
•••• ••••• • • • • • • •••••••••••••••••••
••••••••••••••••••••••••••••••••••••• • • • 2222• • • • • • • •
• • • • 2222• • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •••••••••••52222222••••••••••••••••••• • • • • • • • 2222• • • • • • • • 5222• • • • • • • • •••5• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •••••••••••••••••

• • • • • • • 5222°• • • • • • • •
• • • • 2222• • • • • • • •••••••••••••••••••::::::::::::::::::

• • • • • • • • • • •

• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •
• • • • 2222• • • • • • • •

• • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •
• • • • • • • • 5222• • • • • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • ••s:s2s:s:# :«:••••••• • • • •• • • • •

• • • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • • as• • • • • • • • • • • • • • A• • • • • • • • • • •• • • • • • • • • • • •• • • • • • •• • • • •• • • •• • • •
• • • • • • • • •• • • • • • • • • • • •

• • • • • • • • • 222222- ,• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • •2
• • • • 2222 2222
• • • • • • • • 5522
• • • • • • • • •••5• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • •2222°

•••••• ••••••• • • • • •• • • • • •• • • • • •
• • • • 2222• • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •
• • • • 2222• • • • • • • •• • • • • •• • • • • •

• • • • 2222• • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •••••••••••••••••••• • • • • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • ••••••• •••• ••••••• • • • • • • • • • • •
• • • • • • 222222• • • • • • • • • • • •
• • • • 2222• • • • • • • ••••••••••••2222222::::::::::::::::::

• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • • aa• • • • • • • • • •
•••••••••••2222222•••••••••••••••••••••••••••••2222222• • • • • • • • • • • • • • • • • •
• • • • 2222•••• ••••

• • • • • • • • • •
••••• 222222

• • • • • • • — °°2222
• • • • • • • • • • • • •MM • • • • • • • • • •• • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • •••••••••••5 •55522• • • • • • • • • • ••222• • • • • • • • • • • •• • • • • •

IBM System /3
Basic Assembler
Reference Manual

Program Numbers:
5702-AS 1 (Models 8 and 10)
5704-AS1 (Model 15)
5704- AS2 (Model 15)
5705- AS1 (Model 12)

SC21 -7509-7
File No. S3-21

Program Product

Preface

This publication is a reference manual for the programmer
using the IBM System/3 Basic Assembler language. This
language provides facilities for representing machine
usable instructions symbolically on a one-for-one basis.
The symbolic representations are translatéd by the IBM
System/3 Basic Assembler into the machine usable form
necessary for running a program on the System/3.

Related Publications

The IBM System/3 Models 8 ,10 ,12 , and 15 Components
Reference Manual, GA21-9236, contains specifications
governing the use of assembler language instructions.

System/3 Model 8

The System/3 Model 8 is supported by System/3 Model 10
Disk System control programming and program products.
The facilities described in this publication for the Model 10
are also applicable to the Model 8, although the Model 8 is
not referenced. It should be noted that not all devices
and features which are available on the Model 10 are avail
able on the Model 8. Therefore, Model 8 users should be
familiar with the contents of IBM System/3 Model 8
Introduction, GC21-5114.

Eighth Edition (April 1975)

This is a minor revision of SC21-7509-5 incorporating Technical Newsletters:

SN21-5385 March 17, 1976
SN21-5434 December 31, 1976
SN21-5536 June 24, 1977

This revision makes some changes to various pages and introduces information concerning
the IBM System/3 Model 8. Changes to text and small changes to illustrations are
indicated by a vertical line at the left of the change; new or extensively revised
illustrations are denoted by the symbol • at the left o f the figure caption.

This edition applies to version 12, modification 00 of IBM System/3 Model 10 Disk System
Basic Assembler (Program Product Number 5702-AS1); version 03, modification 00 of
IBM System/3 Model 15 Basic Assembler (Program Product Number 5704-AS1); and to all
subsequent versions and modifications unless otherwise indicated in new editions or
technical newsletters. Changes are continually made to the specifications herein; before
using this publication in connection with the operation of IBM Systems, consult the
latest IBM System/3 Bibliography, GC20-8080, for the editions that are applicable and
current.

Requests for copies o f IBM publications should be made to your IBM representative or to
the branch office serving your locality.

A Reader’s Comment Form is at the back o f this publication. If the form is gone, address
your comments to IBM Corporation, Publications, Department 245, Rochester,
Minnesota 55901.

©Copyright International Business Machines Corporation 1970, 1971, 1972, 1973, 1975

Contents

IN T R O D U C T IO N
Minimum System Requirements . .

Main Storage R e q u ir e m e n ts .. 2

PARTI. BASIC ASSEMBLER LANGUAGE 3
Basic Statement F o r m a t ...3
Terms and Expressions... 3
Term s... 5

The S y m b o l..5
The Self-Defining T e r m ..5
Location Counter R e fe r e n c e ..6

E x p ressio n s...7
Assembler Coding C o n v e n t io n s ..8

The Statement F o rm a t...8
Comment S ta te m e n ts ...10

A d d r e s s in g ...12
Direct A d d r e s s in g 12
Base-Register Displacement Addressing 12
Relative Addressing... 12
Instruction Addressing...13
Data Addressing... 13
Control o f Location C o u n te r 13

Machine Instruction S ta te m e n ts ... 13
Name Entry A ttributes...14
Machine Instruction Mnemonic Codes 14
Extended Mnemonic C o d e s ... 14
Machine Instruction Operands..14

Assembler Instruction Statements . 17
Symbol Definition I n s t r u c t i o n ... 17
Data Defining Instructions..18
Listing Control I n s tr u c t io n s ... 20
Program Control In struction s... 22

PART II. PROGRAMMER’S G U I D E 27
Assembler Control S t a t e m e n t s ... 27

Headers S ta te m e n t...27
Options S ta te m e n t... 27
OCL Statements For A s s e m b le r ... 29

OCL For Loading the A ssem b ler ...29
OCL For Calling the A s s e m b le r ...31
Sample Assembler Procedure Stored in Procedure

L ib ra ry .. 32
Object Program D e s c r ip t io n ..32

Record Form ats... 32
Object Program After Punch Conversion................................33

Assembly Time Data File R equirem ents...................................... 34
Source F i l e ..34
Object F i l e ..34
Work F i l e ..34

Operating P r o c e d u r e s ...36
Placing Assembler Subroutines in R (Routine) Library . 36
Using Assembler Object Program With the Program

L o a d e r .. 37

Assembler L i s t i n g ..38
Control S tatem en ts... 38
External Symbol List (E S L) ..39

Source and Object L istin g .. 39
Cross-Reference l i s t .. 40
External Symbol List (ESL) Table S i z e42

APPENDIX A: MACHINE INSTRUCTIONS 43
Machine Language Instruction F o r m a ts43

Operation C o d e ...43
Q C o d e ..43
Control C o d e 43
Storage A d d r e s s e s .. 43

Mnemonic Operation Codes (M a c h in e)47
Extended Mnemonic C o d e s ... 48

APPENDIX B: ASSEMBLER INSTRUCTION
REFERENCE T A B L E ... 67

APPENDIX C: SYSTEM/3 ASSEMBLER - SOURCE
LANGUAGE ERROR CODES AND DIAGNOSTICS . . 69

APPENDIX D: ASSEMBLER LANGUAGE SUBROUTINE
TO RPG II L I N K A G E .. 71

Using Fields in the RPG II P r o g r a m71
Referencing a Field in an RPG II Program 71
Referencing a Table or Array in an RPG II Program 71
Referencing an Indicator in an RPG II Program . . . 72

RPG II Linkage Sample Program 172
RPG II Linkage Sample Program 272
I/O Subroutines..72

Linkage for I/O S u b r o u t in e s ...72
Library Deck Generator Program (Model 10 Only) . . 76

Writing the Assembler Language Program 76
Assembling the S u b r o u t i n e ...79
Running the LDG P r o g r a m ...79
Output of the LDG P r o g r a m ...82
E x a m p le ..82

APPENDIX E: ASSEMBLER LANGUAGE SUBROUTINE
TO COBOL OR FORTRAN LINKAGE 86

S t a n d a r d s ..88

APPENDIX F: BASIC ASSEMBLER SAMPLE
P R O G R A M .. 89

Model 10 and Model 12 Sample P r o g r a m s 89
Program D e s c r ip t io n ...89

Model 15 Sample Program ...93
Program D e s c r ip t io n ...93

APPENDIX G: IBM 1255 MAGNETIC CHARACTER
READER SUPPORT (Models 12 and 15 Only) . . . 99

I N D E X ... 105

l

11

Introduction

The IBM System/3 Basic Assembler language is a
symbolic language. That is, it must be translated into a
form usable by the computer before a program can be
run. The computer-usable form is called machine
language, and the IBM System/3 Basic Assembler language
provides a convenient method for representing, on a
one-for-one basis, machine language instructions and
related data necessary to write a program for IBM
System/3. This one-for-one relationship to machine
language instructions gives assembler language great
programming versatility.

The assembler language is composed of symbols, called
mnemonics, which are used to represent the operation
codes of two types of instruction statements:

1. Machine instruction statements are the symbols
that represent machine language instructions on a
one-for-one basis. Note that symbolically repre
sented machine instructions are translated into
machine language by the assembler.

2. Assembler instruction statements are instructions
which control the functions of the assembler. Each
assembler instruction statement causes the assembler
to perform a specific operation during the assembly
process.

The IBM System/3 Basic Assembler:

• Processes instructions written in assembler language.

• Translates the assembler language instructions into
machine language.

• Assigns storage locations.

• Performs other functions necessary to produce an
executable machine language program.

In order to call the assembler from its storage
location, a specific set of OCL (operation control
language) instructions must be used. Following these
OCL instructions, the user may elect to include an
OPTIONS instruction, a facility which allows him to
take advantage of various combinations of output listings
and punched decks.

There are certain procedures for storing assembler routines
on the Model 10 Disk System, Model 12, and Model 15 R
(relocatable) Library and for loading assembler object pro
grams into main storage. These procedures, as well as the
other items mentioned briefly above, are discussed more
fully in the text.

MINIMUM SYSTEM REQUIREMENTS

The minimum system configuration and optional device
support for the Basic Assembler program is shown in the
IBM System/3 Models 6, 8,10, and 12 System Generation
Reference Manual, GC21-5126 and in the IBM System/3
Model 15 System Generation Reference Manual,
GC21-7616.

Introduction 1

MAIN STORAGE REQUIREMENTS

The Model 10 Disk System Basic Assembler (5702-AS1)
requires 8,192 bytes of main storage for execution,
exclusive of control program requirements.

The Model 12 Basic Assembler (5705-AS 1) and the
I Model 15 Basic Assembler (5704-AS1 or 5704-AS2)

require 10,240 bytes of main storage for execution,
exclusive of control program requirements.

2

Part 1. Basic Assembler Language

The IBM System/3 Basic Assembler language is a symbolic
language that provides a convenient method for
representing, on a one-for-one basis, machine language
instructions. The symbolic representations in assembler
language coding are translated by the IBM System/3
Basic Assembler into the machine language form usable
by the computer. In order to code in assembler
language, the user must become familiar with certain
terms, coding conventions, instructions, and other
features of the language. The remainder of this chapter
deals with these items.

BASIC STATEMENT FORMAT

A statement coded in assembler language can contain up
to four entries from left to right: Name, Operation,
Operand, and Remark. See Assembler Coding Conventions
in this manual for an explanation of the contents and
functions of each entry.

TERMS AND EXPRESSIONS

A term is a single symbol, self-defining value, or location
counter reference which can be used only in the operand
field of an assembler language instruction. The three
types of terms are described under Terms in this section.

An expression consists of one or more terms. It is used
to specify the operand fields of assembler language
instructions. Terms and expressions are classed as either
absolute or relocatable. A term or expression is absolute
if its value is not changed when the assembled program in
which it is used is relocated in main storage. A term or
expression is relocatable if its value is changed when the
program in which it is used is relocated.

B asic A ssem bler Language 3

Program relocation is the loading of an assembled
program (object program) into a different area of main
storage from that which was originally assigned by the
assembler. The difference (in bytes) between the
originally assigned address of the object program and the
address of the relocated object program is the amount of
relocation. The addresses assigned to all instructions and
data in the relocated program are changed by the amount

Storage
Address

0
Main Storage

2000

Object Program A

First Loading

of relocation. In Figure 1, Object Program A is initially
loaded at address 2000 in main storage. When Object
Program A is loaded a second time, it is placed at address
3000 in main storage. The amount of relocation is 1000
bytes. Therefore, the values of all relocatable terms and
expressions used in Object Program A would be increased
by 1000 during the second loading.

Storage
Address Main Storage

0 _ ___________________

r
Object Program A •• •

Second Loading

* The amount of program relocation is 1000 bytes.

Figure 1. Program Relocation

Three types of terms are used in the IBM System/3
Basic Assembler language.

• Symbol

• Self-defining term

• Location counter reference

TERMS

The Symbol

A symbol is a character or combination of characters
used to represent storage locations, instructions, input/
output units, registers, or arbitrary values. A symbol can
be used in either the name field or the operand field of
a statement. When used in the name field, the symbol is
called a name field entry. When used in the operand
field, the symbol is called a symbolic term.

When the assembler finds a symbol in the name field of
a statement, it assigns to that symbol an address value
attribute. See Addressing in this section. The assembler
also assigns a length attribute to the symbol, which is
the number of bytes in the storage field named by the
symbol. There are exceptions. When the assembler en
counters EQU, START, or TITLE statements, it does
not assign the usual attributes. EQU name field entries
derive their values from the operand, START name field
entries are assigned a length of 1, and TITLE name field
entries are assigned no values at all.

The same symbol cannot be used as a name entry more
than once within a program with the exception of the
TITLE card. In order for a symbol to be used in the
operand field, it must be defined (that is, used as a name)
on an instruction other than a TITLE card somewhere in
the program. Once it is defined, the symbol may appear
in any number of operands. Whether the symbol is used
as a name or an operand, these rules must be followed:

1. The symbol can consist of no more than six
characters, the first of which must be either
alphabetic or $, #, The other characters can be
any combination of alphabetic, numeric, or $, #,@.

2. Blanks and special characters other than $, @
cannot be used in a symbol.

The self-defining term is a term which specifies an actual
value or bit configuration.

The value expressed by the self-defining term is taken
literally by the assembler and is assembled into the instruc
tion. Like all terms, the self-defining term is used only
in the operand field.

There are four types of self-defining terms:

• Decimal

• Hexadecimal

• Binary

• Character

The Self-Defining Term

Decimal Self-Defining Terms

A decimal self-defining term is an unsigned decimal
number written as a sequence of decimal digits. High
order zeros may be used, such as in 0003. If a decimal
term is used as an address, its value cannot exceed the
number of bytes in main storage. A decimal term consists
of no more than five digits and cannot exceed a value of
65,535. This value is equivalent to the binary value
that can be contained in two bytes. A decimal self-defining
term is assembled as its binary equivalent.

Examples: 16 132 00006 43678

In the following example, a decimal self-defining term is
used in a Move Immediate (MVI) instruction. The binary
equivalent of 25 would be placed in the 1-byte area
referenced by the symbol, COST

NAME
1
l OPERATION

i --------------------------------------
1 OPERAND
1

ALPHA
1
1
|

MVI
1
' COST, 25

j ______________________

Basic A ssem bler Language 5

Hexadecimal self-defining terms can consist of up to
four hexadecimal digits enclosed in apostrophes and
preceded by the letter X.

Examples: X‘C34A’ X‘04F’ X‘6’ X‘DE’

Each digit is assembled into its 4-bit binary equivalent.
Therefore, the maximum value would be X‘FFFF’
(65,535).

The following is an example of the use of a hexadecimal
self-defining term. The 1-byte area at SWITCH would
contain the hexadecimal value FO (binary, 11110000)
after execution of the instruction.

Hexadecimal Self-Defining Terms

NAME
1
1I

OPERATION
"!--------------------------------------
1 OPERAND
|

BETA
1i

__L_
MVl j SWITCH, X'FO'

Character self-defining terms consist of one or two
characters enclosed by apostrophes and preceded by the
letter C; such as C‘A3\ Any of the valid punch
combinations can be used in a character self-defining
term.

Examples: C‘A9’ C‘EA’ C‘LB’ C‘3’

Because certain terms in the assembler language must be
enclosed by apostrophes (such as C‘EA’), for every
apostrophe that is used as a character in a self-defining
term, two must be written. For example, the characters
A’ would be written as C‘A”\

In the following example, a dollar sign ($) would be
moved into the byte field at REPORT.

Character Self-Defining Terms

NAME
1
1 OPERATION

i
1 OPERAND

DELTA
1
1
I

MVl
1
i REPORT, C'$'
1

Location Counter Reference

Binary Seif-Defining Terms

Binary self-defining terms are written as a sequence of
1’s and 0’s enclosed in apostrophes and preceded by the
letter B; such as B‘1011’. This term would appear in
storage as 00001011. The high-order (leftmost) bits
are padded with 0-bits to make a multiple of eight bits of
data (one or two bytes). A maximum of 16 bits of data
can be represented in each term. In the following
example of a Move Immediate instruction, the binary
information will be moved into the 1-byte field at AREA.

NAME
1
1
I

OPERATION
1
» OPERAND
1

GAMMA
1
1

1
MVl

1
1 AREA, B'10110011'

J______________________

Location Counter: The location counter is an internal
counter, maintained by the assembler, which always
points to the next available storage location. As each
new statement is processed, the location counter is
increased by the number of bytes in the assembled
statement. The assembler uses the current address
in the location counter to assign consecutive storage
addresses to program statements.

Location Counter Reference: A location counter
reference is an asterisk (*) used as a term in the operand
of an instruction. When the assembler encounters
an asterisk, it substitutes the current value of the
location counter (which always points to the next
available storage location) for the asterisk.

6

EXPRESSIONS

An expression consists of an arithmetic combination of
one or more terms. In a multi-term expression, terms
must be separated by an arithmetic operator: the
arithmetic operators are + for addition, — for subtraction,
and * for multiplication.

Examples: AREA+X‘2D’ N -25 R+15 A*8

The rules for coding an expression are:

1. Two terms or two operators must not be used
consecutively in an expression.

2. Parentheses cannot be used in an expression.

3. Only absolute terms can be used in a multiply
operation.

4. Blanks are not allowed in an expression.

5. a. Using the Model 10 disk system basic assembler,
an expression may consist of only one term when
that term is a symbol used as the operand of an
EXTRN statement.

b. Using the Model 15 basic assembler, if the expres
sion contains an external symbol, then the
expression must be of the form A or A±e. A is a
symbol used as the operand of an EXTRN state
ment and e is an absolute expression.

Note: An A±e expression must not be in a Model
10 subroutine with RPG II.

If there is more than one term in the expression, the
terms are reduced to a single value as follows:

1. Each term is evaluated separately.

2. Arithmetic operations are then performed in a
left-to-right sequence, except that multiplication
is performed before addition or subtraction. An
example would be A+B*C, which would be
evaluated as A+(B*C), not (A+B)*C. The result
would be the value of the expression.

3. The intermediate result of the expression
evaluation is a 3-byte, or 24-bit value. Intermediate
results must be in the range of —2 ^ through
224- l .

Negative values are carried in the two’s-complement
form. The final value of the expression is the truncated,
rightmost 16 bits of the result. The value of the
expression before truncation must be in the range of
-65536 through +65535. A negative result is considered
to be a 2-byte positive value.

Note: In address constants the full 24-bit final expression
result is truncated on the left to fit the length of the con
stant.

Absolute Expressions: An expression is considered
absolute if its value is unaffected by program relocation.

An absolute term may be a non-relocatable symbol, or
any of the self-defining terms. All arithmetic operations
are permitted between absolute terms.

An absolute expression can contain relocatable terms or
a combination of relocatable and absolute terms under
the following conditions:

1. The expression must contain an even number of
relocatable terms.

2. The relocatable terms must be paired and each
pair must consist of terms with opposite signs.
The paired terms need not be adjacent.

3. Relocatable terms cannot be used in a multipli
cation operation.

Pairing relocatable terms with opposite signs cancels
the effect of the relocation, because both terms would be
relocated by the same value. Therefore, the value
represented by the paired terms would, in effect, remain
constant regardless of the program relocation. For
example, in the absolute expression A—Y+X, A is an
absolute term and X and Y are relocatable terms. If A
equals 50, Y equals 25, and X equals 10, the value of
the expression would be 35.- If X and Y are relocated by
a factor of 100, their values would become 110 and 125,
respectively. However, the expression would still
evaluate as 35 (50-125+110=35). Absolute expressions
reduce to a single absolute value.

Relocatable Expressions: A relocatable expression is
one whose value changes by the amount of relocation
when the program in which it is used is relocated. All
relocatable expressions must reduce to a positive
value.

Basic A ssem bler Language 7

A relocatable expression can be a combination of
relocatable and absolute terms under the following
conditions:

1. There must be an odd number of relocatable
terms.

2. All relocatable terms, except one, must be paired
and each pair must consist of terms with opposite
signs. The paired terms need not be adjacent.

3. The unpaired term must not be immediately
preceded by a minus sign.

4. Relocatable terms cannot enter into a multiplication
operation.

All terms in a relocatable expression are reduced to a
single value. This single value is the value of the unpaired
relocatable term after it has been adjusted (displaced) by
the resultant value of the other terms in that expression.
For example, in the expression W—X+Y where W, X,
and Y are relocatable terms; and W=10, X=3, Y=1;
the result would be the relocatable value of 8.

If the program is relocated by 100 bytes, the resultant
value of the expression would be increased by the amount
of relocation (100), giving the expression a value of 108.

In the following expression, a combination of absolute
and relocatable terms are used: A+F*G—D+B. A, D,
and B are relocatable terms; F and G are absolute
terms. When given the values A=3, B=2, D=5, F=l, and
G=4, the result would be a relocatable value of 4. The
multiplication occurred first, resulting in 4; then the
addition and subtraction of the other terms, including
the result of the multiplication, was performed in a
left-to-right direction. The result of the arithmetic
operations is a relocatable value of 4 for this expression.

Upon relocation, the value of this expression can be
determined by adding the amount of relocation to all
relocatable terms.

ASSEMBLER CODING CONVENTIONS

This section explains the general coding conventions
associated with the IBM System/3 Basic Assembler
language. When coding in assembler language, the
programmer uses the IBM System/3 Assembler Coding
Form (Figure 2).

The Statement Format

Each line on the coding form is divided into two segments:
Statement (columns 1-87), and Sequence (columns 89-96).

The Statement segment can contain up to four entries,
from left to right: Name, Operation, Operand and
Remark. The Name field is column dependent. It
must start in column 1, unless otherwise specified by
the ICTL assembler instruction (see Assembler
Instruction Statements). All other entries can start
in any column, as long as there is at least one blank
separating each entry and the entries remain in the
stated order. Figure 3 is a diagram of assembler
statement entries.

8

Figure 2. IBM
 System

/3 Basic A
ssem

bler C
oding Form

IBM Svstem/3 Basic Assembler Coding Form Form X21'9107
Printed in U.S.A.

ART: 52908

ft

I

vo

• Optional or required depending on the specific
instruction.

• Up to six characters can be used in a name.

• First character must be alphabetic (including $, #, @).

• First character must be in column 1 unless otherwise
specified by an ICTL assembler instruction.

• No special characters or blanks in a name (except

• At least one blank must follow the Name entry or
appear in the first Name entry column (if no name is
entered).

Name Entry

Operation Entry

• Required entry.

• Contains mnemonic operation code (list of valid machine
codes is in Appendix A . Machine Instructions).

• Must be followed by a blank.

Operand Entry

• Optional or required depending on the specific
instruction.

• Contains coding that describes data to be acted upon.

• Operands are separated by a comma.

• No blanks between terms or operands.

• Blanks are allowed within character constants and
character self-defining terms only.

• If the entire operand entry is omitted, but a remark
entry is desired, absence of the operand must be
indicated by a comma in the operand entry, preceded
and followed by one or more blanks.

• Must be followed by a blank.

• Optional entry.

• Contains a brief verbal description of the statement’s
function.

• Cannot extend beyond column 87 or a limit prescribed
by ICTL assembler instruction.

• Can contain any combination of valid characters or
blanks.

• Must be followed by a blank.

Remark Entry

Identification—Sequence Entry

• Optional entry.

• Contains statement identification or sequence
characters.

• See ISEQ - Input Sequence Checking later in this section.

Comment Statements

The entire statement field (columns 1-87) can be used
for comments by placing an asterisk in column 1 (or the
beginning column, as set by the ICTL assembler
instruction). Comments can be extended for more than
one line by the repeated use of the asterisk in the first
column of additional cards. Comment lines may be used
anywhere in the source program and are printed on the
program listing. Sequence checking is also performed
on cards containing comment statements.

10

© © — L --------- © — © 1

NAME * OPERATION OPERAND REMARK SEQUENCE

1 87 89 96

Figure 3. Assembler Statement Entries

B asic A ssem bler Language 11

ADDRESSING

The programmer must be able to access any part of storage.
IBM System/3 provides two methods of addressing: direct
and base-register displacement. The relative addressing
technique can be used with both methods. For addressing,
see the IBM System/3 Models 8 ,10,12, and 15 Components
Reference Manual, GA21-9236.

Direct Addressing

The direct addressing method allows the programmer to
represent a 16-bit instruction address by using an
expression as an operand entry. The assembler places
the value of the expression in the machine instruction
which it generates.

Two bytes are always used in the machine instruction for
a direct address. A direct address is indicated by the
absence of a register in the operand.

Example: MVI A,C‘D’

This indicates to the assembler that a direct address is to
be generated for location A (see Machine Instruction
Operands).

Base-Register Displacement Addressing

Base-register displacement addressing involves setting up
a base address from which other addresses can be
calculated. This base address must be placed in the base
register before the base register is used for addressing.

One byte is always used in the machine instruction for a
base-register displacement address and is indicated by the
presence of a register in the operand.

Examples: MVI A(,2),C‘D’
MVI 5(,1),C‘D’

This indicates to the assembler that a base-register displace
ment address is to be generated for location A using base
register 2 and for displacement 5 from base register 1.
IBM

PROGRAM

PROGRAMMER

Name ■
1 2 3 4 5 6 7

Operation
8 9 10 11 12 13

Operand
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 :

i i 1 £ c l
U I\ 4 P 6 4 5 £ AX i
iU 5/ hiG A t>5 A$ £ AX X
m t C A< 1 RX 1 B (1) RX 1

/ J

A
Figure 4. Base-Register Displacem ent Addressing

The base register plus a displacement can reference any
higher address within 255 bytes of the specified base
address. The displacement portion of the address can be
either absolute or relocatable; however, in either case the
programmer indicates that a base-displacement address is
to be generated by the presence of the register in the
operand (see Machine Instruction Operands). If relocatable
displacements are used, the USING statement (see Assembler
Instruction Statements) must be used to indicate to the
assembler which register contains the base address and
what address will be loaded into that register. The USING
instruction does not load the register with the specified
address; the programmer must use a load instruction to
place the indicated address into the register. Figure 4 is
an example of base-register displacement addressing.

In Figure 4 two bytes of data will be moved from the
location of B to the location of A. The assembler
calculates the displacement to the addresses for A and
B, if A and B are relocatable and are within a positive
255 bytes of the address in base register XR1. If either
A or B is over 255 bytes from the base address, an
addressing error occurs and an assembler error statement
is generated. If the terms A and B are not relocatable
symbols, the assembler uses the absolute values (up to
255) of the terms for the displacement. If absolute
displacements are used, the USING assembler statement
is not required.

Note: The programmer must explicitly specify the base
register whenever base-register displacement addressing is
used.

The programmer terminates the use of a previously
defined base register through the use of the DROP
instruction (see Assembler Instruction Statements). The
value of the register is not affected. This register
cannot, however, enter into base-register displacement
addressing using relocatable displacements until specified
again by a USING instruction.

Relative Addressing

Relative addressing is an addressing technique
accomplished by adding bytes to or subtracting bytes
from a symbol or location counter reference. The
expression *+5, for example, specifies the location 5
bytes beyond the current value of the location counter.
Figure 5 is an example of relative addressing.

12

In Figure 5, the instruction with the operation code
ZAZ has a length of 6 bytes, the instruction AZ has a
length of 5 bytes and the instruction with MVI has a
length of 4 bytes in storage. Using relative addressing,
the location of the AZ instruction can be expressed in
two ways, AAA+6 or BBB—5.

m ___
PROGRAM

PROGRAMMER

Name
1 2 3 4 5 6 7

Operation
8 9 10 11 12 13

Operand
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 :

.

AAA Z A i 8 C
Az ê \ i i , l)) C

8 9 9 n V 1 J> X 1F F i
j

3 AAA 6

Figure S. Relative Addressing

Figure 6 shows how the AZ instruction can be addressed
relative to the nearby symbolic addresses, AAA and BBB.

Control of Location Counter

Addressing in any computer language depends upon the
location counter. IBM System/3 allows the programmer
to control the location counter by using two assembler
instructions: START and ORG. The START assembler
instruction can be used to initialize the location counter
to a desired value at the beginning of a program. The
ORG assembler instruction can be used to change the
value of the location counter anywhere in a program.

symbolic address =

|-------6-bytes---- 1— 5-bytes — j-4-bytes -|

t \ 4
1 AZ MVI

ZAZ (AAA+6) (BBB)
(AAA) (BBB-5)

Figure 6. Schematic of Relative Addressing

These two instructions are described in detail under
Assembler Instruction Statements.

MACHINE INSTRUCTION STATEMENTS

Relative addressing may also be used with base-register
displacement addressing if the displacement is a
relocatable term.

Example: MVC A+5(,RX1),B(2,RX1)

In the example, A+5 is an example of relative addressing
used with base-register displacement addressing.

Instruction Addressing

Machine instruction statements are symbols that
represent machine language instructions on a one-for-one
basis. The assembler translates these symbolic repre
sentations into machine language usable by the
computer. Machine instruction statements differ from
assembler instruction statements in that the machine
instruction statements are executable parts of the
program’s logic (such as MVI, ST, LA, etc), while
assembler instruction statements are simply orders to
the assembler, each statement directing a specific operation

(such as DC, START, SPACE, etc). See IBM System/3
Models 8 ,10 ,12 , and 15 Components Reference Manual,
GA21-9236 for a description of the execution of machine
instructions.

A symbol used as a name entry in a machine-instruction
statement addresses the leftmost byte of storage occupied
by that instruction.

Data Addressing

A symbol used as a name entry in a data definition
instruction (see DC - Define Constant and DS - Define
Storage) address the rightmost byte of storage occupied
by or reserved for that data.

The format for a machine instruction statement is closely
related to, but not the same as, the machine language
instruction format which results from the assembly
process (see Appendix A. Machine Instructions for
machine language instruction formats).

A mnemonic operation code is used in place of the
actual machine language operation code and one or
more operands provide the information required by
the machine instruction. A remark and a sequence
entry may be included in the machine-instruction
statements, but they will not affect the machine
language instruction.

B asic A ssem bler Language 13

Any machine-instruction statement can contain a
symbol as a name entry. Other machine-instruction
statements can use that symbol as an operand. The
assembler assigns value and length attributes (charac
teristics) to every sumbol used in a program. The value
attribute of a symbol which is used as a name entry
in a machine-instruction statement is the address of
the leftmost byte of storage occupied by the assembled
instruction. The length attribute of the symbol is
the number of bytes of storage occupied by the
assembled instruction. Refer to Lengths-Explicit and
Implied in this section for a discussion of the length
attributes of other types of symbols, terms, and
expressions.

Machine Instruction Mnemonic Codes

The mnemonic operation codes are designed to be
easily-remembered codes that remind the programmer
of the functions performed by the instructions. The
mnemonic codes are translated into machine-language
operation codes by the assembler. IBM System/3 Basic
Assembler provides mnemonic and extended mnemonic
operation codes. The complete set of mnemonic codes
is listed in Appendix A. Machine Instructions.

Extended Mnemonic Codes

Extended mnemonic codes are provided for the
convenience of the programmer. They are unlike other
mnemonic codes in that part of the information
usually provided in the operand is in the extended
mnemonic code itself. Extended mnemonic codes allow
the following:

1. Conditional branches (BC) and jumps (JC) can
be specified mnemonically, requiring only a
branch address as an operand.

2. Half-byte moves (MVX) can be specified
mnemonically, requiring only the use of addresses
as operands.

3. The supervisor call form of the command CPU
(CCP) machine operation can be specified
mnemonically (Model 15 only).

Extended mnemonic codes are not part of the set of
machine instructions, but are translated by the assembler
into the corresponding operation code and condition
combinations.

Name Entry Attributes See Appendix A. Machine Instructions for a list of
extended mnemonic codes.

Machine Instruction Operands

This section describes (1) operand fields and subfields,
(2) explicit and implied lengths, and (3) operand groups
and formats. The operands of machine instruction
statements provide the information about addresses,
lengths, and immediate data that is required by the
assembler to generate executable machine instructions.
General rules for coding of operands are covered in
Assembler Coding Conventions.

Operand Fields and Sub fields

The left operand of a pair is called operand 1, or
operand field 1; the right operand is called operand 2,
or operand field 2. An operand field may include one
or two subfields (length subfield, register subfield)
as in the following example of base-register displacement
addressing.

Example: 40(,2)

The above operand field contains a displacement entry,
40, and a register subfield entry, 2, representing index
register 2. The following rules apply to the coding of
subfields:

1. Parentheses must enclose a subfield or subfields.

2. Blanks cannot be used within subfield parentheses.

3. A comma must separate two subfields within
parentheses (L,R).

4. If the first subfield of a pair is omitted, the
comma that separates it from the second subfield
must be retained (,R).

5. If the second subfield of a pair is omitted, the
comma separating the pair must also be omitted
(L).

6. If both subfields are omitted, the separating
comma and the parentheses must also be omitted.

Operand subfields can contain immediate data, length,
or register information. Only absolute expressions
and self-defining terms may be used as subfield entries.

14

A length subfield in an operand may be either explicit
or implied. To imply a length, the programmer omits
the length subfield from an operand. When a length
specification is not included in an operand requiring
a length, the assembler includes the implied length of
the first operand, such as the length attribute of a name
entry (see Name Entry Attributes in this section).
The length attributes of various terms and expressions
are shown in Figure 7.

An explicit length is written by the programmer in the
operand as an absolute expression. The explicit length
overrides any implied length.

Lengths — Explicit and Implied Operand Groups

Machine-instruction statement operands are divided
into six groups. The characteristics of each group are
as follows:

Group 1: Two-operand format in which a length is
explicit or implied in both operands.

Group 2: Two-operand format in which a length can
be explicit in either operand, but not in both. If
length is not explicit in either operand, the assembler
uses the implied length of operand 1.

Term or Expression Length Attribute

1. Name entry symbol Length, in bytes, of the
of a machine-instruction instruction.

2. Location-counter Length, in bytes, of the
reference (*) instruction in which it

appears (except in the EQU
assembler statement, where the
length attribute assigned is one).

3. Expression Length attribute of the
leftmost term in the
expression.

4. Self-Defining Term Length attribute is one.

5. START name entry Length attribute is one.

NOTE: See also Subfield 3
Instructions.

- Length under Data Defining

Group 3: Two-operand format in which a length
cannot be specified.

Group 4: One-operand format in which only immediate
data may be used.

Group 5: Two-operand format in which both operands
are immediate data.

Group 6: Two-operand format in which operand 1 is
used by the assembler to calculate a positive displacement
and operand 2 is immediate data.

Figure 7. Length Attributes of Terms and Expressions

Basic A ssem bler Language 15

Figure 8 shows the allowable operand formats for each
operand group. The instructions using each operand
group are also listed. Refer to Appendix A . Machine
Instructions for the related machine-instruction formats.

For the extended mnemonics of the MVX instruction,
the I-field information is inherent in the mnemonic and
the I-field is omitted from the operand. For the extended
mnemonics of the BC and JC instructions, the second

operand (I-field) is not used since the information is
inherent in the mnemonic (see Extended Mnemonic
Codes in this section).

Data movement is from operand 2 to operand 1 in a
two-address format instruction (group 1 and group 2).
This operand order is equivalent to that of machine
instructions.

GROUP INSTRUCTIONS ALLOWABLE OPERAND FORMAT

1 ZAZ,AZ,SZ A,A A(L),A D(,R),A D(L,R),A
A,A(L) A(L),A(L) D(,R),A(L) D(L,R),A(L)
A,D(,R) A(L),D(,R) D(,R),D(,R) D(L,R),D(,R)
A,D(L,R) A(L),D(L,R) D(,R),D(L,R) D(L,R),D(L,R)

2 MVC,CLC,A LC
SLC,ITC,ED

MVX

A,A A(L),A D(,R),A D(L,R),A
A,A(L) A(L),D(,R) D(,R),A(L) D(L,R),D(,R)
A,D(,R) D(,R),D(,R)
A,D(L,R) D(,R),D(L,R)

A,A(I) A(I),A D(,R),A<I) D(I,R),A
A,D(I,R) A(I),D(,R) D(,R),D(I,R) D(I,R),D(,R)

3 MVI,CLI,SBN
SBF,TBN,TBF
TIO,SNS,LIO
BC

L,ST,A,LA
SCP*,LCP*

A,l D(,R),I

A.R D(,R),R

4 APL,SVC* I

5 HPL,SIO,CCP* u

6 JC A,I

* M o d e l 1 5 o n ly .

The following codes are used to describe the possible operand formats:

CODE MEANING ACCEPTABLE FORM

A Address Relocatable expression, absolute expression, or self-defining value.
D Displacement Relocatable expression, absolute expression, or self-defining value.
L Length Absolute expression or self-defining value.
R Register Absolute expression or self-defining value.
I Immediate Data (bit masks, Absolute expression or self-defining value,

condition bit masks, or
control bits to be used in
the instruction)

Figure 8. Operand Format by Group

16

In groups 3, 5, and 6, the Q-code operand is always
on the right. See Appendix A. Machine Instructions
for an explanation of Q codes.

ASSEMBLER INSTRUCTION STATEMENTS

When writing a program the programmer uses two types
of statements: executable instructions and instruction
statements to the assembler. The executable instructions
are the machine instruction statements. These are
symbolic representations of the programmer’s logic,
such as branch, move, or compare, which are translated
into machine language by the assembler.

Assembler instruction statements, on the other hand, do
not generate executable machine codes. They are
instructions that control specific assembler functions.
These instructions are used to set up areas in storage, to
define data, to equate symbols, and to control program
listings, location counter, statement formats, and types
of addressing. In the remainder of this section, the
individual assembler instruction statements are
discussed.

NAME
1
| OPERATION

1
1 OPERAND

symbol
1
l EQU
J____________________

1
1 an expression
1

The expression in the operand field can be either
absolute or relocatable. Any symbol appearing in
the operand field must have been previously defined.
Figure 9 illustrates how this instruction can be used
to equate a symbol with the contents of the operand.

In Figure 9, MAX has the value of TEST + X‘3FC’
(X‘102+X‘3FC’ or X‘4FE’) any time it is used in the
program. The symbol STEST has the value of the first
(left most) byte of the data area reserved by the DC
instruction. Since the symbol on the DC (TEST) has
the value of the rightmost byte, this type of EQU is
useful for addressing the leftmost byte. The symbol
REG2 in any statement is the same as using the number
2.

Symbol Definition Instruction

EQU—Equate Symbol

The EQU instruction is used to equate symbols with
register numbers, immediate data, or other arbitrary
values. The EQU instruction defines a symbol by
assigning to it the length and value of the expression
in the operand field of the EQU instruction. The EQU
instruction has the following format:

ibh;
PROGRAM
PROGRAMMER

Name J J Operation I 1 Operand
1 2 3 4 5 6| 7| 8 9 10 11 12| 13114 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 X 31 32 33 34 36 31

|1 I I 1 I I 3 » 3 i3mmwM I T
i b s u h i m i i i n n
! f ï i l l | | ! ! $ f i ? |S m 1
] W I es'i nl u *ia £ c i

GBSEMIISB* 5
1

11 I f 1111I I

Figure 9. EQU Assemb

H
ler Instruction

Basic A ssem bler Language 17

Two data defining instruction statements are available:
Define Constant (DC), and Define Storage (DS). These
instructions are used to enter data constants and to
reserve areas in storage. Each instruction can have a
name field entry (symbol) to which other instructions
can refer.

Data Defining Instructions

DC—Define Constant

The DC instruction is used to initialize a storage
location with a desired value. The IBM System/3
Basic Assembler Language allows six types of constants:
storage address, binary, character, decimal, hexadecimal,
and integer. The format of the DC instruction is as
follows:

NAME j OPERATION
i
1
i

OPERAND
------------1--------------------
symbol 1 DC Duplication

l i
1 Type I

i
I Length

1
| Constant

or 1 , Factor i<2) j! (3) j (4)
blank 1i 1 (D ! !

1
j 1

J____________

Notice that the operand of the DC statement consists
of four subfields. The first three describe the constant
and the fourth provides the constant. The only blanks
permitted within an operand field are blanks embedded
in a character constant. The symbol that identifies the
DC statement receives the value of the address of the
rightmost byte of the area defined by the statement.

Sub field 1-Duplication Factor: This subfield enables the
programmer to repeat the constant in storage. The constant
will be generated the number of times indicated by the
entry in the first subfield. This entry can be any unsigned,
nonzero, decimal value, 1 through 65535. If this subfield
is omitted, a duplication factor of 1 is assumed. This
duplication factor is applied after the constant is fully
assembled. If duplication is specified for an address cons
tant containing a positive location counter reference, the
value of the location counter used in each duplication is
increased by the length of the constant.

Sub field 2-Type: This sub field defines the form of the
constant being entered. From the type specification, the
assembler determines how it is to interpret the constant
and translate it into the appropriate machine format. The
type entry is specified by one of the letter codes A, B, C,
D, X, or I (see Subfield 4 - Constant for related meanings).
The type entry is required

Subfield 3-Length: The third subfield describes the
number of bytes required by the constant. The entry for
this subfield may be written two ways:

1. Ln, where n is an unsigned, nonzero, decimal value.
The value of n is as follows:

n = 1-256 for I, B, C, X constants

n = 1-31 for the D constant

n = 1-3 for an A constant

2. L (absolute expression), where an absolute
expression is enclosed in parentheses. The value
limits for the absolute expression are the same as
those for n in the previous paragraph. A location
counter reference is not allowed in this expression.

The total area allocated for this constant is the result of:
Duplication Factor * Length=Total Area. The length
entry is required

Subfield 4-Constant: This subfield supplies the constant
that was described in subfields 1 through 3. In general, the
address constant (type A) is enclosed in parentheses, while
the data constants (types B, C, D, I, and X) are enclosed in
apostrophes. An entry in the constant subfield o f a DC
statement is always required

Address Constant (A): This constant is used to load an
address into a storage area.

Example: SYMBOL DC AL2 (BETA)

In this example, the address represented by the symbol
BETA will be stored in the 2-byte field addressed by
SYMBOL. The full 24-bit final expression result is trun
cated on the left to fit the length of the constant. The
maximum length of an address constant is 3.

18

Binary Constant (B): This constant is used to create bit
patterns and masks.

Example: SYMBOL DC IBLI‘10011’

The byte of storage addressed by SYMBOL will contain
00010011. Truncation or padding with binary zeros
occurs on the left if the constant is not the length speci
fied. This constant is enclosed in apostrophes. Each digit
within the apostrophes represents a single bit in storage,
and each eight bits specified will occupy one byte of
storage.

Character Constant (C): This constant can be used to
place a string of characters in storage.

Example: SYMBOL DC 1CL17‘PLANT 5 PAYROLL’

The byte of storage addressed by SYMBOL will contain a
blank, and the byte of storage addressed by SYMBOL-16
will contain the character P.

Note: Two blanks have been padded on the right of the
character string.

If the constant is not the specified length, truncation or
padding with blanks will occur on the right. Each
character (including blanks) within the apostrophes will
occupy a byte of storage. If an apostrophe occurs within
the string of characters, it must be represented by a
double apostrophe.

Decimal Constant (D): This constant can be used for
arithmetic purposes.

Example: SYMBOL DC DL5‘125.66’

This constant will appear in zoned-decimal form in a 5-byte
storage field, addressed by SYMBOL. The decimal point
is used only as a convenience for the programmer, and
is not assembled into the constant. The value of the
constant is calculated without the decimal point. Trunca
tion or padding with decimal zeros occurs at the left of the
field, if necessary. Signed decimal constants are permitted,
making it possible to have a decimal constant with a nega
tive value. Each decimal digit will occupy one byte of
storage.

Hexadecimal Constant (X): This constant is used to
associate a hexadecimal value with a symbol in a defined
area in storage.

Example: SYMBOL DC 1XL6‘8AC14’

The 6-byte field addressed by SYMBOL will contain the
following 12 hexadecimal digits: 00000008AC14.

Truncation or padding with hexadecimal zeros occurs at
the left. Each two digits between apostrophes will occupy
one byte of storage.

Integer Constant (I): This constant is used for fixed-point
binary arithmetic.

Example: SYMBOL DC lIL2‘-7’

A negative number may be used for an I constant. The
negative constant is placed in storage in its two’s-comple-
ment form. This example would appear in storage in bit
form as 1111111111111001. There is always a positive
equivalent to a negative constant; in the above example, it
is hexadecimal FFF9 or decimal 65,529. The range of I
constants must be within —2^+ 1 to 2 ^ - 1 . If the number
is positive, it is padded on the left with 0-bits. If the
number is negative, it is padded on the left with 1-bits.

DS-Defines Storage

The DS instruction is much like the DC instruction. It
assigns a symbol to an area of storage. Unlike the DC
instruction, the DS instruction only reserves the area of
storage, it does not insert data. A constant subfield cannot
be used with a DS statement. The following illustration
shows the DS format.

NAME 1 OPERATION
|

j OPERAND

symbol j DS
i | I
j duplication j type j length

or | j factor I j
blank I

j _______________ i i i_______

A duplication factor of zero can be used in a DS statement
if the programmer wishes only to assign a length to its
corresponding symbol. The symbol will be given the value
of the current location counter minus one. The type and
length subfields must follow the same rules as for the DC
statement.

The duplication factor can be used by the programmer to
specify a reserved area larger than 256 bytes.

Example: SYMBOL DS 3CL100

This instruction would reserve a 300-byte area, which would
be referenced on the right by the name entry SYMBOL.

Basic A ssem bler Language 19

Listing Control Instructions

The listing control instructions aid the programmer in
documenting his assembler listing. These instructions are
TITLE, EJECT, SPACE, and PRINT.

TITLE — Identify Assembly Output

The TITLE instruction enables the programmer to identify
assembled object cards and assembler listings.

1
NAME | OPERATION

1
1 OPERAND

label or blank | TITLE
1
• a sequence of characters

1
_______________ 1_______________

 ̂ enclosed in apostrophes

The name field entry can consist of a maximum of six
characters. The first character may be numeric. The
contents of the name field in the first TITLE card is punch
ed into the sequence field of all object cards produced by
the assembler. This name field entry also appears in all
listing header fields.

The name on the TITLE statement is not the object pro
gram name, but may be the same as the object program
name. See START - Start Assembly. The name field
entry is used only for identification and may not be
referenced by the program.

The operand field contains a sequence of characters
enclosed in apostrophes. Any embedded apostrophes must
be represented by a double apostrophe. The contents of
the name and operand fields are printed at the top of each
page of the assembler listing.

A program can contain more than one TITLE statement.
When a new TITLE statement is read, the listing is advanced
to a new page before the new heading is printed. The name
fields of all subsequent TITLE statements are ignored by
the assembler. The TITLE instruction is not listed on the
assembler listing, but it does increase the statement counter
by one. Figure 10 shows an example of the TITLE
statement.

im__
PROGRAM

PROGRAMMER

Name
1 2 3 4 5 6 7

Operation
8 9 10 i t 12 13

Operand
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 :

$ T A A T X 1 1 l i

E A Ï T t T L | £ t 0 c T0 8 Ë J t 5 P A yA 0 u L i

PA T AL d V c / dL ? 6 \ /

S4 J £ p s 4 C L t 1 <f>
I £ H E Q o X \ A i

Figure 10. Use of the TITLE Statement

EJECT - Start New Page

The EJECT instruction causes printing to begin at the top
of a new page, under the page heading. Through the use
of the EJECT statement, the programmer can separate
routines in the assembler listing. The format of the EJECT
assembler instructions is as follows:

NAME 1 OPERATION
1

[OPERAND

blank j EJECT
1----------------------
I Not Usedi

In Figure 11, the EJECT instruction is used to separate
executable instructions from the data-defining assembler
statements. The EJECT instruction is not listed on the
assembler listing, but it does increase the statement counter
by one. The coding example in Figure 11 shows the position
of EJECT. Note that the corresponding statement number
(4) has been omitted in the listing. Statement number 5
appears at the top of the next page, under the heading.

2 0

SPACE - Space Listing

This instruction is used to insert one or more blank lines
between statements in the assembler listing:

NAME
T---------------------------1
1 OPERATION 1
I . 1

OPERAND

blank
I 1
1 SPACE 1

J________________!
decimal value or a blank

An unsigned decimal value is used to specify the number
of blank lines that are to be inserted. If the operand con
tains a blank, a zero, or a 1, one blank line will be inserted.
If the value of the operand exceeds the number of lines
remaining on the current page, the instruction has the
same effect on the listing as an EJECT statement. The
SPACE instruction, like the EJECT instruction, is not
listed on the assembler listing, but does increase the state
ment counter by one.

IBM
IBM System/3 Basic Assembler Coding Form

Figure 11. EJECT Instruction

Basic A ssem bler L anguage 21

PRINT—Print Optional Data Program Control Instructions

The programmer can control the printing of an assembly
listing by using the PRINT instruction. A program can have
any number of PRINT instructions. Each PRINT
instruction controls the listing until the next PRINT
instruction is encountered.

NAME 1 OPERATION
j 1

OPERAND

blank
• -
j PRINT j operand

The operand field can include entries from the following
groups (one or two operands for the Model 10, one, two,
or three operands for the Model 12 and the Model 15):

1. ON—A listing is printed.
OFF—No listing is printed.

2. DATA—Constants are printed out in full on the
assembler listing.
NODATA—Only the leftmost 8 bytes of the con
stants are printed on the assembler listing.

3. (Model 12 and Model 15 only)
GEN—Print statements generated by the macro
processor if not overridden by other listing
control statements.
NOGEN—Suppress printing of statements gen
erated by the macro processor.

Operand entries must be separated by a comma.

The ON, GEN and DATA conditions are assumed by the
assembler unless otherwise specified by a PRINT instruc
tion. If an operand is omitted, it is assumed to be un
changed and continues according to its last specification.
Both of the examples in Figure 12 would cause a listing
to be printed with only the leftmost 8 bytes of the con
stants appearing in the listing.
IBM

ICTL—Input Format Control

The ICTL statement permits the programmer to change
the normal bounds of the source program statements.
When included, the ICTL instruction must precede all
other source statements. This instruction can be used
only once during a program. An invalid or mispositioned
ICTL statement causes termination of the assembly.

--------------- 1
NAME 1

i

i i
1 OPERATION i

1
l OPERAND
1

blank |
1 1
' ICTL 1
______________1

1
1 two decimals in the form of B,E
1________________________________

The term B specifies the beginning column and the term
E specifies the ending column of the source statement.
The beginning column must be within columns 1-48. The
ending column must be within columns 49-95. The
column after the ending column must be blank.

When an ICTL statement is not included in a source
program, the beginning column is assumed to be column
1, and column 87 is assumed to be the ending column.
Figure 13 is an example of the ICTL instruction. In
Figure 13, the name field would start in column 14
and the remark field would end in column 80.

IBM______________________ __________ ____________

PROGRAM ' P R Q G r R A M X 3 __

PROGRAMMER x x y
ST/

Name
1 2 3 4 5 6 7

Operation
8 9 10 11 12 13

Operand
14 15 16 17 18 19 20 21 22 23 24 25 26 Ï1 28 29 30 31 32 33 34 35 36 37

/ c T L t 4 9
f f t b X3 5 T A f t r X \ 1 0 0

/

n A X * E <3u X
s y AlB 0 L z>c i C L (o 1 s YM 8 0 L '1

• 'i

E N V 4
J

y

1. u

Figure 13. The ICTL Statement

ISEQ— Input Sequence Checking

The ISEQ instruction is used to check the sequence of
source cards. Sequence checking begins with the first
card after the ISEQ instruction. The first sequence entry
is taken from the sequence identification field of the
ISEQ statement. The sequence entry on the next card is
then compared to the previous sequence value. The ISEQ
assembler statement has the following effect:

1. The sequence entries on source-statement cards are
checked for ascending order.

22

2. Statements that are out of order and statements
without sequence entries are flagged in the assembler
listing.

3. The total number of flagged statements is noted at
the end of the assembler listing.

For example, with the sequence values 13, 27, 31, 6, 8,
45, 47, # and 48, the card numbered 6 and the card with
out a sequence value would be out of sequence. The
assembly does not stop due to a card being out of
sequence order. In this example, the card numbered 6
and the card without a sequence entry would be flagged
in the error field of the listing. If sequence checking is
requested, there is a statement at the end of the listing
showing that two cards were out of sequence.

The assembler will not check the sequence unless requested
to do so by use of the ISEQ statement.

The following is the ISEQ instruction format :

NAME OPERATION OPERAND

blank ISEQ two decimal values in the
form L, R; or blank

The operand entries, L or R, specify the leftmost (L) and
rightmost (R) columns of the field to be sequence checked.
The value of L must be within the range of 73 through 96
(inclusive). The length of the sequence field may be from
1 to 8. If the programmer wants to discontinue sequencing,
an ISEQ instruction card with a blank operand is inserted.

The sequence field must be separated from the last column
of the source statement by at least one blank position.
The last column of the source statement is column 87
unless otherwise specified by the ICTL assembler state
ment. The sequence field must not appear before the last
column +1 of the source statement. If the sequence field
is to start before column 89, the ICTL statement must be
used to redefine the beginning and end of the source state-
ment. For example:

ICTL 1,71 Source statement is defined within
columns 1-71

ISEQ 73,80 Sequence field is in columns 73-80

STAR T-Start Assembly.

The START instruction may be used to initialize the
location counter to a desired value at the beginning of a
program. The format of the START instruction is:

NAME OPERATION OPERAND

symbol START a self-defining value or blank

The assembler uses the single self-defining term in the
operand as the initial location-counter value. For example,
either of the START instructions in Figure 14 could be
used to indicate an initial assembly location of 2040.

If the operand of a START instruction is blank, the
location counter is initialized with a value of zero. If
neither an ORG nor a START instruction is used to initial
ize the location counter, the initial value is also zero.

A START instruction must not be preceded by any state
ment that affects or is dependent upon the setting of the
location counter.

The name entry in the name field of a START instruction
provides the program with an identifier name called the
module name. The module name may be the same as the
first TITLE statement.

Note: Certain naming restrictions apply when assigning
names for your program. For more information on naming
restrictions, see IBM System/3 Model 10 Disk System
Control Programming Reference Manual, GC21-7512,
IBM System/3 Model 12 System Control Programming
Reference Manual, GC21-5130, IBM System/3 Model 15
System Con trol Programming R eference Manual,
GC21-5077 (Program Number 5704-AS1), ox IBM
System/3 Model 15 System Control Programming
Concepts and Reference Manual, GC21-5162 (Program
Number 5704-AS2).

This program name may be used for program linkage. If
the START card is not included in the program, or if the
name field is blank, a default program name is assigned.
See the MODULE NAME MISSING diagnostic in
Appendix C. System/3 Assembler - Source Language
Error Codes and Diagnostics.
m ___

PROGRAM

PROGRAMMER

Name
1 2 3 4 5 6 7

Operation
8 9 10 11 12 13

Operand
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 :

5 yM8 0 L s TA KT z <t>4 4 L Oc A T / O/V L * 41i

C&z * , f

5 V*18 0 L 5 TA Rr X \ 7F 2 / L 0 c A T / ON 2. <P4jt

Figure 14 . U sing ST A R T to In itia lize th e L o ca tio n C ounter

Basic Assembler Language 23

O R G -Set Location Counter USING — Use Register for Base-Displacement Addressing

The ORG statement sets the location-counter value.

NAME 1 OPERATION ! OPERAND

blank 1 ORG
1
I blank operand or an expression A
1 optionally followed by two absolute

expressions in the form A, B, C

The location counter is set to the smallest value greater
than or equal to A which is C more than a multiple of B.
In the following example, A can be either a relocatable or
absolute expression; B and C must be absolute expressions.
The default values for B and C are 1 and 0, respectively. If
the second operand (B) is omitted, the third operand (C)
must also be omitted.

The USING statement specifies the register to be used for
base-displacement addressing and also specifies the base
address that the assembler will assume to be in that register
at object time. The USING statement does not load the
base address into the register specified. This must be done
by the programmer before the register can be used for
base-register displacement addressing. See Addressing in
this section.

------------------1
NAME 1

i----------------------------r
1 OPERATION 1
\ 1

OPERAND
1

blank 1i
' ,
1 USING 1l l V,R

Current
Location
Counter A B C

New
Location
Counter

275 * 100 50 350
340 * 100 50 350
350 * 100 50 350
504 * 256 0 512
750 1000 — — 1000

All symbols used in the expression A must have been
previously defined. The value specified by the ORG state
ment must be greater than or equal to the starting location-
counter value.

If previous ORG statements have reduced the location-
counter value for the purpose of redefining the current
program, an ORG instruction with a blank operand is used
to set the location counter to the previous maximum
assigned address plus one (see Figure 15).

In the preceding format, term V represents an expression.
Term R represents an absolute expression with a value of
1 or 2. Term R specifies the index register assumed to
contain the base address represented by the term V. The
programmer has the option of changing the base register
or base address at any time by the insertion of another
USING statement. Two USING statements enable the
programmer to use the two index registers as base registers
to two different portions of main storage.

In Figure 16, register 2 is loaded with the address of
ADRES 1, which will be used as the base address in instruc
tions following the USING statement.

Location
Counter Address

Name I I Operation I 1 Operant
1 2 3 4 5 6 | 7| 8 9 10 11 12[13(14 15 16 17 18 19 20 21 22 23 24

0064 S B B S E i l a o f l E E I H / i 0
0064 0069 s

Y . B O L D a 1 CL \ /

006A *0325 FL L L L N D5 7 CL l £ 4
00CE o R F / L L N - S 3 i
00CE 01F9 Ü Ar A P C 1 6 0 a L g

1
k 2 i

0326 0 R ë _
•

f 4 0 J J J

* Previous
High Address

IBM

Figure 15. Using ORG to Control the Location Counter Figure 16. Specifying a Base Register With the USING Statem ents

24

DROP — Drop Base Register

The DROP instruction specifies a base register that is no
longer to be used as a base register. The programmer can
reinitiate the base register with another USING
instruction.

NAME
1
1
1

I
OPERATION

. . I

i
| OPERAND
I

blank 1
|

!
ENTRY |

1
| any relocatable

1
1 || symbol found in the
11 I1 name field of the
1 1

_______________ 1
* current program

-- r

NAME 1
1

1
OPERATION 1 OPERAND

........... 1
blank 1

__________ l

l
DROP '

________________ I
specified register

The symbol used in the ENTRY operand can also be refer
enced by any other program provided that program uses
the same symbol in the operand of an EXTRN statement.
See the example given in the discussion of EXTRN for
additional information on the use of ENTRY.

The operand must contain an absolute expression of
either 1 or 2. This absolute expression represents the
register that is no longer to be used as a base register.
The contents of the register are unaffected by the DROP
instruction. Figure 17 shows an example of the DROP
instruction. Another USING statement is used to
specify register 1 as the new base register.

IBM

EXTR N — Identify External Symbols

This instruction identifies symbols, used in the current
program, which are defined in another program. Each
symbol in the operand of an EXTRN statement must be
identified by an ENTRY statement or be the module name
in some other program.

Figure 17. Example of the DROP Statement

EN TR Y — Identify Entry Point to Program

This instruction identifies symbols, defined in the current
program, which can be used as entry points from other
programs.

symbol by following the symbol with an absolute
expression enclosed in parentheses. The value of the
absolute expression cannot be less than zero nor more
than 255. Any symbol in the expression must have been
previously defined. For an explanation of the subtype
values and their meanings, see IBM System/3 Overlay
Linkage Editor Reference Manual, GC21-7561.

Basic A ssem bler L anguage 25

Figure 18 shows how ENTRY and EXTRN can be used to
make two or more programs act as one main program through
sharing data and control. The main program defines sym
bols A, B, and C and identifies them as entry points. These
same symbols are identified as EXTRNs (external symbols)
in the subroutine. This allows the subroutine to use these

symbols just as it would if the symbols had been defined
in the subroutine. SUBR01, on the other hand, is defined
and identified as an entry point by the subroutine and as an
EXTRN, external symbol, by the main routine. These four
symbols — A, B, C, and SUBR01 — can now be used inter
changeably by both the main routine and the subroutine.

Main Routine

IBM
PROGRAM

PROGRAMMER

STATE MEN'

2
Name

3 4 5 6 _7 8
Operation
9 10 11 12 13 14 15 16 17 18 19 20 21

Operand
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4

l u 8 g r s T ARr g

E% TR i s Ü f t Ë 1
£ T RN A
EKT R N B
e X I RN C
s T RËT ü RN+ 3 1 8

1 1 1 i 1 MVC 6 0 1 Tl 5y JL M As K
2 AI D(4 - 1 JL 5 c 4 - 1
A I Dc 4 1 _x t L 4 1
£ B __|£ p l T L ISy D—1
H VC C r £ I 1 Di I

s E f U RH n s
—
9 r

T

D L Ü ■ 1 i E Ei i 1 1 Di i i
D D s DL 4

E 5 D _ J

-
J j —1 J

Subroutine

Figure 18. Example of ENTRY and EXTRN Statements

The main routine has control first. It executes instructions
and then branches to SUBR01 which is defined as an entry
point in the subroutine. Instructions in the subroutine are
executed. Notice that the subroutine uses symbols A, B, and
C which were defined in the main routine. Control is then
passed back to the main routine.

Note: The actual resolution of symbols between programs
is not performed by the assembler.

END—End Assembly

The END instruction terminates assembly of the program.
The operand of this instruction can contain an expression
(usually a name field entry) which specifies the address
to which control is to be transferred after the program is
loaded. The END instruction must be the last statement
in the program. The relocatable expression in the operand
must not contain external symbols. The start-of-control
address must be specified for programs loaded with the
absolute loader.

1
NAME ,

1 1
1 OPERATION 1

i
1 OPERAND
11

blank i
_________1

1 i
i END I
1______________1

1
1 a relocatable expression or a blank
l

Figure 19. shows an END statement. In this example, the
program receives control at the address corresponding to
BEGIN when it is executed.

IBM

Figure 19. Designating an Entry Point With the END Statement

26

Part 2. Programmer's Guide

ASSEMBLER CONTROL STATEMENTS

Two control statements are used: The HEADERS state
ment and the OPTIONS statement. Up to 45 of these
control statements may be used, in any order. Each state
ment is limited to six operands. All control statements
must appear before any assembler source statements.

HEADERS Statement

The HEADERS control statement specifies control infor
mation other than output control information to the
assembler. The programmer may specify a category level
for the object module through the CATG operand, or the
length of the control section for any subtype 4 or 5
EXTRNs in the assembler through the COML4 and COML5
operands. For an explanation of category levels and
subtype 4 and 5 EXTRNs, see IBM System/3 Overlay
Linkage Editor Reference Manual, GC21 -7561.

The format of the HEADERS statement with the CATG
operand is:

nnnnn
nnnnn is a one to five character decimal string whose value
must be less than 00256. If more than one CATG operand
appears in the assembler control statements, the value of
the last valid operand is used for the module category level.
The module category level is placed in the module ESL
record.

The format of the HEADERS statement with the COML4
and COML5 operands is:

nnnnn is a one to five character decimal string whose value
must be less than 65536. If more than one COML4 or
COML5 operand is present in the assembler control state
ments, the length in the last valid operand is used for the
appropriate subtype control section length. The lengths
specified are placed in the ESL records for the subtype 4
or 5 EXTRNs.

OPTIONS Statement

An OPTIONS statement is a control statement for
assembler control options. All OPTIONS statements must
precede the source deck. The user may specify the follow
ing assembler options on OPTIONS statements: DECK,
NODECK, LIST, NOIiST, XREF, NOXREF, REL,
NOREL, OBJ, OBJ(T), OBJ(P), NOOBJ. XBUF-nnnnn
and NOXBUF are also available to users having program
5704-AS2. They may appear on one statement in any
order, but must be separated by commas. If the pro
grammer prefers, separate statements may be used for
each option. The OPTIONS keyword must start in
column 2 or higher (the preceding column must be blank),
and there must be one or more blanks between the key
word and the selected options. Blanks are not allowed
between the selected options.

The following example shows options appearing on one
statement:

More than one OPTIONS statement may be used. In the
following example, three statements are used:

bOPTIONSbDECK

bOPTIONStfUST

I60PTI0NS16N0XREF

Program m er’s G uide 27

The following list provides a brief description of all the
options available:

Option Explanation

DECK The object program is punched. When an
object program is punched, it is preceded
by a // COPY OCL card and followed by
a II CEND OCL card. These cards are
provided for placing the object program in
the R library with the library maintenance
utility program ($MAINT).

NODECK The object program is not punched.

LIST The following sections of the assembler
listing are printed (see Assembler Listing
in this section for a description of the
listings):

On the Model 10 an absolute loader will pre
cede the absolute deck if DECK is specified
and if MFCU2 is specified on the // PUNCH
statement. On the Model 12 and Model 15,
an absolute loader will precede the absolute
deck if DECK is specified and if the
SYSPCH device is MFCU, 1442, or MFCM
(Model 15 only). The loader punched will
program load only on the device type on
which it was punched. A blank card is in
serted between the absolute loader and the
object program. This blank card and the
OCL cards included with the object program
do not affect the operation of the absolute
loader and may be discarded.

To prevent cataloging of the absolute object
program when NOREL is specified, you
should specify NOOBJ.

• Options information

• External symbol list

• Source and object program listing

OBJ or The object program is placed in the R
OBJ(T) library with a retain entry of temporary.

OBJ(P) The object program is placed in the R library
with a retain entry of permanent.

• Diagnostic listing

• Error summary statements

NOOBJ The object program is not placed in the R
library. (See Placing A ssembler Subroutines
in R [Routine] Library in this section.)

NOLIST Only the following listings are printed:

• Options information

• Any statements in error and the
associated diagnostics

• Error summary statements

The NOLIST option overrides all
assembler PRINT statements.

XREF A cross-reference listing is generated.

NOXREF A cross-reference listing is not generated.

REL A relocatable object program is produced.

If no OPTIONS statement is used, the assembly is processed
as though DECK, LIST, REL, XREF, and OBJ had been
specified. NOXBUF is also assumed with program
5704-AS2.

XBUF-nnnnn Specifies the size of the disk external buf
fers the user has requested. From one to
five numeric digits may be used to specify
the size of the disk external buffers (pro
gram 5704-AS2 only). External buffers
should not be specified due to performance
considerations if the program size including
physical disk buffers does not exceed 56K.
However, if external buffers are specified,
they should equal the size of the physical
disk buffers that normally would be set
aside within the program.

NOREL An absolute object program is produced.

Note: Absolute object programs can only
be used as stand-alone programs; that is,
programs which are not dependent on any
other disk management system program.

NOXBUF Specifies no external buffers are requested
for the program (program 5704-AS2 only).

If DECK or OBJ is entered on the OPTIONS statement and
there are errors in the assembly, a halt is issued.

28

OCL STATEMENTS FOR ASSEMBLER

The loading and running of a disk-system program,
including the assembler, is done under control of a group
of programs called disk system management. The user
tells disk system management to run a program through
the use of Operation Control Language (OCL) state
ments. It is necessary to have a set of OCL statements
each time a program is run. This section discusses the
OCL statements required for use of the assembler. For
a complete discussion of OCL, see IBM System/3
Model 10 Disk System Control Programming Reference
Manual; GC21-7512, IBM System/3 Model 12 System
Control Programming Reference Manual, GC21-5130,
IBM System/3 Model 15 System Control Programming
Reference Manual, GC21-5077 (Program Number
5704-AS1), or IBM System/3 Model 15 System
Control Programming Concepts and Reference
Manual (Program Number 5704-AS2), GC21-5162.

The assembler language source program can be obtained
from either a system input device, a source library entry, or
the macro processor. If the source records are obtained
from an 80-column device, they are padded with 16
blanks before being placed in the SSOURCE file. In this
case, the user should provide an ICTL statement to prevent
the assembler from processing the sequence field of the
80-column record.

OCL For Loading the Assembler

Source Program on System Input Device (Cards)

Figure 20 is a sample set of OCL statements to load the
assembler when the source program is on cards. The unit
parameter (F I) on the // LOAD statement specifies
where the assembler resides. The codes for the disk
drive upon which the assembler resides are:

• R1 - drive 1

• FI - drive 1

• R2 - drive 2

• F2 - drive 2

Program m er’s G u id e 2 9

The first // FILE statement specifies the attributes and
location of the file used for source program residence
during the assembly process.

The second // FILE statement specifies attributes and the
location of the file used for object output of the assembler.
The third // FILE statement specifies attributes and
location of the file used for assembler working storage
during the assembler process.

The SWORK2 // FILE statement is optional on the
Model 10 Disk System. If it is not supplied, the assembler
allocates the work space. However, by specifying the
proper placement of file locations, as in Figure 20, this
file statement improves the performance of the assembler.
It should, therefore, be specified.

In all three // FILE statements, the PACK and UNIT
parameters indicate the location of the file named in the
NAME Parameter. In addition to R1, F I , R2, and F2, the
UNIT parameter can specify D l, D2, D3, and D4 for the
Model 15. The RETAIN parameter should reflect a scratch
file(s). The TRACKS parameter contains the number of
tracks required for that file. The user should choose the
number of tracks required in accordance with the space
requirements charts in the Assembly Time Data File
Requirements section. See IBM System/3 Model 10 Disk
System Control Programming Reference Manual,
GC21-7512, IBM System/3 Model 12 System Control
Programming Reference Manual, GC21-5130, and IBM
System/3 Model 15 System Control Programming
Reference Manual (Program Number 5704-AS1),
GC21-5077, or IBM System/3 Model 15 System Control
Programming Concepts and Reference Manual, GC21-5162,
(Program Number 5704-AS2) for further information.

Source Program in a Source Library

Figure 21 shows a sample set of OCL statements used when
the source program is in the source library.

IBM IBM System/3 Basic Assembler Coding Form

PROGRAMMER CARD ELECTRO NUMBER

7 k ï>_£

12 13 14 15 16 1

SSEfl..
ZMÖ

4 25 26 27 28 29 30 31 32 3

STATEMENT

14 36 36 37 38 39 40 4 1 52 53 54 55 5(4 6 5 66 67 68 69 7 0 7
L Q

U*C ÏÖL Ï3l
oclAmiPWililfd

?Wn

7- RgTA I N-
e ?ac KS

6 Ï
25

AflE: L ^ 2 S l T - R RE
BDIÜi^aKËHGRBSa&üDIXB^M

/ / _ ? jfl

- S

I

; ©

Source Program Deck
t

a

(T) Optional on Model 10 Disk System
Figure 20. Assembler OCL Statements (Source Program on Cards)
____ IBM Systam/3 Baiic Anwnbtar Coding Formm |

PUNCHING GWAPHIC
INSTRUCTIONS CARO ELECTRO NUMBER

STATEMENT

p r m r LI 11 1 j | j 11111 TT 1r -

1/ 1 / 1 LIoIaIij ttUkldi3m J ruJ 1 1 1 1 i |I-

\K
OTI

i Ir*

fiC i i in i n in in I I I in I I I i n I I I I I I I "T "1ri_
U - FILL!: rsANÊ * 3Ri : :k v :ÏL t ifa.LÜÏl i ! m SL>8!ÊÏZü d X-TT i l_ ii
V . '1 Ï [k ;► “ s A ATiLQÏ1 zil i i i t i HL_
a FI|L |: [h ME' o | j53, Lim IN/"Tj 3 si!j l i [A [N-* TCT) ~ J1_
/7 ; i i w . 2 G\"Mp * E][!z \ h:■tt n n i
LL c t)N1= i | Ofj j[g c i . :RJU :>01 b :: ! SLif f iu i jS j[Ï : :8 - r ± ± ±± " " I-

L ! I I J I I I I I I I I I I I I I T I I I I I I I J TTI' 1
i t . ; f l h iHi _N! I =

1
I

JT* i nri_
a ELi n = = ; - p . hi n ior»lr r\ir» IV/ipr.i il i ii
l \ \ ~ 1 r " 11 I K J 1 1 1 11 1 1 1I E ii—

" I 1 r H s l T L i ~ir~
- . :i— ►u. noTiHMC n c p p rsn i L . -Place objt

l-L-t-I-ll-I.
rvrrvnrom in R lihrarv nn R 1 J_ „j Lr \2uui w; pi uyiai11 111 ouui uc uiuiai y vviin. v^r i iwmu uuu iv, wuu

1 1 1 1 1 111 1 1 1.1 1 1 1.1 1111 1 1 1 f i l l 1 1 1 1 1 I 11.1-1 1 1 1 1J 1 1 1 I I I l l l. J 1 L I l U. 1 l I1 J J 1 1 i

Figure 21. Assembler OCL Statem ents (Source Program in Source Library)

30

Note that the additional OCL statement // COMPILE is
required. The following entries in the figure are optional:

//S W IT C H Considerations

PUNCH This statement specifies where an object
deck is punched. For more information on
statement, see IBM System/3 Model 10 Disk
System Control Programming Reference
Manual, GC21-7512, IBMSystem/3
Model 12 System Control Programming
Reference Manual, GC21-5130, IBM
System/3 Model 15 System Control
Programming Reference Manual, GC21-5077
(Program Number 5704-AS1), or IBM
System/3 Model 15 System Control Pro
gramming Concepts and Reference Manual,
(Program Number 5704-AS2), GC21-5162.

OBJECT This operand is used to indicate to the
operand assembler the library unit used when the

OBJ option is used on the OPTIONS
statement.

The II LOAD and // FILE statements are as described in
the first example. The // COMPILE statement specifies
both the location of the source library and the required
source program within the library. The // COMPILE
statement may appear at any position between // LOAD
and H RUN.

Macro Processor-Produced Source Program

The macro processor creates a source program on the
SSOURCE file. To indicate that the macro processer has
already loaded the SSOURCE file, external indicator U1
must be turned on. This is done through a // SWITCH
statement. If this indicator is on when the assembler is
loaded, the SSOURCE file will not be loaded.

In the following OCL stream, the source program has been
created on the SSOURCE file:
IBM

PROGRAMMER

STATEMENT

1 2 N|m4 S 67 Operation 8 9 10 11 121314 15 16 17 18 19 20 21 22°23 24*25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 46
/ 4 T M l I I I I I I I I I I I 1 I I 1

ndicate that the source file/ / L.0A D %A SSEM R1 “1
/ t sWl T C H 1X X X X XXX ‘ has been loaded by the macro
/ t e 1L E NA ME %soÜR C E z . nrnreccnr cton
/ / 1 1l E N A ME - i w0RK». . .
/ / rF1L E NA ME- $woRK2 >• * •
/ /i R U H n

/ 11
References the source file create*
by the macro processor step.
r 1 1 1 I 1 1 1 1 1 1 1 1 1 r , r • 1 . r -1

d
r i

Optional on Model 10 Disk System

Note: For more information on the macro processor, see
IBMSystem/3 Models 10 and 12 System Control Program
ming Macros Reference Manual, GC21 -7562, or IBM
System/3 Model 15 System Control Programming Macros
Reference Manual, GC21 -7608.

The external indicator U1 indicates that the macro
processor has loaded the SSOURCE file and the source
program is not in the input stream. If this indicator is
on when the assembler is loaded, the SSOURCE file
is not loaded.

When the SSOURCE file is to be loaded, external
indicator U1 must be off. This can be ensured by
entering the following statement after the assembler
// LOAD statement:

OCL For Calling the Assembler

It is possible for the user to store a portion of the OCL
statements required for use by the assembler in
a procedure library. They may then be called with a
II CALL statement, thus reducing the number of
written OCL statements required for each assembly.
Examples are included for source programs on cards and
for source programs in a source library on disk.

Source Program on Cards

If the source program is a deck of cards, the OCL cards
necessary to assemble the program, and the order in
which they must appear, are as follows:
IBM

PROGRAM

PROGRAMMER

Name
1 2 3 4 5 6 7

Operation
8 9 10 11 12 13

Operand
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29LÏ/ / c A Ll A S M i F 17/ Ru N

J

5

-s<)Lir<
\
:e
(

pr<>9rairritDeick

I

7 *
/

In this example, ASM is the procedure name. FI refers
to the disk pack upon which the assembler OCL procedure
is stored. In this case, it would be the fixed disk on
drive one.

Program m er’s G u id e 31

Source Program in a Source Library • HEADER record

If the source program is stored on disk in a source
library, the OCL format must be as follows:

IBM
PROGRAM

PROGRAMMER

2Name 3 45678 'Operation12131415 16 171819 20 21 Operand 22 23 24 25 26272829 30 313233 34
/ i
/ / c A I I A.SM
/ / **3 n P 1LE è C uRc d - S l 6 A u N 1T R l
/ / R U H
/ 4
In this example, ASM is the procedure name and FI
refers to the fixed disk on drive 1. SUBRA is the name
of the source program. The user must substitute his
own source program name. R1 is the disk pack upon
which the source library resides.

Sample Assembler Procedure Stored in Procedure
Library

A sample assembler procedure is shown in Figure 22. The
format is as it would appear in the procedure library.
The II LOAD statement and // FILE statements are as
described in preceding examples.

• ESL (external symbol list) record

• TEXT-RLD (text-relocation directory) records

• END record

Record Formats

The following paragraphs describe the format of each
record type.

HEADER Record

A HEADER record with record type H is added by the
overlay linkage editor when it processes the assembler
object program. The HEADER record format is:

| H | Object program information field |

1 2 64

• Byte 1 Record type identifier H.

• Bytes 2-64 Object program information field.

OBJECT PROGRAM DESCRIPTION

The assembler converts the source program into
a set of control information, machine language instruc
tions, and data, all of which collectively are called an
object program. There is one object program produced
per assembly-. Each object record is originally produced
as a 64-byte field. If the object program is punched on
the MFCU, it is translated into a 96-byte punch record
(bytes 2 to 64 are translated 4 for 3 for punching;
for every three 8-bit bytes, four card code characters
are created). See Object Program After Punch Conversion
in this section. Each object program generated by the
assembler contains four types of records:

IBM Systam/3 Basic Assembler Coding Form Form:UM| Was
PROGRAM PUNCHIft="1moNs 1

GRAPHIC i i i n Z3I I rz ZI PACE OP *
PflOORAMMEft- | PATE - INSTRUC PUNCH 11ZIZ t 1_1Z ZI CARD ELECTRO NUMBER

| STATEMENT 1 r Identificatie
Sequanca 19 M 91 92 S3

t Name 1 1 Operation | 1 1 1 2 3 4 5 61 7| 8 9 10 11 I2I 13I I
Operand Remarks

4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 68 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 86 86 87 M l

iLMli II I! 11 m i,
m |
IK I _MiiiGwiTi'r- ZBSÊB&SSBm lïiniL^.iRiï^r^BO "1£

U filial. _ .n i 11 ~
Ü __J i j -H

©Optional on Model 10 Disk System 4- 1• — — — — —
ll

— — — —

Figure 22. Sample Assembler Procedure in Source Library

ESL Record

The object program name, that is the module name and all
EXTRN and ENTRY symbols are placed in the ESL record.
The ESL record format is:

|S
| Length - 1 | ESL Entries j X W j

1 2 3 62 63 64

• Byte 1 Record type identifier S.

• Byte 2 Length -1 of the ESL entries.

Bytes 3-62 ESL entries. Up to five MODULE,
ENTRY, and/or EXTRN fields.

• Bytes 63-64 Filled with hexadecimal zeros.

32

T E X T R L D Records Object Program After Punch Conversion

Text records and RLD pointers are combined in this type
of input record. The text portion of each record contains
the object code for the program, while the RLD pointers
indicate where the address constants and relocatable
operands of the text are located. If the NOREL option
has been selected on the OPTIONS control card, there
will be no relocation indicators in the record. The format
for the TEXT-RLD record is:

| T | Length-1 i i 1 , :I Assembled Address I Text^jX 00>*RLD

1 2 3 4 5 64

• Byte 1 Record type identifier T.

• Byte 2 Length - 1 (of text only).

• Bytes 3-4 Assembled address of the low order (rightmost)
text byte in the record.

• Bytes 5-64 Text starts at byte 5 and goes right, RLD
starts at byte 64 and goes left. The leftmost
end of the RLD section is marked by
hexadecimal zeros, which fill the space
between the Text and RLD sections. The end
of text is always followed by at least one
byte of X'00'.

E N D Records

The last record in each object program is an END record.
It contains the entry address of the object program. If the
user did not include an operand in his source program
END statement, the object program END record generated
by the assembler will contain the address X‘FFFF\ The
END record format is:

Entry END card program
E Address

1 2-3 4

• Byte 1 Record type identifier E.

• Bytes 2-3 Entry address of the object program.

• Bytes 4-64 Program to transfer control to Entry address.

All four types of records (HEADER, ESL, TEXT-RLD,
and END) assume the same format when they are punched
into cards. The punched record format, using 96-column
cards, is as follows:

Record ID I Data Field Self Check Identification

I Number Sequence Field

1 2 85 86 88 89 96

Column 1

Columns 2-85

Columns 86-88

Record type identifier (H, S, T, or E).

Data field, transformed 4 for 3. (For every
three 8-bit bytes, four card code characters
are created for System/3 96-column cards.)

A 2-byte self check number transformed
4 for 3, to 3 bytes.

Columns 89-96 Identification/sequence field.

The punched record format, using 80-column cards, is as
follows:

Record ID Data Field Blank Self Check Identification
Number Sequence Field

64 65 i 70 72 73 80

Column 1 Record type identifier (H, S, T, or E).

Columns 2*64 Data field, bytes 2 to 64 of the object record.

Columns 65-69 Blank.

Columns 70-72 A 2-byte self check number transformed 4 for 3,
to 3 bytes.

Columns 73-80 Identification/sequence field.

Note: When an object module is punched, it is preceded
by a // COPY OCL card and followed by a // CEND OCL
card. These cards are provided for placing the object
module in the R library with the Library Maintenance
program ($MAINT).

Program m er’s G u id e 33

ASSEMBLY TIME DATA FILE REQUIREMENTS

There are three data files necessary at assembly time:

1. Source file (NAME-$SOURCE)

2. Object file (NAME-SWORK)

3. Work file (NAME-SWORK2)

Model 10 Disk System: These files must be located on
5444 disk drives. If a // FILE statement is not provided
for $WORK2, the assembler allocates its own work space.

Work File ($WORK2)

The work file is a scratch file used by the assembler
throughout the assembly process for intermediate data
storage. The file contains four types of data:

1. Intermediate text

2. Symbol table entries

3. Cross-reference data

4. Error information

Model 12: These files must be located on the simulation
area.

Model 15: These files must be located on either 3340,
5444, or 5445 disk drives.

Source File ($SOURCE)

The source file is used by the assembler for storage of the
source program. During the job initialization procedure,
a disk system management program places the source
program in the source file (if the macro processor has not
loaded the file). The source records are obtained from
either the system input device or a source library using
the // COMPILE statement. (See OCL statements for
Assembly in this section.) Each source record contains
% bytes, so that eight records occupy three disk
sectors in the source file. (One sector = 256 bytes, and
is the smallest addressable unit on a disk.) Figure 23
is a source file space requirements table showing how
many tracks are required for the size of the source pro
gram indicated.

If the assembler is processing a source file created by
the macro processor, the // FILE statement for SSOURCE
must correspond to the SSOURCE file produced in the
macro processor run.

Object File ($WORK)

The object file is used by the assembler for intermediate
storage of the object program. The object records are
stored in four 64-byte entries per sector. (See Object
Program Before Conversion in this section.) Because each
track in the object file can contain 96 records on the 5444,
80 records on the 5445, or 192 records on the 3340, two
tracks usually are sufficient for most assemblies.

Intermediate Text

Intermediate text is made up of fixed length (10-byte)
records. The number of fixed length records is variable
for each source statement, and is dependent on the
statement type and the contents of the operand field.

The following rules can be used to determine intermediate
text file requirements. (The rules apply only to error-
free source statements. A statement that contains errors
generally requires less storage space.)

All Instructions:

• One record for each machine or assembler instruction,
or comment statement.

• One record if there is a name field entry.

Machine Instructions: One additional record for each
term in the operand field.

Source Program Size
(Statements)

Number of Tracks Required

5 4 4 4 * 5445 3340

100 2 2 1

200 4 4 2

300 5 6 3

400 7 8 4

500 8 10 4

600 10 12 5

700 11 14 6

800 13 15 7

900 15 17 8

1000 16 19 8

34

*Or simulation area

Figure 23. Source File Space Requirements Chart

Assembler Instructions: Symbol Table Entries

• END, ENTRY, EQU, EXTRN, ORG, USING - One
additional record for each term in the operand field.

• ISEQ, PRINT, SPACE, START — One additional record
for each instruction.

• TITLE — Additional records = N/8 (plus one for any
non-zero remainder); where N is the number of
characters in the TITLE operand field.

• DS/DC

— One additional record for duplication factor
(default or specified value).

— One additional record for each term in the length
specification.

Whenever a symbol is used in the name field of an instruction
(except a TITLE statement) it becomes a symbol table
entry. When the assembler user requests a cross reference,
all symbol table entries are added to the work file immedi
ately after the intermediate text. The symbol table entries
are also 10-byte, fixed-length records. Assuming an average
of one name entry for every four source statements, one
sector per 100 source statements is required.

Cross-Reference Data

Cross-reference data is written in the same area as the
intermediate text and symbol table entries and does not
impose any additional space requirements.

Error Information

• DC

— Address constant—One record for each term in
the address constant expression.

— All other constants—Additional records - N/8
(plus one for any nonzero remainder); where N is
the number of bytes required to contain the
converted constant plus one.

Figure 24 is a sample list of instructions together with the
intermediate text space requirements for each.

Text Space

DECK START 0 3

ENTRY SLC A(2),A 5

MVC A(2),CON1 4

ALC A(2),CON2 4

HPL X 'FF ',X 'FF 3

A DS CL2 4

CON1 DC IL.2'500' 5

CON2 DC I L2'-320' 5

END ENTRY 2

Figure 24. Intermediate Text Space Requirements

Each statement in error requires a 10-byte error record;
therefore, a track will contain at least 600 error records.

Work File Space Requirements

Figure 25 is a work file space requirements table showing
the number of tracks required for the number of source
statements indicated. The requirements for intermediate
text and symbol table entries are summed to get the
table values. Approximately 40 sectors per 100 source
statements are needed to cover most varieties of source
statements. If a $WQRK2 // FILE statement is not pro
vided on the Model 10 disk system assembler, the source
file (SSOURCE) size is used for the work file size.

Source Program Size
(Statem ents)

Number of Tracks Required

100

5 4 4 4 * 5445 3 3 4 0

2 2 1

200 4 4 2

300 6 6 3

400 7 8 4

500 9 10 5

600 11 12 6

700 12 14 6

800 14 16 7

900 16 18 8

1000 18 20 9

*Or simulation area

Figure 25. Work File Space Requirements Chart

Program m er’s G u id e 35

OPERATING PROCEDURES

Placing Assembler Subroutines in R (Routine) Library

Assembler subroutines can be placed on disk in the R
library by two methods.

The LIBRARY parameter, R, specifies a relocatable library.
The NAME parameter gives the name of the subroutine to
be entered. This name must be the same as the program
name (that is the name on the START instruction). The
following names are restricted and cannot be used in this
parameter:

1. Punching an object deck and using the Library
Maintenance program (SMAINT) to place it in the
R library.

2. Specifying OBJ in the OPTIONS statement to
place the object program directly into the R
library. The retain entry can be either temporary
or permanent.

For more information on the OCL and utility control state
ments needed to use SMAINT, see IBM System/3 Model 10
Disk System Control Programming Reference Manual
GC21-7512, IBM System/3 Model 12 System Control Pro
gramming Reference Manual, GC21 -5130, or IBM System/3
Model 15 System Control Programming Reference Manual,
GC21-5077.

• ALL

• DIR

• SYSTEM

The TO parameter specifies the physical destination of
the object program (in this case, Rl).

The RETAIN parameter specifies the ultimate disposition
of the object program.

/ / CEND (Copy End) Statement: The // CEND
statement must follow the object deck.

Placing a Punched Object Program in the R Library

In the sample procedure shown below, the subroutine
SUBRA is being placed in the R library from a punched
object deck.

/ / LOAD Statement: In this sample procedure, SMAINT
is the routine which interrogates the // COPY statement
and calls the proper routine to accomplish the desired
results.

FI is the disk pack upon which the utility program resides.

II COPY Statement: The FROM parameter names the
device holding the subroutine to be entered. The
READER option must be used to copy the assembler
punched object program,

m*

// END: The // END statement must be the end of all
library maintenance decks.

Placing an Object Program Directly in the R Library

When the object program is placed directly in the R
library, it has the following characteristics in the library.

• Name of the object program is the module name
specified in the START instruction or the default
module name. See the MODULE NAME MISSING
diagnostic in Appendix C System/3 Assembler -
Source Language Error Codes and Diagnostics.

• Retain entry in the library is temporary if OBJ or OBJ(T)
is specified and permanent if OBJ(P) is specified.

IB M System/3 Basic Assembler Coding Form

PROGRAMMER

11' t 11L-—

/ / Li L ii tb][N]ÉJÉl' 11

/ / g i N i 1

111
/ / cci?]IZÉ? iGlIillBEQr 2ÏL i m: _ < w_ ÏQ:ÏBÏ[J ib: IS i ï) 1r

< III IIIIII IIIIIIIII III i 1__1i1_i 1_1iL_

-01Dject Deel
111_< - 1 1I< i 11

i) i i “1rL_
/ / "Clibii>— r i 11
(/. ~j~ 1r
I t . z i zZ ’z~z~z ^ Z !z z ______ r~

!______ _ _

36

• Library to receive the object program is the disk speci
fied in the OBJECT operand of the // COMPILE state
ment. The default disk is the program disk.

Using Assembler Object Program with the Program Loader

The user may have the need to load a user-written assemb
ler object program as a stand-alone program. To use
an assembler object program in this manner it is necessary
to have the program punched into an object deck on the
system punch device. The assembler language user ob
tains an absolute loader by specifying DECK and NOREL
on the OPTIONS card (see NOREL option under OPTIONS
Statement). The 96-column loader contains six cards and
the 80-column loader contains one card.

It is the user’s responsibility to ensure:

1. That he has not referenced any address greater than
the storage capacity of the System/3 on which the
program is to be executed.

2. That the address specified on the START instruction
statement is greater than X‘FF’. (The START
assembler statement must specify the address at
which the program is to be loaded.)

3. That the END statement indicates the start-of-control
address.

Note: If absolute object decks for more than one assembly
are to be loaded together, then the loader must be re
moved from the front of the second and all subsequent
decks, and the END card must be removed from the
back of all decks except the last.

IBM 5424 MFCU

The procedure for loading and executing an assembler
object program on the IBM 5424 MFCU is as follows:

1. Clear MFCU.

2. Place assembler object deck, including the loader,
in primary hopper.

3. Press MFCU START.

5. Set IPL SELECTOR to MFCU for Model 10 Disk
System or ALT for Models 12 and 15.

6. Press console PROGRAM LOAD to load and execute
the assembler object program. (LI or L2 halt is
issued for error or not ready conditions on the
MFCU.)

IBM 2560 MFCM (Model 15 only)

The procedure for loading and executing an assembler
object program on the IBM 2560 MFCM is as follows:

1. Clear MFCM.

2. Place assembler object deck, including the loader,
in primary hopper.

3. Press MFCM START.

4. Ready the printer.

5. Set IPL SELECTOR to ALT.

6. Press console PROGRAM LOAD to load and execute
the assembler object program. (LI halt is issued for
error or not ready conditions on the MFCM.)

IBM 1442 Card Read Punch (Models 12 and 15)

The procedure for loading and executing an assembler
object program on the IBM 1442 Card Read Punch is as
follows:
1. Clear 1442.

2. Place assembler object deck, including the loader,
in hopper.

3. Press 1442 START.

4. Ready the printer.

5. Set IPL SELECTOR to ALT.

6. Press console PROGRAM LOAD to load and execute
the assembler object program. (LI halt is issued for
error or not ready conditions on the 1442.)

4. Ready the printer.

Program m er’s G uide 37

ASSEMBLER LISTING

An important part of the assembler’s output is the assem
bler listing. The assembler’s printed output is on the system
printer (under control of the // PRINTER OCL statement
for Models 12 and 15).

The listing is a printed reproduction of the source program
and the corresponding object code generated for it to
gether with other important information. Figure 26 at
the back of this section is a sample listing. Specifically,
the listing consists of the following:

Control Statements

Any OPTIONS or HEADERS statements specified by
the user are printed and specification errors are noted.
A list of OPTIONS in effect during the assembly is then
printed. The page is ejected before the control statement
information is listed.

38

External Symbol List (ESL)

The object program name, EXTRNs, and ENTRYs will
appear in the following format:

Symbol Type

Program name MODULE

ENTRY symbol ENTRY

EXTRN symbol EXTRN

Source and Object Listing

The source and object listing consists of the following:

1. On a 96-column printer, the ID/SEQ field is left-
justified in columns 89-96 of the print line. If
columns 53-88 of the source statement are blank,
line 2 will not be printed.

Object code Columns 1-52 of the
line 1 field * source statement ID/SEQ field

line 2

35 36 37 88 89 96

Columns 53-88 of
source statement

53 88

• Error code for improperly coded statements (see
Diagnostics in this section).

• Location counter value, in hexadecimal, of the high
order address of the object code generated by the
corresponding source statement.

• The object code, in hexadecimal, generated by the
corresponding statement.

• The value, in hexadecimal, of the expression in the
operand field of the EQU, USING, DROP, and END
statements, the storage address, in hexadecimal, of the
low order address of the DC constants, and DS storage
areas.

• Statement number, in decimal, for each statement,
including comment statements. These numbers are
assigned by the assembler. The statement number is a
four-digit field which limits the assembly to 9,999
statements.

• The source image, which is formatted according to the
size of the printer used:

Source Record Fold point for 96-
column printer

.J*
Source Statement (Columns 1-88)

F o ld p o in t fo r 1 2 0 -

o r 1 2 6 -c o lu m n p r in te r

ID/SEQ

1 52 53 76 77 88 89 96

2. On a 120-column or 126-column printer, the
ID/SEQ field is left-justified in columns 113-120
of the print line. If columns 77-88 of the source
statement are blank, or if the start of the ID/SEQ
field on the source record is less than column 77,
line 2 will not be printed.

Object code Columns 1-76 of the
line 1 field * source statement ID/SEQ field

35 36 37 112 113 120

line 2
Columns 77^88 of
source statement

101 112

3. With the 132-column printer, the complete source
image is printed on one line.

Object code
field b

Columns 1-88 of the
source statement ID/SEQ field

1 35 36 37 124 125 132

The following examples assume the ID/SEQ field is in
columns 89-96 of the source record: Note: Statements generated by the macro processor

contain a plus symbol (+) in column 36.
Note: The ID/SEQ field may be from one to eight adja
cent characters long and may reside anywhere between col
umns 73-96.

Programmer’s Guide 39

D iagnostics

The source and object program listing includes error codes
for improperly coded statements. These errors are listed
again, with a message, at the end of the source and object
program listing under the heading DIAGNOSTICS. This
list provides the following information:

• Statement—The statement number, in decimal, (assigned
by the assembler) of the statement which is in error.

• Error code—a 3-digit alphameric code. See
Appendix C: System/3 Assembler-Source Language
Error Codes and Diagnostics for a list of error codes and
translations.

• Message—A translation of the error code indicating the
type of error made.

Also included under DIAGNOSTICS are the following
error summary statements:

• A count of the total statements in error in the assembly.

• A count of total sequence errors in the assembly if
sequence check is requested.

Cross-Reference List

If XREF is specified on the OPTIONS statement this list
includes all symbol names referred to in the source program.
The following columns are included:

• Symbol—The symbol name.

• Length—The decimal length attribute of the symbol in
bytes.

• Values—Value, in hexadecimal, of the symbol.

• Defined—Statement number, in decimal, where the
symbol is defined.

• References—Statement numbers, in decimal, where the
symbol is referenced. Symbolic references to data areas
and machine registers whose contents may be altered by
execution of a machine instruction are flagged with an
asterisk.

At the end of the cross-reference list, the error summary
statements are printed again.

SUBRC EXTERNAL SYMBOL LIST

SYMBOL TYPE

SUBRC

VER 00, MOD 00 01/30/76 PAGE 1

SUBRC SAMPLE E X IT SUBROUTINE— F IE L D AND INDICATOR

ERR LOC OBJECT CCDE AODR STMT SOURCE STATEMENT VER 00, MOD 00 01/30/76 PAGE 2

2 ***
3 * *
4 * N A M E *
5 * *
4 * F U N C T I O N EXIT S U B R O U T I N E WITH F I E L D A N D I N D I C A T O R *
7 * P A R A M E T E R S . *
8 * * .

9 * THE CODE G E N E R A T E C BY THE C O M P I L E R IS AS FO L L O W S : *
10 * *
ll * Ö SUBRC *
12 * DC I L l ' F l E L C L E N G T H - 1 * *
13 * DC AL2 * ADC P E SS OF R I G H T OF F I E L D * ’ *
14 * DC X L l * 00 * *
IS * DC X L l ' I N C I C A T O R MASK* *
16 * DC X L l * RE G ISTER 1 D I S P L A C E M E N T * *
17 * *
l fj *******4c******************** ******** * **********************************

c o o o 19 SUBRC START 0
0 0 0 0 34 08 0 C 1 3 20 ST GET + 3» ARR SAVE PARM ADDR
0 0 0 4 36 08 0 0 3 1 21 A C 0 N 6 »AKR INCREMENT TO RETLRN
0 0 0 8 34 08 0C2F 22 ST RET+3,ARR SAVE RETURN
OOOC 34 02 OC 2 8 2 3 ST SAVE + 3 f 2 SAVE XR2
0010 C2 02 OCCO 24 GET LA * - * , 2 GET PARMETER ADDRESS
0014 2C 01 0C1P 05 28 MVC T E S T + 2 (2) , 5 (, 2) MOVE IN MASK AND DISPLACEMENT
0019 78 00 OC 26 TEST TBN * - * (♦ !) , * - * TEST INDICATOR
001C P2 90 09 27 JF SAVE INDICATOR OFF
001F B5 02 02 28 L 2 1 , 2) , 2 GET CONTROL F IE L D ADDRESS
0022 85 02 05 29 L 5(12) * 2 GET LOOK UP ADDRESS
0025 BC C3 OC 30 MV I 0< » 2) * C ' C * MOVE IN C*C*
002B C2 02 OCCC 31 SAVE LA * - * , 2 RESTORE
002C CO 87 OCCC 32 RET B * - * RETURN
0030 0006 003 1 33 CON 6 DC I L 2 * 6*

00 0 8 34 ARR EUU 8
FFFF 38 END

TOTAL STATEMENTS IN ERROR IN T H IS ASSEMBLY = 0

SUBRC CROSS REFERENCL

SYMBOL L6N VALUE CEFN REFERENCES VER 00, MOD 00 01/30/76 PAGE 3

ARR
C0N6
GET
RET
SAVE
SUBRC
TEST

001
002
004
CC4
00 4
OCI
003

0 0 0 8 0034
C 0 3 1 003 3
COIC 002 4
002C CC32
0 0 2 8 C 03 I
OOOC 001 9
0 0 1 9 C02 6 CC25*

0 0 2 0 0 0 2 1 * 0 0 2 2
C 0 2 l
0 0 2 0 *
0 0 2 2 *
CC 23* CG27

TOTAL STATFMENTS IN ERROR IN TH IS ASSEMBLY =

Figure 26. Sample Assembler Listing

Programmer’s Guide 41

External Symbol List (ESL) Table Size

The ESL table is an execution time main storage table
containing the module name (START statement name or
ASMOBJ) and each EXTRN and ENTRY symbol defined
in an assembly. The total of EXTRNs and ENTRYs
allowed in a single assembly is limited by the ESL table
size.

Using the Model 10 disk system assembler, the limit is 74
EXTRNs and ENTRYs.

Using the Model 12 and Model 15 assembler, the limit varies
with the amount of storage available in the execution partition.
The limiting sizes and associated storage ranges are:

Storage Available Limit o f EXTRNs and ENTR Ys

10K 84

12K 124

14K 169

16K 209

18K-48K 254

42

Appendix A. Machine Instructions

MACHINE LANGUAGE INSTRUCTION FORMATS

Operation Code

The first byte of each instruction, the operation code,
specifies the addressing modes to be employed by the
instruction in bits 0 through 3, and the operation to be
performed in bits 4 through 7.

QCode

The second byte of each instruction is the Q code. In 2-
address formats, the Q code is always a length count. In
other formats, depending upon the operation specified, the
Q code can be:

• Length count

• Immediate data

• Bit mask

• Register address

• Data selection

• Branch or skip condition

• Device address and functional specifications

Control Code

The third byte of an instruction in the Command Format
contains additional data pertaining to the command to be
executed.

Storage Addresses

For instructions in the 1-operand and 2-operand formats,
the third byte of the instruction and all bytes following
are storage address information.

3 Bytes

(6) Command Format
Appendix A. Machine Instructions 43

04 ZAZ
06 AZ
07 SZ
08 MVX
OA ED
OB ITC
OC MVC
OD CLC
OE ALC
OF SLC

Op Mnemonic Type

k 2 ADDRESS

Direct
Op Q Operand One | Operand Two"

< 6 bytes ■>

14
16
17
18
1A
1B
1C
1D
1E
1 F

ZAZ
AZ
SZ
MVX
ED
ITC
MVC
CLC
ALC
SLC

2 ADDRESS—

Direct Indexed
Op Q Operand One j D2~"j

{< 5 bytes " ^ |

R1

24
26
27

ZAZ
AZ
SZ

|- * -2 ADDRESS— * - j

28 MVX Direct Indexed
2A ED | Op | Q Operand One J D2 |
2B
2C

ITC
MVC

2D CLC 1 1

2E ALC R2
2F SLC

30 SNS
31 LIO
34 ST
35 L
36 A
38 TBN
39 TBF
3A SBN
3B SBF
3C MVI
3D CLI
3E SCP*
3F LCP*

1 ADDRESS

Direct
Op Q Operand One

4 bytesH

44 ZAZ
46 AZ
47 SZ
48 MVX
4A ED
4B ITC
4C MVC
4D CLC
4E ALC
4F SLC

54 ZAZ
56 AZ
57 SZ
58 MVX
5A ED
5B ITC
5C MVC
5D CLC
5E ALC
5F SLC

h 2 ADDRESS“ H

Op Q D1 Operand Two

"5 bytes-

R1

Op

2 ADDRESS

Indexed
D1

"4 bytes - 4

R1 R1

Op Mnemonic Type

64
66
67
68
6A
6B
6C
6D
6E
6F

ZAZ
AZ
SZ
MVX
ED
ITC
MVC
CLC
ALC
SLC

2 ADDRESSlj

Opl Q l D1 | D2 |

|^ ™ 4 bytes — ■■ » j

R1 R2

70 SNS
71 LIO
74 ST
75 L
76 A
78 TBN
79 TBF
7A SBN
7B SBF
7C MVI
7D CLI
7E SCP*
7F LCP*

1 ADDRESS

R1

84
86
87
88
8A
8B
8C
8D
8E
8F

ZAZ
AZ
SZ
MVX
ED
ITC
MVC
CLC
ALC
SLC

| ^ 2 ADDRESS-

Indexed Direct
Op [Q~ D1 | Operand Two

5 bytes» ■■■ »

R2

94 ZAZ
96 AZ U - 2 ADDRESS-*-!
97 SZ
98 MVX Indexed
9A ED | 5 q “ o - D1 D2
9B ITC j
9C MVC U ----------- — ►!9D CLC
9E ALC R2 R1
9F SLC

A4
A6
A7
A8
AA
AB
AC
AD
AE
AF

ZAZ
AZ
SZ
MVX
ED
ITC
MVC
CLC
ALC
SLC

[* - 2 ADDRESS-*-]

Indexed
Op I O I D1 | D2

-4 bytes-

R2 R2

* Model 15 only.

Legend:

D1 -
D2 -
R1 -
R2 -

Displacement, operand 1
Displacement, operand 2
Register 1
Register 2

4 4

MnemonicOp Type

BO SNS
B1 LIO
B4 ST
B5 L
B6 A
B8 TBN
B9 TDF
BA SBN
BB SBF
BC MVI
BD CLI
BE SCP*
BF LCP*

1 ADDRESS

Indexed
1 o p I Q 1 " p H

j < - 3 bytes—

XR2

CO
C1
C2

BC
TIO
LA

Pj re£L
O p I Address]

■ 4 bytes -l
DO
D1
D2

EO
E1
E2

FO
F1
F2
F3
F4

BC
TIO
LA

BC
TIO
LA

HPL
APL
JC
SIO
CCP*

I Op l Q | ~D2~
■ 3 bytes— >

| Op | Q | D2~|
• 3 bytes ■

I p p I Q
.3 bytes ■

+XR1

+XR2

♦Model 15 only.

Appendix A. Machine Instructions 45

OS

Op Code Q Total
I nstr

Type
(one byte) Code

Bits
0-3 - Rite 4 -7 One

Byte
irst Second

Length
- Summary-

0 1 2 3 4 5 6 7 8 9 A B C D E F Op Q II— -Operand »

0 Z AZ AZ SZ M V X ED ITC M V C CLC A L C SLC 2 Bytes 2 Bytes Direct 6 X
I

1 Z AZ AZ SZ M V X ED ITC M V C CLC A L C SLC
1 Byte Disp
Index-By R1

5 X
I

D1

2 Z A Z AZ SZ M V X ED ITC M V C CLC A L C SLC 1 Byte Disp
Index-By R2

5 X
I

D2

3 SNS LIO ST L A T BN ' TBF SBN SBF MVI CLI SCP* LCP* 4 Y

4 Z A Z AZ SZ M V X ED ITC M V C CLC A LC SLC 1 Byte
Displacement
Indexed

2 Bytes Direct 5 X D1

5 Z AZ AZ SZ M V X ED ITC M V C CLC A LC SLC 1 Byte Disp
Index-By R1

4 X D1 D1

6 Z A Z AZ SZ M V X ED ITC M V C CLC A LC SLC
By R1 1 Byte Disp

Index-By R2
4 X D1 D2

7 SNS LIO ST L A T B N TBF SBN SBF MVI CLI SCP* LCP* 3 Y D1

8 Z A Z AZ SZ M V X ED ITC M V C CLC A L C SLC 1 Byte
2 Bytes Direct 5 X D2

9 Z AZ AZ SZ M V X ED ITC M V C CLC A L C SLC
Displacement
Indexed

1 Byte Disp
Index-By R1

4 X D2 D1

A Z AZ AZ SZ M V X ED ITC M V C CLC A L C SLC
By R2 1 Byte Disp

Index-By R2
4 X D2 D2

B SNS LIO ST L A T BN TBF SBN SBF MVI CLI SCP* LCP* 3 Y D2

C BC TIO LA 2 Bytes Direct 4 z

D BC TIO LA
1 Byte Disp
Index-By R1

3 z D1

E BC TIO LA
1 Byte Disp
Index-By R2

3 z D2

F HPL APL JC SIO CCP* 3 F

* M o d e l 15 o n ly .

Instruction* Mnemonic Operation Code

MNEMONIC OPERATION CODES (MACHINE)

Zero and Add Zoned Decimal
Add Zoned Decimal
Subtract Zoned Decimal

Move Hex Character
Move Characters
Compare Logical Characters
Add Logical Characters
Subtract Logical Characters
Insert and Test Characters
Edit

ZAZ
AZ
SZ

MVX
MVC
CLC
ALC
SLC
ITC
ED

Two-address
Format**

Move Logical Immediate
Compare Logical Immediate
Set Bits On Masked
Set Bits Off Masked
Test Bits On Masked
Test Bits Off Masked
Store Register
Load Register
Add to Register
Branch On Condition
Test I/O and Branch
Sense I/O
Load I/O
Load Address
Load CPU***
Store CPU***

MVI
CLI
SBN
SBF
TBN
TBF
ST
L
A
BC
TIO
SNS
LIO
LA
LCP
SCP

\

One-address
Format**

/

Advance Program Level

Halt Program Level
Start I/O
Command CPU***

Jump On Condition

APL I

HPL f
SIO \ Command
CCP (Format**

JC I

* For information concerning specifications for the use of
these instructions with the Model 10, see the IBM System/3
Model 10 Components Reference Manual GA21-9103,
or with the Model 15, see the IBM System/3 Model 15
Components Reference Manual, GA21-9193.

** See Machine Language Instruction Formats in this
appendix.

*** These instructions are for the Model 15
but they can also be generated on the
Model 12 through the macros $LCP, $SCP,
and $CCP. For more information concerning
the use of the Model 12 macros, see
IBM System/3 Models 10 and 12 System
Control Programming Macros Reference
Manual, GC21-7562.

A p p en d ix A . M achine In stru ction s 47

EXTENDED MNEMONIC CODES

Instruction

Move Hex Character (MVX)

Move to Zone from Zone
Move to Numeric from Zone
Move to Zone from Numeric
Move to Numeric from Numeric

Branch On Condition (BC)

Branch
Branch High
Branch Low
Branch Equal
Branch Not High
Branch Not Low
Branch Not Equal
Branch Overflow Zoned
Branch Overflow Logical
Branch No Overflow Zoned
Branch No Overflow Logical
Branch True
Branch False
Branch Plus
Branch Minus
Branch Zero
Branch Not Plus
Branch Not Minus
Branch Not Zero

Jump On Condition (JC)

Jump
Jump High
Jump Low
Jump Equal
Jump Not High
Jump Not Low
Jump Not Equal
Jump Overflow Zoned
Jump Overflow Logical
Jump No Overflow Zoned
Jump No Overflow Logical
Jump True
Jump False
Jump Plus
Jump Minus
Jump Zero
Jump Not Plus
Jump Not Minus
Jump Not Zero

Command CPU (CCP—Model 15 only)
Supervisor Call

Mnemonic Operation Code Q Code

MZZ X W
MNZ X‘02’
MZN X W ’
MNN X*03’

B X‘87’
BH X‘84’
BL X‘82’
BE X‘81’
BNH X W ’
BNL X‘02’
BNE X W ’
BOZ X‘88’
BOL X‘A0’
BNOZ X W
BNOL X‘20’
BT X‘10’
BF X‘90’
BP X‘84’
BM X‘82’
BZ X‘81’
BNP X W ’
BNM X‘02’
BNZ X*01’

J X‘87’
JH X‘84’
JL X‘82’
JE X‘81’
JNH X W ’
JNL X‘02’
JNE X W ’
JOZ X‘88’
JOL X‘A0’
JNOZ X W
JNOL X‘20’
JT X‘10’
JF X‘90’
JP X‘84’
JM X‘82’
JZ X‘81’
JNP X W ’
JNM X‘02’
JNZ X W ’

SVC X‘10’

Assembler Language to Machine Language Relationships

The following charts show the relationship between a
machine instruction statement as coded by the System/3
Basic Assembler Language programmer and the machine
language as generated by the assembler.

For example, the instruction coded by the programmer is
ZAZ FINAL(5),DONE(1,1). From the second line of the
first of the charts we can develop the relationship between
the instruction and the machine code as follows (assume
FINAL is a relocatable symbol with value X‘131B’ and
DONE is an absolute symbol with value X‘BA’):

Machine instruction statement
as input to assembler

Five-byte machine instruction generated by assembler

Used in this manner, the following charts show what
machine code results from a particular assembler language
statement, and vice versa, what assembler language format
obtains a particular machine code format.

The abbreviations used on the following pages mean:

A1 Direct address, operand 1
A2 Direct address, operand 2
D1 Displacement, operand 1
D2 Displacement, operand 2
LI Length of operand 1
L2 Length of operand 2
R1 Register 1
R2 Register 2
RX Local storage register
I Immediate data

A p p en d ix A . M achine In stru ction s 4 9

5 0

c
A p p en d ix A . M achine In stru ction s 51

5 2

A p p en d ix A . M achine In stru ction s 53

5 4

A p p en d ix A . M achine In stru ction s 55

56

5

A p p en d ix A . M achine In stru ction s 57

58

A p p en d ix A . M achine In stru ction s 59

60

Assembler Instruction Format Machine Instruction Format

Operation

SBF

SBF

SBF

Operands

A1 ,l

D1(,R1),I

D1(,R2),I

Op-Code

Byte 1

3B

Q-Code

Byte 2

Operands

Byte 3

Address A1

Byte 4 Byte 5 Byte 6

+-

7B

BB

I Disp D1
| from R1

I Disp D1
from R2 I

NOTE:

If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

A p p en d ix A . M achine In stru ction s 61

6 2

Assembler Instruction Format Machine Instruction Format

Operation

BC

BC

BC

NOTES:

Operands

A1,l

D1(,R1),I

D1 (,R2),I

Op-Code

Byte 1

CO

DO

Q-Code

Byte 2

EO 1 1 * Disp D1
1 I from R2

Operands

Byte 3

Address A1

Byte 4

- r

Disp D1
from R1

Byte 5 Byte 6

If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

For the extended mnemonics of the BC, the second operand (I -field) is not used since the information is inherent in the mnemonic.
See Extended Mnemonic Codes for the extended branches and their associated Q-codes.

A p p en d ix A . M achine In stru ction s 6 3

Page of SC21-7509-6
Issued 24 June 1977
By TNL: SN21-5536

Assembler Instruction Format Machine Instruction Format

Operation Operands Op-Code Q-Code

Byte 1 Byte 2

Operands

Byte 3 Byte 4 Byte 5 Byte 6

LCP

LCP

LCP

NOTES:

A1 ,RX

D1 (,R1),RX

D1(,R2),RX

I 3F RX

7F — i-
i

RX 1 Disp D1
| from R1

____________ i_______________ i________ _
BF i RX J Disp D1

Address A1
- r

from R2

The Model 15 LCP instruction can also be generated on the Model 12 through the
$LCP macro instruction; see IB M System /3 Models 10 and 12 System Control
Programming Macros Reference Manual, GC21-7562.

If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

6 4

Assembler Instruction Format Machine Instruction Format

Operation

SCP

SCP

SCP

NOTES:

Operands

A1,RX

D1(,R1),RX

D1(,R2),RX

Op-Code

Byte 1

Q-Code

Byte 2

Operands

Byte 3 Byte 4

I 3E 1 RX 1 Address A1 i 1
1 ____i_________ i

7E 1
1

RX I Disp D1
! from R1 1

* I !
BE 1

1
RX | Disp D1

1 from R2
i
1

Byte 5 Byte 6

The Model 15 SCP instruction can also be generated on the Model 12 through the $SCP
macro instruction; see IB M System/3 Models 10 and 12 System Control Programming
Macros Reference Manual, GC21-7562.

If D 1 is relocatable, the assembler computes the displacement based on the USING instruction.

Assembler Instruction Format Machine Instruction Format

Operation Operands Op-Code Q-Code Operands

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

APL 1 r w---------' I 00 I I 1 !
1— --------1 1 I 1

NOTE:

The APL is a NO-OP instruction on the Model 15.

Assembler Instruction Format Machine Instruction Format

Operation Operands Op-Code Q-Code Operands

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

HPL 11,12
r f ° ; 12 : " 1 !___________ i__________ i________________

Assembler Instruction Format Machine Instruction Format

Operation Operands Op-Code Q-Code Operands

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

SIO 11,12

COLL

i

A p p en d ix A . M achine In stru ction s 65

Assembler Instruction Format Machine Instruction Format

Operation Operands Op-Code Q-Code Operands

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

CCP 11,RX E- ! :
NOTES:

The Model 15 CCP instruction can also be generated on the Model 12 through the $CCP
macro instruction; see IB M System/3 Models 10 and 12 System Control Programming
Macros Reference Manual, GC21-7562.

For the SVC form of the CCP instruction, the Q-code is inherent in the mnemonic and the RX field is omitted
from the operand field. See Extended Mnemonic Codes for the associated Q-code.

Assembler Instruction Format Machine Instruction Format

Operation Operands Op-Code Q-Code Operands

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

JC A1,l L f2 ---------------- ,n r h ; I
!___________ I________________

*lf the first operand is absolute, this value is placed in byte 3.
If the first operand is relocatable, the displacement from the next sequential instruction to address A1 is placed in byte 3.

NOTE:

For the extended mnemonics of the JC, the second operand (l-field) is not used since the information is inherent in the mnemonic.
See Extended Mnemonic Codes for the extended jumps and their associated Q-codes.

66

Appendix B: Assembler Instruction Reference Table

Operation Entry Name Entry Operand Entry

DC Any Symbol or Blank One operand entry containing: Duplication Factor, Type, Length, Constant.

DROP Blank Specified register 11 or 2).

DS Any Symbol or Blank One operand entry containing: Duplication Factor, Type, Length.

EJECT Blank Blank.

END Blank A relocatable expression or blank.

ENTRY Blank Any relocatable name entry found in the current program.

EQU Any Symbol An expression.

EXTRN Blank
One relocatable symbol not found in the current program which may
be followed by an absolute expression enclosed in parentheses.

ICTL Blank Two decimals in the fornrof B,E.

ISEQ Blank Blank or two decimal values in the form L, R.

ORG Blank Blank operand or an expression (A) optionally followed by two absolute
expressions in the form A,B,C.

PRINT Blank Model 10 Disk System: One or two entries from DATA, NODATA, ON,
OFF.
Model 12 and Model 15: One to three entries from DATA, NODATA,
GEN, NOGEN, ON, OFF.

SPACE Blank Blank or a decimal value.

START Name or Blank A self-defining value or blank.

TITLE Name or Blank A sequence of characters ehclosed in apostrophes.

USING Blank A relocatable expression (V) and an index register (R) in the form V,R.

A p p en d ix B. A ssem bler In stru ction R eferen ce T able 67

6 8

Appendix C: System/3 Assembler — Source Language Error Codes and Diagnostics

Code Diagnostic Explanation

N01 INVALID NAME LENGTH Name field entry greater than six characters

N02 INVALID CHARACTER IN NAME Name starts with non-alphabetic or contains an invalid character

N03 NAME NOT ALLOWED ON THIS
INSTRUCTION

Name field entry not allowed on this instruction

N04 REFERENCE TO UNDEFINED SYMBOL The referenced symbol is not defined in this program

N05 NAME MISSING FROM
INSTRUCTION REQUIRING ONE

Name field entry missing from EQU instruction

N06 PREVIOUSLY DEFINED SYMBOL Symbol has been previously defined in this program

N07 MODULE NAME MISSING START instruction missing, or START instruction present but name field
entry (module name) missing. Assembler assigns the default module;
name ASMOBJ.

001 INVALID OPERATION CODE Undefined operation field entry

002 INVALID ORIGIN Attempt to ORG to a value less than the initial value of the location counter

003 INVALID OR ILLEGAL ICTL Operand error on ICTL, or ICTL not the first statement in the program.
(ICTL treated as last source statement in program)

004 INVALID START INSTRUCTION START instruction encountered after location counter is initialized

005 LOCATION COUNTER ERROR Location counter overflow (greater than 65536) or attempt to reference
the location counter at 65536

006 MISSING END STATEMENT END statement missing from the program

P01 INVALID OPERAND DELIMITER An operand field syntactical delimiter is either misplaced or missing

P02 INVALID OPERAND FORMAT The operand field is not of the proper format for this instruction

P03 MISSING OPERAND Operand field entry missing from instruction requiring one

P04 INVALID SYNTAX IN EXPRESSION Violation of one or more expression syntax rules

P05 EXPRESSION VALUE TOO LARGE Final expression value not in range -2^® to 21®-!

P06 INVALID OPERAND One or more operand entries do not meet specifications for this instruction

P07 ARITHMETIC OVERFLOW Intermediate expression value not in the range -2^4 to 2 ^ -1

P08 ADDRESSABILITY ERROR Relocatable displacement outside the range of USING instruction

P09 REGISTER SPECIFICATION ERROR Index register specification not 1 or 2

P10 INVALID CONSTANT Error in constant specification on DC instruction

P11 INVALID CONSTANT TYPE Data type specified on DC/DS is not valid

P12 INVALID DUPLICATION FACTOR Error in duplication factor specification on DC/DS

P13 INVALID LENGTH SPECIFICATION Error in length specification

P14 INVALID STATEMENT DELIMITER The column following the statement field is not blank

P15 RELOCATABLE MULTIPLICATION A relocatable term used in multiply operation

P16 RELOCATABILITY ERROR A relocatable expression is used where an absolute expression is required,
or an absolute expression is used where a relocatable expression is required

P17 INVALID SYMBOL Invalid character in or invalid length of a symbol in the operand field

P18 INVALID SELF-DEFINING TERM Error in the format of a self-defining term

P19 SELF-DEFINING VALUE TOO LARGE Value of self-defining term is outside of range -2^® to 2^®"^

P20 INVALID IMMEDIATE FIELD Immediate field not in range X'00' to X'FF'

P21 INVALID DISPLACEMENT Absolute displacement not in range 0 to 255

A p p en d ix C. S y s te m /3 A ssem bler - S ou rce Language Error C od es and D iagn ostics 6 9

Code Diagnostic Explanation

P22 INVALID EXTRN Symbol is invalid or already defined in the program or subfield
is invalid.

P23 TOO MANY ESL RECORDS More than allowed number of EXTRN and ENTRY statements
were found in the program. This count includes multiple
EXTRNs and ENTRYs, ENTRYs with valid symbols which are
not defined, and EXTRNs with valid symbols which are defined
in the program. See ESL Table Size in Part //. Programmer's
Guide.

7 0

Appendix D: Assembler Language Subroutine To RPG II Linkage

Assembler subroutines can be linked to an RPG II program.
The RPG II program passes parameters as it branches to
the assembler subroutine. To write a subroutine that will
be linked to an RPG II program the following rules must
be used:

1. The name of the assembler subroutine must be
SUBRxx. xx can be any valid alphabetic characters
for user-written subroutines. (Numeric characters
are reserved for IBM-supplied subroutines.) The
name used must be the same as the name used in
the RPG II program.

2. Upon entry to the assembler language subroutine,
the address recall register (ARR) contains a pointer
to the parameters which represent the fields to be
referenced by the assembler subroutine. The return
point to the RPG II program is the first byte after
the parameters.

3. If the subroutine makes use of registers 1 and 2, the
contents of these registers must be stored upon
entry to, and restored before exit from, the
subroutine.

USING FIELDS IN THE RPG II PROGRAM

When linkage is effected from RPG II to an assembler
subroutine, three possible areas in the RPG II program can
be referenced by the subroutine. They are: field, table
or array, and indicator.

Referencing a Field in an RPG II Program

The following parameters (symbolic form of code
generated by the compiler) are passed by RPG II when a
field is to be referenced:

B SUBRxx

DC ILUField length -1’

Referencing a Table or Array in an RPG II Program

The following parameters (symbolic form of code
generated by the compiler) are passed by RPG II when a
table or array is to be referenced:

B SUBRxx

DC ILUEntry length-1 ’

DC AL2(leftmost address of table control field)

The subroutine can refer to the table or array defined in
the RPG II program by utilizing the control field created
for that table or array. This control field, one of which
is created for each table or array built by the RPG II
program, is in the following format:

Bytes Meaning

1-2 Rightmost address of the first entry.

3-4 Rightmost address of the last entry.

5-6 Initialized to rightmost address of first entry;
used at object time for rightmost address of
the last looked-up entry of a table.

7-8 Length of an entry.

The subroutine can obtain the data retrieved from the last
RPG II table LOKUP by using the address in bytes 5-6.
To access the table or array itself, the address in bytes 1-2
must be used.

Data used by the subroutine must be left unpacked for the
RPG II program.

DC AL2(rightmost address of field)

A p p en d ix D . A ssem bler L anguage S u b rou tin e to RPG II L inkage 71

Referencing an Indicator in an RPG II Program

The following parameters (symbolic form of code generated
by the compiler) are passed by RPG II when an indicator
is to be referenced:

B SUBRxx

DC XL1‘00’

DC X Ll‘Mask for the indicator’

DC XLrDisplacement to the indicator from XR1’

Note: The parameters passed to the assembler subroutine
are determined by the coding done in the RPG II program.
For a description of this coding, see the IBM System/3
RPG IIReference Manual SC21 -7504, IBM System/3
Model 6 RPG II Reference Manual SC21 -7517, or IBM
System/3 Card System RPG II Reference Manual
SC21-7500.

RPG II LINKAGE SAMPLE PROGRAM 1

In this sample program, the RPG II program links to the
assembler language subroutine SUBRA (Figure 27).
When control is returned to the RPG II program, the
character ‘A’ will have been moved into the field in the
RPG II program.

RPG II LINKAGE SAMPLE PROGRAM 2

In this sample program, the RPG II program links to the
assembler subroutine SUBRB (Figure 28). The first
parameters passed reference a table. The second param
eters reference an indicator. The subroutine refers to
both sets of parameters. The subroutine first tests the
indicator in the RPG II program. If the indicator is off,
control is returned to the RPG II program. If the indicator
is on, a character ‘C’ is moved into the last looked up
entry in the table. When control is returned to the RPG II
program, it checks for a ‘C’ in the table.

I/O SUBROUTINES

Subroutines that support input or output devices can also
be linked to an RPG II program. These subroutines are
commonly referred to as RPG II SPECIAL subroutines.

Linkage for I/O Subroutines

The following linkage is generated by RPG II to communi
cate with the user-supplied I/O subroutine.

1. DTF (define-the-file) format:

Bytes Description

0 Device code (X‘00’)

1 UPSI mask

2-3 Attributes

4-5 Reserved for data management

6-7 Address of next DTF

8-B Reserved for data management

C-D Logical record address

E Completion code

F

X‘42’ = End-of-file
X‘41’ = Controlled cancel (not

recognized by Model 10
card system)

X‘40’ = Normal completion (not
recognized by Model 10
card system)

Operation
X‘C0’ = Get and put (model 10

card system only)
X‘80’ = Get
X‘40’ = Put
X‘20’ = Update
X‘10’ = Close

10-11 Input I/O address

12-13 Output I/O address

14-15 Block length

16-17 Record length

18-19 Address of array DTT if array linkage
is used

72

The address of byte 0 of the DTF will be passed to
the I/O subroutine in index register 2. Bytes 0-3,6-7,
C-D, and 10-17 are filled in by RPG II at compile time.
Byte E, completion code, is inserted by the I/O sub
routine when control is returned to RPG II. Byte F,
the operation byte, is inserted at object time. The
information in bytes 0 and 4-B must be available,
unchanged at close time, for data management.

The DTT (define-the-table) is used for array linkage.
DTT format:

Bytes Description

0-1 Address of rightmost byte of the first
element of the array.

2-3 Address of rightmost byte of the last
element of the array.

4-5 RPG last LOKUP element.

6-7 Length of array element.

2. The I/O subroutine must save and restore the registers
altered in the routine. Control should be returned to
the address in the address recall register (ARR).

Note: The combined get and put operation code, X‘C0’, is
utilized by the System/3 Model 10 Card System only. The
System/3 Model 10 Disk System, System/3 Model 12, and
System/3 Model 15 use alternate get and put operations to
accommodate combined files. When coding an I/O subroutine
to be used on either system, be certain to consider this fact.

When an input operation is done, the I/O subroutine must
move the address of the physical buffer currently being
used to the logical buffer address location in the DTF (bytes
C-D). In the Model 10 Card System, address bytes 10-11
will be the same as bytes C-D (one physical buffer).

When an output operation is requested, the I/O subroutine
must move the data from the logical buffer (address in
bytes C-D of the DTF) to the physical buffer (address
in bytes 12-13 of the DTF). The two addresses are the
same in the Model 10 Card System. Bytes 0-B are unused
in the Model 10 Card System.

The I/O subroutine must do its own open when the first
call to it is issued. It must also do its own close to the
file on a close call.

If a dual I/O is requested, the second area will be immediately
behind the first (Model 10 Disk System, Model 12, and Model
15 only).

The I/O subroutine cannot be overlaid in the Model 10 Disk
System, Model 12, and Model 15.

Sequential processing only is supported.

When an I/O subroutine issues a halt, three halts should be
displayed as follows:

1. The first halt issued should be the FF halt reserved
by RPG II for SPECIAL I/O subroutine usage.

2. The second halt should be the last two digits of the
subroutine name.

3. The third halt may be any valid halt that can be
displayed.

A p p en d ix D . A ssem bler Language S u b rou tin e to RPG II L inkage 73

Figure 27. A
ssem

bler Language Subroutine (SU
BR

A
) for Sam

ple Program
 1

-4

Control passed to SUBRA
by RPG II program

first byte after
parameters

4

Figure 28. A
ssem

bler Language Subroutine (SU
BR

B) for Sam
ple Program

 12

I

o*
oc

a

PCp

Control passed to SUBRB
by RPG II program

first byte after
parameters

LIBRARY DECK GENERATOR PROGRAM (MODEL 10
ONLY)

The System/3 Model 10 Card System user can write assem
bler language subroutines to be used as SPECIAL or EXIT
routines in an RPGII program. These assembler routines,
however, cannot be inserted directly into the RPG II
compiler. The assembler language subroutine must
first be assembled by the System/3 Model 10 Disk System
Basic Assembler and then translated by the Library Deck
Generator (LDG) program before it can be placed in the
RPG II compiler.

The entire operation, from writing an assembler subroutine
to selection of that subroutine by the IBM System/3 Model
10 Card System RPG II compiler is outlined as follows:

1. The assembler subroutine is written by the programmer.
If standard control cards supplied by the LDG program
are not being used, the programmer must also code
control cards for the subroutine.

2. The assembler subroutine is assembled on the
System/3 Model 10 Disk System by the Basic
Assembler.

3. The LDG program is read into System/3 Model 10
Disk System storage. The *** parameter card,
assembler subroutine object deck, and blank cards
are placed in the MFCU.

4. The LDG program produces a deck of cards, con
taining the subroutine, which can be placed in the
RPG II compiler. The deck produced by the LDG
program contains the following:

Header card
Control cards
Text
Q-card
End card

5. The deck produced by the LDG program may now
be placed in the RPG II compiler deck. When an
RPG II program is compiled, this subroutine will be
selected, when required, just as any other compiler
subroutine.

The following material describes the information
needed to use an assembler language subroutine in an
RPG II program. This material is divided into four major
sections:

Writing the assembler language program
Running the LDG program
Output of the LDG program
Example of a SPECIAL subroutine

Writing the Assembler Language Program

The following information must be considered when the
assembler language program is written.

Title Instruction

The name field of the TITLE instruction must contain
00GEB in columns 1-5.

Control Cards

Control cards are needed for every assembler language sub
routine. Control cards contain code, executed during
compile time, which determines whether the subroutine
should be included as part of the program being compiled.
Library routines are selected only when the execution of a
control card determines they are needed. In addition,
control cards are needed to ensure that the entry point for
the subroutine is placed in the proper location in core for
the RPG II compiler to find and use it.

There are two ways to get the control cards you need. In
some cases, you will need to code them yourself; in others
standard control cards are supplied by the LDG program.
If your subroutine is to be used as a normal SPECIAL or
EXIT routine, the LDG program will supply three control
cards. See Figure 29 for samples of these. When these
control cards are provided, a SPECIAL routine is selected
if bytes 12-13 of the file description compression matches
the identification characters of the routine, and if the
SPECIAL device code B‘Qxxxl010’ is present in byte 16
of the same file description compression. EXIT routines
are selected if the identifier in the library routine is the
same as an entry in the symbol table (bytes 3-4) and if
byte 2 of the same entry contains bit configuration
11100000. When these decks are selected, the address of
the entry point of associated object code is placed in the
symbol table entry, bytes 3-4 for an EXIT reference and/or
bytes 8-9 of the file description compression for a SPECIAL
reference.

You must code control cards for your subroutine when:

• The subroutine is not a SPECIAL or EXIT routine.

• The subroutine needs a function not provided by the
standard control cards.

The following paragraphs describe several compiler resident
routines which can be used by programmer coded control
cards.

7 6

Coding Control Cards

There are three types of control cards each identified by
a special character in column 1. Each type performs a
different function:

• Cards with a J in column 1 (J-cards) are usually used to
control the selection of a routine for an object program.
They also place the routine entry address in compile
time storage for use by the RPG II compiler.

• Cards with a K in column 1 (K-cards) are used only
when one routine from a set of related routines is to be
used in any job. A J card will determine if any of these
routines are needed and if so will start the scan for K
cards which in turn control selection of the proper
routine.

• Cards with an L in column 1 (L-cards) are used to pass
information from RPG II compile time core to a sub
routine or vice versa. They are executed only if the
deck in which they appear has been selected for use with
the current program.

Your control cards must contain instructions for calculating
the address at which your subroutine will be loaded. To
calculate the true entry address, use the current relocation
factor described here.

Label Address Function

RELOCF X‘030C to Contains the current
X‘030D’ relocation factor. Is

modified when the end
card of the selected deck
is encountered or J1EAA1
is entered.

See Figure 29, Part 1, found at the end of this section, for
an example of the use of the current relocation factor.

The following paragraphs describe several compiler resident
routines which can be used by programmer coded control
cards.

J-Card Scan Routine reads the library deck until a J-card is
encountered. The routine has three entry points.

Control card identification characters must be defined for
assembly at X‘0000’ and are placed in column 1 of control
cards. The only allowable characters are J, K, L, and blank.
There should be one non-blank control card identifier
character for each block of code for a control card. The
blank is used as a delimiter between control card strings.

Label Address Function

J3EAA1 X‘031A’ Scans for J-card. When
one is found, control is
passed to that card. All
other cards are ignored.

For example, D C # # CLI0‘J K L L # # # ’ shows identi
fiers for seven control cards and four control card strings.
The first is a 4-card string with identifiers ‘JKLL’ used.
The others are single card strings, each of which has an
‘L’ identification.

LDG identifies the control cards and assigns one control
card identification character to each one. The control
card strings are merged with the text cards for the routine
functional code in the following manner. The first control
card string is merged in front of the text, and one addition
al control card string is merged into the text cards where
there is a break in the text caused by a DS or an ORG which
changes the location counter.

J2EAA1 X‘3014’

J1EAA1 X‘030E’

Clears X‘00E0’ to X‘00FF’
and X‘007C’ to X‘007F’
to hex zeroes then scans
for J-card as J3EAA1.

Resets the relocation
factor to the next object
address and performs as
J2EAA1.

K-Card Scan Routine has one entry point.

Label Entry Point Function

Each control card must contain executable code. Control K1EAB1 X‘0320’ Scans for K-card. When
cards are coded in the order needed for the purposes de- one is found, control is
scribed above. Each must begin at X‘0017’; therefore, an passed to that card. All
ORG to 23 or X‘0017’ must precede the code for each card. other cards except J-

cards are ignored. If a
J-card is found, a halt
‘40’ is executed.

A p p en d ix D . A ssem bler L anguage S u b rou tin e to R PG II L inkage 77

Relocate Deck Routine has one entry point.

Label Entry Point Function

R1EAC1 X‘032C’ Initiates or continues
relocation of the current
deck. Will recognize and
execute L-cards and re
organize and print Q-cards.
Exits to J1EAA1 when
end card is encountered.

Scan File Description Compressions Routine has two entry
points. This routine steps through the file description com
pressions. It returns a pointer to the next compression in
register 2. If the condition code is high, the pointer is
valid. Any other condition indicates the pointer is invalid.

Label Entry Point Function

F1EAE1 X‘0338’ Initializes pointer to first
file description compres
sion and sets condition
code.

Text Handling Routine builds up full text card in storage
and, when a card is full, punches that card. The area from
X‘0080’ to X‘00DF’ is the location of the punch buffer
and this must be considered when using this area of core.

Label Entry Point Function

BKEAH1 X‘0350’ Forces any partial text
card to be punched.

STXLA1 X‘035C’ Accepts a string of text to
be added to the current
text immediately following
the last text passed. Re
quires a 1-byte parameter
following the branch.
Parameter contains a
displacement relative to
register 1 to the length
byte of the text being
passed. The text string
should be preceded by
this length byte which
contains the length of
text.

F2EAE1 X‘033E’

Label Entry Point

E1EAF1 X‘0344’

Points register 2 to the
next compression and
sets the condition code.
(Register 2 need not be
pointing to the last
compression.)

Function

Initializes pointer to first
extension compression
and sets condition code.

Wait On Punch Busy Routine:

Label Entry Point

WTPUN1 X‘0362’

Title o f Subroutine

Function

Returns when the previous
punch operation has been
successfully completed
and the buffer is not busy.

The title of the routine must be a defined constant to be
loaded starting at X‘0000’. It must be equal to or less
than 80 characters in length. This title is printed on the
RPG II compiler listing with the address of the entry point
of the routine if it is selected at compile time.

Scan Extension Compressions Routine has two entry
points and steps through the extension compressions and
returns a pointer to the next compression in register 2. A
high condition code indicates a valid pointer. Any other
condition code indicates an invalid (undefined) pointer.

E2EAF1 X‘034A’ Points register 2 to the
next compression and
sets condition code.
(Register 2 need not
point to last compression.)

78

Routine Functional Code

This code must be assembled starting at X‘0000\ The
code must contain a break in continuity (a DS or an
ORG which changes the location counter value) where
control cards are to be inserted.

An OPTIONS card must be used to successfully assemble
the subroutine.

Running the LDQ Program

Assembling the Subroutine

The assembler subroutine is assembled by the Model 10
disk system basic assembler. The OCL considerations for
assembly are discussed in Section II: Programmer's
Guide under the headings OPTIONS Statement and
OCL Statements For Assembler.

The following paragraphs describe a special parameter card
that must be used with the assembler deck, the OCL required
to load the LDG program, and error conditions that may re
sult.

A p p en d ix D . A ssem bler Language S u b rou tin e to RPG II L inkage 7 9

Library Deck Generator Parameter Card (* * *)

A parameter card must precede the assembler generated
object deck to provide the LDG program with information
regarding output. Entries for the parameter card are as
follows:

C o lu m n s E n try Exp lanation

1-3 * * * Three asterisks identify a parameter card.

4-9 SUBRxx These characters identify the subroutine. Substitute any two characters
for xx — the second may be blank, but the first must not. Note that the
LDG program will not diagnose an errbr in these columns.

10 , (comma) Required.

11 S Standard control cards will be provided by the LDG program for the subroutine
identified by the characters found in columns 8-9 of this parameter card. The
title, also extracted from this parameter card, will be assigned to the subroutine.
The entry point of the routine must be the first byte of the routine. GEB will b<
forced as module identifier.

N Non-standard control cards will be supplied by the user as will identification
characters and title. (The format of this material may be found in Figure 29.)
If N is specified, the title specified in this parameter card is ignored. Thus, if
N is used, columns 21-96 may be left blank.

12 , (comma) Required.

13 D Default values for component version, modification level, and indication of
complete or partial deck replacement for header card are provided by the LDG
program.

G Default values are not assumed. The user must provide them in columns 15-19.

14 , (comma) Required if column 11 contains an S or column 13 a G.

15-16 VV Two numbers indicating the component version.

17-18 MM Two numbers indicating modification level.

19 0 (zero) Partial deck replacement for header card.

1 Complete deck replacement for header card.

20 , (comma) Required only if column 13 contains a G and column 11 an S.

21-96 Subroutine
title

If column 11 contains an N, the title is not required. If column 13 contains
a D, the title of the subroutine must begin in column 15.

80

Examples: Error Conditions

User will supply all control cards, identifying characters,
and title for subroutine ‘A#’.

Library Deck Generator will supply standard control cards
which will be used for selection of subroutine BB. The title
will be printed on the 4th tier of the cards and on the com
piler listing. The values given in columns 15-19 will be used
on the header card. The component version (02) will go in
columns 59-60 of the header card, the modification level
(00) will go in columns 31-32, and deck replacement indi
cator (1) will be placed in column 85.

Loading the LOG Program

Several errors are considered to be terminal. If terminal
errors occur, the card image is printed, the error message
is printed, the deck is run through to the 7*’ card, and a
C halt is displayed. When this halt is reset, processing is
discontinued by the end-of-job routine.

If the error is not terminal, the card image is printed, an
error message is printed, and a C halt is displayed. The
program is restartable, however, and processing will
continue.

Following is a list of error messages generated by this
phase. An asterisk (*) preceding the number indicates
which are warning errors.

1. Number of control cards generated incorrect.

2. Length of control card text, too great for one card.

3. Card sequence incorrect.

4. Title too long or the first text is contiguous.

*5. First control card character may not be blank.

6. Not enough breaks for control strings.

*7. More breaks than control strings.

*8. Last text not at highest address expected.

9. Improper card in deck.

10. End card out of sequence.

11. Invalid control card identification.

12. First object card must be an ESL card.

13. Insufficient core for control card storage.

14. Invalid entries on *** control card.

15. / card or *** card out of sequence.

* 16. GEB not used as module identifier.

17. *** card required before object deck.

18. Too many control card identifiers specified or
invalid sequence.

A p p en d ix D . A ssem bler L anguage S u b rou tin e to RPG II L inkage 81

Output of the LDG Program Example

The header card in stacker 2 should be placed in front of
the remainder of the output deck in stacker 3. Insert the
subroutine deck in the RPG II Compiler deck using the
Program Maintenance Program. The subroutine deck must
have GEB in columns 91-93.

Figure 29 is an example of a SPECIAL subroutine. This
sample program can be used as a base for any SPECIAL or
EXIT subroutine. The only changes required are modifying
the subroutine identification characters, entry point, label,
and routine title. Areas of change are outlined in the sample
listing. Control cards are created for you.

OOGEB ANY T IT L E DESIRED MAY BE USED

ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT

2 * *** *
3 * *

TH IS IS A SAMPLE CODING FOR THE CONTROL CARDS FOR A 'S P E C IA L * ♦A *
5 *6 *
7 ♦8 *
9 *

10 * 11 *
12 *
13 * 1* *
15 *
16 *

DEVICE REFERENCED IN AN RPG PROGRAM. ALL LABELS WHICH W ILL

NEED TO BE M O DIFIED FOR A PARTICULAR PROGRAM HAVE LABELS

STARTING WITH THE CHARACTER • # * . T H IS DECK IS IN THE FORMAT

REQUIRED BY THE LIBRARY DECK GENERATOR.

THESE CONTROL CARDS MAY BE USED FOR ANY SPECIAL OR E X IT

SUBROUTINE.

00020000
0 0 0 3 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 5 0 0 0 0
0 0 0 6 0 0 0 0
0 0 0 7 0 0 0 0
0 0 0 8 0 0 0 0
0 0 0 9 0 0 0 0
00100000
00110000
00120000
0 0 1 3 0 0 0 0
0 0 1 4 0 0 0 0
0 0 1 5 0 0 0 0
0 0 1 6 0 0 0 0

17 ♦ * 0 0 1 7 0 0 0 0
18 * * * 0 0 1 8 0 0 0 0

2 Ó * * * 00 20 0 0 0 0
2 1 * * 0 0 2 10 0 0 0
22 * STANDARD LABELS AND LABELS USED TO LIN K TO THE LIBRARY * 0 0 2 20 0 0 0
23 * * 0 0 2 3 0 0 0 0
24 * SELECT ROUTINE AND RPG COMPILER COMMUNICATIONS AREA * 0 0 2 4 0 0 0 0
25 * * 0 0 2 5 0 0 0 0
26 * * * 0 0 2 6 0 0 0 0

28 START START 0 PROGRAM SHOULD BE STARTED AT 0 0 0 2 8 0 0 0 0
0 0 0 1 29 XR1 EQU 1 STANDARD LABEL FOR INDEX REGISTER 1 0 0 2 9 0 0 0 0
00 02 30 XR2 EQU 2 STANDARD LABEL FOR INDEX REGISTER 2 0 0 3 0 0 0 0 0
0 0 0 8 31 ARR EQU 8 ADDRESS RECALL REG 0 0 3 1 0 0 0 0

030D 33 RELOCF EQU START*X * 0 3 0 D ' RELOCATION FACTOR FOR CURRENT DECK 0 0 3 3 0 0 0 0
030E 34 J1EAA1 EQU S T A R T *X '0 3 0 E • ENTRY P OINT TO RESET RELOCATION 0 0 3 4 0 0 0 0

35 * FACTOR AND SCAN TO NEXT » J ' CARD 0 0 3 5 0 0 0 0
0 3 1 A 36 J3EAA1 EQU START+X * 0 3 1A* ENTRY TO SCAN TO NEXT * J * CARD W ITH 0 0 3 6 0 0 0 0

37 * OUT RESETTING RELOCATION FACTOR 0 0 3 7 0 0 0 0
032C 38 R1EAC1 EQU S T A R T *X *0 3 2 C ' ENTRY P OINT TO IN IT IA T E OR CONTINUE 0 0 3 8 0 0 0 0

39 * RELOCATION OF T H IS DECK 0 0 3 9 0 0 0 0
0 3 3 8 40 F1EAE1 EQU S T A R T + X '0 3 3 8 ' ENTRY POINT TO IN IT IA T E THE SCAN OF 0 0 4 0 0 0 0 0

41 * THE F IL E D ESCRIPTIO N COMPRESSIONS 0 0 4 1 0 0 0 0
033E 42 F2EAE1 EQU START * X ' 0 3 3 E • ENTRY P OINT TO CONTINUE F IL E D IS C . 0 0 4 2 0 0 0 0

43 * COMP. SCAN 0 0 4 3 0 0 0 0
44 * BOTH OF THE PREVIOUS ENTRIES 0 0 4 4 0 0 0 0
45 * RETURN A POINTER IN XR2 AND A 0 0 4 5 0 0 0 0
4 6 * CO NDITIO N CODE ' H IG H* IF THAT 0 0 4 6 0 0 0 0
47 * POINTER IS VA LID 0 0 4 7 0 0 0 0

028C 49 COMMON EQU ST ART+X' 0 2 8 C * START OF THE RPG COMPILER 0 0 4 9 0 0 0 0
50 * COMMUNICATIONS AREA 0 0 5 0 0 0 0 0

02 E 6 51 ENDCOR EQU C0MM0N+90 HOLDS LAST ADDRESS IN MEMORY -F IR S T 0 0 5 1 0 0 0 0
52 * BYTE USED FOR SYMBOL TABLE - 0 0 5 2 0 0 0 0

02E A 53 ENDST EQU C0MM0N+94 HOLDS LAST ADDRESS USED FOR SYMBOL 0 0 5 3 0 0 0 0
54 * TABLE. 0 0 5 4 0 0 0 0

Figure 29 (Part 1 of 4). Sample Coding for SPECIAL Device

82

ERR LOC OBJECT CODE AOOR STMT SOURCE STATEMENT

56 * * * 0 0 5 6 0 0 0 0
57 * * 0 0 5 7 0 0 0 0
58 * THE FOLLOWING IS A SKELETON FOR A F IL E D ESCRIPTIO N * 0 0 5 8 0 0 0 0
59 * * 0 0 5 9 0 0 0 0
60 * COMPRESSION * 0 0 6 0 0 0 0 0
61 * * 0 0 6 1 0 0 0 0
62 ♦ * * 0 0 6 2 0 0 0 0

0000 0000 64 FCFG OS CL1 FLAG BYTE FOR COMP. ALWAYS X 'F F * 0 0 6 4 0 0 0 0
0 Ó0 1 0002 65 OS CL2 OUTPUT BUFFER a 0 0 6 5 0 0 0 0
0 00 3 0 0 0 4 66 DS CL2 INPUT BUFFER ADDRESS 0 0 6 6 0 0 0 0
0 0 0 5 0 0 0 6 67 DS CL2 PRINT BUFFER ADORESS 0 0 6 7 0 0 0 0
0 0 0 7 0 0 0 8 68 FCENT3 OS CL2 IOCS ENTRY P OINT AOORESS 0 0 6 8 0 0 0 0
0 0 0 9 0 0 0 9 69 DS CL1 FLAG BYTE 0 0 6 9 0 0 0 0
OOOA OOOA 70 OS CL1 FLAG BYTE 0 0 7 0 0 0 0 0
OOOB OOOC 71 FCIDN T DS CL2 HOLDS IDENT FOR SPECIAL ROUTINE 0 0 7 1 0 0 0 0
0000 OOOE 72 OS CL 2 EXTERNAL INDICATOR ASSIGNMENT 0 0 7 2 0 0 0 0
OOOF OOOF 73 FCDVA DS CL1 DEVICE CODE 8 'O X X X IO IO ' FOR SPECIAL 0 0 7 3 0 0 0 0
0 0 10 0 0 10 74 DS CL1 BLOCKING FACTOR 0 0 7 4 0 0 0 0
0 0 1 1 0 0 1 1 75 DS CL1 RECORD LENGTH 0 0 7 5 0 0 0 0

7 7 * * *
78 * *
79 * THE FOLLOWING IS A SKELETON FOR A SYMBOL TABLE ENTRY ♦
80 * * 81 * *** *

0 0 7 7 0 0 0 0
0 0 7 8 0 0 0 0
0 0 7 9 0 0 0 0
0 0 8 0 0 0 0 0
0 0 8 1 0 0 0 0

0 0 12 0 0 12 83 STLEN DS CL1 LENGTH FOR F IE L D ENTRY 0 0 8 3 0 0 0 0
001 3 0 0 1 3 84 STFLAG DS C L l FLAG BYTE SPECIAL NEEDS B ' ' 0 0 8 4 0 0 0 0
0 0 1 4 0 0 1 5 85 STID N T DS CL2 IDENT FOR SPECIAL C '« « « HOLDS ENTRY 0 0 8 5 0 0 0 0

86 * POINT AFTER SELECTION 0 0 8 6 0 0 0 0

88 * *** *
89 * *
9 0 * THE FOLLOWING OC CONTAINS THE ID 'S FOR THE CONTROL CARDS *
91 * *
92 * * *

0 0 8 8 0 0 0 0
0 0 8 9 0 0 0 0
0 0 9 0 0 0 0 0
0 0 9 1 0 0 0 0
0 0 9 2 0 0 0 0

0000 94 ORG 0
0 0 0 0 D1D ID 1 0002 95

9 6 *
97 *

OC C L 3 'J J J ' THREE CONTROL CARDS
' J * AND INSERTED IN

OECK

ALL WITH
FRONT OF

IDENT
THE

0 0 9 4 0 0 0 0
0 0 9 5 0 0 0 0
0 0 9 6 0 0 0 0
0 0 9 7 0 0 0 0

99 * * * 0 0 9 9 0 0 0 0
100 * ♦ 01000000
101 * T H IS CONTROL CARO SCANS THE ' F ' COMPRESSIONS FOR REFERENCE TO * 0 1 0 1 0 0 0 0
102 * * 01020000
103 * • « « • IF FOUND IT SETS THE FLAG BYTE AT X '0 0 7 B ' TO X 'F F * . * 0 1 0 3 0 0 0 0
104 * 4 0 1 0 4 0 0 0 0
1 05 * IF E ITHER FOUNO OR NOT FOUND IT STARTS THE SCAN FOR THE NEXT * 0 1 0 5 0 0 0 0
106 ♦ * 0 1 0 6 0 0 0 0
1 07 * CONTROL CARO. * 0 1 0 7 0 0 0 0
1 08 * ♦ 0 1 0 8 0 0 0 0
109 • * * 0 1 0 9 0 0 0 0

0 0 1 7 1 1 1 ORG X '0 0 1 7 ' REQUIREO FOR EACH CONTROL CARD 0 1 1 1 0 0 0 0
007B 1 1 2 FLG EQU S TART+X'TB* AREA FROM X '7 B « TO X 'F F ' IS 0 1 1 2 0 0 0 0

113 * USABLE FOR WORKING STORAGE 0 1 1 3 0 0 0 0
114 * T H IS BYTE USED TO FLAG IF 0 1 1 4 0 0 0 0
115 * ROUTINE IS REFERENCED ON ' F ' 0 1 1 5 0 0 0 0
116 * S P E C IF IC A T IO N S 0 1 1 6 0 0 0 0

0000 117 USING START*XR1 V A LID AT ENTRY TO ANY C T L . CARD 0 1 1 7 0 0 0 0
0 01 7 7C 00 7B 118 MVl F L G (, X R I) , X '0 0 ' IN IT IA L IZ E FLAG FOR NOT USEO 0 1 1 8 0 0 0 0

119 * ON F IL E DESCRIPTIO N SPECS. 0 1 1 9 0 0 0 0
001A 4E 0 1 4 3 0 30 0 12 0 ALC « E N T R Y !2 ,X R i) «RELOCF CALCULATE TRUE ENTRY ADDRESS 0 12 0 0 0 0 0
001F CO 87 0 33 8 1 2 1 B F1EAE1 IN IT IA T E SCAN OF ' F ' COMPS. 0 1 2 1 0 0 0 0

0000 12 2 USING FCFG» XR2 V A L ID UPON RETURN FROM F1EA EI 0 12 2 0 0 0 0
0 0 2 3 6 D 0 1 45 OC 1 23 SPCA1 CLC # ID E N T (2 » XR1) , FC ID N T (• XR2) IS THE IDENT THE RIG HT CHAR 0 1 2 3 0 0 0 0
0 02 7 B8 OA OF 1 24 TBN FCDVA(, X R 2) »8 * 0 0 0 0 1 0 1 0 ' AND IS DEVICE CODE THAT FOR 0 1 2 4 0 0 0 0
0 0 2 A B9 85 OF 125 TBF F C D V A (,X R 2) ,B '1 0 0 0 0 1 0 1 ' •S P E C IA L * 0 1 2 5 0 0 0 0
0 0 20 F2 96 07 126 JC S P C A 2 » X '9 6 ' I F T H IS IS NOT THE RIGHT COMP, JUMP 0 1 2 6 0 0 0 0

0 0 3 0 7C FF 7B 128 MV I F L G I* X R 1) t X 'F F ' SET FLAG TO IN D IC A TE USED ON 0 1 2 8 0 0 0 0
129 * F IL E D ESCRIPTIO N SPECS. 0 1 2 9 0 0 0 0

0 0 3 3 9C 0 1 08 43 130 MVC F C E N T a i2 « XR2) « «ENTRY(«XR1) MOVE ENTRY ADDRESS TO THE 0 1 3 0 0 0 0 0
131 * F IL E DESCRIPTIO N COMP. 0 1 3 1 0 0 0 0

0 0 3 7 CO 87 033E 132 SPCA2 B F2EAE1 ELSE SCAN TO NEXT COMP 0 1 3 2 0 0 0 0
003B DO 84 23 133 BH SPCA1(» XR1) IF POINTER S T IL L OK LOOP 0 1 3 3 0 0 0 0
003E CO 87 0 3 1A 1 34 B J3EAA1 GET NEXT • J ' CARD 0 1 3 4 0 0 0 0

135 * T H IS ENTRY W ILL NOT CLEAR THE 0 1 3 5 0 0 0 0
136 * BYTE AT FLG . 0 1 3 6 0 0 0 0

0 0 4 2 000 0
0 0 4 4 7B7B

0 0 4 3
0 0 4 5

138
139

«ENTRY DC
« ID E N T DC

A L 2 (SUBR««) ENTRY PO INT AOOR. TO BE RELOCAT
C L 2 '« • ' k TWO CHARACTER IDENT FOR ROUTINE

M _______________
0002 141 DROP XR2 Identify your subroutines by

replacing these # signs with
identifying characters.

0 1 3 8 0 0 0 0
0 1 3 9 0 0 0 0

0 1 4 1 0 0 0 0

Figure 29 (Part 2 of 4). Sample Coding for SPECIAL Device A p p en d ix D . A ssem bler L anguage S u b rou tin e to RPG II L inkage 83

ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT

143 ♦ * * 0 1 4 3 0 0 0 0
144 * * 0 1 4 4 0 0 0 0
145 * TH IS CONTROL CARD DETERMINES THE END ADDRESS TO BE USED * 0 1 4 5 0 0 0 0
146 ♦ * 0 1 4 6 0 0 0 0
147 * IN THE SEARCH OF THE SYMBOL TABLE DONE BY THE NEXT CONTROL * 0 1 4 7 0 0 0 0
148 * * 0 1 4 8 0 0 0 0
149 * CARD. * 0 1 4 9 0 0 0 0
150 * * 0 1 5 0 0 0 0 0
151 * * 0 1 5 1 0 0 0 0

007D 153 END3 EQU START+X * 7 D ' T H IS TWO BYTE AREA WILL HOLD 0 1 5 3 0 0 0 0
154 * THE ADDRESS TO CONTROL THE 0 1 5 4 0 0 0 0
155 * SYMBOL TABLE SCAN. IT W ILL BE 0 1 5 5 0 0 0 0
156 * THE ADDRESS OF THE END OF THE 0 1 5 6 0 0 0 0
157 * SYMBOL TABLE OR THE FIR S T 0 1 5 7 0 0 0 0
158 * TABLE ADORESS TABLE POINTER 0 1 5 8 0 0 0 0
159 * WHICH EVER IS HIGHEST 0 1 5 9 0 0 0 0

0 0 1 7 161 ORG X * 0 0 1 7 ' 0 1 6 1 0 0 0 0
0 0 1 7 4C 01 7D 0 2 EA 162 MVC E N D a i2 » X R 1) t ENDST IN IT IA L IZ E END ADDRESS TO END 0 1 6 2 0 0 0 0

163 * OF SYMBOL TABLE 0 1 6 3 0 0 0 0
001C C2 02 FFFC 164 LA X ' FFFC * * XR2 IN IT IA L IZ E XR2 TO NEGATIVE 4 0 1 6 4 0 0 0 0
00 20 36 0 2 02E 6 165 A ENDCOR*XR2 POINT XR2 TO F IR S T ENTRY IN 0 1 6 5 0 0 0 0

166 * SYMBOL TABLE 0 1 6 6 0 0 0 0
0 0 1 1 167 USING STLEN—i»X R 2 0 1 6 7 0 0 0 0

0 0 2 4 89 18 02 168 TBF S TFLA G I#X R 21 * X * 18* TEST IF ENTRY FOR TABLE OR 0 1 6 8 0 0 0 0
1 69 * ARRAY 0 1 6 9 0 0 0 0

0 02 7 F2 10 04 170 JT SPCBO IF NEITHER — > JUMP 0 1 7 0 0 0 0 0
002A 6 C 01 70 04 171 MVC E N D 3 (2 * X R l)» S T ID N T (tX R 2) ELSE RESET THE END ADDRESS 0 1 7 1 0 0 0 0
002E CO 87 031A 172 SPCBO B J3EAA1 GO GET NEXT CARD 0 1 7 2 0 0 0 0

0002 173 DROP XR2 0 1 7 3 0 0 0 0

175 * 0 1 7 5 0 0 0 0
176 * T H IS CONTROL CARD CHECKS THE SYMBOL TABLE FOR REFERENCES FROM ♦ 0 1 7 6 0 0 0 0
177 * * 0 1 7 7 0 0 0 0
178 * CALCULATIONS. IF REFERENCED THERE OR ON • F • SPECS RELOCATION * 0 1 7 8 0 0 0 0
179 * * 0 1 7 9 0 0 0 0
180 * OF THE DECK IS IN IT IA T E D * 0 1 8 0 0 0 0 0
181 * * 0 1 8 1 0 0 0 0
182 * 0 1 8 2 0 0 0 0

0 0 1 7 184 ORG X •0 0 1 7 * START OF CONTROL CARD TEXT
0 0 1 7 4E 0 1 51 030D 1 8 5 ALC # E N T (2 « X R l)y RELOCF CALCULATE ENTRY ADDRESS
001C 4C 0 1 30 02E 6 186 MVC S P C B 2 + 3 I2 « X R 1)• ENDCOR IN IT IA L Z E LA BELOW
0 0 2 1 5E 0 1 30 55 187 SPCB1 ALC S P C B 2+ 3 I2 , X R 1),S T S T E P I.X R 1) STEP BACK TO NEXT ENTRY
0 02 5 4D 0 1 30 0 2 EA 188 CLC S P C B 2 + 3 (2 tX R l)»ENDST CHECK FOR END OF SYMBOL TABLE
0 0 2 A F2 82 18 1 89 JL SPC83 IF BEYOND END — > JUMP
002D C2 02 0000 190 SPCB2 LA * - * , X R 2 POINT TO ENTRY

0 0 1 1 191 USING S T L E N -1 ,X R 2
0 031 9D 01 04 53 192 CLC S T IONTI2 » X R 2)y # ID N I ,X R 1) IS THE IDENT CORRECT AND
0 0 3 5 B8 EO 02 193 TBN S TF L A G I, X R 2)f B(1 1 1 0 0 0 0 0 * THE ENTRY FOR AN E X IT LABEL
0 03 8 DO 96 2 1 194 BC S P C B lty X R l) * X * 9 6 * IF NOT CORRECT ENTRY — > LOOP
003B 9C 0 1 04 51 195 MVC S T ID N T (2 y X R 2)y R E N T I> X R 1) ELSE MOVE IN ENTRY POINT
003F BA 0 1 02 196 SBN S T F L A G I,X R 2),B » 0 0 0 0 0 0 0 1 » SET FLAG FOR ROUTINE FOUND
0 0 4 2 F2 87 07 1 97 J SPCB4 START RELOCATION OF ROUTINE
0 0 4 5 7D FF 7B 198 SPCB3 C LI F L G Iy X R l) ,X » F F » WAS ROUTINE REFERENCED FROM

199 * F IL E D ESCRIPTIO N SPECS. 7
0 0 4 8 CO 0 1 030E 200 BNE J1EAA1 NO - UNUSED SCAN TO NEXT DECK
004C CO 87 032C 2 0 1 SPCB4 B R1EAC1 YES - USED AS SPECIAL RELOCATE

0 0 5 0 0000 0 051 203 0ENT DC A L2IS U B R ##) ENTRY POINT FOR RELOCATING
0 0 5 2 7B7B 0 0 5 3 2 0 4 0 ID N

2 0 6 STSTEP DC
2 0 7 *

0 1 8 4 0 0 0 0
0 1 8 5 0 0 0 0
0 1 8 6 0 0 0 0
0 1 8 7 0 0 0 0
0 1 8 8 0 0 0 0
0 1 8 9 0 0 0 0
0 1 9 0 0 0 0 0
0 1 9 1 0 0 0 0
0 1 9 2 0 0 0 0
0 1 9 3 0 0 0 0
0 1 9 4 0 0 0 0
0 1 9 5 0 0 0 0
0 1 9 6 0 0 0 0
0 1 9 7 0 0 0 0
0 1 9 8 0 0 0 0
0 1 9 9 0 0 0 0
02000000
02010000

0 2 0 3 0 0 0 0
0 2 0 4 0 0 0 0

0 2 0 6 0 0 0 0
0 2 0 7 0 0 0 0

Figure 29 (Part 3 of 4). Sample Coding for SPECIAL Device

84

ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT

0000

2 09 *
210 *
211 *
212 *
2 13 *
2 1 4 *
215 *
2 16 *
2 17 *

2 19

THE FOLLOWING DC CONTAINS THE PROGRAM T IT L E TO BE PRINTED

ON THE RPG L IS T IN G ANO SHOULO BE CHANGED TO REFLECT THE

NAME OF THE SUBROUTINE.

ORG 0 SIGNALS START OF T IT L E

* 0 2 0 9 0 0 0 0
* 02100000
* 02110000
* 02120000
* 0 2 1 3 0 0 0 0
* 0 2 1 4 0 0 0 0
* 0 2 1 5 0 0 0 0
* 0 2 1 6 0 0 0 0
* 0 2 1 7 0 0 0 0

0 2 1 9 0 0 0 0

0000
0 0 0 80010
0 0 1 8

E2D7C5C 3C 9C ID 34 0 001D
C961D 640D 9D 6E4E 3
C 905 C 5 4 07 B 7 B 40 4 0
4 0 4 0 4 0 4 0 4 0 4 0

221221221221

DC C L 3 0 'SPECIAL I / O ROUTINE # # •

Replace these # signs with
the characters identifying
your subroutine.

0 2 2 1 0 0 0 0

223 * *** *
2 2 4 * *
2 25 * THE FOLLOWING COOE REPRESENTS THE FUNCTIONAL CODE FOR THE *
2 2 6 * *
2 27 * USER R O U TIN E . THE ABOVE CONTROL CARDS ASSUME THE ENTRY POINT *
228 * *
2 29 * IS AT SUBR##. THE ENTRY POINT IS UNIQUE TO EACH SUBROUTINE. *
2 3 0 * *
231 * THE ENTRY POINT IS THE LABEL ON THE ROUTINE CODE, NOT THAT *
2 32 * *
2 33 * ON THE START CARD. *
2 3 4 * *
2 3 5 * *** *

0 2 2 3 0 0 0 0
0 2 2 4 0 0 0 0
0 2 2 5 0 0 0 0
0 2 2 6 0 0 0 0
0 2 2 7 0 0 0 0
0 2 2 8 0 0 0 0
0 2 2 9 0 0 0 0
0 2 3 0 0 0 0 0
0 2 3 1 0 0 0 0
0 2 3 2 0 0 0 0
0 2 3 3 0 0 0 0
0 2 3 4 0 0 0 0
0 2 3 5 0 0 0 0

2 3 7 * *
2 38 *
2 3 9 * THE ROUTINE MÜST MEET THE FOLLOWING REQUIREMENTS
2 4 0 *
2 41 * 1 . WHEN ENTERED FOR INPUT OR OUTPUT (NOT E X IT) IT MUST
2 42 * ACCEPT THE STANDARD SPECIAL I / O LINKAGE PARAMETERS.
2 4 3 *
2 4 4 * 2 . WHEN ENTERED V IA AN E X IT FROM CALCULATIONS IT MUST
2 4 5 * ACCEPT THE STANDARD E X IT LINKAGE AND PARAMETERS.
2 46 *
2 47 * 3 . IT MUST IN D IC A TE END OF F IL E BY PRO VIDING THE CORRECT
2 48 * COMPLETION CODE IN THE D TF.
2 49 *
2 50 * 4 . IF A DIFFERENT AREA IS USED FOR THE ACTUAL INPUT OR
2 51 * OUTPUT BUFFER THE DATA MUST BE MOVED TO OR FROM THE ADDRESS
252 * SUPPLIED IN THE D TF .
2 5 3 *
2 54 * *

0 2 3 7 0 0 0 0
0 2 3 8 0 0 0 0
0 2 3 9 0 0 0 0
0 2 4 0 0 0 0 0
0 2 4 1 0 0 0 0
0 2 4 2 0 0 0 0
0 2 4 3 0 0 0 0
0 2 4 4 0 0 0 0
0 2 4 5 0 0 0 0
0 2 4 6 0 0 0 0
0 2 4 7 0 0 0 0
0 2 4 8 0 0 0 0
0 2 4 9 0 0 0 0
0 2 5 0 0 0 0 0
0 2 5 1 0 0 0 0
0 2 5 2 0 0 0 0
0 2 5 3 0 0 0 0
0 2 5 4 0 0 0 0

0 0 0 0 2 5 6 ORG 0

0 0 0 0 2 58 SUBR## EQU *

SIGNALS START OF ROUTINE TEXT 0 2 5 6 0 0 0 0

TH IS IS THE ENTRY POINT TO THE RQUT. 0 2 5 8 0 0 0 0

PLACED HERE * * * * * * * * * 0 2 6 0 0 0 0 0

T H IS INSURES PROPER L IS T IN G FROM RPG 0 2 6 2 0 0 0 0

Figure 29 (Part 4 of 4). Sample Coding for SPECIAL Device

A p p en d ix D . A ssem bler L anguage S u b rou tin e to RPG II L inkage 85

Appendix E: Assembler Language Subroutine To COBOL or FO RTRAN Linkage

This section describes standard linkage conventions for use
between modules produced by the System/3 language
translators: COBOL, FORTRAN, and Basic Assembler.
Programmers using standard linkage conventions are able
to code routines in the language most appropriate to the
function being performed, with the assurance that effective
and permanent communication has been established. Figure
30 illustrates the standard described on the following pages.

*
*
* SAMPLE SYSTEM/3 LINKAGE — MODULE A CALLS MODULE B

EXTRN MODB
@XR1 EQU X'01'
@XR2* EQU X'02 '
MODA* START X'0000'
*
* INITIALIZE XR1 AND XR2 TO TEST SAVING

L XRl,@XR1
L XR2,@XR2
B MODB CALL MODULE B
DC AL2(PLIST)

* HPL X '6 F 1,X '6 F ' HALT 00 AFTER RETURN
*
*

PARAMETER LIST

PLIST EQU *
DC AL2 (SAVA) ADDRESS OF SAVE AREA
DC AL2 (PARM1) ADDRESS OF FIRST PARAMETER
DC AL2 (PARM2) ADDRESS OF SECOND PARAMETER

* DC XLI'00"

*
*

PARAMETERS

PARM1 EQU EQU *
DC CL 5 'FIRST'

PARM2 EQU *

★
DC CL6'SECOND'

*
*

SAVE AREA

SAVA DC XLl'BO' INDICATOR BYTE — ASSEMBLER MAIN
* DC CL6 'MODE' MODULE NAME
XR1 DC CL2 ' R l '
XR2 DC CL2 ' R2 '

END MODA

Figure 30 (Part 1 of 2). Illustration of Standard Linkages

86

*
*
* SAMPLE SYSTEM/3 LINKAGE — MODULE A CALLS MODULE B
@XR1 EQU X'01'
@XR2 EQU X 102'
@ARR EQU X'08'
@IAR
it

EQU X'10'

ic
ENTRY MODB

MODB
1c

START X'0000'
ST SAVARl,@XR1 SAVE CONTENTS OF XRl
LA SAVA,@XR1 XR1 WILL BE BASE FOR SAVE AREA
USING SAVA,@XR1
ST SAVAR2(,@XR1),@XR2 SAVE CONTENTS OF XR2
ST SAVART(,@XR1),@ARR SAVE CONTENTS OF ARR
L SAVART(,@XRl),@XR2 XR2 POINTS TO ADDRESS OF PARM

LIST
L 1(,@XR2),@XR2 XR2 POINTS TO PARAMETER LIST

it
ALC SAVART(,@XRl),TW O (,@XRl) SET RETURN POINT 2 PAST ARR.

*
it

BODY OF ROUTINE
L SAVAR2(,0XR1),@XR2 RESTORE XR2
L SAVARl(,@XR1),@XR1 RESTORE XRl

it
L SAVART,@IAR RETURN

*
it

SAVE AREA
SAVA DC XLl'30' INDICATOR BYTE — ASSEMBLER LANG

DC CL6 ' M O D B ' MODULE NAME
SAVARl DC X L 2 '00' CONTENTS OF XRl ON ENTRY TO THIS* MODULE
SAVAR2 DC X L 2 '00' CONTENTS OF XR2 ON ENTRY TO THIS* MODULE
SAVART* DC A L 2 (00) RETURN POINT
TWO
it

DC I L 2 '2 '
END

Figure 30 (Part 2 of 2). Illustration of Standard Linkages

A p p en d ix E . A ssem bler Language S u b rou tin e to CO BO L or F O R T R A N L inkage 87

STANDARDS

In order to be standard, linkage must be accomplished as
follows:

1. Each module must have a save area (Figure 31).

Byte Bit Description Program

0 0 0=Not a main program
1-Main program

Subroutine
Main program

1-3 000=FORTRAN
001 CO BO L
011-Basic Assembler

Subroutine
Main program

4-7 Reserved

1-6 EBCDIC name,
left justified

Subroutine
Main program

7-8 Value of index register 1
(XR1) at entry

Subroutine

9-A Value of index register 2
XR2) at entry

Subroutine

B-C Return point in
calling program

Subroutine

Note: Main program refers to the program with the highest
level of control.

Figure 31. Save Area

2.

When control reaches a program entry point, the
address recall register (ARR) must point to a 2-byte
field containing the address of the first byte of the
parameter list.

The Basic Assembler language code to call a COBOL
or FORTRAN subroutine would normally be as
follows:

EXTRN
B
DC

RETNPT EQU

SUBR
SUBR
AL2(P ARAMS)

Note that the pointer to the parameter list points
to the left byte of the save area address.

Normal return is accomplished by placing in the
instruction address register (IAR) a value that is
two larger than the contents of the ARR when the
program was entered.

Index registers 1 and 2 (XR1 and XR2) must be
saved upon entry in the called program’s save
area, and restored at exit.

The address recall register need not be restored,
but the return address must be determined and
placed in the called program’s save area.

Each module that calls another module must have one
or more parameter lists (Figure 32).

Byte

0-1

2-3

(2NM2N+1)

(2N+2)

Description

Address of save area in this program

Address of first parameter

Address of Nth parameter

XLV00' to indicate end of parameter list

Note: The first two bytes as well as the end-of-parameter-list
indicator (XLV00') must be present in all parameter lists. If
no parameters are to be passed, the parameter list will be only
three bytes in length. In this case, byte 3 will be 0 and the
called program will indicate a parameter list length of 2.

Note: Addresses in parameter lists refer to the first byte
(byte with the lowest address) of the item.

Figure 32. Parameter List

88

Appendix F: Basic Assembler Sample Programs

Along with the Basic Assembler, you will receive a sample
program. By executing the sample program you can verify
that the Basic Assembler is operational.

MODEL 10 AND MODEL 12 SAMPLE PROGRAM

This section describes the sample program and explains the
operating procedures necessary for executing it. General
operating procedures for the Basic Assembler are found in
the IBM System/3 Model 10 Disk System Operator's Guide,
GC21 -7508, IBM System/3 Model 12 Operator's Guide,
GC21-5144, and in Part II of this manual.

Program Description

The sample program is called Prime Number Test Program.
The program reads a number from the console display
data switches, tests to see if it is a prime number, and

indicates the results of the test on the message display
unit. If the number zero is tested, the program is
terminated.

Three halt codes are used in this program to request input
and indicate whether the number is prime. They are:

Halt Code Meaning

EN Enter a number to be tested.

IP The number tested is prime.

NP The number tested is not prime.

Figure 33 shows the OCL that assembles, link edits, and
executes the sample program. Figure 34 shows the sample
program statements.

A p p en d ix F . B asic A ssem bler Sam ple Program s 89

IBM
IBM System/3 Basic Assembler Coding Form

PROGRAMMER INSTRUCTIONS

STATEMENT

89 90 91 92 n:1 2 N3m« 5 6 7 ^ Operation ^
13

Operand Remarks
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 X 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 HI 82 H i K4 H5 Hli 87

/ / N 0 H A L r i i

2 i i
i

1
1

/ / L 0 A0 t A S S E II 1 F l i
1
i

1
|

/ / F 1 L E N A n E $ s 0 v R C £ i R E T A 1 M - s V N 1 T - R 2 P A C K - 1?Z R 2 R 2 j . T R|A c K S - 5 i

i H —
I

/ / F 1 L £ A/A M E $ w 0 R K } R E T A) KJ - $ i Ü l T - P Z I P A C K - F Z F z F 2) T R A c!k s - l
i

l i r '

/ / F 1 L t A/ A M E - w 0 R K 2) R E T A \ N S > u H l T - F i > P A C K - F 1 F 1 F X) T R S c K S - 5
r t ~i

—
2 1 l 5 i) 1

l
i

/ / C 0 M P 1 L E S 0 Ü R c E - $ A S S P > U N i T - K l X 0 6 J E C T - R 1 1 i

1 i

/ / R u N 1 1
1

Ï 11

-
- - -

i
i

t / L 0 A D * 0 L I N K 3 F 1 1 1|—
1 i

A / F 1 L e A! A ME $ s 0 u R c Ex R E T A l M - s U N 1 T R2 PAC K - R Z R 2 R1 2. T RiA C K S 4 0
— |—

1

R
i

S _
i

- - i - -
/ / F l L E N A M E - $ M\ 0 R KJl RE TA V - S t V N 1 T - F Z 1 P A C. K - F Z F z F Z T A c!k P

i
—
1

/ / R 1/ U i i

-i
i i

i
i
i
i — -

i
1 2 3 4 5 6 -> 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 X 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 X 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 7 3 74 75 76 7 7 78 79 80 81 82 83 84 85 86 8 7 88 B9 90 91 92 93

IBM
IBM System/3 Basic Assembler Coding Form

NOTES:

1. Specifies the location of the assembler program.

2. Name of assembler sample program in the source library.

3. Specifies the source library with the sample program.

4. Library in which the output assembler object (R) module
is stored.

5. Name given to the output assembler object (O) program.

6. Module name and object program name (R).

7. Specifies the object (O) program, stored on the Overlay
Linkage Editor program pack by default.

I lf the system configuration does not include drive 2, references
in the OCL to F2 and R2 must be changed to specify devices
available on the system.

Figure 33. Model 10 and Model 12 Sample Program OCL

90

OPTIONS NODECK 0 0 0 1

THE L IS T OF OPTICNS USED OURÏNG TH IS ASSEMBLY IS — NO O EC K ,L IST ,X R E F,R E L, OBJ

s a s s p r e x t e r n a l s y m b o l l i s t

SYMBOL TYPE VER 13. MOD 00 01/30/76 PAGE 1

«ASSPR MODULE

SASSPR PRIME NUMBER TEST PROGRAM

ERR LOC OBJECT CODE AOOR STMT SOURCE STATEMENT VER 13. MOD 00 01/30/76 PAGE 2

2
3

*
* TH IS PROGRAM READS A NUMBER FROM THE CONSOLE DISPLAY OATA SWITCHES, TFSTS IT 1

4 ♦ PRIMENESS, AND INDICATES THE RESULTS ON THE MESSAGE DISPLAY U N IT .

6 * THERE ARE THREE HALT CODFS USED IN TH IS PROGRAM:
7 * HALT CODE MEANING8 * EN ENTER A NUMBER TO BE TESTEO. IF NUMBER ENTERED IS ZERO
9 * PROGRAM TERMINATES.10 ♦ IP NUMBER IS PRIME.11 * NP NUMBER IS NOT PRIME.12 *

0000 13 SASSPR START 00000 14 USING *,X R 1 ESTABLISH BASE REGISTER
0000 C2 01 0000 15 LA * , XR 1 LOAD BASE REGISTER
0004 FO 7C 2F 16 BEGIN HPL X ' 2 F * , X *7C * * EN' HALT
000 7 70 00 78 17 SNS SEN SE I,XP 1) ,0 SENSE THE DATA SWITCHES
000A 50 01 78 70 18 CLC SENSE 12 , XR1) , ZERO!, XR1) TEST IND ICATIO N TO QUIT
000E F2 01 05 19 jn e FPEPAR NUMBER TO TEST
0011 CO 87 0004 2C B 4 GO TO END OF JOB
0 015 84 0 015 21 or XL 1 184 •22 ♦

23 * PREPARE THE INPUT NUMBER
0016 50 01 78 76 24 PPEPAR CLC S E N S E (2 ,X R 1) , T H R E E !,X R l) TEST FOR ONE,TWO AND THREE
001A F2 04 4C. 25 JNH PRIME# CALL ONE, TWO AND THREE PRIME
0010 78 01 78 26 TBN S E N S E I,X R l) ,X « 0 1 * TEST FOP EVEN
0020 F2 90 40 27 JF NPRIME FVEN, NOT PRIME
0023 5C 01 7F 74 28 MVC TEST# I 2 , XR1) ,TW O I,X R 1)
002 7 5C 01 78 78 29 MVC END# + 1 1 2 ,X R l) , SENSE I , XR 1) D IV IO E INPUT BY TWO
002B 7C 00 79 30 MVI EKD#-1 I , XP1) , 0 TO USE FOR END TESTING
002 E 5E 02 7B 7B 31 ALC E N D #*1 (3 , XR1) ,E N 0 # * 1 l ,X R 1)
0032 5F 02 7B 78 32 ALC ENC#+113 , XR 1) , END#+1I »XR 1)
0 036 5E 02 7B 7B 33 ALC E N D # *1 !3 ,X R 1),E N D # + 1 l, XR1 I
003 A 5E 02 7B 78 34 ALC E N D # + l!3 ,X R l)» E N D # + 1 I, XR1)
003E 5E 02 7B 7B 35 ALC E N C # * 1 I3 ,X R 1) ,E N D # U ! ,X R 1)
0042 5E 02 78 7B 36 ALC END#+11 3 , XR1) ,E N D # + 1 I, X R l)
0 046 5E 02 7B 7B 37 ALC END# + 1 I3 ,X R 1) ,E N D # -H ! ,X R 1)

38 *
39 * MAIN TEST LOOP

0 04 4 5E 01 7F 72 40 LCOPST ALC T EST # 12 , XR 1) , ONE I , XR 1) INCREMENT TEST
004E 50 01 7F 7A 41 CLC TEST# ! 2 ,X R l) ,F N D # l ,X R l) t e s t FOR COMPLETE
0 052 F2 84 14 42 JH PRIME# COMPLETE♦ CALL IT PRIME
0055 5C 01 70 78 43 MVC T E M P A R I2 ,X P l) , SENSE!» X R l) MAKE COPY AND
0 059 5F 01 70 7F 44 SUBTR SLC TEMPAP1 2 ,XP11 ,T E S T #(, XRl) FIND REMAINDER
0050 00 84 59 45 BP SUBTRI»X R l) BY SUBTRACTING
0060 00 01 4A 46 BNZ LCOPST(, X R l) REMAINDER NOT ZERO

47 *
48 * NUMBER NOT PRIME

0 063 FO 2F 3E 49 NPRIME HPL X « 3 E ',X '2 F * NOT PRIME IN P) HALT
0066 00 87 04 50 B B E G IN !, X R l) GO BACK TO BEGINING

51 *
52 ♦ NUMBER IS PRIME

0069 FO 03 3E 53 PRIME# HPL X *3 E ' , X *03 * IS PRIME I I P) HALT
006C 00 87 04 54 B B E G IN !.X R l) GO BACK TO BEGINING

Figure 34 (Part 1 of 2). Listing of Statements in Model 10 and Model 12 Basic Assembler Sample Program

0003
COCA
000 5
0 006
CCC7
0008
0009
0C10
0011
0012
0C13
001 4
0 015
0 016
0 017
0018
0C19
0020
CC21
0022
0 023
0C24
002 5
CC26
0C27
0 028
0025
003 0
0031
0 032
0 033
0C34
0C35
0036
0037
0 038
0 039
0C4C
0 041
CC42
0043
0044
0045
0 046
0 04 7
0 048
0 049
0650
0051
0 05 2
CC53
0 054
0 055

A p p en d ix F . B asic A ssem bler Sam ple Program s 91

iASSPR PRIME NUMBER TEST PROGRAM

LOC OBJECT CODE ADOP STMT SOURCE STATEMENT VER 13. MOD 00 01/30/76 PAGE 3

56 * 0C57
57 * CATA AREA 0058

006F 0000 C07 0 58 ZERO DC l L 2 '0* BINARY ZERO 0059
0071 0001 007 2 59 ONE DC XL 2 * 0 0 0 1 ' CNE 0C6C
0073 0002 0074 60 TWO CC BL2'0 0 0 0 0 0 1 0 * TWO 0061
0075 0003 0076 61 THREE OC A L2 I31 t h r e e CC62
007 7 0078 62 SENSE DS CL2 0062
0079 007A 63 END# OS CL2 0 064
007B 007P 64 DS CL1 0065
007 C 007D 65 TEMPAP DS CL2 0066
007E 0 07 F 66 TEST# OS CL 2 0 0670001 67 XP1 EOL 1 BASE REGISTER 00680000 68 END SASSPR 0C6S

iL STATEMENTS IN ERROR: IN THIS ASSEMBLY * 0

«ASSPR CROSS REFERENCE

SYMBOL LEN VALUE DEFN REFERENCES VER 13. MOD 00 01/30/76 PAGE

* ASS PR 001 0000 0013 0068
BEGIN 003 0004 0016 00 50 0054
END# 002 007A 0063 0 0 2 9 * 0 0 3 0 * 0031 0 0 3 1 * 0032 0 0 3 2 * 0033 0 0 3 3 * 0034 0 0 3 4 * 0035 0035

0 036 0 0 3 6 * 0037 CC37* 0041
LOOPST 004 004 A 0040 0046
NPRIME 003 0063 CC4S 0027
ONE 002 0072 0059 0040
PREPAR 004 0016 0024 0019
PRIME# 003 0069 0053 0025 0042
SENSE 002 0078 006 2 0 0 1 7 * 0018 0024 0026 0029 0043
SUBTR 004 0059 0C44 0045
TpMPAR 002 007D 0065 0 0 4 3 * 0 0 4 4 *
TEST# 002 007F 0066 0 0 2 8 * 0 0 4 0 * 0041 0044
THREE 002 0076 0061 0024
TWO 002 0074 0060 0028
XP1 001 0001 0067 0014 0 0 1 5 * 0017 0018 0018 0024 0024 0026 0028 0028 0029 0029

0030 0031 0031 CC32 0032 0033 0033 0034 0034 0035 0035 0036
0036 0037 0037 CC40 0C4C CC41 CC41 0043 0043 0044 0044 0045
0046 0050 0054

ZERO 002 0070 CC58 0018

TOTAL STATEMENTS IN ERROR IN TH IS ASSEMBLY * 0

O LIO 5 I THE CODE LENGTH OE *ASSPR IS 128 DECIMAL.
OL103 I TCTAL NUMBER OF LIBRARY SECTORS PECUIREC IS 2

NAME—* ASSPR « PACK-P IR IR 1» L 'N IT -R l , P ETA ÏN -T ,l IB R A R Y -P t CATEGORY-000

Figure 34 (Part 2 of 2). Listing of Statements in Model 10 and Model 12 Basic Assembler Sample Program

92

MODEL 15 SAMPLE PROGRAM

This section describes the sample program and explains the
operating procedures necessary for executing it. General
operating procedures for the Basic Assembler are found in
the IBM System/3 Model 15 Operator’s Guide, GC21-5075
and in Part II of this manual.

Program Description

The sample program is called System Input Device lis t
Program. The program reads records from the system input
device and lists them on the system printer. Statements
are read and listed until one of the delimiters (/*,/&> or
/.) is encountered. If the delimiter is /*, another file can
be listed under operator control.

There are three messages displayed by this program:

Message Meaning

EOF ON SYSIN End of file encountered on the
system input device. More files
can be printed if the EOF condi
tion is caused by /*. The operator
replies P to print another file or
C to cancel.

PRINTER ERROR A permanent printer error has
occurred. The program issues the
message and then goes to end of
job. (The message is displayed and
then removed when end of job is
reached. However, the message is
in the system history area and may
be displayed from there.)

SYSIN ERROR A permanent system input device
error has occurred. The program
issues the message and then goes to
end of job. (The message is dis
played and then removed when end
of job is reached. However, the
message is in the system history area
and may be displayed from there.)

The sample program uses Model 15 macros and therefore
the assembly step must be preceded by a macro processor
step.

Figure 35 shows the OCL that assembles, link edits, and
executes the sample program. Figure 36 shows the sample
program statements.

A p p en d ix F . B asic A ssem bler S am ple Program s 9 3

IBM Systam/3 Basic Assembler Coding Form

PROGRAM PUNCHING
INSTRUCTIONS

GRAPHIC O p r q p p i p PAGE OF

PROGRAMMER | DATE PUNCH a t t t i t □ CARO ELECTRO NUMBER

STATEMENT |

88 8

Identification-
Sequence 19 90 91 92 93 94Name 1

1 2 3 4 5 6
| Operation |

7l 8 9 10 11 121
I Operand Remarks 3j 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 46 46 47 48 49 SO 51 52 S3 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 7576 77 78 79 80 81 B2 83 84 86 86 87 j

m IS AMl> 7(_ l 1

T tL[i
1 1

t t T ÖAÏr a ïp XI>v,M L _ Is r 1 -_i
1

_ i\ 1
1

"1
/ / Fr LÉ Hiin Ë* V ÏÖLIRc i ÏE1 cnF:T, u iÏCÏr- R][J >ACl Ï2 r ;>R2 , 1 rnjAc: k s-V 1

i t "c 0HÏ Lf scyjt \c\ \~ V is !»Pt JNl[T :•Fji l l 1 — 1__i__1

/ / It uN 11 j
i l l 1

"~i
l ' “ i
1 1__

i T t[l 1| 1

d o b f r Viis s is M,i-f Jl_ 1
TTTTTT 1

"nniaiQGC? H_~xX:kx]<x|cx i 1_1
' j 1 1

/ / XL r Nt Ë*: V\ïö iÏK ï ï i [A3:n ■•s,jJ iI I I \ ï >A<IK 2\U Ï Ï2 rï rR/ic |ki1 ” ir 1

1 1
n D is H H in ;lJL 13! I333B5C =j its 1

rn T T T T n T T T T T T T m T T T m T 1 ' 1 j
I!QaG3[: n -•S,LUI1X1r- r ; >AL \ 12 a ;>r ;L ~ " 1

I I I I M I ! I N I M M f Ö I ! I I 1

a n i B E i s s m a 'n R ^ ü H D ü m i i n 1
m i M M M m M M m M M M r 1 '
I 1 2 3 4 5 6 | 7 | 8 9 «0 11 12| 13| 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 «3 44 46 46 47 48 49 50 51 52 S3 54 55 56 57 58 59 60 61 62 83 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 98 90 91 92 93 94

IBM
IBM System/3 Basic Assembler Coding Form

PROGRAMMER CARD ELECTRO NUMBER

| STATEMENT |J
88

Identification-
Sequence

89 90 91 92 93 94Name 1
1 1 2 3 4 5 6 7 I Operation 1

8 9 10 11 12 _13
[Ooerand Remarks 1
114 15 t6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87|

/ / R Ü N
r

i _
r

i __ 1 L
3 I l \ 1

i
[_

77 L 0 A D 10 L X NK F I !~ l
1
1

h " T - 1
_1__

zz F Ï L 1 H A M E - l w Ö R k R E r A i N - s U N X T - D X 9A C K - DX DX D X JL T R A C |K s - X «S 1 _
r i 1 ~ _ l__ U- _

7z F r L Ë NA r j Ë - $ s 0 UR c Ë R| T A X N - 1 Ü Nr r - 5 I P A C K - RI R 2 R 2 T r!a c K s - X 11
1

J- p r
i 1

77 R Ü g — i
11

13 [i 1
_J__

zz P 8 A S [N A R Ë - Ï A S l p 5 i 1
~j~ 1

I z ÖP f r 0 NS MA P - X Rl l _ i 1
1

Ï 5 [13 1
_l__

m assB m m E E m|Ë - Ï A s s P Rv Ü N z T - R1 i 1 _j
1 ■ 1 1 1 1 1 1 1 1 1 1 1

b~ i Ï Ë i 1 j n

/_ / X C L u 0 E A ME l Ï Lp R T L u N r T - F I 1 i
H i l

1
zz ËsD i 1—)---

T5 r 1I T i J __
113311a _ i _|__

~|
J

1111111111111 l 1
U_Ep i I 1 r r rr r J i 1

i
r nh r r n r r r r r i 1

,1, ... _ _Jj j
1 1 2 3 4 5 6 |8 9 10 11 12 J3114 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 X 31 32 33 34 36 36 37 38 39 40 41 42 43 44 46 46 47 48 49 SO 51 52 S3 54 55 56 57 S« SO 60 61 62 63 64 65 66 67 66 09 70 71 72 73 74 75 76 77 79 79 80 81 82 83 84 86 86 87 88 |B9 90 91 92 93 94

Notes:

1. Specifies the program pack.

2. Name of the assembler sample program in the source
library.

3. Library in which the output assembler object (R)
module is stored.

4. Name given to the output assembler object (O)
program.

Figure 35. Model 15 Sample Program OCL

5. Module name and object program name (R).

6. Specifies the system pack.

If the system configuration does not include the 5444
drive 2 or the 5445 drive 1, references in the OCL to R2
and D1 must be changed to specify devices available on
the system.

9 4

OPTIONS NODECK OBJECT TO LIBRARY ONLY OOOIOOOO

THE LIST OF OPTIONS ÜSEO DURING THIS ASSEMBLY IS— NODECK,LIST,XREF,REL,OBJ

SASSPR EXTERNAL SYMBOL LIST

SYMBOL TYPE VER 01, MOO 00 li-09-73 PAGE 1

SASSPft MODULE
SSLPRT EXTRN

sAs s p r

ERR LOC U6JECT CODE A D D R S T M T S O U R C E S T A T E M E N T VER 01, MOD 00 1 1 - 0 9 - 7 3 PAGE 2

1 I C T L 1 ,71 0 0 0 2 0 0 0 0
2 I SE O 7 3 , 8 0 0 0 0 3 0 D 0 0
3 P R I N T N O G E N ,N O D A T A OOOIOOOO

SASSPR S Y S T E M IN P U T D E V I C E (S Y S I N) L I S T P R O G R A M

L O C O B J E C T C O D E A D D R STM T S O U R C E S T A T E M E N T VER 01, M O D 00 1 1 - 0 9 - 7 3 P A G E 3

5 * T H I S P R O G R A M R E A D S A FILE F R O M THE S Y S T E M I N P U T D E V I C E A N D L I S T S 0 0 0 6 0 0 0 0
6 * IT ON THE P R I N T E R . 0 0 0 7 0 0 0 0
7 * 0 0 0 8 0 0 0 0
8 * T H E R E ARE T H R E E M E S S A G E S I S S U E D BY THIS P R 3 G R A M : 0 0 0 9 0 0 0 0
9 * M E S S A G E T Y P E M E A N I N G 0 0 1 0 0 000

10 * • E O F ON SYS I N * W T 3 R E N D OF FILE E N C O U N T E R E D U N S Y S I N . 0 0 1 1 0 0 0 0
11 * M O R E F I L E S MAY BE P R I N T E D IF THE 0 0 1 2 0 0 0 0
12 * EOF C O N J I T I ON IS C A U S E D BY A • / ♦ « . 0 0 1 3 0 0 0 0
13 * THE O P E R A T O R R E P L Y S TO T H I S M E S S A G E 0 0 1 4 0 0 0 0
14 ♦ A RE »P* TO P R I N T A N O T H E R F I L E A N D 0 0 1 5 0 0 0 0
15 * •:• TO C A N C E L A ND GO TO EOJ. 0 0 1 6 0 0 0 0
16 * • P R I N T E R ERROR* W T O T H E R E HAS BEE N A P E R M A N E N T P R I N T E R 0 0 1 7 0 0 0 0
17 ♦ E R R O R . THE P R O G R A M ISSUES T HE 0 0 1 8 0 0 0 0
18 ♦ M E S S A G E ANDi G O F S TO E N D OF JOB. 0 0 1 9 0 0 0 0
19 ♦ • S Y S I N 1ERROR* //TO T H E R E HAS BEEN A P E R M A N E N T S Y S I N 0 0 2 0 0 0 0 0
20 ♦ E R R O R . THE P R O G R A M I S S U E S T H E 0 0 2 1 0 0 0 0
21 ♦ M E S S A G E AND G O E S TO E ND OF JOB. 0 0 2 2 0 0 0 0

4 0 0 0 23 $ A SSPR S T A R T X * 4000* 0 0 2 4 0 0 0 0
0001 24 E X T R N S S L P R T P R I N T E R D A T A M A N A G E M E N T 0 0 2 5 0 0 0 0
408C 25 U S I N G B AS E , B RG E S T A B L I S H A B A S F R E G I S T E R 0 0 2 6 0 0 0 0

4 0 0 0 C2 01 4 0 8 C 26 LA B A S E ,BRG F O R THE D A T A A R E A S 0 0 2 7 0 0 0 0

28 * P R E P A R E TH E P R I N T E R F I L E FOR USF 0 0 2 9 0 0 0 0
4 0 0 4 02 02 07 29 LA P R N D T F I , 8 R G) , SDTF 0 0 3 0 0 0 0 0

30 * SA L O C A L L O C A T E P R I N T F R F I L E 0 0 3 1 0 0 0 0
33 ♦ $ O P E N O P E N P R I N T E R FILE 0 0 3 2 0 0 0 0

4 0 0 F BC 01 13 3 6 MVI SO F S P A I , $ '0 T F) , 1 SET F O R S I N G L E S P A C E 0 0 3 3 0 0 0 0
4 0 1 2 BC 40 OF 37 MVI S O F O P C I » S U T F I , S O C P R T SET O P - C O D E TU P R I N T 00 3 4 D000
4 0 1 5 7C 01 00 38 MVI SYS INL + S S R F C T I , B R G) , SSRRIDF SET S Y S I N D P - C O D E FDR 1ST BUFF 0 0 3 5 0 0 0 0

4 0 * P R E P A R E TO P R I N T A N E W FIL E 0 0 3 7 0 0 0 0
4 0 1 8 7C 01 17 41 F I L E S MVI P R N D T F + S D F S K B (, BRG) , 1 SET TO SKI P B E F O R E F I R S T P R I N T 0 0 3 3 0 DOO

43 * R E A D F R O M S Y S I N A N D P R I N T U N T I L E ND OF FI L E 0 0 4 0 0 0 0 0
4 0 1 8 02 02 00 44 F I L E L LA S Y S I N L (,B R G) , SYS 0 0 4 1 0 0 0 0

4 5 ♦ $RE AD O P C - N R E A D F R O M S Y S I N 0 0 4 2 0 0 0 0
402 2 BO 50 00 49 CL I S S R F C T t ,SYS) ,S SR E OF TE S T F O R EOF (• / * * , • / £ • , ' / . *) 0 0 4 3 0 0 0 0
4 0 2 5 F2 81 30 50 JE EOF 0 0 4 4 0 0 0 0
4 0 2 8 BO 80 00 51 CLI S S R F C T C ,SY S) , S S R E O J TE S T FO R EOJ I • / £ * , * / . ') 0 0 4 5 0 D 0 0
4 0 2 8 F2 31 53 52 JE EOJ 0 0 4 6 0 0 0 0
402E 80 60 00 53 CLI S S R F C T (, S Y S) , S S R E R R TEST F OR S Y S I N E R R O R 0 0 4 7 0 0 0 0
4 0 3 1 F2 81 3C 54 JE S YSER 0 0 4 8 0 0 0 0
4 0 3 4 ac 00 00 55 MVI S S R F C T (,S Y S) , SS R R D O SET P OR NEX T S Y S I N R E A D 0 0 4 9 0 0 0 0
4 0 3 7 6C 01 14 04 56 M VC P R N D T F + S D F L R A (2 , 3 R G) » $ S R 8 F 2 (» S Y S) P OINT TO C U R R E N T R E C O R D 0 0 5 0 0 0 0 0
403 B 02 02 07 57 LA P R N O T F (,BR 3) ,SDTF 0 0 5 1 0 0 0 0

58 * S P U T P D E V - 1 4 0 3 P R I N T THE C U R R E N T REC 3RD 0 0 5 2 0 0 0 0
4042 B O 41 OE 6 0 CLI SlDFCMPI , $ D T F) , S C P P F R TEST FOR P R I N T E R F R R O R 005 3 3 D 00
4 0 4 5 F2 81 32 61 JE P R N E R R 0 0 5 4 0 0 0 0
4 0 4 8 BC 00 10 62 MVI S D F S K B I , SOT F) ,0 SFT FOR NO SKIP 3 E F 0 R F 0 0 5 5 0 0 0 0
4 0 4 8 80 48 OE 63 CLI S O F C M P i , S 'DTF) , S C P O V F T F S T FOR PAGE O V E R F L O W 0 0 5 6 0 0 0 0
40 4 E F2 01 03 64 JNE N O S K I P 0 0 5 7 0 0 0 0
4 0 5 1 3C 01 10 65 MVI S O F S K B I ,S D T F) , 1 SET FOR S K I P TO L I N E ONE 0 0 5 8 0 0 0 0
4 0 5 4 C O 87 4 0 1 8 66 N O S K I P B F IL EL 3 0 5 9 0 0 0 0

Figure 3 6 (Part 1 o f 4) . L isting o f S ta tem en ts in M odel 15 B asic A ssem b ler S am ple Program .

Appendix F. Basic Assembler Sample Programs 95

*ASSPR SYSTEM INPUT DEVICE (SYSIN) LIST PROGRAM

LOC OBJECT COOE ADDR STMT SOURCE STATEMENT VER 0 1 , M3D 00 1 1 - 0 9 - 7 3 PAGE 4

68 * END OF FILEi ON SYSIN 0 06 1 0 00 0
4058 D2 02 28 69 EOF LA EOFMSGi, BRG),LOG 0 06 20000

70 ♦ SLOG WTOR EOF MESSAGE 0063 0 00 0
405F 7D C3 37 74 CLI REPLY(, BRG),C *C* OPERATOR SAY CANCEL 0 06 4 0 00 0
4062 F2 81 1C 75 JE EOJ 0 06 5 0 00 0
406 5 7D D7 37 76 CLI R E P L Y ! ,BRG),C*P* OPERATOR SAY PRINT ANOTHER 00660000
4068 CO 81 4018 77 BE FILES 0 06 7 0 00 0
4 0 6C CO 87 405 8 78 B EOF INVALID REPLY, TRY AGAIN 00680000

80 * ERROR ON SYSIN 0 07 0 0 00 0or*o

D2 02 38 81 SYSER LA SERMSG(, BRG),LOG 0 0710000
82 * SLOG WTO SYSIN ERROR MESSAGE 007 2 0 00 0

4 07 7 F2 87 07 86 J EOJ GO TO EOJ 00730000

88 * ERROR ON PRINTER 00750000
407A 02 02 44 89 PRNERR LA PERMSG(, BRG) ,LOG 0 0760000

90 ♦ SLOG WTO PRINTER ERROR MESSAGE 007 7 0 00 0

95 * END OF JOB ROUTINE 0 07 90000
4081 96 EOJ EQU ♦ 0080 0 00 0

4081 D2 02 07 97 LA PRNDTF(,BRG),SDT F 0 0310000
98 * SCLOS CLOSE PRINTER F ILE 0 0 8 2 0 00 0

101 * SEOJ GO TO EOJ 0 0830000

SASSPR SYSTEM INPUT DEVICE (S Y S IN) L IS T PROGRAM

ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT

105 * CONSTANTS AND DATA AREAS

VER 0 1 , MOD 00 1 1 - 0 9 - 7 3 PAGE

0 08 5 0 0 0 0
408C 106 BASE EQU 4 BASE REGISTER ADDRESS 008 6 0 00 0

108 * SYSIN1 TABLES 008 8 0 00 0
109 ♦YSINL SRLST B U F i-B JF F R l ,B U F 2 -3U F F R 2 * SYSIN PARAMETER L IS T X 00890000
110 * WORK-WORKAR 0 0 9 0 0 00 0
116 ♦ SRLSD SYSIN EQUATES 0 09 1 0 00 0

133 * PRINT FIL E TABLES 009 3 0 00 0
134 4RNDTF SDT FP D E V -1 4 0 3 ,R C A D -0 , I0 B A -P R N I0 B , PRINT F ILE DTF X 00940000
135 ♦ IOAA-PRNBUF,R ECL-96, X 00950000
136 ♦ 0 V F L -6 0 ,P A G E -6 6 0 0 9 6 0 00 0
160 4 SDTFO D 1 4 0 3 - Y PRINTER DTF DISPLACEMENTS 009 7 0 00 0

223 * SYSTEM LOG TABLES 0 0990000
224 ♦OFMSG SL WTO COMP-AS,HALT-AM,SUBH-PS*TLEN-12, SYSIN EOF WTOR X 01000000
225 4 TADR-EOFMGC,REPLY-Y,RLEN-1,RADR-REPLY 0 1 0 1 0 00 0

40C3 E7 40C3 238 REPLY DC CLI * X* WTOR REPLY 0 10 2 0 00 0
239 4ERMSG SLWTO COMP-AS, H AL T-A M ,SJBH -PG,TLEN -11» SYSIN ERROR WTO X 01030000
240 4 T ADR-SERMGC 0 1 0 4 0 00 0
251 ♦ERMSG SL WTO COMP-AS,HALT-AM,SUBH-PG»TLEN-13, PRINTER ERROR WTO X 01050000
252 4 T ADR-PERMGC 0106 0 00 0

40 DC 263 EOFMGC EQU 4 0 1 0 7 0 00 0

* o o o C5D6C640D6D540E2 40E7 264 DC CL12* EOF ON SYSIN* 0 1 0 8 0 0 0 0
40E8 265 SERMGC EQU 4 0 10 9 0 0 0 0

* o m 09 E2E8E2C9D540C5D9 40F2 266 DC CL11* SYSIN ERROR* 0 11 0 0 00 0
40F 3 267 PERMGC EQU 4 0 11 1 0 00 0

40F3 D709C9D5E3C5D940 40FF 268 DC CL13* PR INTER ERROR* 011 2 0 00 0

270 * SYSIN1 BUFFER AND WORK AREAS 011 4 0 00 0
4100 271 ORG 4 , 1 2 8 ORG TO REQUIRED BOUNDARY 0 11 5 0 00 0

4100 272 8UFFR1 EQU 4 BUFFER ONE 011 6 0 00 0
4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 417F 273 DC XL128•0 * 011 7 0 00 0

4180 274 BUFFR2 EQU 4 BUFFER TWO 0 1 1 8 0 00 0
4 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41FF 275 DC X L128 * 0 * 0 1 1 9 0 00 0

4200 276 WORKAR EQU 4 WORK AREA 012 0 0 00 0
4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 2 E 277 DC XL47* 0* 0 12 1 0 00 0

279 4 PRINTER BUFFER AND WORK AREAS 0 1 2 3 0 00 0
427C 280 ORG * , 2 5 6 , X * 7 C • ORG TO REQUIRED BOUNDARY 0 1 2 4 0 00 0

427C 281 PRNBUF EQU 4 PRINTER BUFFER 0 1 2 5 0 00 0
427C 4 04 0 4 0 4 0 4 0 4 0 4 0 4 0 4305 282 DC C L I 3 8 ' • 0 12 6 0 00 0

4306 283 PRNIOB EQU 4 PRINTER I OB 0 12 70000
4306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4337 284 DC XL50 * 0 • 012 8 0 00 0

2 86 4 REGISTER LABELS
0001 287 BRG EQU 1
0002 2 88 SYS EQU 2
0002 289 LOG EQU 2
4000 290 END $ ASSPR

1 IN THIS ASSEMBLY — 0

THIS ASSEMBLY— 0

BASE REGISTER
SYSIN PARAMETER L IS T POINTER
SYSLOG PARAMETER L IS T POINTER

013 0 0 00 0
0 1310000
0 13 2 0 00 0
0 1 3 3 0 00 0
0 1 3 4 0 00 0

Figure 36 (Part 2 o f 4). Listing o f S tatem ents in Model 15 Basic Assembler Sample Program.

96

SASSPR CROSS REFERENCE

SYMBOL LEN VALUE DEFV REFERENCES VE* o i , m o j oo :

$$LPRT 001 0001 0024 0059
SASSPR 001 4000 0023 029 0
SA1CDI 001 0010 0193
SA10AT 001 0001 0198
SA1H56 001 0002 0196
$A1IN T 001 0004 0195
SA1MFM 001 0008 0194
SA1PCH 001 0020 0192
SA1PRT 001 0040 0191
SA1PR2 001 0001 0197
SAJLRO 001 0080 0190
$ A2ALL 001 0040 0203
SA2AMP 001 0004 0208
SA2E0F 001 0008 0206
SA2HUC 001 0002 0207
SA2INO 001 0080 0202
SA2MBF 001 0010 0205
SA20PN 001 0001 0209
SA2SIN 001 0020 0204
SCPCNO 001 0010 0214
SCPEOF 001 0042 0217
SCPOVF 001 0048 0213 0063
SCPPER 001 0041 0216 0 0 6 0
SCPSUC 001 0040 0215
SOFARR 001 0009 0168
SOFATl 001 0002 0164
$DFAT2 001 0003 0165
SDFCHA 001 0005 0166
$OFCHB 001 0007 0167
SDFCMP 001 OOOE 0171 0060 0063
SDFDEV 001 0000 0162
SDFLP 001 0010 0183
SDFLRA 001 0000 017 0 0 0 5 6 *
SDFMSK 001 001F 0185
SOFOPC 001 OOOF 0172 0 0 3 7 *
SDFOVF 001 001C 0182
SOFPGS 001 0020 0186
SDFPIB 001 0017 0179
SOFPIO 001 0019 018 0
SOFPOS 001 0 0 1 E 0184
$DFPQ 001 0014 0177
SDFPR 001 0015 0178
SOFPRL 001 0 0 1 B 0181
SOFSKA 001 0012 0175
SDFSKB 001 0010 0173 0 0 4 1 * 0 0 6 2 * 0 0 6 5 *
SOFSPA 001 0013 0176 0 0 3 6 *
SDFSPB 001 0011 0174
SDFUPS 001 0001 0163
SDFXRS 001 0008 0169
$0TF 001 0002 0161 0 0 2 9 * 0036 0037 0 0 5 7 * 0060 0062 0 0 6 3 0 0 6 5 0 0 9 7 *
SOCPRT 001 0040 0221 0037
SSRBFl 001 0002 0118
$SRBF2 001 0004 011 9 0056
SSREOF 001 0050 0129 0049
SSREOJ 001 0080 0131 0051
$SRERR 001 0060 013 0 0053

Figure 36 (Part 3 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

PAGE 5

A p p en d ix F . B asic A ssem b ler S am ple Program s 9 7

SASSPR CROSS REFERENCE

S Y M B O L L E N V A L U E D E F N R E F E R E N C E S VER 01, M O O 00 1 1 - 0 9 - 7 3 P A G E 7

S S R F C T 001 0 0 0 0 0 1 1 7 0 0 3 8 * 0 0 4 9 0 0 5 1 0 0 5 3 0 0 5 5 *
S S R N O M 0 0 1 0 0 4 0 0 1 2 8
S S R R D 0 0 1 0 0 0 9 0 1 2 6
S S R R O O 001 0 0 0 0 0 1 2 3 0 0 5 5
$ S R R D F 0 0 1 000 1 0 1 2 4 0 0 3 8
$ S R R D L 00 1 0 0 0 2 0 1 2 5
$ S R W R K 001 0 0 0 6 0 1 2 0
B A S E 001 4 0 8 C 0 1 0 6 0 0 2 5 0 0 2 6
B R G 001 0001 0 2 8 7 0 0 2 5 0 0 2 6 * 0 0 2 9 0 0 3 8 0041 0 0 4 4 0 0 5 6 0 0 5 7 0 0 6 9 0 0 7 4 0 0 7 6 0081

0 0 8 9 0 0 9 7
B U F F R 1 0 0 1 4 1 0 0 0 2 7 2 0 1 1 3
B U F F R 2 001 4 1 8 0 0 2 7 4 0 1 1 4
EOF 0 0 3 4 0 5 8 006 9 0 0 5 0 0 0 7 8
E O F M G C 001 4 0 0 C 0 2 6 3 0 2 3 5
E O F M S G 001 4 0 B 4 0 2 2 7 0 0 6 9
E OJ 001 4081 0 0 9 6 0 0 5 2 0 0 7 5 0 0 8 6
F I L E L 00 3 401 Ö 0 0 4 4 0 0 6 6
F I L E S 003 4 0 1 8 0041 0 0 7 7
L O G 001 0 0 0 2 0 2 8 9 0 0 6 9 * 0 0 8 1 * 0 0 8 9 *
N O S K I P 0 0 4 4 0 5 4 0 0 6 6 0 0 6 4
P E R M G C 001 40 F 3 0 2 6 7 0 2 6 2
P E R M S G 001 4 0 0 0 0 2 5 4 0 0 8 9
P R N B U F 001 4 2 7 C 0 2 8 1 0 1 5 3
P R N O T F 001 4 0 9 3 0 1 3 7 0 0 2 9 0 0 4 1 * 0 0 5 6 * 0 0 5 7 0 0 9 7
P R N E R R 003 4 0 7 A 0 0 8 9 0 0 6 1
P R N I O B 001 4 3 0 6 028 3 0 1 5 2
R E P L Y 001 4 0 C 3 0 2 3 8 0 0 7 4 0 0 7 6 023 7
S E R M G C 001 4 0 E 8 0 2 6 5 0 2 5 0
S E R M S G 001 4 0 C 4 02 4 2 008 1
SYS 001 0 0 0 2 0 2 8 8 0 0 4 4 * 0 0 4 9 0051 0 0 5 3 0 0 5 5 0 0 5 6
S Y S E R 003 4 0 7 0 0081 0 0 5 4
S Y S I N L 001 4 0 8 C 011 1 0 0 3 8 * 0 0 4 4
W O R K A R 001 4 2 0 0 0 2 7 6 0 1 1 5

T O T A L S T A T E M E N T S IN E R R O R IN T H I S A S S E M B L Y — 0

T O T A L S E Q U E N C E E R R O R S IN T H I S A S S E M B L Y — 0

0 L 1 0 5 I T H E C O D E L E N G T H OF $ A S S P R IS 8 2 4 D E C I M A L .
O L 103 I T O T A L N U M B E R OF L I B R A R Y S E C T O R S R E Q U I R E D IS 5

N A M E - $ A S S P R , P A C K - R 1 R I R 1 , U N I T - R 1 ,RE T A I N - T , L I 3 R A R Y - R ,C A TE G O R Y - 3 00

Figure 36 (Part 4 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

98

Appendix G: IBM 1255 Magnetic Character Reader Support (Models 12 and 15 Only)

Support is provided by the following IBM-supplied
subroutines:

• SUBR07 - 1255 (Model 15 only)

• SUBR08 - 1255 (Model 12 and Model 15)

• SUBR09 - 1419 (Model 12 and Model 15)

For detailed information concerning this support, see the
IBM System/3 Models 12 and 151255 and 1419 Magnetic
Character Reader Reference and Program Logic Manual,
GC21-5132.

A p p en d ix G . IBM 1 2 5 5 M agnetic C haracter R eader S u p p ort (M od els 1 2 an d 1 5) 9 9

100 (101-104 deleted)

Index

$WORK 2 file 34
// CEND card 33
// SWITCH statement 31

absolute displacements 12
absolute expressions 7
absolute object program 28
address constant 18
addressing 12

base-register displacement method 12
data addressing 13
direct method 12
instruction addressing 13
relative addressing technique 12
symbolic (direct) 12

assembler
coding conventions 8
coding form 9
functions 1
instruction statements 17

data definition 18
fields 8
format 8
listing control instructions 20
program control instructions 22
symbol definition instruction 17

listing 29
assembler language subroutines

linkage to COBOL 86
linkage to FORTRAN 86
linkage to RPG II 71
placing in R library 36

assembling a source program 28
asterisk

use in comment statement 10
use as location counter reference 6

attributes
length atribute 14
value attribute 14

base address 12
base register 12
base-register displacement addressing 12
basic assembler sample program 89
beginning column 25
binary constant 6, 19
binary self-defining term 6

calling a source program 31
category level 27
CATG operand 27
character

constants 19
self-defining terms 6

COBOL linkage 86

code
control 43
mnemonic 1
operation 9,43

machine 47
mnemonic 1

Qcode 17,43
coding conventions, assembler 8
coding form, assembler 9
coding sample for SPECIAL device 82
COMLx operands 29
comment statement 10
complement (two’s complement form) 19
constant (see also self-defining term)

address 18
binary 19
character 19
data 18
decimal 19
define constant (DC) 18
hexadecimal 19
integer 19
negative (see integer constant)
padding of 19
truncation of 19

control card code for assembler subroutine 76
control statements 27
control cards, LDG program (see Library Deck Generator

parameter card)
control section length 27
control code 43
conversion, punch 33
cross reference data 35
cross reference listing 28,40

data
addressing 13
constant 18

data defining instructions (DC and DS) 18
data file requirements 34
DC (define constant) instruction 18
decimal constant 19
decimal self-defining term 5
deck, object 17
define constant (DC) instruction 18
define storage (DS) instruction 19
diagnostics 40

table of 69
direct addressing 12
displacement 12

absolute 12
relocatable 12

DROP statement 25
DS (define storage) instruction 19
duplication factor

with DC instruction 18
with DS instruction 19

In d ex 105

EJECT statement 20
END record 33
END statement 26
ending column (see also ICTL statement) 25
entry (see fields)
entry point 25
ENTRY statement 25
EQU (equate symbol) statement 17
error code 69
error conditions, LDG program 81
error information 35
ESL record 32
explicit length 15
expression 7

absolute 7
evaluation o f 7
multi-term 7
relocatable 7
rules for coding 7

extended mnemonic codes 1 4 ,4 8
external symbol list 39

table size 42
EXTRN statement 25
EXTRN subtype 25

specifying 27

fields(s)
assembler statement 8

identification-sequence 10
name 10
operand (machine instructions) 14
operation 10
remark 10

files
source 34
object 34
work 34

format(s)
assembler statement 8
machine-instruction statement 1 3 ,4 3
operand 14

format control, input 22
FORTRAN linkage 86

groups machine-instruction operand 15

HEADER record 32
HEADERS statement 27
hexadecimal constants 19
hexadecimal self-defining terms 6

ICTL (input format control) statement 22
identification-sequence entry (field) (see also ISEQ statement) 10
I-field (immediate data) 16
implied length 15

input format control 22
input sequence checking (ISEQ) statement 22
instruction(s)

addressing 12
assembler instruction statements 17
data defining 18
listing control 20

instruction(s) (continued)
machine-instruction statements 13
program control 22

symbol definition (EQU) 17
types 17

integer constant 19
intermediate text 34
ISEQ (input sequence checking) statement 22

J cards 77

K cards 77

label (see symbol and name entry)
language

machine (see also machine instruction formats) 1
RPGII 71
symbolic 1

L cards 78
length(s)

attribute 14
control section 27
explicit 15
implied 15
subfield 14

of data definition instructions 18
Library Deck Generator parameter card 80
Library Deck Generator Program 76
linking

to COBOL 86
to FORTRAN 86
to RPG II 71

listing control instructions 20
listings, program 28, 38
loading the assembler 29
location counter 6

control o f (see also START and ORG) 13
location counter reference (*) (see also terms) 6

machine-instruction(s) 13
format 43
list o f 43
mnemonic codes 14
operands 14

machine language 1 ,4 9
macro processor 30
main storage requirements 2
messages 69
mnemonic operation codes 1

for assembler instruction statements 67
for machine-instruction statements 47

module category level 27
module name 23

name entry (field) 10
name, module 23
negative values (see integer constant)
NOREL 28
NOOBJ 28

106

OBJ 28
object deck 28
object file ($WORK) 34
object operand 31
object program 4, 32
object program, placing in R library

direct 36
punched 36

OCL statements 29
one-address format (machine-instructions) 43
Op code (machine-instruction formats) 43
operand(s)

entry (field) 10
fields 14
formats 15
groups 15
machine-instruction 14
subfields 14

o f DC and DS instructions 18
operation procedures 36
operation codes

extended mnemonic 13
mnemonic (see mnemonic operation codes)
Op code (machine instructions) 43

operation control language statements 29
operation entry (field) 10
OPTIONS 36
OPTIONS statement 27
ORG (set location counter) instruction 24

PRINT (print optional data) instruction
program control instructions 22
program relocation 4
punch conversion 33

22

Q code 1 7 ,4 3

record formats 32
REL 28
relative addressing 12
relocatable

displacements 12
expressions 7
terms 7

relocation of programs 4
remark entry (field) 10
representation o f negative values (see integer constant)

requirements
data file 34
main storage 1
system 1

restrictions, module name 23
RPGII

linkage to assembler language subroutine 71

sequence 8
checking (ISEQ) statement 22
entry (field) 8

source file 34
source and object listing 39
source program, from macro processor 31
source statement (assembler instruction statement) 1
SPACE (space listing) statement 21
special character(s)

in symbols (name entries) 5

START (start assembly) statement 23
statement(s)

assembler instruction 17
fields o f 8
format o f 8
types 1

comment 10
machine instruction 13

storage
addressing 4

definition (DS) instruction 19
relocation in 4
requirements 2

subfield(s)
constant (DC instruction) 18
duplication factor 18
length 18
of machine instruction operands 14
type 18

subroutine linkage 7 1 ,8 6
SUBR07 99
subtype, EXTRN 25
subtype, specifying 27
symbol (see also name entry) 5

definition instruction (EQU) 17
mnemonic (see mnemonic operation codes)
rules for coding 5
table entries 35

symbolic
addressing (see direct addressing)
language 1

system requirements 1

terms 5
text, intermediate 34
TEXJ-RLD records 33
TITLE (identify assembly output) statement 20
truncation o f constants (see DC instruction)
two-operand format 15
tw o’s complement form (see integer constant)

USING statement 24
U1 indicator 31

sample program
basic assembler 89
RPGII linkage 71
SPECIAL subroutine 82

segment, assembler statement 8
self-defining term 5

value attribute 14

work file 34

1255 support 99
3741 Data Station 1

In d ex 107

108

(D

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.0. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/lnternational
44 South Broadway
White Plains, New York 10601
U.S.A.
(International)

SC21-7 509-7

IB
M

 S
y

s
te

m
/3

 B
asic A

ssem
b

ler R
efe

re
n

c
e

 (F
ile

 N
o

. S
3

-2
1

)
P

rin
ted

 in
 U

.S
.A

.
S

C
2

1
-7

5
0

9
-7

> 4 ‘ '* «

READER'S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in IBM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply. Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the

Page Number Error publication, or tell you why a change is not being made, provided you
include your name and address.

Page Num ber Comment

IBM may use and distribute any of the information you supply in any way
it believes appropriate without incurring any obligation whatever. You may, Name _
of course, continue to use the information you supply.

Address

IB
M

 System
/3

SC
21-7509-7

Basic Assem
bler

Reference M
anual

S C 2 1 -7 5 0 9 -7

o
c

>
o

r
5'
<D

Fold Fold

FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.

B U S I N E S S REPLY M A I L
NO POSTAGE STAMP NECESSARY IF M A ILE D IN THE U N ITED STATES

POSTAGE WILL BE PAID BY . . .

IBM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

Fold Fold

0

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/lnternational
44 South Broadway
White Plains, New York 10601
U.S.A.
(International)

IB
M

 System
/3 Basic Assem

bler Reference (File No. S3-21)
Printed in U.S.A.

SC
21-7509-7

