
0000 0000
0080 0000
000000000000000000
000000000000000000
000000000000000000
000000000000000000
0000 0000
0000 0000

0000 0000
0000 0000
000000000000000000
000000000000000000
000000000000000000
000000000000000000
0000 0000 0000
0000 0000 0000
0000 0000 QOOO
000000000000000000
000000000000000000

0000000000000000
000000 ' 000000

0000 0000

0000 0000
0000 0000
000000000000000000
OOOGOOOOOOOOOOOOOO
000000000000000000
000000000000000000

0000000000
00000000000

00000000000
00000000000

0000000000.0 .
00

.
0
2:::::::00

000000000000000000'
000000000000000000
000000000000000000
000000000000000000
0000 0000
0000 0000

0000 00000.
00000 0000000

000000 00000•000
0000000 00000000000
0000000 ~0000000000
0000 0000 0000
0000 0000 0000
0000 0000 0000
000000000000 000000
000000000000 0~0000

0000000000 00000
00000000 0000·

000000
·oooo
0000

00000
0000000

0000 00000000
0000 0000000
00000000000000
000000000000
000000000000
00000000000000
0000 0000000
0000 00000000

0000000
00000

0000
0000

0000 00000
00000 0000000

000000 000000000
0000000 00000000000
0000000 00000000000
0000 0000 0000
0000 0000 0000
0000 0000 0000
000000000000 000000
000000000000 000000

0000000000 00000
00000000 0000
00000~

000000
000000
000000
000000

0000 0000
0000 ' . 0000·
000000000000000000
00000000000~000000
000000000000000000
000000000000000000
0000 0000
0000 0000

000000'
000000
000000
000000

0000 0000
0000 0000
000000000000000000
000000000000000000
000000000000000000
000000000000000000
0000 0000 0000
0000 0000 0000
0000 0000 0000
000000 0000 000000
000000 000000
000000 oo•ooo
000000 000000

0000 0000
0000 0000
000000000000000000
000000000000000000
000000000000000000
000000000000000000

0000000000
00000000000

00000000000
00000000000

00000000000
00000000000

0000000000
000000000000000000
000000000000000000
000000000000000000
000000000000000000
0000 0000
0000 0000

0000 000000
00000 000000 .:::::: ::::::

0000000 0000 0000
0000 00000 0000
0000 000000 0000
0000 00000000000
0000000000000000000
QQOOOOOOOOO 000000

0008000000 00000
00000000 0000

OCUUU>O

I BM System/3
Models 4 and 6
Operation Control Language and
Disk Utility Programs
Reference Manual·

Program Number,5703-SC1

GC21-7516-5
File No. S3-36

Fifth Edition (June 1978)

This is a major revision of, and obsoletes, GC21-75164 and Technical Newsletters
GN21-5328 and GN21-5521. Changes are indicated by a vertical line at the left of the
change.

This edition applies to version 15, modification 0 of the System Control Programming for
the IBM System/3 Models 4 and 6 and to all subsequent versions and modifications until
otherwise indicated in new editions or technical newsletters. Changes are periodically
made to the information herein; before using this publication in connection with the
operation of IBM systems, refer to the latest IBM System/3 Bibliography, GC20-8080,
for the editions that are applicable and current.

Use this publication only for the purposes stated in the Preface.

Publications are riot stocked at the address below. Requests for copies of I BM
publications and for technical information about the system should be made to your IBM
representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Address
your comments to IBM Corporation, Publications, Department 245, Rochester, Minnesota
55901. Comments become the property of I BM. ·

©Copyright International Business Machines Corporation 1971, 1973, 1975, 1978

This publication is intended for u~e by programmers who
are doing either of the following:

1.

2.

Writing Operation Control Language (OCL) state-·
ments needed to run programs in the system.

Writing utility control statements necessary to run
disk utility programs supplied by the system.

Notes:
1. In this publication there are some references in support

of 24K and 32K bytes of main storage. A System/3
Model 6 with these main storage sizes is available only
as an RPO. Your IBM Marketing Representative can
provide information about this.

2. All references, in this manual, to DATA96 apply to the
System/3 Model 6 only.

Prerequisite Publications

IBM System/3 Model 4 Introduction, GC21-5146

IBM System/3 Model 6 Introduction, GA21-9122

IBM System/3 Mo_dels 4 and 6 System Programmer's
Guide, GC21-7530

Other Publications Referenced in this Manual

IBM System/3 Model 6 Operator's Guide, GC21-7501

IBM System/3 Disk Sort Reference Manual, SC21-7522

IBM System/3 Models 4 and 6 Conversational Utility
Programs Reference Manual, SC21-7528

IBM System/3 Model 6 Utility Program for IBM 1255
Magnetic Character Reader Reference Manual, SC21-7527

IBM System/3 Models 4 and 6 RPG II Reference Manual,
SC21-7517

SYSTEM CONFIGURATION

For information concerning the minimum system configu
ration for the I BM System/3 Models 4 and 6 and additional
devices supported, see one of the following publications
as appropriate for your System/3 model:

• IBM System/3 Models 4, 6, 8, 10, and 12 System
Generation Reference Manual, GC21-5126

• IBM System/3 Model 4 Introduction, GC21-5146

• IBM System/3 Model 6 Introduction, GA21-9122

iii

iv

Contents

PART I. OPERATION CONTROL LANGUAGE Records and Tracks Keyword 37
Location Keyword 37

INTRODUCTION TO OCL 2 Retain Keyword. 37
How to Use Part I 2 Date Keyword 38
Operator's OCL Guide • 3 HALT 38

LOAD NAME 39
CONVERSATIONAL OCL 4 For Customer Programs 39
The Job Cycle 4 For System Programs 39

The LOAD Cycle 6 MODI FY Keyword . 40
The BUILD Cycle 6 System-Operator Interaction During Modification 40
The BUI LDC Cycle • 7 Changing a Previous OCL Statement 42
The CALL Cycle 7 Deleting a Previous OCL Statement 42

System-Operator Interaction During Keyword Prompting • 7 Entering Comments • 43
Keyboard 8 Cancelling Job 43
End-of-Statement Keys . 9 Changing Forms Length 44
Statement Numbers in an OCL Cycle . 9 Changing Punch Device . 46
Comments 10 Including Control Statements 46
Keyword Sequence for OCL Load Cycle • 10 NO EJECT 47
Keyword-Response Summary (Load Cycle) 11 NOHALT 47
Keyword Sequence for OCL Build Cycle. 16 READY 47
Keyword-Response Summary (Build Cycle) . 17 RUN 48
Keyword Sequence for OCL BUI LDC Cycle. 25 SWITCH 48
Keyword-Response Summary (BUI LDC Cycle) 25 Indicator Settings 48
Keyword Sequence for OCL Call Cycle 27 IPL Considerations 48
Keyword-Response Summary (Call Cycle) 27 Duration of SWITCH Settings . 48

Operator-System Interaction for SWITCH
CARD OCL FOR MODEL 6 29 Statement (LOAD Cycle) . 49
Assigning Data Recorder or 3741 as System Input Device • 29 Operator-System Interaction for SWITCH

I BM 129 Programming Considerations 29 Statement (BUILD Cycle) 50
Returning Control to Keyboard 29 Operator-System Interaction for SWITCH
Control Statements in Procedures . 30 Statement (CALL Cycle) 50
Card Format of OCL Statements 30
OCL Statements . 30 USING OCL. 51
General Coding Rules 31 Multi-Volume Files 51
Statement Order 32 Creation . 51
Coding Multi-Volume File Parameters 32 Processing 51

OCL Considerations 51
KEYWORD DESCRIPTIONS • 33 List Requirements 52
BUILD NAME 33 File Statement Summary 54

Duplicate Procedure Names. 33 Coding Multi-Volume File Statements 55
Deleting a Source Library Procedure 33 Changing Multi-Volume File Statements with

BUILDC NAME . 33 MODI FY Keyword 55
CALL NAME 33 Including Sort Source or Utility Control Statements
COMPILE Keywords 34 in a Procedure • 55

Compile Object Keyword 34 Increasing File Size of the RPG Procedure 55
Source Keyword 34 Maximum Number of Files in SWA 55
Unit Keyword 34 Processing Large Indexed Disk Files 56

DATE 34 Entering RPG 11 Source Statements From the
Overriding the System Date 35 Keyboard at Compile Time 56
Format of the DATE Statement 36 Inquiry Interrupt 57

EJECT 36 Restrictions During Inquiry 57
FILE Keywords . 35 Chained Procedures • 57

System-Operator Interaction During Prompting of OCL for the I BM 2222 Printer 58
File Keywords 35 Using the FORMS Statement 58

Unit Keyword 36 Log Device 58
Pack Keyword 36 MODIFY - Entering the Keyword FORMS 58
Label Keyword 36

Contents v

OCL for the IBM 2265-2 Display 59 OCL Considerations 90
READY - Entering LOG 59 LOAD Sequence 90
MODI FY - Entering LOG . 59 BUI LO Sequence 90

OCL Error Messages 60 Example . 91
Co-Resident Systems 62 Primary Initialization of Two Disks 91

Messages for Disk Initialization 92
SAMPLE JOBS • 63
Sample Job 1. Initialize Disk 64 ALTERNATE TRACK ASSIGNMENT PROGRAM ($ALT) 93
Sample Job 2. Compile an RPG Source Program 65 Functions 93
Sample Job 3. Process Customer Program "INVUPD". 66 Writing Trac_k Addresses 93
Sample J()b 4. Copy File Disk to Disk 67 Checking for Defective Tracks . 93
Sample Job 5. Multi-File Build 69 Printing Sectors Containing Incorrect Data 93
Sample Job 6. Multi-File-Call . 71 Assigning an Alternate Track 93
Sample Job 7. Update Multi-Volume Master File 72 Options 94
Sample Job 8. Create a Multi-Volume Indexed File 73 Type of Assignment 94
Sample Job 9. Maintain a Multi-Volume Indexed File Number of Alternate Tracks 95

With Packed Keys . 75 Surface Analysis . 95
Sample Job 10. Include Utility Control Statements Control Statements . 95

in a Procedure . 76 Control Statement Summary 95
Sample Job 11. Chain Procedures 77 Parameter Summary: ALT (Alternate) Statement 95

Parameter Descriptions . 96
PART II. DISK UTILITY PROGRAMS . 79 PACK Parameter 96

UNIT Parameter. 96
INTRODUCTION TO DISK UTILITY PROGRAMS 80 VERIFY Parameter . 96
General Program Operation 80 ASSIGN Parameter . 96

All Programs Except Library Maintenance 80 UNASSIGN Parameter 96
Library Maintenance Program 81 OCL Considerations 97

Using Disk Utilities . 81 LOAD Sequence 97
Control Statements . 81 BUILD Sequence 97

Writing OCL Statements 82 Example . 98
Utility Control Statements. 82 Conditional Assignment 98
OCL Statements . 82 Messages for Alternate Track Assignment 99

DISK INITIALIZATION PROGRAM ($1NIT) 83 ALTERNATE TRACK REBUILD PROGRAM ($BUILD). 100
Functions 83 Functions 100

Naming a Disk 83 Locating Incorrect Data 100
Writing Track and Sector Addresses 83 Control Statement Summary 100
Checking for Defective Tracks (Surface Analysis) 83 Replacing Incorrect Data 100
Assigning Alternate Tracks . 83 Options 100

Options 84 Parameter and Substitute Data Summary 100
Type of Initialization 84 Number of Characters 101
Number of Disks 85 Number of Tracks 101
Erasing Alternate Track Assignments . 85 Parameter and Substitute Data Descriptions . 101
Additional Disk Identification . 85 PACK Parameter 101
Surface Analysis Option 85 UNIT Parameter. 101

Control Statements . 85 TRACK Parameter 101
Control Statement Summary 86 LENGTH Parameter 101
Parameter Summary 87 DISP (Displacement) Parameter 101

Parameter Descriptions . 88 Substitute Data . 101
TYPE Parameter (UIN) . 88 OCL Considerations 102
UNIT Parameter (UIN) . 88 LOAD Sequence 102
VERIFY Parameter (UIN) 88 BUILD Sequence 102
ERASE Parameter (UIN) 88 Example . 103
CAP Parameter 88 Correcting Characters on an Alternate Track 103
PACK Parameter (VOL) 89
ID (Identification) Parameter (VOL) 89 FILE AND VOLUME LABEL DISPLAY PROGRAM
OLDPACK Parameter (VOL) 89 ($LABEL) 105

Functions 105
Print VTOC Information 105
Print Headings 105

Options 105

vi

Entire Contents of VTOC
File Information Only •.
Number of File Names ..

Control Statements
Control Statements Summary .
Parameter Summary (Display Statement)

Parameter Descriptions.
UNIT Parameter ..
LABEL Parameter .

OCL Considerations ..
LOAD Sequence .
BUILD Sequence ..

Example
Printing VTOC Information for Two Files

FILE DELETE PROGRAM ($DELET)
Functions

VTOC File Reference ..
Erase File Information.

Options
Deleting a File
Number of Files
Number of File Names

Control Statements
Control Statement Summary
Parameter Summary

Parameter Descriptions.
Pack Parameter .
Unit Parameter .
Label Parameter.
Date Parameter .
Data Parameter (REMOVE Statement Only)

OCL Considerations ..
LOAD Sequence ..
BUILD Sequence ..

Example
Deleting One of Several Files Having the Same Name
Removing One File

105
105
105
105
106
106
106
106
107
110
110
110
111
111

112
112
112
112
112
112
112
113
113
113
114
114
114
114
114
115
115
116
116
116
117
117
118

COPY /DUMP PROGRAM ($COPY) 119
Functions 119

Disk or File Location. 119
Using a Work Area . . 119
Identifying the Device 119
Copying a Portion of a File 119
Printing a Portion of a File. 119
Record Keys and Relative Record Numbers. 119

Options. 120
Copying and Printing. 120
Deleting Records . . . 121
Reorganizing a File . . 121

Copying Multivolume Files 122
Maintaining Correct Date and Volume Sequence Numbers 122
Maintaining Correct Relative Record Numbers 122
Direct File Attributes. 122
Copying Multivolume Index Files. . 122

Control Statements 123
Control Statement Summary 124
Parameter Summary 127

Parameter Descriptions
FROM and TO Parameters (COPYPACK Statement).
OUTPUT Parameter (COPYFI LE Statement) .. .
INPUT Parameter (COPY Fl LE Statement)
LENGTH Parameter (COPY Fl LE Statement).
DELETE Parameter (COPYF I LE Statement) .
REORG (Reorganize) Parameter (COPYFI LE

Statement) .
WORK Parameter (COPY Fl LE Statement) ..
SELECT KEY and PKY Parameters (SELECT

Statement) .
SELECT RECORD Parameters (SELECT Statement)
Fl LE Parameter (SELECT Statement)
LENGTH and LOCATION Parameters (KEY Statement)

Card and Diskette Considerations ($COPY) .
Card or Diskette Input .. .
Card or Diskette Output

OC L Considerations
LOAD Sequence for Copying an Entire Disk
BUILD Sequence for Copying an Entire Disk.
LOAD Sequence for Copying or Printing Files
BUILD Sequence for Copying or Printing Files.

Examples
Copying an Entire Disk
Copying a File from One Disk to Another.
Printing Part of a File
Copy a Disk File to a Card File
Copy a Disk File to the 3741 (Diskette)
Copy a Disk File to the 3741 (Diskette) and Print a Part

of the File
Copy a Card File to a Diskette and Print the Entire File.
Copy and Print a Portion of a File on a Diskette to a

Card Device .
Copy a Diskette File to a Disk File and Print only the

Copied Records
Create an Indexed File from a Sequential Card File .. .
Create an Indexed Disk File from Sequential Disk Input.

129
129
129
129
129
130

130
130

131
131
131
132
132
132
132
133
133
133
134
135
136
136
137
139
140
141

142
143

144

145
147
149

Contents vii

LIBRARY MAINTENANCE PROGRAM ($MAINT) •••••••
Library Description
Organization of this Section

Allocate
Creating Libraries
Allocate Considerations and Hestrictions .
Control Statement Restrictions
Allocate Control Statement Summary . . .
Allocate Parameter Summary•.

Parameter Descriptions •...........
TO Parameter
SOURCE and OBJECT Parameters .
DIRSIZE Parameter
SYSTEM Parameter
WORK Parameter
Using the Allocate Function.
Compress in Place (OBJECT-[R NUMBER])

Copy•........................
COPY Control Statement Summary: Reader-to-Library ..
COPY Control Statement Summary: File-to-Library
COPY Control Statement Summary: Library-to-

Library•.....
COPY Control Statement Summary: Library-to-Printer

and/or Card
Copy Parameters
Using the Copy Function •..........
Sample System Directory Printout
Using the System Directory to Determine if the Object

Library should be Reorganized
Source Library Directory
Object Library Directory .. .

Delete
Control Statement Summary
Delete Parameters.

Modify
Uses
Control Statement Summary
Modify Parameter
Remove, Replace, Insert Parameters .

Rename•.....
Control Statement Summary
Rename Parameters ..

OCL Considerations .
LOAD Sequence .
BUILD Sequence .

Allocate Examples ..

Viii

Creating Both Source and Object Libraries on a Disk.
Changing the Size of a Source l..ibrary ..
Deleting the Object Library from a Disk

151
151
152
152
152
153
153
154
155
156
156
156
156
156
157
158
160
161
162
162

163

164
165
167
171

172
173
174
176
176
177
178
178
179
180
181
181
181
181
182
182
182
183
183
184
185

Copy Examples • • • . • • • . • 186
Copying Minimum System from one Disk to Another . 186
Printing Library Directories . • • . • . • • . . 187
Replacing a Library Entry: Replacement Coming from

Another Disk. • 188
Copying a Disk File to a Library • . • 189
Copying a Procedure from the System Input Device • . 190

Delete Examples • • . • • • . . . • . 191
Deleting a Temporary Entry from a Library. • . 191
Deleting All Temporary Entries with Names that Begin with

Certain Characters. • • . . • . . . • 192
Deleting All Permanent Library Entries of One Type. 193

Modify Examples. • • • 194
Replacing Statements in a Procedure. • 194
Removing Source Statements from a Module . . • . 195
Inserting a Statement in a Source Module • • . . . 196

Rename Example • • 197
Renaming a Set of Source Statements in a Source

Library • • . . 197

APPENDIX A: IBM SYSTEM/3 STANDARD
CHARACTER SET ••••••••••••••••••••••••• 198

APPENDIX B: RECORDS - TRACKS CONVERSION ••••.• 199
For Sequential or Direct Files. 199
For Indexed Files. 199

APPENDIX C: DISK ORGANIZATION
Volume Table of Contents (VTOC). .
Source Library
Object Library.
Files •.....

APPENDIX D: INQUIRY PROGRAM
Requesting Inquiry in an Interrupt Environment ..•
Classifying Programs for Inquiry ...•...•.
Inquiry in an Interrupt Environment
Planning Inquiry Programs

APPENDIX E: LIBRARY ENTRY RETRIEVAL
SUBROUTINE (SUBR 15) ••••••••••••

Using SUBR 15 with RPG II . • . .•.•...
Error Identification.

Example

GLOSSARY •••••••••••••••••••••••

INDEX ••••••••••••••••••••••••••

200
200
200
200
200

201
201
202
203
204

205
206
207
207

209

210

This publication contains two parts. Part I describes
Operation Control Language (OCL) statements. Part 11
describes disk utility programs.

Part I

Refer to Part I if you want to know:

1.

2.

What an OCL statement is.

How to enter the OCL statements required to run
your jobs.

How to Use This Manual

Part II

Refer to Part 11 if you want to know:

1.

2.

3.

What disk utility programs are supplied with the
system.

The function of each disk utility program.

The Operation Control Language (OCL) statements
and utility control statements necessary to request
each disk utility program.

How to Use This Manual ix

x

PART I
OPERATION CONTROL LANGUAGE

Operation Control Language 1

Introduction to OCL

Before the I BM System/3 Model 6 can run a program, it
must know what you want it to do and where to find the
information it will need to do the job. You supply the
what and where information in a series of OCL (operation
control language) statements. The system can't run any of
your programs unless each one is accompanied by a series
of OCL statements. A series of OCL statements is called
an OCL cycle. There are four OCL cycles: LOAD, BUILD,
BUI LDC, and CALL.

I

Part I of this manual is designed to help you select an OCL
cycle and fill out the OCL guide sheets your operator will
use in response to the OCL prompting for each job. You
can either design an operator's OCL guide sheet for your
installation or use the pre-printed form that is available
(see Operator's OCL Guide).

HOW TO USE PART I

The Conversational OCL section of this manual contains
ihformation on responding to OCL prompting. There are
three levels of information for the four OCL cycles.

2

Here is how to use each level:

• Use the KEYWORD SEQUENCES for an overall under
standing of the OCL cycle. The sequences show the
order of the OCL keywords for a cycle and indicate
which keywords require responses.

• Use the KEYWORD-RESPONSE SUMMAR I ES for a
quick recall of all possible entries for each OCL state
ment. In the responses column of the summary charts:

Words or letters in all capital letters (FORMS,
BUILD, R1) represent actual entries.

Words or letters not in all capital letters (mmddyy,
Disk Name) represent information you must supply.

• Use the KEYWORD DESCRIPTIONS when you need a
detailed explanation of a particular keyword.

The section titled Using OCL contains information on pro
gramming OCL for complex jobs and special ·features or
devices.

OPERATOR'S OCL GUIDE

The operator's OCL guide is available for you to use to tell
your operator how to respond to the OCL prompting for a
job. The CALL cycle is not included on the guide because

the OCL prompting for that cycle is so short.

1Bft1
Job

For information on filling out the OCL guide, see IBM
System/3 Model 6 System Programmer's Guide,
GC21-7530.

International Business Machines Corporation

System/3 Mode I 6

GX21·9126'.
Printed in U.S.A.

Date
OPERATION CONTROL LANGUAGE (OCL) GUIDE

Programmer

Keywords Responses Considerations

R E A Dy

0 0 0 B UI D N A ~E
0 0 U N T
0 1 0 AD N A M E

0-D • t--l-"-f-"'-IF--l-4=-l-=4-'--l--=-4-=-<-4-'--l-~'-'-+-=-+--+--+--+--l---l---l---1---1---1---l---l--l--L-- _Pr_oc_ed_u_re_N_•_m•~~~~~~~~~~~~~
t--l-"-f-"'-l~-4-4-+-+-4-+-+~:.o...+--4-.:.......+--4---1---1---l---l---l---l---l---1---l--L-l--L-- _F1_,_R_1,_F_2_or_R_2~~~~~~~~~~~~-

Columns 75-80 of RPG Control Card or System Program Name

B U I L D

!! N t T

D AT

s WI T c H

4 0 F I L E N A 11_ E

0 4 1 U N I T
0 4 2 p A le K
0 4 3 L AB E
0 4 4 R E C 0

4 5 T R IA c K
0 c A T

R E T Al

0 4 D AT E

0 5 0 F I L E N AM E

0 5 1 u NI T
0 5 2 p AC K
0 5 L AB

0 5 R E C 0 R

0 T RA c K

0 L 0 C A T

R E T A I

8 D AT E

M 0 D I F y

l

D S

s
I 0 N

N

D S

s
I 0 N

N

F1, R1, F2 or R2

mmddyy or ddmmyy

1-0n, 0.0ff, X-No Change

~
Other Possible Entry J
Lines 020-0581

1 for Delayed Response

Columns 7-14 of RPG File Description Specifications or Predefined Filename

F1, R1, F2 or R2

Disk Name (Assigned by Disk Initialization Program)

VTOC File Name (if different than respcnsa to Fl LE NAME)

1·999999 (Maximum Number of Records in File)

1-398 (Maximum Number of Tracks for this File)

8-405 Location of First Track of File

S-Scratch, T-Temporary, P-Permanent

mmddyy or ddmmyy

Columns 7-14 of RPG File Description Specifications or Predefined File Name

F1, R1, F2 or R2

Disk Name (Assigned by Disk Initialization Program)

VTOC File Name (if different than response to FILE NAME)

1-999999 (Maximum Number of Records in File)

1-398 (Maximum Number of Tracks for this File)

8-405 Location of First Track of File

S.Scratch, T·Temporary, P-Permanent

mmddyy or ddmmyy

MODIFY OPTIONS

1. Enter RUN
2. Enter CANCEL
3. Correct Statement

Enter Statement number
Retype or delete (.) response

t-l--l--lr--l-+-+-+-+-+-+-+-+-+-+-+--l---l---l---l---l---l---l---1---1--l---l--l-....L-l-....L....L-..l.-..l.-..l.-...L...L-.I....._, 4. Create new Statement
INCLUDE, LOG, FORMS, "(For Comments)

Introduction to OCL 3

Conversational OCL

Every job run on the Model 6 requires a set of Operation
Control Language (OCL) statements to give the system in
formation about the job to be run (such as what program
to use, what files to use, what job date to use, etc.). An
OCL statement consists of a keyword and a response.

The OCL for the Model 6 is called conversational OCL be
cause a question and answer procedure is used. The sys
tem prints the question called a keyword, and the operator
supplies the answer called a response. The keyword tells
the operator the type of information required by the sys
tem. For example, the keyword Fl LE NAME indicates
that the name of one file used in the program must be
supplied. By printing a keyword, the system is prompting
the operator for a response.

The operator responds to each keyword that applies to the
job by typing in the relevant information. (When the sys
tem prompts FILE NAME, for example, the operator types
the name of one file that the job uses.) .If the system
prompts a keyword that doesn't apply to the job, the
operator bypasses the response.

THE JOB CYCLE

The system will prompt READY when it is ready to run
jobs. (For information on preparing the system to run jobs,
see the IBM System/3 Model 6 Operator's Guide, GC21-
7501.) The response to READY tells the system what type
of OCL cycle you want to run.

4

There are four OCL cycles: LOAD, BUILD, BUI LDC, and
CALL. Of the four cycles, only the LOAD cycle is inde
pendent; that is, you cari run a job by responding just to
the keywords in that cycle. The other three cycles are inter
related; to run a job you must use two or more of them.

The OCL cycle you choose to use should be based on fre
quency of program use and whether the program will be
run alone or with a group of programs.

For infrequent jobs use:

LOAD This provides the OCL statements needed to
run the job.

For frequent jobs use one of these:

BUILD This puts the OCL statements for a job into a
source library procedure.

BUI LDC This chains the procedures.

CALL This calls a procedure from the source library.

Note: A set of OCL statements in a source library is called
a procedure.

(")
0
:::I
<
~
~ a·
:::I
~

0
(")
r

(J1

YOU WANT
TO DO THIS

SYSTEM
DOES THIS

Continue from
job to job with·
out halting

I
Operator
types
NOHALT

Continues
from job to
job without
halting

Halt after
each job

I
Operator
types

HALT

Halts
after
each
job

System Prompts READY

Stop page
eject at
end of job

I
Operator
types
NO EJECT

Eject page at
end of job
(cancel NOEJECT
statement)

l
Operator
types
EJECT

System does System
not eject
a page at
end of job

ejects a
page at
end of job

System Prompts READY

-.~,.

Change input Change log C~ange punch Execute Build a

d••ire I d••l d••icl job I pror··

Operator Operator roperator Operator Operator
types

READER

(See index
entry card
OCL)

Changes
Input
Device

types

LOG
types
PUNCH

types
LOAD

(See index (See index and supplies
entry LOG) f!n;try PUNCH) OCL state

ments

Changes
Log
Device

Changes
Punch
Device

OR

Operator
types
CALL and
system reads
OCL state
ments from
procedure

!
System loads
and executes
program

types

BUILD
and supplies
OCL

OR

Operator
types

BUI LDC and
supplies OCL

System puts
statements in
procedure

The LOAD Cycle

When you use a LOAD cycle, you're telling the system:

1. Here are the OCL statements for my program.

2.

3.

Go to the disk drive I specify and find the program I
want to run.

Load the program into the processing unit.

4. Run my program.

The LOAD cycle OCL statements are not saved. If you
want to run the same job again, your operator must respond
to all the keywords in the LOAD cycle again. It's best to
use the LOAD cycle for jobs you run infrequently because
this cycle has many keywords and takes quite a while for
responses.

The BUILD Cycle

When you use a BUILD cycle, you're telling the system:

1. Here are the LOAD cycle OCL statements for job
xxxx.

2.

3.

Store the LOAD cycle statements on disk so that they
can be used whenever I want to run the program.

Do not run the program now.

Once the set of OCL statements is written on a disk, the
set of statements is referred to as a procedure. The process
of writing the statements on the disk is referred to as build
ing a procedure. You use the BUILD cycle to build a
procedure.

5

Although the BUILD cycle is the longest of all the OCL
cycles in terms of operator time required, it doesn't run a
job. Its function is to save the OCL statements for a job
by writing them on one of the disks. The advantage of the
BUILD cycle is that on·ce the OCL statements are stored on·

the disk, the program can be run using them rather than by

keying all the required statements.

Delayed Responses in the BUILD Cycle

Responding to a keyword by typing a question mark is re
ferred to as a delayed response.' Delayed responses are valid
only in the BU I LD cycle and only after keywords that con
tain a delayed response in the keyword-response chart (see
Keyword-Response Summary - Build Cycle). A delayed
response to any of these BU I LD keywords will do the
following:

• Cause the system to reprompt the keyword during the

CALL cycle.

• Force the operator to respond .to the keyword when it is
reprompted during the CALL cycle. (The system won't
continue the CALL prompting cycle until the operator
types a valid response.)

Control Statements in Procedures

HALT, NOHAL T, LOG, READER, PUNCH, and PAUSE,
are ignored when read from procedures during the CALL
cycle and are not put into a procedure during a BU I LD
cycle.

The BUILDC Cycle

When you use a BUI LDC cycle, you're telling the system:

1. I want to prepare a procedure to run a series of jobs
which are always executed one after the other with
no interruption.

2. The OCL statements for each job in the group are
in procedures stored on disk.

3. Here are the names and disk drive locations of the
procedures for each job in the group.

4. Build a c~~ined p~ocedure, establishing a sequence in
which the individual procedures are run.

A chained procedure is a list of the procedures for each job
in a group, in the order you want to run them. The list
contains:

1. The name of the procedure for each job.

2. The disk drive on which the procedure is located.

The process of writing the list on a disk is referred to as
building a chained procedure. BU I LDC stands for build
chained.

The CALL Cycle

CALL is the shortest OCL cycle, having only four keywords.
When you use a CALL cycle, you're telling the system:

1. Locate, on disk, the procedure I built for job xxxx.

2. Use it to run job xxxx.

The CALL cycle is always linked to a BUILD or a BUI LDC
cycle.

SYSTEM-OPERATOR INTERACTION DURING
KEYWORD PROMPTING

The system analyzes the operator's response to each key
word. If the response contains a formatting error (such as
invalid characters or duplicate procedure names), the sys

tem prints an error message and reprompts the keyword. If
the operator does not know the correct response, entering
/* as a response to a'ny prompt will cancel the job and cause
READY to be prompted.

rstem prompts keyword

Does operator's OCL guide

•row a response to the krword

YES NO

i
Operator types
in response

Operator presses end-of-statement

ry to indicate end of statement

1oes response contain errrs

YES NO

i i
System prints System prompts
error message
or code

i
Operator looks up
error message or code
and possible options in
operator's manual

i
Operator uses one
of the options

next keyword in
the cycle

Conversational OCL 7

Keyboard

Command Key Lights System Status Lights System Control Switches

These lights tell the operator
which command keys have

1/0 attention lights indicate those
devices that need operator attention.
The halt code and field/operation

These switches start and control
the system.

Command Keys Alphameric Keyboard

Program Start Key Single Quote Field Erase Key

(For Multi-Volum"iles) ~

BGGB•~rnrnrnrnrnrnwrnrno8•

Command Keys

8

Numeric Keys

Question Mark
(For Delayed
Response) •

10-Key
Numeric
Keyboard

Enter - Key

\ •
Enter+ Key

The shaded keys
are function keys

End-Of-Statement Keys

The operator must respond to each keyword ttiat the sys
tem prompts. The operator responds to a keyword by
typing the required information (if the keyword applies to
the job) and by pressing an end-of-statement key. The end
of-statement key can be either PROG START or ENTER -
The Keyword-Response Summary charts in Appendix A
explain the effect of end-of-statement keys on the prompt
ing sequence.

Program Start (PROG START) or Enter Plus (ENTER+)

Pressing the PROG START or ENTER+ key tells the sys
tem that the response is complete and to prompt the next
keyword.

Enter Minus (ENTER-)

Pressing the ENTER- key to end a response causes differ
ent processing depending on what keyword was prompted
and what type of OCL cycle is being run.

Pressing ENTER- after LOAD NAME or UNIT in a LOAD
Cycle: If the ENTER- key is used as an end-of-response
to the LOAD NAME or UNIT prompts in a LOAD cycle,
the remaining keywords in the cycle will be bypassed and
MODI FY pr.empted.

Pressing ENTER- after LOAD NAME or UN/Tin a BUILD
Cycle: If the ENTER- key is used as an end-of-response
to the LOAD NAME or UNIT prompts in a BUI LO cycle,
the system will prompt C_OMPI LE OBJECT; SOURCE, or
UNIT.

Pressing ENTER- after FILE NAME: If the ENTER- key
is used as an end-of-response to the Fi LE NAME prompt,
the system prompts KEY LENGTH and HIKEY for multi
volume indexed files (see Multi-Volume Files in Appendix
A).

Pressing ENTER- after CALL NAME or UNIT in a CALL
Cycle: If the ENTER- key is used as an end-of-response
to the CALL NAME or UNIT prompts in a CALL cycle,
the OCL and any included control statements in the called
procedure are not displayed. However, OCL statements
with delayed responses are displayed and the system waits
for a response. MODI FY is not prompted after either the
OCL statements or the included control statements.

Pressing ENTER- in the File Keywords: If the operator
responds to FILE NAME, he must also respond to the next
·two file keywords: UN IT and PACK. He can, however,
bypass any or all of the rest of the file keywords. To by
pass a single keyword he presses the PROG START key as
a response. To bypass all of the remaining file keywords
he presses the ENTER- key either as an end-of-response
or as a response. Pressing the ENTER- key causes the sys~
tern to prompt Fl LE NAME for the next file.

Statement Numbers in an OCL Cycle

Statement numbers are assigned by the system to state
ments in an OCL cycle. These statement numbers are used
by the operator when using MODI FY to reference previous
OCL statements.

Each OCL statement, except READY and MOD I FY, is as
signed a three digit number. The first number in a BUI LO
or CALL cycle is 000, and in a LOAD cycle 010.

The statement number is incremented by 10 for each major
keyword (DATE, SWITCH, COMPILE OBJECT, FILE
NAME, etc.), and by one for each minor keyword (UNIT,
PACK, LABEL, RECORDS, etc.).

When the INCLUDE keyword is used to add utility control
statements or sort source statements to a procedure, these
included statements are assigned two-digit statement.num
bers. These statement numbers start with 00 and are incre
mented by one for each included statement.

The sample OCL jobs show the statement numbers assigned
under various OCL cycles.

Conversational OCL 9

Comments

Comments can be entered after any response on the same
line if at least one space is left between the response and
the comment (see Modify: Entering Comments under
MODIFY in Part I to add comments during MODI FY time).

Keyword Sequence for OCL Load Cycle

READY

i
Keywords that must

LOAD NAME be answered in every
LOAD cycle.

UNIT

COMPILE OBJECT

i
Keywords that are
prompted only if

SOURCE response to LOAD
NAME was name of

UNIT compiler.

DATE

SWITCH

FILE NAME

No~ Does operator respond

10

with a file name? Keywords that must
Yes be answered for

UNIT

PACK

LABEL

RECORDS

TRACKS

LOCATION

RETAIN

DATE

MODIFY

~very file used in job.

This keyword must be
answered in every
LOAD cycle.

Keyword-Response Summary (Load Cycle)

I Keyword Response

READY LOAD

Press PROG START

LOAD NAME

I
Program Name
(Not Compiler)

Press PROG ST ART
OR OR

L Press ENTER-

Compiler Program Name

Press PROG START

UNIT R1, R2, F1, or F2

Press PROG START

OR

Press ENTER-

COMPILE OBJECT

I
R1, R2, F1, or F2

OR

L Press PROG ST ART

No Response

Press PROG ST ART

SOURCE Name of Source Program

Press PROG ST ART

Consideration

None

System prompts LOAD NAME

Name of program to be run

System prompts DATE after UN IT

System prompts MODIFY after UNIT

Name of compiler to be run ($RPG for RPG 11 Compiler)

System prompts COMPILE OBJECT after UN IT

Location of the disk whose obj~ct library contains the
program to be run.

System prompts next keyword (see LOAD NAME in this
chart)

System prompts MODIFY if not compiler

Your system has more than one object library and you
don't want to put the compiled program in the object
library which contains the compiler.

System prompts SOURCE

System will put the compiled program in the object library
which contains the compiler. Prompt SOURCE

Name assigned to RPG 11 source program when the KSE or
Library Maintenance Program put it in a source library

System prompts UNIT

For information about the KSE Program see the IBM System/3 Model 6 Conversational Utility Programs Reference Manual, SC21-7528.

For information about the Library Maintenance Program see Part 11 of this manual.

Conversational OCL 11

Keyword-Response Summary (Load Cycle) (Continued)

I Keyword

UNIT

DATE

SWITCH
(XXXXXXXX)

FILE NAME

12

Response

R1, R2, Fl, or F2

Press PROG START

I mmddyy or ddmmyy

OR L Press PROG START

No Response

Press PROG START

8-position setting I (combination of 1's, O's,

1

and X's)

OR L Press PROG START

No Response

Press PROG START

File name of file used I by program

I Press PROG START
OR OR L Press ENTER-

No Response

Press PROG START

Consideration

Location of the disk whose source library contains the
RPG 11 source program

System prompts DATE

Required when job date is not the same as the system
date. (Responses must follow format established during
system generation.)

System prompts SWITCH

Either no date is required for the job
OR

you're going to use the system date.
System prompts SWITCH.

Required to change external indicators in programs. Three
choices for each position:

1 turn indicator on
0 turn indicator off
X leave indicator as is

System prompts Fl LE NAME

Job does not use external indicators or you want to use the
current setting. System prompts Fl LE NAME

Columns 7-14 of RPG File Description Specifications, or
predefined file name for system programs

System prompts UNIT

System prompts KEY LENGTH (see Multi-Volume Files
in Appendix A)

Either your job uses no files at all
OR

you have already described all the files the job uses. You
want the system to prompt MODIFY

Keyword-Response Summary (Load Cycle) (Continued)

I l<eyword Response

UNIT R1, R2, F1, or F2

Press PROG START

PACK Disk Name

Press PROG START
OR

Press ENTER-

LABEL

I
VTOC Filename

Press PROG ST ART OR OR
Press ENTER-

No Response

Press PROG START

RECORDS 0
I

1-999999

Press PROG START
OR OR

L Press ENTER-

No Response

Press PROG START

Consideration

During a file creation run - location of disk where you
want to write the file.
During other runs - location of disk which contains the
file to be processed.

System prompts PACK.

During a file creation run - the name which identifies
the disk on which you want to write the file.
During other runs - name which identifies the disk on
which the file is located.

System prompts LABEL.

System prompts FILE NAME for next file.

Required when VTOC Filename is different than response
to FILE NAME.

System prompts RECORDS

System prompts FILE NAME for next file.

You don't want to respond to this keyword; you want the
system to prompt RECORDS

Number of records in the file.

System prompts LOCATION.

System prompts FILE NAME for next file.

You don't want to respond to this keyword; you want
system to prompt TRACKS.

0 At file creation time, either the number of records or the number of tracks must be specified.

Conversational OCL 13

Keyword-Response Summary (Load Cycle) (Continued)

I Keyword

TRACKSQ

I
OR

L

LOCATION r
OR

L

RETAIN

I
OR

l

Response

1-398

Press PROG ST ART
OR

Press ENTER-

No Response

Press PROG START

8-405

Press PROG START
OR

Press ENTER-

No Response

Press PROG START

P, T, S, or A

Press PROG ST ART
OR

Press ENTER-

No Response

Press PROG START

Considerations

Number of tracks the file will occupy.

System prompts LOCATION.

System prompts FILE NAME for next file.

You don't want to respond to this keyword; you want
system to prompt LOCATION.

Use during file creation runs if you want to specify a begin
ning track location for the file.

System prompts RETAIN.

System prompts FILE NAME for next file.

You don't want to respond to this keyword; you want
system to prompt RETAIN.

P - permanent
T - temporary
S - scratch
A - activate scratch

System prompts DATE.

System prompts FILE NAME for next file.

If file is being created, file designation will be T. System
prompts DATE.

At file creation time, either the number of records or the number of tracks must be specified.
If operator entered number of RECORDS, TRACKS will not be prompted.

14

Keyword-Response Summary (Load Cycle) (Continued)

I Keyword

DATE

MODIFY
(Operator can
use one, all, or a
combination of
the responses.)

Response

I mmddyy or ddmmyy

OR L Press PROG START

No Response

Press PROG START

LOG

Press PROG ST ART

CANCEL

Press PROG START

FORMS

Press PROG START

PUNCH

Press PROG START

Asterisk (*)

Followed by comments

Press PROG START

Statement number and comma

Press PROG START

Statement number

Press PROG ST ART

RUN

Press PROG START

Considerations

Required when job uses a file whose name and label are
the same as those of another file on the same disk.
(Response must follow format established during sysgen.)

System prompts FILE NAME for next file.

You don't have to respond to this keyword; you want
system to prompt Fl LE NAME, for next file.

Used only if CRT display or 2222 printer on system.

System prompts LOG DEVICE.

Cancel job.

System prompts READY or displays end-of-job halt.

Change lines per page printed output for system programs.

System prompts FORMS DEVICE.

Change the system punch device.

System prompts PUNCH.

Enter comment.

System waits for next MODI FY response.

To delete statement

System waits for next MODI FY response.

To correct statement (LOAD NAME cannot be changed).

System waits for correct statement.

Tells_system -
a. The LOAD cycle is complete.
b. Run the job.

System runs job

Conversational OCL 15

Keyword Sequence for OCL Build Cycle

READY

BUILD NAME

UNIT

LOAD NAME

UNIT

COMPILE OBJECT

SOURCE

UNIT

DATE

SWITCH

FILE NAME

l\Jo <·- Does operator respond
with a file name?

Yes

UNIT

PACK

LABEL

RECORDS

TRACKS

LOCATION

RETAIN

DATE

MODIFY

16

(

Keywords that must

be answ. ered in every
BUI LDcycle.

Prompted only if response to
LOAD NAME or UNIT ended
with ENTER- key.

Keywords that must
be answered for
every file used in job.

This keyword must be
answered in every
LOAD cycle.

Keyword-Response Summary (Build Cycle)

jKeyword

READY

BUILD NAME

UNIT

LOAD NAME

UNIT

Response

BUILD

Press PROG ST ART

Procedure Name

Press PROG ST ART

R1, R2, F1, or F2

Press PROG ST ART

I Program Name

OR Press PROG START

L Compiler Name

Press ENTER-

I R1, R2, F1, or F2

I Press PROG ST ART
OR OR L Press ENTER-

? (Delayed Response)

Press PROG START
OR

Press ENTER-

Considerations

None

System prompts BUILD NAME

Maximum of six alphameric characters.
Must begin with alphabetic characters.
Must not be DIR, SYSTEM, or ALL

System prompts UNIT.

Location of the disk where you want to put procedure.
(Procedure is placed in the source library of the disk
operator specifies.)

System prompts LOAD NAME

Name of program to be run.

System prompts DATE after UNIT.

Name of compiler to be run ($RPG for RPG 11 compiler).

System prompts UN IT then COMPILE OBJECT, SOURCE,
UNIT

Location of disk whose object library contains program

System prompts DATE

System prompts COMPILE OBJECT

Forces operator to respond to unit during CALL cycle.

System prompts DATE.

System prompts COMPILE OBJECT

Conversational OCL 17

Keyword-Response Summary (Build Cycle) (Continued)

I Keyword

COMPILE--
OBJECT

SOURCE

UNIT

18

Response

I R1, R2, F.1. or F2

OR

L Press PROG START

No Response r Press PROG START

L 7 (Delayed Response)

Press PROG START

I Name of Source Program

OR

L Press PROG ST ART

? (Delayed Response)

Press PROG ST ART

I R1, R2, Fl, or F2

OR

L
Press PROG START

? (Delayed Response)

Press PROG START

Considerations

Your system has more than one object library and you
don't want to put the compiled program in the object
library which contains the compiler.

System prompts SOURCE.

System will put the compiled program in the object library
which contains the compiler. System prompts SOURCE.

You will tell the system where to put the compiled program
during the CALL cycle.

System prompts SOURCE.

Name assigned to source program when the KSE or
Library Maintenance Program p·ut it. in a source library.
library.

System prompts UNIT.

You will supply the name of the source program during
the CALL cycle.

System prompts UNIT.

Location of the disk whose source library contains the
RPG source program

System prompts DATE.

You will supply the location of the source program during
the CALL cycle.

System prompts DATE.

Keyword-Response Summary (Build Cycle) (Continued)

j Keyword

DATE

SWITCH

FILE NAME

Response

1
mmddyy or ddmmyy

OR L Press PROG START

l ? (Delayed Response)

OR Press PROG START

L No Response

Press PROG START

1
8-position setting
(combination of 1 's,
O's, and X's)

OR L Press PROG START

I ? (Delayed Response)

OR Press PROG START

L No Response

Press PROG START

I
File name of file used
by program

Press PROG ST ART
OR OR

L Press ENTER-'? (Delayed Response)

OR L Press PROG START

No Response

Press PROG ST ART

Considerations

To put a job date in the procedure. (Response must
follow format established during sysgen.)

System prompts SWITCH.

Forces operator to supply DATE during CALL cycle.

System prompts SWITCH.

If no date is necessary for job or system date is acceptable.
DATE will not be part of procedure.

Required to change external indicators in programs.
Three choices for each position:

1 = turn indicator on
0 =turn indicator off
X = leave indicator as is

System prompts Fl LE NAME.

Forces operator to respond to SWITCH during CALL cycle

System prompts FILE NAME

Job does not require external indicators. SWITCH will
not be part of procedure.

Columns 7-14 of RPG File Description Specifications, or
predefined filename for system programs.

System prompts UNIT.

System prompts KEY LENGTH (see Multi-Volume Files
in Appendix A).

Forces operator to respond to FILE NAME during CALL
cycle.

System prompts UNIT

Either your job uses no files at all

OR
you have already described all the files the job uses. You
want the system to prompt MODI FY

Conversational OCL 19

Keyword-Response Summary (Build Cycle) (Continued)

I Keyword

UNIT

PACK

LABEL

20

Response

I Rl, R2, Fl, or F2

OR L Press PROG ST ART

? (Delayed Response)

Press PROG START

I Disk Name

OR

L
Press PROG START

OR
Press ENTER-

? (Delayed Response)

Press PROG ST ART
OR

Press ENTER-

I VTOC Filename

I Press PROG ST ART
OR OR L Press ENTER-

l ? (Delayed Response)

I Press PROG START
OR OR L Press ENTER-

No Response

Press PROG START

Considerations

During a file creation run - location of disk where you
want to write the file.
During other runs - location of disk which contains the
file to be processed.

System prompts PACK.

Forces operator to respond to UNIT during CALL cycle.

System prompts PACK.

During a file creation run - th~ name which identifies the
disk on which you want to write the file.
During other runs - name which identifies the disk on
which the file is located.

System prompts LABEL.

System prompts FILE NAME for next file.

Forces operator to respond to PACK during CALL cycle.

System prompts LABEL.

System prompts FILE NAME.

Required when VTOC Filename is different than response
to FILE NAME.

System prompts RECORDS.

System prompts FILE NAME for next file.

Forces operator to respond to LABEL during CALL cycle.

System prompts RECORDS.

System prompts FILE NAME.

You don't want to respond to this keyword;-you want the
system to prompt RECORDS.

Keyword-Response Summary (Build Cycle) (Continued)

I Keyword

RECORDS 0

TRACKS ®

Response

11-999999

I Press PROG START
OR OR L Press ENTER-

! ? (Delayed Response)

I Press PROG START
OR OR L Press ENTER-

No Response

Press PROG ST ART

11-398

I Press PROG START
OR OR L Press ENTER-1 ? (Delayed Response)

OR Press PROG START
OR L Press ENTER-

No Response

Press PROG START

Considerations

Number of records in the file.

System prompts LOCA Tl ON.

System prompts Fl LE NAME for next file.

Forces operator to resp.ond to RECORDS during CALL

cycle.

System prompts LOCATION.

System prompts Fl LE NAME.

You don't want to respond to this keyword; you want
system to prompt TRACKS.

Number of tracks the file will occupy.

System prompts LOCATION.

System prompts Fl LE NAME for next file.

Forces operator to respond to TRACKS during CALL
cycle.

System prompts LOCATION.

System prompts Fl LE NAME.

You don't want to respond to this keyword; you want to
prompt LOCATION.

0 When a file is created, either the number of records or the number of tracks must be specified.
If operator entered number of RECORDS, TRACKS will not be prompted.

Conversational OCL 21

Keyword-Response Summary (Build Cycle) (Continued)

Keyword

LOCATION

RETAIN

22

Response

I 8-405

OR Press PROG START
OR

Press ENTER-I ? (Delayed Response)

OR Press PROG START

L
OR

Press ENTER-

No Response

Press PROG START

IP, T,S,orA

OR Press PROG ST ART

OR
Press ENTER-

OR
Press PROG START

OR

L Press ENTER-

No Response

Press PROG ST ART

Considerations

Use during file creation runs if you want to specify a
beginning track location for the file.

System prompts RETAIN.

System prompts Fl LE NAME for next file.

Forces operator to respond to LOCATION during CALL
cycle.

System prompts RETAIN.

System prompts Fl LE NAME.

You don't want to respond to this keyword; you want
system to prompt RETAIN.

P - permanent
T - temporary
S - scratch
A - activate scratch

System prompts DATE.

System prompts Fl LE NAME for next file.

Forces operator to respond to RETAIN during CALL
cycle.

System prompts DATE.

System prompts Fl LE NAME.

If file is being created, file designation will be T. System
prompts DATE.

Keyword-Response Summary (Build Cycle) (Continued)

I Keyword

DATE

MODIFY
(Operator can use
one, all, or a com
bination of the
responses.)

I
OR

L
1-

0R

L

Response

mmddyy or ddmmyy

Press PROG ST ART

? (Delayed Response)

Press PROG START

No Response

Press PROG ST ART

LOG

Press PROG ST ART

CANCEL

Press PROG START

PUNCH

Press PROG START

FORMS

Press PROG START

Asterisk (*) Followed
by Comments

Press PROG ST ART

Statement number and comma

Press PROG START

Statement number

Press PROG START

Considerations

Required when job uses a file whose name and label are
the same as those of another file on the same disk.
(Response must follow format established during sysgen.)

System prompts FI LE NAME for next file.

Forces operator to respond to DATE during CALL cycle.

System prompts FILE NAME.

You don't have to respond to this keyword; you want
system to prompt Fl LE NAME for next file.

Used only if CRT display or 2222 printer on system.

System prompts LOG DEVICE.

Cancel job.

System prompts READY or displays end-of-job halt.

Change the system punch device.

System prompts PUNCH.

Change lines per page printed output for system programs.

System prompts FORMS DEVICE.

Enter comment.

System waits for next MODI FY response.

To delete an OCL or utility control statement in displayed
procedure. Disk Sort specifications cannot be deleted in
this manner. To delete Disk Sort specifications, you must
enter the statement number and press PROG START. When
the system waits for the corrected statement, enter an
asterisk(*) in position 7.

System waits for next MODI FY response.

To correct statement.

System waits for correct statement.

Conversational OCL 23

Keyword-Response Summary (Build Cycle) (Continued)

I Keyword Response

INCLUDE

Press PROG START

RUN

Press PROG START

24

Considerations

Add system program control statements to a procedure.

System prints 'ENTER INCLUDED STATEMENTS' and
a 2-digit statement number.

Tells system
a. The BUI LO cycle is complete.
b. Run the job.

System runs the job.

Keyword Sequence for OCL BUI LDC Cycle

READY
f

I BUI LDC NAM El
f

UNIT

CALL NAME
f

UNIT

t
Enter- key used after
CALL NAME or UNIT?

t t
Y f S NOL-------1

MODIFY

Keyword-Response Summary (BUI LDC Cycle)

I Keyword Response

READY BUI LDC

Press PROG START

BUI LDC NAME Master Procedure Name

Press PROG ST ART

UNIT R1, R2, F1, or F2

Press PROG START

Considerations

None

System prompts BUI LDC NAME.

Maximum of six alphanumeric characters.
Must begin with alphabetic characters. (A-Z or#,@,$)
Must not be DIR, SYSTEM, or ALL.
Commas, blanks, quotes (apostrophes), and periods are
not allowed.

System prompts UNIT.

Location of the disk where you want to put procedure.
(Procedure is placed in the source library of the disk
which the operator specifies.)

System prompts CALL NAME.

Conversational OCL 25

Keyword-Response Summary (BUI LDC Cycle) (Continued)

Keyword

CALL NAME

26

UNIT

MODIFY
(Operator can use
one, all, or a com
bination of the
responses.)

Response

Name of Procedure

Press PROG START
OR

Press ENTER-

R1,R2,F1,orF2

Press PROG START

OR

Press ENTER-

LOG

Press PROG START

CANCEL

Press PROG START

Asterisk(*) followed
by comments

Press PROG START

Statement number and comma

Press PROG START

Statement number

Press PROG START

RUN

Press PROG ST ART

Considerations

Name of a procedure in the source library. The procedure
can be an IBM-supplied procedure (RPGB) or a procedure

created by a BUILD OJ: BUI LDC cycle.

System prompts UNIT.

System prompts UNIT then MODIFY.

Location of the disk whose source library contains the

procedure.

System prompts CALL NAME (or MODI FY if ENTER

used after CALL NAME).

System prompts MODIFY.

Used only if CRT display or 2222 printer is on system.

System prompts LOG DEVICE.

Cancel job.

System prompts READY or displays end-of-job halt.

Enter comment.

System waits for next MODI FY response.

To delete OCL or utility control statements.

System waits for next MODI FY response.

To correct statement.

System waits for correct statement.

Tells system -
a. The cycle is complete.
b. Run the job.

System runs job.

Keyword Sequence for OCL Call Cycle

READY

CALL NAME

UNIT

MODIFY

Keywords that must be answered
in every CALL cycle.

Keyword-Response Summary (Call Cycle)

Keyword·

READY

CALL NAME

UNIT

Response

CALL

Press PROG ST ART

Procedure Name

Press PROG START
OR

Press ENTER-

R1, R2, F1, or F2

Press PROG START
OR

Press ENTER-

PROCEDURE DISPLAYED ON SYSTEM PRINTER 0

Considerations

None

System prompts CALL NAME.

Procedure name from the source library directory
OR

RPG (the IBM-supplied RPG II compile procedure)

System prompts UNIT.

System prompts UN IT, then runs the job. Does not dis
play the procedure except for statements with delayed
responses. Does not prompt MODIFY.

Location of the disk whose source library contains the
procedure.

Print procedure.

System runs the job. Does not prompt procedure except
for statements with delayed responses. Does not prompt
MODIFY.

(unless ENTER- key was pressed after CALL NAME or UNIT prompts)

MODIFY
(Operator can use
one, all, or a
combination of
the responses.)

LOG

Press PROG ST ART

CANCEL

Press PROG START

Used only if CRT or 2222 printer on system.

System prompts LOG DEVICE.

Cancel job.

System prompts READY or displays end-of-job halt.

Conversational OCL · 27

Keyword-Response s·ummary (Call Cycle) (Continued)

Keyword Response

FORMS

Press PROG START

PUNCH

Press PROG START

Asterisk (*) Followed
by Comment

Press PROG START

Statement number and comma

Press PROG START

Statement number

Press PROG START

RUN

Press PROG START

Considerations

Change lines per page of printe~ output for system programs.

System prompts FORMS DEVICE.

Change the system punch device.

System prompts PUNCH

Enter comment.

System waits for next MODI FY response.

To delete a,n OCL or utility control statement in displayed
procedure~ Disk Sort specifications cannot be deleted in
this manner. To delete Disk Sort specifications, you must
enter the~tatement number and press PROG ST ART. When
the system waits for the corrected statement, enter an
asterisk (*) in position 7.

System waits for next MODI FY response

To correct statement in displayed procedure (LOAD
NAME cannot be changed).

System waits for correct statement.

Tells system -
a. The CALL cyde is complete.
b. Run the job.

System runs job.

0 A. Procedures with INCLUDE Statements

28

When a procedure contains Disk Sort source statements or utility control statements, the display part of the CALL
cycle is more complex. See Considerations During a CALL Cycle, under MODIFY; Including Control Statements
in Part I.

B. Procedures with Delayed Responses
The procedure is displayed statement by statement (unless the ENTER- key was pressed after responding to the
CALL NAME or UNIT keywords). When the system reaches a statement which contains a delayed response, it
will display the statement keyword and wait for the operator's response.

The I BM 5496 Data Recorder Model 1 with System/3
Model 6 Attachment Feature or the I BM 129 Card Data
Recorder with card input/output attachment feature pro
vides card input/output capability for System/3 Model 6.
The data recorder is selected as system input device during
OCL prompting. (The directly attached 3741 Data Station
Model 1 or 2, or 3741 Programmable Work Station Model
3 or 4 can be selected as the system input device in a
similar manner.) Control is returned to the keyboard by
entering a READER statement in the data recorder or by
performing another program load procedure.

ASSIGNING DATA RECORDER OR 3741 AS SYSTEM
INPUT DEVICE

At IPL time

Between joqs

System Prompts

DATE

READER-

READY

READER-

Operator Enters

current date

{
DATA96}
3741

READER

{
DATA96}
3741

Following the DATA96 or 3741 response, all OCL must
be entered in card image from the data recorder or 3741.

At the time the data recorder is selected as system input
device the following switch settings must be:

Operator Console DATA RCRDR switch
to ON LINE

5496 Data Recorder - 1. Power switch ON
2. AUTO REL switch ON
3. Print switch ON or OFF
4. All other switches OFF

Card OCL For Model 6

129 Card Data
Recorder - 1. Power switch PN

2. PROGRAM MODE dial set to
DATA READ

3. PUNCH-DIR PUNCH-VERIFY
switch set to PUNCH

4. Print switch ON or OFF
5. REC ADV/CARD FEED switch

set to AUTO

Directly attached
3741 Data
Station or 3741
Programmable
Work Station

- See IBM System/3 3741 Reference
Manual, GC21-5113

I BM 129 Programming Considerations

The user should be aware of the following considerations
when programming applications for the IBM 129:

1.

2.

3.

System support for the 5496 also supports the 129.

Unique diagnostics for the 129 are not provided.

Object programs cannot be read or punched correctly
on the 129 (whereas the 5496 provides this function).
Therefore, the system function LOAD* is not sup

ported for the 129.

4. The OCL command READER-DATA96 is used for
either the 5496 or the 129.

RETURNING CONTROL TO KEYBOARD

The keyboard is reassigned as system input device by doing
either of the following:

o Enter a/& statement followed by a II READER KEY
· statement from the Data Recorder. These statements

must be placed after a II RUN statement and before a
II LOAD or II CALL statement .

• ~ Perform a program load from the operator console.

Card OCL for Model 6 29

CONTROL STATEMENTS IN PROCEDURES

OCL statements that control the entering of other OCL
statements are invalid in procedures. These statements
(HALT, NOHAL T, LOG, READER, PAUSE, and the
PUNCH statement) are ignored when read from procedures
during a CALL cycle and are not put in a procedure during
a BUILD cycle.

CARD FORMAT OF OCL STATEMENTS

The following OCL statements can be loaded from the data
recorder or the 3741 (records from the 3741 follow the
same OCL rules as cards from the data recorder). The param
eters of the statements that are prompted in conversational
mode are described elsewhere in this book. The statements
that are allowed with card input are described in the notes
following this list.

In statement formats, special characters such as I I, and
words written in capital letters are information that must
be used exactly as shown. Words written in small letters,
such as code, program-name, and unit, represent informa
tion that you must supply.

OCL STATEMENTS

I/ LOAD Program-Name, Unit
II LOAD*

Explanation: An asterisk indicates that the object program
will be loaded from the system input device. Program-name
and unit parameters must not be included. The cards that
contain the program must follow the RUN statement for the
program and must be followed by /* to indicate the end of
the object deck.

II CALL Procedure-Name, Unit
II RUN

II READER { ~!~A96}
3741

II PUNCH

II SWITCH

~3741 l
/DATA96 \

II COMPILE OBJECT-unit, SOURCE-name, UNIT-unit

Explanation: OBJECT-unit must be the first parameter on
the statement.

30

II FORMS DEVICE-PRIMARY, LINES-number
II FORMS DEVICE-SECONDARY, LINES-number

Explanation: The DEVICE parameter is optional if read
from cards. If read from a procedure via CALL cycle, the
DEVICE parameter must be present and precede the LINES
parameter. The LINES parameter must be present in either
case.

II LOG

ON
OFF
CRT
PRIMARY
SECONDARY

[
EJECT J

, NOEJECT

Explanation: The log device must be on when the system is
in conversational mode. If EJECT INOEJECT is given by
itself, it must be preceded by a comma:

II LOG ,EJECT
II LOG ,NOEJECT

If neither EJECT nor NOEJECT is coded on the statement,
EJECT is assumed.

II Fl LE NAME-filename,_ UNIT-unit, PACK-name,

II LABEL-filename, RECORDS-number, TRACKS-number,
II LOCATION-track number, RETAIN-code, DATE-date

Explanation: LABEL, RECORDS or TRACKS, LOCA
TION, RETAIN, and DATA parameters are optional.
NAME-filename must be the first parameter on the
statement.

II NOHALT
II HALT

Ex.-lanation: During card input, the system halts each time
a/* (end-of-job) or I& statement is read. The NOHAL T
statement allows the system tO"sfart rthe next job without a
halt. The HALT statement is used to cancel a NOHAL T
condition. If the HALT and NOHAL T statements are
placed in a procedure they are not displayed when the pro
cedure is prompted.

JI PAUSE

Explanation: A PAUSE statement causes the system to
stop until the operator restarts it. PAUSE statements are
usually preceded by comments (*) instructing the operator
to perform some function on the system. If PAUSE state
ments and comments are placed, in a procedure the com
ments are displayed during prompting but the system does
not stop.

*
!&
/*

Explanation: /* indicates end-of-job. /&is used as a delim
iter and indicates that a new job is starting. If a 3 option
(immediate cancel) was taken at a halt in the preceding job,
the system looks for the next LOAD or CALL statement in
the job stream. The /& statement changes this mode and
tells the system to read the next II card regardless of what
it is. In this manner a II READER KEY statement would
be recognized, returning control to the keyboard.

GENERAL CODING RULES

The rules for coding the OCL statements in cards are as
follows:

1.

2.

3.

II in positions 1 and 2.

One or more blanks between the //and the word that
forms the statement identifier (LOAD, RUN, CALL,
etc.).

One or more blanks between the statement identifier
and the first parameter.

4. If you need more than one parameter, use a comma
to separate them. No blanks are allowed in or
between parameters. Anything following the first
blank is considened a comment.

5.

6.

7.

8.

If you are writing keyword parameters (XXX-xxx),
place the keyword first and use a hyphen to separate
the keyword from the code or data.

If the parameter is not a keyword parameter, write

the parameters in the order in which they are shown.
Keyword parameters can be in any order except in
the following cases:

II COMPILE

II FILE

OBJECT-unit must be the first
parameter.

NAME-filename must be the
first parameter.

All OCL statements except Fl LE must not exceed
96 characters. Because of the large number of param
eters possible in a Fl LE statement, you can continue
the Fl LE statement on additional cards. The rules
are:

o Place a comma after the last parameter in every
card but the last. The comma followed by a
blank indicates the statement is continued.

o Begin each new card with II in positions 1 and 2.

o Leave one or more blanks between the // and the
first parameter.

Comments can be placed after the parameters on any
OCL statement (except HI KEY parameters. See
Coding Multi-Volume File Parameters in this appen
dix). Leave one or more blanks after the last param
eter and then list the comment. Complete lines of
comments are entered with the *comment statement.

Place an * in column 1 and start the comments in
column 2.

Card OCL for Model 6 31

STATEMENT ORDER

I&

II LOAD

II CALL

II RUN

should be the first statement of a job.

statement must precede RUN statement in
job stream. If LOAD*, the cards that
contain the program must follow the RUN
statement and be followed by ~ /* statement.

statement must precede RUN statement in
job stream.

statement must be last statement within the
set of statements required to run a program.

II READER statement must precede a LOAD or CALL
statement and follow a RUN statement.

II SWITCH statement must follow a LOAD or CALL
statement and must precede a RUN statement.

II COMPILE statement must follow a LOAD or CALL
statement and must precede a RUN statement.

II FORMS

II PUNCH

II LOG

II Fl LE

II HALT

can appear anywhere in the job stream.

can appear anywhere in the job stream.

statement must follow a LOAD or CALL
statement and precede a RUN statement.

statements must follow a LOAD or CALL
statement and precede a RUN statement.

can appear anywhere in the job stream.

II NOHAL T can appear anywhere in the job stream.

II PAUSE

*comments

/* {end-of
job)

32

can appear anywhere in the job stream.

can appear anywhere in the job stream.

follows a program deck or data file entered
from the Data Recorder.

CODING MULTI-VOLUME FILE PARAMETERS

When coding card OCL file statements for multi-volume
files these rules must be followed:

1. Each parameter that requires multiple entries must be
gin and end with a single quote (') and have the

entries separated by commas.

2. The HI KEY parameter must contain HI KEYs separated
by commas. When continuation cards are __ needed for
HIKEY parameters, comments are not allowed on the
cards, and the data must start in column four of the
continuation card.

3.

4.

5.

An apostrophe within a HI KEY must be entered as
a double apostrophe or it will be decoded as end of
HIKEYs, and an error will occur.

When using only one volume of an indexed multi
volume file, the HI KEY parameter must be included
with-beginning and ending apostrophes. The other
file parameters must not have apostrophes.

To indicate packed keys, HI KEY-P'xxxx, xxxx,
xxxx,' must be coded. All characters in packed
HIKEYs must be numeric and all packed HIKEYs
must be the same length.

Key length is not a parameter for indexed files when OCL
statements are entered on cards. Sample job 2 under
Multi-Volume Files in Appendix A would have the follow
ing four OCL file statements if OCL were on cards:

II FILE NAME-INVMSTR,UNIT-'R1 ,R2',
PACK-'VOLI02,VOLI03,VOLI03,VOLI04,

II VOLI05',HI KEY-'175-200-233W182,
380-456-280W3R 6,629-384-300W3F6,

11 949-475-849W8F8,999-999-999W9F9',
TRACKS-'100, 193, 150, 193,80',

II LOCATION-'87,8,49,8,8',RETAIN-P

I BUILD NAME

When the system prompts BUILD NAME, the operator
responds with a name for the procedure that will be put in
a source library at the end of the sequence. (The operator's
response to UNIT determines what source library the pro
cedure will be put in.) At the end of the BUI LO cycle, the
system enters the procedure in the source library and puts
the procedure name in the source library directory as a
permanent entry. Restrictions on naming a procedure are:

1.

2.

Name must not contain more than six alphanumeric
characters. Blanks, commas, quotes (apostrophes),
and periods are not allowed.

First character must be alphabetic (A-Z or#,@,$).

3. Name must not be DIR, SYSTEM, or ALL (these
names are reserved for system use).

Duplicate Procedure Names

If the operator's response to BUILD NAME duplicates the
name of a procedure already in the source library directory,
.the system prints a message and reprompts BUILD NAME.

The operator can:

. 1. Proceed - by typing a different name or the same
name and a different unit.

2. Proceed - by typing the same name and unit again.
The new procedure will then overlay the old proce
dure in the source library.

3. End the job - see description of error message op
tions in IBM System/3 Model 6 Operator's Guide,
GC21-7501.

Deleting a Source Library Procedure

The system gives a P (permanent) designation to all proce
dures entered into a source library during a BUI LO cycle.
Therefore, the only way to delete a procedure from a

source library is to run the Library Maintenance Program.
(For information about the Library Maintenance Program
see Part 11 of this manual.)

Keyword Descriptions

I BUILDC NAME

The response to BU I LDC NAME is the name of a master
procedure you want to build. The rules and restrictions
are the same as for the keyword BUILD.

I CALL NAME

The response to CALL NAME is the name of the procedure
you want to run. This can be either:

• The name of a procedure entered in a source library after
a BUILD or BUI LDC cycle. (The operator's response to
the keyword BUILD NAME, or BUI LDC NAME deter
mines the name of the procedure.)

• RPG (the IBM-supplied RPG 11 Compile Procedure).

If the operator does not know the procedure name, he can
get a printout of the source library directory by running the

Library Maintenance Program. (See Part 11 of th is manual
for more information about this program.)

The operator can call a procedure without displaying all its
OCL statements by pressing the ENTER- key after respond
ing to CALL NAME or UNIT. The procedure is loaded and
run. The only statements displayed are those with delayed
responses. The system does not prompt MOD I FY after
either the OCL statements or the included control
statements.

Keyword Descriptions 33

I COMPILE KEYWORDS

COMPILE OBJECT Keyword

The keyword COMPILE OBJECT requires a response (R 1,
R2, F1, or F2) if the system has more than one object
library and you do not want to.pufthe.compiled.program
in the same object library where the compiler resides.

If the operator does not respond to COMPILE OBJECT,
but merely presses the PROG START key, the system
places the compiled program in the object library where
the compiler resides.

F 1 refers to the fixed disk on drive one.
R 1 refers to the removable disk on drive one.
F2 refers to the fixed disk on drive two.
R2 refers to the removable disk on drive two.

·SOURCE Keyword

In a LOAD Cycle

SOURCE is prompted only when the response to LOAD
NAME is the name of a compiler (such as $RPG). The re
sponse to SOURCE is the name of the source program you
want to compile. (This name must be the one you used
when you put the program in a source library during a KSE
or Library Maintenance Program run.)

For information about the KSE Program see the IBM
System/3 Model 6 Conversational Utility Programs Refer
ence Manual, SC21-7528. For information about the
Library Maintenance Program see Part 11 of this manual.)

34

In a BUILD Cycle

There are two possible responses to SOURCE during a
BUI LO cycle: the name of a source program you want to
compile or a delayed response (a question mark). Each
response has a special significance to the system.

Response

Name of
Source
Program
You Want
to Compile

?
(Delayed
Response)

UNIT Keyword

Tells System

You're building a procedure that will
compile a particular source program. (The
program must be in a source library.) The
program name you supply must be the
one you used when you put the program
in a source library ·during a KSE or Li-r·
brary Maintenance Program run.

You're building a general compile proce
dure. You will supply the necessary
source program information (name and
location of the source program and where
you want to put the compiled program)
during the.CALL cycle.

The response to UNIT gives the location of the disk whose
source library contains the source program being compiled.
Possible responses are F1, R 1, F2, and R2.

F 1 refers to the fixed disk on drive one.
R 1 refers to the removable disk on drive one.
F2 refers to the fixed disk on drive two.
R2 refers to the removable disk on drive two.

DATE

This DATE keyword lets the operator change the system
date for a particular job. (The system date is used in head
ings on program listings, in headings on printed output, and
in labels for new files.)

The system date is established at IPL time. This date is
used for every job unless the operator overrides it.

I DATE (continued)

Overriding the System Date

The operator can override the system date for any single job
by typing in a new date when the system prompts the key
word DATE. The new system date is used only for the one
job. When that job is finished, the system date automatical
ly reverts to its IPL setting.

Format of the DATE Statement

Although the operator can override the system date, he
cannot change the date format. The system date format is
established during sysgen as either:

o mmddyy (month/day/year) - For U.S. installations

o ddmmyy (day/month/year) - For World Trade
installations.

The three elements (month/day/year) can be separated by
any non-numeric symbol (except a comma, quotation mark,
or blank) or run together without any separation.

In a system using the mmddyy format, for example, all of
the following would be valid ways of typing May 12, 1971:

0 05/12/71

0 05-12-71

0 051271

• 5/12/71

I EJECT

The operator can respond to the READY prompt with
EJECT. The logging device will then eject the forms to the
top of the next page at the end of each job. EJECT need
only be entered to cancel the effect of a NOEJECT state
ment.

I Fl LE KEYWORDS

System-Operator Interaction During Prompting of File
Keywords

System prompts
FILE NAME

th" . b Doest 1s JO -~JJa-NO _______ _,
use a file?

f
YES

..---~t
Operator responds
to FILE NAME,
UNIT, and PACK

~+
System prompts
next file keyword

t
More file
information ---No----,
necessary? _ t

~ Operator presses
YES the ENTER-

+ Operator responds
to next file
keyword

t
Is this the last

NO~file keyword
(DATE)?

' YES

t
System prompts
FILE NAME

f

key t
System bypasses
rest of the file
keywords

YES~ Does the job use ~NO __...,_ !
another file?

Operator presses
PROG START

t
System bypasses
file keywords

System+ prompts
MODIFY

Keyword Descriptions 35

I Fl LE KEYWORDS (continued)

For every file used in a job, you must respond to the fol
lowing keywords:

Keyword. Response

FILE NAME FILENAME from the file specification at
compile time

UNIT

PACK

OR
Predetermined file name (for $RPG, $KDE,
$DSORT, $DGSRT, $COPY, or $MICR).

R1, F1, R2, or F2 (Location of disk where
you want to write a new file or which con
tains a file to be processed.)

Name assigned to a disk by the Disk Initiali
zation Program. This name can be one which
identifies a disk on which you want to write
a file during a file creation run or a name
that identifies a disk on which a file is

located.

File Name for Customer Programs

For a file used in an RPG 11 compiled customer program,
the operator's response to FILE NAME is the name in col
umns 7-14 of the RPG II File Description Specifications.

File Name for $RPG, $DSORT, $COPY, $MICR, and
$KDE

For $RPG's predefined file names, see IBM System/.]
Models4 and 6 RPG II Reference Manual, SC21-7517.

For $DSORT and $DGSRT, see IBM System/.] Disk Sort
Reference Manual, SC21-7522.

For $COPY, see Part II of this manual.

For $MICR, see IBM System/.] Model 6 Utility Program for
the IBM 1255 Magnetic Character Reader Reference
Manual, SC21-7527.

For $KDE, see IBM System/.] Models 4 and 6 Conversa
tional Utility Programs Reference Manual, SC21-7528.

36

Multiple Files

A job often involves several files. When this is the case, the
operator must respond to several series of file keywords.
The first time the system prompts the file keywords, the
operator responds with information about one file. After
the operator responds to DATE, the system will again
prompt Fl LE NAME. This time the operator responds with
the name of the second file.

When he has responded to the file keywords for all the files
that will be used in the job, the operator should respond to
FILE NAME by pressing PROG START. The system then
bypasses the rest of the file keywords and prompts
MODIFY.

A maximum of 15 file statements can be used for each job
when running in conversational OCL mode. For a maximum
number of files in card OCL mode, see Maximum Number
of Files in SWA.

UNIT Keyword

Possible responses to the keyword UN IT are F 1, R 1, F2
and R2

F1 refers to the fixed disk on drive one.
R 1 refers to the removable disk on drive one.
F2 refers to the fixed disk on drive two.
R2 refers to the removable disk on drive two.

PACK Keyword

Whenever a job involves a disk file you must tell the system
the name of the disk where the file is (or will be) located,
so the system can make sure that disk is mounted before
the job is begun. To tell the system the name of the disk

the file is on, the operator responds to the keyword PACK
with the name assigned to the disk during its initialization.
(The Disk Initialization section of Part II of this nianual
explains the procedure for naming a new disk.)

Although most installations keep a record of the names and
contents of each of their disk packs, the operator can al
ways get the name of any disk by running the File and Vol

ume Label Display Program. Tne disk name is part of the
output of this program.

LABEL Keyword

When a file is created, the system enters a file name in the
VTOC. The keyword LABEL refers to this VTOC file
name. Unless the operator responds to LABEL, the name
entered in the VTOC is the same as the operator's response
to FILE NAME.

I LOAD NAME

For Customer Programs

The response to LOAD NAME is the name of the customer~s
RPG 11 program.

For System Programs

The response to LOAD "NAME is the name of the specific
system program you want to run.

Name Program

$ALT Alternate Track Assignment

$BUILD Alternate Track Rebuild

$CCP Communications Control Program
(Model 4 only)

$COPY Copy/Dump

$KCOPY Copy/Dump

$FORT FORTRAN Compiler (Model 6 only

$1NIT Disk Initialization

$LABEL File and Volume Label Display

$DE LET File Delete

$MAINT Library Maintenance

$KSE Keyboard Source Entry

$KDE Keyboard Data Entry

$DIU Data Interchange

$MICR 1255 Magnetic Character
Reader Utility (Model 6 only)

$RPG RPG 11 Compiler

$DSORT Disk Sort

$DGSRT CCP/Disk Sort (Model 4 only)

Keyword Descriptions 39

.MODIFY

System-Operator Interaction During Modification

40

lstem prompts MODIFY

Do you want to correct a statement?

f t
NO YES

t
Operator types 3
digit statement
number and
corrected statement.
I

Do you want to delete a statement?

t t
NO YES

t
Operator types 3
digit statement
number and
comma(,).
I

Do you want to enter a comment?

I t
NO YES

t
Operator types
asterisk (*)

and comment.

I
Do you want to enter a FOR MS
statement?

t
NO

i
YES

t
Operator types
FOR MS and new
lines per page
setting.

'
Do you want to enter a PUNCH
statement?

t
NO

i
e

i
YES

+ Operator types
PUNCH and new
punch device.

~it-------
D o you want to cancel job?

t t
NO YES

t
Operator types
CANCEL

i
System erases

Of L cycle

System prompts
READY

Do you want to run the job?

' t NO YES

i
Operator types
RUN

i
System runs
job

i
System prompts
READY

Is this a BUILD cycle?

t l
YES NO~~~--

t
Do you want to include source
statements for the Disk Sort
Program or for one of the
utility programs in the procedure?

t
YES NO~~~--

,._t.

'

I MODI FY (continued)!

• f'
Oprator types INCLUDE

Sysrm prints 2-digit statement number

Qprator types statement

Sysrm prints next statement number

Do you want to include another

starment?

NO YES

I
Olrator types RUN

System prompts MOD I FY

l G .

Note: To delete Disk Sort specifications, you must

enter the statement number and press PROG START.
When the system waits for the corrected statement,

enter an asterisk in column 7 of the statement. Typing
the statement number and comma doesn't delete Disk
Sort specifications.

Q
~o+--~~~~~~~~~~-
D o you want to change or delete any of

tr included statemenT

NO YES

i
Operator types 2-digit statement
number and:

To correct statement, types
corrected statement.
To delete statement, types
comma.
To delete Disk Sort specifi
cation, types asterisk in
position 7 of statement.

Do you want to cancel the job?

i i
NO YES

Operator types
RUN

1
System puts the
procedure with
included statements

in the source
library

l
System prompts
READY

!
Operator types
CANCEL

{
System erases entire

Tcycle

System prompt.s

READY

Keyword Descriptions 41

I MODI FY (continued)

Changing a Previous OCL Statement

System prompts
MODIFY

used a
FY option

in the job

Operator types three-digit
number of OCL statement
(or two-digit number of
included statement) to be

changer and PROG START

System tabs to
position 35 (position
0 after INCLUDE)

and war for response

Operator. types
new response

!
YES ------More statements

to change?

42

t
NO

i
Does operator
want to use another

+ODIFY option? i
YES NO

i
Operator
types RUN

See keyword description
of the other MODI FY
option

Deleting a Previous OCL Statement

System prompts
MODIFY

r-------i~ Operator types
three-digit number
of OCL statement
to be deleted

i
Operator types
comma and PROG

STAR1 key

YES More statements
to delete?

l
NO

i
Does operator

Enter here if you've
already used a
MODIFY Option
in the job

I want to use anotherl t MODIFY option?

YES NO

! !
See keyword
description of
the other
MODIFY
option

Deleting Multiple Keywords

Operator types
RUN

When the OCL statement number for Fl LE NAME is
deleted, all keywords for that file will be deleted from the
cycle. For example, the LABEL or DATE keywords could
be deleted from a file keyword statement without deleting
the other keywords for that file. However, if FI LE NAME
is deleted, that entire file would be deleted from the cycle.

I MODI FY (conti~ued)

Entering Comments

System prompts
MODIFY

Operator types:
1. An asterisk (*)

2. A comment

! .
Does operator want

Enter here if you've
already used a
MODIFY option
in the job

to use another----------. I MODIFYoption? 1
YES

t
See keyword description
of the other MODI FY
option

NO

t
Operator types
RUN

Points to Remember When Entering Comments

o The usual purpose of-a comment is to remind the oper
ator of something he must do (mount a new disk pack,
for example) or to document a problem during a pro
gram run.

o After the operator types a comment, it is immediately
displayed on the system printer.

o Comments typed during a BUILD cycle become a per
manent part of the procedure. They are entered into

the source library along with OCL statements.

• Comments typed during a LOAD or CALL cycle do not
become a permanent part of the job; their only purpose
is to help document the program run.

Cancelling Job

System prompts MODI FY

Operator types CANCEL

i
(System gets ready
to run another job)

i

Enter here if you've
already used a
MODIFY option
in the job

Is HALT in effect -------~YES

t t
NO System displays

end-of-job halt

~
Operator presses

t~~~~~~~PROGSTART

System prompts READY for
next job

Effect of Entering CANCEL During a LOAD Cycle

The entire LOAD cycle will be overlaid by the next OCL
cycle.

Effectof Entering CANCEL During a BUILD Cycle

The entire BUILD cycle will be overlaid by the next OCL
cycle. (If a duplicate procedure is being built, and CAN
CEL entered, the original procedure remains in the source
library. Except: if CANCEL is entered after INCLUDE,
neither procedure will be in the library.)

Effect of Entering CANCEL During a CALL Cycle

The entire CALL cycle will be overlaid by the next OCL
cycle. The original procedure will be unchanged.

Keyword Descriptions 43

MODI FY (continued)

Changing Forms Length

System prompts MOD I FY

Operator types FORMS

Enter here if you've
already used a
MObl FY option
in ·the job

i
System pr1mpts FORMS DEVICE

Operator presses
PROG START (P/S)
or types PRIMARY
or SECONDARY

t
System prompts LI N ES

i I l
Operator types
new lines per
page setting

I
l

Does operator want to
use another MOD I FY
option? I

t
YES

l
See keyword
description
of the other
MODIFY
options

44

Operator presses
PROG START
(for current lines
per page setting)

I

l
NO

l .
Operator types
RUN (When the
keyword FORMS is
entered in an OCL
sequence, a system halt
occurs after RUN in case
the operator needs to
change paper in the
printer. The system re
mains idle until the oper
ator enters zero and
presses PROG START.)

Purpose of FORMS

Standard output for Model 6 printers is 66 lines per page.
At IPL time, 66 lines per page is established as the forms
length unless a different value was specified during system
generation.

To change the lines per page of printed output for RPG 11
programs, you code line counter specifications. To change
the lines per page of printed output for system programs
(utilities, Disk Sort, and the RPG Compiler), you type the
keyword FORMS and an appropriate response. Minimum
forms length is 12, maximum is 112.

If line counter specifications and an OCL FORMS state
ment are both used in one job, and if the specified lengths
are different, the system will accept the RPG 11 line count
er specifications and ignore the OCL FORMS statement.

The new lines per page setting (from either an OCL FORMS
statement or an RPG 11 line counter specification) remains
effective until another OCL FORMS statement or RPG 11
line counter specification for that device is read.

FORMS can be entered during the MODIFY phase of any
OCL cycle. (The system never prompts FORMS.)

Whenever the operator types FORMS during an OCL cycle,
a system halt follows RUN in case the operator needs to
::hange the paper in the printer. Job processing does not
resume until the operator enters a zero (option O) and
presses the PROG START key.

I MODI FY (continued)

Changing Punch Device

System prompts
MODIFY

Operator types
PUNCH

i
System prompts
PUNCH

!
Operator types
3741 or DATA96
and presses
PROG START

i
Does operator
want to use
another
MODIFY
option?

I
t

YES

+
See keyword
description of
the other
MODIFY
options

Enter here if
you've already
used a MODIFY
option in the job

l
NO

+
Operator types
RUN

Purpose of Punch

The default punch device can be chosen at system generation.
To change the punch device, the PUNCH statement is used.
PUNCH can be entered during the MODIFY phase of the
LOAD, BUILD, or CALL cycle (it can also be entered when
the system prompts READY- see The Job Cycle). The
PUNCH statement remains effective until another OCL
PUNCH statement is read or until the next IPL.

Keyword Descriptions 45

I MODIFY (continued)

Including Control Statements

46

System prompts
MODIFY

Operator types
INCLUDE

. ~
System displays a 2-digit
number for the first
INCLUDE statement

i
Operator types a
statement

1
System displays the
next statement
number for the
INCLUDE

YES--t-ls there another
new statement to
be included in the
procedure?

i
NO

i

Enter here if
you've already
used a MODIFY
option in the job

Operator types RUN and

presser PROG START

System prompts MODIFY
(allows operator to change
included statements)

~
G

'~---------. Do you want to change or delete

an irluded statement? ------i
NO YES

1 ~
Do ru want to cancel job?-----.

NO YES

t t
opertor types RUN OpeTor types CANCEL

System writes System erases
procedure with procedure

included statements in l
the sjource library System prompts

READY System prompts
READY

e
D

t .
o you want to correct an included

stater ent? -----------+
NO YES

i Oper!tor types 2-digit
Do you want to statement number
delete included t .
statement?-----------.iSystem spaces to next line

vts NO 1
l Operator enters corrected

'Operator types 2-digit
statement no. and either

comma
asterisk in position 7
(if Disk Sort spec.)

statement

I MODI FY (continued)

Purpose of INCLUDE

The keyword INCLUDE lets you add system program con
trol statements- to a procedure. INCLUDE tells the system
that the next entry will be a set of control statements for
one of the system programs. (As used here, control state
ments re~er to both the control statements for the utility
programs and the sequence specifications for the Disk Sort
program.) A maximum of 25 control statements can be
included in each procedure.

Restrictions After INCLUDE

After including statements in a procedure, the procedure
cannot be changed. l'ilODIFY is prompted to allow chang
ing included statements. If CANCEL is used after INCLUDE
in a procedure that overlaid a duplicate procedure, neither
the original nor the new procedure will be in the source
library.

Considerations During a CALL Cycle

When the operator uses the CALL cycle to get the proce
dure out of the source library, the system displays the pro
cedure in two separate steps: first the OCL statements,
then the INCLUDE statements. The following shows de
tails of the two display steps:

1.

2.

System displays OCL statements for the job.

• System prompts MOD I FY (to give operator a
chance to correct any of the OCL statements).

• Operator, after he has made any necessary correc
tions, types RUN.

System displays heading: INCLUDED STATE
MENTS, then displays the INCLUDE statements.

• System prompts MODIFY (to give operator a
chance to correct any of the INCLUDE
statements).

• Operator, after he has made any necessary cor
rections, types RUN.

• Model 6 runs the job.

If the operator presses the ENTER- key after responding
to CALL NAME or UNIT, the job is run without displaying
the statements or prompting MODIFY (the user program or
utility that is run can display the control statements). State
ments with delayed responses are still displayed, to allow
the operator to enter the response.

INOEJECT

Normally the logging device ejects a page when end of job
occurs. The operator can respond to the READY prompt
with NOEJECT. The logging device will then not eject the
forms. The NOEJECT statement remains in effect until an
EJECT statement is entered (either in response to a READY
prompt or on a card OCL //LOG statement) or an IPL
occurs.

NOHALT

Normally the system halts when a job ends. The operator
can respond to the keyword READY with NOHAL T. The
;system will then prompt READY for the next job when
each job ends. The NOHAL Twill remain in effect until a
HALT statement is entered or an IPL occurs.

READY

When the system is ready to begin the OCL sequence for a
new job, it prompts READY.

The operator responds by typing the name of one of the
four OCL cycles: LOAD, BUILD, BUI LDC, or CALL.
The system then prompts the other keywords in the
sequence.

(OCL cycles for the Model 6 are described in the Summary
of Conversational OCL at the front of this manual.)

Keyword Descriptions 47

RUN is the last entry in any OCL cycle. The operator types
RUN when he is satisfied that the OCL cycle is complete
and correct. The following table shows what happens when
the operator types RUN during any of the three OCL
cycles:

Sequence

LOAD

CALL

BUILD

Result

Job is run.

Job is run.

The OCL statements are put in a source
library.

If INCLUDE statements are part of the procedure the
BUILD and CALL cycles require two RUN entries. (See
Considerations During a CALL Cycle under MODIFY -
Including Control Statements in Part I.)

After the operator types RUN, the system processes the
job and end-of-job occurs. The system then prompts
READY for the next job.

I SWITCH

The OCL SWITCH statement allows setting the eight external

indicators on or off.

The operator-system interaction involved with the SWITCH

statement is different for each OCL cycle as shown in the
following charts.

48

Indicator Settings

The indicator setting has eight positions, corresponding to
the eight external indicators.

The three possible entries for each position are:

1 - sets corresponding indicator on.

0 - sets the corresponding indicator off.

X - leaves the corresponding indicator unchanged.

For example, if the operator keys in XXXX10XX:

Indicator five will be set on.

Indicator six will be set off.

Indicators one, two, three, four, seven, and eight will be

unchanged.

IPL Considerations

All eight external indicators are set off at IPL. The only
way to set an indicator on is by responding to the keyword
SWITCH with a new eight-position response containing a 1
in the appropriate position.

Duration of SWITCH Setting

When an OCL SWITCH statement sets an indicator on, the
indicator remains on until another SWITCH statement sets

it off or the next IPL occurs.

Qperator-System Interaction for SWITCH Statement
(LOAD Cycle)

!
Operator types
new 8-position
setting

I

System displays
SWITCH and
current indicator
setting

I

l
System prompts
FILE NAME

l
Operator presses
PROG ST ART (to
accept current
setting)

I

Keyword Descriptions 49

Operator-System Interaction For SWITCH Statement (BUILD Cycle)

Operalor types
8-position indicator

settinl

Operator presses
PROG START

I

System prompts SWITCH
and current indicator
setting

Operatt types ?
(delayed response)

Operator presses
PROG START

I
System prompts
FILE NAME

Operator-System Interaction for SWITCH Statement (CALL Cycle)

0 peratJr presses
PROG START (if pro
gram will not use
external indicators, or
if current setting is the
one you want).

i
(A SWITCH statement
will not be part of the
source library
procedure.)

I

{

During the BUILD cycle, the operator

responded to tr keyword SWITCH by

t

50

Pressing
PROG START

i
During CALL cycle

(SWITCH wil I not
be part of the
CALL cycle.)

t
Operator types
new 8-position
setting

Typing a?
(delayed response)

i
During CALL cycle

i
System displays
SWITCH and
current indicator
setting .,

CALL cycle continues

t
Operator presses
PROG START (To

accept current
setting)

Typing 8-position
indicator setting

i
During CALL cycle

(The keyword SWITCH
and the 8-position
indicator'setting are en
tered in the source library
and displayed with the
other OCL statements
during the CALL
cycle.)

MULTIVOLUME FILES

lf·a file is too large for one disk, you can continue it on one
or more subsequent disks. Such files are called multi
volume files. (A volume is one disk.) Multivolume files
can be online or offline. A file is online if all volumes are
mouoted when the job begins. The number of UNIT and
PACK parameters are equal. An offline file has fewer

. UNIT parameters (shares same unit).

Creation

The ways that you can create a multivolume file depend
on the type of file you are creating. For a sequential and
indexed file, the records are stored in consecutive locations
on disk, in the order that they are read. One disk is filled
at a time.

For sequential files, each volume must be filled before the
next volume is loaded. For indexed files, each volume need
not be filled. Each indexed volume is loaded until a key
field is reached that is higher than the HI KEY for that
volume, then the next volume is loaded. Indexed files must
be loaded in keyfield sequence. A halt occurs if a volume
is filled and there is not a record with a keyfield equal to
the HIKEY for that volume. For example, suppose the
HI KEY for a volume is 199. You load a record with the

keyfield 195. It is less than the HIKEY, so it is loaded
on the volume. Next, you load a record with the keyfield
200. Record 200 would be loaded on the next volume, and
a halt would occur. The reason for the halt is that you did
not load a keyfield record equal to 199 before you jumped
to a new volume. This halt can be ignored. You can load
the next volume and at some future time insert a keyfield
record equal to the HIKEY. To insert a record after the
loading sequence has passed, a random add must be done.

The date assigned to all volumes of a multivolume file is
the system date that was in the DATE statement when the
first volume of the file was created.

Indexed and sequential files may be either online or offline.

If using removable disks when creating sequential or in
dexed files, you can mount a disk, wait until the system
indicates it is filled, then mount the next disk. If you
have two drives, you can mount the two disks, wait until
the first one is filled, then replace it with the third while
your program fills the second disk. In either case, you
cannot use more than 40 disks per job.

Using OCL

Space can be allocated on all volumes of a multivolume
file if the volumes are online at the time of the allocation.
Space can also be allocated for an offline file, other than
the initial volume, but the packs must be empty packs or
space (TRACKS and LOCATION) known to be available.
You can use both fixed and removable disks with any on
line multivolume file.

Space on a volume of a multivolume file is reserved after
one or more records are placed in that volume.

Direct files must be online. Direct files are created in a
non-consecutive manner. When creating such files, you
are required to mount all the disks on your disk unit at the
same time. The maximum number of disks you could use,
therefore, is two if you have only one drive, or three or
four if you have two drives.

Processing

The ways in which you can process multivolume files
depend on the method your program uses to get records
from the file. If records are read from a sequential or
indexed file, you can mount a volume, wait until all of the
records have been read from the volume, then mount the
next volume. If you have two drives, you can mount two
volumes, wait until all of the records have been read from
the first volume, then replace that volume with the third
while your program reads from the second volume. When
you are processing files offline, the disks must be removable.
When online, any combination of fixed and removable
disks is acceptable, but all must be mounted and must
remain mounted.

During the processing of a volume of a multivolume file,
if the system determines that the file date on this volume
is different from the file date on the previous volume, the
system assumes that this volume is not part of the multi
volume file. The results caused by the difference in dates
depend on the access method you are using:

• If you are using an input access method (reading from
the file), a halt will occur indicating that the system
cannot find the file on this volume.

• If you are using an add access method (writing to the
file), the system assumes you are extending the file and
the following will occur:
a. The file date in the file label will be changed to the

date of the previous volume.
b. The file label will be changed to reflect an empty file ·

(all pointers are reset).
Using OCL 51

OCL Considerations

Multivolume files, like other disk files, must be described
in Fl LE statements. However, because a multivolume
file involves more than one disk, some Fl LE keywords
require a list of data or codes to describe all of the disks
containing the files. This section explains the considerations
for using these lists. Each list must begin and end with
apostrophes.

List Requirements

The PACK parameter requires a list. The UNIT parameter
may require a list while LOCATION, TRACKS, HIKEY,
and RECORDS require a list if they are stated. The
considerations for using the lists in these parameters are
included in the keyword discussions following.

KEY LENGTH: This keyword will be prompted if the
response to FI LE NAME indicated a multivolume file
(see Enter Minus under End-of-Statement Keys in Part I).
If this is an indexed file, you must respond to KEY
LENGTH with a two-digit number 01 through 29. If this
is not an indexed file pressing the PROG START key will
skip the HI KEY keyword.

HIKEY: This keyword must be answered for indexed files.
The highest keyfield for each volume must be entered. All
characters except commas are allowed as keys. The length
of each HI KEY must equal the response to KEY LENGTH
and a HI KEY must be entered for each volume. If a
HI KEY with fewer characters is entered, blanks will be put
into the remaining positions. If an apostrophe is used as part
of a HI KEY, it must be entered as two apostrophes or it
will be decoded at the end of HI KEY list and an error will

. occur. When using only one volume of an indexed multi-
volume file, the HI KEY must be entered with beginning
and ending apostrophes.

The keys in an indexed file can be packed numeric
characters. To indicate that a file has packed keys, the
operator responds to KEY LENGTH with nn,P where
nn is 01-08. Only numeric characters (0-9) are allowed in
packed HI KEYS. When responding to HI KEY, the
number of characters entered per key is equal to 2nn-1.
If the KEY LENGTH response is 07, the HI KEYS would
be 13 characters long.

52

UNIT: The keyword UNIT must be followed by a code or
codes indicating where the disks that contain the file will
be located on the disk unit. No UNIT parameter may be
repeated. The codes are as follows:

Code

R1
F1

Meaning

Removable disk on drive one.
Fixed disk on drive one.

R2 Removable disk on drive two.
F2 Fixed disk on drive two.

The order of codes in the UNIT parameter must corres
pond to the order of names in the PACK parameter.

When you are creating or processing a sequential or in
dexed file, you can use the same drive for more than one
of the disks; however, the units must then all be removab.le
units. If they are, you must not repeat the code for the
drive in the UNIT parameter. When the number of codes
in the UNIT parameter is less than the number of names iii
the PACK parameter, the system uses the codes alternately.

If F1 or F2 is specified, the file must be online multivolume.

PACK: The names of the disks that contain, or will contain,
the multivolume file must follow the keyword PACK. (PACK
names must be unique for proper functioning.)

When a multivolume file is created, the system writes a
sequence number on the disks to indicate the order of the
disks. The disks are numbered in the order in which you
list their names in the PACK parameter.

When a multivolume file is processed, the system provides
two checks to ensure that the disks are used in the proper
order:

1. It checks to ensure that the disks are used in the
order that their names are listed in the PACK
parameter.

2. It checks the sequence numbers ot the disks used to
ensure that they are.consecutive and in ascending
order (01, 02, and so on).

The system stops when it detects a disk that is out of
sequence. The operator can do one of three things:

1. Mount the proper disk and restart the system.

2. Restart the system and process the disk that is
mounted if the sequence is ascending (for consecu
tive input and update processing).

3. End the program.

Consecutive input or update sequence numbers are ignored
if the file was not created as multi-volume. If the file ~s
multi-volume and the sequence is ascending but not
consecutive, a diagnostic halt is given which allows the
proceed option.

TRACKS or RECORDS: The keyword TRACKS or
RECORDS must be followed by numbers that indicate
the amount of space needed on each of the disks that will
contain the multi-volume file. TRACKS or RECORDS
must be specified. Any multi-volume file load ·requires a ·
TRACKS or RECORDS keyword whether the file
previously existed or not. The order of these numbers
must correspond to the order of the names in the PACK
parameter.

LOCATION: The keyword LOCATION must be followed
by the numbers of the tracks on which the file is to begin
on each of the disks you use for the file. The order of
the numbers must correspond to the order of the names
in the PACK parameter. If you omit the LOCATION
parameter, the system chooses the beginning track on each
of the disks. If LOCATION is specified for one disk, it
must be specified for all disks. If the multi-volume file
exists; LOCATION must be given and must be identical
to the LOCATION parameter specified when the file was
created.

R~TAIN: RETAIN-S must not be specified unless the file
is online multi-volume. If RETAIN-Sis used for online
multi-volume,.it cannot be changed to RETAIN-T unless
also done online.

Using OCL 53

File Statement Summary

KEYWORDS

ltJNl"f.

Maximum
Number of Disks

I Location
Requirements

1

Restrictions
on Disk

I .
Operating
Considerations

\Relation to

PACK

KEY LENGTH

HIKEY

TRACK
or

RECORDS

LOCATION

54

INDEXED OR SEQUENTIAL Fl LES

10 disks per file statement, 40 disks per job (number of
HI KEYS plus number of packs cannot exceed 40)

R 1 or R2 for offline files
No restriction for online files

At file creation time only:
• First disk can also contain programs, procedures,

other tiles.
• Remaining disks must be used only for the one file.

Single Drive - Disks must be mounted one at a time.
Two Drives - Disks must be mounted in sequence
specified in UNIT statement.

One entry in the UN IT statement can correspond to
more than one disk name in the PACK statement.

DIRECT FILES

Single Drive-2 disks
Two Drives-4 disks

No restriction

All the disks used for the file
can also contain programs,
procedures, other files.

All disks must be on-line
during processing.

A one-to-one correspondence is
required between the entries in
the UN IT statement and the disk
names in the PACK statement.

INDEXED, SEQUENTIAL, OR DIRECT FILES

When processing a file (or a subset of a file) the disk
names must be in the same sequence as they were at
file creation time.

Length must be less than 30
(01-08 if packed keys).

HI KEY responses must corre
spond one-for-one with the disk
names in the PACK statement.

At file creation time:

Used only for Indexed Files. For
Sequential and Direct files, pressing
PROG START will also bypass
HI KEY prompt.

• Number of tracks (or records) '!lust be specified for each disk.
• Number in TRACKS (or RECORDS) statement must correspond one-for-one with the

disk names in the PACK statement.

During subsequent runs: TRACKS (or RECORDS) statement can be included in the OCL
sequence. (For greater detail see keyword descriptions of TRACKS/RECORDS.)

• If specified:
Addresses must correspond, one-for-one with disk names in PACK statement.

• If not specified:
System will allocate space on each disk.

Coding Multi-Volume File Statements

1. The operator must begin and end each statement with
an apostrophe.

2. The system displays information about each volume
on a separate line.

3. The system assigns one statement number to the entire
file statement.

Changing Multi-Volume File Statements with MODI FY
Keyword

When using MODI FY keyword to change a multi-volume
file statement (other than HI KEY), the entire response to
the keyword must be re-entered on one line, separated by
commas, with beginning and ending apostrophes.

Example

UNIT Statement is

041 UNIT - 'Fl
- Rl
-R2
- F2'

To change at MODIFY time

MODIFY
041
RUN

- 'Fl ,R 1,F2,R2'

Should be

UNIT- 'Fl
- Rl
- F2
- R2'

INCLUDING DISK SORT SOURCE OR UTILITY
CONTROL STATEMENTS IN A PROCEDURE

- The INCLUDE option can be used during MODI FY time
of a BUILD cycle to include Disk Sort source or utility
control statements in a procedure. This is useful if the con

trol statements are long or complex and the job is run fre
quently. A maximum of 25 control statements can be in
cluded in each procedure.

During the BUILD cycle, the INCLUDE option must be
the last MODI FY option used. After the included state
ments are keyed in, the RUN entry then puts the procedure
and included statements in the source library.

The CALL cycle will be different if the called procedure
has included statements. After the OCL statements are
printed, MODI FY will be prompted to allow changes to

the OCL statements. After the operator types RUN, the

system will print INCLUDED STATEMENTS and then
list the statements. MODIFY will now be prompted
again, to allow changes to be made to the included state
ments. The operator types RUN to run the job.

For an example of Including Disk Sort Source Statements
in a procedure see the IBM System/3 Disk Sort Reference
Manual, SC21-7522.

An example of including Utility Control statements in a
procedure is shown in sample job 10 (see Sample Jobs at
end of this part).

INCREASING FILE SIZE OF THE RPG PROCEDURE

The IBM-supplied compile procedur~ can only compile
RPG II programs with less than 400 statements. To
compile larger programs, the file statements must be
modified to increase their size above 10 tracks (see
Modify; Changing a Previous OCL Statement in Part I).
Using the MODI FY option will only increase the file size
for one compile. The RPG II procedure will not be
changed in the source library. To change the procedure in
the source library you must either build a new procedure
(see BUILD NAME in Part 1); use the Library Maintenance
Modify function, or use the KSE utility program.

Maximum Number of Files in SWA

The scheduler work area (SWA) is used to temporarily save
file label information while processing a program (see
library Maintenance Program for information on creating
an SWA). The file label information is ten sectors, and it
can contain a maximum of 40 entries, each one 64 bytes.

This manual states that a maximum of 40 files (or 40 vol
umes of a multivolume file (MVF)) can be specified for
one program. In some cases, the maximum will be less.
Generally, one label is required for each file. One Fl label
represents one FILE statement for disk. For multivolume
files, there is one Fl label for each PACK.

Additionally, one F7 label is used for each volume of an
indexed multivolume file to contain HI KEY information.

The special allocate function of the SCP might require an
Fl entry in the SWA even though it is not specified by

the user. For example, the Disk Sort has an auto-allocate
function wherein the system, not the user, locates work
space for the sort. Also, some of the SCP utility functions,
such as the WORK-YES option of $COPY (COPYFILE
intermediate), use the special allocate routines.

Using OCL 55

The following examples might help to determine the num
ber of SWA entries required for a run. A direct file requires
the same number of entries as a sequential file:

Type of
Disk File

Sequential

Sequential (MVF)

Indexed (created as
single volume)

Indexed (created as MVF)

Indexed (created as MVF)

Special allocate
$COPY WORK-YES
$DSORT (auto-allocate)
$MAINT

Number !Jf
Volumes

3

3

Up to4
Up to4

Number of
SWA Entries

3

2

6

Up to 4

Up to 4 1

1 Not including files specified for the file-to-library
function.

For example, if you are copying (using $COPY) a multi
volume indexed file on five volumes, 10 entries would be
required for the input file and 10 entries would be required

for the output file. In addition, if COPYFILE intermediate
(WORK-YES) is used, one entry would be required by the
$COPY program.

Thus, by summing the requirements for your program, you
can determine whether you have exceeded the maximum
allowable number of SWA entries (40).

PROCESSING LARGE INDEXED DISK Fl LES

When additions are made to a large indexed file, the
amount of time needed to sort the keys of the index at end
of-job may become excessive. This sort time can be reduced
by using a work file.

The work file is used to merge the added keys into the
index and must be large enough to contain all of the keys
added to the file. If the program adds records to more
than one indexed file, the work file must be large enough
to contain all the keys added to the file having the greatest
number of additions.

56

The work file must be named $1NDEX44 and should be
located as close as possible to the index being sorted. To
compute the number of tracks required for the work file,
use the following formula:

(
256 \

number of adds+ keylength+3}+ 24 =tracks

After dividing 256 by keylength+3, the remainder should
be dropped. After the other divisions, round the quotient
to the next higher whole number.

If the work file is not large enough to contain all the index
keys, the keys are sorted in the normal manner without
using a work file. If possible, the work file should be
located on a different disk drive than the indexed file
whose keys are being sorted. If this is not possible, the
work file should be as close as possible to the beginning
of the file whose keys are being sorted. This minimizes
the disk seek time.

The work file can be used with multivolume files. However,
it cannot be located on a pack that contains one of the
offline volumes of a multivolume file. The pack containing
the work file must remain online while running the job.
The work file must be RETAIN-S. If RETAIN-Tor
RETAIN-Pis specified, the system will default to
RETAIN-S.

For small indexed files (10 tracks or less) where the sort
time is negligible, the use of the work file will not improve
performance and should not be used.

To use this performance option, no change is needed to
your source program. Also, programs need not be re
compiled to use this option. Only the additional OCL
FILE statement is needed to use this option.

ENTERING RPG II SOURCE STATEMENTS FROM THE
KEYBOARD AT COMPILE TIME

The IBM-supplied compile procedure requires that the

RPG 11 source statements be in the source library of a disk.
By using the Keyboard Source Entry Utility ($KSE), source
statements can be format checked as they are put on disk.

The source statements can, however, be entered from the
keyboard at compile time. These statements are read by
the compiler and checked for format errors. If any errors
are found they cannot be corrected and the compile will
not be successful. The compile job must be rerun and all
source statements keyed in again.

To key in source statements from the keyboard, the
IBM-supplied compile procedure RPG is used. This pro
cedure does not prompt COMPILE OBJECT, SOURCE,
or UNIT.

Inquiry Interrupt

Certain programs can be interrupted while they are being
processed. A request for interruption is called an inquiry

request (made by operation of the inquiry switch on the
system control panel). Programs are usually interrupted to
permit another_ program to run. Control is then given back
to the first program.

The instructions given the compiler at compile time
determine the inquiry type of a program.

The three types of programs include:

1. A program that cannot be interrupted (does not
recognize an inquiry request).

2. A program that can be interrupted (does recognize
an inquiry request). This is a B-type inquiry program.

3. An inquiry program that can only be executed when
an inquiry request is made. This is an I-type program.

Usually I-type programs are read in only when a program is
interrupted. In this case the inquiry program will not
recognize an inquiry request. However, if an inquiry
program is lo~ded in the normal manner (not because of a
program interrupt), it can only be executed when an inquiry
request is made. While this program is running, it will not
recognize an inquiry request.

The inquiry interrupt involves these three steps:

1. When the program recognizes an inquiry request, a
Roll-Out routine moves the interrupted program
from main storage to dis~.

2. The program for which the -interrupt was requested
must be loaded normally. The interrupting program
may be any type. This interrupting program cannot
be interrupted.

3. After the interrupting program is executed, the
interrupted program moves back into main storage
using a Roll-In routine. The interrupted program
begins execution at the point of interruption and
terminates in a normal manner.

The IBM System/3 Model 6 RPG II Reference Manual,
SC21-7517, describes coding necessary to define inquiry
programs.

Restrictions During Inquiry

Inquiry always causes conversational OCL to be used, even
if the interrupted program was running using the card OCL.
The OCL statements cannot be read from cards during
inquiry.

If the interrupted program uses offline, multivolume files
(RPG II), the inquiry program must not require files on
the same removable unit.

The log device cannot be changed during inquiry.

CHAINED PROCEDURES

A finished job usually requires that more than one program
be run. Several customer programs with utility programs
between them may be required to complete the finished
report. This sequence of programs can be put in chained
procedures.

By chaining procedures, several benefits can be realized,
including:

o Programs are always run in the correct sequence.

• Operator intervention and, therefore, chance of
operator error, is decreased.

• File space can be saved. Files used to pass data from
job to job can be scratched after the last program.

• Files are less likely to be destroyed by running non
related programs between programs of a job.

To chain procedures, the operator first builds a master
procedure to chain together other procedures. This is
done by responding to READY with BU I LDC. The system
will then repetitively prompt CALL NAME and UN IT,
allowing the operator to respond with the name and unit of
the procedures that are to be chained. When all procedure
names have been entered, the operator responds to CALL
NAME or UNIT with the ENTER MINUS (ENTER-) key.
The system then allows the operator to MODI FY the
entries. When RUN is entered, the master procedu~e is put
in the source library as a permanent entry.

Master procedures can call other master procedures up to
9 levels. The original master procedure called (level 1) can
call another master procedure (level 2), which can call
another master procedure (level 3), etc., on up to 9 levels.
Care must be taken to avoid calling a master procedure
that was already called earlier in .the chain or an endless

Using OCL 57

loop will result. A master procedure can contain only
CALL and UNIT statements.

Delayed responses are not allowed in a BUI LDC cycle.
However, the called procedures can contain delayed

responses.

To run the chained procedures, the operator initiates a
CALL cycle, responds to CALL NAME with the name of
the master procedure, and responds to UN IT with location
of the procedure. Each procedure is then called by the
master procedure and run.

When running chained procedures, the operator is never
prompted MODI FY to make changes.

If the operator presses the ENTER-key after responding
to CALL NAME or UNIT, only the CALL NAME and
UN IT statements of each chained pro'cedure will be dis
played. All other OCL statements (except those with
delayed responses) and included control statements are
not displayed.

If HALT is specified, the system will not halt until the last
job of a chain is complete.

OCL FOR THE IBM 2222 PRINTER

The IBM 2222 printer provides the MODEL 6 system with
the ability to print on two forms. Each form has its own
forms tractor. The left tractor is called PRIMARY and the
right tractor is SECONDARY.

Using the FORMS Statement

The lines per page setting of the PRIMARY and
SECONDARY tractors can be different. (For example,
the PRIMARY tractor could print 25 lines per page, while
SECONDARY prints the standard 66 lines per page.)
Separate settings are specified by entering different FORMS
statements for each tractor during the MODI FY phase.

Log Device

The log device is used to print OCL statements and error
messages and codes. The PRIMARY tractor will be the
log device at IPL time when the 2222 Printer is used. The
secondary tractor can be assigned as the logging device by
entering LOG at either READY or MODIFY time. If the
secondary tractor is the logging device, logged data begins
in print position 110. (See READY-Entering LOG and
MODIFY-Entering LOG).

If the log device is used for normal program output, the
error messages and codes are not printed.

58

MODI FY - Entering the Keyword FORMS

System prompts MOD I FY

Operator types FORMS

{
System prompts FORMS
DEVICE t .
Operator types

t
I

PRIMARY

I
t

System prompts LINES

t
I

Enter here if you've
already used a
MODIFY option in
the job

+
SECONDARY

I

Operator types
~

0 perator presses
new lines per
page setting

I
f

PROG START
(for current lines
per page)

I

Does operator want to
use another MODIFY

t,... ___ option?

YES

' See keyword
description
of the other
MODIFY
option

l
NO

t
Operator types RUN
(When the keyword FORMS
is entered in an OCL se
quence, a system halt oc
curs after RUN in case
the operator needs to
change paper in the print
er. The system remains
idle until the operator
presses PROG START)

OCL FOR THE IBM 2265-2 DISPLAY

The I BM 2265-2 display unit can be used as the system log
ging device. The logging device displays OCL statements,
utility control statements, job comments, and error messages
and codes. The log device can also be used for normal out
put from the job being run. Error messages and codes are
not displayed if the 2265-2 is used for normal job output.

When the 2265-2 (CRT) is used as the logging device, an ad
ditional 1 K of core storage is needed for the system, thus
reducing the core available for the user program.

The operator can assign either the CRT display or the print
er as the logging device. If the operator changes the logging
device the change remains in effect until either:

o The operator specifically overrides the change with
another LOG statement.

o The next IPL procedure.

READY - Entering LOG

t
CRT

t
System assigns
CRT as logging

drice.

System prompts READY

OperatJ types LOG

+ System prompts
LOG DEVICE

t
Operator types:

l
SECONDARY

t
System assigns
secondary tractor
as logging device.

l
PRIMARY

{ .
System assigns
primary tractor
as logging device.

I i
System prompts READY

Note: The CPU usage meter will continue to run during
halts (other than end-of-job halt in halt mode) when the
CRT is used as the logging device or when it is used by the
customer program. To stop the usage meter, the system
START/STOP switch should be moved to the STOP position.
This will blank the CRT display, but the halt wi II continue
to be displayed in the halt code indicator lights on the sys
tem console. When halt ABCD12345 occurs (end-of-job
in HALT mode), the CRT is blanked and the usage meter
is stopped.

MODIFY - Entering LOG

System prompts MOD I FY

t
CRT

t
System assigns
CRT as logging
device

I

Operator types LOG

f
System prompts
LOG DEVICE

t
aperatr types:

SECONDARY

' System assigns
secondary tractor
as logging device.

i
Does operator want to
use another MODI FY

. Enter here if
you've already
used a MODI FY
option in the job

t
PRIMARY

t
System assigns
primary tractor
as logging device.

I

yrs-option?------~ r
See keyword description Operator types
of the other MODI FY RUN
option

Using OCL 59

!ocL ERROR MESSAGES

Message

. MESSAGE #00- NO PROGRAM NAME GIVEN

MESSAGE #01 - NO UNIT GIVEN

MESSAGE #02 - INVALID PROGRAM NAME SPECIFIED

MESSAGE #03 - INVALID UNIT SPECIFIED

MESSAGE #04 - PROGRAM NOT FOUND ON
SPECIFIED UNIT

MESSAGE #05 - NO PROCEDURE NAME GIVEN

MESSAGE #06 - SOURCE NOT FOUND ON SPECIFIED
UNIT

MESSAGE #07 - INVALID PROCEDURE NAME

MESSAGE #08 - MULTIVOLUME FILE RESPONSES
NOT IN 1-1 RATIO

MESSAGE #09 - PROCEDURE NOT FOUND ON
SPECIFIED UNIT

MESSAGE #10 - INVALID SWITCH SETTINGS

MESSAGE #11 - NO SOURCE NAME GIVEN

I

MESSAGE #12 - INVALID SOURCE NAME SPECIFIED

MESSAGE #13 - INVALID DATE SPECIFIED

MESSAGE #14 -TOO MANY RESPONSES TO A
MULTIVOLUME FILE KEYWORD

MESSAGE #15 - NO FILE NAME GIVEN

MESSAGE #16 - NO PACK GIVEN

MESSAGE #17 - INVALID FILE NAME SPECIFIED

MESSAGE #18 - INVALID LABEL SPECIFIED

MESSAGE #19 - INVALID PACK SPECIFIED

60

Explanation

Response to LOAD NAME was blank.

Response to UN IT was blank.

Response to LOAD NAME was invalid.

Response to UN IT was invalid.

The program indicated by your response to LOAD NAME
was not found in the object library of the unit specified.

Response to CALL NAME or BUILD NAME was blank.

The source module specified by your response to SOURCE
was not found in the source library of the unit specified.

Response to BUILD NAME or CALL NAME was invalid.

The number of responses to file keywords PACK, HI KEY,
LOCATION, TRACKS, or RECORDS were not equal.

Procedure specified by response to CALL NAME was not
found in source library of the unit specified.

Response to SWITCH was other than eight positions of X,
1, or 0.

Response to SOURCE was blank.

Response to SOURCE was invalid.

Response to DATE in file keywords was invalid.

Only ten volumes are allowed in each multivolume file.

Procedure contains file keywords but no FILE NAME
response.

Procedure contains file keywords but no PACK response.

Response to Fl LE NAME was invalid.

Response to LABEL was invalid.

Response to PACK was invalid.

jMessage

MESSAGE #20 - INVALID RETAIN DESIGNATION
SPECIFIED

MESSAGE #21 - INVALID TRACKS SPECIFIED

MESSAGE #22 - MAXIMUM FILE STATEMENTS
ENTERED

MESSAGE #23 - BOTH TRACKS AND RECORDS
SPECIFIED

MESSAGE #24 - INVALID RECORDS SPECIFIED

MESSAGE #25 - INVALID LOCATION SPECIFIED

MESSAGE #26 - DEVICE NOT SUPPORTED

MESSAGE #27 - INVALID DEVICE

MESSAGE #28 - INVALID NUMBER OF LINES

MESSAGE #29 - INVALID REQUEST

MESSAGE #30 - INVALID STATEMENT NUMBER

MESSAGE #31 -TOO MANY UTILITY CONTROL
STATEMENTS IN PROCEDURE-JOB
CANCELED

MESSAGE #32 - RUN OUT OF SPACE IN THE
SCHEDULER WORK AREA

MESSAGE #33 - RESPONSE REQUIRED-DELAYED
RESPONSE IN CALLED PROCEDURE

MESSAGE #34-TOO MANY MULTIVOLUME FILE
UNITS SPECIFIED

MESSAGE #35-DELAYED RESPONSE(?) NOT
ALLOWED

MESSAGE #36 -JOB CANCELED

MESSAGE #37 - MULTIVOLUME FILE NOT VALID
THIS STATEMENT

MESSAGE #38 - ENTER MINUS (-) NOT ALLOWED

Explanation

Response to RETAIN other than P, T, S, or A.

No more than 15 Fl LE statements can be specified in a job.

Procedure contains responses to both TRACKS and
RECORDS.

Response to LOCATION must be 8 through 405.

CRT, data recorder, or 3741 was specified but is not on
the system.

Response to DEVICE, PUNCH, or READER invalid.

Response to LIN ES not between 12 and 112.

Response to MODI FY was invalid.

Invalid statement number entered as response to modify.

Number of units specified exceeds number of packs
specified.

/* was entered or job was canceled because of errors.

Multiple responses not allowed for this keyword.

The ENTER- key is only allowed for certain keywords in
the BU I LD cycle.

Using OCL 61

I Message

MESSAGE #39 - ERRORS IN PROCEDURE-JOB
CANCELED

MESSAGE #40 - ERRORS IN OCL STATEMENT

MESSAGE #41 - ERRORS IN RESPONSE

MESSAGE #42 - DUPLICATE PROCEDURE NAME
IN LIBRARY

MESSAGE #43 - DUPLICATE PROCEDURE DELETED

MESSAGE #44 - INVALID KEYWORD

MESSAGE #45 - TOO MANY UTILITY CONTROL
STATEMENTS ENTERED

MESSAGE #46-- PERMANENT DISK ERROR

MESSAGE #47 - RUN OUT OF SPACE IN PROCEDURE
LIBRARY-JOB CANCELED

MESSAGE #48 - INVALID SYSTEM DATE SPECIFIED

MESSAGE #49 - DUPLICATE KEYWORD

MESSAGE #50 - RESPONSE REQUIRED

MESSAGE #51 -TOO MANY PACKS, HI KEYS, OR
BOTH SPECIFIED

MESSAGE #52 - DUPLICATE MULTIVOLUME Fl LE
UNIT SPECIFIED

MESSAGE #53 - INVALID RESPONSE DURING
INQUIRY

MESSAGE #54 - INVALID HIKEY SPECIFIED

MESSAGE #55 - INVALID HIKEY LENGTH SPECIFIED

MESSAGE #56 - HI KEYS OUT OF SEQUENCE

MESSAGE #57 - REQUIRED KEYWORD DELETED

CO-RESIDENT SYSTEMS

I BM System/3 Model 6 users who have co-resident systems
(both disk system management and System/3 BASIC) can

62

Explanation

Response to BUILD NAME is already in source library of
unit specified.

New procedure being entered will overlay old procedure
with same name.

Keyword found in procedure is invalid, or response to
READY is invalid.

Only 25 utility control statements may be entered.

A procedure contains a duplicate keyword.

You must respond to this keyword; PROG START as the
only response is not allowed.

The total number of PACK and HI KEY keywords cannot
exceed 52.

Cannot change logging device or change to card OCL.

Response (number) to HI KEY exceeds response (number)
to KEY LENGTH

Response to KEY LENGTH is greater than 29, or is 00.

Responsesto HIKEY must be in ascending sequence.

Job canceled.

transfer control from disk system management to System/3
,BASIC by responding to READY with ENTER BASIC.

This section presents a typical sequence of jobs:

o Initialize a disk.

o Compile an RPG II source program.

o Run the compiled program.

o Copy a file from one disk to another.

• Build a procedure to run a multi-file job.

ct Call and modify the procedure built in job 5.

o Update a multi-volume master file.

o Create a multi-volume indexed file.

o Maintain a multi-volume indexed file with packed keys.

o Include utility control statements in a procedure.

o Chain procedures.

Sample Jobs

Each sample job is organized into three sections:

1.

2.

3.

An introductory summary explaining the job.

The OCL statements (and-where applicable-the
utility control statements) for the job.

Explanatory notes on individual statements in the
job.

The examples shown are actual computer printouts. End
of-statement keys used are shown in parenthesis to indicate
actual operator response. These are shown for example only
and will not be printed on normal OCL printouts.

Any response without end-of-statement key indicated is
printed by the system without operator intervention.

I
In the following examples, the symbol PIS means
program start.

Sample Jobs 63

SAMPLE JOB 1. INITIALIZE DISK

We're going to use the Disk Initialization Program (located on the fixed disk on drive one) to initialize the removable disk o~
drive one. We want to:

o Initialize the entire disk pack.

e Do surface analysis only once.

The name of the new disk will be 12345.

Here are the QC L and utility control statements for the job.

liEADY- LOAD (P/S)

**
<HO LOAD NAME- ~;;:n-n:r (P/S)
OU. UNIT- F:I. (ENTER-)

**
MODIFY

HUN <P.IS)
ENTER 'II ' CC~TROL STATEMENT

,// UIN UNIT-R:t. ~· TYPE::--p1:n:MA1:r'r' (P/S)
ENTER Y// ' CONTROL STATEMENT

/ / ·VOL Pr~Cl'\--:1. 2:-54~5 (P/S)

ENTER '// ' CONTROL STATEMENT
/ /. END (P/S)

Explanation

o 010 LOAD NAME

o 011 UNIT - F1

o II UIN UNIT

o II VOL PACK-
12345

o II END

64

$1NIT
$1NIT is the system name for the Disk Initialization Program.

The Disk Initialization Program is located on the fixed disk on drive one. Pressing ENTER

instead of PROG START to end response causes DATE, SWITCH, and FILE keywords to
be bypassed.

R1, TYPE-PRIMARY

1. Tells the system to initialize the removable disk on drive one.

2. Because no other parameters are entered in the UIN statement, the program will:

o Initialize the entire pack.

o Read and verify the test data on the pack one time.

$1NIT will enter the disk name 12345 in the VTOC. Whenever a file from this disk is used
in a job, the operator must type 12345 when the system prompts PACK.

SAMPLE JOB 2. COMPILE AN RPG II SOURCE PROGRAM

We're going to use the I BM-supplied procedure RPGB (located in the source library on the fixed disk on drive one) to
compile a source program I NVUPD (an inventory update) located on R1. The RPG 11 Compiler (the program to compile
RPG 11 source programs) is also located on R1. We want to put the compiled program in the object library on R 1. Here are
the OCL statements for the job.

Explanation

• 000 CALL NAME RPGB
Tells the system you want to use the IBM-supplied Compile Procedure (RPGB).

• 010 LOAD NAME $RPG

• 011 UNIT

Tells the system you want to use the RPG 11 Compiler (the program to compile RPG 11
source programs).

R1

o 020 COMPILE OBJECT ·

The RPG II Compiler is located on R 1.

F1

• 021 SOURCE

• 022 UNIT

• 020 MODIFY

HEADY-·
000 CALL
001

NAME····
UNIT-·

The object program will be put in the object library of the disk on F 1.

INVUPD
The SOURCE statement in the RPGB procedure requires a delayed response. When the
system reaches the SOURCE statement in the display sequence, it prompts SOURCE and
waits for the operator's response.

R1
The response tells the system that the program to be compiled (INVUPD) is located on R 1.

R1

1. System prompts MODIFY.

2. Operator types Q20, telling system he wants to change that statement. (He does not
want the· system to put the compiled program on F1 .)

3. System tabs to position 37 and waits for response.

4. Operator types new response - R 1. The system will put the compiled program on R 1.

Cf'.'.iL.L. (P/S)
r;:prm (P/S)
Fl (P/S)

010 LOAD NAME-SRPG
011 • UNIT-rn
020 COMPILE OBJECT-Fl
021
022
030 FILE
031.
032
033
034
040 FILE
041
042
043
044

SOl.11,CE
l.INIT-Rt
NAME-$l.JORK
UNIT-F1
PACK-Fl.Fl.Fl.

TRACKS-20
RETAIN-S

NAME...:~,SOURCF

UNIT-Fl
PACK-Fl.Fl.Fl

TRACKS-20
RETAIN-S

HNUF'I:t (P/S)

MODIFY

9:.w (P/S)

HUN (P/S)

1:;:1 (P/S)

Sample Jobs 65

SAMPLE JOB 3. PROCESS CUSTOMER PROGRAM 11INVUPD"

We're going to run the customer program INVUPD, compiled in SAMPLE JOB 2 and located on the removable disk on
drive one. The job uses one file, INV, located on R2. The name of the disk which contains the file INV is 123456. Here
are the OCL statements for the job.

l ... Dt~~D (P/S)

**
O:lO L.Of.~D

OU.
020 DATE
o:~o Bl>J ITCH
040 FILE
04:1.
042
04:3
o~;o FILE

Nf.~MEN••

UNIT"··
< :L 2/0B/70)
(()()()()()()()())

Nf.-lME-·
UNIT-·
PACI\-·

LABEL" ..
N?~ME-·

I N1-.JUP:O (P/S)
R 1 (P/S)
(P/S)
(P/S)
IN'·) (P/S)
F~2 (P/S)
:1. 2:·~;4!=.=.i<::. (P/S)
(ENTER-)
(P/S)

**
MODIFY

HUN (P/S)

Explanation

• 020 DATE

• 030SWITCH

• 043 LABEL

• 050 Fl LE NAME

66

- (12/08/70)
We'll use the current system date for the job.

- (00000000) - (P/S)
The program doesn't use external indicators so the operator doesn't care about the switch
setting and responds by pressing the PROG START key.

- Press the ENTER- key
Responding to LABEL by pressing the ENTER- key tells the system to bypass the rest of
the file keywords and prompt Fl LE NAME.

(P/S)

Responding to FILE NAME by pressing PROG START causes the system to bypass the
rest of the file keywords and prompt MODIFY.

SAMPLE JOB 4. COPY Fl LE DISK TO DISK

We're going to copy an employee master file from R1 to R2. The second file will serve as a back-up in case the original file
is damaged in some way, such as track becoming defective or a portion of the file being overlaid. When the master file was
created the programmer:

1. Responded to FILE NAME with EMASTFIL.

2. Responded to PACK with VOL06.

3. Responded to LABEL with EMPMAST.

4. Responded to TRACKS with 15.

These responses caused the system to put the name EMPMAST in the VTOC on VOL06.

Here are the OCL and utility control statements we will use to copy the master file from R1 to R2.

l ... Df.°~D (P/S)

**
o :lo 1 ... or=~.n
0:1.:1.

Nr~~ME····

UNIT-··
020 DATE <12/08/70)
030 SWITCH (00000000)
040 FILE NAME-
041 UNIT-
042
043
0~.50 FILE
o~=.=.i:1.

o~::i2
o::=j3
0~54

() ~:) ~~.i
()~)b

Pf.~1CI<-··

I... fl BE I ... ·-·
Nf~lME-··

'UNIT-··
Pf.~CI<-··

i ... t·lBEI...-··
1:;~ECDHDS····

THf.~lCl-::B-··

l..DC?=lTION-··
057 RETAIN-
060 FILE NAME-

~:~COPY (P/S)
F:I.. (P/S)
(P/S)

(P/S)
CDPYIN (P/S)
1:;: :I. (P/S)
1..JOl ... 06 (P/S)

EMPMr:·~GT (ENTER-)

CDPYD (P/S)
1:;:2 (P/S)
'-)Ol ... (f7 (P/S)
E'.:i"vff'M.-:"~~:rr::.~ (P/S)
(P/S)
:I. ~:.:i (P/S)
(P/S)

P (ENTER-)

**
MODIFY

~~UN (P/S)
ENTER 'II ' CONTROL STATEMENT

·// COPYFILE 01.JTPUT-DISI'\ (P/S)
ENTER '// ' CONTROL STATEMENT

/ / END (P/S)

Sample Jobs 67

Explanation

• 010 LOAD NAME

• 011 UNIT

• 020 DATE

• 030 SWITCH

• 040 FILE NAME

• 043 LABEL

• 050 FILE NAME

• 053 LABEL

• 055 TRACKS

• 057 RETAIN

- $COPY
$COPY is the system name for the Copy/Dump Program.

F1
The Copy/Dump Program is on F1.

- (xx/xx/xx)
We will use the current system date for the job.

- (00000000)
The program does not use external indicators, so operator does not care about the
switch setting and responds by pressing PROG START.

COPY IN
COPYIN is the predefined file name you must use for the input file whenever you use
Copy/Dump Program.

EM PM AST
EMPMAST is the VTOC file name for the COPYIN file. You must supply this name so
the system knows which file to use for COPYIN. Pressing the ENTER- key causes the
system to bypass the rest of the file keywords and prompt Fl LE NAME.

CO PYO
COPYO is the predefined file name you must use for the output file whenever you use
the Copy /Dump Program.

EMPMAST2
The system enters EMPMAST2 in the VTOC on VOL07. EMPMAST2 is the name by
which the system will identify the back-up file.

15
Because we are creating a new file, we must respond to one of the space keywords
(TRACKS and RECORDS). We specify 15 tracks because that is what we specified
for the original file.

- p
The back-up file is to be permanent to protect it against inadvertent overlaying.
Pressing the ENTER- key causes the system to bypass the rest of the file keywords
and prompt FILE NAME.

• COPY Fl LE OUTPUT DISK
The COPY Fl LE statement tells the program to copy the designated file from R 1 to R2.

68

SAMPLE JOB 5. MUL Tl-Fl LE BUI LO

Each day the customer runs a daily transaction job which creates a daily transaction file. Each day's file has a different
name and date. We are going to build a procedure to use these daily files to create a weekly transaction file (WKL YTR).
The weekly transaction program is located in the object library of fixed disk 1.

1.)1.) :i.

·.; .. ::• \/ ~:;; 1 .. ,J I T C H
OAO FILE

0!::;4

()!5 ·.:.:·'

():_::;b

061
•.:::Oc"i.:?

() (i .-:{.

0{i!5

i.:::.(·iu
070 FILE
071
072
07:~

074
075
076
077
078
080 FILE
081
082
083
084

I\! i::1 i···i !::: ····
Ui"-.!IT····

Ht1hE····
Ui··!IT····

.· ··. ,''\ .••. ·· .. •• ••. ·· .. ···.
... \.} l •• } i..) '· • .-' i '·.i :. .. ii . .} }

Nt1dE····
Ui··!IT····
Fi::1CI-<····

L.i::,BEI...····
E:ECOl:(Db····

T h'. i::, C I< ~::; ····
LUCt·1TI CN····

F~'. E T i~·, I i\! ····
Di2iTE····
NC::11"iE····
Ui-.!I T····
Fi~·1Ci<····

Lf.:1BEI...····
·F'.ECOi:;~Db····

TF\'.(1Ch:b····
L CiCt1 TI DN····

F~'. E T i::, I i\! ····
:Oi'.:1TE····
j\!(~·,j",i[····

Ui-...!IT····
Fi::1Ci<····

i .{iDEL····
1:~ EC:: CE'. :0 b····

. TF;.'.f.1CKB····
LDC{i TI DN····

F~ET(:·, IN····
J.:ii'.:1TE····.
NAME
UNIT
F'ACl'\-

LABEL
RECORDS-

TRACKS
LOCATION-

RETAIN
DATE
NAME
UNIT
PACK-

LABEL
RECORDS-

E{UI!...D (P/S)
l.r . .lTF'. {P/S)
F;~;? (P/S)

i..r .• ii'<"{h'.Ui·· .. ! {P/S)
F .L (P/S)
{P/S)
11J11:x:x/
i·1i;.::ii···.!Th'.
F .!. (P/S)

(P/S)
(P/S)
(P/S)
(P/S)
(P/S)
? (P/S)
TUETF'.
F .L (P/S)

(P/S)
(P/S)
(P/S)
(P/S)
(P/S)
'? (P/S)
i,..JEDTF'.
F :i. (P/S)

(P/S)
(P/S)
(P/S)

. , (P/S)
(P/S).
? (P/S)
THUTI:~

(P/S)

F:I. (P/S)
PACl<OB <PIS)
(P/S)
(P/S)

(P/S)
(P/S)
(P/S)
? (P/S)
FF~Ii°I=<
Fl. (P/S)
PACKOB iP/S)
(P/S)
(P/S1

(P/S)

i .. •.JEDi·· .. !ESDf'.°:1Yb FI LE (P/S)

THUl~SDAYS FILE (P/Sl

Fl:;:IDAYS FILE (P/S)

Sample Jobs 69

085
086
087
088
090 FILE
091.
092
093
094

8~~
:1.00 FILE

TRACl'\S
LOCATION-

RETAIN
DATE
NAME-
UN IT
PACl'\-

LABEL
fffCORDS

UJCAT I ON
F~ETAIN-

NAME-

(P/S)
(P/S)
(P/S)
? (P/S)
Wl<L. YTr:~ (P/S)
F~l. (P/S)
j::·ACl-(04 (P/S)
(P/S)

:::j()() (P/S)
(P/S)
P (ENTER-)
(P/S)

~***
t'lODIFY

RUN (P/S)

Explanation

o 000 BUILD NAME

o 001 UNIT

o 020 DATE

o 030 SWITCH
(00000000)

o 040 Fl LE NAME

o 048 DATE

o 090 Fl LE NAME

c 094 RECORDS

o 096 RETAIN

o 100 Fl LE NAME

o RUN

70

- WTR
The procedure name in the source library is WTR.

- R2
The procedure is located on unit R2.

- (P/S)
The date statement is not part of the procedure.

- 11111XXX(P/S)
The first fiv~ external indicators are used to tell the program which input files are to be
used (Monday-:- Friday).

- MONTR MONDAYS Fl LE
The file name for each day is different. The comment (MONDAYS Fl LE) will become
part of the procedure.

- ? (P/S)
The date each file was created is supplied at CALL time, when the job is run.

- WKLYTR (P/S)
The output file is called WKL YTR and put on PACK04 on unit R 1.

- 500 (P/S)
Our output file contains up to 500 records.

- P (ENTER-)
We want to make this a permanent file. The ENTER- key caused DATE to be skipped and
Fl LE NAME prompted.

(P/S)
We are finished with file statements, prompt MODIFY.

- Put the procedure in the source library.

SAMPLE JOB 6. MUL Tl-Fl LE CALL

We are going to run the procedure we built in sample job 5. However, this week Thursday was a holiday so there are only
four input files. We can still use the same procedure if we delete an input file at MODI FY time.
READY- CALL (P/m
000 CALL NAl·iE-- ~-JTH (P/S) .
001 UNIT- Fl (Pffl)

~*********
010 LOAD NAME-WKYRUN
011 UNIT-Fl
020 SWITCH -11111XXX
030 FILE NAME-MONTR
031 UNIT-Fl

o::;:::;
040-FILE
~)41

042
04:::;
050 FILE
051
0~;2

05:::;
Oi.1 1"J FILE
061
01.i:;~

oc,:::;
O?O FILE
()}:I.

on
0?:2;
•j8(; FILE
\}8 J.
•)B::.'.
\)B::•;
OB·~

F(.:1CK·-PACt\OB
D1'.:iTE····
Ml1hE····TUETI:;:
Ui .. !IT·-·F:l
F'(-\Ct<--P<~Ct\OB
DATE·-·
NAME····lJE-DTF;:
UNIT-Fl
P?iCK·-PACl\:on
D(.1TE·-·
l···!AME····THUTF;:
Ui"!IT····Fl
P{-1Ct<·-·P(.~CKOB

Dt-1TE-·
NAME····FR I TF;:
UNIT··-F:L
p,-:1CK·-Pi'.".\CKOB
Dr~TE····

Mf:ihE-·l·Jl<L YTi~:
lli\! I T-·f< 1
F(.1Ct<-F1-'.1Ct<04

t\ECuF;:DG····!::;~)0

F\'.ET{-1IM-··F

·:'.i/·:::i/"7.i. (P/S)

4/6/71 (P/S)

,:J l/71 (P/S)

·'-ilB/7 l (P/S)

**
HCDIFY

Ci:.:!.() (P/S)

060 v (P/S)

m.fr·! . (P/S))

Explanation

o 033 DATE

• 043 DATE

·o 053 DATE

• 063 DATE

• 073 DATE

l J. :l.·)lXXX (P/S)

4/5/71

4/6/71

4/7 /71

4/8/71

4/9/71
We must supply the date for each day's input file because we gave a delayed response (?) at
BUILD time. Thursday's date is entered even though we will delete the file later. A date
should be entered to continue the cycle.

o MODIFY 020 We set off switch four to indicate Thursday's file is missing.

• MODIFY 060 We delete the entire file for Thursday and enter a comment to explain why.

• RUN Start the job.

Sample Jobs 71

SAMPLE JOB 7. UPDATE MUL Tl-VOLUME MASTER Fl LE

Every Monday the XYZ Novelty Company prepares customer invoices, updates their customer master file, and updates
their inventory file. Because the company has a huge customer file they've had to put the file on two disks: customer
names beginning with A-Lon one disk and the remaining customer names on a second disk. When he created this
multi-volume master file, XYZ's programmer assigned the following identifying information:

1. A-L customer names:
FILE NAME - CMASTER
PACK-VOL01

2. M-Z customer names:
FILE NAME - CMASTER
PACK-VOL02

Because the company often needs information on individual customers, the programmer designed the customer master file
as a direct file. The program to update the customer master file is CMUPDA. Here are the OCL statements for the job.

1:;:Ef~D'i···· 1 ... Dr:"~O (P/S)

0 :1 () L.0(.~Ir

O:L:l
020 D?i"TE
030 ~;)t .. J TTCl-1
040 FILE
04:i.

042

0~50 FILE

i'"·lDDJFY

HUN (P/S)

Explanation

• 041 UNIT

• 042 PACK

Nf'.%ME····
UNIT····

<:J.2/0B/70)
(()()()()()()()())

Nf.:)ME-··
UNIT-··

tJ{:)f'"i[····

'F1
R1'

Cdt..tr=·fl;:~ (P/S)
F:t. (P/S)
(P/S)
(P/S)
CMr:°%flTEH (P/S)
I' F :I. (P/S)
rn ~· (P/S).
i· 1-JDl ... O :I. (P/S)

1.JUi ... 02~· (ENTER-)
(P/SI.

The single quotation marks tell the system the file CMASTER is a multi-volume file. F1, R1
tells the system the file is split between the fixed and removable disks on drive one.

'VOL01
VOL02'
The single quotation mark.s tell the system the file is on more than one disk pack. VOL01,
VOL02 tells the system the name of the disk packs containing the file. Pressing the
ENTER- key causes the system to bypass the rest of the file keywords and prompt
FILE NAME.

• 050 F!LE NAME Pressing the PROG START key causes the system to bypass all the file keywords and
prompt MOD I FY.

72

SAMPLE JOB 8. CREATE A MULTI-VOLUME INDEXED FILE

We are creating an inventory file. The file is very large and requires five packs. It is an indexed file with a 15 position
keyfield; the keyfield consists of part number and warehouse location. The file is divided among the five volumes as follows:

Volume 101 Keyfields 000-000-000W 1 81 to 175-200-233W182

102 175-200-233W183 to 380-456-280W3R6

103 380-456-287W7 83 to 629-384-300W3F6

104 629-384-301W786 to 949-4 7 5-849W8 F 8

105 949-4 7 6-836W4 F8 to 999-999-999W9F9

The processing starts with 101 on unit R1 and 102 on unit R2. After processing 101, the program processes 102 allowing

the operator to remove 101 and mount 103 on unit R1. Likewise, 104 replaces 102 and 105 replaces 103.

READY- LOAD (P/S)

**
010 LOAD NAME- CRTINV (~S)
Ol.l. UNIT- F:I. {P/S)
020 DATE (l.2/31.//()) (P/S)

030 SWITCH < 00000000) {P/S)
040 FILE NAME- IN'JMSTR {ENTER-)

04A
04B
04C
04[1
04E
()41

042

043
044
045

046

KEY LENGTH-· ·l!:i {P/S)
Hil'\EY- , :I. '/!5--::.~oo·-·2:·5:.%J:t.B2 (P}S)

HI l'\EY- :3ao-4~56·-·2B()l, . .1:·:::1=;.:6 (P/S)
HI KEY-· 629·-·~5B4-<5oow:·:~:i::· 6 {P/S)
HI l'\EY-· 949····4"/~5····B4911 . .IBFB (P/S)
HI KEY-· <?<_;>9 99<?-···<?<~><?l.1..l<?F<? ~· (P/S)

UN IT-· ~·FU (P/S)
1:;~2 ~· (P/S)

PACI'\-·

LABEL.
RECORDS

TRACKS-

LOCATION-

"' 'JOI ... I 0 :I. {P/S)

'JOI ... I 02 (P/S)
'.JOI ... I 6:~:; (P/S)

'JOI. .. I 04 (P/S)
• .. .Jrn ... Io~:.;~· (P/S)

(P/S)
{P/S)

' :I.()() (P/S)
:I. <;>3 {P/S)

:1.50 (P/S)
:I. 9:3 (P/S)
80' (P/S)
'8'? (P/S)

B {P/S)

49 (P/S)

8 {P/S)
8"' (P/S)

047 RETAIN- P .(ENTER-)

050 FILE 'NAME- (P/S)

**
MODIFY

HUN {P/S)

Sample Jobs 73

Explanation

• KEY LENGTH:

• 045 TRACKS
046 LOCATION

74

All characters except commas are allowed as part of the HIKEY. If apostrophes are used as
part of the key, two apostrophes must be entered for each one in the key. The number of
characters entered for HI KEYs must equal KEY LENGTH.

No statement number Js assigned KEY LENGTH. This keyword cannot be changed at
MODIFY time.

The file need not occupy the entire volume if the number of tracks and the starting
location are given. You must be sure these areas are available because the system cannot
check offline packs.

SAMPLE JOB 9. MAINTAIN A MULTI-VOLUME INDEXED FILE WITH PACKED KEYS

We are maintaining a multi-volume indexed file. The file occupies four volumes. The keyfield is 15 characters long in
packed format. The keyfield takes eight bytes in the record. The file is divided as follows:

Volume P01
P02
P03
P04

Keyfields 000 000 000 000 000 through 000 025 000 000 000
000 025 000 000 001 through 000 050 000 000 000
000 050 000 000 001 through 000 075 000 000 000
000 075 000 000 001 through 000 100 000 000 000

The OCL required to use this file is as follows:

**
0 :\. 0 L.DM.1 Nf.fr\E··- p,~:iy\:~~0\... (P/S)
O:U. UNIT.... F:\. (P/S)
() ;;.~ 0 D l~ TE (0 7 / 0 9 / '? :l.) (P /S)
030 SWITCH (00000000) (~S)

O·'H) FI l...E NtrME Pt1YHO\...i... (ENTER-)

04B
().I.}[;

O··~ 1)

OA:t

{\.lJ. '";' " '· ..)
O!:;o FILE

KEY .LENGTH .. ·· m:hf• (P/S)
HI KEY.... 'J 0000~!.!::;ooOOOOOOO (P/S)
HI l\E Y OOOO!::i()OOOOOOOOO (P/S)
HI l{E Y OOOO'?~:iOOOOOOOOO (P/S)
HI i"\ E Y -·· 000 :\. 00000000000)' (P/S)

UN IT.... ~, E'. :l. (P/S)

i...t'.~DEL·· ..
NtrME-··

H~!. '} (P/S)
'} \.)0\...PO :l. (P/S)
\.)(]L.PO:~!. (P/S)
\JOL.F··()'.3 (P/S)
\)C}\...P()11)' (P/S)

t1C;CCJNT (ENTER->
(P/S)

***~
HCJT.IIFY

r:.'.UN (P/S)

Sample Jobs 75

SAMPLE JOB 10. INCLUDE UTILITY CONTROL STATEMENTS IN A PROCEDURE

Sample job 1 showed an OCL LOAD cycle for initializing the removable disk on drive one. This sample job shows how to
do the same job using BUILD and CALL cycles and including the Utility Control Statements in the procedure.

READY-
000 BUILD
00:1.

NAME
UN IT-

BUILD (P/S)
INIHU (P/S)
F:I. (P/S)

**
0:1.0 LOAD NAME- $INIT (P/S)
0:1.1 UNIT- Fl. (P/S)
020 DATE (P/S)
030 SWITCH < 00000000 > (P/S)
040 FI LE NAME-· (P/S)

**
MODIFY

INCLUDE (P/S)

**
ENTER UTILITY CONTROL STATEMENTS
()()

// UIN UNIT-··f:~:t. ~·· TYPE····PF~IMf.":\F~Y (P/S)
O:t .

./ / END (P/S)
03

'l=\:UN (P/S)

**
MODIFY
READY-
000 CALL
00:1.

NAME
UNI T-

CALL (P/S)
INITl~I (P/S)
Fl (P/S)

**
0:1.0 LOAD
01 :1. ·

NAME-$INIT
UNIT-F:I.

**
·MODIFY

F:UN (P/S)

**
INCLUDED STATEMENTS
00 // UIN UNIT-R1YTYPE-PRIMARY
01 // VOL PACK-12345
02 // END
**
MODIFY

RUN (P/S)

76

SAMPLE JOB 11. CHAIN PROCEDURES

We're going to use the BUI LDC cycle to chain two procedures created with the BUILD cycle. First, we use the BUILD
cycle to build procedures to use the Conversational Utilities ($KSE and $KDE).

After the chained procedure is built, the CALL cycle is used to run the chained procedures.

READY.-
000 BUILD
001

NAME
UNIT-

BUILD (P/S)
KSE (P/S)
F1. (P/S)

**
010- LOAD NAME- $KSE (P/S)
011 UNIT- Fl (P/S)
020 DATE (P/S)
030 SWITCH COOOOOOOO> (Pffl)
040 FILE NAME- (P/S)
**
MODIFY

1;:uN (P/S)

HEADY·-
000 BUILD
001

NAME>·
UNIT--

BUILI:t (P/S)
l<DE (P/S)
Fl (P/S)

**
CH 0 LOAD NAME-·· ~:;l<DE (P/S)
011 UNIT-· Fl (P/S)
020 DATE (P/m
030 SWITCH < 00000000 > (P/S)
040 FILE NAME- l'\DFFILE (P/S)
041. UNI.T- Fl (P/S)
042 PACK- FlFlFl (P/~1
043 LABEL.- DIUV2 (P/S)
044 RECORDS- 4 (P/S)
045 LOCATION- (Pffl)
046 RETAIN- T (P/S)
047 DATE- (Pffl)
050 FILE NAME- (P/S)
**
MODIFY

HUN (P/S)

READY-
000 BUILDC
001

NAME
UN IT-

BUIL.DC (P/S)
MASTER (P/S)
Fl (P/S)

**
01.0 CALL NAME- KSE (P/S)
011 UNIT- Fl (P/ST
020 CALL NAME- 1,a1E (P/S_L
()21 UNIT-· Fl (ENTER-)
**
MODIFY

RUN (P/S)

l=<EADY-
000 CALL

·001
000 CALL
001

NAME-·
UNIT-·
NAME-1'\SE
lJNIT-·Fl

CALI ... (P/S)
MASH'.l~ (P/S)
Fl (P/S)

**
010 LOAD NAME-SKSE
011 UNIT-Fl

**

FORMAT DESCRIPTION ?

FORMAT TYPE -

YES (P/S)

KDE (P/S)

Sample Jobs 77

NEW SOURCE MODULE ?

SOURCE MODULE NAME -

SOURCE MODULE UNIT -

YES (P/S)

KDEFOH (P/S)

Fl _(P/S)

06672 NEW STATEMENTS MAY BE ADDED TO SOURCE ENTRY

()0000

00010

00020

()0030

END OF JOB

1.;;sE END

000 CALL
001

OF

1-10:1.

AOO~:;

A091.

1-102

?

JOB

(P/S)

(P/S)

NAME-KDE
UNIT-Fl

096 (P/S)

<COMMAND KEY 06 PRESSED>

YE:~; (P/S)

**
010 LOAD NAME-$KDE
011 UNIT-Fl
020 FILE NAME-KDEFILE
021 UNIT-Fl
022 PACK-Fl.Fl.Fl
023 LABEL-DRIV2
024 RECORDS-4
025 RETAIN-T
**

FOF~MAT NAME ·-·

FOFmAT UNIT ·-

DISPLAY FORMATS '";>

HOl.096

AOO::'i

A09l.

NEW KDE FILE ?

KEY FIELD START -

SELECT FORMA1 NUMBER -
·lf *

l"\DEFCJR (P/S)

Fl (P/S)

YES {P/S)

YES (P/S)

NO (P/S)

01. (P/S)

00000 THIS IS AN EXAMPLE OF CHAIN PROCEDURE ON THE MODEL 6 CP/S)

00010 KSE WAS THE FIRST JOB EXECUTED AND KDE WAS THE SECOND AND LAST JOB CP/S)

00020 THE CHAIN WA!:; INITIATED BY' CAl...l ... IND M~'E>TER, l..JHICH W1~i:; BUJl...T IN r'.':\ Bl.lll...DC CYCLE CP/G)

00030 <COMMAND KEY 06 PRESSED>

**

BATCH ACCUMULATCJRS 00 0:1. O? 0~5 04
() () () () ()

o~:; 06 07 08 ()<;>

() () () () ()

FINAL ACCUMULATORS 00 () l. ()~!. () :1 04
() () () () 0
05 ()6 07 OB ()<;>

() () () () ()

k*********

END OF JOB ? YES (P/S)

KDE END OF JOB

78

PART II
DISK UTILITY PROGRAMS

Part II. Disk Utility Programs 79

Introduction to Disk Utility Programs

.Every method of data processing requires a certain amount
of maintenance work to keep it in good running order.
For example, you must make back-up copies of important
files, and remove out-of-date files. The Disk Utility prog
rams are a collection of maintenance programs to serve
your data-processing system. The Disk Utility programs
are:

Disk Initialization
Alternate Track Assignment
Alternate Track Rebuild
File and Volume Label Display
File Delete
Copy/Dump
Library Maintenance

You might use one of the preceding utility programs to:

o Prepare disks for use.

• Replace defective tracks.

• Replace incorrect data on a track.

• Print VTOC (volume table of contents) information.

o Delete files from a disk.

• Copy or print files.

• Maintain system libraries.

GENERAL PROGRAM OPERATION

The utility programs require control statements describing
the jobs you want done. They read these statements from
the system input device, or from procedures stored in a
source library on disk. The system input device is normally
the keyboard, but the operator can specify another device
by his response to the OCL keyword READER during
initial program loading (I PL).

The following diagrams outline the general way the utility
programs operate. Assume that the programs are reading
tontrol statements from the keyboard.

80

All Programs Except Library Maintenance

Operator keys OCL
sequence to load and
run programs

I
Utility Program prints:

ENTER'//' CONTROL -4----,
STATEMENT

I
Program reprompts

Operator keys control
statement for utility
program

until II END is
entered

Last Control ___,..NO ____ _,

Statement
II END?

i
YES-----------------i

Program ends

Program does
requested function

Library Maintenance Program

Operator keys OCL
sequence to load and
run program

I
Program prints:
ENTER'//' CONTROL
STATEMENT

Operator keys the
control statement
for a particular
program use

I
Program does the
requested function

I
Program prints:
ENTER'//' CONTROL
STATEMENT

t
More Library---------...-. YES
Maintenance functions?

i
NO

I
Operator keys: //END

I
Program ends

USING.DISK UTILITIES

To use utility programs, you must write utility control
statements and operation control language (OCL) state
ments. In this manual, therefore, the information for
every program is divided into five sections:

• Control statement summary

• Parameter summary

• Parameter descriptio_ns

• OCL considerations

• Examples

The first three sections am to guide you in writing utility
control statements. The OCL section is to guide you in
writing OCL statements. The examples will help you in
both.

Control Statements

Every control statement is made up of an identifier and
parameters. The identifier is a word that identifies the
control statem_ent. It is always the first word of the state
ment (following // blank in positions 1-3). Parameters are
information you are supplying to the program. Every
parameter consists of a keyword, which identifies the
parameter, followed by the information you are supplying.

In writing the statements, use the manual in the following
way:

1.

2.

3.

Look at the CONTROL STATEMENT SUMMARY
to determine which control statements and parameters
apply to the program use you are interested in. (The
program uses are stated in the text preceding the
control statement summary.)

If you need information about the contents or
meanings of particular parameters, look at the
PARAMETER SUMMARY.

If you need more detailed information about param
eters, read the PARAMETER DESCRIPTIONS
following the parameter summary.

4. If you need examples ot specific jobs, look at the
EXAMPLE section. All examples show the OCL
and utility control statements needed to load and
run the utility programs for specific jobs. The
statements are shown in the form they are pnnted
on the system printer.

Introduction to Disk Utility Programs 81

Coding Rules

The rules for writing control statements are as follows:

1. //blank. All control statements must have II blank
in positions 1-3.

2. Statement Identifier. Begin in position 4 or after
of the statement. Do not use blanks within the
identifier.

3. Blanks. Use one or more blanks between the identi
fier and the first parameter. Do not use them any
where else in the statement.

4. Statement parameters. Parameters can be in any
order. Use a comma to separate one parameter from
another. Use a hyphen (-) within each parameter to
separate the keyword from the information you ·
supply. Do not use blanks within or between
parameters.

5. Statement parameters containing a list of data after
the keyword. Use apostrophes (') to enclose the
items in the list. Use a comma to separate one item
from another. For example: UNIT-'R 1,R2' (R1 and
R2 are the items in, the list).

6. Statemt:/nt length. All control statements except
Disk Initialization and Library Maintenance state
ments must not exceed 96 characters. The following
Library Maintenance statements can· be continued
on another statement (see continuation rules for
card OCL in Part 1 of this manual):

II ALLOCATE
11 COPY (except COPY statements read from a file)
II DELETE
II MODIFY (not REMOVE, REPLACE, or INSERT

statements)
II RENAME

The Disk Initialization statement II VOL can also be
continued.

The following example shows a control statement. The
statement identifier is COPY. The parameter keywords are
FROM, LIBRARY, NAME, and TO. The information you
supply is F1, 0, SYSTEM, and R 1.

II COPY FROM-F1 ,LIBRARY-O,NAME-SYSTEM,TO-R1

82

End-Control Statement

The END statement is a special control statement that
indicates the end of control statements. It consists of tha
letters II END in positions 1-6 and must always be the last
control statement for the programs.

WRITING OCL STATEMENTS

To write OCL statements to run a utility program, look at
the OCL CONSIDERATIONS section for that program.
There you will find a list of the required keywords and
responses for LOAD and BU I LO sequences. (Keywords
not listed can be bypassed.) Should you need more general
information about OCL, or more specific information about
the keywords, see Part I of this manual.

Note: Capitalized words and letters, numbers, and special
characters have special meanings in OCL and utility control
statement descriptions in this manual.

Utility Control Statements

In utility control statements, capitalized words and letters
must be written as they appear in the statement description.
Sometimes numbers appear with the capitalized informa
tion. These numbers must also be written as s~own.

Words or letters that are not capitalized mean you must use
a value that applies to the job you are doing. The values
you can use are listed in the parameter summaries for the
control statements.

Braces and brackets ({ [] }) sometimes appear in param
eters shown in control statement summaries and parameter
summaries. They are not part of the parameters. Braces
indicate that you must choose one of several ralues to com
plete the parameter. For example, RETAIN 1~~ .m:an~ you
can use either RETAIN-Tor RETAIN-P. Brackets indicate
optional parameters. For example, [,TO-'key'] is an option

al parameter that may or may not be used.

OCL Statements

In OCL statements, keywords are capitalized. Responses
that are shown in capital letters must be written as shown.
If numbers or special characters are included with the
capital letters, they must be written as part of the response.
For exam~le, $1 NIT is the name of the Disk Initialization
program and must be written exactly as shown. Responses
that are not capitalized mean you must use the value that
applies to the job you are doing.

Disks that are being used for the first time must be pre
pared for use. This process is called initialization. You
can also use a disk that has been used before by reinitializing
that disk (any data on the disk is destroyed). You use the
Disk Initialization program to perform initialization.

FUNCTIONS

Initializing a disk involves:

G Naming the disk.

o Writing track and sector addresses on the disk.

• Checking for defective tracks.

e Assigning alternate tracks to any defective tracks.

Naming a Disk

You must name every disk you intend to use. The
operator uses this name to ensure that the correct disks are
being used for a job. He supplies the disk name in either
OCL statements or program control statements. The
system checks this name against the name stored as
identification on the disk pack. If the names don't match,

· a halt occurs and a message is printed to the operator. The
operator may then change disks. All this must happen
before a Model 6 program can use a disk.

Writing Track and Sector Addresses _

A disk contains 200 or 400 tracks, each of which is divided
into 24 sectors. An area at the beginning of every track
and sector is set aside for an address. These addresses are
nf;!cessary for locating data.

Disk Initialization Program ($1NIT)

Track and sector addresses are not written on disks when
the disks are manufactured. You must do this before you
use the disks. The Disk Initialization program does it for
you.

Checking for Defective Tracks (Surface Analysis)

The Disk Initialization program checks the condition of
tracks. It does this by writing data on the tracks, then
reading and checking the data to ensure it was recorded
properly. If the check shows that the data is incorrect,
the track on which the data was written is considered
defective. This process is called surface analysis.

Assigning Alternate Tracks

If a defective track is found during surface analysis, an
alternate track is assigned to it. The sole purpose of the
alternate track is to act as a substitute for the defective
track. Model 6 programs attempting to use the defective
track will automatically use the alternate instead.

If either track 0 or 1 is defective, the program considers the
disk LJnusable and stops initializing it. Tracks 0 and 1 are
used only by the system and cannot have alternates
assigned to them.

Every disk has six alternate tracks. Therefore, a maximum
of six defective tracks may be assigned alternates on a disk.
If there are more, the disk is considered unusable.

If tracks become defective after a disk is initialized, another
program (Alternate Track Assignment) is used to assign
alternate tracks. Disks need not be reinitialized to assign
alternate tracks.

Disk Initialization Program ($1 NIT) 83

OPTIONS

The Disk Initialization program allows you the following
options:

• You may choose one of three types of initialization:
primary, secondary, or clear.

• You may initialize up to three disks during the same
program run.

• During primary initialization, you may decide whether
to erase alternate track assignments already on the disk
or leave them assigned.

• You may use up to ten characters, in addition to the disk
name, to further identify a disk.

• You may specify the number of times you want the
program to do surface analysis.

You specify the options you want in control statements

(see Control Statements in this chapter).

Type of Initialization

The program offers three types of initialization: primary,
secondary, and clear. The type you choose determines the
portion of the disk that will be initialized. The portions of
a disk that can be initialized depend on the data-storage
capacity of your disk drive.

Disk drives of differing storage capacities are available for
your system. All drives use the same type of disks. The
only difference is the number of tracks the drives can use.
The larger the drive capacity, the more tracks the drive can
use.

If you increase the capacity of your disk drives, more tracks
on your disks become available for use. These additional
tracks must be initialized before being used. The three
types of initialization allow you the following options
according to type.

• Primary or clear-initializing all tracks corresponding to
the new capacity, including any that were previously
initialized.

• Secondary-initializing only the additional tracks made
available by the increased capacity.

84

Primary Initialization

Primary initialization applies to new disks, or disks you
have used but want to initialize again. The program ini
tialized all tracks corresponding to the capacity of the
drives on which the disks are mounted. Tracks that were
previously initialized are initialized again. Any data on the
tracks is destroyed.

You can use primary initialization on a disk as often as you
want. However, the program will not initialize disks con
taining libraries, temporary data files, or permanent data
files. You must delete data files with the File Delete Pro
gram and libraries with the allocate function of the Library
Maintenance Program.

Secondary Initialization

Secondary initialization applies to disks that were initialized
on drives of less capacity than drives you are now using.
When you increase the capacity of your drives, more tracks
on your disks become available for use. You must initialize
the additional tracks. Use secondary initialization if you do
not want information destroyed on tracks already in use.
The program initializes' the additional tracks only. Tracks
already in use are not disturbed.

The program will not do secondary initialization on new
disks or disks that have already been initialized to the
capacity of the drives on which they are mounted.

Clear Initialization

Clear initialization applies to new disks or disks previously
used that require reinitialization due to invalid pack labels
or an unrecoverable disk error. All tracks corresponding to
the capacity of the drives _on which the disks are mounted
are initialized. Tracks that were previously initialized are
reinitialized.

CAUTION
All libraries, temporary data files, or permanent data files
are completely wiped out.

Number of Disks

The Disk Initialization program can initialize a .maximum
of three disks during one program run. The type of ini
tialization you specify for a program run applies to all
disks being initialized during that run. The disks, however,
must be mounted at the same time. You can't, for example,
initialize more than one removable disk on a given drive
during the same program run.

Erasing Alternate Track Assignments

You can use primary or clear initialization to reinitialize
disks that have been used. However, alternate track assign

ments could exist on such disks. The primary initialization
function of the Disk Initialization program, therefore, gives
you the option of:

• Erasing existing alternate track assignments and check
ing the condition of all tracks.

o Leaving existing alternate track assignments and check
ing only those tracks to which alternates are not assigned.

The option you choose applies to all disks being initialized
during the program run.

Additional Disk Identification

When you name a disk during primary or clear initialization,
you can use up to ten characters, in addition to the disk
name, to further identify the disk. The additional identifi
cation is strictly for your use. It is not used by the check
ing programs to ensure that the right disks are being used.

If you use the File and Volume Label Display program to
print VTOC (volume table of contents) information from a
disk, the additional identification is printed with the disk
name.

Surface Analysis Option

You can tell the Disk Initialization program to perform
surface analysis from 1 to 255 times before judging whe
ther or not tracks are defective. A track must successfully
complete every check before being judged usable. If incor
rect data is detected during surface analysis, the track on
which the data was written is judged defective and an
alternate is assigned to it.

The number of times you specify surface analysis to be
performed applies to all disks being initialized during the
program run. The time required for initialization is increas
ed if you request surface analysis to be performed more
than once.

CONTROL STATEMENTS

You must supply the following control statements to spe
cify the program options you want:

1.

2.

3.

U/N statement-indicates the type of initialization,
the number of disks being initialized, the number of
times you want surface analysis performed, and whe
ther or not you want previous alternate track assign
ments erased. One UIN statement is required per
program run.

VOL statement-indicates the name you assign to the
disk, plus any additional identification you want to
give the disk. The VOL statement applies to primary
and clear initialization only. One is required for

every disk you initialize. Co111tinuation statements
are permitted.

END statement-indicates the end of control state
ments.

Disk Initialization Program {$1NIT) 85

Control Statement Summary

Type of Initialization

Primary

New Disks

Disk already in
use (reinitialize)

Secondary 9:
Disk already in
use

Cleare

Control Statements 0

1
jcode l j HALF l

II UIN TYPE-PR.IMARY,UNIT- 1,codes'
5

,VERIFY-number,CAP- 1FULL5

II VOL PACK-name,ID-characters

II END

1
jcode l j NO l jHALF l

II UIN TYPE-PRIMARY,UNIT- l'codes'l ,VERIFY-number,ERASE-l YES
5

,CAP- lFULd

II VOL PACK-name,ID-characters,OLDPACK-name

II END

{

jcode l II UIN TYPE-SECONDARY,UNIT- 1,codes'5 ,VERIFY-number

II END

1

j code l jHALFl
II UIN TYPE-CLEAR,UN.IT-l 'coded ,VERIFY-number,CAP-l FULL 5

II VOL PACK-name, I D-characters,OLDPACK-name

II END

0
e

Control statements are required in the order they are listed: UIN, VOL, END or UIN, END.

e

86

For primary and clear initialization, one VOL statement is required for each disk listed in the UN IT parameter of the UI N state
ment. The PACK parameter in the first VOL statement applies to the first disk listed in the UNIT parameter. The PACK
parameter in the second VOL statement applies to the second disk listed in the UNIT parameter, and so on.

VOL statements are not required for secondary initialization because the disks are already named.

Parameter Summary

I UIN (Input Definition) Statement

TYPE-PRIMARY

TYPE-SECONDARY

TYPE-CLEAR

UNIT-code

UN I T-'code,code'

UNIT-'code,code,~ode'

VERIFY-number

ERASE-YES

ERASE-NO

CAP-HALF

CAP-FULL

I VOL (Volume) Statement

PACK-name

ID-characters

OLD PACK-name

Primary initialization. Initialize the disks to the capacity of the drives on which they

are mounted. Tracks already initialized are re-initialized. The program will not
initialize disks containing libraries, temporary data files, or permanent data files.

Secondary initialization. Applies only to disks that were initialized on drives of less
capacity than the drives you are now using. It means initialize the uninitialized por
tions of the disks to the capacity of the drives on which the disks are mounted. Tracks
already initialized are not disturbed.

Clear initialization. Initialize the disks to the capacity of the drives on which they are
mounted. Tracks already initialized are re-initialized. Active files and library checking
is bypassed and any data on the tracks is destroyed.

Disk location (one disk).

Disk location (two disks).

Disk location (three disks).

Possible
codes:
Rl, Fl,
R2, F2

Do surface analysis the number of times indicated (number can be 1-255). VERIFY-1
is assumed if you omit the parameter.

Retest defective tracks.

Do not retest defective tracks.

Initialize a disk to half capaeity
even if on a full capacity drive.

Initialize a disk to full capacity.

Primary initialization only. ERASE-NO is
assumed if you omit the parameter.

The CAP Keyword forces ERASE-YES. Pack
is initialized to capacity of the drive if this
keyword is omitted.

Disk name. Can contain any of the standard System/3 characters except apostropnes,
leading or embedded blanks, and embedded commas. Its length must not exceed six
characters.

Additional identification. Can contain any of the standard System/3 characters
except apostrophes, leading or embedded blanks, and embedded commas. Its length
must not exceed ten characters. If you omit this parameter no additional identifica
tion is written on the disk.

Current disk name of the disk to be initialized. See PACK Keyword (above) for valid
responses.

Disk Initialization Program ($1NIT) 87

PARAMETER DESCRIPTIONS

TYPE Parameter (UIN)

The TYPE parameter indicates the type of initialization you
want the program to do: primary, secondary, or clear. The
type of initialization and the capacity of the disk drives on
which the disks are mounted determine which disk tracks
will be initialized. If this parameter is omitted, primary is
assumed.

UNIT Parameter (UIN)

The UNIT parameter (UNIT-code) tells the location of the
disks you want to initialize. The program can initialize up
to three disks during one program run.

The form of the UN IT parameter depends on the number of
disks you are initializing:

1. For one disk, use UN IT-code

2. For two disks, use UN IT-'code,code'

3. For three disks, use UNIT-'code,code,code'

The codes indicate the locations of the disks:

Code

R1
F1
R2
F2

Location

Removable disk on drive 1.
Fixed disk on drive 1.
Removable disk on drive 2.
Fixed disk on drive 2.

For primary and clear initialization, the order of codes
must correspond to the order of VOL control statements.
If, for example, you had used the parameter UNIT-'R1,R2',
the first VOL statement applies to the removable disk on
drive 1 and the second VOL statement to the removable
disk on drive 2. (No VOL statements are required for
secondary initialization. The disk is already named.)

VERIFY Parameter (UIN)

The VER I FY parameter (VER I FY-number) concerns sur
face analysis. It enables you to indicate the number of
times you want the program to do surface analysis before
judging whether or not tracks are defective. The number
can be from 1-255. If this parameter is omitted, VERIFY-1
is assumed.

88

ERASE Parameter (UIN)

The ERASE parameter concerns alternate track assignment.
It applies only to disks that have already been initialized
and used, but you are reinitializing using primary initializa
tion.

The condition of tracks on such disks has been tested at
least once before (during the previous initialization) and
tracks that were found to be defective during surface analy
sis were assigned alternates. The ERASE parameter, there
fore, enables you to indicate whether you want the program
to (1) retest the tracks to which alternate tracks are already
assigned or (2) leave the alternate tracks assigned without
retesting the tracks.

The parameter ERASE-YES means to retest. If you tell
the program to retest, it erases any existing alternate track
assignments, and tests all tracks as though the disk were
new.

The parameter ERASE-NO means not to r~test. If you
tell the program not to retest, it tests only those tracks to
which no alternate tracks are assigned. Alternate tracks
previously assigned remain assigned.

CAP Parameter

The CAP param~ter determines the size of the pack wf)_en it
is initialized. T~e CAP-HALF parameter means to initialize
the pack to half capacity even if it is on a full capacity drive.
The CAP-FU LL parameter means to initialize the pack to
full capacity. CAP-FULL should not be used on a half
capacity system. The use of the CAP keyword forces
ERASE-YES.

Disk Drive Capacity

Disk drives of different data-storage capacities are available
for System/3 Model 6. All drives use the same type of
disks. The only difference is the number of tracks the
drives can use: the larger the drive capacity, the more
tracks the drive can use. However, you must initialize the
disk tracks before using them.

PACK Parameter (VOL}

The PACK parameter (PACK-name) applies to .primary and
clear initialization only. During primary and clear initializa
tion, the Disk Initialization program writes a name on each
disk. It uses the name you supply in the corresponding
PACK parameter. (One VOL control statement containing
a PACK parameter is required for each disk.)

The name can be any combination of standard System/3
characters except apostrophes ('), leading or embedded
blanks and embedded commas (due to their delimiter
function) (see Appendix A). Its length must not exceed six
characters. The following are valid disk names: 0, F0001,
012, A1 B9, ABC.

In general, disk names are used for checking purposes.
Before a program uses a disk, the disk name is compared
with a name you supply (either in OCL statements or con
trol statements required by the program). If the names do
not match, a message to the operator is printed. In this
way, programs cannot use the wrong disks without the
operator knowing about it.

ID (Identification) Parameter (VOL}

The ID parameter (ID-characters) applies to primary and
clear initialization only. It enables you to include up to
ten characters, in addition to the disk name, to further
identify a disk. The information is strictly for your use.
(It is not used for checking purposes by the system.) If you
use the File and Volume Label Display program to print
the disk name, it will also print the additional identification
for you.

The additional identification can be any combination of
standard System/3 characters except apostrophes ('),
leading or embedded blanks, and embedded commas (due
to their delimiter function). However, the maximum num
ber is ten.

OLDPACK Parameter (VOL)

The OLDPACK parameter (OLDPACK-name) is used to
verify that a specific disk is mounted before initialization is
started. If the name of the disk mounted does not match
the name you specify, the program halts.

The name specified can be any combination of standard
System/3 characters except apostrophes, leading or embed
ded blanks, and embedded commas. Its length must not
exceed six characters.

Disk Initialization Program ($1 NIT) 89

OCL CONSIDERATIONS

LOAD Sequence

Keywords 0 Responses e Considerations

READY LOAD None

LOAD NAME $1NIT Name of Disk Initialization program.

UNIT Rl, R2, Fl, or F2 Location of disk containing Disk Initialization program.

MODIFY RUN None

0 Only the keywords listed here are required. You can bypass the rest.

f) You end every response by pressing PROG START.

BUI LO Sequence

Keywords 0
READY

BUILD NAME

UNIT

LOAD NAME

UNIT

MODIFY

Responses f)

BUILD

Procedure name

Rl, R2, Fl, or F2

$1NIT

Rl, R2, Fl, or F2

INCLUDE
I utility control statements

OR RUN

LRUN

Considerations

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of Disk Initialization program.

Location of disk containing Disk Initialization program.

Response when including control statements in
procedure.

Response when not including control statements in
procedure.

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

90

EXAMPLE

Primary Initialization of Two Disks

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE (XX/XX/XX) -

030 SWITCH (00000000) -

040 FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT

II UIN UNIT-'F2,R2' ,TYPE-PRIMARY }

II

II

II

ENTER '//' CONTROL STATEMENT
VOL PACK-2222
ENTER '//' CONTROL STATEMENT
VOL PACK-PAYROL,ID-010270
ENTER '//' CONTROL STATEMENT
END

Explanation

OCL LOAD Sequence.

Boxed areas are operator responses ..

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY even
though the two words do not appear
on the same line.

Message printed by Disk Initialization program.

Control statement supplied by operator.

Sequence repeats until operator enters
END statement.

• Disk Initialization program is loaded from the fixed disk on drive 1 (UNIT-Fl in OCL sequence).

• The two disks on drive 2 are being initialized (UNIT-'F2, R2' in UIN statement).

• The fixed disk (F2) will be given the name 2222 (PACK-2222 in first VOL statement).

• The removable disk (R2) will be given the name PAYROL (PACK-PAYROL in second VOL statement). Additional
identifying information, 010270, will be written on the removable disk (I D-010270).

Disk Initialization Program ($1 NIT) 91

MESSAGES FOR DISK INITIALIZATION

I Message

INITIALIZATION
ON XX COMPLETE

INITIALIZATION ON XX
TERMINATED

**ALTERNATE TRACKS
ASSIGNED**

PRIMARY TRACK XXX
ALTERNATE TRACK XXX

UNRECOVERABLE ERROR;
RE-INITIALIZING PACK

92

Meaning

This message is printed when initialization of a disk is complete. XX indicates the
unit (R 1, R2, F 1, or F2) on which the initialization is complete ..

This message is printed when initialization of a·disk must be terminated for one of
the following reasons:

1. Cylinder zero is defective.

2. More than six tracks are defective.

3. Possible disk hardware error exists.

4. The program attempted to initialize the disk ten times without success.

After this message is printed, halt A 13 will occur. XX indicates the unit (R 1,
R2, F1, or F2) on which the initialization is terminated.

These two messages are printed when a primary track is defective and an alternate
track is assigned to it.

XXX indicates the tracks involved.

This message is printed when the Disk Initialization program determines that the
disk has not been initialized properly. The program will again attemptto initialize
the disk correctly with ERASE-YES forced. The maximum number of times that
the program will attempt to initialize a disk is ten. After that number of times,
halt A 13 occurs.

Sometimes a disk track causes a reading or writing error
during a job and an alternate track must be assigned to re
place the defective track. The process of assigning an
alternate track is performed by the Alternate Track As~ign
ment program.

FUNCTIONS

The process of assigning an alternate track consists of:

• Writing track addresses on disk.

• Checking for defective tracks.

o Printing all track sectors that contain incorrect data.

• Assigning an alternate track.

Writing Track Addresses

Any time a track causes reading or writing errors during a
job, the system stops the program currently in operation
and writes the track address in a special area on the disk.
All disks contain such an area. The program can then
locate a track by using the addresses stored in this area.
As long as there are alternate tracks available for use,
assignment can be done for all the tracks identified in this
area.

Checking For Defective Tracks

The Alternate Track Assignment program uses a procedure
called surface analysis to test the condition of tracks.
Surface analysis consists of writing test data on a track,
then reading the data to ensure it vyas written properly.

Before doing surface analysis, the Alternate Track Assign
ment program transfers any data from the track to an
alternate track. This is the alternate that will be assigned
if the track proves to be defective.

Alternate Track Assignment Program ($ALT)

In judging whether or not the track is defective, the prog
ram does surface analysis the number of times you specify
in the VERIFY parameter. If you omit the parameter, the
program does. surface analysis on.ce. If the track causes

reading or writing errors any time during surface analysis,
the program considers the track defective.

Printing Sectors Containing Incorrect Data

If a track is defective, some of the data transferred to the
alternate track could be incorrect. Therefore, when reading
data from the defective track, the program logs all track
sectors containing data that caused reading errors. For a
hard-copy printout, the printer must be assigned as the
lo.gglng device. Characters that have no print symbol _are
printed as two-digit hexadecimal numbers. The following
is an example:

ABCDE GH123 45 ...
8
6

A
5

Appendix A lists the characters in the standard character
set and their corresponding hexadecimal numbers.

To correct errors on the alternate track, use the Alternate
Track Rebuild program.

Assigning An Alternate Track

An alternate track is assigned if a track is defective. When
the program assigns an alternate, it transfers the contents
of the defective track to the alternate. The alternate track
is then automatically used any time the program attempts
to use the defective track.

There are six alternate tracks. The program will not do
conditional assignment if all six are already in use. An alter
nate track can replace any track except 0 and 1 (which are··
reserved for system use) and 2 through 7 (which are the
alternate tracks).

Alternate Track Assignment Program ($ALT) 93

OPTIONS

The Alternate Track Assignment program gives you the
following options:

o You may choose one of three types of assignment
conditional, unconditional, or cancel_prior.

o You may use up to six alternate tracks on every disk.

• You may specify the number of times you want the
program to do surface analysis.

You specify the options you want in control statements
(see Control Statements in this chapter).

Type of Assignment

The program offers three types of assignment: conditional,
unconditional, and cancel prior. The three types of
assignment allow you the following options according
to type.

o Conditional-testing the condition of a track and
·assigning an alternate if it is defective.

• Unconditional-assuming a track is defective and
assigning an alternate.

o Cancel prior-canceling an alternate track assignment.

Conditional Assignment

Conditional Assignment consists of testing the condition of
a track (surface analysis) and, if the track is defective,
assigning an alternate track to replace it. It is the normal
use of the Alternate Track Assignment program.

Situation: Conditional assignment applies to tracks that
cause reading or writing errors during a job. Anytime a
track causes such errors, th'e system does the following:

1. Stops the program currently in operation.

2. Writes the track address in a special area on the disk.

94

When you use the Alternate Track Assignment program to
do ieonditional assignment, the program locates the tracks
by using the addresses in the special area on disk. All disks,
fixed and removable, have such an area. The program will
do conditional assignment for all tracks identified in the
area (one at a time), as long as there are alternate tracks
available for assignment.

Unconditional Assignment

You have used the Alternate Track Assignment program
to do conditional assignment. The test on the track
indicated that the track was not defective (an alternate,
therefore, was not assigned). But the track still causes
reading or writing errors, and you want to assign an
alternate to it. For this reason you should assign an
alternate track using unconditional assignment. Alternate
tracks are assigned without first testing the condition of
the tracks suspected of being defective. (A conditional
assignment is forced after an unconditional request to
check any other tracks that previously caused errors.)

Cancel Prior Assignment

Cancel prior assignment is used when a defective track,was
found, but all alternates are in use. You want to free an
alternate so you can recover the data from the defective
track. Canceling an assignment involves transferring the
data from an alternate track back to the track to which
the alternate was assigned. Prior to transferring the data
back to the original track, the Alternate Track Assign.ment
program tests the condition of the original track'. If the
track is found defective, the program stops and one of
three options is. taken:

• You leave the assignment as it is but continue checking
other assignments (if there are any), or the program ends.

• You cancel the assignment regardless of the condition of
the original track. Before freeing the alternate, however,
you would normally copy (to another disk) the file or
library entry that. uses the alternate. This saves the data
that is already on the alternate.

• You test the track again.

You must run the File and Volume Label Display program
to determine to what tracks alternates are assigned.

Number of Alternate Tracks CONTROL STATEMENTS

There are six tracks on every disk that can be used as
alternates. These tracks, in addition to tracks 0 and 1,
can't be replaced; that is, they can't have an alternate
assigned to them.

You must supply the following control statements to
specify the program options you want:

1. ALT statement-indicates the name and unit of the
disk containing the defective track, the number of
times you want surface analysis done, and the

Surface Analysis tracks to which you want to assign alternates or

You can tell the program to do surface analysis from 1 to
255 times before judging whether or not tracks are
defective. A track is judged usable only after successfully
completing every check. If at any time during surface
analysis incorrect data is found, the track on which the
data was written is judged defective, and an alternate is
assigned to it.

for which you wish to cancel assignment of an
alternate track. There can be only 6 ALT statements
per job.

2. END statement-indicates the end of control
statements.

For each use, the program requires the statements in the
order they are listed: ALT, END.

Control Statement Summary

Use

Conditional Assignment

Unconditional Assignment

Cancel Prior Assignment

Control Statements

II ALT PACK-name, UNIT-code,VERIFY-number
II END

II ~ track ~ ALT PACK-name,UNIT-code,ASSIGN- , , ,VERIFY-number
11 END tracks

l track ~ II ALT PACK-name,UNIT-code,UNASSIGN- ,VERIFY-number
'tracks'

II END

Parameter Summary: ALT (Alternate) Statement

Parameter

PACK-name

UNIT-code

VERIFY-number

ASSIGN-track

ASSI GN-'track,track, .. .'

UN ASSIGN-track

UNASSIGN-'track,track, ... '

Meaning

Name of the disk.

Location of the disk. Possible codes are R 1, F 1, R2, F2.

In testing the condition of a track, do surface analysis the number of times indicated
(number can be 1-255). If VER I FY parameter is omitted, do surface analysis once.

Assign an alternate (unconditionally) to one track.

Assign one alternate (unconditionally) to each
track (maximum is six).

Cancel one alternate track assignment.

Cancel two or more alternate track assignments
(maximum is six).

Use track numbers 8-405 to

identify tracks.

Use track numbers 8-405 to
which alternates are assigned.

Alternate Track Assignment Program ($ALT) 95

PARAMETER DESCRIPTIONS

PACI< Parameter

The PACK parameter (PACK-name) tells the program the
name of the disk containing the defective tracks. This is
the name written on the disk by the Disk Initialization
program.

The Alternate Track Assignment program compares the
name in the PACK parameter with the name on the disk
to ensure they match. In this way, the program ensures
that it is using the right disk.

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location of
the disk containing defective tracks. Codes for the possible
locations are as follows:

Code Location

R1 Removable disk on drive 1.
F1
R2
F2

Fixed disk on drive 1.
Removable disk on drive 2.
Fixed disk on drive 2.

VERIFY Parameter

The VERIFY parameter (VERIFY-number) enables you to
indicate the number of times you want the program to do
surface analysis before judging whether or not the track is
defective. The number can be from 1-255. If you omit
the parameter, the program does surface analysis once.

96

ASSIGN Parameter

The ASSIGN parameter (ASSIGN-track) applies to uncon
ditional assignment. It tells the program which tracks you
want alternates assigned to.

You can assign alternates to any tracks except 0-7.

The form of the ASSIGN parameter depends on the num
ber of tracks you want to specify. For one track, use
ASSIGN-track; for two tracks, use ASSIGN-'track,track';
and so on. You can specify up to six tracks.

Use the track numbers (8-405) to identify the tracks. For
example, the parameter ASSIGN-'50, 301,353' causes the
program to assign alternate tracks to tracks 50, 301, and
353.

UNASSIGN Parameter

The UNASSIGN parameter (UNASSIGN-track) applies to
cancelling alternate track assignments. It identifies tracks
for which you want the program to cancel assignments.

You can cancel up to six assignments. The form of the
UNASSIGN parameter depends on the number of assign
ments you want to cancel. For one assignment, use
UNASSIGN-track; for two assignments, use UNASSIGN
'track,track'; and so on.

Use the track numbers (8-405) to identify the tracks. For
example, the parameter UNASSIGN-'50,301 ;352' causes
the program to cancel alternate-track assignments for
tracks 50, 301, and 352.

OCL CONSIDERATIONS

LOAD Sequence

KeywordsQ

READY

LOAD NAME

UNIT

MODIFY

Responses e
LOAD

$ALT

R1, R2, F1, or F2

RUN

Considerations

None

Name of Alternate Track Assignment program.

Location of disk containing Alternate Track Assignment
program.

None

G Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

BUI LO Sequence

KeywordsQ

READY

BUILD NAME

UNIT

LOAD NAME

UNIT

MODIFY

ResponsesG

BUILD

procedure name

R1, R2, F1, or F2

$ALT

R1, R2, F1, or F2

r-·INCLUDE
I utility control statements

OR RUN

LRUN

Considerations

None

Nan:ie by which procedure will be identified in source
library.

Location of disk containing source library.

Name of Alternate Track Assignment program.

Location of disk containing Alternate Track Assignment
program.

Response when including control statements in procedure.

Response when not including control statements in
procedure.

0 Only the keywords listed here are required. You can bypass the rest.

'8 You end every response by pressing PROG START.

Alternate Track Assignment Program ($ALT) 97

EXAMPLE

Conditional Assignment

Situation

· Assume that during a job the system printed a message telling the operator it found a defective track on the removable disk
on drive 1. (The name of the disk is Bl LLNG.) Before doing more jobs, the operator wants to use the Alternate Track
Assignment program to check the condition of the track and assign an alternate to the track if it is defective.

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE (XX/XX/XX)

030 SWITCH (00000000)

040 FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT

II ALT PACK-BILLNG,U~IT-Ri

ENTER '//' CONTROL STATEMENT
II END

Explanation

}

}

}

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MOD I FY
even though the two words do not
appear on the same line.

Message printed by Alternate Track
Assignment program.

Control statement supplied by operator.

System reprompts. END statement
terminates sequence.

• Alternate Track Assignment program is loaded from the fixed disk on drive 1 (UNIT-Fl in OCL sequence).

o The name of the disk (Bl LLNG) and its location (removable disk on drive 1) are indicated by the PACK and UNIT
parameters in the ALT statement.

• Because we omitted the VERIFY parameter from the ALT statement, the program does surface analysis once when it
tests the condition of the track.

98

MESSAGES FOR ALTERNATE TRACK ASSIGNMENT

l Message

ALTERNATE TRACK
ASSIGNED

PRIMARY TRACK HAS
BEEN TESTED OK

TRACK xxx, UN IT zz

PRIMARY TRACK STILL
DEFECTIVE

DATA TRANSFERRED
BACK TO PRIMARY
TRACK

**SECTOR WITH DATA
ERROR**

PRIMARY TRACK xxx
ALTERNATE TRACK yyy,
UNIT-zz

Meaning

This message is printed when an alternate track has been assigned to a defective
track and the data has been transferred to the alternate track.

This message is printed when it is determined that a primary track is not defective.

xxx is the primary track number and zz is the unit involved.

This message is printed when the Alternate Track Assignment program determines
that the track is still defective.

This message is printed when the data is transferred back to the primary track.

This message is printed when the Alternate Track Assignment program found an error
when transferring data. The sector that has the error is printed out.

This message is printed after Al TERNATE TRACK ASSIGNED and DATA
TRANSFERRED BACK TO PRIMARY TRACK. xxx is the primary track number,
yyy is the alternate track number, and zz is the unit involved.

Alternate Track Assignment Program ($ALT) 99

Alternate Track Rebuild Program ($BUI LO)

An alternate track assigned by the Alternate Track Assign
ment program may contain some incorrect data. In order
to correct this data, you must use the Alternate Track
Rebuild program.

FUNCTIONS

The process of correcting data consists of:

o Locating incorrect data.

o Replacing incorrect data.

Locating Incorrect Data

The Alternate Track Assignment program prints a listing of
all track sectors that may contain incorrect data. You will
find, on the listing, the name of the disk, the track and
sector numbers of the area suspected of containing incorrect
data, and the data from these sectors.

J Control Statement Summary

Control Statement

//·REBUILD PACK-name,UN IT-code,TRACK-location,LENGTH
number,DISP-position

' Substitute Data
j

II END

To replace characters 1-12 and 75-78 of a sector, you can
use either of the following:

- - -1.- -Use one REBUILD statemei1tt0 replace-al(the
characters with a LENGTH parameter of 78.

100

2. Use one REBUILD statement for every set of
positions you correct.

The data you want to substitute must follow the REBUILD
statements to which it applies. The order of the state
ments and data in the preceding example would be:

II REBUILD statement
data
II END

II REBUILD statement
data
II REBUILD statement
data
II END

for positions 1-78

for positions 1-12

for positions 75-78

Replacing Incorrect Data

The Alternate Track Rebuild program will replace the num·
ber of characters you indicate in the positions you indicate.
You must key the new characters in hexadecimal form.
These characters are called substitute data.

OPTIONS

The Alternate Track Rebuild program gives you the
following options:

• You may correct as many characters as you wish on one
track.

• You may correct data on more than one track.

You specify the options you want in control statements
(see Control Statements in this chapter).

Parameter and Substitute Data Summary

R EBU I LO Statement Meaning

PACK-name

UNIT-code

TRACK-location

LENGTH-number

DI SP-position

(
Substitute Data

I

Name of the disk.

Location of the disk. Possible codes
are R1, F1, R2, F2.

Number of track and sector contain
ing incorrect data. Number is printed
by Alternate Track Assignment prog
ram. Track number must be three
digits; sector number must be two-
digits. (TRACK-01109 means track
11 sector 9).

Number of characters being replaced.
Number can be 2-256 and must be a
multiple of 2 (2, 4, 6, etc.).

Position of the first character being
replaced in the sector. Position can
be 1-255.

Code each character in hexadecimal form. Follow every second
character, except the last, with a comma. EXAMPLE: The
numbers 123456 would be coded as F1 F2,F3F4,F5F6. (Appen
dix A I ists the hexadecimal codes for System/3 characters.)

Number of Characters

You may replace from 2 to 256 characters on one track in
one run. You can do this by replacing all the characters
(including correct data) or just groups of incorrect data.

Number of Tracks

The Alternate Track Assignment program prints the track
and sector numbers for those areas that contain incorrect
data. You can correct one or more of these tracks in one
program run. The possible tracks you can correct are 8
through 405 and the sectors are 0 through 23. Tracks 0
through 7 can't be corrected.

PARAMETER AND SUBSTITUTE DATA
DESCRIPTIONS

PACK Parameter

The PACK parameter (PACK-name) tells the program the
name of the disk that contains the alternate track being
corrected. This name is the one written on the disk by the
Disk Initialization program.

The Alternate Track Rebuild program compares the name
in the PACK parameter with the name on the disk to
ensure they match. In this way, the program ensures that
the program is using the right disk.

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location of
the disk that contains the alternate track being corrected.
Codes for the possible locations are as follows:

Code

H.I

Fl
R2

Location

Removable.disk on drive 1.
Fixed disk on drive 1.
Removable disk on drive 2.

F2 Fixed di~k on drive 2.

TRACK Parameter

The TRACK parameter (TRACK-location) identifies the
track and sector that contains the data being corrected. The
defective track, not the alternate track, is the one you refer
to. Referencing the defective track is the same as
referencing the alternate track.

Use the track and sector numbers in the TRACK parameter.
The possible track numbers are 008-405. Always use three
digits. The possible sector numbers are 00-23·. Always use
two digits. The track number must precede the sector num
ber. For example, the parameter TRACK-11019 means
track 110, sector 19.

Track and sector numbers are printed by the Alternate Track
Assignment program when it prints data from sectors that
contain incorrect data.

LENGTH Parameter

The LENGTH parameter (LENGTH-number) tells the pro
gram how many characters you are replacing in the sector.
You must replace characters in multiples of 2 (2, 4, 6, and
so on). The maximum is 256, which is the capacity of a
sector.

Length applies to characters that occupy consecutive posi
tions in the sector. If the characters you want to replace
do not occupy consecutive positions, you must either
replace more characters or use more than one R EBU I LO
statement. For example, to replace characters 10-11 and
24-25 in a sector, you can do either of the following:

1.

2.

Use one REBU I LO statement to replace characters
10-25 (LENGTH-16).

Use two REBU I LO statements to replace characters
10-11 (LENGTH-2) and 24-25 (LENGTH-2).

DISP (Displacement) Parameter

The DISP parameter (DISP-position) indicates the position
of the first character being replaced in the sector. The posi
tion of the first character in the sector is 1; the position of
the second character is 2; and so on. The maximum posi
tion is 255.

Beginning at the position you indicate, the Alternate Track
Rebuild program replaces the number of characters you
indicate in the LENGTH parameter.

Substitute Data

After each REBUILD statement, you must key the substi
tute characters that app_ly to that statement. The characters
must be in hexadecimal form. Appendix A shows the hexa
decimal forms of the characters in the standard character
set.

Include a comma after every second character. For
example, the data F1 F2,F3F4,F5F6 represents 123456.
F1 is the hex·adecimal form of 1; F2 is the hexadecimal
form of 2; and so on.

Key only the number of characters you indicated in the
LENGTH parameter in the REBUI LO statement.

Alternate Track Rebuild Program ($BUILD) 101

OCL CONSIDERATIONS

LOAD Sequence

IKeywordsO

READY

LOAD NAME

UNIT

MODIFY

Responses e
LOAD

$BUILD

R1, R2, F1, or F2

RUN

Considerations

None

Name of Alternate Track Rebuild program.

Location of disk containing Alternate Track Rebuild
program.

None

0 Only the keywords listed here are required. You can bypass the rest.

f) You end every response by pressing PROG START.

BUI LO Sequence

Keywords G Responses@

READY BUILD

BUILD NAME procedure name

UNIT R1, R2, F1 orF2

LOAD NAME $BUILD

UNIT R1, R2, F1, or F2

MODIFY RUN*

Considerations

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of Alternate Track Rebuild program.

Location of disk containing Alternate Track Rebuild
program.

_ Response when not including control statements ill-- -
procedure.

G Only the keywords listed here are required. You can bypass the rest.

f) You end every response by pressing PROG START.

*BUI LO does not allow utility control statements in the procedure.

102

EXAMPLE

Correcting Characters on an Alternate Track

Situation

Assume that the Alternate Track Assignment program
printed the following information:

SECTOR WITH DATA ERROR

TRACK 05020

ABCDEF GHl 34567890 ... }
B A

(Assume the entire contents of the sector
was printed.)

6 5

It means that errors were detected in sector 20 of track 50.

In checking the characters printed by the program, you
found that the seventh and eleventh characters in the
sector are incorrect and you want the operator to run the
Alternate Track Rebuild program to correct them.

Alternate Track Rebuild Program ($BUI LO) 103

Statements

READY

010 LOAD NAME

011 UNIT

,020 DATE (XX/XX/XX) -

030 SWITCH (00000000) -

040 FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT }

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and Fl LE
NAME keywords are not prompted.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

Message prirfted by Alternate Track
Rebuild program.

II REBUILD PACK-BILLNG ,UNIT-Rl,TRACK-05020,LENGTH-6,DISP-7
Control
statements
and substitute
data supplied
by the
operator

ENTER HEX DATA STATEMENT
C6C7,C8Fl,F2F3

ENTER '//' CONTROL STATEMENT
II END

Explanation

}
}

Message printed by Alternate Track
Rebuild program.

M_essage printed by Alternate Track
Rebuild program.

• Alternate Track Rebuild program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

-

• The name of the removable disk (Bl LLNG) and its location (drive 1) are indicated in the PACK and UN IT parameters in
the REBUILD statement.

• The sector containing the incorrect characters is sector 20 of the alternate track assigned to track 50 (TRACK-05020).
The seventh character in the sector is the first character being replaced (DISP-7);

• The seventh through twelfth characters in sector 20 are being replaced (LENGTH-6). We included the twelfth character
because the number of characters being replaced must be a multiple of 2. By also replacing the characters between the
incorrect ones, we needed only one REBUI LO statement.

• The substitute characters follow the REBUILD statement. They are F (C6), G (C7), H (CS), 1 (F1), ~ (F_2), and 3 (F3). ·-----·--·-

104

You may need to obtain specific information about a file;
find space available for libraries or new files; or check the
contents of a disk for libraries, scratch data files, temporary
data files, or permanent data files. In order to do any of
these, you need information contained in the volume table
of contents (VTOC). To obtain this information you must
use the File and Volume Label Display program.

FUNCTIONS

This. program allows you to:

o Print VTOC information.

• Print headings for file information.

Print VTOC Information

The VTOC is an area on disk that contains information
about the contents of the disk. Every disk contains a
VTOC. The File and Volume Label Display program allows
you to print this information.

The printed VTOC information is a readable, up-to-date
record of the contents of the disk._ There can be aDY num
ber of reasons why you might need the information. Some
of the more common ones are as follows:

1. Before re-initializing a disk, you might want to check
its contents to ensure that it contains no libraries,
permanent data files, or temporary data files.

2. You want to find out what disk areas are available for
libraries or new files.

3. You want specific file information, such as the file
name, designation (permanent, temporary, scratch),
or the space reserved for the file.

Print Headings

If the file information you requested from the VTOC over
flows onto another page, the program prints the headings
for the information at the top of the next page. It will do
this for each succeeding new page.

File. and Volume Label Display Program {$LABEL)

OPTIONS

The File and Volume Label Display program gives you the
following options:

1. Print the entire Volume Table of Contents (VTOC)
from a disk.

2. Print only the VTOC information for certain data
files. You may specify up to 20 file names in one
run.

In both cases, the program also prints the name of the disk.

Entire Contents of VTOC

There are many reasons why you may want to print the
entire VTOC. You may want to check which tracks are
assigned alternates or how many alternate tracks are still
available for use. You may also want to check the boun
daries of libraries or check for permanent, temporary, or
scratch data files.

File Information Only

You may request information for specific files. You may
want this information to find out file names, file designa
tions, or disk areas reserved for files. You may also use it
to determine the relationship of multivolume files.

Number of File Names

When you specify a file name, you must use the name that
identifies the file in the VTOC. You are allowed to specify
up to 20 file names in one program run.

CONTROL STATEMENTS

You must supply the following control statements to speci
fy the program options you want:

1. DISPLAY statement - indicates whether you want
the entire VTOC or specific file information from the
VTOC. It also indicates the unit of the disk contain
ing VTOC information.

2. END statement- indicates the end of control statements.

File and Volume Label Disptny Pron .. o:m ($LABEL) 105

' i

Control Statement Summary

,__u_s_e_s _____ c_o_n_t_ro_i_s_ta_t_e_m_e_n_t _O ____________ , ,

Print entire
VTOC:

II DISPLAY UNIT-code,LABEL-VTOC
II END

Print only file
information
from VTOC:

II DISPLAY UNIT-code,LABELJ ~·~ename .to .
II END ~ filenames~

0 For each use, the program requires the statements in the
order they are listed: DISPLAY, END.

0 The number of filenames you list for a program run may
not exceed 20. (VTOC is considered as one filename.)

Parameter Summary (Display Statement)

Parameter

UNIT-code

Meaning

Location of the disk·contain
ing the VTOC information
being printed. Possible codes
are R1, F1, R2, F2.

LABEL-VTOC Print entire contents of VTOC.

LABEL-filename

LABEL-'filename,filename, ... '

106

Print VTOC information for,
one file.

Print VTOC information for
more than one file. The
number of filenames you list
for a program run may not
exceed 20. (VTOC is consi
dered as one filename.)

..
.•.• l;

. i,:4~(·
',1;•.· ... ;:1;,.

·.PARAMETER DESCRIPTIONS

UNIT Pa".8meter

··:The UNIT para.meter (UNIT·code) indicates the location of
the disk containing the VTOC information being printed.
Codes for the possible locations are as follows: ·

Code

R1
F1
R2
F2.

Location

Removable disk on drive 1.
Fixed disk on drive 1.
Removable disk on drive 2.
Fixed disk on drive 2.

LABEL Parameter

The LABEL parameter indicates the information you
wanted printed: the entire contents of the VTOC or only
the information for certain files. The VTOC is an area ·an
disk that contains information about the contents of the
disk. Every disk,·fixed and removable, contains a VTOC.

An example of a VTOC printout is as follows:

PACK-111111 ID-ANDERSON

NO. OF ALlERNAT~ TRACKS AVAILABLE-i

TRACKS ~llH ALTERNATE ASSIGNtD-302,200

DEFECTIVE: ALTERNATE TRAC~S-3,5

OtVI't CAPACITY-400'

LIBRARY EXTENT-- START ENO EXTENUED END
008 027 027

AVAILABLE SPACE ON PACK
LUCAf lON TRACKS

028 367
399 001
401 001

PACK-111111 UNlT-Rl OATt: n111110
FILE Fl LE KEEP FILE REC KEY
NAME OATt TYPE TYPt: UN LEN

COST ll/31123 T s 0128
MASTER 12131/23 p s 0128
EMPLOYEE 11/14/70 p 1 0128 05
UPDATE 11/15/70 T 1 0128 05
PARTS 12/31/23 T D 0128
SERIAL ll/31/23 T s 0128
ADDRESS ll/31123 T s 0080
BACKUP 12/31/23 s s 0128

KEY
LUC

0005
0005

NEXT AVA lL NEXT AVAIL INDEX UAlA VOL
Rt: CORO Kt:Y STAK. T El'W START ENU ~E:l.I

405/ ll/ 129 405 40~ 00
404/ ll/ 129 404 404 00

**** 402/Cl/ 129 40L 40.l 403 403 02
396/ ll/129 395/0C/185 395 395 396 390 00

**** 400 40U 01
398/ ll/ 129 398 3<rn 00
397/0b/065 397 397 00
399/ ll/ 129 399 399 00

File· and Volume Label Display Program ($LABEL) 107

The meaning of the VTOC information is as follows:

I Heading

PACK-name

ID-characters

NUMBER OF ALTERNATE TRACKS
AVAi LAB LE-number

Meaning

Name of the disk.

Additional disk identification (if any).

Number of alternate tracks available for assignment.

TRACKS WITH ALTERNATE ASSIGNED Numbers of primary tracks that have been assigned an alternate.

DEFECTIVE ALTERNATE TRACKS Numbers of the alternate tracks that are defective.

DEVICE CAPACITY-number Disk drive capacity (number of tracks).

LIB RARY EXTENT Boundary of libraries on the disk. (If the disk contains no libraries, these

START

END

EXTENDED END

AVAILABLE SPACE ON PACK

LOCATION

TRACKS

PACK-name

UNIT-code

--DA TE-xx/xx/xx -

FILE NAME

FILE DATE

KEEP TYPE

FILE TYPE

108

· headings are not printed.)

Track on which library begins.}

Track on which library ends.

If the disk contains both source and
object library, START refers to begin
ning of source library and END refers
to end of object library.

Object library only. Track on which extension to library ends. When
object library is full, temporary entries can be placed in space following
end of library, provided that space is available.

Available disk areas.

First track in available area.

Number of tracks available.

Name of the disk.

Location of the disk containing the VTOC information.

Current system date:-

Name that identifies file in VTOC.

Date given the file when file was placed on disk.

File designation:
P permanent
T temporary
S scratch

File type:
I = indexed
S = sequential
D = direct
B = BASIC file

I Heading

REC LEN

KEY LEN

KEY LOC

NEXT AVAIL RECORD

NEXT AVAIL KEY

INDEX
START END

DATA
START END

VOL
SEQ

Meaning

Number of characters in each record in file.

Indexed files only. Number of characters in each record key.

Indexed files only. Position in record occupied by last character of
record key.

Beginning location of next available record in file. Location is track, sector,
and position within sector.

EXAMPLE: 099/18/006 =track 99, sector 18, position 6. If the first byte of
the next available record occurs in the next track after the end track of
DATA START END then th_is field will contain****.

Indexed files only. Beginning location of next available record key in index
portion of file. Location is track, sector, and position within sector.
EXAMPLE: 090/10/006 =track 90, sector 10, position 6. If the first byte of
the next available key occurs in the next track after the end track of INDEX
START END, then this field will contain ****.

Indexed files only. Tracks on which index starts (START) and ends (END).

Disk area reserved for the file. START is the first track of the area. END
is the last track. For indexed files, this refers to the data portion of the file.

VOL SEQ applies to multivolume files only. It indicates the order of this
disk as it relates to the other disks containing the remaining portion of the file.

File and Volume Label Display Program ($LABEL) 109

OCL CONSIDERATIONS

LOAD Sequence

KeywordsO

Rt:ADY

LOAD NAME

UNIT

MODIFY

Responses&

LOAD

$LABEL

R1, R2, F1, or F2

RUN

Considerations

None

Name of File and Volume Label Display program.

Location of disk containing File and Volume Label
Display program.

None

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

BUI LO Sequence

jKeywordsQ

READY

BUILD NAME

UNIT

LOAD NAME

UNIT

MODIFY

Responses 0

BUILD

procedure name

R1, R2, F1, or F2

$LABEL

R1, R2, F1, or F2

INCLUDE . . r----utility control statements
OR RUN

LRUN

Considerations·

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of File and Volume Label Display program.

Location of disk containing File and Volume Label
Display program.

Response when_ in_c:ludJog control statements in
procedure.

Response when not including control statements in
procedure.

0 Only the keywords listed here are required. You can bypass the rest.

f) You end every response by pressing PROG START.

110

EXAMPLE

Printing VTOC Information for Two Files

Statements

020

030

040

DATE (XX/XX/XX) -

SWITCH (00000000) -

FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT

II DISPLAY UNIT-Rl,LABEL-'BILLNG,INVOl'

ENTER 'II' CONTROL STATEMENT
II DISPLAY UNIT-F2,LABEL-VTOC

ENTER 'II' CONTROL STATEMENT
11 END.

Explanation

~
~

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses
are shown are the ones bypassed.
If you press ENTER- after
responding to UNIT, the DATE,
SWITCH, and FILENAME
keywords are not prompted.

RUN is the response to MODIFY
even though the two words are
not on the same line.

Message printed by File and
Volume Label Display program.

Control statement supplied by
operator.

l Sequence repeats until operator
enters END statement.

• The File and Volume Label Display program is loaded from the fixed disk on drive 1 (UNIT·F1 in OCL sequence).

• The files for which information is printed are named BILLNG and INV01 (LABEL-'BILLNG,INV01' in first o'iSPLAY
statement). They are located on the removable disk on drive 1 (UNIT-R1).

• Information from the entire VTOC on F2 is printed.

File and Volume Label Display Program ($LABEL) 111

File Delete Program ($DELET)

You may find that you no longer need the information in a
file. You can free the space in a file for use by new files by
using the File Delete program.

The program may be used on temporary, scratch and
permanent files. To delete permanent files, you must use
the File Delete program. You can scratch temporary files
by using the File Delete program or by changing the file
designation from temporary to scratch (using the OCL
keyword RETAIN) when you use the file.

FUNCTIONS

This program allows you to:

• Eliminate file references in the VTOC.

• Erase information in a file.

VTOC File References

The File Delete program allows you to remove the VTOC
references to a file by removing the reference (SCRATCH
s~atement). However, the file reference is not physically
removed from the VTOC until normal end of job has
occurred.

Erase File Information

··You may erase a file from the disk as well as removing the
file reference in the VTOC (REMOVE statement). This
may involve erasing the information contained in the file.
Its space is then made available for any new files.

OPTIONS

The File Delete program gives you the following options:

o You may choose to delete files in one of two ways:
remove or scratch.

o You may delete some or all files from a disk.

o You may specify up to 40 file names in one job.

112

You specify the options you want in control statements
(see Control Statements in this chapter),

Deleting a File

If you wish to delete a permanent file, you must use the
File Delete program. If you delete a temporary file, you
may use either the File Delete program or change the file
designation when you use the file. You may either remove
or scratch a file. No file is physically scratched or removed
from the VTOC until end of job has occurred.

Removing a File

When you remove a file from a disk (REMOVE statement),
you are removing the file reference from the VTOC. You
may also erase the data in the file from the disk.

Scratching a File

The File Delete program allows you to scratch a file if you
find you may need to reference it later. The SCRATCH
statement does not erase files from the disk. lt'charrnes
their designation to scratch (S) in the Volume Table of
Contents (VTOC). By doing this, the program makes the
areas that contain the files available for other files or for
system programs. You can use the file until a permanent
file is created in its place or it is removed by a system
program.

A halt will occur if an attempt is made to create a new mul
tivolume file that will have the same label on disk as an
existing single volume file, or an attempt is made to create
a single volume file bearing the same label as an existing
multivolume file. The halt will occur even though the exist
ing file is a scratch file.

Number of Files

You may remove some or all files on a disk. If a file nam·e
applies to more than one file, all the files with that name
are deleted. You can keep this from happening by identify
ing the files with both name and date.

Number of File Names

You may specify as many file names as the control state
ment will allow. If you specify more, you must use more
than one statement. However, you are only allowed to
sr)ecify 40 ·file names in one job.

CONTROL STATEMENTS

1. REMOVE statement-indicates the name and unit of
the disk, what files are to be removed, and whether
or not you are erasing the data for the file.

2. SCRATCH statement-indicates the name and unit of
the disk and what files you wish to scratch.

3. END statement-indicates the end of control state
ments.

Control Statement Summary

I Use

Scratch all
files in the
VTOC:

«;:ontrol Statements 0
II SCRATCH PACK-name, UNIT-code, LABEL-VTOC
II END

Scratch only II SCRATCH PACK-name, UNIT-code, LABEL-filename, DATE-date e
one file in II END
the VTOC:

Scratch
multiple
files in the
VTOC:

Remove all
files from
disk:

Remove
only the
files named
from disk:

~
filename l

II SCRATCH PACK-name, UNIT-code, LABEL- 'filenames'~
II END

II REMOVE PACK-name, UNIT-code, LABEL-VTOC, DATA- l ~rO l
II END YES~

II REMOVE PACK-name, UNIT:code, LABEL
// END ~ . f e ~NO! filename

'fl , , DATE-date, DATA- or
1 enames YES

0 For each use, the program requires the statements in the order they are listed: SCRATCH, END, or
REMOVE, END.

Use this form of the SCRATCH or REMOVE statement when two or more files have the same name and
you want to delete one of them.

I

File Delete Program ($DELET) 113

Parameter ~ummary

I Parameter

PACK-name

UNIT-code

LABEL-VTOC

LABEL-filename

LABEL-'filename,filename, ...

DATE-date

DATA- ~ ~r0 l
f YES~

Meaning

Name of the disk.

Location of the disk. Possible codes are R 1, F 1, R2, F2.

Scratch or remove all files from the VTOC.
I

Scratch or remove only thel
file named in the VTOC. . Use names that identify files in .

VTOC. (These are the names
Scratch or remove only you gave the files when you
the files named in the placed them on disk.)
VTOC. .

Date of the file being deleted. Date must be a 6-digit number.
EXAMPLE: DATE-062070 means June 20, 1970.

Delete files from disk as well as VTOC.

PARAMETER DESCRIPTrONS Label Parameter

. '
t

Pack Parameter
The LABEL parameter identifies the files you want to
delete from the disk. Its form depends on the files you are
deleting:

The PACK parameter (PACK-name) tells the program the
name of the disk that contains the files being deleted. The
na.me you sapply in this parameter is the one written on
the disk by the Disk Initialization program.

.
The File Delete program compares the name in the PACK
parameter with the name on the disk to ensure they match.

--In this- way I the pro-gram ensures that-it is using the rlght- - - -

disk.

Unit Parameter

The UNIT parameter (UNIT-code) tells the program the
location of the disk containing the files being deleted.
Codes for tti'e possible locations are as follows:

Code Location

R 1 Removable disk on drive 1.
Fl Fixed disk on drive 1.

. R2 Removable disk on drive 2.
F2 rFixed disk on drive 2.

114

Form

LABEL-VTOC

LABEL-filename

LABEL-'filename,
filename, .. .'

Files Deleted

All of them.

Only the file that is named. The
___ name can apply _to more than one _

file. If it does, all of those files are
deleted unless you use a DATE par
ameter to identify a particular one.

Only the files that are named. A
name can apply to more than one
file. If it does, all of those files are
deleted. (You can list as many file
names as the statement can hold;
the statement length, however, is
restricted to 96 characters. Addi
tional REMOVE or SCRATCH
statements may be used for addi
tional filenames. The maximum
number of files that can be deleted
in one run is 40.)

Date Parameter

The DATE parameter (DATE-date) applies to.two or more·
files that have the same name. It tells the program the date ·
of the one you want to delete.

Every file on disk has a date, which is given to the file at ,
the time it is created. When two or more files have the same: .. :;.
name, the dates are used to tell one file fr:om another.

The date is a six-digit number: two digits for day, two for.
month, and two for year. Day, month, and year can ~e in

Data Parameter (REMOVE Statement Only)

The DATA parameter lets you delete the files specified dir·
ectly from the disk as well as from the VTOC.

If YES is coded in this parameter then the tile specified will
be removed from the disk and any reference to it in the
VTOC will be removed. In addition, a message will be
printed on the system logging device for each file removed
from the disk in this format:

'DATA REMOVED FOR FILE XXXXXX
DATE 000000'

one of two orders: (1) month, day, year ancl (2) day, month~":·' '
year. For example 061870 and 180670 both mean June · . DATA-YES should be used only if file security is required.

. The time needed to remove the data is much greater than
the time needed to remove the VTOC entry.

18, 1970.

In the DATE parameter, be sure to specify day, month, and
year in the same order as when you placed the file on di~k •. ·

If NO is coded in this parameter, then the tile speci· ied will
.. not be removed from the disk. However, any reference to

it in the VTOC will be removed. If this parameter is not
used, DATA-NO is assumed.

File Delete Program ($DELET) 115

OCL CONSI DE RATIONS

LOAD Sequence

Keywords 0 Responses G Considerations

READY LOAD None

LOAD NAME $DELET Name of File Delete program.

UNIT R1, R2, F1, or F2 Location of disk containing File Delete program.

MODIFY RUN None

G) Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

BUILD Sequence

Keywords (JD

READY

BUILD NAME

UNIT

LOAD NAME

UNIT

MODIFY

Responses G
BUILD

procedure name

R1, R2, F1, or F2

$DELET

R1, R2, F1, or F2

INCLUDE I utility control statements
OR RUN

LRUN

Considerations

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of File Delete program.

Location of disk containing File Delete program.

Response when including control statements in
procedure.

Response when not including control statements
in procedure.

0 Only the keywords listed here are required. You can bypass the rest.

@ You end every response by pressing PROG START.

116

EXAMPLE

Deleting One of Several Files Having The Same Name

Situation

Assume that three files on a removable disk have the same name: I NV01. The dates of these files are 6/16/70, 8/18/70, and
11/15/70 .. You want to delete the 6/16/70 version.

Statements

READY

010 LOAD NAME

011 UNIT -

020 DATE (XX/XX/XX) -

030 SWITCH (00000000) -

040 FILE NAME

*****k*******************

MODIFY

ENTER '//' CONTROL STATEMENT

OCL Load Sequence

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you

press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

Message printed by File Delete program.
Contro1 statement

// SCRATCH PACK-00001,LABEL-INVOl,UNIT-Rl,DATE-061670 f suppliedby

ENTER '//' CONTROL STATEMENT
II END

Explanation

Sequence repeats until operator
enters END statement.

• File Delete program is loaded from the fixed disk on drive 1 (UNIT-Fl in OCL sequence).

• Disk that contains the file being deleted is named 00001 (PACK-00001 in SCRATCH statement).

operator.

• Because two other files have the name INV01, the date (061670) is needed to complete the identification of the file
you want to delete (LABEL-INV01 and DATE-061670).

• The removable disk containing the file to be deleted is on drive 1 (UNIT-R1).

File Delete Program ($DELET) 117

Removing One File

Situation

You want to remove a file named INV02 from the pack mounted on R1.

Statements

READY LOAD

010 LOAD NAME $DELET

011 UNIT Fl

020 DATE (XX/XX/XX) -

030 SWITCH (00000000) -

040 FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT ~

OCL Load Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

Message printed by File Delete program.

·· ~ Control statement supplied II REMOVE PACK-00001,LABEL-INV02,UNIT-Rl,DATA~YES
by operator.

'DATA REMOVED FOR FILE INV02 DATE 000000' f Printed by File Delete.

ENTER '//' CONTROL STATEMENT
II END

Explanation

Sequence repeats until operator
enters END statement.

o File Delete program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

o Disk that contains the file being removed is named 00001 (PACK-00001 in REMOVE statement).

o The removable disk containing the file to be removed is on drive 1 (UN IT-R 1).

o DATA-YES indicates that the file data as well as the file VTOC reference is to be removed.

118

You might need to check records in a file for errors. In
order to do this you need to print a copy of the file. It is
important to provide a reserve disk, diskette, or permanent
data files in case something happens to the original disk,
diskette, cards or files. You can copy the disk, diskette,
cards, or file using the Copy/Dump program 1

•

FUNCTIONS

Copying a disk or disk file involves:
Identifying disk or file locations in OCL.
Using a work area.

Copying diskette or card files involves:
Identifying the device in the control statement.

Printing a file involves:
Identifying the portion to be printed.
Printing record key or relative record numbers.

Disk or File Location

In order to copy a disk or file, you must specify the unit on
which the disk or file is located and the unit to which it is
to be copied. You can copy a file from one disk to another

or from one area to another on the same disk.

Using a Work Area

When you are copying a file from one removable disk to
another removable disk but have only one disk drive
(R 1 and F 1), you must use a work area on the fixed disk
on drive one. The disk you copy from must be a removable
disk. The data from the file you are copying is transferred
to the work area on the fixed disk where it remains until
another removable disk is mounted. This is the removable
disk to which the data is copied.

If you are copying a file from one area on a removable disk
to another area on the same disk you need not use a work
area on the fixed disk.

1The Copy/Dump program can be called by either the name
$COPY or the name $KCOPY.

Copy/Dump Program ($COPY)

Identifying the Device

In order to copy a diskette or card file, you must identify
the device and indicate if it is an input or output file on
the control statement. You can copy all or part of a file.

Copying a Portion of a File

You can copy all or part of a file.

Printing a Portion of a File

You can print all or part of a file.

Record Keys and Relative Record Numbers

For indexed files the Copy/Dump program will print each
record key (used to access the record) followed by the
contents of the record. The records are printed either in
the order their keys appear in the index portion of the file
or as they appear in the file itself. For sequential and dir
ect files, a record is printed with its relative record number
(used to access the record) preceding the record. The
records are printed in the order they appear in the file.

Copy/Dump Program ($COPY) 119

OPTIONS

The Copy/Dump program allows you the following options:

• Copy an entire disk or a file.

o Copy part of a file.

• Copy all or part of a data file from disk, diskette or
cards to disk, diskette or cards.

o Print part or all of a file.

o Delete records from a file.

• Reorganize a file.

You specify the options you want in control statements
(see Control Statements in this chapter).

Copying and Printing

You can specify any of the following copy or print
combinations:

• Copy an entire disk.

o Copy a data file.

• Copy a part of a data file.

• Copy and print a data file.

• Copy a data file, but print only part of the file.

• Copy and print only part of a file.

• Print an entire data file.

• Print only a part of a data file.

On a Model 6 with SK of main storage, a halt may occur if
all options on a COPYFI LE are specified for files with large
records (256-bytes). This halt (A234) occurs because not
enough main storage is available. To avoid this halt, con
sider the following changes to the COPYFI LE statement:

1. Specify OUTPUT-DISK instead of OUTPUT-BOTH.

2. Specify REORG-NO instead of REORG-YES.

3. Specify OMIT- instead of DELETE-.

120

Copying Entire Disk

When copying a disk, Copy/Dump program transfers the
contents of the disk to another disk. The contents of the
two disks will be the same, except for the disk names and
alternate track information, which may be different.

The disk you are copying can contain libraries or data files
or both. The disk that is to contain the copy must not
have libraries, temporary data files, or permanent data files.

The program can copy the contents of the removable disk
to another using one disk drive. The drive, however, must
be drive 1. To do this, the program uses available space on
the fixed disk on drive 1. It fills the available space with
information from the disk you are copying. Then it prints
a message telling the operator to mount the other removable
disk (the one to contain the copy) on drive 1. After trans
ferring the information from the fixed disk to the removabl~
disk, the program prints another message telling the operator
to remount the disk you are copying. The program repeats
this procedure until all information has been transferred.

Until the contents of the disk are completely copied on the
new disk, portions of the new disk are changed to prevent
accidental usage of a partially filled disk. Therefore, if the
copying process is stopped before it is completed, the pack
is unusable. You can restart the copying process by reload
ing the copy program or you can restore the disk by
reinitializing.

After a successful copy the copy program prints a message:

COPYPACKISCOMPLETE

Copying Files

The Copy/Dump program can copy a file from disk, cards,
or diskette to disk, cards, or diskette, or from one area to
another on the same disk.

The program can copy a file from one removable disk to
another using one disk drive. The drive, however, must be
drive 1. (See WORK Parameter in this section for more
information.)

Yo.ur responses to the OCL keywords prompted for the
. Copy/Dump program indicate (1) the name and location
'of the disk file being copied and (2) the name and location
of the disk file being created. See OCL Considerations in
this section.

Note: An OCL statement is not required for a card or disk
ette file. The COPYFI LE control statement describes card
or diskette files.

In copying a file, the program can omit records. (See
DELETE Parameter in this section for more information.)

In copying an indexed file, the program can reorganize
records in the data portion such that they are in the same
order as their keys are listed in the index. (See REORG
Parameter in this section for more information.)

Printing Files

The program can print all or part of the data file. To print
only part, the program needs a SELECT control statement.
(See SELECT KEY and PKY Parameters and SELECT
RECORD Parameters in this section.) If you do not use a
SELECT statement, the entire file is printed.

If you use SELECT KEY (or PKY) or REORG-YES,
records from indexed files are printed in the order their
keys appear in the index portion of the file; otherwise,
they are printed as they appear in the file. For each record,
the program prints the record key followed by the contents
of the record.

Records from sequential and direct files are printed in the
O(der they appear in the file. For each record, the program
prints the relative record number followed by the contents
of the record.

The program uses as many lines as it needs to print the con
tents of a record. If OUTPUT- is specified, only printable
characters are printed. If OUTPTX- is specified, all charac
ters are printed with their 2-digit hexadecimal value.
Appendix A lists the hexadecimal values for characters in
the standard character set.

The following is an example of the way the program prints
a 20-character record when OUTPUT- is specified:

'ABCDE GHIJ12345

If OUTPTX- is specified, the same record would be printed:

ABCDE GHIJ12345
CCCCCBCCCDFFFFF44444
12345678911234500000

After printing the last record, the printer triple-spaces and
prints the following message:

(number) RECORDS PRINTED

Deleting Records

If you want to delete records from a file while copying or
printing, you must indicate the type of record you want to
omit. To do this, you must specify the position of the ·
character in the records (maximum position. 9999) and the
identifying character (any of the standard System/3 charac
ter set except commas, apostrophes, and blanks). The
records that are deleted are printed. When the records of a
file are being printed, the deleted records are indicated.

Reorganizing a File

When you are copying an indexed file you can reorganize it.
The records in the data portion are put in the same order as
their index keys leaving the original of the file you are copy
ing unaffected. If you are both copying and printing an in
dexed file, you must specify reorganization.

Copy /Dump Program ($COPY) 121

COPYING MUL TIVOLUME FILES

When copying multivolume files, the first volume of the
input file has to be online when the job is initiated.

Maintaining Correct Date and Volume Sequence Numbers

To maintain the correct date and volume sequence numbers
you must:

• Copy all the volumes of the file in one execution of
$COPY, or

• Copy only one volume of the file in each execution of
$COPY.

For example, if you copy a 3-volume file one volume at a
time (volume 1 in the first execution, volume 2 in the
second execution, and volume 3 in the third execution),
the output file volumes will retain the original input date
and volume sequence numbers. Or, if you copy all the
volumes (1, 2, and 3) in the same execution, the system
will assign the current system date and new volume sequence
numbers in the output file. However, if you copy only
volumes 2 and 3 in one execution, the output file volumes
wili be assigned the current system date and volume sequence
numbers 1 and 2.

Maintaining Correct Relative Record Numbers

To maintain correct relative record numbers when copying
one volume of a multivolume direct file, the size of the
output volume must be the same size of the input volume.
(If you want to increase the size of a file, you must copy
the entire file.) If, for example, you copy the first volume
of a 2-volume file and increase the number of records on
that volume, you are also increasing relative record numbers
of all the records on the next volume. Therefore, output
and input volume extents must be equal if you are copying
only one volume of a multivolume direct file.

Note: You cannot use the copy program to copy a single
volume file to a multivolume file. End of extents will
probably occur after the first volume of output. If the
output file is a new file, the copy program will not create
it as a multivolume file.

122

Direct File Attribute•s

If you copy a whole multivolume direct file in one run, the
output file will be given sequential attributes in the Volume
Table of Contents (VTOC). However, this does not affect
file processing. A fil~ with either sequential or direct attri
butes can be accessed by a consecutive or direct access
method. If only one volume is copied, the direct attribute
will be maintained.

Copying Multivolume Index Files

If you want to copy a multivolume indexed file, REORG
YES must be given. Since an unordered multivolume indexed
load is not permitted, a REORG-NO will cause a halt if an
out-of-sequence record is found. If you would prefer not to
reorganize the file, each volume of the file must be copied as
a single volume file. When copying each volume separately,
it can be either ordered or unordered. When copying one
volume of a multivolume indexed file, either REORG-YES
or REORG-NO may be specified. HIKEY parameter(s) of
the output file must be the same as the highest key(s) of
each input volume.

CONTROL STATEMENTS

You must supply the following control statements to
specify the program options you want:

1. COPYPACK statement-indicates that an entire disk
is to be copied. It contains the unit of the disk to
be copied and the disk to which the copying is being
done.

2. COPYFILE statement-indicates that all or part of a
data file is being copied or printed or both, whether
the file is to be reorganized, and whether any records
are to be deleted.

3. SELECT KEY (or PKYJ statement-indicates,
according to record keys, which part of an indexed
file you want copied or printed. The SELECT PKY
parameter applies to selecting part of an indexed
file that contains packed keys.

4. SELECT RECORD statement-indicates, according
to relative record numbers, which part of a file you
want copied or printed.

5. KEY statement-indicates that an indexed file will be
built from a sequential file.

6. END statement-indicates the end of control
statements.

Copy/Dump Program ($COPY) 123

Control Statement Summary

Uses@

Copy an Entire Disk:

Copy a Data File:

Copy and Print
a Data File:

Copy a Data File,
But Print Only a
Part of the File:

Print an Entire Data
File:

124'

Control Statements e

{

II COPYPACK FROM-code, TO-code

II END

{

FILE } 8 e
OUTPTX- DISK 3741 DELETE- , . . ,

II COPY Fl LE {OUTPUT-} 3741 ,INPUT- { DATASfi} ,LENGTH-number, {OMIT- } pos1t1on,character

DATA96

{
NO }o {NO }o ,REORG- YES ,WORK- YES

II END

{
OUTPTX-} { ~OTH • } 3741 I ® II COPYFILE OUTPUT- PRINT,3741 ,INPUT- DATAgfi ,LENGTH-number,

'PRINT,DATA96'

{
DELETE-},.. , • {NO } e OMIT- pos1t1on,character ,REORG-YES,WORK- YES

II END

{
OUTPTX-} l BOTH ! {3741 } e II COPYFILE OUTPUT- 'PRINT,3741' ,INPUT- DATAgS ,LENGTH-number,

'PRINT,DATA96'

{
DELETE-} e 0 {NO }e
OMIT- 'position,character',REORG-YES,WORK- YES

II SELECT KEY, { ~~~M-} 'key' 0
II SELECT KEY,FROM-'key',TO-'key' 0

{
FROM-} II SELECT RECORD, TO- number

II SELECT RECORD,FROM-number,TO-number

II SELECT PKY, g~~M-} 'key' e·
II SELECT PKY,FROM-'key',TO-'key'G

II END

{

II COPYFILE {~~~:~~=}PRINT.INPUT-{ ~:4-;Agfi }.LENGTH-number e
II END

Uses 0

Print'Only a Part
of a Data File

Print and Co_Py
a Part of a Data
File

Copy a Part of
a Data File

Control Statements e

II COPY Fl LE j OUTPTX- l PRINT INPUT- j 3741 l LENGTH-n mbe ® 1 OUTPUT - \ ' 1 DAT A96 \ ' u r

II SELECT KEY,~ ~~~M- ~ 'key' 0
II SELECT KEY,FROM-'key',TO-'key'

II SELECT RECORD,~ ~~~M-f numberO One of these G
II SELECT RECORD,FROM-number,TO-number

II SELECT PKY, g~~M-~ 'key·C)

II SELECT PKY,FROM-'key',TO-'key' G
II END

j OUTPTX- l J ~OTH I ~ p741 t G j NO l c
II COPYFILE J OUTPUT-\ PRINT,3741 . ,INPUT- 1 DATAgG \ ,LENGTH-number,WORK- 1 YES f

'PRINT,DATA96'

II SELECT KEY, 1 ~~~M-f 'key'

II SELEC.T KEY,FROM-'key',TO-'key',FILE-YES

j FROM-l
II SELECT RECORD, J TO- \ number.FILES-YES

II SELECT RECORD,FROM~number,TO-number,FILE-YES

II SELECT PKY, 1 ~~~M- f 'key',FILES-YES

II SELECT PKY,FROM-'key',TO-'key',FILE-YES

II END

{

FILE } e A
OUTPTX- DISK 3741 NO V

II COPYFILE ~OUTPUT- (3741 ,INPUT-1 DATA96 (,LENGTH-number,WORK- l YES t
DATA96

II SELECT KEY, 1 ~~~M- f 'key',FILES-YES

I I SELECT KEY ,F ROM-'key' ,TO-'key' ,FI LE-YES

j FROM- l
II SELECT RECORD, J TO- \ number,FILES-YES One of these

II SELECT RECORD,FROM-number,TO-number,FILE-YES

II SELECT PKY, ~ ~~~M-f 'key',FILES-YES

II SELECT PKY,FROM-'key',FILE-YES

II END

Copy /Dump Program ($COPY) 125

Uses Q Control Statements e

Building an
Indexed File
from a
Sequential
File

{ OUTPTX-}~FILE l { 3741 }
II COPYFILE OUTPUT- 1 ~~STKH~ ,INPUT- DATAgG ,LENGTH-number e
II KEY LENGTH-number.LOCATION-number

0
e
e
0
0

126

II END

The program uses include the possible combinations of copying and printing files.

For each use, the program requires the control statements in the order they are listed: COPY PACK, END; COPY Fl LE, END;
COPY Fl LE,SELECT,END,COPYFI LE,KEY,END; and COPY Fl LE,SELECT,KEY,END.

Needed only if you want to delete a certain type of record. DELETE cannot be used with direct files.

Applies only to indexed files. When OUTPUT-BOTH is specified, REORG-YES is required.

Optional when using the 3741 for input or output. The record length defaults to 96 if LENGTH is not specified.

Identifies the portion you want to print.

Index files with packed keys.

WORK-YES is required if you are copying the file from one removable disk to another removable disk using the same disk
drive (drive one). WORK-NO may be used, but is not required, if you are copying the file from one area to another on the
removable disk on drive one.

Parameter Summary

COPYPACK Statement Parameters

FROM-code

TO-code

COPY Fl LE Statement Parameters

OUTPUT-DISK

OUTPUT-Fl LE

{
3741 }

OUTPUT- DATA96

OUTPUT-PR I NT

OUTPUT-BOTH

{
'PRINT,3741' }

OUTPUT- 'PRINT,DATA96'

{

PRINT }
BOTH

OUTPTX- 'PRINT,3741'

'PRINT,DATA96'.

{
3741 }

INPUT- DATA96

LENGTH-number

DELETE-'position,character'
-or

OMIT-'position,character'

REORG-NO e
REORG-YES e
WORK-NOf)

WORK-YEse

Meaning

Location of disk to be copied. Possible codes are R 1, F1, R2, F2.

Location of disk to contain the copy. Possible codes are R 1, F 1, R2, F2.

Copy the file from one disk to another, or from one area to another on the same disk. Q
Copy the file from one disk to another, or from one area to another on the same disk (inter
changeable with OUTPUT-DISK).

Copy the file to the device specified. When this parameter is used, a COPYO file statement
must not be used.

Print the entire file or only part of the file. @

Copy the file from one disk to another, or from one area to another on the same disk. fJ)
Also print the entire file or only part of it.

Copy the file to the device specified and print all or part of the file. When this parameter is
used, a COPYO file statement must not be used.

Printed output will be displayed in hexadecimal values. If 3741 or DAT A96 is used, a CO PYO
file statement must not be used. 'BOTH' refers to printer and disk.

Copy the file from the device specified. If this keyword is used, a COPY IN file statement must
not be used.

Specifies the record length for the 3741. Number must be an integer from 1 to 128. If this key
word is not specified, a record length of 96 will be assumed. It will be ignored if used with any
other device.

These parameters are optional. It means that all records with the specified character in the specified
record position are deleted. DELETE causes deleted records to be printed.' OMIT causes deleted
records not be printed. Position can be any position in the record (the first position is 1, second 2,
and so on). The maximum position is 9999.

Indexed files only. Copy records in the same way as they are organized in the original file (the file
from which the records are copied).

Indexed files only. Reorganize the records so that the records in the data portion of the file are in
the same order as their keys are listed in the index.

May be used, but is not required, for copying a file from one area to another area on the same
removable disk on drive one (R 1). It means: do not use a work area.

Required for copying a file from one removable disk on drive one to another removable disk on that
drive. It means: use a work area on the fixed disk on drive one.

Copy /Dump Program ($COPY) 127

I SELECT Statement Parameters

j KEY t FROM-'key' 1 PKY ~ I

RECORD,TO-number

j KEY t ,FROM-'key' ,TO-' key'
1 PKY 5

RECORD,FROM-number

j KEY
1 PKY

,TO-'key'

RECOR D,F ROM-number,
TO-number

FILE-YES

FILE-NO

KEY-statement
LENGTH-number

LOCATION-number

Meaning

Indexed files only. Print or copy only the part of the file from the record key that is specified in
the FROM parameter to the end of the file.

Print or copy only the part of the file from the start of the file to the record number specified
in the TO parameter.

Indexed files only. Print or copy only the part of the file between the two record keys that
are specified in the FROM and TO parameters (including the records indicated by the parameters).
To print or copy only one record, make the FROM and TO record keys the same.

Print or copy only the part of the file from the relative record number specified in the FROM
parameter to the end of the file.

Indexed files only. Print or copy only the part of the file from the start of the file to the record
key specified in the TO parameter.

Print or copy only the part of the file between the relative record numbers indicated by the
parameters (including the records indicated by the parameter). To print or copy only one record,
the FROM and TO record keys should be the same.

Only selected records are copied to the file named in the COPYO file statement or to the device
(3741 or DATA96) specified in the OUTPUT keyword parameter of the II COPYFILE control
statement. The file will be sequential if no II KEY statement is used. When a II KEY statement
is used, the output file will be indexed and the device specified in the COPYO file statement must
be a disk.

Only selected records are printed if OUTPUT-PRINT is used. If OUTPUT-BOTH is used, selected
records are printed and the entire file is copied to the file named in the COPYO file statement or
the device (3741 or DATA96) specified in the OUTPUT keyword parameter of the II COPYFILE
control statement.

Identifies the length of the key field. The number can be from 1 to 29.

Identifies the starting location of the key field in the input record. The number can be from 1 to
16,384.

0 In the OCL load sequence, the operator indicates which file·1s to be copied or printed unless the files are 3741 or DATA96. For
files being copied, he must also indicate whether the file is being copied from one disk to another or from one location to another
on the same disk using the COPYO and COPY IN file statements. COPYO and COPYIN file statements are invalid for 3741 and
DATA96. For 3741 and DATA96, the INPUT and OUTPUT keywords in the II COPYFILE statement are used.

9 . REORG-NO is assumed if you omit the REORG parameter. When OUTPUT-BOTH is used for indexed files, REORG-YES is
required.

e If the WORK keyword is not specified, NO is assumed.

128

PARAMETER DESCRIPTIONS

FROM and TO Parameters (COPVPACK Statement)

The COPYPACK statement is used to copy the contents of
one disk to another. It has two parameters: FROM and
TO. They tell the program the locations of the two disks
on the disk units.

The FROM parameter (FROM-code) indicates the location
of the disk you are copying. The TO parameter (TO-code)
indicates the location of the disk that is to contain the
copy.

Codes for the possible locations are as follows:

Code Location

R 1 Removable disk on drive 1.
F1
R2
F2

Fixed disk on drive 1.
Removable disk on drive 2.
Fixed disk on drive 2.

OUTPUT Parameter (COPY Fl LE Statement)

The OUTPUT parameter is used when copying and printing
card, diskette, or disk data files. It indicates whether you
want the program to copy, print, or copy and print a file.
The OUTPTX parameter can be used to display printed out
put in hexadecimal values.

The parameter OUTPUT-DISK or OUTPUT-Fl LE means to
copy the file to disk. OUTPUT-PRINT means to print the
file; OUTPUT-BOTH means to copy and print the file.
OUTPUT-DATA96 or OUTPUT-3741 means to copy the
file to the device named in the keyword parameter. OUT
PUT-'PRINT,DATA96' or OUTPUT-'PRINT,3741' means
to copy and print the file to the device named in the key-

• word parameter and print the file.

The output file must be a new file when copying to disk
unless the existing file you are copying over is a temporary
file in which case the following rules apply.

1.

2.

If RECORDS were used to create the existing tempor
ary file then the COPYO file card must specify
RECORDS and LOCATION. RECORDS must be
equal to the number used to create the original file.

If TRACKS were used to create the existing tempor
ary. file then the COPYO file card must specify
TRACKS and LOCATION. TRACKS must be equal
to the number used to create the original file.

INPUT Parameter (COPVFI LE Statement)

The INPUT parameter is used when copying from either
the 3741 or the DATA96. INPUT-3741 or INPUT
DATA96 indicates that the input file to be copied is on the
device named in the INPUT keyword parameter.

LENGTH Parameter (COPVFI LE Statement)

This parameter identifies the record length for the 3741
and is any number from 1 to 128. This keyword is optional
whether the 3741 is being used as input or output. If this
parameter is not specified, the record length defaults to 96.

When the 3741 is used, the length parameter must be equal
to the record length in the HDR1 label on the 3741 and is
any number from 1 to 128.

When the 3741 is used as output and the input is disk or
DATA96, the LENGTH parameter can be any number
from 1to128 regardless of the record length of the disk
INPUT device. If the record length specified on the 3741
is greater than the record length from the input file, the
remainder of the record will be filled with blanks (X'40').
If the record length from the disk, card or tape file is great
er than the LENGTH specified, the record is truncated.

This keyword will be ignored if used with a device other
than a 3741 .

Ce.ipy/Dump Program ($COPY) 129

DELETE Parameter (COPYFILE Statement)

In copying a data file, the Copy/Dump program can omit
records of one type. The DELETE parameter identifies the
type of records. Use of the DELETE parameter is optional.
If you do not use it, no records are deleted.

The form of the parameter is DE LETE-'position,character'.
Position is the position of the character in the record. It
can be any position in the record (the first position is 1,
the second 2, and so on) up to the maximum position of
9999. Character is the character, except for apostrophes,
blanks, or commas, that identifies the record. For example,
with the parameter DELETE-'100,R', all records with an R
in position 100 are deleted. By specifying the hexadecimal
code for the character, any character (including apostrophes,
blanks, commas, and packed data) can be used to identify
the record to be deleted. For example, with the parameter
DELETE-'100,X40', al! records with a blank (hexadecimal
40) in position 100 are deleted.

Deleted records are always printed. If you are both copy
ing and printing a data file, deleted records are printed with
the other records that are printed. The deleted records are
preceded by the word DELETED.

The OMIT keyword can be used instead of DELETE. The
deleted records are not printed if OM IT is used.

REORG (Reorganize) Parameter (COPYFILE Statement)

In copying an indexed file, the program can reorganize the
file, such that the records in the data portion are in the
same order as their keys in the file index. The REORG
parameter tells the program whether or not to reorganize
the file.

REORG-YES means to reorganize. REORG-NO means
not to reorganize. REORG-NO is assumed if you omit the
keyword.

If you tell the program to reorganize the file, the reorgani
zation applies to the copy of the file rather than the original
file. The original file is not affected.

Reorganiz~~ion (REORG-YES) is required any time you
are both copying and printing an indexed file (OUTPUT
BOTH).

130

WORK Parameter (COPYFILE Statement)

The WORK paramrter applies to copying a data file from
one removable disk to another removable disk using the
same disk drive (drive 1). It tells the program whether or
not to use a work area on the fixed disk on drive 1.

The parameter WORK-YES means to use a work area.
WORK-NO means not to use a work area.

Note: The following 1able shows the maximum number
of volumes that can be copied in one run using the WORK
parameter:

Single-
Volume Multivolume Consecutive
Indexed Indexed or Direct

Parameter Files Files Files

WORK-YES 19 volumes 9 .volumes 19 volumes

WORK-NO 20 volumes 10 volumes 20 volumes

Work Area

If you have only one disk drive (R1 and F1), a common
use of the Copy/Dump program might be to copy a file
from one removable disk to another removable disk. To
do this, the program must use a work area on the fixed
disk.

SELECT KEY and PKY Parameters (SELECT Statement) .

The SELECT KEY and SELECT PKY parameters apply to
copying part of an indexed file. The parameters are FROM
and TO.

The FROM parameter (FROM-'key') gives the key of the
first record to be selected. The TO parameter (TO-'key')
gives the key of the last record to be selected. The record
key between those two in the file index identify the remain
ing records to be selected.· If you want to select only one
record, use the same record key in both the FROM and TO
parameters.

For example, the parameters FROM-'000100' and
T0-'000199' mean that records identified by keys 000100
through 000199 are to be selected.

If the file index does not contain the key you indicate in
~FROM parameter, the program uses the next higher key
in the index.

You can omit the FROM or the TO parameter, but not
both. If you omit the FROM parameter, the program
assumes that the first key in the index is the FROM key.
If you omit the TO parameter, the program assumes that
the last key in the index is the TO key.

With the SELECT KEY parameter (but not PKY) you can
use less characters in the FROM or TO parameter than are
contained in the actual keys. If you do, the program ignores
the remaining characters in the key. The number of charac
ters used in the FROM and TO parameters need not be the
same.

For example, assume thatthe following are consecutive
record keys in an index: 99999, A1000, A1119, A1275,
A 1900, A 1995, and A2075. The parameters FROM-' A 1'
and TO-'A199' refer to record keys A1000 through A1995.

If none of the keys in the file index begin with the charac
ters you indicate in a FROM parameter, the program uses
the key beginning with the next high·er characters.

For example, assume that four consecutive record keys in
an index begin with these characters: A 1,A2,A8, and 81.
The parameters FROM-'A3' and TO-'A9' would refer to
the key beginning with the character AS.

SELECT RECORD Parameters (SELECT Statement)

The SELECT RECORD parameters can apply to any file,
but are normally used for sequential and direct files. These
parameters use relative record numbers to identify the
records to be selected.

Relative record numbers identify the record's location with
respect to other records in the file. The relative record
number of the first record is 1, the number of the second
record is 2, and so on.

The SELECT RECORD parameters are FROM and TO. The
FROM parameter (FROM-number) gives the relative record
number of the first record to be selected. The TO parameter
(TO-number) gives the number of the last record to be selec
ted. Records between those two records in the file are also
selected. If you want to select only one record, use the
same record number in the FROM and TO parameters.

For example, the parameters FROM-1 and T0-30 mean that
the first thirty records (1-30) in the file will be selected.

You can omit the FROM or the TO parameter, but not
both. If you omit the FROM Parameter, the program
assumes F ROM-1. If you omit the TO parameter, the pro
gram assumes that the number of the last record in the file
is the TO number~

Note: The maximum number allowed is 16,777,215.

FILE Parameter (SELECT Statement)

This parameter allows only selected records to be copied to
a disk, card, diskette or printer.

Copy /Dump Program ($COPY) 131

LENGTH and LOCATION Parameters (KEY Statement)

The KEY statement is used when building an indexed file
from a sequential file. _The LENGTH parameter specifies
the length (1 to 29) of.the key field. The LOCATION
parameter specifies the starting location (1 to 16384) of
the key field in the input record. When the KEY statement
_is used, the file described in the COPYO file statement must
be a disk file; and OUTPUT-DISK, OUTPUT-Fl LE or
OUTPUT-BOTH must be specified in the COPY Fl LE control
statement.

132

CARD AND DISKETTE CONSIDERATIONS ($COPY)-'

Card or Diskette Input

For card or diskette input files, end-of-file will be deter
mined by the presence of a record with /* in positions 1
and 2 and positions 3 through 80 or 3 through 96 or 3
through 128 blank. This allows a card or diskette input
file to contain /* records, assuming that at least one charac
ter is in positions 3 through 80, 3 through 96 or 3 through
128. A/& is handled the same as a/* record unless the
input device is the system READER. The presence of a
record with /& in positions 1 and 2 from the system
READER will be regarded as absolute end of file.

Card or Diskette Output

If the input record size (in bytes) is greater than the size
of the card or diskette record, the input record will be
truncated. If the input record size is less than the size of
the card or diskette record, the remaining portion of the
card or diskette record will contain blanks. For example,
if the input file contains 60-byte records, the card will con
tain blanks in columns 61 through 80 or 61 through 96 or
61 through 128. The diskette will be blank in the remaining
portion of the record length specified.

OCL CONSIDERATIONS

LOAD Sequence for Copying an Entire Disk

Keywords 0 Responses@ Considerations

READY LOAD None

LOAD NAME $COPY Name of Copy/Dump program.

UNIT R1, R2, F1, or F2 Location of disk containing Copy/Dump program.

MODIFY RUN None

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

BUILD Sequence for Copying an Entire Disk

Keywords 0 Responses@

READY BUILD

BUILD NAME procedure name

UNIT R1, R2, F1, or F2

LOAD NAME $COPY

UNIT R1, R2, F1, or F2

MODIFY jlNCLUDE
I utility control statements

OR RUN

LAUN

Considerations

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of Copy/Dump program.

Location of disk containing Copy/Dump program.

Response when including control statements in
procedure.

Response when not including control statements in
procedure

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

Copy /Dump Program ($COPY) 133

LOAD Sequence for Copying or Printing Files

Keywords 0 Responses e
READY LOAD

LOAD NAME $COPY

UNIT R1, R2, F1, or F2

FILE NAME COPYIN

UNIT R1, R2, F1, or F2

PACK disk name

LABEL file name

FILE NAME ICOPYO

OR

L Press PROG START

UNIT R1,R2,F1,orF2

PACK disk name

LABEL file name

RECORDS or TRACKS number

RETAIN T, P, or S

MODIFY RUN

Considerations

None

Name of Copy/Dump program.

Location of disk containing Copy/Dump program.

Name Copy/Dump program uses to refer to file to be
copied (input file).

Location of disk containing file to be copied.

Name of disk containing file to be copied.

Name by which file to be copied is identified on disk.

Name Copy/Dump program uses to refer to output file
being created.

If you are only printing records from a file, press PROG
START instead of typing COPYO. The next keyword
prompted will be MODIFY.

Location of disk on which output file is to be created.

Name of disk on which output file is to be identified on
disk.

Name by which output file is to be identified on disk.

Size of output file expressed either as number of records
(RECORDS) or number of disk tracks (TRACKS).

Designation (temporary, permanent, or scratch) of
output file.

None

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

134

BUI LO Sequence for Copying or Printing Files

KeywordsQ Responses f)

READY BUILD

BUILD NAME procedure name

UNIT R1, R2, F1, or F2

LOAD NAME $COPY

UNIT R1, R2, F1, or F2

FILE NAME COPYIN

UNIT R1, F1, R2, or F2

PACK disk name

LABEL file name

FILE NAME ICOPYO

OR

LPress PROG START

UNIT R1, R2, F1, or F2

PACK disk name

LABEL file name

RECORDS or TRACKS number

RETAIN T, P, or S

MODIFY I INCLUDE
I utility control statements

OR RUN

LRUN

Considerations

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of Copy/Dump program.

Location of disk containing Copy/Dump program.

Name Copy/Dump program uses to refer to file to be
copied (input file).

Location of disk containing file to be copied.

Name of disk containing file to be copied.

Name by which file to be copied is identified on disk.

Name Copy/Dump program uses to refer to output file

being created.

If you are only printing records from a file, press PROG
START instead of typing COPYO. The next keyword
prompted will be MODI FY.

Location of disk on which output file is to be created.

Name of disk on which output file is to be created.

Name by which output file is to be identified on disk.

Size of output file expressed either as number of records
(RECORDS) or number of disk tracks (TRACKS).

Designation (temporary, permanent, or scratch) of output

file.

Response when including control statements in
procedure.

Response when not including control statements in

procedure.

0 Only the keywords listed here are required. You can bypass the rest.

f) You end every response by pressing PROG START.

Copy/Dump Program ($COPY) 135

EXAMPLES

Copying an Entire Disk

Statements

READY

010 LOAD NAME $COPY

011 UNIT

020 DATE (XX/XX/XX) -

030 SWITCH (00000000) -

040 FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT }

II COPYPACK FROM-F2,TO-R2 }

ENTER '//' CONTROL STATEMENT
II END

COPYPACK IS COMPLETE }

Explanation

OCL LOAD Sequence

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

Message printed by Copy/Dump program.

Control statement supplied by operator.

System reprompts. END statement
terminates sequence.

Message printed by Copy/Dump program
to indicate successful copy.

• The Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-Fl in OCL sequence).

• The contents of the fixed disk on drive 2 (FROM-F2 in COPYPACK statement) are copied onto the removable disk on
drive 2 (TO-R2).

136

Copying a File From One Disk to Another

Statements

READY LOAD

************~************

010 LOAD NAME $COPY·

011 UNIT Fl

020 DATE

030 SWITCH

040 FILE NAME

041 UNIT Fl

042 PACK ~ Al

043 LABEL MASTER

050 FILE NAME CO PYO

051 UNIT Rl

052 PACK B2

053 LABEL BACKUP

054 RECORDS

055 TRACKS 50

056 LOCATION

057 RETAIN p

MODIFY

ENTER 'II' CONTROL STATEMENT

II COPYFILE OUTPUT-DISK

f
f

ENTER '/I' CONTROL STATEMENT }
II END

File to be
copied
(input file) OCL LOAD Sequence

Boxed areas are operator responses.

Keywords for which no responses
are shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do
not appear on the same line.

File being
created
(output file)

Message printed by Copy/Dump program.

Control statement supplied by operator.

System reprompts. END statement ter
minates sequence.

Copy /Dump Program ($COPY) 137

Explanation

• Copy/Dump program is loaded from fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• Input file (OCL sequence):

1. Name that identifies file on disk is MASTER (LABEL-MASTER).

2. Disk that contains the file is the fixed disk on drive 1 (UN IT-F1). Its name is A 1 (PACK-A 1).

• Output file (OCL sequence):

1. Name to be written on disk to identify the file is BACKUP (LABEL-BACKUP).

2. Disk that is to contain the file is the removable disk on drive 1 (UNIT-R1). Its name is B2 (PACK-B2).

3.' The file is to be permanent (RETAIN-P).

4.. The length of the file is 50 tracks (TRACKS-50).

• The COPY Fl LE statement tells the program to create the output file using all the data from the input file. The output
file is a copy of the input file.

138

Printing Part of a File

Statement

READY LOAD

**********************·

010 LOAD NAME $COPY

011 UNIT Fl

020 DATE

030 SWITCH

040 FILE NAME

041 UNIT

042 PACK

043 LABEL

050 FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT

/I COPYFILE OUTPUT-PRINT

Input file

OCL LOAD Sequence

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do not
appear on the same line.

} Message printed by Copy/Dump program.

} Control statement supplied by operator.

ENTER '//' CONTROL STATEMENT }
I/ SELECT KEY ,·FROM- I ADAMS I I TO- I BAKER I .

ENTER '//' CONTROL STATEMENT
II END

Sequence repeats until operator enters
END statement.

Explanation

• Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• Input file (OCL sequence):

1. Name that identifies the file on disk is BACKUP (LABEL-BACKUP).

2. Disk that contains the file is the removable disk on driv.e 1 (UNIT-R1). Its name is B2 (PACK-B2).

• The file is being printed (COPYFILE statement).

• The file is an indexed file. The part being printed is identified by the record keys from ADAMS to BAKER in the index
(SELECT statement).

Copy /Dump Program ($COPY) 139

Copy a Disk File to a Card File

Stateme~t

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

041 UNIT

042 PACK

043 LABEL

050 FILE NAME

MODIFY

ENTER "II" CONTROL STATEMENT

II COPYFILE OUTPUT-DATA96

ENTER 'II' CONTROL STATEMENT

II END
Explanation

}

}

}

Input file

OCL LOAD Sequence

Boxed areas are operator responses.

Keywords for which no responses are shown
are the ones bypassed.

RUN is the response to MODI FY even
though the two words d~ not appear on
the same line.

Message printed by Copy/Dump program.

Control statement supplied by operator.

Sequence repeats until operator enters END
statement.

o Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

o Input file (OCL sequence):

1. Name that identifies the file on disk is MASTER (LABEL-MASTER).

2. Disk that contains the file is the removable disk on drive 1 (UNIT-Al). Its name is R 1 R1 R1 (PACK-A 1R1R1).

o The file is being copied to cards OUTPUT-DATA96 (COPYFILE statement).

140

Copy a Disk File to the 3741 (Diskette)

Statement

READY LOAD

010 LOAD NAME $COPY

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

041 UNIT Rl

042 PACK RlRlRl

043 LABEL

050 FILE NAME

MODIFY

ENTER' 'II' CONTROL STATEMENT

II COPYFILE OUTPUT-3741,LENGTH-128

ENTER 'II' CONTROL STATEMENT

II END

Explanation

}

}

Input file

OCL LOAD Sequence

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODI FY even
though the two words do not appear on
the same line.

Message printed by Copy/Dump program.

Control Statement supplied by operator.

Sequence repeats until operator enters END
statement.

• Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT·F1 in OCL sequence).

• Input file (OCL sequence):

1. Name that identifies the file on disk is SALES (LABEL-SALES)..

2. Disk that contains the file is the removable d·isk on drive 1 (UN IT-R 1) . Its name is R 1 R 1 R 1 (PACK-R 1R1R 1).

o The file is being copied to the 3741 diskette OUTPUT-3741 (COPYFILE statement). The record length on the 3741
output file is 128 (LENGTH-128).

Copy/Dump Program ($COPY) 141

Copy a Disk File to the 3741 (Diskette) and Print a Part of
the File

Statement

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

041 UNIT

042 PACK

043 LABEL

050 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT

Input
1
file '

OC L LOAD Sequence

Boxed areas are operator responses.

l<eywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODI FY even
though the two words do not appear on
the same line.

} Message printed by Copy/Dump program.

11 COPYFILE OUTPUT-' PRINT, 3 7 41 1 ,LENGTH-80 } Contror statement supplied by operator.

ENTER 'II' CONTROL STATEMENT

II SELECT RECORD,FROM-5,T0-325

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Sequence repeats until operator enters END
statement.

o Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• INPUT file (OCL sequence):

1. Name that identifies the file on disk is BACKUP (LABEL-BACKUP).

2. Disk that contains the file is the removable disk on drive 1 (U'N IT-R·1)'. Its name is R 1R1R1 (PACK-A 1R1R1).

e The entire file will be copied from disk to the 3741 (OU'tPUT-3741). The record length of the file on the 3741 is
80 (LENGTH-80). Records 5 through 325 will be printed (RECORD,FROM-5,T0-325).

142

Copy a Card File to a Diskette and Print the Entire File

Statement

READY

oio LOAD NAME $COPY

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT }

OCL LOAD Sequence

Boxed areas are operator responses.

RUN is the response to MODI FY even
though the two words do not appear on ·
the same line.

Message printed by Copy/Dump program.

1 1
l Control statement supplied II COPYFILE OUTPUT- PRI,NT,3741 ,INPUT-DATA96,LENGTH-96 ~ byoperator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Sequence repeats until operator enters END
statement.

o Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

o The entire card file from the DATA96 (INPUT-DATA96) will be copied to the 3741 diskette and printed
(OUTPUT-'PRINT,3741 '). The record length of the output file on the 3741 will be 96 (LENGTH-96).

Copy /Dump Program ($COPY) 143

Copy and Print a Portion of a File on a Diskette to a Card
Device

Statement

READY

010 LOAD NAME $COPY

011 NAME

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT
\

}

OC L LOAD Sequence

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODI FY even
though the two words do not appear
on the same line.

Message printed by Copy/Dump program.

I I COPYFILE OUTPUT- 'PRINT, DATA9 6 ' , INPUT-3 7 41 , LENGTH-10 0 } Control statement supplied

by operator.
ENTER 'II' CONTROL STATEMENT

II SELECT RECORD,FROM-16,T0-67,FILE-YES !
ENTER 'II' CONTROL STATEMENT

II END

Explanation

• Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1).

Sequence repeats until operator enters END
statement.

• Records 16 through 67 will be copied (Fl LE-YES) to the DATA96 and printed (OUTPUT-'PRINT,DATA96') from
the 3741 diskette (INPUT~3741) and the record length in the HDR1 label on the 3741 diskette is 100 (LENGTH-100).

Note: Only the first 96 positions of the diskette records will be copied to· the DATA96.

144

Copy a Diskette File to a Disk File and Print Only the
Copied Records

Statement

READY

010 LOAD

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME CO PYO

041 UNIT

042 PACK

043 LABEL

044 TRACKS

045 RETAIN

050 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT

Output file

II COPYFILE OUTPUT-BOTH,INPUT-3741,LENGTH-50

ENTER 'II' CONTROL STATEMENT

II SELECT RECORD,FROM-10,T0-300,FILE-YES

ENTER 'II' CONTROL STATEMENT

II END

}

}

l

OCL LOAD Sequence

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODI FY even
though the two words do not appear
on the same line.

Message printed by Copy/Dump program.

Control statement supplied by operator.

Sequence repeats until operator enters END
statement.

Copy/Dump Program ($COPY) 145

Explanation

• Copy/Dump program is loaded from the fixe~ disk on drive 1 (UNIT-F1 in OCL sequence).

• OUTPUT file (OCL sequence):

1. Name to be written on disk is MASTER (LABEL-MASTER).

2. Disk that is to contain the file is the removable disk on drive 2 (UNIT-R2). Its name is R2R2R2
(PACK-R2R2R2).

3. The size of the file is 5 tracks (TRACKS-5).

4. The file is to be temporary (RETAIN-T).

• Records 10 to 300 will be copied (Fl LE-YES) and printed (OUTPUT-BOTH). Input is the 3741 (INPUT-3741)
and the record length in the HDR1 label on the 374f is 50 (LENGTH-50).

146

Create an Indexed File from a Sequential Card File

Statement

READY

010 LOAD NAME $COPY

011 UNIT F

020 DATE

030 SWITCH

040 FILE NAME

041 UNIT R2

042 LABEL SALES

043 PACK

044 TRACKS 15

045 RETAIN T

050 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT

II COPYFILE OUTPUT-DISK,INPUT-DATA96

ENTER 'II' CONTROL. STATEMENT

II KEY LENGTH-5,LOCATION-l

ENTER 'II' CONTROL STATEMENT

II END

OCL LOAD Sequence

Boxed areas are operator
responses.

Keywords for which no
responses are shown are

Output the ones bypassed.
File

RUN is the response to
MODIFY even though the
two words do not appear
on the same line.

Message printed by Copy/Dump program.

Control statement supplied by operator.

Sequence repeats until operator enters
END statement.

Copy /Dump Program ($COPY) 14 7

Explanation

• Copy/Dump program is loaded from fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• OUTPUT file (OCL sequence):

1. Name to be written on disk is SALES (LABEL-SALES).

2. Disk that is to contain the output file is the removable disk on drive 2 (UNIT-R2). Its name is R2R2R2
(PACK-R2R2R2).

3. The file is to be temporary (RETAIN-T).

4. The size of the file is 15 tracks (TRACKS-15).

• The COPYFI LE statement tells the program that all records will be copied (OUTPUT-DISK) from card input
(INPUT-DATA96).

• The KEY statement tells the program to create an index of 5-byte keys (LENGTH-5) starting in position 1
(LOCATION-1).

148

Create an Indexed Disk File from Sequential Disk Input

Statement

READY LOAD

010 LOAD NAME $COPY

011 UNIT Fl

020 DATE

030 SWITCH

040 FILE NAME COPY IN

041 UNIT Rl

042 PACK RlRlRl

043 LABEL CONSVF

050 FILE NAME COP YO

051 UNIT R2

052 PACK R2R2R2

053 LABEL INDSVF

054 RECORDS - 50

055 LOCATION- 8

056 RETAIN T

060 FILE NAME

MODIFY

II

II

II

ENTER 'II' CONTROL STATEMENT
COPYFILE OUTPUT-DISK
ENTER 'II' CONTROL STATEMENT
KEY LENGTH-5,LOCATION-l
ENTER 'II' CONTROL STATEMENT
END l

OCL LOAD Sequence

Input Boxed areas are operator
File responses.

Keywords for which no
responses are shown are
the ones bypassed.

RUN is the response to
MODI FY even though
the two words do not
appear on the same line.

Output
File

Message printed by Copy/Dump program.

ContrQI statement supplied by operator.

Sequence repeats until operator enters
END statement.

Copy/Dump Program ($COPY) 149

Explanation

• Copy/Dump program is loaded from fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• Input file (OCL sequence)

1. Name that identifies file on disk is CONSVF (LABEL-CONSVF).

2. Disk that contains the file is the removable disk on drive 1 (UNIT-R1).

• Output file (OCL sequence)

1. Name to be written on disk to identify the file is INDSVF (LABEL-INDSVF).

2. Disk that is to contain the file is the removable disk on drive 2 (UNIT-R2). Its name is R2R2R2
(PACK-R2R2R2).

3. The file is to be temporary (RETAIN-T).

4. The file will contain 50 records (RECORDS-50).

5. The file is located at track 8 (LOCATION-8).

• The COPY Fl LE statement tells the program to create the output file (OUTPUT-DISK) using all the data from the
input file.

• The KEY statement tells the program to create an index of 5-byte keys (LENGTH-5) starting in position 1
(LOCATION-1).

150

Library Maintenance Program ($MAINT)

Your programs are stored on disk in an area called a library.
You can update or add new entries in this library. In order
to do so, you must use the Library Maintenance program.

The Library Maintenance program ($MAINT) has five func
tions:

Function

Allocate

Copy

Delete

Modify

Rename

Meaning

Create (reserve space for), delete, reorganize,
and change the sizes of libraries; create the
scheduler work area and rolHn/roll-out area
on a system pack.

Place entries in, and display the contents of,
libraries.

Delete library entries.

Modify source library entries.

Change the names of library entries.

The control statements you must supply depend on the
function you are using.

All packs referenced by the control statements must remain
online during the Library Maintenance run.

Library Description

Source Library

The source library is an area on disk for storing procedures
and source statements. Procedures are groups of OCL
statements used to load programs. The statements can be
followed by input data for the programs. (Procedures for
utility programs can, for example, contain utility control
statements.) Source statements are sets of data, the most
common of which are RPG 11 source programs and Disk
Sort sequence specifications.

Object Library

The object library is an area on disk for storing object pro
grams and routines. Object programs are programs and sub
routines in such a form that they can be loaded for execu
tion. (They are sometimes called load modules.) Routines
are programs and subroutines that need to be link-edited
into object programs before they can be loaded for execu
tion. (They are sometimes called object modules.)

Location of libraries on Disk

Libraries can be located anywhere on disk. However, the
location of a source library with respect to an object library
is always the same:

User Area Source Library Scheduler Roll-in/
• Data Files o Procedures Work Area Roll-out

LTracks 0-7

•Source
Statements

Area

Object Library User Area
•Object Programs •Data Files
•Routines

'Upper Boundary

The boundaries of a source library are fixed. They can be
changed only by the allocate function of the Library Main
tenance program. The upper boundary of an object library,
however, can be moved as additional space is needed when
entries are placed in the library. This happens only if space
is available following the library and if the entries being
placed beyond the normal boundary are not permanent
entries.

Organization of Library Entries

Entries are stored in the object library serially; that is, a
20-sector program occupies 20 consecutive sectors. Tem
porary entries follow all permanent entries in the object
library.

If necessary, the upper boundary is changed to allow more
space for temporary entries. The upper boundary of the
library is extended to the end of, the pack or to the first
temporary or permanent file, allowing the maximum
amount of space for the temporary library entry. At the
successful completion of the copy, the upper boundary is
returned to the track boundary at the end of the last 1

temporary entry. If the copy was not completed successful
ly, the upper boundary may remain extended. When a per
manent entry is placed in the library or the library is reorg
anized, all temporary entries are deleted and the upper
boundary returns to its original location. Permanent entries
cannot exceed the original upper boundary.

Library Maintenance Program ($MAINT) 151

Gaps can occur in the object library when an entry is delet
ed. The associated directory entries will point to these gaps.
When the Library Maintenance program places a new entry
in the library, it searches the directory for a gap that has~
the same number of sectors, or the fewest number of sectors
over the number required by the new entry. If the entry is
smaller than the gap, the last part of t_he gap will not be
pointed to by a directory entry. Since this gap has no dir
ectory entry, it will not be used until the library is reorgan
ized.

If the number of unusable sectors becomes excessive, the
library should be reorganized. In reorganizing entries, the
Library Maintenance program deletes temporary entries and
shifts permanent entries so that gaps do not appear between
them. This makes more sectors available for use.

The source library differs from the object library in that
entries within the source library need not be stored in con
secutive sectors. An entry can be stored in many widely
separated sectors with each sector pointing to the sector
that contains the next part of the entry. When an entry is
placed in the source library, it is placed in as many sectors
as required regardless of where the sectors are located within
the library.

The boundary of the source library cannot be expanded;
therefore, an entry must fit within the available library
space. To provide as much space as possible within the
prescribed limits of the source library, the system compres
ses entries. That is, blanks and duplicate characters are
removed from entries. Later, if the entries are printed or
punched, the blanks and duplicate characters are reinserted.
When the size of the source library is changed or the source
library is reorganized, all temporary entries are deleted.

Library Directories

The program creates a separate directory for each library.
Every library entry has a corresponding entry in its library
directory. The directory entry contains such information
as the name and location of the library entry. The program
also creates a system directory, which contains information
about the size and available space in libraries and their
directories.

152

Organization of This Section

The five functions are described separately. Every descrip
tion contains the following:

1. List of specific uses.

2. Control statement summary indicating the form of
the control statement needed for each use.

3.

4.

5.

Parameter descriptions explaining, in detail, the con
tents and meanings of the parameters.

Function descriptions explaining the details of each
function.

Examples that include OCL statements, utility control
statements, and explanations of their use.

OCL considerations for the program precede the examples.

ALLOCATE

The allocate function of the Library Maintenance program
allows you to:

• Create libraries, scheduler work area, and roll-in/roll-out
area.

• Change the size of libraries.

• Delete libraries.

• Reorganize libraries.

Creating Libraries

Creating a library involves:

• Assigning a library to a disk.

• Assigning space for the library directory.

• Using a work area.

Assigning a Library to a Disk: You are al lowed one source
and one object library per disk. The libraries can be located
anywhere on the disk where space is made available as long
as the source library precedes the object library. You
needn't have both libraries on a disk.

Assigning Space for the Library Directory: The Library
Maintenance program creates a separate directory for each
I ibrary. A directory for a source or object library contains
information concerning each library entry. Ttiis informa
tion includes the name and location of the library entry.
For a source library, the first two sectors of the first track
are assigned to the directory. For an object library which
includes system programs, the first three tracks are assigned
to the directory. If system programs are not included, only
the first track is assigned to the directory. The directory
size is overridden by the DI RSIZE parameter if used (see
DIRSIZE).

Another type of directory, the system directory, is also
created by this program. The system directory contains
information concerning the libraries and their directories.
This information includes the size of and available space
in the libraries and their directories. The system directory
is contained in the volume label on any disk pack.

Allocate Considerations and Restrictions

This program has restrictions and operating conditions that
the user must be aware of when maintaining libraries.

Allocation of Disk Space

The Library Maintenance program allocates disk space for
each of the following functions:

• Create a I ibrary

• Increase the size of a library

• Reorganize a library

• Dynamically extend an object library to copy temporary
entries to the library

• Sort a directory before it is printed

• Modify a source library entry

The space allocated by the program is the first contiguous
space large enough for the function to be performed. The
Library Maintenance program will use as much space as is
available to the end of the pack or to the first temporary
or permanent data file, removing all scratch files in this
area. If within a single load of the program, there are
functions performed which require more than four disk
areas to be allocated, a halt will occur. The Library Main
tenance program must be reloaded to continue.

Removing Temporary Entries

When a library is reorganized, its size is changed, or it is
moved, all temporary entries in that library are deleted.
This applies to both the source and object libraries.

Library Restrictions

The Allocate function cannot reference the libraries on the
pack from which the Library Maintenance Program or the
system was loaded. For example, if the system was loaded
(IPL) from F1 and the Library Maintenance Program was
loaded from R1, the source or object libraries on F1 and
R 1 cannot be referenced on an ALLOCATE statement.

Moving the Object Library

When creating or changing the size of the source library on
a pack that contains an_ object library, the object library is
moved and reorganized and all temporary entries are deleted.

Control Statement Restrictions

The SOURCE or OBJECT parameter must be specified in
the ALLOCATE statement. If the SYSTEM or DIRSIZE
parameter is specified, the OBJECT parameter must also
be specified.

Library Maintenance Program ($MAINT) 153

Allocate Control Statement Summary

{
number} {number} {NO } II ALLOCATE TO-code,SOURCE R ,OBJECT- R ,SYSTEM- ·YES ,DIRSIZE-number,WORK-code

154

Source
Library

Object
Library

UseO

l
Create:

Change Size:

Delete:

Reorganize:

~ :~:::~ s;ze:

(Delete:

Reorganize:

Parameter Needed e
TO-code,SOURCE-number,WORK-code·8

TO-code,SOURCE-number ,WORK-code

TO-code,SOURCE-0

TO-code,SOURCE-R,WORK-code

TO-code,OBJECT-number,SYSTEM- { ~~S}

TO-code,OBJECT-number,WORK-code 0
TO-code,OBJECT-0

TO-code,OBJECT-R,WORK-codeO

0 You can indicate a source library use, any object library use, or uses involving both libraries (for example, deleting the source library
and changing. the size of the object library).

f) If you are indicating uses for both libraries, use only one TO parameter. (The libraries must be on the same disk.) Also, use only one
WORK parameter if both uses require a WORK parameter.

e The WORK parameter is needed only if the disk contains an object library that you are hot deleting.

0 The WORK parameter is needed only if other functions are also being performed.

Allocate Parameter Summary

Parameter

TO-code

SOURCE-number (no source library on disk)

SOURCE-number (source library already on disk)

SOURCE-R

OBJECT-number (no object library on disk)

OBJECT-number (object library already on disk)

OBJECT-R

DIRSIZE-number

SYSTEM-NO

SYSTEM-YES

WORK-code

Meaning

Location of disk that contains or will contain the library. Possible codes
are R1, F1, R2, and F2

Create a source library. Number indicates the number of tracks you want to assign.

Delete or change the size of the source library. Use depends on number:

Number Use

0 Delete

Any numb_er but zero Change size

Reorganize the source library.

Create an object library. Number indicates the number of tracks you want to assign.

Delete or change the size of the object library. Use depends on number:

Number Use

0 Delete

Any number but zero Change size

Reorganize the object library.

Number of tracks you want for the directory when creating, reallocating, or
reorganizing the object library.

Do not create a scheduler work area. This will be a program pack.

Create a scheduler work area. This will be a system pack.

Location of disk containing space the program can use as a work area. Possible codes
are R1, F1, R2, or F2. Cannot be the same disk that was specified in the TO-code.

Library Maintenance Program ($MAINT) 155

PARAMETER DESCRIPTIONS

TO Parameter

The TO parameter (TO-code) indicates the location of the
disk that contains, or will contain, the library. If the pro
gram use involves both libraries, the libraries must be on the
same disk. The TO parameter cannot be the same unit from
which the Library Maintenance program or the system was
loaded.

Codes for the possible locations are as follows:

Code Location

R1 Removable disk on drive 1.
F 1 Fixed disk on drive 1.
R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

SOURCE and OBJECT Parameters

The SOURCE and OBJECT parameters identify library
uses:

Parameter

SOU ACE-number
OBJECT-number
(number is not
zero)

SOURCE-0}
OBJECT-0

SOURCE-A}
OBJECT-A

156

Use

If the disk contains no library, this
parameter means create a library.
Number is the number of tracks
you want to assign to the library.

If the disk contains_a library, this
parameter means change the library
size. Number is the number of
tracks you want to assign to the
library.

Delete the library.

Reorganize the library.

DIRSIZE Parameter

The DI RSIZE parameter allows the user to specify the size
of the object library directory. The number of tracks spe
cified (1-9) overrides the SYSTEM parameter in dete,rmin
ing directory size. Each track can contain 288 directory
entries. One entry is needed for the directory, so the formu
la for the number of entries in a directory is (t x 288)-1,
where t is the number of tracks. If the DI RSIZE parameter
is omitted, the SYSTEM parameter determines the direc
tory size.

SYSTEM Parameter

The SYSTEM parameter applies when creating, changing
the size of, and reorganizing object libraries. It tells the
program whf!ther you intend to include system programs
in the library and create a system pack that can be used to
perform initial program load. If system programs are to be
included, a scheduler work area must be assigned. See
Using the Copy function, Library to Library for informa
tion about creating a system pack.

Space for the scheduler work area is assigned immediately
preceding the object library. If the disk contains a source
library, the work area is between the source and object
libraries. For information about the size of the scheduler
work area, see Creating an Object Library under Using the
Allocate Function.

The following charts show the results of coding the SYS
TEM parameter for different allocate uses.

Creating an Object Library

Parameter Schedule~ Work Area Directory Size*

SYSTEM-YES Created Three tracks

SYSTEM-NO Not Created One Track

not coded Not Created One Track

* The directory size is overridden if the DIRSIZE parame
ter is used.

Changing the Size or Reorganizing an Object Library on a
Pack That ContCJins a Scheduler Work Area

Parameter Scheduler Work Area Directory Size*

SYSTEM-YES Retained not changed

SYSTEM-NO Removed not changed

not coded Retained not changed

*The directory size is overridden if the DI RSIZE parameter
i~ coded.

Changing the Size of or Reorganizing an Object Library on
a Pack That Does Not Contain a Scheduler Work Area

Parameter Scheduler Work Area Directory Size*

SYSTEM-YES Created not changed

SYSTEM-NO Not Created not changed

~not coded Not Created not changed

*The directory size is overridden if the DI RSIZE parameter
is coded.

WORK Parameter

The WORK parameter (WORK-code) indicates the location
of the disk that contains a work area. Library entries are
tempo.rarily stored in the work area while the program
moves and reorganizes libraries.

Codes for the possible disk locations are as follows:

Code Location

R.1 Removable disk on drive 1.·
F1 Fixed disk on drive 1.
R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

when the WORK parameter is coded on an ALLOCATE
statement, an additional allocation of disk space may result.
(See index entry Allocation of Disk Space.}

Size of the Work Area: The work area must be large enough
to hold the directory and the permanent entries of the source
library, object library, or both libraries depending on the
program use. If you are combining uses, such as changing
the sizes of both libraries, the work area must be large enough
to hold the contents of both I ibraries. ·

Use

Create a source library (disk
contains an object library).

Change source library size
(disk contains an object
library).

Change source library size
(disk doesn't contain an
object library).

Reorganize source library.

Change object library size.

Reorganize object library.

Contents of Work Area

Object I ibrary.

Source library and ob
ject I ibrary.

Source library.

Source library.

Object library (see
Compress in Place).

Object library (see
Compress in Place).

Library Maintenance Program ($MAINT) 157

Location of Work Area on Disk: The program uses the
first available disk area large enough to hold the library, or
libraries.·

Location of Disk Containing the Work Area: The work
area can be on either disk on either drive. However, it can
not be the same disk as the one you specified in the TO
parameter. The only requirement is that the disk must have
an available area large enough for the work area. If your
system has two disk drives, the program works faster if the
disk containing the libraries is on a different drive than the
disk containing the work area.

Using the Allocate Function

Creating a Source Library (SOURCE-number)

Source Library Size

• Minimum: One track

o Maximum: Number of tracks in the available area

• Regardless of the number of tracks you specify, the first
two sectors of the firs! track are assigned to the library
directory. Additional sectors are used as needed for the
directory.

Placement of Source Library (Disk With an Object Library)

• The source library must immediately precede the object
library. A disk area large enough for the source library
must follow the object library because the program
moves the object library. to make room for the source
library. To do this, the program needs a work area.
(See WORK Parameter.) The object library is reorgan
ized and all temporary entries are deleted.

• If you allocate a source library after deleting it, the
program automatically moves the object library to make
room for the source library. The starting location of
the source library is the previous starting location of the
object library.

Placement of the Source Library (Disk Without an Object
Library): The program assigns the source library to the
first available disk area large enough for the library. If you
allocate a source library after deleting it, the source library
is assigned the same way.

158

Disk Space before creating the Source Library:

Object Library
(30 tracks)

Available Space
(15 tracks)

I 0-1 t- a-31~1-4-30.52,,__.I
Tracks

Customer
Files

Disk Space after creating the Source Library:

Source Object Library Available Customer)
Lib. (30 tracks) Space Files
(5 tracks) (10 tracks)

I 0-1 I s-12 r--13-42 • 1 • 43-52-+-j
Tracks

Changing the Size of (Rea/locating) a Source Library
(SOURCE-number)

I
~

Any time the program changes the source library size, it
reorganizes both the source and object libraries and deletes
all temporary entries. (See Reorganizing a Source Library.)
To do this, it needs a work area. (See WORK Parameter.)

Making the Source Library Larger

• If the disk contains an object library, space must be
available immediately following the object library. The
program moves the object library to make tracks avail
able at the end of the source library.

• If the disk does not contain an object library, space
must be available immediately following the source
library.

Disk Before Tracks Are Added to Source Library:

Source Object Available Customer'
Library Library Space Files
(10 tracks) (30 tracks) (15 tracks)

l

0-1 I 8-17 l-18-47_.J 48-62 I
Tracks

Disk After Five Tracks Are Added to Source Library:

Source Object Available Customerl
Library Library Space Files
(15 tracks) (30 tracks) (10 tracks)

0-71 8-22 j.--23~52·~ 53-62' I
Tracks

Making the Source Library Smaller

o If the disk contains an object library, the program
moves the end location of the source library to make
the library smaller. The object library is moved and
space becomes available following the object library.

o If the disk does not contain an object library, the
program moves the end location of the source library to
make the source library smaller.

Disk Before Source-Library Size Was Decreased:

Source Object Customer l
Library Library Files
(15 tracks) (30 tracksJ

I 0-1 !-a-22-..... 1 ,,.___23-52---"'1• I
Tracks

Disk After Five Tracks Were Taken From Source Library:

Source Object Available Customeri
Library Library Space Files
(10 tracks) (30 tracks) (5 tracks)

l-+-18-47..._., 48-52
Tracks

Deleting a Source Library (SOURCE-OJ

The program makes the disk area occupied by the source
library available for other use (disk files). The starting
location of the library is moved to the start of the ob-

; ject library.

If you try to reinstate a source library, the program checks
to make sure there is enough space to contain the combined
source and object libraries (th~ check begins at the starting
location of the library).

Disk Before Source Library Deleted

Source Object Library Customer
Library (30 tracks) Files
(15 tracks)

I 0-1 l-a-22-. ..._l· -23-52~

Disk After Source Library Deleted (SOU RCE-0 only)

Available
Space
(15 tracks)

Object Library Customer
(30 tracks) Files

I 0-1 j-a-22·-1-23.s2--J
Tracks

~

To retain the deleted space for library usage, the additional
parameter OBJECT-A may be used with SOURCE-0 on the
same allocate statement. As a result the starting location
of the library will remain the same.

Disk Before Source Library Deleted

Source
Library
(15 tracks)

Object Library
(30 tracks)

1 ·o-1 J--a-22-l-23-52-1

Customer
Files

Disk After Source Library Deleted With Object Library
Reorganized (SOURCE-0 with OBJECT-A)

Object Library
(30 tracks)

Available
Space
(15 tracks)

I 0-71-8-37-t-38-52--l

Reorganizing a Source Library (SOU RCE-R)

Reason for Reorganizing the Library: Areas from which
source library entries (procedures or source) are deleted
are completely reused for new entries. If an entry exceeds
the space in such an area, the program puts as much of the
entry as will fit in the area and continues the entry in the
next available area. In th is way, the program efficiently
uses library space. This can, however, decrease the speed
at which those entries can be read from the library. There
fore, if you frequently add and delete source library entries,
you should reorganize your source library periodically.

Reorganizing the Library: The program relocates entries
so that no entry is started in one area and continued in
another. All temporary entries are deleted. The program
needs a work area. (See WORK Parameter.)

Creating an Object library (OBJECT-number)

Object Library Size

• Minimum: Three tracks, including the directory tracks.

• Maximum: Number of tracks in available area.

o Library Directory: The'first three tracks in the library
are reserved for the library directory if the library is to
contain system programs; otherwise, only the first track
is used. If the DI RSIZE parameter is entered, the
directory size specified is used.

Library Maintenance Program ($MAINT) 159

• Scheduler Work Area: The scheduler is a component of
the System/3 SCP that reads and processes OCL state
ments. It uses a work area on disk, called the scheduler
work area (SWA), to temporarily save OCL file label in
formating during the processing of a program. The area
is allocated when SYSTEM-YES is specified. The work
space is not included in the number you specify in the
OBJECT parameter; the space is calculated and assigned
by the Library Maintenance program. The amount of
space needed depends on whether the inquiry capability
is generated in the supervisor. All systems require two
tracks, the inquiry feature requires additional tracks for
a Roll-in/Roll-out atea. The number of tracks needed
depends on the main storage size of the system.

Main Storage Size Roll-in/Roll-out Tracks

SK 4

12K 4

16K 5

24K 6

32K 8

The SWA contains disk pack usage information, F1 and F7
label information, an initiator table, utility control card area,
and miscellaneous work areas. (See Maximum Number of
Files in SWA.)

Placement of Object Library (Disk With a Source Library):
Space for the object library must be available immediately
following the source library.

Placement of Object Library (Disk Without a Source
Library): The program assigns the object library to the
first available disk area that is large enough.

Changing the Size of (Reallocating) an Object Library
(OBJECT-number)

Making the Library Larger: The number of tracks you
want to add must be available imm~diately following the
object library. The program assigns the additional tracks
to the library. (The starting location of the library remains
unchanged.)

160

Making the Library Smaller.: The program moves the end
location of the object library to decrease the library size.
Tracks, therefore, become available following the library.

Reorganizing the Library: Any time the program changes
the library size, it also reorganizes the library and deletes
all temporary entries. (See Reorganizing an Object Library.)
If other functions are also being performed with the reorgani
zation, the program needs a work area. (See WORK Param·
eter.) If not, a work area is not used. (See Compress in
Place.)

Deleting an Object Library (OBJECT-OJ

The program makes the disk area occupied by the object
library (and the scheduler work area if this was a system
pack) available for other use.

Reorganizing an Object Library (OBJECT-R)

Gaps can occur between object library entries when you
add and delete entries. By reorganizing the library, these
gaps are removed. When the library is reorganized, all
temporary entries are deleted. If other functions are also
being performed with the reorganization, the program needs
a work area. (See WORK Parameter.) If not, a work area
is not used. (See Compress in Place.)

Compress in Place (OBJECT- { R })
Number

If the object library is being reorganized or the size of the
object library is being changed and no other functions are
being performed, the object library is compressed in place.
This means that the library is reorganized with all gaps
removed and all temporary entries are deleted without
using a work area. The WORK parameter is ignored if it is
supplied.

A work area is needed if a source library function is being
performed or if the directory size (DI RSIZE parameter)
or the pack type (SYSTEM parameter) is being changed
in conjunction with an object library function.

Compress in place allows the user with a single-spindle or
half capacity system to reorganize the object library.

COPY

The copy function of the Library Maintenance program
allows you to copy:

Reader-to-Library: Add or replace a library entry. The
reader is the system input device.

File-to-Library: Add or replace one or more library entries.

A 5444 disk file is the input.

Library-to-Library

o Copy one library entry (or those entries with the same
name from all libraries).

o Copy library entries that have names beginning with
certain characters.

o Copy all library entries.

o Copy minimum system.

Library-to-Printer

• Print one library entry (or those entries with the same
name from all libraries).

• Print library entries that have names beginning with
certain characters.

• Print all library entries of a certain type.

• Print directory entries for library entries of a certain
type.

• Print entries from all dire~tories including the system
directory.

• Print system directory only.

Library Maintenance Program ($MAINT) 161

Library-to-Card

• Punch one library entry (or those entries with the same
name from all libraries).

• Punch library entries that have names beginning with
certain characters.

• Punch all library entries of a certain type.

Library-to-Printer And Card

• Print and punch one library entry (or those entries with
the same name from all libraries).

• Print and punch library entries that have names beginning
with certain characters.

• Print and punch all temporary or permanent library

entries of a certain type.

Copying a library entry involves:

• Identifying the location of an entry.

• Identifying an entry.

• Removing and reinserting blanks and duplicate
characters.

Identifying the Location of an Entry. An entry can be
read from the system input device, a file or from disk. It
can be copied to disk, printer, or cards.

Identifying an Entry. Entries are identified by their type
and name. Entries that can be copied include source
library and object library entries. A name identifies
specific entries within the library. You can also further
identify an entry by designating whether it is temporary
or permanent. This allows the program to make a check
before replacing an entry.

Removing and Reinserting Blanks and Duplicate Characters.
Before source statements or procedures are put m me
source library, blanks and duplicate characters are removed
to save space. When the source statements or procedures
are used blanks and duplicate characters are reinserted.

I

162

COPY Control Statement Summary: Reader-To-Library

Add or Replace a Library Entry

II COPY FROM-READER,LIBRARY·{~ }NAME-name,

TO-code,RETAIN·{!}

Library Entry:

II CEND l Mu,st always foll.ow the source or object
entry being placed into the source or
object library.

Note: /* or!& statements cannot be present in the
entries being copied into the libraries.

COPY Control Statement Summary: File-To-Library

ACfd or Replace One or More Library Entries

II COPY FROM-DISK,FI LE-filename,RECL· {:~f

TO-code,RETAIN- ~: f

Example of data in disk file:

II COPY FROM-READER,LIBRARY-0,RETAIN-P,

NAME-DECK01 0
-
-
load module
-

I

II CEND

II COPY LI BRARY-S,NAME-DECK02 0
-
source module
-
-

II CEND

II END e
0 Only the LIBRARY and NAME parameters are required.

Other parameters are ignored.

e The II END statement read from the file is optional.
It causes the next statement to be read from the
system input device or procedure. A II END state-
ment must still be read from the system input device
or procedure to indicate the end of the Library
Maintenance control statements.

COPY Control Statement Summary: Library-To-Library

0

Copy One Library Entrv (or Entries with the Same Name from All Librari_es)

// COPY FROM-code, LIBRARY-{ ~LL} ,NAME-name, TO-Code,RETAI N-{! }·N EWNAME-name 0

Copy _Libr~ry Entri_es that ~ave Na"!.es Beginning with Certain Characters_

II COPY FROM-code, LI BRARYJ ~}.NAME-characters.ALL, TO-code,RETAI N-{!}N EWNAME-characters 0
(ALL

Copy All Library Entries

II COPY FROM-code,LIBRARY-{~ }:NAME-ALL,TO-code,RETAIN-~} e
ALL

Copy Minimum System

II COPY FROM-code,LIBRARY-0,NAME-SYSTEM,TO-code e
NEWNAME parameter is needed in any of the following cases:
1. If you want the copy to have a different name than the original entry.
2. If you want to replace a~ entry on the TO disk with an entry from the

FROM disk, but the entries have different names.
3. If you want the names of the copies to begin with different characters

than the names of the original entries, the same number of characters
must be in the NEWNAME parameter as in the NAME parameter.

4. If the FROM and TO units are the same.

Note: NEWNAME cannot be DIR, ALL, or SYSTEM.

The FROM and TO parameters cannot be the same.

Library Maintenance Program ($MAINT) 163

COPY Control Statement Summary: Library-To-Printer And/or Card

Print And/or Punch One Library Entry (or Entries with the Same Name from All Libraries)

~ s l P PUNCH
II COPY FROM-code, LIBRARY- 0 . ,NAME-name,TO-{PRINT l

R PRTPCH)
ALL

Print And/or Punch Temporary and Permanent Library Entries that Have Names Beginning with Certain Characters

ls l P PUNCH
II COPY FROM-code,LIBRAflY- 0 . ,NAME-characters.ALL,TO-{PRINT }

R PRTPCH
ALL

Print And/or Punch All Temporary and Permanent Library Entries of a Certain Type . i~i {PUNCH~ II COPY FROM-code,LIBRARY- O ,NAME-ALL, TO- PRINT
R PRTPCH

Print Directory Entries for Library Entries of a Certain Type

II COPY FROM-code, LI BRARY·l ~1 ·NAM E-01 R,TO-PR I NT

Print Entries from All Directories Including System Directory

II COPY FROM-code,LIBRARY-ALL,NAME-DIR,TO-PRINT

Print System Directory Entries Only

11 COPY FROM-code, LI BRARY-SYSTEM,NAME-DI R,TO-PR I NT

Print Directory Entries, Omitting Selected Entries

f
s l { p ~~

II COPY FROM-code,LIBRARY- ~ ,NAME-DIR,TO·PRINT,OMIT- characters.ALL }

ALL

164

Copy Parameters

Parameter

FROM-READER

FROM-code

FROM-DISK

Fl LE-filename

RECL-g~~

LIBRARY-m

LIBRARY-ALL

LIBRARY-SYSTEM

lname f
NAME- characters.ALL

ALL

Meaning

Entry to be placed in I ibrary is to be read from system input device.

Location of disk containing library entries being copied, printed, or punched. Possible
location codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

The entry or entries to be placed into a library or libraries reside in a 5444 disk file. The
disk file must be described by an OCL Fl LE statement.

For a file-to-lib.rary copy, this parameter is needed to identify the file on disk. The
filename must match the filename on the OCL FI LE statement.

For a file-to-library copy, this parameter gives the size of the disk records. Only 80
o-r 96 c~ol~n ~a~d image records are allowe"ct If this parameter is omitted, 96
is assumed.

Type of library entries involved in copy use. Possible codes are:

Code Meaning

s Source statements (source library)

p OCL procedure (source library)

0 Object programs (object library)

R Routines (object library)

All types of entries (S, P, 0, and R) from both libraries are involved in copy use.

Only system directory entries are being printed.

Specific library entries on the FROM pack, of the type indicated in LIBRARY
parameter, involved in copy use. Possible information is:

Information Meaning

name Name of the library entry involved.

characters.ALL Only those entries beginning with the indicated characters. For
example, $MA.ALL means the Library Maintenance program
($MAINT).

ALL All entries. (The type indicated in LIBRARY parameter.)

Library Maintenance Program ($MAINT) 165

I

Parameter

NAME-SYSTEM

NAME-DIR

RETAIN-m

TO-code

TO-PRINT

TO-PUNCH

TO-PRTPCH

NEWNAME-name

N EWNAME-characters

OMIT-name

OMIT-characters.ALL

166

Meaning

System programs that make up the minimum system and IPL information contained
on cylinder 0 are copied. The minimum system is made up of system programs necessary
to load and run programs. System programs necessary to generate and maintain the
system such as utilities are not included in the minimum system.

Directory entries for all library entries of the type indicated in the LI BR ARY parameter
are involved in the copy use. If the LIBRARY parameter is LIBRARY-ALL, system
directory entries are also printed.

Adding Entry to Library. RETAIN gives designation of the TO entry:

Code Meaning

T Temporary

P or R Permanent

Replacing Existing Library Entry. RETAIN gives designation of the TO entry and
tells program whether to halt before replacing entry:

Code Meaning

T Temporary design9tion. Halt before replacing entry.

p Permanent designation. Halt before replacing entry.

R Permanent designation. Do not halt before replacing entry.

Printing or Punching Entries. The RETAIN parameter is ignored.

Location of disk that is to contain tHe copies of the entries:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Entries are being printed.

Entries are being punched.

Entries are being printed and punched.

Name you want used on the TO disk to identify the entries being put on that disk.
If you omit this parameter, the program uses the NAME parameter in naming the
entries.

Beginning characters you want.to use in names identifying entries being put on TO
disk. You must use the same number of characters as in the NAME parameter
(NAME-characters.ALU. If you omit this parameter, the program uses the NAME
parameter ·in naming the entries.

When printing directory entries, omit the entry specified by name.

When printing directory entries, omit all entries with these beginning characters.

Using the Copy Function

Library Directories

Source and Object Library Directories

• The source and object libraries have separate library
directories. Every library entry has a corresponding
entry in its library directory. The directory entry con
ta~ns such information as the name and location of the
library entry. (See Printout of Directory Entries.)

• The Library Maintenance program makes entries in the
directories when it puts entries in the libraries.

System Directory

o Every disk that contains iibraries contains a system
directory. The system directory contains information
about the sizes of and available space in libraries and
their directories. (See Printout of Directory Entries.)

o The Library Maintenance program creates_and maintains
the system directory.

Naming Library Entries

Characters to Use: Use any combination of System/3
characters except blanks, commas, quotes, and periods.
(Appendix A lists the characters.) The names of most I BM
programs begin with a dollar sign ($). Therefore, to avoid
possible duplication, do not use a dollar sign as the first
character in the names you use for your entries. The first
character must be alphabetic.

Length of Name: The name can be from one to six
characters long.

Restricted Names: Do not use the names ALL, DIR, and
SYSTEM. They have special meanings in the NAME and
NEWNAME parameters.

Ef!tries with tl]e_ ~ame {\Jame: For each of the twp physical _
libraries, source and object, there are two types of entries.
The source library has type P and type Sentries. The
object library has type 0 and type R entries. Entries of the
same type cannot have the same name, but entries of
different types may. For example, two procedures in
source library cannot have the same name, but a procedure
and a set of source statements can.

Retain Types

Temporary Entries

• Temporary entries are entries you do not intend to keep
in your libraries. They are normally used only once or a
few times over a short period.

• In the object library, temporary entries are placed to"
gether following the permanent entries. Any time a·
permanent entry is added to the library, all temporary
entries are deleted. -Temporary entries are also deleted
when you replace one permanent entry with another.

• In the source library, temporary and permanent entries
can be in any order. One entry is placed after another
regardless of their designations. Temporary entries,
therefore, are not automatically deleted every time you
add a permanent entry. However, when the source
library is reallocated or reorganized, only permanent
entries will remain.

• You can use temporary entries as often as you lik~ until
they are deleted.

• A temporary entry cannot replace a permanent entry.

Permanent Entries

• Permanent entries are entries you intend to keep in your
libraries. They are normally entries you use often or at
regular intervals (once a week, once a month, and so on).

• The program will not delete permanent entries unless
you use the delete function of Library Maintenance
to delete them, or the allocate function to delete the
entire library.

Library Maintenance Program ($MAINT) 167

Reader-to-Library

Input: The program reads one library entry. It can be any
one of the following types:

1. Source statements

2. Procedure

3. Object program

4. Routine

The entry is read from the system input device, which is
normally the keyboard. The operator can, however,
change the system input device by using the OCL
READER statement.

The header card on an object deck (H in column 1) con
tains the date the deck was punched. This date is in columns
58-63 and is in the format of the system date, either
mmddyy or ddmmyy.

Output

• Blanks and duplicate characters are removed. from source
statements and procedures before they are put in the
source library. The program does not check them for
errors.

• Object programs and routines are placed in the object
library after sequence and checksum information is
removed.

Adding Entries: The program can add a new entry to a
library. The name of the entry is taken from the NAME
parameter. See Naming library Entries for valid names.
The RETAIN parameter specifies whether the entrv will
be temporary or permanent. If the RETAIN parameter is
omitted, RETAIN-Tis assumed (see Retain Types).

Replacing Existing Entries

• The program can replace an existing library entry with
the entry you are putting in the library. The RETAIN
parameter specifies the new retain type. If the RETAIN
parameter is omitted, RETAIN-Tis assumed. A tempo
rary entry cannot replace a permanent entry.

• The program can halt before replacing an existing entry.
Whether it does depends on the RETAIN parameter you
use. (See RETAIN parameter.)

168

• Before the new entry is added, the duplicate entry is
deleted. Additional library space is not needed unless
the new entry is larger than the old one.

File-to-Library

Input: The disk file can contain one or more library entries.
The entries must be in the format put out by the library-to
card function or by the linkage editor. The// COPY state
ment at the beginning of each entry contains the name of
the entry and the type of library (S, P, 0, R). A// CEND
statement must follow each entry in the file.

The disk file must be a sequential 5444 file and be defined
by a Fl LE statement in the OCL for the Library Maintenance
program. Multivolume files are not supported.

Output: The output from the file-to-library function is
the same as for the reader-to-library function except that
temporary entries are not allowed.

Library-to-library

Input: The program can copy one or more library entries
from one disk to another. The types of entries can be:

1. Source statements

2. Procedures

3. Object programs

4. Routines

5. All the preceding types

6. Minimum system

The NAME and LIBRARY parameters specify which entries
to copy.

Output

• The entries, regardless of their type, are copied from one
disk to the other without change.

• Entries can be copied and renamed on the same disk by
using the NEWNAME parameter. (See NEWNAME
parameter and Naming Library Entries.)

• Copying a minimum system (LIBRARY-0, NAME
SYSTEM) or all of the types (LIBRARY-ALL, NAME
ALL) are the functions used to create a system pack
that can be used to perform initial program load
(Copying LIBRARY-ALL, NAME-ALL will create a
system pack only ifthe FROM pack is a system pack.)
Because of this use, the object library on the disk you
specify in the TO parameter must be empty (it cannot
contain any entries or deleted entries). Also the object
library on the TO pack must have been allocated with a
scheduler work area and a roll-in/roll-out area at least as
large as those on the FROM pack.

• The RETAIN parameter specifies whether the entries
will be temporary or permanent. If the RETAIN param·
eter is omitted. RETAIN·T is assumed. When the
parameters LIBRARY-ALL and NAME-ALL or
LIBRARY-0 and NAME-SYSTEM are used, RETAIN-P
is assumed and RETAIN-Tis invalid.

Adding Entries

• You can omit the NEWNAME parameter. If you do, the
name used for the copy is taken from the NAME param
eter. (The copy will have the same name as the original
entry.)

• If NAM~·ALL is specified, the names by which the
entries are identified on the FROM disk are also used
on the TO disk to identify the entries.

Replacing Existing Entries

• The program can replace existing entries with the entries
you are putting in the library. If the entry you are
copying (the entry on the disk you identify in the
FROM parameter) has the same name as the entry you
are replacing (the entry on the disk you identify in the
TO parameter), you must omit the NEWNAME param
eter because the NEWNAME parameter cannot be the
same as the NAME parameter. If the names are not the
same, you must use the NEWNAME parameter to give
the name of the entry being replaced.

• The program can halt before replacing an existing entry.
Whether it does depends on the RETAIN parameter
(see RETAIN Parameter).

a> A temporary entry cannot replace a permanent entry.

Library-to-Printer and/or Card

Types of Entries that Can Be Printed or Punched

• The program cari print or punch one or more library
entries. They can be any one of the following types:

1. Source statements

2. Procedures

3. Object programs

4. Routines

5. All of the preceding types (limited to entries
having the same name and entries beginning with
the same characters).

• The program can print (but not punch) the following
types of directory entries:

1. Source statements

2. Procedures

3. Object programs

4. Routines

5. System directory

6. All of the preceding types

The program will sort directory names before printing
them only if there is available work space on the FROM
pack. This causes an allocation of disk space that counts
toward the total of four allowable_ a!_l~~~tions. (See
Index Entry Allocation of Disk Space.)

Library Maintenance Program ($MAINT) 169

Printed or Punched Library Entries

• Blanks and duplicate characters are re-inserted into source
statements and procedures to make them readable.

• Object programs and routines are printed and punched
after sequence information and checksum information
(punch only) has been added.

• The library entries, when punched, are preceded by a
II COPY statement of the reader-to-library format and
fol lowed by a 11 CEN D statement.

170

Printout of Directory Entries

• The format of the system directory is shown under
Sample System Directory Printout If there is no source
library on the pack, the message NO SOURCE LIBRARY
EXISTS ON THIS PACK is logged. If there is no object
library on the pack, the message NO OBJECT LIBRARY
EXISTS ON TH IS PACK is logged.

• The format of the source library directory printout is
shown under Source Library Directory. If there is no
source library on the pack, the message NO SOU ACE
LIBRARY EXISTS is logged. If a source library exists
but is empty, the message NO SOURCE DIR ENTRIES
EXIST is logged.

• The format of the object library directory printout is
shown under Object Library Directory. If there is no
object library on the pack, the message NO OBJECT
LIBRARY EXISTS is logged. If an object library exists
but is empty, the message NO OBJECT DIR ENTRIES
EXIST is logged.

Sample System Directory Printout

SYSTEM DIRECTORY FROM Rl VOLUME ID RlRlRl 10/20/73

SOURCE LIBRARY SECTION

SOURCE DIRECTORY LOCATION
NEXT AVAILABLE LldRARY SECTOR
END OF lldRARY
NUMBER OF UlRECTORY SECTORS
NUMBER OF PERMANENT LIBRAKY StCTORS
NUMBER OF ACTlVE LIBRAKY StCTURS
NUMBE~ OF AVAILABLE LlBRA~Y SECTORS
ALLOCAfEO SIZE OF LIBRARY

UBJECT LIBRARY SECTION

OBJECT DIRECTORY LOCATION
ALLOCATED SIZE OF DIRECTORY
START OF LIBRARY
ALLOCATED END OF LIBRARY
EXTENDED ENO OF LIBRARY
NUMBER OF AVAILABLE PERMANENT OIRECTnRY ENTRIES
NUMBER OF AVAILABLE TEMPORA~Y DIRECTORY ENTRIES
FIRST TEMPURARY DIRECTORY ENTRY
NEXT AVAILABLE TEMPORARY DIRECTORY E~l.RY

NEXT AVAILABLE LIBRARY SECTOR FOR PERMANENTS
NEXT AVAILABLE LIBKARY SECTOR FOR TEMPORARIES
NUMBER OF AVAILABLE LIBRARY SECTORS FOK PERMANtNTS
NUMBER OF AVAILABLE Lid~ARY SECTORS FUR TEMPORARIES
NUMBER OF ACTIVE LIBRAKY SECTOKS
NUMBER OF ACTIVE OBJECT PERMANENT LIBRARY SECTORS
NUMBER OF ACTIVE ~OUTINE PERMANENT LltlRARY SECTORS
ALLOCATED.SIZE OF LlBRARY

ROLL-1N/ROLL-OUT LOCATION
ROLL-IN/ROLL-OUT SIZE

SCHEDULER WORK AREA LOCATION
SCHEDULER WORK AREA SIZE

START UF LIBRARIES
END OF LIBRARIES

uoa-oo
036-2.3
047-23

7
680
688
265

40

U55-00
6

061-JO
379-23
379-23

732

n;;

697
058-10-ZJl
058-13-210
28H-09
296-21
2199
1995
54q5
4693

598
325

050-00
5

048-00
7

008-00
379-23

Library Maintenance Program ($MAINT) 171

Using the System Directory to Determine if the Object
Library Should Be Reorganized

The following are not updated when an object library entry
is deleted:

e Number of available directory entries

• Next available directory entry

• Next available library sector

o Number of available library sectors

These reflect only contiguous space which can be used,
therefore, gaps are not included. (See Organization of
Library Entries, Object Library.)

To calculate the total number of sectors that could be
made available for permanent entries if the object library
is reorganized, perform the following procedure (Take
values from Sample System Directory Printout):

1. Determine the object library size in sectors

Allocated size of library
Allocated size of directory

Object library size (tracks)

325
6

319
x 24

Object library size (sectors) 7656

2. Determine the number of permanent object library
sectors

Number of active object perm-
anent library sectors 4693
Number of active routine perm-
anent library sectors +598

Number of permanent object
library sectors 5291

172

3.

4.

Determine the number of contiguous sectors that
will be available at the end of the library if the lib
rary is reorganized to remove all gaps and temporary
library entries.

Object library size (sectors)
from step 1
Number of permanent object
library sectors from step 2

7656

-5291

Number of available sectors 2365

Compare the number of available sectors calculated
to the number of available library sectors for perman
ents.

Number of available sectors
from step 3
Number of available library
sectors for permanents

Difference in sectors

2365

-2199

166

The difference (166) represents the amount of contiguous
space that can be gained by reorganizing the object library.

Source Library Directory

Printout

SOURCE DIRECTORY FROM XX VOL ID XXXXXX MM/DD/YY

TYPE
x

Explanation

I Heading

TYPE

NAME

ADDRESS

NAME
xxxxxx

(FI RST and LAST)

ATTRI (Attribute)

#SECTORS

ADDRESS
FIRST@ LAST@ ATTRI

x
#SECTORS

xx xx TTT-SS TTT-SS

Meaning

S=source statements
P=procedure

Name of library entry (up to six characters)

Addresses of first and last sectors that contain the library entry. Addresses
are expressed by track and sector numbers. EXAMPLE: 008-03 means
track 8, sector 3.

T=temporary
P=permanent

Total number of sectors used for the library entry.

Library Maintenance Program ($MAINT) 173

Object Library Directory

Printout

OBJECT LIBRARY FROM XX

DISK
TYPE
xx

NAME ADD
XXXXXX TTT /SS

Explanation

I Heading

TYPE

NAME

DISK ADD

CYL/SEC

TXT-CAT

LINK ADDR

RLD DISP

ENTRY PNT

CORE SEC

174

VOL. ID XXXXXX MM/DD/YY

CYL/ TXT- LINK RLD
SEC CAT ADDR DISP
CC/SS XXX xxxx xx

Meaning

ENTRY
PNT
xx xx

CORE TOT
SEC ATTR LEVEL SEC
xxx xxxx xxx xxxx

The first character printed indicates the attributes of the entry as follows:

P permanent
T temporary

The second character printed indicates the type of module the entry is.
Its meaning is as follows:

0 = object program
R = routine

Name of library entry (up to six characters)

Address where library entry begins on disk. EXAMPLE: 015/10 means
track 15, sector 10 (in decimal). T =track, S =sector.

Address where library entry begins on disk (in hexadecimal). C =cylinder,
S =sector.

For object programs, this number indicates the number of sectors used for
the text portion of the library entry. Object programs consist.of two parts:
text and R LO. Text is the program or routine instructions. RLD is
information used in loading the program for execution.

For routines, this number is the category of the routine. This number is used
by the Overlay Linkage Editor for determining overlays.

Object programs only. Assigned hexadecimal core address of this library
entry.

Object programs only. It indicates the hexadecimal position in which R LD
information begins in the last text sector. If the last text sector contains no
R LO information, the R LO displacement is 0, indicating the information
starts in the next sector.

Object programs only. Main storage address (hexadecimal) where program
execution begins before relocations.

Core size given in sectors, required to run the program.

I Heading

ATTA

LEVEL

TOT SEC

Meaning_

Byte 1:

Bit 0=1-Permanent entry
Bit 0=0-Temporary entry

Bit 1=1-lnquiry. This program requires that the Inquiry switch be operated
to start processing_.

Bit 2=1-lnquiry invoking. This program runs in program level 1 and
can be rolled out to allow an Inquiry program to run.

Bit 3 Reserved

Bit 4=1-Source required. This program requires the allocation of the
$WORK and $SOURCE files. $SOURCE must be filled either
from the system input device or a source library.

Bit 5=1-Deferred mount. This program accepts mounting of packs
during its execution.

Bit 6=1-PTF applied. A program temporary fix (PTF) has been applied
to this program.

Bit 7=1-0verlay object program

Byte 2:

Bit 0=1-System Input dedication. The system input device must be
dedicated to this program. The device is ~eleased when no longer needed.

Bit 1 Reserved

·Bit 2=1-Direct source read. This program can have a COMPILE state
ment and a no-source-required attribute (byte 1, bit 4=0).
The program will access the source itself.

Bit 3-4 Reserved

Bit 5=1-Program common; This program requires that a new load
address be calculated at load time to place it in main storage
beyond its own program common region.

Bits 6·7 Reserved

Release level of system programs. For user programs this can be as~igned
in the Overlay Linkage Editor

Total number of disk sectors occupied by the library entry

Library Maintenance Program ($MAINT) 175

DELETE

Uses

• Delete a temporary or permanent entry from a library
(or entries with the same name from all libraries).

• Delete temporary or permanent entries that have names
beginning with certain characters.

• Delete all temporary or permanent entries of a certain
type.

Control Statement Summary

Delete Considerations and Restrictions

The following apply to the delete function:

• System modules cannot be deleted from the active
system pack (the pack the system was loaded from
during IPL).

• When all temporary entries are deleted from the object
library using LIBRARY-0,NAME-ALL,RETAIN-T, the
temporary routines (LIBRARY-A) are also deleted.

• The RETAIN parameter must match the attribute of the
entry in the library otherwise the entry is considered not
found. RETAIN-Tis assumed if the RETAIN parameter
is omitted.

• Library Maintenance modules cannot be deleted from
the active program pack.

Delete a Temporary or Permanent Library Entry (or Entries with the Same Name from All Libraries)

176

II DELETE FROM-code,LIBRARYj~ l,NAME-name,RETAIN- {~}
lALL

Delete Temporary or Permanent Entries With Names Beginning With Certain Characters

II DELETE FROM-code, LI BR ARY- ~ ~ l ,NAM E-characters.ALL,RETAI N- {f}
lALL

Delete All Temporary or Permanent Entries of a Certain Type

. 1'$ \

II DELETE FROM-code, LIBRARY_) ~ ~ ,NAME-ALL,RET Al N-{; }

) R)

Delete Parameters

Parameter

· {R1} FROM- F1
. R2

F2

LIBRARY5~ l
{ALL

lname (
NAME- characters.ALL

ALL

Meaning

Location of disk that contains library entries you are deleting. Possible codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Type of entries being deleted. Possible codes are:

Code Meaning

s Source statements (source library)

p Procedures (source library)

0 Object programs (object library)

R Routines (object library)

ALL All types of entries (S, P, 0, and R) are being deleted.

Particular entries, of type indicated in LIBRARY parameter, being deleted. These
entries are further identified by the RETAIN parameter. Possible codes are:

Code Meaning

name Name of the library entry, or entries, being deleted.

characters.ALL Entries that have names beginning with the indicated characters.

ALL

You can use up to five characters. EXAMPLE: NAME-I NV.ALL
refers to the entri,es having names that begin with INV.

All entries (of the type indicated in LIBRARY parameter).
NAME-ALL cannot be used with LIBRARY-ALL.

Designation of entries being deleted:

Code Meaning

T Temporary

p Permanent

Library Maintenance Program ($MAINT) 177

MODIFY

Uses

The Modify function is intended primarily for maintenance
of source statements and procedures by using card input.
The Modify function can be used to:

• Reserialize a source library entry.

• List the statements in a source library entry.

• Remove statements from a source library entry.

e Replace source library statements.

• Insert statements into a source library entry.

Modify Considerations and Restrictions

o At least three control statements must be entered to
modify the source library. All MODIFY statement is
needed to describe the library entry. A II REMOVE,
II REPLACE, or II INSERT statement describes the
type of modification. A II CEND statement indicates
the end of the MOD I FY contn:>L$.tatements.

o The disk specified by the WORK parameter in the
II MODI FY statement must contain a work area
large enough to hold the modified source library entry.

o The sequence numbers specified by the FROM-seqno,
TO-seq no, and AFTE R-seqno parameters on the
II REMOVE, II REPLACE, and II INSERT statements
must be valid numbers and exist in t~e source library
entry. There are no default values for these parameters.
The number of digits entered must be the same as the
number of positions specified by the SEOFLD
parameter.

o All statements in a source library entry must have
ascending sequence numbers in the positions specified
by the SEOF LD parameter.

178

e Multiple operations (REMOVE, REPLACE, INSERT)
may be performed within the same MODIFY run if they
are done in an ascending sequential order. That is, the
FROM sequence number in a REMOVE or REPLACE
statement must be greater than the last sequence num
ber in the preceding statement. The AFTER sequence
number of an INSERT statement must be equal to or
greater than the last sequence number of the preceding
statement. Consecutive INSERT statements must not
have the same sequence number.

• When modification is complete, the directory entry
is written back with a permanent attribute.

• The control statements following the II MODIFY state
ment are re.ad from the system input device.

• Sequence numbers are a physical part of the source
record and must be placed where they will not conflict
with other data in the record. In a.procedure the
sequence numbers should be placed near the end of the
record beyond the OCL and utility control statement's
keywords and parameters.

Invalid responses may result for OCL procedures with
delayed responses, because when the procedure is called,
the sequence number may be recognized as the response.

The sequence numbers should be placed in source state
ments where they will not overlay data. For example,
data could be destroyed if sequence numbers were
placed in RPG 11 source statements that contained
compile-time tables. If the statement contains table
data in positions 1-85, the sequence numbers for the
source module should begin after position 85 (86-96).

• Since the REMOVE control statement is valid for both
the $DELET utility and $MAINT utility, care should
be used when modifying a $DELET procedure. The
program will attempt to determine if the REMOVE
statement is ,data or if it is a control statement. If a
determination cannot be made, the program will halt
and wait for further instructions.

• If LIST-YES is specified and a printer error occurs during
the listing of the source library entry, responding to the
halt with a 2 option will cause the listing to stop. The
modified entry will then be placed back into the library
before terminating the function with a controlled cancel.

Control Statement Summary

Initiate Modification

I/ MODI FY NAME-name,FROM-code,LI BRA RY- { s} { YES } {YES } p ,WORK-code,RESER- ~~LY ,LIST- HQ ,

SEOFLD-xxyy ,I NCR-number

Control Statements Following II MODI FY

Delete all statements between and including the FROM and TO sequence numbers.

II REMOVE FROM-seqno,TO-seqno

.. Replace all statements between and including the FROM and TO sequence numbers.with the statements supplied.

II REPLACE FROM-seqno,TO-seqno

1-n statements to replace those removed

lnsert_tb_e_supplied statements after the statement indicated by the AFTER parameter.

// INSERT AFTER-seqno

1-n statements to be inserted

Terminate Modification

II CEND must follow the control statements to terminate the modify function.

Library Maintenance Program ($MAINT) 179

Modify Parameter

l Parameter

NAME-name

FROM-code

LIBRARY·{~}

WORK-code

{

YES }
RESER- NO

ONLY

LIST·{~~S}

SEOFLD-xxyy

I NCR-number

Meaning

Name of the entry you are moditying. This is the name that identifies the entry
in the library directory.

Location of the disk that contains the entry you are modifying. Possible codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Type of library entry you are modifying. Possible codes are:

Code Meaning

s Source statements (source library)

p Procedures (source library)

Location of the disk containing space the program can use as a work area. Possible
codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Specifies whether reserialization should be done when the entry is placed back in the
source library. Possible information is:

Information

YES

NO

ONLY

Meaning

Reserialization is done.

Reserialization is not done. NO is assumed if the RESER parameter
is omitted.

Reserialize only; no other maintenance is done. When this is coded,
no REMOVE, REPLACE, INSERT, or CEND statements can be
entered.

Specifies whether the source library entry should be listed as the modified entry is
placed back into the source library. NO is assumed if the LIST parameter is omitted.

The starting and ending positions of the field that contains the sequence number. The
sequence number can be up to eight digits long. The starting position is entered first
(xx) and then the ending position (yy). If this parameter is not entered, 9296 is
assumed.

Increment value for sequence field if reser!alization (RESER-YES or RESER-ONLY} is
specified. The value can be up to five digits. If this parameter is not entered, a value
of 10 is assumed.

Remove, Replace, Insert Parameters

I Parameter

FROM-seq no

TO-seq no

AFTER-seq no

RENAME

Uses

Meaning

The sequence number of the first
statement to be used in the
operation.

The sequence number of the last
statement to be used in the
operation.

The sequence number of the state
ment after which the new state
ments are to be added.

• Change the name of a library entry.

• Change the names of library entries that have names
beginning with certain characters.

Rename Considerations and Restrictions

• System modules should not be renamed on the active
system pack (the pack that the system was loaded
from during IPL).

• Library Maintenance modules should not be renamed
on the active program pack.

Control Statement Summary

Change the Name of a Library Entry or Entries with
·the Same Name in All. Libraries

II RENAME FROM-code, LI BRA RY-{~} ,
NAME-name,NEWNAME-name · 0

R

Change the Name of Library Entries that have Names
Beginning with Certain Characters

·//_RENAME FROM-code, LIBRARY-{.~} ,
NAME-characters.ALL, 0
NEWNAME-characters R

Rename Parameters

1 · Parameter

FROM-code

NAME-name

NAME-characters.ALL

NEWNAME-name

NEWNAM E-characters

Meaning

Location of disk that contains the entry
you are renaming. Possible codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Type of library entry you are renaming.
Possible codes are:

Code Meaning

s Source statements (source
library)

P Procedures (source library)

0 Object programs (object library)

R Routines (object library)

Current name of the entry you are re
naming. This is the nam·e that identifies
the entry in the library directory.

Only those entries beginning with the
indicated characters. (You can use up
to five characters.)

New name you want to give the entry.
Follow these rules to construct the name:

1.

2.

You can use any System/3 charac
ters except blanks, commas, quotes,
and periods. (Appendix A lists the
characters.) The names of ·most
IBM programs begin with a dollar
sign ($). Therefore, to avoid
possible duplication, do not use a
dollar sign as the first character in
the names you use for your .entries.
The first character must be
alphabetic.

You can use up to six characters,
but you cannot use the names ALL,
DIR and SYSTEM. They have
special meanings in the NAME
parameter.

Beginning characters you want to use in
names identifying the copies. (You can
use up to five characters.)

Library Maintenance Program ($MAINT) 181

OCL CONSIDERATIONS

LOAD Sequence

KeywordsQ Responses$ Considerations

READY LOAD None

LOAD NAME $MAINT Name of Library Maintenance program.

UNIT R1, R2, F1, or F2 Location of disk containing Library Maintenance program.

MODIFY RUN None

O Only the keywords listed here are required. You can bypass the rest, unless the copy file-to-library function is to be
used. The Fl LE keywords must be responded to, to define the file.

8 You end every response by pressing PROG START.

BUILD Sequence

KeywordsQ

READY

BUILD NAME

UNIT

LOAD NAME

UNIT

MODIFY

Responses·&

BUILD

procedure name

R1, R2, F1, or F2

$MAINT

R1, R2, F1, or F2

INCLUDE I utility control statements
OR RUN

LRUN

Considerations

None

Name by which procedure will be identified in source·
library.

Location of disk containing source library.

Name of Library Maintenance program.

Location of disk containing Library Maintenance program.

Response when including control statements in procedure.

Response when not including control statements in
procedure.

0 Only the keywords listed here are required. You can bypass the rest, unless the copy file-to-library function is to be
used. The FI LE keywords must be responded to, to define the file.

f) You end every response by pressing PROG START.

182

ALLOCATE EXAMPLES

Creating Both Source and Object Libraries on a Disk

Statements

READY

010 LOAD NAME $MAINT

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT }

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses
are shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do not
appear on the same line.

Message printed by Library Maintenance
program.

II ALLOCATE TO-Rl,SOURCE-12,0BJECT-45,SYSTEM-YES}
Control statement supplied
by operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

}

}

Program creates libraries, then asks for another
control statement.

END statement, supplied by operator, ends
the program.

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• Libraries are being created on the removable disk on drive 1 (TO-R 1 in ALLOCATE statement).

• Source library space is twelve tracks long (SOU RCE-12).

• Object library space is 45 tracks long (OBJECT-45). The object library will contain system programs (SYSTEM-YES).
Thus, the disk area will also include space for the Scheduler work area.

Library Maintenance Program ($MAINT) 183

Changing the Size of a Source Library

Statements

READY

010 LOAD NAME

011 UNIT Fl

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT f
II ALLOCATE TO-Rl,SOURCE-15,WORK-Fl ~

ENTER 'II' CONTROL STATEMENT ~

II END

Explanation

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses
are shown are the ones bypassed.

RUN is the response to MODI FY
even though the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

Control statement supplied by operator.

P~ogram changes size of library, then asks
for another control statement.

End statement, supplied by operator, ends
the program.

• Library Maintenance program is t,oaded from the fixed disk on drive 1 (UNIT-Fl in OCL sequence).

• Source library is located on the removable disk on drive 1 (TO-Rl in ALLOCATE statement).

e Size of the source library is being changed to 15 tracks (SOURCE-15).

o Any time the program changes the size of a source library, it reorganizes the library. To do this, it needs a work area.
This area is on the fixed dis~ on drive 1 (WORK-Fl).

184

Deleting the Object Library From a Disk

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT ~

II ALLOCATE TO-Rl,OBJECT-0 ~

ENTER I I I I CONTROL STATEMENT ~

II END ~

Explanation

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

Control statement supplied by operator.

Program deletes library, then asks for
another control statement.

END statement, supplied by operator, ends
the program.

• Library Maintenance program is loaded from the fixed disk on drive 1 {UNIT-F1 in OCL sequence).

o Object library is 1.ocated on the removable disk on drive 1 {TO-R 1 in ALLOCATE st~tement).

o OBJECT-0 parameter tells the program to delete the object library. If a scheduler work area precedes the object library,
it is also deleted.

Library Maintenance Program ($MAINT) 185

COPY EXAMPLES

Copying Minimum System from One Disk to Another

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for vvhich no responses are
shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do not
appear on the same line.

Message printed by Library Maintenance
program.

II COPY FROM-Fl,LIBRARY-0,NAME-SYSTEM,TO-Rl
t Control statement supplied
5 by the operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Program copies programs, then asks
for another control statement.

END statement, supplied by operator, ends
the program.

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• System programs are in the object library on the fixed disk on drive 1 (LIBRARY-0 and FROM-F1 in COPY statement).

• The NAME parameter (NAME-SYSTEM) tells the program to copy the system programs.

• The disk that is to contain the copy is the removable disk on drive 1 (TO-R1).

186

Printing Library Directories

Statements

READY

*f***********************

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT

OCL LOAD Sequence.

Boxed areas are operator responses ..

Keywords for which no responses
are shown are the ones bypassed.

RUN is the response to MODI FY
even though the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

II COPY FROM-Rl LIBRARY-ALL NAME-DIR,TO-PRINT,OMIT-$.ALL l Controlstatementsupplied
'

1
. 5 by the operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Program prints directories, then asks for
another control statement.

END statement, supplied by operator, ends
the program.

o Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• All library directories and the system directory on the removable disk on drive 1 are printed (COPY statement):

1. FROM identifies the disk containing the directories.

2. LIBRARY indicates which directories are to be printed.

3. NAME and TO indicates that the program is to be printing directories.

4. Entries beginning with a$ are not printed.

Library Maintenance Program ($MAINT) 187

Replacing a Library Entry: Replacement Coming From Another Disk

Situation

Assume that you have two versions of an object program:

1. New version on the removable disk on drive 1.

2. Old version on the fixed disk on drive 1.

Both versions have the same name (ACCT) and designation (permanent). You want to replace the old version with the new

version.

Statements

READY

010 LuAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

lifil\NTER '//' CONTROL STATEMENT

OCL LOAD Sequence

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

II COPY FROM-Rl,LIBRARY-0,NAME-ACCT,TO-Fl,RETAIN-R Control statement supplied
by operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Program replaces library entry, then asks for
another control statement.

END statement, supplied by operator, ends the
program.

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT·F1 in OCL sequence).

o LIBRARY·O, NAME-ACCT, and FROM-R1 in the COPY statement tell the program to read the object program named
ACCT from the removable disk on drive 1.

• TO-F1 tells the program to copy the object program to the fixed disk on drive 1. There is no NEWNAME parameter in
the COPY statement. Therefore, the name the program will have on the fixed disk is ACCT (NAME-ACCT). Since the
old version of the program already exists on the fixed disk under that name, the old version is replaced.

• The Library Maintenance program normally halts before replacing a library entry. The RETAIN-A parameter, however,
tells the program to omit that halt.

188

Copying a Disk File To a Library

Statements

010
Oll
020 DATE (XX/XX/XX)
030 SWITCH (00000000)
040 FILE NAME-
041 UNIT-
042 PACK-
043 LABEL-
050 FILE NAME-

OCL LOAD Sequence

Boxed areas are operator
responses.

Keywords for which no re
sponses are shown are the
ones bypassed.

~*~
MODIFY

RUN is the response to
MODI FY even though the
two words do not appear
on the same line

R'//' CONTROL STATEMENT

ENTER '//' CONTROL STATEMENT

II END

Explanation

Control statements from disk
file.

Message printed by Library
Maintenance program.

Control statement supplied
by operator.

Program copies programs, then
asks for another control state
ment.

END statement, supplied by
operator, ends the program.

• The OCL for a File-to-Library copy must contain a FILE statement for the_ disk file.

• The file~ame on the II COPY statement (FILE-BSCAFILE) matches the filename on the OCL FILE statement
(NAME-BSCAFI LE).

• The II COPY statement does not contain a RECL parameter, so a record length of 96 is assumed.

• All source and object decks in the disk file must have a II COPY statement as the first card image and a II CEND state
ment as the last card image. These II statements (including the II END statement) are logged with XX replacing the
II to indicate they were read from disk rather t.han from the system input device or a procedure.

• The II END statement read from the file (printed XX END), causes the next statement to be read from the system input
device or procedure. A II END statement must still be read from the system input device or procedure to indicate the
end of the Library Maintenance control statements.

Library Maintenance Program ($MAINT) 189

Copying a Procedure From the System Input Device

Statements

READY
****************************·
010 LOAD
011
020 DATE
030 SWITCH
040 FILE

NAME
UNIT

(11127173)
(00000000)

NAME-

MODIFY

ENTER 'I/' CONTROL STATEMENT

II COPY FROM-READER,TO-Fl,LIBRARY-P,NAME-COPYFlt

II LOAD $COPY,Fl
II RUN
II COPYPACK FROM-Fl,TO-Rl
II END
ll·CEND

ENTER '//' CONTROL STATEMENT

II END

Explanation:

• FROl\1-READER tells the Library Maintenance program
to read the statements from the system input device.

• The procedure (LIBRARY-P) is written to the source
library on F1 (TO-F1), named COPYF1 (NAME
COPYF 1), and given the default attribute of temporary.

e All statements following the II COPY statement are
entered into the library until the II CEND statement is
read to terminate the copy.

190

}
}

OCL LOAD Sequence

Boxed areas are operator
responses.

Keywords for which no
responses are shown are
the ones bypassed.

RUN is the response to
MODI FY even though the
two words do not appear
on the same line.

Message printed by Library
Maintenance Program.

Control statement supplied
by the operator.

Procedure copied to the
source library. These
statements are supplied
by the operator.

Message printed by Library
Maintenance Program asking
for another control
statement.

END statement, supplied
by operator, ends the
program.

DELETE EXAMPLES

Deleting a Temporary Entry From a Library

Statements

·READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

OCL LOAD Sequence

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do
not appear on the same line.

ENTER 1 I I' CONTROL STATEMENT Message printed by Library Maintenance
program.

11 DELETE FROM-Rl ,LIBRARY-S ,NAME-PAYROL ~ Control statement supplied by operator.

ENTER 'I I 1 CONTROL STATEMENT Program deletes library entry, then asks
for another control statement.

I I END END statement, supplied by operator, ends
the program.

Explanation,

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The program deletes a set of source statements (LIBRARY-Sin DELETE statement) named PAYROL (NAME-PAYROL)
from the removable disk on drive 1 (FROM-R1).

• The absence of a RETAIN parameter implies that the entry designation is temporary. If the designation were permanent,
RETAIN-P would have been required.

Library Maintenance Program ($MAINT) 191

Deleting All Temporary Entries With Names That Begin With Certain Characters

Statements

READY

010 LOAD NAME -

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT

OCL LOAD Sequence

Boxed areas are operator responses ..

Keywords for which no responses are
shown are the ones bypassed.

RUN -is the response to MODIFY
even though the two words do
not appear on the same I ine.

Message printed by Library Maintenance
program.

11 DELETE FROM-Rl ,LIBRARY-ALL,NAME-INV .ALL f Control statement supplied by operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Program deletes entries, then asks
for another control statement.

END statement, supplied by operator,
ends the program.

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The entries bein~ deleted are on the removable disk on drive 1 (FROM-R1 in DELETE statement).

• The program deletes all entries from both source and object libraries (LIBRARY-ALL) that have names beginning with
the characters INV (NAME-INV.ALL).

• The absence of a RETAIN parameter implies that temporary entries are being deleted.

192

Deleting All Permanent Library Entries of One Type

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT

OCL LOAD Sequence

· Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODI FY
even tnough the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

11 DELETE FROM-Rl ,LIBRARY-P ,NAME-ALL ,RETAIN-P f Control statement supplied by operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Program deletes entries, then asks for another
control statement.

END statement, supplied by operator, ends
the program

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-Fl in OCL sequence).

• The entries being deleted are on the removable disk on drive 1 (FROM-Rl in DELETE statement).

• All permanent procedures are being deleted from the source library (LIBRARY-P,NAME-ALL,RETAIN-P).

Library Maintenance Program ($MAINT) 193

MODI FY EXAMPLES

Replacing Statements in a Procedure

Statements

~~~~~~=;************~~~~~*··*·······E·······*···******** 
020 DATE (XX/XX/XX) 
030 SWITCH (00000000) 
040 FILE NAME-
*************************************************************** 

'II' CONTROL STATEMENT 

II MODIFY NAME-PROC01,FROM-R2,LIBRARY-P,WORK-Rl,RESER-NO,LIST-YES 
II REPLACE FROM-00101,T0-00102 
II FILE NAME-INV~PACK-VOL2,UNIT-Rl,RECORDS-300,RETAIN-P 
II FILE NAME-WORK,PACK-VOL2,U~~T-Rl 
I I CEND . 

II LOAD BUILD,Fl 
II FILE NAME-INV,PACK-VOL2,UNIT-Rl,RECORDS-300,RETAIN-P 
II FILE NAME-WORK,PACK-VOL2,UNIT-Rl 
II RUN 

ENTER 'II' CONTROL STATEMENT 
II END 

Explanation 

• The procedure named PROC01 on disk drive R2 is being modified. 

• The work space will be on R 1. 

• The sequence numbers are in default positions 92-96. 

• Statements with sequence, number 00101-00102 are being replaced. 

• The module is not reserialized. 

• The module is listed. 

194 

OCL LOAD Sequence 

Boxed areas are operator 
responses. 

Keywords for which no re
sponses are shown are the 
ones bypassed. 

RUN is the response to 
MODI FY even though the 
two words do not appear on 
the same.line. 

Message printed by Library 
Maintenance program. 

00101 I 
00102 

00100 I 00101 
00102 
00103 

Control statement supplied by 
operator. 

Program lists procedure, then 
asks for another control state
ment. 

END statement, supplied by 
operator, ends the program 



Removing Source Statements From a Module 

Statements 

Removing Source Statements From a Module. 

010 
on 
020 

·030 
040 

LOAD NAME
UN IT-

DATE (XX/XX/XX) 
SWlTCH (00000000) 
FILE NAME-

\\\\\\Ill ~ .~ A I N r::::: 
:~:::::::::;:::;:::::::;:::;:;:::;:;:::::;:::·:;:;:;:;:;:.:;:;:;:·.;-:-: 

********************************************** 
MODIFY 

ER'//' CONTROL STATEMENT 

OCL LOAD Sequence 

Boxed areas are operator responses. 

Keywords for which no responses are shown are the ones 
bypassed. 

RUN is the response to MODI FY even though the two 
words do not appear on the same line. 

Message printed by Library Maintenance program. 

II MODIFY NAME-INPUT1,FROM-R1,LIBRARY-S,WORK-R1,RESER-YES, } . 
II LIST-NO,SEQFLD-0105,INCR-1 
/ / REMOVE FROM-00124, T0-001 56 Control statements supplied by the operator. 

II CEND 

ENTER 'II' CONTROL STATEMENT 

11 END 

Explanation 

Program removes statements, then asks for another 
control statement. 

END statement, supplied by operator, ends the program. 

• The source module named I NPUT1 on disk drive R 1 is being modified. 

• T~e work space will be on R 1. 

•' The sequence numbers are in positions 1-5 of the statements. 

• Sequence numbers 00124-00156 are being deleted from the module. 

• The module is reserialized with increments of one. 

• The module is not listed. 

Library Maintenance Program ($MAINT) 195 



Inserting a Statement in a Source Module 

Statements 

READY- ILDAD 
>:C >!c ~c :=:c >::: ~c :=:c ~c ~c >!c ~c :::c ::i:c ~c ~c ::::: >:C ~c ~c ~:c *~ * :>~ * ::i:c >~ ::i::: *~ ~c ~c ~c * ~c * * ~~\I* * * * * 
010 
011 
020 
030 
040 

LOAD NAME
UNI T-

DATE (XX/XX/XX) 
SWITCH (00000000) 
FILE NAME-

********************************************* 

OCL LOAD Sequence 

Boxed areas are operator 
responses. 

Keywords for which no re
sponses are shown are the ones 
bypassed. 

RUN is the response to MODI FY 
even though the two words do 
not appear on the same line. 

TER 1 II 1 CONTROL STATEMENT ~ Message printed by Library Maintenance program. 

/ / MOD I FY FROM-Fl, WORK-Fl, NAME-CDS T, LI BRARY-S' l Control 
II RESER-YES,SEQFLD-8084,LIST-YES 

statements 
I I I NS ER T AFTER-00070 supplied by 

000801 3 8 DATE the operator. 
II CEND 

) 
Source module listed with new entry 

s 
ENTER '//' CONTROL STATEMENT ~ Program inserts statements, then asks for another control 

statement. 

II END l END statement, supplied by operator, ends the program. 

Explanation 

• The source module COST on fixed disk drive one is being modified. 

o The work space is on F1. 

• The sequence numbers are in positions 80-84 of the statements. 

• A statement is being inserted after statement number 00070. 

• The module is reserialized with the default increment value of 10. 

• The module is listed. 

196 



RENAME EXAMPLE 

Renaming a Set of Source Statements in a Source Library 

Statements 

READY 

010 LOAD NAME l'\\l.\\l$MA I NT 
·······:·:: 

011 UNI T 

020 DATE 

030 SWITCH 

040 FI LE NAME 

********************************** 
MODIFY 

'II' CONTROL STATEMENT 

OCL LOAD Sequence 

Boxed areas are operator responses. 

Keywords for which no responses are 
shown are the ones bypassed. 

RUN is the response to MODI FY 

even though the two words do 
not appear on the same 

1
1ine. 

Message printed by Library Maintenance 
program. 

II RENAME FROM-Rl,LIBRARY-S,NAME-ACCT~NEWNAME-ACCTl l Control statement supplied 
by operator. 

ENTER 'II' CONTROL STATEMENT 

II END 

Explanation 

Program renames entry I then asks for 
another control statement. 

END statement, supplied by operator, ends 
the program. 

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence). 

• The removable disk on drive 1 contains the entry being renamed (FROM-R1 in RENAME statement). 

• The entry is a set of source statements in the source library (LIBRARY-S). Its name is ACCT (NAME-ACCT). 

• The entry name is being changed to ACCT1 (NEWNAME-ACCT1). 

Library Maintenance Program ($MAINT) 197 



Appendix A: I BM System/3 Standard Character Set 

198 

Character 

Blank 

¢ 

< 
( 

+ 

I 
& 

t 
$ 

* 

) 

, 

-, 

- (minus) 

I 

, 

% 

Hexadecimal 
Equivalent 

40 

4A 

48 

4C 

40 

4E 

4F 

so 

SA 

SB 

SC 

SD. 

SE 

SF 

so 

S1 

SB 

SC 

- (underscore) SD 

> 6E 

? SF 

: 7A 

# 78 

@ 7C 

I (Apostrophe) 70 

= 7E w ES 

* 7F x E7 

A C1 y EB 

B C2 z E9 

c C3 0 FO 

D C4 1 F1 

E cs 2 F2 

F C6 3 F3 

G C7 4 F4 

H ca s FS 

I cg s FS 

} DO 7 F7 

J 01 8 F8 

K 02 9 F9 

L 03 

M 04 

N OS 

0 06 

p 07 

a 08 

R 09 

s E2 

T E3 

u E4 

v ES 



For Sequential or Direct Files 

To determine how many tracks will be required for a 
sequential or direct file: 

1. 

2. 

Number of records x record length = total number 
of characters. 

Total number of characters+ 6144 (number of 
characters in a track) = number of tracks. (Round 
result up to nearest whole number.) 

For Indexed Files 

To determine how many tracks will be required for an 
indexed file: 

Step 1. (Tracks Required for Data) 

A. Number of records x record length = total 
number of characters. 

B. Total number of characters+ 6144 =number 
of tracks. (Round result up to nearest whole 
number.) 

Appendix B: Records -Tracks Conversion 

Step 2. (Tracks Required for Index) 

A. Key Field length + 3 = index entry length. 

B. 256 (number of characters in a sector)+ 
index entry length = number of entries per 
sector. (Round result down to nearest 
whole number.) 

c. Number of records+ number of entries per 
sector = number of sectors. (Round result 
up to nearest whole number.) 

D. Number of sectors+ 24 (number of sectors 
per track) = number of tracks. (Round re
sult up to nearest whole number.) 

Step 3. (Total Track Requirement) 

Result of step 1 +result of step 2 =total number 
of tracks required for the indexed file. 

Records-Tracks Conversion 199 



Appendix C: Disk Organization 

Disk Area Contents 

VTOC* Detailed information about each file on disk 

Source Library Source Library Directory 
RPG 11 Source Programs 
Disk Sort Specifications 
Procedures 
KSE Input (Format Descriptions or Source Statements) 

Object Library 

Files 

Object Library Directory 
Compiled Programs 
System Programs 

User files 
System files 

*Volume Table of Contents 

Volume Table of Contents (VTOC) 

The VTOC contains detailed information about each file 
on the disk. Much of this information is for system use 
only and is of no interest to the programmer. The VTOC 
file information significant to the programmer is: 

1. Name. 

2. Starting track location and number of tracks. 

3. Designation (Permanent, Temporary, or Scratch). 

4. Organization (Sequential, Direct, or Indexed). 

5. Creation date. 

200 

Source Library 

Procedures, RPG 11 source programs, and KSE input reside 
in a source library. The source library directory contains 
the name and address (track and sector) of each procedure, 
RPG 11 source program, and set of KSE input in the library. 

Object Library 

Compiled programs and system programs reside in an object 
library. The object library directory contains the name and 
address (track and sector) of each program in the library. 

Files 

Identifying information about every file on a disk is con
tained in the disk VTOC. 

A disk is limited to 50 files because the VTOC has space 
for identifying only that many files. 



This chapter applies only to RPG II and FORTRAN. 

In some data processing applications, customers may make 
inquiries that require immediate answers. One customer 
may want the status of his account; another may want to 
know if an item is in stock for immediate delivery. To 
answer these inquiries, your program must be able to 
access certain disk records. The object program you use 
to retrieve this information is called an inquiry program. 
The fol lowing discussion generally applies to both RPG 11 
and FORTRAN; differences are noted. 

Inquiry programs can be executed as part of a normal job 
stream, or they can interrupt other programs that are 

executing provided the executing program can be inter
rupted. After a request for inquiry is made, the following 
things occur: 

1. A program being executed is interrupted. 

2. The current status of the program is stored on disk. 

Figure D-1. Keyboard Format of the Model 6 Keyboard Console 

3. 

Appendix D. Inquiry Program 

The inquiry program is loaded to retrieve and dis
play the requested information. 

4. The original program is reloaded and execution 
resumes. 

Requesting Inquiry In an Interrupt Environment 

To interrupt a job prior to loading an inquiry program, you 

must make an inquiry request. To request inquiry, you use 
the system control panel attached to the I BM 5406 Process
ing Unit {Figure D-2). 

Inquiry Program 201 



To make an inquiry request, move the INQUIRY REQUEST 
switch on the control panel to the ON position (Figure D-2). 
The OCL statements for the inquiry program are entered 
from the keyboard. (At least the READER statement 
indicating that the system input device that contains the 
OCL statements must be entered from the keyboard.) 

SYITI_, DISK DATA INQUIRY IYITIM 

QQQtlQQQQ 
D" . D!' •nrro ~·LINE 

tCJ 
Figure D-2. System Control Panel on the Model 6 

Classifying Programs for Inquiry 

RPG II 

Not all RPG 11 programs can be interrupted by an inquiry 
program. By coding specifications in column 37 (Figure 
D-3) on the RPG 11 Control Card sheet, you determine 

whether the program can be interrupted. The entries 
which classify the program are: 

o l6 (blank) - A L?-type program is a processing program 
that does not recognize an inquiry request. It cannot 
be interrupted. 

• B - A 8-type program is a processing program that 
recognizes an inquiry request, and, therefore, can be 

interrupted or stored on disk. 

o I - While I-type programs can be loaded as inquiry 
programs in an interrupt environment (see note), a 
program is usually classified as an I-type when it is 
used as an inquiry program that is to remain in main 
storage for the servicing of inquiries. An I-type prog
ram can be executed only by an inquiry request 
(moving the INQUIRY REQUEST switch to the ON 
position). An I-type program cannot be interrupted 
and stored on disk. 

Note: An inquiry program that interrupts a 8-type program 
can be classified as B, L?, or I-type. An inquiry program 
loaded to perform a complete job is usually classified as a 
8-type program. An inquiry program loaded to answer 
one request or few requests is usually loaded as an I-type 
program (see Planning Inquiry Programs for further 
information). If a 8-type program is rolled out by an 
inquiry program also classified as 8-type, the inquiry 
program must complete execution before another inquiry 
request is made. 

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS GX21-9092-3 UM/050" 
Printed in U.S.A. 

IBM International Business Machine Corporation 

Program 

Programmer Date 

Punching 
Instruction 

Graphic 

Punch 

Control Card Specifications 

Model 20 
!I 

!I ~ 
~ ~--~ .......... .....--..-..-~-! ~ ! 

Core .,. Core c ~ Number -~ c :I .c 

• g_ ~=le ~ ·i ~==~ote ~ .~ ~ Of Print ~ Address i g ·E ~ 0 
Line > O o rn ~ N Positions ~ to Start ~ _1=" a._g ~ .ii -~-

~ ~Q g~ t.,§ ~ - ~ « 
~o al D~ 0 ~ ~jj~&~~ 
~ 85 ~~ I~ i ~oo~~F~ 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34· 35'* 137 

H 

42 

oliJ H 11 11 l l l l l l l l !?lif 

Figure D-3. Inquiry Specification on the Control Card Sheet 

202 

Card Electro Number 1 2 

Pagernof_ 

75 76 71 78 79 80 

:~;~f~cation I I I I I I I 

Refer to the specific System Reference Library manual for actual entrie.. 

46 48 

1Illlllll1IIIIIIIIIIII 



FORTRAN 

A FORTRAN main program'may allow itself to be 
interrupted by inquiry programs. Interruption occurs at 
CALL INQCHK statements in the main program. 

All inquiry programs have CALL SETINQ as their first 
statement. For more information, see the IBM System/3 
FORTRAN IV Reference Manual, SC28-6874, and IBM 
System/3 FORTRAN IV Commercial Subroutines, 
SC28-6875. 

Inquiry In an Interrupt Environment 

An inquiry program can be loaded into storage as would 
any other program, or it can be loaded when an inquiry 
request is made to interrupt a program that -is executing. 

When your system is controlled by one program at any 
one time, you have a dedicated system. Therefore, in an 
interrupt environment you must interrupt the executing 
program to allow the inquiry program to control the 
system. You request an interrupt by moving the IN
QUIRY REQUEST switch to the ON position. For RPG II, 
you can interrupt only 8-type programs; for FORTRAN, 
you can interrupt only a program containing CALL 
INQCHK. 

® 
The 8-type 
program is 
rolled out 
onto disk. 

@ 
The inquiry 
program is 
loaded into 
storage. 

© 
The 8-type 
program is 
rolled back 
into storage 
upon completion 
of the inquiry 
program. 

8-Type 

Program 

Inquiry 

Program 

8-Type 

Program 

Figure D-4. Roll-Out and Roll-In of a B-Type Program 

Note: An inquiry program cannot be interrupted during 
processing. 

As soon as the INQUIRY REQUEST switch is moved to 
the ON position, the system sets an indicator and the exe
cuting program completes the execution cycle it is in. A 
system routine called roll-out then transfers the B-type pro
gram from main storage onto disk, retaining the current 
status of the program (Figure D-4, insert A). Space is al
located for the rolled out program at system generation 
time. (See the IBM System/3 Model 6 Operator's Guide, 
GC21-7501, for system generation procedures.) For the 
scheduler work area size, including space requirements for· 
roll-in/roll-out, see Library Maintenance Program ($MA/NT) 
in this manual. 

Object Library 

Inquiry Program 203 



Planning Inquiry Programs 

Since B-type programs can be interrupted, you must deter
mine what types of programs should be classified as B-type. 
Usually long reports that do not have to be finished 
immediately, are classified as B-type. Such a report might 
be an end-of-month stock status report. 

Inquiry programs that can interrupt B-type programs can 
be classified as~. B, or I-type. For example, suppose you 
are running an end-of-month stock status report, and now 
find you must run a payroll job. The payroll job can roll 
out the stock status job to satisfy this requirement. Another 
example of an inquiry program that might need to be 
loaded immediately would be a request to determine where 
a certain inventory item is located so that it can be shipped. 
Since the inventory file is online for the stock status re-
port, the location of the item could be determined quickly 
by an inquiry program. 

204 

Those programs you do not want rolled out should be 
11-type. For example, you may be running a payroll job 

and checks are positioned for the printer. You may not 
want the payroll program rolled out since the operator 
may have to remove the checks and not reposition them 
correctly. If you are running a teleprocessing program, 
you cannot roll out the program because you will lose 
telephone connections. 

In a dedicated system, an I-type program could be loaded 
for a length of time to answer requests. For example, an 
I-type program could be loaded during the second shift 
of a day to answer inquiries into the amount or location 
of items in a warehouse. An I-type program remaining 

in main storage can only be executed by moving the 
INQUIRY REQUEST switch to the ON position. 



Appendix E. Library Entry Retrieval Subroutine (SUBR 15) 

The Library Entry Retrieval subroutine is incorporated into 
a user-written program in order to retrieve entries from any 
library. Library entires are passed to the user program one 
record at a time. If these records are written to a 5444 
Disk File, that file can be processed by the file-to-library 
function of the Library Maintenance program ($MAINT). 

With SUBR15, a single library entry or a group of entries 
can be retrieved. The user must supply certain informa
tion, such as the name of the entry, the unit containing 
the library (R1, F1, R2, or F2), and the type of library to 
be accessed (source, object, procedure, or routine). 

The format of the records produced by this subroutine 
is the same as the format of the records produced by the 
library-to-punch function of $MAINT. The first record 
returned to the program by the subroutine for each library 
entry is an appropriate COPY statement. The last record 
for each entry is a CEND statement. 

Note: It is the user's responsibility to ensure that the 
library is not being changed by another program while 
SUBR15 is reading from that library. 

Library Entry Retrieval Subroutine (SUBR 15) 205 



USING SUBR15 WITH RPG II 

Linkage to SUBR15 from an RPG II program is via an 
EXIT statement followed by seven RLABL statements. 
Information about subroutine linkage can be found in IBM 
System/3 Models 4 and 6 RPG II Reference Manual, 
SC21-7517. 

These R LAB L statements must be specified in the follow
ing order: 

Sequence Operation Result Field 

RLABL field 

2 RLABL field 

3 RLABL field 

4 RLABL field 

5 RLABL INnn 

6 RLABL INnn 

7 RLABL INnn 

Description 

The name of a one-character alphabetic field in the RPG 11 program that 
contains a code identifying the desired library: 

0 Object 
R Routine 
S Source 
P Procedure 

The name of a six-character alphabetic field in the RPG 11 program that 
contains the name of the desired library entry. A library entry may be 
requested by name or-by a partial name followed by a period. If a partial 
name is used, all entries in the given library beginning with the characters 
preceding the period will be copied. 

If copying an entire library, a period alone is sufficient specification. 

The name of a two-character alphabetic field in the RPG 11 program 
that contains the unit containing the desired library: R1, F1, R2, or F2. 

The name of an BO-character alphabetic field, or a 96-character alphabetic 
field, which is to contain each record processed by the subroutine. 

The nn is any RPG 11 indicator, which will be set on if the desired library 
entry is not found, the library does not exist on the specified unit, or the 
system source library get routine ($$SYSG) cannot be found. 

The nn is any RPG 11 indicator, which will be set on when the request for 
service is complete. When this indicator is set on, the RPG 11 program can 
request another entry or entries. 

The nn is any RPG 11 indicator, which will be set on every time a record 
is passed to the RPG 11 program from the subroutine. 

Note: The three preceding indicators are set off by SUB R 15 upon receiving control from the user program. 

206 



ERROR IDENTIFICATION Example 

If an error is detected in SUB R 15, all three indicators are 
set off. Any of the following errors may be detected: 

The following is an example that shows how an RPG 11 
program can use SUB R 15. 

• The unit is not R 1, F1, R2, or F2. 

• The unit is not supported on the system. 

·• The pack on the specified unit is not initialized. 

• The library is not 0, R, S, or P. 

• The record length is not 80 or 96 bytes. 

• The unit, library, or name was changed before end of 

request was returned. 

• The three indicators are not unique. 

IBM lnternetional Business Machine Corporation 

Program 

Programmer Date 

RPG CALCULATION SPECIFICATIONS 

Punching 
Instruction 

Graphic Card Electro Number 
t--~---4~+--1----1--l-~l__J.._~ 

Punch 

1 2 

Page!IJof 

C Indicators Resulting ~ Result Field Indicators 

f--- ~ ~ I 1 Arithmetic 

. [ ! ~ And And Factor 1 Operation Factor 2 g :c Plus TMinu;f Zero 

Line ~ o rr.· Name Length ~ ~ Compare 
E g ui. _ _ _ ~ i 1> 2I1 < 2I1 a 2 
Lf 8 5 ~ ~ ~ ~ '; Lookup(factor 2hs 

Form GX21·9093-2 
Printed in U.S.A. 

75 76 77 78 79 80 

~~;~;~f:ation I I I I I I I 

Comments 

3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 3 c :c High Low Equal 
o , c L ~CIP 1J\ G 36 7 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 10 71 n 13 14 

E1Xlt fr1 SIU 1~R fS 0 2 

0 3 c 1 
0 4 c 
0 5 c 
0 6 c LIA~ l 
0 7 c rwl i 
0 8 c 
0 9 c 
1 0 c 
1 1 c 
1 2 c 
1 3 c 
1 4 c 
1 5 c 
1 6 c 
1 7 c 
1 8 c 
1 9 c 
2 0 c 

c 
c 
c 
c 
c 

ti IL OL 69 89 L9 99 S9 "9 £9 zg 19 09 6S as LS 9g SS ts £S ZS LS OS 6t et Lt 9t S• » Et Zt It Ot 6t et Lt 9t St tt £t Z£ Lt Ot 6Z Bl LZ gz s tZ £Z zz IZ oz 61 81 LI 91 SI ti ti ZI LI 01 6 8 L 9 s t It z L 

Library Entry Retrieval Subroutine (SUBR 15) 207 



The following list describes preceding R LAB L result fields: 

• The field LIBRY contains a code (0, R, S, or P) identi
fying the library. 

• The field NAME contains the name of the library entry 
or entries to be retrieved. 

• The field UNIT contains the code (R1, F1, R2, or F2) 
identifying the location .of the library. 

• The field RECL96 is a 96-byte field that will contain 
each record. 

• Indicator 01 is set on if the library entry is not found or 
if the library does not exist on the specified unit. 

• Indicator 02 is set on when the request is complete. 

• Indicator 03 is set on for each record. In this example, 
the indicator is used to condition the writing of the 
record to a file via the EXCPT operation code; by 
branching to LOOP1 another record is requested. 

208 



Capsule definitions of some common computer terms used 
in this manual. 

conversational OCL (Operation Control Language) An 
OCL statement consisting of a key
word and a response. 

CPU (Central Processing Unit) Nucleus 
of the Model 6 hardware. 

end-of-job-halt system halt at the tind of every job 
to give the operator time for any 
necessary housekeeping chores 
before beginning the next job. 

IPL (Initial Program Load) The process 
by which the operator loads into 
core storage the program that con
trols the operation of the system. 

KDE Keyboard Data Entry Utility Pro
gram 

KSE 

object library 

object library 
directory 

OCL 

Keyboard Source Entry Utility 
Program 

contains compiled programs, system 
programs, and routines. 

contains name and address (track 
and sector) of each object program 
in the object library. 

(Operation Control Language) An 
OCL statement consisting of 
statement identifiers and parameters. 

procedure 

sector 

source library 

source library 
directory 

source statements 

sys gen 

system printer 

track 

VTOC 

Glossary 

sequence of OCL statements in a 
source library. 

section of a disk track. Each track 
is divided into 24 sectors. 

contains procedures, RPG source 
programs, and KSE input. 

contains name and address (track 
and sector) of each source program 
.and procedure in the source library. 

program instructions that have not 
been compiled (translated) into 
machine language. 

(system generation) Process required 
to get a system ready to run after 
installation. 

displays OCL statements, util itv 
control statements, job comments, 
and error codes. (The system 
printer can also display the normal 
output of the job being run.) Also 
referred to as system log device. 

Each disk is divided into concentric 

circles called tracks. 

(Volume Table of Contents) That 
part of a disk which contains de
tailed information about every file 
on the disk. 

GI ossary 209 



210 



/ / ALLOCATE 154 
(see also allocate, library maintenance) 

//ALT 95 
(see also alternate track assignment 
program) 

// blank 82 
// CEND 162 

(see also copy, library maintenance) 
II COPY. 162 

(see -also copy, library maintenance) 
// DISPLAY 106 

(see· also file and volume display 
program) 

I I END (see END control statement) 
I I READER 30, 32 
// REBUILD 100 

(see also alternate track rebuild 
program) 

// REMOVE 113 
(see also file delete program) 

// RENAME 181 
(see also rename, library maintenance) 

// SCRATCH 113 
(see also file delete program) 

// UIN 86 
(see also disk initialization program) 
in OCL sample job #1 64 

//VOL 86 
(see also disk initialization program) 
in OCL sample job #1 64 

I & 32 
/* (end-of-job) 32 

card OCL 29 
conversational OCL 4 

? (see delayed response) 

$ALT (alternate track assignment) 
(see also alternate track assignment 
program) 

$BUILD (alternate track rebuild) 
(see also alternate track rebuild 
program) 

as response to LOAD NAME in OCL 
cycle 39 

$CCP communications control program 39 
$COPY (copy/dump) 

(see also copy I dump program) 
as response to LOAD NAME in OCL 
cycle 39 

in OCL sample job #4 67 

$DELET (file delete) 
(see also file delete program) 
as response to LOAD NAME in OCL 
cycle 39 

$DGSRT CCP /disk sort 39 
$DIU (data interchange utility) 

as response to LOAD NAME in OCL 
cycle 39 

$DSORT (disk sort) 
as response to LOAD NAME in OCL 
cycle 39 

$1NIT (disk initialization) 
(see also disk initialization program) 
as response to LOAD NAME in OCL 
cycle 39 

in OCL sample job #1 64 
$KCOPY (copy I dump program) 119 
$KDE (keyboard data entry) 

as response to LOAD NAME in OCL 
cycle 39 

$KSE (keyboard source entry) 
as r_esponse to LOAD NAME in OCL 
cycle 39 

$LABEL (file and volume label display) 
(see also file and volume label display 
program) 

as response to LOAD NAME in OCL 
·cycle 39 

$MAINT (library maintenance) 
(see also library maintenance program) 
as response to LOAD NAME in OCL 
cycle 39 

$RPG (RPG compiler) 
as response to LOAD NAME in OCL 
cycle 39 

*comments 32 

adding source library entries 
($MAINT) 178 

AFTER parameter 181 
allocate, library maintenance 

control statement summary 154 
parameter summary 155 
uses 152 

ALT control statement 95 
(see also alternate track assignment 
program) 

Index 211 



alternate track assignment program 
control statement summary 95 
example 98 
OCL considerations 97 
parameter descriptions 96 
parameter summary 95 
program name 97 
program uses 93 

alternate track rebuild program 
control statement summary 100 
example 103 
OCL considerations 102 
parameter descriptions 101 
parameter summary 100 
program name 102 
program uses 100 
substitute data description 101 
substitute data summary 100 

alternate tracks 
alternate track assignment 96 
disk initialization 83 
incorrect data on 100 

apostrophes in control statements 55, 82 
ASSIGN parameter 96 
asterisk {see comments) 

blanks in control statements 82 
BUILD cycle, when to use 6 
BUILD NAME 

in BUILD keyword-response summary 17 
its position in the BUILD cycle 16 
keyword description 33 

BUILDC cycle, when to use 7 
BUILDC NAME 

in BUILDC keyword-response summary 25 
its position in the BUILDC cycle 25 
keyword description 33 

CALL cycle, when to use 7 
CALL NAME 

in the CALL keyword-response summary 27 
its position in CALL cycle 27 
keyword description 33 

CANCEL 
as response to MODIFY in BUILD cycle 23 
as response to MODIFY in CALL cycle 27 
as response to MODIFY in LOAD cycle 15 
entering the keyword during MODIFY 43 

cancelling alternate-track assignments 94 
cancelling job {see CANCEL) 

212 

card and diskette considerations {$COPY) 
card or diskette input 132 
card or diskette output 132 
considerations for copying an entire 
disk 133 

in BUILD keyword-response 
summary 133, 135 

in LOAD keyword-response summary 133 
length and location parameters 132 
OCL 133 

card OCL input 29 
cataloged procedures {see procedures) 
CCP /disk sort {$DGSRT) 39 
CEND control statement 

library-to-card copy 162 
reader-to-library copy 161 

chained procedures 57 
changing 

file designation 38 
object library size 

disk considerations 159, 160 
SYSTEM parameter 156 
work parameter 157 

previous OCL statement during MODIFY 
phase 42 

printed output for system programs {see 
FORMS) 

size of source library 
control statement 154 
disk considerations 158, 159 
work parameter 157 

status of system printer {see LOG) 
character set, standard 198 
clear initialization 84 
coding rules 

control statements 82 
disk utility programs 82 
general 31 
multivolume file parameters 55 
statement order 32 

commas in control statements 
disk utilities 82 
OCL 

deleting statement 42 
in HIKEY 52 

comments 
entering comments during MODIFY 
phase 43 

on response line 10 
communications control program {$CCP) 39 
COMPILE OBJECT 

in BUILD keyword-response summary 17 
in LOAD keyword-response summary 11 
its position in LOAD cycle 10 
its position in the BUILD cycle 16 
keyword description 34 

compiled RPG program location 34 
compiling large RPG source programs 55 
compiling RPG source programs 

recommended method of 65 
compress in place 160 
conditional assignment of alternate 
tracks 94 

configuration ii 



considerations 
allocate 153 
delete 176 
during a call cycle 27 
IPL 48 
keyword-response summary 

build cycle 17 
BU I LDC cycle 25 
call cycle 27 
load cycle 11 

modify 178 
OCL 

alternate track assignment program 97 
alternate track rebuild program 102 
disk initialization program 90 
·tile and volume label display 
program · 110 

file delete program 116 
library maintenance program 182 
multivolume files 52 

129 programming 29 
3741 data station 29 
5496 data recorder 29 

continuation rules for card OCL 31 
control statements 

alternate track assignment 
ALT statement 95 

alternate track rebuild 
REBUILD statement 100 

coding rules 82 
disk initialization 

U IN statement 85 
VOL statement 85 

file and volume label display 
DISPLAY statement 105 

file delete 
REMOVE statement 113 
SCRATCH statement 113 

library maintenance 
ALLOCATE statement 154 
COPY statement 162 
DELETE statement 176 
INSERT statement 179 
MODIFY statement 179 
REMOVE statement 179 
RENAME statement 181 
REPLACE statement 179 
required to specify program 
options · 123 

conversational OCL, how it works 4 

COPY/DUMP program ($COPY) 
card or diskette input 132 
card or diskette output 132 
considerations (see card and diskette 
considerations) 

control statement summary 124 
COPYFILE statement 126 
copying and printing 120 
copying entire disk 120 
DELETE parameter 130 
disk or file location 119 
examples 136 
FILE parameter 131 
functions 119 
OCL considerations 133 
options 120 
parameter descriptions 129 
printing files 121 
record keys 119 
relative record numbers 119 
REORG parameter 130 
SELECT KEY and PKY parameter 130 
SELECT RECORD parameter 131 
using a work area 119 

copy, library maintenance 
control statement summaries 162 
examples 186 
parameter summary 165 
uses 161 

COPYFILE control statement 123 
copying 

entire disk 120 
files 121 
library entries 

file to library 161 
library-to-card 162 
library-to-library 161 
library-to-printer 161 
library-to-printer and card 162 
reader-to-library 161 

multivolume index files 122 
, one. removable disk to another on drive 

1 119 
COPYPACK statement 123 
correcting OCL statements 42 
CPU (processing unit) 

definition 209 
create an indexed file from sequential card 
file 147 

create an indexed file from sequential disk 
input 149 

creating object library 159 
control statement 154 
SYSTEM parameter 155 
WORK parameter 155 

creating source library 158 
control statement 154 
WORK parameter 155 

customer program name 
as response to keyword LOAD NAME in OCL 
cycle 39 

Index 213 • 



data interchange utility ($DIU) 
as response to LOAD NAME in OCL 
cycle 39 

DATA parameter ($DELET) 115 
data recorder to OCL code statements on 
cards 29 

DATA96 response to keyword READER 29 
DATE (file date) 

in BUILD keyword-response summary 23 
in LOAD keyword-response summary 15 
keyword-description of 38 
position in BUILD sequence 16 
position in LOAD sequence 10 
restrictions during file creation 
runs 38 

DA TE (system date) 
in BUILD keyword-response summary 19 
in LOAD keyword-response summary 12 
keyword description 34 
position in BUILD sequence 16 
position in LOAD sequence 10 

DATE parameter of file delete program 115 
DATE statement, format of 

definition 35 
general restrictions 35 

defective tracks 
address on disk 96 
definition (see surface analysis) 
retesting of 88 

delayed response 
definition of, restrictions, effect on 
system 6 

delayed responses in procedure 27 
delete 

files 112 
library entries 176 
object library 

control statement 154 
disk considerations 159 

previous OCL statement during MODIFY 
phase 42 

procedures 33 
records from a file 121 
source library 

control statement 154 
disk considerations 159 

DELETE control statement 176 
DELETE parameter ($COPY) 130 
delete, library maintenance 

control statement summary 176 
examples 191 
parameter summary 177 
uses 176 

designation of library entry 167 
direct files 

deleting records from 131 
OCL consideration for multivolume 
files 52 

records-tracks conversion for 199 
DIRSIZE parameter 156 
disk drive, sectors 83 
disk files 200 

214 

disk initialization program 83 
control statements 85 
OCL considerations 90 
parameter descriptions 88 
parameter summary 87 
program name 90 
program uses 83 

disk name 
characters allowed in 89 
length of 89 
response to PACK in OCL cycle 36 
uses 

alternate track assignment 96 
alternate track rebuild 101 
disk initialization 89 
file delete 114 

disk organization 200 
DISP (displacement) parameter 101 
DISPLAY control statement 106 
duplicate procedure names 

general discussion 33 
operator's options following 33 

EJECT 
in card OCL 30 
in conversational OCL 5, 35 

END control statement 82 
end-of-job halt 

definition 209 
response to READY 5 

ENTER- key, bypassing procedure 
printout 9, 27, 33 

ENTER+ key· 
purpose of, when to use 9 
relationship to the PROG START key 9 
uses of 9 

entering comments 
during the MODIFY phase 43 
on response line 10 . 

error code (see error messages) 
error messages 60 
errors in OCL statements, how to 
correct 42 



examples 
alternate track assignment, conditional 
assignment 98 

alternate track rebuild, correcting 
characters 193 

disk initialization, primary 
initialization 91 

file and volume label display, printing 
VTOC information 111 

file delete 
deleting one of several files having 
same name 117 

removing one file 118 
library maintenance 

changing source library size 184 
copy file-to-library 189 
copying minimum system 186 
creating libraries 183 
deleting object library 185 
deleting temporary entry 191 
deleting temporary entry-special 
characters 192 

insert source library statements 196 
printing library directories 187 
removing source library 
statements 195 

renaming source statements 197 
replacing library entry 188 
replacing procedure statements 193 

OCL 
chained procedures 77 
compile RPG II source 65 
copy disk 67 
include utility control statements in 
procedure 76 

initialize a disk 64 
multifile BUILD 69 
multifile CALL 71 
multivolume indexed file creation 73 
multivolume master file update 72 
process customer program 66 

external indicators 
at IPL 48 
considerations when responding to SWITCH 

in BUILD cycle 49 
in LOAD cycle 48 

current setting displayed in SWITCH 
statement 48 

using the SWITCH statement to change 48 

file and volume label display program 
control statements 1 05 
example 111 
OCL considerations 110 
parameter descriptions 106 
program name 110 
program uses 105 

file date 
keyword description 38 
restriction during file creation run 38 

file dates 115 
file delete program 

control statements 113 
examples 117, 118 
OCL considerations 116 
parameter descriptions 114 
program name 116 
program uses 112 

file designation 
how to change 38 
response to RETAIN in OCL cycle 37 

file keywords 
system-operator interaction during 
prompting of 35 

FILE NAME 
for $DSORT, $COPY, $MICR, $RPG, and 
$KDE 36 

for RPG programs 36 
in BUILD keyword-response summary 19 
in LOAD keyword-response summary 12 
its position in BUILD sequence 16 
its position in LOAD sequence 10 
keyword description 36 

file names, file delete 114 
file statement summary 54 
file-to-library copy function of library 
maintenance program 168 

files 
direct 199 
indexed 199 
multivolume 51 
records-tracks conversion for 208 
sequential 199 

FORMS, entering keyword during MODIFY 
phase 44 

FROM parameter, library maintenance 165 

glossary 209 

Index 215 



HALT 
in card OCL 30, 32 
in conversational OCL 38 

halt, end-of-job 
definition 209 

HI KEY (see multivolume files) 
hyphens in control statements 82 

IBM-supplied RPG compile procedure (RPG) 
as response to CALL NAME in CALL 
sequence 26 

in sample job #2 65 
increasing size of 55 

IBM System/3 standard character set 198 
ID (identification) parameter 89 
INCLUDE 

during a CALL cycle 47 
entering during MODIFY phase 46 
entering during the MODIFY phase 40 
including control statements in a 
procedure 55 

response to MODIFY in BUILD sequence 23 
restrictions following keyword 47 
sample job 76 
special considerations involving INCLUDE 
statements 4 7 

INCR parameter of MODIFY statement 180 
indexed files 

multivolume 
file statements for 54 
OCL considerations for 51 
OCL sample jobs for 73, 75 

record-tracks conversion for 199 
initial program load (IPL) 

definition 209 
establishing system date at 34 

initialization 
clear 84 
general definition 83 
primary 84 
secondary 84 

INQUIRY program 
classifying programs for inquiry 121 
planning inquiry programs 202 
requesting inquiry 201 

INSERT statement ($MAINT) 
control statement 179 
functions 178 
parameters 181 

inserting source library entries 
($MAINT) 178 

216 

KEY LENGTH (see multivolume files) 
keyword 

descriptions, OCL 33 
flowcharts, what they are and how to use 
them 2 

prompting 7 
response summary 

BUILD sequence 17 
CALL sequence 27 
LOAD sequence 11 
what they are and how to use them 2 

sequences 2 
for each keyword 33 
what they are and how to use them 2 

LABEL parameter 
file and volume label display 107 
file delete 114 
in BUILD keyword-response summary 20 
in LOAD keyword-response summary 13 
keyword description 36 
position in BUILD sequence 16 
position in LOAD sequence 10 
when response is required 37 

large RPG programs, compiling 55 
length on control statements 82 
LENGTH parameter 101, 129 
library 

boundary changes 151 
directories 

definitions 152 
directory printouts 170 
object library directory size 156, 157 
source library directory size 158, 159 

entries 
choosing designation 162 
copy considerations 162 
copy control statements 162 
deleting entries 176 
naming entries 167 
organizatiori"in libraries 151 
renaming entries 181 
types 151 

library entry retrieval subroutine 
(SUBR15) 205 



library maintenance program 
control statement summaries 

allocate 154 
copy 162 
delete 176 
modify 179 
rename 181 

examples 
allocate 183 
copy 186 
delete 191 
modify 193 
rename 197 

library description 151 
LIBRARY parameter 165 
library to library copy 

considerations 168, 169 
control statements 163 

library to printer and card copy 
considerations 169 
control statements 164 

library, object 
changing upper boundary 151 
definition 209 

library, source (see source library) 
parameter summaries 

allocate 155 
copy 165 
delete 177 
modify 180 
rename 181 

program name 182 
program uses 

allocate. 152 
copy 161 
delete 176 
modify 178 
rename 181 

line counter specifications (see FORMS) 
LIST parameter of MODIFY statement 179 
listing source library statements 
($MAINT) 178 

LOAD NAME 
in BUILD keyword-response summary 
in LOAD keyword-response summary 
keyword description ·39 
position in BUILD sequence 16 
position in LOAD sequence 10 

LOAD sequence, when to use 6 
LOCATION 

considerations for multivolume files 
in BUILD keyword-response summary 
in LOAD keyword-response summary 
keyword description 37 
position in BUILD sequence 16 
position in LOAD sequence 10 

location of libraries on disk 
placement of object library 160 
placement of source library 158 
source with respect to object 151 

LOG 
CRT as log device 59 
entering during MODIFY 59 
entering during READY 59 
2222 printer as log device 58 

17 
11 

50 
22 
14 

maintaining correct 
date 122 
relative record numbers 122 
volume sequence numbers 122 

Model 6 disk organization 200 
Model 6 job cycle 4 
MODIFY (OCL) 

changing a previous OCL statement 42 
deleting a previous OCL statement 42 
disk sort specifications in a 
procedure 23, 27 

entering CANCEL 43 
entering comments 43 
entering FORMS 44, 58 
entering INCLUDE 46 
entering LOG 59 
in BUILD keyword-response summary 23 
in CALL keyword-response summary 26 
in LOAD keyword-response summary 15 
keyword description of MODIFY 
options 40 

not prompted after CALL NAME 33 
position in BUILD cycle 16 
position in CALL cycle 27 
position in LOAD cycle 10 
statement numbers 9 

MODIFY statement ($MAINT) 
control statement summary 179 
functions 178 
parameters 180 

MODIFY-entering LOG 59 
multiple files 36 
multivolume files 51 

coding for 55 
maintain correct date and volume sequence 
number 122 

OCL considerations for 52 
sample jobs 69 

name of source program, as response to LOAD 
NAME 34 

NAME parameter ($MAINT) 165 
naming library entries 167 

characters to use 167 
length of name 167 
restricted names 167 

NEWNAME parameter 166 
NO EJECT 

in card OCL 30 
in conversational OCL 5, 47 

NOHALT 
in card OCL 30 
in conversational OCL 5, 47 

Index 217 



object library 
changing size 

control statem&nt 154 
disk considerations 1 ij7 
SYSTEM parameter 156 
WORK parameters 157 

creating 
control statement 154 
disk considerations 156 
SYSTEM parameter 156 
WORK parameter 157 

definition 151 
deleting 

control statement 154 
disk considerations 156 

reorganizing 
control statement 154 
disk considerations 156 

object library directory 
contents 153 
definitions 152 
printout 170 
size 156 

OBJECT parameter 156 
object programs, definitions of 151 
OCL considerations 

alternate track assignment 97 
alternate track rebuild 102 
copy/dump program 133 
disk initialization 90 
file and volume label display 110 
file delete 116 
library maintenance 182 
multivolume files 52 

OCL cycle 4 
OCL guide, sample form 3 
OCL, definition 4, 209 
operation control language (OCL), 
definition of 4, 209 

operator's OCL guide, sample form 3 
organization of library entries 151 
overriding system date 35 

218 

P (permanent) files 
deleting a procedure from a source 
library 33 

restrictions 37 
when to assign a P (permanent) 
designation to a file 37 

P/S, definition 63 
PACK parameter 

alternate track assignment 96 
alternate track rebuild 101 
considerations for multivolume files 52 
disk initialization 89 
file delete 114 
in BUILD keyword-response summary 20 
in LOAD keyword-response summary 13 
keyword description 36 
OCL 36 
position in BUILD sequence 16 
position in LOAD sequence 10 

parameter 82 
parameter descriptions 

alternate track assignment 96 
alternate track rebuild 101 
copy I dump program 129 
disk initialization 88 
file and volume label display 106 
file delete 114 
library maintenance 

allocate 156 
copy 165 
delete 177 
modify 180 
rename 181 

permanent (P) files 
restrictions 37 
when to assign a P (permanent) 
designation to a file 37 

permanent library entries 151 
primary initialization 84 
primary tractor 

in entering LOG during MODIFY phase 59 
lines per page setting for 44, 58 
print positions of 44, 58 

printing entire VTOC 105 
printing file information from VTOC 105 
printing files 121 
printing library directories 161 
printing library entries 161 
printing part of an indexed file 139 
procedure 

definition of 209 
deleting 33 
inserting statements 178 
listing 178 
modifying 178 
removing statements 178 
replacing statements 178 



procedure name 
response to BUILD NAME in BUILD 
cycle 17 

response to CALL NAME in CALL cycle 27 
restrictions on 33 

processing unit (CPU), definition 209 
PROG START key 

(see also keyword-response summary) 
uses of 9 
when to use it 9 

program names 
alternate track assignment ($ALT) 97 
alternate track rebuild ($BUILD) 102 
disk initialization ($1NIT) 90 
fire and volume label display 
($LABEL) 110 

file delete ($DELET) 116 
library maintenance ($MAINT) 182 

program operation 80 
all program except library 
maintenance 80 

library maintenance 81 
prompting, how its done 4 
punching library entries 162 

question mark key, purpose 6 

reader to library copy 
considerations 168 
control statements 162 

READY 
in SUILD keyword-response summary 17 
in CALL keyword-response summary 27 
in LOAD keyword-response summary 11 
keyword description 39 
position in BUILD sequence 16 
position in CALL sequence 27 
position in LOAD sequence 10 
position in the Model 6 job cycle 4 

READY-entering LOG 59 
REBUILD 100 
RECORDS 

considerations for multivolume files 53 
in BUILD keyword-response summary 21 
in LOAD keyword-response summary 13 
keyword description 37 
position in BUILD sequence 16 
position in LOAD sequence 10 

records-track conversion 199 
relative record number 131 

REMOVE statement ($DELET) 113 
REMOVE statement ($MAINT) 

control statement summary 179 
functions 178 
parameters 180, 181 

removing source library statements 
($MAI NT) 178 

RENAME, library maintenance 
control statement summary 181 
example 197 
use 181 

renaming library entries 181 
REORG (reorganize) parameter 130 
reorganizing a file 121 
reorganizing object library 

control statement 154 
disk considerations 160 

reorganizing source library 
control statement 154 
disk considerations 159 

REPLACE statement ($MAINT) 
control statement summary 179 
functions 178 
parameters 180 

replacing library entries 
library to library copy 161 
NEWNAME parameter 16.6 
reader to library copy 161 
RETAIN parameter 166 

replacing source library entries 
($MAI NT) 178 

requirements 
control statements 95, 123 
list 52 

RESER parameter of MODIFY statement 180 
reserializing a source library entry 
($MAINT) 178 

restrictions 
after include . 47 
allocate 153 
control statement 153 
delete 176 
during file creation runs 38 
during inquiry 57 
library 153 
modify 178 
temporary files 38 

RETAIN parameter 
library maintenance program 166 
OCL 

in BUILD keyword-response summary 22 
in LOAD keyword-response summary 14 
key description 37 
position in BUILD sequence 16 
position in LOAD sequence 10 

RPG compiler ($RPG), response to LOAD NAME 
in OCL cycle 34 

RPG file desc, spec, source of RPG filename 
in OCL cycle 35 

RPG filename, response to FILE NAME in OCL 
cycle 35 

Index 219 



RPG programs 
compiling 65 
compiling large RPG programs 55 
recommended method of compiling 65 

RPG source programs· 
compiling 65 
compiling large RPG source programs 55 
recommended method of compiling 65 

RUN 
keyword description 48 
response to MODIFY in BUILD sequence 24 
response to MODIFY in CALL sequence 28 
response to MODIFY in LOAD sequence 15 

S (scratch) files 
(see also examples) 
restrictions 38 
when to apply an S (scratch) designation 
to a file 38 

scheduler work area 156 
scratch (S) files 

restrictions 38 
when to apply an S (scratch) designation 
to a file 38 

SCRATCH control statement 113 
secondary initialization 84 
secondary tractor (of 2222 printer) 

entering LOG for 58 
lines per page setting for 58 

sector, definition 209 
SELECT control statement 123 
SELECT KEY parameters 131 
SELECT PKY parameters 131 
SELECT RECORD parameters 131 
SEQFLD parameter of MODIFY statement 180 
sequence number in MODIFY function 178 
sequential files 

deleting records from 120, 131 
printing part of 119, 123 
records-tracks conversion for 199 

sequential multivolume files, OCL 
considerations for 52 

setting external indicators 48 
single quotation mark key (see multivolume 
files) 

SORT source statements in ' 
procedure 23, 28 

SOURCE 
in BUILD keyword-response summary 18 
in LOAD keyword-response summary 11 
its position in BUILD sequence 16 
its position in LOAD sequence 10 
keyword description 34 

220 

source library 
adding entries 178 
changing size 

·control statement 154 
disk considerations 158 
WORK parameter 157 

contents 200 
creating 

control statement 
disk· considerations 
WORK parameter 

definition 151, 209 
deleting 

control statement 

154 
158 

157 

154 
disk considerations 159 

inserting entries 178 
listing entries 178 
putting procedures in 33 
relationship to the BUILD and CALL 
sequences 4 

removing entries 178 
reorganizing 

control statement 154 
disk considerations 159 

replacing entries 178 
reserializing entries 178 

source library directory 
contents 153 
definition 152, 209 
printout 170, 187 
putting procedure names in 33 
size 156 

SOURCE parameter 156 
source statements 

as input to the RPG compiler 56 
definition 151, 209 

source unit 34 
special characters, their uses and 
location 82 

standard character set 198 
statement numbers 

in modify 40 
in OCL cycle 9 

status of system printer, consideration 
when responding 58 

SUBR15 (library entry retrieval 
subroutine) 205 

substitute data 100 
surface analysis 

alternate track assignment 95 
disk initialization 85 

SWITCH 
in BUILD cycle 19 
in LOAD cycle 12 
keyword description 48 
position in BUILD sequence 16 
position in LOAD sequence 10 

sysgen, definition 209 
system configuration ii 



system date 
keyword description 34 
overriding 35 
responding in LOAD sequence 12 
responding to in BUILD sequence 19 

system directory 
definition 153 
printout 170 

system input device, use in library 
maintenance 165 

system operator interaction during keyword 
prompting 7 

SYSTEM parameter 156 
system printer 

{see also FORMS and LOGS) 
definition 209 

system program 
changing printed output for {see FORMS 
under MODIFY) 

included in object library 156 
name as response to keyword LOAD NAME in 
OCL cycle 39 

T {temporary) files 
restrictions 38 
when to assign a T {temporary) 
designation to a file 37 

tempora,.Y library entries 167 
testing condition of disk tracks {see 
surface analysis) 

TO parameter for library maintenance 
allocate 156 
copy 166 

TRACK parameter {$BUILD) 101 
TRACKS 

considerations for multivolume files 
definition 209 

53 

in BUILD keyword-response summary 21 
in LOAD keyword-response summary 14 
keyword description 37 
position in BUILD sequence 16 
position in LOAD sequence 10 

tracks-records conversion 199 
TYPE parameter 88 
types of library directories 167 
types of I ibrary entries 167 

U IN control statement 86 
UNASSIGl\J parameter 96 
unconditic;mal assignment of alternate 
tracks 96 

UNIT parameter 
alternate track assignment 96 
alternate track rebuild 101 
disk initialization 88 
file and volume label display 106 
file delete 114 
OCL 

BUILD unit 34 
FILE unit 36 
multivolume files 52 
SOURCE unit 34 

using a work area 119 
utility control statements 

coding 82 
in procedure {see INCLUDE) 

VERIFY parameter 
alternate track assignment 96 
disk initialization 88 

VOL control statement 86 
VTOC {volume table of contents) 

contents 200 
definition 105, 209 
example of printout 107 
relationship to LABEL 36 
printing entire VTOC 105 
printing file information only 105 

VTOC file name 
as response to keyword LABEL 
in OCL cycle 36 

how to distinguish files with 
same VTOC name 38 

work area 
copy/dump 119 
library maintenance 157 

WORK parameter 
copy I dump 130 
library maintenance 157 

1255 MCA utility ($MICA), in response 
to LOAD NAME 39 

Index 221 



222 









-~- ------ ----- _, __ - -.. ---- - - __ _ 
==-=~= © 

International Business Machines Corporation 

General Systems Division 
4111 Northside Parkway N.W. 
P.O. Box 2150 
Atlanta, Georgia 30301 
(U.S.A. only) 

General Business Group/International 
44 South Broadway 
White Plains, New York 10601 
U.S.A. 
(International) 

GC21-7516-5 

CD 
s: 
en 
w 
s: 
0 c. 
Cl> 
'in' 
~ 
Q) 

::I c. 
en 
0 
0 
r 
Ill 
::I 
c. 

f?-
7' 

c 
~ 
~ 
"'C 

0 
~ 
Q) 

3 
en 

::IJ 
Cl> ...... 
~ 
CD 
::I n 
CD 

s: 
Q) 

::I 
c 
!!?. 


