valid
or invalid requests. The results of this examination are then returned to VTAM. If the
request is determined to be valid, it is completed by VTAM. If it is invalid, it is rejected
by VTAM. Output from this routine must include whether the request is valid or invalid.

The authorization routine is included in VTAM by link-editing it as a single load module
into the VTAM load module library. This routine replaces an IBM-supplied module. If the
installation does not replace the IBM-supplied authorization exit-routine, all connection,
disconnection, and logon requests handled by this module are treated as valid.

In planning an authorization routine, a number of factors must be considered:

e The exit-routine is executed in the supervisor state under VTAM’s_protection key.
Therefore, errors within the routine may cause damage to VTAM’s control blocks and
modules. Also, security violations could occur if such a routine were designed or coded
by unauthorized persons, since they would have access to much of the VTAM
partition or private address space.

o The exit-routine is executed under the task for which the request is being authorized
(for example, the application program that issued the connection request). If the .
exit-routine is abnormally terminated, this task may be terminated also.

e The exit-routine is executed inline with VTAM processing. Therefore, performance
may be degraded if the routine requires lengthy processing time. While this routine is
being executed, no new connection, disconnection, or logon requests are processed by
VTAM, and requests involving VTAM’s VARY command are not processed. Therefore,
system waits (such as for disk I/0) should be avoided.

e The exit-routine is notified of pass requests. (The pass option is an option of the
OPNDST macro instruction; this option is used by VTAM’s network solicitor and can
be used by application programs.) The network solicitor uses the pass option to pass
valid terminal-initiated logons to active application programs. If the installation is to
use the network solicitor to monitor terminals for logons, the installation-coded
authorization routine should be designed to process the validation of pass requests
involving the network solicitor.

e The exit-routine is notified if VTAM’s network solicitor or the Terminal Online Test
Executive Program (TOLTEP) attempt to connect to a terminal. An installation-coded
authorization routine should be designed to process these preemption requests. (See
“Serviceability Aids,” in Chapter 6, for a description of TOLTEP.)

Accounting Exit-Routine: VTAM provides an exit that permits an installation to
maintain accounting information about connections. This exit is scheduled whenever a
terminal and an application program are connected or disconnected. Thus, the routine is
executed each time the application-program OPNDST or CLSDST macro instruction is
issued.

Upon entry to this routine, the following information is available: v

¢ The name of the application program.
e The name of the terminal.

e The type of request; that is, whether the operation‘is a connection or a disconnection.

Using this input, an installation-coded accounting routine could note and record the time
a connection is initiated. Then, upon re-entry (when that connection is being broken), the
routine could note the time of the disconnection. The difference between these two times
reflects the approximate connection time for the terminal and that application program.

Note that connection time is an approximate value affected by such factors as the
running time of the application program, the paging rate, and the operating system setting
the application non-dispatchable.

The accounting routine is included in VTAM by link-editing it as a single load module
into the VT AM load module library. This routine replaces an IBM-supplied module. If the
installation does not replace the IBM-supplied accounting exit-routine, no accounting
statistics are gathered.

In planning an accounting routine, a number of factors must be considered:

¢ The exit-routine is executed in the supervisor state under VTAM’s protection key.
Therefore, errors within the routine may cause damage to VTAM’s control blocks and
modules. Also, security violations could occur if such a routine were designed or coded
by unauthorized persons, since they would have access to much of the VTAM
partition or private address space.

e The exit-routine is executed under the task about which the accounting information is
being collected (for example, the application program that issued the connection
request). If the exit-routine is abnormally terminated, this task may be terminated
also.

e The exit-routine is executed inline with VTAM processing. Therefore, performance
may be degraded if the routine requires lengthy processing time. While this routine is
being executed, no new connection, disconnection, or logon requests are processed by
VTAM, and requests involving VTAM’s VARY command are not processed. Therefore,
system waits (such as for disk I/O) should be avoided.

e The exit-routine is notified of connection and disconnection requests involving
terminals and IBM-supplied facilities. These facilities are TOLTEP, the network
solicitor, the port solicitor (this facility supports switched networks), and the interface
to the Telecommunications Access Method (TCAM). The installation-coded account-
ing routine should be designed to process requests involving these facilities.

Logon-Interpret Routines: Details on the logon-interpret routines are provided under
“Defining Logons,” earlier in this chapter. They are mentioned here with installation
exits to indicate that they can be thought of as installation-level routines as opposed to
application-program-level routines. The logon-interpret routines would probably be
planned and coded as part of VTAM definition. Also, since these routines can be used to
prohibit logon requests, they can be used in conjunction with the authorization
exit-routine to control connections.

VTAM Node Structure

This section explains the concept of nodes in VTAM. The section also discusses VTAM’s
hierarchy of nodes and use of nodes.

Creating a Telecommunication System with VTAM 41

 Node—A
Definition

Node Structure—
Application Programs

Node Structure—
Local 3270s

42

In VTAM, a node is an addressable point in the telecommunication system. The
installation uses VTAM definition statements to identify all nodes. These statements not
only identify an element as a node but also place that node within a hierarchical structure
of nodes. All node are addressed symbohcally, the symbolic names are also assigned by
the installation at VTAM definition.

All node structures have the same general form:

Major Node
Minor Node #1
Minor Node #2

Minor Node #n
Thus, each node structure is a major node which contains one or more minor nodes.

Major nodes include:

e Sets of application programs.
e Sets of locally attached 3270s.
e NCPs for locally attached communications controllers.

i
® NCPs for remotely attached communications controllers.

The name of a major node is the name of a member in the VTAM definition library. This
member contains the statements that define that major node and the statements can be
any of the following:

* One or more definition statements defining one or more application programs.
¢ One or more definition statements defining one or more locally attached 3270s.

e The definition statements defining one NCP for a locally attached communications
controller.

¢ The definition statements defining one NCP for a remotely attached communications
controller.

One or more minor nodes can be defined for each major node. Each minor node is
organized into one or more levels. The structure of 2 minor node depends upon its major
node; these structures are explained below. The name of a minor node is the name
assigned to the VT'AM definition statement defining it.

See “VTAM Definition,” earlier in this chapter, for more information on defining nodes.

One or more major nodes can be defined for application programs. Each major node can
contain one or more minor nodes. Each minor node is represented by an APPL definition
statement.

The application-program nodes that can be defined and addressed are therefore major
nodes and individual programs represented to VTAM as minor nodes. Each major node
can contain more than one minor node, but each minor node represents only one
application program.

The node structure for locally attached 3270s is similar to that of application programs.
More than one major node can be defined for local 3270s. Each major node can contain
one or more minor hodes.

Node Structure—
Local NCP

Each local 3270 minor node is represented by a LOCAL definition statement. Each major
node for locally attached 3270s is represented by one LBUILD definition statement and
one or more LOCAL statements filed as a member of the VTAM definition library.

As with application programs, a minor node for a local 3270 represents only one 3270.

One or more major nodes can be defined for each locally attached communications
controller used by VTAM. A major node for a local communications controller is defined
by the definition statements filed for an NCP. Thus, in the case of a locally attached
communications controller, a major node is the NCP as opposed to the controller.

A major node for an NCP for a locally attached communications controller is organized as
follows:

Major Node—(the NCP)
Group
Line
Port Minor Node
Cluster Structure
Terminal
Component

A major node can have more than one minor node structure.

The port (node), the cluster (node), and the component (node) are included only for
those configurations using switched lines, cluster control units, or components.

Because the minor node structure depicts a physical configuration of lines and devices, an
NCP major node can contain more than one line, cluster, terminal and/or component
node definition.

- Minor nodes within NCP major nodes are named and specified in VTAM definition

statements; thus:

e A group (node) is defined by a GROUP definition statement.

¢ Aline (node) is defined by a LINE definition statement.

e Aport (node) is defined by a TERMINAL statement.

® A cluster (node) is defined by a CLUSTER definition statement.

e A terminal (node) is defined by a TERMINAL, VTERM, or LU definition statement.
¢ A component (node) is defined by a COMP definition statement.

See “Network Control Program Requirements,” in Chapter 7, for a description of the
VTAM definition statements used to define the NCP minor nodes.

Note: VTAM distinguishes between remote communications controllers and remote
stations in its node structure. The INNODE statement in an NCP definition deck for a
locally attached communications controller represents a remotely attached communica-
tions controller represents a remotely attached communications controller. The NCP for
the remotely attached communications controller must be defined as a major node in the
same VTAM definition library as that containing the major-node definition for the NCP
for the locally attached communications controller. There is no major-node definition in
this library for the remote station. A TERMINAL statement represents a remote station,

Creating a Telecommunication System with VTAM 43

Node Structure—
Remote NCP

Using the VTAM
Node Structure

44

and a remote station is a terminal (minor) node. (See Appendix C for the distinction
between the remotely attached communications controller and the communications
controller as part of a remote station.)

The node structure for an NCP for a remotely attached communications controller is the
same as that for an NCP for a locally attached communications controller. The only
exception is that a remotely attached communications controller cannot attach another
remotely attached communications controller. See “Node Structure—Local NCP,” above,
for a description of the NCP node structure.

VTAM works with nodes. Nodes are addressed, used, and manipulated by application
programs via VTAM’s application-program macro instructions and by the network
operator via VTAM’s network-operator commands.

Before a minor node (such as a single terminal or an application program) can be
addressed by VTAM, its major node must be activated. A major node can be activated
either during start processing or, thereafter, via VTAM’s VARY command.

-In most cases, the activation and deactivation of major nodes are independent of each

other; although: (1) A local NCP major node must be activated before its remote NCP
major nodes are activated, and (2) Major nodes containing a definition of the same minor
node or containing minor nodes with the same name cannot be active at the same time.

The hierarchical structure of each major node is significant to VTAM. An application
program major node and a local 3270 major node each has a two-level structure (the
major node with a single level of minor nodes). The NCPs, on the other hand, can have a
structure of several levels (minor nodes are structured as groups, lines, etc.).

The hierarchical node structure is made of higher-level nodes and subordinate nodes. For
example, an application-program minor node is subordinate to the higher-level,
application-program major node. Likewise, a component node is subordinate to the
higher-level, terminal node; the terminal node, in turn, is subordinate to nodes above it
(such as the line or the group nodes). All minor nodes are subordinate to their
higher-level, major node.

This hierarchical, or layered, structure is important when attempting to activate nodes.
The importance is this: A node cannot be effectively activated until all node layers above
it have been activated. See Chapter 4 for details on activating nodes.

The layered node structure enables an installation to dynamically and quickly parcel the
telecommunication network to meet fluctuating requirements. Thus, the network
operator can activate large segments of the network, then activate and deactivate
subsections within each segment as needs change.

A major node for locally attached 3270s contains one or more local-3270 minor nodes
(that is, one or more locally-attached 3270 definitions); likewise, a major node for
application programs contains one or more application-program minor nodes (that is, one
or more individual application-program definitions).

This collecting of minor nodes under a major node makes it easier to control the system.
With major nodes an installation can activate and deactivate a set of minor nodes at one
time. For example, if several application programs normally executed at the same time,
they could all be defined (via an APPL statement for each ACB to be opened) in the same
major node. To start these application programs, only one activation request would be

Naming Nodes

required—the one for the major node. In contrast, if each application program is defined
as a minor node under a different major node, an activation request would be required for
each major node.

The same minor node can be defined in more than one major node. (There is a restriction,
however: Only one major node containing a definition of the same minor node can be
active at one time.) Also, minor nodes of the same type (for example, local 3270s) need
not all be defined in the same major node. (That is, it is possible to create several major
nodes for local 3270s, each major node containing a subset of all the local 3270s in the
system.)

The ability to create different combinations of minor nodes can be used not only to
control the telecommunication system but also to assist in testing and expanding it.

For example, to help in controlling the network, a local 3270 could be defined in a major
node that is activated when activity on the system is low. This major node would define
only a subset of all the locally attached 3270s. The terminal could also be defined in
another major node (defining all of the local 3270s) that is activated when telecommuni-
cation activity is high.

In addition, to help with testing, this same terminal could also be in a third major node
that defines some terminals that are to be added to expand the system. This major node
would be activated when testing the expanded system, or (after testing is completed) to
support that expansion.

For more information on naming nodes, see “VTAM Naming Considerations,” below. See
Chapter 4 for information on VTAM commands and on activating and deactivating nodes.

All nodes must be named. The name of each minor node is supplied on its definition
statement. The name of each major node is the name of the member (in OS/VS) or book
(in DOS/VS) containing the definition statements for that major node.

Node names provide the means of addressing and using a VTAM system. These names are
used:

During VTAM definition to define the telecommunication system.
¢ In application programs to connect with terminals.
e By the network operator to control the VTAM system.

In VTAM messages to identify specific portions of the system.

By, possibly, logical units and operators at start-stop and BSC terminals to log onto an
application program.

A VTAM system may have a large number of nodes, particularly minor nodes, and
therefore requires the generation of many node names. Considering the quantity of names
and their extensive use, some care must be taken in choosing, assigning, and disseminating
names.

On assigning names, the following rules apply:

o Duplicate major-node names are not permitted.
e Duplicate minor-node names are not permitted in the same major node.

e Two or more major nodes containing duplicate minor-node names cannot be active
simultaneously.

~ Creating a Telecommunication System with VTAM 45

VTAM Buffering

VTAM Buffers and
Connected Terminals

Specifying Buffer
Sizes and Thresholds

46

e The names NETSOL, TOLTEP, and TRACE are assigned to IBM-supphed facilities and
therefore cannot be assigned by the installation to nodes.

Controlling the dissemination of node names provides some control over the security of
the telecommunication system. See “Telecommunication Security,” in Chapter 7, for
more information on using node names to protect the system.

This section explains how VTAM handles its buffers. VTAM has a number of buffer
storage-pools from which buffers are dynamically obtained and released. The installation

. can control the number of buffers devoted to any one terminal/application-program

connection and can specify the size and utilization of each buffer pool. How VTAM
buffering works and the use of the buffer controls to balance a telecommumcatlon
network load are explained below.

Data passes through VT AM buffers when it is moved between application programs and
the telecommunication network. These buffers are in VT AM storage, and the sizes of the
storage pools, from which the buffers are obtained, are specified at VTAM start-time.

When VTAM is executing, it automatically obtains buffers from, and returns them to, the
installation-specified pools. Buffers are obtained when data is transferred into VTAM and
released when data is transferred out.

In OS/VS, to keep these pools from being monopolized by any one terminal/
application-program connection, VTAM enables the installation to control the number of
buffers devoted to each connection. The statement that defines an application program
(the APPL statement) and the statement that defines a terminal (the LOCAL,
TERMINAL, COMP, VTERM, and LU statements) each contain a buffer specification.
When a terminal and an application program are connected, the buffer specification for
the terminal - is multiplied by that for the application program. The resulting product
indicates the maximum number of VTAM buffers that can be devoted to the terminal at
any one time for the duration of the connection.

This buffer specification applies only to input operations. Input data is transferred to
application programs only at the request of the application program; output data is
transferred from the application program to VTAM when VTAM is ready to transmit the’
data to the terminal.

When a terminal reaches its specified buffer limit, any additional data from that terminal
may be lost. Data already in the VTAM buffers should be read by the application
program.

In addition to the VTAM storage pools used to obtain buffers for application program
data, VTAM also has pools from which it obtains storage for control blocks used to
service telecommunication requests. As with the data buffers, the storage for these
control blocks is obtained and released by VTAM as needed, and the installation can
specify the sizes of these pools.

In OS/VS, when the installation specifies the size of the VTAM storage pools (at VTAM
start-time), it can also specify a threshold for each pool. (The threshold should be less
than the size of the pool; it cannot be more.) If, during VTAM execution, this threshold
is reached, VTAM avoids requesting buffers from the affected pool and does not resume

Controlling VTAM
Buffering

requesting buffers until sufficient buffers have been returned to drop the number of
allocated buffers below the threshold. While a buffer pool is operating in its threshold,
VTAM activity is slowed down and requests are queued until sufficient buffers have been
released to resume normal operations.

VTAM enables the installation to control the amount of storage devoted to VTAM
buffers and to control the utilization of these buffers. The installation can control the
number of buffers allocated at one time for each terminal/application-program
connection. By controlling this allocation, the installation can reduce the opportunity for
a connection to monopolize VTAM storage pools. In addition, the buffer limit specified
can be varied to meet requirements based on such factors as terminal type or
teleprocessing activitiy (for example: inquiry-response versus batch telecommunication
processing).

The installation can also control the size and the threshold value for each VTAM buffer
pool. Use of the threshold specification can enable an installation to reduce the incidence
of insufficient buffers resulting in lost data.

VTAM’s buffer pools are resources that can be allocated. Their size can be limited, while
the need for the buffers can exceed their availability. In setting up buffer pools and
controlling their use, the installation should consider such factors as:

e The amount of storage to be devoted to VTAM. (The larger the pools, the more
storage required.)

e The impact of VTAM slowdown on telecommunications. (When a buffer threshold is
reached, requests to VTAM are often queued.)

o The relative priorities of the various telecommunication jobs. (The higher priority
terminal/application-program connections might require higher buffer limits.)

e The impact of lost data. (If buffer space is not available, data can be lost.)

Characteristics of Logons

Logon Types

This section summarizes the types of logons available in a VTAM system. It also suggests
ways of enabling the system to process logoffs. “VTAM Definition,” earlier in this
chapter describes how logons are specified to VTAM.

A logon is a request by or on behalf of a terminal to be connected to an application
program. When a logon is requested, VTAM queues the request to the application
program. The application program must then either accept the terminal (via the OPNDST
macro instruction with the ACCEPT option) to complete the connection or reject the
request (via the CLSDST macro instruction) to release the terminal. If the application
program has an active logon exit-routine, the exit-routine is notified of the queued logon
request. If no such exit-routine exists for the program, the terminal is only queued; the
application program is responsible for determining that the terminal is available and for
issuing an OPNDST or CLSDST macro instruction.

VTAM provides four types of logons:

o Automatic logon, in which VTAM automatically logs a specified terminal (when it is
activated) on a selected application program.

o Terminal-initiated logon, in which the logical unit or the operator at a start-stop or
BSC terminal (including a locally attached 3270) enters a message causing that
terminal to be logged onto a selected application program.

Creating a Telecommunication System with VTAM 47

Automatic Logon

Terminal-Initiated ‘
Logon

48

e Application-program logon, in which an application program in the host CPU can issue
the VTAM SIMLOGON macro instruction to cause a terminal to be logged onto that
program, or it can issue the VTAM CLSDST macro instruction with the PASS option
to cause the terminal to be logged onto another application program.

e Network-operator logon, in which the VTAM network operator can use a VT AM
command to cause a specified terminal to be logged onto a specified application
program.

The different types of logons provide varying degrees of resource sharing and of
installation control over the network. They also require varying degrees of application-
program involvement and of installation preparation.

Each type of logon is discussed below in more detail. See “Application Program Concepts
and Facilities,” in Chapter 5, for details on queuing logon requests, connecting, and
disconnecting.

To enable VTAM to process automatic logons, the installation must specify the name of
the application program to be notified whenever a particular terminal is available for
connection. This specification is made when the terminal is defined at VTAM definition.
The application-program name is the name assigned to the APPL definition statement for
an application program. This name is specified in a GROUP, LINE, CLUSTER, VTERM,
TERMINAL, COMP, or LU definition statement for remotely attached devices and in the
LOCAL definition statement for locally attached devices.

If automatic logon is specified in the terminal’s definition statement, VTAM attempts to
log that terminal onto the specified application program whenever the terminal is active
and not connected to or queued for logon to another program.

If no program is specified for automatic logon for a terminal, that terminal can only be
used:

e If an application program uses VIAM’s OPNDST macro instruction with the
ACQUIRE option to request a connection with that terminal.

e Or if an application program uses VTAM’s SIMLOGON or CLSDST (with the PASS
option) macro instructions to simulate a logon from that terminal.

e Or if the network operator issues a VTAM logon command on behalf of that terminal.

® Or,in the case of logical units, if the terminal initiates a logon request.

Note: Instead of the name of an application program, NETSOL can be specified for
automatic logon. NETSOL is the name of VTAM’s logon monitor facility (the network
solicitor) for start-stop and BSC terminals. Specifying NETSOL enables the network
solicitor to process terminal-initiated logons. See “Terminal-Initiated Logon,” below, for
more information on this type of logon.

To allow VTAM to process logon requests from terminals, the installation must define the
requests and the logon messages. (See “VTAM Definition,” earlier in this chapter, for
information on defining logons.)

In addition, for start-stop and BSC terminals, the installation indicates which terminals in
the network are to be processed by the network solicitar. Terminals are so indicated by
the automatic logon mechanism described above. Instead of specifying the name of an
installation-coded application program, NETSOL (the name of the network solicitor) is
specified in the terminals’ definition statements at VTAM definition. See Figure 3-5 for a
description of how the network solicitor processes terminal-initiated logons.

Application Program
Logon

Network-Operator Logon |

Comparing Types
of Logons

The discussions provided in this publication concerning terminal-initiated logons for
startstop and BSC terminals (including locally attached 3270s) include the use of
VTAM’s interpret table and the network solicitor. It is possible for an installation to
provide its own terminal-initiated logon facility in place of the network solicitor.

For logical units, VTAM processes terminal-initiated logons whenever the terminal is not
connected to an application program. If an interpret table is specified for the terminal,
the logon is matched with the table, and the logon request is passed to the application
program indicated in that table. If no interpret table is specified, VTAM assumes the
logon is in the standard format and passes the request to the application program
explicitly named in the logon request.

Application-program logon occurs when an application program issues VTAM’s
SIMLOGON macro instruction or VTAM’s CLSDST macro instruction with the PASS
option. These instructions cause a logon request to be issued to an application on behalf
of the specified terminal.

A macro instruction calling for application-program logon is processed by VTAM only if
the application is authorized, during VTAM definition, to issue such a macro instruction.
(See “Telecommunications Security,” in Chapter 7, for a discussion on the possible
impact of application-program logon to security.)

The final type of logon is the network-operator-initiated logon. Using a VTAM command
(VARY), the network operator can specify the name of a terminal that is to be logged
onto a selected application program. The network operator specifies in the command the
names of both the terminal and the application program.

Besides generating a logon request on behalf of a terminal, this command temporarily
modifies any automatic logon designation that may exist for the terminal. Once the
command is issued, the terminal specified in that command continues to be logged on to
the application program whenever the terminal is available. The newly designated
automatic-logon specification remains in effect until:

e The network operator issues another logon command for that terminal and specifies
another application program.

® Or the major node containing that terminal is deactivated. When the major node is
reactivated, the automatic logon conditions specified at VTAM definition are in effect.

Logon provides a means of notifying an application program when a terminal (or terminal

~operator) needs to communicate with the -application, without being permanently

connected to the application. VTAM offers different types of logons to enable an
installation to tailor the logon facilities of its telecommunication system to its
specifications. Some of these differences between the types of logons offered by VTAM
are discussed below.

Who is the actual originator of the logon request is one of the more obvious differences
among the VTAM logons. The logon request is actually originated from the terminal only
in the case of the terminalinitiated logon. The other logons provide a means of
originating a logon request on behalf of the terminal.

Some of the logons offered by VTAM provide for the inclusion of a logon message; some

do not. Application programs using VTAM can be designed to handle only logon requests
that include logon messages, only logon requests that do not include logon messages, or

Creating a Telecommunication System with VTAM 49

Logoffs

50

either type. The following logon facilities can be used to generate a logon message for the

.application program’s logon exit:

¢ Terminal-nitiated logon.

e Application-program logon.

Using the terminal-initiated logon facility, a logical unit or the operator at a start-stop or
BSC terminal can enter a logon message that is passed to the application program. Using
the application-program logon facility, the application program issuing the logon request
can specify a message in that request. In either case, the application program can use
VTAM’s INQUIRE macro instruction to obtain the data in the logon message. The
automatic logon and the network-operator logon facilities do not include provisions for
generating logon messages for the logon exit.

VTAM logons also differ in respect to VTAM definition requirements. To use the
automatic logon facility or the terminal-initiated logon facility, the installation must have
set up the necessary controls at VTAM definition. (See “VTAM Definition,” earlier in
this chapter, for details on establishing these types of logon facilities). If only- standard
logons are to be issued from logical units, no explicit specification for logon is necessary
for VTAM. To use the network-operator logon facility, no explicit specification is
required during VTAM definition. Use of the application-program logon facility requires
that the application program be authorized during VTAM definition.

The completion of a logon (that is, the establishment of the VTAM connection between
the application program and the terminal) can be prohibited by an installation-coded
authorization exit-routine. See “Telecommunications Security,” in Chapter 7, for details
on controlling authorization. See “VTAM Definition,” earlier in this chapter, for details
on the authorization exit. See “Application Program Concepts and Facilities,” in Chapter
S, for details on the logon exit and the OPNDST macro instruction and for information
on queuing logon requests and completing connections.

Logoffs from logical units can occur in two ways:

1. The logical unit, perhaps as the result of its interpretation of a work station operator
command, can request the VTAM application program to disconnect it in an orderly
fashion. To do this, the logical unit sends the application program a message that
contains a request-shutdown indicator. This indicator tells the application program to
finish any current processing, possibly send a final message to the logical unit, and
disconnect the logical unit, using the CLSDST macro instruction. In this way, the
VTAM application does not need to check data in each message received from the
logical unit for a logoff request.

2. The logical unit can send a message, perhaps forwarded from a work station operator,
that indicates a request for logoff (disconnection). This type of logoff request requires
that the VTAM application program check each message received from a logical unit
for a logoff request. (This is the only type of logoff request that would be received
from a BSC or start-stop terminal.)

Note: Whatever the procedure followed by an application program for logoffs, when a
terminal with an automatic logon specification is disconnected, VTAM usually attempts
to queue the terminal to the application named in that specification. Some conditions can
arise in which a terminal is not immediately queued as per the automatic logon
specifications. For a description of these conditions see the discussion on disconnection
in “Application Program Concepts and Facilities,” in Chapter S.

CHAPTER 4. CONTROLLING A VTAM SYSTEM

Levels of Control

VTAM Commands

This chapter describes how an installation controls VTAM. The chapter stresses the
controls available to the network operator.

An installation can control VTAM in two ways: ‘

¢ By the specifications it makes during VTAM definition.

® By using network-operator commands.

Using VT AM-definition and NCP-generation facilities, an installation defines and tailors a
VTAM system. Defining and tailoring the system are activities that take place prior to the
actual use of that system. The activities require extensive planning, and they usually have
long-range effects; that is, the definition of the system and the generated NCPs are not
usually subject to frequent changes.

In contrast, the network operator controls a VTAM telecommunication system between
the time VTAM is started and the time it is halted. This control is provided through
VTAM network-operator commands.

VTAM-definition facilities enable an installation to define the operating limitations of the
telecommunication system, limitations of the telecommunication system, wh le the
network-operator facilities enable the network operator to modify, within these
limitations, the system’s activity in response to varying requirements. For example, using
VTAM definition facilities, an installation can define telecommunication configurations
and specify valid connections; the network operator, working within these definitions,
can activate and deactivate nodes and connections to control the use of the system.

The remainder of this section provides more information on VTAM’s network-operator
facilities. For additional information on defining a VTAM system, refer to the following
sections:

* “VTAM Definition,” in Chapter 3—for defining the telecommunication configuration
to VTAM, for using installation exit-routines, and for filing start options.

e “Telecommunication Security,” in Chapter 7—for controlling connections.
® “Operating System Requirements,” in Chapter 7—for cataloged procedures.

e “Network Control Program Requirements,” in Chapter 7—for NCP generation.

VTAM’s network-operator commands enable the network operator to monitor and
control the telecommunication system. VTAM commands are a subset of the operating
system commands; as such, they must be entered from a system console. Incorrect
commands are rejected by VTAM's command facility, and a message specifying the error
is written to the operator.

Using commands, the network operator can:

e Start VTAM.
e Stop VTAM.

e Monitor the status of the telecommunications system.

Controlling a VTAM System 51

Starting VTAM

Starting VTAM
in DOS/VS

0

Starting VTAM
in OS/VS

52

e Activate and deactivate nodes.

¢ Initiate requests for connections between terminals and application programs.

" Start and stop selected VTAM facilities.

e Change line-scheduling specifications.

Starting VTAM is the process of initializing VTAM and the telecommunication network
prior to actively using the VT AM system. Starting VTAM can include the activation of all
or only some of the nodes. It can also include the activation of selected VTAM facilities.

At the time VTAM is started, the installation tailors the telecommunication system either
by entering VT AM start options through the network operator’s console or by naming a
data set that contains predefined start options. The data set is one of the ATCSTRxx
members (members for OS/VS, books for DOS/VS) of the VTAM definition library. See
“VTAM Definition,” in Chapter 3, for information on predefining VTAM start options in
ATCSTRxx data sets.

The VTAM start options that can be entered through the network operator’s console are
almost the same as those that can be predefined and filed as a ATCSTRxx member. The
options that can be entered through the console include:

¢ Whether VT AM’s network solicitor is to-be activated.

o Whether VT AM’s trace facility is to activated, and if activated, for which nodes.
¢ Which major nodes are to be activated.

e Sizes of VTAM storage pools.

¢ The maximum number of NCP and locally attached 3270 major nodes that will be
active at any one time.

o Whether other start options should be taken from an ATCSTRxx member.

Except for the last item (a pointer to a list of predefined start options), start options that
can be specified by the network operator can also be predefined in an ACTSTRxx
member. : :

Starting VTAM differs slightly between DOS/VS and OS/VS. Each are discussed below.

VTAM is started in DOS/VS by first starting the VTAM partition and then invoking the
VTAM procedure. No VTAM start options can be entered from the console in either of
these two steps.

When the network operator starts VTAM, any start options in the ATCSTROO0 book are
processed first. If prompting was specified in the ATCSTRO0 book, VT AM prompts the
network operator for start options. Finally, if any errors were encountered in the start
processing, VI AM prompts the network operator for final options. These options are the
last to be processed before VT AM completes initialization.

The START command is used to start VTAM in OS/VS. This command can be entered
alone or with any of the VT AM start options listed above.

When the network operator starts VTAM, any start options in the ATCSTRO0 member
are processed first. If the operator included any start options with the START command,
these options are processed next. If no start options were specified in the START
command and if prompting was specified in the ATCSTRO0 member, VTAM prompts the

Halting VTAM

Orderly Closedown

Quick Closedown

Designing TPEND
for the HALT
" Command

network operator for start options. Finally, if any errors were encountered in the start
processing, VTAM prompts the network operator for final options. These options are the
last to be processed before VTAM completes initialization.

VTAM can be closed down in two ways: with an orderly closedown and with a quick
closedown. VTAM’s HALT command is used for both types of closedown. Orderly
closedown is designed to halt VTAM under normal, planned conditions. Quick closedown
is designed for emergency situations in which halting telecommunications takes
precedence over loss of terminal connections and loss of data.

If the network operator specifies an orderly closedown, VTAM does not prohibit
connections between terminals and application programs, although new connections of
application programs to VTAM are prohibited. VTAM notifies application programs of
the pending closedown by scheduling each program’s TPEND exit-routine. (The TPEND
exit-routine is an application program routine responsible for halting the application’s
teleprocessing activities when VTAM is terminating. See “Designing TPEND for the
HALT Command,” later in this chapter, for information on the TPEND exit-routine.)

Except for prohibiting the opening of ACBs, VTAM allows normal operation (for
example, reading and writing data) until all application programs have disconnected
themselves from VTAM by closing their access method control blocks (ACBs). Then
VTAM deactivates all nodes and closes down the telecommunication system.

To use VTAM’s orderly closedown to its fullest, the installation should ensure that each
application program has a TPEND exit-routine and that each TPEND exit-routine is
designed to halt teleprocessing activity in an orderly manner and then disconnect from
VTAM. If an application program connected to VTAM does not have a TPEND
exit-routine, the application is not notified of the pending closedown. This delays the halt
either until the application closes its ACB or the network operator cancels the
application.

If the network operator specifies a quick closedown, VTAM prohibits any further
communication between terminals and application programs. New connections of
application programs to VTAM are also prevented. Write requests that are already being
transmitted are allowed to complete, but pending input or output requests are canceled.
No additional input or output requests are accepted, although data already read into
VTAM buffers can be read by application programs. VTAM also notifies application
programs of the pending closedown by scheduling each program’s TPEND exit-routine.
Having scheduled each exit-routine, VTAM waits until all application programs have
closed their ACBs before it closes down the telecommunication system.

So that the quick closedown functions properly, the installation should ensure that each
application program using VTAM has a TPEND exit-routine. Since a quick closedown is
probably indicative of an emergency situation, the exit-routine should do no more than
initiate a closedown procedure.

Each application program’s TPEND exit-routine is scheduled whenever VTAM is about to
terminate. If VTAM is terminating as the result of a HALT command, input to the
exit-routine indicates whether the closedown is orderly or quick.

Controlling a VTAM System 53

Monitoring VTAM

- Status

54

For an orderly closedown, an application program can be designed to complete current
processing, to notify connected terminals that the telecommunication system is closing
down, and to disconnect itself from VTAM. For a quick closedown, the application
should be designed to do little more than close its ACB.

If all application programs do not close their ACBs within 45 seconds, VTAM notifies the
network operator. The notification is a message indicating the names of the open ACB:s.
The network operator can then either permit the application programs to continue

‘processing and wait until the ACBs are closed or can use the facilities of the operating

system to cancel the job containing the application programs.

Because a CLOSE macro instruction cannot be issued in an exit-routine, this routine
should set an indicator that alerts the main portion of the application program to the
pending closedown. In the case of a quick closedown, for example, the closedown
procedure could post an event control block (ECB) and return to VTAM. This ECB
should have been previously created by the main portion of the application program, and
the main portion of the program should have been waiting for it to be posted. When the
ECB is posted, the application. program regains control and could then issue a CLOSE
macro instruction for its VTAM ACB. The CLOSE request automatically disconnects any
terminals connected to the apphcatlon program. (See Chapter 5 for information on the
TPEND exit-routine.)

The network operator monitors the status of a VTAM system by requesting and studying
status information for nodes in the system. VTAM’s DISPLAY command enables the
network operator to request status information and to verify changes resulting from
previous operator requests. This command enables the operator to request information
about the following types of nodes:

e Application programs (minor nodes).

e Terminals,

e Telecommunication lines.

Ports. (Status displays for ports are the same as for telecommunication lines.)

Cluster control units.

Network control programs (NCPs).

To display the status of a node, the network operator specifies the symbolic name of the
node in the DISPLAY command. A minor node specified in a VTAM DISPLAY
command must be part of an active major node. An NCP major node specified in a
DISPLAY command must itself be active.

The following list indicates the information displayed by VTAM for each type of node:

e For an application program—Whether the application program is currently connected
to VTAM, the names of terminals connected to the application program, and the
names of terminals queued for logon to this application program.

e For terminals—Whether the terminal is active or inactive, the name of the application
program (if any) to which the terminal is allocated (that is, connected or queued for
logon), the name of the application program (if any) for which an automatic logon is
specified for the terminal, a list of traces in effect for the terminal, the current
specification of the device transmission limit (for polled start-stop and BSC terminals
only), the device type, a count of the input/output activity and temporary errors for
the terminal, and the names of the group and the line to which the terminal is assigned
(for remotely attached terminals) or the channel and unit address (for a locally
attached 3270).

‘Activating and
Deactivating Nodes

e For telecommunication lines—Whether the line is active or inactive, the name of the
group to which the line is assigned, the names of all nodes assigned to the line and an
indication of those that are active, the current specifications for polling delay, negative
polling limit, and NCP session limit (for polled start-stop and BSC lines only), and
whether the line is switched or nonswitched, whether a line trace is active for the line.
In addition, if the line is SDLC—The names of the SDLC cluster controllers that are
assigned to the line and an indication of those that are active, or the names of the
remote communications controllers that are assigned to the line and an indication of
those that are active.

e For a cluster control unit—Whether the control unit is active or inactive, whether a
trace is active for the control unit, the names of the VTAM terminals assigned to the
control unit and an indication of those that are active, and the names of the line and
of the group to which the control unit is assigned.

e For NCPs—Whether the NCP is active or inactive, the channel and.unit address and the
type of the communications controller containing the NCP (if the NCP is for a locally
attached communications controller), a list of traces in effect for the NCP the
load-module name of the NCP, a count of the input/output activity and of temporary
errors for the communications controller in which the NCP currently resides (if the
NCP is for a locally attached communications controller), and an indication of
whether the NCP is for a locally or remotely attached communications controller.

Note: Because an open ACB is an application program to VTAM, a program can be
executing in the system but not be recognized by VTAM as an application, if it does not
have an open ACB for VTAM. Displays can still be requested of application-program
minor nodes for which there is currently no open ACB; such a display would indicate that
the application program is inactive (not connected to VTAM).

Before a node can be used in a VTAM system, the node must be active. The installation
can control the activation and deactivation of many of the nodes in VTAM, including
both major and minor nodes. All major nodes can be explicitly activated and deactivated
by the network operator, and these include:

e NCPs for locally attached communications controllers.

e NCPs for remotely attached communications controllers.
e Sets of locally attached 3270s.

o Sets of application programs.

At VTAM start time, major nodes can be activated by using VTAM start options; all
active major nodes are deactivated when VTAM is halted. Major nodes can also be
activated and deactivated with VTAM’s VARY command while VTAM is being executed.

To activate or deactivate a major node after VTAM is started, the network operator
enters a VARY command that contains the name of the node and indicates whether the
request is for activation or deactivation. For an activation request, the node name is the
name of the member of the VTAM definition library that contains the definition
statements for the node. For a deactivation request, the name is the name that was given
in an activation request.

See “VTAM Node Structure,” in Chapter 3, for a definition of major nodes. See “VTAM
Definition,” in Chapter 3, for information on filing definition statements in the VT AM
definition library. See “Starting VTAM” and “Stopping VTAM,” earlier in this chapter,
for information on activating and deactivating nodes by other than the use of the VARY
command. ‘

Controlling a VTAM System 55

56

Once a local 3270 or an NCP major node has been activated, some minor nodes within it
can be activated and deactivated by the network operator while VTAM is running. The
minor nodes that can be dynamically activated or deactivated at the request of the
network operator are:

e Start-stop and BSC lines.

e Ports.

¢ Cluster control units.

® Terminals (both local and remote).

e Terminal components.

Except for telecommunication lines, the installation can also specifically request the
activation of any of these minor nodes when VTAM is started. Start-time activation is
accomplished by specifying in a minor node’s definition statement that the node is to be
activated automatically when its major node is activated and then by using VT AM start
options to activate that major node.

Start-stop and BSC lines are automatically activated by VTAM when an NCP is initially
loaded. SDLC lines are automatically activated and deactivated by VTAM, depending on
whether any node on that line is active or inactive.

As noted earlier in this chapter, halting VTAM (by using VTAM’s HALT command)
automatically deactivates all active nodes. The orderly mode of VTAM’s HALT command .
deactivates the nodes only when all application programs have closed their ACB’s. The
quick mode of the command begins to deactivate all nodes after the last application
program has been notified of the pending halt, although VTAM termination is not
completed until all ACB’s have been closed.

To activate or deactivate a minor node while VTAM is being executed, the network
operator must enter a VARY command containing the name of the node and indicating
whether the request is for activation or deactivation. Note: A major node containing the
minor node definition must be active before that minor node can be activated or
deactivated.

VTAM provides two modes of deactivation for the VARY command:

e Normal deactivation.

e Immediate deactivation.

When a normal deactivation is specified, the node is not actually deactivated by VT AM
until the associated application program and terminal connections have been terminated
by either the application program or by the terminal operator. Queued requests for
connections involving the nodes in the deactivation are dequeued; associated application
programs are notified that the terminal is now inactive. No new requests for connection
with these nodes are accepted. An application program connected to a terminal to be
deactivated is not notified of pending normal deactivations.

Normal deactivation closes down 2 portion of the network without adversely affecting
other telecommunication activity. Use of this mode requires planning; that is, the
installation should ensure that application programs disconnect deactivated terminals in
conjunction with deactivation requests from the network operator. A

When immediate deactivation is specified, deactivation of the nodes begin at once. All
queued requests for connections to nodes included in an immediate deactivation request
are dequeued; no new requests for connection with these nodes are accepted. All input or
output operations for these nodes are immediately halted, with possible loss of data.

Starting and
Stopping an
Application Program

Activating and
Deactivating Local
3270s

(Data that is already in VTAM buffers prior to the deactivation can still be obtained by
the application program that was connected to the terminal; data in transit to VTAM
from the terminal may be lost.) If the deactivation involves a terminal connected to an

application program, the application program is notified of the deactivation by the

scheduling of the application’s LOSTERM exit-routine; the application program must
disconnect the terminal for the deactivation to complete. (See “Application Program
Concepts and Facilities,” in Chapter 5, for details on the LOSTERM exit-routine.)

The immediate mode provides very tight control over the network; normal mode provides
less stringent control, but allows for a more orderly deactivation. Note that, for
deactivation to complete, both modes require that application programs connected to
terminals included in the deactivation disconnect those terminals. The difference is that
normal mode does not really eliminate a terminal from the network until it is
disconnected, while immediate mode eliminates it almost at once, regardless of whether it
is connected.

Starting an application program that is to use VTAM requires the network operator to do
two things. The operator must (1) activate the major node containing the APPL
definition statement of the application program and (2) start the job containing the
application program. The major node can be activated explicitly by using the VARY
command or implicitly, when VTAM is started, by using start options. The application-
program job is started like any other job in the system. The order of the two operations is
not in itself critical; the critical requirement is that the major node be active when the
application program attempts to open its ACB for VTAM.

The major node containing the application program definition must remain active as long
as the application program maintains its open ACB. If an attempt is made via the VARY
command to deactivate a major node and all associated ACBs have not been closed, the
command is rejected.

To VTAM, an application program is one that is defined within an active major node and
that has an open ACB for VTAM. Thus, for VTAM, stopping an application program
requires only that the ACB be closed. But the major node itself cannot be deactivated
until all ACBs pointing to minor nodes in it have been closed.

An ACB is closed when the application program issues a VTAM CLOSE macro
instruction. It is also closed by the operating system when the application program is
terminated. An application program major node is deactivated by the VARY command
and by the HALT command.

Activating a minor node for a local 3270 causes that terminal to be allocated, if available,
to VTAM. If that terminal is not available (that is, if it is allocated to another, non-VTAM
user), the activation request is rejected.

Activating a major node for a set of locally attached 3270s causes those terminals,
defined in the associated LOCAL definition statements as initially active, to be allocated
(if available) to VTAM. VTAM notifies the network operator of any that are not
available. The network operator can then use the VARY command to activate the minor
nodes for these terminals as they become available.

Deactivating a minor node for a locally attached 3270 returns the terminal to the
operating system. Deactivating a major node for a set of locally attached 3270s returns all
active terminals in that set to the operating system. (Inactive terminals in that set are not
currently allocated to VTAM.)

Controlling a VTAM System 57

Activating and
Deactivating an NCP

58

If an automatic logon is specified for a locally attached 3270, a logon request is queued
to the application program (if it is active and accepting logons) whenever the terminal is
activated. If the application program has an active logon exit-routine, the routine is
scheduled.

When‘ a locally attached 3270 is activated, it is available for connection to application
programs using VTAM. When the terminal is deactivated, it is unavailable for connection
through VTAM, but it is available to non-VTAM users.

Activating an NCP for a locally attached communications controller causes the controller
to be allocated to VTAM. Until the NCP is deactivated, the communications controller
remains allocated to VTAM and is not available to other users of the operating system
except through VTAM facilities. Allocating a locally attached communication controller
to VTAM also implicitly allocates the associated remote attachments to VTAM.
(Remember that only locally attached nodes are recognized by the operating system and
need to be explicitly allocated to VTAM; the remotely attached nodes are “allocated” to
VTAM because they are part of the network controlled by the locally attached
communications controllers.)

Activating an NCP can also initiate the loading of the the NCP into the controller. The
NCP is not loaded if the NCP specified in the activate command is already loaded and in
its initial state, unmodified by the network operator. If the specified NCP is not currently
in the communications controller, it is loaded.

If a currently loaded NCP is to be used, it must be in its initial state; that is, its status is
that as specified for the NCP in the VTAM definition library. Thus, active cluster control
units, terminals, and components are only those that are specified as active in the
definition statements for the NCP. (If an NCP is modified by the network operator, it is
not considered to be in its initial state.) VTAM does not automatically reestablish
connections between application programs and terminals, though automatic logon
requests are initiated for active terminals that have automatic logon specifications.
Connections must be reestablished by using the OPNDST macro instruction. Also,
terminals attached to switched lines have been disconnected and must be redialed.

If the activate request results in the loading of an NCP, the status of the NCP is that
defined in the definition deck filed in the VTAM definition library. Thus, lines are
automatically activated, and active cluster control units, terminals, and components are
those defined as active in the VT AM definition statements for the NCP. Automatic logon
requests are initiated for active terminals with automatic logon specifications.

Deactivating an NCP for a local communications controller returns the communications
controller to the operating system. It does not delete the loaded NCP. The installation is
responsible for loading another control program if the current one is not acceptable for
the next user. '

Consideration must be given to activating and deactivating a remotely attached
communications controller. Terminals attached to a remote communications controller
are not available for use by VTAM until the remote controller has been activated. To
activate the remote communications controller, both NCPs must be activated: first the
NCP for the locally attached communications controller and then the NCP for the
remotely attached communications controller. Before deactivating a local communica-
tions controller in a VTAM system, the network operator does not have to deactivate
remotely attached controllers. Deactivating an NCP for a local communications controller
automatically deactivates any remotely attached communications controllers. Note:
Activating an NCP for a remotely attached communications controller automatically

Activating and
Deactivating Remote
Attachments

activates the line connecting the remote controller to the local controller; deactivating
that NCP deactivates the line.

If the NCP contains PEP, activation and deactivation requests may impact emulation
processing. Activating an NCP with PEP causes the entire NCP to be loaded (including
both the emulation functions and the network control functions); although, deactivating
the NCP through the VARY command makes the NCP and the communications
controller inactive only for VTAM. This deactivation does not halt emulation processing
in the controller.

VTAM’s activation and deactivation requests for telecommunication lines may also have
some impact on emulation mode. VTAM controls the assignment of lines that can be
reassigned between network control and emulation modes. Lines that can be reassigned
are automatically assigned to emulation mode unless they are activated by VTAM. Upon
being activated, lines that can be reassigned but are currently assigned to emulation mode
are reassigned to network control mode (except those lines being used by emulation).
When they are deactivated, the lines are returned to emulation mode. See “Network
Control Program Requirements,” in Chapter 7, for more information on controlling an
NCP with PEP.

Activating and deactivating a minor node for a remote attachment (such as a terminal,
cluster control unit, or line) does not affect the allocation of that attachment to VTAM.
Remote attachments remain implicitly allocated to VT AM as long as the NCP for the
locally attached communications controller is not deactivated by VTAM.

For VTAM to treat a terminal as active (that is, for VTAM to permit a terminal to be
connected to or queued to an application program), the associated line and cluster
control unit (if any) and the terminal must all be active. When the NCP is initially loaded,
cluster control units, terminals, and components are activated as specified in the
definition statements for those nodes. Start-stop and BSC lines are automatically
activated when an NCP is initially loaded. SDLC lines are automatically activated and
deactivated by VT AM, depending upon whether any remote node on that line is active or
inactive. (See “Network Control Program Requirements,” in Chapter 7, for information
on defining lines, cluster control units, and terminals.)

Because active application programs can be connected to only active terminals, it is the
activation of these two nodes that is of the most concern. Activating and deactivating
application programs and locally attached terminals are discussed above. The following
describes the activation and deactivation of remotely attached terminals.

Although an application program can be connected to an active terminal, the connection
can only be completed if the terminal is accessible through an active cluster control unit
(if any), an active line, and an active NCP. (If the terminal is accessible, as defined in its
TERMINAL or VTERM definition statement, through more than one line, at least one of
the lines must be active for connections to be completed.) Thus, a remote terminal is
treated as active (that is, connected to or available for connection to an application
program) only if all nodes in a valid path to the terminal have been activated.

Deactivating the NCP, the line (or lines in the case of switched networks), the cluster
control unit (if any), or the terminal effectively deactivates the terminal by making it
unavailable for connection to any program using VTAM. Each of these nodes is
deactivated by using VTAM’s VARY command with the deactivate option. To reactivate
a terminal, the VARY command with the activate option must be issued for the node
that was deactivated.

Controlling a VTAM System 59

Activating and
Deactivating
Switched Networks

60

Example of Deactivating and Reactivating a Remotely Attached Terminal

Assume an active BSC terminal in a switched network is connected to an active cluster
control unit which is in turn accessible via either of two active lines. The terminal can be
deactivated by using the VARY command to deactivate any of the following:

e The NCP.

e Both lines.

e The cluster control unit.
e The terminal.

Reactivating the terminal depends on the node that is specified in the deactive request.
To reactivate the terminal, a VARY activate request specifying the same node must be
entered:

o If the NCP was specified in the deactivation request, activate the NCP.
e If both lines were specified in the deactivation request, activate at least one of them.

e If the cluster control unit was specified in the deactivation request, activate the
control unit.

o If the terminal was specified in the deactivation request, activate the terminal.

If a terminal is effectively deactivated by deactivating the NCP, the terminal can only be
reactivated automatically when the NCP is reactivated if the following conditions are
met: The terminal and cluster control unit (if any) are defined via VTAM definition
statements as being initially active when the NCP is loaded.

Note that a deactivate request addressed to a terminal affects only that terminal, while a
deactivate request addressed to an NCP or a cluster control unit affects all attached,
active terminals. A deactivation request addressed to a line prohibits access to active
terminals only through that line. If those terminals have access through other active lines,
they have not been deactivated, although access to them has been restricted. If a terminal
has access through only one line, deactivating that line deactivates the terminal.

Special considerations apply when activating and deactivating logical units. See
“Activating and Deactivating Teleprocessing Subsystems;” later in this chapter.

Activation and deactivation are essentially the same for all remotely attached terminals,
whether they are attached to a local communications controller or to a remote
communications controller. The only difference is that a terminal attached to a remote
communications controller depends on the status of a greater number of nodes to
complete an active path to an application program. In addition to the status of the NCP
of the local communications controller, a terminal attached to a remote controller
depends on the status of the following nodes associated with that remote controller:

e The remote communications controller itself.

¢ The line or lines and cluster control unit (if any) connecting the terminal to the
remote controller.

Although there are more nodes in a path between an application program and a terminal
attached to a remote communications controller, the same factor controls the active
status of that terminal: namely, all nodes in the path must be active.

Controlling switched lines and the terminals that use them requires an understanding of
how the network is defined and how it is supported by VTAM. See “Network Control
Program Requirements,” in Chapter 7, for a detailed description of VTAM’s support of
switched networks and of how to define and control them.

Activating and
Deactivating
Teleprocessing
Subsystems

Special Consideration
for Activation

Teleprocessing subsystems supported by VTAM must be loaded (IPLed) before they can
be activated by VTAM. Thus, a 3601 controller, for example, must be IPLed before it can
be activated, and the controller must be active before any associated logical unit can be
activated.

Activation and deactivation of SDLC lines are performed automatically by VTAM.
Because teleprocessing subsystems are attached via SDLC lines, the network operator is
not responsible for activating and deactivating these lines. SDLC lines are activated
automatically when a remote node (such as a SDLC cluster controller or a logical unit) on
that line is active, and they are deactivated automatically when all remote nodes on the
line are deactivated.

The activation of nodes has special implications that, in part, result from the way VT AM
controls its system:. When VTAM activates a major node, it builds a segment of a table
containing entries which describe the minor nodes defined for that major node. (When
the major node is deactivated, the table segment for that node is deleted from main
storage.) VTAM uses the entries in the table to represent the actual minor nodes. It is
these entries that VTAM allocates to users; VT AM does not really allocate the node the
entry represents but, instead, retains the ownership of all the nodes. In most instances,
the status of the minor node and of its representative table entry is the same; thus,
usually, no distinction need be made between a node and its table entry. The activation
of application programs and the activation of start-stop and BSC terminals (including
locally attached 3270s) are two instances in which this distinction can manifest itself.

The implications of an active application program and of an active terminal are discussed
below. No distinction is made in this discussion between activation that occurs
automatically as a result of VTAM definition options or dynamically because of
network-operator requests. '

An Active Application Program: In respect to application programs, VTAM activates
only major nodes. Once an application program major node is active, each table entry for
a minor node within it is available to form a connection between VTAM and an actual
application program. This connection is made when an ACB (pointing to one of these
entries) is successfully opened. A table entry for an application program minor node can
be used to form a connection with VTAM by only one application program at a time;
that is, it can be pointed to by only one open ACB at a time.

VTAM’s VARY command and the start options for activating nodes activate only the
major nodes for application programs. The actual starting of the application program and
the opening of the ACB are responsibilities of the installation. When the ACB is open,
VTAM treats it and its associated table entry as an active application program.

An Active Terminal: When VTAM activates a terminal, it performs two activities: VTAM
(1) indicates in the terminal’s table entry that the terminal is active and (2) either
transmits an activation command to the NCP (for remotely attached logical units) or
obtains the terminal from the operating system (for locally attached terminals). When an
application program connects with a terminal, VTAM connects the application program
to this table entry, while retaining the ownership of the terminal itself.

In the case of start-stop and BSC terminals, the physical status of the terminal can differ
from that of its table entry; for example, a table entry can be marked active even though
the terminal it represents has not been turned on or is not even physically in the network.
But, because VTAM allocates the table entry to the application program when completing
a connection request, an application can connect to a terminal that is not physically part
of the network. Connection is possible in this case if the table entry is marked active and
a defined path has been activated.

Controlling a VTAM System 61

Initiating Requests
for Connections

Starting and
Stopping VTAM
Facilities

62

If connection is requested to a nonexistent (but defined) terminal, the connection is
completed, but no data transfer can be completed. These conditions enable an installation
to include, in the definition of the network, resources that are not physically available
but will be added at a later date. By doing this, an installation can avoid redefining the
network or recoding application programs for the addition of minor nodes to the
telecomnunication system.

For logical units, the status of the table entry and the terminal it represents must agree.
Thus, when a logical unit is activated, it must be physically active before its table entry
can be activated and made available for use by an application program. When VTAM
activates a start-stop or BSC terminal (including locally attached 3270s), In contrast, an
activate request for a start-stop or BSC terminal completes even if no other node in the
terminal’s path is active except the NCP. (Remember that a terminal without an active
path is still not available for connection to an application program; in other words, the
terminal is effectively inactive for application programs.)

N

In addition to its use in activating and deactivating nodes, VTAM’s VARY command can
be used to initiate connection requests on behalf of terminals. This logon option is used
to initiate VTAM’s network-operator logon.

To initiate a network-operator logon, the network operator enters a VARY command
containing the names of the terminal and the application program to be connected.
VTAM then processes the command as though it were an automatic logon for the
terminal; that is, VTAM notifies the application program that a logon request was
received from a terminal, but the application program must then accept the request
before connection is completed. (See “Application Program Concepts and Facilities,” in
Chapter 5, for details on connecting application programs and terminals.)

In addition to initiating a logon request, this option of the VARY command alters the
automatic-logon specification for the terminal. For example: If the network operator
initiates a logon request on behalf of terminal 1 for application program A, terminal 1 is
initially logged onto that program. Thereafter, whenever terminal 1 is available, it is
automatically logged back onto application program A. This automatic-logon specifica-
tion for terminal 1 remains in effect until the network operator either deactivates the
major node containing the terminal definition or enters a new logon request on behalf of
the terminal.

Because the network-operator logon modifies the automatic-logon specification, care
should be exercised when using the logon facility of the VARY command. See
“Characteristics of Logons,” in Chapter 3, for more details on automatic and
network-operator logons.

Some of the facilities in VTAM need not be active continously. VTAM allows the
network operator to start and stop these facilities selectively.

Usingk VTAM’s MODIFY command, the network operator can start the following VTAM
facilities:

® Network solicitor.

® Trace facility.

® Print-trace utility program.

e Dump utility program.

Teleprocessing Online Test Executive Program (TOLTEP).

Starting and
Stopping the
Network Solicitor

Starting and
Stopping Traces

Starting the
Trace-Print Utility
Program

The MODIFY command can be used to stop these facilities:

e Network solicitor.

e Trace facilities.

The network solicitor and the trace facilities can also be activated via VTAM start
options. See “Starting VTAM,” earlier in this chapter, for more information on activating
these two facilities at start time.

The MODIFY command can be used to start the network solicitor only if the network
solicitor (1) is the default network solicitor or (2) was modified via the NETSOL macro
instruction (with the name NETSOL). See ‘“VTAM Definition,” in Chapter 3, for
descriptions of the network solicitor and of the NETSOL macro instruction.

Activating the network solicitor causes all appropriate available terminals to be
automatically logged onto it. Appropriate available terminals are terminals that meet all
the following requirements:

e They are active but not connected, nor queued for connection, to another program.

e The automatic-logon specification in their node definition indicates the network
solicitor.

As long as the network solicitor remains active, it continues to accept appropriate
available terminals. It attempts to solicit logon requests from these terminals and passes
valid logon requests to the appropriate application programs.

Deactivating the network solicitor with the MODIFY command causes the network
solicitor to complete handling all terminal-initiated logon requests in process and to
disconnect all other terminals connected to it. No additional automatic logons are
accepted by the network solicitor until it is reactivated.

The MODIFY command can be used to start or stop traces for NCP major nodes as well
as for the following minor nodes:

e Telecommunication lines.
e Cluster control units.
e Terminals (locally and remotely attached).

e Components.

If the node specified in‘ the command is a telecommunication line, the network operator
can only request an NCP line trace. For all other nodes, either the buffer trace or the I/O
trace can be requested.

Nodes included in a start-trace request are traced only when active. Deactivating a node
stops any traces for it. If the node is reactivated and the trace is still needed, the trace
request must be reissued. (See “Serviceability Aids,” in Chapter 6, for detailed
descriptions of VT AM traces.)

In DOS/VS, VTAM provides a utility program to selectively edit and print trace records
accumulated by VTAM’s trace facility. This utility program is also started by an option of
the MODIFY command. Once this utility has been started by the MODIFY command, it
prints all trace records in the trace data set that the operator specified to be printed.
Tracing is suspended for the affected nodes until the printing has been completed.

Controlling a VTAM System 63

Starting VTAM’s Dump
Utility Program

Starting TOLTEP
Testing

Changing
Line-Scheduling
Specifications

64

In OS/VS1, VTAM traces are printed by using the operating system’s HMDPRDMP
service aid. Refer to the publication OS/VS1 Service Aids, GC28-0665, for information
on HMDPRDMP. In OS/VS2, VTAM traces are printed by using the operating system’s
AMDPRDMP service aid. Refer to the publication OS/VS2 System Programming Library:
Service Aids, GC28-0633, for information on AMDPRDMP.

Another option of VTAM’s MODIFY command enables the network operator to initiate
the execution of the NCP dump utility program tailored for a VT AM environment. Using
this option, the network operator specifies the NCP to be dumped. VTAM initiates
loading of the NCP dump utility program into the communications controller. The dump
utility program then provides the requested dump. An operating system print-utility can
be used to print the dump.

Caution should be exercised when requesting a dump of an NCP. The dump program
erases part of the NCP, with or without PEP, requiring that the control program be
reloaded if it is to be used after the dump is taken. Thus, in the case of an NCP with PEP,
the emulation function, as well as the network control function, is affected by the dump
request.

If an NCP dump is to be initiated by VTAM, the dump data set, LUB name in DOS/VS,
must have been specified in the NCP’s PCCU statement during VTAM definition. See
“Network Control Program Requirements,” in Chapter 7, for a description of the PCCU
statement.

The Teleprocessing Online Test Executive Program (TOLTEP) is a component of VTAM
designed to provide the testing of lines and devices in the network. TOLTEP testing can
be initiated from the network-operator’s console in either of two ways: by using VT AM’s
MODIFY command or by using the logon option of the VARY command.

TOLTEP testing can be initiated from other than the operator’s console; in this case,
testing is requested by an operator at an active terminal in the VTAM network. The
network operator is notified of the request and must authorize the request before the
testing can continue.

See “Serviceability Aids,” in Chapter 6, for a detailed description of TOLTEP and how it
is controlled by the network operator.

VTAM permits the network operator to change the following line-scheduling specifica-
tions for polled, nonswitched start-stop or BSC lines:

e Polling delay.
e Negative poll response limit.
® NCP session limit.

e Device transmission limit.

The first three specifications are made on the NCPs LINE statement. The last
specification is made on the NCP’s TERMINAL statement. Refer to the NCP Generation
publication for a description of these parameters and their functions.

The line-scheduling specifications are changed by the network operator by using an
option of VTAM’s MODIFY command.

A line-scheduling change remains in effect until the communications controller is
reloaded. If the reloading employs NCP restart (as the result of an NCP error), the change

remains in effect for the reloaded NCP. If the reloading does not employ restart, the
line-scheduling parameters specified for NCP generation are reinstituted.

Considerations for Network-Operator Control

To use VITAM’s network-operator facilities effectively, the installation must establish
control procedures and provide information to the network operator. In general, the
network operator must be familiar with the configuration of the telecommunication
network, know how to manipulate VI'AM to attain the installation’s teleprocessing
objectives, and know what actions to take when problems are encountered in the system.
Planning by the installation should include the following areas:

® Names of nodes and data sets. Because symbolic node names are the elements
manipulated by VTAM, the network operator must know the names of all nodes
(major and minor) that are to be used in VTAM commands or that can be received in
VTAM messages. The operator should also know the names and uses of all VT AM data
sets. (See “VTAM Node Structure,” in Chapter 3, for a discussion on naming nodes.
See “VTAM Data Sets,” in Chapter 7, for a description of the data sets used by
VTAM.)

® Relationship between the names of VITAM application programs and job names.
Application programs are identified to VTAM through APPL statements and ACBs.
For VTAM, the name of an application program is the name of an APPL statement;
for the operating system, the job name or the step name is the program name. The
network operator needs to know how each application-program name in VTAM relates
to job names or step names.

® Relationship between the symbolic and the physical network. Because VTAM
commands function differently for major nodes than they do for minor nodes, the
network operator should know which nodes are major and which are minor. Also
needed is a knowledge of the hierarchical structure of the NCP nodes and of the
relationship between the symbolic names and the physical units they represent.

® Impact of VTAM on emulation in an NCP with PEP, Although VTAM does not use
emulation mode, the access method can impact the operation of emulation mode in an
NCP with PEP. (See “Network Control Program Requirements,” in Chapter 7, for a
description of VTAM’s impact on emulation mode.)

* Switched-network support. Controlling a switched network requires an understanding
of how such a network is defined. See “Network Control Program Requirements,” in
Chapter 7, for details on defining and controlling switched lines and terminals that use
them.

® Storage sizes, When the operating system is IPLed, the VTAM region or partition size
can be selected. VITAM also allows the network operator to make storage-pool
specifications. If these two specifications are not predefined to the system or to
VTAM, the network operator needs the detailed storage information.

® Procedures. An installation may also want to establish procedures for the operator to
follow. The procedures can be for both planned normal operations and contingencies.
The procedures might cover: when and how to start and stop VTAM, application
programs, and the network solicitor; when, how, and which terminals and other nodes
to activate and deactivate; and what actions to take when network errors are
encountered, including what traces to activate, how to activate when and how to
dump an NCP.

The above list is not meant to be exhaustive because each installation has different

requirements. Instead, the list is intended to call attention to the need for setting up
procedures and familiarizing the operator with the network.

Controlling a VTAM System 65

CHAPTER 5. VTAM APPLICATION PROGRAMS

The purpose of this chapter is to introduce VTAM application program concepts and
facilities so that an installation can begin to plan and organize its VTAM application
programs.

The first section of this chapter provides an overview of VT AM application programs and
a summary of VTAM macro instructions. The second section explains VTAM program-
ming concepts and facilties. The third section explains in more detail the VTAM language
and its use. The final section shows and discusses the general logic of two sample
application programs.

A VTAM Application Program Overview

The VTAM Application
Program in Relation
to the VTAM System

The VTAM Application
Program [

The Processing
Part 2

This section provides an overview; it views the VTAM application program from the
perspective of an installation’s telecommunication system. It summarizes VTAM macro
instructions, and it relates VTAM application programs to those of TCAM and BTAM.

Figure 5-1 shows where a VTAM application program fits into a teleprocessing system.
The numbers in Figure 5-1 refer to major elements in the system. VTAM application-
program connection to start-stop or BSC terminals is possible but is not shown. The
following discussion is keyed to Figure 5-1.

In a teleprocessing system, the two main activities are the processing of data and the
transmission of data. A VTAM application program uses VTAM macro instructions to
transmit data between the host CPU and the telecommunication network, and it uses
other instructions to process data. VTAM permits the separation of the processing part of
an application program from the telecommunication part. (If the parts are separate, an
interface between them would need to be defined.) This separation of function allows
each part to be created separately and means that changes or additions to one part do not
affect other parts. The processing part of a VTAM application program may be written in
a higher-level language, such as PL/1; the telecommunication part, using VTAM macro
instructions, is written in assembler language. This chapter, describing the concepts,
facilities, and language of VTAM, concerns itself mainly with the telecommunication part
of the VT AM application program.

As shown in Figure 5-1, more than one VTAM application program can be concurrently
sharing the resources of a VTAM system. For example, each of the VTAM application
programs in Figure 5-1 can communicate with different logical units on the same
transmission line; because the actual transmission is managed for the programs, neither
program is aware that line sharing takes place or of the line’s identity.

This part of the program can be written in assembler language or in a higher-level
language, such as PL/1 or COBOL. If written in assembler language, it can be interleaved
with the telecommunication part of the program. More commonly, as shown in Figure
5-1, it is separate and requests telecommunication services by calling or branching to the
telecommunication part of the VTAM application program.

The function of the processing part of the application program is to perform the data
manipulation in response to a request from a remote location. Such data manipulation

- might include updating a data base, obtaining information from a data base, or formatting

information to be displayed for an operator at a terminal. Because both the logical unit
and the application program in the host CPU are programmed, it is possible to distribute

VTAM Application Programs 67

The Telecommunications
Part 3

68

Host CPU

VTAM Application Program

VTAM

5 Logical unit (s)

NCP —7$DLC To other
logical
units

SDLC
Cluster
Controller Logical unit (s)

Figure 5-1. VTAM Application Programs in Relation to the Telecommunication System

the data processing function between these two nodes. For example, the application
program in the host CPU could obtain data from the data base while the logical unit
could format the data for display to the terminal operator.

Each installation decides which processing functions are to be performed by the
processing part of the VTAM application program and which are to be performed by an
application program that is part of a logical unit, such as an application program in a
3601 Finance Communications Controller.

This part of the VTAM application program contains macro instructions and associated
control blocks used to connect and communicate with logical units that have been

defined to VTAM. Chapter 5 is concerned primarily with this part of the VTAM
application program,

VIAM 4

The Network Control
Program 5

The Logical Unit 6

The Terminal
Operator 7

A Summary of VTAM
Macro Instructions

VTAM controls the VTAM telecommunication system. Logical units are defined as part
of the VTAM system during the VT AM definition process and are then activated by start
procedures or network operator commands. The VTAM application then requests
connection (on its own initiative or as the result of a VTAM-processed logon request) to
one or more active logical units. Once connected, the program requests VT AM to perform
data transfer with logical units. In addition to building channel programs, VTAM
performs such services as input and output data buffering, automatic scheduling of
application program exit-routines, and sequence numbering of outbound messages. (These
facilities are discussed further in this chapter.) VTAM requests the operating system to
execute channel programs it has built; the channel programs result in communication
with local 3270s or with remote logical units through a locally attached communications
controller.

On receiving the input or output requests and associated data or information, the
network control program (NCP) in the 3704 or 3705 Communications Controller does
what is required to communicate with logical units on telecommunication lines. Many
functions previously performed by the access method or application program are now
performed by the communications controller; for example, scheduling line activity,
retrying transmission-errors, and collecting error statistics. Communication with logical
units is performed using SDLC.

The VTAM application program communicates primarily with program logic (a logical
unit) in an SDLC cluster controller rather than with static, non-programmable devices.
The meaning of a logical unit generally depends on the particular telecommunication
subsystem; for example, in a 3600 Finance Communication System, a logical unit is
synonymous with a work station.

VTAM provides application programs in the host CPU with a set of macro instructions to
communicate with logical units. This set of instructions enables applications to make use
of the programmed function in logical units.

Although not shown in Figure 5-1, VTAM application programs also communicate with
certain terminals on start-stop and in BSC lines. VTAM provides another set of macro
instructions to communicate with these terminals.

Additionally, VTAM application programs can communicate with 3270 s (attached both
remotely, via BSC lines, or locally) as though the terminals were logical units. Thus, the
same set of macro instructions can be used to communicate with 3270 s and logical units.

An installation defines which processing functions take place in the teleprocessing
subsystem and which in the VTAM application program in the host CPU. An installation
must coordinate the writing of these programs so that they can work together.

Since a VTAM application program communicates with a logical unit rather than with a
terminal operator at a physical device, the VT AM application program does not need to
know about many terminal operator actions. The logical unit determines whether and
how data received from a terminal operator goes to the VTAM application program and
whether and how data received from the VTAM application program goes to the terminal
operator.

The telecommunication part of a VTAM application program uses IBM-provided macro
instructions to request VTAM services. These macro instructions, summarized below, are
referred to further in this chapter in “Application Program Concepts and Facilities” and
discussed in more detail in “The VTAM Language.”

VTAM Application Programs 69

Connection Macro
Instructions

Communication Macro
Instructions

Control-Block Macro
Instructions

70

These macro instructions connect and disconnect an application program with VTAM and
with logical units and start-stop and BSC terminals.

OPEN/CLOSE .
Connects and disconnects a VT AM application program to or from a VTAM system.

OPNDST/CLSDST
Connects and disconnects a logical unit or BSC or start-stop terminal to and from a
VTAM application program.

These macro instructions request and control the transmission of data between an
application program and its logical units.

RECEIVE

Requests that input received from a logical unit be passed to the VTAM application
program.

SEND
Requests that output be sent to a logical unit from the VTAM application program.

RESETSR
Changes the mode of receiving input from a particular logical unit. The modes are
continue-any mode (have input from the logical unit satisfy an outstanding RECEIVE
that specifies input from any logical unit) and continue-specific mode (have input
satisfy a RECEIVE that specifies only that particular logical unit). RESETSR also
cancels outstanding RECEIVEs that request input from the specific logical unit.

SESSIONC
Initializes and controls the flow of information between the VTAM application
program and a logical unit.

(Communication macro instructions for BSC and start-stop terminals are not included
here; they are discussed later in this chapter.)

The two following categories of macros are used to build and manipulate VTAM control
blocks. Figure 5-2 shows the relationship between the VTAM control blocks when a
logical unit is being connected to an application program.

Declarative Macro Instructions

These macro instructions are used to assemble control blocks when the application is
assembled. The macros are also the names of the VTAM control blocks themselves.

ACB
Defines the characteristics of a VT AM application program to VTAM.

EXLST
Defines the list of exit-routine addresses that VT AM is to use for notifying the program
when certain conditions occur, such as a request for logon (connection) to the program
from a logical unit.

NIB
Defines information pertaining to a particular logical unit; this information is stored by
VTAM for use by VTAM throughout the time that the logical unit is connected.

RPL NIB

OPNDST
Request connection ™1 Describes [)
toa logical unit request De§cr|bes
logical
unit
ACB
Defines
application
program EXLST
—] Locates
application
program'’s
exit-routines

Figure 5-2. Relationship of VTAM’s Control Blocks in an Application Program

RPL
Defines the parameters and contains the results of a particular operation (for example,
OPNDST or SEND) that is requested.

Manipulative Macro Instructions

These macro instructions are used to dynamically build and manipulate control blocks
during the execution of the application program.

GENCB
Builds and can initialize an ACB, EXLST, NIB, or RPL control block during program
execution.

MODCB
Changes the contents of a control block field to a designated value.

SHOWCB
Moves the contents of a control block field to a designated area.

TESTCB
Tests the contents of a control block field and sets the program status work (PSW)
condition code accordingly.

The VTAM user can also gain access to VTAM application program control blocks by
using DSECT and other assembler language instructions.

Support Macro These macro instructions request additional VT AM services.
Instructions
EXECRPL
Requests VTAM to perform an operation that is currently specified in a designated
RPL. EXECRPL can be used instead of using other RPL-based macro instructions such
as OPNDST, SEND, and RECEIVE, or, after an unsuccessful operation, when reissuing
a request.

VTAM Application Programs 71

A Brief Comparison
with TCAM and BTAM

VTAM Compared with
TCAM

VTAM Compared with
BTAM

CHECK
Checks and, if necessary, awaits completion of a requested operation.

INQUIRE
Requests information from VTAM, such as the status of another application program.

INTRPRET
Provides a way to obtain information from an installation-defined interpret table.

SETLOGON
Tells VTAM when to permit logon requests for the VTAM application program.

SIMLOGON
Allows the VTAM application program itself to initiate a logon request. If necessary, it
also requests the current owner of the logical unit to release it.

The following is a brief comparison of programs that use VTAM macro instructions with
those that use TCAM or BTAM macro instructions.

TCAM provides services for handling telecommunication input/output at two different
times: by the telecommunication part of a program (a TCAM message control program,
including its message handler) and by the processing parts of a program (TCAM
application programs). A TCAM programmer uses TCAM macro instructions to write a
message control program. A message control program queues input messages until they
are requested by a TCAM application program. It queues output messages received from a
TCAM application program until requested by another application program or until they
can be sent to a telecommunication device. Queuing can be in main storage or on a direct
access storage device. The programmer uses GET/PUT and READ/WRITE macro
instructions in the TCAM application program to request the services of the message
control program.

VTAM provides only direct telecommunications services for the VTAM application
program; the VTAM application programmer must create his own control blocks and
logic for the queuing of data, if necessary, and must provide his own interfaces between
the telecommunication and processing parts of the program. Figure 5-3 shows how TCAM
relates to VTAM.,

VTAM services are available to application programs using TCAM; this is described in
“Other Telecommunication Access Methods,” in Chapter 7.

Figure 5-4 shows some of the major similarities and differences between VTAM
application programs and BTAM application programs. VTAM application program
characteristics shown in Figure 5-4 are discussed in more detail further in this chapter.

Application Program Concepts and Facilities

- Introduction to the

Concepts and Facilities

72

This section introduces and explains VTAM programming concepts and facilities and
relates them to the VTAM language (macro instructions and operands).

VTAM’s primary purpose is to provide communication between the application program
and a terminal in the telecommunication network. (A terminal is generally a logical unit,
but it can also be a BSC or start-stop terminal.) VTAM also provides a means by which
the installation can establish a system of dynamically allocating logical units to the
application programs. The concepts and facilities described in this chapter all deal with

TCAM
Application
Programs

VTAM
Application
Programs

TCAM-MCP
Destination
Queue {(can be
GET/PUT primary or
READ/WRITE User-Supplied ::g',’:;?’y
Application Program
Message Handlers
Message Handlers
use TCAM routing
User-Supplied Line macro instructions
Message Handlers to route messages
through queues
VTAM
SEND/RECEIVE

TCAM'’s Exclusive
Telecommunication
Network

VTAM's Shared
Telecommunication
Network

Figure 5-3. Relationship of TCAM to VTAM

General Concepts and
Facilities

application programs. The concepts and facilities described in this chapter all deal with
these two aspects of an application program using VTAM—the application’s ability to
have a logical unit allocated to it, and its ability to communicate with that logical unit.

The facilities described first are those that apply generally to all of the application
program’s interactions with VTAM, whether they involve logical unit allocation
(connection), or communication, or some request that is only indirectly related to
allocation or communication. After a brief discussion of application program initializa-
tion, concepts and facilities relating to connection and to communication are discussed in
detail.

The application program issues macro instructions to request VTAM to perform some
operation. VTAM communicates with the application program by setting register retum
codes, control blocks, and parameter lists, by posting ECBs, and by invoking special
user-written routines. The manner in which VTAM communicates with the application
program is to a considerable degree controlled by the application program. The following

VTAM Application Programs 73

Characteristic

VTAM Application Program

BTAM Application Program

General Characteristics
of the Access Method

‘Terminal-sharing
Line-sharing

Line-scheduling logic
required

Polling required on part
of application program

Exit-routines scheduled
for special conditions
such as a logon request

Local/remote 3270
handling

Primary type of
terminal communication

Direct-control or queued
access method

Yes
Yes
No

No

Yes

Can be communicated with in
same mode as logical units; no
coding distinction between
local and remote

Communicates primarily with
logical units (program logic).
Can also communicate with

start-stop and BSC terminals

Direct-control

No
No
Yes

Yes

No

Requires different coding for
local 3270 than for remote 3270

Communicates primarily with
start-stop and BSC terminals

Direct-control

Language Characteristics

VTAM macro instructions
Keyword operands

Macros common for DOS/VS
and OS/VS

Two sets of 1/0 macro instruc-
tions: record-made (RECEIVE-
SEND) for logical units and
basic-mode (READ-WRITE) for
BSC and start-stop devices

Destination-oriented

BTAM macro instructions
Positional operands

Macros different for DOS/VS
and OS/VS

One set of 1/0 macro instructions

Line-oriented

Program Organization

Telecommunication normally
separate from processing

Can have VTAM post an ECB
or schedule an exit-routine when
I/0 event completes

Telecommunication normally
separate from processing

BTAM posts an ECB when /0O
event completes

Figure 5-4 (Part 1 of 2). Major Similatities and Differences Between VTAM and BTAM Application Programs

facilities deal with the various ways that VTAM can be directed to handle the application
program’s requests and ways that the application program can be notified that particular
events in the network have occurred.

Overlapping VTAM
Requests with Other
Processing

Each VTAM request issued by the application program can be handled synchronously or
asynchronously by VTAM.

Synchronous request handling means that VTAM returns control to the next sequential
instruction only after the requested operation has completed. Program execution is halted
until VTAM determines that the operation has been completed. This type of request

74

Characteristics

VTAM Application Program

BTAM Application Program

Functions Provided

Define line groups
Define terminals

Initialize program

Connect logical units
dynamically to
application program

Release control of a
logical unit to
another program that
requests connection
to it

Receive input

from any
connected
logical unit/
device

from a specific
logical unit/
device

Send output

Have data.
scheduled for
output from access
method buffers
(output buffering)

Test, display, or modify
control block fields

Translate between
EBCDIC and a trans-
mission code

Record transmission
errors

All resources are defined during
VTAM definition

Use OPEN macro instruction

Use OPNDST macro instruction

.

When requested, use CLSDST

with OPTCD=RELEASE
specified

Use RECEIVE macro instruc-
tion

Specify input can be from any
logical unit or device

Specify input is to be received
from a specific logical unit or
device

Use SEND macro instruction

Specify that the data is to be
scheduled for output

Use manipulative macro instruc-
tions: TESTCB, SHOWCB,
MODCB. Or use assembler
language instructions

Not required for logical units.
Performed in NCP for BSC and
start-stop devices

Performed by NCP and VTAM

Use DCB or DTFBT macro
instruction

Use DFTRMLST macro
instruction

Use OPEN macro instruction

Not available, because terminals
are statically connected when
application’s job step is
initiated

No comparable function

Use READ macro instruction

Must poll each line separately

Specify terminal list entry

Use WRITE macro instruction

No comparable function

Use assembler language
instructions

Use TRNSLATE macro
instruction

Use error recording macro
instructions

Figure 5-4 (Part 2 of 2). Major Similarities and Differences Between VTAM and BTAM Application Programs

handling is appropriate for applications that cannot continue processing until a particular

request has completed. Figure 5-5 illustrates synchronous request handling.

Asynchronous request handling means that VTAM returns control to the next sequential
instruction as soon as VTAM has accepted the request, not when the requested operation
has been completed. Accepting a request consists of screening the request for errors and
scheduling the parts of VTAM that will eventually carry out the requested operation.
While the operation is being completed, the application program is free to initiate other
I/O transactions or processing. For example, an application program might issue a

VTAM Application Programs

76

Application Program | VTAM

®
SENDL

» Request.is accepted

SEND is completed

-
[
[]
[

Figure 5-5. Processing Pattern for a Synchronous Request

RECEIVE macro instruction and indicate that it is to be handled asynchronously; while
the input operation is being completed, the application program could begin to write to a
direct-access storage device or communicate with another logical unit.

When asynchronous request handling is used, there are two ways that VTAM can notify
the application program that the requested operation has completed. If the application
associates an event control block (ECB) with the request, VTAM posts the ECB when the
operation is completed. The application program can use a CHECK or WAIT macro
instruction to determine that the ECB has been posted. Alternatively, the application
program can associate an RPL exit-routine with the request. When the operation is
completed, VTAM invokes the routine. Figure 5-6 illustrates aysnchronous processing in
an application program using ECBs; Figure 5-7 illustrates the use of the RPL exit-routine
to control processing.

By using ECBs, the application program can use one WAIT macro instruction for a

" combination of VTAM requests and any non-VTAM requests that use ECBs. For

example, an application program could issue three VSAM requests and three VTAM
requests; by issuing one WAIT for all six ECBs, the application program can continue
processing when any one of the six operations is completed.

ECBs also give the application program the freedom to determine during program
execution when the program should stop processing and wait for a given operation to be
completed. An application program might, for example, request data from a logical unit
and then later determine that it should not stop and wait for that data (perhaps the
application program has in the meantime begun to request data from another logical unit
whose input is of a much higher priority and must be handled immediately). ECBs also
allow the application program to ““prioritize” requests by checking some ECBs before
checking others.

The distinction between ECBs and RPL exit-routines rests primarily on the fact that the
RPL exit-routine is automatically scheduled when the requested operation is completed,
thereby saving the application program the trouble of checking ECBs and branching to
subroutines, ECBs provide greater control, while RPL exit-routines provide greater
convenience.

VTAM requests issued in the RPL exit-routine can also be handled asynchronously,
although an exit-routine is not scheduled if another exit-routine has not comipleted.
Figure 5-8 illustrates how an application program might use this facility.

Application Program
Exit-Routines

Application Program VTAM

. .
SENDL

—
.
°
°
I Request is accepted
-
°
°
.
°
.
.
l interruption
-» SEND is completed
°
°

°
I ECB is posted
-

°

°

)
CHECK ECB
{or WAIT)

Figure 5-6. Processing Pattern When an ECB is Used with an
Asynchronous Request

The application program can identify (via the EXLST macro instruction) a variety of
exit-routines that VT AM schedules when particular events occur:

Event Routine
A logical unit is waiting to be connected to the LOGON
application program
One of the logical units has withdrawn (or been LOSTERM
withdrawn) from the network
One of the logical units is wanted by another RELREQ
application program
The network operator is shutting down the network TPEND
A start-stop terminal has caused an attention ATTN
interruption
A special type of input has arrived in the CPU DFASY
(the types of input are discussed later) IS%EI%P

When one of these events occurs, the execution of the application program is interrupted
and the appropriate exit-routine is given control. If another event occurs while the
exit-routine is still processing, the next exit-routine is not invoked until the first has
completed (this applies as well for RPL exit-routines).

VTAM Application Programs 77

Error Notification

78

Application Program VTAM

°
°
°
SENDL
°
°
.
-] Request is accepted
.
°
°
°
o
°
I interruption
. —» SEND is completed,
e RPL exit-routine is
e scheduled
°
RPL]
exit-
routine
—
°
°
°
| Control is returned
°
.
°

Figure 5-7. Processing Pattern When an RPL Exit-Routine is Used with an
Asynchronous Request

Unlike the installation exit-routines (discussed in Chapter 3), which are included as part
of the system during VTAM definition, the application program exit-routines are included
as part of the application program. The addresses of these routines are placed in an
EXLST control block by the application program.

Exit-routines other than the LERAD and SYNAD exit-routines need be reenterable only
if two or more application programs share the same exit-routine.

In OS/VS, each exit-routine is usually scheduled under an interruption request block
(IRB); in DOS/VS, each exit-routine is scheduled by changing the program information
block (PIB) save area address. Any processing in the routine that places the routine in a
wait state should be used with caution, since the application program’s entire task waits
while the exit-routine waits.

When synchronous request handling is used, error conditions are reported when the
request has been completed and control returned to the application program. When
asynchronous request handling is used, error conditions are reported in two stages. When
control is first returned to the application program, VTAM indicates whether it has

Application Program

°
1 RECEIVE from any logical unit,
EXITT1 is scheduled when
the RECEIVE is completed
°

° 2 EXIT1 (RPL Exit-Routine)

°
Continue with other SEND to the same logical unit,
processing EXIT2 is scheduled when

the SEND is completed and
EXIT1 has returned to VTAM
Return
to VTAM

3 EXIT2 (RPL Exit-Routine)

RECEIVE from the same logical unit if
communication with that
logical unit is to be continued;
otherwise RECEIVE from any
logical unit. EX/T1 scheduled
when RECEIVE is completed
and EXIT2 has returned to
VTAM

Return

to VTAM

Figure 5-8. A Possible Processing Pattern When Asynchronous Requests Are Issued in
RPL Exit-Routines

accepted or rejected the request. When an accepted operation completes, VT AM posts an
ECB or schedules a designated RPL exit-routine, and, on the program’s issuing a CHECK
macro instruction, returns information about the completion of the requested operation.
Figure 5-9 shows how errors are reported during asynchronous processing.

Success-or-failure information is presented to the VT AM application program in register
15 and, under some circumstances, in register 0. In addition, if the request or operation
was not successful, VTAM will normally have placed additional information in return
code fields of the RPL and will have attempted to enter the user’s SYNAD or LERAD
exit-routine.

The application program can code two error-handling routines that VTAM attempts to
invoke as a result of all physical, environmental, and logical errors. The routine that
handles logical errors is called the LERAD routine, and the routine that handles other
errors detected by VTAM is called the SYNAD routine.

Should an error occur during synchronous request handling, the LERAD or SYNAD
routine is invoked as part of the processing of that request. For an accepted asynchronous
request, the routine is invoked when the request is checked by the application program
(with a CHECK macro instruction).

When the LERAD or SYNAD routine receives control, it is provided in register O and in
the RPL with information regarding the specific cause of the error.

VTAM Application Programs 79

80

Application Program VTAM

°
°
°
RECEIVE
L >
°
°
- A_S
Program is notified that the
° request has been accepted or
° rejected *
°
°
°
°
L interruption
» RECEIVE is completed
(1f accepted at A) °
e ECB is posted or RPL
® exit-routine is
- 1 scheduled
°
° Program receives completion information
) when CHECK is issued for the request

{regardless of whether an ECB or an RPL
exit-routine was used) *

Error reporting
occurs twice

Figure 5-9. Processing Pattern For Reporting Errors During an Asynchronous

Operation

The VTAM application program in the main part of the program or in a LERAD or
SYNAD exit-routine can associate a class of completion information with a particular
action. VTAM organizes its setting of register O and the RTNCD field of the RPL into
these completion categories:

Extraordinary completion. This requires further analysis of the RPL to determine the
course of action required.

Retryable completion. This indicates the request can be reissued. The EXECRPL
macro instruction can be used.

Damage completion. This indicates that, in addition to reissuing a request, some input
or output data may have to be recovered or corrected.

Environment error completion. This indicates that the program should call for external
intervention.

User logic error completion. This indicates that the program status should be saved,
perhaps by requesting a dump. Depending on the seriousness of the error, the program
can continue or terminate.

In some cases, simple determination that the return code (in register 0 and the RTNCD
field of the RPL) specifies one of these completion categories can determine the course of
action. In other cases, additional analysis of the RPL and other information (such as
program flags) may be required to determine action.

LERAD Processing: Since most logical errors result from flaws in the design of an
application program, the handling of logical errors is most important during the

Opening the
Application Program

Connection

development and debugging of the application program. The handling of the error may
consist of little more than recording the attributes of the request that failed, requesting a
dump, and causing an abnormal termination.

SYNAD Processing: Physical and environmental errors usually require more extensive
treatment. The application program should, during program execution, determine the
nature of the error, assess the extent of the problem, and attempt remedial action. If the
application program determines that the error occurred because incoming data exceeded
the capacity of the NCP buffers, for example, the application program could inform the
logical unit that the data should be resent in two transmissions. If the problem is a
recurring hardware check for the logical unit, however, the application program may have
to take whatever action is required to continue without the logical unit.

The error-handling routine can set register O or register 15 and return via VTAM to the
instruction following the synchronous request or CHECK macro instruction. If the
exit-routine was able to handle the situation successfully, register 15 and, in some cases,
register O can be set to zero to indicate that the requested operation completed normally.
The main part of the program continues normally, unaware that an error or special
condition occurred and that the LERAD or SYNAD exit-routine was entered. If,
however, the exit-routine was not able to successfully complete the operation, it sets an
understood value in one or both registers 15 and O before returning, so that the main
program can take any action that the LERAD or SYNAD exit-routine did not take.

Notre: The LERAD and SYNAD routines should be coded reenterable (1) if synchronous
request handling or CHECK macros are issued in these routines, or (2) if synchronous
request handling is used both in the main program and in any-of the other routines
(routines other than the LERAD or SYNAD routine).

In other telecommunications access methods such as BTAM, the application program first
associates itself with the access method and with the line groups needed to support
communication. The VTAM application program also must establish an association with
the access method. This is accomplished by issuing an OPEN macro instruction.

A VTAM application program, like a BTAM program, typically begins with an OPEN
macro instruction and ends with a CLOSE macro instruction. That is, the association
between the application program and VTAM normally lasts for the duration of the
application program’s execution.

VTAM’s OPEN, however, does not associate the application program with any logical
units (the VTAM application program communicates directly with logical units and is not
aware of line groups). Logical units are associated with the application program by the
process of connection.

The application program also uses the OPEN macro instruction to supply VTAM with the
addresses of its error-handling routines (LERAD and SYNAD) and its event-driven
exit-routines (such as LOGON, LOSTERM, and RELREQ).

An application program must establish connection with a logical unit before communica-
tion with that logical unit can begin. Connection is established with an OPNDST macro
instruction.

The OPNDST (open destination) macro instruction causes VTAM to “allocate” the
logical unit to the application program. OPNDST initializes VTAM’s and the application’s

VTAM Application Programs 81

Acceptance

82

control blocks to indicate that the logical unit and the application are connected.
OPNDST also ensures that an active path exists between the two nodes before connecting
them. Unlike the effect of an OPEN macro instruction, the effect of an OPNDST often
does not last for the duration of the application program’s execution. Because of VT AM’s
terminal-sharing facility, connections to the network’s logical units can be made, broken,
and remade innumerable times throughout the duration of the application program.

An application program can establish connection in one of two ways: it can accept the
logical unit or it can acquire the logical unit.

When an application program accepts a logical unit, it does so because a logon request was
received for the logical unit. A logical unit cannot be accepted unless (or until) a logon
request has been issued for it. Although there are several possible sources of the logon
request—the network operator, another application program, the logical unit itself or
automatically as a result of VTAM definition—the request usually originates outside of
the application program. (Logon requests can also be generated within the application
program; however such logon requests are essentially a form of acquisition, and are
discussed in “Acquisition” later in this chapter.)

Acceptance is suitable for applications that do not require access to a specific logical
unit or specific set of logical units in order to function, but instead are designed to service
various logical units that require access to the application. If the installation, for example,
wants the logical units themselves to designate which application they wish to use, the
installation could allow each logical unit to initiate logon requests so that the application
could accept the logical unit.

Note: When VTAM notifies an application program of a logon request, the logical unit
and its logon request is “queued” to the application. As long as the logical unit is queued
to the application program, it is not available for connection to other applications; it is
available for connection only to the application to which it is queued. The application
program and its queued logical unit are unable to communicate with each other until the
connection is completed by the application’s acceptance of the logical unit. Because a
queued logical unit is effectively eliminated from the system until accepted or
disconnected by the application, the installation should ensure that application programs
avoid leaving logical units on this queue any longer than necessary.

Accepting Logical Units with an Exit-Routine: The application program can maintain a
LOGON exit-routine which VTAM schedules whenever a logon request for the
application program is made. VTAM provides the exit-routine with the identity of the
logical unit associated with the logon request. The application program can either accept
the logical unit (using an OPNDST macro instruction) or reject it (using a CLSDST macro
instruction).

The application program does not have to use an exit routine in order to determine when
a logon request has been made. The application program can instead issue a connection
request that VTAM completes as soon as a logon request has been made. Although this
method is simpler to use than an exit-routine, the application program does not have the
opportunity to decline the logon request prior to actually establishing connection with
the logical unit. (A logon request is declined by issuing a CLSDST macro instruction.)

Preventing Logon Requests: Logon requests cannot be directed at an application
program until the application program, using the SETLON macro instruction, notifies
VTAM that it is ready to accept them. At this point, any logon requests that are directed
at the application program are queued until the application program either accepts o1
rejects them. Any time during its execution, the application program can notify VTAM
that it is no longer accepting logon requests.

Acquisition

Types of Acceptance: The application program can issue a connection request to accept
a specific logical unit, or to accept any logical unit for which a logon request has been
issued. '

To accept a specific logical unit, the application program must tell VTAM the identity of
the logical unit; connection is not made until a logon request has been issued for that
particular logical unit. This is the type of acceptance that an application program would
use in the LOGON exit-routine. Outside of the exit-routine, the application program can
accept a logon request from any logical unit in the network. After connection is
established, VT AM passes the identity of the logical unit to the application program.

When the initiative for connection originates from the application program, the
application program establishes connection by acquiring the logical unit. No logon
request need exist; if the logical unit is active and not being used by another application
program, the logical unit is connected (or queued for connection if the application is
simulating a logon request to itself on behalf of the logical unit). The installation must
authorize the application program’s use of acquisition.

Types of Acquisition: Some or all of a set of logical units can be acquired at once. As
many as are available are connected. This type of connection (called the CONALL
option) can be used when the application program is willing to proceed with as many
logical units as are available. VTAM provides information so that the program can
determine which logical units were connected.

Another type of acquisition allows the application program to acquire any one logical
unit of a specified set. The first available logical unit of the set is connected. This type of
acquisition (called the CONANY option) is useful for applications that require a logical
unit, but for which one logical unit is as good as another. '

The application program specifies the logical unit set by building a series of control
blocks (NIBs) each containing the installation-supplied name of the logical unit. The set
can be limited to one logical unit.

A third type of acquisition can be used by application programs that both accept and
acquire connections or which wish to ask the current owner of a logical unit (through its
RELREQ exit-routine) to release it. An application program can itself generate a logon
request for a logical unit, and let the part of the program that accepts logon requests
establish connection with the logical unit. The application program can generate logon
requests for an entire set of logical units, or for any one of a set of logical units.

The use of such logon requests, called simulated logon requests, is a form of acquisition
since the initiative for connection lies with the application program. Like the other forms
of acquisition, its use must be authorized by the installation. Simulated logon requests are
generated with the SIMLOGON macro instruction.

Acquiring Connected Logical Units: One application program cannot take another
application program’s logical unit from it. If an application program attempts to acquire
an already-connected logical unit, no reconnection is possible until the current owner of
that logical unit disconnects it. VTAM provides a means by which the owning application
program can be notified that another application program is requesting one of its logical
units.

The requesting application program can indicate whether its attempt to re-acquire a

connected logical unit should or should not cause the owning application program to be
notified. The requesting application program should request this notification when it

VTAM Application Programs 83

Queuing Connection
Requests

Disconnection

needs the logical unit regardless of its connection status. Notification should not be
indicated when the requesting application program only needs the logical unit if it is
unconnected.

The owning application program also controls whether it can be notified when another
application program issues a connection request to acquire one of its logical units.
Notification can therefore only occur when both application programs so indicate.

VTAM notifies the owning application program by scheduling the RELREQ exit-routine
which the application program maintains for this purpose.

The RELREQ exit-routine is provided with the identity of the contested logical unit. The
application program can elect to disconnect the logical unit immediately, disconnect it
later, or ignore the request entirely. If the logical unit is disconnected, the previous owner
can immediately attempt to re-acquire the logical unit from the new owner (using a

- queued connection request as described below) so that the logical unit will be returned

when it is no longer being used. When the logical unit is disconnected, it is reconnected
to the acquiring application program that has waited the longest—this may not necessarily
be the application program that was the previous owner of the logical unit.

By controlling which application programs release contested logical units and which do
not, the installation can cause some application programs to be able to obtain and keep
logical units more readily than other application programs. Or, the installation could
establish a policy that all application programs release contested logical units that are not
being used; this would maximize the overall utilization of the logical units.

Application-program requests for connection always fail if the logical unit is inactive. If
the logical unit is active but unavailable, however, the application program designates
whether its connection request should fail or whether the request should remain pending
(queued) until the logical unit does become available.

Although the definition of an “available” logical unit differs between acquired and
accepted connections, the option of queuing or not queuing the communication request
applies to both. When an application program attempts to acquire an active logical unit,
the logical unit is available if it is not connected (or queued for connection as the result
of a logon request) to another application program. When an application program
attempts to accept a logical unit, the logical unit is available if a logon request for it has
been directed at the application program. (Note the distinction between queuing an
application program’s request for connection—described here—and queuing a logical unit
to an application program as the result of a logon request—as described in “Acceptance”
earlier in this chapter.)

Figure 5-10 lists the effects of queuing a connection request on the various types of
connection requests.

An application program.can disconnect a logical unit in one of two ways: it can release
the logical unit or it can pass the logical unit to another application program. The logical
unit is released by disconnecting it without regard to which application program (if any)
is to receive the logical unit. The logical unit is passed by disconnecting it and designating
which application program is to receive the logical unit. Passing must be authorized by
the installation.

Passing and releasing is accomplished by using the PASS and RELEASE options of a
CLSDST macro instruction.

Type of Connection
Request

Meaning When Connection
Is To Be Queued

Meaning When Connection
Not To Be Queued

Acquire

as many as are
available in a set

a set of one

any one of a set

Schedule a LOGON exit-routirle as each
logical unit becomes available.

Schedule a LOGON exit-routine when
the logical unit becomes available.™

Schedule a LOGON exit-routine for the
first logical unit in the set that becomes
available.*

* Request queueing is available
for SIMLOGON only. ltis not
available for OPNDST with
OPTCD=ACQUIRE.

Connect all the logical units that are
available

Correct the logical unit if it is
available

Connect the first logical unit in the set
that is available; otherwise connect
none

Accept

a specific
logical unit

any logical unit

Connect the logical unit if a logon
request has been received from it;
otherwise connect the logical unit when
a logon request is received from it

Connect any logical unit from which a
logon request has been received (if more
than one has been received, connect the
logical unit that has waited the longest);
otherwise wait for a logon request and
then connect the logical unit

Connect the logical unit (only if a
logon request has already been
received from it)

Connect any logical unit from which a
logon request has already been
received (if more than one has been
received, connect the logical unit that
has waited the longest); otherwise
connect none

Figure 5-10. Queued and Unqueued Connection Requests

If the logical unit is released, VT AM connects the logical unit to any application program
that has attempted to acquire the logical unit (and has indicated that its connection
request should be queued). If more than one application program has attempted to
acquire the logical unit, VTAM connects the logical unit to the application program that
first issued the connection request. If there are no queued requests to acquire the logical
unit, VTAM generates an automatic logon request for the logical unit; if no automatic
logon request has been specified by the installation, the logical unit remains unconnected.

When a logical unit is passed, VTAM disconnects the logical unit, generates a logon
request, and directs the logon request to the designated application program. The logical
unit is not reconnected until the receiving application program accepts the logon request.

A logical unit should be passed only when it is imperative that it be connected to a
specific application program and to none other. For example, an installation might
maintain several application programs that each require the same information from the
logical unit before any of them can be used. Although each application program could
conduct its own interrogation, it might be simpler for the installation to maintain a single
application program that converses with the logical unit to obtain the initial information
and then passes the logical unit to the appropriate destination.

When the application program passes a logical unit, it can also pass data to the receiving

application program. In the example above, the application program might pass along the
results of the preliminary conversation.

VTAM Application Programs 85

Communication

Messages and Responses

86

Communication between application programs and logical units differs in many ways
from communication with start-stop and BSC terminals. Most of the differences result
mainly from the programmable nature of logical units.

In other terminal-oriented access methods such as BTAM, the application program
communicates with terminals whose physical characteristics are known. In VTAM, the
application program is communicating with a type of terminal (logical unit) whose logical
characteristics must be known.

If, for example, the program in the logical unit performs all device-dependent I/O
operations, the application program using VT AM would not be device-dependent; it could
send data to the logical unit without regard to the device-control and formatting
characters needed to display the data. On the other hand, the logical unit might not
perform such device-dependent operations; it would then be the application program’s
responsibility to do so.

The designer of the application program must also be aware of how the program in the
logical unit handles the various communication facilities described below.

As the remaining aspects of communication are read, the following concept should be
kept in mind: The application program is communicating with other user-written
programs, rather than with terminals having fixed physical characteristics. -

Communication between an application program and a logical unit consists of an
exchange of messages and responses. Messages consist of data records and/or control
information (called indicators). The length of data records is defined by the application
program and the logical unit. Data records represent whatever amount of data the
application program or the logical unit chooses to send at one time. Responses are
acknowledgments that messages have been received; responses contain response informa-
tion and indicators.

Indicators help VTAM and the connected application program and logical unit control
communication between the two nodes. Indicators are discussed throughout this section
and are summarized in Appendix D.

Messages and responses are sent by both the application program and the logical unit.
That is, the application program sends messages to the logical unit and receives responses
from it; the logical unit sends messages to the application program and receives messages
from it. The relationship between messages and responses is shown in Figure 5-11.

A node that is expecting a response but has not yet received it can send a chase indicator
to the other node. A response to a chase indicator indicates that all responses have been
sent.

Messages can be sent to a logical unit with one of two options:

e The application program can indicate that as soon as the message has been scheduled
for transmission and the output data area is free, VTAM is to consider the output
operation completed (by returning control, posting an ECB, or scheduling an RPL
exit-routine). This is called scheduled output and is iltustrated in Figure 5-12.

e The application program can indicate that VTAM is not to consider the operation
complete until the message has been received by the logical unit and a response has
been returned. This is called responded output and is illustrated in Figure 5-13.

.

Application Program Logical Unit

Message
SEND L >

Response
RECEIVE 4
Message
RECEIVE <]
Response
SEND ’

Legend:

(for figures in this chapter depicting
message and response flows)

L > Message
’ Response

““‘“ Exception Message

- amn ey e * Exception Response

Figure. 5-11. Exchanging Messages and Responses

These options define what constitutes the completion of an output operation, and should
not be confused with synchronous and asynchronous request handling, which indicate the
action to be taken when the completion occurs.

Responded output is the easiest to use, but requires that the output data area and RPL
not be reused until a response has been received. If the response indicates that an error
occurred, the data is_still available for retransmission. Scheduled output allows the
application program to send a series of messages that all use the same I/O area and RPL.

With responded output, completion status information is returned when the output
request is completed. But with scheduled output, the output request is completed before
any completion status information is available. To determine how the output operation
completed, the application program must issue an input request to obtain the completion
status information. This is why the application program in Figure 5-12 issues three input
requests in addition to the three output requests.

If an error occurs during the transmission of the message, the receiver is passed a
substitute message that indicates the error condition. This message is called an exception
message. The: node transmitting the message becomes aware of the error condition when
the other node returns an exception response.

When the logical unit sends a message to the application program, the logical unit

indicates on that message the type of response that it expects in return. The terminal can
“tell” the application program to :

VTAM Application Programs 87

88

Application Program VTAM Logical Unit

Message No. 1

SEND1 [> L >
SEND 1 completed,
output area is free.

Message No. 2

SEND2 [> C >

SEND 2 completed,
output area is free,

Message No. 3

SEND3 [C >

SEND 3 completed,
output area is free.

RECEIVE

completes or ‘

RESP exit-
routine is Message No. 3

scheduled L)

RECEIVE
completes or Response No. 2
RESP exit- ‘

routine is

scheduled

RECEIVE Response No. 3
completes or‘
RESP exit-
routine is
scheduled

Figure 5-12. Scheduled Output

Response No. 1

o Send a response regardless of whether the message arrives normally or not. That is, if
an exception message is received, send back an exception response. If the message
arrives normally, send back a normal response. Part A of Figure 5-14 is an example of
responding to both normal and exception messages.

e Send only an exception response. That is, if the message arrives normally, send no
response. If an exception message arrives, send an exception response. Part B of Figure
5-15 is an example of responding only to exception messages.

e Send no response at all.

Requesting both normal and exception responses, rather than just exception responses,
results in greater control over error conditions and provides an opportunity for quicker
error recovery—but requires more programming. A request for only exception responses
can be used within a group of related output messages if the entire group is to be
discarded when an exception condition occurs. Requesting no responses of either sort is
appropriate when there is no concern for error recovery for that transmission.

The application program can specify the same options in the messages that it sendsto a
logical unit. The logical unit can examine the message received from the application
program and determine whether an exception or normal response (or no response) should
be returned to the application program.

The logical unit or application program can send an exception response to a message that
was successfully received for reasons other than whether or not it was received

RRN and FME
Responses

Application Program VTAM Logical Unit

Message No. 1

SEND1 [> C >

Message No. 2

SEND 2 | >
= >

Message No. 3

SEND 3 L >

Response No. 1

SEND 1 completed
Message No. 3

| >

Response No. 2

SEND 2 completed

Response No. 3

SEND 3 completed

Figure 5-13. Responded Output

successfully. For example, an exception response might indicate that the data in the
message was not in a prescribed form.

Every response, independent of its normal or exception aspect, is designated by its sender
as an RRN response or as an FME response. RRN responses are used to control data
recovery; FME responses are used to indicate the arrival of data at its ultimate
destination.

A normal RRN response signifies that the response sender (1) has successfully received
the data, and (2) accepts recovery responsibility for the data. Recovery responsibility
means that the node will hold a copy of the data until the data has successfully reached
its destination. An exception RRN response signifies that the response sender either has
not successfully received the data, or that it cannot accept recovery responsibility for the
data.

A normal FME response, on the other hand, signifies that the data has reached its final
destination. A 3600 work station, for example, might return a normal FME response to
indicate that it has successfully written the data to one of its output terminals. An
exception FME response signifies that the data did not successfully reach its final
destination.

VTAM Application Programs 89

A Logical Unit Requests Either Normal or Exception Response
Application Program VTAM Logical Unit
Message

< |

- Application Program: Send normal or exception

< 1 response.

If message received normally,

Response

application program returns a normal response.*

AAN NN N NN NN NSNS\

But if message received as an exception
message,

’ Exception Response
CGED GED D GIND GIND GED GED GEED GEED NN GIND IS NN D GEID IR G GED D

application program returns an exception response.

B Logical Unit Requests Only Exception Response
Application Program VTAM Logical Unit

<=]

Application Program: Send onfy an exception

response.
<] P

If message received normally, application
program returns nothing.*

S\ N NN N NN NN NN NNAN
But if message received as an exception,
Exception Response

application program returns an exception response.

* Even though a message arrives normally (as far as VTAM
is concerned), the application program can determine for
its own reasons that the message is ‘‘defective’” and return
an exception response, rather than a normal or no response.

Figure 5-14. Two VTAM Responses to Messages

90

Both the application program and the logical unit specify for each message the expected
types of responses, and specify for each response the type of response being sent

A Request Originating in Application Program
Application Program

1 The application program sends Message

Logical Unit

data to the logical unit,

~

specifying ’Return both an FME
and an RRN response, normal or
exception.”

2 The logical unit returns a normal INormal RRN Response

RRN response; this means “Data
successfully received, recovery
responsibility accepted.”

3 Later, the logical unit returns an
exception FME response; this
might mean ‘“Unable to write to
the Passbook Printer ——
hardware problem.” Since the
logical unit has accepted
recovery responsibility, the
application program might tell
the logical unit to retry the
output operation to the
Passbook Printer or to return the
data to the application program.

Exception FME Response

B Request Originating in Logical Unit
Application Program

1 : Message

<

2 Normal RRN Response

3 Normal FME Response

Figure 5-15. Two Possible Uses of The Response Types

Logical Unit

The logical unit sends data to the
application program, specifying
‘‘Return both an FME and an RRN
response normal or exception.”

The application program returns a
normal RRN response; this means
“‘Data successfully received,

recovery responsibility accepted.”

The application program returns a
normal FME response; this might
mean “‘Data successfully written to
the DASD."”

VTAM Application Programs 91

Sequencing and Chaining

92

The application program indicates on each message whether it expects an FME response,
an RRN response, or both to be returned. Combining these types of responses with the
normal/exception response types described above yields seven possible combinations of
response types that can be indicated for a given message:

¢ Return a normal or exception FME response.

e Return a normal -~ exception RRN response.

e Return both an FME and an RRN response, normal or exception.
e Return only an exception FME response.

* Return only an exception RRN response.

e Return both an FME and an RRN response, exception only.

e Return no responses of any sort.

The logical unit, like the application program, also specifies for each message the types of
expected responses. Figure 5-15 illustrates two uses of FME and RRN responses.

Each data record sent to a logical unit is assigned a sequence number by VT AM. The
numbering begins with the first record sent after connection. The number is increased by
one for each subsequent record. This process continues until the logical unit is
disconnected, unless interrupted earlier by the application program.

Should a message arrive out of sequence (that is, its sequence number is not 1 greater
than that of the last record received), VTAM considers this to be a transmission error and
replaces the missing message with an exception message.

When a response is sent (either normal or exception), the sender assigns to it the sequence
number of the message being responded to. This provides the node that originally sent the
message with a means of matching the response with its message. For example, an
application program might send a group of messages, with each message indicating that
only exception responses should be returned. Should an exception response be returned,
the application program could use the sequence number to determine where in the group
the error occurred. Sequence numbers are also useful for logical units that log each

.received or sent message.

Application programs (or logical units) can group any number of messages into a set
called a message chain. The sender can indicate which part of a chain is being
transmitted—the first message of the chain, the last message of the chain, neither (the
message is somewhere in the middle) or both (the message is the sole element of the
chain).

‘The node transmitting a chain can at any time send a cancel indicator to the receiving

node (the node might send this indicator because an exception response has been
returned). The receiving node can interpret this indicator as an indication that all received
records of the current chain should be discarded.

The actual unit of work that the chain represents is determined entirely by the
application program and the logical unit,

Figure 5-16 illustrates a possible use of chaining. In this example, a logical unit has
submitted an inquiry to the application program. The application program can obtain
various pieces of information from data files and send them to the logical unit as each
becomes available. By chaining the output requests, the application program has a
convenient way of telling the logical unit whether any given piece of data represents the
beginning, middle, or end of a reply to an inquiry and of checking all the reply before
displaying any part of it.

Quiescing

Application Program Logical Unit

Request

| information
from data
base

Message
(Inquiry)
<=)
Response
DASD
i/0 First Message in Chain
Requests 1

Respond only if received
as exception message

vV VvV v

L
Respond only if received
as exception message
°
°
°
Last Message in Chain
C >

Respond

Response

Display
data in

message
chain

Figure 5-16. An Example of Message Chaining

VTAM provides a set of indicators that the application program can use to request a
logical unit to stop sending synchronous-flow messages to the program. The VTAM
application program can receive similar requests from a logical unit for the application to
stop sending.

Quiescing can be used to occasionally stop the logical unit or application program from
sending because of some temporary circumstance. For example, a logical unit may be
receiving a long chain being sent from a VTAM application program. Elements being
received are stored in a buffer associated with the logical unit. When a certain point in the
buffer is reached (a point that normally is not reached), the logical unit sends a
quiesce-at-end-of-chain (QEC) indicator. The _VTAM application program can interpret
this indicator to mean “quiesce immediately.” It can either end the chain at this point,
allowing the logical unit to clear its buffer, or it can send back a quiesce-completed
indicator, indicating that it is temporarily ceasing to send until the logical unit clears its
buffer and sends back a release-quiesce (RELQ) indicator.

In another example of the use of quiescing, a terminal operator at a device to which a
printout was being sent could notify the subsystem application program to interrupt the

VTAM Application Programs 93

Facilities for Ensuring
Orderly Communication

94

Application Program Logical Unit

\
<)
<]
r . > g Both nodes can send and
receive
(Quiesce Indicator)
<z]
< 1)
(Quiesce-Completed Indicator)
N
L > As soon as the logical unit
replies to the quiesce
indicator by sending a
| > quiesce-completed
indicator, it can no longer
send messages. The logical
L > > unit can only receive
messages and send
responses. As soon as a
L > release-quiesce indicator is
received, the logical unit
J can again send messages.
[>

(Release-Quiesce Indicator)

o

Note: Responses are not shown

Figure 5-17. An Example of Quiesce Communication

printout to enter an inquiry. The logical unit would send a QEC indicator, and the VTAM

application program would temporarily hold sending and prepare to receive input from
the logical unit.

Messages can be sent to a logical unit without regard to whether the logical unit is at that
moment sending messages to the application program. The nature of some applications,
however, may prohibit such unrestricted exchange of data, or the application program
may have been developed when no capability for unrestricted data exchange existed, and
the installation does not wish to rewrite the program just to use this facility. For such
application programs, three methods of communication are available that allow the
application program and the logical unit to control each other’s ability to send data.
These three methods (which are essentially three sets of indicators with “rules” about
how to use them), are called quiesce communication, change-direction communication,
and bracket communication.

Quiesce Communication: The application program informs the logical unit that it is to
stop sending data when the logical unit has completed sending its current chain. It does so
by sending a quiesce-at-end-of-chain (QEC) indicator. When the logical unit replies, by
sending a quiesce-completed (QC) indicator, it must stop sending and prepare to receive.
The logical unit cannot again send data until it receives a release-quiesce (RELQ)
indicator from the application program, as shown in Figure 5-17.

This convention is not enforced by VTAM; it is the user’s responsibility to conform to
the convention.

The application program is not necessarily the primary node (that is, the node entitled to
“quiesce” the other node).

Change Direction Communication: The first node that sends data (following the
application program’s indication that data flow can begin) can continue to send data.
When the first node is through sending data, it sends a change-direction-command
indicator to the other node. The other node sends data until it relinquishes its ability to
send by returning another change-direction-command indicator. The nodes continue to
alternate in this fashion, as shown in Figure 5-18.

While the receiver is awaiting the change-direction-command indicator, it can transmit (as
part of a response) a prompting indicator to the other node that in effect says “I would
like that change-direction-command indicator now.” The prompting indicator, called a
change-direction-request indicator can be honored or it can be ignored.

Change-direction is not enforced by VTAM. Should the node waiting for a change-
direction indicator begin sending data anyway, VTAM does not prevent the transmission
of the data. The successful use of this method of communication rests on the assumption
that neither the application program nor the logical unit violates the “rules.”

The node that is awaiting a change-direction indicator, like the node that is in a quiesced
state, is free to send responses. Only the sending of messages is restricted.

Bracket. Communication: A bracket is any unit of work that the application program
and the logical unit have been programmed to accomplish. Each bracket consists of input
operations or output operations (or both) that do not necessarily follow a fixed pattern.
Data-base inquiry and data-base update transactions are typical examples of brackets.

Bracket communication is used when one of the nodes cannot process a new bracket
until the previous one has been completed. Nodes using this method of communication
note on each transmitted message whether that message is the beginning or end of a
bracket. These delimiters allow the receiving node to determine whether of not a new
bracket can be started. Figure 5-19 illustrates a use of bracket communication.

Because either connected node can initiate a bracket, a bid indicator can be used to avoid
situations in which both nodes attempt to initiate a bracket at the same time. A bid
indicator requests permission to start a bracket. Upon receipt of a bid indicator, the
receiving node can reject it, give permission for a bracket to be initiated, or reject the bid
temporarily. If the bid is rejected temporarily, the node that received it transmits a
ready-to-receive (RTR) indicator when a bracket session can be permitted. Upon receipt
of an RTR indicator, the node that originally sent the bid can initiate the bracket by
sending a begin-bracket indicator in a message.

To use the bracket convention effectively, only one node should be permitted to initiate

a bracket without the use of the bid. The other node should be required to use the bid
before initiating a bracket.

VTAM Application Programs 95

Sequence Number
Recovery

96

Application Program Logical Unit

w
/

L The application program

sends data followed by a
change-direction-command
indicator. The logical
> unit is expected to refrain
from sending data until
the change-direction-
command indicator is
received.

L

>
>
' >
>

(Change-Direction-Command Indicator)

\

] . The logical unit now
becomes the sender. The
application program is
expected to refrain from
sending until it receives
the change-direction-

J command indicator.
{Change-Direction-Command Indicator)

. =
. >

(Change-Direction-Command Indicator)

N B0

J

]

(Change-Direction-Command Indicator)

IAANYA

Note: Responses are not shown

Figure 5-18. An Example of Change-Direction Communication

Like quiesce communication and change-direction communication, bracket communica-
tion is not enforced. Any message marked ‘‘begin bracket” that is sent before the
previous bracket has ended is not rejected by VTAM. Bracket communication is,
however, enforced in 3270 communication.

Figure 5-20 lists the three sets of indicators discussed above.

The application program can start and stop the flow of all messages and responses
between itself and a logical unit. The flow begins when the application program sends a
start-data-traffic (SDT) indicator, to the logical unit. The SDT indicator can be sent
automatically as part of the connection process, or it can be sent later. The flow is
stopped when the application program sends a clear indicator to the logical unit. All
messages and responses that have been sent by one node and not yet received by the

Application Program Logical Unit

1 The logical unit receives
an inquiry from one
of its input devices. |

2 The logical unit transmits a
message to the VTAM
application program, indicating
begin bracket.

<

(Begin Bracket)

.
L >
(Continue Bracket,
3 Begin Chain)
The application program .
processes the inquiry. L >
This results in a trans- < (Continue Bracket,
mitted chain ending in an Continue Chain)
inquiry regarding the
adequacy of the data. [>
{Continue Bracket,
\. End Chain)
< — 4 The logical unit replies with a
(Continue Bracket) request for more data.
5 The application program r g'>
transmits the additional (Continue Bracket)
data.
<] 5 The logical unit determines that

(End Bracket) it ha]s thi_e data needf-:-c_i to satisfy
the inquiry and notifies the
application program that the
bracket is ended.

Note: In this example, the logical unit determines the
beginning and the end of the bracket. in other 6 The logical unit displays
applications, the VTAM application couid the requested :>
determine the beginning and the end of bracket, information.
or one node could determine the beginning and
the other node determine the end.

Figure 5-19. An Example of Bracket Communication

other are discarded, and further transmissions are prohibited. An SDT indicator is used to
resume the flow of messages and responses. The flow of messages and responses can be
stopped and restarted any number of times as illustrated in Figure 5-21.

The SDT and clear indicators are not sent in the same manner as messages and responses
(that is, with the SEND macro instruction) but are sent with a SESSIONC macro
instruction.

Another indicator sent by the SESSIONC macro instruction, called the set-and-test-
sequence-number (STSN) indicator, allows the application program to reset the
VTAM-incremented sequence number, or to communicate with a logical unit to establish
the proper sequence number. For example, the application program can send a sequence
number to the logical unit and from the response determine if the logical unit ‘agrees”

VTAM Application Programs 97

98

The quiesce indicators

Quiesce-at-end-of-chain

Quiesce-completed

Release-quiesce

The change-direction indicators

Change-direction-command

Change-direction-request

The brackets indicators

Begin-bracket

End-bracket

Bid

Ready-to-receive

Figure 5-20. Indicators Used to Direct the Flow of Data

with that number. Or, the application program can simply “ask’ the logical unit to return
whatever value it considers to be the correct sequence number.

STSN indicators are used in conjunction with SDT and clear indicators in a process called
sequence number recovery. This process begins when the application program or the
logical unit determine that messages are arriving out of sequence. (If the logical unit
injtiates the process, it first sends the application program a request-recovery (RQR)
indicator.) The application program either on its own initiative or as the result of
receiving the request-recovery indicator, establishes the correct sequence number—
typically in the following manner:

1. The application program sends a clear indicator to stop the flow of messages and
responses. This is necessary to insure that no pending transmissions complete while the
application program and the logical unit are in the midst of determining the correct
sequence number.

2. The application program, by sending various STSN indicators and examining responses
to them, communicates with the logical unit and establishes the correct sequence
number.

3. The application program issues another STSN indicator to reset the VTAM-supplied
sequence number to the new value,

4. The application program completes the recovery process by sending an SDT indicator
which allows the flow to resume.

Application Program Logical Unit

OPNDST (Start-date-traffic indicator :> Data flow can begin when
sent automatically by VTAM) logical unit is connected.

communication is L

possible <

>

SEND/RECEIVE
>
|

Only SESSIONC
communication possible

SEND/RECEIVE
communication is
possible

Only SESSIONC
communication possible

C >
SEND/RECEIVE
communication is L >
possible : !

CLSDST (Clear indicator sent :> Pending 1/0 is cancelled;
automatically by VTAM) data flow ceases.

Figure 5-21. An Example of Start-Data-Traffic and Clear Indicators

VTAM Application Programs 99

Receiving Input

100

Data records, responses, and data flow control information can be received by the
application program separately or with one RECEIVE macro instruction. When the macro
instruction is issued, it indicates which one of the following types of input can satisfy the
request (any combination can be specified):

e Synchronous-flow messages.
e Asynchronous-flow messages.

® Responses.

Synchronous- and asynchronous-flow messages are terms used to group all messages into
two distinct types of input. (Synchronous- and asynchronous-flow messages should not
be confused with synchronous and asynchronous request handling. The two are
unrelated.)

The need for the two types of input results from these characteristics of data
transmission:

o If messages are sent at a faster rate than the other node receives them, the messages are
queued for the receiving node.

¢ Some messages are more important than others, in the sense that they should not be
queued with the other messages but should be available to the receiving node
separately and immediately.

Thus, VTAM provides two “priority levels” for messages. Data records are always treated
as synchronous-flow messages. Certain flow-control information is treated the same way.
One example is the quiesce-completed indicator, which must keep its place in the queue
of data records; if it were to be received prematurely, the bypassed data records might be
lost.

Other data-control information must be made more immediately available to the receiver
and is therefore made available to the receiver as asynchronous-flow messages. One
example of an asynchronous-flow message is the QEC indicator. This type of indicator is
not meant to stay within a queue of data records, waiting until the receiver eventually
obtains it.

See Appendix D for an indication of which indicators are synchronous-flow and which
are asynchronous-flow.

Three types of exit-routines can be maintaiﬁed by the application program that VTAM
schedules whenever one of the following types of input become available:

¢ Asynchronous-flow messages (DFASY exit-routine).
* Responses (RESP exit-routine).
e Request-recovery (RQR) indicators (SCIP exit-routine).

Note that with one exception, the types of input that can cause the exit-routine to be
scheduled correspond to the type of input that causes a particular type of input request
to be completed. The exception is the SESSIONC indicator. Unless a SCIP routine is
maintained for this purpose, the application program has no means of receiving an RQR
indicator.

These exit-routines operate in the same manner as those described in “Application
Program Exit-Routines,” earlier in this chapter. One difference, however, is that the
application program need not use one exit-routine to handle a particular kind of input
from all logical units. A given exit-routine can service input from a limited set of logical
units, or a separate exit-routine can be maintained for each logical unit.

Messages

Synchronous
Flow (DFSYN)

Data
Records

Indicators

Asynchronous
Flow (DFASY)

Indicators

All messages can
specify the type
of response
expected

*

Information exchanged with SEND
and RECEIVE macro instructions
Information exchanged
with the SESSIONC
macro instruction and
Responses SCIP exit-routine
Normal
Responses
FME Messages
*
SESSIONC
RRN Indicators
FME & RRN
Exception
Responses
FME
RRN
B * Indicators are
FME & RRN are detailed in
Appendix D
Responses can
include indicators

Specific-Mode and
Any-Mode

Figure 5-22. Types of Information Exchanged Between an Application Program and Logical Unit

Figure 5-22 summarizes the various messages and responses described above.

The application program can obtain data from its logical units in one of two ways; it can
request data from a specific logical unit, or it can request data from any one of its
connected logical units. The application program designates the desired mode—specific or
any—with each RECEIVE macro instruction. These two modes are called, respectively,
the specific-mode and the any-mode.

In general, an application program initially requests input from its logical units in the
any-mode, and then proceeds to communicate with each logical unit in the specific-mode
until the transaction, inquiry, or conversation is-completed. While specific communica-
tion proceeds with one logical unit, the application program keeps a RECEIVE macro
instruction (issued in the any-mode) pending so that new transactions can be handled.

A RECEIVE issued in the any-mode is analogous to a BTAM READ Initial macro
instruction except that (1) the concept of polling does not apply to logical units, and (2)

VTAM Application Programs 101

Continue-Any and
Continue-Specific
Modes

Identifying Logical
Units

102

the RECEIVE can be satisfied by any logical unit connected to the application program,
rather than by just those attached via one line.

In the any-mode, the application program does not know the identity of the source
logical unit until the data has been moved into its input area and the RECEIVE has been
completed. Since the logical unit is initially unknown, the amount of incoming data may
also be unknown. This means that the application program must either reserve an input
area large enough to hold the largest possible amount of incoming data, or execute
additional instructions to handle overlength data. On the other hand, the any-mode
allows the application program to use just one input area for data from all of its logical
units, rather than using a separate input area for each of its logical units.

With the specific-mode, the application program must specify the identity of the logical
unit supplying the data. Since the identity of the source is known, the size of the input
area is much more predictable than with the any-mode. A disadvantage is that since any
given logical unit may not supply data for some time, the application program may have
to contend with unused data areas.

Input data areas can be more efficiently managed by a combination of specific-mode and
any-mode. As an example, consider an application program that obtains an inquiry from
any of its logical units, handles that inquiry with a series of SEND and RECEIVE macro
instructions, and then obtains a new inquiry. Part of such a program is illustrated in
Figure 5-23.

In the example of Figure 5-23, synchronous request handling for the I/O requests is
assumed. The application program handles each inquiry serially, never accepting a new
inquiry until it has completed the previous one. Although this procedure might be
suitable for application programs processing short inquiries and few logical units, most
applications would probably work much better if the inquiries were handled in parallel.

An application program designed to handle more than one inquiry concurrently (Sample
Program 2 at the end of this chapter is such a program) might use asynchronous request
handling and issue new RECEIVE macro instructions in the any-mode before the previous
inquiry has been completed. This, however, raises the possibility that both a RECEIVE
for a specific logical unit and a RECEIVE for any logical unit (which includes the specific
logical unit as well) might be awaiting data at the same time. Consequently, data that is
meant to satisfy the subroutine’s RECEIVE might instead be intercepted by the
RECEIVE in the main program, which is meant only to receive new inquiries.

To eliminate this sort of problem, VTAM allows the application program to indicate
when a particular logical unit’s data can be received by a RECEIVE macro instruction
issued in the any-mode, and when the data must be received by a RECEIVE macro
instruction issued in the specific-mode. The former is called continue-any mode, and the
latter is called the continue-specific mode. These modes are designated when an I/O
request is issued, but do not become effective until the I/O operation is completed.

Figure 5-24 illustrates how the various modes described above relate to one another.

Before an application program begins to communicate with a logical unit, it has available
to it the logical unit’s installation-supplied name. This is an 8-byte symbolic name created
for the logical unit during VTAM definition. When connection is established with the
logical unit during program execution, the application program is also provided with a
VTAM-supplied network-oriented name (called a communications identifier, or CID) for
that logical unit. The application program uses the CID for all I/O requests issued in the
specific-mode.

Application Program

°
°
°

—p= RECEIVE Any The application program begins by accepting data
° in the any-mode. When an inquiry is eventually
° received, the data and the identity of the logical
° unit are passed to the application program and the
° RECEIVE request is completed. The application
o program can now call the subroutine that handles
° the type of inquiry or handles the particular
° logical unit that made the inquiry.
°

Call appropriate subroutine

°

SEND (Specific)
° The subroutine sends to the logical
° unit and receives from it in specific-
[mode (dutput requests are always

RECEIVE (Specific) directed to a specific logical unit).

° The size of the subroutine’s input
° area can be limited since the identity
° of the logical unit is known, and the
SEND (Specific) input area probably does not remain
° unused for long, since the subroutine
L is in the midst of a conversation
L with the logical unit.
RECEIVE (Specific)
°

°

SEND (Specific) Once the inquiry has been satisfied, the

Return application program again issues the
RECEIVE in the any-mode and waits
for the next inquiry to arrive.

C ’ll

Figure 5-23. Using a Combination of Any-Mode and Specific-Mode to Obtain Data

When a RECEIVE macro instruction issued in the any-mode is completed, VTAM
provides the identity of the logical unit that sent the data. Since the application program
will probably proceed to communicate with the logical unit in the specific-mode, it is the
CID, rather than the symbolic name, which VT AM supplies to the application program.
Should the identity be significant, the application program has three ways to relate the
CID to the logical unit’s symbolic (installation-supplied) name:

e The application program can ask VTAM to translate the CID into its symbolic name.
This is done with an INQUIRE macro instruction.

¢ The application program can maintain a table of CIDs and their symbolic equivalents.

e When the application program establishes connection with the logical unit, the
application program can initially assign to the logical unit a four-byte value that
VTAM returns each time that logical unit’s data satisfies a RECEIVE. The four-byte
value can be anything the application program chooses to associate with the logical
unit and is known as the user field. It could be used to identify the logical unit, or it
could contain the address of a subroutine that is to handle that logical unit’s data.

VTAM Application Programs 103

®
RECEIVE
RECEIVE
RECEIVE

L]

.

L J

-»Wait for data to arrive
Call appropriate subroutine

Application Program

Any, Continue-Specific
Any, Continue-Specific
Any, Continue-Specific

The application program begins by issuing three RECEIVEs in the any-
mode. Continue-specific mode is also designated for each one; this
means that once a logical unit sends data and causes one of the

RECEIVEs to be completed, subsequent data from that logical unit can
only be obtained with RECEIVEs issued in specific-mode.

When the data arrives, the appropriate subroutine determines if the
inquiry is completed. If it is not, the subroutine exchanges data in the

specific-mode. The logical unit is kept in the continue-specific mode
so that the arriving data can only satisfy the RECEIVE issued in the
specific-mode, not one of the RECEIVEs issued in the any-mode.

°
End of inquiry?

If, however, the subroutine determines
that the inquiry is at an end, a final record
is sent to the logical unit. The subroutine
specifies the continue-any mode on the
SEND; this ensures that the logical unit
being sent to, like all the other logical
units in the continue-any mode, will be
able to satisfy the RECEIVE macro
instruction in the any-mode in the main
program and begin a new inquiry.

No
SEND* Continue-Specific
°
°
°
RECEIVE Specific, Continue-Specific
Return to main program
Yes
SEND Continue-Any
.
]
°
Return to main program
Y J
T J

Figure 5-24. Using The Continue-Any and Continue-Specific Modes to Handle Concurrent Inquiries

Handling Overlength

Input Data

104

When an application program issues a RECEIVE macro instruction, the length of the

incoming data is often unpredictable. As noted above, this is particularly true of
RECEIVE macro instructions issued in the any-mode. VTAM provides two ways of
handling data that is too large for the input area:

e VTAM can discard the overlength data. This facility is called the TRUNC (truncate)

option.

This option would be useful in applications that must impose rigid size limitations on
input data. For example, an inventory-control application might require the logical
unit to supply an account number no longer than 10 bytes.

e VTAM can keep the data. VTAM fills the input area, saves the remainder, and
completes the input request. Additional input requests must be issued to obtain the
excess data. This facility is called the KEEP option.

The application program selects the appropriate option on an individual logical unit basis
when the logical unit is connected and can override it on a per-request basis.

Communicating with the
3270 Information
Display System

Communicating with
Start-Stop and
BSC Terminals

Although the 3270 is not a logical unit, the application program communicates with each
3270 as though it were, That is, the application program uses SEND and RECEIVE macro
instructions in much the same manner as described above.

VTAM provides the SEND-RECEIVE facility so that application programs communica-
ting with logical units can use the same the same macro instructions to communicate with
3270s. This facility also allows a program that communicates with logical units to be
tested with 3270 terminals.

Note: The application program has the option of communicating with the 3270
terminals in the same manner used to communicate with BSC and start-stop terminals.
See “Communicating with Start-Stop and BSC Terminals,” below.

Since the 3270 is not a logical unit and has no programmable capabilities, VTAM cannot
make a 3270 appear exactly like a logical unit to the application program. Consequently,
the following restrictions apply to all SEND and RECEIVE communication with a 3270
(all other aspects of communication apply as described previously):

e All commands and orders for the 3270 must be placed in the output data by the
application program. Data, therefore, includes 3270 commands and orders.

e No responses should be sent to a 3270. All incoming messages indicate that no
response of any type is expected.

e Messages sent to a 3270 can contain only data and 3270 commands and orders. No
quiesce, change-direction, bid, chase, or cancel indicators should be sent. Bracket
indicators can be set, but chaining indicators should always mark the message as the
sole element of a chain (all incoming messages are so marked).

® No RQR indicators can be received from a 3270. Only the clear indicator can be sent
to it. The effect of the clear indicator is to reset both incoming and outgoing sequence
numbers to 0.

o The bracket convention must be used. If the application program has no use for
brackets, the entire interval between the first I/O operation of a connection and
disconnection can be considered to be one bracket. Both the application program and
the 3270 can begin a bracket.

The first input from a 3270 that begins an NCP session is marked as the beginning of a
bracket. All subsequent messages received from the 3270 during the NCP session
indicate that the bracket is being continued. The 3270 cannot end a bracket; this can
only be done by the application program.

e The application program ‘should request FME responses for each message sent to the
3270 that begins or ends in a bracket.

Those readers concerned only with how VTAM is used to communicate with logical
units and 3270 terminals should skip the following part and resume reading at “The
VTAM Language.”

The macro instructions and facilities used by the application program to communicate
with VTAM-supported start-stop and BSC terminals are different from those used to
communicate with logical units. The two sets of macro instructions and facilities are
called the basic-mode and the record-mode. The remainder of this section discusses
basic-mode.

The basic-mode must be used for the start-stop and BSC terminals, and may also be used
for the locally and remotely attached 3270. The record-mode is used for all logical units
and for the locally and remotely attached 3270. Appendix B lists the logical units, BSC
terminals, and start-stop terminals supported by VTAM.

VTAM Application Programs 105

106

The record-mode macroe instructions are the SEND, RECEIVE, RESETSR, and
SESSIONC macros mentioned above. The basic-mode macro instructions are these:

SOLICIT
Poll or prepare a terminal (or all connected terminals) for input, obtain a
pre-established amount of data from the terminal, and move the data into VTAM
buffers.

READ
Move data from VTAM buffers into the application program’s input area. A variation
of this macro instruction includes the actions performed by the SOLICIT macro.

WRITE
Write a block of data to a terminal.

RESET
Cancel a pending SOLICIT, READ, or WRITE operation for a terminal, and/or reset
the NCP error lock for the terminal.

DO
Execute a set of logical device orders (LDOs) to perform particular operations.

Many of the concepts and facilities that have been discussed in this chapter apply to
start-stop and BSC communication as well as to communication with logical units. The
following concepts and facilities are common to both the basic-mode and the
record-mode:

e Connection.

e QOverlapping VT AM requests with other processing.

e Application program exit-routines. (However, the DFASY, SCIP, and RESP exit-
routines apply only to logical units.)

¢ Error notification.

e Specific-mode and any-mode.

® Continue-any and continue-specific modes.

o Terminal identification. (See “Identifying Logical Units,” earlier in this chapter.)

¢ Handling overlength input data.

The following concepts and facilities are those which are used only for basic-mode
communication.

Data Blocks: The unit of data exchanged between the application program and a
terminal depends on whether record-mode or basic-mode is being used. Messages (which
include data records) and responses are exchanged in record-mode. In basic-mode, the
unit of data is the block.

Blocks are delimited differently for different types of terminals. For start-stop terminals,
a block ends with an EOB character; for BSC terminals, a block ends with an ETB or ETX
character.

Although the application program can solicit more than a block from a terminal, a READ
macro instruction can move only a block into the application program’s input area (or
less, if the input area is smaller than a block). Output operations (WRITE macro
instructions) always send one block to the terminal.

Application Program VTAM Terminal

READ Specific

*

Data is solicited, if
none is in VTAM buffers.

<

Data is moved.

SOLICIT
°
° Data is solicited.

°
READ Any or Specific

<

Data is moved.

¥ Arrows indicate data flow.

Figure 5-25. Implicit and Explicit Solicitation in the Basic-Mode

Solicitation: When the application program solicits data from a terminal, VT AM initiates
whatever actions (such as polling or line preparation) are required to obtain data from the
terminal into VTAM buffers.

READ requests issued in the specificcmode cause solicitation to take place if no
previously-solicited data is in VTAM’s buffers, and then cause the data to be moved into
the application program’s I/O storage area. This is similar to a READ Initial macro
instruction in BTAM. In contrast, READ requests issued in the any-mode can only move
solicited data from VTAM’s buffers into the application program’s input area. This is
similar to a READ Continue macro instruction in BTAM. The user of READ requests in
the any-mode must therefore explicitly request solicitation. Figure 5-25 illustrates both
explicit and implicit soliciting of data.

Specific-mode and any-mode is also used when data is solicited. In the specific-mode, data
is solicited only from a single terminal. In the any-mode, data is solicited from all
connected terminals.

An application program might use these forms of solicitation in the following manner:

1. The application program initially solicits data from all of the terminals to which it has
become connected.

2. The application program issues a READ in the any-mode which is completed when
one of the terminals responds to the solicitation.

3. The application program communicates with the terminal using WRITE and READ
macro instruction issued in the specific-mode. The READ macro instructions cause
implicit solicitation to occur.

4. When the transaction is completed, the application program issues a new SOLICIT
macro instruction specifically directed at the terminal, so that a new READ issued in
the any-mode will be satisfied when the next transaction begins.

VTAM Application Programs 107

108

This technique of handling transactions is essentially the same as that shown previously in
Figure 5-23, except that solicitation has been added. (Solicitation is not shown in Figure
5-23 because this figure is an example of communication with a logical unit, for which
the concept of solicitation does not apply.)

When connection is established with a terminal in the basic-mode, the application
program indicates the extent of data that each solicit request (implicit or explicit) is to
obtain from that terminal. It is the application program’s responsibility to determine
when a new solicit request should be issued.

The application program can designate that for each solicit request, VTAM is to:

¢ Solicit only a block of data from the terminal. For start-stop terminals, a block ends
with an EOB character; for BSC terminals, a block ends with an ETB or ETX
character.

¢ Solicit a message from the terminal. Messages do not apply to start-stop terminals; for
BSC terminals, a message ends with an ETX character. Messages consist of one or more
blocks. Note that a message in basic-mode is not the same as a message in record-mode.

o Solicit a fransmission from the terminal. For both start-stop and BSC terminals, a
transmission ends with an EOT character. Transmissions are comprised of one or more
basic-mode messages (for start-stop terminals, one or more blocks).

e Solicit the terminal continuously until the application program cancels the solicitation.

Soliciting Blocks: When data is solicited a block at a time and an error occurs during
transmission, only a limited amount of data need be recovered by the terminal. However,
since the application program must frequently reissue a solicit request (to acknowledge
the previous block and obtain a new one), data throughput over the communications line
is reduced. Block solicitation is appropriate when an unusually high number of line errors
is expected and when the length of retransmitted data must be kept to a minimum, even
if at the expense of slower response times and poorer line utilization. The installation
must authorize, in the application’s APPL definition statement, the solicitation of blocks.

Soliciting Messages and Transmissions: The lengths of basic-mode messages and trans-
missions are not as closely dependent on the type of terminal as are block lengths.
Message and transmission lengths are usually established by the terminal’s operator and
the nature of the application. The lengths of messages and transmissions from a remote
job-entry station, for example, are determined by the number of cards in each job deck,
and the number of job decks available for transmission at one time, as shown in Figure
5-26.

Since messages and transmissions tend to be much longer than blocks, message and
transmission solicitation means more data has to be recovered when an I/O error is
detected. On the other hand, data transmission is much more efficient, because the
acknowledgements and resolicitations needed to obtain the blocks are performed by the
communications controller, not the application program.

Message and transmission solicitation is appropriate for applications that require short
response times but can tolerate lengthy transmissions when required.

The selection of message solicitation over transmission solicitation (applicable only to
BSC terminals) depends on how undesirable delays between messages would be or on
whether communication is with conversational BSC terminals. With transmissions, delays
between messages are minimized, although more data must be recovered if errors occur.

) Card Hopper

Message

A

e

Message

rd

/ Transmission
Message

/-

80 Characters

-—— Block ~—»

Figure 5-26. Basic-Mode Messages and Transmission from an RJE Station
Vary in Length

Continuous Solicitation: The advantages and disadvantages of continuous solicitation are
the opposite of those of block solicitation. By soliciting continuously, the application
program can obtain data with the minimum of programming. However, the application
program must determine when solicitation should cease, and must explicitly tell VTAM
when to do so. If the solicitation must be interrupted frequently (for example, to send
output to the same terminal), the efficiency is lost.

Continuous solicitation is appropriate for batch input applications, where transmissions
are relatively frequent and delays between blocks, messages, and transmissions must be

minimized.

The VTAM Language

This section defines the functions of each VTAM macro instruction. It also explains how
macro instructions and control blocks are related.

VTAM Application Programs 109

Introduction to the
VTAM Language

The VTAM Macro
Instructions

The Connection Macro
Instructions

110

The application program facilities described above are obtained by using VTAM macro
instructions and by specifying desired values as parameters in these macro instructions.

VTAM provides assemblerlanguage macro instructions to request VTAM to:

e Connect or disconnect the application program to or from the VTAM network and
then to specific logical units.

¢ Transfer messages and responses between the application program and a logical unit.

o Create control blocks to hold information that is passed between the application
program and VTAM and to modify and interrogate these control blocks.

¢ Provide support for connection and communication activities.

The operands specified in these macro instructions are in keyword rather than positional
format. Some of the operands must be specified; most operands are optional.

Most of the VTAM macro instructions rely upon parameters in the RPL. In addition to
being able to modify these parameters via the MODCB macro instruction or assembler
language instructions, the application program can change parameters as part of each
individual connection, communication, or support request to VTAM.

In general, the VTAM language complements the VSAM language. Both VTAM and
VSAM use ACB, EXLST, and RPL control blocks (although the formats of these control
blocks differ in the two dccess methods). Both VTAM and VSAM have macro instructions
(GENCB, MODCB, TESTCB, and SHOWCB) that are used to manipulate these control
blocks.

Another common feature is the ability to code and specify the scheduling of
exit-routines; these exit-routines are scheduled and executed independently of the other
parts of the application program.

The following provides a description of the macro instructions that were summarized
eatlier in this chapter. The macro instructions are grouped here, as they were earlier, into
the following categories:

e Connection macro instructions.
¢* Communication macro instructions.
e Control-Block macro instructions.

¢ Support macro instructions.

These macro instructions tell VTAM that a particular application program is in operation
and, subsequently, request VTAM to connect the application to one or more logical units
prior to transferring data. Macro instructions also request VTAM to disconnect the
program from one or more logical units and to disconnect the program from the VTAM
system.

e OPEN. Identifies. an application program to VTAM. Once the program is opened,
VTAM can schedule any exit-routines associated with the program. (The scheduling of
a LOGON exit-routine also requires the issuance of a SETLOGON macro instruction.)

e CLOSE. Indicates to VTAM that an application program is terminating its connection
with VTAM.

e OPNDST. Requests that VTAM connect the application program to a designated
logical unit or list of logical units. Connection is required before communication
macro instructions can be used to request data transfer with the logical unit.

The Communication Macro
Instructions

The Control-Block Macro
Instructions

e CLSDST. Requests VTAM to terminate the connection between the application
program and a designated logical unit.

These macro instructions request the transfer of messages and responses between the
application program and a logical unit. Here is a brief description of the communication
macro instructions:

e RECEIVE. Requests VTAM to transfer an available message or response from a
specific logical unit or any one of a group of logical units to the application program’s
data area (if the input is data) or to one or more fields of the RPL (if the input is
indicators or response information).

e SEND. Requests VTAM to transfer a message or a response to a specific logical unit.
Data is transferred from an area in the application program; indicators or response
information are specified symbolically in the SEND macro instruction in the RPL, and
no output area is required.

e SESSIONC. Requests VTAM to send to a logical unit a SESSIONC indicator which
either (1) starts or stops the possibility of exchanging messages with the SEND and
RECEIVE macro instructions, or (2) assists in synchronizing the message sequence
numbers being kept by a logical unit.

e RESETSR. Requests VTAM to change the continue-any/continue-specific mode of the
logical unit. It also cancels any outstanding RECEIVE macro instructions that request
input from the specific logical unit.

The macro instructions described here are used to build and manipulate control blocks
required by VTAM application programs. The first part describes the control blocks and
lists the macro instructions used to assemble each when the application program is
assembled. The second part describes the macro instructions that generate and manipulate
the control blocks during program execution.

Declarative Macro Instructions: VTAM provides macro instructions to create these
contro! blocks in the application program:

Access method control block (ACB).
Exit list (EXLST).

Node initialization block (NIB).
Request parameter list (RPL).

Here is what these control blocks are used for:

e ACB (Access Method Control Block). Contains information the application program
provides VTAM about the application program in its entirety. Primarily, it names the
application program and the list of exit-routines associated with the application. The
ACB contains information about the application program.

e EXLST (Exit List). Contains the addresses of special exit-routines that VTAM is to
schedule when certain conditions occur (for example, when a logon request is received
from a logical unit). The EXLST contains the names of exit-routines.

e NIB (Node Initialization Block). Contains information the application program
provides VTAM about general communication characteristics that are to exist between
the application program and a particular logical unit. This information is provided to
VTAM as part of a connection request; it remains in effect for the duration of a
connection. The NIB contains information about a logical unit.

e RPL (Request Parameter List). Contains information (parameters) that an application
program provides VTAM when requesting connection to a logical unit, input/output,
and any action except the opening and closing of an ACB or the manipulation of a

VTAM Application Programs 111

Support Macro
Instructions

112

control block. On completion of the requested action, the RPL contains information
that VTAM passes to the application program. The RPL contains information about a
request.

The ACB, EXLST, NIB, and RPL control blocks can be assembled into the application
program by using the macro instruction associated with each control block, or they can
be created and initialized during program execution, using the GENCB macro instruction.
The type of control block that GENCB is to generate is specified in one of the operands
in the macro instruction. The GENCB macro instruction is discussed below.

The Manipulative Macro Instructions: Like VSAM, VTAM provides a group of macro
instructions that build control blocks or manipulate control-block fields. These macro
instructions provide a more convenient release-independent way to do this than by using
assembler language instructions. They refer to fields symbolically rather than by specific
control-block location. The manipulative macro instructions are:

e GENCB. Builds an ACB, EXLST, NIB, or RPL during program execution and can
initialize designated fields with specified values.

e SHOWCB. Obtains the value or values from one or more fields of a control block and
places them in an area in the applicaton program where they can be examined. In
addition to fields that are set by the application program’s use of macro instruction
keyword operands, a number of control block fields can be shown that are set by
VTAM but that cannot be directly modified by the application program.

e TESTCB. Tests the contents of a field against a value and accordingly sets the
condition code in the program status word (PSW).

® MODCB. Changes the contents of one or more fields by inserting specified values in
the fields.

There are several different forms of the manipulative macro instructions. In addition to
the standard form, there is a list form, a remote list form, a generate form, and an execute
form. The nonstandard forms can be used for programs that must be reenterable or that
are sharing with other programs the parameter lists that are assembled when the macro
instructions are expanded.

Instead of using the manipulative macro instructions, a VTAM application can manipulate
values in these control blocks by using DSECT and other assembler language macro
instructions. While less convenient to code, fewer instructions will be executed.

VTAM provides these additional macro instructions to support connection and
communication activities:

® CHECK. Checks and, if necessary, awaits completion of a previously requested
RPL-based operation, marks as inactive the RPL associated with the request (thus
freeing it for further use), and, if a logical or other error is detected and a LERAD or
SYNAD exit-routine exists, causes the appropriate routine to be called.

e EXECRPL. Requests VTAM to perform an operation that is currently specified in a
designated RPL. EXECRPL can be used instead of using other RPI-based macro
instructions such as OPNDST, SEND, and RECEIVE, or, after an unsuccessful
operation, when reissuing a request. Prior to issuing an EXECRPL, the operation to be
performed may already be specified in the REQ field of the RPL or the application
program may specify it. Any other modifiable field of the RPL can be set up prior to
issuing the EXECRPL macro; in addition, any valid RPL-based parameter may be
specified in an EXECRPL macro instruction operation. While less convenient to set up
and code, the use of EXECRPL requires that fewer instructions be executed.

Relating VTAM
Control Blocks
and Executable
Macro Instructions

Opening the Application
Program

e [NQUIRE. Obtains certain information that the application program may need and
places it in a specified area of the program. The information that can be requested
using INQUIRE includes: the logon message associated with a logon request, the
number of logical units currently connected, or queued for logon to, the application,
the physical address of a 3270 screen (for use in a copy operation), and whether
another application program is active or inactive and whether it is accepting logon
requests.

e INTRPRET. Provides a means of accessing an installation-defined interpret table. For
example, INTRPRET can be used to obtain the real symbolic name of an application
program when the program is identified with an alias in a logon message. INTRPRET
can be used by special programs written to receive logon messages and reconnect
logical units to the appropriate application program.

e SETLOGON. Tells VTAM to activate the application program’s LOGON exit-routine
and to begin queuing any logon requests. The user can also temporarily halt the
queuing of logon requests until more logical units can be handled or can permanently
halt the queuing of logon-requests in preparation for a close-of-day operation.

e SIMLOGON. Allows the application program to acquire a logical unit by initiating the
logon request on behalf of one or more logical units to which the application wants to
be connected.

The contro!l blocks created by VIAM macro instructions are used to pass information
between the application program and VTAM. One control block, the EXLST, is used
simply to pass the names of exit-routines in the application program to VTAM. The other
control blocks, the ACB, RPL, and the NIB, are used both to pass information to VTAM
and to contain information that VTAM returns to the program.

The most frequently used control block is the RPL. An RPL is required each time the
program makes a request for a connection, for an I/O operation, or for any service except
opening and closing an ACB. The other control blocks, the ACB, EXLST, and NIB, may
be used as little as once during the execution of the program.

Each RPIL-based macro instruction refers to an RPL that contains information about the
operation to be performed, such as the address of the input or output area, the length of
the area, a