
- - -- - -- ----- - - ---- - --- - -
5A21-9275-0- - - -- File No. 534/532-36 --

.,

IBM System/34 and IBM System/32
Scient ific Macroinstructions

Functions Reference Manual
Program Numbers 5725-5C1

5726-551

..

- - -- - -
- - - ---- -

SA21-9275-0- - - --- File No. S34/S32-36 -- ------• -

IBM System/34 and IBM System/32
Scientific Macroinstructions

Functions Reference Manual
Program Numbers 5725-SC1

5726-SS1

------ - -
SA21-9275-0

Cl, -- -- -- - - - - File No. S34/S32-36 ---- - ------•

IBM System/34 and IBM System/32
Scientific Macroinstructions

Functions Reference Manual
Program Numbers 5725-SC1

5726-SS1

First Edition (July 1978)

This publication obsoletes and replaces SA21-9274.

This edition applies to release 2 modification 0, of the IBM System/34 System Support
Program Product (Program Number 5726-551) and to release 7 modification 0, of the
IBM System/32 System Control Program Product (Program Number 5725-SC1) and to
all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters. Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM systems, refer to the latest
IBM System Bibliography for the editions that are applicable and current; for System/34,
see GH30-0231, and for System/32, see GC20-0032.

This publication contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to your IBM
representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use the
Reader's Comment Form at the back of this publication to make comments about this
publication. If the form has been removed, address your comments to IBM Corporation,
Publications, Department 245, Rochester, Minnesota 55901. Comments become the
property of IBM.

© Copyright International Business MachinE'S Corporation 1978

Preface

This reference manual is for computer programmers,
system analysts, system engineers, and other technical
people who are interested in the operation and
characteristics of the IBM System/34 and System/32
scientific macroinstructions at the machine code level.

Note: This manual follows the convention that he means
he or she.

This publication contains:

• 	 Introductory information regarding instruction and
data formats, addressing, and registers

• 	 A description of the linkage and support
macroinstructions

• 	 A description of the arithmetic macroinstructions

Related Publications

• 	 IBM System/34 and IBM System/32 FORTRAN IV
Logic Manual, LY21-0568

• 	 IBM System/34 System Support Reference Manual,
SC21-5155

• 	 IBM System/34 Functions Reference Manual,
SA21-9243

• 	 IBM System/34 Basic Assembler and Macro Processor
Reference Manual, SC21-7705

• 	 IBM System/32 System Control Programming
Reference Manual, GC21-7593

• 	 IBM System/32 Functions Reference Manual,
GA21-9176

• 	 IBM System/32 Basic Assembler and Macro Processor
Reference Manual, GC21-7673

Titles and abstracts of other related publications are
listed in the IBM System/34 Bibliography, GH30-0231
or the IBM System/32 Bibliography, GC20-0032.

iii

·~

Contents

CHAPTER 1. INTRODUCTION 1 Binary Register Compare ($BCM P)-4 Bytes . 18

Scientific Macroinstruction Statements. 2 Macroinstruction Format 18

Data Formats . 2 Machine Instruction Format 18

Binary Format 2 Operation 18

Floating-Point Format 2 Resulting Condition Code Register Settings 18

Addressing . 2 Binary Register Divide ($HDIV)-2 Bytes 18

Direct Addressing 2 Macroinstruction Format 18

Indexed Addressing 2 Machine Instruction Format 18

Machine Instruction Format 3 Operation 18

Registers. 4 Example (Nonindexed) 18

Example (Indexed) 19

CHAPTER 2. SCIENTIFIC MODE LINKAGE AND Binary Register Divide ($BDIV)-4 Bytes

SUPPORT MACROINSTRUCTIONS 7 Macroinstruction Format 19

Scientific Environment and Subroutine Linkage 7 Machine Instruction Format 19

Scientific Implementation ($CSET) 9 Operation 19

Execute Scientific Subroutine ($CAlL) 9 Example (Nonindexed) 19

Start Scientific Subroutine ($CSUB) 9 Example (Indexed) 20

Exit Scientific Subroutine ($CRTN) 9 Binary Register load ($HlD)-2 Bytes 20

Return to System Mode ($INVK) 9 Macroinstruction Format 20

Return to Scientific Mode ($CRSM) . 9 Machine Instruction Format 20

Enter Scientific Microcode ($CNTR) . 10 Operation 20

Example (Nonindexed) 20

CHAPTER 3. INSTRUCTIONS. 13 Example (Indexed) 21

21

ADDRESS REGISTER INSTRUCTIONS 13 Binary Register load ($BlD)-4 Bytes 21

(., Address Register load ($All. $AlD) 13 Macroinstruction Format
Macroinstruction Format 13 Machine Instruction Format 21

Machine Instruction Format 13 Operation 21

Operation 13 Example (Nonindexed) 21

Example (Nonindexed) ($ALD) 13 Example (Indexed) 22

Example (Indexed) ($AU) 13 Binary Register Multiply ($HMlT)-2 Bytes 22

BINARY REGISTER INSTRUCTIONS 14 Macroinstruction Format 22

Data Format . 14 Machine Instruction Format 22

Number Representation 14 Operation 22

Instruction Format 15 Example (Nonindexed) 23

Binary Register Add ($HADD)-2 Bytes. 15 Example (Indexed) 23

Macroinstruction Format 15 Binary Register Multiply ($BMlT)-4 Bytes 23

Machine Instruction Format 15 Macroinstruction Format 23

Operation 15 Machine Instruction Format 23

Example (Nonindexed) 15 Operation 23

Example (Indexed) 16 Example (Nonindexed) 24

Binary Register Add ($BADD)-4 Bytes Example (Indexed) 24

Macroinstruction Format 16 Binary Register Store ($HST)-2 Bytes 24

Machine Instruction Format 16 Macroinstruction Format 24

Operation 16 Machine Instruction Format 24

Example (Nonindexed) 16 Operation 24

Example (Indexed) 17 Example (Nonindexed) 24

Binary Register Compare ($HCMP)-2 Bytes 17 Example (Indexed) 25

Macroinstruction Format 17 Binary Register Store ($BST)-4 Bytes 25

Machine Instruction Format 17 Macroinstruction Format 25

Operation 17 Machine Instruction Format 25

Resulting Condition Code Register Settings 17 Operation 25

Example (Nonindexed) 25

Example (Indexed) 26

Contents v

Binary Register Subtract ($HSUB)-2 Bytes 26

Macroinstruction Format 26

Machine Instruction Format 26

Operation 26

Example (Nonindexed) 26

Example (Indexed) 27

Binary Register Subtract ($BSUB)-4 Bytes 27

Macroinstruction Format 27

Machine Instruction Format 27

Operation 27

Example (Non indexed) 27

Example (Indexed) . . 28

FLOATING-POINT REGISTER INSTRUCTIONS 29

Data Format 29

Single-Precision Floating-Point Number . 29

Double-Precision Floating-Point Number. 30

Number Representation 30

Normalization 30

Instruction Format . . 31

Floating-Point Register Add ($RADD)-Single-Precision 31

Macroinstruction Format 31

Machine Instruction Format 31

Operation 31

Example (Non indexed) 32

Example (Indexed) . . 32

Floating-Point Register Add ($DADD)-Double-Precision 32

Macroinstruction Format 32

Machine Instruction Format 32

Operation 32

Example (Nonindexed) 33

Example (Indexed) 33

Floating-Point Register Compare ($RCMP)-Single-Precision 33

Macroinstruction Format 33

Machine Instruction Format 33

Operation 33

Resulting Condition Register Settings 33

Floating-Point Register Compare ($DCMP)-Double-Precision 34

Macroinstruction Format 34

Machine Instruction Format 34

Operation 34

Resulting Condition Register Settings 34

Floating-Point Register Divide ($RDIV)-Single-Precision 34

Macroinstruction Format 34

Machine Instruction Format 34

Operation 34

Example (Nonindexed) 35

Example (Indexed) . . 35

Floating-Point Register Divide ($DDIV)-Double-Precision 35

Macroinstruction Format 35

Machine Instruction Format 35

Operation 35

Example (Nonindexed) 36

Example (Indexed) 36

Floating-Point Register Load ($RLD)-Single-Precision 36

Macroinstruction Format 36

Machine Instruction Format 36

Operation 36

Example (Nonindexed) 36

Example (Indexed) 37

Floating-Point Register Load ($DLD)-Double-Precision 37

Macroinstruction Format 37

Machine Instruction Format 37

Operation 37

Example (Nonindexed) ~ 37

Example (Indexed) 38

Floating-Point Register Multiply ($RMLT)-Single-Precision 38

Macroinstruction Format 38

Machine Instruction Format 38

Operation 38

Example (Nonindexed) 39

Example (Indexed) 39

Floating-Point Register Multiply ($DMLT)-Double-Precision 39

Macroinstruction Format 39

Machine Instruction Format 39

Operation 39

Example (Nonindexed) 40

Example (Indexed) 40

Floating-Point Register Store ($RST)-Single-Precision 40

Macroinstruction Format 40

Machine Instruction Format 40

Operation 40

Example (Nonindexed) 40

Example (Indexed) 41

Floating-Point Register Store ($DST)-Double-Precision . 41

Macroinstruction Format 41

Machine I nstruction Format 41

Operation 41

Example (Nonindexed) 41

Example (Indexed) 42

Floating-Point Register Subtract ($RSUB)-Single-Precision 42

Macroinstruction Format 42

Machine Instruction Format 42

Operation 42

Example (Nonindexed) 42

Example (Indexed) 43

Floating-Point Register Subtract ($DSUB)-Double-Precision 43

Macroinstruction Format 43

Machine Instruction Format 43

Operation 43

Example (Non indexed) 43

Example (Indexed) 44

INDEX MULTIPLIER REGISTER INSTRUCTIONS 45

Index Multiplier Register Load Immediate ($MLI) 45

Macroinstruction Format 45

Machine Instruction Format 45

Operation 45

Example (Nonindexed) 45

Example (Indexed) 45

Index Multiplier Register Store ($MST) 46

Macroinstruction Format 46

Machine Instruction Format 46

Operation 46

Example (Nonindexed) 46

Example (indexed) 46

INDEX REGISTER INSTRUCTIONS 47

Index Register Add ($XADD) . 47

Macroinstruction Format 47

Machine Instruction Format 47

Operation 47

Example (Nonindexed) 47

Example (Indexed) 47

Index Register Load ($XLD) 48

Macroinstruction Format 48

Machine Instruction Format 48

Operation 48

Example (Nonindexed) 48

Example (Indexed) 48

vi

C.

Index Register Load Immediate ($XLI) 49 Double-Precision to Binary ($DCNB) 56

~ Machine Instruction Format 53 APPENDIX B. SUMMARY OF SYSTEM/34 AND

Operation 53 APPENDIX D. HOW TO SPECIFY THE OLiNK

Machine Instruction Format 54 INDEX.

Macroinstruction Format 49 Macroinstruction Format 56

Machine Instruction Format 49 Machine Instruction Format 56

Operation 49 Operation 56

Example (Nonindexed) 49 Binary to Single-Precision ($BCNR) 56

Example (Indexed) 49 Macroinstruction Format 56

Index Register Multiply ($XMLT) 50 Machine Instruction Format 56

Macroinstruction Format 50 Operation 56

Machine Instruction Format 50 Binary to Double-Precision ($BCND) 56

Operation 50 Macroinstruction Format 56

Example (Nonindexed) 50 Machine Instruction Format 56

Example (Indexed) 50 Operation 56

Index Register Multiply and Add ($XMTA) 51 Sign Change Binary ($BSGN) . 57

Macroinstruction Format 51 Macroinstruction Format 57

Machine Instruction Format 51 Machine Instruction Format 57

Operation 51 Operation 57

Example (Nonindexed) 51 Sign Change Floating-Point ($RSGN) 57

Example (Indexed) 51 Macroinstruction Format 57

Index Register Store ($XST) 52 Machine Instruction Format 57

Macroinstruction Format 52 Operation 57

Machine Instruction Format 52 Binary Absolute ($BABS) . 57

Operation 52 Macroinstruction Format 57

Example (Nonindexed)' 52 Machine Instruction Format 57

Example (Indexed) 52 Operation 57

LOGICAL INSTRUCTIONS 53 Floating-Point Absolute ($RABS) 57

Binary Register AND ($BAND) 53 Macroinstruction Format 57

Macroinstruction Format 53 Machine Instruction Format 57

Machine Instruction Format 53 Operation 57

' 53
Operation .

Binary Register OR ($BOR) . 53 APPENDIX A. HEXADECIMAL-DECIMAL CONVERSION 59

Macroinstruction Format 53

Operation 53 SYSTEM/32 SCIENTIFIC INSTRUCTION SET. 61

Binary Register NOT ($BNOT) 53

Macroinstruction Format 53 APPENDIX C. ERROR INFORMATION 67

Machine Instruction Format 53

Test Condition ($LSET) 54 PROCEDURE. 69

Macroinstruction Format 54

71
Operation 54

Mask Bit Setting 54

BRANCH INSTRUCTIONS 55

Binary Register IF ($BIF) 55

Macroinstruction Format 55

Machine Instruction Format 55

Operation 55

Floating-Point Register IF ($RIF) 55

Macroinstruction Format 55

Machine Instruction Format 55

Operation 55

Branch ($GOTO) 55

Macroinstruction Format 55

Machine Instruction Format 55

Operation 55

CONVERSION INSTRUCTIONS 56

Single-Precision to Binary ($RCNB) 56

Macroinstruction Format 56

Machine Instruction Format 56

Operation 56

~

Contents vii

.. ,""

Chapter 1. Introduction

FORTRAN is supported on System/34 and System/32
through a set of scientific instructions. The scientific
instructions consist of a group of instructions and
registers that perform functions commonly required in
scientific programs. The instructions are used by
FORTRAN and require no programming action other
than writing FORTRAN language statements.

You can also use a subset of the scientific instructions
with the IBM System/34 or System/32 Basic
Assembler and Macro Processor. In order to use this
subset of scientific instructions with the System/32,
however, you must have feature 1500 (this feature
consists of the control storage increments, and scientific
microcode required by FORTRAN) installed prior to
system generation time. You must also have the subset
of scientific instructions installed in either system at
system generation ti~e.

The subset (defined in Appendix B. System/34 and
System/32 Scientific Instructions Summary) consists of
the set of mnemonic macroinstructions that is
compatible with the set of mnemonic scientific
instructions. The macroinstructions are symbolic source
statements that are expanded into a predetermined
sequence of object codes by the Basic Assembler and
Macro Processor. That is, the macroinstructions
generate the scientific instructions that perform the
specific functions necessary for scientific calculations.
The macroinstructions expand the assembler user's
ability to add, subtract, multiply, and divide binary and
floating-point data.

To use the scientific instructions with an assembler
program, the programmer must establish the scientific
mode environment and create the interface by using the
following macroinstructions (see Chapter 2 for a
description of each of these macroinstructions):

$CSET
$CAll
$CSUB
$CRTN
$INVK
$CRSM
$CNTR

After the environment has been established and the
interface has been created, the programmer must code
the macroinstructions required to generate the scientific
instructions that are needed to meet your particular
requirements.

The remainder of this manual provides you with the
information necessary to use scientific macroinstructions
with the IBM System/34 or SystellJ/32 Basic
Assembler and Macro Processor. The terms System/34
and System/32 mode and scientific mode are used
throughout this manual to describe which processor
executes either a series of instructions or a subroutine.

When the system is using either the system support
program (System/34) or the system control program
(System/32) to execute the instructions described in the
System/34 and System/32 Functions Reference Manual,
it is in system mode and the scientific macroinstructions
are invalid. likewise, when the system is using the
scientific microcode to execute the instructions
described in this manual, it is in scientific mode and the
system instructions are invalid.

Note: For the remainder of this manual, the term
System(s) applies to both System/34 and System/32.
Also, when manuals containing information about either
system are referenced, the titles are not preceded by the
appropriate system references. In addition, when the
System/34 and System/32 Functions Reference Manual
is referenced, the title is not preceded by the system
reference. That is, the title is simply given as the
Functions Reference Manual.

Introduction 1

SCIENTIFIC MACROINSTRUCTION STATEMENTS

Scientific macroinstructions are symbolic source
statements that are expanded into a predetermined
sequence of object codes by the Basic Assembler and
Macro Processor; this sequence of codes is then
executed by the scientific microcode. The format of a
scientific macroinstruction is as follows:

I~OG""'MMU Io.... U

....... Op."";on 0,......, .. 20 30" " "
L~~l&;L

•
I$IR~ Dlr: bID RIJ II, 11 J 1 1 1 I I I ,.' ::~~~ ,.Optlonal entry

-NOTE: As shown on this assembler coding sheet,
scientific entries must begin in column 1, 10, and 16.

DATA FORMATS

Data resides in main storage in 8-bit bytes. In any
instruction, data is represented as a positive or negative
number by the value in bit 0. If bit a is 0, the data is
positive. If bit a is 1. the data is negative.

The instruction the system is executing determines how
the data is interpreted.

Binary Format

Binary data is recorded in either a 2-byte or a 4-byte
format. Both formats use bit a as the sign bit followed
by the integer field in bits 1-7. Positive numbers are
represented in true binary notation. Negative numbers
are represented in twos-complement notation.
Twos-complement notation does not include negative
zero.

The following is an example of the hexadecimal number
5EB3 written as a positive number in true binary
notation:

0101 1110 1011 0011

This is an example of the same hexadecimal number,
5EB3. written as a negative number in
twos-complement notation:

1010 0001 01001101

..

Floating-Point Format

Floating-point data is recorded in either single-precision
or double-precision format. Both formats use bit 0 as
the sign bit of the mantissa followed by the
characteristic, in excess 64 notation, in bits 1-7.
Single-precision data contains the mantissa in bits
8-31. while double-precision data contains the mantissa
in bits 8-63.

ADDRESSING

Addresses contained in main storage are addressed in
binary; source programs and program listings
customarily use hexadecimal notation to represent these
binary addresses. Main storage positions are numbered
consecutively from hex 0000 to the upper limit of
storage.

An address that is used to refer to main storage can be
specified by either of two methods: direct addressing or
indexed addressing.

Direct Addressing

When direct addressing is used, the effective address
(actual storage location of data) is taken from the
instruction. The address in the instruction is 2 bytes
long.

Suppose you were to code the following instruction:

NAMEA $BLD FIELDA

If FI ELDA points to storage location 0013. then the 4
bytes of data at locations 0013 through 0016 are placed
in the binary register.

Indexed Addressing

Addresses in most scientific instructions can be indexed.
If an address is indexed. the effective address used by
the instruction is equal to the sum of the current
contents of the scientific index register and the current
contents of the address portion of the instruction.

Suppose you were to code the following instruction:

NAMEA $BLD FIELDA,I

If FI ELDA points to storage location 0013 and the index
register contains 0005. then the 4 bytes of data at
locations 0018 through 001 B are placed in the binary
register. 1

2

MACHINE INSTRUCTION FORMAT

(.
All of the scientific instructions are 3 bytes long. They
are composed of a 1-byte op code and either a 2-byte
address or a 2-byte data field. Bits 0-6 of the op code
specify the instruction. and bit 7 specifies the type of
addressing to be used: 0 = direct addressing. and 1 =
indexed addressing.

Some macroinstructions using this format are named

according to the data type. the data length. and the

operation to be performed. These instructions are listed

in the following chart:

Index
Instruction Multiplier Index Integer*2 Integer*4 Real*4 Real*S Address

(M) (X) (H) (B) (R) (0) (A)

Load (LD) $XLD $HLD $BLD $RDL $DLD $ALD

Store (ST) $MST $XST $HST $BST $RST $DST

Add (ADD) $XADD $HADD $BADD $RADD $DADD

Subtract (SUB) $HSUB $BSUB $RSUB $DSUB

~
Multiply (MLT) $XMLT $HMLT $BMLT $RrVlLT $DMLT

Divide (DIV) $HDIV $BDIV $RDIV $DDIV

Compare (CMP) $HCMP $BCMP $RCMP $DCMP

Load Immediate $MU $XU $AU
(U)

And (AND) $BAND

Or (OR) $BOR

Not (NOT) $BNOT

Multiply and Add $XMTA

(MTA)

If (IF) $BIF $RIF

Introduction 3

Other macroinstructions are named according to their REGISTERS
function. These instructions are included in the following
chart:

Instruction

$GOTO

$LSET

$CALL

$CSET

$CSUB

$CRTN

$INVK

$CRSM

$CNTR

$RCNB

$DCNB

$BCNR

$BCND

$BSGN

$RSGN

$BABS

$RABS

Function

Changes the execution sequence to the
instruction at the effective address.

Sets the binary register according to the
condition code register contents and the
instruction mask.

Executes a scientific subroutine.

Establishes the scientific environment
(System/34). Loads the scientific
microcode (System/32).

Starts a scientific subroutine.

Exits a scientific subroutine.

Changes to system mode execution

beginning at the effective address.

Reenters the scientific environment.

Enters the scientific microcode.

Converts a single-precision, floating-point

number to a binary number.

Converts a double-precision,
floating-point number to a binary number.

Converts a binary number to a
single-precision, floating-point number.

Converts a binary number to a
double-precision, floating-point number.

Changes the sign of the binary number.

Change the sign of the floating-point
number.

Provides the absolute binary value.

Provides the absolute floating-point value.

The scientific mode registers that are directly accessible
by the scientific instructions are the index register, the
index multiplier register, the binary register, the
floating-point register, the address register, and the
condition code register. All of these registers are in
control storage and can be referenced only through the
use of scientific instructions.

The index register is used in indexed instructions to
compute the effective address. The index register is a
2-byte register that contains the index value for indexed
addressing.

The index multiplier register is a 2-byte register used in
computing the value to be placed in the index register.
The $XMTA (multiply and add) and $XMLT (multiply)
instructions cause the product of the index multiplier
register and the instruction operand to be either added
to or placed in the index register.

The binary register is a 4-byte register that contains
twos-complement binary numbers. It is used for integer
arithmetic. For Integer*2 (H) operations, the operand is
copied to temporary storage and extended on the left
with the sign bit to make a 4-byte value; the result is
used as the actual operand for the instruction. The
exception to this is the $HST (store) instruction, which
stores the 2 low-order bytes of the register with no
consideration for sign or truncation.

The floating-point register consists of an 8-byte,
floating-point value. During computation, a guard digit
and a status indicator for single-precision or
double-precision numbers are associated with the
floating-point register. Function and resulting status
vary according to the operand type (R,D) and the status.
All floating-point operations, except load and store,
have normalized results; this means that the high-order
hexadecimal digit of the mantissa is nonzero.

4

The floating-point register status is set to
double-precision whenever a single-precision or
double-precision operation is performed (except for
$RLOI and the prior status was double-precision. The
status is set to single-precision by the $RLO (load)
instruction; it remains single-precision as long as only
single-precision operations are performed. If the status
is double-precision and the operation is
single- precision, the operand is extended to
double-precision and the operation is carried out as
double-precision. If characteristic overflow or underflow
occurs, the appropriate indicator is set in the scientific
communication area.

The address register is a 2-byte register used in
conjunction with the $INVK (invoke) instruction.
Parameters or values used by system mode instructions
are addressed via the ac;ldress register. When the
$INVK instruction is executed, the contents of the
address register are placed in XR2 (index register 2).
XR2 can then be used by the system mode instructions
to locate and gain access to the parameters or values in
main storage.

The condition code register is a 1-byte register that
contains the results of a compare operation. The
register is set to low, equal, or high by the CMP
(compare) instruction. The $LSET (test condition)
instruction is the only instruction provided to test the
content of the condition code register.

Introduction 5

..

Chapter 2. Scientific Mode Linkage And Support Macroinstructions .l..

SCIENTIFIC ENVIRONMENT AND SUBROUTINE
LINKAGE

Scientific mode linkage and scientific support
macroinstructions provide the interface between system
mode routines and scientific mode routines. During
scientific mode, the system XR1 (index register 1)
addresses the scientific communication area, and the
system XR2 (index register 2) addresses the current
save area for the executing scientific program. (See
Appendix D. How to Specify the OLiNK Procedure for
detailed information regarding the Oel necessary to link
edit a module that uses scientific macroinstructions; see
the FORTRAN IV Logic Manual for detailed information
regarding the scientific communication area.)

The following chart gives an overview of the
macroinstructions thCjt are used to implement the
subroutine linkage in the scientific macroinstruction

package for each system. This chart is followed by an
example scientific program and a detailed description of
each of these macroinstructions.

Scientific Mode Lin kage and Support Macroinstructions 7

Macroinstruction System/34

$CSET Used once in the main program to
establish the environment for scientific
mode processing. The expansion
includes the scientific communication
area and the main program save area.

$CALL Generates the linkage to scientific
subroutines and passes required
addresses (arguments). Scientific
subroutine linkage conventions require
that called subroutines must be external,
separately assembled programs.

$CSUB Establishes the subroutine linkage and
makes the received parameters
(arguments) from $CALL available as
parameters for the subroutine. The index
values (parameter addresses) are
variables that are generated by $CSUB.
These variables are named $ARGnn; nn
represents the position of the desired

. argument within the parameter list. That
is, in a subroutine in which $CALL
passes three arguments and $CSUB
specifies that three parameters are to be
received, the variables generated by
$CSUB are $ARG1, $ARG2, and $ARG3.

$CRTN Returns execution control to t~e calling
routine.

$INVK Switches to system mode processing.

$CRSM Allows the user to return to scientific
mode without destroying the
environment that was established by
$CSET. It also allows the user to resume
processing.

$CNTR Switches to scientific mode processing.

System/32

Used once in the main program to generate
the code necessary to load the scientific
microcode. The expansion includes the
scientific communication area and the main
program save area.

Same as System/34.

Same as System/34.

Same as System/34.

Same as System/34.

Same as System/34.

Same as System/34.

8

Scientific Implementation ($CSET)

[Label] $CSET

System/34

This instruction must be the first scientific
macroinstruction executed. It creates the environment
and the instructions necessary to facilitate the first entry
into scientific mode. Also, the next sequential
instruction must be a scientific instruction. The
expansion of the instruction includes the scientific
communication area and the main program save area.
The $CSET macroinstruction is issued in system mode
and allows the program to execute in scientific mode.
There are no inputs to the $CSET macroinstruction.

System/32

This instruction is used only once in the program. It is
used to generate the code necessary to load the
scientific microcode .. The expansion includes the
scientific communication area and the main program
save area. It saves XR1 and XR2 if they contained data
before $CSET used them. If the macroinstruction is
unable to locate and load the scientific instruc.tion set
microcode, control is passed to $MODERR ($MODERR
must be a user defined error recovery subroutine).
Failure to define $MODERR results in an assembly error.

Execute Scientific Subroutine ($CAlL)

[Label] $CALL name(.address ...)

This instruction causes the specified external scientific
subroutine to be executed by using the variables at the
specified addresses as parameters. When the external
scientific subroutine completes execution, control is
returned and execution resumes with the next scientific
macroinstruction. The $CALL macroinstruction builds a
call block for the specified subroutine; the call block
contains the list of addresses specified as arguments to
the macroinstruction. (For additional information on call
blocks, see Linkage Conventions in the FORTRAN IV
Logic Manual). The $CALL macroinstruction is issued in
scientific mode.

Start Scientific Subroutine ($eSUB)

[Label] $CSUB number

This instruction generates the code that is necessary to
establish receiving subroutine linkage. The label
specifies the entry point name, and the number specifies
the number of parameters to be received by the
subroutine. The macroinstruction builds save areas and
parameter lists for the subroutine. (Further information
on the save areas and parameter lists can be found in
Linkage Conventions in the FORTRAN IV Logic Manual).
The $CSUB macroinstruction is issued in scientific
mode.

Exit Scientific Subroutine ($CRTN)

[Label] $CRTN

This instruction generates the code that is necessary to
return execution control to a calling routine from a
scientific subroutine. The $CRTN macroinstruction is
issued in scientific mode.

Return to System Mode ($INVK)

[Label] $INVK address

This instruction transfers the program to system mode
and continues execution with the next program
instruction at the effective address. The operand of
$INVK cannot be indexed. The $INVK macroinstruction
is issued in scientific mode.

Return to Scientific Mode ($CRSM)

[Label] $CRSM

This macroinstruction allows the user to leave system
mode and return to the instruction following the $INVK
macroinstruction in the environment that was
established by the $CSET macroinstruction. The control
storage portion of the scientific communications area
cannot be accessed by the user's program by any
means other than the scientific macroinstructions.

Scientific Mode linkage and Support Macroinstructions 9

Enter Scientific Microcode ($CNTR)

[Label] $CNTR

The $CNTR macroinstruction generates the code that is
necessary to initialize the environment for, and to enter,
scientific mode. If you will need to use the data in XR1
or XR2 at a later time, you should save the contents of
the register before issuing the $CNTR macroinstruction.

Following is an example System 132 scientific program
using the various macroinstructions. The first portion of
the program is the separately assembled subroutine.
This program is also applicable for System/34; the
System/34 scientific macroinstructions, however, are
loaded at hexadecimal location 0000 rather than at
hexadecimal location 0800, which is. used for
System132.

..

10

IBM Sy...ml32 Basic A......bI.r Coding Form GX21.g245
IBM ""in_",USA

I I I I I I I I'~'

Scientific Mode Linkage and Support Macroinstructions 11

- .
.. - . ~

Address Register Instructions

The address register instructions are used in conjunction
with the ($INVK) invoke macroinstruction to pass
parameters and values from scientific subroutines to
system subroutines. When a scientific subroutine has
been completed and the data required by a system
subroutine is ready to be passed from the scientific
subroutine, the address of the data (parameter or values)
is loaded into the address register. When the $INVK
macroinstruction is executed, the contents of the
address register are pl~ced in XR2.

ADDRESS REGISTER LOAD ($ALI, $ALD)

Macroinstruction Format

[label] $AlI address ,I
[label] $ALD address [, I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

46 Operand address
47 Base address for indexed instruction

Operation

This instruction places the effective 2-byte address in
the address register.

Chapter 3. Instructions

Example (Nonindexed) ($ALD)

Instruction

460013

Address Register Before Operation

11001111 10110011
Byte 0 Byte 1

Address Register After Operation

oooooooo 00010011
Byte 0 Byte 1

Example (Indexed) ($ALI)

Instruction

470013

Index Register

00000000 00000101
Byte 0 Byte 1

Address Register Before Operation

11001111 10110011
Byte 0 Byte 1

Address Register After Operation

oooooooo 00011000
Byte 0 Byte 1

Instructions 13

Binary Register Instructions

The binary register instructions perform binary arithmetic
on operands serving as fixed-point data, base addresses
and index quantities. The operands are 32 bits long
including the sign bit. An operand value is always in the
binary register and the operand value specified in the
instruction is always in main storage. After the
instruction has been completed, the binary register
contains the result.

Binary register instructions allow loading, adding,
subtracting, multiplying, dividing, and storing.

Data Format

Binary numbers appear in a fixed-length format

consisting of the sign bit followed by the integer field.

When stored in the binary register, a fixed-point

quantity has a 31-bit integer field and occupies all 32

bits of the register.

Fixed-Point Number-2 Bytes

s Integer

o 15

Fixed-Point Number-4 Bytes

s Integer

o

Binary data in main storage appears in a 32-bit format
or a 16-bit format; each format has a binary integer
field of 31 or 15 bits, respectively.

A 16-bit operand in main storage is extended to 32 bits
by propagating the sign bit as the operand is fetched
from storage. Subsequently, the operand is used as a
32-bit operand.

Note: In all discussions of binary numbers in this
manual, the expression 4 byte denotes a 31-bit integer
with a sign bit. and the expression 2 byte denotes a
15-bit integer with a sign bit.

Number Representation

All binary operands are treated as positive or negative
numbers. Positive numbers are represented in true
binary notation with a sign bit of O. Negative numbers
are represented in twos-complement notation with a
sign bit of 1. (The twos complement of a number is
obtained by inverting each bit of the number and adding
1 to the result.)

When the number is positive, all bits to the left of the
most significant bit, including the sign bit. are zeros.
When the number is negative, all these bits, including
the sign bit, are ones. Therefore, when an operand
must be extended with the high-order bits, the
expansion is achieved by propagating the sign bit.

Twos-complement notation does not include a negative
O. It has a number range in which the set of negative
numbers is one larger than the set of positive numbers.
The maximum positive number consists of an all-1
integer field with a sign bit of 0, whereas the maximum
negative number (the negative number with the greatest
absolute value) consists of an all-O integer field with a
sign bit of 1.

Note: The sign bit is the leftmost bit in a number. In an
arithmetic operation, a carryout of the integer field
changes the sign.

31

J

14

Instruction Format

Binary instructions appear in the following format:

Op Code Operand

o 78

In this format, bits 0-6 specify the function to be
performed by the instruction. Bit 7 indicates if indexing
is to be used in addressing the operand. If bit 7 is 0,
bits 8-24 contain the operand location in main storage.
If bit 7 is 1, the contents of the index register are added
to the operand to form an address designating the
operand location in main storage.

The results of binary instructions replace the contents of
the binary register; an'exception is the store instruction,
which replaces the contents of the main storage location
with the contents of the register.

The contents of all registers and storage locations
participating in the addressing or execution part of an
operation remain unchanged, except for the storing of
the final results.

BINARY REGISTER ADD ($HADD)-2 BYTES

Macroinstruction Format

[Label] $HADD address [, I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

26 Operand address
27 Base address for indexed instruction

24

Operation

This instruction adds the 2 bytes of data starting at the
effective address to the contents of the binary register.
The 2-byte operand is expanded to 4 bytes before
addition by propagating the sign-bit value through the
16 high-order positions. Addition is performed by
adding all 32 bits. If the carryout of the sign-bit
position and the carryout of the high-order, numeric-bit
position are the same, the sum is satisfactory; if they
are not the same, an overflow occurs. The sign bit is
not changed after an overflow. A positive overflow
yields a negative final sum, and a negative overflow
yields a positive final sum. An overflow is not flagged,
nor does a program interrupt occur.

Example (Nonindexed)

Instruction

2614C3

Operand

00001101 10111100
14C3 14C4

Binary Register Before Operation

oooooooo OOOOOOOO 00011000 01100110
Byte 0 Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00000000 00100110 00100010
Byte 0 Byte 1 Byte 2 Byte 3

Instructions 15

Example (Indexed) BINARY REGISTER ADD ($BADD)-4 BYTES J
Instruction

Macroinstruction Format

2714C3

[Label] $BADD address [, I]

Operand Before Indexing

00001101 10111100 Machine Instruction Format
14C3 14C4

Byte 1
Operand After Indexing Op Code Bytes 2 and 3

00001100 10100011 lA Operand address

14FD 14FE lB Base address for indexed instruction

Index Register
Operation

00000000 00111010

Byte 0 Byte 1 This instruction adds the 4 bytes of data starting at the

effective address to the contents of the binary register.
Binary Register Before Operation Addition is performed by adding all 32 bits. If the

carryout of the sign-bit position and the carryout of the

00000000 00000000 00011100 01010101 high-order numeric bit position are the same, the sum is

Byte 0 Byte 1 Byte 2 Byte 3 satisfactory; if they are not the same, an overflow

occurs. The sign bit is not changed after an overflow. A ,j
Binary Register After Operation positive overflow yields a negative final sum, and a

negative overflow yields a positive final sum. An

00000000 00000000 00101000 11111000 overflow is not flagged, nor does a program interrupt

Byte 0 Byte 1 Byte 2 Byte 3 occur.

Example (Nonindexed)

Instruction

lA OC 14

Operand

00110001 00101110 00110001 00101110
OC14 OC15 OC16 OC17

Binary Register Before Operation

00111000 10100101 00111000 10100101
Byte 0 Byte 1 Byte 2 Byte 3

Binary Register After Operation

01101001 11010011 01101001 11010011
Byte 0 Byte 1 Byte 2 Byte 3

16

Example (Indexed)

Instruction

1BOC14

Operand Before Indexing

01110000 11001100 01110000 00101110
OC14 OC15 OC16 OC17

Operand After Indexing

00000011
1B64

10100101 00000011
1B65 1B66

10100101
1B67

Index Register

00001111
Byte 0

01010000
Byte 1

Binary Register Before Operation

00111010 01010101 00111010 01010101
Byte 0 Byte 1 Byte 2 Byte 3

Binary Register After Operation

00111101111110100011110111111010
Byte 0 Byte 1 Byte 2 Byte 3

BINARY REGISTER COMPARE ($HCMP)-2 BYTES

Macroinstruction Format

[Label] $HCMP address[,I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

56 Operand address
57 Base address for indexed instruction

Operation

This instruction compares the contents of the binary
register with the 2 bytes of data starting at the effective
address. The condition code register is set to low,
equal, or high. The 2-byte operand is extended to 4
bytes before the comparison by propagating the sign-bit
value through the 16 high-order bit positions.
Comparison is algebraic, and both operands are treated
as 32-bit positive or negative numbers.

Programming Note: Neither operand is altered by the
instruction.

Resulting Condition Code Register Settings

Bit Name Condition Indicated

5

6
7

Low

Equal
High

The binary register value is less than the
operand value.
The values are equal.
The binary register value is greater than
the operand value.

Instructions 17

BINARY REGISTER COMPARE ($BCMP)-4 BYTES

Macroinstruction Format

[Label] $BCMP address[,I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

58 Operand address
59 Base address for indexed instruction

Operation

This instruction compares the contents of the binary
register with the 4 bytes of data starting at the effective
address. The condition code register is set to low,
equal, or high. Comparison is algebraic, and both
operands are treated as 32-bit positive or negative
numbers.

Programming Note: Neither operand is altered by the
instruction.

Resulting Condition Code Register Settings

Bit Name Condition Indicated

5

6
7

Low

Equal
High

The binary register value is less than the
operand value.
The values are equal.
The binary register value is greater than
the operand value.

BINARY REGISTER DIVIDE ($HDIV)-2 BYTES

Macroinstruction Format

[Label] $HDIV address[,I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

24 Operand address
25 Base address for indexed instruction

Operation

This instruction divides the contents of the binary
register by the 2 bytes of data starting at the effective
address. The 2-byte operand is extended to 4 bytes
before the division by propagating the sign-bit value
through the 16 high-order bit positions. Both operands
are treated as 32-bit positive or negative numbers. The
quotient is a 32-bit positive or negative number; it
replaces the dividend in the binary register. (Dividing by
zero always yields zero.) If both operands have the
same sign, the quotient is positive. If they have
opposite signs, the quotient is negative. A zero quotient
is always positive.

Example (Nonindexed)

Instruction

24049E

Operand

oooooooo 00000101
049E 049F

Binary Register Before Operation

oooooooo OOOOOOOO OOOOOOOO 00110010
Byte 0 Byte 1 Byte 2 Byte 3

Binary Register After Operation

oooooooo 00000000 00000000 00001010
Byte 0 Byte 1 Byte 2 Byte 3

18

Example (Indexed) BINARY REGISTER DIVIDE ($BDIV)-4 BYTES

Instruction
Macroinstruction Format

25049E
[Label] $BDIV address[,I]

Operand Before Indexing

oooooooo 00000101 Machine Instruction Format
049E 049F

Byte 1
Operand After Indexing Op Code Bytes 2 and 3

oooooooo 00001010 18 Operand address
04A9 04AA 19 Base address for indexed instruction

Index Register
Operation

oooooooo 0000101'1

Byte 0 Byte 1 This instruction divides the contents of the binary
register by the 4 bytes of data starting at the effective

Binary Register Before Operation address. Both operands are treated as 32-bit positive or
negative numbers. The quotient is a 32-bit positive or

00000000 00000000 OOOOOOOO 00110010 negative number; it replaces the dividend in the binary
Byte 0 Byte 1 Byte 2 Byte 3 register. (Dividing by zero always yields zero.) If both

operands have the same sign, the quotient is positive. If
Binary Register After Operation they have opposite signs, the quotient is negative. A

zero quotient is always positive.
oooooooo OOOOOOOO OOOOOOOO 00000101
Byte 0 Byte 1 Byte 2 Byte 3

Example (Nonindexed)

Instruction

1801 B3

Operand

00000000 00000000 OOOOOOOO 00001100
01B3 01B4 01B5 01B6

Binary Register Before Operation

00000000 OOOOOOOO 001000 10 00001000
Byte 0 Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00000000 00000010 11010110
Byte 0 Byte 1 Byte 2 Byte 3

Instructions 19

Example (Indexed)

Instruction

1901 B3

Operand Before Indexing

oooooooo 00000000 OOOOOOOO
01B3 01B4 01B5

Operand After Indexing

oooooooo OOOOOOOO OOOOOOOO
021A 021B 021C

Index Register

00000000 01100111
Byte 0 Byte 1

Binary Register Before Operation

oooooooo 00000000 00100010
Byte 0 Byte 1 Byte 2

Binary Register After Operation

00000000 00000000 00000101
Byte 0 Byte 1 Byte 2

00001100
01B6

00000110
021D

00001000
Byte 3

10101100
Byte 3

BINARY REGISTER LOAD ($HLD)-2 BYTES

Macroinstruction Format

[Label] $HLD address[,I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

2C Operand address
2D Base address for indexed instruction

Operation

This instruction places the 2 bytes of data starting at the
effective address in the binary register. The 2-byte
operand is extended to 4 bytes during the operation by
propagating the sign-bit value through the 16
high-order bit positions.

Example (Nonindexed)

Instruction

2C 02 C1

Operand

01100011 10100011
02C1 02C2

Binary Register Before Operation

oooooooo 01000001 OOOOOOOO 00111100
Byte 0 Byte 1 Byte 2 Byte 3

Binary Register After Operation

OOOOOOOO OOOOOOOO 01100011 10100011
Byte 0 Byte 1 Byte 2 Byte 3

20

Example (Indexed) BINARY REGISTER LOAD ($BLD)-4 BYTES

Instruction
Macroinstruction Format

_D 02 C1

[Label] $BLO address[,I]

Operand Before Indexing

01100011 10100011 Machine Instruction Format

02C1 02C2

Byte 1

Operand After Indexing Op Code Bytes 2 and 3

10100011 00111010 20 Operand address
02F2 02F3 21 Base address for indexed instruction

Index Register
Operation

oooooooo 00110001
Byte 0 Byte 1 This instruction places the 4 bytes of data starting at the

effective address in the binary register.
Binary Register Before Operation

oooooooo 01000001 OOOOOOOO 00111100 Example (Nonindexed)

Byte 0 Byte 1 Byte 2 Byte 3

Instruction~ Binary Register After Operation
200104

11111111 11111111 10100011 00111010

Byte 0 Byte 1 Byte 2 Byte 3 Operand

oooooooo 10011101 00110101 11001010
0104 0105 0106 0107

Binary Register Before Operation

10100011 11000010 00111010 11000001
Byte 0 Byte 1 Byte 2 Byte 3

Binary Register After Operation

oooooooo 10011101 00110101 11001010
Byte 0 Byte 1 Byte 2 Byte 3

Instructions 21

Example (Indexed,

Instruction

210104

Operand Before Indexing

oooooooo 10011101 00110101
0104 0105 0106

Operand After Indexing

01100011 10100101 11000110
O4OC 0400 O4OE

Index Register

00000010 00111000
Byte 0 Byte 1

Binary Register Before Operation

10100011 11000010 00111010
Byte 0 Byte 1 Byte 2

Binary Register After Operation

01100011 10100101 11000110
Byte 0 Byte 1 Byte 2

11001010
0107

11110010
O4OF

11000001
Byte 3

11110010
Byte 3

BINARY REGISTER MULTIPLY ($HMLT)-2 BYTES

Macroinstruction Format

[Label] $HMLT address[,I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

2A Operand address
2B Base address for indexed instruction

Operation

This instruction multiplies the contents of the binary
register by the 2 bytes of data starting at the effective
address. The 2-byte multiplier is extended to 4 bytes
before multiplication by propagating the sign-bit value
through the 16 high-order bit positions. Both the
multiplier and the multiplicand are 32-bit positive or
negative numbers. The product is always a 32-bit
positive or negative number; it replaces the multiplicand
in the binary register. The sign of the product is
determined by the signs of the multiplier and
multiplicand; 0, however, is always positive. An
overflow is not flagged, nor does a program interrupt
occur.

Programming Note: The significant digits of the product
usually occupy 32 bits or less; however, if the product
exceeds 32 bits, the high-order bits are deleted and are
lost.

22

Example (Nonindexed)

Instruction

2A1093

Operand

00000000 00000111
1093 1094

Binary Register Before Operation

oooooooo OOOOOOOO OOOOOOOO
Byte 0 Byte 1 Byte 2

Binary Register After Operation

00000000 00000000 00000010
Byte 0 Byte 1 Byte 2

Example (Indexed)

Instruction

2B1093

Operand Before Indexing

00000000 00000111
1093 1094

Operand After Indexing

00000000 00001001
109F 10AO

Index Register

00000000 00001100
Byte 0 Byte 1

Binary Register Before Operation

00000000 00000000 00000000
Byte 0 Byte 1 Byte 2

Binary Register After Operation

oooooooo 00000000 00000110
Byte 0 Byte 1 Byte 2

01100011
Byte 3

10110101
Byte 3

10110101
Byte 3

01011101
Byte 3

BINARY REGISTER MULTIPLY ($BMLT~ BYTES

Macroinstruction Format

[Label] $BMLT address[.I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

1 E Operand address
lF Base address for indexed instruction

Operation

This instruction multiplies the contents of the binary
register by the 4 bytes of data starting at the effective
address. Both the multiplier and the multiplicand are
32-bit positive or negative numbers. The product is
always a 32-bit positive or negative number; it replaces
the multiplicand in the binary register. The sign of the
product is determined by the signs of the multiplier and
multiplicand; O. however. is always positive. An
overflow is not flagged. nor does a program interrupt
occur.

Programming Note: The significant digits of the product
usually occupy 32 bits or less; however. if the product
exceeds 32 bits. the high-order bits are deleted and are
lost.

Instructions 23

Example (Nonindexed)

Instruction

1E01 C4

Operand

oooooooo OOOOOOOO 10100001
01C4 01C5 01C6

Binary Register Before Operation

00000000 OOOOOOOO OOOOOOOO
Byte 0 Byte 1 Byte 2

Binary Register After Operation

00000000 01111100 10100101
Byte 0 Byte 1 Byte 2

Example (Indexed)

Instruction

1F01 C4

Operand Before Indexing

00000000 00000000 10100001
01C4 01C5 01C6

Operand After Indexing

00000000 OOOOOOOO 00000001
0267 0268 0269

Index Register

00000000 10100011
Byte 0 Byte 1

Binary Register Before Operation

00000000 00000000 00000000
Byte 0 Byte 1 Byte 2

Binary Register After Operation

00000000 00000000 11101111
Byte 0 Byte 1 Byte 2

24

00101001
01C7

11000110
Byte 3

10110110
Byte 3

00101001
01C7

00110110
026A

11000110
Byte 3

11000100
Byte 3

BINARY REGISTER STORE ($HST)-2 BYTES

Macroinstruction Format

[Label] $HST address [,I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

22 Operand address
23 Base address for indexed instruction

Operation

This instruction places the contents of the 2 low-order
bytes of the binary register in the 2-byte area starting at
the effective address.

Example (Nonindexed)

Instruction

220436

Operand Before Operation

00011000 11110111
0436 0437

Operand After Operation

10100011 11001001
0436 0437

Binary Register Before and After Operation

00111000 01100110 10100011 11001001
Byte 0 Byte 1 Byte 2 Byte 3

Example (Indexed) BINARY REGISTER STORE ($BST)-4 BYTES

Instruction

230436

Operand Before Indexing

Macroinstruction Format

[Label1 $BST address [.11

00011000 11110111
0436 0437

Operand After Indexing (before operation)

Machine Instruction Format

Byte'
Op Code Bytes 2 and 3

10011001
O4C9

01100110
O4CA

16
17

Operand address
Base address for indexed instruction

,

Operand A fter Operation

10100101 00111100
O4C9 O4CA

Index Register

Operation

This instruction places the contents of the binary
register in the 4-byte area starting at the effective
address.

oooooooo
Byte 0

10010011
Byte 1 Example (Nonindexed)

Binary Register Before and After Operation Instruction

oooooooo
Byte 0

11000011
Byte 1

10100101
Byte 2

00111100
Byte 3

160C19

Operand Before Operation

00111100 01011100 01101001
OC19 OC1A OC1B

00111100
OC1C

Operand After Operation

oooooooo
OC19

01001101
OC1A

00111010
OC1B

11000101
OC1C

Binary Register Before and After Operation

oooooooo
Byte 0

01001101
Byte 1

00111010
Byte 2

11000101
Byte 3

Instructions 25

Example (Indexed) BINARY REGISTER SUBTRACT ($HSUB)-2 BYTES

Instruction
Macroinstruction Format

170C19
[Label] $HSUB address[,I]

Byte 0 Byte 1 Byte 2 Byte 3

Operand Before Indexing Machine Instruction Format

00111100 01011100 01101001 00111100 Byte 1
OC19 OC1A OC1B OC1C Op Code Bytes 2 and 3

Operand After Indexing (before operation) 28 Operand address
29 Base address for indexed instruction

01100011 11000111 10101010 01010111
OC53 OC54 OC55 OC56

Operation
Operand After Operation

This instruction subtracts the 2 bytes of data starting at
oooooooo 01001101 00111010 11000101 the effective address from the contents of the binary
OC53 OC54 OC55 OC56 register. The 2-byte operand is extended to 4 bytes

before the subtraction by propagating the sign-bit value
Index Register through the 16 high-order bit positions. All 32 bits of

both operands are used, as in Binary Register Add
oooooooo 00111010 ($HADD).
Byte 0 Byte 1

Binary Register Before and After Operation Example (Nonindexed)

oooooooo 01001101 00111010 11000101 Instruction

280319

Operand

00001011 01101100
0319 031A

Binary Register Before Operation

oooooooo 00001100 00111100 11000111
Byte 0 Byte 1 Byte 2 Byte 3

Binary Register After Operation

oooooooo 00001100 00110001 01011 011
Byte 0 Byte 1 Byte 2 Byte 3

•

J

26

Example (Indexed) BINARY REGISTER SUBTRACT ($BSUB)-4 BYTES

Instruction

290319

Operand Before Indexing

Macroinstruction Format

[Label] $BSUB address [,I]

00001011 01101100
0319 031A

Operand After Indexing

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

00000100
03EO

01110111
03EE

lC
10

Operand address
Base address for indexed instruction

Index Register

oooooooo 110101'00
Byte 0 Byte 1

Binary Register Before Operation

00000000 00001100 00111100
Bvte 0 Byte 1 Byte 2

Binary Register After Operation

oooooooo 00001100 00111000
Byte 0 Byte 1 Byte 2

11000111
Byte 3

01010000
Byte 3

Operation

This instruction subtracts the 4 bytes of data starting at
the effective address from the contents of the binary
register. All 32 bits of both operands are used, as in
Binary Register Add ($BADD).

Example (Nonindexed)

Instruction

lC007B

Operand

oooooooo
oo7B

11001100
OO7C

11110100 01000011
0070 007E

Binary Register Before Operation

oooooooo
Byte 0

11111100
Byte 1

11001100
Byte 2

10001111
Byte 3

Binary Register After Operation

00000000
Byte 0

00101111
Byte 1

11011000 01001100
Byte 2 Byte 3

Instructions 27

Example (Indexed)

Instruction

10007B

Operand Before Indexing

oooooooo 11001100 11110100 01000011
007B 007e 0070 007E

Operand After Indexing

oooooooo 00001100 01001000 10000011
OOOE OOOF OOEO OOE1

Index Register

oooooooo 01100011
Byte 0 Byte 1

Binary Register Before Operation

oooooooo 11111100 11001100 10001111
Byte 0 Byte 1 Byte 2 Byte 3

Binary Register After Operation

oooooooo 11110000 10000100 00001100
Byte 0 Byte 1 Byte 2 Byte 3

28

Floating-Point Register Instructions

The floating-point instructions perform calculations on
operands with large numbers while preserving
computational precision.

A floating-point number consists of a positive or
negative characteristic and a positive or negative
mantissa. The quantity expressed by this number is
equal to the product of the mantissa and the number 16
raised to the power of the characteristic. The
characteristic is expressed in excess-64 notation; the
mantissa is expressed as a hexadecimal number having
a radix point to the left of the high-order digit (see
Number Representation later in this chapter).

The floating-point instructions ,allow loading, adding,
subtracting, multiplyinQ, dividing, and storing. Short
operands provide faster processing and require less
storage than long operands. Long operands provide
greater precision in computation.

Maximum precision is preserved in addition, subtraction,
multiplication, and division by producing normalized
results (see Normalization, later in this chapter).
Normalized operands are used in any floating-point
operation.

Data Format

Floating-point data appears in a fixed-length format,
that is either single-precision or double-precision. Both
formats can be used in main storage and in the
floating-point register.

Single-Precision Floating-Point Number

s ICharacteristic Mantissa

o 1 78 31

Instructions 29

Double-Precision Floating-Point Number

J
~_S__~_Ch_ar_a_c_te_r_is_t_ic~_____________________ __________________-J~ ~__ Ma_n_ti_ss_a

o 78

The first bit in either format is the sign bit (S). The
subsequent 7 bit positions are occupied by the
characteristic. The mantissa can have either 6 or 14
hexadecimal digits.

The entire set of floating-point instructions is available
for both single- and double-precision operands. When
single-precision is specified, all operands and results are
32-bit floating-point values. The rightmost 32 bits of
the floating-point register are not used in the operations
and remain unchanged. When, double-precision is
specified, all operands and results are 64-bit
floating-point values.

Final results have six mantissa digits in single-precision
format and 14 mantissa digits in double-precision
format.

Number Representation

The mantissa of a floating-point number is expressed in
hexadecimal digits. The radix point of the mantissa is
assumed to be immediately to the left of the high-order
mantissa digit. To provide the proper magnitude for the
floating-point number, the mantissa is multiplied by the
power of 16. The characteristic portion, bits 1-7 of both
floating-point formats, indicates this power. The bits
within the characteristic field can represent numbers
from 0 through 127. To accommodate large and small,
the characteristic is formed by adding 64 to the actual
number. The range of the characteristic is thus -64
through +63. This technique produces a characteristic in
excess-64 notation.

63

Both positive and negative quantities have a true
mantissa, the difference in sign being indicated by the
sign bit. That is, the number is positive or negative
according to the sign bit (0 or 1).

The range covered by the magnitude (M) of a
normalized floating-point number is as follows:

16-65 ~ M ~ (1 - 16-6) 1663 in single precision

16-65 ~ M ~ (1 - 16-14) 1663 in double precision

5-4 10-79 M 7.2 1075 in either precision.

Normalization

A quantity can be represented with the greatest
precision by a floating-point number that has a
normalized mantissa_ A normalized floating-point
number has a nonzero, high-order, hexadecimal
mantissa digit.

The process of normalization consists of shifting the
mantissa to the left until the high-order hexadecimal
digit is nonzero and reducing the characteristic by the
number of hexadecimal digits shifted. If a number has
no fraction, it is considered to be normalized. However,
if one or more high-order mantissa digits are 0, the
number is said to be unnormalized.

Normalization usually takes place when the intermediate
arithmetic result is changed to the final result. This
function is called postnormalization.

Programming Note: Because normalization applies to
hexadecimal digits, the 3 high-order bits of a normalized
mantissa may be O.

30

Instruction Format

Floating-point instructions appear in the following
format:

Op Code Operand

o 78

In this format, bits 0-6 specify the function to be
performed by the instruction. Bit 7 indicates if indexing
is to be used in addressing the operand. A 0 in bit 7
indicates that bits 8-24 contain the operand location in
main storage. A 1 in bit 7 indicates that the contents of
the index register are added to the operand to form an
address designating the storage location of the operand.

FLOATING-POINT REGISTER ADD ($RADD)-SINGLE
PRECISION

Macroinstruction F()rmat

[Label] $RADD address [,I]

Machine Instruction Format

Byte'
Op Code Bytes 2 and 3

32 Operand address
33 Base address for indexed instruction

24

Operation

This instruction adds the 4 bytes of data starting at the
effective address to the contents of the floating-point
register. The 4 low-order bytes of the floating-point
register are ignored and remain unchanged.

Before two floating-point numbers (operands) can be
added, the characteristics of the two operands must be
compared. The mantissa with the smaller characteristic
is shifted right; the operand with the smaller
characteristic is increased by 1 for each hexadecimal
digit that has been shifted until the two characteristics
agree. The mantissas are then added algebraically to
form an intermediate sum. The intermediate sum
consists of seven hexadecimal digits and a possible
carry.

The low-order digit is a guard digit obtained from the
mantissa that is shifted right. Only one guard digit
position is used in the mantissa addition. The guard
digit is 0 if no shift occurs.

After the addition, the intermediate sum is shifted left,
as necessary, to form a normalized mantissa. Vacated
low-order positions are filled with zeros, and the
characteristic is reduced by the amount of shift. The
sign of the sum is derived by the rules of algebra. The
sign of a sum with a 0 mantissa is always positive.

Instructions 31

Example (Nonindexed)

Instruction

321432

Operand

40 10 24 00
1432 1433 14341435

Floating-Point Register Before Operation

4021340000000000
Byte 0 Byte 7

Floating-Point Register After Operation

4031580000000000
Byte 0 Byte 7

Example (Indexed)

Instruction

331432

Operand Before Indexing

40 10 24 00
1432 1433 1434 1435

Operand After Indexing

40 11 93 01
15661567 1568 1569

Index Register

01 34
Byte 0 Byte 1

Floating-Point Register Before Operation

4021000072000000
Byte 0 Byte 7

Floating-Point Register After Operation

4032930172000000
Byte 0 Byte 7

32

FLOATING-POINT REGISTER ADD
($DADD)-DOUBLE PRECISION J

Macroinstruction Format

[Label] $DADD address[,l]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

3E Operand address
3F Base address for indexed instruction

Operation

This instruction adds the 8 bytes of data starting at the
effective address to the contents of the floating-point
register.

Before two floating-point numbers (operands) can be
added, the characteristics of the two operands must be
compared. The mantissa with the smaller characteristic
is shifted right; the operand with the smaller
characteristic is increased by 1 for each hexadecimal
digit that has been shifted until the two characteristics
agree. The mantissas are then added algebraically to
form an intermediate sum. The intermediate sum
consists of 15 hexadecimal digits and a possible carry.

The low-order digit is a guard digit obtained from the
mantissa that is shifted right. Only one guard digit
position is used in the mantissa addition. The guard
digit is 0 if no shift occurs.

After the addition, the intermediate sum is shifted left,
as necessary, to form a normalized mantissa. Vacated
low-order positions are filled with zeros, and the
characteristic is reduced by the amount of shift. The
sign of the sum is derived by the rules of algebra. The
sign of a sum with a 0 mantissa is always positive . ..

Example (Nonindexed) FLOATING-POINT REGISTER COMPARE
($RCMP)-SINGLE PRECISION

Instruction

3E0347 Macroinstruction Format

Operand [Label] $RCMP address[.l]

36 12 04 00 00 00 00 00
034703480349 034A034B 034C 034D034E Machine Instruction Format

Floating-Point Register Before Operation Byte 1
Op Code Bytes 2 and 3

3510600000000000
Byte 0 Byte 7 5A Operand address

5B Base address for indexed instruction
Floating-Point Register After Operation

3613 OA 00 00 00 00 00 Operation
Byte 0 Byte 7

This instruction compares the contents of the
floating-point register with the 4 bytes of data starting

Example (Indexed) at the effective address. The condition code register is
set to low, equal, or high. The 4 low-order bytes of the

Instruction floating-point register are ignored. During the
comparison, the sign, characteristic, and mantissa of

3F0347 each number are taken into account.

Operand Before Indexing
Programming Note: Neither operand is altered by the

40 00 00 00 00 00 12 04 instruction.
0347 0348 0349 034A 034B 034C 0340 034E

Operand After Indexing Resulting Condition Register Settings

37 29 71 00 00 00 00 00 Bit Name Condition Indicated
0457 0458 0459 045A 045B 045C 0450 045E

5 Low The binary register value is less than the
Index Register operand value.

6 Equal The values are equal.
01 10 7 High The binary register value is greater than
Byte 0 Byte 1 the operand value.

Floating-Point Register Before Operation

37 13 OA 00 00 00 00 00
Byte 0 Byte 7

Floating-Point Register After Operation

37 3C 7B 00 00 00 00 00
Byte 0 Byte 7

Instructions 33

FLOATING-POINT REGISTER COMPARE
($DCMP)-DOUBLE PRECISION

Macroinstruction Format

[Label] $DCMP address[,l]

Machine Instruction Format

Byte'
Op Code Bytes 2 and 3

5C Operand address
5D Base address for indexed instruction

Operation

This instruction compares the contents of the
floating-point register with the 8 bytes of data starting
at the effective address. T~e condition code register is
set to low, equal, or high. During the comparison, the
sign, characteristic, and mantissa of each number are
taken into account.

Programming Note: Neither operand is altered by the
instruction.

Resulting Condition Register Settings

Bit Name Condition Indicated

5

6
7

Low

Equal
High

The binary register value is less than the
operand value.
The values are equal.
The binary register value is greater than
the operand value.

FLOATING-POINT REGISTER DIVIDE J($RDIVl-SINGLE PRECISION

Macroinstruction Format

[Label] $RDIV address [,I]

Machine Instruction Format

Byte'
Op Code Bytes 2 and 3

30 Operand address
31 Base address for indexed instruction

Operation

This instruction divides the contents of the
floating-point register by the 4 bytes of data starting at
the effective address. The sign of the quotient is
determined by the rules of algebra. If the data is 0, the
divide check indicator is set in the scientific
communication area, and the dividend is left unchanged
in the floating-point register.

Before two floating-point numbers can be divided, the
difference between the dividend characteristic and the
divisor characteristic plus 64 must be obtained. The
number is used as an intermediate characteristic.

All dividend fraction digits participate in forming the
quotient, even if the normalized dividend fraction is
larger than the normalized divisor fraction. The quotient
fraction is normalized, if necessary.

34

Example (Nonindexed)

Instruction

301631

Operand

37 EO 00 00
1631 163216331634

Floating-Point Register Before Operation

35 AS 00 00 00 00 00 00
Byte 0 Byte 7

Floating-Point Register After Operation

3E CO 00 00 00 00 00 00
Byte 0 Byte 7

Example (Indexed)

Instruction

31 1631

Operand Before Indexing

37 EO 00 00
1631 1632 1633 1634

Operand After Indexing

35 EO 00 00
1665 1666 1667 1668

Index Register

00 34
Byte 0 Byte 1

Floating-Point Register Before Operation

35 A8 00 00 00 00 00 00
Byte 0 Byte 7

Floating-Point Register After Operation

40 CO 00 00 00 00 00 00
Byte 0 Byte 7

FLOATING-POINT REGISTER DIVIDE
($DDIV)-DOUBLE PRECISION

Macroinstruction Format

[Label] $DDIVaddress[,I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

3C Operand address
3D Base address for indexed instruction

Operation

This instruction divides the contents of the
floating-point register by the 8 bytes of data starting at
the effective address. The sign of the quotient is
determined by the rules of algebra. If the data is 0, the
divide check indicator is set in the scientific
communication area, and the dividend is left unmodified
in the floating-point register.

Before two floating-point numbers can be divided, the
difference between the dividend characteristic and the
divisor characteristic plus 64 must be obtained. This
number is used as an intermediate characteristic.

All dividend fraction digits participate in forming the
quotient, even if the normalized dividend fraction is
larger than the normalized divisor fraction. The quotient
fraction is normalized, if necessary.

Instructions 35

Example (Nonindexed)

Instruction

3C1743

Operand

33 EO 00 00 00 00 00 00
1743 1744 1745 1746 1747 1748 1749 174A

Floating-Point Register Before Operation

34 B6 00 00 00 00 00 00
Byte 0 Byte 7

Floating-Point Register After Operation

41 DO 00 00 00 00 00 00
Byte 0 Byte 7

Example (Indexed)

Instruction

301743

Operand Before Indexing

33 EO 00 00 00 00 00 00
17431744 1745 1746 1747 1748 1749 174A

Operand After Indexing

33 BO 00 00 00 00 00 00
1844 1845 1846 1847 1848 1849 184A 184B

Index Register

01 01
Byte 0 Byte 1

Floating-Point Register Before Operation

346Eoooo 00 0000 00
Byte 0 Byte 7

Floating-Point Register After Operation

41 AD 00 00 00 00 00 00
Byte 0 Byte 7

36

FLOATING-POINT REGISTER LOAD ($RLD)-SINGLE
PRECISION

Macroinstruction Format

[Label] $RLD address[,I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

38 Operand address
39 Base address for indexed instruction

Operation

This instruction places the 4 bytes of data starting at the
effective address in the floating-point register and sets
the floating-point register to single precision.

Example (Nonindexed)

Instruction

380462

Operand

40 36 93 02
0462 0463 0464 0465

Floating-Point Register Before Operation

3908673001000000
Byte 0 Byte 7

Floating-Point Register After Operation

4036930201000000
Byte 0 Byte 7

..

Example (Indexed)

Instruction

390462

Operand Before Indexing

40 36 93 02
0462 0463 0464 0465

Operand After Indexing

41 27 08 00
0474 0475 0476 0477

Index Register

00 12
Byte 0 Byte 1

Floating-Point Register Before Operation

3908673001000000
Byte 0 Byte 7

Floating-Point Register After Operation

4127080001000000
Byte 0 Byte 7

FLOATING-POINT REGISTER LOAD
($DLD)-DOUBLE PRECISION

Macroinstruction Format

[Label] $DLD address [, I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

44 Operand address
45 Base address for indexed instruction

Operation

This instruction places the 8 bytes of data starting at the
effective address in the floating-point register and sets
the floating-point register to double precision.

Example (Nonindexed)

Instruction

448194

Operand

36 14 30 00 00 00 00 00
819481958196819781988199819A819B

Floating-Point Register Before Operation

4018964000000000
Byte 0 Byte 7

Floating-Point Register After Operation

3614300000000000
Byte 0 Byte 7

Instructions 37
•

Example (Indexed) FLOATING-POINT REGISTER MULTIPLY J
Instruction

458194

Operand Before Indexing

36 14 30 00 00 00 00 00
819481958196819781988199819A819B

Operand After Indexing

34 26 19 00 00 00 00 00
81 B4 81 B5 81 B6 81 B7 81 B8 81 B9 81 BA81 BB

Index Register

00 20
Byte 0 Byte 1

Floating-Point Register Before Operation

40 18964000000000
Byte 0 Byte 7

Floating-Point Register After Operation

3426190000000000
Byte 0 Byte 7

($RMLT)-SINGLE PRECISION

Macroinstruction Format

[Label] $RMLT address[,I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

36 Operand address
37 Base address for indexed instruction

Operation

This instruction mUltiplies the contents of the
floating-point register by the 4 bytes of data starting at
the effective address. The sign of the product is
determined by the rules of algebra.

Before two floating-point numbers can be multiplied,
the sum of the characteristics minus 64 must be
obtained. This number is used as the characteristic of
the product. The product characteristic is reduced by
the number of left shifts.

The product fraction is normalized, if necessary. The
product fraction is trunoated to 6 digits after
normalization. When the product fraction is zero, the
product sign and characteristic ai"E! made zeros, thereby
yielding a true zero result.

38

Example (Nonindexed)

Instruction

360642

Operand

41 FO 00 00
0642 0643 0644 0645

Floating-Point Register Before Operation

34 AO 00 00 00 00 00 00
Byte 0 Byte 7

Floating-Point Register .After Operation

359600 00 00 00 00 00
Byte 0 Byte 7

Example (Indexed)

Instruction

360642

Operand Before Indexing

41 FO 00 00
0642 0643 0644 0645

Operand After Indexing

39 BO 00 00
0685 0686 0687 0688

Index Register

00 43
ByteO Byte 1

Floating-Point Register Before Operation

34 AO 00 00 00 00 00 00
Byte 0 Byte 7

Floating-Point Register After Operation

2D 6E 000000 00 00 00
Byte 0 Byte 7

FLOATING-POINT REGISTER MULTIPLY
($DMLT)-DOUBLE PRECISION

Macroinstruction Format

[Label] $DMlT address[,1]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

42 Operand address
43 Base address for indexed instruction

Operation

This instruction multiplies the contents of the
floating-point register by the 8 bytes of data starting at
the effective address. The sign of the product is
determined by the rules of algebra.

Before two floating-point numbers can be multiplied,
the sum of the characteristics minus 64 must be
obtained. This number is used as the characteristic of
the product. The product characteristic is reduced by
the number of left shifts.

The product fraction is determined by the rules of
algebra. The product fraction is truncated to 14 digits
after normalization. When the product fraction is zero,
the product sign and characteristic are made zeros,
thereby yielding a true zero result.

Instructions 39

Example (Nonindexed)

Instruction

420813

Operand

40 90 00 00 00 00 00 00
08130814081508160817 08180819 081A

Floating-Point Register Before Operation

3F DO 00 00 00 00 00 00
Byte a Byte 7

Floating-Point Register After Operation

4075000000000000
Byte 0 Byte 7

Example (Indexed)

Instruction

430813

Operand Before Indexing

41 09 00 00 00 00 00 00
08130814081508160817 0818 0819 081A

Operand After Indexing

40 70 00 00 00 00 00 00
09130914091509160917 09180919 091A

Index Register

01 00
Byte 0 Byte 1

Floating-Point Register Before Operation

40 EO 00 00 00 00 00 00
Byte 0 Byte 7

Floating-Point Register After Operation

40 62 00 00 00 00 00 00
Byte 0 Byte 7

FLOATING-POINT REGISTER STORE ($RSTJ-SINGLE
PRECISION

Macroinstruction Format

[Label] $AST address [, I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

2E Operand address
2F Base address for indexed instruction

Operation

This instruction places the single-precision portion
(high-order bytes) of the floating-point register in the
8-byte area starting at the effective address.

Example (Nonindexed)

Instruction

2E0123

Operand Before Operation

41 92 36 08
0123012401250126

Operand After Operation

39 08 42 60
0123012401250126

Floating-Point Register Before and After Operation

3908426019080000
Byte 0 Byte 7

Example (Indexed)

Instruction

2F0123

Operand Before Indexing

41 92 36 08
0123012401250126

Operand After Indexing (before operation)

39 10 83 62
012B 012C 012D012E

Operand After Operation

40 18 09 63
012B 012C 012D012E

Index Register

00 08
Byte 0 Byte 1

Floating-Point Register Before and After Operation

40 18096300000000
Byte 0 Byte 7

FLOATING-POINT REGISTER STORE
($DST)-DOUBLE PRECISION

Macroinstruction Format

[Label] $DST address [, I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

3A Operand address
3B Base address for indexed instruction

Operation

This instruction places the contents of the floating-point
register in the 8 byte area starting at the effective
address.

Example (Nonindexed)

Instruction

3A 48 03

Operand Before Operation

36 00 91 87 40 00 00 00
48034804 4805 4806 4807 4808 4809 480A

Operand After Operation

49 80 14 30 00 00 00 00
4803 4804 4805 4806 4807 4808 4809 480A

Floating-Point Register Before and After Operation

4980143000000000
Byte 0 Byte 7

Instructions 41

Example (Indexed)

Instruction

3B48 03

Operand Before Indexing

36 00 91 87 40 00 00 00
4803 4804 4805 4806 4807 4808 4809 480A

Operand After Indexing (before operation)

31 68 79 53 00 00 00 00
4B8D4B8E4B8F4B904B914B924B934B94

Operand After Operation

38 10 83 47 62 10 00 00
4B8D4B8E 4B8F 4B90 4B91 4B92 4B93 4B94

Index Register

03 8A

Byte 0 Byte 1

Floating-Point Register Before and After Operation

38 108347 62 1000 00

Byte 0 Byte 7

FLOATING-POINT REGISTER SUBTRACT
($RSUB)-SINGLE PRECISION

Macroinstruction Format

[Label] $RSUB address[,I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

34 Operand address
35 Base address for indexed instruction

Operation

This instruction subtracts the 4 bytes of data starting at
the effective address from the contents of the
floating-point register. The low-order half of the
floating-point register is ignored and remains
unchanged. This instruction is similar to Floating-Point
Register Add ($RADD), except that the sign of the
operand is changed before addition when the ($RADD)
instruction is used. The sign of the difference is
determined by the rules of algebra. The sign for any
difference that equals 0 is always positive.

Example (Nonindexed)

Instruction

340345

Operand

39 18 43 00
0345 0346 0347 0348

Floating-Point Register Before Operation

4091965000000000
Byte 0 Byte 7

Floating-Point Register After Operation

4090122000000000
Byte 0 Byte 7

42

'-... Example (Indexed)

Instruction

350345

Operand Before Indexing

39 18 43 00
0345 0346 0347 0348

Operand After Indexing

40 80 14 30
0355 0356 0357 0358

Index Register

00 10
Byte 0 Byte 1

Floating-Point Register Before Operation

4091965000000000
Byte 0 Byte 7

Floating-Point Register After Operation

40 11822000000000
Byte 0 Byte 7

FLOATING-POINT REGISTER SUBTRACT
($DSUB)-DOUBLE PRECISION

Macroinstruction Format

[Label] $DSU B address [.1]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

40 Operand address
41 Base address for indexed instruction

Operation

This instruction subtracts the 8 bytes of data starting at
the effective address from the contents of the
floating-point register. This instruction is similar to
Floating-Point Register Add ($DADD). except that the
sign of the operand is changed before addition when
the ($DADD) instruction is used. The sign of the
difference is determined by the rules of algebra. The
sign for any difference that equals 0 is always positive.

Example (Nonindexed)

Instruction

4010 F2

Operand

36 21 02 69 52 01 11 00
10F2 10F3 10F4 10F5 10F6 10F7 10F8 10F9

Floating-Point Register Before Operation

3638147963552100
Byte 0 Byte 7

Floating-Point Register After Operation

36 1 7 1 2 1 0 11 54 1 0 00
Byte 0 Byte 7

Instructions 43

Example (Indexed)

Instruction

4110 F2

Operand Before Indexing

36 21 02 69 52 01 11 00

10F2 10F3 10F4 10F5 10F6 10F7 10F8 10F9

Operand After Indexing

36 16 03 58 61 43 11 00

14F2 14F3 14F4 14F5 14F6 14F7 14F8 14F9

Index Register

04 00
Byte 0 Byte 1

Floating-Point Register Before Operation

3638147963552100
Byte 0 Byte 7

Floating-Point Register After Operation

36 22 11 21 02 12 1000

Byte 0 Byte 7

•

44

Index Multiplier Register Instructions

INDEX MULTIPLIER REGISTER LOAD IMMEDIATE
($MLI)

Macroinstruction Format

[Label] $MLI DATA[,I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

12 Data
13 Base data

Operation

This instruction places 2 bytes of data from the
instruction in the index multiplier register. If indexing is
used, the sum of the instruction data added to the
contents of the index register is placed in the index
multiplier register.

Example (Nonindexed)

Instruction

1204CA

Index Multiplier Register Before Operation

00000011 10101011
Byte 0 Byte 1

Index Multiplier Register After Operation

00000100 11001010
Byte 0 Byte 1

Example (Indexed)

Instruction

1304CA

Operand Before Indexing

O4CA

Operand After Indexing

O4D5

Index Register

oooooooo 00001011
Byte 0 Byte 1

Index Multiplier Register Before Operation

00000011 10101011
Byte 0 Byte 1

Index Multiplier Register After Operation

00000100 11010101
Byte 0 Byte 1

Instructions 45

INDEX MULTIPLIER REGISTER STORE ($MST)

Macroinstruction Format

[Label] $MST address [.1]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

14 Operand address
15 Base address for indexed instruction

Operation

This instruction places the contents of the index
multiplier register in the 2-byte area starting at the
effective address.

Example (Nonindexed)

Instruction

140396

Operand Before Operation

00111000 01011101
0396 0397

Operand After Operation

00000000 00000111
0396 0397

Index Multiplier Register Before and After Operation

00000000 00000111
Byte 0 Byte 1

Example (Indexed)

Instruction

150396

Operand Before Operation (after indexing)

00000100 10011001
03A2 03A3

Operand After Indexing (before operation)

00111000 01011101
0396 0397

Operand After Operation

00000000 01000101
03A2 03A3

Index Register

oooooooo 00001100
Byte 0 Byte 1

Index Multiplier Register Before and After Operation

00000000 01000101
Byte 0 Byte 1

..

46

Index Register Instructions

INDEX REGISTER ADD ($XADD)

Macroinstruction Format

[Label] $XAOO address [.1]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

08 Operand, address
09 Base address for indexed instruction

Operation

This instruction adds- the 2 bytes of data starting at the
effective address to the contents of the index register.

Example (Nonindexed)

Instruction

080814

Operand

00000001 10001001
0814 0815

Index Register Before Operation

00000111 00101100
Byte 0 Byte 1

Index Register After Operation

00001000 10110101
Byte 0 Byte 1

Example (Indexed)

Instruction

090814

Operand Before Indexing

00000001 10001001
0814 0815

Operand After Indexing

(){)()()(X)()() 11 011 011

00B7 00B8

Index Register

00000101 10100011
Byte 0 Byte 1

Index Register Before Operation

00000101 10100011
Byte 0 Byte 1

Index Register After Operation

00000110 01111110
Byte 0 Byte 1

Instructions 47

INDEX REGISTER LOAD ($XLD)

Macroinstruction Format

(Label] $XLD address(.I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

06 Operand address
07 Base address for indexed instruction

Operation

This instruction places the 2 bytes of data starting at the
effective address in the index register.

Example (Nonindexed)

Instruction

060738

Operand

00000000 01111101
0738 0739

Index Register Before Operation

00001100 10100011
Byte 0 Byte 1

Index Register After Operation

00000000 01111101
Byte 0 Byte 1

Example (Indexed)

Instruction

070738

Operand Before Indexing

oooooooo 01111101
0738 0739

Operand After Indexing

00000000 11011111
07B1 07B2

Index Register

oooooooo 01111001
Byte 0 Byte 1

Index Register Before Operation

00000000 01111001
Byte 0 Byte 1

Index Register After Operation

00000000 11011111
Byte 0 Byte 1

48

INDEX REGISTER LOAD IMMEDIATE ($XLI)

Macroinstruction Format

[Label] $XLI data[.1]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

OA Data
OB Data for indexed instruction

Operation

This instruction places the 2 bytes of data from the
instruction in the index register. If indexing is used. the
instruction data is added to the contents of the index
register. The result is placed in the index register.

Example (Nonindexed)

Instruction

OA 01 ac

Operand

01ac

Index Register Before Operation

00000011 10011110
Byte 0 Byte 1

Index Register After Operation

00000001 10001100
Byte 0 Byte 1

Example (Indexed)

Instruction

OBOlac

Operand Before Indexing

01ac

Operand After Indexing

01FB

Index Register

oooooooo 01101111
Byte 0 Byte 1

Index Register Before Operation

oooooooo 01101111
Byte 0 Byte 1

Index Register After Operation

00000001 11111011
Byte 0 Byte 1

Instructions 49

INDEX REGISTER MULTIPLY ($XMLTt

Macroinstruction Format

[Label] $XMLT address [.1]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

OE Operand address
OF Base address for indexed instruction

Operation

This instruction mUltiplies the oontents of the index
multiplier register by the 2 bytes of data starting at the
effective address and places the product in the index
register.

Example (Nonindexed)

Instruction

OE06C4

Operand

oooooooo 00001101
06C4 06CS

Index Multiplier Register Before and After Operation

oooooooo 00000011
Byte a Byte 1

Index Register Before Operation

00000010 10001010
Byte a Byte 1

Index Register After Operation

00000000 00100111
Byte a Byte 1

Example (Indexed)

Instruction

OF06C4

Operand Before Indexing

oooooooo 00001101
06C4 06C5

Operand After Indexing

oooooooo 00011000
0600 0601

Index Register

oooooooo 00001100
Byte a Byte 1

Index Multiplier Register Before and After Operation

oooooooo 00000011
Byte a Byte 1

Index Register Before Operation

oooooooo 01000101

Index Register After Operation ..
oooooooo 01001000
Byte a Byte 1

50

INDEX REGISTER MULTIPLY AND ADD ($XMTA)

Macroinstruction Format

[Label] $XMTA address[,I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

10 Operand address
11 Base address for indexed instruction

Operation

This instruction adds the product of the index multiplier
register and the 2 bytes of data starting at the effective
address to the contents of the index register.

Example (Nonind~xed)

Instruction

1000 C2

Operand

00000000 000110
ODC2 ODC3

Index Multiplier Register Before and After Operation

oooooooo 00000101
Byte a Byte 1

Index Register Before Operation

oooooooo 00101010
Byte 0 Byte 1

Index Register After Operation

oooooooo 01001000
Byte 0 Byte 1

Example (Indexed)

Instruction

1100 C2

Operand Before Indexing

oooooooo 000110

ODC2 ODC3

Operand After Indexing

oooooooo 000010

ODEC ODED

Index Register

oooooooo 00101010
Byte 0 Byte 1

Index Multiplier Register Before and After Operation

oooooooo 00000101
Byte 0 Byte 1

Index Register Before Operation

oooooooo 00101010
Byte 0 Byte 1

Index Register After Operation

oooooooo 00110100
Byte 0 Byte 1

Instructions 51

INDEX REGISTER STORE ($XST)

Macroinstruction Format

[Label] $XST address [.1]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

OC Operand address
OD Base address for indexed instruction

Operation

This instruction places the contents of the index register
in the 2-byte area starting at the effective address.

Example (Nonindexed)

Instruction

OC OA 12

Operand Before Operation

00001001 10011001
OA12 OA13

Operand After Operation

00000000 00110011
OA12 OA13

Index Register Before and After Operation

00000000 00110011
Byte 0 Byte 1

Example (Indexed)

Instruction

OD OA 12

Operand Before Indexing

00001001 10011001
OA12 OA13

Operand After Indexing (before operation)

00110110 01100110
OA45 OA46

Operand After Operation

oooooooo 00110011
OA45 OA46

Index Register Before and After Operation

00000000 00110011
Byte 0 Byte 1

52

Logical Instructions

BINARY REGISTER AND ($BAND)

Macroinstruction Format

[Label] $BAN 0 address [, I]

Machine Instruction Format

Byte 1

Op Code Bytes 2 and 3

60 Operand address
61 Base address for indexed instruction

Operation

This instruction checks the contents of the binary
register and the 4 bytes of data starting at the effective
address. If both values are nonzero, the binary register
is set to X'OOOOOOO1'. If either value is 0, the binary «..., register is set to X'OOOOOOOO'.

BINARY REGISTER OR ($BOR)

Macroinstruction Format

[Label] $BOR address [,I]

Machine Instruction Format

Byte 1

Op Code Bytes 2 and 3

62 Operand address
63 Base address for indexed instruction

Operation

This instruction checks the contents of the binary
register and the 4 bytes of data starting at the effective
address. If both values are 0, the binary register
remains unchanged. If either value is nonzero, the
binary register is set to X'OOOOOOO1'.

BINARY REGISTER NOT ($BNOT)

Macroinstruction Format

[Label] $BNOT

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

64 Not used

Operation

This instruction checks the contents of the binary
register, If the binary register is 0, it is set to
X'OOOOOOO1', If the binary register is nonzero, it is set
to X'OOOOOOOO',

Instructions 53

TEST CONDITION ($LSET)

Macroinstruction Format

[Label] $LSET mask

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

5E Mask

Operation

This instruction tests the contents of the condition code
register. If the condition code register value (less than,
equal. greater than) satisfies the $LSET mask, the binary
register is set to X'OOOOOOO1'; otherwise, the binary
register is set to X'OOOOOOOO'.

Mask Bit Setting

Code
(Hex) Name

0004 Low
0006 Low, Equal
0002 Equal
0005 Not Equal
0003 Equal, High
0001 High

54

Branch Instructions

BINARY REGISTER IF ($BIF)

Macroinstruction Format

[Label] $BIF addressl,address2,address3

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

04 Address of the I F block

Operation

The next instruction to be executed is located at the
corresponding address if the binary register value is
negative (address 1)' zero (address 2), or positive
(address 3). .

FLOATING-POINT REGISTER IF ($RIF)

Macroinstruction Format

[Label] $RI F address 1 ,address2,address3

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

04 Address of the IF block

Operation

The instruction to be executed next is located at the
corresponding address if the floating-point register value
is negative (address 1), zero (address2), or positive
(address3).

BRANCH ($GOTO)

Macroinstruction Format

[Label] $GOTO address[,I]

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

02 Operand address
03 Base address for indexed instruction

Operation

The next instruction to be executed is at the effective
address.

Instructions 55

Conversion Instructions

SINGLE-PRECISION TO BINARY ($RCNB)

Macroinstruction Format

[Label] $RCNB

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

66 0001

Operation

This instruction converts the single-precision real
number in the floating-point register to an integer value
in the binary register.

DOUBLE-PRECISION TO BINARY ($DCNB)

Macroinstruction Format

[Label] $OCNB

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

66 0002

Operation

This instruction converts the double-precision real
number in the floating-point register to an integer value
in the binary register.

BINARY TO SINGLE-PRECISION ($BCNR)

Macroinstruction Format

[Label] $BCNR

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

66 00 03

Operation

This instruction converts the integer number in the
binary register to a single-precision real value in the
floating-point register.

BINARY TO DOUBLE-PRECISION ($BCND)

Macroinstruction Format

[Label] $BCN 0

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

66 0004

Operation

This instruction converts the integer number in the
binary register to a double-precision value in the
floating-point register.

56

SIGN CHANGE BINARY ($BSGN)

Macroinstruction Format

[Label] $BSGN

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

66 00 05

Operation

This instruction changes the sign of the number in the
binary register. That is; a negative sign is changed to
positive, and a positive sign is changed to negative. The
integer value remains unchanged.

SIGN CHANGE FLOATING-POINT ($RSGN)

Macroinstruction Format

[Label] $RSG N

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

66 00 06

Operation

This instruction changes the sign of the number in the
floating-point register. That is, a negative sign is
changed to positive, and a positive sign is changed to
negative. The characteristic and mantissa remain
unchanged.

BINARY ABSOLUTE ($BABS)

Macroinstruction Format

[Label] $BABS

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

66 00 07

Operation

This instruction provides the absolute value of the
number in the binary register. If the sign of the number
is negative, it is changed to positive. If the sign of the
number is positive, it remains positive. The integer value
remains unchanged.

FLOATING-POINT ABSOLUTE ($RABS)

Macroinstruction Format

[Label] $RABS

Machine Instruction Format

Byte 1
Op Code Bytes 2 and 3

66 00 08

Operation

This instruction provides the absolute value of the
number in the floating-point register. If the sign of the
number is negative, it is changed to positive. If the sign
of the number is positive, it remains positive. The
characteristic and mantissa remain unchanged.

Instructions 57

-
.. - ,.

Appendix A. Hexadecimal-Decimal Conversion

Hexadecimal and Decimal Integer Canvenian Table

Halfword 	 Halfword

Byte 	 Byte Byte Byte

Bits: 0123 4567 0123 4567 0123 4567 0123 4567
-

Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal
>-- -.

0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0
1 268.435456 1 16 m,216 I 1 048,576 1 65 536 1 4096 I 256 1 16 I 1
2 531.,870,912 2 33,554,432 2 2,097,152 2 -r 131,072 2 8,192 2 512 2 32 2 2
3 1105,306 368 3 50 331 648 3 3 145 728 3 196 608 3 1~288 3 768 3 48 3 3
4 1 073.741 824 4 67 108 864 4 4 194 304 4 262 144 4 ~84 4 1 024 4 64 4 4
5 1,342,ln,280 5 83,886,080 5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 '-'-610,61~,736 6 100,663,296 6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 1,879,048,192 7 117,440512 7 7 340 032 7 458 752 7 28 672 7 1 792 7 112 7 7
8 2,147,483,648 8 134,217,728 8 8,388,608 8 524,288 8 32 768 8 2048 8 128 8 8
9 2,415,919,104 9 150,994,944 9 9 437 184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 2,684,354,560 A "67,n2,~~ A 10 485,760 A 655,360 A 40,960 A 2 560 A 160 A 10
8 2,952,790016 B 184 549,376 8 11 534 336 8 720,896 8 45 056 8 2 816 8 176 8 11
C 3 221 225 472 C 201 326 592 C 12 582 912 C 786,432 C 49 152 C 3072 C 192 C 12
D 3 489 660 928 D 218 103 808 D 13 631 488 D ~968 D 53 248 D 3 328 0 208 D 13
E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504 E 57 344 E 3,584 E 224 f 14

1F 	 4,U20,:>Jl,8'1O F 1:.1:11,658,240 F 15,n8,o.4O F 983,040 F 61,440 F 3,840 F 240 F 15I
8 7 6 5 4 3 2 1

To Convert Hexadecimal to Decimal To convert integer numben greater than the capocity ofExample
table, use the techniques below:

1. 	 Locate the column of decimal numbers corresponding to Convenion of
the leftmost digit or letter of the hexadecimal; select Hexadecimal Value 034 Hexadecimal to Decimal
from this column and record the number that corresponds

to the position of the hexadecimal digit or letter. 1. 0 3328 Successive cumulative multiplication irom left to right,
adding units position.

2. 	 Repeat step I fOf' the next (second from the left)
2. 3 48

position. Example: 03416 =338010 D = 13
3. 	 Repeat step 1 fOf' the units (third from the left) 3. 4 4 ~

position • 208
4. 	 Decimal 3380 3 = ... 3

.... 	 Add the numben selected from the table to form the m
decimal number. x16

3376
... = +...To Convert Decimal to Hexadecimal 3380Example

1. 	 (0) Select from the table the highest decimal number
Convenian of Decimal to Hexadecimal

that is equal to or less than the number to be COCl
Decimal Value 3380

verted. Divide and collect the remainder in reverse order.
(b) Record the hexadecimal of the column containing

1. 0 -3328
the selectad number. -s2
(c) Subtract the selected decimal from the number to

be converted.
 2. 	 3

2. 	 Using the remainder from step 1(c) repeat all of step 1
to develop the second position of the hexadecimal
(and 0 remainder) • 3

3. 	 Using the remainder from step 2 repeat all of step 1 to Hexadecimal 034
develop the units position of the hexadecimal.

.... 	 Cambine terms to form the hexadecimal number.

Hexadecimal·Decimal Conversion 59

http:15,n8,o.4O

Hexadecimal and Decimal Fractian Conversion Table

Halfword

Byte Byte

BITS 0123 4567 0123 4567

Hex Decimal Hex Decimal Hex Decimal Hex Decimal Equivalent

.0 .0000 .00 .0000 0000 .000 .0000 0000 0000 .0000 .0000 0000 0000 0000

.1 .0625 .01 .0039 0625 .001 .0002 4414 0625 .0001 .0000 1525 8789-oi25-

.2 .1250 .02 .0078 1250 .002 .0004 8828 1250 .0002 .0"000-363 I 7578 I25~_-- -_._--

.3 .1875 .03 .0117 1875 .003 .0007 3242 1875 .0003 .0000 4577 6367 1875

.4

.5

.6

.2500

.3125

.3750

.04

.OS

.66

.0156

.0195

.0234

2500
3125
3750

.004

.005
.006

.0009

.0012

.0014

7656
2070
6484

2500
3125
3750

~~!- .0000 6103 5156 2500
.0005 --:-6~629--3945--3-12~

.0006 .0000---915:5--"2i34 3750
.7 .4375 .07 .0273 4375 .007 .0017 0898 4375 .0007 .0001 0681 1523 4375
.8
.9

.5000

.5625
.08
.09

.0312

.0351
5000 r41~I--'-;;~I9
5625 .009 .0021

5312
9726

5000
,~ -.000j--2207 0312 5000r--:~9Q8-

5625 .0009 --.QQQI--3-7j2-9f(fl~~

.A .6250 .OA .0390 6250 .OOA .0024 4140 6250 .OOOA .0001 5258 ~~~~

.B

.C
.6875
.7500

.OB

.OC
.0429
.0468

6875 ~()()B
7500 .OOC

.0026

.0029
8554
2968

6875
7500

r--:~OOB
.OOOC

.0001

.Oo<fl
6784
8310

6679
5468

6875
7500

.0 .8125 .00 .0507 8125 .000 .. 0031 7382 81~~~OD .0001--9836 425?_ 81~~

.E .8750 .OE .0546 8750 .OOE .0034 1796 8750 .OOOE .0002 1362 3046 8750

.F .9375 .OF .0585 9375 .OOF .0036 6210 9375 .OOOF .0002 2888 1835 9375 -
I 2 3 4

To Convert .ABC Hexadecimal to Decimal 	 To convert fractions beyond the capocity of table, use techniques below:

Find.A in position 1 .6250
Hexadecimal Fraction to Decimal

Find .OB in position 2 .0429 6875
Convert the hexadecimal fraction t" its decimal equivalent using the same

Find .OOC in position 3 .0029 2968 7500 technique 0$ for integer numbers. Divide the results by 16n (n is the
.ABC Hex is equal to .6708 9~3 7500 number of fraction positions) .

Example .8A7 = .54077110

8A7 16 = 2215 ,0To Convert .13 Decimal to Hexadecimal .540771
163 = 4096 409612215.000000

1. 	 Find .1250 next lowest to .1300
subtract -.1250 = .2 Hex

2. Find .0039 0625 next lowest to .OOSO 0000 	 Decimal Fraction to Hexadecimal
-.0039 	0625 = .01

Collect the Integer parts of the product .n the order of calculation.
3. 	 Find .0009 7656 2500 .0010 9375 0000

-.0009 7656 2500 = .004 Example .540810 = .8A7 16

4. Find .0001 	 0681 1523 4375 .0001 1718 7500 0000 .5408
-.0001 0681 1523 4375 = .0007 x16

.0000 1037 5976 5625 = .2147 Hex 8 ~ m·6528
x165 .. 13 Decimal is approximately equal to ________-J.] A 1- [QI.4448
x16

7~ (ZJ.1168

Powers of 16 Table

Example: 268,435,45610 = (2.68435456 x 108)10 = 1000 000016 =(107)16

16n n

1 o
16 1

256 2
4096 3

65 536 4
1 048 576 5

16 m 216 6
268 435 456 7

4 294 967 296 8
68 719 476 736 9

1 099 511 627 776 10 =A
17 592 186 044 416 11 = B

281 474 976 710 656 12 =C
4 503 599 627 370 496 13 = 0

72 057 594 037 927 936 14 = E
\,1 152 921 504 606 846 976 15,= F

v
Decimal Values

60

Appendix B. Summary of System/34 and System/32 Scientific Instruction Set

System/34 and System/32 scientific programs are
executed under the control of an interpreter that resides
in control storage. The object program language that is
processed by the interpreter is called the scientific
instruction set. The major component of the scientific
instruction set is the 3-byte scientific instruction. Byte 0
contains the operation code (bits 0 through 6) and the
index bit (bit 7). Bytes 1 and 2 contain a 16-bit system
address. The effective address for a scientific
instruction is computed by adding the contents of bytes
1 and 2 to the contents of XR (index register) if the
index bit is 1. Scientific instruction addresses
consistently refer to the leftmost byte of data entries in
main storage.

The principal scientific instruction set registers are as
follows:

1. 	 XR: Index Register-contains 2-byte value used in
indexing the effective address.

2. 	 XMR: Index Multiplier Register-contains 2 bytes
used for temporary storage in computing index
values.

3. 	 BR: Binary Register-contains 2 4-byte,
twos-complement register used for integer
arithmetic.

4. 	 FR: Floating-Point Register-contains short or long
precision floating-point hexadecimal value in
System/360 format.

5. 	 Scientific IAR: Instruction Address
Register-contains 2 bytes that hold the address
for the next scientific instruction to be executed.

6. 	 AR: Address Register-contains addresses for
certain scientific operands.

7. 	 CR: Condition Code Register-contains 1 byte that
holds the result of a compare operation.

When control is passed to the load module for
execution, the first instruction in the program is a branch
to the interpreter code. The interpreter locates the first
scientific instruction following the branch and before
decoding and executing it, sets the scientific IAR to
point to the next instruction. This continues until all
scier.tific instructions are executed. In executing the
various instructions, other interpreter modules or
sections of code may be used.

Summary of System/34 and System/32 Scientific Instruction Set 61

The following table describes the scientific instructions
and operations:

Hex Value

X'OO'

X'02'

X'Q4'

X'OS'

X'08'

X'OA'

X'OC'

X'OE

X'10'

X'12'

X'14'

X'1S'

X'18'

X'1A'

X'1C'

X'1E'

X'20'

Scientific
Instruction
Mnemonic

CGO

GO

IFGO

XL

XA

XLI

XST

XM

XMA

XMLI

XMST

BST

BO

BA

BS

BM

BL

Scientific
Macroinstruction
Mnemonic

*

$GOTO

$BIF or $RIF

$XLO

$XAOO

$XLI

$XST

$XMLT

$XMTA

$MLI

$XMST

$BST

$BOIV

$BAOO

$BSUB

$BMLT

$BLO

Functional
Description

Sequence control for
computed GOTO

Sequence control for GO
branch

Sequence control for
arithmetic IF

Index register load

Index register add

Index register load
immediate

Index register store

Index register multiply

Index register mulitply and
add

Index multiplier register
load immediate

Index multiplier register
store

Binary register store

Binary register divide

Binary register add

Binary register subtract

Binary register multiply

Binary register load

62

Scientific Scientific
Instruction Macroinstruction Functional

~
 Hex Value Mnemonic Mnemonic Description

X'22' HST $HST 	 Binary register half store

X'24' HD $HDIV 	 Binary register half divide

X'26' HA $HADD 	 Binary register half add

X'2B' HS $HSUB 	 Binary register half
subtract

X'2A' HM $HMlT 	 Binary register half
multiply

X'2C' Hl $HlD 	 Binary register half load

X'2E' RST $RST 	 Floating-point register
store

X'3(j' RD $RDIV 	 Floating-point register
divided

X'32' RA $RADD 	 FloSlting-point register add

X'34' RS $RSUB 	 Floating-point register
subtract

X'36' RM $RMlT 	 Floating-point register
multiply

X'3B' Rl $RLD 	 Floating-point register
load

X'3A' DST $DST 	 Floating-point register
double-precision store

X'3C' DO $DDIV 	 Floating-point register
double-precision divide

X'3E' OA $OADD 	 Floating-point register
double add

X'4Q' OS $DSUB Floating-point register
~ double-precision subtract

X'42' OM $OMLT 	 Floating-point register
double-precision multiply

Summary of System/34 and System/32 Scientific Instruction Set 	 63

Scientific Scientific
Instruction Macroi nstruction Functional

Hex Value Mnemonic Mnemonic Description .J
X'44' DL

X'46'

X'4S'

X'4A'

X'4C'

X'4E'

X'50'

X'52'

X'54'

X'56'

ADR

INV

DOBGN

DOEND

CALL

10

DED

DODED

HC

X'5S' BC

X'5A' RC

X'5C' DC

X'5E' LSET

X'60'

X'62'

X'64'

X'66'

AND

OR

NOT

MFUNC (01)

64

$DLD

$ALI or $ALD

$INVK

..

*

$CALL

*

..

..

$HCMP

$BCMP

$RCMP

$DCMP

$LSET

$BAND

$BOR

$BNOT

$RCNB

Floating-point register
double-precision load

Address register load

Invoke system mode

DO loop initialization

DO loop end

Subprogram call

Input / output control

Data element descriptor

DO control variable DED

Binary register compare
(lnteger*2)

Binary register compare
(lnteger*4)

Floating-point register
compare (Real*4)

Floating-point register
compare (Real*S)

Test condition code
register

Logical AND

Logical OR

Logical NOT

Single precision to binary
conversion

Scientific Scientific(,,: Instruction Macroinstruction Functional
Hex Value Mnemonic Mnemonic

X'66' MFUNC (02) DONB

X'66' MFUNC (03) $BCNR

X'66' MFUNC (04) $BCND

X'66' MFUNC (05) $BSGN

X'66' MFUNC (06) $RSGN

X'66' MFUNC (07) $BABS

X'66' MFUNC (08) $RABS

~l 	 *These scientific instructions (asterisk in the Scientific
Macroinstruction column) do not have macroinstruction
equivalents and cannot be used by the assembler
programmer.

*-The hex entry in parentheses is the select byte for the
MFUNC mnemonic.

Description
,;, '..i

Double precision to binary
conversion

Binary to single precision
floating-point conversion

Binary to double precision
conversion

Sign change binary
conversion

Sign change floating-point
conversion

Binary absolute conversion

Floating-point absolute
conversion

Summary of System/34 and System/32 Scientific Instruction Set 65

Appendix D. How to Specify the OLiNK Procedure

The OLiNK procedure resides in the system library
(#LlBRARY). It can be used to call the overlay linkage
editor to create a load module. Following is the format
of the procedure and a chart showing what each
parameter is used for in the procedure:

OLiNK d I [Object library] ['oad module name]
mo u e name, #LlBRARY , module name

'oad module library] r:; il r:)1
[, #LlBRARY , ~ttributel.J ' L'lttribute~

,rmrtmaXQ.valueJ [user subrlibl, user SUbrlib2]
L ' #LlBRARY

Note: If the required module name is not entered, a
prompt screen will appear. Each parameter and its
respective defaults appear on the prompt screen. Any or
all parameters may be keyed.

How to Specify the OLiNK Procedure 69

Required/

Parameter Optional Type

1 Required 	 Name of object module

2 Optional 	 Library name with

object module

3 Optional 	 Name of load module

'---.

4 Optional 	 Library in which load
module is to be placed

5 and 6 Optional 	 Attribute

COM

(Common)

7 Optional 	 MRTMAX

8 and 9 Optional 	 User subroutine library

10 Optional 	 Whether to place on
input job queue

Examples:

1. 	 An object module, PROGA. resides in the user
library called USERLIB. The user wants an
executable load module from this. The load
module name is LOADA, and it will be placed in
the USERLIB.

OLiNK PROGA.USERLlB,LOADA,USERLIB

Default
Specify

Name of object module None

Library name to be searched
for object module

#L1BRARY

Name to be put on load
module

Object name

Library in which load module
is to be placed

#L1BRARY

Enter one of the following per
parameter (maximum of two):

OED (Dedicated) NEP Null
(Never-ending program) NEX
(Not executable) NIO
(Noninquirable) NSW
(Nonswapable) LSC (Load
only from system console)
SIS (Scientific mode) SRO
(Source required) USC (Utility
control statements)

Number of terminals available 0
to be allocated (0 to 255)

Where to find user subroutine
members (maximum of 2
parameters)

Whether to place on input job No
queue

2. 	 An object module, SAMPL, resides in the system
library called #L1BRARY. The user wants an
executable load module having the same name in
the same library.

Note: By specifying only the object name, the
defaults for the other parameters determine that
the system library is to be searched, the load
module name is to be the same as the object
module name, and the load module is to be placed
in the system library.

OLiNK SAMPL

70

Index

$ALD 13 $XLD 48
$ALI 13 $XLI 49
$BABS 57 $XMLT 50
$BADD 16 $XMTA 51
$BAND 53 $XST 52
$BCMP 18
$BCND 56
$BCNR 56
$BDIV 19
$BIF 55
$BLD 21
$BMLT 23 absolute binary 57
$BNOT 53 absolute floating-point 57
$BOR 53 add, binary register-2 bytes 15
$BSGN 57 add. binary register-4 bytes 16
$BST 25 add. floating-point register, double-precision 32
$BSUB 27 add, floating-point register. single-precision 31
$CALL 8, 9 add, index register 47
$CNTR 8, 10 address register 5
$CRSM 8.9 address register instructions 13
$CRTN 8.9 address register load 13
$CSET 8, 9 address, effective 2
$CSUB 8, 9 addressing
$DADD 32 base-displacement 2
$DCMP 34 direct 2 ~. $DCNB 56 indexed 2
$DDIV 35 AND, binary regi!"er 53
$DLD 37
$DMLT 39
$DST 41
$DSUB 43
$GOTO 55
$HADD 15
$HCMP 17 base-displacement addressing 2
$HDIV 18 binary absolute 57
$HLD 20 binary conversions
$HMLT 22 to floating-point double-precision 56
$HST 24 to floating-point single-precision 56
$HSUB 26 binary data format 2, 14
$INVK 8. 9 binary instruction format 15
$LSET 54 binary number representation 14
$MLI 45 binary register 4
$MST 46
$RABS 57
$RADD 31
$RCMP 33
$RCNB 56
$RDIV 34
$RIF 55
$RLD 36
$RMLT 38
$RSGN 57
$RST 40
$RSUB 42
$XADD 47

~,

Index 71

normalization. floating-point numbers 30

NOT. binary register 53

notation

excess 64 29

twos complement 14

number normalization. floating-point 30

number representation

binary 14

floating-point 30

OLiNK procedure 69

OR. binary register 53

procedure. DLiNK 61

register add. binary-2 bytes 14

register add. binary-4 bytes 16

register add. floating-point. double-precision 32

register add. floating-point. single-precision 31

register add. index 47

register AND. binary 53

register compare. binary-2 bytes 17

register compare. binary-4 bytes 18

register compare. floating-point. double-precision 34

register compare. floating-point. single-precision 33

register divide. binary-2 bytes 18

register divide. binary-4 bytes 19

register divide. floating-point. double-precision 35

register divide. floating-point. single-precision 34

register IF. binary 55

register IF. floating-point 55

register instructions

address 13

binary 14

floating-point 29

index 47

index multiplier 45

register load immediate. index 49

register load immediate. index multiplier 45

register load. binary-2 bytes 20

register load. binary-4 bytes 21

register load. floating-point. double-precision 37

register load. floating-point. singl,e-precision 36

register load. index 48

register multiply and add. index 51

register multiply. binary-2 bytes 22

register multiply. binary-4 bytes 23

register multiply. floating-point. double-precision 39

register multiply, floating-point. single-precision 38

register multiply. index 50

register NOT. binary 53

register OR. binary 53

register store. binary-2 bytes 24

register store. binary-4 bytes 25

register store. floating-point. double-precision 41

register store. floating-point. single-precision 40

register store. index 52

register store. index multiplier 46

register subtract. binary-2 bytes 26

register subtract. binary-4 bytes 27

register subtract. floating-point. double-precision 43

register subtract. floating-point. single-precision 42

registers 4

address 5

binary 4

condition code 5

floating-point 4

index 4

index multiplier 45

registers. size 4. 5

representation

binary numbers 14

floating-point numbers 30

return to scientific mode B. 9

return to System/34 mode B.9

scientific environment 7

scientific implementation 9

scientific macroinstruction statements 2

scientific mode 7

return to 9

scientific subroutine

execute 9

exit 9

start 9

sign change to binary 57

sign change to floating-point 57

single-precision floating-point register add 31

single-precision floating-point register compare 33

single-precision floating-point register divide 34

single-precision floating-point register load 36

single-precision floating-point register multiply 38

single-precision floating-point register store 40

single-precision floating-point register subtract 42

single-precision floating-point to binary conversion 57

size. register 4

start scientific subroutine B. 9

statements. scientific macroinstructions

store. binary register-2 bytes 24

store. binary register-4 bytes 25

store. floating-point register. double-precision 41

74

store, floating-point register, single-precision 40

subroutine

System/34 mode

store, index multiplier register 46

store, index register 52

execute scientific 8, 9

exit scientific 8, 9

start scientific 8, 9

subroutine linkage 7

subtract, binary register-2 bytes 26

subtract, binary register-4 bytes 27

subtract, floating-point, double-precision 43

subtract, floating-point register, single-precision 42

summary of scientific instruction set 61

return to 8, 9

test condition 54

2-byte binary register add 15

2-byte binary register compare 17

2-byte binary register divide 18

2-byte binary register load 20

2-byte binary register multiply 22

2-byte binary register store 24

2-byte binary register subtract 26

2-byte binary register add 15

2-byte binary register compare 17

2-byte binary register divide 18

2-byte binary register load 20

2-byte binary register multiply 22

2-byte binary register store 24

2-byte binary register subtract 26

4-byte binary register add 16

4-byte binary register compare 18

4-byte binary register divide 19

4-byte binary register load 21

4-byte binary register multiply 23

4-byte binary register store 25

4-byte binary register subtract 27

Index 75

J

,..
r ('

READER'S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in I BM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

~WOJ
:::I iii' s:
g. ~ en
o ~<:J _ . .,.
VI n ;
:IJ s: 3
."_ OJ Wn -.

~ 0 ~
CD _. OJ
:::I :::I :::I
g ~ a.

S:~OJ
OJ !:!. s:
~ 0 en
OJ a "<- ~

."

3
W....,

en
l>....,
U,....,...
U1
6

Name ____________________Note: All comments and suggestions become the property of IBM.

Address

• No postage necessary if mailed in the U.S.A.

SA21-9275-0

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

IBM Corporation
General Systems Division
Development Laboratory
Pu blications, Dept. 245
Rochester, Minnesota 55901

Fold

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(International)

Fold

FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.

Fold

,.
~~ r

READER'S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in IBM programming 	 ~~m
:l iii' s:support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location. 	 n :l
g. S; ~
a 0" SError in publication (typographical, illustration, and so onl. No reply. Inaccurate or misleading information in this publication. Please tell us
:II s: 3

about it by using this postage-paid form. We will correct or clarify the 	 '"_nwIII """

~ 0 ~Page Number Error 	 publication, or tell you why a change is not being made, provided you (t) _. c»
:l :l :linclude your name and address. ~ ~ 0..

3:~m
Page Number Comment 	 III :!. s:

~ 0 en
m ~ <- ::

'" ~
W
I'V

-~ I'V

<0
I'V
U1

6
Name ___Note: All comments and suggestions become the property of IBM.

Address

• No postage necessary if mailed in the U.S.A.

SA21-9275-0

()

S iii
l> s:
o'f
tE ~
c 3
j -..
<II W

~

'" j

0

III
s:
CIl
<
'" ;;;
2.
W
I\J

CIl
n
iii·
j

Fold Fold i'j. -
s:
'" n o
:J

FI RST CLASS ~
c:

PERMIT NO. 40 2 o·
ARMONK, N. Y. a

"11
c:
j
n

BUSINESS REPLY MAil
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY __ •

IBM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

~
:J

0

~

'" ,
j

C
en
?>
CIl
l>
I\J

<0
International Business Machines Corporation I\J

(J1 "

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(International) .

6

IB
M

 S
yste

m
/3

4
 a

n
d

 IB
M

 S
yste

m
/3

2
 S

cie
n

tific M
a

cro
in

stru
ctio

n
s F

u
n

ctio
n

s R
e

fe
re

n
ce

 M
a

n
u

a
l (F

ile
 N

o
. S

3
4

/S
3

2
-3

6
)

P
rin

te
d

 in
 U

.S
.A

.
S

A
2

1
-9

2
7

5
-0

€I

11111111
II'>

11111111

11:11:11

o til
,......
N

~

~

N

« en
11111111

