
- - - L Y21 -0050-0 - - -- - - - -- --- --- File No. S34-36 - - - ---- - --- - • - Licensed Material
Property of IBM

IBM System/34
System Support Program

Logic Manual: System
Program Number 5726-SS1

- - - L Y21-0050-0 - - -- - - - -- --- --- File No. S34-36 - - - ---- - --- - • - Licensed Material
Property of IBM

IBM System/34
System Support Program

Logic Manual: System
Program Number 5726-SS1

First Edition (December 1977)

This edition applies to version 01, modification 00 of the IBM 5ystem/34 System
Support Program Product (Program Number 5726-551) and to ~II subsequent versions
and modifications until otherwise indicated in new editions or technical newsletters.
Changes are periodically made to the information herein; before using this publication,
refer to the latest IBM System134 Bibliography, GH30-0231, for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or
the IBM branch office serving your locality.

A Reader's Comment Form is provided at the back of this publication. If the f~rm has
been removed, address your comments to IBM Corporation, Publications, Department
245, Rochester, Minnesota 55901.

©Copyright International Business Machines Corporation 1977

Licensed· Material-Property of IBM

(

This logic manual is designed to aid I BM support personnel
in maintaining the IBM System/34 by serving as a recall
mechanism and guide to program listings. This manual does
not contain directions for programming or operating the
system.

Note: The System Support Program Product is documented
by two manuals: this manual and IBM System/34 System
Support Program Logic Manual: Data Communications,
LY21-0051.

The SSP (System Support Program Product) provides the
programming support necessary to start the system, process
commands, start a job, run a job, and terminate a job. Its
functions include:

• Main storage IPL

• Command processing

• Initiator

• Allocate

• Open

• Data management

• Diskette end of volume

• Keysort

• Spool intercept

• Spool print writer

• Close

~ Termination

• System service programs

• System maintenance programs

• Overlay linkage editor

• System uti! ity programs

Preface

This manual describt!s the SSP modules by providing:

• A system flow overview of the entire SSP.

• An overview of each of the primary components of the
SSP.

• A detailed description including, as required: a descrip-,
tion of the function, a HIPO diagram, and a logic flow
diagram for each function contained within the SSP.

• Significant data areas, as required. For data areas not
described in this manual, see the Data Areas Handbook.

Note: The arrowheads (.4) that occasionally appear in
the HIPO extended descriptions are provided to help you
line up the descriptions with their respective module
references.

RELATED PUBLICATIONS

This publication references the following publications:

• IBM System/34 System Data Areas and Diagnostic
Aids, L Y21-0049

• IBM System/34 System Support Reference Manual,
SC21-5155

• IBM System/34 System Support Program Logic Manual:
Data Communications, LY21-0051

• IBM Systemt34 Overlay Linkage Editor Reference
Manual, SC21-7707

iii

Licensed Material-Property of IBM

(

iv

Licensed Material-Property of IBM

PART 1 INTRODUCTION

INTRODUCTION •••••••••••••••••••••••••••• 0·1

PART 2. SYSTEM SUPPORT PROGRAM PRODUCT

CHAPTER 1. STARTING THE SYSTEM ••.••••••••••• 1·1
INTRODUCTION•...•.••.••••••...•.•... 1·1
Main Storage Initial Program Load (IPL) •.•......•..... 1·1
System Configuration ($CNFIG) ..•••.•....•.•.•..• 1·2
Rebuild VTOC Format l's ...•.•..•.•....•.•••..• 1·2
METHOD OF OPERATION ..•.....••..•.•.•..••. 1·3
PROGRAM ORGANIZATION .•.•••.•••..•..••.• 1·22

CHAPTER 2. PROCESSING COMMANDS ••••••••.•••• 2·1
INTRODUCTION•.•..•..••.••...•...•..• 2-1
Command Processor••.....••.•.. ' ••...•. 2-1

Router •.•.•...•...•.•....•...••.•..••. 2-1
Sign on .•..•.•..••.•.•••••••••.•..•..•• 2-1
Process Control Commands • . . . • . • . . • • . • . • • • . . .2-3
Job Initiation and Work Station Release •....••..•..• 2-3
High·Level Aids and Task·to·Task Communications Router .. 2·3
Inquiry Menu Option Processor and Resume •.•...••.• 2·6
Special Command Processor ••.•..•.•.•.•..••..• 2·6
Command Processor /Work Station Data Management

Interface .•..•..•....•...•.•••.•....... 2·6
Console Management ••.•....•.••..•..•.••.•• 2-7
Command Processor Cleanup .•.••••.••......••. 2·7
Password Security. • • . . • . • . • • . • . • • • • • . . . • • . .2·7
I/O Error Recovery .•.••..•..•••..•.••.....• 2·8

METHOD OF OPERATION ..•.•..••..•..••.•.... 2·9
PROGRAM ORGANIZATION .•..•.•.•••••.••••. 2·77

CHAPTER 3. STARTING A JOB •••••••••••••••••• 3·1
INTRODUCTION .•.••.••.•.••.••.••.•••••... 3·1
Initiator ••••••••.•.•.....•.••....••.•.•.. 3·1

Reader/Interpreter Function ••.•..•.•••••••.•.. 3·1
Disk File Initialization Function •.••.•..•.•••••.• 3·3
Program Initialization Function ..•.•.••..•....... 3-3

Allocate ••••.•.•••.••.•••••.•••••••.•••.• 3-4
Normal Allocate 3-4
Special Allocate ••••••••••.••••..••••.•.••. 3·5
Deallocate ..••••••••.••.••• ' •••••••••.•.. 3·5

Open ••..••••••••.••••••••.•••••.••••••• 3·5
Common Open 1 (tiDMOP) .••••••.••••••...•.• 3·6

. Disk Open (tlDD10P, tlDD20P) •••.•••.••••.•..• 3·6
Work Station Open (t/WDOPN) .•.•••.••••••••••. 3-6
Diskette File Open (tiDROP) •.•••••.•••.••••••• 3-7
Common Open 2 (tiDMOF) ••••••••.•••.•••.••. 3-7
Printer Open (within tlDMOF) ••••••••••••••.••• 3-7

METHOD OF OPERATION .•••••••.•.••••••••••• 3-9
PROGRAM ORGANIZATION •••••••••••.•.••••• 3·33

CHAPTER 4. RUNNING A JOB ••••••••••••••••••• 4·1
INTRODUCTION .•.•••.••.•.••.•..•.•.•.•.• .4-1
Disk Data Management •••••••••.••••••••.•••••• 4-1

Consecutive Access Method ••••••.••••••••••••• 4-1
Direct Access Method •••••••.•••.••••••••••. 4-1
Indexed Random Access Method. • • • • • •. • • • • . • • . 4·4

Contents

Indexed Sequential Access Method. • . . • • . • • . 4-4
Indexed Sequential/Random Input Access Method •....•• 4·5
Description of Access Method Drivers ..••••.•••.••. 4·5

Sector Data Management to Disk (tiDDSM) ...••....•••. 4·8
Data Transfer Modes - Locate and Move ..••.•••••. ,4·8

Diskette Data Management (tlDRDM) .•.•..••.•.•.•. ,4·9
Diskette End of Volume (tlDRNV)•....•.•.•.•. .4·9
Sector Data Management to Diskette (tlDRSM). ...•.... .4-10
Printer Data Management ••••..•••••..••••••.• .4-10
Work Station Management. • • . • • • • . • • • . • . • •4 -10
Work Station Data Management 4-11
Keysort .•......•......•...•.•••.•••..•.. 4-12
Spool Intercept•.•..••.••...•.•...•.••. 4-15
Spool Print Writer•...•.•..••.•...•. 4-16
METHOD OF OPERATION ...••..•.••....•..... 4-17
PROGRAM ORGANIZATION ..••••.....•..•••. .4·36

CHAPTER 5. TERMINATING A JOB •••••••••••••••• 5·1
INTRODUCTION ...•.•...•.•..•..•.••...••.. 5·1
Close•••.••..•.••....•..•.•••.•.•... 5-1

Common Close (tlDMCL) •.••.....••....•.•.•. 5-1
Printer Close (within tlDMCL) .•.•..•••.......... 5-1
Work Station Close (within tlDMCL) ...•...• ' ••.••.. 5·1
Binary Synchronous Communication Close (tiBSCL) .•.... 5·3
Diskette Close (tlDRCL) ..••.•..•••...•.....•. 5·3
Disk Close (tlDDCL) •••.••••..•........•..•. 5·3

Termination .••.•••.••••.....•••..••....... 5·3
Step Termination ••....•...•..•........•.•• 5-3
Job Termination•....•.•....•.•.•.•••. 5·3
Abnormal Termination ...•.....•.•••......... 5·4
Termination Interface ..••.•.......••..•....• 5·4

METHOD OF OPERATION .••••.••..•..•.•...••. 5-6
PROGRAM ORGANIZATION •.•......••••.•••.• 5·12

PART 3. SPECIAL FUNCTION PROGRAMS

CHAPTER 6. SYSTEM SERVICE PROGRAMS •••••••••• 6-1
INTROOUCTION ...••.•.•.•..•.•.•...••.•..• 6·1
Librarian Facilities .••....•..••.••..•••..•.... 6-1

Find a Library Routine ...•••••.••.••.••••...• 6·1
Single Name Find Routine .•••..•.....••...•.•. 6·2
Librarian Find Routine ...•.••.•..••.•...•.•.• 6-2
Source Library Get Routine ••••••.•...•..•.•..• 6·2
Library Record Put •••••.•••••.......••••... 6·3
Library Sector Get/Put .•••................... 6-3

Library Member Protection •..••.•.••.••.•••..•.. 6·3
Active Format 1 Area Access Routine •••.•••..•••...• 6·5
Cross·Reference Resolver ..••••.•••••.••••..•..• 6·5
Duplicate Key Display Routine ••••.••.••.•.•••.••• 6-6
Print Image Verify Routine ••••.•...•.•••••.•...• 6·6
Disk VTOC Read/Write ••••••••••••••••••••••.• 6-7
Diskette VTOC Read/Write .•••••.••.••.•••••••.• 6-7
Message Retrieve ••••••••.•••••••.•••.•••.•.• 6·8
SYSIN •••.••••••.••••••••. ' ••.•••.••••••• 6·8
SYSLIST ••••..••••••.••••.••.••••••.•.••• 6·9
SYSLOG ••..••••.•••••••••••.••••••••.•.. 6·9
History File Put ••••.•••••••••••.••••••••••• 6-10
Supervisor Task Attach Transient (tiSVAT) •.•••..••.•• 6-11
Supervisor Task Detach or Change Origin Point (tiSVAU) •••• 6-11

v

Licensed Material-Property of IBM

Change Point of Origin ..•.................•• 6-11
Detach Task ••••••.••...•.••..••...•.•.. 6-11

Syntax Checker (#USYX) ••.•••••...•...•.....• 6-12
Information Retrieval (#SVINF) .•..•••.•••..•.•.. 6-12
Data Management Task Transfer Control (#SVTTC)•. 6-12
Snap Dump (#SVDMP) •.•••.••.•....•...•...•. 6-13
METHOD OF OPERATION .•••••.••••••••...•.. 6-14
PROGRAM ORGANIZATION ..•.••.•...•..•...• 6-53
DATA AREAS •.•.•.•..••••.•••..•••.....• 6-69
Find a Library Parameter List .••...•.••......•••• 6-69
System Find Parameter List .•.•..••.•.•.•.....•. 6-69
Librarian Find Parameter List ••.•..•.••....••.... 6-72
Source Library Get Parameter List •.••.••••..•••••. 6-74
AFA Access Parameter List ••.•..••..•..•.....•. 6-76
Duplicate Key Display Parameter List .•••..••.•..••• 6-77
Supervisor Task Attach Parameter List •..•.••.•...•.. 6-78
Supervisor Task Attach Error Return Code ..•.•••.•.•• 6-80
Syntax Specification Module•....•.•....... 6-80
Verb Record - VERB •..•••.•..•••••.•..••.•. 6-81
Parameter Records ..•.••..••.•..•...•.•...•. 6-81
Positional Parameter Record - POSIT ••.•••••••..•.. 6-81
Keyword Parameter Record - KEYWD ..••••...•.... 6-83
Substitution Table - SUBEN •.•..•••••..•..•.•.• 6-83
Valid Combination Record .••.••.••••••.••.•..• 6-85
Syntax Checker Communication Table - USCTABLE .•.•.. 6-87
Syntax Checker Parameter List ••.••.••••••••.•... 6-90

CHAPTER 7. SYSTEM MAINTENANCE PROGRAMS. _ •••• 7-1
INTRODUCTION •••.•.•.••..•.•••••..••••..• 7-1
METHOD OF OPERATION ...•.••.••...•••..••.• 7-2
PROGRAM ORGANIZATION .•••..•••..•.••.•.. 7-12

CHAPTER 8. OVERLAY LINKAGE EDITOR ••••••••••• 8-1
INTRODUCTION••..••••••••••••.••..•.. 8-1
Compiler Entry•....•••••.•••••••••• 8-1
Input for Compiler Entry ••.•.••••••••.••••••••• 8-1
Output from Compiler Entry ••••••••.••••••.••... 8-1
User Entry •..••.••...•••.••••.•.•.••..••.. 8-5
Input for User Entry ••••••••••••.•••••.••••.•. 8-5
Output frpm User Entry . • • • • • • • • • • • . . • . • • . • • • • .8-5
Overlay Linkage Editor Phases and Routines •••••••..••• 8-5

Minimum Storage Requirements ••••••.•.•••.••.• 8-5
METHOD OF OPERATION •.•••.•••••.•••.•••.•• 8-7
PROGRAM ORGANIZATION •••••••••• ' •••..•••• 8-24
DATA AREAS ••••••••••••.••.•••••.•.•••• 8-29
Overlay Linkage Editor Common (LOMMON) •••••.•••• 8-29
Verb List (OVERBS) .•.•••••••••••••••••••••• 8-29
Segment List Entries • . • • • • • • • • . • • • • • • • • . • • • • • 8-29
Overlay Fetch Routine ••••••.•••••.••••••••••• 8-43
How to Find an Overlay •••••.•••••..••.••••..• 8-44

PART 4. SYSTEM UTI LlTY PROGRAMS

CHAPTER 9. BACKUP LIBRARY UTILITY ($BACK) •••••• 9-1
INTRODUCTION ••••.••••.••••••.••••••••••. 9-1
METHOD OF OPERATION •••••••.•••••.•..••••• 9-2
PROGRAM ORGANIZATION .••••••.••••••••.••. 9-6

CHAPTER 10. BASIC EXCHANGE UTILITY ($BICR) •••• 10-1
INTRODUCTION .•••.••••••••.••••••••••••. 10-1
METHOD OF OPERATION •••••••.••••••••••••. 10-5
PROGRAM ORGANIZATION •••••.••••••••.•••• 10-9
DATA AREAS •••.•••••••••••••••••.••••• 10-11
BICCVLST Verb List •••••••••••••••••••••••• 10-12

vi

CHAPTER 11. BUILD MENU UTILITY ($BMENU) •••••• 11-1
INTRODUCTION ••••.•.•.•.••.••.•••.•••••• 11-1
METHOD OF OPERATION .•...•.•••..••.•••••• 11-2
PROGRAM ORGANIZATION ...•.••..•••••••.•• 11-6

CHAPTER 12. ALTERNATE SECTOR REBUILD
UTILITY ($BUILD) •••••••••••••••••••••••• 12-1

INTRODUCTION ••..••••••••••••••••••.•••. 12-1
METHOD OF OPERATION ••..••.•••••••••••.•• 12-2
PROGRAM ORGANIZATION •••••••••.•••.••.•. 12-5

CHAPTER 13. DISK COPY/DISPLAY UTILITY
($COPY) ••••••••••••••••••••••••••••••• 13-1

INTRODUCTION •.•.•...•••.•.•••.••.••••.. 13-1
METHOD OF OPERATION .•.•••.•..•.••••.•••. 13-3
PROGRAM ORGANIZATION ..•.•.•.•.••••••.• 13-14
DATA AREAS .•.•.•..••••••••••.•..••••• 13-20
Verb Lists - PYZV L 1, PYZV L2, PYZV L3 13-20
$COPY Common Communication Area - $CCCA .•.•••. 13-20
Embedded Format 1 •••••••••••••..••.•..•.• 13-26

CHAPTER 14. FILE DELETE UTILITY ($DELET) •••••• 14-1
INTRODUCTION •.•••.•••.••.••.•••••••.••• 14-1
METHOD OF OPERATION •••••••••.•.••.•••••• 14-2
PROGRAM ORGANIZATION •••••••.•.••.•••••• 14-6

CHAPTER 15. DISKETTE COpy UTILITY ($DUPRD) •••• 15-1
INTRODUCTION .•.••••..•••••.••.••••••••• 15-1
METHOD OF OPERATION •.•••.•.....•..••.•.• 1'5-2
PROGRAM ORGANIZATION •••.•..••.••••••••• 15-6

CHAPTER 16. FILE BUILD UTILITY ($FBLD) •••••••• 16-1
INTRODUCTION .••••.••.•.•••••••.••••.••• 16-1
METHOD OF OPERATION .•••••••••••.•.••.••• 16-2
PROGRAM ORGANIZATION •.•••••.•••••••.••• 16-4

CHAPTER 17. HISTORY FILE DISPLAY UTILITY
($HIST) •••••••••••••••••••••••••••••••• 17-1

INTRODUCTION ••...•..•.••.•••••.••.••••• 17-1
METHOD OF OPERATION .•••••••••••.•••••••• 17-3
PROGRAM ORGANIZATION .•••••••••••••••••• 17-6

CHAPTER 18. DISKETTE LABELING AND
INITIALIZATION UTILITY ($INIT) •••••••••••••• 18-1

INTRODUCTION ••••••••.•••••••••••.•••••. 18-1
METHOD OF OPERATION ..•••••.•••.••.•••••• 18-2
PROGRAM ORGANIZATION .•••••••••••••••••• 18-5
DATA AREAS ••••••.••.•••••••••••.•••••• 18-6
VERBSUVE, VERBSVE, and VERBSEVerb Lists •••••••. 18-6

CHAPTER 19. VTOC DISPLAY UTILITY ($LABEL) ••••• 19-1
INTRODUCTION •.••••••••••••••••••••••.•• 19-1
METHOD OF OPERATION ••••••••••••••••••••• 19-2
PROGRAM ORGANIZATION •••••••.••••••••••• 19-6

CHAPTER 20. RELOAD LIBRARY UTILITY ($LOADI) ••• 20-1
INTRODUCTION •••.••••••••••••••••••••••• 20-1
METHOD OF OPERATION ••••••••••••••••••••• 20-2
PROGRAM ORGANIZATION .•••••••••••••••••• 20-6
DATA AREAS ' •••••••••••••• ' •••••••••••••• 20-7
$LOADI Communication Area ••••• ',,' •••••••••••• 20-7

Licensed Material-Property of IBM

CHAPTER 21. LIBRARY MAINTENANCE UTILITY
($MAINT) •••••••••••••••••••••••••••••• 21·1

INTRODUCTION ••••••••••••••••••••••••••• 21·1
METHOD OF OPERATION ••••••••••••••••••••• 21-4
PROGRAM ORGANIZATION ••••••• ' .••••••••• '.21·22
DATA AREAS •••••••••••••••••••••••.••• 21-32
Library Common Area - CNTLBMSG •••••••••••••• 21·32

CHAPTER 22. MESSAGE BUILD UTILITY ($MGBLD) •••• 22·1
INTRODUCTION ••••••••••••••••••••••••••• 22·1
METHOD OF OPERATION. • • • • • • • • • • • . • • • • • • • • 22·2
PROGRAM ORGANIZATION ••••••.••• ' .•••••••• 22·5

CHAPTER 23. DISK REORGANIZATION UTILITY
($PACKI$FREE) •••••••••••••••••••••••••• 23·1

INTRODUCTION .••••.••••••••••.••••••.••• 23-1
METHOD OF OPERATION •.••••••.••••••••.••• 23·2
PROGRAM ORGANIZATION ••••••.•.••.••••••• 23·5
DATA AREAS ••••••••••••••••••••••.••.•• 23-6
FRETB Tabl~ •••••••••••••••••• L •••••••••• 23·6

CHAPTER 24. SECURITY FILE·UTILITIES •••••••••• 24·1
INTRODUCTION ••••••.••••.••..••••.•...•. 24-1
METHOD OF OPERATION •••••••••.•••••.••••. 24·2
PROGRAM ORGANIZATION ..•••••.•.•.•••..••. 24·9

CHAPTER 25. FILE RENAME UTILITY ($RENAM) ••••• 25·'
INTRODUCTION .••.•••••••••.•••.••••••••• 25·1
METHOD OF OPERATION ••••••.••.••.•.•.••.. 25·2
PROGRAM ORGANIZATION .•••.••••..•••••••• 25·5

CHAPTER 26. WORK STATION CONFIGURATION
($SETCF) •••••••••••••••••••••••••••••• 26·'

INTRODUCTION ••••••••••••••••••••••••••• 26·1
METHOD OF OPERATION ••••••••••.••.••••••• 26·2
PROGRAM ORGANIZATION ••••••••••••••••••• 26-6

CHAPTER 27. SCREEN·FORMAT GENERATOR
UTILITY ($SFGR) ••••••••••••••••••••••••• 27·'

INTRODUCTION ••••••.••••••••••.•.••••••• 27-1
METHOD OF OPERATION •••••.••••••••••••••• 27·3
PROGRAM ORGANIZATION •.••••••••.•••••••• 27·8

CHAPTER 28. COMMAND PROCESSOR PROCEDURE
ERROR UTILITY ($CPPE) ••••••••••••••• ' ••••• 28·'

INTRODUCTION •••••••••••••.••••••••.•• ' .• 28·1
METHOD OF OPERATION •••••.••.•.••••••••.• 28·2
PROGRAM ORGANIZATION ••••••.•••••• , •••.• 28-4

APPENDIXES

APPENDIX A. DIRECTORY •••••••••••••••••••• A·'

APPENDIX B. LIST OF ACRONYMS AND
ABBREVIATIONS •••••••••••••••••••••••••• B·'

vii

Licensed Material-Property of IBM

(

viii

Licensed Material-Property of IBM

How to Use This Manual

Diagram numbers are assigned by chapter (for example, all diagrams in chapter 1 are
numbered 1.nn). Any diagram with a zero preceding the first period (Diagram 0.1, for
example) is a table of contents diagram for the SSP. Similiarly, any diagram with a zero
following the first period is a table of contents diagram for its respective chapter. Each
entry in a table of contents diagram identifies a particular input - process - output type
of diagram. The input - process - output diagrams describe functions and are found in
the Method of Operation section of each chapter of this manual.

Licensed Material-Property of IBM

ix

(

x

Licensed Material-Property of IBM

The main objective of the HIPO method of diagramming is to
improve communication procedures and techniques through
the effective use of functional operation diagrams.

H IPO, hierarchy plus input - process - output, is a method
of graphically describing internal function by structuring a
presentation from general to detailed levels in a set of
method-of-operation diagrams.

A visual table of contents is prepared for each set of func
tional diagrams. It shows:

• The structural relationships of the diagrams

• The contents of each of the diagrams

• A legend applying both to the individual function dia
gram and the total presentation

Each set of functional diagrams contains a visual table of
contents, one or more overviews, and a number of low level
diagrams showing the implementation and/or design of a
function. The implementation of a major function can
extend through many modules or routines.

Module 1 Module 2 Module 3

[J~B
A specific module might support parts of many functions.
Sometimes these functions are not even related.

Module 2

B

B+C

C

A

Functional Diagram Techniques

Someone who must modify an existing function, add a new
function, test for regression, or fix the system must know:

• How the function is performed

• What other, perhaps nonrelated, functions use the same
code

Graphic Content: The graphic content is determined by
the situations shown.

The table of content diagrams act as introductions to the
functions and directors to the low level, detailed diagrams.

Legend .. ----

=)----
D ----

Contents

1.:=-.::= 6.=-:=:

2.==-= 7.~.:..-:::

3.::-:.-_-= 8.:..-.=
4 ---. 9.===
5.=:.= 10.=::.:

xi

Licensed Material-Property of IBM

The low level diagrams contain unit level information (that
level of information reflecting the actual workings of the
system). Each low level diagram is arranged to best show:

• A process that supports the function being described

• Results of the process

• Requirements for processing

Stated graphically:

Input Process Output

To tie together the program organization and functional
areas, the function diagrams use cross-references from one
area to another and to the listings.

xii

Functional Descriptions

p
/ \

/ \
/ \

/ \\
/ \

/ \

~------------~~
Listings Routines

Informational Content: Functional diagrams should discuss
inputs: process, and results. For the sake of clarity, these
elements are presented in a normal reading sequence. Sim
ple boxes are used to block off these three major areas of
the diagram.

The picture area of the diagrams contains as few words as
possible. There are two reasons for this:

• When the picture becomes cluttered with text, it loses
some value as a recall mechanism.

• The degree of difficulty of maintaining the diagrams
increases with increased number of words in the picture
area.

In the diagrams, functions are related by cross-references to
the module(s) supporting those functions. The description
box of the diagram includes the references of the module(s)
associated with the implementation steps that support the
function.

Licensed Material-Property of IBM

INPUT ____ _

DESCR IPTION

D - --

fJ - -

IJ -

II

\
\

a...s:.;:0CESS

-- -

o
fJ

II

II

---------- ---

--------- - --------

----- -

- ----

-- ---- --
-- --- -

~

Process steps 1 and 2 are performed. in PHAS1.
Before step 3, passing of control is implied by the horizon
tal line through the routine column. Steps 3 and 4 are per
formed in PHAS2.

Licensed Material-Property of IBM

OUTPUT ___ _

MODULE/
ROUTINE

PHAS1

PHAS2

Legend:

..
Control flow (leads the
reader through the process)

=::::::::> Data flow

D Reference block

xiii

(

xiv

licensed Material-Property of IBM

Part 1. Introduction

Licensed Material-Property of IBM

Licensed Material-Property of IBM

This program logic manual provides diagnostic information
and serves as a recall mechanism for the IBM programming
representative working on a System/34 problem. H I PO and
control flow diagrams help guide the programming repre
sentative to the proper module on microfiche. If a main
system module is not causing the problem, the directory
in Appendix A can help locate additional information in
this manual and on microfiche.

Figure 0-1 is an overview of the logic documentation avail
able for System/34. It lists the major components of each
PLM.

Figure 0- 2 shows the system control flow and major divi
sions of the SSP. Part 2 of the manual follows the same
major divisions as shown in this diagram.

Introduction

Diagram 0.1 is an overview of the SSP. Within this over
view are overviews of the system service programs, the sys
tem maintenance programs, the overlay linkage editor, and
the util ity programs.

Information presented in this manual, accompanied by
information in the Data Areas Handbook, is used to inter
pret main storage dumps. Appropriate module I istings on
microfiche are then consulted as necessary to initiate a
circumvention to the program problem and to write an
APAR. The Data Areas Handbook can then be used to
help apply the program temporary fix.

Introduction 0-1

Licensed Material-Property of IBM

I
IBM Systeml34 System Support Program Logic
Manual: System, L Y21·0050

Component/Funct.ion Diagram Chapter

Starting the system 1.0 1
ProceSSing commands 2.0 2
Starting a job 3.0 3
Running a job 4.0 4
Terminating a job 5.0 5
System service 6.0 6

programs
System maintenance 7.0 7

programs
Overlay linkage 8.1,8.2 8

editor

IBM Systeml34 System Data Areas and
Diagnostic Aids Handbook, L Y21·0049

• System overview

• Data areas

• Diagnostic aids

• I/O controllers

• Troubleshooting aids

• Work station utility

I
IBM Systeml34 System Support Program Logic
Manual: Data Communications, LY21·0051'

Component/Function Diagram Part

Binary synchronous 1 1
communications

MULTI·LEAVING remote 2 2
job entry utility

Data communications A·1 App.A
print utility

System utility 9.0 9 through 28
programs

I
IBM Systeml34 Utilities Logic Manual,
LY21·0563

Component/Function Diagram Chapter

Work station utility 1·1 1
Screen design aid 2·1 2
Data file utility 3·1 3
Source entry utility 4·1 4
Sort 5·1 5

IBM Systeml34 RPG /I Logic Manual,
LY21·0565

Component/Function

Compiler phase flow
·Object program flow

Figure Part

1·1
2·1

1
2

Figure 0·1. System/34 Logic Documentation Overview

0·2

Licensed Material-Property of IBM

I
IBM Systeml34 Basic Assembler and
Macro Processor Logic Manual,
LY21-0569

Component/Function Figure Chapter

Assembler
Macro processor

1·2
2·2

1
2

i
Starting

the
Sy lIem

I
Sling Proce

Com mands

St arting
a

Job

Ru nning
a

Job

Term inating
a

Job

~-:::: -Task
Work

~

...... -""

~l -
Procedure
Library

r-.._"

........ _"

OCL from display station batch

SYSIN
-"

Keyboard
OCL ...

SYSIN ...

OCL Source
SYSIN

OCL Prompts,
Responses

~ ~
'1-- ~-0.V C/O

Active F1's

J
Jo<"

----V"" Active
F1's

Active F1's

Keysort

Figure ().2. System Control Flow Overview

II
I
I

IPL

1
J>. Workstation

Commend Management
Processor

Job Control I
Inquiry I ""'- Batch Job Procedures

Logical I/O I
Messages Prompts, Re.ponses

Initiator

Messages & Responses

Reader'
Interpreter

'-----'"
A. F1's ... ""'-

VTOC-

Disk _"'"
$SOURCE

Initialization Source
Library

MSG MBRS,
........ _"'"

User PGMS
Object
Library

~
$SOURCE,

Program $WORK
Initiation Local '-----"" Area Task

~ . Work

Area

$SOURCE, -1 Device r--$WORK Allocate
Pointers

-1 Open r--I

Data ~ Management
User
Program

SYSLIST

Termination L-f r--Close

Step
F1's& F5

Termination

Job
Termination

Licensed Material-Property of IBM

-" Display
:)f

Stetlon

0 Job
Queue

D

ir==0
SYSLOG

r-

j

B

ir==0
History
File
Put

~ f-.... __

History
File

:-------

Control Flow

Data Flow

~-------,>

I ntraduction 0-3

System
Support
Progrem
Product

I I
Sterting the Command Starting a Job Running a Job Terminating
System Processor a Job

(Diagram 1.0) (Diagram 2.0) (Diagram 3.0) (Diagram 4.0) (Diagram 5.01

I
I

I I
Perform Router Perform Sign·on Command Job Initiator and High·Level Aids
Function Function Processing Work Station and TIC Router

Overview Release Overview

(Diagram 2.11 (Diagram 2.21 (Diagram 2.3) (Diagram 2.181 (Diagram 2.211

I I I
Inquirv Menu Special CP/WSDM Console Management Perform Command Perform Password Perform I/O
Option Processor Command Interface Overview Processor Security Error
and Resume Processor Cleanup Function Function Recoverv
Overview

(Diagram 2.22) (Diagram 2.25) (Diagram 2.261 (Qiagram 2.271 (Diagram 2.31 I (Diagram 2.321 (Diagram 2.331

I I
Main Storage Perform System Rebuild VTOC
IPL Overview Configuration Format l's

Function

(Diagram 1.11 (Diagram 1.51 (Diagram 1.61

I I
Perform Initiator Allocate Open Disk, Diskette,

6 Function Overview Printer, Work Station
and Data Commu-

6 nications DTFs

(Diagram 3.11 (Diagram 3.21 (Diagram 3.6)

Diagram 0.1 (Part 1 of 6). Functional Overview

(

0-4

Licensed Material-Property of IBM

~A)

I J I I
Perform Disk Data Perform Sectorized Perform Diskette Perform Diskette Write Pri nter Data
Management Disk Data Data Management End of Volume
Function Management Function

Function

(Diagram 4.1) (Diagram 4.2) (Diagram 4.3) (Diagram 4.4) (Diagram 4.5)

I
Perform Work
Station Data
Management
Function

(Diagram 4.6)

I
Sort Index Entries
for Indexed Disk
File

(Diagram 4.7)

Close Disk, Diskette,
Printer, Work Station
and Data Communi
cations DTFs

(Diagram 5.1)

Diagram 0.1 (Part 2 of 6). Functional Overview

I
Perform Spool
Intercept
Function

(Diagram 4.8)

Termi nate Job
Step and Job
as Required

(Diagram 5.2)

J
Print Records
From Spool File

(Diagram 4.9)

I

I ntraduction 0-5

Licensed Material-Property of IBM

System Service
Programs

"

System Service
Programs Overview

(Diagram 6.0)

I I I I
Find Requested Find Directory Find Requested Retrieve Requested Put Record
Library Entry Library Directory Record to Library

Entry

(Diagram 6.1) (Diagram 6.2) (Diagram 6.3) (Diagram 6.4) (Diagram 6.5)

I I I I
Get or Put Perform Library Access Active Perform Cross Display Duplicate
Library Sector Member Protection Format-1 Area Reference Key Information

Function Resolver
Function

(Diagram 6.6) (Diagram 6.7) (Diagram 6.8) (Diagram 6.9) (Diagram 6.10)

I I I I
Verify Print Process Disk VTOC Process Diskette Retrieve Perform SYSIN
Image Read/Write Request VTOC Read/Write Requested Message Function

Request

(Diagram 6.11) (Diagram 6.12) (Diagram 6.13) (Diagram 6.14) (Diagram 6.15)

I I I I
Perform SYS LI ST Perform SYSLOG Put Records into Perform Supervisor Perform Supervisor
Function Function History File Task Attach Task Detach

Function Function

(Diagram 6.16) (Diagram 6.17) (Diagram 6.18) (Diagram 6.19) (Diagram 6.20)

I I I I
Perform Syntax Perform Perform Data Perform Snap
Checking Function Information Management Task Dump Function

Retrieval Transfer Control
Function Function

(Diagram 6.21) (Diagram 6.22) (Diagram 6.23) (Diagram 6.24)

Diagram 0.1 (Part 3 of 6). Functional Overview

(

0-6

Licensed Material-Property of IBM

System
Maintenance
Programs Overview

(Diagram 7.0)

I I
Perform APAR Perform Dump Perform PTF
Utility Function Utility Function Installation

Function

(Diagram 7.1) (Diagram 7.2) (Diagram 7.3)

I I
Perform Patch Perform Trace Perform
Utility Function Select Function ERAP Utility

Function

(Diagram 7.4) (Diagram 7.5) (Diagram 7.6)

Diagram 0.1 (Part 4 of 6). Functional Overview

Introduction 0-7

Licensed Material-Property of IBM

Overlay
Linkage
Editor

Compiler Entry Over-
view (Diagram 8.1)

or
User Entry Overview

(Diagram 8.2)

I I I I
Compiler Entry Autolink Segment Cross-Reference Sort Autoli nk Overlay Design
Phase List Build Segment List Segment List

Build

(Diagram 8.3) (Diagram 8.4) (Diagram 8.5) (Diagram 8.6) (Diagram 8.7)

I I I I
Overlay Segment Storage Map Relocate, Resolve Library Control Error Routine
List Build Phase Externs, and Build Phase

Load Module Phase

(Diagram 8.8) (Diagram 8.9) (Diagram 8.10) (Diagram 8.11) (Diagram 8.12)

I I I I
Error Message User Entry User Entry User Entry User Entry
Print Phase Phase 1 Phase 2 Phase 3 Phase 4

(Diagram 8.13) (Diagram 8.14) (Diagram 8.15) (Diagram 8.16) (Diagram 8.17)

Diagram 0.1 (Part 5 of 6). Functional Overview

0-8

Licensed Material-Property of IBM

System
Utility
Programs

System Util ity
Programs Overview

(Diagram 9.0)

I I I I
System Backup Basic Interchange Build Menu Rebuild Perform Copy

Display Alternate Utility Function
Sector

(Diagram 9.1) (Diagram 10.1) (Diagram 11.1) (Diagram 12.1) (Diagram 13.0)

I I I I
Delete File Copy Diskette File Build File Display History Initialize

File Diskette

(Diagram 14.1) (Diagram 15.1) (Diagram 16.1) (Diagram 17.1) (Diagram 18.1)

I I I I
Display Disk/ Reload Library/ Library Build Message Reorganize Disk
Diskette VTOC Pseudo IPL Maintenance Load Member Files

(Diagram 19.1) (Diagram 20.1) (Diagram 21.0) (Diagram 22.1) (Diagram 23.1)

I I 1 I
Update Security Rename Disk Modify Build Display Process Error
File File Configuration Screen Format for SSP or Other PP

Record Procedure

(Diagram 24.1) (Diagram 25.1) (Diagram 26.1) (Diagram 27.1) (Diagram 28.1)

Diagram 0.1 (Part 6 of 6). Functional Overview

Introduction 0-9

Licensed Material-Property of IBM

(

0-10

Licensed Material-Property of IBM

Part 2. System Support
Program Product

Licensed Material-Property of IBM

(

Licensed Material-Property of IBM

I ntrod uction

The functions needed to start the system are:

• Perform initial program load (lPL)

• Perform system configuration

• Rebuild IPL format 1, if needed

MA(N STORAGE INITIAL PROGRAM LOAD (lPL)

System/34 initial program load (lPL) consists of two parts:
control storage IPL and main st0,rage IPL.

The function of control storage IPL is to initialize main and
control storage common areas to a sufficient degree to
allow the control storage supervisor to operate. Control
storage IPL first loads control storage and performs a basic
system checkout of the processing unit and I/O functions.
It then loads the control storage nucleus. After loading
the work station and printer control programs, control
storage IPL loads main storage IPL phase 1 (#MSNIP)
and the first two sectors of the configuration record into
the main storage transient area and passes control to
#MSNIP.

Main storage IPL completes initialization of the System
Support Program Product (SSP). Main Storage IPL con
sists of three phases: main storage IPL phase 1 (#MSNIP),
phase 2 (#MSTWA), and phase 3 (#MSIPL). (See Figure
1-1 for main storage IPL logic flow.)

#MSNIP performs initial main storage IPL processing.
Its main functions are:

• Initialize the system communication area

• Build the resident library format 1

• Determine defective main storage locations

• Initialize the transient/transfer control table

• Resolve disk addresses as needed (load and execute
#MAXRF)

Chapter 1. Starting the System

• Set the command processor task control block (TCB)
to reflect any defective 2K main storage blocks

• Increase assign/free area size to allow for main storage
allocation

#MSNIP passes control to #MSTWA.

#MSTWA performs phase 2 main storage IPL processing.
Its main functions are:

• I nitialize the transfer control table for resident routines

• Initialize the task work area index

• Initialize the terminal unit blocks

• Initialize the task work area for each work station

• Build the device allocate table

• Initialize command reject file data areas

Before it passes control to #MSIPL, #MSTWA updates the
instruction address register (lAR) in the request block (RB)
stack to pass control to the command processor resident
router (#CPML) when IPL is completed.

#MSIPL controls final main storage IPL processing. The
main storage IPL phase 3 function uses additional main
storage IPt modules. They are: process overrides
(#MSRID), process overrides (#M~OER), spool file IPL
(#MSSP), input job queue IPL (#MSJO), and main storage
allocate (#MSSOS). The primary functions of main storage
IPL phase 3 are:

• Perform main storage IPL sign-on

• Process override information if OVER RI DE-YES is
entered on the IPL sign-on display (#MSRID, HMSOER)

• Initialize the system print spool function if print spool is
supported (#MSSP)

Introduction 1-1

Licensed Material-Property of IBM

o Initialize the job queue if job queue is supported
(#MSJQ)

C Build the assign/free area (#MSSQS)

e Build the user main storage area (#MSSQS)

" Enable all system terminals

#MSIPL then calls the supervisor task attach transient
(#SVAT) to attach a TCB to run file rebuild (#MSBLD).
Control eventually passes to #CPM L.

SYSTEM CONFIGURATION ($CNFIG)

System configuration is performed when the system is
initially installed or any time a system or feature change
requires reconfiguration. The configuration information is
saved in the configuration records. (See the Data Areas
Handbook for a description of the configuration records.)
The system user may override certain configuration options
at IPL (see #MSIPL) or alter the configuration of each work
station by using $SETCF.

System configuration is initiated with the CNFIGSSP'
command following the initial RELOAD of the base system
support program to disk. (See IBM System/34 Program
Product Installation and Modification Reference Manual,
SC21-7689, for more information about the CNFIGSSP
procedure.)

CNFIGSSP loads and runs the system configuration pro
gram ($CNFIG). The main functions performed by
$CNFIG are:

o Read, modify, and write system configuration records.

o Set values/parameters in the configuration records based
on operator responses to configuration prompts.

o Validate the operator's input values and ensure system
operation.

o Set UPSI switches to control CNFIGSSP procedure flow.

1-2

$CN FIG val idates the operator's responses to prompts and
updates the appropriate configuration record after each
configuration display is presented. After all operator
responses are processed, $CNFIG returns the updated
configuration records to disk and passes control to the
end-of-job transient ($EOJ).

REBUILD VTOC FORMAT "S

The rebuild VTOC format 1 's routine (#MSBLD) examines
each format 1 in the disk VTOC to ensure that the pointers
accurately reflect the status of the data set contents. The
routine also checks the format 5 to ensure that disk reor
ganization ($PACK or $FREE) was not previously
interrupted.

#MSBLD is called by main storage IPL phase 3 (#MSIPL).
The system operator may request that #MSBLD not be run.
If run, th.e system operator directs #MSBLD to perform one
of the following:

• Delete all files in error

• Examine old files, as well as new

• Prompt on each file in error for retention or deletion

Licensed Material-Property of IBM

(

Method of Operation

This section contains functional diagrams for routines
needed to start the system. They are:

• Main storage IPL

• System configuration

• Rebuild VTOC format 1

Licensed Material-Property of IBM

Method of Operation 1-3

From: Control Storage IPL

IINPUT

1
~OCESS

______ -....>. Perform main storage IPL (Diagram 1.1) Required system
areas

I r OUTPUT

Con figu rati on
records

-.;;;I;.....----~. Perform system configuration

--------> Initial program I I load completed

-----.....;;;;....----.;;;;..> Configuration I I records

-......;;;.-----...;...> Format 1
I I (Diagram 1.5)

-~----->. Rebuild VTOC format 1 (Diagram 1.6) Format 1

-------:Tl
To: Command Processor

Diagram 1.0. Overview of Starting the System

From: Control Storage IPL

.INPUT L.::;:0CESS .. OUTPUT

.. ..
Configuration

:> • Perform main storage IPL phase 1
::>

Initial program
record processing (Diagram 1.2) load completed

System library • Perform main storage IPL phase 2
directory processing (Diagram 1.3)

Required system • Perform main storage IPL phase 3
areas processing (Diagram 1.4)

User oPtions

~ ~
To: Command Processor

Diagram 1.1. Overview of Main Storage IPL

1-4

Licensed Material-Property of IBM

From: Control Storage IPL

'" INPUT _~-.z_..,. L.l:;:0CESS
OUTPUT __ II1II_

(XR2

Configuration record

Main Storage

Fixed Nucleus

Transient Area:
#MSNIP

Configuration
record

User Area

System library
directory

...
_---,""'~" D Initialize system communication area

D Build resident library format 1

II Determine bad main storage locations

II Initialize transient/transfer control table

II Resolve disk addresses as needed

II Set command processor TCB to reflect
any bad 2K storage blocks

IJ Increase assign/free size to allow for main
storage allocation

--------::Il

SCA

Library format 1

Transient table

Command
processor TCB

Temporary assign/
free area

To: Main Storage IPL Phase 2
#MSTWA (Diagram 1.3)

MODULE/
OESeR IPTION ROUTINE

D Initialize system communication area (SCA) from configuration record information: #MSNIP

• Task work area (TWA) address. Disk 105

• TWA size. #MSNIP

• Disk VTOC address.

• Disk VTOC size.

• Diskette VTOC work area disk address.

• Diskette VTOC work area size.

• Configuration record start address.

• History file start address.

• History file size.

• Release and modification level.

• Control storage configuration size.

• DUMP indicator.

• System configuration bytes. • • Communications configuration from UDT. Disk 105

Resolve current history file pointer: #MSNIP

• Scan history file looking for file 10 (X'FE') as start of history file sector. Disk 105

• If history file current pointer found, put disk address in SCA (SCAHFCURl. #MSNIP

• If history file current pointer not found, set history file error flag in SCA (SCAHFERRl.

fJ Read system VTOC, first sector, to get library format 1. Disk 105

Move library format 1 to nucleus. #MSNIP

Save spool buffer size.

.
Diagram 1.2 (Part 1 of 2). Perform Main Storage IPL Phase 1 Processing

Method of Operation 1-5

Licensed Material-Property of IBM

~

OEseR IPTION

II Count number of bad 2K bloc~s of main storage.

Assign save area for bad 2K block numbers.

Move bad 2K blocks to save area.

II Move dump SVC address into transient/transfer control table for each table entry.

Read in block (one track) of library directory sectors.

Look for name table entry in library directory .

. If name table entry found:
• Place SSN in transient table if necessary.
• Place SS in SCA (message member) if necessary.
• Build loader parameter list if necessary.

If name table entry not found:
• Determine whether it is required by SSP.
• If required, call dump main storage transient task (9 control storage function) to abend system (MIC 249).

II Resolve disk addresses by executing cross reference resolver.

1,1 Determine whether any bad 2K storage blocks exist (SCA2KBAD).

Find task control block (TCB) address translate registers (ATRs).

Flag bad ATRs.

Set good ATR numbers in TCB.

II Allocate temporary assign/free space for duration of main storage IPL.

Load and pass control to IPL phase 2 (#MSTWA).

Diagram 1.2 (Part 2 of 2). Perform Main Storage IPL Phase 1 Processing

1·6

Licensed Material-Property of IBM

MODULE/
ROUTINE

#MSNIP

Disk lOS

#MSNIP

#MAXRF

#MSNIP

(
\,

From: Main Storage IPL Phase 1
-#MSNIP (Diagram 1.2)

'" INPUT ____ •
I...I:;:0CESS

'" OUTPUT ___ _

XR2

(Load table

Main Storage

Transient Area:
MSTWA

Configuration
record

---"'.....D _---...... "..~ Initialize transfer control table for
resident routines

D Initialize task work area index

I) Initialize terminal unit blocks

II Initialize task work area

II Build device allocate table

II Initialize command reject file data areas
User Area

Transient table

SCA

UDT

------::i1

DESCRIPTION

D Scan load table built during directory scan by #MSNIP.

Load resident routines:

• Calculate next load address.

• If request indicator byte (RIB) given, put its address in transfer control table.

To: Main Storage IPL Phase 3
-#MSIPL (Diagram 1.4)

• Call main storage relocating loader (control storage function) to load the resident routine.

fJ Find space for command processor work area.

Build command processor image matrix and order index.

Reset task work area index to all available work space.

Reset task work area (first track) to binary zeros.

Find space for temporary work station queue (to be used during IPL).

Allocate space from TWA for command reject file.

If no space available for work station queues, call dump main storagelterminate task routine (control storage
function) to eliminate IPL procedure.

Diagram 1.3 (Part 1 of 2). Perform Main Storage IPL Phase 2 Processing

Transfer control
table

TWA

System TUBs

Device allocate
table

MODULE!
ROUTINE

#MSTWA

Disk 105

#MSTWA

Method of Operation 1-7

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

IJ Read terminal information blocks into work area. Disk lOS

Initialize terminal unit blocks (TUB) based on system configuration record information: # MSTWA

• Set work station 10.

• Initialize common TUB fields.

• Set system printer TUB address in SeA.

• Set task work area address.

II Allocate work space in task work area.

Write work station configuration record to disk. Disk lOS

Initialize local area of task work area. # MSTWA

II Build entries for diskette from unit definition table (UDT) information.

Build communication entries from communication configuration record information.

II Initialize command reject file data areas.

Build arid queue error recovery blocks (ERB) for disk and diskette.

Load and pass control to main storage IPL phase 3 (#MSIPL).

"

Diagram 1.3 (Part 2 of 2). Perform Main Storage IPL Phase 2 Processing

1-8

Licensed Material-Property of IBM

From: Main Storage IPL Phase 2
-#MSTWA (Diagram 1.3)

INPUT ____ •

Main Storage

Transient Area:
#MSIPL
#MSRID
#MSOER
#MSSP
#MSJQ
#MSSQS

User Area

SCA

TUBs

TCBs

User options

L..:;:0CESS

o Perform main storage IPL sign-on

fI Process override information if necessary

II Initialize system print spool function

D Complete nucleus initialization

----:&l

.

~ OUTPUT ___ _

Initial sign-on

Structured user
area

Spool file and
buffer pool

Initialized main
storage nucleus

To: Command Processor Resident Router
-#CPML (Diagram 2.1)

MODULE/
OESeR IPTION ROUTINE

D Post task control block (TCB) for request-enter sign-on. #MSIPL

Search terminal unit block (TUB) chain for system and alternate consoles.

Check system console for errors.

If no system console errors, simulate REQ-ENT request.

Wait for console input.

If request-enter is from console, process R EQ-ENT request. #CPTC

If request-enter is not from console: #MSIPL

• Build assign accept/input parameter list.

• Accept input from console. #WDDA

• If alternate console, enable request-enter and call request enter transient (#CPTC). #MSIPL

• If master console, call sign-on transient (#CPON) to process sign-on information.

• Prompt for file rebuild options. #MSRID

Check for override request-entered at sign-on.

D Build override format index: #MSRID

• Read override format index from disk. Disk 105

• Build in-core format index. #MSRID

Diagram 1.4 (Part 1 of 6). Perform Main Storage IPL Phase 3 Processing

Method of Operation 1-9

Licensed Material-Property of IBM

MODULE/
DESCRIPTION ROUTINE

Prompt for general system parameters:

• Issue invite to display unit. #WDDA • • Build output work station data management parameter list. #MSRID fill • Prompt for: #DWDM
- Date.
- Single program mode.
- Console status.
- Command language.

• Build input work station data management parameter list. #MSRID • Issue call to work station I/O to accept input. #WDDA • Set appropriate system communication area (SCA) indicators for answers to general system prompts. #MSRID

Prompt for work station data management options (transient or resident).

Call transient #MSOER to prompt for job queue and spool parameters.

Ensure that job queue is configured before issuing prompt for job queue parameters. #MSOER

Build output parameter list for work station data management to prompt for:

• Job queue size.

• Job queue reformat.

• Job queue start.

Display prompts. #DWDM

Build work station data management parameter list to accept answers to prompts. #MSOER

Issue call to work station I/O for accept-input. #DWDM

Check job queue size. #MSOER

Set appropriate SCA indicators for answers to job queue prompts.

Display prompt for: #DWDM

• Cancel spool?

• Cancel job queue?

• Delete spool file?

• Delete job queue?

Build parameter list to accept answer to pr~mpt. #MSOER

Issue call to work station I/O for accept-input. #DWDM

If cancel spool - yes, return to #MSRI D #MSOER

If cancel spool - no:

• Build work station data management parameter list to prompt for:
- Resident spool writer.
- Spool writer priority.
- Intercept buffer size.
- Spool writer buffer size.

• Display prompts. #DWDM

• Build input parameter list. #MSOER • • Issue call to work station I/O for accept-input . #DWDM ~ • Ensure legitimate answers to prompts and set appropriate system indicators. #MSOER

• Build work station data management parameter list to prompt for print spooling disk parameters:
- Spool file size.
- Reformat spool file at IPL.
- Disk A or disk B reference.

I

Diagram 1.4 (Part 2 of 6). Perform Main Storage IPL Phase 3 Processing

1-10

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

• Issue a call to work station I/O to display prompts. #DWDM

• Build an input parameter list. #MSRID

• Issue a call to work station I/O for accept-input. #DWDM

• Ensure legitimate answers to prompts and set appropriate system indicators. #MSOER

Return to #MSRID

Build a work station data management parameter list to prompt for performance parameters: #MSRID

• Work station queue space size.

• Assign/free request size.

• Trace buffer size.

Issue call to work station I/O to issue prompts. #DWDM

Build input parameter list. #MSRID

Issue call to work station I/O for accept-input. #DWDM

Ensure legitimate answers to prompts and that enough main storage space exists. #MSRID

Set appropriate system indicators for prompt answers.

Return control to #MSIPL.

Build second TUB for command processor. #MSIPL

Log control storage processor errors.

Put system date in configuration record:
8 Read configuration record from disk. Disk 105

• • Update configuration record. #MSIPL ~
• Write configuration record back to disk. Disk 105

Change command language for command processor to native/English if necessary: #MSIPL

• Find command processor router routine - #CPRT (command processor load module).

• #CPRT contains commands to be changed. Start control address of #CPRT indicates start of command
table. Each entry is 14 bytes long.

• Retrieve commands from the message member (##MSG2).

• Update commands as required.

II Ensure that spool is on system (SCAMSPOL) and job queue is on system (SCAMJOBQ).

Calculate size of spool buffer pool.

Assign spool buffer pool space.

Save pool size and writer buffer size.

Set up spool intercept function:

• Find spool intercept routine (#SPINT). #MASFN

• Assign space to load #SPINT. #MSIPL

• Load #SPINT using main sto~age relocating loader - SVC 52 (control storage function).

II Call main storage allocate transient (#MSSaS) to resolve main storage areas.

Assign storage for work station queue space: #MSSQS

• Free work station queue space assigned for IPL sign-on.

• Assign work station queue space for system operation.

Build system queue space (control storage microcode function).

Diagram 1.4 (Part 3 of 6). Perform Main StoragelPL Phase 3 Processing

Method of Operation 1-11

Licensed Material-Property of IBM

OEseR IPTION
MODULE/
ROUTINE

Build user main storage area: #MSSOS
0 Use last FOE accessed to find first 2K block of user main storage following assign/free area.
e Chain user main storage 2K blocks together, excluding any bad 2K blocks.

• Clear 2K blocks to binary zeros as blocks are added to chain.
e Check for the following conditions:

- Any bad 2K main storage blocks (SCA2KBAD).
- Insufficient region size (SCADRGSZ).
- Maximum nucleus size exceeded.

• Build error message parameter list, including error message identification code (MIC).

• Issue error message. #CMCU

Return control to #MSIPL. #MSSOS

Put up sign-on display screen: #CPON

• Set IPL sign on code (CPCODE).

• Display sign on scr~en.

Clean up any outstanding invites on other terminals: #MSIPL

• Examine TUBs.

• If work station TUB, enable system request.

• If console, signed on console and issue invite.

• Stop outstanding invites. #CPTC

Get JCB space (JCB will be used to attach file rebuild (#MSBLD)). #MSIPL

Build attach parameter list.

Indicate file rebuild called (SCAMBLD).

Indicate IPL sign~on complete (SCAMIPL).

Call attach transient (#SVAT) to attach #MSBLD.

Perform command processor resident functions (#CPML) until #MSBLD is finished.

Call spool file IPL (#MSSP) to allocate and format spool file and spool buffer pool.

If spool not supported (SCADSSPR), go to DO. #MSSP

If delete or cancel request (SCADSSPR):

• Read VTOC to find file to delete. #CSVF • • Build file specification block (FSB). #CAS1 ~ • Delete file. #CAD1

• Set flag to 00 (SCADSSPR). #MSSP

• GotoD,O·

Check for existing #SPOOL 1 file:

• Build disk VTOC read/write parameter list.

• Read disk VTOC. #CSVF

If #SPOOL 1 file found:

• Read #SPOOL 1 master index from disk. #DWDM

• If no entries on print queue or request to delete file (SCAMCRAN): #MSSP
- Read VTOC to find file to delete. #CSVF
- Build file specification block (FSB). #CAS1
- Delete file. #CAD1

(
Diagram 1.4 (Part 4 of 6). Perform Main Storage IPL Phase 3 Processing

1-12

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Allocate primary print spool file: #MSSP
0 Set up special allocate DTF to allocate space for size given in IPLWKSIZ.

• Allocate file space. #CAS1

• If file space not available, decrease file size by six blocks and attempt to allocate. If minimum size (12 blocks) #CMCU
is not available, issue message, SPOOL NOT SUPPORTED THIS IPL, and go toDO.

Format print spool file:

• Calculate maximum file size. #MSSP
G Calculate size of each extent.

• Calculate index size.

• Set up fields to indicate number of index entries needed for primary file and extents.
0 Format master index and chain index entries together.

• Write index entries out to print spool file. Disk lOS

• Write master index out to first sector of primary spool file.

Set address of #SPOOL 1 in SYSCOM. #MSSP

Update master index:

• G Find extents (#SPOOL2-6). #CSVF 4
• Find highest spool jobname. #SPQMG
e Update master index with new information. #MSSP
0 Write master index back to primary spool file. Disk lOS

Format buffer pool by calculating number of intercept buffers. #MSSP

Look for job-in-process or active bits on in spool queue and set off if found. #SPQMG

G Call input job queue IPL routine (#MSJQ) to 'format input job queue. #MSSP

If job queue not supported (SCADSSJQ), return to #MSIPL. #MSJQ

If delete or cancel request (SCADSSJQ):

• Build file specification block (FSB). #CAS1
e Deallocate existing #JOBQ file. #CAD1

• Return to #MSIPL. #MSJQ

Check for existing #JOBQ file:
Q Build VTOC read/write parameter list.
0 Read disk VTOC. #CSVF

~ If #JOBQ found: #MSJQ ~
• Read first sector of #JOBQ file to check for data. Disk lOS .. If no data exists or reformat request: #MSJQ

- Build FSB. #CAS1
- Deallocate JOBQ file. #CAD1

Allocate #JOBQ file: #MSJQ
e Build DTF with #JOBQ file information.
e Allocate #JOBQ file. #CAS1

If not enough space available for # JOBQ file requested: #MSJQ

• Decrease file size by 2 blocks and attempt to allocate.

• If minimum size (4 blocks) is not available, issue message, INPUT JOBS NOT SUPPORTED THIS IPL, and #CMCU
return to #MSIPL.

Diagram 1.4 (Part 5 of 6). Perform Main Storage IPL Phase 3 Processing

Method of Operation 1-13

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Format JOBQ file entries:

• Set up lOB with attributes for #JOBQ file. #MSJQ
• Write formatted sectors to disk. Disk lOS

Update SCA with #JOBQ file address. #MSJQ

Return to #MSIPL.

If stop system command, call #CPTC to #MSIPL
set IPL processing complete (SCAMIPLC). #CPTC

Pass control to # CPM L. #MSIPL

(
Diagram 1.4 (Part 6 of 6). Perform Main Storage IPL Phase 3 Processing

1-14

Licensed Material-Property of IBM

From: CNFIGSCP Procedure
~ INPUT ____ •

L..I:;:0CESS
OUTPUT ___ _

Main Storage

Transient Area

User Area:
$CNFIG

Configu ration
records

User-entered
parameters

SCA

JCB

"'---~"''''''>''''' D Perform preliminary processing ...

o Process configuration menu

II Process attachment parameters

III Process general system parameters

II Process additional system parameters

II Process general print parameters

IJ Process spool parameters

III Process performance p~rameters

II Process program additions parameters

1m Perform final processing

To: Control Storage
End of Job ($EOJ)

DESCRIPTION

D Prepare disk lOB to read configuration records from disk.

Perform read operation.

Open work station data management (WSDM) DTF.

D Issue PUT to display configuration menu (display 1).

Display configuration menu.

Issue GET to accept operator replies.

• Retrieve operator response:

If OPtion 1 (perform system configuration), set off display only switch (CNDSP).

If option 2 (perform limited configuration with reset), set off display only switch and go to II.
If option 3 (perform limited configuration without reset), set off display only switch and go toO.

If option 4 (perform attachments change only), set off di,splay only switch and go to II.
If option 5 (only display configuration parameters), set on display only switch.

If response was not option 1 through 5, prepare operator prompt (1) and return to Oto redisplay
configuration menu.

Diagram 1.5 (Part 1 of 5). Perform System Configuration Processing ($CNFIG)

Con figu rati on
records

JCB

UPSI

MODULE/
ROUTINE

$CNFIG

Disk lOS

#DMOP

$CNFIG

#DWDM

$CNFIG

#DWDM

$CNFIG

Method of Operation 1·15

Licensed Material-Property of IBM

..

DESCRIPTION
MODULE/
ROUTINE

II Prepare attachment parameters display (display 2). $CNFIG

6) Issue PUT to output display 2.

Display attachment parameters screen consisting of: #DWDM

• Unit address.

• Device type.

• LogicallD.

• Attribute.

• Default PRT.

Prepare WSDM to retrieve operator replies. $CNFIG

Retrieve operator replies from screen. #DWDM

If display only request (CNDSP)' go toll ~

Validate operator replies: $CNFIG

• Confirm unit addresses and device types.

• Check logical ID format.

• Check for duplicate I D.

• Check attribute format.

• Check attribute.

• Check default printer logical I D format.

• Check default printer assignment.

If errors detected, prepare operator error message and return tollO.

Modify configuration record based on operator replies:

• Set logical IDs.

• Set WS/PRT attributes.

• Set default printer logical IDs.

II Prepare general system parameters display (display 3).

6) Prepare WSDM DTF to output display 3.

Display configuration defaults consisting of: #DWDM

• Date format .

• . Single program mode?

• Work station status after IPL.

• Command language.

Prepare WSDM DTF to retrieve operator replies. $CNFIG

Retrieve operator replies from screen. #DWDM

If display only request (CN DSP), go to m. $CNFIG

Validate operator replies:

• Single program mode - Y or N.

• Console mode after IPL - A or B.

• Command language - A or B.

• Date format.

If errors detected, prepare operator error message and return toll,eto redisplay with error message.

Modify configuration record based on operator replies.

(
Diagram 1.5 (Part 2 of 5). Perform System Configuration Processing ($CNFIG)

1-16

Licensed Material-Property of IBM

OEseR IPTION
MODULE/
ROUTINE

II Prepare additional general system parameters display (display 4). $CNFIG

e Prepare WSDM DTF to output display 4.

Display configuration defaults consisting of: #DWDM

• Password security feature?
- Security officer 10.
- Security officer password.
- Security file size (1 to 14 blocks).

a. If PSF = No:
1. Put zero in configuration record as file size.
2. Delete security file if one exists.

b. If JOBQ = No, set zero in configuration record as job queue size.

• Job queue support?
- Job queue size (20 to 120 jobs) .

Prepare WSDM DTF to retrieve operator replies. $CNFIG

Retrieve operator replies from screen. #DWDM

If display only request (CNDSP), go to II. $CNFIG

Validate operator replies:

• If job queue yes, verify job queue size.

• If password security yes:
- Verify security file size.

• - A!locate security file if size on. #CAS1 ~
- Set officer lOin profile record. $CNFIG
- Set officer password.
- Write profile record to disk. Disk lOS

If errors detected, prepare operator error message and return toliOto redisplay with error message. $CNFIG

Modify configuration record based on operator replies:

• Set job queue size.

• Set security file size.

0 Prepare general print parameters display (display 5).

e Prepare WSDM DTF to output display 5.

Display configuration defaults consisting of: #DWDM

• Standard forms 10.

• Lines per page (1 to 112L

• Print belt image.

• Print spooling? (Y,Nl.

Prepare WSDM DTF to retrieve operator responses. $CNFIG

Retrieve operator replies from screen. #DWDM

If display only request (CNDSP), go toO. $CNFIG

Validate operator replies:

• Lines per page - 1 to 112.

• Print belt image - A, B, C, 0, or E.

• Spool - Y or N.

If errors detected, prepare operator error message and return to mOto redisplay with error message.

Diagram 1.5 (Part 3 of 5). Perform System Configuration Processing ($CNFIG)

Method of Operation 1-17

Licensed Material-Property of IBM

OEseR IPTION
MODULE/
ROUTINE

Modify configuration record based'on operator replies: $CNFIG

• Set lines/page value in hexadecimal.

• Set print belt image in configuration record:
- Use system find to locate source library get (UMASYL).
- Use main storage relocating loader (SVC 52) to load UMASYL.
- Retrieve requested print belt member. UMASYL
- Convert to hexadecimal if necessary. $CNFIG
- Move image into configuration record.

• Check spool yes or no:
- If yes, set on spool indicator.
- If no, clear spool parameters in configuration record and go to D.

o If spool not specified (CNSPFLAG) go tom.

Prepar~ spool parameters display (display 6) .

• Prepare WSDM DTF to output display 6.

Display configuration defaults consisting of: UDWDM

• Resident spool writer (Y,N).

• Spool writer priority (Y,N).

• Autowriter (Y,N).

• Spool intercept buffer size (1 to 8-1/2KL

• Spool file size (12 to 192 blocks).

• Spool writer buffer size (1 to 4-1/2 K),

Prepare WSDM DTF to retrive operator replies. $CNFIG

Retrieve operator replies from screen. UDWDM

If display only request (CNDSP), go to g. $CNFIG

Validate operator replies:

• Resident spool writer - Y or N.

• Spool writer priority - Y or N.

• Autowriter - Y or N.

• Spool intercept buffer size - 1 to 81/2 K'segments.

• Spool file size - 12 to 192 blocks.

• Spool writer buffer size - 1 to 4 1/2 K segments.

If errors detected, prepare operator error message and return toOeto redisplay with error message.

Modify configuration record based on operator replies:

• Set spool writer priority - yes or no.

• Set autowriter - yes or no.

• S~t spool intercept buffer size:
- Convert segments to sectors (2 sectors per 1/2 K segment).
- Put size in configuration record.

• Set spool file size:
- Convert blocks to hexadecimal.
- Put size in configuration record.

• Set writer buffer size: Convert segments to sectors (2 sectors per 1/2 K segment).

II Prepare performance display (display 7).

o Prepare WSDM DTF to output display 7.

Display configuration defaults consisting of: UDWDM

• Display data management mode; A - transient, B - resident.

• Display station buffer size (6 to 16 1/2 K).

• System assign/free size (6 to 64 1/2 K). I

~
Diagram 1.5 (Part 4 of 5). Perform System Configuration Processing ($CNFIG)

1-18

Licensed Material-Property of IBM

OEseR IPTION

Prepare WSDM DTF to retrieve operator replies.

Retrieve operator replies from screen.

If display only request (CNDSP) g~ toEJ.

Validate operator replies:
• Display data management mode.
• Display station buffer size - to 16 1/2 K segments.
• System assign/free size - 6 to 64 1/2 K segments.

If errors detected, prepare operator error message and return toDOrediSPlay with error message.

Modify configuration record based on operator replies:
• Display data management mode.
• Work station buffer size:

- Convert to 1/4 K blocks.
- Convert to hexadecimal.
- Set size in configuration record.

• System assign/free size:
- Convert value to 1/4 K blocks.
- Convert value to hexadecimal.
- Set converted 1/4 K blocks value in configuration record.

II Prepare program additions display - display 8.

o Prepare WSDM DTF to output display 8.

Display configuration defaults consisting of:
• MRJE support? (Y,N).
• BSC support? (Y,N),
• OLE support (Y,N).

Prepare WSDM DTF to retrieve operator replies.

Retrieve operator replies from screen.

If display only request (CNDSP), go tooe.

Validate operator replies (all replies must be Y or N).

If errors detected, prepare operator error message and return tollOto redisplay with error message.

Modify configuration record based on operator replies (set flags for Y or N).

Move program addition flags to UPSI switch buffer (UPSI switches will be tested to direct the CNFIGSSP
procedure) .

e If display only (CNDSP), zero UPSI switch buffer.

Use information retrieval transient to set UPSI switches in job control block (JCB).

1m If display only request (CNDSP), go toDDO.

Set on configuration complete flag (CONMCFGS).

Write modified configuration records to disk.

o Close WSDM DTF.

Pass control to end of job transient ($EOJ).

Diagram 1.5 (Part 5 of 5). Perform System Configuration Processing ($CNFIG)

Licensed Material-Property of IBM

MODULE!
ROUTINE

$CNFIG

#DWDM

$CNFIG

#DWDM

$CNFIG

#DWDM

$CNFIG

Disk lOS

#DMCL

$CNFIG

Method of Operation 1-19

From: Main Storage IPL Phase 3
(#MSIPL) Process

.INPUT _____ • ~OCESS

Main Storage

Fixed Nucleus

Transient Area

User Area:
#MSBLD
#MSBFL
#MSBGL

VTOC format 1's
format 5

--------......... :> 0 Check if disk reorganization was
.. previously aborted

fJ Get user file specifications and #MSBLD
options requested

II Read first (next) sector

II Process VTOC format 1's

II Check for last sector

II Sort file keys

D Search format 1's to ensure that they
have appropriate latest date indicator

II Collect unused disk space

-------:Tl

OUTPUT ___ _

Rebuilt:
VTOC format'1's
format 5

To: Control Storage End-of-Job ($EOJ)

MODULE/
OESeR IPTION ROUTINE

D Read Format 5. If disk reorganization ($FREE) was interrupted, complete it. #MSBLD

fJ Get range of user file addresses.
$FREE
#MSBLD

Get operator responses.

II Read first (next) sector in the user VTOC. Disk lOS

II Address format 1 entry: #MSBLD

• If this entry is unused, go tollO.

• •
If the file is not new and the operator does not want the format 1 processed, go toll O.
If the file is sequential or indexed, ensure that the record number reflects the number of records in the file.

• If the file is indexed and the number of records was altered, reconstruct the index from the data records.

Clear the format 1 if the user requests that the file in error be deleted and if any of the following error
conditions exist:

• latest date indicator is invalid.

• disk reorganization utility ($FREE) could not successfully move this file.

• record length exceeds 4096 bytes.

• retention is other than temporary or permanent.

• type is other than sequential, direct, or indexed.

Diagram 1.6 (Part 1 of 2). Rebuild VTOC Format 1'5

1·20

Licensed Material-Property of IBM

(

OEseR IPTION

• file is indexed and key position and/or key length are invalid.
• file is indexed and the number of keys is not equal to the number or records.
• file extents are not commensurate with the user disk space or with each other.

" If there is another format 1 entry in the current sector, go to II.
m Rewrite the sector into the VTOC. If there are more sectors in the VTOC, go toll.

m Load Keysort (#DDKAA).

o Read first (next) sector in user VTOC.

e Address format 1 entry: If the sort/merge bits are on, call #DDKAA to sort the keys.

If there is another format 1 in the sector, go toO G.
Rewrite the sector into the VTOC.

If there are more sectors in the VTOC, go tollO.

D Read first (next) sector in VTOC.

o Address first (next) format 1:
• If this entry is unused or if a file with this same label has been processed, go toOI'.
• If other files in this sector have the same label, scan until all entries have been compared with the current entry.
• Scan the remaining sectors of the VTOC for a file with the same label as the current entry. For each file

with the same label, scan until all entries have been compared with the current entry.
• If the current format 1 has a later date, set the latest date indicator in the format 1; otherwise, set binary zeros.
• If this is not the last entry in the current sector, go toUO.

Rewrite the sector into the VTOC.

If there are more sectors in the VTOC, go to IJ.
II Read the format 5.

Indicate that $FREE should recover all free disk space.

Rewrite the format 5.

Call disk reorganization ($FREE) which passes control to the end-of-job transient ($EOJ).

Diagram 1.6 (Part 2 of 2). Rebuild VTOC Format 1'5

MODULE/
ROUTINE

#MSBLD

Disk lOS

#MSBFL

Disk lOS

#MSBFL
#CDKAA
#MSBFL

Disk lOS

#MSBFL

Disk lOS

#MSBGL

Disk lOS

#MSBGL

Disk lOS

#MSBGL

Disk lOS

#MSBGL

Method of Operation 1-21

Licensed Material-Property of IBM

Program Organization

Figures ,., through '·3 show the control flow required to
start the system.

1·22

Licensed Material-Property of IBM

Control
Storage
IPL
Function ,

"" r

Disk lOS

Croll

Main Referenc.

Storage .. Resolver
"'

IPL
Phase 1 (NMAXRFI

(NMSNIPI

..
Dump
Main , Storage

ISVC 221

..
"' Disk lOS

Main Storage
Main Relocating
Storage Loader
IPL "'
Phase 2 ISVC521

I!lMSTWAI

Dump

---.. Main

"" Storage

ISVC 221 , Command
Processor
Task Post
Processor
I!lCPTCI Sign-on , r Transient

...
~

I!lCPONI

Control

... .. Storage
Transient ,
Scheduler

INSVC 501 Mai n Storage Main Storage
IPL Override IPL Override
Processor Processor ..

~

INMSRIDI INMSOERI

Work

.... .. Station
Data
Management

Spool IWDDAI Input

~
File .. Job Queue
IPL IPL

INMSSPI INMSJQ)

Main
Storage
IPL Disk

Phase 3 lOS

I!lMSIPL) Main Storage Command
Allocate

.L ~
Processor .. - Cleanup

K)'
INMSSQS) INCMCUI

Find a
Library
Entry

INMASFN) Supervisor File
Task Attach Rebuild
Transient

..
INSVAT) INMSBLD)

Message

... .. Retrieve

.,.

INMGRET)

Command .. Processor
Resident
Router
INCPML)

Figure 1-1. Main Storage IPL Control Flow

Program Organization 1-23

Licensed Materiai-Property of IBM

~ ...
..... ... Disk 105

Common
.... Open
..... ..

(#DMOP)

Work Station
~ .. Data
..... . Management

(#DWDM)
System
Co nfi gu rati on

($CNFIG)

Special

CNFIGSSP Allocate
Procedure

(#CAS1)

Source
..... Library Get
..... ..

(#MASYL)

Main Storage
.... .. Relocating
-..- . Loader

(SVC 52)

Common
~ Close
..... .. , (#DMCL)

End of Job
($EOJ)
-Control Storage-

Figure 1-2. System Configuration Logic Flow

1-24

Licensed Material-Property of IBM

SYSLOG

......, ..
(#CLSG)

End-of-Job ...
Rebuild Not Requested ... ($EOJ)

Rebuild -Control Storage-... VTOC
Format 1's ..
(Phase 1)
(#MSBLD)

Disk 105 ,. ...
Main
Storage

Disk Reorga-
IPL Phase-3

nization Utility .. (#MSIPL) Compress Required ..
($FREE)

~ II
, ,

....
Rebuild VTOC , ... Disk 105
Format 1's Keysort
(Phase 2)

(#MSBFL)
., ... (#DDKAA)

~ •
Rebuild VTOC ~ ...

Disk 105
Format 1's "

Disk Reorga-
(Phase 3) nization Utility

(#MSBGL)
($FREE)

~ ,
End of Job
($EOJ)
-Control Storage-

Figure 1-3. Rebuild VTOC Format 1's Control Flow (#MSBLD)

Program Organization 1-25

Licensed Material-Property of IBM

(

1-26

licensed Material-Property of IBM

Introduction

The functions needed to process commands are:

• Router

• Sign-on

• Process control commands

• Job initiation and work station release

• High-level aids and task-to-task communications router

• Inquiry menu option processor and resume

• Special command processor

• Command processor/work station data management
interface

• Console management

• Cleanup

• Password security

• I/O err9r recovery

COMMAND PROCESSOR

The command processor provides an operator interface for
display station and system operators to direct the System/
34 SSP in performing the operator's tasks.

The command processor provides control over an operator's
work session with the System/34 SSP by:

• Controlling the format of the display screen displays
when the display station is not in use by an appli'cation
program.

• Providing an interface for operators to carryon a
dialogue with the System/34 SSP in order to submit
procedures and OCl statements for execution.

Chapter 2. Processing Commands

• Providing operator commands that are immediate com
mands not requiring the initiator function for execution.

• Providing error messages and prompts to help the opera
tor conduct a work session and log related information
to the system history file.

Figure 2-1 shows the functions provided by the command
processor.

Router

The command processor router function waits for events to
occur and routes control to the proper command processor
transient module to process the event.

Events that cause the router to gain control are:

• Invite op-end - an operator has pressed a command key
or entered a command or OCl statement.

• Attn post - an operator. has requested the inquiry func
tion by pressing the Attn key.

• Sys req post - an operator has pressed the System
Request and Enter/Rec Adv keys to get a sign-on dis
play or to change interfaces at the system console.

• Task-to-task communications post.

Sign on

Before beginning a work session, the operator must perform
a sign-on procedure. The sign-on procedure either initial
izes a display station for entering commands and OCl, or
initializes the display station for acquisition by a user pro
gram (standby mode). Only display stations in standby
mode can be acquired by user programs. In addition, the
sign-on procedure is used to validate the operator as an
authorized user (password security).

Introduction 2-1

Licensed Material-Property of IBM

Signon
Job
Initiation

D

Router

I

Inquiry and
Resume

II

CP/WSDM
Interface

lim
Cleanup

m
High
Level Aids

Commands

Special
Command
Processor

Console
Management

I/O Error
Recovery

Description:

D The router determines which event to process and passes control to the appropriate command processor
function.

flI The sign-on function establishes the interface between the display station operator and the System/34 SSP.

II The command function includes control commands for the display station and system operator, spool, and input
JOBQ.

II The job initiation and display station release function provides for the initiation and termination of the scheduler.

II The high level aids and task-to-task communications router function performs the system request, attention, and
help functions along with other task-to-tas!< communications functions.

II The inquiry menu option processor and resume function provide the operator the capability to interrupt a
currently executing program, initiate a new request, and later resume the interrupted program.

II The special command processor function provides command key processing and other miscellaneous functions.

II The command processor/work station data management function provides a common module to display several
system formats.

m The console management function provides user and system tasks a method of writing a message to a display
station (or to the system console) and receiving a reply.

D!J The cleanup function outputs error detected by the command processor, controls the format of the screen, and
outputs session history.

m The I/O error recovery function allows I/O devices to issue error messages to the system console and attempts
recovery from certain I/O errors.

Figure 2-1. Command Processor Functions

2-2

Licensed Material-Property of IBM

(

The command processor provides a Sign on display to the
operator to aid in the sign-on procedure. The Sign-on
display appears at a display station, follQ.wing IPL, when
the operator presses the System Request key followed by
the Enter/Rec Adv key, or whenever an operator signals
the end of a work session with the OFF command. All
operators including the system operator must perform
the sign-on procedure.

To perform the sign-on procedure, the operator must fiJI.
in the necessary fields defined on the Sign-on display and
press the Enter/Rec Adv key.

Process Control Commands

The control commands provide an interface between the
display station and system operator and the System/34
system support program (SSP). Control commands are
immediate commands that do not require scheduler func
tions for execution.

Control commands are provided in two categories, display
station control commands and system console control com
mands. Some commands, however, can be used at both the
display station and system console.

The following chart indicates which control commands can
be used at the display station, system console, or both.

Command
Name

Display Station
Command

System Console
Command

ASSIGN----------- X
CANCEL---- X ------ X
CHANGE X
CONSOLE----X
HOLD----------------------X
IDELETE X X
JOBQ-----X
MENU X
MODE X
MSG X --------- X
OF.f X
PRTY X ------ X
RELEASE X
REPLY X
RESTART X
START X
STATUS ----X --------- X
STOP X
TIM E --------- X ---------- X
VARY X

Figure 2-2 is a summary of control commands. It provides
a brief description of each command function, indicates
the processing modules used, and shows the diagram
number.

Refer to the System Support Reference Manual, and IBM
System/34 System Operator's Guide, SC21-5158 for com
mand formats and operating procedures.

Job Initiation and Work Station Release

The job initiation and work station release function receives
control from the resident router (#CPM L) when the opera
tor enters a procedure or an OCL statement while the dis
play station is in command mode. The job start function is
responsible for:

• Starting the initiator (#CIML) to process the operator
entered procedure or DCL statement.

o Attaching a work station to an active multiple requester
terminal (M RT) task.

The release function receives control from the command
processor resident router (#CPML) when work station data
management posts the command processor to perform a
release. The release function is responsible for:

• Reestablishing the command interface at end-of-job for
a command work station.

• Reestablishing the standby interface at step or job end
for a data work station.

o Attaching the initiator to process the next job step when
a requester is released from a MRT task or a released
program task.

High- Level Aids and Task-to- Task Communications Router

The keys that invoke high-level aids are: the Attn key, the
Sys Req key and Enter key, and the Help key (when in
operator error mode). The command processor receives
control whenever one of these keys is pressed.

Introduction 2-3

Licensed Material-Property of IBM

Command Function Module Diagram

ASSIGN Used by the system operator to temporarily exchange the IDs of two display #CCAS 2.4
stations or two printer, or to temporarily assign a printer as the system
printer.

CANCEL Used by the system operator to cancel any of the following: #CCCM, 2.5
• A specified job on the input job queue #CCJQ,

• All jobs on the input job queue and
• A specified job on the spool file HCCCP
• All jobs on the spool file
• A currently executing job

Used by the display station operator to cancel a job on the input job queue.

CHANGE Used by the system operator to change the following: #CCJQ 2.6
• The position of a job on the input job queue or the spool file and
• The number of copies to be printed for a job on the spool file #CCGP
• The forms number to be used for the job on the spool file

CONSOLE Used by the system operator to cause an alternative console to become the #CCCO 2.7
system console.

HOLD Used by the system operator to temporarily prevent a specified job or all #CCHO 2.8
jobs on the spool file from being printed.

IDELETE Used by the system operator to specify whether informational messages #CCID 2.9
directed to the system console from a procedure should be automatically
responded to.

Used by the display station operator to specify whether informational
messages directed to the display station from procedures are to be
displayed.

JOBQ Used by the display station operator to place a job on the input job queue. #CCJQ 2.6

MENU Used by the display station operator to activate the menu function and to #CCMU 2.10
display the specified menu.

MODE Used by the display station operator to change from command mode to #CCOF 2.12
standby mode or from standby mode to command mode.

MSG Used by the system operator to send a message to all display stations or to #CCMG 2.11
a selected display station or display station operator.

Used by the display station operator to send a message to the system console
or to a selected display station operator; or, when entered with no parameters,
to display any messages pending at the display station.

OFF Used by the display station operator to terminate a display station session. #CCOF 2.12

Figure 2-2 (Part 1 of 3). Control Command Summary

(

2-4

Licensed Material-Property of IBM

Command Function Module Diagram

PRTY Used by the system operator to change the dispatching priority of a cur- #CCPY 2.13
rently executing job.

Used by the display station operator to assign a priority to the next job run
from the display station or the next job placed on the input job queue.

RELEASE Used by the system operator to release for printing eittler the entire spool #CCHO 2.8
file, a job on the spool file, or all jobs on the spool file that were individually
held or that were placed on the spool file with PRIORITY-D.

REPLY Used by the system operator to do one of the following: #CCRE 2.14

• Respond to all informational messages on the display screen
• Compress the display so that only messages still needing a response are

displayed

• Respond to an individual message

RESTART Used by the system operator to restart the printing of a job from the spool #CCRT 2.15
file. and

#CCRR

START Used by the system operator to do one of the following: #CCRT, 2.15
• Start the printing of jobs from the spool file #CCRR,
• Allow the initiation of jobs from all display stations or from a specified and

display station #CCJS
• Start the running of jobs from the input job queue

• Resume the system activity that was stopped by a STOP SYSTEM
control command

• Resume the execution of a job, or all jobs, that were stopped by a STOP
JOB control command

STATUS Used by the system operator to display any of the following: #CCSM, 2.16
• The entries on the spool file #CCSP,
o The status of jobs running on the system #CCSW,
• Any entries on the input job queue #CCSU,
• Status information about the display stations, printers, and the diskette #CCU2,

drive and
#CCSJ

Used by the display station operator to display any of the following: #CCSS,
• Status of the display station session #CCSW,

• I nput job queue entries for jobs submitted from the display station by #CCS2,
the current display station operator #CCS3,

• Status of the display stations, printers and diskette drive #CCS4,
and
#CCSJ

Figure 2·2 (Part 2 of 3). Control Command Summary

Introduction 2-5

Licensed Material-Property of IBM

Command Function Module Diagram

STOP Used by the system operator to do any of the following: HCCRT, 2.15
• Stop the printing of jobs from the spool file HCPTC,

HCCRR, • Stop the initiation of jobs from all display stations except the system
console, or stops the initiation of jobs from a specified display station and

• Stop the initiation of jobs from the input job queue HCCJQ
• Begin an orderly shutdown of the system with or without a key sort
• Stops the execution of all jobs or a specified job

TIME Used by the system operator and the display station operator to display
the time of day and the system date.

HCCTD 2.17

VARY Used by the system operator to change the status of the display station, a
printer, the system printer, or the diskette drive from online to offline or
from offline to online.

HCCAS 2.4

Figure 2-2 (Part 3 of 3). Control Command Summary

The operator interrupts an executing program with the
Attn key~ The inquiry display that results from the inter
rupt allows the operator to: (1) resume the interrupted
program; (2) return to a command interface where he can
run another program; (3) cancel the interrupted program;
or, (4) set inquiry condition and resume.

The Sys Req key and Enter key allow the system operator
to switch the system console between work station mode
and system console mode.

The Help key displays a description of the flashing error
number that appears in the bottom left corner of the dis
play screen.

When control is received from the task-to-task communica
tions router, the command processor checks the event con
trol mask (ECM) to determine if the call is due to an I/O
error; if it is, control is given to I/O error recovery
(#SVERP). If the call was not due to an I/O error, the
command processor checks a series of pending functions to
determine if control was received to process the functions.
The functions that can be performed are, release, console
SYSLOG, task suspend, stop system, and JOBQ detach.

Inquiry Menu Option Processor and Resume

The command processor inquiry menu option processor
and resume function allows the operator to interrupt exe
cuting programs to submit new jobs or commands and then
later resume the interrupted program.

2-6

The inquiry menu processor receives control when the
operator selects an option from the inquiry menu. The
inquiry menu processor handles the RESUME, INQUIRY,
CANCEL, RELEASE, and inquiry condition options.

The resume function, initiated by command key 1 from
the command display, reattaches the terminal to the inter
rupted program.

Special' Command Processor

The special co~mand processor (#CPSP) handles router
accept errors and command key functions. It also receives
control when the Enter key is pressed (1) after a program
has released a display station at end of job, (2) after mes
sages were displayed from the MSG command, or (3) after
a second level message was displayed at the system console.

Command Processor/Work Station Data Management
Interface

Command processor/work station data management inter
face (#CPIO) is called with a RIB to indicate which type
of I/O is requested. #CPIO builds a parameter list and
passes control to work station data management (#DWDM).

Licensed Material-Property of IBM

Console Management

Command processor console management provides a way
to route messages to the system console or work stations
and, if necessary, retrieve a response from the operator.

The main functions performed by console management are:

• Move message elements from the user's system-log sec
tor to the console system-log disk queue.

• Free system-log queue sector for reuse.

• Display messages at the system console.

• Perform End-of-Job processing for console management.

The, work station logical I/O interface provides logical I/O
keyboard data management services for SYSIN and logical
SYSLOG/SYSLIST data management services.

The main data management services for SYSIN are:

• Save the user's display screen.

o Display logical I/O interface at the display station.

• Process user response data from the keyboard.

The main data management services for SYS LOG/SYS LIST
are:

• Save the user's display screen.

• Display the logical I/O interface.

• Display a message or halt on the display screen.

• Display second-level messages as required.

o Process write to operator with reply (WTOR) 'and write
to operator without reply (WTO) messages.

• Retrieve and return responses to the user.

Console management normally returns control to the com
mand processor mainline module (#CPML) and work station
logical I/O returns control to the calling program.

Command Processor Cleanup

The command processor cleanup routine provides cleanup
activity and screen control for the other command proces
sor transient modules.

The functions provided by the cleanup routine are:

• Log input area to the history file

• Retrieve messages by message identification code (MIC)
or retrieve messages from main storage and display to
specified display station

• Log messages to the printer when applicable

• Substitute data in message formats as required

• Place system console messages on the system console
queue

Password Security

Password security helps the System/34 user prevent unau
thorized use of the system.

The user must request password security at system config
uration time to invoke the password security function. If
the function is requested, system configuration routines
will:

• Allocate security file space and initialize it to binary
zero

o Build the master security officer record and write it to
the security file

• Initialize the appropriate system configuration record
indicators

At IPL time, system communication area (SCA) is initial
ized to indicate password security is active and security
initialization is required. When system configuration is
complete, the master security officer can sign on and
authorize other system users by using the security file
utility ($PROF) or the security file restore utility ($PRST).
The master security officer can also use $PROF to alter
fields within a particular ~ecurity file record or prevent a
particular system user sign on.

Introduction 2-7

Licensed Material-Property of IBM

The security file contains information about system users
authorized to sign on the system. A record for each author
ized user contains information such as:

• User 10

• Password

• Security classification

• Comments

The security sign-on check is performed by security file
data management (#PRSO). #PRSD is called by sign-on
(#CPON). #PRSO. searches the security file for the user 10
and verifies the associated password and classification.

I/O Error Recovery

I/O error recovery issues error messages, recognizes opera
tor responses, and handles exception conditions. The com
mand processor serves as the interface between I/O error
recovery (main storage) and the error recoyery procedures
(control storage and main storage).

I/O error recovery consists of:

• The error recovery router (#SVERP)

• The work station error message transient (#SVWE R)

o The display station error recovery transient (#SVWSR)

• The display station error recovery for device not ready
transient (#SVNRY)

• The printer prepare transient for matrix printers
(#SVPRE)

• The command reject ready transient (#SVUR) and
routine (#SVRO)

2-8

The command processor initiates I/O error recovery when
the command processor error event control mask (ECM)
is posted by a control storage routine. The command
processor calls the I/O error recovery router (#SVERP),
which determines what I/O error recovery functions are
required.

If an error message is to be displayed, #SVE RP calls the
I/O error m~ssage transient (#SVWER). For display sta
tion errors, #SVERP-calls display station error recovery
(#SVWSR);for all other I/O device errors, #SVERP passes
control to I~ control storage transient.

I

Display Station Error Recovery

The display station error recovery transient (#SVWSR)
handles error·recovery for display station hardware and
program related errors. For device not ready errors,
#SVWSR calls the display station error recovery for device
not ready transient (#SVNRY). The command reject ready
transient (#SVUR) pushes/pulls the user task for #SVRD,
when required. The command reject ready routine
(#SVRO) processes command rejected records.

Licensed Material-Property of IBM

Method of Operation • Special command processing

This section contains functional diagrams for the routines
needed to process commands. They are:

• Command processor/work station data management
interface

• Router • Console management

• Sign-on • Command processor cleanup

• Command processing • Password security

• Job initiation and display station release • I/O error recovery

• High level aids and task-to-task communications router • Work station error recovery

• Inquiry menu option and resume processing

From: Main Storage IPL INPUT ____ _

Required system
areas

~OCESS

• Router (Diagram 2.1)

• Sign-on (Diagram 2.2)

• Command Processing Overview (Diagram
2.3)

• Job initiator and work station release
overview (Diagram 2.18)

• High level aids and task-to-task
communications router (Diagram 2.21)

• Inquiry menu option processor and
resume overview (Diagram 2.22)

• Special command processor (Diagram 2.25)

• Command Processor/work station data
management interface (Diagram 2.26)

• Console management overview (Diagram
2.27)

• Command processor cleanup (Diagram 2.31)

• Password Security (Diagram 2.32)

• I/O error recovery (Diagram 2.33)

.. --------------------~

...
..

II OUTPUT ---_

Updated system
areas

Appropriate
display

To: Initiator Function

Diagram 2.0. Overview of Command Processor

Method of Operation 2-9

Licensed Material-Property of IBM

INPUT
From: IPL or Command Processor Transient

~OCESS
• OUTPUT ___ _

Main Storage

Transient Area:
#CPRT

or
#CPTC

User Area:
#CPML

System Queue
Headers

TCB chain

TUB chain

Menu Message
Member

D Wait for event to occur and rout control to
appropriate command processor transient

fJ Process work station invite op-end

----:Tl

...

To: Requested Command
Processor Transient

DESCRIPTION

D Wait for event to occur.

If event is invite op-end, go to 0.
If event is high-level aids or task-to-task communications exit to #CPTC (Diagram 2.21).

fJ Check for special routing conditions (preaccept):

• Input not caused by Enter key.

• I nput only to cause screen restore or refresh.

• Input is release acknowledgement.

If any of the above conditions exist, exit to #CPSP.

If invite op-end:

• Build work station data management parameter list.

• Accept input data.

• Process specials (post accept):
- If input for sign on request, exit to sign on transient (#CPON).
- If input from status display and not I, exit to status transient (#CCSM).
- If console output, exit to console output transient (Logical I/O function - #CMCI).

Diagram 2.1 (Part 1 of 2). Perform Router Function

2-10

Licensed Material-Property of IBM

Command parameter
list

Attach parameter
list

Cleanup parameter
list

Call to appropriate
transient

MODULE/
ROUTINE

#CPML

#CPRT

#DWDM
#CPRT

OEseR IPTION
MODULE/
ROUTINE

• Process menu input (if applicable): #CPRT

- Build message retrieve parameter list.

- Convert input data to message identification code (MIC).

- Retrieve MIC and place in input buffer. #MGRET

- If menu cancel request, exit to menu command processor (#CCMU). #CPRT

• Scan input:
- Isolate verb and operand data.

- If input an inquiry menu option, exit to inquiry menu processor (#CPIO).
- I f input a command:

a. Verify that command allowed in present mode.
b. Build command transient parameter list in command processor work area.
c. Exit to command or function requested.

- If input a job request:
a. Ensure job initiation allowed at requesting work station.
b. If inquiry and job control block '(JCB) and work station work area not allocated, link to #CPIO to

allocate space (inquiry menu processing function).
c. If not multiple requester terminal (MRT), start initiator (job start function). #SVAT
d. If MRT and work station can be attached, attacn terminal unit block (TUB) to task (job start function). #CPRT

I f errors detected:

• Build #CMCU parameter list.

• Exit to cleanup (#CMCU) to display message (Diagram 2.31).

)
Diagram 2.1 (Part 2 of 2). Perform Router Function

Method of Operation 2-11

Licensed Material-Property of IBM

From: IPL or
Input Router (#CPRT)

'" INPUT ____ •
~OCESS

XR2

C CP work area

Main Storage

Transient Area:
#CPON

User Area:

User Program

TCB
SCA
System display
formats
Work station
configuration record

-----" .. ::> II Process test request ...
fJ Process IPL special request

II Process sign-on information

II Process security file information if
security in effect

II Create job control block (JCB)

II Process library information if library

II Process IPL information if IPL in
progress

II Process menu display request if menu
name supplied

Ellndicate work station signed on

------Tl
To: IPL or

OUTPUT ___ _

SCA

TCB

JCB

Display

Cleanup parameter
list

Menu parameter
list

Cleanup Routine. (#CMCU)

MODULE/
OEseR IPTION ROUTINE

o I f test request call: #CPON

• Build JCB.

• Sign on work station.

• Attach the initiator to ~un test request program.

• If job submission halted, issue error message.

D If IPL special request, put up appropriate display (command or system).

II Verify USERID syntax and check that high-level dedication not in effect.

II Examine security file flag in system communication area (SCA) to determine if security in effect.

Retrieve user's security profile. #PRSD

Determine if: #CPON

• Security file was found.

• User I D in security file.

• Operator entered correct password.

If security information not correct, issue error message. #CMCU

Diagram 2.2 (Part 1 of 2). Perform Sign·on Function

2-12

Licensed Material-Property of IBM

(

MODULE/
OEseR IPTION ROUTINE

II If data work station: #CPON

• Set up work station data management parameter list for standby display.

• Indicate in terminal unit block (TUB) that work station signed on and in standby mode.

• • Display standby screen. #DWDM ~ • If messages pending for this display station, #CPON
display them. #CCMX

• Load and pass control to cleanup routine (#CMCU). #CPON

If command work station:

• Assign job control block (JCB). HCPON

• Chain TUB to JCB.

• Initialize JCB with work station configuration record and default values.

• Put printer ID in TUB.

II Determine if library name entered.

If library name not 0, set up library find parameter list.

Find specified library. #MAFLB

Move library format 1 address into JCB. #CPON

If library not found, issue error message. #CMCU

IJ Determine if IPL in progress. #CPON

Move date into SCA if date specified.

Set system timer if time is valid.

Issue error message if invalid time entered. #CMCU

Indicate overrides in SCA if OVERRI DES=Y. #CPON

m Determine if menu specified.

Set up menu parameter list.

Build menu format index.

Ensure menu on. #CCMU

D Indicate display station signed on in TUB. #CPON

Put user lOin TUB and system date in JCB.

If IPL in progress, return to IPL procedure.

If not IPL, build work station data management parameter list.

Display requested screen: #DWDM

• Command Display .

• Menu display.

If messages pending for this display station, #CPON • display them. #CCMX ~
If region size was bad, issue warning. #CPON

Load and pass control to the cleanup routine (#CMCU).

Diagram 2.2 (Part 2 of 2). Perform Sign-on Function

Method of Operation 2-13

Licensed Material-Property of IBM

From: Input Router (#CPRT)

~INPUTI ~OCESS

I r OUTPUT.

I
TUB and UDT >. Process ASSIGN or VARY command > Updated TUB and

I I (Diagram 2.4) I I UDT

TCB, TUB, TCB :>. Process CANCEL command (Diagram 2.5) > Updated TCB and

I ~. I I JCB

Job queue Process CHANGE or JOBQ command > Updated job queue

I !. (Diagram 2.6) I I
TCB and TUB Process CONSOLE request (Diagram 2.7) > Console screen

I !. I I display

Spool file Process HOLD or RELEASE command > Updated spool

I ~.
(Diagram 2.8) I I file index

TUB Process IDELETE request (Diagram 2.9) > Updated TUB

I :!>. I I
Menu message Process MENU command (Diagr~m 2.10) >Requested menu
member I ~. I I display

Message text Process MSG command (Diagram 2.11) > Printed or

I !. I I displayed message

JCB, FSB, and TUB Process MODE or OFF command > Updated JCB, FSB,

I !. (Diagram 2.12) I I and TUB

TUB, TCB, and JCB Process PRIORITY command (Diagram 2.13) > Updated JCB and

I !. I I TCB

I nput parameter Process REPLY command (Diagram 2.14) > User response
I ~. I • TCB, TUB, and JCB Process START, STOP, or RESTART > Updated TCB, TUB,

I !. command (Diagram 2.15) I I and JCB

TUB, TCB, SCA, Process STATUS command (Diagram 2.16) > Status display
and JCB I I I I
Time and date ::? Process TIME command (Diagram 2.17) >Time and date in

command pro-
cessor work area

------:11
To: Cleanup Routine (#CMCU)

Diagram 2.3. Overview of Command Processing

2-14

Licensed Material-Property of IBM

From: Input Router (#CPRT)
• INPUT ____ •

~OCESS

(XR2
Parameter list

Main Storage

Transient Area:
#CCAS

User Area

TUB chain
UDTs
TUBs

DESCRIPTION

........... 0 :::::::::,~.... Process ASSIGN command ...

o Process VARY command

II Determine if ASSIGN or VARY command entered.

If VARY command, go toD.

OUTPUT ___ _

TUB

UDT

Cleanup routine
parameter list

To: Cleanup Routine (#CMCU)

MODULE/
ROUTINE

#CCAS

If operand one not PRT, check syntax and switch terminal IDs in terminal unit blocks (TUBs) if no errors exist.

If operand one PRT:

• Syntax check operand two.

• Ensure operand two on TUB chain and printer.

• Indicate new printer in system communication area (SCA).

Issue error message if: #CMCU

• From terminal I D invalid.

• From terminal online.

• To terminal ID invalid.

• To terminal online.

• Operand one printer but operand two not printer.

fJ Verify operand two: #CCAS

• Printer.

• Diskette.

• Work station I D.

Verify operand one:

• ON.

• OFF.

Diagram 2.4 (Part 1 of 2). Perform ASSIGN and VARY Command Processing

Method of Operation 2·15

Licensed Material-Property of IBM

MODULE!
OEseR IPTION ROUTINE

If work station 10: #CCAS

• Verify work!station on TUB chain.

• If VARY ON request:
- Check TUB and if work station offline, update TUB to indicate work station online.

- If work station already online, issue message. #CMCU

• If VARY OFF request: #CCAS
- Check TUB and if work station online, update TUB to indicate work station offline.
- If TUB active, issue error message. #CMCU
- If work station already offline, issue message,
- If ACE on command processor, complete queue, deque, and free it.

If VARY PRT request: #CCAS

• If vary ON request:
- Check TUB and if printer offline, update TUB to indicate printer online.

• - If printer already online, issue message . #CMCU ~ • If VARY OFF request:

- Check TUB and if printer online, update TUB to indicate printer offline. #CCAS
- If TUB active, issue error message. #CMCU
- If printer already offline, issue message.

If VARY Diskette request: #CCAS

• If vary ON request:
- Check UDT and if diskette offline, update UDT to indicate diskette online.
- If diskette already online, issue message. #CMCU

• If VARY OFF request: #CCAS
- Check UDT and if diskette online, update UDT to indicate diskette offline.

#CMCU
#CCAS

- If diskette already offline, issue message. #CMCU

Build cleanup routine parameter list. #CCAS

Call and pass control to cleanup routine (#CMCU).

Note: If errors occur, call #CMCU to issue error message .

•

Diagram 2.4 (Part 2 of 2). Perform ASSIGN and VARY Command Processing

2-16

Licensed Mat~rial-Property of IBM

From: Input Router (#CPRT)
,.INPUT ____ •

~OCESS

XR2

(CP work area

Main Storage

Transient Area:
#CCCM
#CCJQ
#CCCP

User Area

TCB chain
TUB chain
TUB
TCB
JCB

OEseR IPTION

_ ----" ... => D Determine function requested

fI Process CANCEL JOBQ request

II Process CANCEL PRT request

II Process CANCEL jobname request

D Search for operand 1 in cancel command operand table:

• If cancel JOBQ request go to fJ.
• If CANCEL PRT request, go to II.
• If CANCEL jobname, go to a.
• If inquiry, go toll 0 .
• If error, go to 110.

II Verify correct number of operands (if ALL, verify in console mode).

Load and pass control to input job queue transient (#CCJQ).

If jobname given:

• Locate specified jobname.

• Remove specified entry from job queue.

• Chain specified entry to available queue.

• Set message identification code (MIC) to display cancel successful message.

• Call cleanup transient (#CMCU) and exit.

If ALL given:

• Remove all entries from job queue.

• Chain all entries to available queue.

• Set MIC to display cancel successful message.

• Call cleanup transient (#CMCU) and exit.

Verify correct number of operands and in console mode.

Diagram 2.5 (Part 1 of 2). Perform CANCEL Command Processing

OUTPUT ___ _

TCB

JCB

CP work area

Cleanup routine
parameter list

To: Cleanup Routine (#CMCU)

MODULE/
ROUTINE

DCCCM

#CCJQ

FDIOS

#CCJQ

FDIOS

#CCJQ

Method of Operation 2-17

Licensed Material-Property of IBM

OEseR IPTION
MODULE/
ROUTINE

11 Load and pass control to spool command - cancel transient (#CCCP). #CCCM

If jobname given: #CCCP

• Locate specified jobname.

• Ensure OK to cancel job.

• RemQve specified entry from print queue. FDIOS

• Ctiain entry to available queue.

• Increment number of available spool file block-groups.

• Call cleanup transient (#CMCU) and exit. #CCCP

If jobname not given, but ALL is specified:

• Remove all entries (not executing) from the print queue. FDIOS

• Chain all entries to available queue.

• Increment number available spool file block-groups.

• Call cleanup transient (#CMCU) and exit. #CCCP

II Locate jobname in task control block (TCB) chain. #CCCM

Verify operand length is eight characters.

Ensure command issued from console.

G If no operand or 3 option, indicate 3 option in TCB.

If 2 option, indicate 2 option in TCB.

If D or DUMP option:

• Set dump indicator in TCB.

• Indicate 3 option in TCB.

Ifnot cancelable and not inquiry cancel:

• Indicate cancel pending in TCB.

• Enter job canceled MIC in JCB and indicate termination should display message.

• Call cleanup transient (#CMCU) to display cancel pending at system console and exit.

If job in termination and 2 option taken, pend cancel as if not cancelable.

Force TCB to call end of job.

If inquiry, exit to caller.

If cancel command, issue message to operator indicating job being canceled. #CMCU

Diagram 2.5 (Part 2 of 2). Perform CANCEL Command Processing

2-18

Licensed Material-Property of IBM

From: Input Router (#CPRT)
JlINPUT _~ __ 111

~OCESS

XR 2

(CP Work Area

Main Storage

Transient Area:
#CCJQ
#CCHO

User Area

TCB chain
TUB chain
Job queue
Spool file
JCB

----~ > II Determine function requested ..
IfJ Process JOBQ command

II Process CHANGE JOBQ request

a Process CHANGE PRT request

II Process CHANGE COPIES request

m Process CHANGE FORMS request

OUTPUT ___ _

TCB chain

Job queue

Spool file

JCB

To: Cleanup Routine (#CMCU)

MODULE!
OESeR IPTION ROUTINE

D Search command routing code for requested function·: #CCJQ

• If JOBQ command, go to g.
• If CHANGE JOBQ request, go to g.
• If CHANGE PRT request, go toO.

• If CHANGE COPI ES request, go to g.
• If CHANGE FORMS request, go toml.

B Ensure enough room exists on queue for new entry.

Ensure proc name parameter given.

Chain new entry to job queue. Disk lOS

Save any optional parameters supplied. #CCJQ

Place jobname assigned to new entry in command processor work area.

Call cleanup routine (#CMCU), pass job name to #CMCU for display, and exit to #CMCU.

IJ Ensure job queue exists.·

Ensure jobname supplied exits. Disk lOS

Diagram 2.6 (Part 1 of 2), Perform CHANGE and JOSQ Command Processing

Method of Operation 2· 19

Licensed Material-Property of IBM

MODULE/
DESCRIPTION ROUTINE

If second jobname(jobname1), chain jobname being changed behind jobname1. #CCJO

If second jobname not given or not found, chain jobname being changed to top of job queue. Disk lOS

Call and pass control to #CMCU.

II Ensure jobname specified and exists. #CCGP

Remove specified jobname from present position on print queue chain.

If second jobname (jobname1) given, chain jobname being changed behind jobname1 on print queue and set Disk lOS
priority of moved jobname equal to priority of jobname1.

If second job name not given, chain jobname being changed to top of print queue (first on print queue) and
change priority to 5.

Call #CMCU to display message CHANGE COMMAND SUCCESSFUL and exit. #CCGP

II Ensure jobname specified and exists.

Ensure valid number of copies given.

Change number of copies in spool file index to new number specified. Disk lOS

Call #CMCU to display message CHANGE COMMAND SUCCESSFUL and exit. #CCGP

II Ensure jobname specified and exists. #CCJO

Ensure valid forms number supplied.

Change forms number in spool file index to new forms number supplied. Disk lOS

Call #CMCU to display message CHANGE COMMAND SUCCESSFUL and exit. #CCJO

Note: If error occurs, call #CMCU to issue error message.

(
Diagram 2.6 (Part 2 of 2). Perform CHANGE and JOBQ Command Processing

2-20

Licensed Material-Property of IBM

)

From: Input Router (#CPRT) INPUT ____ _
L.l:;:0CESS

~ OUTPUT ___ _

XR2

(parameter list

Main Storage

Transient Area:
#CCCO

User Area

SCA
TCB
TUB
TUB chain

o Ensure console command request is valid

fJ Display console image on new console
screen

II Update old and new master console indicates

II If called by error recovery, rebuild console
display and exit.

TUB

TUB chain

Console screen
display

SCA

To: Cleanup Routine (#CMCU)

OESeR IPTION
MODULE/
ROUTINE

III Locate command processor task control block (TCB) and master console terminal unit block (TUB). #CCCO

If security active on system (SCAMSEC), ensure command user security status is system operator or higher
(TUBOPSTS).

If inquiry active at terminal entering command (TUBINQ1 and TUBINQ2), issue error message (MIC 5635).

If work station not defined alternate console at configuration time (TUBACN) issue error message (MIC 5636).

If current console does not have error indicator (TUB$ERR), issue error message (MIC 563S).

D Assign space to retrieve screen image from command processor task work area (TWA).

Blank out assign/free area.

Build work station data management parameter list. #CCCO

Display blank console format. #DWDM

Process system console image matrix: #CCCO

• Find next image matrix entry requiring response.

• Determine disk sector containing screen data line.

• Read sector from TWA on disk.

• Build work station data management parameter list.

• Display appropriate SO-byte entry on new console screen. #DWDM

• Repeat steps until all system console image matrix entries displayed. #CCCO

IJ Set off master console indication (TUBMCN) for old console TUBs.

Set on master console indication (TUBMCN) for new console.

Indicate new console in console mode (TUBMCNSL).

Diagram 2.7 (Part 1 of 2). Perform CONSOLE" Request Processing

Method of Operation 2-21

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Turn off console check light. #CCCO

Create command TUB and chain to console TUB.

Set up console TUB address in SCA (SCADMTUB).

Lock on to the TUB chain and free up the assign free space of the original console TUB.

Rechain any TUBs above the old console TUB to point at horizontal TUB.

Call error recovery transient to free up any resources associated with a job that was active at the original #SVERP
system console.

Load and pass control to cleanup ~outine (#CMCU). #CCCO

Note: If errors occur, call #CMCU to issue error message.

(
Diagram 2.7 (Part 2 of 2). Perform CONSOLE Request Processing

2·22

Licensed Material-Property of IBM

From: Input Router (#CPRT) • INPUT ____ ..
L...::;:0CESS

XR2

CCP work area

Main Storage

Transient Area:
#CCHO

User Area

TCB chain
TUB chain
Spool file

----............. :> D Determine function requested ...

fJ Process HOLD command

II Process RELEASE command

------::Il

OUTPUT ___ _

TCB chain

Spool file

To: Cleanup Routine (#CMCU)

MODULE/
DESCRIPTION ROUTINE

D Search command routing code for requested function: #CCHO

• If HOLD, go toD.
• If RELEASE, go to g.

D Check for jobname specified in command.

If jobname not specified:

• Set Q·held indicator in master index. Disk lOS
0 Call cleanup routine (#CMCU) to issue message (HOLD COMMAND SUCCESSFUL) and exit. #CCHO

If jobname specified:

• Set job ISIN held bit in spool file index to indicate specified jobname held. Disk lOS

• Call #CMCU to issue message (HOLD COMMAND SUCCESSFUL) and exit. #CCHO

II Check for jobname specified in command.

If jobname not specified:

• Set off Q-held indicator in master index. Disk lOS

• Call #CMCU to issue message (RELEASE COMMAND SUCCESSFUL) and exit. #CCHO

If jobname specified:
0 Set off job is in held bit in spool file index. Disk lOS

• Call #CMCU to issue message (RELEASE COMMAND SUCCESSFUL) and exit. #CCHO

If ALLH specified:

• Set off job is in held bit in spool file index of all jobs currently held. Disk lOS

• Call #CMCU to issue message (RELEASE COMMAND SUCCESSFUL) and exit. #CCHO

Note: If error occurs, call #CMCU to issue error message.

Diagram 2.8. Perform HOLD and RELEASE Command Processing

Method of Operation 2-23

Licensed Material-Property of IBM

From: Input Router (#CPRT)

INPUT----_

XR2

(parameter list

Main Storage

Transient Area:
#CCID

User Area

TUB

I...I:;:0CESS

o Process IDELETE request

.. --------------------~

~ OUTPUT ___ _

TUB ...

To: Cleanup Routine (#CMCU)

DESCRIPTION
MODULE/
ROUTINE

D Check parameter 1 for ON or OFF entered. #CCID

If parameter 1 not ON, OFF, or null, issue error message (MIC 5720). #CMCU

Find terminal unit block (TUB) address. #CCID

If OFF entered, indicate IDELETE off in TUB (TUBIDEL).

If ON or nothing entered, indicate IDELETE on in TUB (TUBIDEL).

Set up IDELETE successful message (MIC 5721).

Build cleanup parameter list.

Load and pass control to cleanup (#CMCU).

Diagram 2.9. Perform IDELETE Command Processing

2-24

Licensed Material-Property of IBM

)

From: Input Router (#CPRT)
or Sign-on Routine (#CPON)

,.INPUT ____ •
I...I:;:0CESS

OUTPUT ___ _

(XR2
Parameter list

Main Storage

Transient Area:
#CCMU

User Area

CP work area
TCB
TUB
JCB

----............ ::> D Process MENU request ...

------::i1

CP work area

Cleanup routine
parameter list

TCB

TUB

JCB

To: Sign-on Routine (#CPON)
or Cleanup Routine (#CMCU)

MODULE!
DESCR IPTION ROUTINE

D Determine command entered. #CCMU

If cancel menu request (option 0):

• Build work station data management parameter list.

• Display command screen. #DWDM .. Set off menu active bit (TUB MENUA) in TUB. #CCMU

• Zero disk address in JCB.

• If menu from # LI BRARY, subtract 1 from user count.

• EXit. I

Find menu members: #MASFN

• Menu format member (ensure format valid SFGR format).

• Menu message member.

• Verify from same library.

• Retriev~ message member: #CCMU

• Set up job control block (JCB).

• Set up lOB.

• Read format member from disk. Disk 105

• Indicate menu active (TUBMENUA). #CCMU

• If menu was active, end previous menu.

If called from sign-on function, return control to sign-on routine (#CPON).

If status active (TUBSTATA), pass control to status display (#CCSM) to end status.

If called by MENU command:

• Build work station data management parameter list.

• Display requested menu. #DWDM

• Pass control to #CMCU. #CCMU

Note: If errors occur, call #CMCU to issue error message.

Diagram 2.10. Perform MENU Command Processing

Method of Operation 2-25

Licensed Material-Property of IBM

4

From: Input Router (#CPRT)
~ INPUT ____ _

~OCESS

XR2

(Parameter list

Main Storage

Transient Area:
#CCMG
#CCMX

User Area

TUB chain
TUB
TCB
JCB
Message text

_ ------.. ... :>, D Ensure command validity and check
P operand count

fJ Process system console broadcast message

II Process work station to system console
message

a Process system console or work station to
specific work station message

II Display messages at work stations

--------Tl

OUTPUT ___ _

TUB

TCB

JCB

SCA

Displayed message

Printed message

To: Cleanup Routine (#CMCU) or
Command Processor Mainline (#CPML)

OESeR IPTION
MOOULE/
ROUTINE

D Check message command entered and issue error messages as necessary: #CCMG

• If command invalid in console mode, issue message identification code (MIC) 5633.

• If no messages to send, issue MIC 5634.

• If message text missing, issue MIC 5628.

• If message text longer than 60 characters, issue MIC 5627.

• If message is being sent to a device other than a work station, issue MIC 5626.

• If ALL invalid, issue MIC 5625.

• If not enough assign/free space, issue MIC 5702.

• If work station is offline, issue MIC 5623.

If error detected:

• Build cleanup routine (#CMCU) parameter list.

• Display error message. #CMCU

If operand count zero, call message command show routine (#CCMX) to issue messages and go toD. #CCMG

B Ensure room exists in message queue.

Build message in work area.

Locate users message queue sector. (TWA SVC 51).

Place message in users queue sector.

Diagram 2.11 (Part 1 of 3). Perform MSG Command Processing

2-26

Licensed Material-Property of IBM

(

OEseR IPTION

Write sector back to disk. (TWA access SVC 51).

Return.

If spool inactive, system in single program mode, and log printer active, put message to printer.

If unable to find space in user's message queue, issue error message - MIC 5639 and exit to #CMCU.

Sound alarm at each display station online.

Set up MESSAGE COMMAND SUCCESSFUL message - MIC 5632.

Build cleanup routine (#CMCU) parameter list.

Display message MIC 5632.

II Ensure room exists in message queue.

If unable to find space in console message queue, issue MIC 5629 and exit to #CMCU.

Build message in work area.

Locate message queue sector.

Place message in queue sector.

Update and write sector back to disk.

Increment message queue count in SCA.

Post console SYSLOG (#CMCI).

Build cleanup routine (#CMCU) parameter list.

Display message - MIC 5632.

II Search TUB chain for work station ID matching work station ID entered (WS-ID).

Search TUB chain for user I D if user-I D given.

If no work station ID or user ID found to match, issue MIC 5630 and exit to #CMCU.

Save TUB address.

Initialize message queue sectors associated with specified work station if message count in TUB=zero.

Build message in work area.

Locate message queue sector. (TWA request SVC 51)

If no queue space available, issue MIC 5630 and exit to #CMCU.

Place message in queue sector.

Write queue sector back to disk. (TWA request SVC 51)

Increment message queue count.

If display station is online, sound alarm at display station.

Diagram 2.11 (Part 2 of 3). Perform MSG Command Processing

Licensed Material-Property of IBM

MODULE/
ROUTINE

#CCMG

#CMCU

#CCMG

WSIOCH

#CCMG

#CMCU

#CCMG

#CMCU

#CCMG

WSIOCH

Method of Operation 2-27

OEseR IPTION
MODULE!
ROUTINE

Build cleanup routine (#CMCU) parameter list. #CCMG

Display message MIC 5632. #CCMU

II Indicate message screen active (TUBMSGA). #CCMX

Reset broadcast message failure.

Determine TUB to use .

• Turn off light at display station. #DWDM ~
Set on initial call switch. #CCMX

Build work station data managemen~ parameter list and insert work station I D.

Put screen to proper terminal. #DWDM

Reset initial call switch. #CCMX

Check user message queue and if not empty:

• Find message queue sector. (TWA r~quest SVC 51)

• Read message from disk.

• Decrement use count byte in message sector.

• Write updated message sector back to disk. (TWA request SVC 51)

• Increment message count on screen. .
• Decrement message Q-count.

• Build work station data management parameter list.

• Output messages to proper terminal. #DWDM

• If spool inactive, system in single program mode, and log printer active:
put message to printer. #CMCU

• Repeat until user message queue empty. #CCMX

If user message queue empty:

• Set indicator to restore command screen (TUBRST2) when enter key pressed.

• Indicate message screen active and more messages to be displayed (TUBMSGA).

• Load and pass control to CP mainline (#CPML):

Diagram 2.11 (Part 3 of 3). Perform MSG Command Processing

2-28

Licensed Material-Property of IBM

From: Input Router (#CPRT)

II INPUT ----... ~OCESS

XR2

C Parameter list

Main Storage

Transient Area:
#CCOF

User Area

CP work area
TUB
TCB

11----"......,. ":> D Determine function requested

D Process MODE command

lEI Process OFF command

OUTPUT a::o:::::::cE:=~

CP work area

TUB

Display

To: Cleanup Routine (#CMCU)

MODULE/
OEseR IPTION ROUTINE

D Ensure terminal not in inquiry mode (TUBATTR4). #CCOF

If menu active and menu from system library, subtract 1 from format 1 user count.

Search command routing code for requested function:

• It MODE command, go to D.
• If OFF command or if ERROR OFF command code, go toD.

D It work station in command mode (TUBATTR2):

• If status active, call #CCSM to end status.

• Indicate terminal in standby mode (TUBATTR2).

• Set up work station data management parameter list.

• Display standby screen. #DWDM

• Load and pass control to cleanup routine (#CMCU). #CCOF

If work station in standby mode:

• Indicate terminal in command mode (TUBATTR2).

• Set up work station data management parameter list.

• Display command screen #DWDM

• Load and pass control to #CMCU. #GCOF

IJ Indicate terminal not signed on (TUBATTR1).

It OFF command from command work station:

• If status active, call #CCSM to end status.

• Initialize terminal unit block (TUB).

• If job control block (JCB) pointed to by TUB:
- If format 1 user count is 1, free format 1 for each file specification block (FSB).
- If user count greater than 1, decrement user count by 1 for each FSB.
- Free each FSB.

Diagram 2.12 (Part 1 of 2). Perform MODE and OFF Command Processing

Method of Operation 2-29

Licensed Material-Property of IBM

OEseR IPTION
MODULE!
ROUTINE

• Free job control block (JCB). #CCOF

• Initialize local area to blanks.

• Read work station configuration record to obatin default library name. Disk lOS

• If ERROR OFF, clear ERB and exit. #CCOF

• I nsert library name in work station data management parameter list. #DWDM

• Turn off the message waiting light.

• Display command work station sign-on display.

• If test request call, set off test request and exit.

• Load and pass control to #CMCU. #CCOF

If OFF command from data work station:

• Initialize TUB.

• Build work station data management parameter list.

• Display data work station sign-on display. #DWDM

• Load and pass control to #CMCl,J. #CCOF

Note: If errors occur, call #CMCU to issue error message.

(
Diagram 2.12 (Part 2 of 2). Perform MODE and OFF Command Processing

2-30

Licensed Material-Property of IBM

From: Input Router (#CPRT)
INPUT ____ .. ~OCESS

XR2

C CP work area

Main Storage

Transient Area:
#CCPY

User Area

TUB

TCB

JCB

o Process PRIORITY command

------::i1

'" OUTPUT ___ _

Parameter list
for #CMCU

JCB

TCB

To: Cleanup Routine (#CMCU)

MODULE/
DEseR IPTION ROUTINE

D Determine if command entered from console Qr work station (TUBATTR2). #CCPY

If command entered from work station:

• Set priority indicator in job control block (JCBDSCH2).

• Load and,pass control to cleanup routine (#CMCU) to display message (PRIORITY ACCEPTED).

If command entered from console:

• Ensure valid jobname supplied.

• Find JCB for specified job.

• Verify ON/OFF operand i(supplied.

• If ON or not specified, set priority indicator in JCB (JCBDSCH2) and set TCB (TCBPRIOR) priority to high.

• If OFF requested, set off priority indicator in JCB and set TCB priority to low.

Note: If errors occur, call #CMCU to issue error message.

Diagram 2.13. Perform PRTV Command Processing

Method of Operation 2-31

Licensed Material-Property of IBM

From: Input Router (HCPRT)

XR2

(CP work area

Main Storage

Transient Area:
HCCRE

User Area

Console matrix

TCB

TUB

~OCESS

II-___ h.::> II Perform preliminary command processing
po

fI Process I parameter if supplied

II Process C parameter if supplied

II Process message I D parameter if supplied

II Process response parameter if supplied

OUTPUT ___ ...

User response

TCB

TUB

To: Cleanup Routine (HCMCU)

MODULE!
OESeR IPTION ROUTINE

rmt Determine if status display on display screen (TUBATTR2l. HCCRE

Issue error message if REPLY command and status display present (MIC 5616), HCMCU

Scan system console image matrix for message response from end of job (EOJ) (CMCISWH). HCCRE

If response from EOJ, put ** over message IDs. HCMEJ

If no message I D entered (first parameter null) or message ID greater than two characters, issue error HCMCU
message (MIC 5617).

fil Determine if I parameter entered. If entered: HCCRE
C) Scan image matrix for throw~response-away bit (CMCITHR).

@)o Indicate response given (CMCIREP).
0 Put * * over message I D. HCMEJ
0 Display successful message (MIC 5615). HCMCU
C) If number of available lines is five or more, issue messages still pending. HCMCI
0 Pass control to cleanup routine (#CMCU).

(ii If C parameter entered: HCCRE
t> 0 Rearrange matrix so all messages still in need of a response are at the end of the matrix. HCMEJ

C/) Roll down screen and clear rolled lines. #DWDM
0 Display successful message (MIC 5615). HCMCU
0 If number of available lines is five or more, issue messages still pending . HCMCI

• Pass control to cleanup routine (HCMCU).

Diagram 2.14 (Part 1 of 2). Perform REP L Y Command Processing

2-32

Licensed Material-Property of IBM

~

MODULE/
DESCRIPTION ROUTINE

II Syntax check message I D. #CCRE

Issue syntax error message (MIC 5617) if necessary. #CMCU

Search system console image matrix for message ID match. #CCRE .

Issue error message (MIC 5618) if no match found. #CMCU

If match found is throw-away-response, go toDO.

II Blank out response data area. #CCRE

If nonresponse entered for operand 2 and, #CMCU
if SYSLOG halt, call #CCRS to handle second level message: #CCRE

• Read console image sector. #CCRS

• Extract MIC number from image.

• • Retrieve second level message from user message member. #MGRET ~ • Display reply successful message. #CMCU

• Save console screen. #DWDM
0 Display second level message.

• • Indicate restore console interface on next keystroke. #CCRE f-II • Pass control to cleanup routine (#CMCU).

If operand 2 is a response:

• Verify operand 2 length less than or equal to caller requested option length.

• Issue invalid length message (MIC 5619) if necessary. #CMCU

• If SYSLOG halt: #CCRE
- Verify option entered is permitted.

- Issue option response error message (M IC 5620) if necessary. #CMCU
- If response on, go toD O. #CCRE

Handle response not previously processed:

• Move response to task work area.

• Pass response to user.

• Post task complete.

• Pass control to #CMCU.

Note: If errors occur, call #CMCU to issue error message.

Diagram 2.14 (Part 2 of 2). Perform REPLY Command Processing

Method of Operation 2·33

Licensed Material-Property of IBM

From: Input Router (#CPRT)

I N PUT ----1I:ZIa
XR2

C Parameter list

Main Storage

Transient Area:
#CCRR
#CCRT

User Area

TUB chain
TCB chain
TCBs
TUBs
JCB
Syscom

~OCESS

D Determine function requested

fI Process START command

II Process STOP command

II Process RESTART command

IOU TP U T 1ia!!il1!lSSr:.._

. SysCOm

TCB

TUB

JCB

TCB chain

To: Cleanup Routine (#CMCU)

MODULE/
OESeR IPTION ROUTINE

D ·Search for command in command routing code: #CCRT

• If START command, go tofl.

• If STOP command, go to II.
• If RESTART command, go toD.

D Search for operand 1 in start command table.

If operand 1 invalid, issue error message. #CMCU

If operand 1 is PRT or P, load spool transient (#CCRR): #CCRT

• If spool not supported or writer active, issue error message. #CMCU

• If writer not active: #CCRR
- Set forms number in class/page number area (BPCLSS) if form number given.
- Create job control block (JCB) for writer.
- Attach spool writer. #SVAT
- Issue start successful message (MIC 5664).

If operand 1 is WORKSTN or W: #CCRT

• If operand 2 is missing or invalid, issue error message (MIC 5667). #CMCU • • If operand 2 is ALL: #CCRT ~ - Set start initiation flag in terminal unit block (TUB) for all work stations.
- Issue start successful message (MIC 5664). #CMCU

Diagram 2.15 (Part 1 of 3). Perform START, STOP, or RESTART Command Processing

2-34

Licensed Material-Property of IBM

(

OEseR IPTION
MODULE/
ROUTINE

0 If operand 2 is work station 10: #CCRT
- Find specified work station on terminal unit block (TUB) chain.
- Set start initiation flag for that specific work station.
- Issue start successful message (MIC 5664). #CMCU

If operand 1 is JOBQ or J, load job queue transient (#CCJS): #CCRT

• Ensure dedicated program not running or Job queue not empty. #CCJS

• Issue error message if necessary. #CMCU
#CCJS

• Take first entry of job queue. Disk lOS

• Indicate program to be loaded. #CCJS

• Find user library if given. #MAFLB

• Attach job. #SVAT

• If unable to attach job because resources not available: #CCJS
- Put entry back on top of queue. Disk lOS
- Return. ' #CCJS
- Issue error message (MIC 569-1). #CMCU

• If start successful, issue message (MIC 5685).

If operand 1 is SYSTEM or S: #CCRT

~ e If there are two operands, issue error message (M I C 5541). #CMCU ~ • Verify that a start system can now occur. #CCRT
0 Set flag in SCA (SCAMALLl to indicate all initiation started.

• Restart spool writer and job queue if they were active at the time stop system was issued.
0 Start work stations.

If operand 1 is JOB:
G If operand 2 is missing or invalid, issue error message (MIC 5567). #CMCU
0 If operand 2 is ALL: #CCRT

- Find task control block (TCB) chain.
- Ensure task suspended by system operator.
- Set off suspended flag (TCBSDTSOl.
- Resume user tasks.
- Issue start successful message (MIC 5664). #CMCU

• If operand 2 is jobname: #CCRT
- Ensure val id jobname.
- Find task control block (TCB) for specified jobname.
- Ensure task suspended by system operator.
- Set off suspended flag (TCBSDTSO)'
- Resume user task.
- Issue start successful message (MIC 5664). #CMCU

II Search for operand 1 in stop command operand table. #CCRT

If operand 1 invalid, issue error message. #CMCU

If operand 1 is PRT or P, load spool transient (#CCRR): #CCRT

• • If spool not supported or writer previously stopped, issue error message. #CMCU ~ • Set stop writer flag (BPFLAG). #CCRR

• Issue message Spool Writer Stopped (MIC 5663). #CMCU

If operand 1 is WORKSTN or W: #CCRT

• If operand 2 is rr.::;sing or invalid, issue error. message (MIC 5667). #CMCU

• If operand 2 is ALL: #CCRT
- Set off initiation flag in TUB for all work stations.
- Issue stop successful message (MIC 5663). #CMCU

• If operand 2 is work station 10: #CCRT
- Find specified work station on TUB chain.
- Set off start initiation flag in TUB for specific work station.

- Issue stop successful message (MIC 5663). #CMCU

Diagram 2.15 (Part 2 of 3). Perform START, STOP, or RESTART Command Processing

Method of Operation 2-35

Licensed Material-Property of IBM

MODULE!
OEseR IPTION ROUTINE

If operand 1 is JOBO or J, load job queue transient (#CCJS): #CCRT

• Ensure dedicated program not running. #CCJS

• Indicate job queue stopped in SCA.

• • Issue stop successful message. #CMCU ~
If operand 1 is SYSTEM or S: #CCRT

• Ensure stop all indication flag (SCAMALU not already set.

• Set stop all indication flag (no new JOBO or spool tasks will be started).

• Post for input op-end, all never ending programs that have an invite count of zero for shut down inquiry.

• Stop work stations~

• If operand 2 is SORT, or not given, perform keysort on all files that have the sort or merge bits on in the #DDKAA
F1 (F1AMSORT, F1AMMRGE).

• Issue stop successful message (MIC 5663). #CMCU

If operand 1 is JOB: #CCRT

• If operand 2 is missing or invalid, issue error message (MIC 5667). #CMCU

• If operand 2 is ALL: #CCRT
- Find TCB chain.
- Set task suspended indicators (TCBSDTSO).
- Suspend user tasks.
- Issue stop successful message (MIC 5663). #CMCU

• If operand 2 is jobname: #CCRT
- Ensure valid jobname.
- Find TCB for specified jobname.
- Set task suspended indicator (TCBSDTSO).
- Suspend user task.
- Issue stop successful message (MIC 5663). #CMCU

II Load and pass control to spool transient (#CCRR). #CCRT

Ensure spool supported. #CCRR

If spool writer active:

• Set page number to value given in operand 2 or set to zero if no operand supplied.

• Set flag (BPFLAG) to restart writer.

• Issue spool writer restarted message (MIC 5703). #CMCU

If spool writer not active: #CCRR

• Set page number to value given in operand 2 or set to zero if operand 2 not supplied.

• Set flag (PBFLAG) to restart writer.

• Attach spool writer. #SVAT

• Issue restart successful message (MIC 5703). #CMCU

Note: If errors occur, call #CMCU to issue error message.

Diagram 2.15 (Part 3 of 3). Perform START, STOP, or RESTART Command Processing

2-36

Licensed Material-Property of IBM

From: Input Router (#CPRT)
INPUT ____

~OCESS

XR2

(parameter list

II Perform preliminary STATUS command
processing

Main Storage

Transient Area:
#CCSJ
#CCSP
#CCSU
#CCSW
#CCS4
#CCSM
#CCSS
#CCS2
#CCS3
#CCU2

TCB chain
TUB chain
TUB
TCB
SCA
JCB
CP work area
SOE

6 Determine STATUS fUnction requested

III Process STATUS PRT request

II Process STATUS USERS request

II Process STATUS JOBO request

II Process STATUS WORKSTN request

IJ Process STATUS SESSION request

OESeR IPTION

D Save portion of command processor work area in appropriate request block (RB).

Examine command routing code (CPCODE) for end status request.

If end status request:·
0 Find associated status queue element (SOE).

• If SOE not found, exit program.

• Free and dequeue SOE and exit.

If status not active, go toD.

I f status active:

• If SOE not found, abnormally terminate status.

• If E page control character entered:
- Restore previously saved display if work station in console mode.
- Call console log processor if work station in console mode.
- Return.

Diagram 2.16 (Part 1 of 6). Perform STATUS Command Processing

Licensed Material-Property of IBM

? OUTPUT c::::::::::==:::::n

To: Command Processor
Mainline (#CPML)

Command transient
parameter list

JCB

TUB

Status display

SOE

MODULE!
ROUTINE

#CCSM

#CMCI
#CCSM

Method of Operation 2·37

OEseR IPTION
MODULE/
ROUTINE

- Display menu if menu active and work station not in console mode. #DWDM
- Display command display if menu not active and work station not in console mode.
- End status (TUBATTR2). =l/CCSM
- Dequeue and free SQE.
- Exit program.

• If I page control character entered:
- Pass input information tp #CMCU for logging to history file.

- GotoDO·

• If other page control character entered:
- Determine which status was active in SQE (STATOPC):

- If P, go to Ell'
- If U, go toD' • .

- If J, go toll.

- If ·W, go toO.

- If S and page 1 or 2 to be displayed, pass control to #CCSS fJ.
- If S and page 3 or 4 to be displayed, pass control tp #ccs3D e .
- If none of the above, abnormally terminate status.

fJ Assign and queue an SQE.

Log input to history file. #CMCU
#CCSM

If work station in console mode, save console display. #DWDM

o If no operand 1 given, go toD. #CCSM

Search for operand 1 in operand table and check number of operands:

• If P or PRT, go toll.

• If U or USERS, gotoD.

• If J or JOBQ, go toll.

• If Wor WORKSTN, go toO.

• If S or SESSION, go to D.
EI Check if in console mode.

" Restore CPW~ K.

Route control to HCCSP.

Ensure spool supported. #CCSP

Save portion of work area.

Assign space for lOB, FDT, and text sectors of format and execution time data area.

Free all but execution time data area.

Check if first call or F, R, or U page control character.

Read spool file master index. Disk lOS

Read entries from spool file.

Locate entries to display. #CCSP

Diagram 2.16 (Part 2 of 6). Perform STATUS Command Processing

2-38

Licensed Material-Property of IBM

OEseR IPTION
MODULE/
ROUTINE

Format entries to display. HCCSP

Set up work station parameter list to display entries.

Display spool print queue entries. #DWDM

Free output area. #CCSP

Restore work area.

Load and pass control to command processor mainline (#CPMU.

II Check if in console mode. #CCSM

o Restore CPWR K.

Route control to #CCSU.

Save portion of CPWRK area. #CCSU

Assign space for lOB, Format FDT sectors, text sectors,.and execution time data areas; free all but
execution time data areas.

If operand 2 given, start function with job specified by operand 2.

If R option, start with first TCB on TCB chain.

If U option, start with TCBTSKID specified in SOE (lDCURRENT).

If F or other option, start with TCBTSKID specified in SOE (I DFORW).

If no users active:

• If status users was active, display user's display with no jobs. #DWDM

• If status users was not active, call #CMCU to display error message . #CCSU

Restore CPWR K.

Route control to #CCU2. #CCU2

Call message retrieve to retrieve translatable constants (if retrieve fails, use English version). #MGRET

Save part of CPWR K. #CCU2

If JOBO TCB exists and is requested, or if display is for page 1 :

• If operand 2 points to this. task, display this TCB only .

• If no operand 2, create this line.

Create lines until display is full or end of TCBs is reached beginning with TCB pointed to by #CCSU.

If end of TCBs is reached and no lines have been built, restart from first TCB and build lines.

If end of TCBs is reached and there are lines to be displayed, display them. #DWDM

Display first half of display (if this is automatic status update, display format that will not clear input areas).

Display second half of display.

Point SOE at next TCB. #CCU2

Free output area.

Diagram 2.16 (Part 3 of 6). Perform STATUS Command Processing

Method of Operation 2-39

Licensed Material-Property of IBM

OEseR IPTION

Restore CPWRK.

Exit program.

m Restore CPWR K.

Route control to #CCSJ.

Ensure job queue supported.

Save portion of work area.

Assign space for lOB, FDT, AND text sectors of format and execution time data area.

Free all but execution time data area.

Check if first call and if forward (F), reset (R), or update (U) page control character entered:
• Ensure job queue supported.
o Read job queue file index sector.
• If status not active or R entered, set first entry on job queue as start of display.
o If no page control character entered, assume forward (F) character and chain through queue to find entry

by position number.

Ensure queue not empty.

If job name given, find entry requested.

Read entry into buffer.

If command from work station, ensure user ID and work station ID match.

Format requested display in output buffer:
o If work station request, work station ID and user ID must match.
o If system console request, format all input job queue entries.

Build work station data management parameter list.

Display job queue entries.

Free output area and restore work area.

Load and pass control to #CPML.

1m) Restore CPWR K.

Route control to #CCSW.

Save portion of work area.

Assign space for lOB, FDT and text sectors of format, and execution time data area.

Call message retrieve to retrieve translatable constants.

Free all but execution time data area.

If operand 2 given, start function with work station given in operand 2.

If R control character, start with first TUB.

If U control character, start with current work station in SQE.

Diagram 2.16' (Part 4 of 6). Perform STATUS Command Processing

2-40

Licensed Material-Property of IBM

MODULE!
ROUTINE

#CCU2

#CCSM

#CCSJ

#CCSM

#CCSJ

Disk lOS
#CCSJ
Disk lOS

#CCSJ

Disk lOS

#CCSJ

#DWDM

#CCSJ

#CCSM

#CCSW

DESCRIPTION

If F or other control character, start with forward work station in SQE.

Build line of output for each device.

At end of page, display page (if automatic status, display format that does not clear input).

Free output area.

Restore work area.

Exit program.

II Ensure not in console mode.

Restore CPWR K.

Route control to #CCSS.

Save portion of work area.

If I option, start page 1.

If R option, start page 1.

If U option, start from current page pointer in SQE.

If F option, start from forward page pointer in SQE.

If start page = 2:
• Restore CPWR K .
• Route control to #CCS2IJO.

Assign space for lOB, format text and FDT sectors, and execution time data area.

Call message retrieve to retrieve translatable fields and place in transient area (if retrieve fails, use English version).

Free all but execution time data area.

Build page 1 information.

Set up SQE for current page = 1 and forward = 2.

Call work station data management to display page 1 (if automatic status, display format that will not clear
input lines).

Free execution time data area.

Restore CPWR K.

Exit program.

" Save 30 bytes of CPWR K.

Assign enough space for format FDT and text sectors, lOB, and execution time data area.

Call message retrieve to retrieve translatable fields and place in work area (if message retrieve fails, use English
version).

Free all but execution time data area.

Diagram 2.16 (Part 5 of 6). Perform STATUS Command Processing

MODULE!
ROUTINE

#CCSW

#DWDM

#CCSW

#CCSM

#CCSS

#MGRET

#CCSS

#DWDM

#CCSS

#CCS2

Method of Operation 2·41

Licensed Material-Property of IBM

OEseR IPTION

Build page 2.

Set up SOE current = 2, forward = 3.

Call work station data management to display page 2 (if automatic status, display format that will not clear
input lines).

Restore CPWR K.

Exit program.

o Save 30 bytes of work area.

If U option, begin function with page in SOE.

If F option, begin with forward page in SOE.

If page 4, go to II e.
Assign space for format FDT and text sectors, lOB, and execution time data areas.

Call message retrieve to retrieve translatable fields (if retrieve fails, use English verison).

Free all but execution time fields.

Build page 3 data.

Indicate in SOE forward page = 4, current = 3.

Call work station data management to display page 3 (if automatic status update, do not clear input lines).

Restore CPWR K.

Exit program.

e Assign space for format FDT and text sectors, lOB, and execution time data areas.

Store assign area address in WDRECA into CPWRK.

Call #CCS4 to build execution time data.

Build execution time data for page 4.

. Free all but execution time data area.

Point SOE forward to 1, current = 4.

Call work station data management to display format (if automatic status update, do not clear input lines).

Exit program.

Notes:
1. If errors occur, call #CMCU to issue error message.
2. If SOE is new, dequeue and free SOE.

Diagram 2.16 (Part 6 of 6). Perform STATUS Command Processing

2-42

Licensed Material-Property of IBM

MODULE/
ROUTINE

#CCS2

#DWDM

#CCS2

#CCS3

#MGRET

#CCS3

#DWDM

#CCS3

#CCS4

#CCS3

#DWDM

#CCS3

From: Input Router (#CPRT) INPUT ____ _

XR2

(CP work area

Main Storage

Transient Area:
#CCTD

User Area

L...::;:0CESS

D Process TIME command

------:rJ

...

..

~ OUTPUT ___ _

. Time and date in
command processor
work area

Parameter list
for #CMCU

To: Cleanup Routine (#CMCU)

MODULE/
OEseR IPTION ROUTINE

D Initialize timer request block. #CCTD

Get time of day and date and place in command processor work area.

Build parameter list for #CMCU.

Pass control to #CMCU to display time and data.

Note: If errors occur, call #CMCU to issue error message.

Diagram 2.17. Perform TIME Command Processing

Method of Operation 2-43

Licensed Material-Property of IBM

From: Input Router (#CPRT)
'" INPUT ____ .. ~OCESS

Required system
areas

_---.... :>" • Perform job start function (Diagram 2.19) ...
• Perform release function (Diagram 2.20)

I r OUTPUT

-..;;;.....-----> Initiator start

I I
______ -=-..... > Appropriate

display

~---:Tl
To: Initiator (#CIML)

Diagram 2.18. Overview of Job Initiation and Work Station Release

2-44

Licensed Material-Property of IBM

From: Command Processor Input Router (#CPRT)

~ INPUT ~OCESS
OUTPUT ___ _

Main Storage

Transient Area:
#CPRT

User Area

CP work area
JCB
TUB
TCB
TCB chain
Operator keyed data

__ ---..... >... D Ensure job initiation allowed

D Attach work station to active MRT
program if applicable

II Start initiator if applicable

-------Tl
To: Cleanup (#CMCU)

OEseR IPTION

D Call cleanup routine (#CMCU) to issue message:
• If initiation stopped (TUBSTPJ), issue job initiation stopped by system operator error message (MIC 5534).
• If terminal in console mode (TUBMCNSL), or if terminal is data terminal (TUBCMDT), issue command not

allowed error message (MIC 5539).

D Check procedure to see if it is for active multiple requester terminal (MRT) program.

If not for MRT, go toll.

Ensure request valid:
• Inquiry requester not attempting to attach to a MRT waiting for resources.
• Inquiry requester not attaching to same MRT.

Calculate data input length and place in MRT.

Write input data to MRT data save area (WSWA).

Update MRT task control block (TCB) fields for active requester count, allocated work station count and task
invite count.

If MRT task can not handle another requester (TCBMRTMX), set TUBECM skip flag (TUB$SKIP) off.

Set MRT TCB address in requester TUB to designate ownership.

Build action control element (ACE).

Activate data mode in TUB.

Diagram 2.19 (Part 1 of 2). Perform Job Start Function

XR2-CP work area

TUB

TCB

JCB

MRT data in MRT
data save area
(WSWA)

MODULE/
ROUTINE

#CPRT
#CMCU

#CPRT

Method of Operation 2-45

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Post MRT task to accept input from new requester. #CPRT

Pass control to cleanup routine (#CMCU) to log input.

II Build initiator attach parameter list.

Activate data mode in TUB.

Pass control to supervisor task attach transient (#SVAT) to start initiator (# CI M L). ' #SVAT

If attach fails, display error message.

(
Diagram 2.19 (Part 2 of 2). Perform Job Start Function

2-46

Licensed Material-Property of IBM

From: Command Processor Resident Routine (#CPML)

~INPUT

Main Storage

Transient Area:
#CPTC

User Area

JCB
SCA
TCB
TUB
TUB chain

LJ;;:0CESS

_ ----.......... 100.:> D Process release request

---------:Tl

OUTPUT ___ _

JCB

TUB

Command display
or

Standby display
or

Sign-on display

To: #CPML Via High Level Aids and
Task-To-Task Communications Router
(Diagram 2.21)

MODULE/
DESCRIPTION ROUTINE

D Jf termination cleanup required prior to release, call initiator with termination hook. #CPTC

If test request, call #CCOF.

If no more job ste,Ps: #CPIO

• Initialize TUB fields. #CPTC
0 If restore not required invite display station for Enter key. #CPIO

• If any messages to be displayed, call #CCMX. #CPTC

• Display command interface.

• Post tasks which may want this display station.

• Return.

If more job steps:

• If end of outermost procedure, setup hook for initiator to call termination (TUBABTRM).

• Start initiator.

• If initiator attach fails, set timer interrupt to retry in 2 seconds. #CPTC

• Return.

Diagram 2.20. Perform RELEASE Function

Method of Operation 2-47

Licensed Material-Property of IBM

From:

INPUT
Command Processor Resident Router (#CPML)

~OCESS

Main Storage

Transient Area:
#CPTC

User Area

TCB

TUB

SCA

D Process task-to-task communications

fJ Process TUBs for high level aids

II Route for pending system functions

..

-----::11
To: #CPML

DESCRIPTION

II If I/O error,
process it.

If display station release,
process it. (See Perform Release Function"Diagram 2.20.)

fJ If system request,
process request. (See Process System Request Event, Diagram 2.30.)

If Attn key:

• If work station is:
- Not signed on.
- In test request mode.
- Not in data mode.
- Inquiry disabled.
- In command reject mode.
- Already in data mode escape.
- Running a program which is in termination,

then ignore Attn key.

• If the TCB address of the TUB is zero, pend the inquiry and retry)n 2 seconds. (Use control storage
routine, NUASGN.)

• If the vertical hold or save/restore interlock is on, pend the inquiry and retry in 2 seconds (NUASGN).

• If the interrupted task is a SRT:
- If 1 option is pending, and if SOB count = 0, and if posted because of Attn key, then erase 1 option

pending and process inquiry.
- If SOB count = 4, post tasks waiting on disk enqueue.
- If task owns interlocks, retry Attn key in 2 seconds (NUASGN); otherwise, suspend task.
- Build an inquiry TUB and work station work area.
- If no resources are available, retry inquiry and go to DO.

Diagram 2.21 (Part'1 of 2). Perform High Level Aids and Task-to-Task Communications Router Functions

2-48

Licensed Material-Property of IBM

I OUTPUT ___ _

TCB

TUB

Screen save area

Appropriate user
or system display

MODULE/
ROUTINE

#CPTC
#SVERP

#CPTC

OEseR IPTION
MODULE!
ROUTINE

• If the Interrupted task is a MRT: #CPTC
- If display station not invited, retry inquiry.
- Indicate TUB to be skipped.

- Build inquiry TUB.
- I f no resources available, retry inquiry.
- If implicit invite to TUB or if PRUF (put for read under format) invite, decrease requester and work

station count.

o Swap the new TUB and the inquiry TUB: #CPIQ
• Find the previous TUB on the TUB chain.

• Lock the TUB chain.

• Rechain the new TUB to the TUB chain.

• Unlock the TUB chain.

• Post other TUB users.

• If a JCB exists:
- Free up JCB and FSBs chained to it.
- Free up WSWA.

· - Free up TUB.

Save the work station display. #CPIO

If inquiry option 1 was pending, #CPTC
~process 1 option. Otherwise, #CPIQ

put up inquiry display. #CPIO

Return to caller. #CPTC

If Help key,
process. #WDDH

II If console SVSLOG is pending, #CPTC
process it. #CMCI

If stop pending for any task, and if interlocks are now freed, suspend the task. #CPTC

If stop system is pending, and stop is complete, #CCRT
process the completed stop. #CPTC

If JOBQ detach is pending,
process next JOBQ task. #CCJS

Diagram 2:21 (Part 2 of 2). Perform High Level Aids and Task-to-Task Communications Router Functions

Method of Operation 2·49

Licensed Material-Property of IBM

From: Input Router (#CPRT)

~INPUT-' ~OCESS

TUB, TCB, SCA I I
Inquiry option >- Perform inquiry menu processing function I I (Diagram 2.23)

TCB, JCB, and TUB :>. Perform resume function (Diagram 2.24)

I r OUTPUT .

---.;;;~---.....;;-> Menu or Command I I display

_-=-____ -=...,> User display

To: Resident Router (#CPML)

Diagram 2.22. Overview of Inquiry Menu Option Processor and Resume

2-50

licensed Material-Property of IBM

From: Command Processor Input Router (#CMRT)

II INPUT a..::;:0CESS

.. D Process 0 option or error opcode XR2-CPWRK ;>
~

Main Storage D Process 1 option or opcode requesting
1 option

Transient Area: II Process Options 2, 3, and 5
#CPIQ II Process 4 option

User Area II Process invalid option

opcode
TUB@

DESCRIPTION

o Dequeue inquiry TUB and free.

Resume interrupted program. (See Resume Function, Diagram 2.25.)

fJ If second inquiry,
issue diagnostic.

If tas.k does not allow inquiry, issue diagnostic.

If task is not a MRT, and if the sector queue count is not 0,
• Pend the inquiry.
• Resume the task.

Otherwise,
• If the JCB and WSWA are already assigned,

- GotoDO·
• Otherwise,

- Assign JCB and allocate WSWA.
- If no space, issue a diagnostic.

• If menu active and menu from # LI BRARY, increment format 1 use count.
• Initialize JCB and WSWA.
• Call RFINDLIB to

find each library in the FSBs.

o Put up the command display.

II If TUB and TCB = 0, the TCB is a MRT; go to DO.
Indicate to restore command display at termination, and disable inquiry.

Diagram 2.23 (Part 1 of 2). Perform Inquiry Menu Function

Licensed Material-Property of IBM

...
:>

~ ~
To: #CPRT

• OUTPUT

TUB

JCB

WSWA

display

MODULE!
ROUTINE

#CPIQ

#CMCU

#CPIQ

#CMCU
#CPIQ
#FDIOS
#CPIQ
$MAFLB

#CPIO

#CPIQ

Method of Operation 2-51

OEseR IPTION

If job is cancellable and not in termination, swap TUBs to remove inquiry:
• Find the previou's TUB on the TUB chain.
• Lock the TUB chain.
• Rechain the new TUB to the TUB chain.
• Unlock the TUB chain.
• Post other TUB users.
• If a JCB exists:

- Free up JCB and FSBs chained to it.
- Free up WSWA.
- Free up TUB.

• Set up parameter list and pass control to #CCCM.

If job is in termination and a 2 oPtion was taken~ pend the cancel.

If job is not cancellable:
• Indicate 2 or 3 cancel in TCB.
• Process RESUME option (Diagram 2.25) .

• Swap TUBs to free inquiry TUB:
• Find the previous TUB on the TUB chain.
• Lock the TUB chain.
• Rechain the new TUB to the TUB chain.
• Unlock the TUB chain.
• Post other TUB users.
• If a JCB exists:

- Free up JCB and FSBs chained to it.
- Free up WSWA.
- Free up TUB.

Indicate user display is not active.

If a 2 option was taken:
• If task is not in termination and if the MIC in the JCB is zero, move MIC 3721 to JCB.

If a 3 option was taken, indicate abnormal release in TUB.

If the program has released the display station,
process the release.

Set the no skip flag in TUB.

If an ACE exists on the complete queue,
• Requeue it, last-in-first-out, to the complete queue.
• Dispatch task.

Otherwise,
• Post TUB complete.
• Put release aid in TUB.
• Return to caller.

II If MRT or released work station, issue error.

Otherwise, set inquiry latch in JCB.

Process as option O. (See Diagram 2.25.)

II Build parameter list.

Pass control to #CMCU to issue error message.

Diagram 2.23 (Part 2 of 2). Perform Inquiry Menu Function

2-52

Licensed Material-Property of IBM

MOOULE/
ROUTINE

#CPIO

#CPTC

#CPIO

INPUT
From: Command Processor Input Router (#CPRT)

L.::;:0CESS

(R2
CPWRK

Main Storage

Transient Area:
#cPla

User Area

TCB
JCB
TUB
TUB chain

o Process option 0 or resume interrupted
program

-------:Tl

'" OUTPUT ___ _

TCB
..

JCB

TUB

TUB chain

User display

To: CP Resident Router (#CPML)

OEseR IPTION

II If status active, call #CCSM.

End status.

If menu active and menu is from # LI BRARY, decrement user count on disk.

If not error resume:
o Restore display.
e Swap TUBs to free inquiry TUB:

- Find the previous TUB on the TUB chain.
- Lock the TUB chain.
- Rechain the new TUB to the TUB chain.
- Unlock the TUB chain.
- Post other TUB users.
- If a JCB exists:

a. Free up JCB and FSBs chained to it.
b. Free up WSWA.
c. Free up TUB.

If display station has been released, call #CPTC to release.

If MRT:
• If implicit invite to TUB, or invite due to put for read under format:

- Add 1 to MRT REa count.
- Add 1 to work station count.

• If requester count less than MRTMAX, set on no-skip bit.
e Have task dispatched.
• Return to caller.

IfSRT:
• If printer readjustment for forms or image is required, assign an RB that causes the resumed task to call #CSIM.
• Set off task suspend bit in TCB.
• If suspended due to stop command or error suspend, bypass post; otherwise, post, the task out of suspend.

Diagram 2.24. Perform Resume Function

MODULE!
ROUTINE

#cPla

#CCSM

#CPIQ

#CPIO
#CPIQ

Method of Operation 2·53

Licensed Material-Property of IBM

From: Command Processor Input Router
(#CPRT) Process

INPUT----_

Main Storage

Transient Area:
#CPSP

User Area

TUB

~OCESS

o Process # CPRT accept errors

fI Process EOJ release

II Process message enter

IJ Process restore request

II Process command key request

----:rt

..

,. OUTPUT ___ _

System display

Parameter lists to
other transients

ITo: Command Processor Mainline (#CPML)

DESCRIPTION

D If #CPRT accept error:
• If sys request or inquiry in high level aid:

- Set sys request and inquiry to zero.
- Indicate that TUB is invited.
- Retry accept.

IfJ If restore yes indicator on in TUB:
• If messages pending, display them. Otherwise:

put up command display.

II If messages active, process them.

II If restore indicated in TUB:
• If console restore, restore console.

Handle messages:
• If work station:

- If status active, update status display. Otherwise:
put up command display and post tasks requesting display station.

Return to caller.

II If command key 1 and if resume pending:
• Handle 0 option.

If resume not pending:
• Indicate key not valid.

If test request key:
• If signed on, indicate key not valid. Otherwise,

attach test request.

Diagram 2.25. Perform Special Command Processing Function

2-54

Licensed Material-Property of IBM

MODULE/
ROUTINE

#CPSP

#CPRT

#CPSP
#CCMX
#CPIO

or
#CPIO

#CCMX

#CPSP

#CMCI
#CPIO
#CCSM
#CPIO

#CPSP

#CPSP
#CPIO

#CPSP
#WDDH

#CPSP
#WDDH
#CPON (

From: CP task post processor (#CPTC)
or

Inquiry menu processor (#CPIQ) INPUT ____ _
~OCESS

(XR1
CPWRK

(XR2
TUB

Main Storage

SCA

Transient Area:
#CPIO

User Area

Request code

D Save work area in RB

fJ Set up work station data management
parameter list dependent on request code

II Call work station data management

II Restore work area

----:i1

~ OUTPUT ___ _

System display ..

To: Calling Routine

MODULE/
OESeR IPTION ROUTINE

o Save 30 bytes of work area (starting at IOCODE) and use this area for work space. #CPIO

fJ If clear request, indicate clear opcode.

If invite request, indicate invite opcode.

If stop invite request, indicate stop invite opcode.

If save request, indicate save opcode.

If restore request, indicate restore opcode.

If none of the above, indicate put then invite request.

If not invite, turn off invite opcode.

Move work station 10 to output area.

If console mode, set up console index.

If standby mode, set up standby index.

Diagram 2.26 (Part 1 of 2). Perform Command Processor/Work Station Data Management Interface Function

Method of Operation 2-55

Licensed Material-Property of IBM

MOOULE/
OEseR IPTION ROUTINE

If inquiry mode: #CPIO
• Create jobname and work station 10.

• If MRT, set up MRT inquiry index and go toll . Otherwise, point to SRT inquiry index.

If laB count is not zero, indicate delayed option 1.

If noncancellable, indicate delayed option 2,3, or 5.

If in termination, indicate a delayed option 2.

II Pass control to HWDSM to display data.

If I/O error, indicate hex FF in return I/O code.

If restore command reject, issue clear screen, UDWDM
and try restore again. HCPIO

II Restore CPWRK from RB.

Diagram 2.26 (Part 2 of 2). Perform Command Processor/Work Station Data Management Interface Function

2-56

Licensed Material-Property of IBM

From: Calling Program

~ INPUT I L..F0CESS I
Console SYSLOG --==------:>. Perform console logical I/O (Diagram 2.28) _"",-____ -=-...... System console

OUTPUT ___ _

queue element

User input area

System request
indicator

I I I I display

---==-----........ :>. Perform work station logical I/O -> Work station

I I (Diagram 2.29) I I display

---==------>. Process system request event > Saved or restored
(Diagram 2.30) display

-------:Tl
To: Calling Program

Diagram 2.27. Overview of Console Management

Method of Operation 2·57

Licensed Material-Property of IBM

From: Calling CP Transient
INPUT ____ _

I..I:;:0CESS

(XR2
Parameter list

D Perform preliminary processing

lEI Move elements from SYS LOG queue
to console disk queue

Main Storage

Transient Area:
#CMCI
#CMCS
#CMEJ

User Area

Console SYSLOG
queue element

SCA, TUB, and TCB

TUB chain

User text

II Display messages at system console

II Perform console management end of job
function as required

OEseR IPTION

D Check system communication area (SCA) error recovery procedure (ERP) indicator
(SCAMERP) and if on, call control storage error handler (#SVER).

Assign task work area space.

Find terminal unit block (TUB) for system console.

Enqueue the TUB on the console queue.

• If there are no more messages to be displayed, turn off light.

...
>

• OUTPUT ___ _

Console image
matrix

System console
display

TUB

To: CP Mainline (#CPML)
or

Calling Program

MODULE/
ROUTINE

#CMCI
#SVERP

#CMCI

WSIOCH ~
fJ Determine if any elements on SYSLOG queue waiting to be moved from user SYSLOG sector to console #CMCI

SYSLOG disk queue.

Find space on SYSLOG disk queue if possible.

Move element from user SYSLOG sector to console SYSLOG disk queue. Disk lOS

Free up SYSLOG queue sector for reuse. HCMCI

Diagram 2.28 (Part 1 of 3). Perform Console Logical 1/0 Function

2·58

Licensed Material-Property of IBM

OEseR IPTION

If queue full:
• Find unprocessed queue element with no wait indicator (CMCINOW) on.
• Dequeue element with no wait indication.
• Free queue sector for resue.
• Post calling program.

If IDELETE active at system console:
• Search for write to operator without reply (WTO) element in queue.
• If WTO element found and space needed:

- Deallocate SYSLOG queue sector.
- Dequeue and free disk sector (FIFO).

If no WTOs to free and queue full, caller must wait for space.

D Find first queue element address.

Ensure enough lines available or can be rolled off screen to display new data.

If not enough screen lines or if no more elements on queue, and if console in console mode:
• Dequeue console queue resource.
• If EOJ response indication (CMCI EJR) on in console matrix, go to II; otherwise, exit to command

processor mainline (#CPML).

If this is a new console SYSLOG post:
• Build work station data management parameter list.
• Sound audible alarm at console.

If console not in console mode, or if screen not available, exit to #CPML.

Load and pass control to console management second half (#CMCS).

Build work station data management parameter list to consolidate lines at bottom ·of screen that may be
overlaid.

Roll screen.

If message command queue element (CMCIMSG):
• Find proper messa~e queue sector.
• Read in message sector.
• Update message sector to indicator sector available for reuse.

I f user text sector:
• Assign message number.
• Find user sector text.
• Read in text sector.

Generate message 10 for operator reply.

Increment message 10 control counter byte (SCADMID#).

Build printer lOB if spool not active, system in single program mode, and log printer active.

Call work station input output control handler (WSIOCH) to print output data.

Set up console matrix entries associated with line on screen.

Save line to be displayed on screen in command processor task work area (TWA) line save area.

Build work station data management parameter list.

Diagram 2.28 (Part 2 of 3). Perform Console Logical 1/0 Function

Licensed Material-Property of IBM

MODULE!
ROUTINE

#CMCI

WSIOCH

#CMCI

#CMCS

#DWDM

#CMCS

#CMCU

#CMCS

Method of Operation 2-59

DESCRIPTION

Put display to console display screen.

Dequeue and free queue element just processed.

Continue processing elements until queue is empty, screen is full, or element not yet placed in disk queue.

If queue empty, turn off message light.

Exit:
• Free up any assign/free area still owned .
• If EOJ response indication (CMCIEJR) is on in console matrix, go to II; otherwise dequeue on console

SYSLOG queue, and exit to command processor mainline (CPMU.

II Find command processor task work area (TWA).

Point at in-core matrix.

Loop through matrix setting off EOJ bits (CMCI EJR).

Determine message ID fields to be overlayed by '**'.

Build work station data management param~ter list.

Put ,* *, over message 1 D on console display screen.

Exit to calling program.

Diagram 2.28 (Part 3 of 3). Perform Console Logical I/O Function

2-60

Licensed Material-Property of IBM

MODULE/
ROUTINE

#DWDM

#CMCS

WSIOCH

#CMCS

#CMEJ

#DWDM

#CMEJ

From: SYSIN (#ClSS), SYSlOG (#ClSG),
or SYSLIST (#ClSTl

",INPUT r PROCESS

...
(XR2 ;> D Accept input data from work station ...

keyboard
Parameter list

fJ Display output data at work station
Main Storage display screen for SYSlOG

II Display output data at work station
Transient Area: display screen for SYSLIST

#C~WI
#CMWO
#CMlS

User Area

User input area

JCB

TCB

TUB "

I
"

DESCR IPTION

D Obtain task work area (TWA) space.

Find requesting work station's terminal unit block (TUB).

If user invite outstanding, wait for invite end.

If user display on screen:

• Build work station data management parameter list to save user display. • • Save current format on screen.

Reset invite and SYSLIST screen active indication.

If initial call for logical I/O interface:

;r OUTPUT

I
_ ..

;> User requested
data

Work station
display

:

:

,

I

"

f\7"""'."

II

To: Calling Program

MODULE/
ROUTINE

#CMWI

#DWDM

#CMWI

• Retrieve user's initial record entered on command display (OCl or procedure statement). Disk lOS

• Return . #CMWI

• Output user's initial record to screen. #DWDM

If not initial call for logical I/O interface: #CMWI

• Build work station data management parameter list to output logical I/O display.

• Display logical I/O interface and wait for user's response. #DWDM

Diagram 2.29 (Part 1 of 3). Perform Work Station Logical 1/0 FUnction

Method of Operation 2·61

Licensed Material-Property of IBM

<J

OEseR IPTION
MODULE/
ROUTINE

Process user entered response data: #CMWI

• If null data response, blank out input data area.

• Move user response bytes into work station logical I/O data management input record area and then to
user's area.

,

Roll user response lines off screen input area:

• Build work station data management parameter list with information to clear screen input area.

• Roll user entered data out of input area. #DWDM

Return control to SYSIN (#CLSS). #CMWI

D If entry is from SYSLlST, go toll. #CMWO

If write to operator without reply request, IDELETE active, and logical I/O display interface not active:

• Throwaway informational message.

• Return to SYSLOG (#CLSG).

Wait for user I/O activity to finish. #CMWO

If user display active on screen (TUBUSUP):

• Save work station invite status.

• Build work station data management parameter list to save user's display.

• Save user's display. #DWDM
#CMWO

• Indicate user screen saved (TUBATTR6).

If logical I/O interface not active on screen (TUBINPA):

• If logical I/O interface previously displayed (TUBLlOS):
- Build work station data management parameter list to restore logical I/O display.
- Restore logical I/O screen. #DWDM

• If logical I/O interface never active for this sign-on (TUBLlOS): #CMWO
- Retrieve user's initial OCL or procedure statement. Disk lOS
- Build work station data management parameter list for initial logical I/O screen. #CMWO
- Display screen with first keyed record. #DWDM

If second level message to display (CMW02ND): #CMWO

• Build work station data management parameter list. '. Display second level message. #DWDM

• Blank out response input area. #CMWO

• Read user's option response. #DWDM

• Ensure response length valid. #CMWO

• If response length error:
- Retrieve error message text. #MGRET
- Build work station data management parameter list. #CMWO
- Display error message. #DWDM
- Read user's retry response.

• Move good response to user area. #CMWO

• Verify user response valid:
- If write to operator without reply (WTO), indicate no screen restore.
- If other valid response, indicate to restore screen.

• If restore requested:
- Build work station data management parameter list to restore user screen.
- Restore screen. #DWDM
- Return to calling program. #CMWO

" If call by WTO:
• Put out blank logical I/O screen.

• Build work station data management parameter list to display WTO message. #CMWO

• Display message. #DWDM

• Return to SYSLOG (#CLSG). #CMWO

(
Diagram 2.29 (Part 2 of 3). Perform Work ~tation Logical 1/0 Function

2-62

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

If call to display SYSLOG message, write to operator With reply (WTOR): #CMWO

• If SYSLOG halt and not WTOIWTOR:
- Build work station data management parameter list.
- Save screen.
- Sound audible alarm at work station.

• Build work station data management parameter list to display message.

• Display haltlWTOR message. #DWDM

• If WTO request, return to caller. #CMWO

• Read user's response. #DWDM • • Ensure response length valid. #CMWO ~ • If response length error:
- Retrieve error message text. #MGRET
- Display error messgge #DWDM
- Read user's retry response,

• Move good response to user area. #CMWO

• Verify user response valid.

• Roll up WTOR response data. #DWDM

• If restore indicated: #CMWO
- Build work station data management parameter list to restore screen saved.
- Restore user's screen. #DWDM
- Return to calling program. #CMWO

II If SYSLIST active on screen (TUBSYLST), go tollO. #CMLS

Wait for user I/O activity to finish.

If user display active on screen (TUBUSUP):

• Save work station invite status.

• Build work station data management parameter list to save user's display.

• Save user's display #DWDM

• Reset invite status (TUBATTR3). #CMLS

• Indicate user screen saved (TUBATTR6).

e If call by SYSLIST put:
• If SYSLIST screen inactive (TUBSYLST):

- Save logical I/O screen if active. #DWDM
- Put out blank logical I/O screen.

• Build work station data management parameter list to display SYSLIST message. #CMLS

• Display message. #DWDM

• Return to SYSLIST (#CLST) #CMLS

If call by SYSLIST get:

• Build work station data management parameter list to display message.

• Display WTOR message. #DWDM

• Read user's response.

• Ensure response length valid. #CMLS

• If response length error:
- Retrieved error message text. #MGRET
- Display error message. #DWDM
- Read user's retry response.

• Move good response to user area. #CMLS

• Verify user response valid.

• Blank user response area. #DWDM

• Return to calling program. #CMLS

Diagram 2.29 (Part 3 of 3). Perform Work Station Logical 1/0 Function

Method of Operation 2-63

Licensed Material-Property of IBM

From:

~INPUT

Command Processor Wait Routine (#CPML)

~OCESS

Main Storage

Transient Area:
#CPTC

User Area:
#CPML

System request
indicator

TCB

TUB

n----........... :> II Process System Request and Enter ..

OUTPUTIIIIIIII_~'"

Saved or restored
console display

Saved or restored
work station display

TCB chain

I To: Command Processor Wait Routine (#CPML)

DESCR IPTION
MODULE/
ROUTINE

[[) If IPL is in progress: #CPTC
0 If master console or alternative console, and not already signed on, call #CPTS. Display sign on. #CPTS
0 Return to caller. #CPTC

If IPL not in progress:
G) If not signed on, call #CPTS. Display sign on. #CPTS
0 If console in error, call #CPER for error recovery.

If work station in console mode:
0 If error recovery busy, ignore system request.
<) Issue stop invite to system console. #CPIO
0 If stop invite failed, ignore system request. #CPTC
0 Issue save for console display. #CPIO
0 If work station display was not previously saved: #CPTC

- Swap the TUBs. HCPIO

- Display the proper system display. HCPTC
- Return to caller.

0 If console mode was forced, issue clear unit I/O operation; HCPIO
otherwise, restore the saved display. HCPTC

0 Swap the TUBs.
0 If the work station was released, exit to #CPIQ.
0 If a task was active, have it dispatched.
0 If inquiry menu pending, process the inquiry.

If work station to console:
0 If vertical hold or savelrestore interlock, pend the system request.
0 If TUB not owned by command processor, set TUB to be skipped.
0 If TUB owned by command processor, issue stop invite. HCPIO
() Swap TUBs. #CPTC
0 Save work station display. #CPIO
0 If restore is required, restore console display; otherwise, put up console display. #CPTC
0 Indicate to call HCMe!.
0 Return to caller.

Diagram 2.30. Process System Request Event

2-64

Licensed Material-Property of IBM

From: Calling CPTransient
INPUT ____ _

I...I:.:0CESS
~ OUTPUT ___ _

(XR2
Parameter list

Main Storage

Transient Area:
#CMCU
#CPER

User Area

SCA

TUB

Console matrix

D Process input data

fJ Process output data

II Process printer error

----::Tl

...

..

To: CP Mainline (#CPML)
or

Calling CP Transient

OEseR IPTION

D If no input data and no output data to process, return to calling program.

If no input data (CMCUINP = OFF), go toD.

If log input requested (CMCULOG),:
• Build history file put (#HFPUT) parameter list.
• Place'input data in history file.
• Build printer lOB if spool not active, system in single program mode, and log printer active.
• Call work station input output control handler (WSIOCH) to print input data.
• If printer error, go toll.

If roll screen request (CMCUROL):
• Find terminal unit block (TUB) for terminal requesting roll.
• If screen format is menu standby, command, inquiry, sign-on, or status (TUBATTR1):

- Build work station data management (WSDM) parameter list.
- Reinvite screen.
- Return to calling command processor transient.

If system console and in console mode:
• Build WSDM parameter list to consolidate lines at bottom of screen that will be overlaid.
• Roll screen.

Diagram 2.31 (Part 1 of 2). Perform Command Processor Cleanup Function

History file

System console
display

Work station display

Printed output

Console matrix

MODULE/
ROUTINE

#CMCU

#HFPUT
#CMCU
WSIOCH
#CMCU

#DWDM
#CMCU

#DWDM

Method of Operation 2-65

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

• Build WSDM parameter list for system console. #CMCU

• Modify system console display. #DWDM

• Return to calling command processor transient. #CMCU

D If message identification code (MIC) number provided (CMCUMIC):

• Build message retrieve parameter list . • • Retrieve message. #MGRET ~
If execution time data to be substituted in message (CMCUMSUB): #CMCU

• Scan message looking for # signs.

• Substitute appropriate characters for # signs.

If in-core message to be displayed (output switch on and MIC number field=zero)' move message to command
processor work area.

If log output request (CMCULOG):

• Build history file put (#HFPUT) parameter list.

• Place input data in history file. #HFPUT

Find output terminal TUB address. #CMCU

If screen format is standby, command, Inquiry, menu, sign-on, or status (TUBATTR1 and TUBATTR2): #CMCU

• Build WSDM parameter list.

• Display messages. #DWDM

Build printer lOB if spool not active, system in single program mode, and log printer active. #CMCU

Call WSIOCH to print output data. WSIOCH

If printer error, or if console only bits, go to IJ. #CPER

If request to show to console also (CMCUSWS): #CMCU

• Find space in disk queue for message if possible.

• Place message in disk queue sector.

• Build console queue element.

• Place queue element on console SYSLOG queue.

• Post console SYSLOG.

If system console and in console mode (TUBATTR2):

• Build WSDM parameter list to consolidate lines at bottom of screen that will be overlaid.

• Roll screen. #DWDM

• Build WSDM parameter list for system console. #CMCU

• Put appropriate screen to system console. #DWDM

• Build printer lOB if spool not active, system in single program mode, and log printer active. #CMCU

• Call WSIOCH to print data if lOB buil·t.

• If printer error, go tolJ. #CPER

Return to calling command processor transient module. #CMCU

II If printer error: #CPER

• Find space in disk queue for message if possible.

• Place message in disk queue sector.

• Build console queue element . .. Place queue element on console SYSLOG queue.

• Post console SYSLOG.

• Issue reset operation to the printer through WSIOCH.

• Reset any error condition indicators in printer TUB.

Return to calling program.

Diagram 2.31 (Part 2 of 2). Perform Command Processor Cleanup Function

2-66

Licensed Material-Property of IBM

From: Calling Program

IINPUT r PROCESS

~
• OUTPUT

.. D Perform security initialization if required
~

(XR2 > ::> XR2 ...

(parameter list Parameter list fJ Perform no~mal sign-on security check

• Completion
Main Storage code

• User security
class

Transient Area: • I/O area address
#PRSD

User Area

• Security file
address

(I) Security file
VTOC

• Security file
data sector :

• User 10 and
password 1

pointer
I ,

,

II ~ ~
To: Calling Program

MODULE/
DESCRIPTION ROUTINE

D Check security initialization flag (SCAMSFLG); if not on, go to 0. #PRSD

If user 10 and password are special values, and if the user is at the system console:
e Permit sign-on.

• Set normal return code (PRSFNML).

• Make cu rrent user master security officer.

• Return to calling program.

Build VTOC read parameter list.

• Read security file format 1 from VTOC. @CSVF ~
If no security profile exists: #PRSD

• Set security profile lost return code (PRSFLSn.

• Return to .calling program.

Initialize security data in system communication area (SCA).

f)lnitialize search buffer:

• Clear buffer to X'FF'.

• Put user ID in first 8 bytes of each 64-byte record in search buffer.

Build disk lOB for security file disk scan operation.

Search security file for user 10. Disk lOS

Diagram 2.32 (Part 1 of 2). Perform Pass~ord Security Function

Method of Operation 2-67

Licensed Material-Property of IBM

DESCRIPTION
MODULE/
ROUTINE

If disk scan not successful or successful but desired record not in scan buffer: tlPRSD

• Set not found completion code (PRSFRNF).

• Return to calling program.

If search successful-scan hit'·($FDSCEQ) and record found in scan buffer:

• If incorrect password given:

- Set bad password completion code (PRSFBPW).
- Return to calling program.

• If correct password given:
- Set normal completion code (PRSFNML).
- Move security class to output area.
- Return to calling program.

If I/O error occurs on disk scan:

• Set I/O error return code (PRSFIOR).

• Return to calling program.

Diagram 2.32 (Part 2 of 2). Perform Password Security Function

2-68

Licensed Material-Property of IBM

II INPUT

From: Command Processor Mainline (#CPML)

L..S:;:0CESS

(XR1 .. _______ h.,....:>.... II Scan ERB and TUB queue ..
TUB or ERB

Main Storage

Transient Area:
#SVERP

User Area

DESCRIPTION

D Process I/O error request

D Call appropriate I/O transient

II Scan the ERB and TUB chains to check for error conditions:
o ERB busy on.
e ERB done off.
o I/O error flag on.

If not error conditions found, return to caller.

[D If request is for message at system console:
o Prepare space for message in console SYSLOG area on disk.
" Build message in the command processor work area:

- Push current work area to disk.
- Get format line.
- Get no message found message.
-- Get message for MIC#.

• Write message buffer to history file and to console SYSLOG sector on disk.
o Place message on console SYSLOG queue.
• Restore command processor work area.
• Return to #SVERP.

• GotoD·

If request is wait for response:
• If work station error is being processed, pass control to #SVWSR (Diagram 2.35).
• If 3 option taken, point task IAR at the EOJ SVC in system communications area.

>

To: (#CPML)

• If D option taken, point task IAR at the Dump SVC in the system communications area.

• GotolJ·

If request is purge message:
o Search the console SYSLOG queue for any I/O messages that have been built but not displayed; also

search display station matrix.
• Remove message, if found.

Diagram 2.33 (Part 1 of 2). I/O Error Recovery

Licensed Material-Property of IBM

OUTPUT t::=.::==~

Message displayed

Response
processed

I/O transient
called

MODULE/
ROUTINE

#SVERP

#SVWER

#MGRE

#HFPUT
#SVWER

#SVERP

Method of Operation 2-69

DESCRIPTION

II If request is for I/O error recovery:
• Mark ER B as done.
• If work station error is being processed, pass control to #SVWSR (Diagram 2~35).
• If the ERB request was for printer error recovery:

- If the no response required flag (ERBMNRSP) in the printer TUB ERBis on,
clear the error by issuing a clear command to the printer.

- If the no response required flag is off, and if the printer TUB is for a display station printer:
a. Set forms length.
b. Set graphic error action.
c. Set forms width.

• If other printer error, or other I/O device error is being processed, call applicable control storage error
recovery transient.

• GotoD·

Diagram 2.33 (Part 2 of 2). I/O Error Recovery

2-70

Licensed Material.;.....Property of IBM

MODULE/
RESPONSE

#SVERP

#SVPRE
Ptr lOCH
#SVPRE
Ptr lOCH

#SVERP

(

INPUT
From: I/O Error Recovery (#SVERP)

~OCESS

(XR1
TUB in error
exception status

Main Storage

Transient Area:
#SVWSR

User Area

ERB control byte

OESeR IPTION

D Do error recovery

II Handle error message sent

IJ Process message response

II Process second error

II Process ready interrupt

D If called to do error recovery, determine class of error:

• If resources temporarily unavailable:

"" OUTPUT ___ _

Operator message ...
Restored ER B

To: #SVERP

MODULE/
ROUTINE

#SVWSR

- If work station is not ready, exit to display station error recovery for device, not ready (Diagram 2.36).
- If error is read to unlocked keyboard by command processor:

a. Free TP buffer.
b. Post command processor.
c. Clear ERB.
d. Reset/invite keyboard.
e. Return to caller.

- If device is in error mode or powered off:
a. Set hardware error.
b. GotoDE).

- I f device is operational:
a. Set programming error.

•
b. GotoBO .

If programming error:
- Free TP buffer.
- If command processor caused error, reclassify error as hardware and go toDe.

0 - If user program caused error:
a. If TUB in error is being released, pend error until release has completed.
b. Suspend user task or pend suspension.
c. Recycle error if not already done.
d. If programming error on master console, force console mode. #CPTC
e. Set 2 and 3 options allowed. #SVWSR e f. Set up ERB to send message.
g. Return to caller.

Diagram 2.34 (Part 1 of 4). Perform Display Station Error Recovery

Method of Operation 2-71

Licensed Material-Property of IBM

MODULE/
DESCRIPTION ROUTINE

0 If hardware error: #SVWSR
- Free TP buffer.
- If error occurred while processing inquiry:

a. Recycle (save) error, if not already done.

b. Go toBlt.
- If TUB owned y user:

a. If format has been put to TUB, go tolDe.
b. Otherwise:

0 Clear ER B (ignore error!.
0 Return to caller.

- If TUB owned by command processor:
a. Recycle error if not already done.
b . If TUB is not signed on:

• Set informational message flag.
0 If TUB is the system console:

- Set on console check.
- Clear ERB.
- Return to caller.

0 Otherwise:
- Set up ERB to send message.
- Return to caller.

c. If TUB in error is not the system console:
C Set up ERB to send 1,3 halt message.
G If TUB is an inquiry TUB, set up ERB to send 1,2, halt message.
0 Set up ERB fields to send message.
0 Return to caller.

@ d. If console error is due to a recovery attempt, go to,De.
e. Otherwise:

0 Wait 7 seconds unless entered due to SYS!REO sequence.
0 Reset ERB and attempt to clear screen.
0 If clear fails, go tooe.
0 Otherwise:

- If error occurred during IPL:
a. Set off console check.
b. Clear ERB.
c. Return to caller.

- If STATUS display was active at time of error:
a. Update or end STATUS. #CCSM

- b., If update was performed, go tolEJe. #SVWSR
- Determine console mode at time of error:

a. If in forced console mode (error occurred while running user program):
G If console screen was previously saved, restore console interface.

b.
o Otherwise, put u'p console display and go to Dei).
If in console mode:
o Rebuild console display #CCCO
o GotomJ8. , H=SVWSR

c. If in command or other mOQe:
0 Put up last system display.

0 Go tommE).

~ - If recovery succeeded:
a. Set off console check.
b. If console mode was not forced, set up ERB to send message.
c. Otherwise, clear ERB.

(@
d. Return to caller.

- If recovery failed:
a. Set up ERB to allow SYS!REO.
b. Set on console check.
c. Free TP buffer.
d. Return to caller.

(
Diagram 2.34 (Part 2 of 4). Perform Display Station Error Recovery

2-72

Licensed Material-Property of IBM

MODULE/
DESCRIPTION ROUTINE

fllf message sent does not require a response: # SVWSR

• Initialize ERB.

• Return to caller.

Otherwise:

• If message was not due to a hardware error on the system console:
- Set waiting for response in TUBERPCT.
- Clear error aid (TUBERAID = 0).
- Return to caller.

• If message was sent due to a hardware error on the system console:
- Put console TUB on vertical tubchain.
- Mark TUB as console mode forced.
- GotoDe·

II If message response for a TUB owned by a user:

• Post TUB complete with error.

• If 2 option taken, unsuspend user task.

• If 3 or 0 option taken,
ABTRM the task and clear ERB. #CCCM

• Return to caller. #SVWSR

If message response for a TUB owned by the command processor:

• If oPtion 1 taken:
- Clear ERB.
- Attempt to clear screen in error.
- If clear screen failed, return to caller.

Otherwise, try to put up last system display or, if status was active,
refresh STATUS display. #CCSM

• If oPtion 2 taken: #SVWSR

0 - Copy ERB of inquiry TUB to next TUB on horizontal chain.
- Perform pseudo resume of interrupted task. #CPIQ
- Rechain interrupted TUB.
- Free inquiry JCB, WSWA, and TUB.

- GotoBO· #SVWSR • If option 3 taken:
- Sign off work station.
- Clear ERB. #CCOF
- Return to caller. #SVWSR

II Set up ERB to get MIC.

Call control storage transient to get message 10.

GotoD·

D If ready is pending, go to DO.
If ready function is in progress (reject and ready occurred while processing a previous reject):

• Post TUB complete in error.

• Clear ERB.
e Return to caller.

Otherwise:

• Set ready in TUB.

• If ready task not needed (TUBTCB not 0):
- PIQACE.
- Post TUB complete.
- Return to caller.

Diagram 2.34 (Part 3 of 4). Perform Display Station Error Recovery

Method of Operation 2· 73

Licensed Material-Property of IBM

DESCRIPTION

• Otherwise:
- If command processor owns TUB:

a. If error occurred during Sys/req - Enter sequence:
• Set off reject/ready indicators.
• Set command processor aid to SYS/REQ.
• Clear ERB.
• Return to caller.

b. Otherwise:
• If a read command was rejected:

- Reset TUB to invite status.
- Clear ERB.
- PIQACE.
- Post TUB invite complete.
- Return to caller.

e Build attach parameter list.

Attach ready task.

If attach was successful, clear ERB.

Otherwise, set ready pending.

Return to caller.

Diagram 2.34 (Part 4 of 4). Perform Display Station Error Recovery

2-74

Licensed Material-Property of IBM

MODULE/
ROUTINE

#SVWSR

#SVAT

#SVWSR

(

From: Keyboard Work Station Error Recovery (#SVWSR), or
Work Station Data Management Modules

INPUT

(XR1
TUB in error excep
tion status

(XR2
Work station data
management
parameter list

Main Storage

Transient Area:
#SVNRY

User Area:
#SVRD

~OCESS

eject in ready D Process r

fI Process r eady call

II Buildrej

DWriterej

II Set waiti

ect record header

ect header and data

ng for ready

-------:::i1

...
...

To: Caller

OESeR IPTION

D If processing a reject in ready function:

• Zero TUB completion code.

• Set up ERB to wait for ready.

• Free TP buffer if required.

• Return to caller.

fJ If processing a ready call:

• Initialize ERB.

• Perform ready function:
- Push user and load #SVRD.
- Save invite status.
- Move all reject records for TUB to display screen via #DWDM.
- Restore invite status and call #SVUR.
- Pull user into main storage.

Diagram 2.35 (Part 1 of 2). Perform Display Station Error Recovery for Device Not Ready Function

Licensed Material-Property of IBM

• OUTPUT

~ TUB fields

Reject file

MODULE/
ROUTINE

#SVNRY

#SVUR

#SVRD

#SVUR

Method of Operation 2-75

DESCRIPTION

IIlfcommand reject:
• Build command reject record header.

- Save the following fields which may be part of the reject header:
a. TUBCMND - command code.
b. TUBCMOD - command modifier.
c. TUBCOUNT - data transfer count.
d. Work station data management parameter list.

- Determine type of reject record:
a. If rejected command is.' invite/cancel:

• Set header type as invite/cancel.
• Set record length equal to header length.

• GotoB·
b. If rejected command is read input or read screen go to. II .
c. If rejected command is save table, save screen, restore table, or restore screen:

• If required, recycle error.
• Set header type to save/restore.
• Set record length equal to header length.
• Save SS address of save restore area.

• GotolJ·
d. If rejected command is output and not a restore operation:

• Recycle error if required.
• I f rejected command is to be saved as an output type 1 :

- Save TUBCTSAV (saved input length).
- Set header type to output type 1.
- Set len~ of record equal to header length plus length of data (TUBCOUNT).
- Gotog.

• If rejected command is to be saved as an output type 2:
- Set header type to output type 2.
- If indicators present, save indicators in reject header.
- Set length of record equal to header length plus length of output data (WDOUTL).

II Determine if reject record is to be written:
• If reject is being recycled:

- Free up TP buffer if required.
- Return to caller.

• If reject command is read type:
- Zero TUB completion code.
- GotolJ·

• If this is first command reject, initialize reject file current sector and relative displacement.
• Calculate space remaining in reject file.
• If reject record will fit in file:

- Update reject file current sector and relative displacement.
- Write out reject record header and any data.
- Post TUB complete.

II Set up ERB to wait for ready:
• If first command reject, set up ERB to wait for ready.
• Free TP buffer if required.
• Return to caller.

Diagram 2.35 (Part 2 of 2). Perform Display Station Error Recovery for Device Not Ready Function

2-76

Licensed Material-Property of IBM

MODULE!
ROUTINE

#SVNRY

Disk lOS
HSVNRY

Program Organization

Figures 2-3 through 2-32 show the control flow for the
command processor functions. They are:

• Router

• Sign-on

•. Command processing

• Job initiator

• High level aids and task- to-task communications

• Inquiry and resume

• Special command processor

• Command processor/work station data management
interface

• Console management

• Cleanup

• Password security

• Work station error recovery

Program Organization 2-77

Licensed Material-P.roperty of IBM

INPUT ROUTER

RESIDENT ROUTER (#CPMl)
#CPTC Transient Calls

I
I/O Error _HSVERP

INO, SYS/REO, REl

Wait for Work I JOBO EOJ _HCCJS
..
-.

~HCCRT
.. Event is: Stop Processing

I - yo

• INO Console/SYSlOG _nCMCI · • SYS REO I -....... • HELP Inquiry 1 option pending _HCPIO
• RELEASE

~

• JOBO EOJ I _flWDDH
..

Help
• I/O error -

_ ... • Stop pending I Ready aid _HSVWSR
• INO 1 option -

pending

• Ready aid

J ICPRT Transient Calls
Event is: OCl input _HSVAT · • Invite op-end I _ ..

Signon data _HCPON -
Command data

Name Purpose • _HCCOF
..

OFF, MODE -
nCCAS _nCCMU · ASSIGN command processor • MENU
HCCCM CANCEL command processor

~

HCCHO CHANGE, HOLD, RELEASE spool commands • PRTY _nCCPY ·
HCCJO Input job queue transient ·
HCCJS Input job qL!eue command processor • JOBO,CHANGE _HCCJO

~ ..
#CCMG MSG command processor

.,
nCCMU MENU command processor • STATUS _nCCSM ·
HCCOF OFF/MODE command processor ~

---.. HCCPY PRTY command processor • TIME _#CCTD
HCCRE REPLY command processor -
#CCRT STOP/START command processor • CANCEL _flCCCM

--110.

#CCSM STATUS command mainline
.. .. #CCTD TIME and date command processor • MSG _HCCMG

#CMCI Console management routine
#CMCU Cleanup routine • CONSOLE _HCCCO

..
#CPIO Inquiry menu processor ..
HCPML Wait routine • ..

IDELETE _flCCID
#CPON Signon transient -
HCPRT Router/initiator routine • ..

REPLY _#CCRE
#CPSP Special command processor

--'" #CPTC High-level aids and task-to-task • ASSIGN, VARY _#CCAS
#SVERP I/O error recovery
#SVWSR Command reject processor • HOLD, RELEASE _#CCHO

..
flWDDH Help key processor ..

• STOP, START, _flCCRT
_ ..

RESTART
..

Errors found _flCMCU
..
-

Menu options inquiry _flCPIO · ..
I _IVCPSP ----Miscellaneous input ..

~
,

I To: START

Figure 2-3. Router Control Flow

2-78

Licensed Material-Property of IBM

Password
Security

, ...
(#PRSD)

Command New Task

Processor Attach

Sign-on
Transient
(#CPON) (#SVAT)

Find a Library
Routine

, ...
(#MAFLB)

IPL
Work Station

I-- --or-
a.. Data Management

Input Router
..- ...

(#CPRT)
(#WDDM)

MENU Command
Processor

.... --..
(#CCMU)

MSG Command
Processor

.... -...

(#CCMX)

Cleanup

.... Routine

.... ...
(#CMCU)

Figure 2-4. Command Processor Sign-on Control Flow

Program Organization 2-79

Licensed Material-Property of IBM

Command ASSIGN

Processor Command Processor ...
Input
Router

......

.(HCPRT) (HCCAS)

~ ~

Cleanup
Routine

(HCMCU)

Figure 2·5. ASSIGN and VARY Command Processing Control Flow

Input

JOSQ ... Job Queue
Transient
(HCCJQI

Command CANCEL Cleanup

Processor Com!'T1and Routine
Input Processor
Router

... ~

(HCPRT) (HCCCM) (HCMCU)

Printer

,PRT Queue ...
Transient
(HCCCP)

Figure 2·6. CANCEL Command Processing Control Flow

2·80

Licensed Material-Property of IBM

CHANGE

PRT .. Spool Command
Routine ..

Command
(#CCGP)

Input
Processor Job Queue
Input - Transient
Router

...
~ ,

(#CPRT) (#CCJQ)
Cleanup
Routine ...

...
(#CMCU)

Figure 2-7. CHANGE and JOBQ Command Processing Control Flow

Command CONSOLE Work Station
Processor Command Data
Input Processor Management
Router

... - ...
(#CPRT) (#CCCO) (#DWDM)

~ ,

Cleanup
Routine

(#CMCU)

Figure 2-8. CONSOLE Command Processing Control Flow

•

Program Organization 2-81

Licensed Material-Property of IBM

Command HOLD or Cleanup

Processor RELEASE Routine
Input ... Spool Command ..
Router Routine
(#CPRT) (#CCHO) (#CMCU)

Figure 2·9. HOLD and RELEASE Command Processing Control Flow

Command
I,DELETE
Command

Processor .. Processor
Input ...
Router (#CCID)
(#CPRT)

,
Cleanup
Routine

(#CMCU)

Figure 2·10. IDELETE Command Processing Control Flow

2·82

Licensed Material-Property of IBM

Work Station Data Management
(#DWDM)

MENU
Command
Processor
(#CCMU)

Single Name

...... ... Find Routine
(#MASFN)

Sign-on
Routine

....oIIIl ...
(#CPON) Disk lOS- ...

---or--
po

Input
Router

(#CPRT)

STATUS
~ .. Command Processor

(#CCSM)

, ,

Sign-on
(#CPON)

---or---
Cleanup
(#CMCU)

Figure 2·11. MENU Command Processing Control Flow

Program Organization 2-83

Licensed Material-Property of IBM

Command MSG MSG
Processor

.-a.... Command .. Command
Input Processor Show .. -Router Routine
(#CPRT) (#CCMG) (#CCMX)

, 1 ~

Cleanup Command
Routine Processor

Mainline

(#CMCU) (#CPML)

Figure 2-12. MSG Command Processing Control Flow

2-84

Licensed Material-Property of IBM

~

~

Display
Message

Print
Message

Work Station
Data
Management

(#DWDM)

Cleanup
Routine

(#CMCU)

Work Station

... .. Data

... ... Management

(#DWDM)

Command SIGN·OFFI STATUS
Processor MODE Command
Input Command Mainline
Router

po

Processor "' ..
(#CPRT) (#CCOF) (#CCSM)

.... ..
Disk lOS

"' ..

, ~

Cleanup
Routine

(#CMCU)

Figure 2·13. MODE and OFF Command Processing Control Flow

Program Organization 2·85

Licensed Material-Property of IBM

Command PRIORITY
Processor ... Command
Input Processor ...
Router
(#CPRT) (#CCPY)

~ ,
Cleanup
Routine

(#CMCU)

Figure 2-14. PRIORITY Command Processing Control Flow

(

2-86

Licensed Material-Property of IBM

Console

.... .. Management

... .. End of Job

(#CMEJ)

Work Station

.... ... Data

... .. Management

(#DWDM)

Command REPLY REPLY Message
Processor Command Second Retrieve .. ~ ~
Input Processor Level Message .. ,.
Router Handler
(#CPRT) (#CCRE) (#CCRS) (#MGRET)

Console
Data

~ ..
.... .. Management

(#CMC!)

Control Storage
Error Handler

~

...
(#SVER)

Cleanup
Routine .. .
(#CMCU)

Figure 2·15. REPLY Command Processing Control Flow

Program Organization 2·87

Licensed Material-Property of IBM

START, STOP, and
RESTART Spool

.... .. Command

.... Processor

(#CCRR)

~ •

~
,

Attach
Transient

(#SVAT)

4 ~

~ ,
START Job Queue Command
and Start Processor --.. STOP --.. Transient Input .. Commands ,- p

Router
Processor

(#CPRT)
(#CCRT) (#CCJS)

4 ~

, ,
Find a
Library

(#MAFLB)

Cleanup
Routine

.... ..
~ ..

(#CMCU)

Figure 2·16. START, STOP, and RESTART Command Processing Control Flow

(

2·88

Licensed Material-Property of IBM

Command
Processor
Input
Router
(#CPRT)

STATUS
Command
Mainline

(lCCSM)

(STATUS
WORKSTN
included)

Cleanup
Routine

(lCMCU)

Work Station

Data
Management

(lDWDM)

STATUS
SESSION

('CCSS)

STATUS
SESSION
Page 2

(lCCS2)

STATUS
SESSION
Page 3

(NCCS3)

STATUS
SESSION
Page 4

(NCCS4)

STATUS
WORKSTN

(NCCSW)

STATUS
PRT

(#CCSP+

STATUS
JOBQ

(lCCSJ)

STATUS
USERS

(NCCSU)

CP
Mainline

(#CPML)

Figure 2·17. STATUS Command Processing Control Flow

Licensed Material-Property of IBM

A

C

Program Organization 2·89

Command TIME
Processor .. Command
Input Processor ..
Router
(#CPRT) (#CCTD)

, ,
Cleanup
Routine

(#CMCU)

Figura 2-18. TIME Command Processing Control Flow

Command
Processor
Wait
Routine
(#.CPML)

Figura 2-19. Job Initiator Control Flow

2-90

Command
Processor

~ ...
Job Initiator - Function

(#CPRT)

, ,

Cleanup
Routine

(#CMCU)

Licensed Material-Property of IBM

Start
Initiator

Supervisor

... Task Attach
Transient -

(#SVAT)

, ,
Initiator
Mainline

(#CIML)

Command
Processor
Resident

"

Router
(#CPML)

Figure 2-20. Release Control Flow

.. ..
Command
Processor
Release

(#CPTC)

Termination
Transient

(#CTEI)

~

.,

.....
...

Licensed Material-Property of IBM

System
Display

... ..

Interstep • __ .. ~
Release

Work Station
Data
Management

(#DWDM)

Supervisor
Task Attach
Transient

'(#SVAT)

Initiator
Mainline

(#CIML)

Program Organization 2-91

Error
....

I/O Error
... Processing

~

(NSVERP)

Keyboard Work
..L

Not-Ready-to-Ready ~ Station Error

"" RecOliery
hI'SVWSR)

WSDM Transient
~

Help Key
... Routines

(NWDDH)

Console .. _ ... Management Console SYSLOG
hl'CMCIl

Sign-on Display ..
Sign-on Display

.... Writer ...
(HCPTS)

Inquiry Menu
.... Inquiry Option 1 ... Processor
, Pending --.

(HCPIQ)
CP CP Task
Mainline Post Processor

(HCPMLl (HCPTC)

OFF Command
.... --... Processor

""
Test Request Release -p

(HCCOF)

Message .. Output Messages at ... Command
Release Processor

(HCCMX)

New Task
Attach to Initiator --... Attach , at Release

(HSVAT)

CPI/O .. Processor ... System Displays

(HCPIO)

STOP/START

Stop System
--.. Commands ...

(HCCRT)

JOBQ Command JOBQ Detach

(HCCJS)

(
Figure 2-21. High-Level Aids and Task-toTask Communications Control Flow Program Organization

2-92

Licensed Material-Property of IBM

Find a Library

..... 110.
Routine

., ...

(#MAFLB)

C~NCEL

+'j":€>
Command

Cancel "* Processor

Command Command
(#CCCM)

Processor Processor
~ ...

Input .. Inquiry ..
Router. Menu
(#CPRT) (#CPIQ)

Command

... Processor
Release . ',:-\'~ Task Post ..

(#CPTC)

Work Station

~ r:, Data
~. - Management

(#DWDM)

Figure 2·22. Inquiry Menu Processing Control Flow

Program Organization 2·93

Licensed Material-Property of IBM

Printer

... Printer ... Image Verify

Readjust
Routine

(##CSIM)

Command Command Work Station
Processor .. Processor

~ ... Data
Input ... Inquiry ., r Management
Router Menu
(#CPRT) (#CPIQ) (#DWDM)

Command .. Processor
Release Task Post ..

(#CPTC)

~ ,
Command
Processor
Resident
Router
(#CPML)

Figure 2-23. Resume Function Control Flow

2-94

Licensed Material-Property of IBM

Accept Error

~ ,
CP CP Input Special
Mainline Processor Key

~ Router Processor
(#CPML) (#CPRT) (#CPSP)

~ ~

Figure 2-24. Special Command Processor Control Flow

•
~

.D

.C

Display System
Displays

isplay Messages

on sole SYSLOG

BC ommand Key 1 •

-Restore Status ~
Display

-Command Keys

-Test Request

..

CP I/O
Processor

(#CPIO)

Message
Command
Processor
(#CCMX)

Console
Management

(#CMC!)

Inquiry
Menu
Processor
(#CPIQ)

STATUS
Mainline

(#CCSM)

WSDM
Transient
Routines
(#WDDH)

Sign-on

(#CPON)

Program Organization 2-95

Licensed Material-Property of IBM

Sign-on

.... ..

., ...
(#CPON)

Command
Processor
Task Post
Processor
(#CPTC) Command

Processorl Work
Work Station Station
Data Data ,., ...
Management Management
Interface (#DWDM)

Command (#CPIO)
Processor
Inquiry Menu ., ...
Processor

(#CPIQ)

Special
Command
Processor ., ...
(#CPSP)

Figure 2-25. Command ProcessorlWork Station Data Management Interface Control Flow

2-96

Licensed Material-Property of IBM

Control Storage - - Error Handler
(#SVER)

.... ... - .. Work Station
Data

... .. Management

... .. (#DWDM)

Calling Console Console Cleanup
Command .. Management ... Management Routine
Processor .. - Second Half " .
Transient

(#CMCI) (#CMCS) (#CMCU)

.. -. End-of-Job
Response
Handler "

(#CMEJ) A A .. -
, I

Command .. Processor ... Mainline
(#CPML)

Figure 2-26. System Console Logical I/O Interface Control Flow

Program Organization 2·97

Licensed Material-Property of IBM

SYSIN Work Station SYSIN Data Management
(#CLSS) (#CMWI)

... -p

Work Station
Data
Management

(#DWDM)
SYSLOG
(#CLSG)

f---or--
SYSLIST

... ..
Work Station

(#CLST) SYSLOG/SYSLIST
Data Management

Message (#CMWO, #CMLS) Retrieve
Error

(#MGRET)

Figure 2-27. Work Station Logical 1/0 Interface Control Flow

Sign-on

... ... Display

., .. v'vriter

(#CPTS)

Command Command Work Station
Processor ... Processor Data ..
Wait System Management
Routine Request
(#CPML) (#CPTC) (#DWDM)

Work Station
.... ... lOCH

..... --r

-Control Storage-

Figure 2-28. System Request Processor Control Flow

2-98

Licensed Material-Property of IBM

Message
Retrieve

.... ..
(#MGRET)

History

~ .. File Put

.... --..

(#HFPUT)

Calling Console

Command Management

Processor Cleanup

Transient
(#CMCU)

Work Station

..... .. Data
, --.- Management

(#DWDM)

Work Station
..... 110. lOCH
.... .. (WSIOCH)

-Control Storage-

, ,
Command
Processor
Mainline

(#CPMU

Figure 2-29. Cleanup Routine Control Flow

Program Organization 2-99

Licensed Material-Property of IBM

Disk VTOC
Read/Write .,
(@CSVF)

Sign-On
~ ... Password

- Security
(#CPON) (#PRSD)

.... .. \Disk
,. lOS

Figure 2-3d. Password Security Control Flow

Build Error
.... .. Message
.... Transient

(#SVWER)

Error Printer

Command Recovery Prepare

Processor Router -, ...
;(#SVERP) I(#SVPRE)

Display Station

.... .. Error Recovery

.... ..
(see Figure 2-32)

Figure 2-31. I/O Error Recovery Control Flow

2-100

Licensed Material-Property of IBM

If First Command Reject:

Error

Command --. Recovery

Processor Router

!#SVERP)

If Additional Command Rejects:

Command
Processor Work Station

or Data
User Management
Program

If Ready Call Either:

Command Display Station
Processor Error Recovery

(HCPTC) (#SVWSR)

Or:

User Work Station

Program Data
Management

..L

--

A
a

:--

ttaches as
Task --_ - - -,,-

Display Station
Error Recovery

(#SVWSR)

Display Station
Error Recovery
For Device
Not Ready

(#SVNRY)

Command
Reject
Ready
Routine
(#SVRD)

Display Station
Error Recovery
for Device
Not Ready

(#SVNRY)

~

_ ..

Figure 2-32. Display Station Error Recovery Control Flow

Licensed Material-Property of IBM

Disptay Station
Error Recovery
for Device
Not Ready

(#SVNRY)

Command Command
Reject .. --.. Reject
Ready Ready
Transient Routine
(#SVUR) (#SVRD)

Program Organization 2-101

2·102

Licensed Material-Property of IBM

Introduction

The functions needed to start a job are:

• Initiator
Reader /i nterpreter
Disk file initialization
Program initialization

• Allocate
Normal allocate
Special allocate
Deallocate

• Open
- Common-1
- Disk
- Work station

Diskette
Common-2
Printer
Data communications

INITIATOR

The initiator performs three functions:

• Reader/interpreter

• Disk file initialization

• Program initialization

The reader/interpreter function reads, diagnoses, and inter
prets operational control language (OCl) statements sup
ported by the system. The reader/interpreter function
uses the initiator mainline phase, OCl statement processors,
and error handler phase. For improved performance and
better diagnostics, the mainline module performs more than
one function. The reader/interpreter function checks each
statement for valid parameters and stores appropriate data
for use by the system in processing jobs. If an invalid
parameter is encountered, the initiator error handler rou
tine is called to issue the proper message identification
code (MIC).

Chapter 3. Starting a Job

The disk file initialization function prepares disk files for
program processing. Information provided by the FI lE
OCl statements is used to build the disk file format 1 's.
When file initialization is complete, control is returned to
the interpreter mainline to read and process the next OCl
statement.

The program initialization function performs the steps
required to load and pass control to the program specified
on the lOAD OCl statement. The requested program may
reside in the designated user library, and if used, this library
is searched first for the program. If the requested program
is not in the designated user library, the system library is
used. If the program requires source (program products),
the program initialization function allocates and opens the
required work files. The program initialization function
is completed by calling the supervisor attach transient
which loads and passes control to the requested program.

Reader/Interpreter Function

The initiator mainline module (#CIMl) is loaded by either
the command processor (when starting a new job), step ter
mination (when starting a new step within a job), or release
(when returning to a procedure from a multiple requester
terminal (MRT) program or a released program). It is
loaded into the user area at main storage logical address
x'caoo'. The first sector of #CIMl is the initiator work
area (lWA). The mainline program follows the IWA and
starts at main storage logical address X'C900'.

The initiator mainline (#CIMl) calls SYSIN (#ClSS) to
read a statement. #CIM l then performs preliminary syntax
checking of the statement and, if necessary, encodes the
parameters.

Introduction 3-1

Licensed Material-Property of IBM

If the statement format is: II VERB
KEYWORD1-PARM1 ,KEYWORD2·PARM2, ••• #CIML
encodes the statement in the initiator work area before
calling the appropriate statement processor. The encoded
statement format is:

where: A is control bit 1 *
B is the length of parameter 1
C is parameter 1
o is control byte 2
E is the length of parameter 2
F is parameter 2

••• 1 G

G is the end of encoding indicator (X'FF')
* Each keyword is assigned a unique control byte

Hexadecimal
Control
Byte Keyword

01 NAME
02 LABEL
03 DISP
04 UNIT
05 DATE
06 RECORDS
07 LOCATION
OB RETAIN
09 BLOCKS
OA PACK
OB SOURCE
OC INLIB
00 OUTLIB
OE PROGRAM1
OF PROGRAM2

Hexadecimal
Control
Byte Keyword

10 USER1
11 USER2
12 LINES
13 FORMSNO
14 COPIES
15 DEFER
16 ALIGN
17 SPOOL
1B PRIORITY
19 DEVICE
1A MRTMAX
1B SIZE
1C NEP
10 OFFSET
1E DATA
1F SYMID
20 REOD
21 RESTORE
22 LINE
23 RELEASE
24 PRINT
29 MEMBER
2A FORMAT

In the above example, if KEYWORD1 has a control byte of
X'01' and KEYWORD2 has a control byte of X'02', the
encoded statement is:

I 01 I 05 I PARM1 I 02 105 I PARM2 I.·· I FF I
All syntax and punctuation checking is done bY #CI M L.
The statement processor modules use the encoded state
ments in the indicator work area to check parameter
vali.dity and process· the parameters.

3-2

. Based on the verb found in the statement, the appropriate
initiator routine (statement processor) is loaded at main
storage logical address X'FBOO' and given control (see Fig
ure 3-2 for initiator logic floW).

The initiator error handler (#CIER) is called to handle
errors detected by #CIML or the statement processor
modules. #CIER is loaded at main storage logical address
X'FBOO'. It checks the error code placed in the initiator
work area by the calling routine. #CIER matches the
error code to a message identification code (M IC) and
issues the proper message.

If n'o errors are detected oy the statement processor, con
trol returns to #CIM L via a branch instruction to read the
next statement.

The statement processors are not concerned with continua
tion statements. #CIM L reads statements until all continua
tion statements are read and then calls the appropriate
statement processor. For example, if the following OCL
statements are entered:

(1) II LOAD #RPG

(2) II COMPI LE SOURCE-PROG1,

(3) IIINLlB-L1B1,

(4) IIOUTLlB-LlB2

(5) II RUN

the LOAD statement processor (#CI LD) is called after
statement (1) is read. The COMPI LE statement processor
(#CICM), however, is not called until statements (2)
through (4) are read by #CIML. The RUN statement
processor (#CI RN) is called after statement (5) is read.

When a LOAD statement is received, a find is performed for
the module in the library. If it is not found, an error mes
sage is issued, thus providing early diagnostics. On previous
systems, the module was not found until the RUN state
ment was read. If the module is found, the directory entry
is saved in the initiator work area for use by the RUN state
ment processor to load the requested module.

When a FI LE statement is received, its syntax is completely
checked. All file initialization (such as checking the disk
VTOC) is performed at the time the FI LE statement is
received, thus providing early diagnostics. Taking a 1
option allows the user to reenter the statement if necessary.

Licensed Material-Property of IBM

When a RUN statement is received, #CI RN overlays the
mainline module since the user's program is about to
receive control and no more DCl statements need to be
read. #CI RN processes the RUN statement, performs all
program initialization (such as checking for source and
setting up $WORK and $SOURCE files), and finally calls
the supervisor attach transient (#SVAU) to load and pass
control to the requested program.

System Interlocks

The System/34 multitask environment requires system
interlocks to prevent the simultaneous use of certain system
resources by two or more active tasks.

The interlocks are:

• Initiation/termination

• VTOC (includes main storage F1 's)

• Format 5

• Program dedication interlock

• Procedure name

• History file

• Console SYSlOG

The initiator obtains these resources by setting the inter
locks in the TCBs. For locations of the interlocks, see Task
Control Block and Queue Header Area in the Data Areas
Handbook.

Disk File Initialization Function

After the initiator mainline file routine (in #CIMl) processes
the file statement and builds the format 1, control is passed
to the initiator mainline file initialization routine (also in
#CIMl).

The file initialization routine examines the format 1 built
by the file statement processor and if the unit specified is
diskette, file initialization merely moves the format 1 to the
active format 1 area (AFA).

If the unit specified in the file statement is disk, the file
initialization routine examines the file specification block
(FSB) chain. If the file is already on the FSB chain, the
format 1 for that file is used. If RETAIN-J was specified
on the file statement, the file initialization routine either
creates a new form.at 1 for the file or uses the RETAIN-J
format 1 created by a previous step. If the file is being
used by another task, and the file is sharable, the existing
format 1 is used.

The initiator VTOC routine (#CIVT) is called if the file,is
not on the FSB chain, not retain J, and not being used by
another task. #CIVT examines the disk VTOC trying to
locate the file. If the file is found in the VTOC, the VTOC
format 1 is added to the format 1 chain and a new FSB is
added to the FSB chain. If the file is not found in the
VTOC, an indicator in the previously built format 1 is set,
indicating a new file, and this format 1 is added to the FSB

chain.

When file initialization is complete, control is returned to
the initiator mainline to read the next DCl statement.

Program Initialization Function

The RUN statement processor (#CI RN) is called when the
initiator mainline encounters the RUN statement. #CI RN
coordinates the program initialization function.

After placing the program date in all new disk format 1 s,
#CI RN examines the directory information placed in the
initiator work area (lWA) by the lOAD statement proces
sor. If the requested program requires source information,
#CIRN calls the allocate function to allocate $SOURCE,
$WORK, and $WORK2 files as required. After the files
are allocated, #CI RN calls the disk open transient to open
the files.

If a COMPI lE-statement was entered, #CI RN calls SYSI N
to read source statements from the keyboard and then
calls disk data management to place the statements in the
$SOURCE file. A compiler infor.mation block (CIB) is
then built in the assign/free area. File information such as
begin extent, end of data, and device code is placed in the
CIB for use by the compiler.

Introduction 3-3

Licensed Material-Property of IBM

If the requested program is part of a procedure, the proce
dure parameter save area (PPSA) contains pointers needed
to continue with the next step after the requested program
finishes processing. For this reason, #CI RN writes the
PPSA buffer in the PPSA on disk to save the information
for future use.

All required disk files are enqueued and work stations
acquired. The requester work station is released if an
ATTR statement with RELEASE-YES was specified.

The last step performed by the program initialization func
tion is to load and pass control to the supervisor attach
transient (#SVAU). #SVAU ensures that there is enough
main storage space available to prevent the requested pro
gram from being permanently swapped out when it is
loaded. After ensuring that another task will not be per
manently swapped out, #SV AU loads and passes control
to the requested program.

AllOCATE

Allocate consists of three functions:

• Normal allocate controls the assignment of disk space,
devices, and disk files to the user program. Normal
allocate is the only allocate function that can be called
by a nonprivileged user.

• Special allocate allows a privileged user to allocate disk
files without file eCl statements.

• Deallocate allows a privileged user to deallocate printer
and disk files. The process is similar to file deallocation
at step termination time. Deallocate also allows freeing
part of a file's disk space.

Normal allocate, special allocate, and deallocate are main
storage transients and each is called by an SVC command
with a different request indicator byte (RIB).

Input to the allocate function is passed by way of preopen
DTFs. See the Data Areas Handbook for a description of
preopen DTFs. In addition to the normal DTF fields,
special allocate and deallocate use additional fields in the
preopen disk DTF. The special allocate fields overlay the
normal disk DTF fields starting at label $F1 NXR. The
deallocate DTF is based on a closed disk DTF. A single
request byte at label DTFSR2 (request byte 2) of the
special allocate DTF specifies the desired deallocate opera
tion. If part of a file's disk space is to be freed, the new
end extent can be specified in the DTF.

3-4

Normal Allocate

When allocate is required, the user program passes control
to the allocate mainline transient (#CAMl).

#CAM l processes each preopen DTF in the chain that is
not conditioned off by UPSI. If a diskette file is to be
allocated or if keysort is required, #CAM l passes control
to the allocate push/pull transient, #CAPS (see Figure 3-3
for normal allocate control flow).

#CAPS determines which allocate functions are required.
If diskette allocate (#CAR1) or keysort interface (#CAKS)
is required, #CAPS pushes a portion of the user area for use
by #CAR 1 or #CAKS. All normal allocate modules except
#CAR 1 and #CAKS are main storage transients.

#CAKS, keysort interface, runs in the first 2K of user
storage. When keysort is required, allocate push/pull
(#CAPS) pushes the user program to disk and loads
#CAKS into the first 2K of a 14K region. #CAKS then
loads the keysort program into the remaining 12K of
user area.

#CAR 1, the diskette allocate module, runs in the first 4K
of user storage. When diskette files are allocated, allocate
push/pull (#CAPS) pushes the user program to disk, sets
up a 4K region, moves the diskette DTF to the beginning
of the user area, and loads #CAR 1. After diskette files
are allocated or keysort runs, control returns to #CAPS.
#CAPS pulls the user program back from disk to main
storage and updates the necessary DTFs.

#CACM is called if data communications DTFs are to be
allocated. #CAPT is called if printer DTFs are to be allo
cated. #CAF1 is called if new disk files are to be allocated.

#CAF2, the find disk space transient, is called by #CAF1 to
find space in the format 5 area.

#CAF3, the load to old disk file allocate transient, is called
by #CAF2. If load to old but not new disk file allocate is
requested, #CAF3 is called by #CAMl, #CACM, #CAPT, or
#CAPS (see Figure 3-3).

Control is returned to the user program after all devices
and files are allocated.

Licensed Material-Property of IBM

Special Allocate

A privileged user can allocate a disk file without supplying
an DCl statement by passing control to special allocate
(#CAS1). See Figure 3-4 for special allocate logic flow.

#CAS1 builds and queues a format 1 and a file specification
block (FSB) for each disk file to be allocated. If any files
were successfully processed to this point, special allocate -
first pass (#CAS2) is called.

#CAS2 performs first pass processing of all preopen disk
DTFs in the chain. If keysort is required, #CAS2 passes
control to the allocate push/pull transient (#CAPS).

#CAPS performs the same function as for normal allocate.
If new or load to old disk files require allocation, #CAPS
passes control to new file allocate (#CAF1). Ifonly load
to old disk files need allocation, #CAPS passes control
directly to load to old disk file allocate (#CAF3).

#CAF1 and #CAF3 may, if #CAPS was not used, be called
directly by #CAS2.

Control is returned to the user program after requested disk
files are allocated.

Deallocate

When a privileged user requests the deallocate function,
control passes to deallocate premainline (#CAD1). (See
Figure 3-5 for deallocate logic flow.)

#CAD1 performs first pass processing of all DTFs in the
chain. If the deallocate request is for a nondisk device,
#CAD1 deallocates the device and returns directly to the
user program. If keysort is required, #CAD1 passes control
to the allocate push/pull transient (#CAPS).

#CAPS perform the same function as for normal allocate.
When used for deallocate, however, #CAPS calls deallocate
mainline (#CAD2).

#CAD2 continues processing DTFs, freeing file space, and
deallocating files as required. If format 5s are to be
updated, #CAD2 passes control to the free format 5 space
transient (#CAD3).

#CAD3 updates the format 5s as required and returns con
trol to the user program. If #CAD3 is not required, #CAD2
returns control to the user program.

OPEN

The purpose of open is to prepare for the transfer of data
to and from the program's files by:

• I nitiating all necessary DTF fields in preparation for
data transfer

• Assign buffers and lOBs for data transfer

• Prepare the device for I/O operations to a new data
file

The open function is performed by two common open
transients (#DMOP and #DMOF) and the necessary device
oriented open transients:

Disk Open
Work Station Open
Diskette Open
BSC Open

#DD1 OP and #DD20P
#WDOPN
#DROP
#BSOB

All open modules are transients and reside as load modules
in the system library. The open function is initiated by
issuing an SVC with the open RI B (X'02') and index regis
ter 2 pointing to the first DTF on the DTF chain. The SVC
processor loads the first common open module (#DMOP).

To improve system performance, the device oriented mod
ules are designed to be called only once for each DTF
chain. Thus, each module performs its functions for all
required DTFs on the chain. It searches through the DTF
chain to find all DTFs of its device type that are to be
opened.

Note: See the Data Areas Handbook for a description of
disk, diskette, and printer preopen and postopen DTFs.

Introduction 3-5

Licensed Material-Property of IBM

Common Open 1 (#DMOP)

The first common transient (#DMOP) searches the DTF
chain and flags DTFs to be opened. For open to be per
formed, a DTF must have a valid device type, it must be
allocated, the UPSI setting must be correct, and it must
be in a preopen state. #DMOP will then call one of the
following open transients:

• #DD10P if a disk DTF is on the DTF chain

• #WDOPN if a work'station DTF is on the DTF chain

• #DMOF if neither a disk DTF nor a work station DTF
is' on the chain

Input to #DMOP is a chain of preopen DTFs addressed by
XR2. These DTFs were created and chained when the pro
gram was compiled or assembled. XR2 points to the first
DTF on the chain. This DTF contains a pointer ($DFCHB)
to the second DTF, the second DTF to the third, and so on
(see Figure 3-1).

Output from #DMOP is a chain of DTFs with an indicator
in each showing which DTF to open.

Disk Open (tlDD10P, tlDD20P)

The device oriented function for disk consists of two tran
sients - #DD10P and #DD20P. Input to each is the
address of the first DTF on the forward chain in register 2.
Each of these modules must loop through the entire DTF
chain and process all disk DTFs which need to be opened.
Control is passed to #WDOPN if a work station DTF is
present on the DTF chain or to #DMOF if not.

The first module of disk open (#DD10P) performs the
diagnostic checking to ensure access to the requested file
is allowed under the specified access type. If an error is
found, the proper MIC number is established and the
SYSLOG routine called to display the error message. In
addition, this module initiates the DTF for all access
methods other than normal disk processing. For dummy
open DTFs, it provides information about the file within
the DTF. For ZPAM and ISRI, it initiates the DTF and
loads the necessary data management within the user-pro
vided area.

3-6

The second module (#DD20P) formats the necessary con
trol blocks (DTF, lOBs, master index, high key buckets)
and the buffer areas. The lOBs and buffer areas are first
formatted based upon the access being consecutive/direct/
indexed and normal/SIAM. Then the remaining DTF fields
are calculated to allow data management to begin process
ing. Finally, if opening an indexed file, the master index
area is initialized and the high key buckets are established,
if requested.

Work Station Open (#WDOPN)

The work station open routine is called by common open
(#DMOP) or disk open (#DD20P). Open passes the address
or the first DTF on the chain in XR2. The DTF may be
chained to other DTFs that are not work station DTFs.

#WDOPN's primary function is to place the format indexes
the user requires into the user area for use and reference by
the work station data management at execution time.

Chained DTFs may be used to open one or multiple format
load members. If only one format load member is to be
opened, only one DTF in the chain may contain the name
of the format load member; the balance of the DTFs must
have blanks in the $WSFMTN field. If multiple format
load members are being opened, the $WSINXA field must
contain the same address. This is true if the DTFs are
chained or multiple open calls are performed to open the
multiple format load members.

#WDOPN places format indexes after the indexes previously
placed in the user-supplied area. #WDOPN also checks pre
viously opened format indexes to ensure duplicate format
names have not been opened .. If a duplicate is found, a
halt is issued. If the format load member is not found or
the load member found is not a format load member, a
halt is also issued.

Licensed Material-Property of IBM

Diskette File Open (#DROP)

When a diskette file DTF is encountered by a call to the
open routine, the diskette open transient module is called.
Open reads the active format 1 image corresponding to the
file to be processed. Open then formats the DTF to its
postopen status, formats the lOB and prepares the input!
output buffers for processing the file. Information from
the preopen DTF is saved in the active format 1 image so
the DTF can be restored to its preopen state by Close.

The postopen DTF serves as the interface between diskette
data management and the calling program, the lOB furnishes
the interface between data management and diskette lOS
that performs the physical disk seek, read and write
operations.

The calling program must supply a main storage area for
diskette data management and put the address of the start
of this area into the preopen DTF. Open then loads
diskette data management at this location.

For output files, the open routine calls diskette lOS to
write an internal control record into the first data sector
of the file, if necessary. For input files containing the
internal control record, the internal control record is read
and placed at the beginning of the input buffer.

For ex!sting files, the open routine performs diagnostics to
ensure the file organization and access type are compatible.
The record length specified in the DTF is checked to ensure
it is the same as that from the data set label. However, if
the calling program places X'FFFF' in the preopen DTF
record length field, the open routine will place the data set
label record length into the postopen DTF.

Common Open 2 h¥DMOF)

The second common transient (#DMOF) is called after the
DTFs to be opened are flagged by #DMOP and after all disk
and work station DTFs are open. #DMOF first calls the
proper device oriented open transients to open all remain
ing DTFs. #DMOF then creates a backward chain of DTFs
just opened.

Input to #DMOF is a chain of DTFs with some open and
others not open. Output is a chain of postopen DTFs with
the last DTF containing a pointer ($DFCHA) to the next to
last DTF opened. In this manner, the DTFs are chained
back to the first DTF opened (see Figure 3-1).

#DMOF also contains all logic needed to open a print file.

Printer Open (within #DMOF)

The printer open logic is called for any print file to be
opened. The print file may be printed directly to a 5211
or a 5256 printer, or, if spooling is active, it may be spooled
for later printing. Input to printer open is XR2 pointing to
the printer DTF to be opened.

It first performs all diagnostic checking on the file, and if
an error is found, it issues the proper MIC through the use
of SYSLOG. If no errors are found, space within the
assign/free area is obtained for the printer lOB and the lOB
is initialized. Then the remaining fields within the DTF are
initialized to allow data transfer. Finally, a format com
mand and a forms feed command are issued to the printer.
This establishes the proper printer control for the program
and positions the carriage on line one of a new page.

Introduction 3-7

Licensed Material-Property of IBM

Enter

From User
Program

Forward
Chain of
DTFs to
be Opened 1....-___

Legend:

Control flow

Input Processor

XR2

Address of
the First
DTF

"---->
Data flow Address pointer

1 Figure 3-6 shows the interrelationship of the transient open m~dules.

Figure 3-1. Open Main Control and Data Flow

3-8

Licensed Material-Property of IBM

Output

XR2

Address of
the Last
DTF

DTFn-'
I--
I
I
L

Return to
Caller

Chain of
Opened
DTFs

Method of Operation

This section contains functional diagrams for routines
needed to start a job. They are:

G Initiator

o Normal allocate

• Special allocate

• Deallocate

o Open disk, diskette, printer, work station, and data
communications DTFs

From: Step Termination or
Command Processor

INPUT I ~OCESS I WO. i .' I r OUTPUT .

a
RreeqasUired system rnl: f1 °0 Perform initiator function (Diagram 3.1) > Initialized files and

g ~ ; program

Allocate overview (Diagram 3.2) --~-----";;;;....I> Allocated DTFs,

rJ U n files, and devices

- ----.... ~CI) Open disk. diskette. printer. and work II U > Postopen DTFs Preopen DTFs
station data communications DTFs
(Diagram 3.6)

To: User Program

Diagram 3.0. Overview of Starting a Job

Method of Operation 3-9

Licensed Material-Property of IBM

From: Step Termination or Command Processor
or Release

.INPUT a...::.;0CESS

.. D Main Storage ;> Perform preliminary OCL statement
caOO: processing

Initiator
Work Area (lWA) B Process FILE statement

C90O:
Initiator II Perform appropriate OCL statement
Mainline (#CIML) processor function

0000:
Procedure II Handle error conditions as needed
Parameter
Save Area
buffer (PPSA)

and
Keyboardl
Source SYSI N
Mainline
(NCLSS)

F800:
Initiatorl
SYSIN
Routines

FFFF

• Keyboard or
procedure
members

• Source
statements

• FSB chain

• AFA format 1
chain

• VTOC format 1

• Disk VTOC

• SCA

• JCB

DESCRIPTION

0 Initialize fields to begin processing next statement.

Read record from keyboard or procedure member and place in buffer.

If statement begins with *, read next statement.

If statement does not begin with /I it is assumed to be procedure call; go to D O.
Scan statement for verb.

Search verb table for verb.

If verb found in table, go to08.

Diagram 3.1 (Part 1 of 11). Perform Initator Function

3-10

Licensed Material-Property of IBM

To: User Program

OUTPUT ---...rIll
IWA

Diskette AFA
format 1

Disk AFA format 1

Format 1 chain

FSB chain

FSB

$SOURCE

$WORK

$WORK 2

Statements in
$SOURCE

Enqueued files

Acquired work
stations

MODULE/
ROUTINE

NCIML

NCLSS

#CIML

MODULE/
OEseR IPTION ROUTINE

e Set up fetch parameter list to give control to Include Statement Processor (#CIIC) and go toDG. #CIML

o If encoding required switch in verb table is not on, go to De.
Find keywords in keyword table and place their control bytes in encoding area.

Move parameter and length to encoding area.

e If verb is FILE,goto!J.

If any errors detected, set error code in IWA and go to II.
e Fetch appropriate statement processor (relocating loader SVC 52) and go tolJ.

D Check switch in IWA to ensure FILE statement follows LOAD statement.

Scan encoded parameters in IWA and go to appropriate pr'ocessing routine (within #CIML):

• Name and label parameter.

• Date parameter.

• Pack parameter.

• Retain parameter.

• Unit parameter.

• Records parameter.

• Blocks parameter.

• Location parameter.

• Disp parameter. .
If no label parameter specified, substitute name parameter for label and place in format 1 area.

Ensure:

• Name parameter specified.

• No diskette parameters on disk file statement.

• No disk parameters on diskette file statement.

• No DISP parameter specified with RETAIN-J.

Ensure duplicate name not in file specification block (FSB) chain.

Search FSB chain for file with same unit, label, and date (if specified).

If requested file already on FSB chain:

• Point new FSB at format 1.

• Add new FSB to chain.

• Return toDto read next OCL statement.

If unit specified on file statement is diskette:

• Add new FSB to chain.

• Move format 1 to AFA format 1 area.

• Return toDto read next OCL statement.

If file not on FSB chain and RETAIN-J specified on file statement:

• Create new disk AFA format 1.

• Add FSB to chain.

• Return toD to read next OCL statement.

If file being used by another task and can be shared:

• Add new FSB to chain (FSB points to found format 1).

• Return toDto read next OCL statement.

If file not on FSB chain, not RETAIN-J, and not being used by another task:

• Call initiator VTOC routine.

Diagram 3.1 (Part 2 of 11). Perform Initator Function

Method of Operation 3-11

Licensed Material-Property of IBM

OEseR IPTION

O. Look for file in disk VTOC.

• If file not found in disk VTOC, go to fiG.
• Compare format 1 built from file statement with VTOC format 1 just read.

• If not right one, go to fJ 0 to see if another file exists in VTOC with same label.

• Add VTOC format 1 to format 1 chain.

• Add new FSB to FSB chain. e. Indicate in format 1 that file is new (file not on FSB chain, AFA format 1 chain, or in VTOC).

• Add format 1 built from file statement to format 1 chain.

• Add new FSB to FSB chain.

If any errors detected, set error code in IWA and go to II.
Return to D to read next OCL statement.

II * or * * Statement Processor

Scan SYSIN buffer for first nonblank character after * or ** and if character not quotation mark ('message'),

gotolJ'O·

Scan SYSIN buffer for second quotation mark (end of message).

Place start of message and message length in SYSLOG parameter list.

Call SYSLOG to display message to work station if //* or system console if //** and go tollG.

e Convert message identification code (MIC) from EBCDIC characters to packed decimal afld place in message
retrieve parameter list.

Call SYSLOG to display message to work station if //* or system console if //**.

G If any errors detected, set error code in IWA and go to O.
. Return toO or termination to return to command mode.

A TTR Statement Processor

Check that ATTR statement is not between LOAD statement and RUN statement.

If system is in single program mode, return to II.
Scan encoded parameters in IWA and go to appropriate routine (in #CIAT):
• Priority parameter.
• MRTMAX parameter.
• NEP parameter.
• Release parameter.

Set priority and MRTMAX in TCB.

Set N EP in JCB.

Set release indicator in IWA.

If any errors detected, set error code in IWA and go to II.
Return toDto read next statement.

Diagram 3.1 (Part 3 of 11). Perform Initator Function

3-12

Licensed Material-Property of IBM

MODULE/
ROUTINE

#CIVT

#CIML

#CIVT

#CIML

#CIVT

#CIML

#CIMS
or

#CIM2

#CLXS

#CIMS
or

#CIM2
#CLXS

#CIMS
or

#CIM2

#CIAT

OEseR IPTION

COMPILE Statement Processor

Check that COMPI LE statement follows LOAD statement.

Check directory entry in IWA to see if source required.

If no source required, go to II.
Check for second COMPI LE statement in this step.

Scan encoded parameters in IWA and go to appropriate routine (in HCICM):
• SOURCE parameter.
• INLIB parameter (find library on disk).
• OUTLIB parameter (find library on disk).
• MRTMAX parameter (save in compiler information block).
• NEP parameter (save in CIB).

Find source member and save information about it in IWA.

Move compiler information block (CIB) to assign/free area and save CIB address in JCB.

If any errors detected, set error code in 'IWA and go to O.
Return toDto read next statement.

DA TE Statement Processor

If not begi!1ning of session, go toile (beginning of session is time between sign-on and first load
statement received).

If session data already specified (in JCB), go toile.

e Check that DATE statement follows LOAD statement.

Check for second date statement in this step.

CD Scan input buffer for date, remove delimiters and add zeros if required.

Put date in year-month-day and packed format.

Put date in JCB.

If any errors detected, set error code in IWA and go to II.
Return to D to read next statement or call termination to return to command mode.

FORMS Statement Processor

Scan encoded parameters in IWA and go to appropriate routine (in HCIFM):
• LI N ES parameter.
• FORMSNO parameter.

Set lines/page in JCB if specified.

Set forms number in JCB if specified.

If any errors detected, set error code in IWA and go toa.

Return toD to read next statement or call termination to return to command mode.

Diagram 3.1 (Part 4 of 11). Perform Initator Function

Licensed Material-Property of IBM

MODULE!
ROUTINE

HCICM

HCIER

HCICM

HCIDT

HCIFM

Method of Operation 3-13

OEseR IPTION

IMAGE Statement Processor

Call TWA (SVC 51) access to read work station configuration record.

If first parameter is HEX or CHAR, go toll'.'

Find source member name on statement.

Search system library for source member.

Read first statement.

Ensure first statement:
• Begins with 1/.
• Verb is IMAGE.
• First parameter is HEX or CHAR .

• Convert length in source get/SYSIN buffer to binary.

Read print belt image into configuration record buffer.

Write updated work station configuration record from config record buffer to configuration record on disk.

If any errors detected, set error code in IWA and go to II.
Return toDto read next statement or termination to return to command code.

INCLUDE Statement Processor

If next level of procedure parameter save area (PPSA) not in main storage, use task work area routine to
retrieve it.

Find procedure name on statement.

Find procedure in user library or system library.

Save start sector, end sector, and record length of procedure in procedure parameter save area buffer.

If this is a MRT, go toD: •.

Save parameters in PPSA buffer.

If not MRT, save parameters in PPSA buffer.

Save information from job control block (JCB) in PPSA:
• Message member addresses.
• Current library.
• UPSI switches.

Use task work area routine to write PPSA buffer to PPSA (to inform that, If active function, this procedure is
now active).

Update current PPSA tag in JCB.

If any errors detected, set error code in IWA and go to II.
Return toDto read next statement.

Diagram 3.1 (Part 5 of 11). Perform Initator Function

3-14

Licensed Material-Property of IBM

MODULE/
ROUTINE

#CIIM

#MASYG

#CIIM

#CLSS
or

#MASYG

#CIIM

#CIIC

#MASFN

#CIIC

OEseR IPTION

M RT Procedure Processor

o Check that MRT procedure call is not between lOAD and RUN statements.

Use task work area (TWA) (SVC 51) access routine to write data (if any) from OCl statement to TWA.

Search TCB chain to see if MRT is already active.

If MRT is found, go toile.

Create new JCB using system configuration record information.

GotoBO·

e Check if MRT is waiting for resources and if so, set waiting indicator in JCB.

Build ACE and queue it to work station lOCH queue or TCB complete queue .

. Post work station controller or post the MRT.

o If any errors detected, set error code in IWA and go to O.
Return togif initiating new MRT, go to detach routine #SVAU if attached to existing MRT.

LIBRARY Statement Processor

Check that LIBRARY statement is not between lOAD and RUN statements.

Scan encoded parameters in IWA encoding area and go to name parameter routine.

Find specified user library and put library format 1 address in parameter list.

Find file specification block (FSB) for this library in library FSB chain.

Set on library statement bit in FSB.

If in a procedure, go to D8.
Set on session library bit in FSB .

• Set library format 1 address in JCB.

If any errors detected, set error code in IWA and go to II.
Return toO or termination to return to command mode.

LOAD Statement Processor

Check for second lOAD statement in this step.

Syntax check program name.

Search current user library (if any) and system library for specified program.

Save directory information in IWA.

Ensure program will fit in user area:
• Convert the program size to 2K blocks and store it in the IWA.
• Compare the program size to the user area size in the SCA.

Diagram 3.1 (Part 6 of 11). Perform I nitator Function

Licensed Material-Property of IBM

MODULE/
ROUTINE

#CIMT

Disk 105
#CIMT

#CllB

#MAFlB

#CllB

#CllD

#MASFN

#CllD

Method of Operation 3-15

DESCRIPTION

Set appropriate indicators in IWA and JCB:
• Program has utility control statements (JCB).
• NEP program (JCB).
• load statement received this session (JCB).
• load statement received this job (JCB).
• load statement received this step (lWA).
• Initiator in intra mode (JCB).
• Statement processors should not call termination (lWA).

If this is a MRT program, set up indicators to initiate the MRT.

o If any errors dete~ted, set error code in IWA and go to II.
Return toOto process next statement.

LOAD - MRT Routine

Check that MRT program is not being loaded from keyboard.

Check that MRT program is not being loaded from the job queue.

If not MRT procedure set MRTMAX in TCB to zero, indicate program is SRT, and go toD.O.

Set MRTMAX in TCB to value in directory information (lWA) - MRTMAX was X'FF' when procedure
first entered.

If number of requestors not greater than MRTMAX, go toilO.

Calculate number requesters over MRTMAX.

Find same number (over MRTMAXI TUBs on chain attached to this MRT and set off no skip bit (indicates
requester not active but waiting to attach to MRT).

If errors detected, set error code in IWA and go to D.
Go toO to process next statement.

LOCAL Statement Processor

Scan encoded parameters in IWA and go to appropriate routine (in HCI lC):
• OFFSET parameter.
• DATA parameter.

Use task work area (TWA) access routine to read in local area from TWA.

Move data at specified offset into local area buffer and use TWA access to write buffer to disk.

If errors detected, set error code in IWA and go toO.

Go toll to process next statement or call termination to return to command mode.

LOG Statement Processor

If not in single program mode, and if spool is supported, return toBor to termination to return to command
mode.

Ensure that first parameter is CRT or PRINTER.

Ensure second parameter (if any) is EJECT or NOEJECT.

Diagram 3.1 (Part 7 of 11). Parform Initetor Function

3-16

Licensed Material-Property of IBM

MODULE/
ROUTINE

HCllO

HCllM

HCllO

HCllM

HCllC

HCllG

DESCRIPTION
MODULE/
ROUTINE

Set SYSLOG indicator in SCA. #CILG

Set eject/noeject indicator in SCA (default is eject).

If any errors detected, set error indicator in IWA and go toll.

Go toO or termination to return to command mode.

MEMBER Statement Processor HCIMM

Scan encoded statement in IWA and go to appropriate routine (in #CIMM):

• Program 1 parameter.

• Program 2 parameter.

• User 1 parameter.

• User 2 parameter.

Search current user library and then system library for requested member. #MASFN

Set relative disk address for message member and library format 1 address in JCB. #CIMM

If any errors detected, set error code in IWA and go to II.
Return to Dor termination if return to command mode.

PAUSE Statement Processor HCIPS

Call SYSLOG to issue PAUSE message. #CLXS

Return to II to process next statement. #CIPS

PRINTER Statement Processor #CIPR

Ensure PRINTER statement follows LOAD statement.

Set up default printer specification block (PSB).

Scan encoded parameters in IWA and go to appropriate routine (in #CIPR):
0 LINES parameter.

• FORMSNO parameter.

• COPIES parameter.

• DEFER parameter.

• ALIGN parameter.

• SPOOL parameter.

• PRIORITY parameter

• DEVICE parameter.

• NAM E· parameter.

Check PSB to see if name specified.

Search PSB chain for duplicate name.

If device not specified, set default in PSB.

Add new PSB to chain.

If errors detected, set error code in IWA and go toD.

Return tollto process next statement.

Diagram 3.1 (Part 8 of 11). Perform Initator Function

Method of Operation 3-17

Licensed Material-Property of IBM

DESCRIPTION

REGION Statement Processor

Check that REGION statement is not between LOAD and RUN statement.

Scan encoded parameters in IWA and go to size parameter routine.

Set region size in JCB.

If any errors detected, set error code in IWA and go to II.
Return toDto process next statement.

RUN Statement Processor

Ensure that LOAD statement preceded RUN statement.

Get program date from job control block (JCB) and place in all new disk F1 's.

Check F1's and file specification blocks (FSBs) to ensure no other task is creating a file with the same label and
date.

Bind resources needed by the program:
• Enqueue all disk files.
• Acquire all required work stations.

If requested program is part of a procedure, call task work area (TWA) access routine (see Control Storage Logic
Manual) to write procedure parameter save area (PPSA) buffer to PPSA sector in TWA on disk.

Check directory information in initiator work area (lWA) to determine if program requires source; if no go

toile·
Check if file statements provided for $SOURCE, $WORK, and $WORK2 files:
• Allocate files for which file statements are provided.

• Return.
• Allocate files for which file statements are not provided.

• Return.

Open $SOURCE, $WORK, and $WORK2 files.

Return.

If compile statement received:
• Read source statements from source member.

• Return.
• Write source statements to $SOURCE file.

• Return.

If compile statement not received:
• Read source statements from keyboard.

• Return.
• Write source statements to $SOURCE file.

• Return.

Close $SOURCE, $WOR K, and $WOR K2 files.

o If the requested program must be loaded from the system console, ensure that the requester is the system console.

Check for an active dedicated program; if one is found, issue an error message.

If this is a dedicated program, ensure that no other tasks are active; if other tasks are active, issue an error
message.

Diagram 3.1 (Part 9 of 11). Perform Initator Function

3-18

Licensed Material-Property of IBM

MODULE!
ROUTINE

#CIRG

#CIRN

#DWDM

#CIRN

#CAML
#CIRN
#CAS1
#CIRN

#DMOP

#CIRN

#SYSG
#CIRN
#DDDM
#CIRN

#CLSS
#CIRN
#DDDM
#CIRN

#DDCL

#CIRN

DESCRIPTION

If this is a high level dedicated program, ensure that the requester is the only signed on command display station;
if another command display station is signed on, issue an error message.

If RELEASE-YES was requested, then release the requester display station.

If any errors detected, set error code in IWA and go to a.
Load the requested program into user area of main storage and pass control to it.

SWITCH Statement Processor

If SWITCH statement follows LOAD statement, check if SWITCH statement previously specified for step.

Scan SWITCH parameter in SYSIN buffer for proper characters (ones, zeros, and Xs).

Set on or off appropriate UPSI switches in JCB.

If any errors detected, set on error code in IWA and go toll.

Return to D or termination to return to command mode.

SYSLIST Statement Processor

If parameter is not CRT or OFF go toEli.'

If CRT specified, set indicator in JCB to X'EEEE'.

If OFF specified, set indicator in JCB to X'OOOO'.

GotoDO·

• If parameter is work station printer 10, go toOi •.

If parameter is PR INTER, get printer 10 from requester TUB. (If MRT or job queue printer is system printer.)

• Find TUB containing printer 10 and ensure it is printer TUB.

Set printer ID in JCB.

o If any errors detected, set error code in IWA and go toll.

Return toBor termination to return to command mode.

WO R KSTN Statement Processor

Check that WORKSTN statement follows LOAD statement.

Scan encoded parameters in IWA and go to appropriate routine (in #CIWK):
• REQD parameter.
• RESTORE parameter.
• UNIT parameter.
• SYMIO parameter.
• PR I NT parameter.

Check work station block (WSB) to ensure unit specified.

Find TUB with specified work station 10 and place address in WSB.

Diagram 3.1 (Part 10 of 11). Perform Initator Function

MODULE/
ROUTINE

#CIRN

#OWOM

#CIRN

#SVAU

#CISW

#CISL

#CIWK

Method of Operation 3-19

Licensed Material-Property of IBM

OEseR IPTION

Check WSB chain for duplicate SYMID or unit.

If print parameter not specified, set default address in WSB:
• If MRT or job queue, use system printer.
• If not MRT or job queue, use configured printer.

Add WSB to chain.

If any errors detected, set error code in IWA and go to O.
Return toOto process next statement.

II Search error table for requested error cO,de (in IWA) and place message identification code (MIC) and options in
SYSLOG parameter list.

If error code not found, issue disaster error (MIC 300).

If name field should be displayed, move name to SYSLOG parameter list and go to 110.
If only error should be displayed, go to 110.
If not in procedure, go toDO.

Set off retry option (option 1) in SYSLOG parameter list (not allowed in procedure).

If in batch job, go to DO.
Display heading and statement in error.

" Display ~rror message.

If 0 or 1 option taken, go toOto read next statement.

If 2 option taken, call termination.

Diagram 3.1 (Part 11 of 11). Perform Initator Function

3-20

Licensed Material-Property of IBM

MODULE/
ROUTINE

#CIWK

#CIER

#CLXS

#CIER

From: User Program

~INPUTI r PROCESS

I r OUTPUT

I
Required system ~. Perform normal allocate function > Allocated DT Fs,
areas • (Diagram 3.3) • I files, and - I I devices

~ > Allocated disk • Perform special allocate function

~
(Diagram 3.4) • I I files - I ,..

""- • Perform deallocate function > Updated DTF,
(Diagram 3.5) • format 1, and

~

format 5s

, ,
To: User Program

Diagram 3.2. Overview of Allocate

Method of Operation 3-21

Licensed Material-Property of IBM

From: User Program
"" INPUT ____ _

I..I:;:0CESS

XR2

(DTF chain

(lOBS and Buffers

__ ---.rho > D Perform first pass processing of all DTFs and
.. allocate:

Main Storage

Transient Area:
#CAML
#CAF1
#CAF2
#CAPT
#CAMG
#CAPS
#CAF3
#CACM

User Area:
#CAKS

(or)

#CAR1

User Program

System Control
Blocks:

• AFA F1's

• PSB

• FSB

• JCB

• TCB

• TUB

• SCA

• Device table
0 CSB

• AQE

Disk Areas:

• F1's

• Old disk files
• Diskette device
• Work stations
• Special DTFs

D Allocate diskette file

II Keysort nonshared indexed files used with
indexed access method

II Allocate communications lines

II Allocate printers

II Allocate new disk files

II Format new and load to old files. Update
active F 1's and VTOC F 1

• F5 ---------Tl.
• To: User Program

DESCRIPTION

D Process each preopen DTF in chain not conditioned off by UPSI.

If disk DTF:

• If old disk file:
- Complete AFA format 1.
- Assign high key bucket if indexed file.

Diagram 3.3 (Part 1 of 4). Perform Normal Allocate Function

3-22

Licensed Material-Property of IBM

OUTPUT ___ _

XR2

(Chain of allocated
DTFs

XR1

C(Restored by
transient return)

Allocated Files

Allocated Devices

MODULE/
ROUTINE

#CAML

OEseR IPTION

- If load to old, set load to old to do bit in request block (RB) and set new creation date.
- If not load to old, indicate file allocated in DTF and FSB.
- Indicate in FSB and RB if keysort required.

• If new disk file:
- Indicate new file to allocate in RB.
- Turn on new file switch in DTF.
- Update AFA format 1.
- Assign high key bucket if required.

If diskette DTF:
• Indicate diskette in use in JCB.
• Allocate device.
• Set on allocate request bit in RB.

If work station or special DTF, set on allocated bit in DTF.

Return toDand repeat steps until all DTFs processed.

If diskette allocate or: keysort requested in RB, go toO.

If communications lines, call communications allocate (#CACM) and go to 9.
If printers to be allocated, call print allocate (#CAPT) and go to g.
If new disk files to allocate, call new disk file allocate (#CAF1) and go to m.
If load to old files to allocate, call load to old disk file allocate (#CAF3) and go toO.

If no allocate requests, return to user program.

" Call allocate push/pull transient (#CAPS) and pass control to it.

If diskette file allocate request bit on in RB:
• Push user program to disk and set up 4K region in user area.
• Move DTF to start of user area.
• Load diskette allocate (#CAR1) after DTF in user area and go to O.

e If return from #CAR 1, restore user region and pull user program from disk.

If keysort request bit on in RB:
• Push user program to disk and set up 14K region in user area.
• Load keysort interface (#CAKS) into first 2K of user area.

• Go toD.

e If return from #CAKS, restore user region and pull user program from disk.

If request for communications lines, load #CACM and go toD.

If request to allocate printers, load printer allocate transient (#CAPT) and go to 1m.
If requested to allocate new disk files, load #CAFl and go toD.

If requested to allocate load·to·old disk files, load #CAF3 and go toO.'

Return to user program.

fJ If first time allocate or requested in DTF, perform diskette prepare function.

Find AFA format 1.

Diagram 3.3 (Part 2 of 4). Perform Normal Allocate Function

Licensed Material-Property of IBM

MODULE!
ROUTINE

#CAML

#CAPS

#CSVI

#CARl

Method of Operation 3-23

DESCRIPTION
MODULE!
ROUTINE

Check pack parameter against volume I D of mounted diskette. nCAR1

Determine if specified file exists.

If allocating new diskette file:

• Delete all expired files.

• Ensure clean pack if requested in DTF.

• Allocate new file following existing files.

• Set creation date to proper date.

• Set expiration date.

If allocating existing diskette file:

• For Add files:
- Ensure last (or only) diskette volume of file inserted.
- Ensure last active file on diskette is add file.
- Ensure expired files (other than add file) are deleted.

• For input files, ensure first volume of multi-volume file inserted.

• For existing file with RETAIN specified, set new expiration date.

Return toOO.

B Check file specification block (FSB) for files requiring keysort. #CAKS

Fir files requiring keysort:

• Update VTOC F1 to allow for keysort failures. #CSVF

• Load and pass control to keysort Modules. (See Keysort.) #CSDK

• Return here after keysort complete. #CAKS
~ • If duplicate keys returned from keysort, issue halt. #CSOK ~ • If keysort functioned satisfactorily, reupdate VTOC F1 to turn off failure indication. nCSVF

• Return toO,8. #CAKS

D If BSC or SDLC: #CACM

• Allocate line.

• Load data management task.

• Update DTF, CSB, and JCB.

• Set allocated bit in OTF.

• If printers to be allocated, call print allocate (#CAPT) and go to g.
• If new disk files to allocate, call new disk file allocate (#CAF1) and go to II.
• If load to old files to allocate, call load to old disk file allocate (#CAF3) and go to D.
• If no allocate requests, return to user program.

Search printer specification block (PSB) chain for matching OTF name.

If match found, locate TUB with same work station 10 as in PSB.

If match not found, build default PSB.

If output spooled:

• Indicate spool intercepting in PSB, DTF, and TUB.

• Set allocated bit in PSB and DTF.

If output not spooled:

• Put device code in OTF.

• Set allocated bit in PSB and DTF.

• Save TUB and PSB address in DTF.

• Set check forms/image in PSB.

• Set call forms/image transient in request block (RB).

Diagram 3.3 (Part 3 of 4). Perform Normal Allocate Function

3-24

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

If needed, do forms/image processing. #CSIM

If request to allocate new disk files, load #CAF1 and go to~. #CAPT

If request to allocate load to old disk files, load #CAF3 and go to 11m.
IIlB For each new disk DTF: #CAF1

0 Set up DTF to indicate:
- Minimum and maximum sectors needed.
- Spindle desired.
- Location desired.

0 Count VTOC F1's needed.

Read format 5. Disk lOS

Check if enough VTOC F1 space, and call find disk space transient module (#CAF2): #CAF1 e 0 If requested space is available: #CAF2
- Update format 5 to indicate space taken. Disk lOS
- Place return code in DTF. #CAF2
- Pass control to #CAF3.

0 If requested space is not available:
- Place return code in DTF to indicate no space available.
- Set wait or halt bit in DTF.
- Pass control to #CAF3.

f:i&J If #CAF2 found no space: #CAF3
0 Halt if dedicated system or program.
0 Wait fc;>r space in format 5, reread format 5, call #CAF2, and go to(®.

If #CAF2 found space:
0 Format file: Disk lOS

- Write X'FF's to index if indexed file.
- Write X'40's to data area if direct file or X'OO' if not direct P or T file.

«) Save start and end of data and start and end of index in DTF. #CAF3
0 If P or T file, write format 1 to VTOC. Disk lOS
0 Set allocated bit in DTF and FSB. #CAF3

Return to user program.

Note: Allocate messages, except duplicate key and diskette message, are provided by #CAMG, which interfaces #CAMG
to SYS LOG (dupl icate key messages issued by # CSD K and diskette messages issued by # CAR 1).

If allocate message or halt:
G Build SYSLOG parameter list with program data:

- File name.
- File label.
- Forms number.
- Work station 10 or communication line number as required.

0 Call SYSLOG to issue message/halt.

• Call end of job transient when 2 option taken to halt. #CLXS
#CAMG

Return to calling module.

Diagram 3.3 (Part 4 of 4). Perform Normal Allocate Function

Method of Operation 3-25

Licensed Material-Property of IBM

From: User Program a INPUT ____ _

XR2

(DTF chain

(lOB and" Buffers

Main Storage

Transient Area:
#CAS1
#CAF1
#CAF2
#CAF3
#CAPS
#CAS2

User Area:
#CAKS

User Program

FSB
AFA F1
VTOC F1
F5

DESCRIPTION

L...::;:0CESS

po
II Build and place on queue a format 1 and

FSB for each file to be allocated

fJ Allocate old files and prepare to allocate
new and load to old files

II Keysort nonshared indexed files accessed
by indexed sequential access method

II Allocate new and load to old disk files

D Process each preopen disk DTF requiring special allocate.

Build format 1 and FSB:

To: User Program

0 If file specification block (FSB) exists (file statement specified) build format 1 into FSB format 1.
0 If no FSB for requested file, assign area and build format 1 from DTF information.
0 Create or update FSB.
G Create or update AFA format 1.
0 If P or T file not in AFA or not on FSB chain, search VTOC for file by label (and date if specified).

• Return .

IfJ If any file successful, call #CAS2 to do the following for each successful DTF:
0 If disk DTF:

- Complete AFA format 1.
- Assign high key bucket if indexed file.
- If load to old, set load to old to do bit in request block (RB) and set new creation date.
- If not load to old, indicate file allocated in DTF and FSB.
- Indicate in FSB and RB if keysort required.

Diagram 3.4 (Part 1 of 2). Perform Special Allocate Function

3-26

Licensed Material-Property of IBM

OUTPUT ___ _

XR2

(Chain of allocated
DTFs

Allocated disk
files

MODULE/
ROUTINE

#CAS1

#CSVF
#CAS1

#CAS2

OEseR IPTION
MODULE!
ROUTINE

• If new disk file: #CAS2
- Indicate new file to allocate in RB.
- Turn on new file switch in DTF.
- Update AFA format 1.
- Assign high key bucket if required.

II If keysort is needed, call allocate push/pull transient (#CAPS) and pass control to it.

From this point, special allocate functions same as normal allocate.

Use Diagram 3.3, enter at DGand continue to end.

II Special allocate functions same as normal allocate for new or load to old disk file allocate.

Use Diagram 3.3, enter at II and continue to end.

Diagram 3.4 (Part 2 of 2). Perform Special Allocate Function

Method of Operation 3-27

Licensed Material-Property of IBM

From: User Program INPUT ____ _
~OCESS

XR2

(DTF chain (closed)

Main Storage

Transient Area:
#CAD1
#CAD2
#CAPS
#CAD3

User Area:
#CAKS

User.Program

DTF
FSB
AFA F1

DESCRIPTION

o Perform first pass processing

D Keysort nonshared indexed files used with
indexed access method

D Update format 5s

D Check DTF device code. If not disk, deallocate device and return to user program.

Check each DTF for keysort request:
• Search file specification block (FSB) for name match.
• If keysort requested:

- Indicate keysort request in FSB and request block (RB).
- Gotofl··

• Assign VTOC format 1 buffer.

Set format 1 interlock.

If free disk space request:
• Ensure nonshared file.
• Ensure valid end of file extent.
• If ignore format 5 processing bit not on in DTF, set on bit in RB to handle F5's.

If file delete request, indicate in DTF to delete as scratch file.

If file deallocate request:
• Update last date' indicator for new files or old S files.
• Write active format 1 to VTOC for P and T files.

Diagram 3.5 (Part 1 of 2). Perform Deallocate Function

3-28

Licensed Material-Property of IBM

...

To: User Program

~ OUTPUT _ __

DTF

AFA F1

VTOC F5

MODULE/
ROUTINE

#CAD1

#CAD2

#CSVF

OEseR IPTION

If S file and ignore format 5 processing bit not on in DTF, set on bit in R B to handle F5s.

Note: Only deallocate function allowed for shared files.

If handle F5s bit on in RB, load #CAD3 and go to D.
Return to user program.

fJ If keysort request bit on in RB:
• Call allocate push/pull transient (#CAPS) and pass control to it.
e Push user program to disk and set up 14K region in user area.
• Load keysort interface (#CAKS) into first 2K of user area.
• From this point, keysort functions same as for normal allocate.

Use Diagram 3.3 and enter at 6.
At end of keysort operation, return to this diagram at lie.

iI Enqueue format 5 interlock at 3 level.

Read VTOC F5 from disk and write to buffer.

Process each DTF, determining start and end extents to be freed.

Add or merge format 5 entries in buffer as required.

Issue message if: .
• Part of area already free.
• Format 5 too fragmented to use.

Write updated buffer out to VTOC F5.

Return to user program.

Diagram 3.5 (Part 2 of 2). Perform Deallocate Function

Licensed Material-Property of IBM

MOOULE/
ROUTINE

#CAD2

#CAD1

#CAPS

#CAKS

#CAD3

Disk lOS

#CAD3

Disk lOS

#CAD3

Method of Operation 3-29

From: Calling Program

.INPUT ----. a...::.;:0CESS

XR2

(DTF (preopen)

Main Storage

Transient Area:
#DMOP
#WDOP
#DROP
#DMOF
#DD10P
#DD20P
#BSOB

User Area

User Program

AFA format 1

----~ ::> D Prepare to open DTFs

II Open disk DTF

II Open work station format load member DTF

II Prepare to open other DTFs

II Open diskette DTF

II Open printer DTF

fJ Open data communications DTF

II Chain opened DTFs together

-------:Tl

~ OUTPUT ___ _

(XR2

CTF

) (lOB
I/O buffer

AFA format 1

To: Calling Program

OEseR IPTION
MODULE/
ROUTINE

D Check DTF for valid device type. #DMOP

If device invalid, call SYSLOG to issue error message.

Mark all DTFs to be opened by setting switch in DTF.

If not end of DTF chain:

• Point to next DTF.

• Return toD.

o Point to first DTF on chain.
• If disk DTF, indicate disk open required.

• If work station DTF, indicate work station open needed.

Point to next DTF and repeat above, until end of chain is reached.

Determine next transient to call:

• If disk open required, go to 0.
• If work station open needed, go to II.
• Otherwise, go toll.

Diagram 3.6 (Part 1 of 3). Open Disk, Diskette, Printer, Work Station and Data Communications DTFs

3-30

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

If) Perform all diagnostic checking of DTF. #DD10P

If error found, call SYSLOG to issue error message.

If dummy open, initiate all required DTF fields.

For ZPAM and ISRI, complete DTF and load required data management into user area if required. (Relocating
loader SVC 52).

Apportion lOBs and buffer area as needed. #DD20P

Complete all DTF fields as required.

If requested, build master track index.

Build high key bucket if needed. Disk lOS

If work station open needed, go to g. #DD20P

Otherwise go to II.
D Check DTF for valid device code. #WDOPN

If user library assigned, scan library directory for format load member name specified in DTF. Disk lOS

If no library assigned, or if load member not in library, scan system library for format load member.

If format load member found: #WDOPN
0 Ensure load member created by $SFGR and total sectors greater than zero.
0 Read format load member index. Disk lOS

• Count number of format index entries. #WDOPN
t:I If format index entry count exceeds maximum defined in DTF, call SYSLOG to issue message.

• If previous format load member opened, ensure no duplicate format names exist.

• If no errors found:
- Move format indexes to location specified in DTF.
- Update index address and number of index entries in job control block (JCB).

When all work station DTFs are open, go toDto open next DTF or chain together opened DTFs.

II Point to first DTF on chain: #DMOF

" •
If printer DTF, go to mil.

• If diskette DTF, go toB.

e If data communications DTF, go to O.
• If special DTF, indicate DTF opened.

e Point to next DTF on chain: •
o If end of chain reached, go to m.
• If not end of chain, go to DO.

m Update active format 1 . #DROP

Ensure file properly allocated.

Initialize DTF to postopen status.

For existing files:

• Ensure file organization and access method compatible.

• Supply, or check record length.

Diagram 3.6 (Part 2 of 3). Open Disk, Diskette, Printer, Work Station and Data Communications DTFs

Method of Operation 3-31

Licensed Material-Property of IBM

OEseR IPTION

Build and initialize lOBs:
o For output files, write internal control record if required.
o For input files, read first data area and set internal control record and/or track alignment indicators in DTF.
o For basic exchange files, determine if full track I/O possible.

Initialize DTF end of file field.

Update DTF next record pointers and/or prime buffer for add file.

Format lOB to postopen status for processing data:
o For full track I/O requests, adjust to read or write to track boundary.
o For basic exchange output file, clear output buffer.

Process diagnostic errors.

Load either diskette data management or sector data management to diskette (SVC 52) into user area if required.

Go tolDJGto open next DTF or to chain together opened DTFs.

Rm Perform all diagnostic checking.

If error found, call SYSLOG to issue error message.

Obtain space within assign/free for lOB.

Initialize lOB.

Initialize all required DTF fields.

Issue format and skip to line one command to printer.

Route printer lOBs to work station I/O control handler (WSIOCH) or to spool intercept routine (#SPINT).

Go to D Gto open next DTF or to chain together opened DTFs.

II Open data communications DTF (Diagram 1.1 in SSP Logic: Data Communications).

Go toDGto open next DTF or to chain together opened DTFs.

mJI Build backward chain to include all opened DTFs.

Return to calling program.

Diagram 3.6 (Part 3 of 3). Open Disk, Diskette, Printer, Work Station and Data Communications DTFs

3·32

Licensed Material-Property of IBM

MODULE/
ROUTINE

#DROP

Diskette lOS
#DROP

#DMOF

WSIOCH

#DMOF

#BSOB

#DMOF

Program Organization

Figures 3-2 through 3-6 show the logic flow of functions
needed to start a job. They are:

• Initiator

• Normal allocate

• Special allocate

• Deallocate

o Open

Licensed Material-Property of IBM

Program Organization 3-33

3-34

Command Processor
or

Step Termination
or

Release

Initiator
Mainline

(#CIMU

For Each
Statement

After Each
Module

Verb

/1*
/I **
/lATTR
/I COMPilE
/I DATE
/I FI lE
/I FORMS
/I IMAGE
/I INCLUDE

(if MRT)
/I LIBRARY
/I lOAD

(if MRT)
/I lOCAL
/I lOG
/I MEMBER
/I PAUSE
/I PRINTER
/I REGION
/I SWITCH
/I SYSLIST
/lWORKSTN

RUN Statement
Processor

r~ • '1- • ? • ' 'r, . ~ .' '. "I I , .., ~II.': \

Initiator
Error Handler

(#CIRN)

Supervisor
Attach
Transient
(#SVAU)

Figure 3-2. Initiator Control Flow

Licensed Material-Property of IBM

(#CIER)

Requested User
Program

Module
Called

#CIMS
#CIM2
#CIAT
#CICM
#CIDT
#CIVT
#CIFM
#CIIM
#CIIC
#CIMT
#CllB
#CllD
#CllM
#CllC
#CllG
#CIMM
#CIPS
#CIPR
#CIRG
HCISW
#CISl
#CIWK

(

Keysort
User If Interface
Program Keysort

(HCAKS)

Allocate

J Push/Pull

(HCAPS)

Diskette _If Diskett~ .. - If - Allocate
or Keysort Diskette

(#CAR1)

Allocate ~ t
Communicator

Mainline If Communications Allocate

Lines
(HCAML) (#CACM)

a
~

Printer

If Allocate

Printers -.
(#CAPTI

J New Disk File It
If New .. Allocate
Files --..

(#CAF1)

~

J~
Find Disk
Space

(#CAF2)

~ ,
~

Load to Old
If Load to ~ Disk File
Old Files .. Allocate

(#CAF3)

I ~ ...
~ ~

User
Program

Figure 3-3 (Part 1 of 2). Normal Allocate Control Flow

Program Organization 3-35

Licensed Material-Property of IBM

3·36

From: Allocate Routines

Message
Routine

(#CAMG)

, ,
To: Allocate Routines

•
lf2
Option~ EOJ

Figure 3-3 (Part 2 of 2). Normal Allocate Control Flow

Licensed Material-Property of IBM

User
Program

Special
Allocate
-Initial
Phase-
(#CAS1)

• If Any
Files

SUCiSSfUI

Else

...
...

.. ,

User
Program

Special

.. Allocate

.. -First Pass-

(#CAS2)

~ ..

Figure 3-4. Special Allocate Control Flow

Allocate Keysort
Push/Pull Interface

.. If Keysort _
Required

(#CAPS) (#CAKS)

"l r New Disk
File

New ..
Allocate

Disk Files .
(#CAF1)

~ "
Find Disk
Space

"l ~ (#CAF2)

Load to Old ..
Disk Files , •

Load to Old
Disk File
Allocate

(#CAF3)

"l
,

Program Organization 3-37

Licensed Material-Property of IBM

User
Program

~
,

.. Allocate Keysort
If Keysort Push/Pull Interface ...

(#CAPS)
... ..

(#CAKS)

Deallocate
Premainline

(#CAD1)
~

,

Deallocate Free F5 .. If Request to ..
Space If Disk Files Mainline

Free Format 5s ...
(#CAD2)

...
(#CAD3)

, ,

... User ...

.. Program

Figure 3-5. Deallocate Control Flow

3-38

Licensed Material-Property of IBM

Common .. Open 1
-..

(#DMOP)

User
Program , •

Disk
Open

(#DD10P)

,

Disk
Open

(#DD20P)

If No Work • ;
Station DTF

Work
Station
Open

(#WDOPN)

~ t , ~

Common
Open 2

(#DMOF)

....

...

lSee Diagram 1.1 in SSP Logic: Data Communications

Figure 3-6. Opon Control Flow

,

~
....
...

~

~

If Work Station
DTF but No Disk
DTF

If Diskette ..
DTF r

If Data

If No Wor k Station
No Disk DTF and

DTF

Diskette
Open

(# DROP)

C _ ommunlcatlons-----..--

8SC
Open l

DTF (#8S08)

Program Organization 3-39

Licensed Material-Property of IBM

3-40

Licensed Material-Property of IBM

Introduction

The functions that might be used to run a job are:

• Disk data management

• Sector data management to disk

o Diskette data management

o Diskette end of volume

• Sector data management to diskette

G Printer data management

o Work station data management

o Keysort

o Spool intercept

o Spool print writer

DISK DATA MANAGEMENT

Disk data management functions are performed by a mod
ule (#DDDM) that resides in the system nucleus. Figure 4-9
shows #DDDM control flow.

When the user program requests data management services,
the request is passed to the router routine. The router,
which is part of the disk data management module, deter
mines and passes control to the proper data management
module.

If disk data management is requested, control is passed to
the main driver routine within #DDDM. The main driver
routine examines the first attribute byte in the disk DTF to
determine the access method requested.

The proper access method driver receives control from the
main driver routine. The driver examines the operation
code in the disk DTF to determine which base function or
subroutine to call. Figure 4-1 shows the base functions
and subroutines used by the various access methods.

Chapter 4. Running a Job

The base functions, in conjunction with appropriate sub
routines, perform the requested disk I/O operation. Figure
4-2 shows the subroutines used by the four base functions.
The actual I/O operation is performed by disk lOS within
control storage.

Control is returned to the user program by way of the main
driver. Subroutines return control to the base function that
called them; base functions return control to the access
method driver that called the base function; drivers return
control to the main driver and thus control is returned to
the user program.

Consecutive Access Method

Figure 4-3 shows the control and data flow in a disk data
management operation using a consecutive access method.
Data and logic could flow in either or both directions,
depending on whether the operation is a retrieval, all
update, or an addition of records. Disk data management
gets each record from the data buffer or places it in the
next adjacent location in the data buffer. When disk data
management has filled or emptied the data buffer (a block
of records has been processed), the disk I/O supervisor is
called to transfer data between the data buffer and the disk.

Control information passes from the calling routine to
disk data management through the disk DTF block. Con
trol information passes between disk data management
and disk lOS through an lOB (see Data Areas Handbook),

Direct Access Method

Input

For an input operation, the calling program passes a relative
record number to data management which converts it to a
disk address and locates the record in the data I/O buffer
(see Figure 4-4). On input, if the record is not in the data
I/O buffer, disk data management calls disk lOS to read the
disk sectors containing the records into the data I/O buffer.
Disk data management places the address of the record in
the DTF. The calling program may retrieve the record
directly from the data I/O buffer.

Introduction 4-1

Licensed Material-Property of IBM

Base Function / Subroutine Name

X PUTD put data-ba f se unction

X GETD (get data-base function)

X PUTI (put index-base function)

X G ETI (get index-base function)

X SRGPI (get/put I/O interface-subroutine)

X SRUKE (check update key error~subroutine)

X SRNI E (get next index entry-subroutine)

Dr iver Driver Name

CONDRV X X Consecutive Driver

DIRDRV X X Direct Driver

IRADRV X X X X X Indexed Random Driver

ISQDRV X X X X X X I ndexed Sequential Driver

Figure 4-1. Base Functions/Subroutines Used by Access Methods

Base Function Name

X PUTD (put data-base function)

X GETD (get data-base function)

X PUTI (put index-base function)

X G ETI (get index-base function)

Sub routine Subroutine Name

SRRTS X X Convert R RN to SSSD

SRGPI X X X X X Get/put I/O interface

SRF1G X X Get format 1 values

SRF1P X X Update format 1 values

SRMOV X Move data to I/O buffer

Figure 4-2. Subroutines Used by Base Functions

4-2

Licensed Material-Property of IBM

Logical I/O
Input Data Processor
Processor Areas (Main Storage)

Calling
XR2 Disk Data

Program Management
(#DDDM)

(consecutive
access
methods-
drivers,
base func-
tions, and

DTF subroutines)

Output or Update

Input

Legend:

• Control Flow Data Flow

Figure 4-3. Consecutive Processing

Logical I/O
Input Data Processor
Processor Areas (Main Storage)

Calling Disk Data
Program XR2 Manage-

ment
(#DDDM)

Postopen
DTF

Key or Direct and
Record Indexed
Number Random
Storage Access
Area Methods

Legend:

• Control Flow Data Flow

Figure 4-4. Direct and Indexed Random Processing

Data
Areas

XR1

lOB

Data
Buffer
(one
block of
records)

Address Pointer

Data
Areas

XR1

lOB

Index
Buffer

Data
Buffer

Address Pointer

Licensed Material-Property of IBM

Physical I/O
Processor
(Control Storage)

Disk
lOS

Physical I/O
Processor
(Control Storage)

Disk
lOS

Scan, Load, or Add

Retrieve

Output

Output

Disk
File

Introduction 4-3

Update

When updating a record, disk data management retrieves
the record as described in the previous paragraph and passes
control to the calling program. After the calling program
has updated the record, disk data management receives the
address of the updated record, moves the record to its orig
inal position in the data I/O buffer, and calls disk lOS to
write the data I/O buffer. Any retrieved records may be all
blanks (as formatted by allocate) and be updated.

Output

For an output operation, disk data management receives
the address of the record, moves the record to its location
in the data I/O buffer, and calls disk lOS to write the data
buffer. Internally, each writing of an output record is
immediately preceded by a retrieval of that same record.

I ndexed Random Access Method

Input

The calling program passes a key value to disk data manage
ment in the key/storage area (Figure 4-7). Disk data
management uses the SCAN function to search for the key
in the index on the disk. The sector(s) containing the
requested logical record are read into the data I/O buffer.
The address of the record in the data I/O buffer is passed
to the calling routine via the DTF. The calling routine
can then obtain the record directly from the data I/O
buffer.

Update

When updating a record, the calling program must first
retrieve (input) the record as described in the previous
paragraph. After the call ing program has updated the
record, an update operation can be performed. At this
time, disk data management receives the address of the
updated record, ensures that the key value has not been
changed, moves the record to its original position in the
data I/O buffer, and calls disk lOS to write the data I/O
buffer. The index is not changed. Each writing of an
updated record must be immediately preceded by the
input of that same record.

4-4

Add

When adding a record to a file, disk data management
receives the address of the record and searches the index
area on disk to see if the key of the record to be added
already exists in the index. If the key is a duplicate, an
error completion code is returned to the calling routine
and the record is not added. For add and output opera
tions, disk data management moves the record to the
data I/O buffer and builds an index entry in the index
buffer. When either the index buffer or the data I/O
buffer must be written to disk, disk lOS is called.

Indexed Sequential Access Method

Disk data management processes indexed sequential files
only in ascending key sequence, normally starting with
the lowest key in the index (or the lowest key within spec
ified limits) and processing each record in the primary part
of the file (Figure 4-5).

Input

Sequential input is accomplished by consecutive reference
to each index entry and a retrieval of its associated record.
If the requested record is not in the data I/O buffer, disk
data management calls disk lOS to read the disk sectors
containing the record. When the last index entry in the
index buffer has been processed, disk data management
calls disk lOS to read the next sector of index.

Update

When updating a record, the calling program must first
retrieve (input) the record as described in the preceding
paragraph. After the calling program has updated the
record, an update operation can be performed. At this
time, disk data management receives the address of the
updated record, ensures that the key value has not been
changed, and moves the record to its original position
in the data I/O buffer. Each update operation should be
immediately preceded by a retrieve of that same record.
When the last record in the data !/O buffer has been pro
cessed, disk data management calls disk lOS to write the
data I/O buffer to disk if it contains any updated records.
The index buffer is not rewritten.

Licensed Material-Property of IBM

Input
Processor

Data
Areas

Logical I/O
Processor
(Main Storage)

Calling I

~
Disk r-. Program ~ XR2 Data
Manage-
ment

DTF ~

Current/
Last Key F=!>
Hold Area

F=!>
~

High/Low (Indexed
Limits

I V> sequential
Area access
(Optional) methods)

"

Figure 4-5. Indexed Sequential Processing

Add

When adding a record to a file, disk data management
receives the address of the record and compares its key to
the current key and last key values to ensure that the key
is in ascending sequence and does not already exist in the
file. If the key is not in sequence or is a duplicate, an error
completion is returned to the calling routine and the record
is not added. For add and output operations, disk data
management moves the record to the data I/O buffer .and
builds an index entry in the index buffer. When a buffer
is filled with added records or index entries, or when an
input request follows an add operation, disk data manage
ment calls disk IDS to write the buffer(s) to disk.

Indexed Sequential/Random Input Access Method

Three types of input operations are performed by the
indexed sequential/random input access method. The user
may issue a random get and from that point go either for
ward or backward to sequentially access disk storage.

For a random get operation, $Fl KAD contains the address
where the record key is located. Record retrieval is the
same as for an indexed random input operation.

v

Data
Areas

XRl

lOB

Index
buffer

Data Buffer

~

~

A

"

....
~

Physical I/O
Processor
(Control Storage)

Disk
lOS

Add

Retrieve

Output

~ r

,,1
~" { Disk

File Index

\

....

~\ Disk
File

\

Get forward is another possible operation. Record
retrieval is the same as for an indexed sequential input
operation. The record is the next record relative to the
last get operation.

Get backward is the third possible operation. Record
retrieval is the same as for an indexed sequential input
operation. The record is the previous record relative to
th.e last get operation.

Description of Access Method Drivers

Consecutive Driver

Input: For consecutive input, a relative record number is
internally generated, (open initializes this DTF field
($Fl RRN) to X'D') and this record is retrieved using the
get data base function. Then the relative record number
is bumped by one and control is returned to the user. The
only valid completion code other than normal (X'40')
and I/O error (X'41') is end of file (X'42'). The retrieved
record is located in the I/O buffer and the DTF field
$F1WKB points to the leftmost byte of the record.

Introduction 4-5

Licensed MaterJal-Property of IBM

I

(
\

I

I
\

The user's I/O buffer must be large enough to contain a
complete logical record (having worst-case sector boundary
alignment) since this operation functions in locate mode.

Output: For a consecutive output operation, the DTF
field $F1WKB must contain the leftmost address of the
logical output record. The put data base function is called
to move the record to the I/O buffer and write the buffer
to disk when necessary. Multiple moves may be required
to move the record to the I/O buffer since it is not neces-

. sary to have on I/O buffer equal to or larger than the
record length. The .DTF field $FINXR is used to determine
the location for each output record. The only completion
code other than normal and I/O error is end of extent
(X'70').

Add: An add operation functions similar to an output
operation.

Update: Consecutive update first checks to ensure that the
previous operation was a get. If this check fails, a comple
tion code of X'45' is set to indicate an update operation
was not preceded by a get. When a valid update operation
is determined, the internal relative record number is decre
mented by one to point to the last record retrieved and the
record is put to the I/O buffer and disk if necessary.

Special Considerations for Consecutive Processing: When
SIAM is specified, the I/O buffer is written and/or read for
every operation performed. When doing an update opera
tion, the I/O buffer is reread between the get and put
operations. Therefore the user must move the retrieved
record out of the I/O buffer prior to doing the output
portion of his update.

Direct Driver

Input: When doing a direct input, the caller must have
the relative record number of the requested record in the
record address area ($F1 KAD), pointed to by the DTF.
$F1 KAD must contain the address of an area 3 bytes in
length if the RRN is a binary value or 10 bytes long if the
RRN is a decimal value.

4-6

A check is made to see if the requested record is in the
present I/O buffer. In any case, once the record is in the
buffer, it is located via $F1WKB and control is passed
back to the calling routine with a normal completion
code of X'40'. The only other return code from direct
input (except for I/O error) is X'44', record out of extent.
All direct input operates in locate mode thus requiring
that the user's I/O buffer be large enough to contain at
least one complete record with worst case sector boundary
alignment .

Update: Direct update first ensures that the previous
operation was a get and then the updated record is moved
to the I/O buffer and written to the disk if necessary. The
same restriction holds true for direct as for consecutive
update. (See Special Considerations for Consecutive
Processing.) A possible return code from direct update
operations is X'45', update before input.

Special Considerations for Direct Processing: Only three
operations are supported for direct processing. They are
the input, update and output op codes. Since a direct file
is considered to be full of blank records at allocation time,
a user may not add to a direct file. The output operation
forces an input followed by an update with data in manage
ment. Direct processing always computes the N-byte in
the lOB upon entry to any operation to enable dynamic
blocking during processing. The N-byte is computed to
be the value of the leftmost byte of the block length
($F1 BKL) minus one.

Indexed Random Driver

Input: Indexed random input obtains the key of the
requested record from the addressed location in $F1 KAD.
The key is compared to the prime key bucket to see if the
record is in the prime portion of the index. If the requested
key is higher than the prime bucket, the key does not exist
in the prime area so a check is made against the overflow
bucket. Again if the compare is high, the key does not
exist in the overflow and a return code of X'44' is set indi
cating no record found. If the key is found to possibly
exist in the prime index, a scan is issued with an argument
of high or equal. If the scan returns a high or no hit value,
the scan starts over in the overflow area with an equal only
argument. If the scan of the prime returns an equal indi~
cator, the record has been found and the R RN is retrieved
from the index buffer and the associated data record is
also retrieved. When the scan of the overflow area returns
an equal found, the R RN is retrieved from the index buffer
and then the associated data record is retrieved. If the
scan of the overflow yields a no hit value, a return code
of X'44' is set indicating no record found.

Licensed Material-Property of IBM

When a scan equal is returned from the scan function,
and the RRN has been located, the RRN value is con
verted to an SSSD value and that sector is read into the
data I/O buffer. Then the record is located in the I/O
buffer and the leftmost address returned by way of
$F1WKB, along with a completion code of X'40'. The
only return code other than normal from indexed random
input is record not found (X'44').

Add: Indexed random add expects the address of the key
for an add record to be in the DTF at $F1 KAD. The first
step of the add operation is to scan the prime and overflow
area if necessary to see if the key already exists. If the key
is found to already exist in either the prime or overflow
area, a return code of X'60', duplicate add attempted, is
set and control returned to the caller. If the key is not
found, the add operation may continue. $F1WKB must
contain the leftmost address of the record to be added.
A check is made to ensure that the record will fit in the
data area on disk. If it will not fit, a return code of X'70'
is set indicating end of extent. If the record will fit in the
extent, the record is moved to the I/O buffer and written
to disk if necessary. Next the index entry is built. A
check is made to ensure that the index entry will fit in the
index extent. If it will not fit, a return code of X'70' is
set indicating end of extent and control is returned to the
user. If it will fit, the index entry is moved to the index
I/O buffer and written to disk. The add key is compared
against the overflow key bucket and if the new key is
high~r, the new key is moved to the overflow key bucket.
The SSSD of the new key in the overflow key bucket is
also moved to the format 1.

Output: I ndexed random output first moves the data
record from the work buffer ($F1WKB) to the data I/O
buffer, and write it to disk if necessary. Next an index
entry is built and moved to the index I/O buffer and writ
ten to disk if necessary. No key sequence checking is
done and no checks are made to ensure that duplicate
records are not put to the file.

Update: Indexed random update first ensures that the key
of the record being updated is the same as the key of the
last record retrieved. If not an update key error (X'50')
is set and control returned to the caller. A check also
ensures that the previous operation was a get. If not, error
X'45' update before input is set and control is returned
to the caller. If all is well up to here, the updated record is
moved from the record buffer to the I/O buffer and writ
ten to disk. The same restriction holds true for indexed
update as did for consecutive update (see special considera
tions for consecutive processing).

Special Considerations for Indexed Random Processing:
When doing index random output, it is possible to put
duplicate keys to a file. When processing under indexed
random input, and duplicate keys do exist, only the first
key entry is accessible. When doing adds to a file, the sort
and merge bits in the F1 are set as follows:

Higher Lower
Than Than
Prime Prime

Higher
Than No
OVFL Setting Merge

Lower Merge
Than +
OVFL Sort Sort

Indexed Sequential Driver

Input: When doing indexed sequential input, the first
record retrieved is the first index entry followed by each
record, by key sequence in the index~ The first thing
that is checked is to see if processing is within limits. All
indexed sequential processing is processed as though
limits are specified. If limits are not specified, the limits
are set to the start and end of the file. When end of file
is reached and limits are specified, the open limits tran
sient may be called to set net limits. This transient call
is made only if a get request is received and the comple
tion code contains a X'42', end of file.

Update: Processing for update must be preceded by an
input of the same record. The record key is checked to
ensure that it has not been updated. If it has been updated,
the return code is set to X'50', update key error. The data
is moved from the record buffer to the data I/O buffer,
and written to disk if necessary.

Add: When doing an indexed sequential add, you must
first read the first record past the location into which
you want to add. The following example explains this
procedure.

Introduction 4-7

Licensed Material-Property of IBM

If the file you are adding to contains keys 1,2,5, 10,20
and 50, and you wish to add record key 3. You must first
read records 1, 2, and 5. At this point you may add rec
ords 3 and 4, in that order. If you wish to add record key
17, you must continue reading up to record 20. At this
point you may add records 11 through 19. If you wish to
add records greater than key 50, you must read to end of
file and at that point you may add as many records as there
is room in the file. Remember that each add must be in
ascending order by key.

Special Considerations for Indexed Sequential Processing:
Indexed sequential add operations may not be processed
under a file sharing environment. When processing a file
containing random adds and the index has not yet been
sorted, you do not have access to the records in the over
flow area (added records).

Indexed Sequential/Random Input Driver

This access method supports only input operations. Three
types of input may be specified.

• Random get - X'80' op code
The record key must be at the address contained in
$F1 KAD. The retrieval of this record is the same as
any indexed random input operation.

• Get forward - X'84' op code
This operation is the same as any indexed sequential
input operation. The next key, relative to the last get,
is retrieved.

• Get backward - X'82' op code
This operation causes the previous record, relative to
the last get, to be retrieved.

Each successive get is based on the last get operation,
except for a random get which only gets the record
requested. If the first operation is a get forward, the rec
ord referenced by the first index entry is the first record
in the file to be retrieved. A return code of X'42' is issued
whenever end of file is reached, either forward or back
ward. A X'44' is set if a random get cannot be found.

4-8

SECTOR DATA MANAGEMENT TO DISK (#DDSM)

Sector data management resides in the system library and
is loaded by disk open. It is provided for user and SSP
functions which require movement of considerable amounts
of data to or from disk. Sector data management utilizes a
single input/output buffer which is filled by a single read
operation, or written to disk with a single write operation.
Sector data management operates with no consideration of
logical record length.

Data Transfer Modes - Locate and Move

The base functions of #DDDM execute in one of two
modes of operation: locate mode and move mode.

In locate mode, a record is not moved after the data
management module places it in the data I/O buffer.
I nstead, the address of the record is placed in the DTF,
and the calling program retrieves the record directly from
the data I/O buffer.

In move mode, the base function routines in #DDDM
receives records from a calling program in an area (work
buffer) that is separate from the data I/O buffer. In all
output operations, the record is received from the calling
program's output area. The base function routine moves
the resident portion of the record from the work buffer,
calls disk IDS to write the data I/O buffer, then moves
the remaining portion from the work buffer.

For writing data to disk, data management operates in
move mode.

For reading data from disk, data management operates
in locate mode.

Double Buffering

Consecutive input and consecutive output files can use
double buffering. In double buffering, one buffer twice
the size of the specified block length is used.

Licensed Material-Property of IBM

DISKETTE DATA MANAGEMENT (#DRDM)

Diskette data management resides in the system library and
is loaded by diskette open. Data management is capable of
processing System/32 created, System/34 created, and basic
data exchange files.

Five access types are provided:

1. Put basic record (PBR)

2. Get basic record (GBR)

3. Put system record (PSR)

4. Get system record (GSR)

5. Add system record (ASR)

Basic data exchange files can be described as unspanned
fixed length logical records of length less than or equal to
sector size with a fixed physical record size equal to the
sector size (sector size is 128 bytes or 256 bytes). Physical
records may be blocked. Data management ensures that
logical records of less than sector size are properly padded
with binary zeros on output and that the logical records are
properly deblo'cked on input.

System files can be described as blocked/spanned fixed
length records in fixed-length blocks. Records can span
sector and volume boundaries. Record length must not
exceed 4K (4096 bytes). Block length (physical I/O buf
fer size) should be a multiple of the diskette sector size and
equal to or greater than the record length. For diskette 1,
a block length of 3-1/4K (3328 bytes), which equals one
diskette track, should be used if possible for standard for
mat diskettes. For extended format diskettes, ideal buffer
size is 4K (4096 bytes), which is equal to the extended
format diskette track size. For diskette 20, a block length
of 6-1 /2K (6656 bytes) should be used for standard format
diskettes and a block length of 8K (8192 bytes) should be
used for extended format diskettes.

Either move or locate mode can be used for output as well
as input. Using move mode, records are moved by data
management between the physical input/output buffer and
a logical record area provided by the calling program. Using
locate mode, the physical I/O buffer is shared by data
management and the calling program, with a record pointer
to the leftmost byte of each input or output record set by
data management in the DTF at $11WKB. When using
locate mode for output, record size should be a multiple
of 128 and may not span I/O buffers.

If a block length (physical I/O buffer size) is equal to the
size of a track and track I/O is requested by the calling
program, data management will operate with full track
I/O requests and may process only part of the I/O buffer
on the first call. Using move mode, track alignment is
transparent to the calling program.

Using track I/O with locate mode, the calling program
must be able to process a partial I/O buffer (as small as
128 bytes). For input files, diskette data management
places the partial buffer of data within the last part of the
input buffer and sets a pointer ($11WKB) to the first byte
of valid data. For output files, diskette open sets this
pointer indicating to the calling program where data should
begin within the partial buffer. If the initial buffer size
($11 BKL) which is calculated by open causes a record to
span the I/O buffer, the calling program must block or
deblock the record.

After the first partial buffer is processed by diskette data
management, by calling diskette IDS to write or read data,
$11WKB is restored to point to the first byte of the I/O
buffer, and I/O buffer size ($11 BKL) is restored to equal
one track (3328,4096,6656, or 8192 bytes).

DISKETTE END OF VOLUME (#DRNV)

The end of volume transient routine is normally called by
diskette data management after the last sector of data on a
diskette has been processed.

For input files, the data set label is rewritten to the diskette
VTOC if the expiration date has been changed.

For output or add files, the data set label is written to the
diskette VTOC, with a volume sequence number and an
indication that the file is continued to another diskette.

A diskette insert message is issued for the system operator
and processing is suspended.

When a new diskette is inserted and ready for input files,
EOV calls VTOC read/write to search the diskette VTOC
for a data set label corresponding to the file being pro
cessed. When it is found, the volume sequence number is
checked. The OTF and lOB are then updated and process
ing continues.

I ntrodu~tion 4-9

Licensed Material-Property of IBM

When a new diskette is inserted and ready for output files,
EOV ensures that the diskette contains no active files. In
doing so, expired files may be deleted. The file being pro
cessed is allocated at the beginning of the diskette data
area and processing continues.

EOV occurs without the calling program regaining control.
An indicator is set to let the calling program know that a
volume transition has occurred.

In case of a permanent diskette write error during data out
put, diskette data management calls close to issue an error
message which has a continue option. If continued, the file

,being written is cut off at the end of the last good block of
data written and end of volume is called to continue the file
to another diskette.

SECTOR DATA MANAG EMENT TO DISKETTE (#DRSM)

Sector data management resides in the system library and is
loaded by diskette open. Sector data management is capable
of processing System/32 and System/34-created files. It is
provided for System/34 SSP functions which require move
ment of considerable amounts of data to or from diskette.
Sector data management uses a single input/output buffer
which is filled by a single read operation, or written to
diskette with a single write operation. Sector data manage
ment operates with no consideration of logical record length.

PRINTER DATA MANAGEMENT

Printer data management is an SSP function that is part of
disk data management. While in use, printer data manage
ment resides in the system nucleus of main storage along
with disk data management, work station data management,
and printer IDS.

Printer data management's main function is to convert user
print requests within the printer DTF to printer lOB
requests to be passed to the printer IDS.

Printer data management uses move mode to transfer data
from a user-supplied logical data area into a physical data
area. The data is then printed from the physical data area,
also referred to as the I/O buffer.

When the printer data management module (#DPDM) is
entered, the completion code ($PRCMP) is set to X'40' to
indicate normal completion.

4-10

Printer data management then moves the skip and space
values from the DTF to the lOB ($IOBPSPA).

If print is requested in the DTF, the data to be printed is
moved from the user supplied logical buffer into the physi
cal buffer. Also, the data string length is moved into the
printer lOB ($IOBPLNG), and a print indication is set in
the lOB control byte ($IOBPCTL).

DTF attribute byte three ($PRAT3) is tested to see if forms
alignment is requested and print spool is not active. If both
conditions are met, the printer alignment transient (#DPAL)
is called to supply forms alignment information to the sys
tem operator. After the system operator aligns the forms,
#DPAL returns control to the user program.

The prepare print buffer supervisor call instruction is
issued. This SVC inserts printer control codes into the
print buffer to effect the requested skip and space opera
tions; it also maintains a record of the current line number
in the printer lOB.

Printer data management moves the current line number
from the lOB ($IOBPCLN) to the DTF ($PRCLN), and
checks for page overflow. If overflow has occurred, the
overflow completion code (X'48') is set in the printer DTF
($PRCMP).

Printer IDS is then entered. Upon return from IDS, printer
data management waits until the contents of the print buf
fer have been moved to the printer. Then the lOB status byte
($IOBPSTA) is checked for a permanent error. If a perma
nent error has occurred, the DTF completion code
($PRCMP) is set to X'41'. Control is then returned to the
user.

WORK STATION MANAGEMENT

Work station management allows the application program
mer to present data on a display screen by providing only a
string of data fields. The data is displayed on the screen
in predefined format. Conversely, on input, the formatted
data is taken from the display screen and returned to the
user as a string of data fields. All device-dependent control
characters, orders, constants, and field attribute characters
are inserted or deleted by work station management. The
work station management component is made up of two
parts: a screen format generator routine and a data manage
ment routine.

Licensed Material-Property of IBM

WORK STATION DATA MANAGEMENT

Work station data management is a supervisor routine
which runs as a subroutine under the user task and controls
all I/O requests to the work stations. Work station data
management is composed of a nucleus resident mainline
module and transient routines. The transient routines pro
cess requests not handled by the mainline routine.

Two versions of the work station data management are
used. Either a main storage resident version or a transient
version can be used.

An SVC is issued by the application program for work sta
tion data management services. Address of the work station
or printer OTF is in index register 2 (XR2).

When the work station data management mainline module
is entered, a series of diagnostic checks is made on the
request. If terminal errors are encountered, the task is ter
minated with the appropriate termination code. If less
serious errors are found .. control is returned to the applica
tion program with a return code in the OTF. The symbolic
terminal name is resolved into a terminal unit block (TUB)
address. If the operation is a:

• Put: The format index is scanned for the disk address
of the requested format, and the text and field descrip
tor table (FOT) is read into the data communications
buffer area. The application data and the FOT are
scanned, inserting the data in the appropriate place in
the text stream. If any indicators are specified for over
rides in the FOT, the indicators are checked as each field
is processed. The lOB in the TUB is marked for a put
operation and if the request is for a put-wait, a wait is
issued on the TUB. When the wait is satisfied, or
immediately for a put-no-wait, control returns to the
application program by way of the instruction address
register (JAR).

• Invite input: The invite bit in the work station lOB is
set on and control returns to the user by way of the
IAR.

• Accept input: The invite input count (TCBINVCT) is
checked for zero or no outstanding invites. If this is the
case, control returns to the application program with the
appropriate return code. If (TCBINVCT) is nonzero, a
general wait is issued. When the wait is satisfied, the
address of ttle completed lOB is in XR1. If TUBIIS is
on, the input is in response to an explicit invite input,
and the data is read into the user program record area. If
TUBIMI is on, this is data with a program request. If the
program is an MRT, MRTMAX is checked to see if this
request will exceed the maximum number of requesters.
If the limit has been reached, the noskip bit is set off in
the TU B and the wait reissued. If not, the data is moved
to the user area and control passed to the application
program.

• Get: The invite bit is set on in the lOB and a wait on
the lOB takes place. Upon completion of the wait, the
data is read into the user's record area and control
returns to the application program.

• Stop invite input: The terminal unit block is checked to
see if the invite operation had ended.llf it has completed,
the application is notified by way of a return code that
the stop invite failed and the data is available. If the
invited TUB is incomplete, the invite is canceled and the
user is notified that the operation was successful.

• Put overrides: Th is operation is handled the same as a
put, with the exception that only the FOT is read into
the data communications buffer. The text stream is
constructed from the fields that have indicators specified
for overrides, using the appropriate indicator settings.
Only the fields or attributes using overrides is sent to the
display.

• Acquire terminal: The request is diagnosed, and if valid,
#WODQ attempts to attach the specified work station to
the user program. If the work station is unavailable, the
application has the option of enqueing the work station.
If the option is not specified, a return code notifies the
application that the acquire has failed for that reason.
If the work station is available, it is attached to the
application. A stop invite is issued and control returns
to the user.

Introduction 4-11

Licensed Material-Property of IBM

• Release terminal: A call is issued for transient #WOOG
which dequeues the TUB from the application program.
If the application is an M RT program with more request
ers queued (M RTMAX exceeded), the next queued
requester will be posted complete. The released termi
nal unit block is then passed to the command processor.

• Get terminal attributes: A call is issued for transient
#WOOQ which will build, in'the application program
record area, a series of data bytes describing the follow
ing attributes of the specified work station:
- Allocation status
- Screen/printer
- Screen size
- Online/offline

• Save, restore, print, roll, erase, or clear: #WOOB builds,
in the data communications buffer, a data stream to exe
cute the various commands.

KEYSORT

The function of keysort is to arrange indexed disk file
index entries in ascending order based on the key portion
of the index.

Figure 4-6 is an overview of the keysort program. Index
entries are sorted to produce an ordered index.

The keysort user must provide a 12K-byte area in main
storage. Figure 4-7 shows how this area is used.

S
C
P

SP I ailing
I PLiST I ... Keysort ... I PLiST I

rogram

I

K
A

eysort ~

rea

Unordere
Index

Keysort
Workfile

Legend:

d

Control Flow

,

~ -/

....
)

I

'---""'o-a-ta--=F-'o-w---'>

I F1 Image I
~ ..

1\ -'\
~ r

rC" :> -
r--- .--' -
'- --'"

....... _---/ "''''''''---------~ '-...r----------
""--_/

-

Figure 4-6. Keysort Program Overview

4-12

Licensed Material-Property of IBM

-.

I F1 Image

~

.... r-----
') -

t"-.... -

I

:;:;
-'"

-'"

-f(
'I

Ordered
Index

The user must also provide a 12-byte keysort parameter
I ist with X R2 pointing at the list. The parameter list is
formatted as follows:

0 LlSTID DKACB

2 F1 image 3

4 KS partition size 5

6 Ret cond byte keylength 7

8 Duplicate key 9

10 Return to keysort 11

The first 6 bytes are set by the calling program and the
last 6 are set by the keysort program.

The parameter list fields are defined as follows:

Displacement Length Description

o Parameter list ID, C'K'.

Duplicate key action control
byte (DKACB):

• Bit 0 (X'80') - Activates
duplicate key checking.

• Bit 1 (X'40') - Activates
detail duplicate key com-
unication (if bit 0 also on).

• Bits 2-7 - Reserved (must
be 0).

2-3 2 Pointer to beginning of format 1
image in translatable storage.

4-5 2 Keysort partition size (bytes).

Displacement Length Description

6 Return Condition Byte:

• Bit 0 (X'80') - Duplicate
key detail return.

• Bit 1 (X'40') - Duplicate
key summary return.

• Bit 2 (X'20') - System
error return.

• Bit 3 (X'10') - I/O error
within index.

. • Bit 4 (X'08') - I/O error on
work file - index scrambled.

• Bits 5-7 - Reserved.

Note: The remainder of the list is set only if the Return
Condition Byte bit 0 is on.

7

8-9

10-11

Key length.

2 Pointer to beginning of dupli
cate key.

2 Address in keysort to return to
after detail duplicate key pro
cessing by calling program.

'ntroduction 4-13

Licensed Material-Property of IBM

After a special return to the calling program for detail
duplicate key processing occurs, the calling program mayor
may not return to keysort. If the calling program does not
return, the index is invalid. If the calling program does
return, the duplicate key is retained and processing con
tinues according to the current duplicate key action control
byte.

A system error special return is triggered when problem
determination is made by keysort. This condition may
result from an invalid parameter list, an invalid format 1
field, or a processing error by keysort.

All keysort lOBs are constructed so that Disk IDS will not
i~sue I/O error messages. Permanent disk I/O errors fall in
one of three categories during keysort: .

1. Those occurring within the index.

2. Those occurring on the keysort work file after the
Index has been partly altered.

3. Those occurring on the keysort work file where
the Index has not been altered.

An I/O error in category 1 results in bit 3 of the return
condition byte being set and a final special return to the
calling program.

An I/O error in category 2 results in bit 4 of the return
condition byte being set and a final special return to the
calling program.

An I/O error in category 3 results in keysort automatically
restarting and performing the indicated sort and/or merge
without using a work file. This category does not cause a
special return.

Logging duplicate key messages, when necessary, is the
responsibility of the calling program because no single set
of options and resultant actions satisfies the requirements
of all calling functions.

The modules that make up the keysort program are:

Module Name Function

#DDKAA Keysort control (including common)

#DDKAB Set preliminary internal values

#DDKAC Design sort

#DDKAD Auto-allocate work file

#DDKAZ End of assignment phase

#DDKEP End of pass

#DDKLL Three-phase sort control

#DDKSS Sort- in- place

#DDKWG Deblock from work file

#DDKWP Block for work file

#DDK1A Phase 1 control

#DDK1E Phase 1 internal sort (repl/sel)

#DDK1G Deblock and degap from input

#DDK1 R Read input

#DDK2A Phase 2 control

#DDK2E Phase 2 intermediate merge

#DDK3A Phase 3 control

#DDK3E Phase 3 final merge

#DDK3P Block and regap for output

#DDK3W Write output

Figure 4-12 shows the control flow between keysort pro
gram modules. Refer to this figure when using the keysort
diagram.

4-14 Licensed Material-Property of IBM

SPOOL INTERCEPT

Spool is an optional feature that intercepts system printer
commands and places them on disk storage, creating a print
queue. When requested, the spool writer retrieves records
from the spool queue and outputs them to the system
printer.

The spool intercept routine resides in the system nucleus
portion of main storage. Intercepted print lines are com
pressed to remove strings of more than three blanks. This
compressed data along with line control information is
then written to the spool file.

User Program

(request for
printer 105)

Printer Data
Management

Printer 105

The spool file resides on disk and is made up of a primary
file and up to five equal size extents. The primary file,
allocated at IPL time, contains information about the
spool file entries as well as data areas for the compressed
print records. The spool file extents are allocated sep
arately, and only when the primary file and all previously
allocated extents become filled. The size given for the
spool file at system configuration time is the size of the
primary file in number of blocks.

When space is no longer available in the spool file, the error
message SPOOL FILE IS FULL is issued. The system
operator can display the print queue to determine if the
print writer can be started to remove entries from the print
queue to free up space in the spool file. The SPOOL FI LE
IS FULL message can be responded to with a retry option
when spool file space is available. If there are no com
pleted entries, the existing spool file is not large enough
to accept more records. A CONTINUE option will close
the-spool file, post the print writer to indicate print output
exists, and issue another halt indicating the spool intercept
routine is waiting for the spool writer to complete. When
the writer completes and the last halt is responded to,
spool intercept attempts to obtain file space again and con
tinue processing.

Spool
Intercept

Licensed Material-Property of IBM

Introduction 4-15

SPOOL PRINT WRITER

The spool print writer runs in main storage to print output
from the print queue. The writer is loaded only when
output exists to be printed and remains in main storage
only while printing entries from the print queue. The
writer operates as a utility program, independent of the
rest of the system, and requires an 8K-byte user partition.
An optional autowriter feature exists which causes the print
writer to be loaded without operator command whenever
output exists in the print queue. If the autowriter feature
is not selected at system configuration time, the operator
must issue a START PRT command to initially evoke the
print writer.

Spool
Print
Queue

Print Commands
t---....,, Spool Print Writer t---------....I,

and Data

Once the START PRT command is issued, the writer
prints until the queue is empty or a command issued. If
the command issued is STOP PRT, the message WRITER
STOPPED is displayed and end of job called.

After data has been printed from the spool file, the disk
space is freed up. The free entry is placed on the available
queue to allow reuse by spool intercept.

4-16

Printed
Output

Licensed Material-Property of IBM

Method of Operation • Work station data management function

This section contains functional diagrams for routines used
to run a job. They are:

o Keysort function

o Spool intercept function
o Disk data management functions

• Spool print writer function
• Sectorized disk data management functions

• Diskette data management functions

o Diskette end of volume function

• Printer data management function

From: Calling Program

~INPUTI ~OCESS

~ . -
Disk file Q. Perform disk data management function

I I
I (Diagram 4.1)

0 Perform sectorized disk data management

~o
function (Diagram 4.2) -

Unordered index Sort index entries for indexed disk file

I ~D
(Diagram 4.7)

~
Diskette file Perform diskette data management function

I ~.
(Diagram 4.3)

~
Diskette file Perform diskette end of volume function

I ~.
(Diagram 4.4)

H
Logical I/O area Write printer data (Diagram 4.5)

I I 0

Perform work station data management ~ function (Diagram 4.6)

Spool request >. Perform spool intercept function

I ~.
(Diagram 4.8) I

Spool print queue Print records from spool file
(Diagram 4.9)

To: Calling Program or

r OUTPUT

Disk file

I
~ Ordered index

~ > Diskette file

~ > Diskette file

Y > Physical I/O area

~ > Spool print queue

~ > Printed output

Control Storage End-of-Job Transient ($EOJ)

Diagram 4.0. Overview of Running a Job

Mothod of Operation 4-17

Licensed Material-Property of IBM

From: Calling Program
INPUT ____ _

~OCESS

(XR2
DTF

Main Storage

System Nucleus:
#DDDM

• Main Driver

• Access
Drivers

• Base
Functions

• Subroutines

User Area

User Program

o Determine file type and access method

fJ Read or write disk data

II Update DTF

• OUTPUT ___ _

(XR2
(DTF

I/O buffer

.. --------------------~ To: Calling Program

MODULE/
DESCRIPTION ROUTINE

D Enter disk data management from calling program. #DDDM

Ensure DTF is open. Router

Inspect DTF device code ($F1 DEV) to determine data management type requested.

If disk data management, call main driver (MAINDRV).

Do sector enque for add operation.

Inspect DTF attribute bytes to determine access method requested. MAINDRV

Call driver corresponding to requested access method (Figure 4-8).

fJ Inspect DTF operation code ($F10PC) to determine base function to call (Figure 4-8). Appropriate
Driver

Call appropriate base function.

Determine subroutines to call (Figure 4-8). Appropriate
Base Function

Update lOB for lOS use.

Do sector enque when necessary for update.

Diagram 4.1 (Part 1 of 2). Perform Disk Data Management Functions

4-18

Licensed Material-Property of IBM

OEseR IPTION
MODULE/
ROUTINE

Call disk lOS to perform read/write operation. SRGPI

Do sector deque for update. Disk lOS

II Set completion code in DTF. Appropriate
Driver

Update DTF pointer.

Do sector deque for add operation.

Return control to user program. MAINI?RV

Diagram 4.1 (Part 2 of 2). Perform Disk Data Management Functions

Method of Operation 4-19

Licensed Material-Property of IBM

From: Calling Program
INPUT ____ •

~OCESS

(XR2
DTF

Main Storage

User Area:
#DDSM

Disk file

OESeR IPTION

D Prepare to read or write disk data

fJ Process block of data

II Update DTF

D Execute initialization routine and prime buffer for input or add files.

Update DTF record pointers for current record or block.

Check for end of data: If end of input data, return to caller.

D Read or write complete I/O buffers.

Issue SVC instruction for disk 105 services.

II Set appropriate completion code in DTF.

Return control to user program.

Diagram 4.2. Perform Sectorized Disk Data Management Function

4·20

Licensed Material-Property of IBM

• OUTPUT ...:1 __ _

...

Disk File

To: Calling Program

MODULE/
ROUTINE

#DDSM

Disk 105

#DDSM

(XR2
DTF

Main Storage

User Area:
#DRDM

or
#DRSM

Diskette File

From: Calling Program

~OCESS

D Prepare to read or write diskette data

fI Process record or block of data

II Update DTF

I OUTPUT ___ _

(XR2
(DTF)

lOB

(I/O Buffer

..

Diskette File

.. --------------------~ To: Calling Program

MODULE/
DESCRIPTION ROUTINE

D Execute initialization routine and prime buffer for input or add files. #DRDM
or

Update DTF record pointers for current record or block. #DRSM

Check for end of data:

• If end of input data, return to caller .

• If end of volume, set attribute bit and call close.

D Block or deblock records between work buffer and I/O buffer (move model.

Locate input data or location for output data within I/O buffer (locate mode).

Read or write complete I/O buffers.

Issue SVC instruction for diskette IDS services. Diskette IDS

II Restore pointers and data areas after first I/O operation on full track request. #DRDM
or

Set appropriate completion code in DTF or initiate end of volume as requested. #DRSM

Return control to user program.

Diagram 4.3. Perform Diskette Data Management Functions

Method of Operation 4-21

Licensed Material-Pr~perty of IBM

From: Close Diskette (#CRCL) INPUT ____ _

(

XR1

TCB

(XR2

DTF

Main Storage

Transient Area:
#DRNV

User Program
1---------

User Area:
#DRDM

or
#DRSM

AFA format 1

Diskette file

Ll:;:0CESS

D Ensure proper diskette is inserted

fJ Update required areas

II Process diagnostic errors

• OUTPUT ___ _

(XR1

TCB

(XR2

(DTF)

lOB

·CI/O.Buffer

AFA format 1

Diskette file

To: Diskette Data Management Diagram
(#DRDM or #DRSM) or #DRCL

MODULE!
DESCR IPTION ROUTINE

D Issue task work area (TWA) request (SVC 51) to write one sector of I/O area to disk. #DRNV

If output operation, write VTOC to diskette. #CSVI

Return. #DRVN

Issue insert next volume message. #CLXS

Return. #DRNV

Read VTOC of next volume. #CSVI

Check volume 1.0. #DRNV

Setup I/O buffer to read diskette VTOC format 1 's.

Set up system date information for deleting expired files.

Read diskette data set labels from VTOC. #CSVI

If output file, ensure diskette contains no active files. #DRNV

Diagram 4.4 (Part 1 of 2). Perform Diskette End of Volume Function (EOV)

4-22

Licensed Material-Property of IBM

MODULE!
OEseR IPTION ROUTINE

Initialize multivolume indicator and enter volume number. #DRNV

If input file, check volume sequence number, and if required, check creation date.

B Update DTF and lOB for new volume.

Issue TWA request (SVC 51) to restore sector back to I/O area in core.

Exit to diskette data management, or if an error occurred in flushing final buffer, return to diskette close.

D Process diagnostic errors at time they are discovered by calling SYSLOG routine (#CLXS).

Diagram 4.4 (Part 2 of 2). Perform Diskette End of Volume Function (EOV)

Method of Operation 4-23

Licensed Material-Property of IBM

From: Calling Program

INPUT-IIIIIII--~ L.::;:0CESS

(XR2
DTF

Main Storage

System Nucleus:
#DDDM
Disk
Data
management

#DPDM
Printer
Data
management

IPTR
Printer
IDS

User Area

User Program

Logical lID area

OEseR IPTION

D Set completion code

D Move SKIP/SPACE to lOB

II Set up physical buffer

o Issue prepare print buffer SVC

II. Check for page overflow

iii Enter printer IDS

IJ Set completion code

till Set normal completion code (X'40') in DTF.

lfi Move skip and space values from the DTF to the lOB.

lilIlf print requested in DTF:
e Move logical buffer into physical buffer .

• Move data string length to lOB.
0 Set print indication in lOB control byte.

D If page alignment is requested, set up to issue forms alignment message.

Print the line.

Return to user when 0 option is selected.

Diagram 4.5 (Part 1 of 2). Write Printer Data

4-24

Licensed Material-Property of IBM

,. OUTPUT ___ 1I'IqI

To: Calling Program

(XR2
DTF

lOB

Physical I/O area

MODULE/
ROUTINE

#DPDM

#DPAL

WSIOCH

#DPAL

MODULE/
OEseR IPTION ROUTINE

II Issue prepare print buffer SVC 26. #DPDM

Move current line number from lOB to DTF.

If page overflow has occurred, set overflow completion code in DTF.

m Print the line; WSIOCH
or
Write the line to the spool file. #SPINT

Wait until contents of print buffer has been moved to printer. #DPDM

II If permanent error occurs, set permanent error completion code in DTF.

Return to user.

Diagram 4.5 (Part 2 of 2). Write Printer Data

Method of Operation 4-25

Licensed Material-Property of IBM

From: Calling Program

INPUT----.. LJ;.;0CESS

(XR2
DTF

Main Storage

System Nucleus:
#DWDM
#WDDA*

Transient Area:
#WDDB
#WDDC
#WDDQ
#WDDG
#WDDH
#WDDK
#WDDO
#WDDP
#WDAF

User Area

User Program

* If work station
data management
is not nucleus
resident, #WDDA
operates as a
transient.

D Perform diagnostic check on requests

fJ Process requested operation

II Return to calling program

• OUTPUT ___ _

DTF:

• Return code
• Effective input

length

• Record area
address

• TUB address

To: Calling Program

OESeR IPTION
MODULE/
ROUTINE

II If status inquiry request: #DWDM

• Set return code to reflect outstanding invites, op-ended invites, and STOP system in effect. #WDDG

• Return to calling program.

If accept input request: #DWDM

• Wait 'any'. #WDDG

• Read data into user's area. WSIOCH

• Move user's parameter list back into DTF. #WDDG
0 Return to calling program.

Call #WDDA. #DWDM

If status inquiry op code: #WDDA

• Set return code to reflect outstanding invites, op-ended invites, and STOP system in effect. #WDDG

• Move user'~ parameter list back into DTF.

• Return to calling program.

Diagram 4.6 (Part 1 of 3). Perform Work Station Data Management Function

4-26

Licensed Material-Property of IBM

(
\

OEseR IPTION

D Validate symbolic terminal name provided by user with operation.

If get attributes request:
• Determine if display or nondisplay.
• Display screen size.
• Determine attachment type.
• Determine if online or offline.
e Determine allocation status of work station.
• Determine invite status.
• Determine inquiry mode.

• Go toll.

If acqu i re op-code:
• Diagnose acquire terminal request.
• Set work station ownership to requesting task.
• If work station available, stop invites.
o GotoD.

Check that user owns requested work station.

If get operation:
• Ensure that work station is online.
• Wait for lOB completion.
• If function key, call #WDDH.
• If Print key, call #WDDK:

- Determine printer to be used.
- Attach Print key task (#WDDP)
- Allocate buffer and read screen.
- Write data to swap area.
- Post #WDDP:

a. Wait for post from #WDDK.
b. Read data from disk.
c. Allocate printer; if not successful, call SYSLOG.
d. Print screen.
e. Go to end of job.

- Call #WDDH to display error message stating that print was scheduled.
o If low-level Help key or other function key, .

issue write error message.
• If high-level Help key and if user owns work station, assign new TUB.

• Retrieve help text.
• Issue message.
o If user, free new TUB.

• Call WSIOCH to read data.
• Read data into user's record area.

If release request:
• If release single requester terminal (SRT) request, set off SRT release requester indicator in TUB.
e If release multiple requester terminal (MRT) request, set off waiting on MRTMAX.
• If non-MRT release request, indicate RI B released by non-MRT.

• Go tolJ.

If terminal invited:
CD Stop invite.
e If necessary, set cancel command in TUB.

If stop invite op-code,
give return code.

Diagram 4.6 (Part 2 of 3). Perform Work Station Data Management Function

Licensed Material-Property of IBM

MODULE!
ROUTINE

#WDDA

#WDDG
#WDDQ

#WDDA
#WDDQ

#WDDA

#WDDG

#WDDH
#WDDK
#SVAT
#WDDK

#WDDP
FDIOS

#DPDM
#WDDP
#WDDK
#WDDH
WSIOCH
#WDDH
#MSGRE
#WSIOCH
#WDDH
#WDDG
WSIOCH

#WDDA
#WDDG

#WDDA
#WDDB

#WDDA

#WDDB

Method of Operation 4-27

OEseR IPTION
MODULE!
ROUTINE

If special request, do one of the following: #WDDA

• Roll request. #WDDB

• Clear request.

• Reset request.

• Erase request.

• Restore request.

• Save request.

• If print request:
- Use user's DTF if possible. #WDDC
- Push user. #WDAF

• - Read screen into user area. #WDDC ~
- Print screen. #DPDM
- Pull user. #WDAF

I f put request: #WDDA

• Conditionally assign work station queue space for text stream and format.

• If assign fails:
- If work station queue space is greater than text stream and format, unconditionally assign work station #WDAF

queue space.
- If work station queue space is less than text stream and format, push user.

• Read format and build text stream: #WDDA
- Find format index entry corresponding to format.
- Ensure that format entry is valid.

• • Read field descriptor table and text from disk. FDIOS ~ • If put override, call #WDDD. #WDDA

• Format output data. #WDDAI
#WDDD

Process override of:

• Screen S specifications.

• Blinking display.

• Blinking cursor.

• Sound audible alarm.

• Reset keyboard.

• Insert cursor.

• Bypass field.

• Detail field definition D specification.

• Nondisplay field.

• Reverse image field.

• High intensity field.

• Blinking field.

• Underscore field.

• Output field.

Process suppress invite indicator.

If erase or put override not in operation:

• Process erase indicator.

• Process put override indicator.

Scan for more output data.
#WDCP

Output data to work station. WSIOCH

I f user was pushed, #WDDA • pull user. #WDAF ~

II Move user's parameter list back into DTF. #WDDAI
#WDDQI

Return control to calling program. #WDDG

Diagram 4.6 (Part 3 of 3). Perform Work Station Data Management Function

4-28

Licensed Material-Property of IBM

From: Calling Program

",INPUT r PROCESS

~
_Joo.. D Call assignment modules XR2 :>

~parm List

...

fI Execute assignment phase

II Execute three phase sort F1 Image

Main Storage o Execute sort-in-place

D Execute merge

II Perform housekeeping
User Area:

Calling Program
(see Figure 4-13)

Index area

Overflow index area

DESCRIPTION

D Call modules used during assignment phase (phase 0):

• Three phase Sort Control (#DDKLL).

• Set Preliminary Internal Values (#DDKAB).
e Design Sort (#DDKAC).

• Auto Allocate Work File (#DDKAD).

• End of Assignment Phase (#DDKAZ).

fJ Initialize common.

Obtain index information from format 1 image.

Design sort operation based on external parameters:

• Determine block size for input, work, and output areas.

• Determine size of record storage area (RSA).

• Determine number of records to fit in RSA.

• Determine order of merge for intermediate and final merge passes.

• Decide if work file is needed.

If work file is needed, attempt to allocate space.

If in debug mode, issue problem determination and debug information.

If sort not indicated, go tog.

If work file not allocated, go toll.

Diagram 4.7 (Part 1 of 3). Sort Index Entries for Indexed Disk File

Licensed Material-Property of IBM

To: Calling Program

OUTPUT ___ _

(XR2

CParm List

F1 Image

Ordered index

MODULE/
ROUTINE

#DDKAA

#DDKAB

#DDKAC

#DDKAD

#DDKAZ

#DDKAA

Method of Operation 4-29

MODULE!
OEseR IPTION ROUTINE

II Pass control to #DDK1A (phase 1). #DDKLL

Indicate phase 1 entered. #DDK1A

Pass control to #DDK1 E.

Allocate main storage for I/O buffers and record storage area (RSA). #DDK1E

Read index entries. #DDK1G
and

#DDK1R
Disk 105

Sort index entries into strings. #DDK1E

Write intermediate strings of index entries to disk work file. Disk 105

Return. #DDK1E

Determine validity of phase 1 execution. #DDKEP

Determine if number of strings small enough to go to phase 3. If yes, skip phase 2. #DDKLL

Indicate phase 2 entered. #DDK2A

Pass control to #DDK2E (phase 2).

Allocate main storage for I/O buffers. #DDK2E

Read intermediate strings of index entries from work file. #DDKWG
Disk 105

Merge strings of index entries together. #DDK2E

Write intermediate strings of index entries to work file. #DDKWP
Disk 105

Determine validity of phase 2 execution. #DDKEP

Determine if number of strings small enough to go to phase 3. If no, repeat phase 2. #DDKLL

Indicate phase 3 entered. #DDK3A

Pass control to #DDK3E (phase 3).

Allocate main storage space for I/O buffers. #DDK3E

Read intermediate strings of index entries from work file. #DDKWG
Disk 105

Merge strings of index entries together. #DDK3E

• Write final sort output back to index. #DDK3P ~
and

#DDK3W

Go to II (to determine if merge is required).
Disk 105
#DDKAA

Diagram 4.7 (Part 2 of 3). Sort Index Entries for Indexed Disk File

4-30

Licensed Material-Property of IBM

MODULE!
OEseR IPTION ROUTINE

1:1 Pass control to #DDKSS (Sort in Place). #DDKAA

Assign main storage area for sort. #DDKSS

Perform sort in place using quick-sort.

Manage index segments entering record storage area (RSA).

Call disk 105 to move index entries between disk storage and main storage. Disk 105

When sort is complete, determine if merge (#DDKMM) is required. #DDKSS

If merge not required, go to II. .fIDDKAA

II Reset sort, merge, and sort-in-place bits in format 1 image.

Update last primary index entry point in format 1 image.

If error return code, update parameter list.

Return to calling program.

Diagram 4.7 (Part 3 of 3). Sort Index Entries for Indexed Disk File

Method of Operation 4-31

Licensed Material-Property of IBM

From: Printer lOS
.INPUT ____ ..

~OCESS

(XR1
lOB
(for #SPINT)

File index
(for #SPDPQ)

(XR2
TCB
(for #SPALC)

SFD
(for #SPDPQ)

Main Storage

System Nucleus:
#SPINT

Transient Area:
#SPALC
#SPCLO
#SPDPQ

User Area

User Program

Printer lOB
#SPOOL1
TCB
SFD

OESeR IPTION

.. o Perform first time initialization and
allocate file space as required

D Move print data and line control
information to buffer

II Write buffer to spool file if buffer is full

II Update printer lOB

II Perform spool intercept EOJ function

0 If first time call of this task, pass control to spool allocate (SPALC).

Check if first time for this task to call spool allocate.

If first time, go to DO. If not first time, go toDO.

To: Calling Program

o Assign and.initialize task, spool file description (SFD), disk lOB, and buffer. Store SFD in task control
block (TCB).

Diagram 4.8 (Part 1 of 2). Perform Spool Intercept Function

4-32

Licensed Material-Property of IBM

OUTPUT ___ _

Printer lOB

#SPOOL1

TCB

SFD

Disk
lOB

[input to

#SPCLO]

MODULE/
ROUTINE

#SPINT

#SPALC

OEseR IPTION

e Search spool file master index for available spool file space.
• If block groups available in #SP00L1-#SPOOL6, go to De.
• If all extents are not allocated, go to D e.
• Otherwise, issue SPOOL FI LE FULL message with:

- Two option (control cancel) - call end of job rou'tine (#CTEI).

- One option (retry) - try to find space again by going toD'e.

MODULE/
ROUTINE

Disk lOS
#SPALC

#CLXS

#SPALC

- Zero option (proceed) - call spool file close (#SPCLO), post writer, halt, and try again to find space by

goingtoD:Q.

G Attempt to allocate additional disk space for spool file.

CD If no disk space available, issue NO DISK SPACE message and go toOeto try again.

G If first time, update data area sectors, master index, SFD, and disk lOB.

Chain index entry to queue.

Return.

If not first time, update master index, SFD, and disk lOB.

Chain data-only index to queue.

Return.

If! If buffer space available, move entire print record to buffer and go toD.

II Move as much of print record to buffer as space permits.

Write buffer to spool file to free buffer space.

If at end of spool block group, go to Beto allocate additional disk space.

Move remaining print record tu buffer.

o Mark intercepted print lOB complete (X'40').

Return to calling program.

II Call spool file close (#SPCLO). Terminator performs this function.

Set end of file indicator.

Write last record from buffer to disk.

Update master index.

If spool file close called by spool allocate, return to D e.
Free SFD, disk lOB, and buffer.

Return to calling program.

Diagram 4.8 (Part 2 of 2). Perform Spool Intercept Function

Licensed Material-Property of IBM

#CASl

#SPALC

#SPDPQ

Disk lOS

#SPDPQ

#SPALC

Disk lOS

#SPALC

#SPINT

Disk lOS

#SPINT

#SPINT

#CTEPR

#SPCLO

Disk lOS

#SPCLO

Method of Operation 4-33

From: Command Processor

.INPUT ~OCESS

.. D Determine if output exists (XR1
~ ..

lOB D Get spool file entry specified

(XR2 II Print data from spool file

II Free up available spool file space TCB

Main Storage

System Nucleus

Transient Area:
#SPDAL

User Area:
#SPWRT
#SPQMG

SYSCOM -
#SPOOL 1 - QFD

SFD - TCB-
Disk lOS

VTOC - Format 1's

Format 5

OESeR IPTION

D Read master index to see if output exists.

If queue is empty, call EOJ.

If STOP PRT command issued, call end of job transient.

Allocate printer if necessary.

Return.

OUTPUT ___ _

#SPOOL 1

QFD

Format 1's

Format 5

Master Index

Buffer

Printed Output

To: Control Storage End of Job
Transient ($EOJ)

MODULE/
ROUTINE

#SPWRT
Disk lOS
#SPWRT

#CAPT

#SPWRT

If printer not available, halt and allow options to either wait for the printer or cancel .. #CLXS

D Set up queue file description (QFD) to indicate entry specified: #SPWRT

• First entry on queue.

• Next entry on queue.

• Stopped entry.

Call spool queue manager (#SPQMG) to get entry specified. #SPQMG

Diagram 4.9 (Part 1 of 2). Print Records From Spool File

4-34

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Read master index to get address of queues using lOB provided. Disk 105

Based on QFD flag byte, search print queue for one of the following:

• First on queue (class).

• Next on queue (class).

• Stopped entry.

If entry found: #SPQMG

• Place spool file address (SSSD) of entry in QFD.

• Return control and specific entry (in disk buffer) to spool writer (#SPWRT), go to II.
If specific entry not found:

• S'et on end-of-file/not found indicator (QFDEF) in QFD.

• Return to spool writer (#SPWRT).

• Call EOJ. #SPWRT

II Call spool file get. #SPWRT

Retrieve first print line. Disk 105

Return. #SPWRT

If forms change required, halt to allow operator to change forms. #CSIM

Return. #SPWRT

Issue separator page halt if first time or if forms change message was issued. #CSIM

Return. #SPWRT

Print separator pages if requested. WSIOCH

Return. #SPWRT

Perform page alignment if necessary. #CLXS

Return. #SPWRT

-
Fill 512-bytp. print buffer in system nucleus with print data. Disk 105

Call printer 105. #SPWRT

Print the line from the buffer. WSIOCH

If multiple copies requested and entry printed out: #SPWRT

• Reset spool file description (SFD) to get first record in file.

• Return to start of II.
D After all copies are printed, free up this entry and chain it from print queue to available queue. Disk 105

Return. #SPWRT

Read spool file master index. Disk 105

If extent empty: #SPWRT

• Update master index. Disk 105

• Return. #SPWRT

• Free spool file extent. #CAD1

Go toDto get next entry. #SPWRT

Diagram 4.9 (Part 2 of 2). Print Records From Spool File

Method of Operation 4-35

Licensed Material-Property of IBM

Program Organization

Figure 4-7 shows the main storage map for keysort.

Figures 4-8 through 4-14 show the control flow of func
tions used to run a job.

12K

Phase 0
(assignment
phase)

#DDKAA
#DDKLL
#DDKAB
#DDKAC
#DDKAD
#DDKAZ

Phase 1

#DDKAA
#DDK1A
#DDK1G

~ #DDK1R
#DDK1E

Work
Buffer
(out)

Input
Buffer

Record
Storage
Area

Unused

Work
Area

Figure 4-7. Keysort Main Storage Map

4-36

Phase 2

#DDKAA
#DDK2A

#DDKEP
~

#DDKWG
#DDKLL #DDKWP

#DDK2E

Work
Buffer
(out)

Work
Buffer
(lN1)

Work
Buffer
(IN2)

Work
Buffer
(lN3)

Work
Buffer
(lN4)

Unused

• #DDKEP • #DDKLL

Licensed Material-Property of IBM

Phase 3 Sort-I n-Place Merge

#DDKAA #DDKAA #DDKAA
#DDK3A #DDKSS #DDKSS
#DDKWG
#DDK3P
#DDK3W
#DDK3E

Output
Buffer

Output
Buffer

Work
Buffer
(lN1) Active

Record

Work Area

Buffer
(IN2) Work

Buffer

Work (lN1)

Buffer
(lN3)

Work
Buffer
(lN4) Work

Buffer

Segment (lN2)

Unused Boundary
List

1------------ --:k :::=n:::.~~ ----------------,
I

~
Other

Calling - SVC Router

~
Data

Program Controller (BEGIN) Management

I
Modules

SVC I Main

RIB·X'13'
Driver

I
...

I
I

I

I
Attribute
Bytes
(DTFI

J
Drivers

• Consecutive i CONDRV

• Direct I DIRDRV

• Indexed Random I IRADRV I • Indexed Sequential I ISODRV
Subroutines

I • Convert RRN to SSSD
(SRRTSI

Operation
• GetlPut 1/0 Interface

(SRGPU
Code • Get Format·l Values
(DTFI (SRF1G1

• Update Format·l Values

I (SRF1PI

• Move Data to 1/0 Buffer
(SRMOVI

• Check Update Key Error

Base Func:tions (SRUKEI

• Get Next I ndex Entry

Put Index Put Data (SRNIE)

(PUTU (PUTDI • Enque Format·l Area
(SRENOI

Get Index Get Data • Deque Format·l

(GETO (GETDI ... (SRDEOI

L ____________________ ~

Figure 4·8. Disk Data Management Control Flow

User
Program

Data
Management
Router

(#DDDM)

.-. '... .' . ,... . ~ ... ' ..

Figure 4-9. Diskette Data Management Control Flow

#DRDM
Diskette Data Management

or
#DRSM
Sector Data Management

Licensed Material-Property of IBM

Diskette
105

Program Organization 4·37

... Data Management
Router Routine

Disk Data Management

I I (#DDDM)
I I
I I

~
,

.. Printer Data Management
.... (#DPDM)

User
!II

Program

~ • ~
,

Forms -.. Alignment ---. Printer lOS ...
... Transient .. (lPTR) -(#DPAL)

~ ,
Spool
Intercept

~

Printer lOCH
(Control Storage)

Figure 4-10. Printer Data Management Control Flow

(

4-38

Licensed Material-Property of IBM

Calling
Program

4

, ,
Data
Management
Router

(#DDDM)

, ,
Work Station
Data
Management
Router

(#DWDM)

, ,
.. End-of-Job

($EOJ)
Work Station -Control Storage-
Data
Management

.... ..
(#WDDA) Work ,.

Station
lOCH

~ ..
-Control Storage-

Work Message
Station Retrieve
Data -- ..
Management - ..
Get (#MGRET)
Attributes
Transient

(#WDDC) Spool
Intercept

~ ..
-

(#SPINT)

WDDM I/O

... .. Transient

(#WDCP)

Figure 4-11. Work Station Data Management Control Flow

Program Organization 4-39

Licensed Material-Property of IBM

Set Deblock and Block and

~
Preliminary Degap from Regap for
Internal Input Output
Values
(#DDKAB) (#DDK1G) (#DDK3P)

t
Design Phase 1 Phase 1

~
Sort ... Control Internal

Sort

(#DDKAC) (#DDK1A) (#DDK1E)

Auto- End of Deblock

~
Allocate ... Phase from Work
Work File File

(#DDKAD) (#DDKEP) (#DDKWG)

t
Keysort Three Phase ... Phase 2 Phase 2
Control Sort Control Control Intermediate

~
Merge .

(#DDKAA) (#DDKLLl r (#DDK2A) (#DDK2E)

t
Endof Endof Block for ... Assignment

~
Phase Work File

Phase

(#DDKAZ) (#DDKEP) (#DDKWP)

Merge-Primary Deblock ... and Overflow from Work
File

(#DDKMM) (#DDKWG)

t
Sort-in-Place Phase 3 Phase 3 ... ~

Control . Final
Merge

(#DDKSS) (#DDK3A) (#DDK3E)

t
Read Input Write

--'"
Output

(#DDK1R) (#DDK3W)

End of ... Phase
EOJ

(#DDKEP)

Figure 4-12. Keysort Control Flow

4-40

Licensed Material-Property of IBM

Printer
lOS
(lPTR)

, ,

Spool .. User
Intercept

Program (#SPINT)
..

4 ~

, ,

Terminator
(printer end of job)

~ ~

, ,
~ ~

Spool ... Full Spool .. Spool
Allocate File Close

(#SPALC and #SPDPQ) File (#SPCLO)

Figure 4-13. Spool Intercept Control Flow

Program Organization 4-41

Licensed Material-Property of IBM

Command
Spool

Processor
r-Or- Intercept

(if autowriter)

, , , •

Spool Print Spool Queue
Writer Manager - -(#SPWRT) (#SPQMG)

•

End-of-Job
Transient

Figure 4-14. Spool Print Writer Control Flow

4-42

Licensed Material-Property of IBM

Introduction

The functions that may be needed to terminate a job are:

• Close common

• Close printer

• Close diskette

• Close disk

• Step term ination

• Job termination

• Abnormal termination

CLOSE

The purpose of close is to:

• Complete the processing of data in the output buffers.

• Extract data from DTF blocks so the data set label can
be updated to reflect the current status of the file.

• Restore all opened DTFs to a preopen status.

The close function is performed by the common close
transient (#DMCL) and the necessary device-oriented
close transients:

Disk close
Diskette close

#DDCL
#DRCL

ftOMCL r~moves the DTFs from the backward chain and
then calls the appropriate device-oriented close transients.

All close modules are transients and reside as load modules
in the system library. The close function iS,initiated by
issuing an SVC with the close RIB (X'D3') and with regis
ter 2 pointing to the DTF chain. The SVC processor will
load the common close module (#DMCL) which, in turn,
will call the appropriate device oriented close modules as
needed.

Chapter 5. Terminating a Job

To improve system performance, each of the device
oriented modules are aesigned to be called only once for
each DTF chain. Thus, each module will perform its func
tions for all required DTFs on the chain. It will search
through the DTF chain to find all DTFs of its device type
to be closed.

Common Close (#DMCL)

The common close transient (#DMCL) unchains the DTFs
from the backward chain and then calls the appropriate
device-oriented close transient. The disk close transient
is called after all other DTFs are closed if a disk DTF is
present.

Input to common close is a chain of postopen DTFs
addressed by index register 2. XR2 contains the address
of the first DTF to be closed.

Output from common close is a preopen DTF for each
file closed. Common close returns control to the calling
program or to the disk close transient (see Figure 5-2).

Printer Close (within #DMCL)

The device oriented close function for the printers (within
#DMCL) completes the processing of data in the print
buffers, restores the DTF to a preopen status, and frees
space for the printer lOB within the assign/free area. Con
trol is passed to the next close transient or the calling
program.

Work Station Close (within #DMCL)

The device-oriented close function for work stations (within
#DMCL) indicates the work station file is closed by setting
off the file allocated bit (X'Q4') in DTF attribute byte two
($DFAT2) and setting off the file opened bit (X'D1') in
DTF attribute byte two.

Introduction 5-1

Licensed Material-Property of IBM

I nput Data Areas Processor Output Data Areas

Enter

From Calling
Program

XR2

Address of
the First
DTF

DTF n
Backward ISTFCHB
Chain of 1---
DTFs to I
be Closed L __ _

Legend:

I
Main Logic Flow

Data Buffer
I ndex Buffer

Data Set
Label in
Main Storage

'------>
Data Flow

#DMCL1

Address Pointer

1 Figure 5-2 shows the interrelationship of the transient close modules

Figure 5-1. Close Input and Output Data Areas

5-2

Licensed Material-Property of IBM

XR2

Address of •• ~
the Last
DTF

Data Buffer
and Index
Buffer Output

Data Set
Label in
Main Storage

Return to
Caller

Forward
Chain of
Closed
DTFs

Binary Synchronous Communication Close (#BSCL)

When a binary synchronous communication (BSC) DTF is
encountered in a call to common close, the following is
performed:

• A call to close (X'22') is indicated in the BSC DTF
operation code field, $DFOPC.

• A return code (X'OO') is set in the communications spec
ification block (CSB) return code filed CSBD RTNC.

• A task-to-task communication supervisor call is issued
to indicate a close request to the BSC system task.

Control is then returned to common close (#DMCL) to
close any other DTFs on the chain.

Diskette Close (#DRCL)

When a diskette DTF is encountered in a call to common
close, the diskette close transient module is called. For out
put files, close updates the end of data pointers in the
active format 1 image. The data set label is written into
the diskette VTOC. The DTF is restored to its preopen
state and may be allocated and opened again for further
processing.

For input files, the data set label is rewritten in the diskette
VTOC if the expiration date was changed.

Disk Close (#DDCL)

The device-oriented close function for disk completes the
processing of data in the output buffers, updates the data
set label (in main storage) to reflect the current status of
the file, and restores the DTF to a preopen status. This
transient must then loop through the entire DTF chain to
locate any other disk DTFs that are open. Control is
returned to the calling program when processing is
complete.

TERMINATION

When a job step or job is ended, there is a considerable
amount of cleanup activity to be performed before process
ing can continue. Termination performs these functions.

Step Termination

Step termination provides a means of terminating the cur
rent program at the end of a job step and preparing the sys
tem to accept another program for execution.

Step termination performs the following functions:

• Terminate the User Program
Step termination gets control from the user program
when the user program has finished executing. Since
control is not returned, step termination ensures that
all user files are closed. Termination is then loaded
into the user area in main storage.

• Terminate the User Files
All files used by the user program are processed. This
may involve such operations as updating the disk VTOC
and readying the format 1 for keysort.

• Reset the System
Resources are freed up, pointers updated, switches
updated, and necessary system data areas are reinitial
ized so the system is ready to accept another program
for execution.

• Pass on Control
Control is given to the initiator to enable the next step
of the task to be processed.

Job Termination

Job termination is used to prepare the system to process
new jobs.

Job termination performs the following functions:

• Terminate the User Files
This involves such operations as updating the format 5
label and deleting the active format 1.

• Terminate the Task
If required, the terminal associated with the task is
freed. The task control block and job control block
are then freed and reset respectively. Various pointers,
switches, and necessary system data areas are reinitial
ized so the system is ready to execute more tasks.

• Pass on Control
Control is given to the command processor to enable
more tasks to be processed.

Introduction 5-3

Licensed Material-Property of IBM

Abnormal Termination

Abnormal termination allows the user to stop processing at
other than normal termination points.

Abnormal termination performs the following functions:

• Any remaining steps in the job are flushed.

• Files are not closed and, therefore, are left in one of
the following conditions:
- Shared files contain all updates or adds made prior

to the abnormal termination.
- Nonshared files contain all updates made prior to the

abnormal termination.
- Any adds made to nonshared files do not remain in

the file (VTOC extents are not updated).
- New files are removed from the VTOC.

Termination Interface

The term ination interface transient (#CTE I F) is called in
one of four ways (see Figure 5-3).

• Supervisor (abnormal termination with a dump request).
The control storage end-of- job transient ($EJ1) calls
#CTEIF.

• Command processor (abnormal termination due to a 2
or 3 option to an inquiry or CANCEL request). The
command processor calls #CTE IF.

o User program (normal termination). The user program
calls #CTEI F at step termination and job termination
time.

• SYSLOG (3 option to halt).

Termination Interface (#CTEIF) is the main interface
between the program requesting termination functions and
the termination processor (#CTEPR). #CTEI F performs
initial termination. Its primary job is to:

• Set termination indicators

• Call termination user interface (#CTEGU) to get user
into main storage

• Call common close (#DMCL) to ensure user files are
closed (normal termination)

• Wait for any active lOBs to complete

• Remove lOBs that have not started from the queue

5-4

• Call termination communication interface (#CTECM) if
communication is supported

• Call the attach transient (#SVAU) if no communication
interface is required

#SVAU loads and passes control to the termination proces
sor (#CTEPR).

If a SYSLOG 2 option is taken, the user program terminates
and continues on to the next job step.

Termination procesSor (#CTEPR) performs the three termi
nation functions: step termination, job termination, and
abnormal termination. #CTEPR is loaded (by #SVAU) into
14K of main storage starting at logical address x'caoo'.
The last 3K of #CTEPR contains the link edited modules,
error recovery block cleanup for I/O SYSLOG (#SVERJ),
command processor console SYSLOG EOJ message cleanup
(#CPEJM), disk VTOC read/write (@CSVF) and termination
keysort (#CTE KS).

The disk VTOC read/write routine is used by the termina
tion processor to update the VTOC format 1 'so

The termination keysort routine determines if keysort
activity is required and, if needed, loads keysort control
(#DDKAA) into main storage. #DDKAA is loaded over
the first 12K of #CTEPR (#CTEKS and @CSVF are in the
remaining 2K). When keysort completes, #CTEKS returns
#CTEPR to its original 14K area. The left side of the fol
lowing diagram illustrates main storage usage when termi
nation is processing and keysort is not required. The right
side illustrates main storage usage when termination is
using keysort.

Main Storage

°1
User

Termination
Pr ces r10J 0 sor

Area (#CTEPR)

11 K
#CPEJ
#SVERJ
Disk VTOC
ReadlWrite
(@CSVF)
Termination
Keysort

14 K
(#CTEKS)

I
I
I

!
I

I
I
I
I
J

Keysort
C t I on ro
(#DDKAA)

Disk VTOC
ReadlWrite
(@CSVF)
Termination
Keysort
(#CTEKS)

1
~

1 2K

Licensed Material-Property of IBM

The step termination function of #CTEPR is initiated at
the end of each LOAD- RUN sequence within a procedure.
Its primary job is to:

• Process files, utilizing disk and diskette VTOC read/
write and keysort control (#DDKAA) when needed

• Process library format 1's and file specification blocks

• Process source entry utility chain

• Performs clean up activity for spool function utilizing
spool file close (#SPCLO)

• Free up allocated resources

• Free work station control blocks

• Release all data work stations for this task

• Reinitialize data areas as required

• RUN OXREF program (#MAXRF) as needed

• Clean up control storage SYSLOG halts (#SVERJ)

• Load the initiator (#CIML) into main storage

The job termination function of #CTEPR is initiated when
the last step of a procedure completes processing or a load
run sequence completes processing outside a procedure. At
job termination time, step terminate logic executes fol
lowed by job termination logic to:

• Process J type files

• Ensure work station control blocks are free

o Release all work stations for this task

• Free task work area control blocks

• Detach task control block

• Release user main storage

• Pass control to command processor

The abnormal termination function of #CTEPR is initiated
when a 3 option is taken to a halt, the CANCEL command
is received, or a program check with a dump request is
encountered. The program requesting the abnormal ter
mination function sets on the abnormal termination bit in
its TCB. Abnormal termination executes step termination
and job termination logic except that records added to files
under certain conditions remain in the file. After the task
is detached, the command processor is given control.

Termination User Interface (#CTEGU) is a main storage
transient called by #CTE I F if the user program is pushed
out of main storage and must be pulled back in.

Termination Communications Interface (#CTECM) is a
main storage transient called by #CTEI F if a communica
tions interface is required. Its main functions are:

• Call BSC to perform final cleanup for the user task

• Dequeue and free the communication specification
blocks (CSBs)

• Call the attach transient (#SVAU) to load in, and pass
control to, the termination processor (#CTEPR)

Introduction 5-5

Licensed Material-Property of IBM

Method of Operation

This section contains functional diagrams for routines
needed to terminate a job. They are:

• Close disk, diskette, printer, work station and data
communications DTFs (Diagram 5.2)

• Termination function (Diagram 5.4)

From: Calling Program

INPUT--, r PROCESS

Post open DTFs ----==------

Required system
areas

I
~.
~.

Diagram 5.0. Overview of Terminating a Job

5-6

Close disk, diskette, printer, work station,
and BSC DTFs (Diagram 5.1)

Terminate job step and job as required
(Diagram 5.2)

Licensed Material-Property of IBM

I
r OUTPUT

> Closed DTFs

I I > Updated system
areas

• ~ ~
To: Initiator or

Command Processor

From: Calling Program
INPUT ____ •

~OCESS

(X~2
DTF (postopen)

Main Storage

Transient Area:
#DMCl
#DDCl
#DRCl
#DRNV

User Area

User Program

AFA format 1

o Prepare to close DTFs

D Close diskette DTF

II Close disk DTF

--------:Tl

• OUTPUT ___ _

XR2

DTF (preopen)

AFA format 1

Files and Buffers

To: Calling Program

MODULE/
OESeR IPTION ROUTINE

D If diskette DTF, go to fJ. #DMCL

Determine device type to unchain.

Remove all DTFs from backward chain.

e Determine device type to close.

If work station DTF:

• Indicate DTF not allocated.

• Indicate DTF not open.

• Repeat steps until all work station DTFs are closed.

If binary synchronous communication (BSC) DTF:

• Indicate a close call in BSC DTF operation code.

• Set return code in the communications specification block (CSB) return code field.

• Point XR1 at CSB.

• Issue task-to-task communication SVC to indicate a close call to the BSC system task.

• Repeat steps until all BSC DTFs are closed.

If disk DTF, go to II.

Diagram 5.1 (Part 1 of 2). Close Disk, Diskette, Printer, Work Station and Data Communications DTFi

Method of Operation 5-7

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

e If not last DTF on chain: #DMCl

o Point to next DTF on chain.
0 Return toO.

If printer DTF to close:
0 Issue quiesce to printer to ensure completion of all I/O events. WSIOCH

• Return DTF to preopen status. #DMCl
0 Free lOB space in assign free area (SVC 07).
0 Return toll G .
If last DTF closed, return to caller.

fJ Check file status to select appropriate close function: #DRCl
(') If input file or locate mode output file go toG.
o If final output move mode file, go tol.
o If output error caused end of volume, ontinue with 8.

8 Issue permanent diskette output error message and initiate end of volume. #ClXS

e Call diskette lOS. tlDRCL

Write final output buffer to diskette if necessary. Diskette lOS

If error, and error recovery can not be accomplished, go toG. #DRCl

G Update fields in active format 1 for last (or only) volume of file.

Restore DTF to preopen status. ,

Write data set label into VTOC on diskette. #CSVI

If end of volume, call open next diskette volume (#DRNV). #DRCl

If last (or only) volume, return toO to unchain diskette DTFs.

liD Close all disk DTFs: #DDCl
0 If data buffer must be written, write it to disk. Disk lOS
C) If indexed access, flush index buffer .

• Update format 1 in main storage. #DDCl
0 Restore DTF to preopen status.
0 Repeat steps until all disk DTFs are closed.
0 Return to calling program.

Diagram 5.1 (Part 2 of 2). Close Disk, Diskette, Printer, Work Station and Data Communications DTFs

5-8

Licensed Material-Property of IBM

From: Supervisor, Command Processor, or
User Program

INPUT

Main Storage

Transient Area:
#CTEIF,
#CTEGU

and
#CTECM

User Area:
#CTEPR
#CPEJ
#SVERJ r------,

I @CSVF I
I and I

I #CTEKS :
I (link edited) I L-. _____ ~

Active format 1
VTOC format 1
VTOC format 5
SYSCOM
AOE
FSB
TUB
TWA
WSB
ACE
PSB
CSB
SOB
RB
CIB
PPSA

L..::;:0CESS

D Provide initial interface for termination

fJ Terminate job step

II Terminate job

II Perform abnormal termination when
necessary

• OUTPUT ___ _

(XR1

(

TCB

JCB

Active format 1

VTOC format 1

VTOC format 5

TWA

BSC DTF

ACE

PPSA

----:Tl

OESeR IPTION

D Indicate in the task control block (TCB):

• Task is in termination.

• Task is not cancelable.

• Task is not inquirable.

Diagram 5.2 (Part 1 of 3). Perform Termination Function

Licensed Material-Property of IBM

To: Initiator or
Command Processor

MODULE/
ROUTINE

#CTEIF

Method of Operation 5-9

OEseR IPTION
MODULE!
ROUTINE

Pull the user program into main storage when required. #CTEGU

Return. #CTEIF

• Close all user files when required. #DMCL ~
Purge/q~iesce ACEs from system queues. #CTEIF

If communication systems in use: #CTECM

• Terminate tasks as required.

• Dequeue and free communication specification blocks (CSB) (use control storage dequeue and free functions).

Load and pass control to termination processor (#CTEPR) (use attach transient). #SVAU

fJI For job step termination, determine if keysort required (#CTEKS link edited with #CTEPR). #CTEKS

• Disk file (not diskette).

• Indexed unordered load file.

• T, P, or J type file.

• Keysort bit on in format 1.

• Keysort not previously run for this task.

If keysort is required:

• Update AFA format 1 to indicate keysort running.

• Load keysort control (#DDKAA) over first 12K of #CTEPR and pass control to it.

• After keysort completes; set off keysort running indicator in AFA format 1, reload #CTEPR, and pass
control to it.

• Return. #CTEPR

Clean up console SYSLOG queue (#CPEJ link edited with #CTEPR). #CPEJ

Perform error recovery block cleanup for I/O SYSLOG (#SVERJ link edited with #CTEPR).

Process diskette files: #CTEPR

• Free active format 1 block (use control storage free function).

• Dequeue FSB from chain (use control storage free function).

• Free FSB in assign/free area (use control storage free function).

Process disk files:

• Update VTOC format 1's and format 5s as needed (use @CSVF - link edited with #CTEPR). @CSVF

• Maintain latest date indicator for T and P type files. #CTEPR

• Dequeue active format 1's as required (use control storage dequeue function).

• Free active format 1 block in assign/free area if required (use control storage free function).

• Free high key bucket area in assign/free area for indexed files (use control storage free function).

Process SEU member chain.

Process work stations:

• Release work stations (except requestors) #DWDM

• Dequeue allocation queue element (AQE) for printer terminal unit blocks (TUB). #CTEPR

• Free work station specification blocks (WSB) (use control storage free function).

Process printer specification blocks (PSB).

Update job control block (JCB) as required.

Reinitialize data areas as required.

Deallocate all devices in device allocate table owned by task.

If spool intercept being used, perform necessary spool cleanup. #SPCLO

Diagram 5.2 (Part 2 of 3). Perform Termination Function

5·10

Licensed Material-Property of IBM

DESCRIPTION

Return.

Update spool file extents if necessary (SCA byte SCADCFG1).

Return.

Run cross reference resolver (#OXREF) program if needed.

Load initiator mainline (#CIML) over #CTEPR in main storage and pass control to it.

II During normal job termination, perform the following:
• Update format 5 and delete active format 1 for J type files.
• Free control blocks for file FSBs and active format l's for J type files.
• Ensure control blocks for terminal WSB's and PSB's are free.
o Free task work area (TWA) control blocks.
o Detach TCB, release users main storage, and reset swap area (control storage detach function.
• Release the requester's terminal.
• Free compiler information block (CI B) if necessary.
• Pass control to command processor.

III If abnormal termination, perform job termination logic and:
• For old nonshared disk files (P or T type):

- Reset to zero, data area where new records added.
- Put X'FF's in index overflow area where new record indexes were added.

• For S type files, file remains on VTOC.

Pass control to command processor.

Diagram 5.2 (Part 3 of 3). Perform Termination Function

Licensed Material-Property of IBM

MODULE/
ROUTINE

#CTEPR

#CTES

#CTEPR

#MAXRF

#CTEPR

Disk lOS
#CTEPR
#DWDM
#CTEPR
#SVAU
#DWDM
#CTEPR

Method of Operation 5-11

Program Organization

Figures 5.2 and 5.3 show the control flow required to
terminate a job.

Common
User Close
Program

(#DMCL)

..
""

...
""

Figure 5-2. Close Control Flow

5-12

Diskette
.... ~ Close

"" -
(#DRCL)

..

..
Disk
Close

(#DDCL)

Licensed Material-Property of IBM

..
r

Diskette
End-of-Volume

(#DRNV)

Supervisor
(abnormal
termination -
dump requestJ

Comman~ Processor
(cancel)

or
User Program
(normal termination)

or
SYSLOG
(3 option to hald

Termination
User
Interface
(#CTEGU)

Figure 5-3. Termination Control Flow

End of Job
Transient
($EJ1)
Control Storage

Termination
Interface

(#CTEIF)

Termination
Processor

(UCTEPR)
1"''',i:tl .•..

Common Close

(#DMCL)

Termination
Communication
Interface

(UCTECM)

Spool Intercept
File Close

~ _____ m_3i.,t!. ~"" ,,~, (USPCLO)

Error Recovery
Block Cleanup
for I/O SYSLOG

IUSVERJ)
Console SYSLOG
Cleanup

(UCPEJ)

r-----,
I Disk VTOC I
I Read/Write I
I (@CSVF) I
I -and- I
I T

..
ermmatlon I

I Keysort I
L~~~~~J

Initiator (end of step)
or

Command Processor
(end of job or abnor
mal termination)

Licensed Material-Property of IBM

Spool File
Extents
Update
(UCTES)

Work Station
Data
Management

(UDWDM)

Diskette VTOC
Read/Write

(Ucsvl)

Keysort
Control

(UDDKAA)

Program Organization 5-13

5-14

Licensed Material-Property of IBM

Part 3. Special Function Programs

Licensed Material-Property of IBM

Licensed Material-Property of IBM

Introduction

The system service functions are:

• Librarian facilities

• Library member protection

• Active format 1 area access routine

• Cross reference resolver

• Duplicate key display routine

• Print image verify routine

• Disk VTOC read/write

• Diskette VTOC read/write

• Message retrieve

• System input (SYSI N)

• System list (SYSLlST)

• System log (SYSLOG)

• History file put

• Supervisor task attach

CIt Supervisor task detach

• Syntax checker

• I nformation Retrieval

• Data management task transfer control

• Snap dump

Chapter 6. System Service Programs

LI BRAR IAN FACI LlTI ES

System programs and user programs are stored in a man
ner that makes them readily accessible to the system
user. The programs are stored in libraries on disk and
are called library members. Library members can be
executable load modules (O-modules), procedures
(P-modules), subroutines (R-modules), and source state
ments (S-modules).

The librarian facilities provide a way to locate and access
library members. The librarian facility programs are:

• Find a library routine (#MAFLB)

• Single name find routine (#MASFN)

o Librarian find routine ($MAFND)

o Source library get routine (#MASYG) or (#MASYL)

o Library record put routine ($MAPU R)

• Library sector get/put routine ($MAPGS)

Find a Library Routine

The find-a-I ibrary transient (#MAF LB) finds a library by
name. Given an 8-byte library name, it returns the 2-byte
address of the format 1 for the named library. Zero is
returned if the library does not exist. The library format
1 "address must be passed to Ii brarian access routines when
accessing members in libraries other than the system
library or the designated user library.

#MAFLB finds or builds the format 1 for the requested
library in the active format 1 area (AFA). #MAFLB does
not enqueue the requested library. However, if the
requested library is not being used by the calling task,
#MAF LB does chain the requested library's format 1 to
the caller's job control block (JCB) with a library file
specification block (FSB) and increment the use count
in the format 1. This ensures the existence of the
requested library for the duration of the job step.

Introduction 6-1

Licensed Material-Property of IBM

XR2 must contain the address of the leftmost byte of
a 1 O-byte parameter list (see Figure 6-27). The first 8
bytes must contain the library name. On input, the last 2
bytes must be zero, or must contain the address of the JCB
to be used by the command processor when building the
JCBs.

Single Name Find Routine

The single name find transient (#MASFN) finds a specified
library member by searching first in a user library, then in
the system library. The user library may be the designated
user library (from the LIBRARY statement) or another
user library. The search may be restricted to only the user
library or only the system library.

On a regular call, #MASFN returns 17 bytes of the direc
tory entry (bytes 10 through 26) and indicates if the mem
ber was found in the user library or the system library.
When #MASFN is called with a request to build the loader
parameter list, the first 10 bytes of the loader parameter
list are returned. The user must set the last 2 bytes (the

. load address) of the loader parameter list. The load
address can be set with the system find parameter list
macro ($FNDP). .

#MASFN enqueues the library directory for the duration
of the search.

When the requested member is not found, #MASFN
returns the parameter list unchanged or issues an error
message and terminates if building the loader parameter
list.

The parameter list is 18 bytes for a regular call or 12 bytes
for a loader call. XR2 must point to the leftmost byte.

If the system find include version (@MASFN) is link
edited to another module, the load request is not sup
ported. The link-edited module must have addressability
to the nucleus and must provide a buffer.

6-2

Librarian Find Routine

The librarian find routine ($MAFND) locates directory
entries by full or partial name. The caller provides a
buffer, specifies the library to search, gives the member
type or types, and gives the member name or partial
name and length. On each call, $MAFND returns the
address in the buffer of the next directory entry meeting
the criteria or indicates that no more members meet the
specified criteria. The caller may update the found
directory entry and then have $MAF ND write the
updated directory entry back to disk.

The library to search is specified by giving the library
format 1 address (returned by #MAF LB) or by giving
zero and indicating the designated user library (library
from the LIBRARY statement) or the system library or
both. If both are given, the designated user library is
searched first for any member meeting the specified
criteria. Only if no members are found is the system
library searched. The searched return indicator is set to
indicate if the member was found in the designated user
library or the system library. $MAFND enqueues the
library directory on the first call and de queues it on the
last call.

$MAFND may be executed as a transient version
($MALFN) or loaded into the caller's area. XR2 must
contain the address of the leftmost byte of a 24-byte
parameter list (see Figure 6-30). The transient version
requires a 25-byte work area following the parameter list.

Source Library Get Routine

The source library get transient (#MASGT) retrieves
source or procedure members from a library one record
per call. If requested, #MASGT finds the member and
updates the parameter list for a get or returns a not found
indicator. The caller specifies the library to search.

For each call, the next record is expanded into the caller's
record buffer. If the actual record length is less than the
record buffer, the record is transferred intact and the
buffer is padded with blanks. If the actual record is longer,
it is truncated and a truncate indicator is set. If requested,
the last nonblank character in the record will be indicated.
An EOF indicator is set when the last record is returned.

Licensed Material-Property of IBM

The caller must provide a record buffer and an I/O buffer
of at least one sector. XR2 must contain the address of
the leftmost byte of a 19-byte parameter list (see Figures
6-31 and 6-32). The source library get transient requires
a 15-byte work area following the parameter list. The
source library get routine include version (#MASYL), may
be link-edited with or loaded by other modules to retrieve
requested library members. It does not, however, support
the find request function.

Library Record Put

The library record put routine ($MAPUR) places source or
procedure records into a specified library in compressed
format. The records must be from 40 to 120 bytes in
length.

The library control block (LCB) must be supplied by the
caller as a parameter list. XR2 must point to the leftmost
byte. (See the Data Areas Handbook for the LCB format).

The caller's first call to $MAPU R must be an open request
for the output library. If the open is successful, the caller
makes one put request call for each record. After the last
record, the caller must call $MAPU R with a close request.

For the open request, $MAPUR calls the library open/close
routine ($MACOM or $MALCO). For each put request,
$MAPUR moves the record to the caller-supplied I/O
buffer, compressing the record in the process. When the
I/O buffer is full, it is written to the library. If available
library space is exceeded, SYSLOG (#CLSG) is called to
issue a message. In responding to the message, the opera
tor can either cancel the job, or accept the partial member
that was written. If the operator accepts the member as
written, $MAPUR closes the library with the partial
member and indicates to the caller that the member has
been closed. For the close request, $MAPUR closes the
output library by calling library open/close ($MACOM or
$MALCO).

The library control block (LCB) must be supplied by the
caller as a parameter list. XR2 must point to the leftmost
byte. (See the Data Areas Handbook for the LCB format.)

Library, Sector Get/Put

The library sector get/put routine ($MAPGS) retrieves
members from or places members into a specified library.
Members are accessed in block or sector mode without
checking content.

When $MAPGS is called, the user must request either a get
or a put operation.

If a get is requested, the user may first request that the
single name find routine (#MASFN) locate the specified
member. If #MASFN cannot find the member in the
system or user libraries, the completion code (LCBCOMP)
is set to indicate this fact and control returned to the
calling program. If the find is successful, $MAPGS calls
disk lOS to read the requested sectors into a user provided
I/O buffer. Several calls to disk IDS may be required to
read the entire member unless the I/O buffer is large
enough for a single read operation. The successful com
pletion bit in LCBCOMP is set after each read. After the
entire member is retrieved, a bit in the completion code
(LCBCOMP) is turned on to notify the user.

If a put is requested, the caller of $MAPGS can request
the library open/close routine ($MACOM or $MALCO) to
open the specified library. When the library is open,
$MAPGS is caUed with a put request and then $MAPGS
calls disk lOS to write the member sectors from the user
supplied I/O buffer into the specified library. On the last
put call, after the entire member is written to the library,
$MACOM or $MALCO is called to close the library.
Control is then returned to the calling program.

The library control block (LCB) must be supplied by the
calling program as a parameter list. XR2 must point to
the leftmost byte. (See the Data Areas Handbook for the
LCB format.)

LIBRARY MEMBER PROTECTION

The library member protection routine (#MAMPM) is a
refreshable transient. #MAMPM has two functions:

• Prevent source entry utility (SEU) tasks from updating
a library member if that member is currently being
updated.

• Prevent initiation of an SEU task when an SEU user is
inquiring into SEU

To perform these functions, #MAMPM builds an SEU
member chain. If either condition occurs, the SEU task is
immediately canceled. Otherwise, an element is added to
the chain.

Introduction 6-3

Licensed Material-Property of IBM

When the library member protection routine (#MAMPM)
is called, it enqueues the SEU member chain queue header
at level 3. This provides #MAMPM exclusive use of the
member chain for the entire duration of the program.
#MAMPM then assigns space to the assign/free area for the
member chain element it plans to build (see Figure 6-1).
This area is then added at the end of the member chain.

Next, the member chain element is built by retrieving the
fields that are contained in the element. The task control
block (TCB) address of the user task is obtained and moved
to the member chain element. Also moved into the mem
ber chain element is the terminal ID, obtained from the
terminal unit block (TUB). The terminal ID is also put
into the 2-byte field at the end of the single name find
parameter list. Single name find (#MASFN) is then called
to find the member from the specified library. If the find is
successful, the sector address of the member is moved into
the member chain element. If the find is not successful, a
null member address of zeros is moved into the member
chain element. This indicates that a new member is being
created by the user. The chain is then searched. The ter
minal I D of the task is compared with the terminal I D

of each element on the chain. If a match occurs, it indicates
that the same user has made an inquiry back into SEU. A
message is then displayed to the user through SYSLOG,
and the user task is cancelled. Next, the member address
in the member chain element is compared with the mem
ber address in each block of the chain. The only valid
match is if the member address is zero, otherwise, it indi
cates that another SEU user is updating that member. The
type and name of the member along with a message is
displayed to the user through SYSLOG, and the user task
is terminated. If an error occurs, the member chain ele
ment is freed from the member chain during termination.
If the chain is searched and the end is reached without
error, the member chain queue header is dequeued and
control is returned to the user.

The single name find parameter list (see Figure 6-28) with
an additional 2-byte area for terminal ID must be supplied·
by the calling program. XR2 must point to the leftmost
byte of the list.

System Communications Area

6-4

SCADSEU@

SCADSEUQ

Figure 6-1. SEU Member Chain

AsSign/Free Area

Member SSS

TCB Address

. Terminal ID

Licensed Material-Property of IBM

ACTIVE FORMAT 1 AREA ACCESS ROUTINE

The active format 1 area access routine (#CSAF) is a
transient used to manage requests for get and put of for
mat 1 blocks in the active format 1 area (AFA).

#CSAF supports the following functions:

• Get by label

• Get by name

• Get by address

• Put

#CSAF examines the function byte in the user provided
AFA access parameter list to determine the service
requested (see Figure 6-33).

If the get label request is for unit F1, #CSAF searches the
AFA chain for a format 1 with the specified label. When
found, #CSAF places the format 1 address in the para
meter list. The request may be further qualified by date
and 10 verify. Date verify compares the creation date in
the format 1 to the date in the caller's parameter list. 10
verify causes the allocation queue element (AOE) chain
associated with the format 1 to be searched for at least
one AOE containing the current task control block (TCB)
address. 'If the caller requests a move, #CSAF places the
format 1 in the caller's I/O area. The parameter I ist return
code is updated when the operation is completed. Control
is returned to the calling program.

If the request is get label for unit 11, #CSAF searches the
file specification block (FSB) chain pointed to by the job
control block (JCB). The FSB contains a pointer to an
associated format 1. #CSAF examines each format 1 for
the specified label and unit. The request may be further
qualified by date verify. If the caller requests a move,
#CSAF places the format 1 in the caller's I/O area. The
parameter list return code is updated and control is
returned.to the calling program.

If the request is for get name, #CSAF searches the file
specification block (FSB) chain pointed to by the job
control block (JCB) for the specified name. The FSB
contains the format 1 address. If the format 1 contains
the correct unit field, #CSAF places the format 1 address
in the caller's parameter list. If the caller requests a move,
#CSAF places the format 1 in the caller's I/O area. The
parameter list return code is updated and control returned
to the calling program.

If the request is for get by address, #CSAF moves the
format 1 at the specified address to the caller's I/O area.

If the request is for put format 1, #CSAF replaces the
format 1 in the AFA, at the address specified in the caller's
parameter list, with t!1e format 1 in the caller's I/O area.

XR2 must point to the leftmost byte of the user-provided
AFA access parameter list (see Figure 6-33).

CROS~REFERENCERESOLVER

The cross-reference resolver routine (#MAXRF) places
loader information in the where-to-go (WTG) table. With
out a WTG table, the caller of an SSP module must first
call system find to build a loader parameter list, then call
the loader to load the module. If the caller supplies a WTG
table, the call to system find is eliminated. #MAXRF also
fills in format index tables in SSP modules.

#MAXR F is run any time SSP load members in the system
library are moved. This may be after RELOAD, system
library compress, or replacement of an SSP load member.

#MAXRF reads the system library directory and builds a
resident table of all SSP load modules. Each entry contains
the second through fifth character of the name, the disk
address, the number of text sectors, the R LD displacement,
a WTG table indicator, and a format index table indicator.
#MAXRF builds a main storage format index from the
index sectors of the command processor screen format
modules.

#MAXRF then uses information from the resident table to
find and read the last four text sectors of each module
with a WTG or format index table. #MAXRF calculates
the end of the module by using the number of text sectors
and the RLD displacement. For each module in the WTG
table, #MAXRF searches the resident table for a matching
entry. If a match is found, the loader information is moved
from the resident table to the module's WTG table. If a
match is not found, loader data for the no-op routine
(#MANOP) is placed in the WTG table. When executed,
#MANOP issues the error message. For each module with
a format index table, #MAXRF uses the module's format
index table displacement to get information from the main
storage format index to the format index table. The last
four text sectors are then written back to their original
location on disk.

Introduction 6-5

Licensed Material-Property of IBM

The format index table and WTG table must be the last
bytes in the module. Each must be preceded by X'FFFF'.
If both are present, the format index table must precede
the WTG table.

Each entry in the WTG table is 9 bytes, in the format
CCCCSSSnR:

CCCC = second through fifth character of called

SSS
n
R

module name

= disk address of called modu Ie }
= number of text sectors
= R LD displacement

#MAXRF
loads these

Each entry in the format index table is 9 bytes, in the
format DDSSSfnll:

DO = displacement into format index sectors

f
SSS = disk address of screen format I

= number of FDT #MAXRF
n = number of text sectors loads these
II = input length of screen

DUPLICATE KEY DISPLAY ROUTINE

The duplicate key display routine (#CSDK) is a transient
that display the duplicate key and returns the operator
selected option to the calling program.

When #CSDK is called, the user must supply a where-to-go
table specifying #CSDK, an 80-byte message buffer area,
and the duplicate key halt parameter list. The calling pro
gram, by way of the parameter list, provides pointers to the
key and message build buffer (see Figure 6-34 for the
duplicate key display parameter list format). #CSDK calls
SYSLOG (#CLSG) to output a message indicating a dupli
cate key was found in the specified file. The operator
must indicate whether the key is to be displayed in
EBCDIC or converted to hexadecimal notation. After the
operator responds to the message, #CSDK moves the dupli
cate key to the message build buffer and calls #CLSG to
display the key and the options specified in the duplicate
key display parameter list. When the operator responds,
the requested option is placed in the parameter list and
control returned to the calling program.

XR 1 must point to the leftmost byte of the user-provided
parameter list for duplicate key display.

6-6

PRINT IMAGE VERIFY ROUTINE

The printer image verify routine (#CSIM) is a transient
program that has four functions:

• Set the print image

• Set the forms number

• Indicate page separator information for spool

• Set lines per page

#CSIM processes all printer specification blocks (PSBs)
associated with the calling task. Multiple printers may be
processed with one call to #CSIM.

The PSB contains a flag byte, forms number, and lines
per-page fields used by #CSIM. #CSIM scans the PSB
chain associated with the calling task and performs the
following functions:

o Image processing: If the PSB flag byte indicates pro
cessing is required, #CSIM compares the current print
image to the work station configuration record. If they'
do not match, SYSLOG displays a message to the
operator. The operator; after changing the print belt,
replies to the message. #CSIM then sets the new print
image into the printer control unit.

o Forms processing: If the PSB flag byte indicates forms
processing is required, #CSIM compares the current
forms number in the TUB to the PSB forms number.
If they do not match, SYSLOG displays a message to
the operator. The operator, after changing the forms,
repl ies to the message. #CSI M then sets the new forms
number into the printer terminal unit block (TUB).

• Spool separator page processing: If the calling task is
spool, #CSIM prompts the operator to indicate if
separator pages are required. If the operator's reply is
option 1, #CSI M updates the PSB flag byte to indicate
separator pages are required.

• Lines per page processing: If the PSB flag byte indicates
lines per page processing is required, #CSIM sets the lines
per page from the PSB into the printer control unit.

No caller parameter list is required to execute #CSI M. The
PSB, however, must be initialized when #CSI M is called
(see Data Areas Handbook for PSB format).

Licensed Material-Property of IBM

DISK VTOC READ/WRITE

The disk VTOC read/wri;~e routine is supplied in two
versions. #CSVF is a transient, and @CSVF is designed to
be link-edited with system routines that address the
nucleus.

Disk VTOC read/write performs three major functions:

• Format 1 read

o Format 1 write

o Existence test

The program calling disk VTOC read/write must suppl.v a
parameter list with leftmost byte address in XR2 (see the
Data Areas Handbook for disk VTOC read/write parameter
list format).

Disk VTOC read/write examines the function byte in the
parameter list to determine the service requested:

o Format 1 read: disk VTOC read/write uses the scan
function of disk lOS. A scan mask containing the
requested labet and the date as an option, is passed to
disk lOS by way of a pointer in the lOB. When the
format 1 is located in the VTOC, disk lOS places the
sector number in the lOB and disk VTOC read/write
reads the sector containing the format 1 into the data
area. The format 1 is then moved from the data area to
the calling program's I/O area and control returns to the
caller.

There are four types of format 1 read requests:
Read next
Read next same label
Read specific
Read by sector displacement

Format 1 read request processing varies depending on
the type of request. The caller also has the option of
requesting a date verify. Date verify uses a scan mask
containing the label and date. This allows the caller to
select a specific file from a group of files with the same
label. Without date verify specified, the format 1 with
the latest date is selected. If the format 1 read request
is:

Read next, the parameter I ist displacement byte is
tested for a first request. If it is the first request,
the scan starts at the first sector in the VTOC format
1 area. If it is not the first request, the parameter
list sector number is incremented and the scan
started in the next sector. The scan is for the next
logical format 1 in the VTOC and no compare for
label or date is made.
Read next-same label, processing is the same as a
read next request except the scan mask is set up to
compare on a specified label.
Read specific, the scan starts at the VTOC format 1
area beginning. The scan is for a format 1 containing
the specified label and optional date.
Read by sector displacement, the disk sector
specified in the parameter list is read and the format
1 at the specified displacement moved to the caller's
I/O area.

• Format-1 write: disk VTOC read/write uses disk lOS
to read the sector specified in the parameter list. The
format 1 in the'caller's I/O area is moved into the sector
just read from disk. Disk lOS is called again to write the
updated sector back to disk.

o Existence test: processing is the same as format 1
read-read specific processing except the format 1 is not
moved into the caller's I/O area. The sector/displace
.ment and the return code are updated in the parameter
list.

Figure 6-13 shows disk VTOC read/write control flow.

DISKETTE VTOC READ/WRITE

Diskette VTOC read/write is transient and consists of three
modules. The mainline module (#CSVI) process the
requests and routes control to the two conversion modules
(#CSVJ and #CSVK) as required.

Introduction 6-7

Licensed Material-Property of IBM

Diskette VTOC read/write performs three major functions:

• Convert format 1 's and header 1 's

• Prepare diskettes for processing

• Format 1 read/write

The program calling diskette VTOC read/write must supply
a parameter list with the leftmost byte address in XR2
(see the Data Areas Handbook for diskette VTOC read/
write parameter list format).

#CSVI examines the function byte in the parameter list
to determine the service requested:

• Convert header 1 's: #CSV J reads the diskette VTOC,
converts the header 1 's to format 1 's and places the
format 1 's into a diskette VTOC area on disk. Subse
quent diskette format 1 read/write requests access this
area on disk.

• Convert format 1's: #CSVK reads the diskette VTOC
area on disk, conve~ts the format 1 's to header 1 's and
places the header 1 's into the diskette VTOC on diskette.

• Prepare diskette: #CSVI issues a recalibrate request for
the diskette. The volume label is read and verified. The
volume label and physical attributes are placed into the
system communication area (SCA). A 4-byte lock
number is also placed into the SCA and written on the
diskette. #CSVJ is then called to create the diskette
VTOC area on disk (convert header 1 's function).

• Format-l read: The diskette format 1 in the diskette
VTOC area on disk (placed on disk by #CSVJ) is read
the same as by the format 1 read function of disk
VTOC read/write. Latest date processing, however, is
not supported. (See format 1 read function in
Diagram 6.12.)

• Format-1 write: This function is identical to disk VTOC
read/write, #CSVF. (See format 1 write function in
Diagram 6.12.)

• Existence test: The check for the existence of a
specific format 1 is performed the same as by disk
VTOC read/write, #CSVF. (See existence test func
tion in Diagram 6.12.)

Figure 6-14 shows diskette VTOC read/write control flow.

6-8

MESSAGE RETRIEVE

The message retrieve routine (#MG RET) is a transient that
locates the message text of a specified message identifica
tion code (MIC).

#MGRET ensures a valid message member specification by
checking the message retrieve parameter list for valid
indicators and the message member pointer in the appro
priate communication region for a nonzero SSS (see the
Data Areas Handbook for message retrieve parameter list
format). Disk lOS is then called to locate the message
member sector by scanning the message member for the
sector identified by a M I C greater than or equal to the one
requested. #MGR ET locates the desired message by read
ing the message member sector, looking for the specified
MIC. When the message is found, #MGRET blanks the
caller's buffer, places the message in the buffer, and places
the message text length in the parameter list. If an error is
detected, the error MIC is placed in the parameter list.
Upon completion, control is returned to the calling
program.

Figure 6-15 shows the control flow for the message
retrieve routine.

SYSIN

SYSI N performs two major functions:

• Retrieve records from the keyboard

• Retrieve records from library procedure members

Records retrieved from the keyboard are returned directly
to the calling program. If records are retrieved from a
procedure member, SYSI N performs:

• Substitution (#CLPR or #CLSB)

• If statement processing consisting of:
- Existence testing (#CLFX, #CLSM, #CLAC, or

#CLBL)
- Character string comparisons (#CLSS)

The SYSIN mainline module (#CLSS) uses the above
routines to perform the various functions performed when
SYSI N retrieves library procedure members. (See Figure
6-16 for SYSIN control flow.)

When a user program requests SYSI N services, the SYSI N
Load Transient (#CLSN) is loaded into the transient area.
#CLSN then loads and passes control to #CLSS at location
X'DDOO' (logical address).

Licensed Material-Property of IBM

When the initiator is processing, #CLSS is link-edited with
the initiator. A 2K block of main storage starting at
X'F800' (logical address) is reserved by #CLSS to handle
the SYSI N routines used to process procedure members.
This 2K block of main storage may also be used by the
initiator to handle OCl statements, and history file put
(@HFPUT).

The SYSIN calling program must place the leftmost byte
address of the SYSIN parameter list in XR2 (see Data
Areas Handbook for SYSI N parameter list format).

The history file put routine (@HFPUT) and the source
library get routine (#MASYl) are link-edited with the
SYSIN mainline module. #MASYL retrieves procedure
records and @HFPUT places records in the history file.

SYSLIST

SYSLIST provides a means of printing or displaying system
output to the user. SYSLIST executes as either a transient
or a loadable module.

The SYSLIST transient interface consists of the following:

• #CLST: SYSLIST printer transient. This module is
always loaded first on every transient call to
SYSLIST.

• #CLSC: SYSLIST work station transient.

• SLIST: SYSLIST macro that provides linkage to the
transient module (#CLST).

The loadable SYSLIST interface consists of the following:

• #CLSP: Loadable SYSLIST printer module.

• #CLSW: Loadable SYSLIST work station module.

• SLSTL: SYSLIST load macro that loads either
#CLSP or #CLSW into the specified user load
area.

The SYSLIST printer modules (#CLST and #ClSP) list
system output on the system or specified work station
printer. The SYSLIST work station modules (#CLSC and
#CLSW) list system output on the work station display
screens.

Two types of system output are listed by SYSLlST: Type
1 output comes from a message member and Type 2 output
comes from a system program.

When the SYSLIST transient is called, the user must supply
a SYSLIST parameter list with the leftmost byte address
in XR2. Control is then passed to #CLST via the SLIST
macro. If the display screen is to be the SYSLIST device,
#CLST transfers control to #ClSC, which is loaded in the
transient area.

When loadable SYSLIST is called, the user must supply a
SYSLIST parameter list with the leftmost byte address in
XR1. Control is passed via a branch to the specified user
load area. Prior to passing control, the user must have
executed macro SlSTl, to load the proper module into
the load area.

The SYSLIST parameter list may be in one of two formats:
TYPE 1 or TYPE 2. (See the Data Areas Handbook for
SYSLIST parameter list formats.)

SYSLOG

SYSLOG provides a method for printing or displaying
messages.

Messages are printed only if the system is in single program
mode and the printer is the SYSLOG device and not busy.

Six types of messages may be displayed on the work station
or operator's display screen. The six message types are:

• Type 1: Messages from a message member without
a response

• Type 1 R: Messages from a message member with a
data response

• Type 2: Messages from a user program without a
data response

• Type 2R: Messages from a user program with a data
response

• Type 3:

• Type 4:

Messages from a u~er program with a
format line request

Messages from a message member with 8
bytes of data inserted at the beginning of
the message

The SYSLOG mainline module (#ClSG) can be called by
way of the SYSlOG push/pull transient (#ClXS).

Introduction 6-9

Licensed Material-Property of IBM

When loaded into the transient area, #CLXS pushes 10K
of user program from main storage to disk. It then loads
#CLSG into main storage at location X'C900' (logical
address). #CLXS also moves the parameter list, ATR,
SSN of #CMWO and, if the message type is 2, 2R, or 3,
the message from the transient area to the first sector of
the user area just cleared.

#C LSG uses printer lOS (I PTR) to output messages to the
printer and uses the command processor (#CMWO) to
output messages to the display station display screen.

History file put (@HFPUT) and message retrieve
(@MGRET) are link edited with #CLSG. @MGRET is
used to retrieve type 1, 1 R, and 4 messages from the
proper message member. @HFPUT is used to log messages
and responses to the history file when requested.

The caller of SYSLOG must supply a parameter list with
XR2 containing the leftmost byte address (see the Data
Areas Handbook for the SYSLOG parameter list format).

If option 3 (cancel request) is returned to SYSLDG in
response to a message, #CLSG calls the end-of-job transfen'
(#CTEI) to terminate thejob. #CLSG returns control to
#CLXS. If #CLXS is called by #CLSG, it is to move the
SYSLOG parameter list' back to the transient area and to
pull the 10K of user main storage previously pushed to
disk back into the user area. If an option response or data
response was received, #CLXS passes the response to the
caller. If the option is D, a main storage dump is performed.

HISTORY FI LE PUT

History file put documents information such as DCL and
utility control statements entered by the system operator,
error messages, and operator responses.

History file put exists either as a transient (#HFPUT)
which executes in the transient area or as a I ink-edit
module (@HFPUT) along with the user program and
branched to by user program request.

6-10

The history file is not a data file but is located in the
system area on disk. (See the Data Areas Handbook for
history file description and format.) Entries are placed in
each sector of the history file, one after another, until the
point is reached where the next entry would extend
beyond the sector. In this case, the next entry is placed in
the following sector and the current sector pointer is
updated. When the point at which there is no following
sector is reached, the entry is placed in the sector at the
beginning of the file. This condition is known as wrap
around. The entry last placed in the history file is the
current entry.

The system communication area (SCA) contains the history
file status:

• SCAHIST: history file beginning sector address

• SCAHFSIZ: history file size in sectors

• SCAHFCUR: history file sector containing current
entry

• SCASYS1: error condition if SCAHFERR set

If the SCAHFERR bit is not set in SCASYS1, #HFPUT
(or @HFPUT) reads the history file status from the SCA
to determine the history file start address, the history file
size, and the address of the current entry. #HFPUT uses
this information to read the sector containing the current
entry from disk and places it into the history file I/O
buffer. Next, #HFPUT removes all trailing blanks from
the input text, and moves the text into the history file
data buffer. Additional information about the entry is also
placed in the history file data buffer: the terminal identi
fier is read from the terminal unit block (TUB), the user
identification is read from the job control block (JCB) or
terminal unit block (TUB), the job identification is read
from the JCB, the current time is extracted from the sys
tem timer routine ($TOD), and control bits are set
indicating if the entry was broadcast and if the entry was
displayed to the operator.

The completed entry is moved into the history file I/O
buffer immediately following the previous current entry.
If the new entry will not fit into the current sector, it is
placed into the next sector, and the SCA current sector
address is updated. A maximum of four lines of equal
length may be placed into the history file on each call.
Disk lOS writes the entry from the history file buffer to
the history file on disk.

Licensed Material-Property of IBM

The history file put routine caller must provide a 10-byte
parameter list with XR2 containing the leftmost byte
address. (See the Data Areas Handbook for the history
file put parameter list format).

SUPERVISOR TASK ATTACH TRANSIENT (#SVAT)

The supervisor task attach routine (#SVAT) is a transient
used to attach a new task to the system.

$SVAT assigns the task control block (TCB) to run the new
system task. The number of 2K main storage blocks
required to start the new task is then calculated. This is
the largest program size required to load the program
mainline or the size required to execute the program.

If enough main storage and swap area are available to run
the task, #SVAT assigns a request block (RB), action
control element (ACE) - if required, and swap area. All
necessary fields in the TCB are initialized to start the task.
The new TCB is then placed on the swap-in-queue with the
dispatching address pointing to the bootstrap code in the
RB.

Input to the supervisor attach transient is the attach para
meter list supplie~ by the calling program. XR 1 contains
the address of the leftmost byte of the attach parameter
list (see Figure 6-35 for the format and content of the
parameter list).

Output from #SVAT is the new TCB placed on the swap-in
queue. XR1 contains either the address of the new task's
TCB or the value of the error return code.

After execution, HSVAT returns control to the calling
program or to a transient pointed to by the attach
parameter list.

SUPERVISOR TASK DETACH OR CHANGE ORIGIN
POINT (#SVAU)

The supervisor task detach or change origin point routine
(#SVAU) is a transient used to:

• Change a task's point of origin

• Detach a task from the system

Change Point of Origin

A task's point of origin within main storage may be
changed upon request. When control is passed from the
scheduler to the user program or from the user program to
the scheduler, a task's location in main storage may
require changing.

HSVAU determines if enough main storage space is avail
able to load the requested program. The old swap area on
disk is freed if enough main storage area exists and the old
swap area is larger than the required swap area. The old
swap area is also freed if the required swap area is smaller
than the old swap area and the task is in termination.

All main storage assigned to the task, except the first 2K
bytes, is then freed. The bootstrap code used to start the
task is moved to the first 2K byte area and control passed
to the program indicated in the attach parameter list.

Detach Task

The task detach function is called when a task goes to end
of job.

HSVAU frees the task's main storage area and swap area on
disk. The task's request blocks (RBs) and job control
block (JCB) are then freed if required. Finally, the task
control block (TCB) is freed. When the detach function is
complete, control is returned to the dispatcher (control
storage) and the transient area is freed.

Input to the supervisor detach and change origin point
transient is the attach parameter list supplied by the calling
program. XR1 contains the address of the leftmost byte
of the attach parameter list. (See Figure 6-35 for t~e for
mat and content of the parameter list.)

Output from HSVAU is a new point of origin for the task or,
if requested, the task is detached from the system.

If an error condition is encountered while executing
HSVAU, the error return code is placed in XR 1 and
returned to the calling program.

Introduction 6-11

Licensed Material-Property of IBM

SYNTAX CHECKER (#USYX)

The syntax checker (#USYX) performs the following
functions:

• Checks for a valid verb in a control statement

• Indicates in the communication table the parameters
specified in the control statement

• Checks that parameter values are valid

• Places parameter values (or values that are to be
substituted for parameter values) in the communication
table

• Checks that parameters are used in valid combinations

• Indicates in the communication table any syntax errors

The syntax checker consists of a single phase, #USYX,
that resides in the system library.

Input to the syntax checker consists of:

• Syntax checker parameter list

• Verb list

• Communication table

• Syntax specification module

• Control statement

Note: The syntax checker parameter list, communication
table, and syntax specification module are described in the
Data Areas section of this chapter.

When the syntax checker is called:

• The calling utility places the address of the syntax
checker parameter list in register 2

• The syntax checker parameter list indicates the
address of the verb list and communication table

• The communication table specifies the name of the
syntax specification module to load from the system
library

6-12

Output consists of the communication table returned to
the calling utility with the following information:

• Parameters found in the control statement

• Parameter values

• Syntax errors that were detected

The syntax checker requires 4.5K bytes of main storage
for program execution plus space for the syntax specifica
tion module, if required.

INFORMATION RETRIEVAL (#SVINF)

The information retrieval transient (#SVINF) is invoked by
the $1 NFO macro instruction in the user's program.
#SVINF provides the user with the ability to access certain
fields within privileged control blocks (JCB or TCB) or the
local area on disk.

The user provides a parameter list which specifies the
operation to be performed (get or put) and the data area
to be used for communication between the user and the
transient.

When #SVI NF receives control, XR2 contains the address
of the parameter list. #SVINF determines whether the
user is permitted to access the field. If the user is not
permitted to access the field, a 3 option only SYSLOG
message is issued.

DATA MANAGEMENT TASK TRANSFER CONTROL
(#SVTTC)

Data management task transfer control (#SVTTC) controls
communication between user programs and the communi
cations data management task.

Licensed Material-Property of IBM

SNAP DUMP (#SVDMP)

The snap dump transient (#SVDMP) provides a formatted
main storage dump when it is invoked by the $SNAP
macro in the user program. The user either dumps the
entire region of main storage, or specifies storage limits
for the dump in a parameter list:

Byte Description

0 Flag

1-2 Low storage address

3-4 High storage address

5-8 Dump identifier

Licensed Material-Property of IBM

Introduction 6-13

Method of Operation

This section contains functional diagrams of the system
service functions. They are:

• Find a library routine

• Single name find routine

• Librarian find routine

• Source library get routine

• Library record put routine

o Library sector get/put routine

• Library member protection

• Active format 1 area access routine

• Cross reference resolver

• Duplicate key display routine

• Print image verify ,routine

6-14

• Disk VTOC read/write

• Diskette VTOC read/write

• Message retrieve

• SYSIN

• SYSLIST

• SYSLOG

• History file put

• Supervisor task attach

• Supervisor task detach

o Syntax checker

• Information retrieval

o Data management task transfer control

• Snap dump

Licensed Material-Property of IBM

From: Calling Program

INPUT, L..I:,;:0CESS '"'1 r OUTPUT

a
Library name :> 0 Find requested library (Diagram 6.1) > Format 1 address

I >. 0 I > Parameter list Library format 1 Find directory entry (Diagram 6.2)

I >- I I > Library directory Library name Find requested library directory entry

I ~o
(Diagram 6.3) I I > Requested record Library member Retrieve requested source or procedure

I ~o
record (Diagram 6.4) I I

Record Put record to library (Diagram 6.5) > Library member

I :>0 n a > Library member Library member Get or put library sector (Diagram 6.6)

I ~o 0 -; > SEU member chain Member element Perform library member protection

I ~
function (Diagram 6.7)

~ I AFA format 1 :>. Perform active format 1 area access function >AFA format 1

~ ~.
(Diagram 6.8)

~ ~
Module loader Perform cross reference resolver function > Updated WTG table
information

~ ~o
(Diagram 6.9)

~ ~
>DuPlicate key Format 1 Display duplicate key information

~ ij (Diagram 6.10)

~ ~
message

> Updated printer Printer specification >0 Verify print image (Diagram 6.111
block ~ ~o ~ ~ specifications

>Disk VTOC Disk VTOC Process disk VTOC read/write request

~ ~ (Diagram 6.12)

~ ~
Diskette VTOC :>0 Process diskette VTOC read/write request > Diskette VTOC

~ I (Diagram 6.13)

~ ~
Message member :>0 Retrieve requested message (Diagram 6.14) > Requested message

D >0 0 D
Input from Perform SYSIN function (Diagram 6.15) > Processed record
keyboard ~ ~ ~ ~
Message member >0 Perform SYSLIST function (Diagram 6.16) >printed or

~ ~ ~ ~ displayed output

Message data :>0 Perform SYSLOG function (Diagram 6.17) > Printed or

I I ~ ~ displayed output

History file data :>. Put records into history file (Diagram 6.18) > Updated history

I ~o u m file

Attach Perform supervisor task attach function > New TCB on swap
parameter list ~ !. (Diagram 6.19) ~ ~ in queue

Attach Perform supervisor task detach function > Detached task
parameter list I !. (Diagram 6.20)

~ I
Statements to Perform syntax checker function > Updated
analyze

~ ~ (Diagram 6.21)

~ ~ communication table

User parameter :>0 Perform information retrieval function > Requested field
list Ie (Diagram 6.22)

fP; !If m W@i@fi,! D moved

*
, e .SCtNPPM

Diagram 6.0 (Part 1 of 2). Overview of System Service Programs

Method of Operation 6·15

Licensed Material-Property of IBM

I INPUT (continued) 1
TCB

I
User parameter
list

r PROCESS (continued)

I
r OUTPUT (continued)

>. Perform data management task transfer > Control is

~.
control function (Diagram 2.23) I I transferred

Perform snap dump function (Diagram 2.24) > Formatted main
storage dump

------:i1
To: Calling Program

Method of Operation

Diagram 6.0 (Part 2 of 2). Overview of System Service Programs

6-16

Licensed Material-Property of IBM

From: Calling Program INPUT ____ _
~OCESS

(XR2
Find a Library
Parameter

Main Storage

Transient Area:
#MAFLB

User Area

User Program

Library name
.SCA
JCB
FSB
AFA
VTOC

II Locate requested library and set up for
use

-------:11

• OUTPUT ___ _

.....
Format 1 address

JCB

FSB

AFA format 1

To: Calling Program

MODULE/
OESeR IPTION ROUTINE

D Check if requested library name is # LI BRARY. #MAFLB

If yes:

• Get # LI BRARY format 1 address from system communications area (SCA).

• Return to calling program.

Search active format 1 area (AFA) for requested library.

If requested library in AFA:

• If library format 1 on job control block (JCB) library file specification block ~FSB) chain, only return format 1
address.

• If library format 1 not on library FSB chain, build library FSB, chain FSB to JCB, increment use count in
format 1, and return format 1 address.

• Return to calling program.

Search VTOC for requested library (disk VTOC read/write, @CSVF, is link edited with #MAFLB). @CSVF

If requested library in VTOC: #MAFLB

• Build library format 1 in AFA.

• Build library FSB and chain to JCB.

• Set format 1 use count to 1.

• Return format 1 address to calling program.

If requested library can not be found:

• Set format 1 AFA address in parameter list to zero (calling program must handle error).

• Return to calling program.

Diagram 6.1. Find Requested Library

Method of Operation 6-17

Licensed Material-Property of IBM

From: Calling Prog~am
INPUT __ ---_

LJ;:0CESS
'" OUTPUT ___ _

(XR2

System Find
Parameter

Main Storage

Transient Area:
#MASFN

User Area

User Program

JCB
,SCA
#L1BRARY
format 1
User library
format 1

D Locate requested library directory entry Parameter list

---Tl
To: Calling Program or SYSLOG

MODULE/
DESeR IPTION ROUTINE

II Move parameter to transient area. #MASFN

Determine if user library to be searched.

If user library, search user library directory for requested entry (scan read). Disk IDS

Search system library directory if II not to be skipped, D entry not in user library, II user library skipped,
or EI user library not designated or given (scan read).

If user call:

• If requested entry found: #MASFN
- Move requested directory data from scan buffer to output parameter.
- If requested move format 1 address of library member is found in parameter list start address

field ($FNDDF1 F):
a. Move output parameter to caller's area.
b. Return to caliing program.

• If requested entry not found:
- Leave unchanged parameter list in caller's area.
- Return to calling program.

If loader call:

• If requested entry found:
- Move loader information from directory entry to parameter list.
- Move parameter to caller's area.
- Return to calling program.

• If requested entry not found:
- Display name of member not found. #CLXS

• - Issue halt. #CLSG

Diagram 6.2. Find Directory Entry

6-18

Licensed Material-Property of IBM

1-1

From: Calling Program INPUT ____ _
I...I:;:0CESS

(XR2
Librarian Find
Parameter

Main Storage

Transient Area:
$MAFND1

User Area

User Program:
$MALFN1

Library
JCB
TCB

D Locate requested library directory entry

---:Tl

,. OUTPUT ___ _

Caller's buffer

Parameter list

Library directory

To: Calling Program

MODULE/
OESeR IPTION ROUTINE

D Determine if $MAFND executing in user area or transient area and set up code accordingly. $MAFND
or

Determine library to search: MALFN

• Specified library.
8 Designated user library.

• System library.

• Designated user library, then system library.

Enqueue library directory to be searched on the first call scan library directory to first requested member. Disk lOS

Read library directory into caller's buffer.

Search library directory for match on type and name (full or partial name). $MAFND
or

If requested entry found, update parameter list to point to found entry in caller's buffer. $MALFN

When at buffer end:

• Write caller's buffer back to directory on disk if write switch on in parameter list. Disk lOS

• GotoDO· $MAFND
or

If directory entry not found: $MALFN

• Update parameter list to indicate requested library directory not found.

• Set end of file (EOF) switch.

• GotoDO·

1$MAFND may execute in transient area or user area ($MALFN).

Diagram 6.3 (Part 1 of 2). Find Requested Library Directory Entry

Method of Operation 6-19

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

" Terminate program: $MAFND

• Perform cleanup. or

• Dequeue library directory on last call (EOF on single name call without write). $MALFN

• Move parameter back to user area.

• Return to calling program.

(
\

Diagram 6.3 (Part 2 of 2). Find Requested Library Directory Entry

6-20

Licensed Material-Property of IBM

From: Calling Program

INPUT----. ~OCESS

(XR2 o Get requested source or procedure record

Source Library
Get Parameter

Main Storage

Transient Area:
#MASGT

User Area:
#MASYL

Library directory

Library member

OESeR IPTION

D If get first request, perform first time processing.

If find request (#MASGT only):

• Find requested library member.

• If not found, return not found indicator.

• Set parameter list for get first.

If get first request or reprime request, read requested record into I/O buffer.

If next record to be retrieved:

• Blank record buffer.

• Read another buffer if at end present buffer.

• Expand record and move record from I/O buffer to caller's record buffer.

If record larger than caller's record buffer:

• Truncate record.

• Set truncated record bit in parameter list.

If record smaller than caller's record buffer, pad remaining space with blanks:

If requested, indicate start of blanks with X'FF'.

When last record returned, set on EOF bit.

When finished processing present record:

• Update parameter list.

• Return to calling program.

Diagram 6.4. Retrieve Requested Source or Procedure Record

Licensed Material-Property of IBM

iI 0 U TP U T CC::CEl:!m:::::cc::::t

To: Calling Program

Parameter list

Requested record
in caller's record
buffer

MODULE/
ROUTINE

#MASGT
or

#MASYL
#MASFN
#MASGT

or
#MASYL
Disk lOS

#MASGT
or

#MASYL

Method of Operation 6-21

From: Calling Program INPUT ____ _
L..J:.;0CESS

(XR2

library Control
Block

Main Storage

User Area:
#MAPUR

Record

Caller's buffer

OESeR IPTION

D Put source or procedure member into
requested library

D Check library control block (LCB) for library open request.

If open request, open requested library and return to caller.

Compress record and move record from user's buffer to I/O buffer.

When I/O buffer full, write buffer to requested library.

Update LCB to indicate number library member sectors available.

If not enough library member sectors available, issue appropriate message.

If close request, close library to update library directory and return to caller.

Diagram 6.5. Put Record to Library

6-22

..

~ OUTPUT ___ _

LCB

library source or
procedure member

To: Calling Program or SYSLOG

MODULE/
ROUTINE

$MAPUR

$MACOM
or

$MALCO
$MAPUR

Disk lOS

$MAPUR

#CLXS

$MACOM
or

$MALCO

Licensed Material-Property of IBM

From: Calling Program INPUT ____ _
L...::s:0CESS

(XR2
Library Control
Block

D Get member from library

If) Put member into library

Main Storage

User Area:
$MAPGS

Library directory

Library member

Caller's buffer

DESCRIPTION

D Check get/put bit (LCBGTPT) to determine operation requested.

If put request, go to ~.

If requested, find requested library member.

If program temporary fix (PTF) added to module. retrieve PTF information.

Read requested library member and place in user provided I/O buffer.

Return.

~ When entire member is retrieved:
CD Update library control block (LCB).
CD Return to calling program.

ffJJ If open bit (LCBOPEN) on, open requested library and return to caller.

Write library member from user provided I/O buffer to specified library.

When entire member written to library:
G Close library if requested. .. CD Update LCB.
0 Return to calling program.

Diagram 6.6. Perform Library Sector Get/Put Function

Licensed Material-Property of IBM

~ 0 U TP U T ar.;.'!::ll!DEIIII:I!m?,I

:>' LCB
... '

Library member

To: Calling Program

MODULE/
ROUTINE

$MAPGS

#MASFN

$MAPTF

Disk lOS

$MAPTF

$MAPGS ~

#MACOM
or

$MALCO
Disk lOS

$MACOM
or

$MALCO
$MAPGS ~

Method of Operation 6-23

(XR2
Parameter list

Main Storage

Transient Area:
#MAMPM

User Area

User Program

TCB address
TerminallD
SEU member chain

From: Calling Program

I..I:;:0CESS

o Build new member chain element and
add to chain

...

• OUTPUT ___ _

Parameter list

SEU member chain

Member chain
element

SCA

To: Calling Program or SYSLOG

OEseR IPTION

IG Enqueue source entry utility (SEU) member chain queue header.

Add new member element to chain.

Using parameter list information, search specified library for requested member.

Build member chain element from:
o Task control block (TCB) address.
o Terminal ID in terminal unit block (TUB).
o If #MASFN found specified member, library directory member address (SSS).
o If #MASFN did not find specified member, member address of zeros.

Add terminal I D to end of parameter list.

Search member chain for matches on terminal I D and member address.

If matches (except for member address of zeros), cancel job and display appropriate error messages.

If no matches, dequeue SEU member chain queue header and return to calling program.

Diagram 6.7. Perform Library Member Protection Function

6-24

Licensed Material-Property of IBM

MODULE/
ROUTINE

#MAMPM

#MASFN

#MAMPM

#CLXS

#MAMPM

From: Calling Program

~ INPUT ~OCESS ~ OUTPUT

--.. D Process requests for Get and Put of format 1
..

(XR2 :> ;> AFA format 1
blocks in AFA

...
AFA access User's I/O area
parameter list

AFA access
Main Storage parameter list

Transient Area:
#CSAF

User Area

User Program

JCB
AFA format 1
User's I/O area
AQE chain
FSB

• ~ ~
To: Calling Program

DESCRIPTION
MODULE!
ROUTINE

D Determine function requested by' caller. #CSAF

If get-by-Iabel request for unit F1:

• Search AFA chain for format 1 with specified label (date and I D may also be given).

• Move format 1 to caller's I/O area.

If get-by-Iabel request for unit 11:

• Scan FSB chain and examine the associated format 1 's.

• If format 1 contains correct unit and label, place format 1 address into caller's parameter list (date verify may
also be given).

• Move format 1 to caller's I/O area.

If get-by-name request:

• Search FSB chain for specified name (FSB contains address of format 1).

• If format 1 contains correct unit, place format 1 address into caller's parameter list.

• If requested, move format 1 to caller's I/O area.

If get-by-address request, move format 1 at specified address to caller's I/O area.

If put request, move format 1 in caller's I/O area into AFA format 1 specified in caller's parameter list.

Update return code in parameter list.

Return to calling program.

Diagram 6.S. Perform Active Format 1 Area Access Function

Method of Operation 6·25

Licensed Material-Property of IBM

From: Calling Program

INPUT----.. ~OCESS
• OUTPUT ____ _

Main Storage D Place module loader information in
where-to-go table, or fill in format
index table

Library member

User Area:
#MAXRF

Library directory

Library member

SCA·

--------=:i1
To: Calling Program or EOJ or

SYSLOG (if error)

DESCRIPTION

D
\

Get address of #LlBRARY from system communication area (SCA).

Read system library directory.

Build resident table of all SSP load modules (O-type).

Build main storage format index.

For each entry in the resident table with the where-to-go (WTG) or format index table indicator on, read the
last four text sectors of corresponding library member.

If module has a WTG table, search resident table for match with WTG table entries.

If match found, move loader data from resident table into WTG table:

• SSS disk address.

• Number of text sectors.

• R LD displacement.

If no match, move loader data for no-op module (#MANOP) into WTG table (see note).

If module has a format index table:

• Use displacement to get corresponding entry from the main storage format index.

• Move fields from main storage format index to the module's format index table:
- SSS disk address.
- Number of FDT.
- Number of text sectors.
- Input length of screen.

Note: #MANOP is executed when unresolved module is called. #MANOP issues halt by way of SYSLOG.

Diagram 6.9 (Part 1 of 2). Perform Cross Reference Resolver Function

6-26

Licensed Material-Property of IBM

MODULE/
ROUTINE

#MAXRF

Disk lOS

#MAXRF

Disk lOS

#MAXRF

DESCRIPTION

If WTG table or format index table is invalid (no delimiter of X'FFFF':
o Display module name.
• Prepare to read next module.
e If during I PL, issue system error.

When all WTG table references and format index table entries are processed, write last four sectors of module
back to original location on disk unless no changes were made.

When all modules processed, return to calling program or EOJ as requested.

Diagram 6.9 (Part 2 of 2). Perform Cross Reference Resolver Function

MODULE/
ROUTINE

#MAXRF
#CLXS
#MAXRF

Disk 105

#MAXRF

Method of Operation 6·27

Licensed Material-Property of IBM

From: Calling Program
INPUT ____ _

L...I:;:0CESS
• OUTPUT ___ _

XR1

(parameter list

Main Storage

Transient Area:
#CSDK

User Area

User Program

TCB
RB
Format 1
Message build
buffer

D Display duplicate key message and pass
operator response to calling program

...

------:T1
To: Calling Program

OESeR IPTION

D Save duplicate key display parameter list address and program mode register setting.

Display duplicate key found message and specify file name.

Place operator selected option in SYSLOG parameter list.

Retrieve operator selected option from SYSLOG parameter list:

• o option = display key in EBCDIC .

• 1 option = display key in hexadecimal notation.

Move key to message buffer area (if hexadecimal notation request, convert first).

Output duplicate key message to system console.

Place operator selected option in SYSLOG parameter list.

Retrieve operator selected OPtion from SYSLOG parameter list and place in duplicate key message parameter
list (flag byte).

Return to calling program.

Diagram 6.10. Perform Duplicate Key Display Function

6·28

Licensed Material-Property of IBM

Parameter list
(selected option)

Message

MODULE!
ROUTINE

#CSDK'

#CLXS

#CSDK

#CLXS

#CSDK

From: Calling Program
"" INPUT ____ •

L::;:0CESS

Main Storage

Transient Area:
#CSIM

User Area

User Program

JCB
TUB
PSB

...

.. II Set print image

II Set forms number

II Indicate separator page information for
spool

II Set lines per page

OESeR IPTION

D Read work station configuration record.

Read current printer image.

Compare current print image to work station configuration record.

If images do not match:

• Output change printer image message to operator.

• Place operator selected option in SYSLOG parameter list.

If option 1 (image change request), change image in printer control unit.

• Make current printer image equal to work station config record.

. \I au TPUT m:mzr;::ZiE::::m::~

To: Calling Program

Print image

Forms number

Spool separator
page indicator

Lines per page

PSB

TUB

MODULE/
ROUTINE

Disk 105

#CSIM

#CLXS

#CSIM
WSIOCH

B Compare forms number in printer specification block (PSB) and terminal unit block (TUB). #CSIM

If forms numbers do not match: #CLXS

• Output change forms message to operator.

• Place operator selected option in SYSLOG parameter list.

If option 1 (torms number change), set forms number in TUB. #CSIM

D Check spool indication in TCB.

If spool:

• Output spool separator page message to operator. #CLXS

• Place operator selected option in SYSLOG parameter list.

If option 1 (separator pages requested), update PSB flag byte. #CSIM

II Check lines per page flag in PSB.

If lines per page flag on, send lines per page to printer control unit. WSIOCH

After all PSBs on chain are processed, return to calling program. #CSIM

Diagram 6.11. Perform Printer Image Verify Function

Method of Operation 6·29

Licensed Material-Property of IBM

From: Calling Program
'" I N PUT ___ II!Za:~ ~OCESS

XR2

(parameter list

r.1----"""'"> II Determine function requested ..
fJ Process Format 1 read request

Main Storage

Transient Area:
#CSVF

User Area:
@CSVF1

Disk VTOC
User I/O area
SCA
TCB
RB

D Process Format 1 write request

II Process existence test request

DESCRIPTION

D Examine function byte in parameter list:

0 If format 1 read req~est, go to 6.
0 If format 1 write request, go to 6.
• If existence test request, go to ~.

D Determine type of format 1 read request:
0 Read next:

- Examine parameter list to determine if this is first request.
- If first request, start scan at first VTOC format 1 area sector.

To: Calling Program

- If not first request, increment sector number in parameter list and start scan in next sector.
- Read sector identified by disk lOS.

• Read next-same label:
- Set up scan mask to compare on specified label.
- Perform same steps as for read next.

0 Read specific:
- Set date indicator scan if reque~ted.
- Scan VTOC format 1 's.

If requested VTOC format 1 found or read by sector displacement:
0 Place sector/displacement of format 1 in parameter list.

• Read format 1 into data area.
0 Move format 1 to caller's I/O area.

1 Link-edit version is @CSVF.

Diagram 6.12 (Part 1 of 2). Process Disk VTOC Read/Write Request

6-30

Licensed Material-Property of IBM

OUTPUT 1Iml!IB!l'Z:=-"

Parameter list

User I/O area

Disk VTOC

MODULE/
ROUTINE

#CSVF1

Disk lOS

#CSVF

Disk lOS

#CSVF

OEseR IPTION
MODULE/
ROUTINE

If request not found, set request not met return code in parameter list. #CSVF

Return to calling program.

B Set up lOB to read sector specified in parameter list .

• Read specified sector from disk. Disk lOS ~
Move format 1 from caller's I/O area into sector just read. #CSVF

Write sector with updated format 1 back to disk. Disk lOS

Return to calling program. #CSVF

II Perform read specific processing but do not move format 1 into caller's I/O area.

Return to calling program.

Diagram 6.12 (Part 2 of 2). Process Disk VTOC Read/Write Request

Method of Operation 6-31

Licensed Material-Property of IBM

From: Calling Program
INPUT ___

I...S:;:0CESS

XR2

C Parameter list

Main Storage

Transient Area:
#CSVI
#CSVJ
#CSVK

User Area

User Program

SCA
TCB
JCB
Diskette VTOC
area on disk
User I/O area
Diskette VTOC

OEseR IPTION

o Determine function requested

fJ Process convert request

II Process prepare request

II Process format 1 read request

II Process format 1 write request

II Process existence test request

tIB Examine function byte in parameter list:

0 If convert request, go to 1fJ.
0 If prepare request, go to II.
e If format 1 read request, go to EaI.
0 If format 1 write request, go to e.
0 If existence test request, go to m.

~ If request for header 1's convert:
0 Initialize diskette lOB for read operation and disk lOB for write operation.
0 Read header 1's from diskette.
0 Convert header 1's to format 1 's.

• Write format 1 to disk.
0 Return.

If request for format 1 convert:

• Verify lock sector.
0 Initialize disk lOB for read operation, and diskette lOB for write operation.

• Read format 1 from diskette format 1 area on disk.
ll> f) Convert format 1 to header 1.

• Write header 1 to diskette.
0 Return.

Diagram 6.13 (Part 1 of 2). Process Diskette VTOC Read/Write Requests

6-32

Licensed Material-Property of IBM

• OUTPUT ___ _

Diskette VTOC ...

Parameter list

User I/O area

Disk VTOC

To: Calling Program

MODULE/
ROUTINE

#CSVI

#CSVJ
Diskette lOS
#CSVJ
Disk lOS
#CSVJ

#CSVI
#CSVM
#CSVK
Disk lOS
#CSVK ~
Diskette lOS
#CSVK

DESCRIPTION
MODULE/
ROUTINE

II Initialize diskette lOB for read operation. #CSVI

Read diskette volume label. Diskette lOS

Perform recal ibrate if necessary.

Verify volume label format. #CSVI

Put volume label and physical attribute byte in SCA.

Create diskette lock sector.

Build diskette VTOC area on disk. #CSVJ

III Determine type of format 1 read request: #VSVI

• Read next:
- Examine parameter list to determme if this is first request.
- If first request, start scan at first VTOC format 1 area sector. Disk lOS

- If not first request, increment sector number in parameter list and start scan in next sector.

• Read next-same label: #CSVI

- Set up scan mask to compare on specified label.
- Perform same steps as for read next.

• Read specific:
- Set date indicator scan if requested.
- Scan VTOC format 1 's. Disk lOS

If requested VTOC format 1 found or read by sector displacement: #CSVI

• Place sector/displacement of format 1 in parameter list.

• Read format 1 into data area. Disk lOS

• Move format 1 to caller's I/O area. #CSVI

If request not found, set request not met return code in parameter list.

Return to calling program.

III Set up lOB to read sector specified in parameter list.

Read specified sector from disk. Disk lOS

Move format 1 from caller's I/O area into sector just read. #CSVI

Write sector with updated format 1 back to disk. Disk lOS

Return to calling program. #CSVI

II Perform read-specific processing but do not move format 1 into caller's I/O area.

Return to calling program.

Diagram 6.13 (Part 2 of 2). Process Diskette VTOC Read/Write Requests

Method of Operation 6·33

Licens~d Material-Property of IBM

From: Calling Program

INPUT----. ~OCESS
'" OUTPUT ___ _

XR2

(parameter list

Main Storage

Transient Area:
#MGRET

User Area

User Program

Message member
Caller's buffer
address
MIC
Message member SSN
Communication
regions

o Retrieve message text for requested MIC ...

.. -------------------~ To: Calling Program

DESCRIPTION

D Ensure valid message member:

• Check message retrieve parameter list for valid indicators .

• Check message member pointers in appropriate communication region for nonzero SSN .

Scan message member for sector identified by message identification code (MIC) greater than or equal to one
requested.

Find desired message by reading message member sector, looking for requested MIC.

Blank caller's buffer.

Place requested message in buffer.

Place message length in parameter list.

If error condition detected, return error MIC in parameter list.

Return control to calling program.

Diagram 6.14. Perform Messagl! Retrieve Function

6-34

Licensed Material-Property of IBM

Caller's buffer
containing
requested message
text

Parameter list

MODULE!
ROUTINE

#MGRET

Disk lOS

#MGRET

From: Initiator or Calling Program

.INPUT L::;:0CESS
OUTPUT ___ _

.. D Load SYSIN if not already in main storage XR2 >
(SYSIN

~

D If input from keyboard, retrieve record
parameter list and go to IJ.

PPSA

Processed record

Main Storage II Perform SYSIN mainline processing
History file

0000
Procedure II Perform substitution to first blank past
Parameter character
Save Area
buffer (PPSA) 1:1 Determine necessity for I F statement

and processing; if required:
SYSIN mainline l!.1 (#CLSS) Perform active procedure

FaOO
existence tesying

SYSIN routines: 1m] Perform blocks existence testing
#CLAC III Perform file existence testing
#CLBL
#CLFX II Perform switch and member existence
#CLPR
#CLSB

testing

#CLSM D Set return code and return to
FFFF

calling program

Task work area
JCB

To: Calling Program

MODULE/
OESeR IPTION ROUTINE

D Push out one track of user main storage to make room for #CLSS and 2K area for SYSIN routines. #CLSN

Load SYSIN mainline (#CLSS) into main storage area just cleared (X'DDOO').

Pass control to #CLSS.

D Call command processor (#CMWI) to accept input from keyboard. #CLSS

If log to printer, call SYSLOG (#CLSG) to print keyboard input.

Move input record to user's buffer.

Output records to history file if log bit on in SYSIN parameter list operation code. @HFPUT

Pull user program back into main storage if previously pushed out to disk. #CLSN

Go taD.

Diagram 6.15 (Part 1 of 4). Perform SYSIN Function

Method of Operation 6-35

Licensed Material-Property of IBM

OEseR IPTION

II Call source get (#MASYG) to retrieve record from procedure library and place in input buffer.

Move characters one at a time from input buffer to output buffer looking for question mark (7).

If 7 found, perform character substitution by checking proper syntax.

If syntax error, call SYSLOG (#CLXS).

Determine type substitution required:

• Type 1 7#7
• Type 2 7#R7
• Type 3 7#R'msg id'7
• Type 4 7#'default'7
• Type 5 7#T'default'7
• Type 8 7R7
• Type 6 7WS7
• Type 7 7L'dsP,lng'7
• Type 9 7Mxxxx7
• Type 10 7M'xxxx,dsp,lng'7

If substitution required, go toll.

Look for /I blank in each procedure statement.

G If /I blank found, determine keywork:

• IF.
• ELSE.
• CANCEL.
• RETURN.
• RESET.
• Nonkeyword.

IF statement - If the I F expression conditions are met, blank out I F keyword and expression and continue
processing. If expression not met, set switch TSSSW4 and read another record into input buffer.

Search character string for I or - character:
• If I, perform character string comparison.
• If -, perform existence testing:

- For active procedure existence test, go to III.
- For blocks existence test, go to m::5J.
- For file existence test, go to III .
- For switch and member existence test, go to II.

ELSE keyword - If previous IF statement invalid (check TSSSW4), blank out ELSE keyword and process record.
Otherwise, read next record and ignore entire record with ELSE.

CANCEL keyword - If I F statement just processed (check TSSSW5) set TSSSW6 which causes EOJ transient
($EJ1-control storage) to be called.

RETURN keyword - If I F statement just processed, (~heck TSSSW5) set TSSSw7 which causes same function
as end-of-file processing.

RESET keyword - Set TSSSW14.

If TSSSW5 on, IF statement just processed. Since another IF expression may follow, return tollGto
continue processing.

When all I F expressions processed, go to lito substitute remainder of record.

Diagram 6.15 (Part 2 of 4). Perform SVSIN Function

6-36

Licensed Material-Property of IBM

MODULE!
ROUTINE

#CLSS

#CLSS

OEseR IPTION

When record with substitution, IF, and ELSE processing complete and in user's output buffer.
• Write record to history file if log bit on in SYSIN parameter list (use @HFPUT which is link edited with

#CLSS).
• Pull user program back into main storage.
• Return control to calling program.

II Perform actual substitution:
• Type 1 - parameter passed ,to procedure indicated by number is substituted. If no parameter passed, pass

null to output buffer.
• Type 2 - R indicates parameter required. Thus if no parameter passed, operator prompt is ENTER

MISSING PARAMETER. Response is saved in procedure save area as parameter (up to a characters).
• Type 3 - R indicates parameter required. User message is displayed to operator. Response saved in

procedure save area as parameter.
• Type 4 - Default value enclosed in quotation marks used as parameter.
• Type 5 - Default value used but T indicates parameter is temporary. Procedure parameter save area not

updated with default value.
• Type 8 - Prompt for up to 8 characters but result not saved in PPSA.
• Type 6 - Substitute work station I D.
• Type 7 - Substitute requested displacement and length from local area.
• Type 9 - Substitute characters from user 1 message member indicated by MIC number XXXX.
• Type 10 - Substitute from MIC with specified displacement and length.

If non blank character found, set internal switch.

If blank found, nonblank switch on, and substitution only to first blank past character, return to caller.
Otherwise, move character to output buffer. Repeat until all characters substituted.

When record substituted, output to history file.

II When IF statement processing necessary, perform steps m,m ' and III-as required.

When I F statement processing not necessary, perform substitution to end of statement.

When I F statement evaluated, return to II.
D!3 Check for quote mark following dash.

If quote found, there is list of procedure names to check. If no quote, only one procedure name.

Move procedure name characters to scan mask (8 characters maximum).

If active procedure found, set SS5TRVE switch.

If error detected, call SYSLOG (#CLXS) to display error message.

Return to #CLSS on ARR.

mD Check for 1 to 5 valid digits after BLOCKS-.

If digits valid, convert EBCDIC digits to hexadecimal notation.

Set up disk lOB to read F5 area (first 5 sectors of VTOC).

Read format 5 area from disk.

Check for available blocks.
• Save first format 5s size and address.
• Search format 5s for first format 5 that fits blocks requested.
• If space found, set SS5TRVE switch.

Diagram 6.15 (Part 3 of 4). Perform SVSIN Function

MODULE!
ROUTINE

#CLSS

#CLSN
#CLSS

#CLPR

#CLSB

#CLSS

@HFPUT

#CLSS

#CLAC

#CLBL

Disk lOS

#CLBL

Method of Operation 6-37

Licensed Material-Property of IBM

OEseR IPTION
MODULE/
ROUTINE

If error detected, call SYSLOG (#CLXS) to output error message. #CLBL

Return to #CLSS on ARR.

III Check for quote mark following -. #CLFX

If quote found, indicates file existence test with file name and date.

Perform syntax checking.

Determine if disk or diskette to be checked.

If diskette:

• A"ocate diskette device.

• Call diskette VTOC read/write (#CSVI) to perform existence test.

• If specified file found, set SS5TRVE switch.

• Dea"ocate diskette device.

If disk:

• Call disk VTOC read/write (#CSVF) to read VTOC.

• If specified file found, set SS5TRVE switch.

If error detected, call SYSLOG (#CLXS) to display error message.

Return to #CLSS on ARR.

II Check for quote mark following -. #CLSM

If quote found, indicates library name follows library member name.

Perform syntax checking.

Find specified library. #MAFLB

If library found, find specified library member. #MASFN

If library and member found, set SS5TRVE switch. #CLSM

If SWITCH keyword, perform switch existence test:

• Compare UPSI switch with SWITCH keyword.

• If compare ok, set SS5TRVE switch ..

If error detected, call SYSLOG (#CLXS) to display error message.

Return to #CLSS on ARR.

B If successful operation set return code of X'40' in parameter list. #CLSS

If /* in first two positions of keyboard record, set return code of X'50' in parameter list.

Return control to calling program.

Diagram 6.15 (Part 4 of 4). Perform SYSIN Function

6-38

Licensed Material-Property of IBM

From: Calling Program
I N PUT ___ ~-=1111111

Lr.::;:0CESS
~ OUTPUT ___ _

XR2

(SYSLIST
parameter list
(170-byte buffer)

Main Storage

Transient Area:
#CLST
#CLSC

User Area

User Program

JCB
User message buffer
Message member

OESeR IPTION

D Print or display specified message
..
:>

To: Calling Program

m1 Check SYSLIST indicator (JCBDSLST) and if null (X'OOOO'), return to calling program.

I f parameter I ist is type 1 (output from message member):
0 Check parameter list for message member to use.
0 Retrieve message from message member and place in SYSLIST message buffer (170 byte buffer supplied

by the user).

If parameter list is type 2 (output from program), the user's message is already in the SYSLIST message buffer.

Check SYSLIST indicator (JCBDSLST) to determine SYSLIST device.

If SYSLIST device is printer (not X'OOOO' or X'EEEE'): • • Allocate printer.
0 Build print buffer from user supplied buffer.
0 Skip to new page if requested in parameter list.
0 Print message from print buffer.
e Space according to value in parameter list (0 to 3).
G Skip to new page if within six lines of page size value in JCB (JCBDLNPGl.
G Return.

If SYSLIST device is display screen (X'EEEE'):

• Build command processor parameter list around message in SYSLIST buffer.
0 Display message on screen.

Return control to calling program.

Diagram 6.16. Perform SYSllST Function

Printed output

Screen display

MODULE/
ROUTINE

#CLST

#MGRET

#CLST

#CAPT
#CLST
WSIOCH

#CLST

#CMLS

#CLST

Method of Operation 6-39

Licensed Material-Property of IBM

411

From: Calling Program
IINPUT ____ ..

~OCESS
I OUTPUT ___ _

XR2

CSYSLOG
Parameter List

Main Storage

Transient Area:
#CLXS

Main Storage:
#CLSG

Command Processor
(responses)
JCB
SCA

> _ ---..". .. .::> D Print or display requested message ...

------:Tl
To: Calling Program or

Job Terminated

OEseR IPTION

0 If SYSLOG push/pull transient called by user:

• Move SYSLOG parameter list from calling program to parameter list buffer in transient area.

• If type 2, 2R, or 3 message required, move message from calling program to message buffer in transient area.

• Push 10K of main storage (user area) to disk.

Screen display

Printed message

History file

TCB

MODULE/
ROUTINE

#CLXS

• Move parameter list buffer and message buffer (if used) to main storage area just cleared (X'CSOO' - X'CSFF').

• Load SYSLOG mainline (#CLSG) into main storage area (at X'C900').

Build format line (if requested) and log to history file (history file put - @HFPUT link edited with #CLSG). #CLSG

If type 1,1 R, or 4 message, move message from message member (message retrieve - @MGRET link edited
with #CLSG) to main storage save area.

If type 2, 2R, or 3 message:

• Message is in main storage save area.

• Log message to history file (@HFPUT).

Display message (format line and'text line) on system operator display screen or work station display screen as #CMWO
requested. and

HCMCI
If system in single program mode and printer is SYSLOG device, also print message as well as display it. WSIOCH

If data response required, log message and response to history file (@HFPUT). #CLSG

Diagram 6.17 (Part 1 of 2). Perform SYSLOG Function

6-40

Licensed Material-Property of IBM

OEseR IPTION
MODULE!
ROUTINE

If option response to message: #CLSG

• Display and print (if print conditions met) valid oPtion taken by operator.

• If 3 option taken, call end of job transient (#CTEU.

• If 0 oPtion taken, return to #CLXS.

If.SYSLOG push/pull transient called by #CLSG:

• Move SYSLOG parameter list from main storage to parameter list buffer in transient area. #CLXS

• Pull main storage area back from disk.

• If option response taken by operator, pass response to calling program.

• If OPtion response was 0, dump main storage and call EOJ transient.

• If data response required, pass response to calling program.

• Return control to user program.

Diagram 6.17 (Part 2 of 2). Perform SVSLOG Function

Method of Operation 6-41

licensed Material-Property of IBM

From: Calling Program ,.INPUT ____ _
~OCESS

XR2

(Parameter list

Main Storage

Transient Area:
#HFPUT

User Area:
@HFPUT1

JCB
SCA
TUB
History file

_ ---.... ~>", 0 Put records into history file

------~
To: Calling Program

DESCRIPTION

D Lock the history file.

Obtain history file controls from system communication area (SCA):

• History file start sector address.

• History file size.

• Current entry sector address.

Read current sector(s) from history file and place in history file 1/0 buffer.

G Remove trailing blanks from"input record.

Place record in history file data buffer.

Place additional information about record in history file data buffer:

• User 10.

• Job identifier.

• Terminal 10.

• Broadcast or display indicators.

• Entry length.

• Time of day.

Move completed entry from history file data buffer to history file 1/0 buffer placing new entry immediately
after previous current entry.

1 History file link edit version.

Diagram 6.18 (Part 1 of 2). Perform History File Put Function

6-42

Licensed Material-Property of IBM

OUTPUT ___ _

History file

Parameter list

MODULE/
ROUTINE

#HFPUT

Disk 105

#HFPUT

OEseR IPTION
MODULE/
ROUTINE

If new entry overflows into next sector, update current sector address in SeA. #HFPUT

If more input for history file, return to aOand repeat process (maximum of 4 lines may be presented to
history file at one call).

Write current sector(s) from I/O buffer to history file on disk. Disk 105

Unlock and dequeue the history file. #HFPUT

Place return code in history file parameter list.

Diagram 6.18 (Part 2 of 2). Perform History File PUt Function

Method of Operation 6-43

Licensed Material-Property of IBM

From: Calling Program
_INPUT ____ •

LJ;:0CESS
OUTPUT ___ _

XR1

(superVisor Task
Attach Parameter
List

Main Storage

Transient Area:
#SVAT

User Area

Attach parameter
list

Main storage
space

JCB, SCA, TCBs,
and TUB

.... ___ h.::> II Assign new task control block

fJ Determine main storage requirements

II Assign and initialize areas needed to start
new task

.11 Place new task control block on swap-in
queue

II Process attach error conditions if necessary

II Terminate program

-----Tl

New TCB placed
on swap-in-queue

Request block (RB)

Action control
element (ACE)

Swap area

To: Calling Program, New Task, or
Next Transient

OEseR IPTION

D Use control storage assign function to assign task control block (TCB) to run new task.

If unable to get TCB space, go tollwith $ATERR04 return code.

Initialize all TCB fields to zero.

Calculate logical program begin number and place in TCB (TCBBEGL).

Calculate logical start address. (This would be link edit address if module was link edited to 2K-byte boundary.)

fJ Calculate number of 2K-byte main storage blocks required to start task (TCBMSSIZL (This is the largest
program size to load program mainline or program size to execute.)

Make all address translation register (ATR) values serial from logical zero to new tasks begin address.

Ensure tasks main storage requirements do not exceed currently available main storage.

Calculate maximum active swappable region in system (excluding attach or task).

If insufficient swappable storage exists and task is swappable, go toll with $ATERR01 return code.

If task is nonswappable and storage requirements may disable another task, go toll with $ATERR03
return code.

Diagram 6.19 (Part 1 of 2). Perform Supervisor Task Attach Function (#SVAT)

6-44

Licensed Material-Property of IBM

MODULE/
ROUTINE

#SVAT

MODULE!
OEseR IPTION ROUTINE

Olf no terminal unit block (TUB) associated with attach request, but job control block (JCB) address (JCB@) #sVAT
passed in attach parameter list (used by spool writer and batch job queue attach requests):

• Allocate one-track work station work area (WsWA) on disk.

• If allocate not successful, go tollwith $ATERR07 return code.

• Move allocated WsWA address into TCB.

If TUB associated with attach request:

• Indicate TUB owned by new task.

• Use control storage assign function to assign action control element (ACE) to new task.

• If assign fails, go toDwith $ATERR08 return code.

• Use control storage queue function to place completed ACE on tasks TCB complete queue.

Use control storage assign function to assign request block (RB) in order to start new task.

If assign fails, go toll with $ATERR05 return code.

Allocate required disk swap area.

If swap area not available, go tollwith $ATERR06 return code.

Assign task I D if not passed in attach parameter list.

If sYslN data available, use control storage task work area (TWA) function to put syslN data in WsWA. Disk 105

If job name to be assigned, use control storage time-of-day function to place time in JCB. #sVAT

II Move system loader parameter list from attach parameter list to task - start bootstrap code.

Move bootstrap code to assigned RB.

Use control storage queue function to place new TCB on swapin queue.

Use control storage stack manipulation function to unstack RB from chain.

II Deallocate WsWA (if any).

Use control storage free function to free ACE, RB, and TCB (if any).

Put error code in XR1 (format is OOXX, where XX is error codel.

Return to calling program.

II Store passed XR2 address.

Get current TCB address.

Update RB.

If attach failed, return to calling program with error return code.

If attach worked, and if next transient address ($ATssSN) given, pass control to next transient.

If attach worked, exit transient area.

Diagram 6.19 (Part 2 of 2). Perform Supervisor Task Attach Function (#sVAT)

Method of Operation 6-45

Licensed Material-Property of IBM

From: Calling Program
.INPUT ____ .. ~OCESS

OUTPUT ___ _

XR1

(Sup.",isor task
attach Parameter
list

Main Storage

Transient Area:
#SVAU

User Area

Attach parameter
list

RB

JCB

TCB

DESeR IPTION

.. o Perform preliminary processing and
determine requested function

fJ Detach task from system if requested

II Change task's point of origin if requested

II Process error conditions if needed

II Terminate program

------:il
To: Calling Program or

Next Transient

D Calculate maximum swappable active region size not including this task and store value in TCB@INL1.

Deallocate all push elements for current TCB:

• Use control storage free function to free push element.

• Deallocate track on disk.

Calculate old swap size in tracks and place value in TCB@INL2.

If request to detach task from system, go to D.
If request to change task's point of origin, go to D.

fJ Use control storage free function to free all assign free queued areas for task being detached.

Use control storage free page function to free user main storage area.

Deallocate task's swap area on disk.

If no terminal unit block (TUB) associated with task and job control block (JCB) address not zero:

• Use control storage free function to free JCB.

• If not request to detach batch job, deallocate work station work area (WSWA).

Post command processor to restart batch job queue.

Diagram 6.20 (Part 1 of 2). Perform Supervisor Task Detach or Change Org Point Function (#SVAU)

6-46

Licensed Material-Property of IBM

Changed point
of origin

-or-

Detached task

MODULE/
ROUTINE

#SVAU

OEseR IPTION

Use control storage dequeue function to dequeue this task control block (TCB) from all system queues.

Post command processor for stop system request.

MODULE!
ROUTINE

#SVAU

Use control storage free function to free all request blocks (RBs) associated with task and free this tasks TCBs.

Go to lito terminate program.

D Calculate program size in number of blocks required to load program and place value in TCB@INL3.

Calculate required disk swap area size and place track size in TCB@INL4.

If not enough main storage space available to load task, go toll with $ATERR01 return code.

If task not swappable:
• If task initiation will disable active task, go toll with $ATERR03 return code.
• If task will not leave at least 14K bytes main storage available, go tollwith $ATERR02 return code.

If larger disk swap area needed or task initiation and swap area larger than needed:
• Deallocate old swap area on disk (Size iii TCB@INL2).
• Allocate new swap area on disk (size in TCB@INL4).
• If allocate not successful, allocate old swap area back and go toDwith $ATERR06 error code.

Use control storage free page function to free all main storage except first 2K bytes associated with task.

Move bootstrap code to first 2K-byte area.

II Store callers address recall register (ARR).

Put error code in XR 1 (format is OOXX, whereXX is error code).

Return to calling program.

II Store new instruction address register liAR) value.

Store new XR1 value (RB address in XR1).

If request to change tasks point ~f origin, pass control to program specified in attach parameter list.

I f request to detach task; pass control to the dispatcher (control storage).

Diagram 6.20 (Part, 2 of 2). Perform Supervisor Task Detach or Change Org Point Function h¥SVAU)

Method of Operation 6-47

Licensed Material-Property of IBM

INPUT ____ _ From: Initiator

~OCESS
• OUTPUT ___ _

XR2

(Syntax checker
parameter list

Main Storage

Transient Area

User Area:
#USYX

Verb list

Communication
table

Syntax
specification module

D Read control statements

fJ Analyze verbs

II Process parameters if parameters exist

II Perform end-of-statement check

II Return control to calling program

....

Control
statement ---------:71

To: Calling Program

OEseR IPTION

D Retrieve heading inserts.

Load calling program's syntax specification module:

• Find module.
• Use main storage relocating loader to load module into main storage.

Put control statement into internal buffer:
• If user providing input, copy it.
• Read control statement if not user provided.

fJ Ensure input starts with II

Skip over blanks.

Collect characters until blank encountered (verb is characters collected)'

Ensure verb corresponds to name field of verb entry in specification module.

If verb in list of verbs currently acceptable, copy verb number from verb entry in specification module and
place in communication table at USCTVRBN.

Initialize internal pointers.

Diagram 6.21 (Part 1 of 2). Perform Syntax Checking Function (#USYX)

6-48

licensed Material-Property of IBM

Updated
communication
table:
• Parameters

found in
control
statements

• Parameter
values

• Syntax errors
detected

MODULE/
ROUTINE

#MGRET

#USYX
#MASFN
#USYX

#CLSN

#USYX

MODULE/
OEseR IPTION ROUTINE

II Check if parameters specified. #USYX

Set scan terminator as comma, hyphen, or blank.

Collect characters preceding terminator to form parameter.

If scan terminated by hyphen:

• Indicate parameter is keyword.

• Ensure keyword entry has corresponding field name in specification module.

• Save keyword entry attributes.

If scan terminated by comma or blank:

• I ndicate parameter is positional.

• Ensure positional parameter entry exists in specification module.

• Save positional parameter entry attributes.

Ensure parameter not alreadY encountered.

" Verify parameter values:
• I f parameter attribute is numeric:

- Ensure value is numeric.
- Retain character format.
- Convert value to 3-byte signed binary field.

• If parameter attribute is a date:
- Ensure format is acceptable.
- Ensure month, day, and year characters are numeric.
- Convert date to packed YYMMDD format.

• If parameter attribute is a label, ensure first character of value is alphabetic.

• If parameter attribute is a quoted string:
- Ensure all quotes are paired.
- Ensure fir.st and last characters of value are quotes.

• Else parameter value is a string.

If required, place verified parameter value in caller's output area.

If required, a specific parameter value causes placement of a one, two, or 3-byte value in caller's output area.

Continue processing until all parameters analyzed.

II Point to parameter entries one at a time.

If optional parameter with default and value not in input, go toD Oto verify default value, then return here.

If required parameter not in input, set appropriate error condition in communication table.

Verify parameter combinations if VALCM records exist:

• If parameter appeared in input, ensure parameter must not be missing.

• If specified parameter must have specific value, ensure value is correct.

• Set appropriate error condition in communication table as necessary.

II Update communication table.

Set return code as required.

Copy updated communication table into caller's area.

Pass control back to calling program.

Diagram 6.21 (Part 2 of 2). Perform Syntax Checking Function (#USYX)

Method of Operation 6-49

Licensed Material-Property of IBM

From: User Program
II INPUT ____ _

~OCESS

XR2

(user parameter list

Main Storage

Transient Area:
#SVINF

User Area

OESeR IPTION

III Move parameter list to transient area.

'Verify fields in parameter list:

D Process user parameter list

D Get JCB address

II Perform PUT or GET

• If local request, check for valid entries in offset and length fields.

• If invalid entry found, issue 3 option only message.

To: User Program

FJ If parameter list contains a terminal ID, get the JCB address from that work station's TUB.

Otherwise, get JCB address from the TCB.

D If put request:

• If update UPSI switch request, move value to JCBDUPSI.

• If update language compiler byte request, move value to JCBDLANG.

• If update program message member one address request, move value to JCBDPRG1.

• If update program message member two address request, move value to JCBDPRG2.

• If update local area on disk request, move value to WSWA on disk.

• If update user message member one address request, move value to JCBDUSR1.

I f get request:

• If return date format request, move value from JCBDSCH1.

• If return program date request, move value from JCBDPDAT.

• If return session date request, move value from JCBDDATE.

• If return UPSI switch value request, move value from JCBDUPSI.

• If return inquiry byte value request, move value from JCBDSCH2.

Diagram 6.22. Perform Information Retrieval Function

6-50

Licen$ed Material-Property of IBM

OUTPUT ___ _

Requested field
moved

3 option only
SYSLOG message

MODULE/
ROUTINE

#SVINF

#CLSG

#SVINF

From: User Program

II INPUT ----. ~OCESS

(XR2
(DTF

C
CSB

TCB

Main Storage

Transient Area

Resident Area:
#SVTTC

User Area

-------... :> D Process communications request ...

D Process return code

--------:Tl
To: User Program

OEseR IPTION

o If the data communications task has been terminated, return to caller.

Otherwise, post the data communications task for execution.

OUTPUT ___ _

CSB

Control transferred

MODULE/
ROUTINE

#SVTTC

Increment the calling task's nonswap count to ensure that it is not swapped until the data communications task
has retrieved internal data.

fJ Wait for a return post from data communications:
• If return code from data communications task is hex 01, go to D.
• If return code from data communications task is hex 02:

- Call the transient addressed in the CSB.
- GotoD·

• If return code from data communications task is hex 00, return to caller.

Diagram 6.23. Perform Data Management Task Transfer Control Function

Licensed Material-Property of IBM

Method of Operation 6-51

From: User Program
INPUT ____ _

L..::;:0CESS

(XR2
Parameter list

Main Storage

Transient Area:
#SVDMP

User Area

D Dump main storage according to user
parameter list

...

..

• OUTPUT ___ _

Formatted main
storage dump

-----:i1
To: User Program

MODULE/
OESeR IPTION ROUTINE

g Move parameter list to temporary area. #SVDMP

Initialize work area.

Calculate dump limits.

If limits invalid:

• Issue error message . #CLSP

• Return to caller.

Get headings messages for dump header. #SVDMP

Blank buffer.

Set up buffer for SYSLIST.

Move all limits information to header.

o Set up line of dump.

Print line of dump. #CLSP

If more lines to dump, go toOO. #SVDMP

Free buffer area.

Return to user program.

Diagram 6.24. Perform Snap Dump Function

6-52

Licensed Material-Property of IBM

(
\

Program Organization

Figures 6-2 through 6-26 show the control flow of the
system service functions.

Calling
Program

Figure 6-2. Find a Library Control Flow

..

...
Find a Library
Routine

(HMAFLB)

10 i;kvTOcl
I Read/Write I
I (@CSVF) I ____ I

Licensed Material-Property of IBM

Program Organization 6-53

Calling
Program - ...

....
Single Name
Find Routine Disk lOS

(#MASFN)
.. ..

-....

I
i'

SYSLOG

(#CLSG)

Figure 6·3. Single Name Find Routine Control Flow

Calling
Program .. Librarian Find ...

Routine
($MAFND Disk lOS .. or $MALFN)

Figure 6·4. Librarian Find Control Flow

6·54

Licensed Material-Property of IBM

Calling
Program .. Source Library ..

Get Routine
(#MASGT) Disk lOS

~ or ..
(#MASYL) "

Figure 6-5. Source Library Get Routine Control Flow

Open/Close
Routine
($MACOM

or
$MALCO)

• ~

, f

Caning
Program .. Library Record ..

- Put Routine -
Disk lOS

- ($MAPUR) -
• Error ,

SYSLOG

(#CLSG)

Figl,lre 6-6. Library Record Put Routine Control Flow

Program Organization 6-55

Licensed Material-Property of IBM

Open/Close
Routine
($MACOM

or
$MALCO)

-

Calling
Program .. Library Sector ...

- Get/Put Routine -
Disk 105 ($MAPGS) ~

1 l
Single Name
Find Routine

(UMASFN)

Figure 6·7. Library Sector Get/Put Routine Control Flow

Single Name
Find Routine

(UMASFN)

-
~

Calling
Program ..

Library Member
Protection Routine ... (UMAMPM)

• E,'
SYSLOG

(UCLSG)

Figure 6·8. Library Member Protection Control Flow

6·56

Licensed Material-Property of IBM

Calling
Program Active Format 1

Access Routine
... (#CSAF)
...

Figure 6-9. AFA Access Routine Control Flow

Disk 105

-- ...
Calling

Cross Reference Program
Resolver

(#MAXRF)

Module Not in .
"-

Resident Table -• no-op Routine

Ei' (#MANOP)

SYSLOG ...
EOJ

(#CLSG)

Figure 6-10. CTOSS Reference Resolver Control Flow

Program Organization 6-57

Licensed Material-Property of IBM

..
Calling

Duplicate Key
Display Routine

Program ... (#CSDK)

•

SYSLOG

(#CLSG)

'Figure 6·11. Duplicate Key Display Control Flow

Disk 105

.. ... ~

Calling
..... ..

Program Print Image
Verify Routine

(#CSIM)
....

- Printer 105
~

($IPTR)
1 ~

SYSLOG

(#CLSG)

Figure 6·12. Print Image Verify Routine Control Flow

6·58

Licensed Material-Property of IBM

Calling
Program .. Disk VTOC .. Read/Write

~ .
(#CSVF) Disk 105 - ..

~ or - (@CSVF)

Figure 6-13. Disk VTOC ReadlWrite Control Flow

.-
Disk 105 A

~ -

1 t
Diskette VTOC

·8 .. _ .. Read/Write ...
- -. Transient Load 2

(#CSVJ)

Diskette
Calling VTOC
Program Read/Write

(#CSVI)

Diskette VTOC ... -- ,Read/Write ...
A - Transient Load 3 .

(#CSVK)

: l
....- ·8 Diskette 105 -

Figure 6-14. Diskette VTOC ReadlWrite Control Flow

Program Organization 6-59

Licensed Material-Property of IBM

Calling
Program ~ -

Message Retrieve .
h'lMGRET) Disk lOS

~ ~

Figure 6·15. Message Retrieve Control Flow

6·60

Licensed Material-Property of IBM

~

SYSIN Load
Transient

Calling
Program (NCLSNI

I t Source Get

..
(NMASYLI Procedure Data

Keyboard Data Command
Processor
Keyboard D.M.

----- (NCMWII

Blocks
A

~

"- Existence Test
....

(NCLBLI -
Disk lOS

Active - Procedure
Existence Test

A
(NCLACI

Allocate

Initiator
Diskette

SYSIN
Mainline

...... (NCARlI

(#CLSSI

File Existence Diskette
Test - VTOC

Read/Write
(f/CLFXI (NCSVII

A

.L _0.

Disk VTOC
Read/Write

(f/CSVFI

Substitution

- ~ Routine
A

'(f/CLSBI

SYSLOG

(NCLXSI

~ ---. -To Prompt User-

SYSIN - Prompt/ - Substitution
(NCLPRI

A

History File - Put

--
(@HFPUTI

System Find

- ... (f/MASFNI

-- Switch &

(0 I Member
Existence Test

A
(f/CLSMI

Library Find

SYSLOG

-8 Error Condition (f/MAFLBI

(f/CLXSI

Figure 6-16. SYSIN Control Flow

Program Organization 6-61

Licensed Material-Property of IBM

Message SYSLOG
Retrieve

(#MGRET) (#CLXS)

t I ~
Printer

If Type 1 Parameter
Allocate t ~

, (#CAPT)
Calling
Program

... SYSLIST
(printer)

..... (#CLST)

--
....

I Printer

SYSLIST CRT or 0 Option to MI C 3701 105

J
(lPTR)

- :SYSLIST
(CRT)

~

(#CLSC)
.... . Command

Processor
~ ~ (#CMLS)

~ 1 ~

Message SYSLOG
Retrieve

(#MGRET) (#CLXS)

Note: Whenever SYSLIST (transient) is called, #CLST is loaded into the transient area first.

Figure 6-17. Transient SYSLIST Control Flow

6-62

Licensed Material-Property of IBM

Message SYSLOG
Retrieve

(/lMGRET) (/lCLXS)

~ 4 r-
Printer
Allocate

Calling
, , (/iCAPT)

.... ...
Program ...

--...
SYSLIST

If (printer)
TCBRTUB =
X'OOOO'

.. (#CLSP)

-
or ...- ..

SYSLIST = I Printer
Off lOS

or o Option .. MIC 3701
(lPTR)

SYSLlST=
Printer .
If SYSLIST
SYSLIST = (CRT)
CRT (/lCLSW) - .

Command

j ~ j ~
Processor
(#CMLS)

~ ~ ~ ~

Message SYSLOG
Retrieve

(/lMGRET) (#CLXS)

Note: The SLSTL macro loads either #CLSP or #CLSW into the user specified area.

Figure 6·18. Loadable SVSLIST Control Flow

Program Organization 6-63

Licensed Material-Property of IBM

.
Calling
Program

-

Figure 6-19. SYSLOG Control Flow

Calling
Program

...

Figure 6-20. History File Put Control Flow

6-64

SYSLOG
Push/Pull
Transient
(#CLXS)

~ ~

~ t

Command .. --. Processor

SYSLOG (#CMWO)

Mainline (#CMC!)

(#CLSG)

Printer lOS .
-

Message (lPTR)
Retrieve
(@MGRET)

Cancel
History Option
File Put
(@HFPUT)

.
History File Put

(#HFPUT)
or ...

(@HFPUT) -

Licensed Material-Property of IBM

.

End-of-Job
Transient

(#CTE!)

Disk lOS

Free - ..
Function

Supervisor -Control Storage-
Task Attach
Transient

(#SVAT) Assign
Function
-Control Storage-

- . Queue/Dequeue
Function .
-Control Storage-

Task Work ..
Area Function
-Control Storage-

- .. Time-of-Day
Function
-Control Storage-

Stack - . Manipulation
Function
-Control Storage-

Figure 6-21. Supervisor Ta!:k Attach Function Control Flow (#SVAT)

Program Organization 6-65

Licensed Material-Property of IBM

Free ..
Function

Supervisor -Control Storage-
Task Detach
or Change Org
Point Free Page

(#SVAU) ..
Function
-Control Storage-

.. Queue/Dequeue
Function - -Control Storage-

Enable

- .. Transient
.... Area

-Control Storage-

Load ATRs ..
Function
-Control Storage-

- _. Get Page
Function - -Control Storage-

Fig~re 6-22. Supervisor Task Detach or Change Origin Point Function Control Flow (#SVAU)

6-66

Licensed Material-Property of IBM

Message

Calling Syntax
Retrieve - (#MGRET) Program Checker

(#USYX)

.. System

Find
(#MASFN)

SYSIN
(#CLSN)

.- ----
.. SYSLOG

...
(#CLSG)

Figure 6-23. Syntax Checker Control Flow (#USYX)

User . \

Program ..
SYSLOG Information - Retrieval

..
Transient

(#SVINF) (#CLSG)

,
End-of-Job
Transient

(#CTEI)

Figure 6-24. Information Retrieval Control Flow

Program Organization 6-67

Licensed Material-Property of IBM

User
Program

.. Data
RIB hex1 E Management

Task Transfer
..

Control -.... -
Intertask
Communication --

.... (#SVTTC)

1 See IBM System/34 System Support Program Logic Manual: Data Communi~tions, LY21-0051.

Figure 6-25. Data Management Task Transfer Control Flow

User
Program -

Snap Dump
Transient
(#SVDMP) -

....

Figure 6-26. Snap Dump Control Flow

6-68

Licensed Material-Property of IBM

Data
Communications
Task1

SYSLIST

(#CLSP)

Data Areas

FIND A LIBRARY PARAMETER LIST

The find a library parameter list is a 10·byte parameter
required when the find a library routine (#MAF LB) is
called. The caller of #MAF LB places the address of the
leftmost byte of this parameter list in XR2.

Figure 6·27 shows the format and contents of the para·
meter list.

Displacement of
Leftmost Byte Length
in Hexadeci mal Label in Bytes Description

0 FLBNAME 8 Library name

8 FLBF1 A 2 Address of
F1 in AFA

Figure 6·27. Find a Library Parameter List

SYSTEM FIND PARAMETER LIST

The system find parameter list is required when single
name find routine (#MASFN) is called. The caller of
#MASFN places the address of the leftmost byte of the
parameter list in XR2.

Figure 6·28 shows the format of the system find para·
meter list for input. Figure 6·29 shows the two formats
(loader and user) for output.

Data Areas 6-69

Licensed Material-Property of IBM

Displacement of
Leftmost Byte Length
in Hexadecimal Label in Bytes Description

0 $FNDDTYP Library type

$FNDMLD8 X'08' Load module

$FNDMSB8 X'04' Subroutine

$FNDMSRC X'02' Source module

$FNDMPRC X'01' Procedure

$FNDDNM8 8 Member name

9 $FNDDOPR Operation switches

$FNDMSYS X'80' Search system library only

$FNDMLDR X'40' Build loader parm list only

$FNDMUSE X'20' Search user library only

$FNDMULB X'10' Search user library in $FNDDF1A

$FNDMRF1 X'08' Return library F1 address

A $FNDDF1A 2 Library format 1 address

A $FNDDLDA 2 Load address

Figure 6-28. Single Name Find Input Parameter List

6-70

Licensed Material-Property of IBM

Displacement of
Leftmost Byte Length
in Hexadecimal Label in Bytes Description

(Loader Format)

0 $FNDDADR 3 .Library disk address

3 $FNDDNOS Number of text sectors

4 $FNDDLNK 2 Link edit address

6 $FNDDSCT 2 Start address

8 $FNDDRLD R LD displacement

9 $FNDDTNS Total number of sectors

A $FNDDLDA 2 Load address

(User Format)

0 $FNDDADR 3 Library disk address

3 $FNDDNOS Number of text sectors or record length

4 $FNDDLNK 2 Link edit address

$FNDDNST 2 Number of statements (S or P)

6 $FNDDSCT 2 Start address (0 modules)

$FNDDF1 F 2 Format 1 address of the library in which
the member was found (if requested)

8 $FNDDRLD RLD displacement (0 modules)

9 $FNDDCRS Program size-sectors (0 modules)

A $FNDDATT 3 Member attribute bytes

D $FNDDMRT Type 0 - M RTMAX count
Type P - X'FF' MRT

E $FNDDREL Module release level

F $FNDDTOT 2 Module size in sectors

11 $FNDDCOM Completion code

$FNDMSYR X'80' Found in sys lib

$FNDMUSR X'40' Found in user lib

Figure 6-29. System Find Output Parameter List

Data Areas 6-71

Licensed Material-Property of IBM

LIBRARIAN FIND PARAMETER LIST

The librarian find parameter list is a 24-byte parameter
required when the library find routine ($MAFND or
$MALFN) is called. The caller of $MAFND or $MALFN
places the address of the leftmost byte of this parameter
in XR2.

Displacement of
Leftmost Byte
in Hexadeci mal

o

9

A

B

Label

LFDDTYPE

LFDDNAME

LFDDFUNC

LFDMWRTS

LFDMTYPO

LFDMTYPR

LFDMTYPS

LFDMTYPP

LFDDFNC2

LFDMSYSL

LFDMUSEL

LFDDREPL

LFDMFNDS

LFDMFTBS

LFDMEOFS

LFDMWTBS

LFDMSYSR

LFDMUSER

LFDMFND1

llf partial name, eighth byte is length of name

Figure 6-30 (Part 1 of 2). Librarian Find Parameter List

6-72

The transient version ($MAFND) requires a 25-byte work
area following the parameter list.

Figure 6-30 shows the format and contents of the para
meter list.

Length
in Bytes Description

Li brary type

8 Member name or partial namel

Function byte

X'80' = Write buffer after find

X'08' = Load module find

X'04' = Subroutine member find

X'02' = Source member find

X'01' = Procedure member find

Function Byte 2

X'80' = Search system library

X'40' = Search designated user library

Reply byte

X'80' = Found a member

X'40' = Member found in this buffer

X'20' = No more members

X'10' = Previous buffer written

X'08' = Found in system library

X'04' = Found in designated library

X'01' = Found member in current library

Licensed Material-Property of IBM

Displacement of
Leftmost Byte Length
in Hexadecimal Label in Bytes Description

C LFDDLBF1 2 F1 address of library tosearch (if 0,
check LFDMSYSL and LFDMUSEL)

E LFDDIRPT 2 Address of found directory entry

10 LFDDBUF@ 2 Address of caller's buffer

12 LFDDBUFS Buffer size in sectors

13 LFDDIOBS 3 Save area for SSS

16 LFDDNSEC 2 Number of sectors in member

Figure 6·30 (Part 2 of 2). Librarian Find Parameter List

Data Areas 6·73

Licensed Material-Property of IBM

SOURCE LIBRARY GET PARAMETER LIST

The source library get parameter list is a 19-byte parameter
required when the source library get routine (#MASGT or
#MASYL) is called. The parameter list has two formats.
Figure 6-31 shows the format of the input parameter list,
used when a find is requested. Figure 6-32 shows the
format of the output parameter list, used when the caller
requests a get.

The caller of #MASGT or #MASY L must place the address
of the leftmost byte of this parameter in XR2. The tran
sient version (#MASGT) requires a 15-byte work area
following the parameter list.

Displacement of
Leftmost Byte
in Hexadecimal Label

0 GETDFNCT

GETMFIND

GETMFRST

GETMNEXT

GETDTYPE

GETMSRCE

GETMPROC

2 GETDNAME

A GETDLBF1

C GETDADDR

E GETDSIZE

F GETDFCT2

GETMSOBK

GETMREPR

10 GETDIOBF

12 GETDBFSZ

Figure 6-31. Source Library Get Input Parameter List (find format)

6-74

Length
in Bytes

8

2

2

2

Licensed Material-Property of IBM

Description

Function byte (input options)

X'80' Find request

X'40' Get first

X'20' Get next

Member type

S - Source

P - Procedure

Member name

F1 address of library to search; if 0,
search system library

Record buffer address

Buffer size in bytes

Function byte 2

X'20' Return start of blanks indicator
in record buffer (X'FF')

X'10' Reprime request

Read source buffer

Buffer size in sectors

Displacement of
Leftmost Byte Length
in Hexadecimal Label in Bytes Description

0 GETDREPL Reply byte (output options)

GETMTER X'OS' Terminal error

GETMTRNC X'04' Truncated record

GETMNFND X'02' No find

GETMEOF X'01' End of file

GETDSSS 3 Sector address processing now

4 GETDEND 3 Sector address of last record

7 GETDBNOW 2 Address of byte in I/O buffer to process

9 GETDBEND 2 Address of last byte in I/O butter to
process

B GETDLGTH Record length

C GETDADDR 2 Record buffer size

E GETDSIZE Record buffer address

r GETDCOMP Completion switch

10 GETDIOBF 2 I/O buffer address

12 GETDBFSZ I/O buffer size

Figure 6-32. Source Library, Get Output Parameter List (get format)

Data Areas 6-75

Licensed Material-Property of IBM

AFA ACCESS PARAMETER LIST

The AFA access parameter list is required when the active
format 1 area access routine (#CSAF) is called. The caller
of #CSAF places the address of the leftmost byte of the
parameter list in XR2.

Figure 6-33 shows the format of the AFA access parameter
list.

Displacement of
Leftmost Byte
in He~decimal Label

0 AF1DFNCT

AF1MREAL

AF1MVFID

AF1MGTLB

AF1MGTAD

AF1MGTNM

AF1MTPUT

AF1MDATE

AF1MF1MV

AF1DRTRN

AF1MNORM

AF1MINVD

AF1MNTMT

3 AF1DF1PT

6 AF1DNMLB

E AF1DUNIT

AF1MFl

AF1MIl

AF1MNU

F AF1DDATE

12 AF1DIOAR

Figure 6-33. AFA Access Parameter list

6-76

Length
in Bytes

2

3

S

3

3

Licensed Material-Property of IBM

Description

Function byte

X'SO' Real I/O area address

X'40' Verify 10

X,20' Get by label

X'10' Get by address

X'OS' Get by name

X'04' Put request

X'02' Verify date request

X'Ol' Move Fl to user I/O area

Return code

X'40' Good completion

X'41' Invalid request

X'44' Request not met

Pointer to format 1

Format 1 name or label

Unit

X'OO' Disk unit

X'10' Diskette unit

X'FF' No unit specified

Date

User I/O area address (

DUPLICATE KEY DISPLAY PARAMETER LIST

The duplicate key display parameter list is required when
the duplicate key display routine (#CSDK) is called. The
caller of #CSDK must place the address of the leftmost
byte of the parameter list in XR1.

Figure 6-34 shows the format of the duplicate key halt
parameter list.

Displacement of
Leftmost Byte
in Hexadecimal Label

0 DKHDFLAG

DKHMKEYR

DKHMMSGR

DKHMPROC

DKHMRTRY

DKHMCNCL

DKHMTER1

DKHDKEYA

3 DKHDMSGA

5 DKHDCOMP

9 DKHDMICN

B DKHDF1AD

Figure 6-34. Duplicate Key Display Parameter List

Length
in Bytes

2

2

4

2

2

Licensed Material-Property of IBM

Description

Flag byte

X'80' Key address real

X'40' Message addr real

X'08' Option 0

X'04' Option 1

X'02' Option 2

X'01' Option 3

Key address (left byte)

Message address (Jeft byte)

Component I D

MIC number

Format 1 address

Data Areas 6-77

SUPERVISOR TASK ATTACH PARAMETER LIST

The task attach parameter list is a 16 byte parameter
required when the supervisor task attach transient
(#SVAT) or the supervisor task detach transient (#SVAU)
is called. The caller of #SV AT or #SV AU places the
address of the leftmost byte of the parameter in XR1.

Figure 6-35 shows the format and contents of the
parameter list.

Displacement of
Leftmost Byte
in Hexadecimal

o

2

3

4

Label

$ATLOAD

$ATFLAG

$ATCREAT

$ATREAL

$ATTUBAS

$ATNONAM

$ATDATA

$ATPRIV

$ATNSWAP

$ATERPRM

$ATINIT

$ATSPOOL

$ATBATCH

$ATMSSIZ

$ATPRIOR

$ATTUB@

Figure 6-35 (Part 1 of 2). Supervisor Task Attach Parameter List

6-78

Length
in Bytes

2

Licensed Material-Property of IBM

Description

Loader parameter list offset

First flag byte offset

X'80' = Create new TCB

X'40' = Real link address

X'20' = on = TUB address
off = JCB address

X'10' = on = Do not assign job name
off = Assign job name

X'08' = Put data in session work area

X'04' = Task privileged

X'02' = Not swappable

X'01' = Free attach parameter list

Start Initiator

Start Spool

Start Batch

Number of 2K main storage blocks

Priority of new task

TUB address

Displacement of
L8ftmost Byte Length
in Hexadecimal Label in Bytes Description

4 $ATJCB@ 2 JCB address

6 $ATSSSN 4 SSSN value of next transient

A $ATFLAG1 Second flag byte

$ATRFRSH X'SO' = Refresh

$ATCOMON X'40' = Program has Common

$ATQKINT X'20' = Attach Initiator

$ATINCJC X'1 0' = Increment job count

$ATSYSTK X'OS' ~ Attach system task

B $ATTSKID Task I D of attached task

C $ATDATA@ 2 Address of data to put

E $ATLENG Length of attach parameter list

Figure 6-35 (Part 2 of 2). Supervisor Task Attach Parameter List

Data Areas 6-79

Licensed Material-Property of IBM

SUPERVISOR TASK ATTACH ERROR RETURN CODE

Supervisor task attach supplies an error return code in XR 1
if the task attach function is not successful. The format of
the error code in XR1 is OOXX, where XX is the error
return code. Figure 6-36 shows the format and contents
of the error return code.

Label XX Description

$ATERR01 X'01' Not enough storage space

$ATERR02 X'02' Task nonswappable and not enough
storage space

$ATERR03 X'03' Task nonswappable and storage
requirements wi" disable task

$ATERR04 X'04' Assign failure on TCB

$ATERR05 X'05' Assign failure on RB

$ATERR06 X'06' A"ocate failure for swap area

$ATERR07 X'07' A"ocate failure for work station
work area

$ATERROS X'OS' Assign failure for ACE

Figure 6-36. Supervisor Task Attach Error Return Codes

6-80

SYNTAX SPECIFICATION MODULE

The syntax specification module is used by the syntax
checker (#USYX) to determine if the control statement
passed is valid. Each utility has its own syntax specification
module that resides in the system library. Figure 6-37 lists
the syntax specification modules.

Utility

Library maintenance

Basic data exchange

Disk copy/display

File delete

Diskette copy

History file display

Diskette labeling and initialization

VTOC display

Create message member

Set

File build

Disk compress

Menu build

Display format generator

Figure 6-37. Syntax Specification Modules

Syntax Specification
Module Name

$MASPC

$BITAB

$COTAB

$DETAB

$DUTAB

$HISTAB

$INTAB

$LABTB

$MGTAB

$SETSM

$FBTAB

$PAKTB

$BMTB

$SFTB

Licensed Material-Property of IBM

The USCTMODN field of the communication table passed
by the calling utility contains the specification module
name, and the USCTSSMP field contains the specification
module address. The specification module is loaded fol
lowing #USYX in main storage or at the address specified,
and consists of one or more control statement syntax
specifications as shown in Figure 6-38.

There is one control statement syntax specification for
each possible control statement for the utility.

Control
Statement
Syntax

~ Specification

Verb Record

o to 64 Parameter Records (positional,
keyword, or both)

o to 64 Substitution Tables as
Required to Define Parameter Values

Valid Combination Records as
Required to Define the Acceptable
Combinations of Parameter Values

Verb Record

o to 64 Parameter Records

o to 64 Substitution Tables

Valid Combination Records

Note: The format and contents of the verb record, para
meter records, substitution tables, and valid combination
records, are included in this Data Areas section.

Figure 6-38. Syntax Specification Module

Displacement of
Leftmost Byte
in Hexadecimal

o

2

A

C

Figure 6-39. VE RB Verb Record

Label

VRBDHEAD

VRBDVBID

VRBDNAME

VRBDNEXT

VRBDVALC

VERB RECORD - VERB

The verb record is a 14-byte record in the control statement
syntax specification that contains the name and numeric
identifier of a control statement verb. The first verb is at
the main storage address specified in USCTSSMP and the
current verb record is at the address specified in
USCTVR B@. When a control statement is read by the
syntax checker (#USYX), this record is checked to deter
mine if the verb passed matches the verb of this v~rb
record. If not, the VRBDNEXT fields contains the
address of the next verb record to check.

Figure 6-39 shows the format and contents of .the verb
record.

PARAMETER RECORDS

There are two types of parameter records; positional and
keyword. Parameter records follow the verb record in the
control statement syntax specification. After the verb
record for the control statement has been determined, the
parameter records indicate the valid parameters and para
meter values for the control statement.

POSITIONAL PARAMETER RECORD - POSIT

The positional parameter record, POSIT, is a 13-byte or
21-byte record that contains information for a single
positional parameter. The USCTPOS@ field of the
communication table contains the address of the current
record. Figure 6-40 shows the format and contents of the
positional parameter record.

Length
in Bytes Description

8

2

2

Constant V

Verb 10, X'01' to X'FF'

Verb name

Pointer to next verb record

Pointer to a set of valid combination
records (VALCM)

Data Areas 6-81

Licensed Material-Property of IBM

Displacement of
Leftmost Byte Length
in Hexadecimal Label in Bytes Description

0 POSDHEAD Constant P

POSDPSID Unique ID for this record

X'01' to X'FB'

2 POSDNAME Position number of the parameter in
this control statement

3 POSDIND1 Parameter flag

O=optional parameter
1 =required parameter

4 POSDRESV Reserved

5 POSDATTR Attribute

L=label
Z=partial name
N=numeric characters
C=numeric characters to be

converted to binary
S=string of characters except

blank, comma, and hyphen
Q=character string optionally

enclosed in single quotes
D=date format

6 POSDMINM 2 Minimum parameter value

8 POSDMAXM 2 Maximum parameter value

A POSDOUT@ Displacement of leftmost byte of
parameter value in output area of
communication table (USCTPOUT)

B PASDSIZE Length of parameter value in output area
of communication table (USCTPOUT)

C POSDDEFL Default length

X'08'=default length
X'OO'=no default

D POSDDEFV 8 Default value for parameter
(optional field)

Figure 6-40. POSIT Positional Parameter Record

6-82

Licensed Material-Property of IBM

KEYWORD PARAMETER RECORD - KEVWD

The keyword parameter record, KEYWD, is a 22-byte or
30-byte record that contains information for a single
keyword parameter. The USCTKEY@ field of the com
munication table contains the address of the current
record. Once a keyword parameter has been found in the
control statement, the parameter records are scanned to
find the matching keyword parameter record. When a
match is found, the keyword parameter record indicates
where the value should be placed in the output area
(USCTPOUT) of the communication table.

Figure 6-41 shows the format and contents of the keyword
parameter record.

Displacement of
Leftmost Byte
in Hexadecimal

o

2

A

B

C

D

10

Label

KEYDHEAD

KEYDKYID

KEYDNAME

KEYDINDl

KEYDRESV

KEYDATTR

KEYDMINM

KEYDMAXM

Figure 6-41 (Part 1 of 2). KEYWD Keyword Parameter Record

SUBSTITUTION TABLE - SUBEN

A substitution table is an la-byte table that consists of a
3-byte header record and one or more 15-byte entry
records. A substitution table specifies a parameter that
should have a value substituted for it in the output area
(USCTPOUT) of the communication table and the value that
should be substituted. From 0 to 64 substitution tables
can follow the last parameter record in a control statement
syntax specification.

Figure 6-42 shows the format and contents of a header
record. Figure 6-43 shows the format and contents of an
entry record.

Length
in Bytes Description

a

3

3

Constant K

Unique number for this record

X'Ol' to X'FB'

Parameter keyword

Parameter flag

O=optional parameter
1 =required parameter

Reserved

Attribute

L=label
Z=partial name
N=numeric characters
C=numeric characters to be

converted to binary
S=string of characters except

blank, comma and hyphen
Q=character string enclosed in

single quotes
D=date format

Minimum parameter value

Maximum parameter value

Data Areas 6-83

Licensed Material-Property of IBM

Displacement of
Leftmost Byte
in Hexadecimal

13

14

15

16

Label

KEYDOUT@

KEYDSIZE

KEYDDEFL

KEYDDEFV

Figure 6-41 (Part 2 of 2). KEVWD Keyword Parameter Record

Displacement of
Leftmost Byte

o

2

Label

SBTDHEAD

SBTDSBID

SBTDREST

Figure 6-42. SUBEN Substitution Table Header Record

6-84

Length
in Bytes

8

Length
in Bytes

Licensed Material-Property of IBM

Description

Displacement of leftmost byte of
parameter value in output area
(USCTPOUT) of communication table

Length of parameter value in
communication table

Default length

X'08'=default length·
X'OO'=no default

Default value for parameters
(optional field)

Description

Constant S

Unique number of parameter record
associated with its substitution table

Substitution value flag

1=only the specific values in the
substitution table entries are
meaningful

O=specific values in the substitution
table entries are not all of the
meaningful values

Displacement of
Leftmost Byte

o

2

5

6

7

8

Label

SBEDHEAD

SBEDRCID

SBEDSUBS

SBEDATTR

SBEDOUT@

SBEDSIZE

SBEDVALU

Figure 6-43. SUBEN Substitution Table Entry Record

VALID COMBINATION RECORD

The valid combination record, VALCM, is a 7 -, 10-, 13-,
16-, 19-,22-,25-, or 28-byte record used to determine if
the parameters and/or parameter values are used in valid
combination in the control statement. The VRBDVALC
field of the verb record (VER B) contains the address of the
set of valid combination records.

Figure 6-44 shows the format and contents of a valid
combination record.

Length
in Bytes

3

8

Licensed Material-Property of IBM

Description

Constant E

Unique number for this record

X'01' to X'FF'

Substitution value

Attribute

L=label
Z=partial name
N=numeric characters
C=numeric characters to be

converted to binary
S=string of characters except

blank, comma, and hyphen
Q=character string. enclosed in

single quotes
D=date format

Displacement of leftmost byte of
substitution value in output area of
syntax checker communication table

Length of substitution value in
communication table

Real value of parameter as it would
appear in the control statement

Data Areas 6-85

Displacement of
Leftmost Byte
in Hexadecimal

o

4

5

Label

VALDHEAO

VALORCIO

VALDCOMP

VALONMBR

VALOENT1

VALONXT1

Length
in Bytes

2

Description

Constant C

10 of a parameter record associated
with this record

Indicator for complemented entries; that
is, parameter flag meaning or value is
complemented

Number of entries

Parameter value flag

X'FE'=parameter must not be
present

X'FO'=parameter is required and some
value must be specified

X'FC'=parameter is ignored
X'FB'to X'Ol '=substitution table

entry that contains the
parameter value

Pointer to another valid combination
record, or X'FFFF' indicating the end
of the set of valid combinations

Note: Any pair of the following fields may appear (VALOEn with VALOXn) in the valid combination record as needed to
describe the valid parameter combinations.

7 VALDENT2 Same as VALOENT1

8 VALDNXT2 2 Same as VALONXT1

A VALDENT3 Same as VALOENT1

B VALDNXT3 2 Same as VALONXT1

0 VALDENT4 Same as VALOENT1

E VALDNXT4 2 Same as VALONXT1

10 VALDENT5 Same as VALOENT1

11 VALDNXT5 2 Same as VALONXT1

13 VALOENT6 Same as VALOENT1

Figure 6-44 (Part 1 of 2). VALCM Valid Combination Record

6-86

Licensed Material~Property of IBM

Displacement of
Leftmost Byte
in Hexadecimal Label

14 VALDNXT6

16 VALDENT7

17 VALDNXT7

19 VALDENT8

1A VALDNXT8

Figure 6·44 (Part 2 of 2). VALCM Valid Combination Record

SYNTAX CHECKER COMMUNICATION TABLE
USCTABLE

The syntax checker communication table, USCTABLE, is
a table indicated by the utility that calls the syntax checker
(#USYX). The first 2 bytes of the syntax checker para·
meter list passed by the utility contain the address of the
communication table.

The communication table is returned to the utility to
indicate the following control statement information:

• Errors that were detected

• Parameters specified

Figure 6·45 shows the format and contents of the
communication table.

Length
in Bytes

2

2

2

Licensed Material-Property of IBM

Description

Same as VALDNXT1

Same as VALDENT1

Same as VALDNXT1

Same as VALDENT1

Same as VALDNXT1

Data Areas 6·87

Displacement of
Leftmost Byte
in Hexadecimal

o

2

4

5

6

8

Label

USCTRES1

USCTOUTL

USCTINBP

USCTRES2

USCTINBL

USCTSSMP

USCTMODN

Length in
Bytes in
Decimal

2

2

8

Description

Reserved

Length of output area
(from X'OO'to X'FF')

Address of input buffer

Reserved

Length of input buffer
(from X'OO' to X'78')

Address of syntax specification module

Syntax specification module name

Note: The syntax checker overlays the USCTMODN field with the following 8 bytes.

8 USCTERRT

9 USCTERRC 2

B USCTERRP 2

o USCTVRBN

E USCTPARF

F USCTPARL

Figure 6-45 (Part 1 of 2). USCTABLE Syntax Checker Communication Table

6-88

Licensed Material-Property of IBM

Reserved

Completion code

X'FFFF'=no errors
X'FFFE'=statement continued
X'nnnn' =error, where nnnn is the

message identification code
(MIC) that is issued

Address of the first byte of the field in
the area of error

Hexadecimal constant associated with
the control statement verb

Hexadecimal constant 10 of the first
record after the verb record

KEYNUM of last (current) POSIT or
KEYWD record processed

Displacement of
Leftmost Byte
in Hexadecimal Label

10 USCTPMAP

18 USCTCNTL

USCTVRB@

USCTPOS@

USCTKEY@

20 USCTERNM

28 USCTPOUT

Length in
Bytes in
Decimal

8

8

2

2

2

2

8

o
to

255

Figure 6-45 (Part 2 of 2). USCTABLE Syntax Checker Communication Table

Licensed Material-Property of IBM

Description

Indication of parameters specified in
the control statement

Control area to allow syntax checker to
be reentrant with area subdivided as
follows:

Main storage address of current verb
record

Main storage address of current
POSIT record

Main storage address of current
KEYWD record

Reserved

Contains from one to eight characters
for insert into error message when
USCTERRC contains a MIC

Output area for the syntax checker that
contains the parameter values specified
on the control statement or values

, substituted for the parameter values

Data Areas 6-89

SYNTAX CHECKER PARAMETER LIST

Each time the syntax checker (#USYX) is called, register 2
must contain the address of a 6-byte parameter list that
indicates the (1) address of a communication table, (2)
address of the verb list to use, (3) name or address of the
specification module, and (4) source of input. There is one
parameter list for each verb list that can be passed.
Figure 6-46 shows the general format and contents of a
parameter list.

Displacement of
Leftmost Byte

o

2

4

5

Label

USCTMP

VB LSTP

ENTERD

ENTRY

Figure 6-46. Syntax Checker Parameter List

6-90

Length
in Bytes

2

2

Licensed Material-Property of IBM

Description

Address of communication table

Address of verb list

Specification module information

X'OO'=Load the specification module
named in the communication
table

X'01 '=Do not load a specification
modu'le
The address of a suppl ied
specification module is in the
communication table

Control statement input information

X'OO'=Read a control statement from
the sysin device

X'01 '=The communication table
indicates the address of the
control statement

X'02'=The statement being scanned
is continued from a previous
statement

X'04'=Synonyms (more than one
form) for verb names
permitted

Introduction

The System/34 diagnostic aids that execute in main storage
are:

• APAR ($FEAPR)

• Dump ($FEDMP)

• Program temporary fix installation program ($FEFIX)

• Patch ($FEPCH)

• Trace select ($FETRC)

• Error recording analysis procedure ($ERAP)

Introductory information about the diagnostic aid pro
grams (their functions and how to run them) is contained
in the Data Areas Handbook.

$FEAPR, $FEDMP, $FEFIX, $FEPCH, and $FETRC
each require 14K bytes of main storage for program
execution.

Chapter 7. System Maintenance Programs

Introduction 7-1

Licensed Material-Property of IBM

Method of Operation

This section contains function diagrams for the diagnostic
aids. They are:

• APAR utility (Diagram 7.1)

• Dump utility (Diagram 7.2)

• PTF installation function (Diagram 7.3)

• Patch utility (Diagram 7.4)

• Trace select function (Diagram 7.5)

• ERAP utility (Diagram 7.6)

From: Initiator

I INPUT I ~OCESS

I
Data from >. Perform APAR utility function
APARFILE I I (Diagram 7.1)

Data for system >. Perform dump utility function
dump I ~.

(Diagram 7.2)

Library member Perform PTF installation function
and PTF I ~.

(Diagram 7.3)

Disk or diskette Perform patch utility function
data I ~.

(Diagram 7.4)

Data for trace Perform trace select function
select I ~.

(Diagram 7.5)

I/O counter tables Perform ERAP utility function
and logging tables (Diagram 7.6)

I r OUTPUT

> File(s) on diskette

I I > Printed or

I I displayed data

> Modified library

I I Module

> Modified data

I I > Updated control

I I store trace options

> Formatted tables
on display station
or printer

a-----::Il
Diagram 7.0. Overview of System Maintenance Programs

7-2

To: Control Storage End-of-Job
Transient ($EOJ)

Licensed Material-Property of IBM

From: Initiator INPUT ____ _
~OCESS

Main Storage

Transient Area

User Area:
$FEAPR

Dump area
Configuration record
PTF log
Trace file

o Prompt for optional data areas

II Build APARFILE index

II Verify dump area

II Create APARFILE

II Create optional files if requested

II Terminate program

..

I OUTPUT ___ ...

APARFILE on
diskette

If requested:
TWAFILE on
diskette
HISTFILE on
diskette
JOBOFILE on
diskette
SPOLFILE on
diskette
VTOCFILE on
diskette Task work area

History file
Input JOBO
Spool files
Disk VTOC

a. __ .. ________ .. ______ ~

DESCRIPTION

D Issue prompt for additional system areas to be copied to diskette:

• Task work area (TWA).

• System trace file.

• System history file.

• Input JOBO.
0 Spool files.

• Disk VTOC.

To: Control Storage End-of-Job
Transient ($EOJ)

fJ Build index record containing size and record offset within APARFI LE of system data areas to be included.

Write index record as first record of APARFILE.

II Read first sector of main storage dump area from disk.

Check dump validity flag (SCADPIND) in SCA to determine dump validity.

II Write system area data to APARFILE:

• Disk dump area.

• Configuration record.

• #L1BRARY PTF log.

• Trace file (if requested).

II Create optional files on diskette if requested:

• History file (HISTFILE).

• Input JOBO (JOBOFILE).

• Spool files (SPOLFILE).

• Disk VTOC (VTOCFI LE).

II Pass control to end of Job control storage transient ($EOJ) to terminate program.

Diagram 7.1. Perform APAR Utility Function ($FEAPR)

MODULE/
ROUTINE

$FEAPR

Method of Operation 7-3

Licensed Material-Property of IBM

II INPUT ----III From: Initiator

~OCESS

Main Storage

Transient Area

User Area:
$FEDMP
$FESTR
$FEIOP
$FEDSK
$FESYS
$FECRT

Control statements

APARFILE

Disk storage area:

• Main storage
dump

• Control storage
dump

• Configuration
record

• PTF log

• Trace file
0 I/O controller

dump area

----"....." ... :::. D Read control statements and determine
function requested

,1fJ List main storage or control storage areas
if requested

II List disk storage areas if requested

II List configuration record, trace file, or
PTF log if requested

II List I/O processor storage area if requested

II Terminate program

OUTPUT ___ _

Printed or
displayed data

To: Control Storage End-of-Job
Transient ($EOJ)

OESeR IPTION
MODULE/
ROUTINE

II Use syntax checker (# USYX) to read and check control statements. $FEDMP

If verb is DUMP, save keyword information.

If requested function is:

• Dump main storage or control storage areas, go to fJ.
• Dump selected disk storage areas, go to II.
0 Dump configuration record, trace file, or PTF log area, go toO.

• Dump I/O controller storage area, go to m.
If verb is END, go to O.

IfJ Initialize display screen, printer, APARFI LE, and disk as required. $FESTR

Display summary of storage dump information.

Diagram 7.2 (Part 1 of 2). Perform Dump Utility Function ($FEDMP)

7-4

Licensed Material-Property of IBM

OEseR IPTION
MODULE!
ROUTINE

If output to printer specified: $FESTR

• Prompt for type of storage dump and address limits.

• Dump requested main storage or control storage area to printer.

• Prompt for another storage area to dump and if E entered, return toDto read another control statement.

If output to display screen:

• Display first segment of main storage or control storage and TCB address of abnormally terminated task. $FECRT

• Accept user request to display other portions of storage. $FESTR

• If E entered, return to Dto read another control statement.

D Initialize display screen, printer, diskette, and disk fields as required. $FEDSK

o Prompt for disk or diskette sectors to be displayed/printed.

Ensure valid prompt response given.

If character E response, go toDto read next control statement.

Read data from disk or diskette.

Output disk or diskette sectors requested:

• If output to display screen specified, put data to screen and roll screen up or down as requested. $FECRT

• If E entered, go toGto accept new address or end display.

• If output to printer specified, dump requested sectors to printer. $FEDSK

• Go toOto accept new address or end dump.

II Initialize display screen, printer, APARFILE, and disk as required. $FESYS

If list configuration record request:

• Read configuration record.

• Format configuration record for output to printer or display screen.

• Display or print selected fields from system configuration record.

If list trace file request:

• Retrieve trace file data.

• Format trace file data for output to printer or display screen.

• If output to printer, start outpu~ with oldest sector entry.

• If output to display screen, start display with last set of entries and accept roll up and roll down keys to
display additional entries.

If list PTF log request:
0 If input is disk, prompt for library name; otherwise, process # LI BRARY.

• Read PTF log.

• Format PTF log data for output to display screen or printer.

• If output to display screen, start display with first set of 40-byte PTF log entries and accept roll up and
roll down keys to display additional entries.

• If output to printer, start output with first PTF log entry.

When requested dump complete, return toDto read another control statement.

II Initialize disk, APARFILE, and printer as required. $FEIOP

G Prompt for I/O controller storage dump area to output to printer; if character E entered, return toDto read
another control statement.

Read data from selected device storage dump area.

Output selected device dump area data to printer.

When requested I/O processor storage dump complete, go toGto prompt for another dump request or end
display. .

II Pass control to end-of-job transient ($EOJ) to t~rminate program. $FEDMP

Diagram 7.2 (Part 2 of 2). Perform Dump Utility Function ($FEDMP)

Method of Operation 7-5

Licensed Material-Property of IBM

INPUT----_

From: Initiator

~OCESS

Main Storage

Transient Area

User Area:
$FEFIX

Control statements:

o HDR

• PTF
• DATA
• END

Library members

D Perform PTF utility initialization

fJ Process HDR statement

II Process PTF statement

II Process DATA statement

II Process EN D statement

II Terminate program

------Tl

....

...

~ OUTPUT ___ _

Modified library
modules

Updated PTF log

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
DESCRIPTION ROUTINE

D Allocate work file space. $FEFIX

Determine SYSLOG device option.

Read control statement from SYSI N device and go to appropriate processor:

• If HDR statement, go to f).
• If PTF statement, go to II.
0 If DATA statement, go to D.
• If END statement, go to II.

D Syntax check HDR statement:

• If checksum not found (HDR statement blank), indicate field developed patch (ZAP) and save first four
characters of system date and a '5' for the PTF ID.

0 If checksum found, ensure PTF ID valid.

Return toDto read next control statement.

II Syntax check PTF statement.

If library parameter other than #LI BRARY given, find address of library format 1. $MAFND

Locate library module specified.

Read module from library and place in work file (if not already there). Disk lOS

If module has overlays: $FEFIX

• Scan! root R LDs to find R LD end, overlay table address, and number of root R LD sectors.

• If overlay request, read overlay table from module root and process any errors.

Diagram 7.3 (Part 1 of 2). Perform PTF Installation Function ($FEFIX)

7-6

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Store module information in PTF table. $FEFIX

Return toO to read next control statement.

II Syntax check DATA statement.

Read area to be patched in from work file.

Delete R LOs in patch area.

Merge R LOs from DATA statement into module R LOs:

Insert patch data.

Write patch data and RLDs back to work file.

Return to D to read next control statement.

II Syntax check END statement.

Set on SYSI N end of file.

D Log PTF (module name and 10 - use system date and a 5 if ZAP) for each module. $MAPTF

Set on PTF applied indicator in module directory entry. $FEFIX

Transfer updated modules from work file back to library.

Pass control to end-of-job transient ($EOJ) to terminate program.

Diagram 7.3 (Part 2 of 2). Perform PTF Installation Function ($FEFIX)

Method of Operation 7-7

Licensed Material-Property of IBM

INPUT ____ _ From: Initiator

~OCESS

Main Storage

Transient Area

User Area:
$FEPCH
$FEDSK
$FECRT

Control statements

Disk or diskette
data

D Read control statements

fllnitialize fields with keyword information

II Prompt for sector address

II Display data

II Modify data if requested

II Terminate program

------:Tl

• OUTPUT ___ _

Displayed prompt

Displayed data

Modified data

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
OESeR IPTION ROUTINE

• Use syntax checker (UUSYX) to read and check control statements. $FEPCH

Save keyword information if verb is PATCH.

If END statement is read, go tollto terminate program.

fllnitialize display screen, diskette, and disk fields as required. $FEDSK

II Prompt for disk/diskette sector to be patched.

Ensure valid prompt response given.

If character E response, go to.to read next control statement.

Read data from disk or diskette.

II Display disk/diskette sector requested: $FECRT

• Put data to display screen.

• Roll screen up or down as requested.

• If character E entered, go tolJto prompt for new sector address.

• Update data area with modified data.

II Write modified data back to disk/diskette. $FEDSK

Return toEJto prompt for new sector.

II Pass control to end-of-job control storage transient ($EOJ) to terminate program. $FEPCH

Diagram 7.4. Perform Patch Utility Function ($FEPCH)

7-8

Licensed Material-Property of IBM

• INPUT ----.

From: Initiator

~OCESS

Main Storage

Transient Area

User Area:
$FETRC

Control store trace
transient parameter
list

_---""":>, D Get current trace indicators and prompt for
.. modifications

D Update trace indicators

II Prompt for disk logging options

II Update disk logging indicators

II Terminate program

------:Tl

....

• OUTPUT ___ ..

Updated control
store trace optiol1s

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
OESeR IPTION ROUTINE

D Call control store trace transient to determine events now being traced. $FETRC

Display current trace options and prompt for new options.

fJ Scan CRT buffer for new trace options just entered.

Update trace control store transient parameter list with new options.

Call control store trace transient to set new events to be traced.

II Prompt for:

• Start logging to disk.

• Stop logging to disk.

• No change.

D If STOP option, set stop logging indicator.

If START option:

• If old trace file exists, destroy it.

• Create new trace file with specified size.

• Obtain area in nucleus for disk logging lOB.

Call control store trace transient to set new disk logging options for START or STOP request.

II Pass control to end-of-job control storage transient ($EOJ) to terminate program.

Diagram 7.5. Perform Trace Select Function ($FETRC)

Method of Operation 7-9

Licensed Material-Property of IBM

INPUT ____ ..
From: Initiator

LS:;:0CESS

Main Storage

Transient Area

User Area:
$ERAP
$ERAO
$ERCO
$ERCA
$ERDO
$EREO
$ER01
$ER02
$ER80

SCA
I/O counter tables
Error counter
tables
Error history
tables

II Prompt for device

fJ Prompt for desired output

II Format I/O counter table, error·counter
table, and error history table for specified
device

II Reset error counter table or I/O counter
table if requested '

II Terminate program

.. --.......... --.... --~

. ~ OUTPUT ___ _

Displayed prompts

Formatted tables
on display station
or printer

To: Control Storage End·of·Job
Transient ($EOJ)

MODULE/
DESCRIPTION ROUTINE

II Issue prompt for device or end program: $ERAP

• End.

• All.

• Main store processor.

• Control processor.

• Disk.

• Diskette.

• Line printer.

• Work station controller.

• Display stations.

• Serial matrix printer.

• esc.

If more than one device of a certain type, issue prompt for that specific device.

I f end oPtion taken, go to II.
!Jlssue prompt for desired output:

• Display.

• Print.

• Print and reset error counter table.

• Print and reset I/O counter table.

Diagram 7.6 (Part 1 of 2). Perform ERAP Utility Function

Licensed Material-Property of IBM

DESCRIPTION
MODULE/
ROUTINE

If print selected, prompt for desired printer. $ERAP

If display or print, go to II.
If reset, go toll.

D Format I/O counter table, error counter table, and error history table for specified device. $ERAO
$ERCO

If C entered, go to O.
$ERCA
$ERDO
$EREO

II Format error counter table and reset, or format I/O counter table and reset. $ER01

GotoD.
$ER02
$ER80

II Pass control to control storage end-of-job transient ($EOJ - control storage). $ERAP

Diagram 7.6 (Part 2 of 2). Perform ERAP Utility Function

Method of Operation 7-11

Licensed Material-Property of IBM

Program Organization

Figures 7-1 through 7-6 show the control flow of the sys
tem maintenance programs.

Initiator
Function

...
--.

APAR
Utility
($FEAPR)

, ,

End-of-Job
($EOJ)
-Control Storage-

Figure 7-1. APAR Utility Control Flow ($FEAPR)

7-12

Licensed Material-Property of IBM

Initiator
Function

~

Disk Storage
..... .. Dump Display

- """ ..
($FEDSK) ($FECRT)

Storage Storage
..... .. Dump ..~ .. Display
.,.

Dump ($FESTR) ($FECRT)
Utility

($FEDMP)
System

..- .. Areas . Dump
($FESYS)

1/0
A .. Processor

($FEIOP)

~
,

End-of-Job
($EOJ)
-Control Storage-

Figure 7·2. Dump Utility Control Flow ($FEDMP)

Program Organization 7-13

Licensed Material-Property of IBM

Program PTF Log
Initiator .. Temporary Handler
Function Fix Utility

($FEFIX) ($MAPTF)

,

End-of-Job
($EOJ)
-Control Storage-

Figure 7-3. Program Temporary Fix Utility Control Flow ($FEFIX)

7-14

Licensed Material-Property of IBM

Initiator
Function

~ Ir

Patch Disk Storage
Utility Dump . Display

($FEPCH)
.... .

($FEDSK)
....

($FECRT)

~
,

End-of-Job
($EOJ)
-Control Storage-

Figure 7-4. Patch Utility Control Flow ($FEPCH)

Program Organization 7·15

Licensed Material-Property of IBM

Trace
Trace

Initiator Transient
Function Select (CXTRACE) - ($FETRC) -

-Control Storage-

, ,

End-of-Job
($EOJ)
-Control Storage-

Figure 7-5. Trace Select Control Flow ($FETRC)

7-16

licensed Material-Property of IBM

Initiator
Function

, ,

.... ... Disk

- - ($ERAO)

~ ... Display Station and
Serial Matrix Printer - ($ERCO)

Work Station
~ ..

Controller
($ERCA)

Diskette ... ~ ...
ERAP "" - ($ERDO)

Utility
($ERAP) Line Printer

~ ..
.....

($EREO)

Control Processor ~

..... ..
($ER01)

~ .. Main Storage
Processor

"" ($ER02)

SSC
.... ..

($ER80)

, ,

End-of-Job
($EOJ)
-Control Storage-

Figure 7-6. ERAP Utility Control Flow ($ERAP)

Program Organization 7·17

. Licensed Material-Property of IBM

'-18

Licensed Material-Property of IBM

Introduction

The overlay linkage editor enables the user to manually
determine overlays for programs. An automatic determina
tion of overlays is also provided.

The overlay linkage editor can be entered two ways:
directly from a language processor (compiler), or as a user
called program. The functions and method of operation
is different depending on whether the entry is compiler or
user entry.

COMPI'LER ENTRY

When entered directly from a compiler, the overlay link
age editor can perform either or both of the following
functions:

• Catalog an object module as a subroutine member in
the library on disk.

• Link object modules into an object program and catalog
the program as a load member in the library on disk.

I NPUT FOR CaMPI LER ENTRY

Input to the overlay linkage editor is in the $WORK file on
disk. Each record in $WORK is 64 bytes long (Figure 8-1).
The first record must be the options record; object modules
follow the options record.

Chapter 8. Overlay Linkage Editor

Each object mo'dule consists of external symbol list (ESL)
fields (packed five to a 64-byte, S-type record) and text
records. An EN D record follows the object modules. A /*
record must be the last record in the compiler output.

Options Record: The options record tells the overlay
linkage editor what functions to perform. The options
record must be the first record in $WORK. Figure 8-1
shows the format of the options record.

Object module: The object module consists of ESL fields
packed into S-type records, text records, and an END
record. Each 64-byte, S-type record can contain up to
five 12-byte ESL fields. The S-type record must be
X'OOOO' after the ESL fields.

Object modules are described in the System/34 Overlay
Linkage Editor Reference Manual, SC21-7707 .

OUTPUT FROM CaMPI LER ENTRY

Output from the overlay linkage editor is specified by the
options record in $WORK. The object module in $WORK
can be cataloged into the library -as a subroutine member.
If link-editing is specified, a load module is built from the
input object module. The load module is then cataloged
into the library as a load member.

A storage map and cross-reference list is printed unless the
options record specifies otherwise (Figure 8-25).

Introduction 8-1

Licensed Material-Property of IBM

8·2

Q)

:;
"C
0

::1:

~
"E
0

2 6 7 9 10 11 12 13 14 15 16 17 2425 32 33 40 41 64

tS OPTNS Attributes Main Object Load Reserved Flag Link Subroutine User Load Reserved
Storage Module Module Byte Address Member Library Member
Size Library Name Name Library Name

2 3 14 15 26 27 38 39 50 51 62 63 64

./ " /'
./

./
./

.//
./ "

Module Name

6 7 8 9 10 11 12

$WORK
File

64

Options Record Entry Point

ESL Input
Records

NAME X'02' Subtype X'OO's External Reference

Text Records 6 7

Subtype
X'OO'
X'03'

END Record X'06'
X'80'

/*Record X'83'

I ~ ~I X'02'

6

Subtype
X'04'
X'OS'

2 4

2 3

I
9 12

Meaning
External Reference to Module Name
Weak External Reference to Module Name
Conditional External Reference to Module Name
External Reference to Entry Point
Weak External Reference to Entry Point

S,bty", I Lo",th I x·oo·

8 9

t
Meaning
Global Common
Local Common

11 12

Text RLD

Not Used

64

Not Used

64

Common Area

Figure 8-1. Input For Compiler Entry

Licensed Material-Property of IBM

Compiler Entry

~
,

- Catalog Object FC. .:> ~ .:> - ')
Modules

-")

$WORK • Library
Object • Subroutine
Modules

~ ,
Members

...
) ...

"- Link Object Modules and
Subroutine Members Into -r::: ::::> Load Module ~ ~ -,... ..

))

Library $SOURCE
Subroutine Load
Members

,
Module

...
K -

-
Catalog Load Module -r<: -" -

" ~ ...
Library
Load

, , Member

.. .. End of Job

-
Figure 8-2. Overview of Overlay Linkage Editor Compiler Entry

Introduction 8-3

Licensed Mate!ial-Property of IBM

1 2 6 7 9 10 11 12

~ OTPNS Attributes Main Object Load (
Storage Module Module
Size

1415 1617 24 25

Reserved Flag Link Subroutine User
Library
Name

Byte Address Member
Library Name

40 41 64

Load Reserved
Member
Library Name

Attributes: This 3 byte field describes the linked object
program built by the overlay linkage editor.

Byte 7
Bit 0

2
3
4
5
6

7

Byte 8
Bit 0

1
2
3
4
5
6
7

Byte 9
Bit 0

1
2
3
4
5
6
7

On :... SSP module; Off - not SSP module
Privileged module (a-only), proc with data
(P-only)
Not inquirable mode
SFG R format load member
Source required
Not base SSP module
PTF applied (cannot be assigned through overlay
linkage editor)
Module has overlays

Dedicated mode
NEP module
Module has OXRF format index table
Load module only from system console
Cannot load program with a LOAD statement
Program common
Program with util ity control statements
Module has OXRF where-to-go table

$WOR K2 file required
Do not swap th is task
High level of dedication
Reserved
Reserved
Reserved
Reserved
Reserved

Figure 8-3 (Part 1 of 3). Options Record

. 8-4

Main storage size: This is the amount of main storage (in
1/4K increments) needed for object program execution.
Example: X'12' = 18 (X'12') X 256 (1/4) = 4608 bytes

Object module: This byte specifies the disposition of
the object module in $WOR K.
Bit 0 Reserved

1 Reserved
2 Reserved
3 Reserved
4 Reserved
5 Catalog as subroutine member (RETAIN - R)

in library
6 Catalog as subroutine member (permanent

entry) in library
7 Reserved

If bits 0 - 7 are all zero, there is no object module

Load module: This byte specifies the disposition of the
linked object program and the type of printed output
from the overlay linkage editor.
Bit 0 Reserved

Reserved
2 Reserved
3 Reserved
4 Reserved
5 Do not print storage map
6 Do not print cross-reference list
7 Catalog program into object library

If bits 0 - 7 are all zero, there is no linked output. If
neither object nor load module is specified, load is
cataloged.

Flag Byte: This byte passes general information to the
overlay linkage editor.
Bit 0 Reserved

1 Reserved
2 Reserved
3 Generate RLDs
4 Print messages
5 Reserved
6 Catalog as a load member (RETAIN - R) in

library
7 Link edit address in byte 15 and 16

Link Address: These 2 bytes specify a link-edit address.
If bit 7 of the flag byte is not on, the overlay linkage
editor links the load module to address X'OOOO'.

Figure 8-3 (Part 2 of 3). Options Record

Licensed Material-Property of IBM

Subroutine Member Library Name: If an object module
is requested (see bits 5 and 6 of the object module field),
it is cataloged as a subroutine member in this library. If
this field is blank, the default is CIBOTlB (compiler
information block output library - from the COMPilE
OUTLI B OCl statement).

User Library Name: If a load module is requested (see
load module and Flag Byte fields), the user subroutine
members used to create the load module are found in
this library. A subroutine name beginning with a #
causes the overlay linkage editor to search #L1BRARY .
If the field is blank, the default is CI BOTlB (compiler
information block output library - from the COMPI lE
OUTLIB DCl statement).

load Member Library Name: If a load member is
requested (see load module and Flag Byte fields), it is
cataloged as a load member in this library. If this field
is blank, the default is CI BOTlB (compiler information
block output library - from the COMPilE OUTLIB
OCl statement).

Figure 8-3 (Part 3 of 3). Options Record

USER ENTRY

The overlay linkage editor can be loaded by using a lOAD
#OLlNK OCl statement. The user must supply control
statements.

INPUT FOR USER ENTRY

Input for the user entry is described in the Overlay Linkage
Editor Reference Manual.

OUTPUT FROM USER ENTRY

Output of the overlay linkage editor for user entry is an
object program cataloged as a load member in the library.
A storage map and cross-reference list are printed depend
ing on the MAP parameter of the OPTIONS statement.

OVERLAY LINKAGE EDITOR PHASES AND
ROUTINES

The overlay linkage editor consists of the following phases
and routines:

• Compiler entry phase (#Ol YNX)

• User entry phase 1 (#OLlNK)

• User entry phase 2 (#OLl1)

• User entry phase 3 (#OLl2)

• User entry phase 4 (#OLl3)

• Autolink segment list build (#OlAF)

• Cross-reference segment list build (#OLAH)

• Sort autolink segment list (#OlAJ)

• Overlay design (#OlAP)

• Overlay segment list build (#OlAR)

• Storage map phase (#OlAT)

• Relocate, resolve EXTRNs, and build load module
phase (#OlBE)

• Library control phase (#OlBO)

• Specification module for the syntax checker (#OLlSP)

• Error message print phase (#OlMSG)

• Error routine (#OlER)

Minimum Storage Requirements

The overlay linkage editor requires 14K of main storage for
execution.

Introduction 8-5

Licensed Material-Property of IBM

User Entry

~
,

-re- :::> r::=- -... $WORK I---:::: ') ... -y Subroutine f---

Members
Read OC L Statements, r--.- .-"""

f'.- :::::=
Control Statements, and .. $SOURCE

./ Subroutine Member(s) ') Preauto Link
Procedure Segment List ..
Member -......,........

-'

, ,

....
k: ...,

-Link Subroutine Members ~

=>
"- Into Load Module -

Library '- ./

Subroutine $SOURCE :::: ')
Load Members .. -...

.........
Modules

-

~
,

-f(
Catalog Load '" -
Module ~re- .:> Library

Load
Member

~ , -
End of Job

Figure 8-4. Overview of Overlay Linkage Editor User Entry

8-6

Licensed Material-Property of IBM

Method of Operation

The overlay linkage editor can be entered in two ways:

• Diagram 8.1 shows an overview of the compiler entry.

• Diagram 8.2 shows an overview of the user entry.

Diagrams 8.3 through 8.17 show the functions of the over
lay linkage editor.

Licensed Material-Property of IBM

Method of Operation 8-7

Main Storage

Transient Area

User Area:
(see Figure 8-5)

Disk:

• $WORK
object modules

• Library
subroutine
modules

From: Compiler

L.::;:0CESS

D Catalog object modules as subroutine
members

fI Link object modules and subroutine
members into load modules

...

• OUTPUT ___ _

Disk:

• $SOURCE
load modules
and segment
lists

II Catalog load modules as load members
• Library

subroutine and
load members

• $WORK
object modules

To: Control Storage End-of-Job
Transient ($EOJ)

Diagram 8.1. Overview of Overlay 'Linkage Editor Compiler Entry

From: User Entry

:iii IN PU T __ I!I!Iil::::am1l!!Q L.::;:0CESS
OUTPUT ___ _

Main Storage

Transient Area

User Area:
(see Figure 8-6)

Control statements

Disk:

• Control state
ments in
procedure
library

o Library
subroutine
members

Lf-----1,." D ./' Read control statements ...

fJ Link object modules and subroutine
members into load modules

D Catalog load. modules as load members

--------:i1

Disk:

• $WORK
object modules

• $SOURCE
segment lists
and load modules

• Library
load members

To: Control Storage End-of-Job
Transient ($EOJ)

Diagram 8.2. Overview of Overlay Linkage Editor User Entry

8-8

Licensed Material-Property of IBM

From: Compiler
.INPUT ____ ..

L.l:;:0CESS

Main Storage

Transient Area

User Area:
HOLYNX

$WORK -
OPTNS data and
object modules

__ ---01 ::> D Get $WOR K and $SOURCE

.. file information

D Initialize LOMMON

D Move data from $WOR K to LOMMON

II Store next $WOR K sector

II Exit dependent upon request

OU TP UT m:::!:::::::::::::::!:1!:=;1

Storage:
LOMMON

To: Library Control Phase (HOLBO) or
Autolink Segment List Build (HOLAF)

MODULE/
OESeR IPTION ROUTINE

D Get $WORK and $SOURCE file information from compiler information block. HOLYNX

fJ Initialize 800-byte work area used by OLE routines (LOMMON).

II Read OPTNS and name ESL records.

Put records in LOMMON.

D Put relative number of next available $WORK sector in LOMMON.

II If object module to be cataloged as subroutine member, go to library control phase (HOLBO).

If not, go to autolink segment list build (HOLAF).

Issue error messages as needed. HOLER

Diagram 8.3. Compiler Entry Phase (HOL YNX)

Method of Operation 8-9

Licensed Material-Property of IBM

From: - Compiler Entry Phase (HOl YNX)
- User Entry Phase (#OLlNK)
- Library Control Phase (#OlBO)

.INPUT ____ ..
~OCESS II OUTPUT ---_

Main Storage .----,... ;>.... D Identify additional modules ...

Transient Area
fJ Find subroutine members referenced by

EXTRNs

User Area:
#OlAF

Disk:

• $SOURCE
preautolink
segment list

• $WORK
object modules

• Library
subroutine
members

Storage:

• lOMMON

OEseR IPTION

II Build autolink segment list

II Write text to disk

II Compress autolink segment list

To: Cross Reference Segment
List Build (#OlAH)

II Read external segment list for each object module in $WORK to determine if any additional EXTRNs required.

D Find additional modules (subroutine members) referenced by EXTRNs.

Put subroutine members in $WORK on disk.

II Scan modules for EXTRNs.

Assign EXTRN numbers to segments found (duplicate segments are given same number).

Place all EXTRN segment elements in autolink segment list.

DWrite object module text records back to $WORK as they are encountered.

Place an E in first byte of last text record of each module.

II Delete all duplicate EXTRN numbers.

Delete all but one COMMON entry from autolink segment list.

Issue error messages as needed:
• If message to be printed, use (#OlMSG).
• If message to be displayed, use (HOlER).

Diagram 8.4. Autolink Segment list Build (#OlAF)

8-10

Licensed Material-Property of IBM

Disk:

• $SOURCE
autolink segment
list

• $WORK
object modules

Storage:

• lOMMON

MODUlE/
ROUTINE

#OlAF

$MAlFN

#OlAF

#OlMSG

#OlER

II INPUT
From: Autolink Segment List Build (#OLAF)

a...::;:0CESS

Main Storago

Transient Area

User Area:
#OLAH

Disk:
e $SOURCE

autolink
segment list
and preautolink
segment list

Storage:
o LOMMON

----............ ;> D Read records from $SOURCE

fJ Build cross-reference segment list

OUTPUT --~.:n

Disk:
• $SOURCE

cross segment
list and
autolink segment
list

Storage:
o LOMMON

To: Sort Autolink Segment List
(#OLAJ)

OEseR IPTION

III Read records from autolink segment list in $SOURCE.

If) Build cross-reference segment list containing module name, followed by an entry point, followed by modules
referencing entry point.

Scan autolink segment list for modules with EXTRNs.

Add EXTRNs to cross-reference segment list after either module name or entry point.

Issue error messages as needed:
• If message is to be displayed, use HOLER.
• If message is to be printed, use HOLMSG.

Diagram 8.5. Cross-Reference Segment List Build (#OLAH)

MODULE/
ROUTINE

HOLAH

HOLER

HOLMSG

Method of Operation 8-11

Licensed Material-Property of IBM

From: Cross-Reference Segment List Build
(IIOLAH) INPUT ____ ...

Main Storage

Transient Area

User Area:
IIOLAJ

Disk:
• $SOURCE

autolink
segment list

Storage:
o LOMMON

~OCESS

D Sort autolink segment list

.. --------------------~

..

..

• OUTPUT ___ _

Disk:
• $SOURCE

sorted segment
list

Storage:
• LOMMON

To: Overlay Design (IIOLAP)

OEseR IPTION
MODULE/
ROUTINE

til Group autolink segment list elements into sublists by:, IIOLAJ

• Common area (uses only largest common area on autolink segment list).

• Root mainline.

• Zero priority elements.

• Elements used by zero priority elements.

• Category.

• User overlay.

Issue error messages as needed. IIOLER

Diagram 8.6. Sort Autolink Segment List (IOLAJ)

8-12

Licensed Material-Property of IBM

INPUT

From: Sort Autolink Segment List (#OlAJ)

~OCESS

Main Storage

Transient Area

User Area:
#OlAP

Disk:
• $SOURCE

sorted segment
list

Storage:
• lOMMON

D Calculate storage requirements

fJ Produce overlays if required

---:i1

...

~ OUTPUT ___ _

Disk:
• $SOURCE

sorted segment
list

Storage:
• lOMMON

To: Overlay Segment List Build
(#OlAR)

MODULE/
OESeR IPTION ROUTINE

D Accumulate total storage size used by all segments in sorted segment list. #OlAP

Compare accumulated storage size to total usable storage size available to determine if overlay required.

D Determine overlay structure dependent on storage size avajlable.

Identify duplicate or unused elements that can be eliminated based on overlay structure.

Issue error messages as needed. #OlER

Diagram 8.7. Overlay Design ('OLAP)

Method of Operation 8-13

Licensed Material-Property of IBM

From: Overlay Design (HOlAJ)
IINPUT ____ IW ~OCESS

Main Storage

Transient Area

User Area:
HOlAR

Disk:
• $SOURCE

Cross
reference
segment
list
Sorted
segment
list

Storage:
• lOMMON

..
_----./ po::> D Build overlay segment list

fJ Assign addresses

II Build text

OUTPUTIIIIIlIIIII~ __

Disk:
o $SOURCE

Sorted
segment list
Overlay
segment list

• $WORK
- Test records

Storage:
• lOMMON

To: Storage Map Phase (HOlAT)

MODULE/
DESCRIPTION ROUTINE

D Read data into main storage from sorted segment list and cross-reference segment list. HOlAR

Reformat data to build overlay segment list.

fJ Assign addresses to each module and EXTRN entry in overlay segment list.

D Build object text for:

• Overlay fetch routine.

• Overlay fetch table.

• Overlay transfer vectors.

Issue error messages as needed. HOlER

Diagram S.S. Overlay Segment list Build (#OlAR)

8-14

Licensed Material-Property of IBM

II INPUT
From: Overlay Segment List Build (#OLAR)

~OCESS

Main Storage

Transient Area

User Area:
#OLAT

Disk:
• $SOURCE:

Cross
reference
segment list
Overlay
segment list

Storage:
• LOMMON

--.......... 1""'00". 0 ./ Format output ...

EJ Print Headings

II Print map and cross-reference

II Print messages

----:Jl

I OUTPUT ____ _

Disk:
o $SOURCE:

Cross
reference
segment list
Overlay
segment list

Printer:

• Storage map
• Cross-reference

list

• Messages

To: Relocate, Resolve Externs,
and Build Load Modules Phase
(#OLBE)

MODULE/
DESCRIPTION ROUTINE

D Format output according to option selected - output contains: #OLAT
0 Storage map_
0 Cross-reference list .

• Messages.

fJ Output heading to printer.

IJ Read overlay segment list.

Print entry for each common area and module including cross-reference and entry point.

o Print informational messages and error messages (if any) according to option selected.

Issue error messages as needed. #OLER

Diagram 8.9. Storage Map Phase h¥OLAT)

Method of Operation 8-15

Licensed Material-Property of IBM

",INPUT

From: Storage Map Phase (#OLAT)

I..I:;:0CESS

Main Storage

Transient Area

User Area:
#OLBE

Disk:

• $SOURCE:
- Overlay

segment list

• $WORK
Sorted
object text

Storage:

• LOMMON

----.,......,. Joo..::> D Read overlay segment list
r"

fI Build ESL table

II Relocate object modules

II Write load module to $SOURCE

II Store overlay disk addresses

II Store fetch table address

DESCRIPTION

D Read data into main storage from overlay segment list.

fJ Build ESL table entry for each external reference in overlay segment list.

D Read object module for each overlay.

Place R LDs in buffer to be written to load module.

Adjust and place text records addresses in buffer to be written to load module.

II Place R LDs and text record addresses in load module.

Write load module to $SOURCE.

II Put relative disk address of each overlay into overlay fetch table in root phase.

D Put overlay fetch table address following last RLD in root phase.

Issue error messages as needed:

• If message is to be displayed, use #OLER.

• If message is to be printed, use #OLMSG.

Diagram 8.10. Relocate, Resolve EXTRNs, and Build Load Module Phase h'OlBE)

8·16

OUTPUT ___ _

To: Library Control Phase
(HOlBO)

Disk:
• $SOURCE:

- load module

Storage:
• LOMMON

MODULE!
ROUTINE

HOlBE

HOlER

HOlMSG

Licensed Material-Property of IBM

From: Compiler Entry Phase (HOlYNX) or
Relocate, Resolve EXTRNs, and Build Load Modules Phase (HOLBE)

• INPUT

Main Storage

Transient Area

User Area:
#OLBO

Disk:

• $WORK
- Object

modules

• $SOURCE
- Load module

Storage:

• LOMMON

L.::;:0CESS .

_---.ro.... ... :> 0 Determine output ...
fI Catalog modules

II Pass control to appropriate module

OUTPUT '-lI:Z'.IiIJ:lZEiIiIIBII

Disk:
o library:

Subroutine
members
Load
members

Storage:
• LOMMON

To: End-of-Job Transient ($EOJ) or
Autolink Segment list Build (HOlAF)

OEseR IPTION

o Check LOMMON to determine if object module or load module to be cataloged in system library.

fJ Create entry for module in library directory containing:
• Module type.
• Name.
• Relative sector address.
• Other library directory information.

II Branch to autolink segment list build (#OlAF) if user program requests that object module cataloged be
linked into load module.

Otherwise pass control to end-of-job transient ($EOJ).

Issue error messages as needed; if message is to be displayed, use #OLER.

Diagram 8.11. Library Control Phase (#OLBO)

Licensed Material-Property of IBM

MODULE!
ROUTINE

#OlBO

$MAPGS

#OLBO

#OlER

Method of Operation 8-17

INPUT ____ IIIIIII!

Main Storage

Transient Area

User Area:
#OLER

ARR:
• Error Code

From: Caller

L..I:;:0CESS

D Retrieve error code

fJ Build parameter list

II Display messages

II Pass control to appropriate module

------:T1
To: Caller -or-

..

I OUTPUT ___ _

Display screen
message

End-of-Job Transient ($EOJ)

DESCR IPTION
MODULE/
ROUTINE

II Address recall register (ARR) contains address of error code used as displacement into error table. #OLER

D Build and pass parameter list to SYSLOG ..

II Display messages on SYSLOG device. #CLSG

D If option 3 response to error, #CLSG passes control to end-of-job transient ($EOJ). #OLER

If option 0, 1, or 2 response to error, control returns to caller.

Diagram 8.12. Error Routine (#OLER)

8-18

Licensed Material-Property of IBM

",INPUT
From: Autolink Segment List Build (UOLAF)

~OCESS

Main Storage

Transient Area

User Area:
UOLMSG

Disk:

• $SOURCE
Segment
lists

Storage:

• LOMMON

..... ----:,.;>..... 0 Print messages

fJ Pass control to appropriate module

OUTPUT ----aft
Printer:
o Message

• LOWORK --------:Tl

OESeR IPTION

D Print message on system printer.

D Exit to error routine (UOLER) for terminal errors.

Exit to sort autolink segment list (UOLAJ) if message 3109 or 3111 issued.

Otherwise exit to cross-reference segment list build (#OLAH).

Diagram 8.13. Error Message Print Phase (#OLMSG)

To: - Cross-reference Segment
List Build (UOLAH)

- Sort Autolink Segment List
(UOLAJ)

- Error Routine (UOLER)

MODULE!
ROUTINE

#DPDM

#OLMSG

Method of Operation 8-19

Licensed Material-Property of IBM

lEI INPUT ----.

From: Caller

~OCESS
OUTPUT ___ _

Main Storage

Transient Area

User Area:
#OLlNK

Disk or Keyboard:
o Control

statements

---~ :> D Allocate and open $WORK and $SOURCE ..
fJ Initialize lOMMON

iii load syntax checker and error routine

IJ Read control statements

II Check for syntax errors

------:i1
To: User Entry Phase 4

(#OLl3)

OESeR IPTION

D Allocate $WOR K and $SOURCE files.

Open $WORK and $SOURCE files.

~ Initialize BOO-byte work area used by overlay linkage editor routines (lOMMON).

m1 load syntax checker (#USYX) to compare control statement parameters with #OLlSP module.

load error routine (#OlER) to display error messages (if any).

D Read control statements:
0 II PHASE
0 II OPTIONS

I> • II MODULE
0 II GROUP
0 Ii CATEGORY
0 II EQUATE
0 II END

lmt Syntax check control statement parameters.

Issue error messages as needed; if message is to be displayed, use #OlER.

Diagram 8.14. User Entry Phase 1 (#OLINK)

8·20

Licensed Material-Property of IBM

Storage:
• lOMMON
• Syntax checker

communication
table

MODULE/
ROUTINE

#OlINK

#OLl1

#OLl2
#OLl3

HUSYX

HOlER

~

II INPUT
From: User Entry Phase 1 (#OLlNK)

L.::,;:0CESS

Main Storage

Transient Area

User Area:
#OLll

Storage:
• Syntax checker

communication
table:

OPTIONS
- PHASE

OEseR IPTION

...
> .. D Process valid control statements

OPTIONS
PHASE

II Retrieve OPTIONS and PHASE data from syntax checker communication table.

Put data in lOMMON.

Issue error messages as needed; if message is to be displayed, use #OlER.

Diagram 8.15. User Entry Phase 2 (IOLl1)

Licensed Material-Property of IBM

I OUTPUT ~:a:iIIII~::lECfI

....
>

To: User Entry Phase 1
(#OLlNK)

Storage:
o lOMMON

MODULE/
ROUTINE

#OLll

#OlER

Method of Operation 8·21

~ INPUT
From: User Entry Phase 1 (#OLlNK)

I...I:;:0CESS

Main Storage

Transient Area

, User Area:
#OLl2

Storage:
• Syntax checker

communication
table:

MODULE

Disk:
• Library

Subroutine
member(s)

OEseR IPTION

._---.1" ;= D Process valid control statements
MODULE

IfJ Find and copy modules to $WORK

OUTPUT ___ _

To: User Entry Phase 1
(#OLlNK)

Disk:
• $WORK

Subroutine
member(s)

MODULE/
ROUTINE

o Retrieve names of modules to be included in load module from syntax checker communication table. #OLl2

D Find modules to be included and put modules in $WOR K on disk. $MAlFN

Issue error messages as needed: #OlER
• If message is to be displayed, use #OlER.
• If message is to be printed, use #OlMSG. #OlMSG

Diagram 8.16. User Entry Phase 3 ('OLI2)

8-22

licensed Material-Property of IBM

INPUT

From: User Entry Phase 1 (#OLlNK)

~OCESS

Main Storage

Transient Area

User Area:
#OLl3

Storage:
• Syntax checker

communication
table:

CATEGORY
GROUP
EQUATE

D Process valid control statements
CATEGORY
GROUP
EQUATE

D Process valid END statement

OEseR IPTION

D Process valid CATEGORY, GROUP, or EQUATE control statement:

• Retrieve control statement data from syntax checker communication table .

• Build preautolink segment list.

a Retrieve END statement from syntax checker communication table.

Perform final write to $WORK and'$SOURCE.

Pass control to autolink segment list build (#OLAF).

Issue error messages as needed; if message is to be displayed, use #OLER.

Diagram 8.17. User Entry Phase 4 (IOLI3)

...

.....

• OUTPUT ___ _

Disk:
• $SOURCE

- Segment
lists

• $WORK

'E' (end) record

To: Autolink Segment l,.ist Build
(#OLAF)

MODULE/
ROUTINE

#OLI3

#OLER

Method of Operation 8-23

licensed Material-Property of IBM

Program Organization

The overlay linkage editor is divided into self-overlaying
routines. The sequence in which routines are loaded and
which routines are used depends on whether the compiler
entry or the user entry is used and which functions are
required. Figures 8-5 and 8-6 are the storage maps for the
compiler entry and user entry overlay linkage editor
modules.

Figures 8-7 and 8-8 show the overlay linkage editor compiler
entry and user entry control flow.

8-24

Licensed Material-Property of IBM

SSP

lOMMON
Common Area

#Ol YNX load Module
Compiler Access
Method

---- ----..
#OlYNX

--..-- -I--
-- ---- --..-- ---- --..

... -- -- --.. --..
#OlBO ---~ ----..-- --.. --..

----.. ---- --------.. - ...
} 256 Bytes --- ---- ---- --#OlAF

#OlAR

#OlER
#OlAH

#OlAJ

#0 lAP

#OlAT

~~ ~~ #OlER
#OlBE

---- --- -- #OlMSG -- -- --..
----- -- ----..-- ---- -- ----.. -- -

------..----.. --- -- --
Figure 8-5. Compiler Entry Storage Map

Program Organization 8-25

Licensed Material-Property of IBM

SSP

LOMMON
Common Area

#OLlNK Load Module
Compiler
Access Method

---------------- ------ -- -- -------- --
-- -- --#OLlNK ----_ t-

-- ..-------...;--;;;;;:::;..--------- ---------- --
#OLlSP

---- ------I/O Area -- -- _I-- -- ---- -::::::..:.#OLAF--
#OLAH· __

--

--

-- -- ---- -
#OLlNK

-- ----
~ ~-,.l'--_-_#-O~L~E~R~~~~: ~I

Work Area

-- -- ---- ---- -- -I'-- -------- -...,..-------------=-..,.
#OLll
#OLl2
#OLl3
#USYX

-- -- ---------- -- --- --------

#OLAJ --
#OLAP
#OLAT
#OLBE
#OLMSG

-- ~~--------~~ -- -- -- -- --
Figure 8-6. User Entry Storage Map

8-26

Licensed Material-Property of IBM

---- ---- ---
#OLAR

-
--- --

-- -- -- ---
#OLBO

#OLER

Compiler
Entry

Compiler
Entry
Phase

(HOlYNX)

Autolink
Segment
list Build

(HOlAF)

Cross
Reference
Segment
list Build
(HOlAH)

Sort
Autolink
Segment
list
(t/OlAJ)

Overlay
Design

(t/OLAP)

Overlay
Segment
List Build

(t/OlAR)

Storage
Map Phase

(t/OlAT)

Relocate. Resolve
Externs. and
Build load
Module Phase

(HOlBE)

If Request to Catalog Module
as a Subroutine Member

If link Requested

If Error Message to Print

library
Control
Phase

(HOlBO)

End-of-Job
($EOJ)
-Control Storage-

Error
Message
Print
Phase

(t/OlMSG)

From Caller

Error
Routine.

(HOlER)

To Caller

Figure 8-7. Overlay Linkage Editor Compiler Entry Control Flow

Licensed Material-Property of IBM

Program Organization 8-27

8-28

User
Entry

I

User
Entry
Phase 1

(HOLINKI

• Autolink
Segment
List Build

(HOLAFI

~ ~

Cross
Reference
Segment
List Build
(HOLAHI

Sort
Autolink
Segment
List
(HOLAJI

,
Overlay
Design

(HOLAPI

~ ~

Overlay
Segment
List Build

(HOLAR)

6

I! PHASE or
/I OPTIONS

...

.. I! MODULE ..

I! GROUP,I! CATEGORY, .. I! EQUATE, or I! END ..
...

If Error Message to Print --..

--...
A - -.-

Figure 8-8. Overlay Linkage Editor User Entry Control Flow

User
Entry
Phase 2

(HOLl1I

User
Entry
Phase 3

(HOLl21

User
Entry
Phase 4

(HOLl31

•
Error
Message
Print
Phase

(HOLMSGI

Storage
Map
p.nase

(HOLATI

Relocate, Resolve
Externs, and
Build Load
Module Phase

(HOLBEI

~ ~

Library
Control
Phase

(HOLBOI

, ~
End-of-Job
($EOJ)
-Control Storage-

Licensed Material-Property of IBM

From
Caller

Error
Routine

(HOLER)

To
Caller

Data Areas

This section describes the data areas that pass information
between routines of the overlay linkage editor.

OVERLAY LINKAGE EDITOR COMMON (LOMMON)

The overlay linkage editor common area (Figure 8·9)
passes control information between the various routines.
Most of LOMMON is initially set to zero by user entry
phase 1 (#OLlNK) or compiler entry phase (#OLYNX).

VERB LIST (OVERBS)

OVERBS is a list of constants passed to the syntax
checker (#USYX) each time the syntax checker is called
by #OLlNK. The third and fourth bytes of the syntax
checker parameter list contain the address of the verb
list. Figure 8·10 shows the format and contents of the
verb list.

SEGMENT LIST ENTRIES

The various routines of the overlay linkage editor build
a series of segment lists. These segment lists are built in
the $SOURCE work file (Figure 8·11).

Each entry is 16 bytes long. The format of entries varies
between and within segment lists, depending on the type of
entry. (See Figures 8·17 through 8·22 for segment list for·
mats.) All data fields in the segment list entries are not
used for all types of entries, the column heading Applies to
Segment Type in each segment list indicates which types of
entries contain the data. Figure 8·17 contains a list of all
the segment types.

Data Areas 8·29

Licensed Material-Property of IBM

Displacement of
Leftmost Byte
in Hexadecimal

o

2

Label

LORTYP

LOOTYP

LOSWT1

Length in
Bytes in
Decimal

Figure 8-9 (Part 1 of 5). Common Area (LOMMON)

8-30

Description

Object module information

X'BO' = Reserved
. X'40' = Reserved
X'20' = Reserved
X'1 0' = Reserved
X'OB' = Reserved
X'04' = Catalog the object module as a

subroutine member with a
RETAIN-R (replace) in the
library

X'02' = Catalog the object module as a
subroutine member with a
RETAIN-P (permanent) in
the library

X'01' = Reserved

If this byte is X'OO', there is no object
module

Load module information

X'BO' = Reserved
X'40' = Reserved
X'20' = Reserved
X'1 0' = Reserved
X'OB' = Reserved
X'04' = No storage map option
X'02' = No cross-reference list option
X'01' = Catalog the load module as a load

member in the library
X'OO' = Do not catalog the load module

(If neither an object or a load
module is specified, a load mem
ber is cataloged)

Overlay linkage editor switch 1

X'BO' = Segment list is in $SOU RCE
X'40' = User call
X'20' = User specified overlays
X'1 0' = Entry point to be resolved
X'OB' = Groups in segment list
X'04' = Reserved
X'02' = Print messages
X'01' = Retain- R (replace)

Licensed Material-Property of IBM

Routines that
Change Data
(tlOLxxx)

YNX, BO

INK, YNX, 12,
13,AT

INK, YNX, AF,
11,12,13

Displacement of Length in Routines that
Leftmost Byte Bytes in Change Data
in Hexadecimal Label Decimal Description (#OLxxx)

3 LOSWT2 Overlay linkage editor error switch AF, AH, AJ, AR,
AT, 11, YNX .

X'80' = System category calls another
category

X'40' = DTF in last 1 K of storage
X'20' = All elements in group are category

1-7
X'1 0' = No module for group element
X'08' = Entry point not in common program
X'04' = Entry on options not found
X'02' = Storage size on options statement
X'02' = Program will not fit
X'01' = Terminal error

4 LOUSLB 2 User I ibrary format 1 address INK, YNX

6 LOSYLB 2 System I ibrary format 1 address INK, YNX

8 LORLIB 2 Subroutine member I ibrary format 1 address INK, YNX

A LOOLIB 2 Load member library F1 address INK, YNX

C LONOVL Number of overlays AP

D LOEND@ 2 End of storage address INK, YNX

F LOCRSZ 2 Actual storage size for storage map execution AP, YNX, BO

11 LOOVNO 2 Low, high system overlay numbers AR

13 LOFTBL 2 Displacement of overlay fetch table AR

15 LOAUTO 2 Relative entry number of auto segment list 13

17 LOXREF 2 Relative entry number of cross-reference AF, BE
segment list

19 LOSORT 2 Relative entry number of sort segment list AH,BE

1B LOOVER 2 Relative entry number of overlay segment list AJ, AP, BE

1D LOLIMT 2 Relative entry number of last delimiter AR, BE

1F LOWKCS 2 Relative sector number of the next sector in 13,12, INK,
$WORK YNX,AF, AR

21 LOLCSB 3 Sector address of data start INK, YNX, BE

Figure 8-9 (Part 2 of 5). Common Area (LOMMON)

Data Areas 8·31

Licensed Material-Property of IBM

Displacement of Length in
Leftmost Byte Bytes in
in Hexadecimal Label Decimal

24 LOLHDR

25 LOLNAM 6

2B LOLLCS 2

20 LOLTXS
or

20 LOLCAT

2E LOLLEA 2

30 LOLRLD

31 LOLSCA 2

33 LOLCSZ

34 LOATB1

35 LOATB2

Figure 8·9 (Part 3 of 5). Common Area (LOMMON)

8·32

Description

Library type; R (subroutine) or 0 (load
member)

Module name

Sector address of I ibrary entry

Number of text sectors in load member

Overlay category of subroutine member

X'OO' = Root category
X'01' through X'7E' = Overlay category.

value

Link edit addresses

RLD displacement

Start control address

Main storage size in hexadecimal (in 1/4 K
increments)

1 st attribute byte

X'80' = SSP module
X'40' = Privileged module - 0 only
X'40' = Do not log OCL - P only
X'20' = Non·inquirable module
X'1 0' = SFG R format load module - 0 only
X'10' = Procedure with data - P only
X'08' = Source required
X'04' = Non·base SSP module
X'02' = PTF applied bit
X'01' = Module has overlays

2nd attri bute byte

X'80' = Dedicated module
X'40' = Never-ending program module
X'20' = Module has OXRF format index

table
X'1 0' = Module can only be loaded from

system console
X'08' = Cannot load program via II LOAD
X '04' = Program common
X'02' = Program with utility control

statements
X'01' = Module has OXRF WTG table

Licensed Material-Property of IBM

Routines that
Change Data
(#OLxxx)

INK, YNX, BE

IN1, YNX, 12, BO

BO

BE,BO

YNX

INK, YNX,AR, 11

BE

YNX, 12, AJ, AR

INK, YNX~ 11, BO

11,12, AF,
R/O BE, BO,

YNX,AJ

11,12,AF,
R/O BE, BO,

YNX, AJ

Displacement of Length in Routines that
Leftmost Byte Bytes in Change Data
in Hexadecimal Label Decimal Description (#OLxxx)

36 LOATB3 3rd attribute byte IN1, IN2, AF,
BE, BO, YNX,

X'80' = $WORK2 file required AJ
X'40' = Do not swap this task
X'20' = High level of dedication
X'1 0' = Reserved
X'08' = Reserved
X'04' = Reserved
X'02' = Reserved
X'01' = Reserved

37 LOMRTX MRTMAX YNX, 11, BO

38 LOJCB@ 2 JCB address YNX, 11, AT

3A LOLLVL Release level IN1, INK, YNX

3B LOLTSC 2 Total sector count YNX, BE

3D LOWORK 30 Phase work area any
Note: The phase work area can be used
by each phase. Information can be
passed from one phase to the next in th is
area, but the phase work area is not to be
used for passing information from one
phase to phases that are two or three
loads away.

5C LOCZER 2 Constant of zero INK, YNX

5E LOCONE Constant of one INK, YNX

5F LOCHFF 2 Constant X'FFFF' INK, YNX
or

5F LOCM1 2 Constant of minus one INK, YNX

61 LOSCAT System category AH

62 LOERCD Error code AT,AF

63 LOENTR 6 Entry point name INK, 11, AH,
YNX

69 LOERR #OLER error code

69 LOAF 5 Load list for #OLAF YNX

6E LOAH 5 Load list for #OLAH AF

73 LOAJ 5 Load list for #OLAJ AF

Figure 8·9 (Part 4 of 5). Common Area (LOMMON)

Data Areas 8·33

Licensed Material-Property of IBM

Displacement of Length in Routines that
Leftmost Byte Bytes in Change Data
in Hexadecimal Label Decimal Description (#OLxxx)

78 LOAP 6 Load list for #OLAP AF

7D LOAR 6 Load I ist for #0 LA R AF

82 LOAT 6 Load I ist for #0 LA T AF

87 LOBE 6 Load list for #OLBE AF

8C LOBO 6 Load list for #OLBO AF

91 LOER 5 Load list for #OLER INK, YNX

96 LOMS 5 Load list for #OLMSG AF

9C LOSWT3 Flag byte: X'80' = RLDs for load member INK, YNX, MSG,
AT

AD LOEND 17 End of LOMMON

AE LOIOBS 32 lOB for $SOURCE

CE LOIOBW 32 lOB for $WORK

EE LOCAMS 27 $SOURCE CAM (compiler access method)
control block

109 LOCAMW 27 $WORK CAM control block

124 LODTFP 41 DTF for printer

14D CAM 182 Start of CAM

203 LOPRCA 132 Printer logical record

288 LOPIOA 152 Printer physical area

320 LOPHSE (variable) phase area

Figure 8·9 (Part 5 of 5). Common Area (LOMMON)

8·34

Licensed Material-Property of IBM

Displacement of
Leftmost Byte

o

2

3

4

5

6

7

Label

OVERBS

Figure 8-10. OVERBS Verb List

Segment List Entry Types

00 Module name

$SOURCE 01 Entry point

02 EXTRN
Preautolink
Segment List 03 Weak EXTRN
(Figure 8-12)

04 Global common
Autolink
Segment List 05 Local common
(Figure 8-13)

06 Conditional EXTR N
Cross- reference
Segment List DB EQUATE entry
(Figure 8-14)

DC Transfer vector
Sort Segment
List OD Reference a previous name
(Figure 8-15) or entry point

Overlay DE GROUP entry
Segment List
(Figure 8-16) -OF CATEGORY entry

FE Nulled entry

FF End of segment list

Figure 8-11. Segment Lists in $SOURCE and Segment List
Entry Types

Length in
Bytes

Licensed Material-Property of IBM

Description

PHASE verb I D

OPTIONS verb 10

MODULE verb ID

GROUP verb 10

CATEGORY verb ID

EQUATE verb 1 D

END verb ID

X'FF' end of verb list

Data Areas 8-35

Displacement of Applies to Routines that
Leftmost Byte Segment Length Change Data
in Hexadecimal Type in Bytes Description (#0 Lxxx)

0 OE,OF Bits 0-3 = Reserved 13

0 OE,OF,OB Bits 4- 7 = segmeht type l 13

OE Group number 13

OE Category override number 13

2 OE Work area - original category AH

2 OE,OF 4 Reserved 13

3 OE Bit 7 = User area specified for module 13

6 OE,OF 2 Reference number - pointer to module AF
element in autolink segment list l

6 OE 2 Reference number - pointer to lead AJ
element in last overlay2

8 OE,OF 2 ESL sequence number AF

A OE,OF,OB 6 Module name 13

A OE 2 Reserved AF

C OE 2 Module element pointer (moved from bytes AJ
6 through 7)

E OE 2 Reserved AF

ISee Figure 8-11
2 Displacement within $SOURCE

Figure 8-12. Preautolink Segment List

8-36

Licensed Material-Property of IBM

Displacement of Applies to Routines that
Leftmost Byte Segment Length Change Data
in Hexadecimal Type in Bytes Description (#OLxxx)

0 This byte indicates the following

00 X'80' = Reserved AF

01,02,03, X'80' = Entry point or references an AF
04,05 entry point

02,03 X'40' = Resolved to module and/or entry AF

00,01 X'40' = This module or entry point has an AF
EXTRN referencing it

00,01,02, X'20' = Work area must be OFF at phase AF
03 end

00 X'20' = Used - do not place in structure AJ

00 X'l 0' = Calls a user routine or requires a AF
. transfer vector

02,04,05 X'10' = Delete this element when com- AF
pressing list

00 X'10' = Module already placed in root AJ

All Bits 4- 7 = Segment type l AF

00,01,02, Category AF,AH
03

2 00 2 $WORK address of object code AF

2 01 2 Entry displacement from start of module AF

2 00 Number of entry points AH

3 00 Module information

00 X'80' = Module requires boundary AH
alignment

00 X'40' = Module calls a user routine AH

00 X'20' = Module has I/O dependency AH

00 X'l 0' = Module already in an overlay AJ

00 X'10' = Substructure pointer already built AJ

ISee Figure 8·11

Figure 8·13 (Part 1 of 2). Autolink Segment List

Data Areas 8-37

Licensed Material-Property of IBM

Displacement of Applies to
Leftmost Byte Segment Length
in Hexadecimal Type in Bytes

4 00 2

6 00,01,02, 2
03,04

8 00,01,02, 2
03,04,05

A 00,01,02, 6
03,04,05

A 00 2

C 00 2

E 00 2

Figure 8-13 (Part 2 of 2). Autolink Segment List

Displacement of
Leftmost Byte
in Hexadeci mal

o

1 See Figure 8-11

Applies to
Segment
Type

00,01,00

00,01

00,01,00

00,01,00

00,01,00

00,01,00

Length
in Bytes

Figure 8-14 (Part 1 of 2). Cross-Reference Segment List

8-38

Description

Object code length

Reference number - pointer to equal ESL
number in autolink segment list

ESL number

ESL name

Reference number - pointer to equal 00
type in cross-reference segment list

Work area

Reserved

Description

This byte indicates the following

~'80' = Reserved

X'40' = Reserved

X'20' = Reserved

X'10' = Reserved

Bits 4-7 = Segment type l

Category

Licensed Material-Property of IBM

Routines that
Change Data
(#OLxxx)

AF

AF

AF

AF, INK

AH

AJ

AH

Routines that
Change Data
(#OLxxx)

AH

AH

AH

AH

AH

AH

Displacement of Applies to Routines that
Leftmost Byte Segment Length Change Data
in Hexadecimal Type in Bytes Description (HOLxxx)

2 00,01 2 Entry point displacement from start of AH
module

4 00 Work area = number of entry points on AH
original category

5 This byte indicates the following:

00 X'SO' = Module requires boundary AH
alignment

00 X'SO' = Categories make this call a AH
potential program failure

00 X'40' = Module calls a user routine AH

00 X'20' = Module has I/O dependency AH

00 X'10' = Work area - OFF at end of phase AH

00 X'OS' = Work area - OF F at end of phase AH

00 X'04' = No reference made to this AH
module

01 X'04' = Same name as module name AH

00,01 X'02' = Duplicate name AH

00,01 X'01' = Start control label AH

6 00 2 Location of object text in $WOR K AH
(X'FFFF' = nontext)

S 00,01,00 2 ESL number AH

A 00,01,00 6 Module or entry point name AH

Figure 8-14 (Part 2 of 2). Cross-Reference Segment List

Data Areas 8-39

Licensed Material-Property of IBM

Displacement of Applies to Routines that
Leftmost Byte Segment Length Change Data
in Hexadecimal Type in Bytes Description (HOLxxx)

0 This byte indicates the following:

DC Bits 0-3 = Set of modules already summed AP

DC X'40' = Set of modules contains a boundary AP
alignment module

00,02,04, Bit 0-3 = Reserved AJ
05, DC

00,02,04, Bits 4-7 = Segment type l AJ
05, DC

00,02 Category AJ

00, DC Overlay number AP

2 00 Number of entry points this module AJ

2 DC Number of entry points this overlay AP

3 This byte indicates the following:

00 X'80' = Module requires boundary AJ
alignment

00 X'40' = Module calls a user routine AJ

00 X'20' = Module has I/O dependency AJ

00 X'20' = Work area AP

00 Bits 4-7 = Reserved AJ

3 DC Overlay area used by this set of modules AJ
at execution time

I See Figure 8-11

Figure 8-15 (Part 1 of 2). Sort Segment List

8-40

Licensed Material-Property of IBM

Displacement of Applies to Routines that
Leftmost Byte Segment Length Change Data
in Hexadecimal Type in Bytes Description (HOLxxx)

4 00,04,05 2 Length of object area associated with this ESL AJ

4 DC 2 Length of object area for this overlay candidate AP
0

6 00 2 Reference number - pointer to equal module AJ

6 02 2 Pointer to module AJ

8 00,02,04,05 2 ESL number AJ

A 00 2 Pointer to module name element in cross- AJ
reference list

A DC 2 Pointer to next set of modules in same AP
overlay

C 00 2 Chain to substructure referencing this AJ
module

C 02 2 Chain to other substructure and module AJ

C DC 2 Chain to last previous transfer vector element AJ

E 02,04, 05, DC 2 Reserved' AJ

E 00 2 Boundary alignment adjustment factor AP

Figure 8-15 (Part 2 of 2). Sort Segment List

Data Areas 8-41

Licensed Material-Property of IBM

Displacement of Applies to Routines that
Leftmost Byte Segment Length Change Data
in Hexadecimal Type in Bytes Description (HOLxxx)

0 This byte has the following meaning:

02 X'80' = Work area = resolve to transfer AR
vector

00,02,04,05 Bits 4-7 = Segment type l AR

00,02,04,05 Overlay number AR

2 00,02,04,05 2 Object time address for this ESL AR

4 00,04,05 2 Object time length for this ESL AR

4 02 2 Corresponding module type ESL number AR

6 00 2 Address of module's first transfer vector AR

6 00 2 $WORK location of object text AT

6 02 2 3-byte RLD object time address for this ESL AR

8 00,02,04,05 2 ESL number AR

A 00 2 Pointer to equal 00 type in cross-reference AR
segment list. X'FF FF' designates overlay
fetch rqutine

B 02 Relative entry point position AR

C 00 2 Overlay size - first 00 type of overlay only AR

C 02 2 Pointer to 00 type entry in sort list AR

E 00,02,04,05 2 Reserved AR

1 See Figure 8-11

Figure 8-16. Overlay Segment List

8-42

Licensed Material-Property of IBM

OVERLAY FETCH ROUTINE

The overlay fetch routine is added to the root segment of
every program that has overlays. It is built by routine
#OLAR. When an overlay segment is needed during pro
gram execution, the overlay fetch routine is called. It
fetches overlay segments from access devices and places
them in the overlay regions in main storage. Bits are set
in the overlay fetch table telling which overlay region is
used. The fetch table contains one 7-byte entry for each
overlay in the program. Figure 8-17 shows the overlay
fetch table entry format.

The overlay fetch routine requires three parameters as input:

1. Overlay number (1 byte)

2. Entry address of the overlay (2 bytes)

3. Return address from the overlay (2 bytes)

A transfer vector is built for each overlay in an object pro
gram. Transfer vectors provide input parameters for the
overlay fetch routine. Overlay Linkage Editor routine
#OLAR builds transfer vectors. Figure 8-18 shows the
format of transfer vectors.

The overlay fetch routine checks to see if the requested
overlay segment is already in main storage. If it is, the
routine·branches to the entry address of the overlay; if
not, the overlay fetch table entries are checked to see if
they use the same main storage. If they do, the overlay
is flagged as not being in main storage.

After the overlay fetch routine checks all entries in the
overlay fetch table, it sets the overlay-in-storage bit in the
overlay fetch table entry for the requested overlay. The
overlay fetch routine then loads the overlay segment and
branches to its entry address.

Relative Number of Main RLD Flag
Sector Sectors of Storage Byte
Address Text Load

Address
o 2 3 4 5 6

Bytes Contents

0-1 - Relative sector address of the overlay seg-

2

3-4

5

6

ment. This is the number of sectors past
the SSS@ of the root segment of the over
lay program as given in the object library
directory entry for the program.

- Number of sectors of text in the load
module. (Does not include the number
of related R LD sectors.)

- Relative main storage load address of
where the overlay segment is to be placed
in main storage by the system loader.
(Relative to the end of the supervisor
address.)

- RLD start displacement

- Flag byte - used at execution time by
the root segments overlay fetch routine.

X'80' Overlay in storage

X'60' System overlay area (category
values 1, 2,3,5,6, and 7)

X'40' Coresident area (user I/O-inde
pendent modules, category values
8-126)

X'20' System overlay area (category
value 4)

X'10' User overlay area (user I/O-depen
dent modules, category values
8-126)

X'OF' Reserved

Figure 8-17. Overlay Fetch Table Entry Format

Data Areas 8-43

Licensed Material-Property of IBM

ST OV F RS1 ,AR R Save the return address

B OVFR

DC XL1'NN'

DC AL2 (entry)

Call the overlay fetch routine

One byte containing the overlay
number

Two-byte entry address

Figure 8-18. Transfer Vector Format

HOW TO FIND AN OVER LAY

When a process check occurs, the following steps can
determine which overlays are in main storage and where
to find them.

1. Locate the address of the overlay fetch routine on
the storage usage map of the source listing (Figure
8-19).

2. Locate the overlay fetch table in the storage dump
(see Figure 8-20). The overlay fetch table is 120
bytes past the start address of the overlay fetch
routine. It can be obtained by this hexadecimal
formula: Address of overlay fetch routine +X'78' =
overlay fetch table.

3.

4.

5.

6.

OVERLAY LINKAGE EOITOR STORAG: USAGE MAP ANO CROSS REFERENCE LIST

START OVERLAY CATEGORY NAME AND CODE LENGTH REFERENCED BY
ADDRESS NUMBER AREA ENTRY HEXADECIMAL DECIMAL

l2B AAM05 0007 215
AAME05

OVLFRTN gg!'-J~! U 20 AASOOO AAM05
AASEOO

U 20 AAS lOO Oll5 277 AAM05
AASE lO

U 20 AAS400 Ol2C 300 AAM05
AASE40

U 20 AAS800 022l 545 AAM05
AASEBO

U 20 AAS500 0342 834 AAM05

Mark off every 7-byte entry in the overlay fetch
table until the last entry is reached. The last entry
is X'FF' (see Figure 8-20).

Number eOach entry left to right, starting with 1.
Each entry refers to an overlay (see Figure 8-20).

Look at the seventh byte in each entry. This is the
flag byte. The first bit will be on for every overlay
in storage at the time of the dump (see Figure 8-20).

Compare the numbers you gave the overlays in
storage at the time of the dump with the number
of the overlays in the storage usage map (Figure
8-19). This gives the names and addresses of the
segments within the overlays that were in storage
at the time of the dump (see Figure 8-20).

OAT E 17/04/25

4 S 3 AAWl 00A7 l67 AAS800 4AS400 AASlOO AAM05

SYS-3l30 I

SYS-3l3l
SYS-3l32

SYS-3l34 [

4 S 3 AAW6
5 S 4 AAW2
6 S 6 AAW4
6 S 6 AAW9

AAl5 MODULE'S MAIN STORAGE SIZE IS
2560 DECIMAL

02A7 679
Ol43 323
0239 569
0090 l57

0004 IS THE START CONTROL ADDRESS OF THIS MODULE
THE NONOVERLAY MAIN STORAGE SIZ E IS
4700 DECIMAL
AAl5 MODULE IS CATALOGED AS ~ LOAD MEMBER
~LIBRARY IS THE LIBRARY NAME

24 TOTAL NUMBER OF LIBRARY SECTORS

Figure 8-19. Storage Usage Map and Cross-Reference List

8-44

AAS800 AAS500 AASOOO AAM05
AAS500 4AS400 A4S000 AAM05
AAS500 4ASOOO AAM05
AAS400 AASlOO AAM05

Licensed Material-Property of IBM

TCB-3Fb8 IAR-OB70 ARR-OA05 XRI-Z7Z0 XRZ-O;OO PMR-OO PSR-04 Start of Overlay Fetch Routine

AOOR 00 04 DB DC 10 14 IC

0000 340BOOZ3 CZOZOOOZ CZOIOOZB COB7017A COB70lB5 COB7019B * •••• B •• KB •••••••••••••••••••••••

OOZO COB700Z4 F4000404 0034C40Z CICIEZF) FOF04005 4005C5Eb ••••• 4 ••••• ~.AASOJO NEW AAW4 NEW-

0040 34C40300 C5E634C4 OZ004040 4040404) 40404040 40404040 *.O •• EW.O ••

0060 40404040 40404040 40404040 4040404) 40404040 40404040 x'OOD7'
DUPLICATE LINES SAME AS A30VE + x'OO78'

OOCO 40404040 40404040 40404040 4040404) 40404001 1400Z 01000774 x'014F' •••••••• B •• P ••

ODED 0471 740Z 66740B14 CZOZOIOA 6C027502 7C07760Z OZ717602 735F0076 7700011F * •••••••• B ••• , ••• ll •• K ••••••••••••

0100 BBB006FZ IOZA6COO H06740Z 4Eozozn B96006FZ 1003BB80 06EZOZ07 BOFFOOOO * ••• 2 •• % ••••• +K • •• -.Z • •••• S •••••••

OIZO 0139CZOZ 017ZBA80 75086F75 0471C20 I 0028C202 00023510 Overlay
0140 8F.9~~07 .040Z0040 IJ)~OB04- Fetch Table
0160 In In.$.!

Last
03060006 E F£340B 014bC087

0180 00070102 46C08700 0701047AI34080146 C0870007 OZOZOO~4 080146CO
Entry

01 AD 8700070Z 0146C087 00070302 . 00134080 I 46C08700 07040600134080146

OICO C0870007 080146CO 87000705 060013408 0146C087 0007060b 0~340801 Transfer
DIED 46C08700 0404040~ 04803304 04631207 07070707 07040304 Vectors

* •• B •••••••• 4 •••••••• B ••• S •• K •• -

..
* ••••••••• +- •••••••••••• 0 •••••••••

*. P •••••••••• P ••••••••• P •••••••• *

* •• P •••••••••• P •••••••••• P ••••••••

•••• P •••••••••• ;) •••••••••• P •••••••

* •••• P ••••••••••••••••••••••••••••

0200 340BOZ49 4C09090Z 570C020Z 570251.3) 00021BF2 8104C087 00003000 02Z 3F Z8 I * ••••••••••••••••• 2 •••••••••• z ••

O'V:'COO7O'
ZEF26104 C08 70 102 30000239 F28104CO 670lBC30 000244F2

0240 6104C087 0404C ICI EZFOFOFO 400603C4 Ob03C440 40404040

0260 40404040 4040404) 40404040 40404040 40404040 40404040

* •••• G •••• 2 ••••• K •••• 2 •••••••••• 2.

- •••••••••• 4 ••• A ASOOO OLDOLO

Start Address of Entry Point of
Overlay Number 1 Overlay Number 1
(from Figure 8-25)

Figure 8-20 (Part 1.013). Sample Core Dump

Data Areas 8-45

Licensed Material-Property of IBM

TCB-3F68 IAR-OB70 ARR-OA05 XR1-Z7Z0 XRZ-0500 PMR-OO PSR-04

AOOR 00 04 08 OC 10 14 18 lC

0460 40404040 40404040 40404040 4040404) 40404040 40404040 40403408 04C34C09 ••• t ••

0480 0904010C OZ040104 04300004 9ZFZ810. C08701Bl 30000490 F28104CO 87000030 O •• J ••• J.M •• •• Z ••• ••••••• 2 ••••••••

04AO 0004A8F2 8104C087 00003000 0483FZ81 04C08700 00300004 8EF28104 C0870100 * ••• 2 •••••••••• 2 •••••••• •• Z • ••••••

04CO C08704C4 F4000404 C1C1EZFl FOF04005 C5E60603 C4404040 40404040 40404040 * ••• 04 ••• AAS 100 NEWOLD

04EO 40404040 40404040 40404040 4040404) 40404040 40404040 40404040 40404040

DUPLICATE LINES SAME AS A30VE

0580 40404040 40404040 40404040 40404003 05040204 OB070407 0407040B FE808080
OSAO 80340504 OZ040704 OBOBOB07 04FF404) 40404040 40404040 40404040 40404040
05CO 40404040 40404040 40404040 4040404) 40404040 40404040 40404040 404040E2 S*

05EO 02000000 00010000 03040404 0404040. 04803304 04631Z07 07070707 07040304 o •••••••••••••••••••••••••••••••••

0600 34080620 4C091306 ZA lC0906 3409F401 04064C09 0906340C 0206ZA08 38C0870Z o ••••. •••••• ••••••• •• ••••••••••• *

04040Cl 05CSE6Cl C1EZFOF) F04005C5 Eb404040 40404040 40404040 *. AAW4 NEWUS)OO NEw

40404040 4040404) 40404040 40404040 40404040 40404040

40404040 4040404) 40404040 40400603 C4340808 594C0913 OLD •••••••

0909086) OC020863 0805(087 00004040 C lC lE6F9 * ••••• • 4 ••• ... ••••• N •••• AAW9*

0000404) 40404040 40404040 40404040 40404040 • NEW ••••••••••

4040404) 40404040 40404040 40404040 40404040

08C 40404040 4 04040 4040404) 40404006 03C40305 040A0402 80808080 OL D •••••••••••

Start Address of Entry Point of
Overlay Number 6 Overlay Number 6

Figure 8·20 (Part 2 of 3). Sample Core Dump

TCB-3F68 IAR-OB70 ARR-OA05 XRl-27Z0 XRZ-0500 PMR-OO PSR-04

AOOR 00 04 08 OC 10 14 18 lC

08EO 2005040A 040ZFFOO 03040404 0404040. 04803304 04631207 07070707 07040304 * •••••••••••••••••••••••••••••••••
0900 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFc FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF o •••••••••••••••••••••••••••••••••

DUPLICATE LINES SAME AS ABOVE

Figure 8·20 (Part 3 of 3). Sample Core Dump

8·46

. Licensed Material-Property of IBM

Part 4. System Utility Programs

Licensed Material-Property of IBM

System utility programs are supplied by IBM as part of the
SSP. When a system utility program is run, Oel statements
identify the program and supply to the SSP any informa
tion that it requires about the program. Diagram 9.0 shows
the functions performed by the system utility programs.

INPUT

Disk data

Input file

Input menu data

Alternate
sector data

Input file

VTOC and
volume label

Diskette files

System library

History file

Diskette

Volume label
and VTOC

System library
on diskette

Libraries,
directories, and
librarian files

Message text
statements

Disk VTOC and
files

Security profile

Disk VTOC

Communication/
work station
configuration
record

Display screen
format data

From: Initiator

I
I
I
I
I
I
I
I
I

I

I

I
I

1
I
I
I
•
I

I...I:;:0CESS

... 1
r OUTPUT

:>. Perform system backup (Diagram 9.1)

~.
----:;;;;.-.---.....;;;;.;> Data saved on

I
Perform basic interchange utility function

~.
(Diagram 10.1) I
Build menu display (Diagram 11.1)

I I >. Rebuild alternate sector data

~.
(Diagram 12.1) I
Perform copy utility function

~.
(Diagram 13.0) I
Delete file (Diagram 14.1)

~. I
Copy diskette file (Diagram 15.1)

~. I
Perform file build function (Diagram 16.1)

III I >. Display history file (Diagram 17.1)
ill I >. Initialize diskette (Diagram 18.1) >. • Display disk/diskette VTOC

~.
(Diagram 19.1) I
Perform reload library/pseudo IPL function

I (Diagram 20.1) I >. Perform library maintenance function

!. (Diagram 21.1)

1
Build message load member (Diagram 22.1)

I I >. Reorganize disk files (Diagram 23.1)

I I :>. Perform security profile utility function

~.
(Diagram 24.1) I
Rename disk file (Diagram 25.1)

:!> . • Modify communication/work station

I diskette

------....... > Output file

I _________ ... ~,..> Menu screen format I load member

-----------...... > Updated alternate I sector data

------=~-----=:..> Copied file

I ______ -=-___ ---:~>..... Updated VTOC I and volume label

____ -= ____ --=:.J> Copied diskette

I files

-----.....;;;;..> New disk file

I ___ --:-____ --:-",:,..> History file display

I __________ ..,: > Initialized diskette

• _____ --:=-____ ..,....,>..... Displayed or I printed information

------~:,...> System library I on disk

---=-----=-1 > Libraries,
directories, and
librarian files

--:=-____ ~>..... Message load I member

___ -=-____:.1> Reorganized VTOC

I and files

--;;;;...-----=-.... > Updated security I profile

-----=------=;.,: > New file name

• ---=----~> Updated
configuration record (Diagram 26.1)

I :>. Build display screen format (Diagram 27.1)
I
1

I
configuration
record

.....;;;.-.---......:;;;.;> Display screen

• Process error for SSP or other. PP
procedure (Diagram 28.1)

format

::il
To: Control Storage End-of-Job

Transient ($EOJ)

Diagram 9.0. Overview of System Utility Program

Licensed Material-Property of IBM

Introduction

The backup library utility ($BACK) copies the entire sys
tem library (#LlBRARY) to one or more diskettes. When
the library is copied to the diskettes, library members are
shifted to remove gaps (unused space between members
is collected at the end of the library).

The compressed library on diskette is in the following
order:

• Reload IPL program ($LOADI) - 30 sectors

• Reload format load module (##FLOD) - 5 sectors

• $LOADI heading messages - 4 sectors

• Nucleus initialization program ($MSNIP) - 6 sectors

• System configuration records (2) - 2 sectors

• Library control sector (LCS) - 1 sector

• Reload communication area (at X'CO' into LCS)

• System library directory (addresses updated)

• System library members (compressed)

The backup library utility is called by the BACKUP proce
dure or appropriate OCL statements. (See System Support
Reference Manual for information about calling $BACK.)

The main functions involved in executing $BACK are:

• Call the library directory compactor ($MACMP) to
compress the library member directory.

• Allocate and open the backup file on diskette.

Chapter 9. Backup Library Utility ($BACK)

• Create strings of bits in main storage (matrix) repre
senting library members as they appear on disk.

• Copy the reload library utility load module ($LOADI)
from disk to diskette.

• Copy reload screen format load module (##FLOD) and
$LOADI level 1 messages from disk to diskette.

o Copy main storage nucleus initialization program
($MSN IP) from disk to diskette.

• Copy the two configuration records and the library con
trol sector (LCS) from disk to diskette.

o Update the library directory entries' sector addresses
to reflect the compressed library and copy the library
directory to diskette.

o Copy the library members from disk to diskette using
the matrix to eliminate holes in the library.

• Close the diskette backup file.

• Return to the system by way of the end-of-job trans
ient ($EOJ).

$BACK requires 14K bytes of main storage, exclusive con
trol of the #LlBRARY file, and must run dedicated.

Introduction 9-1

Licensed Material-Property of IBM

Method of Operation

Diagram 9.1 shows the function of the backup library
utility.

9·2

Licensed Material-Property of IBM

From: Initiator
'" INPUT ____ •

L.l:;:0CESS

Main Storage

Transient Area

User Area:
$BACK

Disk:

• Library
directory

• Library control
sectors

• Library members

SCA

. ____ > D Perform library backup initialization

fJ Build library backup matrix

II Backup diskette IPL program ($LOADI)

o Backup main storage nucleus initialization
program ($MSN I P)

II Backup configuration records and LCS

iii Backup system library directory and
library members (compressed)

IJ Terminate backup procedure

------:i1

I OUTPUT ___ _

..
Diskette:

• Reload program
0 # #FLOD

• $LOADI

• System
configuration
records

• LCS

• Reload
communication
area

• System library
directory

• System library
members
(compressed)

To: Control Storage End·of·Job
Transient ($EOJ)

MODULE/
OESeR IPTION ROUTINE

o Move directory and library sector addresses from system library format 1 to disk lOB. $BACK

Read system library control sector (LCS). Disk lOS

Compact system library directory and update in~ore LCS. $MACMP

• Calculate directory and library space now required (in sectors). $BACK ~
Verify and diagnose backup diskette. #CAML

Return. $BACK

Open diskette DTF. #DMOP

Move file creation date from format 1 to reload~ommunication area. $BACK

Move file name from format 1 to assign/free area.

Set block size to track size calculated at open time.

Calculate physical buffer end (CKPHYENDl.

Set maximum buffer sector count (CKBUFREC).

Set dynamic buffer address (CKBUFFR@).

Diagram 9.1 (Part 1 of 3). Perform System Backup ($BACK)

Method of Operation 9·3

Licensed Material-Property of IBM

MODULE/
DESCRIPTION ROUTINE

II Set library matrix (4K) and hole table (2K) to zeros. $BACK

Build library matrix from directory data:

• Read directory sectors from disk. Disk lOS

• Turn matrix bit on for each library sector allocated (matrix starts at X'3FFF' and goes backwards to X'3000'). $BACK

If any SSP modules deleted (SSP decreased in size) pass old SSP size to reload communications area (CKSCPSAV).

II Find $LOADI address.

If $LOADI not found, issue error message and exit. #CLXS

Copy reload program ($LOADI) to diskette: $BACK

• Read 30 sectors of data into buffer. Disk lOS

• Write data to diskette as buffer becomes full. #DRSM

• Find reload screen formats (# #FLOD) location. $BACK 4

If # #FLOD not found, issue error message and exit. #CLXS

Copy # #FLOD to diskette: $BACK

• Read data from disk into buffer. Disk lOS

• Write data to diskette as buffer becomes full. #DRSM

• Return. $BACK

Read heading messages into I/O buffer. (Sixteen messages, MICs 3900 through 3915; are loaded.) #MGRET

Return. $BACK

If any heading messages not found, issue error message and exit. #CLXS

Write data to diskette as buffer becomes full. #DRSM

10 Find main storage nucleus initialization program ($MSNIP). $BACK

If $MSNIP not found, issue error message and exit. #CLSG

Copy $MSNIP to diskette: $BACK

• Read data into I/O buffer (buffer will not be filled for any buffer size). Disk lOS

• Write data to diskette. #DRSM

Initialize hole table for directory/library copy: $BACK

• Scan library backup matrix (built in fJ) to find holes.

• Set bit and hole values in hole table (to be used for directory backup).

II Set up disk lOB to read two configuration records.

Read configuration records into I/O buffer. Disk 105

Return. $BACK

Write configuration records to diskette. #DRSM

Set up disk lOB to read library control sector (LCS). $BACK

Read LCS into I/O buffer (1 sector). Disk lOS

Return. $BACK

Write LCS to diskette. #DRSM

Diagram 9.1 (Part 2 of 3). Perform System Backup ($BACK)

9·4

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

II Set up disk lOB to read system library directory. $BACK

Read library directory into I/O buffer. Disk lOS

Update hole table. $BACK

Write library directory to diskette. #DRSM

Scan library backup matrix until hole is found (number of bits scanned is number of sectors to transfer $BACK
to diskette).

Start scan again with next allocated sector (creates string of sectors to be transferred to diskette).

Use string just built to read library sectors into I/O buffer (buffer contains compressed library sectors - no holes). Disk 105

Return. $BACK

Write library sectors to diskette as buffer becomes full. #DRSM

Return. $BACK

D Close diskette DTF. #DMCL

Pass control to control storage end-of-job transient ($EOJ). $BACK

Diagram 9.1 (Part 3 of 3). Perform System Backup ($BACK)

Method of Operation 9-5

Licensed Material-Property of IBM

Program Organization

Figure 9-1 shows the control flow for the backup library
utility.

...
--

..
--

System Library
Backup Util ity

($BACK)

..
"":

.....

--
Initiator
Function

..
--

...
--

..
--

,
End of Job

($EOJ)

Figure 9-1. System Library Backup Utility Control Flow ($BACK)

9-6

· Disk 105 -

Allocate .. Mainline

(#CAML)

SYSLOG

· ..
(#CLSG)

Diskette

· Data
Management

(#DRSM)

Common .. Close
p

(#DMCL)

Licensed Material-Property of IBM

Directory .. Compactor ..
($MACMP)

Common
Open ..
(#DMOP)

Message

- Retrieve

(#MGRET)

Chapter 10. Basic Exchange Utility ($BICR)

Introduction

The basic exchange utility ($BICR) provides a way to con
vert a disk file to a basic exchange file on diskette, to con
vert a diskette basic exchange file to a sequential or indexed
disk file, to add a basic exchange file to a sequential disk
file, or display a diskette basic exchange file onto the
SYSLIST device. All diskette files that provide input to
$BICR must be in basic exchange format. All diskette

The basic exchange utility is called by the TRANSFER
procedure or appropriate eCl statements. (See the System
Support Reference Manual for more information about
calling and executing $BICR.)

The basic exchange utility requires 14K bytes of main
storage for program execution.

Figure 10-1 shows the diskette basic exchange format.
files created by $BICR are also in basic exchange format.
Figure 10-1 shows the diskette basic exchange format.

The utility program consists of a mainline phase ($BICR), a
disk-to-diskette copy phase ($BICFI), a diskette-to-disk
copy phase ($BICI F), a basic exchange file display phase
($BICDI), and a syntax specification module ($BITAB).
The program resides in the system library.

Sector Use

01 Reserved

02 Reserved

03 Reserved

04 Reserved

05 Positions 1 through 13 are used to record the identity of error tracks.
Positions 1-5 = E RMAP (E RMAP identifies the sector as an error map.)
Position 6 is reserved.
Positions 7 and 8 hold the identification of the only bad track, or, if two tracks are bad,

the identification of the lower-numbered bad track.
If no bad tracks are identified, positions 7 and 8 = b.

Position 9 = b if no bad track has been identified in this field. If at least one bad track
has been identified, position = O.

Position 10 is reserved.
Positions 11 and 12 contain the number of the higher-numbered bad track if two bad

tracks have been identified; otherwise, these positions contain blanks.
Position 13 = 0 if two bad tracks have been identified; otherwise, position 13 contains

a blank.
Positions 14 through 22 are reserved.
Position 23 is a defect flag position, which is normally initialized to b. A 3540 using

IBM programming support puts a D in this position if the 3540 detects a surface
defect in the data field of any sector of any track.

All other positions on the sector are reserved.

Figure 10·1 (Part 1 of 4). Diskette Basic Exchange Format

Licensed Material-Property of IBM

Initialized To

1-5 = ERMAP

7-8 = b

9=b

11-12=b

13 =b

23=b

Introduction 10-1

Sector Use Initialized To

06 Reserved

07 This sector is called the volume label. Various fields in this sector identify the diskette,
the diskette format, diskette owner identification, and whether or not the diskette uses
standard labels.

1-4=VOL1
Positions 1-4 VOL 1 (VOL 1 identifies the sector as a volume labeL)
Positions 5-10 are called the volume I D field. This field can contain the data written

on the permanent diskette label to identify the diskette. The I D consists of one to
six numeric digits or letters. These characters must be left-justified in the field
(that is, the first character must be in position 5 of the sector), and any unused

-positions in the field to the right of the I D data must contain space characters
(blanks). No blanks are allowed between digits or letters in this field.

Position 11 -is the volume accessibility field.
A blank (space character) in this field permits access to the disk.
Any non-blank character in this field means that the disk is not accessible or has
restricted access per system definition. 11 = b

Positions 12-37 are reserved.
Positions 38-51 are called the owner I D field. This field is not used by all systems. 38-51 = b
Positions 52- 76 are reserved.
Positions 77-78 are called the record sequence field. This field holds the sector

sequence code assigned to the tracks on this diskette. 77-78 = b
Position 79 is reserved.
Position 80 is the standard label version field. The W Character indicates that IBM

standard labels are used on the diskette. All diskettes used on the IBM 3540,
3741,3742, and 3747 use standard labels, so this field should contain a W. 80-W

08 These sectors are used to record the data set labels that define data sets (files of
through information) recorded on tracks 01 through 73 of the diskette.
26

Position by Position Representation of Data on the Field in Unused New Diskette
Index Track in Any One Sector of Sectors 8-26. Contains this Data

Sectors 09
Field Name Position Purpose Sector 08 through 26

Label ID 1-4 Label identifier for system application; must HDR1 DDR1
(Identifier) be HDR1

5 Reserved

Data set name 6-13 User name for data set DATAbbbb DAT A09bb through
DATA26bb

14-22 Reserved

Figure 10-1 (Part 2 of 4). Diskette Basic Exchangl! Format

10-2

Licensed Material-Property of IBM

Position by Position Representation on Data on the Field in Unused New Diskette
Index Track in Anyone Sector of Sectors 8-26 Contains this Data

Sectors 09
Field Name Position Purpose Sector 08 through ·26

Block/Record 23-27 Tells the system how much of each 128- bb080 bb080
length t position sector contains actual data.

28 Reserved

Beginning of 29-33 Identifies the address of the first sector of the 01001 74001
extent (BOE) data set. Positions 29 and 30 contain the

track number, position 31 must be 0, positions
32 and 33 contain the sector number.

34 Reserved

End of extent 35-39 Identifies the address of the last sector reserved 73026 73026
(EOE) _ for this data set, using the same format as BOE.

40 Reserved

Bypass indicator 41 If set to b, the data set is intended for process- b b
ing. If set to B, the data set is not intended for
processing even though it resides on the disk.
That is, a 3741 or 3742 user could store 3741
or 3742 programs on a diskette (identified
with B in the label) as well as data (identified
with b in the label), and neither a 3747 nor a
3540 would read the programs. Also, a data
set identified with a B in th is position would
not be transmitted by a 3741 Model 2 operat-
ing in teleprocessing transmit mode.

Data set 42 Blank indicates data set not secured (can be b b
security accessed). Nonblank character (which can be

written only by 3540) means restricted access.
When set to non blank, the volume accessibil-
ity indicator must also be set to non blank.
The data cannot be read by 3741, 3742, 3747,
but may be read by 3540 with operator quali-
fication. The data set cannot be written upon,
and the volume accessibility indicator cannot
be changed from nonblank by the 3741, 3742,
or 3747, or by 3540 programming support.

Write protect 43 If this field contains a P, the data set can be b b
read only. This field must be a blank to
allow both reading and writing.

I nterchange type 44 Must be blank. A blank indicates the data b b
indicator set can be used for data interchange.

Figure 10-1 (Part 3 of 4). Diskette Basic Exchange Format

Introduction 10-3

Licensed Material-Property of IBM

Position by Position Representation of Data on the Field in Unused New Diskette
Index Track in Anyone Sector of Sectors 8-26. Contains this Data

Sectors 09
Field Name Position Purpose Sector 08 through 26

Multivolume 45 A blank in this field indicates a data set is b b
indicator wholly contained on this diskette; a C indi-

cates a data set is continued on another
diskette; an L indicates the last diskette
on which a continued data set resides.*

Volume sequence 46-47 Volume sequence specifies the sequence of bb bb
number** volumes-in a multivolume data set. The

sequence must be consecutive, beginning
with 01 (to a maximum of 99). Blanks
indicate that volume sequence checking
is not to be performed.

Creation date** 48-53 May be used to record the date the dataset bbbbbo oboobo
was created. The format is digits represent-
ing VVMMDD, where VV is low-order 2
digits of year, MM is 2-digit representation
of month, and DD is 2-digit representation
of day of the month.

54-66 Reserved

Expiration date** 67-72 May be used to contain the date that the boobbb boobbb
data set (and its label) may be purged. The
format is as specified for creation date.

Verify mark 73 This field must contain a V or a blank. V b b
indicates the data set has been verified.

74 Reserved

End of data 75-79 Identifies the address of the next unused 01001 74001
(EOD) sector within the data set extent.

80 Reserved

t Each sector contains one record. Standard interchange does not support blocking.

*When preparing data for conversion by the 3747, check the IBM 3141 Data Converter Reference Manual,
GA21-9153, for the interpretation of the mUltiv'olume bytes.

**These fields are used only in conjunction with the 3540.

Figure 10-1 (Part 4 of 4). Diskette Basic Exchange Format

10-4

Licensed Material-Property of IBM

Method of Operation

Diagram 10.1 shows the function of the basic exchange
utility.

Licensed Material-Property of IBM

Method of Operation 10-5

From: Initiator

.INPUT a...::.;:0CESS
OUTPUT ___ _

h. D Process utility control statement and XRl ;>

(I "put file DTF

~

determine requested function
Output file:

• Disk
• Diskette fJ Display basic excha!1ge file if requested, • Display

XR2 then go to

(Output file DTF II Allocate input and output files

Main Storage II Open input and output files

II Transfer data and close files
Transient Area

II Terminate program
User Area

$BICR -
$BICFI
$BICIF-
$BICDI
(see Figure
10-3)

Control statements

Input file

Output file (for
ADD-YES)

OEseR IPTION

D Build parameter list to find syntax checker (#USYX).

Locate # USYX.

Read and check syntax of control statements.

If DISPLAY specified, set display indicator.

e Find I/O device in device allocate table if diskette.

If display indicator on:

• Load $BICDI into main storage following $BICR .

• GotoD·

Get format 1 for diskette COPYIN file.

Diagram 10.1 (Part 1 of 3). Perform Basic Exchange Utility Function ($BleR)

10-6

To: Control Storage End-of-Job
Transient ($EOJ)

Licensed Material-Property of IBM

MODULE/
ROUTINE

$BICR

#MASFN

#USYX

$BICR

#CSAF

DESCRIPTION

If format 1 found:
• Load $BICIF.

• GotolJ·

If format 1 not found:
• Load $BICFI (copy diskette to disk).

• GotolJ·

If diskette busy:
• Display message. A
• If retry option (1) taken, go to Hiw.
• If cancel option (3) taken, go toD.

II Get format 1 for diskette COPYIN file.

Return.

Allocate COPYIN file.

Use main storage relocating loader (SVC 52) to load diskette data management (#DRDM). Also load display
screen routine ($COCRT) and display service add ($FEKEY) or print interface ($COPRT) depending ifSYSLIST
goes to display screen or printer.

Open diskette DTF.

Return.

Read records from diskette file.

Return.

Output records to SYSLIST device (printer or display screen) as requested.

Continue processing until entire file displayed.

I ssue error messages as necessary.

Close diskette file.

Go tollto terminate program. ,

II If copy disk to diskette ($BICFI):
• Get format 1 for disk COPYIN file.

• Return.
• Allocate input file on disk.
• Allocate output file on diskette as a sequential basic;,exchange output file.

If copy diskette to disk ($BICIF):
• Get format 1 for diskette COPYIN file.

• Return.
• Allocate input file on diskette.

• Return.
• Allocate output file on disk as follows:

- If ADD-YES, allocate output file as sequential input file to cause check of output file's existence.
- If ADD-NO, allocate as output file:

a. If key information specified, allocate output file as indexed file.
b. If no key information specified, allocate output file as sequential file.
c. If COPYO file statement specified, do normal allocate using COPYO file statement.
d. If no COPYO file statement specified, do special allocate using input file's label and size.

Diagram 10.1 (Part 2 of 3). Perform Basic Exchange Utility FUnction ($BleR)

MODULE/
ROUTINE

$BICR

#CLXS

#CSAF

$BICDI

#CAML

$BICDI

#DMOP

$BICDI

#DRDM

$BICDI

$COPRT
or

$COCRT
$BICDI

#CLSG

#DMCL

$BICDI

$BICFI
#CSAF
$BICFI
#CAML

$BICIF
#CSAF
$BICIF
#CAML
$BICIF
#CAS1

or
#CAML

Method of Operation 10-7

Licensed Material-Property of IBM

OEseR IPTION
MODULE/
ROUTINE

II If copy disk to diskette ($BICFI): $BICFI

• Perform dummy open on COPYIN DTF. #DMOP

• Reset UPSI in COPYI Nand COPYO DTS's. $BICFI

• Load diskette data management (#DRDM) into main storage.

• Set up input DTF as:
- Indexed sequential input.
- Sequential input.
- Direct input.

• If one-sided single-density diskette:
- Set output Record length to 128.

• If two-sided double-density diskette.
- Set output Record length to 256.

• Set up I/O area.

• Open both DTFs. #DMOP

If copy diskette to disk ($BICIF): $BICIF

• If ADD-YES, perform dummy open on output DTF. #DMOP

• Reset UPSI in COPYI Nand COPYO DTFs. $BICIF

• Load diskette data management (#DRDM) rnto main storage.

• If ADD-YES, set up output DTF to consecutive add.

• If key information given, set up output DTF for indexed output.

• Set all others to consecutive output.

• Set up I/O area.

• Open both DTFs. #DMOP

II If copy disk to diskette ($BICFI): $BICFI

• Retrieve record from disk file {if record buffer exists, use move modeL #DDDM

• Return. $BICFI

• Write record to diskette output file. #DRDM

If copy diskette to disk ($BICIF): $BICIF

• Retrieve record from diskette file. #DDDM

• Return. $BICIF

• Write record to disk output file. #DDDM

• Return. $BICIF

Close input and output files. #DMCL

II Pass control to control storage end-of-job transient ($EOJ). $BICR

Diagram 10.1 (Part 3 of 3). Perform Basic Exchange Utility Function ($BICR)

10-8

Licensed Material-Property of IBM

Program Organization

Figure 10-2 shows the control flow of the basic exchange
utility. Figure 10-3 shows the main storage map for the
utility.

Syntax
... ~ Checker

($USYX)

--

Basic
Exchange
Utility Basic Exchange
($BICR) Disk to Diskette

($BICFI)

-- ---or---

Basic Exchange
Diskette to Disk

($BICIF)

~

End-of-Job
($EOJ)
-Control Storage-

-

...

.'

....

....
-

....
-

Figure 10-2 (Part 1 of 2). Basic Exchange Utility Control Flow ($BICR)

Active Fl
Access .. Routine
(t!CSAF)

Allocate

-- (t!CAML)

-- --or-- ---
(#CAS1)

'" ,,'

Diskette .. Data
Management

(#DRDM)

Common . Close

-
(t!DMCL)

Licensed Material-Property of IBM

Common Open

(#DMOP)

Disk .. Data . Management
(t!DDDM)

Program Organization 10-9

--
Diskette

- . Data

- - Management
(#DRDM)

Display Screen
Basic Basic - - Routine
Exchange Exchange ($COCRT)
Utility Display
($BICR) ($BICDI) Display -... ~ Service Aid ...

($FEKEY)

Printer Interface

($COPRT)

Common Open
.- - -

(#DMOP)

Common ... a Close

(#DMCL)

SYSLOG
:.. ..
-

(#CLSG)

Normal Allocate

- .-

(#CAML)

AFA Access
~

_. Routine

- -
(#CSAF)

End-of-Job
Transient
($EOJ)
-Control Storage-

Figure 10-2 (Part 2 of 2). Basic Exchange Utility Control Flow ($BICR)

10-10

Licensed Material-Property of IBM

Data Areas

Program Storage Start

Common Data Areas
r-- - - -- --------

$BICR Mainline Logic

f-------------
Open Files Logic

$BI CR 1---------- ---
Transfer Data Logic

Overlay Storage Area 1------------
Syntax Checker I nterface Logic This area used for:

1--- ----------
Allocate Files Logic • Diskette data management

--. 1-------------
Syntax Checker Run Area • Record buffer if needed

• Diskette data management buffer - 3.25K

• Disk data management

• Remainder of main storage allocated
for disk data management buffer

Program Storage End

Figl.(e 10-3. Main Storage Map for Basic Exchange Utility

Data Areas 10-11

Licensed Material-Property of IBM

BICCVLST VERB LIST

The BICCVLST verb list is a list of constants passed to the
syntax checker (#USYX) each time #USYX is called. Fig
ure 10-4 shows the format and contents of the verb list.

10-12

Displacement of
Leftmost Byte
in Hexadecimal

o

2

3

Label

BICCVLST

Figure 10-4. BICCVLST Verb List

Length in
Bytes in
Decimal

Licensed Material-Property of IBM

Description

Transfer verb I D

End verb ID

Display

X'FF' end of verb list

Introduction

The build menu utility ($BMENU) provides a way to build
a menu display. The menu display can be selected when
signing on the system at a work station or by way of the
MENU command. A menu gives the system user the con
venience of submitting work by entering a menu item
number as opposed to entering actual control commands,
procedures, or Oel statements. The system user sees a
description of the work to be performed without seeing
the actual control command, procedure name, or Oel
statement used as input to the system control program.

The purpose of the menu build utility is to build a screen
format load member for the menu. When the system user
accesses the menu at sign-on or by way of the MENU
command, the menu contained in the screen format load
member is displayed on the screen.

Chapter 11. Build Menu Utility ($BMENU)

The $BMENU utility consists of the build menu phase
($BMENU), message retrieve (@MGRET) and addressing
module (@BMAM) link-edited with $BMENU, and the
build menu syntax checker specification module ($BMTB).
The build menu program resides in the system library.

The build menu utility is called by the BlDMENU proce
dure or appropriate Oel statements. (See the System
Support Reference Manual for more information about
calling and executing $BMENU.)

The $BMENU utility requires 14K bytes of main storage
for program execution.

Introduction 11-1

Licensed Material-Property of IBM

Method of Operation

Diagram 11.1 shows the function of the build menu utility.

11-2

Licensed Material-Property of IBM

From: Initiator

INPUT L.::.:0CESS
~ OUTPUT ___ _

Mai n Storage

Tran sient Area

r Area: Use
$ BMENU

trol statements Con
Inpu t library:

ommand msg.
• C m br.

• D
isplay text

m sg. mbr.

#LI BRARY:
keleton source

• S f ormat in
#MSG2
ecords

~

~ --

, ,

D Process utility control statement using
syntax checker

fJ Verify input message members and input
library existence

II Prepare work file to build SFGR source
records

o Get date and time

II Build temporary screen format source
records for screen format generator
reflecting menu being built

II Build screen format generator communica
tion area

II Pass control to SFGR ($SFDEP)

... .

i • 2 ,

Menu listing

I nput library:
• Menu screen

format load
member

To: Control Storage End-of-Job
Transient ($EOJ)

DESCRIPTION

II Read and syntax check MENU control statement:

Check INPMSG value validity:
• Issue message SYS-5756 if I NPMSG less than 2 characters .
• Issue message SYS-5751 if INPMSG does not end with # #.

fI Find library specified by INUB parameter.

Return.

Find INPMSG member in input library.

Save library format 1 address.

Issue message SYS-5752 if INUB value not found or message SYS-5753 if INPMSG member not found.

Look for old menu member in input library.

Return.

Issue message SYS-5004 if menu exists but is not SFGR member.

Issue message SYS-5005 if REPLACE-NO specified (or defaulted) and menu exists and is an SFGR member.

Diagram 11.1 (Part 1 of 3). Perform Build Menu·Function ($BMENU)

MODULE/
ROUTINE

#USYX

$BMENU
#CLSG

#MAFLB

$BMENU

#MASFN

$BMENU

#MASFN

$BMENU

#CLXS

,

Meth~d of Operation 11-3

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Find MENMSG member in input library if MENMSG specified: #MASFN

• Save library format 1 address. $BMENU

• Issue message SYS·5754 if not found. #CLXS

• Issue message SYS·5762 if MENMSG name is same as menu being built.

Read END control statement. #USYX

II Allocate work file for menu source build and issue message SYS·5755 if work file not allocated. #CAS1

Return. $BMENU

Open work file just allocated. #DMOP

Build program1 and program2 message member pointers in job control block (JCB). $BMENU

II Get date and time by reading MIC 5400 and filling in date and time fields in # #MSG2.

II Get skeleton source statements from # #MSG2 (in #LlBRARY) to build format and place statements in work file: @MGRET

• Return. $BMENU

• • MIC 5755 - SFGR S record and source record for line 1. #DDDM ~ • MIC 5756 - source records for line 1.

• MIC 5757 - source records for line 2

• MIC 5758 - skeleton source records for lines 03·14.

Build source records for item number lines (lines 03·14 on menu format): $BMENU

• Build source records for item numbers 1 to 24 for specified line:
- Find item number MIC in INPMSG member.
- Find item number MIC in MENMSG member.
- Build 30 byte item text description as follows:

a. If item number MIC found in both INPMSG and MENMSG members, use first 30 bytes of MENMSG
member MIC.

b. If item MIC found in INPMSG member only, use first 30 bytes of INPMSG member MIC.
c. If item MIC found in MENMSG member only, set item text to blanks.
d. If item MIC missing in both message members, set item text to blanks.
e. If item MIC found in INPMSG member is blank record, set item text to blanks.
f. If item MIC found in INPMSG member is nonblank, and corresponding MENMSG memeber MIC is a

blank record, use the first 30 bytes of INPMSG MIC.
- Write SFGR source records for this item number. #DDDM
- Return $BMENU
- Print messages if any. #CLST

Build lines 21,23, and 24 in menu format using skeleton source statements in # #MSG2: $BMENU

• MIC 5759 - line 21 source records.

• MIC 5760 -line 21 source records ..

• MIC 5761 - line 23 source records.

• MIC 5762 - line 24 source records.

Print last heading line for build menu listing if menu not built OK. Issue # #MSG2 MIC 5770; all INPMSG item #CLST
MICs not found or contained blank records.

Return. $BMENU

II Close work file. #DMCL

Check if any item MICs in INPMSG message member: $BMENU

• If no, issue message SYS·5757 with cancel option only. #CLXS

• If yes, and all INPMSG MICs contain blank records, issue MIC 5750 with cancel-only option. $BMENU

• If yes, and valid INPMSG MICs found, continue to build SFGR communication area.

Diagram 11.1 (Part 2 of 3). Perform Build Menu Function ($BMENU)

11-4

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Move work file data sector count to SFGR communication area. $BMENU

Move 256 bytes of zero to location X'C800' - X'C8FF'.

Move SFGR communication area to X'C800'.

Move X'FF' to X'C900' through X'CAFF'.

II Use main storage relocating loader to load SFGR Diagnose Errors and Print phase ($$FDFP).

Note: The screen format generator uses the temporary source screen format member just built as input to
build the menu screen format load member.

Diagram 11.1 (Part 3 of 3). Perform Build Menu Function ($BMENU)

Method of Operation 11-5

Licensed Material-Property of IBM

Program Organization

Figure 11·1 shows the control flow for the build menu
utility.

Menu
Build
Utility

($BMENU)

Initiator ..
Function

I Message-I

: Retrieve :

~@MGRET) ~

, ,
Screen
Format
Generator
($SFDEP)

Figure 11·1. Build Menu Utility Control Flow ($BMENU)

11-6

...

Find a Library
... ..

(#MAFLB)

...

Special Allocate

(#CAS1)

....

Disk .. Data

- Management
(#DDDM)

...

SYSLIST
(#CLST)

...
-

Licensed Material-Property of IBM

Syntax

· Checker

·
(#USYX)

Single Name .. Find

-
(#MASFN)

Common

· Open

(#DMOP)

Common .. Close

(#DMCL)

SYSLOG ..
(#CLSG)

Introduction

The alternate sector rebuild utility ($BUI LD) allows the
System/34 user to display and correct data on disk after
a disk read error has occurred. When a disk read/write
error occurs, the data is written to an alternate sector.
Disk alternate sectors are sectors reserved for use in place
of defective disk sectors.

$BU I LD searches alternate disk sectors for data that is
unreadable because of a read/write error. Each sector
containing bad data is printed, along with the sector pre
ceding and the sector following the bad sector.

Chapter 12. Alternate Sector Rebuild Utility ($BUILD)

The sector containing bad data is then presented on the
display screen where it can be corrected. (See the System
Support Reference Manual for information about the data
format and how the bad data can be corrected.)

The alternate sector rebuild utility is called by the BUI lD
procedure or appropriate Del statements. $BUI lD has
no util ity control statements.

$BU I LD requires 14K bytes of main storage and must run
dedicated until it finishes reading and writing alternate
tracks.

Introduction 12-1

Licensed Material-Property of IBM

Method of Operation

Diagram 12.1 shows the function of the alternate sector
rebuild utility.

12-2

Licensed Material-Property of IBM

From: Initiator

INPUT_:ra---. ~OCESS

XR1

(DiSk lOB

(XR2

Parameter list

Main Storage

Transient Area

User Area:
$BUILD

Alternate sector
cylinder
VTOC index
VTOC format 1
records
Keyboard routine

OESeR IPTION

D Read all alternate sectors

fJ Print alternate sector rebuild data

II Update bad sector data

II Terminate procedure

..

II OUTPUT ---_

Updated alternate
data sector

To~ Control Storage End-of-Job
Transient ($EOJ)

MODULE/
ROUTINE

rm Initialize disk lOB to read alternate sector IDs on alternate sector tracks 4 and 5, cylinder 2/spindle 1 (also $BUILD
spindle 2 if available) .

. Build bad data table:

• Read alternate sector IDs. Disk lOS
0 Test bad data flags looking for address of bad data. $BUILD

• If bad data found, convert address to SS format and place address in 6 byte/entry bad data table (each entry
contains SSS of bad primary and SSS of alternate).

If no entries in bad data table, go toll.

Display operator paper form change warning message (MIC 4352). #CLXS

Find CRT window display routine ($FEKEY). #MASFN

Use main storage relocating loader (SVC-52! to load $FEKEY. $BUILD

Load heading messages (MIC 1550-1558) into main storage. #MGRET

Return. $BUILD

e Read active format 1s to locate file containing bad sector. #CSVF

If bad sector not in file, set name to NOFI LE for print. $BUILD

Diagram 12.1 (Part 1 of 2). Perform Alternate Sector Rebuild Function ($BUI LD)

Method of Operation 12-3

Licensed Material-Property of IBM

OEseR IPTION
MODULE/
ROUTINE

Obtain sector address. $BUILD

If bad sector is first sector in file, set on no-sector-before indicator.

If bad sector is last sector in file, set on no-sector-after indicator.

If sector-before to process (BUSWITCH), read sector-before data. Disk 105

Read bad-data sector (set on no-ERP before read operation).

If no sector-after to process, go to 6. $BUILD

Read sector-after data. Disk 105

fI Convert sector-before, bad sector, and sector-after sector addresses to printable characters. $BUILD

Print $BUI LD heading line. #CLST

If sector-before to be printed (BUSWITCH):

• Print filename and sector-before address.

• Print sector-before message (MIC 1552).

• Print character position line.

• Print actual data characters.

• Print zone and numeric portion of each character.

Print bad sector data:

• Print filename and bad sector address.

• Print bad data message (MIC 1553).

• Print character position line.

• Print actual data characters.

• Print zone and numeric portion of each character.

If sector-after to be printed (BUSWITCH):

• Print filename and sector-after address.

• Print sector-after message (MIC 1554).

• Print character position line.

• Print actual data.
CIt Print zone and numeric portion of each character.

• Print information message.

II Initialize $FEKEY parameter list. $BUILD

Display bad data sector. $FEKEY

Update bad data if desired.

If Enter/Rec Adv key returned and not at end of bad-data table, return to DO. $BUILD

If Roll key returned, return to D.
Write updated sector back to disk. Disk 105

Return. $BUILD

II If errors detected display appropriate error message with 3 option halt. #CLXS

Pass control to control storage end-of-job transient ($EOJ). $BUILD

Diagram 12.1 (Part 2 of 2). Perform Alternate Sector Rebuild Function ($BUILD)

12-4

Licensed Material-Property of IBM

Program Organization

Figure 12-1 shows the control flow for the alternate sector
rebuild utility.

Licensed Material-Property of IBM

Program Organization 12-5

SYSLOG ..
- -

(#CLSG)

Single Name Find
Alternate

"'
Sector (#MASFN)
Rebuild
($BUILD)

Main Storage
.... ... Relocating

- Loader
(SVC-52)

Message
Initiator Retrieve
Function --

(#MGRET)

Disk VTOC .. Read/Write
~

(#CSVF)

... ~~ ..
Disk 105 -

SYSLIST

- ..
--

(#CLST)

I
End of Job
($EOJ)
-Control Storage-

Figure 12·1. Alternate Sector Rebuild Utility Control Flow ($BUILD)

12-6

Licensed Material-Property of IBM

Introduction

The disk copy/display utility performs the following
functions:

• Copies an entire file from the disk to diskette(s), from
diskette(s) to the disk, or from disk to another location
on the disk to:

Provide a duplicate of a file
- Move a file to a larger disk area

• Deletes records from a file (selected records are omitteGl
from the copy; the original remains unchanged).

• Copies a portion of a file. Selected records can be
deleted from the copy.

CD Copies all user disk data files (except user libraries),
all disk data files with a specified file group identifier,
or all disk data files with no group identifier to disk
ette(s) to create a backup copy of the files or to obtain
more space on the disk. When all files are to be copied,
$COPY must be requested from the system console,
and no other jobs can be running.

CD Restores previously copied files from diskette (s) to the
disk.

• Copies an indexed file, and puts the records in key order
(reorganize the file) to improve the performance, in
some cases, of programs that use the file. Selected rec
ords can be deleted from the copy.

• Adds a disk file to an existing diskette file.

• Displays all or part of a file (either on the display screen
or printer, depending on the current system list device
assignment for the requesting work station).

Chapter 13. Disk Copy/Display Utility ($COPY)

The disk copy/djsplay utility consists of the following
modules that reside in the system library:

o Disk copy display mainline phase ($COPY)

• Copy all files primary phase ($COAll)

• Add to diskette file phase ($COADD)

• Copy initialization phase - for copying ail files
($COANT)

• Copy initialization phase - for copying one file
($COINT)

o Input/output interface - for record mode ($COGET)

• Sectorized file copy phase ($COZIP)

• Record exclusion routine ($COSEl)

o SYSLIST interface ($COPRT)

o Window (CRT) display interface routine ($COCRT)

G Syntax specification module ($COT AB)

The disk copy/display utility is called by the appropriate
procedure or OCl statements. (See the System Support
Reference Manual for more information about calling and
executing $COPY.)

I nput to the utility consists of the control statements, input
file(s) on disk or diskette, and format 1 's. $COPY calls
the syntax checker (#USYX) to read and syntax check the
control statements.

Introduction 13-1

Licensed Material-Property of IBM

The $COPY module uses control statement information to
build the copy communication area ($CCCA) and then
loads $COAll, $COADD, $COANT or $COINT, depend
ing upon the function requested.

Depending on the control statement, output can consist
of one of the following:

• COPY ADD control statement: disk file added to exist
ing diskette file

• COPYAll control statement:
- All or selected disk data files saved on diskette
- Previously saved data files restored to disk

• COPYF I lE control statement:
- The entire file copied from disk to diskette, diskette

to disk, or disk to another location on disk, using
sector mode processing

- Selected records copied to disk, diskette, printer, or
display screen, using record mode processing

- Indexed file records reorganized in key order

• KEY control statement with COPYFI lE control state
ment: A direct, indexed, or sequential file, with speci
fied records deleted, copied from disk to diskette,
diskette to disk, or disk to another location on disk
creating an indexed file.

The disk copy/display utility requires 14K bytes of main
storage for. program execution.

13·2

Licensed Material-Property of IBM

Method of Operation

Diagrams 13.0 through 13.4 show the functions of the disk
copy/display utility.

From: Initiator

INPUT1 ~OCESS

--;;;;;-.----:>. Add to diskette file (Diagram 13.1)

I I
Disk input file

I r OUTPUT

-----.,;~-----..;;~> Diskette output

Disk or diskette
input file

I I file

----........;~---........;=-> Disk or diskette • Copy all files (Diagram 13.2)

• Copy entire file (Diagram 13.3)

_~: fr I output file

• Copy selected records (Diagram 13.4) > Output records
displayed, printed,
or written on
disk or diskette

To: Control Storage End-of-Job
Transient ($EOJ)

Diagram 13.0. Overview of Disk Copy/Display Utility

Method of Operation 13-3

Licensed Material-Property of IBM

I INPUT -----1fJ From: Initiator

~OCESS
OUTPUT ___ _

XR1

(common
communication
area ($CCCA)

Main Storage

Transient Area

User Area:
$COPY
$COADD

Control statements

Disk format 1's

COPYIN file
statement

COPYO file
statement

Disk input file

DESCRIPTION

..
... D I nterpret control statements and call

appropriate phase

fJ Read records from disk file and add them
to diskette file

II Terminate program

To: Control Storage End-of-Job
Transient ($EOJ)

II Initialize common communication area ($CCCA).

Read and syntax check COPY ADD utility control statement.

Read and syntax check END utility control statement.

Load and pass control to add to diskette file phase ($COADD).

lfJ Load sectorized diskette data management (#DRSM) and sectorized disk data management (#DDSM) into
main storage.

Use active file area (A FA) access routine to find COPYO and COPYIN format 1 's.

Allocate diskette and disk files.

Return.

Diagram 13.1 (Part 1 of 2). Perform Add to Diskette File - COPYADD - Function ($COPY)

13-4

Licensed Material-Property of IBM

Diskette output
file

MODULE!
ROUTINE

$COPY

#USYX

$COPY

$COADD

#CAML

$COADD

MODULE/
DESCRIPTION ROUTINE

Open diskette and disk files. #DMOP

Return. $COADD

• Read records from disk and place in buffer. #DDSM 4

Return. $COADD

Write records from buffer to diskette. #DRSM

Continue processing until end of file reached on input. $COADD

Display error messages as necessary. #CLXS

Close disk and diskette files. #DMCL

II Transfer control to end-of-job transient ($EOJ) to terminate job. $COADD

Diagram 13.1.(Part 2 of 2). Perform Add to Diskette File - COPYADD - Function ($COPY)

Method of Operation 13-5

Licensed Material-Property of IBM

From: Initiator

INPUT----_ ~OCESS
• OUTPUT ___ _

XR1

(common
communication
area ($CCCA)

Main Storage

Transient Area

User Area:
$COPY -
$COALL
$COANT-
$COZIP

Control statements

Disk VTOC

Diskette or disk
input file

D Interpret control statements and call
appropriate phase

fJ Determine requested function (save all or
restore all) and initialize required areas

II Process COPYIN and COPYO statements
and initialize appropriate areas

II Transfer files from disk to diskette (save)
or diskette to disk (restore)

B Terminate program

-----::i1

Disk or diskette
output file

To: Control Storage End-of-Job
Transient ($EOJ)

OEseR IPTION

o Initialize common communication area ($CCCA).

Read and syntax check COPYALL utility control statement.

Read and syntax check END utility control statement.

Determine TO and FROM units (disk and diskette).

Use active file area (AFA) access routine to read COPYIN and COPYO statements from disk.

If input from disk:
• Get first (or next) VTOC entry from disk for the specified set of files (a file on disk, a file with a specified

group identifier, or a file without any file group identified.

Load sectorized disk data management (#DDSM) and sectorized diskette data management (#DRSM) into main
storage.

Load and pass control to copy all files (COPYALL) phase ($COALL).

Diagram 13.2 (Part 1 of 3). Perform Copy All Files (COPYALL) Function ($COPY)

13-6

Licensed Material-Property of IBM

MODULE!
ROUTINE

$COPY

#USYX

$COPY

#CSVF

$COPY

DESCRIPTION
MODULE/
ROUTINE

IfJ Determine whether save all or restore all function requested. $COALL

If save all requested:

• Set up format 1 area and generic name.

• If recursion to $COALL:
- Get next VTOC format 1 entry for the specified set of files (a file on disk, a file with a specified #CSVF

group identifier, or a file without any file group identifier).
- Issue message to ask for next diskette to be mounted (if necessary). #CLXS
- Update AFA format 1 for COPYO to diskette. $COALL

If restore all request:

• Set up format 1 area and generic name.
G If recursion to $COALL:

- Get diskette VTOC format 1. #CSVI
- Update COPYIN format 1 and place in AFA. $COALL

D Load and pass control to copy initialization phase ($COANT).

If COPYIN for disk (save all request):

• Ensure validity of utility statement parameters and file type . $COANT ., Prepare input DTF for disk.

• Prepare output DTF for diskette.

• Allocate output file. #CAML
0 Return. $COANT
0 Open output file. #DMOP
0 Load sectorized file copy phase ($COZIP) into main storage and go to (9). $COANT

If COPYIN for diskette (restore all request):
0 Allocate input diskette file. $CAML
0 Prepare input DTF for diskette. $COANT
0 Open input file. #DMOP
0 Return. $COANT

f> 0 Read first sector of diskette file for embedded format 1. #DRSM ~
0 Convert embedded format 1 to AFA format 1. $COANT
0 Prepare output file for disk.
0 Allocate output file. #CAS1
0 Load sectorized file copy phase ($COZIP) into main storage and go to e. $COANT

D Initialize work area, instructions, and disk (if necessary l. $COZIP

If SAVE function (disk to diskette copy):
0 Open diskette DTF. #DMOP
$ Convert AFA format 1 structure into embedded format 1 structure and place in putput buffer. $COZIP

• Allocate disk input file. $CAS1

• Return. $COZIP

• Open disk DTF. #DMOP

• Return. $COZIP

• Read data from disk. #DDSM

• Return. $COZIP
0 Write data to diskette. #DRSM

• Continue processing until entire file transferred to diskette. $COZIP

• Close output (diskette) file and input (disk) file. #DMCL
0 Deallocate input (disk) file.
0 If last file not yet saved, indicate recursion, reload $COALL and go toO. $COZIP

• Go to lito terminate program.

Diagram 13.2 (Part 2 of 3). Perform Copy All Files (COPVALL) Function ($COPV)

Method of Operation 13· 7

Licensed Material-Property of IBM

MODULE!
DESCRIPTION ROUTINE

If RESTORE function (diskette to disk copy): $COZIP

• Open disk output file. HDMOP

• If indexed file, prepare index buffer. $COZIP

• Read data from diskette. #DRSM

• Return. $COZIP

• Write data to disk. #DDSM

• If indexed file: #DRSM
- Copy keys to buffer. $COZIP
- Write keys to disk. FDIOS

• Continue processing until entire file copied to disk. $COZIP

• Update output format 1's in AFA.

• Close output (disk) and input (diskette) files. #DMCL

• Deallocate output (disk) file.

• If last file not yet restored, indicate recursion, reload $COALL, and go to D. $COZIP

• Go tolJto terminaOte program. °

II Transfer control to control storage end-of-job transient ($EOJ) to terminate program.

Diagram 13.2 (Part 3 of 3). Perform Copy All Files (COPYALL) Function ($COPY)

13-8

Licensed Material-Property of IBM

From: Initiator
"" INPUT ____ • ~OCESS

~ OUTPUT ___ _

(XR1

Common
communications
area ($CCCA)

Main Storage

Transient Area

User Area:
$COPY
$COINT
$COZIP

Control statements

Disk VTOC

Diskette or disk

• ___ ---,:~> D Interpret control statements and call
appropriate phase

fJ Process COPYI Nand COPYO statements
and initialize appropriate areas

II Transfer files from disk to disk, disk to
diskette, or diskette to disk

II Terminate program

---::T1

....

... Disk or diskette
output file

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
OESeR IPTION ROUTINE

o Initialize common communication area ($CCCA). $COPY

Read and syntax check COPYF I LE utility control statement. #USYX

Ensure control statement is /I COPYFILE OUTPUT-DISK,DELETE-NO,REORG-NO (sectorized data $COPY
management can be used - if not, go to Diagram 13.4).

Read and syntax check EN D utility control statement. #USYX

Use active file area (AFA) access routine to read COPYIN and COPYO file statements (determines if input from $COPY
disk or diskette); save attributes in $CCCA.

Load disk and diskette sectorized data management (# DDSM and # DRSM) into main storage. $COPY

Load and pass control to copy initialization phase (COINT).

fJ If COPYIN for disk (input device is disk): $COINT

• • Allocate input file. #CAML

• Ensure validity of utility statement parameters and file type. $COINT

• Prepare input and output device DTFs.

• Allocate output file. #CAS1

• Load sectorized file copy phase ($COZIP) into main storage and go toll. $COINT

Dia"gram 13.3 (Part 1 of 2). Copy Entire File (COPYFI LE) Using Sector Mode Processing ($COPY)

~

Method of Operation 13-9

Licensed Material-Property of IBM

OEseR IPTION
MODULE/
ROUTINE

If COPYIN for diskette (input device is diskette): $COINT

• Allocate input file. flCAML • • Prepare input DTF for diskette. $COINT ~ • Open input file. #DMOP

• Return. $COINT

• Read first sector of diskette file to get embedded format 1. #DRSM

• Convert embedded format 1 to AF A format 1. $COINT

• Prepare output file for disk.

• Update COPYO statement in AFA with file input label.

• Update output DTF.

• Allocate output file. #CAS1

• Load sectorized file copy phase ($COZIP) into main storage and go to IJ· $COINT

II Initialize work areas, instructions, and disk if necessary. $COZIP

If disk to disk copy:

• Open input and output files. #DMOP

• Return. $COZIP

• If file is indexed, read index from disk into buffer and write index to new disk location. Disk lOS

• Read sector of input data and write to new area on disk (continue processing until entire file transferred). #DDSM

If disk to diskette copy: $COZIP

• Open diskette output file and disk input file. #DMOP

• Return. $COZIP

• Read data from disk. #DDSM

• Return. $COZIP

• Write data to diskette. #DRSM

• Continue processing until entire file transferred. $COZIP

• Close output (diskette) file. #DMCL

If diskette to disk copy: $COZIP

• Open disk output file. #DMOP

• Return. $COZIP

• Read data from diskette. #DRSM

• Return. $COZIP

• • Write data to disk. #DDSM 4
• If indexed disk file: $COZIP

- Copy keys to buffer. #DRSM
- Write sectors of keys to disk. FDIOS

• Continue processing until entire file copied to disk. $COZIP

• Update output format l's in AFA.

Close input and output files. #DMCL

Issue error messages as necessary. #CLXS

II Transfer control to control storage end-of-job transient (EOJ) to terminate job. $COZIP

Diagram 13.3 (Part 2 of 2). Copy Entire File (COPYFILE) Using Sector Mode Processing·($COPY)

13-10

Licensed Material-Property of IBM

From: Initiator INPUT _____ _
~OCESS

(XR1

Common
communication
area ($CCCA)

Main Storage

Transient Area

User Area:
$COPY -
$COINT
$COGET -
$COSEL
$COPRT -
$COCRT

Control statements

Disk VTOC

Diskette or disk
input records

o Interpret control statements and call
appropriate phase

fI Process COPYIN and COPYO statements
and initialize appropriate areas

II Select records to copy

II Copy selected records to output device

II Terminate program

.. --.. ----------------~

..

..

~ OUTPUT ___ _

Output records
displayed, printed,
or written on disk
or diskette

To: Control Storage End-of-Job
Transient ($EOJ)

OEseR IPTION

D Initialize common communication area ($CCCA).

Read and syntax check COPYFILE, SELECT, KEY, and END control statement parameters.

If DELETE parameter specified:
• Ensure values are valid.
• Save values specified.

Process REORG keywork parameter (if any).

If SELECT control statement given:
• Process FROM and TO values for SELECT KEY (if given).
• Process FROM and TO values for SELECT PKY (if given).
• Process FROM and TO values for SELECT RECORD (if given).
• Save values specified.

Process KEY parameters (if any) and save values specified.

Use AFA access routine to find COPYO statement if PRINT not specified; save attributes in $CCCA.

Use active file area (AFA) access routine to find COPYIN statement (determines if input from disk or diskette);
save attributes in $CCCA.

Diagram 13.4 (Part 1 of 3). Copy Selected Records - COPYFILE - Using Record Mode Processing ($COPY)

MODULE!
ROUTINE

$COPY

#USYX

$COPY

$COPY

Method of Operation 13-11

Licensed Material-Property of IBM

MODULE!
OEseR IPTION ROUTINE

If print not specified, use AFA access routine to find COPYO statement. $COPY

Set up control for printing if requested.

Load and pass control to copy initialization phase ($COINT).

fJ If COPYI N for disk (input device is disk): $COINT • • Allocate input file. #CAML ~ • Ensure validity of utility statement parameters and file type. $COINT

• Use AFA access routine to find COPYO statement if PRINT not specified.

• Prepare input and output device DTFs.

• If PRINT not specified, allocate output file. #CAS1

• Load record mode diskette data management (#DRDM). $COINT

• If output is PRINT:
- Load SYSLIST interface ($COPRT) into main storage if SYSLIST clevice is printer.
- Load window display· routine ($FEKEY) and $COPY interface routine ($COCRT) into main storage if

SYSLIST device is display screen.

• Load and pass control to input/output interface module ($COGET) and go toll.

If COPYIN for diskette (input device is diskette):·

• Allocate input file. #CAML

• Prepare input DTF for diskette. $COINT

• Open input file. #DMOP

• Return. $COINT

• Read first sector of diskette file to verify data address. #DRSM

• Convert embedded format 1 to AFA format 1. $COINT

• If output not to print:
- Prepare output file for diskette.
- Update.COPYO statement in AFA with file input label.
- . Update output DTF.
- Allocate output file. #CAS1
- Load record mode disk data management (#DRDM). $COINT
- Open output diskette file. #DMOP

• If output is PR I NT: $COINT
- Load SYSLIST interface ($COPRT) into main storage if SYSLIST device is printer.
- Load window display routine ($FEKEY) and $COPY interface routine ($COCRT) into main storage if

SYSLIST device is display screen.

• Load and pass control to input/output interface module ($COGET) and go toll .

D Assign input and output buffer space (output buffer not assigned if output to print). $COGET

Open output DTF if output to file. #DMOP

Open input DTF if input from disk file ..

If SELECT or DELETE requested, load record exclusion routine ($COSEL.) into main storage, overlaying $COGET
beginning of $COGET.

Read records from input device. #DRDM

If SELECT statement, indicate records to exclude that fall outside range sepcified by FROM and/or TO $COSEL
parameters on SELECT statement (range type may be record number, key, or packed key).

If DELETE parameter, delete record from output file or SYSLIST when specified character appears at specified
position stated by DELETE parameter on COPYFILE statement (enter $COSEL at $COMIT).

Diagram 13.4 (Part 2 of 3). Copy Selected Records - COPYFILE - Using Record Mode Processing ($COPY)

13·12

Licensed Material-Property of IBM

MODULE!
OEseR IPTION ROUTINE

II If not output to PRINT request, write selected records to output device. #DRDM

If output to PRINT request and SYSLIST device is printer: $COGET • • If first time call: $COPRT ~
- Retrieve page and line headings. #MGRET
- Initialize headings. $COPRT
- Get print image from configuration record to determine valid characters. Disk lOS
- Print heading line. #CLST

• Put record number or key (if indexed file) into print buffer. $COPRT

• Print line from buffer. #CLST

• Convert unprintable characters in record into over/under hexadecimal characters, or if OUTPTX specified, $COPRT
convert all characters in record to over/under format.

• Print records. #CLST

• Print last line including number of output records.

Continue processing until all selected records printed. $COPRT

If output to PRINT request and SYSLIST device is display screen: $COGET

• If first time call: $COCRT
- Retrieve heading legends. #MGRET
- Initialize heading legend values. $COCRT
- Set window display parameters.

• Output records to display screen. $FEKEY

• If input file indexed, display key length and position.

• Display last line including number of output records.

Continue processing until all selected records displayed. $COCRT

Display error messages as necessary. #CLXS

II Close input and output files (if applicable) when end-of-file reached on input file. $COGET

Transfer control to control storage end-of-job transient ($EOJ).

Diagram 13.4 (Part 3 of 3). Copy Selected Records - COPYFILE - Using Record Mode Processing ($COPY)

Method of Operation 13·13

Licensed Material-Property of IBM

Program Organization

Figures 13·1 through 13·4 show the control flow for the
disk copy/display utility.

Initiator
Function

Syntax
... .. Checker

-
(#USYX)

Disk
Copy/Display
Mainline Phase

($COPY)

Add to
Diskette
File Phase

~ ($COADD)

,
End of Job
($EOJ)
-Control Storage·

-
-

...

....

....

Figure 13·1. Add To Diskette File (COPYADD) Control Flow ($COPY)

13·14

Normal . Allocate

(#CAML)

Diskette .. Data
Management

(#DRSM)

Common

-- Close

(#DMCL)

Licensed Material-Property of IBM

Common .. Open ..
(DMOP)

Disk Data .. Management

(#DDSM)

SYSLOG ..
(#CLSG)

Initiator
Function

Syntax
Checker

... _ ...
(HUSYX)

Disk VTOC
.- .. Read/Write

.. .. (HCSVF)

Disk

~
SYSLOG

Copy/Display _ ...
Mainline Copy All

($COPY) Files Phase (HCLSG)

($COALL)
Diskette

-- -- .. VTOC

- Read/Write
(HCSVI)

~ If

Normal
..... --. Allocate

Copy (HCAML)
I nitializati on
Phase Common
($COANT) -- Open

(HDMOP)

Diskette
.... . Data

- - Management
(HDRSM)

Special
Allocate

.
(HCAS1)

,
Sectorized Common

File Copy Open

Phase
($COZIP) (HDMOP)

....... ---
Figure 13-2 (Part 1 of 2). Copy All Files (COPYALL) Control Flow ($COPY)

Program Organization 13·15

Licensed Material-Property of IBM

- -......
Special

.- · Allocate

(!lCAS1)

Sectorized
File Copy
Phase
($COZIP)

Disk
..... ---. Data

-- · Management
(!lDDSM)

Diskette
..... · Data

-- Management
(!lDRSM)

Common

- ---. Close

(!lDMCL)

k:)

End of Job
($EOJ)
-Control Storage-

Figure 13-2 (Part 2 of 2). Copy All Files (COPVALL) Control Flow ($COPV)

13-16

Licensed Material-Property of IBM

Initiator
Function

Disk
Copy/Display
Mainline Phase

($COPY)

Syntax
Checker

(#USYX)

Copy
Initialization
Phase

($COINT)

Sectorized
File Copy
Phase
($COZIP)

End of Job
($EOJ)
-Control Storage-

Normal
Allocate

(#CAML)

' •. :' ·0.· '1". .:.' ,':,' -0 . ~ 0.. ' ••• '

Common
Open

(tiD MOP)

SYSLOG

(tlCLSG)

Disk lOS

. ~. . , '; ', ": :.... " :. . .

Diskette
Date
Management

(tlDRSM)

Figure 13-3. Copy Entire File (COPYFILE)Control Flow ($COPY)

Licensed Material-Property of IBM

Special
Allocate

(#CAS1)

Diskette
Data
Management

(#DRSM)

Common
Open

(#DMOP)

Disk Data
Management

(t/DDSM)

Common
Close

(tlDMCL)

Program Organization 13·17

Initiator
Function

,
Syntax - Checker

- -
(#USYX)

Disk
Copy /Display
Mainline Phase

($COPY)

Normal
...- .. Allocate

(#CAML)

Copy
Special

Initial ization ...- .. Allocate
Phase - -

($COINT)
(#CAS1) ..

Common Open - -
(#DMOP)

Diskette
... .. Data

Management
(#DRSM)

~
,

Common . Open
Input/Output - -
Interface (#DMOP)

($COGET) Record Exclusion
- .. Routine

($COSEL)

Diskette Data
Management

(#DRDM)

-
Figure 13-4 (Part 1 of 2). Copy Selected Records (COPYFILE) Control Flow ($COPY)

13-18

Licensed Material-Property of IBM

.... - Message ... Retrieve

(#MGRET)

Input/Output
Interface

SYSLIST

($COGET) Interface ~ ..
Disk lOS

($COPRT)

SYSLIST
~

(#CLST)

Message
.... Retrieve

(#MGRET)

Window

- .. Display
.... .. Routine

($COCRT)

Display

($FEKEY)

• •
End of Job
($EOJ)
-Control Storage-

Figure 13-4 (Part 2 of 2). Copy Selected Records (COPYFILE) Control Flow ($COPY)

Program Organization 13-19

Licensed Material-Property of IBM

Data Areas

VERB LISTS - PYZVL1, PYZVL2, PYZVL3

There are three verb lists for the disk copy/display utility;
PYZVL1, PYZVL2,and PYZVL3.

Each time the syntax checker (#USYX) is called, one of the
lists must be passed. PYZVL 1 is passed on the first call.
On each subsequent call, the control statement read deter
mines the verb list that is passed on the next call.

The third and fourth bytes of the syntax checker parameter
list contain the address of the verb list. Figure 13-5 shows
the format and contents of each verb list.

Displacement of
Leftmost Byte

o

2

3

4

o

o

2

3

Label

PYZVL1

PYZVL2

PYZVL3

Figure 13-5. PYZVL1, PYZVL2, and PYZVL3 Verb Lists

13-20

$COPY COMMON COMMUNICATION AREA - $CCCA

The $COPY common communication area, $CCCA, is an
area that is initialized by the copy/display mainline
($COPY) and used to pass information among the phases
of the util ity. The area is located at the start of the user
area in main storage. Figure 13-6 shows the format and
contents of the communication area.

Length
in Bytes Description

COPYFILE verb ID

COPYADD verb ID

COPYALL verb ID

END verb ID

X'FF' end of verb list

END verb ID

X'F F' end of verb list

KEY verb ID

SE LECT verb 1 D

END verb ID

X'FF' end of verb list

Licensed Material-Property of IBM

Displacement of Length in
Leftmost Byte Bytes in Routines that
in Hexadecimal Label Decimal Description Change Data

00 STTYPE Statement type: $COPY

COPYALL X'03' = COPYALL statement
read

COPYFILE X'04' = COPYFI LE state-
ment read

SELECT X'11' = SELECT statement
read

KEY X'OA' = KEY statement
read

COPYADD X'19' = COpy ADD statement
read

01 SELCT Select statement type: $COPY

BSKEY X'10' = SELECT KEY
statement read

BSPKY X'OS' = SELECT PKY
statement read

BSRCD X'04' = SELECT RECORD
statement read

02 SWO COPYFI LE statement output type: $COPY

BPRTX X'CO' = OUTPTX-PRINT
specified

BPRT X'40' = PRINT specified

BFILE X'20' = OUTPUT-FI LE
specified

03 SW1 COPYFI LE statement reorganization $COPY
parameter

BRYES X'01' = REO RG- YES
specified

BRNO X'OO' = REORG-NO
specified

Figure 13-6 (Part 1 of 6). Copy Communication Area

Data Areas 13-21

Licensed Material-Property of IBM

Displacement of Length in
Leftmost Byte Bytes in Routines that
in Hexadecimal Label Decimal Description Change Data

04 SW2 COPYF I LE statement delete parameter $COPY

BDLTE X'40' = Deletion specified
X'OO' = No deletion specified

05 SW3 File group qualifier indicator

06 OMPOS 2 Position of omit character $COPY

08 OMCHAR Omit character $COPY

09 KEYLN 2 Key length (from I/KEY statement or $COPY, $COINT
format 1)

OB KEYLOC 2 Key location (from I/KEY statement or $COPY, $COINT
format 1)

OD SFRM# 3 From parameter of select record statement $COPY
(initialized to hex 000000)

10 STO# 3 To parameter of select record statement $COPY
(initialized hex FFFFFF)

13 INa Input device a-code $COINT, $COALL,
$COANT, $COGET,
$COZIP

14 OUTO Output device a-code $COINT, $COALL,
$COANT, $COZIP,
$COGET

15 CPYIND Indicator $COGET, $COALL

IGNORE X'02' = Record to be ignored
or error recursion through
$COALL module

RECALL X'08' = Indicates normal
recursion through $COALL
module

16 LOLIM 2 Address of low key limit $COINT

18 HILIM 2 Address of high key limit $COINT

1A FMKEY 29 From parameter of select KEY/PKY $COPY,$COINT,
statement (initialized to 29XL 1 '00') $COGET

Figure 13·6 (Part 2 of 6). Copy Communication Area

13-22

Licensed Material-Property of IBM

Displacement of Length in
Leftmost Byte Bytes in Routines that
in Hexadecimal Label Decimal Descri ption Change Data

37 TOKEY 29 To parameter of select KEY /PKY statement $COPY, $COINT,
(initialized to 29XL 1 'FE') $COGET

54 PRTOUT 8 SYSLIST device $COINT

hex 00 = Printer
hex 20 = Display screen

5C RCDL 2 Hold area for record length $COINT, $COANT,
$COGET, $COZIP

5E FMTAFA 2 AF A format 1 address $COI NT, $COANT,
$COGET, $COZIP,
$COALL

60 INDTF 2 Address of the input file DTF $COINT, $COANT,
(initialized to X'FF FF') $COGET, $COZIP

62 OUTDTF 2 Address of the output file DTF $COINT, $COANT,
(initialized to X'FFFF') $COGET, $COZIP

64 INADDR 2 Address of input data management $COINT, $COGET,
(#DRDM, #DRSM) $COANT, $COZIP

66 OUTADR 2 Address of output data management $COINT, $COZIP,
(#DDSM, #DRSM, $COPRT, $COCRT) $COG ET, $COANT

68 WINDO@ 2 Address of $FEKEY (if loaded) $COINT, $COGET

6A LWRLlM 2 Current lower limit of user program area $COPY, $COALL,
$COINT, $COANT,
$COGET, $COZIP

6C UPRLlM 2 Current upper limit of user program area $COPY, $COALL,
$COINT, $COANT,
$COGET, $COZIP

6E LWRSAV 2 Initial lower limit of user program area $COPY, $COALL,
$COINT, $COANT

70 UPRSAV 2 Initial upper limit of user program area $COPY, $COALL,
$COINT, $COANT

72 COIOA@ 2 Address of I/O area for sectorized $COPY, $COINT,
data management $COANT, $COALL,

$COGET

74 COEOF@ 2 Sector after last data sector on diskette $COINT, $COZIP

Figure 13-6 (Part 3 of 6). Copy Communication Area

Data Areas 13-23

Licensed Material-Property of IBM

Displacement of Length in
Leftmost Byte Bytes in Routines that
in Hexadecimal Label Decimal Description Change Data

76 SVEBKL 2 Diskette block length $COINT, $COZIP,
$COANT

78 COINDS Value of 'DISP' parameter on COPYIN $COPY
file statement

79 COINRT Value of 'RETAIN' parameter on $COPY
COPYI N file statement

7A CFGAFA 2 Address of AFA format 1 for next disk $COPY
file to be saved for save all

7C INATTR 2 Input file attribute $COINT, $COGET,
$COZIP

7E OUTATR 2 Output file attribute $COINT, $COGET,
$COZIP

80 SVEWKB 2 Address of I/O work buffer $COINT, $COGET,
$COZ I P, $COANT

82 COFINB 2 Input buffer length - disk $COALL

84 COFOTB 2 Output buffer length - disk $COALL

86 RDFLCT Count of files on diskette $COGET, $COZIP,
$COALL

87 RDFLMX Maximum files $COALL, $COINT,
$COZIP

88 CXDOTA 8 File group identifier $COPY

90 CXDOTL File group identifier length $COPY

Information Related to Files Copied via COPYALL (displacements hex 91 through hex A7):

91 ALNDXL 2 Length of index on diskette $COALL, $COANT

93 ALNDXF I ndex indicator:

F1XMNXSY X'01' = Index requires sort

94 A LCTYP Control indicator:

F 1 XMCSNG X'OO' = Single file copy

F1 XMCALL X'03' = Copy all files

. Figure 13-6 (Part 4 of 6). Copy Communication Area

13-24

Licensed Material-Property of IBM

Displacement of Length in
Leftmost Byte Bytes in Routines that
in Hexadecimal Label Decimal Description Change Data

95 LABALL 8 COPYALL name

9D ALSONO File sequence number

9E ALSOND File set indicator:

F1XMOFSC C'C' = Not last file

F1XMOFSL C'L' = Last file

9F ALNXLB 8 Next file in set

A7 ALDUB Librarian file mode

X '81 ' = Sector mode

X'01' = Record mode

A8 COMXBF 2 Track size (in bytes) of diskette $COINT, $COANT

AA RDSCTL 2 Sector size (in bytes) of diskette $COINT, $COANT

AC RDZIP@ 2 Address where sectorized data $COINT, $COANT
management is loaded; X'FFFF' implies
not loaded

AE RDPREP Indicator for diskette prepare $COINT

AF CZIPSW Indicator for sector data management $COPY, $COINT

BO RDLAST Physical format of last diskette processed $COANT

DTFs

B1 FDDTF1 138 Input DTF #1 $COINT, $COGET,
$COALL, $COZIP

13B RDDTFl 138 Output DTF #1 $COINT, $COGET,
$COALL, $COZIP

Format 1 Save Area

lC5 COFMTl 4 CL4'FMT1'

1C9 SVF11N 87 Input format 1 plus extension $COINT, $COGET,
$COAL L, $COANT

220 SVF1CO 87 Output format 1 $COINT, $COANT,
$COALL

Figure 13-6 (Part 5 of 6). Copy Communication Area

Data Areas 13-25

Licensed Material-Property of IBM

Displacement of
Leftmost Byte
in Hexadecimal

277

2B7

2B8

2B9

2BA

Parameter Lists

2BB

203

2E6

2F7

Label

SVFSKL

COF1SZ

COF1 RT

COF1A1

COF1 LC

PYZLOG

COAVTI

COAVTF

CFGAFA

Length in
Bytes in
Decimal Description

64 Format·1 from AF A

24

19 .

17

2

Records/blocks request from COPYO
statement

Retention request from COPYO statement

Attribute byte for spindle preference from
COPYO statement

Disposition request from COPYO statement

SYSLOG

Space for diskette VTOC read/write

Space for disk VTOC read/write

AFA format 1 for next disk file to be
saved for save all

Figure 13-6 (Part 6 of 6). Copy Communication Area

EMBEDDED FORMAT 1

Each file copied from disk to diskette by the disk copy/
display utility has 87 bytes of control information in the
first diskette sector immediately preceding the initial sec
tor containing file data on diskette. This control informa
tion is called the embedded format 1. It is an extension
and modification of the 64-byte AFA format 1 for the
file, and it is used to ensure that the file reappears on disk
with its original attributes.

The Data Areas Handbook shows the format and contents
of the embedded format 1.

13-26

Licensed Material-Property of IBM

Routines that
Change Data

$COALL, $COANT

$COI NT, $COANT

$COINT, $COANT

$COI NT, $COANT

$COINT, $COANT

$COPY, $COALL,
$COINT, $COGET,
$COANT, $COZIP

$COINT, $COALL

$COINT, $COALL

Introduction

The file delete utility ($DElET) provides a way to free
space on disk or diskette for use by new files.

The $DElET utility is called by the DELETE procedure or
appropriate OCl statements. (See System Support Refer
ence Manual for more information about calling and exe
cuting $DElET.)

The file delete utility consists of a mainline phase
($DElET), a disk file delete phase ($DElF1), a diskette
file delete phase ($DELl1), and a syntax specification
module ($DETAB). The program resides in the system
library.

Chapter 14. File Delete Utility ($DELET)

Space is freed in the following way:

• For a SCRATCH control statement, the diskette file(s)
expiration date is changed to the current job date. For
disk files, SCRATCH removes the VTOC entry.

• For a REMOVE control statement, the VTOC entry is
removed. The contents of the named file(s) on disk or
diskette is optionally erased by writing over it with
binary zeros.

Control is returned to the system by way of the control
storage end- of- job transient ($EOJ).

The file delete utility requires 14K bytes of main storage
for program execution.

Introduction 14-1

Licensed Material-Property of IBM

Method of Operation

Diagram 14.1 shows the function of the file delete utility.

14-2

Licensed Material-Property of IBM

INPUT ____ _ From: Initiator

L.::.;:0CESS

Main Storage

Transient Area

User Area.:
$DELET
$DELFl
$DELl1

Control statements
Disk:

• Index
• Format l's
• Format 5s
Diskette:
• Format l's
• Volume label

OEseR IPTION

D Initialize date to blanks.

Find syntax checker (#USYX).

D Process control statements

IfJ Perform disk file delete function:
Process delete - all request
Process delete - single request

II Perform diskette file delete:
Process delete - all request
Process delete - single request

II Terminate program

Use main storage relocating loader (SVC 52) to load #USYX into main storage.

..

• OUTPUT ___ _

Disk:
• Updated format 5
• Updated index
• Null format 1

for specified
files

• Files data set to
zeros if
requested

Diskette:

• File labels
deleted or
expired

• File data areas
set to zero if
requested

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
ROUTINE

$DELET

#MASFN

Read and syntax check control statements and perform requested action until /lEND statement is read. #USYX

If disk file delete request, go tolfJ. $DELET

If diskette file delete request, go toD.

If /lEND statement, go toll.

D Determine delete function requested. $DELF1

o Delete-all request specified.

Examine task control block nCB) chain to ensure no other task running.

Examine terminal unit block (TUB) to ensure request from master console.

Set indicator to skip system files (#LlBRARY).

Diagram 14.1 (Part 1 of 3). Perform File Delete Utility Function ($DELET)

Method of Operation 14-3

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Read format 1's for files to be processed. #CSVF

Delete files (also user library if requested): $DELF1

• Write zeros over file data extent if erase with DATA-YES specified. Disk lOS

• Return. $DELF1

• Allocate files to be deleted (must allocate files before deallocate can be performed). #CAS1 • • Return. $DELF1 ~ • Nullify file's format 5, format 1, and index. #CAD1

• Return. $DELF1

• Write updated VTOC back to disk. #CSVF

e Delete single file specified. $DELF1

Delete file specified:

• Get file label (and date if given).

• Read format 1 for file(s) to be processed. #CSVF

• Return. $DELF1

• Test for multiple files and issue multifile message (MIC 1621) if necessary. #CLXS

• If 3 option taken to multifile message, go to D.
• Write zeros over file data extent(s) if erase with DATA-YES specified. Disk lOS

• Return. $DELF1

• Allocate files to be deleted. #CAS1
0 Return. $DELF1
0 Null file's format 5, format 1, and index. #CAD1

• Return. $DELF1

• Write updated VTOC back to disk. #CSVF

Issue error messages if necessary. #CLXS

II Get system date. $DELl1

Find diskette device in device allocate table.

Allocate diskette device.

Determine delete function requested.

o Delete-all request specified.

Prepare new diskette. #CSVI

Verify diskette's I D. $DELI1

Read format 1 for file(s) to be processed. #CSVI

If REMOVE request: $DELl1

• Write zeros over file data extent if erase and DATA-YES specified. Diskette lOS • • Display file's data erased message (MIC 1627) if applicable. #CLXS 4
• Zero out format 1 . $DELl1

• Remove file label from VTOC. #CSVI
0 Write updated VTOC back to diskette.

If SCRATCH request: $DELl1

• Set file expiration date to date in program communication area.

• Write file's label with new expiration date out to diskette. t/CSVI

Repeat until all files on diskette are deleted. $DELl1

Diagram 14.1 (Part 2 of 3). Perform File Delete Utility Function ($DELET)

14-4

Licensed Material-Property of IBM

DESCRIPTION MODULE/
ROUTINE

Display message asking for next volume (MIC 11): #CLXS
• If continue option (0) taken, return to II · . $DELll
• If terminate option (2) taken, go toD .

G Delete single file specified.

Delete file specified:

• Find specified file.

• If PACK specified:
- Prepare new diskette. #CSVI
- Verify volume 10 correct for mounted diskette. $DELIl • • Read format 1 label for specified file (use date field if date specified). #CSVI ~ • If multivolume file: $DELIl
- Check volume sequence.
- Issue prompts for proper diskettes. #CLXS • If REMOVE request: $DELIl
- Write zeros over file data extents if erase and DATA-YES specified. Diskette lOS
- Display file's data erased message (MIC 1627) if applicable. #CLXS
- Zero out format 1 . $DELIl
- Remove file label from VTOC. #CSVI
- Write updated VTOC back to diskette.

• If SCRATCH request: $DELIl
- Set file expiration date to date in program communication area.
- Write file's label with new expiration date out to diskette. #CSVI • If multivolume file, issue message for next diskette (MIC 1485) and repeat delete until entire file deleted. #CLXS

I ssue error messages if necessary.

II Pass control to control storage end-of-job transient ($EOJ). $DELET

Diagram 14.1 (Part 3 of 3). Perform File Delete Utility Function ($DELET)

Method of Operation 14-5

Licensed Material-Property of IBM

Program Organization

Figure 14-1 shows the control flow for the file delete
utility.

14-6

Licensed Material-Property of IBM

File Delete
Utility
Mainline
($DELET)

End-of-Job
($EOJ)
-Control Storage-

Single Name
Find

(#MASFN)

SYSLOG

(#CLSG)

Delete
Disk
File

($DELF1)

Delete
Diskette
File

($DELl1)

Figure 14-1. File Delete Utility Control Flow ($DELET)

Syntax
Checker

(#USYX)

Special
Allocate

(#CAS1)

SYSLOG

(#CLSG)

Disk VTOC
Read/Write

(#CSVF)

SYSLOG

(#CLSG)

Diskette lOS

Licensed Material-Property of IBM

Deallocate

(#CAD1)

Disk lOS

Diskette VTOC
Read/Write

(#CSVI)

Program Organization 14-7

14-8

Licensed Material-Property of IBM

Introduction

The diskette copy utility ($DUPRD) copies one or all data
files from one diskette to another diskette. The copied files
are placed on the output diskette such that all unused space
follows the data files, except multivolume files remain at
the same physical position.

When copying all files, the system user has the option to
delete expired files. The space previously used by the
expired files is removed, causing the active files to be con
tiguous on the output diskette.

The diskette copy utility consists of the $DUPRD phase
and $DUT AB syntax specification module. The program
resides in the system library.

Chapter 15. Diskette Copy Utility ($DUPRD)

$DUPRD is called by the COPYl1 procedure or appropri
ate OCl statements. (See the System Support Reference
Manual for more information about calling and executing
$DUPRD.)

The diskette copy utility does not support copying between
diskettes of different formats; that is, a standard format
diskette cannot be copied to an extende,d format diskette
or vice versa. The bytes per sector must also be the same.

The utility requires 14K bytes of main storage for pro
gram execution and enough disk space must be available
to contain the data and control records for the diskette
files being copied. The system operator may, however,
take advantage of more main storage by increasing the
region size beyond 14K bytes.

Introduction 15-1

Licensed Material-Property of IBM

Method of Operation

Diagram 15.1 shows the function of the diskette copy
utility.

15-2

Licensed Material-Property of IBM

INPUT ____ ..
From: Initiator

~OCESS

Main Storage

Transient Area

User Area:
$DUPRD

Control statements

Diskette VTOC

Diskette files

OESeR IPTION

o Find syntax checker (#USYX).

D Process control statements

fJ Initialize internal areas.

D Determine function requested

II Copy all diskette files

m Copy specific diskette file

II Terminate program

Read and syntax check utility control statements.

If END card read, go toO.

If COPYI1 card read, go taD.

Issue error message (MIC 1651) if no valid control statement found.

D Allocate device for diskette.

Return.

Prepare diskette.

Return.

Find disk data management (#DDSM) and diskette data management (#DRSM).

Set I/O buffer size based on unused main storage region size.

11 Determine if entire diskette to be duplicated or just one file.

If COPY-ALL specified, go toO.

If COPY-ONE specified, go to m.

Diagram 15.1 (Part 1 of 3). Perform DiskettaCopy Utility Function ($DUPRD)

• OUTPUT ___ _

Diskette files

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
ROUTINE

#MASFN

#USYX

$DUPRD

#CLXS.

#CAML

$DUPRD

#CSVI

$DUPRD

#MASFN

$DUPRD

Method of Operation 15-3

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

II Read all format l's in diskette VTOC and place in table of modified format l's (DUPF1TAB) (entire format 1 #CSVI
not saved).

If DELETE-Y specified: $DUPRD

• Check DUPF1TAB for expired files.

• Flag expired files with X'F2'.

Allocate sufficient disk space to hold all diskette data files specified in DUPF1TAB. #CASl

Return . $DUPRD

o Open disk file just allocated. #DMOP

Return. $DUPRD

Place format 1 of file(s) to be copied into intermediate disk file. Disk lOS

Set file type based on interchange level in format 1. $DUPRD
Disk 105

Open diskette file:

• • Write active format 1 to AFA. #CSAF 4
• Return. $DUPRD

• Allocate diskette file. #CAML

• Return. $DUPRD

• Open diskette file. #DMOP

• Return. $DUPRD

Copy data file(s) from input diskette to intermediate disk based on DUPF1TAB (expired files are not copied). #DRSM

Return. $DUPRD

Reopen disk file (for disk to diskette copy). #DMOP

Return. $DUPRD

Issue halt to mount new diskette (MIC 1647). #CLXS

Ensure output diskette same track format as input diskette (bytes per sector): $DUPRD

• Allocate device for diskette. #CAML

• Return. $DUPRD

• Prepare diskette. #CSVI

• Return. $DUPRD

• Issue error message if wrong format (M I C 1653). #CLXS

Open output diskette file. #OMOP

Return. $DUPRD

Read record(s) from disk. #DDSM

Return. $DUPRD

Write record(s) to diskette. #DRSM

Return. $DUPRD

Close current diskette file and disk file. #DMCL

Return to 0 to read next control statement. $DUPRD

Diagram 15.1 (Part 2 of 3). Perform Diskette Copy Utility Function ($DUPRD)

15-4 .

Licensed Material-Property of IBM

DESCRIPTION
MODULE/
ROUTINE

II Find requested format 1 in diskette VTOC and place in DUPF1TAB. #CSVI

Return. $DUPRD

If file name not on diskette, issue halt (MIC 1650): #CLXS

• If option 0 taken return toO to read another control card .

• If option 1 taken, retry under same control card.

Allocate sufficient disk space to hold file specified in DUPF1TAB. #CASl

Go to aOto perform copy function. $DUPRD

m Pass control to end-of-job transient ($EOJ).

Diagram 15.1 (Part 3 of 3). Perform Diskette Copy Utility Function ($DUPRD)

Method of Operation 15·5

Licensed Material-Property of IBM

Program Organization

Figure 15-1 shows the control flow for the diskette copy
utility.

15-6

Licensed Material-Property of IBM

Single Name

· Find
..... ...

(#MASFN)

Syntax

· Checker
.... p

(#USYX)

SYSLOG

·
..... ·

(#CLSG)

Normal .. Allocate
....

(#CSML)

Diskette VTOC
..... ---. ReadlWrite
.... ...

(#CSVI)

Diskette Sectorized
Initiator _ ... Copy · Disk Data
Function ... Utility Management

($DUPRD) (#DDSM)

Diskette
..... · Data
..... .. Management

(#DRSM)

Common Close
... ..
~ ...

(#DMCL)

...
Disk lOS p

Common Open ... ·
..... ..

(#DMOP)

Active

· Format 1
.... · Access Routine

(#CSAF)

Special
.... .. Allocate
.... ...

(#CAS1)

U
End of Job
($EOJ)
-Control Storage-

Figure 15-1. Diskette Copy Utility Control Flow ($DUPRD)

Program Organization 15-7

Licensed Material-Property of IBM

15·8

Licensed Material-Property of IBM

Introduction

The file build utility ($FBLD) provides a way to allocate
disk files without supplying data records. $FBlD is pri
marily used by application writers to create files that can
be referenced as existing files in following steps.

$FBlD creates the file with the precise characteristics
specified in the control statements. The utility is called
by the BlDFI lE procedure or appropriate eel state
ments. (See the System Support Reference Manual for
more information about calling and executing $FBlD.)

The file build utility consists of a mainline module
($FBlD) and a syntax specification module ($FBTAB).
The program resides in the system library.

Chapter 16. File Build Utility ($FBLD)

Introduction 16-1

Licensed Material-Property of IBM

Method of Operation

Diagram 16.1 shows the function of the file build utility.

16-2

Licensed Material-Property of IBM

From: Initiator

~ INPUT _ali:ii~_11111 ~OCESS

Main Storage

Transient Area

User Area:
$FBLD

Control statements

#LlBRARY

JCB

II----V"" ... > D Process control statements

fJ Initialize special allocate DTF

II Allocate file

o Terminate file build program

DESCRIPTION

D Clear out work areas and restore DTF.

Find syntax checker (#USYX).

Use main storage relocating loader (SVC 52) to load #USYX.

Read and syntax check control statements.

If /lEND, go toe.

a If spindle specified, move information into DTF.

If location given:

• Scan location value to find length.

• Convert location to hexadecimal.

• Multiply value by 10 and place in DTF.

Move records or blocks information into DTF.

Issue error message (MIC 2145) if no records or blocks specified.

If indexed file, set up key position and length.

D Load and pass control to special allocate (#CAS1).

Allocate new file.

Return toD to read next control statement.

o Pass control to control storage end-of-job transient ($EOJ).

Diagram 16.1. Perform File Build Function ($FBLD)

OUTPUT ___ _

----> New disk file

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
ROUTINE

$FBLD

#MASFN

$FBLD

#USYX

$FBLD

#CLXS

$FBLD

#CAS1

$FBLD

Method of Operation 16-3

Licensed Material-Property of IBM

Program Organization

Figure 16-1 shows the control flow for the file build utility.

Single Name
--. Find

". - (#MASFN)

File Build
Utility

Syntax
($FBLO) ~ .

Checker
". - (#USYX)

Initiator ..
Function

~
Special
Allocate

".

(#CAS1)

SYSLOG
.... - (#CLSG)

,
End of Job
Transient
($EOJ)

Figure 16-1. File Build Utility Control Flow ($FBLD)

16-4

Licensed Material-Property of IBM

Introduction

The history file display utility ($HIST) is the mechanism
whereby entries in the history file are printed or displayed
to an operator.

The history file is not a data file but is an area in the system
area on disk where pertinent operator actions, operator
communications, and job queue logging are recorded. Each
such display unit, DCl statement, or operator response
consists of a line of text associated with an indication
whether the operator saw the entry before it was put in
the history file or not and whether the text was a broad
cast message or not.

The text is prefixed by the user identifier (JCBDUSER)
obtained from the job control block (JCB), the terminal
identifier (TUBWSID) from the terminal unit block (TUB),
an 8 byte job name field and a 6 byte time stamp. If,
however, the entry is from the job queue, no valid user
identifier or terminal identifier can be supplied. In this
case, the job name field contains asterisks.

The indicator fields record whether the text was broad
cast or not or seen by the operator or not, and are used to
record whether the terminal entries came from a work
station or the system console, and mark entries as reql)ired
for $HIST. Two indicators bytes are at the beginning of
each entry. The first byte contains the total length of the
entry and the second byte contains the length of the input
text.

$H 1ST performs the following functions:

• Prints or displays all entries

• Prints or displays only entries seen by the operator

• Prints or displays entries that were not printed or dis
played before

• Reinitializes the history file - making all entries
unavailable

Chapter 17. History File Display Utility ($HIST)

The history file can be accessed in two modes. The modes
are defined as a work station request and a system console
request. A work station request is from any terminal. A
system console request is from the master console with the
SYSTEM parameter specified.

If the request for any of the above functions is from a
user at a work station, the entries displayed, printed, or
made unavailable are restricted to those having both the
terminal identifier and user identifier matching the work
station identifier and user identifier of the requester.

If the request for any of the above functions is from the
system operator at the master console with the SYSTEM
parameter specified, access to the history file entries is
unlimited.

The history file display utility is called by the HISTORY
procedure or appropriate DCl statements. (See the System
Support Reference Manual for information about calling
$HIST.)

The $HIST parameters determine how much history file
information is displayed or printed and whether it may be
accessed in the future, as follows:

• All implies all entries

• If ALL is omitted, only those entries seen by the opera
tor are accessed

• RESET implies that the entries are marked as unavail
able for any future display or printing

•. If RESET is omitted, the entries are available for further
display or viewing

• CURRENT causes entries to be flagged so when
CU R RENT is again specified, only entries not displayed
before are accessed

• TEXTDN l Y implies the user identifier, terminal iden
tifier, job name, and time stamp are not displayed

Introduction 17-1

Licensed Material-Property of IBM

$HIST calls the syntax checker to read the DISPLAY and/
or END control statement(s) and save the parameters for
later interrogation.

The sector address of the sector containing the current
history file entry is extracted from the system communica
tion area (SCA).

The entries from the sector containing the current entry
to the end of the history file are read into the history file
buffer.

The oldest entry in the history file is always the entry
logically following the current entry. Beginning with the
oldest entry, each entry is examined to determine if the
requester is permitted to display, print, or make it
unavailable.

If the entry is to be printed or displayed, a heading line
containing the user identifier, terminal identifier, job name,
and time stamp is printed or displayed unless TEXTON L Y
was specified. The text in the entry is printed or displayed
on a separate line.

If RESET is specified, each entry that the requester is
permitted to access is rewritten into the history file with
the HFTMRSET bit set. The bit is set in the first byte
(HFTDCTLS) of the indicator field if the system console
request is specified. The bit is set in the second byte
(HFTDCTLW) of the indicator field if the work station
request is specified.

If CURRENT is specified, then as'each entry is printed or
displayed the HFTMCURR is set in the appropriate indi
cator byte (HFTDCTLS or HFTDCTLW) as indicated
above.

Access to entries in the history file is controlled by the
mode (work station or system console) of the requester
and is further inhibited by the RESET (HFTMRSET)
and CURRENT (HFTMCURR) bits.

17-2

If a system console request is specified and the RESET
(HFTMRSET) bit is set in the console (HFTDCTLS) indi
cator byte, the entry is unavailable. If the RESET
(HFTMRSET) bit is set in the work station (HFTDCTLW)
indicator byte, the entry is accessible.

If a system console request is specified, the CUR RENT
parameter is specified, and the CURRENT (HFTMCURR)
bit is set in the console (H FTDCTLS) byte, the entry is
not printed nor displayed.

If the requester is from a work station and the RESET
(HFTMRSET) bit is set in either of the two indicator
bytes, the entry is unavailable.

If the request is from a work station, the CURRENT
parameter specified, and the CURRENT (HFTMCURR)
bit is set in the work station (HFTDCTLW) indicator
byte, the entry is not printed or displayed.

The history file display utility will issue errors by way of
system logging if any of the following conditions occur:

• The SYSTEM parameter is specified from ,a work sta
tion that is not the master console

• The length of any entry is outside the permissible
range

• A permanent I/O error occurs in reading or writing the
disk

• The sector address of the sector containing the cur
rent entry is not within the history file area

$HIST requires 1.4K bytes of main storage for program
execution.

Licensed Material-Property of IBM

Method of Operation

Diagram 17.1 shows the function of the history file display
utility.

Licensed Material-Property of IBM

Method of Operation 17-3

From: Initiator INPUT ____ _
L.::.;0CESS

Main Storage

Transient Area

User Area:
$HIST

Control statements

System
communication
area

History file

Terminal unit block

Job control block

D Read utility control statements and perform
initial processing

IfJ Prepare text for display

II Display requested history file text

II Terminate program

.. --.. ----------.... --~

~ OUTPUT ___ _

...
History file display

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
OESeR IPTION ROUTINE

D Read and syntax check utility control statements. #USYX

Retrieve inserts from MIC 1667, page headings from MIC 1665, and control legend from MIC 1665. #MGRET

Use time-of-day function to retrieve time. $HIST

Determine current history file sector and set up pointer.

If output to printer, print page heading. #CLST

Return to function mainline. $HIST

IfJ Read proper sector of history file into input buffer. Disk 105

Adjust pointer for current entry. $HIST

If work station request specified, ensure both user and terminal identifiers from requester match entry
identifiers (all entries accessible if system console request).

Determine entries to display based on user request (ALL or CURRENT).

Prepare control field data for display.

Diagram 17.1 (Part 1 of 2). Perform History File Display Utility Function ($H 1ST)

17-4

Licensed Material-Property of IBM

DESCRIPTION MODULE/
ROUTINE

B Prepare time stamp for display. $HIST

Display control information and time stamp if TEXTONL Y not specified. #CLST

Display history file text.

Update pointers to indicate current and next entries. $HIST

Write sector just processed back to history file if rewrite required and sector not changed by another task. Disk 105

Continue processing until all requested history file entries displayed. $HIST

Retrieve last line legend and place in SYSLIST buffer. #MGRET

Place number of output entries in buffer. $HIST

Output SYSLIST buffer to printer. #CLST

Issue error messages as necessary. #CLXS

D Pass control to control storage end-of-job transient ($EOJ) to terminate program. $HIST

Diagram 17.1 (Part 2 of 2). Perform History File Display Utility Function ($HIST)

Method of Operation 17-5

Licensed Material-Property of IBM

Program Organization

Figure 17-1 shows the control flow for the history file dis
play utility.

.... ~

...
-

..
-

Initiator .. History File

Function Display
($HIST)

"'

"'

~
,

End of Job
($EOJ)
-Control Storage-

Figure 17-1. History File Display Utility Control Flow ($HIST)

17-6

Syntax -- Checker
(#USYX)

Time-of-Day ..
Function
-Control Storage-

...
Disk lOS

Licen~ed Material-Property of IBM

.. Message
Retrieve

r

(#MGRET)

SYSLIST ..
(#CLST)

SYSLOG ..
(#CLSG)

Chapter 18. Diskette Labeling and Initialization Utility ($INIT)

Introduction

The diskette labeling and initialization utility performs one
of three functions:

41 When the FORMAT or FORMAT2 option is specified,
formats the diskette by (1) setting the volume I D and
owner I D, (2) initializing all data to blanks, (3) setting
the I Ds of usable tracks to consecutive numbers, (4)
setting the IDs of unusable tracks to X'FFFFFFFF',
(5) assigning sector I Ds to usable tracks, and (6) writ
ing track zero.

Note: If FORMAT is specified, single sided diskettes
are formatted to contain twenty-six 128-byte sectors.
Double sided diskettes format cylinder 0, head 0 to
twenty-six 128-byte sectors; cylinder 0, head 1 to
twenty-six 256-byte sectors; and cylinder 1 through
cylinder 74 to twenty-six 256-byte sectors. If
FORMAT2 is specified, single sided diskettes format
cylinder 0 to twenty-six 128-byte sectors and cylinder
1 through cylinder 74 to eight 512-byte sectors. Double
sided diskettes format cylinder 0, head 0 to twenty-six
128-byte sectors, cylinder 0, head 1 to twenty-six 256-
byte sectors, and cylinder 1 through cylinder 74 to
eight 1 024-byte sectors .

• When the DELETE option is specified, rewrites the HDR
labels on cylinder zero, eliminating all references to the
files on the diskette .

• When the RENAME option is specified, sets the volume
I D and the owner I D to the values specified by the VOL
control statement or to default values if no VOL control
statement is specified.

This utility consists of the $INIT phase and $INTAB syntax
specification module that reside in the system library.

The diskette labeling and initialization utility is called by
the IN IT procedure or appropriate OCl statements. (See
the System Support Reference Manual for more informa
tion about calling and executing the $INIT utility.)

The control statements and the diskette to be initialized
are the input to the utility. The syntax checker (#USYX)
is used to read the control statements and check them for
errors.

Depending upon the function specified by the control
statements, the output is (1) an initialized diskette with
an updated VTOC and volume label, (2) an updated VTOC
in which entries for all files on the diskette have been
deleted, or (3) a renamed diskette in which the volume ID
and owner I D in the label have been changed.

$INIT requires 14K bytes of main storage and exclusive
control of the diskette resources for program execution.

Introduction 18-1

Licensed Material-Property of IBM

Method of Operation

Diagram 18.1 shows the function of the diskette labeling
and initialization utility.

18-2

Licensed Material-Property of IBM

From: Initiator
INPUT ____ -.

~OCESS

(XR1

Device table

Main Storage

Transient Area

User Area:
$INIT

Control statements

Diskette

D Process control statements and determine
function requested

II Process FORMAT or FORMAT2 option

II Process DELETE option

o Process RENAME option

II Terminate program

----:.Il

II OUTPUT ---_

Volume label

Header records

Alternate tracks
(if needed)

Formatted tracks

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
OESeR IPTION ROUTINE

D Allocate diskette device in device allocate table. $INIT

Find syntax checker (#USYX). #MASFN

Read and syntax check control statements. #USYX

Ensure valid alphameric characters in PACK parameter. $INIT

Determine option requested:

• If FORMAT or FOIIAT2, go tofl.

• If DELETE, go to .

• If RENAME, go toO.

fJ Set format type (one sided or two sided).

o Check for new diskette (not formatted):
• Try to read volume label. Diskette lOS

• Set indicator if new diskette. $INIT
• 'Issue MIC 1676 if protected diskette. #CLXS

e Check for active files (if not new diskette). $INIT

• Get system date from job control block.

• Read diskette VTOC. Diskette lOS

• Check header record for unexpired date. $INIT

• If files active, issue MIC 1675. #CLXS

• If permanent diskette error, issue M IC 1673.

Diagram 18.1 (Part 1 of 2). Perform Diskette Labeling and Initialization Utility Function ($INIT)

Method of Operation 18-3

Licensed Material-Property of IBM

OEseR IPTION

Test surface for defects:
• Write IDs with data sectors of all X'E5'.
• Write data sectors of all blanks to all tracks.
• Flag entire cylinder as defective iferror found.

Write labels on track zero:
• Build header records for appropriate diskette type (one sided or two sided).
• Write records to diskette.

Go toll to rename volume 10 and/or owner lOon diskette.

Note: The FORMAT option formats the diskette to:
• Single sided diskette - cylinder 0 through cylinder 74 formatted to twenty-six 128-byte sectors.
• Double sided diskettes:

- Cylinder 0, head 0 formatted to twenty-six 128-byte sectors.
- Cylinder 0, head 1 formatted to twenty-six 256-byte sectors.
- Cylinder 1 through cylinder 74 formatted to twenty-six 256-byte sectors.

The FORMAT2 option formats the diskette to:
• Single sided diskette:

- Cylinder 0 formatted to twenty-six 128-byte sectors.
- Cylinder 1 through cylinder 74 formatted to eight 512-byte sectors.

• Double sided diskette:
- Cylinder 0, head 0 formatted to twenty-six 128-byte sectors.
- Cylinder 0, head 1 formatted to twenty-six 256-byte sectors.
- Cylinder 1 through cylinder 74 formatted to eight 1024-byte sectors.

II Check volume 10:
.-. Read diskette volume label.

• Issue MIC 1672 if volume 10 not same as PACK parameter.
• Issue MIC 1674 if diskette not formatted.

Check VTOC for active files (same asfJ 0).
Write track 0 VTOC (record 8 is inactive file header record).

Delete header records 9 through 26.

If double sided diskette, write header records on cylinder 0, head 1.

Go toll to terminate program.

II Check for new diskette (not formatted) (same as DO).
Issue MIC 1674 if track 0 not formatted.

Update volume 10 and/or owner-I 0 fields of volume label:
• If user supplied valid volume-IO, move volume-I 0 to new volume LABEL.
• If user supplied valid owner-IO, move owner-I 0 to new volume LABEL.
• If owner-IO still blank, move words OWNER-ID to volume LABEL.
• Set system identification code in volume LABEL.
• Write updated volume LABEL to diskette volume.

Go toll to terminate program.

II Deallocate diskette device in device table.

Post device waiters (TCBDKTWT).

Pass control to control storage end-of-job transient ($EOJ).

Diagram 18.1 (Part 2 of 2). Perform Diskette Labeling and Initialization Utility Function ($INIT)

18-4

Licensed Material-Property of IBM

MODULE/
ROUTINE

$INIT
Diskette lOS

$INIT

Diskette lOS

$INIT

Diskette lOS ~
#CLXS

$INIT

Diskette lOS

$INIT

#CLXS

$INIT

Diskette lOS

$INIT

Program Organization

Figure 18-1 shows the control flow for the diskette labeling
and initialization utility.

Diskette
Initiator .. Initialize and
Function Labeling

($INIT)

~
,

End of Job
($EOJ)
-Control Storage-

Figure 18-1. Diskette Labeling and Initialization Utility Control Flow ($INIT)

....

....

....
....

Licensed Material-Property of IBM

Single Name .. Find

(#MASFN)

Syntax . Checker .
(#USYX)

SYSLOG ..
(#CLSG)

Program Organization 18-5

Data Areas

VERBSUVE, VERBSVE, AND VERBSE VERB LISTS

There are three verb lists for the diskette labeling and ini·
tialization utility: VERBSUVE, VERBSVE, and VERBSE.
Each time the syntax checker (#USYX) is called, one of
the lists must be passed. VERBSUVE is passed on the first
call. On each subsequent call, the control statement read
determines the verb list that is passed on the next call. The
third and fourth bytes of the syntax checker parameter list
contain the address of the verb list. Figure 18·2 shows the
format and contents of each verb list.

Displacement
of Byte Label Des~ription

18-6

o VERBSUVE UIN verb 10

VOL verb 10

2 END verb 10

3 X'FF' end of verb list

o VERBSVE VOL verb 10

END verb 10

2 X'FF' end of verb list

o VERBSE END verb 10

X'FF' end of verb list

Figure 18·2. VERBSUVE, VERBSVE, and VERBSE
Verb Lists

Licensed Material-Property of IBM

Introduction

The VTOC display utility displays or prints VTOC informa
tion from the disk or a diskette.

The disk information displayed or printed is:

• Volume ID and owner ID

• Disk capacity

• One or all of the VTOC entries

• Available disk space

The diskette information displayed or printed is:

• Volume ID and owner ID

• Available diskette space

• One or all of the VTOC entries

Chapter 19. VTOC Display Utility ($LABEL)

This utility program consists of the disk VTOC display
routine ($lABEl), the diskette VTOC display routine
($lABI1), and the syntax specification module ($lABlS).
The program resides in the system library.

The VTOC display utility is called by the CATALOG pro
cedure or appropriate OCl statements. (See the System
Support Reference Manual for more information about
calling and executing $lABEL.)

The VTOC display utility requires 14K bytes of main stor
age for program execution.

Introduction 19-1

Licensed Material-Property of IBM

Method of Operation

Diagram 19.1 shows the function of the VTOC display
utility.

19·2

Licensed Material-Property of IBM

From: Initiator

'" INPUT ----..

Main Storage

Transient Area

User Area:
$LABEL
$LABI1

Control statements

Disk or diskette:
• Volume label

• VTOC
• Heading message

member

SCA

~OCESS

... o Process control statements and determine
function requested

D Display requested disk VTOC information

II Display requested diskette VTOC
information

II Terminate utility program

---->

-.z----:Tl

OUTPUT ___ _

Displayed
information

-or-

Printed
information

To: Control Storage End-of-Job
Transient ($EOJ)

OEseR IPTION
MODULE/
ROUTINE

III Find syntax checker (#USYX). #MASFN

Use main storage relocating loader to load #USYX. $LABEL

Read and syntax check control statement. #USYX

Determine function requested:

• If display disk VTOC requested, go toD .

• If display diskette VTOC requested, go toD.

fI Get disk VTOC SSS address from system communication area (SCA) and place in lOB. $LABEL

Read in system and user format 1s to build table of file start and end SSS addresses (F1TABLE). Disk lOS

Sort VTOC address table just built (sort by start location). $LABEL

Set up header information:

• Retrieve heading message. #MGRET

• Retrieve pack and owner 10. Disk lOS

• Unpack date. $LABEL

• Determine disk capacity from SCA.

Display or print heading. #CLST

Diagram 19.1 (Part 1 of 3). Perform VTOC Dispaly Utility Function ($LABEL)

Method of Operation 19-3

Licensed Material-Property of IBM

OEseR IPTION
MODULE/
ROUTINE

If request to display a specific file (LABEL-file label): $LABEL

• Read specified file entry from F1TABLE. #CSVF

• Extract appropriate data from format 1. $LABEL

• Display requested VTOC information on SYSLIST device (display or print). #CLST

• Check for another file with same name and display if found. $LABEL

• Calculate .available space on disk.

• Disp.lay or print available space amount and location. #CLST

If request to display all VTOC entries (LABEL-ALL): $LABEL

• 0 Read format 1s from F1TABLE. #CSVF ~
• Extract appropriate data from format 1. $LABEL

• Display VTOC information on SYSLIST device (display or print!. #CLST

• Continue processing each VTOC entry until all entries displayed. $LABEL

• Calculate available space on disk.

• Display or print available space amount and location. #CLST

Display error messages as needed. #CLXS

When last VTOC entry processed, go toDto terminate program. $LABEL

D Find diskette VTOC display routine ($LABI1). #MASFN
...

Use main storage relocating loader (SVC-52) to load $LABI1 into main storage. $LABEL

Allocate diskette device. #CAML

Return. $LABI1

Read VTOC from diskette. #CSVI

Save diskette format and system date. $LABI1

Read diskette label track. Diskette
lOS

Move volume 10, owner 10, and system date into headings save area. $LABI1

Retrieve initial and overflow headings and save for later use. #MGRET

Build VTOC entry table: $LABI1

• • Read HDR1s from diskette. Diskette lOS ~
• Build entry in VTOC table. $LABI1

• Convert and place total sectors used by file in table entry for listing.

• If two sided diskette, process HDR1 on other side.

• Mask deleted files.
0 Continue processing until all sectors processed.

Sort VTOC table entries by starting diskette sector addresses.

Find last entry not deleted to determine available sectors on diskette.

Display heading lines on SYSLIST device. #CLST

If no entries to display:
0 Display or print NO ACTIVE FILES message.

• Display or print END OF DISPLAY message.
0 Go tolJto terminate program. $LABI1

Diagram 19.1 (Part 2 of 3). Perform VTOC Display Utility Function ($LABEL)

Licensed Material-Property of IBM

DESCRIPTION MODULE/
ROUTINE

If display all files request (LABEL-ALL): $LABI1

• Move display information for each file to print buffer.

• Display or print file information. HCLST

• Continue processing until all files processed. $LABI1

• DisPlaiir print END OF DISPLAY message. HCLST

• Go to • to terminate program. $LABI1

If display specific file request (LABE L-file label):

• Find specified file in VTOC table.

• Move display information to print buffer.

• Display or print file information. HCLST

• Search entire table for every file name specified and display all.

• Display or print END OF DISPLAY message.

• Go toDto terminate program. $LABI1

Display error messages as needed. HCLSG

D Pass control to control storage end-of-job transient ($EOJ) to terminate utility program. $LABEL or
$LABI1

Diagram 19.1 (Part 3 of 3). Perform VTOC Display Utility Function ($LABEL)

Method of Operation 19-5

Licensed Material-Property of IBM

Program Organization

Figure 19·1 shows the control flow of the VTOC display
utility.

19-6

Licensed Material-Property of IBM

Initiator
Function

J ~
Single Name

... - Find
,.

(#MASFN)

Syntax

- Checker

Disk VTOC '"

Display (#USYX)

Routine
($LABEL)

Disk lOS
Message

- Retrieve

(#MGRET)

Disk VTOC .. Read/Write

""
(#CSVF)

SYSLIST

-
....- -.

(#CLST)

SYSLOG ...
...

(#CLSG)

..
"" Diskette VTOC

Display Routine

H ($LABI1)

End of Job
($EOJ)
-Control Storage-

'- --
Figure 19-1 (Part 1 of 2). VTOC Display Utility Control Flow ($LABEL)

Method of Operation 19-7

Licem;ed Material-Property of IBM

'- -
Normal
Allocate
(#CAML)

Diskette VTOC ...
Read/Write .

(#CSVI)

Diskette VTOC
Display Routine

($LABI1)
Diskette 105

.. Message
Retrieve

(#MGRET)

SYSLOG ..
(#CLSG)

.... .. SYSLIST

.....
(#CLST)

~

End of Job
($EOJ)
-Control Storage-

Figure 19-1 (Part 2 of 2). VTOC Display Utility Control Flow ($LABEL)

19-8

Licensed Material-Property of IBM

Introduction

The reload library utility reloads the system library from
the backup diskette(s) onto disk. The two major functions
performed by the utility are the reload command function
and the reload library function.

The reload command - reload command routine ($LOADI)
ensures #LlBRARY exists on the backup diskette, then it
sets the 'IPL-from-diskette' flag in control storage, loads
the IPL routine ($IPW), and passes control to the psuedo
IPL routine ($IPS) which performs a diskette IPL.

The reload library routine ($LOADI) functions are:

• Determine the master console

• Prepare for diskette operations

• Read the unit definition table (UDT)

• Test for a valid VTOC and configuration record

• Issue operator prompts for system options

• Process the configuration record

• Allocate system areas

• Build volume label, IPL record, and configuration record

• Write library directory and library members to disk

• Pass control to control storage IPL ($IPS) to perform
a disk IPL

Chapter 20. Reload Library Utility ($LOADI)

The reload library utility ($LOADI) is called by the
RELOAD procedure or appropriate OCL statements.
$LOADI passes control to the pseudo IPL routine ($IPS).
$IPS then performs an IPL diskette. This is essentially
the same operation performed by setting the MSIPL switch
on the CE panel to the Diskette position and pressing the
Load key. For more information about calling and execut
ing the reload library utility, see the System Support
Reference Manual.

The main storage nucleus initialization routine (#MSNIP),
the reload library routine ($LOADI), the reload library
screen format (##FLOD), and messages must be included
on the first backup diskette in order to run the reload
library utility. The utility will run dedicated (stand alone)
while it is replacing the current system library. The utility
requires 30K bytes of main storage for program execution.

Introduction 20-1

Licensed Material-Property of IBM

Method of Operation

Diagram 20.1 shows the functions of the reload library
utility.

20-2

Licensed Material-Property of IBM

From: Control Storage IPL
($IPL) or ($IPS)

INPUT----_ ~OCESS

Main Storage

Transient Area:
$LOADI
work area

User Area:
$LOADI

Diskette:

• Configuration
record

• #MSNIP
• Library

directory

• Library
members

System data areas:

• System VTOC
• #LlBRARY

format 1

• Format 5

• UDT

D Perform program initialization

D Validate VTOC and configuration record

D Prompt for system options

o All ocate system areas

II Update LCS

iii Write IPL control information to disk

IJ Copy library from diskette to disk

D Terminate program

II OUTPUT ---_

New library
directory

New library member

Updated system
data areas:

• #LlBRARY
format 1

• Format 5

• System VTOC

• Configu ration
record

• #MSNIP

.. --------------------~
OESeR IPTION

D Determine master console for reload:

• Test console for errors; if error, wait for request - enter sequence from console.

• Find terminal unit block (TUB) for console.

Determine disk extent parameters.

Prepare for diskette operations:

• Determine diskette sector size.

• Read diskette volume label.

• Ensure proper diskette in use.

Read unit definition table (UDT).

Diagram 20.1 (Part 1 of 3). Perform Reload Library Function ($LOADI)

Licensed Material-Property of IBM

To: Control Storage IPL
($IPS)

MODULE/
ROUTINE

$LOADI

Diskette lOS
$LOADI

Disk lOS

Method of Operation 20·3

MODULE/
DESCRIPTION ROUTINE

fJ Read disk volume label. Disk lOS

If volume label correct, read configuration record.

Read system VTOC.

Verify system format 1 s and format 5. $LOADI

Check format 5 for enough space to expand library.

Determine if user's VTOC must be moved to new area when system areas are allocated.

Calculate minimum library requirements for directory.

Calculate minimum system library size.

If system is in error, build terminal table from UDT.

II Set up prompts based on old system configuration.

Prompt for: Work

• Directory sectors. Station

• Library blocks. lOCH

• History file tracks. (WSIOCH)

• Task work area tracks.

• Delete files from VTOC.

• Use backup configuration record.

Accept operator response to prompts. WSIOCH

Check prompt values received against system data. $LOADI

II Initialize library directory area to X'FF'.

Initialize history file.

If delete file request, initialize user VTOC.

Create t/LIBRARY format 1.

Create format 1s for system files in system VTOC (SYSWORK, SYSHIST, SYSTASK).

Calculate new format 5 based on new library size.

Write system format 1s and format 5 to disk. Disk lOS

II Update library control sector (LCS) fields based on operator requested t/LIBRARY space allocation. $LOADI

Build volume label:

• Put label 10, owner 10, and volume name in volume label.

• Write volume label to disk. Disk lOS

m Set configuration values: $LOADI

• Disk size option.

• Main storage size.

• Control storage size.

• Security flag if security file on disk ..

Write t/MSN I P and configuration record to disk. Disk lOS

Write terminal information table to disk.

Diagram 20.1 (Part 2 of 3). Perform Reload Library Function ($LOADI)

20-4

Licensed Material-Property of IBM

DESCRIPTION
MODULE/
ROUTINE

0 Copy library directory from diskette to disk: $LOADI

• Read backup library directory into 1/0 buffer. Diskette 105

• Return. $LOADI

• Write library directory from 1/0 buffer to disk. Disk 105

Copy library members from diskette to disk: $LOADI

• Read #LlBRARY members into 1/0 buffer. Diskette 105

• Return. $LOADI

• Write members from 1/0 buffer to disk. Disk 105

• Return. $LOADI

• Issue message to change diskette if necessary. WSIOCH

II Issue reload complete message to operator.

Initiate pseudo disk-IPL: $LOADI

• Evoke control storage loader function.

• Load and pass control to pseudo control storage IPL ($IPS) .

Diagram 20.1 (Part 3 of 3). Perform Reload Library Function ($LOADJ)

Method of Operation 20-5

Licensed Material-Property of IBM

Program Organization

Figure 20-1 shows the control flow of the reload library
utility.

Control
Storage
IPL -

Reload Library
Routine

($LOADJ)

Figure 20-1. Reload Library Routine Control Flow ($LOADI)

20-6

'"'

..

....

..

....

licensed Material-Property of IBM

..
Disk 105 -

..
Diskette 105

.. Work Station

...
lOCH

Data Areas

$LOADI COMMUNICATION AREA

The $LOADI communication area is a 28-byte area that is
read from the backup diskette into location X'4FCO' in
storage. It is created by the backup utility and contains
information that is used by the reload library utility in
reloading the system library from the backup diskettes.
Figure 20-2 shows the format and contents of the area.

Displacement of
Leftmost Byte
in Hexadecimal

o

4

5

8

B

13

16

19

Label

PDIRSECT

PMEMSECT

PLIBIND

PCDATE

PARMRSVD

PFILNAM

PDIRSPC

PLlBSPC

PSCPSIZE

Figure 20-2. $LOADI Communication Area

Length
in Bytes

3

3

3

8

3

3

3

Description

Number of active disk sectors in the directory

Number of active member disk sectors

Reserved

Backup file creation date

Reserved

Backup file name

Number of sectors allocated to the directory

Number of sectors allocated to the library

Number of sectors in the SSP base

Data Areas 20-7

Licensed Material-Property of IBM

20-8

Licensed Material-Property of IBM

Introduction

The library maintenance utility ($MAINT) performs the
following four major functions:

• Allocates libraries
- Allocates user libraries

Changes member size of any library
- Changes directory size of a user library

• Compresses a library

• Deletes members from a library

• Copies library members:
- Copies members from a library to a file
- Copies members from a library to a library
- Copies members, member names, or library status to

a display
- Copies member names from a file to display

Copies member from a file to a library
Copies members from the reader (SYSIN) to a
library

The library maintenance program consists of the following
driver modules that reside in the system library:

• Library maintenance mainline ($MAINT)

• Library specification ($MASPC)

• Library allocate ($MAlOC)

• Library compress ($MARCK)

• Library compress - phase 2 ($MAR2K)

• Library compress - phase 3 ($MAR3K)

• Library delete ($MADl T)

• Sector mode file display ($MASDF)

• Record mode file display ($MARPF)

Chapter 21. Library Maintenance Utility ($MAI NT)

• Library print routine ($MADSP)

• Sector mode library to file copy ($MATFS)

• Record mode library to file copy ($MARTF)

• Library to library copy ($MAl Tl)

• Sector mode file to library copy ($MATlS)

• System/32 sector mode file to library copy ($MAF32)

• Record mode file to library copy ($MARFF)

• Reader to library copy ($MARDR)

Note: Additional librarian facility programs are described
in Chapter 6, System Service.

$MAINT is the mainline module for the library mainte
nance utility. It is loaded and given control when the sys
tem operator enters the lOAD $MAINT, RUN OCl state
ments. It runs in a 14K region with a logical start address
of x'caoo'.

Utility control statements following the RUN statement
request the various functions of the library maintenance
utility. $MAINT reads and checks the utility control
statements by calling the syntax checker (#USYX).
$MAINT builds a library common area (CNTlBMSG)
from information supplied by the utility control state
ments, moves the common area over the first sector of
itself, and loads the appropriate driver module after the
common area.

The loaded module performs the requested function (load
ing other modules as required) and then overlays itself with
the $MAINT module. $MAINT then processes the next
utility control statement.

The following is a description of the subfunctions performed
by the allocate, compress, delete, and copy functions of the
library maintenance utility.

Introduction 21-1

Licensed Material-Property of IBM

The data areas section of th is chapter contains applicable
storage usage maps. The first map shows the region when
the $MAI NT module is executing. For each unique func
tion there is a corresponding storage usage map depicting
the region when the requested function is being performed.

Allocate Function ($MALOC):

• Creates a user library with specified size

• Increases or decreases the size of an existing library

• Changes the directory size of a user library (RELOAD
is used to change the directory size of the system library)

Compress Function ($MARCK, $MAR2K and $MAR3K):

• Removes gaps in library member space and updates
library directory

• Updates system pointers affected by the compress
function

Delete Function ($MADL T):

• Deletes non-SSP members, or all non-SSP members hav
ing a certain name

• Deletes non-SSP members of one type, or all types hav
ing names beginning with certain characters

• Deletes all non-SSP members of one type or all types

• Deletes non-SSP members of one type or all types
except members having certain names or having names
beginning with certain characters

• Deletes specified members, including SSP members

21-2

Copy Function:

• Reader to library ($MAR DR) - replaces or adds an S
or P member from the system input device

• Library to library ($MAL TL):
Copies a member of one library type or all library
types within a library or between libraries, optionally
changing the member's name in the process
Copies members of one type or all types within a
library or between libraries that have names beginning
with certain characters
Copies members of one type or all types, omitting
members having a certain name or having names
beginning with certain characters or omitting all
SSP members
Copies all members of one type or all types from one
library to another (if type is all, only non-SSP mem
bers are copied)

• Library to file ($MATFS or $MARTF):
Copies to a file a member having a certain name, or
all members with that name
Copies to a file members of one type, or all types
having names beginning with certain characters
Copies to a file all members of one type
Copies to a file all members of all types, optionally
omitting members having a certain name or having
names beginning with certain characters (not includ
ing SSP members)
Copies to a file members of one type, omitting mem
bers having a certain nameor having names beginning
with certain characters, or omitting all SSP members
Copies to a file all members with a PTF applies (only
sector mode - $MATFS)
Adds members to an existing file of library members
Copies members to a basic exchange diskette file
(only record mode - $MARTF)

Licensed Material-Property of IBM

• File to library ($MATlS, $MARFF, or $MAF32):
Copies members in a file to a library

- Copies members with special PTF log numbers from
a file to a library (only sector mode - $MATlS and
$MAF32)
Copies members in a basic exchange diskette file
directly to a library (only record mode - $MARFF)
Copies duplicates of existing members to a library
Note: When members with PTFs are copied to a
library, the PTF is logged in the PTF lOG in that
library.

• File to printer ($MASDF or $MARPF) - prints the type
and name of all members in a librarian file

• Library to printer ($MADSP):
Prints a member or all members having a certain name
Prints all members of a certain type
Prints members of one type, or all types having names
beginning with certain characters
Prints members of one type or all types, omitting
members having certain names or having names
beginning with certain characters, or omitting all
SSP members
Prints directory entries for members of one type
Prints directory entries for members of one type or
all types, omitting entries having certain names or
having names beginning with certain characters or
omitting all entries for SSP members
Prints all directory entries and the library status
Prints the library status

After completing processing, the driver module reloads
$MAINT over the library common area and itself. $MAINT
reads the next utility control statement and determines the
function to perform. When it reads an END statement,
$MAI NT calls the end-of- job transient ($EOJ) to termi
nate the job step.

The library maintenance utility is called by the appropriate
procedure or OCl statements. (See the System Support
Reference Manual for more information about calling and
executing $MAI NT.)

Introduction 21-3

Licensed Material-Property of IBM

Method of Operation

Diagrams 21.1 through 21.7 show the functions of the
library maintenance utility.

From: Initiator

INPUT

1 ~OCESS

I
Format 1's and >- Allocate a library (Diagram 21.2)
format 5s I ~. Library format 1's Compress a library (Diagram 21.3)

I ..
Library directory >. Delete library members (Diagram 21.4)
and format 1 I I
Library member >. Display library member or information
or information I ~

(Diagram 21.5)

Library data Copy library to file or library to library

I I (Diagram 21.6)

File data >- Copy file to library or reader to library

I (Diagram 21.7)

I
r OUTPUT

> Allocated or

I I changed library

> Compressed library

I I > Deleted library

I I directory entry

> Displayed or

I I printed data

> Copied file or

I I>
library member

Library member

I

:Il
To: Control Storage End-of-Job

Transient ($EOJ)

Diagram 21.1. Overview of Library Maintenance Utility

21-4

Licensed Material-Property of IBM

From: Initiator
• INPUT ____ •

~OCESS

XR1

(CNTLBMSG

Main Storage

Transient Area

User Area:
$MAINT
$MALOC

Library common
area

Control statements

Library format 1's

Disk format 5s

LCS

• _____ >..... D Interpret control statement and build
library common area

fJ Process CREATE NEW USER LIBRARY
request

II Process CHANGE LIBRARY MEMBER
SIZE request

o Process CHANGE DIRECTORY SIZE
request

II Read next control statement

OUTPUT ___ _

--> New library

Updated:

• Format 1's
• Format 5s

• LCS
• Library directory

To: Control Storage End-of-Job
Transient ($EOJ)

OEseR IPTION
MODULE/
ROUTINE

D Read and syntax check utilitY control statement. IUSYX

If END statement, call control storage end-of-job ($EOJ). $MAINT

Process L1BRNAME parameter:

• Ensure library exists (if CREATE not given) . IMAFLB

• Save library format 1 address. $MAINT

Move save area (library common area) to beginning of $MAINT (X'C800').

Load library allocate module ($MALOC) following save area (X'C900').

f) Ensure specified library name is valid. $MALOC

Ensure specified directory size is valid.

Allocate disk space. ICAS1

Return. $MA~OC

Issue error message if file name already exists or insufficient space. ICLXS

Note: Format 1 and VTOC format 5 updated by ICASt. $MALOC

Diagram 21.1 (Part 1 of 2). Perform Library Maintenance - Allocate Function ($MAINT)

Method of Operation 21-5

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Move new file specification block (FSB) from file FSB chain to library FSB chain. $MALOC

Initialize library control sector (LCS).

Write LCS to library. Disk lOS

Return. $MALOC

Write format 1 to VTOC. @CSVF

Initialize entire directory to X'FF's. $MALOC

Write directory, PTF LOG directory entry, and one PTF LOG sector to disk. Disk lOS

D Read LCS for library to be changed.

Return. $MALOC

Compare directory if needed. $MACMP

Ensure size change requested is within acceptable range. $MALOC

If size increase request:

• Attempt to allocate space after library. #CAS1

• Return. $MALOC

• Write LCS back to disk. Disk lOS

• Return. $MALOC

• Write format 1 to VTOC. @CSVF

• Return. $MALOC

• Issue halt if space not available. #CLXS

If size decrease request: $MALOC

• Read format 5s from disk. Disk lOS

• Return. $MALOC

• Update and write format 5s back to disk. Disk lOS

• Return.

• Update and write format 1's to disk. @CSVF

• Return. $MALOC

• Update LCS and write to library. Disk lOS

• Return. $MALOC

• Issue error message if not able to decrease library size. #CLXS

a If directory size decrease request: $MALOC

• Ensure size decrease possible.

• Update relative disk address in each directory entry to agree with new start address.

• Write updated directory to disk. Disk lOS

• Return. $MALOC

• Write LCS to disk. Disk lOS

• Return. $MALOC

• Issue error message if not able to decrease size. #CLXS

If directory size increase request: $MALOC

• Attempt to allocate space ahead of library. #CAS1

• Return. $MALOC

• Update LCS and write to disk. Disk lOS

• Return. $MALOC

• Write format 1's to VTOC. @CSVF

• Return. $MALOC

• Shift directory (left) to new location. $MACMP

• Update disk address relative to directory start.

• Return. $MALOC

• Issue halt if space not available. #CLXS

Diagram 21.1 (Part 2 of 2). Perform Library Maintenance - Allocate Function ($MAINT)

21-6

Licensed Material-Property of IBM

~INPUT ___ .. _
From: Initiator

~OCESS

XR1

(CNTLBMSG

Main Storage

Transient Area:
$MAR3K

User Area:
$MAINT
$MARCK
$MAR2K

Library common
area
Control statements
Library. format 1's
LCS

... o Interpret control statements and build
library common area

fI Remove gaps in library member space
and update library directory

D Update system pointers affected by
compress function

D Read next control statement

------:Tl

OUTPUT ___ _

> Compressed library

Updated:

• LCS
• Library directory
• System pointers

To: Control Storage End-of-Job
Transient ($EOJ)

OEseR IPTION

D Read and check syntax of utility control statement.

If END statement, call control storage end-of-job ($EOJ).

Process LI BRNAME parameter:
• Ensure library exists.
• Save library format 1 address.

Move save area (CNTLBMSG) to beginning of $MAINT (X'Caoo').

Load library compress module ($MARCK) following save area (X'C900').

fJ Ensure exclusive use of library to be compressed (first pass only).

If # LI BRARY, ensure dedicated system. Suspend command processor

Read library control sector (LCS).

Run compactor to remove deleted directory entries.

Build matrix table from library directory information.

Build hole table from matrix table information.

Move library member sectors across gaps indicated in hole table.

Diagram 21.2 (Part 1 of 2). Perform Library Maintenance - Compress Function ($MAINT)

Licensed Material-Property of IBM

MODULE/
ROUTINE

#USYX

$MAINT

#MAFLB
$MAINT

$MARCK

$MAR3K

Disk lOS

$MACMP

$MARCK

Disk lOS

Method of Operation 21-7

MODULE/
OEseR IPTION ROUTINE

Update LCS to show regained member space. $MARCK

Update library directory (relative addresses) using hole table information.

Write LCS and directory back to disk. Disk 105

Load library compress phase 2 ($MAR2K) over $MARCK (X'C900'). $MARCK

II Update message member addresses in job control block (JCB). $MAR2K

Update menu member pointers in JCB.

If any procedures active, update message member and procedure disk addresses in program procedure save area
(PPSA), using hole table information.

If not #LlBRARY, go tollO.

Update SSP message member addresses in system communication area (SCA).

Update format index tables and WTG tables in SSP modules. #MAXRF

Update system transient 'table in control storage. $MAR2K

o If second pass needed, reload $MARCK and go to D.
Dequeue library just compressed.

If #LlBRARY, restart command processor.

II Load $MAINT back into user area at location X'C800'.

Read next control statement. $MAINT

When END read, call end-of-job ($EOJ).

Diagram 21.2 (Part 2 of 2). Perform Library Maintenance - Compress Function ($MAINT)

21-8

Licensed Material-Property of IBM

From: Initiator
IINPUT ____ •

~OCESS

(

XR1

CNTLBMSG

Main Storage

Transient Area

User Area:
$MAINT
$MADLT

Library common
area

Control statement

Library directory

LCS

Library format 1

• ___ ~>.... D Interpret control statement and build
library common area

D Find library directory entry(s) to delete

II Delete specified library directory entries

II Read next control statement

-------::IJ

.>

~ OUTPUT ___ _

Deleted library
directory entries

Updated LCS

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
OESeR IPTION ROUTINE

D Read and syntax check utility control statements. #USYX

If END statement, call end of job ($EOJ). $MAINT

Process LlBRNAME parameter:

• Ensure library exists. #MAFLB

• Save library format 1 address. $MAINT

Encode and save NAME and OMIT parameters.

Move save area (CNTLBMSG) to beginning of $MAINT (X'caOO').

Load library delete module ($MADLT) following save area (X'C900').

If deleting ALL or SSP from # LI BRARY, ensure proper dedication $MADLT

fJ If deleting ALL from a user library, ensure only one user.

Read library control sector (LCS) from disk. Disk lOS

Load librarian find routine ($MALFN) into main storage. $MADLT

Diagram 21.3 (Pint 1 of 2). Perform Library Maintenance - Delete Function ($MAINT)

Method of Operation 21-9

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Determine and save information for librarian find routine: $MADLT

• Library tYpe (0, R, S, or p).

• Library name, partial name, or ALL.

• If SSP modules.

• OMIT parameter, if any.

Find directory entries of modules to be deleted and pass entry addresses back to $MADL T. $MALFN

II Check returned entry for delete request. $MADLT

Delete module if delete specified:

• Set total number of sectors in directory entry to zero to show entry deleted.

• Update active and available directory entry count.

• Delete PTF information if necessary. $MAPTF

Write LCS back to disk. Disk lOS

Issue error message if unable to delete requested module. #CLXS

II Load $MAINT back into user area at location x'caoo'. $MADLT

Read next control statement. $MAINT

When END read, call control storage end of job ($EOJ).

Diagram 21.3 (Part 2 of 2). Perform Library Maintenance - Delete FUnction ($MAINT)

21-10

Licensed Material-Property of IBM

From: Initiator
INPUT __ m-. __

~OCESS

XR1

(CNTlBMSG

Main Storage

Transient Area

User Area:
$MAINT-
$MADSP
$MASDF -
$MARPF

Library common
area
Control statements
Library:
~ Directory &

Members
• Control sector

(lCS)
File:
o Record mode

library mbr.
o Sector mode

library mbr.

D Interpret control statements and build
library common area

D Print library directory entries, library
members or status information

II Display type and name of each source or
procedure member in record mode file

o Display type and name of library members
in sector mode file

m Read next control statement

...
> ...

'" OUTPUT ___ _

Requested display
on SYSLIST
device

To: Control Storage End-of-Job
Transient ($EOJ)

DESCR IPTION
MODULE/
ROUTINE

D Read and syntax check utility control statement. #USYX

If END statement, call end-of-job ($EOJ). $MAINT

Process L1BRNAME parameter (if displaying from a library):
0 Ensure library exists. #MAFlB

• Save library format 1 address. $MAINT

Encode and save NAME and OMIT parameters (if any).

If RECl parameter given, set record mode switch and if not given, set record length to B.

If copy from library:
0 Move save area ,(CNTlBMSG) to beginning of $MAINT (X'CBOO').

• load library print routine ($MADSP) following save area (X'C900') .
0 GotoD·

Diagram 21.4 (Part 1 of 4). library Maintenance - Display Function ($MAINT)

Method of Operation 21-11

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

If copy from file: $MAINT

• Determine if device is disk or diskette.

• Allocate specified file. #CMAL

• Move save area (CNTLSMSG) to beginning of $MAINT (X'C800'). $MAINT

• If record mode, load record mode file display routine ($MARPF) following save area (X'C900') and go toll.

• If sector mode, load sector mode file display routine ($MASDF) following save area (X'C900') and go to II.
D Load librarian find routine ($MALFN) into main storage. $MADSP

Load SYSLIST (#CLSP or #CLSW).

Allocate printer (#CLST calls printer allocate).

Read configuration record to get print image. Disk IDS

Return. $MADSP

Retrieve all headings. #MGRET

Get date for headings from job control block (JCS) and get time. $MADSP

If request to print status information:

• Get library control sector (LCS). Disk IDS
~ • Compact library directory if necessary. $MACMP

• Return. $MADSP

• Get status information heading messages and put in print buffer. #MGRET

• Convert LCS data to printable data. $MADSP

• Print library status information. #CLSP
or

#CLSW
If request to print directory entries: $MADSP

• Find directory entries to display. $MALFN

• Put directory entries in work area and indicate names to omit. $MADSP

• Convert hexadecimal to printable characters.

• Print headings and specified directory entries. #CLSP
or

#CLSW
If request to print library members: $MADSP

• Find directory entries to display. $MAFLN

• Put directory entries in work area and indicate names to omit.

• Format directory entries to printable characters.

• Print specified directory entries. #CLSP
or

#CLSW

• If module is type 0 or R, convert binary data to dump-format. $MADSP

• If module is type S or P, get source or procedure (S or P) modules. @MASYL

• Print specified library members. #CLSP
or

Note: Directory entry is printed followed by associated library member. Then next directory entry and member. #CLSW

Display messages as needed. #CLXS

Go toll to read next control statement. $MADSP

II Load SYSLIST (#CLSP or #CLSW). $MARPF

Retrieve heading messages. #MGRET

Get date and time.

Diagram 21.4 (Part 2 of 4). Library Maintenance - Display Function ($MAINT)

21-12

Licensed Material-Property of IBM

MODULE/
DESCRIPTION ROUTINE

~ Determine device type (diskette or disk): $MARPF 4
• If diskette, load diskette data management (#DRDM) into main storage .

• If disk, disk data management (#DDDM) is resident .

Open input file. #DMOP

Print headings previously retrieved. #CLSP
or

#CLSW

Read COpy record from input file (diskette or disk). #DRDM
or

#DDDM

" Check record for val id copy control statement. $MARPF

Print type and name from copy control statef1lent. #CLSP
or

#CLSW

Return. $MARPF

Read records from file (diskette or disk) until CEND control record is read. #DRDM
or

#DDDM

If another COpy control statement is read, return tollO. $MARPF

Close input file. #DMCL

Go to II to read next control statment. $MARPF

II Load SYSLIST (#CLSP or #CLSW). $MASDF

Retrieve heading messages. #MGRET

Get date and time

• Determine device type (diskette or disk): $MASDF ~ • If diskette, load diskette sector data management (#DRSM) into main storage .

• If disk, load disk sector data management (#DDSM) into main storage .

Open input file. #DMOP

Return. $MASDF

Read data from specified file and place in output buffer. #DRSM
or

#DDSM

Put file name in headings. $MASDF

Print headings. #CLSP
or

#CLSW

Find next control record and check validity. $MASDF

Diagram 21.4 (Part 3 of 4). Library Maintenance - Display Function ($MAINT)

Method of Operation 21·13

Licensed Material-Property of IBM

MODULE!
OEseR IPTION ROUTINE

Display type and name. #CLSP
or

#CLSW

Return. $MASDF

When end-of-file is reached, close file. #DMCL

Go tom to read next control statement. $MASDF

II Load $MAINT back into user area at location X'C800'.

Read next control statement $MAINT

When END read, control storage call end of job ($EOJ).

Diagram 21.4 (Part 4 of 4). Library Maintenance - Display Function ($MAINT)

21-14

Licensed Material-Property of IBM

From: Initiator
~INPUT ____ _

L.::;:0CESS
OUTPUT ___ _

XR1

(CNTlBMSG

Main Storage

Transient Arsa

User Area:
$MAINT -
$MAlTl
$MARTF -
$MATFS

Library common
area

Control statements

Library:
• Directory and

Members
• Control sector

(lCS)

.. > D Interpret control statements and build
library common area

D Copy library to file in record mode

D Copy library to file in sector mode

D Copy library to library

II Read next control statement

.-......yo> Library control
block

Library file con
taining library
memb.er(s)

Library containing
copied library
members

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
OEseR IPTION ROUTINE

D Read and syntax check utility control statements. #USYX

If END statement, call control storage end·of-job ($EOJ). $MAINT

Process FROM parameter:

• Ensure library exists. #MAFlB

• Save library format 1 address. $MAINT

Encode and save NAME and OMIT parameters (if any).

If RECl parameter given, set record mode switch and if not given, set Fecord length to 8.

Determine if device is disk or diskette.

If copy from library to file:

• Determine if copy to new file or add to existing file. • • Allocate file. #CAMl

• Ensure RECl valid (if applicable). $MAINT

• Issue error messages if necessary. #ClXS

• Move save area (CNTlBMSG) to beginning of $MAINT (X'C800'). $MAINT.

• If record mode, load record mode from library to file copy routine ($MARTF) following save area (X'C900')

and go tofl.

Diagram 21.5 (Part 1 of 3). Perform Library Maintenance - Copy FROM - Library Functions ($MAINT)

...

Method of Operation 21-15

Licensed Material-Property of IBM

OEseR IPTION
MODULE/
ROUTINE

• If sector mode, load sector mode from library to file copy routine ($MATFS) following save area (X'C9OO') $MAINT
and go toD. .

If copy from library to library:

• Ensure valid parameters specified.

• Move save area (CNTLBMSG) to beginning of $MAINT (X'C800').

• Load library to library copy routine ($MAL TL) following save area (X'C900') and go toO.

D Use included source get routine (#MASYL) and load librarian find routine ($MALFN) in main storage. $MARTF

Determine device type (diskette or disk):

• If diskette, load record mode diskette data management (#DR OM) into main storage.

• If disk, record mode disk data management (#DDDM) is resident.

Open output file. #DMOP

Return .. $MARTF

Find directory entry of library member to be copied. $MALFN

Move type (S or P) and directory name into copy control statement. $MARTF

Write copy control statement to file (disk or diskette). #DDDM or
#DRDM

Return. $MARTF

Get records from library member. @MASYL

Return. $MARTF

Write record to file. #DDDM or
#DRDM

Write CEND to file when at end of each member.

Continue processing until all requested members copied to file. $MARTF

Display error messages as necessary. #CLXS

Close output file. #DMCL

Go to II to read next control statement. $MARTF

EJ Load library sector get/put routine ($MAPGS) and librarian find routine ($MALFN) into main storage. $MATFS

Determine device type (diskette or disk):

• If diskette, load diskette sector data management (#DRSM) into main storage .

• If disk, load disk sector data management (#DDSM) into main storage.

Set DTFattributes for required function.

Open output file. #DMOP

Return. $MATFS

Find directory entry of library member to be copied. $MALFN

Move directory entry and PTF data (if any) into data management buffer. $MATFS

Get library member sectors and place in data management buffer. $MAPGS

Continue processing until buffer is full. $MATFS

Diagram 21.5 (Part 2 of 3). Perform Library Maintenance - Copy FROM - Library Functions ($MAINT)

21-16

Licensed Material-Property of IBM

OEseR IPTION

Write buffer to file (disk or diskette).

Continue processing until all requested members copied to file.

Display error messages as necessary.

Close output file.

Go to lito read next control statement.

II Load sector get/put ($MAPGS), librarian find ($MALFN), librarian open/close ($MALCO), and library
directory fast insert ($MAF IR) into main storage.

Set up buffer to receive library directory and member.

Find directory entry of library member to copy.

Return.

Open member being copied (FROM library).

Issue halt if copying SSP load member to system library and system not dedicated, or copying SSP load
member to a user library.

If name not ALL, move partial or full new name into library control block (LCB).

If first member in a stack, enque library directory and read LCS.

Move PTF data from FROM LCB to TO LCB.

Open library member being created (TO library).

Retrieve library member sectors from FROM library and place in buffer.

Copy library member sectors from buffer to TO library.

Return.

Close library member.

When stack is full or all members are processed:
• Call fast insert to update directory.
• Return to function mainline.

• Write LCS.
• Dequeue library directory.

Continue processing until all requested library members copied to TO library.

Display error messages as necessary.

Go to II to read next control statement.

II Load $MAINT back into user area to location X'C800'.

Read next control statement.

When END read, call control storage end-of-job ($EOJ).

Diagram 21.5 (Part 3 of 3). Perform Library Maintenance - Copy FROM - Library Functions ($MAINT)

Licensed Material-Property of IBM

MODULE/
ROUTINE

#DDDM or
#DRDM
$MATFS

#CLXS

#DMCL

$MATFS

$MALTL

$MALTL

$MALFN

$MALTL

$MAPGS

#CLXS

$MALTL

Disk lOS

$MAPGS

$MALTL

$MALCO

$MALTL
$MAFIR
$MALTL
Disk IDS
$MALTL

#CLXS

$MALTL

$MAINT

Method of Operation 21-17

From: Initiator

~ I N PUT --=--!!IIg ~OCESS

XR1

CCNTlBMSG

Main Storage

Transient Area

UserArea:
$MAINT -
$MATlS
$MARFF -
$MAF32
$MARDR

Library common
area

Control statements

Disk or diskette
file

Operator keyed
data

Library control
sector

..
1':1 ____ >"., D Interpret control statements and build

... library common area

fJ Copy sector mode file to library

II Copy record mode file to library

II Copy System/32 sector mode file to
library

m Copy from reader to library

III Read next control statement

.-~>

OUTPUT ___ _

Library control
sector

Library directory

Library members

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
OEseR IPTION ROUTINE

0 Read and syntax check utility control statements. #USYX

If END statement, call end of job ($EOJ). $MAINT

Process TO parameter:

• Ensure library exists. #MAFlB

• Save library format 1 address. $MAINT

Encode NAME and OMIT parameters (if any).

If RECl parameter given, set record mode switch and if not given, set record length to 8 (120 if reader).

Determine if device is disk or diskette.

Ensure RECl valid (if applicable).

Diagram 21.6 (Part 1 of 4). Perform Library Maintenance - Copy TO - Library Functions ($MAINT)

21-18

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

If copy FROM file, allocate file. HCAML

Issue error messages if necessary. HCLSG

Move save area (CNTLBMSG) to beginning of $MAINT (X'CaOO'). $MAINT

Load appropriate COpy routine into main storage following save area (X 'C900'):

• If copy sector mode file to library, load $MATLS and to to fJ.
• If copy record mode file to library, load $MARFF and go to II.
• If copy System/32 sector mode file to library, load $MAF32 and go toll.

• If copy from reader to library, load $MAR DR and go to B .
fJ Load library sector get/put ($MAPGS), librarian open/close ($MALCO), and librarian directory fast $MATLS

insert ($MAFIR) routines into main storage.

Determine device type (disk or diskette):

• If disk, load disk sector mode data management (HDDSM) into main storage.

• If diskette, load diskette sector mode data management (HDRSM) into main storage.

Set DTF attributes for requested function.

Open input file. HDMOP

Read control records, PTF information, and data records from file and place in buffer (use disk or diskette HDDSM or
data management as appropriate). HDRSM

If an SSP object (0) module is being copied to system library I ensure system is dedicated. $MATLS

If an SSP load module is copied to a user library, issue warning. $MATLS

Enqueue the library.

Read the library control sector (LCS) into main storage. FDIOS

Open library and member being copied. $MAPGS

Copy member sectors from buffer to library.

Continue processing until member copied to library. $MATLS

Close library member. $MALCO

When stack is full or all members processed: $MATLS

• Call fast insert to update directory. $MAFIR

• Return to routine mainline. $MATLS

• Write LCS. FDIOS

• Dequeue library directory. $MATLS

Continue processing members until entire file copied to library or error encountered.

Issue error messages as necessary. HCLXS

If SSP 0 members copied to system library, run cross reference resolver to update where-to-go (WTG) HMAXRF
table and format index tables.

Update system transient table. $MATLS

L
Close file. HDMCL

Diagram 21.6 (Part 2 of 4). Perform Library Maintenance - Copy TO - Library Functions ($MAINT)

Method of Operation 21-19

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Go to II to read next control statement. $MATLS

II Load library record put ($MAPUR), librarian open/close ($MALCO), and librarian directory insert ($MALlL) $MARFF
routines into main storage.

Determine device type (disk or diskette).

• If diskette, load diskette record mode data management (HDRDM) into main storage .

• If disk, disk data management (HDDDM) resident in main storage .

Set DTF attributes for requested function.

Open input file. HDMOP

Get COpy record from file and place in buffer (use disk or diskette data management as appropriate). HDDDM or
HDRDM

Check copy control record syntax. $MARFF

Open library for member in file. $MAPUR

Get record from file member and place in buffer (use disk or diskette data management as appropriate). HDDDM or
HDRDM

Copy member record from buffer to library. $MAPUR

Continue processing member record until CEND record is read or error occurs. $MARFF

Close library member. $MAPUR

Continue processing until all file members copied to library, end-of-file reached, or error condition $MARFF
encountered.

Issue error messages as necessary. HCLXS

Close input file. HDMCL

Go toDto read next control statement. $MARFF

0 Load library sector get/put ($MAPGS), librarian open/close ($MALOC), and librarian directory insert $MAF32
($MA LI L) routines into main storage.

Determine device type (disk or diskette): $MAF32

• If disk, load disk sector mode data management (HDDSM) into main storage .

• If diskette, load diskette sector data management (HDRSM) into main storage .

Set DTF attributes for requested function.

Open input file. HDMOP

Return. $MAF32

Read control records, PTF information, and data from file and place in buffer (use disk or diskette data HDDSM or
management as appropriate). HDRSM

Convert System/32 directory entries to System/34 directory entries and put in library control block (LCB). $MAF32

Put System/32 PTFs in PTF LOG.

If SCP (System/32) member, do not copy to System/34 library (issue halt). HCLXS

Open library and member being copied. $MAPGS

Diagram 21.6 (Part 3 of 4). Perform Library Maintenance - Copy TO - Library Functions ($MAINT)

21-20

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Copy member sectors from buffer to library. $MAPGS

If source or proc member, convert compression format. $MAF32

Continue processing until file member copied to library.

Update directory and close library member. $MALCO

Continue processing file members until entire file copied to library or error encountered. $MAF32

Issue error messages as necessary. #CLXS

Close file. #DMCL

Go toD to read next control statement. $MAF32

II Load SYSIN (#CLSS) at location X'DDOO'. $MARDR

Load library record put ($MAPUR) and librarian open/close ($MALCO) before SYSIN in main storage.

Calculate SYSIN record buffer address (buffer also used by record put and insert transient).

Ensure valid name parameter specified.

Open library for new member. $MAPUR

Return. $MARDR

Get record (data from keyboard or procedure) using SYSIN. #CLSS

Check for CEND record: $MARDR

• If CEND not read, put record to library and continue processing records . $MAPUR

• If CEND read, close library.

If no source records entered before CEND, issue halt. #CLXS

Go to Oto read next control statement. $MARDR

D Load $MAINT back into user area at location X'C800'.

Read next control statement $MAINT

When END read, all control storage end of job ($EOJ).

Note: $EOJ can be called by $MATLS, $MAF32, $MARFF, and $MARDR when SYSLOG returns 3
option halt.

-

Diagram 21.6 (Part 4 of 4). Perform Library Maintenance - Copy TO - Library Functions ($MAINT)

Method of Operation 21-21

Licensed Material-Property of IBM

Program Organization

Figures 21-1 through 21-6 show the control flow of the
library maintenance utility.

21-22

Licensed Material-Property of IBM

Initiator
Function

H
Syntax . Checker

(#USYX)

Library
Maintenance
Mainline Find a
($MAINT) .. . Library

(#MAFLB)

Special
.... Allocate
.... -

(#CAS1)

Library
Allocate

($MALOC)

SYSLOG ..
..-

(#CLSG)

...
Disk lOS

~skVTocl

1 l
I Read/Write I
I I
L.:@CSV~J

End of Job
Directory

Cancel ~ Compactor ($EOJ)
~

-Control Storage-
....- --.

($MACMP)

Figure 21-1. Library Maintenance - Allocate Function Control Flow ($MAINT)

Program Organization 21-23

Licensed Material-Property of IBM

Initiator
Function

~ ,

Syntax
.... ~ Checker
.... ...

(#USYX)

Find a

-- Library
.....

(#MAFLB)

Library Suspend CP

Maintenance
... ...

Mainline ... $MAR3K

($MAINT) (if #library)

SYSLOG
.....

Library
,-

.. Compress (#CLSG)

...
($MARCK)

Disk lOS

Directory
.... .. Compactor
,- -....

~ to
($MACMP)

~ ~

.... Cross
... Reference

,..,...- Resolver

Library (#MAXRF)

Compress
~ Phase 2

($MAR2K)

End of Job
System

..... Find
($EOJ)
-Control Storage- (#MASFN)

Figure 21-2. Library Maintenance - Compress Function Control Flow ($MAINT)

21-24

Licensed Material-Property of IBM

Initiator
Function ,

Syntax Checker
...

(#USYX)

Library Finda

Maintenance Library

Mainline
($MAINT) (#MAFLB)

~
Disk lOS

Librarian
... .. Find Routine

($MALFN)
Library
Delete

($MADLT)
PTF Log

~ ~ Handler
($MAPTF)

, SYSLOG
...... ..
...- ...

End of Job Cancel
(#CLSG) ...

($EOJ)
·Control Storage·

Figure 21-3. Library Maintenance - Delete Function Control Flow ($MAINT)

Program Organization 21-25

Licensed Material-Property of IBM

Initiator
Function

I Syntax
~ .. Checker
... ..

(#USYX)

Normal
~ .. Allocate (Not Used

" po with $MADSP)
(#CAML)

Find a
~ .. Library (Not Used with

Library $MASDF or $MARPF)
Maintenance (#MAFLB)
Mainline
($MAINT)

Message
~ .. Retrieve
.... .

(#MGRET)

Diskette Sector Data

Sector Mode ... -.. Management
... .. File Display (#DRSM)
.... ~ ... Routine

Disk Data
($MASDF)

~ .. Management
.... ..

(HDDDM)

Common .. Open

- ..
(HDMOP)

SYSLOG
(#CLSG)

Common Close
.... po

(HDMCL)

SYSLIST
.... ... (#CLSP or

#CLSW)
....... -
Figure 21·4 (Part 1 of 2). Library Maintenance - Display Function Control Flow ($MAINT)

21·26

Licensed Material-Property of IBM

~-~ Message
.... .. Retrieve
.....- -.

(#MGRET)

Diskette
.... Data

:.1J.:ljIO
Management

(#DRDM)

Common Open

Library Record Mode
4,' -.

Maintenance File Display
(#DMOP)

Mainline Routine SYSLIST
($MAINT) ($MARPF)

.. .. (#CLSP or
#CLSW)

Common
~ ... Close .. .

(#DMCL)

SYSLOG
.... ...

." .:r.,~ .. ~

(#CLSG)

SYSLIST
.. (#CLSP or

#CLSW)

Librarian
.... ... Find

, .. ._,!!'I!f', 't') '.IL',:1¥lIOiII
(EMALFN)

Library SYSLIST
Print
Routine (#CLSP or

($MADSP)
.. -.

.... #CLSW)
.... ..

Message Retrieve
.- ;. 'i:~:;ga

(#MGRET) r----l
I Source Get I SYSLOG

I I I
I I ... -.

I (@MASYL) I (#CLSG)
L ____ .J

End of Job
($EOJ) Disk lOS
-Control Storage-

Note: $MADSP, $MASDF I and $MARPF can call $EOJ with SYSLOG 3 option halt.

Figure 21·4 (Part 2 of 2). Library Maintenance - Display Function Control Flow ($MAINT)

Program Organization 21·27

Licensed Material-Property of IBM

Initiator
Function

I Syntax
... .. Checker

'"
(#USYX)

Library Normal

Maintenance Allocate (Not Used with

Mainline '" · $MALTL)

($MAINT) (#CAML)

Find a
~ .. Library

'"
.

(#MAFLB)

Library
... · Sector

Get/Put
($MAPGS)

Librarian
.... .. Find Routine

'" ...
($MALFN)

Disk Data
.... · Management
'" · Sector Mode

... Library to File
(#DDSM)

'" . Copy Routine Diskette
($MATFS) Data

- .. Management
(#DRSM)

Common Open

'" ...
(#DMOP)

Common
..... .. Close

(#DMCU

SYSLOG
.... ·

(#CLSG)
........ -
Figure 21-5 (Part 1 of 2). Library Maintenance - Copy FROM-Library Functions Control Flow ($MAINT)

21-28

Licensed Material-Property of IBM

Library
Maintenance
Mainline
($MAINT)

End of Job
($EOJ)
-Control Storage-

Record Mode
Library to File
Copy Routine

($MARTF)

r------,
I Source I
I Get I
I I Routine
I (@MASYL) I
L ___ -.1

Library to
Library
Copy Routine

($MALTL)

Librarian
Find Routine

($MALFN)

Disk Data
Management

(#DDDM)

SYSLOG

(#CLSG)

Library
Sector
Get/Put

($MAPGS)

Librarian
Find
Routine

($MALFN)

SYSLOG

(#CLSG)

Note: $MATFS, $MARTF, and $MALTL can call $EOJ with SYSLOG 3 option halt.

(Open/Close)

Diskette
Data
Management

(#DRDM)

Common
Open

(#DMOP)

Common
Close

(#DMCL)

Librarian
Open/Close

($MALCO)

(Close)

Librarian
Directory
Fast Insert
($MAFIR)

Disk lOS

Figure 21-5 (Part 2 of 2). Library Maintenance - Copy FROM-Library Function Control Flow ($MAINT)

Program Organization 21-29

Licensed Material-Property of IBM

Initiator
Function

I Syntax
Checker

..
(#USYX) -

Normal . Allocate
(If Copy From File) ...

(#CAML)

Library Find a
Maintenance . Library
Mainline
($MAINT) (#MAFLB)

Library
Sector
Get/Put

-- ~ ($MAPGS) ~ (Open) •

~ - - Librarian
(Close)

Open/Close

($MALCO)

Disk Data

t'CIOse) Sector Mode Management

File to - -
Library Copy (#DDSM)

Librarian
Routine

$MATLS Directory
($MATLS) ~

Insert - ($MALlL)
or

- or-
Librarian Diskette

~- -- Data Directory Fast

Management Insert
System/32

(#DRSM) ($MAFIR)
Sector Mode
File to
Library Copy
Routine

~ .. ($MAF32)
~ - Common

Open

(#DMOP)

SYSLOG
~ ..

(#CLSG)

($MATLS Only) Cross .. Reference
Resolver
(#MAXRF)

.. ..
Disk lOS

Common
Close ...
(#DMCL) -

Figure 21-6 (Part 1 of 2). Library Maintenance - Copy TO-Library Function Control Flow ($MAINT)

21-30

Licensed Material-Property of IBM

-
Library
Record Put
Routine (Open/Close)
($MAPUR)

~ .
- Librarian

Open/Close

Library Record Mode ($MALCO)

Maintenance File to Library
Disk Data

Mainline Copy Routine .- .. Management 1 J (Close) ($MAINT) ($MARFF) -
(#DDDM)

Librarian
Directory
Insert
($MALlL)

~ -- Diskette .. Data

- Management
(#DRDM)

Common Open

(#DMOP)

SYSLOG

-
(#CLSG)

.. ..
Disk 105

". .-

... ..
Common - .-
Close

(#DMCL)

SYSIN
(#CLSS)

Reader to
Library Library Copy

.- .. Record Put Routine
Routine ($MARDR) -
($MAPUR) ..

... .
Librarian
Open/Close

($MALCO)

U
SYSLOG

... ..

... .-

(#CLSG)

End of Job
($EOJ) Disk 105
-Control Storage- -

Note: $MATLS, $MAF32, $MARFF, and $MARDR can call $EOJ with SYSLOG 3 option Halt.

Figure 21-6 (Part 2 of 2). Library Maintenance - Copy TO-Library Function Control Flow ($MAINT)

Program Organization 21-31

Licensed Material-Property of IBM

Data Areas

LIBRARY COMMON AREA - CNTLBMSG

The library common area, CNTLBMSG, is a 256-byte area
that begins at location x'caoo'. It is created by the library
mainline routine ($MAINT) and used as a communication
area for the library maintenance routines. Figure 21-7
shows its format and contents.

Displacement of
Leftmost Byte
in Hexadecimal

o

a

9

B

C

17

1F

20

22

2A

Label

LBFROMNM

LBFROM

LBFROMLB

LBLIB

LBNAME11

LBTONM

LBTO

LBTLB

LBNEW

LBOMIT11

Length in
Bytes in
Decimal

a

2

11

Description

Library name

From parameter

X'20' = F1 (LIBRARY)

X'21'= Disk (FILE)

X'22' = Reader

F1 address if first byte is X'20'

Member type 0, R, S, P

X'23' = System

. X'27"= All

Member name I

a

} To parameter or X'25' = Print

2

a New name

11 Names to omitl

llf no name is present, the first (leftmost) byte of this field contains one of the following flags:

X'27' = All
X'23' = System
X'24' = Directory

If a partial name is present-, the eighth byte of this field contains the length of the partial name.

Figure 21-7 (Part 1 of 2). CNTLBMSG Library Common Area (SMAINT)

21-32

Licensed Material-Property of IBM

Routines that
Change Data

$MAINT

$MAINT

$MAINT

$MAINT

$MAINT

$MAINT

$MAINT

$MAINT

Displacement of Length in
Leftmost Byte Bytes in Routines that
in Hexadecimal Label Decimal Description Change Data

35 LBRETAIN1 Retain flag $MAINT

P=Permanent

R=Replace

S=SSP (can be deleted)

36 LBRECL Record length X'20' or X'28' $MAINT
through X'78'

37 LBFILE 8 File name $MAINT

3F LBSIZE 2 Number of blocks - total $MAINT

41 LBINCR 2 Number of blocks - increase $MAINT

43 LBDECR 2 Number of blocks - decrease $MAINT

45 LBDIRSIZ 2 Number of sectors for directory size $MAINT

47 LBPTF 5 Decimal PTF 10 number $MAINT

4C LBADD Add to existing file $MAINT

40 LBDEV Device code $MAINT

4E LBCREATE Create new $MAINT

4F LBLOC Spindle preference $MAINT

50 LBBASIC Basic exchange format for new diskette $MAINT

51 LBMRT MRT procedure $MAINT

52 LBHIST Log OCL from procedure $MAINT

59 LBBLOCK 7 Block number for location by block $MAINT

5A LBPDATA Data for procedure

5B 43 Reserved

86 LBDMDTF 128 DTF passed to drivers using $MAINT
data management

Figure 21·7 (Part 2 of 2). CNTLBMSG Library Common Area ($MAINT)

Data Areas 21·33

Licensed Material-Property of IBM

When $MAI NT gets control: When $MAINT is executing:

X'C800' X'C800'
$MAINT $MAINT

HUSYX - syntax checker $MALFN

Buffer for $MALFN

I f necessary

Figure 21-8 (Part 1 of 15). Library Maintenance Utility Storage Maps

For library allocate:

X'C800'
Control bucket

X'C900'
$MALOC

1------------
Space for LCS buffer

r------------,-
@CSVF included

Buffer

Figure 21-8 (Part 2 of 15). Library Maintenance Utility Storage Maps

21-34

Licensed Material-Property of IBM

For library compress:

X'C800'
Control bucket then used for LCS buffer

X'C900'
$MARCK

Hole table

Matrix table

I/O buffer

For the system library additional processing is necessary.
The storage maps for the additional processing are below.
If another compress pass is needed, $MAR2K loads
$MARCK rather than $MAINT.

X'C800'
LCS buffer

For 2nd
phase of
library

X'C800'

X'C900'

compress

X'C800'

LCS buffer

$MAR2K

Parm passed by $MARCK

Hole table

Buffer for PPSA update

LCS buffer
X'C900' X'C900' ~--------------------------~

$MAR2K $MAR2K

Parm passed by $MARCK Parm passed by $MARCK

#MAXRF $MAXNT - Table of system transients

I/O buffer for #MAXRF Copy of system transient table

Table built by #MAXRF

Figure 21-8 (Part 3 of 15). Library Maintenance Utility Storage Maps

Data Areas 21-35

Licensed Material-Property of IBM

For library member delete:

X'C800'
Control bucket

X'C900'
$MADLT

$MALFN

Buffer for PTF handler

LCS buffer

Buffer for $MALFN

Figure 21-8 (Part 4 of 15). Library Maintenance Utility
-Storage Maps

21-36

For library to display copy:

X'C800'
Control bucket

X'C900'
$MADSP

#MASYL included

$MALFN

I/O buffer for source get - @MASYG
..

Table of printable characters

I/O buffer

Directory search buffer for $MALFN

#CLSP for SYSLIST to print or
#CLSW for SYSLIST to CRT

Headings

Figure 21-8 (Part 5 of 15). Library Maintenance Utility
Storage Maps

Licensed Material-Property of IBM

For librarian file to display copy:

X'C800'
Control bucket and DTF

X'C900'
$MASDF

#CLSP for SYSLIST to print or
#CLSW for SYSLIST to CRT

#DDSM for disk or
#D RSM for diskette

I DB for data mgmt.

Buffer

Figure 21-8 (Part 6 of 15). Library Maintenance Utility
Storage Maps

For record mode librarian file to display copy:

X'C800'
Control bucket & DTF

X'C900'
$MARPF

#CLSP for print or #CLSW for CRT

#DRDM for diskette (disk data mgmt.
for record mode is resident)

I DB for data mgmt.

Buffer

Figure 21-8 (Part 7 of 15). Library Maintenance Utility
Storage Maps

For sector mode library to a file copy:

X'C800'
Control bucket & DTF

X'C900'
$MATFS

$MAPGS

I/O work buffer for $MAPGS

$MALFN

Work buffer for $MALFN

#DDSM for disk or #DRSM for diskette

lOB for data mgmt.

Buffer

Figure 21-8 (Part 8 of 15). Library Maintenance Utility
Storage Maps

Data Areas 21-37

Licensed Material-Property of IBM

For record mode library to a file copy:

x'caDD'
Control bucket & DTF

X'C9DD'
$MARTF

#MASYL included

I/O work buffer for @MASYG

$MALFN

Work buffer for $MALFN

#DR OM for diskette (disk data mgmt.
for record mode is resident)

lOB for data mgmt.

Buffer

Figure 21-8 (Part 9 of 15). Library Maintenance Utility
Storage Maps

21-38

For library to library copy:

x'caDD'
Control bucket

X'C9DD'
$MALTL

$MAPGS

Directory search buffer

$MALCO

$MAFIR

LCS buffer

Directory entry stack

Buffer for member copy & directory
update

Figure 21-8 (Part 10 of 15). Library Maintenance Utility
Storage Maps

Licensed Material-Property of IBM

For sector mode file to a library copy: When $MAFI R is
called, the part of the region indicated is pushed to disk. The
map on the right is the result. When $MAFI R is finished,
the pushed area is restored.

X'C800' X'C800'
Control bucket & DTF

X'C900' X'C900'
$MATLS

$MALCO See neL page

$MAFIR

LCS buffer

Work area & stack for $MAFI R

I/O work buffer

$MAPGS

#DDSM for disk or
#DRSM for diskette This area is

pushed to
disk

lOB for data mgmt.

Data mgmt. buffer

Figure 21·8 (Part 11 of 15). Library Maintenance Utility Storage Maps

Licensed Material-Property of IBM

Control bucket & DTF

$MATLS

$MALCO

$MAFIR

LCS buffer

Work area & stack for $MAF I R

$MAF I R buffer for directory

Data Areas 21·39

For SSP load members copied to the system library,
additional processing is necessary. The storage maps for
the additional processing are given below.

X'C800'
Control bucket & DTF

X'C900'
$MATLS

$MALCO

$MAFIR

LCS buffer

Work area & stack for $MAFIR

I/O work buffer

#MAXRF

I/O buffer for #MAXRF

Table built by #MAXRF

Figure 21·8 (Part 12 of 15). Library Maintenance Utility Storage Maps

21-40

X'C800'

X'C900'

Licensed Material-Property of IBM

Control bucket & DTF

$MATLS

$MALCO

$MAFIR

LCS buffer

Work area & stack for $MAF I R

I/O work buffer

#MAXNT - Table of system transients

Copy of system transient table

For record mode file to a library copy:

x'caoo'
Control bucket & DTF

X'C900'
$MARFF

$MAPUR

$MALCO

$MALIL

LCS buffer

#DRDM for diskette (disk data mgmt.
for record mode is resident)

I/O work buffer

lOB for data mgmt.

Buffer

Figure 21·8 (Part 13 of 15). Library Maintenance Utility
Storage Maps

For S/32 sector mode file to a library copy:

x'caoo'
Control bucket & DTF

X'C900'
$MAF32

$MAPGS

$MALCO

$MALIL

I/O work buffer

LCS buffer

#DDSM for disk or
#DRSM for diskette

lOB for data mgmt.

Buffer

Figure 21·8 (Part 14 of 15). Library Maintenance Utility
Storage Maps

Data Areas 21·41

Licensed Material-Property of IBM

For reader to library copy:

X'C800'
Control bucket

X'C900'
$MARDR

$MAPUR

$MALCO

LCS buffer

Record buffer

110 bUr'
X'DDOO' #CLSS

Figure 21-8 (Part 15 of 15). Library Maintenance Utility Storage Maps

21-42

Licensed Material-Property of IBM

Introduction

The message build utility ($MGBlD) creates message load
members in a disk library. A message load member is a
special library load member from which the system support
program retrieves the text associated with the message
identification code (M IC) specified by the calling program.

The message build utility formats message text records
from message text statements in a source member. The
utility plac~s the formatted message text records into a
work file, allocates disk space for the message member,
and copies the formatted messages from the work file
to the message load member on disk.

The message build utility consists of the $MGBlD phase
and $MGTAB syntax specification module. The program
resides in the system library.

Chapter 22. Message Build Utility ($MGBLD)

$MGBlD is called by the CREATE procedure or appropri
ate eCl statements. (See the System Support Reference
Manual for more information about calling and executing
$MGBlD.)

Each sector in the message load member begins with a
2-byte M IC followed by the message text. To issue a mes
sage, a program indicates the MIC associated with the
required message and uses the message retrieve routine
(#MGR ET) to retrieve the message text.

$MGBlD requires 14K bytes of main storage for program
execution. The system operator may, however, take
advantage of more main storage by increasing the region
size beyond 14K bytes.

Introduction 22·'

Licensed Material-Property of IBM

Method of Operation

Diagram 22.1 shows the function of the message build
utility.

22-2

Licensed Material-Property of IBM

From: Initiator
"" INPUT ____ •

~OCESS

(XR1

Configuration
record

(XR2

Open DTF

Main Storage

Trarisient Area

User Area:
$MGBLD

@MASYG

Control statements

Disk library:
• Control record
• Message text

statements

_____ >'-' 0 Check source member validity

D Build message member in work file

II Create message member in library

II Terminate program

-------:Tl

-

~ OUTPUT ___ _

Disk library:
message load
member

To: Control Storage End-of-Job
Transient ($EOJ)

OEseR IPTION
MODULE/
ROUTINE

o Find syntax checker (#USYX). #MASFN

Read anod syntax check control statements. #USYX

Save REPLACE and SSP parameters in library control block (LCB) for message member. $MGBLD

If user library specified, find library. #MAFLB

Return. $MGBLD

Find source member in user library or #LIBRARY as appropriate. #MASFN

Get source member from library. @MASYG

Process source member control statement checking for errors. $MGBLD

Save message member name and level in LCB.

Diagram 22.1 (Part 1 of 2). Perform Message Build Utility Function ($MGBLD)

Method of Operation 22-3

Licensed Material-Property of IBM

MODULE/
DESCRIPTION ROUTINE

If REPLACE not specified, ensure message member does not already exist. #MASFN

Return. $MGBLD

fJ Allocate work file on disk. #CAS1

Return. $MGBLD

Perform dummy open for work file. #DMOP

Calculate number of work blocks needed to contain work file, then assign largest possible extents. $MGBLD

Read message text statement from input source member. @MASYG

Convert MIC to packed decimal format. $MGBLD

Build message records in I/O buffer in format required by #MGRET.

Write message text from buffer to work file as buffer becomes full. Disk IDS

Close work file for output: $MGBLD

• Set up delimiter record. • • Write out any data left in work buffer to work file. Disk IDS ~

II Set up work file for sector input by changing lOB fields. $MGBLD

Set up I/O buffer.

Find library sector get/put routine (#MAPGS). #MASFN

Set up message member as object member in library. #MGBLD

Set up work file lOB for sector input and message member LCB for sector output.

Fill I/O buffer with sectors from work file. Disk IDS

Return. $MGBLD

Write sectors from I/O buffer to message member. #MAPGS

II Issue error messages as needed. #CLXS

Pass control to control storage end-of·job transient ($EOJ) to return control to system. $MAPGS

Diagram 22.1 (Part 2 of 2). Perform Message Build Utility Function ($MGBLD)

22·4

Licensed Material-Property of IBM

Program Organization

Figure 22-1 shows the control flow of the message build
utility.

Message
Build
Utility

($MGBLD)

ISou~ -I
Initiator . I Libra.ry Get I
Function Routine

I(@MASY~

~
,

End of Job
($EOJ)

-Control Storage-

Figure 22-1. Message Build Utility Control Flow ($MGBLO)

SYSLOG

(#CLSG)

-
-

Syntax

- .. Checker

-
(#USYX)

...

Special
Allocate

(#CAS1)

-

.
Disk 105

--

Licensed Material-Property of I BIVI

Single Name
--. Find
-

(#MASFN)

Find a .. Library

(#MAFLB)

Open ..
(#DMOP)

Library
... Sector

Get/Put
($MAPGS)

Program Organization 22-5

22-6

Licensed Material-Property of IBM

Chapter 23. Disk Reorganization Utility ($PACK/$FREE)

Introduction

The disk reorganization utility reorganizes disk files so that
free space is accumulated into one area. The utility uses
one of two base modules:

• $PACK provides functional S/32 compatibility; it is
called by the COMPRESS procedure or by user OCL.

• $FREE is the S/34 disk reorganization utility; it is called
by user OCl and allows the user to specify the spindle
and the location of the compressed free area.

The utility consists of four phases: $PACK or $FREE,
$FRE1, $FRE2, and $FRE3. Each phase resides in the sys
tem library and performs its function before overlaying
itself (either totally or partially) with the next phase.

$PACK/$FREE creates a table named FRETS that contains
the start and end sector addresses for the current files on
disk. (See Figure 23-2 for a description and contents of
FRETS.) FRETS entries are then sorted in ascending
sequence by start sector addresses. $PACK/$FREE deter
mines the next phase to call:

• If COMPRESS Allor HIGH is specified, $FREE loads
and passes control to $FRE1

• If COMPRESS lOW is specified, $FREE loads and
passes control to $FRE2.

$F R E 1 or $ F R E2 moves the files so they begin at the h igh
est or lowest (as requested) possible sector addresses and
all unused space is accumulated at the lowest or highest sec
tor addresses.

$FRE1 may call $FRE2 if COMPRESS All was speci
fied. $FRE1 and $FRE2 call $FRE3 to update the disk
format-5s.

$FRE3 rebuilds the format-5s to reflect the new disk usage.
$FRE3 also indicates in the system communication area
that file compression is complete and then passes control
to end of job ($EOJ).

The disk reorganization utility takes necessary precautions
to recover data if a system failure occurs. The ~tility may
require rerunning to recover data not permanently in place.
If IPl is required to restart the system, the utility is auto
matically invoked when necessary.

The disk reorganization utility is called by the COMPRESS
procedure or by appropriate OCl statements. (See the
System Support Reference Manual for information about
calling and executing this utility.)

The disk compress utility requires 14K bytes of main stor
age for program execution. The utility must run dedicated
and the request must be from the system console.

Introduction 23-'

Licensed Material-Property of ISM

Method of Operation

Diagram 23.1 shows the function of the disk reorganization
utility.

23-2

Licensed Material-Property of IBM

From: Initiator INPUT ____ _
~OCESS

XR2

(FRETB

Main Storage

Transient Area

User Area:
$PACK/$FREE
$FRE1
$FRE2
$FRE3

Disk VTOC

Disk files

SCA

D Initialize start and end table (FRETB)

D Sort FRETB table entries

D Compress free space

II Update format 5s

II Terminate program

.. --------------------~

II OUTPUT ---_

Disk files

Disk VTOC

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE!
DESCR IPTION ROUTINE

D Find syntax checker (UUSYXI. UMASFN

Read and syntax check control statements. UUSYX

Check for dual spindle support. $PACK/
$FREE

Save disk VTOC address in FRETB.

Read ULiBRARY format 1 (AFA format 1).

Put begin and end extend in first entry of F1TABLE (in FRETB).

Use end extend from ULiBRARY format 1 to indicate start of A 1 user area.

Read system format 1 s. Disk 105

Develop start and end addresses from system format 1 s and place in FR ETB. $PACK/
$FREE

Read User format 1 s. Disk lOS

Develop start and end addresses from user format 1s and place in FRETB. SPACK!
$FREE

Diagram 23.1 (Part 1 of 2). Perform Disk Reorganization Function ($PACK/$FREE)

Method of Operation 23-3

Licensed Material-Property of IBM

DESCRIPTION

D Sort FRETB table entries in ascending order by start sector addresses.

Indicate compress is in process, in case of system failure:
• Read format 5s from disk.
• Save restart information in format 5 and macro save area.
• If restart in process, replace present request with prefailure request.
• Write updated format back to disk.

Determine module to load next:

• If compress-all-or-high request, load $FREl and go toll.

• If compress-low request, load $FRE2 and go toll.

II Set high and low limits for spindle Aland spindle A2.

Locate applicable gaps on requested spindles (first entry in FRETB address table is HLIBRARY format 1
and second entry is first user format 1).

Compute gap and file sizes.

Read format 1 s corresponding to files to be moved.

Update format 1 with information needed to move data:
• If restart, show new TO/FROM address and sectors yet to be moved.
• Indicate if file must be moved in segments (file larger than gap).
• Update start of data and start of index (if indexed file).

Write updated format 1 s back to disk.

Return.

Move data from old disk location to new disk location:
• Read data into I/O buffer.
• Write data from I/O buffer to new location.

Determine module to load next:

• If compress low load $FRE2 and return to D.
• If rebuild format 5, load $FRE3, and go to a.

II Read format 5s into main storage.

Update format 5s to reflect new disk usage.

Write updated format 5s back to disk.

Indicate compress complete in system communication area (SCA).

II Pass control to control storage end-of-job ($EOJ).

Note: Call HCLSG to issue messages as required.

Diagram 23.1 (Part 2 of 2). Perform Disk Reorgani~ation Function ($PACK/$FREE)

23-4

Licensed Material-Property of IBM

MODULE/
ROUTINE

$PACK/
$FREE

Disk lOS
$PACK/
$FREE
Disk lOS

$PACK/
$FREE

$FREl or
$FRE2

HCSVF

$FREl or
$FRE2

HCSVF

$FREl or
$FRE2
Disk lOS

$FREl or
$FRE2

Disk lOS

$FRE3

Disk lOS

$FRE3

Program Organization

Figure 23-1 shows the control flow of the disk reorganiza
tion utility. Figure 23-2 shows the displacement equates
for the format 1 table.

Initiator
Function

Disk
Reorganization

$PACK/$FREE

Disk
Reorganization
Compress Free
Space High

($FRE1)

Syntax
Checker

(#USYX)

Disk
Reorganization
Compress Free
Space Low

($FRE2)

Disk
Reorganization
Update
Format-5

($FRE3)

End of Job
($EOJ)
-Control Storage-

Figure 23-1. Disk Reorganization Utility Control Flow ($PACK/$FREE)

Licensed Material-Property of IBM

System Find

(#MASFN)

Disk VTOC
Read/Write

(#CSVF)

Disk lOS

SYSLOG

(#CLSG)

Program Organization 23-5

Data Areas

FRETB TABLE

FRETB is a table containing start and end addresses of each
file on disk. It is created by $PACK or $FREE and is refer
enced by $FRE1, $FRE2, and $FRE3. FRETB begins at
the start of the user area. Figure 23·2 shows a diagram of
the save area and format 1 table within FRETB as well as
the contents of SAVEAREA and F1TABLE.

Displacement Equates for Save Area

Displacement of
Leftmost Byte
in Hexadecimal

o

2

3

3

5

7

Label

PAKPPSAT

PAKDSKST

PAKSPNDL

PAKFREE

PAKSYNTX

PAKLSTE@

PAKACTF1

Figure 23-2 (Part 1 of 2). FRETB-File Start and End Address Table

23-6

Length
in Bytes

2

2

2

Licensed Material-Property of IBM

Description

Procedure nesting level

Disk status save area:

X'8n' = dual spindle
X'nO' = 9 megabyte disk
X'n1' = 13 megabyte disk

Spindle request indicator:

ALL, X'06' = Request for 'compress
all'

A 1, X'04' = Request for spindle A 1
A2, X'02' = Request for spindle A2

Free space request indicator:

HILOW, X'03' = Request for 'com
press all'

HIGH, X'02' = Request for free
space high

LOW, X'01' = Request for free
space low

Syntax save area

Address of last entry in SSS table

Number of active f-1 's (files)

Displacement of
Leftmost Byte
in Hexadecimal Label

A PAKVTOC@

OD PAKSTRA1

10 PAKSTRA2

13 PAKENDA2

Displacement Equates for Format 1 Table

2 PAKBEGEX

5 PAKENDEX

7 PAKSDISP

8 PAKSPPRF

8 PAKELDSP

Length
in Bytes

3

3

3

3

3

3

2

Figure 23-2 (Part 2 of 2). FRETS-File Start and End Address Table

Licensed Material-Property of IBM

Description

Start SSS of disk VTOC

Start address of A 1 user area

Start address of A2 user area or end SSS
address +1 of A 1 if A2 not supported

End SSS address +1 of A2 user area

Beginning extent displacement

End extent displacement

VTOC sector displacement

Spindle preference displacement

Element swap displacement

Program Organization 23-7

23-8

Licensed Material-Property of IBM

Introduction

Three security file utilities provide security file mainte
nance for the System/34 customer. The security file
utility ($PROF) updates the security file. The security
file save utility ($PRSV) copies the security file from disk
to diskette thus providing a backup copy. The security
file restore utility ($PRST) copies the backup security file
from diskette to disk.

$PROF allows the security officer to:

• Add or delete system and work station operators to
the security file

• Change the work station and system operator passwords

• Change the security officer's own password

$PROF allows the master security officer to:

• Add or delete security officers

• Change the security officer's password

• Allocate a new security file if a larger security file is
desired

Chapter 24. Security File Utilities

The security file utilities are called by the appropriate OCl
statements or procedures. The procedures are:

• PROF to invoke $PROF

• PRSAVE to invoke $PRSV

• PRESTOR to invoke $PRST

Password security must be in effect on the system before
the security file utilities can be run. The system operator
must also have the proper security clearance to execute the
requested utility function.

$PROF, $PRSV, and $PRST each require 14K bytes of
main storage for program execution.

For more information about calling and executing the
security file utility programs, see the System Support
Reference Manual.

Introduction 24-1

Licensed Material-Property of IBM

Method of Operation

Diagrams 24.1 through 24.3 show the functions of the
security file utilities.

24-2

Licensed Material-Property of IBM

From: Initiator
'" INPUT ____ ...

~OCESS

Main Storage
..

_---.......... > D Perform utility initialization
p

Transient Area

User Area:
$PROF

Screen formats

User responses

Security file

TCB
TUB
SCA

D Display OPTION screen and determine
option selected

II Display EDIT screen and perform
requested function
• Page through security file
• Edit security file

II Display ADD screen and accept new
records

II Display NEW FI LE screen and allocate
new security file

iii Terminate program

------:rt

...

~ OUTPUT ___ _

Option display

Requested display:
• EDIT
o ADD
• NEW FILE

Updated security
file

New security file

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
OESeR IPTION ROUTINE

0 Check system communication area (SCA) to ensure security active (SCAMSEC). $PROF

Check terminal unit block (TUB) to ensure proper user I D and security class.

Issue error messages if necessary. UCLXS

Open work station DTF. HDMOP

Initialize security file pointers. $PROF

EJ Display OPTIONS screen. UDWDM

Accept operator response:

• If option 1, EDIT,go toD. $PROF

• If option 2, ADD, go to II.
• If option 3, NEWFI LE, go to D.
• If option 4, END, go to O.

Diagram 24.1 (Part 1 of 2). Perform Security File Utility Function ($PROF)

Method of Operation 24-3

Licensed Material-Property of IBM

MODULE/
DESCRIPTION ROUTINE

II Ensure security file defined. $PROF

Get sector (4 records) from security file. Disk lOS

Return. $PROF

Display EDIT screen and accept operator request: #DWDM

• If F, FORWARD request, increment pointer into security file and return to lito process next security $PROF
file sector.

• If B, BACK request, decrement pointer into security file and return to II to process Previous security
file sector.

• If C, CANCEL request, return t06to display OPTIONS screen.

• If R, RETURN, reset pointer to start of security file and return tollto process first sector.

• If I, ID advance, find SSS of sector containing requested JD and return tol)to process sector.

• If U, UPDATE:
- If D entered, write cleared record to security file after checking user authority. Disk lOS
- If update, write updated record to security file after checking user authoritY.

Return. $PROF

Issue error messages if necessary. #CLXS

Return toOto display updated sector. $PROF

D Ensure security profile defined. #DWDM

Display ADD screen and accept operator input:

• If U, UPDATE, write new record to security file after finding space and checking user authoritY.
0 If C, CANCEL, return tofJto display options screen. $PROF

Issue error messages if necessary. #CLXS

II Ensure user is master security officer. $PROF

Display NEW FI LE screen and accept operator input: UDWDM
• If C, CANCEL, return toD to display oPtions screen. $PROF

• If U, UPDATE: $PROF
- Check input val idity.
- If user enters new override user-I D and password:

a. Read the library member #PRSD. Disk lOS
b. Insert the new override user-I D and password. $PROF
c. Write #PRSD back to ULIBRARY. Disk lOS

- If user requests new security file: $PROF

~ a. Deallocate old security file if one exists. #CAD1 ~
Return. $PROF

b. Allocate new security file from new data. #CAS1
Return. $PROF

c. Write record for master security officer into new security file. Disk lOS
d. Update security file size in configuration record. $PROF

- If user requests new master security officer user-I D or password only:
a. Read master security officer record. #Disk lOS
b. Insert new user-ID and password. $PROF
c. Write master security officer record back to security file. #Disk lOS
d. Return to Oto display options screen. $PROF

m Close work station DTF. UDMCL

Pass control to control storage end-of-job transient ($EOJ). $PROF

Diagram 24.1 (Part 2 of 2). Perform Security File Utility Function ($PROF)

24-4

Licensed Material-Property of IBM

From: Initiator
"" INPUT ____ •

LJ.;:0CESS

Main Storage

Transient Area

User Area:
$PRST

Diskette security
file

SCA

TCB

D Restore security file from diskette
to disk

OUTPUT ___ _

Disk security
file

TUB ------:i1

OEseR IPTION

D Check system communication area (SCA) to ensure security active (SCZMSEC).

Check terminal unit block (TUB) to ensure proper user ID and security class.

Issue error message if any.

Allocate diskette file.

Return.

Read VTOC from disk.

Update VTOC format 1 for security file.

Write updated VTOC back to disk.

Return.

Open diskette DTF and read first buffer.

Check for errors (see note).

Allocate old security file on disk.

Return.

Open disk DTF.

Return.

Diagram 24.2 (Part 1 of 2). Perform Security File Restore Utility Function (#PRST)

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
ROUTINE

$PRST

#CLXS

#CAML

$PRST

#CSVF

$PRST

#CSVF

$PRST

#DMOP

$PRST

#CASl

$PRST

#DMOP

$PRST

Method of Operation 24-5

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Read security file from diskette into I/O buffer. #DRSM

Return. $PRST

Write security file from I/O buffer to disk. #DDSM

Return. $PRST

Close diskette file. #DMCL

Issue error message as necessary. #CLXS

Pass control to end of job transient. $PRST

Note: $PRST must ensure diskette file is valid before special allocate of old disk file. Special allocate

clears the disk file.

.

Diagram 24.2 (Part 2 of 2). Perform Security File Restore Utility Function (#PRST)

24-6

Licensed Material-Property of IBM

From: Initiator
"" INPUT ____ •

L.l:;:0CESS

Main Storage

Transient Area

User Area:
$PRSV

Disk security
file

SCA

TCB

_ ---Lo ... :>".. 0 Saye security file on diskette

OUTPUT ___ _

Diskette security
file

TUB ---------:Tl

OEseR IPTION

o Check system communication area (SCA) to ensure security active (SCAMSEC).

Check terminal unit block (TUB) to ensure proper user ID and security class.

Issue error message if necessary.

Allocate diskette file.

Return.

Read VTOC from disk.

Update VTOC format 1 for security file.

Write update VTOC back to disk.

Return.

Allocate security file on disk.

Return.

Open disk and diskette DTF's.

Return.

Read security file from disk into I/O buffer.

Return.

Diagram 24.3 (Part 1 of 2). Perform Security File Save Utility Function ($PRSV)

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
ROUTINE

$PRSV

HCLXS

HCAML

$PRSV

HCSVF

$PRSV

HCSVF

$PRSV

HCAS1

$PRSV

HDMOP

$PRSV

HDDSM

$PRSV

Method of Operation 24-7

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Write security file from 1/0 buffer to diskette. #DRSM

Return. $PRSV

Close disk file. #DMCL

Issue error messages as necessary. #CLXS

Pass control to end of job transient. $PRSV

Diagram 24.3 (Part 2 of 2). Perform Security File Save Utility Function ($PRSV)

24-8

Licensed Material-Property of IBM

Program Organization

Figures 24-1 through 24-3 show the control flow of the
security file utilities.

Security
File
Utility
($PROF)

Initiator ...
Function -

, ,
End of Job
($EOJ)
-Control Storage-

Figure 24-1. Security File Utility Control Flow ($PROF)

Common
... .. Open

-
(#DMOP)

..;.

... ..
Disk lOS ... -

...

Deallocate

--.

(#CAD1)

..

Common Close
~

(#DMCL)

Licensed Material-Property of IBM

Work Station
... Data

Management
(#DWDM)

Special .. Allocate

(#CAS1)

SYSLOG ..
(#CLXS)

Program Organization 24-9

Normal Allocate
.... ...

(UCAML)

Disk VTOC Read/Write
.... p

Security (UCSVF)
File Restore
Utility Special

($PRST) .. Allocate
.... p

(UCAS1)

Common .. Open

Initiator .. (UDMOP)

Function
Diskette

.... .. Data
Management

(UDRSD)

Disk Data
--. Management

p

(UDDDM)

Common .. Close
....

'(UDMCL)

SYSLOG

--....

(UCLXS)

~
,

End of Job
($EOJ)
-Control Storage-

Figure 24-2. Security File Restore Utility Control Flow ($PRST)

24-10

Licensed Material-Property of IBM

Normal
... .. Allocate

- .
(#CAML)

Disk VTOC
... ... ReadlWrite

Security (#CSVF)
File Save
Utility Special
($PRSV) Allocate

-
(#CAS1)

Common
.oL ... Open
....

Initiator ... (#DMOP)

Function
Disk Data

... ... Management

(#DDDM)

Diskette .. Data
- ... Management

(#DRSD)

Common ... ~ Close
..... -

(#DMCL)

SYSLOG

..

(#CLXS)

,

End of Job
($EOJ)
-Control Storage-

Figure 24-3. Security File Save Utility Control Flow ($PRSV)

Program Organization 24-11

Licensed Material-Property of IBM

24-12

Licensed Material-Property of IBM

Introduction

The file rename utility ($RENAM) provides a way to
change a disk file name. The file identified by label, and
optionally by date, is renamed to the specified new name.
If no date is specified, the most recently created file is
renamed.

Before the file label is changed, the disk VTDC is searched
to ensure the procedure does not create two disk files with
the same label.

The utility is called by the RENAME procedure or appro
priate DCl statements. (See the System Support Reference
Manual for more information about calling and executing
$RENAM.)

The file rename utility consists of a mainline module
($RENAM) and a syntax specification module ($RETAB).
The program resides in the system library.

Chapter 25. File Rename Utility ($RENAM)

Introduction 25·'

Licensed Material-Property of IBM

Method of. Operation

Diagram 25.1 shows the function of the file rename utility.

25-2

Licensed Material-Property of IBM

From: Initiator
.INPUT ____ •

~OCESS

Main Storage

Transient Area

User Area:
$RENAM

Control statements

Disk VTOC

TCB
SCA
FSB
JCB

_ ---r ... >...... D Process control statements

fJ Find requested file

D Update file with requested name

II Terminate program

------:i1

OUTPUT ___ _

New file name

To: Control Storage End-of-Job
Transient ($EOJ)

OEseR IPTION
MODULE/
ROUTINE

0 Set old file date to zeros. $RENAM

Find syntax checker (#USYX). #MASFN

Use main storage relocating loader (SVC52) to load #USYX. $RENAM

Read and check syntax of control statements. #USYX

If END, go to II. $RENAM

D Check for existing new label in disk VTOC. #CSVF

Return. $RENAM

If file with requested new name already exists, issue error message (MIC 6405). #CLXS

Find file with old label and date. #CSVF

Return. $RENAM

If old file does not exist, issue error message (MIC 6406). #CLXS

Lock format 1 to ensure no change to format 1 area during program execution. $RENAM

If file active, issue error message (MIC 6408) and unlock format 1. #CLXS

II Write new file name to disk VTOC. #CSVF

Write latest date indicator to disk VTOC if old file is latest file with multiple file same label.

Diagram 25.1 (Part 1 of 2). Perform File Rename Utility Function ($RENAM)

Method of Operation 25-3

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

Unlock format 1. $RENAM

Return toO to read next control statement.

II Pass control to control storage end-of-job transient ($EOJ).

Diagram 25.1 (Part 2 of 2). Perform File Rename Utility Function ($RENAM)

25-4

Licensed Material-Property of IBM

Program Organization

Figure 25-1 shows the control flow of the file rename
utility.

Initiator
Function ~ ..

File
Rename
Utility

($RENAM)

End of Job
($EOJ)

Figure 25-1. File Rename Utility Control Flow ($RENAM)

....

....

-

...
"...

...
....

...

Licensed Material-Property of IBM

Single Name
Find

(#MASFN)

Syntax .. Checker
...

(#USYX)

Disk VTOC
Read/Write ..

(#CSVF)

Command - Processor .. Resident Router
(#CPML)

SYSLOG ..
..

(#CLSG)

Program Organization 25-5

25-6

Licensed Material-Property of IBM

Introduction

$SETCF is loaded when the current work station configura
tion record and/or data communications (teleprocessing)
configuration records are to be modified.

A system configuration record is built when the system is
configured. The first IPL, following a system configura
tion, builds a work station configuration record and a
communications configuration record for each command
capable work .station by copying the system configuration
record to the associated configuration records. $SETCF
is then used to modify only the configuration records
associated with a work station. The modifications remain
in effect until changed by way of $SETCF, or until the
system is reconfigured.

$SETCF normally executes as an SRT program, but can
be run from the batch job queue. If loaded from the batch
job queue, the configurations modified are only in effect
for the duration of the job for which $SETCF belongs.
If $SETCF is requested as a released program, no diag
nostic message is issued, but the net effect is that noth ing
is modified.

$SETCF is normally loaded by way of the SET,
ALTERBSC, or OVERRIDE procedures. (See the System
Support Reference Manual for information about evoking
$SETCF.) The control statement verbs allowed are SETCF,
SETB, or SETR.

SETCF allows changing work station configuration items
such as:

• Number of lines printed per page

• Print belt image

• Date format

• Designated user library label

• Associated printer I D

• Forms number

• Default job region size

• Date

Chapter 26. Work Station Configuration ($SETCF)

SETB allows changing data communication configuration
items such as:

• Modem speed

• Clocking facility

• Test facility

• Special tone

• Switched or nonswitched line

• Error retries to be attempted

SETR allows changing data communication configuration
items such as:

o Line type
Point-to-point nonswitched line

- Line type specified in RPG II program
- Point-to-point switched line
- Tributary on multipoint line

• Addressing characters

• Switch type

• Wait time between messages

• Blank compression

o Record separator

o Multiple files

• Local station switched I D

.., Remote station switched I D

$SETCF uses the syntax checker (#USYX) to read and
check the syntax of the user entered control statements.
When the END statement is read, $SETCF calls the end
of- job transient ($EOJ) to terminate the work station
configuration procedure.

Introduction 26-'

Licensed Material-Property of IBM

Method of Operation

Diagram 26.1 shows the function of the work station con
figuration util ity.

26-2

Licensed Material-Property of IBM

From: Calling Procedure

~INPUT_---_

Main Storage

Transient Area

User Area:
$SETCF

Control statements

Communications
and work station
configuration
records

JCB
SCA
TCB
TUB

~OCESS

... o Read and syntax check control statement

D Process SETCF control statement

IJ Process SETB control statement

II Process SETR control statement

II Process EN D control statement

'-------:i1

..

...

• OUTPUT ___ _

Work station
configuration record

Communications
configuration record

JCB and TUB

To: Control Storage End-of-Job
Transient ($EOJ)

MODULE/
DESCR IPTION ROUTINE

0 Build system find parameter list to find syntax checker (#USYX). $SETCF

Find #USYX. $MASFN

Load #USYX using main storage relocating loader (SVC-52). $SETCF

Branch to # USY X.

Read and syntax check control statement. #USYX

Check verb from control statement and if: $SETCF

• SETCF, to tofl.

• SETB, go tolJ.

• SETR, go toll.

• END,gotog.

D Find job control block (JCB).

Use task work area (TWA) get function to read work station configuration record from disk.

Process control statement parameter given:

• LINES - update JCB and configuration record.

• FORMAT - update JCB and configuration record.

Diagram 26.1 (Part 1 of 3). Perform Work Station Configuration Processing ($SETCF)

Method of Operation 26-3

Licensed Material-Property of IBM

MODULE/
OEseR IPTION ROUTINE

• DATE - update JCB and configuration record. $SETCF

• PRINTER-SYS:

- Set ID to X'FFFF'.

- Update JCB and configuration record.

• PRINTER-WSID:
- Issue halt message if invalid 10. #CLXS
- Move printer 10 to terminal unit block (TUB). $SETCF
- Update JCB and configuration record.

• FORMS NO - update JCB and configuration record.

• Default region size:
- Issue halt message if region size invalid. #CLXS
- Update JCB and configuration record. $SETCF

• User library:
- Issue halt message if #LlBRARY specified. #CLXS
- If LI BRARY -0 specified, zero out library name in configuration record. $SETCF
- Move library label to configuration record.

Use TWA put function to return updated configuration record to disk.

Return to D to read next control statement.

11 Use TWA get function to read data communications configuration record from disk.

Examine control statement for parameters given:

• BRATE

• CLOCK

• ERC (error retry count)

• SLiNE

• TEST

• TONE

Update configuration record for parameters given.

Use TWA put function to return updated configuration record to disk.

Return toDto read next control statement.

0 Use TWA get function to read data communications configuration record from disk.

Process control statement parameters given:

• M L TF L - update configuration record.

• LlNE-S or LlNE-C:
- If no SWTYP given, issue halt message. #CLXS

- If SWTYP given, update configuration record with SWTYP and LINE information. $SETCF

• WAIT - update configuration record.

• RCSP:
- Ensure good value given.
- Convert value if necessary.

• - Issue halt message if invalid value. #CLXS 4
- Update configuration record. $SETCF

• LOCID:
- Ensure good value given.
- Convert value if necessary.
- Issue halt message if invalid value. #CLXS
- Update configuration record. $SETCF

• REMID:
- Ensure good value given.
- Convert value if necessary.
- Issue halt message if invalid value. #CLXS
- Update configuration record. $SETCF

Diagram 26.1 (Part 2 of 3). Perform Work Station Configuration Processing ($SETCF)

26-4

Licensed Material-Property of IBM

MODULE/
DESCRIPTION ROUTINE

• SWTYP: $SETCF
- Only valid for Line-S or C.

Use TWA put function to return updated configuration record to disk.

Return toDto read next control statement.

II Pass control to control storage end of job ($EOJ).

Diagram 26.1 (Part 3 of 3). Perform Work Station Configuration Processing ($SETCF)

Method of Operation 26-5

Licensed Material-Property of IBM

Program Organization

Figure 26-' shows the control flow of the work station
configuration utility.

Calling
Procedure

Work Station
Configuration

($SETCF)

•
End of Job
($EOJ)
-Control Storage-

Figure 26-1. Work Station Configuration Control Flow ($SETCF)

26-6

. ...

...--
...

...
....-

.....

....

Licensed Material-Property of IBM

Single Name .. Find .
(#MASFN)

Main Storage .. Relocating
Loader

(SVC-52)

Syntax
Checker

(#USOO)

SYSLOG ..
.

(#CLSG)

Introduction

An application programmer who wishes to use the display
screen as a formatted input/output device must have a
display format in a load member in the library. The screen
format generator routine (SFGR) generates these formats
from user-created library source members. The generated
formats are used by work station data management when
ever the application program is interfacing with a terminal.

The screen format generator routine performs the follow
ing functions for the application programmer:

• Reads display format specification statements from a
library source member.

• Produces a printout of the specification statements,
analyzes the specifications for errors, and prints diag
nostic error messages.

• Builds the display format as a two part table that
includes:

A field descriptor table (FDT) consisting of an entry
that describes attributes for the entire display and a
table of entries that describes attributes of fields in
the format. (Only entries needed by WSDM are
included in the FDT.)

- A data stream consisting of orders, commands, and
data (if provided) for the screen display (see IBM
System/34 Functions Reference Manual, SA21-9243).

The screen format is placed into a load member. The
load member may contain one or all of the formats for the
application program. When an application program is
evoked, the application program must open each load
member containing formats used by the program.

• Provides, if data is required during execution by the
application program using the display format, a print
out of those fields in the order they must appear in
the output record area.

• Provides a printout of all fields defined for input and
the order in which they will appear in the input record
area.

Chapter 27. Screen-Format Generator Utility ($SFGR)

• Calculates and prints the input and output record
lengths to be used during execution by the applica
tion program.

• Catalogs the display formats provided for a particular
application program in an object member in the library.
The object module containing the formats for an appli
cation program have the load member name specified
in the utility control statement.

The screen format generator routine program ($SFGR) is
initiated by way of an OCl statement or the FORMAT
command. (See System Support Reference Manual for
information about calling $SFGR.)

When the application programmer calls the screen format
generator routine (SFGR), the mainline module ($SFGR)
is first to receive control (see Figure 27-2).

$SFG R performs the initial checks and verification for the
screen format generator routine. It ensures load member
names are valid, utilizes the syntax checker (#USYX) to
check control statement validity, and checks that the
lOADMBR statement follows immediately after the RUN
statement. It calls the library find routine ($MAFND) to
ensure that the screen format load member and source
member exist; it also calls the find specified library routine
(#MAFLB) to determine if the specified library exists when
the I NOUT verb is given and checks the screen format load
member index for the specified format name when
DELETE is specified. The screen format communications
area along with the format load member index are then
moved to the beginning of the task area. Figure is a
storage map of SFGR.

If the only operation requested is DELETE, $SFGR passes
control to the screen format load member maintenance
routine ($SFlMM). If other operations are requested,
$SFGR passes control to the diagnose errors and print
routine ($SFDEP).

Introduction 27-1

Licensed Material-Property of IBM

$SFDEP diagnoses errors in the input source specifications
and prints requested information when PRINT-NO is not
specified. It calls the source get transient (#MASGT) to
fetch the source specifications. $SFPED checks the source
specifications for valid values and valid combinations. The
print function is performed by the system list transient
(#CLST). #CLST prints the source specification records,
input and output record area formats, the field's location in
the buffer, and the field length. If necessary, #CLST also
prints error messages. $SFDEP then passes control to the
FDT and data stream build routine ($SFFDB).

$SFFDB passes control to special allocate (#CAS1) to
allocate a scratch work file. $SFFDB then builds the data
stream and field description table (FDT). It sets up buffers
for the data stream and FDT, searches the communications
table for CREATE, ADD, or UPDATE entr'ies to determine
operation requested, and sets up #SYSG to retrieve screen
Sentries. $SFFDB places information such as write com
mand, start of header order, screen control character, start
of header data, insert cursor order, and repeat to address
entity into the data stream buffer if needed. #MASYG
then retrieves detail field definition D records. $SFFDB
places information from the D records into the data and
FDT buffers. Subroutines within $SFFDB are used as
required to build screen attribute, move row/column num
ber to the insert cursor order, and build field format
words. FDT entries are moved to the FDT buffer and
when the FDT buffer is full, $SFFDB calls #DDSM to
write the buffer to a temporary work file. Processing
continues until the record type changes back to S (only
one S record per record group) or end of file is reached.
At this point, $SF FDB writes the balance of FDT entries
and data stream to the temporary work file.

If data fields are in ascending screen sequence, $SFFDB
passes control to $SFLMM. If, however, the data fields
require resequencing, $SFFDB passes control to the data
stream resequence routine (SF RSO).

27-2

$SFRSO arranges the input data fields in ascending screen
sequence and ensures that trailing screen attributes of out
put fields do not overlay starting screen attributes of any
other field in the display. It also allocates storage space
for input and outpub buffers, searches the communica
tions table for the data stream that requires resequencing,
assigns pointer values in the data stream, and then rese
quences the data stream. Once the data stream is rese
quenced, $SF RSO writes it from the buffer back to the
work file. $SF RSO then passes control to the screen for
mat load member maintenance routine ($SFLMM).

$SFLMM performs the maintenance functions required
to build the display screen format in the library format
load member. It searches the SFG R communications
table and format index of the old'format load member
for formats that must be copied from the old format
load member to the work file. The sector get/put access
routine ($MAPGS) is used to read the old formats from the
load member. $SFLMM resolves address displacements in
the format indexes in the work file. The file is then read
into the buffer and $MAPGS is used to write the formats
to the library load member.

After the new screen formats are in the library format load
member, $SFLMM prints the size of each format in the
load member and calls the end-of-job transient to terminate
the screen format generator routine.

Figure 27-1 shows a storage map of the screen format
generator routine.

Licensed Material-Property of IBM

Method of Operation

Diagram 27.1 shows the function of the screen format
generator utility.

Licensed Material-Property of IBM

Method of Operation 27-3

From: Command Processor
INPUT ____ _

XR1

CSFGR communi
cations table

Main Storage

User Area:
See Figure 27-1

Headings message
members ($SFGR -
$SFDEP - $SFLMM)

Control statements
($SFGR)

Library source
members ($S~DEP
$SFFDB)

$SFGR temporary
work file ($SFFDB,
$SFLMM, $SFRSO)

Library control sector
($SFLMM)

Library format load
member ($SFLMM)

~OCESS

D Check OCL statement validity

fJ Prepare to fetch next SFGR module

II Check and print source specification
records

II Build data stream and field descriptor
table

II Arrange input data fields in ascending
screen sequence

II Perform maintenance function

~ OUTPUT ___ _

SFGR control
block ($SFGR)

Printed output
($SFDEP):

• Source member
specs.

• 1/0 record area
layouts

• Warning and
terminal error
messages

Temp. work file
($SFGR):

• FDT entries
($SFFDB)

• Data screen
($SFFDB,
$SFRSO)

Library format load
member ($SFLMM)

To: Control Storage End-of-Job
Transient ($EOJ)

OEseR IPTION
MODULE/
ROUTINE

D Retrieve heading messages 2400, 2406, and 2407 to ensure valid load member names. #MGRET

Load syntax checker (#USYX) into main storage. $SFGR

Clearn output table· area.

Branch to UUSYX to get and check control statement. #USYX

Check return code from UUSYX for valid control statement and call SYSLOG if statement invalid. $SFGR

If statement after RUN not LOADMBR, call SYSLOG (UCLXS) to issue error message.

Check for screen format load member existence and check REPLACE value on LOADMBR statement. $MAFND
/

Diagram 27.1 (Part 1 of 4). Build Screen Format (SFGR)

27-4

Licensed Material-Property of IBM

OEseR IPTION

If INOUT verb given, call the find specified library routine ($MAFLB).

Determine if specified library exists.

If INOUTverb not given, assign default values.

o Check for CREATE, ADD, UPDATE, or DELETE: verb.

If CREATE specified with either UPDATE, ADD, or DELETE,call SYSLOG to issue error message.

Determine if specified source member library name exists.

If specified member does not exist, call SYSLOG (UCLXS) to issue error message.

If DELETE specified, check screen format load member index for format name.

If format name not in index, call SYSLOG to issue error message.

Return toDOand repeat steps until END verb or 32 statements are read.

fJ Move screen format communications area and format load member index to beginning of task area.

If only DELETE verb specified, go toll.

B Load source get transient (HMASYG).

Assign required work areas needed for input and output field descriptions.

"Search communications table for CREATE, ADD, or UPDATE entry.

Set HMASYG parameter to do a get next record.

Call HMASYG and check input source specifications for valid values and valid combinations.

Build table of input and output field descriptions.

If PRINT-NO not specified; call system list routine (HCLST) to print:
• Source specification records.
• Input and output record area formats in order required in user's input or output record area.
• Field's location in buffer.
• Length of field.

If necessary, call HCLST to print error messages.

Return tollOand repeat steps until all source members are re~d.

If terminal errors, call end of job transient.

II Load sectorized disk data management routine (HDDSM).

Call special allocate (HCAS1) to allocate scratch work file.

Set up buffers for source get (HSYSGI, field descriptor table (FDT), and data stream.

Open temporary work file .

• Search communications table entries for CREATE, ADD, or UPDATE entry.

Set up f/MASYG input parameter to retrieve screen Sentry.

Diagram 27.1 (Part 2 of 4). Build Screen Format (SFGR)

Licensed Material-Property of IBM

MODULE/
ROUTINE

$SFGR

$MAFLB

$SFGR

$MAFND

$SFGR

$SFDEP or
$SFLMM

$SFDEP

HSFDEP

f/MASYG

$SFDEP

HCLST

$SFDEP

$SFFDB

HCAS1

$SFFDB

HOPEN

$SFFDB

HMASYG

Method of Operation 27·5

OEseR IPTION

Check values in S entry for YES, NO, and indicator values.

As required, place in data stream buffer:
• Clear unit or clear format table order.
• Write command.
• Screen control character.
• Start of header order and data.
• Insert cursor order.
• Repeat to address entity (if repeat to address order required).

e Retrieve detail field definition D records.

Process D records placing data stream orders and data into data buffer and build applicable FDT entries:
• Convert field length, row, and column position from EBCDIC to hex.
• Add start line number minus one to detail row number.
• Move field length, row/column address, and displacement into data stream and FDT.

• If field is output:
- Branch to subroutine to process output fields.
- Branch to subroutine to build screen attribute.

• If field is input; branch to subroutine to process input fields:
- If field is not also output, branch to subroutine to build screen attribute.
- If first input field, move row/column number to the insert cursor order.
- Build required field format words based on input specifications.

If required, move FDT entry to FDT buffer.

When full, write FDT buffer to temporary work file.

Go toOeand repeat steps until next S record found or end of file reached.

If record type changed from D to S or last record processed, write balance of FDT entries and data stream
to work file.

Go to liGand repeat steps until all input source specification members processed.

Close output file.

If fields specified in input specifications in ascending screen location sequence, go to D.
gAllocate storage space for necessary input and output buffers.

o Search communication table for data stream that requires resequencing.

Read data stream from work file into input buffer.

Move input fields from input buffer to output buffer in ascending screen sequence.

Remove trailing attributes from output field if required, and move them to the output buffer.

Assign pointer values in data stream to permit data stream being placed into user's input buffer in correct
sequence.

Write resequenced data stream back to work file.

Return to liGand repeat steps until all data streams not in ascending screen order are resequenced and
returned to work file.

II Load sector get/put access routine ($MAPGS)

If CREATE not specified:

Diagram 27.1 (Part 3 of 4). Build Screen Format (SFGR)

27-6

Licensed Material-Property of IBM

MODULE/
ROUTINE

$SFFDB

#MASYG

$SFFDB

#DDSM

$SFFDB

#DDSM

$SFFDB

#DMCL

$SFFDB

$SFRSQ

Disk lOS

$SFRSQ

Disk lOS

$SFRSQ

$SFLMM

OEseR IPTION

o Search SFGR communications table and format index of old format load member for formats that must be
copied from old format load member to work file.
o Read required formats from library.
• Return.
• Write formats to work file.
o Return to liGand repeat steps until all necessary formats are copied to work file.

Resolve address displacements in indexes of formats in work file.

Open library member.

Return.

Read formats from work file.

Return.

Write formats to library member.

Return.

Print the size of each format in the load member.

Return.

Call end of job transient.

Diagram 27.1 (Part 4 of 4). Build Screen Format (SFGR)

Licensed Material-Property of IBM

MODULE/
ROUTINE

$SFLMM

$MAPGS
$SFLMM
Disk lOS
$SFLMM

$MAPGS

$SFLMM

Disk lOS

$SFLMM

$MAPGS

$SFLMM

#CLST

$SFLMM

Method of Operation 27-7

Program Organization

Figure 27-1 shows the main storage map of the screen for
mat generator util ity.

Figure 27-2 shows the control flow for the utility.

'"
User's Area of
Main Storage

$SFGR

'" (at entry)

'"
"-

'" '" "'-
$SFG R-Communications

Table

Format Load
Mem ber Index

'" $SFGR
,,(at $SFGR exit)

"'- '" '" '"
'"

'" '"
$SFDEP

"'- "'-
" '" '" '" '" " "'-

" .'"
'" '" "-

" $SFFDB '" "'-
"'- '" '" '"

$SFRSQ

'" " "
'" $SFLMM

"-

" '" "-
Figure 27-1. Storage Map of Screen Format Generator

27-8

Licensed Material-Property of IBM

"-
"-

When Only DELETE
Verb Specified

Screen Format Generator
Routine Mainline

($SFGR)

Diagnose Errors and Print

($SFDEP)

FDT and Data Stream Build

($SFFDB)

Data Stream Resequence

($SFRSQ)

Screen Format Load Member
Maintenance Routine

($SFLMM)

Figure 27-2. Screen Format Generator Control Flow

When all Fields Defined
in Ascending Screen Order

Program Organization 27-9

Licensed Material-Property of IBM

27-10

Licensed Material-Property of IBM

Chapter 28. Command Processor Procedure Error Utility ($CPPE)

Introduction

This utility provides a means by which SSP and program
product procedures can issue error messages. SSP and pro
gram product procedures use the #E R R error procedure to
call $CPPE.

The $CPPE utility consists of the command processor pro
cedure error utility phase ($CPPE) and syntax checker
specification module ($CPTB). This utility resides in the
system library.

The #E R R SSP procedure is used to execute $CPPE. It
can be used only by SSP and program product procedures:

#ER R nnnn,C,alpha code

nnnn - Four-digit MIC (message identification
code). This parameter must be specified.

C - This parameter can only be C. If omitted,
the default is C. It specifies that the job
is to be cancelled.

alpha - Three or four characters specifying the mes-
code sage member to be used. The default is SSP.

Alpha Code Message Member

SSP ##MSG1
SSPU Active USER1
RPG Active USER 1
AUTO Active USER1
SEU Active USER 1
SORT Active USER1
DFU Active USER1
WSU Active USER 1
ASM Active USER1
SDA Active USER 1

Note: SSPU is the same as SSP except that
the message is retrieved from the active
USER 1 member.

#ERR builds the following OCl statements:

II lOAD $CPPE
II RUN
II ERR MIC-nnnn,CONTROl-C,AlPHA-alpha code
II END

$CPPE uses the MIC passed in the ERR statement to issue
the corresponding message with a 3 option only. The mes
sage is retrieved from the message member determined by
the ALPHA parameter; the message is issued with the mes
sage identifier corresponding to the ALPHA and MIC
parameters. The $CPPE utility requires 14K bytes of
main storage for execution.

Introduction 28-1

Licensed Material-Property of IBM

Method of Operation

Diagram 28.1 shows the function of the command pro
cessor procedure error utility.

28-2

Licensed Material-Property of IBM

From: Initiator
II INPUT ____ _

~OCESS

Main Storage

Transient Area

User Area:
$CPPE

#ERR utility
control statement

II-__ .J"~"""'"""" 0 ./ Process ERR utility control statement ..
D Process ERR statement parameters

II Process END utility control statement

II Issue error message from appropriate
message member

'" OUTPUT ___ _

Error message ...

To: SYSLOG Mainline (#CLSG)

MODULE/
DESCRIPTION ROUTINE

D Process ERR statement. #USYX

D Process parameters. $CPPE

If errors found in parameters, issue message SYS-5560. #CLSG

II Process END statement. #USYX

If errors found in statement, issue message SYS·5560. #CLSG

D Issue error message specified on ERR statement. #USYX

Issue MIC with 3 option only. #CLSG

If ALPHA-SSP, retrieve MIC from ##MSG1. Otherwise, retrieve MIC from active USER1 message member.
Use ALPHA parameter to determine SYSLOG program 10 (SYSLOG uses program ID and MIC for message
identifier) .

Diagram 28.1. Command Processor Procedure Error Utility ($CPPE)

Method of Operation 28-3

Licensed Material-Property of IBM

Program Organization

Figure 28-1 shows the control flow for the command pro
cessor procedure error utility.

Command

Initiator .. Processor

Function Procedure ..
Error Util ity

($CPPE)

....

...

..

...-

Figure 28-1. Command Processor Procedure Error Utility Control Flow ($CPPE)

28-4

Licensed Material-Property of IBM

.. Syntax
Checker
(#USYX)

SYSLOG ..
Mainline
(#CLSG)

Appendixes

Licensed Material-Property of IBM

Licensed Material-Property of IBM

This directory is a reference to the microfiche listings for
modules discussed in this manual.

Modules are listed in seguence by module name.

Each directory entry contains the module name, a HIPO
reference (if any), the descriptive name, the module's

entry point in the listing on microfiche, and a brief descrip
tion of the module's functions.

Module

Name

$BACK

$BICDI

$BICFI

$BICIF

$BICR

$BITAB

$BMENU

$BMTB

$BUILD

$CNFIG

Diagram

09.1

10.1

10.1

10.1

10.1

11.1

12.1

01.5

Descriptive Name

Backup I ibrary utility

Basic interchange,

diskette to SYSLIST

Basic interchange, disk
to diskette

Basic interchange,
diskette to disk

Basic interchange
control module

Syntax specifications
for $BICR

Build menu utility

Build menu specification
module

Alternate sector rebuild
utility

System configuration

Entry

Point

$BACK

$BICDI

$BICFI

$BICIF

$BICR

None

$BMENU

None

$BUILD

$CNFIG

Licensed Material-Property of IBM

Appendix A. Directory

Function

Copy the library directory from disk to

diskette and update the directory. Create
the portion of the backup file on diskette

from which IPL can be done. Copy library
members from disk to diskette

Copy files from diskette to the SYSLIST
device

Copy files from fixed disk to diskette

Copy files from diskette to fixed disk

Read in input parameters, determine which

function is to be performed, and load the

proper module

Input parameter specifications for $B ICR

Build a menu

Syntax checker specification module used

by $BMENU

Display the contents of an alternate sector

for operator modification

Display configuration parameters. Prompt

for system configuration parameters.
Modify system config record

Directory A-1

Module Entry
Name Diagram Descriptive Name Point Function

$COADD 13.1 COpy ADD $COADD Add a disk file to an existing diskette file

$COALL 13.2 Copy-all-files BEGIN Control selection of files from disk/diskette
preparation routine VTOC

$COANT 13.2 Copy-all-files BEGIN Control selection of files from disk or
initialization diskette; ensure compatibility across

diskette boundaries

$COCRT 13.4 Display to the CRT $COCRT Interface between $COG ET and $F E KEY

$COGET 13.4 Get/put interface with BEGIN Interface for record mode data management
record-mode data and/or $COCRT and $COPRT
management

$COINT 13.3 Single file initialization BEGIN Determine the allocation and access methods
(including those not resident). Screen mis·
matched requests

$COPRT 13.4 Display to the printer $COPRT Interface between $COGET and SYSLIST

$COPY 13.1 Copy user file utility $COPY Mainline module of the $COPY utility.
Invoke the syntax checker and route control
to (1) $COI NT, (2) $COANT, or (3)
$COADD according to the function
specified

$COSEL 13.4 Record selection and/or $COSEL Control selection and/or deletion of records
deletion

$COTAB Syntax specifications None Define syntax of control statements for
$COPY

$COZIP 13.2 Get/put interface with COZOOZOO Control movement of data disk-to-disk,
sector mode data disk-to-diskette, diskette-to-disk
management

$CPPE 28.1 Command processor $CPPE Issue error messages for #E R R procedure
procedure error utility
(#ERR proc)

$CPTB Syntax specifications None Define syntax specifications for #E R R
for #CPPE procedure statements

$DDST Keysort utility load $DDST Call allocate to have the keys sorted in the
module index of the specified file

A-2

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

$DELET 14.1 File delete control $DELET Read input parameters, determine which

module function is to be performed, and load the
proper module

$DELF1 14.1 Delete files from fixed $DELF1 Delete files from fixed disk
disk

$DELl1 14.1 Delete files from $DELl1 Delete files from diskette
diskette

$DETAB Syntax specifications $DETAB Input parameter specifications for $DE LET
for $DELET

$DUPRD 15.1 Utility to duplicate $DUPRD Copy diskettes from one to another, or one
diskette file from one diskette to another

$DUTAB Syntax specifications $DUTAB Input parameter specifications for $DUPRD
for $DUPRD

$ERAP 07.6 Error recording analysis $ERAP Display or print error history information

procedure mainline

$ERAO 07.6 ERAP module for disk ERAPFD Format information for disk

$ERCA 07.6 ERAP module for ERCAX Format information for work station

work station controller controller

$ERCO 07.6 ERAP module for ERAPWS Format information for work station

work station devices devices

$ERDO 07.6 ERAP module for ERAPIX Format information for diskette
diskette

$EREO 07.6 ERAP modules for line ERAPLX Format i nformati on for lin e pri nters
printers

$ER01 07.6 ERAP module for ERAPCS Format information for control storage
control store processor
processor

$ER02 07.6 ERAP module for main ERAPMS Format information for main storage

store processor processor

$ER80 07.6 ERAP module for BSC ER80X Format information for BSC

Directory A-3

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

$FBLD 16.1 Build null files utility $FBLD Build null files with attributes given by
user

$FBTAB Syntax specifications $FBTAB Input parameter specifications for $FBLD
for $FB LD

$FEAPR 07.1 FE APAR prog. FEAPRMNL Create an APAR diskette

$FECRT 07.2 FE display program FECRTMNL Format and output storage to work station

$FEDMP 07.2 'FE dump utility FEDMPMNL Process dump utility control cards and pass
control to a subroutine to handle specified
options

$FEDSK 07.2 FE disk dump routine FEDSKMNL Output disk/diskette storage to specified
output device

$FEFIX 07.3 FE PTF utility FEFIXMNL Apply a fix to system programs

$FEIOP 07.2 FE I/O processor dump FEIOPMNL Output I/O processor storage to specified
routine output device

$FEKEY 12.1 FE CRT window FEKEYMNL Display an 80-byte window of a block of
13.4 display data on the CR T screen

$FEPCH 07.4 FE patch program FEPCHMNL Process patch utility control cards and pass
control to a subroutine to display disk/
diskette data

$FESTR 07.2 FE storage dump FESTRMNL Write main/control storage to specified
routine output device

$FESYM Specification module None Defines syntax of control statements for
$FEDMP and $FEPCH

$FESYS 07.2 FE system area dump FESYSMNL Write PTF LOG, configuration record, or
routine disk trace file to specified output device

$FETRC 07.5 FE trace program FETRCMNL Set events to be traced by the system and
initialize trace file if required

$FREE 23.1 Reorganize disk $FREE 6uild a table of the start and end SSS
initialization module address for each file located within the user

area of F/D and sort the table in ascending
sequence by beginning SSS address

I
\,

A-4

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

$FRE1 23.1 Accumulate free $FRE1 Each data file on the specified spindle is
space high successively moved to the lowest available

block number and all free space is accumu-
lated at the high end of the spindle

$FRE2 23.1 Accumulate free $FRE2 Each data file on the specified spindle is
space low successively, moved to the highest available

block number and all free space is accumu-
lated at the low end of the spindle

$FRE3 23.1 Rebuild the format 5s $FRE3 Rebuild the Format 5s to represent the
accumulated free space and write them
back to disk VTOC

$FRES Syntax specifications None I nput parameter specifications for $F R EE
for $FREE

$HIST 17.1 History file display $HIST Display contents of history file to CRT/
Printer

$HITB Specification module None Define syntax of control statements

$INIT 18.1 Diskette initialization $INIT Rename diskettes, delete all files, and
utility format diskettes

$LABEL 19.1 Disk VTOC display Build a table containing the start and end
SSS address of each file represented in the
system and user VTOC on F/D. This table
is then sorted in ascending sequence by
beginning SS address and a catalog listing
of pertinent information is printed via
syslist. This module also calls and passes
control to $LAB 11 if the request was for a
display of 11.

$LABI1 19.1 Diskette VTOC display $LABI1 Part of $LABEL, called by $LABEL.
Display VTOC entries from diskette

$LABLS Syntax specifications None Input parameter specifications for $LABE L

for $LABEL

$LOADI 20.1 Reload library utility LOADIMNL Allocate system areas. Copy system library
from diskette to disk

$MACMP 21.1 Directory compactor $MACMP Remove deleted library directory entries

$MACOM 06.5 Library open/close $MACOM Transient version. Open and close
06.6 processing for output to a library

Directory A-5

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

$MADLT 21.3 Library member delete $MADLT Driver for removing library members

$MADSP 21.4 Library display $MADSP Driver to display library status, directory
entries, or library members

$MADXP WTG table for $MADSP None Include for a WTG table for $MADSP

$MAFIR 21.6 Library directory fast $MAFIR Put a stack of directory entries into the
insert library directory

$MAFND 06.3 Librarian find $MAFND Transient version. Partial name, multiple
type, and update find function

$MAF32 21.6 Copy from single pro- $MAF32 Copy single program sector mode file to
gram sector mode file library
to library

$MAILD Library directory insert $MAILD Transient version. Put directory entry in
library directory

$MAINT 21.1 Library maintenance $MAINT Process utility control statements, set up
mainline control bucket, and load and pass control

to appropriate driver

$MALCO 21.6 Library open/close $MALCO Load version. Open and close processing
06.5 for output to a library
06.6

$MALFN 06.3 Li brarian find $MALFN Load version. Find function with capabil-
21.4 ities of partial names, multiple types and
21.5 update

$MALI L Library directory insert $MALIL Load version. Add or replace directory
entry

$MALOC 21.1 Library allocate $MALOC Driver to allocate user library, change library
member size, or change user library directory
size

$MALTL 21.5 Library to library copy $MALTL Driver to copy library members between
libraries or within a library; optionally
renames members

$MALXC WTG table for $MALOC None Include WTG table for $MALOC

A-6

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

$MAPGS 06.6 Sector get/put $MAPGS Get sector mode modules from a library.
21.5 Put sector mode modules into a library
21.6

$MAPTF 21.3 PTF handler $MAPTF Get, Put, Update and delete entries in
06.6 PTFLOG

$MAPUR 06.5 Record put $MAPUR Put source or procedure members into a
21.6 library in compressed format

$MARCK 21.2 Library compress $MARCK Driver to compress library member space

$MARDR 21.6 Reader to library copy $MARDR Driver to copy S or P from the reader
(system input device) to a library

$MARFF 21.6 Copy from file to $MARFF Copy source or procedure members in

library in record mode record mode from a disk or diskette file
into.a library

$MARPF 21.4 Record mode file to $MARPF Driver to display type and name of library
display members in a record mode file

$MARTF 21.5 Copy from library to $MARTF Copy record mode members from a library
file in record mode to either a disk or diskette file. Copy control

statement is put at the beginning of member
and CEND record is put at the end

$MARXF Where-to-go table None. This module is included by $MARTF

$MAR2K 21.2 Library compress $MAR2K Second phase of library compress - update
library member disk addresses kept in
control blocks

$MAR3K 21.2 Library compress $MAR3K Suspend command processor when
#LlBRARY is being compressed

$MASDF 21.4 Sector mode file to $MASDF Driver to display type and name of library

display members in sector mode librarian file
(S/32 or S/34)

$MASPC Specification module None Define utility control statements for $MAINT

$MATFS 21.5 Copy from library to file $MATFS Copy sector mode members from a library to

in sector mode either a disk or diskette file

$MATLS 21.6 Copy from file to $MATLS Copy librarian sector mode members from a

library in sector mode disk or diskette file into a library

Directory A-7

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

$MAXNT Where-to-go table of None This module is loaded by $MATLS and is
system transient table a where-to-go table of all members in the
entries system transient table

$MGBLD 22_1 Message build utility $MGBLD Create load message members

$MGTAB Syntax specifications $MGTAB Input parameter specifications for $MGB LD
for $MGBLD

SPACK 23.1 Reorganize disk PAKOOO Build a table of the start and end SSS address
initialization module for each file located within the user area of

disk and sorts the table in ascending sequence
by beginning SSS address

$PROF 24.1 Security file utility $PROF Maintain system security file

$PRST 24.2 Security file restore $PRST Restore security file from diskette
utility

$PRSV 24.3 Security file save utility $PRSV Save security file on diskette

$RENAM 25.1 Rename utility $RENAM Rename user files

$RETAB Syntax specifications None Input parameter specifications for $R ENAM E
for $RENAME

$SETCF 26.1 Set configuration uti! ity $SETCF Modify and copy to the associated work
station configuration record updated session
values: that is, date, region site, library,
communications configuration values, etc.

$SETSM Set configuration utility $SETSM Describe via tables all allowable verbs and
syntax specification keywords for set configuration utility

$SFDEP 27.1 Screen format diagnose $SFDEP Print and diagnose SFG R source input
and print routine specifications. Print input and execution

output buffer configurations. Print size of
each format

$SFDXP Where-to-go table for SFFDB Link edited with $MASYG
$SFDEP DEPXEN

$SFFDB 27.1 Screen format FDT and $SFFDB Build the data stream and FDT entries (if
data stream build required) for each format
routine

$SFGR 27.1 Screen format genera- $SFCT Read utility control statements and build
tion routine mainline SFGR communications table. Diagnose

uti I ity control statement errors

A-a

Licensed Material-Property of IBM

Module
Name

$SFLMM

$SFRSQ

$SFSPC

##FCFG

##FCPF

##FER1

##FFE1

##FFE2

##FFE3

##FIPL

##FLOD

##FMC1

##FPRS

Diagram

27.1

27.1

Descriptive Name

Screen format load
member maintenance
routine

Screen format
resequence routine

Screen format
specification routine

Second half of
command processor
displays

First half of command
processor displays

Display screens for
ERAP utility

Display screens for
DUMP/PATCH utility

Display screens for
TRACE utility

Display to allow disk/
diskette storage to be
modified

Display for I PL
overrides

Display for RELOAD
prompts

Screen formats for
concurrent maintenance

Display screens for
$PROF security utility

Entry
Point

$SFLMM

$SFRSQ

$SFSPC

Licensed Material-Property of IBM

Function

Add, replace, or delete screen formats in a
load member; or create or replace an existing
load member. Uses $MAPGS to copy the
load member data to the library

Sort the data stream input fields into
ascending screen sequence. Truncate trailing
screen attri butes of output fields if necessary.
Update FDT pointer

Specification module for $SFGR and syntax
checker

Display member

Display member

Display member

Display member

Display member

Display member

Display member

Display member

Display member

Display member

Directory A-9

Module Entry

Name Diagram Descriptive Name Point Function

##FSTl Menus to allow CE to Display member

run I/O during installa-
tion tests

##FST2 Menus to allow CE to Display member

run I/O during installa-
tion tests

##FST3 Menus to allow CE to Display member
run I/O during installa-
tion tests

##FST4 Menus to allow CE to Display member
run I/O during installa-
tion tests

##FST5 Menus to allow CE to Display member
run system test to
verify installation

#CACM 03.3 Communicator allocate #CACM Attach the data management task necessary
for a communications DTF

#CADl 03.5 Deallocate premainline #CADl Check user's DTF for a valid request, check
for keysorting of files, and deallocate devices

#CAD2 03.5 Deallocate mainline #CAD2 Deallocate disk files, delete disk files, and
free unused space in disk files

#CAD3 03.5 Update the VTOC F5 #CAD3 Update the disk VTOC F5 from the info in
for deallocate the DTFs passed by #CAD2

#CAFl 03.3 New file setup #CAFl Set up the DTF with the information neces-
sary for #CAF2 to get space. Reads the F5
for #CAF2

#CAF2 03.3 Get space in F5 area #CAF2 Find space in the F5 area for the new files
in the DTF chain

#CAF3 03.3 Format file, update #CAF3 Format the file and update to VTOC F 1 for
VTOC new and load to old files

#CAKS 03.3. Allocate key sort #CAKS Perform keysorting of files during allocate
and deallocate processing

#CAMG 03.3 Allocate messages #CAMG Set up SYSLOG parameter list for allocate
messages

#CAML 03.3 Allocate mainline #CAML Allocate old disk files and devices; determine
if further processi ng to be done

A·10

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

#CAPS 03.3 Push/pull for diskette #CAPS Make available user storage for the modules
allocate and keysort #CAR 1 and #CAKS

#CAPT 03.3 Printer allocate #CAPT Allocate printers

#CAR1 03.3 Diskette allocate #CAR1 Do diskette file allocate processing

#CAS1 03.4 Special allocate #CAS1 Build and queue an FSB and F1 for each
special allocate DTF

#CAS2 03.4 Special old disk allocate #CAS2 Do old disk file allocate for special DTFs.
Determine further processing to be done

#CCAS 02.4 Assign and vary #CCAS Process assign and vary commands

#CCCM 02.5 CANCEL command #CCCM Process CANCEL command and INQUIRY
CANCEL

#CCCO 02.7 CONSOLE command #CCCO Reassign system console when an I/O error
occurs at the console

#CCCP 02.5 Spool command #CCCP Spool command - CANCE L

#CCGP 02.6 Spool command #CCGP Spool command - CHANGE

#CCHO 02.8 Spool command #CCHO Spool commands - HOLD, RELEASE
02.6

#CCID 02.9 IDELETE command #CCID Process the information message delete
command

#CCJQ' 02.5 JOBQ command #CCJQ Process JOBQ, CANCEL, CHANGE and
02.6 (input) STOP JOBQ commands

#CCJS 02.15 JOBQ command #CCJS Process START JOBQ command
(input)

#CCMG 02.11 MSG command #CCMG Message command diagnostic and disk
queuing

#CCMU 02.10 MENU command #GCMU Process MENU command

#CCMX 02.11 MSG command #CCMX Display messages at a work station

#CCOF 02.12 OFF command #CCOF Process OFF and MODE command

#CCPY 02.13 PRTY command #CCPY Change and/or set a job's priority

#CCRE 02.14 REPLY command #CCRE Reply command to system console
messages

Directory A-11

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

#CCRR 02.15 Spool command #CCRR Spool commands - START, STOP,
RESTART

#CCRS 02.14 REPLY command #CCRS Handle second level messages

#CCRT 02.15 STOP/START #CCRT Stop/start functions
commands

#CCSJ 02.16 JOBO command #CCSJ Process status JOBO command
(status)

#CCSM 02.16 STATUS mainline #CCSM Route control to proper status module

#CCSP 02.16 STATUS PRT #CCSP Process status PRT command

#CCSS 02.16 STATUS session-1 #CCSS Process session status page 1

#CCSU 02.16 STATUS users #CCSU Process users status

#CCSW 02.16 STA TUS workstn #CCSW Process work station status

#CCS2 02.16 STATUS session-2 #CCS2 Process session status page 2

#CCS3 02.16 STATUS session-3 #CCS3 Process session status page 3

#CCS4 02.16 STATUS session-4 #CCS4 Process session status page 4

#CCTD 02.17 TIME command #CCTD Return time-of-day and system date

#CCU2 02.16 Command processor #CCU2 Display active user information on
status user's routine display screen

#CIAT 03.1 ATTR statement IAT00100 Process an ATTR statement
processor

#CICM 03.1 COMPI LE statement ICM00100 Process a COMPI LE statement
processor

#CICO 03.1 COMM statement ICOO0100 Process a COMM statement
processor

#CICX Initiator (#CICM) MAFL@ Cross reference table
OXREF table CIER@

#CIDT 03.1 DATE statement IDT00100 Process a DATE statement
processor

#CIER 03.1 Initiator error routine IER00100 Issue errors detected by initiator routines

#CIFM 03.1 FORMS statement IFMOO010 Process a FORMS statement
processor

(

A-12

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

#CIIC 03.1 INCLUDE statement IIC03900 Process an INCLUDE statement
processor

#CIIM 03.1 I MAG E statement IIM00100 Process an IMAGE statement
processor

#CIIX Initiator (#CIIC) CIMT@ Cross reference table
OXREF table CIER@

#CILB 03.1 LIBRARY statement ILB00100 Process a LIBRARY statement
processor

#CILC 03.1 LOCAL statement ILC00100 Process a LOCAL statement
processor

#CILD 03.1 LOAD statement ILDOOO01 Process a LOAD statement
processor

#CILG 03.1 LOG statement OLG00100 Process a LOG statement
processor

#CILM 03.1 Load MRT routine ILM00100 Process LOAD statement for a M RT program

#CILX Initiator (#CI LD) CILM@ Cross reference table
OXREF table CIER@

#CIML 03.1 Initiator mainline IMLOO010 Read OCL statements; pass control to STMT
processors; perform file processing

#CIMM 03.1 MEMBER statement IMMOOO10 Process a MEMBER statement
processor

#CIMS 03.1 * statement processor IMS00100 Process an * statement

#CIMT 03.1 M RT procedure IMT03900 Set up a MRT for initial call and attach to
existing MRT

#CIM2 03.1 * * statement processor IM200100 Process a ** statement

#CIPR 03.1 PRINTER statement IPROO010 Process PRINTER statement
processor

#CIPS 03.1 PHASE statement IPS00100 Process a PHASE statement
processor

#CIRG 03.1 REGION statement IRGOO010 Process a REGION statement
processor

#CIRN 03.1 RUN statement IRN00100 Final initiator phase; load user program
processor

Directory A-13

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

#CIRX Initiator (#CIRN) SVAU@ Cross reference table
OXREF table CIER@

#CISL 03.1 SYSLIST statement ISL00100 Process a SYSLIST statement
processor

#CISW 03.1 SWITCH statement ISWOO010 Process a SWITCH statement
processor

#CIVT 03.1 VTOC read/write IVT08500 Interface with VTOC read/write routine
interface

#CIVX Initiator (#CIVT, CIER@ Cross reference table'
#CIMM, and #CIM2)
OXREF table

#CIWK 03.1 WORKSTN statement IWK00100 Process a WORKSTN statement
processor

#CLAC 06.15 Active existence test #CLAC I F active existence test

#CLBL 06.15 Blocks existence test #CLBL I F blocks existence test

#CLFX 06.15 File existence test #CLFX I F file existence test

#CLOX OXRF table None OXRF table for initiator and SYSIN

#CLPR 06.15 Prompt routine #CLPR Prompt and substitute parameters

#CLSB {)6.15 Substitution routine #CLSB Perform nonparameter substitution

#CLSC 06.16 SYSLIST CRT Display system programs output or record
(transient) (for those programs using SYSLlST) when

the SYSLIST device is the CRT

#CLSG 06.17 SYSLOG mainline Display messages to a work station or system
console. Print these messages if the printer
is the SYSLOG device and the system is in
single program mode. Also record the mes-
sage in the history file

#CLSM 06.15 Switch/member #CLSM Switch/member existence tests
existence tests

#CLSN 06.15 SYSIN (transient) #CLSN Push/pull for SYSIN mainline

#CLSP 06.16 SYSLIST printer #CLSP If printer is SYSLIST device, display
loadable module SYS LIST records

#CLSS 06.15 SYSI N mainline #CLSS Procedure handling mainline

I

\

A-14

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

#CLST 06.16 SYSLIST printer Print system programs output or record
transient (system programs that use SYSLlST) when

the SYSLIST device is the printer

#CLSW 06.16 SYSLIST CRT #CLSW If display screen is SYSLIST device,
loadable module display SYSLIST records

#CLXS 06.17 SYSLOG push/pull #CLXS Push/pull main storage to load the SYSLOG
(transient) mainline (#CLSG)

#CMCI 02.28 Console management #CMCI Accept messages from a user and queue
them to tre system console

#CMCS 02.28 Console management #CMCS Display messages on the system console
queue

#CMCU 02.31 CP clean up #CMCU Command processor routine which does log
printer, history file put, msg retrieve and
message displaying

#CMEJ 02.28 Console EOJ #CMEJ Marks all messages responded to by EOJ
with ,**, on console

#CMLS 02.29 SYSLIST CRT #CMLS The data management for SYSLIST to a
work station

#CMWI 02.29 Work station SYSI N #CMWI The data management for retrieving SYSI N
data management records from a work station

#CMWO 02.29 SYSLOG/SYSLIST #CMWO The data management for SYSLOG to a
data management work station

#CPER 02.31 Console management #CPER Process I/O errors at work stations and
error recovery printers under the command processor

#CPIO 02.26 Command processor #CPIO Create WSDM parameter list and call
02.21 input/output processor WSDM
02.23

#CPIQ 02.23 CP inquiry menu #CPIQ Process inquiry options, rename and other
02.24 processor exception conditions

#CPKS 02.15 KEYSORT all files #CPKS Keysort any files in the VTOC that have the
sort or merge bit on

#CPML 02.1 Command processor #CPML Wait for events to occur

#CPON 02.2 Sign-on #CPON Sign-on module
01.4

#CPRT 02.1 CP input processor/ #CPRT Initially process input routine commands
02.19 router to appropriate transient

Directory A-15

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

#CPSP 02.25 Special key processor #CPSP Initiate processing required by special
function keys on keyboard

#CPTC 02.1 CP task post #CPTC Process sys req, inquiry, and release
02.20 processor functions
02.21
02.30

#CPTS 02.30 Sign-on display writer #CPTS Write sign-on display

#CSAF 06.8 AFA access #CSAF Read the AFA format 1 's into a callers
I/O buffer

#CSDK 06.10 Duplicate key halt #CSDK Issue SYSLOG halts if a duplicat~ key is
routine found during keysort

#CSIM 06.11 Printer set-up halt #CSIM Issue SYSLOG halts if printer setup required.
routine Image, forms, spool separator pages

#CSVF 06.12 Disk VTOC read/write #CSVF Disk VTOC read/write transient version

#CSVI 06.13 Diskette VTOC read/ #SCVI Read, write diskette VTOC and prepare
write main (transient) function

#CSVJ 06.13 Diskette VTOC read/ #CSVJ Build the diskette VTOC work area on disk
write main (transient)

#CSVK 06.13 Diskette VTOC read/ #CSVK Build the diskette VTOC on diskette from
write (transient) the diskette VTOC work area on disk

#CTECM 05.2 Termination communi- #CTECM Process communication specification block
cations interface (CSB) for a task

#CTEEX Termination exit #CTEEX Set or modify the termination exit address
interface for communications program

#CTEGU 05.2 Termination interface #CTEGU Pull user program back into main storage
to get the user into from disk
main storage

#CTEIF 05.2 Termination interface #CTEIF Get control initially when terminating a
step/job. Provide the interface to the main
terminator

#CTEKS 05.2 Termination keysort #CTEKS Pass control to keysort if required
interface

#CTEPR 05.2 Termination processor #CTEPR Perform most of the termination functions
necessary to terminate a step/job (keysort,
files processing, work station logic, etc.)

A-16

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

#CTES 05.2 Spool-JOBO #CTES Update spool file and JOBO file after
termination compress has run

#DDCl 05.1 Disk close (transient) #DDCl Issue completion of all I/O operations,
return DTF to pre-open status, update
format 1 to current status of the file

#DDDM 04.1 Nucleus resident disk X'OOOO' Provide general disk data management
data management support

#DDKAA 04.7 Keysort-control X'OOOO' Keysort control

#DDKEP 04.7 Keysort-end of phase X'OOOO' Perform phase to phase communications

#DDKll 04.7 Keysort-assignment and X'OOOO' Design sort, allocate workfile, examine
3-phase sort control format 1

#DDKSS 04.7 Keysort-sort in place X'OOOO' Sort without a work file

#DDK1A 04.7 Keysort-3-phase internal X'OOOO' Create initial strings on work file
sort

#DDK2A 04.7 Keysort-3-phase inter- X'OOOO' Merge intermediate strings from and to
mediate merge work file

#DDK3A 04.7 Keysort-3-phase final X'OOOO' Merge all intermediate strings back to index
merge

#DDlM Disk limits open #DDlM Establish user limits for index sequential
input or update files

#DDSM 04.2 Disk sector data #DDSM Handle gets and puts in sector mode to disk
management

#DDSR Index sequential/random #DDSR Handle random, forward, or backward gets
input to disk from the disk

#DD10P 03.6 Disk open transient one #DD10P Perform diagnostic checking of fixed disk
DTFs. Also initialize all DTF fields for
dummy and ZPAM open

#DD20P 03.6 Disk open transient two #DD20P Format the DTF, lOBs and data areas (of
fixed disk DTF's) as required

#DMCL 05.1 Common data manage- #DMCL Serve as a routing routine for DTFs that are
ment close transient to be closed. Call appropriate device-depend-

ent close modules to perform re-initialization
of DTF's

#DMOF 03.6 Second common data #DMOF Act as routing for preopen DTFs. Pass
management open control to appropriate device dependent
transient open modules

Directory A·17

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

#DMOP 03.6 Common data manage- #DMOP Act as routing for preopen DTFs. Pass
ment open transient control to appropriate device dependent

open modules

#DPAL 04.5 Printer al ignment #DPAL Give user capability to align printer forms
(transient)

#DPCL 05.1 Printer close (transient) #DPCL Ensure completion of all issued I/O events
to printer and restore printer DTF to
pre-open state

#DPDM 04.5 Printer data manage- #DPDM Issue lOBs to printer lOS to perform
ment requested I/O operations

#DPOP 03.6 Printer open (transient) #DPOP Prepare printer and printer control blocks
to handle I/O requests

#DRCL 05.1 Diskette close #DRCL Close diskette files

#DRDM 04.3 Diskette record data #DRDM Handle gets and puts in record mode to
04.4 management diskette

#DRNV 04.4 Diskette end of volume #DRNV Handle volume transition of diskette files

#DROP 03.6 Diskette open #DROP Open diskette files

#DRSM 04.3 Diskette sector data #DRSM Handle gets and puts in sector mode to
04.4 management diskette

#DWDM 04.6 Work station data #DWDM Call work station data management routines
management router to perform management functions (link-

edited with #DDDM)

#HFPUT 06.18 History file put #HFPUT Place entries into history file along with user
(transient) ID < terminal ID, job name, time-stamp,

etc.

#MAFLB 06.1 Find a library #MAFLB. Find and set up for use of a library by name

#MAMPM 06.7 Member protection #MAMPM Prevent SEU tasks from updating a library
module member if that member is currently being

updated by another SEU task. Prevent
initiation of an SEU task when an SEU user
has made an inquiry back into SEU. Create
a new element on the SEU member chain

#MANOP 06.9 No-op module NOPOOOO Match entry points of modules called via
NOPOO03 WTG tables. This module is put in a WTG
NOPOO07 table when the desired module is missing.

Issue a halt and cancel job when given
control

A-18

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

#MASFN 06.2 System find #MASFN Single name find routine transient version

#MASGT 06.4 Source get #MASGT Transient - get and expand source or pro-
cedure records

#MASYL 06.4 Sourc~ get #MASYL Include and load version expands S or P
records

#MAXRF 06.9 Cross reference XRFOOOO Call EOJ when done. Return to caller when
resolver XRFOO03 done. Fill in WTG and format index tables

#MGRET 06.14 Message retrieve #MGRET Retrieve load message members created by
(transient) $MGBLD

#MSBFL 01.6 Rebuild VTOC format #MSBFL Run key sort
1 's - phase 2

#MSBGL 01.6 Rebuild VTOC format #MSBGL Check F1 's for proper latest date indicator
1 's - phase 3

#MSBLD 01.6 Rebuild VTOC format #MSBLD Rebuild VTOC F1 's if requested by system
1 's - phase 1 operator

#MSIPL 01.4 IPL - 3rd phase MSIPLMNT Initiate SIGN-ON. Process CONFIG. options

#MSJO 01.4 JOBO IPL (input) #MSJO For'mat disk and main store for input JOBO

#MSNIP 01.2 IPL - 1st phase MSNIPMNT Initiate main storage IPL

#MSOER 01.4 IPL - override MSOERMNT Prompt for IPL overrides for JOBO and
transient 2 spool

#MSRID 01.4 IPL - override MSRIDMNT Prompt for system configuration override
transient 1 options

#MSSP 01.4 Spool IPL #MSSP Format disk and main store for spool

#MSSOS 01.4 IPL - initialize storage MSSOSMNT Initialize user storage and assign/free area

#MSTWA 01.3 IPL - 2nd phase MSTWAMNT Load resident routines. Initialize TWA

#OLAF 08.4 Autolink segment list AFAOOO Read $WORK object modules and build
build autolink segment list entries on $SOURCE

#OLAH 08.5 Cross-reference segment OLAHOO Read records from autolink segment list on
list build $SOU RCE and build the cross-reference

segment list

#OLAJ 08.6 Sort autolink segment AJAOOO Sort autolink segment list into sublists
list

Directory A-19

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

#OLAP 08.7 Overlay design OLAPOO Calculate storage requirements and deter-
mine overlay structures

#OLAR 08.8 Overlay segment list OLAROO Build an overlay segment I ist and writes
build object code to $WORK

#OLAT 08.9 Storage map phase AT010 Print storage map and error messages

#OLBE 08.10 Relocate, resolve START Relocate object modules within overlays,
EXTR Ns, and build resolve external references, and combine
load module phase relocated object modules into load modules

#OLBO 08.11 Library control phase OLBOOO Catalog object and load modules in the
library directory

#OLER 08.12 Error routine EROOO Call SYSLOG to issue messages

#OLlNK 08.14 User entry phase 1 INKOOO Open work files, initialize the common area
(LOMMON), and read control statements

#OLlSP OLE syntax specifica- None Define the user control statement verbs,
tion module keywords, and parameters

#OLl1 08.15 User entry phase 2 INK105 Check control statement parameters and
transfer data to common area (LOMMON)

#OLl2 08.16 User entry phase 3 INK105 Check control statement parameters and
copy object modules to $WORK

#OLl3 08.17 User entry phase 4 INKOOO Check control statement parameters and
build a segment list entry on $SOURCE

#OLMSG 08.13 Error message print OLMSGO Print error messages
phase

#OLYNX 08.3 Compiler entry phase YNXOOO Initialize common area (LOMMON), move
OPTIONS data and name ESL to LOMMON

#PRSD 02.32 Password security #PRSD Retrieve user's security file and make sign-on
security check

#PTFLOG PTF LOG load module· None Contain PTF log entries for library in which
it resides

#SA@CU Display screens to Display member
create, add, update,
total formats

#SA@DS Display screens to Display member
delete entire formats or
to manipulate SFGR
statements directly

A-20

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

#SA@DP Display screens to Display member
display formats in an
SFGR load module

#SA@HP Display screen for Display member
help text

#SA@ME Display screens to Display member
create or update menu
source statements

#SA@RC Display screens to build Display member
a skeleton RPG display
station program

#SA@RP Display screens for user Display member
recovery

#SPALC 04.8 Spool allocate #SPALC Allocate spool control, blocks and disk
extents

#SPCLO 04.8 Spool close #SPCLO Close the spool file entry

#SPDPQ 04.8 Spool data and print #SPDPQ Create the data entries and add the index
queue to the print queue

#SPINT 04.8 Spool intercept #SPINT I ntercept the print line

#SPQMG 04.9 Queue manager #SPQMG Get entries from spool file

#SPWRT 04.9 Spool writer #SPWRT Print entries from the spool file

#SVAT 06.19 New task attach #SVAT Allocate necessary resources to attach a
new task to the system

#SVAU 06.20 Change task's ORG #SVAU Perform necessary ATR manipulation when-
point or detach task ever a task's ORG point changes, or

deallocate resources and detach task from
system

#SVDMP 06.24 Snap dump (transient) SVDMPANT Nonterminating main storage dump

#SVERJ 05.2 EOJ purge of console #SVERJ Check console SYSLOG queue and console
queue for I/O message matrix for messages associated with the task

that is being cancelled

#SVERP 02.33 Error processing #SVERP Allows I/O devices to issue error messages to
(transient) the system console. Routes control for I/O

error recovery

Directory A-21

Licensed Material-Property of IBM

Module Entry

Name Diagram Descriptive Name Point Function

#SVINF 06.22 Information retrieval #SVINF Retrieve required information for non-
(transient) privileged programs requiring access to

fields in privileged JCBs

#SVNRY 02.35 Display station error #SVNRY Attempt recovery from operator error mode
recovery for device not and system request mode command reject
ready exceptions

#SVPRE 02.33 Printer prepare SVPREMNT Set printer image, forms length and width,
and graphic error procedure to be taken

#SVRD 02.35 Command reject ready #SVRO Retrieve command rejected records from a
routine work station comman~ reject file

#SVTTC 06.32 Data management task SVTNTY Control communication, between user
transfer control programs and system data management

tasks

#SVUR 02.35 Command reject #SVUR Push out user task and load #SVRD
ready transient

#SVWER 02.33 Work station error #SVWER Allow work stations to issue error messages
message transient to system console

#SVWSR 02.34 Display station error #SVWSR Attempt recovery from: hardware malfunc-
recovery tions, software errors, command reject

exceptions, and process not ready to ready
ready-post

#USYX 06.21 Syntax checker #USYX Verify the syntax for control statements
as defined by the specification module

#WDAF 04.6 Assign failure #WDAF Processed WSQS assign failure for work
(transient) station data management

#WOOA 04.6 Work station data #WDDA Resident version of work station data
management management

#WODB 04.6 Work station data #WDDB Transient version of work station data
management management

#WDDC 04.6 Work station data #WODC Transient that handles miscellaneous work

management station data management functions

#WOOG 04.6 Work station data #WOOG Handle status inquiry, acquire terminal, get

management GET terminal attributes, invite terminal input,

routine accept terminal input, get terminal input,
and release terminal from program functions

A-22

Licensed Material-Property of IBM

Module Entry
Name Diagram Descriptive Name Point Function

MOOH 04.6 Work station data MOOH Handle process requests for help and print
management transient keys, key masking functions, and issue
routines message for print key request functions

MOOK 04.6 Work station data MOOK Process requests for the print key
management transient
routines

MOOO 04.6 Work station data MOOO Handle put override operation
management PUT
override routine

MOOO 04.6 Work station data MOOO Handle acquire terminal and get terminal
management GET attribute functions
routine

MOOPN 03.6 Work station open #WOOPN Open work station OTFs for the user
transient

@CSVF 06.12 Oisk VTOC @CSVF Oisk VTOC read/write (link-edit version)
read/write

@HFPTR 06.18 History file put (read @HFPTR Place entries into history file along with user
main storage include) 10, work station 10, job name, timestamp,

etc.

@HFPUT 06.18 History file put @HFPUT Place entries into history file along with user
(transient include) 10, work station 10, job name, timestamp,

etc.

@MASFN 06.2 System find @MASFN Include version of the single-name-find
routine

@MGRET 06.14 Message retrieve load @MGRET Object include version of message retrieve,
include to be included at compile time

@MASYL 22.1 Get source member @MASYL Get source member from library and
process

Directory A-23

Licensed Material-Property of IBM

A·24

Licensed Material-Property of IBM

Appendix B. List of Acronyms and Abbreviations

@ Address FDT Field descriptor table

ACE Action control element FOE Free queue element

AFA Active format 1 area FSB File specification block

APAR Authorized program analysis report HDR Header

AOE Allocation queue element I/O Input/output

ARR Address recall register IAR Instruction address register

ASCII American national standard code for IMPl Initial microprogram load
information interchange

lOB Input/output block
ATR Address translation register

lOCH Input/output control handler
BSC Binary synchronous communications

lOS Input/output supervisor
CAM Compiler access method

IPl Initial program load
CIB Compiler information block

IWA Initiator work area
CP Command processor

JCB Job control block
CRT Cathode ray tube (display screen)

lCB Library control block
CS Contro I storage

lCS Library control sector
CSB Communication specification block

lSR local storage register
DTF Define the file

MEB Member enqueue block
EBCDIC Extended binary coded decimal interchange

code MIC Message identification code

ENO Enquiry MRT Multiple requesting terminal

EOJ End of job MS Main storage

ERAP Error recordi ng analysis procedure MVF Multivolume file

ERB Error recovery block NEP Never ending program

ERP Error recovery procedure OCl Operation control language

ESl External symbol list table OXRF Cross-reference table

List of Acronyms and Abbreviations 8-1

Licensed Material-Property of IBM

PIO Place in queue SRT Single requesting terminal

PMR Program mode register SS Sector address

PPSA Procedure parameter save area SSP System support program

PSB Printer specification block SVC Supervisor call

PSR Program status register TCB Task control block

PTF Program temporary fix TOE Timer queue element

OFD Oueue file description TUB Terminal unit block

RB Request block TWA Task work area

RIB Request indicator byte UPSI User program status indicator

RIWA Reader interpreter work area VTOC Volume table of contents

RLD Relocation dictionary WSB Work station specification block

RRN Relative record number WSDM Work station data management

SCA System communication area WSWA Work station work area

SFD Spool file description WTG Where-to-go (table)

SFGR Screen format generator routi ne XR1 Index register one

SIO Start input/output XR2 I ndex register two

SOB Sector queue block ZPAM Sector data management

SOE Status queue element

8-2

Licensed Material-Property of IBM

$BACK
introduction 9-1
method of operation 9-2
program organization (control flow) 9-6

$BICDI (see $BICR)
$BICFI (see $BICR)
$BICIF (see $BICR)
$BICR

BICCVlIST verb list 10-12
introduction 10-1
main storage map 10-11
method of operation 10-5
program organization (control
flow) 10-9

$BMENU
introduction 11-1
method of operation 11-2
program organization (control
flow) 11-6

$BUILD
introduction 12-1
method of operation 12-2
program organization (control
flow) 12-5

$CNFIG
introduction 1-2
method of operation 1-15
program organization (control
flow) 1-24

$COADD (see $COPY)
$COALL (see $COPY)
$COANT (see $COPY)
$COCRT (see $COPY)
$COGET (see $COPY)
$COINT (see $COPY)
$COPRT (see $COPY)
$COPY

data areas 13-20
introduction 13-1
method of operation 13-3
program organization (control
flow) 13-14

$COSEL (see $COPY)
$COZI P (see $COPY)
$CPPE

introduction 28-1
method of operation 28-2
program organization (control
flow) 28-4

$DELET
introduction 14-1
method of operation 14-2
program organization (control
flow) 14-6

$DELF1 (see $DELET)
$DElI1 (see $DELET)
$DUPRD

introduction 15-1
method of operation 15-2
program organization (control
flow) 15-6

$ERAP (see ERAP utility)
$ERAO (see ERAP utility)
$ERCA (see ERAP utility)
$ERCO (see ERAP utility)
$ERDO (see ERAP utility)
$EREO (see ERAP utility)
$ER01 (see ERAP utility)
$ER02 (see ERAP utility)
$ER80 (see ERAP utility)
$FBLD

introduction 16-1
method of operation 16-2
program organization (control
flow) 16-4

$FEAPR (see APAR utility)
$FECRT (see dump utility)
$FEDMP (see dump utility)
$FEDSK (see dump utility)
$FEFIX (see PTF installation)
$FEIOP (see dump utility)
$FEPCH (see patch utility)
$FESTR (see dump utility)
$FESYS (see dump utility)
$FETRC (see trace utility)
$FREE (see $PACK/$FREE)
$FRE1 (see $PACK/$FREE)
$FRE2 (see $PACK/$FREE)
$FRE3 (see $PACK/$FREE)
$HIST

introduction 17-1
method of operation 17-3
program organization (control
flow) 17-6

$INIT
data areas 18-6
introduction 18-1
method of operation 18-2
program organization (control
flow) 18-5

$LABEL
introduction 19-1
method of operation 19-2
program organization (control
flow) 19-6

Licensed Material-Property of IBM

Index

Index X-1

$LABI1 (see $LABEL)
$LOADI

data areas 20-7
introduction 20-1
method of operation 20-2
program organization (control
flow) 20-6

$MACMP (see $MAINT)
$MACOM (see library record put)
$MADLT (see $MAINT delete function)
$MADSP (see $MAINT copy function)
$MAFIR (see $MAINT copy function)
$MAFN D (see librarian find routine)
$MAF32 (see $MAINT copy function)
$MAINT

allocate function ($MALOC)
introduction 21-2
method of operation 21-5
program organization (control
flow) 21-23

storage map 21-40
compress function ($MARCK, $MAR2K, and
$MAR3K)
introduction 21-2
method of operation 21-7
program organization (control
flow) 21-24

storage map 21-35
copy function

introduction 21-2
method of operation 21-15
program organization (control
flow) 21-28

storage map 21-37
data areas 21-32
delete function ($MADLT)

introduction 21-2
method of operation 21-9
program organization (control
flow) 21-25

storage map 21-36
display function

introduction (see $MAI NT copy function)
method of operation 21-11
program organization (control
flow) 21-26

storage map 21-36
introduction 21-1
method of operation 21-4
program organization (control
flow) 21-22

storage maps 21-34
$MALCO (see library record put)
$MALFN (see librarian find routine)
$MALOC (see $MAINT allocate function)
$MALTL (see $MAINT copy function)
$MAPGS (see library sector get/put)
$MAPTF (in HIPO diagram) 6-23
$MAPUR (see library record put)
$MARCK (see $MAI NT compress function)

X-2

$MARDR (see $MAINT copy function)
$MARFF (see $MAINT copy function)
$MARPF (see $MAINT copy function)
$MARTF (see $MAINT copy function)
$MAR2K (see $MAINT compress function)
$MAR3K (see $MAINT compress function)
$MASDF (see $MAINT copy function)
$MATFS (see $MAI NT copy function)
$MATLS (see $MAINT copy function)
$MGBLD

introduction 22-1
method of operation 22-2
program organization (control
flow) 22-5

$PACK/$FREE
data areas 23-6
introduction 23-1
method of operation 23-2
program organization (control
flow) 23-5

$PROF (see security file utilities, file
utility)

$PRST (see security file utilities, file
restore)

$PRSV (see security file utilities, file
save)

$RENAM
introduction 25-1
method of operation 25-2
program organization (control
flow) 25-5

$SETCF
introduction 26-1
method of operation 26-2
program organization (control
flow) 26-6

$SFDEP (see $SFGR)
$SFFDB (see $SFGR)
$SFGR

introduction 27-1
method of operation 27-3
program organization (control
flow) 27-8

storage map 27-8
$SFLMM (see $SFGR)
$SFRSQ (see $SFGR)
#BSCL (see binary synchronous communication
close)

#CACM (see allocate, normal)
#CAD1 (see deallocate)
#CAD2 (see deallocate)
#CAD3 (see deallocate)
#CAF1 (see allocate, normal)
#CAF2 (see allocate, normal)
#CAF3 (see allocate, normal)
#CAKS (see allocate, normal)
#CAMG (see allocate, normal)
#CAML (see allocate)
#CAPS (see allocate, normal)
#CAPT (see allocate, normal)

Licensed Material-Property of IBM

#CAR1 (see allocate, normal)
#CAS1 (see allocate, special)
#CAS2 (see allocate, special)
#CCAS (see ASSIGN and VARY)
#CCCM (see CANCEL)
#CCCO (see CONSOLE)
#CCCP (see CANCEL)
#CCGP (see CHANGE and JOBQ)
#CCHO (see HOLD and RELEASE)
#CCID (see IDELETE)
#CCJQ (see CHANGE and JOBQ)
#CCJS (see START, STOP, and RESTART)
#CCMG (see MSG)
#CCMU (see MENU)
#CCMX (see MSG)
#CCOF (see MODE and OFF)
#CCPY (see PRIORITY)
#CCRE (see REPLY)
#CCRR (see START, STOP, and RESTART)
#CCRS (see REPLY)
#CCRT (see START, STOP, and RESTART)
#CCSJ (see STATUS)
#CCSM (see STATUS)
#CCSP (see STATUS)
#CCSS (see STATUS)
#CCSU (see STATUS)
#CCSW (see STATUS)
#CCS2 (see STATUS)
#CCS3 (see STATUS)
#CCS4 (see STATUS)
#CCTD (see TI M E)
#CCU2 (see STATUS)
#CIAT (see initiator)
#CICM (see initiator)
#CICO (see initiator)
#CIDT (see initiator)
#CIER (see initiator)
#CI FM (see initiator)
#CIIC (see initiator)
#CIIM (see initiator)
#CI LB (see initiator)
#CI LC (see initiator)
#CI LD (see initiator)
#CI LG (see initiator)
#CILM (see initiator)
#CIML (see starting a job)
#CIMM (see initiator)
#CIMS (see initiator)
#CIMT (see initiator)
#CIM2 (see initiator)
#CIPR (see initiator)
#CIPS (see initiator)
#CIRG (see initiator)
#CIRN (see initiator)
#CISL (see initiator)
#CISW (see initiator)
#CIVT (see disk file initialization)
#CIWK (see disk file initialization)
#CKSB (see SYSIN)
#CLAC (see SYSIN)

#CLBL (see SYSIN)
#CLFX (see SYSIN)
#CLPR (see SYSIN)
#CLSC (see SYSLlST)
#CLSG (see SYSLOG)
#CLSM (see SYSIN)
#CLSN (see SYSIN)
#CLSP (see SYSLlST)
#CLSS (see SYSIN)
#CLST (see SYSLlST)
#CLSW (see SYSLlST)
#CLXS (see SYSLOG)
#CMCI (see console management)
#CMCS (see console management)
#CMCU (see command processor cleanup)
#CM EJ (see console management)
#CM LS (see console management)
#CMWI (see console management)
#CMWO (see console management)
#CPER (see command processor cleanup)
#CPIO (see command processor/work s~ation

data management interface)
#CPIQ (see inquiry menu option processor
and resume)

#CPKS (see keysort)
#CPML (see router)
#CPON (see sign on)
#CPRT (see router)
#CPSP (see special command processor)
#CPTC (see router, console management,
and high-level aids and task-to-task
communications router)

#CPTS (see sign on)
#CSAF (see active format 1 area access
routine)

#CSDK (see duplicate key display routine)
#CSI M (see print image verify routine)
#CSVF (see disk VTOC read/write)
#CSVI (see diskette VTOC read/write)
#CSVJ (see diskette VTOC read/write)
#CSVK (see diskette VTOC read/write)
#CTECM (see termination, communication
interface)

#CTEGU (see termination, user interface)
#CTEIF (see termination, interface)
#CTEKS (see keysort)
#CTEPR (see termination, processor)
#CTES (see termination)
#DDCL (see disk close)
#DDDM (see disk data management)
#DDKAA (see keysort)
#DDKEP (see keysort)
#DDKLL (see keysort)
#DDKSS (see keysort)
#DDK1A (see keysort)
#DDK2A (see keysort)
#DDK3A (see keysort)
#DDSM (see sector data management to disk)
#DD10P (see open, disk)
#DD20P (see open, disk)

Licensed Material-Property of IBM Index X-3

#DMCL (see common close)
#DMOF (see open, common-2)
#DMOP (see open, common-1)
#DPAL (see printer data management)
#DPCL (see printer close)
#DPDM (see printer data management)
#DPOP (see open, printer)
#DRCL (see diskette close)
#DRDM (see diskette data management)
#DRNV (see diskette end of volume)
#DROP (see open, diskette file)
#DRSM (see sector data management to
diskette)

#DWDM (see work station data management)
#H FPUT (see history file put)
#MAFLB (see find a library routine)
#MAM PM (see library member protection)
#MANOP (see cross reference resolver)
#MASFN (see single name find routine)
#MASGT (see source library get)
#MASYL (see source library get)
#MAXRF (see cross reference resolver)
#MGRET (see message retrieve)
#MSBFL (see #MSBLD)
#MSBGL (see #MSBLD)
#MSBLD

introduction 1-2
method of operation 1-20
program organization (control
flow) 1-25

#MSIPL
introduction 1-1
method of operation 1-9
program organization (control
flow) 1-23

#MSIQ (in HIPO diagram) 1-9
#MSJQ (see #MSIPL)
#MSNIP

introduction 1-1
method of operation 1-5
program organization (control
flow) 1-23

#MSOER (in HIPO diagram) 1-9
#MSOER (see #MSIPL)
#MSRID (in HIPO diagram) 1-9
#MSRID (see #MSIPL)
#MSSP (in HIPO diagram) 1-9
#MSSP (see #MSIPL)
#MSSQS (in HIPO diagram) 1-9
#MSSQS (see #MSIPL)
#MSTWA

introduction 1-1
method of operation 1-7
program organization (control
flow) 1-23

#OLAF (in HIPO diagram) 8-10
#OLAH (in HIPO diagram) 8-11
#OLAJ (in HIPO diagram) 8-12
#OLAP (in HIPO diagram)
#OLAR (in HIPO diagram)
#OLAT (in HIPO diagram)
#OLBE (in HIPO diagram)

X-4

8-13
8-14
8-15
8-16

#OLBO (in H I PO diagram) 8-17
#OLER (in HIPO diagram) 8-18
#OLlNK (in HIPO diagram) 8-20
#OLl1 (in HIPO diagram) 8-21
#OLl2 (in HIPO diagram) 8-22
#OLl3 (in HIPO diagram) 8-23
#OLMSG (in HIPO diagram) 8-19
#OLYNX (in HIPO diagram) 8-9
#PRSD (see password security)
#SPALC (see spool intercept)
#SPCLO (see spool intercept)
#SPDPQ (see spool intercept)
#SPINT (see spool intercept)
#SPQMG (see spool print writer)
#SPWRT (see spool print writer)
#SVAT (see supervisor task attach
transient)

#SVAU (see supervisor task detach)
#SVDMP (see snap dump)
#SVERJ (see termination)
#SVERP (see I/O error recovery)
#SVINF (see information retrieval)
#SVN RY (see work station error recovery)
#SVPRE (see I/O error recovery)
#SVRD (see work station error recovery)
#SVTTC (see data management task transfer
control)

#SVU R (see work station error recovery)
#SVWER (see I/O error recovery)
#SVWSR (see work station error recovery)
#USYX (see syntax checker)
#WDAF (see work station data management)
#WDDA (see work station data management)
#WDDB (see work station data management)
#WDDC (see work station data management)
#WDDG (see work station data management)
#WDDH (see work station data management)
#WDDK (see work station data management)
#WDDO (see work station data management)
#WDDQ (see work station data management)
#WDOPN (see open, work station)
@CSVF (see disk VTOC read/write)
@HFPTR (see history file put)
@HFPUT (see history file put)
@MASFN (see single name find routine)
@MASYL (see $MGBLD)
@MGRET (see message retrieve)

abbreviations B-1
access method drivers

consecutive 4-5
direct 4-6
indexed random 4-6
indexed sequential 4-7
indexed sequential/random input 4-8

Licensed Material-Property of IBM

access methods
consecutive 4-1
direct 4-1
indexed random 4-4
indexed sequential 4-4.
indexed sequential/random input 4-5

access methods, base functions/ subroutines
used by 4-2

acronyms B-1
active format 1 area access routine

data areas 6-76
introduction 6-5
method of operation 6-25
program organization (control
flow) 6-57

allocate
introduction 3-4
method of operation 3-21
normal

introduction 3-4
method of operation 3-22
program organization (control
flow) 3-35

special
introduction 3-5
method of operation 3-26
program organization (control
flow) 3-37

alternate sector rebuild utility (see
$BUILD)

APAR utility
introduction (see the Data Areas
Handbook)

method of operation 7-3
program organization (control
flow) 7-12

ASSIGN and VARY
introduction (see process control
commands)

method of operation 2-15
program organization (control
flow) 2-80

backup library utility (see $BACK)
base functions/subroutines used by access
methods 4-2

basic exchange format, diskette 10-1
basic exchange utility (see $BICR)
binary synchronous communication close

introduction 5-3
method of operation 5-7
program organization (control
flow) 5-12

build menu utility (see $BMENU)

CANCEL
introduction (see process control
commands)

method of operation 2-17
program organization (control
flow) 2-80

CHANGE and JOBQ
introduction (see process control
commands)

method of operation 2.., 19
program organization (control
flow) 2-81

change origin point
introduction 6-11
method of operation 6-46
program organization (control
flow) 6-66

cleanup, command processor
introduction 2-7
method of operation 2-65
program organization (control
flow) 2-99

close
introduction 5-1
method of operation 5-7
program organization (control
flow) 5-12

close input and output data areas
CNTLBMSG library common area
command processor

functions 2-2
introduction 2-1
method of operation 2-9
router (see router)

command processor cleanup
introduction 2-7
method of operation 2-65
program organization (control
flow) 2-99

5-2
21-32

command processor procedure error utility
(see $CPPE)

command processor/work station data
management interface
introduction 2-6
method of operation 2-55
program organization (control
flow) 2-96

commands, processing 2-1
common close

introduction 5-1
method of operation 5-7
program organization (control
flow) 5-12

Licensed Material-Property of IBM
Index X-5

common communications area, $COPY 13-20
communication area, $LOADI 20-7
compiler entry to overlay linkage editor
(see overlay linkage editor compiler
entry)

configuration, system (see $CNFIG)
configuration, work station (see $SETCF)
consecutive access method 4-1
CONSOLE

introduction (see process control
commands)

method of operation 2-21
program orga!1ization (control
flow) 2-81

console logical I/O (see console
management)

console management
introduction 2-7
method of operation 2-57
program organization (control
flow) 2-97,2-98

control byte/keyword table 3-2
control commands summary 2-4
COPYADD (see $COPY)
COpy ALL (see $COPY)
COPYFILE (see $COPY)
cross reference resolver

introduction 6-5
method of operation 6-26
program organization (control
flow) 6-57

data management
disk (see disk data management)
diskette (see diskette data management)
printer (see printer data management)
sector-to disk (see sector data
management to disk)

sector-to diskette (see sector data
management to diskette)

work station (see work station data
management)

data management task transfer control
introduction 6-12
method of operation 6-51
program organization (control
flow) 6-68

X-6

deallocate
introduction 3-5
method of operation 3-28
program organization (control
flow) 3-38

detach task
introduction 6-11
method of operation 6-46
program organization (control
flow) 6-66

diagram techniques, functional xi
direct access method 4-1
directory A-1
disk close

introduction 5-3
method of operation 5-7
program organization (control
flow) 5-12

disk copy/display utility (see $COPY)
disk data management

introduction 4-1
method of operation 4-18
program organization (control
flow) 4-37

disk file initialization 3-3
disk reorganization utility (see
$PACK/$FREE)

disk VTOC read/write
introduction 6-7
method of operation 6-30
program organization (control
flow) 6-59

diskette basic exchange format 10-1
diskette close

introduction 5-3
method of operation 5-7
program organization (control
flow) 5-12

diskette copy utility (see $DUPRD)
diskette data management

introduction 4-9
method of operation 4-21
program organization (control
flow) 4-37

diskette end of volume
introduction 4-9
method of operation 4-22
program organization (control
flow) 5-12

diskette initialization utility (see $1 NIT)
diskette labeling utility (see $INIT)
diskette VTOC read/write

introduction 6-7
method of operation 6-32
program organization (control
flow) 6-59

dump (see snap dump, dump utility, or dump,
overlay linkage editor sample)

Licensed Material-Property of IBM

dump utility
introduction (see the Data Areas
Handbook)

method of operation 7-4
program organization (control
flow) 7-13

dump, overlay linkage editor sample 8-45
duplicate key display routine

data areas 6-77
introduction 6-6
method of operation 6-28
program organization (control
flow) 6-58

embedded format 1, $COPY 13-26
end of volume (see diskette end of volume)
ERAP utility

introduction (see the Data Areas
Handbook)

method of operation 7-10
program organization (control
flow) 7-17

file build utility (see $FBLD)
file delete utility (see $DELET)
file initialization, disk (see disk file
initialization)

file rename utility (see $RENAM)
find a library routine

data areas 6-69
introduction 6-1
method of operation 6-17
program organization (control
flow) 6-53

finding an overlay 8-44
format generator utility, screen format
(see $SFGR)

FRETB (file start and end address
table) 23-6

functional diagram techniques xi
functional overview 0-4

high level aids and task-to-task
communications router
introduction 2-3
method of operation 2-48
program organization (control
flow) 2-92

HIPO (see functional diagram techniques)
history file display utility (see $H 1ST)
history file put

introduction 6-10
method of operation 6-42
program organization (control
flow) 6-64

HOLD and RELEASE
introduction (see process control
commands)

method of operation 2-23
program organization (control
flow) 2-82

I/O error recovery
introduction 2-8
method of operation 2-69
program organization (control
flow) 2-100

IDELETE
introduction (see process control
commands)

method of operation 2-24
program organization (control
flow) 2-82

indexed random access method 4-4
indexed sequential access method 4-4
indexed sequential/ random input access
method 4-5

information retrieval
introduction 6-12
method of operation 6-50
program organization (control
flow) 6-67

initial program load, main storage 1-1
initialization

disk file 3-4
program 3-3

initiator
introduction 3-1
method of operation 3-1 0
program organization (control
flow) 3-34

inquiry menu option processor and resume
introduction 2-6
method of operation 2-50
program organization (control
flow) 2-93

interlocks, system 3-3

Licensed Material-Property of IBM Index X-7

job initiation and work station release
introduction 2-3
method of operation 2-44
program organization (control
flow) 2-90

keysort
introduction 4-12
method of operation 4-29
modules in 4-14
program organization (control
flow) 4-40

storage map 4-36
keysort main storage map 4-36
KEYWD keyword parameter record 6-83
keyword/control byte table 3-2

librarian facilities 6-1
librarian find routine

data areas 6-72
introduction 6-2
method of operation 6-19
program organization (control
flow) 6-54

library maintenance utility (see $MAINT)
library member protection

introduction 6-3
method of operation 6-24
program organization (control
flow) 6-56

library record put
introduction 6-3
method of operation 6-22
program organization (control
flow) 6-55

library sector get/ put
data areas 6-75
introduction 6-3
method of operation 6-23
program organization (control
flow) 6-56

logic documentation overview,
System/34 0-2

X-8

main storage initial program load 1-1
main storage IPL phase 1 (see #MSNIP)
main storage IPL phase 2 (see #MSTWA)
main storage IPL phase 3 (see #MSIPL)
MENU

introduction (see process control
commands)

method of operation 2-25
program organization (control
flow) 2-83

menu option processor, inquiry
introduction 2-6
method of operation 2-50
program organization (control
flow) 2-93

message build utility (see $MGBLD)
message retrieve

introduction 6-8
method of operation 6-34
program organization (control
flow) 6-60

MODE and OFF
introduction (see process control
commands)

method of operation 2-29
program organization (control
flow) 2-85

MSG
introduction (see process control
commands)

method of operation 2-26
program organization (control
flow) 2-84

open 3-5
common-1

introduction 3-6
method of operation 3-30
program organization (control
flow) 3-39

common-2
introduction 3-7
method of operation 3-30
program organization (control
flow) 3-39

disk
introduction 3-7
method of operation 3-30
program organization (control
flow) 3-39

diskette file
introduction 3-7
method of operation 3-30
program organization (control
flow) 3-39

Licensed Material-Property of IBM

open (continued)
printer open

introduction 3-7
method of operation 3-30
program organization (control
flow) 3-39

work station
introduction 3-7
method of operation 3-30
program organization (control
flow) 3-39

options record, overlay linkage
editor 8-4

overlay linkage editor
autolink segment list build 8-10
common area 8-29
cross reference segment list build 8-11
data areas 8-29
error message print phase 8-19
error routine 8-18
finding an overlay 8-44
introduction 8-1
library control phase 8-17
method of operation 8-7
OVERBs list 8-29
overlay design 8-13
overlay fetch routine 8-43
overlay fetch table 8-43
overlay segment list build 8-14
program organization (control
flow) 8-24

relocate, resolve EXTRNs, and build load
module phase 8-16

sample core dump 8-45
segment lists 8-29
sort autolink segment list 8-12
storage map phase 8-15
storage usage map 8-44
transfer vector format 8-44
user entry phase 1 8-20
user entry phase 2 8-21
user entry phase 3 8-22
user entry phase 4 8-23

overlay linkage editor compiler entry
introduction 8-1
method of operation 8-8,8-9
program organization (control
flow) 8-27

storage map 8-25
overlay linkage editor options record 8-4
overlay linkage editor phases and
routines 8-5

overlay linkage editor user entry
introduction 8-5
method of operation 8-8,8-20
program organization (control
flow) 8-28

storage map 8-26

overview
functional 0-4
main storage IPL 1-4
starting the system 1-4
system control flow 0-3
System/34 logic documentation 0-2

parameter records (syntax
specifications) 6-81

password security
introduction 2-7
method of operation 2-67
program organization (control
flow) 2-100

patch utility
introduction (see the Data Areas
Handbook)

method of operation 7-8
program organization (control
flow) 7-15

POSIT positional parameter record 6-81
print image verify routine

introduction 6-6
method of operation 6-29
program organization (control
flow) 6-58

printer close
introduction 5-1
method of operation 5-7
program organization (control
flow) 5-12

printer data management
introduction 4-10
method of operation 4-24
program organization (control
flow) 4-38

PRIORITY
introduction (see process control
commands)

method of operation 2-31
program organization (control
flow) 2-86

procedure error utility, command processor
(see $CPPE)

process control commands
introduction 2-3
method of operation 2-14

processing commands
introduction 2-1
method of operation 2-9
program organization (control
flow) 2-77

processor, command 2-1

Licensed Material-Property of IBM
Index X-9

program initialization 3-3
PTF installation

introduction (see the Data Areas
Handbook)

method of operation 7-6
program organization (control
flow) 7-14

reader/interpreter
control byte/keyword table 3-2
introduction 3-1

rebuild VTOC format 1's (see #MSBLD)
reload library utility (see $LOADI)
REPLY

introduction (see process control
commands)

method of operation 2-32
program organization (control
flow) 2-87

resume, inquiry menu option processor and
introduction 2-6
method of operation 2-50
program organization (control
flow) 2-94

router
introduction 2-1
method of operation 2-10
program organization (control
flow) 2-78

running a job
introduction 4-1
method of operation 4-17
program organization (control
flow) 4-36

sample dump, overlay linkage editor 8-45
screen format generator utility (see $SFGR)
sector data management to disk

introduction 4-8
method of operation 4-20

sector data management to diskette 4-10
security file utilities

file restore (#PRST)
method of operation 24-5
program organization (control
flow) 24-10

file save ($PRSV)
method of operation 24-7
program organization (control
flow) 24-11

X-10

security file utilities (continued)
file utility ($PROF)

method of operation 24-3
program organization (control
flow) 24-9

introduction 24-1
method of operation 24-2
program organization (control
flow) 24-9

security, password
introduction 2-7
method of operation 2-67
program organization (control
flow) 2-100

SEU member chain 6-4
sign on

introduction 2-1
method of operation 2-12
program organization (control
flow) 2-79

single name find routine
data areas 6-70,6-71
introduction 6-2
method of operation 6-18
program organization (control
flow) 6-54

snap dump
introduction 6-13
method of operation 6-52
program organization (control
flow) 6-68

source library get routine
data areas 6-74
introduction 6-2
method of operation 6-21
program organization (control
flow) 6-55

special command processor
introduction 2-6
method of operation 2-54
program organization (control
flow) 2-95

spool intercept
introduction 4-15
method of operation 4-32
program organization (control
flow) 4-41

spool print writer
introduction 4-16
method of operation 4-34
program organization (control
flow) 4-42

START, STOP, and RESTART
introduction (see process control
commands)

method of operation 2-34
program organization (control
flow) 2-88

Licensed Material-Property of IBM

starting a job
introduction 3-1
method of operation 3-9
program organization (control
flow) 3-33

starting the system 1-1
introduction 1-1
method of operation 1-3
program organization (control
flow) 1-22

STATUS
introduction (see process control
commands)

method of operation 2-37
program organization (control
flow) 2-89

SUBEN substitution table 6-83
subroutines used by base functions 4-2
supervisor task attach transient

data areas 6-78, 6-80
introduction 6-11
method of operation 6-44
program organization (control
flow) 6-65

supervisor task detach
introduction 6-11
method of operation 6-46
program organization (control
flow) 6-66

syntax checker
data areas 6-80,6-81
introduction 6-12
method of operation 6-48
program organization (control
flow) 6-67

syntax checker parameter list 6-90
syntax specification module 6-80
SYSIN

introduction 6-8
method of operation 6-35
program organization (control
flow) 6-61

SYSLIST
introduction 6-9
method of operation 6-39
program organization (control
flow) 6-62, 6-63

SYSLOG
introduction 6-9
method of operation 6-40
program organization (control
flow) 6-64

system configuration (see $CNFIG)
system control flow overview 0-3
system interlocks 3-3
system maintenance programs

introduction 7-1
method of operation 7-2
program organization (control
flow) 7-12

system request event (see console
management)

system services programs
introduction 6-1
method of operation 6-14
program organization (control
flow) 6-53

system utility programs overview 9-0
System/34 logic documentation overview 0-2

task-to-task communications router
introduction 2-6
method of operation 2-48
program organization (control
flow) 2-92

terminating a job
introduction 5-1
method of operation 5-6
program organization (control
flow) 5-12

termination
abnormal 5-4
communication interface 5-5
interface 5-4
introduction 5-3
job 5-3
method of operation 5-9
processor 5-4
program organization (control
flow) 5-13

step 5-3
user interface 5-5

TIME
introduction (see process control
commands)

method of operation 2-43
program organization (control
flow) 2-90

trace utility
introduction (see the Data Areas
Handbook)

method of operation 7-9
program organization (control
flow) 7-16

USCTABLE syntax checker communications
table 6-87

user entry to overlay linkage editor
(see overlay linkage editor
user entry)

Licensed Material-Property of IBM Index X-11

VALCM valid combination record 6-85
VERBSUVE, VERBSVE, and VERBSE verb lists,
$INIT 18-6

VTOC display utility (see $LABEL)

work station close
introduction 5-1
method of operation 5-7
program organization (control
flow) 5-12

work station configuration (see $SETCF)
work station data management

introduction 4-11·
method of operation 4-26
program organization (control
flow) 4-39

work station data management interface (to
command processor)
introduction 2-6
method of operation 2-55
program organization (control
flow) 2-96

work station error recovery
introduction 2-8
method of operation 2-71
program organization (control
flow) 2-101,2-101

work station logical I/O (see console
management)

work station release
introduction 2-3
method of operation 2-44
program organization (control
flow) 2-91

X-12
Licensed Material-Property of IBM

r o·
(t)

~

'" (t)

a.
s:
Q)
r+
(t) ..,
iii'
T
"tJ ..,
o
'0
!!i
r+
-<
o
ro
s:

Please use this form only to identify publication errors or request changes to publications. Technical questions about I BM systems, changes in I BM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

• No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name __ _

Address

ren o < OJ
'e. ~ s:
(') CD en
s:3<
Q) en ~
:l c: CD
c: '0 3
~ '0 -..
.. 0 W
en ;:l ~

~ :?
... 0
CD 10

3 Cl
3

r
-<
I\)

6
a
01
a
6

L Y21-0050-0

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

IBM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

Fold

FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.

Fold Fold

--- ------ --------- ----- -- -------------
(!)

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(I nternational)

Licensed Material-Property of IBM

--.~ - .---------.-- ---- -. ---- - - ---==-=":'= ®

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group!1 nternational
41 South Broadway
White Plains, New York 10601
U.S.A.
(I nternational)

L Y21-0050-0

Licensed Material-Property of IBM

en
~
CD

3

r
-<
f\,)

6 o
(11
o
6

