

When You Are:

Planning to
Install Your
Computer

Getting Your
Computer
Ready to Use

Operating
Your
Systems

Operating and
Using the
Utilities

Programming
Your
Computer

Communicating
with Another
Computer or
Remote Device

Determining
the Cause
of a Problem

You Can Find Information In:

What to Do Before Your Computer Arrives
or

Converting from System/34 to System/36

Setting Up Your Computer
Performing the First System Configuration For Your System
System Security Guide

Learning About Your Computer
Operating Your Systems

Development Support Utility Guide
Source Entry Utility Guide
Data File Utility Guide
Creating Displays
Work Station Utility Guide
Utilities Messages

Concepts and Programmer's Guide
System Reference
Sort Guide
Work Station Utility Guide
Programming with RPG II
RPG II Messages

(communication manuals)
(communication message manuals)

System Messages
(message manuals)
System Problem Determination manual for your System Unit

--------- ----- - -= ~~~5: System/36
®

Programming with RPG 11

Program Number 5727-RG1

Program Number 5727-RG6

File Number
S36-28

Order Number
SC21 -9006-4

Fifth Edition (October 1986)

This major revision obsoletes SC21-9006-3.

Changes are periodically made to the information herein; any
such changes will be reported in subsequent revisions. Changes
or additions to the text and illustrations are indicated by a
vertical line to the left of the change or addition.

See About This Manual for a summary of major changes to this
edition.

This edition applies to Release 5, Modification Level 0, of IBM
System/36 RPG II Program Product (Program 5727-RGl and
Program 5727-RG6), and to all subsequent releases and
modifications until otherwise indicated in new editions.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

This publication contains examples of data and reports used in
daily business operations. To illustrate them as completely as
possible, the examples include the names of individuals,
companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM
representative or to your IBM-approved remarketer.

A form for the reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Canada Ltd. Information Development,
Department 849, 895 Don Mills Road, North York, Ontario,
Canada, M3C 1 W3. IBM may use or distribute whatever
information you supply in any way it believes appropriate
without incurring any obligation to you.

© Copyright International Business Machines Corporation
1983, 1984, 1985, 1986.

Contents

About This Manual xv
Who should use this manual xv
How this manual is arranged xvi

Part 1. Guide . xvi
Part 2. Reference xvm

What you should know xviii
Naming conventions xx
Coding conventions xx1

If you need more information xxi
RPG coding and debugging material . . . xxi
System coding sheets xxii

Summary of Changes xx iii

Part 1. Guide

Chapter 1. Designing an RPG Program 1-1
Steps in Using RPG 1-1

Step 1. Design . 1-3
Step 2. Code . 1-3
Step 3. Enter . 1-3
Step 4. Compile 1-3
Step 5. Test . 1-3
Step 6. Put into Production 1-3

Designing Your Program 1-4
Designing the Output 1-5
Designing the Processing 1-6
Designing the Input 1-6

Chapter 2. Coding an RPG Program • . 2-1
Control Specification 2-3
File Description Specifications 2-3
Extension Specifications 2-3
Line Counter Specifications 2-4
Telecommunications Specifications 2-4
Input Specifications 2-4
Calculation Specifications 2-5
Output Specifications 2-5

Chapter 3. Entering and Compiling an
RPG Program . . • • . • . • • • . • . • . . . • 3-1

Using the RPG Procedures 3-1
RPGP Programming Menu 3-2

RPG Interactive Program-Development
Procedure (RPGONL Procedure) 3-4

Using the First RPGONL Display 3-4
Using the Second RPGONL Display . . . 3-6
Using the Third RPGONL Display . . . 3-11

Creating or Changing an RPG or Auto
Report Program (RPGSEU Procedure) . 3-13

Compiling an RPG Program (RPGC
Procedure) . 3-15

Using the First RPGC Display 3-15
Using the Second RPGC Display 3-18

Printing an RPG Cross-Reference Listing
(RPGX Procedure) 3-22

Cross-Reference Listing 3-23
Listing Format 3-23
Sample Cross-Reference Listing . . . 3-25

Compiling an Auto Report Program
(AUTOC Procedure) 3-26

Using the First AUTOC Display 3-26
Using the Second AUTOC Display . . . 3-28

Creating or Changing Display Formats
(RPGSDA Procedure) 3-32

Solving Problems That Occur At
Compilation Time 3-33

No Compiler Listing Is Produced 3-33
No Load Module Is Produced 3-35
A Load Module Is Produced but Cannot

Be Found . 3-36
No Subroutine Module Is Produced . . 3-38
A Subroutine Module Is Produced but

Cannot Be Found 3-39
No Diagnosed Source Member Is

Produced . 3-41

Chapter 4. Testing an RPG Program • 4-1
Running an RPG Load Module 4-1

Example of Control Language Statements
To Run a Program 4-2

RPG Halt Messages 4-2
Debugging an RPG Load Module 4-2

Using the DEBUG Operation 4-3
Records Written by the DEBUG

Operation , .. , 4-4

Contents 111

Debugging a Program That Uses a
WORKSTN File 4-4

Chapter 5. Using a DISK File 5-1
SEQUENTIAL FILES 5-2
Creating a Sequential File 5-3

Example of Creating a Sequential File . 5-4
Reading a Sequential File 5-6

Reading Consecutively 5-6
Reading Randomly by Relative Record

Number . 5-8
Reading Randomly by Relative Record

Number and/or Consecutively 5-9
Reading Randomly by Address Output

(Addrout) File 5-10
Updating A Sequential File 5-13

Deleting Records from a Sequential File 5-14
Updating Consecutively 5-15

Example of Updating and Deleting
Records . 5·15

Updating Randomly by Relative Record
Number . 5-18

Updating Randomly by Relative Record
Number and/or Consecutively 5-19

Updating Randomly by Address Output
(Addrout) File 5-20

Adding Records to a Sequential File 5-21
Adding Records at the End of a File . . 5-21

Example of Adding Records at the
End of a File 5-22

Adding Records between Records in a
File . 5-24

Example of Adding Records between
Records in a File 5-26

DIRECT FILES . 5-28
Creating a Direct File That Does Not

Allow Deletions 5-29
Example of Creating a Direct File That

Does Not Allow Deletions 5-30
Creating a Direct File That Allows

Deletions . 5-32
Example of Creating a Direct File That

Allows Deletions 5-34
Reading a Direct File 5-35

Reading Consecutively 5-35
Example of Reading Consecutively . 5-36

Reading Randomly by Relative Record

lV

Number . 5.-39
Example of Reading Randomly by

Relative Record Number 5-40
Reading Randomly by Relative Record

Number and/or Consecutively 5-43
Reading Randomly by Address Output

(Addrout) File 5-44

Updating a Direct File 5-48
Deleting Records from a Direct File . . 5-49
Updating Consecutively 5-50
Updating Randomly by Relative Record

Number . 5-51
Example of Updating Randomly by

Relative Record Number 5-52
Updating Randomly by Relative Record

Number and/or Consecutively 5-55
Updating Randomly by Address Output

(Addrout) File 5-56
Adding Records to a Direct File 5-57
INDEXED FILES 5-60
Creating an Indexed File 5-62

Creating an Indexed File by Writing
Records in an Ordered Sequence 5-62

Creating an Indexed File by Writing
Records in an Unordered Sequence 5-63

Example of Creating an Indexed File 5-63
Creating an Alternative Index File for

an Indexed File 5-65
Example of Creating an Alternative

Index File 5-67
Example of Using an Alternative

Index File with Only One Field as
its Key . 5-68

Using an Alternative Index File with
Noncontiguous Fields as its Key 5-69

Reading an Indexed File 5-70
Reading Sequentially by Key Field . . . 5-70
Reading Sequentially within Key-Field

Limits . 5-72
Using a Limits Record 5-74
Using the SETLL Operation 5-76

Reading Randomly by Key Field 5-79
Reading Randomly and/or Sequentially

by Key Field 5-80
Example of Reading an Indexed File

Randomly and Sequentially by Key
Field . 5-81

Reading Randomly by Address Output
(Addrout) File 5-84

Updating an Indexed File 5-88
Deleting Records from an Indexed File 5-88
Updating Sequentially by Key Field . . 5-90
Updating Sequentially within Key-Field

Limits . 5-90
Updating Randomly by Key Field 5-91

Example of Updating an Indexed File
Randomly by Key Field 5-91

Updating Randomly and/or Sequentially
by Key Field 5-94

Updating Randomly by Address Output
(Addrout) File 5-94

Adding Records to an Indexed File 5-95
Adding Records Randomly by Key Field 5-95

Example of Adding Records
Randomly by Key Field 5-97

Adding Records Sequentially by Key
Field . 5-~9

Example of Adding Records
Sequentially by Key Field 5-101

Chapter 6. Using a WORKSTN File • . • 6-1
EXAMPLE OF USING A WORKSTN FILE 6-2
Creating the Displays 6-3
Coding the RPG Specifications 6-4

File Description Specifications 6-4
Input Specifications 6-5
Calculation Specifications 6-6
Output Specifications 6-7

Reaching End of File 6-8
STEPS IN USING A WORKSTN FILE . . . 6-9
Creating the Display Formats 6-9
Coding the RPG Specifications 6-10

File Description Specifications 6-10
Continuation-Line Options 6-11

NUM . 6-12
SAVDS . 6-12
IND . 6-12
SLN . 6-13
FMTS . 6-13
ID . 6-13
INFSR . 6-14
INFDS ·....... 6-14
CFILE . 6-14

Input Specifications 6-15
Output Specifications 6-19

COMMON PROCESSING VARIATIONS 6-22
Using Command Keys 6-22
Handling Exceptions and Errors 6-24

Coding the INFDS Data Structure . . . 6-27
File Description Specifications 6-27
Input Specifications 6-28

Coding the INFSR Subroutine 6-34
File Description Specifications 6-34
Calculation Specifications 6-34

Reading Data From a Display Shown by a
Previous Program 6-36

USING ONE OR MORE DISPLAY
STATIONS . 6-37

Using a SRT Program 6-37
Using a MRT Program 6-37

File Description Specifications 6-38
Calculation Specifications ·. 6-38

NEXT Operation 6-38
REL Operation 6-39

Output Specifications 6-39

Acquiring One or More Display Stations
by the Program , . . . 6-40

ACQ Operation 6-40
Requesting the Program by One or More

Display Stations 6-41
Setting and Restoring External

Indicators (SUBR20) 6-41
Reading and Writing the Local Data

Area for a Display Station (SUBR21) 6-42
Compiling and Running a MRT Program 6-43

Compiling the Program 6-43
Running the Program 6-43

Updating Disk Files in a MRT Program . 6-44
Possible Errors 6-44
A voiding These Errors 6-45

Reaching End of File for a MRT Program 6-46
Primary File . 6-46
Demand File . 6-46

ADVANCED TOPICS 6-47
Processing the Duplicate Character Value 6-47
Using Message Identification Codes 6-49
Overriding Fields in a Display Format . . 6-49
Using the POST Operation 6-51
How WORKSTN Files Are Processed . . . 6-52
Interactive Data Definition Utility (IDDU) 6-58

Example of Using the Interactive Data
Definition Utility (IDDU) 6-60

SAMPLE PROGRAMS 6-63
AR230R (Inquiring into an Accounts

Receivable File) 6-63
AR330R (Maintaining a Customer Master

File) . 6-68
AR935R (Requesting a Printout of

Accounts Receivable) 6-81
OE140R (Entering Orders from Customers) 6-87

Chapter 7. Using a PRINTER File • • • • 7-1
File Description Specifications 7-1
Line Counter Specifications 7-3
Output Specifications 7-4

File- and Record-Identification Entries . 7-4
Field-Description Entries 7-7
AND and.OR Lines 7-7

Handling Overflow 7-10
Automatic Overflow 7-10
Overflow Indicators 7-11

Coding Overflow Indicators 7-12
Fetch Overflow Routine 7-15

Spacing and Skipping 7-16
Sample Program 7-17

Chapter 8. Using a SPECIAL File •••. 8-1
File Description Specifications , 8-1
Continuation Line 8-2

Contents V

Restrictions for SPECIAL Files 8-3
Using a Subroutine for Input and Output . 8-3

Using IBM's Subroutine, SUBROl 8-4
Using Your Own Subroutine 8-5
Points to Remember When You Write an

Assembler-Language Subroutine 8-8
Reading and Updating a Work Station

Utility Transaction File (SUBR22) 8-9
File Description Specifications 8-9

Continuation Line 8-10
Contents of the Array 8-10

Example of SUBR22 8-14

Chapter 9. Using a CONSOLE,
KEYBORD, or CRT File • 9-1

Using a CONSOLE File 9-2
File Description Specifications 9-2
Input Specifications 9-4

File and Record Specifications 9-5
Field Specifications 9-6

Creating Display Formats for CONSOLE
Files . 9-8

Using Displays 9-11
Display Formats 9-11
Prompt Format 9-14

Changing the Display Format 9-14
Erasing the CONSOLE File Buffer . . . 9-14
Using a CONSOLE File with

KEYBORD and CRT Files 9-15
Using A KEYBORD File 9-16

File Description Specifications 9-16
Calculation Specifications for a KEY

Operation . 9-17
Using a KEY Operation 9-20
Bypassing a KEY Operation 9-20
Using a Message Member 9-21
Calculation Specifications for a SET

Operation . 9-23
Allowing Command Keys To Be Pressed 9-27
Using the SET and KEY Operations

Together . 9-28
Using a CRT File 9-30

File Description Specifications 9-30
Output Specifications 9-31

File- and Record-Identification
Entries . 9-31

Field-Description Entries 9-32
Displaying Data 9-32

Chapter 10. Using a BSCA File 10-1
Defining a BSCA File 10-1

File Description Specifications , 10-2
Telecommunications Specifications 10-4

Programming Considerations 10-6

Vl

First RPG Program Cycle
Autocall and X.21 Support
Removing Strings of Embedded Blanks
Removing Trailing Blanks
Control Breaks
Data Formats
Errors
RPG Diagnostics
Configuring Your System for BSC .. .

Descriptions of BSC Functions
Receive-Only Function
Send-Only Function
Send-and-Receive Function

Send a File, Then Receive a File
Receive a File, Then Send a File
Send Records Interspersed with

Receive Records
Systems That Use BSC
Device-Dependent Considerations

IBM 3740 Data Entry System
Restrictions
Single-File Support
Multiple-File Support
Blocked Records
RPG Specifications
File Description Specifications
Telecommunications Specifications
Output Specifications

IBM 3750 (World Trade Only)
Sample Programs

Send Only
System/36 to 3740
Send Interspersed with Receive

Chapter 11. Using Primary and
Secondary Files

No Match Fields
Match Fields
Coding Matching Records

File Description Specifications
Input Specifications
Rules for Coding Match Fields

Processing Matching Records

Chapter 12. Using Indicators•.
INDICATORS DEFINED ON RPG

SPECIFICATIONS
Overflow Indicators
Record-Identifying Indicators

AND Relationship
OR Relationship
Example of Using Record-Identifying

Indicators
Control-Level Indicators

10-6
10-6
10-7
10-8
10-8
10-8
10-9
10-9
10-9

10-10
10-10
10-10
10-10
10-11
10-11

10-11
10-12
10-13
10-13
10-13
10-13
10-14
10-14
10-15
10-15
10-16
10-16
10-16
10-17
10-17
10-21
10-24

11-1
11-1
11-1
11-2
11-2
11-3
11-3
11-6

12-1

12-3
12-4
12-6
12-8
12-8

12-9
12-14

Assigning Control-Level Indicators 12-15
Split Control Fields 12-20

Field Indicators 12-21
Resulting Indicators 12-24
Indicators Not Defined on the RPG

Specifications . 12-27
External Indicators 12-27
Internal Indicators 12-29

First-Page Indicator 12-29
Last-Record Indicator 12-32
Matching-Record Indicator 12-35

CONDITIONING INDICATORS 12-38
File-Conditioning Indicators 12-38
Field-Record-Relation Indicators 12-39

Assigning Field-Record-Relation
Indicators . 12-40

Level-Zero Indicator 12-43
Command-Key Indicators 12-46
Halt Indicators . 12-48
Indicators Conditioning Calculations . . . 12-51

Using Indicators in AN/OR Lines on
the Calculation Specifications 12-52

Using Indicators in an AND
Relationship on the Calculation
Specifications 12-53

Indicators Conditioning Output 12-54
Using Indicators in an AND/OR

Relationship on the Output
Specifications 12-54

Chapter 13. Using Arrays and Tables 13-1
Similarities between Arrays and Tables . 13-1
Differences between Arrays and Tables 13-1

When Arrays and Tables Can Be Loaded 13-1
How Arrays and Tables Can Be

Processed . 13-1
Kinds of Arrays and Tables 13-2
Creating Input Records for Arrays or

Tables . 13-5
Defining Arrays and Tables 13-6
Loading Arrays and Tables 13-8

Loading Compile-Time Arrays and
Tables . 13-8

Loading Preexecution-Time Arrays and
Tables . 13-9

Loading Execution-Time Arrays 13-10
Array Information in One Record .. 13-11
Array Information in More than One

Record 13-13
Using an Array Name and Index 13-14
Searching Arrays and Tables 13-16

Searching an Array 13-17
Searching One Table 13-19
Searching Related Tables 13-19

Specifying Arrays 13-21
Changing the Contents of Arrays and

Tables . 13-22
Changing the Contents Temporarily ..
Changing the Contents Permanently

Adding Entries to Arrays and Tables .. .
Writing Arrays and Tables
Editing Arrays
Examples of Using Arrays
Example of Using Tables

File Description Specifications
Extension Specifications
Input Specifications
Calculation Specifications

13-22
13-24
13-25
13-26
13-27
13-28
13-37
13-37
13-38
13-39
13-40

Chapter 14. Using Data Structures . . 14-1
Coding a Data Structure 14-1

Data Structure Statement 14-2
Subfields . 14-2
Rules for Coding Data Structures 14-3

Examples of Data Structures 14-4
Example 1. Defining One Area of

Storage More than One Way 14-4
Example 2. Defining Subfields within a

Field . 14-6
Example 3. Reorganizing Fields in an

Input Record 14-8
Special Data Structures 14-9

SA VDS Data Structure 14-9
Local Data Area for a Display Station 14-10
File Information Data Structure 14-10

Chapter 15. Using Auto Report 15-1
Input for Auto Report 15-3
Specifications Created by Auto Report . . 15-5

Format of Created Specifications 15-5
Order of Created Specifications 15-6

Calculation Specifications 15-6
Output Specifications 15-7
Comment Statements 15-7
Restriction 15-8

Option Specifications 15-9
Column 6 (Form Type) 15-9
Column 7 (Source) 15-10
Columns 8-24 (Source Member

Reference) 15-10
Columns 25-26 15-10
Column 27 (Date Suppress) 15-11
Column 28 (*Suppress) 15-11
Column 29 . 15-11
Column 30 (List Options) 15-12
Columns'31-74 15-12

/COPY Statement Specifications 15-13
Changing Copied Specifications 15-15

Contents Vll

Changing File Description
Specificationi:i , . , ..

Changing Input Field Specifications
*AUTO Specifications ~
*AUTO Page-Heading Specifications .. .

Record-J;>escription Specifications
Columns 7-14 (Filename)
Column 15 (Type)

·column 16
Columns 17-22 (Spacing and

Skipping)
Columns 23-31 (Output Indicators) .
Columns 32-37 (*AUTO)
Columns 38-70

Field-Description Specifications
Columns 7-31
Columns 32-37 (Field Name)
Column 38 (Edit Codes)
Column 39 (Blank After)
Columns 40-44
Columns 45-70 (Constant or Edit

Word)
*AUTO Output Specifications

Record-Description Specifications
Columns 7-14 (Filename)
Column 15 (Tyre)
Column 16 (Fetch Overflow)
Columns 17-22 (Spacing and

Skipping)
Columns 23-31 (Output Indicators) .
Columns 32-37 (*AUTO)
Columns 38-70

Field Description (Blank or B in
Column 39)

Columns 7-22
Columns 23-31 (Output Indicators) .
Columns 32-37 (Field Name)
Column 38 (Edit Codes)
Column 39 (Blank After)
Columns 40-43 (End Position in

Output Record)
Column 44
Columns 45-70 (Constant)

Field Description (A in Column 39) ..
Created Total Fields
Considerations
Columns 7-22
Columns 23-31 (Output Indicators) .
Columns 32-37 (Field Name)
Column 38 (Edit Codes)
Column 39
Columns 40-43 (End Position in

Output Record)
Column 44

viii

15-15
15-18
15-21
15-23
15-24
15-24
15-24
15-24

15-24
15-24
15-25
15-25
15-25
15-25
15-26
15-26
15-26
15-27

15-27
15-28
15-29
15-29
15-29
15-29

15-30
15-30
15-31
15-31

15-31
15-32
15-32
15-32
15-32
15-32

15-33
15-33
15-33
15-34
15-35
15-36
15-36
15-36
15-37
15-37
15-38

15-38
15-39

Columns 45-70 (Constant)
Field Description (C in Column 39) .. .

Columns 7-38
Column 39
Columns 40-44
Columns 45-70 (Constant)

Field Description (1-9 or R in Column
39)

Columns 7-31
Columns 32-37 (Field Name)
Column 38 (Edit Code) .•........
Column 39
Columns 40-43 (End Position in

Output Record) , ..
Column 44
Columns 45-70 (Constant or Edit

Word)
Group Printing

Specifications
Examples

Report Format
Spacing and Skipping
Placement of Headings and Fields .. .

Page Headings
Reformatting *AUTO Page Headings
Body of the Report
Overflow of the D/T·* AUTO Print

Lines
Created Specifications

Created Calculation Specifications .. .
Created Output Specifications

Programming Aids
Examples of Using Auto Report

Example 1
Example 2
Example 3
Example 4•....•.•...•.•
Example 5
Example 6
Example 7

Control Specification
/COPY Statements
Calculation Specifications
*AUTO Specifications

Chapter 16. Editing Numeric Fields •
Edit Codes

Examples of Using the Currency Symbol
with an Edit Code

Example of Using Asterisks with an
Edit Code

Edit Words
Editing Considerations
b (Blank)

15-39
15-39
15-40
15-40
15-40
15-40

15-41
15-43
15-43
15-43
15-43

15-43
15-43

15-44
15-44
15-44
15~45

15-49
15-49
15-51
15-51
15-51
15-52

15-52
15-54
15-57
15-59
15-61
15-66
15-67
15-71
15-73
15-75
15-77
15-80
15-83
15-87
15-89
15-89
15-93

16·1
16-2

16-5

16-7
16-10
16-11
16-11.

Constants . 16-11
O (Zero Suppress) 16-12
* (Asterisk Fill) 16-12
CR and - . 16-13
Currency Symbols 16-13
& (Ampersand) 16-13
Examples of Edit Words 16-14
Creating Edit Words 16-19

Chapter 17. Changing the Hexadecimal
Value of Characters

Changing the Collating Sequence
Coding the Changes

Coding the Control Specification
Coding the Translation Table and

Alternate Collating Sequence
Coding Sheet

Coding the Records That Change the
Collating Sequence

Example of a Record That Changes
the Collating Sequence

Translating a File
Coding the Translation

Coding the Control Specification
Coding the Translation Table and

Alternate Collating Sequence
Coding Sheet

Coding the Records That Translate a
File · · · · · · · ·

Example of File Translation

Chapter 18. Techniques for Efficient
Coding ·

Sequential Operation
Conditional Branching
Repeating an Operation

Do While Structure
Do Until Structure
Do Structure

Structured Programming
Using Subroutines
Structured Programming Operation

Codes
Over laying Storage

Memory Resident Overlays (MRO) .
Areas of Main Storage

Creating the Overlays
Reducing the Program Size

Specific Coding Techniques
Load Module Size Considerations
Storage-Saving Techniques
Performance-Improvement Techniques
Storage Requirements

Operation Codes

17-1
17-3
17-3
17-3

17-4

17-7

17-8
17-9
17-9
17-9

17-9

17-10
17-11

18-1
18-1
18··2
18-4
18-4
18-6
18-7

18-10
18-10

18-11
18-13
18-14
18-14
18-15
18-16
18-20
18-20
18-20
18-22
18-23
18-23

Indicators . 18-32
Array Processing 18-32

Part 2. Reference

Chapter 19. RPG Program Cycle 19-1
Overview of RPG Program Cycle 19-1
Detailed RPG Program Cycle 19-6

Chapter 20. Control Specification .. .
Columns 1-2 (Page)
Columns 3-5 (Line)
Column 6 (Form Type)
Column 7 (Comments)
Columns 7-9 (Size to Compile)
Columns 7-12 (/EJECT)
Columns 7-12 (/TITLE)
Columns 7-14 (/SPACE)
ColUmn 10 (Object Output)
Column 11 (Listing Options)
Columns 12-14 (Size to Execute)

Column 12
Columns 13 and 14

Column 15 (Debug)
Colllmns 16-17
Column 18 (Currency Symbol)
Columns 19-20 (Date Option)

Column 19 (Date Format)
Column 20 (Date Edit)

Column 21 (Inverted Print)
Columns 22-25
Column 26 (Alternate Collating Sequence)
Columns 27-36
Column 37 (Inquiry)

File Sharing
Inline Inquiry Subroutine (SUBR95) ..

Columns 38-40
Column 41 (lP Forms Position)
Column 42
Column 43 (File Translation)
Column 44
Column 45 (Nonprint Characters)
Columns 46-56 · ·
Column 57 (Transparent Literal)
Columns 58-74
Columns 75-80 (Program Identification)

Chapter 21. File Description
Specifications · . · ·

File Description Charts
How to Use the Charts

Columns 1-2 (Page)
Columns 3-5 (Line)
Column 6 (Form Type)

20-1
20-3
20-3
20-3
20-3
20-4
20-4
20-4
20-5
20-5
20-5
20-6
20-6
20-6
20-7
20-7
20-7
20-8
20-8
20-8
20-9
20-9
20-9

20-10
20-10
20-10
20-11
20-11
20-11
20-12
20-12
20-12
20-12
20-13
20-13
20-14
20-14

21-1
21-2
21-2

21-11
21-11
21-11

Contents IX

Column 7 (Comments)
Columns 7-12 (/EJECT)
Columns 7-12 (/TITLE)
Columns 7-14 (/SPACE)
Columns 7-14 (Filename)
Column 15 (File Type)

Input Files
Output Files
Update Files
Combined Files

Column 16 (File Designation)
Primary Files
Secondary Files
Full-Procedural Files
Chained Files
Record Address Files
Array or Table Files
Demand Files

Column 17 (End Of File)
Column 18 (Sequence)
Column 19 (File Format)
Columns 20-23 (Block Length)
Columns 24-27 (Record Length)
Column 28 (Mode Of Processing)
Columns 29-30 (Length Of Key Field Or

Record Address Field)
Column 31 (Record Address Type)
Column 32 (File Organization Or

Additional Input/Output Area)
Columns 33-34 (Overflow Indicator)
Columns 35-38 (Key Field Starting

Location)
Column 39 (Extension Code)
Columns 40-46 (Device)

Device Types
DISK
WORKSTN
PRINTER
SPECIAL
CONSOLE
KEYBORD
CRT
BSCA

Columns 47-52
Column 53 (Continuation Lines-K)
Columns 54-59

Name of Label Exit
Continuation-Line Option for DISK

21-11
21-12
21-12
21-12
21-13
21-13
21-14
21-14
21-14
21-14
21-15
21-16
21-17
21-17
21-17
21-17
21-18
21-18
21-18
21-19
21-20
21-20
21-21
21-23

21-25
21-26

21-28
21-28

21-28
21-29
21-30
21-33
21-33
21-33
21-34
21-34
21-34
21-34
21-34
21-35
21-35
21-35
21-36
21-36

File 21-36
Continuation-Line Options for

WORKSTN File
Continuation-Line Option for

SPECIAL Device
Columns 60-65 (Storage Index)

x

21-37

21-39
21-40

Column 66 (File Addition) 21-40
Columns 67-70 . 21-40
Columns 71-72 (File Condition) 21-40
Columns 73-74 21-41
Columns 75-80 (Program Identification) . 21-41

Chapter 22. Extension Specifications 22-1
Columns 1-2 (Page) 22-4
Columns 3-5 (Line) 22-4
Column 6 (Form Type) 22-4
Column 7 (Comments) 22-4
Columns 7-10 . 22-5
Columns 7-12 (/EJECT) 22-5
Columns 7-12 (/TITLE) 22-5
Columns 7-14 (/SPACE) 22-5
Columns 11-18 (From filename) 22-6
Columns 19-26 (To Filename) 22-7
Columns 27-32 (Array or Table Name) . . 22-8

Array Name . 22-8
Table Name . 22-8

Columns 33-35 (Number of Entries per
Record) 22-11

Columns 36-39 (Number of Entries per
Table or Array) 22-12

Columns 40-42 (Length of Entry) 22-14
Column 43 (Packed or Binary Field) 22-16
Column 44 (Decimal Positions) 22-16
Column 45 (Sequence) 22-17
Columns 46-57 . 22-18
Columns 58-74 (Comments) 22-18
Columns 75-80 (Program Identification) 22-18

Chapter 23. Line Counter
Specifications 23-1

Columns 1-2 (Page) 23-3
Columns 3-5 (Line) 23-3
Column 6 (Form Type) 23-3
Column 7 (Comments) 23-3
Column 7-12 (/EJECT) 23-4
Columns 7-12 (/TITLE) 23-4
Columns 7-14 (/SPACE) 23-4
Columns 7-14 (Filename) 23-5
Columns 15-17 (Line Number--Number of

Lines per Page) 23-5
Columns 18-19 (Form Length) 23-5
Columns 20-22 (Line Number--Overflow

Line) . 23-5
Columns 23-24 (Overflow Line) 23-6
Columns 25-74 . 23-6
Columns 75-80 (Program Identification) 23-6

Chapter 24. Telecommunications
Specifications . • • . . • • . . 24-1

Columns 1-2 (Page) 24·3

Columns 3-5 (Line)
Column 6 (Form Type)
Column 7 (Comments)
Columns 7-12 (/EJECT)
Columns 7-12 (/TITLE)
Columns 7-14 (/SPACE)
Columns 7-14 (Filename)
Column 15 (Configuration)
Column 16 (Type of Station)
Column 17 (Type of Control)
Column 18 (Type of Code)
Column 19 (Transparency)
Column 20 (Switched)
Columns 21-31
Column 32 (Location of Identification--This

Station)
Columns 33-39 (ldentification--This

Station)
Column 40 (Location of

ldentification--Remote Station)
Columns 41-47 (ldentification--Remote

Station)
Columns 48-51
Column 52 (ITB)
Columns 53-54 (Permanent-Error

Indicator)
Columns 55-57 (Wait Time)
Columns 58-59 (Record-Available

Indicator)
Column 60 (Last File)
Columns 61-62 (Polling Characters)
Columns 63-64 (Addressing Characters) .
Columns 65-74
Columns 75-80 (Program Identification) .

Chapter 25. Input Specifications .•..
File and Record-Type Identification

Entries
Columns 1-2 (Page)
Columns 3-5 (Line)
Column 6 (Form Type)
Column 7 (Comments)
Columns 7-12 (/EJECT)
Columns 7-12 (/TITLE)
Columns 7-14 (/SPACE)
Columns 7-14 (Filename)
Columns 14-16
Columns 15-16 (Sequence)

Assigning Sequence Numbers
Column 17 (Number)
Column 18 (Option)
Columns 19-20 (Record-Identifying

Indicator,••, DS)
Look-Ahead

24-3
24-4
24-4
24-4
24-4
24-5
24-5
24-5
24-6
24-6
24-6
24-7
24-7
24-7

24-8

24-8

24-8

24-9
24-9
24-9

24-10
24-11

24-12
24-12
24-12
24-13
24-13
24-13

25-1

25-3
25-3
25-3
25-3
25-3
25-4
25-4
25-4
25-5
25-5
25-5
25-7

25-10
25-12

25-12
25-13

Columns 21-41 (Record Identification
Codes)

Position (Columns 21-24, 28-31, and
35-38) ·

Not (N) (Columns 25, 32, and 39)
C/Z/D (Columns 26, 33, and 40)
Character (Columns 27, 34, and 41) .. .

Character Grouping by Zone or
Digit

AND Relationship
OR Relationship

Column 42
Field Description Entries
Column 43 (Packed-Decimal or Binary

Field)
Zoned-Decimal Format (Blank)
Packed-Decimal Format (P)
Binary Format (B)

Columns 44-51 (Field Location)
Column 52 (Decimal Positions)
Columns 53-58 (Field Name)

Field Names
Field Names in OR Relationship .. .

Special Words (PAGE, PAGE1-PAGE7)
Columns 59-60 (Control Level)
Columns 61-62 (Matching Fields)

Match Fields
Sequence Checking

Columns 63-64 (Field Record Relation) ..
Columns 65-70 (Field Indicators)
Columns 71-74
Columns 75-80 (Program Identification) .

Chapter 26. Calculation Specifications
Columns 1-2 (Page)
Columns 3-5 (Lines)
Column 6 (Form Type)
Column 7 (Comments)
Columns 7-8 (Control Level)

Subroutine Lines (SR)
AN/OR Lines

Columns 7-12 (/EJECT)
Columns 7-12 (/TITLE)
Columns 7-14 (/SPACE)
Columns 9-17 (Indicators)

Relationship between Columns 7-8 and
Columns 9-17

Columns 18-27 (Factor 1)
Literals

Alphameric Literals
Numeric Literals
Figurative Constants

Columns 28-32 (Operation)
Columns 31-32

25-23

25-23
25-23
25-24
25-26

25-26
25-27
25-27
25-27
25-28

25-28
25-29
25-30
25-32
25-34
25-34
25-35
25-35
25-36
25-36
25-38
25-38
25-38
25-39
25-40
25-42
25-42
25-43

26-1
26-3
26-3
26-3
26-3
26-4
26-5
26-5
26-5
26-5
26-6
26-6

26-7
26-8

26-14
26-14
26-14
26-16
26-17
26-17

Contents xi

Columns 33-42 (Factor 2)
Columns 43-48 (Result Field)

Erase
Field Name, Table Name, Array Name,

Array Element, or Data Structure ..
Columns 49-51 (Field Length)
Column 52 (Decimal Positions)
Column 53 (Half-Adjust)
Columns 54-59 (Resulting Indicators) .. .

Test Results
Allowing Command Keys To Be

Pressed (SET)
Columns 60-74 (Comments)
Columns 75-80 (Program Identification) .

Chapter 27. Output Specifications
Columns 1-2 (Page)
Columns 3-5 (Line)
Column 6 (Form Type)
Column 7 (Comments) .. ,
Columns 7-12 (/EJECT)
Columns 7-12 (/TITLE)
Columns 7-14 (/SPACE)
Columns 7-14 (Filename)
Columns 14-16 (AND/OR)
Column 15 (Type)

Heading Records (H)
Detail Records (D)
Total Records (T)
Exception Records (E)

Columns 16-18 (ADD/DEL)
ADD
DEL

Column 16 (Fetch Overflow or Release) .
Fetch Overflow
Release

Columns 17-22 (Spacing and Skipping) ..
Column 17 (Space Before)
Column 18 (Space After)
Columns 19-20 (Skip Before)
Columns 21-22 (Skip After)

Columns 23-31 (Output Indicators)
Columns 32-37 (Field Name)

Field Names
Rules for Field Names

Special Words
Page Numbering (PAGE,

PAGE1-PAGE7)
Repeating Output Fields (*PLACE)
Date Fields (UDATE, UMONTH,

UDAY, UYEAR)
EXCPT Names

Column 38 (Edit Codes)
Column 39 (Blank After)

Xll

26-18
26-19
26-19

26-20
26-21
26-23
26-23
26-25
26-25

26-26
26-26
26-26

27-1
27-3
27-3
27-3
27-3
27-4
27-4
27-4
27-5
27-7
27-7
27-7
27-7
27-8
27-8
27-8
27-8
27-8
27-9
27-9

27-10
27-10
27-10
27-10
27-10
27-11
27-12
27-13
27-13
27-13
27-14

27-14
27-15

27-19
27-19
27-20
27-20

Columns 40-43 (End Position in Output
·Record) ,

Column 44 (Packed-Decimal or Binary
Field)

Columns 45-70 (Constant or Edit Word)
Constants
Format Name
Edit Words

Columns 71-74
Columns 75-80 (Program Identification)

Chapter 28. Operation Codes •••.••
Arithmetic Operations
Move Operations
Move Zone Operations
Compare and Testing Operations
Structured Programming Operations .. .
Bit Operations
SETON and SETOF Operations
Branching within RPG
Subroutine Operations
Linking to External Subroutines
WORKSTN Operations
Programmed Control of Input and Output
OPERATION CODES
ACQ (Acquire)
ADD (Add)
BEGSR (Begin Subroutine)
BITOF (Set Bit Off)
BITON (Set Bit On)
CASxx (Case)
CHAIN (Chain)

Random Processing
COMP (Compare)
DEBUG (Debug)

Records Written for DEBUG
*LIKE DEFN (Field Definition)
DIV (Divide)
DO (Do)
DOUxx (Do Until)
DOWxx (Do While)
ELSE (Else Do)
END (End)
ENDSR (End Subroutine)
EXCPT (Exception Output)
EXIT (Exit to an External Subroutine) ..
EXSR (Execute Subroutine)

Coding Subroutines
FORCE (Force)
GOTO (Branch To)
IFxx (If/Then)
KEY (Key)
LOKUP (Lookup)

Array LOKUP

27-21

27-22
27-23
27-23
27-24
27-24
27-25
27-25

28-1
28-4
28-5
28-6
28-6
28-7
28-9
28~9

28-10
28-10
28-11
28-11
28-11
28-12
28-12
28-12
28-13
28-14
28-16
28-18
28-20
28-21
28-24
28-27
28-28
28-29
28-31
28-32
28-35
28-38
28-41
28-42
28-43
28-44
28-50
28-52
28-52
28-54
28-56
28-59
28-61
28-62
28-62

Table LOKUP 28-62
MHHZO (Move High to High Zone) 28-64
MHLZO (Move High to Low Zone) 28-64
MLHZO (Move Low to High Zone) 28-65
MLLZO (Move Low to Low Zone) 28-65
MOVE (Move) . 28-67
MOVEA (Move Array) 28-69
MOVEL (Move Left) 28-87
MULT (Multiply) 28-90
MVR (Move Remainder) 28-90
NEXT (Next) . 28-91
POST (Post) . 28-92
READ (Read) . 28-93
READE (Read Equal Key) 28-95
READP (Read Prior Record) 28-96
REL (Release) . 28-97
RLABL (RPG Label) 28-98

Referring to an Indicator 28-100
Referring to a Field 28-100
Referring to a Data Structure 28-100
Referring to an Array or Table 28-101

Considerations for the
Assembler-Language Programmer 28-104

Message-Retrieving Subroutine
(SUBR23) 28-105

SET (Set) . 28-106
SETLL (Set Lower Limits Operation) . . 28-107
SETOF (Set Off) 28-108
SETON (Set On) 28-108
SHTDN (Shutdown) 28-109
SORTA (Sort an Array) 28-110
SQRT (Square Root) 28-112
SUB (Subtract) 28-112
TAG (Tag) . 28-113
TESTB (Test Bit) 28-113

Columns 54-55: 28-114
Columns 56-57: 28-114
Columns 58-59: 28-114

TESTZ (Test Zone) 28-116

TIME (Time of Day) 28-117
XFOOT (Summing the Elements of an

Array) . 28-118
Z-ADD (Zero and Add) 28-118
Z-SUB (Zero and Subtract) 28-118

Chapter 29. Storage Dump of an RPG
Program • . 29-1

Chapter 30. Differences between RPG
on System/36 and RPG on System/34 30-1

Updating Past the End of the File 30-1
System/36 . 30-1
System/34 . 30-1

Creating a Direct File That Does Not
Allow Deletions 30-2

System/36 . 30-2
System/34 . 30-2

Chapter 31. Using Ideographic Data • 31-1
Specifying Ideographic Data 31-1

Ideographic Literals and Constants . . 31-1
Ideographic Fields, Tables, and Arrays 31-2
Ideographic Comments 31-3

Processing Considerations 31-3
Moving Ideographic Data and Deleting

Control Characters (SUBR40) 31-5
Moving Ideographic Data and Adding

Control Characters (SUBR41) 31-7
Ideographic Device Support 31-8
Messages . 31-8

Chapter 32. Problem Determination . 32-1
How to Use this Procedure 32-1
Identifying and solving RPG Problems . . 32-2
Contacting Your Service Representative 32-7

Index . X-1

Contents xiii

XlV

About This Manual

Who should use this manual . xv
How this manual is arranged . xvi

Part 1. Guide . xvi
Part 2. Reference . xviii

What you should know . xviii
Naming conventions xx
Coding conventions . xxi

If you need more information . xx1
RPG coding and debugging material . xx1
System coding sheets . xxu

Who should use this manual ...

This manual is a guide and reference for the RPG II programming language
on System/36. It is intended for people who have a basic understanding of
data processing concepts and of the RPG programming language. For
convenience, RPG II is referred to as RPG.

Using this manual, you can:

• Design RPG programs

• Code RPG programs

• Enter and compile RPG programs

• Test and debug RPG pr9grams

• Follow coded RPG examples and sample programs

About This Manual XV

How this manual is arranged ...

Part 1. Guide

XVI

Part 1 (Chapters 1through18) is a programmer's guide. It is organized in
the sequence of tasks that a programmer must perform to use an RPG
program: design, code, enter, compile, test, and put into production.
Ch.~pters 1 through 4 discuss designing, coding, entering, compiling, and
testing:

• Chapter 1 discusses designing an RPG program.

• Chapter 2 discusses coding an RPG program.

• Chapter 3 discusses entering and compiling an RPG program.

• Chapter 4 discusses testing an RPG program.

Chapters 5 through 11 discuss.using various kinds of files. Each file that
your program uses must be assigned to an input/output device. You code
that device name in columns 40 through 46 of the file description
specifications. For examplej if a file uses a disk as an input/output device,
DISK is coded as the device name. The coded device name is a convenient
way to refer to each kind of file. Thus, a file assigned to a disk is called a
DISK file, a file assigned to a display station is called a WORKSTN file,
and so on.

• Chapter 5 discusses DISK files.

• Chapter 6 discusses WORKSTN files.

• Chapter 7 discusses PRINTER files.

• Chapter 8 discusses SPECIAL files.

• Chapter 9 discusses CONSOLE, KEYBORD, and CRT files.

• Chapter 10 discusses BSCA files.

• Chapter 11 discusses primary and secondary files. Primary and
secondary are not device names. Instead, they indicate how the files
are processed by the RPG program cycle.

Some files (CONSOLE and KEYBORD) can be used only for input, some
(CRT and PRINTER) can be used only for output, and some (DISK,
WORKSTN, SPECIAL, and BSCA) can be used for both input and
output. Therefore, when you use an RPG program, you must know how
you can use each file.

Typical RPG programs, and the kinds of files you might use for input
and for output, are listed below:

What the RPG Files You Can Use Files You Can Use for
Program Does for Input Output

Inquire into a file DISK PRINTER
WORKS TN WORKSTN
SPECIAL SPECIAL

Process a file DISK DISK
WORKS TN WORKSTN
CONSOLE CRT
KE YB ORD PRINTER
SPECIAL SPECIAL

Enter data DISK DISK
WORKSTN WORKSTN
CONSOLE CRT
KEYBORD PRINTER
SPECIAL SPECIAL
BSCA BSCA

Print a report DISK PRINTER
WORKS TN
CONSOLE
KEYBORD
SPECIAL
BSCA

---'

If you wanted to create a program to display accounts receivable
information about your customers, you would probably use a DISK file for
input, a WORKSTN file for both input and output, and possibly a PRINTER
file for output as well. The DISK input file would be a customer master file
containing all the accounts receivable records for your customers. As an
input file, the WORKSTN file would select the desired records from the
DISK file. As an output file, the WORKSTN file would display the selected
records from the DISK file. The program might do no processing other than
reading records from the DISK file and writing records to the WORKSTN
file. Sample program AR230R in Chapter 6 shows this example. If you used
a PRINTER file also, you could write the output records to the printer.

When you are ready to code your program, read the chapters that explain
how to code a program that uses the kinds of files your program uses. For
example, for information about coding a program that uses a DISK file, a
WORKSTN file, and a PRINTER file, you should read Chapters 5, 6, and 7.

Chapters 12 through 17 discuss various things that your RPG program can
do:

• Chapter 12 discusses using indicators.

• Chapter 13 discusses using arrays and tables.

About This Manual XVll

Part 2. Reference

• Chapter 14 discusses using data structures.

• Chapter 15 discusses using auto report.

• Chapter 16 discusses editing numeric output fields.

• Chapter 17 discusses changing the hexadecimal value of characters.

Chapter 18 presents some tips for coding efficient programs.

Part 2 (Chapters 19 through 32) is a reference.

• Chapter 19 presents both a general and a detailed explanation of the
RPG program cycle.

• Chapters 20 through 27 explain all possible entries (column by column)
for each RPG specification sheet. '

• Chapter 28 explains each RPG operation code in alphabetical order.

• Chapter 29 shows a storage dump of an RPG program.

• Chapter 30 explains the differences between the way RPG programs
work on System/36 and the way they work on System/34.

• Chapter 31 discusses using ideographic data.

• Chapter 32 discusses problem determination.

What you should know ...

xviii

Before you use this manual, you should be familiar with certain
information:

• You should know how to use the controls and indicators on your
display screen and how to use the keys on your keyboard, such as:

Cursor movement keys
Command keys
Field exit keys
Insert and delete keys
Error Reset key

This information is contained in:

- IBM 5291 Display Station Operator's Guide, GA21-9409
- IBM 5292 Color Display Station Operator's Guide, GA21·9416
- IBM 5251 Models 1 and 11 Display Station, IBM 5252 Dual Display

Station Operator's Guide, GA21-9248

IBM 5251 Models 2 and 12 Display Station Operator's Guide,
GA21-9323

• You should know how to operate your display station to use the
System/36 System Support Program (SSP) to do such things as:

- Signing on and signing off the display station
Interacting with displays
Using help
Entering control commands and procedure commands
Responding to messages

This information is contained in the manual Operating Your System
5360, 5362, SC21-9452 if you use a System/36 System Unit 5360 or a
System/36 System Unit 5362, and in the manual Operating Your System
5364, SC21-9353 if you use a System/36 System Unit 5364. Refer also to
the manual Using Your Display Station, SC21-9455.

• You should know how to design and code displays by using:

Screen design aid (SDA) utility
BLDMENU and FORMAT procedures

This information is contained in the manual Creating Displays: Screen
Design Aid and System Support Program, SC21-7902.

• You should know how to communicate with the SSP by using:

Operation control language (OCL) statements
Utility programs and utility control statements
Procedures
Commands

This information is contained in the System Reference manual,
SC21-9020.

• You should know how to design and code efficient programs. This
information is contained in the Concepts and Programmer's Guide,
SC21-9019.

• You should know how the RPG program cycle works, how indicators
affect the program cycle, and how to code entries on the RPG
specification sheets. This information is contained in the IBM
Introduction to RPG II and RPG III: Batch Processing with Program
Described Files, GC21-7514. It is also available from an IBM RPG II
coding class.

• You should know how to use the development support utility (DSU) or
the source entry utility (SEU). This information is contained in the
Development Support Utility Guide, SC09-1085, which explains how to
enter and update your source and procedure members using a full
screen editor, and the Source Entry Utility (SEU) Guide, SC21-7901.

• You should know how to interpret displayed and printed messages.
This information is contained in the System Messages manual,

About This Manual xix

SC21-7938, in the RPG II Messag~s manual, SC21-7940, and in the
Utilities Messages manual, SC2J-7939.

• If you communicate with an IBM 3741 Data Entry Work Station you
should know that 3741 Status messages are treated as data to be
handled by the user. Information on possible status messages and data
format are contained in the IBM 3741 Data Station Reference Manual,
GA-9183.

Naming conventions

xx

In this manual, the following conventions are used for program, display,
and menu names:

• Program names use the format aannnR, where: ·

aa identifies the type of application:

AR means accounts receivable

IM means inventory management

OE means order entry

nnn is a number that identifies the type of program:

100-199 for data entry

200-299 for inquiry

300-349 for file maintenance

350-399 for sort

400-499 for file update

900-949 for printing reports and program listings

R identifies the programming language as RPG

• Display names are formed by adding a D to the end of the name of the
program that uses the display. For example, AR230RD is the name of a
display used by an RPG accounts receivable inquiry program. If the
program uses more than one display, a sequence number is added to the
display name. For example, if program AR230R uses two displays, the
displays are named AR230RD1 and AR230RD2.

• Menu names use the format aannnM, where:

aa identifies the type of application
nnn is a number assigned to the menu
M identifies the name as a menu name

Coding conventions

Where specification sheets show which columns to code, shading indicates
that no entry is allowed in the column, no coding in an unshaded column
indicates that more than one entry is allowed in the column, and a
character in an unshaded column indicates that that character is the only
entry allowed in the column.

If you need more information ...

For an index of major topics discussed in all System/36 manuals, see the
Guide to Publications, GC21-9015.

For information about converting your programs from IBM System/34 to
System/36, see the manual Converting from System/34 to System/36,
SC21-9053.

For information about data communications, see the Interactive
Communications Feature: Reference, SC21-7910, and the Interactive
Communications Feature: Guide and Examples, SC21-791L

For information about designing structured programs, see the Structured
Programming Textbook, SR20-7149, and the Structured Programming
Workbook, SR20-7150.

For information about protecting the security of your system, see the
System Security Guide, SC21-9042.

For information about determining whether a problem is in an IBM product
or in your own program, see the System Problem Determination - 5360
manual, SC21-7919 if you use a System/36 System Unit 5360, the System
Problem Determination - 5362 manual, SC21-9063 if you use a System/36
System Unit 5362, and the System Problem Determination - 5364 manual,
SC21-9375 if you use a System/36 System Unit 5364.

RPG coding and debugging material

• RPG Control and File Description Specifications, GX09-1035

• RPG Calculation Specifications, GX09-1035

• RPG Extension and Line Counter Specifications, GX09-1033

• RPG Input Specifications, GX09-1033

• RPG Telecommunications Specifications, GX09-1034

• RPG Output Specifications, GX09-1034

• RPG Auto Report Specifications, GX09-1032

• RPG Indicator Summary, GX09-1032

About This Manual XXl

• RPG Debugging Template, GX21-9129

System coding sheets

xxn

• Display Format Specifications, GX21-9800

• IBM 5250 Display Station Keyboard Template Assignment Sheet and
Display Screen Layout Sheet, GX21-9271

• IBM Printer/Display Layout Sheet, GX21-9174

• Translation Table and Alternate Collating Sequence Coding Sheet,
GX21-9096

Summary of Changes

The main enhancement made to System/36 RPG for release 5 is adding the
DO structured programming operation code.

The DO operation allows an operation or a series of operations to be
performed a fixed number of times. Programmer indicates how many times
the operation(s) will be performed when coding the DO statement and the
a!'lsociated END statement. See detailed descriptions of the DO operation in
Chapter 18 and Chapter 28.

Note: This manual may ref er to products that are announced, but are not yet
available. Such information is for planning purposes only and is
subject to change before general availability.

Summary of Changes XXlll

XXlV

Part 1. GUIDE

Part 1. GUIDE

Chapter 1. Designing an RPG Program

Steps in Using RPG . 1-1
Step 1. Design . 1-3
Step 2. Code . 1-3
Step 3. Enter . 1-3
Step 4. Compile . 1-3
Step 5. Test . 1-3
Step 6. Put into Production . 1-3

Designing Your Program . 1-4
Designing the Output . 1-5
Designing the Processing . 1-6
Designing the Input . 1-6

Chapter 1. Designing an RPG Program

Chapter 1. Designing an RPG Program

This chapter begins with an overview of the six steps in creating and using
an RPG program. These steps are related to the sequence of chapters in
Part 1 of this manual, the programmer's guide.

After that overview, this chapter discusses step 1, designing an RPG
program. The design step includes designing the output, designing the
processing, and designing the input.

Steps in Using RPG

There are six steps in creating and using an RPG program (see Figure 1-1):

1. Design

2. Code

3. Enter

4. Compile

5. Test

6. Put into production

Chapter 1. Designing an RPG Program 1-1

Step 1. Design the Program

Step 3. Enter the Program

Test Data
Main
Storage

Results

Step 5. Test the Program

Figure 1-1. Steps in Using an RPG Program

1-2

0 Output Specifications

tJ
c Calculation Specifications

LJ
I Input Specifications

LJ
H Control Specification

D
F File Description

I-- Specifications

Step 2. Code the Program

Main
Storage

Step 4. Compile the Program

Actual Data

Results

~

Main
Storage

Step 6. Put the Program into Production

1--1

~

Step 1. Design

Step 2. Code

Step 3. Enter

Step 4. Compile

Step 5. Test

Designing means planning what you want the program to do. Designing is
probably the most important step in programming, so it is worth the time to
design your programs carefully before you start to code them. A
well-designed program is the best way to ensure good performance (fast
processing and efficient use of resources) from your computer. Later
sections of this chapter discuss the design step in more detail. For a
complete explanation of the principles of program design, see the Concepts
and Programmer's Guide.

Coding a program means writing the instructions that tell the computer
what data to use, how to process it, and what to do with the results. You
write these instructions on RPG specification sheets. Chapter 2 discusses
coding in general terms.

Entering a program means getting ·your written instructions (your coding)
into the computer. You use the RPGONL procedure, the RPGSEU
procedure, or the source entry utility to enter your instructions. Chapter 3
explains how to enter your program.

Compiling a program means translating your entered instructions (called a
source program into a form that the computer can use (called a load
module). You use the RPGONL or RPGC procedure to compile your source
program. Both of these procedures allow you to display your compiled
program at your display station. The RPGONL procedure also allows you
to correct errors in your source program and recompile the program at your
display station. Chapter 3 explains how to compile your program.

Testing a program means running a load module with some sample data to
be sure that it. produces the proper results. Testing helps you debug your
load module before you run it with your actual data. Chapter 4 discusses
testing your program.

Step 6. Put into Production

Putting a program into production means using it to process your actual
data. Chapters 5 through 18 discuss using your load module to process
data.

Chapter 1. Designing an RPG Program 1-3

Designing Your Program

1-4

A program usually begins with an idea or a request to produce a certain
kind of result. Therefore, you know what the program should do before you
begin to code it. The planning you do to decide how to code a source
program that will produce that result is called designing the program.

For example, suppose you want to create a program that allows people in
your company to display information about your customers. An example of
such a program is sample program AR230R in Chapter 6. That program
displays accounts receivable information about a company's customers. To
design that program, the programmer had to consider such questions as:

• What information will the people in the company need to know about
the customers? Name? Address? Phone number? Balance due? Credit
limit?

• How many people will need this information? Will more than one
person need it at the same time?

• How will a person request information about a customer? By entering
the customer's number? The customer's name?

• What file or files contain the information to be displayed? How are
those files organized?

• Can a person change the displayed information or only look at it?

• Will a person want a printed copy of the displayed information?

The answers to questions like these determine how to code the program.

Designing a program includes:

• Deciding what output you need from your program

• Deciding what processing will produce the output you need

• Deciding what input is required by and available to your program

This sequence may seem backwards because it starts at the results (the
output) and ends at the beginning (the input). The reason for designing the
output first is to make sure that you start with a clear understanding of
what your program will do. If you know what output you need, you can
decide what calculations are necessary to produce that output. Designing
the output first is like knowing where you are going before you set out on a
trip: it helps you decide the best way to get there.

Designing the Output

Your program will produce output records. You must decide what you will
do with those records. In general, you have three choices (or any
combination of the three choices):

• You can display them.

• You can print them.

• You can store them.

If you want to display the output records at your display station, you have
to decide what information you want displayed and how you want it laid
out. To define how you want your displays laid out, you use the display
layout sheet. Then you use the screen design aid (SDA) utility to create
your display screens. For more information about SDA, see the manual
Creating Displays. '

If you want to print the output records, you also have to decide what
information you want printed (which fields from which records) and how
you want it laid out on the printed report. To indicate how you want the
printed report laid out, use the printer layout sheet.

If you want to keep the output records in storage, you still have to decide
what information you want to keep and how you want to organize the fields
in the output records.

After you design all your output records, you describe those records on the
RPG file description specifications and output specifications.

Chapter 1. Designing an RPG Program 1-5

Designing the Processing

Designing the processing means planning the calculations that will produce
the necessary output. When you design the processing, you must be aware
of how the RPG program cycle works. The RPG program cycle controls
certain operations performed on each record, so the program cycle partly
determines how you can process your data.

The phrase program cycle refers to the series of operations that an RPG
program automatically performs on each record that it reads. Each RPG
program goes through the same general cycle of operations.

The program cycle has three basic logic steps:

• Reading information (input)

• Doing calculations (processing)

• Writing results (output)

These basic logic steps can be divided into several substeps in which you
can assign indicators to control when calculation and output operations
occur. These substeps and indicators are then coded on the RPG
calculation specifications.

For a detailed explanation of the RPG program cycle, see Chapter 19. For
more information about how indicators affect the RPG program cycle, see
Chapter 12.

Designing the Input

1-6

After you decide what output you need and what calculations will produce
that output, the next step is to find out where the input data for your
program will come from. It might come from one or more files already on
the computer, from one or more display stations on your computer, from
one or more other computers, or from a combination of these sources. You
have to know the names used for input files, the location of fields in the
input records, the sequence of record types, the formats of numeric data,
and the indicators used. When you know this information, you can
describe your input records on the RPG input specifications.

Chapter 2. Coding an RPG Program

Control Specification . 2-3
File Description Specifications . 2-3
Extension Specifications . 2-3
Line Counter Specifications . 2-4
Telecommunications Specifications . 2-4
Input Specifications . 2-4
Calculation Specifications . 2-5
Output Specifications . 2-5

Chapter 2. Coding an RPG Program

Chapter 2. Coding an RPG Program

After you have designed your program, you must write the individual
statements that make up your source program. These statements should be
coded on RPG specification sheets. Each line coded on a specification sheet
represents a statement in the source program. Each specification sheet
contains 80 columns. Column headings indicate the kind of information to
code in particular columns.

There are eight kinds of specifications:

• Control specification

• File description specifications

• Extension specifications

• Line counter specifications

• Telecommunications specifications

• Input specifications

• Calculation specifications

• Output specifications

Each of these specifications is described briefly in this chapter.

Most RPG programs do not use all eight kinds of specifications. In fact,
none of them is required in every program, and a typical program probably
uses only file description, input, calculation, and output specifications.

When the computer compiles your source program, the specifications you
use must be in the order shown in Figure 2-1. The specifications can be
coded in any order, but normally you code them in the same order in which
you design the program: first output, then calculations, then input.

Chapter 2. Coding an RPG Program 2-1

H

F
h

t---1

**kS

Compile-Time Table
or Array Data

Alternate Collating
Sequence Specifications

**kS

**kS

File Translation
Specifications

0
t:J

Output Specifications

Calculation Specifications

I
t=I

Input Specifications

T
t=l

Telecommunications
Specifications

L
t:J

Line Counter
Specifications

Extension Specifications

File Description
Specifications

Control Specification

N

~

~

N

I ts= blank

Figure 2-1. Required Order of.Specifications for an RPG Source Program

2-2

Control Specification

The control specification provides the RPG compiler with information such
as the following about your program and your computer:

• Name of the program

• Storage size needed for the program to run

• Date format for the program

• Whether an alternative collating sequence or file translation is used

For a detailed description of the control specification, see Chapter 20.

File Description Specifications

File description specifications describe all the files that your program uses.
The information for each file includes:

• Name of the file

• How the file is used

• Size of records in the file

• Input or output device used for the file

• Whether the file is conditioned by an external indicator

For a detailed description of the file description specifications, see Chapter
21.

Extension Specifications

Extension specifications describe all record address files, table files, and
array files used in the program. The information includes:

• Name of the file, array, or table

• Number of entries in a table or array input record

• Number of entries in a table or array

• Length of the table or array entry

For a detailed description of the extension specifications, see Chapter 22.

Chapter 2. Coding an RPG Program 2-3

Line Counter Specifications

Line counter specifications describe the page or form on which output is
printed. The information includes:

• Number of lines per page

• Line of the page at which overflow occurs

For a detailed description of the line counter specifications, see Chapter 23.

Telecommunications Specifications

Telecommunications specifications describe each BSCA file in the program.
The information includes:

• Name of the file

• Description of the communication network used

• Type of station

• Type of control

• Type of code used

• Station identification

For a detailed description of the telecommunications specifications, see
Chapter 24.

Input Specifications

2-4

Input specifications describe the records and fields in the input files used by
the program. The information for each record includes:

• Name of the file

• Sequence of record types

• Whether record-identifying indicators, control-level indicators,
field-record-relation indicators, or field indicators are used

• Whether data structures, look-ahead fields, record identification codes,
or match fields are used

• Type of each field (alphameric or numeric; packed-decimal,
zoned-decimal, or binary format)

• Location of each field in the record

• Name of each field in the record

For a detailed description of the input specifications, see Chapter 25.

Calculation Specifications

Calculation specifications describe the calculations to be performed on the
data and the order in which the calculations are to be performed.
Calculation specifications can also be used to control certain input and
output operations. The information includes:

• Control·level and conditioning indicators for the operation specified

• Fields or constants to be used in the operation

• The operation to be performed

• Whether resulting indicators are set after the operation is performed

For a detailed description of the calculation specifications, see Chapter 26.

Output Specifications

Output specifications describe the records and fields in the output files and
the conditions under which output operations are performed. The
information includes:

• Name of the file

• Type of record to be written

• Spacing and skipping instructions for PRINTER and CRT files

• Output indicators that condition when the record is to be written

• Name of each field in the output record

• Location of each field in the output record

• Edit codes and edit words

• Constants to be written

• Format name for a WORKSTN file

For a detailed description of the output specifications, see Chapter 27.

Chapter 2. Coding an RPG Program 2-5

2-6

Chapter 3. Entering and Compiling an RPG Program

Using the RPG Procedures . 3-1
RPGP Programming Menu . 3-2
RPG Interactive Program-Development Procedure (RPGONL Procedure) 3-4

Using the First RPGONL Display . 3-4
Using the Second RPGONL Display . 3-6
Using the Third RPGONL Display . 3-11

Creating or Changing an RPG or Auto Report Program (RPGSEU
Procedure) . 3-13

Compiling an RPG Program (RPGC Procedure) 3-15
Using the First RPGC Display . 3-15
Using the Second RPGC Display . 3-18

Printing an RPG Cross-Reference Listing (RPGX Procedure) 3-22
Cross-Reference Listing . 3-23

Listing Format . 3-23
Sample Cross-Reference Listing . 3-25

Compiling an Auto Report Program (AUTOC Procedure) 3-26
Using the First AUTOC Display . 3-26
Using the Second AUTOC Display . 3-28

Creating or Changing Display Formats (RPGSDA Procedure) 3-32
Solving Problems That Occur At Compilation Time 3-33

No Compiler Listing Is Produced . 3-83
No Load Module Is Produced . 3.35
A Load Module Is Produced but Cannot Be Found 8-86
No Subroutine Module Is Produced . 3-38
A Subroutine Module Is Produced but Cannot Be Found 8-89
No Diagnosed Source Member Is Produced 3-41

Chapter 3. Entering and Compiling an RPG Program

Chapter 3. Entering and Compiling an RPG Program

Using the RPG Procedures

To enter and compile an RPG program, use one or more of the following
RPG procedures:

• RPGONL, which lets you create a source program and then alternately
compile and correct errors in your source program online (at your
display station)

• RPGSEU, which lets you create or change a procedure or an RPG or
auto report source member

• RPGC, which lets you compile an RPG source program

• RPGX, which lets you print a cross-reference listing for an RPG
program

• AUTOC, which lets you compile an RPG source program that contains
auto report specifications

• RPGSDA, which lets you create or change a display format

Each of these procedures is explained in this chapter.

To begin one of these procedures, use any one of the following methods:

• Choose an option from the RPGP programming menu.

• Include any of the RPG procedures in one of your own procedures and
run your own procedure.

• Call the procedure directly. To call one of the procedures directly, use
one of the following methods:

Type HELP, a space, and the procedure name (with or without
parameters) on the command line, and press the Enter key.
Type the procedure name on the command line of the display screen,
and press the Enter key.
Type the procedure name (with or without parameters) on the
command line, and press the Help key.

Chapter 3. Entering and Compiling an RPG Program 3-1

Type the procedure name, a space, and the source member name on
the command line, and press the Enter key. (If you use this method,
prompts are displayed only for the RPGONL procedure.)

RPGP Programming Menu

3-2

There are three ways to display the RPGP programming menu:

• Type HELP RPGP on the command line of the display screen, and press
the Enter key.

• Type RPGP on the command line, and press the Help key.

• Use the Help menus.

The programming menu lists six options from which you can choose to
perform tasks related to RPG programming:

RPGP W4
RPG II programming procedures

Select one of the following:

1. Develop an RPG II program
2. create or change an RPG II or auto report program
3. compile an RPG II program
4. Print an RPG II cross reference
5. Compile an auto report program
6. create or change display formats

Cmd3-Prevlous menu Cmd7-End Cmd5-Maln help menu Home-S1gn on menu

Ready for option number or command

e 1983 IBM Corp.

To choose one of the six procedures, enter a number from 1 through 6:

• Enter 1 to use the RPGONL procedure.

• Enter 2 to use the RPGSEU procedure.

• Enter 3 to use the RPGC procedure.

• Enter 4 to use the RPGX procedure.

• Enter 5 to use the AUTOC procedure.

• Enter 6 to use the RPGSDA procedure.

When chosen from the RPG programming menu, all six of these procedures
remember the parameters you specify when you use a procedure. Then, the
next time you choose any of the six procedures from the programming
menu, the parameters you specified previously are automatically entered for
you in response to the new prompts. For example, if you select the RPGC
procedure on the programming menu, all 18 of the parameters you specified
for the RPGC procedure are stored. When the RPGC procedure is complete,
the programming menu is displayed again. Then, if you select the RPGSEU
procedure on the programming menu, the display for the RPGSEU
procedure shows the source member name and the library name that you
entered for the RPGC procedure. If you sign off, the parameters are reset to
the default values.

You can use the following keys from the RPGP programming menu:

• Command key 3 to return to the previous help menu

• Command key 7 to end help

• Command key 12 for information about how to use help

• The Home key to return to the sign-on menu

• The Help key for additional information about the procedures

• Command key 24 to make the RPGP Help menu your default help menu

Chapter 3. Entering and Compiling an RPG Program 3-3

RPG Interactive Program-Development Procedure
(RPGONL Procedure)

The RPGONL procedure allows you to enter and compile your source
program. The procedure identifies any errors in your source program by
displaying your source program online (that is, at your display station) with
error messages inserted immediately before the specification containing the
error. You can correct these errors online and recompile your program as
many times as necessary until it compiles successfully. The RPGONL
procedure has three displays.

Using the First RPGONL Display

3-4

The first display for the RPGONL procedure looks like this:

RPGONL PROCEDURE Optional-*

RPG I I Interact 1 ve program-deve ·1 opment procedure

Name of source program to be compiled . . • TEST

Name of library containing program to be compiled . YOURLIB

Name of 11 brary to conta In comp fled program . . . *

Name of data d1ct1onary to be used *

Create or change source before f1rst compilation? Y,N • Y

Cmd3-Prev1ous menu Cmd7-End Cmd14-Comp!ler options ~ 1985 IBM Corp.

Respond to each prompt by entering the appropriate information.

Name of source program to be compiled: Enter the name of the your source
program.

Name of library containing program to be compiled: Enter the name of the
library that contains the source member to be compiled. If no library name
is specified, the library name is determined in one of the following ways:

• If RPGONL is the first procedure to be run during this session, the
current library name is used.

• If the last procedure run during this session was RPGONL, RPGC,
RPGX, RPGSEU, or AUTOC, the library name used in that last
procedure becomes the default used for RPGONL. For RPGC, RPGX,
RPGSEU, and AUTOC, this applies only when these procedures are not
run from the job queue or are not evoked. If these procedures are run
from the job queue, or are evoked, or if RPGR or RPGSDA is run, the

library name for RPGONL is not changed from the current library
name.

• If the last procedure run during this session was another language
procedure (any COBOL, FORTRAN, or ASSEMBLER procedure), the
current library name is used.

Name of library to contain compiled program: Enter the name of the library
that is to contain the compiled program. If no library name is specified, the
library name is determined in one of the following ways:

• If RPGONL is the first procedure to be run during this session, the
current library name is used.

• If the last procedure run during this session was RPGONL, RPGC,
RPGX, RPGSEU, or AUTOC, the library name used in that last
procedure becomes the default used for RPGONL. For RPGC, RPGX,
RPGSEU, and AUTOC, this applies only when these procedures are not
run from the job queue or are not evoked. If these procedures are run
from the job queue, or are evoked, or if RPGR or RPGSDA is run, the
library name for RPGONL is not changed from the current library
name.

• If the last procedure run during this session was another language
procedure (any COBOL, FORTRAN, or ASSEMBLER procedure), the
current library name is used.

Name of data dictionary to be used: Enter the name of the current data
dictionary to be used during the compilation, if you are using
communication formats defined through the interactive data definition
utility (IDDU). There is no default value for the data dictionary. The
dictionary must exist.

Create or change source before first compilation?: Enter Y or N.

Y (yes) means that you want the procedure to call the development
support utility (DSU), if you have it installed, or the source entry utility
(SEU), to allow you to create or change your source program before the
first compilation.

N (no) means that you do not want to create or change your source
program before the first compilation.

If no option is chosen, Y is assumed.

You can use the following keys from the first RPGONL display:

• Command key 3 to return to the previous Help menu

• Command key 7 to end the RPGONL procedure

• The Help key for additional explanation of the parameters

• Command key 14 to see the second RPGONL display, which allows you
to specify more parameters.

Chapter 3. Entering and Compiling an RPG Program 3-5

Using the Second RPGONL Display

3-6

The second RPGONL display looks like this:

RPGONL PROCEDURE Optional-*

RPG II compfler options

RPGONL TEST,YOURLIB,,,Y

Override print option ln source .. SOURCE,NOSOURCE,PSOURCE
Override debug option In source DEBUG,NODEBUG
override size-to-execute option In source 2-64
Create cross-reference 11st1ng NOXREF,XREF NOXREF

LINK Create program that can be run LINK,NOLINK
Create program that must be

l Ink-edited
Name of subroutine lnput library .
Never-ending program
Maximum number of

requesting display stations
Generate CONSOLE file display formats
Size of work files In blocks
Create program with

memory resident overlays

. NOOBJECT,OBJECT NOOBJECT

. NONEP,NEP NONEP

. . . 0-99 0

. GEN,NOGEN GEN

. . 1-9999 40

. NOMRO,MRO NOMRO

*
*
*

Cmd2-Page back Cmd7-End (C) 1985 IBM Corp.

Respond to each prompt by entering the appropriate information.

Override print option in source: Enter SOURCE, PSOURCE, or
NOSOURCE. Use this option to override an entry in column 11 of the
control specification of your RPG program.

SOURCE means that you want the RPG compiler to print a full
compiler listing. A full compiler listing includes the source program,
information about tables and arrays, the relative location of fields and
their attributes, field names that are not referred to, diagnostics, and a
map of main storage. The map of main storage lists the identification,
the starting address, and the size of each separately identifiable
segment of code in the program, tells how much main storage is
required to run the program, and lists the number of library sectors
required for the program.

NOSOURCE means that you do not want the RPG compiler to print a
compiler listing. If you use this option, a prolog is printed along with
the following information from the overlay linkage editor: the amount
of main storage required to run the program, the starting address of the
program, and the number of library sectors required for the program.
Use this option when you already have a listing of the program.

PSOURCE means that you want the RPG compiler to print a partial
compiler listing. A partial listing includes the source program,
information about indicators used in the program, diagnostics, and the
following information from the overlay linkage editor: the amount of
main storage required to run the program, the starting address of the

program, and the number of library sectors required for the program. It
does not include information about tables and arrays, information about
fields, or a map of main storage.

If no option is specified, the entry coded in column 11 of the control
specification is used.

Override debug option in source: Ente> DBBUG or NODEBUG. Use this
option to override the entry in column 15 of the control specification.

DEBUG means that; the DEBUG operation is to be used in the
calculation specifications.

NODEBUG means that the DEBUG operation is not to be used.

If no option is specified, the entry coded in column 15 of the control
specification of your RPG program is used.

Override size-to-execute option in source: Enter the program size in K bytes
(one K byte equals 1024 bytes). The program size must be an even number
from 2 through 64. Use this option to override the entry coded in columns
12 through 14 of the control specification of your RPG program. If no size
is specified, the entry coded in columns 12 through 14 of the control
specification is used.

Create cross-reference listing: Enter NOXREF or XREF.

NOXREF means that you do not want the RPG compiler to create a
cross-reference listing for the program.

XREF means that you do want a cross-reference listing. The
cross-reference listing is created only if the program contains no
terminal errors. A prompt on the third display for this procedure allows
you to choose whether to display or print the listing.

If no option is specified, NOXREF is assumed.

Create program that can be run: Enter LINK or NOLINK.

LINK means that you want to create a load module, that is, a program
that you can run without first having to use the overlay linkage editor
procedure OLINK to link-edit the program.

NOLINK means that you do not want to create a load module.

If no option is entered, LINK is assumed.

Create program that must be link-edited: Enter NOOBJECT or OBJECT.

NOOBJECT means that you do not want to create an object module.

OBJECT means that you want to create an object module, that is, a
compiled subroutine (not a load module). You must use the OLINK
procedure to link-edit this module (by itself or with one or more other
assembler programs or subroutines) before you can run the module.

Chapter 3. Entering and Compiling an RPG Program 3-7

3-8

If no option is specified, NOOBJECT is assumed.

Create memory-resident overlays: Enter NOMRO or MRO.

NOMRO means that you do not want overlays to remain in memory.

MRO means that you want to retain overlays in memory. This enables
you t? keep more than one overlay in memory.

The default is NOMRO.

Name of subroutine input library: Enter the name of the library that
contains one or more assembler subroutines to be combined with the
program being compiled. If no library name is specified, the name of the
source input library is assumed.

Never-ending program: Enter NONEP or NEP.

NONEP means that the program is not a never-ending program.

NEP means that the program is a never-ending program. A
never-ending program is one that uses system resources (such as disk
storage, display stations, or printers) that are not shared with other
programs. Use this option if your program will be requested frequently.

If no option is specified, NONEP is assumed.

Maximum number of requesting display stations: Enter the number (O
through 99) of display stations that can use a single copy of the program at
the same time. If no number is entered, a value of 0 is assumed (the
program is not a MRT program).

Generate CONSOLE file display formats: Enter GEN or NOGEN.

GEN means that you want the procedure to create and compile source
specifications for 24-line, 1920-character display formats for a
CONSOLE file. Specifications are created and compiled only if the
program contains no terminal errors.

NOGEN means that you do not want the procedure to create or compile
the source specifications for the display formats for a CONSOLE file.

If no option is chosen, GEN is assumed. However, the procedure
, ignores this option if your program does not use a CONSOLE file'.

Size of work files in blocks: Enter the number (1 through 9999) of blocks for
the compiler work files. If no size is specified, 40 blocks is assumed.
However, if the work files become full, they are automatically extended by
the compiler.

You can use the following keys from the second RPGONL Procedure
display:

• Command key 2 to return to the first display for the RPGONL
procedure

• Command key 7 to end the RPGONL procedure

• The Help key for additional explanation of the parameters

What happens next depends on how you responded to the last prompt on
the first display for this procedure. That prompt is Create or change source
before first compilation?

If you responded Y to that prompt and now press the Enter key, the
RPGONL procedure calls DSU or, if DSU is not installed on the system,
SEU, and allows you to create or change your program before the first
compilation. After you finish using DSU or SEU, your program is
compiled.

If you responded N to that option and now press the Enter key, neither
DSU nor SEU is called and you cannot create or change your source
program before the first compilation.

During the compilation, a diagnosed source member is created. A
diagnosed source member is a source member in which informational,
warning, and terminal error messages diagnosed by the RPG compiler are
inserted immediately before the specifications containing errors. The
inserted messages have the following format:

• Columns 1 and 2 contain question marks.

• Column 3 contains I, W, or T to indicate that the message is an
informational, warning, or terminal error message.

• Columns 4 and 5 are blank.

• Column 6 contains H, F, E, L, T, I, C, or 0 to indicate the specification
type.

• Column 7 contains an asterisk to indicate that this line is a comment.

• Columns 8 through 80 contain the message.

When the compilation is complete, the editor (DSU or SEU) displays the
diagnosed source member on your display screen. You can see the results
of the compilation and can correct any errors diagnosed by the compiler.

When you finish correcting these errors, press command key 7 to end
editing. If you chose to replace the source program, you will next see the
DSU end-of-job display.

Chapter 3. Entering and Compiling an RPG Program 3-9

3-10

EXIT OPTIONS FOR SOURCE MEMBER

Type choices, press Enter.

ITEM CHOICE

Save member 1
Member name EXAMPLE!
Library name. . . OSULIB
Reference number. 000001
Serialize member. 2
Beginning column. . 001
Remove dlagnostlcs .. 2
Subtype .•.•... RPG

Print member •... 2

POSSIBLE CHOICES

l=Yes 2=No

1-999999
l=Yes 2•No
1-93
l=Yes 2=No
UNS,ARP,ARS,ASM,BAP,BAS,BGC,BGO,BGF,
COB,DFU,DTA,FMT,FOR,MNU,MSG,PHL,RPG,
SRT,WSU

l=Yes 2=No

Cmd3•Return to editing Cmd4=Dlsplay member list
Cmd6=Return to editing with processing CMD7=Exlt DSU

If DSU is not installed on your system, you will see the SEU end-of-job
display:

Member name

Library name

Reference number

Library member subtype

2 OTA
11 ARS
12 ARP

13 BAP
14 DFU
15 FMT

16 MNU
17 MSG
18 PHL

END OF JOB

19 SRT
31 ASM
32 BAS

33 COB
34 FOR
35 RPG

36 WSU
40 LINS

TEST

YOURLIB

000006

35

Remove diagnostics from diagnosed source member? Y,N Y

On both DSU and SEU end-of-job displays you can choose to have all of the
RPG error messages removed from the source program before it is placed
back into the source program library. You. should consider the number of
error messages, the size of the source program, and the amount of free
space in the source program library before you replace the source program
without removing the error messages. To remove the error messages, select
the Y option for the Remove diagnostics prompt on the DSU end-of-job
display, or for the Remove diagnostics from diagnosed source member?
prompt on the SEU end-of-job display.

When you finish using the diagnosed source member, the third display for
the RPGONL procedure is shown.

Using the Third RPGONL Display

The third RPGONL display looks like this:

RPGONL PROCEDURE

Contlnuat1on options

Would you 11ke to v1ew the compiler listing? ... Y,N N

Would you 11ke to recomp1le the source program? .• Y,N Y

Source program .
Input 11brary ..
Output 11brary .
Data dictionary .

TEST
YOURLIB
YOURLIB

Cmdl-Work with d1fferent member Cmd7-End
Cmdl4-Comp11er options C> 1985 IBM Corp.

Respond to each prompt by entering the appropriate information.

Would you like to view the compiler listing?: Enter Y or N.

Y (yes) means that you want the compiler listing to be displayed at your
display station.

N (no) means that you do not want the compiler listing to be displayed
at your display station.

If no option is specified, N is assumed.

Would you like to recompile the source program?: Enter Y or N.

Y (yes) means that you want to recompile your program.

N (no) means that you do not want to recompile your program.

If no option is specified, Y is assumed.

Command keys 1 and 14 override this option. If you press command key
1, the program is not recompiled, even if you entered Y in response to
this prompt. Instead, the first RPGONL display for the current program
appears, so you can enter a new program name and use the procedure
with the new program. If you press command key 14, the second
RPGONL display for the current program appears, so you can change
any compiler options for the current program and recompile the
program, even if you entered N in response to this prompt.

Press command key 7 to end the RPGONL procedure.

Chapter 3. Entering and Compiling an RPG Program 3-11

Press the Help key for additional information about the third RPGONL
display.

If you respond Y to Would you like to view the compiler listing?, the display
for the COPYPRT procedure appears. The COPYPRT procedure allows you
to display and optionally print the compiler listing. The display for the
COPYPRT procedure looks like this:

COMPLETE

NO. I /D PROC JOB NAME USER PRINTER ID FORM PAGES RECS

001 SP0061 RPGONL W3145108 MSM $PRINTDM P2 0001 4 44

SELECTED HEADER - 1 PRINT Y/N - N COPIES - 01
FROM PAGE TO PAGE ENTER/HELP KEY CMD 7 - END

To display the compiler listing, type the listed job number in response to
the Selected header prompt at the bottom of the display and press the Enter
key. To print the compiler listing, type the listed job number in response to
the Selected header prompt, change the default N to Y on the Print prompt,
and press the Enter key. For more information about the COPYPRT
procedure, see the System Reference manual.

Press command key 7 to end the COPYPRT procedure.

You can continue using the RPGONL procedure until you press command
key 7 while any of the three displays is shown or until you type N and press
the Enter key in response to the second prompt on the third display, Would
you like to recompile the source program? Each time you recompile your
program, the parameters you specified the previous time you used the
procedure are automatically entered for you in response to the new
prompts.

Creating or Changing an RPG or Auto Report Program
(RPGSEU Procedure)

The RPGSEU procedure allows you to use the source entry utility (SEU) to
create or change an RPG program. J.i'or a complete explanation of SEU, see
the Source Entry Utility (SEU) Guide.

The display for the RPGSEU procedure looks like this:

RPGSEU PROCEDURE Optional-•

creates or updates an RPG II or auto report
procedure or soU!"ce me~ber with SEU.

Name of member to be created or updated. TEST

Type of member. • • . • . • . . • • • . R,A,P R

Name of member conta1n1ng SEU formats.

Length of atatament ..•.•..•

Name of 11brary conta1n1ng member ...

CM03-Prevlous menu

ISEGIXTRA

.40-120

YOURLIB

COPR IBM Corp. 1983

•

Respond to each prompt by entering the appropriate information.

Name of member to be created or updated: Enter the name of the library
member to be created or changed.

Type of member: Enter R, A, or P.

R means an RPG source member.

A means an RPG source member containing auto report specifications.

P means a procedure member.

If no option is specified, R is assumed.

Name of member containing SEU formats: Enter the name of the load
member that contains SEU formats. If no option is specified, the default for
SEU is assumed.

Chapter 3. Entering and Compiling an RPG Program 3-13

3-14

Length of statement: Enter the maximum length allowed for each source or
procedure statement. If the member exists, the statement length of the member is
assumed. If the member is being created and if no statement length is specified,
the values that are allowed and assumed are as follows:

Allowed Statement Assumed Statement
Member Type Length Length
R 80 through 96 96

A 80 through 96 96

p 40 through 120 120

Name of library containing member: Enter the name of the library that contains
or is to contain the member being created or changed. If no library name is
specified, the name of the current library is assumed.

You can use the following keys from the RPGSEU procedure display:

• Command key 3 to return to the previous Help menu

• Command key 7 to end the RPGSEU procedure

• The Help key for additional information about the parameters

Compiling an RPG Program (RPGC Procedure)

The RPGC procedure compiles an RPG source program. The RPGC
procedure has two displays.

Using the First RPGC Display

The first display for the RPGC procedure looks like this:

RPGC PROCEDURE OJ:Jtfonal-*

ComDlles an RPG II source program.

Name of source Drogram to be comDfled ..• TEST

Name of library containing source program •...... YOURL.IB

Create dfagno1ed 1ource member NODSM,DSM NOD SM

output option for compiler listings •..• PRINT,NOPRINT,CRT PRINT

Create cross-reference listing , •. NOXREF,XREF NOXREF

Maximum number of requesting display stations 0-99 00

Never-ending program NONEP,NEP NONEP

Name of library to contain compiled program *

Cmd3-Prevlous menu Cmd4-Put on job queue Cmdl4-More options
COPR IBM Corp. 1986

Respond to each prompt by entering the appropriate information.

Name of source program to be compiled: Enter the name of your source
program.

Name of library containing source program: Enter the name of the library
that contains the source member to be compiled. If no library name is
specified, the currep.t library is assumed.

Chapter 3. Entering and Compiling an RPG Program 3-15

3-16

Create diagnosed source member: Enter NODSM or DSM.

NODSM means that you do not want the RPG compiler to create a
diagnosed source member.

DSM means that you do want a diagnosed source member. A diagnosed
source member is a source member in which informational, warning,
and terminal error messages diagnosed by the RPG compiler are
inserted immediately before the specifications containing errors. The
inserted messages have the following format:

Columns 1 and 2 contain question marks.

Column 8 contains I, W, or T to indicate that the message is an
informational, warning, or terminal error message.

Columns 4 and 5 are blank.

Column 6 contains H, F, E, L, T, I, C, or 0 to indicate the
specification type.

Column 7 contains an asterisk to indicate that this line is a
comment.

Columns 8 through 80 contain the message.

When the RPGC procedure is complete, you can use SEU to correct the
specifications containing errors or to remove the error messages from
the source member.

If no option is specified, NODSM is assumed.

Output option for compiler listings: Enter PRINT, NOPRINT, or CRT.

PRINT means that you want the compiler listing created by the RPGC
procedure to be printed.

NOPRINT means that you do not want the compiler listing to be
printed or displayed.

CRT means that you want the compiler listing to be displayed at the
display station that requested the RPGC procedure.

If no option is specified, PRINT is assumed.

Create cross-reference listing: Enter NOXREF or XREF.

NOXREF means that you do not want the RPGC procedure to create a
cross-reference listing for the program.

XREF means that you do want a cross-reference listing to be created.
The cross-reference listing is created only if the program contains no
terminal errors. The cross··reference listing is part of the compiler
listing, so whether the cross-reference listing is displayed or printed
depends on your response to the preceding prompt.

If no option is specified, NOXREF is assumed.

Maximum number of requesting display stations: Enter the number (0
through 99) of display stations that can use a single copy of the program at
the same time. If no number is entered, a value of 0 is assumed (the
program is not a MRT program). ·

Never-ending program: Enter NONEP or NEP.

NONEP means that the program is not to be a never-ending program.

NEP means that the program is to be a never-ending program. A
never-ending program is one that uses system resources (such as disk
storage, display stations, or pri11ters) that are not shared with other
programs. Use this option if your program will be requested frequently.

If no option is specified, NONEP is assumed.

Name of library to contain compiled program: Enter the name of the library
that is to contain the compiled program. If this option is not specified, the
source input library is assumed.

You can use the following keys from the first RPGC Procedure display:

• Command key 3 to return to the previous Help menu

• Command key 4 to place th1::: program on the input job queue

• Command key 7 to end the RPGC procedure

• The Help key for additional information about the parameters

• Command key 14 to see the second display for the RPGC procedure

Chapter 3. Entering and Compiling an RPG Program 3-17

Using the Second RPGC Display

3-18

The second RPGC display looks like this:

RPGC PROCEDURE

RPGC TEST,YOURLIB,NODSM,PRINT,NOXREF,O,NONEP,,

override print option In source •. SOURCE,PSOURCE,NOSOURCE
Override debug option In source .•..•.• DEBUG,NODEBUG
Override size-to-execute option In source • • 2-64
Halt on serious program error . • • .• NOHALT,HALT
Replace duplicate members . • REPLACE,NOREPLAC
Create program that can be run LINK,NOLINK
Create program that must be

link-edited . . • • • . . • . . NOOBJECT,OBJECT
Name of subroutine Input library ...
Generate CONSOLE file display formats . . ••. GEN,NOGEN
Size of work files In blocks • 1-9999
Name of data dictionary to be used . . • ..•••.•.
Create program with

memory resident overlays . • • • . . . NOMRO,MRO

Optional-*

*
*
*

NOHALT
REPLACE
LINK

NOOBJECT
*

GEN
40

*

NOMRO

Cmd2-Page back Cmd4-Put on job queue
COPR IBM Corp. 1986

Respond to each prompt by entering the appropriate information.

Override print option in source: Enter SOURCE, PSOURCE, or
NOSOURCE. Use this option to override an entry in column 11 of the
control specification of your RPG program.

SOURCE means that you want the RPG compiler to print a full
compiler listing. A full compiler listing includes the source program,
information about tables and arrays, the relative location of fields and
their attributes, field names that are not referred to, diagnostics, and a
map of main storage. The map of main storage lists the identification,
the starting address, and the size of each separately identifiable
segment of code in the program, tells how much main storage is
required to run the program, and lists the number of library sectors
required for the program.

PSOURCE means that you want the RPG compiler to print a partial
compiler listing. A partial listing includes the source program,
information about indicators used in the program, diagnostics, and the
following information from the overlay linkage editor: the amount of
main storage required to run the program, the starting address of the
program, and the number of library sectors required for the program. It
does not include infc,>rmation about tables and arrays, information about
fields, or a map of main storage.

NOSOURCE means that you do not want the RPG compiler to print a
compiler listing. If you use this option, a prolog is printed along with
the following information from the overlay linkage editor: the amount
of main storage required to run the program, the starting address of the
program, and the number of library sectors required for the program.
Use this option when you already have a listing of the program.

If no option is specified, the entry coded in column 11 of the control
specification of your RPG program is used.

Override debug option in source: Enter DEBUG or NODEBUG. Use this
option to override the entry in column 15 of the control specification of
your RPG program.

DEBUG means that the DEBUG operation is to be used in the
calculation specifications.

NODEBUG means that the DEBUG operation is not to be used.

If no option is specified, the entry coded in column 15 of the control
specification of your RPG program is used.

Override size-to-execute option in source: Enter the program size in K bytes
(one K byte equals 1024 bytes). The program size must be an even number
from 2 through 64. Use this option to override the entry coded in columns
12 through 14 of the control specification. If no size is specified, the entry
coded in columns 12 through 14 of the control specification is used.

Halt on serious program error: Enter NOHALT or HALT.

NOHALT means that you do not want the compiler to stop and display
an error message if a warning or terminal error is found in the program.

HALT means that you want the compiler to stop and display an error
message if a warning or terminal error is found in the program.

If no option is specified, NOHALT is assumed.

Chapter 3. Entering and Compiling an RPG Program 3-19

3-20

Replace duplicate members: Enter REPLACE or NOREPLAC.

REPLACE means that, if a load or subroutine member is being created
and if a load or subroutine member with the same name already exists
in the output library, you want the newly compiled program to replace
the existing load or subroutine member.

NOREPLAC means that, if a load or subroutine member is being
created and if a load or subroutine member with the same name already
exists in the output library, you want an error message to be displayed.

If no option is specified, REPLACE is assumed.

Create program that can be run: Enter LINK or NOLINK.

LINK means that you want to create a load module, that is, a program
that you can run without first having to use the Overlay Linkage
Editor procedure OLINK to link-edit the program.

NOLINK means that you do not want to create a load module.

If no option is entered, LINK is assumed.

Create program that must be link-edited: Enter NOOBJECT or OBJECT.

NOOBJECT means that you do not want to create an object module.

OBJECT means that you want to create an object module, that is, a
compiled subrouti'.ne (not a load module). You must use the OLINK
procedure to link-edit this module (by itself or with one or more other
assembler programs or subroutines) before you can run the module.

If no option is specified, NOOBJECT is assumed.

Create memory-resident overlays: Enter NOMRO or MRO.

NOMRO means that you do not want overlays to remain in memory.

MRO means that you want to retain overlays in memory. This enables
you to keep more than one overlay in memory.

The default is NOMRO.

Name of subroutine input library: Enter the name of the library that
contains one or more assembler subroutines to be combined with the
program being compiled. If no library name is specified, the name of the
source member library is assumed.

Generate CONSOLE file display formats: Enter GEN or NOGEN.

GEN means that you want the procedure to create and compile source
specifications for 24-line, 1920-character display formats for a
CONSOLE file. The specifications are created and compiled only if the
program contains no terminal errors.

NOGEN means that you do not want the procedure to create or compile
the source specifications for the display formats for a CONSOLE file.

If no option is specified, GEN is assumed. However, the procedure
ignores this option if your program does not use a CONSOLE file.

Size of work files in blocks: Enter the number (1 through 9999) of blocks for
the compiler work files. If no size is specified, 40 blocks is assumed.
However, if the work files become full, they are extended automatically by
the compiler.

You can use the following keys from the second RPGC Procedure display:

• Command key 2 to return to the first display for the RPGC procedure

• Command key 4 to place the program on the input job queue

• Command key 7 to end the RPGC procedure

• The Help key for additional information about the parameters

Name of the data dictionary to be used: Enter the name of the current data
dictionary to be used during the compilation, if you are using
communication formats defined through the interactive data definition
utility (IDDU). There is no default value for the data dictionary.

Chapter 3. Entering and Compiling an RPG Program 3-21

Printing an RPG Cross-Reference Listing (RPGX
Procedure)

3-22

The RPGX procedure prints a cross-reference listing for an RPG program.
No diagnostic checking is provided with the RPGX procedure. Therefore,
you should use this command only for RPG source programs that have been
successfully compiled and for which object programs have been produced.
Unpredictable or confusing results may occur if auto report source
statements or RPG source statements containing errors are used as input to
the RPGX procedure. The display for the RPGX procedure looks like this:

RPGX PROCEDURE

Requests cross-reference for RPG II source program .

Name of source program TEST

Size of $SOURCE file 1n blocks 1-9999 40

Name of 11brary containing source program . YOURLIB

Cmd3-Prev1ous menu Cmd4-Put on job queue
COPR IBM Corp. 1983

Respond to the prompts by entering the appropriate information.

Name of source program: Enter the name of your source program.

Size of $SOURCE file in blocks: Enter the number (1 through 9999) of
blocks for the work files. If no number is entered, 40 blocks is assumed.
However, if the work files become full, they are extended automatically by
the compiler.

Name of library containing source program: Enter the name of the library
that contains the source program to be listed. If no library name is
specified, the name of the current library is assumed.

You can use the following keys from the RPGX Procedure display:

• Command key 3 to return to the previous Help menu

• Command key 4 to place the program on the input job queue

• Command key 7 to end the RPGX procedure

• The Help key for additional information about the parameters

Cross-Reference Listing

Listing Format

The RPGX procedure or the XREF option in the RPGC and AUTOC
procedures provide a cross-reference listing of the symbols defined and
referenced in the respective RPG and autoreport source programs. The
cross-reference listing can be very helpful when you are modifying or
expanding your program. The execution of the cross-reference listing step
in the RPGC or AUTOC procedure depends upon the following:

• The listing is provided only when XREF is specified for the RPGC or
AUTOC procedure. The default is no cross-reference listing (NOXREF).

• The listing is not provided if terminal errors occur in the RPG or auto
report compilation.

• The Sort utility is required to sort the symbol entries and provide a
cross-reference listing.

The symbols used in an RPG or auto report program are sorted and placed
in the following categories in the cross-reference listing:

• Filenames

• Indicators

• Tables and arrays

• Fields and data structures

• Labels

The format of the cross-reference listing is as follows:

SYMBOL LNG TYPE DEC DEFN REFERENCES
x------x xxxx xx----x x xxxx xxxx xxxx xxxx*

where:

SYMBOL is from 1 to 8 characters in length and defines the filenames,
indicators, tables/arrays, data structures, fields, and labels used in the
RPG or auto report program. Alphameric and numeric literals are not
processed by the cross-reference listing option. When you are using a
continuation line option on a file description specification, anything
that is not a field name will not show up in the SYMBOL column.
However the keyword of the continuation line option will appear
(FMTS, for example).

LNG is four positions long and defines the length of the field or data
structure, the length of an element in a table or array, or the record
length for the file named. LNG is not used for indicators or labels.
LNG is also not used when a field has been defined by the *LIKE
DEFN operation code. In this case, the length of the field shows as

Chapter 3. Entering and Compiling an RPG Program 3-23

3-24

****. For a data structure, the length of the data structure shows as
DS.

TYPE is 2 to 7 positions in length and defines the type of file named (by
using columns 15 and 16 from the file description specifications) or the
type of label being defined and referenced. TYPE is used only for
filenames or labels.

DEC is one position long and defines the number of decimal positions in a
numeric field. DEC is not used for filenames, alphameric fields,
indicators, data structures, or labels.

DEFN is four positions long and defines the statement number in which the
symbol is defined. If the symbol is defined multiple times in the
program, the first definition is assumed. The use of a field in a data
structure is considered to be the definition of that field; all other uses
of that field are considered to be references. The definition of an array
is considered to be in the extension specification specifying the array
even if the array is also specified in a data structure.

REFERENCES are four positions in length and define the statement
number in which the symbol is referenced. The number of entries
under REFERENCES depends on the number of times the symbol is
used in the program. If the symbol is unreferenced, there are no
entries. If the symbol is referenced multiple times, multiple lines of
references could be printed for the related symbol. An asterisk (*)
printed beside a reference indicates that the contents of the symbol are,
or could be, altered in this statement. An asterisk indicates that a field
is used as a calculation result field and the operation code is not
DEFN, or that an indicator is specified in positions 59 through 70 of
the input specifications or in positions 54 through 59 of the calculation
specifications.

Sample Cross-Reference Listing

The information that is printed in the cross-reference listing for each symbol type
looks like this:

** FILENAME LEGEND **

SYMBOL LNG TYPE DEFN REFERENCES

CONTROL 0030 UC 0001 0005 0021 0045
WORKSTN 0030 CP 0002 0009 0043

** INDICATOR LEGEND **

SYMBOL DEFN REFERENCES

01 0005
02 0009
03 0011 0020
20 0032 0035• 0045
21 0038 0041• 0047
99 0021 0028 0029

** TABLE AND ARRAY LEGEND **

SYMBOL LNG DEC DEFN REFERENCES

A08
ARY

0005
0015

0 0003 0023• 0023 0024 0027• 0027 0027
0004 0024• 0026•

** FIELD AND DATA STRUCTURE LEGEND **

SYMBOL LNG DEC DEFN REFERENCES

CENTS 0002 0 0015
COST 0007 2 0018 0007 0039• 0039
DESC 0018 0019 0008 0033•
DOLLAR 0005 0 0014
INVDTA •DS* 0012 0010 0046 0048
IX 0001 0 0022 0023 0023 0024 0024 0025• 0025
NAME 0008 0016
PARTNO 0005 0 0013 0006 0021
STOCK 0010 0017

** LABEL LEGEND **

SYMBOL TYPE DEFN REFERENCES

ADDRCD BEGSR 0031 0028
FND TAG 0030 0020
UPDRCD BEG SR 0037 0029

0026 0027

Chapter 3. Entering and Compiling an RPG Program 3-25

Compiling an Auto Report Program (AUTOC Procedure)

The AUTOC procedure compiles an RPG program that contains auto report
specifications. The AUTOC procedure has two displays.

Using the First AUTOC Display

3-26

The first AUTOC display looks like this:

AUTOC PROCEDURE Optional-*

Compiles an RPG II program that contains auto report specifications ..

Name of source program to be comp1led .•

Name of library containing source program

TEST

YOURLIB

Call RPG II compiler COMP,NOCOMP COMP

Output opt1on for comp1ler listings PRINT,NOPRINT,CRT PRINT

Create cross-reference listing NOXREF,XREF NOXREF

Max1mum number of requesting display stations 0-99 oo

Never-ending program• NONEP,NEP NONEP

Name of library to contain compiled program

Cmd3-Prevlous menu Cmd4-Put on job queue Cmdl4-More opt1ons
COPR IBM Corp. 1986

*

Respond to each prompt by entering the appropriate information.

Name of source program to be compiled: Enter the name of your source
program.

Name of library containing source program: Enter the name of the library
that contains the source member to be compiled. If no library name is
specified, the name of the current library is assumed.

Call RPG II compiler: Enter COMP or NOCOMP.

COMP means that you want the RPG compiler to be run as part of the
aut,o report function.

NOCOMP means that you do not want the RPG compiler to be run as
part of the auto report function.

If no option is specified, COMP is assumed.

Output option for compiler listings: Enter PRINT, NOPRINT, or CRT.

PRINT means that you want the listings created by the AUTOC
procedure to be printed.

NOPRINT means that you do not want the listings to be printed or
displayed.

CRT means that you want the listings created by the AUTOC procedure
to be displayed at the display station that requested the AUTOC
procedure.

If no option is specified, PRINT is assumed.

Create cross-reference listing: Enter NOXREF or XREF.

NOXREF means that you do not want the AUTOC procedure to create a
cross-reference listing for the RPG program.

XREF means that you do want a cross-reference listing. The
cross-reference listing is created only if the program contains no
terminal errors. The cross-reference listing is part of the compiler
listing, so whether the cross-reference listing is displayed or printed
depends on your response to the previous prompt.

If no option is entered, NOXREF is assumed.

Maximum number of requesting display stations: Enter the number (0
through 99) of display stations that can use a single copy of the program at
the same time. If no number is specified, a value of 0 is assumed (the
program is not a MRT program).

Never-ending program: Enter NONEP or NEP.

NONEP means that the program is not to be a never-ending program.

NEP means that the program is to be a never-ending program. A
never-ending program is one that uses system resources (such as disk
storage, display stations, or printers) that are not shared with other
programs. Use this option if your program will be requested frequently.

If no option is entered, NONEP is assumed.

Name of library to contain compiled program: Enter the name of the library
that is to contain the compiled program. If no library name is specified, the
name of the source input library is assumed.

You can use the following keys from the first AUTOC Procedure display:

• Command key 3 to retm·n to the previous Help menu

• Command key 4 to place the program on the input job queue

• Command key 7 to end the AUTOC procedure

• The Help key for additional information about the parameters

• Command key 14 to see the second display for the AUTOC procedure

Chapter 3. Entering and Compiling an RPG Program 3-27

Using the Second AUTOC Display

3-28

The second AUTOC display looks like this:

r I I i t kJl iP iJ

AUTOC PROCEDURE Opt1onal-*

AUTOC TEST,YOURLIB,COMP,PRINT,NOXREF,0,NONEP,,

Overr1de prlnt option In source .. SOURCE,PSOURCE,NOSOURCE
Override debug option In source DEBUG,NOOEBUG
Override size-to-execute option In source 2-64
Halt on serious program error NOHALT,HALT
Replace duplicate members REPLACE,NOREPLAC
create program that can be run . . . LINK ,NOLINK
Create program that must be

link-edited
Name of subroutine 1nput 11brary ..
Generate CONSOLE flle display formats
51ze of work f1les 1n blocks .•..
Name of data dlct1onary to be used
Create program w1th

NOOBJECT,OBJECT

GEN,NOGEN
. 1-9999

memory resident overlays NOMRO,MRO

Crnd2-Page back Cmd4-Put on job queue

NOHALT
REPLACE
LINK

NOOBJECT

GEN
40

NOMRO

COPR IBM Corp. 1986

*
*
*

*

*

Respond to each prompt by entering the appropriate information.

Override print option in source: Enter SOURCE, PSOURCE, or
NOSOURCE. Use this option to override an entry in column 11 of the
control specification of your RPG program.

SOURCE means that you want the RPG compiler to print a full
compiler listing. A full compiler listing includes the source program,
information about tables and arrays, the relative location of fields and
their attributes, field names that are not referred to, diagnostics, and a
map of main storage. The map of main storage lists the identification,
the starting address, and the size of each separately identifiable
segment of code in the program, tells how much main storage is
required to run the program, and lists the number of library sectors
required for the program.

PSOURCE means that you want the RPG compiler to print a partial
compiler listing. A partial listing includes the source program,
information about indicators used in the program, diagnostics, and the
following information from the overlay linkage editor: the amount of
main storage required to run the program, the starting address of the
program, and the number of library sectors required for the program. It
does not include information about tables and arrays, information about
fields, or a map of main storage.

NOSOURCE means that you do not want the RPG compiler to print a
compiler listing. If you use this option, a prolog is printed along with
the following information from the overlay linkage editor: the amount
of main storage required to run the program, the starting address of the
program, and the number of library sectors required for the program.
Use this option when you already have a listing of the program.

If no option is specified, the entry coded in column 11 of the control
specification of your RPG program is used.

Override debug option in source: Enter DEBUG or NODEBUG. Use this
option to override the entry in column 15 of the control specification of
your RPG program.

DEBUG means that the DEBUG operation is to be used in the
calculation specifications.

NODEBUG means that the DEBUG operation is not to be used.

If no option is specified, the entry coded in column 15 of the control
specification of your RPG program is used.

Override size-to-execute option in source: Enter the program size in K bytes
(one K byte equals 1024 bytes). The program size must be an even number
from 2 through 64. Use this option to override the entry coded in columns
12 through 14 of the control specification of your RPG program. If no size
is specified, the entry coded in columns 12 through 14 of the control
specification of your RPG program is used.

Halt on serious programming error: Enter NOHALT or HALT.

NOHALT means that you do not want the compiler to stop and display
an error message if a warning or terminal error is found in the program.

HALT means that you want the compiler to stop and display an error
message if a warning or terminal error is found in the program.

If no option is specified, NOHALT is assumed.

Replace duplicate members: Enter REPLACE or NOREPLAC.

REPLACE means that, if a load or subroutine member is being created
and if a load or subroutine member with the same name already exists
in the output library, you want the newly compiled program to replace
the existing load or subroutine member.

NOREPLAC means that, if a load or subroutine member is being
created and if a load or subroutine member with the same name already
exists in the output library, you want an error message to be displayed.

If no option is specified, REPLACE is assumed.

Chapter 3. Entering and Compiling an RPG Program 3-29

3-30

Create program that can be run: Enter LINK or NOLINK.

LINK means that you want to create a load module, that is, a program
that you can run without first having to use the Overlay Linkage
Editor procedure OLINK to link-edit the program.

NOLINK means that you do not want to create a load module.

If no option is entered, LINK is assumed.

Create program that must be link-edited: Enter NOOBJECT or OBJECT.

NOOBJECT means that you do not want to create an object module.

OBJECT means that you want to create an object module, that is, a
compiled subroutine (not a load module). You must use the OLINK
procedure to link-edit this module (by itself or with one or more other
assembler programs or subroutines) before you can run the module.

If no option is specified, NOOBJECT is assumed.

Create memory-resident overlays: Enter NOMRO or MRO.

NOMRO means that you do not want overlays to remain in memory.

MRO means that you want to retain overlays in memory. This enables
you to keep more than one overlay in storage.

The default is NOMRO.

Name of subroutine input library: Enter the name of the library that
contains one or more subroutines to be combined with the program being
compiled. If no library name is specified, the name of the source input
library is assumed.

Generate CONSOLE file display formats: Enter GEN or NOGEN.

GEN means that you want the procedure to create and compile source
specifications for 24-line, 1920-character display formats for CONSOLE
files. The specifications are created and compiled only if the program
contains no terminal errors.

NOGEN means that you do not want the procedure to create or compile
the source specifications for the display formats.

If no option is specified, GEN is assumed. However, the procedure
ignores this option if your program does not use a CONSOLE file.

Size of work files in blocks: Enter the number (1 through 9999) of blocks for
the compiler work files. If no size is specified, 40 blocks is assumed.

You can use the following keys from the second AUTOC Procedure display:

• Command key 2 to return to the first display for the AUTOC procedure

• Command key 4 to place the program on the input job queue

• Command key 7 to end the AUTOC procedure

• The Help key for additional information about the parameters

Name of the data dictionary to be used: Enter the name of the current data
dictionary to be used during the compilation, if you are using
communication formats defined through the interactive data definition
utility (IDDU). There is no default value for the data dictionary.

Chapter 3. Entering and Compiling an RPG Program 3-31

Creating or Changing Display Formats (RPGSDA
Procedure)

3-32

The RPGSDA procedure allows you to create or change display formats.
There are no displays for the RPGSDA procedure. Instead, the procedure
calls the screen design aid (SDA) utility, and the SDA menu is displayed:

SDA MAIN OPTIONS W4

Select one of the following:

MENUS 1. Design menus

DISPLAYS 2. Design display formats
3. Design display formats for WSU

PROGRAMS 4. Bu11d RPG II WORKSTN f11e speclftcatlons
5. Bu11d WSU programs

SERVICES 6. EDIT Source and procedure members
7. VIEW Display formats tn $SFGR load members
8. PRINT Display formats 1n source members
9. COMPILE Source format members wtth $SFGR

Optton ..•..

HELP-Cursor selected help CMD3-Prevtous menu CMD7-End SDA session

For a complete explanation of S~A, see the manual Creating Displays.

Solving Problems That Occur At Compilation Time

The following charts describe some problems that may occur when you
compile your program and some possible ways to solve these problems.

No Compiler Listing Is Produced

How to Check Recommended
Items to Check the Item Recovery Action

You coded B in Use DSU/SEU or Either use DSU /SEU
column 11 of RPGSEU procedure to change the B to
the control (H) to look at the source blank, or use the
specification. program RPGONL, RPGC, or

specifications. A UTOC procedure to
recompile your
program, and choose
SOURCE or
PSOURCE as the
Override print option
in source parameter.

/

You chose Look at the prolog Use the RPGONL,
NOSOURCE as on the compiler RPGC, or AUTOC
the Override listing to see which procedure to
print option in option you chose. recompile your
source program, and change
parameter on NOSOURCE to
the RPGONL, PSOURCE,
RPGC, or SOURCE, or blank
AUTOC as the Override print
procedure. option in source

parameter.

You chose N in This item cannot be Change N to Y as
response to the checked. the response to the
prompt Would prompt Would you
you like to view like to view the
the compiler compiler listing? on
listing? on the the RPGONL
RPGONL procedure.
procedure.

Chapter 3. Entering and Compiling an RPG Program 3-33

No Compiler Listing Is Produced (continued)

How to Check Recommended
Items to Check the Item Recovery Action

You chose This item cannot be Use the RPGC or
NOPRINT as checked. AUTOC procedure to
the Output recompile your
options for program, and change
compiler listing NOPRINT to PRINT
parameter on or CRT as the
the RPGC or Output option for
AUTOC compiler listings
procedure. parameter.

Your display Use the SSP Reconfigure the
station is STATUS command display station to the
configured to (D W) to see how the correct printer.
the wrong system is configured.
printer. ~,

The spool Use the SSP Use the SSP START
writer is STATUS command command
stopped. (D P) at the system (S P,printer-id) at

console to see the the system console.
status of the spool
file.

3-34

No Load Module Is Produced

How to Check Recommended
Items to Check the Item Recovery Action

You chose Look at the prolog Use the RPGONL,
NOLINK as the on the compiler RPGC, or AUTOC
Create program listing to see what procedure to
that can be run option you chose. recompile your
parameter on program, and change
the RPGONL, NOLINK to LINK as
RPGC, or the Create program
AUTOC that can be run
procedure. parameter.

You used the Look at the prolog Use the RPGONL,
wrong name as on the compiler RPGC, or AUTOC
the subroutine listing to see what procedure to
input library subroutine input recompile your
name on the library name you program, and change
RPGONL, used. the name of the
RPGC, or subroutine input
AUTOC library.
procedure.

Chapter 3. Entering and Compiling an RPG Program 3-35

A Load Module Is Produced but Cannot Be Found

How to Check Recommended
Items to Check the Item Recovery Action

You did not Look at the compiler Do one of the
code a program listing. following:
identification
name in 1. Use DSU/SEU to
columns 75 code a program
through 80 of identification
the control (H) name in columns
specification. 75 through 80 of

the control
specification, and
then use the
RPGONL, RPGC,
orAUTOC
procedure to
recompile your
program.

2. Use the SSP
LIBRLIBR
procedure to
change the
default name of
the load module
(RPGOBJ) to the
required name.

3-36

How to Check Recommended
Items to Check the Item Recovery Action
The name of Look at the prolog Do any one of the
the library in on the compiler following:
which you are listing to see what
looking is not name you used as 1. Look in the
the same as the the output library library you used
name you used name. as the output
as the output library name on
library name on the RPGONL,
the RPGONL, RPGC, or
RPGC, or AUTOC
AUTOC procedure.
procedure.

2. Use the
RPGONL, RPGC,
orAUTOC
procedure to
recompile your
program, and
change the name
of the output
library.

3. Use the SSP
LIBRLIBR
procedure to
copy the load
module from the
library you used
as the output
library name on
the RPGONL,
RPGC, or
AUTOC
procedure to the
required library.

Chapter 3. Entering and Compiling an RPG Program 3-37

No Subroutine Module Is Produced

How to Check Recommended
Items to Check the Item Recovery Action
You chose Look at the prolog Use the RPGONL,
NOOBJECT as on the compiler RPGC, or AUTOC
the Create listing to see what procedure to
program that option you chose. recompile your
must be program, and change
link-edited NOOBJECT to
parameter on OBJECT as the
theRPGONL, Create program that
RPGC, or must be link-edited
AUTOC parameter.
procedure.

You used the Look at the prolog Use the RPGONL,
wrong name as on the compiler RPGC, or AUTOC
the subroutine listing to see what procedure to
input library subroutine input recompile your
name on the library name you program, and change
RPGONL, used. the name of the
RPGC, or subroutine input
AUTOC library.
procedure.

a~as

A Subroutine Module Is Produced but Cannot Be Found

How to Check Recommended
Items to Check the Item Recovery Action

You did not Look at the compiler Do one of the
code a program listing. following:
identification
name in 1. Use SEU to code
columns 75 a program
through 80 of identification
the control (H) name in columns
specification. 75 through 80 of

the control
specification, and
then use the
RPGONL, RPGC,
or AUTOC
procedure to
recompile your
program.

2. Use the SSP
LIBRLIBR
procedure to
change the
default name of
the subroutine
module
(RPGOBJ) to the
required name.

Chapter 3. Entering and Compiling an RPG Program 3-39

~ Subroutine Module Is Produced but Cannot Be Found (continued)
\

How to Check Recommended
Items to Check the Item Recovery Action
The name of Look at the prolog Do any one of the
the library in on the compiler following:
which you are listing to see what
looking is not name you used as 1. Look in the
the same as the the output library library you used
name you used name. as the output
as the output library name on
library name on the RPGONL,
the RPGONL, RPGC, or
RPGC, or AUTOC
AUTOC procedure.
procedure.

2. Use the
RPGONL, RPGC,
orAUTOC
procedure to
recompile your
program, and
change the name
of the output
library.

3. Use the SSP
LIBRLIBR.
procedure to
copy the load
module from the
library you used
as the output
library name on
theRPGONL,
RPGC, or
AUTOC
procedure.

3-40

No Diagnosed Source Member Is Produced

How to Check Recommended
Items to Check the Item Recovery Action

You chose Look at the prolog Use the RPGC
NODSM as the on the compiler procedure to
Create listing to see what recompile your
diagnosed option you chose. program, and change
source member NODSM to DSM as
parameter on the Create diagnosed
the RPG source member
procedure. parameter.

If your problem is still not solved, please refer to Chapter 32 (Problem
Determination) in this manual.

Chapter 3. Entering and Compiling an RPG Program 3·41

3-42

Chapter 4. Testing an RPG Program

Running an RPG Load Module . 4-1
Example of Control Language Statements To Run a Program 4-2
RPG Halt Messages . 4-2

Debugging an RPG Load Module . 4-2
Using the DEBUG Operation . 4-3
Records Written by the DEBUG Operation 4-4
Debugging a Program That Uses a WORKSTN File 4-4

Chapter 4. Testing an RPG Program

Chapter 4. Testing an RPG Program

Testing is the final step in creating an RPG program. Testing means
running your load module with sample data, not actual data. You should
test all possible combinations of variables in your program to be sure that
the program processes the data correctly in every case. Testing usually
reveals some program errors that must be corrected before you can use the
load module to process your actual data. Finally, after this debugging
(finding and correcting all errors), the program is ready to be put into
production by running it with actual data.

This chapter explains how to run a load module and briefly suggests how to
debug a load module.

Running an RPG Load Module

There are three ways to run an RPG load module:

• Enter control language LOAD and RUN statements from the display
station keyboard. If the program uses DISK files, you must also include
a control language FILE statement for each DISK file. You can use a
control language SWITCH statement to set any external indicators (Ul
through US) used by the program. To attach a display station to a
program that uses a WORKSTN file, you can use a control language
WORKSTN statement.

• Enter the name of a procedure that contains the required control
language statements.

• Select a menu option.

For a complete explanation of the control language statements and of how
to write a procedure, see the System Reference manual.

For information on how to place the program on the input job queue, see
the manual Operating Your Computer.

Chapter 4. Testing an RPG Program 4-1

Example of Control Language Statements To Run a Program

The following control language statements load and run an RPG load
module named PROGl that uses an input DISK file named INPUT and an
output DISK file named OUTPUT:

II LOAD PROGl
II FILE NAME-INPUT
II FILE NAME-OUTPUT,BLOCKS-10
II RUN

RPG Halt Messages

Errors in an RPG program can cause the program to halt while it is being
compiled or run. When the program halts, a halt message is displayed. If
the program is run from the input job queue, the halt messages are
displayed at the system console. If the program is run from a display
station (and not placed on the input job queue), the halt messages are
displayed at the display station. If the program is a multiple requester
terminal (MRT) program, the messages go to the system console.

When a halt message is displayed, the person at the system console or at
the display station must respond by entering one of the following options:

• 0-Continue: Control is returned to the program, and processing
continues.

• I-Bypass; The remainder of the program cycle is bypassed, and the next
record is read. For some messages, option 1 means that you should try
the operation again. This information is in the second-level text for
these messages.

• 2-Controlled Cancel: End-of-job operations specified by the program are
done, tables are dumped, and file labels are cataloged.

• 3-Immediate Cancel: The job is canceled; but control is not returned to
the RPG program. New data entered for this job is not preserved.

For a complete explanation of the halt messages and of the necessary
responses, see the RPG II Messages manual.

Debugging an RPG Load Module

4-2

You can usr the DEBUG operation to debug any RPG program. In
addition, you can use other techniques to debug a program that uses a
WORKSTN file.

Using the DEBUG Operation

The DEBUG operation is an RPG function that helps you find errors in a
program. This operation causes one or, optionally, two records to be
written to an output file. The first record contains a list of all indicators
that are on at the time the DEBUG operation occurs in the calculation
specifications. If you code the name of a field or array in the result field of
the DEBUG operation, a second record is also written to the output file.
The second record shows the contents of the field or array specified in the
result field.

The DEBUG operation can be coded at any point or at several points in the
calculation specifications. The output records are written whenever the
DEBUG operation occurs.

Factor 1 of the DEBUG operation can contain a literal or the name of a
field. The literal or the contents of the specified field are written in the
first record. If factor 1 is left blank, the statement number of the DEBUG
operation is written in the first record.

Factor 2 must contain the name of the output file to which the records are
written. The file cannot be a WORKSTN file. The same filename must be
used as factor 2 for all DEBUG statements in a program.

The result field can contain the name of a field or array whose contents are
written in the second output record. If the result field is left blank, only
one record is written when that DEBUG operation occurs.

To use the DEBUG operation, you must also code a 1 in column 15 of the
control specification. If you leave that column blank, the DEBUG
operation is treated as a comment. You can override the entry in column
15 by specifying DEBUG or NODEBUG in the RPGONL, RPGC, or AUTOC
procedure (see Chapter 3, Entering and Compiling an RPG Program).

Chapter 4. Testing an RPG Program 4-3

Records Written by the DEBUG Operation

The DEBUG operation always causes at least one record to be written.
That record has the following format:

Output Positions Information

1-8 DEBUG-
9-16 Literal or contents of field coded in factor

1 (optional), or the statement number of
the DEBUG operation code in the
program.

17 Blank

18-32 INDICATORS ON-

3?-any position The names of all indicators that are on,
(depending on each separated by a blank. More than
length of output one record may be needed.
rec9rd)

The second record is written only when an entry is coded in the result field.
The second record has the following format:

Output Positions Information

1-14 FIELD VALUE-
15-any position The contents of the result field (up to 256
(depending on characters). If the result field is an array,
length of field) more than one output record may be

needed to contain the array.

Debugging a Program That Uses a WORKSTN File

4-4

Because the logic for WORKSTN file processing is supplied by both the
RPG program and the display format specifications, it may be more difficult
to find coding errors for the WORKSTN file than for other files. The
following techniques may help you debug a WORKSTN program:

• Always compare the $SFGR listing to the RPG input and output
specifications. The From, To, and End positions used on the RPG
specifications should normally match the From, To, and End positions
listed for the $SFGR input and output buffers.

• If the wrong format is displayed, check the status of the indicators to be
certain the status is as you expected. If the status of the indicators is
incorrect, the wrong format may be displayed or a correct format may
be followed by an additional format that overlays and thereby hides the
correct format. The specification of erase input (columns 31 and 32 of
the S specifications) or override fields (columns 33 and 34 of the S
specifications) may also cause a partial format to be displayed that
overlays the correct format.

• Always include a record type for blank records. Blank records can
occur in one of two ways:

If the record is the first input record for a display station (in most
programs the first input record for a display station is blank)
If N (no) is specified in column 22 (return input) of the display
format S specification and no data keys were pressed

• If the program goes to end of job prematurely, check whether all display
stations have been released or whether Y (yes) was specified in column
35 (suppress input) of the S specification. Either situation can result in
no display stations being allowed to enter input, which causes end of
file on the WORKSTN file. If either of the preceding conditions is true
for a NEP program and if the person at the display station enters a
STOP SYSTEM command, the WORKSTN file goes to end of file.

• If the command display unexpectedly follows a program display, the
program may have gone to end of job before any data was entered for
the display (see the RESTORE parameter of the control language
WORKSTN statement in the System Reference manual). If
RESTORE-NO is specified, a display from the program may be on the
screen after the program has gone to end of job, so it appears as if the
program is still running. If RESTORE-YES is specified, the command
display appears on the screen immediately when the program goes to
end of job.

• Avoid using multiple formats on the same section of the screen until the
program logic is debugged.

• During the debugging operations, display a constant on the screen for
every format. This should help you analyze the screen contents.

• Use the DEBUG operation code in selected locations to trace the
program flow. Suggested locations and the resulting debug information
are as follows:

Location Debug Information

As first calculation Shows the contents of the specified
input record and the indicator status
for a primary file

After any READ Shows the contents of the specified
operation input record and the indicator status

for a demand file

Before every EXCPT Shows the status of the indicators
operation that control which records (formats)

are to be produced as output

Chapter 4. Testing an RPG Program 4-5

4-6

Location Debug Information
As last detail Shows the indicator status before
calculation heading and detail output

After an ACQ Shows the work station ID and the
operation indicator off if the operation was

successful

After a REL Shows the display stations that are
operation released from the program

After every TAG Shows the program flow
operation

As first statement in Shows the program flow
each subroutine

Conditioned by LR Shows when the program ends

• After each WORKSTN output record, define a record with the same
conditioning indicators and write that record to the DEBUG file (see
Figure 4-1). The record should contain:

The format name
The work station ID, if used in the program
The release status, if the display station is released in the output
specifications
SLN (starting line number), if used in the program
Data fields as needed

If the following types of error messages occur, check the probable causes
listed:

• Error messages involving program checks to the WORKSTN device are
probably caused by:

Invalid use of erase input fields (columns 31 and 32 of the S
specification)
Clearing all or a portion of the screen containing the input fields.

• Error messages involving invalid WORKSTN identifiers are probably
caused by an earlier release of the display station in either calculation
or output operations.

0
1--- 5.9 =

~ s Space Skip utput 1cators Commas No Sign CR -

!
Filename

or
Record Name

- ~ Q Ind. ~ Zero Balances X =Remove

~ ~ F ield0~ame F==y=.,=*=='o=P=r=int===F==l==I===! Y =:~Sign

~~ ~ ! ~ Aid EXCPT Name End Yes :: ! : ~ Z =;~~Edit ~ned
1-~ ~ 1 ~ ~ition ~~ ~:s ! g ~ Suppress

Line ! Wa ~ ! 85 Output ~
O R z'O ~ zO •AUTO :6 ~ Record iO Constant or Edit Word
~ ~ w m it 1 2 J 4 5 6 7 s 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

3 4 5 • 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 82 83 64 65 66 67 S8 89 70 71 72 73 7,

0 1 01\Ah~
0 2 lo
0 3 lo
0 4 lo
0 5 lo
0 6 0

0 7 oh' fc\rn
oe o~
0 9 0

' o lo
'' lo
1 2 10
, 3 IQ

Use the same file that
is used for DEBUG
operations.

fJ
Indicator 02 shows
release status of
display station.

]Ml~ 'IFI IAI"" ~ I)(~ , . . ~ . J2.Format Name
J7

I~ .
IAi.l

I

~~
ltJW'.t -~ Ir- i:"~ I

"\
Use the same conditioning indicators for both files.

Figure 4-1. Writing the WORKSTN Output Record to the DEBUG File

Chapter 4. Testing an RPG Program 4-7

4-8

Chapter 5. Using a DISK File

SEQUENTIAL FILES . 5-2
Creating a Sequential File . 5-3

Example of Creating a Sequential File . 5-4
Reading a Sequential File . 5-6

Reading Consecutively . 5-6
Reading Randomly by Relative Record Number 5-8
Reading Randomly by Relative Record Number and/or Consecutively 5-9
Reading Randomly by Address Output (Addrout) File 5-10

Updating A Sequential File . 5-13
Deleting Records from a Sequential File . 5-14
Updating Consecutively . 5-15

Example of Updating and Deleting Records 5-15
Updating Randomly by Relative Record Number 5-18
Updating Randomly by Relative Record Number and/or

Consecutively . 5-19
Updating Randomly by Address Output (Addrout) File 5-20

Adding Records to a Sequential File . 5-21
Adding Records at the End of a File . 5-21

Example of Adding Records at the End of a File 5-22
Adding Records between Records in a File 5-24

Example of Adding Records between Records in a File 5-26
DIRECT FILES . 5-28
Creating a Direct File That Does Not Allow Deletions 5-29

Example of Creating a Direct File That Does Not Allow Deletions 5-30
Creating a Direct File That Allows Deletions 5-32

Example of Creating a Direct File That Allows Deletions 5-34
Reading a Direct File . 5-35

Reading Consecutively . 5-35
Example of Reading Consecutively . 5-36

Reading Randomly by Relative Record Number 5-39
Example of Reading Randomly by Relative Record Number 5-40

Reading Randomly by Relative Record Number and/or
Consecutively . 5-43

Reading Randomly by Address Output (Addrout) File 5-44
Updating a Direct File . 5-48

Chapter 5. Using a DISK File

Deleting Records from a Direct File . 5-49
Updating Consecutively . 5-50
Updating Randomly by Relative Record Number 5-51

Example of Updating Randomly by Relative Record Number . . . 5-52
Updating Randomly by Relative Record Number and/or

Consecutively . 5-55
Updating Randomly by Address Output (Addrout) File 5-56

Adding Records to a Direct File . 5-57
INDEXED FILES . 5-60
Creating an Indexed File . 5-62

Creating an Indexed File by Writing Records in an Ordered
Sequence . 5-62

Creating an Indexed File by Writing Records in an Unordered
Sequence . 5-63

Example of Creating an Indexed File . 5-63
Creating an Alternative Index File for an Indexed File 5-65

Example of Creating an Alternative Index File 5-67
Example of Using an Alternative Index File with Only One Field

as its Key . 5-68
Using an Alternative Index File with Noncontiguous Fields as its

Key . 5-69
Reading an Indexed File . 5-70

Reading Sequentially by Key Field . 5-70
Reading Sequentially within Key-Field Limits 5-72

Using a Limits Record . 5-7 4
Using the SETLL Operation . 5-76

Reading Randomly by Key Field . 5-79
Reading Randomly and/or Sequentially by Key Field 5-80

Example of Reading an Indexed File Randomly and Sequentially
by Key Field . 5-81

Reading Randomly by Address Output (Addrout) File 5-84
Updating an Indexed File . 5-88

Deleting Records from an Indexed File . 5-88
Updating Sequentially by Key Field . 5-90
Updating Sequentially within Key-Field Limits 5-90
Updating Randomly by Key Field . 5-91

Example of Updating an Indexed File Randomly by Key Field . . 5-91
Updating Randomly and/or Sequentially by Key Field 5-94
Updating Randomly by Address Output (Addrout) File 5-94

Adding Records to an Indexed File . 5-95
Adding Records Randomly by Key Field . 5-95

Example of Adding Records Randomly by Key Field 5-97
Adding Records Sequentially by Key Field 5-99

Example of Adding Records Sequentially by Key Field 5-101

Chapter 5. Using a DISK File

A DISK file is a file that contains data read from a disk or written to a
disk. A DISK file can be organized in one of three ways:

• Sequential

• Direct

• Indexed

This chapter explains how to code RPG specifications so that you can
create, read, update, and add records to each of these kinds of DISK files.

Chapter 5. Using a DISK File 5-1

SEQUENTIAL FILES

1st
record

2nd

In a sequential file, the position of a record depends on the order in which
records are placed in the file. The first record placed in the file occupies
the first record position in the file, the second record placed in the file
occupies the second record position, and so on. Figure 5-1 shows how a
sequential file is organized.

3rd 4th

Records are stored on disk in the same order
in which they are read. No index is kept, and
no spaces are left between disk records.

5th 6th

Figure 5-1. Organization of a Sequential File

5-2

Creating a Sequential File

F

Filename

Line

File Type

To create a sequential file, you define the DISK file as an output file and
write records to the file. The control language statements for the program
must include a FILE statement. That FILE statement must use either the
RECORDS parameter or the BLOCKS parameter to specify the size of the
file, and it must use the DFILE-YES parameter if you want to allow records
to be deleted from the file. For information about the FILE statement, see
the System Reference manual.

Define the file by using the unshaded portions of the file description
specifications shown below:

Mode of Processing

File Designation Length of Kev field or
of Record Address Field ~

Extent Exit
for DAM

File Add1tion/Unonten

Number of Tracks
for Cylinder Overfl1

Symbolic ~ Name of
... Label Exit

Device ~
Sequence Device

End of File

Storage Index

Columns 7 through 14 must contain the name of the file.

Column 15 must contain 0 to indicate that the file is an output file.

Column 19 must contain F or blank to indicate that all records in the file
must be the same length.

Tape
Rewind

File
Condit
U1·UB,

z UC

~
IC

Columns 20 through 23 must contain blanks or the block length. The block
length must equal the record length or be a multiple of the record length.
The maximum block length is 9999. If you leave these columns blank, the
block length equals the record length.

Columns 24 through 27 must contain the length of the record you are
creating. The record length can be any number from 1 to 4096.

Column 32 can contain a number from 1 through 9 to indicate that the
program uses two input/output areas for the file, or a blank to indicate that
the program uses only one input/output area.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through US, to
condition the use of this file.

Chapter 5. Using a DISK File 5-3

Example of Creating a Sequential File

F
t---i

Filename

Line

I!.
I?:
j

Suppose you want to create a customer file on disk. Customer numbers are
sequential; that is, you assign each new customer the next higher number.
Figure 5-2 shows how to code the file description, input, and output
specifications to create this sequential file.

~ile Type

File Designation

End of File

Sequen"

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type _,
r--::--=,---1"1

Type of File
file Format N Organization or ~

u.. !:!! ~ Additional Area .~

<2
0 ~~

0

,,.~i Block Record !!:. i2 Oversflow Indicator i
~ ~ i:: Length Length f Q Key Field ')(

~ <~ ~~~nw

Device
Symbolic
Device

K

Name of
Label Exit

Extent Exit
for DAM

Storage Index

Continuation lines

Option Entry

File AdditionNnordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape

~ ~

~
Condition
U1·UB,
UC r--1

g ~ w ~1------~Ex~te~rn~a~IR~•~~~rn~N~a~me'-------..,...~
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 38 37 38 39 40 41 42 43 44 45 46 47 48 4!) 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 5 66 67 68 68 70 71 12 13 14 3 4 •• 7 8 9·

0 2 FIN

0 3 F

0 4 F ~~ r"'-'~~~;....;....;......;.~;....;....;.....;.~~

0 5 F
-++-+-t--1f-l-+-++-+-t--1-+-+-++-+-t--1f-l-+-++-+-+-~-+-++-+-f-I-+~ "N Records are blocked

t-1-t-t-t-+-+-+-+-+-+-+-+-t---+-ir-+--t-+-+-+-+-+ l (128 x 2 = 256)
0 6 F

_J_tJL...L _J_ _J_:t_J_ 0 7 F

0 8 F

I i
External Field Name Field

Field Location
Indicators

1--- Filename

I ~
Record Identification Codes

or
~"' 0

Record Name w"' co 1 2 3 From To RPG § -6
! ~'.:): ~~ Field Name .!!'ii

~:
u.u:: Zero

Line

i =o - ~ ~ e ~
Data Structure .!rl!' P1u• Minus or

J~ ~ Position ~ ~ =
Position Position ~~ J:. ·c Blank Data 0 R "N • Occurs ~6 Structure t;t;tQ1 , 5. ~ ~uo ~uo ~ u Length

Name z 0 nTimes
3 4 5 • 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3233 3~ 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 .. 65 .. . , .. •• 70 71 72 73 74

0 1 II F(l ~I ~111 2Q L1 1r1;:
0 2 I ~

~I~
lrl

~::ti N
0 3 I 111~ NlA Mt:.
0 4 I l~'i 1'11"1 ~ IA
0 5 I li:;lli JllLI ~11 lll5T
0 6 I ~ ~~ ~ lI~l2
0 7 I ~al ~Q l ~I~
0 8 I !-I la 1 ~I l~ll
0 9 I la ~1 IEA II~I~
1 0 I On lines 01 and 07, columns 15 through 17 contain
1 1 I information used to sequence-check the input record.
1 2 I In columns 15 and 16, 01 means that record type 2
1 3 I must be first, followed by record type 3 (identified
1 4 I by 02 sequence). The 1 in column 17 means that one ' I

1 5 I record type 2 and one record type 3 exists. II

~ 1 6 I
1 7 I .1 J.

Figure 5-2 (Part 1 of 2). Creating a Sequential Customer File

5-4

\

0 -
~~ Space Skip Output Indicators

~
Commas

Zero Balances
No Sign CR

X =Remove -i-- Field Name to Print Plus Sign
5 -9 = e~ or Y =Date
User I ' Jd Jd

y., v.. 1 A J Field Edit 1l Filename - " . - EXCPT Name v.. No 2 B K Defined ~~ .LJ Z =Zero F: or
~~ No y., 3 c L a: Position Suppress Line E Record Name :!: a, No No 4 D M ,f ~ ~ 0

:i.] :::: '" "' A m u u Output
~

~
0 0 0 •AUTO ~~ Record "' Constant or Edit Word
z z z ;;: 1 2 3 4 ~ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 n 23 24 25 26 '}7 28 29 3 0 31 32 33 34 35 36 37 38 39 40 41 42 43 «•~o·•~MHUM~-n~--~~~M~~E~~m 71 72 73 74

0 1 0Ji;i1- r:JJ11I ~I~ 1 1 RflD
0 ' 0 Tilll i-

~ 2 ' II"! IM I

0 3 0 1T I I I I _I_ _I_ Ir
~~ ~ I\

0 4 0 Since both input record types are [)1' 7~ I\
0 5 0 needed to write a DISK record, we Al ~ 11111~ I\
0 6 0 don't want to write it until input T\
0 7 0 record type 3 is processed. lndica- CM is added to the DISK record.
0 B 0 tor 30 specifies that the DISK re- This code is a record code that can
0 9 0

cord is written after input record be used to identify a customer
1 0 0
1 1 0

3 is processed. master record in other programs.

1 ' 0 111111111111111111111 J 1 3 0

Figure 5-2 (Part 2 of 2). Creating a Sequential Customer File

Chapter 5. Using a DISK File 5-5

Reading a Sequential File

Sequential files can be read in any of the following ways:

• Consecutively

• Randomly by relative record number

• Randomly by relative record number and/or consecutively

• Randomly by address output (addrout) file

Note: An alternative index file can also be created for a sequential file to
provide another method of reading the records in the file. For information
about creating an alternative index file, see Creating an Alternative Index
File for an Indexed File later in this chapter.

Reading Consecutively

F
Filename

u ..

5-6

file Type

Reading consecutively means reading records in the order in which they
occur in the file. If you want to read all the records in the file, code the file
for consecutive processing as shown in the file description spedfications
below:

Mode of Processing

File D11ignation Length of Key Field Of

;;~
Ex.tent Exit
for DAM

Fila Addition/Unordered

Number of Tricks

End of File
of Record Address Field

Sequence
Record Address Type ~

~
Device

Symbolic
Device

w Name of
"' Label Exit

~

Columns 7 through 14 must contain the name of the file.

Storage Index

Column 15 must contain I to indicate that the file is an input file.

Column 16 must contain P, S, T, or D:

for Cylinder Overflow

Number of Extentl

• If you code P (primary) or S (secondary), the file is read as part of the
RPG program cycle. For an explanation of how primary and secondary
files are read, see Chapter 11.

• If you code 1' (table), column 39 must contain E. Your program must
also include an extension specification for a preexecution-time table or
array. The file name on that extension specification must be the same
as the file name on this file description specification. For information
about extension specifications, see Chapters 13 and 22.

• If you code D (demand), you must code a READ operation code in the
calculation specifications in order to read the file. For information
about the READ operation, see Chapter 28.

Column 17 can contain E or blank if column 16 contains P or S. E
indicates that the program must process all records from the file before the
program can end. Blank indicates that the program can end before it
processes all records from the file.

Column 18 can contain A, D, or blank if column 16 contains P or S:

• A indicates that the program checks that the records in the file are in
ascending sequence.

• D indicates that the program checks that the records in the file are in
descending sequence.

• Blank indicates that the program does not check the sequence of
records in the file.

Column 19 must contain F or blank.

Columns 20 through 23 must contain the block length or blanks.

Columns 24 through 27 must contain the record length.

Column 32 can contain a number from 1 through 9 or a blank. A number
indicates that the program uses two input/output areas. Blank indicates
that the program uses only one input/output area.

Column 39 must contain E if column 16 contains T.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through US.

Chapter 5. Using a DISK File 5-7

Reading Randomly by Relative Record Number

F
Filename

5-8

File Type

Sometimes you want to read only some of the records in the file. Reading
consecutively can be slow in this case, because reading consecutively
means reading every record in a file. It would be faster to read only the
records you specifically identify. Reading only specific records is called
random processing.

One way to identify which records to read is to identify the position of each
record in the file. A number that identifies the position of each record
relative to the beginning of the file is called a relative record number. For
example, the relative record number of the first record in a file is 1, the
relative record number of the second record in the file is 2, and so on.

You can process files randomly by relative record number if the files are
chained files (that is, if there is a C in column 16 of the file description
specifications). Chained files are not read at input time of the RPG
program cycle. Instead, they are read only when the CHAIN operation
occurs during the calculation part of the cycle. For information about the
CHAIN operation code, see Chapter 28. Chained records can be read
during total calculations or during detail calculations.

If you want to read records randomly by relative record number, code the
unshaded columns of the file description specifications shown below:

Mode of Processing

Fila Designation Length of Key Field or Extent Exit
for DAM

File Addition/Unordered

Number of Tracks
of Record Address Field

End of File
for Cylinder Overflow

Sequence
Record Address Type ...J

~----I iii Device
Symbolic
Device

Columns 7 through 14 must contain the name of the file.

Storage Index

Column 15 must contain I to indicate that the file is an input file.

Number of Extents

Column 16 must contain C to indicate that the file is a chained file. You
must code a CHAIN operation in the calculation specifications in order to
read a chained file.

Column 19 must contain F or blank.

Columns 20 through 23 must contain the block length or blanks.

Columns 24 through 27 must contain the record length.

Column 28 must contain R to indicate that the file is to be processed
randomly by relative record number.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through US.

Reading Randomly by Relative Record Number and/or Consecutively

F
Filename

File Type

If you want to read a file both randomly and consecutively, use a
full-procedural file. You can read a full-procedural file randomly like a
chained file and/or consecutively like a demand file. That is, you can chain
to a specific relative record number in the file and then read records
consecutively from that point. To read the file randomly, you use a CHAIN
operation in the calculation specifications; to read it consecutively, you use
a READ or READP operation. You cannot use a READE operation to read
the file consecutively, because the READE operation cannot read by
relative record number. For example, if you code a CHAIN operation to
relative record number 10 and then code a READ operation, the program
chains to relative record number 10 and then reads the following record.

It is not necessary to code both a CHAIN and a READ or READP
operation, but you must code at least one CHAIN, one READ, or one
READP operation in order to read a full-procedural file. For information
about the CHAIN, READ and READP operation codes, see Chapter 28.

Code a full-procedural file as an input file. Code entries in the unshaded
columns of the file description specifications shown below:

Mode of Processing

File 011lgn1tion Extent Exit
for DAM

End of Fiie

Length of Kev Field or
of Record Address Field Z~ w Name of

File Addition/UncN'dl

Number of Tr1Ck1
for Cylinder Ovtr

Sequence Device Label Exit
Record Address Type Symbolic

Device ~
Storage Index

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.

Numbtrof Ex

T ...
Rewind

Fila
Cond
U1-U

Z UC

~

Column 16 must contain F to indicate that the file is a full-procedural file.
You must code a CHAIN, READ or READP operation in the calculation
specifications in order to read a full-procedural file.

Column 19 must contain For blank.

Columns 20 through 23 must contain the block length or blanks.

Columns 24 through 27 must contain the record length.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through US.

Chapter 5. Using a DISK File 5-9

Reading Randomly by Address Output (Addrout) File

F
Filename

5-10

File Type

An address output (addrout) file is a record address file produced by a sort
program. (A record address file is an input file that tells the program which
records to read from a DISK file and the order in which to read them.) An
address output file contains the relative record numbers of the records in a
DISK file. The advantages of an address output file are that:

• The space required for the address output file is much less than the
space required for a sorted sequential file.

• The sort runs much faster.

• The original file is unchanged.

You can have only one address output file in a program. When an RPG
program uses an address output file, it automatically reads the relative
record numbers consecutively from the address output file. You do not
have to code a READ operation for the address output file. Then, using the
relative record number, the program randomly reads the DISK file to
process the corresponding record. In this way, the program can process a
sequential DISK file in a new sequence without actually sorting the records
and creating a new file. Also, once the file description and extension
specifications are coded for the DISK file and for its associated address
output file, you can code the DISK file as an ordinary sequential file. If the
DISK file is a full-procedural file, you must code a READ operation in the
calculation specifications; you cannot use a READE, READP, or CHAIN
operation to read a full-procedural file randomly by an address output file.
No input specifications are required for the address output file.

If you want to read records randomly by an address output file, code the file
description specifications as shown below:

Mode of Processing

file Designation Length of Key Field or

~
Extent Exit
for DAM

File Addition/Unordered

Number of Tracks
for Cylinder Overflow of Record Address Field

Encl of File
Record Address Type ...J

w
Symbolic
Device

~ Name of
Label Exit

Number of Extents
Sequence

Device

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.

Column 16 must contain P, S, or F:

• If you code P (primary) or S (secondary), the record is read as part of
the RPG program cycle. For an explanation of how primary and
secondary records are read, see Chapter 11.

Tape
Rewind

F
Filename

Line

File Type

• If you code F (full-procedural), you must code a READ operation in the
calculation specifications. CHAIN, READE, and READP operations are
not allowed with the address output files.

Column 18 can contain A, D, or blank if column 16 contains P or S:

• A indicates that the program checks that the records in the file are in
ascending sequence.

• D indicates that the program checks that the records in the file are in
descending sequence.

• Blank indicates that the program does not check the sequence of
records in the file.

Column 19 must contain F or blank.

Columns 20 through 23 must contain the block length or blanks.

Columns 24 through 27 must contain the record length.

Column 28 must contain R if column 16 contains P or S. The R indicates
that the file is processed randomly by an address output file.

Column 31 must contain I if column 16 contains P or S. The I indicates
that relative record numbers from the address output file are used to
process the file.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through US.

For the address output file, code entries in the unshaded columns of the file
description specifications shown below:

Mode of Processing File Addition/Uno

File Dnign1tion Length of Kev Field or
of Record Address Field ~

Extent Exit Number of Tr•
for DAM

End of File for Cylinder Oii

Sequence Symbolic Vl Name of Numblrof I
Device Device li

Label Exit
T ...

.:i Storage Index Aewi1

i!!
:> <!

Enttv c a:

Columns 7 tI?-rough 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.

Column 16 must contain R to indicate that the file is a record address file.

Column 17 must contain E or blank. E indicates that all records from the
file must be processed before the program can end. Blank indicates that the
program can end whether or not all records from the file are processed.

Chapter 5. Using a DISK File 5-11

Fi•
c:c.
UI
UC

E Record Sequence of the Chaining file

Number of the Chaining Field

Line

From Filename

5-12

Column 19 must contain F or blank.

Columns 20 through 23 must contain the block length or blanks.

Column 27 must contain 3 because each record in an address output file is a
relative record number, which is always three positions long.

Column 30 must contain 3 because relative record numbers in address
output files are always three positions long:

Column 31 must contain I to indicate that binary relative record numbers
are used in processing.

Column 32 must contain T to indicate that the file is an address output file.

Column 39 must contain E to indicate that the file is further described on
extension specifications.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through US.

Two entries are required on the extension specifications:

Number

Comments

of Number IS c Table or .I e Table or Emrtes of Longth Ee ArraylName
Length

""' Entries of i_- of :es Array Name
Record Per Table Entry ~ ~ i (Alternating Entry a: .. ~

or Array
Format) ~ .~ .,

~~I ~~N

To Filename

Columns 11 through 18 must contain the name of the address output file.
This name must be the same one coded on the file description specifications
for the address output file.

Columns 19 through 26 must contain the name of the sequential file to be
processed by the address output file. The name must be the same one coded
on the file description specifications for the sequential file.

/

Updating A Sequential File

Updating records in a sequential file involves reading a record, changing
some data in the record, and writing the record back to its original location
in the file. If you try to update a record that was not the last record read,
error message RPG-9043, TRIED RECORD UPDATE BEFORE INPUT FOR
FILE, is displayed. The fields to be updated must be described on both the
input and the output specifications.

When you update records in a sequential file, the file can be processed in
any of the following ways:

• Consecutively

• Randomly by relative record number

• Randomly by relative record number and/or consecutively

• Randomly by address output (addrout) file

Chapter 5. Using a DISK File 5-13

Deleting Records from a Sequential File

5-14

Updating a file can include deleting records from the file. To allow records
to be deleted from the file, the DFILE-YES parameter must be specified on·
the control language FILE statement when the file is created. For
information about the FILE statement, see the System Reference manual. If
you try to delete a record from a file that does not allow deletions, error
message RPG-9067, INVALID OPERATION ATTEMPTED, is displayed.

To delete a record, you first read the record (either randomly or
consecutively) and then, with DEL coded in the output specifications, write
the record back to the same file. Code entries in the unshaded columns of
the output specifications shown below:

Columns 7 through 14 must contain the name of the file if this is the first
record on the output specifications or if the previous record on the output
specifications is for a different file.

Column 15 must contain D, T, or E to indicate whether the record is to be
written at detail, total, or exception output time of the RPG program cycle.

Columns 16 through 18 must contain DEL to indicate that the record is to
be deleted.

Columns 23 through 31 can contain output indicators.

Columns 32 through 37 can contain an EXCPT name if column 15 contains
E.

Records are not physically removed from a file when they are deleted.
Instead, deleted records are filled with hexadecimal FFs. That is, all the
bits for every character in the deleted record are set on.

Updating Consecutively

F
Filename

Line

Fae Type

You can update records in a sequential file consecutively. If the file is a
primary or secondary file (P or Sin column 16 of the file description
specifications), the program reads a record from the file at input time in the
RPG program cycle, and the program writes a record to update the file
during detail output or exception output time in the program cycle. If the
file is a demand file (D in column 16), the program reads a record when a
READ operation occurs in the calculation specifications, and it writes a
record to update the file at detail output, total output, or exception output
time in the program cycle.

Code the file description specifications as shown below:

Mode of Processing

File Dnignation Length of Kev Field or
of Record Address Field

Extent Exit
for DAM

File Addition/Unordert

Number of Tracks
for Cylinder Overt!<

End of File

Sequence Device
File Formet

Symbolic
Device

Name of
Label Exit

Storage Index

Column 15 must contain U to indicate that the file is an update file.

Entries in the other columns are the same as those for reading
consecutively.

Number of Exie

Tope
Rewind

File
O:>ndltl
U1-U8,

z UC

~ ~

Example of Updating and Deleting Records

Sometimes you want to update the records in your customer master file.
The transaction file contains two input record types. One type (those with
Din column 1) identifies records to be deleted from the master file. The
other type (those with 3 in column 1) contains information needed to update
the master file. Figure 5-3 shows how to code the RPG specifications to
update records and delete records from the master file.

Chapter 5. Using a DISK File 5-15

F
~

Filename

Line

File Type Mode of Proce11ing

File Dnign1tior. Length of Key Field or

End of File
of Record Address Field

S.,-quence
Record Address Type ~

Type of File
File Format N Organization or ~

u. ~ ~ Additional Area c

Device
Symbolic
Device

Name of
Label Exit

Extent Exit
for DAM

Storage Index

Filt Addition/Unordered

Number of Tr1Ck1
for Cylinder Overflow

Number of Extents

Tape

~
O>ndition

g @ ._?~ ~:. ~:~ <:._" ~ o"T:::~~;,;'1 I
~~ 0 ~ a:: -x Starting w
Q_ .. ~ w -"1-._~~--'-~~~-'-~-'-~~"_._~_,_~..._,,Lo~o...i~•~io~n_,_~

Continuation Lines <:
~

~6':!:-
External Record Name Option Entry "' J 4 s s 1 a 9 · 10 11 12 13 14 1s 1& 11 1a ts 20 21 22 23 24 25 26 21 2e 29 30 J1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4& 47 48 49 so s1 s2 sJ 54 ss ss s1 se 59 60 s1 s2 sJ 64 es 66 a1 68 es 10 11 n 13 74

0 2 F TIRIA INIS I IP ~F lql6 lql6 DI ISM
0 a FM!Als!IIEIF; Is IAIFi 1~5' tl~.ci ~rslK
o 4 F

I
1--

Line

Filename
or

Record Name

~ External Field Name

"" ~ Record Identification Codes
~ -
j w I.I) r ~ 1 2 3 From To §

~ :) ~ ~ ~ 1---~----1 ~

Field Location

=. 5 ~: _ !i v _ ~ ~a: Data Structure

Dilta 0 R ~ j] Position ~ ~ ~ Position ~ ~ = Position ~ ~ J j ~1--0c-c-,.-,-r----lJ
St~~~~re ~fa~ ~ () Q ~ U cS o o IJ) Q. nTimes Length

RPG
Field Name

·~ ..
a:

3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 :18 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4b 47 48 49 50 51 52 53 54 55 56 67 58 59 60 61 62 63 64

0 , 1tr1a11s
o 2 I ln11.J
o 3 I
0 4 I ~ iJ lC. ~l~ 11~11
0 6

0 7 I 2~ LI
11M 111E1~ INfS r.it~ ll lclc I~ lclM 112~1N1lc1D o B

0 9

1 0 I ~ ir.IL 11511 ~'1"
1 1 I

1 2 I iZlli le IRIL 11 IP'
1 3 I
1 4 I J91112~AIY
1 5 I
1 6 I l1 ~-il2 iA

Field
Indicators

Zero
Plus Minus or

Blank

65 86 87 68 69 70 71 72 73 74

~'-+-1-+--+-I-l--l--l-+-+-+-+-+--+-+-1-1f-l--+ -- -++~ - t--l--1-t-+-+-+-+-~-1--1--1-+-+-+--t-1-+-+-++-+--t-1-I

Figure 5-3 (Part 1 of 2). Updating and Deleting Records in a Sequential File

5-16

c !I
Indicators Result Field Atwldng

lndlc1tors

I-- ~

Line
l~
H

3 •• e 7

0 1 le
0 2 e
0 3 lq
0 • e
0 5 e
0 6 e
0 7 e
0 8 e
0 9 e
1 0 e

Arlthmtttc :! ~ PIUI J:Mlnu.!L Zero
,f u Com-Factor 2 Comment• Fector1 Operation

Name Length ,. ~ 1 >W <W ·2
X ~ 1S ·~ ;; Lookup(Foctor 2)1s
Z i z c5 :c High Low F.qual
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ~ 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 46 47 4S 43 50 51 62 53 54 55 56 57 58 59 60 61 62 63 64 65 68 67 68 69 70 71 72 7:

~ WoiiR lI ~ 2
ll !G

p

[ll I'S
Ir

I~[l
IA

I\

Indicator 01 is on for an
input record which deletes
a disk record. Indicator
21 is set for use during
update of the MASTER
file.

l 11TTTTTTTTTTT
1 1 lell ~ 11

Set off indicator for next
cycle. 1 2 e ~

1 3 e l.i Le IE
1 • le [i IJ
1 6 le
1 8 e
1 7 le
1 B ~
1 g le
2 0 e

0
...

~j Space Skip Output Indicators_.
e~

Filename :r " :L 2. i!. -~ e " g_,; ~~ ~ or
~~ !¥.-Line

~
Record Name

~ !-!!. * ~ A .,
~$;- ~ 0 0

z z
3 • 5 • 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 25 26 27 28 29 30 3

0 1 0 ilStI IR II lijj_-:1
0 2 fc:i
0 3 lo
0 • lq
0 5 iq
0 6 0 ul&I M~ ~
0 7 ~

Field Name
or

EXCPT Name

"AUTO

1323334353637

Ir IAIC I~

f ~IY
~: !1.1.
Hie\

[U'"' Ir

I llll::ltl l JJlllllllllll
J..J..J.. J. J. I I I I I 11111 I

The values in the MASTER
file are updated by totals

Clear accumulator fields for t- accumulated from trans-
next cycle. t- action records.

l JJIJJIJJJJill

~
Commas

Zero Balances
No Sign CR - X =Remove

to Print Plus Sign 5-9.
Y==Date User Yes y., 1 A J Field Edit

Defined Yes No 2 B K Z"' Zero
No Yes 3 c L Suppress a: Position

g O; No No • D M

85
;n

"' Output ::i
'6 ~ Record ai Constant or Edit Word w., ii:.

' 2 3 • 5 6 7 8 g 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24

38 39 40 41 42 43 ~~~~~~~M~~~~~~~~~~~~M~~~M~ro 71 72 73

L'\I~
lql
lq~

11121-:i

Figure 5-3 (Part 2 of 2). Updating and Deleting Records in a Sequential File

Chapter 5. Using a DISK File 5-17

Updating Randomly by Relative Record Number

F
Filename

5-18

File Type

You can update records in a sequential file randomly by relative record
number. The file is defined as a chained file (C in column 16 of the file
description specifications). This means that the program reads a record
from the file when a CHAIN operation occurs in the calculation
specifications, and it writes a record to update the file during detail output,
total output, or exception output time in the RPG program cycle.

Code the file description specifications as shown below:

Mode of Proc111ing Fiie Addltlan/Unordlrtd

File Dnign1tion Length of Kev Fletd or
of Record Addreu Field

Extent Exit Number of Tr1Ck1
for DAM for Cyli- Ovtrtlow

End of Fiie
Record Address Type

Sequence Device
Symbolic
Device

Name of
Label Exit

Column 15 must contain U to indicate that the file is an update file.

Numbtr of ExttnU

Entries in the other columns are the same as those for reading randomly by
relative record number.

Updating Randomly by Relative Record Number and/or Consecutively

You can update records in a sequential file randomly by relative record
number and/or consecutively. That is, the file is defined as a
full-procedural file (F in column 16 of the file description specifications).
The record to be updated can be read either randomly by relative record
number with a CHAIN operation or consecutively with a READ or READP
operation. The record cannot be read consecutively with a READE
operation, because the READE operation cannot read by relative record
number. The output operation to update the record can occur during detail
output, total output, or exception output time of the RPG program cycle.

Code the file description specifications as shown below:

--~-----~-------~--·----··-·""--~--

F
Filename

Line

File Type Mode of Processmg

rn-o.,;,-n,.t;on------i

End of File

length of Key Field or
of Record Address Field

Record Address Type ..,..1

w Device
Symbolic
Device

Name of
Label Exit

Extent Exit
for DAM

Storage Index

Number of T racl

for Cylinder Ove

Number of E

T•oe
Rewin

::>
Entry «

Column 15 must contain U to indicate that the file is an update file.

File
Com
U1-l

~ UC
::>
i<

Entries in the other columns are the same as those for reading randomly by
relative record number and/or consecutively.

Chapter 5. Using a DISK File 5-19

Updating Randomly by Address Output (Addrout) File

F
Filename

Line

5-20

file Type

You can update records in a sequential file processed by an address output
(addrout) file. The sequential file can be a primary, secondary, or
full-procedural file (P, S, or F in column 16 of the file description
specifications). If the file is a primary or secondary file, the program reads
a record at input time of the RPG program cycle, and it writes a record to
update the file at detail output or exception output time of the program
cycle. If the file is a full-procedural file, the program reads a record when
the READ operation occurs in the calculation specifications, and it writes a
record to update the file at detail output, total output, or exception output
time of the program cycle.

Code the file description specifications as shown below:

Mode of Processing

File Designation Length of Key Fietd or

of Record Address Field ~
Extent Exit
for DAM

File Addition/Unordered

Number of Tracks

End of File
tor Cylinder Overflow

Record Address Type ~ Symbolic in
Name of
Label Exit

Number of Extents
Sequence w Device Device] T•oe

.:l Storage Index Rewind

Column 15 must contain U to indicate that the file is an update file.

Entries in the other columns are the same as those for reading randomly by
address output file.

Entries on the file description specifications for the address output file and
on the extension specifications are the same as those for reading randomly
by address output file.

File
C.Ondition
U1-U8,
UC

Adding Records to a Sequential File

After a file is created, you can add records to it in either of two ways:

• At the end of records in the file

• Between records in the file

Adding Records at the End of a File

F

Filename

Line

0
1---

~
Filename

;: or

Une

~
Record Name

3 4 5 6 7 8 9 10 11 12 13

O[i]" 0 H111r ~FT 0

File Type

To add records at the end of a sequential file, code the file description and
output specifications as shown below:

Mode of Processing

Fite Designation length of Key Field or Extent Exit
for DAM

File Addition/Unordered

Number of Tracks
of Record Address Field

End of File
for Cylinder Overflow ~ z

"' ~i Space

CJ --~
:i: "

- "' JJ ~J;
~~

!-?-ifo A

~
A N D

Record Address Type -1

'"
Symbolic tn

Name of
Label Exit

Number of Extent
Sequence

Device

~
.12
~

Device ~
j Storage /nde'll.

On the file description specifications, all entries except column 66 are the
same as those for creating a sequential file. The A in column 66 indicates
that you will add records to the file described on this line.

Skip Output Indicators

~
Commas

Zero Balances
No Sign CR

X = Aem6'Ve

Field Name to Print
-

Plus Sign

Y =Date
5 9"'

or User

Jd A!d
v .. y,. 1 A J Field Edit EXCPT Name y,. No 2 B K Defined

Z =Zero
No y,. 3 c L Suppress a: Position

~~ m No No 4 D M
.!' °' <(u u Output

~

0 0 0 •AUTO ~ ~ Record w Constant or Edit Word
z z z 0: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Tape
Rewind

File
Conditio1
U1-U8,
UC

14 15 16 17 18 19 20 21 22 23 24 25 26 :n 2fi 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 •••n•~~~UaM~~n~~-ITT~~M~~E~~ro 71 72 13 74

IA:

T 1 ±±111 J_JJ I ! i-ilJJ_ llll l~ l 1l 1JJJT11 T1T

On the output specifications, columns 7 through 14 must contain the name
of the file if this is the first record on the output specifications or if the
previous record on the output specifications is for a different file.

Column 15 must contain H (heading), D (detail), T (total), or E (exception)
to indicate the type of record to be written.

Columns 16 through 18 must contain ADD to indicate that the fields defined
on the following lines form the record to be added to the file.

Columns 23 through 31 can contain conditioning indicators.

Columns 32 through 37 can contain an EXCPT name if column 15 contains
E.

Chapter 5. Using a DISK File 5-21

Example of Adding Records at the End of a File

F
1--

Filename

Line

File Type

As you get new customers, you want to add them to the sequential customer
file. you created in Figure 5-2, Example of Creating a Sequential File.
Because you assign customer numbers sequentially, you can add each new
customer record at the end of the records already in the file.

Figure 5-4 shows how to code the RPG specifications to add records at the
end of that sequential customer file.

Mode of Processing File Addition/Unordered

File Designation Length of Key Field or Extent Exit Number of Tracks
of Record Address Field ~ for DAM for Cylinder Overflow

Record Address Type ...1 ~ Name of Number of Extents

Sequence Type of File ~ Device ~=~:lie :8 Label Exit Tape

End of File

File Format ~ Organization or 8 .:l Storage Index ~
u.. ~ ii: Additional Area -~ file

:>
0 ug ~>~ Block Record ~ i:: Over.fl~ow Indicator I ~~:.on 1
~ ~ _: Length Length a:: ~ ~ ~~tFr:ld Jf Continuation Lines ~ UC---1

u.. ::i <:::::- Location ::> ::>
g ~ w ~ External Record Name K Option Entry C' ii:

3 4 5 6 7 8 It. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 38 37 3800 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 89 70 71 72 73 74

0 2 FI NIFII ~I !iP jqj~ jq ~ "Tl511<
0 3 F

o 4 F

I
1---

&
/?!:

1:-ii

Filename
or

Record Name

External Field Name

~-:c_~-a. Record Identification Codes - c i ~ ~ ·~
"' w en .ff~ 1 2 3 U From To .j· RPG - § -8 ~

Field Location
Indicators

Field

Line

~
'i :::i f ~ • ~ Field Name :5 J: £ ~ Zern = c5 ~ : t _ !! Iii ~ a: Data Structure ~ gi ! Ptus Minus or

1---:-----r-r-l-r-I_! ~ ; Position ~ f2 ~ Position !:. e ~ Position ~ e ~ ~ ~] g j :~ "C Blank
Doita OR e-2~ QN'° QN2 'QN2Mm Occurs ~ § ni2 'ii

3 4 5 •
' 8

Structure ~ .i_ 8- ~ z U 0 z U u z U u ch ii: nTimes Length Ci u :Eu ii:

9Na1~e11 12 13 14 15 16 11 ta 19 20 21 22 23 24 25 26 21 }2s 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 49 50 51 52 53 54 ss 56 57 58 59 60 61 ~ 63 64 BS 66 67 68 69 70 71 72 73 74

0 1 III
0 2 I lr.JL llilH.
0 3 I
0 4 I
0 5 I ~11111~
0 6 I INIA~jf
0 7 I
0 8 I
0 9 I l
1 0 I 1 rl IST 1-

1 1 I
1 2 I r~
1 3 I

I-

Figure 5-4 (Part 1 of 2). Adding Records at the End of a Sequential File

5-22

/

0 ~
~~ Space Skip Output Indicators

~
Commas

Zero Balances
No Sign CR

X"' Remove -
~ t:: ~ Field Name to Print Plus Sign

5 ·9 • o- Y"' Date -.. or User
Filename

:c •

~i A~d A!d
y., y., 1 A J Field Edit

8. &~ EXCPT Name v .. No 2 B K Defined
{:: or Z =Zero

~~ ~ a: Position No Yos 3 c L Suppress
Line

&
Record Name

j ~ O; No No 4 D M fE. * ~ 85
;n

"' A <'. Output :J

~ ~ ~ 0 •AUTO ~~ Record O; Constant or Edit Word
z ;;:

1
2 '

4 5 • 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

' 4
5 • 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40414243 u~~u~~m~m~M~~E~~~~~~~~MnM~ro 11 12 n

0 1 0 ll. In IIiA [) f:iilQ
0 2 10 \ c l1' -
0 3 0 Ir. ~ I~ ra
0 4 10 '~I IA lit.I ra
0 5 lq ~,., 111a
0 6 0 ICI Jlt_ 15
0 7 0 INIA Mr- l:~'i
0 8 0 IAln rlR 15111:
0 9 0 ~I Jl~[I ~.:
1 0 lq ~ >< ILl!M ~
1 1 [q IR1r-l5IIJ 1111s:
1 2 [q I I_ -·I-+·+ •···-++ l-+ ' t·· !-· -i--+ ;.+- -

Figure 5-4 (Part 2 of 2). Adding Records at the End of a Sequential File

Chapter 5. Using a DISK File 5-23

Adding Records between Records in a File

F
Filename

Line

3 4 5

0 2

0 3

0 4

5-24

File Type

You can also add records between records in a sequential file that is
processed randomly by relative record number. For example, you may have
to add new records between existing records in order to keep the file in a
particular order when the control fields of the new records are not higher
in sequence than the control fields· of records already in the file. Such a
file must be one that allows records to be deleted. That is, when the file
was created, the DFILE-YES parameter must have been specified on the
control language FILE statement. For information about the FILE
statement, see the System Reference manual.

To add records between records in a sequential file, code the unshaded
columns of the file description specifications shown below:

Mode of Processing File Additlon/UnOfdtrtd

Length of Key Field or Extent Exit Number of Trtcks
for DAM

File Designation
of Record Address Field ~ for Cylinder Overflow z End of File

Sequence
Record Address Type ...1

w Symbolic Ul Name of Number of Extenb
Label Exit

Device ! Tape

Storage Index Rewind

Device
File Format

~ w~--.---l

C ~ Block Record
~ ~ Length Length a:
() ~ :J
~w~~~:.l.--~--,,---..L...L--,-.L-L=...--1...""""""'--.Y

In the first line of the file description specifications:

• Columns 7 through 14 must contain the name of the file.

• Column 15 must contain I or U to identify the file as an input file or an
update file.

• Column 16 must contain C or F to identify the file as a chained or
full-procedural file.

• Column 19 must contain F or blank to indicate that all records in the
file have the same length.

• Columns 20 through 23 must contain the block length or blanks.

• Columns 24 through 27 must contain the record length or blanks.

• Column 28 must contain R if column 16 contains C.

• Columns 40 through 43 must contain DISK.

• Column 66 must contain A to indicate that you will add records to the
file.

• Columns 71 and 72 can contain an external indicator, Ul through US.

0
1-----

Line

In the second line:

• Column 53 must contain K to indicate that this line is a continuation
line that provides additional information about the file.

• Columns 54 through 58 must contain RECNO, which stands for relative
record number.

• Columns 60 through 65 must contain the name of the field into which
the relative record is placed. The field must be defined on either the
input specifications or the calculation specifications as a 7-position
numeric field with zero decimal positions. That field is called the
RECNO field.

@ ~ Space Skip Output Indicators ~ Commas Zero Balances No Sign CR - X • Remove
t: u. Field Name toPrlnt PlusS1gn 5 _9 •

.e ~ I I or Yes Yes 1 A J y .. ~l~~~ Edit User
Filename !. .g e I . I EXCPT Name Yes No 2 B K z .. Zero Defined

or ~~ ~ ! And And a: Pos1t1on No Yes 3 C L Suppress
Record Name I-~ !-.-........+-,-.,..+-..,.....,.-+-----l f6 (n in No No 4 D M

~~ ~ 85output ~
~ ~ ~ ~ *AUTO ~ ~ Record ~ . 1 2 3 4 s 6 1 a C~n~~a~~ ~~ ~~ 1~:1~r~6 17 18 19 20 21 22 23 24
A N D

J 4 5 6 1 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 7•

· \jJt@mr:rnJ'.;\ttrnrn
I l lll ll ll llll lJ J J1IJJJJJJ JJJ

On the output specifications for the record or records to be added, columns
7 through 14 must contain the name of the output file.

Column 15 can contain D, T, or E, to indicate whether the record is to be
written at detail, total, or exception output time of the RPG program cycle.

Columns 16 through 18 must contain ADD to indicate that the fields defined
in the following lines form the record or records to be added to the file.

Columns 23 through 31 can contain output indicators.

Columns 32 through 37 can contain an EXCPT name if column 15 of the
output specifications contains E.

The RECNO field identifies the position in the file where the output record
is to be added. (That record is the one described on the output specification
that contains ADD in columns 16 through 18.) You must place into the
RECNO field the relative record number of the record to be added to the
file. It must be the relative record number of a deleted record. One way to
place the relative record number into the RECNO field is to code the
following sequence of operations in the calculation specifications:

1. Code a CHAIN operation with the relative record number in factor 1,
the name of the chained file in factor 2, and a resulting indicator in
columns 54 and 55 that turns on when a record is not found.

2. Code a Z-ADD operation with the same indicator that you used for the
CHAIN operation coded as a conditioning indicator (in columns 10 and
11, 13 and 14, or 16 and 17), the relative record number in factor 2, and
the RECNO field in the result field.

Chapter 5. Using a DISK File 5-25

When a CHAIN operation (for a chained or full-procedural file) or a READ,
READE, or READP operation (for a full-procedural file) reads a nondeleted
record, data management places into the RECNO field the relative record
number of the record read.

When the program tries to add a record to a file, if the relative record
number is not the number of a deleted record, the program stops and error
message RPG-9070, OUTPUT TO A NONDELETED RECORD, is displayed.
If you respond to the message by choosing option 1, the program continues
running but it does not add the record to the file.

You cannot use the REC NO field to add records at the end of a sequential
file. For example, if a file contains relative record numbers 1 through 5 and
7 through 10, you can add a record at relative record number 6 but not at
relative record number 11. If you try to add a record at the end of a
sequential file by using a RECNO field, error message RPG-9068,
RELATIVE RECORD NUMBER BEYOND EXTENT FOR FILE, is
displayed.

Example of Adding Records between Records in a File

5-26

Figure 5-5 shows how to code the RPG specifications to add records
between records in a sequential file.

F
file Type Mode of Processmg File Addition/Unordere<

I--
File Designation Length of Key Field or

of Record Address Field <!
Extent Exit Number of Tracks
for DAM for Cylinder Overf101

~ End of File
Name of Number of Exten Symbolic ill Record Address Type ...1

Type of File Ui Sequence Filename Label Exit Device Device ~ Tape

!I Storage Index ~ File
ConditiCJ

Continuation Lines

~
~~~ 

K Option Entry ~ 

File Format ~ Organizatton or ~ 
~ ~~--~-----< ~ Additional Area & 
e :::E Block Record ~ t 011erEflow Indicator .ii 

~ ~~ 
0 

... ~ Lengttl Length =::: ,e Key field ~ 
-:: &IJ ~ ~~ ~:!!i!, w 

g ~ w :CC External Record Name !------------------.-! 

Line 

!I. 
~ 
E 

.e 
3 • •• 1 8 •· 10 " 12 13 1c 1s ta 11 1a ta 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 36 38 37 38 39 40 41 42 •3 44 46 4& 47 4B 49 so 51 s2 53 54 ss 56 51 58 59 60 &1 &2 63 64 es 66 a1 ea ea 10 11 12 13 

o 4 F 

o 5 F 

I 
1--

Field External Field Name 

~ Field Location Indicators 
~ ] Record Identification Codes ~ _§ 1-~~·~--1 

Reco: Name j w gi !:3 T -' "' ~ ! ~ ~ ~ ~ ~ From ° Fiel:piame _,~ ! ~ ~ 
.- ;:: 6 ~ : ao t ~ a: Data Structure S ~ ~ Plus Minus !;ro 
~ 1--...,,----r--r-+-r-lj ; ~ Position ~ !2 Position ~ f2 ~ Position ~ f2 ~ j 2 g "fi § "O Blank 

Str~~~re ~+a~~ i ~ ~ 6 ~ D 6 ~ ~ 6 a~ ~;j~:s length 8 ~ 6 ~ 

Line 

Filename 

3 4 5 6 1 s 9N81~e11 12 13 14 15 16 11 1s 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33134 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 10 71 72 73 74 

0 1 IITINIPluJT INls lab 1.1 lclT 
0 2 I I~ 
0 3 

0 4 I ltlNll:lr 
0 5 IMAl51I ~ 
o s I 

c 
1--

Indicators Result Field Resulting 

~ .I .I ~:::~=: 9_·~ ! .g % Plu~Min~ Zero 
J ~ And And Factor 1 Operation Factor 2 ·a t: Compare 

Line ~!I< Name Length i::a.. :!. 1>&1<!J.1=2 
~ g ~ 1 ! Lookup(Factor 2)1s 

Comments 

'285'~ ~ ~ S~H1{#llowF.qual 
3 4 5 6 1 a 9 10 11 12 13 14 15 1& 11 18 19 20 21 22 23 24 25 26 21 ~8 29 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 47 48 49 so 51 52 53 54 55 56 51 58 59 50 51 62 SJ 64 65 ee 67 ea ea 10 11 12 13 14 

0 1 

0 2 c 
0 3 c 
0 4 c 

0 
I--

! 
?: 

Line ! 

l~f IIIII~ IN ~IJ.iAIIIA,1~15.lIJE. It~ 
IRlRIN 

Vllt It II: lrJxlclPlJ t; 

Filename 
or 

Record Name 

~ : Space Skip Output Indicators [F:5l Commas Zero Balances No Sign CR - X =Remove 
r::: ! Field Name toPrint PlusSign S-Q= 
c ~ Y=Oate :C ... I T or Yes Yes 1 A J User 
i~ ~ ~ A~d A~d EXCPT Name Yes No 2 B K z = ~~~d Edit Defined 

I-~ i» ~ Pos1t1on ~~ ~:s ! g ~ Suppress 

Wo j ~ ~5 ~utput ~ 
o R zo 0 ZO •AUTO =5 ~ Record iii Constant or Edit Word 
~ z LU al ii:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

3456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 83 64 65 68 67 68 69 70 71 72 73 74 

0 1 O~EIR IA 1,. 

0 2 lo ' IM • 
0 3 0 

-·r- +·-

Figure 5-5. Adding Records between Records in a Sequential File 

Chapter 5. Using a DISK File 5-27 



DIRECT FILES 

Relative Record Number1 

( 1) (2) 

I 

A direct file is one in which records are assigned specific record locations 
on disk. Figure 5-6 shows how direct files are organized. Each record is 
assigned a specific location in the file, regardless of the order in which it is 
put in the file. If the file allows records to be deleted (that is, if the control 
language FILE statement used the DFILE-YES parameter when the file was 
created), unused records in the file contain hexadecimal FFs. If the file 
does not allow deletions, unused records contain blanks. 

Direct file organization allows your program to find and read any record in 
the file directly without first checking other records or searching an index. 
Therefore, direct file organization has advantages over sequential 
organization. 

The location assigned to a record is called the relative record number. The 
relative record number is not a disk address; rather, it is a number that 
states the position of a record in a file. For example, the fifth record in a 
file has relative record number 5. 

(6) 

(2) 

(4) 

(3) (4) 

(3) 

(8) 

Records are stored on disk in the order 
indicated by the relative record numbers. 
Spaces are left in the file for missing 
records (in this case, records 5 and 7). 

(8) 

The.PrQgrammer usually .derives relative .record numbers from information. in the records. 

Figure 5-6. Organization of a Direct File 

5-28 



Creating a Direct File That Does Not Allow Deletions 

F 
Filename 

Une 

File Type 

To create a direct file that does not allow records to be deleted, you must 
define a DISK file as a chained output file and then write records to the 
file. Before any output is written to the file, the disk space required for the 
file is automatically filled with blanks. To write a record to the file, you 
must first determine what the relative record number of that record will be 
in the file to be created. Then use that relative record number as factor 1 
in a CHAIN operation; as factor 2, use the name of the file to be created. 
When the CHAIN operation occurs, it reads the blank record at the 
specified relative record number. When the output operation occurs, the 
record is written to the same relative record number. The output operation 
can occur during detail output, total output, or exception output time of the 
RPG program cycle. If the CHAIN operation tried to read a record that was 
past the end of the file but you write a record to the file anyway, the record 
overlays the record written during the previous output operation to this 
file. If no record is written to the relative record number in the direct file, 
the space reserved in the direct file for that record remains blank (see 
Figure 5-6). 

To create a direct file that does not allow deletions, code entries in the 
unshaded columns of the file description specifications shown below: 

Mode of Processing 

file Designation Length of Key Field or 
of Record Address Field ~ 

~ 

Extent Exit 
for DAM 

File Addition/Unorder 

Number of Tracks 
fOf Cylinder Overfl 

End of File 
Record Address Type 

Sequence Device 
Symbolic 
Device 

~ Name of 
... Label Exit 

~ Storage Index 

Tope 
Rewind 

File 
Condit 
U1·UB 

z UC 

Entry ~ ~ 

Columns 7 through 14 must contain the name of the file. 

Column 15 must contain 0 to indicate that the file is an output file, because 
the file is created when it is first written. 

Column 16 must contain C to indicate that the file is a chained file. You 
must use the CHAIN operation in the calculation specifications to identify 
the relative record number of each record to be written to the file. 

Column 19 must contain F or blank to indicate that all records in the file 
have the same length. 

Columns 20 through 23 must contain the block length or blanks. For files 
processed randomly, the block length should be the same as the record 
length. If you leave columns 20 through 23 blank, the block length is the 
same as the record length. 

Columns 24 through 27 must contain the length of each record. The 
maximum length of a record is 4096. 

Chapter 5. Using a DISK File 5-29 



Column 28 must contain R to indicate that the file is to be processed 
randomly. 

Columns 40 through 43 must contain DISK. 

Colq.mns 71 and 72 can contain an external indicator, Ul through U8, to 
condition the use of this file. 

Example of Creating a Direct File That Does Not Allow Deletions 

5-30 

In Figure 5-7, the direct file being created, CUSTFILE, is defined on the file 
description specifications as a chained output file (0 and C in columns 15 
and 16). The CHAIN operation on the calculation specifications reads the 
relative record number from the CUSNO field of the input file RECIN, and 
writes a record from RECIN to the corresponding relative record number in 
the output file CUSTFILE. Indicator 04 turns on if the record is not found. 



F 
r--

Line 

K 
;:: 

~ 
3 • 5 • 7 8 

Filename 

File Type 

File Designation 

End of File 

Sequence 

Mode of Processing 

Length of Key Field Of 

of Record Address Field 

Record Address Type -' 
~------<ill 

Type of File 
File Format N Orpniution or ~ 

u.. ~ ~ Additional Area .~ 
~ f? -~>'2 Block Record ~ t: Overflow lndi~ator i 
~ o~ Length Length ~ e ~ ~ _, '.) <~ ~w g ~ w ~ i-;"-;;..&... ___ ._E_x_te_m_al_A ... eoo-'-•d_N_a_.me,__,'-'----'-=="-~ 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

Continuation lines 

Option Entry 

File Addition/Unorde 

Numbtr of Tr.cks 
for Cylinder Overt 

Number of Ext 
r;:;;;;-
~ 

Condi 
U1-UI 

i!: UC 

:> " < "' 
8. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3S 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 82 63 64 65 66 67 68 69 70 71 72 1 

0 2 F~ lllN [IE ~ b/fZ ~ lnl!Jc;I~ 

o 4 F 

~ 
Filename ~ -g 

Recore;; Name & g. ~ 1 2 3 From To ~ 
8. ~ i ~· ~ ~1---~~~+--~~~+---~~--1 y -
~ 2 6 ~: QI 41 iu Ji a:l--o-... -s-,'-'"-,,-,,-.--t~ 
~t---,0=-,-,.--,-.-0t-A""T'"-I! j i Position ~ ~ ~ Position ~ ~ ~ Position ~ e ~ j 21-°"-'"-"-~---tj 

Structure ~~ g ~ ~ () 6 ~ () 6 ~ ~ 6 a~ nTimes Length D 
Name 

I 
~ 

line 

External Field Name 
Field Location 

Record Identification Codes 

RPG 
Field Name 

c 
0 .. .. 
a: 
'2 
~ 
a: 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 :lO 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 

I rr1 
o 2 I IZI 
o 3 I 

o • I 
o s I 

o e I 

o 1 I 

o a I 

c ~-

9-iQ 

Indicators Result Field Re1ultlng 
Indicators 

And 

~ ! :'f 
Factor 1 Operation Factor 2 

:i ~ Plus Minus Zero 
!!l t: Compare Comments 

Arithmetic 

§ g es' ....,,_, ..... --...,..+-.-...-1 
if 8 5" 

Line Name Length .. ,..,...,....,,,.,.....,=,....,:i 
iii:S-1>21<21=2 
.§ ~ lookup( Factor 2)is 

~ ~ High Low F.qual 

0 
~ 

line 

Filename 
or 

Record Name 

-_'",_ ~ Space Skip Output Indicators [Sf Commas Zero Balances 
.... Field Name to Print No Sign CR -

X =Remove 
Plus Sign 

Y"' Date 
Field Edit 

K Z=Zero 
Suppress 

~ ~ T I or Yes Yes 
- <':S ~ ..... , ~ • 1 EXCPT Name 
~~-t ~ And And ~:s ~=s ~ 

L 

A 
5 -9 = 

User 
Defined 

I-~ .. gr~ ~nos1t1on No No 4 D M 

~ ~ ~ 8 5 Output ~ ~------~---~-~---~----< 
o R zO ... 0 •AUTO :6 ~ Record in Constant or Edit Word 
~ ~ z W CD Q:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

3456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 'l 

0 1 o 111511E.IJL IOHINIOJl&I 

bl12 I 
1 '~, 0 2 0 

0 3 0 

0 4 0 
t-IHrl-t--+-+-+-+-HH-+-t--+-+-+-·t-•1- t--t--+-+-+-t--H-t·-t--t- +- + · t-·· + + + ... · + -t-+-+--t-H-t-+-+-+-+-+-+-t-1-t-+-t--+-+-+-+-t-t-H-t-+-+-+-+-+-+ 

Figure 5-7. Creating a Direct File That Does Not Allow Deletions 

Chapter 5. Using a DISK File 5-31 



Creating a Direct File That Allows Deletions 

5-32 

To create a direct file that allowa records to be deleted, you must define a 
DISK file on the file description specifications as an output file to be 
processed randomly, and you must use the RECNO continuation line. Also, 
you must specify the DFILE-YES parameter on the control language FILE 
statement for the file. 

To write records to this output file, place into the RECNO field the relative 
record number of the record you want to write, and write data to that 
record during detail time, total time, or exception time of the RPG program 
cycle. This method of creating a direct file does not use a CHAIN operation 
to indicate the relative record number of the record to be written. 

Before any output is written to the direct file that allows deletions, the disk 
space required for the file is automatically filled with deleted records 
(hexadecimal FFs). The relative record number that you place in the 
RECNO field indicates where the output record is to be written to the 
direct file. The information in the output record is written over the deleted 
record, replacing the hexadecimal FFs with data. 

If a deleted record is not replaced with data, it remains in the file. A record 
can be added later at this relative record number (see Adding Records to a 
Direct File later in this chapter). A deleted record cannot be read; if a 
CHAIN operation chains to a deleted record, the indicator coded in 
columns 54 and 55 of the calculation specifications turns on to indicate that 
a record was not found at that relative record number. 

If the direct file contains a record with the same relative number as the 
record you are writing, error message RPG-9070, OUTPUT TO A 
NONDELETED RECORD, is displayed. If the person using the display 
station responds to the message with option 1, the program bypasses the 
duplicate record and continues processing. 

/ 



F 
Filename 

Line 

flit Type 

To create a direct file that allows deletions, code entries in the unshaded 
columns of the file description specifications shown below: 

Mode of Proc•~••nu 

Fllt Dnlgn1tlon Extent Exit 
for DAM 

End of Fiie 

Length of Key F ltld or 
of Record Addr111 f~tld 

Name of 
Lebel EKll 

Fll1 Addltlon/Unordtr1d 

Number of Tr1Ck1 
for Cyllndtr Overtlo~ 

Stqu1nce Device 
Symbolic 
Device 

Storage Ind•• 

Numblr of Extent 

Tape 
Rewind 

Filo 
Condltlo 
Ul 0 U8, 

! UC 

On the first line: 

• Columns 7 through 14 must contain the name of the file. 

• Column 15 must contain 0 to indicate that the file is an output file. 

• Column 19 must contain F or blank. 

• Columns 20 through 23 must contain the block length or blanks. 

• Columns 24 through 27 must contain the record length. 

• Column 28 must contain R to indicate that the file is to be processed 
randomly. 

• Columns 40 through 43 must contain DISK. 

• Columns 71 and 72 can contain an external indicator, Ul through US. 

On the second line: 

• Column 53 must contain K to indicate that this is a continuation line 
that provides additional information about the file being described. 

~ 

• Columns 54 through 58 must contain RECNO, which stands for relative 
record number. 

• Columns 60 through 65 must contain the name of the field that contains 
the relative record number. The field must be defined on either the 
input specifications or the calculation specifications as a 7-position 
numeric field with zero decimal positions. That field is called the 
RECNO field. 

Chapter 5. Using a DISK File 5-33 



Example of Creating a Direct File That Allows Deletions 

F 
1------i 

Filename 

Line 

In Figure 5-8, the direct file being created, CUSTFILE, is defined on the file 
description specifications as an output file that is processed randomly (0 
and R in columns 15 and 28). The file description continuation line 
indicates that CUSTNO, which is a field in the input file RECIN, contains 
the relative record number of the record to be written to the output file 
CUSTFILE. An output record is written for each record read from RECIN. 
No calculation specifications are required. 

File Type 

File Designation 

End of File 

Sequence 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type g 
Type of File 

File Format N Organization or ~ 
u.. ~ ~ Additional Area § 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

0 ~ ~ Block Record ~ ~ OverEflow Indicator '~ 
~ ~!'= C !!!._> Length Length a: ~ E! Key Field ~ Continuation Lines 
~ w :J <' ~ ~ac'!~i'~n w 

g 0:- w < External Record Name K Option Entry 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overllow 

Number of Extentl 

Tope 

~ File 
O:>ndition 
U1-U8, 

z UC r'--

~ 
3•••••swnguaffiIB17IB~~~n"~~~na~~~~"~~xv~~~M~~~~~"~~~~~~~~.~~~u~~Q~~~~~M~ronnn~ 

o 2 FR E1r1r N l ~ IFl 1~l'll m 1JSK 

O 4 F 

o & F 

I i· External Field Name Field 
Field Location 

Indicators 
t---i Filename 

l 
Record Identification Codes 

~ J or rl:l Is 
1 2 3 ~ -' 

!l 
Record Name w C/l p From To :~ RPG ~HI IC i ·:i ~ Field N3me ] .!! 11 i I': cs e ~ !!; 

~ ~~ Zero 
Lin• 

~ 
e e Data Structure 

] .~ l' Plus Minus or .! -;; 
1 

~c ~ Position z 0 hi Position ~o hi !! _. g ti § 
IC 

Position 

~ 
Blank 

~· ~ 
e .g -" . i§~ -" ~~~ Occurs ~ ii jfi Structure :i g ~<:;ti ~u n Times Length u 

Name 
3 4 • • 7 • 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21E 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 49 50 51 62 53 64 55 66 57 58 69 60 61 62 93 M .... 67 .. .. 70 

0 1 

0 2 

0 3 

0 4 

0 5 

0 6 

0 7 

0 8 

0 
~ 

IIRIE: 
I 
I 
I 

I 
I 
I 
I 

!l 
{:: 

IIN 

Filename 

Line ~ 

or 
Record Name 

INS oh ll ld1 
~ .cl/211':1 lI 
lq j-::; rk. l9TN 

~I&& l::ilq Ail"'I nfl1 
lif!Q 1i= J.11 1 
I~~ ll ZIA 

[2 ~a ~ 

-~ ~ ~ ~ Space Skip Output Indicators Commas Zero Balances No Sign CR _ X = Remo11e 

e: ~ F ield
0
;ame to Print y .. ~~:,Sign 

.;. ~ ~ J_ } EXCPT Name Yes Yes 1 A J Field Edit 
~f;- ~ ~ And And Yes No 2 B K Z=Zero 

~~< ~ ~ '1 ~ ~oslt1on ~~ ~:s ~ g ~ 
Wo ~ :f 85 Output a: 

o R zO ... 0 *AUTO .,,:~ ~ Record ....... g Constant or Edit Word 
~ ~ z w Iii" 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 

Suppress 

5.9 • 
Usor 
Defined 

71727374 

3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o ' olCluJSJ:ffi t: Im 
0 2 0 [I \ l,ll I 

0 3 0 

o • lo 
1-t-+-+-+-+-+-+-+-+-l-++-1-++-1-++-1-+++-+-·' - -1-+-1-

Figure 5-8. Creating a Direct File That Allows Deletions 

5-34 



Reading a Direct File 

After the direct file is created, you can read records from it when you want 
to display the information, create or update other files, or print a report. 
You can read records from a direct file in the following ways: 

• Consecutively 

• Randomly by relative record number 

• Randomly by relative record number and/or consecutively 

• Uandomly by address output (addrout) file 

Note: An alternative index file can also be created for a direct file to 
provide another method of reading the records in the file. For information 
about creating an alternative index file see Creating an Alternative Index 
File for an Indexed File later in this chapter. 

Reading Consecutively 

F 

Line 

Reading a direct file consecutively means reading the records in the order 
in which they occur in the file. That is, the first record in the file is read 
first, the second record is read second, and so on. If the file allows records 
to be deleted, the program does not i·ead deleted records; it skips them and 
reads the next record present. You read a direct file consecutively if you 
want to look at most or all of the records in the file. In this case, reading 
consecutively is much more efficient than reading randomly. 

To read a direct file consecutively, code entries in the unshaded columns of 
the file description specification shown below: 

... ----·--.------· 

Filename 

File Type Mode pf Prnce'>~·-.m-'-g ----t 
len.,;.th of Key held or 
o1 Recoid Addre~s Field 

Extent Exit 
for DAM 

End of File 

File Addition/Unordere 

Number of Tracks 
for Cylinder Overflo 

Sequence 
Device 

Symbolic 
Device 

Name of 
Label Exit 

Storage Index 

r,., 
Rewind 

File 
Conditit 
Ul~U8, 

z UC 

Columns 7 through 14 must contain the name of the file. 

Column 15 must contain I to indicate that the file is an input file. 

Column 16 must contain P, S, or D: 

3 
ii' 

• If you code P (primary) or S (secondary), the program reads a record at 
input time of the RPG program cycle. For an explanation of how 
primary and secondary files are read, see Chapter 11. 

Chapter 5. Using a DISK File 5-35 



• If you code D (demand), the program reads a record when a READ 
operation occurs in the calculation specifications. For information 
about the READ operation, see Chapter 28. 

Column 17 must contain E or blank if column 16 contains P or S. E 
indicates that all records from the file must be processed before the 
program can end. Blank indicates that the program can end before it 
processes all records from the file. 

Column 18 must contain A, D, or blank if column 16 contains P or S: 

• A indicates that the program checks that the records in the file are in 
ascending sequence. 

• D indicates that the program checks that the records are in descending 
sequence. 

• Blank means that the program does not check the record sequence. 

Column 19 must contain F or blank. 

Columns 20 through 23 must contain the block length or blanks. 

Columns 24 through 27 must contain the record length. 

Columns 40 through 43 must contain DISK. 

Columns 71 and 72 can contain an external indicator, Ul through US. 

Example of Reading Consecutively 

5-36 

Suppose you want to process a direct customer file, named CUSTFILE, to 
produce a monthly report. This report lists all customers that have placed 
no orders during the month. Sales personnel can use this report to plan 
follow-up calls. The file is in sequence by customer number, and the 
program checks every record. Therefore, the file is processed consecutively. 

Figure 5-9 shows how to code the specifications to read records 
consecutively from CUSTFILE to produce REPORTl, a list of recently 
inactive customers. The OR line on the input specifications causes the 
program to skip blank record locations, because record-identifying indicator 
03 on the OR line is not used elsewhere in the program. 



F 
t--

Filename 

Line 

!l 

File Type 

File Designation 

End of File 

Sequence 

Mode of Processing 

length of Key Field or 
of Record Address Field 

Record Address Type ..J 

w 
Type of File 

File Format N Organization or ~ 
w .-----.-----1 ~ Additional Area c 

~ i Block Record ~ ~ Overflow Indicator -~ 

File Addition/Unorder 

Extent Exit Number of Tracks 
'! for DAM for Cylinder Overfl l!! z Name of Number of Ext1 Symbolic in 

Label Exit r-;:;;;;-Device Device 

~ Storage Index ~ File 
Condit 
U1·UB 

~ ~ ii' - Length Length "' "' e I Kev F;eld I x 
=>lJ > ::J ~~ ~~~~nw 

Continuation Lines 
!" 

UC 

:;) 

~ K Option Entry < 
E 

& o ~ e~~~---~--~~-~~~-~~~~~ 

3 . • • ::::- ii: w <!'. 1----.,.,.-:---,E-:x,-to_,m-•l_R_e:-'co-'d:-::N-::'-me-::--o-:-----:---rl 
1 8 9. 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 27 28 :29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 7 

0 2 F 1lc;J[FII . £II Pl 12l'i~ 1112~ II51M 
0 3 Fl( It' it<IIl H F [1QJl1J 11~12 ~1 ieiRil'llf' R 
o 4 F 

External Field Name 
Field Location 

Line 

Record Identification Codes Filename ~ 

or :::i en"' ~ 

~ Record Name £ ~ ~- ~ ~1----1~~rl---2..-~.-1---3~~..---1~ From To g 

?: "2 c5 ~ : ~ "ii Data Structure ~ 
~l----,,---~..-t-..--1_8 g ; Position ~ ~ ~ Position ~ 2 ~ Position ~ 2 §] .20---~----<g 

Str~~~~re ~A ~N 1-::-0 z!jog_ ] ~ U 6 ~ ~ 6 ~ ~ 6 ~ ~ Occurs Length ~ 
Name .... n Times 

RPG 
Field Name 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 49 SO 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 

0 1 I~]L 
0 2 I 
0 3 I 
0 4 I 
0 5 I 
0 6 I 
0 7 I 
O B I 
0 9 I 
1 0 I 
1 1 I 
1 2 I 
1 3 I 
1 4 I 
1 s I 

U-1 1\15 

l 
An OR line with a record
identifying indicator not 
used elsewhere in the pro
gram causes unwanted 
records to be bypassed, 
including blank records. 

]l: rl ll Ill 

1~ l1 il~I_. in 

1ll'l 111 

Figure 5-9 (Part 1 of 2). Reading Records Consecutively from a Direct Customer File 

Chapter 5. Using a DISK File 5-37 



Indicators 

~ 
o - I J " i__:::;.::A•ith:::::.::;::....m•ti' 
~ .Q And And § :r: Plwi_lMin~i(Zern 

~ 5 ~ Factor 1 Operation Far.tor 2 ·~ i;; Compare 

t- 0 cr·i-.~-'~~4-~..--1 Name Length ~ ~ 1 >?_U <?1_1,. 2 

'~ 'g ~_,- ~ O O ~ ~ l~okup(Factor 2)is 
"'-- ;; ... z z. a :r: He~ low F.qual 

Comments 

3 4 5 6 a 9 10 11 12 13 14 15 1E H HI 19 20 21 22 23 24 25 26 21 j2s 29 30 31 32 3~ 34 35 36 :n 38 39 40 41 42 43 44 45 46 47 48 4.C! 50 51 52 53 54 56 56 51 58 59 60 6~ 62 63 64 65 66 67 68 69 70 71 72 13 74 

0 1 c 
0 2 c 
0 3 c 
0 4 c 
0 5 c 
0 5 c 

0 
I---

Line 

Filename 
or 

Record Name 

.~· ~ Spac!" Skip Output ! ndicators 

e ~1-.--1,__~-+--~-~---1 
i~.~ .~ :L l 

Fteld Name 
or 

EXCPT Name 

---- -..J'...... Commas I Zero ~alances No Sign CR _ X""' Remove 

! I I y,,.s Yes 1 A J Field Edit User 
d Yes No 2 B K Z =Zero Defmed 

r==- ,....,-""]./' !==~-;;;JI- to -~'"' I y = ~~.: S•gn 5. 9 = 

oc Posit!on No Yes 3 C L Suppress 

1-.~-1-~~-1-~~1-------I~ ~ ,n tr ~~- - ---~Ju ___ - _4 __ ~-L..-~~L-.. --1-----l 
8 0 OiJtput ::_1 • 

I-~~ ~ 
~~ ~ 

0 ~ 

~ z ~ 
0 
z *AUTO {; ~ Record ffi Constant or Edit Word 

w ro Ci:: 1 'J 3 4 s a 1 s g 10 11 12 13 14 1s 16 11 1s 19 20 21 22 23 24 

3456789 10 11 12 13 14 15 ia 11 1s rn 20121 22 23 24 25 25 21 -:s 29 3o 31 32 33 34 35 36 37 JS 39 40 41 42 43 44 45 46 47 48 49 50 s1 52 53 54 55 56 s1 sa 59 so 61 62 63 64 65 66 67 68 69 10 11 12 73 14 

0 1 

1-0+-2 l--+Q-l---l--+-l--l---l-+-lr'l'~C1--l-l--+-l-+-if-+-l""'r<'!'-t-+-l--l-+-+-+-t--- --- -
0 3 

0 4 

0 5 

0 6 

0 7 

0 8 

0 9 

1 0 

0 

0 

0 

0 

0 

0 

0 

1 1 0 

-1-. 

"[q q ' TtlI ~ I 

, 2 o "' 1lc::l1 i" T~ 

, • o IC Tl> lslTui ~ 

Figure 5-9 (Part 2 of 2). Reading Records Consecutively from a Direct Customer File 

5-38 



Reading Randomly by Relative Record Number 

F 
Filename 

Line 

File Type 

Reading a direct file randomly by relative record number means reading 
only those records that you specifically identify by their position relative to 
the beginning of the file. To read those records, you must use a CHAIN 
operation in the calculation specifications. Factor 1 of the CHAIN 
operation must contain the relative record number itself or the name of the 
field, table, or indexed array that contains the relative record number. For 
more information about the CHAIN operation, see Chapter 28. 

To read a direct file randomly by relative record number, code entries in 
the unshaded columns of the file description specifications shown below: 

Mode of Processing 

file Designation Length of Key Field or Extent Exit 
for DAM 

File Addition/Unorden 

Number of Tracks 
for Cylinder Overflc 

End of File 
of Record Address Field 

Record Address Type ..J 
Sequence w Device 

Symbolic 
Device 

Name of 
Label Exit 

Columns 7 through 14 must contain the name of the file. 

Storage Index 

Column 15 must contain I to indicate that the file is an input file. 

Column 16 must contain C to indicate that the file is a chained file. To 
read this file, you must code a CHAIN operation in the calculation 
specifications. 

Column 19 must contain F or blank. 

Columns 20 through 23 must contain the block length or blanks. 

Columns 24 through 27 must contain the record length. 

Column 28 must contain R to indicate that the file is processed randomly. 

Columns 40 through 43 must contain DISK. 

Columns 71 and 72 can contain an external indicator, Ul through U8. 

Tape 
Rewind 

File 
Condit1 
U1·U8, 

Z UC 

~ 
a: 

Chapter 5. Using a DISK File 5-39 



Example of Reading Randomly by Relative Record Number 

1-1 

13 

, 11111 1, 11 
1 2 3 4 & 8 7 8 9 012345 8 7 8 9 

1 ll 
2 

3 11\ 

In the Example o{Reading Consecutively, we showed how to process the 
direct customer file CUSTFILE consecutively. Now suppose that you want 
to read records from that file randomly. You want to make inquiries each 
day about customer accounts whose records have record identification code 
I in position 1, followed by the customer account number (CSTMER). 

The program reads an input record (the customer account number) from the 
primary input file, INFILE. The program uses the customer account 
number as the relative record number to chain to CUSTFILE. If the 
program finds a record in CUSTFILE that has the same customer account 
number as the record in INFILE, the computer prints sales and accounts 
receivable information for that customer. If the program does not find a 
record in CUSTFILE that matches the customer account number, the 
message RECORD NOT FOUND--INVALID RECORD NUMBER is printed 
at run time. 

Figure 5-10 shows the printer output for this example. Figure 5-11 shows 
how to code the specifications for this example. 

2 2 2 2 2 2 2 2 2 2 33333333334444444444 6 6 6 5 6 5 6 15 6 & ••• ••• e ea e 1 777 77 7 7 7 7 8 8 888888 a a ass 981818 
0 , 2 3 4 11 8 7 B 9 01234517890123458788 Q, 2 3 4 58788 0' 2 3 4. 8 7 8' 0 ' 2 3 4. 878901 2 3 4 II 8 7 8 8 0 , 2 341878 

~ ~ 14' rt ii:: ic 1- ic E f IA v 
bj () ~ ~ 

.~ rfl ~ ' IA'll y n if 
5 

6 
I 

CUSTOMER ACTIVITY SALESMAN CREDIT LAST ORDER LAST PAY SLS THIS PER SLS LAST PER TOTAL A/R 

3119 A 105 01 4/17/83 4/01/83 360.00 239.50 360.00 
6678 RECORD NOT FOUND--INVALID RECORD NUMBER 
1703 I 35 03 11/19/82 12/01/82 .OO .OO .OO 

Figure 5-10. Printer Output from Random Inquiries into a Direct Customer File 

5-40 

, 
• 0 
• 0 

/ 



F 
1----i 

Line 

3 • 5 

0 2 

0 3 

0 4 

filename 

& 
~ 
~ 
of 

Fill Type Modi of Proc111ing 

Fl\1 D11lgn1tlon L1ngth of K1v Field or 

End of Fiii 
of Record Addrtu Field 

Sequence 
Record Addreu Type ~ 

Type of Fil• 
File Format N Organiutk>n or ~ 

w 5 Additional Area c a e,. Block (C' 0 fl I d. .!2 
0 j:::: ..._ Record ~ t: ver_r=f]ow n 1cator ~ 
g :ua::: ~ Length Length er. .::::. Q Kay Field X 
_, - :l ~~ ~~~7!w g ~ w ~ l'"""'----"'-E-x-to-m-al_R.._aco_.__rd-N-a-'me-"~-_,_=="--._, 

Symbolic 
Device Device 

File Addltlon/Unordtrtc 

O! 
Extent Exit Number of Track• 

I!! 
for DAM for Cyllndlr Ov1rflo1 

z Name of Numblr of Eicten ()! 
Label Exit ~ ~ Storage Index ~ File 

Condltici 
Ut-U8, 

Continuation Lines 

" 
UC,.-'-

:> 2 
K Option Entry '1 a: 

• 7 8 .. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 12 73 

F[rt II 
F~ 15-1 
F KIINI 

r-1 [JP I- (qj1, J96J IIlC:.1< The direct file is defined as a chained I~ 
I li::[rl r: ~Iii&: ~t< IIIS ~ 
ILIJ:n F llQOJ um MKIN[ ~ input file to be retrieved randomly. 1-t-+-

o 5 F 

iii± ii±±± ii±ii l i o 6 F 

Filename g ~ 
External Field Name 

Record Identification Codes 
Field Location 

& Recor".: Name } ~ ~ !~t----1.....,,....,-t---2..-..-r-1---3...,....,....--1ij'. From To g 
~ = 0...:: .i: ... ~ i---~----1~ 
E w a.> t ij t ~ Data Structure -
~t---0,,.,-,.--.r--r-0+R-.--rf i ~ Position ~ ~ i Position ~ ,e ~ Position ~ ,e ... .:.1. ,:::!1-0c-.,-,-, -.----HE 

Structure t":::-At-=::Nl":::-O £ S. a:~ ~ U 8 j ~ 6 ~ ~ 6 ~ ~ Length ~ 
Name o n Times 

Line 

RPG 
Field Name 

c 

·~ .. 
a: 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 40 4ti 47 48 49 50 51 52 53 54 55 56 57 58 59 80 61 62 63 64 65 88 87 88 69 70 71 72 73 j 

0 1 I11NIFl1 IE 
o 2 I 
0 3 I 
0 4 I 
0 5 I 
0 6 I 
0 7 I 
0 B I 
0 9 I 
1 0 I 
1 1 I 
1 2 I 
1 3 I 
1 4 I 
1 5 I 
1 s I 

A chained file must 
contain an alphabetic 
sequence entry. 

ll lI 

[ 

11 11 ~IL~M~ 

la lk'.Z if I~IY1 
la 

1a:1a 
1ll.11l 

Figure 5-11 (Part 1 of 2). Reading a Direct Customer File Randomly by Relative Record Number 

Chapter 5. Using a DISK File 5-41 



c Indicators Result Field 
Resulting 

~ Indicators 

1-- ~ I I Arithmetic 

~ Plus :!Minu![ Zero 

d Factor 1 Operation Factor 2 = Compare Comments 

Line 
Name Length t 1>~1<~=2 n i i ~ 

:=: Lookup{Factor 2)1s 

.e 8 ~ Hlfti 
3 4 • • 7 9 10 n 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 l2a 29 30 31 32 33 34 35 36 37 38 39 40 41 42 ~44 46 46 47 48 49 60 51 53 54 55 

Lo~F.qual 
-~-~~~aDMAAVAAMnnnu 

0 1 lei II F lrZll! T:::i:: :::i:::::i:: 
t-

0 2 c 0.7 l"il 1'11=.R IAllN lll' I I~ 11:= The customer number +--
0 3 c ~7 ~rt ~ii ~ -~ IM ~ i.=a [I "IP~ ]12 from the input record is 

"11 l'lllfl IP r. IA ... ii rr f-
0 4 c 1 used as the relative record +--
0 6 c ~,1 ~11 I.:= fl ufi IA IL lailJ iZ ~~ number to chain to the 

~I] ~11 '~" ~~ 
ir. 14 i... IQ f-

0 6 c I rflll direct file. Indicator 13 f-
0 7 c will turn on if a record is +--
0 8 c Indicator 13 is used to not found in the direct +--
0 9 c condition subsequent file. +-
1 0 c operations. 

ll JllllliJtJIIJ +--
1 1 c 
1 2 c ll ]JJ]J I l 1Tf1 

0 !: 

~l Space Skip Output Indicators 
1-- Field Name 

e~ or :c • :L :!. !I. Filename i~ ~ . EXCPT Name 
H ?:: or 

~~ A;!. Line 

~ 
Record Name 

j ~ ~ * A " 

Commas 
Zero Balances 

No Sign CR - X •Remove 
to Print Plus Sign 

y. Date 6-9= 
Yes Yes 1 A J Field Edit 

u ... 
Yes No 2 8 K Z •Zero 

Defined 
No Yes 3 c L Suppress 
No No 4 D M 

ru.51 
~qi ;n 
8 5 Output ~ 

a R ~ o zO .. AUTO w~ ~., Record di Constant or Edit Word 
~ z Cl.. • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 67 58 69 60 61 62 63 64 65 66 87 88 89 70 71 72 73 74 

0 1 01P1~ rr NfTlli ull 

0 3 0 "' \ 11 11:.lf'l I 

0 • lo '~ u ll llll1UJ1 ' 

06 0 ll ) t? Other headings (see Figure 5-10). +-++-o 7 0 I!. 
rnots+-fnot-HH-H-H1~1u1H"1iiia~O~~~II;t;i~tfftftfttttttttttftT"iiiiii"ii"iii~~ii"ii"i"'I'+-++-
0 9 0 

1 0 0 N13 means that this line will be 
l1 

'' lo 
' 2 lo 
1 3 10 

printed if a record is found in the •++-+-+-Ii~ 
direct file. 1.1 

1 4 0 IJJj li 
1 5 lo! 

11 When a record is not found in the 
1 s o II 

1-,+7~Jo>-1-l-l-41•1 direct file, this line is printed. 

1 8 0 l 
1 9 0 

2 0 0 

0 

[~ A 

Other fields (see Figure 5-10). 

1q 

IH 
I~ \ 1 ... 

·ID 111:11::. MIA~I< I 

I~ rr Rlr, II N IFlil Ir ' 

Figure 5-11 (Part 2 of 2). Reading a Direct Customer File Randomly by Relative Record Number 

5-42 

/ 



Reading Randomly by Relative Record Number and/or Consecutively 

F 

Filename 

Line 

File Type 

If you want to read a file both randomly and consecutively, use a 
full-procedural file. You can read a full-procedural file randomly like a 
chained file and/or consecutively like a demand file. That is, you can chain 
to a specific relative record number in the file and then read records 
consecutively from that point. To read the file randomly, you use a CHAIN 
operation in the calculation specifications; to read it consecutively, you use 
a READ or READP operatjon. You cannot use a READE operation to read 
the file consecutively, because the READE operation cannot read by 
relative record number. For example, if you code a CHAIN operation to 
relative record number 10 and then code a READ operation, the program 
chains to relative record number 10 and then reads the following record. 

It is not necessary to code both a CHAIN and a READ or a READP 
operation, but you must code at least one CHAIN, one READ, or one 
READP operation in order to read a full-procedural file. For information 
about the CHAIN READ, and READP operation codes, see Chapter 28. 

Code a full-procedural file as an input file. Code entries in the unshaded 
columns of the file description specifications shown below: 

Mode of Proce$51ng 

File Designation Length of Kev Field or 
of Record Address Field 

Extent Exit 
for DAM 

End of File 
~ 
~ Name of 

Label Exit 

File Addition/Unorder 

Number of Tracks 
for Cylinder Overfl 

Sequence Device 
Symbolic 
Device ! Storage Index 

Tape 
Rewind 

Fite 
O>ndi1 
U1·UB 

z UC 

~ 

Columns 7 through 14 must contain the name of the file. 

Column 15 must contain I to indicate that the file is an input file. 

Column 16 must contain F to indicate that the file is a full-procedural file. 
You must code a CHAIN, READ, or a READP operation in the calculation 
specifications in order to read a full-procedural file. 

Column 19 must contain For blank. 

Columns 20 through 23 must contain the block length or blanks. 

Columns 24 through 27 must contain the record length. 

Columns 40 through 43 must contain DISK. 

Columns 71 and 72 can contain an external indicator, Ul through US. 

Chapter 5. Using a DISK File 5-43 



Reading Randomly by Address Output (Addrout) File 

5-44 

An address output (add rout) file is a record address file produced by a sort 
program. (A record address file is an input file that tells the program which 
records to read from a DISK file and the order in which to read them.) An 
address output file contains the relative record numbers of the records in a 
DISK file. The advantages of an address output file are that: 

• The space required for the address output file is much less than the 
space required for a sorted sequential file. 

• The sort runs much faster. 

• The original file is unchanged. 

You can have only one address output file in a program. When an RPG 
program uses an address output file, it automatically reads the relative 
record numbers consecutively from the address output file. You do not 
have to code a READ operation for the address output file. Then, using the 
relative record number, the program randomly reads the DISK file to 
process the corresponding record. In this way, the program can process a 
direct DISK file in a new sequence without actually sorting the records and 
creating a new file. Also, once the file description and extension 
specifications are coded for the DISK file and for its associated address 
output file, you can code the DISK file as though you were reading the 
direct file sequentially. If the DISK file is a full-procedural file, you must 
code a READ operation in the calculation specifications; you cannot use a 
CHAIN, READE or READP operation to read a full-procedural file 
randomly by an address output file. No input specifications are required 
for the address output file. 



F 
Filename 

Line 

File Type 

If you want to read records randomly by an address output file, code the file 
description specifications as shown below: 

Mode of Processing 

file Designation Length of Key Field or Extent Ex-it 
for DAM of Record Address Field 

End of File 

File Addition/Unorde' 

Number of Tracks 
for Cylinder OveJf 

Sequence 

File Format 
~ w~-----.---~ 

e ~ Block Record 

Record Address Type ...1 

w Device 
Symbolic 
Device 

Name of 
Label Exit 

Storage Index 

Number of ex1 

Tape 
Rewind 

File 

~ ~ Length Length ~ 
~ w ~,_~~-~~-~~~~~~=~_._, 

Columns 7 through 14 must contain the name of the file. 

Column 15 must contain I to indicate that the file is an input file. 

Column 16 must contain P, S, or F: 

• If you code P (primary) or S (secondary), the record is read as part of 
the RPG program cycle. For an explanation of how primary and 
secondary records are read, see Chapter 11. 

~ 
"' 

• If you code F (full-procedural), you must code a READ operation in the 
calculation specifications. 

Column 18 can contain A, D, or blank if column 16 contains P or S: 

• A indicates that the program checks that the records in the file are in 
ascending sequence. 

• D indicates that the program checks that the records in the file are in 
descending sequence. 

• Blank indicates that the program does not check the sequence of 
records in the file. 

Column 19 must contain For blank. 

Columns 20 through 23 must contain the block length or blanks. 

Columns 24 through 27 must contain the record length. 

Column 28 must contain R if column 16 contains P or S. The R indicates 
that the file is processed randomly by an address output file. 

Column 31 must contain I if column 16 contains P or S. The I indicates 
that relative record numbers from the address output file are used to 
process the file. 

Columns 40 through 43 must contain DISK. 

Columns 71 and 72 can contain an external indicator, Ul through U8. 

Chapter 5. Using a DISK File 5-45 

Condi 
u1.u1 
UC 



F 

Filename 

5-46 

File Type 

For the address output file, code entries in the unshaded columns of the file 
description specifications shown below: 

Mode of Processing 

File Designation Length of Key Field or Extent Exit 
for DAM 

File Additioo/Unordtrtd 

N\lmber of Tracks 
for Cylinder Overflow of Record Address Field 

End of File 
Record Address Type :i) Symbolic 

Device 

Name of 
Label Exit 

Number 9f ExtenU 
Sequence Device T ... 

Rewind 

Columns 7 through 14 must contain the name of the file. 

Column 15 must contain I to indicate that the file is an input file. 

Column 16 must contain R to indicate that the file is a record address file. 

Column 17 must contain E or blank. E indicates that all records from the 
file must be processed before the program can end. A blank indicates that 
the program can end whether or not all records from the file are processed. 

Column 19 must contain F or blank. 

Columns 20 through 23 must contain the block length or blanks. 

Column 27 must contain 3 because each record in an address output file is a 
relative record number, which is always three positions long. 

Column 30 must contain 3 because relative record numbers in address 
output files are always three positions long. 

Column 31 must contain I to indicate that the file is an address output file. 

Column 32 must contain T to indicate that the file is an address output file. 

Column 39 must contain E to indicate that the file is further described on 
extension specifications. 

Columns 40 through 43 must contain DISK. 

Columns 71 and 72 can contain an external indicator, Ul through US. 



E Record Sequence of the Chaining File 

Number of tlie Chaining Field 

Line g_ 
~ 

j 
From Filename 

Two entries are required on the extension specifications: 

Number 

To Filename 

of Number ~- Table or 
j~ Table or Entries of Length :~ ~ ArraylName 

Length 

p,, Entries of of 
Array Name 

Record Per Table Entry a:~ ~ (Alternating Entry 
<C - ~ 

or Array ~ .. ~ Format) ;i § 
~ ~ m nM 

Comments 

Columns 11 through 18 must contain the name of the address output file. 
This name must be the same one coded on the file description specifications 
for the address output file. 

Columns 19 through 26 must contain the name of the direct file to be 
processed by the address output file. This name must be the same one 
coded on the file description specifications for the direct file. 

Chapter 5. Using a DISK File 5-4 7 



Updating a Direct File 

5-48 

Updating records in a direct file involves reading a record, changing some 
data in the record, and writing the record back to its original location in 
the file. If you try to update a record that was not the last record read, 
error message RPG-9043, FILE TRIED RECORD UPDATE BEFORE 
INPUT, is displayed. The fields to be updated must be described on both 
the input and the output specifications. 

When you update records in a direct file, the file can be processed in any of 
the following ways: 

• Consecutively 

• Randomly by relative record number 

• Randomly by relative record number and/or consecutively 

• Randomly by address output (addrout) file 



Deleting Records from a Direct File 

0 

! 
Line ~ 

Filename 
or 

Record Name 

Updating a file can include deleting records from the file. To allow records 
to be deleted from the file, the control language FILE statement coded 
when the file was created must use the DFILE-YES parameter. For 
information about the FILE statement, see the System Reference manual. If 
you try to delete a record from a file that does not allow deletions, error 
message RPG-9067, INVALID OPERATION ATTEMPTED, is displayed. 

To delete a record, you first read the record (either randomly or 
consecutively) and then, with DEL coded in the output specification, write 
the record back to the same file. Code entries in the unshaded columns of 
the output specifications shown below: 

¥ Space Sk;p Output Indicators 

~ ....... +--.--+-~-.-~..----1 

Columns 7 through 14 must contain the name of the output file. 

Column 15 must contain D, T, or E, to indicate that the record is to be 
deleted at detail, total, or exception output time of the program cycle. 

Columns 16 through 18 must contain DEL to indicate that the record is to 
be deleted. 

Columns 23 through 31 can contain output indicators. 

Columns 32 through 37 can contain an EXCPT name if column 15 contains 
E. 

Records are not physically removed from a file when they are deleted. 
Instead, deleted records are filled with hexadecimal FFs. That is, all the 
bits for every character in the deleted record are set on. 

Chapter 5. Using a DISK File 5-49 



Updating Consecutively 

F 

Filename 

Line 

5-50 

File Type 

You can update records in a direct file consecutively. If the file is a 
primary or secondary file (P or S in column 16 of the file description 
specifications), the program reads a record from the file at input time in the 
RPG program cycle, and the program writes a record to update the file 
during detail output or exception output time in the program cycle. If the 
file is a demand file (D in column 16), the program reads a record when a 
READ operation occurs in the calculation specifications, and the program 
writes a record to update the file at detail output, total output, or exception 
output time in the program cycle. 

Code the file description specifications as shown below: 

Mode of Processing 

File Designation Length of Key Field or 
of Record Address Field 

Extent Exit 
for DAM 

File Addition/Unordered 

Number of Tracks 

End of File 
~ 
!!! 

Symbolic ~ 
for Cylinder Overflow 

Record Address Type ...J 
Sequence 

File Format 

w 

~ 
Device Device ]i 

.:; 

Name of 
Label Exit 

Storage Index 

Column 15 must contain U to indicate that the file is an update file. 

Entries in the other columns are the same as those for reading 
consecutively. 

Number of Extentt 

Tope 
Rewind 

~ 
cc 

File 
Condition 
Ul-UB, 
UC 



Updating Randomly by Relative Record Number 

F 
Filename 

Line 

You can update records in a direct file processed randomly by relative 
record number. The file is defined as a chained file (C in column 16 of the 
file description specifications). This means that the program reads a record 
from this file when a CHAIN operation occurs in the calculation 
specifications, and that the program can write a record to update the file 
during detail output, total output, or exception output time in the RPG 
program cycle. Code the file description specifications as shown below: 

File Type Morle of ProcP.%ing File Addition/Unorder 

.. 
Ci 
t 
a: 
u 

File Oes1gn1t1on 

End of File 

Sequence 

length of K~y Field or 
of Rf/Cord Address Fi@ld 

Symbolir. 
Device 

Nam'l"of 
L.abel Exit 

Extent Exit 
for DAM 

Storaqe Index 

Column 15 must contain U to indicate that the flle is an update file. 

Number of Tr.adl.s 
for Cylinder Overfl 

Number of Exu 

Tape 
Rewind 

File 
O>ndi1 
Ul-U8 

!!; UC 

<! 
"' 

Entries in the other columns are the same as those for reading randomly by 
relative record number. 

Chapter 5. Using a DISK File 5-51 



Example of Updating Randomly by Relative Record Number 

5-52 

Each day you want to prepare invoices for customer orders for the file 
described in the Example of Reading Consecutively. You use information 
from .the invoices to update the customer file CUSTFILE. The records in 
the invoice file (INFILE) are unordered, so you process it randomly. 

The records in the invoice file contain the date and total amount of 
transactions for each customer. The records also contain new addresses 
when the customer addresses change. The program reads each record 
entered at a display station and uses the customer number (CUSTMR) to 
chain to the direct file. The amount of the transaction is added to the total 
sales for the current period (CURPER) and to the accounts receivable 
amount (ARLT30). The transaction date is placed in the date of last order 
(LSTORD) field in the customer record. 

If an address change is indicated (by X in column 18 of the input record), 
the new customer address replaces the old address. 

If a record is not found in CUSTFILE because of an invalid relative record 
number, the input record and the message ABOVE RECORD NOT 
FOUND--INV ALID CUSTOMER NUMBER are printed. 

Figure 5-12 shows how to code the specifications for this example. 

/ 
\ 



F 
1--

line 

~ 
t-
E 

& 
3 4 • • 1 • 
0 2 

0 3 

0 4 

Filename 

File Type Mode of Processing 

Ftle Detignation length of Kev Field or 
of Record Address Field 

End of File 
Record Address Type ..J 

Sequence -------<"1 
Type of File 

File Format N Organiution or ~ 
w---~---< ~ Additional Atea c 

~ a a: o 
e i Block Record ~ -..t:: Over_Eflow Indicator ·r:.-

::>
c ut- _;;;> -~ ~ - length Length a: ~ e_ Key Field )( 

~ <~ ~=~~n w g ~ w ~~~~---~.-x-to_m_•_IR_e_oo~,d-N_a_me~~-~~~~---.. 

Device 
Symbolic 
Device 

K 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

Continuation lines 

Option Entry 

File Addition/Unorder• 

Number of Tracks 
for Cylinder Overflo 

Number of Exu 

Tope 

~ 
File 
Condit 
Ul-UB 

z UC r-

~ 
9 . 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 &4 65 66 67 68 69 70 71 72 7 

IIISIK 

~II JN1IIEJl'I 
o 5 F 

.----·~-----~--.--~-~----------------~--,------~~----~-~--,---.-------.---

I Ex~ernal Field Name 

1--- Filename ~ 
or :i O>Vl 

g Record Name J ~ ~- ~ ~.1----1~~~1----2-.---.--~1-----3~~~ ~ 
~ 25~: ~~ 
! ~----~-r---1-.-1~ ~ ; Po5ition ~ ON- .~ Pmition ~ Cl ~ Position ~ f?:N ~ ... ~u 

O;:na OR E·g8 - 0~1 -
St~~~~re ~ ~ g d: ~ U 6 z u u ~ U 6 ~ 

Record Identification Codes 

Line 

Field Location 

From To 

Dato Structure 

Occurs 
n Times Length 

RPG 
Field Name 

Field 
Indicators 

Zero 
Ptus Minus or 

Blank 

3 4 5 6 ' 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JIJ 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4b 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 54 65 66 67 68 69 70 71 72 73 

0 1 IJI mLlt INIS 
0 2 I 
0 3 I 
0 4 I 
0 5 I !l If [l If lJlr- fA I~ 
0 6 I 
0 7 I 
0 8 1lr I::>[[ IFIJ 
0 9 

1 0 

1 2 I 

Figure 5-12 (Part 1 of 2). Updating a Direct Customer File Randomly by Relative Record Number 

Chapter 5. Using a DISK File 5-53 



c 
I--

Indicators Result Field 
~- lndicaton· 

9 - J J !! Arithmetic 

Resulting 

~ Q: And And .g ::c Plusj_Minuj_ Zero 
f 5 ~ Factor. 1 Operation Factor 2 ·g t;" Compare 

Line 1- - ic· Name Length i j 1>~<~1·2 Co.mments 

E g :- b 0 0 ~ 1i Lookup(Factor 2)is 
~8....1z z z C5:cH1ghlowF.q1,1al 

3 4 5 6 7 8 9 10 1~ 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 '2a 29 30 31 32 33 34 35 J6 37 38 39 40 41 42 43 44 45 46 47 48 49 so 51 52 53 54 55 56 57 58 59 60 61 62 63 64 6S 66 67 68 89 10 71 72 73 74 

0 1 c 
0 2 c 
0 3 c 
0 4 c 
0 5 c 

0 
1---

! 
Line ~ 

111'7 11'1 Ir li.IAII INlr]L ,., llt_l.I rl 111.3 
I ulN lJ.l':I ID J]ir ISII 

Filename 
or 

Record Name 

~ ~ Space Skip Output Indicators Field Name [[F5f Commas Zer: ~::~~cts No Sign CR -· X = ~:;~~~ 
f?. ~ or Yes Yes 1 A J Y=Date ~a~= 
~~ ~ ! A!d A!d EXCPT Name Yes No 2 B K z "';:od Edit Defined 
1-~ cc Position No Yes 3 C L Suppress 
OELf~ ~~in No No 4 OM 

~ ~ ~ 85 Output :S 
o R ~ O 20 "AUTO :6 ~ Record CD Constant or Edit Word 
~ z W CD it 1 2 3 4 5 6 7 8 9 10 11 12 iJ 14 15 16 17 18 19 20 21 22 23 24 

3456789 10 11 12 13 14 15 16 17 18 19 20 :/1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 tl6 67 68 89 70 71 72 73 74 

0 3 0 

o • lo 
o • lo 
0 6 OJJflCltlNIT 
0 I 0 

0 8 0 

0 9 0 

, o lo 
'' lo 

Figure 5-12 (Part 2 of 2). Updating a Direct Customer File Randomly by Relative Record Number 

5-54 

/ 



Updating Randomly by Relative Record Number and/or Consecutively 

F 
Filename 

File Type 

You can update records in a direct file randomly by relative record number 
and/or consecutively. That is, the file is defined as a full-procedural file (F 
in column 16 of the file description specifications). The record to be 
updated can be read either randomly by relative record number with a 
CHAIN operation or consecutively with a READ or READP operation. The 
record cannot be read consecutively with a READE operation because the 
READE operation cannot read by relative record number. The output 
operation to update the record can occur during detail output, total output, 
or exception output time of the RPG program cycle. 

Code the file description specifications as shown below: 

Mode of Processing 

File Dnignltion Length of Key Field or 
of Rec<M'd Address Field ~ 

Extent Exit 
for DAM 

End of File ~ 

File Addi1ion/Unorder 

Number of Tracks 
tor Cylinder Owerfl, 

Device 
Name of Symbolic iii 
Label Exit 

Device i 
!I Storage Index 

Column 15 must contain U to indicate that the file is an update file. 

T1pe 
Rewind 

File 
Condit 
Ul·U• 

i!: UC 

~ 

Entries in the other columns are the same as those for reading randomly by 
relative record number and/or consecutively. 

Chapter 5. Using a DISK File 5-55 



Updating Randomly by Address Output (Addrout) File 

F 
Filename 

5-56 

File Type 

You can update records in a direct file processed by an address output 
(addrout) file. The direct file can be a primary, secondary, or 
full-procedural file (P, S, or Fin column 16 of the file description 
specifications). If the file is a primary or secondary file, the program reads 
a record from the file at input time of the RPG program cycle, and program 
writes a record to update the file at detail output or exception output time 
of the program cycle. If the file is a full-procedural file, the program reads 
a record from the file when a READ operation occurs in the calculation 
specifications, and the program writes a record to update the file at detail 
output, total output, or exception output time of the program cycle. 

Code the file description specifications as shown below: 

Mode of Processing 

File 091ignation length of Key Field or Extent Exit 
for DAM 

File Addi1ion/Unordlred 

Number of Tracks 
of Record Address Field 

End of File ::z~ for Cylinder Overflow 

Sequence 

File FOfm;n 

Re<:ord Address Type ~ 

~ 
Device 

Symbolic 
Device 

111 Name of 
• Label Exit 

~ Storage Index 

Column 15 must contain U to indicate that the file is an update file. 

Number of Extenu 

TIPO 
Rewind 

Entries in the other columns are the same as those for reading randomly by 
address output file. 

f 

\. 



Adding Records to a Direct File 

F 
Filename 

Uno 

FiltTYJM: 

You can add records to a direct file that is processed randomly by relative 
record number. The file must be one that allows records to be deleted; that 
is, when the file was created, the control language FILE statement must 
have had DFILE-YES specified. For information about the FILE statement, 
see the System Reference manual. 

To add records to a direct file, code entries in the unshaded columns of the 
file description specifications shown below: 

Mode of Processing 

File D11ignetlon Length of Kev Field or 

i 
E><tent Exit 
for DAM 

File Addition/Unordtrt 

NumlMr of Treck.1 
for Cylinder Overflc 

End of File 
of Record Address Field 

Sequence 
Record Address Type ~ 

Device 
Symbolic w 

Device ~ 

Name of 
Label Exit 

Storage Index Rewind 
Filo 
Conctltl 
U1-U8, 

i!: UC 

~ ~ 

In the first line of the file description specifications: 

• Columns 7 through 14 must contain the name of the file. 

• Column 15 must contain I or U to indicate that the file is an input file 
or an update file. 

• Column 16 must contain C or F to indicate that the file is a chained file 
or a full-procedural file. 

• Column 19 must contain F or blank. 

• Columns 20 through 23 must contain the block length or blanks. 

• Columns 24 through 27 must contain the record length. 

• Column 28 must contain R if column 16 contains C. 

• Columns 40 through 43 must contain DISK. 

• Column 66 must contain A to indicate that records are to be added to 
the file. 

• Columns 71 and 72 can contain an external indicator, Ul through US. 

In the second line: 

• Column 53 must contain K to indicate that this line is a continuation 
line. 

Chapter 5. Using a DISK File 5-57 



0 
i---

Line 

Filename 
or 

Record Name 

u. 

• Columns 54 through 58 must contain RECNO, which stands for relative 
record number. 

• Columns 60 through 65 must contain the name of the field into which 
the relative record number is placed. The field must be defined on 
either the input specifications or the calculation specifications as a 
7-position numeric field with zero decimal positions. That field is called 
the RECNO field. 

w ~ Space Skip Output Indicators ff5l Commas Zero Balances No Sign CR X =Remove 
':: .... Field Name to Print - Plus Sign 5 . 9 = 

~ ~ t-~..-"+--r--+--.1.----.T---I EXCP~r Name Yes Yes 1 A J y = ~i:~ Edit Use~ 
~~ ~ ,! And A~d Yes No 2 B K z = Zero Defmed 

.,_ ~ cu a: Pos1t1on No Yes 3 C L Suppress 
OELt;~ IC~in a:: No No 4 DM 

~~ ~ 85 Output :::i 
o A ~ ~ 0 *AUTO .~ ';c Record CO Constant or Edit Word 
~ z iB iii Ii:: • 1 2 J 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

~$+-1'1-1-11 :~ 1::1:1 I::±:.l ":::IA ::rilU-l-t +rr-+-+.-jr f--1-+-+--+-+-+-+-+-+-I f+-+1-+-11f-+-+-+UOnuir .I JII I I I II I I :1 I II I I I I 

5-58 

On the output specifications for the record to be added, columns 7 through 
14 must contain the name of the output file. 

Column 15 can contain D, T, or E, to indicate that the record is to be added 
at detail, total, or exception output time of the program cycle. 

Columns 16 through 18 must contain ADD to indicate that the fields defined 
on the following lines form the record to be added to the file. 

Columns 23 through 31 can contain output indicators. 

Columns 32 through 37 can contain an EXCPT name if column 15 of the 
output specifications contains E. 

The RECNO field identifies the position in the file where the output record 
is to be added. (That record is the one described on the output specification 
that contains ADD in columns 16 through 18.) You must place into the 
RECNO field the relative record number of the record to be added to the 
file. It must be the relative record number of a deleted record. One way to 
place the relative record number into the RECNO field is to code the 
following sequence of operations in the calculation specifications: 

1. Code a CHAIN operation with the relative record number in factor 1, 
the name of the chained file in factor 2, and a resulting indicator in 
columns 54 and 55 that turns on when a record is not found. 

2. Code a Z-ADD operation with the same indicator that you used for the 
CHAIN operation as a conditioning indicator (in columns 10 and 11, 13 
and 14, or 16 and 17), the relative record number in factor 2, and the 
RECNO field in the result field. 

When a CHAIN operation (for a chained file) or a READ operation (for a 
full-procedural file) reads a nondeleted record, data management places into 
the RECNO field the relative record number of the record read. 



When the program tries to add a record to the file, if the relative record 
number is not the number of a deleted record, the program stops and error 
message RPG-9070, OUTPUT TO A NONDELETED RECORD, is displayed. 
If you respond to the message by choosing option 1, the program continues 
but it does not add the record to the file. 

Chapter 5. Using a DISK File 5-59 



INDEXED FILES 

5-60 

An indexed file has two parts: an index and the data records (see Figure 
5-13). The index'contains an entry for each record in the file. Each index 
entry also has two parts: a key field and the disk 1:1ddress of the record for 
that index entry. The key field contains data that identifies each record 
individually. For example, the customer account number could be the key 
field to identify each record in a customer master file. The second part of 
the index contains the disk address of the record. The disk address tells 
where the record is stored on the disk. Thus, a program can go to the 
index, find the location of a record, go to that location, and find the record 
you want. 

Records are stored in the data portion of the file in the same order in which 
they are written to the file. When a record is stored in the data portion, an 
entry for the record is made in the index. After the last entry is made in 
the index, the entries in the index are sorted into ascending order according 
to the key fields. 



14 6th 

13 5th 

11 4th 

2 3rd 

15 
r--r-

2nd 

© 
1--r-' 

-
t-T-1 ,,,,. 

Key Field 

,,,."" 
1st Record t-r-

........... 

s 
6/01 5/02 2/03 1/04 3/ 6 l 1st I I I I I 

05 4/06 51 2nd 21 3rd 1 I 4th 31 5th 41 6th 
I Record I I I I I 

L-------------------@--- Disk Location 
--~~~~~~~~~~~---~~~~~~~~~~~-

1ndex1 Data 

The order of the records in the data portion remains unchanged when the entries in the index are sorted. 

1/D4 2/03 3/D5 4/06 5/02 6/01 
I 1st I I I I I 

61 51 2nd 21 3rd 1 I 4th 31 5th 41 6th I Record I I I I I 
D1 D2 03 04 05 06 

Index Data 

1 
Entries are of the form key field/disk location (01 = 1st disk location, D2=2nd disk location, and so on). 

Figure 5-13. Organization of an Indexed .File 

Chapter 5. Using a DISK File 5-61 



Creating an Indexed File 

You can create an indexed file by writing records in an ordered sequence or 
in an unordered sequence. In an ordered sequence means that the records 
are written in ascending order of key field. In an unordered sequence 
means that the records are written in no particular order of key field. 

Creating an Indexed File by Writing Records in an Ordered Sequence 

F 
Filename 

5-62 

To create an indexed file by writing records in ascending order of key field, 
describe the file in the unshaded columns of the file description 
specifications shown below: 

File Designation 

End of File 

Sequence 

Length of Key Field or 

of Record Address Field 

Record Address Type ..J 

,...-,::---:-=--tUi Device 
Symbolic 
Device 

~ 
!!! 
~ Nameof 

Label Exit 

Columns 7 through 14 must contain the name of the file. 

Extent Exit 
for DAM 

Column 15 must contain 0 to indicate that the file is an output file. 

Fite Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extentt 

T-

Column Column 19 must contain F or blank to indicate that the record 
length is fixed. That is, all records in the file must be the same length. 

Columns 20 through 23 must contain the block length or blanks. The 
maximum block length is 9999. If you do not enter any number in these 
columns, the block length equals the record length. 

Columns 24 through 27 must contain the record length. The record length 
can be any number from 1 through 4096. 

Columns 29 and 30 must contain the length of the key field in each record. 
The maximum length is 99 positions, unless an indexed file is processed 
sequentially within key-field limits using a CONSOLE device, in which case 
the maximum length is 29 positions. Key fields in packed-decimal format 
can be up to 8 positions in length. 

Column 31 must contain A if the key field is in zoned-decimal or alphameric 
format, or P if the key field is in packed-decimal format. If you create a file 
with a key field in packed-decimal format, you must also code the key field 
in packed-decimal format on the output specifications (Pin column 44). 

Column 32 must contain I to indicate that the file is an indexed file. 



Columns 35 through 38 must contain the record position in which the key 
field begins. The maximum number you can use for the starting position of 
the key field is the record length minus the length of the key field + 1. 

Columns 40 through 43 must contain DISK. 

Columns 71 and 72 can contain an external indicator, Ul through US. 

Creating an Indexed File by Writing Records in an Unordered Sequence 

F 

Filename 

Line 

File Type 

To create an indexed file by writing the records in no particular order of 
key field, you code the same entries required to create an indexed file by 
writing the records in ascending order of key fields, but you also code U in 
column 66 to indicate that the records can be written in an unordered 
sequence. 

Mode of Processing 

File O"ign1tion Length of Key Field or 
of Record Address Field 

Extent EKit 
for DAM 

End of File 

File Addition/Unord1re1 

Number of Tricks 
for Cylind1r OV1rflo 

Record Addreu Type 

Device 
Symbolic 
De>Jice 

Name of 
Label Exit 

Storage Index 
T1pe 
Rewind 

Fllt 
Condit le 
u1.ua, 

2!; UC 

~ 

Example of Creating an Indexed File 

Figure 5·14 shows how to code the file description, input, and output 
specifications to create an indexed file by writing records in an unordered 
sequence. 

Chapter 5. Using a DISK File 5-63 



---~------..-----------..------------_,.-~---. ·-·· --.------,,.-----.,~----.-------..... 
F 

f--

Line 

It 
~ 
~ 

r£ 
3 • •• ' B 

Filename 

file Type 

Fik! Designation 

End of File 

Sequence 

Mode of Proce$Sing 

Length of l(ey Field or 
of Record.Address Field 

Record Address Type ...J 

.------till 
Type of File 

file Format N Org8nization or ~ 
u. !:!! ~ Additional Area .§ 
0 ~ Block Record :iit: t: Overflow Indicator ~ 

~~ 0 ~ Length Length '.5 H JE:! 
g ~ w "< External Record Name 

Device 
Symbolic 
Device 

K 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

Continuation Lines 

Option Entry 

File Addition/Unordered 

Number of Trleks 
for Cylinder Overflow 

Number of Extenu 

Tope 

~ 
Condition 
U1-U8, 

!!:: UC .-'-I 

~ 
•· 10 11 12 13 14 15 t6 11 1a"'1•,....,,20"'2:-1-:22~2J:-2:-:•-:2S:::-::26:-2::,-:21::-:,.:-:::30:-3:-:,-:,=-2-=33:-,.=,.:-:::3B:-J::,-:3B:nl9 40 41 42 43 « 45 46 47 48 49 so s1 s2 53 M ss 56 s1 58 59 eo 61 &2 63 64 65 66 67 68 89 10 11 12 73 74 

0 2 FJNIPlul 
0 3 

,., 
o 4 F 

t 1 ' c+--+-t-t--+-t--+-~+--t-t--+-t--+--+-+-it-t--+~-+-+-t-t--+-< 

The output file, MASTER, is an indexed file to be loaded and processed by key fields. The U in 
column 66 of the file description specifications indicates that an unordered load is to be done. The 
input file, INPUT, is unsequenced . 

I 
t--

! 
Line ~ 

Filename 
or 

Record Name 

..: External Field Name 

jc 111 .. Record Identification Codes 

~ ~ .. 
:~rn·=C: 1 2 3 

Field Location 

From To ii 
~ :d ~1----.......... ,...., ..... --..-..-.-+---..-.,...,.-1 ll 
.::. S ~: Iii Iii Iii~ a:. Dita Structure iii 

D1:1ta 0 A f j j Position ~ O N Position ~ ~ E Position ~ c hi j ::I ~-· 
~ 

S L..::..L:...:..:i::1ij ZO~U,l! Zou'" z0~0 ~.~~ .. Occurs 
~~-;~re ~Z 0 a:. u u u v• nTimes Lengttl 

RPG ~ 
Field Name l 

~ 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 4t> 47 48 49 50 51 52 53 54 55 58 157 58 '59 60 61 82 83 84 65 88 87 88 89 70 71 72 73 74 

0 1 I IY'li 1"' IJIT INS 
o 2 I 

o a I 
l-l-+-+--t-+-l-l-+-+--+-+-+-1-+-+--+-+-+-1-+-+--+-+-+-11--+-+-+-+-t--i,-+-·-I-·'- ···+-++-· -1-1--t·· t-1-+-+--t-+-t-'t-t-t--+-+-+-l-l-t--+-+-+-t-"l-l--+-+--+--+-+-1-1--1 

The key fields from which the index is to be built appear as the first eight positions of the output 
record. As the DISK file is loaded, the key field is extracted from the record and an index entry 
containing the location of the record on the disk is built. After the entire file is loaded and an index 
entry is constructed for each record, the index entries are sorted into ascending sequence . 

0 
... 

~I S13ace Skip Output I ndlca1ors 

~ 
Commas Zero Balance1 

No Sign X •Remove 
1---i Field Name to Print CR - Plus Sign 

e' or V•O.tt 
5·9. 

!t Filename e. li 
j! r Jd EXCPT Name v .. Yes 1 A J Field Edit 

User 
it<ll Vas No 2 8 K Defined 

~ or ~llfl Z•Zero 
Line 

~ 
Record Name l'Q1 AA a: Position No Yes 3 c L Suppress ~ 

~ 
g q; No No 

~ ~ In 4 0 M 
~ 85 a: 

" Output ::r 

tM- 0 0 0 •AUTO ~~ Record iii Constant or Edit Word 
l'Q1 z z z 

"' 1 2 3 •• • ' 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
3 4 5 • 1 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ~~~a@~~~~~~~M~~~~~~~M~H~OO~ro 71 72 73 74 

0 1 oJM LI.11:.IR 121 
0 2 lo l'lii 
0 3 10 

Figure 5-14. Creating an Indexed File by Writing Records in an Unordered Sequence 

5-64 

/ 



Creating an Alternative Index File for an Indexed File 

After you create an indexed file, you can create alternative index files for 
that file. Using an alternative index file is equivalent to using an address 
output (addrout) file to process an indexed file. Each alternative index file 
uses one or more different portions of the record in the physical file as the 
key field. (An alternative index file may also be created for a sequential or 
direct physical file). Therefore, you can process records from the file in 
various sequences, depending on which index you use. For example, for a 
personnel file you can use the employee number as the primary index key 
and the department number as a key in an alternative index file. 

An alternative index file has either a single field as its key, as have indexed 
files, or it can have up to three noncontiguous fields as its key. Only 
alternative index files can have keys with noncontiguous fields. For 
example, the fields in positions 1 through 6, 8 through 10, and 20 through 24 
can be specified as one key: 

Key 

-·----1 
6 8 10 20 24 

One field cannot overlap another field of the key. For example, if one key 
is specified in positions 10 through 15, another field cannot be specified in 
positions 14 through 20. For details on coding for keys with noncontiguous 
fields, see Coding the File Description Specifications for an Alternative Index 
File with Noncontiguous Fields as its Key later in this chapter. 

The existing indexed file from which you create alternative index files is 
called the physical file. To create an alternative index file for a physical 
file, use the control language procedure BLDINDEX. On the BLDINDEX 
procedure, you specify: 

• The name of the alternative index file to be created 

• The starting location of each field that is to be part of the key (1 to 3 
fields may be used, and the value for each field must be a decimal 
number from 1 through 4096) 

• The length of each field that is to be part of the key (the t,;.tal length of 
all fields that make up the key cannot be greater than 99 bytes) 

• The name of the physical file 

• Creation date of the physical file 

Chapter 5. Using a DISK File 5-65 



5-66 

• Whether duplicate key fields are allowed for the alternative index file 

• The preferred disk location 

For more information about the BLDINDEX procedure, see the System 
Reference manual. 

You can use an alternative-index file to do any of the following: 

• Read records sequentially by key field 

• Read records randomly by key field 

• Read records within key-field limits by using the SETLL operation or a 
limits file 

• Update records in the file 

• Delete records from the file 

• Add records to the file 

These are exactly the same operations that you can do with the primary 
index. The program does not know if the indexed file defined in the 
program uses the primary index or an alternative index file. All the 
program knows is that the file is an indexed file. Therefore, the program 
treats an alternative index file the same as the primary index. 

For more information about using alternative indexes, see the Concepts and 
Programmer's Guide. 

/ 
I 

'" 



Example of Creating an Alternative Index File 

Suppose that you want to create an alternative index for the file named 
MASTER that was created in Figure 5-14. To do so, you use the 
BLDINDEX procedure. For example, you might enter the following values: 

BLOlNOEX PROCEDURE Optional-* 

Creates an alternative index for a physical file 

Name of fi I e to be created 
Starting position for first field of key 
Length of first field 
Starting position for second field of key 
Length of second field 
Starting position for third field of key 
Length of third field 
Name of physical file . . . 
Creation date of physical file . 

1-4096 
1-120 

1-4096 
1-120 

1-4096 
1-120 

CUSTMAST 
20 
10 

MASTER 

. DUPKEY, NODUPKEY DUPKEY Allow duplicate keys . 
Preferred disk location Al,A2,A3,A4,block number 

Cmd3-Previous menu Cmd4-Put on job queue (c) 1985 IBM Corp. 

Chapter 5. Using a DISK File 5-67 



Example of Using an Alternative Index File with Only One Field as its Key 

Name of the 
alternative 
index 

_\ 

The following example shows how to use the alternative index named 
CUSTMAST, which we just created, to read records. 

The record length for the 
alternative index must be 
the same as for the primary 
index 

Length of the key 
field for the 
alternative index 

Starting position of 
the key field for the 
alternative index 

F 
'\.. - ------,-- - L 17 
File~~- Mode of Proce5~mg _ 

Hie ':?_~!';t.tion Length of Kl[ly F1elP. r 
Extent Exit 
for DAM 

File Addition/Unordered 

Number of Tracks 
1-- End~~lt of ""O'd A~' "'" l71 for Cylinder Overflow 

0i Record Ad· "5'- Type _: 
I!~.~ -..... Symbolic 
-•" ~Ty- of File 1!'! Oev1cf-: 

hie~~t ~ a 8 
Filename 

Name of 
Label Exit 

Storage Index 

Number of Extenti 

Tope 
Rewind 

~ !!! k ~ A"'e 
Ci i Block Record :II! ~ Overfiow Indicator ~ 

I!. 8 ~ '1! L.ongth nglh 1?'ml ~;y~~ ?: 3cJ ~ ~ t:~ St1:1rtmg 1w.., 
•

?E a ii; o u. - Location !L 
.... ::::: ii: w '<c Ext~ J Record ~ 2 K Option 

Line 

Continuation Lmes 

Entry 

~ 
Condition 
U1-U8, 

z UC......---

~ 
3 4 s • ..t:.-""I"'I-"'••~ ..... ~-"'J'lt""' ~s- 1s 11 1s 19 20 21 22 23 24 2s~~2s .Jt.31 3J 33 34 35 l6_t[]MJ9 t10 41 42 4:3 44 4& 46 47 48 49 so s1 si sJ 54 5s 56 s1 sa s9 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 2 

0 3 

0 4 
l--l-+-+-l--+--lf--4-+-+--+-·~~ 

Name of the alternative index 
_\._ 

Field Loci:ition I \J ~ 
1--i t!11e

0
n,ame Q.> -6 RC:!t;:ord ldentitication Code!! 

~ ~"' t----·-----,-----·--~--------< 
!l A.cord Name j i ~o: ~.~ :.1--·--'..-r-"1,-1----..-,-r-t---3 ........ -,--r-1 ~ 

Line ~ ::: --- ,,.; ~ § ~- jj al J5 u:: D<1t<1 Structure 

§ O A ~ j ~ Position ~ ~ ~ Position = ~ ~ Po~itmn ~- 12 ~ ] ~1-----r-----l 
u. St~)are 1'7'At'::'Nl-::"ID .;; co. ,! ~ U 6 ~ 0 6 ~ ~ 6 ~ ~ Occurs ~ ..... .... nTimes 

External Fii:!ld Name 

To 

1----~-----; 

From 

length 

RPG 
Field Name 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

3 4 5 61 T If 9""10 1 f"" 15 16 17 18 19 20 21 2'.1 2J 24 25 26 27 28 :'a 30 31 J2 3j :>4 3!i 36 37 38 39 40 41 42 43 44 45 4t> 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 ' I l1SITIM l:>-1 I!'\ l 
0 2 

0 4 

I 20 ~lei A [11<""1yj 
i-;o f-t3 -+1-+-+-+-+-->---+-+-+--+--+-+-,_.__.-+-+-·-+-+-+--+-+-+--+--+--+---•~--+----+--+--+-+--+--<-+----<-- t-t---Hll"'l-++~'+"'l--JEJ;LlfAtf'-l'lA-'l--t-++-1-+-+--+++++-+-1-+-+--H-l 

I I 

Name of the alternative index 

.----.--...--------~------.. ---..----.. --c I ndicdturs Result Field 

~ - ~~~~:t:;.: 
I-- i Q I I i 'i' Pl"'IMinu• Z0<0 

w ~ 7- Factor 1 Operation is t: Compare 

Line ~ ~ : NatTie Length ~ ~ 1 > ~1 < tl_1 - 2 
E ~ V> .5 ~ Lookup~Factor 2)is 

if 8 ~· ~ ~ ~ ~ ~ High Low F.qual 

Resulting 

Comments 

3 4 s e 1 a 9 10 11 12 13 14 is 16 11 18 10 w 21 22 23 24 :l!l 26 2.,f2s 29 30 31 ~2L~34 'J5 36 37-.:!~ 39~ 41 4143 44 45 46 47 48 "-9 so 51 s2 53 54 :.5 56 s1 58 59 so 61 62 63 64 65 se s1 ss 69 10 11 12 13 14 

lklEJA - -~Lli,., - LL 0 1 c II< 
0 2 c N 
0 3 c 

.-Q---..-------._-~"'~"'~,..S-P•_c.,• --Sk--ip--r--0-u--tp_u_t_I ,-,d-ic·a--to-:-r-"---···---[--=====> Commas Zero Balances No Sign CR X = Remove 

~ --.. u.. Fie-Id Name to Print y = ~:t~ Sign 5 . 9 = 

Filename ~ ~ w r --l EXCP~r Name Yes Yes A J Field Edit User ! or !.~ ~ !l And A~d End Yes No B K z =Zero Defined 

E Record Name ~ ~ ~ a:: ~:s1t1on ~~ ~:s C M Suppress 

~ ~~ ~ Houtput ~ 
o R ,.g .... 0 •AUTO '"' :ct:" Record .... Constant or Edit Word 
~ ""-- ~ z ~ m I::: ' 1 2 3 4 5 e 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ' 

10 11 12 13 14 15 16 17 18 19 20 21 2:! 23 24 25 :.16 27 28 29 JO 31 32 33 34 J!5 36 37 38 39 40 41 42 43144 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

Line 

3 4 5 6 7 8 9 

0 1 OIPIHI PIH~f\ I 
o ALTIHl1=1)'1 15 0 2 

0 4 

5-68 



Using an Alternative Index File with Noncontiguous Fields as its Key 

F 

Filename 

To use an alternative file index with noncontiguous fields as its key, 
describe the file in the unshaded columns of the file description 
specifications shown below: 

File Tvpe Mode of ProcP.ss1.1g Fite Add1l1on!Un0tderet 
·---·- ·----~ 

Ftle Oes1qnat1on 

End of File 

Sequence 
?' 

Symbolic l/) 

Extent Exit 
for DAM 

Number of Tracks 

for Cyhnder Overflo 

Number of Exter 

DN•Ce Device 

N<1meot 
Label Exit 

T•oe 
Storage Index Rewind 

File 
Cnnditi1 
U1·UB, 

z UC 

Columns 7 through 14 must contain the name of the alternative index file 
with noncontiguous fields as its key. 

:; 
iC 

Column 15 must contain I or U. I indicates that the file is an input file. U 
indicates that the file is an update file. 

Column 16 must contain P, Sor F. P indicates that the file is a primary 
file. S indicates that the file is a secondary file. F indicates that the file is 
a full-procedural file. 

Columns 20 through 23 must contain the block length or blanks. 

Columns 24 through 27 must contain the the record length. The record 
length for the alternative index must be the same as for the primary index. 

Column 28 must contain blank, R or L. 

Columns 29 and 30 must contain the total length of the key. The maximum 
total length a key can be is 99 positions. 

Column 31 must contain A to indicate that the key is in zoned-decimal or 
alphameric format (packed-decimal format is not allowed). 

Column 32 must contain I to indicate that the file is an indexed file. 

Columns 35 through 38 must contain EXTK, to indicate that the file has 
noncontiguous fields as its key. 

Columns 40 through 46 must contain DISK. 

Chapter 5. Using a DISK File 5-69 



Reading an Indexed File 

Records can be read from an indexed file in the following ways: 

• Sequentially by key field 

• Sequentially within key-field limits 

• Randomly by key field 

• Randomly and/or sequentially by key field 

• Randomly by address output (addrout) file 

Note: An indexed file can also be read without using the index. When this 
is done, only the data portion of the file is used. There are three ways to 
read an indexed file without using the index: 

• Consecutively 

• Randomly by relative record number 

• Randomly by relative record number and/or consecutively 

To read an indexed file in any of these ways without using the index, code 
the file as a sequential file. For more information about coding a 
sequential file, see Sequential Files earlier in this chapter. 

Reading Sequentially by Key Field 

F 
Filename 

Line 

5-70 

Fiie Type 

When a program reads an indexed file sequentially by key field, it reads the 
records in the order in which the key fields a.re sequenced, not in the order 
in which the records exist in the file. 

If you want to read records sequentially by key field, code entries in the file 
description specifications shown below: 

Mode of Processing 

File Designation Length of Key Field or Extent Exit 
for DAM 

File Addition/Unordered 

Number of Tracks 
of Record Address Field 

End of File 
for Cylinder Overflow 

Sequence 
Record Address Type ~ 

File Format 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Columns 7 through 14 must contain the name of the file. 

Storage Index 

Column 15 must contain I to indicate that the file is an input file. 

Number of Extents 



Column 16 can contain P, S, or D: 

• If you code P (primary) or S (secondary), the file is read as part of the 
RPG program cycle. For an explanation of how primary and secondary 
files are read, see Chapter 11. 

• If you code D (demand), you must code a READ operation in the 
calculation specifications in order to read the file. For information 
about the READ operation, see Chapter 28. 

Column 17 can contain E or blank if column 16 contains P or S. E 
indicates that the program must process every record in the file before the 
program ends. Blank indicates that the program can end whether or not 
every record in the file is processed. 

Column 18 can contain A, D, or blank if column 16 contains P or S: 

• A indicates that the program checks that the records in the file are in 
ascending sequence. 

• D indicates that the program checks that the records are in descending 
sequence. 

• Blank indicates that the program does not check the record sequence. 

Column 19 must contain F or blank. 

Columns 20 through 23 must cont_ain the block length or blanks. 

Columns 24 through 27 must contain the record length. 

Columns 29 and 30 must contain the total length of the key. 

Column 31 must contain A or P. A indicates that the key fields are in 
zoned-decimal or alphameric format. P indicates that the key fields are in 
packed-decimal format. 

Column 32 must contain I to indicate that this is an indexed file. 

Columns 35 through 38 must contain the record position in which the key 
field begins, if the Key has only one field. If the Key has noncontiguous 
fields, columns 35 through 38 must contain EXTK. 

Columns 40 through 43 must contain DISK. 

Columns 71 and 72 can contain an external indicator, Ul through US. 

Chapter 5. Using a DISK File 5-71 



Reading Sequentially within Key~Field Limits 

A program can process an indexed file sequentially within key-field limits 
in either of two ways: 

• Using a limits record 

• Using the SETLL operation 

Both methods allow you to limit the key fields of the records you want your 
program to process. If you want to read records sequentially within 
key-field limits, code entries in the unshaded columns of the file description 
specifications shown below: 

.----.-----·~-----------.--------.-,---------- -·----,;-.------.----~----~ 

F 
Filename 

Line 

5-72 

File Type 

File Designation 

End of File 

Sequence 

File Format 

~ 
~ Block 
~ Length 

Record 

Mode of Processing 

length of Key Field or 
of Record Address Field 

Record Address Type ..J 

~---~U; Device 

File Addition/Unordered 

Extent Exit Number of Tracks ;;; for DAM for Cylinder Overflow 
~ 

Symbolic in Name of Number of E:ictentt 

Device :ii 
Label Exit 

Tape 
.'.l Storage Index Rewind 

c ... 
Lengtl1 ~ 

Columns 7 through 14 must contain the name of the file. 

Column 15 must contain I to indicate that this file is an input file. 

Column 16 must contain P, S, F, or D: 

• If you code P (primary) or S (secondary), the program reads a record 
from the file at input time of the RPG program cycle. For an 
explanation of how primary and secondary files are read, see Chapter 
11. 

• If you code F (full-procedural), the program reads a record when a 
READ, READE, READP, or CHAIN operation occurs in the calculation 
specifications. Only the READ operation code may be used if the file is 
to be processed within limits using a limits record. When the file is to 
be processed within limits using the SETLL operation code, the SETLL 
must be immediately followed by a READ, READE, or READP 
operation. When a CHAIN operation occurs, the limits set by the 
SETLL operation are set off. For information about the READ, READE, 
READP and CHAIN operations, see Chapter 28. 

• If you code D (demand), the program reads a record when a READ 
operation occurs in the calculation specifications. For information 
about the READ operation, see Chapter 28. 



Column 18 can contain A, D, or blank if column 16 contains P or S: 

• A indicates that the program checks that the records in the file are in 
ascending sequence. 

• D indicates that the program checks that the records are in descending 
sequence. 

• Blank indicates that the program does not check the record sequence. 

Column 19 must contain F or blank. 

Columns 20 through 23 must contain the block length or blanks. 

Columns 24 through 27 must contain the record length. 

Column 28 must contain L to indicate that the file is processed sequentially 
within limits. 

Columns 29 and 30 must contain the total length of the key. 

Column 31 must contain A or P. A indicates that the key fields are in 
zoned-decimal or alphameric format. P indicates that the key fields are in 
packed-decimal format. 

Column 32 must contain I to indicate that this is an indexed file. 

Columns 35 through 38 must contain the record position in which the key 
field begins, if the key has only one field. If the key has noncontiguous 
fields, columns 35 through 38 must contain EXTK. 

Columns 40 through 43 must contain DISK. 

Columns 71 and 72 can contain an external indicator, Ul through U8. 

Chapter 5. Using a DISK File 5-73 



Using a Limits Record 

5-74 

When a program processes an indexed file sequentially within key-field 
limits by using a limits record, it first automatically reads a limits record 
from a record address file assigned to a DISK or CONSOLE device. A 
limits record contains the lowest key field and the highest key field of the 
records in the indexed file to be processed. The program reads records from 
the indexed file in ascending order of key field, from the low key field in the 
limits record to the high key field in the limits record. When the upper 
limit is passed, the program automatically reads another limits record from 
the record address file and sets new limits. This process continues until the 
program reaches the end of the record address file or until the program 
ends because another file reaches the end-of-file condition. 

Each limits record contains only one set of limits (the low key field and the 
high key field). The low key field must begin in position 1 of the record, 
and the high key field must immediately follow the low key field. 
Therefore, the length of a limits record is twice the length of a key field. 
The length of a key field can be from 1 through 99 positions for a file 
processed using a DISK device, and 1 through 29 positions for a file 
processed using a console device. The low key field and the high key field 
must have the same length, and that length must be the same as the entry 
coded in columns 29 and 30 of the file description specifications. Therefore, 
you may have to code leading zeros when you use numeric key fields. An 
alphameric key field can contain blanks. A key field cannot contain any 
hexadecimal FF characters. For files with noncontiguous keys, the low and 
high key fields in the limits record contain all subfields that make up each 
noncontiguous key. 

You can use the same set of limits in more than one limits record. 
Therefore, you can process data records within those limits as many times 
as you want. If the two key fields in a limits record are equal, the program 
reads only one data record. 

The key fields in the limits records can have a different format from the key 
fields in the files being processed by limits. For example, one can have a 
packed-decimal format, and the other can have a zoned-decimal format. If 
the formats differ, the format of the key fields from each file must be 
indicated by A or P in column 31 of the file description specifications, and 
the length of the zoned-decimal key field must be twice the length of the 
packed-decimal key field, minus one or two. See Column 43 (Packed or 
Binary Field) in Chapter 25 for information about this calculation. While 
the program is running, the format of the key fields in the limits records is 
changed to the format of the key fields in the files being processed by 
limits. 

To use the record address file from which the limits are read, entries are 
required in the file description and extension specifications. No input 
specifications are required for the record address file. 



F 

filename 

Line 

File Type 

Code entries in the unshaded columns of the file description specifications 
shown be low: 

Mode of Processing 

file Designation Length of Key Field or Ex.tent Exit 
for DAM 

File Addition/Unorderec 

Number of Tracks 
for Cylinder Overflo' of Record Address F1e1d 

End of File 

Sequence 
Record Addtes~ Type ~ 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Storage Index 

Tape 
Rewind 

File 
ConditiCI 
U1-U8, 

z UC 

~ 
a: 

Columns 7 through 14 must contain the name of the file. 

Column 15 must contain I to indicate that the file is an input file. 

Column 16 must contain R to indicate that the file is a record address file. 

Column 17 must contain E or blank. E indicates that all records from the 
file must be processed before the program can end. Blank indicates that the 
program can end whether or not all records from the file are processed. 

Column 19 must contain F or blank. 

Columns 20 through 23 must contain the block length or blanks. 

Columns 24 through 27 must contain the record length, which should be 
two times the length of the key field. 

Columns 29 and 30 must contain the length of the key field. 

Column 31 must contain A, P, or blank. A or blank means that the key 
field is in zoned-decimal or alphameric format. P means that the key field 
is in packed-decimal format. Column 31 must contain A or blank if columns 
40 through 46 contain CONSOLE. 

Column 39 must contain E to indicate that the file is further described on 
extension specifications. 

Columns 40 through 46 must contain DISK or CONSOLE. 

Columns 71 and 72 can contain an external indicator, Ul through UB. 

Chapter 5. Using a DISK File 5-75 



E Record Sequence of the Chaining File 

Number of the Chaining Field 

Line 

From Filename 

Two entries are required on the extension specifications: 

Number 

To Filename 

of Number c - Table or .g e Table or Length .2 0 Length Entries of 

j~ ArraylName 
Array Name ... Entries of of ·s ~ 

Record Per Table Entry 
~ ~ ~ 

(Alternating Entry ~ ~ s or Array 
Format) 

Qi ·u .8 ~~j a: ~ 

Comments 

Columns 11 through 18 must contain the name of the limits file. This name 
must be the same one coded on the file description specifications for the 
limits file. 

Columns 19 through 26 must contain the name of the indexed file to be 
processed by the limits file. This name must be the same one coded on the 
file description specifications for the indexed file. 

Using the SETLL Operation 

5-76 

The SETLL (set lower limit) operation allows you to set the lower limit for 
the key field during the calculations part of the RPG program cycle. You 
can use the SETLL operation to process any indexed file that is used as a 
demand or full-procedural file (that is, any file that has D or F in column 
16, L in column 28, and I in column 32 of the file description specifications). 
However, you cannot process an indexed demand or full-procedural file with 
the SETLL operation if you are using a record address file to set the 
key-field limits for the file. The maximum number of files that you can 
process with the SETLL operation is limited by the number of demand and 
full-procedural files that an RPG program can use. The number of demand, 
chained, and full-procedural files that an RPG program can use cannot total 
more than 15. 

Factor 1 of the SETLL operation must contain either the name of a field 
that contains the lower limit being set or a literal that is used as the lower 
limit. The name of the field containing the lower limit may be the name of 
a data structure subfield. Noncontiguous keys may be created to specify the 
lower limit by using alternative indexes and data structures to process the 
file. See Creating an Alternative Indexed File for an Indexed File in this 
chapter. 

Factor 2 must contain the name of the file for which the lower limit is 
being set. 

The SETLL operation must be followed by a READ, READE, or READP 
operation. Otherwise, the SETLL operation is ignored. The READE 
operation reads the next record if factor 1 of READE matches that record's 
key. The READP operation reads the record prior to the lower limit 
specified. Other operations (except for input operations) can come between 
the SETLL and READ, READE, or READP operations. 



Figure 5-15 shows an example of SETLL coding for the SMASTER file and 
an example of using a limits record to process the MASTER file. 

~--~---·-----.-----··--·-·--···-·--·----.---- --·-· ·--- ----,,------r------.-.------r----~------f File Type Mode of Pror.P~~mq File Add1t1on/Unorder1 

i---;:;-;Desi;ation -----·-~ Length of KP'I Field or Extent Exit Number of Tracks 

t----i ,--_ of Record Address Field ~ for DAM for Cyhnder Overfl, 

End of F•~----·-----1 ~~rd Address Type ...J Z ~ Name of Number of El(,u 

Se~-----------1 r-;:ypeof~~ OevKe ~~~::lie Us LabFI Extt r-;:;;-
"" '·~ ____, : ::::::::.~.: ! ! ,.,. ,_ = 

E 0 ~ 
k Record ~ t Overflow ~cator ~ Condit 

~ gth Length , o rFev F7ei(i"l x u1-us 
u - '.§ ~ ~ J_~arti':lg u.i Continuation Lmes ~ UC r 

Filename 

Lu,. 

~ w ~ -· E~ternal Record Name - b!>~ K Option Entry ~ ~ 
3 4 5 6 1 8 9 10 11 17 13 14 1<; 16 17 18t;s;o· :n :n 23 24 2!":1 2ti 27 28 29 JO 31 32 33 34 35 36 37 38 39 40 41 41 43 44 45 46 47 48 49 50 51 52 53 54 !JS 56 !J7 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 7 

0 2 F lI!M [[I 5 I~ IF! 11" ibJ ~ IE[r~ltJlt;~ Ir 
0 3 F MIAl~w'"-IR 1 P lEJ 121a;,; IJ4 ~if l1 1n11 slH - ~ H 

0 • F PBlilNII V"i r1 l1 11"\: _ ~ ~lir.JIIIE1~ -+-+-<-+-l-+--+--1- t-t---r 

0 5 F5JMA151I"" R TD F1 ~~ '-14 ~I .11 Dil'lM : H-t---
-t--t---l-+-+-+--+-r-+-+-+--+-+---l-+-+-+-+..-ji--1--+-+--l-j~-I-

o 6 F 
I - -t--+-1 - I-+--+-+-+-r-+-+-+-+--~--4-+-l-+--I-

The input DISK file, MASTER, is an indexed file to be processed within the key-field limits contained 
in the record address file, LIMITS. The LIMITS file, which if further described on the extension 
specifications, is entered from the CONSOLE device. 

Each set of limits read from LIMITS consists of the low and high account numbers to be processed. 
Because the account number key field (ACCT) is 8 positions long, each set of limits includes two 
8-position key fields. 

~--~------"·-

E Record Sequence of the Chaining File 

Number of the C1·, .. uning Field 

Line To Filename 

From Filename 

Number 
of 

Table or Entries 
Array Name Per 

Record 

Number 
of 
Entries 
Per Table 
or A1ray 

Length 
of 
Entry 

Table or 
ArrayiName 
(Alternating 

Format) 

Length 
of 
Entry 

Comments 

As MASTER is processed within to each set of limits, the corresponding records are written to the 
PRINTER output file, PRINT. Processing is complete when all sets of limits have been processed. 

Figure 5-15 (Part 1 of 2). Processing an Indexed File Sequentially within Key-Field Limits by 
Using the SETLL Operation for SMASTER and by Using a Limits Record 
for MASTER 

Chapter 5. Using a DISK File 5-77 



I 
I--- Filename 

or 
Record Name 

External F ie!d Name 

Record Identification Codes Indicators 
Field Location ~ 

~ -g 

Field 

?:l ·;VJ 
er w VJ .s: ° From To RPG "' "' 
Jl ~::l~o. ]~ 

Zero 
Line 

= 0.-: j: Field Name IL u. 
E ,_ _ ~ _ !!! Data Structure ! ·.~ 
J:.'------......+~_.ll g 'E Posit.on ~ e_ Position ~ e_ ~ Pos1tjon ~ .e .., ':: 

D.ita ~E·.;;3 ON~ 0~2 Ot::J Occurs "'~ 

Plus Mfnus or 

Blank 

S%~~~re A N D ~ g ~ z U u z u u z u n Times Length :::!! u 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21f2a 29 30 31 32 33 34 JS 36 37 38 39 40 41 42 43 44 45 4b 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 IIMIAls[TIEIR N~ lo.h 
o 2 I 

o 3 I 
0 4 11C.· 

o s I 

o 6 I 

o 1 I 

c 
I---

Factor 1 Operation Factor 2 

line 

l 
[q 

[q 

Result Field 

Name Length 

Resulting 
Indicators 

Arithmetic 

:~ ;. Plu:j_Min~ Zero 
IS t: Compare 

~ ~ 1>?_[1<~.1:1-2 
~ ~ Lo.okup(Factor 2)is 

o ::r: High Low F.qual 

Comments 

3 4 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ?O 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 n 73 74 

o' ci ~ 
o , c I~ 11'!9]9 
0 3 c rRINlqq 
o • ct Ill 
o s cl1 '"'Pt! q~ 

File SMASTER is processed by the SETLL operation code. It uses no extension specifications, and 
its filename appears in factor 2 of the SETLL operation code. In this example the first record read 
from file SMASTER would be the one whose key field is equal to or the next higher than the literal 
'AAAAAAAA'. Records are read sequentially to end of file unless the cycle is interrupted by 
additional SETLL operations. 

0 
~ 

8 
?:: 

Line ~ 

Filename 
or 

Record Name 

User 

-~ ~ ~ ¥ Space Skip Output Indicators Field Name Commas Ze~~ ~~:~~ces No Sign CR - X"' :,:~~~gen 5. 9"" 

€ ~ or Y=Date 
!. ~ "' T T EXCPT Name Yes Yes 1 A 
!~.£ ~ A~d And End Yes No 2 8 
~ ~ a: Position No Yes 3 C 

D E L ~ ~ Ql Ci> in No No 4 D M 
~ ~ <r 8 5 Output ~ ~-~---~--~~~~---~----! 

0 R 0 O 0 .. AUTO .... ~ Record C:i Constant or Edit Word 
~ 2 2 2 ~ ca D:" 1 2 3 4 5 s 1 0 9 10 11 12 13 14 15 1s 11 10 19 20 21 22 23 24 

J Field Edit 
K Z=Zero 

Suppress 

Defined 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

01 oPBINT 1 ~1 
0 2 0 

0 3 0 

0 4 0 tr l I~ 
0 5 = 
0 6 0 
0 7 0 N ME Rlt2 
0 8 0 
l-l-+-+-+-l-l-4-+-!-+-+-+-!-++-+-l-++-+-!-++-+-l-++-+-+--+-+-l-l-++-+-!-+-1--1-~--I-·~-+ '·+-+-+-+--+-+-t-+--+-+-1-+--+-+-+-+-+-+-< ....... -l-->-+-+-+-4-I 

Figure 5-15 (Part 2 of 2). Processing an Indexed File Sequentially within Key-Field Limits by 

5-78 

Using the SETLL Operation for SMASTER and by Using a Limits Record 
for MASTER 



Reading Randomly by Key Field 

F 
Filename 

Line 

File Type 

You can process an indexed file randomly by key field only if it is a chained 
file (that is, if it has C in column 16 of the file description specifications). 
You must use the CHAIN operation to read a record from the file during 
the calculation part of the RPG program cycle. 

If you want to read an indexed file randomly by key field, code entries in 
the unshaded columns of the file description specifications shown below: 

Mode of Processing File Addition/Unorde1 

File Designation Length of Key Field or Extent Exit 
for DAM of Record Address Field 

End of File ~ z 
Number of Tracks 
for Cylinder Overt1 

Sequence 
Record Address Type ...1 

~----i;;i Device 
Symbolic in 
Device 

Name of 
Label Exit 

Storage Index 

Nurnber of Ext 

Tape 
Rewind 

File 
Condi 
U1-UI 

z UC 

~ 

Columns 7 through 14 must contain the name of the file. 

Column 15 must contain I to indicate that the file is an input file. 

Column 16 must contain C to indicate that the file is a chained file. Note 
that column 16 must not contain a C if the key has noncontiguous fields. 

Column 19 must contain F or blank. 

Columns 20 through 23 must contain the blocklength or blanks. 

Columns 24 through 27 must contain the record length. 

Column 28 must contain R to indicate that the file is processed randomly. 

Columns 29 and 30 must contain the total length of the key. 

Column 31 must contain A or P. A indicates that the key field is in 
zoned-decimal or alphameric format. P indicates that the key field is in 
packed-decimal format. 

Column 32 must contain I to indicate that the file is an indexed file. 

Columns 35 through 38 must contain the record position in which the key 
field begins, if there is only one field in the key. If the key has 
noncontiguous fields, columns 35 through 38 must contain EXTK. 

Columns 40 through 43 must contain DISK. 

Columns 71 and 72 can contain an external indicator, Ul through U8. 

Chapter 5. Using a DISK File 5-79 



Reading Randomly and/or Sequentially by Key Field 

F 
Filename 

Lina 

5-80 

File Type 

If you want to read records both randomly by key field and sequentially by 
key field, use a full·procedural file (F in column 16 of the file description 
specifications). You can read a full·procedural file randomly by key field by 
using the CHAIN operation, sequentially by key field by using the READ, 
READE, or READP operation, or both randomly by key field and 
sequentially by key field by using either the CHAIN and READ, READE, or 
READP operations. It is not necessary to use both a CHAIN and either a 
READ, READE or READP operation, but you must code at least one 
CHAIN, READ, READE, or READP operation in the calculation 
specifications in order to read a full·procedural file. 

Code the unshaded columns of the file description specifications shown 
below: 

Mode of Processing 

File Designation Length of Key Field or 
of Record Address Field ~ 

Extent Exit 
for DAM 

File Addition/Unordered 

Number of Tracks 

End of File ~ Name of 
f01 Cylinder Overflow 

Sequence Device 

File Format 

Symbolic 
Device "' Label Exit 

~ 

Columns 7 through 14 must contain the name of the file. 

Storage Index 

Number of Extents 

Tape 

Column 15 must contain I to indicate that the file is an input file. 

Column 16 must contain F to indicate that the file is a full-procedural file. 

Column 19 must contain For blanks. 

Columns 20 through 23 must contain the block length or blanks. 

Columns 24 through 27 must contain the record length. 

Columns 29 and 30 must contain the total length of the key. 

Column 31 must contain A or P. A indicates that the key field is in 
zoned·decimal or alphameric format. P indicates that the key field is in 
packed-decimal format. 

Column 32 must contain I to indicate that the file is an indexed file. 

Columns 35 through 38 must contain the record position in which the key 
field begins, if the key has only one field. If the key has noncontiguous 
fields, columns 35 through 38 must contain EXTK. 

Columns 40 through 43 must contain DISK. 

Columns 71 and 72 can contain an external indicator, Ul through US. 



Example of Reading an Indexed File Randomly and Sequentially by Key Field 

Suppose you want to print a list of all the employees in a particular 
department. Figure 5-16 shows how to do so. The department number is 
entered in the first 5 positions of the local data area. The program uses this 
department number as the key field. The CHAIN operation reads the first 
record that has the desir•.:ld department number in the DEPTNO field of the 
EMPLOYEE file. The READ operation then reads sequentially all the 
other reccrds that have the same department number. 

Chapter 5. Using a DISK File 5-81 



LiM 

! 
~ 

J 4 •• 
0 2 

0 3 

0 4 

I 
1--

Line 

Filename 

File Type 

File Designation 

End of File 

Sequence 

Mode of Processing 

Length of Key Field or 
of Record Addreu Field 

Record Addreu Type ~ 

Type of Fila 
Fiie Format N OrQflrtfatlon or .g 

u. ~ 5 Addid!inal Area B 
2S i Block Record ~ ~ Overflow Indicator ·I 

g ~ ~ l.enfllh l.enfllh IC ~'l ~~ 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

Continuation Lints 
~g i;:::l: :l d i=-
g CL:' w <i: External Record N1me K Option Entry 

File Addition/Unordtrtd 

Numb« of TrlCks 
fOf Cylinder Overflow 

Number of Exttnt1 

TIPI 

~ 
Condition 
U1·UB, 

i!: UC ,-'--i 

~ 
7 8 9· 10 1t 12 .!i..14 15 18 17 18 19 20 21 22 23 24 2(; 2S 27 28 29 30 31 32 33 34 3& 36 37 JB[jj 40 41 42 43 44 45 48 47 48 ~9 50 51 52 53 54 55 56 57 58 59 60 81 82 83 64 66 66 87 88 88 70 71 72 73 7<4 

Filename 
or 

Record Name 

~ 
g RPG 

... 
·~ 

~ Field Name il 
~ 

Field 
Indicators 

External Field Name 
~ Field Location 

~ f Record Identification Codes .§ 

i w g> ~ 1 2 3 F T -~ ~ 
<ni;j.~a. ti rom o :E~a:: 

c: "' ~£ 'E Zero 
2: 6 .g ! t _ !l - !! ~a: Data Structure - g' r ! Plus Minus or 

Data 0 A j j' ] Position ~ ~ ~ Position ~ZO ~u u~ Position 2~ ~ J i ~ Occurs .§ l j :~ ~ Blank 

St~~';~re ~ ;i 8- ~ ~ U 6 u u <n o.. n Times Length ~ U i c5 ~ 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 49 50 51 52 53 54 55 56 57 58 69 60 61 62 63 64 85 68 67 68 89 70 71 72 73 74 

0 1 I~ 
0 2 I 
0 3 I 
0 4 I 
0 5 I 
0 6 I 
0 7 I 
0 8 I 
0 s I 

"" 

~R 
l~lt1.LN 

IEl 

] The number of the department to be printed is in positions 1 through 5 of the local data area. r+-1-+-+-+-1 

l1 19 

Indicators Result Field R11ultlng 
lndlc1tor1 c -I 

AL AL 
Arithmetic I-- !3- • :: is i5 - Plu1j_Mlnu1 Zero :e .= 

~ ~ z Factor 1 Operation Factor 2 .!' l Compare Comments 
... < Name Length 1>~1<~1·2 Line I- 0 a::· n E ~"' Lookup(Factor 2)11 

if 8 5· ~ s s H High Low F.qual z z 
J 4 •• 7 8 9 10 '1 1 ' ,, 14 15 18 17 18 19 20 21 22 23 24 25 26 27 ~ 29 30 31 32 33 34 35 36 37 38 39 <40 41 <42 43 44 <46 48 47 48 49 50 51 62 63 54 55 56 57 68 69 so 61 82 83 64 65 68 e1 ss ee 10 11 12 13 14 

0 1 c l 
0 2 c 
0 3 c The CHAIN operation reads the first record that has the requested department number. If the 
0 4 c department number is not found, an error message is printed. 
0 5 c 
0 6 c "tJ IM HAJ IIN 91? ~l'>:' EF1 Al"! 
0 7 c ~~ xJrl lt'.l llM 
0 s c I ·vi IFIND l 
0 9 c 

Figure 5-16 (Part 1 of 2). Reading an Indexed File Randomly by Key Field and Sequentially by Key 
Field 

5-82 



~--~------------..---------T-----.----------- -------------..1-r-·-.,,--..,-,.-.....,.--~-~-"--··--------

- !m1icators Resuit FPe!~ ~n~;~~~:~s 
:'l I J -----,---·--r-1 A<ithm•tio 

c 
1----i ~ ~ And And Factor 1 ·@ ~ Plus ~mu.:.L Zero 

.., i; z Operation Factor 2 ~ ~ Compar~ 
Une £ ~ ; Name Length iii '9 1'>2 1 < ~ ""2 

Comments 

~ E :- () 0 O ~ ~ Loolr:up(Far1N 1)1s 

if 8 -...1 z z Z Ci r High Low Equal 
J 4 5 s 1 s 9 10 11 12 1:1 14 15 16 n 1a 19 20 21 22 23 24 25 26 21 fia 29 Jo 11 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 sos~ 52 53 54 Sfi 56 s1 sa 59 so a1 s2 63 64 65 66 61 sa 69 10 11 n 13 14 

o ' c _r • . -- . . ::! . . ... . . ::i:._ __ .,... . --·'" _:!" __ .... -i--1---1--1-

0 1 c ] Now, reading sequentially, we can read the records for the rest of the employees in the department. 

-r-;---+-+-+-+-+-r--+-+·-t--t---t-t-+-+-+-1-~-+--+-+-+-"-+-+--+--+-+-~r-i-+-+--+-·+-

1 0 

1 1 

1 2 c 
1 3 c II:.[~ 
1 4 c 

,__,,__._,__.__._._.__.-+-+--+-+-f-+-+--+--+-+->--+-+-+--+-+-+-t-+-+--t-+-;---f-+-+--+-+->--+-+-+--+-~-·___,-+-+-·-+--t-+-.-+-+-•i--t-+-<--"-+--l-+-+-l--11-4-+-+--l--l-+-I-+-

----------~~-~----------~-----~-----·~~~· .. -----·---·-·-· -----------------.---
'!: 0 

1--

~ 
~ 

Line ~ 

Filename 
or 

Record Name 

.----y------,----.--.-.-----~----1 
W-£ Space Skip Output!ndiC'il!OfS ~--- ----~ r..rrnmt1" l·..:10Balance~ NoS1gn CR X- A!:>move 

j:: t FieldN;:im-e rr--·--;:--i./:> toPrint -· PlusSiqn 5 _9 "' 

~ ; T -T or Ye~ Yes 1 A J Y Date User it? ~ ~ A~d A~d EXCPT Name End Yes No 2 B K z"' ;~~~Edit Defined 

I-~ a: Position Nn Yes 3 C l Suppress 
D E l 0 t :C ~ in ,.. No Ne 4 D M 
~ ~ ~ 8 5 Output ;i -···--·-- --------~-------------· ·-·--· ---- ----

0 A 0 o 0 "AUTO .'!::: ~ Record m Constan"! or Edi"' Word 

3456789 
~ z z z ~ 00 °'~ 1 2 ~.;~~~~~~~~~~22 23 24 ' 

10 11 12 t3 14 15 16 17 18 19 20 21 2'2 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44~48 49 50 5~ G2 53 54 55 55 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 7 

0 1 o[IIlcfi: me 
0 2 0 

' 
0 3 0 

o • lo 
1'1fU IN 1.- 181~1< ' 

o s o 11 ll"'IKll 11::. It' 

~o-l-l6_,_o+-+-+-+-+-+-+--H~++-l-+-+-+-+-++-+-1-+-Hr+-H~~1r~U~M'n~f-+--t-i'""+'+-+-+-+-+-+-++-+-t+-+cc-+·-H-++-l-+-+-0-+-t-i-+-t-i1-++-t 
o , o 1r-111 ~lfW J5 
as o CT F:~ w 'Ir 
0 9 0 

1 0 0 

'' lo 

Figure 5-16 (Part 2 of 2). Reading an Indexed File Randomly by Key Field and Sequentially by Key 
Field 

Chapter 5. Using a DISK File 5-83 



Reading Randomly by Address Output (Addrout) File 

F 
Filename 

Line 

5-84 

File.Type 

An address output (addrout) file is a record address file produced by a sort 
program. (A record address file is an input file that tells the program which 
records to read from a DISK file and the order in which to read them.) An 
address output file contains the relative record numbers of the records in a 
DISK file. The advantages of an address output file are that: 

• The space required for the address output file is much less than the 
space required for a sorted sequential file. 

• The sort runs much faster. 

• The original file is unchanged. 

You can have only one address output file in a program. When an RPG 
program uses an address output file, it reads the relative record numbers 
consecutively from the address output file. Then, using the relative record 
number, the program randomly reads the DISK file to process the 
corresponding record. In this way, the program can process an indexed 
DISK file in a new sequence without actually sorting the records and 
creating a new file. Also, once the file description and extension 
specifications are coded for the DISK file and for its associated address 
output file, you can code the DISK file as an ordinary indexed file. No 
input specifications are required for the address output file. 

If you want to read records randomly by an address output file, code the file 
description specifications as shown below: 

Mode of Processing File Addition/Unordered 

File Designation Length of Key Field or Extent Exit Number of Tracks 
~ for DAM 

End of File 
of Record Addres~ Field 

~ for Cylinder Overflow 

Sequence 
Record Address Type ~ 
~-----<Ui Symbolic 

z Name of Number of Extents in 
Type of File 

N Organization or ~ 
~ Additional Area c 

"' . ~ t:: Overflow Indicator -~ 

~ ~ ~~trr!:'d ~ 
q :::: Location 

Device Device :ii 
Label Exit 

:i 

Columns 7 through 14 must contain the name of the file. 

Storage Index 

Column 15 must contain I to indicate that the file is an input file. 

Column 16 must contain P (primary) or S (secondary). For an explanation 
of how primary and secondary records are read, see Chapter 11. 

Column 18 must contain A, D, or blank: 

• A indicates that the program checks that the records in the file are in 
ascending sequence. 

• D indicates that the program checks that the records in the file are in 
descending sequence. 

Tape 
Rewind 



• Blank indicates that the program does not check the sequence of the 
records in the file. 

Column 19 must contain F or blank. 

Columns 20 through 23 must contain the block length or blanks. 

Columns 24 through 27 must contain the record length. 

Column 28 must contain R to indicate that the file is processed randomly by 
an address output file. 

Columns 29 and 30 must contain the total length of the key. 

Column 31 must contain I to indicate that relative record numbers from the 
address output file are used to process the file. 

Column 32 must contain I to indicate that this file is an indexed file. 

Columns 35 through 38 must contain the record position in which the key 
field begins, if there is only one field in the key. If the key has 
noncontiguous fields, columns 35 through 38 must contain EXTK. 

Columns 40 through 43 must contain DISK. 

Columns 71 and 72 can contain an external indicator, Ul through US. 

Chapter 5. Using a DISK File 5-85 



F 
Filename 

Line 

5-86 

File 'Type 

For the address output file, code entries in the unshaded columns of the file 
description specifications shown below: 

File Designation 
~ 

Extent Exit 
for DAM 

File AdditionlUnoJdered 

Number of Tracks 

End of File 

Sequer1cti Device 

z 
Symbolic tn 
Device ] 

.:: 

Name of 
Label Exit 

Columns 7 through 14 must contain the name of the file. 

Storage Index 

Column 15 must contain I to indicate that the file is an input file. 

for Cylinder Overflow 

Number of Extents 

Column 16 must contain R to indicate that the file is a record address file. 

Column 17 must contain E to indicate that all records from the file must be 
processed before the program can end, or a blank to indicate that the 
program can end whether or not all records from the file are processed. 

Column 19 must contain F or blank. 

Columns 20 through 23 must contain the block length or blanks. 

Column 27 must contain 3 because each record in an address output file is a 
relative record number, which is always three positions long. 

Column 30 must contain 3 because relative record numbers in address 
output files are always three positions long. 

Column 31 must contain I to indicate that the file is an address output file. 

Column 32 must contain T to indicate that the file is an address output file. 

Column 39 must contain E to indicate that the file is further described on 
extension specifications. 

Columns 40 through 43 must contain DISK. 

Columns 71 and 72 can contain an external indicator, Ul through U8. 



E Rtcord S1qUtne1 of tht Chtlnlng Flit 

Number of the Chaining Field 

Lint a 
~ 
j 

From Filename 

Two entries are required on the extension specifications: 

To Fiiename Table or 

Array Name 

Number 
of 
Entrln 
Per 
Record 

~i"mber Length .~ ~ Table or Length .I p 
Entrln of I - Array IName of J 5 
Per Table Entry a: Cl I (Alternating Entry a: -1 

:::r E Format) :::r ; 
orArray ~ ! ~ ~ 

Comments 

Columns 11through18 must contain the name of the address output file. 
This name must be the same one coded on the file description specifications 
for the address output file. 

Columns 19 through 26 must contain the name of the indexed file to be 
processed by the address output file. The name must be the same one coded 
on the file description specifications for the indexed file. 

Chapter 5. Using a DISK File 5-87 



Updating an Indexed File 

Updating records in an indexed file involves reading a record, changing 
some data in the record, and writing the record back to its original location 
in the file. If you try to update a record that was not the last record read, 
error message RPG-9043, FILE TRIED RECORD UPDATE BEFORE 
INPUT, is displayed. The fields to be updated must be described on both 
the input and the output specifications. 

When you update records in an indexed file, the file can be processed in any 
of the following ways: 

• Sequentially by key field 

• Sequentially within key-field limits 

• Randomly by key field 

• Randomly and/or sequentially by key field 

• Randomly by address output (addrout) file 

Deleting Records from an Indexed File 

0 
t--

Line 

Filename 
or 

Record Name 

Updating a file can include deleting records from the file. To allow records 
to be deleted from the file, the control language FILE statement coded 
when the file was created must use the DFILE-YES parameter. For 
information about the FILE statement, see the System Reference manual. If 
you try to delete a record from a file that does not allow deletions, error 
message RPG-9067, INVALID OPERATION ATTEMPTED, is displayed. 

To delete a record, you first read the record (either randomly by key field or 
sequentially by key field). Then, with DEL coded in the output 
specifications, you write the record back to the same file. Code entries in 
the unshaded columns of the output specifications shown below: 

~Space Skip Outputlndicators . ~[commas ZeroBalances NoSin CR -1X=RPmove 
~ F 1eld Name to Pri1lt g Plus Sign 5 . 9 "' 

t-.-+--..--+----r---..---1 or ~ Y"' Date 
~ ~ t J I EXCPT Name l Yes Yes 1 A ~ Field Edit Ulle~ 'ft i ~ And And End Yes No 2 8 K z .. Zero Defined 

~ ~ .:::.,i X: ~ ~osition ~~ ~:s ! ~ ~ Suppress 

~ ~ 8 5 Output ~ • ·----'----! 
J.¥H ~ ~ ~ "AUTO :6 ~ Record ~ Constant or Edit Word 
A N D w ro o.. ' l 2 3 4 5 6 7 S 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 • 

3 4 5 a 1 s 9 10 11 12 13 14 15 16 11 1a 19 20 21 22 23 24 25 26 n m 29 :ici 31 32 J:l 34 35 36 :n 38 JH 40 41 42 43 {47'46 47 48 49 ~o 51 s2 SJ 54 ss 56 57 sa 59 60 a1 62 63 64 65 66 67 w 69 10 11 n 13 14 

Of1I o TTT ITT mt®~wm · J.il ll ~.K · 

~~ 111111 l 1-. ~ID. ,..JlDJl. TTiftt_jJTT TTTT TJ T TTTTIIITI r'II 

5-88 



Columns 7 through 14 must contain the name of the output file. 

Column 15 must contain D, T, or E, to indicate that the record is to be 
deleted at detail, total, or exception output time of the program cycle. 

Columns 16 through 18 must contain DEL to indicate that the record is to 
be deleted. 

Columns 23 through 31 can contain output indicators. 

Columns 32 through 37 can contain an EXCPT name if column 15 contains 
E. 

Records are not physically removed from a file when they are deleted. 
Instead, deleted records are filled with hexadecimal FFs. That is, all the 
bits for every character in the deleted record are set on. 

Chapter 5. Using a DISK File 5-89 



Updating Sequentially by Key Field 

F 
Filename 

LiM 

File Type 

When you want to update most of the records in a file, process the file 
sequentially by key field. Code entries in the unshaded columns of the file 
description specifications shown below: 

Mode of Processing File Additlon/Unordlrtd 

Fitl Detlgnatlon Length of Key Field or 
of Record Address Field 

Record Addrtn Type 

Type of File 

l! 
Extent Exit Numt.r of Trldc.1 

Sequence 
~ 

for DAM 
Name of 

Symbolic iii 
Device Device ~ 

Label Exit 

Storage Index 

End of File 

Column 15 must contain U to indicate that the file is an update file. 

The other entries are the same as those for reading an indexed file 
sequentially by key. 

for Cylinder Ovtrflow 

Number of Extenu 

T1po 
Rewind 

Updating Sequentially within Key-Field Limits 

F 
Fll1n1me 

LIM 

o 3 F 

5-90 

Fll1 Typo 

You can update records in an indexed file sequentially within key-field 
limits. Code entries in the unshaded columns of the file description 
specifications shown below: 

Madt of Proct11lng Fiio Addlllon/Unonfll'ld 

Fiii D•l1n1tlon Length of IC1y Fltld OI 
of Record Addr111 Field I 

Extent Exit Numblr of Trl0k1 
far DAM 

DIYict 

End of Fiio 
Symbolic N1m1of 

Device ~ 
Lebel Exit 

Stor1111lndl~ 

Column 15 must contain U to indicate that this file is an update file. 

The other entries are the same as those for reading an indexed file 
sequentially within key-field limits. 

lot Cyllnlflr Ovtrflow 

Num'*ofh1tn11 

TIPI 
AIWlnd 



Updating Randomly by Key Field 

Filename 

You can update an indexed file randomly by key field if it is a chained file 
(that is, if it has C in column 16 of the file description specifications). Code 
entries in the unshaded columns of the file description specifications shown 
below: 

File Designation 

End of File 

Sequence 

length of Key Fietd or 
of Record Addfess Field 

Record Address Type -J 
r-=--:-=,,.---tUJ Device 

Symbolic 
Device 

Nameot 
Label t:xit 

Extent Exit 
for DAM 

Column 15 must contain U to indicate that the file is an update file. 

The other entries are the same as those for reading an indexed file 
randomly by key field. 

Number of Tracks 
for Cylinder Overflow 

Numbfr of Extents 

Example of Updating an Indexed File Randomly by Key Field 

Figure 5-17 shows sample program OE400R, which updates an indexed file 
randomly by key. The program reads the customer number (CUSNO) and 
the amount due for a new order (EXAMT) from the customer order file, 
CUSTORDS. In line 05 of the calculation specifications, the amount due 
for each item ordered (EXAMT) is added, and the total for the current order 
is stored in result field TOTDUE. In line 12, the program uses the customer 
number (CUSNO) to chain to the corresponding record in the customer 
master file, CUSTMAST. In line 13, the total amount due for the. current 
order (TOTDUE) is added to the customer's previous amount due (AMDUE), 
and the result is stored again in AMDUE. On the output specifications, 
when the program writes to the customer master file (CUSTMAST), the 
AMDUE field is updated for the customer record. UDATE is used to update 
the field that indicates the most recent date that the record was updated. 

Chapter 5. Using a DISK File 5-91 



..-F---.------.-F-ile-. T-... ---·----~M-od-,-o,-P,-oc-,.·s-in-g -·-rr--:---"-· ----.,---·--~~·--·-·-.,...-----,.--F-ile_A<l_d-ition-/u"""no-,de-,.-• .., 

File Designation Len9th of Key Field or Extent Exit Number of trKks 
t---, End of File of Record Address Field for DAM for Cylinder Overflow 

Filename Sequence 
Record Address Type ....1 Symbolic Name of Numbei:.of Extentl 

Type of File w Device Device Label Exit 
N Organization or ~ 
~ Additional Area c: 
a: 0 

"'"''d l!' i2 o"'Il'"d'c"o'1 ·~ 
Length ~ ~ ~ ~~r~:1d iB 

...1 <C ::- locatiq,~ 
External Record Name 

Line 

File Format 

~ ~ ;::: ~ Block 

~ ~ Length 

~ w ~ u. 

Storage Index 

Continuation Lines 

Option Entry 

Tape 

~ 
File 
Condition 
U1-U8, 

i!' UC.-'-

2 
a: 

3 4 5 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 !11 52 53 54 55 !)6 57 fJ8 59 60 61 62 £3 64 65 66 67 68 69 70 71 72 73 74 

0 2 F j$J l'([Dll ~ Fl l~'i' 1112~ ID!IlSIH 
0 3 F r]Lt5IIMIAJc:fl:IL rl - F 121~1'-i 12J5il:JK ~II _?_11_1s+'.lllM-+-+-++-I-+-+- >---+-+--+--+--< -t-+-~-+--+---+-+---+-+-+-+---+-+---+-+-< 
o 4 F 

~~--+;;+~~·::::::::::::!:::!::.:::::!:::!::'.::::=:::!:::=:=:::::::::::::.::::::::'--'::'.::~=-~=="=~="~::::.:"·~:::.::::.::::.:::::::.:=::::::::-~·~::::.:::::::'.::::::::::::::::=::::::::.::::::::::::::::::::::::::::::!::=::::::!::!:;;;!j;-ti 

0 6 

o 7 F 

o 8 F 

o 9 F 

1 o F 

Name = OE400R 

Function = Update the amount-due and the date-of-order fields in the customer master file (CUSTMAST) 
from the customer order file (CUSTORDS). 

1--+..._, ...... F._. 1 Input= From the CUSTORDS file, the customer number and t_he amount due for each item ordered. 
r From the CUSTMAST file, the customer's current amount due. 

o 2 F 

o 3 F 

o 4 F 

0 5 F 

0 6 F 

o 7 F 

o 8 F 

0 9 F 

1 O F 

o 2 F 

o 3 F 

o 4 F 

o 5 F 

0 6 F 

o 7 F 

o a F 

o 9 F 

1 o F 

Output= In the CUSTMAST file, the record for a customer who placed the order. The amount-due field is 
updated to the current amount due. The date that the record was updated is also updated. 

Indicator Definitions: 
01 Record-identifying indicator 
02 Record-identifying indicator 
03 Record-identifying indicator 
20 Turns on when a customer number is not found in the CUSTMAST file 
L 1 Control-level indicator that turns on when the customer number changes in the CUSTORDS file 

Running This Program 

To run this program, file CUSTORDS must already have been created by program OE140R. Also code 
the following procedure: 
II LOAD OE400R 
II Fl LE NAME-CUSTMAST 
II FILE NAME-CUSTORDS 
II RUN 

H 

H 

H 

H 

H 

H 

H 

H 

t

t

t

t

t

t

t

t

t
t

t
t

t

t

t

t

t

t

t-

1-+-+-+-F+-+-+-+-+-+-+-+-1--+-+-+-+-1--+-+--++--'-+TII_,_,._+-<~-+_,_+--+-+I-+--+..+-+-+~D]Ilflil I I I I1JI-illlllllUJl 

Figure 5-17 (Part 1 of 2). Sample Program OE400R (Updating an Indexed File Randomly by Key 
Field) 

5-92 



Line 

c 
I--

Line 

~ 
External Field Name 

Filename u f Record Identification Codes 

or i o(f) 

& Record Name (I) i ~- ~ ~.1----1..-,.....,,-t---2.,.....,.....,_,,_ ___ 3,.....,,.....--1 
~ = 5 ~: 
~l---0-,-.,-~~-0+R~-11 j ~ 

~;i1g~ 

Indicators 
::i 
6_ I I ~cc =a 

~~~ 
t- 0 a:'
E ;; U>

if 8 ~f ~ 0 0 z z

Position Position

Factor 1 Operation

Position ~a
0 ~ z u

Factor 2

Field Location

From To

Data Structure cc
:Ji----.----

"' ;;: Occurs
nT1mes Length

Result Field

:~ ~
if ;

Name Length
~i
u -
~ :t'.

RPG
Field Name

Resulting
Indicators
Arithmetic

Plu!...!Minu_i Zero
Compare

, >TI1 <IT' -2
Lookup(Factor 2)1s

High Low F.qual

Field
Indicators

Zero
Plus Minus or

Blank

Comments

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 p_ 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c
0 7 c
0 8 c
0 9 c
1 0 c
1 1 c
1 2 c
1 3 c
1 4 c
1 5 c

0
f--

Line

, I ::.!: ::.!:::.!:::.!:::.!: _!_ _!_ ...!.._!_ _!__!_ _!_ _!_ _!_ I _!_ _!_ _!__!_ ::.!: ::.!: :I
I When a line-item record is read from the CUSTORDS file, add the total amount due for this customer

order.

!d:l IF"X IJ! ,,. T 11 u RI£ 1'112

I

When a control break occurs (the customer number changes), read the previous customer's record from the
CUSTMAST file. Add the amount due from this order to the amount already due.

~
i;:>ID ltll\I

It

Filename
or

Record Name

Ir.IL 1191\~ r IAII IN1lr tiS jJll"l !lll"iJ 12'2
!Jilt u [LJJ. II:. IN'n i£
~-~ HI ll:.lt{•• [I rr llf

':
Skip Output Indicators No Sign CR -~ IT5l ~ Z Space Field Narne Commas

~ ~1-~~.-1--..-~---T~--,..----1 or Yes Yes 1 A

~~ ~ ~ And A~d EXCPT Name d Yes No 2 B

Zero Balances
to Print

X"' Remove
Plus Sign

Y =Date
Field Edit

K Z"'Zero
Suppress

5 .g"'
User
Defined

~~ ~ 3i ~ ~ ~nos1t1on ~: ~:s ! ~ M M ~ ~ t-i,-,-+-,--r--t-~i-lf------18 fj Output :§ L---~---~--~-~~----~----1
OL~H o zO 0 "AUTO :g ~ Record CO Constant or Edit Word

1

I-+-

I-+-

1-t-

I+
I+

A '"ND z z w a:i Ci:" 1 2 3 4 5 6 1 a 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2f:i 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 441c4::-5-:46:-C47C"48~4::""9"'.:5_Q,,;51:-,52-5.;_J_5;_4_55;__56_5,.;7_5_.;.8_5_9_60;__;61;_6:..2-:6C°J-:64.:....;6.;_5.;_66~67;_68"-'6'-9_7,0 71 J2 73 71

0 3 0

0 5 0

0 6 0 U ~TE
0 7 0 U ~JF
0 8 0

Figure 5-17 (Part 2 of 2). Sample Program OE400R (Updating an Indexed File Randomly by Key
Field)

Chapter 5. Using a DISK File 5-93

Updating Randomly and/or Sequentially by Key Field

F
Filename

File Type

You can update records in an indexed file randomly by key field,
sequentially by key field, or ~oth randomly and sequentially by key field if
the file is defined as a full-procedural file (F in column 16). Code entries in
the unshaded columns of the file description specificatio11s shown below:

Mode of Processing

FOe Designation Length of Key Field°'
of Record Address Field

Extent Exit
for DAM

File Addition/Unonllred

Number of TrM:lcs

End of File
Name of
Label Exit

for Cylinder av.flow

Device
Symbolic
Device

Column 15 must contain U to indicate that the file is an update file.

The other entries are the same as those for reading an indexed file
randomly by key and/or sequentially by key field.

Number of Extents

Updating Randomly by Address Output (Addrout) File

F
Filename

LilW

5-94

To update records randomly by an address output file, code entries in the
unshaded columns of the file description specifications shown below:

File Type Mode of Processing

File Designation Length of Key Field or
of Record Address Field

Extent Exit
for DAM

End of File

Sequence Device
Symbolic
Device

Name of
Lebel Exit

Storage Index

Column 15 must contain U to indicate that the file is an input file.

The other entries are the same as those for reading an indexed file
randomly by address output file.

File Addition/Unordered

Number of Tracks
for Cylinder o.erllow

Number of Extents

T ...
Rewind

Adding Records to an Indexed File

When a record is added to an indexed file, the program writes the data part
of the record at the end of the records already in the file. The index part of
the added record is written at the end of the indexes for the records already
in the file.

You can add records to an indexed file in either of two ways:

• Randomly by key field

• Sequentially by key field

Adding Records Randomly by Key Field

F
Filename

Line

File Type

You can add records randomly by key field to an indexed file with chaining.
Chaining means comparing the key field of the record to be added with the
key fields already in the index. The reason for this comparison is to make
sure that the record to be added is not a duplicate of a record already in the
file. Chaining allows you to design your program so that, if a duplicate key
field is found, your program can handle it appropriately without requiring
the person using the display station to decide how to respond to an error
message. If the program has a logic error that would allow a record with a
duplicate key field to be added to the file, or if another program tries to add
a record with a duplicate key field during the time between the CHAIN
operation and the output operation in this program, the system ensures that
the duplicate record is not added. However, a record with a duplicate key
field can be added if the DUPKEYS-YES parameter was specified on the
control language FILE statement when the file was created, or if the
BYPASS-YES parameter is specified on the current FILE statement.

To add records randomly by key field, entries are required in the file
description and output specifications.

Code entries in the unshaded columns of the file description specification
shown below:

Mode of Processing

File Onignation Extent Exit
for DAM

End of File

Length of Key Field or
of Record Address Field ~

~ Name of

File Addition/Unordt1

Number of Tracks
for Cylinder Overfl

Sequence
Device

File Format

Symbolic
Device

] Label Exit

.::

Columns 7 through 14 must contain the file name.

Storage Index

Column 15 must contain I or U to indicate that the file is an input or
update file.

Number of Ext

T•pe
Rewind

File
Condl1
U1·UI
UC

Chapter 5. Using a DISK File 5-95

5-96

Column 16 must contain C or F to indicate that the file is a chained or
full-procedural file. If column 16 contains C, you must code a CHAIN
operation in the calculation specifications in order to read the file. If it
contains F', you must code a READ, READE, READP, or CHAIN operation
in the calculation specifications in order to read the file.

Column 19 must contain For blank to indicate that every record in the file
has the same length.

Columns 20 through 23 must contain the length of the block of records.

Columns 24 through 27 must contain the length of each record.

Column 28 must contain R to indicate that the file is processed randomly by
key if this is a chained file (C in column 16), or a blank if this is a
full-procedural file (F in column 16). If this is a full-procedural file, column
28 can contain L to indicate that the file is processed within key-field limits
by using the SETLL operation.

Columns 29 and 30 must contain the total length of the key.

Column 31 must contain A or P. A indicates that the key field is in
alphameric or zoned-decimal format. P indicates that the key field is in
packed-decimal format.

Column 32 must contain I to indicate that the file is an indexed file.

Columns 35 through 38 must contain the starting position of the key field, if
the key has only one field. If the key has noncontiguous fields, columns 35
through 38 must contain EXTK.

Columns 40 through 43 must contain DISK.

Column 66 must contain A to indicate that records are added to the file.

Columns 71 and 72 can contain an external indicator, Ul through U8.

0

!
Fiiename

or
Line

~
Rocord Name

Entries are also required in the unshaded columns of the output
specifications shown below:

Skip Output I ndlcators
Field Name

or
EXCPT Name

And And

i i i 'AUTO

Columns 7 through 14 must contain the name of the file to which the
records are added.

Column 15 must contain D, T, or E to indicate whether the record is to be
added at detail, total, or exception output time of the RPG program cycle.

Columns 16 through 18 must contain ADD to indicate that the fields coded
on the following lines form the record to be added to the file named in
columns 7 through 14.

Columns 23 through 31 can contain output indicators.

Columns 32 through 37 can contain an EXCPT name if column 15 of the
output specifications contains E.

Example of Adding Records Randomly by Key Field

Suppose you want to add new inventory items to the indexed inventory file
created in the Example of Creating an Indexed File. The new records are
not in sequence. Key fields in the new records can be lower than, between,
or higher than key fields in the records already in the file. Input and
output records will be in the same format as the records used to create the
file.

Figure 5-18 shows how to code the file description, input, calculation, and
output specifications to all records added randomly by key field.

Chapter 5. Using a DISK File 5.97

Filename

Line

File Type

Fite Designation

End of File

Sequence

Mode of Processing

Length of Key Field or

of Record Address Field

Record Addre$$ Type ~

Type of Fite
File Format N Organization or ~

w ~ Additional Area c
!!:: 0 cc 0v .e
O ~ Block Record -"' -t: erflow lndic.ator ;:

.., > length Length !:E._, ~ Q: ~ey Fteld x

Device
Symbolic
Device

Name of
Label Exit

Extent Exit
for DAM

Storage Index

Continuation lines ~"'e !!? ~"
~~ oii: c~ u!:'!~~ w

g Ci: w ':t External Record Name K Option Entry

File Addition/Unordered

Number of Tracks
for Cylinder Overllow

Number of Extents

T-

~
Condition

z ~~
~

3 • 5 8 7 8 9. 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 38 37 38139 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 68 70 71 72 73 74

o 4 F

I
1---i

~

line
{::

~

Filename
or

Record Name

• External Field Name

:c~ Field location Indicators
~ ... Record Identification Codes ~ ·~ ~--,.--.--I

! i ~ f ~ ~ From To j Fiel:P~ame i i J ;;! z.,o

Field

~ Q j : t cu lii ~ a: Data Structure 5 ~- cci Plus Minus or
,!c'C ~o~ ~-c~ ~oiij:::J 1 g ~c ~--,.o.-ta--.-,,-0+-R...-i E .g ~ Position 0 N iii Position 0 N 2 Position ti N 2 Ill CD Occurs ~ a ~ iii ~ Blank

Structure ~ -i 8' ~ z () 0 z () u z U u <i.i ii: n Times Length 0 u :E 6 Ir

1 a gNa,~e,, 12 13 14 1s 16 11 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33~ 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 49 so 51 52 53 54 55 56 57 58 59 so 61 62 63 64 65 66 67 68 B9 10 71 72 73 74 3 4 u 6

0 1 I
0 2 I

IFUIL ,....,
l.lllll:.

0 3 I I~ 11"1
0 4 I
0 5 I

c Indicators Result Field Rnultlng

~· lndlctton

1-- 9- 1 1 h·
Arithmetic

ii Plu!.lMlnu.!l Zero

!
Factor 1 Operation Factor 2 n Compere Comments

Lln1 r Name Length
1~

1>&1<![12_

j Lookup]!_octor 211•
!f j j j u

3 •• •) . 9 10 11 12 13 14 1!1 18 17 18 19 20 21 22 23 24 2! 28 27 .E 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 4e 48 47 48 40 ISO 91 152 93
HlghJ Lo~F.ciu1I
5491H57!859 10 81 82 113 84 81 H 87 88 m 70 71 12 73 74

0 1 c W211 IIIJIE: IA LJlE.I~ l rll':IJ.JJJ JJJJ11111111
0 2 c

If 99 is on, the item is not in the file, I-+-
0 3 c

so add the record. If 99 is off, the I+-
0 4 c 1+
0 5 c item has a duplicate in the file, so do

I+-
0 6 c not add the record.

I+-
0 7 c
0 8 c ll lllll llllITTTTTTII

Line

Filename
or

Record Name

~ ii Space Skip Output Indicators resl Commas Zertoo BPar11.'nnct es No Sign CR - X • Remove t: if Field Name Plus Sign
c ~ or Y•01te
~ _=: e! T - I EXCPT Name Yes Yes 1 A J Field Edit
&~~ ,! A~d A~d Yes No 2 B K Z=Zero
~ ~ a: Position No Yes 3 C l Suppress

D E L e! 16 16 ~ in No No 4 D M

~~ ~ 85 Output:§

5 -9.
User
Defined

&!!.a_ ~ ... ~ "AUTO w=S §; Record ii> Constant or Edit Word
~ ~ ii: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 •

3 4 6 6 7 8 9 10 11 12 13 14 15 Hi 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 4-0 41 42 43 44 45 48 47 48 49 50 51 52 53 54 65 56 57 58 69 60 61 62 83 84 85 66 67 68 89 70 71 72 73 74

0 1 o~~IT E:R i;;;IAlnld Km 1q1~ :T

~012!~otJitJ!t!jJ[:01t1!0!t1!t!~Eta~tt!t11'1~~~!j!t!I New records are added to the file. I~
o3 lq ~I
04 lq l llll ll l 1l1J11TTT T

Figure 5-18. Adding Records to an Indexed File Randomly by Key Field

5-98

Adding Records Sequentially by Key Field

F

Filename

File Type

Physically, all records added to an indexed file are placed at the end of the
file. However, depending on the value of the key field, a record added
sequentially by key can be processed as if it were added in either of two
places: between records already in the file or at the end of the file. A key
field added between existing key fields must have a value that is lower than
the key field in the record currently being processed and higher than the
key field in the last record processed. A key field added at the end of the
index must have a value that is higher than the highest key field in any
record already in the file. If the key field of the record to be added does not
meet either of these conditions, error message RPG-9037, TRIED TO ADD
KEY NOT IN SEQUENCE, is displayed. If the person using the display
station responds to that error message by entering option 0 (zero), the add
operation is skipped.

Adding records sequentially can be faster than adding records randomly
with chaining if the records to be added are already sorted into ascending
order by key field. The reason is that you can use a large block containing
many records when you add records sequentially.

To add records sequentially by key field, entries are required in the file
description and output specifications.

Code entries in the unshaded columns of the file description specifications
shown below:

Mode of Processing

File Desiption Length of Key Field or Extent Exit
for DAM of Record Address Field

End of File ~
~ Name of

File Addition/Unorden

Number of Tracks
for Cylinder Overflc

Sequence
Record Address Type _,
~----tiil Device

Symbolic
Device

... Label Exit

~ Storage Index Rewind

File
Conditi
U1·U8,

~ UC

~ ~

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I or U to indicate that the file is an input or
update file.

Column 16 can contain P, S, or D:

• If you code P (primary) or S (secondary), the file is read as part of the
RPG program cycle. For an explanation of how primary and secondary
files are read, see Chapter 11.

• If you code D (demand), you must code a READ operation in the
calculation specifications in order to read the file. For information
about the READ operation, see Chapter 28.

Chapter 5. Using a DISK File 5-99

0
I--

Filename
or

Record Name

Column 17 can contain E if column 16 contains P or S. E indicates that the
program must process every record in the file before the program ends.
Blank indicates that the program can end whether or not ev~ry record in
the file is processed.

Column 18 can contain A, D, or blank if column 16 contains P or S:

• A indicates that the program checks that the records in the file are in
ascending sequence.

• D indicates that the program checks that the records are in descending
sequence.

• Blank indicates that the program does not check the record sequence.

Column 19 must contain F or blank to indicate that all records in the file
must be the same length.

Columns 20 through 23 must contain the block length or blanks.

Columns 24 through 27 must contain the record length.

Columns 29 and 30 must contain the total length of the key.

Column 31 must contain A or P. A indicates that the key field is in
alphameric or zoned-decimal format. P indicates that the key field is in
packed-decimal format.

Column 32 must contain I to indicate that the file is an indexed file.

Columns 35 through 38 must contain the record position in which the key
field begins, if the key has only one field. If the key has noncontiguous
fields, columns 35 through 38 must contain EXTK.

Columns 40 through 43 must contain DISK.

Column 66 must contain A to indicate that records are added to the file
described on this line.

Columns 71 and 72 can contain an external indicator, Ul through US.

Entries are also required on the output specifications:

- ~ ~ .~ Space Skip Output Indicators ~ c Zero Balances N s· CR _ X "' Remove
_.... Field Name ommas toPrint 0 ign PlusSign 5 _9 "'

e. 'ii; or Y=Date

t~ ~ ! ~L A!d EXCPT Name ~:: ~:s ~ : ! Field Edit ~:~~ned
t-~ a: Pos1t1on No Yes 3 C L Z = :~~:ress
~AD~0EB0L "'~ ~ ~ ~ in a: _ _, No No 4 O M

..... 8 U Output ~

~ ~ ~ ~ *AUTO :B ~ Record ~ Constant or Edit Word
A N O w m 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2£ 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

~1 ~ B1Jii lA J 'l +f1ii , f1J' 'jj, JJ JJ11]] 1 'i i1iJJJ!!!

5-100

Columns 7 through 14 must contain the name of the file to which the
records are added.

Column 15 must contain D, T, or E to indicate that the records are to be
added at detail, total, or exception output time of the RPG program cycle.

Columns 16 through 18 must contain ADD to indicate that the fields coded
on the following lines form the record to be added to the file named in
columns 7 through 14.

Columns 23 through 31 can contain output indicators.

Columns 32 through 37 can contain an EXCPT name if column 15 contains
E.

Example of Adding Records Sequentially by Key Field

Suppose you want to add new inventory items to the indexed inventory file
created in Example of Creating an Indexed File earlier in this chapter. You
want to add records from a transaction file that contains both new items
and new shipments received of existing items. The transaction file is sorted
into ascending sequence by key field (item number), and the records in the
transaction file are in the same format as the records already in the
inventory file.

Figure 5-19 shows how to code the specifications to update the inventory
file and add new item records to the file.

Chapter 5. Using a DISK File 5-101

F File Type Mode of Processing File Addition/Uno'*'td

File Designation Length of Key Field or Extent Exit Number of Tr81
t----i of Record Address Field i for DAM for Cylinder Overflow

End of File
Record Address Type -' Symbolic Name of Number of Extents

Sequence Iii Label Exit Fitename Type of Fite Device Device j T ...
File Format .. OrganiZ1tion or ~ .'.! ~,..nd I

I
~ Additional Area Storage Index

Urw
~ l!O ~"'flow lnd;':"tO< j Flle

Block Raconl Condldon
! e i2 Length U1-U8,

ii !,! !" l.ongth
IC ~ 12 I ::::t Continuation Lines UC r--1

~~ c ii: :::i ~ ~;!\;':,,_ w ~

~ i:! :::::- it w< External Record Name K Option. Entty IC

Li. 5 • 7 8 •· 10 11 12 13 14 15 11 17 18 ~~~nu~Bavaa~~~UM••"• ~ 40 41 42 43 44 45 46 47 48 49 50 51 62 r.3 54 65 66 57 58 59 60616283848& .. ., ~ .. LMJ 71 72 73 74

0 2 l~IA F[I N~ [H A I~~ ~~ "I ~.M
0 3 F IRLc; I ~ IS A lliq2 lq~ ~~A ~ II~K ~
0 4 F

I f
External Field Name Field Field Location

Indicators t- Filename ~ Record Identification Codes
~ -~ or l g,~ g ~

Record Name w"' 1 2 3 From To RPG -' :!!i!I ...
! ~:) f :~ ¥ ·~ IC

i!: ~ Field Name l -~'ii ~ ~Q ~~IC ~
1.1.u;: Zero

line

~ - li Zo~ Data Structure

i -~I!' H Plu• Minus or

f .H Position ;; c ~ Position Position ~o i j:::; g 1i . ., IC - -. ,, Bl.,k O.ta

~ 0 " • j !) c5 ~§ I& r.: in Occurs ¥ ~ ~~ ~ Structure ~a~ z <i 6 a en Q:: nTimes Length c
Name

3 • •• 7 • 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 pa 29 30 31 3233 3~ 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 49 50 51 52 53 5A 55 58 57 58 59 60 61 82 63, .. 8970 71 72 73 74

0 1 I[]' 1~1\151 IA rl11 [i il
0 2 I ~ ll Ill Pl\"" "'~ 0 3 I New Item Records ~ lq~ ~
0 4 I
0 6 I p t1Ja l1 IR
0 6 I :::!::::!: :::!: ~ l1 llll t.JM 111\ M~ -I Receipts of Existing Inventory Items J 0 7 I f lieu Wll
0 B I II-= 1 t"I ll
0 9 I 1Jq ~ IAtrr-
1 0 I A.,,, ~.:l lJN I 11N ~
1 1 I
1 2 I Catch-all for Unidentified Records I
1 3 I
1 4 I ll I(~ m I ~,f
1 5 I 2 11 [1 ~ 1"1

Inventory Master File 2:=! ~~ 1 6 I [
1 7 I l:lj !Liil rzn 'Al

1 B I ~a llJ ILJ
1 9 I le~ Lia ~[~
2 0 I

Figure 5-19 (Part 1 of 2). Adding Records Sequentially by Key Field

5-102

c lndicatOf1 Result Field Resulting

~ lndicltOl'I

1----i 9- 1 1 !
Arithmetic

=g Ee Plusj_Mlnu~ Zwo

d~ Factor 1 Operation Factor 2
B " Com- Comments

Name Length
1>?1)<?1..1·2 Line g .: 1~

~ <'\~ 1! II H
Lookup(Foctar 211

if 85 z z Hi"' Low F.qu•I
3 •• . , . 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 26 26 27 Pt 29 30 31 32 33 34 35 38 37 38 39 40 41 42 J.43+1464847411 49 50 51 52 53 64 SS 51 57 68 59 80 81 12 13 84 81 • 87 88 • 70 71 72 13 74

0 1 le ~ ~;R - Ll Ir~ ~~ l 1 rrrTTTTT
0 2 c ~I~ ~~ ~ fl 1Gf1' it Update inventory

W21~ t/R r ~tr 1t ~ 111 lrl t-+-
0 3 c master record. H-
0 • JC ~l'I II'~ 1"1~11:.. 1.!(I[1 IAII

11 llTTlTlT 0 6 c

0
~

~i Space Skip Output Indicators

~
Commas

Zero Balances
No Sign CR - X •Remove

I-- t: ~ Field Name to Print Plu1SitP1
6·9• e~ or y. Date
User Filename :i: "

AL 2d Yes Yes t A J Field Edit !l. i~ !S .i! EXCPTName Yes No 2 B K Defined
(:: or

~
Z=Zero

~~ o: Position No Yes 3 c L --Line

~
Record Name

j ~~
No No • D M ~ * ~ in a:

A Output :::;

~ ~ 1! 1! 'AUTO ~~ Record .. Constant or Edit Word
z z it: • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 17 18 19 20 21 22 23 24

3 • •• 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 20 27 28 29 30 31 32 33 34 35 36 37 38 38 40414243 ~~~~-~~~~"~--~YY~~maM••~••M 71 72 73 74

0 t o~ ~~11 R II IAID kZIJ IN IV
0 2 Jo ·~ re I'll' Add new item to
0 3 lo ~ ~ ~ inventory master file.
0 • lo

,,. ll!IJ 121~ ~I
0 6 1<> 1"I IA I~~ Update existing record
0 6 IO l8 1'1~ in inventory master file.
0 7 la liilll ~ llli:
0 B lo 1111 11 l J IJJJ

Figure 5-19 (Part 2 of 2). Adding Records Sequentially by Key Field

Chapter 5. Using a DISK File 5-103

5-104

Chapter 6. Using a WORKSTN File

EXAMPLE OF USING A WORKSTN FILE . 6-2
Creating the Displays . 6-3
Coding the RPG Specifications . 6-4

File Description Specifications . 6·4
Input Specifications . 6-5
Calculation Specifications . 6-6
Output Specifications . 6-7

Reaching End of File . 6-8
STEPS IN USING A WORKSTN FILE . 6-9
Creating the Display Formats . 6-9
Coding the RPG Specifications . 6-10

File Description Specifications . 6-10
Continuation-Line Options . 6-11

NUM . 6-12
SAVDS . 6-12
IND . 6-12
SLN . 6-13
FMTS . 6-13
ID . 6-13
INFSR . 6-14
INFDS . 6-14
CFILE . 6-14

Input Specifications . 6-15
Output Specifications . 6-19

COMMON PROCESSING VARIATIONS . 6-22
Using Command Keys . 6-22
Handling Exceptions and Errors . 6-24

Coding the INFDS Data Structure . 6-27
File Description Specifications . 6-27
Input Specifications . 6-28

Coding the INFSR Subroutine . 6-34
File Description Specifications . 6-34
Calculation Specifications . 6-34

Reading Data From a Display Shown by a Previous Program 6-36
USING ONE OR MORE DISPLAY STATIONS 6·37

Chapter 6. Using a WORKSTN File

Using a SRT Program . 6-37
Using a MRT Program . 6-37

File Description Specifications . 6-38
Calculation Specifications . 6-38

NEXT Operation . 6-38
REL Operation . 6-39

Output Specifications . 6-39
Acquiring One or More Display Stations by the Program 6-40

ACQ Operation . 6-40
Requesting the Program by One or More Display Stations 6-41

Setting and Restoring External Indicators (SUBR20) 6-41
Reading and Writing the Local Data Area for a Display Station

(SUBR21) . 6-42
Compiling and Running a MRT Program . 6-43

Compiling the Program . 6-43
Running the Program . 6-43

Updating Disk Files in a MRT Program . 6-44
Possible Errors . 6-44
A voiding These Errors . 6-45

Reaching End of File for a MRT Program . 6-46
Primary File . 6-46
Demand File. 6-46

ADVANCED TOPICS . 6-47
Processing the Duplicate Character Value . 6-47
Using Message Identification Codes . 6-49
Overriding Fields in a Display Format . 6-49
Using the POST Operation . 6-51
How WORKSTN Files Are Processed . 6-52
Interactive Data Definition Utility (IDDU) . 6-58

Example of Using the Interactive Data Definition Utility (IDDU) . 6-60
SAMPLE PROGRAMS . 6-63
AR230R (Inquiring into an Accounts Receivable File) 6-63
AR330R (Maintaining a Customer Master File) 6-68
AR935R (Requesting a Printout of Accounts Receivable) 6-81
OE140R (Entering Orders from Customers) . 6-87

Chapter 6~ Using a WORKSTN File

A WORKSTN file allows you to interact with your RPG program at a
display station. That is, while the program is running, information is
displayed on the screen and you can enter data at the keyboard. Several
people at different display stations can interact with the same program at
the same time.

A program can use only one WORKSTN file. If a program uses a
WORKSTN file, it cannot use a KEYBORD, CRT, or CONSOLE file.

You must use a WORKSTN file to communicate with other systems through
the Interactive Communications Feature of the System Support Program
(SSP-ICF). For more information about SSP-ICF, see the Interactive
Communications Feature: Reference and the Interactive Communications
Feature: Guide and Examples.

Note: Throughout this chapter, the term device means either a display
station or an SSP-ICF session.

This chapter contains six sections, organized as follows:

• The first section contains a simple example of a program that uses a
WORKSTN file.

• The second section explains the two steps in all programs that use a
WORKSTN file (creating the displays and coding the RPG
specifications).

• The third section presents some additional ways that programs
commonly use a WORKSTN file.

• The fourth section covers the differences between programs that use
only one display station and those that use more than one display
station.

• The fifth section discusses some advanced topics relating to WORKSTN
files.

• The sixth section contains several sample programs.

Chapter 6. Using a WORKSTN File 6-1

EXAMPLE OF USING A WORKSTN FILE

6-2

Suppose you want to create a program that allows a person to display
accounts receivable information about your customers. The program
displays the name and address of the customer, the current balance, the
credit limit, the amount due more than 30, 60, and 90 days, and the date of
last payment.

From the point of view of the person who uses this program, the program
involves three steps:

1. Seeing a display that prompts the person to enter the customer number

2. Entering the customer number in response to the prompt

3. Seeing the accounts receivable information for the customer chosen

From your point of view, the program involves two basic steps:

1. Creating the two displays

2. Coding the specifications for the program

Creating the Displays

The first display, which prompts the person to enter a customer number,
looks like the one shown below:

r
Customer Inquiry

Please enter custOlller number.

Customer number

Press the Enter key to see accounts receivable i nformat 1 on.

Press Cmd3 to return to the ma 1 n menu.

The second display, which shows the accounts receivable information for
the customer chosen, looks like this:

r

'

Customer number

Customer name
Address

State and zip

Customer Inquiry

** *********

Current amount due
Allount due over 30 days
Amount due over 60 days
Amount due over 90 days

Credit limit

Last amount paid
Last date paid

Press the Enter key to continue.

For information on how to use SDA to create displays see the manual
Creating Displays.

Chapter 6. Using a WORKSTN File 6-3

Coding the RPG Specifications

File Description Specifications

This program requires the following file description specifications:

Filename

End of File

Mode of Processing File Addition/Unordered

Line

File Type F Length of Key Field or Extent Exit Number of Tracks
of Record AddreS$ Field ~ for DAM for Cylinder Overflow

Record Address Type ...1 ~ Name of Number of Extents

Sequence Type of File ~ Device ~:~;lie ! Label Exit .--r ... -----1
File Format N Organization or 'J? _,"' R · d

w ts Additional Area ~ Storage Index ~F,.'1"8 ~ ~ cc .2 e ~ Block Record ~ t Overfl~ow Indicator .~ Condition
& ~ _0~ S!! Le h Length e_ K F" Id U1·U8 ~ .::; ~ ~ ngt :) ~ x Stea~i~: Ji Continuation lines z UC .-.!.-.
~ g ~ w ~ ~ External Record Name< ::::: t.0-Cf_tion K Option Entry ~ ~

file Designation

3 4 5 6 1 8 9. 10 11 12 13 14 15 .!!. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 39 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Iii 62 63 64 65 66 67 68 69 70 71 72 73 74

0 2 FVl MlL II"' IE 1211=1~ IW ll"i Ill"

o 4 F

6-4

The customer number file, CUSTNMBR, is a WORKSTN file (line 02,
columns 40 through 46) and is described as a combined file (C in column 15).
It is used as the primary file (P in column 16) because it is the main file
from which the program reads records. The F in column 19 indicates that
all records in the file have the same length. The 256 in columns 25 through
27 indicate the number of positions in each record.

The customer master file, CUSTMAST, is a DISK file (line 03, columns 40
through 43). It is used only for input (I in column 15), and it is a chained
file (C in column 16). All records in the file contain 256 positions (column
19 and columns 25 through 27). CUSTMAST is an indexed file (I in column
32) that is processed randomly by key field (columns 28 and 31). The key
field, CUSNO, is 8 positions long (column 30), beginning in position 2
(column 38).

Input Specifications

I
r--

!

Filename
or

Record Name

Line ~ 1----,,.o,-.. -?""T"O-+-oR -I

s~~~~re ~
3 4 6 6 1 B 9 10 11 t2 13 14 15 16

o 2 I

o J I

f
:i !!l
~ ~

j :'
~
:i.

0 4 I N~ l'J4
0 5 I I~~ l 11~
o a I

o 1 I
o s I

o 9 I

1 o I

1 1 I

1 2 I

1 J I

1 • I
1 s I

1 a I

1 1 I

1 s I

1 e I
2 o I

The following input specifications describe the two files that provide input:

External Field Name Field
Field Location

Indicators Record Identification Codes
~

c
.2

2 ~ ~ • 1 3 -' •
~

From To .g RPG :!HI a:

~ Field Name 'li u: ~ 1 Zero ~ !!
z c ~ ~

~ ~c~ 4i ~ Data Structure
§ ~

.~ !!' a: Plus Minus or
Position Position ~i Position 1 g £ ·c Blank

j§~ ~ ~§~ Occurs ~ ~~ ~
00 Vi £i: n Times Length 0 u:

11 rl
11 r!A

IHl I~ ~IL !c=NM

p 114~ I tl&JI~ ~I 'ii ~

p 11~~ ! t l1R-1

The WORKSTN file, CUSTNMBR, contains three types of records,
identified by blank, A, and Bin position 1 (lines 01, 02, and 04; columns 24
through 27). These record-IDs (blank, A, and B) are the IDs of user-created
display screens. The three record types above turn on record-identifying
indicators 02, 03, and 04, respectively (lines 01, 02, and 04; columns 19 and
20). The CUSNO field is in positions 2 through 9 of the record type
identified by record-identifying indicator 03 (line 03).

The DISK input file, CUSTMAST, also has a field named CUSNO in
positions 2 through 9 of each record (line 06). In addition, CUSTMAST
contains the accounts receivable information indicated by the field names
in lines 07 through 19. The P in column 43 of lines 12 through 19 indicates
that the data in these fields is in packed-decimal format.

Chapter 6. Using a WORKSTN File 6-5

Calculation Specifications

c Indicators ..
-'

I I t-- ~
~:§

Line
~~ ~ 0 0 of 8 z z

3 4 5 • 7 9 10 11 12 13 14 15 16 17

0 1 le
0 2 c ~:=
0 3 c

6-6

This program requires only two calculation specifications:

Result Field Resulting
Indicators

:i g
Arithmetic

PluiTMinUSf Zero
Factor 1 Operation Factor 2 .n Com- Comments

Name Length
~~ 1 >2T1 <2T1-2

~i
Lookup(Factor 2)1s

Hi!fl Low F.qual
18 19 20 21 22 23 24 25 26 27 izs 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 80 61 62 63 64 65 66 67 68 89 70 71 72 73 74

11 F JC:lli:l
Jule; IN~ ~

~II" 15[[11"11/l 11 ~~
-+-

The first specification turns off error indicator 99 before the program reads
a record from the customer master file, CUSTMAST.

If indicator 03 is on (line 02, columns 10 and 11), meaning that the program
reads a record containing an A in position 1, the program uses the CHAIN
operation to compare the number that the person entered on the first
display with the CUSNO field in the records in the CUSTMAST file. If no
record in the CUSTMAST file has a CUSNO field that matches the number
entered, resulting indicator 99 turns on to signal an error (line 02, columns
54 and 55). Therefore, indicator 99 is also used on the output specifications
to condition the error messages (lines 06 through 09, columns 24 and 25).

Output Specifications

The following output specifications describe the two displays:

0
!!;

n S9ee Skip Output Indicators

~
Commas

Zaro B1l1nce1
No Sign CR

X •Remove ,____, Field Name to Print - AusSl"1
e;;; or V"' Date

5-9•

" . r Jd Yes Yes 1 A User
Filename i~ IS • EXCPT Name

J Field Edit
!I. Ye• No 2 B K Z•Zero Defined
{!:: or -!

Une

~
Record Name f::i!!., ~< rz: Pos1t1on No Yos 3 c L Suppreu

~ ~L j ! I q; In No No 4 D M

85 a:
A DD Output ::i

~ lei ~ ~ 0 •AUTO '5 ~ Record ill Constant or Edit Word
z w m ...

A N
, 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21 22 23 24 •

3 •• a 1 a s to 11 12 13 14 15 18 17 18 19 20 21 22 23 24 2 .,. 27 26 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 .. e~u~~~~~~M~~~~~~~~~MM~ID-~ro 7t 72 73

0 1 ~I ~[]j leil l::ll lrl

0 2 lo! ,., " 0 3 0 " 0 4 lo! M •• 1
... I 1 I

0 5 ~11 i'=NV"
0 .8 0 ~ ·Ir IT Iii N I'(~1r-1c: Nit' [.
0 1 lo IC! \ Dc[I~ I

0 8 ~ l<i ' ~11 11:.1'1 ~ IT IF~tc l~i] lri II
.

0 9 0 lq!CI ' Ii-JR ~I Ji'! lk'. I

1 0 l() ;;;; rz
1 1 lo iM ·~ ~ I

1 2 ~ =~~ ~
1 3 10 ~ l!=;t\IM l~I~
I 4 0 ~ ~~ ~
I I jq ~' Qlj~ ~fi
I 8 I~ ,_I Oi.1.11~ ltr.2~
I 7 0 SLT A11 111
I 8 [oj ~lllt'. 111~
I 9 AM 11-.i '

,
2 0 lq "R JM RI 'J.1_'11 '

,
2 I lq ~ ~L~~ ltl l~ii . •
2 2 ~ ~ I 1~1-.. '~.
2 3 ~ ISi lA~ L~ 111 714 . .
2 4 ~I ,., raf'JI J.J 11~1~ ' •
2 5 IBM)':1 Ll "Ci1&1

ZL lL ot •• !9 99 gg t9 £9 EB l9 08 BS 89 L9 99 99 H cs zg L9 09 6t at t• 9lr 9to "' ~ ~ Ltr ot 6£ 8£ LE 9E 9£ 11'£ ££ ZE LE ot ez: 8Z L't 9l: gz: •z tz i:z LZ oz 6L BL u 9L u t'L EL ZL u OL 6 8 L 9 s .. E l
•Number of theets per pad may vary slightly.

In line 01, columns 7 through 14 show that the name of the output file is
CUSTNMBR. The first display, AR230RD1 (line 04, columns 46 through 53),
is a detail record (D in line 01, column 15) that is written if
record-identifying indicator 02, 99, or 04 is on (lines 01 through 03, columns
24 and 25) and if command key 3 is not pressed (NKC, lines 01through03,
columns 26 through 28).

If the person enters a customer number that equals the CUSNO field in a
record in the CUSTMAST file, the program shows the second display,
AR230RD2 (line 11, columns 46 through 53) at detail output time (line 10,
column 15) if record-identifying indicator 03 is on, indicator 99 is not on,
and command key 3 is not pressed (line 10, columns 24 through 31). The
second display shows the accounts receivable information indicated by the
fields in lines 12 through 25. The L edit code in column 38 of lines 19, 21,
22, and 24 displays a minus sign after any negative balance. The Y edit
code in line 25 edits the date of last payment.

Chapter 6. Using a WORKSTN File 6-7

Reaching End of File

6-8

A program that uses a WORKSTN file, as this example does, can end in any
of several ways:

• One way to end the program is simply to turn on the last-record
indicator (LR).

• Another way is to have the person using the display station press a
command key. In this example, command key 3 is used. Both display
formats are conditioned so that they are not written after command key
3 is pressed. On the next input operation, the WORKSTN file reaches
end of file.

If the WORKSTN file is a primary file, as in this example, the
program automatically turns on the last-record indicator at input
time of the next program cycle, and the program goes to end of job.
If the WORKSTN file is a demand file, and if an indicator is coded
in columns 58 and 59 of the calculation specification containing the
READ operation for the file, the indicator turns on.

For more information about reaching the end of a WORKSTN file, see
Reaching End of File for a MRT Program later in this chapter.

This concludes the simple example of using a WORKSTN file. Although
the example does not show how to change the information displayed,
WORKSTN files do allow you to interact with the program. The other
sample programs at the end of this chapter show how to use a WORKSTN
file to update data.

The next section of this chapter explains all the entries you can code for a
WORKSTN file.

STEPS IN USING A WORKSTN FILE

There are two general steps in using a WORKSTN file:

1. Create the format of each display from which your program will read
input and to which your program will write output.

2. Code the necessary file description, input, calculation, and output
specifications for your program.

The reason for creating the displays first is that the format of each display
(that is, the location and characteristics of each field on the display)
determines the coding required for the input and output specifications for
the WORKSTN file.

Creating the Display Formats

Creating a display format includes designing the format, entering the
specifications for the format, and compiling the specifications for the
format. For a complete explanation of how to create display formats, see
the manual Creating Displays.

There are two ways to create a display format:

• Use the screen design aid (SDA) utility to design the format and to
enter and compile the specifications for the format. For information
about using SDA, see the manual Creating Displays.

• Use the display format layout sheet and the display format Sand D
specifications to design the format. Use the $MAINT utility, the
development support utility (DSU), if it is installed on the system, or
the source entry utility (SEU) to enter the specifications for the form.at.
Use the $SFGR utility to compile the specifications for the format. For
information about the display format S and D specifications, the
$MAINT utility, and the $SFGR utility, see the manual Creating
Displays. For information about DSU, see the Development Support
Utility Guide, and for information about SEU, see the Source Entry
Utility (SEU) Guide.

SDA is the easier and recommended way to create a display form.at. SDA
offers two advantages:

• It allows you to design formats right on the screen, so you do not need
to fill out the display format S and D specifications.

• It allows you__ to choose an option that creates file description and input
specifications for the WORKSTN file, so you do not need to code those
RPG specifications for that file.

Chapter 6. Using a WORKSTN File 6-9

Coding the RPG Specifications

File Description Specifications

F
Filename

6-10

File Type

To use a WORKSTN file, code entries in the unshaded columns of the file
description specifications shown below:

Mode of Procnsing

FUa Designation Length of Key Field or
of Record Address Field

Extent Exit
for DAM

Fite Addition/Unordertd

Number of Tracks

End of File
Name of
Label Exit

for Cylinder Overflow

Device
Symbolic
Device

Columns 7 through 14 must contain the name of the file.

Number of Extents

Column 15 must contain C to indicate that the file is a combined (input and
output) file.

Column 16 must contain P (primary) or D (demand) to indicate how the
program uses the file:

• If column 16 contains P, the WORKSTN file is automatically read
during input time of the RPG program cycle. Record-identifying
indicators are automatically set off at input time of the program cycle.
If the WORKSTN file is a primary file, no secondary files are allowed.

• If column 16 contains D, you must code a READ. operation in the
calculation specifications in order to read the file. Record-identifying
indicators are not set off when the READ operation occurs, so it is
possil>le to have more than one record-identifying indicator on if the
WORKSTN file is a demand file.

Column 19 must contain F or blank to indicate that all the records in the
file have the same length.

Columns 20 through 23 must be blank. The block length equals the record
length.

Columns 24 through 27 must contain the length of the longest record. This
number is equal to the highest end position coded on the input or output
specifications. The maximum record length is 9999.

Columns 40 through 46 must contain the device name WORKSTN.

Columns 71 and 72 can contain an external indicator (Ul through US).

Continuation-Line Options

The file description specifications can also include one or more
continuation lines. Continuation lines are coded on the lines immediately
following the file description specification for a WORKSTN file.
Continuation lines are used to provide additional information about the
file.

Column 53 must contain K to identify this as a continuation line.

Columns 54 through 58 must contain the continuation-line option. Valid
entries for the continuation-line option are NUM, SAVDS, IND, SLN,
FMTS, ID, INFSR, INFDS, and CFILE.

Columns 60 through 65 (columns 60 through 67 if the option is FMTS or
CFILE) must contain the value for the continuation-line option.

Figure 6-1 shows sample values coded for each option.

~-~-----~---------~--------~-----~·--~---..,.-,----,----.,.------

F
t----i

Filename

Line

File Type

File Designation

End of File

Sequence

File Format

Mode of Processing

Length of Kev Field or
of Record Address Field

Record Address Type ...J

~-----IUi
Type of file

N Organization or ~
w~-~---l ~ Additional Area c:

a e Re-,d !!:o fl Id- .S! ;::: 2 Block ..., ~ t::::. ver ~ow n 1cator ~

Ii: ;e Length Length a: ~ ~ ~~~F~:1d .B
U ~ :J Cl ::::- Location
~ w ~ l"'-'--~-Ex-t-em-,1-R.L.eco-',-d N-,-'-me--'-='-'--~-"""'"""-'-'-1

Device
Symbolic
Device

Name of
Label Exit

Extent Exit
for DAM

Storage Index

Continuation lines

Option Entry

File Addilion/Unorde

Number of Tracks
for Cylinder Overt

Number of Ex1

T•pe
Rewind
r-Ft;-

Condi
Ut-UI

l: UC

~
cc

3 4 5 7 8 9. 10 11 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 1

0 2 F1M1ic;IJ~IBL I ~ le-I ~ITIN
-~-~--+4-+--+--+--+--l-+--+--+---"f--+--l--+-->--l----l--l-l---+--+---"-----1---

0 3

0 4

0 5

0 6

0 1

0 8

0 9

1 0

Figure 6-1. Continuation-Une Options for a WORKSTN File

Chapter 6. Using a WORKSTN File 6-11

NUM

SAVDS

IND

6-12

Continuation-line options are explained in the following paragraphs.

The entry coded in columns 60 through 65 for the NUM option indicates the
maximum number of devices that can use this file at the same time. If no
number is coded, 1 is assumed. If a number is coded, it must be at least as
large as the sum of the number of acquired devices plus the number you
enter in response to the prompt Maximum number of requesting display
stations on the RPGONL, RPGC, or AUTOC procedure.

Note: If the value for NUM is greater than 1, use caution when updating a
file (see Updating DISK Files in a MRT Program later in this chapter).

1 The name coded in columns 60 through 65 for the SA VDS option identifies
the data structure that is to be saved and restored for each device. This
data structure allows you to save the contents of a field that is unique to
each display station. Therefore, it allows you to save your place in the
program while another requester is using the program. For example, it can
contain a field that is used to accumulate the number of records read or to
store a field that is not used until later cycles, such as a credit limit. The
data structure cannot be a display station local data area, a compile-time
array, or a preexecution-time array. If SAVDS is not coded, no data areas
are swapped.

The entry coded in columns 60 through 65 for the IND option indicates the
number of indicators, beginning with 01, that are to be saved and restored
by the display station. IND allows you to save the state of an indicator
that is unique to the display station. Therefore, it allows you to save your
place in the program while another requester is using the program. For
example, you can use separate error indicators or security clearance
indicators for each display station. If IND is not coded, no indicators are
swapped.

lndicators may need to be reset in the program; they are not always reset
by RPG in time to be useful to the programmer.

The following types of fields and indicators do not need to be placed in
SA VDS and IND:

• Work fields that are used during one cycle (between input operations
for the WORKSTN file), but can then be destroyed.

• Job fields that are used by all display stations but are not destroyed.

For SA VDS and IND, only one copy of the data structure and indicators is
available at a time. The indicators and data structure that are available
are those associated with the device from which the last input was read.
The data structure and indicators that are available change each time the
program does an input operation (either by the RPG program cycle for a

SLN

FMTS

ID

primary file or by the READ operation code for a demand file). On an input
operation, the program writes the present copy of the data structure and
indicators in the program to a save area for the device from which the
previous input was read. Then, for the device from which the current input
is being read, the program writes the data structure and indicators from the
save area associated with the device to the program SA VDS and IND areas.
After the first input operation for each device, all the restored indicators
will be off and all the fields in the SA VDS data structure will be blank.

The entry coded in columns 60 through 65 for the SLN option identifies a
2-digit numeric field whose value determines the line on the screen at
which the display is to begin if a variable starting-line number was
specified in SDA or in the display format S specifications. If a variable
starting-line number is not specified, all displays having a variable
starting-line number begin on line 01.

The name coded in columns 60 through 67 for the FMTS option identifies
the load member containing the display formats. If a name is not entered,
the compiler assumes that the name of the load member containing the
display formats is the same as the program name (from columns 75 through
80 of the control specification) with FM added to the end of the name. The
constant *NONE coded in columns 60 through 64 indicates that the only
formats in this program are SSP-ICF formats, or IDDU communication
formats.

The name coded in columns 60 through 65 for the ID option identifies a
2-character alphameric field that contains the identification of the device
that supplied the record currently being processed in this file. This field
does not have to be coded as an input or result field. The ID field is
updated whenever a record is read from the WORKSTN file. Therefore, it
always contains the identification of the device from which the last record
was read (unless your program moves a different identification into the ID
field). If the NUM option has a value of more than 1, you can direct output
to various devices by changing the value in the ID field to the identification
of another device in the file.

Display station identifiers are in the form AX, where A is an alphabetic
character (A through Z, or one of the special characters #, @, or $) and X is
any character. If a control language WORKSTN statement exists for the
display station, the value of ID is the same as the value of the SYMID
parameter on the WORKSTN statement.

SSP-ICF session identifiers can be in either of two formats: NN or NA,
where N is numeric (O through 9) and A is alphabetic (A through Z, #, @, or
$). If the format is NA, a control language SESSION statement ll1ust be
specified with a SYMID parameter whose value is also in the NA format.

Chapter 6. Using a WORKSTN File 6•13

INFSR

INFDS

CFILE

6-14

The name coded in columns 60 through 65 for the INFSR option identifies
the WORKSTN exception/error-processing subroutine. For more
information about this subroutine, see Handling Exceptions and Errors
later in this chapter.

The name coded in columns 60 through 65 for the INFDS option identifies
the WORKSTN file information data structure. For more information
about this data structure, see Handling Exceptions and Errors later in this
chapter.

The name coded in columns 60 through 67 for the CFILE option identifies a
communication format file. This file associates a WORKSTN file with a
communication format file defined through the interactive data definition
utility (IDDU). For more information about IDDU, see Interactive Data
Definition Utility in chapter 6, and see the manual Getting Started with the
Interactive Data Definition Utility (IDDU), GC21-8003.

(
\

Input Specifications

Code entries in the unshaded columns of the input specifications as shown
below:

Flold F lold Locotion

~ J
lndlc1ton

:I ~ a
To RPG u "' l Field Name] Zero

1 J H j Plus Mlnu1 or

~ ~
Bl1nk

In the first line:

• Columns 7 through 14 must contain the name of the WORKSTN file
unless the preceding input specifications are for the same file.

• Columns 14 and 15 can contain OR, or columns 14 through 16 can
contain AND, to indicate a relationship between record-identifying
indicators or record types on consecutive lines.

• Columns 15 and 16 must contain a numeric or alphabetic entry. A
numeric entry indicates that the program checks the sequence of input
records. An alphabetic entry indicates that the program does not check
the sequence of input records.

• Column 17 can contain 1 or N if columns 15 and 16 contain a numeric
entry. 1 indicates that only one record of this type can be present in
the sequenced group. N indicates that one or more records of this type
can be present in the sequenced group.

• Column 18 can contain blank or 0. Blank indicates that the record
type must be present if columns 15 and 16 contain a numeric entry. 0
indicates that the record type is optional if columns 15 and 16 contain a
numeric entry.

• Columns 19 and 20 can contain a record-identifying indicator.

• Columns 21 through 41 can contain record identification codes.

Chapter 6. Using a WORKSTN File 6-15

6-16

In the second line of the input specifications:

• Column 43 can contain blank, P,. or B:

Blank indicates that the field is in zoned-decimal format or is
alphameric.
P indicates that the field is in packed-decimal format. Use the P
entry only if the input is from an SSP-ICF session.
B indicates that the field is in binary format. Use the B entry only
if the input is from an SSP-ICF session.

• Columns 44 through 51 must contain the location of the field in the
input record. These entries do not refer to the location of the field as it
is dtsplayed. The input fields are placed in the input record in the order
in which they are described in SDA (top to bottom, left to right) or in
the order in which they are described in the display format
specifications. However, you can use the line number and horizontal
position columns on the display format specifications to change the
order in which the fields appear on the display. Figure 6-2 shows the
relationship between the display format specifications and the RPG
input specifications.

• Column 52 can contain a digit to indicate the number of decimal
positions in a numeric field named in columns 53 through 58.

• Columns 53 through 58 must contain the name of a field, array, or array
element in the input record.

• Columns 63 and 64 can contain a field-record-relation indicator.

• Columns 65 through 70 can contain field indicators.

\

SOURCE INPUT SCREEN FORMAT SOURCE

AR230RFM- Source member

SAR230RD1
D
D 1
D
D 2

1

y y

y

c
CA

The line number and horizont,
position columns on the displc
format specifications specify t
order in which the fields are t<
appear on the display.

CCUSTOMER INQUIRY
CAR230RD1
CPLease enter customer nX

CCustomer number
BY 99 y

5
Dsee accounts receivable
DFA0001 0031120999
DFA0002 0034130999
DFA0001 00382206Y
D the main menu.

information.
99
99

EXECUTION TIME OUTPUT BUFFER DESCRIPTION

FIELD
NAME

CUSNO
FAOOOl
FA0002

LENGTH

8
31
34

INPUT BUFFER DESCRIPTION

FIELD
NAME

v
LENGTH

1
8

he order in which the fields are described on the

START
POSITION

1
9

40

START
POSITION

2

T
d
a

isplay format specifications determines the start
\

nd end positions on the input buffer.

I i' ~/!ernat F'.~ame
rd I de~ation Codes i-- Filename ~] Rec

or j ~"' I .L2 Record Name w"' cc 1
It - i ~- ~-~ ?: ~v - ~ Line 25 ~·

\
-'i

3

- ~ d ~ .8 ~ j ~ Pos1t1on ~ e_ ~ Pos1t1on ~ e ~ Data

~ § ·~
Position

Structure o~ 6 ~~6 ~~B
Name zo ".

3 • 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

0 1 I l"llf ~~ rt .,.
0 2 I Nie: fzj~ 11 r /l
0 3 I
0 4 I

CPress the enter key to X

CPress Cmd3 to return toX

END
POSITION

8
39
73

END
POSITION

)
9)

Field Loe.

I\
~I\

From

ti on

0

Ji <r

~ 2
Data Structu;t\

~~ imes Lem h

The start and end positions coded
the RPG specifications must be th1
same as the start and end positiom
created for the input buffer.

Field

~
Indicators

g
0 ·; _,

RPG ~ -6 ;:;
Field Name ~ ! 'ii

~ _, .. u: Zero
£' g' ¥

~ <r Plus Minus o•

~
s s ~ Blank

~6 ..
u:

42 43 :~"" :l 44 4. 46 47 48 49 5t 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 .. 69 70 71 72 1:

~
\.

fa> ['f [)_ lc;N
T-1

Figure 6-2. Relationship Between the Display Format Specifications and the RPG Input
Specifications

Chapter 6. Using a WORKSTN File 6-17

6-18

Each record, including the blank record at the first read to a device, should
be identified on the input specifications. For displays, specify a
nondisplayed, protected output/input field as the record code on each
display format.

The first input record read from a device is blank except in the following
cases:

• The program reads a format that was displayed by a procedure
(PDATA-YES was specified on the control language PROMPT statement
in the procedure). For more information on creating procedures, see
Making Procedures in the System Reference manual.

• The program reads a format that was displayed by a different program
(see Reading Data from a Display Shown by a Previous Program later in
this chapter).

• The program is a single requesting terminal (SRT) program and writes a
display before reading for the first time.

Output Specifications

0

!l
~

Line j

3 4

Filename
or

Record Name

Code entries in the unshaded columns of the output specifications as shown
below:

Skip Output Indicators

And And

Field Name
or

EXCPT Name ~
~ 1-T-.-t-T~t-.~+------I I? Ci'i in ..., 8 5 Output

0 z *AUTO .~ 4 Record
~ Ui

On the first line:

Commas
Zero Balances

to Print

y., Yes
y., No
No v ..
No No

No Sign CR - X"' Remove
Plus Sign

5 ·9· Y., Date
A J Field Edit

Um
8 K z,,.zero Defined

c L $upprea
D M

• Columns 7 through 14 must contain the name of the WORKSTN file
unless the preceding output specifications are for the same file.

• Columns 14 and 15 can contain OR, or columns 14 through 16 can
contain AND, to indicate a relationship between output indicators on
consecutive lines.

• Column 15 must contain H (heading), D (detail), T (total), or E
(exception) to indicate the type of record to be written.

• Column 16 can contain R to indicate that the device is to be released
from the program after output to that device occurs. If OR is coded in
column 14 and 15, column 16 must contain an R for each OR line.

• Columns 23 through 31 can contain output indicators other than the
first-page (lP) indicator. For information about output indicators, see
Chapter 12.

• Columns 32 through 37 can contain an EXCPT name if column 15
contains E.

Chapter 6. Using a WORKSTN File 6-19

6-20

On the second line:

• Columns 40 through 43 must contain K and the number of characters in
the name of the display form&t.

• Columns 45 through 54 must contain the name of the display format,
enclosed in apostrophes. One and only one format name is required for
each output record for a WORKSTN file.

On the third and following lines:

• Columns 23 through 31 can contain output indicators other than the
first-page (lP) indicator.

• Columns 32 through 37 can contain the name of an output field. The
fields must be coded on the output specifications in the order in which
they are described on the display format S and D specifications.

• Column 38 can contain an edit code. If you use the Z edit code for a
signed numeric field that has a value of zero, the RPG program sends

a blank field to the System Support Program, which places a zero in the
rightmost position of the field. For more information about edit codes,
~~e Chapter 16.

• Column 39 can contain B or blank. B indicates that the field named in
columns 32 through 37 is to be set to blanks or zero after it is written.

• Col~ns 40 through 43 must contain the end position of the field in the
outpU:t record. The end position does not refer to the end position of
the field as it appears on the display. Use SDA or the output from the
$SFGR utility as a guide when coding the end position of the field (see
Figure 6-3).

• Column 44 can contain blank, P, or B:

Blank indicates that the field is in zoned-decimal or alphameric
format.
P indicates that the field is in packed-decimal format. Use the P
entry only if the output is to an SSP-ICF session.
B indica,tes that the field is in binary format. Use the B entry only
if the output is to an SSP-ICF session.

• Columns 45 through 70 can contain an·edit word or a constant. For
information about edit words, see Chapter 16.

~OURCE INPUT SCREEN FORMAT SOURCE SPECIFICATIONS The line number and horizon1
position columns on the displ1
format specifications can be u
to change the order in which 1
fields appear on the display.

AR230RFM- Source memb•r name

SAR230RD1
D
D
D
D
Dumber•
D
DCUSNO
D

y
y

y

Dsee accounts rec•lvable
DFA0001 0031120999
DFA0002 0034130999
DFA0001 00382206Y
D th• main m•nu.

99
y

BY

Information.
99
99

EXECUTION TIME OUTPUT BUFFER DESCRIPTION

FIELD
NAME

CUSNO
FA0001
FA0002

INPUT

FIELD
NAME

CUSNO

0
t----i

~
Line I

LENGTH

9
31
34

BUFFER DESCRIPTION

LENGTH

1
8

~
~1 I~ Skip

~I~
Fileneme !~ M or

Record Name ~
~ ~ j ! A

~ ~~ A
j

START
POSITION

1
9

40

START
POSITION

1
2

Output I ndlcaton

AL 2d

I I

99 y

Field Nome
or

INQUIRY

CPL•••• •nter customer nX

CCustomer number

CPr•ss the enter key to X

CPress Cmd3 to r•turn toX

END
POSITION

9

The end positions created for the 73
output buffer and the end positions
coded on the RPG output specificati
must be the same for each field.

END
POSITION

1
9

No Sign CR - X•R..,... m• to Print P1 .. s1.,
y. Dito 5.9.

U•
EXCPTNama
~~--f::;:: :: Field Edk

Oolinod z. Zero
a: Position No Yu 3 C L Su-

~~In No No 4 OM

~ OulPUt ~
•AUTO Record Conlltllnt or Edit Word

i~ ~. •••11a1~tttt~"""tt1111m~nn24'
3 4 I I 7 •• 10 11 12 13 ,. , ... 17 11 ti 20 21 22 D24 27. 31 m :n1211Mae:aen 31 31 40 41 •'2 43 ~· ~ 47 48 41IO11 12 13 14 111117 II 11IO11 12 13 M II II 17 U II 70 71 72 73 7

D 1 IO ~ l
D 2 10 r
D 3 ~
D 4 ~ l<lfl I/I• It'
D I fo ~ ~IN~ (ll I)
D I ~ IC! •rl ll .. " I~ N~ tI ,
D 7 ~ 1q1q .

t..~1I ITu.. •
D 8 ~ ~~ J

.
]E~ IA 'r l'."'l~ •

D 9 IO _,
• 1=.~ N fill I

1 D Iq

Figure 8-3. Relationship Between the Output Buffer and the RPG Output Specifications

Chapter 6. Using a WORKSTN File 6-21

COMMON PROCESSING VARIATIONS

RPG programs that use a WORKSTN file commonly include one or more of
the following processing variations:

• Using command keys

• Handling exceptions and errors

• Reading data from a display shown by a previous program

Using Command Keys

6-22

There are 24 command keys. Each one corresponds to a separate
command-key indicator:

Cmd Command Keyboard Cmd Command Keyboard
Key Key Keys Key Key Keys

Indicator to Press Indicator to Press
1 KA Cmd, 1 13 KM Cmd, Shift, I
2 KB Cmd, 2 14 KN Cmd, Shift,

@

3 KC Cmd, 3 15 KP Cmd, Shift, #
4 KD Cmd,4 16 KQ Cmd, Shift, $

5 KE Cmd, 5 17 KR Cmd, Shift,
%

6 KF Cmd,6 18 KS Cmd, Shift, ..,
7 KG Cmd, 7 19 KT Cmd, Shift, &

8 KH Cmd, 8 20 KU Cmd, Shift, *
9 KI Cmd, 9 21 KV Cmd, Shift, (

10 KJ Cmd,O 22 KW Cmd, Shift,)

11 KK Cmd, - 23 KX Cmd, Shift, _

12 KL Cmd, = 24 KY Cmd, Shift,
+

Note: The keyboard keys may vary, depending on what type of keyboard
you have.

You can use SDA or column 28 and columns 64 through 79 of the display
format S specifications to allow a command key to be used in a program
(see the manual Creating Displays for more information). You can use any
of the 24 command keys with a WORKSTN file. If a person presses a
command key that can be used in that program, the corresponding
command-key indicator turns on. You can then use the command-key
indicator to condition calculation and output operations.

For example, you can specify that the person press command key 2 (rather
than the Enter key) when the last item for an invoice has been typed at the

display station. You can then use command-key indicator KB in the
program to condition calculation operations and output operations, such as
presenting the next display.

If the person using the display station presses a command key that is not
allowed by the format, error message KBD-0099, KEY NOT VALID AT
THIS TIME, is displayed. The person can press the Error Reset key and
then press the correct command key.

For a discussion of how to determine whether a command key was pressed,
see Coding the INFDS Data Structure in this chapter.

Note: Each time an input operation occurs from a WORKSTN file, all
command-key indicators are reset, unless an exception or error occurs
during the input operation.

To document the use of the command keys for the person using the display
station, you can use the template assignment form on the IBM 5251 Display
Station Keyboard Template Assignment Sheet and Display Screen Layout
Sheet.

Chapter 6. Using a WORKSTN File 6-23

Handling Exceptions and Errors

6-24

For a display station, the term exception means input from a function key
(Print, Roll Up, Roll Down, Clear, Help, or Home) to the program. This
input is an exception because no data is read into the program, so the
program cannot go through normal processing such as record identification.

To allow function keys to be used, you must do three things:

• You must define which function keys you will allow input from. You
define them with either SDA or column 27 and columns 64 through 79 of
the display screen format S specifications when you create the display
for your program. No specific function is automatically associated with
any function key, so you can define their functions. For information
about how to define function keys, see the manual Creating Displays.

• Your program must include the file information data structure (INFDS),
which contains an indication of the exception or error. If the program
does not contain the INFDS, it cannot tell whether one of the function
keys was pressed.

• Your program must also include either the exception/error-processing
subroutine (INFSR) or a resulting indicator in columns 56 and 57 of the
calculation specification for a READ operation. If neither the INFSR
subroutine nor resulting indicators are specified, the program halts and
an error message is displayed.

The term error means an error that occurs during an input or output
operation (either a program cycle input/output operation or an ACQ, REL,
NEXT, READ, or EXCPT operation).

If an exception or error occurs while your program is processing a
WORKSTN file, you can use the INFDS and either the INFSR or resulting
indicators in columns 56 and 57 of the calculation specification for an ACQ,
REL, NEXT, POST, or READ operation to control the program logic.

First, your program can check the information in the INFDS. The INFDS
contains an identification of the exception or error that occurred and an
identification of the operation for which it occurred. The INFDS also
contains status information on normal conditions (not exceptions or errors)
such as whether a command key was pressed or whether end of file has
occurred. The information in the INFDS is updated for each ACQ, REL,
NEXT, POST, READ, or EXCPT operation or for each input or output
operation in the program cycle.

Then, using that information in the INFDS, you can determine which
exceptions or errors you want to handle in the INFSR subroutine in your
program and which ones you want RPG to handle. Control automatically
passes to the INFSR subroutine, if specified, under the following .conditions:

• If an exception or error occurs at input time of the program cycle for a
primary file, at exception output time, or at normal output time

• If an exception or error occurs on an ACQ, REL, NEXT, POST, or
READ operation that does not have an indicator coded in columns 56
and 57

In addition, the INFSR subroutine can be called directly from detail or total
calculations by the EXSR operation.

The indicator specified in columns 56 and 57 for an ACQ, REL, NEXT,
POST, or READ operation turns on if an exception or error occurs on that
operation. Control then passes to the next executable operation in the
program. In order to use the INFSR subroutine, the next operation must be
an EXSR operation that calls the INFSR subroutine. Control does not
automatically pass to the INFSR subroutine if the EXSR operation is not
specified.

The relationship between INFDS, INFSR, and indicators in columns 56 and
57 is shown in Figure 6-4. These exception/error-handling techniques are
optional and can be used individually or in any combination. However, if
function keys are allowed for the program, the INFDS data structure and
either the INFSR subroutine or an error indicator on the READ operation
must be specified. You can choose the technique that best suits your own
program.

Chapter 6. Using a WORKSTN File 6-25

Update
*STATUS in
INFOS

No

RPG error hendling
(program helts). If
INFSR was celled by
EXSR, returns to next
sequential instruction.

Continue

Seton
indicetor

Continul!

Execute
INFSR
subroutine

Go to Point in RPG
cycle specified by
fector 2 entry on
ENDSR

*GETIN (beginning of new cyclel1

"DETC (detail celculations) 1

*CANCL (cencel program)'

1 For the exact point in the cycle that is specified by these keywords, see Chapter 19.

Figure 6-4. Handling Exceptions and Errors in a WORKSTN File

6-26

\

Coding the INFDS Data Structure

File Description Specifications

F
Filename

3 •

0 2

0 3

File Type

Three entries are required on the continuation line of the file description
specifications for the WORKSTN file:

Mode of Processing

File OesigNtion Length of Key Field Of

of Record Address Field

Extent Exit
for DAM

Encl of File
Name of
Label Exit

Fite Addition/Unorder

Number of TrlCks
for Cylinder Overfl -- Record Address Type

Type of File Device
Symbolic
Device

Storage Index

~ ~

Column 53 must contain K to indicate that this is a continuation line.

Columns 54 through 58 must contain INFDS.

Columns 60 through 65 must contain the name of the data structure to be
used as the INFDS.

TIPO
RoMnd

File
Condit
U1·U8.
UC

Chapter 6. Using a WORKSTN File 6-27

Jnput Specifications

I

I
UM lt--ii:::::--rl':t:~~

6-28

The following input specifications are required for the INFDS:

Field Location
Rocord ldentlfation Codes

On the first line of the input specifications:

Field
Indicators

Zlro
Plus Ml or

ll•k

• Columns 7 through 12 must contain the name of the data structure.
The name must be the same as the name coded in columns 60 through
65 of the file description specifications continuation line with the
INFDS keyword.

• Columns 19 and 20 must contain DS to indicate data structure.

On the second and following lines:

• Columns 44 through 51 must contain a keyword that identifies the
location of the subfields containing the status information. The valid
keywords are *STATUS, *OPCODE, *SIZE, *RECORD, *MODE, *INP,
and *OUT. The keywords are not labels and cannot be used to refer to
the subfields.

• Columns 58 through 58 must contain a subfield name. You can use the
subfield names to refer to the subfields.

Figure 6-5 shows all the subfield keywords and subfield names.

\

I f
External Field Name Field Fietd Location

Indicators I-- Filename

I
Record Identification Codes

or -;;. .. ~
Record Name .s: c 1 2 3 From To RPG ~ii !. .?: ~ il ~~ ~ j:" Field Name z..o

Line

~ zoj z o I ~ ;!! IC Dall Structure

H Plus Minus or

~ Position Position Position ~s iii rs :J et .. k °"'' ~=to i§& -: N li ~!~ Occurs
Structure v i i) Ii ~ () n Times Length

Nome IC

3 4 & 8 7 8 9 10 11 12 13 14 16 18 19 20 212223~ ,. 28 21E 29 30 31 32 33 ~ 35 36 37 38 39 .. 41 42 43 44 46 4ti 47 48 49 60 61 52 63 54 5& 58 57 ii
·~

.. .. 8188 17 88 8810 71 72 73

0 1 IElx ,,..
·~ ~

0 2 I lllfl ll 15 II ~ll le:
0 3 I rl
0 4 I M NP'
0 5 I ~15 11 i! li=iII IE'.1
0 6 I 1111-1 E
0 7 I IJJII ~I= ["
0 6 I bf 1
0 9 I 1~1~ ~ ~
1 0 I

.. -

The keywords and predefined from and to locations in columns 44 through 51 define the location and
size of the subfields in the INFDS data structure, which contain the status information. Field names
must be assigned in columns 53 through 58 so the subfields can be referred to in the program.

Figure 6-5. Subfield Keywords for the INFDS Data Structure

Chapter 6. Using a WORKSTN File 6-29

8-80

*STATUS Keyword: The name in columns 53 through 58 for the
*STATUS keyword identifies a 5-digit numeric subfield with zero decimal /
positions within the INFDS data structure. This subfield contains a code
that identifies the exception or error that occurred. The codes are as
follows:

Exception/Error Conditions Code
Function Keys

Print 01121
Roll Up 01122
Roll Down 01123
Clear 01124
Help 01125

Home 01126

Error Status Codes
Input was rejected because the buffer is too 01201
small

Permanent 1/0 error occurred 01251

Invalid de'9'ice, or maximum number of 01261
requesting and/or acquired display stations
Device is busy 01271

Display station was released by operator 01275

Input was rejected, device is not available, 01281
or device was not found
Attempt to acquire a device already owned 01285.

Other input errors 01299
Change of direction was received with no data 01311
Request for change of direction was received 01321
Time interval expired 01331

If an exception or error occurs, RPG bypasses the move field logic, no fields
are changed, no record-identifying indicators are tumed on, and the
command-key indicators are not reset.

You also have access to the following successful status codes that are
placed in *$TATUS after any input/output operation:

Condltlon Code
No exception (with a display station, either the 00000
Enter or Auto Record Advance key was preased)
Any of the 24 command keys 00002
End of tile (input rejected, no diaplay station• 00011
ready)

Any code in *STATUS greater than 99 is considered to be an exception or
error, and the resulting error indicator, if specified, turns on. If no
resulting error indicator is specified on an ACQ, REL, NEXT, POST, or
READ operation or if the program cycle is at input time for a primary file,
at exception output time, or at normal output time, control automatically
passes to the INFSR subroutine.

For information on return codes resulting from the use of the Interactive
Communications Feature, see the Interactive Communications Feature:
Reference.

*OPCODE Keyword: The name coded in columns 53 through 58 for the
*OPCODE keyword identifies a 5-character alphameric subfield within the
INFDS data structure. This subfield contains a value that identifies which
operation was being performed when the exception or error occurred. The
value inserted in the *OPCODE subfield is READ, ACQ, REL, NEXT,
POST, or WRITE (for output operations). A value is inserted in the
*OPCODE subfield when a value greater than 99 is placed in *STATUS.

*RECORD Keyword: The name coded in columns 53 through 58 for the
*RECORD keyword identifies an 8-character alphameric subfield within the
INFDS data structure. This subfield contains the format name if *OPCODE
contains WRITE. If *OPCODE does not contain WRITE, *RECORD is
blank.

*SIZE Keyword: The name coded in columns 53 through 58 for the *SIZE
keyword identifies a 4-digit numeric subfield within the INFDS data
structure. The digits in this subfield indicate the size of the display. The
subfield contains either 1920 (24 rows x 80 columns = 1920 characters), or,
if you are using a 3180 model 2 workstation, 3564 (27 rows x 132 columns =
3564 characters). The subfield is reset each time the POST operation occurs.

*MODE Keyword: The name coded in columns 53 through 58 for the
*MODE keyword identifies a 2-digit numeric field that indicates if
ideographic support was requested when you signed on.

Value Explanation

10 Ideographic support was requested.
00 Ideographic support was not requested.

*INP Keyword: The name coded in columns 53 through 58 for the *INP
keyword identifies a 2·digit numeric field that indicates whether the
ideographic or the alphameric/katakana keyboard is being used with thia
display station.

Value Explanation

10 The ideographic keyboard is being uaed.
00 The alphameric/katakana keyboard ia being

uaed.

Chapter 6. UsinlJ a WORKSTN File 6·81

6-32

*OUT Keyword: The name coded in columns 53 through 58 for the *OUT
keyword identifies a 2-digit numeric field that indicates whether this
display station's screen is capable of displaying ideographic characters.

Value Explanation

10 The screen can display
ideographic characters.

00 The screen cannot display
ideographic characters, or the
display is not output-capable.

Positions 23-26: Positions 23 through 26 of the INFDS data structure
contain the 4-character return code for WORKSTN files. These positions
are filled in for all WORKSTN files. This subfield is similar to *STATUS
except that *STATUS values are the same for RPG on all IBM systems.
Positions 23 through 26 must be coded as the beginning and ending
positions of the return-code subfield on the input specifications (see Figure
6-5). The subfield is referred to by the name coded in columns 53 through
58 of the input specifications. Figure 6-6 shows the RPG return codes for
display stations.

Note: This subfield is not updated for a *STATUS value of 01261 because
RPG does not call the System Support Program. If the *STATUS value is
01281, this subfield is not updated unless the error occurs on a read or ACQ
operation.

For information about major and minor return codes that result from the
use of the Interactive Communications Feature, see the Interactive
Communications Feature: Reference manual.

/

Major Minor
Return Return
Code Code Explanation
00 00 Operation was successful

01 00 Program successfully acquired a new
requester

02 00 System operator requested a halt

04 00 Output exception occurred

08 00 Program attempted to acquire a display
station that was already acquired. No
error

11 00 Input operation was attempted but no
input was available (end of file)

18 00 Acquire failed temporarily

24 00 Display station was released by option 2
chosen on inquiry display

28 00 Operation was rejected because the
program previously released the single
requester

32 00 Acquire failed because the user is
unauthorized

34 01 Input was rejected because the buffer is
too small

38 00 Attempt to acquire the display station
· failed

40 00 Requested display station is offline

80 00 Permanent device error occurred

Figure 6-6. WORKSTN Return Codes

Chapter 6. Using a WORKSTN File 6-33

Coding the INFSR Subroutine

The INFSR subroutine can perform any function normally allowed in
calculations, including exits to other calculation subroutines and
input/output operations. The INFSR subroutine returns control to the
point specified by the optional factor 2 entry for the ENDSR operation.

File Description Specifications

F
Filename

File Type

Three entries are required on the continuation line of the file description
specifications for the WORKSTN file:

Mode of Procening

FU1 D11ign1tion length of Key Field or
of Record Address Field i

Extent Exit
for DAM

File Addition/Unordlred

NumborolT•ockt
fo<CyH-0-flaw

End of File

Device
Symbolic w

Device ~

Name of
Label Exit

Column 53 must contain K to indicate that this is a continuation line.

Columns 54 through 58 must contain INFSR.

Number of Ex1tnll

Columns 60 through 65 must contain the name of the calculation subroutine
that is to be performed if a WORKSTN exception or error occurs on an
ACQ, REL, NEXT, POST, or READ operation for which no error indicator
is coded in columns 56 and 57 or of program cycle input/output operations.

Calculation Specifications

The INFSR subroutine requires the following entries in the calculation
specifications:

C Indicators Result Fietd Resulting !f I ndlcators

I-- s_· ii: l J . Arlth..Wc
- e And And .Ji ~ Plu~in!!!L Zero

• .§ :Z Factor 1 Operation Factor 2 j! " Compare
s: Name Length 'B ~ 1 >2'1 <2•1 =2

Line ... j-a: <e: !'.L ::i..: § '". g ·~ ii Lookuplfactor 21!!!
u;, ~z I i 1!5:J:HighLowF.qual

3 4 5 a 1 a e 10 '' 12 13 14 1& 1a 11 11 11 20 21 22 23 24 2& 26 21 ~ 29 30 31 ~ ~3 34 35 36 37 38 39 40 c1 42 43 44 46 46 47 48 49 ao &1 52~ 54 56 Ei8 &7 &8 _.!!l ao 11 12 83 84 85 ee 11 88 • 10 11 12 73 74

0 1 ICi Le.I

Comments

o 2 c Ir

6-34

_,

BEGSR Operation: Factor 1 of the BEGSR operation must contain the
name of the exception/error-processing subroutine. This must be the same
as the name coded in columns 60 through 65 of the file description
specification continuation line.

ENDSR Operation: Factor 2 of the ENDSR operation can contain a
literal, an array element, or a field name that identifies the point to which
the INFSR returns control. INFSR can be accessed using EXSR whether
factor 2 contains a blank or any of the allowed literals: '*GETIN', '*DETC',
or '*CANCL'.

• If factor 2 contains blanks and if the INFSR subroutine was called
directly by the EXSR operation, control returns to the operation
following the EXSR statement.

• If factor 2 contains blanks and if the subroutine was called indirectly
(that is, control was automatically passed to the subroutine because of
an exception or error), the subroutine is performed, and control is
passed to the RPG error-handling routine, which causes the program to
halt and prompts the person at the display station to choose the
appropriate option.

• If factor 2 contains a literal, the literal must be one of the following
keywords. The keyword must be enclosed in apostrophes.

'*GETIN' Control returns to the beginning of a new cycle.

'*DETC' Control returns to the beginning of detail calculations
within the same cycle.

'*CANCL' Files are closed and the program is canceled.

, ,
A literal value of blanks is the same as no entry.

If an exception or error occurs on an operation that attempts to read
data from a file and the exception/error-handling subroutine receives
control, you must ensure that an output operation to the WORKSTN
file occurs before another read occurs. Two consecutive read
operations cannot be performed to the WORKSTN file. For example, if
the WORKSTN file is a primary file and the exception/error subroutine
ENDSR statement specifies a return point of *GETIN, an output
operation must be performed to the file before the ENDSR operation
occurs. The *GETIN routine will attempt to read from a WORKSTN
primary file.

• If factor 2 is an array element or field name, it must identify a
6-character alphameric field that contains one of the keywords *GETIN,
*DETC, or *CANCL or blanks that define the return point from the
subroutine. By specifying the return point in a field, you can use the
subroutine to process all types of exceptions and errors that occur in
the WORKSTN file.

If a field name or array element is specified in factor 2, the field or
array element is set to blanks upon each exit from the subroutine.
Therefore, you can control the return point of the INFSR within the

Chapter 6. Using a WORKSTN File 6-35

program by placing the return point in the field that best fits the
particular exception or error that occurred. If factor 2 is bl11n.k and if
the subroutine was called indirectly, the subroutine is performed and \'-
control passes to the RPG error-handling routine. If factor 2 is blank
and if the INFSR subroutine was called directly by the EXSR operation,
control returns to the calculation immediately following the EXSR
operation.

Reading Data From a Display Shown by a Previous
Program

6-36

When one program in a procedure uses a normal output operation to show
a display and then goes to end of job or releases the display station, the
next program in the procedure can read that display. The person using the
display station can enter data into the display while the second program is
initiating. When the person presses the Enter key, the data entered into
the display is sent to the second program. This technique is called a read
under format.

There are two ways to do a read under format:

• One way is to use the control language PROMPT statement to display
the format. The PROMPT statement is in the procedure, so no other
program is involved. For information about the PROMPT statement,
see the System Reference manual.

• The other way is to display the format in one program, then end that
program, and load and run a second program, which reads the format.
This method does not involve any control language statements to
display the format.

USING ONE OR MORE DISPLAY STATIONS

A WORKSTN file allows people to interact with the program from one or
more display stations at the same time. A program that can process
requests from only one display station or SSP-ICF session is called a single
requester terminal (SRT) program. A program that can process requests
from more than one display station or SSP-ICF session at the same time,
using a single copy of the program, is called a multiple requester terminal
(MRT) program. Whether a program is a SRT or a MRT depends on the
number you enter in response to the prompt Maximum number of requesting
display stations on the RPGONL, RPGC, or AUTOC procedu:re when you
compile the program. For information about these procedures, see Chapter
3, Entering and Compiling an RPG Program. For a complete description of
SRT and MRT programs, see the Concepts and Programmer's Guide.

Using a SRT Program

Although a SRT program allows only one requester, it is possible for more
than one requesting display station or SSP-ICF session to use a SRT
program at the same time if each display station or SSP-ICF session uses a
separate copy of the program.

Using a MRT Program

Each requester of a MRT program uses the same copy of the program. The
first requester loads and initiates the program. If the WORKSTN file is a
primary file, each succeeding requester begins to use the program at the
beginning of an input cycle. If the WORKSTN file is a demand file, each
succeeding requester begins to use the program when the READ operation
for the WORKSTN file occurs. If the program is handling the maximum
number of requesters, the System Support Program places the next
requester of the program in a queue. When the program releases one of its
requesters, the program can process the queued request.

If the program is called by more than one requester, the first requester:

• Initiates the program

• Provides the external indicators (Ul through US)

• Provides the display station local data area for the data structure
defined by a U in column 18 of the input specifications

Each requester can access any display station local data area and external
indicators attached to the program by using SUBR20 and SUBR21. For
information about SUBR20, see Setting and Restoring External Indicators
later in this chapter. For information about SUBR21, see Reading and
Writing the Local Data Area for a Display Station later in this chapter.

Program error messages go to the system operator.

Chapter 6. Using a WORKSTN File 6-37

Requesters can leave the program withotit suspending the program or other
devices.

If the Attn or Sys Req key is pressed while a MRT program is running, the
processing of information is suspended at the display station where the At~
or Sys Req key was pressed. The program continues to process information
from other requesters. However, if the program must write a display ~ the
suspended requester, the entire program is suspended (all requesters are·
suspended). ·

File Description Specifications

A MRT program can include one or more continuation lines for the
WORKSTN file description specifications. For more information, see
Continuation-Line Options earlier in this chapter.

Calculation Specifications

NEXT Operation

Two operations that are commonly used in MRT programs are NEXT and
REL.

The NEXT operation forces the next input to the program to come from the
device specified in factor 1. Factor 1 must contain the name of a
2-character field that· contains the device identification or a 2-character
alphameric literal that is the device identification. Factor 2 must contain
the name of the WORKSTN file.

If NEXT is coded more than once between input operations, only the last
operation occurs. If you code an indicator in columns 56 and 57, it turns on
if an exception or error occurs on the NEXT operation.

If columns 56 and 57 do not contain an indicator and an exception or error
occurs, the program halts unless the INFSR subroutine is specified. If th~
INFSR subroutine is specified, the subroutine automatically receives
control when an exception or error occurs. For more information on the
INFSR subroutine, see Handling Exceptions and Errors earlier in this
chapter.

REL Operation

The REL operation releases the device specified in factor 1 from the
program. Factor 2 must contain the name of the WORKSTN file.

You can release either a requester or an acquired device with the REL
operation code. The program releases the specified device when the REL
operation occurs during calculations unless the device is the requester of a
SRT program. If the device specified in factor 1 is the requester of a SRT
program, the device is released at end of job, not when the REL operation
occurs in calculations, but the device is no longer available to the program
except to log messages. If the device is a display station, the display station
is no longer available to the program.

If you code an indicator in columns 56 and 57, it turns on if an exception or
error occurs on the REL operation. If columns 56 and 57 do not contain an
indicator and an exception or error occurs, the program halts unless the
INFSR subroutine is specified.

If the INFSR subroutine is specified, the subroutine automatically receives
control when an exception or error occurs. For more information on the
INFSR subroutine, see Handling Exceptions and Errors in this chapter.

Output Specifications

You can release a device from a MRT program by coding R in column 16 of
the output specifications. The device is released when the output
specification occurs during the output operations. If a format name is
coded in columns 46 through 53 of the next output specification, the display
appears or the SSP-ICF operation is performed, and then the device is
released.

Chapter 6. Using a WORKSTN File 6-39

Acquiring One or More Display Stations by the Program

ACQ Operation

6-40

Both SRT programs and MRT programs can acquire one or more display
stations or SSP-ICF sessions while the program is running. The program
acquires other display stations or SSP-ICF sessions by using the control
language WORKSTN statement or the ACQ operation. For information
about the WORKSTN statement, see the System Reference manual.

A SRT program that acquires any display stations or SSP-ICF sessions must
include a NUM option in the continuation line of the file description
specifications for the WORKSTN file.

An acquired device cannot supply external indicators Ul through US, and
SUBR20 cannot be used to read or write them.

An acquired device does not provide the display station local data area for
the data structure defined by a U in column 18 of the input specifications,
and SUBR21 cannot be used to read or write a local data area for an
acquired device.

Program error messages go to the requester. If the requester is an SSP-ICF
session, program error messages go to the system console.

An acquired display station must have a STANDBY display. To change a
display station from a COMMAND display to a STANDBY display so that it
can be acquired, enter MODE on the command line at the display station.

The ACQ operation acquires the device specified in factor 1 for the
program. Factor 2 must contain the name of the WORKSTN file.

If the device is available, it is acquired by the program. If it is not
available or was already acquired by the program, the indicator coded in
columns 56 and 57 is set on.

If no indicator is coded in columns 56 and 57 but the program contains the
INFSR (WORKSTN exception/error-processing) subroutine, the INFSR
subroutine automatically receives control when an exception or error
occurs on the ACQ operation.

If no indicator is specified and the program does not contain the INFSR
subroutine, the program halts when an exception or error condition occurs.
Then you can continue the job or try the ACQ operation again. No input
or output operation occurs when you use the ACQ operation.

Requesting the Program by One or More Display Stations

Each requester of a MRT program uses the same copy of the program. The
first requester provides the external indicators (UI through US) and the
display station local data area for the data structure defined by a U in
column IS of the input specifications. Other requesters can access any
external indicators and display station local data area attached to the
program by using SUBR20 and SUBR21.

Setting and Restoring External Indicators (SUBR20)

Indicators c ...
-I

1 l ~ ~

l~
Lino ... g

! .§ i i i
3 •• . , 9 10 11 12 13 14 15 18 17

0 1 IC1
0 2 L~
0 3 c
0 • le
0 & c

The IBM-written subroutine SUBR20 allows you to set and restore the
external indicators (UI through US) for each requesting display station
when more than one display station requests the same program. To call
SUBR20, code the EXIT SUBR20 operation, followed by exactly three
RLABL operations (see the example below):

Re.ult Field
Rf!lulting
lndlc•tors . Arithmetic

.g ~ P1uUMi~Zero
Fector 1 Operation Factor i li Compare Comments

Name Length 1 >2{1<2{1.2 n Lookup(Factor 2)1s

H Hilti Low F.qu1I
18 19 20 21 22 23 24 29 28 27 t.aa 29 30 31 32 33 34 39 38 37 38 39 40 41 42 ~4446464748 .w 60 51 52 53 M 56 56 67 68 59 80 81 82 83 84 86 88 67 88 • 70 71 72 7~

!)(ff~ ICJI
IAIP ""'~ Ll
[jii ~N iAIMlf: 12
Iii; It. ~

OP is a I-character field that contains I or 0 to indicate whether the
external indicators are to be input to or output from the program for this
display station. To enter the appropriate character in the OP field, you can
use a MOVE operation before calling the subroutine.

TNAME is a 2-character field that contains the identification of the display
station. This field is normally the field whose name is coded in columns 60
through 65 for the ID option on the WORKSTN file description
continuation line. If TNAME is not the field whose name was coded in
columns 60 through 65 on the WORKSTN file description continuation line,
you can use a MOVE operation to enter the appropriate display station
identification in the TNAME field before calling the subroutine.

RCODE is a I-character field that contains one of the following return
codes:

0 = Successful

I = Unsuccessful (the display station is not attached to the program)

2 = Unsuccessful (the display station is not a requester)

The external indicators for the requester of a SRT program are
automatically available to the program without the use of SUBR20 and are
written out at end of job. The external indicators for the first requester of

Chapter 6. Using a WORKSTN File 6-41

an MRT program are available without the use of SUBR20, but they are not
automatically written out at end of job.

Reading and Writing the Local Data Area for a Display Station (SUBR21)

c ~i
f----i ~

~
Line

1
3 4 5 7

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c

6-42

Indicators

The IBM-written subroutine SUBR2I allows you to read and write the local
data. area for each display station when more than one display station
requests the same WORKSTN file. To call SUBR2I, code the EXIT SUBR2I
operation followed by exactly four RLABL operations (see the example
below):

Result Field

Factor 1 Operation Factor 2

Resulting
Indicators
Arithmetic

.~ :r Plu~inu!{ Zero
·s t: Compare Comments

Name Length ~ ~ t >&1 <~ =2
O O O -~ 1ij l~okup(Factor 2)is
z z z 6 :r High Low fqual
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21128 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 89 70 71 72 73 74

t:.JxJilII IC:. 11=1 lt:!l 1
~LIA~ ll
le IAR tt

J
Ril IA RI ~RIEA

OP is a I-character field that contains I or 0 to indicate whether the
display station local data area is to be input to or output from the program
for this display station.

TNAME is a 2-character field that contains the identification for the
display station.

RCODE is a I-character field that contains one of the following return
codes:

0 = Successful

I = Unsuccessful (the display station is not attached to the program)

2 = Unsuccessful (the display station is not a requester)

AREA is a field or data structure from which the local data area for the
display station is read or to which it is written. AREA can be up to 5I2
characters long. If AREA is between 257 and 5I2 in length, then AREA
must be the name of a data structure. Position I of the local data area is
always placed in position l of this field. If you use AREA to pass options to
control language statements, use caution when you use the characters?
(question mark) and / (slash).

If a single display station is used, the program writes the information from
the data structure to the local data area (LDA). To print, write, or display
the contents of the LDA, use the contents as data to be passed to the
desired output device. See Figure 6-I3, Sample Program AR935R for an
example of information transfer between programs.

The local data area for the requester of a SRT program or for the first
requester of a MRT program can be referred to in your program if you
define a data structure with a U in column 18 of the input specifications.
For a MRT program, the local data area is not automatically written out at
the end of the job. (For more information see the section Local Data Area
for a Display Station in Chapter 14, Using Data Structures)

Compiling and Running a MRT Program

Compiling the Program

When you use the RPGONL, RPGC, or AUTOC procedure to compile a
MRT program, you must respond to the prompt Maximum number of
requesting display stations by entering a number less than or equal to the
number of all requesting devices.

Respond NEP to the Never-ending program prompt if the program is to be
used often or if initializing the program is time-consuming. The program is
initialized once and remains in main storage until the STOP SYSTEM
command is entered from the system console. Respond NONEP to the
prompt if the program is seldom used, if initialization time is negligible, ot
if DISP-SHR is not specified on the control language FILE statements for
the files used by your program and needed often by other programs.

For information about the RPGONL, RPGC, and AUTOC procedures, see
Chapter 3.

Running the Program

When you use the development support utility, DSU, (or the source entry
utility, SEU, if DSU is not installed) to enter the procedure to run a
program, and you press command key 7 to end DSU (or SEU), the DSU (or
SEU) display asks whether the program is a MRT program. Respond Y to
that prompt.

Chapter 6. Using a WORKSTN File 6-43

Updating Disk Files in a MRT Program

Possible Errors

6-44

Use care when updating DISK files in a MRT program. If a file is shared
by two or more display stations in a program and if the record being
processed is not updated before the next record is read, the following errors
can occur:

• An update can be lost. For example, suppose a record is read from file
X and displayed at display station 1, then the same record is read from
file X and displayed at display station 2. The update performed at one
display station might be destroyed by an update performed at the other
display station. If this condition occurs and if DISP-SHR was specified
on the control language FILE statement for file X, an error message is
displayed and the second update is not performed. If this condition
occurs and if DISP-SHR was not specified, the second update overlays
the first update.

• An update performed by another program sharing the file can be lost.
For example, suppose a record is read from file X and is displayed at
display station 1, then a record in a different disk sector is read from
file X and displayed at display station 2. The second read operation
from file X causes the System Support Program to free the sector
containing the first record. Another program sharing file X can then
update the first record. If display station 1 also tries to update that
record by using the original field values, the updates made by the other
program may be lost.

• The wrong record can be updated. For example, suppose a record is
read from file X and displayed at display station 1, then a different
record is read from file X and displayed at display station 2. If display
station 1 tries to update the first record but the program does not reread
that record, the program tries to update the last record read from file X.
If this condition occurs during an attempt to update an indexed file, an
error message is displayed and the requested update is not performed.
Otherwise, the wrong record is updated.

Avoiding These Errors

You can avoid the preceding error conditions by using one of the following
techniques:

• Before you update a record, read the record again and check that none
of the fields being updated have been changed after the record was
displayed for updating. If any of the fields were changed, you might
want to display the field again for updating or, if possible, update the
record by using the field values currently in the record.

• Within the program, define an array for each DISK file. The array
should contain one element for each display station. When a person
using a display station enters a relative record number or the key field
of a record to be updated, the program should check the array to ensure
that no other display station is updating that record. If no other
display station is updating the requested record, the program should
place the specified relative record number or key field into the array
element corresponding to the display station. The program can then
read the record and display it at the display station. If another display
station is updating the record, you can display a message saying so.
After the person at the display station enters the updates, the program
must read the record again and use the information entered at the
display station to update the record. The program should then blank
out the array element corresponding to the display station.

• There is another way to solve the problem of more than one display
station in a MRT program updating the same record. This method also
applies if another program is updating the same file and causes updates
for the MRT program to fail. That method is to define each file on a
separate control language FILE statement for each display station using
the MRT program. Each of the FILE statements should specify a
different name but the same label, and each FILE statement should
specify DISP-SHR. This method causes each record for each display
station and each program to be locked or protected when other display
stations or programs try to access it.

Chapter 6. Using a WORKSTN File 6-45

Reaching End of File for a MRT Program

Primary File

Demand File

6-46

If a MRT program is defined as a never-ending program, if all devices have
been released or no input-capable records are in the WORKSTN file, and if
the program tries to read another record from the WORKSTN file, end of
file does not occur and RPG does not set on the LR indicator until the
system operator enters the STOP SYSTEM command (P S). However, if you
set on the LR indicator, the program goes to end of job (that is, the system
operator does not have to enter the STOP SYSTEM command).

Note: A MRT program should not set on the LR indicator until end of file
is reached for the WORKSTN file. If the LR indicator is set before end of
file is reached, undesirable results occur for requesters that are signing on
or are still signed on.

If the program is defined as a never-ending program and if all devices have
been released or no input-capable records are in the WORKSTN file, the
end-of-file indicator on the READ operation is not set on until another
READ operation occurs and the system operator enters a STOP SYSTEM
command. However, if you set on the LR indicator based on some condition
other than the end-of-file indicator on the READ operation, the program
goes to end of job (that is, the system operator does not have to enter the
STOP SYSTEM command).

ADVANCED TOPICS

Processing the Duplicate Character Value

If you specify Enable Dup for a field in a display format (by using SDA or a
Y entry in column 34 of the display format D specifications), the person at
the display station can press the Dup key to indicate to the program that
the contents of the field are to be duplicated from the field in the previous
record. When the Dup key is pressed, the field, from the position of the
cursor to the end of the field, is filled with the duplicate character value
(hexadecimal lC), which is displayed as the character*. The Dup key does
not duplicate any characters; therefore, you must process the duplicate
character values in your program.

If you want the person at the display station to either duplicate the entire
field or type in the entire field, you need to test only one character in the
field to determine whether the Dup key was pressed. For example, you can
test the last character in an alphameric field for the duplicate character
value by using the TESTB operation code. If the last character in the field
is not a duplicate character value, move the contents of the test field to the
processing field (see Figure 6-7).

You can also write your program to allow the person using the display
station to change the first part of a field and duplicate the latter part of the
field. For example, if the person changes the first four characters in a
10-character field and then presses the Dup key, positions 5 through 10 of
the field will contain the duplicate character value (hexadecimal lC). In
your program, you then have to test each character in the field to
determine where the first duplicate character occurs, and replace the
appropriate positions with the data to be duplicated.

For a list of the hexadecimal value of each character, see Chapter 17.

Chapter 6. Using a WORKSTN File 6-4 7

I ~ External Field Name Field

I Field Location
Indicators I--- Filename

1
Record Identification Codes ;;; .~

or ii~
~

~ ;
Record Name w"' 1 2 3 To

! ~ -IHI
..

i- ~ From .g RPG "' &: :i ll ~ Field Name ~ ~ i! j ~ 2s 1=· t ;Ji "'
Zero

Line

~ - I t Oita Structure
! g H Plu1 Minus or f j 1 Position ~~ Position ~e~ Position ~o ii j:::;

! Bl1nk
Str~~re ti-$o ~ N 6 lS 6! ~ Occurs c3 ~ ~8 ~ () ti ~ 0 a. n Times Length

Name
21128293031 1~ 35 36 37 38 .,~ '71 72 73 74 3 • 5 • 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 :u 25 28 32 33 39 .. 41 42 43 44 45 4ti 47 48 49 50 51 525354551585758 59 80 67 70

0 1 It 11\IP h'
0 2 I ll ' II~ 11'" II"
0 3 I 1' ~ Jlf_ 15tr
0 4 I

. Indicators Result Field =~~t!
~ J J Arithmetic 9_.ii ! !:]! ~
_ Q And And :E ~ Plus Minus Zero

'1! ! ~ Factor 1 Operation Factor 2 l = Compare
L;ne ~ 0 a:· Name Length .. ~ 1 > &• < :u_1 • 2

~ ~ en_ ... b 1i -~ ii Lookup(F1e1or 2)is
:l.85~ z Z ~:CH1ghlowF.qual

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21l:zs 29 30 31 32 33 34 36 38 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 58 57 58 59 80 61 62 63 64 85 88 87 BB• 70 71 72 73 74

Comments

0 1 c a · ~iijii ' lttl!iI M lm i ""tillf
0 2 c
0 3 le ~qjc .- ~It'._ [[Ll 1&.ID IL.II:IF r
0 4 c

(Figure 6-7. Testing for a Duplicate Character Value

6-48

Using Message Identification Codes

When a message identification code (MIC) is to be displayed for a
WORKSTN file, the length of the message must be entered in the field
length column of the display format specifications, and the constant type
column must contain an M. The name of a 6-character field or a
6-character constant must then be coded on the output specifications. The
contents of the field or the constant must be in the form xxxxyy, where
xxxx is the MIC number and yy is the 2-character message member
identifier. For a complete description of the message member identifier, see
the manual Creating Displays: Screen Design Aid and System Support
Program (SC21-7902).

Overriding Fields in a Display Format

An override operation allows you to override fields in a display format
when you redisplay the same format. You can specify an override operation
when you design the format with SDA or with the display format S
specification (by coding an indicator in columns 33 and 34). An override
operation occurs if the indicator is on when the format is displayed. A
normal output operation is performed if the indicator is off when the format
is displayed (see Figure 6-8).

During an override operation (the indicator in columns 33 and 34 is on), the
following occurs:

• A field is unchanged if you code an indicator in columns 23 and 24 of
the D specification for that field and that indicator is off. If data was
typed into the field, that data is unchanged. Any field that had Y, N, or
blank coded in columns 23 and 24 is also unchanged.

• A field is displayed if you code an indicator in columns 23 and 24 of the
D specification for that field and that indicator is on. Any data that
was typed into the field is lost. Output information is displayed from
the same locations in the output record area as for a normal display.

• For all fields, the use of indicator-controlled characteristics such as
highlight or reverse image is determined by the state of that indicator.
All field characteristics that are not controlled by indicators are
unchanged.

For example, you may want to override fields in a display if a person types
incorrect data into a field. To override fields, code an indicator in columns
33 and 34 of the S specification to allow the format to be overridden. If the
person types incorrect data into a field, you can then set on the indicator in
columns 33 and 34 and display the format again. If the indicator coded in
columns 23 and 24 of the D specification for the field is off, the incorrect
data is unchanged. If the indicator is on, data from the program is
displayed. You can also use indicators for field characteristics such as
highlight and reverse image and can set these indicators on when the
override indicator is set on.

Chapter 6. Using a WORKSTN File 6-49

Indicator in
Columns 23 and 24

OFF

of the D
Specification

ON

For more information about overriding fields in a display format, see the
manual Creating Displays.

Indicator in Columns 33 and 34
of the S Specification

OFF ON

Output data comes from No change occurs to
D specification (columns data on the screen.
57 through 79).

Output data comes from Output data comes from
the RPG program. the RPG program

Normal Output Operation Override Operation

Figure 6-8. Effect of Indicators on Output Data during an Override Operation

6-50

Using the POST Operation

The POST operation allows you to retrieve status information from the
subfield named in columns 53 through 58 of the input specifications for the
*SIZE, *MODE, *INP, and *OUT keywords in the INFDS data structure.
After a POST operation is performed, the *SIZE subfield will contain one of
the following:

• 1920, to indicate that the specified display station has a 1920-character
display screen (24 rows x 80 columns).

• 3564, if you are using a 3180 model 2 workstation, to indicate that the
specified display station has a 3564-character display screen capability
(27 rows x 132 columns).

After a POST operation is performed, the *MODE subfield will contain
either 10, to indicate ideographic support was requested, or 00, to show it
was not requested.

Following a POST operation, the *INP subfield will contain either 10, to
indicate the ideographic keyboard is being used, or 00, to show the
alphameric/katakana keyboard is being used.

Following a POST operation, the *OUT subfield will contain either 10, to
indicate the display station's screen is capable of displaying ideographic
characters, or 00, to show the screen can't display ideographic characters,
or the display is not output capable.

Factor 1 must contain a variable or an alphameric literal that identifies the
display station whose status is being requested. The result field must
contain the name of the INFDS data structure in which this information is
to be posted.

Columns 56 and 57 can contain an indicator that turns on if an error occurs
on the POST operation. An error occurs if the specified display station is
not attached to the WORKSTN file for which the INFDS data structure is
specified.

If columns 56 and 57 do not contain an indicator but the program contains
the INFSR subroutine, the subroutine automatically receives control when
an error occurs.

If columns 56 and 57 do not contain an indicator and the program does not
contain the INFSR subroutine, the program halts when an exception or
error occurs.

Chapter 6. Using a WORKSTN File 6-51

How WORKSTN Files Are Processed

6-52

Figure 6-9 shows how the RPG program cycle processes WORKSTN input
files. All steps in the cycle except steps 1, 3, 11, 12, 131 and 15 are the same
as those for the regular RPG program cycle.

/
'
' '"

Turn on record·
Identifying
Indicator

Sat on L1-L9
end LR

Maka date from
record just read
available for
processing

Step 15

Do all datell
calculatlons

•

Figure 6-9 (Part 1 of 2). RPG Program Cycle for a WORKSTN File

Chapter 6. Using a WORKSTN File 6-53

D lP output to a WORKSTN file is not allowed.

II WORKSTN input processing can include:

• Saving the common IND/SA VDS area in the IND/SAVDS area for the device from which the
last input record was read (if specified).

• Getting the display station record. If the display station is new to the file, the record may
be blank. Only the last input-capable display format can be read into the program.

• Restoring the IND/SA VDS area of the device from which the last input record was read (if
specified).

• Inserting value into ID field (if specified).

For a detailed explanation of processing WORKSTN input files, see Figure 6-10 (an expansion of
step 3).

Data keyed at a display station is returned (input) to the RPG program for processing when the
operator presses a command key or the Enter key. The operator can also cause the data to
return to the program by pressing the Field Exit, Field + , or Field - key if the last input field in
the format is defined as an auto record advance field (column 36 of the D specification).

11 All command-key indicators are turned off; then the appropriate one, if any, is turned on.

Note: If an exception/error occurs on the read, the command-key indicators are not reset.

II If the READ operation code is used, it combines steps 3, 5, 11, 12, 13, and 14. If the EXCPT
operation code is specified, it uses the ID field to direct output to the display station whose ID
is contained in the field.

Figure 8-9 (Part 2 of 2). RPG Program Cycle for a WORKSTN File

6-54

Step 3 of Figure 6-9, which is the WORKSTN input processing step, is
expanded and shown in Figure 6-10. The following explanation refers to the
steps shown in Figure 6-10.

From Input
prooeaalng

mainline

Move oommon IND/
8AVD8 UH to
IND/8AVD8 area
of davloe from
whloh th• IHI
Input w11 read

No

VII

Yea

etap 3-6

Looate a davloa
that hae not
l>Hn 1tort1d

Call 1yatem
aupport program
to aoqulre dlaplay
et at Ion

Create a
fl rot-time
blank record

11

etap 3-10

Get a reoord

Mova IND/
8AVD8 area of
devloe aatlalylng
thla read to
oommon IND/
8AVD8 area

lnHrt d•YIO• ID
Into ID lleld

Exit

•
•

End 01 Ill•

Figure 6-10 (Part 1 or 2). Processing or WORKSTN Input Files

Chapter 6. Using a WORKSTN File 6-55

D One RPG cycle is used to start each acquired device. If no input or output operation to the
device has previously been specified, RPG acquires the device if necessary and creates a blank
record to satisfy the first read.

fl All requesters of the program except the first enter the program at this step.

II End of file occurs for a WORKSTN file at the time of the read if:

• All devices have been released.

• Input is not allowed from any of the attached display stations because: ·

A new format has not been displayed at the display station since data was last keyed.
Suppress input-yes is specified in column 35 of the S specification for the format
currently displayed and no input-capable formats are concurrently displayed at the
display station.

• The program is an NEP, if all devices have been released, and if the operator has entered a
STOP SYSTEM command.

II If this is the first input for this device, the indicators specified in the IND field are off and the
SA VDS field is blank.

II Steps 3.5 through 3-9 occur only for acquired devices.

Figure 6-10 (Part 2 of 2). Processing of WORKSTN Input Files

Step 3-1.

Step 3-2.

Step 3-3.

Step 3-4.

Step 8-5.

Step 3-6.

6-56

RPG determines whether the IND and/or SAVDS
continuation line option is coded on the file description
specifications for this file. If neither option is coded, RPG
goes to step 3-3.

If the IND and/or SAVDS option is coded, RPG moves the
common IND/SAVDS area to the IND/SAVDS area for the
device from which the last input record was read.

RPG determines whether this is the first cycle for the first
requester of the program. If it is, RPG goes to step 3-10.
All requesters of the program except the first enter the
program at step 3-10.

If the device is not a requester, RPG determines whether all
devices in the internal device table have been started. If all
are started, the program goes to step 3-10.

A device is started when it has been acquired and a
successful input or output operation has occurred. If a
device is acquired by the ACQ operation, the device is not
considered to be started unless output is sent to the device
in the same cycle.

If not all devices have been started, RPG locates a device
that has not been started.

If the device located is a display station, RPG determines
whether it has been acquired.

Step 3-7.

Step 3-8.

Step 3-9.

Step 3-10.

Step 3-11.

Step 3-12.

Step 3-13.

Step 3-14.

If the display station has not been acquired, RPG calls the
System Support Program to acquire the display station.

RPG determines whether the acquire was successful. If it
was not successful, RPG goes back to step 3-5.

If the device is acquired, RPG creates a first-time blank
record to satisfy the first read to the device. RPG then goes
to step 3-11.

RPG reads in the record from the device. Remember that
all requesters of the program except the first enter the
program at this point.

RPG determines whether WORKSTN input is available. If
it is not, the program has reached the end of the file.

RPG determines whether the IND and/or SAVDS
continuation line option is coded on the file desc1·iption
specifications for this file. If an option is not coded, RPG
goes to step 3-14.

If the IND and/or SAVDS option is coded, RPG moves the
IND/SAVDS area for the device that satisfied the read to
the common IND/SAVDS area.

RPG inserts the device ID of the device that satisfied the
read into the ID field if the ID continuation line option is
specified on the file description specifications.

After the WORKS'I'N input file processing, RPG goes to step 4 as shown in
Figure 6-9.

Chapter 6. Using a WORKSTN File 6-5?

Interactive Data Definition Utility (IDDU)

6-58

The Interactive Data Definition Utility (IDDU) is a feature that enables you
to define communications file formats. You must define these formats
through IDDU in order to use the confirm function of the advanced
program-to-program communications (APPC) sub-system of the SSP-ICF.
The APPC confirm function gives two communicating programs access to
return codes that confirm the completion status of ICF functions.

Communications file formats are stored in IDDU's data dictionaries. A data
dictionary is a container for field, format, and file definitions, where the
definitions consist of data attributes such as length and number of decimal
places.

You must indicate at compile time that your program uses IDDU format
files containing communication formats, by using either RPGONL, RPGC,
or AUTOC procedure. The displays of these procedures have a prompt for
specifying a data dictionary name. If you specify a data dictionary name on
the RPGONL display, the dictionary must exist at compile time. If you do
not use the prompt displays, you must specify a data dictionary name as the
nineteenth parameter, for example:

RPGC progname, library,,,,,,,,,,,,,,,,,dictionary

AUTOC progname, library,,,,,,,,,,,,,,,,,dictionary

In order to associate an IDDU format file containing communication
formats with a WORKSTN file, you must use the CFILE continuation line
option. CFILE must be coded in columns 54 through 59 of the file
description specifications, and the name of the communications file must be
specified in the leftmost of columns 60 through 67.

If your WORKSTN file includes both SFGR screen formats and IDDU
communication formats, you should also specify the ID continuation option
on the file description specifications.

On output specifications, IDDU communications formats are specified in
the same way as SFGR screen format names.

IDDU-defined communication formats can have the same names as SFGR
screen formats, even in the same program. However, if you plan to use a
System/36 program in System/38, it is best to use unique format names in
the program. This will allow easier conversion to System/38's mixed device
files, in which screen and communication formats are found in the same
file.

For more information on IDDU, see the following manuals:

Getting Started with the Interactive Data Definition Utility (IDDU)
(GC21-8003)

Using System/36 Communications (SC21-9082)

!CF Reference Manual (SC21-7910)

Guide and Examples (SC21-7911)

IDDU online information also provides help.

Chapter 6. Using a WORKSTN File 6-59

Example of Using the Interactive Data Definition Utility (IDDU)

Size lo

line ~ Compile
>··

j

g Size to
15. Execu!e
0
c -.:;

The following example shows how to associate an IDDU-defined
communication format file with a WORKSTN file, in order to use the
confirm function of the APPC subsystem.

-·1--··-·-·------- ... -
&

3 4 5 6 7 8 9 '1 I:? 13 14 15 16 17 18

The ID continuation-line option
must be specified when both I DDU
communication and SFGR screen
formats are included in a

FMTS indicates that SFGR screen
formats are also included in the
WORKSTN file.

SCREEN is the load member that
holds all SFGR screen formats
used for input and output with a
display screen.

WOR KSTN file .

.----....---------.--- ------· ·-·....,..,.----- - ..------·-~~----~-·-+---~-·------
File Type _ ___,! Mode of Processing Fite Addition/Unordere~

File Oesignatio~ ~;~g;;0;~ ~~~:~:l~ 1~~d R ~ ~0:t~~ ~Xtt Number of r0racks ~
End of File ~ ~ for Cylinder verflo111;

Sequence ~ Recor~ Addrfe; IType ~ Device ~ ~=:~~:It Numt.>er of Extenrs

File Format N N o~:n~zat•~~ Or ~ v ~ ~::nd
.._ ~w E ~ ~ Additional Area ~ ...J StoraQfj Index ~ e 0 File

& 0 § ~ Block Record ~ t...._ erflow Indicator ~ \.. I Co~d1t1on
?!: U Ir ~ Length length a:: ' f2 ~.:~:Id X ~ C l ~~ ~
E ~ ~ 0 ~ ::J ~ ~ I l~~ w '-. ontmuat1on mes !::
if ~ ~ w ~ - Ext;;;alR;-~rdN~~ -- S;j K ~ion En ry ~ ~

3 " 5 s 1 a g 10 n n 13 14 1& 16 11 1s~~i2-2J-24 25 26 21 2e 29 30 31 32 33 34 35 36 37-~ 42 <13 44 45 46 47 48 49 so s1 s2 53 ~ ~-} 7 58 ss 60 61 52 63 64 65 66 67 68 69 10 11 n 13 14

: ~ Fil If E ~ p . + - 1l]5'~+- - ~- + .. ~ ~~~!Sfi'~}-~~-~1iul~ r ~ T ·T--T--T-+-t-1

F +- _ ~ rr:1•ffr,-~ c!R e E~
t--:+-:t-+:+-l-+-t-+-+-+-+-+--lf--l--1-+-+--l· !·- -+-+-+-1·-lf·+- . l-- f- ·++ .. +-f-~+ .. + +· - - - +I ~ ~ F ~ ~; r~:g~o~r}- C7

0 7 F ·~-'-'-+-+-+-+-+...+-' +--+ tt CIFII t.fe Ollfi,. .IL
lnlo -:fs l.F~[Jf;[]11ilf'~llrl.L~~H[Ql\llltr!1FIITT13ii'i2iliT1 t?t3 ;>.'\tti pj~JtJHIJ!f j@ lll ~ ~ Ji
01·--~F·'-~-~~·~·~-+-.._~_..._.._~~.~~~~~~"-~""-·-·- .•. ,_. • • rr _ 1~cY -~ . u

The CFILE continuation-line COMM 1s the IDDU format file INFODS 1s that data structure

f
t---

0 2

Filename

Line

" 3

0 •

option associates the WOR KSTN that holds all communication that holds the return code
file with an IDDU-defined formats used during a information.
communication format file. communications session.

6-60

Line

Filename
or

Record Name

Odta
Structure

Name

External Field Name

Record Identification Codes

- ~
Position ~ !2 ~

- N •
~U6

Position ~ 2 ~
0 ~ 2
2 u u

Position ~ 2
- N
~ u

Field Location

From To

"' Data Structure
~ 1-----,.---1
cri Occurs
0: n Times Length

RPG
Field Name

Field
Indicators

Zero
Plus Minus or

Blank

J 4 !> 6 7 8 9 10 11 12 13 14 15 16 19 20 21 22 23 24 25 26 77 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 '4" bu 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 I

0 1 I~ISIF[IL f. ~ $ 1]1
o 2 I

o 3 1[])1~oln~ I<
o • I

o s I

o s I

o 1 I

c a.·
~

1--- ~
•

Line !~
E "
tf 8

3 ' 6 • 7

0 1 c
0 2 c
0 3 c
0 4 cjj
0 5 c
0 6 c
0 7 c
0 8 c
0 9 c'
1 0 c
1 1 cl
1 2 c
1 3 c
1 4 ci
1 5 c
1 6 c
1 7 c
1 8 c

'-- -·

Fl ELDA, FIELDS, and FIELDC,
are numeric fields to be transmitted
using the I DOU-defined comm4nication
formats and displayed using the SFGR
screen formats.

_\
lndlc1tor1

-T I Arithmetic

"! "! § ;: Plu!.IMrn'!!(_ Zero

Indicators ~ Result Field Fleiultlng

And And Fector 1 Operation ~ i Compere Comments

Name Length~~1>~1<ll1•2
... ~ ii Lookup(Factor 2)11
~ ~ ~ 0 ::c High !:'ow Equal
9 10 11 12 13 14 15 18 17 19 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 36 37 38 39 4 1 42 43 44 45 46 47 48 49 50 bl 52 o.t 1)4 5!5 56 57 58 59 BO 61 6:.1 63 64 65 68 01 68 89 70 71 72

I I

~12 OB I

Ju t..tl IIl'>' l FIIElI. DIA 1S'1
1s'1 H

MO\I~ I lS I ~Sill>

lMol.ILE ·~1·i-, ~Sl!lci

The '1 S' session ID makes RPG
look for the IDDU-defined
communication format in COMM.

The 'W1 ·session ID makes RPG
look for the SFGR screen
format in SCREEN.

Chapter 6. Using a WORKSTN File 6-61

0
t---i

!
Line ~

Filename
or

Record Name

S ... 1 Sp9c• Skip Output Indicators ~ Comm• Zero10BaPrll1ntnct1 NoSign CR - X•Remove
.._ Field Name Plus Sign

,e iik or Y• Yes 1 Y•DRt ~~~· ! '* .§ .! .J.i .J.i EXCPT Name VIS No 2 : ~ z • ;::,ci Edit Defined

1-~ < ~ !!:_ PosoUon No VIS 3 g L Supp..,.

Woi! H~.:J No No 4 M

g g 15 • AUTO ~ < Record 05 Constant or Edit Word
~ 2 2! z :R ca ~ • 1 2 3 .. s , 1 a s 10 ,, 12 13 , .. ,s ,, 11 ,. ,. 20 21 22 23 24

3 4 5 8 7 8 9 10 11 12 13 14 1& 18 17 18 19 20 21 22 23 24 21 21 21 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 46 48 47 48 49 50 51 52 53 54 5fi 158 57 68 68 80 81 82 83 14 85 18 87 88 89 70 7t 72 73 74

o , 1n1 1'91.li.JS ~

0 2 loJ
0 3 ~
0 4 lq
0 5 0

o s o IE
0 7 lol
0 8 I<>

0 9 '°
1 0 ~
1 1 ~

1 2 10

1 4 0
, 6 0

1 e O

, 7 ~ ~
18 0 ~

2 0 lg

6·62

MA1 ten
M tlAlll! oDI

·s~·

1
I~

r.191 I I~ I

~~ I F XiL_E l'I I

l~ I I

71~

SAMPLE PROGRAMS

AR230R (Inquiring into an Accounts Receivable File)

Figure 6-11 shows sample program AR230R, an accounts receivable inquiry
program. This program uses two displays, AR230RD1 and AR230RD2. The
manual Creating Displays explains how to create displays using SDA.

The first display, which prompts the person using the display station to
enter a customer number, looks like this:

Customer Inqu1 ry

Pl ease enter customer number.

CustDllll!r number

Press the Enter key to see accounts rece1v1ble 1nformat1on.

Press Clnd3 to return to the 11111n menu.

If the display read into the program contains an A in the first position of
the record, the CUSNO field from the CUSTNMBR record is used to chain
to the CUSTMAST file. If the customer number entered is equal to a
customer number in the CUSNO field in the CUSTMAST file, the second
display is shown. In all other cases, the first display is shown again with
the error message CUSTOMER NUMBER DOES NOT EXIST. ENTER A
DIFFERENT CUSTOMER NUMBER.

Chapter 6. Using a WORKSTN File 6-63

6-64

The second display looks like this:

Customer Inquiry

Customer nulllber ********

Customer name
Address

State and zip ** *********

Current 1111Dunt due
Amount due over 30 days
Amount due over 60 days
Amount due over 90 days

Pr111 th• Enter key to continue.

Credit 11111it

Last a1110unt paid
Last date paid

'*******

It shows the customer number, name, address, amount due, credit limit,
amount due more than 30, 60, and 90 days, and the date of last payment.
The person using the display station cannot update this information in this
program.

H
,._ .. ~,w-· ~• ~~·•"·~~~~~·~"''"'""'"'-- ~j''•

i
Numbl'lr ~
of PriM ~

] Po•it;ons l
~ ~

>

i

c

1 ~

~ :i:

ii ~ "'

·-r

£ j ~
ti e ! .f g ..] ~

~
0

~ ~

;!
] j ~

.. ····-······-·--····-·---.----·-···--·-··· ,.--········--,.---·---~~---·-
File Type -~· ~.?,~ P-'°-"-"-ing ___ __.

file Designation ··--···----1 ~;~9;:0;: ~:~~i5:1 ~,:~d

filename Sequence ~Ft;;-~ Device
Symbolic
Device

Name of
Label Exit

Ext""nt F.xit
for OAM

File Addition/Unorder1
r-"-·---~,- .. ~,...._

Number ot Tracks

~~rOvertl·

Number of e,m
r-;:;;;-

line

End of File -------1 ~Record Address Type .J

w File Format ~ ~~~1~1•:~~~:: ~

!l e i>o Block Record ~LJ]verflow ;nd1cator I
~ ~ !.'~ Longth Longth "' e I Key Foeld 1 • r-' . Conhnu'1;on Lines -:'.'. ~ :J ~ Starting w ~ ! g ~ w ~ tJ.. -~~rd-Name - Location K Option Entry ~ ~

Storage Index ~ file
Condit
Ul-U8
UC r-

.J 4 s & 1 a g w 11 12 u 14 15 16 11 1e~1 22 23 24 2i; 26 21 28 :z930J1"-32 JJ 34 35 36 37 38 39 40 4; 42 43 44 45 46 41 48 49 so 51 s2 sJ 54 ss 56 57 sa 59 so 61 62 63 64 65 66 67 68 69 10 n 72 1

0 2 F v--1 ISII1 t"'I F I~
~IAII o a F Ir l~~IA rl C' 2151lJ

....

o 4 F

o 6 F

o 6 F

o 7 F

o 8 F

O 9 F

1 o F

F

F

O 2 F

o 3 F

o 4 F

o 6 F

o 6 F

o 7 F

o a F

o 9 F

1 o F

o 2 F

o 3 F

o 4 F

o 5 F

o 6 F

o 1 F

o 8 F

o 9 F

1 0 F

F

Name = AR230R

Function"' Inquires into an accounts receivable file. This program displays the customer number, name,
address, amount due, credit limit, amount due more than 30, 60, and 90 days, and date of
last payment for the customer requested.

Input= From disk, the customer master file, CUSTMAST. From a single display station, the customer
number.

You can press command key 3 to end this program.

Output= The requested record from the customer master file is displayed,, The record cannot be updated
in this program.

Indicator Definitions:

02 = Record ID for the blank read for the WO R KSTN file.
03 =Record ID for format AR230RD1.
04 = Record ID for format AR230RD2.
10 =Record ID for CUSTMAST file.
99,,,; Error indicator (Turns on if the customer number requested does not exist in the CUSTMAST

file.)
KC= Command key 3 ends the program.

Running This Program

i-+4-l~F._.__ 1 To run AR230R, code the following procedure:
O 2 F

o 3 F

o 4 F

o 6 F

o 6 F

II LOAD AR230R
II FILE NAME-CUSTMAST
II RUN

t-+: :-+-++-: +-+-+l-+-l.1+-+l-+-11+-tJ-+-+-IJf-t-+-l-+1+-l+-+l-+-11+-tl-+l++l if 11111 ti ·14-11-+l-+-<ll-+l ~± f-+-+-f--1-+--+-+-+--i->--+--+-+-+--+-+4-+-+-lr+l+-I

Figure 6-11 (Part 1 of 3). Sample Program AR230R (Inquiring Into An Accounts Receivable File)

Chapter 6. Using a WORKSTN File 6-65

I
I--

ll
~

Line ~

Filename
or

Record Name

,pi---0-.-,.--.-..-
Structure ~

Name
3 .. 5 6 7 8 9 10 11 12 13 14 15 16

o , rlr' fc:tJ'
o 2 I

o 3 I

0 4 I 11\IC:

o s I

o 1 I

o a I

o 9 I

1 o I

1 1 I

1 2 I

1 3 I

1 • I
1 s I

1 s I

1 1 I

1 a I

1 9 I

2 o I

~
]

External Field Name

Record Identification Codes
Field Location

~"' t ~ 1 2 3 From To Fiel:p~me ~
~ " _ f! _ ~ a: Data Structure f
'E Position ~ e: ~ Position ~ .e_ E Position ~ e "::J 'C

J ~~5 ~2}6 ~~ ~ ~Tci~:s Length 6

Field
Indicators

Zero
Plus Minus or

Blank

19Wnnnamwnw~•~DDM•~m~~~~G~M%%0~~~~UUM•~D~~w~~~~~M~MMWnnnM

~] Id
al-= I 1 lrlA

Ll

Figure 6-11 (Part 2 of 3). Sample Program AR230R (Inquiring Into An Accounts Receivable File)

6-66

c Indicators Result Field
Resulting

I--- ~-- I I ~~~~::~:
~ e And And .g :c PlusIMin~ Zero

~ _; ~ Factor 1 Operation Factor 2 Name ~ t: Compare Comments

Line ~ 0 <:£ Length (ij % 1 > ~ < &1 - 2
E ~ ~ ..., O 0 ·~ ! Lookup(Factor 2)is

if 8 5 ~ z z Ci ~ High Low Fqual
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 7•

0 1 c
0 2 c
0 3 c

!
Line ~

,'1_

Filename
or

Record Name

~ - ~
~ !::! Space Skip
I- •

e~
~ ~ 1-.~+--.--1---,,.---..-,---1

~~~ ~ A~d A~d 

Output Indicators 
Field Name 

or 
EXCPT Name 

Zero Balances X "' Remove 
Commas to Print No Sign CR - Plus Sign 

l==~~====="""==i===:o==! Y = Date 
Yes Yes 1 A J Field Edit 
Yes No 2 B K z =Zero 

5 .g =-
User 
Defined 

I-~ 

~j ~ 
a: Position No Yes 3 C L Suppress 

h~-+-...~+-~,...,1------I~ ~ in a: No No 4 D M 
0 0 Output ::J 

~ 
0 0 0 z z z *AUTO ~ ~ Record ~ Constant or Edit Word 

1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 'l 

0 3 0 IL Mlwir 
0 4 lq 
0 5 0 

0 6 0 l It.ti 
0 7 0 IX 11""\li_._ I 

0 8 0 
0 9 0 'I:.~ ~ ll:l R I 

1 0 0 
1 1 

1 2 0 

1 3 0 

1 4 0 rl lc::All 
1 5 0 liJc::Ata 
1 6 0 lrl ii=IAl'1 
1 7 0 lc;J~IIEJ 
1 8 0 Zl [ 
1 9 I~ 
2 0 0 

0 ltlfil 
11~3 

0 le; IA 
0 11~6 
0 IPr [}' 

u lL Ol 69 89 L9 99 59 t9 t9 l9 L9 09 6S 99 Hi 99 SS tr9 £9 ZS l9 OS 6• aP Lt 9" """" ~ zv LP o" 6£ SC Lt 9t 9£ tt ££ Zt Lt ot 6Z ez Ll 9l 9Z tz CZ zz LZ Ol 6L BL LL 9L SL PL tL ZL LL Ol 6 8 L 9 s " t l 
*Number of sheets per pad may vary slightly. 

Figure 6-11 (Part 3 of 3). Sample Program AR230R (Inquiring Into An Accounts Receivable File) 

Chapter 6. Using a WORKSTN File 6-67 



AR330R (Maintaining a Customer Master File) 

6-68 

Figure 6-12 shows sample program AR330R, which maintains a customer 
master file. This is a MRT program that allows two requesting display 
stations. The first display looks like this: 

r 
Maintain Customer Master File 

Date ******** 

Enter a customer number • ******** 

Choose an option •••••••••••• A,C,R * 
A = Add a customer record 

Cmd7 • End program 

C = Change a customer record 
R • ReMOve a custOlller record 

It prompts the person to enter a customer number and an A, C, or R to 
indicate whether he wants to add, change, or remove a record from the 
customer master file CUSTMAST. 

If the person enters an invalid number, one of several error messages is 
displayed. 



If the customer number is valid, the program shows one of three displays 
that allows the person to add, change, or remove a record from the 
customer master file, depending on whether the person entered A, C, or R 
on the first display. 

The display to add a customer record looks like this: 

Add a Customer Record 

Date ******** 
Customer number 

Customer name • 
Customer address. 

State and Zip code. 
Phone number • 

Customer type • 
Credit 11m1t. 

S1l111111n number 

Cmd7 • End program 

******** 

Cmd3 • Do not add th1 s customer record 

The display to change a customer record looks like this: 

' 

Change a Customer Record 

Date ******** 

Customer number 

Customer name . 
Customer address. 

State and Z1p code. 
Phone number. 

Customer type 
Credit limit. 

Salesman number 

Cmd7 • End program 

******** 

************************* 
************************* 
**********"'************** 
************************* 
** ********* 
*** ******* 

* 
******* 

***** 

Cmd3 • Do not change this customer record 

Chapter 6. Using a WORKSTN File 6-69 



6-70 

The display to remove a customer record looks like this: 

r 

Remove a CustOlller Record 

Date ******** 
CustOlller number 

Customer name • 
Customer address. 

State and Zip code. 
Phone number. 

Customer type 
Credit limit. 

Salesman number 

******** 
************************* 
************************* 
************************* 
************************* 
** ********* 
*** ****** 

* 
******* 

***** 

Press enter to remove this customer record. 

Cmd7 • End program Cmd3 • Do not raaove this custOlller record 



H 
r--

g' 

Reserved 0 Size to §. g Size to 

line ~ Compile B g hecute _ i, 
.... ... O> -

Number ·E 
of Print '=a 

i Positions ~ 

i ~ 

~ 
5 
5 

g • ii 
J ~ 

g 
~ ! ~ H A 5 

II. 0 ..I ~ ~ 
II: "' 

] ~ 5i JI 
J ,. s s 1 a 9 10 11 n 13 14 H 1a 11 1 19 20 un•~~n~~~~nnM~~n~~~ 42 43 44 45 46 41 4s 49 so s1 s2 s LM ss 56 51 ss s9 so s1 s2 sJ 64 65 as s1 ~J 69 10 n 12 1 

ofl H ll 111£1 l ll lllllllll l l lllll1111lI1IlI 

F 
t----1 

Line 

l 
?:: 
e 
.f 

u.. •• 1 

0 2 FIJ 

0 3 F 

0 4 F 

0 6 FV° 

o e F 

0 1 F 

0 8 F 

0 9 F 

, 0 p 

p 

F 

0 2 F 

0 3 F 

0 4 F 

0 5 F 

o e F 

0 1 F 

0 8 F 

0 9 F 

1 0 F 

F 

F 

0 2 F 

0 3 F 

0 4 F 

0 6 F 

0 8 F 

0 1 F 

0 8 F 

0 9 F 

Filename 

File Type 

File 0181ignation 

End of File 

Sequence 

Mode of Proceuiiig 

Length of Kev Field or 

of Record Address Field 

Record Address Type ...1 

~=-=--lUJ 
Type of File 

File Format N Organization or ~ 
!!!~--~---< ~ Additional Area c: 

a i Block Record ~ ~ Overflow Indicator ·~ 
~ 0~ ~ Length Length o: ~ ,e ~ ')( _, ~ ::; <~ ~w 
g ~ w ~ u. External Record Name 

Device 
Symbolic 
Device 

i------ r--·---.--:-·-. ----1 File Addtt1on/Unon.1e1 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

!-'-~~~~L--------1 
Contmuat1011 Lme'> 

Option Entry 

Number of Track~ 

~ 
Condi 
U1·UI 

~ UC 
;e 
II: 

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2D 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 S1 52 53 54 55 56 57 58 59 GO 61 62 63 64 65 66 67 68 69 70 71 72 

N M la 

Name= AR330R 

Function= Maintains a customer master file. This program can add new customer records, change existing 
customer records, and remove customer records. 

Input= From disk, the customer master file, CUSTMAST. From one or two display stations, the customer 
number and one of the following options for that customer number: 

A= Add a new customer record. A second display is shown, on which you can enter the cus· 
tamer's name, address, etc. 

C = Change an existing customer record. A second display is shown, on which you can change 
the customer's name, address, etc. 

R = Remove an existing customer record. A second display shows the record to be deleted, so 
you can verify that the correct customer number was entered. 

From any display, you can press command key 7 to end this program. From any of the second 
displays, you can press command key 3 to show the first display again and not add, change, or 
remove the customer record. 

Output= Customer records are added to, changed in, or removed from the file CUSTMAST. 

l I I I I 
T1ITT 

Figure 6-12 (Part 1 of 10). Sample Program AR330R (Maintaining a Customer Master File) 

Chapter 6. tJaing a WORKSTN File 6-71 



0 2 F l:TT I I I I I I I I I I I TTT TTTTTTTTTTTT 1 TTTTT TT, TTTTTTTTTTTTTTTTT TTTTT I I I I 
Indicator Definitions: -t-

0 3 F 
-+-

0 4 F 

01 Record ID for the blank read for the WORKSTN file. -+-
0 • F = + 
0 6 F 02 = Record ID for format AR330RD1. + 
0 7 F 03 = Record ID for format AR330RD2. + 
0 8 F 04 == Record ID for format AR330RD3. -+-
0 9 F 05 = Record ID for format AR330RD4. -H 
, 0 F 

08 First-time switch for code needed only for the first cycle. = ~ 
F 

10 Turns on if option A is chosen on format AR330RD1 and is used to display format AR330RD2. = -H 
F 

20 Turns on if option C is chosen on format AR330RD1 and is used to display format AR330RD3. = -t-
0 2 F 

30 = Turns on if option R is chosen on format AR330RD1 and is used to display format AR330RD4. -t-
0 3 F 

50 = Turns on if the customer record is not found in CUSTMAST. + 
0 4 F 

60 = Record ID for records read from CUSTMAST. + 
0 5 F 

90 = Error (The CUSNO field read from format AR330RD1 is blank.) i-+-
0 6 F 

91 = Error (The option chosen on AR330RD1 was not A, C, or R.) -H 
0 7 F 

92 = Error (The add option was chosen, but customer number is already in the CUSTMAST file.) 
-H 

o a F 

93 Error (The change option was chosen, but customer number is not in the CUSTMAST file.) 
-t-

0 I F .. 
-t-

, 0 F 94 .. Error (The remove option was chosen, but the customer number is not in the CUSTMAST file.) + 
F 95 m Error (When the add option was chosen, the customer number was not In the CUSTMAST file. !+-
F But after format AR330RD2 was displayed, another person added the customer record. The I+ 

0 2 F record is not added now.) I-+-
0 3 F 96 = Error (When the change option was chosen, the customer number was in the CUSTMAST file. I-+-
0 4 F 

But after format AR330RD3 was displayed, another person deleted the customer record. The 1-t-
0 5 F 

record is not changed now.) I-+-
0 6 F 

97 = Error (When the remove option was chosen, the customer was in the CUSTMAST file. But I+ 
0 7 F 

after format AR330RD4 was displayed, another person deleted the customer record. The record 1-t-
0 8 F 

is not removed now.) 1-t-
0 9 F 

99 = Error indicator for formats (Turns on any time one of the error indicators 90-97 turns on.) I-+-
1 0 F 

KD = Command key 3 displays format AR330RD1 again after format AR330RD2, AR330RD3, or I+ 
F 

AR330RD4 is displayed. 
1-t-

F 

KG= Command key 7 ends the program. 
t-

0 2 F 
1-t-

0 3 F 
t-

0 4 F Running This Program t-
0 5 F To run AR330R, code the following procedure: t-
0 6 F II LOAD AR330R I+ 
0 7 F II Fl LE NAME-CUSTMAST H 
0 8 F II RUN H 
0 9 F 

H 
1 0 F 

F 

F 

Figure 6-12 (Part 2 of 10). Sample Program AR330R (Maintaining a Customer Master File) 

6-72 



I 
I---

!I. 
;;!: 

Filename 
or 

Record Name l 
Line ~---=-o.i-, ~......,...O ...,R rl 

s~~:,. ~ 
3 " s a 1 a e 10 11 12 13 '" 1s 11 

o 1 I 11 !Al!= 
o 2 I ~le 
o 3 I 

o • I 
o s I 

External Field Name 
Field Location 

To RPG 
Field Name 

11ri IH1 IT 

o e I fi 11_~ f1 Ir r.iJ.., 

1 1 1 11 ij 1v1 ~ p ~ 
1 2 I ij ~ }f4~lA i-! 

13 I ~ ~ j 11\.i 

1 5 I IIP~ 1 T"'-. 

1 1 I INIC ~&l lJ ~Ir 

02 I 11 ~ 11 u IM~ 

o • I 

0 5 1ir l9IJM 
o e I 

o 1 I 

o a I 

o e I 

1 o I 

1 1 I 

1 2 I 

1 3 I 

1 • I 
1 s I 

1 e I 

1 1 I 

l.L ,. 

IP 111112 1111~1.11~ rJi ~ 
IP It .17 ltlt IJir 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

Figure 6-12 (Part 3 of 10). Sample Program AR330R (Maintaining a Customer Master File) 

Chapter 6. Using a WORKSTN File 6-73 



I 
I--

~- External Field Name Field Location 

g ~ Record Identification Codes ~ 

! Reco: Name j ~ 0~ j :. 1 2 3 From To Fiel~p~ame i ii 
Line E - ..... 111 "" a: Data Structure c:n en 

.?1----:---.--.-1-.-~q; ·- - z 0 u ~ p ~ z 0 -- g ~ -~. .... Data 0 R E .g ~ Position :: N ~ Position -;::: N ;u Positton :: N ~ Occurs E ~ . 

Filename 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

l St~~~~re ~ ;i g £ ~ U ti ~ U G ~ U Ci:" n Times Length 8 ~ 0 
3 4 5 8 7 8 9 10 11 12 13 14 15 16 17 HI 19 20 21 22 23 24 25 26 27 28 19 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4b 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 6~ 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 I 

o 2 I 

o 3 I 

o • I _J 
0 5 I 

The save data structure is used to save the customer number for each display. 
0 6 I 
0 7 I 
0 B 

o " I 11 
1 o I 

1 1 I 

1 2 I 

1 3 I 

, 5 1 This data structure is used to initialize all the fields not used by this program when a record is added 1++-H 

, s 1 to file CUSTMAST. 1-+--t-+-1 

1 • I 

r,+:-,1-t1:t-t-t-t--P.----------------------------------------------------------------------------------"""'-+--t-+-1 

20 I ~ 1 1- ~I 
I 

I 

I 

I 

I 
o 1 I 

o 2 I 

o 3 I 

o • I 
o s I 

o s I 

o 1 I 

o a I 

o " I 
1 o I 

11 
l1 
ltlJ 

Figure 6-12 (Part 4 of 10). Sample Program AR330R (Maintaining a Customer Master File) 

6-74 



c Indicators Result Field 
Resulting 
Indicators 

AL J. Arithmetic 
1---i 

Plus_!Minus Zero 

!t 
Factor 1 Operation Factor 2 Compare Comments 

line ;':: Name Length 1>~1<2 1=2 

~ 
. 

Lookup(Factor 2tis 
15 15 ~ High Low Equal z z 

3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 :20 21 22 23 24 25 26 27 tis 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 54 55 5" 57 58 59 60 61 62 63 64 65 66 67 68 El9 70 71 72 73 7~ 

0 1 c 
0 2 c 
0 3 c 
0 4 c I Initialize the fields used for adding a new customer record. I 0 s c 
0 6 c 
0 7 c lti.11'.ZJ~ tz-IA ·~11 K lAJfil Dt 
0 B N~IP IZ- IA [ Rn ~L trP.,, c It. 
0 9 c NW2Jlf' ~Ej] IN ~p 
1 0 c 
1 1 c -
1 2 c 
1 3 c 
1 4 c 

[ These indicators turn on during each cycle as they are needed. I 
1 s c 
1 6 c I 
1 7 c ~r-1 Hf 110 ~ l".lrtJ 

1 B c lc;IEJ TirlF lqcz l9ll lql2J 
1 9 c lSIEJ lr-f 1q1 ... ,,. 1n1i:;1 

2 0 c ff-II ,F !qL lCfl Cf 9 
c 
c 
c 
c 
c 

0 1 c - +-
0 2 c If command key 3 is pressed, skip calculations and display format AR330R 01. If command key 7 is . +---
0 3 c pressed, skip calculations and release this display station. +-
0 4 c 
0 s c k 
0 6 c I( 1K r.Jr. [~ 11\11"'1 irl~ 
0 7 c 
0 B c 
0 9 c 
1 0 c 
1 1 c .-+-
1 2 c If format AR330RD1 was read, indicator 02 is on. If the CUSNO field is blank, display a message to I-!-
1 3 c ask for a nonblank customer number. I-+-
1 4 c 
1 s c 
1 B c (zla lr-1 19'JV'i hMI-' ~R a NII< jql'l 
1 7 c al2 1'1ri I ~ 191a 
1 B l9 

Figure 6-12 (Part 5 of IO). Sample Program AR330R (Maintaining a Customer Master File) 

Chapter 6. Using a WORKSTN File 6-75 



c lndii:ators Result Field Resulting 

~ Indicators 

1---i ~ l I Arithmetic 

z Plu1_lMin~ Zero 

d Factor 1 Operation Factor 2 = ComP1re Comments 

Line 
Name Length t 1>~1<:!J.1•2 ~g 

~ 0 0 
.... Lookup(flCtor 2)1 

~8 z z ~ Hi~ Low Equll 
3 • 5 • 7 9 10 ,, 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 12829303132 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 63 54 56 .. ., .. 59 eo et 62 63 64 85 ea 11 ea • 10 11 12 73 14 

0 1 le 
0 2 c 
0 3 c 
0 4 c 
0 5 c 

If format AR330RD1 was read, indicator 02 is on. If the option chosen is not A, C, or A, indicators I-+-H 
0 6 c 

90 and 99 turn on to display format AR330RD1 again and to display an error message. I-+-H 
0 7 c 
0 8 c 
0 9 c ·'-"" IW 

,.,.., MIP '~ I .tla 
1 0 c 1...1 i .. 

[II N lrlr tf IP -~· 12r2 
1 1 c j., ,,,, 

1111 ~ r rw IP 'I~ I l": r2 
1 2 c ~ 1lnlie 11~ 
1 3 c14 ::;;; 

1"1t.J II~ 
1 • le 
1 5 c 
1 6 c 
1 7 c 

If a valid option was chosen on format AR330RD1 and the CUSNO field is not blank, check for the I-+-+-+-
1 8 c 
1 9 c following errors: 

!-+-
Option A - Display error message if customer number is found. 

I-+-
2 0 c 

Option C - Display error message if customer number is not found. 1-t-+-+-
I-+-H-c Option A - Display error message if customer number is not found. •-+-~ c 

c l;:ilN 1!CJ!q 1lc:1J.ir 14 !~Ir ~!=itl 111' ~11 ~ 
0 1 ~ IC fflll ~ lI jg l'l 
0 2 c ~ 121a I~ 11 iq 
0 3 c l'l~ l-::iVi 1-=IQ lI II&,~ 
0 • c 
0 5 c 
0 6 c 
0 7 c 
0 8 c 
0 9 c 

If format AR330RD2 is read, add the customer record to the file. If the customer record is found f-++-
1 0 c 

when the add is attempted, display an error message. 1-1-4-
1 1 c 
1 2 c 
1 3 c ~':I ~Ju ~~~ ~I 1IAIIN l~tI SJ. lf:iri 
1 4 c ~I~ 1~11 ~Ir [l .... 
1 5 le ~I~ CZ [ N ~11 
1 6 c ~ ~[ N 'll~ 
1 7 c 

Figure 6-12 (Part 6 of 10). Sample Program AR330R (Maintaining a Customer Master File) 

6-76 



c 
f---, 

& 
Llne ~ 

~ 
3 4 5 6 

0 1 c 
0 2 c 
0 3 c 
0 4 c 
0 5 c 
0 6 c 
0 7 

Indicators Result Field 

I I F3Ctor 1 Operation Factor 2 
Name Length 

b Ci Ci z z z 
9 10 11 12 13 14 1s 1s 11 1s 19 20 21 22 23 24 25 2s 21 E 29 Jo 31 32 33 34 Js 36 37 Js 39 40 41 42 43 44 45 46 47 48 49 so s1 

Resulting 
Indicators 
Arithmetic 

Plu~inu!LZern 
Compare 

•>!!.1<2 1•2 
Lookup(F1etor 21is 

Comments 

High Low Equal 
~~~D~~~~~~~~~EMOOronnnM 

If format AR330RD3 is read, change the customer record. If the customer's record is not found -1-+-++

when the change is attempted, display an error message. t-H- +-c
,_,__._~_,_..__~+-If'---~----------------------~ +-i-+-+-0 B c 1--1-~~---+-+-4-+-+-+-+-+-+-41-+-+-+-+~11-+-+-+-+--t-i~-+-1-++-t-t-t-+-r+-+-t-+-+-+-+-++-r+-rt-t-++-r::t--+-t-Jt-t-+-11-+-t-t-ti-+-+-t--+-++-t-t-

~ r ~11\Jirl ~l~A IIN Ir ~5CL 1""iI I". Q 0 9 c
1 0 c lv: ix Ll inr. !I~ I
1 1 c ~11
, 2 c
, 3 c
1 4 c
1 6 c
1 6 c J l
1 7 c
, 8 c If format AR330RD4 is read, remove the customer record. If the customer's record is not found .f4-I

1 A c
2 0 c

+-+-+-when the delete is attempted, display an error message.

l-++-IB-+-t+-t-tJ-.--... +-J...4-.i ' ~
c
c rz1~ Ir IN JI-I~ ~i;; Ll u !Jiit.
c r2 E 11 IE EltrE
c lr-il rlll
c

0 1 c
tzii:: r1 II IJ1Cfl

lA IIIA~
0 2 c l

Figure 6-12 (Part 7 of 10). Sample Program AR330R (Maintaining a Customer Master File)

Chapter 6. Using a WORKS'rN File 6-77

€1~~ Space Skip Outputlndicators fD5f Commas ZeroB.alances NoS1gn CR - X•Remove t. Field Name to Prmt Pfus Sign 6 . 9 •
~ u. ""~ or Yes Ye$ l A J y ... oete User

Fdanam~ ·- ~ EXCPT Name Fu11td Echt Def! Id

'~. ~ £ And M~ Vei No 2 8 K z .. zero n
.. or ~ L5..J • ,! a; Position No Yea 3 C L Suppren

Une E Record Name D e'L"I _ ! i1i m No No 4 O M

& ~j < 85 Output '5
§ ~ ~ 'AUTO ~ ~.. R"'o•d iii Constant or Edit Word

~ ~ ;t w ii:' • 1 2 3 4 a e 1 a e 10 11 12 13 14 1s 11 17 1a 1e 20 21 22 23 24 •

3 4 6 8 7 8 9 10 11 12 13 14 Hi 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 31!1 36 37 38 39 40 41 42 43 44 415 48 47 48 411 60 &1 62 153 M 66 61157 68 88 60 81 82 83 14 tlS 18 17 18 19 70 7' 72 73 74

0 3 0

o • 1q ~la • 1131121.~

o a o Jq Nl9l L~ ' lill:lEl Ir 11 1~ N

1 2 l<> icj[1 l~a \ • I
, 3 10 · ic1~ 12 • m IA RE. Ll IT

lo It: l1 ~ ' IA le; ~ ,.., Fil:: P 't. !Cl
01 o 1~l1 '~1rm~~ ~ o

0 6' 0
f-; 6 0

0 7 0

08 0 ~~

At l •
('.'.I [Ej '

,.1 i" lrl •

Figure 6-12 (Part 8 of 10). Sample Program AR330R (Maintaining a Customer Master File)

6-78

0
I--

!
Lint J

Filename
or

Record Name

~!SpKe Skip Outputlndicators FioldName ~ Comm• Z•::~:~• NoSIF CR -)(•=:'::;
~ ~ ; .! J EXCP~'Nama VII v.. 1 A J Y•=Edlt
ll'fti ! And And ~~ No 2 B K Z•Zlro

1-~ ~ E i ~ ~Ilion « No ~~ : g ~ Suppr111

'A'D'O :Ii c 8 fi Cutout ::i

Utor
Dtllnad

o R ;@ g 11 •AUTO .~ ~ Rocord ~ Constant or Edit Word
~ N+o :i! ;t iB m a.; ' 1 2 3 4 I I 7 8 t 10 11 12 13 14 11 11 11 18 18 20 21 22 23 24 '

3 4 I • 7 a I 10 ,, 12 13 14 115 11 '7 18 19 20 21 22 23 24 311 21 27 28 H 30 31 32 33 a .. 31 31 37 38 31 40 41 42 43 44 41 41 47 48 4110 11 112 13 14 II .. 117 18 .. IO,, 12 13 14 II. 87 • It 70 71 72 13 j

0 ,

0 2

0 3

0 4

0 I

0 B

0 7

0 B

0 9

, 0

, 1

, 2

1 3

, 4

, 6

1 B

1 7

0

10

to
~

0

0

~
0

lg

lq
lg
0

0

I

l~IT

It

It
It

0

0 1 8
If [Release the display station at which command key 7 was pressed.

1 9

2 0 10

0

[Qj
I~ IM~
~
~

0 1 0
0 2 10

0

~
o3 Ir

"""0+-4-+-1-+-+-1--1-1-+--+-1--1-+--+-1-1-111 Change the customer record.
o a
0 8 orJ ~ ...

lo
0

0 7

0 8 Ir ICfi
0 9 Ir IA

~
~

to
-

1 0

1 1

, 2 1111
Liit 1 3

IC

11
L1

, 4 0 12~
1 6 lo Ir 11Pn.. I 11;:
, 6 to
1 7 to
, a IQ
l 9 10 c I
·~· 1-4-: ~

Figure 6-12 (Part 9 of 10). Sample Program AR330R (Maintaining a Customer Master File)

Chapter 6. Using a WORKSTN File 6-79

!h
@ j Sp1et Skip Output Indicators ~ Com Zero B111nc11 No si CR - X • Remowt a!!: Field N1111>e ma to Print an Plus Sign &·S•
%~ or Y•Dm u...

Filename i Ji Ii t :T] EXCPT Name Yes v.. 1 A J Flold Edit ! or , s:,r.;- J ,e And And Yes No 2 B K Z•Zero Defined
Record Name . · · >-~ a: Position No y., 3 C L Supprea

line .._S rorE'I ! Iii l'Cfi In No No 4 D M
~ :i ~ dfi Output ~

o R j .. i •AUTO t: < Record iii Constant or Edit Word
~ ~ ~ iii" 0: • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 18 17 18 19 20 21 22 23 24 •

0
t---

••••1aow11u~u~~n~~~vn"~~~n~~~~~"M"~"~~~~~~"~~~~G~~~~~-•~•~~~~~M••~••ronnn~

0 1 0
0 2 10
0 3 Jcl
0 4 10

lo
0

0 5 l
1-0+0-1--1f-+-++-+-1-1-+-1 Add the customer record. All fields in this record are written to initialize them properly. i-+-+-if--1--+-+-t

0 1 0

lo
0 11

0 8

0 9

IA

, 0 10
1 1 ~ I~
, 2 10

~
0 I 1c

, 3

1 4

1 I 0 I
., e ~
, 7 0
1 8 0 II ~IP , . ~
2 0 ~

0

!!?.
~ 1L~ P
lO
IO

0 , 0
0 2 ~
0 3 ~

10
I~

0 4

0 5 l] 1 MP
o a 1a l.i. 1" IO
01 I~ 11 llJll: ~

~
0

IO L

~
~

1 3 IO
1 4 0
1 I lo
1 8 IO

t<i
~

1 7

1 8
Delete the customer record.

, . ~
2 O I!! J.:

~

Figure 6-12 (Part 10 of 10). Sample Program AR330R (Maintaining a Customer Master File)

6-80

AR935R (Requesting a Printout of Accounts Receivable)

Figure 6-13 shows sample program AR935R, which allows the person using
the display station to choose the type of accounts receivable information to
be printed by sample program AR936R, shown in Chapter 7.

The first display looks like this:

r

Print aged trial balance report.

Choose report option 1,2,3,4 *

1 = All customers.
2 = Customers with balances .
3 = Customers with balances over a certain amount.
4 = Customers with overdue ba 1 ances.

Cmd7 = End program

The person enters a 1, 2, 3, or 4 to request a printed report for all
customers, for customers with balances, for customers with balances over
an amount that the person enters on the second display, or for customers
with overdue balances.

Chapter 6. Using a WORKSTN File 6-81

6-82

If the person enters 3 on the first display, the second display is shown. The
second display looks like this:

Print report for balances over what whole
dollar a110unt? ••••••••••••••• $.oo

Ctnd7 = End progr111 Ctnd3 • Choose a different report option

The information that the person enters is written to the display station
local data area (the data structure coded on line 07 of the input
specifications). The information in this local data area is read by program
AR936R, which prints the report requested.

\

H
1----i

L Number § 15
Size to ~ Size to

J; ~
of Print Reserved .ii d Compile ; Execute i Positions 'll ~ Line 0 'll [& ~ 'll

j. 1 i ' 5 ' ~ j ! •
~ H ~ ~] if S5 0 c5 I. IC

J 4 • 7 8 9 10 11 13 14 16 18 17 l!ll •• 22 13 24 25 27 28 29 30 JI 32 33 34 35 36 37 38 39 42 43 44 46 47 48 49 "'51 " . ~ .. 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

oJil H 11 111'4 l ll lllllllil l l lllllllllllllll

File Designation Length of Key Field or Extent Exit Numbef of Tracks

End of File of Record Address Field ~ for DAM for Cylinder Owerfl,

Seoume Reom~Y::;;il:ype ~ Device ~~~~~lie ~ ~::~~:it Numbe~:~ Exl<

File Format N Organization or 8~ i ~

F
t--

Filename

File Addition/UnOJder, File Type Mode of Processing

line ~ ~[I ~ Additional Area c Storage Index ~

a e "'!f .2 eo•· ~ Block Record ~ t_ Overflow Indicator ~ n 1t

& ~ ~ ~ Length Length .:::::: e ~ X U1-U8
~ 3 U

0
~ :§ ~ ~ _l_t,a~ w Continuation Lines ~ UC r-

if g ~ w ~ External Record Name K Option Entry ~ , . ~
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2ti 26 27 28 29 30 31 32 33 34 35 36 37 3!.LJ9 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 7

:~ ~ism ~ 1~ ++++++ew + ++++++ ~A~KT~ + H++ +++ H ++ + ++ ± 0 2

0 3

o 4 F

o 6 F

o e F

o 1 F

o B F

O 9 F

1 o F

F

o 2 F

O 3 F

o 4 F

o 5 F

o 6 F

O 7 F

o 8 F

o 9 F

1 O F

o 2 F

o 3 F

o 4 F

o 6 F

o 6 F

o 7 F

o B F

o 9 F

1 o F

F

F

o 2 F

o 3 F

o 4 F

o 5 F

o 6 F

Name= AR935R

Function = Allows you to choose a type of aged trial balance report and passes that choice to
AR936R in the local data area.

Input= Your choice of which type of report to print. The options are:

1 = All customers
2 = All customers with balances
3 =All customers with balances over the amount entered in field OVBAL
4 = All customers with overdue balances

Output= The following information is written to the local data area:

Position Information
1 = Report option

2-8 = OVBAL if option 3 is chosen
9 = C if command key 7 is pressed. This tells the procedure not to run AR936R.

Indicator Definition:

01 = Record ID for format AR935D1
02 = Record ID for format AR935D2
03 =Checks for a valid option
04 = Checks for a valid option
05 =Conditions first-time processing
30 =Turns on if option 3 is chosen and displays format AR935RD2
99 = Turns on if the option chosen was not 1, 2, 3, or 4 and displays an error message
KC= Command key 3. Displays format AR935RD1 again when format AR935RD2 has been

displayed.
KG = Command key 7. Cancels the report request and ends the program.
LR = Turns on when the last record is processed. The program goes to end of job.

III I III II I II I III III IIIIII IIIII IIIII IIIII I

Figure 6-13 (Part 1 of 4). Sample Program AR935R (Requesting a Printout of Accounts
Receivable)

I-++

H-t

H-t

H-t

H-t

H-t

H"+
f-++

Ir+"+
14+
l--t-t-

1-H

1-H

1-H

l-t-

1-t

l-t-

1-t

l-t-

1-t

l-t-

1-t

l-t-

1-t-

l-t-

1-H
I~

1-H

1-++
I-++
I-++
1--++
I-++
I-+-

Chapter 6. Using a WORKSTN File 6-83

0 2 f T~TTTlTTTTT-TTTTTTTlTTITTTTTTTTTTTTTTTTTTTTTTrTTTTTTTTT I l~ITI I I
0 3 F Running This Program:
0 4 F

0 5 F AR935R must be run before AR936R. To run both AR935R and AR936R, code the following
0 6 F procedure:
0 7 F

0 8 F II LOAD AR935R
0 8 F II WORKSTN UNIT-?WS?,RESTORE-YES
, 0 F

II RUN
F

* IF COMMAND KEY 7 IS PRESSED IN AR935R, A NONBLANK CHARACTER
F

* IS PLACED IN POSITION 9 OF THE LOCAL DATA AREA AND AR936R 0 2 F
* IS NOT RUN. 0 3 F

0 4 F II IFF ?L'9,1'?1 GOTO NOPRT
0 5 F II LOAD AR936R
0 8 F II FILE NAME-CUSTMAST
0 7 F II RUN
0 8 F //TAG NOPRT
0 9 F

1 0 F

F

F

I ~
External Field Name Field Field Location

Indicators 1--- Filename

1 ·" Record Identification Codes
11 or m<n

Record Name w cc 1 2 3 From To RPG & ~~
{:: ~

·;:;. Field Name Zero
Line

~
j: il z 0 ~ 0: Data Structure Plus Minus Of .8 i Position ~~~ Position Position ~~ ::i

°"'' ~~
- - " as Blank

~$6 Occurs
Structure ~<:io ~ () Q;

nTimes Length
Name 0:

••• e 1 a 9 10 u 12 13 14 15 16 17 19 20 21 22 23 24 215 26 27 E_ :29 30 31 32 33 3~ 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 49 50 51 52 53 54 55 58 57 58 •• 60 61 62 63 67 66 .. 70

0 1 I 1:-i(]D INIC 1raJJ 11 lc.~I
0 2 I ~ ~IP TII ,. N
0 3 I l'j5 r11a ll A
0 4 I la oc 119lA
0 5 I Nie; r1li:;
0 6 I -
0 7 I
0 8 I
0 9 I , l This is the local data area information passed from AR935R to AR936R. J
1 0 I
1 1 I
1 2 I
1 3 I
1 4 I [J"lc
1 5 I ~ [1. ~PII ,_.~

1 8 I ~ r.l VJ ~I
1 7 I R ~MIL
, 8 I _J E:IA
1 9 I

Figure 6-13 (Part 2 of 4). Sample Program AR935R (Requesting a Printout of Accounts
Receivable)

6-84

1-t--t-+-

I-+-t-+-

1-t--H-

I-+-t-+-

1-t--t-+-

1-+-t-+-

I-+-t-+-

I-+-t-1-1

t-+-1 1-t-

1-t--H-1

1-t-H-i

1-t--H-i

1-1-H-1

1-1-H-1

I-+-t-H

1-H t-1-1

1-t--t-H

l-t-1 t-H

71 72 73 74

c '.'i
1-- ~ ..

~ .5
Line t- O

~ E
.f 8

3 4 5 6 7

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c

1 6 c
1 7 c
1 8 c
1 9 c
2 0 c

c

Indicators

I I Factor 1 Operation Factor 2

Result Field

Name

~
·~

ii
Length ~

E

~ ~ ~ ~
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627128 29 30 31 32 33 34 35 36 37 38 39 40 41 "42 43 44 45 46 47 48 49 50 51 52

First-time logic to clear the local data area.

Resulting
Indicators

Arithmetic

PlusTMinulf Zero
Compare

1 >2Ji <2[1-2
Lookup(Factor 2)is

Comments

Hi\tl Low Equal
~·~u~~w~~~M~~nM~ronnn~

If command key 7 is pressed, move 'C' to field CMD 7, which is placed in the local data area.

c If the option chosen is not 1, 2, 3, or 4, indicator 99 turns on to display an error message and allows jH
1-+-+-1-c+-+-+-1-+-• you to choose another option. IT

c

lt'ticclltti-1--'1-t-1
0 1 c
0 2 c
0 3 c HM '1'
0 4 c ~T MA \ 14 I

0 5 c
o a cl<"!~ I N
0 7 c
0 8 19
0 II C

1 0 c
, 1 c
1 2 c If option 3 is chosen, indicator 30 turns on and displays format AA935RD2, which allows you to t-+-

: : I~ enter the minimum balance for customers to be included in the report. H-
L.:..J.::.LJ~J._J_l.JJ--'H-1 5 c

1 6 c rzJi 1 INfq[q N
1 7 c

Figure 6-13 (Part 3 of 4). Sample Program AR935R (Requesting a Printout of Accounts
Receivable)

Chapter 6. Using a WORKSTN File 6-85

c 1~· Indicators Resu It Field Resul'dng
Indicators

I-- :l- I I ~
Arithmetic

!~~ :~ g PlusJ..Minu_i Zero
Factor 1 Operation Factor 2 ll Comp1re Comments

.:I< Name Length 1>~<ll_1•2 Line t- o a:." !~
~F ! ! ~ H

Lookup(Factor 2)11
... _, High Low F.quel

345878 9 10 11 12 13 14 16 16 17 19 19 20 21 22 23 24 26 26 27 l:za 29 30 31 32 33 34 35 38 37 38 39 40 41 42 4344-454114748 49 $0 61 52 63 54 6fj 9 57 58 159 80 81 82 13 84 115 .. 81 ti • 70 71 72 73 74

0 , c
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c If option 1, 2, or 4 is chosen or if option 3 is chosen and a value is entered In OVBAL, display format

0 1 c AR935RD3 and go to end of job. If command key 7 is pressed, go to end of job.
0 8 c
0 9 c IFND tr~r;
1 0 c k2~
1 1 c"'l'C

r.., r ['" ~
, 2 c I

0 !!o

~~ Space Skip Output Indicators

[f5] Commas
Zero Balances

No Sign CR - X •Remove
1--- Field Name to Print Plus Sign 5 .9. e. ~ or Y• Date

Use• Filename J: " :rd Jd
Yes v .. 1 A J Field Edit It ii@. a .. EXCPT Name Yes No 2 8 K Defined

;:;: or 'I;,!!
No Yes

Z •Zero
;:;: R
~ 3 c L

line ~ Record Name It j p No No 4 D M
Suppress

~ ~ in
,f It Output

a: u ::i
~ 0 "AUTO '6 ~ Record O! Constant or Edit Word

~ ~ z w"' ii: 1 2 3 • 5 • 7 • 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
3 • 5 5 7 • 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 <43 ~~~o@~~~~~~~~n~~oo~~~M~~n~uro

0 1 OIW ll'Clr'il""Ul~
0 2 lo Iii lq CJ
0 3 0 ~ ifjlr
0 4 lo

lo 0 5
l!Cr~ ·~ IRl9 ll~i'i IJ;D lj I

ICl 111] ll ~ ~
0 6 0

0 1 0
IC! lt=IF \Ir I~ tJr~ l1 Jz

lei ~ "lB lid .
0 8 0 IC! I~ IE \ ~ ll""l"J 11:.C ~lrtl lllF ~vi

JJl1 'N Ir[l\iU! II\ 11 ~ l'5
,

1-=ri 1 0 0

0 9 0

1~:tii -~ ~q ll! •
NM

1 1 0

, 2 to
, 3 0 B~ ·~ l.'."l IK

I

14 0

Figure 6-13 (Part 4 of 4). Sample Program AR935R (Requesting a Printout of Accounts
Receivable)

6-86

I::: Ir •

Ir I

1--1-.J

"I--H

H-1

71727374

OE140R (Entering Orders from Customers)

Figure 6-14 shows sample program OE140R, which allows a person to enter
customer orders at a display station. The person enters a customer number
and an order number on the first display:

r

Order Entry

Enter the custOMr nUllber.

Enter the order nulllber • •

Clnd7 • End progr111
\..

On the second display, he enters the item number and the quantity ordered.
When this information is entered, the program displays the item number,
the quantity ordered, a description of the item, the unit cost, and the total
cost for the quantity of that item ordered. Up to four items are displayed
on the same display:

Order Entry

Custlllll!r NUlllber *""'***** Order NUllber ******

N1111 *************************
Address *************************

********'***************** ** *********

It• No. Qty
******** ******
******** ******
******** ******
*****fr** ******

Enter It• Number.
Enter Quantity ••

Clnd2 • End of Order

Description

******'************************

'************************

Roll • Roll through lfne ital

Price

'*****

•unt

***********

Chapter 6. Using a WORKSTN File 6-87

H
1--

Size to &,
Lirte ~ Compile d

I- -& J
u. 0

LL • 5 e 1 a 9 10

°FI H TT

The. *STATUS keyword for the file information data structure INFDS (line
25) and the exception/error-processing subroutine INFSR (line 67) allow the
person to use the Roll Up and Roll Down keys to display additional orders .

• ~ f5
~ j >

m S ~! c.8 '!
j Number·~ :e.!115~~ i ~= S ~

Size to E ~ t p,· - Reserved !' S 2 ·.-:::; ::. 111 :c o CJ ·i!!
Execute ~Ii 0 '"t8 iSa.dS~~O ioc-c~o "~'~

l f;'_f~]i Positions~c 1: ".E ~ E ~~~l~~]~ ~ES!~~ ~15 tl
j • ~Set;fi .. ·~ ... cu...:.!!~c&i:0111w ... CJE ... ri!~1&
i5 r! ddd£r! ~ .S ~ cf~~u:z~~~Qiu::~IE~ifii5~0~

12 13 14 15 1e 11 _!.I 19 20 21 22 23 24 25 2fl 21 28 29 30 31 32 33 34 JS 36 37 38 39 40 4t 41 43 44 45 46 47 48 49 so s1 s2 ~ ss 56 s1 sa 59 60 &1 62 63 64 65 86 e1 ea 69 10 11 12 13 14

l1Jhll.I l ll lJlllllll l l ll11111TT1TT111T
~~~~~~-·--~~~~~~~~~~~~~~~~~·~--~~-.--~~~-,-,.--~~~.--~~~.--~~~~-. 

File Type Mode of Processing File Addition/Unordettd F 
I--

Line 

File Dnignetion Length of Key Field or ~ Extent Ex.it Number of Tracks 
End of File of Record Address Field for DAM for Cylinder Omflow 

~ Name of 
~:~:lie ! Label Exit 

Storage Index 

Record Address Type ~ 

Type of File .g 
file Format N Organization or c3 

~0 ~ ~ Additional Aree .~ 
-.... ~ !Jock Record ~ E: °"e~flow Indicator I 

! ~ ~ .@! length Length 'S ~ ~ ~ Jj Continuation Lines ..-

~ ~ lll e ~ - Jt;'~ ~ 
aE S ii: 1.1.1 .cc External Record Narne I< O~tlon Entry -i 

Filename Sequence Device 
Number of Extenh 

Tape 

~ File 
Condition 
uwa,_ 

i!! UC....---

~ 
La • •k 1 _1._"t 10 11 12 13 •• l!ilisln 1 11"B:1:1 "2 23,.,. :ie 21 ••::ii 31 32 33:M 30:Jl31 3813a •• •1.,"" •• •• 47 41 •• •• •1 •• & 64_a &1.!J 18.!tl12.JL!t83M_ .. l .. J67lae ..,1,. 11 12 ••,. 

0 2 F lijc;IT If' ~lc:fr 11 ~ IF ~Ii:;~ 121'i~~ ~IAII 11 lc= It< 
0 3 FlllTIE. l~[~II IF 11121! lll~IFi 81All ~ il)I~IM 
o 4 F ~ltfc=a If 1112~ 111~ II I~ I~ 
0 5 F 

0 8 F 

0 7 F 

o a F 

0 9 F 

1 0 F 

F 

F 

0 2 F 

0 3 F 

0 4 F 

D 5 F 

0 8 F 

0 7 F 

D I F 

0 8 F 

1 0 F 

F 

F 

IJ 11'1 irtp l~ltll'.z W "r\L'i [I~ 

Name= OE140R 

Function = Allows the user to enter customer orders. 

Input = The customer number and the order number are entered on display OE140RD1. The item 
number and the quantity are entered on display OE140RD2. After the item number and 
quantity have been entered, they are displayed with a description, price, and total price for 
that item. The roll keys can be pressed to roll through the orders and make corrections. 
Press command key 2 to have the order written to the file CUSTORDS. If the first array 
entry is blank (no items entered), then no order is written to the file CUSTORDS. Press 
command key 7 on display OE140RD1 to end the program. 

Output= The order entered is written to the file CUSTORDS. The following records are written: 

H-+-
1...i-+-i

H-+-

+-+-+
H-+
H-+

H-+

H-+ 

1-

H-!

!-++ 
H-+-

1+4-+
H-+-

H-+-
D 2 F 1 ) Customer record 1-+-1-
D 3 F 2) Ship-to record t-++-
D 4 F 

D 5 F 
3) Line-item record (one for each line item entered) 1-+-1-

1iiiiii~ 11L1i 11 I I liiiiiiiLLLiiiiiiiiiiiiiiiiiiiiiiiiil I I I I I 

Figure 6-14 (Part 1 of 12). Sample Program OE140R (Entering Orders from Customers) 

6-88 



0 2 F . .,. "..-i-TTlTrrTTTTTITllllTTfTTI""T''r-TTTITT'l"TTTTn'TTTTI-rTr I I I I I I I In I I I 

0 3 F 

o 4 F 

o 6 F 

o 6 F 

o 7 F 

o a F 

o 9 F 

1 o F 

F 

F 

0 2 F 

0 3 F 

0 4 F 

0 5 F 

0 6 F 

0 7 F 

o a F 

o 9 F 

1 o F 

f 

o 4 F 

o 5 F 

o & F 

o 7 F 

o a F 

o 9 F 

1 o F 

F 

F 

o 2 F 

o 3 F 

0 4 F 

o 5 F 

o 6 F 

0 1 f 

0 8 f 

0 9 F 

Indicator Definitions: 

01 =Record ID for the blank read for the WORKSTN file. 
02 =Record ID for format OE140RD1. 
03 =Record ID for format OE140RD2. 
04 = Is turned on by the information subroutine, passes control to the beginning of detail 

calculations, and skips to the end of detail calculations. 
11 =Turns off when no line items have been entered and is used to display array line one. 
12 =Turns off when only one item has been entered and is used to display array line two. 
13 =Turns off when only two items have been entered and is used to display array line three. 
14 =Turns off when only three items have been entered and is used to display array line four. 
20 =Used in subroutines UPINDX and DNINDX to determine when 1 is to be added to or 

subtracted from the array indexes A, B, C, and D. The indexes are not changed if I is less 
than 4. 

25 = Used in subroutines ROLLUP and ROLLDN to indicate that a roll cannot be done because 
the top or bottom of an array has been reached. 

60 =Turns on when the Roll Up key is pressed. 
61 =Turns on when the Roll Down key is pressed. 
70 =Used in the subroutine ADDORD to determine when all line items are written to the 

file CUSTORDS. 
71 =Used in subroutine ADDO RD to write the customer record and the ship-to record to the 

file CUSTORDS for each order. 
90 =Error (The customer number entered on format OE140RD1 was blank. It cannot be blank.) 
91 = Error (The order number entered on format OE140RD1 was blank. It cannot be blank.) 
92 =Error (The customer number entered on format OE140RD1 was not found in the file 

CUSTMAST.) 
93 = Error (The item number entered on format OE140RD2 was blank. It cannot be blank.) 
94 =Error (The quantity entered on format OE140RD2 was zero. It cannot be zero.) 
95 = Error (The item number entered on format OE140RD2 was not found in the file 

ITEMMSTR.) 
96 =Error (The operator tried to enter more than 98 items for one order on format OE140RD2.) 
99 = Error indicator for formats (Turns on any time one of the error indicators 90-96 turns onJ 
KB= Command key 2 writes the order placed in the file CUSTORDS. 
KG = Command key 7 ends the program. 
Roll Up= Used to roll forward through the line iter.1s. 
Roll Down= Used to roll backwards through the line items. 

J1111111111111111111111U)J11111111111111111m.11111111nr 

Figure 6-14 (Part 2 of 12). Sample Program OE140R (Entering Orders from Customers) 

Chapter 6. Using a WORKSTN File 6-89 



0 2 F I I I I I I I I I ITITTTTTTTTll I I I I I II I I I I I I I I I I I I II I I I I I I I I I I II I I I I I+++" 

0 3 F Running This Program: 
1-1-1 I-+-

0 4 F 

To run this program, the file CUSTORDS must already have been created. Also code the I-++-' 
0 & F 

following proCedure: 
1-h t-t-1 

0 8 F 
1-h t-t-1 

0 7 F ·-t-t-1 
0 8 F II LOAD OE140R l+-1 t-t-1 
0 8 F II FI LE NAM E-CUSTMAST l+-1 1-t-1 
1 0 F II FILE NAME-ITEMMSTR 1-H 1-H 

F II FILE NAME-CUSTORDS 1-t--i t-t-1 
F II RUN l+-1 t-t-1 

0 2 F 

0 3 F 1l11I11IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

E Record Sequence of the Chaining File 
Number 

r-- Number of the Chaining Field of Number c - Table or !_ 

To Filename Table or Entries of Length .~ ~ Array1Name 
Length :! ~ Comments Line 

! Per Entries of s- of 
Array Name IC~ ~ (Alternating ~-

Record Per Table Entry Entry ~n ~ E From Filename or Array 
::; E .. Format) 

inj ~~j .l! ~ 0 

3 4 • • 7 8 • 10 11 12 13 , .. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29~ 31 32 33 34 36 38 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 .. ~5656~M~~M5656~•n~nnn~ 

0 1 E IAN Jiiii! q!CI ~ Ill IElll -~ llJM Rr"\g 1&1'11 
0 2 E ~L-- 7~ ~lq ~ ~ ,.,IL ~ J.IJ. II .lJ llii! 

0 3 E 

0 4 E A ~ ~lq 1'111 (J II 1£~ ~ IIP I'l ~ 
0 5 E 

0 6 E AP RI 19~ jCj 2 II [H -P SI Ir' E:' IA-1 iAl 
IJ'I 

0 7 E .LI£ x~ ~lq IC! ~ I ITIA - Rll r1 lA~ IA~ 
0 8 E 

Figure 6-14 (Part 3 of 12). Sample Program OE140R (Entering Orders from Customers) 

( 

\ 

6-90 



I .~ 
External Field Name Field 

Field location Indicators 
1-- Filename l " 

Record Identification Codes ~ 
or g.~ ~ 

Record Name JI w"' 
~ ~-

1 2 3 From To RPG ;:! 
~ .g 

Ii ~ =i ~ Field Name "i J: ~ ?:: =s c. 

~ !!; 
3 Zero 

Line 

~ 
:E* - i ~e~ 

Data Structure .5 !' Plus Minus or 

Data 

~ 
jj i Pos1t1on ~ e ~ Position Position ~e Mg g 1i 5 Blank 

~ ~ 6 ~~6 ~ ~ Occurs ~ i6 Structure , ti u; ii: Length 
Name 

z 0 <C nTimes 

3 • 5 • 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27~8 29 30 JT 32 33 34 35 36 37 38 39. 0 41 42 43 44 45 4ti 4 7 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 .. 

··~ 
67 68 .. 70 11 72 73 7 

0 , Ilf'.i~IA ~ IN~ 
0 2 I ll~ f 1Ii11 IMl.11 ~l.t~ 

0 3 I IF 1111~ 11111~ 11 
0 4 ilin ~l ~INS 
0 5 I llrJ l~c llJJ I:'.:! 
0 6 I lf.l l!i~ ~112 l~ll 

r;:: 

0 7 I IIN NI~ ~ll Ir 

0 8 I 
0 9 I Format OE140RD1 
, 0 I , , I lrJ~ 12 11 ~ 12 rr11 
, 2 I r:: ~~ I JIC t.V! l'lri 
, 3 I lilt !11~ !Cil.i 
, 4 I Format OE140RD2 
, 5 I 
, 6 I 
, 7 I njc t.21:: Ll ii' f J;;i 
, . I 1;,: ~W2 It lI t1 !Fae IC! I~ 
1 9 I ~~ 111' Ill>' IC!il~ 
2 0 I 

I Information data structure 
I 
I le It 'f<IF 1rtc 
I ~jc, ~ jc lU!LI IT~IT 
I 

c Indicators Result Field 
Resulting 

~-
lndic•ton 

1-- .;_ I I :i e 
Arithmetic 

-'<e ~lusTMinu-;f Zero -o dz Factor 1 Operation Factor 2 
g " 

Compare Comments 

> <( Name Length i! 1 >2T1 <2Tt •2 
Line """oa:.· 

§ • "' Lookup(Factor 2)11 

if~~· i ; ; .n High Low F.qual z z 
3 4 5 • 7 •• 10 11 1213 14 15 18 17 18 19 20 21 22 23 24 25 26 27 p, 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 62 53 54 .. .. 57 5859 80 81 82 83 84 85 88 67 81 88 70 71 72 73 7, 

0 , ~ _L!TJ :J :J:J:J I 
0 2 c Initialize error indicators to off. I 
0 3 le 
0 4 Jc IT 

r.:; 

"' II" 
0 5 c IT II" tl 
0 6 c 
0 7 c 

I 
0 8 c 

I: 0 9 c If command key 2 was pressed on format OE140RD2, add the items to file CUSTORDS. 
1 0 c 
1 1 le II<~ ~lc:;1ic IA RID 
, 2 c 

Figure 6-14 (Part 4 of 12). Sample Program OE140R (Entering Orders from Customers) 

Chapter 6. Using a WORKSTN File 6-91 



c Indicators Result Field Resulting 

~· Indicators 

t-- ~ l l Arithmetic 

~ Plusj_Minuj_ Zero 

~s Factor 1 Operation Factor 2 ... Compere Comments 
Lint Name Length i 1>2[1<2{!:=2 I-~ e c l " l 

::!:: Lookup{Factor 2>is 
.f <3 -! High Low Equal 

3 4 5 • 7 • 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 12829303132 33 34 35 38 37 38 39 40 41 42 j'34446-464748 49 50 51 53 54 55 .. 57 .... 80 81 12 83 B4 85 18 67 •• 70 71 72 73 74 

0 1 ~ 
0 2 c :.'."_: 

0 3 c If command key 7 was pressed, go to the end of calculations and turn on LR. Indicator 04 is turned 
0 4 c on by the information subroutine to indicate that a roll key had been pressed and that detail output 
0 s c i should be performed. If command key 2 had been pressed, skip over detail calculations. 
0 6 c 
0 7 c 
0 8 c h I< 
0 9 c 111 1<1:11 G n: s: n1r1~ 
1 0 c 
1 1 ~ 
1 2 c 
1 3 c If format OE140R01 was read, indicator 02 is on. If field CUSNO or ORONO is blank or zero, 
1 4 le display an error message. Note: Only one error message can be displayed at a time. -
1 s c -
1 6 c l2J I"~ 
1 7 c M ~1 I N M 
1 8 c ll I"~ ~ I Fl 
1 9 c 
2 0 c 

lq 
If CUSNO and ORONO were not blank or zero, check to see if the customer number is in the jg 

lq CUSTMAST file. If it is not found, display an error message. 

c j_J_J_ 

ICI l~IN I' l~I IM~ SII R2J 
0 1 l")J 2 ~ 
0 2 jg 
0 3 c 
0 4 c 
0 s ICI If the customer number was valid, initialize the array index fields to display format OE140R02. 

0 6 c 
0 7 c '1.1 - 11 
0 8 c rtil" -A IL 
0 9 c ~-A l:l r IQ.I 
1 0 c -~ li4 l. 
1' jg -~ Q ll 
1 2 c -IAN 1 z 
1 3 c It.[ It' 121 
1 4 I<: It.fl ll"i 
' 5 jg 

Figure 6-14 (Part 5 of 12). Sample Program OE140R (Entering Orders from Customers). 

( 

\ 

6-92 



c ~ 
I-- ~ 

!] 
tine 1- c 

~~ 
3 4 5 6 1 

0 1 c 
0 2 c 
0 3 c 
0 4 c 
0 5 c 
0 6 c 
0 7 c 
0 8 c 
0 9 c 
1 0 c 
1 1 ~ 
1 2 c 

c 
1 4 ~ 
1 6 c 
1 8 c 
1 7 c 
1 8 

~ 

Indicators 

Factor 1 OperMion Factor 2 

... Arithmetic 

-~ 'i Plu$fMin~ Zero 

·~ ti Compare 

Name Length ~ ~ 1 > TI1 <'fil'1 = 2 

z z z C5 ::i:: High Low Equal 

Comments 

i; J 0 0 ·~ :;. Ln_okuplFactor 21is 

9 10 11 12 13 14 15 18 17 18 19 20 21 :n 23 24 2'5 26 27 he 29 JO 31 32 33 J4 JS 315 37 38 39 40 41 42 43 44 45 46 41 48 49 50 51 52 53 ~4 05 56 57 58 59 60 61 6:.! 63 64 65 66 61 68 88 70 71 72 73 74 

If format OE140RD2 was read, indicator 03 is on. If field ITNBR or OTYOR is blank or zero, 
display an error message. Note: Only one error message can be displayed at a time. 

II- Ir 

[f MIP IA 
IF 1 itJ 

+-++
+-++-

c 
c 
c 
c 

1 g If ITNBR and QTYOR were not blank or zero, check to see if the item number is in the ITEMMSTR H-+

file. If it is not found, display an error message. +-++
H-tt:H"t"i"'"~llll!lll!l ........... --.... l!mll!l'"'!""'!""'!lll!"~llll!lll!l ....... --------ll!l"'!l'l[lll!l~ll!ml!'""""" .... """'"----11!1'1'!11111!111!1111!11111!~ 1-+-+-
2 0 

c liiT~tQIR N rff.J []]~ 

c Tl N 
c 
c 

0 , c 
c 
c 
le 

+-++
If the item number was valid, move the item number, the quantity ordered, the description, and the 

H-t
t-0+-3+-++-t-+-t-I price (obtained from file ITEMMSTR), and the total cost for the item (product of the quantity and H-+-

the price) into arrays for display and for later output to CUSTORDS. 

0 2 

0 4 
rootsJ1;f111~-... .;.. ............ ~ ..... .;...;.. ............. ..;.. ____________________ --__ ...,. ______ .... t++-

c 
c 
c 
le: 
c 
c 
c 
c 
c 

IC 
c 

Figure 6-14 (Part 6 of 12). Sample Program OE140R (Entering Orders from Customers) 

Chapter 6. Using a WORKSTN File 6-93 



Indicators Result Field R.,ltl"l! c ~ ~ 
I-- 9 _ J I ! Arithmetic -g A:... .!.. :l! i Ptus.J!'11nu.!(Z1ro • § :! ~~ "\"' Factor 1 Operation Factor 2 l 111 Compere Comments 

Line ~ J II! Name Length -. f 1 >W <W •2 
I ~ 1i ·~ ~ Lookup(Fector 2)il 
tJ. 5:1 :f z l!l:l!Hi.-,LawEquol 

3 4 & I 7 8 9 10 11 12 13 14 1& 1117 18 18 20 21 22 Z3 24 2121 271- 29 30 31 32 33 34 31 38 37 38 38 *> 41 42~_44 46 48 47 48 49 BO 61&213154H1857&859IO1112G14 n 1117 a• 70 71 72 73 74 

a , ICI 
0 2 lc:I ..!.....!.. ...!.. ...!.. ...!.....!.. ...!.....!.. ...!.. ...!.....!.....!.. ...!.. ...!.. ...!.....!.. 

o 3 le Indicators 11 through 14 display up to four line items on the display. 
o ' le 
0 5 c 
0 8 c 
0 7 c 
0 8 c 
0 9 c 
1 0 c 
, , le 
, 2 le 
, 3 Jc 
1 , le 
1 a le 
1 8 c 

1 • c 
z 0 c 

c 

1111"1 [[ 

Add 1 to the index for A, 8, C, and D if_ more than four items have been ordered. 
-·F 

End of detail calculations. 

IF IN I~ 

IC This is the information subroutine. Control comes directly to here when one of the roll keys is 
.._..~IC.._....j...j._... pressed. It allows the operator to press the roll keys and roll through the items already entered. 

a , IC 
0 2 lei' 
o 3 le 
o • le 
0 & le 
0 8 c 
0 7 c 
o a le 
0 9 c 

I~ 
rtJ1 

IC 
IC:~ lT 
~~ ~ 

,,.. 

I~ p 
~ 

F IN 
Nin~ I~ 

121 11~12 ti 
121 111~1~ ~ 
i;jlli 

ltj lt"1 

10~ J(lJ4 
\ 9j II''" 

Figure 8-14 (Part 7 of 12). Sample Program OE140R (Entering Orders from Customers) 

6-94 

I 



Indicators Result Field Resulting 
lndic1tors c !:. ..__..., ~ 

d I I Factor 1 Operation Factor 2 

Arithmetic 

Plus_iMinu.!I. Zero 
Compare Comments 

Line i;... O 
Name Length 1>~<~1-2 

€ ~ 
d i i i 

Lookup(Factor 2)is 

High Low Equal 
~~~u~~oo~~~M~~~••ronnn• 3 4 5 8 7 9 10 111213 14 115 18 t7 18 19 20 21 22 23 24 215 28 21E_ 29 30 313233 34 35 36 37 38 39 40 41 •2 43 44 45 46 47 48 49 so 51 

0 1

0 2

0 3

0 4

le
c
c

When the Roll Up function key is pressed, this subroutine moves the content of the arrays (which H
i--+is two higher than what is displayed) into fields ITNBR and OTYOR so the operator can ch~nge

JC
0 5 c

H
that item or get back to the top of the I ist.

r.t;t--J;;tlilfl~ ... --------.,;,.--....1 1--+-
0 6 c~ IJC Ito

0 7 c~ I 121~
0 8 c
0 9 c tI
1 0 clC: IN2~ IT N~lt<
1 1 c ,1 .. io;;·

1 2 c t.J!?~ ~I~ IPttlN ~
1 3 c ~ I~ I~ Elill IN
1 4 c
1 5 c
1 8 c
1 7 c
1 8 c When the Roll Down function key is pressed, this subroutine moves the bottom array element +-+-
1 9 c
2 0 c

+-+displayed to fields ITNBR and OTYOR so the operator can change those fields.
t;t~;;H-H-"t'i.... """"""'""""'""'""""""""""!'"'!'"'!'"'!'""'!'"!""'""'""""""""""""""'!'"'!'~'""""!""'!"""""""'!""!'"!""!'""!""'!"""""'!'""!"''!"'"!""'!""!'""""'""""'~~""!'111! ... +-+-

lclC N rlr..~

clC
ere: ~ ~~Ir:

ff ~p ~" I~ ,1,., 121s:
!~it)~ E n rs~ n II

I~~
~ - Wl [J Ull ~

Ill
0 1 c a; iU
0 2 c '~
0 3 c 11<1~ ~

.~ ~ I~ IN1L !)(
])! ~ IEII IIIN

0 4 IC~lli I~ ~I~
0 5 c

Figure 6-14 (Part 8 of 12). Sample Program OE140R (Entering Orders from Customers)

Chapter 6. Using a WORKSTN File 6-95

c ...
.J

1-----i ~

Line
d
,_ 0
e ~
d

3 • 5 • 7

0 1 ~
0 2 c

Indicators Result Field

Factor 1 Operation Factor 2
Name length

Ci Ci 'O z z z
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 '2a 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 '46 47 48 49 50 51

Resulting
lndicetors
Arithmetic

Plusj_Mln~ Zero
Compere

t>Il•<Il1•2
Lookup(Factor 2)1s

Comments

Hiit' Low Equal
M~~~~WM~~~M•H~••mnn~~

0 3 c
0 • le

This subroutine adds 1 to the indexes used to display the array data on the screen if more than four
line items have been entered.

H-+
t--t-+-,

i..:i.::+-l~l-l-.j.....!j!!ll!-!""'!"'!""!'""!""'!!""'!"'!""!'~~~~""!""!""'!"~""!""'!~~""!""'!!""!"''!""!'""!"'!~~"!""!""!""!'"'!""!""!"'!-!'"'!"'!""!'"'!-!"'!'l~ml!'"'!'"'!""!""!.,H-+-
0 5 c
0 6 Cle; lu~ ~I lt.l-:i CIJ"i
0 7 cF,
0 8 etc:

IIJ rr ~A 114 ~,rz

~k2 !Aton 11 A
0 9 els 12...i ~ B
1 0 c!c;
1 1 c~
1 2 els

ea Ir: ll. tJ
l212 tqrr[l l1 D

NnF;
1 3 c
1 • c
1 5 [g - This subroutine subtracts 1 from the indexes used to display the array data on the screen when

l-+-t-l-+-+-t-1-
1 8 c

1-++

H-t-

1 7 c '1'11!1 .. 111!111!1111!1............ H-t-
rolli ng down and when the item moved into ITNBR is greater than the fourth element in the arrays.

1 8 c
1 9 c~
2 0 c~

c~ A
c~
cl9 ,.
c~~
cl5re

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c

1-+-+-1-+-+-1-1-i This subroutine turns on indicator 11 if one or more line items have been entered, indicator 12 if
,_............,>-+-+-+-+-• two or more line items have been entered, indicator 13 if three or more line items have been entered, •-+-1-+-1

1-+~1-+-+-+-+-• indicator 14 if four or more line items have been entered.
0 6 c
0 7 c
0 8 c
0 9 clc;R
1 0 clsJB ILi 11
1 1 C5fii
1 2 els l
1 3 c~~ 1 111 11~
1 • cl'i~
1 5 lq

Figure 6-14 (Part 9 of 12). Sample Program OE140R (Entering Orders from Customers)

6-96

/

\

""" ~

c Indicators Result Field Resulting

~ Indicators

~ ~ 1 I :I~
Arithmetic

ii:
Plu~m~Zero • Q Factor 1 Comments

!~ :'!
Operation Factor 2 l g Compare

Line e;· Name length
~i 1>~1<~-2

~ ~ 5· ~ li li H
LookuplFect°' 2)1

of 8 z z High Low Equal
3 4 5 • 7 • • 10 1112 13 14 15 16 !7 18 19 20 21 22 23 24 25 26 '17 .E._ 29 30 31 32 33 34 35 36 37 38 39 40 41 42 434446464748 ~9 50 51 52 63 54 55 56 57 58 59 6081626364 6566676868707172737~

0 1 c :LI :.I:I .:!. T Lll_l_ J_J_ _l_l J_J_ .!. .. LL _!. J.J_J_J. ..I..I TTTT

0 2 c This subroutine puts the order entered in file CUSTORDS. It writes the customer order record,
0 3 c then the ship-to record. Next it writes one line-item record for each line item entered. If no line ...
0 4 c items have been entered, no records are written.
0 5 c
0 6 c
0 7 cl~ II-
0 8 c ~icn QJ1J
0 9 clc; -[A 11 Ii
1 0 c~ 1-J IAr;
1 1 le IN !F Ht...~ Ir ltiP ~I~ tH~ ~~
1 2 l~llC 17~ ~II FIND
1 3 IC It<~

~
Jxlr •i- !!:!It!

1 4 l"I~
1 5 lcl'l~
1 8 c~
1 7 cl'~
1 8 !dClt.c
1 9 clC IR
2 0 c ~

IC llC
c
c

1c1c
c

0
1--

!
Line j

Filename
or

Record Name

IF IN 1
~ .. ~ lII~ IIrr

~ ll
b [L II"

IFINli5 IJIAG
ti NIE ~ It.ii~ ~~ IE~
r,~F M I~ D ~ ~
w MIW ~
iV I- IF n ~ II
~IF ~If= ~~

It\ re;

~ 1 Space Skip Outputlndicaton ~ Commas Zert:~~:~~es NoSign CR _ X"'Remove
~ !$; Field Name Y=~~~Sign 5 . 9 ..
i" .. I I or Yes Yes 1 A J User
&.@, j l! ~ A~d EXCPT Name d y,. No 2 B K Z •;!~~Edit Defined

~ ~ GI !E Posmon ~~ ~~ ! g ~ Suppr111

Wo i ! j5 ~utput :)
~ 1; C zg •AUTO w:S ~ Record iii Constant or Edit Word
~ z z ... ii:: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2"'

3 4 5 • 7 • 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 68 87 68 69 70 71 72 73 7,

0 1 OM JJ~ lrl il
0 2 lo ~ (21P ICllC1
0 3 0 tR t<!F
0 4 lo R t<
0 5 lo I(~ , In rllLt ll '
0 6 0 lq~ ~ l~INH If
0 7 lo l11lci 11\1 1~
0 8 lo
0 9 lo
, 0 lo
1 1 lo

1q1<1 Nq~ I~~
~1 I~ ..
1 ... In f (l

1qa lij~

[)_ N IR , .. t!1HIE:1 r ..
' ~ ~ P P ~Nik

tr Ii t:. lliiC , 11:..f!! N l"I
I

1 2 lo

Figure 6-14 (Part 10 of 12). Sample Program OE140R (Entering Orders from Cust;omers)

Chapter 6. Using a WORKSTN File 6-97

J2_ ~ff ~pace Skip Output Indicators ; Commas Zero Balances No CR _ X•Remave , d .1 J_ Field0~ome (,? to Print Si_g_n Plus Sign
Filename ~ t j 11 Ura:: Yes Yes 1 A J Y•Dote Field 5U-9 •

I~ ;>:;.,JLR !Ii: And And EXCPT Nome •• ' End y N 2 8 K Edit ser
or - '-' ... a> a::: Noes Y0es 3 C L Z•Zero Defined

Ll'ne ';; R d N o.P--10 t=iE HL o "8 1 Position_
c ecor ame ~~ ,E 11> 8 5 Jn ~ No No 4 O M Suppress

& o R ! < 0 b 0 • AUTO ~ ~ Output '- Constant or Edit Word
~ z z z l3 ~ Record n. ' 1 2 3 4 5 6 7 8 9 10 11 12 13 11f. 1516 17 18 19 Z> 21 22 23 2'f. '

3 4 5 6 7 8 9J!U112_1314ili~ 19::1!1 1-22]231241~2i~31~3435 36 37 38 39'!0414243 44 4546 4748 49 5051525354 55fl6 5758 58 60~ll

01 o ~ ~2N99~
0 2 0

0 3 0

0 4 0

0 5 0 14
0 6 0 11 6
0 7 0 Z IJaQQ
0 8 0 1 1
0 9 0 1 1
1 0 0 1 1
1 1 0 1 1 ~P]B I ,lfil
1 2 0 1 1 1g1 I$ I
1 3 0 12

14 °
15 ° 12 ~oJslc la

l.1.16 ° 12
1 7 ° 12
1[§. 0 13 AN l.6 :Q

Lllt. 0 13
13

0

0 13 AE~IA ~
0 14 AIN IR
0 l14 l7!l717
0 l114

0 1 0 l114 AIP~l
02 0 l114 l~R9 '1$ I

0 3 0 Jln~ls
0 4 0

05 0 'THE ITE~ NUIM§E~'
0 6 0 93
0 7 0 914
0 8 0 914 14l311 'ER I

0 9 0 95 kt.Its IT E I TEti NU~lEEE'
1 0 0 95 h ND '
1 1 0 96 L 1 INE I TEIMc:
1 2 0 96

Figure 6-14 (Part 11 of 12). Sample Program OE140R (Entering Orders from Customers)

6-98

0 !£
@~ 8-e Skip Output Indicators

~
Commas

Zero Bll1ncn
No Sign CR - X •Remove

1-i I:: ... Field Name to Print Plus Sign 5 .g.
~;;; or y. Dote u ...

Filename :i: -

5 - l l Vos Yes 1 A J Field Edit
!l i~ EXCPT Name Yes No 2 B K Defined
j?: or - .I! Z •Zero

Record Name I-~ ~ a: Pos1t1on No Yes 3 c L Suppreu Lin• ! j ! ~~ ;n No No 4 D M
~ ~ Output

a:
A < () ::i

~$oi ~ 0 0 *AUTO '6 ~ Record iii Constant or Edit Word
z z w .. a: • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Hi 16 17 18 19 20 21 22 23 24

3 • 6 • 1 8 9 10 ,, 12 13 14 15 16 17 18 19 20 21 22 23 24 ,. 26
27 "'

29 30 31 32 33 34 35 38 37 36 3B 40414243 ~~~~q~~~~~~~-~HH~~~PMHU~AHM 717273

0 1 0 ll IA"'1 'II' I~ IHPI
0 2 lq @ ' I' I I

0 3 lq Ir INn 11
0 4 lq ~le! "N~ ~
0 5 10 f~ ID" II' !CIC: ~
0 6 0 r-1 ' r1s1'
0 7 ~ 11'1 INn l
0 8 0 11
0 9 0 F~ II fIJ
1 0 10 l~ ' IJ' , , 0 7"i N 1
, 2 lo ..111< N 7
, 3 10 9
, 4 0 "N ~H lI 21
1 5 IQ ~ ~~ ti: I~~
, 6 1<>1 AF lI 2l
1 7 0

Figure 6-14 (Part 12 of 12). Sample Program OE140R (Entering Orders from Customers)

Chapter 6. Using a WORKSTN File 6-99

\

6-100

Chapter 7. Using a PRINTER File

File Description Specifications . 7-1
Line Counter Specifications . 7-3
Output Specifications . 7-4

File- and Record-Identification Entries . 7-4
Field-Description Entries . 7-7
AND and OR Lines . 7-7

Handling Overflow . 7-10
Automatic Overflow . 7-10
Overflow Indicators . 7-11

Coding Overflow Indicators . 7-12
Fetch Overflow Routine 7-15

Spacing and Skipping . 7-16
Sample Program . 7-17

Chapter 7. Using a PRINTER File

Chapter 7. Using a PRINTER File

A PRINTER file provides output to a printer. A program can use a
maximum of eight PRINTER files, each with a separate name. Use the
control language PRINTER statement to assign a PRINTER file to a
particular printer. For information about the PRINTER statement, see the
System Reference manual.

To use a PRINTER file, code entries on the file description, line counter,
and output specifications.

File Description Specifications

F
Filename

Line

Flit Type

Code entries in the unshaded columns of the file description specifications
shown below:

Mode of Proceuing

File Otsign1tion Length of Kev Field or
<!

Extsnt Exit
for DAM

File Addit1on/Unon

Number of Trac.:1
for Cylinder Ol/1

End of File
of Record Addreu Field

•quince
Record Addreu T'llpe ~

Device
Symbolic
Device

~ Name of

] Label Ex~t

.'.l Storage Index

Number of E

Tape
Rewin

Fil•

Column 7 through 14 must contain the name of the PRINTER file.

Column 15 must contain 0 to indicate that the file is an output file.

Column 19 must contain F or blank to indicate that all the records in the
file have the same length.

Columns 20 through 23 must contain the block length or blanks. If you
enter the block length, it must equal the record length coded in columns 24
through 27. If you leave the entry blank, the program assumes that the
block length equals the record length.

Con
U1·1
UC

Columns 24 through 27 must contain the length of the largest record in the
file. The record length can be 1 through 132 or 1 through 198, depending on
the number of print positions your printer has.

Chapter 7. Using a PRINTER File 7-1

7-2

Columns 33 and 34 can contain an overflow indicator (OA through OG or
OV) or blank. For more information about overflow indicators, see
Overflow Indicators later in this chapter.

Column 39 must contain L if the file is further described on the line counter
specifications.

Columns 40 through 46 must contain the device name PRINTER.

Columns 71 and 72 can contain Ul through US to indicate that the file is
conditioned by an external indicator. For more information about external
indicators, see Chapter 12.

Line Counter Specifications

L
1--

Line ~ Filename
I-

!
!!

.!l ~ .!l • E ·=:::I ~ ~ -' z u. z

Code entries in the unshaded columns on the line counter specifications
shown below:

10 11

~ .!l .!l .!l H]]~ .!l ~! li .. t] ~ .8 .!l H] H .!l H .!l H c .0
• E :S E • E c E -~ § ~ 5 • E ~ § • E • E .~ § ~ § • E > E -~ § ii E • E c E • E H ·= :::i

-' , c , lJ £ ·= ::I
. , 6 :± . , ~, ti£ .: :::I 6£ ·= :i -' z oz :.J z -' z uz -' z uz -' z .J 2 '-' z -' z "z -·~ z ... J z -' z

12

! -! !
:.J-i lJ

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 13

111 L TT TTT TT TT IFl T 1 r-lL , _- ,, -+ , , + • F ;; :_ - t 411ilK B ffiif', '. "' -;_ '> - « _ ' , --,,_ , -

1T;r L TTl ,-Ill J j [Ll l Tl l ll l _U_ J 11 l ll l ll J .. L,1-1 Jl -lJI_J JIJ
Columns 7 through 14 must contain the name of the PRINTER file. This
name must be the same as the name coded in columns 7 through 14 of the
file description specifications.

Columns 15 through 17 must contain the number of lines per page. The
number of lines can be l through 112.

Columns 18 and 19 must contain FL to indicate that the entry in columns
15 through 17 is the form length.

Columns 20 through 22 must contain the line number that is the overflow
line. This entry can be 1 through 112, but it must be less than or equal to
the number coded in columns 15 through 17. If the entry in columns 20
through 22 equals the entry in columns 15 through 17, overflow does not
occur. If you leave these columns blank, the overflow line is six lines from
the bottom of the page (line 60 if you have 66 lines per page). You cannot
override the entry in columns 20 through 22 by using the LINES option of
the control language PRINTER statement.

For more information about overflow, see Handling Overflow later in this
chapter.

Columns 23 and 24 must contain OL to indicate that the entry in columns
20 through 22 is the overflow line.

Chapter 7. Using a PRINTER File 7-3

Output Specifications

0

!
Line ~

Filename
or

Record Name

Code entries in the unshaded columns of the output specifications shown
below:

Skip Output Indicators

And And

File- and record-identification entries in columns 7 through 37 describe the
output file, the records in the file, the values that control the spacing and
skipping by the printer, and the indicators that condition the output.

Field-description entries in columns 23 through 70 describe the position and
format of data on the output record. These entries must begin one line
below the file- and record-identification entries.

File- and Record-Identification Entries

7-4

Columns 7 through 14 must contain the name of the PRINTER file. This
name must be the same as the name given to the file in columns 7 through
14 of the file description specifications.

Columns 14 through 16 can contain AND if more than three indicators are
needed to condition an output operation. Columns 14 and 15 can contain
OR if an output operation is conditioned by any one of two or more output
indicators or sets of output indicators. For more information about AND
and OR lines, see AND and OR Lines later in this chapter.

Column 15 must contain H (heading), D (detail), T (total), or E (exception)
to indicate the type of record to be written.

Column 16 must contain F if you use the fetch overflow routine. For more
information, see Fetch Overflow Routine later in this chapter.

Column 17 can contain 0 through 3 to indicate the number of lines to be
spaced before a line is printed. Spacing means advancing the form in the
printer a specified number of lines. For more information about spacing,
see Spacing and Skipping later in this chapter.

Column 18 can contain 0 through 3 to indicate the number of lines to be
spaced after a line is printed.

Columns 19 and 20 can contain 01 through 99, AO through A9, or BO
through B2 to indicate the line number that the printer should skip to

\

before printing. AO through A9 means 100 through 109. BO through B2
means 110 through 112. Skipping means advancing the page in the printer
to a specified line. For more information about skipping, see Spacing and
Skipping later in this chapter.

Columns 21 and 22 can contain 01 through 99, AO through A9, or BO
through B2 to indicate the line number that the printer should skip to after
printing. AO through A9 means 100 through 109. BO through B2 means 110
through 112.

Columns 24 and 25, columns 27 and 28, and columns 30 and 31 can contain
output indicators to specify the conditions under which a line is written. If
these indicators are on, the output operation occurs.

Figure 7-1 shows how output indicators condition the printing of an entire
line or of a single field.

If no output indicators are specified, the line is written every time that
record is checked for output. If no output indicators are specified on a
heading or detail line, that line is also written at the beginning of the
program cycle.

For more information about indicators, see Chapter 12.

Chapter 7. Using a PRINTER File 7-5

Column 23, 26, or 29 can contain N to indicate that the output operation
occurs only if the indicator coded in columns 24 and 25, 27 and 28, or 30 and
31 is not on. An N plus an indicator is called a negative indicator. No \

0
~

w 'li Space
~ e .r e 'k

Filename ::i: "

~ .e !. i~ {!:: or Ji< Record Name ~~ Line ! ~ 141 L j A DD

output line should be conditioned by negative indicators only; at least one
of the output indicators should be positive. If a heading or detail line is
conditioned by negative indicators only, the line is written at the beginning
of the program cycle when the first-page lines (those conditioned by the lP
indicator) are written.

Columns 32 through 37 can contain an EXCPT name if column 15 contains
E.

Skip Output Indicators

0
Comma

Zero Balances
No Sign CR - X =Remove

Field Name to Print Plus Sign
Y"' Date

5.9.
or

A~d 2d

Yes Yes 1 A J Field Edit User
EXCPT Name y., No 2 B K Defined

Z=Zero
er;: Pmition No Yes 3 c L Suppress

t H ;n No No 4 D M

" Output
a:

" ::;

~ ~ ~ s •AUTO ii~ Record ii; Constant or Edit Word
z z wm 0::. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 •

3 4 5 6 1 s 9 10 11 n 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ~~~~~~~~~~M~-~~~M~~mMMMVUOM

0 1 OP ~II !NlI li ~~
0 2 10 IN1" IT II~
0 3 lo AM ~l [![~
0 4 10 rl ~T ~

,,,Si
0 5 0 Si le; ~f\I /P.S::
0 6 0

One indicator is used to condition an entire line of printing. When 44 is on, the fields named
INVOIC, AMOUNT, CUSTR, and SALSMN are all printed.

0
~

- .c Output Indicators

0
Zero Balances X• Remove

~~ Space Skip Commas No Sign CR -I-- Field Name to Print Plus Sign
5 ·9• .e ~ or V• D1te

Filename ::i: "

~! r Jd

Yes Yes 1 A J Field Edit "'" !. i~ EXCPT Name Yes No 2 B K Defined
{!:: or Z •Zero

Record Name ~~ ~ cc Pos1t1on No Yes 3 c L Supprm Line E e
~ -~ No No 4 D M

,f ~ BL ;n

~ 85 Output
a:

A D D ::;

~ :1o ~ s s •AUTO ii~ Record ii; Constant or Edit Word
z z wm ... 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21 22 23 24

3 4 •• 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
" 26

27 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 ~~~u~~~~~~M~•~HHM~nmMMHVUOW

0 1 01r 1111\iU II ~~ t-1-

~" 0 2 0 II~Ri 11
0 3 0 riiM 1~11 11~
0 4 ~ Ir In l'J~
0 5 0 11 ICU l.CllilAI ~Is:
0 6 0

71 72 73 74

71 72 73 74

A control-level indicator is used to condition when one field should be printed. When indicator 44 is
on, fields INVOIC, AMOUNT, and CUSTR are always printed. However, SALSMN is printed for the
first record of a new control group only if 44 and Ll are on.

Figure 7-1. Using Output Indicators to Condition the Printing of an Entire Line or of a Single Field

7-6

\

Field-Description Entries

AND and OR Lines

Columns 23 through 31 can contain output indicators to specify the
conditions under which a field is written.

Columns 32 through 37 can contain one of the following to specify each
field that is to be written:

• Any field name or data structure name that was used in this program

• The reserved words PAGE, PAGEl through PAGE7, *PLACE, UDATE,
UDA Y, UMONTH, or UYEAR

• An array name, an array element, or a table name

For more information, see Columns 32-37 (Field Name) in Chapter 27,
Output Specifications.

Column 38 can contain an edit code. For information about edit codes, see
Chapter 16, Editing Numeric Fields.

Column 39 can contain B to indicate that the field named in columns 32
through 37 is reset to blanks or zeros after the output operation is complete.
Leave these columns blank if the field is not to be reset.

Columns 40 through 43 can contain the end position of a field or constant
in the output record. This entry cannot exceed the record length, which is
specified in columns 24 through 27 of the file description specifications for
this file.

Columns 45 through 70 can contain a constant or edit word. For
information about edit words, see Chapter 16, Editing Numeric Fields.

Use an AND line if you need more than three indicators to condition an
output operation. Code the word AND in columns 14 through 16 of each
additional line. The conditions for all indicators in an AND relationship
must be satisfied in order for the output operation to occur. You can use
any number of AND lines for an output operation.

Use an OR line if you want an output operation to occur if any one of two
or more conditions is satisfied. Code the word OR in columns 14 and 15 of
each additional line. You can use a maximum of 20 OR lines for an output
operation.

If you use a combination of AND and OR lines for an output operation, you
can use any number of AND lines and a maximum of 20 OR lines.

Chapter 7. Using a PRINTER File 7-7

0
t----1

Filename
! or

Lina. g Record Name

...

•• ' . 7 8 9 10 11 12 13

0 1 jg I ~lAI I~
0 2 lq
0 3 0
0 4 lq
0 5 lq
0 6 0
0 7 ~
0 8 l<>I
0 9 0

0
I---

!
Line !

Filename
or

Record Name

~ n e . ._
Space

~' ~! ... ~ ~
~ * j A

AND and OR lines can condition entire output lines, but they cannot
condition individual fields (see Figure 7-2). However, you can use more
than three indicators to condition an output field by using the SETON
operation code in calculation$. For example, suppose you use indicators 10,
12, 14, 16, and 18 to condition an output field named PAY. In the
calculation specifications you can set on indicator 20 if indicators 10, 12,
and 14 are on, and then in the output specifications you can use indicators
16, 18, and 20 to condition the output field PAY.

Skip Output Indicators

~
Comma

Zero Balancet
No Sign CR - X •Remove

Field Name to Print Phu Sign
6 ·9•

or Y•Dm u ...
A~d Jd

Yes v .. 1 A J Field Edit EXCPT Name Yea No 2 a K Dell nod Z •Zero
a: Position No v .. 3 c L Su-

~ H In No No 4 D M
Output

0:
::i

~ ~
3 ~ ~ *AUTO i~ Record e Constant or Edit Word z

A. • 1 2 3 4 15 8 7 8 9 10 11 12 13 14 111 18 17 18 " 20 21 22 23 24 • A
,. 1 s ~6 17 18 19 20 21 22 23 24 25 ,. 27 28 29 30 3 1323334353937 38 39 40 41 42 E~~~~~~~U~MM~UUM~GUMHN~UUro
IA
~
~ ID -

1211 1&1a ti
11111
~ll

Nii~ 1
N~ M[I ~1£:
~to· ~11 IN~ 1 21~
IA IR ~
RA ltlNrl

~
l1

\
The detail line is printed if either of two sets of condi·
tions is met. If 21, 40, 01, and 16 are all on, the line is
printed; if 21 and 40 are on and 01 and 16 are off, the
line is also printed.

@j Spece Skip Output Indicators ~ Comm11 ZerotoBaPrllannct ts NoSlon CR - X•Remove -a !!:,. Field Name Plu1Si1P1
or Y•Dm i: ~ ~ ! Jd A!d EXCPT Name ~= ~~ 1 A J Flold Edit

~f'R'm < a:: Potitlon No Vt• ~ ~ ~ Z•Zero
~~ • iii;lo No No 4 D M Supprou

~ ! ~ 85 Output :5

Utor
Defined

o R ~ ~ ~ •AUTO ·" ~ R•cord iii Constant or Edit Word
~ Z ;B CD et • , 2 3 4 s a 1 a s 10 11 12 13 14 1s 11 11 11 1s 20 21 22 23 24 •

71 72 73 74

3 • s • 1 a s 10 ,, 12 13 14 1s 1e 11 1s 19 20 21 22 23 2c 2s 28 21 21 a 30 31 32 33,.. as 31 31 31 39 "° 41 •2 43 44 45 48 • ., 48 49 so s1 s2 153 54 56 ee 111 sa u ao e1 12 83 14 111111 • u 10 11 12 , 3 14

0 1 I~ IC 1211
0 2 lq
0 3 jg l"tllJn

0 4 lq

0 8 0

0 9 lo!

I
A maximum of three indicators can be used to condition
a field.

Figure 7-2. Output Indicators in AND and OR Lines

7-8

/

0
1--

!I. Filename

~ or
Line ! Record Name

3 • • 6 7 8 9 10 11 12 13

0 1 oil" lr
0 2 lq
0 3 0

ff:

~~ Space

c~

~"'
=~ !ti"* ~ .

.e ~
+¥ ~~

j ~ +W A .l!

~

If you use a control-level indicator (LO through L9) in an OR relationship
with the last-record (LR) indicator, the output operation might occur twice
when the last-record indicator is on. One operation occurs when the last
record is processed, and the other occurs at detail or total time. Figure 7-3
shows how to use control-level indicators and the last-record indicator
correctly in an OR relationship.

Skip Output lndicat'lrs

~
Commas Zero 81lancn

No Sign CR - X •Remove
Field Name to Print PlutSlgn 5 ·9.

Y•Olte or u .. r
A!d :L Yes Yes 1 A J Field Edit EXCPT Name Yes No 2 B K Defined Z •Zero

No y., 3 c L a: Position Suppr111

~ m °' In No No 4 D M

85 a:
Output ::i

0 ~ 0 •AUTO '6 ~ Record as Constant or Edit Word z z w .. ii: 1 2 3 4 • 6 7 8 9 10 11 12 13 , .. 16 16 17 18 19 20 21 22 23 24
14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40414243 ~~~D~~~M~~M~~D~~~~~M~~~~MMro 71 72 73 7•

[flN R
Ir~ ~

~- w . 1--1-1-.. ,_

Figure 7-3. Correct Use of Control-Level Indicators and the Last-Record Indicator in an OR
Relationship

Chapter 7. Using a PRINTER File 7-9

Handling Overflow

Overflow is the condition that exists when a printer reaches the last line to
be printed on a form. There are three ways to handle overflow:

• Automatic overflow

• Overflow indicators

• .Fetch overflow routine

Automatic Overflow

7-10

If columns 33 and 34 of the file description specifications are blank and you
do not use the fetch overflow routine, the program automatically advances
the forms when overflow occurs and continues printing on the line one inch
from the top of the new page (line 06 if you have 66 lines per page and six
lines per inch).

The following steps occur during automatic overflow:

1. All remaining detail lines in that program cycle are printed if a printer
operation spaced or skipped to the overflow area.

2. All remaining total lines in that program cycle are printed.

3. The printer skips to the line one inch from the top of the new page.
Therefore, detail lines begin on that line (normally line 06) for all pages
after the first.

If you use line counter specifications, overflow occurs at the line coded in
columns 20 through 22 of those specifications. If you do not use line
counter specifications, overflow occurs six lines before the line number
coded as the LINES option of the PRINTER control language statement.

Overflow Indicators

You can use OA through OG or OV as an overflow indicator in columns 24
and 25, 27 and 28, or 30 and 31 of the output specifications. An overflow
indicator conditions which lines in the PRINTER file print when overflow
occurs. No more than one overflow indicator can be assigned to each
PRINTER file in a program, and no overflow indicator can be assigned to
more than one PRINTER file in a program. To use an overflow indicator in
the output specifications, you must also assign the same overflow indicator
to the PRINTER file in columns 33 and 34 of the file description
specifications.

The RPG program cycle allows the overflow indicator to turn on at three
different times: at total time, at detail time, and at calculation time if
exception output is used. However, the only time that the program checks
to see if the overflow indicator is on is right after all total records are
printed, unless the fetch overflow routine was specified by an F in column
16.

When the overflow indicator turns on, the following steps occur:

1. Detail lines are printed (if that part of the program cycle is not already
complete).

2. Total lines are printed (if conditions are met).

3. Total lines conditioned by the overflow indicator are printed.

4. Heading lines and detail lines conditioned by the overflow indicator are
printed.

5. The overflow indicator turns off.

Chapter 7. Using a PRINTER File 7-11

Coding Overflow Indicators

7-12

When you code overflow indicators in the output specifications, consider
the following:

• Spacing past the overflow line turns on the overflow indicator.

• Skipping past the overflow line to any line on the same page turns the
overflow indicator on.

• Skipping past the overflow line to any line on a new page does not turn
the overflow indicator on.

• A skip to a new page coded on a line not conditioned by an overflow
indicator turns the overflow indicator off before the forms advance to a
new page.

• Control-level indicators can be used with an overflow indicator so that
each page contains information from only one control group (see Figure
7-4).

• You can code an overflow indicator on AND or OR lines. However,
only one overflow indicator can be associated with one group of output
indicators.

• If you use an overflow indicator in an AND relationship with a
record-identifying indicator, you may get unusual results because the
record type might not be the one read when overflow occurred. In that
case, the record-identifying indicator would not be on, so all lines
conditioned by both overflow and record-identifying indicators would
not print.

• An overflow indicator can be specified on the record-identification line
of the output specifications only for a ·heading, detail, or total record
(column 15 contains H, D, or T).

• An overflow indicator cannot be specified on the record-identification
line for an exception record (E in column 15). However, an overflow
indicator can condition fields within the exception record.

• You can turn overflow indicators on and off by using the SETON and
SETOF operation codes.

I

\

·--"··---·

0
...

~i Space Skip Output Indicators

[ff Commas
Zero Balances No Sign CR - X •Remove ..,__ Field Name to Print Plus Sign 5 -9. e ii; or Ve Data

User
Filename

x • :L ~L
Yes Yes 1 A J Flald Edit

& j~ i5 • EXCPT Name y,. No 2 B K Defined
~ or ~ .!' Z .. Zaro

I-~ ~..: a: Pos1t1on No Yes 3 c L Supprass Line
~

Record Name

j ~! No No 4 D M
~ ~L ! ;n

Output
tc

A DD " uo ::;

~$;- ~ 0 0 *AUTO ii~ Record iii Constant or Edit Word
z z wm ... 1 ' 3 4 5 • 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21 22 23 24 •

3 4 ' 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ~E~~~~~M~~~~~~~~~~~~M~M~EHW 71 72 73 74

0 1 0 t<[tH [":I 121tl '1A I\(~
0 2 lq ... 12
0 3 lq ' Al I

0 4 lq 1$1 ' NII'
0 5 lq 12~ '~ ~ M E'
0 6 0 [l;j \ ~ AIN rr•
0 7 0

•....

This is the coding necessary for printing headings on every page: first page, every overflow page,
and each new page to be started because of a change in control fields (L2 is on). Line 01 allows the
headings to be printed at the top of a new page (skip to 06) only when an overflow occurs (OA is on
and L2 is not on).

Line 02 allows printing of headings on the new page only at the beginning of a new control group (L2
is on). This way, duplicate heading caused by both L2 and OA being on at the same time do not
occur. Line 02 allows headings to be printed on the first page after the first record is read because
the first record always causes a control break (L2 turns on) if control fields are specified on the
record.

0
...

e~ Space Skip Output t ndicators

[ff Commas
Zero Balances No Sign CR - X =Remove

I--- Field Name to Print Plus Sign
5 ·9= c- Y =Date -"' or User

Filename ~~

~! ,!d r EXCPT Name
y., Yes 1 A J Field Edit 8. I':~ y., No 2 B K Defined

~ or Z =Zero

Record Name ~~ ~ c:: Pos1t1on No Yes 3 c L Suppress Line
~ t.!?-1 ~

~

~ ~~
;n No No 4 0 M

~ Output
tc

A ~ l.2i ~
0

~ 0 •AUTO ~$ Record Constant or Edit Word z z w., 0:: 1 ' 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 A
3 4 5 6 7 8 9 10 11 12 13 14 1 5 16 17 18 19 20 2122 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40414243 ~E~O~~~M~~~~~n~~~~~~M~M~M~ro

0 1 0 "II r4ll I~~~ l..llf\I ~
0 2 10 ~
0 3 0 ~] If.
0 4 lq

This is the necessary coding for the printing of certain fields on every page; a skip to 06 is done
either on an overflow condition or on a change in control level (L2). The NL2 indicator in line 01
prevents the line from printing and skipping twice in the same cycle.

Figure 7-4. Using Control-Level Indicators with an Overflow Indicator

71 72 73 74

Chapter 7. Using a PRINTER File 7-13

' I

Program Cycle

~

Read a record

Perform all
calculations
conditioned by
control-level

indicators
(columns 7-8
of calculation
specificationsl

Total output

Overflow output
T=Total
H= Heading
D= Oetail

Perform all
calculations
not conditioned
by control-level
indicators
(columns 7-81

Heading and
detail output

Set off .__
control-level
indicators

Figure 7-5 shows the setting of overflow indicators when overflow is
handled by overflow indicators and when it is handled by the fetch overflow
routine. Both normal output and exception output are shown for each case.
The solid lines show when the overflow indicator is on. The dashed lines
show connections between the end of one program cycle and the beginning
of the next.

Using Overflow Indicators Using Fetch Overflow Routine

Normal Output Exception Output Normal Output Exception Output

Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow
During During During During During During During During
Detail Output Total Output Detail Cale. Total Cale. Detail Output Total Output Detail Cale. Total Cale.

i ~ i i
I I I I
I I I I
I I I I
I I I I
I I I I I~ t t OF t t es

I~ OF
es

oQ
Lines I~ nes

og
Lines' I~ nes

ii;J! OF
s

t t t t I I OF I

·u
I lr;J' I
I I I
I I I
I I I
I I I

Off Off u Off Off 0 Off Off 0 Off Off

Figure 7-6. The Setting of Overflow Indicators during Overflow Handled by Overflow Indicators
and by the Fetch Overflow Routine

7-14

\

Fetch Overflow Routine

The fetch overflow routine allows you to change the overflow logic of the
RPG program cycle. You can advance forms when total, detail, or
exception records are printed instead of waiting for the usual time in the
program cycle.

Use the fetch overflow routine if printing a particular line would cause
overflow and if not enough space is left on the page to print the remaining
detail, exception, or total output lines. The fetch overflow routine can
prevent printing over the page perforation and can ensure use of as much of
the page as possible. To determine when to use the fetch overflow routine,
study all possible overflow situations. By counting lines and spaces, you
can calculate what happens if overflow occurs on each detail and total line.

To use the fetch overflow routine, code F in column 16 of the output
specifications. Each time the program encounters the F in column 16, it
tests whether the overflow indicator assigned to the PRINTER file is on. If
the overflow indicator is on, the fetch overflow routine occurs in the
following sequence:

1. All total lines conditioned by the overflow indicator are printed.

2. Forms advance to a new page when a skip to a line number less than
the line number the printer is currently on is specified in a line
conditioned by the overflow indicator.

3. Heading lines and detail lines conditioned by the overflow indicator are
printed.

4. The line containing the Fin column 16 is printed.

5. Any detail, exception, and total lines left to be printed for that output
cycle are printed.

The fetch overflow routine does not automatically cause forms to advance;
forms advance only if columns 19 and 20 or columns 21 and 22 of the output
specifications for the overflow-conditioned line contain a 2-digit entry that
is less than the line number that the printer is currently on.

Column 16 of each OR line must contain an F if the fetch overflow routine
is to be used for each record in an OR relationship. The fetch overflow
routine cannot be used when an overflow indicator is coded in columns 23
through 31 of the same specification line. If this occurs, the overflow
routine is not called.

Chapter 7. Using a PRINTER File 7-15

Spacing and Skipping

7-16

Spacing means advancing the form in the printer a specified number of
lines. Skipping means advancing the form in the printer to a specified line.
Spacing and skipping can be specified both before and after a line is
printed. If both spacing and skipping are specified on the same line, they
occur in this order:

1. Skip before

2. Space before

3. Skip after

4. Space after

With spacing, the maximum number of blank lines that can occur between
two lines of print is five. If six spaces are specified (three after the
preceding print line and three before the current print line), the printer
spaces six lines and begins printing on the sixth line.

Spacing or skipping to the overflow line or past the overflow line turns the
overflow indicator on. However, skipping past the overflow line to a line
on the next page does not turn the overflow indicator on. Therefore, if you
want to turn the overflow indicator on when you skip to the next page, use
a SETON operation to turn on the overflow indicator to condition overflow
operations.

Skipping is usually done when a new page is needed. A skip to a lower line
number means advancing to a new page. Skipping can also be specified
when more than five blank lines are required between two lines of print.
The entry for skipping must be a 2-digit number that indicates the number
of the next line to be printed. The skip entry must not be a higher number
than the form length coded in columns 15 through 17 of the line counter
specifications. If you code a skip to the line number that the forms are
already positioned on, the forms do not move.

If columns 17 through 22 of the output specifications are blank, single
spacing occurs after each line is printed. Separate spacing and skipping
entries can be coded for each record in an OR relationship. If no spacing or
skipping entries are coded for an OR line, spacing and skipping are done
according to the specifications for the line before that OR line. No spacing
or skipping can be specified on AND lines.

Sample Program

Figure 7 ·6. shows sample program AR936R, which prints a report of
accounts receivable information. Depending on which option the user
chooses, the program prints the balance due from each customer, from only
those customers whose balance is not zero, from only those customers
whose balances exceed an amount specified by the user, Qr from only those
customers whose balance is overdue.

Sample program AR935R, which maintains the accounts receivable
information in the customer master file CUSTMAST, is shown in Chapter 6.
AR935R must be run before AR936R can be run.

Chapter 7. Using a PRINTER File 7-17

II
Progrtm

Programmer Dote

RPG CONTROL AND FILE DESCRIPTION SPECIFICATIONS

Keying
Instruction

Gr1phic

Kev

Card Eteetr.o Number 1 2

Page[[Jot _

GX21"11002·7 UM/060•
Printtd In U.S.A.

Control Specifications
For the valid entries for a system refer to the RPG reference m1nu• for thlt 1y1ttm

H
I--

I I
Ui g ~ ~

j Number·f 00 :~.gg'5g i ~~ 5 ~
Sizeto j. % Size to l 1ii .!: of Print :a Reserved c 8 Jj ·z; ::> 2 :c O Cl ·;:; E ...

. ! Compile ::i ·g, Execute ?.'" .. ~ :6 ~ i Positions <J i i5 ~ ~ ~ ~ E 3 g .§ ~ g: ~ .. ~ t:, 5 =
Line~ 2c;. J 1 cw!~ ~ -~ i ~~H~£·al-;:"2~~B1!~82·~~

! !~ ~ i ~~~!l ~ I~ ~~~~i~J!~~1~~~s;~o!
J 4 s 6 1 s 9 10 11 12 13 14 1& 16 11.!!l1e 10 21 22 '23 24 25 26 21 28 29 30 31 32 JJ 34 Js 36 J1 38 Je 40 41 42 •J 44 4s 46 47 48 49 so s1 s2 s s ss se s1 se 59 so 61 e2 sJ 64 ss ei& 01 ea 69 10 11 12 13 1•

·~H H I Ciill I JI ITIIIITII I . I IIII I IIIIIIII1I1
Name= AR936R

Function = Print aged trial balance report.

Input= CUSTMAST (customer master file) on disk.
Report option passed from program AR935R by local data area.
The options are 1, 2, 3, and 4.

1 = All customers
2 = All customers with balances
3 = All customer with balances over the amount entered in field

OVBAL
4 = All customers with overdue balances

Output= The printed report chosen.

Indicator Definitions:
01 Record-identifying indicator for the CUSTMAST file
02 Conditions first-time processing
03 Conditions first-time headings
05 Conditions printing and record count
10 Turns on if option 1 is chosen
20 Turns on if option 2 is chosen
30 Turns on if option 3 is chosen
40 Turns on if option 4 is chosen
LR Last record processed
OA PRINTER file page overflow

Running This Program
AR935R must be run before AR936R. To run both AR935R and
AR936R, code the following procedure:

II LOAD AR935R
II WORKSTN UNIT-?WS?,RESTORE-YES
II RUN
* IF CMD7 IS PRESSED IN AR935R, A NONBLANK CHARACTER
* IS PLACED IN POSITION 9 OF THE LOCAL DATA AREA AND
* AR936R IS NOT RUN.
II IFF?L'9,1'?/GOTO NOPRT
II LOAD AR936R
II Fl LE NAME-CUSTMAST
II RUN
//TAG NOPRT

Figure 7-6 (Part 1 of 4). Sample Program AR936R (Printing Accounts Receivable)

7-18

F File Type Mode of Processing Fite AdditionJUnordertc

File Oniption length of Ke"y Field or Extent Exit Number of TrKks
i-- of Record Address Field ~ for DAM for Cylindlr Overflo End of file ~ Record Address Type ... Symbolic ;;, Name of Number of Exten

Soquence w Label Exit ~ Filename Ty .. of Fite Device Device i File Formtt N Oroenintk>n or ~ .:i ~ .. ~ Adctitlonel An• Storage Index
Line .. e ~ ~ Overflow Indicator ·I File a Record Condltk

0;:: :I Block

! ~§ ii! Length Length

"' :;:e E· ContinU1tion lines ~~':!.:. ~ ::i <~ ~ .. i!:
~ g~

0 ..

~ < .. < E1Ctern1I Record Nan. K Option Entry "' 3 • •• 1 a •·to 11121314 16 I 17 18 ~M~nn~n~vai~~n~~••va ht 40 41 42 43 44 45 <t6 47 48 49 50 51 52 535455585798119 IO_tt 12 83 84 Bl .. ., 10 11 12 73

Fifi ti IA 511 F LSl~ ~ 0 2 l~h' l11P ~Li~ ~ Iris ~
Fif" llE[1~12 13I2J IA 11'!:11 INll IE.IR 0 3

0 4 F

.!· External Field Name Field Location

111 Record Identification Codes - .oc_

~ ~ g
I

I--
Field

Indicators Filename

& Recor°: Name l w U) ~ :g 1 2 3 From To .~ RPG -::" : "' !
~ ~ _2~ :_i :~ li } _ ~ Field Name ~ ~ ~ ! Ze<0
E ~ _ ... ~ 0 ~ _ :! ~ 0 _ _ ~ Data Structure .e_"' g .£ .~ !. Plus Minus or
& 1---0~,-,,-~,-,-0+R~-4 ~ .~ ~ Position :: N ;; Position ~ ~ = Position ... N ~ i g Occurs ~ ~ ~ ~ ~ Blank

Line

Structure tft;+o~ 8 ~ ~ U 0 ~ 0 0 ~ 0 0 cii ii: nTimes Length 6 t:S ~ 6 U:

3 4 5 6 1 s sN81~811 12 13 u 15 1e 11 1a 19 20 21 22 23 24 2s 26 21128 29 Jo J1 32 JJ 3• 35 JS 37 38 39 40 41 42 43 44 45 4ti 47 48 49 50 51 52 53 54 55 58 57 58 59 so 61 62 63 64 85 68 87 88 89 70 11 12 73 j

0 1

0 2

0 3

0 4

0 5

0 6

0 1

0 8

0 9

rlr.ll lcijTMA1~T !1 f.j Ir
I

I

I

I

I

I

I

I
1 o I

1 1 I

1112 :t~ u 'l M
IP 11131 ll IL I~
p l.1151a fj bJ

' 2 I II This is the local data area information passed to AR936R from AR935R. I
1 3 I

1 • I
1 s I

1 s I 1'1.I J "
1 1 I 12

~--1-'a_,__+I-+--1--+--J---1-+--+-1--+--l1--1--+-+·+-+-+--·-l--l--l-+--+-+-+->-+--+-+--+-+-"l--l-+--+-+-+-1--1-+--+-+-+--l--i-+--+--+-+-+--l--+-+-+-+-+--l--+-+-+--+-+-+-.,1--i--+-+-+-

Figure 7-6 (Part 2 of 4). Sample Program AR936R (Printing Accounts Receivable)

Chapter 7. Using a PRINTER File 7-19

c Indicators Result Field Resulting

~- Indicators

1----i ~ 1 I Arithmetic

PlusIMinu~ Zero .. Factor 1 Operation Factor 2 Compare Comments
!. :

Line
> Name Length 1>2[1<2[1•2
... 0
~ E

~ • Lookup(Factor 2)is • .f 8 z z High Low Equal

3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 E_29Jo31 J2 33 34 35 36 37 38 39 40 41 42 43 44 45 ~ 47 48 49 50 51 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 c
0 2 c First-time logic to determine which report to print.
0 3 c
0 4 c
0 5 c IOJ.2 Ditil_ Q.I~
0 6 c MZ~ H.11 "'

~(j r-i~ ' ll ' llk2
0 7 c N~ t"IJ I rlr IM~ , l2l ' 121'.l
0 8 c ~ M.111 r-lr ~Pl -~, L~Jii
0 9 c ~ Hll l'l rlri J.1IPI '1'4 I ~~
1 0 c IN!m-i ~ l1 N ~~
1 1 c
1 2 c
1 3 c Calculate the total overdue payments for each customer.
1 4 c
1 5 c
1 6 c 2-A nH IVk r2 ~v ~J T l<tl2
1 7 c :A ,...., 1.11,., 1iv rs II l LY.
1 8 c A (}j LY.I'S l II l'l
1 9 c
2 0 c

c If option 1 is chosen, print a report of all customers.
c
c
c ~ at ~ tzis=
c

0 1 c
0 2 c If option 2 is chosen, print a report only of customers with a balance.
0 3 c
0 4 c
0 5 c IZll IA Mn r1 IM rzi,:; izl~
0 6 c
0 7 c If option 3 is chosen, print a report of customers with balances over a
0 8 c
0 9 c certain amount.

1 0 c
1 1 c L=\a AIM T'l[Jrl l'HM R ~
1 2 c
1 3 c
1 4 c If option 4 is chosen, print a report of customers with overdue

1 5 c balances.

1 6 c
1 7 c l'f~ ins:I [l ~IMIPI i .. I ll<l Qji; ~'i
1 8 c I T
1 9 c
2 0 c Count the number of records printed.

le
c ~'i Ar. 1 11 le; r\NJ: l~Cl
~ +-~- - ~

Figure 7-6 (Part 3 of 4). Sample Program AR936R (Printing Accounts Receivable)

7-20

0
t---i

Line

Filename
or

Record Name

~ 0 · ~ Zero Balances X"' Remove ~Space Skip utputlnd1cators Field Name Commas toPrint NoSign CR - PlusSign S·S=

~ Y=Oate
T T or Yes Yes 1 A J User

~ ~ ! And And EXCPT Name End Yes No 2 B K z"' ;:~~Edit Defined

~ t ~ ~:sition ~~ ~:s : ~ ~ Suppress

~ ~ ~ j 5 Output ~
0 O ~ .. AUTO ~ Record "iii Constant or Edit Word

~ z z ~ CD ii:- 1 2 3 4 s s 1 a 9 10 11 12 13 14 1s is 11 la 19 20 21 22 23 24 •

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 1

o' oP]gJ
0 2 0

0 3 0 • b IRIIA
0 4 0 ?I '] I

IL IA LI I.I YI
1511, ' F IS IA lrl I~ II:. r-, I

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0 l ~.., ~I It
1 0 0 l'J BI
1 1 0

1 2 10
1 3 0 1Jil 'u ~ IA~
1 4 0

1 5 0 11~
1 6 0

1 7 0

1 8 0 \ 111c;1 N MI
1 9 0

2 0 0

0

lo
0

[1 ' N Hll IJ 1-=l 0. '
' l\J I'(il Ir- ~~ •

0

0 ~~Jq '] ~'~I E'
0 1 0 111t:: 'Ir IAIE'N JIM '
0 2 0 1
0 3 0

0 4 lq
0 5 0

r~[0 6 0 19 \
0 7 0 lla ·
0 8 0 Pi '
0 9 0 BILI '
1 0 0

'' jo
, , I~

1 3 0

1 4 0

1 5 0

Figure 7-6 (Part 4 of 4). Sample Program AR936R (Printing Accounts Receivable)

Chapter 7. Using a PRINTER File 7-21

7-22

Chapter 8. Using a SPECIAL File

File Description Specifications . 8-1
Continuation Line . 8-2
Restrictions for SPECIAL Files . 8-3
Using a Subroutine for Input and Output . 8-3

Using IBM's Subroutine, SUBROl . 8-4
Using Your Own Subroutine . 8-5
Points to Remember When You Write an Assembler-Language

Subroutine . 8-8
Reading and Updating a Work Station Utility Transaction File

(SUBR22) . 8-9
File Description Specifications . 8-9

Continuation Line . 8-10
Contents of the Array . 8-10

Example of SUBR22 . 8-14

Chapter 8. Using a SPECIAL File

(

Chapter 8. Using a SPECIAL File

An RPG program can process files that use input and output devices not
directly supported by RPG. To use such a file, code the device name
SPECIAL on the file description specifications and provide a subroutine to
transfer data between the SPECIAL device and main storage. That
subroutine can be SUBROl, supplied by IBM, or a subroutine that you write
in assembler language.

You can also use a SPECIAL file with subroutine SUBR22, provided by
IBM, to read a transaction file created by the Work Station Utility (WSU).
See Reading and Updating a Work Station Utility Transaction File in this
chapter.

File Description Specifications

F
Filename

File Type

To use a SPECIAL file, code the unshaded columns in line 02 on the file
description specifications shown below. If you use a continuation line, also
code the unshaded columns in line 03:

Mode of Processing Filt Adclition/Unordl

FU1 D11ign1tion Extent Exit Number ot Tradu

End of File

L1ngth of Key Field Of

of Record Addrn1 Field

Name of
Label Exit

for DAM for Cylinder Ovorl

Device
Symbolic
Device

Columns 7 through 14 must contain the name of the file.

Numblr of Ex'

Column 15 can contain I, 0, U, or C to indicate that the file is an input,
output, update, or combined file.

Column 16 can contain P, S, or D to indicate that the file is a primary,
secondary, or demand file. Column 16 must be blank if column 15 contains
0.

Chapter 8. Using a SPECIAL File 8·1

Column 17 must contain E if the program must process every record from
the file before the program can end. Leave column 17 blank if the program
can end before it processes every record in the file. Column 17 applies only
to input, update, or combined files used as primary or secondary files.

Column 18 can contain A, D, or blank. A indicates that the program checks
that the records are in ascending sequence. D indicates that the program
checks that the records are in descending sequence. Blank indicates that
the program does not check the record sequence. Column 18 applies only to
input, update, or combined files used as primary or secondary files.

Column 19 must contain F or blank to indicate that all records in the file
have the same length.

Columns 20 through 23, the block length, must contain a number from 1
through 9999. The block length must be greater than or equal to the record
length.

Columns 24 through 27, the record length, must contain a number from 1
through 4096.

Columns 28 through 31 must be blank because SPECIAL files can be
processed only consecutively.

Column 32 can contain any number from 1 through 9 to indicate that the
program uses two input/output areas, or a blank to indicate that the
program uses only one input/output area.

Columns 40 through 46 must contain the device name SPECIAL.

Columns 54 through 59 must contain the name of the subroutine that does
the input and output operations between the SPECIAL device and main
storage. You can use SUBROl or SUBR22 for this purpose. The subroutine
name must be in the form SUBRxx, where x is any alphabetic character
(numeric characters are reserved for subroutines supplied by IBM), or in
the form SRyzzz, where y is any of the following 15 characters: B, C, D, F,
G, H, I, L, M, 0, P, R, S, T, or U, and z is any of the following 16
characters: A, B, C, D, F, G, H, I, L, M, 0, P, R, S, T, or U. Subroutine
names in the form SUBRxx cannot be overlaid; subroutine names in the
form SRyzzz can be overlaid.

Columns 71 and 72 can contain an external indicator, Ul through US.

Continuation Line

8-2

Column 53 must contain K to indicate that this continuation line provides
more information about the SPECIAL file coded on the preceding line.
Only one contiI>;uation line can be used for each SPECIAL file.

Column 54 through 59 must contain the name of a table or array used by
the subroutine that you wrote in assembler language to do input and output \
for the file.

Restrictions for SPECIAL Files

You can use the following with SPECIAL files:

• FORCE operation in the calculation specifications

• READ operation in the calculation specifications

• File translation (column 43 of the control specification)

You cannot use the following with SPECIAL files:

• CHAIN operation in the calculation specifications

• Spacing and skipping (columns 17 through 22 of the output
specification)

• *PRINT

Using a Subroutine for Input and Output

Because RPG does not support a SPECIAL device directly, you must
provide a subroutine to transfer data between the SPECIAL device and
main storage. You can use SUBROl or SUBR22, supplied by IBM, or you
can write your own subroutine in assembler language.

Chapter 8. Using a SPECIAL File 8-3

Using IBM's Subroutine, SUBROl

F
filename

8-4

File Type

Subroutine SUBROl reads records from the system source of input. (If you
enter control language statements from the display station keyboard, the
display station is the source of input. If the control language statements
are in a procedure, the procedure is the source of input.) The records can
be 120 or 512 characters long. RPG treats the records read by SUBROl as
data records. To use this subroutine, code SUBROl in columns 54 through
59 of the file description specifications for a SPECIAL device:

Mode of Processing

File Designation Extent Exit
·for DAM

File Addition/Unordered

Number of Trldts

End of File

Length of Kev Field or

of Record Address Field

Record Address Type Name of
Label Exit

for Cylinder Overflow

Sequence Device
Symbolic
Device

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.

Number of Extents

Column 16 must contain P, S, or D to indicate that the file is a primary,
secondary, or demand file.

Column 19 must contain For blank to indicate that all records in the file
have the same length.

Columns 20 through 23 (block length) and 24 through 27 (record length)
must contain 120 or 512. If you do not specify a block length, the block
length is assumed to equal the record length. If you enter the control
language statements to run the program from the keyboard, the records to
be made available to the file must also be entered from the keyboard. If you
call a procedure to run the program, the records to be made available to the
file must follow the RUN statement in the procedure.

The last input record in the procedure should be followed by a control
language END statement. If the program uses only one display station and
if there is no END statement in the procedure, the program treats the next
control language statements (entered from the keyboard) as input to the
SPECIAL file in the program. If the program uses more than one display
station, you must use a procedure for the data records, and an END
statement must follow the last data record.

If a program is to be run from the input job queue, you must use a
procedure to run the program. If the program that uses SUBROl also uses a
CONSOLE file, the control language statements and the data records for
SUBROl must be contained in a procedure. Otherwise, undesirable results /
can occur. _

See the System Reference manual for information on how to create a
procedure.

Using Your Own Subroutine

If you write your own assembler language subroutine to do input and
output for a SPECIAL device, you must link your subroutine to the RPG
program and perform your file input and output by using the DTF (define
the file) created by the RPG compiler. The format of the DTF is as follows:

Bytes (Hex) Description

0 Device code (hex 00)

1-2 Address of data management

3 Mask for external indicators

4 Must be hex 80

5-6 Backward chain pointer

7 Must be hex 80

8-9 Forward chain pointer

A Must be hex 80

B-C Logical record address

D Completion code:
Hex 42 = End of file
Hex 41 = Controlled cancel
Hex 40 = Normal completion

E Operation code:
Hex 80 =Get
Hex 40 =Put
Hex 20 = Update
Hex 10 = Close

F-12 Attributes
Byte 1:

Hex 20 = Update file
Hex 40 = Output file
Hex 80 = Input file
Hex CO = Combined file

Byte 2:
Hex 08 = Dual input/output
Hex 01 = DTF open

Bytes 3 and 4 must be hex 00

13-14 Record length

15-lC Filename

lD-lE Physical input address

lF-20 Physical output address

21-22 Block length

23-24 Address of area in storage used to
define the array (DTT) if array linkage
is used

Chapter 8. Using a SPECIAL File 8-5

8-6

The compiler passes the address of byte 0 of the area in storage used to
define the SPECIAL file (DTF) to the subroutine in index register 2. The
compiler fills in bytes 0 through 9 and F through 24 at compilation time.
The content of these fields depends on the entries coded in the file
description specifications for the SPECIAL device. The input address
(bytes lD and lE) and the output address (bytes lF and 20), when present,
point to the physical buffer that the compiler reserves within the load
module for use by the SPECIAL device. The subroutine inserts the
completion code (byte D) when control returns to RPG. The operation code
(byte E) and the logical record address (bytes B and C) are inserted when
the RPG program is running.

Figure 8-1 shows the equates for the DTF fields created by the RPG
compiler for an assembler subroutine.

0000
0002
0003
0006
0009
oooc
OOOD
OOOE
OOOF
0010
0011
0012
0014
OOlC
OOlE
0020
0022
0024
0025

0040
0042
0041

0020
0040
0080
ooco

0008
0001

0040
0080
0020
0010

243+** 1

244+*
245+* RPG II SPECIAL DTF OFFSETS AND EQUATES
246+*
247+**'

249+* **** SPECIAL DTF LAYOUT ****
250+SPDEV EQU 0 DEVICE CODE (X 1 00')
251+SPDMA EQU SPDEV+2 ADDRESS OF D.M.
252+SPUPS EQU SPDMA+l UPS! INDICATORS
253+SPCHA EQU SPUPS+3 BACKWARD CHAIN POINTER
254+SPCHB EQU SPCHA+3 FORWARD CHAIN POINTER
255+SPLRA EQU SPCHB+3 LOGICAL RECORD ADDRESS
256+SPCMP EQU SPLRA+l COMPLETION CODE
257+SPOPC EQU SPCMP+l OPERATION CODE
258+SPAT1 EQU SPOPC+l ATTRIBUTE BYTE ONE
259+SPAT2 EQU SPATl+l ATTRIBUTE BYTE TWO
260+SPAT3 EQU SPAT2+1 ATTRIBUTE BYTE THREE
261+SPAT4 EQU SPAT3+1 ATTRIBUTE BYTE FOUR
262+SPRCL EQU SPAT4+2 RECORD LENGTH
263+SPNAM EQU SPRCL+8 FILE NAME
264+SPPBI EQU SPNAM+2 PHYSICAL INPUT I/0 ADDRESS
265+SPPBO EQU SPPBI+2 PHYSICAL OUTPUT I/O ADDRESS
266+SPBKL EQU SPPB0+2 BLOCK LENGTH
267+SPDTT EQU SPBKL+2 ADDR OF ARRAY DTT IF SPECIFIED
268+SPLEN EQU SPDTT+ 1 LENGTH OF SPECIAL DTF

270+* **** SPCMP EQUATES ****
27l+SPNORM EQU X1 40 1 NORMAL
272+SPEOF EQU X1 42 1 END OF FILE
273+SPCCNL EQU X1 41 1 CONTROLLED CANCEL

275+* **** SPATl EQUATES ****
276+SPUPDT EQU X'20 1 UPDATE FILE
277+SPOUT EQU X1 40' OUTPUT FILE
278+SPINP EQU X'80' INPUT FILE
279+SPCMB EQU x•co• COMBINED

281+* **** SPAT2 EQUATES ****
282+SPDIO EQU x1 00 1 DUAL 1/0
283+SPOPEN EQU X1 01 1 DTF OPEN

285+* **** SPOPC EQUATES ****
286+SPPUT EQU X'40 1 PUT
287+SPGET EQU X1 80' GET
288+SPUPD EQU X'20' UPDATE
289+SPCLS EQU XI 10 I CLOSE
290 *** END OF EXPANSION **

Figure 8-1. Equates for the DTF Fields Created by RPG for an Input and Output Subroutine
Written in Assembler Language by a User

Chapter 8. Using a SPECIAL File 8-7

If your subroutine uses an array, the RPG compiler creates the following
area in storage to define the array (DTT):

Bytes Description

0-1 Address of rightmost byte of the first element of the
array

2-3 Address of rightmost byte of the last element of the
array

4-5 Work area

6-7 Length of array element

8-13 Array name

Points to Remember When You Write an Assembler-Language Subroutine

8-8

The input and output subroutine must save and restore the registers
changed in the subroutine. Control should be returned to the address in
the address recall register (ARR).

When an input operation is done, the subroutine must move the address of
the physical buffer currently being used to the logical record address
location in the DTF (bytes B and C). This logical record address points to
the record within the physical buffer that is to be processed by the RPG
program.

When an output operation is requested, the subroutine must move the data
from the logical buffer (address in bytes B and C of the DTF) to the physical
buffer (address in bytes IF and 20 of the DTF). If the record length is less
than or equal to 144, the logical record address (bytes B and C) points to
the RPG common output buffer that contains the record to be written by
the SPECIAL device.

The subroutine must open the SPECIAL file the first time the subroutine is
called. It must also close the file.

Reading and Updating a Work Station Utility
Transaction File (SUBR22)

Subroutine SUBR22, provided by IBM, allows an RPG program to read and
update records from a transaction file created by the work station utility
(WSU). To link to this subroutine, use the SPECIAL device and an array
with one 13-character element.

Your program must initialize positions 1 through 11 of the array to the
values described later in this chapter under Contents of the Array before
SUBR22 reads the first data record or begins to read a new logical chain.

The last 13 bytes of the record in the transaction file (the trailer
information) are not returned to the RPG program and cannot be updated.

Your program should check position 13 of the array (the error indicator)
after each data record is read to determine if any errors occurred.

File Description Specifications

F
Filename

File Type

To use SUBR22, the following entries must be made on the file description
specifications:

Mode of Processing

File Designation Length of Key Field or
of Record Address Field ~

Extent Exit
for DAM

File Addition/Unord

Number of Tracie
for Cylinder Ove1

End of File
Record Address Type

Symbolic
Device

~ Name of
Label Exit

Number of Ei

Device Tape
Rewim

Columns 7 through 14 must contain the name of the transaction file.

Column 15 can contain I or U to indicate that the file is an input file or an
update file.

Column 16 can contain P, S, or D to indicate that the file is a primary,
secondary, or demand file.

Column 17 must contain E if the program must process every record in the
file before the program can end. Leave this column blank if the program
can end before it processes every record in the file. The E entry applies
only to primary and secondary files.

Column 19 must contain For blank to indicate that every record in the file
has the same length.

Chapter 8. Using a SPECIAL File 8·9

Continuation Line

Contents of the Array

8-10

Columns 20 through 23 must contain ~he block length, which is determined
as follows: ·

• The block length = 256 if the record length is a number that divides
evenly into 256

• The block length = the record length if the record length is a number
that can be divided evenly by 256

• Otherwise, the block length = the record length plus 255, rounded up to
the next number that can be divided evenly by 256

Columns 24 through 27 must contain the record length. The record length
can be from 14 through 4096. The record length must include 13 bytes for
the work station utility file trailer information. Bytes 11 and 12 of the
trailer contain the display station ID.

Columns 40 through 46 must contain the device name SPECIAL.

Columns 54 through 59 must contain SUBR22.

Columns 71 and 72 can contain an external indicator, Ul through US.

Column 53 must contain K to indicate that this continuation line contains
more information about the file coded on the preceding specification line.

Columns 54 through 59 must contain the name of an array with one
13-character element. This array must also be coded on the extension
specifications.

The array named in columns 54 through 59 of the continuation line is used
to pass parameters from the RPG program to SUBR22 and from SUBR22 to
the RPG program. The best way to address these array elements is to
redefine the array as a data structure. The array can contain the following
entries:

Positions 1 through 7 (Starting Record Number)

Entry: Any valid zoned-decimal relative record number or blank

To read part of a logical chain in the transaction file, code the relative
record number of the first record to be read. SUBR22 reads records
from the file until it reaches the end of the logical chain or until it
finds a restart parameter (R in position 11). SUBR22 uses the starting
record number to process records, and then it changes the starting
record number to blanks.

\

Positions 8 and 9 (Display Station Identifier)

Entry: 2-character display station identifier or blank

To read one logical chain from the transaction file, code the identifier
of the display station whose logical chain is to be read. SUBR22 reads
records from the file until it reaches the end of the logical chain or
until it finds a restart parameter (R in position 11). SUBR22 uses the
display station identifier to process records, and then it changes the
display station identifier to blanks.

When the file is read, this same value is in positions 11 and 12 of the
trailer portion of the transaction file record.

Position 10 (Type)

Entry: A or blank

To read all the logical chains in the transaction file, code A in position
10. SUBR22 reads all logical chains in the file in the sequence in which
they are chained (that is, it first reads all records for the first display
station in the chain, then all records for the second display station in
the chain, and so on). SUBR22 uses the type entry to process records,
and then it changes the type entry to blank.

Position 11 (Restart/Active)

Entry: A, R, or blank

The restart parameter allows the RPG program to read or update more
than one logical chain and to read or update active logical chains or
chains from sessions that ended abnormally. When R is coded in
position 11, the program starts processing records from the file as
specified by the parameter list. However, you should not move R into
position 11 before the program reads the first record. When A is coded
in position 11, the program also starts processing records from the file
as specified by the parameter list. An entry of A allows the program to
process records from active work sessions and work sessions that ended
abnormally. If position 11 is blank, the program reads the next record
in the logical chain.

Position 12 (Last-Record Flag)

Entry: E, L, or blank

SUBR22 returns an E to the RPG program in position 12 of the array
when A is coded in position 11 of the array and one of the following
conditions occurs:

• The program reaches the end of the logical chain when a starting
record number is coded in positions 1 through 7.

• The program reaches the end of the logical chain when a display
station identifier is coded in positions 8 and 9.

Chapter 8. Using a SPECIAL File 8-11

8-12

• The program reaches the last record of the transaction when A is
coded in position 10.

SUBR22 returns a blank record to the program whenever an E is
returned to the array.

SUBR22 returns an L to the RPG program in position 12 of the array
when one of the following conditions occurs:

• The current record is the last record entered for a work session that
ended normally when a starting record number is specified in
positions 1 through 7.

• The current record is the last record entered for a work session that
ended normally when a display station identifier is specified in
positions 8 and 9.

• The current record is the last record entered for a work session that
ended normally, the work session is the last work session in the
transaction file, and A is coded in position 10.

When SUBR22 returns an E or L to the RPG program, you can specify
the restart option (R in position 11). If the program ignores the E or L
parameter, the subroutine returns a normal end-of-file indication to the
RPG program the next time the program asks the subroutine to read.
After the subroutine returns the end-of-file indication to the RPG
program, additional attempts to read the file also cause the subroutine
to return an end-of-file indication.

SUBR22 blanks out the last-record flag if a restart is specified.

Position 13 (Error Flag)

Entry: Blank, W, J, N, P, or D

Blank

No errors were found. The subroutine returned a good data record to
the program.

w

This display station session ended abnormally. The last sequence set
may be incomplete, or some inserted records may have been lost. A
data record is returned to the program with this error flag. SUBR22
does not read any records that were added during the work session that
ended abnormally.

J

This file did not yet close normally and contains display station sessions
that may be incomplete. However, the data being processed by the
program comes from a completed display station session. A data record
is returned to the program with this flag. This flag does not necessarily

mean that an error occurred; it could mean only that another work
station utility session is active and is using the same file.

N

No record was found for one of the following reasons:

• The display station identifier coded in the parameter list is not
allowed.

• The parameter list does not contain a starting record number, type,
or display station identifier parameter for a first-time or restart
option.

• The relative record number coded is not allowed.

A blank record is returned with this error flag. If no record is found,
you must code the restart option the next time the subroutine is called,
and you must reset the no-record-found indicator.

p

The program tried to update a record, but no record was retrieved for
the update.

D

The program tried to process a file from which records can be deleted.
The work station utility does not allow such files. The subroutine
cancelled the processing of this file and closed the file.

Note: When the subroutine is accessed the first time or with a restart
parameter coded, one of the three first-time options (starting record
number, display station identifier, or type) must be coded in the parameter
list. If a valid option is not coded, the subroutine returns to the program
without reading a record. If the program accesses the subroutine twice
consecutively with a valid option coded, the subroutine returns a normal
end-of-file indication to the RPG program. If more than one valid option is
coded, the subroutine processes only the first valid option found. The
subroutine checks for the first valid option in the following order: starting
record number, type, and display station identifier.

Chapter 8. Using a SPECIAL File 8-13

Example of SUBR22

Figure 8-2 shows an example of an RPG program that reads a work station
utility transaction file.

F
i---

Filename

Line

File Type

File Designation

End of File

Sequence

Mode of Processing

length of Key Field or
of Record Address Field

Record Address Type _,
~~-~----1;;;

Type of File
File Format N Organization or ~

w --------' ~ Additional Area c

0 ~ I Block Record ~ e Overflow lndi~ator ·g
(J (C ;;.,;: length Length a: :::: ,e ~ ')(
3 U ~ :J ~~ l~w g ~ w ~~~::.L---L-E-,-.. -.,-,-,Rie_ooi,d_N_a_meL..:.i=..1_..L.!£!"-"'!!LL..j

Device
Symbolic
Device

K

Name of
Label Exit

Extent Exit
for DAM

Storage Index

Continuation Lines

Option Entry

File Addition/Unordered

Number of Tr.:ks
for Cylinder Overflow

Number of Extents

Tape

~
Condition
U1·~

~ UC

<?
IC

3 4 5 6 1 8 9· 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 87 68 6110 71 12 73 74

0 2 F IT It" llll>1 Ii?
1~7 l~IF~lr~

0 4

0 6 lrlltlc IM
o s F

E Record Sequence of the Chaining File

Number of the Chaining Field

Line To Filename

From Filename

Table or

Array Name

Number
of

Entries
p.,
Record

Number
of
Entries
Per Table
or Array

Length
of
Entry

Table or
Array Name
IAlternating
Format)

I ~
J-- Filename ~ :g

External Field Name

Record Identification Codes
Field Location

1i Recor".J Name j ;- ~ ! ~- 1 2 3 ~ From To -~
~ ~ cj ~: Q; _ cu 3i o::l--D-at-•-Sti<0-c_"_"--I~
~1--~---,--.-+-,.-,.! ~:;; Position ~ e N Position ~ c ~ Position ~ e 3 '::i'--------'.~

Data O A e .Q 0 ... N m 0 ~ ~ O N 5 ~ Occurs ~
S~~c;~re ~;i 8- £ ~ U 6 z u u z t3 IJ'j a.. nTimes Length

Line

Length
of
Entry

RPG
Field Name

It'!~

Comments

Field
Indicators

·~ 1--.--.-~ ..
a:

Zera
Plus Minus or

Blank

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 40 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 66 69 70 71 72 73 74

o 2 I le; T"

o • I ~ .. 0111 It"
o s I

0 6 I
0 7 I 11
0 B I
0 9 I rm
, 0 I
1 1 I

Figure 8-2 (Part 1 of 2). Reading a Work Station Utility Transaction File

8-14

ndl R-"lt F 1'eld Rotultlng C ~ 1 cators lndlc1ton

1-- 9 - .[Arl1hm1tlc
- a: .j % Plutl.Min~ Z.ro

1 ! ~ Ai'ct And Factor 1 Qperetion Factor 2 l j Comport

Lino ~ 15 ,,,: Name Length I~ 1>w<w·2
E IS co 'ii - Lookup(FIClor 2111
lAS"i ii .:1~H1ghLowEouo1

3 .. 5 8 7 8 9 10 111213 , .. 15 18 17 18 19 20 21 22 23 :M 25 28 21p 29 30 31 32 33 34 35 38 37 38 39 40 41 42~ 44 45 48 47 48 49 60 51 52 53 54 55 58 57 58 58 60 81 62 83 84 89 18 67 •• 70 71 72 73

Comments

o 1 c ~ ~ lil 1)11y IRll IAIMI<

031C ~ IJ!
0. 10 1 It" ~11
0 • c
0 6 c
0 1 c
0 8 c
0 9 c ILAic;I
1 0 c ~r"' t:.J \ I

1 1 lq
1 2 c l'....1\ [f IK I
1 3 ~
, • le

, a c R ~'1
1 7 c

l \ R I "I'll SIE'] Fl ~LL

~
c

A~
EJ [[I

1 8

1 9 l1 IA Y r... l""ll

c
jg
c

] F
1 f-

1-i I

2 0

LL iUI !IfJA_L l'"I

I~
c A I JI~ RI~ ~ It
c ,,VI:. Mat

.c NII<~ [ij~ iJ" ~~ t:rlA BI Ill: A 16 R Eif!
c Nit<
c

IT IOIF
Al'.

0 1

0 2 "IM lzJ 1tJ 1
0 3 c [J_ 'J
0 • c

0 !!>

II 8PllCO Skip Output lndlcotora

~
Zero B111not1 X • R1movt

1-- Field Nome Comm•
to Print

No Sign CR - Plu1Slgn
or Y• D11:1 S·9•

!
Fiiename i~ JJ, ~ Jd

EXCPT Name Y11 Y11 1 A J Fllld Edit U11r

or YH No 2 B I< Z•Z1ro Dollnld

Lint
~

Record Name ,..~ a: Position No Yot 3 c ; SUppr1n

~ ~ j ! H In a:
No No • D

A Output ::i
i-21 R ~ i i i •AUTO H Record gi Constant or Edit Word
A N e.; ' 1 2 3 4 I 8 7 8 9 10 11 12 13 14 11 18 17 18 19 20 21 22 23 24 •

3 •• 8 7 8 8 10 11 12 13 14 19 11 17 11 19 20 21 22 " ,. 25 28 27 28 29 30 31 32 33 34 3& 31 37 38 39 40 41 42 43 ~G~a~qu~nUMUU~UUU~OaM••~··~ 71 72 73
0 1 0 ~p IA~ PU1I
0 2 lq li<I& ' ,

I[
0 3 0 JC !Cl ' ·~

I

0 • lq I~ ICl l lei
0 5 lo ~ IL 11;:' ·~ Ir p M. ~I
0 8 ~ ILi .1111 ' Fi IAID l"'I Al 1\.1 '
0 7 I<> IE 1lci •N lrirJ: f1"'I ll'\

,
0 8 lo u1 p ' it-JI !I t1 lrir' PI f'!n I

0 9 0 i:-1 '* 1 0 lo 11<1~ •IE'~ I

1 1 lq ~ f:! -~~ F IEj,
1 2 1~1 l'."'1 ~ OJ~ l"'l tr
1 3 le>J ™ TIA l:H
1 • ~ J

Figure 8-2 (Part 2 of 2). Reading a Work Station Utility Transaction File

Chapter 8. Using a SPECIAL File 8-15

8-16

This program uses SUBR22 to read chains of records from a work station
utility transaction file (WSUXAC) and to write them to a permanent disk
file (TRANS). The person using the display station enters the identifier of
the display station whose transactions he wishes to copy. The program
displays error messages when a file or chain containing an error occurs, or
when the display station identifier entered cannot be found. The program
also displays a message after all the records in a chain have been copied.
The program ends when a file containing an error is found, or when
command key 7 is pressed.

SUBR22 requires an array (in this program, an execution-time array is
used) to contain control information to be passed back and forth between
SUBR22 and the program with each data record. This array (CONTRL)
contains the display station identifier, the error indications, and the
last-record flag.

The first READ operation reads the first record, which is blank, from the
display. Then the program branches to the EXCPT operation, which
displays the first prompt, WS ID. The program also turns off indicators 04,
05, 06, 07, and 99.

When the second READ operation occurs, one of the following two
conditions is true:

• The Enter key is pressed (WS ID is blank). Indicator 06 turns on
because the input field is blank. The program then goes to RSTART.
The EXCPT operation occurs, displaying the prompt ENTER WS ID and
the error message WS ID BLANK. The program sets off indicators 04,
05, 06, 07, and 99, and waits for the READ operation to occur.

• Two characters are entered in the WS ID field. The program attempts to
read a record from the transaction file (WSUXAC). The SUBR22 error
flag (ERROR) is checked for the following:

If the WSU transaction file contains an error, indicator 03 turns on.
If the record returned to the program is from a display station
session that ended abnormally, indicator 04 turns on.
If no records exist for the display station identifier that was entered,
indicator 05 turns on.

After these comparisons are done, the last-record flag (LAST) is checked to
determine whether this record is the last record in the logical chain. If it is
the last record, indicator 07 turns on.

If indicators 04 and 05 are not on, the record is written to the permanent
disk file TRANS if indicator 01 is on. This is done by the EXCPT output
named DSKOUT.

\

Depending on which indicators turned on by the previous comparisons, the
EXCPT operation causes one of the following output combinations to occur:

• The prompt ENTER WS ID and the error message WS ID xx BAD
CHAIN are displayed if indicator 04 is on.

• The prompt ENTER WS ID and the error message WS ID xx NOT
FOUND are displayed if indicator 05 is on.

• The prompt ENTER WS ID and the message WS ID xx CHAIN COPIED
are displayed if indicator 07 is on.

If indicator 04, 05 or 07 is on, the program goes through logic to get a new
identifier after writing the output. Otherwise, the program goes to LOOP
and continues reading records from the WSU transaction file until an error
occurs or until the last record in the chain is reached.

The program ends in one of two ways. Either the person at the display
station presses command key 7, which turns on indicator KG, or a bad file
is found, which turns on indicator 03. Either condition causes the program
to branch to END and show the end-of-job display. If indicator 03 is on, the
error message BAD FILE is also displayed.

Chapter 8. Using a SPECIAL File 8-17

8-18

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File

Using a CONSOLE File . 9-2
File Description Specifications . 9-2
Input Specifications . 9-4

File and Record Specifications . 9-5
Field Specifications . 9-6

Creating Display Formats for CONSOLE Files 9-8
Using Displays . 9-11

Display Formats . 9-11
Prompt Format . 9-14

Changing the Display Format . 9-14
Erasing the CONSOLE File Buffer . 9-14
Using a CONSOLE File with KEYBORD and CRT Files 9-15

Using A KEYBORD File . 9-16
File Description Specifications . 9-16
Calculation Specifications for a KEY Operation 9-17
Using a KEY Operation . 9-20
Bypassing a KEY Operation . 9-20
Using a Message Member . 9-21
Calculation Specifications for a SET Operation 9-23
Allowing Command Keys To Be Pressed . 9-27
Using the SET and KEY Operations Together 9-28

Using a CRT File . 9-30
File Description Specifications . 9-30
Output Specifications . 9-31

File- and Record-Identification Entries . 9-31
Field-Description Entries . 9-32

Displaying Data . 9-32

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File

\

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File

The device names WORKSTN, CONSOLE, KEYBORD, and CRT all refer to
the same object: a display station, which consists of a display screen and a
keyboard. However, WORKSTN, CONSOLE, KEYBORD, and CRT files
differ in the ways that they use a display station.

Whenever possible, use a WORKSTN file instead of a CONSOLE,
KEYBORD, or CRT file. WORKSTN files offer much greater advantages.
In fact, the only reason that System/36 allows the use of CONSOLE,
KEYBORD, or CRT files is so that programs that used those files on earlier
IBM computers can run on System/36 without being rewritten.

As Chapter 6 explains, a WORKSTN file is a combined (both input and
output) file. It allows you to specify which fields on the display are input
fields, which are output fields, and which are both input and output fields.
You can also use a WORKSTN file in a program that allows one or more
requesters.

By contrast, CONSOLE, KEYBORD, and CRT files can be used only in
programs that allow only one requester. In addition:

• A CONSOLE file can be used only as an input file, so you cannot
display the records in a CONSOLE file. A CONSOLE file can be used
as an input data file to provide data to a program that is running or as
a record address file to provide key fields for processing within key-field
limits. A program can use only one CONSOLE file. (Along with these
disadvantages, a CONSOLE offers one advantage. It provides an easy
way to create a simple data-entry program, because the program creates
input prompts automatically.)

• A KEYBORD file can be used as both an input and an output file when
you use the KEY and SET operations. These operations allow you to
display prompts and messages and to respond by entering one field at a
time.

• A CRT file can be used only as an output file to display information.
You cannot change this information by entering data at the keyboard.

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-1

Using a CONSOLE File

To use a CONSOLE file in a program, code entries in the file description
specifications and in the input specifications.

File Description Specifications

F
Filename

9-2

File Type

Code entries in the unshaded columns of the file description specifications
shown below:

Mode of Processing Fite Additian/Unordlnd

File Designation Length of Key Field or
of Record Address Field

Extent Exit Number of Trldc.1

End of File
Name of
Label Exit

for DAM for CyUndor Overflow

Sequence Device
Symbolic
Device

Columns 7 through 14 must contain the name of the CONSOLE file.

Column 15 must contain I to indicate that the file is an input file.

Column 16 must contain P (primary), S (secondary), D (demand), or R
(record address) to indicate how the program uses the file.

Numblr of Extenu

Column 17 can contain E if column 16 contains P, S, or R. It must be blank
if column 16 contains D. E in column 17 indicates that the program must
process every record from the file before the program can end. Blank
indicates that the program can end whether or not every record is
processed. If this column is blank for every file, the program must process
every record from every file before the program can end. To indicate that
all the records for a CONSOLE file have been entered, the person at the
display station presses command key 12. For more information about
command keys, see Allowing Command Keys to Be Pressed later in this
chapter.

Column 18 can contain A or D if column 16 contains P or S. It must be
blank if column 16 contains D or R. A indicates that the program checks
that the records in the file are in ascending sequence. D indicates that the
program checks that the records are in descending sequence. Blank
indicates that the record sequence is not checked.

Column 19 must contain F or blank to indicate that every record in the file
has the same length.

Columns 20 through 23 contain the length of a block of records. The block
length must be equal to the record length, entered in columns 24 through
27, or be blank.

\

Columns 24 through 27 contains the record length. The record length must
be the same as the highest number coded in columns 48 through 51 on the
input specifications (the to field location). This record length cannot be
less than 2 or greater than 1518. If the CONSOLE file is used as a record
address file, determine the record length by multiplying the length of the
record address field by 2. This record length cannot be less than 2 or
greater than 58.

Columns 29 and 30 must be blank if column 16 contains P, S, or D. If
column 16 contains R, columns 29 and 30 must contain the length of the key
field of the indexed DISK file.

Column 31 is used only for record address files. Leave the column blank if
the key fields in the record address file are the same as the key fields in the
indexed DISK file. Enter A for an indexed DISK file with zoned-decimal
key fields.

Column 39 must be blank if column 16 contains P, S, or D. If column 16
contains R for record address file, this column must contain E.

Columns 40 through 46 must contain CONSOLE as the device name.

Columns 71 and 72 can contain external indicators, Ul through US.

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-3

Input Specifications

I
Filename

or
Record Name

!
Line

!

9.4

i
~
JI!!
?~

1=·
~
~

Input specifications are not required (and not allowed) for record address
files. Therefore, if column 16 of the file description specifications contains
R, do not code any input specifications for that file. However, if column 16
of the file description specifications contains P, S, or D, entries are required
in the unshaded columns of the input specifications shown below:

External Field Name Field Field Location lndlCltOrt Record ldentifie1tlon Codes
~ ·i

R ~
~

To RPG :!!-! ;!
¥ ~ Field Name ! I?:! J t ;JI a:

Zero

~ c I ~~
.. g p Pius Minu1 or

Position Position iB .§ :; Blink
i§6 ~ (J 6 .. ii:: nTimes ~ s :I a ...

19 20 21 22 23 24 ,. ,. 27 28 29 30 31 32 33 35 36 37 38 39 •• 41 42 4344464ti47484860&1 52635456!1815758 81 .. 83

File and Record Specifications

Columns 7 through 14 must contain the name of the CONSOLE file. The
name must be the same as the file name on the file description
specifications.

Columns 14 through 16 must not contain the characters AND; however,
columns 14 and 15 can contain the characters OR. These OR lines can be
used to indicate a relationship between record-identifying indicators or
record types. If columns 14 and 15 contain OR, the same number of record
identification codes must be described on this specification line as are
described on the preceding line.

Columns 15 and 16 can contain any two alphabetic characters if you do not
want the program to check the sequence of input records. Code a numeric
entry (01 through 99) in these columns to assign a sequence number to each
record type in the file. The maximum number of record types that you can
use for a CONSOLE file is 10.

Column 17 must be blank if columns 15 and 16 contain alphabetic entries.
If columns 15 and 16 contain numeric entries, code 1 in column 17 if the
record type can consist of only one record, or code N if the record type can
consist of one or more records.

Column 18 must be blank if columns 15 and 16 contain alphabetic entries.
If columns 15 and 16 contain numeric entries, code 0 in column 18 if the
record type is optional.

Columns 19 and 20 must contain a record-identifying indicator (01 to 10) to
identify which command key the person at the display station enters to
select this record type. You cannot use the same indicator to identify more
than one record type within the input specifications for one program.

Column 24 must contain 1 to indicate that the record identification code is
in position 1.

Column 26 must contain C to indicate that the entire character is used as
the record identification code.

Column 27 must contain the character that is used as the record
identification code in position 1 of the record. In an output only area of the
display, the program automatically inserts a 1- or 2-character record
identification code into positions 1 and 2 of each new record that is
prompted.

Columns 28 through 34 must be blank if a 1-character record identification
code is used. If a 2-character record identification code is used, code these
columns the same as columns 24 through 27, except that column 31 must
contain 2 to indicate record position 2.

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-5

Field Specifications

9-6

Columns 44 through 47 must contain the record location in which the field
.begins.

Columns 48 through 51 must contain the record location in which the field
ends. The maximum length for an alphameric field is 66 characters. The
maximum length for a numeric field is 15 digits.

Subfields can be coded within the fields of a CONSOLE file record. The
from and to field locations for subfields must not overlap the from and to
field locations for another field. The program does not prompt for subfields,
but it assigns values from the prompted field to subfields. You can use
subfields in calculation and output specifications.

For example, in Figure 9-1, the part number 01ROC43CP843987831 is
entered in response to the prompt field PARTNO. LOCATN, WHSE, BIN,
ASMTP, and NUMBER are subfields within the PARTNO field. The values
for the subfields are taken from the P ARTNO field.

Columns 53 through 58 must contain a descriptive field name (one to six
alphameric characters) to be used as a prompt for this data. To enter data
into a whole array for a CONSOLE file, define the whole array as a subfield

'within a field of the CONSOLE file record, or define each element of the
array with an index and place this entry in columns 53 through 58.

Columns 59 and 60 can contain a control-level indicator (Ll through L9) if
this is a primary or secondary file. A control-level indicator indicates that
a control break occurs when the contents of a field change.

Columns 61 and 62 can contain a match-field value (Ml through M9) if this
is a primary or secondary file. Otherwise, leave these columns blank.

file Type F File Designation

End of File

Mode of Processing

Length of Kev Field or
of Record Addren Field

Extent Exit
for DAM

Fi .. Addition/Unanlittet

Numbs of Trldls
for Cvtindlr Overflo1

Line

I

Line

Filename --Fil• format

Device
Symbolic
Device

~ External Field Name Field Location

Name of
Label Exit

Storage Index

ContinU1tion Lints

8• ·_..,ci;; Record Identification Codes g
or c ~~ ·i

Filename

Field
Indicators

& Record Name j ; ~ f ~ 1 2 3 ~ From To :i RPG ..J i ~ !
~ ~ a_· -~: t ~ - l Field Name 5 ~ u: ~ Zero

·~ ~----~-~-1! c "C Position ~ C i Position ~ 9 ~ Position ~ o ii j S Data Structure ~] .~ ,g' a: Plus Minus or
.... 011ta 0 R E .g i5 ... N :; N ii N :; Ill a; Occurs g g 'fi ·~ ~ Blank

~

T ...
Rewind

File
Conditk
U1-U8,
UC

S~~';~re ~~ g ~ ~ 0 0 ~ 0 0 ~ U 0 Ui ii: nTimes Length 6 c.> 2 0 LA:

3 .. 5 s 1 s 9 10 11 12 13 14 15 1s 11 18 19 20 21 22 23 24 25 2e 21E__ 29 30 31 32 33 3~ 35 38 37 38 39 40 41 42 43 ... 45 4ti 47 48 49 so 51 52 53 54 55 se 57 58 ss 80 e1 82 83 84 65 ee 87 ea 89 10t11 12 73 1

o 1 II)& Alr!I lfZili 1 ~11 Ii: ICJM
0 2

0 3

0 4

05 I [........-. la:; tz ICE1 N
>-+--+-+-<-+--+--<--+-+-+-<-+--+--<t--t--+-+-t---tr_.;_..;_;~r...::~-;...,iLHJHlr-::---:-:".'""':-:--~~1~~~1-+-++!J~~~i:.+-+-l-++-t-:>.J.-~~~~~~-1.
o 6 I Record Subfields P, lq IEII ~ Prompted
~0+1+-1~11-t-+-+-t--i>--+-+-++-1-+-r+-+-+•.,._1d_e_n_ti_fi_ca_t_io_n .. ~-1-11-++-1--1-1H-+-+-+-1H"l1~a'l-+4~~Uf'"i--~~~11~""H~i~~+-+-+-i1-+-~~.,....lli,..F.ie.1d.s _.
o s 1 112 2.12 NIL ~r'R II'

0 9 I 21 ~
1 0

1 1

1 2 I

1 3 I

Prompted Field: PARTNO

01 ROC43CP843987831

Subfields:
LOCATN:
WHSE:

BIN:

ASMTP:
NUMBER:

LQ1j
!ROC!
143 I
!CPI
I 843987831 I

Figure 9-1. Coding Subfields for a CONSOLE File

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-7

Creating Display Formats for CONSOLE Files

9-8

When you use a CONSOLE file in an RPG program, RPG automatically
calls the RPGR procedure to create display formats for the file. The RPGR
procedure uses the input specifications to create source input to the display
format generator (the $SFGR utility) of the system support program (SSP).
The display format generator compiles this source input and creates a load
module containing the display formats for the program. For a complete
description of display formats, see the manual Creating Displays.

To call the RPGR procedure directly, type RPGR on the command line of
the display. Then you can press the Enter key or the Help key (in which
case, the following display appears), or you can type RPGR and the
parameters you want to use with the RPGR procedure and then press the
Enter key (in which case, the following display does not appear):

r "" RPGR PROCEDURE Optional-*

Runs the RPG CONSOLE file display format generator.

Name of source program containing CONSOLE files • TEST

Size of $SOURCE file in blocks .. 1-9999 40

Save display format source llll!mber • • SAVE ,NOSAVE SAVE

Name of library containing source program •. YOURLIB

Name of library to contain format load member • *

Replace duplicate members • • • • REPLACE ,NOREPLAC REPLACE

Output option for format listing • • PRINT,NOPRINT PRINT

Cmd3-Previous menu Clld4-Put on job queue

o 1983 IBM Corp.
..I "

Respond to each prompt by entering the appropriate information.

Name of source program containing CONSOLE files. Enter the name of
your RPG source program.

Size of $SOURCE file in blocks: Enter the number of blocks (each block is
2560 bytes) for the source file and SFGR file. If you do not specify a file
size, 40 blocks is assumed.

Save display format source member. Enter SA VE or NOSA VE.

SA VE means that you want the source statements for the $SFGR utility
to be saved in the library specified as the source input library. The
name given to the saved source statements is the program name plus
FM. (The program name is the name coded in columns 75 through 80 of
the control specification.) For example, if the name of the program is
PRNAME, the name of the display format source member and load
module for that program is PRNAMEFM. The format name cannot be
changed after compilation.

NOSA VE means that you do not want the source statements for the
$SFGR utility to be saved.

If you do not choose an option, SA VE is assumed.

Name of library containing source program: Enter the name of the library
that contains the RPG source program. If you do not specify a library
name, the current library is assumed.

Name of library to contain format load member: Enter the name of the
library that will contain the load module created by the $SFGR utility. If
you do not specify a library name, the current library is assumed.

Replace duplicate members: Enter REPLACE or NOREPLAC.

REPLACE means that you want to replace an existing library member
with the newly compiled library member that has the same name.

NOREPLAC means that, if another library member has the same name,
you want an error message to be displayed.

If you do not choose an option, REPLACE is assumed.

Note: If you type the parameters for the RPGR procedure on the
command line of your display instead of using the prompts, allow for
the GEN parameter at this point. The only possible entry for this
parameter is GEN. If you use the prompts, ignore this parameter. This
parameter is included only for compatibility with the RPGR procedure
on System/34.

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-9

9-10

Output option for format listing: Enter.PRI?:~'T or NOPRINT.

PRINT means that you want a. printed copy of the display formats
created by the $SFGR utility and a listing of the $SFGR source
specifications. ·

NOPRINT means that you do not want a printed copy of the display
formats created by the $SFGR utility or a listing of the $SFGR source
specifications.

If you do not choose an option, PRINT is assumed.

You can press the following keys from the RPGR Procedure display:

• Command key 4 to place the load module on the job queue

• Command key 7 to end the RPGR procedure

If more than one display format is created for the same program, the RPGR
procedure adds FM to the program name to identify the entire set of display
formats, and it adds the record-identifying indicator to the program name to
identify each display format. Thus, if the program PRNAME contains three
record types (identified by indicators 01, 02, and 03), the RPGR procedure
creates the following names:

• PRNAMEFM, the name of the entire set of display formats

• PRNAMEOl, the name of the first display format in the set

• PRNAME02, the name of the second display format in the set

• PRNAME03, the name of the third display format in the set

If OR lines are used on the input specifications to identify the same record,
only one format is associated with the record.

\

Using Displays

Display Formats

Displays prompt the person at the display station to enter data. The person
presses command key 12 to indicate end of file (that is, there is no more
data to enter). For information about command keys, see Allowing
Command Keys to Be Pressed later in this chapter.

The top line on the display contains control information that is used by the
person at the display station to identify the current record and to specify
the next record type to be prompted (see Figure 9-2). The remaining 23
lines are used for the formatted record. The maximum number of input
fields that can be displayed is 80.

For each field defined, the computer reserves 14 characters to contain the
field name and its attributes. Therefore, the maximum record length is 1518
characters. (23 lines on the display format x 80 characters per line = 1840
characters on the display format. 23 lines x 14 characters reserved for each
field (line) = 322 reserved characters. 1840 total characters - 322 reserved
characters = 1518 characters available for the record.) The format actually
created for a record depends on the size and number of fields in the record.
The possible formats are:

• One column. The compiler creates a one-column display format
whenever the number of fields prompted for is less than 24.

• Two columns. The compiler creates a two-column display format
whenever the number of fields is 24 through 46 (see Figure 9-3). If any
field is longer than 26 characters, the display format is changed to allow
these fields.

• Three columns. The compiler creates a three-column display format
whenever the number of fields is 47 through 69 (see Figure 9-3). If any
field is longer than 12 characters, the display format is changed to allow
these fields.

• Four columns. The compiler creates a four-column display format
whenever the number of fields is 70 through 80 (see Figure 9-3). If any
field is longer than 6 characters, the display format is changed to allow
these fields.

If the format is changed so that the four-column format can not be used,
error message RPG-1024, FORMAT FOR CONSOLE FILE DOES NOT FIT
ON SCREEN, is displayed. This message means that you must reduce the
number of fields in the record or change the order of the fields. Remember
that all fields for the record must fit on one display format.

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-11

Record Identification
Code for Record
Being Prompted
(Columns 21 through
27 of the Input
Specifications)

Control
Character
for Prompt,
Which Appears
as a Blank

Record-Identifying
Indicator for Record
Being Prompted
(Columns 19 and 20
of the Input
Specifications)

M l 1,2,3,4
ACCTNO A 5
DISCNT N ~

Record-Identifying
Indicators for Other
Record Types That Can
Be Selected before Data
Is Entered Using the
Current Format

1,2,3,4

Field Name (1 to Type of Field: Field Length

6 characters) from Alphameric (A) or (Columns 44

Columns 53 through Numeric (N) (Column through 51

58 of the Input 52 of the Input of the Input

Specifications Specifications) Specifications)

Figure 9-2. Display Format Created for a CONSQLE File

9-12

Record-Identifying
Indicators for Other
Record Types That Can
Be Selected after Data
Is Entered Using the
Current Format

Control Character
for This Input Field,
Which Appears as a
Blank

Two-Column Format

M 1 1,2,3,4
CUSTNO A 5
NAME A 30
AODRl A 20
ADDR3 A 20
STATE A 20

Three-Column Format

M 1
ACCTNO A 5
SLSMAN A 40
DIST A 3
C!TYST A 20

Four-Column Format

M 1
ACCTNO A 5
SALES Nl0.2

1,2,3,4
DISCNT N 3.3

REGION A 4

1,2,3,4
DIST A 3

1,2,3,4
PHONE A 11

ADDR2 A 20
CITY A 25
ZIP A 5

1,2,3,4
COST NlO. 2

ZIP A 5

1,2,3,4
REGION A 3 DISCNT N 4.4
TOTAL N15.2

Figure 9-3. Display Formats Created for a CONSOLE File

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-13

Prompt Format

The display format generator uses the field names on the input
specifications to create prompts for these display formats. The prompts are
14 positions long and have the following format:

Position

1

2-7

8

9

10-13

14

Explanation

Control character for the prompt. This character appears as a
blank.

Field name.

Blank.

N for a numeric field, or A for an alphameric field.

Length of the field. For an alphameric field, positions 10 and
11 are blank, and positions 12 and 13 contain the length. For a
numeric field, positions 10 and 11 contain the length of the
field, position 12 contains a decimal point, and position 13
contains the number of decimal positions in the field.

Control character for the input field. This character appears
as a blank.

Changing the Display Format

After the RPGR procedure has created the' source input for the display
format generator and the input has been cataloged in the library, you can
change this source input, if you wish, by using the source entry utility
(SEU) and the FORMAT procedure. For information about SEU, see the
Source Entry Utility Guide For information about the FORMAT procedure,
see the System Reference manual.

Erasing the CONSOLE File Buffer

To erase, or blank, the enti:fe buffer for the CONSOLE file, use the SET
operation with ERASE coded in the result field. Entries are required in the
unshaded columns of the calculation specifications shown below:

Result Field Resulting C . Indicators Indicators
~.

]] -1--- ~ ~ And And :x:: Plus JMin~ Zero
& .5 ~ Factor 1 Operation Factor 2 t: Compare Comments

Line ?: 0 a:·.__ ~..._,......-1 Name Length ~ 1>3:(1 <~1 "'2
E ~ ~, ... ! Lookup(Factor 2)is

if85~ ~ ~ XHighLowF.qual
3 4 s 6 1 s g 10 , 1 12 13 14 15 16 11 1s 19 20 21 22 23 24 2s 2& 21 f2s 29 30 31 32 33 34 Js 36 31 JB 39 40 41 42 43 44 45 46 47 48 49 so s1 sa 54 ss 56 s1 sa ss ao 61 s2 63 64 es 66 67 68 69 10 11 12 73 74

9-14

Columns 18 through 27 (factor 1) must be blank.

Columns 28 through 30 must contain the operation code SET.

Columns 33 through 42 (factor 2) must contain the name of the CONSOLE
file.

Columns 43 through 47 (the result field) must contain ERASE.

ERASE causes the RPG program to change the contents of the buffer to
blanks just before the program reads a record at the beginning of the next
program cycle. Because the buffer is not erased until the beginning of the
next program cycle, the program continues to process the current record
after the ERASE operation occurs.

If the ERASE operation occurs because of invalid input data, you should
insert code in your program to avoid further calculations and to return to
the start of the program cycle. Then the person at the display station can
enter a correct form of the record containing invalid input data and can
reenter any records that were entered after that record.

Using a CONSOLE File with KEYBORD and CRT Files

When a program uses a CONSOLE file, a KEYBORD file, and a CRT file,
and the person at the display station is entering data for the CONSOLE
file, the following occurs when a KEY or SET operation for the KEYBORD
file occurs:

1. The person must finish entering data for the current record in the
CONSOLE file.

2. The prompt for the SET or KEY operation, or the output to the CRT
file, is then displayed.

3. Normal processing of the CONSOLE file continues after the SET or
KEY operation is completed. That is, the person at the display station
can enter data for the next records in the CONSOLE file during the
next program cycle.

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-15

Using A KEYBORD File

A KEYBORD file can be used as both an input and an output file. To use a
KEYBORD file, you must code file description specifications. You do not
code input or output specifications, however. Instead, you describe the data
on the calculation specifications for the KEY operation or for the KEY and
SET operations.

File Description Specifications

F
Filename

Uno

9-16

File Type

To create a KEYBORD file, code entries in the unshaded columns of the file
description specifications shown below:

Mode of Procening

Fill Dmgn1tion Length of Kev Field or
of Record Addre11 Field

Extant Exit
for DAM

Filo Addition/Unordortd

Number of TrD1

End of File i Name of
"" Cytindor °"'"""

Numblr of Extenu
Device

Symbolic
Device ~ Label Exit

Columns 7 through 14 must contain the name of the file.

Storage Index

Column 15 must contain I to indicate that the file is an input file.

Column 16 can contain P (primary) or D (demand) to indicate how the
program uses the file. If you use a KEYBORD file as a primary input file,
no other files can be used as primary or secondary files. In this case, you
must provide an exit for your program by turning on the last-record
indicator in the calculation specifications. If you use a KEYBORD file as a
demand file, you use the KEY operation, not the READ operation, to read
records from the file.

Column 19 must contain F or blank to indicate that every record in the file
has the same length.

Columns 20 through 23, the block length, must equal the record length
coded in columns 24 through 27 or be blank.

\

Columns 24 through 27 must contain the length of the largest field to be
entered. This number must equal the largest field length coded in columns
49 through 51 of the calculation specification for the KEY operation. If you
use the KEY operation to display a message, you must also consider the
length of the message when you code the record length for the KEYBORD
file. The maximum length for an alphameric field is 79 characters. The
maximum length for a numeric field is 15. If the record length coded for a
KEYBORD file is 40 or less, a display of six lines with 40 characters per
line is centered both vertically and horizontally. If the record length is
more than 40, the display consists of 24 lines with 79 characters per line.

Columns 40 through 46 must contain KEYBORD.

Calculation Specifications for a KEY Operation

c ~
Indicators

g

5 And And

Line g
8 E ~ E z z

3 4 5

Although a KEYBORD file is an input file, you do not code input
specifications for a KEYBORD file. Instead, you define the input data on
the calculation specifications for a KEY operation. The KEY operation
causes a pause in calculations. During that pause, the person at the display
station can enter data from the keyboard.

To use the KEY operation, code entries in the unshaded columns of the
calculation specifications shown below:

Factor 1 Operation Factor 2

Result Field Resulting
Indicators

Name

. Arithmetic

:~ ~ Plus Minus Zero
:S t: Compare

Length ~ ~ 1>2 1<2 1 = 2
.5 ~ Lookup(Factor 2)is

~ -I. High Low F.qual

Comments

Columns 7 and 8 can contain a control-level indicator (Ll through L9), AN,
OR, or blanks. Leave these columns blank if the KEY operation is not part
of a subroutine or if it occurs only at detail time.

Columns 9 through 17 can contain conditioning indicators, command-key
indicators (KA through KN, KP through KY) coded in a SET or SETOF
operation, or blanks.

Columns 18 through 27 (factor 1) can contain the constant, literal, field
name, or table or array element to be displayed.

Columns 28 through 30 must contain the operation code KEY.

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-17

9-18

Columns 31 and 32 can contain the message identification code (01 through
99) corresponding to the message to be displayed. For information .about
message identification codes, see Using a Message Member later in this
chapter. The message itself is in your message member. For information
on how to create a message member, see $MGBLD Utility Program in the
System Reference manual. This message prompts the person at the display
station to do a KEY operation. An entry is required in columns 31 and 32
when columns 18 through 27 are blank. If you do not code a control
language MEMBER statement that specifies your message member before
you run the program, or if columns 31 and 32 contain a message
identification code that does not correspond to a message in your message
member, the computer displays the prompt nn-MESSAGE INDICATOR,
where nn is the contents of columns 31 and 32. If factor 1 contains an entry
that prompts the KEY operation, the message identification code in
columns 31 and 32 is ignored.

Columns 33 through 42 (factor 2) must be blank.

Columns 43 through 48 (the result field) can contain the name of the field to
be entered.

Columns 49 through 51 must contain the length of the field to be entered if
the field is not defined somewhere else. The maximum length for a numeric
field is 15. The maximum length for an alphameric field is 40 if the record
length is 40 or less, or 79 if the record length is more than 40.

Column 52 must be blank for alphameric fields. For numeric fields, enter
the number of decimal positions (0 through 9) in the field to be entered if
that field is not defined somewhere else.

Columns 54 through 59 can contain resulting indicators (01 through 99) to
test the condition of a numeric field (plus, minus, or zero) or to test an
alphameric field for blanks (columns 58 and 59).

Figure 9-4 shows examples of KEY operations.

c Indicators Result Field Resulting
Indicators !

t----i I I Arithmetic

Plu~inu.!l_ Zero

!
Factor 1 Operation Factor 2 Compare Comments

Line Name Length l>!(l<IT\·2

~ ~ 'O 0
Lookup(Factor 2)is

z z High Low Equal
3 4 5 6 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ~8 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 89 70 71 72 73 74

0 1 c
0 2 c I

0 3 c
1 Keying operations with user message member prompts.

0 4 c
0 5 c The following operations allow the operator to key a numeric field (FIE LOA) and an alphabetic field
0 6 c t-

0 7
(FIELDB). These fields have not been defined previously. The operations are prompted by messages 0001 f-c
and 0002 from the user message member, respectively. f-

0 8 c
0 9 c f-

1 0 c ~r-1 Yurt r~ r,IA ~~
1 1 c Tl ,2] r· ~ !112
1 2 c
1 3 c

The following operation allows the operator to key a numeric field defined previously. This field is tested 1-t-
1 4 c

for a plug, minus, or zero condition. The operation is prompted by user message 0030.
H-

1 5 c
I-+-

1 6 c
1 7 c
1 8 c lt'ill-17 '(}. ~ NI IHZ 121~-=
1 9 c

c Indicators Result Field Resulting

~- Indicators

t----i ~ AL AL
. Arithmetic

.. :~ ~ Plu~Minu:!(Zero

~j
Factor 1 Operation Factor 2 s ~ Compare Comments

Name Length
~ ,

1 >&1 <~ -2 Line ... 0 ~i e E
~ ~ ~ ~~

Lookup(Factor 2)is

.f 8 High Low F.qual
3 4 5 • 7 9 10 ,, 12 13 14 151817 18 19 20 21 22 23 24 25 26 27 ~a 29 3o 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 7•

0 1 c
0 2 c Display keying operations with factor 1 prompts. J 0 3 c
0 4 c I

0 5 c The following operations cause the previously defined field (FIELDC) in factor 1 to be displayed and then 1-1
0 6 c allow the operator to key a numeric field (Fl ELDA). The numeric literal 40 is displayed and the operator
0 '

1-1 c is allowed to key an alphabetic field (FIELDB). Fl ELDA and FIELDB are not defined elsewhere. Note
0 8 c

l;-1

that factor 1 overrides user messages 0004 and 0005. 1-1
0 9 c
1 0 c
1 1 c Flt .. In~ Hlf-, [}!~ m=-11 rl TIA Jc;~
1 2 c Ill~ lt:J IT 1.., IF1IE1 E 112
1 3 c
1 4 Jq

I-
1 5 c The following operation displays the alphameric literal specified in factor 1 (ALTER) on the display

screen. The operator is then allowed to key data into the numeric field specified in the result field defined
I-

1 6 c
elsewhere. Factor 1 overrides user message 0006.

I-
1 7 c

1-,
1 8 c
1 9 c
2 0 c • ifj lflJC I

1.t1Mlri ll\ll /j r.;;J
~

le

Figure 9-4. Possible KEY Operations

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-19

Using a KEY Operation

As the person at the display station types data, it is displayed in one of two
formats:

• If the record length is 40 or less, the display consists of six lines with 40
characters per line. The display is centered vertically and horizontally.

• If the record length is more than 40, the display consists of 24 lines with
79 characters per line. The computer reserves one character per line for
field attributes.

When the person at the display station uses the KEY operation, the
contents of the result field depend on the person's response. The possible
responses are:

• The person types the data and presses an entry key. The person can use
any of the following as an entry key: Field Exit, Field-, Field+, or
Enter. However, if the person enters data into a numeric field, the
Enter key cannot be used as an entry key. If the person does not type
data into all positions of a numeric field, the computer moves the data
into the rightmost positions of the field and puts zeros in the unused
positions to the left. If the person does not type data into all positions
of an alphameric field, the computer leaves the data in the leftmost
positions of the field and puts blanks in the unused positions to the
right.

• The person presses only an entry key. This action causes the computer
to change any numeric data in the result field to zeros or any
alphameric data to blanks.

• The person presses the Dup key and then an entry key. This action does
not change the data in the result field.

Bypassing a KEY Operation

9-20

When the KEY operation causes a pause in the calculations, the person at
the display station can go to the next calculation without entering any data
for the current calculation. To do this, the person simply presses an entry
key. This action causes the data in the result field to be changed to zeros
or blanks. After each KEY operation (regardless of whether data is
entered), the person must press an entry key before the next operation can
occur.

Using a Message Member

You can create messages or prompts to be displayed during your RPG
program. These messages or prompts must be in your message members (see
$MGBLD Utility Program in the System Reference manual). The messages
or prompts are displayed when you use a halt indicator (Hl through H9) or
a message identification code on a KEY or SET operation. You must assign
message identification codes 0001 through 0109 to specific kinds of messages
in the message member:

Message
Identification Code Kind of Message

0001-0099 Message to be displayed as coded in
columns 31 and 32 of a KEY or SET
operation

0100 Message to be displayed at the end of
a program cycle after all halt
indicators are processed

0101-0109 Message to be displayed at the end of
a program cycle in which a halt
indicator (Hl through H9) occurs
(0101 through 0109 correspond to Hl
through H9)

'

For a message contained in a message member to be displayed, the message
text must be in an object message member. The message member must be
coded in the control language MEMBER USERl statement, and the RPG
program must use a KEY or SET operation or a halt indicator. (For
information about the control language MEMBER USERl statement, see
MEMBER Statement in the System Reference manual.)

For each message 0101 through 0109 (corresponding to halt indicators Hl
through H9), you can add a second-level message containing up to 225
characters. The second-level message must have the same message
identification code as the first, and the second-level message member must
be coded in the control language MEMBER USER2 statement. After halt
indicators Hl through H9 turn on, the program does all calculations and
detail output operations for the record before processing ends and a
message is displayed. If the halt indicators turn on during the processing of
the last record in a file, the program does not stop processing but continues
to completion.

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-21

Indicators c
Jd AL 1---

Line !
~ ~ 0 ~ z

3 4 5 • 9 10 11 12 13 14 15 16

0 1 ~
0 2 c
0 3 c

Figure 9-5 shows how to code the calculation specifications required to
display a message.

The messages that are displayed as a result of the calculation specifications
shown in Figure 9-5 depend on whether you coded a control language
MEMBER statement before running the program.

If the control language statements are:

II LOAD USER
II RUN

then the messages are displayed from the system message member.
OI-MESSAGE INDICATOR is the message displayed as the prompt for the
KEY operation. If the person at the display station types HALT, halt
indicator HI turns on and the computer displays message 910I, RPG II
INDICATOR HI IS ON. If the person enters option 0 in response to that
message, the computer displays message 9100, ALL HALT INDICATORS
HAVE BEEN DISPLAYED.

If the control language statements include a MEMBER statement:

II LOAD USER
II MEMBER USERl-MESGl
II RUN

then the displayed messages come from your message member MESGI,
which is coded on the MEMBER statement. The prompt TYPE HALT TO
END THE PROGRAM is the text displayed for the KEYOI operation. This
prompt is the contents of your message OOOI in MESGI. Later, when the
person at the display station types the literal HALT, the message OlOI,
HALT HAS BEEN ENTERED WITH A KEY OPERATION, is displayed. If
the second message, 0100, has not been loaded into your message member, it
cannot be displayed. Instead, the message MESSAGE NOT FOUND IN
SPECIFIED MESSAGE MEMBER is displayed.

Use the Source Entry Utility or the $MAINT utility to load the source
member (MESGI for this example) into a library. The message object
member MESGI must exist before you run the program. For information on
creating the message source member, see the Source Entry Utility (SEU)
Guide. For information on creating a message load member, see the System
Reference manual.

Result Field Resulting
Indicators
Arithmetic

:J: PluU:Min~ Zero
Factor 1 Operation Factor 2

" Compare Comments
Name Length ~ 1>~t<?J:1-2

~ Lookup(Factor 2)is

~ High Low F.qual
17 18 19 20 21 22 23 24 25 26 27 l:za29303132 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 53 54 55 56 57 58 59 so s1 a2 63 64 85 158 &1 68 ee 10 11 12 13 14

~ MlJ] A ILi
i~I '"'M~ ' IA IT" !l

Figure 9-5. Calculation Specifications Required to Display a Message

9-22

Calculation Specifications for a SET Operation

c ... Indicators
...J

~

d
And And

Line .. <l

H i i i
3 • 5 a 7

The SET operation allows any or a combination of the following to occur
for a KEYBORD file:

• Command keys to be pressed

• The field, literal, or array or table element coded in factor 1 to be
displayed

• Messages from your message member to be displayed. The message that
is displayed is determined by the message identification code in columns
31 and 32 of the SET operation.

• The buffer for a CONSOLE file to be erased if ERASE is coded in the
result field of the SET operation.

To use the SET operation, code entries in the unshaded columns of the
calculation specifications shown below:

Result Field
Resultlng
Indicators

Columns 7 and 8 can contain a control-level indicator (Ll through L9).
However, leave these columns blank if the SET operation is not part of a
subroutine or if it is to be done only at detail time.

Columns 9 through 17 can contain a conditioning indicator. However,
leave these columns blank if the SET operation is to be done on every
program cycle.

Columns 18 through 27 (factor 1) can contain the constant, literal, field
name, or table or array element to be displayed.

Columns 28 through 30 must contain the operation code SET.

Columns 31 and 32 can contain the message identification code (01 through
99) corresponding to the message to be displayed. This message must be in
your message member. (For information about how to create a message
member, see $MGBLD Utility Program in the System Reference manual.)
The message prompts the person at the display station to do a SET
operation. An entry is required in columns 31 and 32 when columns 18
through 27 (factor 1) are blank and columns 54 through 59 contain a
command key. However, if you code an entry in factor 1 and a message
identification code in columns 31 and 32, the message identification codes
are ignored. If you do not code a control language MEMBER statement
that specifies your message member before you run the program, or if
columns 31 and 32 contain a message identification code that does not
correspond to a message in your message member, the prompt

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-23

c
I-

Line

3 4 5

Indicators

nn-MESSAGE INDICATOR is displayed, where nn is the contents of
columns 31 and 32. If both factor 1 and a message identification code are
specified, the message identification code is ignored.

Columns 33 through 42 (factor 2) must contain the name of the CONSOLE
file if ERASE is coded in columns 43 through 48 (the result field). For all
other SET operations, leave columns 33 through 42 blank.

Columns 43 through 48 (the result field) must contain ERASE if the name of
a CONSOLE file is coded in columns 33 through 42 (factor 2). For all other
SET operations, leave columns 43 through 48 blank.

Columns 49 through 53 must be blank.

Columns 54 through 59 can contain one, two, or three command keys (KA
through KN, or KP through KY) that the person at the display station can
press when the program is at this specification line. If only one or two
command keys are used, you can code them in any of the three sets of
columns. When the person at the display station presses a command key
coded in these columns, that command key indicator turns on and stays on
until it is used again in a SET operation or until it is turned off by the
SETOF operation. If the person at the display station presses a command
key other than those coded in columns 54 through 59 of a SET operation,
the program stops. Several lines can be displayed before the program stops
for input if you stack SET operations with factor 1 or a message
identification code and no command key entries (see Figure 9-6). The
program does not stop until a command key is pressed or a KEY operation
occurs.

Factor 1 Operation Factor 2

Result Field
Resulting
Indicators
Arithmetic .i J: Plu!...lMlnus Zero

·g "tt Compare
Name Length~~ 1>:&1<2 1=2

Comments

.!i ~ Lookup(Factor 2)is

~ ~ ~ ~ .:£ Hiltl Low F.qual
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 (:zs 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 84 65 66 67 68 69 70 71 72 73 74

01 c LI!N SIE]I
1-o+-2+-1-c::+-1-1-+-+-+-1H-+++-1"'l*l1jl.1IN'l"rc"l*l--+-1-+-+-l'Lc;!'l'IF="'l--'-1 T1-+-~• Stacking SET operations allows several prompt lines to appear as l-+-

l-o+-3-HC=!-l-l-+-+--HH-+++-llal"'IillNl.JlolF-t'3"l--l-++-+-l'~!!!JJIFi..i]Ii-4-HI one prompt before input is required. i-1-

r.±tt~-tt--ti--t-t-t-ttf,"f,~~--t-H-tft~;:t-t1~--....11-+-
0 4 c IIN~~ l~tr I I I
: : ~ llN11-I~ ISEtr [\(J~ 11'1 IK 1

"

1 T T T

: : ~ System halts when command-key indicators are specified. l-+
t:t:t-t::t-H-t-t-t-iH-t-t-t-i-rt-tTi--t-i-t-t-t-H:-t-ti1--""'1-H
:: : ft f
Figure 9-6. Using SET Operations to Display a Prompt with More Than One Line

9-24

Figure 9-7 is a summary of calculation specifications for SET operations

c Indicators Result Field Rnultlng
lndlc1ton

1-- I I !
Arithmetic

:~ !: PlusiMlnu..!l. Zero

!
Factor 1 Operation Factor 2 g ~ Compare Comments

Name Length
._ ,

1>~ <:u_1-2 Line ~~
~ i ~ ~ H

Lookup(Factor 2)is

:t High Low F.qual
3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 27 tis 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 58 57 58 59 60 81 82 63 84 65 68 67 68 69 70 71 72 73 74

0 1 c
0 2 c Display the contents of the first element of the array PROMPT.
0 3 c
0 4 c
0 5 c Jl:'.Jl'(Ul_:MiI Ii ls'r-1
0 6 c I TT T

0 7 c Allow command keys to be pressed. Prompt the operation by displaying the contents
0 8 c of the field SELECT.
0 9 c

'
1 0 c lSln:lOOil H.lI1 lt<IAll'ffil
1 1 c 1111 II Tl I I I I I I I I I I I I I I I I I 1111

1 2 c Display message 0013 from the user message member.
1 3 c J: :I :I :I ~_i _j_ _j__j__L_l -1..l _j_ J__lj_ ..l ..l _j__j_ t:J:
1 4 c
1 5 c ::i: ::i: ::i: ::i: ::i: ::i::_i: ::! ::r__r:_i: _l__I_ _l__I_ _I_ _I_ I

1 6 c Erase or blank the existing CONSOLE buffer of the specified CONSOLE file.
1 7 c I

1 8 c 1s~ IN II
~

11-. i(IA~lr-
1 9 c
2 0 c

c Allow command key 1, 2, or 3 to be pressed. Prompt the operation by MIC 0023. I
c
c ~~ lli<IA llile llil!lr
c

Figure 9-7. Summary of Calculation Specifications for SET Operations

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-25

Figure 9-8 shows possible combinations of uses for the SET operation.

c Indicators Result Field Resulting

~- lndicetors

I I Arithmetic 1-- ~ :i ~ Plu!l_Minu.!l._ Zeto ..
~5

Factor 1 Operation Factor 2 l; Compare Comments

Line
Name Length

~~ 1>~1<rri·2 I- 0
~ E

~ 0 0 H
Lookup(Factor 2)is

of 8 z z High Low F.qual
3 4 5 • 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 128 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4344464164748 49 50 51 52 53 54 55 .. 57 .. 59 80 61 82 63 64 85 66 67 68 t18 70 71 72 73 74

0 1 lei
0 2 c I :II I II I :I ::r::r I :I J. J. .. L.UJ. J. I
0 3 c] Displays contents of FIELDA. Fl ELDA is specified in factor 1 and overrides message 0017.
0 4 c
0 5 c
0 6 c r-1111=" ~ I< I~I]
0 7 c
0 8 c Displays contents of Fl ELDA and allows command keys 3, 6, and 8 to be pressed. Fl ELDA in
0 9 c

factor 1 overrides message. 0026.
1 0 c
1 1 c
1 2 c [Ir- tolq ~E lll2li:
1 3 c

~

Figure 9-8. Possible Combinations of Uses for SET Operations

9-26

Allowing Command Keys To Be Pressed

The SET operation allows you to specify which command keys the person at
the display station can press when the program is at a certain specification
line. When the person presses a command key, the corresponding
command-key indicator can be used to condition calculation or output
operations that follow. Command-key indicators remain on until they are
used again in a SET operation or until they are turned off by the SETOF
operation.

When the program is at a certain specification line, you can allow the
person at the display station to press one to three command keys. For each
command key to be pressed, the person first presses the Cmd key and then
presses the number key at the top of the keyboard that corresponds to the
command-key indicator. After all command-key responses are entered, the
person presses an entry key.

There are 24 command keys. Each one corresponds to a separate
command-key indicator:

Command Command-Key KeybGard Command Command-Key Keyboard
Key Indicator Keys Key Indicator Keys

to Press to Press

1 KA Cmd, 1 13 KM Cmd, Shift, I

2 KB Cmd,2 14 KN Cmd, Shift, @

3 KC Cmd, 3 15 KP Cmd, Shift, #

4 KD Cmd, 4 16 KQ Cmd, Shift, $

5 KE Cmd, 5 17 KR Cmd, Shift, %

6 KF Cmd,6 18 KS Cmd, Shift, -,

7 KG Cmd, 7 19 KT Cmd, Shift, &

8 KH Cmd, 8 20 KU Cmd, Shift, "'

9 KI Cmd, 9 21 KV Cmd, Shift, (

10 KJ Cmd,O 22 KW Cmd, Shift,)

11 KK Cmd,- 23 KX Cmd, Shift, _

12 KL Cmd, = 24 KY Cmd, Shift, +

Note: The keyboard keys may vary, depending on what type of keyboard
you have.

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-27

If the person at the display station presses the wrong command key and
does not press an entry key, the person can reset all the command keys by
pressing the Cmd key and then pressing the character backspace (Clear)
key while holding down the Shift key. The person can then retype the
correct keys. If the person presses a command key that is not specified in
the SET operation, error message RPG-9049, COMMAND KEY PRESSED
IS NOT DEFINED, is displayed.

If no command keys are to be pressed, the person responds to the SET
operation by pressing only an entry key. This action turns off the command
key indicators. Coding your program to allow this response is not
recommended because the person at th~ display station could make this
response accidentally. For example, the person could forget to press the
Cmd key before pressing a number key and an entry key. This action turns
off the command key indicator that the person actually wanted to use.

Using the SET and KEY Operations Together

9-28

Normally, the person at the display station must press an entry key after
doing each KEY operation or after pressing command keys coded in a SET
operation. However, it is possible to combine these operations so that the
person can press command keys (coded in columns 54 through 59 of a SET
operation), type a field (specified in a KEY operation), and press an entry
key only once (see Figure 9-9).

This combination is possible only if:

• The SET operation immediately precedes the KEY operation.

• The SET and KEY operations are conditioned by the same indicators
(columns 7 through 17), coded in the same order.

• The SET and KEY operations use the same message identification codes
in columns 31 and 32. These columns can be blank in both operations if
factor 1 is used to display messages.

• Factor 1 for the SET and KEY operations can be the same, different, or
missing from one operation.

\

c ~f
1--- ~

• • >

Line ~~
§ E
,f 8

3 4 5 6 7

0 , c
0 2 c
0 3 c
0 4 c

Indicators

1 I

If factor 1 is coded for both the SET and KEY operations, the contents of
both factor l's are displayed.

If the data field is numeric, the person must first press the specified
command key, type the field, and then press the Field Exit, Field+, or
Field- key. The Enter key cannot be used as an entry key for a numeric
field.

If the data field is alphameric, the person must perform the same sequence
of steps if the Field Exit, Field+, or Field- is pressed. However, if the
Enter key is used, the person can press the command key and then type the
field, or type the field and then press the command key, before pressing the
Enter key.

KEY operations can occur at several points in a program. Instead of
coding these KEY operations and related SET operations every time they
occur, you can code them once in a subroutine. Then, call the subroutine
each time it is needed.

Factor 1 Operation Factor 2

Result Field Resulting
Indicators

~ z Plu~Minus Zero
·~ ; Compare

Arithmetic

Name Length ~ i 1 >&1 <&1 •2
.~ Lookup(Factor 2)is

Comments

~ ~ ~ ~ j! High Low F.qual
e 10 11 12 13 14 1s 16 11 1s 19 20 21 22 23 24 2s 2s 21 f2a 29 Jo 31 32 33 34 Js Js 31 JB 39 40 41 42 43 44 45 46 47 48 49 so s1 s2 sJ 54 ss 56 s1 sa 59 so a1 a2 63 64 ss 66 e1 &a ee 10 11 n 13

- I
In the following operations the operator can respond to one or all three of the command keys specified in +
columns 54 through 59 and key the price field before pressing an entry function key. The operation is +-

0 5 c_4-4_.._~, prompted by user message 0068. +-
+-a s c

0 7 c IA

0 8 c
0 9 c

Figure 9-9. Using the SET and KEY Operations Together

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9·29

Using a CRT File

The CRT (cathode ray tube), or display screen, is designed to display
messages and instructions to the person at the display station and to
display that person's responses. You should not use it like the printer as a
major output device because data moves on and off the screen too fast.

To use a CRT file, you must code both file description and output
specifications.

File Description Specifications

F
Filename

Line

Fiie Type

Code entries in the unshaded columns of the file description specifications
shown below:

Mode of Proceuing

Fill D11ign1tlon Length of Kev Field or
of Record Address Field

Symbolic i
Device

Ex.tent Exit
for DAM

File Addition/Unordtrtd

Number of Tracks

End of File tor Cylinder Oorftow

Seque""' Device
File Format

Name of
Label Exit

Storage Index

Columns 7 through 14 must contain the name of the CRT file.

Column 15 must contain 0 to indicate that the file is an output file.

Columns 20 through 23, the block length, must equal the record length
coded in columns 24 through 27 or be blank.

Number of Exttnu

Columns 24 through 27 must contain the length of the largest record in the
file. The maximum length is 79.

Columns 40 through 42 must contain CRT.

Columns 71 and 72 can contain an external indicator (Ul through US).

Output Specifications

0

!
Line]

Filename
or

Record Name

A N D

Because a CRT file is an output file, .entries are also required on the output
specifications. Code the unshaded columns on the output specifications

· shown below:

Skip Output Indicators

And And

Field Name
or

EXCPT Name

Commas Zero 'Balances No Sign CR _ X • Remove
toPrmt Plus Sign 5 . 9 ..

Yes Yes 1 A J Y• ~=~Edit User
Yes No 2 B K Z .. Zero Defined

a: Position No Yes 3 C L Suppress

~ 1-...-...,....,f-.--.-f-,.....,-+-----i 8~ ~u· in a: No No D M
...... Output :::J

0 z li
z •AUTO ,g ~ Record tt; Constant or Edit Word

w al ii::: • t 2 3 4 5 6 1 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 •

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 JS 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 81 62 63 64 65 86 87 88 88 70 71 72 73 74

File- and Record-Identification Entries

Columns 7 through 14 must contain the name of the file.

Column 15 must contain H (heading), D (detail), T (total), or E (exception)
to indicate the type of record to be written.

Column 17 can contain a number from 0 to 3 to indicate how many lines to
leave blank before writing the current line.

Column 18 can contain a number from 0 to 3 to indicate how many lines to
leave blank after writing the current line. If the CRT file has a record
length (columns 24 through 27 of the file description specifications) of 40 or
less, columns 17 and 18 of the output specifications cannot both contain 3.
Data moves onto the screen from bottom to top. Therefore, if you code an
entry in column 18 for the bottom line of a full screen, the top line moves
off the screen.

Columns 19 and 20 can contain 01 or blanks. An entry of 01 tells the
computer to clear the display before writing a record. If you code an entry
other than 01 in columns 19 and 20, the computer assumes that the entry is
01 and erases the display.

Columns 23 through 31 can contain output conditioning indicators.

Columns 32 through 37 can contain an EXCPT name if column 15 contains
E.

Chapter 9. Using a CONSOLE, KEYBORD, or CRT File 9-31

Field-Description Entries

Displaying Data

9-32

Columns 23 through 31 can contain indicators.

Columns 32 through 37 can contain the names of the individual fields in the
record.

Column 38 can contain an edit code.

Column 39 can contain B to indicate that the field is reset to blank or zero.

Columns 40 through 43 can contain the end position of each field in the
output record.

Columns 45 through 70 can contain an edit word or literal constant.

Data is displayed at the normal output times (total and detail) or at
calculation time for exception output. (See Column 15 in Chapter 27,
Output Specifications, for information on exception output.) Any
alphameric character can be displayed. If the record length is 40 or less, up
to 40 characters can be written across the width of the screen, and a
maximum of six such lines can appear at one time. The display is centered
both vertically and horizontally. If the record length is more than 40, up to
79 characters can be written across the width of the screen, and a maximum
of 24 lines can appear at one time.

Chapter 10. Using a BSCA File

Defining a BSCA File . 10-1
File Description Specifications . 10-2
Telecommunications Specifications . 10-4

Programming Considerations . 10-6
First RPG Program Cycle . 10-6
Autocall and X.21 Support . 10-6
Removing Strings of Embedded Blanks . 10-7
Removing Trailing Blanks . 10-8
Control Breaks . 10-8
Data Formats . 10-8
Errors . 10-9
RPG Diagnostics . 10-9
Configuring Your System for BSC . 10-9

Descriptions of BSC Functions 10-10
Receive-Only Function . 10-10
Send-Only Function . 10-10
Send-and-Receive Function 10-10

Send a File, Then Receive a File 10-11
Receive a File, Then Send a File 10-11
Send Records Interspersed with Receive Records 10-11

Systems That Use BSC 10-12
Device-Dependent Considerations 10-13

IBM 3740 Data Entry System 10-13
Restrictions . 10-13
Single-File Support 10-13
Multiple-File Support . 10-14
Blocked Records•... 10-14
RPG Specifications 10-15
File Description Specifications . 10-15

Columns 20-23 (Block Length) . 10-15
Columns 24-27 (Record Length) 10-15

Telecommunications Specifications 10-16
Column 15 (Multipoint network) . 10-16
Column 17 (Tributary system on a multipoint network) 10-16
Column 52 (ITB) . 10-16

Chapter 10. Using a BSCA File

Columns 61 through 74 10-16
Output Specifications . 10-16

Columns 17-22 10-16
IBM 3750 (World Trade Only) 10-16

Sample Programs .. 10-17
Send Only .. 10-17
System/36 to 3740 10-21
Send Interspersed with Receive . 10-24

Chapter 10. Using a BSCA File

A BSCA file is one way to send and receive data between your System/36
and another system. The letters BSCA stand for binary synchronous
communications adapter. The adapter is part of the hardware. Batch BSC
is part of the System Support Program (SSP). It allows you to communicate
binary data (data represented as O's and l's) that is synchronized (the
sending and receiving of data is controlled by timing signals).

Compared with another way to send and receive data, called the Interactive
Communications Feature (SSP-ICF), batch BSC has several limitations:

• It is less efficient for interactive communications, so it is normally used
for batch communications

• It can be used only between systems that use BSC (see Systems That
Use BSC in this chapter).

• BSC does not allow a program sending data or receiving data to start
programs on the other system.

To avoid these limitations, you may want to use SSP-ICF. For information
about SSP-ICF, see the manuals Interactive Communications Feature: Guide
and Examples and Interactive Communications Feature: Reference.

Defining a BSCA File

Defining a BSCA file requires entries on the file description specifications
and on the telecommunications specifications.

In addition, the control specification must contain a blank or I in column
37 to indicate that the program does not recognize an inquiry request. A
BSC program must not be interrupted, because an interruption might cause
the remote system to stop communicating.

Chapter 10. Using a BSCA File 10-1

File Description Specifications

F
Filename

Line

10-2

File Type

Code entries in the unshaded columns of the file description specifications
shown below:

Mode of Processing

File Designation Length of Key Field or
of Record Address Field -~~

Extent Exit
for DAM

Fite Addition/Unordered

Number of Tracks

End of File

Sequence Device
Symbolic
Device

for Cylinder Overflow

Number of Extentl "1 Name of
• Label Exit

~ Storage Index

Columns 7 through 14 must contain the name of the BSCA file. The same
name must be used in columns 7 through 14 of the telecommunications
specification.

Column 15 must contain I or 0 to indicate that this file is an input (receive)
file or an output (send) file.

Column 16 must contain P (primary), S (secondary), T (table), or D (demand)
if column 15 contains I. If column 15 contains 0, column 16 must be blank.
D (demand) is the required entry when you use the file for interspersed
sending and receiving of data. D should also be used for any receiving
program that does not process the BSCA files immediately. For example, if
the BSCA file is defined as a secondary file, the communications line opens
as soon as the program begins; as a result, your wait time might be used up
before you are ready to process the BSCA file. However, if the BSCA file is
defined as a demand file, the line opens when the program is ready to
receive the first record from the BSCA file.

Column 17 can contain E or blank if column 16 contains P, S, or T.
Column 17 must be blank if column 16 contains D or blank. Enter E if end
of file on the input (receive) file is to determine the end of the program.
The BSCA file might be the only file with an E in column 17. However, if
any other input file has an E in column 17, all BSCA input files should also
have an E in column 17. This E is not necessary for the BSCA files;
however, when it is not specified and the program reaches the end of
another input file, the BSCA files close and the system on the other end of
the communications line has no indication of what happened. When an E
is specified for the BSCA files, all systems can end the program
successfully.

Column 18 can contain A, D, or blank if column 16 contains P, S, or T.
Column 18 must be blank if column 16 contains Dor blank. A indicates
that the program checks that the records in the file are in ascending
sequence. D indicates that the program checks that the records in the file
are in descending sequence. Blank indicates that the program does not
check the record sequence.

Column 19 must contain F or blank to indicate that all records in the file
have the same length.

Columns 20 through 23 must contain the block length of data processed by
BSC. The block length must be a multiple of the record length. The
maximum block length is 4075 positions.

Columns 24 through 27 must contain the record length. If you leave these
columns blank, the program uses the maximum record length, which is 4075
positions. If you receive a record that has a length of zero, the record is
ignored unless the other system is in 3740 mode, in which case the record is
considered a file separator. If you receive a record that has a length
greater than zero but shorter than the record size specified, the remainder
of the record contains blanks.

Column 32 can contain any number 1 through 9 or a blank. A number
indicates that the program uses two input/output areas. A blank indicates
that the program uses only one input/output area.

Columns 40 through 43 must contain the device name BSCA.

Columns 71 and 72 can contain an external indicator, Ul through U8.

Chapter 10. Using a BSCA File 10-3

Telecommunications Specifications

T
r--- 0 0

0 0

l! Une
~

Filename

8 ~ ,_
E ",_
.f ~ ~

0. ,_

3 4 5 6 7891011121314 15 16

·I·I T Hf11±1 ·1'1 T I

10-4

~ ~ ~
8u ~ oo

~~ ~ ~ ,_ ,_ ,_ ~
"w
j:: 3

z w
): ~

17 18 19 20

Code entries in the unshaded columns of the telecommunications
specifications shown below:

Switched Identification

This Station Remote Station ..
Remote] Wait ~ Remote -~

H . Dial Number Terminal

~ I .li Time

H
ii: ~ Device

~I 1 w :;; .'.'.. &] ii 6 ;;, ~ 0. u

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

l 1 l 11111

Reserved

71 72 73 '14

JIT llllllllll JllLIJ
-·~- _UJUJJLLJ JJ_WJJ JL

l l J 1 lJ Jj J 1 11
. ULLL1L . JLL_.__,_L Jl 1 J_JJ__ 1-Ull lll

Columns 7 through 14 must contain the name of the BSCA file. This must
be the same name coded on the file description specifications for the BSCA
file.

Column 15 must contain P, M, S, or blank. P or blank indicates that this is
a point-to-point nonswitched network. M indicates that this is a multipoint
network in which the control station selects the tributary station through
polling or addressing. System/36 cannot be the control station. (If this
column contains M, column 17 must contain T.) S indicates that this is a
point-to-point switched network.

Column 16 must contain T or R. T indicates that this station transmits
data from this BSCA file, which must be defined on the output
specifications. R indicates that this station receives data in the BSCA file,
which must be defined on the input specifications. The entry in column 16
is independent of the entry in column 20.

Column 17 must contain T or blank. T indicates that this is a tributary
station on a multipoint network. (Column 17 must contain T if column 15
contains M.) A blank indicates that polling is not used. System/36 cannot
be the control station.

Column 18 must contain A, U, E, or blank. A or U indicates that ASCII
transmission control characters are used and that each station must
provide file translation when it is required. E or blank indicates that
EBCDIC transmission control characters are used.

Column 19 must contain Y, N, or blank. Y indicates that EBCDIC
transparency is used. That is, the data being transferred can be
packed-decimal numeric or alphameric and can contain transmission
control characters. If column 19 contains Y, column 18 must contain E or
blank. N or blank in column 19 indicates that EBCDIC transparency is not
used. That is, the data being transferred is zoned-decimal numeric or
alphameric and does not contain transmission characters.

Column 20 must contain M, A, B, or blank. M indicates that the person
using this program makes the connection by dialing the number manually.
A indicates that the program uses autoanswer. B indicates that the

program uses manual answer. Blank indicates that this is not a switched
network. The entry in column 20 is independent of the entry in column 16.

Column 32 must contain E, S, or blank. E indicates that this station's
identification is the entry in columns 33 through 39. S indicates that this
station's identification is at the position specified by the symbolic name in
columns 33 through 39. Blank indicates that this station uses no
identification.

Columns 33 through 39 must contain this station's actual identification (if
column 32 contains E) or the symbolic name of the location of this station's
identification (if column 32 contains S),

Column 40 must contain E, S, or blank. E indicates that the remote
station's identification is the entry in columns 41 through 47. S indicates
that the remote station's identification is at the position specified by the
symbolic name in columns 41 through 47. Blank indicates that the remote
station uses no identification.

Columns 41 through 47 must contain the remote station's actual
identification (if column 40 contains E) or the symbolic name of the
location of the remote station's identification (if column 40 contains S).

Column 52 must contain I or blank. I indicates that intermediate block
checking is used. Blank indicates that intermediate block checking is not
used.

Columns 53 and 54 can contain a permanent-error indicator (01 through 99,
Ll through L9, LR, or Hl through H9) or blanks.

Columns 55 through 57 can contain the number of seconds (1 through 999)
that BSC waits with no messages sent or received before a permanent error
occurs. If you leave these columns blank, BSC waits 180 seconds before a
permanent error occurs.

Columns 58 and 59 can contain a record-available indicator (01 through 99,
Ll through L9, LR, or Hl through H9) or blanks. The record-available
indicator turns on whenever a reverse interrupt is received.

Column 60 must contain L or blank. L indicates that this BSCA file is
processed only after all other input files are processed. Blank indicates
that this BSCA file may not be the last input file processed. The entry in
column 60 does not affect demand files.

Columns 61 and 62 must contain the polling identification of this station if
this station is part of a multipoint network and if the BSCA file is an
output file. Otherwise, leave these columns blank.

Columns 63 and 64 must contain the addressing identification of this station
if this station is part of a multipoint network and if the BSCA file is an
input file. Otherwise, leave these columns blank.

Chapter 10. Using a BSCA File 10-5

Programming Considerations

First RPG Program Cycle

During the first RPG program cycle, all primary and secondary input files
are opened. That is, the program reads one record from each primary and
secondary input file before it processes any input file. However, depending
on your particular program, you might want to delay the first-time logic for
your BSCA input files. You can delay the first-time logic by designating
each BSC input file as a demand file (D in column 16 of the file description
specifications). One or more BSC input files can also be designated as the
last file (L in column 60 of the telecommunications specifications). If 3740
multiple-file support is being used, all secondary input files should have the
Lin column 60. Remember that an entire BSC input file must be received
before another BSC input file can be received or a BSC output file can be
transmitted.

Autocall and X.21 Support

10-6

When the System/36 is configured with the multiline communications
adapter and the autocall or X.21 feature, remote locations can be called
automatically without operator intervention. Because autocall and X.21
are not specified in an RPG program, existing programs can already use
autocall or X.21. You specify autocall or X.21 by using the PHONE option
on the control language COMM statement. The COMM statement is
described in the System Reference manual.

The phone list specified in the COMM statement can contain up to 120
phone numbers. The list is created by the DEFINEPN procedure for
autocall or by the DEFINX21 procedure for X.21. These procedures are
described in the System Reference manual.

When the first request is made to BSC during any BSC job step, the phone
list is searched for a number to call. The search begins with the first
number in the list. Each successive search begins with the next available
number. If that number cannot be reached, a counter is decreased by 1 and
the next number is called. If no number in the list can be reached, a return
code indicating that no line connection was established is passed to the
RPG program. A message is displayed at the system console, indicating
each number that could not be reached. When a number is reached, a
message is displayed at the system console, indicating the number reached,
and communications proceed in the same way as for a manual call line.
When the job step ends, you can use the control language IF statement to
run the job step again and call the next number. You can also use the same
phone list in a later step of the job. The IF statement is described in the
System Reference manual.

If a batch BSC job is run on an autocall line and no phone list is specified
in the COMM statement (or if there is no COM.M statement), the call mode
defaults to the configuration record specification. The mode can be manual
answer, manual call, or autoanswer. If the phone list is specified in the

COMM statement but the line is not an autocall line, or if autocall was not
requested when the system was defined at initial program load time, then
the line is considered to be a manual answer, manual call, or autoanswer
line, depending on the switch type defined for the line.

If a batch BSC job is run on an X.21 line and no phone list is specified, a
switch type of autoanswer is assumed. If the X.21 task is not active on an
X.21 switched line, an error message is displayed. If the phone list is
specified but not an X.21 line, then the line is considered to be a manual
answer, manual call, or autoanswer line, depending on the switch type
defined for the line.

The ability to call multiple locations within a single BSC job step is
primarily useful when the System/36 is receiving data from those locations.
Because any number may be called during a request, you should use a
single-number phone list to send data to a particular location.

If a permanent error occurs while you are receiving data, the phone number
associated with the communications link is not reset. Because the number
is not reset, it cannot be called again on later passes through the list. The
recovery associated with that particular job step is your responsibility.
You can use the RESTORE parameter on the control language COMM
statement to determine whether the list is restored before you use it again.
For information about the COMM statement, see the System Reference
manual.

Removing Strings of Embedded Blanks

To use the communications line more efficiently and more cheaply,
System/36 BSC allows RPG users to send and receive data with all strings
of two or more embedded blanks removed. Removing strings of embedded
blanks is called compressing the data. This is done by using the same
format used by the IBM 3780 Data Communications Terminal.

For output files, data is moved from the logical buffer to the BSC
input/output buffer with blanks removed and compression control
characters inserted. After each record, an intermediate record separator
character is inserted. The receiving station automatically inserts the same
number of blanks where they were removed.

For input files, the procedure is reversed. The System/36 recognizes the
intermediate record separator character, inserts the blanks removed by the
remote station, and moves the record from the BSC input/output buffer to
the logical buffer.

To remove strings of embedded blanks, specify COMPRESS on the
ALTERCOM procedure before you run the BSC program.

Blanks cannot be inserted or removed if you use EBCDIC transparency (Y
in column 19 of the telecommunications specifications) or intermediate
block checking (I in column 52).

Chapter 10. Using a BSCA File 10·7

Removing Trailing Blanks

Control Breaks

Data Formats

10-8

System/36 BSC also allows you to send and receive data with trailing
blanks removed. Removing trailing blanks is called truncating the data.

For output files, data is moved from the logical buffer to the BSC
input/output buffer with all trailing blanks removed. After each record, an
intermediate record separator character is inserted. The receiving station
automatically inserts the same number of trailing blanks where they were
removed.

For input files, the data in the BSC input/output buffer is scanned until an
intermediate record separator character is found. All data up to that
separator character is moved to the logical buffer. The remainder of the
logical buffer is blanked.

To remove trailing blanks, specify TRUNCATE on the ALTERCOM
procedure before you run the BSC program.

Trailing blanks cannot be removed when you use intermediate block
checking. You can specify that trailing blanks should be removed when
you use EBCDIC transparency; however, no blanks are removed, because in
transparency mode the record length must be equal to the block length.

When you add or remove blanks with blocked records, the number of
records per block varies depending on the number of blanks in each record.

Take care when sending data during total time in any RPG program that
both sends and receives. Because of the sequence of total and detail
operations in the RPG program cycle, data might not be available for
output even though it is read.

System/36 RPG support uses the following data formats for sending data;
these formats must be used when sending data to System/36 from a
processing unit:

• Nontransparent, non-ITB: STX-data-ETX(ETB)

• Nontransparent, ITB: STX-data-ITB-data-ITB-data-ETX(ETB)

• Transparent, non-ITB: DLE-STX-data-DLE-ETX(ETB)

• Transparent, ITB (receive files only):
DLE-STX-data-DLE-ITB-DLE-STX-data-DLE-ITB-DLE-STX-data-DLE
-ETX(ETB)

Data can be fixed-length and either blocked or unblocked.

Errors

RPG Diagnostics

If an error occurs at either station, System/36 tries the operation again up
to seven times or up to the number of times (1 through 255) specified as the
retry count on the ALTERCOM procedure. (See the System Reference
manual for information on the ALTERCOM procedure.)

See the RPG II Messages manual for a discussion of RPG diagnostics.

Configuring Your System for BSC

Configuring means defining to the system the devices, optional features,
and licensed programs installed on the system. When your System/36 is
shipped to you, it is configured for BSC.

To display the status of your communications support, use the STATUS
COMM command. For information about the STATUS COMM command,
see the manual Operating Your Computer.

To change the configuration, use the ALTERCOM or the SETCOMM
procedure. For information about the ALTERCOM and SETCOMM
procedures, see the System Reference manual.

Chapter 10. Using a BSCA File 10-9

Descriptions of BSC Functions

This section describes the functions that System/36 can perform as part of a
data communications network. The sample RPG programs later in this
chapter illustrate these functions.

Receive-Only Function

The receive-only function allows you to receive input data from another
station. The file can be a primary, secondary, table, or demand file. The
records can be blocked. Two input/output areas can be used for primary or
secondary files but not for demand files.

Code a receive-only file as an input file on the file description specifications
(I in column 15) and as a receive file on the telecommunications
specifications (R in column 16).

Send-Only Function

The send-only function allows you to send BSC data to a remote location.
Two input/output areas can be used to increase processing speed.

Code a send-only file as an output file on the file description specifications
(0 in column 15) and as a transmit file on the telecommunications
specifications (T in column 16).

Send-and-Receive Function

10-10

To both send and receive data, use two files. Code one as an output file on
the file description specifications and as a transmit file on the
telecommunications specifications. Code the other as an input file on the
file description specifications and as a receive file on the
telecommunications specifications.

In any BSC program that sends and receives, column 15 and columns 17
through 47 of the telecommunications specifications must be identical for
the two files.

BSC programs that send and receive can be written in any of these three
ways:

• Send a file, then receive a file.

• Receive a file, then send a file.

• Send records interspersed with receive records.

Send a File, Then Receive a File

The receive file must not be defined as the primary input file on the file
description specifications. If the receive file is a secondary file, column 60
of the telecommunications specifications must contain an L. The
matching-fields and record-available indicators must not be specified for the
BSC file.

Receive a File, Then Send a File

The receive file can be defined as a primary, secondary, table, or demand
file on the file description specifications. Columns 58 and 59
(record-available indicator) on the telecommunications specifications must
be blank.

Send Records Interspersed with Receive Records

A program can send records interspersed with records it receives. Such a
program sends records from one file and receives records in another; the
two files might not be related. Unlike conversational programs, this kind of
program might intersperse several records or several blocks of data at a
time.

The receive file must be defined as a demand file on the file description
specifications. The record-available indicator must be specified on the
telecommunications specifications. System/36 must begin by sending data,
then suspend the transmit file to receive data from the other station (see
Figure 10-3 for an example of this type of program).

Once BSC begins to process the last record in the transmit file, System/36
ignores the record-available indicator, whether or not the last record was
actually sent. When BSC accepts the last record in the file for
transmission, RPG completes last-record processing and begins to close the
file.

Therefore, if the next-to-last record or block of records intended for
transmission prompts the other station to request to send data back to
System/36, the request might be ignored. The request is always ignored if it
is prompted by the final record or block of records.

You can avoid this problem by adding to the end of the System/36 transmit
file a special record that signals that System/36 went to end of job and
cannot honor a request to receive, even though that request was just sent.
Of course, the programmer of the other system must agree on the meaning
of that special record.

Chapter 10. Using a BSCA File 10-11

Systems That Use BSC

10-12

You can use BSC for data communication between your System/36 and any
of the following IBM systems and devices:

• Another System/36 with RPG, assembler, or SSP-ICF BSCEL

• System/38 with BSCA using RPG III or COBOL

• System/34 with RPG, assembler, or SSP-ICF BSCEL

• System/32 with RPG or assembler

• System/3 with RPG, CCP, or MLMP

• System/7 with MSP/7

• Operating System or Disk Operating System Basic Telecommunications
Access Method (OS, OS/VS, DOS/VS, or DOS BTAM)

• System/360 Model 20 Input/Output Control System for the Binary
Synchronous Communications Adapter

• Customer Information Control System (CICS/DOS/VS or CICS/VS)

• Information Management System (IMS/VS)

• 3741 Model 2 Data Station or Model 4 Programmable Work Station

• 3747 Data Converter

• 5231 Data Collection Controller Model 2 (as a 3741 in transmit mode
only)

• 3750 Switching System (World Trade only)

• 5110 or 5120 (in 3741 mode)

• Series 1 (in System/3 mode)

• 5260 Point of Sale Terminal (in 3740 mode)

• 5280 Distributed Data System (in 3740 mode)

Device-Dependent Considerations

IBM 3740 Data Entry System

Restrictions

Single-File Support

RPG data communications programming supports the IBM 3741 Model 2
Data Station, the IBM 3741 Model 4 Programmable Work Station, or the
IBM 3747 Data Converter in communicate mode as a remote device by using
the System/36 communications adapter.

The following restrictions apply when a System/36 communicates with a
3740 Data Entry System:

• A 3741 with an Expanded Communications Buffer feature (feature
number 1680) has a maximum buffer size of 512 positions.

• A 3747 with the Blocking/Reformatting feature (feature number 1480)
has a maximum buffer size of 8050 positions. However, System/36 RPG
handles only a maximum of 4075 positions.

• The Operator Identification Card Reader Feature (feature number 5450)
and the Expanded Communications/Multipoint Data Link Control
Feature (feature number 1685) on the 3741 are not supported by RPG on
System/36.

• Through RPG, you can communicate with the 3741 or the 3747 either by
using single-file support (one input file, one output file, or one of each)
or by using multiple-file support (more than one input file, more than
one output file, or more than one of each).

• Through RPG, you can also send blocked records to, and receive
blocked records from, a 3741 with the Expanded Communications Buffer
feature or a 3747 with the Blocking/Reformatting feature.

• If you send blocked records to a 3741, you must specify a record
separator of hexadecimal lE.

• RPG receives 3741 STATUS messages as data, and these must be
handled by the user. Refer to the IBM 3741 Data Station Reference
Manual (GA21-9183) for details of the possible status messages and the
format of the data that will be received.

If you have single-file support when you communicate with the 3741, a
maximum of two BSC files are allowed (one input and one output) per RPG
program. If you use two BSC files, you must process the input file
completely before you process the output file.

When you communicate with the 3747 Data Converter, only one BSC file is
allowed (either input or output).

Chapter 10. Using a BSCA File 10-13

Multiple-File Support

Blocked Records

10-14

Through RPG, you can use the multiple-file support of System/36 to
communicate with the 3740 Data Entry System. To specify multiple-file
support, specify MULTFILE on the ALTERCOM procedure before you run
the RPG program (see the System Reference manual for information about
the ALTERCOM procedure).

When you communicate with the 3741 or with 3741 emulators, multiple files
can be received, sent, or received and then sent. All input files from the
3740 must be received before System/36 can begin sending files to the 3740.
When you communicate with the 3747, multiple files can be either received
or sent. When you communicate with the 5110 or 5120, multiple files can be
received, sent, received and then sent, or sent and then received.

Blocked records can be received from, or sent to, a 3741 with the Expanded
Communications Buffer feature for either single or multiple files. If you
specify COMPRESS or TRUNCATE on the ALTERCOM procedure but do
not specify a record separator on that procedure, the record separator of
hex IE is used.

You can send blocked records to a 3747 with the Blocking/Reformatting
feature by using either of the following:

• The ALTERCOM procedure, as explained in the preceding paragraph
for the 3741

• Columns 20 through 23 of the file description specifications, which can
contain a multiple of the record length

RPG input files can be primary, secondary, or demand files. However, the
3740 files must be processed one file at a time to the end of the file and in
the order that the 3740 sends them.

Secondary files are processed in the order listed on the file description
specifications in the source program.

Demand files are processed in the order determined by the logic of your
calculation specifications.

Output files must be processed one file at a time. That is, all records for
one file must be sent before the first record for the next file is sent. Wh~
you communicate with a 3741, if multiple files are received and then
multiple files are sent in the same program, all input files must be processed
before any output files are processed.

RPG Specifications

Use of the 3740 affects RPG file descriptions, telecommunications, and
output specifications. Only the entries unique to 3740 are described here.

File Description Specifications

Columns 20-23 (Block Length): Maximum block length is 128 positions
without the Expanded Communications Buffer feature on the 3741 or with
the Blocking/Reformatting feature on the 3747.

If blocked records are to be sent to a 3741 with the Expanded
Communications Buffer feature, the block length can be any multiple of the
record length not exceeding 512 positions.

If blocked records are received from a 3741 with the Expanded
Communications Buffer feature, the block length must be N times the
record length, where N is the result (disregarding the remainder) of
dividing 512 by the record length plus one. For example, if the record
length is 128:

• Record length plus one = 129

• 512 divided by 129 = 3 with a remainder of 125

• N = 3

• Block length = 3 times 128 = 384

When you communicate with a 3747 with the Blocking/Reformatting
feature, the block length depends on the use of the data at the 3747 and on
the amount of storage available (feature number 7690, 7691, or 7692).
Blocking on the 3747 can be identical to that on the 3741 with the
Expanded Communications Buffer feature through the use of C3 control
records. Blocking can also be handled in a manner that is similar to RPG
blocking through use of the C3 control records. For an explanation of the
C3 control records format, see the IBM 3747 Data Converter Reference
Manual and Operator's Guide.

Columns 24-27 (Record Length): Maximum record length is 128 positions
when communicating with a 3741. The 3747 maximum record length
depends on the use of the data at the 3747 and on whether the
Blocking/Reformatting feature is installed.

Chapter 10. Using a BSCA File 10-15

Telecommunications Specifications

Output Specifications

The 3740 files require some restrict10ns to the telecommunications
specificationK Only the columns affected are listed here:

Column 15 (Multipoint network): M must not be specified.

Column 17 (Tributary system on a multipoint network) T must not be
specified.

Column 52 (ITB): I must not be specified.

Columns 61 through 74: Must be blank.

Columns 17-22: Must be blank.

IBM 3750 (World Trade Only)

10-16

When a System/36 is connected to an IBM 3750 Switching System, the RPG
data communications program must allow message exchanges between the
two systems. The RPG program can be written for message exchanges
related to the following 3750 functions:

• Recording calls

• Monitoring contact under control of the data processing system

• Inquiry to the data processing system with a recorded answer

• Real-time data collection to the data processing system

• Transfer of recorded data to the data processing system

Communications between the System/36 and the 3750 are binary
synchronous, point-to-point operations in transparent mode. Only EBCDIC
can be used. The System/36 operates as a send and receive station.

When you receive the end-of-transmission character and the next step in
your program is to receive more data, do another read operation to the
same BSC input file.

Sample Programs

Send Only

The following three sample programs are provided as examples of the
various types of RPG BSC programs:

• The first example is a send-only program.

• The second is a System/36-to-3740 program.

• The third is a send-interspersed-with-read program.

Figure 10-1 shows a program that reads a DISK file and then sends it. The
week's data has been sorted by name of salesman. The amount of each sale
is written on the disk, and the total sales for each salesman is transmitted
to the branch office. After all disk records containing sales information are
read, the total of all sales is sent to the branch office.

Chapter 10. Using a BSCA File 10-17

RPG File Description Specifications

Column Description

7-14 WKL YSMRY is a BSC file.

15 Since WKL YSMRY is to be transmitted, .it is an output file.

19 BSC files always have a fixed-length format.

20-27 Records are blocked.

32 Dual I/0 areas are used.

ll'l-46 BSCA is the device name.

RPG CONTROL AND FILE DESCRIPTION SPECIFICATIONS GX21·9092 UM/050•
Printed in U.S.A.

Progr1m

Programmer

H
i----.

Size to Slzt to

Dote

Number
of Print

Keying
tnmuction

~
l
g

Graphic

Key

Control Specifications

Rt11rved !'I js q

Card Electr.o N1.1mber 1 2

Page!Cil]of _

75 76 77 78 79 BO

~~~;::cation ITlfi!INIS\MITI 

For the valid entries for a system, refer to the RPG reference m1nu11 for thlt 1y1tem. 

I .. 
~ 

~ 8 
~ E -

c5 ~ 11 II 11 ~ s ~ ~ u l Compile ExtCUll 1 Po1ltlon1 

j 1 ]} iJ ] p ~a: h Lint ~ 

I J il I 
:I .i 

J! la l f h § s 
! L h H ~ d i.f 

LL ' I 7 8 I 10 11 1:1 13 , .. , ht, l11hJJ 20 21 22'1324H lli.i1 il_IUO '1 02 33 ~ 31 31 37 38 3 40 41 "42 43 .... 45 46 41 48 0 .. " "~ .!! .. 58 57 !!...!!..••" ........ ~,, 11.J•li 

011l H ll rlJ!lLI J ll IIIIIIIJJ I l l l l l J J l J L l l LUl J 

File Description Specifications 
For tne v11id eniriH for 1 system, refer to the RPG refertnce m1nu1l for thlt 1yntm. 

F File Type Mode of Procenmg FH• Addition/Unordered 

File 011ign1tion Length of Key Field or EKtent Exit Number of Tricks 
t-----i of Record Addreu Field i for DAM for Cvllnder Ovtrflow 

End of File 
Name of Record Addren Type i5 Symbolic iii Nvmber of Extents 

Stquenct Label Exit Filename Type of File Device Device ~ T1p1 
File Format N Org1nlZ1tlon or ~ ~ lit 5 Additional Ar11 Storage lndeK 

Line !!: ! ~ ~ Ornflow Indicator J File 

~~ Block Record Condition 
! U1·UB, 
~ 

Length Length a: ~e E Continu1tion Linet UC..-'--< 

~ ~ ~ :::i ~ Surtlng ~ 

~ w ~ 
- L.Oc1tf, n 

~ C! 
E)Cternal Record N•me K Option Entry .. 

L3 • • • 7 8 •• 10 ,, 12 13' 14 .. , ,, .!!I ~~~vn~HHV31~~"""M"• 139_ "40 41 42 43 44 45 46 7 31 47 48 49 50 51 &2 63 54 &5 56 57 58 59 eo__e1 26364116 "., " .. 70 71 72 73 7"4 

0 2 Fri lI~I ~II rtrJE lq I: lql~ "'I I~ 
0 3 F lti ~ 

I ... F lqQ l~QJ ~ R~ Ir_~ lZJ IT 

0 4 F ir-II Ir F l1~rJ 11 1az Ml"i IIIN [IE~ 
0 & F 

Figure 10-1 (Part 1 of 3). Send-Only Program. 

10-18 



RPG Telecommunications Specifications 

Column Description 

7-14 
15-17 

18-19 
20 
32-47 

53-54 
55-57 

WKL YSMRY is the BSC file for this program. 
This station is part of a switched network (S), and is transmitting (T). Polling is not used, 
so column 17 is blank. 
EBCDIC (E) and the transparency feature (Y) are both used. 
Automatic answer (A) is used by this called station. 
Explicit station identification sequences are given for each station. Station IDs help 
ensure data security on the switched network. 
The permanent-error indicator used is 25. 
The data communications line is kept open for 70 seconds when no messages are being 
sent or received. After 70 seconds elapse, a permanent error condition results if the line is 
still not being used. 

RPG TELECOMMUNICATIONS SPECIFICATIONS 

JIM lntern.i:iorwl Busln•• Machlntr1 Cor1JC1ralion 

GX21-9116 UN 
Printed in U.S.A. 

Program 

Progr1mm1r Date 

T 
r-

.~ J j~ 

h Lint 

! 
Filtn1mt h .... H ! h ~3 

3 •• • 7 8 • 10 ,, f2 13 14 11 ti 17 18 .. 20 

·I·1 T~ ... 1!1 £1~ 
•I•I T IIT1III 

JI~ '""'""'•"'' l1111neN Mlrt11nM c:orportuon 

Prof"1m 

Progr1mmtr lD111 

I I ~ Fll1n1m1 

J or r Record Neme "'en 
! ! ;; :~ 

Lint 

! -o 

H D1t1 0 A j Structure li+ro ....... 

Keying 
Instruction 

Graphic 

Key 

Card Electro Number 

Switched Identification 

This Station Remote Station 

~ 
Remote "' Dlal Number Termln1I 

~ J.i 
~ ~ ! j 

21 22 23 24 21 :2127 2821 :so 31 32 33 34 31 31 37 38 38 40 ,., 42 43 44 41 46 47 48 49 '° 151 12 153 14 

IIf II±IIf I ~JI ~yblURII.b_ lll ll:lr::I 

III Ill lll l 

RPO INPUT SPECIFICATIONS 

J l<eyln11 l l Cord Electro Number J Gr1pl'llc 

j lnltructlon K1y l l 
EKtem1I Field Neme 

F leld Location 
Record Identification Codn , 2 3 From To ; 

1 2 

Pageliaof_ 

.. 
Wait ~ 

~ rj Time 
"~ Jo 
.. i ... l 

H 16 117 .... eo at 12 

rl!1lti l l 
ll l l 

1 2 

Pogo~of -

~ 
;; ~ 

RPG iii! v ~ Field Name ! H 
~ ;,i ~ id ~§! 

01t1StructYre r r i§ 'I 

J Po11tlon Poaltlon Poaltlon ~h J u :I 6 Occur1 
nTlm11 Length 

3 4 •• 7 8 ' 10 ,, 12 13 14 II 11 17 ,. 18 20 21 22 23 24 21 21 27 pa 29 30 31 3233 ...... 37 38 38 40 41 42 43 44 41 4li 47 48 49 50 &1 12 53 M 911H17 118 IHI 110 11 82 

0 1 I ERR rJ2 11 la 
0 2 I ~~ ~Iii ~ lc:~IA l1 
0 3 I l1~ ~I~ ~Al Mli Nl 
0 4 I 

Figure 10-1 (Part 2 of 3). Send-Only Program. 

76767778791 

~::~f~at;on I TIRWl~MI' 

H .... 
l 
l 

Remote Reserved 
Device 

811 II 97 18 18 70 71 72737· 

±f-111 lll 
lll lll 

GX2HI094 UM/01 
Printed In U.S.A. 

71 78 77 78 79 

~;:;~,:.11." ITI~M51MI' 

Field 

.i 
Indicators 

I 
'I .. 
i Zero .. Plus MlmJI or 

I Blink .. .... .... . , .. .. 70 1172737 

Chapter 10. Using a BSCA File 10-19 



RPG Calculation Specifications 

If a permanent error occurs, LR is set on to enter end-of-job processing. 

RPG Output Specifications 

Lines 01-04: If a permanent error occurs, a message printed at total time identifies the record being 
processed when the permanent error occurred. However, because of record blocking and the use of 
dual I/O areas, not all the records preceding the record identified were transmitted. 

Lines 05-10: When on, the permanent-error indicator prevents the program from transmitting totals. 

IBM lnlern91 onal Busu1en Machines Corporation 

RPG CALCULATION SPECIFICATIONS 

Program Keying Graphic 1 1 1 Card Electro Number 

Programmer Date } 1nwucfon fKey TT TT T 11 
1 2 

Page~of 

c 
~ 

. Indicators Result Field ~:~:~. 
~ T T " Arithmetic 
~ ct .1 .g £ PluslMinul[Zero 
l! Q. And And Factor 1 Operation Factor 2 ·a 'i Compare 

! 3 :i Name Length~~ 1>21<~-2 
Line ~ g ~· ~ ! Lookup!Factor 21i1 

if B ~f i i i 0 ~ High Low ~qua! 

GX21-9093 UM/060" 
Printed in U.S.A. 

75 76 77 78 79 80 

~dr::: .. ,°" ITIRNSMrl 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 26 27 j2e 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 46 47 48 49 60 51 62 63 54 56 158 67 58 59 80 61 82 83 64 815 88 67 88 SI 70 71 72 73 74 

0 1 c I;>~ ~I!. IN JR 
0 2 

0 3 

0 4 c 

RPG OUTPUT SPECIFICATIONS GXit ·9090 lJM/050" 
P'1nted in U.S.A. 

75 76 77 78 79 80 Program 

Programmer Date 

Keying 
Instruction 

Gr.i;tphlc Card Electro Number 

Key 

1 2 

Page~of - ~~~:~: .. ion ·itJRINl.5IMTI 

0 
I--

! 
Line ~ 

Filename 
or 

Record Name 

~ ~ Space Skip Output Indicators ~ e ~ Field0~ame 
;_ ~ 111 _I I EXCPT Name 
~..; ~ ! And A~d End 
1-~ m l'l ~ ~osition 

Wo ~ ~ 8 5 Output :§ 

Commas 
Zero Balances 

to Print 

y,. Yes 
Yes No 
No y,. 
No No 

No Sign CR - X"" Remove 
Plus Sign 

V= Date 
5.9. 

1 A J Field Edit 
User 

2 8 K Z =Zero 
Defined 

3 c L Suppress 
4 D M 

o R ~ O § *AUTO w:g § Record ~ Constant or Ed it Word 
~ z 4 .... - 1 2 3 4 5 6 7 8 9 10 ,, 12 13 14 15 16 17 18 19 20 21 22 23 24 

345678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 83 64 65 66 67 68 69 70 71 72 73 74 

0 2 0 IINIT 
0 3 0 I~~ '~~·llIIL !'"I l l"".1 1 

a • lo 
0 s o~i~ IY 1Mf<i1il 
0 6 0 l11Q 
0 7 0 

0 8 0 

0 9 0 ~ 'IT 11IA1L I:: I 

' a lo 
'' lo 

Figure 10-1 (Part 3 of 3). Send-Only Program. 

10-20 



System/36 to 3740 

Figure 10-2 shows a program that receives two files from an IBM 3740, then 
sends two files to the 3740. The first file from the 3740 forms the input file 
BSl; the second file forms BS2. The data received as input to BSl and BS2 
is written by System/36 to the output file PRINTER. Then the System/36 
reads the disk file FILEA. Records that start with a 1 are sent to the 3741 
in file BS3. Records that start with a 2 are sent to the 3741 in file BS4. (All 
records with a 1 must precede any record that begins with a 2.) The job 
ends when the last record from the disk has been read. 

Note: The ALTERCOM procedure must be run with MULTFILE specified. 

RPG CONTROL AND FILE DESCRIPTION SPECIFICATIONS 
IBM hnerNIOoMl luliMU U.Chines Corpor•t1on 

GX21·9092 U~ 
Printed in U.S.A. 

Graphic Card Electto Number 
75 76 77 78 79 

Progr1mrner Da10 

Keying 
Instruction 

1 2 

Page~af_ p..,gram ~5~ 
Identification, 

H 
1---i 

Line 

3 4 • 

0EI 

Lint 

~ I Size to Size to !a B. Coml)tle Execute 
~ 1r i .s . ' 8 • 10 11 1:l 13 14 

H II IOJ!lLI 

Filename 

11 ~! 
J Ii ill I f 

c!l L 
11 11 17 :,. ,. 20 21 

T 

file Type 

file Designetion 

End of File 

Sequence 

Control Specifications 

i 
l .. 

Number ( m ~ ~ ~ .j 6 " Reserved ~ l Ji j ::> • "' of Print ~ uo II I ,., .. ,; .. , 1 E ~ j ~ 'g 

I ? 1 i .!l 
j "' ~ H ~ . 

I c ... n ~~ ~-!! i ~ a: a: - ... a: ... 
22 13 24 25 21 27 21 21 30 31 32 33 3' 35 315 37 38 39 40 41 42 43 44 45 46 47 

II IIJillllJ I 

File Description Specifications 

Mode of Processing 

Length of Key Field or 
of Record Addreu Field 

Record Address Typa $ 
Type of File 

File FOfmat N Or91niatlon or ~ 
Device 

For the valid entr:es tor a system refer to the RPG reference manual for thn sys 

6 

'i 
" 0. 8 ! 

~ = ! ~ .:; 

~~ i I 0 ~ 0 
~~ ~ t ~ s !~ 81 ~ "' " .,, h &£ 0 .. ;;; J! 0.:: ... a: z ... 
48 49 

50 " 
., -'.'! lM 55 56 57 58 59 60 61 62 63 64 66 86 87 88 89 70 71 72 7 

l l J IT 111111 TT1TT 

For the valid entries for a system refer to the RPG reference manual for thet sy1 

Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

file Addition/Unorder 

Number of Trades 
for Cylindar Overfl 

Numbar of Eictt 

Tape 

~ File 
Condi1 

'" ] .,! Additional Ana S 
0 ~ i Block Record ~ e Overf~low Indicator I ! :Q: IC ~ l.englh Length a: ~ e Kay ~iald i:f Continuation Lines 

;ig ";;: :::i c~ e:'.;!:~. ::i 
z ~~':! 
~ ~ g ~ w < External Record Name K Opti'ln Entry C 

3 4 s e 1 1 t· 10 11 12 13 14 1s l1el11 1111 20 21 22 23 24 21 a 21 21 a 30 31 32 33 34 31 • 31 31 39 40 41 42 43 44 45 4& 47 48 49 so 51 52 53 54 55 56 s1 ss 59 so &1 62 s3 64 86 ee 67 &11ea1011 12 1 

0 2 F~lcjt I~ JJ.IR P(}. rl 'R~IA 

0 7 F f! 
0 8 F 

Figure 10-2 (Part 1 of 3). System/36-to-3740 Program 

Chapter 10. Using a BSCA File 10-21 



RPG TELECOMMUNICATIONS SPECIFICATIONS 

JIM International Businea Machines Corporation 

GX21·91161 UM/050* 
Printed in U.S.A. 

Program 

Programmer Dote 

J_, 
c c 0 

'! i ~ . ~ H 
Line 1! Filename 

~l ~~ ~~ > > ~ ie 
~ "I- t-1-

~~ !!!!!t ~i !-::> 

3 • • • 7 • • 10 11 12 13 14 16 16 17 18 19 20 

r , 
T~ ~1 ~ 

0 2 TE ~2 ~ 
0 3 T~ [l;I~ Pll 
0 4 rP 151&f em 
0 • T 

Keying 
Instruction 

Switched 

.Dial Number 

Graphic 

Key 

This Station 

il: 

Card Electro Number 

Identification 

Remote Station 

Remote 
j 

Terminal 

" ~ ~ t:: E ·-
il: !H 

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 38 37 38 39 4041424344464647 48 49 60 51 152 53 64 

1 2 

Page~of_ 

Wait 
j 
·~ LJ Time ;g 
h .J ;e ~ 

ss se &7 .... 60 81 62 

IL: 

75 76 77 78 79 80 

~~;;,~cation IBl5k:~hl I 

Remote 

H 
Reserved 

Device 

B 
83 .. 66 86 87 68 89 70 71 72 73 74 

IBM lnltorn111on•I Busmf!M MKhmes Corpor.C1on 
RPG INPUT SPECIFICATIONS GX21·9094 UM/050• 

Printed in U.S.A. 

Program 

Programmer 

Line 

Filename 
or 

Record Name 

J Date 

Keying 
Instruction 

1-:-::-";_c _,__,__,__,__,__,±~-+--1-t Card Eloc"o Numbe< J 
• External Field Name 

, 2 

Page~of _ 

jc... Field Location 
~ ... Record Identification Codes - c 

75 76 17 78 79 80 

~;:;;,~..,, .. IBlstlQJWil I 

Field 
Indicators 

~ - "' ! t ~ -~ 
"' w "' .5 ° 1 2 3 From To .g RPG ~ § -6 ~ 

~ :; :S' is_ i l Field Name ! J: ~ 'E Zero 
:2 5 ..g: &i _ !! ~ ~ !:!:. Data Structure - 5 ~ j Plus Minus or 

Dilta 0 R ! ~ ~ Position ~ ~ = Position ~ ~ ~ Position ~ ~ ; -; g Occurs ~ g ~ .~ ~ Blank 

S~~:~re ~~ 8 ~ ~ () 6 ~ 0 6 ~ 0 6 Qi 0; nTimes Length O ~ :E Q ~ 
3 .. 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ~ 29 30 31 32 33 3~ 35 36 37 38 39 40 41 42 43 44 46 4ti 47 48 49 60 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 68 67 68 89 70 71 72 73 74 

0 1 I1S5 j fAJA1 i<Jl 
0 2 I j ~~ 11DiA ~N tM 
0 3 IM ~l41 ma 
0 4 I j Pkl IHI A[~ 
0 5 I IIL Di 'AiA rll3 ll l1 
0 6 I j ea 
0 7 I 'AA f.21'4 l1 r 
0 8 I 1 af'l 
0 9 I 

Figure 10-2 (Part 2 of 3). System/36-to-3740 Program 

10-22 



Program 

Programmer Date 

c Indicators 
~· 

t-- ~iC I I u'2 l c z Factor 1 
... < 

Line t- g a:" 

h;·i i g 
z 

RPG CALCULATION SPECIFICATIONS 

Keying 
Instruction 

Graphic 

Key 

Operation Factor 2 

Card Electro Number 

Result Field 

:i :t 
Name Length ~" ~~ 

n 

Rewltlng 
lndic1ton 
Arithmetic 

Plu~Min~ Zero 
Compare 

1>~1<!J.1-2 
Lookup(FICtor 2)1s 

Hl"1 Low f.qual 

GX21·9083 UM/OI 
Printed in U.S.A. 

75 76 77 76 79 

~,:;:ica•ion l.81SCJQJlbl 

Comments 

3 4 5 • 7 8 • 10 11 1213 14 16 16 17 18 19 20 21 22 23 24 25 28 27 ~ 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 52 53 54 55 ... , 58 .. 80 81 82 83 84 66 88 67 88 • 70 71 72 73 

0 1 lcUR .id"P w; 
0 2 c ~ lr-!Alr II 11'...A ~~ 
0 3 cl ~II\ 14Y O(r 11"1 
0 4 c In~ ~ ~11 *°t' 
0 5 c 

IB1'-"t. International Business Machines Corporation , RPG OUTPUT SPECIFICATIONS GX21 ·9090 UM/O! 
Printed in U.S.A. 

L_P•~og~c.~m---'----------L.---------'--K-•_vi-ng--~G-•~'--hi_c_._--''---'--'---'---'--'-~-Ca_rn_E_IK-trnNum~• I Programmer Date Instruction Key 

1 2 

Page~of _ 

75 76 17 78 79 
p'°"'"" r-r~ 
Identification !Ql~ 

""" 
if: 0 - ~ 

~ 
Zero Balances 

····---,-· 
X =Remove ~I! Spaco Skip Output Indicators Commas No Sign CR -1-- I- • Field Name to P•int Plus Sign a!:!: l= - - --·--- Y=Date 

5.9. 
' .. or User :i: • 

2d Jd 

v .. v .. 1 A J 
& Filename - l! ~ ~ EXCPT Name Field Edit 

Defined 8.~ v .. No 2 B K Z =Zero ~ or 
~~ ~ No v .. 3 c L 

Record Name a: Position Suppress Line ! i£ tW ~ ~ = en in No No 4 D M -g:::_ 
Output 

~ 

A .. 
"" :;; 

i£+.!!+- 0 
~ 0 *AUTO ;;; ~ Record "' Constant or Edit Word z z w .. a: 1 2 3 4 5 6 ., 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 A ND 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ~~~o~~~M~~M~~~~~~~~~ .. ~~~A~ro 717273 

0 1 0 llID! II~t< 
0 2 0 
0 3 0 rll J:i 'IF ~Sl I 

0 4 lo ~ l! 'IE ~· 
0 5 JO In~ 'lA ~ lqill 
0 6 o~ lic:J-.: If" 
0 7 0 ~ ~la 
0 6 o!Fi acj&.j Ir ~jL 
0 9 0 ~rl 
1 0 lo 

Figure 10-2 (Part 3 of 3). System/36-to-3740 Program 

Chapter 10. Using a BSCA File 10-23 



Send Interspersed with Receive 

10-24 

Figure 10-3 shows a program that reads a disk file, STUDENT, containing 
information about a student test, then sends that information in a BSCA 
file, GRADES, to a remote station. While the System/36 is sending data, 
the other station might interrupt to send back data in a file called 
RESULTS. When this occurs, the RPG program turns on record-available 
indicator 04, reads the input file RESULTS, and prints it as the output file 
PRINTER. Then System/36 continues sending file GRADES. 



RPG File Description Specifications 

Column Description 

7-14 RESULTS and GRADES are BSC files. 

15 RESULTS receives data; therefore, it is an input file. GRADES is transmitted and is an 
output file. 

16 To receive data intermittently, a BSC file must be a demand file. 

17 End of file on RESULTS does not determine end-of-job time. 

19 BSC files always have a fixed-length format. 

20-27 Neither BSC file is blocked. 

40-46 BSCA is the device for BSC files. 

II 
RPG CONTROL A"!D FILE DESCRIPTION SPECIFICATIONS GX21·9Clll2 UM, 

Prlnttd In U.S.A. 

Proer1m 

Protrammer 

F .----, 

Filename 

Urw 

! 
l 

:..a....t. • • 7 ..L.1.:..11. 11_!1 13 •• 

0 2 Flscr EJ J 
0 3 FIQ le; trc: 
0 4 F 

... 
0 5 Ff .. re Mr 
0 I F 

Dato 

Flit TVPI 

Fllt Onlptlon 

End of Flit 

llqt.11na1 

Fiie Form1t 

I 2i llOak 

II l.Atngth 

.. ~ .. 

K1ylng 
lnmuctlon 

Kev 

Control Specifications 

File Description Specifications 

Modi of Proct11lng 

Length of IC1y Fitld °' 
of Record Addre11 Fitld 

Ricord AddrtH Type :5 Ty111of Fiii Dav ice 
N Orpnl11tlon or s 
I AddltlanelAm 

Ricord i ~·mrg::M1J IJtngth 
~ - ~?!. 

btornai Rt00rd No .. 

iitJ.!IJ 11[m 11 2D 1 22232421H27 1311140 41 42 43 44 45 45 ..ll!. .... 33..JU!!.31., 381 ..JUI 

I~ F \Ci E A~ DII I~ 
II,.., F l=Q lel'l: Fiji~ Ir-A 
Ir ~(2 ~~ F!~ rA 

"" F 1~;: ll.131;: m lNll ~ 

C1rd El1ctr.o Numbtr 1 2 

P111[ij)~t -
76 79 77 79 79 

~~~;~f~llion I TIRITIRrJI 

For tht valld 1ntrl11 tor 1 1y1t1m rtftr to the APG rtftrenct m1nu1I for thlt IYIU

For the Vllid tntritl tor 1 1v11tm, refer to thl "''° rtftrtnat m•n11I for thet 1Vlt•

Fil• Additlan/Unordtr11
bttnt Exit Nu-ofTrtok1

I for DAM lat Cyilndlr °""''°'
Namaof

Symbolic Numlllrof bton
Label Exit

Device ! , T1pe

Storage Index ~
Candltla
Ul-1~

Cont1nu11ion Line1 i! UC

~ ~ K ()p1ion Entry

47 48 48 &O 51 H Ll!!.1.1t11:1~11I 1111 1 111:11 MAJ!l.17 II IL .. _. 1 71 12 73

Figure 10-3 (Part 1 of 5). Send-Interspersed-with-Receive Program.

Chapter 10. Using a BSCA File 10-25

RPG Telecommunications Specifications

Column

7-14
15
16

17
18-19
10
32-47

53-54
55-57

!l8-59

Description

RESULTS and GRADES are the BSC files for this program.
This station is part of a switched network (S).
RESULTS is an input file and receives data (R). GRADES is an output file and is
transmitted (T).
Polling is not used, so column 17 is blank.
EBCDIC (E) and the transparency feature (Y) are both used.
Automatic answer is used by this station.
Explicit station identification sequences are given. Station IDs help ensure data security
on the switched network.
The permanent-error indicator used is 44.
The data communications line is kept open for 70 seconds when no messages are being
sent or received. After 70 seconds elapse, a permanent error condition results if the line
still is not being used.
The record available indicator is 04; it is set on when the other system sends an RVI
(reverse interrupt). This indicates it is ready to send a record to be received by RESULTS.

II~ lnt1tfn1tlon1I a.i1in1n Mlchlnn CorporMJon

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS GX21 ·90lll UM/060'
Printed In U.S.A.

Programmer Date

E Record Sequence of the Chaining File

I--- Number of the Chaining Field

Line
~ ...
~

From Filename

...
3 • • . ' . • 10 11 12 13 14 11 18 17 18

0 1 E

0 2 E

0 3 E

JIM lntern1t10n11 9usintil M1cl'linff CotPQtetlon

Program

Programmer Date

Line '1

~
Fiiename

j

To Filename

Keying
lnttruction

Graphic

Key

Extension Specifications

Number
of Numbw

j~ Table or Entrl• of Length

Per Entries of Array Name
R-d Per Table Emry

IC 1 l
or Array ~-ii

.. Q di

Card El1ctro Number

Table or
NreyiName

Length
of

{Alternating Entry
Format)

, 2

P1ge~of _

j~
IC - J ;;d
!!!! K
.. Q

76 7t 77 78 79 80

~:;~f~ce11on ITIR!Tlr@l 11

Comments

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3& 38 37 38 31 40 41 42 4a 46 47 48 49 60 &1 62 53 tl4 66 .. ~eeee~~~~Meeee~een~nn•~

15~ ~ ~ 1«;11 llila u

RPG TELECOMMUNICATIONS SPECIFICATIONS

Keying
Instruction

Switched

Dial Number

Graphie

iCey

li:

Identification

This S11tion Remote Station

"' '"

Card Electro Number

Remote
~
"' Terminal .. q

!: J.
! 1

GX21·9118 UM/050°
Prlnttd In U.S.A.

, 2 767877787980

Plge i3 of_ :~~f~ltion li1Rlt!Rij 1 I

Walt I
l
~d

Remote Reserved
Time

fJ
De~lct

ii
3 4 5 fl 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 'J/7 2B '29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 46 '46 47 48 49 10 61 62 53 14 156 Eil 67 II 118 80 81 82 83 84 86 88 ff1 88 88 70 1 72 73 74

r t TI~ 1C:llJL lI!5 ISB 1t.JY ~ l+T.1 hi, llc t.I~ ~ "~ 1:1
• 2 T ~~ .,E'.ls ISll l>1A 11 tr l:.J"f~ ~.1616 718L ~u
0 3 T IIJ.I l-+-t-t-t-+-t-+-i-t-t---+-t--r+-ir-++-t-+-t-t-+-+-+-t-+--t-1-1-1

Figure 10-3 (Part 2 of 5). Send-Interspersed-with-Receive Program.

10-26

RPG Input Specifications

Lines 07-09: RESULTS receives records from the remote station. These records contain a student
number and the student's score. Student scores are calculated by the remote station from the data
transmitted from GRADES.

Program

Programmer J Date

I ~ ~ Filename ~
or 1 it:S Record Name 1

~ ;; 3
;:: j:' Line s

~ Position ... Dlite

~ Structure ~
Name "' 3 • •• 1 a 9 10 11 12 13 14 115 16 19 20 21 22 23 24

0 1 115 i:r1L '"iE' 11 IAIA ~ llJ
0 2 I
0 3 I
0 4 I ~ t7J.a JJ
0 5 I
0 6 I
0 7 18 Ifie; IJ rm ~lrl ~~ l1
0 8 I
0 9 I
1 0 I

RPG INPUT SPECIFICATIONS
1 2 J Keying Graphic l l i C8'd Elewo Numb" J Page~of _ } Instruction l l l Key

External Field Name
Field Location

Record Identification Codes
~ 3

2 3 From To .~ RPG
_,

:!! ~
~ ~ Field Name ii • li

~ ~ !§
!I I.I.. u::

~ c ~ ~ e ~
Date Structure

.1 .~ ~
~~ 1 Posit•on Position ji • • iQ • Ha ii~ Q3 Occurs ~ ia ~ u 6 ~CJ 6 Qi a:: n Times Length

25 26 27 28 29 30 JI 32 33 34 35 36 31 38 39 40 41 42 43 44 46 40 47 48 49 50 51 52 53 54 155 56 51 158 !li9 80 81 82

ll.IA la V'JN l::i lrl~

l'i]112 ,~ it JI~
llll tU~ 4i\ lc:IA 1111:1

~15 ~ r1 ~ ~ID
I~

,,
l~I IDI

llll. ~ ~I ~IR~
Lr~

ra l'i l!lL lYl:I
~ Im leJ..-i.-.1 Ir-

I I+--

GX21-9094 UM/O!
Printed in U.S.A.

75 76 77 78 79

~;~~;~,:"'°" IIIBIIl~li

Field

·~
Indicators

..
"' ~ Zero
H Plus Minu1 or

"'
~

Blink

83 87 .. 89 70 71 72 73

Figure 10-3 (Part 3 of 5). Send-Interspersed-with-Receive Program.

Chapter 10. Using a BSCA File 10-27

RPG Calculation Specifications

The calculation sequence obtains the scores computed by the remote station from GRADES and
makes them available for exception output to PRINT.

Lines 01-06: Loop 1 is performed during detail time; that is, before end of file is reached on
STUDENTS. When the remote station causes the record available indicator (04) to be set on, the
READ operation accepts a record from the remote station and places it in RESULTS. Indicator 10 is
set on and indicator 04 is set off when READ encounters an end-of-file condition. Until indicator 04
is set off and indicator 10 is set on, records are placed in RESULTS and are available for exception
output to PRINT. Loop 1 can be entered or reentered anytime 04 is set on, except after end of file is
reached on STUDENTS (indicator 10 is set off). Therefore, after one group of records is read by the
receiving station, the receiving station must set off the end-of-file indicator (10) so that the next
group of records can be read.

Lines 07-12: Loop 2 is performed during total time; that is, after end of file is reached on STUDENTS
and the LR indicator is set on. Loop 2 processes records for results in the same way as loop 1 with
one difference: Loop 2 always compares the student number received by RESULTS (STDNT) to the
last student number transmitted (S1'UDID). Loop 2 continues until these numbers are e.qual. This
ensures that the results for all student records transmitted are received.

If a permanent error occurs during a transmit or receive operation, LR and 10 are set on to enter
end-of-job processing. Indicator 09 is then set off to exit from the total-time loop.

IB~ ln1trn111on11 Bu1int11 Mac~1n11 Corpor1t•on

RPG CALCULATION SPECIFICATIONS GX21·l'llll3 UM/060•
Printed In U.S.A.

1-P-rog_ra_m ______ ~------1 Keying Graphic Card Electro Number ~ 757877787980

P1gaVQol _ i;~;;l~lllon ITIRITll'@11
Pro;remmer D1t1 ln1tructlon

l----+--1--1--+--+--+--+-_,
Kev

c Indicators Rooult Field Rt1ultlng

~ lndlc1tort

1--- 9- h
Arithmetic

n Ad Ad
ptu1IMlnu• Zero

Lina !
Factor 1 Operation Factor 2 r Comp1r1 Comment•

Name Length l 1>2f1<2f1•2 r· H ! 5" J J J
Lookup(FICtor 2)11
High Low F.c:iu1I

3 4 e e 7 • 9 10 11 12 13 14 15 11!1 17 18 18 20 21 22 23 24 25 28 21Ja 28 30 31 32 33 34 38 31 37 38 38 40 41 42 43 44 41 41 47 48 49 ISO &1 S2 la 14 IS H 17 18 1.'19 eo e1 12 1:1 M es ee 11 ea • 10 n 12 73 14

0 , c ILh ~ i1 IIA~
0 2 c ta •R ~li'i FllFlc:; rr~ ITT.Z
0 3 c QJ ~ii~ PI
0 4 c 14 ,T ra
0 6 c I'll~ Nil~ "hTir lrll"' Pt
0 6 c 1 1
0 7 c j~ lrlf" I;: (;
0 B c ~ IQI~ EJA l~I~]TIC 11~
0 9 c ~ lt'1 l~[i

G;..

IT
, 0 c ~ 1'1~ ~lt-lJ. ~
, 1 c Ii; t..lLl 5tr "NJ ·if'~ IP .EIJ ~I i;;:~ ~le
1 2 c ~ rJ "IF ir:,.. P;:i
, 3 c

Figure 10-3 (Part 4 of 5). Send-Interspersed-with-Receive Program.

10-28

RPG Output Specifications

Lines 01-06: GRADES is transmitted to the remote stations.

Lines 07-08: permanent error causes an error message to be printed.

Lines 09-13: Records received by RESULTS are printed.

IBM ln1ernat1on.I Bus1nns M9chme. Corpore11on

'

0
...

~l Space
1---

c-- .. :i: •

!l. Filename i~ A! ?: or
~~ +!" Line

~
Record Name

~ ¥o A

~ $o
9 10 111213~ 3 4 5 • 7 • 15 16 17 18

0 1 0 g.,_J"ij ~

0 2 lo
0 3 0
0 4 lo ir..
0 5 lo
0 6 0
0 7 IOit"' ~!I ~u 11
0 8 lo
0 9 0 It.
1 0 lo
1 1 Jo
1 2 ro
1 3 lo
1 4 0

Skip

f
./? ~
.!! <[

19 20 21 22

RPG OUTPUT SPECIFICATIONS GX21-ll090 UM/05<.
Printed in U.S.A.

Output Indicators
Field Name

or

l :L EXCPT Name

~ ~ ~ *AUTO

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

iJUl!ol f..ilI
It.I I~
IA 1 ...

i.., UL

51 r-11J[
ISll IA ~

!I~

ltJl'll IMLILI

!ell l~ll

Ii= 1-1 ... 1 ..
ll"li

1 2

Page~of _

75 76 77 78 79 80

~.:;: .. ,°" ITRIT!Ril 11

~
Commas

Zero Balances
No Sign CR - X =Remove

to Print Plus Sign 5 ·9. V •Date
User Ve5 Yos 1 A J Field Edit

Yos No 2 B K Defined d
No

Z• Z•o
cc Pos1t1on v .. 3 c L Suppress

H No No 4 D M in a:
Output ::i

~~ Record ~ Constant or Edit Word
a.. • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 •

38 39 40 41 42 43 ~~~o~~~~~~~~~~~~~~~~MMM~Unro 71 72 73 74

~
~r.l

I~
ll:a

111'1 'II:. ~r '

lll! ' !I Ir l\Ll ~·
l1l1
~! ' i- I

12~

Figure 10-3 (Part 5 ·of 5). Send-Interspersed-with-Receive Program.

Chapter 10. Using a BSCA File 10-29

10-30

Chapter 11. Using Primary and Secondary Files

No Match Fields . 11-1
Match Fields . 11-1
Coding Matching Records . 11-2

File Description Specifications . 11-2
Input Specifications . 11-3
Rules for Coding Match Fields . 11-3

Processing Matching Records . 11-6

Chapter 11. Using Primary and Secondary Files

Chapter 11. Using Primary and Secondary Files

Using the RPG program cycle, an RPG program can process more than one
input, update, or combined tile. How then can the program tell which file
to process a record from at any given time? One way is to read one record
from every file, compare the contents of a particular field in each of those
records, and select a record based on the results of that comparison. The
fields that are compared are called match fields. Records that contain
match fields are called matching records.

No Match Fields

Match Fields

If match fields are not used in a program that has more than one input file,
the program processes records from one file at a time. After the program
processes all the records from one file, it processes all the records from the
next file. Files are processed in this order:

1. Primary file, if specified

2. Secondary files in the order in which they are coded in the file
description specifications

When match fields are used, the program selects the records for processing
based on the contents of the match fields.

When the match field in the primary file record is the same as the match
field in one or more of the secondary file records, the matching-record
indicator turns on. Your program can use this indicator to control
cs.lculation or output operations for the matching records.

If some files contain match fields and other files do not, the program
processes all the files without match fields before it processes any files with
match fields. The files without match fields are processed in this order:

1. Primary file, if specified

2. Secondary files in the order in which they are coded in the file
description specifications

Chapter 11. Using Primary and Secondary Files 11-1

If some records in a file use match fields and other records do not, the
records without match fields are processed immediately after the record
they follow.

Coding Matching Records

To process matching records, entries are required on both the file
description specifications and the input specifications.

File Description Specifications

F
1--

Filename

File Typo

For matching records, the following entries are required on the file
description specifications. Fo,r information about columns not mentioned
here, see Chapter 5 for DISK files, Chapter 8 for SPECIAL files, or Chapter
9 for CONSOLE files.

Mode of Procauing file Addi1ion/Unordered

FiltDlliption Length of Key Field or
of Record Addrtn Field

Extent Exit

End of File
~ for DAM

Rte rd Address Typo ..1 iilii< Name of Nu-r of EJCIOnll
o Typo of file Ul Symbolic Label Exit

.g Device Device :i TIPO
i.uFiteForm•t ~ ==~~ d ~ Storagelndex ~

~ ~ Blodc l Record >< ~f o..r11ow lndo .. tor I ~~
~ ~ § ~ ~h Length ~ hi ·~ ContinuotlonLinn ~ :k"~
J ~ ~ w ~ External R-d Nome K Option Emry ~ ::i!

(3 4 • a 1 1 J· to 11 12,. 14 illLt. 11 1 11_aq 2t 22 23 24 21 21 21 21 21 30 31 32 .. ~ .. 1 .. 40 41 42 43 44 45 45 47 4149ID11 nlmlM...ILil..1~14 al• 1l11_•. 7t 71 73 7

~~ F11111JJ llllll l 111111 11111111JJ]]]lll lllJJ i 11
~~ FJJJIIJJ llllll l 111111 JIIIII II I I I llJJJ llJll 1 1

11-2

Column 15 must contain I, U, or C to indicate that the file is an input,
update, or combin.ed file.

Column 16 must contain P or S to indicate that the file is a primary or
secondary file.

Column 17 must contain E or blank. E indicates that the program must
process all records from the file before the program can end. Blank
indicates that the program can end before it processes all records from the
file. However, if column 17 is blank for all files, the program must process
all records from every file before it can end.

Column 18 must contain A, D, or blank. A indicates that the program
checks that the records in the file are in ascending sequence. D indicates
that the program checks that the records are in descending sequence.
Sequence checking is required for all files that use match fields. If column
18 is left blank and match fields are used, ascending sequence is assumed.
Column 18 must contain the same entry for all files that specify matching
fields on the input specifications.

Columns 40 through 46 must contain DISK, CONSOLE, or SPECIAL.

Input Specifications

.....
I

1------ Filename ~
or l Record Name w"'

!. i ·:j
?: =s Line

~ r~ D¥ta

~ Structure £8 Name
3 " 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0111 I lilII
o]j I lllll

~
~
~:g
;: ~

For matching records, the following entries are required on the input
specifications. For information about columns not mentioned here, see
Chapter 25, Input Specifications .

External Field Name Field
Field Location Indicators Record Identification Codes

~ .§

~
5 • 1 2 3 From To RPG -' :!HI

..
a:

I=- ¥ i Field Name 1 .!! ";

i • Ji a: ~ u.u:: Zero

Zo~ ~e~
Data Structure

" .~ 8' Plus Minu1 or
~o

= t ~ ~
a:

1 Position Position Position E '5 ·c
" Blink -;; i;J ~

~~6 i§ Occurs ~ i~ ~ ~oo 0 ci5 a: nTimes Length u

19 20 21 22 23 24 ,. 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 49 50 51 52 53 54 55 56 57 58 59 60 81 62 83 87 .. 89 70 71 72 73 74

1 11± ttt t±± _Ji]t ±i± l lllJ l l l l l l J 11
lllll l 1 1 l 1 l III

Columns 61and62 must contain any value from Ml through M9 to indicate
that the field named in columns 53 through 58 is a match field.

Rules for Coding Match Fields

You can use one field, many fields, or an entire record to match records.

You can use as many as nine match fields by coding a different value, Ml
through M9, for each match field.

Ml through M9 are not indicators. They identify the match fields, and they
cause the matching-record indicator (MR) to turn on.

Not all files used by the program must have match fields. Not all record
types within one file must have match fields either. However, at least one
record type from two files must have match fields in order for the files to
match.

The same number of match fields must be coded for all record types that are
used in matching. The same matching record values must also be used for
all types.

Whenever more than one match-field value is used, all match fields must
match before the matching-record indicator (MR) turns on. For example, if
you use match-field values Ml, M2, and M3, all three fields from one record
must match all three fields from the other record. A match on only the Ml
and M2 fields does not turn on the matching-record indicator (MR).

If you use more than one match field for a record type, all the fields are
combined and treated as one continuous match field (see Figure 11-1). The
fields are combined according to descending sequence (M9 to Ml) of
match-field values.

Chapter 11. Using Primary and Secondary Files 11-3

I f
External Field Name Field Field Location

Indicators I---- Filename 1
Record Identification Codes

or ~!!:! Record Name 1 2 3 From To RPG ~ !I. l: ~
Field Name ~ {!:: -~ :' Zero

Line

! :!! ~a I ~o! ~cl cc Data Structure .r Plus Minus or

i Position Position Position ::i Blank Data

~ ~§~ ~ §~ ~§~
.,

Occurs 6 Structure a:: n Times Length
Name cc

3 • 5 6 1 8 9 10 11 12 13 14 15 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4344454ti4 748495051 52 53 54 55 56 57 58 59 60 ., ~ 63 67 70 71727374

0 1 IIM w=; tnJii! l'\IA 00: ~ lrlC
0 2 I ll Ji: 11:.IM ~~ M~
0 3 I 11~ ~c; iclA l1
0 4 I I~ 11112 II~ Jc ~It\ M1:1
0 5 I J3lt /':II~ [toil M~
0 6 I ~ ala Jqji:: tl:I
0 7 I ll I~ t.t'I p ~~ ~~
0 8 I llrll 111~ ~ ~
0 9 I ?i ~jJj Ir-pt[t112
1 0 I las= l2JCI II yj.r:: I\ M~
1 1 I li'ji.< r1 ... ~:ii
1 2 I ~ ii= [MP I~ ~~
1 3 I ~ ~rl N!Q DI ir"f'! M~
1 4 I l1ll 111.: IJ:llr ~ pi~
1 5 I 12~ ~-= llC:

1 6 I

Three record types are used in matching records. All record types have match fields specified, and
all use the same values (Ml, M2, M3) to indicate which fields must match. The MR indicator turns
on only if all three match fields in either of the record types from the MASTER file are the same as
all three fields from the record in the WEEKLY file.

The three match fields in each record type are combined and treated as one match field organized as
follows:

DIV SON DEPT EMPLNO

M3 M2 Ml

The order in which the fields are specified by the input specifications
does not affect the organization of the match fields in the computer.

Figure 11-1. Using Several Fields as One Combined Match Field

11-4

Match fields cannot be split. That is, the same match-field value cannot be
used twice for one type of record.

All match fields that have the same match-field value (Ml through M9)
must be the same length. If the match field contains packed data, the
zoned-decimal length, which is (2 x the packed-decimal length) - 1, is used as
the length of the match field.

Record positions of different match fields can overlap, but the total length
of all fields must not be more than 144 characters.

All match fields that have the same match-field value (Ml through M9)
must be the same type (alphameric or numeric). If any of the match fields is
described as numeric, all match fields that have the same match-field value
are considered numeric.

When numeric fields having decimal positions are matched, they are treated
as if they had no decimal position. For example, 3.46 is considered equal to
346.

Only the digit portions of numeric match fields are compared. Even if a
field is negative, it is considered to be positive because the sign of the
numeric field is ignored. Thus, a -5 matches a + 5.

The match field value must be valid alphameric or numeric characters.
Other values may cause unpredictable results.

A field coded as .binary (B in column 43) cannot have a match-field value.
However, a field coded as packed (P in column 43) can have a match-field
value.

Field names are ignored in match field operations. Therefore, fields from
different record types that have the same match-field value can have the
same name.

If the program uses an alternative collating sequence, alphameric fields are
matched according to the alternative sequence.

Additional rules apply to match fields when entries are coded in columns 63
and 64 of the input specifications (see Columns 63-64 in Chapter 25, Input
Specifications).

Chapter 11. Using Primary and Secondary Files 11-5

Processing Matching Records

Figure 11-2 is a flowchart for the processing of matching records.

Match fields
routine

D The program checks whether there is
more than one input file.

fJ If there is more than one input file,
the program reads one record from
each file and moves the records to a
hold area~ The program compares
the contents of the match fields in

Determine these records to determine which
which record record to process next. Records that
to process are not processed stay in the hold

area, where they are compared again
during the next program cycle.
During the next program cycle, the
program reads a record from the file
containing the record that was
processed during the previous
program cycle.

Stop II The program checks whether the
match fields are in sequence.

II If the match fields are not in
sequence, the program stops.

Process
the record g If the match fields are in sequence,
selected the program processes the record

selected.

Return

Figure 11-2. Flowchart for Processing M,atching Records

11-6

When the match field from one record is the same as the match field from
another record, the matching-record indicator (MR) turns on. Your
program can use this indicator to control the calculation or output
operations you want to do for matching records. For example, when the
matching-record indicator (MR) turns on, you can enter data from primary
records into their matching secondary records because the program
processes the primary record before the matching secondary record.
However, you can enter data from the first record of a secondary file to
matching primary records only when you use look-ahead fields (see
Look-Ahead under Columns 19-20 in Chapter 25, Input Specifications).

When a record from the primary file matches a record from the secondary
file, the program processes all the matching records from the primary file
first. Then it processes all the matching records from the secondary file.
The record-identifying indicator that identifies the record type just selected
is on when the record is processed. Programs often use record-identifying
indicators to control the type of processing.

When records in files that are in ascending order do not match, the
program first processes the record whose match field contains the lowest
value. When records in files that are in descending order do not match, the
program first processes the record whose match field contains the highest
value.

If a record type does not use a match field, the program processes it
immediately after the record is read. The matching-record indicator is off.
If this record type is first in the file, it is processed first even if it is not in
the primary file.

The program checks that the contents of match fields are in the correct
sequence. If the contents are not in sequence, error message RPG-9032,
FILE CONTAINS A RECORD NOT IN SEQUENCE, is displayed. If you
respond by choosing option 1, the program does not process the record that
is out of sequence. When the program starts again, it reads the next record
from the same file. Therefore, all match fields must be in ascending order,
or all must be in descending order (see Column 18 (Sequence) in Chapter 21,
File Description Specifications).

Figure 11-3 shows how to code the file description and input specifications
for a program that uses match fields in three DISK files. Figures 11-4 and
11-5 show how the program coded in Figure 11-3 selects records from the
three files.

Chapter 11. Using Primary and Secondary Files 11-7

F FlleTW!t Mod•of-nti FHo---

,. .. -...... Length of Kev Field or Extent Exit -ofT.-
1--- of Record Addreq; Fiekl i! for DAM

End of File !!! far Cyli- Ovorft-
z Name of Record Address Type iil Symbolic ill -ofE-

$oquoftCI ~Exit Fi._ Typo of Fiio
j

Device Device ! Tape
Fi .. Format .. Ortonl-or

~ Storage Index -... I .! -·-- ~ Uno a i ~ Ovorft_Jif J - - Condtlan
II. ~~ UI~ >

~
Llngth Longth

~ Contktultion LiMI ~ UC

~ ~~ .. ~ ~ = ~ i2
Exwn1I Reeord N8m1 K Option Entrv a:

•• 11 1 I I· ·10 11 12 13 14 15 11 17 18 I 22 23 24~~ '":n 21-211 ,_. 31 32 33_M .. _. 37 40 41 42 43 45 46 47 48 49 50 51 52 51..!§.175858 IO.J! 12131451 ... •• Li!! 7112 13 :M

0 2 F 1111 IA l"lll I IMl-J ~IF ~I~ I lrlI lei~
0 3 F I
0 4 F~

0 8 F

!
Line i

1~T

·~

Filename
or

Record Name

'-'r ~ '/. ~~ ir.11 ~I<
Il5 IA UI ~ rcii;ti

~ ~~- ~
~ Field Location lndiceton

§ ~ Record Identification Codes ~ c 1-....,........., -1

1 -.. l ~ -~= ell r c 1 2 3 From To .1 RPG ~ :!HI ! :::i f ~ Ii l Field Name l ;? I! '!! Zero

§ :!! : - ii - ii - I~ a: D411Struc:ture ;; ~ .r .r J Plus Minu1 or
D4ll O A f .~ Jl Position ~ S ~ Position ~ E! = Position ~ S • j ~ Occun ,g g jj ·j i 81.,k

S1ructure ~ :i! ~ ~ i '3 6 i ~ 6 i '3 <do. nTomos Length ~ .§ fa ii:

3 • & a 1 s 1N-:0-11 t2~3 14 11 11 11 11 11 20 21 22 23 24 21 21~ 21 30 31 32 33 34 35 38 31 38 31~ •• •2~ 44 e 4li 41 48 •so 11 s2 u 54 a 11 11 1111 eo~t~ a 14 11 • 11 u a 10.f!~ n 13 74

01 I~~~~~ rJl U ~ ~~
o 2 I 1~

o 3 I

o • I
o e I

o • rll=tr II
o 1 I
0 B I IF Ir
o s I
I 0 I

I"
1 2 I Ifill
1 3 I
1 4 I
, & I

Figure 11-3. Coding for Match Fields in Three DISK Files

11-8

Primary File

000©@@®®@

No Match Field--....._ s s s s s s s s s
First Secondary File

20 30 30 60 70 80 80

0000@@@@@

Match Field----.... T T T T T T T T
Second Secondary File

10 30 50 50 60 80 80

©@@®@®@@
The records from the three DISK files are selected in the order indicated by the circled numbers.

Figure 11-4. Selecting Matching Records from Three DISK Files

Chapter 11. Using Primary and Secondary Files 11-9

Cycle File Processed Indicators On Reason for Record Selection

1. PRIMARY 02 No match field specified

2. PRIMARY 02 No match field specified

3. FIRST SEC 04 No match field specified

4. SEC SEC 05 Second secondary low
No primary match

5. PRIMARY 01,MR Primary matches first
secondary

6. PRIMARY 01,MR Primary matches first
secondary

7. FIRST SEC 03,MR First secondary matches
primary

8. FIRST SEC 03 First secondary low
No primary match

9. FIRST SEC 03 First secondary low
No primary match

10. SEC SEC 05 Second secondary low
No primary match

11. PRIMARY 01 Primary low
No secondary match

12. PRIMARY 01,MR Primary matches second
secondary

13. PRIMARY 02 No match field specified

14. SEC SEC 05,MR Second secondary matches
primary

15. SEC SEC 05,MR Second secondary matches
primary

16. SEC SEC 06 No match field specified

17. PRIMARY 01,MR Primary matches both
secondary files

18. FIRST SEC 03,MR First secondary matches
primary

11-10

Cycle File Processed Indicators On Reason for Record Selection

19. FIRST SEC 04 No match field specified

20. SEC SEC 05,MR Second secondary matches
primary

21. FIRST SEC 03 First secondary low
No primary match

22. PRIMARY 01,MR Primary matches both
secondary files

23. FIRST SEC 03,MR First secondary matches
primary

24. FIRST SEC 03,MR First secondary matches
primary

25. SEC SEC 05,MR Second secondary matches
primary

26. SEC SEC 05,MR Second secondary matches
primary

Chapter 11. Using Primary and Secondary Files 11-11

Step
1

Step
2

Step
3

Step
4

Step
5

Step
6

The first record from each file is
read. The P and S records have no
match field, so they are processed
before the T record that has a
match field. Because the P record
comes from the primary file, it is
selected for processing first.

The next P record is read. It
contains no match field and
comes from the primary file,
so the new P record is also
selected for processing before
the S record.

The next P record read has a
match field. The S record has
no match field, so it is selected
for processing.

The next S record is read. All
three records have match fields.
Because the value in the match
field of the T record is lower
than the value in the other two,
the T record is selected for
processing.

The next T record is read. The
matching P and S records both have
the low match field value, so they
are processed before the T record.
Because the matching P record
comes from the primary file, it is
selected for processing first.

The next P record is read. Because
it contains the same match field
and comes from the primary file,
the new P record is selected instead
of the S record.

Figure 11-5 (Part 1 of 2). Selecting Matching Records from Three DISK Files

11-12

Step
7

Step
8

Step
9

Step
10

The next P record is reacl. The
value of the match field in the S
record is the lowest of the three,
so the S record is selected for
processing.

The next S record is read. Becal
the S and T records match and h
the lowest match field, they are
selected before the P record.
Because the S record comes fron
the first secondary file, it is sele<
for processing before the T reco1

The next S record is read. Becal
it also has the same match field '
the S record just selected, it too
selected before the T record.

The next S record is read.
The T record contains the
lowest match field value, and
is selected for processing.

Figure 11-5 (Part 2 of 2). Selecting Matching Records from Three DISK Files

Chapter 11. Using Primary and Secondary Files 11-13

11-14

Chapter 12. Using Indicators

INDICATORS DEFINED ON RPG SPECIFICATIONS 12-3
Overflow Indicators . 12-4
Record-Identifying Indicators . 12-6

AND Relationship . 12-8
OR Relationship . 12-8
Example of Using Record-Identifying Indicators 12-9

Control-Level Indicators 12-14
Assigning Control-Level Indicators 12-15
Split Control Fields . 12-20

Field Indicators . 12-21
Resulting Indicators . 12-24
Indicators Not Defined on the RPG Specifications 12-27
External Indicators . 12-27
Internal Indicators . 12-29

First-Page Indicator . 12-29
Last-Record Indicator 12-32
Matching-Record Indicator 12-35

CONDITIONING INDICATORS . 12-38
File-Conditioning Indicators . 12-38
Field-Record-Relation Indicators . 12-39

Assigning Field-Record-Relation Indicators 12-40
Level-Zero Indicator . 12-43
Command-Key Indicators 12-46
Halt Indicators . 12-48
Indicators Conditioning Calculations . 12-51

Using Indicators in AN/OR Lines on the Calculation Specifications 12-52
Using Indicators in an AND Relationship on the Calculation

Specificatio:Q's . 12-53
Indicators Conditioning Output . 12-54

Using Indicators in an AND/OR Relationship on the Output
Specifications . 12-54

Chapter 12. Using Indicators

Chapter 12. Using Indicators

The RPG program cycle is built around indicators. To you, an indicator is
a 2-character entry on a specification form; the indicator turns on or off as
the result of an operation, or it conditions when or if an operation occurs.
To RPG, an indicator is an internal switch; the program uses the indicator
to determine when or if an operation occurs in the program and what to do
when the operation occurs. ·

Indicators are defined either by an entry on the specifications or by the
RPG program itself. The columns on the specifications form in which you
define an indicator determine how the indicator is used. An indicator that
has been defined can then be used to condition calculation and/or output
operations.

Figure 12-1 lists all the 2-character entries that can be used for each type of
indicator.

Chapter 12. Using Indicators 12-1

Defined on RPG OA-OG KA-KN
Specifications 01-99 1P H1-H9 L1·L9 LR MR ov U1-U8 KP-KY LO

Overflow indicator x
Record-identifyi'!9_ indicator1 x x x x
Control-level indicator x x x
Field indicator x x
Resulting indicator x x x x2 x x X3

Defined by RPG Program

External indicator x
Internal indicator x x x
Used to Represent a Condition

File-conditioni'!D_ indicator X4

Field-record-relation indicator1 x x x xs xs x
Level-zero indicator x
Command-key indicator x
Halt indicator x
Conditioning indicators on x x x x x x x x
calculation specifications

Conditioning indicators on x xe x x x x x1 x x x
output specifications

1 Not allowed on look-ahead fields.
2Not allowed for SETOF operation.
3Allowed for SET, KEY, and SETOF operations only.
4Not allowed for table input files.
6When field named is not a match field or a control field.
60nly for detail or heading lines.

' 7Cannot condition an exception line, but can condition fields within the exception record.
I

Figure 12-1. Entries for Each Type of Indicator

12-2

INDICATORS DEFINED ON RPG SPECIFICATIONS

You define the following indicators on the RPG specifications:

• Overflow indicator defined in columns 33 and 34 of the file description
specifications

• Record-identifying indicator defined in columns 19 and 20 of the input
specifications.

• Control-level indicator defined in columns 59 and 60 of the input
specifications.

• Field indicator defined in columns 65 through 70 of the input
specifications.

• Resulting indicator defined in columns 54 through 59 of the calculation
specifications.

You must define these indicators in the specifications before you can use
them on other specifications to condition operations in the program.

Chapter 12. Using Indicators 12-3

Overflow Indicators

Perform detail output. If
overflow occurs, tum on
overflow indicator. If
fetch overflow is
specified, perform fetch
overflow.

Perform detail calcula·
tions. Tum calculation
resulting indicators on

An overflow indicator is defined by an entry in columns 33 and 34 of the file
description specifications. The purpose of an overflow indicator is to signal
when the end of a printed page has been passed. The indicator is.assigned
to the PRINTER file and turns on when the overflow line on the page is
passed. This could occur at exception, detail, or total output time. You use
the overflow indicator to condition those lines that you want to print at the
end of one page or at the beginning of another.

Figure 12-2 shows the RPG program cycle related to overflow indicators.

trol-level,
record-identi·
fying, and halt
indicators.

Start

'
Read a record.

Tum on record
identifying indicator.

Change in control field?
If yes, tum on appropriate
control-level indicators.

Perform total output. If
overflow occurs, tum on
the overflow indicator.
If fetch overflow is speci
fied, perform fetch over
flow.

or off. If exception output
Is overflow indicator on?
If so, perform output
operations conditioned
by overflow indicator.

is_ done, tum on overflow
indicator when overflow occurs.

If fetch overflow is specified, perform
fetch overflow. Move data into processing

area. Tum field indicators
on or off.

Figure 12-2. RPG Program Cycle for Overflow Indicators

12-4

The 2-character entries allowed as overflow indicators are:

OA through OG

ov

On the file description specifications:

• Columns 33 and 34 define an overflow indicator for each PRINTER file.
If no overflow indicator is defined, the RPG program automatically
handles overflow.

On the calculation specifications:

• Columns 9 through 17 can contain the overflow indicator defined in
columns 33 and 34 of the file description specifications to condition
calculations to be performed when overflow occurs.

• Columns 54 through 59 can contain the overflow indicator defined in
columns 33 and 34 of the file description specifications to be set on or

, off as the result of calculations.

On the output specifications:

• Columns 23 thrqugh 31 must contain the overflow indicator defined in
columns 33 and 34 of the file description specifications to condition all
lines that are to be written to the associated printer when overflow
occurs.

For more information on using overflow indicators, see Handling Overflow
in Chapter 7, Using a PRINTER File.

Chapter 12. Using Indicators 12-5

Record-Identifying Indicators

12-6.

You assign a record-identifying indicator to each type of record in the input
file. You can also use a record-identifying indicator to associate a field
with a particular record type by using the record-identifying indicator as a
field-record-relation indicator. You do not have to assign the
record-identifying indicators in any order. If certain operations in
calculations and output are to be done for one record type only, you can
condition those operations by the appropriate record-identifying indicator.
By this method you can tell the RPG program what operations to do when
it processes a specific record type. When several record types are specified
in an OR relationship, all fields that do not have a field-record-relation
indicator in columns 63 and 64 of the input specifications are associated
with all record types in the OR relationship.

After the program selects the next record to process, it turns on the
record-identifying indicator that you assigned to that record type. You can
use this indicator to condition total and detail operations. This indicator is
turned off by RPG before input occurs at input time of the RPG cycle.

Note: If you use a READ, READE, READP, or CHAIN operation in your
program, input occurs during calculation time and your record-identifying
indicators are not turned off before the READ, READE, READP, or CHAIN
operation.

Figure 12-3 shows specific steps in the RPG program cycle related to
record-identifying indicators.

The 2-character entries allowed as record-identifying indicators are:

01 through 99

Hl through H9

Ll through L9

LR

On the input specifications.

• Columns 19 and 20 define the record-identifying indicator. These
columns should contain a different record-identifying indicator for each
record type in a file.

• A record-identifying indicator must be assigned to the first input record
in a WORKSTN file if this record is blank. The first input record is
blank unless:

A read under format is performed.
PDATA-YES is specified in the procedure that called the program
(see the explanation of the $MAINT utility program in the System
Reference manual or the explanation of end of job in the Source
Entry Utility (SEU) Guide.
Output to the WORKSTN file was performed first.

\

Note: When you use a control-level indicator (Ll through L9) as a
record-identifying indicator and it turns on to indicate the type of record
read, only that one control-level indicator turns on. All lower control-level
indicators that you used remain unchanged.

Turn off control·
level indicators and
record-identifying
indicators.

Perform detail
output.

Perform detail
calculations.

Move data into
processing area.

Start

Read a
record.

Turn on record·
identifying indicator
identifying the record
selected for processing.

Change in control
field? If yes, turn
on control-level
indicators.

Perform total
calculations.

Perform total output.

Figure 12-3. RPG Program Cycle for Record-Identifying Indicators

Chapter 12. Using Indicators 12-7

AND Relationship

OR Relationship

12-8

Each line on the input specifications can contain up to three identifying
characters (columns 27, 34, and 41). If the identification code you are using
consists of more than three characters, an AND line must be used to
describe the additional characters. To specify an AND line, write AND in
columns 14 through 16.

You can use any number of AND lines to describe the record-identifying
code for a record sequence. If AND lines and OR lines are combined, the
total number of OR lines for one record sequence cannot be more than 20
and any number of AND lines can be used. The record must contain all the
characters specified as its record identification code before the
record-identifying indicator turns on. You cannot use a record-identifying
indicator in th.e AND line of an AND relationship. AND lines are not
allowed on CONSOLE files used for interactive data entry.

If a particular record type can be identified by two different codes, you must
use OR lines to specify that either of the codes can be present to identify
the record. You can use up to 20 OR lines for each record sequence. If OR
lines and AND lines are combined, the total number of OR lines for one
record sequence cannot be more than 20 and any number of AND lines can
be used. To specify an OR line, write the word OR in columns 14 and 15.

You can use the OR relationship to assign the same record-identifying
indicator to two or more different record types if the same operation is to be
done on all record types. You can also use record-identifying indicators on
OR lines or every record type in the OR relationship that requires special
processing.

When several record types are used in an OR relationship, all fields that do
not have a field-record-relation indicator are associated with all record
types in the OR relationship.

~1e of Using Record-Identifying Indicators

You can use record-identifying indicators in a billing program. Suppose
that you keep a monthly file that contains records of purchases and
payments made by each customer. In addition, the file contains a balance
forward record for each customer. Figure 12-4 shows the three input record
types used and the output records required.

BALFOR A NUM PURCHS S NUM

'--'
Control Field

Record Identification Code

(Number)

Balance
Forward
Record

(Purchase)

(Name)

(Payments)

(Balance)

Purchase
Record

(Balance)*

Figure 12-4. Input and Output for a Billing Program

Payment
Record

Chapter 12. Using Indicators 12-9

'
Program

Programmer Jo. ..

I
t-:- Filename l or

Record Name w.,
II. ill:::::)
~ 2s Una E

of Ii Om 0

~ si;;::~"' ~ :i a
3 • 5 • 7 8 9 10 11 12 13 14 16 18 17 18

0 1 I~{ IL It Nlr.. 17 ~rn:
0 2 I
0 3 I
0 • I
0 5 I
0 6 I
0 1 I
0 8 I
0 9 I
1 0 I
1 1 I

c Indicators ...
-I

AL I ~ ~ iE -g

! .§ ~
Line ~iii: 1 85 i ~ 15 z

The three record types are defined on the input specifications. Each type
has a different record-identifying indicator. The record-identifying
indicators are then used to show which operations are to be done for each
·record type. Figure 12-5 shows the input, calculation, and output
specifications for the program. Use these specifications to help you follow,
step by step, the operations done in the program cycles shown in Figure
12-6.

RPG INPUT SPECIFICATIONS GX21-8094 UM/060°
Printed in U.S.A. 1 Card Electro Number J 1 2 75 76 77 78 79 80

Graphic 1 1
Pega[J]ol -

Keying :=;:atlonl I I I I I I J Instruction 1 1 Key

f
External Field Name Field

Field Location Indicators
Record Identification Codes

~
~

~~ .1 b 'ii
1 2 3 From To RPG 1111

..
l' ~

IC

¥ ~ ~~ '!! 1:· ii ;Ji ..
~ Field Name

J
z....,

~ct ii
~e

Data Structure ... ! .~r Plus Ml..., or

j Position Pos1t1on ~e~ Position ~ j:; .§ jj .•

! Bl1nk i ;;; • ji)fj l5 N • Jl @ Occurs s 8
..

u 6 zu 6"' a.. n Times Length :16
19 20 21 22 23 24 25 26 l:z1lm 29 30 31 32 33 134 35 36 37 38 39 .. 41 42 43 44 46 ""' 47 48 49 60 61 625354861586758 11 ~ 17 70 71 12 73 74

lilZ il lriJ:l
J ~ " II<! 1
~ ~ NIA fl F-1

IJ1t 1..,, Flri:c
.... iq~ !rill

~ I1 N IV
1=-11 1.21 Ir le:

~ Irle:
~ 17 N ti

l~l fil T

ReRllt Field Resultlng
lndlclton
Arlthmltic

.1 % PlusIMinu'l Zero
Factor 1 Operation Factor 2 l~ Com- Comments

Name Length 1! 1>2fi<2f1-2
Lookup(Factor 2iii

H High Low F.quel
3 •• • 7 • • 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 ~29303132 33 34 36 38 37 38 39 40 41 42 la 44 46 48 47 48 48 ISO 51 63 63 57 8081828384118887•• 7071727374

0 1 ~ ~IZ ~ A'" ll"L""I ~ [F1 re
0 2 c I:=!~ FllE ITP' NT IAlF! fC
0 3 ll.i .• -··

··-·.----·--· ...
0 ~l Spaco Skip Output I ndiceton

~
Comma

Zero Bll1nce1
No Sign CR - X• Remove

I-- Field Name to Print Plu1SISJ1 6·8•
e~ or y. o.te

Filename :i: -

~! i1 i!d
v .. Vas 1 A J Filld Edit

UHr
!. i~ EXCPT Name v .. No 2 8 K Osflned
~ or z •Zero

Record Name ... ~ .;" a: Position No v .. 3 c L Supp-Line
~ e

! H No No • D M
~ 4-L ~

In
A DD Output ~

~
l5 i s *AUTO ia ~ Record ar Constant or Edit Word
z z wm ii::. 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 18 17 ti 19 20 21 Z2 23 24 •

3 • •• 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 3& 38 37 38 39 40 41 42 43 ~~-~GG~~63U646666~08HUl1631364666617660870 71 72 73 74

0 1 ll t:::it2~ fj i2
0 2 ~ ii Iii II Ii:
0 3 lo lllA I- Ir- ~11•
0 4 to IJili F ~,,

0 5 10 Jr 1 12~
0 6 I<> p ... 1 .. ~rl
0 1 ~ J. 1-:a~
0 8 I<>

ar .. IT ~
0 9 10 h 11~ !Lil
1 0 10 BIA IF ~ '~ 1 1 ~ ~rt "I~ ,
1 2 10

"

Figure 12-6. Specifications Using Record-Identifying Indicators for a Billing Program

12-10

(
\

-i--------.---1-6_4_.5 : 7421 A 1 ~; 6431 S 164{ 2500 B 1670 HENRY ABLE 49

.. R-ec_o_r_d_1d_e_n_t-if-1c-at-io_n_eo_d_e_. _'\,

1645 JOE AARON 47.68
\
\
\
\
\

',,
' Start ' ',, ~

'~-------

' ' ',,
~ Turn off control

level indicator L 1
and record-identifying

indicator 10.

', Read a record.

Perform detail

Perform detail

Move data into

----- t B 1645 JOE AARON 47681

Turn on record

identifying indicator 10.

. Change in control field?
Yes, turn on control
level indicator L 1.

Bypass total

operations.

Figure 12-6 (Part 1 of 3). RPG Program Cycle for Record-Identifying Indicators

Chapter 12. Using Indicators 12-11

\
\
\
\
\
\
\
\
\
\

Turn off record·
identifying indicator
20.

Perform detail
output.

Perform detail
calculations:

4768 (BALFOR)
742 (PURCHS)

5510 (BALFOR)

Move data
into processing

643 s 1645

'

Start

~
' ',, ,

Second
Cycle

',Read a record.

~3

Turn on
record-identifying
indicator 20.

Change in
·control field? No.

Figure 12-6 (Part 2 of 3). RPG Program Cycle for Record-Identifying Indicators

12-12

1645 JOE AARON 47.68

7.42
6.43

\
\
\
\
\

\
\
\
\
\
\

\
\

\
\

\
\
\
\
\

Turn off record
identifying indicator
20.

Perform detail

Perform detail
calculations:

5510 (BALFOR)
643 (PURCHS)

6153 (BALFOR)

Move data
into processing
area.

\
\
\

Start

~
\
\
\
\

2500 B 1670 HENRY ABLE

~\\ Read a record.

~---'83

Turn on
record-identifying
indicator 20.

Figure 12-6 (Part 3 of 3). RPG Program Cycle for Record-Identifying Indicators

Chapter 12. Using Indicators 12-13

Control-Level Indicators

12-14

A control-level indicator tells the program when calaulation or output.
operations are to be done. You can assign a control-level indicator to any
field; this field is then known as a control field. The program checks the
field for a change in information. When the information changes, a control
break occurs. All records that have the same information in the control
field are known as a control group.

Whenever the program reads a record containing a control field, it
compares the data in the control field with data in the same control field
from the previous record. When a control break occurs, the control-level
indicator turns on. Operations conditioned by the control-level indicator
are then performed.

There are nine control levels (level 1 through level 9). Each control level
has a corresponding control-level indicator (Ll through L9) .. When a
control-level indicator turns on, all control-level indicators with a lower
number also turn on. For example, if indicator L3 turns on, indicators L2
and Ll automatically turn on. However, when a control-level indicator
used as. a record-identifying indicator turns on to indicate the type of record
read, or when the SETON operation turns on a control-level indicator, only
that one control-level indicator turns on. In that case, all lower
control-level indicators remain unchanged.

The 2-character entries allowed as control-level indicators are:

LO

Ll through L9

LR

On the input specifications:

• Columns 59 and 60 define the control-level indicator used to condition
input fields so that the program can check for any change in the
information in this field. Ll through L9 are the only control-level
indicators allowed here.

On the calculation specifications:

• Columns 7 and 8 must contain LO, LR, or the control-level indicator
defined in columns 59 and 60 of the input specifications to specify a
calculation operation to be done when the appropriate control break
occurs at total calculation time.

• Columns 9 through 17 can contain LO, LR, or the control-level indicator
defined in columns 59 and 60 of the input specifications to control the
conditions under which a detail calculation operation is done on the
record that caused the control break.

On the output specifications:

• Columns 23 through 31 can contain LO, LR, or the control-level
indicator defined in columns 59 and 60 of the input specifications to tell
the program the conditions under which a total record or field is to be
written. Also, the control-level indicator can condition detail output
operations to be done on the record that caused the control break.

Assigning Control-Level Indicators

The following points apply to control-level indicators:

• If the same control-level indicator is used in more than one record type
or in more than one file, the control fields associated with that
control-level indicator must be the same length and same type
(alphabetic or numeric).

• In the same record type, record positions in control fields assigned
different control-level indicators can overlap (see Figure 12-7).
However, the total number of positions assigned as control fields must
not be greater than 144.

• Field names are ignored in control-level operations. Therefore, fields
from different record types that have been assigned the same
control-level indicator can have the same name.

• Control levels need not be assigned in any order. For example, you can
use indicator L2 before Ll. You can also leave gaps in the control
levels you assign.

• When numeric control fields with decimal positions are compared to
determine whether a control break has occurred, they are always
treated as if they have no decimal positions. For instance, 3.46 is
considered equal to 346.

• If a field is specified as numeric, only the digit portion determines
whether a control break has occurred. This means that a field is always
considered to be positive. For instance, -5 is considered equal to + 5.

• All control fields given the same control-level indicator are considered
numeric if any one of those control fields is described as numeric (that
is, if column 52 of the calculation specifications has an entry).
Therefore, when numeric control fields are compared to determine
whether the information has changed, only the digit portion of each
character is compared.

• Control fields are initialized to hexadecimal zeros.

Chapter 12. Using Indicators 12-15

12-16

1234 56 7891011121314151617 1819202122232426 2627282930 ..___,,,
Control Field 2

Figure 12-7. Overlapping Control Fields in a Disk Record

• A control break can occur after the first record containing a control
field is read. The control fields in this record are compared with an
area in storage that contains hexadecimal zeros. Because the fields
being compared are not from two different records, total calculations
and total output operations are bypassed for this cycle. A control break
does occur then, but it is not considered to be a true control break.

• If different record types in a file do not have the same number of
control fields, unwanted control breaks can occur. See Figure 12-8 for
an example of how to avoid unwanted control breaks.

• A control field cannot he specified as having a binary format (B in
column 43 of the input specifications). However, it can be specified as
having a packed-decimal format (P in column 43 of the input
specifications).

• A control field can he related to a particular record type in an OR
relationship with a field-record-relation indicator. If the control field
does not have a field-record-relation indicator, the control field is used
with all record types in the OR relationship.

\

A

2

(L2)

Salesman
Number

3 4

Salesman
Name

Salesman Record

B

16 2

(L2) (L1)

Salesman Item Number Amount
Number

3 4 6 7

Item Record

Different record types normally contain the same number of control fields. However, some
applications require a different number of control fields in some records.

9

The salesman records contain only the L2 control field. The item records contain both Ll and L2
control fields. With normal RPG coding, an unwanted control break is created by the first item
record following the salesman record. This is recognized by an Ll control break immediately
following the salesman record and results in an asterisk being printed on the line below the salesman
record.

01 JOHN SMITH ~Unwanted 01 JOHN SMITH
* Control

100 3 Break 100 3
100 2 100 2

5 * 5 *
101 4 101 4

4 * 4 *
9 ** 9 **

02 JANE DOE /Unwanted 02 JANE DOE
Control

100 6 Break 100 6
100 2 100 2

8 * 8 *
101 3 101 3

3 * 3 *
11 ** 11 **

20 20

Output Showing Unwanted Control-Level Break Corrected Output

Figure 12-8 (Part 1 of 3). Unwanted Control Breaks

Chapter 12. Using Indicators 12-17

I f
External Field Name Field

Field Location
Indicators i---.., Filename

J
Record Identification Codes

~ ·I or .. j~ ~
~

Record Name 1 2 3 From To RPG -a.a ..
!

IC :; i ~ ~t Field Name ~ Ji• j g - : ii Zero
Line

~ g§I ~d i§
Data Structure g Plua Minus or .q Position Position Position .Ii ::i 1i :_

! Bl1nk O.ta tMto ~H ,Occurs § Structure j ti ~ '3 6 Length :i~
Name ! IC nTimes

3 • •• 7 B 9 10 11 12 13 14 IS 18 18 19 20 21 22 23 24 26 28 27 28 28 30 31 32 33 3 35 38 37 38 41 42 43444&4ti47 48 49 50 61 52 53 54 55 56 87 u
··~

.. , .. •• 70 71 72 73 74

0 1 Iii IJMI I~~ IAIA m [l "IA
0 2 I 2 I_-: lCF !r la
0 3 I y ll~ NIA Mi=.
0 4 I ~~ l12 [i "F
0 6 I ~ I:= IEFll. la
0 6 I Jloj ~ JlF "' l1
0 7 I j 1
0 8 I

c Indicators Result Field Resulting

~ Indicators

1-- ~ I I Arithmetic

~ Plu~Mln~ Zero

d Factor 1 Operation Factor 2

" Compare Comments

Line ~- Name Length t 1>!l.1<,ll1•2
d i ~ s :!:: Lookup(Factor 2)11
if d z j! High Low F.qu1I

3 4 5 • 7 • 10 1112 13 14 16 18 17 18 19 20 21 22 23 24 25 26 27 ~ 29 30 31 32 33 34 38 38 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 53 54 67 68 59 80 81 12 83 84 && ee u ea • 10 11 12 13 14

0 , It; ~fj tt:.11 "' l1l1
0 2 c ~~ LT I- 1111
0 3 c k'z~ ~lf'llI iii D 11~ rtt ILLl atrn I~~
0 4 le 11 h[J ·r-l1 ~Ir-IT' btJ: 1-'[L m Ir~ I~~
0 5 ck_ i;i L91 11 ~Ir-Ir l~tr lr!J: IRII '.i" cr 1-12
0 6 c

This coding prevents the unwanted control break. Line 01 of the calculation specifications sets on
indicator 11 when the salesman record is read. When the next item record causes an Ll control
break, no total output is printed because indicator 11 is on (line 07 of output specifications). Detail
calculations are then processed for the item record, and line 02 of the calculation specifications sets
indicator 11 off. This allows the normal Ll control break to occur.

Figure 12-8 (Part 2 of 3). Unwanted Control Breaks

12-18

0 ~ - ~ Output Indicators

~
Zero Balances X =Remove w u Space Skip Commas No Sign CR -1---i e JI Field Name to Print Plus Sign 5 .g.

e~ or y ... Date
User :i: • Jd Jd Yes Yes 1 A J Field Edit & Filename ii~ i! EXCPT Name Yes No 2 B K Defined

{:: or Z •Zero
{:: R #. a: Position No y,. 3 c L Suppren Line

~
Record Name 115" " p No No 4 D M

* • in

If ~ !i. C< u Output ::i

~
0 0 0 •AUTO '6 ~ Record "' Constant or Edit Word z z z w"' ;;::

1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 •

3 • •• 7 •• 10 11 12 13 14 15 16 17 18 19 20 :21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 M~~D~~~~~~M~M~M~~~~MMMM~MMW 71 72 73 7,

0 1 011"" 11~ 1111- ~ !j rii
0 2 0 2F lri 1~
0 3 0 NIA ~If 121~
0 4 JO 'I" ~~
0 5 lo lF II Iii Ill".:
0 6 0 IA iw 12111

0 7 0 1 l It IN 11
0 8 0 1 ~tr ~ 2~
0 9 0 ~~ '~I

1 0 lo [j ~
1 1 lo l2tr ~cr ~IF ~i:::
1 2 lo 12 '~ ~ I

1 3 0 11 lj It lie
1 4 0 Rtl ~ti ~II' 121c:
1 5 0

1--+-+-+-

Figure 12-8 (Part 3 of 3). Unwanted Control Breaks

Chapter 12. Using Indicators 12-19

Split Control Fields

I
I-- Filename

1 or
w Record Name

II.
~ ~

Line

1 !
"'" ~$d Structul'9

Nama •• • • 7 8 9 10 11 12 13 14 15 18 17

0 1 IM "]I~ ~A
0 2 I
0 3 I
0 4 I
0 5 I

!
~
jig

If a control field is made up of more than one field of a record, it is known
as a split control field. A split control field is created when the same
indicator is assigned to two or more fields (connected or unconnected) on
the same record type.

All fields in one record that have the same control-level indicators are
combined by the program in the order specified by the input specifications
and are treated as one control field (see Figure 12-9).

The following rules apply to split control fields:

• For one control-level indicator, a field can be split in some record types
and not in others if the field names are different. However, the length
of the field, whether split or not, must be the same in· all record types.

• The length of the portions of a split control field can vary for different
record types if the field names are different. However, the total length
of the portions must always be the same.

• No other specifications can come between lines that describe split
control fields.

• If one section of a split control field is numeric, the whole field is
considered numeric.

• A numeric split control field can have more than 15 characters if no
portion of the split field has more than 15 characters and if the sum of
all control fields is not more than 144 characters.

• A split control field cannot be made up of a packed-decimal field and a
zoned-decimal field. Both portions of the control field must be packed
decimal, or both must be zoned decimal.

External Field Name Field
Field Location lndlcaton Record Identification Codes .

.9

1 2 3 2 ~ = .. ! iii! From To 0 RPG a: ,p ll ~ ! ~~ i Field Name Zan> i= zol li z 0 !Ii !:c ~ Position Pos1t1on Pos1t1on - -- i N :ia ~ " 0 N •

l zuli zoo :l1 u
19 20 21 22 23 24 25 26 27 E._29 30 31 32 33 34 35 36 37 38 39 40

lilJ II M

li ;Ji a: Data Structure .. u Plus Minus or
N .! ::i .§ ~

a: ,, Bl1nk

~!~ Occurs .!! ~8 ~ 8 nTimes Length

41 42 4344454tt47 48 49 50 51 52 53 54 55 58 57 58 58 •• 81 82, 70 71 72 73 74

2'P L~ll lo-Ir ~~Ir ~
jl• 2~ l .l&f t.J
I~~ i~~ ~

~

All portions of a split control field must be assigned the
same control-level indicator.

Figure 12-9. Split Control Fields

12-20

Field Indicators

Field indicators are used to test a field on an input record for a plus, minus,
zero, or blank value. You can use the appropriate field indicator to
condition operations that are done only when a numeric field is plus,
minus, or zero, or when an alphameric field is blank.

Note: A numeric field that is all blanks turns on an indicator used for all
zeros. However, an alphameric field that is all zeros does not turn on an
indicator used for all blanks. You cannot specify indicators in columns 65
through 68 for an alphameric field.

Field indicators turn on or off after data from the record to be processed
moves into the processing area. Figure 12·10 shows the RPG program cycle
related to field indicators.

Chapter 12. Using Indicators, 12-21

control-level
and record
identifying
indicators.

Perform detail
output.

Perform detail
calculations.

Move data into
processing area.
Turn field indica-

Start

~

Read a
record.

Turn on record
identifying
indicator.

Change in
control field?
If yes, turn on
control-level
indicators.

Perform total
calculations.

Perform total
output.

Figure 12-10. RPG Program Cycle for Field Indicators

12-22

For each program cycle, field indicators are set to reflect the result of the
test on a field. If the condition tested for exists, they turn on; if the
condition does not exist, they turn off. After the program tests the result of
a field, a field indicator stays on or off until the program uses the same
indicator as a resulting indicator.

When the indicator is on, any detail and total operations conditioned by the
field indicator can be done before the program resets the indicator by
testing a field. However, at total time the field indicator has the setting
established in the previous cycle.

The following considerations apply to field indicators:

• A numeric input field can be assigned two or three field indicators.
However, only the indicator that signals the result of the test on that
field turns on; the others remain off.

• If the same field indicator is assigned to fields in different record types,
its status is always based on the last record type selected.

• When different field indicators are assigned to fields in different record
types, a field indicator turned on remains on until another record of
that type is read. Similarly, a field indicator assigned to more than one
field within a single record type always reflects the status of the last
field defined.

Field indicators assigned in columns 65 through 70 can also be set on or set
off by SETON or SETOF operations in the calculation specifications.

The 2-character entries allowed as field indicators are:

01 through 99

Hl through H9

Use the 2-character entries 01 through 99 to test whether a numeric field is
plus, minus, zero, or blank. Use the 2-character entries Hl through H9 to
check for an error condition in your data.

On the input specifications:

• Columns 65 and 66 define a field indicator to check for a plus condition.
The indicator turns on if the numeric field is greater than zero.

• Columns 67 and 68 define a field indicator to check for a minus
condition. The indicator turns on if the numeric field is less than zero.

• Columns 69 and 70 define a field indicator to check for zeros or blanks.
The indicator turns on if the numeric field is all zeros or if an
alphameric field is all blanks.

On the output specifications:

• Columns 23 through 31 can contain a 2-character entry Hl through H9
to prevent data that causes an error from being used.

Chapter 12. Using Indicators 12-23

Resulting Indicators

12-24

Resulting indicators signal something about the result of a calculation
operation. You can use a resulting indicator to condition any operation
that depends on the result of the calculation.

You can use a resulting indicator in columns 54 through 59 on the
calculation specifications to reflect the result of an operation, or to indicate
an end-of-file condition, a no-record-found condition, or an exception/error
condition. The indicator specified turns on only if the result field satisfies
the condition being tested for. If the condition tested for is not met, the
indicator is turned off. This indicator can then be used to condition
following calculations or output operations (see Figure 12-11). If you use
the same indicator to test the result of more than one operation, the last
operation performed determines the setting of the indicator.

In Figure 12-11, indicators 10 and 20 in columns 54 through 57 are used to
test for the different conditions in a subtract operation. These indicators
are used to condition the calculations that must be done for a payroll job.
Indicator 10 turns on if the hours worked (HRSWKD) are greater than 40
and is then used to condition all operations necessary to calculate overtime
pay. Indicator 20 turns on if HRSWKD is less than 40. Indicator 20 is also
used to condition other operations. In line 03, if indicator 20 is not on (the
employee worked 40 or more hours), regular pay is calculated based on a
40-hour week. In line 06, if indicator 20 is on (employee worked less than 40
hours), pay is calculated based on less than a 40-hour week.

The 2-character entries allowed as resulting indicators are:

01 through 99

Hl through H9

KA through KN, and KP through KY

Ll through L9

LR

OA through OG, and OV

Ul through US

c Indicators Result Field Resulting

~- lndk:ators

AL I Arithmetk: 1-----i ~ ~ PlusIMin'3: Zero :e
f! Factor 1 Operation Factor 2 g Compare Comments

Name Length ~ 1>~<~1-2 Line 0

~ " ·" Lookup(Factor 2)i

.f 8 ~ ~ Ii ~ Hi{tl Low F.quel z
3 4 • • 7 • 10 1112 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 '2e 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 54 57 60 81 82 83 84 86 88 87 68 • 70 71 72 73 74

0 1
~

0 2 le ~ ~ ~~ rill I'll~ lllZ ~12
0 3 e lf\12 ··a ~ fi ij~ P!Art IL11::1-
0 4 le 11 ~ lt.~ ll "' I] • 1:1 llijj IV ~ I~
0 5 le f1 IPl: ~ p~~
0 6 le ~ ~A lJ

._ fi II!! ~rt
0 7 e f-+-. -·I-+- ···-

Figure 12-11. Conditioning Operation (Resulting Indicators)

On the calculation specifications:

• Columns 54 through 59 define the resulting indicator to be turned on or
off by the SETON or SETOF operation codes. The headings (high, low,
and equal) for columns 54 through 59 have no meaning for SETON or
SETOF operations.

• Columns 54 and 55 (plus or high) must define a resulting indicator when
testing:

Whether the result field in an arithmetic operation is positive
Whether factor 1 is higher than factor 2 in a compare (COMP)
operation
Whether factor 2 is higher than factor 1 in an array or table
LOKUP operation
Whether a CHAIN operation is not successful
Whether each bit named in factor 2 is off for a TESTB operation
Whether the character tested in a TESTZ operation is one of the
following: &, A through I
Whether the numeric field entered in a KEY operation is positive
Whether the system operator has requested shutdown on a SHTDN
operation

• Columns 56 and 57 (minus or low) must define a resulting indicator
when testing:

Whether the result field in an arithmetic operation is negative
Whether factor 1 is lower than factor 2 in a compare (COMP)
operation
Whether factor 2 is lower than factor 1 in a table or array LOKUP
operation
Whether the bits named in factor 2 are of mixed status (some bits
on, some bits off) for a TESTB operation
Whether the character tested in a TESTZ operation is one of the
following: - (minus), J through R
Whether the numeric field entered in a KEY operation is negative
Whether the ACQ, REL, NEXT, READ, or POST operation to a
WORKSTN file is not successful

Chapter 12. Using Indicators 12-25

I

12-26

• Columns 58 and 59 (zero or equal) must define a resulting indicator
when testing:

Whether the result field in an arithmetic operation is zero
Whether factor 1 is equal to factor 2 in a compare (COMP)
operation
Whether factor 2 is equal to factor 1 in a table or array LOKUP
operation
Whether the program reached the end of a file that is read by a
READ operation, the end of an equal key for a READE operation,
or the beginning of file condition for a READP operation.
Whether each bit named in factor 2 is on for a TESTB operation
Whether the character tested in a TESTZ operation is any character
other than&, A through I, - (minus), or J through R
Whether the numeric field entered in a KEY operation is zero or an
alphameric field is blank

Indicators Not Defined on the RPG Specifications

You do not need to define all the indicators in your program to condition
operations. External indicators (Ul-U8) are defined by a control language
statement or by a previous RPG program. The internal indicators first-page
(IP) and last-record (LR) are defined for you by the RPG program cycle
itself. The matching-record indicator (MR) is defined for you if you use Ml
through M9 in columns 61 and 62 of the input specifications.

External Indicators

External indicators are usually set prior to processing by the control
language SWITCH statement or by a previous RPG program. External
indicators are automatically read into the program when the program
begins running and are passed to other programs at the end of the job.
Their setting can be changed during processing, allowing the program to
change the status of these indicators. However, if an external indicator
conditions a file, that indicator must be set on before the program is loaded
in order to use the file in the program.

Use external indicators to:

• . Determine whether a file is to be used for a program

• Condition calculation operations

• Condition output operations

• Indicate the relation of a field to a record

• Provide communication between programs

Note: You can also use SUBR20 to read and write external indicators. For
more information, see Chapter 6, Using a WORKSTN File.

Chapter 12. Using Indicators 12-27

12-28

The 2-character entries allowed as external indicators are:

Ul through US

On the file description specifications:

• Columns 71 and 72 can contain an external indicator to condition a file.
A file conditioned by an external indicator is used only when the
indicator is on. When the indicator is off, the file is treated as though
the program reached the end of the file; that is, no records can be read
from or written to the file.

On the input specifications:

• Columns 63 and 64 can contain an external indicator to tell the program
to accept and use data from a particular field only when the external
indicator is on.

On the calculation specifications:

• Columns 9 through 17 can contain external indicators to condition
which operations should be done for a specific job. If a file is
conditioned by an external indicator, any calculations that are to be
performed only on that file should be conditioned by the same external
indicator.

On the output specifications:

• Columns 23 through 31 can contain an external indicator to condition
certain output records on external conditions.

If you want to pass information to other programs, you can use external
indicators as resulting indicators.

Internal Indicators

First-Page Indicator

In the first program cycle, the first-page indicator is on during the
beginning of the cycle. Any records conditioned by the first-page indicator
are printed before the first record is read.

The purpose of the first-page indicator is to condition records that are to be
printed on the first page of a report. These records are usually headings
used to identify information found on the page, but they can also be detail
lines.

The first-page indicator is an internal indicator that is defined by the RPG
program cycle itself. It turns on only for the beginning of the first cycle. It
turns off before a record is read and is never used again during the program
(see Figure 12-12),

Chapter 12. Using Indicators 12-29

Start

First
Cycle

Perform heading
and detail output
for which conditions
have been met,
including 1 P output
(first cycle only).

Turn off control
level indicators
L 1-L9 and first
page indicarc;r.-

Figure 12-12. RPG Program Cycle for the First-Page Indicator

12-30

~ 0 - ~
Space "" ~ I-- t: : o--..

~ ~ Filename JJ 8.~ or
Record Name ~~ Line j ~ * A

A4-
A ND

Notice in Figure 12-12 that the program does first-page output and other
heading and detail output first. This happens in every RPG program. The
program writes first-page output and any other heading or detail output for
which specified conditions are met before the first record is read. After the
first cycle, however, it is easier to think of reading a record as the first step
in the cycle.

The only 2-character entry allowed as a first-page indicator is:

lP

On the output specifications:

• Columns 23 through 31 can contain a first-page indicator to condition
lines that are to be printed on only the first page.

You can use the first-page indicator only in columns 23 through 31 of
heading or detail output lines, not with total or exception output lines.
You can use the first-page indicator in an OR relationship with an overflow
indicator to allow printing on every page (see Figure 12-13). You cannot
use the first-page indicator in an AND relationship with control-level
indicators, to condition output for a WORKSTN file, or to condition
calculation operations.

---~

Output Indicators

~
Zero Balances X =Remove Skip Commas No Sign CR -Field Name to Print Plus Sign 5.9 =

Y =Date or

:L :L Ye• Ye• 1 A J User
EXCPT Name Field Edit

Ye• No 2 B K Defined
Z =Zero

a: Pos1t1on No Ye, 3 c L Suppress
~ '1> No No 4 D M .,\! in a:

<{ 85 Output ::i
0 0 0 *AUTO "'~

Record " Constant or Edit Word z z z w"' ii: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
3 4 5 • 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40414243 M•~o••m~m·~-~UMMW~~~~~~~~~w 71 72 73

0 1 olP ~II lb ll It- r: Il!E 1
0 2 lo ~ '\Jl lr~lr ~II I

~ 0 3 0

The first-page (lP) indicator is used when headings are to be printed on the first page only.

0 ~ - ~ Output Indicators

~
Zero Balances X = Remove

~ ~ Space Skip Commas No Sign CR -I----,
- u.

Field Name to Print Plus Sign
5 -9 = e ;;t; or Y =Date
User ;;. ~ ~L l Ye• Ye• 1 A J

!
Filename

8.~ ~ ~ EXCPT Name Field Edit
Defined Ye• No 2 B K Z =Zero or

~~ AA No Ye• 3 c L
Record Name a: Pos1t1on Suppress Line

~ ~

~
~ ;;; in No No 4 D M

~ ~ ~ -g i: Output
a:

A "" --'

~
0 0 0 *AUTO ~~ Record " Constant or Edit Word

f;;i z z z ii: 1 2 3 4 5 • 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

3 4 s 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 #~~O-•N~~~M~~UMMWITT~M~~~~~MW 71 72 73

0 1 o~ ~IJ ~L[.. l3Qri ;j IJ
0 2 lo ~ " 0 3 0 ~ 'IA ~lrlfi NII I

0 4 lo

The first-page (lP) indicator and an overflow indicator can be used to print headings on every page.

Figure 12-13. First-Page Indicator

Chapter 12. Using Indicators 12-31

Last-Record Indicator

12-32

You use the last-record indicator to condition all operations done at the end
of your program. These operations usually include calculating totals for all
records or writing summary information. When the last-record indicator
turns on, the control-level indicators Ll through L9 also turn on. Thus, all
total operations conditioned by Ll through L9 and LR are performed. See
Figure 12-14 for the specific steps that occur at the end of a job.

The RPG program cycle sets on the last-record indicator when end of file
occurs for a primary file. End of file occurs for a primary DISK file when
you read past the last record in the file. End of file occurs for a primary
WORKSTN file when:

• All display stations are released (by an R in column 16 of the output
specifications or by the REL operation code) if the program is not a
never-ending program.

• All display stations are released and the operator entered the STOP
SYSTEM command if the program is a never-ending program.

You must set on the last-record indicator if:

• The program contains no primary file.

• KEYBORD is specified as the device for a primary input file.

If you use any of the LO through L9 indicators in an OR relationship with a
last-record (LR) indicator, the specified operation is done twice when LR is
on. One operation is done at total time and the other during last-record
(LR) processing.

Once the LR indicator has been set on, it must not be set off.

Halt

Perform total

Start

Last
Cycle

Perform
total

Figure 12-14. RPG Program Cycle for the Last-Record Indicator

If so, turn
on all control
level indicators
and last-record
indicator.

Chapter 12. Using Indicators 12-33

12-34

The only 2-character entry allowed as a last-record indicator is:

LR

On the input specifications:

• Columns 19 and 20 can contain LR as a record-identifying indicator.

On the calculation specifications:

• Columns 7 and 8 must contain LR for all operations to be done at the
end of the job. When the last-record indicator turns on at the end of
the job, the other control-level indicators you specified also turn on.

• Columns 9 through 17 can contain LR to condition operations when the
last-record indicator turns on during calculations.

• Columns 54 through 59 can contain LR except for the SETOF operation.
When the last-record indicator turns on in calculations, the other
control-level indicators you specified do not turn on until the beginning
of the next cycle.

On the output specifications:

• Columns 23 through 31 can contain LR to condition output after all
records are processed.

Matching-Record Indicator

Use the matching-record indicator only when you are processing primary
and secondary files. Its purpose is to indicate when fields or records from
different files match. The matching-record indicator is set on or off only
after total operations are performed. Thus, at detail time, it always signals
the matching status of the record just selected for processing; at total time,
it reflects the matching status of the previous record.

In processing primary and secondary files, you must specify match fields to
compare records from two or more input or update files to determine which
record is to be selected for processing. You can use one field, many fields,
or an entire record to match records. Whenever the contents of the match
field from the primary file record are the same as the contents of the match
field from a secondary file record, the matching-record (MR) indicator turns
on. The matching-record indicator can then be used to condition those
operations that are to be done only when records match.

Note: All match fields that have no field-record-relation indicator should
be described before those that do.

For more information on processing primary and secondary files, see
Chapter 11.

Figure 12-15 shows the general steps in the RPG program cycle for
programs that use more than one input file.

Chapter 12. Using Indicators 12-35

indicator is on.

output.

Perform detail cal
. culations. Turn
resulting indicators
in calculations
on or off.

Move data into
processing area.
Turn field indica-

control-level,
record-identi
fying, and halt
indicators.

Turn matching-record
indicator on or off.

Perform total
output.

Read a
record.

conditions met?

Are primary and
secondary files being
used? If so, determine
the next record to
process .

Turn on record
identifying indica
tors.

Change in control field?
· If yes, turn on control
level indicators.

Perform total
calculations. Turn
resulting indicators
in calculations on or
off.

Figtire 12-11.i. RPG Program. Cycle for MatehinJ Records

12-36

Logic used to select
the record to process
when primary and
secondary files are
used.

The only 2-character entry allowed as a matching-record indicator is:

MR

On the input specifications:

• Columns 6J and 62 must contain the matching-record indicator to tell
the program to accept and use data from a particular field when fields
or records from different files match.

On the calculation specifications:

• Columns 9 through 17 must contain the matching-record indicator to
condition an operation that is to be done only when matching records
are found.

On the output specifications:

• Columns 23 through 31 must contain the matching-record indicator to
tell the program to write a line or field when matching records are
found.

Chapter 12. Using Indicators 12-37

CONDITIONING INDICATORS

The following indicators are not set on or off when used as conditioning
indicators. You can change the status (on or off) only by defining the
indicator to represent a certain condition.

Conditioning indicators cannot be used on the END operation of the CAS
group or the IF group.

File-Conditioning Indicators

12-38

The purpose of the file-conditioning indicator is to condition a file so that
the program uses that file only when the file-conditioning indicator is on.
When the file-conditioning indicator is off at the beginning of the program,
the file is treated as though the end of the file is reached; in other words,
no records can be read from or written to the file.

The 2-character entries allowed as file-conditioning indicators are:

Ul through U8

On the file description specifications:

• Columns 71 and 72 can contain a file-conditioning indicator to
determine whether a file is to be used for a job.

Field-Record-Relation Indicators

Field-record-relation indicators are used to associate fields with a particular
record type when that record type is one of several in an OR relationship.
The field described on the specification line is available for input only if the
indicator specified in the field record relation entry is on or if the entry is
blank. If the entry is blank, the field is common to all record types defined
by the OR relationship.

An indicator that was previously defined in the program can also be used as
a field-record-relation indicator. Control fields (specified by a control-level
indicator in columns 59 and 60 on the input specifications) and match fields
(specified by a match value in columns 61 and 62 on the input
specifications) can also be related to a particular record type in an OR
relationship by a field-record-relation indicator. Control fields or match
fields in the OR relationship that do not have a field-record-relation
indicator are used with all record types in the OR relationship.

When two control fields have the same control-level indicator or two match
fields have the same match value, a field-record-relation indicator can be
assigned to just one of the control fields or match fields. In this case, the
field with the field-record-relation indicator is used only when that
indicator is on. If none of the field-record-relation indicators are on for
that control field or match field, the field without a field-recotd-relation
indicator is used. Control fields and match fields can only use the
2-character entries 01 through 99 or Hl through H9 in columns 63 and 64.

The 2-character entries allowed as field-record-relation indicators are:

01 through 99

Hl through H9

MR

Ll through L9

Ul through US

On the input specifications:

• Columns 63 and 64 can contain a field-record-relation indicator to
associate fields with a particular record type when that record type is
one of several in an OR relationship.

Chapter 12. Using Indicators 12-39

Assigning Field-Record-Relation Indicators

12-40

When assigning field-record-relation indicators in the input specifications,
consider the following:

• All fields, including match or control fields, that have no
field-record-relation indicator should be described before those that do.

• All fields having the same field-record-rnlation indicator should be
defined on consecutive specification lines for more efficient use of
storage. These fields can, however, be entered in any order.

• All portions of a split control field must be assigned the same
field-record-relation indicator and must 'be defined on consecutive
specification lines (see Figure 12-16). For more information on split
c1.mtroi fields, see Split Control Fields earlier in this chapter.

• When the field-record-relation indicator is used with control or match
fields, the field-Tecord-relation indicator must match a
record-identifying indicator for this file, and the match or control fields
must be grouped according to the field-record-relation indicator. The
field-record-relation indicator for control or match fields can only be 01
through 99 or Hl through H9.

• When any match value (Ml through M9) is specified for a field without
a field-record-relation indicator, all match values used must be specified
once without a field-record-relation indicator. If all match fields are not
common to all records, a dummy match field should be used (see Figure
12-17),

FLD1A FLDA
~ ~
I I I I

FLD2B FLD1B FLD2A
~
I I I

123458789101112131415161718192021 22232426282728293031323334353637383940414243444648474849505152535465565758 5960616263646566676869 70 717273 74 75767

Record Identification Code = 1

FLD1A FLDA FLDC. FLD3B FLD2B FLD3C FLD1B FLD2A FLDB FLD3A

~ ~ ~ y ·~ v .. "
I I I I I I I I I I I I

123 4 66 78 9 10 ,, 12 13 1416 1617 18 19 20212223 24 26 28 27 28 2930 313233 34 36 38 37 38 39 40414243 4446 46 47 48 49 50 51 62 53 54 66 56 57 68 6960 616263 6466 6867 6869 70 71 72 73 74 75 76 7

Record Identification Code = 2

FLD30
~ .FLD3E FLD2B FLD1B FLD2A

I I I I I j l I I I
1234 5 6 7 8910 1112 131415 16 171819 20 21 22 23 2426 26 27 28 2930 313233 34 36 3637 38 39 40414243 44 46 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60616263 6466 88 67 68 69 70 71 72 73 74 75 76 7

Record Identification Code = 3

The record identified by a 1 in position 95 has two split
control fields:

FLD1A and FLD1B
FLD2A and FLD2B

The record with a 2 in position 95 has three split control
fields:

FLD1A and FLD1B
F LD2A and F LD2B
FLD3A, FLDJB, and FLD3C

The third record type, identified by a 3 in position 95,
also has three split control fields:

FLD1A and FLD1B
F LD2A and F LD2B
FLDJD and FLDJE

All portions of the split control field must be assigned ti
same control-level indicator, and all must have the same
field-record-relation entry.

I
1--

j. ~~~ ~
Field Loc11ion

B _ Record ldantificllion Codes ~ 6 I ndlcators Fllan1111e

Reco::N1ma j "'111 .fl!l 1 2 3 From To :i RPG ~ : f J
! ~ ~ P J l Field Name ! i!;l! j Zero

Lint @ ;;e _ - • - l - i J'" D ... Struciuro 11 -g fl!' Plus Minus or
of 1--...,0...,...--.....-0-+A.....-l.11 Ii 1: Position !!. S li Pooltlon !!. C I Position !!. g I ~ .I jj fj :! .., Blonk

StruCIUre A Nto ,I ! I j ll & j § 6 j s 6 .. ~~::. Length .! ~ :I a ~
3 4 I I 7 I 1N'rn'11 12 13 4 ti 11 17 18 19 20 21 22 23 24 ~I 21 ~! p_ 29 30 :it 32 33 .~~ 31 31 37 38 31 40 41 42 43 44 41 4tt 47 48 48 60 11 12 63 14 II 58 17 58 19 80 81~ 13 14 II te 17 ti It 70 71 72 73 7

0 , I II!CIH lll~I !Ci] ICll~ Fi:]
0 2 I
0 3 I
o 4 I

o s I
o a I

o 1 I
o a I

o s I

I 0 I
t I I

I 2 I

I 3 I

I 4 I

I D I
I 8 I

All portions of a split
control field must have
the same field-record
relation entry.

I.lilt

1~ F
1211

1111

Figure 12-16. Field-Record-Relation Indicator (Split Control Field)

Chapter 12. Using Indicators 12-41

M1
EMPNO

Three different record types are found in the input file. All three contain a
match field in positions 1 through 10. Two of them have a second match
field. Because Ml is found on all record types, it can be specified without
an entry in columns 63 and 64. If one match value (Ml through M9) is
specified without field-record-relation entries, all match values must be
specified once without field-record-relation entries. Because the value Ml
is specified without field-record relationship, an M2 value must also be
specified once without field-record relationship. The M2 field is not on all
record types; thus a dummy M2 field must be specified next. The dummy .
field can be given any unique name, but its specified length must be equal
to the length of the true M2 field. The M2 field is then related to the
record types on which it is found by field-record-relation entries (lines 06
and 07).

1 23456789101112131415161718192021222324262627282930

Record-Identifying Indicator 01

M1
EMPNO

M2
DEPT

1 23466789101112131415161718192021222324252627282930

Record-Identifying Indicator 02

M1
EMPNO

M2
DEPT

123 4 6 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 212223 24 26 26 27 28 29 30

Record-Identifying Indicator 03

I i External Field Name Field Location Field

Filename j ~ Record Identification Codas ~ 1 Indicators t---
or "'en fl!! 1 2 1 ~ _:; 15 . l RICl>rd Name 'i ,; f ~ 3 From To :I RPG l ~ ~ J

'" " • I' j .!! Field Name ~ u. u: Zero

Lint .! °"" 0 R i j ~ . Position g ~ ti Po1ition g g e Position ~ ~ ~ i ~ Cle~:: Structure I J I :r I Pl•• Mlnu :; .. k

Structure H"Alf.N+.=-0 z ;u h ~ i S ~ i <:nL... Ti Length § ~ 6 u.
Name n mu

J 4 a I 7 8 8 10 11 12 13 14 11 18 17 18 19 20 21 22 23 24 215 26 21 28 ,. 30 31 32 331~ 35 38 37 38 39 40 41 42 43 44 46 4d 47 48 48 &O 51 12 13 54 II 18 57 II H 80 81 83 13 14 II .. 87. 89 70 71 n 13 74

ot I 1~1~ ~! ~ll ~ v~
02 I ~~ ~~ IJ ~~
c. 3 I
0 4 I
0 5 I
0 8 I
0 7 I
0 8 I

Figure 12-17. Dummy Match Fields

12-42

[j
[j
l2

IJ 11 ji.1[1
11 Iii w, M~ Mlt:
111~ IT Mi;;i ~
~Ii IF" ~ ~ ~

Level-Zero Indicator

The level-zero indicator is always on and cannot be set off with the SETOF
operation code. You need never assign this indicator, but you can use it to
condition operations, especially when no control fields have been assigned.
When a control break occurs, all operations conditioned by control-level
indicators (including the level-zero indicator) are done before those that are
not conditioned. If no control field is assigned, but total calculations are to
be done and total output records are to be written, use the level-zero
indicator (LO) to condition those operations (see Figure 12-18).

The only 2-character entry allowed as a level-zero indicator is:

LO

On the calculation specifications:

• Columns 7 and 8 can contain the level-zero indicator to specify that the
total calculation be done every time.

On the output specifications:

• Columns 23 through 31 can contain the level-zero indicator to define
total output to be done every cycle.

The program (Figure 12-18) shows how total operations can be performed
even though there is no control field (no Ll through L9 indicators).

The program requires:

• A list of items sold in each district

• A total of all sales for each district

• A grand total of all sales in all districts

The input records have ITEM and COST fields and a one-position record
identification field. The records are grouped in ascending sequence by
district. That is, the district 1 records as a group are followed by a blank
record, the district 2 records as a group are followed by a blank record, and
the district 3 records as a group are followed by a blank record.

No field can serve as a control field because the district number is not on
the records. Instead of a control field, the blank record is used to signal a
new district. When the blank record is read, indicator 02 turns on. The
blank record tells the program that total calculations and total output
operations must be done. However, no total operations can be performed
unless they are conditioned by some kind of control-level indicator.

Even though LO is on all the time, it must be used in columns 7 and 8
because some type of control-level indicator must be assigned to all total
operations.

Chapter 12. Using Indicators 12-43

---------'~--------"'~ ----------~---------'
Blank District 2 Blank District 3 Blank District 1

Records Record Records _Record Records Record

I f
External Field Name

Field Location
I-- Filename ~ Record Identification Codes

~ or ~
en r~ & ;;; Record Name l 1 2 3 From To RPG & :::i ~ ~ ll ~ Field Name "j ~ !n= ; ;z rr: !I Lina j zci ~el Data Structure ... ~Q p~ g
-~ i Position Position Position .~ Dm

~
- N " i i) c5 j§ Occurs ~ s Structure 8 rr: j i) ll oh nTimes Length

Ne,..
3 • • a 7 8 9 10 11 12 13 14 16 18 18 19 20 21 22 23 24 26 28 21(2e 29 30 31 32 33 I"' .. ,. ., .. 38140 41 42 43444641147 48 48 60 51 52 53 54 55 61 57 58
0 1 I[l 1u~ IL It JjiJA It.I ~ 11'1 11
0 2 I 11~ ~ ~ll
0 3 I ~IQ ~lr2 ~ti IE.If'
0 4 I IU r.a j Ir
0 5 I

C I~ ~~ ~
~- lndlcl!On

I-- 9 _ T Arithmetic

- g Ad Ad .1 % PluUMln.!!![Zoro
1 ~ :i: Foctor 1 Operation Factor 2 l l Compare

Line /: rr:" Nama Length J f 1 >2 ~2 1 •2

~ J "'· i; i; i; 'K ~ LockupfFmtor 2)11

j ~
-11-11
il ~ i f .r rr:

:15 ~
·~

.. ..

District4
Records

Field
Indicators

Zero
Ptut Minus or

Blank

.. _ .. 87 70

Comments

11 72 73 74

,f 5 2 2 2 cl HI_, Low F.qu1I
3 4 6 8 7 8 9 10 11 12 13 14 115 18 17 18 11 20 21 22 23 24 :ZB 29 27 f2a 29 30 :n 32 33 :M 31 31 a7 38 39 40 41 42 43 44 46 48 47 48 41 IO 11 12 13 14 II 11 87 II 158 IO 11 12 13 14 II II 17 • • 70 71 72 73 74

0 1 c w;lt lf'~IJ IA II U.11i.1ll .I~ LI U 12
0 2 c
0 3 c
0 4 c
0 5 c 12 ~12 ntlc;lJ ll _l Ll ll l
0 8 c Fi 111.,ll II .l tl
0 7 c

Figure 12-18 (Part 1 of 2). Use of the Level-Zero (LO) Indicator

12-44

0
I---

!
Line ~

Filename
or

Record Name

@1 Space Skip Output Indicators ~ Commas Zert:~~::~es NoSign CR _ X=Remove

~ ~ Fieldo~ame ~ Yes 1 A y'"' ~~~Sign 5 .g"'

!. ~ ! } J EXCPT Name Yes J Field Edit User
&~ ~ ,! And And Yes No 2 B K z =Zero Defined

~ ~ • rJ ~ in°s1t1on ~~ ~~s ! b ~ Suppress

Wo ~ ! 85 Output ~
o R b ~ zO *AUTO :6 ~ Record iii Constant or Edit Word
~ z ~ w m ti:" 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 83 64 66 66 67 88 89 70 71 72 73 74

o ' Olt'l. a
0 2 0

o 3 lo
o • lo
0 5 0

0 6 0

0 7 lq
0 8 0

0 9 0

' o lo

Format of the
Printed Report

J102
J202
K450
8231

G10H
G10K
A126

4.50
3.75
2.98
9.08

20.31 *

92.79
98.89

4.29

195.97 *

216.28**

[
I ti 11-_.-i

II~
l lU..DIJ~

l'ill .. ~ ,

b] [~

Figure 12-18 (Part 2 of 2). Use of the Level-Zero (LO) Indicator

Chapter 12. Using Indicators 12-45

Command-Key Indicators

12-46

There are 24 command keys. Each one corresponds to a separate
command-key indicator:

Command Command-Key Keyboard Keys Command Command-Key Keyboard Keys
Key

l

2

3

4

5

6

7

8

9

10

11

12

Indicator To Press Key Indicator To Press
KA Cmd, l 13 KM Cmd, Shift, I

KB Cmd,2 14 KN Cmd, Shift, @

KC Cmd, 3 15 KP Cmd, Shift, #

KD Cmd,4 16 KQ Cmd, Shift, $

KE Cmd, 5 17 KR Cmd, Shift, %

KF Cmd,6 18 KS Cmd, Shift, -,

KG Cmd, 7 19 KT Cmd, Shift, &

KH Cmd, 8 20 KU Cmd, Shift, *

KI Cmd,9 21 KV Cmd, Shift, (

K.J Cmd, 0 22 KW Cmd, Shift,)

KK Cmd,- 23 KX Cmd, Shift, _

KL Cmd, = 24 KY Cmd, Shift, +

Note: The keyboard keys may vary, depending on what type of keyboard
you have.

The purpose of command-key indicators is:

• To condition calculation and output operations for a program with a
WORKSTN or KEYBORD file. All 24 command-key indicators are
defined for a WORKSTN file.

• To specify what command keys the person using a display station can
press for a SET operation with a KEYBORD file. To tell the person
how you used the command keys in your program, you can fill out the
template assignment form on the IBM 5251 Display Station Keyboard
Template Assignment Sheet and Display Screen Layout Sheet.

On the calculation specifications:

• Columns 9 through 17 can contain command-key indicators that are
used with a KEYBORD file or a WORKSTN file to condition
calculation operations.

• Columns 54 through 59 can contain a command-key indicator for a SET
or SETOF operation.

When a SET operation occurs, only the command keys in columns 54
through 59 for that SET operation can be pressed at that time. From
one to three command keys can be entered for each SET operation. If
one or two command keys are specified, they can appear in any of the
three sets of columns.

On the output specifications:

• Columns 23 through 31 can contain command-key indicators that are
used with a KEYBORD file or with a WORKSTN file to condition
output operations. If a KEYBORD file is used, any command keys
entered in these columns must also be coded in columns 54 through 59
of the calculation specifications for a SET operation.

When the program allows the person using the display station to enter data
from the keyboard, all command-key indicators are turned off. If the person
presses a command key, the corresponding command-key indicator turns on.

Chapter 12. Using Indicators 12-47

Halt Indicators

12-48

The purpose of halt indicators is to stop the program when an unacceptable
condition exists. You can use halt indicators as record-identifying, field, or
resulting indicators. When you use a halt indicator as a record-identifying
indicator, a halt is caused by a specific type of record. When you use a halt
indicator as a field indicator, a halt is caused by incorrect input data.
When you use a halt indicator as a resulting indicator, a halt is caused by
incorrect results from calculations.

A halt indicator can turn on at one of four times in the program cycle,
depending on how you use it (see Figure 12-19). The program does not halt
immediately when a halt indicator turns on. All total and detail operations
remaining in the cycle are performed first; then the program halts. This
means that the program completes processing the information from the
record that caused the halt. Therefore, you must write specifications that
bypass calculation and output operations when an error occurs.

When the halt is issued, you have the following options to choose from:

• 0-Continue: Control is returned to the program, and processing
continues.

• 2-Controlled Cancel: End-of-job operations specified by the program are
done, tables are dumped, and file labels are cataloged.

• 3-Immediate Cancel: The job is canceled. Any data created or work
done by previous programs in this job is saved. Any records added or
updates made to existing files by the current program are saved.
Records deleted by the current program no longer exist.

If you wish to display your own message text when a halt indicator is on,
you must create a message member with message identification code (MIC)
numbers of 0101 through 0109. MIC 0100 is issued when all Halt indicators
are on at once. MIC 0101 corresponds to Hl, 0102 to H2, and so on. You
must also have a control language MEMBER statement in the procedure
that runs the program. See Using a Message Member in Chapter 9.

Perform detail
output.

Perform detail
calculation. Turn
halt indicators
used as resulting
indicators on or off.

Halt

selected into processing
area. Turn halt indica·
tors used as field indica·

Start

Read a
record.

Turn on halt

used as record
identifying
indicators.

Change in
control field?
If not, there is
no control
field.

If total calculations were
done, halt indicators used
as a resulting indicators
would be turned on or off.

Figure 12-19. RPG Program Cycle for Halt Indicators

Chapter 12. Using Indicators 12-49

12-50

The 2-character entries allowed as halt indicators are:

Hl through H9

On the input specifications:

• Columns 19 and 20 can contain a halt indicator to be used as a
record-identifying indicator.

• Columns 63 and 64 can contain a halt indicator to be used as a
field-record-relation indicator.

• Columns 65 through 70 can contain a halt indicator to prevent a
calculation or output operation from being done if the program finds a
specified error condition in the input data.

On the calculation specifications:

• Columns 9 through 17 can contain a halt indicator to condition
calculation operations.

• Columns 54 through 59 can contain a halt indicator which is set on or
set off as the result of an operation.

On the output specifications:

• Columns 23 through 31 can contain a halt indicator to prevent or
condition output operations if an error condition occurs.

Indicators Conditioning Calculations

Indicators that you use to specify the conditions under which a calculation
is done must be defined elsewhere in the program.

You can use the operation codes SETON or SETOF to turn indicators on or
off. See SETON or SETOF in Chapter 28, Operation Codes, for more
information on these operations. Any indicators you want turned on or off
by the SETON or SETOF operation codes can be specified in any of the
three resulting indicator fields (columns 54 through 59 on the calculation
specifications). However, you cannot turn on command-key indicators with
the SETON operation or turn off the last-record indicator with the SETOF
operation. The headings for columns 54 through 59 (high, low, and equal)
have no meaning for SETON or SETOF operations.

The 2-character entries in columns 9 through 17 of the calculation
specifications must be previously defined as one of the following types of
indicators:

• Overflow indicators

• Record-identifying indicators

• Control-level indicators

• Field indicators

• Resulting indicators

• External indicators

• Internal indicators

On the calculation specifications:

• Columns 9 through 17 can contain conditioning indicators that control
the conditions under which an operation is done.

From one to three indicators (specified in columns 10 and 11, 13 and 14, and
16 and 17) can be used on each line. If the indicator must be off to
condition the operation, place an N before the indicator (in column 9, 12, or
15).

Chapter 12. Using Indicators 12-51

Using Indicators in AN/OR Lines on the Calculation Specifications

Indicators c !I

l l I-- 9-
!I

Lino ! 1;: j i i i
3 4 15 8 7 e 9 10 11 12 13 14 16 11 17

0 1 c i1llf !Z2 !ZI~
0 2 clAN ~
0 3 c~ .. ~It Ql2 ~I=
0 4 C~N r.JJI~
0 6 c

Use columns 7 and 8 of the calculation specifications to specify that lines of
indicators are in an AN/OR relationship. When you use the AN/OR
relationship, many lines of indicators can be grouped together to condition
an operation. A maximum of seven AN lines, seven OR lines, or seven of
any combination of AN and OR lines can condition an operation.

The first line of such a group contains blanks in columns 7 and 8 of the
calculation specifications or an LO through L9, LR, or SR entry if the group
of lines is conditioned by a control-level indicator or is part of a subroutine.
This entry on the first line applies to all AN/OR lines that follow. All lines
after the first line in the group must have an AN or OR entry in columns 7
and 8 of the calculation specifications. The last line of the group contains
the operation and the necessary operands. All lines except the last line in
the group must contain blanks in columns 18 through 59 of the calculation
specifications (see Figure 12-20).

Result Field Resulting
lndlceton

• Arithmetic ·- PluU:Min~ Zero ·- :i:
Factor 1 Operation Factor 2 H: Comp1r1 Comments

Name Length 1 >2Ji <2Ji ;"! 'li! .E ~ LookuplF1ttor 2)11
H Hlfitl Low F.qull

18 19 20 21 22 23 24 26 28 27 In 21 30 31 32 33 34 31 38 37 38 39 40 41 42 43 44 49 48 47 48 48 IO 81 &41111171S8S8 to 11 12 13 14 11 18 81 II • 70 n 't2 73 74

r:11i=' lrilAJ IS Ji IFII Ir: Into ciTIY l&l'2 ;:al":

;AN and OR entries group lines of indicators. When indicators 01, 02, 03, and 04 are on, or when
!indicators 01, 02, 03, and 05 are on, the calculation is performed.

lndlCllOrl Ra.,lt Flold Anultlng c !I lndiOllort
Arithmetic i---, 9- j: PiulfMiniii[Zoro ii A~ Ad Factor 1 Operation Factor 2 Compere Comm1nt1

Line ! Name Length "j 1>21<2 1•2 1; h Lookup(FICtor 2)11 j I i i High Low F.quoi
3 4 5 I 7 • 9 10 11 12 13 14 16 11 17 18 19 20 21 22 23 24 211 :ze 27 p. 29 30 31 32 33 34 36 38 37 38 39 40 41 42 43 44 45 48 47 48 49 ISO 61 .. &3, 18 69 BO 81 82 83 84 1B • 87 • • 70 71 72 73 74

0 1 le lil Gl1 ~N f.l
0 2 c"'" D!u1 ~~
0 3 ri Ill ~ ~ jjP. Ir= lJ u IC llull IP ;i
0 • IC

Three conditions cause the 14 total calculations to be performed: 01 and 02 are on, but not 03; or 01
and 03 are on, but not 02; or 02 and 03 are on, but not 01.

Figure 12-20. Use of AN/OR Lines for Indicators

12-52

Using Indicators in an AND Relationship on the Calculation Specifications

c Indicators
~

t---i ~ I I
&~
> ...

Line I- 0
~ ~

~ ~ ~ .l' 8
3 . ' • ' 9 10 11 12 13 14 15 16

0 1 c 121.'i IJ
0 ' clU~ lilt.I~ I~
0 3 c

Indicators specified in columns 9 through 17 of the calculation
specifications are in an AND relationship with each other if the indicators
are on the same line. The indicators on one line or indicators in grouped
lines plus the control-level indicator (if used m columns 7 and 8 of the
calculation specifications) must all be exactly as specified before the
operation is done (see Figure 12-21).

An indicator that is specified in columns 9 through 17 can also be entered
as a resulting indicator on the same line. If the indicator in columns 9
through 17 is on, the calculation is dc;me.

Result Field Resulting
Indicators . Arithmetic

:~ :; PlusIMinu:!(Zero
Factor 1 Operation Factor 2

8 "
Compare Comments

Name Length ~ ...
•>W<~1-2 p

~i
Lookup(Factor 2)is

High Low fqu1I
17 18 19 20 21 '22 23 24 25 26 27 ~29 JO 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 60 51 52 53 57 SB 59 80 81 82 63 64 65 88 67 81 Ill 70 71 72 73 'j

"-

Assume that indicator 25 represents a record type and that a control-level-2 break occurred when
record type 25 was read. Ll and L2 are both on. All operations conditioned by the control-level
indicators in columns 7 and 8 are performed before operations conditioned by control-level indicators
in columns 9 through 17. Thus, the operation in line 02 occurs before the operation in line 01. The
operation in line 01 is done on the first record of the new control group indicated by 25, whereas the
operation in line 02 is a total operation done for all records of the previous control group.

The operation in line 02 can be done when the L2 indicator is on provided the other conditions are
met. Indicator 10 must be on. The L3 indicator must not be on.

The operation conditioned by both L2 and NL3 is done only when a control-level-2 break occurs.
These two indicators are used together because this operation is not to be done when a
control-level-3 break occurs, even though L2 is also on.

Figure 12-21. Conditioning Operations (Control-Level Indicators)

Chapter 12. Using Indicators 12-53

Indicators Conditioning Output

Indicators that you use to specify the conditions under which an output
record or an output field is written must be previously defined in the
program.

The 2-character entries in columns 23 through 31 of the output
specifications must be previously defined as one of the folloning types of
indicators:

• Overflow indicator

• First-page indicator

• Record-identifying indicator

• Control-level indicator

• Field indicator

• Resulting indicator

• Internal indicators

• External indicators

On the output specifications:

• Columns 23 through 31 can contain a conditioning indicator to specify
the conditions under which an output record or an output field is
written. When the indicator is to condition an entire output line, enter
it on the record line (column 15 contains a D, H, T, or E). When an
indicator is to condition when a field is to be written, enter it on the
same line as the field name.

Using Indicators in an AND/OR Relationship on the Output Specifications

12-54

Use an AND line if more than three indicators are needed to condition an
output operation. Enter AND in columns 14 through 16 on the output
specifications for each additional line. The condition for all indicators in
an AND relationship must be satisfied before the output operation is done.
Any number of AND lines can be used for an output operation.

Output indicators can also be in an OR relationship. Enter OR in columns
14 and 15 for each OR relationship. If one or the other condition is met, the
output operation is done. A maximum of 20 OR lines can be used for an
output operation.

If AND and OR lines are combined, the total number of OR lines for an
output operation cannot be more than 20 and any number of AND lines can
be used.

A maximum of 255 record line groups can be used in an OR relationship
under the following conditions (see Figure 12-23):

• Column 15 of the record line contains a D,T, or H.

• The first-page indicator or an overflow indicator is used. The first page
or overflow indicator may appear on the record line, the OR line, or an
AND line.

AND and OR lines can be used to condition entire output lines, but they
must not be used to condition fields (see Figure 12-22). However, you can
condition an output field with more than three indicators by using the
SETON operation in calculations. For example, if indicators 10, 12, 14, 16,
and 18 are used to condition an output field named PAY, in the calculations
you can set on indicator 20 if indicators 10, 12, and 14 are on. Then
condition the output field PAY on indicators 20, 16, and 18 in the output
specifications.

The use of any of the LO through L9 indicators in an OR relationship with
an LR indicator can result in the specified operation being done twice when
LR is on. One operation is done at total time and the other during LR
processing. Figure 12-23 shows how to correctly use the LO through L9
indicators in an OR relationship.

Chapter 12. Using Indicators 12-55

0
u.

u Space Skip
r--i

e~
Filename

:i: •

8. i~ ~! i!: or ... ~ ~ Line E Record Name e
~ ~ ~ :i ! A <

~$oi
3 • • • 7 • 9 10 11 12 13 14 15 16 17 18 19 20 21. 22

0 1 or ~A IN
0 2 lq lA~ID
0 3 0 ~~
0 4 lq IA~
0 5 lo
0 5 ~
0 1 0
0 8 0
0 9 0

0 ~

u Spece Skip
t---

~I~
Filename

! i~~ 5 ! or i!: R k Lint
~

Record Name tO' j * f ~

~
3 4 •• 1 a s 10 11 12 13 14 115 11 17 18 19 20 2122

0 1 0 I~~~ lIIN
0 2 ~ AN
0 3 0 "'R
0 4 lq AND
0 I lq
0 8 iq
0 7 [g
0 8 jg
0 9 0
1 0 0

Output I nc:licators

[5f Commas
Zero Balances

No Sign CR - X •Remove

Field Name to Print Plus Sign
5-9 =

or y =Oat• u ...
AL AL

v .. Yes 1 A J Field Edit EXCPT Name Vos No 2 B K Defined
Z=Zero

cc Position No Yes 3 c L Suppren • q; No No 4 D M

85
;n

"' Output ::.
~

~ ~ *AUTO ~~ Record O! Constant or Edit Word z z ii: , 2 3 4 s s 1 e s 10 11 12 13 14 15 1e 11 1s ts 20 21 22 23 24

23 24 25 26 27 26 29 30 3 1323334353637 38 39 40414243 ~~~~~~~~~~~~~~~~~~~mM~M~~6ro 71 72 73 74

2'1 11.f l'2
1~
21 J"I J\I..

N.i~ ~
~ f'I [" ~ .E
IA~I ~l N~ .,
Ailj 1'11J;i
~~ t..I

Output Indicators
Field Name

or

:rd l EXCPTName

g
~ 5 •AUTO z z

23 24 21 28 27 26 29 30 31 32 33 34 36 38 37

el ~ ~HZ fl 1
lt ~
l2ll ILi INW71

Nil~
NfA M[I
I~ 1\1
IA

rll': 1 N~I

II

I\ ~Q

N a
f\ .,
The detail line is printed if either of two sets of conditions
is met. If 21, 40, 01, and 16 are all on, the line is printed;
if 21 and 40 are on and 01 and 16 are off, the line is also
printed.

[5f Commas Zero Bll1nc11
No Sign CR - X •Remove

to Print Ptu1Slgn
y,., Date 5 ·9•

User Yes Yes 1 A J Fl•d Edlt
Yes No 2 B K Defined

Z •Zero
a:: Pos1t1on No Yes 3 c L Suppreu p No No 4 D M In

Output "' "~ ::.
Record O! Constant or Edit Word

iH ~ ii: 1 2 3 4 B 8 7 8 9 10 11 12 13 14 16 18 17 18 11 20 21 22 23 24

•• 39 40 41 42 43 ~u~~-~~~~QMUU~UU~~UUMUU~Uuro 71 72 73 74

'1]C;
aE
~
~~

A maximum of three indicators can be used to condition
a field.

Figure 12-22. Output Indicators in AND and OR Lines

12-56

/
\

0 ~

@~ Spoc• Skip Output Indicators

f51
Commas

Zero Balances
No Sign CR - X =Remove

t----i t~ Field Name to Print Plus Sign
5·9. o- Y,. Date -" or User :i: ' Jd r Yes Vos 1 A J Filename -~ ~ ~ EXCPT Name Field Edit

8. &~ v .. No 2 B K Z •Zero
Defined

?:: or
Record Name ~~ ~ a: Position No v .. 3 c L Suppress Line

~] ~ ;;; No No 4 D M
~ ~ ~ 85

;n

~ A ,i; Output

~
0 15 0 "AUTO ~~ Record iii Constant or Edit Word z z z ii: l 2 3 • 5 • , .. 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

3 . 5 • 7 • 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 M~~o~~~~~u~~~~~~~~~~M~M~MMro 71 72 73 74

0 1 0 lJ1 n IL[i IN R I
0 2 10 R j~ l
0 3 0 I

Figure 12-23. Correct Use of Control-Level Indicators (LO-L9) in OR Relationship

Chapter 12. Using Indicators 12-57

12-58

Chapter 13. Using Arrays and Tables

Similarities between Arrays and Tables . 13-1
Differences between Arrays and Tables . 13-1

When Arrays and Tables Can Be Loaded . 13-1
How Arrays and Tables Can Be Processed 13-1

Kinds of Arrays and Tables . 13-2
Creating Input Records for Arrays or Tables 13-5
Defining Arrays and Tables . 13-6
Loading Arrays and Tables . 13-8

Loading Compile-Time Arrays and Tables 13-8
Loading Preexecution-Time Arrays and Tables 13-9
Loading Execution-Time Arrays 13-10

Array Information in One Record 13-11
Array Information in More than One Record 13-13

Using an Array Name and Index 13-14
Searching Arrays and Tables 13-16

Searching an Array . 13-17
Searching One Table . 13-19
Searching Related Tables . 13-19

Specifying Arrays . 13-21
Changing the Contents of Arrays and Tables 13-22

Changing the Contents Temporarily . 13-22
Changing the Contents Permanently . 13-24

Adding Entries to Arrays and Tables . 13-25
Writing Arrays and Tables . 13-26
Editing Arrays .. 13-27
Examples of Using Arrays . 13-28
Example of Using Tables 13-37

File Description Specifications . 13-37
Extension Specifications . 13-38
Input Specifications . 13-39
Calculation Specifications . 13-40

Chapter 13. Using Arrays and Tables

Chapter 13. Using Arrays and Tables

Similarities between Arrays and Tables

Both arrays and tables are systematic arrangements of data items, called
elements. Each element in an array or table has the same field length, the
same data type (alphameric or numeric), and the same number of decimal
positions if numeric. You can use an array or a table for the same
pur}')oses. Both arrays and tables are described on the extension
specifications.

Differences between Arrays and Tables

However, arrays and tables differ in two important ways:

• When they can be loaded

• How they can be processed

When Arrays and Tables Can Be Loaded

Loading an array or table means reading it into main storage so that the
program can process it.

Arrays can be loaded while the source program is being compiled, before
the program is run, or while the program is running.

Tables can be loaded while the source program is being compiled or before
the program is run.

How Arrays and Tables Can Be Processed

A program can process an array in either of two ways:

• It can process an entire array at one time. That is, the program does
the same operation on every element in the array.

Chapter 13. Using Arrays and Tables 13-1

• It can process specific array elements that you refer to by their position
relative to other elements. To do this, you must provide an index to
specific elements in the array.

The only way that a program can process a table is to perform the
operation on only one element. The operation must be specified separately
for each additional element you want to process.

Kinds of Arrays and Tables

13-2

• Compile-time arrays and tables are loaded with the source program and
become a permanent part of the load module. The initial content of a
compile-time array or table can be changed in the program, or you can
recompile the source program with new array or table data (see
Changing the Contents of Arrays and Tables in this chapter).

• Preexecution-time arrays and tables are loaded with the load module
before you run the program; that is, before any input records are read,
calculations are performed, or output records are written.

• Execution-time arrays are loaded or created by input or calculation
specifications. The arrays are loaded while the program is running;
that is, they are read in as input data or created during calculations in
the program. An execution-time array is also described on the
extension specifications. Tables cannot be specified for execution-time
load.

• Related arrays and tables are two arrays or two tables that are read and
stored together and that are defined on the same extension specification
(see example on line 01 of Figure 13-1 Part 2). Each element in the
second array or table gives additional information about its
corresponding element in the first array or table. An array can be
related to another array, or a table can be related to another table;
however, an array cannot be related to a table, or vice versa.

For example, Figure 13-1 shows related arrays ARRI and ARR2. An
element in array ARRI provides a part number, and the corresponding
element in array ARR2 provides the cost for that part. Although all
elements within one table or array must have the same characteristics,
corresponding elements of related arrays or tables can have different
characteristics. Thus, in Figure I3-I, all elements in array ARRI are
alphameric, and all elements in array ARR2 are numeric.

Related arrays and tables should have the same number of elements. If
the arrays or tables do not have the same number of elements, the
program might find the desired element in one array or table but find
no corresponding element in the related array or table. In this case,
undesirable results can occur.

E Record Sequence of the Chaining File

1-------i Number of tt'le Chaming Field

Line

From Filename

ARRI ARR2
(Part Number) (Unit Cost)

345126 00373

38A473 00498

39Kl43 01297

40B125 00093

41C023 03998

42D893 00087

43K832 00349

44Hlll 00679

45P673 00898

46C732 47587

Arrays ARRl and ARR2 can be described as two separate arrays or as two
related arrays.

The following extension specifications show how to describe ARRl and
ARR2 as two separate arrays. The entries in columns 33 through 35 are
required for records that are in the source program.

Number

To Filename

of Number
o D Table or 0 Ci Table or Entries of Length

i~ Array Name
Length

~ .,, Entries of of & Array Name (Alternating
Record Per Table Entry

~ ~ ~
Entry

"' ~
~

or Array
Format) _, l ~~l ~~

Comments

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 7

01 E ~RIRl1 llill ~ ~

o 3 E

When ARRl and ARR2 are described as two separate arrays, the first record contains elements for
ARRl in positions 1 through 60, and the second record contains elements for ARR2 in positions 1
through 50:

Record 1:

345126 38A473 39K143 408125 41C023 420893 43K832 44H 111 45P673 46C732

Record 2:

00373 00498 01297 00093 03998 00087 00349 00679 00898 47587

Figure 13-1 (Part 1 of 2). Separate Arrays and Related Arrays

Chapter 13. Using Arrays and Tables 13-3

The following extension specifications show how to describe ARRI and ARR2 as related arrays. The
entry in columns 33 through 35 is required for records that are in the source program.

E Record Sequence of the Chaining File

Number of the Chaining Field

From Filename

To Filename Table or
Array Name

Number
of

Entries ...
Record

Number

of
Entries
Per Table
or Array

Length

of
Entry

Table or Length
Array !Name of Comments
(Alternating Entry
Format)

When ARRI and ARR2 are described as two related arrays, the records contain pairs of
corresponding elements. Thus, the first record begins with element I of ARRI and the corresponding
element of ARR2, followed by element 2 of ARRI and the corresponding element of ARR2, and so on
until the record is full (in this example, the record has 55 positions, or five pairs of corresponding
elements). The second record, which also has 55 positions, contains corresponding pairs of elements
6 through 10:

Record 1:

345126 00373 38A473 00498 39K143 01297 408125 00093 41C023 03998

Record 2:

420893 00087 43K832 00349 44H111 00679 45P673 00898 46C732 47587

Figure 13-1 (Part 2 of 2). Separate Arrays and Related Arrays

13-4

Creating Input Records for Arrays or Tables

Input records for arrays or tables must be formatted according to certain
rules:

• The first array or table element for each input record must begin in
position 1.

• An entire record need not be filled with array or table elements. If it is
not, blanks or comments can be included after the elements (see Figure
13-2). The unused space in numeric arrays or tables is filled with zeros;
the unused space in alphameric arrays or tables is filled with blanks.

• Each input record, except the last, must contain the same number of
elements. In the last record, unused space must be blank. You can
include comments after the blank space. That is, comments in the last
record must begin in the same position as comments in preceding
records (see Figure 13-2).

• Each element must be contained entirely on one input record; an
element cannot be split between two records. Thus, the length of a
single element is limited to the maximum record length for the input
device. If you use related arrays or tables and describe them in
alternating format, corresponding elements must be on the same input
record; the combined length of corresponding elements cannot exceed
the maximum record length for the device.

• Related arrays or tables can be described separately or in alternating
format. Alternating format means that elements of one array or table
alternate with elements of the related array or table on the input record
(see Figure 13-1).

• The total number of array names, table names, and data structures used
in a program cannot exceed 75. The total number of compile-time
arrays and tables cannot exceed 70.

Chapter 13. Using Arrays and Tables 13-5

123451
1 2 3 4 5 1
123451
1 2 3 4 5

2 3 4 5 Comments can be
2 3 4 5 anywhere out here
2 3 4 5 orhere

2 3 4 5 1 2 3 4 5
2 3 4 5 1 2 3 4 5
2 3 4 5 1 2 3 4 5

or here (that is, after the last entry position for the longest record).

2 3 4 5 If comments begin here, the compiler cannot tell if you intend them as comments or if you
provided too much data for the table/array. Therefore, it prints a warning message.

Each of the two tables/arrays contains seven entries, each entry 5 positions long, with two entries per record.
The last record contains only one entry. The remaining 5 positions in the last record should be left blank,
because using these positions for comments causes warning message' hPG-0333, TABLE/ARRAY IS FULL,
OR NO TABLES/ARRAYS EXIST FOR FOLLOWING DATA, to be printed during compilation. Therefore,
comments should begin after the last entry position for the longest record; that is, (the number of entries per
record x the number of positions per entry) + 1.

Figure 13-2. Array or Table Input Record with Comments

Defining Arrays and Tables

13-6

All arrays and tables must be defined on extension specifications. Each
extension specification defines one set of array or table input records.

If only one array or table is being defined, use columns 11 through 45.

If alternating arrays or tables are being defined, use columns 11 through 57.
For compile-time and preexecution-time arrays or tables, the array or table
named in columns 46 through 51 is entered in alternating format with the
array or table named in columns 27 through 32.

If compile-time arrays or tables are being defined, columns 11 through 26
must be blank.

If preexecution-time arrays or tables are being defined, entries are required
in columns 11 through 18 and in columns 27 through 45.

If execution-time arrays are being defined, columns 11 through 26 must be
blank.

If the array or table being defined is to be written to a file at the end of the
job, enter the name of the file in columns 19 through 26. Execution-time
arrays cannot be written to a file at end of job.

If you are defining a table, the name you assign in columns 27 through 32
must begin with TAB. If you are defining an array, it must not begin with
TAB.

E Record Sequence of the Ch1lnlng File

1-- Number of the Ch1inlng Fl1ld

Line

From Filename

3 •• • 7 • • 10 11 12 13 14 15 18 17 18

0 1 E

0 2 E

0 3 E

0 4 E

0 5 E

0 B E T"\1 ~;"1! II~
0 7 E

0 B E

E

E

Arrays and tables can be defined in any sequence on the extension
specifications. The sequence in which they are defined determines the
order in which they are loaded at the start of the program.

Figure 13-3 shows the extension specifications required for the three types
of arrays.

• Line 01 specifies two compile-time arrays, ARl and AR2, in alternating
format. Each array has three elements per record and a total of eight
elements in the array. Each element is 12 positions long, including four
decimal positions, although the length of elements and the number of
decimal positions in AR2 do not have to be the same as those in ARl.

• Line 06 specifies a preexecution-time array, AR3, to be read from file
DISKIN. AR3 has 12 elements per record and a total of 250 elements.
Each element is 5 positions long. Decimal positions are not specified, so
the elements are alphameric data. The elements are arranged in
ascending sequence.

• Line 09 specifies an execution-time array, AR4, which contains 10
elements. Each element is 10 positions long. Zero decimal positions are
specified, so the elements are numeric data.

For all arrays and tables except execution-time arrays, columns 19 through
26 can also contain the name of a file to which the array or table is to be
written at the end of the program, and columns 46 through 57 can also
define an array or table that is entered in alternating format with the array
or table named in columns 27 through 32.

Number
of Numbef ~ - Table or .~ e Table or Entries of Length :~ ~ ArrayiName

Length
Comments To Filename

Entries of of .• <
Array Name Per

0: ~ i Record Per Table Entry a::~ ~ IAlternatlng Entry

or Array ;::i • ~ Format) ::i ~
~~~ ~~! 

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 .. 45 46 47 48 49 50 51 52 53 54 .... ~56~MM~~M&&~~~n~nn~ 
liR11 f:ij ~ 1~ ~ IA ~ 1~ l"I Compile-Time Related 

Arrays in Alternating 
Format 

I I I ' ' 
Alli!!~ 11~ 1;>1~(1 !-; ~ Preexecution-Time Array 1-

j_ ±± ±iii J_i J_± i 
~R£i r.t:f2 [i~ ~ Execution-Time Array 

J_j_j_JIT"i 

Figure 13-3. Extension Specifications for Three Types of Arrays 

Chapter 13. Using Arrays and Tables 13-7 



Loading Arrays and Tables 

Arrays can be loaded at compilation time, preexecution time, or execution 
time. Tables can be loaded at compilation time or preexecution time. 

Loading Compile-Time Arrays and Tables 

Source 
Program 

**16 

A compile-time array or table is loaded at compilation time with the data 
supplied at the end of the source program. Rules for loading arrays and 
tables at compilation time are as follows: 

• A compile-time array or table must have entries in columns 33 through 
35 of the extension specifications and must not have entries in columns 
11 through 18 of the extension specifications. 

• Compile-time array or table data must be entered at the end of the 
source program, after all records for translating files and for changing 
the collating sequence of characters (see Chapter 17). 

• A record with **b in positions 1 through 3 must precede the data for 
each compile-time array or table (see Figure 13-4). 

• Compile-time arrays or tables must be in zoned decimal or alphameric 
format. 

• For compile-time arrays and tables, the maximum length of an 
alphameric element is 96 because the maximum length of a record in the 
source program is 96 characters. If a compile-time array or table is not 
large enough to hold all the data, warning message RPG-0333, 
TALBE/ARRAY IS FULL, OR NO TABLE/ARRAYS EXIST FOR 
FOLLOWING DATA, is issued. The extra data is ignored. 

ARRA **16 ARAB 

ARRA and ARAB are located in the source file with the source program. 

Figure 13-4. Arrangement on Disk of the Source Program and Compile-Time Array Data .. 

13-8 



Loading Preexecution-Time Arrays and Tables 

A preexecution-time array or table is loaded by the load program from an 
input file on disk just before the program runs. The file must be described 
on the file description specifications as an input table file (IT in columns 15 
and 16). A control language FILE statement must also be present for the 
input file. If two or more arrnys or tables are to be loaded, they must be 
loaded from different disk files, except when the arrays or tables are 
specified in alternating format. The filename must be specified in columns 
11 through 18 of the extension specification that defines the 
preexecution-time array or table. 

Most of the rules that apply to compile-time arrays and tables also apply to 
preexecution-time arrays and tables except for the following: 

• A preexecution-time array or table must have an entry in columns 11 
through 18 and in columns 33 through 35 of the extension 
specifications. 

• The file description specification for the file containing the data for a 
preexecution-time array or table must have an I in column 15, a T in 
column 16, and an E in column 39. 

• For numeric arrays and tables loaded at preexecution time, the data in 
a DISK file can be in zoned-decimal, packed-decimal, or binary format. 

• Preexecution-time array or table records must be in a sequential file, 
and each record must have the same length. 

• If a preexecution-time array or table is not large enough to hold all the 
data, error message RJPG-9017, OBJECT TABLE DATA EXCEEDS 
TABLE LENGTH, is displayed. In response to that message, you can 
ignore the extra data, end the job step, or cance,l the job. 

Chapter 13. Using Arrays and Tables 13-9 



Loading Execution-Time Arrays 

Line 

Filename 
or 

Record Name 

To load an array from information in input records, describe that 
information in the input specifications. The specifications made depend on 
whether the array information is contained in one record or in more than 
one record. The input specifications can describe any type of array 
(compile-time, preexecution-time, or execution-time). When you use input 
specifications to fill an array with data, the program must read complete 
data elements. 

You can also use an arithmetic or move operation in the calculation 
specifications to load an execution-time array, either the entire array at one 
time or one element at a time. 

Execution-time arrays are not sequence checked. If you use the SORT A 
operation, the array is sorted into the sequence (ascending or descending) 
specified in column 45 of the extension specifications for that array. If no 
sequence is specified, the array is sorted into ascending sequence. If you 
use the LOKUP operation with an indicator in columns 54 and 55 or in 
columns 56 and 57 of the calculation specifications, you must also specify a 
sequence in column 45 of the extension specifications. 

To load an array from a single input record, code entries in the unshaded 
columns of the input specifications shown below: 

External Field Name 
5 Field Location ln!!:'t~rs 
] Record Identification Codes ~ g 1--~....---1 

S 8 From To -~ RPG -1 : '6 J 
:_i :a. kt ~ Field Name ~ ~ ~ ~ Zero 

- ~ _ ~ z e ~ ~ Data Structure <o - g' g' ! Plus Minus or 

Data JI A ~ Position :- ~ ~ Position :- ~ ~ Position ZS -u~ uj ~ ~ Ckcurs 0~ u~ ~ :~ ~ Blank 
St~~~~re A~ ~ ~ U 6 ~ () 6 w .... n Times Length ~ 0 .... 

J 4 s s 1 a g 10 11 12 1J 14 1s 16 19 20 21 :n 23 24 2s 26 21~-~ 29 Jo a1 a2 33 34 35 as a1 as 39 40 41 42 43 44 45 4ti 47 48 49 50 s1 s2 53 54 ss ss s1 sa sg so s1 ~63 64 as 66 a168691011 12 13 14 

0}11 IR:\l\lll!,tWl\ffilJfJ\fiWJJ:ft #Ei\fl!J'l'.!lll)*Jm1mtti@tit!j~j( '1i Ii' !ill !f-<' ffei'IH · 0: '. l ll 111 l'li J JJJ J BlBl1 I . '. ,:· ' · ' 
01'I 1 III IIII I III III ~ITlITI_ III III I III I I I I I I I I II 

13-10 

Column 43 must contain P (packed decimal), B (binary), or blank (zoned 
decimal) to indicate the format of the array data. 

Columns 44 through 47 must contain the starting position of either the 
entire array with consecutive elements or an individual element in the 
array. 

Columns 48 through 51 must contain the ending position of either the entire 
array with consecutive elements or an individual element in the array. 

Columns 53 through 58 must contain the name of the array (the same name 
used on the extension specifications) or the name of an individual array 
element (array name plus comma and index). 

Columns 63 and 64 can contain an indicator to indicate the relation of a 
field to the record. 



Array Information in One Record 

If the array information is contained in one record, the information can 
occupy consecutive positions in the record or it can be scattered 
throughout the record. If an array is contained in a data structure, all 
elements in the array are consecutive. 

If the array elements are consecutive on the input record, you can load the 
array with a single input specification. Figure 13-5 shows the extension 
and input specifications for loading an array, INPARR, that contains six 
elements (12 characters each) from a single record in the file ARRFILE. 

E Record Sequence of the Chaining File 
Number 

Number of the Chaining Field 

Line g_ 
~ 

~ 
From Filename 

of Number 0 - Table or 
Table or Entries of Length :~ ~ Array Name 
Array Name Per Entries of 

a:~~ Record Per Table Entry (Alternating 

~ . ~ Format) 
or Array 

~~~ 

To Filename

I
I--

External Field Name

~ ~-~ Filename c: ~
or •

Record Name j w gi :g F T g
& z= ~ ~ ~~--....-.,......,.-.--~~....-+---....-..-.....-l ii rom o ·;.:;
> - c:. 1---~---1~

Line ~ ~ 6 ~ • ~ _ 2:l ~a:: Data Structure
of._ _____ ..._ ~ g ~ Position ~ e ~ Position Z O ~ Pos1tmn ~ O &I 1.l ::31---~-__, ~

Str~~~~re *a~ g ! ~ ~ B j § 5 ~ § ~ ~ ~ ~ci::s Length ~
Name

Field Location
Record Identification Codes

~ -
Length :~ ~ of

~ -
Entry

~ ~
ij
ii

~~l

RPG
Field Name

Comments

Field
Indicators

Zero
Plus Minus or

Blank

3 4 s & 1 a 9 10 11 12 13 14 1s 1e 11 1s 19 20 21 22 23 24 2s 2s 21 28 2s JO 31 32 JJ 34 35 36 31 Ja 39 40 41 42 43 « 45 40 47 48 49 50 51 52 SJ 54 55 56 57 sa 59 60 s1 62 sJ 64 65 66 &7 88 69 ~o 11 12 13 ;

o 2 I ire lI
o 3 I

Figure 13-5. Defining an Execution-Time Array with Consecutive Items

Chapter 13. Using Arrays and Tables 13-11

E
Line

!
!

I
t---

&

Line
~

!

If the array elements are scattered throughout the record, they can be
defined and loaded one at a time, with each element described on a separate
specification line. Figure 13-6 shows the extension and input specifications
for loading an array, ARRX, that contains six elements (12 characters each)
from a single record in the file ARRFILE. A blank separates each element
from the others.

Record Sequence of the Chaining file
Number

Number of the Chaining Field of Numb« !- Table or 1e H Table or Entries of Length
Array Name

Length
Comments To Filename of ~5 Array Name Per Entries of i. - CAtwnating Entry Per Table Entry a: .. ~ ':l°d From Filename R-d :J E • Format)

or Array iii ·ii I ~ ~ .i

Filename
or

Record Name

ii: c

~ External Field Name Field Location

:ic Record Identification Codes ~. c .__1 ndT""ic-•t,ors--t
~ i r j w v.i j ~ 1 2 3 From To g RPG ~ : -8 a::

~ ~ ~ ~ ii l Field Name :§ £ ~ 'E Zero

Field

: 5 ~ : _ !i _ i _ ai ~ IC Data Structure ii ~ gi ! Plus Minus or

1--...,,...---. ±.....-1! i ~ Position ~ ~ ~ Position ~ e ~ Pos1t1on ~ ~ = j g ,f; I ti :; 'C Blank

Str~~~re ~ ~ § I ~ u 6 i 5 c5 ~ u 6 ! it ~T~: Length a u i ti ~
3 • • • 1 8 9N81~11 12 13 14 15 18 11 18 19 20 21 22 23 24 25 26 27~ 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4U 47 48 41 60 51 52 53 54 55 58 57 58 59 IO 11 _!! 83 84 86 81 17 BB 19 70 71 72 73 74

D 1 I
D 2 I A~R~ J
D 3 I
D 4 I 127
D 5 I
D 6 I l~l':I
D 7 I !Ju
D 8 I

Figure 13-6. Defining an Execution-Time Array with Scattered Items

13-12

Array Information in More than One Record

If the array information is contained in two or more records, you can use
any one of several methods to load the array. Which method to use depends
primarily on the size of the array and on whether the array elements are
consecutive in the input records.

Figure 13-7 shows an array that is loaded from more than one input record.
Records identified by a 1 or 3 in column 1 contain six array elements (4
characters in each element). Records identified by a 2 in column 1 are also
in the same input file, but they do not contain array elements. The
program processes one record at a time; therefore, the program cannot
process the entire array until it reads every record containing the array
elements and moves the elements into the array fields. Therefore, be sure
that your program reads the entire array before it does any calculation or
output operations using the array.

Records from Input File Resulting
Array

3 GROUP2 0 0 7 6 0 9 9 5 0 1 8 9 0 2 4 9 0 0 7 7 0 0 4 3 0049
0061
0143
0691
0433
0032
0076
0995
0189
0249
0077
0043

2 GROUP X

1 GROUP1 0 0 4 9 0 0 6 1 0 1 4 3 0 6 9 1 0 4 3 3 0 0 3 2

Figure 13-7. Loading an Array from More than One Input Record

From
Record 1

From
Record 3

Chapter 13. Using Arrays and Tables 13-13

Using an Array Name and Index

13-14

Your program can refer to an array as a whole or can refer to an individual
element in an array. To refer to the entire array, use the array name alone.
To refer to a single element of the array, use the array name plus an index.
To do so, add a comma and an index after the array name. The index can
be either the actual number of the element to be used (for example, AR,1) or
the name of a field containing the number of the element to be used (for
example, AR,IND).

Remember the following rules when specifying an array name and index:

• The array name must not be the same as the name of a field, data
structure, table, another array, or index in your program.

• The array name can be from 1 through 6 characters long.

• The first three characters of the array name cannot be TAB.

• The array name plus comma and index can be from 3 through 6
characters long. An array name plus comma and index should not be
longer than 6 characters because the field name on the output
specifications and the result field on the calculation specifications
contains only six positions. However, if the array name plus comma
and index are specified only in factor 1 or factor 2 of the calculation
specifications, the array name plus comma and index can be up to 10
characters long.

• The index can be a numeric field with zero decimal positions or a
numeric constant with no plus or minus sign.

• The value in the index must not be zero, negative, or more than the
number of elements in the array.

The following are examples of valid and invalid array names:

Array Names and
Indexes Explanation

Valid

ARRAY

B

AR,1 This is the first element of array AR.

X,YY2 YY2 is a field name containing the index
value.

Invalid

BALANCE The array name has more than 6 characters.

6TOTAL The first character must be alphabetic.

TOTAL- Characters after the first must be alphameric
or numeric, not special characters.

CR TOT The name cannot contain a blank.

Al,Al The index cannot be the same as the array
name.

BAL,XXl The array name, including the comma and
index, cannot contain more than 6 characters.
This name is valid only for factor 1 or
factor 2 of the calculation specifications.

AR,+1 The index cannot have a sign.

AR,O The index cannot be zero.

Chapter 13. Using Arrays and Tables 13-15

Searching Arrays and Tables

13-16

To search for a particular element in an array or table, use the LOKUP
operation with factor 1, factor 2, and at least one resulting indicator (high,
low, or equal) specified. The result field can be specified for a table; it must
be blank for an array. Searching an array or table is a useful way to find a
sequence of characters or multiple occurrences of a character in a record.
For example, you can find all the blanks in a record by defining the record
as an array with 1-character elements and searching for a blank.

Resulting indicators specify the type of search and reflect the result of the
search in the following way:

• A resulting indicator in the equal columns (58 and 59) instructs the
program to search the array or table for an element equal to factor 1.
The first equal entry found turns on the resulting indicator.

• A resulting indicator in the low columns (56 and 57) instructs the
program to search the array or table for an element that is nearest in
sequence to, yet lower than, factor 1. The first such element found
turns on the indicator.

• A resulting indicator in the high columns (54 and 55) instructs the
program to search the array or table for an element that is nearest in
sequence to, yet higher than, factor 1. The first such element found
turns on the indicator.

At least one resulting indicator must be used, but no more than two can be
used (equal and low, or equal and high). If two resulting indicators are
used, the program tries to find an equal element before it tries to find the
nearest lower or nearest higher element. If resulting indicators are used in
both the high and low columns, the indicator in the low columns is ignored.

When you use the LOKUP operation, remember:

• Conditioning indicators can be specified in columns 7 through 17.

• Factor 1 and each array or table element must have the same length
and same format (alphameric or numeric).

• The program can search for high, low, high and equal, or low and equal
only if the array or table is in sequence. The sequence must be
indicated in column 45 of the extension specifications.

• The resulting indicator turns off if the search is not successful.

(

\

Searching an Array

To search an array that does not have an index, use a LOKUP operation
and specify as factor 1 the data for which you want to find a match in the
array to be searched. Factor 1 can be a constant, a field name, an array
element, or a table name. In factor 2, specify the name of the array to be
searched. The search starts at the first element in the array. Leave the
result field blank.

To search an array that has an index, you can begin the search at a
particular element in the array. Code the same entries for the LOKUP
operation as you would to search an array without an index. However, in
factor 2, enter the name of the array to be searched plus a comma and the
index for the element at which the search is to begin. If the index is a
variable, the index is set to the number of the array element found if the
search is successful. If the search is unsuccessful, the index is set to 1.

Figure 13-8 shows an example of a LOKUP for an array with and without
an index.

Chapter 13. Using Arrays and Tables 13-17

E Record Sequence of the Chaining File
Numbw

Number of the Ch1lnln9 Field of Number

j~ Table or j~ To Filename Tabla or Entrln of Length
Array1Name

.........
Comments Uno ! Array Name "- Entrl• of of

R-.1 P.-Tlbl1 Entry BJ
IAker111tl011 Entry HJ ~

From Filename
or Array

Format)

MANNOS, a 2100-element array of employee numbers, is read in at execution time from the file
ARRFILE with ten 6-position elements per record; the array elements are in ascending order.

Indicators Result Field RIRllting c .,; lndlcoton

I I Arlthinotlc ,____, 9- .i % =~ Plus_]Minu~ Zero

~p Factor 1 Operation Factor 2 ~i Co~l)lre Comments
.... < Name Length 1>2fi<fil·2 Line i;.. fa:· l ll

~ 'C "'
~~

Lookup(Fector 2)11 s ~ if 8~ :i z HI(#! Low F.qual
3 4 5 • 7 e • 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 E.._29 30 31 32 33 34 35 38 37 38 39 40 41 "42 43 44 45 48 47 48 49 50·51 52 .. 54 55 .. 57 8081828384 86888781817071727374

0 1 c II L ~i !Erl
0 2 c ~~ ~ I\ IF' D<h'
0 3 le
0 4 c ~ -lA ~~ lllN)(Ill~
0 5 c tfl ~~=~ ~

,.,.,
~ 1.II If\)I ~f'.2

0 6 c W\12~ [; 11 N..,.
0 7 c ~ 1\1 ti~ i\i!tt 11f-jc 1,11

,,..
Ii;~

0 8 c "It-: ~~ ~ [
0 9 c [(
1 0 c
1 1 c Calculation
1 2 c Operations
1 3 c
1 4 c
1 5 c
1 6 c

The first calculation specification is a LOKUP of array MANNOS to find the element nearest to, but
higher in sequence than, the constant 100336. If this element is found in the array, indicator 20
turns on and the GOTO in line 02 is performed. Indicator 20 indicates only whether or not the
searched-for element exists in the array.

The specification on line 05 shows essentially the same LOKUP operation. Indicator 20 turns on
when the first element higher in sequence than 100336 is found. However, in this LOKUP operation,
the array MANNOS is indexed by the field INX. This index field was set to 1 in line 04, so the
LOKUP begins at the first element of MANNOS. If the searched-for element is found, the number of
this element (not its contents) is placed in the field INX. In this way, the actual element that
satisfied the LOKUP can be used in subsequent calculation operations, as in line 07. If no element
was found to satisfy the LOKUP, the field INX is reset to 1.

Figur~ 13-8. LOKUP Operation for Arrays with and without an Index

13-18

Searching One Table

To search a single table, use the LOKUP operation with factor 1, factor 2,
and at least one resulting indicator specified. The result field can be
specified for a table (it must be blank for an array).

If the search finds a table element that satisfies the resulting indicator, the
program places a copy of that table element in a special area of main
storage. Each time a search is successful, the program places the newly
found table element in this area, replacing the element that was in the area.
If a search is not successful, the contents of the area remain the same as
they were before the unsuccessful search. Before the first successful
search, the area contains the first element in the table.

If you use a table name a,s factor 1, the table name actually refers to the
table item found in the last successful search. Therefore, the last item
found becomes the data for which you are searching in the current search.

Searching Related Tables

When you use the LOKUP operation to search related tables, the program
actually searches only one table (see Figure 13-9). If the search is
successful, the corresponding elements from both tables are placed in their
respective storage areas.

Note: As used here, the phrase related tables means any two tables in the
program that use related data, not necessarily tables that are defined as
related on the extension specifications.

Factor 1 of the LOKUP operation must contain the data for which you
want to search, and factor 2 must contain the name of the table to be
searched. The result field must contain the name of the related table. A
resulting indicator must be specified.

The two tables should have the same number of elements. If the table that
is searched contains more elements than the second table, the program
might find the desired element in the first table but find no corresponding
element in the second table. In this case, undesirable results can occur.

Chapter 13. Using Arrays and Tables 13-19

433 is the value
searched for. -

TABEMP TABPAY

441 243

442 321

443 268

444 272

445 310

446 411

TABEMf> TABPAY

~ [443]

v Special Storage Areas

Related tables TABEMP and T ABP A Y are read into storage. Assume that an input record is read
with 443 in the EMPNUM field. Then the program searches the table T ABE MP for an element equal
to 443. When the correct entry is found, the table item 443 is moved into the special storage area for
TABEMP. At the same time, the corresponding item 268 is moved into the special storage area for
TABPA Y. The contents of the storage areas can now be specified in subsequent calculation
operations by the appropriate table name. The coding needed to perform the LOKUP operation also
shows how to specify the contents of the special storage area after a successful LOKUP operation.

c Indicators Result Field
Resulting

~· lndlc1tor1

I-- ~cc I . Arithmetic

-e Ad ~~ Ph.1!JM1nu.![Zero

l i z Factor 1 Operation Factor 2 .l' a Compare Comments
_, < Name Length l>,ll!<ll1•2 Line ... J gj' ~~

! § ~i" i i i H
Lookup(Factor 2)11

High Low F.ciuel
3 •• • 7 • • 10 11 12 13 14 15 HI 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 36 38 37 38 39 40 41 42 43 44 4B 48 47 48 48 50 151 52 63 !4 1515 ISIS 57 ISi 59 ao 11 12 ea 84 ea ae u ea Iii 10 11 12 13 14

0 t c I I I -~ J_ J_J_ J_ J_ J.T:I .J J. J_J_ J_ :u
0 2 c The following operation searches TABEMP for an entry that is equal to the contents of the field
0 3 c named EMPNUM. If the correct entry is found in TABEMP, 09 turns on and the TABEMP entry
0 4 c and its related entry in TABPAY are moved into their separate storage areas.
0 5 c
0 6 c
0 7 c lllM ~w: llPtIJ IA raa
0 8 c I

0 9 c
t 0 c
t t c The following operation multiplies the contents of the field named HRSWKD by the contents of
1 2 c the special storage area for TABPAY. The special storage area for TABPAY contains the results
1 3 c of the last successful LOKUP operation involving TABPAY.
t 4 c
I 5 c ~1q ~ ~ M I [JA ~~ ~rt'. Mli Q2H
t 8 c

Figure 18-9. LOKUP Operation for Related Tables

13-20

Specifying Arrays

You can specify arrays in input, output, or calculation specifications. You
can specify individual elements or the array as a whole.

To specify an entire array, use only the array name, which can be used as
factor l, factor 2, or the result field. You can use the following operations
with an array name: ADD, Z-ADD, SUB, Z-SUB, MULT, DIV, SQRT,
MOVE, MOVEL, MOVEA, MLLZO, MLHZO, MHLZO, MHHZO, DEBUG,
XFOOT, SORTA, and LOKUP.

To specify an individual array element, use the array name plus a comma
and an index. Process individual elements like fields. Remember, if you
use an array element as a result field, the array name with the comma and
index cannot exceed 6 characters. Several operations can be used with an
individual array element, but not with an entire array. These operations
are COMP, TESTZ, TESTB, BITON, BITOF, KEY, SET, and MVR, as well
as IF/ELSE, CASxx, DOUxx, and DOWxx.

When specified with an array name, certain operations are repeated for
each element in the array. These operations are ADD, Z-ADD, SUB, Z-SUB,
MULT, DIV, SQRT, MOVE, MOVEL, MLLZO, MLHZO, MHLZO, and
MHHZO. The following rules apply when these operations are specified
with an array name:

• If factor 1, factor 2, and the result field are arrays with the same
number of elements, the operation uses the first element from every
array, then the second element from every array, and so on until all
elements in the arrays are processed.

• If factor 1, factor 2, and the result field are arrays that do not have the
same number of entries, the operation ends when the last element of the
array with the fewest elements has been processed.

• When one of the factors is a field, constant, or figurative constant and
the other factor and the result field are arrays, the operation is
performed once for every element in the shorter array. The same field,
constant, or figurative constant is used in all of the operations.

• The result field must always be an array.

• Resulting indicators (columns 54 through 59) cannot be used because of
the number of operations being performed.

• If an operation code uses factor 2 only (such as Z-ADD, Z-SUB, or
SQRT) and the result field is an array, the operation is performed once
for each element in the array. The same field, constant, or figurative
constant is used in all of the operations.

Chapter 13. Using Arrays and Tables 13-21

Changing the Contents of Arrays and Tables

Changing the Contents Temporarily

c ~·
I-- ~

d
Line t- g

j~
3 4 6 6 1

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c

Indicators

1 I

You can change the contents of an array or table in a program, and they
remain changed for the duration of the program. However, the next time
the program is run, the array or table contains the original contents.

One way to do so is to use the array or table name as the result field in a
MOVE operation. Figure 13-10 shows an example of changing the contents
of related tables.

Factor 1 Operation Factor 2

Result Field R•ulting
Indicators

9 Arithmetic

.j :C P1uiTM1nulf Zero
·a ii Compere

Name Length ~ f 1 >m <~1·2
Comments

·~ Lookup(Factor 211
i i i 0 :! High Low F.quol
g 10 11 12 13 14 16 16 17 18 19 20 21 22 23 24 25 26 27 f2e 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 46 48 47 48 411 50 11 62 63 14 56 H 67 118 59 80 81 82 83 84 8118 87 • II 70 71 72 73 74

,,
11i< - 1t

h1A~ ITIT
!tr!

The item in TABFIL that contains 25 is to be changed to 30. The corresponding item in TABLIT is
to be changed to 500. The search word is the constant 25. When a match is found in the table
TABFIL, the item from TABFIL and its corresponding. item in TABLIT are placed in their respective
storage areas. The number 500 is then moved into the storage area for TABLIT; the number 30 is
moved into the storage area for TABFIL. The contents of the appropriate original table entry are
now changed to agree with the new entry in the special storage areas.

Figure 13-10. Changing Related Tables by Using MOVE Operations

13-22

/

\

c Indicators

And And

Line !
~

3 4 5 6

A second way to change the contents of an array temporarily is to use the
SORT A operation. This method cannot be used with tables.

A third way is to use the array or table name as the result field of a
calculation. If you use an element in that array as factor 1 or factor 2 in
that calculation, your program will use the new value of the element in
later calculations.

For example, suppose that you have two numeric arrays with the following
values:

ARRl I 1
ARRl I 2
ARRl,3

2
4
6

ARR2,l
ARR2,2
ARR2,3

2
8
1

Now suppose that you code the following calculation specification:

Factor 1 Operation Factor 2

Result Field Resulting
Indicators

Name

. Arithmetic

. 9 i' Plu1 Minus Zero

·~ i Compare
Length~~ 1>21<2 1•2

.§ - Lookup(Factor 211•
~ ~ High Low Fqual

Comments

This operation adds the three elements in ARRl, one at a time, to the
second element in ARR2 and places the result in ARR2. Here is what
happens as the three elements are added:

1. The value of ARRl,l is added to the value of ARR2,2. That is, 2 is
added to 8. The result, 10, is placed in ARR2,1. Thus, the value of
ARR2,1 changes from 2 to 10.

2. The value of ARRl,2 is added to the value of ARR2,2. That is, 4 is
added to 8. The result, 12, is placed in ARR2,2. Thus, the value of
ARR2,2 changes from 8 to 12.

3. The value of ARRl,3 is added to the value of ARR2,2. That is, 6 is
added to 12 (the new value of ARR2,2), not to 8 (the old value of
ARR2,2). The result, 18, is placed in ARR2,3. Thus, the value of
ARR2,3 changes from 1 to 18.

Chapter 13. Using Arrays and Tables 13-23

Changing the Contents Permanently

13-24

One way to change the contents of an array or table permanently is to
change the input records for the array or table.

A second way to change an array or table permanently is to use one of the
methods to change the array or table temporarily, and then to write the
array or table to an output file at the end of the program. To do this, define
an output file on the file description specifications, and code the name of
that output file in columns 19 through 26 of the extension specifications.

Adding Entries to Arrays and Tables

Indicators c "' -! I I 1-- ~

d
Line I- ..

H ~ ~ ~
' . ' • 7 • 10 11 12 13 14 15 16

0 1 IC1
0 2 c ~t
0 3 c 1-::ils: ~IJ
0 4 c l.3 l'i ~11
0 • c
0 6 c

~ = Calculations

You can add entries to a short array or table (one in which not all elements
are filled) before running the program or while it is running. The simplest
way to add entries is to code additional entries on the input records before
running the program. While the program is running, you can also add
entries that are created by calculation operations or read from an input
record.

Figure 13-11 shows an example of adding entries to arrays by using the
LOKUP and MOVE operations. These entries are added only temporarily
unless the array is written to an output file that is used as input for a
preexecution-time array the next time the program is run.

Result Field
Resulting
Indicators
Arithmetic

Factor 1 Operation Factor 2
Plus_l_Min~ Zero

Compare Comments
Name Length 1>2J1<~·2

Lookup(Factor 2)11

High Low F.qual
17 18 19 20 21 22 23 24 25 28 27 l:zs 2s 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 5867 80 81 82 13 1M 66 81 87 88 1111 70 71 12 73

~rm l ~ i.-.r. TA)(131s= ~ = nLJIN
~~IV N r~ ~IA 11 ~
M~ NF'IAI ~R RB lL~

a

The LOKUP operation is conditioned by indicator 01. Indicator 01 is set on when a record
containing information in the fields NEW A and NEWB is read. These fields are to be moved to the
arrays ARRA and ARRB, respectively. To get the entry in the correct place in the array, a search is
made to find the first empty array element. Unfilled elements in arrays are filled with zeros. Thus,
the value searched for is 000. When the first 000 entry is found, indicator 35 is set on, and the
NEW A and NEWB fields are moved into the array elements ARRA,X and ARRB,X. These new
entries become part of arrays ARRA and ARRB.

Figure 13-11. Adding Entries to Arrays

Chapter 13. Using Arrays and Tables 13-25

Writing Arrays and Tables

~ 0 ~l Spece
t---

e~
Filename " " jJ !. j~ ~ or

Record Name I-~ Line

~ ~ * A

~ ' .. e 1 a s 10 11 12 13 is 1a 17 18

oI,I ,q IIi;~{1:;1m :r.

o}J

13-26

i

You can write entire arrays and tables to an output file at total time in the
RPG program cycle when the last-record indicator is on. To indicate that
an entire array or table is to be written, specify the name of the output file
in columns 19 through 26 of the extension specifications.

To write an array to an output record by using output specifications,
describe the array in the unshaded columns of the output specifications
shown below:

-·--

Skip Output Indicators

~
Commas

Zero Balances
No Sign CR

X .. Remove

Field Name to Print
-

Plus Sign
y .. Date 5 ·9·

or Unr

AL A!d
y., Yes 1 A J Field Edit EXCPT Name Yet No 2 B K Defined Z •Zero

a:: Pos1t1on No Yes 3 c L Suppr"1
in No No 4 0 M

"' ~
&; "' H Output :::;

~ ~ 0 •AUTO '5 ~ Record iii Constant or Edit Word
z w., CL • 1 2 3 " s a 1 s 9 10 11 12 13 14 1s 1s 11 1a 19 20 21 22 23 24 •

',i'-~'
24 25 26 27 ,. 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ~~~G~~~~-~M~~~~~~~~~M••~••~nnnu

lfff} tJf ff ff fflf Il 1 IIIII±ii±'!rr
• Columns 23 through 31 can contain output indicators to condition the

writing of the array or table.

• Columns 32 through 37 must contain the array name used on the
extension specifications.

• Columns 40 through 43 must contain the end position for the last
element of the array. If you use an edit code, the end position must
account for the skipped positions required by the edit code (see Editing
Arrays, later in this chapter).

• Entries in columns 38 (edit code), 39 (blank after), and 44
(zoned-decimal, packed-decimal, or binary format) apply to each element
in the array.

• Columns 45 through 70 can contain an edit word, which applies to each
element in the array.

If an output record is to contain only certain elements from a table or
array, describe the elements in the same way as norm~ fields, using either
an array name with an index or a table name.

Editing Arrays

In column 38 of the output specifications, you can specify an edit code for
an entire array or for individual elements in an array.

If you specify an edit code for an entire array, all elements of the array are
edited. The program skips two positions before each element in the array.
The end position specified in columns 40 through 43 must account for these
skipped positions (two times the number of elements). If you are overlaying
data in a record, these skipped positions are not blanked out.

If different editing is required for various elements, specify them
in di vid ually.

If you specify an edit word in columns 45 through 70 of the output
specifications, two positions are not skipped before each element. The edit
word must contain all the blanks that you want inserted. To include a
blank in an edit word, use an ampersand (&) in the edit word to represent a
blank.

Chapter 18. Using Arrays and Tables 13·27

Examples of Using Arrays

13-28

Figures 13-12 through 13-18 show examples of the following ways to use
arrays:

• Creating an array by using input fields as indexes (Figure 13-12)

• Creating an array by using fixed indexes (Figure 13-13)

• Calculating totals without using arrays (Figure 13-14)

• Calculating totals by using arrays (Figure 13-15)

• Formatting output fields by using arrays (Figure 13-16)

• Printing one array element per line (Figure 13-17)

• Printing more than one array element per line (Figure 13-18)

E Record Sec:iuence of the Chaining File

Number of the Chaining Field

Une

From Filename

I
t--- Filename

~ or
Record Name i I!.

~
Line E

.f D1:1ta
~ Structure

Name A N D
3 4 5 • 7 • 9 10 11 12 13 14 15 16

0 , IIFII ~ rara
0 2 I
0 3 I
0 4 I
0 5 I
0 6 I
0 7 I
0 6 I
0 9 I
1 0 I
1 , I
1 2 I
, 3 I i::~
, 4 I
, 5 I
1 6 I , 7 I
1 6 I

Number
of Number

To Filename Table or Entries of

Array Name P0< Entries
Record Per Table

or Array

~ External Field Name

~
~ Record Identification Codes
-;;,.,,
c 0 1 2 3

j:°
~ e ~ ~ e ~ ~o ~ Position Position Position
- N • - N • Ci~ ~ ~ u 6 0 - ~ zuu z u

"'

Length
of
Entry "' g

0:

2
~ ~II:

E ~ g
6 iA Q::

Table or
Array,Name
(Alternating

Format)

Field Location

From To

Data Structure

Occurs
n Times Length

-~
~
g
~

Length
of

En"y ~

RPG
Field Name

§
~

~
3
~

~

c
:§~
~ "ii
u. ~

r ·~
j6

Comments

Field
Indicators g

·:;; ..
"'
1 Zero

Plus Minus or

" Blank ..
u:

19 20 21 22 23 24 25 26 21)20293031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4b 47 4849505 1 52 53 54 55 56 57 58 59 60 61 82 63 84 " .. 67 .. 89 70

~= IR0 rt
IE [:rJ IX[i: -- -

111 ~ f)lR l)([J -+-- l-+---- -
Jllll tll)j ·12 I~

i:m ~ TAJR ~
fill Ii la~I~ +- -+--+-
; 1 r.i 12 IAIR 00~ ++--~-1 - -H- --

I More Array Elements I
l~&J 11: It;~ l1ri
Ji;~ ~ lArR ~Til

~ii S:!ri ~J;:>

l;i f-:i!Q 1)(11
ILi lArR 001
[q ltli1 "'~ l;:i - Im It IA~ 1}(12

- . ' 1 -

71 72 73

This figure illustrates a method of loading an array using fields in input records as indexes. The
array has 12 elements; each element is 5 positions long. The array could be defined with any number
of elements (to a maximum of 99) without additional input specifications. To build an array using
field indexes, assign different values to fields Xl through XlO on each input record type 03 and to
fields Xl and X2 on each input record type 04. Succeeding type 03 records can then load 10
additional elements in array AR, up to the maximum defined in the array; each type 04 record can
load two additional elements.

Blanks and other fields can appear on the input records because the array elements and their indexes
are identified by the From and To entries.

To set up the array in this manner requires:

• A minimum of coding

• No calculations

However, extra work is required to set up the indexing scheme for the input records.

Figure 13-12. Creating an Array by Using Input Fields as Indexes

Chapter 13. Using Arrays and Tables 13-29

E Record Sequence of the Chaining File
Num~Jer

Number of the Chaining Field of Number c Table or [! 0
Table or Entries of Length

~ Array Name
Length

~~ Comments Line

!
To Filename

Array Name p., Entries of of

Record Per Table Entry a: I
(Alternating Entry a: .. 8

From Filename ::; Format) ::; E ii

! or Array

~ ~~&

I j' External Field Name Field
Field Location

Indicators
1--- Filename ~ Record Identification Codes

~ .§
or ~ h i 0 ~

Record Name "'"' 1 2 3 From To RPG
_,

H
..

JI ;!: • a: & i "3 ·~ .~ ~ ~ Field Name 5] ;:: u. u:: Zero
Line j =s :E' ii z 0 ij

t ~a: Data Structure
§ .~ ~ Pt us Minus or

.8 8 z 0 w ~o N] ::i g "§ :s a:

j Posrt1on Position Pos1t1on "' Blank Oi1it1

'*" B i§ ~ :; N li ~ § l ~ ~ Occurs ~ ~ i6 ~ Stru01:1,1rt ~ i:J Ii ""' .. n Times Length
N1rne

' • •• ' • I) 10 11 12 131"1 11 te 17 18 " ' 0 21 22 23 24 26 26 2 7 28 29 3Q 31 3233 34 35 39 31 38 39 40 41 42 43 44 45 4tJ 47 46 49 50 51 62 &3 54 55 58 57 58 !19 60 61 82 63 64 ea 66 87 .. 68 70

0 1 IIFJr J"l1 ~ ~ JIM ,.
0 2 I j !Cf~ IR1

Ia~ ~~
-· ·-

0 3 I 18R QILI
r-1 ~ Iii ~

0 • I
0 6 I ' 11:12 IAIR 1 -
0 6 I
0 7 I
0 8 I

More Array Elements l 0 s I
1 0 I
1 1 I
1 2 I
1 3 I
1 4 I

This figure shows how eighteen 5-character elements of array ARl are loaded with only two
specification lines. On succeeding input specifications, the remaining elements of ARl are loaded
one after another until the array is full. Each additional elementis coded on a separate line. Each
new record requires a separate means of identification. For example, if another 03 record followed
the first, the fields on the second record would overlay the fields read in from the first record. This
method works well for small arrays.

Figure 13-13. Creating an Array by Using Fixed Indexes

13·30

71 72 73 74

c
I---

Line
~ ...
~

3 4 5 6

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c
0 7 c
0 8 c
0 9 c
1 0 c
1 1 c
1 2 c
1 3 c

-

0
1--

!
Lint l

1
111
111
1

~
~
r;;;i

Indicators

I Factor 1 Operation Factor 2

Result Field .
g
ii

Name Length ~
E

~ ~ ~ ~
9 10 ,, 12 13 14 ,s 1s 11 ,a 19 20 21 22 23 24 2s 26 21 F 2s Jo 31 32 33 34 35 36 37 38 as 40 41 42 43 44 45 46 47 48 49 so s1 s2

F'IJIElL A ~ 11A l11A ZJ2l

Pl'"I !'I rl l~rl e.J2i

~

Resulting
Indicators

Arithmetic

PlusIMinu'![Zero

Compare

1> 2fi <2f1 = 2
Lookup(Factor 2)is

High Low F.qual

Comments

1A1r T ll..!I rrr c

~ r~u~1rrr1c

@i Spice Skip Output I ndlcotors Commllft
Zc:1ro Balam;:e~

No Sign CR - >< = Remove
Field Nome to Print Ph.11 Sign I::!!: '-· 6. 9.

E! .. or Y'" Oate
U11r v .. 1 A J ~ ~~ Jd ;:rd

Y11
Fiiename JJ EXCPT Nome Field Edit

Defined y,. No 2 B K Z • Z1ro or ... ~ No y,. 3 c L
Record Name

cc Po1hlon Supprou

~ 14!:. j ~ H In No No 4 D M
Output

a: -
A D D ::i

~ i i j 'AUTO H Ricord iii Constant or Edit Word .. ' 1 2 :i. '1 l'I o 1 a g 10 ,, i2 13 14 a ie 11 ie 1a 20 21 22 23 2111 •

3 ' I e 1 a e 10 , , 12 13 14 UI 1s n 1B 19 20 21 22 23 24 29 28 '21 2B 29 30 31 32 33 34 39 31 37 38 311 40 41 42 43 44 4& 48 4'1 48 4~ eo li1 li2 ti3 !4 i::l!i tit IH H DU 80 .,, 82 83 54 es H 17 1511 IJll 70 71 12 73 I

0 1 0 T ~f2 [1
0 2 0 IA 11<1~ ~
0 3 0 J1 B I.-=!
0 4 0 1rl IM re;
0 6 0 1" IH k2
0 8 0 1 ~ifl IL~
0 7 0 2lA ~ re;
0 8 0 2~)ij I-=!"
0 9 0 ~r1 loC ~~
1 0 0 21 ~ ~
1 1 0 I ::>l-z ~
1 2 lo l::i~ ~Jii Ii:
1 3 0 l~IF IM~ l":I
1 4 0 l~lr M~ I'=
1 6 0 l-=111" 1-<F l2
1 8 0

The specifications in this figure tabulate three levels of totals. As they are read from input records,
the fields FIELDA, FIELDB, FIELDC, and FIELDD are added to the first-level totals Lla, LlB, LlC,
and LlD. These first-level totals are added at the time of an Ll control break to totals L2A, L2B,
L2C, and L2D. Similarly, at an L2 control break, the second-level totals are added to third-level
totals L3A, L3B, L3C, and L3D. In addition, as control breaks occur, Ll, L2, and L3 total output is
performed; and total fields are set to zeros after they are written to the output device. Figure 13-15
shows the same tabulations performed on using arrays.

Figure 13-14. Calculating Totals without Using Arrays

Chapter 13. Using Arrays and Tables 13-31

From Filename

E Record Sequence of the Chaining File

J--- Number of the Chaining Field

Line To Filename

Number
of Number

~
Table or

Table or Entries of Length
Array Name

Length

Array Name p., Entries of of

Record Per Table Entry a: ~ (Alternating Entry
::i Format)

dt Array

~ &

Comments

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o' E lsJLll jy: 1, ~ [l ~l~
0 2 E 15 Llz fj ~ l2 II IZ tt '1[lll Jc;

o 4 E

c Indicators Result Field Resulting

~i Indicators

1-- 9 ii I I :I :c

Arithmetic

:: 0 PfusJ..Minu.!l Zero

~~~ Factor 1 Operation Factor 2 cf s Compare Comments 

Line .... 0 rx:.· 
Name Length 

~i 1>2 1 <~1 ·2 

~ ~ ~ ... 0 0 H 
Lookup(Factor 2)is 

if 8 5 ~ z z High Low F.qual 
3 • 5 • 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ~8 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 81 62 83 64 65 68 67 68 69 70 71 72 73 74 

0 1 c Fil ll'll.ll II:: l?i ll ll ~Lil 11 IA u:: F !Iii fI ITV' In 
0 2 c IF'tl IL IF ~ ID jc11 l1 l2 JS 11 e 
0 3 c JI tr: 11'1r-lr l.C 11 1-= I= ]J 1~ 
0 4 c F[I ~ Ir IC Ll Ii.I IC lt ~ 
0 5 c ~ ~,, 11 ~ Ir 1'=11[2 ~ JE IFlf"!R IP II ~ 
0 6 c 12 let~ ~ ic111~ 1c: l::! ~ IF I< 11.J:l tr,...cr 
0 7 c 

! 
Line ~ 

3 4 • 8 7 

0 1 0 
0 2 0 
0 3 0 
0 4 0 
0 5 0 
0 6 0 
0 7 0 

Filename 
or 

Record Name 

~ j Space Skip Output I ndlcators F laid Name ~ Comm11 Zart~ ~~:~~c11 No Sign CR _ X • ~:~:~~ 
~ ~ or Y•01t1 
::c J; I I Yes Yt1 1 A J E it? e ! A~d A~d EXCPT Name YOI No 2 B K z • ;:~od dlt 
~ ~ c:: Position No Y11 3 C L Suppreu 

O E L a E ~ ~ In No No 4 0 M 
~Ji~ 850utpU1 ~ 

U1er 
Oeflned 

o A ~ i::; C: •AUTO t::: < Record m Constant or Edlt Word 
~ z ;;!: z ;H = ~ 1 2 3 4 15 6 7 8 9 10 11 12 13 14 115 18 17 18 19 20 21 22 23 24 

8 8 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 53 154 515 156 57 58 59 80 61 82 83 64 85 88 87 88 69 70 71 72 73 74 

IL]l 
l~IJi 

This figure is similar to Figure 13-14 except that the three levels of totals are tabulated with arrays. 
Note the reduction in coding required to specify the functions. For example, line 5 of the calculation 
specifications performs the same function as lines 5 through 8 of the calculation specifications shown 
in Figure 13-14. Similarly, the output specifications are reduced from 15 lines to 6. The method 
using arrays results in only two positions between array elements. 

Figure 13-15. Calculating Totals by Using Arrays 

13-32 



E Record Sequence of the Chaining File 
Number 

"- Number of the Chaining Field of Number 0 Table or 

~ Table or Entries of Length 
! Array Name 

Length 
Comments Line To Filename p,. Entries of of 

~ Array Name 
Record Per Table Entry "' ii (Alternating Entry 

~ 
~ .... From Filename :i ~ 

Format) l ~ 
or Array 

~ " .ii i:: 

3 4 • 6 7 • 9 10 11 12 13 14 15 16 17 18 19 20 21 u 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 S4 55 56 E56~MITT~~"~56•56~ronn1 

0 1 E lAR~ lY Ii; Qj 
0 2 E AR~ I~ 11 
0 3 E A~r ~ Ill ~ 
0 4 E 

I ~ 
External Field Name Field 

Field Location 
Indicators 

"- Filename ~ ] Record Identification Codes 
~ 0 

or i ~~ 0 ·~ 

Record Name w ~ co 1 2 J From To RPG 
~ 

:§ ~ ;;: 
1l 'i => ~.~ {: ~ Field Name ~ !! Qj "O 

26 • ~ u... u:: 
~ Zero 

Line 

~ 
~· ~ ~ 0 ~ ~ :J Data Structure -~ ~ Plus Minus or _8; ~o ~e ~ ~ "' i Position Position Position 

~ aJ 
-5 :; "O Blank Data tMto E .2 .... N ~ 0 ~ 1 • N o Occurs ~~ • Structure , !;'. ~uo 0 - ~ 8 z u u z u u V) a: Length "u u: 

Name z 0 "' n Times 

3 . • 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4b 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 .. 67 68 69 70 71 72 1: 

0 1 IIIIN fPJA w ~ Ir 
0 2 I ~~ ~ ~~ r1 
0 3 I 1'"11 ~ Ll!Brl 
0 4 I ll ~ AB11 ~l 
0 5 I ll 1.sa ~~~ ~2 
0 6 I 

0 !!: 
~~ Space Skip Output t ndicators 

~ 
Commas 

Zero Balances 
No Sign CR - X., Remove 

I--- !::: u. Field Name to Print Plus Sign 6-9 • .e 'i; or Y =Date 
User 

Filename :t: " 

AL AL 

Vos Yes 1 A J Field Edit 
! i~ JJ EXCPT Name v .. No 2 B K Defined 
{: or Z •Zero 

Record Name ~~ a: Postt1on No v .. 3 c L Suppress 
Line j ~ 

~ 
~ O; ;n No No 4 D M 

~ * i 8& Output "' A :i 

~ ~ 0 0 *AUTO '6 ~ Record " Constant or Edit Word 
z z w"' i:: 1 2 ' 4 5 • 7 • 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2-4 

3 4 5 • 7 • 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ~~~o~~~~u~~~~n~~~~~~MM68~686ro 71 72 ' 

0 1 on lI ~ 11 mi 
0 2 0 ~IR 11J~ 
0 3 0 IAR'r A4 ·a LL 

,.R, 
0 4 0 Oll IA~IA l1 !2 ~q 
0 5 0 QJ2 l4Fi!~ ~lt lllta 
0 6 0 

Figure 13-16 (Part 1 of 2). Formatting Output Fields by Using Arrays 

Chapter 13. Using Arrays and Tables 13-33 



This figure illustrates the use of three arrays to format field output. The arrays are defined as follows: 

Array 
Name 

ARA 

ARB 

ARC 

Number of 
Elements 

4 

5 

6 

Element Length 

5 

10 

4 

Array ARA is contained in the input records with record identifying indicator 01, ARB in the records with record 
identifying indicator 02, and ARC in both types of records. Array ARC and the first element of array ARA are to be 
included together in an output record as are array ARC and an element (identified by field X1 I of array ARB. Every 
element in array ARC is edited according to the edit word 'Of>.f>f>&CR' (f> = blank). 

The contents of the arrays in the first two input records are as follows: 

Record 

2 

Array 

ARA 

ARC 

ARB 

ARC 

Array Contents 

12345678901234567890 

01234567890123456789876N 
(note than N equals minus 5) 

JOHNf>DOEf>f>JOEf>SMITHf> 
LEEf>MARXf>f>J IM f>KNOTSf> 
TIMf>TYLERf> 

(the same as record 1) 

In the first output record, the location and contents of the arrays are as follows (f> = blank): 

Array Location Contents 

ARA (first 85-89 12345 
element) 

ARC 37-84 f> 1.23f>f>M5.67f>f>f> 
89.01 f>f>f>23.45f>f>f> 
67 .89f>6f>87 .65f>C R 

For the second output record assume that the content of field X1 is 4; the locations and contents of the arrays are 
as follows: 

Array Location Contents 

ARB (fourth 91-100 JI M6KNOTS6 
element) 

ARC 37-84 61.23f>f>M5.67f>f>f> 
89.01 f>f>f>23.45f>f>f> 
67 .896f>f>87 .65f>CR 

Figure 13-16 (Part 2 of 2). Formatting Output Fields by Using Arrays 

13-34 



Figure 13-17 shows a method of printing one array element per line. Each 
time the EXCPT operation on line 03 of the calculation specifications 
occurs, one element of the 22-element array AR2 is written to the output 
file ARFILE. 

C . Indicators Result F ietd ~~~~= 
.,.__ L ] ] . A•~hmetic 

::::!. ~ And And Factor 1 Operat;on Factor 2 :~ i' Plus_[Min~{Zero 
~~~ 8t: Compare 

Lin• .=- 0 a: Name Length ~ t 1 >::![1<ll1•2
~ .= 0 .§ _ Lookuplfactor 2U

,r.§~'i ii ~~H;~Lowfqual
3 4 5 8 1 8 9 10 11 12 13 1c 15 18 17 18 19 20 21 22 23 24 25 26 27 ta 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 .,_ 45 41 47 48 49 60 151 62 53 54 56 58 57 68 59 60 61 82 83 84 115 18 67 11 • 10 71 72 73 74

Comments

0 1 lcll -1.4 IDII II 121a
0 2 e J~
0 3 le i])(IT
0 4 II
0 5 lrN lrl MIP
0 6

0 7 le

0
...

@¥ Sp ... Skip Output Indicators

~
Comm•

Zero Bllances
No Sign CR - X •Remove

1----i t: ... Field Name to Print Plus Sign 5.9 • .e ilik or Y•Dm
UHr "' " :rd ;:L v .. v .. , A J Field Edit & Filename i~ ii " EXCPTName Defined - .! v .. No 2 B K Z•Zwo ~ or

~~ AA No Yes 3 c L a: Position Supp,... Line ! Record Name

j H No No 4 D M
~ ~L ! in

IC
A DD Output g
~ i g s •AUTO ~~ Record Constant or Edit Word

z z ii: 1 2 3 • •• 7 8 9 to 11 12 13 14 15 18 17 18 19 20 21 22 23 24
3 • • • 7 • g 10 11 12 13 14 15 16 t7 18 t9 20 21 22 23 24 25 26 27,. 29 30 31 32 33 34 35 38 37 36 36 40 4t 42 43 "~-~-~~~~~~~~~~~H~~MMMU~UUM 11 72 73 l

0 ' lOIA RFU I[Il IL re
0 2 lo ~~ tlN "~ 0 3 to

Figure 13-17. Printing One Array Item per Line

Chapter 13. Using Arrays and Tables 13-35

Figure 13-18 shows a method of printing more than one array element per
line. The number of elements printed on a line depends on the value coded
as factor 2 in the COMP operation in line 10 of the calculation
specifications. In this example, that value is 10, and the number of
elements in array AR2 is 50.

If an edit code is used, each array element is preceded by two sp&ces. You
must take these spaces into account when you compute the end position for
the output specifications.

c Indicators Result Field Resulting

~i Indicators

t-- ~ I I Arithmetic
;r-

:~ ~ Plus Minu![Zero .. " ~j z Factor 1 Operation Factor 2 B = Compare Comments ..
Name Length

.. ,
1>~1<~-2 Line § ~ ~ ~i

rr." 0 0 ~ "~
Lookup(Factor 2)1s

of 8 -' z z ~ :!'! High Low F.qual
3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 E_ 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 51 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 clLIR ·IA [)l]J IIN lat2
0 2 c ~ jLIM~ tr~G
0 3 Cb.. IRI Jz- ~ w)(111 l2t2
0 4 c 8 lJ)p IIAGI
0 5 c I< ~Ir Vi-_ ~R ~ l1N IAIR1 IX1
0 6 c [) 11 lXll -·
0 7 c R !At"' 11 It-J
0 8 c .r.J ~Ir Mp 1i=rz l1a
0 9 c 1.12 toif' Ir ,.. lI
1 0 c ~l /ilfi ~~ 1ril 111~
1 1 c I~~ 1~ er ,.

tJ~
1 2 c lfli r I ~r,
1 3 c IX~ m
1 4 c ~ 11.JLl Nl!Ja ~Ir lJlr N, M~
1 5 c

0
u.

~] Space Skip Output t ndicators

~
Commas

Zero Balances
No Sign CR

X •Remove
I-- Field Name to Print - Plus Sign

e~ y .. Date 5 ·9.
:i: -

A!d AL
or

Yes y., 1 A J User
8. Filename

i~ ~ - EXCPT Name y., Field Edit
Defined

~ or ~ J! No 2 8 K Z •Zero

Line Record Name >-~ ~ cc Position No Yes 3 c L Suppress

! ~ * ~ ~ p In No No 4 0 M
a:

A "' " i:J Output ::i

~ £ £ li "AUTO ~~ Record iil Constant or Edit Word z ;;;
1 2 , 4 ' • 1 • 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 , 4 ' 8 1 • 9 10 11 12 13 14 115 18 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ~%~0~~~~~~~~5651~~~~~M~~~~~~ro 71 72 73 74

0 1 OIAIR IILIEl [tl 1 l"C
0 2 0 IA~ll F! 11~
0 3 0

Figure 13-18. Printing More than One Array Item per Line

13-36

Example of Using Tables

The following payroll program requires two related tables:

TABNUM TABRAT

12345 407

12346 593

12347 369

12348 390

12349 1379

TABNUM, which contains employee numbers, is the table searched.
TABRAT, which contains employee salary rates, is the related table. After
the program finds an employee's number and salary rate, it multiplies the
rate by the number of hours worked. The result is the amount earned.

File Description Specifications

File Type Mode of Processing F
t--i

Length of Key Field or
of Record Addres1 Field

Record Addreu Type ...1

Type of Fiie ill
File Format N Organiutlon or ~

u. !!!.-----..--~ e Additional Area

a ~ Block Record ~ ~ Over~flow Indicator ·I
~ ~ ~ Length Length ~ ~ Key Field ';(

a~ eu. ~ ~~ =~nw
:::: CL w C:: E1eternal Record Name

File D11ign1tion

Line

End of File

Sequence Filename

File Addition/Unorde1

Extent Exit Number of Tricks i! for DAM tor Cylinder Overt
i Name of Number of Ext Symbolic iii

Device Device] Label Exit r--r;;--
.:: Storage Index ~ Fiie

C.Ondi
U1-UI

Continuation Lines
i!:

UC

::> ~
K Option Entry < "'

3 4 5 8 7 8 9 · 10 11 12 13 14 15 16 17 I 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 36 38 37 38 39 40 41 42 43 44 45' 46 47 48 49 50 51 52 53 S4 55 56 57 58 59 60 61 82 63 64 85 86 67 68 69 70 71 72

o 2 Fn111~~1~1ic 11 1,...u.. IF" 1Ci1Ei Tci ~ frlrlc:1IK

o 4 F

The input records are contained in the input file TIMECARD, which is
designated as the primary file (P in column 16). When the file reaches end
of file, processing ends (E in column 17). Each record in this file is 96
positions long. This file is read from disk.

The related tables are contained in the input file RATETABL, which is
designated as a table file (T in column 16). This file is read from disk before
the program is run. Each record in this file is 72 positions long. The E in
column 39 shows that the extension specifications contain additional
information about this file.

Chapter 13. Using Arrays and Tables 13-37

Extension Specifications

E Record Sequence of the Chaining File

Number of the Chaining Field

line 8.
;:::

~
From Filename

13-38

Number

To Filename

of Number
Table or Entries of length

Array Name .. , Entries of

Record Per Table Entry a:
or Array :::i ;;,

0:

Table or Length
Array Name of
(Alternating Entry cc
Format) J

~

Comments

The extension specifications complete the description of the file
RATETABL. The table searched is TABNUM (columns 27 through 32),
which has eight elements in each record (columns 33 through 35) and 500
elements in the table (columns 36 through 39). Each element is 5 positions
long (columns 40 through 42) with zero~decimal positions (column 44). The
table is organized in ascending sequence (column 45).

The related table is TABRAT (columns 46 through 51). Each element is 4
positions long (columns 52 through 54) with two decimal positions (column
56).

The table input records are organized in alternating format (although
related tables do not have to be in alternating format). That is, the first
record begins with the first element of TABNUM, which is followed by the
first element of TABRAT, the second element of TABNUM, the second
element of TABRAT, and so on in alternating sequence. Each element of
TABNUM is 5 positions long, and each element of TABRAT is 4 positions
long. Therefore, each pair of related elements is 9 positions long. There
are eight elements of each table per record, so each record in RATETABL is
72 positions long.

Each table has 500 elements, so the file requires 63 records (500 elements
divided by 8 elements per record = 62.5 records). The first 62 records
contain data in positions 1 through 72, but the 63rd record contains data
only in positions 1 through 36.

Input Specifications

I f to- Filename

l or gi~
Record Name w

& i 15
~ ~ I=-Line

! !
D11t1 -g O.,!!. ~~ Structure H

Name A N re
3 • • • 7 • 9 10 11 12 13 14 15 18 17 19 20

0 1 IT IAJl2 [lll4 11lrt
0 2 I
0 3 I
0 • I

External Field Name Field
Field Location

Record Identification Codes Indicators

1 2 3
~

From To RPG ;s
Field Name ..

~ !!:
u: Zero

- ii ~ e ~ Data Structure

~~
l!' Plus Minus or

Position ~ £ ~ Position Position j~ "' Blank
" N ~ Occurs ~ 2 tJ 6 l. U G 2 tJ "' .. nTimes Length

21 22 23 24 25 26 27 pa 29 30 31 32 33 34 35 36 37 38 3e •• 41 42 43 44 46 4ti 47 48 49 50 51 52 53 &4 55 66 57 58 59 60
81 ·~ 83 , 70 11n131.i11

_l li::lOJ M N
I~~ ~~1 oc ~

- --

The input file TIMECARD is assigned a sequence of AA (columns 15 and
16). Record-identifying indicator 01 turns on whenever an input record is
present for processing. No record identification codes are specified in
columns 21 through 41 because there is only one record type.

Lines 02 and 03 describe the locations of the two input fields used by the
program. The employee number (EMPNUM) is in positions 1 through 5 of
the input record. The number of hours worked (HRSWKD) is in positions
42 through 44 of the input record.

Chapter 13. Using Arrays and Tables 13-39

Calculation Specifications

c Indicators
~

I-- ~ Jd Jd ..
Line

~5
,_ 0

E l!
~ ~ 0 .l' 8 z

3 4 5 6 7 9 10 11 12 13 14 15 16

0 1 c la~
0 2 c 01~
0 3 c "oJ-::i
0 4 le

13-40

Result Field
Resulting
Indicators
Arithmetic

Plu$lMinin(" Zero
Factor 1 Operation Factor 2 Compare Comments

Name Length 1>3'[1<:ff1=2
Lookup{Factor 21is

High Low F.qual
17 18 19 20 21 22 23 24 25 26 17)2a 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 so 51 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

IE IPIN ~ IM IPll jAiA "~ ll rr ri~

tr~ iAll I& f [i le lw ~IB ~le, 19;>
IVIF ~~ ~ .m

On line 01, the LOKUP operation instructs the program to search the table
TABNUM (factor 2) for an element that matches the value of the field
EMPNUM (factor 1). Resulting indicator 03 turns on when an element in
TABNUM is found that is equal to the value of EMPNUM. The related
table TABRAT is specified as the result field.

When indicator 03 is on, the MULT (multiply) operation in line 02 is
performed. The salary rate for the employee, taken from the related table
TABRAT (factor 1) is multiplied by the number of hours worked, HRSWKD
(factor 2). The result is stored in the result field EARNS, which is 5
positions long with two decimal positions. The result is half-adjusted (H in
column 53).

When indicator 03 is not on, the MOVE operation in line 03 occurs. The
literal 000.00 (factor 2) is moved into the field EARNS (result field) to
indicate that the table does not contain an entry for th.at employee. The
decimal point in the literal is used only to align the data; it is not actually
put in the field EARNS.

Chapter 14. Using Data Structures

Coding a Data Structure . 14-1
Data Structure Statement . 14-2
Subfields . 14-2
Rules for Coding Data Structures . 14-3

Examples of Data Structures . 14-4
Example 1. Defining One Area of Storage More than One Way 14-4
Example 2. Defining Subfields within a Field 14-6
Example 3. Reorganizing Fields in an Input Record 14-8

Special Data Structures . 14-9
SA VDS Data Structure . 14-9
Local Data Area for a Display Station 14-10
File Information Data Structure 14-10

Chapter 14. Using Data Structures

Chapter 14. Using Data Structures

A data structure is an area in storage that is composed of one or more
fields, called subfields. You can use a data structure to:

• Define that area of storage more than one way

• Subdivide an input field so that your program can refer to either the
entire field or its subfields

• Reorganize fields in an input record for easier reference

See Examples of Data Structures, later in this chapter, for an example of a
data structure used for each of these purposes.

Coding a Data Structure

I !
Filename

J
!

or :r l!l Record Name
l z: a
~ 1=· Line

~

Data structures are coded on input specifications. They must be the last
entries on the input specifications. That is, they must follow all
specifications for input records.

Specifications for a data structure have two parts: the data structure
statement and the subfields. Specifications for the subfields must be coded
on the lines immediately below the specification for the data structure
statement.

To code a data structure statement and subfields, make entries in the
unshaded columns of the input specifications shown below:

E>eternal Field Name Field
Field Location

Indicators Record Identification Codes
~ ·I ! ... a .. From To .2 RPG § .g "' i l Ii .! .. i ~ I.,

Field Name
!I IL.ji: Zero

~Q
Data Structure

l I
.~ !'

"'
Plus Minus or

Position ilg u ~ Bl•nk
o~ o!~ Occurs a z" Length "

Chapter 14. Using Data Structures 14-1

Data Structure Statement

Subfields

14-2

Columns 7 through 12 can contain blanks or the name of the data structure.·
Although columns 7 through 14 are normally used as one entry, the name of
the data structure cannot be more than 6 characters long.

Column 18 must contain U if this data structure is to be used as a local
data area for a display station (see Local Data Area for a Display Station in
,this chapter). Otherwise, leave this column blank.

Columns 19 through 20 must contain DS, which identifies this statement as
a data structure.

Columns 44 through 47 must contain the record position in which the
subfield begins, relative to the beginning of the data structure, not relative
to the beginning of the input record.

Columns 48 through 51 must contain the record position in which the
subfield ends, relative to the beginning of the data structure, not relative to
the beginning of the input record.

Column 52 must contain the number of decimal positions if the subfield is
numeric. It must be blank if the subfield is alphameric.

Positions 53 through 58 must contain the subfield name. The subfield name
can be.the same as an input field name or a result field name. Subfields
can be used as factor 1, factor 2, or the result field of a calculation
specification or as output fields. However, the same subfield name cannot
be used in more than one data structure, and a data structure name cannot
be used as a subfield name in another data structure.

Rules for Coding Data Structures

A data structure is considered alphameric data. Therefore, when a data
structure is created, it is set to blanks, except for those subfields that are
set by an array or by a local data area for a display station. You must
ensure that numeric subfields contain numeric data before you use the
subfields in CHAIN, READE, LOKUP, COMP, IFxx, DOUxx, DOWxx,
CASxx, or editing operations, or arithmetic operations.

A maximum of 75 data structures can be used in a program.

A data structure can be from 1 through 9999 characters long. However, the
maximum length of a data structure used as a local data area for a display
station is 512 characters.

The maximum length of an alphameric subfield is 256 characters; the
maximum length of a numeric subfield is 15 characters.

If arrays are specified as subfields, the length specified must equal the
amount of storage required to store the entire array.

The length of a data structure is one of the following:

• The length specified in the input field specifications if the data
structure name is an input field

• The highest entry in columns 48 through 51 of a subfield if the data
structure name is not an input field

The length of the data structure is determined by the first specification in
the program that defines a length in one of the ways just listed. Conflicting
lengths in later specifications are not valid.

The name of an input field or a result field that is being redefined in a data
structure must be the data structure name or must be specified in the data
structure; however, it does not have to immediately precede the subfields
redefining it.

If a field appears as a data structure name or as a data structure subfield
name, the physical space reserved for that field is in the data structure,
regardless of where the field was defined.

Look-ahead fields cannot appear as a data structure or a subfield.

An RPG reserved word, array item, or table name cannot be specified as a
subfield.

A packed-decimal or binary numeric field cannot be specified as a subfield
within the data structure. If a field is defined as packed-decimal or binary
in a file, the program converts that field to zoned-decimal format when it
places the field in the data structure.

Chapter 14. Using Data Structures 14-3

Examples of Data Structures

Example 1. Defining One Area of Storage More than One Way

Figure 14-1 shows a 40-position data structure that defines one area of
storage in three ways:

• Positions 1 through 32 are defined as the sales record (SREC).

• Positions 1 through 35 are defined as the purchase record (PREC).

• Positions 1 through 40 are defined as the transfer record (TREC).

Figure 14-2 shows the coding for the data structure in Figure 14-1. The DS
in columns 19 and 20 of line 08 identifies the following lines as a data
structure. The data structure allows the programmer to define 19 subfields
(lines 10 through 15, 17 through 23, and 25 through 30) within only 40
positions of storage.

If the programmer defined each subfield as a field in the input record
instead of using a data structure, each input field would require a separate
area of storage. That is, the sales record would require 32 positions, the
purchase record would require an additional 35 positions, and the transfer
record would require an additional 40 positions. Together, the three
records would require 117 positions of storage, almost three times as much
as the 40 positions required for the data structure.

Data Structure

I I I I I I

PREC

TREC

Figure 14-1. Data Structure That Defines One Area of Storage Three Ways

14-4

I ~
E >eternal Field Name Field

Field Location Indicators
1--- Fiiename

J
f Record Identification Codes

~ .8
or :r l!l ! ;; & ;

Record Name w"' 1 2 3 From To RPG ,, ..
F j IC

! !~ g Field Nama ~ H 1 Zero
Line

~
-o

j§J ~ ~ ! j§
GI IC Dire Structurt

"] rr Plu1 Minu1 or

D11t1 !i l Po1111on Position Po1ltion A .s ~ .~ u i Blank

'*° u Occurs ~ Structure i <i 15 L. nTimes Length ...
N1me ••• • 7 8 9 10 11 12 13 14 111 ,. 1111 19 20 :11 22 23 24 H 21 21~8 29 30 3132 3334 35 31 37 38 39 40 41 42 "3444S4b4 7484815051 62 153 154 55 u 57 158 H 80 II 82, 70 7t 72 73j

0 1 Ile:~ If' !?Jl [q[J lrli: !Cl '"i
0 2 I rt l;:i ~~ If!'"

IIP ifilr l.4!Jc:fi:
"'

!212 l<ll.3 ~[p le Ir~ 0 3

0 4 I rt Ii ~re 1,.Y

0 6 IlT !Iii ~-=]q~ lrl] lq lr[r:
0 8 I 11 [~[l lliR ~
0 7 IBi
0 8 I lrllc;
0 9 IBf ~IA ll IE1C: IJIO IFIIt:. ~
1 0 I 11 ~ le;!~ ~'
1 1 I r.t ~
1 2 I ITTi II~ PIA IC T
1 3 I 1117 i;.i llYl
1 4 I Jal ~ 12 II\ Il rr
1 5 I Pf7 ~T rr IC;[
1 6 I~ ~" ll?t" ~le IJocE lrlrlfiC ll='ITI"" 'iCi
1 7 I ij 1"1i:; 1*! r:
1 8 I w ~ IA 11
1 9 I [fo:rA 111 1-l
2 0 I l1Ti 11 ~11

I !Pl !;;' l;:;;I T
I ~ ~Cl R IAI EJ
I f.ii '- '-I uri
I~ [IR !AINI..., ~ IEII~ 1 ~
I ~W'j ,.~~

0 1 I

"'
PiA]

0 2 I 11 r1 ITIYit"
0 3 I 1111 s.;i ~I

1~1-1

0 4 I ~.JJ f.\il Ti- r.:i;;;
0 6 I ~]ij'l 'iJr ii" in IAl1
0 6 I

Figure 14-2. Coding for Data Structure Shown in Figure 14-1

Chapter 14. Using Data Structures 14-5

Example 2. Defining· Subfields within a Field

I
I--

!

Filename
or

Record Name J
Lint g

... --0.-tt-.,...,..O.+R.....-I

s'N~~~'" ~
3 4 s a 1 a s io 11 12 13 14 111 11

o , IFII IE'.ITIN
o 2 I
o 3 I
o 4 I

0 I I

I 0 6 I!PAIJCll 11\
o 1 I
0 B I

o e I

1 o I
1 , I

1 2 I

Figure 14·3 shows a data structure that subdivides a field in an input
record. Input field PARTNO in file FILEIN has 16 positions (from record
position 3 through record position 18; see line 02). The data structure
defines subfields in field PARTNO.

If a da.ta structure defines subfields within a field, and if that data structure
has a name in columns 7 through 12, the data structure name must be the
same as the field name (in this case, PARTNO).

Normally, a data structure name cannot be specified as factor 1, factor 2, or
the result field of a calculation specification. However, a data structure
name can be specified as the result field of an RLABL operation. A data
structure subfield name can be specified in a calculation specification.
Subfield PARTDS contains all 16 positions in the data structure, so subfield
PARTDS can be used to specify the entire data structure in a calculation
specification.

External Field Name
F leld Location

Record Identification Codes

rm It f'ii IT I" ll 1-,., ,.,,.... NI

Field
Indicators

Zero
Plu1 Mlnu1 or

Blink

Figure 14-3. Using a Data Structure to Define Subfields within a Field

14-6

I
I-- Filename

J or
Record Name

Line

Dilta

~ Structure
Name

3 • 5 • 7 8 9 10 11 12 13 14 15 16

0 1 I
0 2 I
0 3 I
0 4 I
0 5 I
0 6 I
0 7 I
0 8 I
0 9 I
1 0 I
1 1 I
1 2 I
1 3 I
1 4 I

A data structure can also redefine subfields within a subfield. Figure 14-4
shows that subfields KEY (line 02), ARRFLD (line 07), and ID (line 08) are
redefined by subdividing them into even smaller subfields.

f
External Field Name Field

Field Location
Indicators Record Identification Codes

~ ·~ -;;..,, s cc 1 2 3 From To .~ RPG -'

i~
..

:i' s re

J:· ll l Field Name] i Zero
;Ji re

LLi,i:

~ - ! - ii Data Structure
~ .~ ~ Plus Minus or

~ ~ ~ Position ~ e ~ ~ 0 w jg g] :~
re g Position Position ¥ Blank

• N • ~§~ Occurs ~ 8 ¥ ~ u 0 ~ u c5 cii ~ nT1mes Length :lti u: a:
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 •• 41 42 4344454ti4 7 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 83 .. 85 .. 87 68 .. 70 71 72 73 7~

jc

ll 1~ ~IE!)
_l 1aa !Th
I~ Ll bll " M 1 .. IA

lb 11~ t.llW 111,.
~~ flill" II"'

LlL1 111~ II!t
l.tl1 ~~ IP ~MI
l1ie It I.: IA IAIV-

l1 ~lei I~~ ~::
~ ~~ ""' ~IC=
~~ i;i,.. lr!Jlc-

Figure 14-4. Using a Data Structure to Define Subfields within a Subfield

Chapter 14. Using Data Structures 14-7

Example S. Reorganizing Fields in an Input Record

I
i--, Fiiename

J ~ or
Record Name

! ~ Line g
OR I .. Doti

Structuro ~~
Nomi

1311_4 ••• I 7 8 9 10 11 12 1& 18 11

0 1 I IA ll
0 2 I
0 3 I
0 4 I
0 5 I
0 6 I
0 7 I IY
0 8 I
0 9 I
1 0 I
1 1 I
1 2 I

+- - . -+-

l
1

Figure 14·5 shows a data structure that is used to reorganize fields in an
input record. Records in file TRANSACT contain input fields in the
following sequence: PARTNO, QTY, TYPE, CODE, and LOCATN (lines 02
through 06), Data structure KEYDS reorganizes this sequence. The
sequence of subfields in the data structure is LOCATN, PARTNO, and
TYPE (lines 08 through 10). Input fields QTY and CODE are not part of the
data structure. Subfield PRTKEY (line 11) includes all 16 positions of the
data structure, so it allows you to specify the entire data structure in a
calculation specification.

Extem1I Field N1me Field F leld Location
Indicators Record Identification Codes

~ i .ll'l!! ! ~
b

1 2 3 '8-19 .. From To . RPG "' l' b li ·~

! !~ l 1:· • Ji"' l Field Name Zero

zo§ - = ~Q
Data Structure .. g f ~ Plus Minus or

j Polit ion Position Z o N Position ii!::::; J ~ Blank - j;j. j§~ ~§ ~! !!! Occurs §
..

Li6 CL nTimes Leng1h 16 u.

127~293031 32 33 13'1 35 36 37 31 39 40 41 42 G 44 45 4ti 47 48 48 50 51 52 63 M 15& 158 &7 58 11 __ .. 13 111e .. 70 71 72 73 74 19 20 21 22 23 24 25 28

r.211 11 II ~ lrl 12
1-:; ~a Iii illl

r111 IIl~u lI~
[i~ ~ ~~ ~E
li:ilt ~1 ir-;.. ~1~
i;;ilP ~ ~LJln

p:
ll ~ ~[(~
fl: I~ !}Ill; [1n1'-

WI 111, ~~ 1tE
~ It~ 'lllt'l ~

·- -

Figure 14-5. Using a Data Structure to Reorganize Fields

14-8

Special Data Structures

SA VDS Data Structure

I
1--- Filename

or
Record Name

Structure
Name

3 4 5 6 7 8 9 10 11 12 13 14 15 16

o 2 I

o 3 I

o • I
o s I

o s I

o 1 I

The data structure in Figure 14-6 is used as the SA VDS data structure,
which is specified on a continuation line of the file description specification
for the WORKSTN file. This data structure contains fields that are to be
saved and restored for each display station that uses the WORKSTN file.

For more information about the SA VDS data structure, see
Continuation-Line Options in Chapter 6, Using a WORKSTN File. For an
example of a SAVDS data structure, see Figure 6-12, Sample Program
AR330R.

g· External Field Name Field Location Field

i Record Identification Codes 0c 1 ndicators .. ~
~~ 'o ~
.!: c 3 From To 0 RPG -' -S ... a:

f .'o. Y ~ Field Name ... ~ ~ ~ "t:I

~ • _ !! _ !!l _ ~ ~ a: Data Structure -~ ~ J Plus Minus !~to
"t:I Position ~ e_ ~ Position ~ ,e ~ Position ~ c hi ~ ::J]] :.Y :_.~ 1:1 Blank
'Q .. N"' -N"' zo-U!::!Ui•~~ Occurs O~ U6 ... 'ii &! ~UO ~00 .;-;..::: nTimes Length ::!:'.o i.i:

~ro~~n~~~n~~~~nn~~~n~~~~~~~%•o~~~~~~M~~~~~oo~~~M~~~Mnronnn

ll l!".l llll!

11 r;i ltl'i~ JI

+--

Figure 14-6. SA VDS Data Structure

Chapter 14. Using Data Structures 14-9

Local Data Area for a Display Station

Figure 14-7 shows a data structure that is used as the local data area for a
display station. A local data area contains 512 positions of storage that is
used for passing information between programs and procedures. Coding a
local data area data structure requires a U in column 18. The data
structure name is optional.

At the beginning of the program, the program reads information from the
local data area into the data structure; at the end of the program, the
program writes information from the data structure into the local data area.
You can also use the control language LOCAL statement or another RPG
program to enter information into the local data area.

For a MRT (multiple requester terminals) program, the local data area data
structure contains a copy of the local data area for the first display station
using the program, and the local data area data structure is not
automatically written out at the end of the program. To read and write the
local data area for each display station in a MRT, use SUBR21 (see Chapter
6, Using a WORKSTN File). For an example of a local data area, see
Figure 6-13, Sample Program AR935R.

File Information Data Structure

I
t-- Filename

l or
Record Name

!l
/!:

Line
~ ... Data

~ Structure
Name

3 • 5 • 7 8 9 10 11 12 13 14 15 16

0 1 IP RII M lJ
0 2 I
0 3 I
0 • I
0 6 I
0 6 I

f

A file information data structure (INFDS) is used for passing information
about an exception or error in a WORKSTN file to the RPG program. This
information includes the type of exception or error that occurred, the
operation that the program was performing when the exception or error
occurred, and the status of various conditions. The INFDS data structure
is specified as a continuation-line option on the file description
specification for a WORKSTN file.

For more information about the file information data structure, see
Handling Exceptions and Errors in Chapter 6, Using a WORKSTN File.

External Field Name Field
Field Location Indicators Record Identification Codes .~ ! g,~ g 5 .; 1 2 3 From To RPG :~ f :~ ~

·~
0:

l Field Name 5 i ;Jio:
U..ii: Zero

~ Zo~ go~
Data Structure

~ -~ ~ Plus Minus or
~e ig g 0: -g Position ~ Position - -. Position

l> t:! 2 ii :s .,, Blank

~56 ~ ~ c5 Occurs ~ 8 :icS ~ Ji z <J <J U>r:L nTimes Length

19 20 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 4b 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 83 67 68 6870 71 72 73 74

IS
J lf""I !llt.l""i
l.::i ... 1 ,.~

~
IA

IIlz
I:. 11-:\z El IN~

-

Figure 14-7. Using a Data Structure as a Local Data Area for a Display Station

14-10

Chapter 15. Using Auto Report

Input for Auto Report . 15-3
Specifications Created by Auto Report . 15-5

Format of Created Specifications . 15-5
Order of Created Specifications . 15-6

Calculation Specifications . 15-6
Output Specifications . 15-7
Comment Statements . 15-7
Restriction . 15-8

Option Specifications . 15-9
Column 6 (Form Type) . 15-9
Column 7 (Source) . 15-10
Columns 8-24 (Source Member Reference) 15-10
Columns 25-26 . 15-10
Column 27 (Date Suppress) . 15-11
Column 28 (*Suppress) 15-11
Column 29 .. 15-11
Column 30 (List Options) 15-12
Columns 31-74 . 15-12

/COPY Statement Specifications . 15-13
Changing Copied Specifications 15-15

Changing File Description Specifications 15-15
Changing Input Field Specifications 15-18

*AUTO Specifications . 15-21
*AUTO Page-Heading Specifications . 15-23

Record-Description Specifications 15-24
Columns 7-14 (Filename) 15-24
Column 15 (Type) . 15-24
Column 16 . 15-24
Columns 17-22 (Spacing and Skipping) . 15-24
Columns 23-31 (Output Indicators) . 15-24
Columns 32-37 (*AUTO) . 15-25
Columns 38-70 15-25

Field-Description Specifications . 15-25
Columns 7-31 . 15-25
Columns 32-37 (Field Name) 15-26

Chapter 15. Using Auto Report

Column 38 (Edit Codes) . 15-26
Column 39 (Blank After) 15-26
Columns 40-44 15-27
Columns 45-70 (Constant or Edit Word) 15-27

*AUTO Output Specifications . 15-28
Record-Description Specifications . 15-29

Columns 7-14 (Filename) • . 15-29
Column 15 (Type) 15-29
Column 16 (Fetch Overflow) . 15-29
Columns 17-22 (Spacing and Skipping) . 15-30
Columns 23-31 (Output Indicators) . 15-30
Columns 32-37 (*AUTO) 15-31
Columns 38-70 15-31

Field Description (Blank or B in Column 39) ·. 15·31
Columns 7-22 .. 15-32
Columns 23-31 (Output Indicators)•. 15-32
Columns 32-37 (Field Name) 15-32
Column 38 (Edit Codes) . 15-32
Column 39 (Blank After) 15-32
Columns 40-43 (End Position in Output Record) 15-33
Column 44 .. 15-33
Columns 45-70 (Constant) . 15-33

Field Description (A in Column 39) . 15-34
Created Total Fields . 15-35
Considerations . 15-36
Columns 7-22 15-36
Columns 23-31 (Output Indicators) . 15-36
Columns 32-37 (Field Name) 15-37
Column 38 (Edit Codes) 15-37
Column 39 . 15-38

Resetting Total Fields to Zero . 15-38
Asterisk Indication: . 15-38

Columns 40-43 (End Position in Output Record) 15-38
Column 44 .. 15-39
Columns 45-70 (Constant) 15-39

Field Description (C in Column 39) . 15-39
Columns 7-38 , 15-40
Column 39 . 15-40
Columns 40-44 . 15-40
Columns 45-70 (Constant) 15-40

Field Description (1-9 or R in Column 39) . 15-41
Columns 7-31 . 15-43
Columns 32-37 (Field Name) 15-43
Column 38 (Edit Code) 15-43
Column 39 . 15-43
Columns 40-43 (End Position in Output Record) 15-43
Column 44 . 15-43
Columns 45-70 (Constant or Edit Word) 15-44

Group Printing • . 15-44
Specifications . 15-44
Examples . 15-45

Report Format . 15-49
Spacing and Skipping . 15-49
Placement of Headings and Fields . 15-51

Page Headings 15-51
Reformatting *AUTO Page Headings . 15-51
Body of the Report . 15-52
Overflow of the D/T-* AUTO Print Lines 15-52

Created Specifications 15-54
Created Calculation Specifications . 15-57
Created Output Specifications . 15-59

Programming Aids . 15-61
Examples of Using Auto Report . 15-66

Example 1 . 15-67
Example 2 .. 15-71
Example 3 .. 15-73
Example 4 .. 15-75
Example 5 .. 15-77
Example 6 . 15-80
Example 7 . 15-83

Control Specification . 15-87
/COPY Statements . 15-89
Calculation Specifications . 15-89
*AUTO Specifications . 15-93

Chapter 15. Using Auto Report

Chapter 15. Using Auto Report

RPG auto report uses its own specifications and standard RPG
specifications to create a complete RPG source program.

Specific auto report statements control the three separate functions of auto
report, which can be used in any combination:

• The /COPY statement allows you to copy a source member, containing a
group of RPG source specifications, into an RPG source program. Use
/COPY so you do not have to repeatedly code identical or nearly
identical specifications that are used in several programs. This is the
most important benefit of using auto report.

• *AUTO page headings provide a simplified method of coding page
headings.

• *AUTO output provides a simplified method of coding output
specifications.

Figure 15-1 is an overview of what auto report does.

Chapter 15. Using Auto Report 15-1

Input
RPG and
auto report
specifications
in source
library.

(optional)

Auto report
/COPY
specifications
in library
member

RPG Auto Report
Function

• Merges specifications
copied from a library
member with
specifications from
the source program.

• Diagnoses auto report
coding; produces
a listing

• Creates RPG source
specifications; places
created source program
in a work file.

• Optionally, catalogs the
created RPG source
program in the library.

• Optionally, calls the RPG
compiler if there are no
terminal errors in the auto
report coding.

Figure 15-1. Overview of Auto Report

15-2

Auto report listing

• Merged auto report
specifications

• Diagnostic messages

To
... Compiler

(optional)

Created RPG source
program in work file

(optional)
Created
RPG source
program
cataloged in
the library

Input for Auto Report

0
I--

line

3 4 5 6

0 1 0
0 2 0
0 3 0
0 4 0
0 5 0
0 6 0
0 7 0
0 8 0
0 9 0
, 0 0
1 1 0
1 2 0
1 3 0
1 4 0
, 5 0

Filename
or

Record Name

Auto report uses the following input:

• Auto report option specifications

• *AUTO page headings and* AUTO output specifications in the source
program

• Standard RPG specifications in the source program

• Auto report /COPY statements in the source program, with or without
modifier statements

• Standard RPG specifications, including arrays and tables, and *AUTO
specifications that are copied from the library by the auto report copy
function

Figure 15-2 shows an example of* AUTO output specifications, and Figure
15-3 shows the calculation and output specifications created by the* AUTO
specifications.

@ :.'"' Space Skip Output Indicators ~ Commas Zero Balances No Sign CR - X = Remove
tu.. Field Name toPtmt PlusSign 5 _9 =

~ ~ J l or Yes Yes 1 A J y = ~i:~~ Edit User
i~ ~ ~ And And EXCPT Name Yes No 2 B K Z =Zero Defined

I-~ ~ :Cl ~ ~nos1t1on ~~ ~:s ~ g ~ Suppress

Wo ~ ~ 8 5 Output ~
o R o 2o 0 *AUTO =ii ~ Record ~ • Constant or Edit Word
~ z z w a:i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 •

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 7:

la
II '~ ~I I\ I

IL 1 la I

rl

T ~N 'IIIIEIM'

' ~ IP[:!~ I

'~~~Ull\ '

'FIINlA Tl ~~ le; I

-1-~ -- --- -

Figure 15-2. *AUTO Output Specifications That Create the Calculation and Output Specifications
Shown in Figure 15-3

Chapter 15. Using Auto Report 15-3

0012 0140E:C 01 EXSR A$$SUM
0013 0150ECL1 SOLDV2 ADD SOLDV1 SOLDV2 92
0014 0160ECL1 VALUE2 ADD VALUE1 VALUE2 92

Calculations to Roll 0015 0170ECL2 SOLDVR ADD SOLDV2 SOLDVR 92
0016 0180ECL2 VALUER ADD VALUE2 VALUER 92 Totals for SOLDVA
0017 0190ECSR A$$SUM BEG SR and VALUE Fields
0018 0200ECSR SOLDV1 ADD SOLDVA SOLDV1 92
0019 0210ECSR VALUEl ADD VALUE VALUEl 92
0020 0220ECSR END SR

0021 0230EOPRINTER H 206 lP
0022 0240EO OR DA

Page Heading 0023 0250EO 45 'SALES REPORT I

0024 0260EO 56 I FOR ANY co. I (includes date
0025 0270EO UDATE y 8 and page number)
0026 0280EO PAGE z 89
d027 0290EO 85 'PAGE I

0028 0300EOPRINTER H 1 lP
0029 0310EO OR OA
0030 0320EO 6 I REGION I

0031 0330EO 14 'BRANCH'
0032 0340EO 21 'ITEM'
0033 0350EO 36 I DES CR I PT ION I

0034 0360EO 47 'SALES'
Column Headings 0035 0370EO 62 'AMOUNT'

0036 0380EO 71 'ON-HAND'
0037 0390EO 86 'VALUE'
0038 0400EOPRINTER H 2 lP
0039 0410EO OR OA
0040 0420EO 22 'NUMBER'
0041 0430EOPRINTER D 1 01
0042 0440EO L2 REGION 3

0043 0450EO L1 BRANCH 12
0044 0460EO I TEMNO 23

Detail Output 0045 0470EO DESC 40
0046 0480EO SOLDQYK 46 Specifications
0047 0490EO SOLDVAKB 62
0048 0500EO ONHANDK 69
0049 0510EO VALUE KB 86
0050 0520EOPRINTER T 12 L1
0051 0530EO SOLDVlKB 62
0052 0540EO VALUElKB 86
0053 0550EO 87 I*'
0054 0560EOPRINTER T 2 L2
0055 0570EO SOLDV2KB 62
0056 0580EO VALUE2KB 86 Total Output
0057 0590EO 88 I*~' I Specifications
0058 0600EOPRINTER T 12 LR
0059 0610EO SOLDVRKB 62
0060 0620EO VALUERKB 86
0061 0630EO 47 'FINAL TOTALS I

0062 0640EO 89 '***'

Figure 15-3. Calculation and Output Specifications Created by the *AUTO Specifications in Figure
15-2

15-4

Specifications Created by Auto Report

From input it receives, auto report creates a complete RPG source program
that is ready to be compiled.

Format of Created Specifications

The created specifications have the following format:

Column Contents

1-4 Sequence number of the specification. This number
starts at 0010 for the control specification and increases
by 0010 for each specification that follows. If the
program has more than 999 specifications, the sequence
starts again at 0000.

5 Code that identifies the specification as follows:

Blank Standard RPG specification in the auto
report program

c Specification copied from the library member
specified in the /COPY statement

M Specification copied from the library member
specified in the /COPY statement and
modified

E Specification created by auto report

6-80 Standard RPG specification

Compile-time arrays and tables are not changed by auto report; they remain
in the standard format for an array or table record.

Chapter 15. Using Auto Report 15-5

Order of Created Specifications

Auto report creates the specifications in the order required by the RPG
compiler. When specifications are included by means of a /COPY
statement, those specifications are placed immediately after the /COPY
statement. Then, after all specifications are copied but before auto report
creates RPG specifications from the H-* AUTO (heading records) and
D/T-* AUTO (detail/total records) specifications, the entire auto report
source program is sorted into the following order:

1. Control specification

2. File description specifications

3. Extension specifications

4. Line counter specifications

5. Telecommunications specifications

6. Input specifications

7. Calculation specifications (in the following order: detail, LO, Ll
through L9, LR, and subroutines)

8. Output specifications

9. Arrays and tables loaded at compilation time, which must be placed last
among the input statements to auto report

Calculation Specifications

15-6

Auto report places the created calculation specifications in the following
order:

1. Detail calculations that you code

2. EXSR statement for the created subroutine

3. Total calculations created by auto report, grouped in order by level (all
LO calculations, then all Ll calculations, and so on)

4. Total calculations that you code

5. Subroutines that you code

6. Created RPG subroutine that accumulates the lowest-level total

Note: If the /COPY statement copies a subroutine that contains a BEGSR
operation but no ENDSR operation, incorrect sorting of the created RPG
source program can result. Incorrect sorting can also result if invalid
characters are coded as control·level indicators in columns 7 and 8.

Output Specifications

Comment Statements

Output heading specifications created for H-* AUTO specifications appear in
the order in which they are coded on the output specifications in relation to
other RPG and *AUTO output specifications for the file.

Normally, RPG output specifications created from a D/T-* AUTO
specification are in the following order:

1. Heading specifications created for column headings

2. Detail specifications

3. Total specifications, with the lowest level first and LR last

This group of specifications is placed in the same relative position in the
program as the original D/T-* AUTO specification. All other RPG output
specifications remain in their original order.

However, if you specify a normal RPG total output specification
conditioned by a positive control-level indicator (no Nin column 23) in
columns 24 and 25 for the file that has a D/T-* AUTO specification, all
output specifications in the program are sorted into the following format:

1. All heading, detail, and exception output specifications remain in the
order in which they are coded in the created source program. Total
specifications that are not conditioned by a positive control-level
indicator in columns 24 and 25 remain as they were in the program.

2. Total specifications that are conditioned by a positive control-level
indicator in columns 24 and 25 are sorted into ascending order
according to the control-level indicator in columns 24 and 25, with LR
last.

See Examples of Using Auto Report in this chapter for examples of created
specifications.

Comment statements (identified by an asterisk in column 7) are allowed
among the statements read by auto report. However, the sorting of RPG
specifications is based on the contents of column 6; therefore, comments
may be sorted into an unexpected order. To ensure that comments remain
with the correct specification, place them after that specification and put
the same entry in column 6.

Chapter 15. Using Auto Report 15·7

Restriction

15-8

The order of arrays and tables does not change when the source
specifications are sorted. Therefore, when arrays and tables are included
from a library member, they may occur in an incorrect order after the sort.
For example, if the auto report source specifications contain a table for
translating a file or for changing the collating sequence of characters, then
any compile-time arrays or tables included from a library member are out of
order. That is, the included arrays or tables are placed ahead of the table
for translating files. Compile-time arrays and tables must be loaded in the
following order:

1. Tables for translating files

2. Tables for changing the collating sequence of characters

3. Compile-time arrays and tables in the order described on the extension
specifications

A solution to this restriction is to place the tables for translating files and
for changing the collating sequence of characters in a library member, and
then to copy them from the library member before any other compile-time
tables and arrays are copied. This procedure ensures that the tables for
translating files and for changing the collating sequence of characters are
the first compile-time tables in the created RPG source program.

Option Specifications

IBM lnlerMtlonel Bulinen Mac:hinn Corpontion

Programmer Date

u

Specify options for the auto report program on the RPG auto report
specifications shown below:

RPG AUTO REPORT SPECIFICATIONS

Punching
Instruction

Option Specifications

, 2

Paga[Dot_

GX21-9139- UM/050"
Printed in U.S.A.

76 76 71 78 79 80

:::: .. ; .. ! I I I I I I

Line Source Member Reference Reserved

Column 6 (Form Type)

The auto report option specifications are not required in the auto report
program. If present, they must appear as the first specifications in the
program. If they are not present, auto report assumes the options that
correspond to blank entries (see individual entries for the meanings of the
blank entries). Option specifications cannot be contained in a library
member that is copied by a /COPY statement.

If a control specification (Hin column 6) is not present either in the auto
report source program or in a copied library member (see /COPY Statement
Specifications), auto report creates a control specification with blank
entries.

The following columns on the auto report specifications are used in the
same way as corresponding columns on other RPG specifications:

• Columns 1-2 (page)

• Columns 3-5 (line)

• Columns 75-80 (program identification)

Enter a U in column 6 to identify this line as an auto report option
specification.

Chapter 15. Using Auto Report 15-9

Column 7 (Source)

Entry Explanation

Blank The created source program is not cataloged.

c The created source program is cataloged in a library on disk.

Use column 7 to specify whether the created source program is to be
cataloged in a library. Whether or not the source program is cataloged, the
created source program is written to a disk work file from which it is
immediately compiled. Created source programs that are cataloged become
library source members.

The created source program is not cataloged when terminal errors exist in
the auto report specifications.

Columns 8-24 (Source Member Reference)

Columns 25-26

15-10

Entry

Library,
member

Explanation

Identifies the library member to be cataloged. The
library name can be up to 8 characters long, beginning
in column 8. Use a comma after the library name. The
member name can also be up to 8 characters long.

Make an entry in columns 8 through 24 if the created source program is to
be cataloged in a library (C in column 7). The first character of the library
name and of the member name must be alphabetic. The remaining
characters can be alphabetic or numeric.

If you enter Fl or blanks for the library name, the library name defaults to
the system library'. If the member name is not specified or is specified
incorrectly, an error results.

If the name used by auto report to catalog the created source program is
the same as the name of an existing member in the library, the old member
is replaced by the new member.

Columns 25 and 26 are not used. Leave them blank.

Column 27 (Date Suppress)

Column 28 (*Suppress)

Column 29

Entry

Blank

N

Explanation

Date and page number are printed on the first *AUTO page
heading line.

Date and page number are not printed on the first *AUTO page
heading line.

To prevent the date and page number from printing on the first *AUTO
heading line, enter Nin column 27. When these fields are suppressed, the
page title and any other fields specified can occupy the entire line. See
*AUTO Page Heading Specifications for further information on the date
and page numbers.

Entry Explanation

Blank Asterisks are printed for total output lines.

N Asterisks are not printed for total output lines.

To prevent asterisks from printing beside created totals, enter N in column
28. See *AUTO Output Specifications for rules used in printing asterisks.

Column 29 is not used. Leave it blank.

Chapter 15. Using Auto Report 15-11

Column 30 (List Options)

Columns 31-74

15-12

Entry

Blank

B

p

Explanation

The source program listing, headings, and diagnostics are
printed. A source program is also produced if no terminal errors
are found.

The program listing is not printed; however, a source program is
produced.

A partial program listing is printed that includes appropriate
headings and diagnostics.

Column 30 provides options for printing a source listing when auto report
creates RPG source specifications. If any terminal errors are found in auto
report specifications, the listing is completed (provided a listing is to be
printed).

The auto report source listing consists of the RPG specifications included
in the input to auto report, RPG specifications created by auto report, and
specifications copied from a library member.

Use the B entry to produce a source program for which you already have a
listing.

Use the P entry to determine whether minor changes to a previously tested
program created any errors.

Columns 31 through 74 are not used. Leave them blank.

/COPY Statement Specifications

The auto report copy function provides a way to include cataloged RPG
source specifications in an RPG program. The source specifications that
are included must reside as a library member on disk. Use the copy
function to include source specifications that are identical or nearly
identical in several different programs, thereby reducing the need to
repeatedly code specifications that are used in several programs. For
example, if file description and input specifications for a particular file are
similar in different programs, these specifications can be placed in the
library by the source entry utility (SEU) and included in any program by
the copy function.

Auto report specifications and any valid RPG specifications, including
arrays and tables, can be copied in this manner. The auto report option
specifications and other copy statements cannot be copied. See Examples of
Using Auto Report in this chapter for an example of using the copy
function.

The specifications included in an auto report program by the copy function
are first placed in the program immediately following the /COPY statement.
After all specifications are copied from the library members, the entire auto
report program is sorted into the order required by the RPG compiler (see
Order of Created Specifications in this chapter). Note that the auto report
compiler truncates any record that is longer than 96 characters.

To request the copy function, use the /COPY statement. This statement
identifies the library and library member containing the RPG specifications
to be included in the source program created by auto report. /COPY
statements must follow the auto report option specifications, and they must
precede source tables for translating files, tables for changing the collating
sequence of characters, and compile-time array and table data.

Chapter 15. Using Auto Report 15-13

I
1--- Filename

1 or
w Record Name

!
~ ~

Line

~
0 R i Dita

Structure ~z N1me
3 • • • , 8 9 10 11 12 13 14 15 16 17

0 1 I/ ,,_, FU l~lA
0 2 IM t7'

i

The format of the /COPY statement is:

Column Entry

1-5 Page and line number indicating the placement of the statement
in the sequence of auto report source specifications.

6 This column can contain any entry except Hor U, or can be
blank.

7-11 Enter the characters /COPY.

12 Blank.

13-29 Identifies the library and member to be included. Specify the
library name, which can be up to 8 characters long, beginning in
column 13. Use a comma to separate the library name from the
member name, which can also be up to 8 characters long. If you
do not enter a library, or if you enter Fl, the default is the
system library.

30-49 Blank.

50-80 Enter any information or comments. The contents of these
columns are not read by auto report.

Figure 15-4 shows an example of the /COPY statement.

External Field Name Field
Field Location

Indicators Record Identification Codes
~ ·~ j:g e ~

ii
1 2 3 To :!H! " From j RPG a: r y l ii:~ i • Ji a:

Field Name
!l Zero

j§J ~ei Data Structure 1i .r I!' Plus Minus or

~~ i ~ g ..] Ji .• a:
~ Position Position Position Blank

Ho Occurs ~ ~ :i ti :ii ~ ~u 0 Q; Q; n Times Length ... a:
19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 4ti 47 48 49 50 51 52 53 54 5!1 56 57 58 59 80 81 82 83 87 .. 89 70 71 72 73 74

TR
0 3 Il/~I p 11~r-11e "11J ltR l«!A Etl~
0 4 I II'

7

Library name. For F1 entry,
the default library is the
system library.

\
Name of Member to Be Copied

Note: It is convenient to code the /COPY statement on the input specifications if the input
specifications are to be changed as they are copied.

Figure llS-4. Example of the /COPY Auto Report Statement

15-14

Changing Copied Specifications

Statements can be included in the auto report specifications to change file
description and input field specifications as they are copied from a library
member. No other types of specifications can be changed. /COPY modifier
statements from the source program that add, change, or delete entries on
cataloged input field specifications are identified by an X in print position 6
of the auto report listing.

Changing File Description Specifications

To change a file description specification that is copied from a library
member, enter the filename in columns 7 through 14 of a file description
specification. Then make only those entries on the line that are to replace
existing entries in the copied specification or that are to be included as new
entries. Blank entries in the modifier statement do not affect the copied
statement.

For example, the file description specifications for a frequently used file
named SALES are to be copied from the system library. The original
specification contains I in file type (column 15), defining SALES as an input
file (see Figure 15-5). To update the sales file, change column 15 to a U by
including in the auto report source program a modifier file description
specification that contains the filename, SALES, and the new file type
entry, U. As a result of the modifier file description specification, the file
type on the copied file description specification is changed from I to U.

Chapter 15. Using Auto Report 15-15

I f
E >eternal Field Name Field

Field Location
Indicators 1-- Filename ~ Record Identification Codes

~ ~
or ~ j~ ~ 'i

Record Name £ w"' 1 2 3 From To § RPG
_,

-II • ..
!l. ~ ;j :S ~ ~ ~ - " a:

~ Field Name Ii .!!'ii

i ~6 j: .. .!! u.u:: Zero
Line j ii ii ~a: Data Structure .~ gi

H - - ~e i g a: Plus Minus or

J Position ~ ~ ~ Position ;; e w Position • ::i 1i 5 D11ta Me J Blank

~
~ N •

~~ Occurs ~ i6 Structure ~g ~uo ~uo "'0. nTimes Length <'l
Name

3 4 & 8 1 a s 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 21f2B 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4344454ti47 48 49 50 51 52 53 54 55 56 57 58 59 ••

··~
63 67 66 .. 70 11 n 13 1•

°l'l I iltl:lEl>'I. Fill 151A m RLl.L lU lll lll lll lllll J J J L ± J ±±± ~[21 I IIlll l lll lll lll lll lll lllll I I l I I

/COPY Statement to Copy Specifications for SALES File from the System Library Member Named SALETR

Fite Type F File Dtsignation

End of File

Filename Soquonco

File Forl'ftlt

Mode of Processing

Length of Kev Field or
of Record Address Field

File Description Specification ·as It Is in the System Library

F File Type Mode of Procening

File D•iption Length of Kev Fttld or
1-- of Record Address Field

End of File
Record Addre&s Type iii Soquonco Filename Typoof Flle

File Forrnlt N Orpnlation or ~

i
a Add111ono1 Am Line !!: ~ t•rflow lndicllor I a ~~ I Record

! ~~ Longlh Llnglh
~ ~e Jm

~~ ~ ~ I':!.'!. J w~ - .. Exttrnal Record Namt

Device

Device

LL• • I.!.: 1 ...!.. •. 10 11 12 13 14 11 II " ' 1!!. 20 21 ,. ,. .. 21 20::JL00 ., .. ~37 ,., 1311 40 41 42 43 44 45 48

~~ Flc;I~~ .lrJSl l l lllllll
~~ F 1111111 lllllll

Copy Function Modifier Statement

File Type F Fila Dniption

End of File

Filename Sequenco

l llllll
l llllll

Mode of Processing

Length of Key Field or
of Record Address Field

llllll
llllll

Device

Symbolic
Device

Symbolic
Device

41 48 49 ISO 51 62

lllll
lllll

Symbolic
Device

Resulting File Description Specification That Is Included in the RPG Source Program

Figure 15-5. Changing a Copied File Description Specification

15-16

if
!!!
i!i
~

K

Name of
Label Exit

EMtent Exit
for DAM

Storage Index

ContinU1tion Linn

Extent Exit
for DAM

Name of
Label Exit

Storage Index

ContinU1tion Lines

Option Entry

lY M 15& 68 11 II II 80818283Mll5

lllll
JllJJ

Name of
Label Exit

lllll
lJLU

Extent Exit
for DAM

~

Fill Addition/Unordered

-olTrlclcs
for Cylindlr Overflow

Numblr of E.r.n11

T1111
Aowind

Fllt -Ul-UI,
UC

File Addition/Unordtred

M.lmber of Trldcs
for Cylinder Owerflow

Number of Exwms

T1111

rowind I
File
Condldon
Ut·U8,

i!! UC ,_;--,

<
0:

I!! 17 •• 10 7t 72 73..!!i

l l l
J J l

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

TIPI

§

Rewind

Fill
Condition
Ul·UI,
UC

F
I--

Filename

Line

~~5
~H

F~']]"
F]]]]]]]

To set an entry to blanks, enter an ampersand (&) in the first position of
that entry on the modifier statement, and leave the remaining positions
blank. For example, to remove the block length entry (columns 20 through
23) from the cataloged specification shown in Figure 15-5, add an ampersand
to the modifier statement in column 20, as shown in Figure 15-6, and leave
columns 21 through 23 blank.

Modifier statements for file description specifications do not have to be in
any particular order in the auto report source program, except that they
cannot immediately follow the /COPY statement if input field specifications
are also being changed.

Only one file description specification with a particular filename is allowed
to come from the library entries, and a particular filename can be used only
once on a modifier statement.

No changes are allowed to the file description continuation specifications
that accompany a copied file description. To add new continuation
specifications, place them after a file description modifier statement for the
file. A maximum of five continuation specifications are allowed to follow a
file description specification (combined total of original and added
continuation specifications).

File Type Mode of Processing File Add1t1on/Unorder1

File Designation Length of Kev Field or Extent Exit Number of Tracks
of Record Address Field ~ for DAM for CyHnder Overfh

End of File z Name of Record Adareu Type _,
Symbolic in ~-

Number of E)lt'I!
Sequence iii Label Exit Type of file . Device Device 1i T•oe

File Format ~ ~~~ii=~~~r:: ~ j Storage Index ~

JJ
~ File
0 if g

Condit,

~
Block Record !!t':o"'"~~ -·- U1·U8, Len gt I\ Length

"
.::::. '2_ Key Field ~

Contmuation Lmes UC r u :i ~ x Starting w '!'

"'
:::::- Location ::> " i: w <{ External Record Name K Option Entry < "

15 18 17 18

·~1r 11r ,. i~,, 1;1i»i'r ,.1Il1'J'T
47 48 49 50 51 52 53 54 55 &6 57 58 b9 Jirri· ~ ., 1~ ,. ,r,
JJJJJ jjjjj J]] J-+-

Figure 15-6. Setting a Copied File Description Entry to Blank

Chapter 15. Using Auto Report 15-17

Changing Input Field Specifications

15-18

Only input field specifications (specifications describing individual fields on
the input record) can be changed. To change an input field specification
copied from a library member, enter the field name in columns 53 through
58 of an input field modifier statement (I in column 6). Modifier statements
for input field specifications must immediately follow the /COPY statement
in the auto report program that copies those specifications. The first
specification following the /COPY statement that is not an input field
specification is considered the end of the input field modifier statements for
the /COPY statement. (A comment statement with I in position 6 is not
considered the end of the input field modifier statements.)

The fields that can be modified are:

• Column 43 (packed/binary)

• Columns 44-51 (field location)

• Column 52 (decimal positions)

• Columns 59-60 (control levels)

• Columns 61-62 (matching or chaining fields)

• Columns 63-64 (field record relation)

• Columns 65-70 (field indicators)

The method of replacing, adding, or blanking entries is similar to the
method used to change file description specifications. To replace or add
entries, code the new entry in the proper location in the modifier statement;
to set an entry to blank, place an ampersand (&) in the first position of that
entry in the modifier statement. Figure 15-7 shows examples of changing
input specifications.

The modifier statement changes all copied input field specifications that
have the same field name. If there is no input field by the same name, the
modifier statement is added to the program as a new input field
specification. Modifier statements with duplicate field names are allowed
(length and number of decimal positions must also be the same), but only
the first is used to change a copied specification. Other field names are
added as new input field specifications. Up to 20 input field modifier
statements are allowed per /COPY statement.

For best results, those statements that change existing input field
specifications should come first; then those that are to be added as new
input field specifications. This order is suggested because input field
modifier statements that do not fit into the special main storage table for
modifier statements are added to the RPG source program as new input
field specifications. This order of specifying modifier statements increases
the likelihood that excess statements, if any, will be valid field descriptions.

I ~
External Field Name

Field Location
f-- Filename

j f Record Identification Codes

or f!!l § Record Name wen 1 2 3 From To RPG & 'i -;j l: ~ ~ ~ ~ =. s 1=· Ji"'
Field Name

Line

~
~ - ~

~c
Data Structure

~ H ~ Position ~o ¥ Position ~ ~ ~ Position ; ::i
0<1t1

~
.... N :a ~ N • ~§]~ Occurs g Structure ~ .§ ~ ~oo ~ u 6 en o. n Times

Length
N1me

3 • • • ' ' 9 10 11 12 1J 14 15 16 17 18 19 20 21 22 23 24 25 26 21 28 29 30 31 J2 33 34 35 36 37 38 39 40 41 42 43 44 45 40 47 48 49 50 51 52 53 54 55 56 57 58

0 1 rlCa !EiC; ~ tH
0 2 I ~ g ~~ NI.
0 3 I llJ jr

0 4 I lll ll~ it..bil ll'l
0 5 I 11 Jag E~"'
0 6 I I~ t:lll

,,, rlrl)I
0 7 I ?Pc I~ 1?5~ TI~IA
0 8 I I:!!= 1~ l'1 IA IN
0 9 I 1~1 l&fl~~ IA I:"

1 0 I

Input specifications as in the library member.

External Field Name I Field Location

1-- Record Identification Codes File~rame ~

8. Record Name j ~ ~ f ~-l----,~~,--1---2~~.-1~---3~~-1
~ = 6 ~=

From To 0

" !---~----;~
RPG

Field Name
Line

~ 1---0,-,.--~-0-+-R..-<~ i ~
~~.H Structure

Name

Position Position

a: Data Structure g1---..,-----; ~
Ci:: ';;i~:s Length ~

Position

~
~
:!HI .. . !! 1i

j u.. u:::

"§ s~
J:; '2

§ ~6 u

59 60 61 62 63 ..

Field
Indicators

Zero
Plus Minus or

Blank

65 66 " " 69 70

!ID

Field
Indicators

Zero
Plus Minus or

Blank

71 72 73 7·

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4b 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 6& 67 68 69 70 71 72 73 7

/COPY statement and modifier statements:

D Add an entry to BRANCH field description

D Blank out minus field indicator on SOLDV A description

II Add a new file description

Figure 15-7 (Part 1 of 2). Changing Copied Input Field Specifications

Chapter 15. Using Auto Report 15-19

...:.:.

I f
External Field Name Field

Field location
Indicators I-- Filename ~ Record Identification Codes

or l -;;. "' 5
Record Name w"' cc 1 2 3 From To RPG :E.s ! ~:) f :·· ii Fiefd Name .!! ..

Zero =s Ji 0::

u.u::
Line

j ~ e ~ ~ e ~ Data Structure .~ ~ Plus Minus or

Data jj ~ Pos1t1on Pos1t1on Position ~e J::;, 1i s Blank

tM+o ~ N • ~ N •
~~

~., Occurs :icS Structure , 0: ~ ~00 ~uo ~CL Length
Name zo nT1mes

3 • 5 6 7 • 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 7526 21tis 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 49 50 51 52 53 54 55 66 57 58 59 60 61 62 63 67 66 .. 70 71 72 73 74

0 1 11C; Iii JEIC ~ rli

' 0 2 I ~ b IJ.1.lt. 1\1 "" 0 3 I Is: I' DIAi llr '1
0 4 I Tu 1~ ~ri l:ltl N • 0 5 I 1~ 2l'i E~~ ~
0 6 I ~ laL I>' ~
0 7 I 2~ ... IV~ 1\1'
0 8 I t:il• l~~

.,, IAI

0 9 I L~~
,,.., A IE

1 0 I ~ l~t'=! I~ 'l 1 1 I
'

Resulting input specifications for SALES file showing:

D Added Ll indicator

El Blanks in place of minus field indicator

II Added field description

Figure 15-7 (Part 2 of 2). Changing Copied Input Field Specifications

\

15-20

*AUTO Specifications

The *AUTO page-heading function and the *AUTO output function provide
simplified methods of describing printed output. These functions are
requested when the characters *AUTO are present in columns 32 through
36 of a record description specification on the standard RPG output
specifications. *AUTO can be entered on a heading, detail, or total
specification (H, D, or Tin column 15), but not on an exception output
specification (E in column 15). Use *AUTO with only one PRINTER file in
the program.

Standard RPG output specifications are divided into two general types (see
Figure 15-8):

• Record-description specifications (columns 7 through 31) describe when
and where the output line is to be printed. One record-description
specification is required for each type of line to be printed. Only the
first record-description for a file need contain a filename in columns 7
through 14.

• Field-description specifications (columns 23 through 74) following a
record-description specification tell when, where, and how each item of
data (field or literal) is to be printed on the output record. There can be
several field-description specifications following a record-description
specification.

Auto report page headings and auto report output specifications are also
divided into the same two types: record-description specifications and
field-description specifications. However, the entries on these specifications
are used differently from the entries on the standard RPG specifications.

The following output specifications are not changed when they are used
with *AUTO:

• Columns 1-2 (page)

• Columns 3-5 (line)

• Column 6 (form type)

• Columns 75-80 (program identification)

Columns 71 through 74 must always be blank on auto report output
specifications.

Chapter 15. Using Auto Report 15-21

!
Line ~

Filename
or

Record Name

X •Remove
Plu1Slgn

Y•Dm
J Field Edit
K l""l•ro
; Suppress

Unr
Defined

W 'fi Space Skip Output Indicators ~ Commas ZerotoBP•,',·'nnct 89 No Sign CR i2 al'. Field Name -

~ ~ u J_ } EXCP;r Name Yes Yes 1 A
!l.~ ,e ! And And Yes No 2 B
?: M < a: Position No Yes 3 C
DEL~" !li!tn No No 4 D
~! ~ 8i)Output §

OJ!L_ zg • 2-S *AUTO ·w~ ~.. Record -.. iD Constant or Edit Word
A 'N1Q ~ 1 2 3 4 5 B 7 B 9 10 11 12 13 14 tS 18 17 18 19 20 21 22 23 24

3456789 10 11 12 1a 14 1s 1e n 1a 19 20 21 22 23 24 2s 26 21 28 29 30 a1 a2 aa 34 as ae a1 38 39 40 41 42 43 44 45 48 47 48 49 so s1 s2 53 54 ss se s1 sa 59 so et s2 ea 84 S& 66 e1 ea as 10 11 12 1a 14

o 1 01..+++ Recor~ Description ntries __ II II II I11I l
0 2 0 ll ll ll llll l
0 3 0 ++-+-+-~"""""'""'"'-!-!-!--!-!""'"'+-+-1- Field Description Entries
0 4 0 ll ll ll llll l

Figure 15-8. Two Types of Output Specifications

15-22

*AUTO Page-Heading Specifications

0
I[

~j Spece
t-- Q~

:c ~
!

Fllenama il lF. or ... ~ Record Name Uno j ~ * j A

~

The *AUTO page-heading specifications provide an easy way to produce a
page heading at the top of every page of a printed report (see Figure 15-9).
Up to five *AUTO page-heading specifications can be used for a page
heading. If both standard RPG heading lines and *AUTO page headings are
specified in combination for a file, they are printed in the order specified by
the output specifications. The *AUTO page headings can be specified for
only one PRINTER file per program.

The heading line created by the first* AUTO page heading (H-* AUTO)
specification contains a date and page number. The first heading line can
also contain a title. (See Field-Description Specifications in this section for
information on entering a title.)

The created date is printed in the leftmost columns in the format mm/dd/yy
unless you change the format by using the date or inverted-print option
(columns 19 through 21 of the control specification).

The created page number is printed in the rightmost columns and is
preceded by the word PAGE. The page number field is 4 digits long and is
zero suppressed. Auto report uses one of the unused PAGE fields (PAGE,
PAGEl through PAGE7) for page numbering. If all PAGE fields are used in
the program, auto report does not number pages.

To suppress the date and page number on the first heading line, enter N in
column 27 of the auto report option specifications.

Skip Output Indicators

~
Comm11 Zero Bal1nc• No Sign CR - X• Remove

Field Name to Print Plu1Slgn 5 .9.
or Y•Dlt:1 u .. r

2d Jd

y .. Yeo 1 A J
EXCPT Name Field Edit Defined Ya No 2 B K Z•Zero

No Y11 3 c L a: Polldon Supp,...

~ H In No No 4 D M

Output
IC
::i

~ g ~ •AUTO ~~ Record iii Constant or Edit Word
z it: • 1 2 3 4 s a 1 a e 10 ,, 12 13 14 11 11 11 ,, 11 20 21 22 23 24 •

3 •• 8 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 " ,. 25 28 27 21 29 30 31 32 33 34 36 38 37 •• 38 40 41 42 43 ~~~~-~~~HPMHH~UU~~HPMMM~MMM 117273~

0 1 ~ I~ 9'lA Jlfl
0 2 10 ' ~ [I_ I

0 3 ~

10/01/83 SAMPLE REPORT PAGE 1

Figure 15-9. *AUTO Specification and the Heading Line That Is Printed

Chapter 15. Using Auto Report 15-23

Record-Description Specifications

Each H-* AUTO record description defines a separate heading line. The
record-description entries allow you to specify spacing, skipping, and the
conditions under which the line is printed.

Columns 7-14 (Filename)

Column 15 (Type)

Column 16

Enter the name of the PRINTER file on which the heading is to be printed.

Enter H in column 15 on each record-description specification line that
defines a page-heading line. The Hand the entry *AUTO in columns 32
through 36 define this as an H-* AUTO heading specification (see Figure
15-9). Up to five H-* AUTO specifications are allowed.

Column 16 is not used. Leave it blank.

Columns 17-22 (Spacing and Skipping)

Enter spacing and skipping values in these columns according to the rules
given under Columns 17-22 (Spacing and Skipping) in Chapter 27. If these
columns do not contain spacing and skipping values, auto report skips to
line 06 before the first line is printed and spaces two after the last
H·* AUTO line is printed. If multiple H-* AUTO lines are used, auto report
spaces one after each line except the last. For additional information on
created spacing and skipping values, see Report Format in this chapter.

Columns 23-31 (Output Indicators)

15-24

On the first H-* AUTO specification, either leave columns 23 through 31
blank or enter output indicators according to the rules given under
Columns 28-81 (Output Indicators) in Chapter 27.

If these columns are blank, auto report causes the corresponding output
line to be printed at first-page (lP) time in the program cycle and when
overflow occurs. Thus, the heading is printed at the top of each page of the
printed report. Indicators can be assigned to subsequent H-* AUTO
specifications. If columns 23 through 31 are blank on any H-* AUTO
specification after the first, that specification is assigned the same
indicators as the first.

If an overflow indicator is specified on the file description specifications for
the PRINTER file, that indicator conditions the created heading
specifications. Otherwise, auto report defines an unused overflow indicator
for the PRINTER file and conditions the line with that indicator.

AND and OR lines can be used with H-*AUTO output indicators if an
output indicator is used with the first specification. Standard RPG rules
for AND and OR lines apply.

Columns 32-37 (*AUTO)

Columns 38-70

Enter *AUTO in columns 32 through 36. This entry and an H in column 15
of the output specifications (see Figure 15-9) indicate that this is an auto
report heading line.

Columns 38 through 70 are not used on the record-description line. Leave
them blank.

Field-Description Specifications

Columns 7-31

Each H-* AUTO record-description specification can be followed by one or
more field-description specifications. The field-description specifications
specify the title to be printed on the heading line and describe any other
fields and literals to be printed on the line.

Columns 7 through 31 are not used on field-description specifications.
Leave them blank. Output indicators in columns 23 through 31 cannot be
used to condition a field on an H-* AUTO specification.

Chapter 15. Using Auto Report 15-25

Columns 32-37 (Field Name)

Column 38 (Edit Codes)

Entry Explanation

Blank A constant (enclosed in apostrophes) must be entered in columns
45 through 70. The constant is printed on the heading line.

Field Field defined in the program is printed on the heading line.
name

Table
name

A table item is printed on the heading line.

Indexed An array item is printed on the heading line.
array
name

Use columns 32 through 37 to enter a field name, a table name, or an
indexed array name (defined elsewhere in the program) that is to print on
the heading line. If a name is entered, an edit word, not a constant, can be
entered in columns 45 through 70. A constant must be entered in columns
45 through 70 if columns 32 through 37 are blank.

If output indicators (columns 23 through 31) are left blank on the
record-description specification, auto report conditions all fields and all
array or table items included on the heading line with NlP in columns 23
through 25. Therefore, the field or the array or table item does not print on
the first page. (If printed on the first page, the field might contain
meaningless data because the first record is not read.) NlP is not created
for the following RPG reserved words: PAGE, PAGEl through PAGE7,
UDATE, UDAY, UMONTH, UYEAR.

For information on formatting and centering *AUTO heading lines, see
Report Format in this chapter.

An edit code can be entered in column 38 if a numeric field, numeric array
item, or numeric table element is named in columns 32 through 37. If an
edit code is used, columns 45 through 70 must be blank unless asterisk fill
or a floating currency symbol is specified. If column 38 is blank, no editing
is done by auto report unless an edit word is used.

Column 39 (Blank After)

15-26

Enter B in column 39 to reset a numeric field to zeros after it is printed or
to reset an alphameric field to blanks after it is printed on the heading line.

Columns 40-44

Columns 40 through 44 are not used with *AUTO heading specifications.
Leave them blank.

For information on the positioning of fields and constants in the title line
and on the centering of heading lines in relation to the body of the report,
see Report Format in this chapter.

Columns 45-70 (Constant or Edit Word)

Entry

Blank

Constant

Edit word

Explanation

Columns 32 through 37 contain the name of a field that
either is not edited or is edited by an edit code.

Title or other constant (enclosed in apostrophes) that is to
appear on the printed line.

The edit pattern used to edit the numeric field named in
columns 32 through 37 of the same field-description line.

Use columns 45 through 70 to specify the title and other information that is
to appear on the output line and to edit numeric fields that are to appear on
the line. Rules for specifying constants and edit words are identical to
those given under Columns 45-70 (Constant or Edit Word) in Chapter 27,
except that no end positions can be specified.

For information on the positioning of fields and constants in the title line
and on the centering of heading lines in relation to the body of the report,
see Report Format in this chapter.

Chapter 15. Using Auto Report 15-27

*AUTO Output Specifications

15-28

Detail reports (in which a line is printed for each record that is read) and
group printed reports (in which only totals are printed) can be specified by
the *AUTO output function alone. or in combination with standard RPG
specifications. The *AUTO output function creates totals and formats
columns and column headings.

A single detail or total *AUTO record description (D/T-*AUTO)
specification and its associated field-description specifications can specify:

• Up to three lines of column headings to appear above a field

• Accumulation of several levels of totals, including a final total (known
as total rolling)

• Creation by auto report of end positions for column headings and fields

• Creation by auto report of the K edit code for numeric fields

• Fields or constants to be printed next to created totals

Four types of description specifications can be associated with the *AUTO
record-description specification. The four types are distinguished by entries
in column 39. The remaining entries on a field-description specification
have different meanings, depending on the entry in column 39.

The valid entries in column 39 of the field-description specifications and
their meanings are:

• Blank or B: Indicates that the associated field or constant appears on
the detail line.

• A: Indicates that the associated numeric field is printed on the detail
line and is accumulated. A total is printed for each control level
defined in columns 59 and 60 of the input specifications for the program.
A final total is also printed (when the LR indicator is on).

• C: Indicates that the associated constant is printed on the second or
third line of column headings.

• 1, 2, 3, 4, 5, 6, 7, 8, 9, R: Indicates that the associated field or constant
appears on the total line created for the respective control-level
indicator (LI through L9, LR).

See Group Printing in this chapter for the effect of these entries in a group
printed report.

See Examples of Using Auto Report in this chapter for examples of the four
types of field descriptions.

Record-Description Specifications

An auto report record-description specification must contain the entry
*AUTO in columns 32 through 36. *AUTO can appear only on a
record-description specification. This entry indicates that the record
description and the following field descriptions are redefined according to
their use by auto report.

Columns 7-14 (Filename)

Column 15 (Type)

Enter the name of the PRINTER file on which the report is to be printed.
This must be the same file named on H-* AUTO specifications, if any.

Entry

D

T

Explanation

The auto report specifications describe a report containing detail
lines.

The auto report specifications describe a report containing total
lines, but no detail lines (group-printed report).

Enter D in column 15 and *AUTO in columns 32 through 36 for auto report
to create a report that contains detail lines. The field-description
specifications associated with the D-* AUTO record description specify:

• Fields to appear on the detail line

• Column headings

• Total rolling

• Constants to appear on total lines

See Examples of Using Auto Report in this chapter for examples of
D-* AUTO specifications.

Enter T in column 15 and *AUTO in columns 32 through 36 for auto report
to create a group printed report (see Group Printing in this chapter).

Only one detail or one total *AUTO (D/T-* AUTO) record description
specification can be used in a program.

Column 16 (Fetch Overflow)

Enter Fin column 16 to specify fetch overflow. See Column 16 (Fetch
Overflow) in Chapter 27 for the rules on using fetch overflow.

When used with the *AUTO output function, fetch overflow applies only to
the detail line. If group printing is specified (T in column 15), fetch
overflow applies to the lowest-level total line to be printed.

Chapter 15. Using Auto Report 15-29

Columns 17-22 (Spacing and Skipping)

Enter spacing and skipping values in columns 17 through 22 according to
the standard RPG rules. Entries specified apply only to the detail line
created by a D-* AUTO specification or to the first total line created by a
T-* AUTO specification.

Leave columns 17 through 22 blank to single space after each detail line
printed or, if group printing is specified, after the first total line printed.
For information on spacing and skipping for created column heading and
total lines, see Report Format in this chapter.

Columns 23-31 (Output Indicators)

15-30

Enter any valid output indicators in columns 23 through 31 to condition the
detail or group-print line created by this *AUTO specification. If these
columns are left blank on a D-* AUTO specification, the created detail line
is conditioned by NlP. Therefore, it is not printed at first-page (lP) time in
the RPG program cycle. If these columns are left blank for a T-* AUTO
specification, the first created total line is conditioned by the lowest
control-level indicator defined in the program. (See Group Printing for
additional information about the use of this entry with a T-* AUTO
specification.)

AND and OR can be used with *AUTO output indicators if an output
indicator is specified on the first record-description specification. Standard
RPG rules for AND and OR lines apply.

Indicators specified in columns 23 through 31 of the record-description
specification (and its associated AND/OR lines) apply only to the detail line
created by a D-* AUTO specification or to the group-print line (lowest-level
total specification) created by a T-* AUTO specification.

If column headings are specified in the field-description specifications that
follow this *AUTO record description, they are conditioned by one of the
following:

• The same indicators that are specified for the first H-* AUTO
specification.

• The first-page (lP) indicator in an OR relationship with the overflow
indicator specified for the file on the file-description specifications. If
no overflow indicator is specified, auto report defines an unused
overflow indicator and uses it to condition the lines.

Restriction: If NlP is specified on a D-* AUTO record-description
specification that is followed by field-description specifications for totaJing
fields (A in column 39), the calculations created for the totaling fields are
also conditioned by NlP. This causes a terminal diagnostic in the RPG
compiler.

Columns 32-37 (*AUTO)

Columns 38-70

To indicate that this is an auto report specification, enter *AUTO in
columns 32 through 36 on the record-description line. Column 15 must
contain D or T to indicate a detail or total *AUTO specification. Only one
D/T-* AUTO specification can be used in a program.

Columns 38 through 70 are not used on a D/T-* AUTO record-description
specification. Leave them blank.

Field Description (Blank or B in Column 39)

!
Lin• !

Filename
or

Record Name

!:.

D-* AUTO and T-* AUTO field-description specifications containing a blank
or B in column 39 describe:

• An alphameric field such as an item description

• A numeric field that is not totaled

• A constant

• A field with a literal to be used as a column heading (see Figure 15-10)

A field named on the line (or a constant when no field is named) following a
D-* AUTO record-description specification is printed only on the detail
report line. If the field (or constant when no field is named) on the line
follows a T-* AUTO record description, it appears only on the first total line
created.

E' j Space Skip Output Indicators ~ Comm11 Z1ro B1l1ncea No SI n CR - X • F11mov1
t: u. F leld Name to Print " Plu1 Sign 6 . 9 •
.e_i!iii or Y•D1tt U
:c .. j I T EXCPT N v.. VII , A J Fltld Edit "'
j~ ,! And A~d ame Ytt No 2 e I(Z •Zero 01flntd
.,... ~ o:: Poaltion No Yu 3 C L SupprtH
DELJt ,l(jlln No No 4 OM
~.!! ~ 85 Output~

o A Q S zO •AUTO '!:: < Record iii Constant or Edit Word
~ Z Z ifl jg Q.. • I 2 3 4 5 8 7 8 9 10 11 12 13 14 113 18 17 18 19 20 21 22 23 24 '

3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 66 67 58 59 80 81 82 83 84 88 18 87 88 89 70 71 72 73 7~

o, 01~

0 2 0 Ir IE "1
0 3 0 r-1 12

\ l]F'ic L I~ I o • lo
0 5 0

1-+-t-t--+-+-t-t-+-+-t-+-+-+-t-+-+-t--+-+-tf-t--t--+-+-t-+---j---jf-+--+-+-+-+-+-+-t-+-+-t-+-+-tf-t-+-+-t-+-t-+-1-+-+-+-+-+-+-+-t-+--j---jf-+-t-t-+-+-t-+-+-1-+-

As a result of these specifications, FIELDl prints on each detail line under the heading COLUMN
HEADING 1. FIELD2 and LITERAL 3 print on each detail line without a column heading.

Figure 15-10. Auto Report Field-Description Specifications (Blank in Column 39)

Chapter 15. Using Auto Report 15-31

Columns 7-22

Columns 7 through 22 are not used on the field-description lines. Leave
them blank.

Columns 23-31 (Output Indicators)

Enter any valid output indicators in columns 23 through 31, or leave them
blank. If these columns are left blank, the field (or constant when no field
is named on the line) is printed on each detail line conditioned by the
indicators for that record. When group printing is specified (T-* AUTO
specification), the field (or constant when no field is named on the line) is
printed each time the lowest-level total line is printed. If a column heading
is specified in columns 45 through 70 to appear over a field named in
columns 32 through 37, the column heading is not affected by output
indicators entered in columns 23 through 31.

Columns 32-37 (Field Name)

Column 38 (Edit Codes)

Enter a field name, data structure name, indexed array name, table name,
or blanks in columns 32 through 37. If columns 32 through 37 are blank, a
constant must be entered in columns 45 through 70 of the same
field-description specification. If a field name, data structure name, indexed
array name, or table name is entered, the value of the field or item is
printed on the detail line (or on the first total line if group printing is
specified).

Enter a valid edit code in column 38 if columns 32 through 37 contain the
name of a numeric field, a numeric array item, or a numeric table. This
column must be blank for alphameric fields, data structures, array items,
table items, and literals. If column 38 is left blank on a field-description
line for a numeric field, an array item, or a table item, the auto report
program provides a K edit code. The K edit code causes a numeric field or
item to be printed with commas and a decimal point, such as 3,489.18. It
also causes zero suppression, does not print zero balances, and prints a
minus sign on the right of negative balances.

Column 39 (Blank After)

15-32

Entry

Blank

B

Explanation

Field is not to be reset to zeros or blanks after printing.

Numeric field is reset to zeros after it is printed. Alphameric
field is reset to blanks after it is printed.

Enter B in column 39 to reset alphameric fields or data structures to blanks
or to reset numeric fields to zeros after they are printed. Blank after
cannot be used for constants. This entry applies only to the detail line (or
to the first total line if group printing is specified).

Columns 40-43 (End Position in Output Record)

Column 44

Either leave columns 40 through 43 blank, or enter the print position of the
rightmost character of the field (or constant if no field is named in columns
32 through 37) to be printed. If this column is blank, auto report creates
end positions for fields, constants, and column headings. See Report Format
in this chapter for additional information and considerations.

Column 44 is not used, because packed-decimal and binary data cannot be
specified. Leave this column blank.

Columns 45-70 (Constant)

Enter a constant or blanks in columns 45 through 70 when column 39
contains a blank. Constants are enclosed in apostrophes according to the
standard RPG rules for coding constants. If these columns are left blank, a
field name, data structure name, indexed array name, or table name must be
entered in columns 32 through 37. Column-heading continuation lines can
follow this field-description line, but the first line of the printed column
heading will be blank. See Field Description (C in Column 39).

If a constant is entered in these columns along with a field name in
columns 32 through 37, the constant is printed on the first column-heading
line over the field value. When a column heading is used, the length used
to space the column on the report is the greater of the longest
column-heading length or the field length, adjusted for editing. See Report
Format in this chapter for additional information on how columns and
fields are centered and spaced by auto report.

If a constant is entered in columns 45 through 70 and field name (columns
32 through 37) is blank, the constant is printed each time the detail report
line is printed. In group printing, the constant is printed each time the first
created total line is printed.

Chapter 15. Using Auto Report 15-33

Field Description (A in Column 39)

!:

Enter A in column 39 of a field-description specification following a
D/T-* AUTO specification to accumulate and print totals for the field named
in columns 32 through 37 (see Figure 15-11). The number of levels of totals
that are printed is determined by the control-level entry (columns 59 and 60)
on input specifications. A final total is also printed when the LR indicator
is on. (This process is called total rolling).

If group printing is specified and a control-level indicator higher than the
lowest-defined control level is specified in columns 23 through 31 on the
record-description specification, totals are created for the indicator entered,
all higher defined indicators, and LR.

The total output record created by auto report if you entered A in column
39 of a field description specification is conditioned by the associated
control-level indicator defined in the input specifications. One total output
record is created for each control-level indicator defined in the program.

0 1 Space Skip Output Indicators

~
Commas

Zero Balances
No Sign CR - X =Remove

.----, to Print Plus Sign
~

Field Name
or

Filename
~ii A!d A~d EXCPT Name

or
~ Line Record Name

j ~ Wo <(

~ ~ ~ 15 •AUTO z

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 "' 30 31 32 33 34 35 36 37

0 1 oi..o iE ~~ IUIT
0 2 0 ~M llN!
0 3 0)d

The A in column 39 causes the AMOUNT field to be
accumulated. Totals are printed for each control level
and a final total is printed. A column heading is specified
in columns 45 through 70.

6 ·9=
Y =Date

User Yes Vos 1 A J Field Edit
v .. No 2 B K Z =Zero

Defined

No Vos 3 c L c::: Pos1t1on Suppress = Oi in No No 4 D M

85 Output
a:
::i

ii~ Record "' Constant or Edit Word
w"' 0: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

38 39 40 41 42 43 ~•~n~~m~m~~~~n~~OOITT~roM~~n~wm

~
,,.~ Irv N Ir- 11

I

Figure 15-11. Describing a Field That Is to Be Accumulated

15-34

717'.l.7374

Created Total Fields

When A is specified in column 39 of a detail or total* AUTO
field-description specification, auto report creates and names total fields to
be used in accumulating the required levels of totals. Auto report creates
the field names for the total fields based on the name in columns 32 through
37 of the A-type field description. Names are created in the following way:

• If the specified field name has fewer than 6 characters, 1 character is
added to the name to create a name for the total field. The added
character is 1 through 9 or R, corresponding to the total indicators Ll
through L9 and LR, respectively. For example, if ITEM is the specified
field name and all nine control levels are defined, the created field
names are ITEMl, ITEM2, ... ITEM9, and ITEMR.

• If the specified field name has 6 characters, the last character is
replaced by one of the characters, 1 through 9, or R. For example, if
AMOUNT is the specified field name and all nine control levels are
defined, the created field names are AMOUNl, AMOUN2, ...
AMOUN9, and AMOUNR.

Total fields are created and named for all control-level indicators defined in
the program and for LR. (For an exception to this rule, see Figure 15-15
under Group Printing.) For example, if Ll and L3 are assigned to control
fields on the input specifications and the field QTY is specified, three total
fields, QTYL QTY3, and QTYR, are created and named by auto report. All
total fields created for the same level, such as QTYl and AMOUNl, are
printed on the same total line, and that line is conditioned by the
corresponding control-level indicator.

Created total fields are 2 digits longer than the original field. For example,
if the field QTY is defined with a length of 3, QTYl, QTY3, and QTYR all
have lengths of 5. The number of decimal positions remains the same in the
created fields. If a field previously defined in a program has the same name
as a created field name, you can redefine the previous field, giving it
whatever length and number of decimal positions you want. If you do this,
the created field is assigned the previously defined length and number of
decimal positions (if the previous field is numeric).

Chapter 15. Using Auto Report 15-35

Considerations

Columns 7-22

You can specify created field names in RPG specifications that are included
in the program. You must be aware, however, that the use of created fields
in this way can interfere with the automatic accumulation of totals
performed by auto report.

Field names ending in 1 through 9 or R should not be used in an auto
report program that accumulates totals, because auto report creates total
fields ending in those characters. This is especially important for
6-character field names, because auto report forms total field names by
replacing the last character with 1 through 9 or R. No field name can be
used more than once with A in column 39. Also, if a 5- or 6-character field
name is specified with A in column 39, a second 5- or 6-character field name ·
in which the first 5 characters are identical cannot be specified with A in
column 39. For example, if the following four field names are specified with
A in column 39 in an auto report specification, all but the first are invalid:

FIELD

FIELDX Invalid because the first 5 characters
duplicate the first 5 characters of the first
field.

FIELDY Invalid for the same reason as for FIELDX.

FIELD Invalid because it duplicates the first field.

Columns 7 through 22 must remain blank on the field-description lines.

Columns 23-31 (Output Indicators)

15-36

Enter any valid output indicators in columns 23 through 31, or leave them
blank. If these columns are blank, the field described is printed on each
detail line. If indicators are entered in columns 23 through 31, the field is
printed only when the conditions represented by those indicators are met.
Leave these columns blank for group printing.

If a column heading is specified in columns 45 through 70 to appear over a
field named in columns 32 through 37, the column heading is not affected by
output indicators entered in these columns. Also, output indicators
specified when column 39 contains A do not affect the creation of
calculations for the field.

Output indicators specified on an A-type field-description specification
following a D-* AUTO specification condition the calculations created for
the field. If the A-type field description follows a T-* AUTO specification,
however, a specified indicator does not condition calculations created for
the field.

Columns 32-37 (Field Name)

Column 38 (Edit Codes)

When column 39 contains A, the name of a numeric field that is to be
accumulated must be entered in columns 32 through 37. These columns
cannot identify an array, array item, or table. The field named is printed
on each detail line of the report. If group printing is specified, the total
field for the lowest control-level indicator defined (Ll, L2, ... L9, LR, in
that order) is printed on the created total line. (For an exception to this
rule, see Figure 15-11 under Group Printing.) Totaling for any particular
field by means of an A entry in column 39 can be specified only once in
each program.

To create calculation and output specifications that accumulate and print
the various levels of totals required, auto report creates and names
additional totaling fields. Names created for the fields are based on the
field name specified in these positions according to a set of rules (see
Created Total Fields).

Enter an edit code in column 38, or leave it blank. If this column is blank,
auto report creates a K edit code for the field named in columns 32 through
37. The K edit code causes the field to be edited with commas and a
decimal point, such as 1,234,567.89. The field is also zero suppressed. Zero
balances are not printed; negative balances are printed with a minus sign
on the right. The edit code specified, or the created K edit code, applies to
all created total fields as well as to the field named in columns 32 through
37.

Chapter 15. Using Auto Report 15-37

Column 39

Enter A in column 39 to indicate that totals are to be accumulated for the
field named in columns 32 through 37 of this field description. A total is
printed for every control-level indicator defined in the input specifications
and for the LR indicator. When column 39 contains A, columns 32 through
37 must contain the name of a numeric field. Columns 45 through 70 can
contain a constant to be used as the first line of a column heading. (See
Created Specifications for additional information.)

When the lowest control-level indicator used for a T-* AUTO specification is
higher than the lowest control-level indicator defined in the input
specifications, auto report creates only the total lines corresponding to the
lowest control-level indicator used for the T-*AUTO specification, the
higher defined control levels, and LR (see Group Printing).

Resetting Total Fields to Zero When column 39 contains A, the auto
report program creates a B (blank after) in column 39 of all the detail and
total field-description specifications created from the field name specified.
Thus, the value in the specified field and in any created fields is reset to
zero after the field value is printed.: If group printing is specified, auto
report creates a calculation to reset the specified field to zero on each cycle.
This prevents the same value from being accumulated more than once. An
unconditioned total-calculation operation (Z-ADD) sets the field value to
zero. This calculation is the first total calculation in the created RPG
source program.

Asterisk Indication: To indicate that a printed line is a created total line,
asterisks are printed on the line to the right of the highest end position
created from the D/T-* AUTO specification. One asterisk is printed to the
right on the lowest-level total line created. One additional asterisk is
printed on each higher level line, including the final total.: For example, if
Ll and L3 are defined control-level indicators in a program, one asterisk is
printed to the right of the Ll line, two asterisks are printed on the L3 line,
and three are printed on the LR line. As many as 10 asterisks are printed
on the LR line if all nine control-level indicators are defined in the
program.

To suppress the creation of asterisks on total lines, enter Nin column 28 of
the auto report option specifications.

Columns 40-43 (End Position in Output Record)

15-38

Enter the print position of the rightmost character of the field to be printed,
or leave these positions blank. If this entry is blank, auto report creates
end positions for fields and column headings. See Report Format for
additional information and considerations.

Column 44

Column 44 is not used with auto report, because packed-decimal and binary
data cannot be used. Leave this column blank.

Columns 45-70 (Constant)

Either leave columns 45 through 70 blank, or enter a literal. Do not enter
an edit word; editing is done by an edit code. If a literal is entered when
column 39 contains A, the literal becomes the first line of the column
heading over the accumulated field.

If these columns are left blank, the first line of the column heading is
blank, but column-heading continuation lines can specify the second and
third lines of the column heading. See Field Description (C in Column 39).
Also see Report Format for information on how column heading and fields
are centered and spaced by auto report.

Field Description (C in Column 39)

0
t----

Filename

! or
Una ~ Record Name

...

3 4 ' 6 7 8 9 10 11 12 13

0 1 o~ lilMD F1
0 2 0
0 3 0
0 4 lq
0 5 0

...
~] e,.

Space

i~ !i "
M ~~
~ ~ ~ A ..
~

Enter C in column 39 of the *AUTO field descriptions to specify a second
and third column-heading line. At times you may want more information in
a column heading than can be contained on one line. Auto report enables
you to specify the second and third lines of column headings by simply
specifying the literals to appear on those lines. No additional heading
output lines need be coded; no end position need be calculated. The special
field-description specification that allows you to do this is identified by C in
column 39 (see Figure 15-12) .

Skip Output I ndlcators

~
Commas

Zero Balances
No Sign CR - X •Remove

Field Name to Print PlutSlgn 5 .g.
or V .. Date

User

A!d ;rd Yeo Vas 1 A J Fletd Edit EXCPT Name v .. No 2 K Defined B Z •Zero
a: Position No Yeo 3 c L Suppress

~
m ;;; In No No 4 D M

~5 Output
0:
::i

~ 0 0 •AUTO ~~ Record ., Constant or Edit Word
z z w 1 ' 3 4 ' ' 7 8 9 10 11 12 13 14 16 18 17 18 19 20 21 22 23 24 •

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 3 8 39 40414243 ~~~u~~~~~~~~wn~~~~~~MM~DMUro 71 72 73 7,

'*IA Ul.I
F'IIlr "" \ Il'I 1-,11 tt ~ l ~ IN IE I ml

"It \ Ir:- IIN~ TIN r- I

~ 'I IBh ~ !NG IN t'

i
C in column 39 is used to specify second and third column-heading
lines. A maximum of three column-heading lines (two C-type
field descriptions) can be used.

Figure 15-12. Specifying Second and Third Column-Heading Lines

Chapter 15. Using Auto Report 15-39

Columns 7-38

Column 39

Columns 40-44

Columns 7 through 38 must be blank on a field description that has C in
column 39.

Enter C in column 39. One or two C-type specifications can follow a
field-description specification that has A, B, or blank in column 39 and an
entry in columns 32 through 37. The first C-type specification causes a
second column-heading line to be created. The second C-type specification
causes a third column-heading line to be created (see Figure 15-12).

Columns 40 through 44 must be blank on a C-type field-description
specification.

Columns 45-70 (Constant)

15-40

Enter a constant, up to 24 positions long including blanks, enclosed in
apostrophes. The constant becomes the second or third line of column
headings, depending on whether it is on the first or second C-type
specification. If two or three column-heading lines are specified, the
shorter literals are centered on the longest.

Field Description (1-9 or R in Column 39)

Enter a digit (1 through 9) or R in column 39 of a field description to
specify a field or constant to be printed on a specific total line.

Auto report allows you to print other information on created total lines in
addition to the created totals resulting from A-type field descriptions. The
value entered in column 39 corresponds to the level of the total line on
which the information is to be printed (the corresponding control level must
be defined in columns 59 and 60 in the input specifications). For example, 3
in column 39 indicates that the information is printed on the L3 total line;
R indicates that the information appears on the final total, or LR, line (see
Figure 15-13). Fields and constants specified in this way are printed to the
left of the leftmost created total on the line. See Report Format for exact
placement.

This type of field description can print information such as DISTRICT
TOTAL, GRAND TOTAL, or other literal information. It can also print a
field and specify an edit word, floating currency symbol, or asterisk fill for
the field.

If none of the *AUTO output fields is defined with A in column 39, then 1
through 9 or R cannot be used in column 39. In group printing, only specify
numbers that are higher than the lowest control-level indicator used to
condition the T-* AUTO specification. If the T·* AUTO specification is not
conditioned by a control-level indicator, use only numbers that are higher
than the lowest control level defined in columns 59 and 60 on the input
specifications.

Chapter 15. Using Auto Report 15-41

!
Line !

Filename
or

Record Name

Defined

~!Space Skip Output Indicators Field Name [ff Commas Zert~:~:~;ces NoSign CR _ X=~:;~:~

~ ~ T T or Yes Yes 1 A J Y = :~ Edit
~~ ~ _! A~d And EXCPT Name Yes No 2 B K z =Zero

r-~ u '1 ~ ~os1t1on ~~ ~:s ! g ~ Suppress

~~ ! ~ 85 Output ~

5 ·9.
User

&'!_I- 2b O 0 *AUTO w:S ~ Record CD Constant or Edit Word
~ D z z Ci: 1 2 3 4 s 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

3 4 5 6 7 8

0 1 0.,.,.-

0 2 lo
0 3 lo
0 4 lo
0 5 lo

9 to 11 i2 13 14 ts 1& 11 1a 19 20 21 22 23 24 2s 2s 21 2a 29 Jo 31 a2 JJ 34 as 36 37 as 39 40 41 42 43 44 45 46 47 48 49 so s1 s2 sa 54 55 56 57 ss sg so s1 62 63 64 65 66 67 ea &9 10 11 12 73 74

IE:

AMOUNT

xxx.xx
xxx.xx

x,xxx.xx

GRAND TOTAL AS OF 1 /31 /84 74,341.50*

In this example, the literal 'GRAND TOT AL AS OF' followed by the current data prints on the left of
the created final total line, as shown below.

Figure 15-13. Specifying a Literal and a Field to Print on a Created Total Line

15-42

Columns 7-31

Columns 7 through 31 must be blank on a field-description line with 1
through 9 or R in column 39.

Columns 32-37 (Field Name)

Column 38 (Edit Code)

Column 39

Enter the name of a field, an indexed array name, or a table name. The
corresponding field or item value prints on the total line indicated by the
entry in column 39. If columns 32 through 37 are blank, a constant must be
entered in columns 45 through 70.

Enter an edit code in column 38 to edit a numeric field named in columns
32 through 37, or leave column 38 blank. If column 38 is left blank, an edit
word can be entered in columns 45 through 70. If column 38 is blank, no
edit code is assumed by auto report.

Enter a digit (1 through 9) or R. These entries correspond to the indicators
Ll, L2, ... L9, and LR. The entry identifies a specific total line on which
the field or literal described is to be printed. The entry in column 39 must
correspond to a control level that is defined by the input specifications. In
group printing, the entry in this column must be higher than the control
level of the first total line created.

Columns 40-43 (End Position in Output Record)

Column 44

Do not make an entry in columns 40 through 43 on field-description
specifications with 1 through 9 or R in column 39. See Report Format for
additional information and considerations.

Leave column 44 blank.

Chapter 15. Using Auto Report 15-43

Columns 45-70 (Constant or Edit Word)

Group Printing

Specifications

15-44

Leave columns 45 through 70 blank, or enter a constant or edit word. If
field name (columns 32 through 37) on this specification line contains an
entry, then columns 45 through 70 can contain any of the following:

• Blanks, if no editing is needed for the field or if the field is already
edited by an edit code in column 38

• Edit word, if special editing is desired

• Floating currency symbol or asterisk-fill entry used with an edit code

Columns 45 through 70 cannot contain a constant when field name contains
an entry. However, when field name is blank, columns 45 through 70 must
contain a constant.

In group printing, data is summarized for a group of input records, and only
totals are printed on the report. Totals can have either subtotals and a
final total or only a final total.

To specify group printing using auto report, enter T in column 15 and
*AUTO in columns 32 through 36. A control-level indicator can be
specified in columns 23 through 31. When a T-* AUTO specification is used,
a line is not printed for each individual record that is read, but only after a
complete control group is read.

Fields and literals defined by field-description specifications that have a
blank or Bin column 39 and follow a T-*AUTO record description are
printed on the lowest-level total line. Fields defined with A in column 39
are not printed on the total lines, but the total fields created by auto report
are. Continued column headings (C in column 39) and total-indicated fields
(1 through 9 or R in column 39) can also be specified by field descriptions
following a T-* AUTO record description.

Output indicators can be entered in columns 23 through 31 of a
field-description specification following a T-* AUTO record description if
column 39 of the field-description specifications contains a blank or B. If
output indicators are used in a field description that has A in column 39
following a T-* AUTO specification, those indicators are ignored by auto
report. Output indicators cannot be used in a field description that
contains C, 1 through 9, or R in column 39.

Examples

Figure 15-14 shows the file description and input specifications for the
group-printed reports shown in Figures 15-15 and 15-16. BRANCH and
REGION are defined as control fields.

Figure 15-15 shows the calculation specifications, the output specifications,
and the group-printed report showing sales totals for a company. Since the
T-*AUTO specification is conditioned by L2, only the totals for REGION
(L2) and for the entire company (LR) are printed on the report. The totals
for BRANCH (Ll) are not printed.

A DISK summary file, DISKSUM, is also produced by this program. The
summary file contains a summary record of the sales data for each branch.
The output specifications for DISKSUM illustrate the use of standard RPG
output specifications in the same program with *AUTO specifications. The
output record described is written on the DISK file, DISKSUM, when there
is an Ll control break (BRANCH field changes). Since the T-* AUTO
specification is conditioned by L2, auto report does not create fields for the
Ll control level. Therefore, standard RPG calculation specifications must
be used to calculate the Ll totals. The Ll total fields that are written on
the DISKSUM file (SOLDQl, SOLDVl, and VALUEl) must be defined in
the calculations.

Figure 15-16 shows a group-printed report similar to the one shown in
Figure 15-15. However, the T-* AUTO specifications are not conditioned by
a control-level indicator, so totals are printed for all defined control levels
and for LR.

Chapter 15. Using Auto Report 15-45

End of Fiie

Mode of Proceulng File Addition/Unordered FileTv.

Filename

Length of Kev Field or Extant Exit Number of Tr1Ck1
of Record Addreu Field i for DAM for Cyllndlt' O.lfflow

Record Address Type ::! Symbolic rn Name of Number of Exe.nit
S.queni;e Type of Fiie '.; Device Device j Label Exit TUI

Fiio Format ';: Oraenl•tlon °' 8 !I Storage Index ~ I!! o AdciitlonllAn1 ~

~t:_!:; ~ ~ i
~ Ii Block Re .. rd ~~ ~ 0..r_fll"E:ow ~~dl~~or'I ~~
a: ~ Length Length !\ ~- !ltm'tl~on JI Contlnuotii\n Lines C: UC .-----

S? ~ w".. """"" ;;;> .., g ~ C Extsnel Record N1nw K Option Entry tl i°

F
I--

File Dnignatlon

Uno

1 •• & I 1 8 9 · 10 U 12 13 14 15 l_i._l 11 I 11 20 21 22 23 M 21 21 21 a:::ii:ao at 32 33~ 31 31 37 31}i 40 41 c2 43 44 45 4& 47 48 •• so 151 s2 13 54 e H s1 &a se ao et 12 63 84 • as 11 11ee10 11 12 13 14

0 2

0 3

0 4

o & F

I f
External Field Name Field

Field Location
lndlcaton I--- Filename

l
Record Identification Codes

~ I or i~ ! 6
Record Name w ..

t~
1 2 3 From To :~ RPG ii;! a:

! ~~ ~ ~ Field Name J £~ l! Zero
Iii c! a: !I ~ Line

]
:: s ~· i z"' i ~e

Data Structure ..] ~r Plus Minus or r- z"' n;;i a:
Position Position Position E '!i"' Blink D11t1 0 R E -~ ~ B~ i§~ B ~ M ~ Occurs ~ ~ :i ~ ~ Structure ~ ~.H u nTimes Length

N1m1
3 •• • 7 • 9 10 11 12 13 14 1& 11 17 18 19 20 21 22 23 24 ,. 28 27~ 29 30 31 32 33 134 35 36 37 38 39 40 41 42 434"454ti4 7484815051 152 53 54 55 58 57 58 81 .!: 70 7t 72 73 74

0 1 1JCIJ IF~ ~IA 1211
0 2 I Il ~ lllt. 1111

0 3 I IE! 1<1 'IJI Ir Ii ll
0 4 I llrJ 11~ Ir-~ II~ll\ I~

0 & I !I ~~ IE'l5~ ll
0 6 I .~ ~ !1;~1)1 11
0 7 I l2'lE l"I M~
0 8 I L~t~ liL"'

& 0 9 I l':!l1 /ljt'= ~ L4 Ir
1 0 I

\
L 1 and L2 are the defined control levels.

Figure 15-14. File Description and Input Specifications for the Group-Printed Reports Shown in
Figures 15-11 and 15-12

15-46

3 4 5 6 7

0 1 c
0 2 c
0 3 c
o • IC!

0
...............

Indicators Result Field Resulting
lndiCltOrl .

:~ Factor 2 I 1 Factor 1
Length !

.§

~ ~ ~ ~

Operation

Arithmetic

PlusIMinu_i Zero

Com- Comments
Name 1>2[1<2[1•2

Lookup(Factor 2111

9 10 11 12 13 14 115 18 17 18 19 20 21 22 23 24 25 26 27 ~ 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

High Low F.qu81
M~~~9~~~~~M~u~uumnnn

rd MA [1 ll D !VIA 1~ W ll11:.ll rcil2J

Filename
or

Record Name

...
__ w,_- ... 'I Space Skip Output Indicators ru;sl Commas ZerotoBParl,.•.•,ces NoSign CR - X=Remove

Field Name Plus Sign 5 . 9 =

~ ~ or Yes Yes 1 A J y =Date UHr i.; a ! AL Jd EXCPT Name v.. No 2 B K z. ;~: Edit Deflnad
... ~ a: Position No Yes 3 C L SUppress

Wol ! ~~~utput 'm~ No No 4 0 M

o zi; ~ ZS •AUTO ... < Record Constant or Edit Word
~ z :B ca Q. • 1 2 3 4 s a 1 a 9 10 11 12 13 14 15 18 11 1a 19 20 21 22 23 24

3 4 5 8 1 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 38 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 52 53 54 55 56 57 58 59 80 81 82 63 84 86 88 87 88 89 70 71 72 73

0 1

0 2 10
0 3 0

0 4 10
o s lo
0 6 '°
0 7 0

0 8 '°
0 9 0
10 0

, , o lor1~ Ill I
1 2 lq
1 3 jg
1 4 0

1 5 0

1 6 l<>l
1 7 ~

I
T in column 15 with * A.UTO in
columns 32 through 37 specifies
a group-printed report.

ll.
I\

JJ 1

'[~r"I II N'
'NIL

I

\ M~IL JIE f1 ~1

YI ~ llll'I

11

I~

\
Because L2 is entered under output indicators, total
lines are printed only for L2 and LR, although L 1 is also
a defined control-level indicator.

In group printing, the lowest-level total lines printed
(L2, in this case) are single-spaced, like detail lines.

SALES FOR ANY COMPANY BY REGION PAGE

NUMBER OF SALES VALUE VALUE OF STOCK
ON HAND

1 23 71,000.00 19,000.00
3 30 10,000.00 29,000.00

COMPANY TOTAL 53 141,000.00 48,ooo.oo

1

*
*
**

Figure 15-15. Using *AUTO to Produce a Group-Printed Report Showing Region and Final Totals

Chapter i5. Using Auto Report 15·4 7

0
~

@~ Space Skip Output Indicators

ru5l
Commas

Zero Balances
No Sign CR

X =Remove -
f-- !:: ~ Field Name to Print Plus Sign 5-9. e iiio or y .. Date

User "' . 2d 2d
v .. Vos 1 A J Field Edit Filename i~ ~~ EXCPT Name Defined 8. v .. No 2 B K Z =Zero

""'
or k No v .. 3 c L ~~ a: Pos1t1on Suppress

Line

~
Record Name

~ j1 ~ a; ;n No No 4 0 M
~ ~ 8::: "' A ., " !6 ~

Output ::;

~ ~ 0 0 •AUTO Record iil Constant or Edit Word
z z w., .. ' 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

3 4 • • 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ~~~~~~~~~~~~~u~~M~~~M~~~M~ro 71 72 73 74

0 1 0 IIINrJ IR ~ I
0 2 lo -~ rric; IF ~ ~"ry r-V- IMO llllt.1 '
0 3 lq ' !fl>' IA Ir IA ti [:,I]. '
0 4 lq LI !Ml~ ir
0 5 0 It- ' '" lrl I

0 6 0 ~ I .,, "i>' lll ·~ F 6A F'R'
0 7 0 ~ ~ Ill ' ~ I

0 8 lo v~ Jilt r ~ ' ~ UI:. lr'!lf'I l!il
I

0 9 0
,.

' ~ IAN I

1 0 0

~ \ l~IE IL If\ I

1 1 lo R 11rit1
1 2 lo 2 '11 lllll ~·
1 3 0 fi '~i,.. In UT tr rr1.ll J'.:: I

1 4 0

SALES FOR ANY COMPANY BY BRANCH AND REGION PAGE 1

BRANCH NUMBER OF SALES VALUE VALUE OF STOCK
ON HAND

C0 17 17 53,000.00 12,000.00 * 22 6 1a,ooo.oo· 1,000.00 *
@-REGION 1 TOTALS 23 11,000.00 19,000.00 **
@ 25 30 10,000.00 29,000.00 *
~REGION 3 TOTALS 30 10,000.00 29,000.00 >::*

2

~COMPANY TOTALS 53 141,000.00 48,000.00 '~** R

When no control-level indicators are entered under output indicators, a total line is created for each
defined control-level indicator (Ll and L2, in this case) and for LR.

Figure 15-16. Using *AUTO to Produce a Group-Printed Report Showing Branch, Region, and Final
Totals

15-48

Report Format

One of the advantages of auto report is that it frees you from the task of
specifying the format of your report on the output specifications sheet.
Auto report can completely format the report by spacing, skipping,
centering lines, and calculating end positions for fields and constants.

Spacing and Skipping

You can specify spacing and skipping, or you can leave it to auto report.
Figure 15-17 shows spacing and skipping created by auto report. For the
specifications used to produce the report, see Specifications Created by Auto
Report in this chapter. If columns 17 through 22 are left blank on an
H·* AUTO specification, auto report skips to line 06 before printing the first
heading line, and it spaces two lines after the last heading line. If more
than one heading line is specified, auto report spaces one line after the first
heading line and after all succeeding heading lines except the last. To
specify spacing and skipping, follow the standard RPG rules for spacing and
skipping.

Column-heading lines are spaced like page headings. Auto report spaces
one line after all column headings except the last. It spaces two lines for a
single heading line, or for the last heading line if more than one is
specified. Spacing and skipping entries cannot be specified for column
headings. If spacing and skipping entries are made on a D-*AUTO
record-description specification, the entries apply to the detail line created.
The entries do not apply to column headings or to total lines created by
auto report from the D·* AUTO specification. Standard RPG rules for
spacing and skipping must be followed. If spacing and skipping entries are
not made, auto report spaces one line after printing the created detail line.

Two lines are spaced after all total lines produced by auto report from a
D·* AUTO specification. In addition, the lowest-level total line and the final
total line are also created with one space before.

If spacing and skipping entries are made on a T-* AUTO specification, the
entries apply to the lowest-level total line created, but not to column
headings or to higher level total lines. If spacing and skipping entries are
not made, one line is spaced after the lowest-level total lines; two lines are
spaced after all higher levels. One line is always spaced before the
next-to-the-lowest-level total and before the final total (see Figure 15-16 for
an example).

Chapter 15. Using Auto Report 15-49

Skip to line 06 occurs before printing of the first line.

1115/84 SALES REPORT FDR

REGION BRANCH ITEM DESCRIPTION SALES
NUMBER

1 17 AG7701T 2-TDN TRUCK 5
AG7705S PICK-UP 10
AP6545B CAMPER 2

22 AG7701T 2-TDN TRUCK 2
AG7705S PICK-UP 4

3 25 AG6545B CAMPER 10
AP6549P 1/4-TDN TRUCK 20

FINAL TOTALS

Auto report creates a blank line (space-two-after)
following the last page-heading line (in this case,
there is only one page-heading line) and following
the last column-heading line.

Highest end position in the report.

ANY CO. PAGE 1

AMOUNT ON-HAND VALUE

25,000.00 2 10,000.00
20,000.00 1 2,000.00

a,000.00

53,000.00 12,000.00 *

10,000.00 1 5,000.00
a,000.00 1 2,000.00

10,000.00 1,000.00 *

11,000.00 19,000.00 **
40,000.00 5 20,000.00
30,000.00 6 9,000.00

10,000.00 29,000.00 *

10,000.00 29,000.00 **
141,000.00 48,000.00 ***

Auto report creates a blank line before the lowest
level total (in this case, there is only the L 1 total)
and before the final total (space-one-before).

Auto report creates a blank line following
each total line (space-two-after).

Figure 15-17. Report Showing the Format Created by Auto Report

15-50

Placement of Headings and Fields

Page Headings

Auto report creates end positions for fields and constants and centers
column headings, columns, and report lines (see Figure 15-17 for an
example). However, if an end position is specified for a field or constant on
a D/T-* AUTO field-description line, that end position is used on all column
heading, detail, and total specifications created from the field description.
(The specified end position may be changed slightly by auto report when
the line is centered or when the column heading and field are positioned in
relation to each other.) If the specified end position causes an overlay with
a previous field or constant, auto report creates a new end position.

Specify end positions only to eliminate the automatic spacing between fields
or to spread out or expand a report on the page.

If the date and page number are printed on the first *AUTO page-heading
line (that is, if they are not suppressed by an Nin column 27 of the auto
report option specifications), the date is always printed in positions 1
through 8. The page number is printed with an end position equal to the
highest end position of the longest line in the report. When the first
*AUTO page heading (including date, title, and page number) is the longest
line in the report, one blank space separates the title from the date and the
word PAGE from the title. If the resulting line exceeds the record length of
the PRINTER file, the excess information on the right of the line is not
printed.

If a line created from a D/T-* AUTO specification is the longest report line,
that line is printed starting in print position 1, and the title portion of the
first page-heading line is centered in relation to that line. Additional
*AUTO page headings are then centered on the first *AUTO page-heading
line.

If an *AUTO page heading is the longest line in the report and a
D/T-*AUTO specification is present, any other *AUTO page-heading lines
and the line created from the D/T-* AUTO specification are centered on the
longest page heading.

Fields and constants appear in the order specified in the *AUTO output
specifications from left to right. Auto report provides one blank space
before and after fields on the heading line. No spacing is provided between
constants.

Reformatting *AUTO Page Headings

You can reformat an *AUTO page-heading line if you do not want to use
the end positions for fields and constants that are created by auto report. If
you want to find what end positions are created for page, date, and title
information, see the listing of the created source program that is produced
by the RPG compiler (see Created Specifications).

Catalog the created RPG source program in a library by specifying the C
option in column 7 of the auto report option specifications, and change the

Chapter 15. Using Auto :Report 15-51

Body of the Report

end positions on the created source statements by using the source entry
utility (SEU).

Placement of column headings above columns depends on which is longer,
the heading or the associated field (including edit characters). If any
column heading is longer than the associated field, the field is centered
under the longest constant in a column heading. However, if the field is
longer than the longest constant in a column heading, the column heading
is printed in the leftmost positions over an alphameric field and in the
rightmost characters over a numeric field. When more than one
column-heading line is specified, shorter column headings are always
centered on the longest column heading (see Figure 15-17).

Fields and constants appear from left to right on a line in the order in
which they are specified by the output specifications. At least two blank
spaces appear before each field on the line. However, no spaces are
provided before a constant; you ipust incorporate blanks within constants if
you want to provide additional spacing.

Total indication (fields and constants specified with 1 through 9 or R in
column 39 of the output specifications) is placed to the left of the first total
field (A in column 39) on the corresponding total line, followed by two
spaces. If two or more such fields or constants are specified for a total line,
they appear from left to right in the order specified on the left of the first
total on the line. Each field is preceded and followed by one space. No
spacing is provided for constants.

Overflow of the D/T-*AUTO Print Lines

15-52

If the lines created from a D/T-* AUTO specification are longer than the
record length specified for the PRINTER file, a second print line (overflow
line) is created for each column-heading line, detail (or group-print) line,
and total line. (Remember, a second print line is not created for *AUTO
page-heading lines.) The excess information is placed in the rightmost
positions on the overflow line in the order specified.

Figure 15-18 shows the result of an overflow condition.

In the output specifications for the report shown in Figure 15-18, no spacing
or skipping is specified. If spacing and skipping are specified, however,
auto report spaces the report as follows:

• Column heading lines and total lines are spaced as shown in Figure
15-18.

• The space-before and skip-before entries specified are for the original
detail (or group-print) line. Auto report creates one space after this
line.

• The space-after and skip-after entries specified are for the overflow line.
Auto report creates blanks for space-before and skip-before for the
overflow line.

Auto report prints those columns that }
cannot be completely contained on ·---,
the original line on overflow lines.

1/15/84 CASH RECEIPTS REGISTER PAGE 1

REGION ACCOUNT ACCOUNT NAME INVOICE INVOICE DATE PAID AMOUNT DISCOUNT
NUMBER NUMBER DATE OWED TAKEN

AMOUNT BALANCE EXCESS
PAID DUE DISCOUNT

1 11243 JONES HARDWARE 27541 7/11/71 7/21/1 23.75 .47
23.28

1 11352 NU-STYLE CLOTHIERS 27987 7/14/71 7/26/1 87.07
40.00 47.07

1 11886 MIDI FASHIONS INC 15771 7/04/71 7/14/1 101.22 2.14
105.08

1 12874 ULOOK INTERIORS 25622 7/09/71 7/23/1 67.95
67.95

1 18274 STREAMLINE PAPER INC 29703 7/21/71 7/30/1 274.03 2.38
170.55 101.10

REGION TOTALS 560.02 4,99
406.86 148.17 *

2 23347 RITE-BEST PENS co 20842 7/18/71 7/20/1 15.80
10.00 5.80

2 25521 IMPORTS OF NM 29273 7/20/71 7/27/1 797.40 11.93
585.47 200.00

2 26723 ALRIGHT CLEANERS 19473 7/07/71 7I2311 462.00
462.00

2 28622 NORTH CENTRAL SUPPLY 17816 7/05/71 7 I 2211 75,97
75,97

2 2987l FERGUSON DEALERS 27229 7/10/71 7/22/1 61.91
61.91

REGION TOTALS 11413.08 11.93
11195.35 205.80 *

3 30755 FASTWAY AIRLINES 26158 7/06/71 7/19/1 742072 16.85
725.87 1.90

3 31275 ENVIRONMENT CONCERNS 20451 7/06/71 7/30/1 29.43
15.00 14.43

3 32457 B SOLE SILOS 27425 7/10/71 7/20/1 110.05
110.05

3 37945 HOF FT A BREAKS INC. 18276 7/06/71 7/23/1 47.23
47.23

REGION TOTALS 929.43 16.85
898.15 14.43 lo90 *

42622 EASTLAKE GRAVEL CO 16429 7/05/71 7/23/1 29.37
29.37

REGION TOTALS 29.37
29.37 *

COMPANY TOTALS 2,931.90 33,77
2,529.73 368.40 1.90 **

Figure 15-18. Report Showing Overflow of D-* AUTO Print Lines

Chapter 15. Using Auto Report 15-53

Created Specifications

15-54

Auto report creates standard RPG specifications and combines them with
RPG specifications included in the input to auto report and with
specifications copied from library members. From them, it produces the
final RPG source program. This section describes the created RPG
specifications and the order of those specifications in the RPG source
program.

Figures 15-19 and 15-20 show auto report specifications for a sales report
and the resulting RPG source specifications that are created for the report.
Numbers are inserted in the figures to identify the auto report functions
and to show the specifications that are created by each function.

F File Type Mode of Processing File Addidon/Unordend

File Designation Length of Key Field or Extent Exit Number of Tr1Ck1
1---i of Record Address Field i! for DAM for Cylinder Owlrflow End of File

~ Record Address Type ... Symbolic
Name of Number of Exttnu

Filename Sequence jjJ Label Exit Type of Fiie

~
Device Device ~ TIPO

File Format N Orpnlutlon or
Storage Index Rewind w 2s: Additional Area ~ LIM ...

I ~ ~ Omllow lnd;c11°' ·1 a Block Reoonl Condition

! 8 ~ U1-U8, Llnath Length
IC ~e _i:=r Continuation Lines UC.-'--

~
:; i3 ~ ::i ~ =- w

z
g~

0 ...

~ ~ w"<l Extern1I Record Name K Option Entry

LL• •• 1 I I· 10 11 12 13 14 .. ' 17 18 d~vnnNnavaaa~u~~••v• Lal 40 41 42 43 44 46 46 o~~H~HUMH•~••H~UUM••~••M~n 73 1

0 2 FPI ~ 1II MI r-R F 1-1 1~a li~rl HA PglUIIl~R ff PRINTER File Description t-
0 3 F

0 4 F llll lllll l

I f
External Field Name Field

Field Location
Indicators t-- Filenmne

l
Record Identification Codes o; ·I or io~

-!
~

Record Name w .. 1 2 3 From To
!

RPG ~ :!!i! ..
~~ j IC & ~~ ~ !! ~ i:· Field Name it~ '!!

Zero
t ;lj IC !I ~ Lint

~
:. 5

z 0 ~ ~e~
Data Structure

" -~ ~ Plus Minus or

fii io lj .ii ::i] IC
Position Position Position .§ ·p

~
Blank O.ta

~:to' i N ti ~ N • ~ .. ~ !~ Occurs ~ .§ :;B Structure :i 8 ~ z i3 ti ~ u G ~ i3 n Times Length
Name ' .. • , • 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 26 28 21E_29 3o 31 32 33 34 35 36 37 38 39 40 .. , .. 2 43 44464ti47 48 49 60 51 62 53 54 65 68 57 58 59 80 .,~ 13 ..

··~
. ... 119 70 71 72 73 , ..

0 1. IIL .,..z rFiJ ~ IA E] R II Copy Function and 11 0 2 I
0 3 I 71 Modifier Statements

In. I~N 12
0 4 I ~ 11 III l

,

File description and input specifications for the SALES file
are contained in the source member named SALETR in the
system library (F 1 is specified as the library).

Modifier statements follow the /COPY statement to adc
control-level indicators.

0
1----i

!
Lln1 !

•• •• 7

0 , IU'
0 2 iq
0 3 0
0 4 lq
0 6 lq
0 6 l<>I

Fiiename
or

Record Nome

~ ! 8PICI Skip Output Indicators FleldName ~ Ccmm11 Ztr~~~:~~11 NoSlgn CR _ X·~~~~~
~~ J J or Yn Y11 1 A J Y·:~Edlt
i~ 5 J And And EXCPT Nome Y11 No 2 B K z •Zorc
., ~ ~ Po11tlon No Y11 3 C ~ Supprou

'A'O'D1 i 8 ll Output

U1or
Doflntd

.B..L..!:.J5J< .l:!!ln i No No 4 D

o R g g g 'AUTO .~ ~ Roe~ Constant or Edit Word
~ :II! :II! 2 ill ii .. • 1 2 • • 1 e 1 a 1 10 11 12,. ,. 11 11" 11 11 20.21 22 a M

8 I 10 11 12 13 ,. 11 '8 17 18 19 20 21 22 23 24 2! 28 27 28 21 30 31 32 33 3" 31 31 :17 38 31 i40 •1 •2 43 44 ... 41"7"8•t10 11 12 13 14 111H17 18 1110. 6114 ti II 17 R 11 70 7' 72 73 7ot

~II~~ ~ ~ l~JILm~ IIII II II

..2
11

']!~ If lfli: l"'1 ICLl ' *AUTO Page· i-1
H ' IFI R I~ ril" ' Headings Function
1-1

'
0 1 ~
0 B l<>I
H-+-++-+++-++-++-t-+++-+-t-+++-+-1-++-+-+-1H-f"~~rr~~M~~~+-H-+++-+-1'~~1~r~~~'1=1--:+-++-1-+++++ll-· ::z:.t::!::!::!::!::!:::!::!::!:;t"1

Ir 't., fl'R II\!' r-
fnf.tt~---Hf-ttt+t--tlrttttt--tlrttttt-H~i;[~IJC;trtt--tlH-tttt-t,~~r~ic;~r~ 1 1I~l"'~llf;bl~Nt,;J-t-HH *AUTO Output : ~ 0 9 0

, 0 0
1 1 lo
1 2 Jo

c;J ~ ' c;JJI E.I ' Function
r,t,1--fottttt-tt!±t±±±±t±j±±ttthH~11~~~:tfr:~~ttl~iitt~,fnJ1~M~~~~~·oH-t-Hr-Hit-~~~ --...l•-BJ Accumulated Fields }i::i In • l"IN • ~ N '

1 3 0
1 4 0 f§ ' INA I lU~ILI~'
1 6 0

Figure lli-19. Auto Report Specifications for a Sales Transaction Report

Chapter 15. Using Auto Report 15-55

If you do not specify a control specification,
0010 H ---i auto report creates an all-blank control

RG 004 specification for you .

• 0001 0020 FPRINTER 0 F 120 120 DA PRINTER
0002 0030CFSALES IP F 473 43 DISK

0040 l*/COPY Fl,SALETR
0003 0050CISALES AA 01
0004 0060CI 1 7 ITEMNO

II
0005 0070MI 8 9 BRANCHLl
0006 0080MI 10 10 REGIONL2
0007 0090CI 11 25 DESC
0008 OlOOCI 26 270SOLDQY
0009 OllOCI 28 342SOLDVA
0010 0120CI 35 3600NHAND
0011 0130CI 37 432VALUE
0012 0140EC 01 EXSR A$$SUM
0013 0150ECL1 SDLDV2 ADD SOLDVl SOLDV2 92
0014 0160ECL1 VALUE2 ADD VALUEl VALUE2 92

II
0015 0170ECL2 SOLDVR ADD SOLDV2 SOLDVR 92
0016 0180ECL2 VALUER ADD VALUE2 VALUER 92
0017 0190ECSR A$$SUM BEGSR
0018 0200ECSR SDLDVl ADD SOLD VA SOLDVl 92
0019 0210ECSR VALUEl ADD VALUE VALUEl 92
0020 0220ECSR END SR
0021 0230EOPRINTER H 206 lP
0022 0240EO OR DA

• 0023 0250EO 45 'SALES REPORT '
0024 0260EO 56 'FOR ANY co. 1

0025 0270EO UDATE y 8
0026 0280f O PAGE z 89
0027 0290EO 85 'PAGE I
0028 0300EOPRINTER H 1 lP
0029 0310EO DR OA
0030 0320EO 6 'REGION'
0031 0330EO 14 'BRANCH'
0032 0340EO 21 I ITEM'
0033 0350EO 36 'DESCRIPTION'
0034 0360EO 47 'SALES'
0035 0370EO 62 'AMOUNT'
0036 0380EO 71 'ON-HAND'
0037 0390EO 86 'VALUE'
0038 0400EOPRINTER H 2 lP
0039 0410EO OR OA
0040 0420EO 22 'NUMBER'
0041 0430EOPRINTER D 1 01
0042 0440ED L2 REGION 3
0043 0450ED Ll BRANCH 12
0044 0460EO ITEMNO 23 • 0045 0470EO DESC 40
0046 0480ED SOLDQYK 46
0047 0490EO SOLDVAKB 62
0048 0500EO ONHANDK 69
0049 0510EO VALUE KB 86
0050 0520EOPRINTER T 12 L1
0051 0530EO SDLDVlKB 62
0052 0540ED VALUElKB 86
0053 0550ED 87 I*'
0054 0560EDPRINTER T 2 L2
0055 0570EO SDLDV2KB 62
0056 0580EO VALUE2KB 86
0057 0590EO 88 '**'
0058 0600EOPRINTER T 12 LR
0059 0610EO SDLDVRKB 62
0060 0620EO VALUERKB 86
0061 0630EO 47 'FINAL TOTALS'
0062 0640EO 89 '***'

Figure 15-20. RPG Source Program Created from Auto R'eport Specifications

15-56

Created Calculation Specifications

0
t--

Filename

°' Record Name

~

Calculation specifications are created to accumulate totals for fields named
on* AUTO field description specifications that have an A in column 39 (see
Figure 15-21).

~ ~ Space Skip Output Indicators [ETI C Zero Balances X ~ Remove
~ ~ F ield

0
Nr ame ommas to Print No Sign CA ~ Plus Sign 5 _ 9 "

_ Y =Date

~ -B Q> :r , ~ _ EXCPT Name Yes Yes 1 A J Field Edit User
8,. ~ ,E !!:! And And End Yes No 2 B K z =Zero Defined

~ ~ a: Position No Yes 3 C l Suppress

~ 0g ~ in a: No No_·-~-·-~D~M~-·---'----1
ADD co:;;: 8u Output

~1-i o 0 O •AUTO :.g ~ Record in Constant or Edit Word
r;rN1o z z z wiii Ci:: 1234557a910111213141s1s111a192021222324

J 4 5 6 7 o 9 10 11 12 13 14 15 16 n 10 19 20 21 22 n 24 2s :ts n 2e 29 Jo 31 32 33 34 JS 36 37 JS 39 40 41 42 43 44 45 46 47 48 49 so s1 s2 sJ 54 ss ss 57 se 59 so st 62 63 541 es 66 67 68 69 10 11 12 13 14

0 1 0 ll!;IIINTIEIR IH l~IAILilI
0 ' 0
0 3 0
0 4 lo ;;; rem

' IFi ~INY ,.ir '

0 5 0 IL12 'l°'i J1I II\ I

0 6 0 rt '
0 7 0 [IT IMN£:
0 B 0
0 9 0 r-19 rl
1 0 0 lc;il"i T'\
1 1 0 sr- n
1 2 0 11lr.1 I\

1 3 0 YJA
1 4 0
1 6 0

Total calculations roll higher level totals.

lrl

' !cir• Plll
YI
IA ~ Ji'A~ IN I

~
E

, ~-1-1 N •
llL \VI~ EI

' Ii fl\ I IAJ IC;'

f
Calculations are created for fields with an A in column 39.

0140EC 01 EXSR A$$SUM
0150ECL1 SOLDV2 ADD SOLDVl
0160ECL1 VALUE2 ADD VALUEl
0170ECL2 SOLDVR ADD SOLDV2
0180ECL2 VALUER ADD VALUE2
0190ECSR A$$SUM BEGSR

SOLDV2
VALUE2
SOLDVR
VALUER

92
92
92
92

~{
~{

0012
0013
0014
0015
0016
0017
0018
0019
0020

0200ECSR SOLDVl ADD SOLDVA SOLDVl 92

Subroutine accumulates the lowest-level totals
(L 1, in this example).

0210ECSR VALUEl ADD VALUE VALUEl 92
0220ECSR END SR _J

Length and decimal position of created total fields.

Note: Placement of the created calculation specifications in the RPG source program is shown in
Figure 15·20.

Figure 15-21. Calculation Specifications Created from Auto Report Coding for Sales Transaction
Report

Chapter 15. Using Auto Report 15-57

15-58

An RPG subroutine is created to accumulate the values from these fields
into the lowest-level created total fields. The name of the subroutine is
always A$$SUM. The subroutine specifications are conditioned differently,
depending on whether detail or group printing is specified:

• If detail printing is specified, as in Figure 15-21, the EXSR statement is
conditioned by the same indicato:r(s) that conditions the D-* AUTO
specification (01 in this example). Each ADD statement in the
subroutine is conditioned by the field indicator(s) specified with the
field in its field-description specification (none in this example).

• If group printing is specified, the EXSR statement and all ADD
statements in the subroutine are unconditioned.

Total-calculation specifications are created to roll the total from the
lowest-level defined total field through the higher level defined total fields
and the final total. The total calculation to add the total from one level to
that of the next higher level is conditioned by the control-level indicator
corresponding to the field name of the lower level. As shown in Figure
15-21, total-calculation specifications to accumulate L2 and LR totals are
followed by the subroutine to accumulate the lowest-level total, Ll.

Created total fields are defined (given length and number of decimal
positions) when the total field is the result field in a created calculation
specification. In the input specifications, SOLDV A and VALUE are
numeric 'fields defined with a length of seven positions with two decimal
positions. Figure 15-21 shows that the total fields created from SOLDV A
and VALUE are defined as two positions longer than the original fields,
with the same number of decimal positions.

When group printing is specified (T-* AUTO specification), auto report
creates total-calculation specifications to reset each of th~ accumulated
fields (A in column 39) on the lowest-level total line to zero on each cycle.
A Z-ADD calculation, conditioned by LO, is created for each accumulated
field. These calculations are the first total-calculation specifications in the
created RPG source program.

Created Output Specifications

Figure 15-22 shows the output specifications created by auto report. To
identify specifications supplied by auto report (column-heading
specifications, total specifications, conditioning indicators, spacing and
skipping values, end-position values, blank after) compare the listing with
the auto report specifications.

Auto report creates specifications to reset accumulated fields to zero after
they are printed. See Field Description (A in Column 39) for a discussion of
resetting fields to zero. In this example, blank-after is created for
accumulated fields.

Chapter 15. Using Auto Report 15-59

0
I---

Line

Filename
or

Record Name

l Space Skip Output Indicators Field Name ~ Commas Zert:~~:~~ces NoSign CR - X=:1::;~;n
~ or Y:Oate 5 · 9 =

I I Yes Yes 1 A J User
~ ~ ,! And A~d EXCPT Name End Yes No 2 B K z = ;!;~d Edit Defined

~ 41 =: ~ ~nosition ~~ ~~s ! g ~ Suppress

~ ~ ~ 85 Output ;00~ •
o A o ... - •AUTO ... < Record ... Constant or Edit Word
~ Z ~ ~ ~ !D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 HI 19 20 21 22 23 24

345678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2:.i 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 so 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 12 73 74

0 ' 0 l!Sll !N1 JI<! IH
0 2 0
0 3 0
0 4 lq lri
0 5 I~ IL~ JC IIi N 'I'\ IN'
0 6 0 11 ~I ' IA U-1 I

0 7 0 'II 1111•
0 8 0 ~I

0 9 0 'ID ic;ri ~II IN '
' 0 lo
' ' 0

' 2 I<>
' 3 0

' 4 0 • 1r11NIA 1 r~· 1c; •
' 5 0

0021 0230EOPRINTER H 206 lP
0022 0240EO OR DA
0023 0250EO 45 'SALES REPORT I
0024 0260EO 56 I FOR ANY co. I
0025 0270EO UDATE y 8
0026 0280EO PAGE z 89
0027 0290EO 85 'PAGE I

0028 0300EOPRINTER H 1 lP
0029 0310EO OR DA
0030 0320EO 6 'REGION' Two heading specifi-
0031 0330EO 14 'BRANCH' cations are created 0032 0340EO 21 I ITEM'
0033 0350EO 36 'DESCRIPTION' for column headings
0034 0360EO 47 'SALES' because ITEM 0035 0370EO 62 I AMOUNT'
0036 0380EO 71 'ON-HAND' NUMBER is a two-
0037 0390EO 86 I VALUE I line heading. 0038 0400EOPR INTER H 2 lP
0039 0410EO OR DA
0040 0420EO 22 'NUMBER'
0041 0430EOPRINTER D 1 01
0042 0440EO L2 REGION 3
0043 0450EO L1 BRANCH 12
0044 0460EO I TEMNO 23
0045 0470EO DESC 40
0046 0480EO SOLDQYK 46
0047 0490EO SOLDVAKB 62
0048 0500EO ONHANDK 69
0049 0510EO VALUE KB 86
0050 0520EOPRI NTER T 12 L1
0051 0530EO SOLDVlKH 62
0052 0540EO VALUElKB 86

A uto report creates 0053 0550EO 87 I*'
otal specifications

0054 0560EOPR INTER T 2 L2
t 0055 0570EO SOLDV2KB 62
t o print accumulated 0056 0580EO VALUE2KB 86

otals for SO LDVA
0057 0590EO 88 I**'

t 0058 0600EOPRI NTER T 12 LR
a nd VALUE fields. 0059 0610EO SOLDVRKB 62

0060 0620EO VALUERKB 86
0061 0630EO 47 'FINAL TOTALS'
0062 0640EO 89 '***'

Figure 15-22. Output Specifications Created from Auto Report Coding for Sales Transaction Report

15-60

Programming Aids

" ~ ti" E
M N IA~

~~)(I)

~~)()(

39 7-22

Blank Blank

Blank

B Blank

A Blank

c Blank

1-9, R Blank

Blank

The chart shown in Figure 15-23 should be helpful in determining valid
*AUTO output entries depending on the contents of column 39.

The following programming suggestions may be helpful in specific
programming situations.

One column heading can be printed over two or more fields if automatic
column spacing is taken into consideration. For example, suppose the
heading DATE is to print over a month field and a day field as follows:

22-31 32-37 88 40-43 44 45-70

Blank or Field name Blank or Blank or Blank Blank or
indicators edit code end column

position heading

Blank or Blank Blank Blank or Blank Literal
indicators end

position

Blank or Field Blank Blank Blank Blank
indicators name or edit or end or

code position column
heading

Blank or Field Blank Blank Blank Blank
indicators name or edit or end or

code position column
heading

Blank Blank Blank Blank Blank Column
heading

Blank Field name Blank or Blank Blank Blank or
edit code edit

word

Blank Blank Blank Blank Blank Literal

Figure 15-23. Valid *AUTO Entries on the Output Specifications, Depending on the Contents of
Column 39

Chapter 15. Using Auto Report 15-61

Code the output specifications as follows:

0 !:
@~ Soace Skip Output I ndlcators

ro5f Commas
Zero Balances

No Sign CR - X •Remove

t- t:: u. Field Name to Print Plus Sign 5.9 ...
~~ or V =Date

User :i: •

~Id ~Td
y., Yes 1 A J

i!l Filename -~ ~~ EXCPT Name y., No 2 K
Fietd Edit

Defined
~ or ~~ 8 Z =Zero

Record Name I-~ ~ a: Position No Yes 3 c L Suppress Line

~ ~ * j ~
g O; In No No 4 D M

85 Output
a:

A :::;

~ ~ 0 0 •AUTO ~~ Record iil Constant or Edit Word
z z 0:: 1 2 3 4 5 • 7 • 9 10 ,, 12 13 14 15 16 17 18 19 20 21 22 23 24

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ,. 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 M~~a~~~~~~M$~~~~~~~~M~M~M~ro 71 72 73 74

0 , 0
0 2 10 11".l ll'UH \ I"! 'A,
0 3 0 Ir •M ~~,
0 4 0 ~~ 'I E'
0 5 0 ~ 'ID IAY'
0 6 0

-·

To print a constant on only the first detail line under a column heading, move the constant to a field
in calculation specifications and print that field as shown in Figure 15-24.

If group printing is being done and more than one record type is present in the input file, certain
precautions must be taken. If a field to be accumulated is not present in all record types, the correct
total is not created unless additional coding is used. The specifications shown in Figure 15-25 give
incorrect results because the T-* AUTO specification causes an unconditioned ADD subroutine to be
created if a field is to be added. Therefore, QTY is added when indicator 10 is on and when indicator
11 is on. Figure 15-26 shows a method of obtaining the correct results.

C lndicutors Result Field Rnultlng
0>" I ndlcaton

t- ~ _ I J 111 Arithmetic

l ~ A~d A~d .g ;: PluolMlnu.![_Zoro
~ .!i ~ Factor 1 Operation Factor 2 'ii j Compare Comments

Lin• ,_ 0 a:" Name Length ~ ~ 1 >~1 <2 1 •2

~ i "'. ~ 3 a ~ ii Lookup(FICtor 2111
ifc::s5~ z z c5:z:HlghlowF.qual

3 4 5 8 7 s 9 10 t1 12 13 14 16 18 17 18 19 20 21 22 23 24 25 26 27 ~-29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 46 47 48 49 60 51 62 63 54 515 68 157 68 89 80 81 82 83 84 85 88. 67 18 18 70 71 72 73 74

!
Line ~

3 4 s e 1

0 , 0

0 2 0

0 3 0

1 I I I If If ff ~vl~ 'ffflfr1ft'~~~f II~ f f I ff 1 f If± ff I II I I

Filename
or

Record Name

~ ·fi Space Skip Output Indicators ~ Z B I X •Remove_ iI Field Name Commas er:P~l~~c" No Sign CR - ptu1Slgn
Q ' 6·9•
i ~ T T or Yes Yes 1 A J Y• DFet1-''d Edit User
i~ j ! A~d A~d EXCPT Name Ye• No 2 B I< z • Ze;o Defined

~ ~ " ~ Position ~~ ~:s ! ~ ~ Suppreu
iE.....L.l, :... ~ .I q> In a:
1A 1 D 1D - ~ lj l) Output :::;

o R zo ~ zO *AUTO ... < Record D5' Constant or Edit Word
~ ~ ~ CD it' 1 2 a 4 s e 1 s e 10 11 12 13 14 1s ts 11 1s 1e 20 21 22 2a 24

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 66 67 58 59 60 81 82 83 84 85 66 87 88 89 70 71 72 73 74

1L..1E'.1:-1n.~,lTN~ I

f·

Figure 15-24. Printing a Constant on Only the First Line

15-62

~
~ 'g

I
f.--

External Field Name

Record Identification Codes
Field Location

Field
Indicators

~ wen .~~ 1 2 3 ~
!I. us z' :i f ~1---....... -.--.-+----r-r-r+----.-.-.-1~ From To .g
~ c: • 1---~----t~

Filename
or

Record Name RPG
Field Name Zero ~ ::. 5 .g • 1i> 1i> ;% a: DataStructur:i

~ 1--~0,-.,--.-.-0.+-R.-I! ~ i Position ~ ~ ~ Position ~ ~ E Position ~ C ~ g1---....,..----t 0-~
Line

Plus Minus or
Blank

S~~c;~re ~ ;f_ g ~ ~ U 6 ~ (} 6 ~ § ~ ~ ~T~~:s Length 41

3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 49 50 51 52 53 54 55 56 57 58 59 60 81 62 63 64 65 66 67 68 69 70 71 72 73 74

o 2 I

o J I

o • I

o s I

o s I

o 1 I

o s I

o 9 I

0
1---

!
Line ~

Filename
or

Record Name

11rl ll
It

@ ~ Space Skip Output Indicators ~ Commas Zero Balances No Sign CR - X"' Remove
~ ~ Field0~ame toPrint A Y=~:1s8Sign
:I: ~ "' T I Yes Yes 1 J Field Edit User
i~ ,S ~ A~d A~d EXCPT Name Yes No 2 B K Z .. Zero Defined

~ ~ :C ~ Position No Yes 3 C L Suppress

Woj! 85~utput~ No No 4 OM

5-9"'

o R zb ... 0 *AUTO .'!::: <" Record_m Constant or Edit Word
~ ~ Z ~ ~ 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

3466789 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 58 57 58 59 60 61 62 83 64 65 86 87 68 89 70 71 72 73 74

0 1 OIJ: IIM
0 2 0 lrj('lc:lr ' ll k IPIJ!IV':~ '
0 3 0

0 4 0

0 6 0

Figure 15-25. Incorrect *AUTO Specifications for More than One Record Type

Chapter 15. Using Auto Report 15-63

c Indicators Result Field Resulting

~ Indicators

1--- ~ iE I I . Arithmetic

'ii~ :¥ e Plusj_Min~ Zero

:!. t z Factor 1 Operation Factor 2 ~; Compare Comments
> Name Length

~i 1>~<~1-2 Line I-Orr."

! !;· ~ ~ ~ H
Lookup{Factor 21ls
High Low F.qual

3 4 • 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)2s 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 80 81 62 63 64 85 66 67 68 811 70 71 72 73 74

0 1 c 1111 ll- !Ill'! ~ ~ l3Q
0 2 c 1111 IZ- ~ r-ic= l~L4 It IE !Ci.ll 1-=1a
0 3 c

0
I---

Filename

@t: " ... ~Space Skip Output Indicators Field Name ~ Commas Zer:~~:~~es NoSign CR - X=Remove
l===l======~==l===l'=I y =~~:Sign 6. 9 =

~ ~] :T or Yes Yes 1 A J User
- ~ ~ ... EXCPT Name y N Field Edit Defined
~~ .2 !: And And es 0 2 8 K Z=Zero

1-~ 4> ~ Posttton ~~ ~: ! g ~ Suppress

Wo j ! ~5 ~utput ~
&...fu__ zo zo zO •AUTO ·w~ ~.. Record iii Constant or Edit Word
7N'O'" ~ 1 2 a 4 s e 1 a 9 to 11 12 13 1• 15 1& 11 ta 19 20 21 22 23 24

or
Line Record Name

3 4 • 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 83 84 65 86 87 68 89 70 71 72 73 74

0 1 011" 11\ill n IL .IJ
0 2 lq
0 3 In

ID lc:t. ' I~'"' lt"UII~ I

' lrjt l\l ... l]IT1ll-. 'llTll.llV1 I

0 4 lo
0 6 lo

Figure 15-26. Correct *AUTO Specifications for More than One Record Type

15-64

c ~·
9-iQ

Indicators

And And

Figure 15-27 shows the specifications for counting records. This method is
especially useful when you want to print a detail list, to take totals by
control level, or to prevent l's from being listed down the page.

Result Field

Fa::tor 1 Operation Factor 2

!

Resulting
Indicators
Arithmetic

:~ ~ Plu1 Minus Zero
Comments

H.a:~ Line ~ .ts en i-.--...... -+-..-.-1
.f c9 ~· ~ j i

Name
8 li Comporo

Length ~f1>21<21•2
-~ Lookup(Factor 2)11

£5 ~ Hi~ Low F.qu1I
~~~n"~~•VBB~~~~~~•~•~~~~~M~•~•H~~~mM••~••ronn~u 3 4 5 8 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 

0 
1--

! 
Filename 

or 

i ~ ] ar or Yes Yes 1 A J 
- Iii,:; ~ EXCPT Name Yes No 2 B K 

X .. Remove 
PlusSilJ' 

Y •Date 
Uur 
Defined 

Line j Record Name 

~ i Space Skip Output Indicators Field Name ~ Comm• Zer:~:~i;:es NoSlgn CR _ 

i!.F.;- Ji .I! And And End 

~~c • ~ Position ~= ~= ! g ~ 
&...£. L m~.o ~ -5 cp In ir 

Field Edit 
z •Zero 

SupjlrotS 

7'0o ' 85 Output ::i 

~ ~ ~ j •AUTO ~ ~ Record ~ • 1 2 3 4 s s 1 a C~n~o8~~ ~~ ~=i~;v,~r~I n tB 19 20 21 22 23 24 

3 • •• 1 e 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 48 47 48 49 50 51 52 53 54 55 58 57 58 D9 80 81 82 83 14 86 81 87 88 18 70 71 72 73 74 

0 1 0 bfl.c1 IT 
0 2 lo 
0 3 lo ' , 
0 4 fc:i , t"' !MI' 
0 6 0 

Calculation Specifications 

Line 01 

Line 02 

This instruction is needed only to define the field COUNT for accumulation. 

This instruction accumulates the total for the first control level. 

Output Specifications 

Line 03 This instruction causes the creation of calculation and output specifications for the 
detail and total lines. The LR conditioning indicator prevents the created detail 
calculation from occurring. It also prevents printing at detail time. 

Note: If no control levels are specified in the program, a 1 is added to COUNTR rather than to 
COUNTl on the calculation specifications. 

Figure 15-27. Method of Using *AUTO for Counting Records 

Chapter 15. Using Auto Report 15-65 



Examples of Using Auto Report 

15-66 

Examples 1 through 4 explain how auto report is used to create page 
headings and such output specifications as column headings, detail lines, 
and total lines. 

Examples 5 and 6 illustrate the use of the auto report copy function to copy 
specifications from a library member and to change copied specifications for 
a particular job. 

Example 7 prepares a cash receipts register. 



Example 1 

Problem 

Produce the sales report shown below using the 
*AUTO page headings and *AUTO output 
functions of auto report. 

Letters refer to fields 
on the following page. 

10/26/78 \ 
• 0 0 

REGION BRANCH ITEM 

1 17 AG7701T 
1 17 AG7705S 
1 17 AP6545B 
1 22 AG7701T 
1 22 AG7705S 
3 25 AG6545B 

SALES 

e 
DESCRIPTION 

2-TDN TRUCK 
PICK-UP 
CAMPER 
2-TDN TRUCK 
PICK-UP 
CAMPER 

REPORT FDR 

G 
SALES 

5 
10 

2 
2 
4 

10 
3 25 AP6549P 1/4-TDN TRUCK 20 

Procedure 

II Code normal RPG file description and 
input specifications for the job. 

El Code *AUTO page headings to produce a 
one-line page heading that includes date 
and page number. 

II Code *AUTO output to produce one
line column headings, detail report lines, 
and final totals. 

ANY CO. PAGE 

0 e CD 
AMOUNT ON-HAND VALUE 

25,000.00 2 10,000.00 
20,000.00 1 2,000.00 
s,000.00 

10,000.00 1 5,000.00 
s,000.00 1 2,000.00 

40,000.00 5 20,000.00 
30,000.00 6 9,000.00 

1 

141,000.00 43,000.00 * 

Chapter 15. Using Auto Report 15-67 



8 Code RPG file description and input specifications. 

F 
I-

Filename 

File Type 

File Delignltlon 

Mode of Proc:ening 

Length of Key Fteld or 
of Record Addms Field 

Fi .. Addition/Unordlrtd 

for Cylinder Overflow 
Number of Track1 Extent Exit 

~ for DAM 
End of File ~ Reco•~.:~"';11:•oe :iJ Device ~::lie j ~=~~it Numbo~;. E•llfth 

File Formlt ~ Orpnlation or f _. ~ 
... ~.---..----! ~ Additlonll Ar., i Storage Index ~ 
Ci i &Ioele n--~ ., t::!E Overflow lndie1tor i·.,. Condidon 

Q 't:: ~- ~ tl 1..qth Longth ~ p ~ U1-U8, 
:S ~ ~ ~ < ~ ~ Continu.tion Lines ~ UC r--
~ o.: r.u ~ u.; External ReQ)rd N1me K Option Entry ~ ~ 

4 5 8 7 8 9· 10 1t 12 13 14 Hi 18 17 18 19 20 21 Z2 23 24 21 21 Z1 2' 21 30 31 32 33 34 :m_I37 ~38 40 41 42 43 44 45 46 47 48 49 50 51152l_g54 56_H_57 68 59 60 81....§? 13 64 65 • 87 88 89 70 71 72 73 74 

0 2 Fie; A ,._ic; II IP Fi Ill 11-:i i&J~ t[lc; ~ 

o 4 F 

I f 
External Field Name Field 

Field Location 
Indicators 

i--- Filename 

J 
Record Identification Codes 

~ ·i or '!-!!! ! ~ 
Record Name w"' 

i=~-
1 2 3 From To 0 RPG -11-11 

1i 
! ~~ ¥ :e a: 
{!: l Field Name ~ £~ 1! Zero 

Line 

~ 
-c ~QI e • ;Ji a: Data Structure 

.I Ir!' ! Plu1 Mlnu1 or 

D11t1 ii j Position Position ~ e = Position ~Q li! ::i J ii ;; .. Blmk 0 R is i § il i§ u~ Occurs ~ :I~ ~ Structure A~ i~o nTimn Length 
N1me ••• I 7 a 9 10 11 12 13 14 II 11 17 18 19 20 21 22 23 24 26 21 21la 2SI 30 31 32 33 34 36 38 37 38 311 40 41 42 43 44 '46 4ti '47 "8 49 50 & , 02 63MISl!il817&8 19 10 11 12 .... .... 17 .. .. 70 71 72 73 7'4 

D 1 I~ Hi lt!IA ru 
D 2 I ~ lll lnl 
D 3 I I~ 
D 4 I [i~ ff R~ ~ N 
D 5 I l1~ 2 nr-i ~~! 
0 8 I 121, ~ Ill " "i 
D 7 I 2~ ,.., "'~~ 
D B I 1~-= l'.:llL .... IA IN 

D 8 I ~~ 1 .. A.I I~ 

1 D I 

Field Name Contents 

• ITEMNO Item number 

0 BRANCH Number of the branch office where the item was sold 

• REGION Sales region in which the branch office is located 

• DESC Description of the sales item 

• SOLDQY Quantity of the item sold 

• SOLDVA Total value of the items sold 

• ON HAND Quantity of the item remaining on hand 

• VALUE Total value of the items remaining on hand. 

15-68 



11 Code *AUTO page-heading specifications. 

0 Enter an H in column 15 and *AUTO in columns 
32 through 36 to request an auto report page head
ing. Up to five page-heading lines can be described. 
The system date is printed on the left and the page 
number on the right of the first heading line on each 
page. To suppress the date and page, enter an N in 
column 27 of the. auto report option specifications. 

~ 
0 

... 

1---; 

,,_ \ ~i e~ 

~ 
~ 

Output Indicators 
Field Name 

or 
l: -

a! ~r ~L ! i~ EXCPT Name 
or 

Record Name ... ~ ~ Line i t.!i!i * 
! ti ~ 
~ ~ !"'I A 

~ ~ ~ ~ ~tj)1 
*AUTO 

A ~·1 34 36 36 37 3 4 5 8 7 8 9 10 1t 12 13 14 5 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

0 1 01" INil INIIIE H lI~ll 
0 2 lo .L l'N-.. 
0 3 0 i'N 
0 • lo -~ 

I 

8 When space and skip entries (columns 17 through 
22) are left blank, skip to line 06 is assumed for the 
first heading line; single spacing is done between 
heading lines, double spacing after the last heading 
line. (See Example 4 for an example of multiple 
page-heading lines.) 

G The title information is centered by auto report; de 
not enter end positions in columns 40 through 43. 
Fields and table/array elements can also be used. 

fl5l 
Commas 

Zero Balances 
No Sign CR - X .. Remove 

toPrint _J PlusSiSJI 
5 ·9• 

Y==Date 
User Vos Yn 1 A J Field Edit 

Yes Defined No 2 8 K Z•Zero 
~ Position No Yes 3 c L Suppre11 m q; In No No 4 D M 

85 Output 
0: 
::; 

ii~ Record e onstant or Edit Word 
wm ~ • 1 2 3 4 a e 1 a s to ,, 12 13 t4 ta 1a 11 ta 19 20 21 22 23 24 • 

38 39 40 41 42 43 ~~~~~~~~~~~~~~~~~~~MMHM~MRM 71 72 73 7 

If 
'l~JI r~ It" J 

, 
-, , F ~ ~~ 'r , 

ll . 
~ ..... 

Cl When output indicators (columns 23 through 31) 
are left blank, auto report page headings are printe 
on each page (conditioned by 1 P or overflow). If 
no overflow indicator is defined for the PRINTER 
file, auto report assigns an unused overflow indica1 
to the printer line. 

8 Line06 

Blank line 

• G • 10/26/83 SALES REPORT FDR ANY CO. PAGE 1 

REGION BRANCH ITEM DESCRIPTION SALES AMOUNT ON-HAND VALUE 

1 17 AG7701T 2-TDN TRUCK 5 25,000.00 2 10,000.00 
1 17 AG7705S PICK-UP 10 20,000.00 1 2,000.00 
1 17 AP6545B CAMPER 2 a,000.00 
1 22 AG7701 T 2-TDN TRUCK 2 10,000.00 1 5,000.00 
1 22 AG7705S PICK-UP 4 a,000.00 1 2,000.00 
3 25 AG6545B CAMPER 10 46,000.00 5 20,000.00 
3 25 AP6549P 1/4-TDN TRUCK 20 30,000.00 6 9,000.00 

141,000.00 4a,ooo.oo * 

Chapter 15. Using Auto Report 15-69 



B Code *AUTO output specifications to produce: 

8 Detail. report line 

0 Column headings 

G Final totals. 

0 
1---

!!. 
~ 

Filename 

sile-.... Skip Outputlndicators ~ Commas ZeroB1l1nces NoSlgn CR - X•Remove 
..._ 1--" Field Name to Print Aus Sign 6 . 9 • 
.e_ or Yes Yes 1 A J V• Date U181' i' 5 l! A!d A!d EXCPT Name Yeo No 2 a K Z. ;!:~d Edit Defined 

Reco~r Name i;.. ~ a: Position No Yes 3 C L Supp1'811 
Line ~ .£.i!.L!:. I ! .fi ~ in a: No No 4 D M 

'A1"ii"D i < 8 <:i Output ::i i lo: l5 •AUTO .~ c Record iii Constant or Edit Word 
If~ z z iB iii a. • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 • 

3 4 5 6 7 8 9 10 11 12 13 14 115 11 17 18 19 20 21 22 23 24 215 28 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 52 53 54 66 68 57 58 &9 60 81 82 83 84 85 88 87 88 89 70 71 72 73 74 

01 o~ ~a~~ UflA IT 
a 2 To 
a 3 lo 
a 4 fo ltl1 
a s lo Y! 
0 6 lo /I 
0 7 0 v 
0 8 0 

0 9 0 v 
, a lo y 

, , 1<> l.l 
1 2 0 

1 3 IQ 
IL IVIA 

1.l 
1 4 0 

• Enter D in column 15 and *AUTO in columns 32 
through 36 to describe an auto report with detail 
lines. The record-identifying indicator 01 condi· 
tions printing of the detail lines. 

10/26/8 3 SALES 

REGION BRANCH ITEM DESCRIPTION 

1 17 AG7701T 2-TON TRUCK 
1 17 AG7705S PICK-UP 
1 17 AP6545B CAMPER 
1 22 AG7701 T 2-TON TRUCK 
1 22 AG7705S PICK-UP 
3 25 AG6545B CAMPER 
3 25 AP6549P 1/4-TON TRUCK 

Auto report formats the report so that column head. 
lngs and data are neatly spaced and centered on each 
other. 

15-70 

\• 

IB!I I 

' R AIN~ r . • 

' !I ' 
\ Iii Ir., I 

'l FM' 
' rilt'III II ' 
\ iF'F I 

\Al" IL"' • 

Column headings are entered on ~he same lines as the 
fields over which they appear in the report. 

G Enter an A in column 39 to cause fields 11 
to be accumulated. Auto report creates 
(1) total fields and calculations to 
accumulate the totals and (2) total out· 
put specifications to print the totals. 

SALES 

5 
10 

2 
2 
4 

10 
20 

PAGE 1 

VALUE 

25,000.00 10,000.00 
20,000.00 2,000.00 
a,000.00 

10,000.00 5,000.00 
a,000.00 2,000.00 

40,000.00 20,000.00 
30,000.00 9,000.00 

141,000.00 4a,ooo.oo * 

All numeric fields for which a blank, B, or A is speci· 
fied in column 39 are edited by the K edit code 
unless a different edit code is specified. ·, 



Example 2 

Problem 

Expand sales report from Example 1 to 
include three levels of totals: 

1. Total for each branch 

2. Total for each region 

3. Final total. 

Procedure 

II Code file description and *AUTO speci· 
fications as in Example 1. 

II Add control-level indicators to the inpu 
fields BRANCH and REGION. 

Note: The* AUTO output function canals~ be used to produce a group-printed report. See Group Printing in this 
chapter for a discussion and examples of group printing. 

I J 
External Field Name Field 

Field Location 
Indicators i--- Filename 

J 
Record Identification Codes ii c 

or h 
From I -! 

~ i Aacord Name w Ill 1 2 3 ! 2 To . RPG :!! ~ a: 8. !~ F ~ :e 
Field Nama ~ ~~ 'j ~ 

ra: 
l Zero Line 

j -o 

i§J id 
01t1 Structure .. .~ ! Plu1 Minus or .1- i§ H ] DMtl 0 A ;J j Pollllon Position P01ltlon .~ u ! Blink 

Occurs ~ Structurt ~ nTlm11 Length 
N1m1 ••• I 7 I I 10 11 12 13 ,. ti ,, 17 ,. ,, 20 21 22 23 24 21 21 27~ 21 30 31 32 33 3' 311 31 37 38 31 40 .. , 42 43 44 a 4tt 47°'84llOI ' .. !314111111718 II 10 ., 12 13 •• .. .. ., .. II 70 71 72 73 

D 1 I~ n I~~ ~' IJl1 
D 2 I 11 1~ ~I IEll"l • D 3 I IA. Il 
D 4 I l 1 ~~ rd! N la 
D I I 1 ~&:; fie;~ 
D B I 2~ ii! lc;r ~~ 
0 7 I 21 IVA 
0 B I L~ rliri .,, I A 

0 9 I ~z ~~ ~1A r-1 
, 0 I 

Because two control-level indicators are defined, the SOLDVA and VALUE fields (see following page) are accumulated to 
two levels of totals (branch and region) and a final total (LR). 

Chapter 15. Ueing Auto Report 15· 71 



0 
1---

line 

Filename 
or 

Record Name 

~ 

As in Example 1, an A in column 39 of the output specifi
cation causes SOLDVA and VJ_AUE to be accumulated. 

I-
~ Space Skip Output Indicators ~>J Commas Zero Balances No Sign CR - X = Remove 
.... Field Name Ii toPnnt Plus Sign 5 _9 = 

"1-..-1-~-1--~-~--1 or '/ Y =Date I T Yes Yes 1 A J User 
~ j $ A~d And EXCPT Name Yes No 2 B K Z = ;~~~d Edit Defined 

~ ~ .... g(j) in No No 4 0 M 

~~ ~ 8fioutput ~ 
o A 0 .... 0 *AUTO ~ <c Record I~ Constant or Edit Word 
~ 2 ~ z ;B as ,,_ , 2 3 4 s e 1 a 9 10 11 12 13 14 1s 1s 11 1a 1s 20 21 22 23 24 • 

R ~ < a: Position ~ No Yes 3 C L Suppress 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4' 44iJ5"46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 OlrJRIIJNIIIEIR lid I~ l.11.m 
0 2 lol L 11 \ l~A IF'Jc; I'< YI II'<[ I 

0 3 lol 
ltn 0 4 10 rr rr 

' F~IR AIN ~ le.~ . ' 
0 5 0 If< ~I It\ IL _L ' ~I "' I 
0 6 0 rl 

[ ll"llN rr ll 
lr-~I JI rf 

0 7 0 7 
0 8 0 
0 9 0 lci~IL n YI IL 
1 0 0 IL 
1 1 0 
1 2 10 y_ I:.. ~ 
1 3 0 IL 

Auto report places a blank line after each total line and an 
additional blank line before the lowest-level total and before 
and final total. If you enter spacing and skipping values on 
the D-*AUTO specification, they apply to the detail print 
line only. \ 

IH I 

'I~~ l"ill~ll 
\ lIIIlf=lM I 

~I 

'\ lc;lA IF~ I 

Auto report prints asterisks (*) to the 
right of created total lines to aid in 
identifying them. If you want to suppress 
the asterisks, enter N in column 28 of the 
auto report option specifications. 

10/26/83 REPORT FOR ANY CO. 

REGION BRANCH ITEM 
NUMBER 

DESCRIPTION 

1 
1 
1 

1 
1 

3 
3 

17 
17 
17 

22 
22 

25 
25 

AG7701T 
AG7705S 
AP6545B 

AG7701T 
AG7705S 

2-TON TRUCK 
PICK-UP 
CAMPER 

2-TON TRUCK 
PICK-UP 

AG6545B CAMPER 
AP6549P 1/4-TON TRUCK 

Total fields are always two positions longer than the 
original fields and have the same number of decimal 
positions as the original fields. 

15-72 

SALES AMOUNT ON-HAND 

2s,ooo.oo 
20,000.00 
s,000.00 

53,000.00 

10,000.00 
s,000.00 

1s,ooo.oo 

40,000.00 
30,000.00 

10,000.00 

10,000.00 

2 
1 

1 
1 

5 
6 

10,000.00 
2,000.00 

12,000.00 

5,000.00 
2,000.00 

1,000.00 

19,000.00 

20,000.00 
9,000.00 

·1 
::--t--{LI) 
:rn I ~ 

29,000.00 .. 

29,000.00 



Example 3 

Problem Procedure 

Expand the sales report from Examples 1 and 
2 to contain: 

II Code file description and input specifica
tions as for Example 2. 

0 Group indication for REGION and 
BRANCH fields 

II Code *AUTO output with: 

0 Second column-heading line 
0 Output indicator on field description 

specifications 

8 Literal (constant) on the final total line. 0 C in column 39 and a literal in 
columns 45 through 70 

· 11 

F 
I--

Line 

Filename 

8 R in column 39 and a literal in 
columns 45 through 70. 

03 F ~11 i K ~ ~ 1112'a 11J2a PRIINt~R 
o 4 F 

I 
t--

Lint 
! 
J 

' . • • 7 I 

0 1 I~~ 
0 2 I 
0 3 I 
0 • I 
0 6 I 
0 B I 
0 7 I 
0 8 I 
0 g I 
1 0 I 

Filename 
or 

Record Name 

g· External Field Name 
a F leld Location 

J · Record Identification Codes - .i 
] 2 3 ~ 15 Ii 

Field 
Indicators 

"! "' f.r ~ 1 From To :i RPG ;;; 1-11 ;!! 

~ ~ _:' - J - J - J I a: Dato StruC!ura l Field Name ! r J! J Plu1 Mlnu1 :;·· 
:.!'!!' 0 A J .i 'g Po1l1lon ! § Po1l1lon ! § P01illon !: § I i Ocauri ] ] 1· : I llank 

81ruotur1 ~ cJ M I 8 j 8 j 8 o; nTlmn Langlh ~ "' 

,N•m•,, t2 t:I 14 ti ti n ti ti 20 21 22 23 :H 21 a 27 :HI 21 30 lit S2 33 34 3111 :17 31 31 40 4t 42 43 .. 414ti4748 .. ID11 12 13 14 11H17 111110 It~ U 14 11~17 11 11 70 7' '1 73 

l1 II IIEJ 

11 

Chapter 15. Using Auto Report 15-73 



II 
0 

1--i 

Lino 

Filename 
or 

Record Name 

@ j Space Skip Output Indicators ~ Commas Ze~: ~::~~es No Sign CR _ X = Remove 
~~ FieldName y .. :~Sign 5 . 9 .. 

z ~ " T } or Yes Yes 1 A J Field Edit User 
i~ 2 _! A~d And EXCPT Name Yes No 2 B K Z =Zero Defined 

~ ~ < a: Position No Yes 3 C L Suppress 

~~ j ! !~ ~tput ~ No No 4 0 M 

O R z'O 0 zC •AUTO w:S ~ Record ~.. • Constant or Edit Word t::tTo z .... 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22·23 24 • 

3 4 5 6 7 S 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 89 70 71 n 73 74 

0 1 0 l"'E.LIN Ll IC. lie IH 
\~ o 2 lo 

o .3 lo 
o • lo 
0 5 10 
0 6 I<> 
0 7 0 

0 6 0 

0 9 0 
IL 

~ 
11 

lI N 

ic;fri 
1 o IQ L Is lt.i>1 
1 1 lq 
1 2 lq I 
1 3 I~ IVA J 
1 4 lq I 
1 5 

1 6 

0 L 
0 I/ 

I 
Output indicators can be used on field description 
specifications. In this example, control-level indica
tors condition BRANCH and REGION so that they 
are printed only for the first record of the corres
ponding control group. This prmt-suppressmg of 
common fields (group indication) reduces repetitive 
information. 

_L 

m II" 1 I 

\IF' ~ ~N IY ~. I 
LL 

\ '"-bll ~' 
\ llrH I 

\ E_M I 

'IN 'J 
I' ID "'LU 
·~ 1£5' 

':~ -t-i~NDI' 

'FINA II 

..... 
One or two additional column-heading lines can be 
specified by a C entry in column 39 with the heading 
information in columns 45 through 70. 

8 The literal FINAL TOTALS makes that line e.asy to 
find. To specify information to appear on the final 
total line, enter R in column 39 with a literal in 

....---------•--------,.."'"--------1--- columns 45 through 70 or a field name/table name/ 

10/26/83 

REGION 

15-74 

2-TON TRUCK 
PICK-UP 
CAMPER 

AG7701T 2-TON TRUCK 
AG7705S PICK-UP 

AG6545B CAMPER 
AP6549P 1/4-TON 

REPORT FOR 

SALES 

5 
10 

2 

53,000.00 

10,000.00 
a,000.00 

1a,ooo.oo 

11,000.00 

40,000.00 
30,000.00 

10,000.00 

10,000.00 

141,000.00 

indexed array name in columns 32 through 37. 
The information is printed two spaces to the left 
of the leftmost total on the line. If more than one 
such specification is used, the literals and fields 
are printed from left to right in the order they 
are specified in the program. 

9,000.00 

29,000.00 .. 

29,000.00 :::: 

48,000.00 



Example 4 

Problem 

Expand the sales report from Examples 1, 2, 
and 3 to include a cross-totals column and: 

0 A new report page for each region 

0 Two heading lines on each page 

G A field in a page-heading line 

Q Identification of branch and region totals. 

Procedure 

II Code file description and input specifica
tions as in Example 3; add an overflow 
indicator to the PRINTER file. 

B Code RPG calculation specifications 
for cross-total. 

II Code *AUTO specifications: 

0 Output indicators on page-heading 
specifications 

0 Two heading lines per page 

G Use of a field in an *AUTO page
heading specification 

Q Fields and literals on L 1 through L9 
total lines (1 through 9 in column 39). 

11/18/83 SALES REPORT FOR ANY CO. PAGE 1 

o- REGION 1 -· D 
BRANCH ITEM DESCRIPTION SALES SALES VALUE ON ON-HAND VALUE \ TOTAL 

NUMBER QUANTITY HAND 

17 AG7701 T 2-TON TRUCK 5 25,000.00 2 10,000.00 35,000.00 
AG7705S PICK-UP 10 20,000.00 1 2,000.00 22,000.00 
AP6545B CAMPER 2 8,000.00 8,000.00 

E> ~ANCH 17 TOTALD 53,000.00 12.000.00 65,000.00 * 
22 AG7701T 2-TON TRUCK 2 10,000.00 1 5,000.00 15,000.00 

AG7705S PICK-UP 4 8,000.00 1 2,000.00 10,000.00 

BRANCH 22 TOTALS 18,000.00 7,000.00 25,000.00 * 
E> c§"§N 1 TOTA0 11,000.00 19,000.00 90,000.00 ** 

------ -------- ---- ---- -- ---- -- -- ----
ll/1817e SALES REPORT FOR ANY CO. • PAGE 2 

REGION 3 

BRANCH ITEM DESCRIPTION SALES SALES VALUE ON ON-HAND VALUE TOTAL 
NUMBER QUANTITY HAND 

25 AG6545B CAMPER 10 40,000.00 5 20,000.00 60,000.00 
AP6549P 1/4-TON TRUCK. 20 30,000.00 6 9,000.00 39,000.00 

BRANCH 25 TOTALS 70,000.00 29,000.00 99,000.00 * 
REGION 3 TOTALS 10,000.00 29,000.00 99,000.00 ** 

COMPANY TOTALS 141,000.00 49,000.00 109,000.00 *** 

Note: Compare matching letters ( 0 ) on this and the following pages to see the auto report coding to obtain this report 

Chapter 15. Using Auto Report 15-75 



c 
Line 

II 

0 

... lndicaton _, 
~ 

~~ 
And And 

I- .. 

n 
~ g g 

,f 8 z z 

II 
Result Field 

Factor 1 Operation Factor 2 
Name Length 

Resulting 
Indicators 
Arithmetic 

Plus Minus Zero 

Compare 
1>21<21•2 
Lookup(FICtor 2Hs 

Comments 

RPG calculations can be among the input statements for auto report. This specification calculates a cross-total of the 
sales and on-hand values. (The placement of the calculation in relation to calculations created by auto report is de
scribed under Created Specifications.) 

II 
!: 

Skip Output Indicators Zero Balances X •Remove -@I Space 

~ 
Commas No Sign CR r----. l:::u. Field Name to Print Plus Sign 

e iii 6 .g. 
Y,., Date 

::r • r r or Vos Yes 1 A J User 
Filename 

i~ A! EXCPT Name Field Edit 

! or 
Yes No 2 B K Z •Zero 

Defined 

Line ~ Record Name ,_~ #. a: Po11t1on No Yes 3 c L Suppress 

i.£. ¥o j ! rl 'q> In No No 4 D M 
,f d 5 Output 

0: 
A .!I ~ 

~ lo ~ ~ ~ "AUTO ~ ~ Record ~ • 1 2 3 " s e 1 ac~n~:~~ ~~ ~~i~~:~e n 1a 1a 20 21 22 23 :M • 

9 10 ·,, 12 13 
A N 

··la bzj,. 3 4 ' e 1 e 14 15 18 17 18 19 20 2122 23 24 29 30 31 32 33 34 36 38 37 38 39 40 41 42 43 ~~~~~G~~nn~--~-~~~nmMUUPUH~ 71 72 73 74 

0 1 0 INIT ll'._[liii lloi ~ IM~ ,ILII 
0 2 0 (I~ J....i IFIN IJ 
0 3 0 • .pi ·~ 1~11 .-ic: ~ 1 I 

0 4 0 N ' If:" lliC ~N ~ I . 
0 5 1\ ~A lI 
0 6 0 !"\ 'IJC Er; irlN I 

0 7 0 0 ~Fjj 
lJ • The contents of the H 

l 
0 B l<>i ~ u~ lI 

REGION field are H ,....., 
0 9 0 ~N l4~ ~IH ' 1:1 il:llAI ILiir' I printed on the second H 

1 0 lq T ... II f~IV! N"' 'I IF'IM I page heading. H 

1 1 0 • The headings are printed on a rl 'N , 
1 2 new page when the region rl \ 

I~ " RTT N 
1 3 I~ number changes (L2) or when ic;i,., f\ YI 'ieJA ]~le; I 

1 4 0 overflow occurs (OF). (OF ti 'ci 1 ™' 1 6 0 must be defined for the !CJ~ [)vii 'CJi r-ic; VIA Fl ' 
1 6 ~I PRINTER file in the file I'll .Al "" \ fi , 
1 7 ~I description specifications.) 

r 'H~ N I 

1 8 0 l\i~ I l:J \ -1-1 IAN A j:J, 
1 9 0 I II~IA 'I ,., , 
2 0 0 1111 TT TTTTT 11 'IDI.:: IA ll.~ Ii.'"' G) Fields and literals can be I-

0 • A second auto report page printed on created total I-

[Qj heading is specified. Because ~ ·[~ ~' lines if you enter the t-

0 spacing is not specified, space· ~ ' Ii! ~t JriN I number of the control 
I-

I-
0 . one is done after the first and reoll IJ level in column 39. 
0 'I Ii , +-

0 , 0 
space-two after the second. 

' \I !Al ~' 
0 2 0 

Because no output indicators 
0 3 0 are specified, the second head· 
0 4 ing is conditioned like the 
0 6 0 first. 
0 6 0 1 0 7 ~I 

15-76 



Example 5 

Problem 

Use the copy function to obtain specifications 

for the sales report below (same as in 

Example 1 ). 

10/26/83 SALES REPORT 

REGION BRANCH ITEM DESCRIPTION 

1 17 AG7701T 2-TON TRUCK 
1 17 AG7705S PICK-UP 
1 17 AP6545B CAMPER 
1 22 AG7701T 2-TON TRUCK 
1 22 AG7705S PICK-UP 
3 25 AG6545B CAMPER 
3 25 AP6549P 1/4-TON TRUCK 

FOR ANY 

SALES 

5 
10 

2 
2 
4 

10 
20 

Procedure 

II Put the file description and input 

specifications for the SALES file in a 

library member. 

II Code the /COPY statement in the specifi 

cations for auto report. 

co. PAGE 1 

AMOUNT ON-HAND VALUE 

25,000.00 2 10,000.00 
20,000.00 1 2,000.00 
s,000.00 

10,000.00 1 5,000.00 
s,000.00 1 2,000.00 

40,000.00 5 20,000.00 
30,000.00 6 9,000.00 

141,000.00 48,000.00 >:< 

Chapter 15. Using Auto Report 15-77 



11 Put specifications for the SALES file in a library member by using the source entry utility (SEU). 

Filename 

u .. 

Fiie Type 

FUe Dnlgnetlon 

End of Fila ........ 

Mode of Proc111ing 

Length of Key Field or 
of Record Address Field 

Record Address Type ~ 

Typeol File 
Fite Form1t N Org1nlmtlon or ~ 

u. !!!r----r----1 ~ Additional Ari• 

e 't::a ~ Block Reoord ~ ~ 0'8riElow lnd;cator ·I 
~ o: ~ Length Llngth II' ~ E! Kly Field ~ 
~~ ... :i <~ e:.:\:n 
~ a; w ~ u. External R-d Name 

~ 
~ 

Symbolic ill 
Device Device 

,,. 
! 
~ 

K 

File Addition/Unordered 
Extent Exit Number of Tracks 
for DAM for Cylinder Overflow 

Name of Number of Extents 
Label Ex;1 

Tepe 

Storage Index Rewind 

~ 
Condition 
U1·U8, 

Contin~tion Lines 

~ 
UC r'--i 

OPtion Entry ~ 
Lt_ 4 I 8 7 8 ---'-:.J.D...1112 13 14 15 18 1 ji_n 22~ 32 33 34..Jl...Jl._37 139 40 41 42 43 44 45 46 47 48 49 50 51 52 )g 54 55 66 67 58 5'I 60 81 62 63 8' 66 88 87 88 II 10 71 72 73 .z! 
Ho -+2 +I~ ... ~ lfiei [ ~ 
o 3 F~~llll" 11'( 
o 4 F ll 

I ~ External Field Name 

i t-- Filename ~ Record Identification Codes 
or ! i~ Racord Name &' w"' 1 2 3 f :~ ! 2 :j 

Line 

1 
:s 

f §J 
- l! 1-

I Polltlon Po1ltlon z § N Position 

°"" 0 R iJ i ~ Structul'I tt+itii N1mt •• I I 7 8 • 10 11 12 13 14 11 ,, 1718 19 20 21 22 23 24 21 28 27 28 29 30 31 32 33 34 35 38 37 38 

o , lll~l4 I~!; AA lr2Jl1 
o 2 I 
o a I 

o • I 
0 I I 

o e I 
o 1 I 
o a I 

o s I 
, o I 

.. 

ia 
i§ 
39 40 

\ 

These specifications could be replaced by a 
single statement as shown on the following 
page if they were put in a library member. 

I 

Field 
Field Location 

Indicators 

~ ·~ 
From I ! ;;! I; 

:!HI .. To 0 RPG a: 
H ~ Field Name ] ii:~ j Zero 

~;Ji .. Data Structure .. p Plus Minus or 
• .Ii ::i J J Blink 

oH Occurs 
.. i 

nTlme1 Length 6 .. 
41 42 4344414ti 47 48 48 SQ 1 12 63 84 II 18 87 II .... .. ~ .. .. .... .... .. 70 

tc~I IN 
11 

.vlA 
I:= 

ILl~I~ [4 

0 u Space Skip Output Indicators 

rrr5l Commas 
Zero Balances 

No Sign CR - X •Remove 

t----i Field Name to Print Plu1Slgn 5.9. 
~~ or Y•Date 

Um Filename ~ .l! a • A1 Jd EXCPT Name 
Yes Y11 , A J Fletd Edit 

! ~~ Yes No 2 B K Defined 
or '; ! Z•Zero 

Record Name ,_~ AA a: Po1it1on No y., 3 c L Suppren Line ~ e 
~ H No No 4 D M 1¥1 ~ ~ 

In .. Output 
a: 

A ::; 

~ 
1) i 0 •AUTO ~~ Record .. Constant or Edit Word z z 0:: , 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 17 18 19 20 2t 22 23 24 

3 • •• ' . 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 36 37 .... 40 41 42 43 ~~~~~~~~~~~~~~nu~~~N8'nu11 .. nM 
0 1 OIEJ IH NI IR ~ l~A LIIC 
0 2 0 •ISIA 1~15 LL 

I 

0 3 ~ 'Fl II'! NIY1 r~ I . 
0 4 lq lD a~ ~lA ~ 
0 5 lo ~ ~r1 ~ • El-ill: ~ 

, 
0 6 0 1,.1 • IA ii ... , 
0 7 In [[l ~M •I M' [IEJ 
0 8 ~I ID"~ 19/"l ' ...iJ in '" . 0 s 0 ~~ IL,_, "YI ' lc;IA [' I 

, 0 lq ~ ri IA ~ 'A ~~ l I 

, 1 
le:> ~ I.all • r. N-~ ~.,, 

, 2 10 ~ ~ lA \ [j I:. I 

, 3 

15-78 

71 72 73 74 

71 72 73 74 



II Code the /COPY statement to include the file description and input specifications. (For a detailed description of the 
copy function, see /COPY Statement Specifications.) 

F File Type 

File O.ign1tion 

End of File 

Filename Slquonce 

Mode of Processing 

Length of Key Field or 

of Record Address Field 

Record Address Type 

External Field Name 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

File Addition/Unordered 

Number of Track1 
for Cylinder OverflOVll 

Field 

Number of Extent 

Tape 

~ 

Rewind 

Fiie 
Condltlo1 
U1·U8, 
UC 

I f Field Location 
Indicators ....__ Filename 

l 
Record Identification Codes 

or i:g 1 2 Record Name w"' 
~~ & i~ 

~ :s i= Line j - s 
Hi Position ~ ~ = 

Position Dato 

~ Structure :i a~ 2 i:l ti 
Name ' .. • 7 • 9 10 11 12 13 14 111 18 17 18 18 20 21 22 23 24 25 28 21f28 29 30 31 

0fiT ivrif.Jt'Y IF[l IC.IA 1rn 1R1 II lll 
OJ2I I JJJJJ ~ ] l\. ]] lll 

. "' ' 
Column 6 of a /COPY 
statement must not 
contain a U or an H. 

The source member is in the system library, 

The /COPY statement copies file description and 
input specifications for the SA LES file from the 
library member named SALETR. 

~ ·~ 
~ ~ 3 11 From To :~ RPG "'"' a: 

~ i ~~ "!! 
Iii~ a: .l! Field Name 

!l § 
Z a i Data Structure 

~ 
~! Plus 

Position go ii j ::l g B 5 
a: - '" ~ ~ N • ~§ ~~~ Occurs 8 16 l U G nTimes Length a 

32 33 34 35 36 37 38 .. 40 41 42 43 44 46 .. 47 48 49 50 51 52 53 64 56 56 57 58 .... 81 62 .... .. .. 
lll lll lll ±1±1± ± 1 1 1 lll lll lll 

0 
1--

!l 
~ 

Filename 
or 

Record Name 

~ 1 ... Spec~ Skip Output Indicators ru5l Commas Zertoo Bp•,l,.•.,nc11 No Sign CR - X •Remove 
..._ Field Name Aus Sign 
,e ~ or ~=y=,.~===y=,.===l=1=*=A*=J=t V •Otte 
~.!i & .il ..!d ..!d EXCPT Name Yes No 2 8 K Z •;::Edit 

~ ~ a:: Position No Yes 3 C l Suppreu 
Line l 'O'e L ~ .il -5 qi In No No 4 D M 

~Ji< 85 Output~ 

Zero 
Minus or 

Blank . , .. •• 70 

1 1 

6 .g. 
User 
Defined 

71 72 73 74 

111 

... ~ I • ... < Record in Constant or Edit Word 
~ i ;! AUTO :fi ii; i:' • 1 2 3 4 5 a 1 s g 10 11 12 13 14 115 18 17 18 19 20 21 22 23 24 

' . • • 7 • 

0 1 ..., 
0 2 lo 
0 3 0 
0 4 lo 
0 5 fO 
0 6 0 
0 7 0 
0 8 lo 
0 9 lo 
1 0 lo 
1 1 lo 
1 2 IQ 
1 3 fO 

9 10 11 12 13 14 16 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43~ 46 48 47 48 49 50 61 52 53 54 55 68 57 58 69 so 81 82 83 64 66 68 87 88 88 70 71 72 73 7~ 

IIl'll!TIE 

1 
I._, 

IA 

'ISA [le; 

\ 

~l ~, 
ti I 

\ IJE..M I 

r"'I l~Ll 
rlf' I 

' I'! 15 r' Ir"' lil 

'~~- ~N , 
·~ 

Chapter 15. Using Auto Report 15-79 



Example 6 

Problem 

Override copied input specifications to produce 
a report (below) that includes subtotals for 
branch and region. 

Procedure 

• Put the specifications for the SALES file 
in a library member, as in Example 5. 

B Code the /COPY statement. 

B Code /COPY modifier statements to add 
control-level indicators to BRANCH and 
REGION fields on copied specifications. 

10/ 26/83 SALES REPORT FOR ANY co. PAGE 1 

REGION BRANCH ITEM DESCRIPTION SALES AMOUNT ON-HAND VALUE 
NUMBER 

1 17 AG7701 T 2-TON TRUCK 5 25,000.00 2 10,000.00 
AG7705S PICK-UP 10 20,000.00 1 2,000.00 
AP6545B CAMPER 2 a,000.00 

53,000.00 12,000.00 * 
22 AG7701 T 2-TON TRUCK 2 10,000.00 1 5,000.00 

AG7705S PICK-UP 4 a,000.00 1 2,000.00 

181000.00 1.000.00 * 
71,000.00 19,000.00 ** 

3 25 AG6545B CAMPER 10 40,000.00 5 20,000.00 
AG6549P 1/4-TON TRUCK 20 30,000.00 6 9,000.00 

To produce a report that has subtotals for branch and 
region, L1 must be assigned to BRANCH and L2 to 
REG ION as the specifications are copied from the 

~ut input specifications for the SALES file in a source member. library member. s 
I I 

External Field Name Field 
Field Location Indicators I--- Fllen1111e 

Ji 
Rocord ldentificotion Codes 

~ ·I or ~ 
Record N1m1 .fl!! 1 2 3 From To I ~~ ~ -1!1-19 

.. 
I f :~ a: 

~ i Fiold Neme ] ~~ i Zero 
Uno 

l F zo~ - e ~ ;JI 0: o. .. Structure 

" f ~ Plus Minus or 
0 R j ~s i!~ g 0: 

i Position Position z o M Position -~ ... Blenk 0... 
1;t;;td 

- ... i§~ ~h Oocurs ~ .§ :!!tl £ Structure i l) 6 ~ l) n Times Le ..... 
NMM 0: 

••• • 1 8 9 10 11 12 ··~· 15 18 17 ,. 20 21 22 23 24 26 28 27 pa 29 30 31 32 33 ~31363738 .. ,.al 41 42 4344464tl47 48 49 60 151 ., 53 54 55 158 57 58 11!'° "...!! .... •..!!! 17 .. .. 70 71 72 73 74 

0 I Ile; IAll IEJ~ IAIA tJllJ ll 
0 2 I ~ Llt.I ltil\llr" 
0 3 I f [q 
0 4 I id 1Hl l~l I] r 
0 5 I 1~ ~l'i [~~ 
0 8 I ~ I Ir ~ 
0 7 I 21, ~ ~ !rlvJi 
0 8 I 1~!3 L IA 
0 9 I 1':!11 I.II~ ~ IJI 
I 0 I 

15-80 



B and II Code/COPY and modifier statements. As a result of the modifier statements, three levels of totals are 
accumulated for the SOLDVA and VALUE fields (L 1, L2, and LR). 

F 

I 
I--

Line 

Filename 

Filename 
or 

Record Name 

File Type 

file Designation 

End of File 

Sequence 

Mode of Processing 

Length of Key Field or 

of Record Address Field 

Record Address Type 

External Field Name 

Device 
Symbolic 
Device 

Field Location 

Name of 
Label Exit 

Extent Exit 
for DAM 

~-~ ~ ::: Record Identification Codes ~ ~ 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflo111 

Field 
Indicators 

Tape 
Rewind 

File 
Conditio1 
U1-U8, 

~ UC 

~ 
a: 

j i ~ H 1 2 3 ~ From To ~ Fiel:P~ame ~ ~ ~ ~ 
i Q ~ : - ~ - ~ - ~ ~ a: Data Strn<t"" ~ !l £~ .. i_- J Plus Minus :;ro 

Dcita 0 R E .§ ] Position ~ ~ = Position ~ ~ ~ Position ~ ~ J i ~ Occurs .§ 1 ... .. -c Blank 

St~~~~re ttf"Nti) ~ 8 £ ~ U cS ~ U 6 z u u Ji o.. n Times Length ~ u i 0 ~ 
J " s e 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 4ti 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 84 65 66 67 68 89 70 71 72 73 7 

0 1 Ill_ 
0 2 I 
0 3 I RIE.bII IN 12 
o • I 

Entries on the modifier statements override the corresponding entries in the copied specifications. The field 
names, BRANCH and REGION, identify the input field specifications that are to be changed. 

Chapter 15. Using Auto ~eport 15-81 



0 
I---

i!. Filename 
?:: or 

Line 

~ 
Record Name 

3 • 5 6 7 8 9 10 11 12 13 

0 1 OIP ~IT NIT ER 
0 2 0 
0 3 lo 
0 4 lo 
0 5 lo 
0 6 0 
0 1 0 
0 B lo 
0 9 0 
1 0 lo 
1 1 lq 
1 2 lq 
1 3 lo1 

15-82 

.. 
~i Space Skip Output Indicators 

~ 
Comm" 

Zero Balances 
No Sign CR - X =Remove 

Field Name to Print PlusSi!1' 
6 -9 = e~ or Y "'Cite u...-:r " 

A!d Jd 
Yes Yes 1 A J Field Edit 

i~ i! EXCPT Name y., No 2 B K Defined 
Z =Zero 

~~ ~ a: Pos1t1on No y., 3 c L Suppress 

j ~ 
n q; ;n No No 4 D M 

~ * 85 Output "' A ::. 

~~ ~ ~ 
i; "AUTO -ii~ Record .. Constant or Edit Word 

1-o' z w .. ... 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 • 

14 15 16 17 18 19 20 21 '12 23 24 75 26 77 75 79 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ~~~G~~~~~~~~u~~~M~~~MUU~uuro 71 72 73 74 

Ji-; 

~ Iii fj!f 
.. 1c.111 /J;JC ti:l-Jt" ~lJ 

I 

·IF ~ lAfli>' lrlr I 
Io 

11211 Ill !1 
IR s::l; ~" • lliji In; rt ~~I 
~ ~Nlr ' "' lir , 

II If 
r:; • rrrri~ I" I 

In ·1c=Ir .. I'" IJll"' 11rI ~· 
~[,. lrl.ill -~ !Ail !Ji: I 

/c~ jy"A ~ 'lA "" rn I 

~ ILIA ~ .. ,.. 
" -i-. ND' 

v !I- ~ •VIA I'.] , 

File description or input specifications in the copied member are overridden 
as follows (see /COPY Statement Specifications for examples): 

• Entries in a modifier statement override corresponding entries in a 
copied file description or input field specification. 

• Blank entries in a modifier statement remain unchanged in a copied 
specification. 

• Ampersand (&) in the leftmost position of an entry in the modifier 
statement sets the entry to blanks in the copied specification. 

• New fields can be added to input specifications by new input field 
specifications added as modifier statements. 

• Modifier statements do not change the specifications in the copied 
source member. The modification is only for the program into which 
the specifications are copied. 



Example 7 

Example 7 prepares a cash receipts register. The *AUTO page heading 
function and the *AUTO output function create the RPG output 
specifications for the report and the calculation specifications to 
accumu~ate final totals for several fields on the report. RPG calculation 
specifications that cannot be created by auto report are included in the 
auto report program to verify the discount taken by each customer and to 
calculate the balance due. 

The file description specifications for the cash receipts register PRINTER 
file, CSHRECRG, and the file description and input specifications for the 
input file, CASHRC, are located in separate members in the library (see 
Figure 15-28). These specifications are included in the program by the auto 
report copy function. 

The input data for the file CASHRC in EXAUT2 is created by the program 
EXAUTl (see Figure 15-29). Figure 15-30 shows the input data. 

Chapter 15. Using Auto Report 15-83 



F 
I--

Filename 

Lirw 

0 The file description for the PRINTER file, CSHRECRG, is in the 
library member named EXAUT3. 

II The file description and input specifications for the DISK file, 
CASHRC, are in the library member named EXAUT4. 

File Type 

File D11igr11tion 

End of file 

Sequenoe 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type ~ 

Type of File 
File Format N Orpnization or j 

w .! Additional Area c 
LL e a: .fi! 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

-
Storage Index 

0 ~ " Block Record ~ t:' Overflow Indicator j 
Cl iC .\!! Length Length a: ~ E! ~di Continuation Lines 

~ g e ~ ::i d u::.::.J 
g iL w cc External Record Name K Option Entry 

FUe Addition/Unordenid 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tepe 

~ 
Fiie 
CimdiUon 
U1-U8, _ 

ii: UC..----

~ 
li 4 s • 7 8 9 · 10 II 12 13 14 15 11 11 18 19 20 21 22 23 24 2& 28 27 28 21 30 31 32 33 34 31 31 37 lib! 40 41 42 43 44 45 46 47 48 49 50 51 52 &3 M 55..!l 57 58 59 80.J]..J? 13 64 81 86 17 • II 10 11 72 73 74 

II F 

Ofil F 

~ 111~~ 111~, ~~ ~rrNa 1~ 

I 
i----, 

Lint 
! 
I 

3 • • • 7 • 

0 1 I 
0 2 I ] l 
0 3 I I~ '" ll Account number 
0 4 I 1-H- Account name 
0 & I Invoice number 

II I 
I I.=~ , ... , ........... ll'' "'"1111•11 1-+-t-

Invoice date 
Amount owed 

0 B I l'll7 l~IJl2 tt~Jr J-H- Discount allowed 
0 9 I I•~~ ~II F;tt m-J-H- Discount taken 
1 0 I 
1 1 I 
1 2 I 

uF l-+-t-1- Amount paid 

1 I T 
1LJ1i"'""IA""llf , ... , 1~ Date P!lid J 

T 

Figure 15-28. File Description and Input Specifications That Are in the Library Members EXAUT3 
andEXAUT4 

15-84 



H R15868 
RG 004 

0001 FCASHRC 0 1020 68 DISK 
0002 c SETON LR 
0003 OCASHRC T LR 
0004 0 24 '11243JONES HARDWARE 
0005 0 48 , 27541123199 2375CASH 
0006 0 69 , 47 47 2328123199' 
0007 0 T LR 
0008 0 24 '11352NU-STYLE CLOTHIERS ' 
0009 0 48 • 27987123199 8707CASH 
0010 0 69 '174 4000123199' 
0011 0 T LR 
0012 0 24 '11886MIDI FASHIONS INC 
0013 0 49 • 15771123199 10722CASH 
0014 0 68 '214 214 10509123199' 
0015 0 T LR 
0016 0 24 '12874ULOOK INTERIORS 
0017 0 48 • 25622123199 6795CASH 
0018 0 68 '136 6795123199' 
0019 0 T LR 
0020 0 24 '18274STREAMLINE PAPER IN' 
0021 0 48 'C29703123199 27403CASH 
0022 0 69 '549 239 170515123199' 
0023 0 T LR 
0024 0 24 '23347RITE-BEST PENS CO 
0025 0 48 • 20942123199 11590 
0026 0 69 '31 1000123199• 
0027 0 T L.R 
0029 0 24 '25521IMPORTS OF NM 
0029 0 49 • 29273123199 79740 1' 
0030 0 68 •1593 1193 59547123199' 
0031 0 T LR 
0032 0 24 •26723ALRIGHT CLEANERS 
0033 0 49 • 19473123199 46200CASH 
0034 0 69 '924 46200123199' 
0035 0 T L.R 
0036 0 24 '29622NORTH CENTRAL SUPPL.• 
0037 0 49 •¥17916123199 7597CASH 
0038 0 69 '152 7597123199' 
0039 0 T L.R 
0040 0 24 '29971FERGUSON DEAL.ERB 
0041 0 49 • 27229123199 6191CASH 
0042 D 69 '124 6191123199' 
0043 0 T L.R 
0044 0 24 •30755FASTWAY AIRLINES 
0045 0 48 ' 26159123199 74272CASH 1• 
0046 0 68 '4915 1685 72587123199' 
0047 0 T L.R 
0048 0 24 '31275ENVIRONMENT CONCERN• 
0049 0 48 •6204151123199 2943 
0050 0 68 , 59 1500123199' 
0051 D T L.R 
0052 D 24 '324579 SOL.E SILOS 
0053 0 48 ' 27425123199 11005CASH 
0054 D 68 •220 11005123199' 
0055 0 T L.R 
0056 D 24 '37945HOFFTA BREAKS INC 
00157 0 48 , 18276123199 4723CASH 
00158 D 69 , 94 4723123199' 
0059 D T L.R 
OOllO D 24 '42622EASTL.AKE GRAVEL. CD ' 
0061 D 48 , 16429123199 2937CASH 
0062 D 68 , 58 2937123199' 

Figure 15-29. EXAUTl Program 

Chapter 15. Using Auto Report 15-85 



DATA FOR SAMPLE PROGRAM 

11243JONES HARDWARE 27541123199 2375CASH 47 47 2328123199 

11352NU-STYLE CLOTHIERS 27987123199 8707CASH 174 4000123199 

11886MIDI FASHIONS INC 15771123199 10722CASH 214 214 10508123199 

12874ULOOK INTERIORS 25622123199 6795CASH 136 6795123199 

18274STREAMLINE PAPER INC29703123199 27403 548 238 17055123199 

23347RITE-BEST PENS co 20842123199 1580 31 1000123199 

25521IMPORTS OF NM 29273123199 79740 1593 1193 58547123199 

26723ALRIGHT CLEANERS 19473123199 46200CASH 924 46200123199 

28622NORTH CENTRAL SUPPLY17816123199 7597CASH 152 7597123199 

29871FERGUSON DEALERS 27229123199 6191CASH 124 6191123199 

30755FASTWAY AIRLINES 26158123199 74272CASH 1495 1685 72587123199 

31275ENVIRONMENT CONCERNS20451123199 2943 59 1500123199 

32457B SOLE SILOS 27425123199 l 1005CASH 220 11005123199 

37945HOFFTA BREAKS INC 18276123199 4723CASH 94 4723123199 

42622EASTLAKE GRAVEL CO 16429123199 2937CASH 58 2937123199 

Figure 15-30. Input Data Created by EXAUTl for Auto Report Sample Program EXAUT2 

15-86 



Control Specification 

The RPG control specification shown in Figure 15-31 should be included in 
the auto report program because it is not present in the copied 
specifications (see Figure 15~28). None of the control specification options 
are required in this program, so the specification need contain only an H in 
column 6 and the program identification, EXAUT2, in columns 75 through 
80. 

RPG CONTROL AND FILE DESCRIPTION SPECIFICATIONS 
IBM lnternttion1I 8u1i~n1 Malc:lunH Corpoflhon 

GX21·9092· UM/~ 

Printed in U.S.A. 

Progn1m Graphic Card Elecno Number 
76767778798( 

Programmer Date 

Keying 
Instruction 

Koy 

, 2 

Page[l]ot _ ~~:;~t:ation \ElXIAUlTJC 
Control Specifications 

For the valid entries for a system refer to the RPG reference manual for that systen 

H 
I--

~ a 
~ :c~ 

00 s 5 ~ 

] Nbe= ~~cr5~ =: ~~ § ~ 
Size to §. ~ Size to ~ Ji .: ofu;in; ~ Reserved _§ l ~ ~ a ~ ! O D ~ O ·>5 ~ ::::; fi 

Line ~ Compile 6 ~ Execute ~ ~ :6 d: ii Positions c; 'C 1 E e ~ ~ ~ il ..9 ~ i i ~ g ..... ... 
t- ~ao JI ~u.wj~ ~ _~c~ i &~.~~~~j~~]g~t!~!~f ~ !! ~ d! J!~jl ~ a: use:]u.iza:t-~u.u.a:zu.Us~ut-

J 4 5 s 1 a 9 10 11 1:1 13 14 1a 1e 111111 20 21 22 <J 24 2s 2s 21 28 29 30 31 J2 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 s1 s2 s s s5 ss 57 58 sa so 61 62 63 64 65 86 87 sa 69 10 11 n 73 1 

O:El H ]] ~m: ] 11 ] ]] ]JJJIJ ] l 1111 "111111111111 

I 
1---

Line 

3 4 5 8 

~- Field Location 
Field 

lndicaton 

External Field Name 

Filename 
or 

Record Name 

Ill ~c Record Identification Codes - c: 
i!! ~ 15 ·i 1--.-....... --t l w v.i r ~ 1 2 3 From To .J RPG ..J -El -8 ~ 

~ ::) :S ~. ~ ~ Field Name ~ 1 l ~ 
=.s !: t ti _ !! ~cc DataStructure ..J ~'! J 

Dllta O R _!E j ] Position ~ o ~ Position ~ E_ i Position ~ 0 hi ~ ::i J. t ~ :~ ,, 
F.++=- ~ kl ~ § 6 ~ ~ 0 ~ § ~ ~ ~ Occurs Length C C:S :i 6 ~ S~~~~re A N O i O" a:: u n Times 

Zero 
Plu1 Minus or 

Blank 

7 8 9 10 11 12 13 14 16 18 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 4tl 47 48 49 60 51 62 53 04 56 58 67 58 69 80 81 82 63 84 8! 88 87 88 89 70 71 72 73 74 

0 1 I I/ ll!'J)I 
0 2 

0 3 I ll l~IE. a 11 
0 4 I 

Figure 15-31 (Part 1 of 2). RPG and Auto Report Specifications to Produce the Cash Receipts 
Register 

Chapter 15. Using Auto Report 15-87 



c Indicators Result Field RflSUltlng 

"' Indicators _, 

l Jd 
Arithmetic i----. ~ ~ Plus :!MllMI:.![ Zlro 

l~ 
.,, 

Comments Factor 1 Operation Fector 2 
Length ~ Compere 

Line 
Name 1>~1<w-2 

H i i i j Lookup{Factor 2)1s 
HI!#! Low F.qual 

3 •• • 7 • 10 1112 13 f4 15 18 17 18 19 20 21 22 23 24 25 28 27 tza29303132 33 34 36 38 37 38 39 40 41 42 43 44 46 48 47 48 49 50 51 52 .... .. 67 .... 80 81 82 83 14 8li BB 67 18 m 70 71 72 73 74 

0 1 c III!! JIIA~ SlulE 00 ISlf]j[ DII IF Fi ILi 12 
0 2 c TFF ~b ~II> ~. lotl 1~ fI[Q] 
0 3 c 1 51J~ i'llI IS~IA~ l ~2 
0 4 le m """ ~ule l.l Jl ~~ tl,J2 
0 6 c 

0 
... 

~! Spoc~ Skip Output Indicators 

~ 
Commas 

Zero Balances 
No Sign CR - X= Remove 

I--- Field Name to Print Plus Sign 5.9. e;;; or Y •Date u ... :z: • :L ;::t y,. Yes 1 A J Flatd Edit 8. Filename 
i~ .u EXCPT Name Yes No 2 B K Defined 

~ or 
No 

Z • Zlro ... 14 a: Position Yes 3 c L Suppreu Line E Record Name e r in 
No No 4 D M ,f ~ +M ;i f ~ Output 

a: 
A ::i 

~ i i g *AUTO .t: Record iii Constant or Edit Word 
z iB iii it · 1 2 a 4 s a 1 a a 10 11 12 13 14 11 1e n 1a 11 20 21 22 23 24 • 

3 • • • 7 8 9 10 11 12 13 14 115 18 11 18 19 20 21 22 23 24 2& 28 27 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 "~·~··69~~A&46606~6966R~AA&4AH~HH~ 

0 1 0 IAlu tm 
0 2 ro 11r1A ~ IHf. r1~ lll::I I~~ ~l tIIE ]T 

0 3 lo r; Di 11 ~u tr,. 
0 4 lo IE. 11r11~ I IE ll![Ihl~ I 

0 6 ro Ir II' tIIW I a' 
o e lo Ir I In ' 
0 1 0 _l I t' ~rl 11 IN'A l~I~ I 
0 B 0 IU Mi111 e ''UJ 1n111r IE I 
0 9 0 I ID I 

1 0 0 111~ ~ID !All~ IT[U I'll it1,ll Ir IF I 
1 1 lo II' I r'llA IE I 

1 2 ro ~h' H I} ·in~ IE M. lr\fl 
1 3 lo [I 'IA~ UI~ I 

1 4 0 lifi~ IEID' 
1 6 0 IUI tr~IM 1 11'.lll Ir lllN a I 
1 8 0 I 1!.11 
1 1 lo IA ti [If P I l~ 1' 
1 8 0 I ' 
1 9 ro ~IAIL ' In' I' 
2 0 0 I ' 

jg .1Q IF IIIFI I "IE.S I 

lol I bl II' LUI ]' 
lol f!ltn I HIE I I~ I~' 
0 I~ Ir .,,\}' I IIAIL I 

0 

Figure llS-31 (Part 2 of 2). RPG and Auto Report Specifications to Produce the Cash Receipts 
Register 

15-88 

71 72 73 14 



/COPY Statements 

The /COPY statements shown in Figure 15-31 copy the file description and 
input specifications for the job from the source members in the system 
library. The first statement copies the file description specifications for the 
PRINTER file from the library member named EXAUT3. The second 
statement copies the file description and input specifications for the DISK 
file named CASHRC from the library member named EXAUT4. A modifier 
statement adds an input field definition for the REGION field. As a result 
of these /COPY statements, the file description and input specifications 
shown in Figure 15-28 are included in the RPG source program created by 
auto report. 

Calculation Specifications 

The calculation specifications shown in Figure 15-31 are included in the 
auto report program to perform special operations that cannot be created by 
auto report. First, the discount allowed for each customer is subtracted 
from the discount taken by each customer. Indicator 10 turns on if the 
difference is $1.00 or more. The remaining calculations subtract the 
discount taken and the amount paid from the amount owed. 

The order in which these calculations are placed in relation to the 
calculations created by auto report is shown in the auto report listing of 
the created RPG source program (see Figure 15-32). 

Chapter 15. Using Auto Report 15-89 



0001 H 012 R1596 
0002 I/COPY F1,EXAUT3 
0003C FCSHRECRGO F 132 132 OA PRINTER 
0004 I/COPY F1tEXAUT4 
ooosc FCASHRC IPE F1020 69 DISK 
0006C ICASHRC AA 01 69 C9 
0007C I 1 5 ACCTNO 
0009c I 6 25 ACCTNM 
0009C I 26 300INVNO 
0010C I 31 360INVDAT 
0011C I 37 422AMTOWD 
0012C I 47 512DISCAL 
0013C I 52 562DISTAK 
0014C I 57 622AMTPD 
0015C I 63 690DATPD 
0016 I 1 1 REGIONL1 
0017 c DISTAK SUB DISCAL DIFF 42 
0019 c DIFF COMP 1.00 10 10 
0019 c AMTOWD SUB DIST AK NETOWD 62 
0020 c NETOWD SUB AMT PD BAL 62 
0021 OCSHRECRGH •AUTO 
0022 0 'CASH RECEIPTS REGISTER• 
0023 0 D 01 •AUTO 
0024 0 REGION •REGION• 
0025 0 ACCT NO •ACCOUNT• 
0026 0 c 'NUMBER' 
0027 0 ACCT NM 'ACCOUNT NAME• 
0029 0 INVNO 3 •INVOICE• 
0029 0 c •NUMBER' 
0030 0 INVDATY 'INVOICE' 
0031 0 c 'DATE• 
0032 0 DATPD Y 'DATE PAID• 
0033 0 AMTOWDJA •AMOUNT' 
0034 0 c 'OWED' 
0035 0 DIST AK A 'DISCOUNT' 
0036 0 c 'TAKEN' 
0037 0 AMT PD A •AMOUNT' 
0039 0 c •PAID' 
0039 0 BAL A 'BALANCE• 
0040 0 c •DUE• 
0041 0 10 DIFF A 'EXCESS' 
0042 0 c 'DISCOUNT' 
0043 0 1 'REGION TOTALS• 
0044 0 R 'COMPANY TOTALS• 

Figure 15-32 (Part 1 of 3). Auto Report Sample Program EXAUT2 

15-90 



0010 H 012 R1586 

0001 0020CFCSHRECRGO F 132 132 OA F'RINTER 
0002 0030CFCASHRC IPE F1020 68 DISK 

0040 I*/COPY F1,EXAUT3 
0050 I*/COPY F1,EXAUT4 

0003 0060CICASHRC AA 01 68 C9 
0004 0070CI 1 5 ACCTNO 
0005 OOBOCI 6 25 ACCTNM 
0006 0090CI 26 300INVNO 
0007 OlOOCI 3:1. 360INVDAT 
0008 OllOCI 37 422AMTOWX:1 
0009 0120CI 47 512DISCAL 
0010 0130CI 52 562DISTAK 
0011 0140CI 57 622AMTPD 
0012 0150CI 63 680DATPD 
0013 0160 I 1 1 REGIONLl 

0014 0170 c DIST AK SUB DISCAL DIFF 42 
0015 0180 c DIFF COMP 1.00 10 10 
0016 0190 c AMTOWD SUB DIST AK NETOWD 62 
0017 0200 c NETOWD SUB AMTP[1 BAL 62 
0018 0210EC 01 EXSR A$$SUM 
0019 0220ECL1 AMTOWF'< ADD AMTOWl AMTOWR 82 
0020 0230ECL1 DI STAR ADD DISTAl DIST AR 72 
0021 0240ECL1 AMTPDR ADD AMTPD1 AMTPDR 82 
0022 0250ECL1 BALR ADD BALl BALR 82 
0023 0260ECLl. DIFFR ADD DIFFl DIFFR 62 
0024 0270ECSR A$$SUM BEG SR 
0025 0280EC8f'( AMTOWl ADD AMTOWD AMTOW1 82 
0026 0290ECSR DIST Al ADD DIST AK DISTA1 72 
002"1 0300ECSR AMTPD1 ADD AMT PD AMTPDl 82 
0028 0310ECSR BALl ADD BAL BALl 82 
0029 0320ECSR 10 DIFF1 ADD IHFF DIFF1 62 
0030 0330ECSR ENX:1SR 

Figure 15-32 (Part 2 of 3). Auto Report Sample Program EXAUT2 

Chapter 15. Using Auto Report 15-91 



0031 0340EOCSHRECRGH 206 1P 
0032 0350EO OR OA 
0033 0360EO 76 •CASH RECEIPTS REGISTER' 
0034 0370EO UI1ATE y 8 
0035 0380EO PAGE z 131 
0036 0390EO 127 'PAGE , 
0037 0400EOCSHRECRGH 1 1P 
0038 0410EO OR OA 
0039 0420EO 6 'REGION' 
0040 0430EO 15 •ACCOUNT' 
0041 0440EO 29 'ACCOUNT NAME' 
0042 0450EO 46 •INVOICE' 
0043 0460EO 56 'INVOICE• 
0044 0470EO 67 •DATE PAID• 
0045 0480EO 80 •AMOUNT' 
0046 0490EO 92 •DISCOUNT• 
0047 0500EO 105 'AMOUNT' 
0048 0510EO 118 'BALANCE• 
0049 0520EO 128 'EXCESS' 
0050 0530EOCSHRECRGH 2 1P 
0051 0540EO OR OA 
0052 0550EO 14 •NUMBER' 
0053 0560EO 45 •NUMBER' 
0054 0570EO 54 •DATE• 
0055 0580EO 79 •OWED• 
0056 0590EO 90 •TAKEN• 
0057 0600EO 104 •PAID• 
0058 0610EO 116 •DUE• 
0059 0620EO 129 • I•I SCOUl'tT • 
0060 0630EOCSHRECRGD 1 01 
0061 0640EO REGION 3 
0062 0650EO ACCT NO 14 
0063 0660EO ACCTNM 37 
0064 0670EO INVNO 3 45 
0065 0680EO INVI•ATY 56 
0066 0690EO I1ATPD Y 66 
0067 O"lOOEO AMTOWD.JB 80 
0068 0710EO DISTAKKB 92 
0069 0720EO AMTPI1 KB 105 
0070 0730EO BAL KB 118 
0071 0740EO 10 IHFF' KB 129 
0072 0750EOCSHRECRGT 12 L.1 
00"13 0760EO AMTOW1,JB 80 
00"14 0770EO I•ISTA1KB 92 
0075 0780EO AMTPI•1KB 105 
0076 0790EO BALl KB 118 
0077 0800EO I•IFF'l KB 129 
0078 0810EO 67 •REGION TOTALS' 
00"19 0820EO 130 '*' 
0080 0830EOCSHRECRtH 12 LR 
0081 0840EO AMTOWR.JB 80 
0082 0850EO DISTARKB 92 
0083 0860EO AMTPDRKB 105 
0084 0870EO BALR KB 118 
0085 0880£0 DIFFR KB 129 
0086 0890EO 6'7 •COMPANY TOTALS• 
008"/ 0900EO 131 '**' 

Figure 15-32 (Part 3 of 3). Auto Report Sample Program EXAUT2 

15-92 



*AUTO Specifications 

11.120/92 

REGION ACCOUNT 
NUMBER 

11243 
11352 
11986 
12974 
:L&::r,4 

2 23347 
2 2S521 
2 26723 
2 2S622 
2 29871 

3 30755 
3 31275 
3 32457 
3 37945 

4 42622 

Figure 15-33. 

ACCOUNT NAME 

JONES HARIIWARE 

The coding for the *AUTO page heading and the *AUTO output functions 
is shown in Figure 15-31. Notice that the Y edit code is used for the date 
fields (lines 10 and 12). Auto report creates a K edit code for numeric fields 
when an edit code is not specified. No edit code is created for numeric 
fields when they are described with a digit (1 through 9) or R in column 39. 
The edit code 3 is specified for the INVNO field to suppress the printing of 
the comma edit character. 

DIFF is printed on the detail line only if it is $1.00 or more. Remember, 
output indicator 10 conditions only the printing of the field on the detail 
line; it does not affect the printing of the created field on the total line. 

The J edit code allows zero balance to print for the AMTOWD field. 

Totals are accumulated and printed by auto report for five fields as 
indicated by A entries in column 39. Because an Ll control level is defined 
in the input field specifications for REGION, which is added to the input 
specifications for CASHRC (see Figure 15-31), regional and final totals are 
accumulated for each field that has A in column 39. The total lines are 
identified by the literals shown in lines 23 and 24 of the* AUTO 
specifications (see J:?igure 15-31). 

Figure 15-33 shows the output data produced by EXAUT2. 

CASH RECEIPTS REGISTER PAGE 

INVOICE INVOICE IIATE PAID AMOUNT t1IsCOUN1' AMOUNT BALANCE EXCESS 
NUMBER DATE OWED TAKEN PAID DUE DISCOUNT 

27541 12/31/99 121'31.'99 23.75 ,47 23.28 
NU-STYLE CLOTHIERS 27997 12/31/99 12/31/99 s7.07 40,00 47,07 
MIDI F'ASHIONS INC 15771 12/31.199 12/31/99 10·1.22 2.14 10'5.08 
ULOOK INTERIORS 25622 12/31/99 12/31/99 67.95 67t93 
Sl'REAHLINE PAPER INC 29703 12/31/99 12/31/99 274.03 2.:1& 1'70,Sei 101.10 

REGION TOTALS 1560,02 4,99 406.96 14S.17 

RITE-·lilE91' PENS CO 20842 12/31/99 12/31/99 1s.110 10.00 5,110 
IMPORTS OF NH 29273 12/31/99 12/31/99 797,40 11,93 eaas.47 200.00 
ALRIGHT CLEANERS 19473 12/31/99 12/31/99 462.00 462.00 
NORTH CENTRAL SUPPLY 17916 12/31/99 12/31/99 75,97 75,97 
FERGUSON DEALERS 27229 12/31/99 12/31/99 61.91 61.91 

REGION TOTALS 1,413.0B 11,93 1,195,35 205,90 

FASTWAY AIRLINES 26158 12/31/99 12/31/99 742.72 16.95 725.97 1.90 
ENVIRONMENT CONCERNS 20451 12/31/99 12/31/99 29.43 15.00 14.43 
8 SOLE SILOS 27425 12/31/99 12/31/99 110.05 110.05 
HOFFTA BREAKS INC 19276 12/31199 12/31199 47.23 47.23 

REGION TOTALS 929.43 16.85 898.15 14.43 1.90 

EASTLAKE GRAVEL CO 16429 12/31/99 12/31/99 29.37 29.37 

f'.'E:GION TOTALS 29.37 29.37 

COMPANY TOTALS 2,931.90 33,77 2,529.73 368.40 1.90 

Output from Auto Report Sample Program EXAUT2 

Chapter 15. Using Auto Report 15-93 



15-94 



Chapter 16. Editing Numeric Fields 

Edit Codes 16-2 
Examples of Using the Currency Symbol with an Edit Code . . . . . 16-5 
Example of Using Asterisks with an .Edit Code . . . . . . . . . . . . . . . 16-7 

Edit Words ............................................. 16-10 
Editing Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-11 
b (Blank) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-11 
Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-11 
0 (Zero Suppress) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-12 
* (Asterisk Fill) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-12 
CR and · . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-13 
Currency Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-13 
& (Ampersand) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-13 
Examples of Edit Words .................................. 16-14 
Creating Edit Words .................................... 16-19 

Chapter 16. Editing Numeric Fields 





Chapter 16. Editing Numeric Fields 

Editing means punctuating numeric data in an output field by adding 
symbols such as the currency symbol, commas, a decimal point, and a 
symbol for a negative balance, or by substituting blanks for zeros in unused 
positions at the left of the field. When you print fields that are not edited, 
the fields appear exactly as they are represented inside the computer. The 
following examples show why numeric output fields should be edited: 

Type of Field in the Printing of Printing of 
Field Computer Unedited Field Edited Field 

Alphameric JOHN T SMITH JOHN T SMITH JOHN T SMITH 

Numeric 0047652 0047652 47652 
(positive) 

Numeric 004765K 004765K 47652-

(negative) 

The unedited alphameric field and the unedited positive numeric field are 
easy to read when printed, but the unedited negative numeric field is 
confusing because it contains a K, which is not numeric. The K is a 
combination of the digit 2 and the negative sign for the field. They are 
combined so that one of the positions of the field does not have to be set 
aside for the sign. The combination is convenient for storing the field in 
the computer, but it makes the output hard to read. Therefore, numeric 
fields need to be edited before they are printed. 

When you edit fields in a file assigned to any device other than a PRINTER 
(in columns 40 through 46 of the file description specifications), you must 
be aware of the contents of the edited field if you want the field to be read 
back into the program. You must also be aware of the effects of any 
operations you plan to use on an edited field. For example, if you add an 
unedited field to an edited field, the results will be wrong. 

There are two ways to edit a numeric output field: using an edit code or 
using an edit word. Edit codes are easier to use, because you merely select 
the predefined type of editing you want. On the other hand, edit words 
allow you to do more, because you define exactly the kind of editing you 
want. 

Chapter 16. Editing Numeric Fields 16-1 



Edit Codes 

There are several different edit codes available. Each code edits in a 
slightly different way according to a set pattern. However, all of them 
remove the sign of the field so that the rightmost digit always prints as a 
number. 

Figure 16-1 shows the edit pattern for all edit codes. You choose the code 
that edits a field the way you want it to appear. For example, suppose you 
want to print blanks instead of zeros, to print decimal points and commas, 
but not to print the sign of a field. Figure 16-1 shows that edit codes 1 and 
2 both do this editing. The difference between edit codes 1 and 2 is that, 
when the field is zero, edit code 1 prints zeros and edit code 2 prints blanks. 

Figure 16-2 shows how various edit codes edit the same data. 

Sign for 
Entry in Column 21 of Control 

Edit Decimal Negative 
Specification 

Zero 
Code Commas Point Balance Dor Blank I J Suppress 

1 Yes Yes No sign .00 or 0 .00 or 0 0,00 or 0 Yes 

2 Yes Yes No sign Blanks Blanks Blanks Yes 

3 Yes No sign .00 or 0 ,00 or 0 0,00 or 0 Yes 

4 Yes No sign Blanks Blanks Blanks Yes 

A Yes Yes CR .00 or 0 ,00 or 0 0,00 or 0 Yes 

B Yes Yes CR Blanks Blanks Blanks Yes 

c Yes CR .00 or 0 ,00 or 0 0,00 or 0 Yes 

D Yes CR Blanks Blanks Blanks Yes 

J Yes Yes - (minus) .00 or 0 ,00 or 0 0,00 or 0 Yes 

K Yes Yes - (minus) Blanks Blanks Blanks Yes 

L Yes - (minus) .00 or 0 ,00 or 0 0,00 or 0 Yes 

M Yes - (minus) Blanks Blanks Blanks Yes 

x1 

y2 Yes 

z Yes 

1The X code performs no editing. 
2The Y code suppresses the leftmost zero only. The Y code edits a 3- to 6-digit field according to the 
following pattern: 
nn/n 
nn/nn 
nn/nn/n 
nn/nn/nn 

Figure 16-1. Edit Codes 

16-2 



Zero Balance, 2 Decimal 
Positions 

Positive Positive Negative Negative Entry in Column 21 of Control 
Specification 

Number, Number, Number, Number, Zero Balance, 
Edit 2 Decimal 0 Decimal 3 Decimal 0 Decimal D or 0 Decimal 
Code Positions Positions Positions Positions Blank I J Positions 

Unedited 1234567 1234567 000121 000121 000000 000000 000000 000000 
1 12,345.67 1,234,567 .120 120 .00 ,00 0,00 0 
2 12,345.67 1,234,567 .120 120 
3 12345.67 1234567 .120 120 .00 ,00 0,00 0 
4 12345.67 1234567 .120 120 
A 12,345.67 1,234,567 .120CR 120CR .00 ,00 0,00 0 
B 12,345.67 1,234,567 .120CR 120CR 
c 12345.67 1234567 .120CR 120CR .00 ,00 0,00 0 
D 12345.67 1234567 .120CR 120CR 
J 12,345.67 1,234,567 .120- 120- .00 ,00 0,00 0 
K 12,345.67 1,234,567 .120- 120-
L 12345.67 1234567 .120- 120- .00 ,00 0,00 0 
M 12345.67 1234567 .120- 120-
x 1234567 1234567 000121 000121 000000 000000 000000 000000 
y 0/00/00 
z 1234567 1234567 120 120 

1The EBCDIC values of negative decimal numbers do not print as numerics. If the negative number has an alphameric equivalent, 
it is printed. Otherwise, the program halts on an unprintable character unless column 45 of the control specification contains a 1. 
A minus zero (hex DO) prints as a blank, a minus 1 (hex D1) as J, a minus 2 (hex D2) as K, and so on. 

Figure 16-2. Examples of Various Edit Codes 

Chapter 16. Editing Numeric Fields 16-3 



0 
1---

To use an edit code, code the unshaded columns of the output specifications 
shown below: 

t: .f ace Field Name toPnnt PlusS1"1 6 _9 = 

~ ~ or Yes Yes 1 A J Y=~:Edit User 
,..! Filename - ~ 5 ... :L 2d EXCPT Name Yes No 2 e K z z Defined 

W £Sp Skip Output Indicators ~ Comm• ZeroBa~ances NoSign CR _ X•Rem~ 

.- or !Ji i ! a:: Pos1t1on No Yes 3 C L "'Su~:ress 
Lin• ~ Record Name ~~ a ~ z 'qi" In a: No J No 4 , 0 M 

u. ~'t ~ 85 Output J 

~ z z z w CQ a.. • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 • ~ R m b 0 O •AUTO ~ ~ Record ~ Constant or Edit Word 

3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 81 62 63 64 86 88 67 88 89 70 71 72 73 74 

0T1T o TTTT I 111 ~ TT . 
~~fc:ifIJJJJII T 1 JTTTl IlT TT TT 1JTI II I IIII]T11T TlT 

16-4 

Columns 23 through 31 can contain conditioning indicators. 

Columns 32 through 37 must contain the name of a numeric field. 

Column 38 must contain an edit code. 

Column 39 can contain B to indicate that the numeric field is to be set to 
zero after it is printed. 

Columns 40 through 43 can contain the end position of the field in the 
output record. 

Columns 45 through 47 can contain one of the following: 

• '*' if you want asterisks to replace the leading zeros of the field. 

• The currency symbol enclosed in apostrophes if you want a floating 
currency symbol. The currency symbol will then appear before the first 
digit in the field. 

A fixed currency symbol in columns 45 through 47 must be coded on a 
line before or following the edit code. The currency symbol remains in 
the end position specified. 

Note: You cannot use the X, Y, or Z edit code if you code an asterisk or 
the currency symbol in columns 45 through 47 of the output 
specifications. 

When you use an edit code to punctuate an entire array, two spaces are 
skipped before each edited element. 



Examples of Using the Currency Symbol with an Edit Code 

0 ~ 

~i Space 
I-- e ii; 

Fiiename lJ JJ ! or 
,.~ 

Lint g Record Name j i.!!. * ... A 

~ 

Suppose you want to print a currency symbol on a report for a field called 
AMOUNT. An edit code will not put the currency symbol there. You 
specify this in addition to the edit code you are using. 

When you use a floating currency symbol, the currency symbol changes 
positions so that it prints immediately in front of the first digit. In this 
case, the AMOUNT field would look like any of the following (N stands for 
any number): 

$NNN.NN 
$NN.NN 

$N.NN 
$.NN 

Note: If the currency symbol is not the dollar sign ($), the currency symbol 
must be entered in column 18 of the control specification. 

See Figure 16-3 for a coding example of a floating currency symbol. 

Skip Output I ndlcators 

~ 
Commes 

Zero B1l1nc11 
No Sign CR 

X •Remove -Field Name to Print Plus Sign 5 ·9. 
or Y • Dl'te u ... 

:!d A!d EXCPT Name 
Yu YH 1 A J Field Edit 
Y11 No 2 B K Z • Z1ro 

Defined 
No YH 3 c L a: Potltion Suppr111 

! H In No No 4 D M 
0: 

Output :i 
i i i "AUTO H Record iii Constant or Edit Word 

ii:' ' 1 2 3 4 ri 8 7 8 9 10 11 12 13 14 HI 18 17 18 19 20 21 22 23 24 ' 

' 4 • e 1 a s 10 11 12 13 14 18 18 17 18 19 20 21 22 23 24 2fi 28 27 28 29 30 31 32 33 34 38 39 37 38 39 40 41 42 ., .. e~~~u~~~~~""~""~~~~M9H~Hnro 71 72 73 7• 

0 1 OIF iill It.la IF.ltij IH l210Jl'l o~ 
0 2 lo DIR 111~ 
0 3 lo ~ ' IFtE_ .~ ~lll IF]~ JpVI ~II:. R[T' 
0 4 lo II- 12 ~~ 0 5 0 r;~ 
0 8 0 r~ ,1";j \ PJ' 
0 7 0 I~ \ A E MA I 

0 B 0 1i:; \ IL~ IJN 
, 

0 9 0 H~ \ :rJA I 

, 0 lq ~ ~ leJ 1 
The floating dollar sign is specified by H 

, 1 lo IAIM ~II II, 715 \ I 

placing '$' in columns 45 through 4 7 I-
1 2 lo 

lo of the same line as the edit code. 
I-

1 3 
I-

1 4 0 I II:II II TTT l IT 

Figure 16-3. Floating Currency Symbol 

Chapter 16. Editing Numeric Fields 16-5 



When you use a fixed currency symbol, the currency symbol remains in the 
end position specified on the output specifications. In this case, the 
AMOUNT field would look like any of the following (N stands for any 
number): 

$NNN.NN 
$ NN.NN 
$ N.NN 
$ .NN 

The blanks between the first digit and the currency symbol are the result of 
zero suppression. See Figure 16-4 for a coding example of a fixed currency 
symbol. 

0 
~ 

! 
Lin• ! 

Fiiename 
or 

Record Noma 

@ j Spece Skip Outputlndlcaton ~ Comm11 Zero Balances NoSlgn CR - X•R•movt 
t:: !!;: Field Name to Print Plu1Slgn 5 •9 • 

~ ~ or Yet Yes 1 A J Y111~=~Edlt Ultr 
i~ 5 ! Jd Jd EXCPT Name Yll No 2 8 K z. ~o Dlllntd 
I-~ !!: Polltlon No Y• 3 C L Suppr•n 

D E L ~ • .fl '!' In No No 4 D M 
~:i ~ Bl)outpu1 e; 

o R ~ ti I •AUTO ,i; ;;: Rooord iii Constant or Edit Word 
~ :2 Jl iii ~ • 1 :z 3 4 & e 1 a e 10 11 12 u 14 Hi 11 n 11 1e 20 21 n 23 24 • 

3 4 6 a 7 8 • 10 n 12 13 14 18 ft 1'1 18 HI 20 21 22 23 24 21$ 26 27 28 29 30 31 32 33 :f• 31$ 38 37 38 39 40 41 42 43 44 C& 48 47 48 49 liO 111 li2 63 M 1515 Bf 117 DB 119 80 81 82 83 " 86 ea 07 ea " 70 71 72 73 74 

01 OPRrr~rrE~ ~ 2~~ 
o 2 lo ~le 11 
0 3 0 

o 4 lo , .. 
ll I 

0 5 0 I~ 

0 B '° J~ \ IPtI I 

0 7 0 ll \ ~ II:.~ ~ltl I 

0 8 0 

0 9 0 

1 0 0 ~ 11211 
1 1 le '~ \ ' The fixed dollar sign is specified by 

1-,+2+-+fo-+-i-+-1-++-t-+-1-+-1-++-t+-1-+-1-+-++++-+-ir+.-~t-/N:t=t-11-H:JI-1lt-t-~t-+-i-rl~:'-t-1-+"''H-I placing '$' in columns 45 th rough 4 7 

1 3 o of the line before the edit code. 

1 4 o J..J .1 .1.1.l .1 .1 TI =1 

Figure 16-4. Fixed Currency Symbol 

16-6 

H

H
H-



Example of Using Asterisks with an Edit Code 

0 
t---

Filename ! 
f:: or 

Line j Record Name 

3 4 • e 1 e a 10 11 i2 13 

0 1 011-1 ~II !NII I~ 
0 2 0 
0 3 0 
0 4 lo 
0 5 0 
o e 0 
0 7 0 
0 8 0 
0 9 0 
1 0 lo 
1 1 0 
1 2 0 
1 3 0 
1 4 0 
1 5 0 
1 e 0 

"" 

When you use asterisks to fill the spaces between the currency symbol and 
the first digit, the AMOUNT field could look like any of the following (N 
stands for any number): 

$NNN.NN 
$*NN.NN 
$**N.NN 
$***.NN 

See Figure 16-5 for a coding example that uses asterisks to punctuate a 
field. 

l ~~ Space Skip Output Indicators 

ff;Sf 
Commas 

Zero Balances 
No Sign CR 

X •Remove 
Field Name to Print - Plus Sign 5 ·9. g;;; or Y• Date 

UHr 

~~ ~ ! ~!d A!d EXCPT Name 
Vos Yea 1 A J Field Edit y,. No 2 B K Z •Zero 

Defined 

... ~ k cc Po&1tlon No Vos 3 c L SuppreH 

j ~ 
~qi In No No 4 D M ~ * ~5 Output "' A ::i 

~ ~ s ~ "AUTO :6 ~ Record ai Constant or Edit Word 
z w m 0.. 1 2 3 4 s 6 1 e a 10 11 12 13 14 16 16 17 is is 20 21 22 23 24 

14 15 1e 11 18 19 20 21 22 23 24 26 26 27 ,. 29 30 31 32 33 34 35 JS 37 38 39 40 41 42 43 M~~o~~~~~~~MH~HOO~~~~~~M~MOOro 71 72 73 74 

121t.IJ[4 l\i 
~ lffP 

~ ' li:IE. !\.( ~ IA1L [E_IC! r~IE !Ph rRIT' 
12 rv 

"I~ ll 
M \ IE~ JI I 
Is; 1 \ 1~111 [E_~ lti~ ltl. 
~!i 'IA ~b UI~ I 

Rli. \!I IOl1 IA I 

II ~~ 
~~ \ ~ I 

•-++ i;liJM lfiu l"II 111~ \~ I To make asterisks fill the empty 
spaces caused by zero suppression, I++ 

place•*• in columns 45 through 47 •-++-

of the same line as the edit code. 
I++-
I++-

J_ J_J__[ II TT TI 

Figure 16-5. Punctuating with Asterisks 

Chapter 16. Editing Numeric Fields 16-7 



Edit 
UDATE Code 

Jan 30, 1984 y 

Edit codes are also used to edit date fields. The edit code for a date field is 
Y. See Figure 16-6 for various ways to edit a date field. 

Control Specification 

Contents of Contents of Contents of Column 21 

Column 19 Column 20 Blank D I J 

Blank Blank 1/30/84 30/01/84 30.01.84 30.01.84 

- 1-30-84 30-01-84 30-01-84 30-01-84 

M Blank 1/30/84 1/30/84 1/30/84 1/30/84 

- 1-30-84 1-30-84 1-30-84 1-30-84 

D Blank 30.01.84 30.01.84 30.01.84 30.01.84 

- 30-01-84 30-01-84 30-01-84 30-01-84 

y Blank 84.01.30 84.01.30 84.01.30 84.01.30 

- 84-01-30 84-01-30 84-01-30 84-01-30 

Figure 16-8. Date Fields 

16-8 

\ 



Figure 16-7 shows the effects that the various edit codes have on the same 
field with a specified end position for output. 

Negative Number, 2 
Decimal Positions. End 
Position Specified as 10. 

Output Print Positions 

Edit Code 3 4 5 6 7 8 9 10 11 

Unedited 0 0 4 1 K1 

1 4 1 2 
t---· 

2 4 1 2 
I----· 

3 4 1 2 

4 4 1 2 

A 4 1 2 c R 

B 4 1 2 c R 

c 4 1 2 c R 

D 4 1 2 c R 

J 4 1 2 -
K 4 1 2 -
L 4 1 2 -
M 4 1 2 -

x 0 0 4 1 K1 

y2 0 I 4 1 I 2 

z 4 1 2 

1 K represents a negative 2. 
2A field edited by the Y edit code must have 
zero decimal positions. 

Figure 16-7. Effect of Edit Codes on End Position 

Chapter 16. Editing Numeric Fields 16-9 



Edit Words 

0 
I--

Filename 
or 

Line Record Name 

3 4 5 • 7 • 9 10 11 12 13 

~I'I 0 ikm!mfli(il\'Mifo 
O.H lq IIIIII 

16-10 

~ - ~ w ~ Space j:o • 
g~ 
~~ 

~ ~ 8.~ 
~~ ~ ~ 

~ * ~ A 

~ 

Use edit words when you have unusual (special) editing requirements. An 
edit word allows you to specify directly: 

• If commas, decimal points, and zero suppression are needed 

• If the negative sign should print 

• Ha currency symbol and leading asterisks should be used 

• If the constant(s) have to be printed 

An edit word gives a pattern for punctuation. When you create an edit 
word, you are setting up your own editing pattern. 

To use an edit word, code the unshaded columns of the output 
specifications shown below: 

Output Indicators 

ff 
Zero Balances X =Remove Skip Commas No Sign CR -

Field Name to Print Plus Stgn 
Y =Date 

~L ;L 
or y., v .. I A J 

EXCPT Name Field Edit 
v .. No 2 B K Z =Zero 

er.: Position No v .. 3 c L Suppress 

£ ~~ ;n No No 4 0 M 

Output "' "' OU _, 
0 0 "AUTO ~~ Record ii; Constant or Edit Word 
z 

5 9= 
User 
Def med 

~ z w"' " , 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

14 15 16 17 18 19 ;w 21 22 23 24 :.?5 26 27 28 29 30 31 ·32 33 34 35 36 37 38 39 40 41 42 43 ~~~O~~-~~~~~~D~~~~~~~~M~MMW 71 72 73 74 

Ml :tr .J!~ :i~ 1i .+till rram 
11111 

':;:·· 

}t 

1f f ~ 11 11 1111 11 1 111111111 ~~-1 I I 
Columns 23 through 31 can contain conditioning indicators. 

Columns 32 through 37 must contain the name of a numeric field. 

Column 38 (Edit Codes) must be blank. 

Column 39 can contain b to indicate that the numeric field is to be set to 
zero after it is printed. 

Columns 40 through 43 can contain the end position of the field in the 
output record. 

Columns 45 through 70 must contain the edit word. The edit word can be 
up to 24 characters long and must be enclosed in apostrophes. Enter the 
leading apostrophe in column 45. The actual edit word must begin in 
column 46. 

III 



Editing Considerations 

b (Blank) 

Constants 

When using an edit word, make sure that there is enough space on the 
printer form for the edited field. If the field you want to edit is 6 characters 
long, check whether 6 positions allow enough space for it to print on the 
report: the edited output field might contain more than 6 characters. 

When you compute the length of an edited output field, determine how 
many of the editing characters are replaceable. A replaceable character is 
one that will be replaced by a digit from the data field. The number of 
replaceable characters must equal the length of the field to be edited. 

The following summary provides more information on creating edit words 
and describes certain characters that have special meaning when used in an 
edit word. The Delta position is defined as the position in the edit word 
that corresponds to the leftmost position in the data field. The examples 
referred to are provided in the section Examples of Edit Words, later in this 
chapter. 

This is always a replaceable character. 

Constants are any character combination, including commas and decimal 
points, but not including special uses of 0, *, currency symbols, &, -, or CR 
symbols. 

To the right of the Delta position (see examples 11 to 14): A constant 
imbedded in replaceable characters will print only if a significant digit 
appears to its left in the edited field. A constant between the last 
replaceable character and a negative indicator (see - or CR) will print only 
if the field is negative. Constant(s) at the end of the edit word will always 
print. Constants are not counted as replaceable characters. 

To the left of the Delta position (see example 15): Constants are printed only 
if preceded by a zero in the edit word. 

Chapter 16. Editing Numeric Fields 16-11 



0 (Zero Suppress) 

* (Asterisk Fill) 

16-12 

To the right of the Delta position (see example 2): Leading zeros to the left of 
and including the position in which the zero appears will be suppressed, but 
leading zeros to the right will not be suppressed. Any constants to the left 
of the zero will print only if preceded by a significant digit. The zero is a 
replaceable character. 

In the Delta position (see example 3): Leading zeros and constants to the 
right of the zero will print. The zero will not print in the first position of 
the output field. If the field contains leading zeros, a blank will print in the 
first position; otherwise, a significant digit will print. 

To the left of the Delta position (see example 4): The results are described in 
the preceding paragraph, except that if the field contains leading zeros, a 
zero will print in the first position of the output field. The zero in the edit 
word is not counted as a replaceable character and does not print. 

NOTE: Any zeros or asterisks to the right of the first zero are treated as 
constants. 

To the right of the Delta position (see example 9): Leading zeros to the left of 
the asterisk (and the asterisk itself) are replaced by asterisks. Constants 
will be replaced with asterisks when no significant digits precede the 
constant(s). Leading zeros to the right of the asterisk will not be 
suppressed. The asterisk is counted as a replaceable character. 

In the Delta position (see example 10): An asterisk will print in the first 
position of the output field unless there is a significant digit in that 
position. Leading zeros and constants are not suppressed. The asterisk is 
counted as a replaceable character. 

NOTE: Any asterisks or zeros to the right of the first asterisk are treated as 
constants. 



CR and -

Currency Symbols 

& (Ampersand) 

(See examples 5,6,17): 

These symbols are used to identify negative fields on printed output and 
will print only if the field is negative. If the field is positive, they are 
replaced by blanks. Only the first - or CR to the right of all of the 
replaceable characters is treated as a negative indicator; all others are 
treated as constants. Any constants between the last replaceable character 
and the negative indicator will print only when the field is negative. Any 
constants following the negative indicator will always print. The - and CR 
are not counted as replaceable characters. 

To the right of the Delta position (see example 7): 

A. A currency symbol followed directly by a zero is said to float: it will 
print in the position immediately to the left of the first significant digit. 
The currency symbol may be replaced by a significant digit, but it should 
not be counted in the total of replaceable characters. 

B. A currency symbol not directly followed by a zero will be treated as a 
constant. The currency symbol is not counted as a replaceable character. 

To the left of the Delta position (see example 8): 

The currency symbol will always print to the left of the first position of the 
output field. Leading zeros will be suppressed along with any constants that 
are not preceded by a significant digit. The currency symbol is not counted 
as a replaceable character. 

(See example 12): 

The ampersand must be coded wherever a blank is to be printed in the 
output field. 

Chapter 16. Editing Numeric Fields 16-13 



Examples of Edit Words. 

' ' 

' ' 

' ' 0 

' ' 0 

16-14 

0 

• 

0. 

e· 

For all examples, column 38 (edit codes) of the output specification is blank. 
The symbol b indicates where blank spaces would appear in the output 
result. The symbol ' marks the delta position in each example. 

In the example below all the leading zeros will be suppressed and the 
decimal point will not print unless there is a significant digit to its left: 

Edit Word Source Data Appears in output Record as: 

' 000000012 lllllalalallllla 12 
000000123 lalllalalala 1 . 23 

This example causes the decimal point to print even if the field is equal to 
zero: 

Edit Word Source Data Appears in output Record as: 

' 000000001 lalalalalallla. 01 
000000000 lalalalalalala. 00 

Leading zeros will print to the left of the first significant digit. Note that a 
blank, not a zero, prints in the first position: 

Edit Word Source Data Appears in OUtput Record as: 

• 

LI 

' 000000123 la000G01. 23 

If you want a zero to print in the leftmost position of the output field, the 
zero must be placed to the left of the Delta position in the edit word (see 
Editing Considerations). Note that seven blanks were coded to the left of 
the decimal point, whereas in example 3, only six blanks were coded. The 
zero in the edit word will not be printed: 

Edit Word Source Data Appears in output Record as: 

' 000000123 0000001 .23 



' ' • 

' ' ... f+ 

' ' ..,. ..... 

' 'l.1 ... ....J 

e. This example adds a negative value indication. The minus sign will print 
only when the value in the field is negative. A CR symbol performs the 
same function as a minus sign: 

ll 

• 

Edit Word Source Data Appears in output Record as: 

- ' 000000123- pppppp1 .23-
000000123 ltltblbll&b 1 • 231o 

Commas are added to separate thousands, millions, and so on. The comma 
will print only if preceded by a significant digit: 

Edit Word Source Data Appears in output Record aa: 

C R 9 123456789 1,234,567.89 
(1(,J(1Q12345- llllolllllllolo123. 45CR 

A floating currency symbol will print in the position immediately to the left 
of the first significant digit or to the left of the decimal point if the field is 
zero or less than 100: 

Edit Word Source Data Appears in Output Record as: 

0 • ' 000000012 blbllllbllllllllllbllll$. 12 

000123456 111111111111$1,234.56 

The currency symbol may also be printed in the position before the first 
digit of the output field. Constants to the left of the first significant digit 
are replaced by blanks. See the explanation under the currency symbol in 
the section Editing Considerations for limitations regarding the placement 
of the currency symbol. 

Edit Word Source Data Appears in output Record as: 

0 • ' 000123456 _11111111111111 234.56 

Chapter 16. Editing Numeric Fields 16-15 



' 'l!. _.._ _,_ 

' ' . .... LL --,,-

' ' ~ [-t-

' ' _.._ ...... 

16-16 

Blanks and constants to the left of the first significant digit are replaced by 
asterisks (asterisk fill): 

Edit Word Source Data Appears in output Record as: 

• • ' 000123456 _t •••• 1 234.56 

An asterisk will be printed in the first position only, unless the field 
contains a significant digit in the first position. Leading zeros and 
constants are not suppressed: 

Edit Word Source Data Appears in OUtput Record as: 

LL ' 1/)1/)1/)123456 • 001 234.56 
123456789 1 234 567.89 

Constants between the last replaceable character and the'·' or CR symbol 
will print only if the field is negative; otherwise, blanks will print in these 
positions. Note the use of ampersands to represent blanks: 

Edit Word Source Data Appears in Output Record as: 

0 • 8c 3 D 8c DA y 8c C R ' 000000123- lillllillllilllllll1 • 231i130Jt!2_AYllCR 
000000123 wwwwwwww1 .23www••••••• 

Constants may be added to print on every line: 

Edit Word Source Data Appears in Output Record as: 

0 • 8c c R 8c N E T ' 000000123- lllillllllllilllll1. 23--'._C~NET 
000000123 WWWWWWWW1 .23WWWWNET 



' ' $ 

' ' L 
' 0 I 

_!_ -

' 0 A R E A 

' ' 0. 

' • • 
• • 
• 3 0 ' 

_L 

~ 

I 

' 

• • 

II 

This edit word could be used to print checks. Note that the second asterisk 
is treated as a constant: 

Edit Word Source Data Appears in Output Record as: 

D 0 L L A R s & & c T S ' 000012345 $ .... 123•[)0LLARSlrl451rlCTS 

-·-~-·-· 

A date could be printed by using either edit word: 

Edit Word Source Data Appears in Output Record as: 

01_j_385 lrl1L03_L.a5 
II 010385 01L03_La5 

e The example below might be used to edit a telephone number. Note that the 
zero in the first position is required to print the constant AREA: 

Edit Word Source Data Appears in Output Record as: 

~ N 0 ·~ - II 4165551212 AREAW416WNO.W555-1212 

e Note that any zeros or asterisks following the first occurrence of either are 
treated as constants. The same is true for - and CR: 

Edit Word Source Data Appears in Output Record as: 

0 0 0' 01234 lrl12. 34000 

0 0 
0 ' 

01234 .12.34000 

-& & N E T 
- ' 01234 lrl12.341rllrllrlNET-

30 

The combined output will appear as lrl12.34bllrllrlNET-30 

Chapter 16. Editing Numeric Fields 16-17 



' ' • 

'*' 

' ' 0 • &S 

' 0 • &S 

' Q • &C 

16-18 

If an asterisk or a zero is to appear as a constant and there are no other 
asterisks or zeros preceding it in the edit word, the asterisk or zero must be 
defined on a separate specification line as a constant ending in the 
appropriate print position. 

Edit Word Source Data Appears in Output Record as: 

' 0000000123 llllollllollllll1.23 

• 

The combined output will appear as llllllllllllllllll1. 23. 

Note that the CR in the middle of a word may be detected as a negative 
field value indication. If a word such as SECRET is required, use the coding 
in the example below, line 3: 

Edit Word Source Data Appears in Output Record as: 

E C R E T ' 12345- 123.451DSECRET 
E C R E T ' 12345 123.45blblblblblET 
R& &S E C R E T ' 12345 123.45blblblblblSECRET 



Creating Edit Words 

The printer spacing chart can help you create edit words. Figure 16-8 
shows how an output line can be created on this chart. The Xs and zeros 
show field positions. A zero indicates where zero suppression stops. An X 
indicates that any number can appear in the position. Use blanks in place 
of the Xs when writing the edit words. 

If it is necessary to show a negative number, you must include a sign in the 
edit word. Use either the minus sign(-) or the letters CR. These print only 
for a negative number; however, the character positions they require must 
be included when you enter the end position of the field on the output 
specifications. 

Figure 16-8 shows an edit word (line 08 of the output specifications) that 
causes CR to print if the field PERCPL has a negative balance. For 
example, if the field PERCPL contains -25 (which in storage appears as 2N), 
the printed output is 25CR. If PERCPL is positive, the CR does not print; 
the printed output is 25bb. 

Another way to indicate a negative number is to use a minus sign. To leave 
a space between the number and the negative sign, place an ampersand (&) 
in the edit word before the minus sign. The PERCPL field then prints as 
25 -. 

Chapter 16. Editing Numeric Fields 16-19 



Unedited Data 

Item number 
Item cost 
Selling price 
% profit or loss 

000241 
02000 
02200 

25 

Printer Spacing Chart 

0 1 2 3 4 
!1234567890123456789012345678901234567890123456789 

1 

2 ~ l1 I~ ~ti 
3 

4 

5 1111:.ll'li It- I" l 
6 1 ...,~ 1t IItI rfS 
7 

8 IXIXl)(IXIX Ill ,,, 1\1 
[::J I XIJI. ll. • ~I)( 

9 

0 

f. 
... 
} Space Skip Output Indicators 

ru;5l Commas 
Zero Balances 

No Sign CR - X,., Remove 

I--- ii; Field Name to Print Plus Sign 

or Y•D1te 

:rd :t Yts Yes 1 A J 

! 
Filenamt:: ~i! EXCPT Name Field Edit 

Yes No 2 B K Z •Zero or ?: ~ No Yes 3 c L --Line 

& 
Record Name a: Position 

j ! p In No No 4 D M 

Wo "' Output ::i 
s *AUTO ·" ~ R1eord iii Constant or Edit Word 

5.9. 
lh8' 
Defined 

~ 
A N D 

i i z ill iii ... 1 2 3 4 6 II 7 8 I· 10 11 12 13 14 11 11 17 11 11 20 21 22 23 24 ' 
3 •• 8 7 8 9 10 11 12 13 , .. 15 18 17 18 19 20 21 22 23 24 20,. 27,. 29 :JD 31 32 33 34 38 31 37 38 .. 40 41 42 43 ~--~-·~~UUMUNnuuu~UUMUUn••~ 

0 1 0 
0 2 fo IIIN lJIMll' ~ \ ~ I 

0 3 0 
0 4 le 1r1r 15~ 11~ 'IS JG • I 

0 6 lo 
0 6 lo l~IP l~II ll'IE 1217 'I ~ I 

0 7 fo 
0 8 0 !PIE ~lr1P a~ \ It' lB I 

0 9 0 

Figure 16-8. Using the Printer Spacing Chart to Create Edit Words 

16-20 

71 72 73 74 



Chapter 17. Changing the Hexadecimal Value of 
Characters 

Changing the Collating Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3 
Coding the Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3 

Coding the Control Specification . . . . . . . . . . . . . . . . . . . . . . . . 17-3 
Coding the Translation Table and Alternate Collating Sequence 

Coding Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-4 
Coding the Records That Change the Collating Sequence . . . . . 17-7 
Example of a Record That Changes the Collating Sequence . . . . 17-8 

Translating a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-9 
Coding the Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-9 

Coding the Control Specification . . . . . . . . . . . . . . . . . . . . . . . . 17-9 
Coding the Translation Table and Alternate Collating Sequence 

Coding Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-9 
Coding the Records That Translate a File . . . . . . . . . . . . . . . . . 17-10 
Example of File Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-11 

Chapter 17. Changing the Hexadecimal Value of Characters 





Chapter 17. Changing the Hexadecimal Value of 
Characters 

Each alphabetic, numeric, and special character is represented in the 
computer by a separate hexadecimal value. To determine if the value of 
one character is larger than the value of another character, the computer 
assigns a sequence to the hexadecimal values of the characters. This 
sequence is called the normal collating sequence. To collate means to place 
items in proper sequence or to check that items are in proper sequence. 
Figure 17-1 shows the normal collating sequence and hexadecimal value of 
each character. 

You can change this normal collating sequence in two ways: 

• By temporarily using one character in place of another during a 
comparison but using the original character at all other times during 
the program. This method is called changing the collating sequence. 

• By using one character in place of another in one or more files 
whenever the file is used throughout an entire program. This method is 
called translating a file. 

Chapter 17. Changing the Hexadecimal Value of Characters 17-1 



Collating Hexadecimal Collating Hexadecimal 
Sequence Character Value Sequence Character Value 

1 Blank 40 49 s A2 
2 ¢ 4A 50 t A3 
3 48 51 u A4 
4 < 4C 52 v A5 
5 ( 40 53 w A6 
6 + 4E 54 x A7 
7 I 4F 55 y AB 
8 &, 50 56 z A9 
9 ! 5A 57 { co 
10 $ 58 58 A C1 
11 * 5C 59 B C2 
12 ) 50 60 c C3 
13 ; 5E 61 D C4 
14 .., 5F 62 E C5 
15 - (minus)1 60 63 F C6 
16 I 61 64 G C7 
17 I 6A 65 H ca I 

18 , 68 66 I C9 
19 96 6C 67 } DO 
20 _(underscore) 60 68 J 01 
21 > 6E 69 K 02 
22 7 6F 70 L 03 
23 ' 79 71 M 04 
24 : 7A 72 N 05 
25 # 78 73 0 06 
26 @ 7C 74 p 07 
27 , 70 75 Q 08 
28 - 7E 76 R 09 
29 

,, 
7F 77 \ EO 

30 a 81 78 s E2 
31 b 82 79 T E3 
32 c 83 80 u E4 
33 d 84 81 v E5 
34 e 85 82 w E6 
35 f 86 83 x E7 
36 g 87 84 y EB 
37 h 88 85 z E9 
38 i 89 86 0 FO 
39 j 91 87 1 F1 
40 k 92 88 2 F2 
41 I 93 89 3 F3 
42 m 94 90 4 F4 
43 n 95 91 5 F5 
44 0 96 92 6 F6 
45 p 97 93 7 F7 
46 q 98 94 8 FB 
47 r 99 95 9 F9 
48 ,... A1 

1When zones are specified for record identification codes, the & is considered to have a hex C zone, 
the - (minus sign) is considered to have a hex D zone, and the blank is considered to have a hex F 
zone, to be consistent with card punches. 

Figure 17-1. Normal Collating Sequence and Hexadecimal Value of Characters 

17-2 



Changing the Collating Sequence 

There are three reasons why you might want to change the normal 
collating sequence of characters: 

• To compare alphameric characters 

• To check the sequence of characters 

• To check for match fields 

For example, you may want alphabetic characters to follow numeric 
characters instead of coming before them. Notice in Figure 17-1 that 
numeric characters come after alphabetic characters in the normal 
collating sequence. Suppose that a company started with a few departments 
and assigned each department a number. In their data records, they used 
only a 2-digit field for the department number. When the company grew 
and the number of departments got larger than 99, the 2-digit field was no 
longer long enough. To avoid having to change the department-number 
field from two to three characters in every record, the manager changed the 
collating sequence for that one field so that he could use alphabetic 
characters after numeric characters. That is, after department 99, he 
named the departments AO, Al, and so on. 

Another example is the need in some languages to insert a character such 
as A or A between A and B in the normal collating sequence. 

Coding the Changes 

To change the normal collating sequence, you code the control specification 
and the Translation Table and Alternate Collating Sequence Coding Sheet. 
Then you use the coding on the Translation Table and Alternate Collating 
Sequence Coding sheet to create records that actually change the normal 
collating sequence. 

Coding the Control Specification 

Column 26 of the control specification must contain S to indicate that you 
are changing the collating sequence. 

Chapter 17. Changing the Hexadecimal Value of Characters 17-3 



Coding the Translation Table and Alternate Collating Sequence Coding Sheet 

Figure 17-2 shows the Translation Table and Alternate Collating Sequence 
Coding Sheet. 

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE COOING SHt:.ET 

Replaced Replaced Replaced Replaced 
By/Takes By/Takes By/Takes Sy/Takes 

Cod• Graphic Entry Place Of coo. Graphic Entry Place Of Code Graphic Entry Place Of Codo Graphic Entry Place Of Code Graphic Entry 

00000000 00 00110011 " 01100110 66 10011001 99 11001100 cc 
00000001 01 00110100 34 01100111 67 10011010 9A 11001101 CD 

00000010 02 00110101 3S 01101000 .. 10011011 9B 11001110 CE 

00000011 03 00110110 36 01101001 69 10011100 9C 11001111 CF 

90000100 04 00110111 37 01101010 : 6A 10011101 90 11010000 DO 

101 05 001l1000 3B 01101011 6B 10011110 " 11010001 J 01 

00000110 05 00111001 " 01101100 % 6C 10011111 " 11010010 K 02 

00000111 07 00111010 3A 01101101 60 10100000 AO 11010011 L 03 

00001000 08 00111011 " 01101110 > 6E 10100001 - Al 11010100 M 04 
00001001 09 00111100 3C 01101111 I 6F 10100010 ' A2 11010101 N OS 

00001010 OA 00111101 30 01110000 70 10100011 I A3 11010110 0 06 
00001011 OB 00111110 JE 01110001 71 10100100 " A4 11010111 p 07 
00001100 oc 00111111 " 01110010 72 10100101 A5 11011000 a 08 
Oi)o01101 OD 01000000 Blank 40 01110011 73 10100110 w A6 11011001 R 09 

00001110 OE 01000001 41 01110100 74 10100111 A7 11011010 DA 

00001111 OF 01000010 42 01110101 75 10101000 ' AB 11011011 DB 

00010000 10 01000011 43 01110110 76 10101001 A9 11011100 DC 

00010001 11 01000100 44 01110111 77 10101010 AA 11011101 DD 

00010010 12 01000101 45 01111000 78 10101011 AB 11011110 DE 

I 00010011 13 
00010100 14 

01000110 46 

01000111 47 

01111001 79 
01111010 7A 

10101100 AC 

10101101 AD 

11011111 OF 

11100000 I EO 

00010101 15 01001000 4B 01111011 # 7B 10101110 AE 11100001 El 

00010110 16 01001001 49 01111100 @ 7C 10101111 AF 11100010 s E2 
00010111 17 01001010 .l 4A 01111101 70 10110000 BO 11100011 T " 00011000 " 01001011 4B 01111110 7E 10110001 Bl 11100100 u E4 

00011001 19 01001100 < 4C 01111111 7F 10110010 " 11100101 v ES 
00011010 IA 01001101 { 40 10000000 BO 10110011 B3 11100110 w E6 

00011011 " 01001110 . 4E 10000001 Bl 10110100 64 11100111 x E7 
00011100 IC 01001111 I 4F 10000010 b " 10110101 B5 11101000 y EB 
00011101 10 01010000 • 50 10000011 83 10110110 .. 11101001 z E9 
00011110 1E 01010001 51 10000100 d B4 10110111 B7 11101010 EA 

00011111 " 00100000 20 
01010010 52 --01010011 53 

10000101 B5 

10000110 I 66 

10111000 .. 
10111001 B9 

11101011 EB 

11101100 EC 

00100001 21 01010100 54 10000111 _._ 
87 10111010 BA 11101101 ED 

00100010 22 01010101 55 10001000 h BB 10111011 BB 11101110 EE 

00100011 23 01010110 56 10001001 " 10111100 BC 11101111 " 001()0100 24 01010111 57 10001010 BA 10111101 BO 1111()000 0 FO 

00100101 25 0101TOOO SB 10001011 BB 10111110 BE 11110001 1 " 00100110 26 01011001 SB 10001100 BC 10111111 BF 11110010 2 " 00100111 27 01011010 ' SA 10001101 BO 11000000 { co 11110011 , 
" 00101000 2B 01011011 • SB 10001110 BE 11000001 A Cl 11110100 4 F4 

00101001 29 01011100 5C 10001111 BF 11000010 B C2 11110101 5 F5 
00101010 2A 01011101 { 50 10010000 90 11000011 c C3 11110110 6 F6 

00101011 2B 01011110 5E 10010001 I 91 11000100 D C4 11110111 7 F7 

00101100 2C 01011111 ~ SF 10010010 k 92 11000101 E cs 11111000 B " 00101101 20 01100000 - 60 10010011 I " 11000110 F C6 11111001 9 " 00101110 2E 01100001 I 61 10010100 m 94 11000111 G C7 11111010 FA 

00101111 " 01100010 62 10010101 95 11001000 H CB 11111011 " 00110000 30 01100011 63 10010110 0 96 11001001 I C9 11111100 FC 

00110001 31 01100100 64 10010111 ' 91 11001010 CA 111 ll101 FD 
00110010 32 01100101 65 10011000 ' 98 11001011 CB 11111110 FE 

11111111 FF 

Figure 17-2. Translation Table and Alternate Collating Sequence Coding Sheet 

17-4 

Replaced 

By/Takes 
Place Of 



To code a change in the normal collating sequence, follow these steps: 

1. In the Graphic column, find the character you want to use to replace 
another character in the collating sequence. 

2. Note the hexadecimal value in the Entry column for the replacing 
character. 

3. Code that hexadecimal value in the Replaced By column next to the 
character being replaced. 

For example, if you want to change the normal collating sequence of a 
blank so that it has the same collating sequence as a zero: 

1. Find the zero in the Graphic column. 

2. Note that the hexadecimal value in the Entry column for zero is FO. 

3. Code FO in the Replace By column next to the blank. 

Chapter 17. Changing the Hexadecimal Value of Characters 17-5 



Replaced 
8y/Takn ,,_ Graphic Entry "-°' 

00000000 00 
00000001 01 
00000010 02 
00000011 03 
00000100 .. 
00000101 06 
00000110 06 
00000111 07 
00001000 08 
00001001 09 
00001010 OA 
00001011 DB 
00001100 DC 
00001101 OD 
00001110 DE 
00001111 OF 
00010000 10 
00010001 11 
00010010 12 
00010011 13 
00010100 14 
00010101 15 
00010110 16 
00010111 17 
00011000 1B 
00011001 19 
00011010 1A 
00011011 1B 
00011100 1C 
0001t101 10 
00011110 1E 
00011111 1F 
00100000 20 
00100001 21 

00100010 22 
00100011 23 
00100100 .. 
OCU00101 25 
00100110 28 

i " 
-, 

28 I ,. 
2A 7 
2B T 

00 2C 
00101101 20 J~ 
00101110 2E 
00101111 2F 
00110000 30 
00110001 31 
00110010 "1 

Blank and zero 
considered equal. 

I/ 

Figure 17-3 shows this example. The same hexadecimal value is now used 
for both a blank and zero. Therefore, after you make these changes, the 
computer treats a blank as equal to zero when it compares alphameric 
characters, checks the sequence of characters, or checks for matching 
fields. 

If you insert a character between two consecutive characters in the normal 
collating sequence, you must change the collating sequence for every 
character that is affected by that change. For example, when you insert the 
dollar sign ($) between A and B, you must also change the collating 
sequence for every character from B through I. This example is also shown 
in Figure 17-3. 

TRANSLATION TABLE ANO ALTERNATE COLLATING SEQUENCE COOING SHEET 

Replaced Replaced Replaced 
By/Take5 By/Takes By/Takes 

Cod• Graphic Entry Plar::eOf coo. Graphic Entry Plael!Of Cod• Graphic Entry Pl~ceOf Cod• Graphic En1rv 

00110011 33 01100110 .. 10011CXl1 99 11001100 cc 
00110100 34 01100111 67 10011010 9A 11001101 CD 
00110101 35 01101000 68 10011011 98 11001110 CE 
00110110 36 01101()01 .. 10011100 9C 11001111 CF 
00110111 37 01101010 : 5A 10011101 90 11010000 ) DD 
00111000 38 01101011 BB 10011110 9E 11010001 J 01 
00111001 39 01101100 % 6C 10011111 9F 11010010 K 02 
00111010 3A 01101101 60 10100000 AD 11010011 L 03 
00111011 39 01101110 > 6E 10100001 - A1 11010100 M 04 
00111100 3C 01101111 ' 6F 10100010 . A2 11010101 N 05 
00111101 30 01110000 70 10100011 t A3 11010110 a 06 
00111110 3E 01110001 71 10100100 " A4 11010111 p 07 
00111111 ...3f. 01110010 ,, 10100101 A5 11011000 a 08 
01000000 Blank 40 rr;r 01110011 73 10100110 . A• 11011001 R 09 
01000001 :::!!: 
010CKXl10 1 42 
01000011 " 01000100 7_ .. 

01110100 74 
01110101 - 75 
01110110 76 
01110111 77 

10100111 ' A7 11011010 DA 
10101000 y AB 11011011 DB 
10101001 ' A9 11011100 DC 
10101010 AA 11011101 DD 

01000101 rl 45 
01()00110 46 

01111000 78 
01111001 79 

10101011 AB 11011110 DE 
10101100 AC 11011111 OF 

01000111 " 01111010 7A 10101101 AD 11100000 I "' 01001000 .. 01111011 • 7B 101(11110 AE 11100001 E1 
01001~ 49 
01001ii11 :::i: 4A 
01001011 . 4B 

01111100 @ 7C 
01111101 70 
01111110 7E 

10101111 AF 11100010 s E2 
10110000 BO 11100011 T E3 
10110001 Bt 11100100 u E4 

01~ < 4C 
01~01 ( 40 
~1110 .. 
Q!l'J1111 I 4F 

01111111 7F 
10000000 .. 
10000001 . B1 
10000010 • B2 

10110010 B2 11100101 v E5 
1011001l BJ 11100110 w " 10110100 84 11100111 x E7 
10110101 B5 11101000 y EB 

21!_10000 • .. 
~010001 51 

OT0010 52 

10000011 ' 63 
10000100 d 84 

10000101 . 85 

10110110 .. 11101001 z E9 
10110111 87 11101010 EA 
10111000 .. 11101011 EB 

01010011 53 10000110 f BB 10111001 .. 11101100 EC --01010100 .. 10000111 _.._ B7 10111010 BA 11101101 ED 
01010101 55 10001000 " BB 10111011 B8 11101110 EE 
01010110 .. 10001001 ' .. 10111100 BC 11101111 EF 
01010111 57 10001010 SA 10111101 BO 11110000 0 FO 
01011000 "' 10001011 8B 10111110 8E 11110001 1 Fl 
01011001 .. 10001100 ec 10111111 8F 11110010 ' F2 
01011010 ::&A 10001101 80 11000000 ( CD 11110011 3 F3 
01011011 s 58 10001110 BE 11000001 A C1 11110100 4 F4 
01011100 ~ 
01(\11101 I l- 50 
01011110 5E 
01011111 ~. J_ 6F 
01100000 -I .. 
01100001 q~ 61 
01100010 62 

10001111 8F 
10010000 90 
10010001 91 
10010010 k 92 
10010011 I 93 
10010100 m .. 
10010101 " 95 

11000010 ~ ...E.. 11110101 • F5 
11000011 c C3 11110110 • F8 
11000100 D ~ I\. 11110111 7 F7 
11000101 E C5 11111000 8 F8 
11000110 F C6 I\~~!:~ 9 F9 
11000111 G C7 FA 
11001000 H ca 1~1011 FB 

01100011 63 
01100100 .. 
01100101 .. 10010110 0 .. 

10010111 p 97 
10011000 q .. 11001001 I C9 -1_- 111~90 FC 

11001010 CA :1'11.fNi FD 
11001011 CB _!\.1111_!\, FE 

11 t1111 FF 

Replaced 
Bv/Takes 
Plac.10f 

...,. 
$ takes B's position. 

1--
printable character) \8 takes C's position . (no 

C takes D's position. 

:Figure 17-3. Changing the Collating Sequence 

17-6 



Coding the Records That Change the Collating Sequence 

The changes to the normal collating sequence must be coded in records that 
you can enter into the computer after all the RPG specifications in your 
source program and after the records that translate files. Chapter 3 
explains how to enter your specifications. 

These records are actually a kind of table. Unlike other tables, however, 
they do not need to be coded on the file description or extension 
specifications. Instead, they must be coded as data records. 

The first record must contain **b (asterisk asterisk blank) in positions 1 
through 3. You can use the remaining positions of this record for 
comments. 

The second record, and any additional records needed to code the 
translation, must contain specific entries in the following record positions: 

Record Position Entry 
1-6 ALTSEQ 

7-8 Leave these positions blank. 

9-10 Enter the hexadecimal value of the 
character whose normal collating 
sequence is being changed. This entry is 
the same as the value in the Entry column 
on the translation table and alternate 
collating coding sheet. 

11-12 Enter the hexadecimal value of the 
character that is replacing another 
character in the normal collating 
sequence. This entry is the same as your 
entry in the Replaced By column on the 
translation table and alternate collating 
sequence coding sheet. 

13-16, 17-20, Use these positions in the same way as 
21-24, ... positions 9 through 12. The first two 

positions contain the hexadecimal value of 
the character to be replaced. The next 
two positions contain the hexadecimal 
value of the replacing character. You can 
use as many 4-position entries as the 
record can hold. Do not leave any blank 
positions between the 4-position entries. 
The first blank position ends the record. 

If you are changing the collating sequence of many characters, you can use 
more than one record. 

A record with **b (asterisk asterisk blank) in positions 1 through 3 must 
follow the last record that changes the normal collating sequence. 

Chapter 17. Changing the Hexadecimal Value of Characters 17-7 



Example of a Record That Changes the Collating Sequence 

17-8 

To change the normal collating sequence by inserting the dollar sign ($) 
between A and B, as shown in Figure 17-3, code the record as follows: 

Record Position Entry 
1-6 ALTSEQ 

7-8 Blanks 
9-12 5BC2 ($takes B's position) 
13-16 C2C3 (B takes C's position) 

17-20 C3C4 (C takes D's position) 
21-24 C4C5 (D takes E's position) 

25-28 C5C6-(E takes F's position) 
29-32 C6C7 (F takes G's position) 

33-36 C7C8 (G takes H's position) 
37-40 C8C9 (H takes I's position) 
41-44 C9CA (I takes the position of an 

unprintable character) 



Translating a File 

Translating a file means changing the hexadecimal value of one or more 
characters throughout an entire program. If the character is in an input 
file, the computer translates (changes) the hexadecimal value when it reads 
the file into main storage. If the character is in an output file, the 
computer translates it before writing the file. If the character is in an 
update or combined file, the computer translates the character when it 
reads the file and again before it writes the file. 

The usual reason for translating a file is security. You can translate input 
or output data to protect classified information. 

Coding the Translation 

To translate a file, you code the control specification and the translation 
table and alternate collating sequence coding sheet. Then you use the 
coding on the translation table and alternate collating sequence coding 
sheet to create records that actually change the characters. 

Coding the Control Specification 

Column 43 of the control specification must contain F to indicate that you 
are translating a file. 

Coding the Translation Table and Alternate Collating Sequence Coding Sheet 

Figure 17-2 shows the translation table and alternate collating sequence 
coding sheet. 

To code a character for translation, follow these steps: 

1. In the Graphic column, find the character you want to use as the 
translation for another character. 

2. Note the hexadecimal value in the Entry column for the character used 
as the translation. 

3. Code that hexadecimal value in the Replaced By column next to the 
character being translated. 

Chapter 17. Changing the Hexadecimal Value of Characters 17-9 



Coding the Records That Translate a File 

17-10 

To tell the computer which files to translate, you must code records that 
you can enter into the computer after all the RPG specifications in your 
source program but before the records that change the normal collating 
sequence. Chapter 3 explains how to enter your specifications. 

These records for translating a file are actually a kind of table. Unlike 
other tables, however, they do not need to be coded on the file description 
or extension specifications. Instead, they must be coded as data records. 

The first record must contain **b (asterisk asterisk blank) in positions 1 
through 3. You can use the remaining positions of this record for 
comments. 

The second record and any additional records needed to code the 
translation, must contain specific entries in the following record positions: 

Record Position Entry 

1-6 (to translate Enter *FILES to tell the compiler to translate 
all files) all input, output, update, and combined files. 

Leave positions 7 and 8 blank. 

1-8 (to translate Enter the name of the specific file to be 
a specific file) translated. 

9-10 Enter the hexadecimal value of the character 
that is being translated. This entry is the same 
as the value in the Entry column on the 
translation table and alternate collating 
sequence coding sheet. 

11·12 Enter the hexadecimal value of the character 
that is translating another character. This 
entry is the same as your entry in the Replaced 
By column on the translation table and 
alternate collating sequence coding sheet. 

13-16, 17-20, Use these positions in the same way as 
21·24, ... ' positions 9 through 12. The first two positions 
93-96 contain the hexadecimal value of the character 

to be translated. The next two positions 
contain the hexadecimal value of the 
translating character. You can use as many 
four-position entries as the record can hold. Do 
not leave any blank positions between the 
four-position entries. The first blank position 
ends the record. If you need more positions to 
code the translations, you can use more than 
one record. 



Example of File Translation 

Replaced 
8y/T1kes 

~ Gr1phic Entry Pli1Cf!01 

00000000 00 --00000001 01 

00000010 02 

00000011 OJ 
00000100 .. 

f 00000101 -- .. 
oooocn10 06 
00000111 07 

-·~· 08 .. 
00001010 OA 

00001011 OB 
DDIJ01100 oc 
0000\101 OD 

00001110 OE 
00001111 OF 
00010000 10 
00010001 11 
00010010 12 
00010011 13 

00010100 " 00010101 ,. 
0001lll10 18 
00010111 17 
00011000 1B 

00011001 19 
00011010 1A 
QOD11011 1B 
00011100 IC 
00011101 1D 
00011110 1E 

00011111 1F 
00100000 20 
00100001 21 

00100010 22 
00100011 23 
00100100 ,. 
00100101 ,. 
001(1)110 28 
00100111 21 
00101000 28 
00101001 ,. 
00101010 ,. 
00101011 28 
00101100 2C 
00101101 2D 
00101110 '' 00101111 2F 
00110000 ., 
00110001 31 
00110010 32--

c-

A department store uses sales slips that contain the wholesale and retail 
price of each item. To keep the wholesale prices confidential, the store 
translates the numbers into letters. In output files, it uses the letters in the 
code name BUCKINGHAM to represent the numbers 1 through 9 and 0. In 
input files, it translates the letters back into numbers so that the computer 
can do calculations on the wholesale prices. Figure 17-4 shows how to code 
the file translation coding sheet for this example. 

Gr..,tlic 

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE COOING SHEET 

.. ,._, 
8y/T11k95 

'""' Pl.:eOI """' Gr1ph11:: Entry 

........ 
By/T1k11$ 
~-01 """' <naptlie -8y/T1kn 

Entry ~~01 ,,_ 0.-aphk: Entry 

00110011 J3 01100110 .. 10011001 .. 11001100 cc 
00110100 34 01100111 •1 10011010 •• 11001101 CD 
00110101 "' 01101000 .. 10011011 .. 11001110 CE 
00110110 38 01101001 .. 10011100 9C 11001111 CF 
00110111 31 01101010 6A 10011101 "" 11010000 ) DO 
00111000 38 01101011 .. 10011110 .. 11010001 J DI 

-Bv/T1Ms 
~-01 

00111001 .. 01101100 % BC 10011111 9f 11010010 K D2 ~ 
00111010 
00111011 
00111100 
00111101 

00111110 
00111111 

01000000 

-~· 01000001 

01000010 
01000011 
01000100 
01000101 
01000110 
01000111 
01001000 
01001001 
01001010 :-<: 
01001011 
01001UIO < 
01001101 ' 01001110 . 
01001111 I 
01010000 • 
01010001 
01010010 
01010011 
01010100 
01010101 
01010110 
01010111 
01011000 
01011001 
01011010 I 
01011011 ! OH.111100 
01011101 ) 

01011110 
01011111 ~ 

011l»OOO -
01100001 I 
01100010 
01100011 
01100100 
01100101 

3A 01101101 8D 
3B 01101110 > 8E 
3C 01101111 OF 
3D 01110000 10 
3E 01110001 11 

3F 01110010 72 .. 01110011 13 
41 01110100 14 
42 Oll10101 16 
43 01110110 16 .. 01110111 77 .. 01111000 7B .. 01111001 79 
47 01111010 7A .. 01111011 78 
49 01111100 • 7C 
4A 01111101 7D 

•B 01111110 7E 
<C 01111111 7F 
4D 10000000 BO 
4E 10000001 Bl 
4F 10000010 82 .. 10000011 83 .. 10000100 .. 
62 10000101 .. 
53 10000110 88 .. 10000111 81 .. 10001000 .. .. UJ001001 .. 
51 10001010 .. .. 10001011 .. -.. 10001100 BC 
5A 10001101 8D .. 10001110 BE 

BC 10001111 " OD 10010000 BO .. 10010001 .. 
5F 10010010 82 .. 10010011 83 
61 10010100 .. 
02 10010101 .. 
63 10010110 .. .. 10010111 91 
BE 10011000 .. 

This is the hexadecimal value of the 
character to be translated. 

10100000 .. 11010011 L D3 
10100001 - A1 11010100 M .. 
10100010 . ., 11010101 N D6 _E6_ 
10100011 . A3 11010110 0 "" 10100100 " M 11010111 p D1 
10100101 ' .. 11011000 0 OB 
10100110 w .. 11011001 • DO 
10HI0111 ' A7 11011010 DA 
10101000 ' .. 11011011 DB 
10101001 . ,.,. 11011100 DC 
10101010 .. 11011101 DD 
10101011 .. 11011110 DE 
10101100 AC 11011111 DF 
10101101 AD 11100000 I .. 
10101110 AE 11100001 " 10101111 AF 11100010 s " 10110000 BO 11100011 T E3 
10110001 11 11100100 u .. ::n: 
10110010 82 11100101 v •• 10110011 B3 11100110 w .. 
10110100 .. 11100111 x E7 
10110101 BE 11101000 v .. 
10110110 .. 11101001 z .. 
10110111 B7 11101010 EA 
10111000 .. 11101011 EB 
10111001 .. 11101l00 EC 
10111010 •• 11101101 ED 
10111011 88 1l101110 EE 
10111100 BC 11101111 EF 
10111101 BD 11110000 0 FO 
10111110 BE 11110001 1 F1 
10111111 BF 11110010 2 F2 
11000000 { co 11110011 ' ' F3 
11000001 • Cl :n: 11110100 4 F4 
11000010 B C2 ft 11000011 c C3 

11110101 • F• 
11110110 B FB 

11000100 D C4 11110111 7 F1 
11000101 E C5 11111000 B FB 

11000110 F C8 11111001 • .. 
11000111 G C7 -ffaJ 11001000 H .. :]L 
11001001 I :...c_coi lF!!ol 

11111010 FA 

11111011 FB 

11111100 FC 
11001010 ~ ~ L 11111101 FD 

11L I-""" CB..i.. 

7 
11111110 FE 

11111111 FF 

This is the hexadecimal value of the charac1 
that will be substituted for the character th 
is to be translated. 

Figure 17-4. Translating a File 

Chapter 17. Changing the Hexadecimal Value of Characters 17-11 



The record to translate these files looks like this: 

Record Position Entry 

1-6 *FILES (All files are translated.) 

7-8 Blanks 

9-12 C2Fl (B is translated into 1 at input. 1 is 
translated into B at output.) 

13-16 E4F2 (U is translated into 2 at input. 2 is 
translated into U at output.) 

17-20 C3F3 (C is translated into 3 at input. 3 is 
translated into C at output.) 

21-24 D2F4 (K is translated into 4 at input. 4 is 
translated into K at output.) 

25-28 C9F5 (I is translated into 5 at input. 5 is 
translated into I at output.) 

29-32 D5F6 (N is translated into 6 at input. 6 is 
translated into N at output.) 

33-36 C7F7 (G is translated into 7 at input. 7 is 
translated into G at output.) 

37-40 C8F8 (H is translated into 8 at input. 8 is 
translated into H at output.) 

41-44 C1F9 (A is translated into 9 at input. 9 is 
translated into A at output.) 

45-48 D4FO (M is translated into 0 at input. 0 is 
translated into M at output.) 

17-12 



Chapter 18. Techniques for Efficient Coding 

Sequential Operation .................................... . 
Conditional Branching ................................... . 
Repeating an Operation .................................. . 

Do While Structure .................................. . 
Do Until Structure .................................. . 
Do Structure ....................................... . 

Structured Programming ................................. . 
Using Subroutines .................................... . 
Structured Programming Operation Codes .................. . 

Overlaying Storage ...................................... . 
Memory Resident Overlays (MRO) ...................... . 
Areas of Main Storage ............................... . 

Creating the Overlays .................................. . 
Reducing the Program Size .............................. . 

Specific Coding Techniques ............................... . 
Load Module Size Considerations ......................... . 
Storage-Saving Techniques .............................. . 
Performance-Improvement Techniques ..................... . 
Storage Requirements .................................. . 

Operation Codes .................................... . 
Indicators ......................................... . 
Array Processing 

18-1 
18-2 
18-4 
18-4 
18-6 
18-7 

18-10 
18-10 
18-11 
18-13 
18-14 
18-14 
18-15 
18-16 
18-20 
18-20 
18-20 
18-22 
18-23 
18-23 
18-32 
18-32 

Chapter 18. Techniques for Efficient Coding 





Chapter 18. Techniques for Efficient Coding 

To create an efficient program and make the best use of the system 
resources requires careful design and coding. The main purpose of this 
chapter is to introduce three ways to make your programs more efficient: 

• Structured programming 

• Overlaying storage 

• Specific coding techniques. 

Three logical structures used in every computer program are: 

• Sequential operation 

• Conditional branching 

• Repeating an operation based on a certain condition. 

These logical structures and how they can be implemented through RPG 
structured programming operation codes are briefly discussed in this 
chapter. 

See Chapter 28 for detailed information about various groups of operations 
and individual operation codes. 

Sequential Operation 

Sequential operation means any series of instructions that actually 
processes data rather than transfers control to some other part of the 
program. Figure 18-1 is a flowchart of sequential operations. 

-·I ____ · I ·I _______ B -· 

Figure 18-1. Flowchart of Sequential Operations 

Chapter 18. Techniques for Efficient Coding 18-1 



Conditional Branching 

18-2 

A conditional branch is a change in the sequence of instructions under a 
certain condition. The program first tests to see if the condition exists. If 
it does, the program branches to another point. If the condition does not 
exist, the program continues its sequence of instructions without 
branching. For this reason, a conditional branch is sometimes called an 
If-Then-Else structure. An example in simple English is: 

IF the weather is cold, 

THEN I will wear my coat; 

ELSE, I will leave my coat at home. 

Figure 18·2 is a flowchart of a conditional branch. 

Figure 18-2. Flowchart of a Conditional Branch 

In RPG, the If-Then-Else structure is implemented through the operation 
codes IFxx, ELSE, and END. Figure 18·3 shows a design for a conditional 
branch using the IFxx, ELSE, and END operations. 



~ lndlcatorw Result Field rnedal~~l~~s 
C 6 T T " Arithmetic 

~S •-d •-d ~ ls;I '"!!!I'••• z.,. 
i----i~ 1-... "'' "'' ~ct 1 o I 'ii "';l Compare ~ ~ ~ ,a or perot on Factor 2 Nome Length &_ ~ 1 >2]1 <2 1• 2 

Line E ~ lli ~ 0 0 .~ ~I (Fo~~~ufi is 

Commenh 

pf 8S ~ z z ~p!IHighlow quol 
3 4 6 6 7 B 9 0]1112 3!1'111116 1718 19:a:J 21222324 :Ii 26 2'l :1129:!0 31_32j33 34 36 36 37 3113940 4142~3'l'l'4546 47 48 4950 51112je:ll1511C511l'l651lil_e+>_&16263 6461166 6768 6910 71 72' 

01 le LJ 
0 2 c 
0 3 c 
0 4 c 
0 II c 
0 6 c 
0 7 c 
0 8 c 
0 9 c 
1 0 c 
1 1 c 
1 2 c 
1 3 c 
1 4 c 
1 ll c 
1 6 c 
1 7 c 

FL IA IF~ FL l6 IF E 
Code for the THEN Operations 

_fEJLJS:E IF N 
Code for the ELSE Operations 

I ii 

II FLDA equals FLDB (fine 031. the oaloulatlons In lines 04 end 05 are executed 

and oontrol p11aea to the operation Immediately following the. END statement 

(fine 10). II FLDA do11 not equal FLDB, control puaea to the ELSE atatement 

(fine 08) and the calculatlona In llnH 07 and 08 are executed. 

~ = Caloulatlona 

III 

Figure 18-3. Design for a Conditional Branch Using the IF/ELSE/END Operations 

There are three other ways to create conditional branches: 

• The CASxx operation 

• The EXSR operation and conditioning indicators 

• The GOTO operation and conditioning indicators. 

Chapter 18. Techniques for Efficient Coding 18-3 



Repeating an Operation 

Do While Structure 

18-4 

Repeating an operation or a series of operations based on a certain 
condition means testing whether a condition exists, performing an 
operation or a series of operations if this condition exists, and repeating the 
test and the operation(s) as long as the condition still exists. Three logical 
structures of the controlled loop - Do While, Do Until and Do - are 
implemented in RPG through usage of the DOW xx, DOU xx and DO 
operation codes and the END operation code. 

If you test the condition first and then perform the operation(s), the 
structure is called a Do While. An example of a Do While is: 

1. Compare a sum with 5. 

2. If the sum is less than 5, add 1 to the sum. 

3. Repeat steps 1 and 2 until the sum is equal to or greater than 5. 

Figure 18-4 is a flowchart of a Do While, and Figure 18-5 illustrates coding 
of a Do While in RPG Calculation Specifications using the DOWxx 
operation code and the END operation code. 

FALSE 

Figure 18-4. Flowchart of a Do While 



~ lndlcatono Result Field !l•mult!ng 

c Indicator• 
I • _!.r)thme!:[c 

::!iii? .8 !;> lu!J.Ul•u~•ro -o Ajid Afid :-i !~ Factcr t Operation Factor 2 Name Length ii _£am pare Comments 
11. :I 1 >2_11 •2_11 ·2 

~Bi ~~ ;:u~ .. ne e 
i f 11 rf1 8~ z ~F High Low ~qua 

3 .. s 6 7 8 9~1 12113~ 15 16 17 18 19312122Zl:IIZI26 :zj :112930 31 3'l j333113536'Sl3B3!l'I041"2 43 "' llli'lli 117 "' '19Sl 151 lmiP-1 jM111s;51111~ t;ll&11i263&11&!i661i1.6161'JD717.I 

0 1 Id nA Wl.ll L l 
0 2 c t-
0 3 Id t- 'la ~1'9 tot rs 
0 .. ~ I-

0 s IQ IA II: IL'lr- 1F n1A 
0 & c IEI"[ 
0 7 Lci 
0 8 c 
0 9 c 
1 0 c 

c 
step 1. While FLDA la leH then FLDB execute 02, 08, 04, end 06 llnH. 

1 1 

1 2 c 
1 3 c 
, .. c step 2. When FLDA beoomH equal to or greeter then FLDB, control 

1 s L9 PHHI to the ln1truotlon Immediately tollowlng the END 

operation. 

Figure 18-5. Design for a Do While using the DOWxx operation 

Notice in Figure 18-5 (the Do While) that the program first tests whether 
the condition is true (line 01). If it is true, the code between the DOW and 
the END operations is executed. Then the program goes back to line 1 to 
test again whether the condition is still true, and the entire cycle is 
repeated. If the condition is no longer true, control passes to the 
instruction immediately following the END operation. 

Chapter 18. Techniques for Efficient Coding 18-5 



Do Until Structure 

18-6 

If you perform the operation(s) first and then test the condition, the 
structure is called a Do Until. An example of a Do Until is: 

1. Add 1 to a sum. 

2. Compare the sum with 5. 

3. Repeat steps 1 and 2 if the sum is less than 5. 

Figure 18-6 is a flowchart of a Do Until, and Figure 18-7 illustrates coding 
of a Do Until in RPG Calculation Specifications using the DOUxx operation 
code and the END operation code. 

FALSE 

Figure 18-6. Flowchart of a Do Until 



• I """!feaurt'1ng 1 Ind catons Result Field Indicators 

C 9 l l • Arithmetic 
- Ii? ~!Qfii"lui;]"Nlnuo Zuo 

1--- 't~ ·;; - Compare 
, ~~ Factor 1 Operation Factor 2 Name Length if~~ 1 •ill •2 1• 2 Comments 

Uno " _g a:: ap Lookup 
!j c ui c; c; c; .!:li,,:; (Factor 21 Is 
F 8~ z z z ~ :l! High Low ~ua 

3 • & & 7 a 9 jKJ 1 12 3 ~4 15 16 11 11 19 ::11 21 22 23 ~ 25 2li 2'i 211 2930 31 32jn 311 35 36 37 311 39'IO 41 42jii3 "" ~ ~ 47 .a 49&0 51 mlsllsi Iii! 11& 5-j llll • &1 m 63 fill && && 67 &a &910 11 12 73 1 

0 1 c 
0 2 c 
0 3 c 
0 4 c 
0 & c 
0 6 c 
0 7 c 
0 8 c 
0 9 c 
1 0 c 
1 1 c 
1 2 c 
1 3 c 
1 4 c 

r ~ IOL 1''1nEfiillE 

I-

IAlclc II Ni--. 

Step 1. Llnaa 02, 03, 04, 05 wlll be executed once; 

Step 2. If FLDA la laaa than or equal to FLDB, llnaa 02, 03, 04, 

05 will be executed again untll FLDA la greater than 

FLDB. 

Figure 18-7. Design for a Do Until using the DOUxx Operation 

Do Structure 

Notice in Figure 18-7 (the Do Until) that the program first executes the 
operations on lines 02 through 05, and then tests (line 01) to see whether 
the condition is met. If this condition is not met, lines 02 through 05 are 
executed again. The program continues looping until the condition 
becomes true. Then control passes to the line immediately following the 
END operation. 

If an operation or a series of operations has to be performed a fixed number 
of times, the structure is called a Do. You indicate how many times this 
operation or series of operations has to be performed by specifying a 
starting value, a limit value, an index value, and an increment value. 

In its simplest form, the DO structure using the DO and the END operation 
codes is coded in the RPG Calculation Specifications as follows: 

Chapter 18. Techniques for Efficient Coding 18-7 



• Resulting 1 Indicators Result Field Indicators C 0 1 1 ! Ar1thmet1c 
~~ And And ,g lo:: 1uO"fM1nuOJ'z.,., 

t-- ~' ·o; Compare l .:i~ Factor 1 Operation Factor 2 Name Length &_ U >fI1 <2J1 _2 Comments 

une ~- e"' o 1~ LoOl<up 
Ii ~"'. 0 0 0 .§ I~ (Factor 2) Is 
µ: c'l~F z z ~ l:lJiigh Low qual 

3 4 5 6 7 8 9 0 112 3 415~6 7 819lll2122232"25262'12829303132~3'1353637311394041421i344454647'1149fOS1j52~f;ri66jr,6S~5859Jo6162636466666768691D717Z73~ 

o 1 12 lc • 1111 111 111-+-+- 11 
o 2 L'l 1c ~=ng Ending w:i~x Specs 
o 3 L'l 1c. • 1•lje I -+-+- -t-1-+--+-1-1-+-1--+-1-1--+-1-4--l-4--+-1-1--1-1--1-1 

0 4 ~ c • 111 
o s ~le • 111 
0 6 ~ c Ir- N ~~~:mentlng 

07~C +++111 

Figure 18-8. Coding of a Do structure on the Calculation Specifications 

18-8 

This is how the Do structure works: 

1. Set index field (result field) to starting value (factor 1). 

2. Test if the index field value is greater than the ending value (factor 2). 

If the index field value is greater than the ending value, control passes 
to the statement following the END statement. 

3. If the index field value is not greater than the ending value, the 
operations between the DO statement and the END statement are 
executed. 

4. At END, the index field value is incremented by the increment value 
specified in factor 2 on the END statement, or by 1 if the increment is 
not specified. 

5. Control passes to Step 2 above. 

Figure 18-9 is a flowchart of a Do structure, and Figure 18-10 illustrates 
coding of a Do structure in RPG Calculation Specifications using the DO 
operation code and the END operation code. 



Figure 18-9. Flowchart of a Do structure 

c ~ Indicators Result Field ~ne;i~l~~~~s 
6 I I ~ Arithmetic 
d<> ~ ;Ji 

iz. ;g f:? lu~Mlnu~ero 
~., ~~ ·u;P· ~ompore 

~ !3~ Factor 1 Operation Factor 2 Name Length £ ~- ,. 2J! <2_1 .. 2 
Comments 

Line ~I ei:ri-.-r-+--r-ic-+--,.--.--1 C ~- Lookup 
,? ~~ ~20 () () .§f:;;. CFcctor2) is 
...... 0..J z z ~ ~ fITgh Low qual 

3 4 5 6 7 8 9 a 1 2 3 4r5 6171819Zl212223~2526272829303132j:i:i)q3536373839qQ4\42~3441546474849Sl51!frl~!;<i5556575859l;o616263616566676B69707172• 

a , c 
a 2 c 
a 3 le. E~n 2 
a 4 lc. 
a s lc. 
0 6 le 
a 1 le. 
0 B le 
a 9 le. 
, a ~ 

Step 1 Index Is set equal to 1. (INDEX Is a three-digit Integer field). 

...L 1 le. Step 2 A test Is made to determine If INDEX Is greater than to 101. If yes, 

1 2 le. the statement after the END Is executed. 

, 3 c Step 3 If INDEX Is not greater than 101, ADD INDEX (1, 3, 5 ... ) to TOTAL. 
, 4 c 

- Step 4 Increment INDEX by 2. 

Step 5 Go to Step 2 above. 

Figure 18-10. Design for a Do structure using the DO and END operations 

See Structured Programming Operation Codes in this chapter and Chapter 
28 for detailed descriptions of the DOW xx, DOU xx, and DO operations. 

Chapter 18. Techniques for Efficient Coding 18-9 



Structured Programming 

Using Subroutines 

18-10 

Structured programming is an approach to design and coding that makes 
programs easy to understand, debug, and modify. Ideally, a structured 
program is a hierarchy of modules that can have a single entry point and a 
single exit point. Control is passed downward through the structure 
without unconditional branches to higher levels of the structure. 

In RPG, structured programming can be achieved by: 

• using conditional branching to subroutines 

• using groups of operations controlled by structured programming 
operation codes, such as DO, DOUxx, DOWxx, and IFxx/ELSE. 

A subroutine is a set of instructions that contains coding for a single task 
in a program, and has only one entry and one exit. An RPG subroutine 
may be used at one or more points in a program. 

The calculation specifications of the main program (if structured) consists 
mostly of EXSR or CASxx operation codes which pass control to certain 
subroutines under certain conditions. If you give meaningful names to the 
subroutines and use comments to explain the purpose and step-by-step 
operation of the subroutines, the calculation specifications of the main 
program give a clear picture of the overall logic of your program. This 
clarity is the main reason that structured programs are easy to design, 
code, debug, and maintain. 



Main or 
Calling Module 

Called Module 

• 
• 
• 
• 

I Figure 18-11. Using Subroutines in a Structured Program 

Structured Programming Operation Codes 

The structured programming operation codes are: 

• DO (Do) 

• DOWxx (Do While) 

• DOUxx (Do Until) 

• CASxx (Case) 

• IFxx (If/Then) 

• ELSE (Else Do) 

• END (End) 

where xx can be: 

GT Factor 1 is greater than factor 2. 

LT Factor 1 is less than factor 2. 

EQ Factor 1 is equal to factor 2. 

NE Factor 1 is not equal to factor 2. 

Chapter 18. Techniques for Efficient Coding 18-11 



18-12 

GE Factor 1 is greater than or equal to factor 2. 

LE Factor 1 is less than or equal to factor 2. 

Blanks Factor 1 is not compared to factor 2 (unconditional execution). 
This is valid for CASxx operation only. 

The IFxx operation allows a group of calculations to be executed based on· 
the results of comparing factor 1 with factor 2. 

The CASxx operation causes branching to a subroutine based on the results 
of comparing factor 1 with factor 2. 

The DO operation allows an operation or a group of operations to be 
performed a fixed number of times. You indicate the number of times you 
want these operations to be performed by specifying the starting value 
(factor 1), the limit value (factor 2 ), the index value (result field), and the 
increment value (factor 2 of the associated END operation). 

The DOWxx and DOUxx operations allow a group of operations to be 
executed, or repeated one or more times based on the results of comparing 
factor 1 with factor 2. 

The group of operations that begins with a DO, DOU xx, DOWxx, or IFxx 
operation is called a do group. A CAS group can consist of CASxx 
operations only. Each do group and CAS group must end with an END 
operation. 

See the Structured Programming Operations section and the descriptions of 
the individual structured programming operation codes in Chapter 28 for 
more information. 



Overlaying Storage 

A large program using most or all of the available storage can slow system 
performance. When this occurs, you can change the program by using the 
overlay linkage editor (OLE) to overlay storage, thereby freeing storage 
that can be used by other programs. 

There are three ways to access OLE: 

• Choose the LINK option on the RPGONL, RPGC, or AUTOC procedure 
(see Chapter 3 for more information about these procedures). 

• Use the OLINK procedure. For information about the OLINK 
procedure, see the Overlay Linkage Editor Guide, SC21-9041, and the 
System Reference manual, SC21-9020. 

• Use the OLE control statements. For information about the OLE 
control statements, see the Overlay Linkage Editor Guide, SC21-9041. 

To enable OLE to create overlays, you should determine the' proper value to 
be specified for the program size. First, compile your program without 
specifying the program size (leave columns 12 through 14 of the control 
specifications or the Override size-to-execute option in source parameter on 
the RPGONL, RPGC, or AUTOC procedure blank). In this case, RPG 
assumes a program size equal to the size of the region in which you 
compile. When the compilation is complete, check the OLE storage usage 
map (Figure 18-13). If storage is not overlaid, recompile the program with a 
program size smaller than the main storage size shown in the OLE storage 
usage map. 

OLE divides the program into segments. Each segment can run without the 
entire program being in main storage at the same time. There are two types 
of segments: the root segment and overlay segments. In some cases OLE 
will not generate overlay segments, and the entire program will be stored in 
the root segment. 

The root segment contains constants, data, and codes used frequently while 
the program is running. For this reason, the root segment always remains 
in main storage. If the overlay segments are generated, the root segment 
can call routines in the overlay segments, and it can be used by routines in 
the overlay segments. The overlay segments contain the major routines of 
the RPG program. Routines in these segments can be called by the root 
segment or by other routines in the same overlay segment. 

Chapter 18. Techniques for Efficient Coding 18-13 



Memory Resident Overlays (MRO) 

Areas of Main Storage 

18-14 

Programs that use particular overlays repeatedly may benefit from the use 
of memory-resident overlays (MRO). When MRO is not used, (NOMRO), 
only a single overlay can be maintained in memory at any given time. Each 
call of a new overlay involves a disk load, and if demands on your system 
have caused disk queueing to occur, program performance will suffer. 
When MRO is used, overlays are maintained in memory for as long as the 
system has space available, and program performance is less likely to be 
affected by disk queues. Other factors must be considered, however. 

Overlays are linked on 256-byte boundaries when MRO is not used 
(NOMRO), and on 2K boundaries when MRO is used. Consequently 
programs that fit into a given region when MRO is not used (NOMRO), may 
not fit when MRO is used. If this occurs, you should do one of the 
following: 

• Increase the region size 

• Rearrange the overlay structure (see Reducing the Program Size further 
in this chapter). 

• Not use MRO. 

If your system is running higher priority jobs that require memory holding 
your unused overlays, these will be overwritten. 

To make use of the performance advantage possible with MRO, your system 
should have sufficient memory to contain at least two overlays, and the 
over lays should be used by the program more than once. 

Main storage is divided into two main parts: the root area and the overlay 
area. The root area contains the root segment and the overlay fetch 
routine. The overlay fetch routine controls the loading of the overlays into 
the overlay area. The overlay area contains the overlay segments currently 
needed by the root segment. 

Some programs using overlays require an additional part of main storage 
called the system/coresident overlay area. The system overlay area 
contains system input/output modules. The coresident overlay area 
contains user modules that do not call modules in the system overlay area. 

Figure 18-12 shows how OLE breaks up the area of main storage into root 
area, user overlay area, and system/coresident overlay area, and the 
contents of all these areas. 



Area of Main 
Storage Contains 

Root area Root segment: 

• Fields (#FLDS) 

• Constants (#CNST) 

• Buffers (#BUFF) 

• DTFs 

Overlay fetch routine 

User overlay area One overlay segment at any given time 

System/coresident System input/output modules 
overlay area or 

User modules that are 
input/output independent 

Figure 18-12. Main Storage Areas 

Creating the Overlays 

To create overlays, OLE first determines which routines go into the user 
overlay area and which routines go into the system/coresident overlay area. 
Then OLE calculates the size of the largest user overlay and the size of the 
largest system/coresident overlay. OLE rounds off these sizes npward in 
steps of 2K bytes when memory resident overlays (MRO) are used, and in 
steps of 256 bytes (1 sector) when MRO is not used (NOMRO). OLE then 
adds the sizes of the root segment, the largest user overlay, and the largest 
system/coresident overlay. If the sum is larger than the storage size 
specified on the control specifications, the program is too large to run in 
the storage size specified. If you do not want the program to run in a larger 
storage area, you must use additional storage-saving techniques to reduce 
the program size. 

Chapter 18. Techniques for Efficient Coding 18-15 



Reducing the Program Size 

18-16 

To reduce the size of your program, it is sometimes necessary to rearrange 
the contents of the root segment and/or the overlay segments. This can be 
done using the OLINK procedure. For information about the OLINK 
procedure, see the Overlay Linkage Editor Guide, SC21-9041. 

Another way to reduce the size of your program is by trying to reduce the 
size of the root overlay segments or other overlays. First, however, you 
must identify the contents of the root segment and the largest overlay 
segments. Then you can determine whether the contents of these areas can 
be changed so that the program will fit into the storage size specified. 

Use the Overlay Linkage Editor Storage Usage Map section of the compiler 
listing to find the contents of the root area, the user overlay area, and the 
system/coresident overlay area. The OLE storage usage map (see Figure 
18-13) shows: 

• Overlay number 

• Code lengths of the overlay areas 

• Start address of the overlay areas 

All data and routines on the OLE storage usage map which are not given 
an overlay number in the Overlay Number Area are in the root segment; 
the rest are overlays. 

User overlays are identified by a U, system overlays are identified by an S, 
and coresident overlays are identified by a C. 

Note that user overlays and system/coresident overlays have different start 
addresses. 



OVEr~LAY LINKAGE E[IITOR STORAGE USAGE MAP 

START OVEF"~LAY CATEGORY NAME AND 
AI•[IRESS NUMBEm AREA ENTF~Y 

CODE LENGTH 
HEXA[IECIMAL I•ECIMAL 

0000 
010E 
02A4 
0515 
098C 
099C 
OA44 
OAB4 
OAF4 
OE104 
OBH• 
OB25 
OB3E 
OB47 
OB50 

Root OB5E 
OB6A 
OB87 
OBAC 
OBFA 
OC20 
OC28 
OC55 
OC'73 
OC7B 
OCA'7 
OCF.13 
OCFI1 
0[140 
0[148 
OIIA.,. 

Overlay Fetc'l_ ons~ 

Routine { 1000 
1079 

User 1oao 
10A7 

Overlay 1 3.on 
10'7\':i 
10f.13. 

User f ~g~~ 
Overlay 2 10~:·? 
S 3.300 ystem 190F' 

Overlay 3 1ccF~ 

Co resident 
Overlay 4 

1300 
13B9 
13C9 
13E9 
14:53 
1460 
3.490 
14AO 
14B4 
1:::;71 
159E 
15C[1 
1602 
16AF 
1719 

1 

1 
2 
2 ,, ... 
3 
3 
3 
4 
4 

4 
4 

4 
4 
4 
4 

4 
4 
4 
4 

LJ 

lJ 
lJ 
lJ 
lJ 
~1 
s 
s 
c 
c: 

c: 
c 

c 
c 
c 
c 

c 
c 
c 
c 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

21 
126 

21 
126 
126 

126 
21 
50 

21 
26 
21 

11 
21 

12t> 
21. 

3.26 

23 
24 
:?.6 
~)0 

26 
3.5 
28 
22 

RPF552 
t.Fl...DS 
t.FWOT2 
t.BUFF 
<::MISC 
@PGTS 
t.IPCF~ 
<::OPCR 
t.CNSH 
(~f'G[IM 

t.IHK03. 
t.IFU) 

@OBF~~ 

l~OBFC 

@OC05 
,::.OHK01 
t.UmF 
t.RC[II[I 

@OB66 
t.CNFL[I 
<t-IHK08 
t.Cl-INOO 

@10CE 
tIHKOA 
tSR008 
'::.Ol-11'\0A 
t.SR002 
G!F'GRI 
tIHK09 
<t-CNSTO 
tt1HK09 
OVl..FRTN 
•UNF'l.IT 

IWB09 
li!OEt3.0 
l~OF.tSl 

li!OF.101 
GIOEIO\:i 

tt1rmuT 
tmrrc 
o11>m~oo~; 

lilPGTR 
l~F'l3'l":r. 
llPIH'll 
O!F"GTX:• 
<l:OPF.i:N 
+ct .. mm 

1!10l:IE6 
>l•Sf0:001 
'lt-CHN02 

@.3. :I. 7~~ 
'il'BFW03 
tSR004 
t.SR006 
t.CHN03. 

111119 
<::SF~007 
(~PGAA 

@.F'GMC 
t.EXC01 

SYS··31~40 I Rf'F552 MODULE'S MAIN STClf~AGE SIZE IS 
8192 l)ECIMAL 

010E 
0196 
0271 
0477 
0010 
OOA8 
0070 
0040 
001.0 
0019 
OOOB 
003'~ 

oooc 
003.[I 
0073 

00~~6 

OOOEl 
004B 

0008 
002C 
oooc 
004A 
0043 
0008 
00~)[1 

oooc 
OUll. 
OOEtl. 

01f.t3. 
009[1 
004t: 
0198 
Oc!1f!F~ 

02F'O 
o:~:n1 
OOB9 
00~40 

004A 
00\':i[I 

0010 
0014 
OOBD 
005A 

003·7 
OOA[I 
006A 
OOCI• 

270 
406 
625 

:1.143 
16 

168 
1.l.2 

64 
16 
25 

8 

n 
29 

:1.15 

38 
8 

75 

8 
44 
12 
74 
67 

8 
'?3 
3.2 

465 
1'Tl 

4~43 

3.\'57 } Largest User 
76 

408 Overlay 

1 :~:;:.~ } Largest System/ 
5:;3: Coresident Overlay 
185 

48 

74 
n 

16 
20 

189 
90 

173 
1.0t. 
205 

SYS·-3133. I 0000 IS THE START CONTROL. ADDRESS OF THHl MODULE 
SYS··3132 I THE NONOVERLAY MAIN STORAGE SIZE IS 

9092 DECIMAL 
SYS·-3134 I RF'F55:~ MO[llJLE IS CATALOGED AS A LOAD MEMBER 

RPGEXL.Ut IS THE LIBRAF~Y NAME 
40 TOTAL NUMBER OF LIBHARY SECTORS 

Figure 18-13. Overlay Linkage Editor Storage Usage Map 

Chapter 18. Techniques for Efficient Coding 18-17 



18-18 

After identifying the root segment, the largest user overlay, and the largest 
system/coresident overlay, you can determine whether they contain 
routines that can be changed to reduce the overlay size. 

For each of the following routines: 

• #INPUT (input records) 

• #DETC (detail calculations) 

• #TOTO (total calculations) 

• #DEOUT (detail output) 

• #TTOUT (total output) 

you can use one of the following storage-saving techniques: 

To reduce the size of Input Records: 

• Process one or more of the input or update files as a demand file using 
the READ operation code, a full procedural file using the READ, 
READE, READP, or CHAIN operation code, or chained file using the 
CHAIN operation code. With a demand, full procedural, or chained file, 
the instructions to read the file can be moved into the total or detail 
calculation routines. Remember that total calculations are not done on 
the first cycle. 

To reduce the size of Detail or Total Calculations: 

• Use subroutine calculations. As the calculation subroutines are 
created, the compiler assigns to each subroutine a category for going 
into the overlay. The first subroutine in the calculations is assigned 
category 28. The remaining subroutines in the calculations are 
numbered consecutively 29, 30, 31, and 32. All subroutines after 
category 32 are also assigned category 32. The subroutines are placed 
into the overlay, if required, according to the assigned category. 
Category 32 subroutines go into the overlay first, and the category 28 
subroutine goes in last. You should place the most frequently used 
subroutine first in your calculations, and the least frequently used 
subroutine last. This may reduce the number of overlay or 
system/coresident overlay loads. 

In some instances using subroutines can increase, rather than decrease, 
the storage required because of the nature of the existing calculation 
routines. If one subroutine calls another subroutine, both subroutines 
must be in storage at the same time. This can increase the size of the 
user overlay area or the system/coresident overlay area and thus the 
total storage required. Therefore, do not call a subroutine from another 
subroutine if trying to reduce the size of the detail or total calculations. 

• Eliminate exception output if possible. This moves the logic for output 
operations conditioned by exception output to either total or detail 
output routines. 



• Eliminate READ, READE, READP, and/or CHAIN operations by using 
matching records and consecutive processing. This moves the logic to 
the input records routine. 

• Move part of the detail calculations to total calculations (or total 
calculation logic to detail calculations). Remember that total 
calculations are not done on the first cycle. 

• Avoid using resulting indicators to reset indicators when a SETOF or 
SETON will work. Resulting indicators use 7 bytes each while a 
SETOF or SETON operation code uses 3 bytes. 

• Use SETOF and SETON indicators in ascending order. 

• Indicator bytes start with indicator numbers that are multiples of 8. 
For example, SETOF 08, 09, 10 requires one 3-byte instruction, while 
SETOF 07, 08, 09 requires two 3-byte instructions. 

To reduce the size of Detail or Total Output: 

• Use exception output. This moves part of the output logic to detail or 
total calculation routines. 

• Move some of the output from total to detail output time, or from detail 
to total output time. This moves logic to the appropriate output 
routine. 

• Do not specify blank after (column 39 of the output specifications) for 
fields, but clear them at the beginning of detail or total calculations. 

Chapter 18. Techniques for Efficient Coding 18-19 



Specific Coding Techniques 

Load Module Size Considerations 

You should be aware that potential future changes to RPG may increase 
the size of generated load modules. This may be a concern for programs 
with load modules approaching the 64K limit. For ways to reduce your 
storage needs, see the following section. 

Storage-Saving Techniques 

c Indicators 

t-- I I 
Line 

~ .. .. z z 
3 4 5 9 10 11 12 13 14 15 16 

0 1 c INJOJlq 
0 2 c Qll't 
0 3 c 

18-20 

When OLE finds that a program is too large for the storage size specified, 
an error message is displayed. If your program is still too large after 
reducing or changing the overlays, you can use some of the following 
storage-saving techniques to reduce the main storage needed for your 
program: 

• Divide the program into separate tasks, creating a separate program for 
each task. For example, if you want to update a file and print a listing 
of the updated file, you can save storage by updating the file with one 
program and printing the listing with another program. 

• Eliminate unreferenced indicators. Eliminating unreferenced indicators 
can eliminate the instructions required to set the indicators on and off. 

• Eliminate unnecessary conditioning indicators. For example, the 
following indicator tests are unnecessary: 

Factor 1 

If only one type of input record is to be processed, the indicator 
associated with that record is always on except during the first 
detail output time. Therefore, it is not necessary for any 
calculation to be conditioned with this indicator. 
When two operations on the result field of a Z-ADD or Z-SUB 
operation are conditioned on opposite indicator conditions, one of 
the conditions may not be necessary. For instance, the N09 
condition is not required for this example: 

Result Field Resulting 
Indicators . Arithmetic 

:~ ~ Plus Minui(Zero 
Operation Factor 2 s ~ Compare Comments 

Name Length 
.. , 

1>&•<w-2 ~i 
~~ 

Lookup(Factor 2)is 

High Low F.qual 
17 18 19 20 21 22 23 24 25 26 27 128 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 89 70 71 72 73 74 

-1A IFLIDJ ~ 11B1 

~- !At-ID LID!" 11-1 n1B 

This technique might not work for certain operations if the same 
field is used as the result field and as factor 1 or factor 2. 



• Reuse calculation work areas and temporary hold areas. Once the data 
stored in these areas is used for the last time in a given cycle, the area 
is available. Reusing these areas can eliminate the need for you to 
define two or more additional areas. However, the areas must be used 
for the same type of data. 

• Reuse input field names. You can reuse input field areas by using the 
same name for fields in two or more files. This can be done only if the 
fields have the same attributes (length, alphameric/numeric, 
packed/binary) and each field is used only in the cycle in which the 
record is processed. Both files cannot be used in the same cycle. 

• Include the necessary intervening blanks when describing alphameric 
fields and constants for output. This makes the fields adjacent. There 
is a module in the RPG compiler that optimizes moves so that all 
adjacent fields and constants can be moved with one instruction instead 
of using one instruction to move each line: 

Not Optimized 

5'DAILY' 
17'TRANSACTION' 
26'REGISTER' 

Optimized 

18'DAIL Y TRANSACTIONb' 
26'REGISTER' 

• Use data structures to define the same internal storage area for 
multiple record types and to reduce the use of MOVE and MOVEL 
operations. 

• Design files so that match fields and control fields are assigned the 
same position within all record types. 

• Group calculation statements that are conditioned by the same 
indicators. When a large number of indicators are required, try to use 
GOTO or EXSR to reduce the number of indicator tests required on 
each statement. 

• Use the actual bit numbers in factor 2 when using TESTB, BITON, or 
BITOF. 

• Do not use half adjust unless necessary. 

• Try to use either factor 1 or factor 2 as the result field whenever 
possible. 

• Try to use numeric fields of the same length and with the same number 
of decimal positions. If the fields cannot be the same length, try to have 
the number of decimal positions the same. 

• Do not sequence check your records unless necessary. 

• Use OR lines on input specifications rather than multiple record lines 
because OR lines require less code. 

• Specify the fields in a record in ascending order by record position. 

Chapter 18. Techniques for Efficient Coding 18-21 



• Do not use halt indicators unless necessary. 

• Try to eliminate the use of variable indexes with arrays. 

• Avoid defining unnecessary tables or arrays. 

• Instead of defining all of the fields for an input record, only one large 
field or array needs to be defined. That field or array can also be 
defined within a data structure with all of the individual fields. This 
will save creating the code to move each field to its storage location. 
Each field will be moved implicitly when the large field or array is 
moved. This will not work for binary or packed input. 

Performance-Improvement Techniques 

18-22 

The following relatively simple program changes can significantly improve 
a program's performance: 

• If the DISP-SHR parameter is not specified on the control language 
FILE statement, block all sequentially processed indexed files and 
randomly processed indexed files (especially if the values of the indexes 
are closely related). 

• Multiplication is faster than division and can be used to divide 
(800 + 4 = 800 x .25). 

• LOKUP is usually much faster than a loop coded in RPG to find data in 
an array. The use of LOKUP should be balanced by the number of 
times the function must be performed and whether or not the LOKUP 
routine is already in the program. If LOKUP is used only once, it may 
be better to code a loop because you will use less code. 

• When blanking out an entire array that is less than 256 bytes, it is 
faster to define the array as a field within a data structure. The array 
can then be blanked out by moving *BLANK to tlie field instead of 
moving *BLANK to the array. 

• Packing and unpacking input/output data is faster than converting 
decimal to binary or converting binary to decimal. 



Storage Requirements 

Operation Codes 

This section contains the number of bytes of storage required for various 
RPG operation codes. When used with the preceding information in this 
chapter, this information helps you determine the amount of storage that 
you can save by using certain coding practices. For example, one 
storage-saving technique is to use numeric fields of the same length and 
with the same number of decimal positions. lf the fields cannot be the same 
length, try to have the number of decimal positions the same. 

Figure 18-14 shows that if factor 1, factor 2, and the result field of an ADD 
operation all have a different number of decimal positions, the operation 
requires 27 bytes. However, if all the fields have the same number of 
decimal positions, the same ADD operation requires only 15 bytes. 
Uniformity of field lengths saves main storage not only for ADD and SUB, 
but also for most of the other arithmetic operations as well. 

~-~~--,,-,dr-ca-lo-rs- -~---------i ·-----......-., ·--,...,...._·~-·---,--··'······~-R·-.-,u-lt -fie-.ld---~~-R,-oul-fol-9 ~--··-----·,-·~·w~~-__, 
t-·~~~--~-< r~lnd~i•=ato~''--t c 

Arithrnetic 

_f, i" PlusJ~inuslZero 
·g ._. Compartl 

Name Length ~ i > 2 1 < ~1 = 2 

b 0 0 -~ ro . r2J1s 
z z .;!. ~ :I: Migh l~f~W F.qua! 
s 10 11 12 n 14 11> 1a 11 111 19 20 21 22 n 24 25 26 21 ~~ 29 30 Jt n 33 34 35 J6 J"l JS J9 40 41 42 43 44 4!i 46 41 48 49 so &1 s2 5z 54 s& ~ s1 ss 59 60 61 s2 63 64 ss 66 ti~ 66 69 10 11 n 13 14 

,_ i ..!.. .!· Tr .. .r-J:=r~:.r.::r:.r.:::_rrr1TI_.-·111 ...... L.L __ ,._!_.J_ __ '::e!._!. 

t----i 

linP. 

3 4 5 

0 1 c 

I Factor 1 Factor 2 Operation 

1-1--+-I-+-+-+--+-• ·-+-i·--+--+-t--t--+-t-+-+--1 
0 2 c Assume that FLD1 is 5 positions long and has 2 decimal positions. 
0 3 c Assume that the field INPUT is 4 positions long and has 1 decimal position. 
0 4 c 
0 5 c 
0 6 c 
>-+-+-+-+~--+--+-t--+--+-t-+-+ +--+-+-·+-+--+--<-+-+-<-+-+-l--+-+-->--+-+--+--+-+-+--+--.. -+-+-+·- ·- ·--t--+-+·+-+-+-t-+-+--lt-t--+-1r--t-+-t·-t-+-t--t-+-t-+-+-tr--t-+-l-i 

0 7 c 
0 B c l-+-1--1-++-t-+- ,;-;.-'-.;....;_...;_;....;....-.;c_;_..:_;__;_.:.....;. • ..;_"-"--'--'-'--'-'-"-..;....;....;..""-'"...;-"'-'--'--"-'--'--;.....;...-'-'....-.."---·--~.1-r-+-+-1r-++-t-+-+-+-I 

Assume that FLD1 and INPUT are both 9 positions long and have 3 decimal positions. 0 9 c 
1 0 c 
1 1 c "" [IN~I UT R IL n ffi3 -
1 2 c J >-+-+-t-+--+-->--+-+-· ~- - - I- -·- -- +--< -·+-+-+-<--+-· ·- J_ ···-··,··· -- --1"-···t---· ··+ - .. +-+--· 

Figure 18-14. Amount of Storage Required for ADD Operation 

The table below shows how many bytes of code the compiler generates for 
each operation. The base number refers to the number of bytes generated 
for an operation code itself, before any additional specific case bytes are 
generated. Total number of bytes = base bytt>s + specific case bytes. 

Chapter 18. Techniques for Efficient Coding 18-23 



Operation Specific Case Bytes 

ACQ lnline calculation code 12 

Subroutine 370 
I------· 

ADD Factor 1 is the same field as the result field. Factor 6 
1, factor 2, and the result field all have the same 
number of decimal positions. 

t-· .. ---
Factor 2 is the same field as the result field. Factor 6 
1, factor 2, and the result field all have the same 
number of decimal positions. 

Factor 1, factor 2, and the result field all have 15 
different lengths. Factor 1, factor 2, and the result 
field all have the same number of decimal positions. 

Factor 1 is the same field as the result field. Factor 27 
2 has more decimal positions than the result field. 

Factor 2 is the same field as the result field. Factor 27 
1 has more decimal positions than the result field. 

Factor 1 is the same field as the result field. Factor 18 
2 has more decimal positions than the result field. 
Half-adjust Is specified. 

Factor 2 Is the same field as the result field. Factor 18 
1 has more decimal positions than the result field. 
Half-adjust is specified. 

Factor 1 Is the same field as the result field. Factor 18 
2 has fewer decimal positions than the result field. 

Factor 2 Is the same field as the result field. Factor 18 
1 has fewer decimal positions than the result field, 

Factor 1 has the same number of decimal positions as 23 
factor 2. Factor 1 and factor 2 have fewer decimal 
positions than the result field. 

Factor 1 le the same field as the result field. The 27 length of factor 2 minus the number of decimal 
positions for factor 2 is longer than the length of 
factor 1 minus the number of decimal positions for 
factor 1. 

Factor 2 Is the same f.leld as the result field. The 27 
length of factor 1 minus the number of decimal 
positions for factor 1 is longer than the length of 
factor 2 minus the number of decimal positions for 
factor 2. 

Factor 1 is the same field as the result field. The 35 
length of factor 2 minus the number of decimal 
positions for factor 2 is longer than the length of 
factor 1 minus the number of decimal positions for 
factor 1. Half-adjust is specified. 

Factor 2 is the same field as the result field. The 35 
length of factor 1 minus the number of decimal 
positions for factor 1 is longer than the length of 
factor 2 minus the number of decimal positions for 
factor 2. Half-adjust is specified. 

I-· 
All other combinations without half··-adjust specified. 27 

All other combinations with half-adjust specified. 35 

18-24 



Operation Specific Case Bytes 

BITOF 4 

BITON 4 

CAS If there is only one CAS in the group. 4 

First CAS in a multiple CAS group. 16 

Last CAS in a multiple CAS group. 4 

CAS in a multiple CAS group, other than first or last. 11 

Factor 1 and factor 2 are numeric. Factor 1 and factor 10 
2 have the same number of decimal positions. 

Factor 1 and factor 2 are numeric. Factor 1 and factor 18 
2 do not have the same number of decimal positions. 

Factor 1 and factor 2 are alphameric. Factor 1 and 6 
factor 2 are the same length. 

Factor 1 and factor 2 are alphameric. Factor 1 and 22 
factor 2 are not the same length. 

Factor 1 and factor 2 are alphameric. Factor 1 is a 26 
table. 

Alternative collating sequence (add these bytes to the 10 
appropriate CAS listed previously). 

CHAIN With external indicator. 6 
(base = 16) 

When factor 1 has a variable index. 11 

When key is not packed. 9 

When key is packed. 18 

When factor 1 is a table element. 6 

When key is a record number. 5 

When key is a record number and RECNO is specified. 13 

When record-not-found indicator is given. 12 

When record-not-found indicator is not given. 15 

Wher the file is a full-procedural file. 3 

COMP Factor 1 and factor 2 are numeric. Factor 1 and factor 10 
2 have the same number of decimal positions. 

Factor 1 and factor 2 are numeric. Factor 1 and factor 18 
2 do not have the same number decimal positions. 

Factor 1 and factor 2 are alphameric. Factor 1 and 6 
factor 2 are the same length. 

Factor 1 and factor 2 are alphameric, Factor 1 and 22 
factor 2 are not the same length. 

Factor 1 and factor 2 are alphameric. Factor 1 is a 26 
table, 

Alternative collating sequence (add these bytes to the 10 
appropriate COMP listed previously), 

DEBUG lnline code 11-20 

Subroutine 1111 

Chapter 18. Techniques for Efficient Coding 18-25 



Operation Specific Case Bytes 

DIV lnline calculation code 

The number of decimal positions in factor 1 minus the 23 
number of decimal positions in factor 2 is the same 
length as the number of decimal positions in the result 
field. 

The number of decimal positions in factor 1 minus the 
number of decimal positions in factor 2 is not the same 

27 

length as the number of decimal positions in the result 
field. 

The number of decimal positions in factor 1 minus the 
number of decimal positions in factor 2 Is the same 

31 

length as the number of decimal positions in the result 
field plus 1. Half-adjust is specified. 

The number of decimal positions In factor 1 minus the 
number of decimal positions In factor 2 is not the same 

35 

length as the number of decimal positions In the result 
field plus 1. Half-adjust is specified. 

Subroutine 92 

DO 20 

DOU Factor 1 and factor 2 are numeric, Factor 1 and factor 10 
(base = 7) 2 have the same number of decimal positions, 

Factor 1 and factor 2 are numeric. Factor 1 and factor 18 
2 do not have the same number of decimal positions, 

Factor 1 and factor 2 are alphamerlc. Factor 1 and 6 
factor 2 are the same length. 

Factor 1 and factor 2 are alphameric, Factor 1 and 22 
factor 2 are not the same length. 

Factor 1 and factor 2 are alphameric, Factor 1 is a 26 
table. 

Alternative collating sequence (add these bytes to the 
appropriate DOU listed previously), 

10 

DOW Factor 1 and factor 2 are numeric. Factor 1 and factor 10 
(base = 4) 2 have the same number of decimal positions. 

Factor 1 and factor 2 are numeric. Factor 1 and factor 18 
2 do not have the same number of decimal positions. 

Factor 1 and factor.2 are alphameric. Factor 1 and 6 
factor 2 are the same length. 

Factor 1 and factor 2 are alphameric. Factor 1 and 22 
factor 2 are not the same length. 

Factor 1 and factor 2 are alphameric. Factor 1 is a 26 
table. 

Alternative collating sequence (add these bytes to the 
appropriate DOW listed previously), 

10 

ELSE 4 

END (CAS) 0 

END 
(IF/ELSE) 

0 

END (DO) 10 

18-26 



OpAration 

VC'·_-l 
/\ \._} ~ \ 

!\1\!-ii ZC) 

VVit!''OL_:t ar1 8><tn··r-J.1 :~1dicato1 



Operation Specific Case Bytes 

MLHZO See 
Figure 
18-11 

MLLZO See 
Figure 
18-11 

MOVE See 
Figure 
18-11 

MO VEA lnline calculation code. 14 

Subroutine. 367 

MOVEL See 
Figure 
18-11 

MULT lnline calculation code. 23 

Half-adjust is specified. 27 

Subroutine 106 

MVR Factor 2 and the result field have the same number of 5 
decimal positions. 

Factor 2 and the result field do not have the same 9 
number of decimal positions. 

NEXT lnline calculation code. 12 

Subroutine. 253 

POST lnline calculation code. 8 

Subroutine. 448 

READ With an external indicator. 6 
(base= 29) 

With EOF indicator and BSCA file. 6 

With EOF indicator, but without BSCA file. 12 

With BSCA file, but without EOF indicator. 24 

Without BSCA file and without EOF indicator. 18 

With RAF limits. 6 

With WORKSTN file and with error indicator. 15 

When file is a full-procedural file. 3 

When RECNO is specified. 13 

READE With external indicator 6 
(base = 51) 

When factor 1 has a variable index 11 

When key is not packed 9 

When key is packed 18 

When factor 1 is a table element 6 

READP With external indicator 6 
(base = 47) 

When RECNO is specified 13 

18-28 



Operation Specific Case Bytes 

REL lnline calculation code. 12 
--·---·" 

Subroutine. 408 
··---··-·-------- _______ ,, ...... -----·- ·----··"····------. --·--------·--···"·- . ... . .... ' -·--- ---
SETnn With ERASE function. 4 
(base = '21) ·'·-"··-··-· ··--·---··----""""''"--- -·- ·---·-····-·-·-------~---·· m _,,_, ....... i-· '" 

Factor 1 is numeric. Factor 1 is used wiU1 a resulting 
indicator and the field length is more than t 8 

-----·-·----·------ -----· --·· 
Factor 1 is numeric. Factor 1 is used with a resulting 6 
indicator and the field length is equal to l 

' 
SETnn/KEYnn See KEYnn operation for code in addition to base. If 
combination factor 1 code appears on both SET and KEY instructions, 
(base= 27) both counts should be included. ---------r------------------ , .... -.,.----·---f ETLL 15) When key is packed. 12 
base = 

-SETON (eacr 
,.,,,_ ""~' -~·"-~·-~-~·-"'' ---· ------" . ••·•··•••>'••~~"'~YW'> '"'"-•" ·------~-------·-,-~.-• .. • --~, 

3 
indicator set 
on) 

SETOF (each 
indicator set 

3 

off) 
"" 

SHTDN 22 

SORTA lnllne calculation code, 7 

Subroutine. 464 

SORT lnline calculation code, 

Non array 12 

Array 46 

I Subroutine 371 

SUB Factor 1 Is the same field as the result field. Factor 6 
1, factor 2, and the result field all have the same 
number of decimal positions. The length of factor 1 is 
greater than or equal to the length of factor 2. 

Factor 1 is not the same field as the result field, i5 
Factor 1, factor 2, and the result field all have the 
same number of decimal positions. 

Factor 1 is not the same field as the result field. 23 
Factor 2 and the result field have the same number of 
decimal positions. 

Factor 1 is not tt1e same field as the result field. 21 
Factor 2 and the result field have the same number of 
decimal positions. Half--adjust is specified, 

··I 

All other combinations without half-adjust specified. 31 

All other combinations with half-adjust specified. 39 

Chapter 18. Techniques for Efficient Coding 18-29 



Operation Specific Case Bytes 

TESlB Test bit off. 10 

Test bit mixed. 17 

Test bit on. 10 

Test bit off and mixed. 23 

Test bit off and on. 23 

Test bit mixed and on. 23 -
Test bit off, mixed, and on. 29 

TESTZ lnline calculation code. 

The result field is a field. 9 

The result field is a table. 21 

Subroutine 43 

TIME Time only. 21 

Time and system date. 21 
--

XFOOT Factor 2 and the result field have the same number of 9 
decimal positions. 

Factor 2 and the result field do not have the same 13 
number of decimal positions. 

i--- --!------' 

Z"'ADD Factor 2 and the result field have the same number of 6 
decimal positions. 

The number of decimal positions in factor 2 is more 14 
than the number of decimal positions in the result 
field. 

The number of decimal positions in factor 2 is more 18 
than the number of decimal positions in the result 
field. Half-adjust is specified. 

-
The number of decimal positions in factor 2 is less 18 
than the number of decimal positions in the result 
field. -

Z--SUB Factor 2 and the result field have the same number of 14 
decimal positions. 

Factor 2 and the result field do not have the same 18 
number of decimal positions. 

Factor 2 and the result field do not have the same 22 
number of decimal positions. Half-adjust is specified. 

18-30 



"' "' "' "' ~ ~ ~ ~ 
I ti /j I 4. "'Ii "-'fj 

" ~ ~ ~ ~ 
l l J l 

$ B q, B ..., ...., ..., ...., 
·1 IJ v ~ ~ ~ ~ 'S 

4$! -~ (> 4.$! 4$! 
" :co ~ ~ q, ~ ~ ;:; ~! ;:; ;:; 

( 

Field to Fii;ld 6 26 10 6 6 6 20 20 20 20 

Array to Anav 42 55 45 42 42 42 42 42 42 42 

Field to Array 29 43 32 29 29 29 29 29 29 29 

Table to Array 35 53 38 35 40 35 35 41 40 35 
"-----·~~ 

_,__ .. __ 
Array, Variable 40 66 43 40 52 40 40 52 52 40 
Index to Array 

Array, Variable 28 57 38 28 35 35 35 35 47 42 
Index to Array. 
Variable Index 

Field to Array,, 17 34 27 17 17 24 24 31 24 31 
Variable Index . _,_., ____ 
Table to Array, 20 52 33 20 24 30 30 24 36 20 
Variable Index 

Array. Variable 20 46 27 20 30 24 24 24 36 20 
Index to Table 

Field to Table 9 23 16 9 9 13 13 9 13 9 __ ,. __ ,. 
·-·~ _,.,_w_.,,_ 

Table to Table 15 41 22 15 19 19 19 19 25 15 

Array, Variable 17 40 21 17 24 17 31 24 36 31 
Index to Field 

Table to Field 9 29 13 9 13 9 9 13 13 9 

Figure 18-15. Amount of Storage Required for MOVE Operations 

Chapter 18. Techniques for Efficient Coding 18-31 



Indicator$ 

Array Processing 

18-32 

~--ic~a-to_r_s _ .. ",--, ..,...,..l _s_p_e~ase Bytes 

Conditioning Each indicator 3 
indicators -------·---------,··-·------1---------1 

Each AND type 3 
--'"-·---,--·-+-----------~~~-~~-----------+------.1 
Resulting 
indicators 
(does not 
apply to 
CHAIN, FORCE, 
LOKUP, READ, 
READE, and 
RF.ADP) 

First indicator specified 8 

r.....-.. ---··- ----+-------1 
Each additional indicator specified 3 

Array control code (initialization and processing) is created for all 
calculations except LOKUP, CHAIN, READ, and FORCE. 

Operation Specific Case Bytes 

Array Factor 1 or factor 2 is an array. 6 
initialization 

Factor 1 or factor 2 is a table. 4 

Factor 1 or factor 2 is an array 11 
with a variable index. 

Array Factor 1, factor 2, and the result 28 
processing field are arrays, 

Factor 1 and the result field are arrays, 22 
Factor 2 and the result field are arrays. 

The result field is an arr~. 16 



If a SUB operation code is specified and has the following conditions: 

• Factor 1 is the same field as the result field, 

• Factor 1, factor 2, and the result field have the same number of decimal 
positions, 

• Factor 1 and the result field are full arrays, 

• Factor 2 is a table, 

the length of object code created is as follows: 

Operation Specific Case Bytes 

Array Factor 1 is an array. 6 
initialization 

Factor 2 is a table. 4 

The result field is an array. 6 

SUB 6 

Array Factor 1 and the result field are arrays. 22 
_orocessin_g_ 

Thus, the total bytes of code created for a SUB operation code is 44 bytes. 

Whenever an array with a variable index is specified in a program (except 
with a MOVEA operation), the following are also created: 

Inline code 
Subroutine 

11 bytes 
173 bytes 

Chapter 18. Techniques for Efficient Coding 18-33 



18-34 



Part 2. Reference 

Part 2. Reference 









t:hapter H).. RP(i Progra1n Cycle 

TlHc' HPG progn1m cycle conLrols certain operations performed on each 
record. so the program determines how you can process your 
data refers to the series of operations that an 
RPG program on each record that reads. 

()verview of RP(~ Progra1n Cycle 

Each RPG program goes through the same of operations. 
'1.'h!:o has three basic 

information 

These basic steps can be divided into several substeps in which you 
can assign indicators to control when calculation and output operations 
occur. For more information on indicators, see Chapter Using 

progrnm calculates and writes data for one For example, if 
.;J customer uses three a record of 
each the 
program calculates and writes data for a scnes of related records. If a 
customer uses his charge account three times and we print only one record 
that shows the tntFl l of the three charges. we are printing one total record. 

totals ;;ire calculated and written for data accumulated from a 
group of .related called. a control group, L~ cont:rol grollp is a set of 
records all having the same information in a control field In an accounts 
receivable program, for example, you could use the customer account 
number as a control field; in an inventory program, you could use the part 
number. Each time a record is read, the program checks the information in 
the control field to determine whether it differs from the control-field 
information in the previous record. When the information differs, a control 
break occurs. A control break means that all records from a control group 
have been read and that a new group ]s starting. When all records from a 
control group have been read, the program does the operations coded for 

Ht RPG 19-1 



19-2 

that group. Data from the record that starts the new control group is not 
included in the total operations. 

To indicate which field is a control field, you one of the control-level 
indicators (Ll through L9) to that field in columns 59 and 60 of the input 
specifications. To indicate which calculations are total calculations, you 
also write this same control·Ievel indicator in columns 7 and 8 of those 
calculation specifications. Those calculations that do not have a 
control-level indicator written in columns 7 and 8 are detail calculations. 
On the output specifications, you do not use control-level indicators to 
identify detail and total records. Instead, you use a Tin column 15 of the 
output specifications to indicate a total output operation, and you use an H 
(for heading) or a D (for detail) to -indicate a detail output operation. 

The program does detail calculations and detail output operations for each 
record it reads (that is, for each program cycle) if all conditioning 
indicators are satisfied, regardless of whether it does total calculations or 
total output. Detail calculations and detail output operations occur in 
either of the following cases: 

• All total calculation and total output operations are complete for a 
control group, but the last record is not processed. 

• No total operations are to be done (the information in the control field 
has not changed). 

Figure 19-1 shows the basic steps in the RPG program cycle. Figure 19,2 is 
a flowchart for the same steps. A program cycle begins with step 1 and 
continues through step lL Then the next cycle begins again with step 1. 
Steps 7 and 8 are known as total time, and steps 1 and 11 are known as 
detail time. 



[!i) Perform 
detail 
calculations. 

[i] 
Perform 
heading or 

detail """' 
output 

Move data from 
~ record read at 

step 3 into 
processing areas. 

t 
[!] If last-record 

indicator is on, 
end of job has 
been reached. 

~Perform total 
output operations. 

' Perform total 
W calculations. 

Total 

' ' 

Detail 
Time 

' 
' - - - - I 

,' 

operations. [I] Turn off 
control-level 
and record
identifying 
indicators. 

~Read a record and 
turn on appropriate 
record-identifying 
indicator. If last 
record was read on 
previous cycle, turn 
on LR and L 1 through 
L9 indicators and go 
to step 7. 

I 
[] If no . 

go to step 6. 
~~~~~f ;reld. I 

~Turn on / /
If first control-level

0 cycle, go indicators.
to step 9.

Figure 19-1. Steps in the RPG Program Cycle

Chapter 19. RPG Program Cycle 19-3

Step 5

Turn on proper
control-level
indicators

Step 1

Start

Perform all
heading or
detail output

Step 2 ,,....------"'

Step 3

Step 8

Turn off record
identifying and
control-level
indicator•

Read a record

Do total
calculations

Perform total
output

Figure 19-2. Flowchart for the RPG Program Cycle

19-4

Step 11

Make data from
record just read
available for
processing

Do all detail
calculations

End of job

The following statements describe what the RPG program does at each step
in the program cycle. The steps are the same as those shown in Figures
19-1 and 19-2.

1
L. H the conditioning indicators are sHtisfied. the program does the

heading or detail outpnt (those lines that have Hor Din column 15 of
the outpnt

The progrnm t•n'F off all control-level and record-identifying
indicators.

3. The program
rccord-1den tj

and t1irns on the appropriate

The prug dcL·· · a control break occurred. control
L!'t-rtk ••CCtffci wlic:n the contru1 fit•ld uf the record just read differs from
the control field of the µn:'' iou,; H)Cord.)

,, !fa control break oec11rs the program turns on the proper control-level
mdicator and all control-level indicators except which is

on.

6. If this is the first the program goes to step 9.

The program dces total calculations conditioned by control-level
indicators in columns 7 arid 8 of the calculation if the

-')!1,

The program
all records

the last-record indicator is on, If it
and the program ends,

1he at the of the
in detail calculations and outpuL

i~c:i15ram il 1 l ;;:;lculations riot conditioned by
control-level mdi(ators in cDlumns 7 and 8 of the calculation
specifications) on the data from the record read at the beginning of the

program differ somewhat from the other
13efore th2 fir0t record is :read in the rst the program

lines conditioned the first-page (lP) indicator. The program also
performs any heading or detail output operations having no conditioning
indicators or all negative conditioning indicators. Heading lines printed
before the first record is read might consist of constants, page headings, or
fields for reserved words such as PAGE and UDATE. In addition, the
program bypasses total calculations and total output steps.

During the last program cycle, when no more records are available, the
last-record indicator turns on, automatically causing all control-level

19. RPG 19.5

indicators to turn on. The program performs the total calculations and
total output operations, and the program ends.

Detailed RPG Program Cycle

19-6

Figure 19-3 shows the steps in the RPG program cycle in more detail. Steps
1 and 2 are for the first record only. The program cycle, which occurs for
each record read, begins with step 3. The program cycle continues through
step 26, however, the program may branch to steps out of the actual cycle
when specified indicators are set on or off or certain conditions are met.

)>...

c

"

l'j

~

,,

y

,,
n
0

RPG

........ "tj
~

I IJq
00 = "'l

ID

.....
~
I
~

,-...
~
ID
"'l
NI

0
NI
~

0
ID
ID -ID
Q..

t:!:i
~
0
'""' '""' 0
s:
ID
(':)
~
"'l
0

IJq
"'l
ID
9
C"'.l
'<
(':) -ID

I
I

33

(Halt (operator option)

Perform LR calculation

Perform LR output

GI-------~

Perform table and array
output

39
• Close files

• Output external
indicators and display
station local data
area if specified

40

End of job

9

15

At start, read one
record from each
file except chain,
demand, and
full procedural.
Only records with
look-ahead fields

No

Set on record-identifying
indicator

1 For processing of WOR KSTN
input files, see Figure 6-10 in
Chapter 6, Using a WORKSTN
File.

Sequence error halt
{operator option)

Yes

Yes

No

Perform overflow output

24

Set MR indicator on or off

25
• Set field indicators

on or off

• Make data available
from last record
selected

26 "DETC

• Perform detail calcula
tion, also EXCPT,
CHAIN, READ, KEY,
and FORCE, if
required.

• Set resulting indicators
on or off

• Set overflow indicator
on if overflow line is
reached as a resu It of
exception output

• Perform fetch overflow
if required by excep
tion output

No

The following steps describe in detail what the RPG program does at each
step in the detailed program cycle. The steps are the same as those shown
in Figure 19-3.

1. The program reads in the external indicators and the display station
local data area, if specified, and opens all data files to be used; that is,
the files are prepared to be processed. Before the first program cycle,
data structures are blanked, and preexecution-time arrays and tables
are loaded.

2. The program writes all output conditioned by the first-page indicator
(lP). This output is written only once for each job and is not part of
the program cycle (steps 3 through 26).

3. The program writes all headings and detail output whose conditions are
satisfied. This output includes specifications that are conditioned by
the overflow indicator if the overflow routine has been fetched.

4. The program determines whether the overflow line was reached during
detail calculations in the previous cycle or when heading and detail
records were written in the current cycle. If the printed output from
the program reaches the overflow line, the overflow indicator is set on.
Otherwise, the indicator is set off unless the overflow routine was
fetched in step 3.

5. The program tests the halt indicators. If the halt indicators are off, the
program branches to step 6. If the halt indicators are on, the program
stops once for each halt indicator that is on. Every time the program
stops, you select one of three options:

a. Continue (the program returns to step 5 to test for other halt
indicators)

b. Controlled cancel (the program branches to step 35)
c. Immediate cancel (the program branches to step 35)

6. The program sets off all record-identifying indicators and indicators
with the 2-character entries iP, Ll through L9, and Hl through H9.

7. The program determines whether the last-record indicator (LR) is on. If
it is on, the program branches to step 27.

8. The program determines whether KEYBORD is specified as the device
for the primary file, or whether no primary file is specified. For either
condition, the program branches to step 18.

9. The program reads (and translates, if necessary) the next input record.
At the beginning of processing, one record from each input file (except
forced files, CHAIN files, full-procedural files, and DEMAND files) is
read. If the file has look-ahead fields, the file is read only on the first
cycle. After that, only records with look-ahead fields are identified. If
this is a WORKSTN file and the SA VDS or IND option is specified, the
common SAVDS or IND area is moved to the active display station's
SA VDS or IND hold area. The next record is accepted, and the current
display station's SA VDS or IND area is moved from its hold area to the
common SA VDS or IND area.

Chapter 19. RPG Program Cycle 19-9

19-10

10. The program tests to determine whether the record is an end-of-file
record. If it is an end-of-file record, the program branches to step 12.

11. If the record is not an end-of-file record, the program determines
whether the input records are in the order specified on the input
specifications sheet. If the order is incorrect, the program branches to
step 33. The program also branches to step 33 if input records are not
specified in order and the record cannot be identified.

12. If end-of-job conditions have been met, the program branches to step 27.
All files for which an E is specified in position 17 of the file description
specifications must be at end of file.

13. When more than one input file is used, the program must select the next
record to process and branch to step 28,

14. If there is only one input file, no record selection is needed. The
program determines whether sequence checking is requested. If so, the
program branches to step 31.

15. The program sets on the record-identifying indicator specified for the
current record type. Data from the current record type is not available
for processing until step 25.

16. If the record contains control fields, the program determines whether a
control break has occurred. (A control break occurs when the contents
of the control field are not equal to the contents of the previously
stored control field.) If a control break has not occurred or if control
fields are not specified, the program branches to step 18.

17. If a control break has occurred, the program sets on the control-level
indicator showing the condition. All lower control-level indicators are
also set on.

18. The program determines whether the total time calculations and total
time output should be done. If no control-level indicators are specified
on the input specifications, the totals are bypassed only on the first
cycle. If control-level indicators are specified on the input
specifications, totals are bypassed until after the first record containing
control fields is processed. Totals are always processed when the
last-record indicator (LR) is on.

19. The program does all calculations conditioned by control-level
indicators (in positions 7 and 8 of the calculation specifications) and
sets resulting indicators on or off as specified. If the last-record
indicator (LR) is on, calculations conditioned by LR are done after
other total calculations. File translation, if specified, is done for
exception output and for CHAIN, READ, READE, READP and KEY
operations. Fetch overflow is done if it is required by exception output.
If the overflow line has been reached because of the exception output,
the overflow indicator is set on.

20. The program writes all total output that is not conditioned by an
overflow indicator. The program determines whether an overflow

condition has occurred. If an overflow condition has occurred at any
time during this cycle, the overflow indicator is set on. If the
last-record indicator is on, output conditioned by LR is written after
other total output. File translation, if specified, is done for total
output. Fetch overflow is done if required.

21. The program determines whether the last-record indicator is on. If the
indicator is on, the program branches to step 38.

22. The program determines whether any overflow indicators are on. If no
overflow indicators are on, the program branches to step 24.

23. The program does all output operations conditioned by a positive
overflow indicator (no N before the indicator). File translation, if
specified, is done for overflow output.

24. The program sets on the matching-record (MR) indicator if this is a job
that processes more than one input file and if the record to be processed
is a matching record. Otherwise, the matching-record indicator is set
off.

25. The program sets the field indicators on or off as specified. Data from
the last record read and from specified look-ahead fields is made
available for processing. For a WORKSTN file only, the program sets
off command-key indicators (KA through KN, KP through KY). If you
press a command key for the WORKSTN file being processed, the
program sets that command-key indicator on.

26. The program does any calculations not conditioned by control-level
indicators (in columns 7 and 8 of the calculation specifications), and
sets resulting indicators on or off as specified. The program translates
files for exception output and for CHAIN, READ, READE, READP,
FORCE, and KEY operations if specified. Fetch overflow is done if it is
required by exception output. If the overflow line is passed because of
the exception output, the program sets the overflow indicator on.
Processing continues with step 3.

27. The program sets on the last-record (LR) indicator and all control-level
indicators (Ll through L9), and processing continues with step 19.

28. If a file was forced or if NEXT was specified, the program selects the
next record in that file for processing, and the program branches to step
15.

29. If a record with no match fields is found in a normal input file that is
not at end of file, the program selects the record for processing, and the
program branches to step 15.

30. When match fields are specified, the program selects the normal file
with the highest priority matching record field. If two or more files
have equal and highest priority matching record fields, the highest
priority file is selected. (The primary file has the highest file priority,
the first specified secondary file is next, and so forth.)

Chapter 19. RPG Program Cycle 19-11

19-12

31. The program compares the match field value with the match field value
of the last record. If it is in sequence, the record is accepted, and
processing continues with step 15.

32. The program stops because a file with match fields is out of order. The
operator's options, indicated in step 34, are to bypass the record (read
the next record from the same file) or to cancel the job.

33. The program stops because a record type was out of order or because a
record was unidentified.

34. The program tests the operator's decision either to bypass the record
that caused the error condition (branch to step 4) or to cancel the job.

35. If the operator chooses to end the job by a controlled cancel, the
program does steps 36 through 40. If the operator chooses an immediate
cancel, the job ends.

36. The program does all operations conditioned by the last-record (LR)
indicator.

37. Same as 36.

38. The program writes any tables or arrays for which a filename entry is
specified on the extension specifications (columns 19 through 26).
Output tables or arrays are translated, if necessary.

39. The program closes all the files it used and writes the external
indicators and display station local data area, if specified.

40. End of job occurs.

Column 26
Columns 27-36

Columns 38-40
Column 41 UP Fo:rms
Column 42
Column 43
Column 44
Co.lumn 45
Columns 46-56

2D<Ll

Ch.aoter 20,

Chapter 20. Control Specification

'!·r~.~-· ,_.,, __ 1!1!!~'~ ~}P.·e!.i1 1 ·;d1'Hl dP...:ci·1b{ 1 ~ >(nu· orug~·an1 .atHi ttle cn1nuuter s'ystem

to the H.l:'U ,_·ornpilt•t Unt' C>.>tiiroJ ~'iJt'Ui.icdtlu!l 1:-; iu.r e< .. :)1 suurce

If you omit thP cuntrol specificatiun from the somcn program, the
cr»nh~s a blank nmtrol

Chapter 20. Control Specification 20-1

i'~~_g
=:S=F=~= lflternat1onaJ Business Machines Corporation

RPG CONTROL AND FILE DESCRIPTION SPECIFICATIONS GX;n9092 UM/050*
PmH~d U.SA..

p,ogrnm __ -.-----·=r Keying

~'-;Q_,_"_m_m_" _________ J~o-'_''------~--'-"'_"_"c_11_o_n ~-K-"-~--'-~--'--'--'--'--'---·-----
Graph•c Ca1d Ele.ctw Numtl€!

1 2

Page[Dof_

75 76 77 78 79 80
Program ITI-IIIJ-· -
ldent1t•GH•fm

Control Specifications
r---~--~~.---~~-~-r--.--.-,--,,---~7~~--------~.--~~~~-.-~~-,--,~~F-ocTt_h'r'-''-'d~•-ntT"-"Tfo_'T' . .c'Yr"--em, refer to the RPG reference manual for that system.

H ~
c

f----1 Jl

Lme

Size to ! Comp1le

j

Size to
Execute

Number ;;

of Print o
Potl"o"' j

'"

g 0

c ~ - 0
Reserved ~ Ji " ~

~
. L>

u ! 0 " "' ' 1 ~ g
] 0

" eo u:

"' z

File Description Specifications

0

i ~ ~ " ~ 0 _;:;

u
0

~ ~ ~ §; I 0 " 0 " g ~ ! _,
u .t £ 15] ll

0

~
u

~ ~ M j 0 0 3
~ " 2 Ul i3 "'

For the ~a;lid entries tor a sy~tern, refer to the RPG reference manual for that system
r--F-~r-------~-F,-lc_T_y_pe----------.--M-o.-dc---o-,·-P,-o-ces:~,-,,--------r-.-----~--- ----------·-"-r-r-------·_,------- ----~---

L I f K --Fc-c-:--,_. Extent Exit

t------1 ~:s~~n::::-0------ 0;_~_~1c1_0~)-d ~:_,~_"_1,:,;~~ 0 tor DAM

.--------·-- Record Address Type ...J Symbolir: ~ Name of r--· -·~
Sequen(,-e r--TY""'~1-;;-~ Device Lobel F-x1t --··"---·

File Format N Or;niiatrun Vr ~ LlevPCe ~
w 0 Add · 1 A u Storage fnrfox

Line

File Add1t1on/Unordered -----
Number ot Tracks

Filename

for Cylinder Overflow

Number cf i= xtents ----
TdµC

Rewind

0 tt:w~,~na rea §

§ ~ ~ ~:~:~h ~=::~ ~ ~ ~ Omli~;;;! Cm''"'""'"" Lm" z
~ ~ w ~ lL External Re~rd Name~ := Jl~~~!~ h-~:·;:,~·--··--· ~--·~::-- ~ ~

i:'i1e
Cond1t1011
Ul-UB,
UC r'---

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40_~~1-iL.~L~ 45 4b 47 48 49 o.o 51 52 53 t>4 ~ti 56 57 OR 59 60 61 62 63 64 65 66 67 68 69 70 71 72 13 14

0 3 j-j -I +-+-- 1--1 -t-+~ t- ·I- .. TP J t II f\1 I -
1t .. j. - - ~ l -1 -j t-t--i-+--

t-t-t-0 4 --.-,--t-t--J--i-;---t-t-t--·-i--;---+--t--f---+--J--t- t ' 1-t t + L t 1 j 11 I i j I t-- 1--1--

:: H-+-+-+-~-+--+-+-+-+- -++ -H-+- __ j + ~--1 jt- H li I j ·: ~ "' ~-::::''
>-:-+-:1-f-Ft--f--t--+--+-,__,-+ +l- -i---t- t-~1-~ -t1-r r I_~ ~1-11 +-- t--~-:~++-+-

0 2
I-+-

t-t-t--t-+-t-t-+-+-+·+-+-1--11--l-+-t---t-+-t-t-+-t--+--+--+--l-1--+-+-+--+--+-+ -l-j -t-1- - --- H- t - - Li---t-+---H -+-+-+-t-·i--t---t--+--+--t---l--i
o 9 F I I

1-·1-t--t-+-l-1-+-+-+-+·t-H---t--.-·-i--+--T-+-t--t--t---+-r-1r-1-- -t--t-1 -t-- +- -j 1 -r-- - +- ·· t-- +-+---+-+ +-1
1 o F j

F
t-+--+--+--+--t--!--+-+-+--+-+-,__,>-<-+-+-+-+- -f- - +-+-+- +-t-+-- --t+- - j,.

F fl Il- 1 "
ll it ot 69 99 £9 99 99 ts £9 l9 l9 09 &:::; a.:; t.; 9S o:;;.; ~ c.:; z:c:; 1o:;; OG 61> at> tv 91> G'7 ""ti> tt> 11> ov 6£ RE Lr m: o:;;, w u: -'.':f 1r or: 6,'.'. az tl 9?. qr, nu i.'.<': tr: rH "I 8 Lt 9,""""Si1>(' n tr ITT" H

~Number of sheets per pad may vary slightly.

Figure 20-1. RPG Control and File Description Specifications

20-2

Columns 1-2 (Page)

Entry Explanation

Blank No page number is used.

01-99 Page number.

Use columns 1 and 2 in the upper right corner of each sheet to number the
specifications sheets, in ascending order, for your job. You can use more
than one of each type of sheet, but keep all sheets of the same type
together.

Columns 3-5 (Line)

Entry Explanation

Blank No line number is used.

Any numbers Line numbers.

Use columns 3 through 5 to number the lines on each page. Columns 3 and
4 are preprinted on each sheet so, in most cases, line numbering is already
done.

Page and line numbers are optional entries and are not required to
successfully run an RPG program. Columns 1 through 5 are checked for
ascending order, and RPG prints an S in the left margin of the RPG listing
for any statement that is out of order. If you use SEU to enter the source
program, you can request that SEU put the statements in order.

The control specification line is always line 01. Any other lines on the
sheets can be skipped. The line numbers used need not be consecutive, but
should be in ascending order.

Column 6 (Form Type)

An H must appear in column 6 to identify this line as the control (header)
specification.

Column 7 (Comments)

Entry Explanation

* Comment line

Use an asterisk in column 7 to identify the line as a comment line. Use
comments throughout your program to document the purpose of a certain

Chapter 20. Control Specification 20-3

section of coding. You can use any character in a comment line.
Comments are not instructions to your program; they only document your
program.

Columns 7-9 (Size to Compile)

Columns 7 through 9 are not used to specify the storage size. Leave them
blank. Any entry in these columns is ignored by the compiler. The
program is compiled in the available storage specified by the control
language REGION statement. If no region size is specified, the default
region size for the session is used. If the region size is less than 18K, the
compiler uses 18K because that is the minimum size required to run the
compiler.

Columns 7-12 (/EJECT)

Entry Explanation

/EJECT The specifications following this entry are to begin on a new
page of the compiler listing.

The /EJECT specification is not printed on the compiler listing.

Columns 7-12 (/TITLE)

20-4

Entry Explanation

/'l'I'rLE 'l'he heading information (such as a title or security
classification) that follows the /TITLE entry appears at the top of
each page of the compiler listing. The heading information is
entered in columns 14 through 74.

A program can contain more than one /TITLE statement. Each /TITLE
statement provides heading information for the compiler listing until the
next /TITLE statement is read. To print on the first page of the compiler
listing, a /TITLE statement must be the first statement read. Information
specified by the /TITLE statement is printed in addition to compiler heading
information.

The /TITLE statement causes an eject to the next page before the title is
printed. The /TITLE statement is not printed on the compiler listing.

Columns 7-14 (/SPACE)

Entry

One blank must come before the

next
remaining on the current page, the next
nevr p:i.ge l\CJ<'.

Blank The program

J3

p A

program rn
if column 1
'halts.

lS

the xelative

their attributes, unreferenced field names, diagnostics, and a main-storage
usage map. The main-storage usage map lists the identification, the start
address, and the size of each segment of code in the program; defines the
amount of main storage required for execution; and lists the number of
library sectors required for the program.

The partial listing includes a prolog, the source program, indicator-usage
information, diagnostics, and a main-storage usage map that lists the
amount of main storage required for execution and the number of library
sectors required for the program. The partial listing does not include array
and table information or field information.

If you enter B in column 11, a prolog is printed along with the following
information from the overlay linkage editor: the amount of main storage
required to run the program, the starting address of the program, and the
number of library sectors required for the program.

Columns 12-14 (Size to Execute)

Column 12

Columns 13 and 14

20-6

Entry

Blank or 0

Q, H, or T

Entry

Blank

02-64

Explanation

The entry in columns 13 and 14 determines the size required
to run the program.

The entry in columns 13 and 14 is rounded up to the next
even number.

Explanation

The main storage available for the running program defaults to
the region size specified. If no region size is specified, the
default is the region size in which the compiler is running.

Enter the main storage available for running the program in a
multiple of 2K bytes (K = 1024 bytes).

Use columns 12 through 14 to specify the amount of main storage to be
available to run the program. The maximum amount of storage you can
specify depends on the system size. If column 12 contains a Q, H, or T, or if
columns 13 and 14 contain an odd number, RPG rounds the entry in
columns 13 and 14 up to the next even number. For example, an entry of
Q04 or 005 is rounded up to 006.

The compiled program can occupy up to the amount of main storage
specified in columns 13 and 14. The actual amount of storage the program
occupies after it is compiled appears on the overlay linkage editor listing.

Columns 19-20 (Date Option)

Column 19 (Date Format)

Entry

Blank

M

D

y

Explanation

If column 21 is blank, the default is month/day/year. If column
21 contains a D, I, or J, the default is day/month/year.

Month/day /year.

Day/month/year.

Year/month/day.

Use column 19 to specify the date format for UDATE. The date format
specified in column 19 should be the same format as the program date. For
example, if columns 19 and 21 are blank, the program date is mm/dd/yy. If
column 19 is blank and column 21 contains a D, the program date is
dd/mm/yy. If you specify the date in mm/dd/yy format and the program date
in the system is in dd/mm/yy format, you will work with the wrong date.

If data containing the UDATE field is sent to, or used by, another system,
the UDATE format must be yy/mm/dd.

For a description of the program date, see the System Reference manual.

Column 20 (Date Edit)

20-8

Entry Explanation

Blank A slash(/) is assumed when column 21 contains a
blank or D and column 19 contains a blank or M. A
period(.) is assumed when column 21 contains I or J
and column 19 contains a blank, D, or Y.

& A blank separates the date field.

Any other character The character entered separates the edited date
field.

Use column 20 to specify the type of edited output that appears for the Y
edit code, which is specified on the output specifications. For an example
of how the entries in columns 19 through 21 affect the editing of date fields,
see Column 38 (Edit Codes) in Chapter 27, Output Specifications.

Colurun 21 (Inverted Print)

Entry

s

Explanation

UDATE
and '.20 art'

UD1\TE
and 20

Alternate

Us1' column mily
compare uperatwns, seq1wnce

St:t: 17,

if coL1nui. 1;1 1,; blank.

is USf'd for the'{ tdit

'/''

Columns 27-36

Columns 27 through 36 are not used. Leave them blank.

Column 37 (Inquiry)

File Sharing

20-10

Entry

Blank or I

B

Explanation

The program, when interrupted, will not allow the person
using the display station to enter new procedures or
commands (does not allow option 1 for an inquiry request).

The program, when interrupted, will allow the person using
the display station to enter new procedures or commands
(does allow option 1 for an inquiry request).

Use column 37 to specify whether a running program can be interrupted to
allow another program to run. The person using the display station
requests an interruption (called an inquiry request) by pressing the Attn
key. The procedure or command statements for the interrupting program
must be entered from the display station after selecting option 1 (Request
COMMAND display).

The program to be loaded following an inquiry request (the interrupting
program) can have an I, B, or blank in column 37 of its control
specification. However, even if it has a Bin column 37, the interrupting
program cannot be interrupted to allow another program to run.

If column 37 contains a B, the inquiry function of System/36 allows the
person using the display station to interrupt a program that is currently
using the display station and to enter new procedures or commands. If
column 37 contains any of the valid entries, the person can set the inquiry
latch for the inline inquiry subroutine (SUBR95), cancel a single requester
terminal (SRT) program that the operator initiated, or release the display
station from a multiple requester terminal (MRT) program.

For more information on inquiry, including restrictions on the use of
system utilities in inquiry mode, see the System Reference manual.

An inquiry program can get active input, update, and add files. However,
an inquiry program cannot get indexed sequential add file types or output
files. The DISP-SHR parameter must be specified on the control language
FILE statement for each file to be shared in both the interrupted and the
inquiry programs.

For a description of the valid file-sharing combinations, see the System
Reference manual.

Inline Inquiry Subroutine (SUBR95)

c "i
1--- :i

]
Line]

8

!ndicators

I I
0 0 z z

The IBM-written subroutine SUBR95 can be used to perform an inquiry if
the RPG program is not an MRT program (that is, if the MRTMAX
parameter on the control language COMPILE statement was 0 when the
program was compiled). Column 37 can be blank or contain an I or B. See
the System Ref ere nee manual for restrictions on the inquiry function.

The linkage to SUBR95 must be specified on the calculation specifications
at every point in the program where a check is to be made for an inquiry
request. The EXIT SUBR95 operation must be followed by only one
RLABL (see Figure 20-2). The indicator specified in columns 45 and 46 of
the RLABL operation must he an RPG indicator. For a detailed discussion
of this linkage, see Linking to External Subroutines in Chapter 28.

When SUBR95 is called, it checks to determine whether the inquiry latch
was set. If it was (that is, the operator selected option 4, Set inquiry
condition for program, in response to the inquiry display), the indicator
specified in the RLABL operation is turned on, and the inquiry request is
reset. This indicator can then be used to condition further calculation and
output operations.

Result Field

Factor 1 Operation Factor 2
Name Length

Resulting

Indicators

Arithmetic

PlusIMmu~ Zero
Compare

1>2f1 <iii =2
Lookup(Factor 2Hs

Comments

3 . 5 7 9 10 11 12 13 14 15 t6 11 1s 19 20 21 22 23 24 25 26 21 ps 29 Jo 31 32 33 34 35 J6 31 38 39 40 4t 42 43 44 4s 46 47 48 49 50 51

High low F.qual

M••n~~~ITTmITTM~•EM~~nnn•

0 1 c
0 2 c INXb<
0 3 c

Figure 20-2. Linkage for SUBR95

Columns 38-40

Columns 38 through 40 are not used. Leave them blank.

Column 41 (lP Forms Position)

Entry Explanation

Blank First line is printed only once.

1 First line can be printed repeatedly.

Use column 41 only when the first output line is written to a PRINTER file.
If the program contains more than one PRINTER file, the first-page

Chapter 20. Control Specification 20-11

Column 42

indicator (lP) entry in column 41 applies to each PRINTER file that has
first-page (lP) output.

When forms are first put in the printer, they may not be in the right
position. Sometimes several lines must be printed to determine the correct
position of the form. If lP forms position is specified, the system prints the
first line of output and issues a message. The person using the display
station can then line up the forms and select the option to try printing the
line again or to continue printing. The lP forms specification is also valid
if the output is spooled. The page counter is not increased until the forms
have been positioned correctly.

The lP forms position specification can be overridden on the control
language PRINTER statement, or forms alignment can be specified on the
PRINTER statement.

Column 42 is not used. Leave it blank.

Column 43 (File Translation)

Column 44

Entry Explanation

Blank No file translation is needed.

F Input, output, update, or combined files are to be translated.

Use column 43 only when information contained in an input, output,
update, or combined file is in a character code different from the character
code used by System/36.

For more information, see Translating a File in Chapter 17, Changing the
Hexadecimal Value of Characters.

Column 44 is not used. Leave it blank.

Column 45 (Nonprint Characters)

Entry

Blank

1

20-12

Explanation

The program halts if the last line printed contained an
unprintable character.

The program does not halt for unprintable characters.

Columns 46-56

Use column 45 to bypass halts for unprintable characters. This column
applies only to PRINTER files.

All characters are represented in the system by a hexadecimal value, which
is a numeric code. If a hexadecimal value is formed during a calculation
that is not in the printer character set and that character is to be printed,
the program halts after printing the line. In the printed line, the
unprintable characters are replaced with blanks.

To bypass this halt, enter a 1 in column 45. An unprintable character is
then replaced with a blank, and no halt occurs. Note, however, that your
output is not correct, and, by bypassing the halt, the incorrect output may
not become known (for example, when a packed key field is printed or when
a nonprintable field is built by calculation specifications).

Columns 46 through 56 are not used. Leave them blank.

Column 57 (Transparent Literal)

Entry Explanation

Blank No transparent literals or constants
are present in the program.

1 Transparent literals or constants can
be present in the program.

The transparent literal option must be specified if your program uses
ideographic data. A transparent literal or constant is one that begins with
an apostrophe followed immediately by the shift-out (S/O) control character
(hex OE), and ends with the shift-in (S(I) control character (hex OF) followed
immediately by an apostrophe.

If the transparent literal option is specified and a literal or constant is
found that begins with an apostrophe immediately followed by the S/O
control character, the RPG compiler checks for a valid transparent literal
or constant. The following conditions cause a literal or constant to be
diagnosed as an invalid transparent literal or constant:

A second S/O control character is found before the S/I control
character.

An odd number of 1-byte characters are found between the S/O and S/I
control characters.

The S/I control character is not immediately followed by the ending
apostrophe.

Chapter 20. Control Specification 20-13

Columns 58-74

If a literal or constant is found to be an invalid transparent literal or
constant, it is rechecked as an alphameric literal or constant.

Transparent literals and constants are not checked for embedded
apostrophes.

For more information about ideographic data, see Chapter 31.

Columns 58 through 74 are not used. Leave them blank.

Columns 75-80 (Program Identification)

20-14

Entry Explanation

Blank Program identification defaults to RPGOBJ.

Any valid program name The first character of the program identification
must be alphabetic and cannot be#, $, or @. The
remaining characters must be alphameric;
however, no special characters can be used, and
blanks must not appear between characters.

Use columns 75 through 80 to assign a name to your program. The
compiler uses the program name to catalog the program in the library
directory.

If the program contains a CONSOLE device, the compiler also uses this
program identification to name the display format load member for the
program. The display format load member is created by RPG only for
CONSOLE files; however, the name is created for both CONSOLE and
WORKSTN files. This name is used by RPG; therefore, you must create
your own load member with, this or an alternative name for WORKSTN
files. For the display format load member name, the compiler uses the
name specified as the value of the FMTS continuation-line option. If the
FMTS continuation-line option is not specified, the compiler uses the
characters specified in columns 75 through 80 of the control specification
(the program identification) and adds the characters FM to the end of the
program identification. FM is added to the end of the program
identification regardless of its length, and the resulting name contains no
blanks.

If a cross-reference listing is to be created for the program, this program
identification is also used to identify the listing.

Chapter 21. F1He Description Specifications

File Description Charts
How to Use the Charts

Columns 1-2 (Page)
Columns 3-5 (Line)
Column 6 (Form Type)
Column 7 (Comments)
Columns 7-12 ((E,JECT)
Columns 7-12 (/TITLE)
Columns 7-14 (/SPACE)
Columns 7-14 (Filename)
Column 15 (File Type)

Input Files
Output Files
Update Files
Combined Files

Column 16 (File Designation)
Primary Files
Secondary Files
Full-Procedural Files
Chained Files
Record Address Files
Array or Table Files
Demand Files

Column 17 (End Of File)
Column 18 (Sequence)
Column 19 (File Format)
Columns 20-23 (Block Length)
Columns 24-27 (Record Length)
Column 28 (Mode Of Processing)
Columns 29-30 (Length Of Key Field Or Record Address
Column :31 (Record Address Type)
Column .32 (File Organi~ation Or Additional Area)
Columns 33-34 (Overflow Indicator)
Columns 35-38 (Key Field Starting Location)
Column 39 (Extension Code) ..

Chapter 21. Fi le Description

21-13
21-14
21-14
21-14

21-16
21-17
21-17
21-17
21-17

18
21-18

rn 10:
.(.,j_L-'JloJ

21-20
21-20
21-2J
21.2:3
21-26
21-26
2128
21-28
21-28
21-29

Columns 40-46 (Device) . 21-30
Device Types .. 21-33

DISK .. 21-33
WORKSTN . 21-33
PRINTER .. 21-34
SPECIAL .. 21-34
CONSOLE . 21-34
KEYBORD ... 21-34
CRT .. 21-34
BSCA ... 21-35

Columns 47-52 ... 21-35
Column 53 (Continuation Lines-K) . 21-35
Columns 54-59 . 21-36

Name of Label Exit . 21-36
Continuation-Line Option for DISK File . 21-36
Continuation-Line Options for WORKSTN File 21-37
Continuation-Line Option for SPECIAL Device 21-39

Columns 60-65 (Storage Index) . 21-40
Column 66 (File Addition) . 21-40
Columns 67-70 ... 21-40
Columns 71-72 (File Condition) 21-40
Columns 73-74 ... 21-41
Columns 75-80 (Program Identification) . 21-41

Chapter 21. File Description Specifications

I' "i"d"',

File description specifications d0scr:ihe each file nsed by a program. One
file description spPcification is rPqmred for l:ach fi1P, and 11 maximum of 20
filPs can be <lescrihn! for each progTam.

Write the file description -;pPcificntions on tlw Control and File Description
Specifications sheet (sec Figure 21-1).

RPG CONTROL AND FILE DESCRIPTION SPECIFICATIONS
~- •i• ·• " ti'~ A

---- ... ____ j "_·"_" --·--
""'"" l
Kf:! __ 1 ____ J ' ' : l j

Control Specifications

File Description Specifications

F
t-----i

L1rie

!
j

0 2

0 :l

0 4

0 5

fl 6

I 0
t • f I r

l I l.J. l l

l 1 ii I L_L_ 'l_L lllll 1111 ~,~, ~., -O-Ol.L69c'--c'lll--,l9.L99~59.L'9~(9Ll,-L9 ~.9L09,-L6'~8<..Ll-.l< L9<..L<-.l< -.. .LE,.J.5 l-5LO<..LO<_...L_6>..L8-.l> -,,..L9-.l> _G>.L»-.lE_>Ll>,-LO-.l> LO>..L6-.lE -8£.Ll,.J.E -.lOCLGl~>f--'-. fE ll "· C(6' 8' 1' 9' " >C I(U CZ 01 6' 8' 1' '° " H [O 1' <C IH

"Number of sheet5 per paci may vary slightly

Figure 21-1. RPG Control and File Description Specifications

Chapter 21. File Description Specifications 21-1

File Description Charts

Figures 21-2 through 21-13 show the file description specification entries for
DISK files (which are presented by file organization and processing
method), WORKSTN files, PRINTER files, SPECIAL files, CONSOLE files,
KEYBORD files, CRT files, and BSCA files. When you use the charts, keep
the following in mind:

• The entries in the chart must be made for the processing method and
type of file described on that line.

• The shaded columns must be blank for the file described on that line.

• The unshaded columns with no entries may be required or optional, but
cannot be indicated on the chart because the entries represent
information that changes from program to program.

How to Use the Charts

21-2

As an example, if you are updating an indexed DISK file using the CHAIN
operation code, see Figure 21-4, for indexed DISK files, and refer to random
processing by CHAIN operation code. Then choose the chained or
full-procedural update file with or without record addition.

In this example, the following columns are required but may change from
one program to another: filename, record length, length of key field, and
key field starting location. Optional entries are line, block length, and file
condition.

Type of Processing

l The entire file
Consecutive is read from

Random

beginning to end.

by CHAIN
by CHAIN
(delete-capable)
by CHAIN
by CHAIN
(delete-capable)

by Addrout
by Addrout
by Addrout
by Addrout
by Addrout
by Addrout

by READ, READP and/or
Consecutive CHAIN (delete-capable) I by READ, REA DP and/or

CHAIN

and/or
Random by READ, READP and/or

CHAIN
by READ, REA DP and/or

CHA! N (delete-capable)

load {The tile is written
on disk as entered,

Add records
only

Figure 21-2. Processing Methods for Sequential DlSK Files

Chapter 21, File Description Specifications 21-3

Type of Processing'

{

The entire file
Consecutive is read from

beginning to end.

Random

by CHAIN
by CHAIN
(delete-capable)
by CHAIN
by CHAIN
(delete-capable)
by Addrout
by Addrout
by Addrout
by Addrout
by Addrout
by Addrout

Consecutive by READ, READP and/or
CHAIN (delete-capable) {

by READ, READP and/or
CHAIN

and/or by READ, READP and/or
Random CHAIN

Load

Load

by READ, READP and/or
CHAIN (delete-capable)

{
Disk addresses are
developed for each
record entered.

{Delete-capable file

~-~----~~--------·~-------..
F

FoleType

Seq<Jence

06

Moder>f P•ocewng

LenqtllofKeyF,pldo<

of AecmdAddre» F'eld

Reco<dAddro" Type

Typeolf1le
Oryaruutoonor
Addot•onalAru

Devoe~
Symbol•c
Device

Name of
label Exit

Extent Exit
for DAM

S1orage Index

1 To insert or change records in a direct file, define the file as an update file processed consecutively or as an update file processed randomly by the CHAIN operation code.

Figure 21-3. Processing Methods for Direct DISK Files

21-4

Type of Processing

by Key, no Add
by Key, no Add
by Key, no Add
by Key, with Add
by Key, with Add
by Key, with Add
by Key, no Add
by Key, no Add
by Key, no Add
by Key, with Add

Sequential' by Key, with Add
by Key, with Add
by Limits
by Limits
by Limit,.
by Limits
by Limits
by Limits
by Limits
by Limits

by Li mi ts, with Add

by Limits, with Add

by CHAIN, no Add2

by CHAIN, with Add 2

by CHAIN, no Add'
by CHAIN, with Add 2

Random
by Addrout
by Addrout
by Addrout
by Addrout

r'"~·"·"' Sequential by Key, with Add
and/or by Key, no Add
Random by Key, with Add

Load
{ Unordered

Ordered

Add records{ Add only
only

t I
! I I

j l

1 Sequential processing by key or limits must use the file index, which is always arranged !n ascending sequence. When an indexed file is processed record by record from beginning to end
the sequential-by-key method is used to process the fiie through the index.

2 !f chained files are processed by key, column 31 should contain an A; however, if chained files are processed by relative record number, columns 31 and 32 must be blank.

Figure 21-4. Processing Methods for Indexed DISK Files (Using the Index)

Chapter 2L File Description Specifications 21-5

f

Line

Ii
~

~
3 4 • 6 7 8

0 2

0 3

0 4

0 5 F

file Type

File Designation

End of file

Filename Sequen<:e

file Form1t

9·

Mode of Processing

Lengtk of Key Field Of

of Record Address Field

Device
Symbolic
Device

Name of
Label Exit

Extent Exit
for DAM

Storage Index

1 Record address flies containing relative record numbers can be associated with indexed, sequential, or direct DISK files.

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape
Rewind

file
Condition
U1-U8,
UC

Record address files containing key·fleld limits can be associated only with Indexed DISK files, but can be a DISK or CONSOLE file.
(See chart for CONSOLE files.)

Figure 21-5. Record Address Files Located on Disk

F Filo Tv1>1

Fii• Ool;n1tlon

End of Fiie

Filename Sequence

Figure 21-6. WORKSTN Files

21-6

Mod11 of Proc1111in9

Ltngtk of l<ty Fltld or
of Record Addrtn Fltld

Device
Symbolic
Device

Name of
Label Exit

btent Exit
for DAM

Fil• Addltion/Unordtrtd

Number of Track1
for CyUndor Overflow

Number of htenu

F ----r-----
1

Filename

Figure 21-7 PRINTER Files

Figure 21-8. SPECIAL Files

21 File

F

Line

!I.
~

l
J • •• , 8

0 2 F

0 3 F

0 4 F

0 5 F

0 6

File Type

File Designation

End of File

Filename Sequence

8.

Mode of Processing

Length of Key Field or

of Record Address Field

Record Address Type ..J

~-----tw Device
Symbolic
Device

Name of
Label Exit

Input file records are displayed on the display screen when keyed into the program.

Figure 21-9. CONSOLE Files

21-8

Extent Exit
for DAM

Storage Index

FUe Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Ot'\llCP I Number of E"te

fT . .,.
I ~e~

rFile

If a KEYBORD file is specified a pnmary input file. no uther input i'iles rn the program can be
specified as primary or secondary files

Input data entered from the KEYBORD device must be defined in calculabon
KEY operation.

No input specifications can he used for KEYRORD files.

Figure 21-10. KEYBORD Files

[F~I
I I

Filename

I l,~

Figure 21-11. CRT Files

2L File

for a

r
T•P•
Rewind

Fila
Condi1
U1·UE

~ UC r
0:

File Type F File Designation

End of File

filename

Line

!I.
{::
E

of
3 • s • ' 8 •·

0 2 F

0 3 F

0 4 F

0 5 F

0 6 F

Figure 21-12. BSCA Files

Fite Type F File OltSignation

End of File

Filename Sequence

Line

J458789·

o 2 F

o 3 F

o 4 F

0 6

Mode of Processing

length of Key Field or
of Record Address Field

Record Address Type _,
~-----tUi

Mode of Processing

length of Key Field or
of Record Address Field

Record Address Type _,
.----,,.-..,..,,,----! Ui

Device

Device

Symbolic
Device

Symbolic
Device

;;;
~ z
Ul

!

Figure 21-13. File Description Specifications for IBM-Supplied Subroutines

21-10

Name of
Label Exit

Nameot
Label Exit

Extent Exit
for DAM

Storage Index

Extent Exit
for DAM

Storage Index

Continuation Unes

File Addition/Unordered

Number of Tracks
for Cylinder Offfflow

Number of Extenu

File Addition/Unordered

Number of Tracks
fOf Cylinder Overflow

Number of Extents

T•pe
Rewind

Columns 1-2 (Page)

Entry Explanation

Blank No page number is used.

01-99 Page number.

Use columns 1 and 2 in the upper right corner of each sheet to number the
specifications sheets, in ascending order, for your job. You can use more
than one of each type of sheet, but keep all sheets of the same type
together.

Columns 3-5 (Line)

Entry Explanation

Blank No line number is used.

Any numbers Line numbers

Use columns 3 through 5 to number the lines on each page. Columns 3 and
4 are preprinted on each sheet so, in most cases, line numbering is already
done.

Page and line numbers are optional entries and are not required to
successfully run your program. Columns 1 through 5 are checked for
ascending order, and RPG prints an Sin the left margin of the RPG listing
for any statement that is out of order. If you use SEU to enter the source
program, you can request that SEU put the statements in order.

The control specification is always on line 01. Any other lines on the
sheets can be skipped. The line numbers used need not be consecutive, but
should be in ascending order.

Column 6 (Form Type)

An F must appear in column 6 to identify this line as a file description
specification.

Column 7 (Comments)

Entry Explanation

* Comment line

Use an asterisk in column 7 to identify the line as a comment line. Use
comments throughout your program to document the purpose of a certain

Chapter 21. File Description Specifications 21-11

section of coding. You can use any character in a comment line.
Comments are not instructions to your program; they only document your
program.

Columns 7-12 (/EJECT)

Entry Explanation

/EJECT The specifications following this entry are to begin on a new
page of the compiler listing

The /EJECT specification is not printed on the compiler listing.

Columns 7-12 (/TITLE)

Entry Explanation

/TITLE The heading information (such as a title or security
classification) that follows the /TITLE entry appears at the top of
each page of the compiler listing. The heading information is
entered in columns 14 through 74.

A program can contain more than one /TITLE statement. Each /TITLE
statement provides heading information for the compiler listing until the
next /TITLE statement is read. To print on the first page of the compiler
listing, a /TITLE statement must be the first statement read. Information
specified by the /TITLE statement is printed in addition to compiler heading
information.

The /TITLE statement causes an eject to the next page before the title is
printed. The /TITLE statement is not printed on the compiler listing.

Columns 7-14 (/SPACE)

21-12

Entry Explanation

/SPACEbn Line spacing occurs at this point in the compiler listing. Valid
entries for n are 1 to 3. If you do not specify n, l is assumed.

One blank (b) must come before the value you specify for n. The value you
specify for n indicates the number of blank lines to be spaced before the
next specification line is printed. If n is greater than the number of lines
remaining on the current page, the next specification line is printed on a
new page. If you specify just /SPACE, one line is spaced.

/SPACE is not printed on the compiler listing but is replaced by the actual
line spacing. The spacing indicated by /SPACE is in addition to the three
blank lines that occur between specification types.

Columns 7-14 (Filename)

Entry

A valid filename

Explanation

Every file used m a program must have
name. The first character nmst be

characters can be any comhir,atrnu
alphabetic and numeric
characters are not allowed. Blanks cannot appear
between
he from l

vour program. with the

tables and arravs do not

Combmcd and

specifications.

showFJ the af

Input Files

Output Files

Update Files

Combined Files

21-14

Device Type File Type

DISK Input
Output
Update

WORKS'l'N Combined

PRINTER Output

SPECIAL Input
Output
Update
Combined

CONSOLE Input

KEYBORD Input

CRT Output

BSCA Input (receive)
Output (transmit)

Figure 21-14. Types of Files That Each Device Type Can Use

An input file contains records that the program reads.

An output file contains records that the program writes.

An update file is both an input file and an output file. The program reads a
record from an update file, changes the data in some fields in the record,
and writes the record back to the same place in the same file from which it
was read. When an update file is processed, the output records contain
both the changed and the unchanged fields from the input records.

A combined file is also both an input file and an output file. However,
when a combined file is processed, the output records contain only the
fields described on the output specifications. That is, the output records do
not always contain the same fields as the input records.

Primary Files

21-16

Device Type File Type File Designation

DISK Input Primary
Secondary
Chained
Record address
Table or array
Demand
Full-procedural

Output Chained or blank

Update Primary
Secondary
Chained
Demand
Full-procedural

WORKSTN Combined Primary
Demand

PRINTER Output

SPECIAL Input Primary
Secondary
Demand

Output

Update Primary
Secondary
Demand

Combined Primary
Secondary
Demand

CONSOLE Input Primary
Secondary
Demand
Record address

KEYBORD Input Primary
Demand

CRT Output

BSCA Input Primary
Secondary
Demand

Output

Figure 21-15. File Designations That Each Device Type and File Type Can
Use.

The primary file is the main file from which the program reads input
records. A program can have no more than one primary file, but it does not
have to have any.

The primary file can be an input, update, or combined file. It can use any
device except CRT or PRINTER.

Secondary Files

files are used only in programs that use multifile processing.
For more information on record selection for muit1hle pnicessing, see

and Files.

file can be an input. update, or combined file. It can use the
DISK, CONSOLE, SPECIAL, or BSCA device. files are

in the order in which they arP coded un the fill'
pr1n1ary file

the fin;t secondary filt> if; assigned as tlw primary file. If
f;le f;Je~i in the

j\

A
file is a combination of a chained fiie and a demand file.

RPG A

or and it must use the

A chained file does not use tbe normal prograr:n
Instead, when the program

A record address file ccintains either key-field limits or relative record

or tel~

the program which records to read from the DISK file and in what order to
read them. A program can use no more than one record address file.
Record address files must be further defined on extension

A record address file must be an file. If it contains
can use the DISK or CONSOLE device and can be used
files. If it contains relative record numbers, it can use
device and can indexed files, Hecord
address files that contain relative record. numbers are called addrout

tmrt program,

it

Array or Table Files

Demand Files

An array or table file is an input file that contains preexecution-time array
or table entries. Array or table files must be sequential files and must use
the DISK device. When array or table files are read while the program is
running, the program reads all the entries from the array or table before it
begins to process records.

For more information about loading preexecution-time arrays or tables, see
Chapter 13, Using Arrays and Tables.

A demand file can be an input, update, or combined file. It can use any
device except CRT and PRINTER.

A demand file does not use the normal RPG program cycle for input.
Instead, the program reads a demand file only when the READ operation
occurs in calculations (or when the KEY operation occurs if the records
come from a KEYBORD device). The number of demand, chained, and
full-procedural files used by a program cannot total more than 15.

Column 17 (End Of File)

21-18

Entry

Blank

Explanation

The program can end whether or not all records from the file are
processed. However, if column 17 is blank for all files, all
records from every file must be processed before the program can
end. This column must be blank for WORKSTN or KEYBORD
files.

E All records from the file must be processed before the program
can end. This entry is not valid for files processed by record
address files.

Use column 17 to indicate whether the program can end before all records
from the file are processed. Column 17 applies only to primary and
secondary files.

Column 17 can be used only for input, update, or combined files used as
primary, secondary, or record address files. The devices associated with
column 17 are DISK and CONSOLE. End of file for CONSOLE files occurs
when the person using the display station presses command key 12.

A program that does processing with more than one input file could reach
the end of one file before reaching the end of the others. Therefore, an
entry in column 17 indicates whether the program is to continue reading
records from the other files or is to end.

If the records from all files must be processed, column 17 must be blank or
contain E's for all files.

Note: An entry cannot be made in column 17 for files assigned to the
KEYBORD and WORKSTN devices. To end the program with a primary
file assigned to the KEYBORD device, the last-record (LR) indicator must
be set on by calculation specifications.

Column 18 (Sequence)

Entry

Blank

A

D

Explanation

No sequence checking is to be done. This column must be blank
for a WORKSTN file.

Sequence checking is to be done. Records in the file are in
ascending order.

Sequence checking is to be done. Records in the file are in
descending order.

Use column 18 to indicate whether the program is to check the sequence of
records. Column 18 applies to input, update, or combined files used as
primary or secondary files. Sequence checking can be done for DISK files
(except those processed randomly) and CONSOLE files. Use columns 61
and 62 of the input specifications to identify the record fields containing the
sequence information.

Sequence checking is required when match fields are used in the records
from the file. When a record from a matching input file is found to be out
of sequence, error message RPG-9032, FILE CONTAINS A RECORD NOT
IN SEQUENCE, is displayed. The operator has three options:

• Bypass the record out of sequence and read the next record from the
same file.

• Bypass the record out of sequence, turn on the last-record (LR)
indicator, and perform all end-of-job and final-total procedures.

• Cancel the entire program.

If column 18 contains an entry and matching records are specified, the
entry in column 18 must be the same for all files. If column 18 is left blank
and matching records are specified, then ascending order is assumed for a
primary file, and the sequence of the primary file is assumed for all
secondary files.

Chapter 21. File Description Specifications 21-19

Column 19 (File Format)

Entry Explanation

For blank Fixed-length records

An F in column 19 indicates that all records in the file are of the same
length. If this column is blank, F is assumed.

Columns 20-23 (Block Length)

21-20

Entry

Blank

1-9999

1-198

1-9999

2-1518

1-79

1-79

1-4075

Explanation

The block length for this file equals the record length. These
columns must be blank for a WORKSTN file and can be blank
for any other file.

Block length for a DISK file equals the record length or is a
multiple of the record length.

Length of largest output record for a PRINTER file. (Entries
from 133 through 198 should only be used for printers with 198
print positions.)

Block length for a SPECIAL file equals- the record length or is
greater than the record length.

Block length for a CONSOLE file, if entered, must equal the
record length.

Length of largest field keyed for a KEYBORD file.

Length of largest output record for a CRT file.

Block length for a BSCA file equals the record length or is a
multiple of the record length.

Use columns 20 through 23 to specify the block length for the file. The
entry made in columns 20 through 23 depends on the device named for the
file. The block length entry must end in column 23, and leading zeros can
be omitted (see Figure 21-16).

The function of the block length entry is to specify the amount of main
storage to use for the input/output area. The maximum block length is
9999. The block length entered for DISK files must equal the record length
or be a multiple of the record length. If the record length is entered but the
block length is not specified, RPG assumes the block length equals the
record length.

Columns 24-27 (Record Length)

Entry

1-4096

1-9999

1-198

2-1518

1-79

1-79

2-58

1-4075

Explanation

Record length for DISK or SPECIAL files.

Length of largest input or output record for a WORKSTN file.

Length of largest output record for PRINTER files. (Entries
from 133 through 198 should only be used for printers with 198
print positions.)

Record length for CONSOLE files.

Length of largest field keyed for KEYBORD files.

Length of largest output record for CRT files.

Twice the record address field length for a record address file
assigned to the CONSOLE device.

Record length for BSCA files.

Use columns 24 through 27 to indicate the length of the records in a file.
An entry must be made for each file, and the entry depends on the device
named for the file. Entries in these columns must end in column 27, and
leading zeros can be omitted (see Figure 21-16).

All records in one file must be the same length. (For update files, the
length of the record after the record is updated must be the same as it was
before the record was updated.) The maximum length allowed depends
upon the device assigned to the file (see Figure 21-16). The record length
specified can be shorter than the maximum length allowed for the device
but not longer.

The record length for KEYBORD files should be the length of the largest
field to be typed in (that is, the record length equals the largest field length
specified in columns 49 through 51 of the calculation specifications when
the KEY operation code is used). If the KEY operation is used to display a
message, you must also consider the length of the message when you specify
the record length for the KEYBORD file. The maximum alphameric field
length is 79 characters, and the maximum numeric field length is 15
characters. If the record length specified for a KEYBORD file is 40 or less,
a display of six lines with 40 characters per line is centered both vertically
and horizontally on the display screen. If the record length is greater than
40, the display consists of 24 lines with 79 characters per line.

Chapter 21. File Description Specifications 21-21

Columns 40
through 46 Columns 20 through 23 Columns 24 through Maximum
(Device) (Block Length)1 27 (Record Length) Record Length

DISK Record length or a Record length 4096
multiple of record
length

WORKS TN Must be blank Length of longest 9999
input or output
record

PRINTER Record length Record length 198

SPECIAL Record length or Record length 4096
greater than the
record length

CONSOLE Record length Record length 1518

Record address file Record length 58
record length

KEYBORD Length of largest Length of largest 79-alphameric
field to be keyed field to be keyed 15-numeric

CRT Length of longest Length of longest 79
output record output record

BSCA Record length or a Record length 4075
multiple of record
length

1Block length must be blank for a WORKSTN file and can be blank for any other file.

Figure 21-16. Block Length and Record Length Entries

21-22

Column 28 (Mode Of Processing)

Entry

Blank

L

R

Explanation

Consecutive
Sequential by key field
Random by relative record numberl
Random by key fieldI
Random by address output filel

Sequential within key-field
limits

Random by key field
Random by address output file
Direct file load (random load)

Use column 28 to indicate the method by which records are to be read from
the file, or to indicate that a direct file load (random load) is to take place.

For DISK files specified as primary, secondary, demand, chained, or
full-procedural, the possible processing methods depend upon the
organizations of the files (see Figure 21-17). For the other types of files,
consecutive processing is the only possible method.

Column 31 further identifies the access method for the program. See
Column 31 (Record Address Type) in this chapter.

Chapter 21. File Description Specifications 21-23

File Organization Possible Processing Methods

Primary, Secondary, or Demand Files

Sequential Consecutively
Randomly by address output file

Direct Consecutively
Randomly by address output file (except
demand files)

Indexed Sequentially by key field
Sequentially within key-field limits
Randomly by address output file
Consecutively (not using the index)

Chained Files

Sequential Randomly by relative record number

Direct Randomly by relative record number

Indexed Randomly by key field
Randomly by relative record number (not
using the index)

Full-Procedural Files

Sequential Consecutively
Randomly by address output file
Randomly by relative record number

Direct Consecutively
Randomly by address output file
Randomly by relative record number

Indexed Sequentially by key field
Sequentially within key-field limits
Randomly by address output file
Randomly by key field
Consecutively (not using the index)
Randomly by relative record number (not
using the index)

Figure 21-17. Possible Processing Methods for DISK Files

21-24

Columns 29-30 (Length Of Key Field Or Record Address
Field)

Entry Explanation

Blank Records are read consecutively

1-99 Length of key field or relative record number

Use columns 29 and 30 to indicate:

• The length in bytes of the key fields in indexed files and record address
files

• The total length in bytes of the noncontiguous key fields if a
noncontiguous key is being used

• The length in characters of the relative record numbers in address
output files, which is always 3

Columns 29 and 30 apply only to indexed files and record address files.

All of the key fields in the records in an indexed file must be the same
length.

The maximum length of a key field is 99 positions, unless an indexed file is
being processed sequentially within key-field limits using a CONSOLE
device, in which case the maximum length is 29 positions. Key fields in
packed decimal format can be up to 8 positions in length. All of the
relative record numbers contained in an address output file are 3 characters
long.

Chapter 21. File Description Specifications 21-25

Column 31 (Record Address Type)

21-26

Entry

Blank

Explanation

Relative record numbers are used in processing sequential, direct
and indexed files.

A sequential or direct file is being loaded.

Records are read consecutively.

Key fields in the record address file are in the same format as
key fields in the indexed files.

Relative record numbers from the address output file are used to
process this file (for full-procedural files only).

A Key fields in zoned-decimal format are used in processing or
loading indexed files and processing record address files.

I Relative record numbers from the address output file are used to
process the file, or the file is an address output file consisting of
relative record numbers.

P Key fields in packed-decimal format are used in processing or
loading indexed files and processing record address files.

Use column 31 to indicate how records in a DISK file are identified.
Column 31 applies to DISK files specified as input, update, or chained
output files. Together, columns 28 and 31 indicate:

• The method by which records are read from the file

• A direct file load

Following are the specifications for retrieving records:

Processing Method Entry in Column 28 Entry in Column 311

Primary, Secondary, or Demand Files

Consecutive Blank Blank

By address R I
output2(except
demand files)

Sequential by key Blank A or P
field

Sequential within L A or P
key-field limits

Chained Files

Random by R Blank
relative record
number

Random by key R A orP
field

Direct file load R Blank3

(random load)

Full-Procedural Files

Consecutive Blank Blank

By address Blank Blank
output2

Sequential by key Blank A orP
field

Sequential within L A orP
key-field limits

Random by Blank Blank
relative record
number

Random by key Blank A orP
field

lWhen creating a file with key fields in packed-decimal format (Pin column
31), you must specify the key field as packed in your output specifications.

2For address output files, column 31 must contain an I, indicating that
binary relative record numbers are used in processing. For full-procedural
files processed by address output files, column 31 must be blank.

3For files that do not allow deletions, a direct file load requires an 0 in
column 15 and a C in column 16. For files that allow deletions, a direct file
load requires an 0 in column 15 and a blank in column 16.

Chapter 21. File Description Specifications 21-27

Column 32 (File Organization Or Additional Input/Output
Area)

Entry

Blank

I

T

1-9

Explanation

Sequential file, direct file, or indexed file processed consecutively
or randomly, by relative record number. The program uses one
input/output area for the file.

Indexed file processed sequentially or randomly, by key.

Address output file.

Sequential file. The program uses two input/output areas for the
file.

Use column 32 to (1) identify the organization of all DISK files except
address output files, (2) identify address output files, and (3) indicate
whether one or two input/output areas are to be used for sequential files.

Columns 33-34 (Overflow Indicator)

Entry Explanation

Blank No overflow indicator is used.

OA-OG, OV The overflow indicator you specify conditions records will be
printed when overflow occurs.

Use columns 33 and 34 to specify an overflow indicator to condition the
lines in each PRINTER file that will be printed when overflow occurs.

Only one overflow indicator can be assigned to a file. If more than one
PRINTER file in a program is assigned an overflow indicator, the indicator
must be different for each file.

For more information on overflow processing, see Chapter 7, Using a
PRINTER File.

Columns 35-38 (Key Field Starting Location)

Entry

Blank

EXTK

1-4096

21-28

Explanation

Records are processed consecutively.

The file uses noncontiguous fields as its key.

Record position in which the key field begins if the key has only
one field.

Use columns 35 through 38 to identify the beginning record position of the
key field for an indexed file that only uses one field as its key, or to
indicate that an index file uses noncontiguous fields as its key. Columns 35
through 38 apply only to indexed DISK files, and an entry must be made in
these columns for an indexed DISK file. The key field of a record contains
the information that identifies the record. This information is used in the
index portion of the file. The key field must be in the same location in all
of the records in the file. The entry in these columns must end in column
38. Leading zeros can be omitted.

Key fields can contain hex FF characters. However, if the first character
or byte of a record is hex FF, the record is treated as a deleted record.

Column 39 (Extension Code)

Entry Explanation

Blank No extension or line counter specifications are used.

E Extension specifications further describe the file.

L Line counter specifications further describe the file.

Use column 39 to indicate whether the file is further described on the
extension specifications or line counter specifications. Column 39 applies
only to (1) preexecution-time array and table files, (2) record address files,
and (3) output files assigned to the printer. Describe PRINTER files on the
line counter specifications, and describe array, table, and record address
files on the extension specifications.

Chapter 21. File Description Specifications 21-29

Columns 40-46 (Device)

21-30

Entry Explanation

DISK Disk

WORKSTN Display station

PRINTER Printer

SPECIAL Used for a device not supported directly by RPG

CONSOLE Console data file or console record address file

KEYBORD Keyboard

CRT Display screen

BSCA Binary synchronous communications adapter

Use columns 40 through 46 to identify the input/output device used for the
file.

All entries must begin in column 40. The devices and the associated file
types that can be used with each device are shown in Figure '21-18.

Device Form of Data File Type Column 15 Column 16

DISK Disk Primary input I p

Disk Secondary input I s
Disk Record address file I R

containing key-field
limits

Disk Record address file I R
containing relative
record numbers
(address output
file)

Disk Full-procedural I F

Disk Chain input I c

Disk Demand I D

Disk Array or table I T
(preexecution time
only)

Disk Update (primary, u P, S, F, C,
secondary, or D
full-procedural,
chained, or
demand)

Disk Output 0

Disk Direct file that does 0 c
not allow deletions

WORKSTN Typed in by Demand c D
operator

Typed in by Combined Primary c p
operator

PRINTER Printed lines Output 0

Figure 21-18 (Part 1 of 2). Devices and Associated File Types.

Chapter 21. File Description Specifications 21-31

Device Form of Data File Type Column 15 Column 16

SPECIAL Special device Primary input I p

Special device Secondary input I s
Special device Demand I D

Special device Update (primary, u P, S, or D
secondary, or
demand)

Special device Combined c P, S, or D
(primary,
secondary, or
demand)

Special device Output 0

CONSOLE Typed in by Primary input I p
operator

Typed in by Secondary input I s
operator

Typed in by Demand I D
operator

Typed in by Record address I R
operator files containing

key-field limits

KE YB ORD Typed in by Primary input I p
operator

Typed in by Demand I D
operator

CRT Display lines Output 0

BSCA Data Primary input I p
communications
line

Data Secondary input I s
communications
line

Data Demand I D
communications
line

Data Output 0
communications
line

Figure 21-18 (Part 2 of 2). Devices and Associated File Types.

21-32

F

Filename

Line

3 • 5

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1 0

0 2

0 3

0 4

0 5

0 6

Figure 21-19 shows the columns that can be used for the devices named.

File Type

File Designation

End of File

Sequence

Mode of Processing

Length of Key Field or

of Record Address F 1eld

Record Address Type ~

w Device
Symbolic
Device]

.::

Name of
Label Exit

Extent Exit
for DAM

Storage Index

File Addttion/Unord

Number of Track
for Cylinder Ovltf

Number of E,

Tope
Rewin<

File
Cone
U1-l
UC

Figure 21-19. Columns That Apply to Device Named

Device Types

DISK

WORKS TN

The device type tells what part of the computer provides input files to a
program or receives output files from the program. The device type is
coded in columns 40 through 46 of the file description specifications. The
eight device types are: DISK, WORKSTN, PRINTER, SPECIAL,
CONSOLE, KEYBORD, CRT, and BSCA.

The DISK device is an input/output device that allows RPG programs to
process data stored on a magnetic disk drive (disk). Data stored on a disk
is called a DISK file. A DISK file can be used for input, for output, or for
both.

Chapter 5 explains how to code an RPG program that uses a DISK file.

The WORKSTN device is an input/output device that allows RPG programs
to communicate with one or more display stations. WORKSTN stands for
work station, which is another name for display station. A display station
consists of a display screen on which data is displayed and an attached
keyboard from which data is entered. Use the System/36 display format
specifications to define input and output for a WORKSTN file.

Chapter 21. File Description Specifications 21-33

PRINTER

SPECIAL

CONSOLE

KEYBORD

CRT

21-34

A program can use no more than one WORKSTN file, and a program that
uses a WORKSTN file cannot use CONSOLE, KEYBORD, or CRT files.

Chapter 6 explains how to code a program that uses a WORKSTN file.

A PRINTER file can be used only for output. A program can use up to
eight PRINTER files.

Chapter 7 explains how to code an RPG program that uses a PRINTER file.

A SPECIAL file is handled by a device not directly supported by RPG. To
use a SPECIAL file, you must use a subroutine to transfer data between the
SPECIAL device and main storage.

Chapter 8 explains how to code an RPG program that uses a SPECIAL file.

The CONSOLE device is an input device that allows RPG programs to read
data records directly from a display station. CONSOLE is another word for
display station. A CONSOLE file can be used as a record address file or as
an input data file. If used as a record address file, the file must be further
defined on extension specifications. A CONSOLE file can be used only as
an input file. It cannot be used to display the records in a file.

Chapter 9 explains how to code a program that uses a CONSOLE file.

The KEYBORD device is an input device that allows RPG programs to
receive data via the KEY and SET operation codes. Input specifications
are not used for KEYBORD files. Instead, the input data is defined in the
KEY and SET operations.

Chapter 9 explains how to code an RPG program that uses a KEYBORD
file.

The CRT device is an output device that allows RPG programs to write data
to a display station. CRT stands for cathode ray tube, which means the
display screen of a display station. A CRT file can be used only as an
output file to display information on the screen. A person using the display
station cannot change this displayed information.

Chapter 9 explains how to code an RPG program that uses a CRT file.

BSCA

A BSCA file allows an RPG program to send and receive binary
synchronous data on a data communications network.

Chapter 10 explains how to code an RPG program that uses a BSCA file.

Columns 47-52

Columns 47 through 52 are not used. Leave them blank.

Column 53 (Continuation Lines-K)

F
f-

Line

filename

File Type

Entry Explanation

K Continuation record

Use column 53 to indicate that a continuation record provides additional
information about the DISK file, WORKSTN file, or SPECIAL file being
defined. Only one continuation record can be specified for each DISK file
or each SPECIAL file; however, several continuation records can be
specified for a WORKSTN file. When you specify a continuation record for
a SPECIAL device, columns 54 through 59 (continuation-line option) must
be coded. When you specify a continuation record for a DISK or
WORKSTN device, columns 54 through 65 must be coded. Figure 21-20
shows an example of the coding necessary for a continuation line on the file
description specifications for a SPECIAL file.

Mode of Processing File Addition/Unordered

File Designation Length of Key Field or

of Record Address Field

Extent Exit Number of Tracks
for DAM

End of File ~ for Cylinder Overflo~
z

Sequence
Record Address Type g

Type of File
File Format "' Organization or ~

lL w ~ Additional Area c:

Symbolic
Device Device

Name of Number of Exten1

"'
~

Label Exit
T•pe

Storage Index ~
File

D ~ Block Record ~ ~Overflow Indicator ·~ O:mditio1

! ~ ~ length length :i ~ ~ ~,B Continuotion Lin" z ~~~
~ ~ w ~ u.. External Record Name K Option Entry ~ ~

3 • 5 6 1 8 9. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 33_M 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

o 2 Fi~I ~1 · l~tpF1r[IA 19
o3 ei IT}

0 4

Figure 21-20. Specifications for a SPECIAL Device

Chapter 21. File Description Specifications 21-35

Columns 54-59

Name of Label Exit

Entry Explanation

Blank No SPECIAL device is used.

SUBRxx Name of the user-written or IBM-written subroutine that cannot
be overlaid and that performs the input/output operation for a
SPECIAL device. (For a user-written subroutine, x = any
alphabetic character. Numeric characters are reserved for
IBM-supplied subroutines.)

SRyzzz Name of the IBM-written subroutine (5-character name in library
is @yzzz) that performs the input/output operation for a
SPECIAL device (y = any of the following 15 characters: B, C,
D, F, G, H, I, L, M, 0, P, R, S, T, or U; z = any of the following
16 characters: A, B, C, D, F, G, H, I, L, M, 0, P, R, S, T, or U).

Note: Subroutines of the type SRyzzz can be overlaid. Modifications
within the subroutine code may or may not be present the next time the
subroutine is used.

Use columns 54 through 59 to specify the subroutine that performs the
input/output operations for a file assigned to a SPECIAL device. Columns
54 through 59 must contain an entry for each file assigned to a SPECIAL
device. The subroutine name entered in columns 54 through 59 can be from
4 to 6 characters long. For a user-written subroutine the first 4 characters
must be SUBR; the remaining characters can be any alphabetic character.

Note: If the user-written subroutines are in a different library from the
RPG source program, the name of the library containing the subroutines
must be specified at compilation time.

Continuation-Line Option for DISK File

21-36

The RECNO option is used to randomly add records to, or to load, a DISK
file that allows records to be deleted.

Option Value

RECNO Name of a numeric field that is 7 digits long with zero decimal
positions. The name must be coded in the leftmost of columns 60
through 65. This field name must be specified if records are to be
added randomly to a direct or sequential file that allows
deletions. This field name is also required for a direct file load of
a file that allows deletions.

You must place in the RECNO field the relative record number
of the record to be added to the file. It must be the relative

record number of a deleted record. A deleted record is one that
has been initialized to hex FFs. RPG uses the relative record
number in the RECNO field to determine where a record is to be
loaded (direct file load) or added (ADD on output specifications).

Note: If the program successfully reads a record from a
sequential or direct file by a CHAIN or READ operation, RPG
places the relative record number of this record in the RECNO
field.

Continuation-Line Options for WORKSTN File

The following options can be specified for a WORKSTN file if more than
one device is attached to a program or if you want to specify the
WORKSTN file information data structure (INFDS) or the WORKSTN
exception/error-processing subroutine (INFSR). The NUM keyword is
required if the program attaches more than one device to a file at the same
time. Enter the keyword in columns 54 through 59 and the value in
columns 60 through 65 (columns 60 through 67 can be used if the FMTS
option is specified).

Note: For WORKSTN files, a device can be either a display station or an
SSP-ICF session.

Option Value

NUM Maximum number of devices that can be attached to this file at
one time. The number specified must be coded in the rightmost
of columns 60 through 65. If a number is not specified, 1 is
assumed. If a number is specified, NUM must be greater than or
equal to the number of requesters specified by the MRTMAX
parameter when the program is compiled plus the number of
acquired devices (those specified on the control language
WORKSTN statement or in the ACQ operation). The number
specified on the MRTMAX parameter is reserved for requesters.
The difference between the MRTMAX value and the NUM value
is the maximum number of acquired devices that can be attached
to the program at one time by using control language statements
or the ACQ operation. For example, if the MRTMAX value is 5
and the NUM value is 6, only one acquired device can be
attached to the program, even if only one requester is presently
signed on.

SAVDS Name of a data structure that is to be saved and restored for
each device attached to this file. The name must be coded in the
leftmost of columns 60 through 65. This data structure cannot be
a display station local data area, and it cannot contain a
compile-time array or a preexecution-time array. If SAVDS is
not specified, no data area swapping is done.

IND Number of indicators, beginning with 01, that are to be saved
and restored by display station.

Prior to reading from a WORKSTN file, RPG saves indicators 01

Chapter 21. File Description Specifications 21-37

21-38

SLN

FMTS

through the number specified, for the device from which the last
input record was read. After the read, indicators are restored
from the save area belonging to the current device. No store is
done before the first read. Therefore, after the first read, the
indicators are restored from a blank save area, thereby setting
them all off.

If IND is not specified, no indicator swapping is done. The entry
must be coded in the rightmost of columns 60 through 65.

Note: For SA VDS and IND, only one copy of the data structure
and indicators is available at a time. The indicators and data
structure that are available are those associated with the device
from which the last input was read.

The data structure and indicators that are available change each
time an input operation (either a primary file input or a demand
file read) is executed. On an input operation, the present copy of
the data structure and indicators in the program is written to a
save area for the device from which the previous input was read.
The data structure and indicators for the device now being read
from are then written from the save area associated with the
device to the program SA VDS and IND areas. After the first
input operation for each device, all the restored indicators will
be off and all the fields in the SA VDS data structure will be
blank. (For more information, see Chapter 6, Using a
WORKSTN File.)

Name of a 2-digit numeric field whose value determines the first
line on the display screen where the display format is to begin if
a variable starting line number (V in column 17 of the display
format S specification) was specified in the format. The name
must be coded in the leftmost of columns 60 through 65. If SLN
is not specified, all formats having a variable starting line
number begin on line 1.

*NONE. Indicates that there are only SSP-ICF formats present
in this program.

Name of the load member that contains the display formats. The
compiler uses the name specified here as the name of the display
format load member. The name entered can be from 1 to 8
characters .in length and must be coded in the leftmost of
columns 60 through 67. If a name is not entered, the compiler
assumes that the name of the display format load member is the
program name (from columns 75 through 80 of the control
specification) with FM added to the end of the name.

ID Name of a 2-character, self-defining alphameric field that
contains the identification of the device that supplied the record
being processed in this file. The name must be coded in the
leftmost of columns 60 through 65. The ID field is updated
whenever a record is read from the WORKSTN file. Therefore, it
always contains the identification of the device from which the

INFSR

INFDS

CFILE

last record was read (unless your program moves a different
identification into the ID field). This field is considered
self-defining because it need not be specified as an input or result
field. For a multiple device file, you can direct an operation to a
device other than the one currently being processed by changing
the value in the ID field to the symbolic ID of another device in
the file before performing the output operation.

The device identifications are assigned at system configuration
time. Display station identifications are in the form AX, where A
is any alphabetic character (A-Z, #, @, or $) and X is any
character. If a control language WORKSTN statement exists for
the display station, the identification is the same as the value of
the SYMID parameter.

SSP-ICF session identifications can be in two formats. They are
either NN where N is numeric (0-9), or NA where N is numeric
and A is alphabetic (A-Z, #, @, or $). If the format is NA, a
control language SESSION statement must be specified with a
SYMID parameter whose value is also in an NA format.

Name of the user-written calculation subroutine designated as
the WORKSTN exception/error-processing subroutine. The name
must be coded in the leftmost of columns 60 through 65. Control
may be passed to this subroutine if an exception/error occurs
during the following operations: ACQ, REL, NEXT, POST, input
(READ or primary input), or output (EXCPT operation or normal
cycle output). If INFSR is not specified, the program halts if an
exception/error occurs. See Handling Exceptions and Errors in
Chapter 6 for more information on INFSR.

Name of the data structure that contains the identification of the
type of exception/error condition and an indication of the
WORKSTN operation that was executing when the
exception/error condition occurred. The name must be coded in
the leftmost of columns 60 through 65. If INFDS is not specified,
this information is not available to the RPG program.

Name of a communications file that associates a WORKSTN file
with a communications format file defined through the
interactive data definition utility (IDDU). For more information
about IDDU, see Interactive Data Definition Utility in Chapter 6,
and see the manual Getting Started with the Interactive Data
Definition Utility (IDDU), GC21-8003.

Continuation-Line Option for SPECIAL Device

Option

Array/table

Value

Name of array or table used by the user-written subroutine
name.

Chapter 21. File Description Specifications 21-39

Columns 60-65 (Storage Index)

Columns 60 through 65 are not used. Leave them blank if this is not a
continuation line.

Column 66 (File Addition)

Columns 67-70

Entry

A

u

Explanation

New records are added to the file.

Records are to be loaded for an indexed file in unordered
sequence (random sequence).

Use column 66 to indicate:

• The program is to add new records to the file. Records can be added at
detail, total, or exception time during the program cycle.

• The program is to load records in an unordered sequence.

Column 66 applies to direct, sequential, and indexed DISK files.

Note: Adding records to a file also requires a corresponding ADD entry in
columns 16 through 18 of the output specifications.

For more information about adding records to a DISK file, see Chapter 5.

Columns 67 through 70 are not used. Leave them blank.

Columns 71-72 (File Condition)

21-40

Entry Explanation

Blank The file is not conditioned by an external indicator.

Ul-U8 The file is conditioned by the specified external indicator.

Use columns 71 and 72 to indicate whether the file is conditioned by an
external indicator. Columns 71 and 72 apply to input (excluding table input
files and KEYBORD files), update, and output files. A file conditioned by
an external indicator is used only when the indicator is on. When the
indicator is off, the file is treated as though the end of the file is reached;
that is, no records can be read from or written to the file.

Columns 73-74

The external indicators are normally set prior to processing by the control
language SWITCH statement or by a previous RPG program. Their setting
can be changed during processing, allowing the program to alter the status
of these indicators. However, if an external indicator conditions a file, that
indicator must be set on when the program is loaded in order to use the file
in the program. For information about how to save and restore the
external indicators for each display station attached to a WORKSTN file,
see Chapter 6.

If a file is conditioned by an external indicator, any calculations that are
not done when the file is not used should also be conditioned by the same
indicator.

Columns 73 and 74 are not used. Leave them blank.

Columns 75-80 (Program Identification)

Entry

Blank

Explanation

Program identification defaults to the program
name specified on the control specification.

Any valid program name Program identification. The first character must
be alphabetic but cannot be#, $,or@. The
remaining characters must be alphameric with
imbedded blanks. No special character can be
used.

Columns 75 through 80 can contain any characters. These columns can
contain the program name used in the control specification, or they can
contain any other characters to identify a certain portion of the program.
These entries are ignored by the compiler but appear in the source program
listing.

Note: To be compatible with other RPG systems, the specifications sheets
show only 80 positions for each statement. However, each statement in an
RPG source program can contain up to 96 characters. Columns 81 through
96 are available for comments.

Chapter 21. File Description Specifications 21-41

21-42

Chapter 22. Extension Specifications

Columns 1-2 (Page) . 22-4
Columns 3-5 (Line) . 22-4
Column 6 (Form Type) . 22-4
Column 7 (Comments) . 22-4
Columns 7-10 . 22-5
Columns 7-12 (/EJECT) . 22-5
Columns 7-12 (/TITLE) . 22-5
Columns 7-14 (/SPACE) . 22-5
Columns 11-18 (From filename) . 22-6
Columns 19-26 (To Filename) . 22-7
Columns 27-32 (Array or Table Name) . 22-8

Array Name . 22-8
Table Name . 22-8

Columns 33-35 (Number of Entries per Record) 22-11
Columns 36-39 (Number of Entries per Table or Array) 22-12
Columns 40-42 (Length of Entry) 22-14
Column 43 (Packed or Binary Field) 22-16
Column 44 (Decimal Positions) 22-16
Column 45 (Sequence) 22-17
Columns 46-57 ... 22-18
Columns 58-74 (Comments) 22-18
Columns 75-80 (Program Identification) . 22-18

Chapter 22. Extension Specifications

Chapter 22. Extension Specifications

Extension specifications describe all record address files; compile-time or
preexecution-time tables; and compile-time, preexecution-time, or
execution-time arrays used in a program. Write these specifications on the
RPG Extension and Line Counter Specifications sheet (see Figure 22-1).
Record address files require entries in columns 11 through 26.
Preexecution-time arrays and tables require entries in columns 11 through
45. Compile-time arrays and tables require entries in columns 19 through
45. Execution-time arrays require entries in columns 27 through 32 and in
columns 36 through 45. If you want to specify an alternating array or table
with the array or table described in columns 11 through 45 or 19 through
45, the alternating array or table must be described in columns 46 through
57 of the same line. A maximum of 75 arrays, tables, or data structures can
be used in a program; however, only 70 of these can be compile-time arrays
or tables.

Chapter 22. Extension Specifications 22-1

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS GX21·9091 UM/050"
Printed in U.S.A.

IBM International Busmess Mei:hines Corpo1a11on

Program

Programmer Date

E Record S1:(1uence of the Clwining F ilu

t--- Number of tht) Chaininu Fiuld

Line To Filename

From Filenarr.e

Put'IChing
lnstn.iction

Graphic

Punch

Extension Specifications

Number
of Number

Table or Entries of Length :~ ~
Per Entries of

Array Name
Record Per Table Entry :) ~ ~

or Array ~~j

Card Electro Number

Table or
Array Name

Length
of

(A!term1tin!1 Entry
Format) "' 2

:l!

1 2

Page[I]of_

1i
5
~

l

75 76 77 78 79 so

~~:;:f~ation I I I I I I I

Comments

3 4 5 6 7 8 9 10 11 17 13 14 15 Hi 17 18 19 20 21 22 2:1 24 25 76 21 78 :l9 30 31 32 33 .J4 35 36 37 38 39 40 41 47 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 E
I--· H
o 2 E -[- j -1 rT~ - r 1 r--~ t I)

f": Hl r > f, ' ···~ .. ' ~ '. I l
o

8

· ·-- H-t-t--1 r:~ t . H~ r-~ I · J
Line Counter Specifications

L
1----i

Line ~
f-

~

"l!
Filename • 1! n :u .li .li .li ~ ~ .li ~~ 1i ~ 1i ll ~~ .li ~~

§~ ~~ -~ ~ 5 • E 2 5 • E 1 5 • E 1 5 g f ii E • E
.: ::l .5 ::l .5 ::i 6i ,!:: ::l ~ ,

~z
~z z ~z "z ~z "z ~z "z :.J 2 ~z "z

t- ·-

·t--·- -1-1--

1--H - ·· t-·! ·i-·

-1-

l
10

.li ~ ~ .. • .ii ll!i c "
.S ~ ~ 5 ~ c E • E ~~ 6~ .5 :::i
~z "z " ~z

I I

11

.li i! !
~ § c E 2 ,
~z "z

... - ++--

··t-+--
.. ,- t-

r++-

·-1---

t--H-+-i

12

1i ~ .!
• E J!1 5 :S:i "z

J 4 5 6 7 B

1 1

1 2 L
~-

9 ~01111213- \~ti~ 16 n
1
1s 19 20 212223 24 25l26 27 28 n 30 31 32 33 34 35 ~ 37 3::m~4:44:4.7 ~ ~ 00 51:2 53 54 55 ~ ",~·-~ 61 62 53 64 65 ~f67~:~ ~ 71 n7~74

L ..._._~~~~ ~~~~~ ~ ~ ~~~~.J~~ ~~~ ~~~~~~~~~~~~~

Figure 22-1. RPG Extension and Line Counter Specifications

22-2

E Record Sequence of the Chainmg File

Number of the Chammg Field

line

From Filename

Figure 22-2 shows possible extension specifications. See Chapter 13, Using
Arrays and Tables, for a complete discussion of arrays and tables.

To Filename Table or
Array Name

Nu=~r of Number

Entries of
Per Entries
Record Per Table

or Array

length
of

Entry

Table or Lenglh
Array Name of
(Alternating Entry
Format)

Comments

For tables and all arrays except execution-time arrays, columns 19 through
26 are optional. For all arrays and tables, columns 46 through 57 are
optional.

Execution-time arrays are loaded by input and/or calculation specifications.

For record address files, columns 11 through 26 must have entries.

Figure 22-2. Possible Entries for Extension Specifications

Chapter 22. Extension Specifications 22-3

Columns 1-2 (Page)

Entry Explanation

Blank No page number is used.

01-99 Page number.

Use columns 1 and 2 in the upper right corner of each sheet to number the
specifications sheets, in ascending order, for your job. You can use more
than one of each type of sheet, but keep all sheets of the same type
together.

Columns 3-5 (Line)

Entry Explanation

Blank No line number is used.

Any numbers Line numbers.

Use columns 3 through 5 to number the lines on each page. Columns 3 and
4 are preprinted on each sheet so, in most cases, line numbering is already
done.

Page and line numbers are optional entries and are not required to
successfully run an RPG program. Columns 1 through 5 are checked for
ascending order, and RPG prints an S in the left margin of the RPG listing
for any statement that is out of order. If you use SEU to enter the source
program, you can request that SEU serialize the statements.

Column 6 (Form Type)

An E must appear in column 6 to identify this line as an extension
specifications statement.

Column 7 (Comments)

22-4

Entry Explanation

* Comment line

Use an asterisk in column 7 to identify the line as a comment line. Use
comments throughout your program to document the purpose of a certain
section of coding. You can use any character in a comment line.
Comments are not instructions to your program; they only document your
program.

Columns 7-10

Columns 7 through 10 are not used to specify the record sequence of the
chaining file or the number of the chaining field. Leave them blank.

Columns 7-12 (/EJECT)

Entry Explanation

/EJECT The specifications following this entry are to begin on a new
page of the compiler listing.

The /EJECT specification is not printed on the compiler listing.

Columns 7-12 (/TITLE)

Entry Explanation

/TITLE The heading information (such as a title or security
classification) that follows the /TITLE entry appears at the top of
each page of the compiler listing. The heading information is
entered in columns 14 through 74.

A program can contain more than one /TITLE statement. Each /TITLE
statement provides heading information for the compiler listing until the
next /TITLE statement is read. To print on the first page of the compiler
listing, a /TITLE statement must be the first statement read. Information
specified by the /TITLE statement is printed in addition to compiler heading
information.

The /TITLE statement causes an eject to the next page before the title is
printed. The /TITLE statement is not printed on the compiler listing.

Columns 7-14 (/SPACE)

Entry Explanation

/SPACEbn Line spacing occurs at this point in the compiler listing

Valid entries for n are 1 to 3. If you do not specify n, 1 is
assumed.

One blank (b) must come before the value you specify for n. The value you
specify for n indicates the number of blank lines to be spaced before the
next specification line is printed. If n is greater than the number of lines
remaining on the current page, the next specification line is printed on a
new page. If you specify just /SPACE, one line is spaced.

Chapter 22. Extension Specifications 22-5

/SPACE is not printed on the compiler listing but is replaced by the actual
line spacing. The spacing indicated by /SP ACE is in addition to the three
blank lines that occur between specification types.

Columns 11-18 (From filename)

22-6

Entry

Blank

Record
address
filename

Array
or table
filename

Explanation

Array or table is loaded at compilation time if there is
an entry in columns 33 through 35.

Array is loaded at execution time (by input and/or
calculation specifications) if there is no entry in
columns 33 through 35.

Name of the record address file.

Name of the array or table file loaded at preexecution
time.

Use columns 11through18 to name an array file, table file, or record
address file. Filenames must begin in column 11. The record address
filename must always be entered in these columns and also on the file
description specifications. The filename of every preexecution-time array or
table used in the program must be entered in these columns and on the file
description specifications. Leave columns 11 through 18 blank for
compile-time arrays or tables and for arrays loaded by input and/or
calculation specifications (execution-time arrays).

When an array or table is loaded at compilation time, it is compiled along
with the source program and included in the object program. Such an
array or table does not need to be loaded separately every time the program
is run. Only those arrays and tables that contain constant data should be
compiled with the program.

When arrays or tables are compiled with the program, the array or table
records must always follow the RPG source program. A record with **b (b
= blank) in positions 1 through 3 must separate the RPG source program
from the array or table records. Arrays or tables must be separated from
each other by records with **b in positions 1 through 3. Because **b in
positions 1 through 3 indicates the start of an array or table, **b must not
be specified in positions 1 through 3 of the array or table input records.

Short tables (tables that contain blank entries) can be compiled with the
program, but a warning is issued. See Columns 36-39 in this chapter for a
discussion of short tables.

Columns 19-26 (To Filename)

Entry

Name of
an mput
or update
file

File processed the record address file

Name of
an output
file

must

written.

named m columns 11 18.

file to which array
to be written at end of

in column 19.

If an array or table is to an

table

lS

after all other records are written. The array or table is written
same format in which was entered.

Columns 27-32 (Array or Table Name)

Array Name

Table Name

22-8

Entry

Array or
table
name

Explanation

Name of array or table used in the
program

Use columns 27 through 32 to name the array or table. No two arrays or
tables can have the same name. The rules for forming array and table
names are discussed in the following text.

Each array used in a program must be given a separate name that does not
begin with the letters TAB. The name can be from 1 to 6 characters long
and must begin with an alphabetic character. This array name is used
throughout the program. To refer to the entire array, use the array name
alone. To refer to a single element of the array, use the array name plus an
index. See Array Name and Index in Chapter 13 for more information on
array names and on referencing array entries.

Every table used in your program must have a name that begins with the
letters TAB. The entire table name can be from 3 to 6 characters long.

After the letters TAB, 1 to 3 alphabetic or numeric characters can be used
(no special characters are allowed). Blanks cannot appear between
characters in the table name. Any name in columns 27 through 32 that
does not begin with TAB is considered an array name.

The table name entered in columns 27 through 32 is used throughout the.
program. However, different results can be obtained depending upon how
the table name is used. When the table name is used in factor 2 or the
result field of the calculation specifications with a LOKUP operation, the
name refers to the entire table. When the table name is used with any
other operation code, the name refers to the table entry last selected from
the table by a LOKUP operation (see Operation Codes, LOKUP in Chapter
28 and Using Arrays and Tables in Chapter 13).

Table files are processed in the order they are specified on the extension
specifications.

Therefore, if you have more than one table file, the files should be loaded in
the same order as they appear on the extension specifications.

If two tables are in alternating format in one file, the table whose entry
appears first must be named in columns 27 through 32. The second table is
named in columns 46 through 51 (see Figure 22-3).

Two tables (TABA and TABB) are described in alternating format. An item for TABA appears first.
Thus, TABA is named in columns 27 through 32 of the extension specifications sheet (see Part 2 of
this figure); TABB is named in columns 46 through 51.

Table A Table B
(Account Number) (Amount Duel

()01~~

03240

03648

15632

28887

29821

30001

5
Positions

39.00

156.72

17.98

2.97

290.98

579.95

7
Positions

The account number and the amount due
for that account number are corresponding
table items.

Note: The decimal points shown in Table B are only for illustration purposes. Decimal are
not a part of array or table input data.

TABA TABB TABA TABB TABA TABB TABA TABB TABA TABB TABA TABB TA!llA TA8li8
item item item item item item item item item item item Item ' Item

Entry 1 Entry 2 Entry 3 Entry 4 Entry 5 Entry 6

The corresponding items from the tables are entered in the system in alternating format.
Corresponding items from the two tables are considered as one entry.

Figure 22-3 (Part l of 2). Related Tables

ltem

Chapter 22. Extension Specifications 22-9

Table entries for the two tables, A and B, are entered in alternating format. Al and Bl, the
corresponding items in tables A and B, are considered one entry. Even though 14 table items are
listed, there are only seven table entries.

Record Suquenceol the Chaininp File

Number of the Chaining Field

From Filename

To Filename Table or
Array Name

Number
of

Entries ...
Record

Number

of
Entries
Per Table

or Array

Lenyth
of
Entry

Table or
Array Name
(Alternating
Format)

Length
of
Entry

Coinments

3 4 5 a 1 a 9 10 i1 12 tJ 14 15 1s 11 is 19 20 21 22 23 24 2s 2a 2 .._ o Jt 32 JJ 34 JS 36 37 JB 39 40 41 42 43 44 45 46..J.Z..il.,49 so s1 !:12 53 &4 !>5 !i6 s1 ss 59 eo a1 62 63 64 es 66 a1 se 89 10 n n 73 74

~: __ + ~ ff ~1~9J& ~;ll ~5' I~~~ jtjl J- ~ - ++-

1-~+3 - E +- -l - t l t L- --- Y' - -lt -l-- 1 - - - i _ [_ ~- - - .. l > - -- H-~

Table whose items are loaded first is
named in columns 27 through 32.

Table whose items are loaded second
is named in columns 46 through 51.

This entry indicates the number of table entries in
each input record. Remember, corresponding items
from the two tables are considered as one entry.

Figure 22-3 (Part 2 of 2). Related Tables

22-10

Columns 33-35 (l'-Jumber of Entries per Record)

Entry Exp fa.nation

1-999 r'1" urn her of array or table E;f1tTler,, in each tablE ·Gr Bi.Ji.j,.&jT

record

Use columns 33 through 35 to indicate the exact number of ar:rray or table
entries in each army or table record. The rmmber must emJ in
column 35. Every array or table input record except the last must contain
the same number of entries as mriicated in columns 38 through 35. The last
record can contain fewer entries than
can be entered on table input records in the
entries.

Carn.irnen.ts
the tabi.e

If two arrays or tables are in alternating format in one file, each array m·
table input record mu.st contain the corresponding entnes from each aTrny
or table. The
considered nne

apply to the use of columns 11 through 18 and 33 35:

GJ .Fo:r a prnexecution-time array, columns B HI must contain a
fihmame and co]umns 33 35 must have an entTy.

~ Fo:r an execution-time array, columns 11 through 18 and columns 33
through 35 must be blank.

22. Extension Specifications 22-11

Columns 36-39 (Number of Entries per Table or Array)

22-12

Entry Explanation

1-9999 Maximum number of array or table entries

Use columns 36 through 39 to indicate the maximum number of entries that
can be contained in the array or table named in columns 27 through 32.
This number applies to one array or table or to two arrays or tables in
alternating format. The number entered must end in column 39.

Because the number of entries for two arrays or tables written in
alternating format must be the same, the number in these columns also
gives the number of entries in the second array or table specified in
columns 46 through 51.

If the array or table is full, these columns give the exact number of entries
in it. However, if the array or table is not full, these columns give the
number of entries that can be put into it (see Figure 22-4). An array or
table that is not full is one that contains unused entries and is known as a
short array or table.

A compile-time array or table should be full. However, if it is not full (a
short array or table), the array or table is compiled with the program, and a
warning is issued. In storage, the unused entries in a short array or table
are filled with blanks or zeros (for alphameric or numeric arrays or tables,
respectively).

A preexecution-time array or table need not be full.

TABPRT TABAMT
(Part Number) (Price)

001 127.62
002 198.32
003 .27
004 .01
005 1.98
009 3.79
010 5.67
014 2.33
026 14.67
045 29.33
096 29.34
097 .05
098 .09
099 1.19
100 2.22
101 126.73
110 596.74
115 393.75
126 697.75
137 1.92

if this data is entered into the
system, T ABPRT and T ABAMT
will be full (20 entries fill the table).

Note:

TABPRT TABAMT
(Part Number) (Price)

001 127.62
002 198.32
003 .27
004 .01
005 1.98

If this data is entered into the
system, T ABPRT and T ABAMT
will not be full.

The decimal points shown in these tables are only for
illustration purposes. Decimal points are not part of table
input data.

E Record Sequence of the Chaining File

Number
Number of the Chaining Field of Number

From Filename

To Filename Table or Entries of Length

Array Name ... Entries of

Record Per Table Entry cc
::i

or Array

~

Table or Length
Array iName of
(Alternating Entry a;

Format) ::i

~

This entry indicates that TABPRT and TABAMT
can both have a maximum of 20 entries.

Figure 22-4. Table Entries (Number per Table)

Comments

Chapter 22. Extension Specifications 22-13

Columns 40-42 (Length of Entry)

22-14

Entry Explanation

1-15 Length of a numeric entry

1-256 Length of an alphameric entry

Use columns 40 through 42 to specify the length of each entry in the array
or table named in columns 27 through 32. The number entered must end in
column 42. For numeric arrays or tables in packed decimal format, enter
the zoned decimal length in columns 40 through 42. For numeric arrays or
tables in binary format, enter the number of digits required in storage for
the binary field. For a 2-position binary field, the entry in columns 40
through 42 is 4; for a 4-position binary field, the entry is 9.

All array or table entries must have the same number of characters. It is
almost impossible, however, for every item to be the same length.
Therefore, add leading zeros for numeric entries and add blanks after
alphameric entries to make them the same length (see Figure 22-5).

List of Months TABMO

JANUARY JANUARY}'S}'S
FEBRUARY FEBRUARY}'S
MARCH MARCHl'Sl'Sl'Sl'S
APRIL APRIL~~~~
MAY MAY~~~~~~
JUNE JUNE~~~l'Sl'S
JULY JULY~l'Sl'Sl'Sl'S
AUGUST AUGUST~l'Sl'S
SEPTEMBER SEPTEMBER
OCTOBER OCTOBER~~
NOVEMBER NOVEMBER~
DECEMBER DECEMBER~

All entries must have the same length. Those items that are not as long as
the longest item must be padded with blanks (b).

Figure 22-5. Length of Table Entries

E Record Sequence of the Chaining File

Number of the Chaming Field

Line

From Filename

If two arrays or tables are entered in alternating format, the specification
in columns 40 through 42 applies to the array or table whose entry appears
first in the record (see Figure 22-6).

See Chapter 13, Using Arrays and Tables, for more information.

TABCOD
(Code)

021
022
023
040
041
060
117
118
143
352
-v

3
Positions

~

TABAMT
(Amount)

217.43
93.06

8.14
2166.58

39.23
1741.78

83.33
5.12

72.03
253.96

6
Positions

Two tables are entered in alternating format, TABCOD and TABAMT.
Each item in TABCOD is 3 characters long; each item in TABAMT is 6
characters long. Since T ABCOD is entered in the system first, its length, 3,
is specified in columns 40 through 42. The length of items in T ABAMT is
in columns 52 through 54.

Note: The decimal points shown in these tables are only for illustration
purposes. Decimal points are not a part of table input data.

Number

of Number

To Filename Table or Entries of
p., Entries Array Name
Record Per Table

or Array

:~ ~
Table Of .§

~ Length Length
Array Name of

..
of

"' Entry "'
~ ~ ~Alternating Entry

"' ~ i ::.] ~ Format) _,
~~ & "' ~ l ~ "

Comments

The length of the table item that is fast entered in
the system must appear in columns 40 through 42.

Figure 22-6. Length of Corresponding Table Items

Chapter 22. Extension Specifications 22-15

Column 43 (Packed or Binary Field)

Entry

Blank

p

B

Explanation

Data for array or table is in zoned decimal format or is
alphameric.

Data for array or table is in packed decimal format on disk.

Data for array or table is in binary format on disk.

Use column 43 to indicate that a numeric field in a preexecution-time array
or table file is in packed or binary format. Leave column 43 blank if the
field is in zoned decimal· format. See Column 43 under Field Description
Entries in Chapter 25 for more information on packed or binary format.

Column 44 (Decimal Positions)

22-16

Entry

Blank

0-9

Explanation

Alphameric array or table

Number of positions to the right of the decimal in numeric array
or table items

Use column 44 to indicate the number of decimal positions in a numeric
array or table entry. Column 44 must always have an entry for a numeric
array or table. If the entries in an array or table have no decimal positions,
enter a 0.

If two arrays or tables are entered in alternating format, the specification
in this column applies to the array or table containing the entry that
appears first on the record.

Column 45 (Sequence)

Entry Explanation

Blank No particuJ3r (>rder

A Ascending order

D Descending order

Use column 45 to describe the sequence
the data in array or table.

VI/hen an
seqt1encc. If

terminal error occurs, and
or table is out of sequence.

The
if you do not want to
do correct the
restarted from

If two arrays or tables are entered
column 45 to the array or table
first on the record. When the LOKUP

ascending or '"''-·D'-.'-'"-""''"
information.

An execution-time array
not

Columns 46-57

Entry

Array or
table
name and
description

Explanation

Name and description of the alternating
array or table

Use columns 46 through 57 only to describe a second array or table that is
entered in an alternating format with the array or table specified in
columns 27 through 45. All fields in this section have the same significance
and require the same entries as the fields with corresponding titles in
columns 27 through 45. See the previous discussion on those columns for
information about correct specifications. Leave these columns blank for a
single array or table.

Columns 58-74 (Comments)

Columns 58 through 74 can be used for comments to document the purpose
of each specification line.

Columns 75-80 (Program Identification)

22-18

Entry Explanation

Blank Program identification defaults to the program name
specified on the control specifications.

Any valid Program identification. The first character must be
program alphabetic but cannot be#,$, or@. The remaining
name characters must be alphameric with no imbedded

blanks. No special character can be used.

Columns 75 through 80 can contain any characters. These columns can
contain the program name used in the control specifications, or they can
contain any other characters to identify a certain portion of the program.
These entries are ignored by the compiler but appear in the source program
listing.

Note: To be compatible with other RPG systems, the specifications sheets
show only 80 positions for each statement. However, each statement in an
RPG source program can contain up to 96 characters. Columns 81 through
96 are available for comments.

Chapter 23. Line Counter Specifications

Line counter specifications indicate at what line overflow occurs and the
length of the form used in the printer. Both of these entries may be
specified on the RPG Extension and Line Counter Specifications sheet (see
Figure 23-1).

Line counter specifications may be used for each PRINTER file in your
program. If no line counter specifications exist, the form length used is the
form length specified on the PRINTER OCL statement. (See the LINES
parameter of the PRINTER OCL statement in the System Reference manual
for a description of the defaults for the form length,) In this instance, the
overflow line is assumed to be six lines less than the specified form

Chapter 23. Line Counter

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS GX21·9091 UM/OSO•
Printed in U.S.A.

Program

Programmer Date

E Record Sequence of the Chaining File

t-----1 Number of the Chaining Field

Line To Filename

From Filename

Keying
Instruction

Graphic

Koy

Extension Specifications

Number
of Number c -

Table or Entries of Length -~ ~
Array Name p,. Entries of

Record PE!fTable Entry ~ i ~
or Array

~~:

Card Electro Number

Table or
Array Name

Length
of

(Alternating Entry
Format)

a:
~
~

1 2

Page[I]ot_

e
!!.

I

75 76 77 78 79 80

:::~:. .. ;onl I I I I I I

Comments

3 • 5 6 7 • • 10 11 12 13 14 15 16 11 1a 19 20 21 22 23 24 25 26 21 28 29 JO 31 32 33 34 JS 36 31 JS 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 D4 55 56 57 ss 59 60 61 62 63 64 65 66 67 68 G9 10 11 n n 14

0 1
l--it-f--+---+-+-1--i-+-+--+-+-t-t-+-+-+-+-t-t--+---+-+--t- H----1---- - - I-+- - t-t- -

0 2 E
l--i>-+--+---+-+-1---<-+-+--+-+-1-t-+--+-+-+-1-t-+-+----+---1-"- -- -f--- - t-+- - •--1 I -t---1

0 3 - -· +- - H · +---<1-•-+--+--•--+---+-+-1--->-+--+--.__,,_._.-+--+---+-+-4->- +--+·-+-+-+-+--->---+-+-+--___,
0 4

t-+-+-+--l-++-t-+-t-+--+-+-+--l-+-+--+--+-+-+--+-+---1- ~+- -t--c - - t-+++ - t--+--+- -
0 5

1--it-1-+--+--+-+-+->-t-1--+--+---t----t---t--t--1i-t--+--t---+- t---t-----t-- -+-r--t--+--t-- t--t-" -
0 6

1-+-+-+--+-t-+--+-t-+--+-t-+--+-t-+--+-+-+-+-+- H-+--t--t-++-1
0 7

0 8
1--ic---+--+---+-+-1---<-+-+---+-H -t- - t- +-+- - -+ - -t-- - -1-- t+- - t-+-+-t -

Line Counter Specifications

L
t---

Line ~
>--

~
Filename

ii
• E .!: :i -' z t ii L] " 11

-~ § o E • E -' , :3 ~ z -' z oz

"ii ~ ii ~ 1: ii ~ li ii "ii ;
CD CD

2 § • E 2 § • E ~ § • E 2 § ~ .£ :i :5 ~ :5 ~ uz -' z uz uz uz :J

-+-+- -4-1-++-~--+---ll-++- +++--- -+-1-+-t-t-+-t

10 11 12

• ~~ ii •• • • ii
~

CD i ~ 1 § • E 2 § ~ • E .!: :i 0£ < , z uz -' z uz :J -' z

li ii H li
E -~ § 2 ; • E
£ -' z uz :3 ~

3 4 5 I!_ 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ~ ~ 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

' '
' 2

Figure 23-1. RPG Extension and Line Counter Specifications

23-2

Columns 1-2 (Page)

Entry Explanation

Blank No page number is used.

01-99 Page number.

Use columns 1 and 2 in the upper right corner of each sheet to number the
specifications sheets, in ascending order, for your job. You can use more
than one of each type of sheet, but keep all sheets of the same type
together.

Columns 3-5 (Line)

Entry Explanation

Blank No line number is used.

Any
numbers

Line numbers.

Use columns 3 through 5 to number the lines on each page. Columns 3 and
4 are preprinted on each sheet so, in most cases, line numbering is already
done.

Page and line numbers are optional entries and are not required to
successfully run an RPG program. Columns 1 through 5 are checked for
ascending order, and RPG prints an S in the left margin of the RPG listing
for any statement that is out of order. If you use SEU to enter the source
program, you can request that SEU serialize the statements.

Column 6 (Form Type)

An L must appear in column 6 to identify this line as a line counter
specifications statement.

Column 7 (Comments)

Entry Explanation

* Comment line

Use an asterisk in column 7 to identify the line as a comment line. Use
comments throughout your program to help document the purpose of a
certain section of coding. You can use any character in a comment line.
Comments are not instructions to your program; they only document your
program.

Chapter 23. Line Counter Specifications 23-3

Column 7-12 (/EJECT)

Entry Explanation

/EJECT The specifications following this entry are to begin on a new
page of the compiler listing.

The /EJECT specification is not printed on the compiler listing.

Columns 7-12 (/TITLE)

Entry Explanation

/TITLE The heading information (such as a title or security
classification) that follows the /TITLE entry appears at the top of
each page of the compiler listing. The heading information is
entered in columns 14 through 74.

A program can contain mote than one /TITLE statement. Each /TITLE
statement provides heading information for the compiler listing until the
next /TITLE statement is read. To print on the first page of the compiler
listing, a /TITLE statement must be the first statement read. Information
specified by the /TITLE statement is printed in addition to compiler heading
information.

The /TITLE statement causes an eject to the next page before the title is
printed. The /TITLE statement is not printed on the compiler listing.

Columns 7-14 (/SPACE)

23-4

Entry Explanation

/SPACEbn Line spacing occurs at this point in the compiler listing. Valid
entries for n are 1 to 3. If you do not specify n, 1 is assumed.

One blank (b) must come before the value you specify for n. The value you
specify for n indicates the number of blank lines to be spaced before the
next specification line is printed. If n is greater than the number of lines
remaining on the current page, the next specification line is printed on a
new page. If you specify just /SPACE, one line is spaced.

/SPACE is not printed on the compiler listing but is replaced by the actual
line spacing. The spacing indicated by /SPACE is in addition to the three
blank lines that occur between specification types.

Columns 7-14 (Filename)

Entry

A valid
filename

Explanation

Filename of the printer output file as
previously defined on the file description
specifications sheet. The filename must
begin in column 7.

Use columns 7 through 14 to identify the output file to be printed on the
printer.

Columns 15-17 (Line Number--Number of Lines per Page)

Entry Explanation

1-112 Number of printing lines available is l to 112.

Use columns 15 through 17 to specify the exact number of lines available on
the page you want to use. The entry must end in column l 7. Leading zeros
can be omitted.

Columns 18-19 (Form Length)

Entry Explanation

FL Form length

Use columns 18 and 19 to indicate that the entry in columns 15 through l 7
is the form length. Columns 18 and 19 must contain the entry F'L.

Columns 20-22 (Line Number--Overflow Line)

Entry Explanation

1-112 The line number specified is the overflow line.

Use columns 20 through 22 to specify the line number that is the overflow
line. The entry must end in column 22. Leading zeros can be omitted. The
entry must be less than or equal to the form length specified in columns 15
through 17. When the line that is specified as the overflow line is printed,
the overflow indicator turns on. When the overflow indicator is on and
fetch overflow is not specified, the following occurs before forms advance to
the next page:

1. Detail lines are printed (if this part of the program cycle has not
already been completed).

Chapter 23. Line Counter Specifications 23-5

2. Total lines are printed (if conditions are met).

3. Total lines conditioned by the overflow indicator are printed.

Because all these lines are printed on the page after the overflow line,
specify the overflow line high enough on the page to allow all these lines to
print. See Handling Overflow in Chapter 7 and Overflow Indicators in
Chapter 12 for more information.

Note: If the number of lines per page entry equals the overflow line entry,
no overflow occurs.

Columns 23-24 (Overflow Line)

Columns 25-74

Entry Explanation

OL Overflow line

Use columns 23 and 24 to indicate that the entry in columns 20 through 22
is the overflow line. Columns 23 and 24 must contain OL.

Columns 25 through 74 are not used. Leave them blank.

Columns 75-80 (Program Identification)

23-6

Entry Explanation

Blank Program identification defaults to the program name
specified on the control specifications.

Any valid Program identification. The first character must be
program alphabetic but cannot be#,$, or@. The remaining
name characters must be alphameric with no imbedded

blanks. No special character can be used.

Columns 75 through 80 can contain any characters. These columns can
contain the program name used in the control specifications, or they can
contain any other characters to identify a certain portion of the program.
These entries are ignored by the compiler but appear in the source program
listing.

Note: To be compatible with other RPG systems, the specifications sheets
show only 80 positions for each statement. However, each statement in an
RPG source program can contain up to 96 characters. Columns 81 through
96 are available for comments.

Chapter 24@

Columns 63-M

Columns

c;~ 7A
lJu- "-1

Chapter 24. Telecommunications Specifications

Telecommunications specifications describe the information necessary to
establish and maintain the batch BSC (binary synchronous
communications) link. Each BSCA file defined on the file description
specifications must have a corresponding specification on the RPG
Telecommunications Specifications sheet (see Figure 24-1).

RPG data communications programming enables you to send and receive
binary synchronous data via a data communications network. RPG data
communications support performs all the functions necessary to establish
the line connections, exchange identification sequences, send and receive
data, and execute the correct termination or disconnect procedures.

Chapter 24. Telecommunications Specifications 24-1

........ - o ...

T
1--

filename
Line IJ

....

!
3 • • • 7 • 9

r , T

• 2 T

• 3 T

•• T

•• T

RPG TELECOMMUNICATIONS SPECIFICATIONS

Card Electro Number
Keying ,_G_ra_ ... _1'_· -+----<>---+----<-+--+-+--<
lnStruction l(ey

Switctled Identification

Tllis Station Remote Station

Remote
]

Dial Number Terminal .. h
~

t::U
~ ~u

Walt

1 2

P111[Dot_

j
Time "ii

H Ld _, iil

GX21-IU 16t .1UMJ060•
PrinUd in U.S.A.

76 76 77 78 79 BO

:.~:.~ I I I I I I I

Remote R"'oved u Device

•• T
,__.__.__._,__,___,_+-+-<--l-+-1--1--+-+-'-"<--1--+-I--+-+--+-- +-+- +- -- +- - -
,__.__.__._,__,___,_+-+-<--1-+-1--1--+-+-.... I-+-- --+-+- -

'+--+++-· - H ·+--1-4-+-++-+-1-4-+-++-+-l-+-+-+-+-+-+-+-+-+-+-1-4-+~

. t-t-1-+- -
• 7 T

t-1-H-+- -t--l--it-+-t-+-t-t-+-t-+-t-t-t-+-t-t-+-t-+-t-+-t--t-t-t-+-+-+-i
•• T

1-+-+-+--1-+-+-lf-+-+-+-+--+-+-11-+-+-11--+-+--+-+-+--+-1-+-+-+--t-+-
•• T

l- --t-t- +-+--, • T
-t- -j-- -, 1 T

t-- -t- - t- - -
1 2 T

1 3 T

1 • T

1 • T

, • T

1 7 T

1 • T
, • T

2 • T

T

T

T

T

T

Figure 24-1. RPG Telecommunications Specifications

24-2

RPG batch BSC permits System/36 to function as any of the following
station types:

• Receive only (receive input data from a remote station).

• Send only (send data to a remote station).

• Send and receive, but no conversational reply. Three modes of
operation are possible:

Sending a file, then receiving another file
Receiving a file, then sending another file
Sending records of one file interspersed with receiving records of
another file

BSC is a flexible form of line control that provides a set of rules for
communications between devices. For a description of the basic
characteristics and operational concepts of BSC, a description of the RPG
interface to BSC, and a complete description of RPG data communications
programming, see Chapter 10, Using a BSCA File.

Note: Telecommunications specifications are used only for RPG data
communications programming (batch BSC). Telecommunications
specifications are not used for the Interactive Communications Feature
(SSP-ICF).

Columns 1-2 (Page)

Entry Explanation

Blank No page number is used.

01-99 Page number.

Use columns 1 and 2 in the upper right corner of each sheet to number the
specifications sheets, in ascending order, for your job. You can use more
than one of each type of sheet, but keep all sheets of the same type
together.

Columns 3-5 (Line)

Entry Explanation

Blank No line number is used.

Any numbers Line numbers.

Use columns 3 through 5 to number the lines on each page. Columns 3 and
4 are preprinted on each sheet so, in most cases, line numbering is already
done.

Chapter 24. Telecommunications Specifications 24-3

Page and line numbers are optional entries and are not required to
successfully run an RPG program. Columns 1 through 5 are checked for
ascending order, and RPG prints an Sin the left margin of the RPG listing
for any statement that is out of order. If you use SEU to enter the source
program, you can request that SEU number the specifications in ascending
order.

Column 6 (Form Type)

A T must appear in column 6 to identify this line as a telecommunications
specification.

Column 7 (Comments)

Entry Explanation

* Comment line

Use an asterisk in column 7 to identify the line as a comment line. Use
comments throughout your program to help document the purpose of a
certain section of coding. You can use any character in a comment line.
Comments are not instructions to the RPG II program; they only document
your program.

Columns 7-12 (/EJECT)

Entry Explanation

/EJECT The specifications following this entry are to begin on a new
page of the compiler listing.

The /EJECT specification is not printed on the compiler listing.

Columns 7-12 (/TITLE)

24-4

Entry Explanation

/TITLE The heading information (such as a title or security
classification) that follows the /TITLE entry appears at the top of
each page of the compiler listing. The heading information is
entered in columns 14 through 74.

A program can contain more than one /TITLE statement. Each /TITLE
statement provides heading information for the compiler listing until the
next /TITLE statement is read. To print on the first page of the compiler
listing, a /TITLE statement must be the first statement read. Information

specified by the /TITLE statement is printed in addition to compiler heading
information.

The /TITLE statement causes an eject to the next page before the title is
printed. The /TITLE statement is not printed on the compiler listing.

Columns 7-14 (/SPACE)

Entry Explanation

/SPACEbn Line spacing occurs at this point in the compiler listing. Valid
entries for n are 1 to 3. If you do not specify n, 1 is assumed.

One blank (b) must come before the value you specify for n. The value you
specify for n indicates the number of blank lines to be spaced before the
next specification line is printed. If n is greater than the number of lines
remaining on the current page, the next specification line is printed on a
new page. If you specify just /SPACE, one line is spaced.

/SPACE is not printed on the compiler listing but is replaced by the actual
line spacing. The spacing indicated by /SPACE is in addition to the three
blank lines that occur between specification types.

Columns 7-14 (Filename)

Entry Explanation

A valid filename Filename previously defined on the file description
specifications for the BSC device.

Column 15 (Configuration)

Entry

P or
blank

M

s

Explanation

This is a point-to-point nonswitched line.

This is a multipoint line where the control station
selects the tributary station through polling or
addressing. System/36 cannot be the control station.

This is a point-to-point switched line.

If this column contains an M, column 17 must contain a T.

Chapter 24. Telecommunications Specifications 24-5

Column 16 (Type of Station)

Entry

T

R

Explanation

This station sends (transmits) information from the file named in
columns 7 through 14. The file must be designated as an output
file on the file description specifications and must be defined on
the output specifications.

This station receives information in the file named in columns 7
through 14. The file must be designated as an input file on the
file description specifications and must be defined on the input
specifications.

Note: This entry is independent of the entry in column 20.

Column 17 (Type of Control)

Entry

Blank

T

Explanation

Polling is not used.

This is a tributary station on a multipoint network. Column 17
must contain a T if column 15 contains an M.

System/36 cannot be the control station.

Column 18 (Type of Code)

24-6

Entry

AorU

E or blank

Explanation

ASCII (formerly referred to as USASCII) transmission
control characters are used. An A or U entry causes the
necessary file translation to be done for System/36.

EBCDIC transmission control characters are used.

ASCII and EBCDIC characters are listed in the System Reference manual.

If your BSC program halts because of an invalid ASCII character in your
data, check your data and the ASCII translation table.

Column 19 (Transparency)

Entry

y

Nor blank

Explanation

EBCDIC transparency is used. The data being transferred
can contain transmission control characters and/or packed
numeric or alphameric characters. Column 18 must be E or
blank.

EBCDIC transparency is not used. Zoned decimal numeric
or alphameric data is sent and received. The data being
transferred cannot contain transmission characters.

Column 20 (Switched)

Columns 21-31

Entry

Blank

M

A

B

Note:

Explanation

This is not a switched line.

The operator using this program makes the connection by dialing
the number (manual dial).

This program uses autoanswer.

This program uses manual answer.

1. This entry is independent of the entry in column 16.

2. If you are using an autocall line, the switch type specified has no effecL
However, if no phone list is specified in the control language COMM
statement, the switch type specified here is established unless it has
been overridden with the ALTERCOM procedure.

Columns 21 through 31 are not used. Leave them blank.

24. Telecommunications

Column 32 (Location of Identification--This Station)

Entry

Blank

s

E

Explanation

No identification is used for this station.

This station's identification is at the position specified by the
symbolic name in columns 33 through 39. This entry only applies
to switched lines.

The entry in columns 33 through 39 is this station's
identification. This entry only applies to switched lines.

Columns 33-39 (ldentification--This Station)

Entry

Alphameric
characters

Explanation

When column 32 contains an E, this entry is the
actual identification sequence of this station
(minimum of 2 characters). When column 32
contains an S, this entry is the symbolic name of the
location of this station's identification.

If columns 33 through 39 contain a symbolic name, it must not be an array
name. If the BSCA file is a primary or secondary file, the symbolic name
must refer to the first entry of a table (the table might have only one entry)
to make sure that the station identification is in storage before the
communications line is open.

The station identification referred to by the symbolic name can be from 2 to
15 characters long, but it must not contain a transmission control
character. The station identification is translated if the BSCA files are
translated.

Column 40 (Location of ldentification--Remote Station)

Entry

Blank

s

E

24-8

Explanation

No identification is used for the remote station.

The remote station's identification is at the position specified by
the symbolic name in columns 41 through 47. This entry only
applies to switched lines.

The entry in columns 41 through 47 is the remote station's
identification. This entry only applies to switched lines.

Columns 41-47 (ldentification--Remote Station)

Columns 48-51

Entry

Alphameric
characters

Explanation

When column 40 contains an E, this entry is the
actual identification sequence of the remote station
(minimum of 2 characters). When column 40
contains an S, this entry is the symbolic name of the
location of the remote station's identification.

If columns 41 through 47 contain a symbolic name, it must not be an array
name. If the BSCA file is a primary or secondary file, this symbolic name
must refer to the first entry in a table (the table might have only one entry)
to make sure that the station identification is in storage before the
communications line is open.

The station identification referred to by the symbolic name can be from 2 to
15 characters long, but must not contain a transmission control sequence
character. The station identification is translated if the BSCA files are
translated. The identification received from the remote station is compared
with this entry. The session continues only if the identification matches.

Columns 48 through 51 are not used. Leave them blank.

Column 52 (ITB)

Entry Explanation

Blank Intermediate block checking is not used.

I Intermediate block checking is used.

Intermediate block checking (ITB) can be used only if the records are
blocked. ITB and EBCDIC transparency cannot both be specified for the
same BSC output file.

Chapter 24. Telecommunications Specifications 24-9

Columns 53-54 (Permanent-Error Indicator)

24-10

Entry

Blank

01-99,
Ll-L9,LR,
Hl-H9

Explanation

No permanent-error indicator is specified.
If a permanent error occurs, a system halt
occurs and the program cannot be
restarted.

A permanent-error indicator can be
specified for every BSCA file. The
indicator does not have to be unique for
each file. You should specify a
permanent-error indicator when the
system is running and no one is attending
to the system.

Use columns 53 and 54 to specify a permanent-error indicator for every
BSCA file. When a permanent error occurs, the specified error indicator
and the identification indicator of the record causing the error turn on
(however, no hardware diagnostics are performed). The permanent-error
indicator can then be used to condition the appropriate programming
response, such as printing a message or performing a controlled cancel.

Do not attempt to send information while the permanent-error indicator is
on. This includes attempts to send more than one record during detail,
total, or exception output. Further attempts to send information can be
prevented if each record to be sent is conditioned with the
not-permanent-error indicator in columns 9 through 11 of the calculation
specifications or columns 23 through 31 of the output specifications.

To retry an operation after a permanent error occurs, turn off the
permanent-error indicator. The RPG program can then access the BSCA
file on which the error occurred. If an error occurs on the retried
operation, the permanent-error indicator is turned on again; otherwise,
processing continues.

Consider the following points when retrying an operation:

• The permanent-error indicator is the only indication to the RPG
program that an error occurred. A BSC information message describing
the type of error is displayed. If a halt (HI through H9) is not issued as
part of the permanent-error routine, the BSC information message may
not be preserved on the display screen. You can find the message by
running the HISTORY procedure. For more information on the
HISTORY procedure, see the System Reference manual.

• Any data in the BSC buffers at the time of an error is lost. The record
in your buffers is not the same as the record in the BSC buffers.
Therefore, retrying the last operation will still result in lost data.

• Switched lines are not disabled when an error occurs unless a
disconnect sequence is received or the hardware detects disconnect.

• Any data sent while the permanent-error indicator is on is invalid.
Unless your program is designed to recognize all data, the error
condition can cause an unidentified record halt.

• A limit should be imposed by the RPG program on the number of times
an error can occur before the program is stopped.

Note: Avoid using Hl through H9 as permanent-error indicators if you are
going to condition operations on the permanent-error indicator being off.
Because Hl through H9 are reset at the end of the detail logic cycle, they
can be set off before the program cycle in which the error occurred is
completed. If Hl through H9 are used as permanent-error indicators, the
Hl through H9 display can preempt the system halt display. If the Hl
through H9 display appears before the system display, the person using the
display station should take the 0 option to prompt the system halt display.

Columns 55-57 (Wait Time)

Entry Explanation

Blank The system convention for time-out, 180 seconds, is used.

Numeric The length in time in seconds, 1 to 999, that BSC waits with no
messages being sent or received before a permanent error occurs.

A permanent error is recognized by the system whenever the wait time on
an idle line elapses. Therefore, when determining the wait time, consider
the time the person using the display station might require to respond to
halts and other processing interruptions, and also time the program might
require for special operations such as table searches and computing square
roots.

The wait time limit specified applies only to delays caused by the System/36
program and does not apply to the remote device. In addition, the time
limit applies only during the transmission or reception of a file, not
between file transmissions.

The occurrence of a permanent error indicates the end of processing of a
file, but not the end of file.

Chapter 24. Telecommunications Specifications 24-11

Columns 58-59 (Record-Available Indicator)

Entry

01-99,
Ll-L9, LR,
Hl-H9

Explanation

A record-available indicator should be
specified if a reverse interrupt (RVI) is to
be received. This indicator turns on
whenever a reverse interrupt (RVI) is
received.

Column 60 (Last File)

Entry

Blank

L

Explanation

This BSCA file may not be the last input file processed.

This BSCA file is processed only after all other input files are
processed. All secondary files should have L in column 60.

The entry in column 60 does not affect demand files.

Columns 61-62 (Polling Characters)

24-12

Entry Explanation

Blank This station is not part of a multipoint network.

Alphameric The polling identification of this station is required
characters if this station is part of a multipoint network and the

BSCA file is a sending (output) file. Polling and
addressing characters must be used in pairs.

Columns 63-64 (Addressing Characters)

Columns 65~74

Entry

Blank

Alphameric
character

Explanation

This station is not part of multipoint network.

The addressing identification of this station is
required if this station is part of a multipoint
network and the BSCA file is a receiving (input) file.
Polling and addressing characters must be used in
pairs.

Enter polling and addressing characters in EBCDIC; the compiler converts
the characters to the form required by the code specified in column 18. (If
ASCII was specified, enter uppercase addressing characters; they are
converted to lowercase ASCII characters.)

Columns 65 through 74 are not used. Leave them blank.

75-80 (Program Identification)

Explanation

Blank Program identification defaults to the
program name specified on the control
specification.

valid Program identification. The first
program character must be alphabetic but cannot
name he #, $, or (ji;. The remaining characters

must be alphameric with no imbedded
blanks. No special character can be used.

Columns 75 through 80 can contain any characters. These columns can
contain the program name used in the control specification, or they can
contain any other characters to identify a certain portion of the program.
These entries are ignored by the compiler but appear in the source listing.

Note. To be with other RPG the specifications sheets
show only 80 positions for each statement. However, each statement in an
RPG source program can contain up to 96 characters. Columns 81 through
96 are available for comments.

Chapter 24. Telecommunications Specifications 24-13

24-14

Chapter 25. Input Specifications

File and Record-Type Identification Entries
Columns 1-2 (Page)
Columns 3-5 (Line)
Column 6 (Form Type)
Column 7 (Comments)
Columns 7-12 (/EJECT)
Columns 7-12 (/TITLE)
Columns 7-14 (/SPACE)
Columns 7-14 (Filename)
Columns 14-16 .. .
Columns 15-16 (Sequence)

Assigning Sequence Numbers
Column 17 (Number)
Column 18 (Option)
Columns 19-20 (Record-Identifying Indicator, **, DS)

Look-Ahead .. .
Columns 21-41 (Record Identification Codes)

Position (Columns 21-24, 28-31, and 35-38)
Not (N) (Columns 25, 32, and 39)
C/Z/D (Columns 26, 33, and 40)
Character (Columns 27, 34, and 41)

Character Grouping by Zone or Digit
AND Relationship
OR Relationship

Column 42
Field Description Entries
Column 43 (Packed-Decimal or Binary Field)

Zoned-Decimal Format (Blank)
Packed-Decimal Format (P)
Binary Format (B)

Columns 44-51 (Field Location)
Column 52 (Decimal Positions)
Columns 53-58 (Field Name)

Field Names
Field Names in OR Relationship

25-3
25-3
25-3
25-3
25-3
25-4
25-4
25-4
25-5
25-5
25-5
25-7

25-10
25-12
25-12
25-13
25-23
25-23
25-23
25-24
25-26
25-26
25-27
25-27
25-27
25-28
25-28
25-29
25-30
25-32
25-34
25-34
25-35
25-35
25-36

Chapter 25. Input Specifications

Special Words (PAGE, PAGE1-PAGE7) 25-36
Columns 59-60 (Control Level) . 25-38
Columns 61-62 (Matching Fields) 25-38

Match Fields . 25-38
Sequence Checking . 25-39

Columns 63-64 (Field Record Relation) . 25-40
Columns 65-70 (Field Indicators) 25-42
Columns 71-74 ... 25-42
Columns 75-80 (Program Identification) . 25-43

Chapter 25. Input Specifications

Input specifications describe the data files, records, and fields of the records
used in the program. All input files are described on the input
specifications except files assigned to the device KEYBORD, record address
files, address output files, and table files. KEYBORD files are described on
the calculation specifications when the KEY operation code is used.
Record address files, address output files, and table files are described on
the extension specifications.

Input specifications are also used to describe data structures.

The input specifications are divided into two categories:

• File and record-type identification entries (columns 7 through 42)
describe the input record and its relationship to other records in the
file.

• Field description entries (columns 43 through 74) describe the fields in
the records. These specifications must start on the line below the file
and record-type identification specifications.

Write these specifications on the RPG Input Specifications sheet (see
Figure 25-1).

Chapter 25. Input Specifications 25-1

!:B:t-~t lnternilt;onal Busmess Machmes Corporation

Program

Programmer] Date

I Ji
j t--- Filename

~ or

f
mV>

Record Name w"' c 0 1
~ ~ =>: ~*~ /::

Line :::. 0 ~ *

~ ii;] Position
Data tM+o E .g

Structure , ~
Name

zo "' 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 I
0 2 I
0 3 I
0 4 I
0 5 I
0 6 I
0 7 I
0 8 I
0 9 I
1 0 I
1 1 I
1 2 I
1 3 I
1 4 I
1 5 I
1 6 I
1 7 I
1 8 I
1 9 I
2 0 I

I

I

I

I

I

RPG INPUT SPECIFICATIONS

j 1 ~ C"d El•otrn Numboc l 1 2

Keying Graphic PageDJof
Instruction r K•y -

External Field Name
Field Location

Record Identification Codes
~

·~
5

2 3 From To RPG -'
~ i3

~ ~ Field Name] .~ Ci)" -. u.. u:::

~ "'"' Data Structure mm

~e g ~eg ~e ~ :J ~ g " c Position Position "5 §
- N • - N • 0 ~ ~~~ Occurs ·o § ~2
~UD ~U6 z u n Times Length <'l u "u

25 26 21 '2s 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4ti 47 48 4::i tiv 51 52 53 54 55 56 57 58 59 60 61 62

GX21-9094' UM/Oso•
Printed in U.S.A.

75 76 77 78 79 80

~;~~~f~ation I I I I I I
Field

Indicators

Zero
Plus Minus or

Blank

63. 64 65 66 67 68 69 70 71 72 73 74

ll LL OL 69 89 l9 99 ~9 v~ ~~.~1::j_L9. ~9_!>~ .. ~s LS 9S s~_ ~s.rs.zs ~s ~s 6V av LV 9tr 9V vv tt> lt> Lt> Ot> 6t 8£ Lt 9t 5£ Vt££ l£ L£ Ot 6l Bl ll 9l gz t>Z: £l ll ~z: Ol 6l SL Lt 91 SL t>l £L ll lL OL 6 8 L 9 9 v £ l L

Figure 25-1. RPG Input Specifications

25-2

I

File and Record-Type Identification Entries

Columns 1-2 (Page)

Entry Explanation

Blank No page number is used.

01-99 Page number.

Use columns 1 and 2 in the upper right corner of each sheet to number the
specifications sheets, in ascending order, for your job. You can use more
than one of each type of sheet, but keep all sheets of the same type
together.

Columns 3-5 (Line)

Entry

Blank
Any
numbers

Explanation

No line number is used.
Line numbers.

Use columns 3 through 5 to number the lines on each page. Columns 3 and
4 are preprinted on each sheet so, in most cases, line numbering is already
done.

Page and line numbers are optional entries and are not required to
successfully run an RPG program. Columns 1 through 5 are checked for
ascending order, and RPG prints an Sin the left margin of the RPG listing
for any statement that is out of order. If you use SEU to enter the source
program, you can request that SEU sequence the specifications in
ascending order.

Column 6 (Form Type)

An I must appear in column 6 to identify this line as an input specification.

Column 7 (Comments)

Entry Explanation

* Comment line

Chapter 25. Input Specifications 25-3

Use an asterisk in column 7 to identify the line as a comment line. Use
comments throughout your program to help document the purpose of a
certain section of coding. You can use any character in a comment line.
Comments are not instructions to the RPG II program; they only document
your program.

Columns 7-12 (/EJECT)

Entry Explanation

/EJECT The specifications following this entry are to begin on a new
page of the compiler listing.

The /EJECT specification is not printed on the compiler listing.

Columns 7-12 (/TITLE)

Entry Explanation

/TITLE The heading information (such as a title or security
classification) that follows the /TITLE entry appears at the top of
each page of the compiler listing. The heading information is
entered in columns 14 through 74.

A program can contain more than one /TITLE statement. Each /TITLE
statement provides heading information for the compiler listing until the
next /TITLE statement is read. To print on the first page of the compiler
listing, a /TITLE statement must be the first statement read. Information
specified by the /TITLE statement is printed in addition to compiler heading
information.

The /TITLE statement causes an eject to the next page before the title is
printed. The /TITLE statement is not printed on the compiler listing.

Columns 7-14 (/SPACE)

25-4

Entry Explanation

/SPACEbn Line spacing occurs at this point in the compiler listing. Valid
entries for n are 1 to 3. If you do not specify n, 1 is assumed.

One blank (b) must come before the value you specify for n. The value you
specify for n indicates the number of blank lines to be spaced before the
next specification line is printed. If n is greater than the number of lines
remaining on the current page, the next specification line is printed on a
new page. If you specify just /SPACE, one line is spaced.

/SPACE is not printed on the compiler listing but is replaced by the actual
line spacing. The spacing indicated by /SPACE is in addition to the three
blank lines that occur between specification types.

Columns 7-14 (Filename)

Columns 14-16

Entry

A valid
filename
or data
structure
name

Explanation

Same filename that appears on the file description
specifications for the input file or the name of a data
structure.

If a data structure is specified (DS in columns 19 and 20), columns 7
through 14 can contain:

• Blanks

• A name up to 6 characters long

• A name previously referenced in columns 53 through 58 of the input
specifications

Data structure entries must be the last statements on the input
specifications.

Entry Explanation

AND or OR AND/OR indicates a relationship between record-identifying
indicators or record types. The entry must begin in column 14.

See Columns 21-41 (Record Identification Codes) and Columns 53-58 (Field
Name) in this chapter for more information on AND/OR relationship.

Columns 15-16 (Sequence)

Entry

Any two
alphabetic
characters

Explanation

Program does not check for special sequence.
Alphabetic characters must be used for
full-procedural files, chained files, demand files
(except CONSOLE demand files), WORKSTN files,
and look-ahead records.

Chapter 25. Input Specifications 25-5

Entry Explanation

01-99 Program checks for special sequence.

Use an entry (01 through 99) in columns 15 and 16 to assign a special
sequence number to different record types in a file. The first sequence
number must be 01. Gaps in sequence numbers are allowed, but the
numbers must be in ascending order.

If the types of records do not need to be in any special order, use two
alphabetic characters (see Figure 25-2). Within one file, all record types
having alphabetic entries in columns 15 and 16 must be described before
those types with numeric entries.

Item Number (BC)

Item Number (BC)

Part Number (AA)

Part Number (AA)

Item Number (BC)

File RECORDA has two types of records (part number and item number) that can appear in any
order. Because they are not to be checked for sequencing, they are assigned 2 alphabetic characters
in columns 15 and 16 (AA and BC, respectively) instead of numbers.

I i·
External Field Name Field

Field Location
Indicators ~ Filename

l
Record Identification Codes

~ g
or

~"' ~ -'
5 ~ Record Name w"' c 0 1 2 3 From To RPG :2-a } s a:

! ~ ::i ~] Field Name j .!! 'ii 1!
=s ·~ ".

t Ji a:
j u.. u:

! Zero
Line E :E" ~ 0 ~ z c ~ Data Structure]

J
.W ~ Plus Minus or

.f n ~~ = ~ g
.s::. ·c

j Position Position - ' " Position

~~ ii Blank Data

~ ~§~ ~ N o Occurs ~ Structure i~ ~U6 ~u 6 ci) a:- n Times Length ii:
Name

3 • 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 40 47 48 49 50 51 s2 SJ s4 ss se s1 ss 59 60 61 62 63 87 .. 69 70 71727374

0 1 I jAJ IAIA raJ. 1 ir1F
0 2 I
0 3 I
0 4 I
0 5 I
0 6 I
0 7 I IA~ rl~] ~11
0 8 I

Figure 25-2. Unsequenced Record Types in a File

25-6

Assigning Sequence Numbers

Enter a numeric character in columns 15 and 16 if one record type
(identified by a record identification code) must be read before another
record type in a sequenced group. To specify sequence checking, each
record type must have a record identification code, and the record types
must be numbered in the order they should appear. The program checks
this order as the records are read (see Figure 25-3). If a record type is out
of sequence, the program stops and error message RPG-9031, FILE
CONTAINS A RECORD NOT IN SEQUENCE, is displayed. You can
continue the program by selecting option 0 and pressing an entry function
key. The program bypasses the record that caused the halt and reads the
next record from the same file.

Sequence numbers make sure that all records of the lowest record type
come before the records of the next highest record type. The sequence
numbers do not make sure that records within a record type are in any
certain order. Sequence numbers are unrelated to control levels and do not
provide for checking data in fields of a record for a special sequence (see
Figure 25-4). Use columns 61 and 62 to indicate that data in fields of a
record be checked for a special sequence.

Records in an OR or AND line cannot have a sequence entry in these
columns. The entry in columns 15 and 16 on the previous line also applies
to the OR or AND line.

Chapter 25. Input Specifications 25-7

Item Number (07)

(07) ~~~~~~~~-
(03) ~~~~~~~~--

(02) ~~~~~~~~-.
N Name (01)

Item Number (07)

City/State (03)

(02)

(01)

J L cond Group of Records

/ ~~~stomer 2)

First Group of Records
(Customer 1)

This file contains four different kinds of records. The records are arranged in groups according to a
customer name control field. The name record is first in each group and is assigned sequence
number 01. Street record is next and is assigned 02. City/state record is 03. (Remember, gaps are
allowed). Item number record is 07. More than one item number record can be present (Nin column
17).

I I
External Field Name Field

Field Location
Indicators 1-- Filename

I
Record Identification Codes

~ -~ or g,~ -~
~

Record Name w 1 2 3 From To RPG i~
..

& ~-~
a:

~ ~ ~ Field Name J] {!::

~h .:l LLi,i: Zero
Line

~
:2. a z a I Data Structure -~ ~ Plus Minus or

~~ ~ ~ a: .! ~ Position ~ 0 ff Position Position = ~ g "§ :§ .., Blank Data

~$d ~§~ j§~ Occurs g ~ :16 £ Structure ¥ ~ i) 0 ~it nTimes Length 0
Name a:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4344454ti47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 84 87 .. 88 70 71 72 73 74

0 1 I IL~tI rz111 II l'l
0 2 I [.i: ~E N fol r-1

0 3 I rilcli [lrl~
0 4 I ~ ~ Ir~ t..lf-[[
0 5 I aJL-:ij [{ ~
0 6 I ~ l1 lJ. l1
0 7 I rll7N 1 lrlJ

0 8 I I~ 1~ [J M
0 9 I 11~ ~~ ~~
1 0 I

Figure 25-3. Sequence Checking of Record Type

25-8

Item Number (07)

Item Number ~ Customer2
,--...- City /State Record

C City /State (03)

Street (02) Each group is in proper sequence according to the
assigned sequence numbers (01, 02, 03, and 07).
Notice, however, that the city/state record for
customer 3 is in the group for customer 2 and

...-.....a..~~~~~~~--.

vice versa. The sequence entry that you specify in
columns 15 and 16 does not catch this mistake
because the sequence entry does not cause the data
on the record to be checked. See Figure 25-3 for
the coding of this example.

N Name

'\... Customer 3 Item Number (07)

~City /State Record

r I Item Number

j I Item Number (07)

j C City /State (03)

JS Street (02)

N Name (01)

1--'

!--'

--

C City /State (03)

(07)

t--

(02)

(01)

(01)

Figure 25-4. Correct Record Sequence (Incorrect Data within Groups)

(07)

Chapter 25. Input Specifications 25-9

Column 17 (Number)

25-10

Entry

Blank

1

Explanation

Program does not check record types for a special sequence
(columns 15 and 16 have alphabetic entries).

Only one record of this type can be present in the sequenced
group.

N One or more records of this type can be present in the sequenced
group.

Use column 17 only if columns 15 and 16 contain a numeric entry specifying
sequence checking (see Figure 25-5).

OR lines (columns 14 and 15 contain OR) and AND lines (columns 14
through 16 contain AND) should not have an entry in this column. The
entry in column 17 on the previous line also applies to the OR or AND line.
See Columns 53-58 (Field Name) in this chapter for more information on OR
lines.

[C City /State (03)

N Name (01)

Customer 2
Record types 02 and 07 are optional as
indicated by 0 in column 18.

Item Number (07)

Item Number (07)

Item Number (07)

C City/State (03)

S Street (02)

N Name (01)

I ~

Customer 1

Only one record of types 01, 02, and 03 can be present as
indicated by 1 in column 17; however, any number of record
type 07 can be present as indicated by N in column 17.

External Field Name
Field Location

1-- Filename

~ ~ Record Identification Codes
~

c
0

or ~~ 0
·z

Record Name £ w "" 1 2 3 From To 0 RPG
~

~~ ~

~
f o_ ~

·z
i! ~ iii ~

~:

n~
~ Field Name

j ~ u:
~ Line - ~ Data Structure -~ gi j ~ = ~ ~ ~ 0 lll ~o g e

~~ '" Position Position Position ~ ~ata
~ +o~

0 N ~ o~ Occurs ~ ~ ..
~ ~U6 0 - ~ 6 U) ii:: Structure z u u z u nTimes Length "u u:

Name
3 4 5 • 7 8 9 101112 1314 15 16 17 19 20 21 22 23 24 25 26 21p29303\ 3233 34 35 36 37 38 39 40 4142 43 44 45 4ti 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

0 1 1"' ica rm: Ii i"JN
0 2 I I~ 1a~ t~IAr-IE
0 3 I ~t2 11"' 11 lrjc

0 4 I [Cl ~' [t.t.1
0 5 I ul:= 1 II 1rr1
0 6 I le Jai LL ,ll..,l
0 7 I rll I ~ 1 ~1
0 8 I llkZ I Hi lll ltJI
0 9 I 111~ ~.3 m~
1 0 I

Figure 25-5. Sequenced Record File

Field
Indicators

Zero
Plus Minus or

Blank

65 66 67 88 69 70 71 7273:

Chapter 25. Input Specifications 25-11

Column 18 (Option)

Entry

Blank

0

u

Explanation

Record type must be present if sequence checking is specified.

Record type is optional (that is, it may or may not be present) if
sequence checking is specified.

The program uses the data structure defined on this specification
line as a display station local data area.

Use column 18 only if columns 15 and 16 contain a numeric entry specifying
sequence checking, or if the data structure defined on the following
specification line is used as a display station local data area.

If seqµence checking is specified and all record types are optional, no
sequence error is found.

OR and AND lines should not have an entry in this column. The entry in
column 18 on the previous line also applies to the OR or AND line. See
Columns 53-58 (Field Name) in this chapter for more information on OR
lines.·

Columns 19-20 (Record-Identifying Indicator,**, DS)

Entry

01-10

01-99

Ll-L9

LR

Hl-H9

**

25-12

Explanation

Record-identifying indicator for CONSOLE files.
Record-identifying indicators 01 through 10 for CONSOLE files
correspond to command keys 1 through 10.

Record-identifying indicator.

Control-level indicator used for a record-identifying indicator
when a record type rather than a control field signals the start of
a new control group.

Last-record indicator.

Halt indicator used for a record-identifying indicator when
checking for a record type that causes an error condition.

Look-ahead field. Look-ahead can be used only with input or
update files; however, these files cannot be full-procedural,
chained, or demand files. Look-ahead fields are not valid with
CONSOLE files or WORKSTN files.

Look-Ahead

DS Data structul'e. A data structure is considered to be alphameric
data and can be from 1 to 9999 characters in length. Data
structure entries must be the last entries on the input
specifications. For more information about data structures, see
Chapter 14.

A look-ahead field allows you to:

11!1 Detenrcinc when the 1::ist record of a control group is being processed

Because an RPG program processes one record at a time, normally only the
information from the record being processed is available for use. However,
look-ahead allows information to be made available from records that follow
the one currently being processed. This information can then be used to
determine what operation should be done next.

or all of the fields in a file can be described as look-ahead fields. The
applies to all records in the file regardless of their type.

Look-ahead fields can be described before or after the field descriptions for
any of the records in the file. The line that signals that look-ahead fields
are to be described must contain an alphabetic entry in columns 15 and 16

contain ·H in column 19 and 20. AU the other columns must be
blank. Remember that with an alphabetic sequence in
columns 15 and HJ must specifications with a numeric sequence in
columns 15 and Hi.

Look-ahead fields are described on the lines immediately following the line
that contains ** in column 19 and 20 (see Figure 25-6). Make the following
entri.es for each 1ook-ahead field description line:

44-51: the :ecord positions in which the field is
located.

111 Column .52: If the field is numeric, enter the number of digits to the
of decimal point in column 52. If there are no decimal

positions, enter a 0. If the field is alphameric, leave this column blank.

·'It 58-58: Ente:r the name of the lookahead field. If the field is
also one of the normal fields in the record, use a different name for the

field.

Filename

E

ii!

File Type

Fill Designation

End of file

Mode of Processing

Length of Key Field or
of Record Address Field

Recor~Y:~res;i:ype $
File Format N Organization or !
w~-~---1 ,! Additional Area c:

"J ~ ~::.~. Record ~ ~ Ove·E"ow '""''.""'' .1 5:! « ~ _,,.... Length ~ ~ E! Key ~aeld Jl
~- ~ .. w p 1!"":.l--__Ji..._ _ __..l::.L---1..:.C~:.L--LS!a!!! ... !l!",;!!!l~!!....J....I
~ < External Record Name

Device
Symbolic
Device

K

Name of
Label Exit

Extent Exit
for DAM

Storage Index

Continuation Lines

Option Enw

File Addition/Unordet"ed

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape

~
File
Condition
U1-UB, _

~ UC.---

~
I 3 4 s • 1 8 9. 10 11 12 13 14 1& 18 17 1 ! 20 , 22 23 24 25 21 71 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60..J! 62 63 84 65 86 87 68 89 70 71 72 73 74

0 3 F ~-

o 4 F

The program reads records from two disk files. The primary file is named PRIMARY; the secondary
file, SECONDRY. If a record from the primary file matches one from the secondary file, the
information in positions 1 through 10 of the secondary file record is placed in positions 31 through 40
of the primary file record. When there is no match, a 6 is placed in position 1 of the primary file
record. The 6 indicates an unmatched record in the primary file.

Because the primary file record is processed first when it matches a secondary file record, the
information from the secondary file can be made available only by a look-ahead field.

Figure 25-6 (Part 1 of 2). Look-Ahead Fields

25-14

I 0

t---]

Line

Position

J 4 5 6

0 '

records needed in primary file records)

~
t-

une !

0 3 0

Filename
or

Record Name

External Field Name

Record Identification Codes

Posot1on ~o
0 ~
z u

F ie!d Location

From To

Data Structure "' ~1---~----1
rn Occurs

Length

RPG
Field Name

Field
Indicators

Zero
P!us Minus or

Blank

0 5 0 -t-t-t-lf-r-Y1-J-H-j + ~ I IT 'lb'[Ht±' I
l-0+-6-+-1-01-+-+--+-+-+-+~-+-l--+-+-f- -1-+-+--u H + i-+--t I I 1\-t--+-J -+--<--+-+-+-+-l--+--+-4I-+-+-+-+--<--+--+-<--+-+-+-+-+-+--+-•

4---1---H 7 _ _(j \- \ _j__H

0 0 4

Place the look-ahead field from secondary records into

positions 31 through 40 of the primary record if the two

records match.

Figure 25-6 (Part 2 of 2). Look-Ahead Fields

Place a 6 in position 1 of the primary record if the rec

matches no secondary record.

Chapter 25. Input Specifications 25-15

l

25-16

For input files, look-ahead fields always apply to the next record in the file,
provided the file is not an update file. Thus, if the information is used both
before and after the record is selected for processing, describe the field
twice, once as a look-ahead field and once as a normal field. See Figure
25-7 for an example of how records are selected for processing from two
input files when look-ahead fields are used.

For update files, the look-ahead fields apply to the next record in the file
only if the record currently selected for processing was read from another
file.

Therefore, when the program is reading from only one file and that file is
an update file, look-ahead fields always apply to the current record and
contain the same information as a normal field. See Figure 25-8 for an
example of how records are selected for processing from an update file and
an input file when look-ahead fields are used.

As the last record from a file is processed, every look-ahead field for the file
is automatically filled with 9s. For example, a look-ahead field that is 3
characters long will contain 999. The 9s remain in the field until the job
ends. The blank-after option (B in column 39 of the output specifications)
cannot be used with look-ahead fields.

Primary File Secondary File

1. Read first record

from primary file.

2 2 3

(P2) (P3) (P4) (P5)

1 I ~ 2

(S4)

i .-;,,;;, i;,,} · _ ------.,;;-h ~.;;;- - - - - - - -~
I u\ . I

(S2) l ~S3)

I 1 I

: (P1) (S1) :

' ~----------------------------1
I I
I

I
I
I

L __ -------- - - ---- - -- --- - - ___ .J

2. Re<id second record

from primary file.

r----
1

2 2 13
(P3) (P4) l (P5)

1 12 2

(S2) l (S3) (S4)

------------------~

{P2)

I
I
I

I

1. Selec~r::c:d--~----Ld-- -- -- - - - - ·- -:

from primary file ~ 1 I
for processing. {P 1) · I

I I
L-------------------------~

Figure 25-7 (Part 1 of 3). Available Records: Two Input Files

3

(S5)

2. Read first record
from secondary file.

Area into Which Records

Are Read (Read Area)

Area into Which Selected

Records Are Placed for
Processing (Processing Area)

3

(S5)

Read Area

Process Area

Chapter 25. Input Specifications 25-17

2. Read third record
from primary file.

r----
1
I 2
I
I
I
1------
1

1. Select second record
from primary file

(P3)

2 3 1 2 2

(P4) (P5) (S2) (S3) (S4)

-----------------,
I

GI I

~ :
-----------------~

I
I
I

for processing. (P2)

~-----------·----------~ r-,
I 1 I Processed Records
L(P1~

Figure 25-7 (Part 2 of 3). Available Records: Two Input Files

25-18

3

(S5)

Read Area

Process Area

2 3

(P4) (P5)

r----------------
1

I f2I
: ~
I

(52)

2 2 3

(53) (54) (55)

..,
I
I
I
I
I
I

2. Read second record
from secondary file.

Read Area

1-- - - - - - - - - - - -
I
I

-----------;
I 1

I
I (S1l I

~ -----------1----------_J

1. Select first record from
secondary file for processing.

Process Area

r, ,
I I L (P2!..J

Records Being Records Available
for Look-Ahead

Processed Records

Processed

Pl
P2
51

P2 and 51
P3 and 51
P3 and 52

Figure 25-7 (Part 3 of 3). Available Records: Two Input Files

Chapter 25. Input Specifications 25-19

Update File (Primary File) Secondary File

1. Read ti rst record
from update file.

2 2 3

(U2) (U3) (U4) (U5)

1

(S2)

2 2

(S3l (S4)

.---1 Match Field

I ---

--------,
Match Field I

1
I
I

I (U1) (S1) I

r---------------------,
I I
I I
I I
I I
L-------------------- _J

1 2 2 3 1 2 2

(U2) (U3) (U4) (U5) (S2) (S3) (S4)

,------------------------,

: rl Ld ! I (S1) I
I I
~---- ------------------~
I I

1. Select ti rst record
from update file

I
I

for p~ocessing. (U1) :

L-----------------------~

3

(S5)

2. Read ti rst record
from secondary file.

Area into Which Records
Are Read (Read Area)

Area into Which Records
Are Selected for Processing
(Process Area)

3

(S5)

Read Area

Record U1 has moved into the
process area, but a data image
of U 1 remains in the read area
until U2 is read in. U2 is not
read in until U1 is completely
processed. Therefore, while U1
is in the process area, records
available for look-ahead are S1
and U1 (the data image).

Process Area

Figure 25-8 (Part 1 of 3). Available Records: One Input File, One Update File

25-20

1. Read second record
from update file.

2 2 3 2 2 3

(U3) (U4) (U5) (52) (53) (54) (55)

r--- ----------------,
I I

I Cd I
: (U2) :
I I
~---------- -- -- - - - -- ---i

Read Area

I I

I :
I Process Area

l ___________ t ___________ j
r, 1
I I Processed Records

L1~1~

2 2 3 1 2 2 3

(U3) (U4) (U5) (52) (53) (54) (55)

r -,
I I

i I] GJ i Read Area

~--- ----------------~
I I
I

1. Select second record I
from update file I Process Area
for prfcessing. (U2) :

L----------------------~

Processed Records

Figure 25-8 (Part 2 of 3). Available Records: One Input File, One Update File

Chapter 25. Input Specifications 25-21

1. Read third record 2 3 2 2

f<om ~re filo. -/ ~4~ :l_ -- :~ ~I

! ":1 1521 i I~ I
1-- - - - - - - - - - - - - - - - - - - --1
: I

I CJ I
I 1s1 l I
I I L _______________________ J

3

(SS)

Read Area

3. Read second record
from secondary file.

2. Select first record
from secondary file
for processing.

Process Area

Records Being
Processed

Records Available
for Look-Ahead

Processed Records U1
U2
S1

Figure 25-8 (Part 3 of 3). Available Records: One Input File, One Update File

25-22

U1 and S1
U2 and S1
U3 and S2

Columns 21-41 (Record Identification Codes)

Use columns 21 through 41 to describe the information that identifies a
record type. If all records are to be processed alike regardless of their type,
or if there is only one record type, leave columns 21 through 41 blank.

Note: Only columns 21 through 34 are valid for CONSOLE files (see
Chapter 9, Using a CONSOLE, KEYBORD, or CRT File, for more
information).

When one file contains more than one record type, each record type is
identified by a code consisting of a character or a combination of
characters in certain positions in the record. If different operations are to
be performed for each record type, this code must be described in columns
21 through 41 so that the program can determine the type of record selected
for processing. Only one type of record is selected for processing during a
program cycle, and the record-identifying indicator for that record turns on
at the time of selection.

Seven columns are used for the description of one character in the record
identification code. Each specification line contains three sets of seven
columns: columns 21 through 27, 28 through 34, and 35 through 41. Each
set consists of four fields: Position, Not, C/Z/D, and Character. Coding is
the same for all three sets.

Note.· record that is read by the system and is not described by a
record identification code in columns 21 through 41 causes the program to
halt. The person using the display station can continue, however, by
selecting the appropriate option. The record that causes the halt is not
processed, and the next record in that file is read.

Position (Colum.ns 21-24, 28-31, and 35-38)

Blank

1-4096

Explanation

No record identification code is needed.

Record position of one character in the record identification
code.

Use these columns to give the location in the record of every character in
the identification code. These entries must end in columns 24, 31, and 38

Not (N) (Columns 25, 32, and 39)

Entry

Blank

N

Explanation

Character is present in the specified record position.

Character should not be present in the specified record position
(not valid for CONSOLE files; see Chapter 9).

Chapter 25. Input Specifications 25-23

Use these columns to indicate that a certain character should not be
present in a specified position.

C/Z/D (Columns 26, 33, and 40)

I f t---i Filename

j or ~[(l Record Name w
I!. i ls
;;:: ~ ·~.·

Line :E'
~ .! i Data

* ~~ Structure
Nome "'

Entry

c

z

D

Explanation

Entire character. C must be used for CONSOLE files (see
Chapter 9).

Zone portion of character.

Digit portion of character.

Use these columns to indicate what portion of a character is used as part of
the record identification code. Only the zone portion, only the digit
portion, or both portions (the whole character) can be used (see Figure
25-9). When establishing record identification codes, remember that many
characters have either the same zone or the same digit portion. For a list
of characters that have identical zone or digit portions, see Figure 25~10.

External Field Name
Field

Field location
Indicators Record Identification Codes

! .§

il 5 • 1 2 3 From To RPG :!HI
..

l
a:

li Field Name !i .!!'ii

1 Iii~ cc 3 LL.Li: Zero
- ll Data Structure ~m

z 0 ~ ~~ !4g ;) i :~ a: Plus Minus or
Position i~S Position Position ~ Blank

i§~ Occurs ll ~6 ~ zoo ~ (3 a tii a:: Length nTimes
3 • 5 6 7 8 9 10 11 12 13 14 15 18 17 19 20 21 22 23 24 25 26 27 28 29 30 31 ~35363738 3233 39 40 41 42 4344454ti47 48 49 50 51 52 53 54 55 56 57 58 59 80 61 62 63 67 68 .. 70 71 72 73 74

0 1 rlcl• W1 IL IF! l1la /'j ,..,fl /q/lj l!:m
~ 0 2 I i2l!NF lctl!i lq~ Ir Ir;:

0 3 I~
0 4 I~ 1\
0 5 I~ 7 I~
0 6 I~ 1\
0 7 I _l nF ltl'i L1 rl~ la r~
0 8 I 'I R l1 1l:i
0 9 I _l "" 1 0 I ![N

Record type 15 can be identified by two
'different codes: a 5 in position 1 and a
6 in position 2, or a 6 in position 1.

AND must be used to describe the last
2 characters of a 5-character code.

Figure 25-9. Record Identification Codes

25-24

~
f'\.J

N

~
The character 5 must be present in position 1,
the zone portion of the character T in position
94, the character 9 in position 95, and the digit
portion of the character E in position 96.
However, the digit portion of the character 9
must not be present in column 93. Only the
digit portions of 9 and E are checked, and only
the zone portion of character T is checked.

Character Gro~n_g_ ~ Zonel_Zl Character Grol!lliim in'_ Djgjt iDl

Zone 4 Zone 8 Zone D Djgjt 0 Djgjt 6 Digit C

blank a - (minus} blank f <

¢ b } & 0 *
c J - (minus} w %

< d K
(e L

} F @
{ 0

+ f M \ w
I g N 0 6

h 0 Djgjt 1 Djg_it 7 Ojgjt D
i p I g (

Q a p }
R j x - (underscore)

ZOml5 Zone 9 Zone E "' G · (apostrophe)

& j \ A p

I k s J x
$ I T 1 7
• m u Djg_it 2 Djg_it 8 Djgjt E
} n v b h +
; 0 w k q ;

'l p x s y >
q y

B H =
r z K Q

Zone 6 Zone A Zone F s y

- (minus} "' blank 2 8

I s 0 D.i.9.it 3 Djgit 9 Digit F
I t 1 I c i I

• (comma) u 2 I r ..,
% v 3 t z ?

(underscore) w 4 - c I ..
> x 5 L R
1 y 6 T z

z 7 3 9
8

9
Djgit 4 Djg_it A

d ¢
Zone 7 Zone C m I . &

: {
u I

I

D :
A M
@ B u

' (apostrophe) c 4
= D Djgjt 5 Djgjt B ..

E e
F n $
G v
H E #
I N

v
5

Figure 25-10. Characters Interpreted as Having the Same Zone or Digit

Chapter 25. Input Specifications 25-25

Character (Columns 27, 34, and 41)

In these columns, enter the alphabetic character, special character, or
numeric character that is used in the record as the identification code or
part of the code.

Character Grouping by Zone or Digit

25-26

When characters are used for record identification purposes on a digit or
zone only basis, all characters having the same zone or digit are selected by
the system as meeting record identification requirements. When a
character is read into the system, it is converted into an 8-bit code. The
program tests this 8-bit code to see whether the character meets the
requirements of the record identifying character in the input specifications.

Figure 25-10 lists the characters that have identical zones or digits. For
example, if column 26 contains D, which specifies digit only, and column 27
contains A, all records having a slash(/), A, J, or 1 in the specified column
are selected as having the correct record identification code. If column 26
contains Zand column 27 contains A, all records containing & or A
through I are selected as having the correct code.

The following three special cases are exceptions:

• The hexadecimal representation of an & (ampersand) is 50. However,
when the ampersand is coded in the character entry, it is treated as
though its hexadecimal representation were CO, that is, as if it had the
same zone as the characters A through I. An ampersand in the input
data satisfies two zone checks, for either a hexadecimal 5 zone or a
hexadecimal C zone.

• The hexadecimal representation of a - (minus sign) is 60. However,
when the minus sign is coded in the character entry, it is treated as
though its hexadecimal representation were DO, that is, as if it had the
same zone as the characters J through R. A minus sign in the input
data satisfies two zone checks, for either a hexadecimal 6 zone or a
hexadecimal D zone.

• The hexadecimal representation of a blank is 40. However, when the
blank is coded in the character entry, it is treated as though its
hexadecimal representation were FO, that is, as if it had the same zone
as the numeric characters 0 through 9. A blank in the input data
satisfies two zone checks, for either a hexadecimal 4 zone or a
hexadecimal F zone.

AND Relationship

OR Relationship

Column 42

A maximum of three identifying characters can be described in one
specification line. If the identification code consists of more than 3
characters, an AND line must be used to describe the additional characters.
Write the word AND in columns 14 through 16 to indicate an AND line (see
Figure 25-9).

Any number of AND lines can be used to describe the record identification
code for a record sequence. The record must contain all the characters
indicated as its record identification code before the record-identifying
indicator turns on. AND lines are not allowed on CONSOLE files used for
interactive data entry.

If a particular record type can be identified by two different codes, OR lines
must be used to indicate that either of the codes can be present to identify
the record. A maximum of 20 OR lines can appear for each record
sequence. Write the word OR in columns 14 and 15 to indicate an OR line
(see Figure 25-9).

Note: If AND lines and OR lines are combined the total number of OR lines
for one record sequence cannot exceed 20 and any number of AND lines can
be used.

Column 42 is not used. Leave it blank.

Chapter 25. Input Specifications 25-27

Field Description Entries

The field description entries (columns 43 through 74) must begin one line
below the file and record identification entries (columns 7 through 42) for
each file.

Column 43 (Packed-Decimal or Binary Field)

25-28

Entry

Blank

p

B

Explanation

Field is in zoned-decimal format or is alphameric. (This column
must be blank for CONSOLE files.)

Field named in columns 53 through 58 is in packed-decimal
format.

Field named in columns 53 through 58 is in binary format.

Use column 43 to indicate that a numeric field is in packed-decimal or
binary format. DISK files support packed-decimal or binary fields for read
or write operations. Numeric data fields in packed-decimal or binary
format are converted by the system to the zoned-decimal format before they
are processed. This conversion ignores decimal points.

Packed or binary input to arrays should have a P or B in this column. The
from and to columns should then define the positions the array occupies in
the record in the packed or binary format. The zoned-decimal length of
each array element is defined on the extension specifications.

Zoned-Decimal Format (Blank)

Zoned-decimal format means that each byte can contain 1 character. That
character can be a decimal number or an alphabetic or special character.
In the zoned-decimal format, each byte is divided into a 4-bit zone portion
and a 4-bit digit portion. The zoned-decimal format looks like this:

0----.~1 0-------1 0-----1 0-----1 0-------1

Zone Digit Zone Digit Zone Digit Zone Digit Sign Digit
.___,_..,

Byte
1111 (hex Fl =Positive Sign
1101 (hex D) = Negative Sign

Note: RPG does not perform data verification on numeric data. The value
of the digit portion of a character is assumed to be the numeric value of
that character.

The zone portion of the low-order byte indicates whether the decimal
number is positive or negative. A positive value is indicated by a
hexadecimal F, and a negative value is indicated by a hexadecimal D. In
zoned-decimal format, each digit in a decimal number includes a zone
portion; however, only the low-order zone portion serves as the sign. The
decimal number 8191 looks like this in zoned-decimal format:

Zone

! 8

Zone

!
Zone

!
Positive Sign

9 ! 1

1000 0001 : 1001 I 1111: 0001

------------4 Bytes-----------

For more efficient use of disk storage, you may want to enter your numeric
data (decimal numbers) in packed-decimal or binary format. However, you
will have to convert your data to zoned-decimal format before it can be
processed.

Chapter 25. Input Specifications 25-29

Packed-Decimal Format (P)

25-30

Packed-decimal format means that each byte (except for the low-order byte)
can contain two digits. Because many of the fields in a DISK file contain
decimal numbers, you can conserve storage by using the packed-decimal
format.

In the packed decimal format, each byte, except the low-order byte, is
divided into two 4-bit digit portions. The rightmost portion of the low-order
byte contains the sign (plus or minus) for that field. The packed-decimal
format looks like this:

0-----1 0-----1

Digit Digit Digit Sign

Byte
1111 (hex F) = Positive Sign
1101 (hex D) = Negative Sign

The sign portion of the low-order byte indicates whether the numeric value
represented in the digit portions is positive or negative. A positive value is
indicated by a hexadecimal F, and a negative value is indicated by a
hexadecimal D. In the packed-decimal format, the sign is included for each
decimal number; however, the zone portion is not given for each digit in the
number. Compare how the decimal number 8191 is represented in
packed-decimal format with its zoned-decimal representation shown before
(see Figure 25-11).

Because processing requires the zoned-decimal format once it is inside the
computer, you must indicate when input fields are in another format.
Entering a P in column 43 indicates that the input field is in the
packed-decimal format and that the system must convert this field to the
required zoned-decimal format.

When a packed-decimal field is converted to a zoned-decimal field, the
zoned-decimal field always contains an odd number of bytes. If a
zoned-decimal field with an even number of bytes is converted to a
packed-decimal field and then converted back to a zoned-decimal field, the
resulting zoned-decimal field also contains an odd number of bytes.

Packed-decimal fields can be up to 8 bytes long. The following chart shows
the packed-decimal equivalents for zoned-decimal fields up to 15 bytes long,
which is the maximum length.

Zoned-Decimal Packed-Decimal
Length in Bytes Length in Bytes

15 8
14

13 7
12

11 6
10

9 5
8

7 4
6

5 3
4

3 2
2

1 1

Chapter 25. Input Specifications 25-31

Binary Format (B)

25-32

Binary format means that 2 bytes can contain a 4-digit number, and that 4
bytes can contain a 9-digit number. The binary format allows you to save
even more disk storage space than you can save using the packed-decimal
format. In the binary format, each field on disk must be either 2 or 4 bytes
long.

Each 2-byte binary field consists of a 1-bit sign followed by a 15-bit numeric
value. In binary format, a decimal number as high as 9999 requires only 2
bytes of disk storage. For each 2-byte binary field, the RPG compiler
automatically sets aside 4 bytes of storage to accommodate the field when it
is unpacked. A 2-byte field in binary format looks like this:

0 15

I Sign Number

-----2 Bytes-----

Each 4-byte binary field consists of a 1-bit sign followed by a 31-bit numeric
value. In binary format, a decimal number as high as 999 999 999 requires
only 4 bytes of disk storage. For each 4-byte binary field stored on disk, the
RPG compiler automatically sets aside 9 bytes of storage to accommodate
the field when it is converted. A 4-byte field in binary format looks like
this:

0 31

I Sign Number

----------4 Bytes----------

In each case, the sign portion of the high-order byte indicates whether the
numeric value is positive (sign bit off) or negative (sign bit on). Positive
numbers are represented in true binary notation with a 0 bit in the sign
position. Negative numbers are represented in twos-complement notation
with a 1 bit in the sign position. The bits between the sign position and the
leftmost significant bit of the integer are always the same as the sign bit.
When the number is positive, all bits to the left of the most significant bit,
including the sign bit, are O's. When the number is negative, all bits to the
left of the most significant bit, including the sign bit, are l's. Notice that,
in the binary format, the zone position of the decimal number is not given.
Compare how the decimal number 8191 is represented in binary format with
packed-decimal and zoned-decimal representation (see Figure 25-11).

Because processing requires the zoned-decimal format once it is inside the
computer, you must indicate when input fields are in another format.
Entering a B in column 43 indicates that the input field is in the binary
format and that the system must convert this field to the required
zoned-decimal format.

Note: Although packed-l:.acimal and binary fields require less disk storage
space, the conversion routines needed to handle such data increase the
program size.

Binary Format

I
Positive Sign 4096+2048+1024+ 512 + 256 + 128 + 64 + 32 + 16

t I I I l I

0 0 0 : I

Packed-Decimal Format

0 8 9

0000 1000 0001 1001 0001

Zoned-Decimal Format2

Zone
I

0000

Zone

Positive Sign

t
1111

0001 '

9

1001

I I

Positive
:!

0001

+ 8 + 4 + 2 +
I I

1 To obtain the numeric of a positive number, aod the values of the bits that are on 'i'); the sign bit is not included. To
obtain the numeric value o"f a negative binarv number, add the va!ues of the bits thBt are off (0) plus one; the sign bit is not included
(twos-complement notationL

2 If 8191 is read into storage as a zoned-decimal field, it occupies 4 bytes. However, if it is convened to packed-decimal format,
it occupies 3 bytes, then when it is converted back to zoned-decimal format, it occupies 5 bytes.

Figure 25-11. Binary, Packed-Decimal, and Zoned-Decimal< Representation. of 8Hll

8191 1

25, Specifications 25-33

Columns 44-51 (Field Location)

Entry

1-9999

Explanation

Beginning of a field (from) or end of a field (to). See Chapter 9
for CONSOLE file considerations. For a WORKSTN file, the
from and to positions refer to the location of the fields in the
input record and not to their location in the display format.

Use columns 44 through 51 to describe the location on the record of the
field named in columns 53 through 58. Enter the number of the record
position in which the field begins in columns 44 through 47. Enter the
number of the record position in which the field ends in columns 48 through
51. The entries must end in columns 47 and 51. Leading zeros can be
omitted.

Define a single-position field by entering the same number in both the from
(columns 44 through 47) and to (columns 48 through 51) positions. If a field
of more than one position is defined, the number entered in columns 44
through 47 must be smaller than the number entered in columns 48 through
51.

The maximum field length for a zoned-decimal numeric field is 15 positions
(8 if the field is packed-decimal and 4 if it is binary). The maximum field
length for an alphameric field is 256 characters, and the maximum length
for a data structure is 9999 characters.

Column 52 (Decimal Positions)

25-34

Entry Explanation

Blank Alphameric field

0-9 Number of decimal positions in numeric field

Use column 52 to indicate the number of decimal positions in any numeric
field named in columns 53 through 58. Column 52 must contain an entry
when the field named in columns 53 through 58 is numeric. To define a
field as numeric with no decimal position, enter a 0. If a field is to be used
in arithmetic operations or is to be edited, it must be numeric. If the
number of decimal positions specified for a field exceeds the length of that
field, the number of decimal positions is assumed equal to the length of the
field.

Columns 53-58 (Field Name)

Field Names

Entry

1-6
alphameric
characters

PAGE,
PAGE1-
PAGE7

Explanation

Field name, array name, or array
element

Special words

Use columns 53 through 58 to name a field, array, or array element found
on your input records. When referencing an array, additional entries may
be needed in these columns (see Using an Array Name and Index in
Chapter 13, Using Arrays and Tables).

Use this name throughout the program whenever you refer to this field.
Indicate the names of the fields for all types of records using a separate line
for each field. However, name only the fields that you use. For example, if
you use only the first 10 positions of a record that is 96 positions long,
define positions 1 through 10 on the input specifications.

For CONSOLE files, whole array names must be entered in one of the
following ways:

• Define the whole array as a subfield within a field.

• Define each element of the array with an index and place this entry in
columns 53 through 58 of the input specifications. The index must be
an integer value.

A field name can be from l to 6 characters long and must begin in column
53. The first character must be an alphabetic character. The remaining
characters can be any combination of alphabetic and numeric characters
(special characters are not allowed). Blanks cannot appear between
characters in the name.

All fields in one type of record should have different names. If two or more
fields on the same record type have the same name, only the field described
last is used. However, fields from different record types can have the same
name if the fields are the same length and contain the same type of data.
This applies even if the fields are in different locations in each record type.

Numeric fields can have a maximum length of 15 digits. Alphameric fields
can have a maximum length of 256 characters (66 for CONSOLE files). A
data structure can have a maximum length of 9999 characters. Subfields
can have a maximum length of 256 characters for alphameric subfields and
15 digits for numeric subfields.

Chapter 25. Input Specifications 25-35

If a data structure subfield is specified in columns 53 through 58, only
field-record-relation indicators (columns 63 and 64) can be specified.
Entries for control-level indicators (columns 59 and 60), match field values
(columns 61 and 62), and field indicators (columns 65 through 70) are not
allowed. A data structure name cannot be specified as a subfield in a data
structure.

Fields that are used in arithmetic operations (see Chapter 28, Operation
Codes) or fields that are edited or zero suppressed (see Column 38 and
Columns 45-70 in Chapter 27, Output Specifications) must be defined as
numeric. Therefore, column '52 must have a decimal position entry (O
through 9).

Field Names in OR Relationship

If two or more record types contain identical fields, you must describe each
field. To eliminate duplicate coding of identical fields from different record
types, use the OR relationship (see Figure 25-10). A maximum of 20 OR
lines can be used for each record sequence group if no AND lines are
specified.

An OR relationship means that the fields named can be found in either of
the record types. You can use OR lines when:

• Two or more record types have the same fields in the same positions
(see Figure 25-12).

• Two or more record types have some fields that are identical and some
fields that differ in location, length, or type of data. See Columns 63-64
in this chapter for sample coding of such record types.

Write OR in columns 14 and 15 to indicate an OR line. If there are several
AND or OR lines, field description lines start after the last record
identification line.

Special Words (PAGE, PAGE1-PAGE7)

25-36

If a printed report has several pages that are to be numbered, use the
special word PAGE to indicate that page numbering is to be done. When
you use a PAGE entry on the output specifications, page numbering
automatically starts with 1 (see Columns 32-37 in Chapter 27, Output
Specifications).

To start at a page number other than 1, enter that page number in a field of
an input record and name that field PAGE in columns 53 through 58. The
number entered in the PAGE field should be one less than the starting page
number. If numbering starts with 24, enter a 23 in the PAGE field. The
PAGE field can be 1 to 15 digits long, but must have zero decimal positions
(see Figure 25-13). If a PAGE field is used but it is not defined, the PAGE
field is assumed to be 4 digits long with zero decimal positions. Any entry
in the PAGE field should be coded in the rightmost columns, such as 0023.

Page numbering can be restarted during a program run when a number is
specified in a PAGE field of any input record. The PAGE field can be

line

3 4 5 6

0 1

0 2 I
0 3 I
0 4 I
0 5 I
0 6 I
0 7 I

Filename
or

Record Name

Structure
Name
~
A N 0

defined as a numeric field, 1 to 15 digits in length, with zero decimal
positions, and used in calculations like any other field.

The eight possible PAGE entries (PAGE, PAGEl, PAGE2, PAGE3, PAGE4,
PAGE5, PAGE6, and PAGE7) are provided for numbering different page
types in the output file or for numbering the pages for different PRINTER
files.

Extema\ Field Name
Field Location

Record Identification Codes

From To

Pos1t1un Pos1t1on

RPG

Field Name

Field
Indicators

Zero
Plus Minus or

Bla'lk.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 72 13 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 4t> 47 4B 49 bO 51 52 53 54 55 ~'6 57 58 59 60 61 62 63 G4 65 66 67 68 69 70 71 12 73 74

. +-+· -++-t-++-1f-++-li-++-j>--t-+--!f-+-+· , _
' l!i ,.. IDi:-lt::tt 1 -++- . ++- -+-+q'.,.+-+1--1'1~4-l""'!l~-i"="r<-lf\Jt-+-t-r-+-+-+-+--t--t--t-1-t-H--t-t--H

H-+-1 r+-++~-~IF+-+-~1141-~~++il-~~+t~j+J-+-_J+JJ···+~-+L-+ll-·-LLlJ_llJ_lj~~~ij_lJu~M~U~.u~~~~LJ_llJJ_LLJJ,-J_U-LL-L.Jj_j

[i lrJ~ I

1 1 r +~ 1E E1Ftr
~- +-++-T-+-~++-~-l-++-~'_,_,_-+-l_.__,_,_-+-++-{+-1++--+-+-~~+-+-+-+-++-+-+1~-+-t--t'l1~1~'-H~~J~~1F+"l'r""!-1--~-+-++~H---r+-t-' +-+-H--+-+-i
~ _e I [j [-+-+-+-+-·~-+-<-+· 1--'--t-. +-;-l!~.J.J',~-.+-f'l,."l"'J.2'l"'!zj"l'"jI4--LJ:r,...1'1f-'l'-+-1-+-+-f-+-+-t--+-+-+-+-~~t-t-i
''" r 1 1 m 1 , ll!:K u w 1

,_'_,_' i-+1
1-+--j[To eliminate duplicate coding, use the OR relationship.] l

1-J' _'_,_,_, _µ I j_ t-t-t-- -·+-+-te-+-+--~+--l-f--++-1-t-+--+-+-+-ir+-+--+-+-t--1-f--l
r -r , 1 , , 1 1 , 1 , 1 1 I 1 +++-l.-t-t-+++-+++-lr+1-+-+-+-1H-++ 1. --H-l--+-+-+-i-t-+-t+-f-+-t-t-+-+-+-1
riciAJI]t°JS lAJJJ JJ.l~ lJ lrli:: J

1 3

1 4

1 5 I

Figure 25-12. Record Types with Identical Fields

I
1-- Filename

00

Record Name

E)<'ternal Field Name
Field Location

~
:;; Ol Vl

~ ; ~ ~ ~. From To

Record Identification Codes

::: 6 T~ : ~ ~ ·- ,e o: Data Strucwre

Data 0 R ~ j] Position ~ ~ ~ Position ~ § ~ Position ~ ~ ..J 1--0c-.c-m-, ~---!
St~~~~re ~~ g £ ~ U 6 2 CJ u Z u ~· n Times Length

Field
Indicators l

RPG
Field Name Zero

Plus Minus or

Blank

3 4 s 6 1 s 9 10 11 12 13 14 15 16 11 1s 19 20 21 22 23 24 25 2c:; 21 20 29 Jo 31 n 33 34 35 J6 37 Js 39 40 41 42 43 44 45 4t> 47 48 49 w s1 s2 s3 54 ss 56 s1 fifl 59 so e1 a2 63 64 ss 66 s1 sa ee 10 n 12 13 74

0 1 rlTINAI. tr rPG ls:tl li !F l l
~0+2+--l~IJdo!L~~~+-+--l-~'l-l-~'ll'<'l-+--l-+-'+-l'"""-l-++-l-l-l-+++t-t-+-ll-+-+-t-+--r+~2::t-r+Tl~;~-,tldri~TV;:-tl~::::f--J+'·++-+--1++~'r-t--t-1-t-T,-t-1-+--

~o+-3~I_,___+~-+-+-J-+-+-~-+-+-J>-+--1-1-+-+-+-~-l-_j_t-'-+-+--+-+:--++~-+- -+-+--Ct-+-+-r-~+-1-+-+--l---1-+-+-1-+--'Le-+-+--1-+l-+-+-1-+-+-+-Jr+-+-+-<c+-

Figure 25-13. Page Record Description

Chapter 25. Input Specifications 25-37

Columns 59-60 (Control Level)

Entry

Ll-L9

Explanation

Any control-level indicator. Control-level indicators cannot be
used with full-procedural, chained, demand, or WORKSTN files
or with a data structure.

Use columns 59 and 60 to assign control-level indicators to input fields.
Use control-level indicators to specify when calculation or output
operations are to be performed. For more information, see Chapter 12,
Using Indicators.

Columns 61-62 (Matching Fields)

Match Fields

25-38

Entry Explanation

Ml-M9 Any matching level

Use columns 61 and 62 to specify match fields and sequence checking.
Match fields and sequence checking cannot be specified for chained files,
full-procedural files, demand files, WORKSTN files, or a data structure.

An entry in columns 61 and 62 indicates:

• Match fields and sequence checking when you have two or more input
or update files with match fields

• Sequence checking only when you have just one input or update file

The match levels are ranked in order of importance, with Ml being the
least significant.

In processing more than one input file, specify match fields to compare
records from two or more input or update files to determine which record is
to be selected for processing. You can use one field, many fields, or an
entire record to match records. Whenever the contents of the match field
from the primary file record are the same as the contents of the match field
from a secondary file record, the matching-record (MR) indicator turns on.
The matching-record indicator can then be used to condition those
operations that are to be done only when records match (see Columns 9-17
in Chapter 26, Calculation Specifications; Columns 23-31 in Chapter 27,
Output Specifications; and Matching-Record Indicator in Chapter 12, Using
Indicators).

As many as nine match fields can be indicated when you use the values Ml
through M9.

Ml through M9 only identify the fields by which the records are matched;
they are not indicators, but they cause the matching-record indicator to
turn on.

For a complete description of how to assign match fields and how records
are selected for processing, see Chapter 11, Using Primary and Secondary
Files.

Sequence Checking

I
I---

Line

Filename
or

Record Name

Data O R

St~~C:,~re ~

~

:5

§
0 g

To check the data in the fields of a record in one input or update file for a
special sequence, assign a value of Ml through M9 to the field to be
checked. As many as nine fields can be checked. The sequence (ascending
or descending) of the record file must be specified in column 18 of the file
description specifications (see Chapter 21). See Figure 25-14 for an example
of sequence checking.

To check the sequence of record types in a file, see Columns 15-16
(Sequence) in this chapter.

~
External Field Name

Field
Field Location

Indicators
] Record Identification Codes 5 0

~~ 0 ;;; 0 0 1 2 3 From To 0 RPG ~

~ ~ j: 0
~

.
~ • • ~

~ Field Name
;Ji 5

.;: .;: 0 Zero

~

~
~ Data Structure

~ ~
~ ,l! Pius Minus or

~ Position ~ § ~ Position z 2] Position 2 ~ ~ " ~ Blank j Occurs c 6 . 0 ~ 0 0 3 i z 6 CJ '-' z CJ '" " n Times Length .;:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 40. 4b 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 5·1 68 69 70 71 72 73

0 1

0 2 I ~ 11~ ~E
0 3 I [1)1 Ills: itJl j~

Figure 25-14. Match Fields (Sequence Checking within a File)

An input file called MASTER is to be sequence-checked through three
fields. Data from two records is shown below:

Data from First Record

DEPT 008
REGION 051
DIVSON 003

Data from Second Record

DEPT 003
REGION 025
DIVSON 0011

In sequence checking, all fields are treated as one continuous field. Thus,
the match fields look like:

Chapter 25. Input Specifications 25-39

Record
1
Record
2

M3 M2 Ml
003 051 008

005 025 003

The match field from record 1 is compared with the match field from record
2. If the file is specified to be in ascending sequence, the records are in
order because 005025003 is higher than 003051008. However, if the file is
specified as having a descending sequence, record 2 is out of order.

Columns 63-64 (Field Record Relation)

25-40

Entry

Blank

01-99

Ll-L9

MR

Ul-U8

Hl-H9

Explanation

Columns must be blank for CONSOLE files.

Record-identifying indicator assigned to a record type, or an
indicator set on elsewhere in the program.

Control-level indicator previously used.

Matching-record indicator.

External indicator previously set.

Halt indicator previously used.

Use a record-identifying indicator in columns 63 and 64 to relate a field to a
particular record type.

When several record types are specified in an OR relationship, all fields
that do not have a field-record-relation indicator in columns 63 and 64 are
associated with allrecord types in the OR relationship. To relate a field to
just one record type, enter the record-identifying indicator assigned to that
record type in columns 63 and 64 (see Figure 25-15).

Columns 63 and 64 can also be used to specify that the program accept and
use data from a particular field only when a certain condition occurs (such
as matching records, a control break, or an external indicator is on). Data
from the field named in columns 53 through 58 is accepted only when the
field-record-relation indicator is on.

FLDA FLDB FLDC

I I I I I I

112 3 4 5 6 7 8 9 io111 12 13 14 15 16 17 18 19120 21 22 23 24 25 26 27 28 29 30,31 32 33 34 35 36 37 38 39,40 414243 44 45 46 47 48 49 so1s1 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 7tJ.

Record Identification Code= 5

FLDA FLDB FLDD
,...-"-.
I I I I I I

112 3 4 5 6 7 8 9 10111 12 13 14 15 16 17 18 19120 21 22 23 24 25 26 27 28 29 30.31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59160 61 62 63 64 65 66 67 68 69 70171 72 73 7,

Record Identification Code= 6

The file contains two different types of records, one identified by a 5 in position 1 and the other by a
6 in position 1. FLDC is related by record-identifying indicator 14 to the record type identified by a 5
in position 1. FLDD is related to the record type having a 6 in position 1 by record-identifying
indicator 16. This means that FLDC is found on only one type of record (that identified by 5 in
position 1) and FLDD is found only on the other type. FLDA is conditioned by indicator 07, which
was previously defined elsewhere in the program. FLDB is found on both types because they are not
related to any one type by a record-identifying indicator.

I
r-----i Filename

°'
~

Record Name

IC
line

J Data
Structure

Name

l
Ji

Wo

External Field Name

Record Identification Codes

~ 0 ~
0 ti 1 z u u

Posrt1on

Field Location

D
0

From To

Jl
~
0

Field
Indicators

°i D

0
0

RPG ~

u ~
~ • • u Field Name
3 u: u: 0 Zero

1 ~
~ Plus Minus 0' c u Blank

" 6 . u:
3 . ' 6 ' 8 ' 10 11 12 13 14 15 16 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 4b 47 48 49 "'O 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 /1 72 73 I

0 1 I JT'MJSJ_ !AA 111~ l1 I~ l I
0 2

Figure 25-15. Field-Record-Relation Indicator

This indicator was specified elsewhere
the program, and FLDA is made avail
for processing only when indicator OJ
set on elsewhere in the program.

Chapter 25. Input Specifications 25-41

Columns 65-70 (Field Indicators)

Columns 71-74

25-42

Entry Explanation

01-99 Numeric indicator

Hl-H9 Halt indicator (when checking for an error condition in the data)

Use columns 65 through 70 to check the condition of the numeric fields.
Use columns 69 and 70 to check the condition of an alphameric field. These
columns cannot be used for a data structure. The three conditions are:

• Plus (columns 65 and 66). An indicator entered in columns 65 and 66
turns on if the numeric field named in columns 53 through 58 is greater
than zero.

• Minus (columns 67 and 68). An indicator entered in columns 67 and 68
turns on if the numeric field in columns 53 through 58 is less than zero.

• Zero or blank (columns 69 and 70). An indicator entered in columns 69
and 70 turns on if a numeric field named in columns 53 through 58 is all
zeros or if an alphameric field is all blanks. A numeric field that is all
blanks turns on an indicator specified for zeros. However, if an
alphameric field is all zeros, the field does not turn on the indicator
specified for all blanks.

Columns 65 through 70 must be blank when table or array names are
specified in input specifications. However, an entry can be made for an
array element.

Field indicators assigned in these columns can also be set on or set off by
SETON or SETOF operations in the calculation specifications.

Columns 71 through 74 are not used. Leave them blank.

Columns 75-80 (Program Identification)

Entry Explanation

Blank Program identification defaults to the program name
specified on the control specification.

Any vahd Program identification. The first character must be
program alphabetic but cannot be#, $, or ((1. The remaining
name characters must be alphameric with no imbedded

blanks. No special characters can be used.

Columns 75 through 80 can contain any characters. These columns can
contain the program name used in the control specification, or they can
contain any other characters to identify a certain portion of the program.
These entries are ignored by the compiler but appear in the source program
listing.

Note: To be compatible with other RPG systems, the specifications sheets
show only 80 positions for each statement. However, each statement in an
RPG source program can contain up to 96 characters. Columns 81 through
96 are available for comments.

Chapter 25. Input Specifications 25-43

25-44

Chapter 26. Calculation Specifications

c;olumns 1-·2
Colmnns 3-5

Column 7
Columns 7-8

Lines
Columns 7-12
Columns 7-12
Colum11s 7~14
Columns 9-17 (Indicators)

26-3
26-3
26-3
26-3
26-4
26-5
26-5
26-5
26-5
26-6
26-6

Relat:ionship beh?veen Columns 7-8 and Columns 9-17 26--7
Columns 18-27 1) 26-8

Literals

Columns :31-32
Columns 33-42 (Factor 2)
Columns 43-48 (Result

Erase
Field

Structure
Table Name, or Data

Columns 49-51
Column 52 (Decimal Positions)
Column 53
Columns 54-59

Te;ot Results
Allowing Command

Columns G0-74
Columns 75-80

To Be Pressed

26-14
26-14
2614
26-16
26-17
26,17

26-18
26-19
26-19

26-20
26-21
26-23
26-23
26-25
26-25
26-26
26,·26
26-26

Chapter 26. Calculation Specifications

Calculation specifications describe the calculations you want performed on
your data and the order in which you want them performed. Each
calculation specifications statement can be divided into three parts:

o When the operation is to be performed (columns 7 through 17). The
indicators entered in these columns determine under what conditions
the specified operation is to be done.

• What kind of operation is to be performed (columns 18 through 53).
Entries in these fields describe the kind of operation to be done and
specify the data upon which the operation is to be performed.

• What tests are to be made on the results of the operation (columns 54
through 59). The indicators entered in these columns signal the result
of the operation and can be used to condition other operations.

Calculation specifications must be specified in the following order: detail,
total, subroutine.

Write these specifications on the RPG Calculation Specifications sheet (see
Figure 26-1).

Chapter 26. Calculation Specifications 26-1

!B~ International Bu5•neS5 Machmes Corporation

RPG CALCULATION SPECIFICATIONS

Program

Programmer

c '.:]"

I--- 6_
-'a:

Une

if?
~j~
I- 0 er.·
E .::. r:.n

& 8 5· ~
3 4 5 • 7 • 9 10

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c
0 7 c
0 8 c
0 9 c
1 0 c
1 1 c
1 2 c
1 3 c
1 4 c
1 5 c
1 6 c
1 7 c
1 8 c
1 9 c
2 0 c

c
c
c
c
c

Graphic

Date

Keying
Instruction Koy

Indicators

AL AL Factor 1 Operation Factor 2

0 0
z z

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ~8 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Card Electro Number

Result Field

~

:¥ :;
~ ~

Name Length
,,_ ,
~i
" -IH'

43 44 45 46 47 48 49 so bl 52::iv

1 2

Page[I]of

Resulting
Indicators
Arithmetic

Plus~inu::!(Zero
Compare

1>21<IT1-2
lookup(Factor 2)1s

Hogf1 Low Equal

GX21-9093 UM/050"
Printed in U.S.A.

75 76 77 78 79 80

~~=;:;:,,;°" I I I I I I I

Comments

"455 56 57 58 59 60 61 6:l 63 64 65 66 b1 68 69 70 71 72 73 74

lL Ll Ol 69 89 £9 99 gg pg f.9 l9 L9 09 6S SS LS 9S 99 PS CS l!l LS 09 6P SP LP 9t> SP PP CV lV U• OP 6C SC LC 9C Sf. V£ CC ZC lC OC 6l Bl ll 9Z !ll PZ CZ ll Ll OZ 6~ BL H 9L SL Pl Cl ZL ll Ol 6 S L 9 9 t> C l i

*Number of sheets per pad may vary slightly.

Figure 26-1. RPG Calculation Specifications

26-2

Columns 1-2 (Page)

Entry Explanation

Blank No page number is used.

01-99 Page number.

Use columns 1 and 2 in the upper right corner of each sheet to number the
specifications sheets, in ascending order, for your job. You can use more
than one of each type of sheet, but keep all sheets of the same type
together.

Columns 3-5 (Lines)

Entry Explanation

Blank No line number is used.

Any
numbers

Line numbers.

Use columns 3 through 5 to number the lines on each page. Columns 3 and
4 are preprinted on each sheet so, in most cases, line numbering is already
done.

Page and line numbers are optional entries and are not required to
successfully run an RPG program. Columns 1 through 5 are checked for
ascending order, and RPG prints an S in the left margin of the RPG listing
for any statement that is out of order. If you use SEU to enter the source
program, you can request that SEU put the statements in order.

Column 6 (Form Type)

A C must appear in column 6 to identify this line as a calculation
specification.

Column 7 (Comments)

Entry Explanation

* Comment line

Use an asterisk in column 7 to identify the line as a comment line. Use
comments throughout your program to help document the purpose of a
certain section of coding. You can use any character in a comment line.
Comments are not instructions to your program; they only document your
program.

Chapter 26. Calculation Specifications 26-3

Columns 7-8 (Control Level)

26-4

Entry

Blank

LO

Explanation

Calculation operation is done at detail calculation time for each
program cycle if the indicators in columns 9 through 17 allow it;
or if calculation is part of a subroutine.

Calculation operation is done at total calculation time for each
program cycle after total calculation processing has started.

Note: If no control-level indicators are specified on input
specifications, total calculation time processing starts during the
second program cycle. If control-level indicators are specified on
the input specifications, total calculation time processing starts
during the program cycle after the first record containing control
fields is processed or at LR time. Totals are always processed at
LR time.

Ll-L9 Calculation operation is done when the appropriate control
break occurs at total calculation time.

LR Calculation operation is done after the last record has been
processed.

SR Calculation operation is part of a subroutine. A blank entry is
also valid for calculations that are part of a subroutine.

AN, OR Establishes AND and OR relationships between lines of
indicators.

Use columns 7 and 8 to:

• Perform total calculation operations when the appropriate control
break occurs.

• Perform calculation operations that are done only after the last record
has been read.

• Indicate that an operation is part of a subroutine. However, columns 7
and 8 can also be blank for calculations that are part of a subroutine.

• Specify that certain lines of indicators are in an AN/OR relationship.

For more information on the 2-character entries LO .and Ll through L9, see
Chapter 12, Using Indicators.

Subroutine Lines (SR)

AN/OR Lines

An SR entry in columns 7 and 8 indicates that this specification line is part
of a subroutine (see Subroutine Operations in Chapter 28, Operation Codes).
You do not have to use SR on a calculation specification line that is part of
a subroutine, you can leave columns 7 and 8 blank. Subroutine lines must
be specified last.

Use columns 7 and 8 to specify that lines of indicators are in an AN/OR
relationship. When you use the AN/OT{ relationship, many lines of
indicators can be grouped together to condition an operation. A maximum
of seven AN lines or seven OR lines or any combination thereof can
condition an operation. For more information. see Chapter 12, Using
Indicators.

Columns 7-12 (/EJECT)

Entry Explanation

/EJECT The specifications following this entry are to begin on a new
page of the compiler listing.

The /EJECT specification is not printed on the compiler listing.

Columns 7-12 (/TITLE)

Entry

/TITLE

Explanation

The heading information (such as a title or security
classification) that follows the /TITLE entry appears at the top of
each page of the compiler listing. The heading information is
entered in columns 14 through 74.

A program can contain more than one /TITLE statement. Each /TITLE
statement provides heading information for the compiler listing until the
next /TITLE statement is read. To print on the first page of the compiler
listing, a /TITLE statement must be the fin;t statement read. Information
specified by the /TITLE statement is printed in addition to compiler heading
information.

The /TITLE statement causes an eject to the next page before the title is
printed. The /TITLE statement is not printed on the compiler listing.

Chapter 26. Calculation Specifications 26-5

Columns 7-14 (/SPACE)

Entry Explanation

/SPACEbn Line spacing occurs at this point in the compiler listing. Valid
entries for n are 1 to 3. If you do not specify n, 1 is assumed.

One blank (b) must come before the value you specify for n. The value you
specify for n indicates the number of blank lines to be spaced before the
next specification line is printed. If n is greater than the number of lines
remaining on the current page, the next specification line is printed on a
new page. If you specify just /SPACE, one line is spaced.

/SPACE is not printed on the compiler listing but is replaced by the actual
line spacing. The spacing indicated by /SP ACE is in addition to the three
blank lines that occur between specification types.

Columns 9-17 (Indicators)

26-6

Entry

Blank

01-99

KA-KN,
KP-KY

Ll-L9

LR

MR

Hl-H9

Ul-U8

OA-OG,
ov

Explanation

Operation is performed on every program cycle.

Field indicators, record-identifying indicators, or
resulting indicators assigned elsewhere in the
program.

Command-key indicators assigned elsewhere.

Control-level indicators assigned elsewhere. These
indicators are on as detail indicators when the first
record of a new control group is processed.

Last-record indicator.

Matching-record indicator.

Halt indicators assigned elsewhere.

External indicators previously set.

Overflow indicators previously assigned.

Use columns 9 through 17 to assign indicators that control the conditions
under which an operation is done. You can use from one to three separate
fields (columns 10 and 11, 13 and 14, and 16 and 17) on each line, one for
each indicator. If the indicator must be off to condition the operation,
place an N before the appropriate indicator (columns 9, 12, 15).

The indicators specified in columns 9 through 17 on one specification line
are in an AND relationship with each other. The indicators on one line or
indicators in grouped lines plus the control-level indicator (if used in

columns 7 and 8) must all be exactly as specified before the operation is
done.

An indicator that is specified in columns 9 through 17 of a calculation
specification can also be entered as a resulting indicator on the same line.
If the indicator in columns 9 through 17 is on, the calculation is performed.

Relationship between Columns 7-8 and Columns 9-17

c
t----i

Line

3 ' 5

0 1

0 2

0 3

c

Indicators

In one program cycle, all operations conditioned by control-level indicators
in columns 7 and 8 (total time) are done before operations conditioned by
control-level indicators in columns 9 through 17 (see Figure 26-2).

When a control-level indicator is used in columns 9 through 17 and columns
7 and 8 are not used (detail time), the operation conditioned by the
indicator is done only on the record that causes a control break or any
higher-level control break.

When a control-level indicator is specified in columns 7 and 8 (total time)
and the matching-record indicator (MR) is specified in columns 9 through
17, MR indicates the matching condition of the previous record and not the
record just read that caused the control break. After all operations
conditioned by the control-level indicators (specified in columns 7 and 8 of
the calculation specifications) are done, MR then indicates the matching
condition of the record just read.

Result Field

Factor 1 Operation Factor 2

Resulting

Indicators
Arithmetic

:g !. Plu~Minui(Zero
§ ti Compare Comments

Name Length ~ :§- 1>1_1 < 2 1 - 2

O O O -~ ~ lookup(Factor 2)is
z z z ~ I High low Fqual
9 10 11 12 13 14 1s i& n 1a 19 20 21 22 23 24 2s 26 27 J:zs 29 30 31 32 33 34 35 36 37 38 39 40 41 <12 43 44 45 46 <11 48 49 so s1 s2 53 54 55 ss 57 ss so so s1 62 63 64 ss 66 67 6S 69 10 7t n 73 74

c 21 lt!N I; 2~ IT ff f ff
- H-+-+-+ f+ 11 I 11 f--- -+---+--+-+-+-

c

Assume that indicator 25 represents a record type and that a control level 2 break occurred when
record type 25 was read. Ll and L2 are both on. All operations conditioned by the control-level
indicators in columns 7 and 8 are performed before operations conditioned by control-level indicators
in columns 9 through 17. Thus, the operation in line 02 occurs before the operation in line 01. The
operation in line 01 is done on the first record of the new control group indicated by 25, whereas the
operation in line 02 is a total operation done for all records of the previous control group.

The operation in line 02 can be done when the L2 indicator is on provided the other conditions are
met. Indicator 10 must be on. The L3 indicator must not be on.

The operation conditioned by both L2 and NL3 is done only when a control level 2 break occurs.
These two indicators are used together because this operation is not to be done when a control level
3 break occurs, even though L2 is also on.

Figure 26-2. Conditioning Operations Using Control Level Indicators

Chapter 26. Calculation Specifications 26-7

Columns 18-27 (Factor 1)

26-8

Use columns 18 through 27 to name the field or to give the actual data
(literal) to be used in the operation to be performed. See Figure 26-3 for a
summary of the operation codes.

The entries you can use for factor 1 are:

• The name of any field that has been defined

• Any alphameric or numeric literal

• Any subroutine, table, array name, or array element

• Any date field name (UDATE, UMONTH, UDA Y, UYEAR)

• The special names PAGE, PAGEl, PAGE2, PAGE3, PAGE4, PAGE5,
PAGE6, or PAGE7

• The special qualifier *LIKE for the DEFN operation.

• Any figurative constant (*BLANK, *BLANKS, *ZERO, *ZEROS)

• A label for a TAG, BEGSR, or ENDSR operation

The following restrictions apply to entries in factor 1:

• A data structure name cannot be specified in factor 1 or factor 2.

• A data structure subfield name can be used in factor 1 or factor 2;
however, overlapping subfields in a data structure cannot be used in the
same calculation. A subfield is considered to be an overlapping subfield
if its from or to position occurs within the from and to positions of
another subfield within the same data structure. If factor 1, factor 2, or
the result field references a subfield in a data structure that is an array
or array element with a variable index, the entire array is used to
determine whether overlap exists. The same array name can be
referenced in the appropriate factors of a calculation specification
without violating the overlap rule. See Figure 26-4 for examples of the
overlap rule.

• Figurative constants cannot be used with move zone operations, bit
operations, or the SET, KEY, SQRT, or DEBUG operation codes.

An entry in factor 1 must begin in column 18.

Entries for factor 1 depend upon the operation code used in columns 28
through 32. Some operations require entries in both factors, some require
entries in only one, and some require no entries at all. See Columns 28-32
(Operation) for more information on operation codes. For information 'on
how to name a subroutine, see Subroutine Operations in Chapter 28,
Operation Codes.

Control-Level I Conditioning
Indicators _j Indicators Resulting Indicators

Operation
Columns

Result
Columns

Code 7-8 9-17 Factor 1 Factor 2 Field 54-55 56-57 58-59

ACO Optional Optional Required Required Optional

ADD Optional Optional Optional Required Required Optional Optional Optional

BEGSR SR or blank Required

BITOF Optional Optional Required Required

BITON Optional Optional Required Required

CASxx (CASE) Optional Optional Optional Optional Required Optional Optional Optional

CHAIN Optional Optional Required Required Optional 1

COMP Optional Optional , Required Required Optional 2 Optional 2 Optional 2

DEBUG Optional Optional Optional Required Optional

DEFN Optional *LIKE Required Required

DIV Optional Optional Optional Required Optional Optional Optional

DO Optional Optional Optional Optional Optional

DOUxx (DO UNTIL) Optional Optional Required Required

DOWxx (DO WHILE) Optional Optional Required Required

ELSE (ELSE DO) Optional

END/DO Optional Optional Optional

END/DOU Optional Optional

END/DOW Optional Optional

END/IF Optional

END/CAS Optional

ENDSR SR or blank Optional 1 Optional

EXCPT Optional Optional ----i--opt1onal

EXIT Optional Optional Required

EXSR Optional Optional Required

FORCE Optional Required
-

GOTO Optional Optional Required

IFxx (IF/THEN) Optional Optional Required Required Required

KEYnn 3 Optional Optional Optional Optional Optional 4 Optional

LOKUP(Array) Optional Optional Required Required Optional Optional 4 Optional 4 Optional 4

LOKUP(Table) Optional Optional Required Required Required Optional 4 Optional Optional 4

MHHZO Optional Optional Required Required

MHLZO Optional Optional Required Required

MLHZO Optional Optional Required Required

MLLZO Optional Optional Required Required

~OVE Optional Optional I Required Required

MO VEA Optional Optional Required Required

MOVEL Optional Optional Required Required

MULT Optional Optional Optional Required Required Optional Optional Optional

MVR Optional Optional Optional Optional Optional

NEXT Optional Optional Required Required Required Optional

POST Optional Optional Required Optional

READ Optional Optional Required Optional s Optional 1

READE Optional Optional Required Required Required

READP Optional Optional Required Required

REL Optional Optional Required Required Optional

RLABL

SETnn Optional Optional Optional Optional Optional Optional Optional

Figure 26-3 (Part 1 of 2). Operation Codes

Chapter 26. Calculation Specifications 26-9

Control-Level Conditioning Resulting Indicators
Indicators Indicators

Columns Columns

Operation Result
Code 7-8 9-17 Factor 1 Factor 2 Field 54-55 56-57 58-59

SET OF O~tional Optional Optional 2 QJ:>tional 2 O_Qtional 2

SETON Optional Optional Optional 2 Optional 2 Optional 2

SETLL Optional Optional Required Required

SHTDN Optional Optional Required

SORTA Optional Optional Required

SORT Optional Optional Required Required

SUB Optional Optional Optional Required Required Optional Optional Optional

TAG Optional Required

TES TB Optional Optional Required Required Optional 2 Optional 2 ~ional 2

TESTZ Optional Optional Required Optional 2 ~ional 2 QQ!ional 2

TIME O_Q1;ional O_Q1;ional R~uired

XFOOT O_i;rtional O_illional Re.g_uired Re.g_uired O_Qj;ional JlotiQnal_ Ootional

_Z-ADD Qotional Qptional Re.g_uired Required Optional _notional ...QmiQilal
Z-SUB Optional Optional Required Required Optional Optional Optional

Fields without entries must be blank.

SR= The onl\,d allowable nonblank characters in columns 7 and 8
for the BEGSR and ENDSR operation codes

1 This indicator is required if the file specified in factor 2 is a full-procedural file.
2At least one resulting indicator must be specified in columns 54 through 59.
3The nn entries in columns 31 and 32 are for message indicator numbers. If the result field of a SET operation contains the

keyword ERASE, factor 2 must contain the name of the CONSOLE file. Otherwise, factor 2 and the result field must be blank.
4At least one resulting indicator must be specified in columns 54 through 59, but no more than two can be used.
scolumns 56 and 57 can contain an indicator when the READ operation is used with a WORKSTN device.

Figure 26-3 (Part 2 of 2). Operation Codes

26-10

Filename

Record Name

Line

External Field Name

Record Identification Codes
F 1eld Location

Field
Indicators

Figure 26-4 (Part l of 3). Examples of Valid and Invalid Calculations with Overlapping Subfields iin
a Data Structure

26. Calculation

c Indicators Result Field Resulting

~i Indicators

1-- ~ 1 I Arithmetic

:r: PlusJ..Minu.!l. Zero

!.] Factor 1 Operation Factor 2 ~ Compare Comments

Line
>-' Name Length ?;1>~<~1 2 ... 0
~ i! 1) 1) 1)

~ Lookup(Factor 2)is

,f 8 z z z ~ High Low Equal

' 4 5 • 7 • 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 '2s 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 e9 70 71 72 73 74

0 1 c
0 2 c The following individual calculations are valid because the
0 3 c subfields do not overlap.
0 4 c

,---
~11'1 ~\ilE l~ll AH ~l lA ~ ~I~ 0 5 c

0 6 c .. ~ Ml=' IA At-i.412 ~ ~ ll
0 7 c I~ ltJ[i ~ II\ ~ IN. ffi
0 8 c -rAID 1 N M~
0 9 c 12 -l4 l!i N ti~
1 0 c lz-l4[j 1r1,., Mi: N ~ll
1 1 c ~~ ~ld '

, IA IP1-1 ~~
1 2 c ~ ~ AJL IP ~i.1 1tdR 11 ~
1 3 c
1 4 c
1 5 c The following individual calculations are valid because the
1 6 c subfields are determined to be the same area, and execution will
1 7 c not cause invalid results.
1 8 c
1 9 c
2 0 c

""
~ ~ p lAlc: IP i~

le ,,. l'i ti l.i! ~1-i.A!j: J1 IP ~I 1Pi1-1 ~;l
c ~ ~ r lfl ~I-= II\ M::
c Jz-~ no. ~f· II\ lf'llP
le
c

0 1 ~ The following individual calculations are invalid because the
0 2 c subfields occupy part of the same area, and execution could cause
0 3 c invalid results.
0 4 c
0 5 c
0 6 c Jtlr

'" ri:_;
ll tp iAl1 ~ IP 1.AJ-=

0 7 c ~ [~JI R. It~:: l.AJL IA ii i~
0 8 c ~ Ml ID 11\11 ~12 t'I Mc
0 9 c - l}l ll LIM I~ r.. M~
1 0 c IZ-~ ID~ M~ ~ Mll
1 1 c

+++-

Figure 26-4 (Part 2 of 3). Examples of Valid and Invalid Calculations with Overlapping Subfields in
a Data Structure

26-12

..--~--,~~~~~~~--,.~~~~~~--,~~--~~~~~~~--,.~~~~~~--.-.---::---,-,..--.~~~~~--~~~~

Resulting c
t----i

Line

3.'
0 1 c
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c
0 7 c
0 8 c
0 9 c
1 0 c
1 1 c
1 2 c
1 3 c
1 4 c
1 5 c
1 6 c
1 7 c
1 8 c
1 9 c
2 0 c

c
c
c
c
c

Indicators Result Field

Factor 1 Operation Factor 2
Name Length

0 0 0 z z z
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ~8 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

The following individual calculations involve the same array and
are valid calculations.

ARl~il Ii:
ARRll 12

The following individual calculations are valid because the array
elements associated with the constant indexes do not overlap.

The following individual calculations are invalid because the
array elements associated with the constant indexes overlap,
or variable indexes are specified and the entire array is required
to determine overlap.

Indicators

Arithmetic

PlusIMinu!(Zero
Compare

1>21<&1-2
Lookup(Factor 2)is

Comments

High Low Fqual

~-~"~~M~~~~~·u~roronnn1

l-+-+--+--+--l~+-+-->-+-+-4-•- ->--+-+-+-~

Figure 26-4 (Part 3 of 3). Examples of Valid and Invalid Calculations with Overlapping Subfields in
a Data Structure

Chapter 26. Calculation Specifications 26-13

Literals

Alphameric Literals

Numeric Literals

26-14

A literal is the actual data used in an operation rather than the field name
representing that data. A literal can be either alphameric or numeric.

Consider the following rules when using an alphameric literal (see Figure
26-5):

• Any combination of characters can be used in an alphameric literal.
Blanks are also valid.

• The maximum length of an alphameric literal is 8 characters.

• Alphameric literals must be enclosed in apostrophes (').

• An apostrophe required as part of a literal is represented by two
apostrophes. For example, the literal O'CLOCK is coded as
'O"CLOCK'.

• Alphameric literals cannot be used for arithmetic operations.

Consider the following rules when using a numeric literal (see Figure 26-5):

• A numeric literal consists of any combination of the digits 0 through 9.
A decimal point or sign can also be included.

• The sign (+ or -), if present, must be the leftmost character. An
unsigned literal is treated as a positive number.

• The maximum total length of a numeric literal is 10 characters
including the sign and decimal point.

• Blanks cannot appear in a numeric literal.

• Numeric literals must not be enclosed in apostrophes (').

• Numeric literals are used in the same way as a numeric field.

c ~i
1---i .;_

-'ao ::o

Line

·-~j~
I- 0 rr."
E .pen

if 8 5" ~
3 4 5 6 ' • 9

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c
0 7 c
0 B c
0 9 c
1 0 c
1 1 c
1 2 c
1 3 c
1 4 c

Indicators

1 Factor 1 Operation Factor 2

Result Field
Resulting
Indicators
Arithmetic

.§ :I: PlusJ.Minus Zero

·a t: Compare

Name Length~~ 1>~1<&1-2
O 0 ·~ ~ Lo.okup(Factor 2)is
z z a l: High Low F.qual

Comment£

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ~ 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4b 46 47 4R 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

Examples of Alphameric Literals.

• f E FllK»t.i!IRM '
•Ir:' rJL ~I<'
' \ "p~'

Examples of Numeric Literals. J I +-+-_I
l r

I I I I I I I I
J,+-+-i-

j

Figure 26-5. Alphameric and Numeirfo Literals

Chapter 26. Calculation Specifications 26-15

Figurative Constants

The figurative constants *BLANK, *BLANKS, *ZERO, and *ZEROS can be
specified as literals. The following rules apply for figurative constants:

• The figurative constants *BLANK and *BLANKS can only be used with
alphameric fields.

• The figurative constants *ZERO and *ZEROS can be used with either
alphameric or numeric fields.

• The length of the figurative constant is assumed to be equal to the
length of the other factor field, if present. Otherwise, the length of the
figurative constant is assumed to be equal to the length of the result
field.

• Figurative constants are considered to be elementary items, and, if used
in conjunction with an array, act like a field. For example:

C Indicators Result Field

~ . =
J-- ~ CC J J .g i" PluUMinu~Zero

Resulting

& ~ ~ And And Factor 1 Operation Factor 2 l i Compare

Lina ~ ~ r:r.' Name Length ,. ~ 1 >2f1 <2 1 =2

Comments

I§ ~ en Iii Lookup(Factor 2lls
if 8 5· ~ ~ ~ ~ ~ High Low F.qual

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 83 64 615 68 87 68 et 10 71 72 73 74

26-16

111 J 11 II J MaVfj" 1Vf71Pl~nc.I 111 IAlli!I~ -r1 I I
]]]llllll 1111 111111111 11111]]]]] ±±±±±±11i1i11i

If ARR has 4-character elements, each element of ARR contains '0000' after
the move is executed.

• The logical placement of a figurative constant in the collating sequence
can be altered by specifying an alternative collating sequence.

Columns 28-32 (Operation)

Columns 31-32

Use columns 28 through 32 to specify the kind of operation to be performed
using factor 1, factor 2, and/or the result field. The operation code must
begin in column 28. A special set of operation codes must be used to
indicate the type of operation to be performed.

Every operation code used requires certain entries on the same
specification line. See Figure 26-3 for a summary of all the operation codes
and the entries required for each code. Fm· further information on t110

operation codes, see Chapter 28, Operation Codes.

The program performs the operations in th2 ::irder
calculation specifications sheet.

Entry

Blank or
01-99

Explanation

Message identification code (MIC) of user
message member to be displayed for SET'
or KEY operations unless overridden by a
factor l entry

011 tl10

Use columns 31 and 32 for all KEY and SET v1,.fiid1 {;OD£UHarn1

key indicators are specified in columns 54 rn
made in factor L Entries in columns 31 and 32 are when fa.c:trnr l is
specified on the same line as the SET or KEY operation.

The same combination of message identification codes should not be
assigned to more than one KEY or SET operation when the SET
operation immediately precedes a KEY conditioned the same
indicators (columns 9 through and the SET.KEY combination is
used. See SET and KEY in Chapter 9 for more information.

26. Calculation Specifications 26-17

Columns 33-42 (Factor 2)

26-18

Use columns 33 through 42 to name the field or to give the actual data
(literal) to be used in the operation to be performed. See Figure 26-3 for a
summary of the operation codes.

The entries you can use for factor 2 are:

• The name of any field that has been defined

• Any alphameric or numeric literal

• Any subroutine, table, array name, or array element

• Any date field name (UDATE, UMONTH, UDA Y, UYEAR)

• The special names PAGE, PAGEl, PAGE2, PAGE3, PAGE4, PAGE5,
PAGE6, or PAGE7

• Any figurative constant (*BLANK, *BLANKS, *ZERO, *ZEROS)

• A label for a GOTO or EXSR operation

• A filename for a SETLL, CHAIN, DEBUG, READ, READE, READP,
FORCE, ACQ, REL, or NEXT operation

• An EXCPT name for an EXCPT operation

• A subroutine name for an EXIT operation

• An array name for a SORT A operation.

The following restrictions apply to entries in factor 2:

• A data structure name cannot be specified in factor 1 or factor 2.

• A data structure subfield name can be used in factor 1 or factor 2;
however, overlapping subfields in a data structure cannot be used in the
same calculation. A subfield is considered to be an overlapping subfield
if its from or to position occurs within the from and to positions of
another subfield within the same data structure. If factor 1, factor 2, or
the result field references a subfield in a data structure that is an array
or array element with a variable index, the entire array is used to
determine whether overlap exists. The same array name can be
referenced in the appropriate factors of a calculation specification
without violating the overlap rule. See Figure 26-4 for examples of the
overlap rule.

• Figurative constants cannot be used with move zone operations, bit
operations, or the SET, KEY, SQRT, or DEBUG operation codes.

An entry in factor 2 must begin in column 33.

Entries for factor 2 depend upon the operation code used in columns 28
through 32. Some operations require entries in both factors, some require
entries in only one, and some require no entries at all. See Columns 28-32
(Operation) for more information on operation codes. For information on
how to name a subroutine, see Subroutine Operations in Chapter 28,
Operation Codes.

Columns 43-48 (Result Field)

Erase

Entry

ERASE

Field name,
table name,
array name,
array element,
data structure
subfield name,
or data
structure name

INxx (xx = any
RPG indicator)

Subroutine
name

Explanation

Erase the CONSOLE file bi;ffer
using the SET operation code.

The field specified contains the
result of, or is the object of, the
operation specified in columns 28
through 32. A data structure name
can be specified as a result field
if the operation code in columns 28
through 32 is RLABL or POST.

The indicator to be transferred to an
external subroutine in an RLABL
operation.

Name of a subroutine to branch to if
the condition specified in xx portion
of a CASxx statement is met. A
subroutine name can be specified as
a result field only if the operation
code in columns 28 through 32 is
CASxx.

Enter ERASE in columns 43 through 48 to blank or erase the entire buffer
for the CONSOLE file. The filename of the CONSOLE file must be entered
in columns 33 through 42. ERASE indicates to the system that the buffer
should be set to blanks just before the system gets a :record at the U'vcs"-""~'"
of the next RPG cycle.

Because the buffer is not erased until the beginning of the next RPG cycle,
processing of the current record continues after the ERASE operation is
read. If the ERASE operation is executed because of invalid input data,
you should insert code in your program to avoid further calculations and to
return to the start of the RPG cycle. A correct form of the record
containing the invalid input data and any records that were entered after
that record can then be reentered.

Chapter 26. Calculation Specifications 26-19

Field Name, Table Name, Array Name, Array Element, or Data Structure

26-20

Use columns 43 through 48 to name the field, data structure subfield, table,
array, array element, or data structure that holds the result of the
operation specified in columns 28 through 32, or that is the field upon
which an operation is performed. Use the name of a field, table, array,
array element, data structure, or data structure subfield that has already
been defined either by the input, extension, or calculation specifications; or
define a new field by entering a field name that is not already used. Any
field defined in the result field is created when the program is compiled.
The result field can be either numeric or alphameric.

A field used in arithmetic operations (see Columns 28-32 (Operation) or
numeric compare operations or a field edited or zero suppressed by output
specifications must be numeric.

A data structure name can be used as the result field only if the operation
specified in columns 28 through 32 is RLABL or POST. Overlapping
subfields in a data structure cannot be used in the same calculation. If
factor 1, factor 2, or the result field references a subfield in a data structure
that is an array or array element with a variable index, the entire array is
the entire array is used to determine whether overlap exists. The same
array name can be referenced in the appropriate factors of a calculation
specification without violating the overlap rule. See Figure 26-4 for
examples of the overlap rule.

The result field name must begin with an alphabetic character in column 43
and contain no blanks or special characters.

If columns 43 through 48 contain the name of a field that is not defined
elsewhere, columns 49 through 52 should also contain entries. If the field is
defined elsewhere, entries in columns 49 through 52 are not necessary but,
if specified, must agree with the previous definition of that field.

Columns 49--51 (Field Length)

Entry Explanation

Blank Result field is described elsewhere

1-256 Result field length

Use columns 49 through 51 to specify the length of the result field. H the
result field is defined elsewhere, no entry is required for the length.
However, if the length is specified, it must be the same as the
defined length, with the same number of riecimal ff tbe resul"
field is a new field. consider the form your data is ir:. because the ret;·dt fisld
must be large enough to hold the largest possibie resuit. If th~~ result
is too small, significant digits can he lost

For example, to add field A (8 characters long, four decinrnl
field B (10 characters long, six decimal the result
must be large enough to contain 11 characters:

9999,0000 Field .A

0001.111111 Field B

10000 .111111 Field C (result field)

In this field C must -.~'Je :lefiTied as 11 chaTo-.cters
decimal positions. Some of ~i1E zrnmbers to the De

lost without changing the of the JCesu1t
was defined as 10 characters with six decimal a
digit to the left of the decimal would be lost. Field C in this case would be
0000.111111; the meaning of the result has greatly changed.

Figure 26-6 shows how the contents of a result field can
multiplication
field length
multiply operation should be as
factor fields.

Numeric fields have a maximum
can be up to 256 characters long.

The result field for a
as the sum of the lengths of the two

of 15 characters. Alphameric fields

If the result field contains the name of B. table or Errny, an

columns is optionaL If used, the must agree wi.tb the
by the extension specifications.

Chapter 26. Calculation Specifications 26-21

Multiplication: 98.76x1.234=121.86984

Decimal Positions
for Result Field
(Column 52)

Result Field Length (Columns 49 through 51)

9

8

7

6 0121.869840

5 00121.86984 0121.86984

4 000121.8698 00121.8698

3 0000121.869 000121.869 00121.869

2 00000121.86 0000121.86 000121.86 00121.86

000000121.8 00000121.8 0000121.8 000121.8 00121.8

0 0000000121 000000121 00000121 0000121 000121 00121

Not permitted

Permitted but inaccurate

Recommended

Figure 26-6. Result Field Contents Based on Various Field-Length and Decimal-Position
Specifications

26-22

Number of deeimaI defined numen.c result

c Indicators Result Field Resulting ... Indicators

AL Jd f---, ~ Arithmetic

g Plus~inUtl_ Zaro

~~ Factor 1 Operation Factor 2
" Com para Comments.

Line Name Length i 1>w<~1-2
~ ~ i; ~ i;

~ Lookup(Factor 21ls
,f 8 z z ~ Hidi Low F.qual

3 4 5 • 7 9 10 11 12 13 14 16 16 17 18 19 20 21 22 23 24 25 26 27 E_ 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 53 64 56 .. 57 ao at 82 83 14 e& ea 11 ea • 10 11 12 73 14

0 1 c
0 2 c
0 3 c I.:=!~ ~ s: • [11q ~~ i; 1c I II.IE
0 4 c

This calculation line shows a result field being half-adjusted to two decimal positions (2 in column 52 and H in column
53).

Second Position
+

35.7968
6

35.80xx

35.80

Result of an add operation.
Add the digit to the right of the last decimal
position specified to the same position in
the result field.

Drop all decimal positions to the right
at the position specified.

Result after half-adjusting.

Figure 26-7. Half-Adjust

26-24

Columns 54-59 (Resulting Indicators)

Test Results

Entry Explanation

01-99 Any 2-digit number

KA-KN, Any command-key indicator (allowed only with SET or
KP-KY SETOF operation)

Hl-H9 Any halt indicator

Ll-L9 Any control-level indicator

LR Last-record indicator

OA-OG, Any overflow indicator
ov

Ul-U8 Any external indicator

Columns 54 through 59 have three purposes:

• To test the value of the result field after an arithmetic operation or to
test the result of a CHAIN, KEY, LOKUP, COMP, READ, READE,
READP,CAS,TESTB,TESTZ,ACQ,REL,NEXT,POST,orSHTDN
operation. For more information on each specific operation, see
Chapter 28, Operation Codes.

• To specify which command keys to press for a SET operation.

• To specify which indicators are to be turned on or off by the SETON
and SETOF operations.

You can use an indicator in columns 54 through 59 to test the value of the
result field, or to indicate an end-of-file condition, a no-record-found
condition, or an exception/error condition. Normally, only the 2-character
entries 01 through 99 and Hl through H9 are used as resulting indicators
for testing. The indicator specified turns on only if the result field satisfies
the condition being tested for. If the condition tested for is not met, the
indicator is turned off.

You can use three fields (columns 54 and 55, 56 and 57, and 58 and 59) for
testing the results. Each field is used to test for different conditions. You
can specify testing for any or all conditions at the same time.

For more information on using resulting indicators for testing, see Chapter
12, Using Indicators.

Chapter 26. Calculation Specifications 26-25

Allowing Command Keys To Be Pressed (SET)

Columns 54 through 59 can contain command-key indicators (KA through
KN, KP through KY) for a SET operation. When a SET operation occurs,
only the command keys in columns 54 through 59 for that SET operation
can be pressed at that time. From one to three command keys can be
entered for each SET operation. If one or two command keys are specified,
they can appear in any of the three sets of columns. For more information
on the SET operation, see Chapter 28, Operation Codes.

Columns 60-74 (Comments)

Use columns 60 through 74 to enter any meaningful comments that will
help you understand the purpose of each statement. Comments are not
instructions to the RPG program; they serve only as a means of
documenting your program.

Columns 75-80 (Program Identification)

26-26

Entry

Blank

Any valid
program
name

Explanation

Program identification defaults to the program name
specified on the control specification.

Program identification. The first character must be
alphabetic but cannot be#,$, or@. The remaining
characters must be alphameric with no imbedded
blanks. No special character can be used.

Columns 75 through 80 can contain any characters. These columns can
contain the program name used in the control specification, or they can
contain any other characters to identify a certain portion of the program.
These entries are ignored by the compiler but appear in the source program
listing.

Note: To be compatible with other RPG systems, the specifications sheets
show only 80 positions for each statement. However, each statement in an
RPG source program can contain up to 96 characters. Columns 81 through
96 are available for comments.

Chapter 27. Output Specifications

Columns 1-2 (Page) . 2'?.3
Columns 3-5 (Line) . 27-.3
Column 6 (Form Type) . 2'7-3
Column 7 (Comments) 27-3
Columns 7-12 (/EJECT) . 27-4
Columns 7_v: (/TITLE) .. 27-4
Columns 7-14 (/SPACE) . 274
Columns 7-14 (Filename) . 27 [)
Columns 14-16 (AND/OR) . 'JJ.7
Column 15 (Type) .. . 27-7

Heading Records (H) . 27-7
Detail Records (D) . 27- 7
Total Records (T) . 27-8
Exception Records (E) . 27-8

Columns 16-18 (ADD/DEL) . 27 8
ADD . 27-·8
DEL 27-8

Column 16 (Fetch Overflow or Release) 27-9
Fetch Overflow . 27-9
Release . 27-·10

Columns 17-22 (Spacing and Skipping) 27-10
Column 17 (Space Before) 27-10
Column 18 (Space After) 27-10
Columns 19-20 (Skip Before) . 27-10
Columns 21-22 (Skip After) 27-11

Columns 23-31 (Output Indicators) 27-12
Columns 32-37 (Field Name) 27-13

Field Names . 27· 13
Rules for Field Names 27-13

Special Words ... 27-14
Page Numbering (PAGE, PAGE1-PAGE7) 27-14
Repeating Output Fields (*PLACE) 27-15
Date Fields (UDATE, UMONTH, UDAY, UYEAR) 27-19
EXCPT Names 27-19

Column 38 (Edit Codes) 27-20

Chapter 27. Output Specifications

Column 39 (Blank After) . 27-20
Columns 40-43 (End Position in Output Record) 27-21
Column 44 (Packed-Decimal or Binary Field) 27-22
Columns 45-70 (Constant or Edit Word) 27-23

Constants . 27-23
Format Name . 27-24
Edit Words ... 27-24

Columns 71-74 ... 27-25
Columns 75-80 (Program Identification) . 27-25

Chapter 27. Output Specifications

You use output specifications to describe the records and fields in the
output file and the conditions under which output operations are to be
performed. These specifications can be divided into two general categories:

• File and record identification entries (columns 7 through 37) that
describe the output file, the records, and the indicators that condition
the output.

• Field description entries (columns 23 through 74) that describe the
position and format of data on the output record. These entries must
begin one line below the file and record identification entries.

Write these specifications on the RPG Output Specifications sheet (see
Figure 27-1).

Chapter 27. Output Specifications 27-1

IB~ lnlernatronal Busmen Machmes Corporauon
RPG OUTPUT SPECIFICATIONS -GX21-9090 UM/050•

Printed in U.S.A.

Program

Programmer

0
1------i

!
Filename

or
Line

~
Record Name

3 4 5 6 7 8 9 10 11 12 13

0 1 0
0 2 lq
0 3 0
0 4 lq
0 5 0
0 6 0
0 7 0
0 8 I<>
0 9 0
1 0 0
1 1 0
1 2 0

1 3 0

1 4 0
1 5 0
1 6 0
1 7 0
1 8 0
1 9 0
2 0 0

0

I<>
0

l<>I
0

Date

~

w-Ji
i2 lf e.,

Space Skip

:J: "

i~ i!
~i!!< ~

i.!;!. ~ j .il
A "

f!4.!!H
A N 0
14 15 16 17 18 19 20 21 22

Keying

Instruction

Output Indicators

Jd Al

0 ~ 0 z z

23 24 25 26 27 28 29 30

Figure 27-1. RPG Output Specifications

27-2

Graphic

Key

Field Name

or
EXCPT Name

•AUTO

31 32 33 34 35 36 37

~ a: Position
; Oi ;n

85 IC
Output ::i

~~ Record iii
ii: 1

Card Electro Number

Commas
Zero Balances

to Print

y., Yes
y., No
No Yes
No No

1 2

Page[Dof

No Sign CR

1 A
2 B
3 c
4 0

Constant or Edit Word

75 76 77 78 79 80

~~::1% .. k•• I I I I I I I

X =Remove -
Plus Sign 5-9.

Y= Date
Use• J Fieid Edit
Defined K Z =Zero

L Supi:.ress
M

' 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

38 39 40 41 42 43 -~~G~~~M~~M~~~~~~~~~M~~~~~- 71 72 73 74

Columns 1-2 (Page)

Entry Explanation

Blank No page number is used.

01-99 Page number.

Use columns 1 and 2 in the upper right corner of each sheet to number the
specifications sheets, in ascending order, for your job. You can use more
than one of each type of sheet, but keep all sheets of the same type
together.

Columns 3-5 (Line)

Entry

Blank

Any
numbers

Explanation

No line number is used.

Line numbers.

Use columns 3 through 5 to number the lines on each page. Columns 3 and
4 are preprinted on each sheet so, in most cases, line numbering is already
done.

Page and line numbers are optional entries and are not required to
successfully run an RPG program. Columns 1 through 5 are checked for
ascending order, and RPG prints an S in the left margin of the RPG listing
for any statement that is out of order. If you use SEU to enter the source
program, you can request that SEU put the statements in order.

Column 6 (Form Type)

An 0 must appear in column 6 to identify this line as an output
specification.

Column 7 (Comments)

Entry Explanation

* Comment line

Use an asterisk in column 7 to identify the line as a comment line. Use
comments throughout your program to help document the purpose of a
certain section of coding. You can use any character in a comment line.
Comments are not instructions to your program; they only document your
program.

Chapter 27. Output Specifications 27-3

Columns 7-12 (/EJECT)

Entry Explanation

/EJECT The specifications following this entry are to begin on a new
page of the compiler listing.

The /EJECT specification is not printed on the compiler listing.

Columns 7-12 (/TITLE)

Entry Explanation

/TITLE The heading information (such as a title or security
classification) that follows the /TITLE entry appears at the top of
each page of the compiler listing. The heading information is
entered in columns 14 through 74.

A program can contain more than one /TITLE statement. Each /TITLE
statement provides heading information for the compiler listing until the
next /TITLE statement is read. To print on the first page of the compiler
listing, a /TITLE statement must be the first statement read. Information
specified by the /TITLE statement is printed in addition to compiler heading
information.

The /TITLE statement causes an eject to the next page before the title is
printed. The /TITLE statement is not printed on the compiler listing.

Columns 7-14 (/SPACE)

27-4

Entry Explanation

/SPACEbn Line spacing occurs at this point in the compiler listing. Valid
entries for n are 1 to 3. If you do not specify n, 1 is assumed.

One blank (b) must come before the value you specify for n. The value you
specify for n indicates the number of blank lines to be spaced before the
next specification line is printed. If n is greater than the number of lines
remaining on the current page, the next specification line is printed on a
new page. If you specify just /SPACE, one line is spaced.

/SPACE is not printed on the compiler listing but is replaced by the actual
line spacing. The spacing indicated by /SPACE is in addition to the three
blank lines that occur between specification types.

Columns 7-14 (Filename)

Entry

A valid
filename

Explanation

Same filename that appears on the file
description specifications for the output,
combined, update, or add file

Use columns 7 through 14 to identify the output file you want to describe.
The filename must begin in column 7.

The filename should be specified only on the first line. However, if another
output file is specified and more specifications are then required for the
first file, the first filename must be repeated in columns 7 through 14 (see
Figure 27-2).

Chapter 27. Output Specifications 27-5

0 ~ u Spece Skip Output Indicators

~
Commes Zero B1l1nces

No Sign CR - X• Remove

t--- Field Name to Print Plus Sign 5.9.
e~ or y. Date

Illar
Fiiename !. .ti

~ :t Yes Yes 1 A J Field Edit

! ~~ !!
EXCPT Name Yes No 2 B K Defined

or Z •Zero
.... ~ No Ya 3 c L

Una j Record Name a: Position Supp-

j ! H In No No 4 D M
~ ¥o Output

IC
A ::i

~
s ~ • •AUTO '6~ Record iii Constant or Edit Word

to z z wm ii: • 1 2 3 4 s e 1 a s 10 11 12 13 14 1s 11 11 11 11 20 21 22 23 24

3 4 •• 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 ~~~~~~~~~U"~M~UU~~~UMAR~RUM

0 1 0~11 ~
0 2 lo
0 3 lo " 0 4 lo
0 5 10
0 6 0 I
0 7 0
0 B 0 l::J
0 9 0
1 0 OF Ill lr!P
1 1 IQ
1 2 lq
1 3 0 I
1 4 0

0 ~

~i Spece Skip Output Indicators

~
Convn11

Zero Balances
No Sign CR - X •Remove

1-- Field Name to Print Plus Sign
5 ·8• e~ or y. Date
User "' . r .Jd

Yes Yes 1 A J
! Filename

i~ e • EXCPT Name Field Edk
Defined u. Yes No 2 B K Z •Zero ~ or

.... ~ No Yes 3 c L cc Position -Line

~
Record Name e n No No 4 D M

~ ¥o ! In

i Output
IC

A ::i

~ ~ • • *AUTO "'~ Record iii Constant or Edit Word
z z iE'ai ii: 1234687 8 9 10 11 12 13 14 15 18 17 18 19 20 21 zz 23 24

3 4 •• 7 8 9 10 11 12 13 14 15 18 17 19 19 20 21 22 23 24 25 28 27 28 28 30 31 32 33 34 36 38 37 38 39 40 41 42 43 "G~~~~~~~~~~~~-~~~nAMUM~UM~

0 1 Ofll! JEIA IH
0 2 0
0 3 0
0 4 l~
0 5 lq Ill []A ~
0 6 l<>I
0 7 0 r
0 8 0
0 9 01-1 IE~
1 0 19
1 1 lq i'i
1 2 lq
1 3 lq I
1 4 0
1 5 lq I
, 6 0
1 7 0 I lr-Jii I
1 B ig
1 9 OF'I IE''1 ~
2 0 lq

Note: The filename need not be repeated in columns 7 through 14 unless another output file is
specified and then further specifications are required for the first file.

Figure 27-2. Specifying Filename

27-6

71 72 73 74

71 72 73 74

Columns 14-16 (AND/OR)

Entry

AND or
OR

Explanation

AND/OR indicates a relationship between
lines of output indicators.

Use columns 14 through 16 to specify AND/OR lines for output operations.
For an AND relationship, the condition for all indicators must be satisfied
before the output operation is done. You can use any number of AND lines
for an output operation. For an OR relationship, only one condition is met
between several indicators or groups of indicators before the output
operation is done. You can use a maximum of 20 OR lines for an output
operation. If you use a combination of AND and OR lines for an output
operation, you can use any number of AND lines but you cannot use more
than 20 OR lines.

You can use AND and OR lines to condition entire output lines, but you
must not use them to condition fields. However, you can condition an
output field with more than three indicators by using the SETON operation
in calculations.

Column 15 (Type)

Entry

H

D

T

E

Explanation

Heading records

Detail records

Total records

Exception records (lines to be written during
calculation time)

Use column 15 to indicate the type of record to be written. Column 15 must
have an entry for every output record (see Figure 27-2).

Heading Records (H)

Detail Records (D)

Heading records usually contain constants identifying information such as
column headings, page number, and date.

Detail records usually contain data that comes directly from the input
record or is the result of calculations performed on data from the input
record.

Chapter 27. Output Specifications 27-7

Total Records (T)

Total records usually contain data that is the end result of specific
calculations on several detail records. Total output cannot be specified for
primary or secondary update files. Records can be added to indexed
primary and secondary files at total time if add is specified (A in column 66)
on the file description specifications.

Exception Records (E)

Exception records are written during calculation time. Exception records
can be specified only when the operation code EXCPT is used. See Chapter
28, Operation Codes, for more information on the EXCPT operation code.

Columns 16-18 (ADD/DEL)

ADD

DEL

27-8

Entry

ADD

DEL

Explanation

Add a record to an indexed, direct, or sequential file defined as
an input, output, or update file.

Delete the last record read on the identified update file.

When ADD is specified in columns 16 through 18 to add a record to an
indexed, direct, or sequential file, column 66 of the file description
specifications must contain an A for the file to which records are being
added. The output device for this file must be DISK.

The ADD entry must not be used in an OR line. An ADD entry in columns
16 through 18 of the previous line also applies to the record in the OR
relationship. For a detailed description of adding records to a file, see
Column 66 (File Addition) in Chapter 21 or Adding Records in Chapter 5.

If a record is to be deleted from a file, the file must be defined as
delete-capable when it is built. For more information on defining a
delete-capable file, see FILE Statement in the System Reference manual. If
you attempt to delete a record from a file that is not delete-capable, an
execution-time error message is displayed.

DEL must be specified in columns 16 through 18 of the main output record
line. DEL applies to all the OR extensions to the main line. When records
are deleted from a file, the file must be defined as an update file (column 15
of the file description specifications contains U).

Note: Record deletion is not dependent on the file organization and mode
of processing entries.

Records are not physically removed from a file when they are deleted.
Deleted records are filled with hex FFs.

When a file containing deleted records is processed sequentially or
consecutively (primary, secondary, demand, or full-procedural files), a
deleted record is not returned to the program when it is accessed. It is
bypassed, and the next record is read. This process is repeated until a
nondeleted record is found or the end of the file is reached. When a file
containing deleted records is processed randomly using CHAIN, the
no-record-found indicator is turned on when a deleted record is accessed. If
this indicator is not specified in columns 54 and 55 of the calculation
specification specifying the CHAIN operation, error message RPG-9035, NO
RECORD FOUND ON GET OPERATION FOR FILE, is displayed.

Column 16 (Fetch Overflow or Release)

Fetch Overflow

Entry

F

R

Explanation

Fetch overflow routine

Release the device (display station or SSP-ICF session) after
output

Use fetch overflow when printing a particular line causes overflow, and not
enough space is left on the page to print the remaining detail, exception, or
total output lines. To determine when to fetch the overflow routine, study
all possible overflow situations. By counting lines and spaces, you can
calculate what happens if overflow occurs on each detail and total line.

Use column 16 to specify fetch overflow for a PRINTER file only. Column
16 of each OR line must contain an F if the overflow routine is to be used
for each record in the OR relationship. Fetch overflow cannot be used
when an overflow indicator is specified in columns 23 through 31 on the
same specification line. If this occurs, the overflow routine is not fetched.
Specifying fetch overflow allows you to alter the RPG overflow logic (see
Columns 33-34 in Chapter 21). You can advance forms when total, detail, or
exception records are printed instead of waiting for the usual time in the
program cycle. The fetched overflow routine does not automatically cause
forms to advance; that is, the entry in columns 21 and 22 of the output
specifications must contain a 2-digit entry that is less than the number of
the lines the printer is currently on. Fetching the overflow routine can
prevent printing over the page perforation and can use as much of the page
as possible. For more information on fetch overflow, see Chapter 7, Using a
PRINTER File.

Chapter 27. Output Specifications 27-9

Release

You can release a device from your program after output to that device has
been written. To release the device, enter an R in column 16. You can
specify OR lines; however, column 16 must contain an R for each OR line.
The device is released when that output specification is read during the
output operations. If you specify a format name on a field description line
for the record that contains an R in column 16, the format is written, and
then the device is released.

If the WORKSTN file is a primary file and the program does not have a
NEP attribute, RPG sets on the last-record (LR) indicator when all devices
have been released. If the program has a NEP attribute, RPG sets on the
last-record (LR) indicator when all devices have been released and the
system operator enters the STOP SYSTEM command.

Note: For WORKSTN files, a device can be either a display station or an
SSP-ICF session.

Columns 17-22 (Spacing and Skipping)

Column 17 (Space Before)

Entry

0-3

Column 18 (Space After)

Entry

0-3

Explanation

Number of lines to be spaced before a line is displayed for a CRT
file or printed for a PRINTER file.

Explanation

Number of lines to be spaced after a line is displayed for a CRT
file or printed for a PRINTER file.

Columns 19-20 (Skip Before)

Entry Explanation

01 Display screen is blanked immediately for a CRT file.

01-99 Skip to lines 01 to 99 before printing for PRINTER files.

AO-A9 Skip to lines 100 to 109 before printing for PRINTER files.

BO-B2 Skip to lines llO to ll2 before printing for PRINTER files.

27-10

Columns 21-22 (Skip After)

Entry Explanation

01-99 Skip to lines 01 to 99 after printing for PRINTER files.

AO-A9 Skip to lines 100 to 109 after printing for PRINTER files.

BO-B2 Skip to lines 110 to 112 after printing for PRINTER files.

Use columns 17 through 22 to specify line spacing and skipping for
PRINTER and CRT files. Spacing refers to advancing one line at a time,
and skipping refers to jumping from one print line to another.

If you make an incorrect entry in these columns, the compiler drops the
entry and assumes a blank specification. If columns 17 through 22 are
blank, single spacing occurs after each line is printed. You can specify
different spacing and skipping for OR lines. If you do not specify spacing or
skipping entries for the OR line, spacing and skipping are done according
to the specifications for the line that comes before the OR line. You cannot
specify spacing or skipping on AND lines.

Chapter 27. Output Specifications 27-11

Columns 23-31 (Output Indicators)

27-12

Entry

01-99

KA-KN,
KP-KY

LO-L9

Hl-H9

Ul-U8

OA-OG,
ov

MR

LR

lP

Explanation

Any resulting indicator, field indicator, or
record-identifying indicator previously
specified.

Any command-key indicator previously
specified in a SET operation or used with
a WORKSTN file.

Any control-level indicators previously
specified.

Any halt indicators previously specified.

Any external indicator set prior to
program execution.

Any overflow indicator previously
assigned to this file.

Matching-record indicator.

Last-record indicator.

First-page indicator. The first-page
indicator cannot be specified for a
WORKSTN file.

You can specify one indicator in each of the three separate output indicator
fields (columns 23 through 25, 26 through 28, and 29 through 31). If these
indicators are on, the output operation is done. An N in the column that
comes before each indicator (column 23, 26, or 29) means that the output
operation is done only if the indicator is not on. This is a negative
indicator. No output line should be conditioned by all negative indicators.
At least one of the indicators should be positive. You should not specify all
negative indicators to condition a heading or detail operation because the
operation is performed at the beginning of the program cycle when the first
page lines are written.

If no output indicators are specified, the line is produced at output every
time that record is checked for output. If no output indicators are specified
on a heading or detail line, that record is also produced as output at the
beginning of the program cycle.

If you need more than three indicators to condition an output operation,
use an AND line or an OR line. For more information, see Columns 14-16
earlier in this chapter.

Columns 32-37 (Field Name)

Field Names

Rules for Field Names

In columns 32 through 37, use one of the following types of names to specify
each field that is to be written out:

• Any field name or data structure name that you used earlier in this
program

• The special words PAGE, PAGEl through PAGE7, *PLACE, UDATE,
UDA Y, UMONTH, or UYEAR

• A table name, array name, or array element

• An EXCPT name

The field names you use must be the same as the field names on the input
specifications (columns 53 through 58) or the calculation specifications
(columns 43 through 48). Do not enter a field name if a constant is used in
columns 45 through 70. If a field name is entered in columns 32 through 37,
columns 7 through 22 must be blank.

Fields can be listed on the specifications sheet in any order because the
order in which they appear on the output record is determined by the entry
in columns 40 through 43. However, the fields are usually listed in order.
If fields overlap, the last field specified is the only field completely written.

The sign (+ or-) of a numeric field is in the units position (rightmost digit).
The units position prints as a letter unless the field is edited. See Column
38 (Edit Codes) or Columns 45-70 (Constant or Edit Word).

A field name can be from 1 to 6 characters long. The first character must
be alphabetic. The remaining characters can be any combination of
alphameric characters.

Chapter 27. Output Specifications

Special Words

Page Numbering (PAGE, PAGE1-PAGE7)

0
1---i

Filename
or

Line Record Name

3 4 5 8 7 8 9 10 11 12 13

0 1 OR ~I IN[
0 2 lq
0 3 lq

u.

"¥s,,...
;\;
ll e
~Jl.!
~
~ j
~

PAGE is a special word that causes automatic numbering of the pages.
Enter the word PAGE or PAGEl through PAGE7 in these columns if the
pages are to be numbered. When a PAGE field is named in these columns
without being defined elsewhere, it is assumed to be a 4-digit, numeric field
with zero decimal positions. Leading zeros are replaced with blanks
automatically. A PAGE field can also be defined on input or calculations
specifications as a numeric field from 1 to 15 digits long, with zero decimal
positions.

The page number starts with 0001 unless otherwise specified, and 1 is
automatically added for each new page. See Columns 53-58 (Field Name) in
Chapter 25, Input Specifications, for information concerning page
numbering that starts at a number other than 1.

Page numbering can be restarted at any point in a job. To do this, set the
PAGE field to zero before it is printed by specifying either blank after in
column 39 or an output indicator. If the status of the indicator is as
specified, the PAGE field is reset to zero, and 1 is added to the PAGE field
before it is printed (see Figure 27-3).

The eight possible PAGE entries (PAGE, PAGEl through PAGE7) may be
needed for numbering different types of output pages or for numbering
pages for different PRINTER files.

Skip Output Indicators

~
Commas Zaro Balances

No Sign CR - X• Remove
Field Name to Print Plu1Sl5'"1 5.9.

or y. Date
User :rd l EXCPT Name

Yes Yes 1 A J Field Edit
Yes No 2 B K Z •Zero Defined

a: Po11don No Yes 3 c L Suppress

! p in No No 4 D M

Output
a:

l:l :::.
~ ~ ~ *AUTO ~~ Record " Constant or Edit Word

z z ... 1 2 3 • 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 •

14 15 18 17 18 19 20 2122 23 24 2520 27,. 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 ~~~U~@~M~~M~~~~~~~~~M~U~AUM 71 72 73 74

to: ill ~ EA 11:"1 ~ J11i=i

When indicator 15 is on, the PAGE field is reset to zero and a 1 is added
before the field is printed. When 15 is off, a 1 is added to the contents of
the PAGE field before it is printed.

Figure 27-3. Resetting the PAGE Fields to Zero

27-14

Repeating Output Fields (*PLACE)

Ending 10
Record
Positions

Fields FIELD A

*PLACE is a special RPG word that allows you to write the same fields in
several locations on one record without naming the fields and giving their
end position each time the fields are to be written. The fields repeated by
means of *PLACE are written ending in the position specified in columns 40
through 4;3 of the same specifications line. For example, if FIELDS A, B,
and C appear twice on one record, the fields can be specified in two ways:

• Define each field and its corresponding end position each time the field
is to be written (see Figure 27-4).

• Use the special word *PLACE (see Figuref; 27-4 and 27 5).

Both coding methods shown in
this:

20 30 40

FIELDB FIE LDC FIELD A

27-4 a record that looks

50 60

l
75

--
FIELDB FIELDC j FIELDD

Chapter 27. Specifications

0
1---

!
Line ~

Filename
or

Record Name

~!Space Skip Output Indicators Field Name fIT5l Commas Zff::~ncH NoSign CR - X·=::;

~ ! I J or Yes Yes 1 A J Y•FO...laldEd"1t
- .lt: f _ 1 EXCPT Name
~,;. ;i _! And And Yes No 2 B K z.z,,0

,_ ~ • ~ Position ~: ~~ ! ~ ; Suppress

Wo i ! ~5 ~utput IC

u ...
Defined

.... ti O • o - < Record ~ Constant or Edit Word
~ ~ Z Z AUT :B iii Ct 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21 22 23 24 '

3466789 10 111213 14 16 18 17 18 19 20 212223 24 25 26 27 28 29 30 31 32 33 34 36 38 37 38 39 40 41 42 43 44 45 46 47 48 49SO 51 52 53 54 55 56 57 58 69 60 81 82 83·84 66 86 87 88 69 70 71 72 73 74

0 1 Olt"'. UTIP tr
0 2 lo IFII ir1A
0 3 10 r:1r If 12
0 4 lo [FIIF Ir J-:1
0 6 lo l~ll '™ 0 6 lo IFII ll':IF
0 7 lo IFII'"" r "[i;
0 8 ~ IFII Is:
0 9 0

To repeat an output field, each field can be defined each time it is to be printed or written to disk.

0
~

@~ Spaco Skip Output Indicators

ff5F
Commas

Zero Balances
No Sign CR - X,., Remove

t--- t:: ~ field Name to Print Plus Sign
e iik Y=Date

6 ·9=
:i: " AL A!d

or
Yes Yes 1 A J User

& Filename &~ ~ " EXCPT Name Field Edit
Defined

~ or .. J!
y,. No 2 B K z =Zero

Record Name
~R ~ u: Position No y,. 3 c L Suppress Line

~ tt ~ ! H No No 4 D M

t-; * i
;n

a:
<(Output :::;

~
0 0 Ci "AUTO ~~ Record "' Constant or Edit Word
z z z w .. 0:: 1 2 3 4 5 • 7 • 9 10 11 12 13 14 15 16 17 18 19 20 21.22 23 24

3 4 5 • 7 • 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 "26 27 ,. 29 30 31 32 33 34 35 38 37 ,. 39 40 41 42 43 "~~~~~~~~~~~~~~~~~~UM~M~UU~ 71 12 73 74

0 1 0 tr~ tr rl
0 2 lq '"1r1i:- A 1t
0 3 0 r-!u: Q
0 4 lq Fir II l-.:lfl
0 5 lq ~p A,.E:: I:.~
0 6 0 rr.- In ~
0 7 l<>I

Or the special word *PLACE can be used to repeat a group of fields.

Figure 27-4. Writing Fields Twice on the Same Record

27-16

lFIELDAlFIELDBlFIELDCJ

Fields to Be Placed on the Same Line Several Times

*PLACE *PLACE *PLACE

,r

Fim
Prin

FIELDA FIELDB FIELDC FIELDA FIELDB FIELDC FIELDA FIELDB FIELDC FIELDA FIELDB FIELDC Deti
L-~~--1~~~...J..~~~.l-~~--1~~~...J..~~~..i...~~~'--~~---1.~~~ ~~~-'-~~~.._~~_,LinE
0 5 10 15 20 25 30 35 40 45 50 55 60

*PLACE can also be used to print the same group of fields several times on the same line. FIELDS
A, B, and C are to be printed four times on one line as shown above. They are printed once when
they are named and once for every *PLACE entry.

*PLACE is specified after the fields that are to be printed several times on the same line (below). All
fields to which *PLACE applies appear on the same record. FIELD D, which appears on the total
record, is not affected by *PLACE. ·

Notice that an end position is given for every *PLACE. FIELDS A, B, and C have a total length of
15 characters. Thus, the end positions given for the *PLACE entries allow room for the printing of
15 characters. This eliminates any overlapping.

0 "°
~ ~ Space Skip Output Indicators

1----i Field Name
D --" or

Filename :E. ~ " " ~L Jd EXCPT Name 1i g~ .:? re
~ or

~~ ~ line j Record Name

~ ¥o ~ !'
A "

~ ~U ~:~tioo 11
~ ~ in oc
0 u Output

Commas
Zero Balances

No Sign CR -
X = Remove

to Prim Plus Sign

llI
Y =Date

5 - 9 =

y,, Yo. A J Field Edit
User

Yo. No B K Z =Zero
Defined

No Yo. c L Suppress
No No D M

Wo
0 0 0 *AUTO z z z ~ ~ Record ~ 1 7 3 4 5 6

Constant or Edit Word
7 8 g 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 ElO 51 52 53 54 55 56 57 58 59 60 61 82 63 64 65 66 67 68 69 70 71 72 73 74

D 5 o FlIJ IL rm ll.IZ 1

0 6 0 ~IIJ IL lrir 111~ I I

o ' o IM'Pl1 IAirlE I::<~
a" o I~~ Jmi:: ~

1 0 0

1 1 o IFI In Ali=
1 2 lq

Figure 27-5. *PLACE

Chapter 27.

27-18

When you specify *PLACE, all fields named for each record type (H/D/T/E)
are written as usual in the location specified. The entry *PLACE then
causes all of these fields to be written ending at the position specified in
columns 40 through 43 of the *PLACE specification. When you specify
*PLACE, consider the following:

• *PLACE must be specified after the field names that are to be written in
different positions in one record (see Figure 27-5).

• *PLACE causes all fields within a record type to be written, not just the
field name on the line immediately above the *PLACE entry.

• *PLACE must appear on a separate specification line each time a field
or a group of fields is to be written.

• An end position no greater than 256 must be specified for every
*PLACE line. Allow enough space for all fields to be written (see
Figure 27-5); otherwise, overlapping occurs.

• Multiple or successive *PLACE entries can be specified if the fields
preceding the first *PLACE specification are to be repeated more than
once.

• The leftmost position of the fields to be written by the *PLACE
specification is always assumed to be position 1.

• Additional fields or constants can be specified after the *PLACE
specification and are not affected by any preceding *PLACE
specification.

Note: Attempts to use the *PLACE function for other than its defined
purpose may produce unpredictable results.

Date Fields (UDATE, UMONTH, UDAY, UYEAR)

EXCPT Names

To have the date printed on a report or program listing, use special words
UDATE, UMONTH, UDAY, or UYEAR. The date fields are established at
job setup time. UDATE contains the program date that may not be the
same as the date in the result field of the TIME operatic~.. The result field
of the TIME operation contains the date. See the
manual for a complete discussion of the system date, program date, and the
DATE OCL statement. The following rules apply to date fields:

• UDATE prints a 6-character numeric date fic~ld in one of three formats:

eaL

Year,/month/day

Day/month/y2ar

Use columns 19 and 20 of the control to
format and the to be done. If columns 19 and 20 are
date formHt is determined the contents cf column 21 of the

!!I Use UDAY for Hie UMONTH for the
for the year

• These fields cannot be
these

When the record type is an exception record an E in column
a name can be in columns 32

EXCPT can the name
written. This name is called an EXCPT
follow the rules for field names. Also.
as a filename, field name, data structure name, array name, ta

or subroutine name. A group of any number of
use the same EXCP'I1 name, and the records do not have to he
records. The maximum number of different EXCPT names is 64. An
EXCPT with a blank name field is counted as one of the 64.

When the EXCPT is without an EXCPT
those exception records without an EXCPT name are checked
the indicators are satisfied.

When the EXCPT an EXCPT name.
records with that EXCPT name are checked and written if the
indicators are satisfied.

The EXCPT name is specified on the maim record line and
AND/OR lines.

to all

Column 38 (Edit Codes)

Use column 38 to:

• Suppress leading zeros in a numeric field

• Omit a sign from the low-order position of a numeric field

• Punctuate a numeric field without establishing an edit word

For more information on edit codes, see Chapter 16.

Column 39 (Blank After)

27-20

Entry Explanation

Blank Field is not reset.

B Field specified in columns 32 through 37 is reset to blank or zero
, after the output operation is complete.

Use column 39 to reset a numeric field to zeros or an alphameric field to
blanks. If the field is conditioned by indicators in columns 23 through 31,
the blank after is also conditioned. This column must be blank for
look-ahead and UDATE fields.

Resetting fields to zeros is useful when totals are accumulated and written
for each control group in a program. After the total is accumulated and
written for one control group, the total field can be reset to zeros before
accumulation begins on the total for the next control group.

If blank after (column 39) is specified for a field to be written more than
once, the B should be entered on the last line specifying output for that
field. When blank after is specified with a table name, the field that is
blanked contains the last element found by a successful LOKUP. If no
LOKUP or no successful LOKUP occurred, the first element of the table is
blanked.

If the file description specifications for the file to which the field on this
output specification is to be written contains an external indicator in
columns 70 and 71, you may want to use the same external indicator in
columns 23 through 31 of this specification to prevent the field from being
blanked when the file is not being used by the program.

Columns 40-43 (End Position in Output Record)

Entry Explanation

1-4096 End position for DISK o:r SPECIAL file

1-4075 End position for BSCA file

1-1919 End position for WORKSTN file

1-198 End position for 198-position printer

1-79 End position for CRT file

Kl-K8 Length of format name fo:r a WORKSTN file

Use columns 40 through 43 to define the end position of a field or constant
on the output :record. All entries in these columns must end in column 43.
Enter only the position of the rightmost character in the field o:r constant.

Note: Kf columns 40 through 43 are left blank, the field or constant is
placed in the output record immediately following the field specified in the
previous output specification for that record. 1f no previous field
specification exists for the record, the high-order position of the field is
placed in position L A blank end position with *PLACE causes the
*PLACE to be ignored.

Chapter 27. Output Specifications 27-21

Column 44 (Packed-Decimal or Binary Field)

27-22

Entry

Blank

p

B

Explanation

Field is zoned-decimal numeric data or alphameric data. Leave
this column blank for nondisk files.

Field is to be written on disk in packed-decimal format.

Field is to be written on disk in binary format.

Use column 44 to specify whether a numeric field (decimal number) is to be
written to disk or to SSP~ICF output in packed-decimal or binary format.
Packed-decimal and binary fields cannot be displayed or printed; these
fields can be written only to disk or to SSP-ICF output. Column 44 must be
blank for *PLACE.

After decimal numbers are processed, they can be left in the zoned-decimal
format. However, for more efficient use of disk space, convert decimal
numbers into packed-decimal or binary format. When binary output is
specified, a numeric field 1 to 4 digits long (zoned-decimal in storage) is
converted into a 2-byte binary field when it is written on disk; a numeric
field 5 to 9 digits long is converted into a 4-byte binary field. When
packed-decimal output is specified, a byte of disk storage (except for the
low-order byte) can contain two decimal numbers. See Column 43 (Packed
or Binary Field) in Chapter 25, Input Specifications, for a description of how
data fields are represented in zoned-decimal, packed-decimal, and binary
formats.

Note: Although packed-decimal and binary fields require less disk storage
space, the conversion routines needed to handle such data increase the
program size (and execution time).

Columns 45-70 (Constant or Edit Word)

Constants

0
t---

Line

Filename
or

Record Name

Use columns 45 through 70 to specify a constant, the format name for a
WORKSTN file, or an edit word. If you are using edit codes, you can also
use columns 45 through 47 to specify a floating currency symbol or asterisk
fill.

A constant is any unchanging information that is to appear on a report.
Constants are usually words used for report headings or column headings.

The following rules apply to constants (see Figure 27-6 for examples):

• Field name (columns 32 through 37) must be blank

• A constant must be enclosed in apostrophes. Enter the leading
apostrophe in column 45.

• An apostrophe in a constant must be represented by two apostrophes.
For example, if the word you're appears in a constant it must be coded
as 'YOU"RE'.

• Numeric data can be used as a constant.

• Up to 24 characters of constant information can he placed in one line.
Additional lines can be used, but each line must be treated as a separat2
line of constants. The end position is specified in columns 40 through
43. If no end position is specified, the constant is placed in the output
record immediately following the field or constant specified in the
previous output specification line for that record (see Columns 40-43,
End Position in Output Record, in this chapter).

-: _ _, I ~ l:! Space Skip Output Indicators ~ Co Zero Balances N S CR X =Remove
I- if'. Field Name mmas toPrmt 0 ign - PlusStgn 5 . 9 =

f?: ;;a; or y,,,, Date

~ -E ~ ._ T T EXCPT Name YYes YNe• 21 A JK Field Edit ~:~~neci
8.~.E ~ A~d And es 0 B Z=Zero q

~ ~ a: Pos1t1on No Yes 3 C L Suppress II

Woj ~ ~~~utput ~ No No 4 D M

~ ~ ~ ~ "AUTO ~ ~ Record ~ 1 2 3 4 5 6 7 aC~n~:a~~ ~: ~~i~4W1~r~6 17 18 19 20 21 22 23 24 ' ~
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 ~3 74~

11rzi • ~lwi mJ' TT]
3 4 5 6

0 1 0

l~WZ • l~A. IElc;MA~' ·~ trrtrlil I~' llJ
l4rl \ 11Hl11~719 I

0 2 0

0 3 0
0 4 0
0 5 0
0 6 0
0 7 0
0 8 0

Figure 27-6. Examples of Output Constants

Chapter 27. Output Specifications 27-23

Format Name

Edit Words

27-24

The name of the display format that is used by the WORKSTN file must be
specified in columns 45 through 54. One format name is required for each
o'litput record for the WORKSTN file; the specification of more than one
format name per record is not allowed. The format name must be enclosed
in apostrophes. This is the same name that is specified in columns 7
through 14 of the S specification line on the display screen format
specifications. You must also enter Kn in the rightmost of columns 40
through 43, where n is the length of the format name. For example, if the
format name is FORM!, enter K5 in columns 42 and 43.

For more information on the display screen format, see Chapter 6, Coding
an RPG Program That Uses a WORKSTN File.

Note: The output specifications line containing the format name cannot be
conditioned by any indicators.

See Chapter 16 for a complete discussion on edit words.

Columns 71-74

Columns 71 through 74 are not used. Leave them blank.

Columns 75-80 (Program Identification)

Entry Explanation

Blank Program identification defaults to the program name
specified on the control specification.

Any valid Program identification. The first character must be
program alphabetic but cannot be #, $. er The remaining
name characters must be alphameric with no imhedded

blanks. No special character can be used.

Columns 75 through 80 can contain any characters. These columns can
contain the program name used in the control specification, or they can
contain any other characters to identify a certain portion of the program.
These entries are ignored by the compiler but appear in the source program
listing.

Note: To be compatible with other RPG systems, the specifications sheets
show 80 for each statement. eac:i statement in an
RPG source program can contain up to 96 cl:rnracters. Columns 81
96 are available for comments.

Chapter 27. Output Specifications 27-25

27-26

Chapter

SETON and SE:TCF
witam RPG

Subrnutine
to External

WORKSTN Operations
Programmed Control of and
OPERATION CODES
ACQ

28-4
282
28·£

28-H
28·U
28-
28-Jl.2
28-12

BITOF (Set Bit Off) .. 28-14
BITON Bit . 2§.JL6
Ci\.Sxx (Case) 09. i R.

• • •, o • o •," o, o,, • o • o o,, o o o", • o,. •" •, o.,,,", o 6.1U-.lLU

CHAIN (Chain) 28-20
Random Processing . 28-21

COMP (Compare) 28-24
DJEBUG 28-27

Records Written fo:r DEBUG 28-28
*LIKE DEFN 2829
DIV (Divide) . 28-31
DO (Do) . 28--32
DOUxx (Do Until) ... 28-35
DOWxx (Do While) 28-38
ELSE (Else Do) . 28-41
END (End) 28-42
ENDSR (End Subroutine) 28-43
EXCPT (Exception Output) . 28-44
EXIT (Exit to an External Subroutine) 28·-50
EXSR (Execute Subroutine) 28-52

Chapter 28. Operation Codes

Coding Subroutines 28-52
FORCE (Force) .. 28-54
GOTO (Branch To) 28-56
IFxx {If/Then) . 28-59
KEY (Key) . 28-61
LOKUP (Lookup) .. 28-62

Array LOKUP . 28-62 .
Table LOKUP . 28-62

MHHZO (Move High to High Zone) 28-64
MHLZO (Move High to Low Zone) 28-64
MLHZO (Move Low to High Zone) 28-65
MLLZO (Move Low to Low Zone) . 28-65
MOVE (Move) . 28-67
MOVEA (Move Array) . 28-69
MOVEL (Move Left) . 28-87
MULT (Multiply) . 28-90
MVR (Move Remainder) 28-90
NEXT (Next) . 28-91
POST (Post) . 28-92
READ (Read) ... 28-93
READE (Read Equal Key) 28-95
READP (Read Prior Record) . 28-96
REL (Release) . 28-97
RLABL (RPG Label) . 28-98

Referring to an Indicator 28-100
Referring to a Field . 28-100
Referring to a Data Structure . 28-100
Referring to an Array or Table . 28-101

Considerations for the Assembler-Language Programmer 28-104
Message-Retrieving Subroutine (SUBR23) 28-105

SET (Set) . 28-106
SETLL (Set Lower Limits Operation) 28-107
SETOF (Set Off) . 28-108
SETON (Set On) . 28-108
SHTDN (Shutdown) . 28-109
SORTA (Sort an Array) 28-110
SQRT (Square Root) . 28-112
SUB (Subtract) . 28-112
TAG (Tag) ... 28-113
TESTB (Test Bit) . 28-113

Columns 54-55: 28-114
Columns 56-57: . 28-114
Columns 58-59: . 28-114

TESTZ (Test Zone) 28-116
TIME (Time of Day) 28-117
XFOOT (Summing the Elements of an Array) 28-118
Z-ADD (Zero and Add) 28-118
Z-SUB (Zero and Subtract) . 28-118

Control-Level Conditioning
Indicators Indicators Resulting Indicators

Operation
Columns

Result
Columns

Code 7-8 9-17 Factor 1 Factor 2 Field 54-55 56-57 58-59

ACO Optional Optional Required Required O_ptional

ADD Optional Optional Optional Required Required Optional Optional Optional

BEG SR SR or blank Required

BITOF Optional Optional Required Required

BITON Optional Optional Required Required

CASxx (CASE) Optional Optional Optional Optional Required Optional Optional Optional

CHAIN Optional Optional Required Required Optional 1

COMP Optional Optional Required Required Optional 2 Optional 2 Optional 2

DEBUG Optional Optional Optional Required Optional

DEFN Optional *LIKE Required Required

DIV Optional Optional Optional Required Optional Optional Optional

DO Optional Optional Optional Optional Optional

DOUxx (DO UNTIL) Optional Optional Required Required

DOWxx (DO WHILE) Optional Optional Required Required

ELSE (ELSE DO) Optional

END/DO Optional Optional Optional

END/DOU Optional Optional

END/DOW Optional Optional

END/IF Optional

END/CAS Optional

ENDSR SR or blank Optional Optional

EXCPT Optional Optional Optional

EXIT Optional Optional Required

EXSR Optional Optional Required

FORCE Optional Required

GOTO Optional Optional Required

IFxx (IF/THEN) Optional Optional Required Required Required

KEYnn 3 Optional Optional Optional Optional Optional 4 Optional

LOKUP(Array) Optional Optional Required Required Optional Optional 4 Optional 4 Optional 4

LOKUP(Table) Optional Optional Required Required Required Optional 4 Optional Optional 4

MHHZO Optional Optional Required Required

MHLZO Optional Optional Required Required

MLHZO Optional Optional Required Required

MLLZO Optional Optional Required Required

MOVE Optional Optional Required Required

MO VEA Optional Optional Required Required

MOVEL Optional Optional Required Required

MULT Optional Optional Optional Required Required Optional Optional Optional

MVR Optional Optional Optional Optional Optional

NEXT Optional Optional Required Required Required Optional

POST Optional Optional Required Optional

READ Optional Optional Required Optional s Optional 1

READE Optional Optional Required Required Required

READP Optional Optional Required Required

REL Optional Optional Required Required Optional

RLABL

SETnn Optional Optional Optional Optional Optional Optional Optional

Figure 28-1 (Part 1 of 2). Summary of Operation Code Specifications

28-2

"""""""'""'"'""--" """'""""'·""='·-·

Control-Level Conditioning Resulting Indicators
Indicators Indicators

----------------- ----- - -

Columns Columns
----·--·--------·---

Operation Result
Code 7-8 9-17 Factor 1 Factor 2 Field 54-55 56-57 58--59

""''""'~""'

SET OF Optional Optional Optional 2 _QQ!J_onal 2 . _Ql:Jtiona~
SETON Optional Optional Optional 2 Optional 2

!--'----- -2£!!?1"1.-a~
SETLL Optional Optional Required Required

- ·-····--·-----
SHTDN Optional Optional Required

SORTA Optional Optional Required
_ ___, --- -=r--~~~=-

SQRT Optional Optional Required Required

t -Opt~~,~~~ SUB Optional Optional Optional Required Required Optional Optional

TAG Optional Required

TE SIB Optional Optional Required Required Optional 2 D~iooru ~o~~,;,, '
TESTZ Optional Optional Required Optional 2 Optional 2 _9pt'or:2.I

TIME OJ2!ional OJ2!ional R~q_uired

XFOOT O_QJ;ional 0.Qtional R~uired R~uired O_Q_tional OotiilllaL_

_L-ADD O_QJ;ional 0.Qtional R~uired R~)..lired O_Q_tional ..QQtiQoaj_ Qr:!1~:'''''
Z-SUB Optional Optional Required Required Optional Optional

Fields without entries must be blank.

SR =The onlld allowable nonblank characters in columns 7 and 8
for the BEGSR and ENDSR operation codes

1 This indicator is required if the file specified in factor 2 is a full-procedural file.
2At least one resulting indicator must be specified in columns 54 through 59.
3 The nn entries in columns 31 and 32 are for message indicator numbers. If the result field of a SET operation contains ttm

keyword ERASE, factor 2 must contain the name of the CONSOLE file. Otherwise, factor 2 and the result field must be
4At least one resulting indicator must be specified in columns 54 through 59, but no more than two can be used.
scolumns 56 and 57 can contain an indicator when the READ operation is used with a WORKSTN device.

Figure 28-1 (Part 2 of 2). Summary of Operation Code Specifications

Chapter 28. Operation Codes

Arithmetic Operations

28-4

Arithmetic operations (ADD, SUB, MULT, DIV, Z-ADD, and Z-SUB) can be
performed only on numeric fields or numeric literals. The result field must
also be numeric. Decimal alignment is performed for all arithmetic
operations. Even though truncation can occur, the position of the decimal
point in the result field is not affected. For arithmetic operations in which
all three fields are used:

• Factor 1, factor 2, and the result field can be three different fields.

• Factor 1, factor 2, and the result field can all be the same field.

• Factor 1 and factor 2 can be the same field but different from the result
field.

• Either factor 1 or factor 2 can be the same as the result field.

The length of any field specified in an arithmetic operation cannot exceed
15 characters. If the result exceeds 15 characters, characters are dropped
from either or both ends depending on the location of the decimal point.
The results of all operations are signed (+ or-). Any data placed in the
result field replaces the data that was there before.

Move Operations

Move operations (MOVE, MOVEA, and MOVEL) move all or part of factor
2 to the result field. Factor 2 remains unchanged. Factor 1 must be blank,
and no resulting indicators can he specified in columns 54 through 59 ..

The MOVE and MOVEL operations can be used to change numeric fields to
alphameric fields and alphameric fields to numeric fields. To change a
numeric field to an alphameric field, enter the name of the numeric field in
factor 2 and specify an alphameric result field. To change an alphameric
field to a numeric field, enter the name of the alphameric field in factor 2
and specify a numeric result field.

When an alphameric field is moved into a numeric result field, the digit
portion of each character is converted to its corresponding numeric
character and then moved to the result field. Blanks are transferred as
zeros. For the MOVE operation, the zone portion of the rightmost
alphameric character is converted to its corresponding sign and is moved to
the rightmost position of the numeric field where it becomes the sign of the
field. For the MOVEL operation, the zone portion of the
character of factor 2 is converted and used aP. the sign of the result field
whether or not the rightmost character is included in the move operation.

When move operations are specified to move data into numeric fields, the
decimal positions specified for the factor 2 field are
if the data LOO is moved into a numeric field with one decimal
result is 10.0.

The MOVEA operation can be used to move several contiguous array
elements to a single field, a single field to several contiguous array
elements, or contiguous elements of one array to contiguous elements of
another array. All arrays and fields used in a MOVEA operation can be
alphameric or numeric.

28. Codes 28-5

Move Zone Operations

The move zone operations (MHHZO, MHLZO, MLHZO, and MLLZO) move
only the zone portion of a character. A minus(-) sign in a move zone
operation does not yield a negative character in the result field, because a
minus sign is represented by a hex 60 internally and a D zone is required
for a negative character. Characters J through R have D zones and can be
used to obtain a negative value (J = hex Dl, ... , R = hex D9).

Note: Whenever the word high is used in a move zone operation, the field
involved must be alphameric; whenever low is used, the field involved
can be either alphameric or numeric.

Compare and Testing Operations

28-6

The compare and testing operations test fields for certain conditions. These
operations are COMP and TESTZ. Another group of compare and testing
operations consists of IFxx, DO, DOU xx, DOW xx, and CASxx (structured
programming operations). The following rules of comparing fields apply to
all compare and testing operations:

• If numeric fields are compared, fields of unequal length are aligned at
the implied decimal point. The shorter field is filled with zeros to the
left or right of the decimal point to make the fields of equal length. The
maximum field length for numeric fields to be compared is 15 digits.

• If alphameric character fields are compared, fields of unequal length are
aligned at their leftmost character. The shorter field is filled with
blanks to equal the length of the longer field for comparison. The
maximum field length for alphameric fields to be compared is 256
characters.

• All numeric comparisons are algebraic. A positive value (+)is always
greater than a negative(-) value.

• Blanks within numeric fields are assumed to be zeros.

• Numeric fields are converted to packed-decimal format, if necessary,
before they are compared.

• If an alternate collating sequence (position 26 of the control
specification) has been specified for the comparison of character fields,
the fields are translated into the alternate sequence before comparison.

• An alphameric field cannot be compared to a numeric field.

• An array name and a data structure name cannot be specified in a
compare operation, but an array element, a table element, and a data
structure subfield can.

With the COMP and TESTZ operations, the resulting indicators assigned in
positions 54 through 59 are set according to the results of the operation.

With the CASxx operation, the branch to a subroutine specified in the
result field occurs if the condition specified in the xx portion of the
operation is met.

No fields arc changed by compare and testing operations.

Structured Programming Operations

The structured programming operations are:

~ DO

• DOUxx (Do Until)

• IFxx

• CASxx

~ END (End)

• ELSE (Else

allows an or a series of to be
a fixed number of times. You indicate how many times the

will be performed specifying the starting value in factor 1,
incrementing each time by the value in factor 2 of the associated END
operation or by 1 if factor 2 on the END operation is not specified, until the
index value (result field) exceeds the limit value (factor 2).

The DOWxx and DOUxx operations allow an operation or a series of
to be one or more times based on the results of

comparing factor 1 with factor 2.

The to be
performed based on the results of comparing factor 1 with factor 2.

The CASxx operation allows conditional branching to a subroutine based
on the results of comparing factor 1 with factor 2.

The xx of the IFxx, DOU xx, DOWxx, and CASxx operations can be:

GT Factor 1 is greater than factor 2.

LT Factor 1 is less than factor 2.

EQ Factor 1 is equal to factor 2.

NE Factor 1 is not equal to factor 2.

GE Factor 1 is greater than or equal to factor 2.

28. Operation Codes

28-8

LE Factor 1 is less than or equal to factor 2.

Blanks Factor 1 is not compared to factor 2 (unconditional execution).
This is valid for the CASxx operation only, if the xx portion of it
contains blanks.

Conditioning indicators can be specified.

Factor 1 and factor 2 can contain a character literal, a numeric literal, an
array element, a table name, a data structure subfield, a field name, or
blanks (blanks are valid only for CASbb). If factor 1 and factor 2 are not
blanks, both must be character data or both must be numeric. Only
numeric literals, field names, array elements, table names, or data structure
subfields with zero decimal positions can be specified in factor 1 and factor
2 of the DO operation.

The rules for comparing factor 1 and factor 2 on the IFxx, DOUxx, DOWxx,
and CASxx operation codes are the same as those given under Compare and
Testing Operations in this chapter. The same rules apply to comparing a
result field (index value) and factor 2 (limit value) on the DO operation.

The group of operations that begins with a DO, DOU xx, DOWxx, or IFxx
operation and ends with an END operation, is called a do group. Each do
group must end with an END operation, which either ends the do group or
allows the do group (except the IF group) to continue executing.

If a do group contains another complete do group, together they form a
nested do group. The following is an example of nested do groups, three
levels deep:

Remember the following when specifying do groups:

• Do groups can be nested to a maximum depth of 100 levels.

• Each do group must contain both a DO, DOUxx, DOWxx, or IFxx
operation and an associated END operation.

• A do group must be contained in either detail, total, LR, or subroutine
calculations; it cannot be split between the different calculation times.

• If you branch into a do group from outside the do group, the loop
controls will not have been initialized, which may yield undesirable
results.

A CAS gronp can contain on.ly CASxx An END
follow the last CASxx operation to denote the end •:£th<) CAS g:roup.

After the subroutine is executed, the nrogram continur>n at the next
operation following the END operation fm' the CAS group, !'rll(:ss the
s11bro11tine is the Il\TJ3~SJ:l an.d fn.ctor~ ;2 or1 tbe J?NIJSif, iu ~nnt ·~d~~:z~ ~~,
in which case the return point for the subroutine is
the ENDSR operation,.

Bit Operations

The bit , BITUF', and s12:t

bits, [Jse t_he i~ndividuaJ bits a:.; s1Nitc}1es 1.!~. :,,., .~r;l't:Jg:rr::t1:r'

When you use tlw BITON, BITOF, f.rnd TF:STB
in. factor 2 01:-' 1·esuJt fieh-:-1 \10.ust he 2l """ ~.~.~.,.,

conside:red ''""''"n"u.r.1,,,.i
column cf the
factor 2 or as t:t1e result field Cftr~ be a:n t·reray ~"0le;:nen.t if ·13.'t-J.c.b. 0}er;:t0~1~it in
array 1s a

If a field is defined in a BI'TON or BI1'0F
field is hex 40.

SETON and SETOF'

The operation codes SETON and SETOF tum indicators or, or off.
indicator to he turned on or off is specified in. cohu:nns 54
headings for these columns or
no meaning in these

o The fol.lowing indicators cannot be turned nn by the SE':'..'ON
first-page (lP), matching-y·ecord (MR), levei-zm:o
through KN, KP through

e 'rhe following indicators cannot be turned off by tb.e SETOF'
first-page (lP), matching-record (MR), 1eve1··zero f.uHl. 1ns1>·t·0r:o .,:;

(LR).

e If the last-record indicator)g tamed en .!;'. i3Err that
is conditioned by a control-level indicator (columns 7 and 8
calculation specifications), processing stops after 2111 total
operations are fi.nl.shed. If it is turned on by a SBTON
detail time (not conditioned by a control-level indicato.r in cohi.mns
and 8), processing stops after the next total rn
completed.

e If the halt indicators (Hl thrnugh H9) are turned on
before the detail output operations a:re foe 'The

Chapter 28. Operation Codes 28-9

operator can continue processing by responding to the halt for every
halt indicator that is on.

• Turning control-level indicators (Ll through L9) on or off does not
automatically turn any lower control-level indicators on or off.

• Control-level indicators (Ll through L9) and the record-identifying
indicators always turn off after the next detail output operations are
completed regardless of the previous SETON or SETOF operation.

• Whenever a new record is read, record-identifying indicators (01
through 99) and field indicators turn on or off to reflect conditions on
the new record. The setting from any previous SETON or SETOF
operation does not apply then.

• If an indicator with the 2-character entries 01 through 99 is turned on
and is not changed in other calculations, it remains on until it is turned
off by another calculation specification.

Branching within RPG

Operations are normally performed in the order in which they appear on
the calculation specifications. There may be times, however, when the
operations should be performed in a different order, such as when:

• Several operations should be skipped when certain conditions occur.

• Certain operations should be performed for several, but not all, record
types.

• Several operations should be repeated.

See Conditional Branching and Repeating an Operation in Chapter 18 for
the details.

Subroutine Operations

28-10

The operation codes BEGSR, ENDSR, EXSR, and CASxx are used only for
subroutines. In an RPG program, a subroutine is a group of calculation
specifications that can be performed several times in one program cycle. A
subroutine must be coded after all other calculation operations for a
program. Subroutine specifications must be identified by SR or blanks in
columns 7 and 8 on the calculation specifications. Therefore, individual
operations within a subroutine cannot be conditioned by control-level
indicators in columns 7 and 8. Within a subroutine, SR or blanks in
columns 7 and 8 can be intermixed.

Linking to External Subroutines

To link from an RPG program to an assembler-language subroutine, use the
EXIT and RLABL operations. You can use the EXIT and RLABL operation
codes to link to the IBM-supplied subroutines SUBR20, SUBR21, SUBR23,
and SUBR95.

During compilation, the name of the user library containing the
assembler-language subroutines can be specified. The input library name is
assumed when the subroutine library name is not specified.

WORKSTN Operations

The operation codes ACQ and REL are used only with the WORKSTN file.
For these operations, factor 1 specifies either the name of a 2-character
field that contains the device identification or a 2-character alphameric
literal that is the device identification. Factor 2 specifies the name of the
WORKSTN file for which the operation is requested. Columns 56 and 57 on
the calculation specifications can contain a resulting indicator that turns
on if an exception or error occurs.

Note: For WORKSTN files, a device can be either a display station or an
SSP-ICF session.

Programmed Control of Input and Output

The normal program cycle can be changed to allow input and output
operations during calculations. (See Chapter 19 for a description of the
program cycle.) The following operations provide this capability:

• EXCPT (Exception Output)

• READ (Read)

• READE (Read Equal Key)

• READP (Read Previous Record)

• FORCE (Force)

• NEXT (Next)

• CHAIN (Chain)

• KEY (Key)

• SET (Set)

• SETLL (Set Lower Limits)

Chapter 28. Operation Codes 28-11

OPERATION CODES

The rest of this chapter discusses individual operation codes in alphabetical
order.

ACQ (Acquire)

ADD (Add)

28-12

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Required ACQ Required Blank Blank Optional Blank

7-8

The ACQ operation acquires the device specified in factor 1 for the
program. Factor 2 must contain the name of the WORKSTN file.

If the device is available, ACQ attaches it to the program. If it is not
available or is already attached to the program, an error occurs. If an
indicator is specified in columns 56 and 57, the indicator turns on.

If no indicator is specified but the program contains the INFSR
(WORKSTN exception/error-processing) subroutine, the INFSR subroutine
automatically receives control when an exception or error occurs.

If no indicator is specified and the program does not contain the INFSR
subroutine, the program halts when an exception or error occurs. No input
or output operation occurs when the ACQ operation is performed. For
more information about the ACQ operation, see Chapter 6, Using
WORKSTN Files.

Indicators
Result

Resulting Indicators

9-17 Factor 1 Operation Factor 2 Field 54-55 58-57 58-59

Optional Optional Optional ADD Required Required Optional Optional Optional

Factor 2 is added to factor 1. The sum is placed in the result field. Factor 1
and factor 2 are not changed by the operation. If factor 1 is not present,
factor 2 is added to the result field, and the sum is placed in the result field.

BEGSR (Begin Subroutine)

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional: Blank Required BEGSR Blank Blank Blank Blank Blank

SR

The BEGSR operation serves as the beginning point of a subroutine.
Factor 1 must contain the name of the subroutine. The control-level entry
(columns 7 and 8) can be SR or blank. Columns 9 through 17 must not
contain any conditioning indicators.

The subroutine name can be from 1 to 6 characters long. It must begin with
an alphabetic character in column 18. The remaining characters can be
any combination of alphabetic or numeric characters. However, special
characters are not allowed, and blanks cannot appear between characters
in the name. Every subroutine must have a different name. This name
cannot be used as the label of a TAG or ENDSR operation.

Chapter 28. Operation Codes 28-13

BITOF (Set Bit Off)

28-14

Indicators
Result.

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 fil.67 58-59

Optional Optional Blank BITOF Required Required Blank Blank Blank

The BITOF operation causes bits identified in factor 2 to be set off (be set
to 0) in the field named as the result field. Factor 2 is always a source of
bits for the result field. The result field is the field in which the bits are set
off.

Factor 2 can contain:

• Bit numbers 0-7: From 1 to 8 bits can be set off per operation. The bits
to be set off are identified by the numbers 0 through 7 (0 is the leftmost
bit). The bit numbers must be enclosed in apostrophes, and the entry
must begin in column 33. For example, to set off bits 0, 2, and 5, enter
'025' in factor 2.

• Field name The name of a one-position alphameric field, array element,
or table element can be specified in factor 2. In this case, the bits that
are on in the field, array element, or table element are set off in the
result field; bits that are off are not affected.

See Figure 28-2 for a summary of BITOF operations.

The operation code BITOF must appear in columns 28 through 32.
Conditioning indicators can be used in columns 7 through 17. However,
factor 1, decimal positions, half-adjust, and the resulting-indicator columns
must be blank.

c
1--

~

Line ?

j
3 4 5 6

0 1 le
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c
0 7 c
0 B c
0 9 c
1 0 c
1 1 c
1 2 c
1 3 c
1 4 c
1 5 c
1 6 c
1 7 c
1 B c
1 9 c
2 0 c

c
c
c
c
c

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c
0 7 c
0 B c
0 9 c
1 0 c
1 ' c
1 2 c
1 3 c
1 4 c
1 5 c
1 6 c
1 7 c
1 B c

Indicators

1 1 Factor 1 Operation Factor 2

0 Ci 0 z z z

Result Field

Name Length

Resulting

Indicators

Arithmetic

PlusIMm~ Zero
Compare

1 >2[1<2f1=2
Lookup(Factor 21is

High Low Equal

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21'28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 '18 49 50 51

The following BITOF operation sets bit 5 off in the field named BITSW. The field is
defined in the same line with a field length of 1.

IRI [[E '15' 11

The following operation sets bits 1, 2, 4, and 6 off in the field named BITSW. The
one-position field has been previously defined.

The following operation uses a one-position alphameric field as a source of bits. Any
bits that are on in the field named ALPHA cause corresponding bits to be set off in the
field named BITSW. If bits 5 and 7 are on in the field named ALPHA, the BITOF
operation sets bits 5 and 7 off in the field named BITSW.

IF! 11 JF1A IP1~1A ~I 1~

The following operations use a one-position alphameric array element either as a source
of bits or as a result field, or both. In the first operation, any bits that are on in the
field named ALPHA cause corresponding bits to be set off in the array element ARR,NX.

BITS is a one-position field containing hex FO (numeric zero). To change hex FO to
hex 40 (blank). set bits 0, 2, and 3 off:

I -r -r-r II I 11 I

To create a hex 1C (dup character) in the one-position field ASTRSK, set all bits off,
then set on bits 3, 4, and 5.

Comments

1 9 c f-+-+-+-l-++-l-+-+--+-1-++-l~+-+---1--+-l--l--l-•t-+-·-+-1--+-+-+-+-++-1--+~-+-+-+-+-f-+-+-~+-+-~-+-+-1--+-+-+-l-+-+-1--+-+-.._,l--+-+-+-l-+-+-~-+-
2 0 c

c
c
c
c
c

r.t LL Ol 69 89 L9 99 99 Hi t9 zg L9 09 6S 89 Hi gc;; S!i~ cs ZS l!i O<:l 611' st Lii' 9l> St"" ct zv L• 011' 8t SC l[9£ 9C M Ct zc LC oc 6Z 8Z a 9l 9l 1'Z CZ u; LZ Ol 6L SL u BL ~H lrl Cl ZL LL OL 6 8 l 9 !i .. t z L

•Number of sheets per pad may vary sliW!tly.

Figure 28-2. Summary of BITOF Operations

Chapter 28. Operation Codes 28-15

BITON (Set Bit On)

28-16

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 64--&& &8-67 fiB-69

Optional Optional Blank BITON Required Required Blank Blank Blank

The BITON operation causes bits identified in factor 2 to be set on (be set
to 1) in the field named as the result field. Factor 2 is always a source of
bits for the result field. The result field is the field in which the bits are set
on.

Factor 2 can contain:

• Bit numbers 0-7: From 1 to 8 bits can be set on per operation. The bits
to be set on are identified by the numbers 0 through 7 (0 is the leftmost
bit). The bit numbers must be enclosed in apostrophes, and the entry
must begin in column 33. For example, to set on bits 0, 2, and 5, enter
'025' in factor 2.

• Field name: The name of a one-position alphameric field, array
element, or table element can be specified in factor 2. In this case, the
bits that are on in the field, array element, or table element are set on
in the result field; bits that are off are not affected.

See Figu~e 28-3 for a summary of BITON operations.

The operation code BITON must appear in columns 28 through 32.
Conditioning indicators can be used in columns 7 through 17. However,
factor 1, decimal positions, half-adjust, and the resulting-indicator columns
must be blank.

Line

3 4 5

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c
0 7 c
0 8 c
0 9 c
1 0 c
1 1 c
1 2 c
1 3 c
1 4 c
1 5 c
1 6 c
1 7 c
1 8 c
1 • c
2 0 c

c
c
c
c
c

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c

Indicators

Factor 1 Operation Factor 2

g

Result Field

Name Length

Resulting
Indicators
Arithmetic

Plus Minu:!(Zero
Compare

1>~1<2J1-2

Comments

8 ~ ~ ~
Lookup(Factor 2)ho

HiW. Low Equal
M~~"~~M~~~~~~~ooooronnnM

I

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21Jia 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

t-

The following BITON operation sets bit 4 on in the field named BITS. The field is defined
in the same line with a field length of 1.

II ~ ·~· 111

The following operation sets bits 0, 3, 5, and 7 on in the field named BITS. This one-position
field has been previously defined.

T T T
The following operation uses a one-position alphameric field as a source of bits. Any bits
that are on in the field named ALPHA cause corresponding bits to be set on in the field
named BITS. If bits 5 and 7 are on in the field named ALPHA, the BITON operation sets
bits 5 and 7 on in the field named BITS.

I '

I N P ~

The following operations use a one-position alphameric array element either as a source of
bits or as a result field, or both. In the first operation, any bits that are on in the array
element AR R,NX cause corresponding bits to be set on in the array element ARE, 12.

1~,.., 11la

0 7 I c

Figure 28-3. Summary of BITON Operations

Chapter 28. Operation Codes 28-17

CASxx (Case)

28-18

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Optional CASxx Optional Required Optional Optional Optional

The CASxx operation allows a subroutine to be conditionally selected for
execution. The selection is based on the relationship between factor 1 and
factor 2, as specified by the xx portion of the CASxx operation. See
Structured Programming Operations in this chapter for options available
under the xx portion of the CASxx operation.

Conditioning indicators can be specified. Conditioning indicators on the
CASxx operation control whether this particular CASxx operation is
performed.

Factor 1 and factor 2 can contain a character literal, a numeric literal, an
array element, a table element, a data structure subfield, a field name, or
blanks (blanks are valid only for CASbb). If factor 1 and factor 2 are not
blanks, both must be character data or both must be numeric. The rules for
comparing factor 1 and factor 2 on the CASxx operation are the same as
those given under Compare and Testing Operations in this chapter.

The result field must contain the name of a valid RPG subroutine. If the
relationship denoted by xx exists between factor 1 and factor 2, control
passes to the subroutine specified in the result field. If the relationship
denoted by xx does not exist, the program continues with the next CASxx
operation in the CAS group.

A CAS group can contain only CASxx operations. An END operation must
follow the last CASxx operation to denote the end of the CAS group. After
the subroutine is executed, the program continues at the next operation
following the END operation for the CAS group.

Note: For the INFSR subroutine, an optional factor 2 entry on the ENDSR
operation specifies the return point for the subroutine. See Coding the
INFSR Subroutine in Chapter 6 for the description of entries allowed in
factor 2 of the ENDSR operation used with the INFSR subroutine. For all
other subroutines, factor 2 of the ENDSR operation must be blank.

You must not use conditioning indicators on the END operation for a CAS
group.

In a CASbb operation, factor 1 and factor 2 are required only if resulting
indicators are specified in positions 54 through 59.

The CASbb operation with no resulting indicators specified in position 54
through 59 is functionally identical to an EXSR operation because it causes
the unconditional execution of the subroutine named in the result field of
the CASbb operation. Any CASxx operations that follow an unconditional
CASbb operation in the same CAS group are never tested. Therefore, the

normal placement of an unconditional CASbb operation is after all other
CASxx operations in the CAS group.

Result Field ~ ~a~-- I Resulting
Indicators
Arithmetic c dri I I ~1 ~

r-----. a; o And And I :E ~ 1-;; Minu~aro
~ii~ Factor1 Operation Factor2 Nome Len th ~hnl __:::_ompare Comments
>._J<(g ~~~1>2 1<2_0 .. 2

Line ~ :g~~.~.~1-~c~--+-~~ o ~ Lookup
~ c ~ O Q ·~ ~ (Factor 2) is
~ 85- ~ z z ~~!High Low qual

11213 14 15 16 17 18 19.al 2122232425 ::.Ii~ 28 2930 31 32~ 34 35 36 'J7 38 39l!O lj.\ q.2 43 114 qf) 46 q.7 __ ~498) 5152~fA.55 ffi 5 ffi s$J 61626J &l 65 66 fil 68 &9-xl 71 72 73
3 "

5 6 7 8 9 D

D 1 c
D 2 c
0 3 c
0 4 c
0 5 c
0 6 c
o· 1 c
0 8 c 1--+-t-1-1-+"1-+--t-t--+-+,--+-+-t-+--r+,-1-+--t-t--+-i-l~~plrl-~~1-1--t-t--+-++-+--+-+-+-+-+-t-t1--+-+~--+-+-+-1H--t-t--+-+-t-+--+-+-+-+-+-+-r-+-t-t--+--t-t

(0 9 c
1--+c++=-11-+--+-+-+~-+-1-+- I-+-

1 0 c
1 1 c

28-4.

The CASGE operation (line 04) compares FIELDA with FIELDS. If FIELDA Is greater

than or equal to FIELDB, SUBR01 Is executed and the program continues with the

operation specified on line 08. If FIELDA Is not greater than or equal to FIELDS, the

program next compares FIELDA with FIELDC (line 05). If FIELDA Is equal to

FIELDC, 6UBR02 Is executed and the program continues with the operation specified on

line 08. If FIELDA Is not equal to FIELDC, the CASl!>i> operation (line 06) causes

SUBR03 to be executed before the program continues with the operation specified on

line 08. The END operation on line 07 denotes the end ol the CAB group

CASxx Operation

-l-+-+-+-1--;-+-;---j

28. Operation Codes

CHAIN (Chain)

28-20

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Required CHAIN Required Blank Optional Blank Blank

The CHAIN operation causes one record to be read from a DISK file during
calculations. The CHAIN operation can be used either to read records
randomly from a sequential, direct, or indexed file, or to load a direct file
that does not allow deletions. For more information on loading a direct file
that does not allow deletions, see Direct Files in Chapter 5.

Enter the operation code CHAIN in columns 28 through 32. Factor 1
defines the relative record number or the key field of the record to be
selected for processing. If you wish to use noncontiguous keys, the key field
name may be the name of a data structure subfield. Alternative Indexes and
data structures may be used to create noncontiguous key fields. See
Creating an Alternative Index File for an Indexed File in Chapter 5. Factor
2 names the chained file or full-procedural file from which the record is
read. This file must be defined with a C or F entry in column 16 of the file
description specifications.

Indicators can be used in columns 7 through 17, but columns 43 through 53
and 56 through 59 must be blank. If the chained file is conditioned by an
external indicator on the file description specifications, the CHAIN
statement should be conditioned by the same external indicator. A
maximum of 15 full-procedural, chained, and/or demand files are allowed
per program.

Columns 54 and 55 should specify an indicator. This indicator must be
specified for full-procedural files. If the record is not found (or, for a direct
file load, if the record location does not exist in the file), the indicator turns
on. No update is permitted to a chained update file when the specified
record is not found; however, adding records to a file is allowed. Records
with duplicate key fields are possible in the file after an unsuccessful chain
to an update-add file if the key field is changed before an add to the file. If
the original record is found, the indicator turns off.

If an indicator is not specified in columns 54 and 55 and the record is not
found, the program halts, and the person using the display station must
respond to the error message. When chaining to a file with key fields in
packed-decimal format, the field specified in factor 1 of the CHAIN
operation must have a packed-decimal length that is the same as the length
of the key field in the chained file. Packed-decimal key fields can be up to 8
bytes long. The packed-decimal field equivalents for zoned-decimal fields up
to 15 bytes long are shown in a chart under Packed-Decimal Format in
Chapter 25, Input Specifications.

Note: If you chain to one or more files during the same RPG cycle,
record-identifying indicators assigned to the chained file or files remain on
throughout the cycle if the previous chain operations were performed
successfully. If you chain to the same file more than once during an RPG
cycle, only the last record processed is updated during output time unless
an exception output is associated with each CHAIN operation.

Random Processing

To read a record from a sequential or direct file with the CHAIN operation,
the record must be identified by relative record number. To read a record
from an indexed file with the CHAIN operation, the record must be
identified by a key field. A field can be specified to contain the relative
record number or key field.

If the record has been deleted from the file, the no-record-found indicator is
turned on. If the no-record-found indicator is not specified, a message is
displayed.

Factor 1 must contain a relative record number, a key field, or the name of
a field that contains a relative record number or key field. Factor 2 must
contain the name of the file from which the record is read.

Figure 28-5 shows an example of chaining to and updating an indexed file.

Chapter 28. Operation Codes 28-21

F File Type Mode of Processing Fif4! Addition/Unordered

file Designation Length of Key Field Of Extent Exit Number of Tracks
I-- of Record Address Field for DAM tor Cylinder Overflow

End of File
Name of Record Address Type Symbolic Number of Ek1ent1

Filename Sequence
Type of File "' Device Label Exit

!
Device Tope

Fi~ Format N Ofganiution or
~ w a Additional Area Storage lnde>i:

Line ~ e ii: .~ File
Ci Condition Bl ode Record ~ ~ Overflow lnchcator i

! 8 ~ ~ :lb"':!:-~
langth Length a: ;;:e ~· Continuation Lines 3 u ~ ::i :;c X Starting w

" ~ g~
c ~ ::::- Location ::>

j.f w< External Record Name K Option Entry <
3 • s • 7 8 9· 10 11 12 13 14 .. ~ 17 18 ~~vnn~~~vaa~~~"~~•n~ 39 40 41 42 43 44 45 46 47 48 49 60 51 52 53 54 55 56 57 SB 59 60 61 62 63 64 65 ... , 8888

0 2 F~ IEY' rt~ lIW Fl lql~ A~ m ~it<
0 3 F~ ~le; tr[l [p,;~ II ,, F1 1112/l 111~ rl~ lqlAII l.1 w ICijl(
0 4 F~ jEjc: l~IA~ II,., F ~ § lfilt.. nl
0 6 F

RECIN file consists of records sorted by item number, with each record containing a quantity
ordered.

I f
External Field Name Field

F leld l.ocetion
Indicators

I--- Fil1n1m1

I
Record ldentlficetion Codes

~ i or :ris § ; ~
Record Nome w"' , 2 3 From To RPG ff :

! ~ :i p g l Field Name 1 1 :!i i ~s
G ~I~ !l ~ ... Zero

Line g
j§J .. c G ic

C1t1 Structure ,.
] rr Plu1 Minus or

Ji] Position Position • 0: ... D11t1

~
Po1hion

i§~ j § u'~ ~ I& " Blink

H Oc:cur1 ~ Structure nT1mt1 1.tngth
N1mt

~
a:

10 11 72 73 74

•• • 8 1 8 1 10 ,, 12 13 14 15 18 17 18 19 20 '21 222324 25 21 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43444!i4ij4 1 48 49 50 51 52 53 !i4 IS!i 56 S7 !i8 II 10 II~ 17 .. 88 70 ,, 7t 73 74

0 1 I!Ji![lU IA~ rl~ ~~ Ir~
0 2 I --~ ~, 11 lJt. "" ~ -

I~ r.4"' ril1 0 3 I -
0 4 I 1111 I~ IFIF r.2~ [ii~ Jr~
0 6 I Ii~

,.., 11Ll ~II" 11\j"
-

11 0 6 I -·
0 7 I - -+-+--+--

ITEMNO is used as a control field. When all the quantities for one item number are added, a control
break-occurs.

Figure 28-5 (Part 1 of 2). CHAIN Operation

28-22

Indicators

I Factor 1 Operation Factor 2

Result Field Resulting
lndic1ton

<.a Arithmetic

:~ ;;: Plus.lMin~Zero
S t: Compare

Name Length~~ 1>~<~1"'2
... O O ·~ ~ Lo.okup{Factor 2)is
~ z z 6 :r High Low F.qual

Comments

9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 28 '21 ~ 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 4"' 45 46 47 48 49 50 51 52 53 54 55 56 57 SB 59 60 61 62 63 64 66 B6 67 68 811 70 71 72 73 74

0 1 c
0 2 Ill

ll J:IE 0 3

0 4 c lt~B1
1-:+:-+_,1-~~-+-1-+-+--1--++-1-+-+--+-+-~-+-+-+-+--+-+-+.._.JH-{ Other total calculationsJ 1-+-+-+-t-+-+-1-++-r++-i--+-+-1--l-+-+-+-+-+-+--+--1-+--+--1-+-1

The CHAIN operation then uses ITEMNO to find the master record and update it. If it is not found,
indicator 20 turns on and a SET operation displays the item number on the screen. If the master
record is found, the total quantity for the item number is subtracted from the quantity on hand.

0
I--

Line

Filename
or

Record Name

Skip Output Indicators

EXCPT Name

Field0~ame [f5f
a: Pos1t1on

~ ,._,_-+-~..-.-~+-----....fj ~ in
<r: 8 5 Output ~

Commas

v ..
v ..
No
No

Zero Balances
No Sign CR

X =Remove

toPrmt Plus Sign
Y =Date

5 -9"'

v •• A Field Edit
Um

No Z =Zero
Defined

Ye• Suppress
No D M

O ... •_ Record ID Constant or Edit Word ..;+To Z ~ ~ AUTO ~ ~ ii:" • 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 21 23 24

3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 B6 67 68 69 70 71 72 73 74

0 1 0 ~allm rr
0 2 0

0 3 0

After the total calculations, the QOH field in the master record is updated.

Figure 28-5 (Part 2 of 2). CHAIN Operation

Chapter 28. Operation Codes 28-23

COMP (Compare)

28-24

lndlutora Result Reaultlftl lndloltorl

7-8 .. ,, F•ctor 1 Operetlon Fector 2 Fleld llM7 1--
Optional Optional Required COMP Required Blank One required

The COMP operation compares factor 1 with factor 2. As a result of the
compare, indicators turn on as follows:

High Factor 1 is greater than factor 2.

Low Factor 1 is less than factor 2.

Equal Factor 1 equals factor 2.

Indicators for conditions not met remain off, or turn off if they had been
turned on previously.

Factor 1 and factor 2 must be both alphameric or both numeric.

At least one resulting indicator must be specified in positions 54 through
59.

The fields are automatically aligned before they are compared. If the fields
are alphameric, they are aligned on their leftmost character. If one is
shorter, the unused positions are filled with blanks (see Figure 28-6). The
maximum field length for alphameric fields to be compared is 256
characters.

If the fields are numeric, they are aligned on the decimal point. Any
missing digits are filled with zeros (see Figure 28-7). The maximum field
length for numeric fields to be compared is 15 digits.

If an alternative collating sequence is specified, alphameric fields are
compared according to the alternative sequence.

Figure 28-8 shows some examples of specifications for compare operations.

}
Equal-Length
Alphameric Fields

Figure 28-6. Comparison of Alphameric Fields

:::::::::::::} Equal-Length

Numeric Fields

Unequal-Length
Numeric Fields

Figure 28-7. Comparison of Numeric Fields

Chapter 28. Operation Codes 28-25

c
i---.

Line !
!

3 4 5 8

0 , c
0 2 c
0 3 c
0 4 le
0 5 c
0 6 c
0 7 c
0 8 c

Indicators Result Field
Resulting

~· Indicators

9- I I Arithmetic

ii E Plu,IMinu.!(Zero
F.:tor 1 Operation Facto1· 2 i Compare Comments

Hf
Name Length ~ 1>![!<tl_l•2

.... Lookup{Factot' 2)1

A ~f i i i ~ Migh low F.qual '. • 10 1112 13 14 15 18 17 18 19 20 21 22 23 24 25 l6 27 l2a 29 30 31 32 33 34 35 38 37 38 39 40 41 -42 43 44 46 46 47 48 49 50 51 53 fM 55 .. " 80 61 82 63 ~ 16 88 81 88 • 10 71 72 73 74

~~ Y[l ~ MF l~"l.c! le! ~ L• 12

1-f-- • 11
I ~ p,~ ~I'"' 111~ ti~ 1~

*" ""~ IT ~If' I!=~ [111: l2!'2 11'1 ~

;.+- ~~ Nr'. rr~ Ir-Ir M~ ltill ... ~

L The contents of the field SLS81 (1981 sal") 8'e compa"d with the contents of
SLS82. If 1981 sales exceed 1982 sales, resulting indicator 21 turns on; if they are
less, indicator 26 turns on; if the two years had equal sales, indicator 30 turns on.

The alphameric constant OCTOBER is compared with the contents of the field name d
MONTH, which must also be defined as alphameric. If the MONTH field does not
contain the word OCTOBER, indicator 13 turns on; if it does, indicator 15 turns on.

The contents of the field named G RSPA Y, which must be defined as numeric, are
decimal-aligned with numeric constant 1250.00. If the value in field GRSPAY is
greater than or equal to 1250.00, indicator 04 turns on; if its value is less than 1250.0 0,
indicator 05 turns on.

The contents of the field NETPAY, which must be defined as numeric, are
decimal-aligned with numeric constant 0 and then compared to it. If NETPAY is
greater than zero, indicator H1 remains off; however if NETPAY is zero or negative,
indicator H1 turns on.

Figure 28-8. Compare Operations

28-26

DEBUG (Debug)

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Optional DEBUG Required Optional Blank Blank Blank

The DEBUG operation is an RPG function that helps you find errors in a
program that is not working properly. Either one or two records
containing information helpful for finding programming errors are written
to an output file as a result of this operation. All DEBUG output in a
program is written to the same file.

The DEBUG operation code can be specified at any point or at several
points in the calculation specifications. Whenever the program encounters
the DEBUG operation, either one or two records are written, depending
upon the specifications entered. The first record contains a list of all
indicators that are on at the time the DEBUG operation was performed.
The second record, if specified, shows the contents of the field specified in
the result field.

Factor 1 can contain a literal or the name of a field to help identify the
particular DEBUG operation. The length of the specified fa1ld can be from
1 to 8 characters. The contents of the field or the literal are written in the
first record. If factor 1 is not used, the RPG-created statement number of
the DEBUG operation code is written in the first record. Factor 2 must
contain the name of an output file on which the DEBUG lines are written
and can be any valid output file. A WORKSTN file is not a valid output
file for the DEBUG operation. The same output file name must appear in
factor 2 for all DEBUG statements in a program. The result field can
contain the name of a field or array whose contents are to be written in the
second record. Any valid indicator can be used in columns 7 through 17.
Columns 49 through 59 must be blank.

To use the DEBUG operation, you must enter one of the following:

• 1 in column 15 of the control specification

• DEBUG in response to the prompt Override debug option in source on
the RPGONL, RPGC, or AUTOC procedure. See Chapter 3 for
information about these procedures.

If one of these entries is not made, the DEBUG operation code and its
conditioning indicators are treated as a comment. See Column 15 (DEBUG)
in Chapter 20, Control Specification, for more information.

Chapter 28. Operation Codes 28-27

Records Written for DEBUG

28-28

For a DEBUG operation, the first record is always written and appears in
the following format:

Output Positions Information

1-8 DEBUG--

9-16 Literal, contents of field entered in factor 1
(optional), or the statement number of the
DEBUG operation code in the program.

17 Blank

18-32 INDICATORS ON--

33-any position The names of all indicators that are on, each
(depending on separated by a blank. More than one record
length of field) may be needed.

The second record is written only when an entry is made in the result field.
The record is written in the following format:

Output Positions Information

1-14 FIELD VALUE--

15-any position The contents of the result field (up to 256
(depending on characters). If the result field is an array,
length of field) more than one output record may be needed

to contain the array.

*LIKE DEFN (Field Definition)

Indicators
I

Resulting Indicators Result
7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Blank *LIKE DEFN Required Required Blank Blank Blank

The DEFN operation with *LIKE in factor 1 defines a field based on the
attributes of another field. These attributes include length, decimal
positions, and type (character or numeric).

Factor 1 must always contain the entry *LIKE.

Factor 2 must contain the name of the field that provides the attributes for
the field being defined. Factor 2 cannot be a literal or a data structure
name. If factor 2 is an array, an array element, or a table name, the
attributes of an element of the array or table are used to define the field.

The result field must contain the name of the field being defined. The
result field cannot be an array, an array element, a table name, or a data
structure name.

The DEFN operation can be specified anywhere within calculations. The
control-level entry can be blank or can contain an Ll through L9 indicator,
the LR indicator, or an LO entry to group the statement within the
appropriate section of the program. Conditioning indicator entries
(columns 9 through 17) are not permitted.

Columns 49 through 51 (field length) can be used to make the result field
entry longer or shorter than the factor 2 entry. A plus sign (+) in column
49 indicates a length increase; a minus sign(-) in column 49 indicates a
length decrease. Columns 50 and 51 can contain the increase or decrease in
length (right-adjusted) or can be blank. If columns 49 through 51 are blank,
the result field entry is defined with the same length as the factor 2 entry.

The number of decimal positions in the new field cannot be determined by
an entry in column 52 (decimal positions). The new field will have the same
number of decimal positions as the factor 2 entry.

Resulting indicators are not permitted.

See figure 28-9 for examples of *LIKE DEFN.

Chapter 28. Operation Codes 28-29

c ~·
f---i ~

~
j

line g
8 0 z

3 4 5 7 9 10

0 1 c
0 2 cl
0 3 c
0 ., cfi
0 5 c
0 6 cl
0 7 c
0 B c~
0 9 c
1 0 cl
1 1 c
1 2 c~
1 3 c
1 4 c

Indicators Result Field

I I Factor 1 Operation Factor 2
Name Length

~ 0 z
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 tm 29 JO 31 32 33 34 35 36 37 38 39 40 41 42 43 45 46 47 48 49 50 ~1

~rn: rtlK~ D 1£1~ 1F11 l/l ~rRrP

I I
IL llKIE f) "E F~ ~ D~ ,: Irr

I I
i.1 11 t.IE m

I I
~ ~ DA lolQ

IL 111(1&: B fl~ Fit Jo~ f--~ .I~~
I I '

~IL '~ ~ El~ ~ DIS IAL 100:
I I

111 l~J£ m lti~ i= L. I)~ IF'it_ lt~t,;
I I

'Ii.. 111<!E -~ ~E f'~ IOJt. IFlL. IOI}(

FLOA is a 7-position character field.

F LOB is a 5-digit field with 2 decimal positions.

D FLOP is a 7 -position character field.

H F LDQ is a 9-position character field.

ii FLDR is a 6-position character field.

1-t ~

- 1

.. 1

- ~

9 F LDS is a 5-position numeric field with 2 decimal positions.

(I F LDT is a 6-position numeric field with 2 decimal positions.

m F LDU is a 3-position numeric field with 2 decimal positions.

fJ F LDX is a 3-position numeric field with 2 decimal positions.

Figure 28-9. DEFN Operations.

28-30

Resulting
Indicators
Arithmetic

Plus_lMinus Zero

Compare Comments

1>:zj_1<2 1•2
Lookup(F.Ctor 2)is

Higt'I Low Eciuel

" 55
.. 57 58 59 eo e1 e:1 63 64 85 66 b• 68 ea 10 11 12 13 1c

DIV (Divide)

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Optional DIV Required Required Optional Optional Optional

Factor l (dividend) is divided by factor 2 (divisor). The quotient (result) is
placed in the result field. Factor 1 and factor 2 are not changed. If factor 1
is 0, the result of the divide operation is 0. Factor 2 cannot be 0. If it is,
the job stops immediately. The person using the display station can
continue processing, however, by responding to the error message. When
processing continues, the result and remainder are set to 0. If factor 1 is
not present, the result field is divided by factor 2, and the quotient is placed
in the result field. Any remainder resulting from the divide operation is
lost unless the move remainder (MVR) operation is specified as the next
operation. When you use the move remainder operation to save the
remainder, you cannot half-adjust the result of the divide operation.

Chapter 28. Operation Codes 28-31

1 DO (Do)

28-32

Indicators
1--·

Resulting Indicators
Result

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 58-57 58-59

Optional Optional Ofstional DO
08t1onal Optional

Blank Blank Blank start} limit) (index)

The DO operation begins a group of operations you want to perform a fixed
number of times. You indicate how many times this group of operations
has to be performed by specifying a starting value, a limit value, and an
index value on the DO statement line.

An associated END operation marks the end of the do group.

In factor 1 (starting value) specify a numeric literal, a numeric field name,
an array element, a table name, or a data structure subfield with zero
decimal positions. If factor 1 is not specified, the starting value is assumed
to be 1.

In factor 2 (limit value) specify a numeric literal, a numeric field name, an
array element, a table name, or a data structure subfield with zero decimal
positions. If factor 2 is not specified, the limit value is assumed to be 1.

In the result field, which is used to contain the current index value, specify
a numeric field name, an array element, a table name, or a data structure
subfield with zero decimal positions. If you do not specify an index field,
the compiler will generate one for internal use.

Note that any value in the index field is replaced by factor l when the DO
operation begins.

An increment value of the DO operation is specified in factor 2 on the
associated END statement line. It can be a numeric positive literal, field,
array element, table name, or data structure subfield with zero decimal
positions. If factor 2 on the associated END operation is not specified, the
increment value is 1.

Conditioning indicators can be specified. In addition to the DO operation
itself, the conditioning indicators on the DO and END statements control
the do group, as explained below:

1. If the conditioning indicators on the DO statement are satisfied, the DO
operation is performed (step 2). If the indicators are not satisfied,
control passes to the next executable operation following the associated
END statement (step 7).

2. RPG begins the DO operation by moving the starting value (factor 1) to
the index field (result field).

3. If the index value is greater than the limit value, control passes to the
next executable operation following the associated END statement.

Otherwise, control passes to the first operation after the DO statement
(step 4).

4. Each of the operations between the DO statement and the associated
END statement is performed.

5. If the conditioning indicators on the END statement are not satisfied,
control passes to the next executable operation following the associated
END statement (step 7). Otherwise, the END operation is performed
(step 6).

6. RPG performs the END operation by adding the increment to the index
field. Control passes to step 3. Note that, unlike step 1, the
conditioning indicators on the DO statement are not tested again when
control passes to step 3.

7. The operation after the associated END statement is performed when
the conditioning indicators on the DO or END statements are not
satisfied (steps 1 or 5), or when the index value is greater than the limit
value (step 3).

The rules applied when comparing the result field (index value) and factor 2
(limit value) are the same as those given for numeric comparison under
Compare and Testing Operations earlier in this chapter.

Remember the following when specifying the DO operation and the
associated END operation:

• The limit value you specify in factor 2 must be equal to or greater than
the starting value specified in factor 1, otherwise the do group will
never be executed.

• Specifying a negative or zero increment value in factor 2 of the
associated END operation can cause the program to loop indefinitely.

• The index value, increment, limit value, and indicators can be modified
within the do group to affect the termination of the loop.

• The RPG-generated index field always has the length of 15.

Figure 28-10 illustrates how the DO operation works.

Chapter 28. Operation Codes 28-33

Comments

.,; Indicators Result F1"eld TesUTfing C % Jndicotora .; T T !! Ar 1th metre _ § ~ ~ tu.ifMinua Zero

t----im !;$ And And Factor 1 Operation F Len th "ij;; -C-ompare . I,? ..;:J: actor2 Nome g <l..~ 1, 2:11<2 1_2
Line E eo:: 0 ~ ToOlfup

& g~ 0 O O ·5 '; ~Factor 2) is
u =i z Z Z ~ ::c High Low quo

s 4 s 6 1 e g o 1 12 13 14 1s 16 11 1e 19 zi 21 22 23 24 25 25 2' 28 2930 31 32133 J11 35 36 37 36 3940 41 42~3 ""45 46 47 '18 4950 s1 IB:.i ss'5<i 511511 s 511 • 61 62 63 64 65 66 ru 68 6910 11 12 73 ,.,

01 c ""'

0 5 c ~

0 6 c
0 7 c
0 8 c
0 9 c[;;'! 12 D [2J(il
1 0 c
1 1 c
1 2 c
1 3 c ~

~ = Calculations
(

1 4 c
1 5 c

Indicator 17 is tested only once. If indicator 17 is off, the execution will continue following the END
statement (line 07). If indicator 17 is on, the do group (lines 2 through 6) is executed 10 times. The
execution stops when the index value in field X (the result field) is greater than the limit value (10)
in factor 2. Control then passes to the operation immediately following the END operation (line 7).
Since factor 1 on the DO statement line is not specified, the starting value is 1. Since factor 2 on the
END statement line is not specified, the increment value is 1.

The do group (lines 9 through 13) can be executed 10 times. The execution stops when the value in
the index field (generated by the compiler since the result field is not specified) is greater than the
limit value (20) in factor 2, or if indicator 50 is not on when the END operation is encountered.
When indicator 50 is not on, the END operation is not executed; therefore, control passes to the
operation following the END operation. The starting value of 2 is specified in factor 1 of the DO
operation, and the increment value of 2 is specified in factor 2 of the END operation.

Figure 28-10. DO Operation

28-34

I
I

-1

t

t

t

t-

DOUxx (Do Until)

~ Indicctors c 0 1 1 d~
-o

1--. ~ And And
0. ~~
~ e"' line E

~
"EV'Jv 0 0 0 8':'1 z z z

Indicators
Result

Resulting Indicators

7-8 9-17 FP.ctor 1 Operation Factor 2 Field ~~-5~~-57 58-59

Optional Optional Required DOU xx Required Blank I Blank I Blank Blank

The DOU xx operation begins a group of operations which are performed
until a condition specified in the xx portion of the DOU xx operation is met.
See Structured Programming Operations in this chapter for options
available under the xx portion of the DOU xx operation code. An associated
END operation marks the end of the do group.

Factor 1 and factor 2 can contain a character literal, a numeric literal, an
array element, a table element, a data structure subfield, or a field name.
Both factor l and factor 2 must be character data or both must be numeric.
The rules for comparing factor 1 and factor 2 on the DOUxx operation are
the same as those given under Compare and Testing Operations in this
chapter.

Result Field :<•eu1T'1ng
Indicators

w Arithmetic

~~I ~lu~Minu11 Zero

(;,_om pare
Foctor 1 Operation Factor 2 Name Length ~Joli

1>2J!<2 ,;:z Comments
CL o

~WI Lookup

~~I
(Factor 2) is

Hi9h Low quol

3 • 5 6 7 8 9 0 1 12 13 r• 15 16 17 18 19 2J 21 7.l 23 ~ ~ 26 2 28 293) 31 32 133)ij 35 36 Tf 38 3940 41 42 143 .. 45 46 47 48 498:) 51 "'456!'65 5809 52t>JI f'A:> 61 62 63 M 65 66 67 68 69 70 71 72 73

0 1 c r-=p-
0 2 i I c q

0 3 c ~ Qj u~ L !=J

0 • c t:ll B 1 F ™ ~ ~
= Calcula!lcns

0 5 c
0 6 c .~
0 7 c I ~ 1
0 8 c _j_
0 9 c
1 0 c
1 1 c The DOUEO operation executes the operation within the do group (line 04) at le•sl

1 2 c I I
once. The END operation (line 05), causes the program to branch to line 03 where the

test Is performed again to determine whether FLDA Is equal to FLDB. If FLDA does not

equal FLDB, line 04 Is executed again. This loop continues executing until FLDA Is

equal to FLDB. When this occurs, the program branches to the operation Immediately

following the END operation (line OS).

Figure 28-11. DOUxx Operation

Chapter 28. Operation Codes 28-35

28-36

Conditioning indicators can be specified. In addition to the DOUxx
operation itself, the conditioning indicators on the DOUxx and END
operations control the do group. The conditioning indicators on the DOUxx
operation control whether the DOUxx operation is begun, while the
conditioning indicators on the associated END operation control whether
the do group is repeated.

Figure 28-12 shows how the DOUxx operation with conditioning indicators
works:

1. If the conditioning indicators on the DOU xx operation are satisfied, the DOUxx operation is
performed (line 2). If the indicators are not satisfied, control passes to the operation following the
associated END operation (line 6).

2. RPG performs the DOUxx operation by passing control to the next operation (line 3). The DOUxx
operation does not compare factor 1 and factor 2 at this point.

3. Each operation of the do group is performed.

4. If the conditioning indicators on the END operation are not satisfied, control passes to the
operation following the END operation (line 6). Otherwise, the END operation is performed (line
5).

5. RPG performs the END operation by comparing factor 1 and factor 2 of the DOU xx operation. If
the relationship xx exists between factor 1 and factor 2, the do group is finished and control
passes to the next operation after the END operation (line 6). If the relationship xx does not exist
between factor 1 and factor 2, the operations in the group are repeated (line 3). Note that at this
point the conditioning indicators on the DOUxx operation are not tested again.

6. Control passes to the operation following the END operation when the conditioning indicators on
the DOUxx or END statements are not satisfied (lines 2 or 5), or when the relationship xx exists
between factor 1 and factor 2 at line 5.

lndiccnors

L
Factor 1 Operntion Factor 2

Result Field
t---·----,----=-1

Resulting
Indicators
Arithmetic

Name Length

ti:. lu~Winupero
j!;~·· 7'"'ompore '""' Comments

>2 1 <2 ·1-2
~ Lookup'-=-
~. {Factor 2) is

I
3 4 5 6 7 8 9 0 1 12 3 4 15 ~~ 7 18 19 :E 21 Z2 23 ~ 25 ~Tl 28 29XI 31 32 ~ 34 35 36 Yl :J3 39 40 4\ '+2~~ '44 ~ 46 '17~ qgoo 51

~ RJgh Low fquo I

~ j;<. 55 56 5 58 i:e!<J_61 62 63 6" 65 66 67 .. 6970 71 72 7.

0 , Jc_ _c I

0 2 ~ 1~ N2~ FL 01 D~ lcil D13- i
0 3 kJ u
0 4 c ~
0 5 k;J Nl".11 lei l41e EN
0 6 c W'
0 7 c ~ I
0 8 c

Figure 28-12. DOUxx Operation Using Conditioning Indicators

Chapter 28. Operation Codes 28-37

DOWxx (Do While)

28-38

Indicators Result
Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Fie Id 54-55 56-57 58-59

Optional Optional Required DOW xx Required Blank Blank Blank Blank

The DOW xx operation begins a group of operations performed while the
relationship xx exists between factor 1 and factor 2. See Structured
Programming Operations in this chapter for options available under the xx
portion of the DOW xx operation code. An associated END operation marks
the end of the do group.

Factor 1 and factor 2 can contain a character literal, a numeric literal, an
array element, a table element, a data structure subfield, or a field name.
Both factor 1 and factor 2 must be alphameric data, or both must be
numeric. The rules for comparing factor 1 and factor 2 on the DOWxx
operation are the same as those given under Compare and Testing
Operations in this chapter.

c ~ Indicators Result Field ~. I . 0 I L Arlthmet c
dS? c

lu~Mlnu~era ~:I:
1--im 1g And

~~ ~om pore
ll. ~~ Factor 1 Operation Factor 2 Nome Length

1 >2Jj <2]j •2
Comments

Line ~ eot -~ ~ Lookup
~tn .. 0 b b (Factor 2) is

~ 8'5 z z z ~~ High Low quc
3 4 5 6 7 8 9 ~o 1 12 ~3 ,. 15 16 17 ~· 19 Zl 21 22 23 2'I 25 26 :rj :;is 293'.) 31 32 In 311 35 36 37 311 39'KJ 41 42 ~344"6'164748 "9S> 51 !'12(5:! j5'15556~58~ t;i>&162636'1E666fil6869'XJ717273~

0 1 c ?
0 2 c t
0 3 c ~DIA !::'.Q w 1 IF L

I-
0 4 c ~J L[IJ 2 .IOIB I~

~ I-
N~

= Calculatlona
0 5 c

{ I-
0 6 c

t-
0 7 c (

0 8 c
0 9 c
1 0 c

c The DOWLT operation (line 03) allows the operation within the do group (line 04) to
1 1

1 • c be executed only if FLDA Is less than FLDB. If FLDA Is not less than FLDB, the

program branches to the operation Immediately following the END operation Olne

06). If FLDA Is less than FLDB, line 04 Is executed. The END operation (line 05)

causes the program to branch to line 03 where a test Is again made to determine

whether FLDA le lees than FLDB. This loop continues executing until FLDA Is eQual

to or greater than FLDB; then the program branches to the operation Immediately

following the END operation (line 06).

Figure 28-13. DOWxx Operation

Conditioning indicators can be specified. In addition to the DOWxx
operation itself, the conditioning indicators on the DOWxx operation
control whether the DOWxx operation is begun. The conditioning
indicators on the associated END operation control whether the do group is
repeated again.

Figure 28-14 shows how the DOWxx operation with conditioning indicators
works:

Chapter 28. Operation Codes 28-39

1. If the conditioning indicators on the DOW xx operation are satisfied, the DOW xx operation is
performed (line 2). If the indicators are not satisfied, control passes to the operation following
the associated END operation (line 6).

2. RPG performs the DOW xx operation by comparing factor 1 and factor 2. If the relationship xx
does not exist between factor 1 and factor 2, the do group is finished and control passes to the
operation following the END operation (line 6). If the relationship xx does exist between factor 1
and factor 2, the operations in the do group are performed (line 3).

3. Each of the operations in the do group is performed.

4. If the conditioning indicators on the END operation are not satisfied, control passes to the next
executable operation following the END operation (line 6). Otherwise, the END operation is
performed (line 5).

5. RPG performs the END operation by passing control to the DOWxx operation (line 2). Note that
the conditioning indicators on the DOWxx operation at line 2 are not tested again.

6. Control passes to the operation following the END operation when the conditioning .\ndicators on
the DOWxx or END operation are not satisfied (lines 2 or 5), or when the relationship xx does
not exist between factor 1 and factor 2 at. line 2.

c ~ lndlcatora Rerult Field _f,,·~~l~~
I

2d ld
~ A~hmet1c

~Ii!
~ ~flu!IMinu• Zerl)

f-- !~ Operation '$; ~ompare Comments

Line I~
Factor 1 Factor 2 Nome Length cf

~ 1>2j)<2 1•2

lllf-] :l,! . Loclkup

~ '5 ~ (f'"actor 2) is
jtfi 8~ :l! z ~ ~ High Low fc!ua

~.Ji Lili• hoJii ~ ~17 141(> liu.i:ai 21 22 21 24 Zi :is...<J :11293131.l;! 33 34 35 36 YI 38 39'!0 41 42 ti~ 44 '15 46 47_'1/j 49llO 51 5215J lei!Jl!l 56~ ko 61 62 63 6'165 66 67 68 gg.111_7UUJ_!il 5159

0 1 Id _J
0 2 w 1 rn r2rc f'IL IA ~~ t-t tm
0 3 Le: _d
0 4 ~ cf
0 6 Lei Nl.31'1 l-41C EN
0 6 c ..d'
0 7 c _[
0 8 c
0 9 Le: I

Figure 28-14. DOWxx Operation Using Conditioning Indicators

28-40

ELSE (Else Do)

T T

~ Resulting Indicators ___ lndlc~~~--

I . Result --------- -----, ------,---------

7-8 9-17 Factor 1
1
Operation Factor 2 Field 54-55 56-57 58-59

Optional Blank blank I ELSE E-llank Is1ank Blank Blank Blank

The ELSE operation is optional with the LFxx operation. ELSE is specified
immediately following the calculations that are performed if the IFxx
comparison is met, and is immediately followed by the calculations to be
performed if the IFxx comparison is not met.

The control level entry (positions 7 and 8) can bt• blank or can contain an
Ll through L9 indicator, an LH indicator, or an LO tmtry to group the
statements wit.bin the appropriate section of the program. The control level
entry is for documentation purposes only. Conditioning indicator entries
(positions 9 through 17) are not permitted.

An END operation must be used to close the IFxx/ELSE group.

Chapter 28. Operation Codes 28-41

END (End)

28-42

The END operation specifies the end of a CASxx, DO, DOUxx, DOWxx, or
IFxx group.

This is how the END operation for the DO operation should be specified:

Indicators Resulting Indicators
Result

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Blank END
Optional

(increment) Blank Blank Blank Blank

The table below shows how the END operation for the DOUxx and DOWxx
operations should be specified:

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Fie Id 54-55 56-57 58-59

Optional Optional Blank END Blank Blank Blank Blank Blank

And the following table shows how the END operation for the IFxx and
CASxx operations should be specified:

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Blank Blank END Blank Blank Blank Blank Blank

Note that a factor 2 entry is allowed only on an END operation associated
with a DO operation. In this case, factor 2 of the END operation contains
the increment value of the DO operation. If specified, factor 2 must contain
a numeric positive value, which can be a literal, a field name, an array
element, a table name, or a data structure subfield with zero decimal
positions. If factor 2 is not specified on the associated END operation, the
increment value of the DO operation is L

For an explanation of how conditioning indicators affect the END
operation, see descriptions of the DO, DOU xx and DOWxx operation codes
in this chapter. Do not use conditioning indicators on the END operation
for the CASxx or IFxx operations.

ENDSR (End Subroutine)

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-69

Optional: Blank Optional ENDSR Optional Blank Blank Blank Blank

SR

The ENDSR operation defines the end of a subroutine; therefore, it must be
the last statement in the subroutine. Factor 1 can contain a name that can
be used as a point to which a GOTO operation within the subroutine can
branch. The control-level entry (columns 7 and 8) can be SR or blank.
Columns 9 through 17 must not contain any conditioning indicators.

The ENDSR operation ends the subroutine and automatically causes a
branch back to the statement that follows the EXSR operation unless the
subroutine is the INFSR (exception/error-processing) subroutine. For the
INFSR subroutine, an optional factor 2 entry on the ENDSR operation
specifies the return point for the subroutine. The valid entries for factor 2
for the INFSR subroutine are described in Chapter 6 under Coding the
INFSR Subroutine. For all other subroutines, factor 2 must not contain an
entry.

Chapter 28. Operation Codes 28-43

EXCPT (Exception Output)

28-44

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 64-66 66-67 58-69

Optional Optional Blank EXCPT Optional Blank Blank Blank Blank

The EXCPT operation allows your program to write records during detail or
total calculation time instead of the normal time during the RPG program
cycle. Consider the following when specifying the EXCPT operation:

• On the calculation specifications:

Columns 28 through 32 must contain EXCPT to indicate when
records are to be written during calculation time.
Columns 7 through 17 can contain indicators.
Factor 2 can contain an EXCPT name. This EXCPT name can
specify a group of exception lines to be written, reducing the need
for indicators to condition which exception lines are to be written.
This name must follow the rules for field names. See Rules for Field
Names in Chapter 27.
All other columns must be blank.

• On the output specifications:

Column 15 must contain an E to indicate the lines that are to be
written during calculation time.
Columns 23 through 31 can contain indicators with or without
group names specified.
Columns 32 through 37 can contain an EXCPT name for a group of
records to be written during calculation time. This name must be
the same name specified in factor 2 on a calculation specification
containing the EXCPT operation code. The same name can be on
multiple EXCPT output record lines.
Columns 38 through 74 must be blank.

• Only exception records, not heading, detail, or total records, can
contain an EXCPT name.

• When the EXCPT operation with a name in factor 2 on the calculation
specifications occurs, only those exception records (E in column 15)
with the same name in columns 32 through 37 on the output
specifications are written if the conditioning indicators are satisfied.

• When factor 2 on the calculation specifications with the EXCPT
operation code is blank, only those exception records with no name in
columns 32 through 37 on the output specifications are written if the
conditioning indicators are satisfied.

• Overflow indicators cannot be used in columns 23 through 31 of the
output specifications when there is an E in column 15.

• The maximum number of different EXCPT names is 64. Only one
EXCPT name can be blank. These names cannot be the same as a
filename, field name, data structure name, array name, table name,
label, or subroutine name used in your program.

See Figures 28-15 through 28-17 for examples of the EXCPT operation.

Chapter 28. Operation Codes 28-45

c Indicators Result Field
R8sulting

'.1 Indicators

~ ~ AL AL
Arithmetic

Plu~\lli~Zero
] Factor 1 Operation Factor 2 Compare Comments

Name Length 1>2f1<2f1=2 Line e
~ ~ ~ • LookupfFactor 2Jis

z High Low F.qual

3 4 ' 7 9 10 11 12 13 14 15 16
17 18 19 20 21 ,, 23 24 " '

~8 29 30 31 32 JJ l<4 :;s 36 37 JS 39 4o 41 42 43 44 45 46 47 48 49 50 51
'4 "

.. 57 58 59 60 61 62 63 64 65 66 67 68 BB 70 71 72 73 74

0 1 c IX IF!T ffillllll
0 2 c ~ Calculations I
0 3 c

Ja 0 4 c IX Jffi ~IT~I I I I
0 5 c ls 1 0 6 c Calculations

0 , c 11~ i'.J}(JFrT I I I I I I I I I
0 8 c 15.] Calculations
0 9 c
1 0 c JJTTTTI I

0 I:.

~! Space Skip Output Indicators

fi
Comm11 Zero B1lancn

No Sign CR -)(• Remove

1-- Field Name to Print Plus Sigri 5 ·9. E! ii;; or Y"' One
Fiiename :q g ! ~~-d A!d EXCPT Name

Yn Ytt I A J Fltld Edit Ullr

! or li; y., No 2 B K Z •Zero
Otflnod

Line Record Name ... ~ ~< a: Pot1tlon No Yn 3 c L Suppren
~ I'!?-~ j ~ H In No No 4 D M
... Output

a:
A :i

~ i i ~ 'AUTO ~~ Atcord ~ Constant or Edit Word
1 2 3 4 S 8 7 B 9 10 11 12 13 14 15 18 1? 18 111 20 21 22 23 ~

'. ' . 7 • 9 10 11 12 13 14 1& 115 17 18 19 20 21 22 23 24 2S 26 27 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 48 46 47 48 49 so 51 52 53 54 55 '5e 57 18 59 10 ,, 12 13 fM d .. 17 18 .. 70

0 1 0 E. 111 I tit III TT TT lT
0 2 10 - I- Field Name Entries
0 3 0

L~ ;;; l1i2:L
_,,

I I I I I I I I 0 4 M I I I I I

loJ
-

0 5

0 6 0
Field Name Entries

0 7 0 E _f2 IH I I I I I I I I I I I I I
0 8 0 - Field Name Entries
0 9 0
1 0 loJ 11 '"'I="' liArf I I I I I I I I I I I I I
1 I ~
1 2 lq Field Name Entries

1 3 lo JJJ JJ JJ JJ

D When the EXCPT operation with HDG specified in factor 2 is performed (line 01 in calculation
specifications), all exception records with the EXCPT name HDG (lines 04 and 07 of the output
specifications) are written.

fl When the EXCPT operation with DETAIL specified in factor 2 is performed (line 04 of the
calcufation specifications), all exception records with the EXCPT name DETAIL (line 10 of the
output specifications) are written.

71 72 13 74

IJ When the EXCPT operation with no entry in factor 2 is performed (line 07 of the calciilation
specifications), all exception records that do not have an EXCPT name specified in positions 32
through 37 (such as line 01 of the output specifications) are written if the conditioning
indicators are satisfied. Any exception records without conditioning indicators and without an
EXCPT name are always written by an EXCPT operation with no entry in factor 2.

Figure 28-15. EXCPT Operation with/without Factor 2 Specified

28-46

Indicators c
I-- I I Factor 1 Operation Factor 2

Line

Resu It Field

Name Length

Aetuhing

Indicators

Arithmetic

Plus~inu!l Zero
Compare

i>TI:• <TI:1 •2
Lookup(F&etor 2)is

Comments

~ 0 0 Hi{lh Low Fqual
9 io 11 ,~ i3 14 1~ 1s 11 1e ig 20 21 22 n 24 2s 2s 21~a 29 30 31 32 33 34 35 36 n 3e 39 4o 41 42 43 44 45 46 47 48 49 so s1 b4 ss sa 57 se 59 eo 61 e2 SJ 64 65 B6 s1 ee aa 10 11 n 13 1.

1---+-~-=+---l-+-+-+-4-1--+-++-+---i---+-+-++---1--+--+--+i=i-- I~ ~ -~C~a~lc~u~la~t~io-n~s~rj_rr-r1-'-rr+"Ft"-r-Fr'+'r1'-'rrTT-rTT,--r-r"Tl-rT
J . 5

0 1 c
0 2 c

-r- ll1E~ IJ1ln_1~:~1~1~1~1~1~1_1.+--+-I+-++++-+-+--+-+--+--+--+--+--+--+-4--+-4-+-+-+---+--+-+-+-+--+--+-
--+---l---l-+-++++ is D - Calculations] __ t

0 3 c
0 ' c
0 ' c

Iil5 ,. IN - ~t---t---EI.., IT "' -- ++-ill.--it~-H ,·~--1--:+---+-+--+--+---+----+---+--+--+-+--+--+---+-- lll5
;' +- +-I+ ~'.T ~ . ti±1±:_:_ --~::-:·-::_-:_-:~:!:]l:c;--+_1+~-1-1----++--+::+H:_:-:::;;1---+-1--+-1--+-1--++:

~
~

X"' Remove -
Plus Sign

Y"' Date
5. 9 =

J Field Edit
User

K Z.,, Zero
Defined

I

-~- ,~ ~pace Skip Output lnd1catCJrs ~ Commas Zero Bpalances No Sign CA
.- :._ Field Name f==~=t=o =o":="'='===*===*="
e ~l-,.-4--~-4--~--~--l or Yes Yes 1 A
~ ~ T T EXCPT Name Yel NCJ 2 B ~~~~ And And

Lme ~

or
Record Name SupprKs

M
1- 8¥. a:. Position No Yes 3 C

~A~D~D 0 ~ ~ ~ in oc ~. __ No __ __J_, _ _L_o----L--1-----1----l
~ <(u u Output _1

o A o a o •AUTO .~, § Record ~ Constant or Edit Word WO" z Z z ~,_ 1 2 3 4 5 6 I 8 9 10 11 12 13 14 15 16 17 18 19 20 2T 22 23 24

3 4 5 6) 8 g 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 2!> 26 27 28 29 30 31 Jl 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 56 59 60 61 62 63 64 65 66 67 66 69 70 71 72 73

::::::1~::::::=:::[:::U::::::1H---::::::::.::~+-~~~~~~-+-~~J=F=~e~~~d-~-N~f~m_J~e_~_;~n_J~t_r~i_e~::1:~~=~::::::::~:::::~~:8
0 ' lolP~IINrf1Elf'i ~ ill'i r I I I I I I I I I I I I I

o > 0 I ~ Field Name Entries
0 6 ofr-IJ191< [ll l11i:
07 0 ~ H-t-t- -+-+--l--+-l--+-f-+--i---l-jf--f--l--+--lf-+-l--+--l--+--l--+--4--+-t-+--t--+--+- +--- -
o e 0 I Field Name Entries
0 9 0 ll I I I I I I I I I I I I I
' a jo I'\ Field Name Entries ' , lo IJ
, 2 lo]]]]]]]]]]

0 When the EXCPT operation is encountered in the calculation specifications (line 03), all
exception records in the output specifications that do not have an EXCPT name are written if
the conditioning indicators allow output. Line 01 of the output specifications is always output
by the EXCPT operation because it is unconditioned.

fl When the SETON operation sets on indicator 15 in the calculation specifications (line 06) and
the EXCPT operation on line 07 is performed, all lines in the output specifications that have no
EXCPT name in positions 32 through 37 and that are unconditioned or conditioned by indicator
15 (lines 01, 04. and 06) are written.

D The SETOF operation sets off indicator 15 (line 08).

Figure 28-16. EXCPT Operation without Factor 2 Specified

Chapter 28. Operation Codes 28-4 7

F

LI ..

c
r---,

Line

File Type

Filename

~i
Indicators Result Field

Namtof
Label Exit

lndicttors-
Arithmetic o _ T J • = g A~d And :B ~ Plu~Mir1 .. !I_ Zero t Z Factor 1 Operation Factor 2 S ... Compare

~ ,..) < Name length ~ .. i 1>2r1 < 2 1 .. 2
~~~ < ~ 
.~ i ~- Q ... 'O ·~ ~ Lo,okup(Faetor 2)it 
- C::S - z § z C5 -1 High Low f.qual 

Extent E)Cif 
fO!'OAM 

Stor1g1 lnae• 

,:ilt Add1uon/Unot•r1d 

Nu1niw of T11ciu 
for Cvljl\dtt CMrflow 

Numbtt c,,f hllntt 

T1po 
A"""•d 

11111 
Comfit ton 
Ut·UI, 
LI(; 

Commentt 

3 • S 6 7 8 9 10 11 12 13 14 15 16 17 18 !9 20 21 22 23 24 1!i 25 27 ~8 ?.9 30 :11 32 33 34 3S 36 31 38 39 40 41 42 43 44 •6 46 4·1 48 49 !:IQ 51 52 SJ M SS 511 57 5tl 59 60 61 62 fl3 84 lb 68 ti7 fJ8 • 70 71 '12 73 74 

l-0+-1+-+'c+-+-+-+-++--H-++-+-+-++-+-+--t-t--+- ·ll l1 iGJ +-+1 n :III T 
i-+. c+--i-+-+-+-+ ·-+-t-++·t--+-t -t--t-1 l~ -Pr- _ _L +-+-! Calculations 
0+3-+-1--t~t-+-++++-+ + 1-i-- _,..~114-V-J!ll-t:i-l--+-+-I-+ [~l 11 I\ J t-- - ~~===~--U-_j_U~~---t-·+-+++-+-t-+-+-~-+-+-+-l-'t-+-+-+-i 

1-:+:+-1-c+-+-+--l11-+ll-+-t--+-+-+--t-+-+-+-+-+· __ --t-t--t t-~;j'ri 11 11"\lrl A ~C~a~l~c~u~I a~t~i o~n~s~+~H--W--
~ '?+-+-+-1--+-+-+-1--+'- · +-t--r~ -t--+-t-+-+-+11 LI ~ +-+-+-+~I Calculations t-t·-+-·+-~-+--+-1-+-+---+--1-+-+-+-<>--+--+-+-+-t 

0 7 c u Ell~I ! I 
o s c ·-111""1r'll4---+-l-+-l---+-1--<-+-+-+-+-+-+-~ I ~~~l1~::i;JG~lt"l"'.""':"'~~~~ 

c II 19E: l IF -+-1-t--·+--t-t-+-t-+-~-tF-t-i"-t-t--+--t·-t-"t-!-t--!-t-t--1-+-t-t--+-1H 

1-, +-0-+-!-lc 1-+-+-+-f-1-+--+1-+-+--1--+-1-+-+-+-+-1-+-i I ~t:; r 0 9 

0 
t---

Line 

Filename 
or 

Record Name 

~ ~ Spac1? Skip Output Indicators ff5l Commas Zero Balances NoSign CR - X'"R•move 

~ ~ I I Field0~ame Yes to:~int 1 A J Y .. ~::Sign 
i~ ~ jj A~d A~d EXCPT Name Er<d Yes No 2 B IC z .. ;!~: Edi1 

?: A~ a:. Position No Yes 3 C L Suppress 
~ ~ ii ;tOl in No No 4 D M 
~ ~ ~ 8 ~ Output cc L---·~---·----~--~---~---~----1 

~ ... z5 •AUTO ... 4: Record g Constant or Edit Word 
~ ~ i:2 (ii Q:' 1 2 3 4 5 6 7 8 ti 10 11 12 13 14 15 Hi 17 18 19 20 21 22 23 24 ' 

u ... 
Defined 

10 11 12 13 14 15 16 1118 19 20 21 21 23 24 25 26 212819 30 31 3:? 33 34 :J5 Jti 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 53 S4 56 56 57 58 59 80 81 62 63 84 66 .. 97 18 19 70 71 72,73 74 

~0 H1 4o~~~~~IIl~N[-'+++-¥-Et-+~~~~•~~-++++-t-1-+-++~~IOGM~~~~J~I~J_:_.:....:....;_:_:._:...;.._;_~1111H1TllllHllllH 
~ ;+-+,~-+--t-t-+-+-+-1-+-+-+-+-l-+-+-+-t- --+--H t-+- ++- ~H.~+-if:+-++J*l• Entries for Report Title •:·+-+--+-+-+-1-+-++-+--+-+·-+--1-+-+-+-+-1H-i 

~o ..__' .__11-+-io-+-+-+-+-+ +..-IE,..__._...,~...-.-+-+-+++-1 +- . ;~\"t ,..:l_:l_:l....:1....:l_:l_:l....:l_:l_:l_:!_l:.._:l~/~/:.....:1:...:....1 :......:....:......:....:....:..,;t-t-t-t-tttt"i--tti-H 

: : I~ + +-H+-H-+H-<-<>-+-+--+-- ~ . ~ ,l Entries for Report Column Headings ]-+-+--+-l-'"-+-+-1--+--1-+--+-i 

: : !<->: -~+ _- ()'1T pJl[} -UI 
~0-+-19 f-+~-+--,1-++-t-+-+-+-1--+-+-1--+--t-t-+--+-+-+-t-+-+-+-+--+-+-+--+-+-+-+-'-Jttl Entries lt--1--+-+-1--+-+-1--+-+-1-+-+-1-++~--+--+-1-+-+-+-+-+-+-i-+--+-1~ 
._1_.._0_._41d_,__.__.__1--.._..._,__~_._,__ __ ,__._,__,_.-+-.......... -+-+-t-+-1 1-' II .!-1,__I ... I-+-+---l--+-<-+-+-+--+--+-+-+-1--4-+-4--+--l--+--+-._._._.,__,_, __ -I-_..._,_ .. 

Figure 28-17 (Part 1 of 2). EXCPT Output with an Overflow Indicator 

28-48 



This example shows the coding for EXCPT output with an overflow indicator when you are printing 
the title and column headings on each page of a report. 

0 The EXCPT operation with HDG in factor 2 (line 01 of the calculation specifications) causes all 
lines with the group EXCPT name HDG (lines 01 and 04 of the output specifications) to be 
printed. 

fl The EXCPT operation with DETAIL specified in factor 2 (line 07 of the calcul·ation 
specifications) causes all lines with the group EXCPT name DETAIL (line 07 of the output 
specifications) to be printed. 

ID When the overflow indicator is set on, the EXCPT operation (line 08 of the calculation 
specifications) prints all HDG lines (lines 01 and 04 of the output specifications) on the overflow 
page. 

ID The SETOF operation sets off the OF indicator (line 09 of the calculation specifications), and 
the program branches to the label specified in the GOTO operation. 

Figure 28-17 (Part 2 of 2). EXCPT Output with an Overflow Indicator 

Chapter 28. Operation Codes 28-49 



EXIT (Exit to an External Subroutine) 

. 28-50 

Indicators 
Result 

Resulting Indicators 

7-8 9-17 Factor 1 Operation Factor 2 Field 64-66 68-67 68-&9 

Optional Optional Blank EXIT Required Blank Blank Blank Blank 

The EXIT operation designates the point in the calculation specifications at 
which control is to be transferred from an RPG program to an 
assembler-language subroutine. 

The rules for use of the EXIT operation on the calculation specifications 
are as follows: 

Columns Entry 

Operation (28-32) EXIT 

Factor 1 (18-27) Blank 

Factor 2 (33-42) The name of the subroutine to which 
control is to be passed. The name must 
consist of 5 or 6 characters, the first 4 of 
which are SUBR. The remaining 
characters must be alphabetic for 
user-written subroutines. (Numeric 
characters are reserved for IBM-- supplied 
subroutines.) The module name and entry 
point name must be the same. 

Result field (43-48) Blank 

Resulting indicators Blank 
(54-59) 

The EXIT operation can be controlled by a control-level indicator (columns 
7 and 8) and conditioning indicators (columns 9 through 17). If no 
control-level indicator is used, the EXIT operation occurs at detail 
calculation time. 

The position of the EXIT operation in the calculation specifications of the 
RPG program determines when the actual subrbutine execution occurs (see 
the table below) . 



To specify linkage to a non-I/O subroutine for a SPECIAL file, use the 
EXIT operation. You must keep track of the EXIT that is taken because 
index register 2 does not point to the DTF on an EXIT operation. 

Note: The maximum number of user-written assembler subroutines that can 
be used in a program is 256. 

The table below shows the relationship between the position of the EXIT 
operation and execution of the subroutine. 

Position Execution of Subroutine 

First detail line in calculation Immediately following data 
specifications routine file, that is, after data 

is extracted from input record 

Last detail line in calculation Immediately before heading 
specifications records output time 

First total line in calculation Immediately following input 
specifications routine (after determination of 

record type and testing for 
control-level break) 

Last total line in calculation Immediately before total 
specifications records output time 

Any other detail or total line in Immediately following the 
calculation specifications previous calculation operation 

Chapter 28. Operation Codes 28-51 



EXSR (Execute Subroutine) 

Indicators 
Result 

· Resulting Indicators 

7-8 9-17 Factor 1 Operation Factor 2 Field 54-56 &M7 li&-69 

Optional Optional Blank EXSR Required Blank Blank Blank Blank 

The EXSR operation causes control to be given to the subroutine named in 
factor 2. The EXSR operation can appear anywhere in the program. 
Whenever it appears, the subroutine is given control. After operations in 
the subroutine are performed, .the operation in the line following the EXSR 
operation is performed. 

The EXSR operation can be conditioned by any indicators; thus, the 
subroutine is given control only when all conditions are satisfied. Any 
valid indicator can be used in columns 7 through 17. If no indicators are 
used, the subroutine is always given control. 

Factor 2 must contain the name of the subroutine that is to be performed. 
This name must appear on a BEGSR operation. 

Coding Subroutines 

28-52 

All RPG operations can be performed withi~ a subroutine, and these 
operations can be conditioned by any valid indicators in columns 9 through 
17. Because SR or blanks must appear in columns 7 and 8, control-levei 
indicators cannot be used in these columns. However, AND/OR lines 
within the subroutine can be indicated in columns 7 and 8. 

Fields used in a subroutine can be defined either in the subroutine or in the 
main program. In either instance, the fields can be used by both the main 
program and the subroutine. 

Any number of subroutines can be included in a program; however, a 
subroutine cannot contain another subroutine. One subroutine can call 
another subroutine; that is, a subroutine can contain an EXSR or CASxx 
operation code. However, a subroutine cannot call itself directly or via 
another subroutine. 

Subroutines do not have to be specified in the order they are used. Each 
subroutine must have a unique name and must contain a BEGSR and 
ENDSR operation. 

See Figure 28-18 for an example of coding a subroutine. 



Indicators 

Line 

0 4 c 
0 5 c 
0 6 c ~ 
0 7 c 
0 8 c 

Figure 28-18. Example of Coding Subroutines 



FORCE (Force) 

F 
1---i 

Filename 

Line 

File Type 

Indicators 
Result 

Resulting Indicators 

7-8 9-17 Factor 1 Operation Factor 2 Field 64-6& &6-67 &8-&9 

Blank Optional Blank FORCE Required Blank Blank Blank Blank 

The FORCE operation allows selection of the file from which the next 
record is to be read. The FORCE operation can be used for primary or 
secondary input and update files; however, it cannot be used to read from 
files assigned to a KEYBORD or WORKSTN device. 

Factor 2 in a FORCE operation identifies the file from which the next 
record is to be selected. If the operation is performed, the record is read at 
the start of the next program cycle. If more than one FORCE operation is 
performed during the same program cycle, all but the last are ignored. 
FORCE should not be specified at total time. 

FORCE operations override the multifile processing method by which the 
program normally selects records. However, the first record to be processed 
is always selected by the normal method. The remaining records can be 
selected by FORCE operations. 

Figure 28-19 shows how the FORCE operat10n can be used to control input 
from primary and secondary files. 

Mode of Processing File Addition/Unordered 

File Designation ~:~ge~o~~ ~~~~~e5t~:d ~ ~0:t~n~xit 
End of File w for Cylinder Overflow 

Number of Tracks 

Se Record Address Type -1 S b 1. ~ Name of Number qf Extents 
quence Type of File Ul Device o:c: IC ... Label Exit ...-T,..----1 
File Format N Organintion or .g ~ 

w ~ Addltion1I Are1 ~ .... Storage Index ~F,.lil•nd a i? 
0 j::" # Block Record ~ ~ Overflow Indicator ·1 Qmdition 
!:! ii: e! length Length ~ e ~ fi u1.ua. 
~ ~ 0 ~ ~ < ~ ~ w Continuation lines ~ UC r--1 
g A: w < External Record Name K Option Entry ~ ~ 

3 4 5 6 7 8 9. 10 ,, 12 13 14 15 16 17 18 18 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 31 38 37 31t.j 40 41 42 43 44 45 46 47 48 49 so 51 52 63 54 55 56 57 58 59 80 81 82 83 64 85 68 87 88 89 10 71 72 73 74 

0 2 FtrN~ T1 IIPir F 1~'4 ~ Diic;lo< 

0 4 F l IIE [ ~ IF u.i ~ IIl~I< 
o 6 F 

Figure 28-19 (Part 1 of 2). Example of FORCE Operation Controlling Input 

28-54 



Il File~;me 
Record Name ~ 

l l;oej~ 
Str~~:~re ~ 

Name A N D 

External Field Name 

Record ldentificatiori Codes 
Field Location 

RPG 
Field Name 

6 7 8 9 10 11 12 13 14 15 16 1 18 1') ?O 71 n 23 24 25 ?6 27 28 29 30 ]1 32 33 34 35 36 37 38 39 40 41 42 43 44 4S 4t> 41 48 49 :io 51 52 53 f,4 5':i Sb"' 58 !>9 60 61 62 63 64 65 66j61 68j69 70 71 t2 73 74 

III~l ITI ~ m 11 lrlu ____ H FFf- _ _ +-++-+- i rT1 0 1 

I l?i ...,i,. D. [ 

>-0+--3+----+-I-+-+ +-4 - H I I +++-4 ~j Pi f1I A I 

~, +~ 1-++--l ~1 , _ f-H 1--1- +HL--+Ht- +--+1 ·H HHHHti~ 1ila~ F1rli:11 '1R ! T 
o 5 1 ' 'j' - ,-- "'Is; 1~ f'.'.'lr,r-1 r.1r1 1 1 

L~+r;;--i _ _j_H _ _;c1~1""N~P1UUIL'-rJL1a"'-J_ _ _Jl,.ll+fl'"-'L---LH.1''.'il.IJL~.[_-_j_f-+_h '011 +- H T 1c::1 IL ..i 11-11 r , 
~ti- ~- f-H-f m~ I I J t-+-itil -t-j I i.G1~ e ll[e ~ M ! I I +-+-l--t ) 
H-+ i-+-+--+--+--+-+-+--+-+--+-+--+-+--i--+-•-_,_1__,__,__+ ~ • t + ! I~ :3~ Im hPl 1 
10191 I W--4 ll jill±I I_ I I I I I uil 1 tt ! -r~ ' i~ -fF-=-[Ij~-fJ~M=-+1+' l-TH I J"-++-++-+,+T+++-++--il 

1 0 I i l i I I -H 1-::U I l LlllllllJJ ~ 11 l j_J 1~J::t l ~~ -~_J I I I LUJ.,. __ -+~~-,I-,"--]+T__.___,__L--+,---·--i-, __ -__ ,__ __ ' 

0 2 

The NBR field of each primary record contains the number of records to be read and 
written after each primary record is read. ff NBR is less than or to zero, 

or records are read. with the next record 
selection. 

and written ant~l NBR is 
calls for on the next 

x 

C'1dd EUit 
LJ5er 

0 1 

0 i 2 

0 3 

0 4 0 

~o+-s-+--l~o~l+'-+--l-+-i-~'-'-~-~-~-~---+_j__L~--t-1-++~i-++-+~l'-+~~IIJ"-l'"'ll'""i"trJ~r'-'!--1-+-4i-l"-1~~1~"1-if-+--i-~--t1-+-14+-+1--c--H~~~--+-+--+--+--r+--+--+-+-+-+--+-+---+--<~-+-
o 6 0 i -----i---J--j.4.+--+-+---l-J-+-+-+-+-+-+'" -- +------1 -+.<--++-J--+- -+ -+-+--+--'---+ +-+ + I --+ 

Figure 28-19 (Part 2 of 2). Example of FORCE Operation Controlling Input 



GOTO (Branch To) 

28-56 

Indicators 
Result 

Resulting Indicators 

7-8 9-17 Factor 1 Operation Factor 2 Field &4-66 68-67 68-69 

Optional Optional Blank GOTO Required Blank Blank Blank Blank 

The GOTO operation allows operations to be skipped by instructing the 
program to go to (or branch to) another operation. A GOTO operation can 
be used to specify a branch: 

• To a previous or a succeeding specification line 

• From a detail calculation line to another detail calculation line 

• From a total calculation line to another total calculation line 

However, a branch cannot be made: 

• From a detail calculation line to a total calculation line or vice versa. 

• From calculations conditioned by LO through L9 to calculations 
conditioned by LR or vice versa. (A total calculation line is defined as 
one that is conditioned by a control-level indicator in columns 7 and 8 
of the calculation specifications.) 

• From a subroutine to other calculations or vice versa. 

Factor 2 must contain the name of the label to which the program is to 
branch. This label is entered in factor 1 of a TAG operation. If the GOTO 
is within the subroutine, the label can be specified in factor 1 of the 
ENDSR operation. The label can be from 1 to 6 characters long and must 
begin with an alphabetic character in column 33. The remaining characters 
can be any combination of alphabetic or numeric characters. Blanks must 
not appear between characters in the label. 

Factor 1 and the result field are not used in this operation. The GOTO 
operation can be conditioned by any indicators. If no indicators are 
specified, the operation is always done. 

See Figures 28-20 and 28-21 for examples of the GOTO operation. 



-<'·, 



Indicators Result Field 
Resulting c ~i 
Indicators 

r----. ~ I I Arithmetic 

PlusIMini.3: Zero .. Factor 1 Operation Factor 2 Compare Comments 

Line 
~5 Name Length •>&1<~1-2 

§ ~ Lookup( Factor 2)is 

,f 8 ~ ~ ~ High Low F.qual 

' 4 5 6 7 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 E._ 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c ~ l_ 
0 2 c )( 1 
0 3 c ~ I 
0 4 c El I 
0 5 c lt:J}; I 
0 6 c E~ I 
0 7 c x I 
0 8 c .X l_ l 
0 9 c 

.· 

Assume you want to make eight mailing labels for every customer you have. The customer's name 
and address are found on an input record. Because you want to write eight labels for each record, 
you can use exception lines and the EXCPT operation instead of coding eight identical output line 
specifications. (See EXCPT (Exception Output) in this chapter for further information.) 

However, by using branching, you can code it all in six lines as shown below. An EXCPT line is 
printed out. One is added to COUNT to keep track of how many times the line is printed. Then 
COUNT is compared to 8. If COUNT does not equal 8, a branch is taken back to the beginning 
(GOTO DOA GIN). If COUNT equals 8, the branch is not taken. Instead, the COUNT field is set to 
zero for the next cycle. 

c ~i 

r----. :i" 
~Q 

~j~ 

Indicators 

I I 
Line ~ g ~· 1--.--,...+-i.....--+-,.....,.-I 

iP8~f~ ~ ~ 

Result Field 

Factor 1 Operation Factor 2 
Name Length 

3 4 5 6 1 a 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 21 Jie 2s 30 31 32 33 34 35 36 31 JS 39 40 41 42 43 44 45 46 47 48 49 so s1 

0 1 c 
0 2 c 
0 3 c 
0 4 c 
0 5 c 
0 6 c lzl-~n CZ 
0 7 c 

Figure 28-21. Using GOTO and TAG to Eliminate Duplicate Coding 

28-58 

Resulting 
Indicators 
Arithmetic 

Plus Minu!l.Zero 
Compare 

1>&1<&i 2 
Lookup(Factor 2)is 

Comments 

Hiltl Low F.qual 
~~56575656W~~~~5656E~ooronnnN 



IFxx (If/Then) 

I T -,.-----·---~·-·--

~ Resulting Indicators 

I Operation 

ReRult 

r 1 Factor 2 Field j_ 4-55 56-57 58-59 

_-~Indicators ~_J 

7-8 ~7 Fecto 

I Opt1011a~ Optional Requ1r 

-i-

ed J1Fxx Requirecl Blani'. l Blank Blank Blank 

The IFxx operation allows a group of calculations to be performed if a 
relationship specified in xx portion of the IFxx operation exists between 
factor 1 and factor 2. See Structured Programming Operations in this 
chapter for options available under the xx_ of the 1Fxx 
code. 

• ~ • I 

l_lJG.lCO.tOTS G:1-Jl 

IFxx operation control whether the IFxx operation the entire 
IFxx/ELSE group) will be performed, or control will be passed to the 
operation immediately following the associated END 

Factor 1 and factor 2, can contain a character an 
array •clement, a table element, a data str1.ichn"e 
Both factor 1 and factor 2 must be character or both mllst be nm:neric. 
The rules for comparing factor 1 and factor 2 on the IFxx &re tL:e 
same as those given under Compare and Testing Operations in this chapter. 

operation is not control passes to the first executable operat10n 
following the associated END If the between factor 
1 and factor 2 does not exist and an. ELSE operation is specified, control 
passes to the first operation following the ELSE operation. 

Conditioning indicator entries on the END operation associated with IFxx 
must be blank. 

An END must be used to close aE IFxx group. If an Ifxx 
operation is followed by an ELSE operation, an END operation is needed 
after the ELSE operation but not after the IFxx 

Chapter 28. Operation Codes 28-59 



~ c g&? 
-o 

Indicators 

f--~~~ 
Line " e <1:1-r-,-+--,.--,-1-~r-+ 

~ 1:(/) 1) 0 0 
Fl8~ z z z 

Figure 28-22 is an example of code using IFxx/END and IFxx/ELSE/END 
structures. 

Factor 1 Operation Factor 2 

Result Field Resulting 
Indicators 

~ ~!!hmotic 
:81rl lu~inua Zero 

'm!;I ~ompare 
Name Length ~ !I 1 , 2]1 <2 1 _2 

~~j Lookup ·-1;;1 (Factor 2l is 

Comments 

J 4 5 6 7 8 9 or112 3141516171819lll2122232'125:11i212829:l(JJ1~3331!3535373839'<04142 
~~I High Low qual 

3 44 45 46 47 48 499> 51jll2jalj511 55 li6 5 58. 61 62 63 64 65 66 FU 68 69 'iQ 71 72 73 ~ 

0 1 c 
0 2 c 

>-+-0 l-+-+=+-C +-+-+--<f-+-+-+-] I~ F L A FL I F E1
" IPIL 

0 4 c 
0 5 c 
0 6 c 
0 7 c 
0 8 c 
0 9 c 
1 0 c 
1 1 c 
1 2 c 
1 3 c 
1 4 c 
1 5 c 
1 6 c 
1 7 c 
1 8 c 
1 9 c 
2 0 c 

c 
c 
c 
c 

EINlr: 
1-p 
j-

IFE IF E l~ll 

1 
EL§E 

l_J> 
_f 

~ = Calculations 

11 

If FLDA equals FLDB (line 03), the do group (lines 04 through 06) Is executed. If 

FLDA does not equal FLDB, the program branches to the operation Immediately 

following the END statement (line 07). 

If FLDA equals FLDB (line 11), the calculations In lines 12 and 13 are executed 

and control passes to the operation Immediately following the END statement 

(line 18). If FLDA does not equal FLDB, control passes to the ELSE statement 

(line 14) and the calculations In lines 15 and 16 are executed. 

Figure 28-22. lFxx/END and IFxx/ELSE/END designs. 

28-60 

1-
H 

H 



KEY (l{ey) 

element to 

screexL 

!i!l The person presses the 
does not the data in the result 

Note.· The person can use any 
function Field 
been entered into a nm:neric 
function 



LOKUP (Lookup) 

Array LOKUP 

Table LOKUP 

28-62 

Indicators 
Result 

Resulting Indicators 

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 I 56-57 I 58-59 

Optional Optional Required LOK UP Required Blank One required 

Indicators 
Result 

Resulting Indicators 

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 156-57 158-59 

Optional Optional Required LOK UP Required Optional One required 

The LOKUP operation causes a search to be made for a particular element 
in an array or table. The array or table is named in factor 2. Factor 1 is 
the search word (data for which you want to find a match in the array or 
table named). 

Factor l, the search word, can be: 

• An alphameric or numeric constant 

• A field name 

• An array element 

• A table name 

When a table is named in factor 1, it refers to the element of the table last 
selected in a LOKUP operation, not to the whole table. 

Resulting indicators are always used with a LOKUP operation. The 
indicators first specify the type of search to be made and then reflect the 
result of the search. The specified indicator turns on only if the search is 
successful. 





MHHZO (Move High to High Zone) 

Indicators 
Result 

Resulting Indicators 

7-8 9-17 factor 1 Operation Factor 2 Field 54-55 56-57 58-59 

Optional Optional Blank MHHZO Required Required Blank Blank Blank 

The MHHZO operation moves the zone from the leftmost position of factor 
2 to the leftmost position of the result field. Factor 2 and the result field 
must be alphameric. 

MHLZO (Move High to Low Zone) 

28-64 

Indicators 
Result 

Resulting Indicators 

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59 

Optional Optional Blank MHLZO Required Required Blank Blank Blank 

The MHLZO operation moves the zone from the leftmost position of factor 2 
to the rightmost position of the result field. Factor 2 must be alphameric. 
The result field can be alphameric or numeric. 





Alphameric j 1 j 1 j I j I j I I Factor 2 Alphameric I i I i I i I i I i I Factor2 

I MLHZO l MLUO 

Alphameric I I I I I I I I I I I Result Field Numeric Result Field 

Numjeric j I j I j I I I I I I Factor 2 2 LHZO 

MLLZO 

Alphame•ic I i I i I i I i Ill I Result Field 

Numeric 

j 
Numeric 

I I I I I I I I I I I Factor 2 l MLUO 

I I I I I I I I I I Result Field 

Figure 28-23. Functions of Move Zone Operations 

\ 

28-66 



MOVE (Move) 

Indicators I Result 
7-8 9-17 Factor 1 Operation Factor 2 Field 

Optional Optional Blank MOVE Required Required 

The MOVE operation transfers characters from factor 2 to the 
positions in the result field. Moving starts with the 
factor 2. If factor 2 is longer than the result field, the excess leftmost 
characters of factor 2 are not moved. If the result field is 
2. the excess leftmost characters in the result field are 

When an alphameric field is moved to a numeric 
of each alphameric character is moved to the 
corresponding numeric character. The zone of the 
character is set to hexadecimal D 
alphameric character is hexadecimal D 
Otherwise, it is set to hexadecimal F. 

The I\ll:OVE IS 



Factor 2 Shorter Than Result Field 

Factor 2 Result Field 

a. Alphameric 1P1H141SiN1 Before MOVE 1 1 1 2 13141 5 161718141 Alphameric 

1P1H141S1N1 After MOVE 111213141P1H141S1N1 

b. Alphameric 1P1H141S1N1 Before MOVE 1 1 12 13 14 15 16 17 18 14 1 Numeric 

tP1H141S1N1 After MOVE 1112131417181412151 

c. Numeric 111217181412151 Before MOVE 1 1 1 2 13 14 15 16 17 18191 Numeric 

111217181412151 After MOVE 1112111217181412151 

d. Numeric 111217181412151 Before MOVE 1A1C1F1G1P1H1 4 1S1N1 Alphameric 

11 12 17 18 14 12 1 5 1 After MOVE 1A1C111 2 17 181412151 

Factor 2 Longer Than Result Field 

Factor 2 Result Field 

a. Alphameric 1A1C1E1G1P1H141S1N1 Before MOVE 15161718141 Alphameric 

1A1C1E1G1P1H141S1N1 After MOVE 1P1H141S1N1 

b. Alphameric 1A1C1E1G1P1H1 4 1S1N1 Before MOVE 15161718141 Numeric 

1A1C1E1G1P1H141S1N1 After MOVE 17181412151 

c. Numeric 111217181412151 Before MOVE 15161714181 Numeric 

11-12 11 18 1 4 12 15 1 After MOVE 17181412151 

d. Numeric 11 1217181 4 12151 Before MOVE 1P1H141S1N1 Alphameric 

111217181412151 After MOVE 17181412151 

Factor 2 and Result Field Same Length 

Factor 2 Result Field 

a. Alphameric 1P1H141S1N1 Before MOVE 15161718141 Alphameric 

1P1H141S1N 1 After MOVE 1P1H141S1N1 

b. Alphameric 1P1H141S1NJ Before MOVE 15161718141 Numeric 

1P1H141S1N1 After MOVE 17181412151 

c. Numeric 11 1 8 14 12 1 5 1 Before MOVE 15161718141 Numeric 

17181 4 12151 After MOVE 17181412151 

d. Numeric 17181412151 Before MOVE 1A1L1TI 51 F 1 Alphameric 

17181412151 After MOVE 171814121N1 

Figure 28-24. MOVE Operations 

28-68 



MOVEA (Move Array) 

r• ~ "'~==_,,,,,,_ ,,_~_,._,,,,.,,.,....,.,..,,----

Indicators ____ __, 
7-8 9-17 Factor 1 Operati 

Optional Optional Blank MOVEA 

on Facio• Z T :,:;;,.-·~~~ •• ;~nm~- -~1 
Required Required Blank Blank Blank 

The MOVEA operation transfers characters from the leftmost positions of 
factor 2 to the leftmost positions of the result field. Factor 2 and the result 
field cannot reference the same array even if the array is indexed. Arrays 
and fields specified by a MOVEA operation can be alphameric or numeric. 
The length of the move is determined by the shorter of the lengths of factor 
2 and the result field. If factor 2 is longer than the result field, the excess 
rightmost characters of factor 2 are not moved; if the result field is longe1: 
than factor 2, the rightmost chaxacteJ·s in the resvlt field are unchar1ged. 

The length of factor 2 or the result field is the 
the array is not indexed, or the length fron1 
of the array if the array is indexed. 

The MOVEA 

• Move contiguous elements of one a1Tay to 
another array. 

of the entirA array if 
the end 

elements 

Movement of data starts with the first element of an arrny if the array is 
not indexed or with the element specified if the array is indexed. The 
movement of data ends when the last array element is moved or filled or 
when the number of characters moved equals the length of the shorter field 
specified by factor 2 and the result field. Therefore, the move could end in 
the middle of an array element. Because array boundaries are not 
considered when the MOVEA operation is performed, all numeric data is 
treated as alphanumeric data. As a result, numeric data js moved without 
regard for the sign. When you are moving data to a numeric array or 
numeric field, you should ensure that the result field 'Nill cont2in vaHd 
numeric data. 

If you use the MOVEA operation with a figurative constant (*BLANK, 
*BLANKS, *ZERO, or *ZEROS) in factor 2 and an array in the result field, 
the figurative constant is moved into the array, The figurative constant 
begins at the array ele.ment in the result field; it ends at the end of 
the array. 

Figure 28-25 illustrates the use of the NiOVEA 

.28. Codes 28~69 



Example: Alphameric array to alphameric array move. No indexing, different length arrays, same 
length elements. 

c .,. _, 
9-

Indicators Result Field Resulting 
Indicators 
Arithmetic 

;Q And And Factor 1 ~ -5 ~ Comments Operation 
:I ;!: Plus Minus Zero 
~ t: Compare Factor 2 

Line I- 0 a:.· 
~ ~ '-: ... 0 0 .f 85 ~ z z 

3 4 5 • 7 • 

ARRX 

I 1,2l3,4l5,s'7,ale,ol 
~ 

.->On• Elomont 

l1,2l314l51sl1 1ale,ol 

Name Length ii f 1>21<2 1"'2 
-~ 1; Lc_okup(Factor 2)i 
C5 :r H1Wt Low F.qual 

~~~""~~Mn~~~~Q~"~~~~G~~~~M~~~9~M~~~M~~~Mmronn"~ 

Before
MOVEA

After
MO VEA

ARRY

IA1Als,slc,clo,olE 1EIF 1FI
~

/ono Elomont

l1,2l3,4l5,s'7 1ale,olF,FI

Example: Alphameric array to alphameric array move. Index result field.

c ~;f
Indicators Result Field

o_

iQ And And
• ~ z

Line ~ ~ <.
~ ~ ~- ...

~ ~ .f 85 ~

Factor 1 Operation Factor 2
Name Length

3 4 5 • 7

ARRX ARRY
I 1 213 415 s'7 ale ol

Before
IA Ala sic clo olE El MO VEA

~

~Ono Elomont .->On• Elomont

After
11 213 415 sl1 ale ol MOVE A IA Ala sh 213 415 sl

Figure 28-25 (Part 1 of 17). MOVEA Operation

28-70

Resulting
Indicators
Arithmetic

Plus Minus Zero
Compare

1>21<2 1=2

LookupfFactor 2)1s

Comments

High Low F.qual
M~~~~~~~~~MMM~mmronnn~

Example: Alphameric array to alphameric array move. No indexing, different length array
elements.

c Indicators Result Field
Resulting

''f Indicators

1-- 6_ I 1 < Arithmetic
~ ~

PlusIMim~ Zero ~e g
~~~ 

Factor 1 Operation Factor 2 § Compare Comments 

Line I- Ci rr:" Name Length ~ 1>2f1<2f1°2 
E ~ !/) .., 

E lookup( Factor 2)is 

if> 8 5 ~ 0 
u 

z z 
"" 

High Low Fqual 

3 4 ' 6 ' 8 8 '° 11 12 13 14 15 16 17 18 19 :zo 21 l2 23 L4 25 26 27 28 79 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 58 59 60 61 62 63 64 65 66 61 68 69 70 71 72 73 74 

o}J c J 111111111 ~in fJIDJ1 ~,'fH 1i 1 1 1 ii1ii]]jjjjj1j o}J c I 1 1 

ARRY ARRZ 

I 1 213 415 sl7 slg ol 
Before 

IA A Al B sic c clo ol MOVEA B D .__.,, '--' 

>One Element >One Element 

~ After 
,_,._, 

I 1 213 415 sl7 slg ol MO VEA I 1 2 314 5 sl7 8 glo D ol 
.-

Example: Alphameric array to alphameric array move. Index factor 2, different length array 
elements. 

c "] 
o_ 
~~ 

i~ 
~ .': <! 

line /:: g :;; 
j 8 5' ~ 

indicators 

Acd Acd 

0 o 
z z 

Factor 1 Operation Factor 2 

Result Field 

Name 
~ 

Length '.:::: 
i" 
~ 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 

ARRY ARRZ 

I 1 2!3 415 sl7 Is o I Before 
IA A Al B s sic c clo 8 MO VEA D 

~ ~ 

>One Element >One Element 

~ After I 1 213 4 15 s 17 8 ls o I MO VEA 17 8 slo B sic c clo D 

Figure 28-25 (Part 2 of 17). MOVEA Operation 

Resulting 

Indicators 

Arithmetic 

P!us Minus Zero 

Compare 

1>21<2 1=2 

Loo::up(Factor 2)is 

High Low Fqual 

ol 

ol 

Comments 

Chapter 28. Operation Codes 28-71 



Example: Alphameric array to alphameric array move. No indexing on array. 

c ~-

9-
;;Q 

~ .5 ~ 

Indicators 

And And 

line ~ O a:.· 
E ::. en t-r-r+-..-r-1-r"T-i 

&8~f~ ~ ~ 

Factor 1 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Fl ELDA 

2 3 4 5 6 11 Before 19 MO VEA 

2 3 4 5 6 1 I After I 1 MO VEA 

Operation Factor 2 

ARRY 

8 615 4 312 

Result Field Resulting 
Indicators 

Name 

olA B cl 

. Arithmetic 

:~ ;;: Plus Minus Zero 
g t: Compare 

Length ~ ~ 1>2 1<2 1 = 2 

·~ 1ij Lo.okup(Factor 2)Ps 

o :i:: High Low F.qual 

>One Element 

2 31 4 5 61 7 olA B cl 

Example: Alphameric array to alphameric field move. Variable indexing. 

c ~-
Indicators 

o_ 

~Q And And 
• > z 

Line ~~; 
Factor 1 Operation Factor 2 

Result Field Resulting 
Indicators 

Name 

Arithmetic 

E" Plus Minus Zero 
~ Compare 

Length % 1>2 1 < 2 1 "'2 
!: lookup(Factor 2)is 

Comments 

Comments 

3 . s 
j ~ ~- ~ 
6 7 

~ High Low F.qual 
~~~WD~W~~~~~~~E~OOronnnM 

ARRX

lo,1lo,Alo,2lo,Blo,3lo,cl
~

>Ono Elomont

lo 1lo,Alo,2lo1Blo,3lo,cl

~

Before
MOVEA

After
MO VEA

FIELD

I 0 I 1I0 I Al

lo
f I

Figure 28-25 (Part 3 of 17). MOVEA Operation

28-72

Example: Numeric array to alphameric array move. No indexing, different length arrays, same
length array elements.

ARRX ARRY

lJ__?J_~l ___ ~J_'~ __ _tll?__ 8 I fL __ q ! ~i~~~~A l_Q_~~_I_L§__.§J~~'U_?:_ __ _:j_ o q_j
·~-___,_/"Z ~-.. -,/<~

One Element One Element

~7ili __ 1j_§_J3l7_~b_~_j1 ~~~El•. f'.1~213 _jj_§ _ _tl?~~lQ_Q.j
·-,. CE r 44#::::=~---··-------~::__=_rA!I™ wa--I

Example: Alphameric array to numeric array. No indexing. different length arrays, same 1 · J1

array elements.

A.RRX

4[5 6[7 slg ol
·-·--·-----~--......J

Before
IVIOVEA.

1<,igure 28-25 (Part 4 of 17). MOVEA Operation

ARRY

Chapter 28. Operation Codes 28-73

Example: Numeric array to numeric array move. No indexing, different length arrays, same length
array elements.

c ~-

1-- 6_
~a: =o

~~~ 
Line 1- O er;' 

E ~"' 
if 8 ~· 

3 4 5 • 7 8 

OJ '.I 
oJ2l 

c] 
cl 

Indicators 

AL AL Factor 1 Operation 

~ 0 ~ z 
9 10 t1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 '2a 29 30 31 32 

1i1111111 
~ 
1111 

ARRX 
!12l-34l5Bl7slsol ---> One Element 
_,.___ 
112!-34!56l78!90j 

\ I 

t 

Factor 2 

33 34 35 36 37 38 39 40 41 42 

~11111 
111111 T1 f 

Before 
MO VEA 

After 
MO VEA 

Result Field 
Resulting 
Indicators 

~ 
Arithmetic 

Plu;rMinus Zero :~ ~ 
s " Compare Comments 

Name Length 
~ , 

1>31"1<2 1=2 ]i 
Lookup(Factor 2)is 

~~ High Low Equal 
43 44 45 46 47 48 49 50 !>1 52 ti.> ti4 55 56 57 58 59 60 61 6:t 63 64 65 66 b1 68 69 70 71 72 73 74 

"'fr-Mi 11 1 1 1 1111JJJJJJIIII ]]]lllllll 

ARRY 
lo9!a1ls5l43!21!ool ---> On• El•m•nt 
_,.___ 
I 12[-3415 sl1alg olool 

t 

Example: Alphameric array to numeric array move. No indexing, different length arrays, same 
length array elements. 

c 
1--

Lme 

3 4 5 

0111 

o}I 

Indicators 
~ 
6_ 

AL I ~a: 

iQ 
~~~ 

Factor 1 Operation

I-Or£
E E en •

~ 0 & 8 ~ ~ z
8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 pa 29 JO 31 32

c l
c] t111III1I ilo1vTE16

IIII

ARRX

IAAl1 213415 sl1sl ---
>On• El•m•nt

_,.___
IAAl12l34l56l7BI

Factor 2

33 34 35 36 37 38 39 40 41 42

1{r1lllll
Before
MOVEA

After
MOVEA

Result Field
Resulting
Indicators '

.! z
Arithmetic

PlusTMinu-;J' Zero

~ " Compare Comments
Name Length ~~ 1 >ill <2£1 =2

H
Lookup(Factor 2Jis

High Low Equal
43 44 45 46 47 48 49 50 f:il 52 t>.> .. 55 .. 57 58 59 60 61 6:1 63 64 65 66 b• 68 69 70 71 72 73 74

1Wf t it T 1 1 111TIIIJIJIIII
T T 1 TTTTllllllllll
ARRY

lo9IB7IB5l43l21lool ---> One Element

_,.___
IAAl12!34l5Bl7slool

' I
T._ _________________ __.t The first element, AA,

is invalid, because AA
are not valid numeric characters.

Figure 28-25 (Part 5 of 17). MOVEA Operation

28-74

Example: Numeric array to alphameric array move. No indexing, different length array elements .

.----T""--r-------..---------T""---T""--------.--------..,.......---.....,.- -.----------·-·-··-
Resulting c "].

Indicators

6_

""'"' ~e And And

Line
~ .5 ~

..... 0 a:·

Factor 1

& ""' 8 5· 0 0 0 z z z
3 4 5 6 '

ARRY

11 2 I 3 4 I 5 6 I 7 8 ...___,_.. > Doe Elemeot
___._
112l34j56l7 8

Operation Factor 2

9 0
Before
MOVEA

9 0 After
MOVEA

Result Field

Name

Indicators

Arithmetic

:¥ ~ Plus Minus Zero

;s -:;; Compare

Length~~ 1>21<2 1"'2

-~ ~ Lo.okup(Factor 2)is

o :i:: High Low Equal

ARRZ

Corrnnents

~A I BBB I cc c ID DD I

1"' Elemoot

I 1 2 3 I 4 5 6 7 8 9 0 D D

Example: Alphameric array to numeric array move. No indexing, different length array elements.

,..----.--.-------...----------.-----.---------.---------.-...-----..----------·~~. -~~
Resulting c 5

Indicators

6_

And And Factor 2
""'"' ~e

~-5~
Line ; ~ ffi~ ~_,__,_-+-~...-<

if85~ ~ ~

Factor 1 Operation

3 4 5 6 7

ARRY

I 1 2 I 3 4 5 6 7 8 9 0 Before
MOVEA

) One Element

___._
I 1 2 I 3 4 5 6 7 8 9 0 After

MOVEA

Figure 28-25 (Part 6 of 17). MOVEA Operation

'

Result Field
lndic1tors

Name

~
Arithmetic

:~ ~ Plus Minus Zero
!!! t: Compare

Length~~ 1>2 1<2 1'='2
J; :%. Lookup(Factor 2)is

~ ~ High Low Equcl

ARRZ

I o o o I 1 1 I 2 2

_L One Element

I 1 2 3 I 4 5 6 7 8

t

Comment!!;

2 3 3 3

9 0 3 3J
I

Chapter 28. Operation Codes 28-75

Example: Numeric array to numeric array move. No indexing, different length array elements.

c ~i
1-- 6_

iQ
~j~

Line ~ 0 ~·
E ~ ~
if 8 5

3 4 5 • 7 8

OI1I c]
~J-21 cJ

Indicators

1 I Factor 1 Operation Factor 2

~ ~ ~
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 l!_ 29 30 31 32 33 34 35 36 37 38 39 40 41 42

lllllllll
a.i...• .i.-rA n:r±JJ11J IIJJ

ARRY

112l34l5al1a1901 .._ > Ono Eloment --112l34l56l7Bl9oj

' I y

Before
MO VEA

After

MO VEA

Figure 28-25 (Part 7 of 17). MOVEA Operation

28-76

Result Field R"ultlng
Indicators

~-
Arithmetic

:e = PtuU°Min~Zero .n Compare Comments
Name Length

~~ 1 >21"1 <21"1 •2
Lookup(Factor 2)i1

H High Low Equal
434445-464748 49 50 f>l 52 .. :>II 55 56 57 58 59 80 61 8:.C 83 84 65 BB tt1 68 89 70 71 72 73 74

'1111 11. j t 1 11111]]]]11111
1 1111 IJJJJJJJJJ

ARRZ

10001111122213331

1n• Elomont ·

l123l45al1s9lo33I

Example: Numeric array to numeric array move. No indexing, different length array elements.

c ~-

g

d
Line

~ ~
.f 8 ~

3 • • • 7

Indicators

And And Factor 1 Operation

~ ~

ARRY

~1-3. 3 j-4516 7 l-891 ----..---- ..__., ----..----> OneEle~
_....__
lo 112 3!-4516 7j-s9j

- 45 = F4D5)

- 89 = F8D9

hexadecimal
values

Factor 2

Before

MOVEA

After

MO VEA

Figure 28-25 (Part 8 of 17). MOVEA Operation

Result Field
Resulting

Indicators

Name

Arithmetic

~ X Plus Minus Zero

B ~ Compare

Length ~ ~ 1 > 2 1 < 2 1 = 2
~ ,.__ Lookup(Factor 2)is

c3 ~ High Low Equal

ARRZ

Comments

L o o o I 1 1 1 I 2 2 _ 2 1_3 3 3 J

~ > :Ooo E\,rnent ~'""'
l_Q_~-345j678 R33 1

The hexadecimal value of the last elermmt
inARRZ is D9F3F3. The element is invalid
because the first digit of a number cannot
carry the negative sign.

Chapter 28. Operation Codes

Example: Numeric array to alphameric array move. Index result field, same length arrays and array
elements.

c 5
r-- 0--'a:

iQ
~ .3 ~

line I- 0 a:."
E E ~ ...
if 8 5 ~

3 4 5 6 7 8 9 10

~EI le 1
oj2J cj

Indicators

1 I Factor 1 Operation

~ 0 z
1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 pa __ 29 30 31 32

Jllllllll
MlOl\lli:-"'
JJJ]

ARRX

i12j34l56l7Bi9ol ._,,_.. > Ooo Elomoot

..-"-...

j12l34l56l1sjeol

Factor 2

33 34 35 36 37 38 39 40 41 42

Illllllll

Before
MOVEA

After
MO VEA

Result Field
Resulting
Indicators

-1 :c

Arithmetic

Plu$JMinuSf Zero

~ g Compare Comments
Name Length §! 1>2f1 <2f1 - 2

Lookup(Factor 2)1s
,H High Low Equal

43 44 45 46 47 48 49 50 !:11 52 t>.> .. 55 56 57 58 59 60 61 6:.! 63 &4 66 66 bt 68 69 70 71 72 73 74

~~ 11 i i i ii1i±±±±±±+111
ARRY

IAAIB sjc cloojE El

} Ono Elomont

IAAIBBj12l34j56I

Example: Alphameric array to numeric array move. Index result field, same length arrays and array
elements.

c ~i
i--- 6_

.... a:
iQ

~ .5 :i
Line I- 0 a:·

E E "'
& 8 ~ ~

3 4 5 6 7 8 9 10

o}I c I
0121 cl

Indicators

I I Factor 1 Operation

'O 0
z z

111:2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ~8 29 30 31 32

111111ff 1 ~ff[
ARRX

loeis1l65l43J21I ..___.,

> One Element

..-"-...

joejs1165j43l21j

Factor 2

33 34 35 36 37 38 39 40 41 42

ll1:f 111f1
Before
MO VEA

After
MOVEA

Figure 28-25 (Part 9 of 17). MOVEA Operation

28-78

Result Field Resulting
Indicators

c Arithmetic

PlusIMinu~ Zero .g z
'§ ~ Compare Comments

Name Length "- , 1>2f1<2Ji"2 §! Lookup(Factor 2)1s

~ :\! High Low Equal
43 44 45 46 47 48 49 50 &1 52 t),) t:>4 55 56 57 58 59 60 61 64! 63 64 65 66 b1 68 69 70 71 72 73 74

~±1'ff~ t1 t t t 111t+iiii1iiif
ARRY

i12j34l5Bl1sleol ._,,_..

>One Element

..-"-...

j 12j34jo els 116 51

Example: Numeric array to numeric array move. Index result field, same length arrays and array
elements.

c ~-
0
~

•
~5

Line '§ ~
.f 8

3 4 5 6 7

0 z

Indicators

And And Factor 1 Operation Factor 2

ARRX

~l-s1i s 51 4 3 2 1
Before

'-.,,--' MOVEA

) One Element

..-"-.. After I 0 9 1- s 11 6 5 4 3 2 1
MOVEA

Figure 28-25 (Part 10 of 17). MOVEA Operation

Indicators
Result Field

Resulting

Name

c
:~ !: 1---!---''---i
8 :;; Compare

Length~~ 1>21<2 1=2

·~ ~ L°_°kup(Factor 2)is

o I High Low Equal

ARRY

112j34j5sl 7 8
'-.,,--'

) One Element

..-"-..

I 1 2 I 3 4 0 9 l-8 7

Comments

9 0

6 5

Chapter 28. Operation Codes 28-79

Example: Numeric array to alphameric array move. Index factor 2, different length array elements.

c Indicators Result Field R..ulting

~ lndiclton

1---1 ~;r I I h
Arithmetic

E~
Plus_lMMZwo

Line !
Factor 1 Operation Factor 2 l = Com pore Comments -'., Name Length 11f 1>![1<tl!•2 0 a:.·

j ~"' h lookup(Foct0< 211
h i j j High Low Equ1I

3 " s e 7 • 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 2& 28 27 ~-29 30 31 32 33 34 31!1 31 37 38 39 40 41 42 43 44 41 48 47 ... 41 &O &1 D4 16 II 117 H~ ID t1 8lt! 83 14 ti t8 '' • • 70 71 72 73 74

0111 c l IIIIIIIII ~o]Jj14 AiiJ)11'f JI I AfiiRIZI l LL l l I ff f ±f f}ff ffflf o_l2J c l lllllllll llll lllllllll lllll 11 I I I

ARRY ARRZ

112j34j56j 7 8 9 0 Before
IAAAIB B Bl c c CID D Dj -- MO VEA

:=l:n•Elomont > One Element -- After
112!34l56l7Bl90I MOVEA i7B9!0BB!C c cjD D Dj _,,__. __....

Example: Alphameric array to numeric array move. Index factor 2, different length array elements.

c ~
~

& ~
Line

,. ...
ig
d

3 • s • 7

Indicators

And And Factor 1 Operation Factor 2

Result Field

E

Resulting
lndicttors

.!2 i" Plus Minus Zero

·8 i Compare
Name length ~ ~ t >2 1 <2 1 •2

Comments

j j ~
!; - Lookup(Factor 2)is

~ ! High Low Equal
~~~~"~~~n~~~~~~~~~a~~~M~u~~~~~~w~~~MtiN~uuro"n~u 

ARRY 

j12l34j5611sjgol ,___. > Ooo Elomoot --1 2l34l5Bl7Bl9oj 
-,.-

Before 
MO VEA 

After 
MOVEA 

ARRZ 

j098j765l432 100 

1•Elomoot 

178910651432 100 __.... 

Figure 28-25 (Part 11 of 17). MOVEA Operation 

28-80 



Example: Numeric array to numeric array move. Index factor 2, different length array elements. 

Indicators 

And And Factor 1 Operation Factor 2 

ARRY 

11 2 I 3 415 6j7 819 01 
Before 

._,__, MOVEA > Ono Elomont 
_.__ 

After I 213 415 
MOVEA 

Resu It Field 
Resulting 
Indicators 

Name 

~ 
Arithmetic 

:~ ~ Plus Minus Zero 
IS :;: Compare 

Length~ i 1>21<2 1 =2 
.E .... Lookup!Factor 2)is 

~ ;! High Low Equal 

ARRZ 

10981765143 2 2 Ooo Elomoot 

I 1 a 9 I I 4 3 2 

Comments 

1 0 0 

1 0 0 

Example: Numeric field to alphameric array move. No indexing on array. 

Indicators 

Factor 1 

Fl ELDA 

2 3 4 5 6 7 

2 3 4 5 _§__2j 
~,._ .. ..,..,...,....,..,,....., .. __.A 

t 

Operation Factor 2 

Before 
MOVEA 

After 
MO VEA 

Figure 28-25 (Part 12 of 17). MOVEA Operation 

\ 

Result Field 
Rnulting 
Indicators 

:~ ~ s ::: 1---"'"eom"'""",,..-,'"', =-1 

Name Length ~ f 1>21 <2 1 =2 
.E - Lookup(Factor 2)is 

~ ~ Hi'*' Low Equal 

ARRY 

9 8 6 5 4 3 2 1 0 A B C 

One Element 

2 3 I 4 5 6 7 1 0 A BC 

; ./ 

Comments 

Chapter 28. Operation Codes 28-81 



Example: Alphameric field to numeric array move. No indexing on array. 

c ~· 

9-
:: ~ 

1!~ 
Line ~ 0 a:· 

~ ~ ~ ... 
of 85 l 

3 • • • 7 

Indicators 

And 

i 

\ 

And Factor 1 

15 z 

Fl ELDA 

11234567 

2345671 

t I 

Operation Factor 2 

Before 
MOVEA 

After 
MOVEA \ 

Result Field Resulting 
lndic1tors 

Name 

E 
Arithmetic 

.2 :C Pius Minus Zero r= eom .. re 
Length 11 ~1>21<21•2 

.~ .... Lookup(F1etor 2)i 

~ ! High Low Equ1I 

ARRY 

543 210 9 8 6 

One Element 

23j456 7 1 0 9 8 6 
I 

Example: Numeric field to numeric array move. No indexing on array. 

c Indicators 

And And 

\ 

Factor 1 

Fl ELDA 

2345671 

2345671 

t 
I 

Operation Facto~ 2 

Before 
MO VEA 

After 
MO VEA 

Figure 28-25 (Part 13 of 17). MOVEA Operation 

28-82 

\ 

Re•llt Field 

Name 

ARRY 

5431210 

One Element 

4 5 6 7 1 0 

1 I 

9 8 6 

9 8 6 

Comments 



Example: Numeric field to numeric array move. No indexing on array. 

c ''i 
~ 
• 

~ .5 
Line I- O 

E E 
of 8 0 z 

Indicators Result Field 

And And Factor 1 Operation Factor 2 
Name length 

Resulting 
Indicators 
Arithmetic 

~ Plus Minus Zero 

:;: Compare 

~1>21<21"'2 
'!. Lookup(Factor 2)is 

~ Hi~ Low Equal 

Comments 

3 4 5 6 7 :>.) ~ 55 56 57 58 59 60 61 6:.! 63 64 65 66 b• 68 89 70 71 72 73 7 

Fl ELDA 

1- 23456 

(the 6 carries the 
minus sign) 

Before 
MCVEA 

ARRY 

543J210J9a6I 

One Element =:? 
~~~EA l 1 2 3 I 4 5 6 I 2 1 0 I 9 8 6 I 

'------------------,=======---\ (the 6 carries

2 3 4 5 6

minus sign)

Example: Alphameric field to numeric array move. No indexing on array.

c ~
lndK:ators

9 a: =o And And Factor 1 ~H
Line ~ ~ ~~l-_...-~-.-.....-+-o-.--1

Lfc9~~ ~ ~
3 4 5 6 7

Fl ELDA

23ABC7

23ABC7

Operation Factor 2

Before
MCVEA

After
MO VEA

Figure 28-25 (Part 14 of 17). MOVEA Operation

\,

Result Field
Rnulting

Indicators

Arithmetic :i ~ ptus Minus Zero

!I t: Comp1re

Name Length ~ i 1 > 2 1 < 2 1 "' 2

-~ 1i L°:°kup(Factor 2)is

C5 :I: Htlli Low Equal

¥

ARRY

5 4 3 2 1 0 9 8 6

One Element

A B C 7 1 0 9 8 6

f I

The second element is
invalid, because it is
not valid numeric data.

Comments

Chapter 28. Operation Codes 28-83

Example: Numeric array to alphameric field move. Variable indexing.

c 5
Indicators

6_

=~ And And
a.iz ,. _,"'

line ~ 15 r:c."
@ E en • ..

l 0 .f 8 5 ~ z
3 • 5 • 7

Factor 1 Operation

ARRX

L2___1 I o 2 0 3 0 4 0 5

~ One Element

I 0 1 I 0 2 I o 3 I o 4 I o 5 ..._,_..
Note: N = 3

Factor 2

0 6

0 6

Result Field

!

Resulting
lndic1tors

.S! i' Plus Minu Zero

Name
'8 "t: Compare

Length~~ 1>21<2 1•2
.Ii: - Lookup(F1etor Ws
~ ~ Hilfl Low Equal

Before
MOVEA

After
MOVEA

FIELD

0 1 0 2

Example: Alphameric array to numeric field move. Variable indexing.

c 5
~

u i
~ _,

Line ~ g
.f 8

3 4 5 6 7

Indicators

And And Factor 1 Operation Facto~ 2

ARRX
lo 1 lo2jo3jo4josloal 2 On• El•m•nt

lo 1jo2lo3jo4josjoal ...__,_..

Note: N = 3

Figure 28-25 (Part 15 of 17). MOVEA Operation

28-84

Result Field

!
.S! % Plus Minu Zero
·i 'ii Compore

Name Length~~ 1>21<2 1•2

·S ' Lookup(FICtor 2)is
0 :c Hilt! Low Equ1I

Before
MOVEA

After
MOVEA

FIELD

o 1 I o 2

Comments

Comments

Example: Numeric array to numeric field move. Variable indexing.

r-C--.,.---.r---,nd-ic-at-0-,.--..----------.---.,----------.----R-esu-l-1-F-iel-d---.-,--,R:-,."'"'ui°"ttn-g-..,------~-~,~-~~~~~---.... "-,
~- Indicators

6 _ .., Arithmetic

~ ~ ~ And And Factor 1 Operation factor 2 Name ·I ~ Compare . ~
... Length ~ :§' 1 > 2 1 < 2 1 "'2

Line t- ~ g:j.l-T--r--t--T'"""'lr-1-..,...--r-t § ::: Lookup{Fcctor 2k

~&~·j ~ ~ ~~HighlowEqual
J 4 5 6 7

ARRX

[o 1[02l.23[04Jo5[~

~) One Element

Before

MOVEA

FIELD

J_g__ll_P. _ _? __ j

L.
I I , J , 1 · After ,

0 1 0 2 I 0 3 0 4 I 0 5 I 0 6 I MOVEA L __ ~l-~~Ll ..__,,_., .,._,,_,
L ____________________ _j

Note: N = 3

Example: Numeric array to numeric field move. Variable"""~~----'"'"'

c Indicators

And Fa:ctor 1

Comments

6$ SG /0 ; 7J

1-+-+---+-+--+--4-+---+-+-+-4f--i--+-+-+-4-+-+-+-+--4-+-+-+- -I'- --t· --1---i----t--+-1--+---r-+-"1«JJ.\l~~~WJ-)J!-+---+-l--1t:jJ.!J~~+-w.+-1---i-w-l----1-' 1 ttt±~y-ITFTrr :-1 1 r
.__.____._,.___.___._,___-'---'.___.__--'--'---'-''---'---'--'---"--'--'--'--'-~-I---'-_.__,_ _ ___.__.___._____._,____._ l. · J_ __ . L LLUJJ_U_

ARRX

i_g__U 0 2J 0 3 l-04J O_§_~
--.::-> One Element

~

~ij_Q2l o 3 I -o '!l_g_JlJ_Q__§J
~ L _________ _

Note: N = 3

Figure 28-25 (Part 16 of 17). MOVEA Operatio:n

Before

MOVEA

After
MOVEJ-\

FIELD

[__ Q_JJQ2J

i 031041
~

-------- - -- ___ t \
\

The last digit in the field

Chapter 28. Codes

Example: Alphameric array to numeric field move. Variable indexing.

c '.:i
0--'a:
:::o

Indicators

And And

&3~
Line ~ e ~-i-.~-+-.,...,r-+""T".....-t

ifA5·i ~ ~

Factor 1 Operation

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

ARRX

Factor 2

2 0 3 A A 0 5 0 6

One Element

,_.._
Io 1 Io 2JO 3JA A[O 5JO

Note: N = 3

Figure 28-25 (Part 17 of 17). MOVEA Operation

28-86

R..,ltField

Name

Before
MOVEA

After
MOVEA

FIELD

o 1 Io 2

The field is invalid because
AA are not valid numeric
characters.

Comments

28-88

3. Factor 2 shorter than the result field:

a. If factor 2 is either numeric or alphameric and the result field is
numeric, the digit portion of factor 2 replaces the contents of the
leftmost position of the result field. The sign in the rightmost
position of the result field is not changed.

b. If factor 2 is either numeric or alphameric and the result field is
alphameric, the characters in factor 2 replace the equivalent
number of the leftmost position in the result field. No change is
made in the zone of the rightmost position of the result field.

The MOVEL operation is summarized in Figure 28-26.

a. Numeric

b. Numeric

c. Alphameric

d. Alphameric

a. Numeric

b. Numeric

d. Alphameric

Numeric

a.

Alphameric

Numeric

b.

Alphameric

Factor 2

17181412151

17181412151

Factor 2 and Result Field Same length

Result Field

1718!412151

17181412151

1P1H141S1N1

1P1H1 4 1S1N1

1P1H141S1N!

1P1H 14 1S 1 N1

Before MOVEL

After MOVEL

Before MOVEL

After MOVEL

Before MOVEL

After MOVEL

Before MOVEL

After MOVEL

~-121~-1-~
171814t215J

~T141Di

~181 4 121N1

,A,K1T14!D,

I P 1 H I 4 l S fl I~ ,

Factor 2 Longer Than Result field

Factor 2

1D1010101D181412151

1010101010181412151

191013111718141215)

1910131117181412151

1B1R1W1C1XIH1 41 SJ i'!J
1B1R1W1C1X1H141S1N1

1B1R1W1C1X1H141S1N1

1B1R1W1C1X1H141S1N1

Before MOVEL

After MOVEL

Before MOVE L

After MOVEL

After MOVEt

Before MOVEl

After MOVEl

Result Fietid

r,5f517i8e4<:

: 0 t 0 I 0 i 0 ; 0~

Factor 2 Shorte~ Th1u1 Result Field

factor 2

17 181 4 12 15 1 Before MOVEL
-

17181412:51 Aher MOVEL

LC Ip l T4 5 ~ Before MOVEL

1C1P;T;5;!'~i l!tfter ~11~0\lE l

17181412151 Before MOVEL 1B1R1W1C1X1H141Si!~

17181412151 After MOVEL 1718i4121N1H141Si!:J

Lf_1 p I T I 5 I NJ Before MOVEL LB I R 1 V!.Lf_1 X l HI 4 I S 1 Al

1C1P1T1S1N1 After MOVEl ~~J

The arrow f between numbers indicates a decimal point.

Figure 28-26. MOVEL Operations

28.,

l\Jumeric

Numeric

MULT (Multiply)

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-66 66-57 58-59

Optional Optional Optional MULT Required Required Optional Optional Optional

Factor 1 is multiplied by factor 2, and the product is placed in the result
field. Factor 1 and factor 2 are not changed. If factor 1 is not present, the
result field is multiplied by factor 2, and the product is placed in the result
field. Be sure that the result field is large enough to hold the product. To
determine the minimum length of the result field, use this rule: the length
of the result field equals the length of factor 1 plus the length of factor 2.

MVR (Move Remainder)

28-90

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 66-57 58-59

Optional Optional Blank MVR Blank Required Optional Optional Optional

The MVR operation moves the remainder from the previous divide
operation to a separate field named as the result field. Factor 1 and factor
2 must not be used. This operation must immediately follow the divide
operation.

The maximum length of the remainder (including decimal positions) is 15.
The number of significant decimal positions is the greater of:

• The number of decimal positions in factor 1 of the previous divide
operation.

• The sum of the decimal positions in factor 2 and the result field of the
previous divide operation.

The maximum number of whole number positions in the remainder is equal
to the whole number positions in factor 2 of the previous divide operation.
Figure 28-27 shows the specification for a move remainder operation.

.-c
~,

Lme

·,------------..---·---.--------·---y--·--·~::-l;;:;;~---ri - Res~lti;g---,------·--~-·~---~~--·-~--··-

f------··-r-·-··--11 ~~~I~::~:- -
g PiusIMinu:I Ze-;~

Length -~ Compare

Name E 1 > ~ < ~ll "'2

~ ~ ~ ~ L:i:~up~::to;q~l~~

Indicators

I
And

I
And Factor 2 Comments Factor 1 Operation

3 4 5

0 1 c
0 2 c
0 3 c

, 10 ~~a"" ,,iii18~tdA,.,, 26,, ;IJY" 32~i:·~1~ 37 38 39 ·o·'f ~~., .. 49 50~ ,. 55 ,.;:;',~~,~~=-~~,~~;,~_,~~~,~

i~NIZIA M'il8 I w I'< az J
l -+-+-+-+-<--+-<--+-+-+--+--+--+-;..--+-;--+-+-+-+-+-+--+-+-+-+-"r-+·· ,J] +-+- - ·--+- - - -+-- -- +- -

Figure 28-27" Move Remainder Operation

NEXT (Next)

1 I -- ... r hu:licators I lllesulting !ndii!:i!itor1'!
Result

1-8 9-11 factor 1 Op®rliltii!:m factor :2 field M-55 56-51 !jS.5.«)

Optional Optional Required NEXT Required B!ank Blank Optional Blank
-- '"'"""

The NEXT operation code forces the next input to the program to come
from the device specified in factor L If NEXT is specified more than once
between input operations, only the last operation is performed. The NEXT
operation code can be used only for a WORKSTN file.

Now: For WORKSTN files, a device can be either a display station or an
SSP-ICF session.

To use this operation, enter NEXT in columns 28 through 32. In factor l,
enter the name of a 2-character field that contains the device identification
or a 2-character alphameric literal that is the device identification. In
factor 2, enter the name of the WORKSTN file for which the operation is
requested.

An indicator can be specified in columns 56 and 57. This indicator is set on
if an exception or error occurs on the NEXT operation. lff the INFSR
subroutine is specified and columns 56 and 57 do not contain an indicator,
the subroutine automatically receives control when an exception/error
occurs. (For more information on the INFSR subroutine, see Coding the
INFSR Subroutine in Chapter 6.) If the INFSR subroutine is not specified
and columns 56 and 57 do not contain an indicator, the program halts when
an exception or error occurs.

For more information on the NEXT operation code, see Chapter 6, Using a
WORKSTN File.

Chapter 28. Operation Codes 28-91

POST (Post)

28-92

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 64-6& 66-&7 58-59

Optional Optional Required POST Blank Required Blank Optional Blank

The POST operation allows you to retrieve status information for a
specified display station that is using to a WORKSTN file. The status
information is placed in the INFDS data structure that was specified in the
result field. The program must contain the INFDS data structure for the
WORKSTN file to use POST.

Factor 1 must contain a variable or an alphameric literal that identifies the
display station whose status is being requested. The result field contains
the name of the INFDS data structure in which this information is to be
posted. Columns 56 and 57 can specify an indicator that is set on if an
error occurs on the POST operation. An error occurs if the specified work
station identifier is not using the file for which the INFDS data structure is
specified.

If columns 56 and 57 do not specify an indicator but the program contains
the INFSR subroutine, the subroutine automatically receives control when
an error occurs. If the INFSR subroutine is not present and columns 56
and 57 do not contain an indicator, the program halts when an exception or
error occurs. If the display station is not using the WORKSTN file, the
device will be not found, and an error will occur on POST. (For more
information on the INFSR subroutine, see Coding the INFSR Subroutine in
Chapter 6.)

Columns 33 through 42, 49 through 55, and 58 and 59 must be blank for a
POST operation.

READ (Read)

The READ

The READ code ::rn.JSt app«o:ci::
contains the name of the file from "vvhich
immediately.
arid 59" r_rhis

calculation time and

eitl1er of tl1ese conditio11s. occurs~ the p:rog:ra1n haJts urdess ti]e II\JJB'SI~~
subroutine is specified. ff the INFSH subroutine is specified, the subroutine

Chapter 28. Operation Codes 28-93

28-94

The following columns must remain blank for a READ operation: columns
18 through 27 (factor 1), columns 43 through 48 (result field), columns 49
through 51 (field length), column 52 (decimal positions), column 53
(half-adjust), and columns 54 and 55 (resulting indicators).

If a READ operation is not successful, you must reposition the file by using
either a SETLL or a CHAIN operation. If the file is not repositioned, all
following READ, READE, and READP operations will fail.

The following files can appear as factor 2 in a READ operation:

• Sequential DISK files processed consecutively and specified as input or
update files.

• Direct DISK files processed consecutively as input or update files.

• Indexed DISK files processed sequentially by key field and specified as
input or update files.

• Indexed DISK files processed sequentially by limits and specified as
input or update files.

• Sequential, direct, and indexed DISK files processed randomly and
sequentially as input or update files.

• WORKSTN files.

• SPECIAL files.

• CONSOLE files.

• BSCA files.

sarr1P field

Codes

READP (Read Prior Record)

28-96

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Blank RE ADP Required Blank Blank Blank Required

The READP operation reads the prior record from a full-procedural DISK
file (identified by an F in position 16 of the file description specifications).
For example, if record X was just read using the READ operation code,
READP reads the record prior to record X.

Factor 2 must contain the name of the file to be read as specified on the file
description specifications. This file must be full-procedural.

Positions 58 and 59 must contain an indicator. This indicator turns on if no
prior record exists in the file (beginning-of-file condition). It turns off
before each READP operation. If a READP operation is not successful, you
must reposition the file by using either a SETLL or CHAIN operation. If
the file is not repositioned, all following READ, READE, and READP
operations will fail.

REL (Release)

:receives control

to end of file.

'Nhen all devices

SYSTEM command.
indicator was

If RESTORE-NO is

in columns 56 and 57.

released from

as the end··of-file indicator.

on the control
a display format from the program may appear

station has been released. If RESTORE
WORKSTN statement, the command

when the

For more information on the REL operation code, see Chapter 6, Using a
WORKSTN File.

RLABL (RPG Label)

c Indicators
~

f---i ~ 1 I ..
~j

Line 0
E I>

if 8 ~ :; 0 z z
3 4 5 6 7 9 10 11 12 13 14 15 16

0 1 c
0 2 c
0 3 c~
0 4 c~
0 5 c
0 6 c
0 7 C)_j
0 • cM
0 9 c
1 0 c
1 1 c~
1 2 c~
1 3 c
1 4 c
1 5 c
1 6 c

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 68-59

Blank Blank Blank RLABL Blank Required Blank Blank Blank

The RLABL operation allows the subroutine specified in an EXIT operation
to refer to a field, data structure, array, table, or indicator defined in the
RPG program. RLABL operations must be specified immediately after the
EXIT operation that refers to the subroutine using the field, data structure,
array, table, or indicator in the RLABL specification (see Figure 28-28).

The number of RLABL operations following the EXIT operation must
correspond to the number of items referred to in the assembler subroutine.
The order of the RLABL operations must correspond to the order of
references in the assembler subroutine.

Result Field Resulting
Indicators
Arithmetic

Factor 1 Operation Factor 2
£ PlusJ!Ainu_!l_Zero

" Compare Comments
Name Length t1>2{1<2)1·2

:!:. Lookup(Factor 2)is

~ HighJ Low~qual
17 18 19 20 21 22 23 24 25 26 27 '2s 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 "~~~~~~~~~~M~~~~~wnn~~

~ ti ~ IX TT J.:TJ.: I I..!. I I I I I I

IAI! tr IA fl II::. 12 Array Name or Table Name"I

111±± 11±±±±111 ~)(~ I!=;
IA tlr r: 11 Field Name I

+++++ ±±±±±±±±± ~x ll ~
'~'" .IN I)(\)(Indicator J

±ii Ii IJI1ITIIJ
bdr::i: 1!=111. IXI .!.J.J.1 J llll
II~ RI ~A N~ Data Structure I ..

lllll 1111IIIII
Figure 28-28. RPG Coding for RLABL Field Entries

28-98

The entries used with RLABL on the calculation
follows:

Columns

Operation (28-32)

Result field 43-48

as

array

28.

Referring to an Indicator

When an indicator is specified in an RLABL operation, use the form INxx
as the result field, where xx is the indicator to be transferred to the
subroutine. For example, if the MR indicator is to be transferred to a
subroutine, specify INMR as the result field for the RLABL operation.

When an indicator is specified in the RLABL operation, the RPG compiler
creates the following parameters and passes them to the assembler-language
subroutine:

B SUBRxx

DC XLI '00'

DC XLI 'Mask for the indicator'

DC XLI 'Displacement to the indicator from XRI'

Referring to a Field

When a field name is specified in the RLABL operation, the RPG compiler
creates the following parameters and passes them to the assembler-language
subroutine:

B SUBRxx

DC ILI 'Field length-I'

DC AL2 (rightmost address of field)

Referring to a Data Structure

28-100

When a data structure is specified in the RLABL operation, the RPG
compiler creates the following parameters and passes them to the
assembler-language subroutine:

B SUBRxx

DC XL3 'FFFFFF'

DC IL2 'Data structure length-I'

DC AL2 (leftmost address of data structure)

Referring to an Array or Table

The subroutine can refer to an array or table defined in the RPG program
by using the control field created for that array or table. This control field
is called the DTT (define the table), and one is created for each array or
table built by the RPG program. The control field is in the following
format:

Bytes Meaning

0-1 Address of rightmost byte of the first entry

--1
2-3 Address of rightmost byte of the last entry

4-5 Initialized to the address of the rightmost byte of first
entry; used at object time for address of rightmost byte of
the last looked-up entry

6-7 Length of an entry

8-13 Array name (arrays only)

The subroutine can obtain the data retrieved from the preceding LOKUP
operation by using the address in bytes 4 and 5. To access the array or
table itself, the address in bytes 0 and 1 must be used. Data which the
subroutine uses is left unpacked.

When a table or array is specified in the RLABL operation, the RPG
compiler creates the following parameters and passes them to the assembler
subroutine:

B SUBRxx

DC ILl 'Entry length-1'

DC AL2 (leftmost address of the DTT)

See Figures 28-29 and 28-30 for examples of RPG linkage specifications.

Chapter 28. Operation Codes 28-101

Line

3 4 5

0 1 c
0 2 c
0 3 c
0 4 c

. Indicators Result Field ~~~~~:~s
~ J I Arithmetic

~ ~ And And :i ~ PtusJ_Minu_rl. Zero
> z Factor 1 Operation Factor 2 ~ t;:; Compare
~; Name Length ~ ~ 1 >W <ll_1- 2
.. V) ~ Lookup(Factor 2)1s

~ ~~j' ~ ~ ~ ~ :i! High Low F.qual

Comments

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ~8 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

t..IRIE l1

t--RPG passes control to the assembler subroutine SU BRA.

SUB RA

The assembler subroutine SUB RA refers to the field
HERE in the RPG program and returns control to
the RPG program.

The assembler subroutine returns control to the RPG
'- program which performs a compare operation to

determine which character was placed in the field
HERE.

Figure 28-29. RPG Linkage to an Assembler Language Subroutine

28-102

Indicators c
AL AL I---

Factor 1 Operation

Line

0 ~ 0
z z

J 4 5 q 10 11 12 1314 1516 11 1B 1 g 20 21 n 23 24 2:. 26 11 ~8 29 30 31 32

0 1 c 'tx!rl1
0 2 c IRl1 IARI
0 3 c l~I l.111R1

'le'
+-
~ 0 4 c ...

0 5 c

L_ __

Resu It F iekl
Resulting
Indicators

Arithmetic

Plus~inu::I Zero
Factor 2 Compare Comments

Name Length 1>:1[1<21_1-2
Lookup(Factor 2)is

High Low Fqual
33 34 35 36 31 38 39 40 41 42 43 44 4~ 46 47 48 49 50 51 54 55 56 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73

!511 ~R li:i

rTlA JP!Fl

[It ~~
j41i+ Ir~

~ Illa lfU

The RPG program passes control to the assembler
I-- subroutine SUBRB.

SUE

~ The assembler subroutine SUBRB refers to the tabl!
TABB and to indicator 44 in the RPG program and
returns control to the RPG program.

L The assembler subroutine returns control to the RPG
program.

The subroutine refers to both RLABL entries. It first tests the indicator. If the indicator is off, the
subroutine returns control to the RPG program. If the indicator is on, the subroutine moves a
eh2L~'."C1Cts:.r c; into the last l::;cked· ·~;.p 8:G.try ~~n the T ... A,i.BB. 'AThen the El!bYauti::J.e returns ~ont.:irol
to the RPG pirogmm, the RPG prngram performs a compare operation to see whether the subroutrne
placed a C in TABB.

IFigul!'e 28-31Jl. RPG Linkage fo an Assembler Language Sulbnrrnutine

Chapter 28. Operation Codes 28-103

Considerations for the Assembler-Language Programmer

28-104

To write an assembler-language subroutine that is linked to an RPG
program, the assembler-language programmer must be aware of the
following: ·

• The name of the subroutine must be the same as the name specified in
factor 2 of the RPG EXIT operation.

• Upon entry to the assembler-language subroutine, the address recall
register (ARR) contains a pointer to the parameters that represent the
RPG fields to be referred to by the assembler-language subroutine. The
return point to the RPG program is the first byte after the parameters.

• If the subroutine makes use of registers 1 and 2, the contents of these
registers must be stored upon entry to, and restored before exit from,
the subroutine.

• All external subroutines should be part of the root segment and not in
overlays. You can do this by not specifying a category (CATG)
statement in the assembler-language subroutine or by specifying a
category of zero.

During compilation, the name of the library that contains the
assembler-language subroutine can be specified. The input library is used
when the subroutine library is not specified.

Message-Retrieving Subroutine (SUBR23)

The message-retrieving subroutine (SUBR23) allows you to retrieve
messages from a user message member. After the message has been
retrieved, it can be modified and written to an output file.

Linkage to SUBR23 is by the EXIT operation code, and input parameters
are passed to SUBR23 by RLABL operation codes. To use SUBR23, specify
EXIT in columns 28 to 31 and SUBR23 in columns 33 to 38. Four RLABL
operation codes must be specified after the EXIT operation with the
following result-field entries:

Result
Field Description

MIC Name of a 4-digit numeric field that contains the MIC
number (message identification code) of the text to be retrieved.

Text area Name of the alphameric field or data structure into
which the message text is read. The maximum length of
a level-1 message is 75 characters and of a level-2
message is 225 characters.

Level Name of a one-digit numeric field that designates the
user message member level. A value of 1 in this field
indicates a message level of 1; a value of 2 indicates a
message level of 2.

,
J

Re ode Name of a one-digit numeric field that contains the I
return codes. The return codes and their meanings a:re l
as follows: l

I
ij

Return Code Meaning I
I

0 Message was successfully retrieved with
no truncation.

1 Message was successfully retrieved;
however, it was truncated because the
length of the text area was less than the
message length.

2 Message was not found.
!

3 Message level was invalid. !

4 An invalid MIC value was diagnosed.

r:; ~w'lessage m.embe:r \Vas not found or u

I message text length exceeds the level-I
max1mum. I

The text area, which is specified by the second RLABL operation, is
blanked before each attempt to retrieve a message; therefore, a blank text
area is returned to the user program when the return code value is 2 or
greater. A total of 225 positions in the text area are blanked unless the text
area is less than 225 characters in length.

Chapter 28. Operation Codes 28-105

SET (Set)

28-106

Indicators Result
Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-66 58-57 &8-59

Optional Optional Optional SET Optional Optional Optional Optional Optional

The SET operation can be used only with input files assigned to the device
KEYBORD, or with a CONSOLE file if the result field contains the word
ERASE. Both KEYBORD and CONSOLE are specified in columns 40
through 46 of the File Description Specifications. All SET operations are
directed to the display station that loaded the program.

The SET operation allows any one or any combination of the following:

• Command keys identified in columns 54 through 59 to be pressed

• The field, literal, or array or table element specified in factor 1 to be
displayed on the display screen

• User messages (from USERl message member) 0001 to 0099 to be
displayed when numbers 01 to 99, respectively, are specified in the nn
portion of the SETnn and KEYnn operation codes

• The buffer for a CONSOLE file to be blanked if ERASE is specified in
the result field of the SET operation

Factor 1 can contain the constant, literal, field name, or table or array
element to be displayed.

Factor 2 must contain the name of the CONSOLE file if ERASE is coded in
the result field. For all other SET operations, leave factor 2 blank.

The result field must contain ERASE if the name of the CONSOLE file is
coded in factor 2. For all other SET operations, leave the result field blank.
See Calculation Specifications for a SET Operation in Chapter 9 for more
information on coding the SET operation.

SETLL (Set Lower Limits Operation)

Filename

Indicators
Result I---

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Required SETLL Required Blank Blank Blank Blank

The SETLL operation allows the lower limits for indexed full-procedural
and indexed demand files being processed sequentially within limits to be
set during calculations. Factor l must contain a field name or literal
representing the value of the lower limit being set. The length of the field
or literal must be equal to the total length of the key field specified for the
file named in factor 2. Factor 2 must contain the name of the file for which
the lower limit is to be set.

Figure 28-31 shows an example of SETLL coding.

File Type Mode of Processing File Addition/Unorder

I l''''E~"d 'o
91n•F1111•on " of Record Address Field

r Record Address Type ..J

{ Sequence Type of File ~
I ~ File Format j I N Organization or 8

Length of Key Field or Extent Exit

r ~--"~· ~ for DAM for Cylinder Overfl
z Name of r· Numl•" of E<to Symbolic U;

Label Exit rr;;-Device :li
.:i1 j Storage Index · l 1 Rewind

! ! j File u__ l Condit
Ul-US

Device

1 ~ ~ r-'---.~--l I ~ Additional Are<i c:

~ ~ Block l Record ~ ~11011erflow lnd1~ator ~
Ii: ~ Length Length .::::: o Eey Field ';(
U <:". ~ e::. X Starting w Contmuatmn Lines z UC

~ e~~:J_ __ _,__ __ __,_.,___.__<~~__..___._~~=~='=jon~~
Ci: w <! ~---~"':::"::.::'":::_"::.::"•::oo::.::'d::_:N.::•m::::•:__ ____ ---,._, K Option

Result Field
Resulting
Indicators

Name

Arithmetic

.g I Plus Minu.!l_Zero

·5 t; Compare

Length ~ i 1 > ?1_1 < 2 1 - 2
-~ i Lo.okup(Factor 2)is

o I High Low Fqual

::> 3
Entry ;, iC

Comments

FIELDA is defined on input specifications as an eight-position alphameric field.

Figure 28-31. SETLL Operation Code

Chapter 28. Operation Codes 28-107

Notes:

1. When a lower limit is specified by SETLL, the end-of-file indicator
specified for the READ.operation to the file being processed is not set off
by the RPG cycle.

2. If a READ operation is performed to the file prior to a SETLL operation,
the record with the lowest key field in the file is fetched.

SETOF (Set Off)

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 64-55 156-67 158-59
Optional Optional Blank SETOF Blank Blank One required

The SETOF operation turns off any indicators specified in columns 54
through 59. At least one resulting indicator must be specified in columns
54 through 59.

SETON (Set On)

28-108

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-6& 156-67 I 58-59

Optional Optional Blank SETON Blank Blank One required

The SETON operation turns on any indicators specified in columns 54
through 59. At least one resulting indicator must be specified in columns
54 through 59.

SHTDN (Shutdown)

Indicators
Result

Resulting Indicators
i-----

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Blank SHTDN Blank Blank Required Blank Blank

The SHTDN operation turns on the resulting indicator specified in columns
54 and 55 if the system operator has requested shutdown. The indicator can
then be used to condition ending the program in an orderly manner, such as
printing some partial totals and going to normal end of job_

Columns 28 through 32 must contain SHTDN, and columns 54 and 55 must
contain one of the following valid indicators: 01 through 99, Ll through L9,
Ul through U8, Hl through H9, or LR

Chapter 28. Operation Codes 28-109

SORTA (Sort an Array)

28-110

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-5& &8-li7 !i8-li9

Optional Optional Blank SORTA Required Blank Blank Blank Blank

The SORTA operation allows you to sequence the elements of an array
while a program is running. You can ensure that the elements of the array
are in the proper sequence for a LOKUP operation by performing a SORTA
operation.

The array specified in factor 2 is sorted into the sequence specified in the
extension specifications for the array. If no sequence is specified, the array
is sorted into ascending sequence. The standard EBCDIC collating
sequence is used for the SORTA operation. If an alternative collating
sequence has been defined, it is not used. Related arrays, if existing, are
not sorted. Only the array specified in factor 2 is sorted.

For examples of the SORT A operation, see Figure 28-32.

Note: Columns 18 through 27 (factor 1) and 43 through 59 (result field,
half-adjust, and resulting indicators) must be blank if a SORTA operation is
specified.

In Figure 28-32, the array ARY is sorted into ascending order because no
entry is specified for sequence (columns 45) in the extension specifications.
ARY A is sorted into ascending order because column 45 of the extension
specifications contains A; ARYD is sorted into descending order because
column 45 contains D.

E
t---

Line

3 ' 5 6

0 I c
0 2 c
0 3 c
0 4 c
0 ; c
0 6 c
0 7 c

Record Sequence of the Chaining File

7 8

.-----------i Number
Number of the Chaining Field of Number

From Filename

Table or Entries of Length

Array Name Pee Entries of

Record Per T <1ble Entry

or Arr<Jy

.-------
To Filename

Factor 1 Operation Factor'}

0 Table or

~ Array Name
(AlternatinCJ

Format I

g

Result Field

I
l\Jame Length

Length
of
Entry

Resulting

Indicators

Arithmetic

~ ;E_ PtusIMinus Zero

~ ~ Compare

ca~1>~<1_i-2
g ~ Lo_okup(Factor 2)1s

o :r: High Low Fqual

Comments

Comments

9 10 11 12 13 14 15 16 u 1s 19 20 71 n n :>4 Js 26 n 2a 29 :io 31 32 J:J 34 35 36 37 38 39 40 41 42 43 44 45 46 41 4B 49 50 51 52 53 54 55 56 57 58 59 so 6 1 62 63 64 65 66 6 1 68 69 70 71 72 13

222222222 2222 22222I222 J

Sort ARY and ARYA into ascending order. J+H-1->-+--+--+--t-+--+--1-+--+---f'--+--+--+-+-+--+--4--+--+-+-i--+--+--+-<-+-+-+

t-t-1 - nfttHITIJDlif HF+--+-<1---+-1+-~ ~ri+-t--_+----!=-+=-===-+-+---+-+-+ +--+--+---+-+----+--+---+-+-+-+-+<-+--+

' l]t---t--t-T-t-+-+-r-t- +--+--+--t-+-+-+-t---+--+-+--++-+-+--+--+-4-+---+--+
Sort ARYD into descending order.

._C----t-+->--+---t-+-+-t-->- 1--+-+- I
0 8 c
0 9 c
I 0 c

r--~~~~~~~~~~~--~~~~_.

lllllllll~lllll 1

Figure 28-32. Example of SORTA Operation Code

Chapter 28. Codes 28-111

SQRT (Square Root)

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Blank SQRT Required Required Blank Blank Blank

The SQRT operation derives the square root of the field named in factor 2.
The square root of factor 2 is placed in the result field. Factor 1 is not
used. An entire array can be used in a SQRT operation if factor 2 and the
result field contain array names.

The number of decimal places in the result field can be either less than or
greater than the number of decimal places in factor 2. However, the result
field should not have less than half the number of decimal places in factor
2. The result of a SQRT operation is always half-adjusted.

If the value of the factor 2 field is negative, the job halts. The person using
the display station can continue processing by responding to the error
message. When processing continues, the result field is set to zero.

SUB (Subtract)

28-112

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Optional SUB Required Required Optional Optional Optional

Factor 2 is subtracted from factor 1. The difference is placed in the result
field. Factor 1 and factor 2 are not changed by the operation. Subtracting
a field from itself is a method of setting the result field to zeros. If factor 1
is not present, factor 2 is subtracted from the result field, and the difference
is placed in the result field.

TAG (Tag)

Indicators i Resulting Indicators
Result

7-8 9-17 Factor 1 Operation Factor 2 Field 64-55 56-57 58-59

Optional Blank Required TAG Blank Blank Blank Blank Blank

The TAG operation names the operation to which the program branches in
the GOTO operation. If the TAG appears within a subroutine, the
associated GOTO must appear within the same subroutine.

Factor 1 contains the label that must begin in column 18. The same label
cannot be used for more than one TAG operation (or elsewhere as a
subroutine name or ENDSR label).

Factor 2 and the result field are not used No indicators can be entered in
columns 9 through 17 for a TAG operation.

See Figures 28-20 and 28-21 for examples of the TAG operation.

TESTB (Test Bit)

Indicators J I I ! Resulting Indicators J --i--~ 1

1 I I Result -r-~-=-==-- I
7-8 9-11 factor 1 J Operation I factor ~-/'ield ' 54-55 ~~~--~-~
Optional Optional Blank ITESTB I Required lRequired One required J

The TESTB operation compares the bits identified in factor 2 with the
corresponding bits in the field named '>S the :result field. The result field
must be a one-position character field. Resulting indicators in coh.1n1ns 54
through 59 reflect the status of the result~field bits. Factor ~! is always a
source of bits for the result field. The result field is the field in which
corresponding bits are compared with the bits specified in factor 2.

28. Codes

Columns 54-55:

Columns 56-57:

Columns 58-59:

28-114

Factor 2 can contain:

• Bit numbers 0-7: From 1 to 8 bits can be tested per operation. The bits
to be tested are identified by the numbers 0 through 7 (0 is the leftmost
bit). The bit numbers must be enclosed in apostrophes, and the entry
must begin in column 33. For example, to test bits 0, 2, and 5, enter
'025' in factor 2.

• Field name: The name of a one-position alphameric field, array
element, or table element can be specified in factor 2. In this case, the
bits that are on in the field, array element, or table element are tested
in the result field; bits that are off are not tested.

See Figure 28-33 for a summary of TESTB operations.

Indicators assigned in columns 54 through 59 reflect the status of the
result-field bits. At least one indicator must be assigned, and as many as
three can be assigned for one operation. Two indicators can be the same
for a TESTB operation, but not three. For TESTB operations, the resulting
indicators turn on as follows:

An indicator in these columns turns on if each bit specified in factor 2 or
each bit that is on in the factor 2 field is off in the result field.

An indicator in these columns turns on if the bits specified in factor 2 or
the bits that are on in the factor 2 field are of mixed status (some on, some
off) in the result field.

An indicator in these columns turns on if each bit specified in factor 2 or
each bit that is on in the factor 2 field is on in the result field.

Note: If the field in factor 2 has no bits on, then this indicator turns on.

The operation code TESTB must appear in columns 28 through 32.
Conditioning indicators can be used in columns 7 through 17. At least one
resulting indicator must be assigned in columns 54 through 59. As many as
three resulting indicators can be assigned, but not more than two can be
the same. Factor 1, decimal positions, and the half-adjust columns must be
blank.

c
1--1

Line

Indicators

1 1 Factor 1

,--·---~-------~---R-esu-lt-F-iel_d _-~,--,--,.-.A·esulting ~- ,.-.------·~--~~--·"-~·-·-~~·~---~~ -~~

Indicators

C! Ar1t~met1c --1 e .!. Plus Minus Zero

13 t;; Compare
Name Length ~ ~ 1 > 2f1 < 2 1 - 2

0 0 0 1~ ':;; Lo.okup(Factor 2)is
z z z ~ ::r: High Low Equal

Comments: Factor 2 Operation

J. 5

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c
0 7 c
0 8 c
0 9 c
1 0 c
1 1 c
1 2 c
1 3 c
1 4 c
1 5 c
1 6 c
1 7 c
1 8 c
1 9 c
2 0 c

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21pa 29 JO 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 SB 59 60 61 li2 63 64 65 6S 67 63 6!J /Q 71 72 13 i'l

l--+-l-+-f---t-t-+-+-+-+-+--+-+-+-+-+-+-+-+--+-+-+-+--+-+-+--1---+--+-+---t-+--+-+-+++-+-+-+-+--+-- . ffif FFFFFl- 1 ~; • ' - l I

The following TESTB operation compares bits 0 and 7 with corresponding bits in the fie;~":;:Lf.=
named BITS. If bits 0 and 7 are off in the field named BITS, indicator 20 turns on. If bits ·· · ·-ft-
0 and 7 are of mixed status (one on, one off) in the field named BITS, indicator 21 turns on. --1 t I
If bits O and 7 are on in the field named BITS, indicator 22 turns on. f;1~f · _

~ql. ·m-1- -, .
ttttt-tti-tttt-tti-tt-ttl-tttt-t-!Tt.l'._~~~.l:lr.1. ;;tttzj;;t-;t-. ttlTtlw,R~lrt-t~-t-t-tti-t.21;;;t0,;t;Pit!l1r.:.!~~ti-_ Hr-r- . = ~tt ~-~r1 :

- . . t l , -t-+-H l -
The following operation compares the bits that are on in the field named ALPHA ~it~~--·1:-: r~
corresponding bits in the field named BITS. If the bits that are on in the field narned ~ t+· t+-
ALPHA are off in the field named BITS, indicator 20 turns on. If the bits that are 011 in ~ ·--r T'
the field named ALPHA are of mixed status (some on, some off) in the field named BH~, ~i ·rr-1' ... -
indicator 21 turns on. If the bits that are on in the field named ALPHA are on in the field J~~,--1. -.-_.r-._-.-.. -Ir' -_ .. _;••

named BITS, indicator 22 turns on. ~ t
-

c
c
c
c
c

0 1 c
0 2 c
0 3 c
0 4 c
0 5 c
0 6 c
0 7 c
0 8 c
0 9 c
1 0 c
1 1 c
1 2 c
1 3 c
1 4 c
1 5 c
1 6 c
1 7 c

Figure 28-33. Summary of TESTB Operations

Chapter 28. Operation Codes 28-115

TESTZ (Test Zone)

28-116

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 64-55 156-67 I&B-59
Optional Optional Blank TESTZ Blank Required One required

The TESTZ operation tests the zone of the leftmost character in the result
field. The result field must be alphameric because this operation can be
done only on alphameric characters. At least one resulting indicator must
be specified in columns 54 through 59. Resulting indicators turn on
according to the results of the test. The characters &, A through I, and any
other character with the same zone as the character A turn the plus
indicator on. The characters - (minus), J through R, and any other
character with the same zone as the character J turn the minus indicator
on. Characters with any other zone turn the zero indicator on. Factor 1
and factor 2 are not used in this operation.

~ ..;

uu e

XFOOT (Summing the Elements of an Array)

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Blank XFOOT Required Required Optional Optional Optional

The XFOOT operation can be used only on numeric arrays. XFOOT adds
the elements of the array together and places the sum into the field
specified as the result field. Factor 1 is not used. Factor 2 contains the
name of the array.

Z-ADD (Zero and Add)

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Blank Z-ADD Required Required Optional Optional Optional

Factor 2 is added to a field of zeros. The sum is placed in the result field.
Factor 1 is not used.

Z-SUB (Zero and Subtract)

28-118

Indicators
Result

Resulting Indicators

7-8 9-17 Factor 1 Operation Factor 2 Field 54-55 56-57 58-59

Optional Optional Blank Z-SUB Required Required Optional Optional Optional

Factor 2 is subtracted from a field of zeros. The difference, which is
actually the negative of factor 2, is placed in the result field. You can use
this operation to change the sign of a field. Factor 1 is not used.

Chapter 2~t Storage

Chapter 290 Storage

To help you
p!·og:rarn.
constant1:~.i

To request a
use

rno.nu.al"

cancel your
Tht DDlVfF,.

of the prograra snowr; in
identified.

SOURCE PF<OGRl-'1i'i NAME·-·-·
INPUT SOUl~CE L.IBRAF<Y--.. -.. -------· ,JAl\J .. IB
OUTPUT LIBF:ARY--········-···-·-··············------·· ,JAKL.If.i
SUBROUTINE INF'UT LIBF~ARY·--· ~Ai~LJ:B

LIST OF OPTIONS SPECIFIED FOR Ti··in': (.;OMP:Li.E·-···-

NODSM
PRINT :'.1):tQ.•tl©\;;!
NOXf<EF
00 m:OUESTING DISFLf.1"! ST:c
NONEP
NOHALT
F~EPL.ACE

LIN!';
NOD!EUECT
GEN

of an

0001
0002

0003

0004
0005
0006
0007
0008
0009
0010
oou.

()01~~

0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
002;3
0024
0025
0026
0027
0028
0029
00:50
oo:u
0032
00:53
0034
00;·55
0036
0037
0038
0039
0040

0041.
0042
0043
0044
0045
0046
0047

H 024

FDISF'L.AY CF'
FEMF'FILE IF

E

:rnrsPLAY
I
I
IEMPFil...E
I
I
I NAMES
I

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

01
Ol.
Ol.

O:L
01

01
02
02

. ()2
02
02

21

<;>()

20

KG

99

NS

NS
NS

DDH'lPLAY D
Cl OR
()

0
0
0
()

:n~~

:.;•56 ~?.5<', 8A I
WORKSTN

1 [IISK

02

01

[IS

DEPT

L.DOP

I

DEPT

END

AF~ l.() 29

1

1

CA

c

Z··-A[l(IOl.00
Z·-ADIH
EX IT SUBl'i:23
m .. ABL..
Rl...ABL..
F~LABL..

RLABL
Z-··A[IDO l. 0 l.
EXIT SUBF~:n
l'i:l..ABL
RL.ABL.
F~l...ABL

F~l...ABL..

GOTO END
GOTO END
z--ADIH<·zr::r.;:o
MOVE *BLANK
CHAINEMPFIL.E
GOTO END
TAG
ADD 1
COMP 1:L
GOTO END
MOVE EMPNAM
F~EAD EMF'Fil...E
GOTO END
COMP DEF'TNO
GOTO LODF'
TAG

01NKG
02NKG

DEF'T
El'i:R:LOO
ERf-i:10l.
NAMES

2

1
2:1.

:I.

MIC
LEVEL.

MIC
EF~l'i:lOO

LEVEL
l'i:CCJDE
MIC

MIC
EF~R:l.O:t.

LEVEL
f'i!CODE

I
AR

I

AR,I

9

8
49

2<;0

40
:LO

75

:1.0

7~3

K6 'FOl'~MAT'

8
8:5
83

:H:5

* • • * * E N D CJ F S 0 LI R C E * * * * *

Figure 29-1 (Part 2 of 4). Sample Program Listing

29-2

RPGEXA

DEPT

DEF'TNO
EMPNAM

AF~

99

21

90

INDICATOl;:S USED
KG 01 02 20 21 90 99

E~ECUT:qJN TIME TAfll .. .ES AND ARRAYS

STMT~ TABLE/ DEC ENTr-\:Y NUMBEF\ OF DTT T/A
DEFINED ARRAY F'DS LENGTH ENTf\IES DISF' DISF'
ooo:~ AR 029 00010

FIELD NAMES USED
Address of the rightmost byte of the first element in the a

STMT~ NAME DEC L.NG

0100\ 012~

DH>F' Address of the leftmost byte of the DTT.

0010 NAMES
0005 DEPT
0008 DEPTNO
0009 EMPNAM
0012 MIC
0013 LEVEL
0016 ERRl.00
OOl.8 F\CDDE
0022 ERRl.01
002? J.

L1~BELS USED

0290
0008
0008
0029

0 0004
0 0001

0075
0 0001

007~5

0 0003

STMH' NAME TYPE
0031 LODF' TAG
0040 END TAG

010E- Data Structure. DiSP is the address of the leftmost byte of the data structure.

~;~~1 0279
0~3l.7

0318. Fields. DISP is the address of the rightmost byte of the field.
02C4,

0:3191
030F,
031C}

ERROR NUMBER STATEMENT NUMBER
RPG--0097 0007
RF'G·-·0159

ERROR SEV!::TGTY TEXT
RPG-·0097 NO FIELD r.ir::sc1;~:r:£~Fn FOF' THIS OR ~:·1~E 1-,JIOUS l~ECDF~!J OR DATA ~3T~=<UCTUF-!E., IF D~~TA

STRl lCTUFo:F, I ENGTH DEF AUL TS TO DNE •
RPG-0159 MISSING RECfJF:JC1 IDENTIFYING INDICATOR IN COLUMNS 19·-·20,

* * ~ * ~ N ~ 0 F C G

Figure 29-1 (Part 3 of 4). Sample Program Listing

Chapter 29. Storage Dump of an RPG Program 29-3

OVERLAY LINKAGE EIIITOR STOr~AGE USAGE MAP

START OVERLAY CATEGORY NAME AND
ADDRESS NUMBER AREA ENTRY

GODE LENGTH
HEXADECIMAL IIECIMAL.

0000
OlOE
031D
0462
OBl>E
0916
0986
09CC
09D2
09DD
09F6
0991
1~~70

1560
:l.79B
1860
18B2
1899
:I.SEO
18AA
:1.ElAE
:I.BEA
:l.8F2
:1.90B
1914
:1.ASB
:l.A63
1A90
1AB3
1AF6
1BA3
1BB3
:l.BD3
1C~5C

1C48
1C65
1C8A
1CB6

0
0
0
0
0
0
0
0
0
0
0
6
6
6

86
126

21
126

126
21
50

11
15
86

126
2:1.

12.!>
:1.26

126

F~F'GEXA
:t.FLDS
:;:fmOT2
#BUFF
@f'GTS
Uf'C:R
:::Of'CR
:::CNSTO
#CNST1
@F'GLlM
SUBR23
@f'GTI
@f'GTO
@.f'GTD
:::OPEN
.:OINPUT

@.0992
@0999
@.09CO
@.098A
@.098E

:::IHK01
UFLD

@OA5A
:::I1ETC:
:::IHK02
::OCHNOO

@OD63
@.f'GRI
@.f'GAA
#CLOSE

@OC90
::Ot1EOUT
:::OHKOl
::OLROF
:::RCDID

!ll09EF
#CNFLD

SYS-3130 I Rf'GEXA MOI1ULE'S MAIN STORAGE SIZE IS
·7399 DECIMAL

OlOE
020F
0145
040C:
OOAS
0070
0046
0006
OOOB
00:1.9
0199
06[1F
02FO
023E1
ooc:::;
008A

0008
002~~

0147
()008
0050

0043
OOAI1
0030

0069
oooc
0011)
0051

0026

270
527
325

103c!1
l.68
112
70

6
:1.1
=~5

411
1759

752
571
197
l.38

8
34

327
8

80

67
l.73
48

105
12
29
81

SYS--3131 I 0000 IS THE STAln CONTROi .. ADDRESS OF THIS MDUlll.E
SYS-3134 I l:::f'GE:XA MODULE IS CATALOGED AS A LOAD MEMBER

JAKLIB IS Tl-IE LIBRARY NAME
29 TOTAL. NUMBER OF LIBRARY SECTORS

Figure 29-1 (Part 4 of 4). Sample Program Listing

29-4

':rj
(Jq
i::
'"'!
ro ADI!R

NI
<.co 000000)(
I
~

,.... 000020
"'Cl
ill
"!

"""
000040

....
000060

0
()() 000080
'-'

r:n OOOOAO
ill
8 ooooco
'"d -(fl OOOOEO
00
'"'" \:) 000100
~
~

i)fQ
le

000120

\:)
!'.:
l3
'GI ooo;:;oo

(1
;T 000320 ,,,
"d
c+
(j)

{}00340

" N)

~o 000360

00 .,... 000380
0

" Pl
lltl

0003AO
ro
t:j 0003CO
$::!

i3
'!:l 0003EO
0 ,.,

""
1)0040C

~

;:c 000420
"d
Cl 000440

000460

Nl
'P
l".Jl

1Af<-H01 79fl ARR··-J.486 Xf·U-800000 XR::.>·-·800000 Wl<4 :'S!")38 ~Jf.;:5-0009 Wl'i:c!,.-OQE10 11!1'<7--8001 F'MBR-1F02 DlR-80

00 04 08 oc 10 -t} 18 lC
Primary Work Arai __ _
C210179B 087':<7BD4 E:2C7D9D7 F:l880000 00000000 00{)00000 00000000

~
000000001

i
00000000 00000000 00000000 00000000 00000000 OOOC-0000 00000007 v004087Bi

i I I 7BD4E;~C7 .\.'9I:r?F28f.l 00000000 00000000 00000000 00000000 00000000 00000000 !
II 00000000 00000000 00000000 00000000 . 00000000 800§lQSJ.~E]!:•7BD'!f;2 G7D9!:1700 '1

1

~Constanta
' ' I 00000000 00000000 00000000 00000_0 40FFFF<>o 00010002 0;31rio31n 00000000 1

11 Tima of Compii<Jtii:m D1.1te of Com11ilation 1

I 0000~ FOFOFOFO OOOGQ9:l91 CO!]lL:LBA3 COF71860 0<~~><;:§09 ~5c§210,21J 00000000 I

11ndic;;tms I I -+-' ---r
1
1 oo6goooo ooooq_ooo 00000000 00000000 20000000 oooQ(!:52<>0 ooook~Q_F :tlooooco I

Secondary Work A.rail .
00000000 00000000 00000000 OOO_yOOOO 0000000() OOOQOOOO 00000000 ooooooo_Qj
OTT I NAMES !Data i!iitm,~tu~ei i
012A02:;?F O:l2>\001D Cl.IW4040 4040K>OOO 00000000 OOOOC>OOO 00000000 00000000 J

l-00000000 00000000 ooc.':oo-oo o:~~oooo 000000;;0 oo<»::•·)ooo 00000000 ooococoo i
I UEVE!l RCODE
F~!d~ DUPLICATE LINES SAME AS ABOVE \ I ;

I ~~~~g~oo -Q90<~~~oo ooo:,~~~:--:-~000000 J ;>~~~ooo j ~(~~~~~,;JJ;J;:~2--09r.;~:~-:~1
I lnput/Outp11t Contrni Block for WORKSTN file 1

i 43036900 __ QOO<&AOO 017D0468 010005FO :lC8P-,OOOQ_Q.')Q0?02.Q_JlOOOOOOQ _ _2.QOOOCyC j
1~ lni;'·llt!Outpl!t Control !3:1ock for r::;m;:~ Hie l
I 00000 no 0«10:;1rio3 F8QQoooo. :sf'.i.Q~ql<>.')_ o4MJ02•~1? .. -2~-::'?}~'~5':S~_0 __ 002_002,~><>__0099_§9_00 l
' !DTF for WOiRK;»lfN Fale ' l 00000000 00000000 oolcooooo 00!:10COOO 8003Ff300 Ol'cF(>)COO OOOOOOCG Oi.7DCAC9 i
I
! E2l'.!7D:3C1 130000000 ooooeoco c9ooeoooj Ea4C10000 00001:3000 Oi)flC'OOOO

DUPt ICATEI LINES SAME ;;E

¥:'.B ~ ,, " <> o MSGRP:t. e ,, * , -) ;_. • o v o o o Q "' ~ ~ 1. I/>*

·~-=-O~V'lo '(1'()i.;+'!o<J>V¢>'1 ><)~Q<l-01'<:1><1'()')9i'<I'~'

* .,. MSGRF'2 II> i.; .,. 9 • ., o ., {> o -:- • t o o <> o • " ~· o () e ~ ., *

~· ~ '.)> " • <· ., <> ~ Q .,. •• ,. "' () ,, ,. ~ () ., o .,. ,., 9 •• t-1SGRF' {• *

;:;(, ? ~· <) 9 <) .,. ') , '> 'I' Q> 9 <> ~ <> <) ii> 0 .;, • "' ,. () :) <) 4' * *

,., '1' C.00000 o o " • v ~ , " .,. ,_ o -- <) (>CR<> "' " .. e ·} ~ *
~ iCom~i!er Release Lave!

* -{· "' .;- <) f' " f.>? " ,, ():;., (> ~ <) *

* 0 ;(lo ~ ' '~ 0 <) " .; .,. <) 0 () ,,. 'l> <) • ~ ') .,. 0 <). {> .,. " 1' ') t *

* , ,Al'< v () 0 (> ;-. "' "' ,, <'.> <> {> "' ,~ ... i:!-

.)'.$,, (> {lo '.) <) <> 0 } " "' ·} <> ~ ,. } " \} 0 0 .,. <> "' (> " " ..,, <) " "' ;.. • ,) i:i:::~

"~ .. Ec~9*

;'t- ~" (),,.,. "o<l' ') ~ <) 1>" ., ,} '* ., Q <> 1> o o <()*

* o '? o ,., '(; ., ~ ·~ r:!l () ·) • 4 .,. , o ~ ;; ., () } ,, ·~ , ') ') ~ ,, ,, ·2*

·~·., ·· ·>", .} ,, , 'P <) v o,,., :1 ., , ,.., 08<:> oOo ill.,",, :i-, ~DI*

?:\·:3}.:'t_,~y ·) ,,) •)" 1·" 0;). 1> .;:, -')> •);; J •' """.., -:>J:.o o ..,*

0()0()00~PG~XAFMe~~-· ~:ooW*

-(> ':.> l.:.! () • [I :. ,, ~ <!> ""4

, ., '>"' > ;- {> 1' o -:- 0;:. <> ei*

JE,. '.) ·) o ') } ·} -~ .) " () EMPFILE " \l' o Q ·~ ;:. ·) o -» ~ "*

; ~ ;,> (!> ., .;, !> ,., ' <) ·1 } <> .;;.) .;; ... ~

) .;;. !>) (• :.*

!:..:> co
~

~
oq

= "!
(D

~
~
I
~

~
I»
"!
~

0
~ .._.

00
I» a
'C
;'
00
0
"!
I» oq
(D

t::::l

= a
'C

AI•I•R

0005EOX·

000600

000860

000880

OOOBAO

oooaco

0008EO

000900

000920

000940

000960

000980

0009AO

0009CO

0009EO

OOOAOO

OOOA20

OOOA40

OOOA60

OOOASO

OOOAAO

OOOACO

OOOAEO

IAR-80179B ARR--1486 XR1·-800000 XR2-800000 WR4--5538 ~JR5·-0009 WR6-00BO WR7-·8001 PMSR-1F02 DIR--80
End of Entry

00 04 I End of Table-
08 oc 10 14

WSID Table / Logical Record Area
18 1C

00000000 000 000 30000000 0 - F "F 00 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

DUPLICATE LINES SAME AS ABOVE
Subroutine That Scans WORKSTN ID Table (@PGTS)

00000000 00000000 00000000 000 408 08F63401 08F23402 08EE350j. 08F61C04

08FF04C2 01086E5C 00448F6C 006A575D 019j.8AF2 01046C01 91567502 9H~DFFOO

F281395D 018E8CF2 01109[101 018AF281 25B80002 F2901FF2 87259D01 O:l8EF201

157D008F F2811878 408FD010 43B84002 F21003DO 8743E202 OOD0872F 75028A75

01887402 040E0108 F60901C2 020000C2 010000CO 87000000 00404000 00000000

00050902 09040906 0908090A 090C090E 09100912 091413408 098!':j340l. 0938E201
Input Processing Control Routine (#IPCR)
00750205 9COOOE1B 9C010C12 BD1000F2 01037B10 1BCOFFOO OOBD410D F2823CCO

8100ACBD 440DF282 12F28129 BD480DF2 8123C202 OOB4F401 0412407A 8000BDAO

OOF20U.7 B8800FF2 9011BD83 OEF2810B F2870200 030E0109 850974[12 0200C201
Output Processing Control Routine (OPCR)

OOOOC087 000 408 09CB3402 09987502 059C010C OECOFFOO OOOC7C05 E405E50C

FF056705 68BD400D F28116BD 410DC08l. OOACBDEO OOF28109 C20200B4 F40l.0412
Constants

4075020E C2010000 C0870000IC6D6D9D4 C1E3FOF1 FOFOF1FO F1FOF1F1 Fj340809
Subroutine That Calls Printer and Disk (@PGDM) SUBR23
F5BDEOOO F28107F4 010COOF2 8704F401 OC08C087 000 401 08543402 OB5834()8

OB5C3501 OB5C7502 022C030B 6AOOD201 03C2020B 80BC0007 8C01060B 6D4D0202

OB74F201 11D20l.04 OE010B5C OB764D01 OOOB7AF2 870D1COO OB7C008F 01060B7C

7DE100F2 020C9COO 07008EOO 070B6EF2 8703BCE1 079E0106 020E010B 5COB78D2

01031C01 OA6C020C 00087100 003DF10B 7l.BC0001 F2810E3D F20B71BC 010l.F28:L

043AFFOB 7DD20103 :LC010B5E 02750102 7CFOOOB5 01062COO OB700736 Ol.OB701C

010B7F01 7C40012C OOOAAD07 5C000001 4C01010B -fF38FFOB 7D3BFFOB 7DF2900B

35010B5E 7CF300CO 870B51C2 010B677D F900F284 30"f[IFOOO F~-.!822AF2 800F9801

02003C87 OADCD201 01C0870A CF980302 003CBOOA DCD20101 7DFFOOF2 81:L6E202

* *

*•.•.••...••...•..••••••••••• *

• •••••••••••••••• 6 ••• 2 ••••••• 6. •

···B······x ••••••• 2 •• x ••••••••• *

2 •••••• 2 •••••• 2 ••••• 2 •• 2 •••••• 2.

*• t •• 2 ••• .2 ••••• s •••.••••• *

• •••• • •• 6 •• B ••• B. • •. •. • • • ·····
*••..••..•...•..••••••••• s. *

• •••••••••••••• 2 •••••••••••• 2 •• •

••••••2 •• 2 ••••• 2 •• B ••• 4 ••• •••••

•2•••••2+••••2•+2+•••••••••K·~B·

• ••••••••••••••••••••••••••• u.v.

• • •• • •• 2. • • •• • •••••• 2 •• B. • .4. • •

* ••• B,,,,,,,FORMAT01001010111.,.*

*5 ••• 2 •• 4 ••• 2 •• 4 ••••••••••••••••• *

••. •*• ••••••• K •• B ••• • •• • •• • ••• •*

• .2 •• K •• •. •• •. • • •• 2. • • •. • •. • • • •*

' • .2. • •• • •••••• 2 •• •. • • • •. • • •• .K*

* .•... x •••••••• 1 ••••• 2 ••• 2 ••••• 2.*

• • • + 'K• • • + • • •• • •• o ••• + •• • + • + • •• •

••••• ·················"···"2++*

*•••••3 ••••• a ••• ,9.2 •• 1 0.2 •• 2 •••• *

••••••K++••••••••••+•K++ 1 ++2++S•·

t-,:)
co
00

~
IJq

= "1
ti)

l>:> cc
I

l>:>

-;a
j:Q
"1
~

0
ao -
00
j:Q

El
'C
;'
00
0,
Ill

IJq
ti)

t:i
= El
'C

ADDR

OOOEOOX

OOOE20

OOOE40

OOOE60

OOOE80

OOOEAO

OOOECO

'OOOEEO

OOOFOO

OOOF20

OOOF40

OOOF60

OOOF80

OOOFAO

OOOFCO

OOOFEO

001000

001020

001040

001060

001080

0010AO

0010CO

0010EO

IAR-801799 ARR-1486 XRi-800000 XR2·-·800000 WR4-5538 WR5-0009 WR6-0090 WR7-8001 PMSR-1F02 DIR-80

00 04 08 oc 10 14 18 1C
@PGTI (Continued)
125CODFD OD01125C 122AC081 OF643501 ODFD6C01 04359501 53C0870F 9E2COOOE *•*• ••• •*• •••••••• ·"· ••••••••••• •*

2635C087 :l.560003C 870E3ABD 1135C081 OF2D3DFF OE26F201 93F28749 7C40115C *·····-················2 .. 2 ... •**
0610114C 04091~245 B501532C 010E6850 8[1013512 39F2812D 1C0l.OE66 060C010E * .•.•••••.•••••••••••• 2 • ••••••••• *

6B122ACO 870000C9 C4000000 OD010E6f.• 122AC081 OF:~3;3501 OE69C087 OFB1350;;! *••••••+lil++••••t•••••••••t••••••*

OC039501 537DFF2C F281171C 010E962C 3:50:l.124F 7A000035 020C07BA 0400C087 *• •••• , • • 2 •••••••••••••••••••••• •*

OC004D01 2El22AF2 81221COl. OEB62E35 01124FCO 87000035 020C03B~; 015378:1.0 * ••••••. 2 • ••••••••••••••••••••••• *

1DF29008 C08711C7 C0870D6E B50153CO 870BEC9D 1135F281 543DFFOE 26F20:1.80 *•2•+•••G++••••••••••••2••••••2••*

9D0235F2 011F8D01 20122AF2 O:L 725F01 24248D01 10:l.22AF2 8l.05C087 1015C39C *• • • 2 ••••••• 2. • • •• •. • • • • 2. • • • • +C+*

420DF287 599[1;3435 F2812E9r1 2435C081 1187BD80 35F28:l2D 9D8135F2 812D9D82 *• .2 ••• + .2 •••••••••••• 2 •• + •• 2 ••• •*

35F28:1.2D 9D8335F2 81.2DF287 30BC4:.;?0D F2872Df.•C 860DF287 27BC850D F2872:LBC *+2 ••••• 2 •• 2 ••••• 2 ••••• 2 ••••• 2 ••• *

800DF287 199C870D F28715BC 9~~0DF2ff7 OF9C930D F28"7099C 940DF287 039C950D *++2 ••••• 2 ••••• 2 ••••• 2 ••••• 2 ••••• *

C08709FO 1C010F72 060C010F 77122ACO 87000000 00400000 OC01l.25C OF770D01 *• • • o ...•...........•. •*• •• •*

OF77122A C0810F33 35010FT? 6C010150 7A80026C 01043595 0153C087 OE193501 *• ·"· •••• ·"· •••••••••• •*

125CC087 OFB:l.3502 OC039501 53C0870E l.[1340810 144D0106 122A3502 OC03F281 *•*• •••••••••••••••••••••••••• +2+*

10792002 F21005CO 871015C9 C087l.015 [19950;~53 8D010C12 2A2C010F F70C2C01 *• + • .2. •++ •• I.•• +R+ ••• • • • •. • .7. • •*

OFF30835 02oco:w2 81.0E7920 02F21004 C0870000 C0870000 9~502539C 01240:L8D *+3 ••••• 2 2 •*

011C122A F28107B5 021C9C01 00017920 02C08700 00340811 55340111 4D950253 * •..• 2 • •••••••••••••••••••••••••• *

2C011258 222C0112 5A2~~3501 :J.155:1.COO l.Z-5FOOOE 01:l15512 2C350111 4D75010b * •.••••.•••.•.....••••••.....•••• *
8502103[1 C2125FF2 01113502 OC032C01 12584E2C 01125A4E 95010COF 01125A12 *• •• • r-t •• 2 ••••••••• • + •••• + ••••••• •*

30F2046A OC011258 125A3601 12333602 12333DC;;! 125FF281 073DC912 5FF2010A *•2•••••••••••••••••B •• 2 ••• 1 •• 2 •• *
7C40015C FD0001F2 873A3DC3 125FF201 OA9C4001 ACFD0001 F28729D2 0101E202 *• •*•••2 ••• c .. 2 •••••••• 2 •• K++S+*

013[1[1912 5FF20107 9CFEOOOO F287093D E2125FF2 01046CFE 0000[1201 01E20;;?01 *··R •• 2 •••••• 2 ••• s •• 2 •• x ••• K •• s •• *

C087105B E20202D2 0102C087 10590F01 1258122E 36011258 36021258 OC001101 *• •• • s .. K •••••••••••••••• • •••••• •*

12580COO 11191258 3DC2125F F281073D C9125FF2 011:1.-7C40 013DFF12 58F2814A *•••••••••B •• 2 ••• 1 •• 2 ••• •••••2••*

n
::r
ill
'e ...
(D

"' NO
<:D

w ...
0
Ill

:r:i
(D

t:I
~ s
'"d
0 . .,
Ill
:;:$

;;:;
"t!
Cl
'1;J

"' 0

~
Ill s
~
i:,O

c'.o

'zj

~-
'"!
tt

N>
w
• N>

-;:a
Ill
"1
C1

g,
CXl
'""'
if,.
Ill s
'd -(!)
00 ...
0

"" Ill aq
II>

el
i::
8
'd

ADDR

001100X

001120

001140

OOl.160

001180

00:!.1AO

0011CO

OOUEO

001200

001220

001240

001260

001280

0012AO

0012CO

0012EO

001300

001320

001340

001360

OC1380

0013AO

0013CO

0013EO

IAr~-8C,179B ARR--148<:. XH:!.-·800000 Xl'<2····800000 IJFA-·5538 !.IR5·-0009 WR6 00E•O ,,m-,'-8001 F'MSR-1F02 DIR--80

00 04

I @PGTI (C[rntir11.11edl
5COOOOOl F287433D

1011258>2 2COC0011

08 oc 10 1.4 18 tC

C3:L25FF2 01UBC40 013DFF12 58F28L32 AC000001 F2872f.•OE

39l2580C 00114712 583DD912 5FF20107 9C000101 F2870B3D

E2125FF·:;:, 01046COO OHHC201 0000~~502 OG03C0ff7 0000:~501 i24F1C01 1249AF3~5
I

. 010C07C2 02124EF4 01041240 3~5020C03 350112~'5C 7DF"OOOF2 !3206BCE8 1EF28703 I
I BCOA1EF4 010C0435 OH25CBD E8:1.EF281 OA7B8FO;;> 5FO:l0101 H1200;.?.~5F 010404B5 I
I 01536COO 2735C087 Of.•l\0:3408 1:lE97<180 1DF2:l007 BCU90DCO 870BFOBB 207:0C0!37 I

11EA90:0i9 F2870A34 0~1U.E9CO 871tEA90 t~OBC061f.I BC(•51EBC 4B20EJC01 23124FF4 I
010C04EJC 001DC087 00003401 120F~'l402 12133.408 121 7C202 1218:3501 12:l 70E01. I

121712::.:E 9co10301 F40l0409 c2010000 c::io20000 coo7oooo :;.0040000 ~1000004B I
80FFFFOC 00000000 00000000 01000200 FF0300FD FOF(lf'"OFO HlO:l :L00:3 08000200 I

I 01D9C5Cl C440C087 OOOOC087 116COOOO 00000000 2.9J.,'Q_QOOO ()(.)()00000 00000000 I
I I Submutine Tilat t>rocesses WORKSTN Output (@PGTOl
I 126-01262 12641266 1?,68126A J2''~.Gl26EI :H08149B 34()11494 34021490 BC400DB5 I
fo10CB60l 4E1C0715 2F077C40 075C0606 07850153 1C0112E5 064D011C 151CF281

l,,,,co11~ 3·~•1?AC 8("C•j~ooo onq•~·-~ F·~e-1·19r A·t~0'fl8I1 o·c~)·~•(" F"~()"lo~oc 1~·...:.r ... J. ''..~ 4'..r.§ .. ~ . .- -· .>.I '\i'!;.;,.,J..,,J',R • .._,h:<' ~.~. (.. ~"'''"·•-·:.Vu> .l~..J.,.JJ.~.I-~ .. · ..!, •• .: •. .h~.~

I 0150151"0. 2C<H 12E7 50()C0i 12 EA151C8D 01~50151E i'"2C 1.'.)73C COL!E&lF2 87043COO

12E8CO!H 00:)0C9C4 0000000[1 Ol:t'.'.:'EA1:"; 1CF2010B :3CDDL5CE C087:t:"5C2 ;~~:i0ll2EA

78~~002F2 100:F287 2B788002 F:?.10083C EEL3CECO 137t;·sC24D 0:•.0,41~51C C001 i.499

I
Ji:",,J w~:J'. J_~ -...1 •. <}< .. ._J ~ .;;..·~·~'- .•••• .J ,:.;; '.,1. } -\vfJ>~,,._...,,, "'-• .,},./ ·-·'-=v o~-' 'l~ .. J ,1- .9 ,# 1
,,,.,.0?"'""'8'·· "11)!'1c·1c· ? 1 '0j 1·•·"0 OPC'0')"'0(' ')·····nyJr.o•:i :·x,,·c·'.:>' "90 8(···()7.11(:·1"' ·:><--BJ"t"04f.'

I
F20107AD 064B".CF~~ EU59BC07 1Er'iC012:3 OCAC0120 4Er~~;o:l.53 BC01304:0 OU2:l51C

F281291C 01\36D12 0~011541 OOOOOD01 15411522 F2Rll588 03301541 F28703BF
I

F6..,0070''· 1: "'·'"' L"'"?O C<"J'J?lX"'I'. ·1: ~(l10C0" 3"'"o• ·t ':w·.;:, ,,,~r1« ·,.,,.,,=· ':>•-:o,···1-Y1 .. :•: -i;•""~<rr'.>F"""'< I -..-:I' V ., •. ,J vJ ,.}.,;., . \ • ..._ ~ ~ , _ ' ""f' Y .~ •• ,..,,r.~1'1 ' . ..-,.,'\ .~ 'e' -;>-,.J>.,,_i """'~" ,f ',.).-~:, ,,.W.lkc....,,._. ?V,,_

F2810DBD

lo404B5C.~
I i 152F4C04

I
01•)EF201 l'''19C04UE F4010C04 350:i.:l.2E<l1 :.>101 7I<BF0::~7A 20025F01

5:::nC0027 1 :.§CEC08? :L 'S60003C 8713DP?;l) 1 :st:EF2 ou~:.-~F;:'ff{ OD4C07:t 1

09:Lt:Z7B5 534DOi ~l~151CF2 81201SOJ ~OA?E35 0j.149~3C :i,.<)(\2CO

R-X~"' .;. • 2 v ., • C <1- • 2 • t· 11> o w '<' • o 2 o o $ co • • 2 o • "*°

1'". () G,, •• G 0 ••• 19' •••• R. ()2 •• .it ••• 2e. + •

*S :. • 2. <!- % •• • B. oeo, • • ., •• • •• -1' • *

~,.B •• +4 ••• 9o••~••'0.2 ••• v.2.~•

.j;!_ • .,, <-4• • t- • • •*• Y o2• • • <tt ') o • o o. o • • • + .e o ..,if

'<% I}{'~()€- G ... oZ+.., .2., 0 4 4;o ¢. Q .o\} {> t. t>-

* t) " • :::? {I Q ~ 0 • z" • ~ " ,,. -- • .,. "' 0 9 0 4 • 0 ~ 4*

~· ·: ,_., q- o {I " ·~ .. ., • ,,. ., <> •• ., •• (> ~, " o B .,. •••• ~ • o • *

<- .. ". (;o." • .ri..,..., '\)B. i> "B~ ~ ,, ". \} •• ..,. •. o + •

~· 1' } 0 9 " ¢ ;; "' <} • <} (o ('- ., ,, 0000 • -II •• 1 • 4- 9 *

·'* ,.T~EAD • "!> ,. • o o • % • (' '" 4 {· o ,,. <;> Q ~ ,. o • • > .,. o o *

*~--9q-<;o(l'<'~•t1-•~·"·(»¢000•¢•••0••) .e9-M·

·)E>,. oo+•,..-:><·+-i> •*..-•.,.-i>O•c-ooVo~c-•<Jo'-'2o*-

~-> o"' ~, o <;> • ~ c. -11 o o (>" -t>;?.o •too o • o o o o2.;o, o '1-

* ~ ~· * "' • '!> o X • o • 'I> • c· o <t- ,,; • .,. • 2 o o • o • Y2 o (" <\' • *

*{I 'r' o .. o ., I X:1 •• o • (I ., , •• ·'.• 2 • .,, ,, •••• ,,, • B., ., "' 'V ~

)'~ ~ ' ~· 2 (; {· .2 <} (• ~ .. <) 2 { <!> .. •) 0 ~ G (> 0 B" ? <I} 1- ~ "' ;; " "'*

u,,, ('*
.:i· ~:.; ' <!' 2 ')- t' <t 0 0 ~ -c. .;r o +¢? 1> t. <!> °'? ~ ;:. e "'*

;,, ., o2<e> o (>ii- 1• ~ {'2~ t '>*

it6. "'Q 0 {) 9- (•4{ <1'V¢%6{-~"'1'Q~"'(•~<)*

2/jo 0 I>~"~;,

-~f ~ "' (i ~ Q ~ v --· ~ 921· -;;2~,,, •)-.. "'W

·~-~ {• ~ ') 0 1' 0 v (:> (' } ,,;.:, , il- <:' 0 "' 0 0 {· " } .., v <f. < ~ e> ~<ii?

~ c.o
I

~
0

"!!:!
~·
'1
(I)

NI
cc
I
NI

-;;
Ill
~

=
0
(Xl ,_.

00
Ill
El

"CS
;'
00
0
'1
Ill

~
t::I
= El

"CS

ADDR

001400X

·001420

001440

001460

001480

0014AO

0014CO

0014EO

001500

001520

001540

001560

001580

0015AO

0015CO

0015EO

001600

001620

001640

001660

001680

0016AO

0016CO

0016EO

IAR-80179B ARR-1486 XRl-800000 XR2-800000 WR4-5538 WRS--0009 WR6·-00BO WR7·-8001 PMSR-1F02 DIR-BO

00 04 08 OC 10 14 18 lC
@PGTO (Continued)
87149935 011539CO 87000035 021490B5 01537DEE 27F2812A BD8035F2 B12ABDB1

35F2812A BI•8335F2 812AOD01 12EA151C F28109BD 2435F281 27F2871E BC830DF2

874BBC84 ODF28745 BC870DF2 8715BC92 ODF2870F BC940DF2 8709BC95 ODF28703

BC960D35 0115391C 011533AF 35011494 C2021538 F4010412 40350214 90BC400D

BDF04FF2 8207BCE8 1EF4010C 04C20200 OOC20100 OOCOB700 00340815 12340115

OAF28013 B502532C 01153B22 2C01153I• 22750106 F2B7113C 8014A21C 01153BOC

1C01153D OC75010E OF01153I• 1514F204 180C0115 3B153D36 0115167C 40015CFI•

0001[1201 02C08714 C80F0115 3B151A36 01153B7C 40013DFF 153BF28:1. OAOC0015

04153B5C 000001C2 01000035 021490CO 87000000 FFOOFDOO 01000200 00404008

F1FOFOE6 D9C9E3C5 40404040 40404040 C0870000 C0871479 00000000 00000000

00001542 15441546 1548154A 154C154E 15501552 15541556 1558155A 155C155E
Subroutine That Updates WORKSTN Return Codes (@PGTD)
3408168C 34021688 3501168C 1C001735 007COOOO B5015307 04173A17 3A3D0217

35F28410 BDF04FF2 8211BD10 34F2019I• 3CAA1735 C20216F2 F28742BD 081EF28:1.

06BD011E F20186BD 002AF281 80BDF12A F2817A3C F2173A2C 0017352A 38301735

3D3C1735 F2146238 30173539 4017353D BC1735F2 1453C202 17267A10 1DE20202

aD0.00017 35C08215 DDF28104 C2021716 BDFF01F2 81152COO 160301C2 021 73F2C

03173AOO 35021688 F2872235 0216882C 00173534 BD0335F2 0107C202 1716F287

04C20217 21C08715 DDC08716 980D0317 3A173EF2 040A3501 168C7CFF OOB50153

4D011416 E1F28137 7501144C 0404173A 2803166B 34280216 6F342803 16733528

02167735 C20216E4 6C001900 6C001800 6C001700 6C001600 3502168C BC80020E

01168C16 E3C20200 OOC08700 00010204 08102040 80000174 2C001695 2AC20216

8DD20128 BD3C08F2 0404AFOO OBOABCOO 479D3908 F2820CBC 0147BD41 08F28203

9C0247AF 00080999 FBOBACOO 4408ACOO 46007AOO 00350216 88950153 C087162D

00000001 FOF1F2F3 F4F5F6F7 F8F9C1C2 C3C4C5C6 03FF04FF 08231107 1817241B

• ••••••••••••••••• , •• 2 ••••• 2 ••• •

.2 ••••• 2 •••••••• 2 ••••• 2 •• 2 ••••• 2

*·····2 ••••• 2 ••••• 2 ••••• 2 ••••• 2 •• *

• • • • • • • • • • • • • • • .B. • +4+ + • •

•o.2 ••• Y.4 ••• B ••• B++••••••••••••

+2+ ••••••••••••••••• 2 •••••••••• •

• ••••••••••••• 2 ••••••••••••• ••*

••K•••••H••••••••••• •••••2•••••

• • •• • .B. •*

*lOOWRITE •••••••••••••••• *

• •••••••••••••• + •••••••••••• •• •*

·································

*•2 ••• 0.2 ••••• 2 •••••• e •• 22 ••••• 2.•
* •••• 2 ••••• 2 ••• 1.2 ••• 2 ••••••••••••

••••2••••••• •••••• 2 •• B •••••• s••

*•••••••••2 •• s 2 ••••••• s •..• *

••••••••2••••••••••••••2 •• B ••• 2.

•B•••••••••••••••••2••••••••••••

*·····2 ••••••••••••• , •••••••••••• *
*••••B •• ux ••• x ••• x ••• x ••••••••••••

••••TB+•••••••••••• •••••••••B••

•K•••••2••••••••••••2••••••••2••

••••••••s•••••••••••••••••••••••

*••••0123456789A9CDEF •••••••••••• *

"":l IAR-80179B ARR--1486 XRi-800000 XR2·-800000 WR4-5538 WR5--0009 WR6·-00:E•O WR7-8001 PMSR-1F02 DIR-80
IJQ
s:
""l
(!) AIIDR 00 04 OE! oc 10 14 18 1C
Nl
~ 001700X I
Nl

@PGTD (Contirmedl
2B03340B 381FBOOF 810F821F 830F991:5 AA2FDD1F EE:L~~FF27 002B0127 0327081.B *o •.,. • • • o o • • • • & • •" • o •to~•••• 9 • o ~ • • o-*

~ 001720 1033FF11 2"71227FF BD43F347 F43FF53B F637F84B FFOOF040 L:04040FO FOF9F9FO *~•o~••••••3.4.5o6.s ••• o 00990<1
Ill
""l 001740 FOFOFOFO FOF1F1F1 F2FOF1F1 F2F5F1Fl F2F6F1F:L F2F?F1F1 F2F7F5Fl F2F8F1F1 *00000111201125112611271127512811*
-.J

0 001760 F2F8F5Fl F2F9F9F1 F3F1F1F1 F:~F2F1F1 f<5F;3FJ.F1 F1F2F1F1 F1F2F2F1 F1F2F3F1 *28512991311132113311121112211231*
e 001700 F1F2F4F1 F1F2F5F1 F1F2F617 8B178D17 8F179117 93179517 97179JC2 020004F4l *12411251126+••oo•~&Q•&•o~•(/1Bc~~4*

Open Mainline Routine (#OPEN)
rn 0017AO 010401AD 0,!.077AE2 0236F28:l 04F40104 OFE20204 F4010401 AD060740 E20236F2 *". {l' •••• s •• 2 •• 4." \)s • .,.4 ••• 'I> •• s. +2*
Ill s 0017CO 'tS 8104F401 040FC201 OOOOC202 l7D95F18 DADAF401 040FF287 04000400 C57A01C2 *¢o4 ••• B.o+B •• R+o&94 ••• 2~*.,. •• E •• B*
;"'
00 0017EO 7A40C375 0:1997502 05F40104 oc-150205 F4010402 1C0017FA l0380000 C5F2900D *.:· C .,. • {> ••• 4 •• .,. •• "4 • .,. ~ •• <;. ~ 1l' • o "E2 o to i:.7

.....
0

001000 ""l
Ill

7BC00079 1000F290 043C8718 1D4DOl03 0099F281 07750103 COB717F4 F28009C2 *.., •• • • <!I> 2 • • • • • e ••• ~ •• 2 °' • ,, " • o .,. • 42 •• B*
IJQ
('!) 001820 0200B4F4 01041211 C2010000 3C40030F ocooo~rnE o::!OFOCFF 030D030E OCFF020D *~··4.,.i' •• B • .,..* OQ9(1>0.009&0+Q>Of'f;>f'99*

t:I
f! 001840 s

'<::I

020E3CFO 031COCOB 031B031C 3C4005E5 OC"i'C05E4 O:::j§.;_50CFF 0:0:16 70:::i68 C0871 BD3 *<>~+O<>••<>••••., .u ••• u.v ••• o••·~~L*
Input Moiinline Routine (#INPUT)

0 001860 71;106C97B F1C27B9F C37BFFC4 7A40C378 20C3C010 1f:lAOOC01 i 88A :l BE7 7502'?9B8 *o .1~1B •• c •• [I. c, .• c ••••.• $ •• x~~··•
;:;'
Ill
'd
rt-

001880 1000F210 150C0118 D500001E 01188A97 B9C100B9 8001CO:LO if.!CFB880 OOF29006 *0 .2 •• (> •• t~ •• 0. 4'. v .~~.* ... ~<I' •••• 2~ •*
ro ...,
Nl 0018AO 7AFFC47A EOC3C087 :cCB6C087 1C48C087 1C483C31 l8<CEF287 04:5C3018 CEB1~0100 *o .f.t~ oCo o o • o o o o • "• o • • • .2.,. o ••*'et- -0- <>*-
~

(/) 001BCO
M-
0 ..., 001BEO
Ill

:rQ
ro 001900
t:J

BB8025E2 0100C202 OOB4F401 04120074 08E4C087 0916B880 OOF21004 C0871C65 *eo9So+B+oo4o•••o•Uo+•••••2••••9o•
Input H0ok !#IHK01) input Fie!ds Routine l#IFLD)

BA010075 10E418E9 18E _:;.!QL_ QE!91_(;21Q_ 0916 ~502 9BB90218 F2100C2C 0119061EI *{' ••• .;.Uc-Zo .B. o +B·~ ••• o • • • .2. + o • ~ • "*
Detail Calculations Routine l#DETC)

B50212CO 870000CO 8719142C 07025408 C0871907 7802C9F2 900C0403 031709D5 * o •• ,, o o • o • 9 • 11 (,> ••• , o • I2., .,. • -:;. Ii' <i- (' N*

s= s 001920 04000318 09[16-1802 C9F29010 C08709F6 0303174A o:;:c4000~~ 18000319 7802C9F2 *~••o•O+.I2+•0••6••••0Do~o••oo~I2*
't:l
0 001940, 90060403 0:;51709DA 7802C9F2 9010C087 09F60303 174;'>i030F 00031800 o:H97802 * v + <? o " o • • • • 12 oi.> o • Q • 6 • o o • -o • e 1' e 'I> Q> • o <> *
Ill
::;

001960
~

C9F29004 C0871A57 7804C9F2 90:':.;87840 C6F29004 COB71A:::;7 0402031C 0313C202 *I2.~~., •••• 12.i'. F2o@&•o~•••~&~B~~

'i,'j
0 001980 012A8C1C 0<:>024CE2 021CE202 01340200 010D0100 010103CO 041982C2 020343BC *" Q 11 o. ~ .s .. s. ~ .. <;). o ••••• & o. 0BQ> o e- 'J'i:5-

"'t'l ...,
0019AO 0 801BBI'80 00:850205 OC070461 02547B08 D5C202025 4C'COB"71A ;5BF28706 7A08D5F2 * ~ .. • . \} . o ••• / ,.. •• -~ NB • .g. 0' • o ,.. • 2 • {· ~ II> N2*

(IQ ...,
Ill 0019CO s 8704C097 1,0,907804 C97808D5 F29004CO 871A5706 2C0.'!1C09 D644D210 031C47E1 * v .. <S> o "' (l " • I @' • N2 <& • '} q e " ~ 'll' ,, • ,, 0,, K <: "' f• -e- ';!" {IS-

0019EO 1009DCCO 871AB381 20CB0078 20CBF290 04C0871A 5?COB71A F6010103 1C021A03 ii;·:- o .i; ~ ~ e."" o too .;i e o o2•)" \l'., o o;. ~ (16q> & 'il' {} d> 9 o~
Nl
Cf>
I-'
I-'

I',:) "'!!j
tD

I IJQ

IAR-80179B ARR-1486 XR1-·800000 XR2--800000 WR4·-·5538 WR5·-0009 t.JF<6-00BO WR7--8001 PMSR-·1F02 DIR-80

,..... s:
Nl "j

(D ADDR 00 04 08 oc 10 14 18 1C
Ni
~

001AOOX I
Ni

1 #DETC (Continued)
• •• + • .£•+ + + +. • • +M+ + +2+ +B+ • + • + +. • •

..-..
'"C 001A20 --------- - ~ ----- - --- -- --- ---------- *•2• •• +M2. • + •• +2+ + ••••• +M2 •• + • •. +*
~
"j 001A40

:ilnput Hook (#II
07025402 5CC0871.A B38110CB 0078:1.0CB F29004CO 8719D3CO 871Br 2 0109DDC:~

HK02)
•••••••••••••++2+++++L+++LB++•B*

00

0 001A60
:b.Chain Code Routine (#CHNOO)

10091 4 081A6AC2 0200002C 050~~6105 2C01.1A77 017AOOOO 3502035:5 35:1.00:561 *• • • • • • .B. • • • • ./ • • • • • • • • • • • • • • • ./*
00 ,_. 001A80 D202B4C2 010343F4 01041.2:50 COfJ70000 34081A8F B50212CO 871A6300 0080001A *K •• B ••• 4 *

00 001AAO
~

~broutine That Sets Resulting Indicators (
A5C0871A 802C0702 5C072C1C 02"7930CO 871A8C 4 08FF7402 FD7502FF 7404FBF2

@PGRI)
* * ••••••••••.• + ••••••••• 2*

e 001ACO "C -(D

00 OOlAEO

1000El9FF OOF21022 7504FB2C 001AD100 F20004:5C 7B1ADC2C 011ADE02 7A00003C
JSubroutine That Resolves Array I

7A1ADCE2 0203C087 l.ABFE202 017402FF 7~;02FD75 10FF 7402 FFC:;'021A F9Bl,08A9

• ... ,. .;.;.~ •••••••• .J.2 •••••••••••••• •
ndex (@PGAA)

• •• s• s•....• +. +[-'+ +9+. •
0
"j 001BOO
~

B4080E4C 07FCOOOO 9C01:52F8 9CO:l9AF8 9B0:5;.!FF9 9C0059F9 98019BF9 9C019FFB *• ••••••••• +8+ •• 8 ••• 9 •• +9+ •• 9 ••• •*
IJQ
(D 001B20 7502F66C 01F60644 OOF40000 F204:516C 01FDOO!:-iF 01FDF6F2 87045E01 FDF65700 *:.6X.6+++4++2++X+•••••62++•••6••*
ei
;:::

001B40 e F49.5C022 1B3AF2AO 371FOOl.B 5295F2B2 285400F4 F3F28:1.21 5CO:l.F8F6 5EO:LF6Fl, *4 ••••• 2 ••••••• 2 •••• 432++*+96++66*

"C
001B60 F2A01D5E 01F6F6F2 A016f:iE01 F6FBF2AO OF5E01F6 F6C0871B 3£91)0102 FDF20215 *2++++662++++682++++66++++++++2++*

001B80 6C01FDOO 6C05F80C D202B4F4 0104121[1 14000000 951CO:LOO OOFD7502 FF3510l.B *~ ... :X:. 8. K + • 4 + • + • •• • • • • • • *

001BAO

001BCO

Jctose Mainline Routine (#CLOSE)
07000 C2 0100007A 20C:H808 D97A08D9 F2l.OOFC2 021BBEF4 01040FF2 87048004

~£etail Output Routine {ilfDEOUTI
OOC53501 00997502 05F40l.04 03F40104 04000 2 0204683C 00037779 40C67802

•+•B•••••c •• R •• R2 •• B ••• 4 ••• 2••••

•E ••••••• 4 ••• 4 ••••• B •••••••• F••

001BEO C9F2100D 3C0003T7 7940C678 04C9F290 47C2020l. 00360203 :.;~B8C057A 09Dl.G.!02 *12••••••• F •• I2.+B•••••••••••JB.*

001COO 00003602 032B8C07 07025478 20CBF290 058C4A52 02C47808 D5F29005 8C4A5203 *"••••••••••••••2••••••I• •• N2 •••••• *
001C20

J Output Hook
OFC20201 00360203 2BOCFF05 BA020D8C 2l.74022F C087l.C3C C0871860 C-!021270

(#OHK01)
•B• •••• • • ••••••• • • ••• • • • •• ··-B. • •

001C40
1 LR and Overflow Processing Routine (#-LROFl

C201031D C2100986 7820C3CO 10l.BB37B FFD7'7BFF D87A02C2 7804C2F2 10037B02 *B ••• B ••••• c •••••• p •• Q •• B.+B2++••*

001C60
~Je~ecord Identification Routine (#RCDID)

C2C08718 F 50112 [45101434 081C72C2 O:l.00009C OA220AF~2 8708C087 1BB2C087 *B• •• 2 ••• • •••••• B •• •. • •• 2. • • • •• • •*

001C80 1BB9C201 OOOOC087 18EOOCO:;! OOC803F3 7DC100F2 010BC087 1C6B0204 C9B00019 *••B••••••••••H+3'A+2•••••t••I•••*

001CAO

001CCO

~~ntrol Fields Processing Routine
OB7[14000 F2010BCO 871C6BOO 02C98000 OOOOC087 1C7 820 C5F21015 3502009B

BB01002C 011CCA1A 7A000078 80D9F290 04C08718 AA7A80D9 C08718AEJ FFC1D5C3

(#CNFLD)
* • t • 2 ••••• , •• I •••••••••• C2 • • • • -• • *

• • •• • • • • • • ••• R2 ••• • •• • .R. • • •. ANC

OOlCEO C540D4C1 C9D5E3C5 D5C1D5C3 C540D4C1 C9D5E:5C5 D5C1D5C3 C540D4Cl. C9D5E3C5 *E MAINTENANCE MAINTENANCE MAINTE*

001DOOX 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *•.•.••••.••••••.•••••••••••• *

DUPLICATE LINES SAME AS AI<OVE

Chapter 30. Differences bet,1veen RPG on System/36 Rnd
RPG on Systern/34

Updating Past the End of the File
System/36
System/34

Creating a Direct File That Does Not Allow Deletions

Sysiem/34

30·1
'"1('> '1 ov-1

30-2
30 2

Chapter 30. Differences between RPG on System/36 and RPG on System/34

Chapter 30. Differences between RPG on System/36 and
RPG on System/34

If you convert RPG programs from IBM to System/36, you should
be aware of the following differences between the way RPG programs work
on the two svstems"

lJpdatin.g Past the End the File

System/36

System/34

ff you
of the

to a shared or unshared DISK file past the end
, ,,,.~'" TRIED

If you try to update an unshared sequential DISK file past the end of the
file, the update is ignored but no error message is displayed.

tl1e er1d of the
the 2s and errrnt n1essage TRIED RECORD
UPDATE BEFORE INPUT FOR FILE, is displayed.

Chapter 30. Differences between RPG on System/36 and RPG on System/34 30-1

Creating a Direct File That Does Not Allow Deletions

System/36

System/34

If you chain past the area allocated for the file, the indicator in columns 54
and 55 of the CHAIN operation turns on and error message RPG-9035, NO
RECORD FOUND ON GET OPERATION FOR FILE, is displayed. Then, if
you try to continue to create the file by writing additional records to it, the
additional records overlay the last record written to the file. That is, the
additional records are written on top of each other in the same space as the
preceding record.

If you chain past the area allocated for the file, the indicator in columns 54
and 55 of the CHAIN operation turns on and error message RPG-9035, NO
RECORD FOUND ON GET OPERATION FOR FILE, is displayed. Then, if
you try to continue to create the file by writing an additional record to it,
no additional record is written and error message RPG-9038, FILE IS FULL,
is displayed.

Chapter 31. Using Ideographic Data

Specifying Ideographic Data
Ideographic Literals and Constants
Ideographic Fields, Tables, and Arrays .. ,
Ideographic Comments , 31 ·.~1

Processing Considerations 31,.3
Moving Ideographic Data and Deleting Control Characters (SUBR40)
Ivfoving Ideographic Data and Adding Com1·01 Characters 1' "

Ideographic Device Support ,
Messages

Chapter 31. Using Ideographic Data

Chapter 31. Using Ideographic Data

RPG can process ideographic data when you use the ideographic version of
the SSP and the ideographic hardware devices that the ideographic version
supports. Display stations with ideographic capability are supported by the
WORKSTN file

allows the RPG compiler to process IBM-supplied or
your user .. defined ideographic character sets. Very little error checking is

ideographic data. Ideographic data is transparent to the RPG
. You must be sure that the ideographic data is processed

your program.

characters can be present in literals, constants, fields,
The literal must be specified in column 57

of the control specification if transparent literals or constants are present
in the program. more information on the transparent literal

A

Ideographic data has a 2-byte representation, rather than a I-byte
representation as in the EBCDIC character set. This can cause the RPG
operation codes that process data l at a time and so

rncorrect results. In data is enclosed
shift-out and the shift-in

control character (hex OF). These control characters must be taken into
consideration when an that processes ideographic data is
performed. (For m.ore inforn1ation on considerations that apply to
processing ideographic data, see Processing Considerations in this chapter.)

Ideographic Data

Ideographic Literals and Constants

Ideographic characters can be specified as a literal in factor l or factor 2 or
the calculation specifications. Ideographic characters can be specified in
the constant or edit word section of the output specifications (columns 45
through 70). Ideographic literals and constants must begin with an
apostrophe immediately followed by the S/O control character. Ideographic

Chapter 31. Data

literals and constants must end with the S/I control character immediately
followed by the ending apostrophe.

Note: When ideographic literals or constants are processed by RPG, the
S/0 and S/I control characters are considered to be part of the literal or
constant data. When the constant is displayed or printed on an ideographic
device, these control characters appear as blanks.

When an ideographic literal or constant is used, the transparent literal
option must be specified in column 57 of the control specification. When
this option is specified, the compiler checks for literals or constants that
begin with an apostrophe followed by the S/O control character. If a literal
or constant is found that begins with an apostrophe followed by the S/O
control character, the compiler checks to see if the literal or constant is
valid. A literal or constant is not valid if:

• A second S/O control character is found before the S/I control
characters.

• An odd number of 1-byte characters are found between the S/O and S/I
control characters.

• The S/I control character is not immediately followed by the ending
apostrophe.

An invalid transparent literal or constant is rechecked to see if it is a valid
alphameric literal or constant. If the literal or constant is a valid
transparent literal or constant, it is not checked for embedded apostrophes.

Any ideographic character can be entered in an ideographic literal or
constant. Each ideographic character has a 2-byte hex representation. (An
ideographic blank also occupies 2 bytes.) Because each character occupies
2 bytes in storage, ideographic constants can only be from 1 to 11
characters long (this also allows for the control characters), and literals
can only be up to three characters long (this also allows for the control
characters).

Note: An ideographic literal or constant can be composed only of
ideographic data. Mixing ideographic and EBCDIC data in the same
constant causes the literal or constant to be checked as alphameric.

Ideographic Fields, Tables, and Arrays

31-2

Ideographic characters can be present in fields, tables, and arrays. The
RPG compiler does not recognize these characters as ideographic. The
compiler treats ideographic characters as alphameric. Ideographic fields,
tables, and arrays must therefore conform to the rules for alphameric fields,
tables, and arrays.

When ideographic data is present in a field, table, or array, the data must
be enclosed in the S/O and S/I control characters. These control characters
are considered to be part of the field, table element, or array element.
Therefore, when the length of the field, table element, or array element is
defined, space must be left for the control characters. For example, if you

want to define a field so that it can ccmtain four ideographic
you must specify a field length of 10 (tow positions for each ideographic
character, and one position for each control character). If you do not
specify a large enough length, the field, table element, or array element
truncated, causing one of the control characters to be lost.

You must also consider the control characters when the table
element, or array element is processed. For example, if a field is being
printed or displayed on an ideographic device, the control characters
appear as blanks. If blank after (column 39 of the output
contains a B) is specified for a field, the control characters are also blank2c!
out and must he reconstructed if the field is to still contain ideographic
data.

Note: \l\lhen a it
contain only ideographic data.
the same field, table, or array can cause incorrect results.

Ideographic Comments

characters can be entered as comments
you enter ideographic characters as comments, but do not enclose them
control characters are not

Processing Considerations

data can

that compare data
check for an equal condition. Care must also be taken when
data is moved. If the of the data moved and the area that
data is being moved to are not the or control
characters can be lost.

A number of RPG operations and functions operate by comparing data 1
at a time. The COMP and LOKUP compare for

and equal conditions. These operations compare the EBCDIC values
that correspond to the data that lS and
the standard 1-byte collating sequence. Because of this, the only valid test
when ideographic data is being processed is for an equal condition, If all
the bytes in a field are equal to all the bytes in another field, the fields are
equal whether they contain ideographic or EBCDIC data.

Match fields and sequence checking are also invalid for
Match fields cause data from different records to be compared, 1 at a
time. This produces incorrect results for data.
checking compares data in different fields to see if the fields are in

31. Data

31-4

ascending or descending order. This comparison is done I byte at a time
and therefore produces incorrect results for ideographic data.

The SETLL operation is another I-byte comparison operation that cannot
be used with ideographic data. This operation causes the key of each
recored to be compared with a lower limit value. If the key of the record is
higher than the lower limit, the record is selected for processing. As this
comparison is carried out using I-byte EBCDIC values, the SETLL
operation can produce incorrect results when used with ideographic data.

RPG allows you to define an alternate collating sequence for EBCDIC data.
In other words, you can redefine the order in which I-byte segments of data
will be sorted. This is meaningless for ideographic data.

Care must be taken when the various move operations (MOVE, MOVEA,
MOVEL) are used with ideographic data. The length of the field, table
element, or array element that the ideographic data is being moved to must
be defined as being exactly the same length as the literal, field, table
element, or array element being moved. If the lengths are not the same, the
data will not be recognized as ideographic. For example, if the field that
the data is being moved to is shorter than the length of the ideographic
data, the data is truncated, causing one of the control characters to be lost.
If the field that the data is being moved to is longer than the ideographic
data, one of the control characters will be embedded in the field. This
causes the control character to be considered part of the data.

l\iloving Ideographic l)ata and Deleting Control
Characters (SlJBR40)

SUBR40 is a move and edit routine that moves the contents of one field to
another field. If the S/O and S/I control characters are found as the first
and last characters in the field. SUBR40 deletes them.

SUBR040 is called as shown in Figure 31-1.

RPG CALCULATION SPECIFICATIONS GX21-0093- UM/060"
Printed m U .S A

75 76 77 78 19 80

'.~:;:;.~"'"" GTl~IIJ

Five RLABL fields must be specified when SUBR40 is called. The first two
the sending and fields for the move. The third field is

return codes are written indu:rite the stRtus of the move
The fourth and fifth fields must be loaded with the of

the the fields
specified on the first two RLABLs for the call to SUBR40 (in Figure
you would need to load the of EIV1PNO an The return
code field must be defined as a one·position alphameric field; the length
fields must be defined as numeric fields with decimal

Data

31-6

SUBR40 produces return codes to indicate the status of the move operation.
The following list contains these return codes and their meanings:

Return
Code Explanation

0 Data moved; no errors.

1 Data moved; padding occurred.

2 Data moved; truncation occurred.

3 Data moved; S/O and S/I control
characters were not found.

4 Data not moved. Either an odd field
length was found, a length of zero
was found, the length was greater
than 256, or an invalid character was
found in the field length.

If more than one return code can be issued, only the highest return code is
returned.

Moving Ideographic Data and Adding Control Characters
(SUBR41)

;~~~

SUBR41 is a move and edit routine that moves the contents of one field into
another field. If the S/O and S/T control characters are not found in the
first and last positions of the field, SUBR41 adds "hem to the field when it is
moved.

SUBR41 is called as shown in Figure :n-2.

RPG CALCULATIOl\I SPECIFICATIONS GX2l-9093- UM/050~

Printed in U.S A
=== -=; ln1ernac,onal 8u,.ne<0 Mach1,..r.• Corpo<a!Oon

1 2

Page[l]of

75 76 77 78 79 30

~~~:~;:ation CIIITLl 

c ~ Indicators Result Field ~n~~l;~:~s 
f---- 0 ~ 1 J,d Arithmetic 

~ Q And ·~ ::;: Plu~M1n~ Zero 
~ _5 ~ I ! Factor 1 Operation Factor 2 0 t; Compare Comments 

Line ~ ] ~-
1 

Name Length ~ ~ 1 > Ri < 2J1 = 2 

w_ U ..J Z z Z 0 I High Low Equal 
0 5 a:' 0 0 1 0 I ·u ·:; Lookup( factor 211s 

3 4 0> 6 7 8 9 10 11 12 1J 14 15 16 11 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 SJ 54 55 56 57 SB 59 60 61 61 63 64 65 66 6"/ 68 69 70 71 7:1 73 14 

0 11 c ' ti1 I l EXlili SUB~41l I TT l I _L I 

0 2 c i I ' I L]A BL TTl I s 0 c s E c J ~ I + I 

: : ~ ~ f i l ~18:1~t i 11,u ~~1~~gE ]' ~ :~ i' i 
0 5 c 1 I ] Bl(iABL jilt S~DLEN l 3¢ ] I -
01 ' le ' I 1 I i-1 +-t-f· 1-l 1 RLIABL : I . .i_J_lJRi;iCLEN _L 3~ 1 I I 1 ' i i I I j j I i -l---1 

l 0 ' le j 11 J 1 I Jl J 1 1 U L.l-J._LJ U U [[[LlJJj_ LI LJ J L-LLU~TL _UJJJ 

Figure 31-2. Calling SUBR41 

If you want the receiving field to contain all the data that is in the sending 
field, you must specify the length of the receiving field to be two positions 
longer than the length of the sending field (to hold the S/O and S/I control 

If you a receiving field that is than the 
on the when it is moved into the 

field is shorter than the field 
two, the data is truncated on the when it is moved. If the receiving 
field is either shorter than the sending field plus two 
urn;itions, the control character is still in the correct position 
(the rightmost position). 

Five RLABL fields must be specified when SUBR41 is called. The first two 
specify the sending and receiving fields for the move. The third field is 
where the return codes aTe w:ritten to indicate the status of the move 
operation. 'The fourth and fifth fields must be loaded with the lengths of 
the sending and receiving fields. These are the lengths of the fields 
specified on the first two RLABLs for the call to SUBR41 (in Figure 
you would need to load the lengths of SOCSEC and EMPNO) The return 
code field must be defined as a one-position alphameric field; the length 
fields must be defined as three-position numeric fields with zero decimal 
positions. 

Data 



SUBR41 produces return codes to indicate the status of the move. The 
following list contains these return codes and their meanings: 

Return 
Code Explanation 

0 Data moved; no errors. 

1 Data moved; padding occurred to left 
of S/I control character. 

2 data moved; data truncated to left of 
S/I control character. 

3 Data moved; S/O and S/I already 
present. 

4 Data not moved. Either odd field 
length found, length of zero found, 
length greater than 256, or invalid 
character found in field length. 

If more than one return code can be issued, only the highest return code is 
issued. 

Ideographic Device Support 

Messages 

31-8' 

The *SIZE, *MODE, *INP, AND *OUT keywords identify subfields in the 
INFDS data structure that contain values for ideographic devices. For 
more information on these keywords, see Coding the INFDS Data Structure 
in Chapter 6. 

The RPG displayed messages (both compile time and execution time) are 
displayed in either the standard character set or the ideographic character 
set. The messages are displayed in an ideographic character set if 
ideographic support was requested when the user signed on. 

The RPG compiler messages are printed in either the standard character set 
or an ideographic character set. The messages are printed in an 
ideographic character set if ideographic support was requested when the 
user signed on. 



Chapter 32. Problem Determination 

How to Use this Procedure . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . 32·1 
Identifying and solving RPG Problems ........................ . 
Contacting Your Service Representative 

32-2 
32-7 

Chapter 32. Problem Determination 





Chapter 32. Problem Determination 

If a problem occurs while you are using RPG, the cause of the problem may 
not be obvious. An error in your application or in system operation could 
have caused the problem. The problem determination procedure in this 
chapter can help you solve or circumvent the problem. If you need more 
information, refer to the following publications before you contact your 
service representative: 

• IBM System/36 System Problem Determination - 5360 (SC21-7919) if you 
use a System/36 Unit 5360 

• IBM System/36 System Problem Determination - 5362 (SC21-9063) if you 
use a System/36 System Unit 5362 

• System Problem Determination - 5364 (SC21-9375) if you use a System/36 
Unit 5364. 

How to Use this Procedure 

This procedure is arranged in a sequence of questions that you can answer 
with a Yes or No. Based on your answer, you are directed to another 
question or to a recommendation for action. 

Start at the beginning of the procedure and follow the question-and-answer 
sequence, answering each question to which you are directed based on your 
previous answer. If the problem is a condition that requires more detailed 
procedures, you are referred to those procedures. 

Chapter 32. Problem Determination 32-1 



Identifying and solving RPG Problems 

32-2 

When an RPG problem occurs, you can use the following series of questions 
to pinpoint its possible cause: 

D Did you receive a message indicating that an operator needs to 
do something to a device such as a printer or a display station? 

No Yes 
Take the actions indicated by the message and save any 
automatic dumps printed as a result of the message. If the 
action requires operator intervention, call your system 
operator. If the action prompts you to call for help, 
contact your service representative. 

When you examine a message for indicated actions, check 
the following: 

• Second-level message text, which describes the 
message in more detail. To get the second-level 
message text, press the Help key. 

• Some messages contain a number of options for 
possible recovery actions. These options are explained 
in Chapter 1 of the RPG II Messages manual 
(SC21-7940). 

If you still cannot solve your problem after fully 
examining the message, contact your service 
representative. 

fJ If you are having problems communicating with the system, 
are other system users having problems communicating with 
the system as well? 

No 

1 

Yes 
Call your system operator and describe the problem. Have 
your operator use the procedures in the appropriate 
System Problem Determination manual referred to at the 
beginning of this chapter. 

II Is this the first time ever the job or subroutine was run? 

Yes No 
You may have a system problem. Call your system 
operator, describe your problem, and have the operator use 
the procedures in the appropriate System Probkm 
Determination manual referred to at the beginning of this 
chapter. 



D Have changes been made to the user program since the last 
time it ran successfully? 

No 

I 
Yes 

Read on, but consider what has been changed. For 
example: have operating procedures changed? are new 
device files being used? or have program changes been 
applied recently? A good starting point for problem 
determination is a changed item. 

D Are you having a problem not caused by the programming, 
such as spooled output that is not produced, or a device that is 
not working? 

No Yes 
Confirm that the device was started. If it was, you may 
have a system problem. Call your system operator and 
have the operator use the appropriate procedures as 
described in the corresponding System Problem 
Determination manual referred to at the beginning of this 
chapter. 

D Are you using the current release of SSP? 

To answer this question, enter the SSP STATUS SESSION (or D S) 
operator command, and press the Roll Up key three times. In the 
upper left corner of the fourth screen the cur.rent release uf SSP is 
displayed. 

Yes No 

~ 
Install the current release of SSP. 

II Have all IBM-supplied PTI<'s (Program Temporary l''ixes) you 
have received that apply to the current release of SSP been 
installed? 

Yes 

j 
No 

Install the PTFs you have received that have not yet been 
applied. 

Ill Are you using the current release of RPG? The release number 
is printed on the first line of the source listing for any RPG 
program listed. 

Yes 

j 
No 

Install the current release of RPG and compile or run the 
program again. 

Im Have all IBM-supplied PTFs that apply to the current release of 
RPG been installed? 

Yes 

! 
No 

Install the PTFs you have received that have not yet been 
applied, and run the program again. 

Chapter 32. Problem Determination 32-3 



32-4 

Bil Have any non-IBM changes been made to RPG or to SSP? 

No 

l 
Yes 

If RPG has been changed, install its current release and 
the PTFs, and run the program again. If SSP has been 
changed, install its current release and the PTFs. 

m Was the output incorrect or not produced? 

No Yes 
Check if: 

• The program is in an infinite loop. Cancel the job. 
Apply the DEBUG operation in the program to locate 
the loop. Correct the problems in the program. Run 
the program again. 

• The output data has incorrect values. Use the test 
data and walk through the program by hand to 
determine what the values are supposed to be. 
Compare the two sets of values and determine the 
statements in which the value of a data item can be 
changed. Correct the problems in the program. Run the 
program again. 

Ill Did the RPG user program have an exception/error? 

No Yes 
Two kinds of exceptions/errors can occur: program and 
file. Examples of program exception/errors are division by 
zero, use of an incorrect index, and use of incorrect data 
items in an arithmetic operation. Examples of file 
exception/errors are undefined record types and device 
errors. 

You may begin investigating the problem by using a 
DEBUG operation as described in Chapter 4. 

If you cannot solve or circumvent the problem, contact 
your service representative. 



m was a piri:ntout produced? 

Yes No 

I 
I 
! 

j 
11 

J 

Check if: 

"1 Your display statior. is assigned w another 
Use the SSP 811' ATUS SESSION D 8) 
command to find the printer ID of the session 
for your display station. Compare the p:rrinter ID of the 
printer you are using to the HJ cf sessi:::i:n 
printer. Either get your printouts frorn the current 
session printer_ or rhange t.he idroir:i1-.if;r!'"t:n:n 
the file 

The program contains a comiitionai statement ·d1at 
controls whether or not rn Check 
the compiler listing to find the conditional statements 
that control printing. Deterr.aine t}1e tl2~a va~,;;Les 
satisfy the conditior1s aral COT{.Lpare l~hese ';.7 a_2··l)·9~::; 

those used v~'l1en th.e prog:ram ~·a.=i .. If you riee.:L £ 

is set a:c 
printing, or change the conrlitiona_I state::nent to ~et 
printing be performed for the data values you HJC'e 

Run the progra1'lrl 

Some possible causes are: 

Press the Error/Reset key. If the indicator does not turn 
o:ff ar1d you belie·9e the p1rogJtan1 it1 2tn 

the Attn key. You wjli get a menu of rnqmry 

If you still cannot solve your problem, contact your ser·vice 
representative. 

Chapter 32. Problem Determination 32-5 



32-6 

BJ Is the Attention key working? 

Yes No 
Check if the program has performed an ON ATTN 
IGNORE statement. Look for an ON ATTN IGNORE 
statement on the printout of the program. If you need to 
stop the program, ask the system operator to cancel the 
job. Sign on again and continue using the system. 

If you do not need to stop the program, wait until the 
program ends or an ON ATTN SYSTEM statement is 
performed. The Attn key request will then be processed. 

If this creates a problem, you may want to change the 
program by removing the ON ATTN IGNORE statement or 
by putting an ON ATTN SYSTEM statement right after 
the statement(s) that require the ON ATTN IGNORE 
condition. 

If after using this procedure you or your system operator have not solved 
the problem, please consult the System Problem Determination manual for 
your system unit referred to at the beginning of this chapter. If your 
problem occurred when you compiled your program, refer also to the 
Solving Problems that Occur at Compilation Time section in Chapter 3. 



Contacting Your Service Representative 

lf yuu cannot solve your problem usmg the problem determination 
prucedures listed in this chapter, in Chapter ;~, and in the appropriate 
System Problem Determination manual referred to at the bl'ginning of this 
chapter, you may waut to contact your serv tct, represeBtative. Befm e 
contacting your service representative, prepare the following: 

• For compiJe 1.nne p1ohJL'ms: 

A rl:skette copy uf t hi' RPG user ~mu r Cl' 1nog ram 

A diskettP copv nl thr- user nsq•rnhlt·1· suhroutirit'" 

A listing ti+ the :-01.ucr- compilation 

Kun the /\PAH pron·duu· diwumentvd rn lBiW 
Problem Dete1mination · 536001 in JBM Syste111/8fi 
J)ptr:murwt111n 5362 and in System ence, ;md include the eutiie 

« For exN'.ut1on tm,e 
,,,.q (J'o 

pronde the above requat•d information as 

A di:,;keth" COfJ) uf the user load nioduh'. 

A diskette copv of tht: user hles 

A diskettt· copy of the user display scteens 

The procedure:,; for ubtaiiung the abuve inform1,t1un are e)1.plauwd iu the 
System Problem Determination manual for :yom· system unit. 

Chapter ::12. Problem Determination 



32-8 



Glossary 

$SOURCE file. The file from which program 
products read their input statements in order to 
process them. 

$WORK file. The file used by some program 
products for processing their input statements. 

#LIBRARY. The library, provided with the system, 
that contains the System Support Program Product. 
See system library. 

access method. The way that records in files are 
referred to by the system. The reference can be 
consecutive (records are referred to one after 
another in the order in which they appear in the 
file), or it can be random (the individual records can 
be referred to in any order). 

acknowledgment character (ACK). In binary 
synchronous communications, a transmission 
control character sent as a positive response to a 
data transmission. 

ACKO. In binary synchronous communications, the 
even-numbered positive acknowledgment character. 
See acknowledgment character. 

ACKI. In binary synchronous communications, the 
odd-numbered positive acknowledgment character. 
See acknowledgment character. 

acquire. To assign a display station or session to a 
program. 

adapter. See communications adapter. 

address. A name, label, or number that identifies a 
location in storage, a device in a network, or any 
other data source. 

address output file. Record address file, 
containing relative numbers, that is produced by a 
sort program. 

addrout file. See address output file. 

allocate. To assign a resource, such as a disk file 
or a diskette file, to perform a specific task. 

alphabetic character. Any one of the letters A 
through Z (uppercase and lowercase), or any one of 
the special characters #, $, and (ri). 

alphameric. Consisting of letters, numbers, and 
often other symbols, such as punctuation marks and 
mathematical symbols. 

alternative collating sequence. A user-defined 
collating sequence that replaces the standard 
EBCDIC collating sequence. 

alternative index. An index that is built after an 
indexed file i.s created and that provides a different 
order for reading or writing records in the file. 
Contrast with primary index. 

application. (1) A particular business task, such 
as inventory control or accounts receivable. (2) A 
group of related programs that apply to a particular 
business area, such as the Inventory Control or the 
Accounts Receivable application. 

application program. A program used to perform 
an application or part of an application. 

array. A named set of data items, all of which are 
the same type, arranged in a pattern (for example, 
columns and rows). 

array element. A single data item in an array. 

ascending key sequence. The arrangement of 
data in order from the lowest value of the key field 
to the highest value of the key field. Contrast with 
descending key sequence. 

assembler language. A symbolic programming 
language in which the set of instructions includes 
the instructions of the machine and whose data 
structures correspond directly to the storage and 
registers of the machine. 

asynchronous transmission. In data 
communications, a method of transmission in which 
the bits included in a character or block of 
characters occur during a specific time interval. 

Glossary G-1 



However, the start of each character or block of 
characters can occur at any time during this 
intervaL Contrast with transmission. 

auto report. An RPG option that simplifies the 
defining of formats for printed reports and that 
allows the written statements to be 
included in m"w programR 

autoanswer. In data communications, the ability 
of a station to receive a call over a switched line 
without operator action. Contrast with manual 
answer. 

autocalL In data communications, the ability of a 
station to place a c"lll ovPr a switched line without 
operator action. Contrast with manual call. 

autoHnk A. part of the overlay linkage editor that 
automatically rPsolves extermi l reforences by 
searching thP lihrary for the appropriate object 
program.. 

batch RSC. Thi' SSP RUpport that data 
communir:ations with BSC computers and devices 
via the RPG T specification or the assembler $DTFB 
macroinstruction. 

batch processing. A processing method in which 
a program or programs process records with little or 
no operator action. Contrast with interactive 
processing. 

binary. (1) Pertaining to a system of numbers to 
the base two; the binary digits are 0 and 1. (2) 
Involving a choice of two conditions, such Rs on .. off 
or yes.no. 

binary synchronous communicatiom; (BSC). A 
form of communications linP control that w1Ps 
transmission control characters to control the 
transfer of data over a communicat10ns line. 
Compare with synchronous data link control. 

bit. Either of the binary digits 0 or 1. See a lHo 
byte. 

block. (]) A group of records that is recorded or 
processed as a unit. Same as physical record. (2) 
Ten sectors (2560 bytes) of disk storage. (3) In data 
communications, a group of records that is recorded, 
processed, or sent as a unit. 

branch instruction. An Instruction that changes 
the sequence in which the instructions in a 
computer program are performed. The sequence of 
instructions continues at the address specified in 
the branch instruction. 

G-2 

buffer. (1) A temporary storage unit, es1pe,cuu 
one that accepts information at one rate and 
delivers it at another rate. (2) An area of storage, 
temporarily reserved for performing input or output, 
into which data is read or from which data is 
written .. 

byte. The amount of storage required to represent 
one a byte is 8 bits. 

call. (1) To activate a program or procedure at its 
entry point. Compare with load. (2) In data 
communications, the action necessary in making a 
connect.ion between two stations on a switched line. 

cancel. To end a task before it is completed. 

chained fiJe. An input, output, or update disk file 
frorn which records can he read randomly. 

cha.racter. A letter, digit, or other symbol. 

code. (1) Instructions for the computer 'To 
write mshuct1ons for the computer. Sarne as 
program. (:1) A representation of a condition, such 
as an error code 

collating sequence. The sequence in which 
characters are ordered within the computer for 
sorting, combining, or comparing. 

combined me. A file used as buth an input and an 
output file. 

command display. A display that allows an 
operator to display and send messages, and use 
control commands and procedure commands to start 
and control jobs. Contrast with standby display. 
See also console and subconsole display. 

command key indicator. Coded as KA through 
KL, and KQ through KY. An indicator that is set 
on when an operRt:or presses the corrPsponding 
command key. 

command keys. The 12 keys on the top row of the 
display station keyboard that are used with the Cmd 
key (and optionally the Shift key) to request up to 
24 different actions defined for program products 
and user programs. Compare with character key and 
{unction key. 

cornnient. Words or statements in a program or 
procedure that serve as documentation rather than 
a8 instructions. 

communications adapter. A hardware feature 
that enables a computer or device to become a part 
of a data communications network. 



compilation time" The time during which a 
source program is translated from a high-level 
language to a machine language program. 

compile. To translate a program written in a 
high-level programming language into a machine 
language program. 

compile-time array. An array that is built into 
the source program and that becomes a permanent 
part of the compiled program. Contrast with 
execution-time array and preexecution-time array. 

compile-tinme UllMe. A table that is buill into the 
source program and that becomes a permanent part 
of the compiled program Contrast with 
preexecutlon-time table. 

compiler. A program that translates instructions 
written in a high-level programming language into 
machine language. 

com][n·~ssion. (1) A for removing· strmgs 
of duplicatP- characters and for removmg tra1lii1g 
blanks before transmitting data. (2) In data 
communications, a technique for removing strings of 
duplicate characters. 

conditioning. The use of indicators to control 

conditioning imlicator. An indicator used to 
indicate when calculations are done or which 
attributes apply to a format or format field. 

configuratfon. 'fhe group of machines, devices, 
and programs that make up a data processing 
system. See also system configuration 

configmre, Cl) To describe (to the the 
devices, optional features, and program products 
installed on a system. (2) To describe to SSP-ICF 
both the communication facilities connected to 
System/36 and the attributes of the subsystem and 
remote system. 

consecutive processing. The processing of 
records in the order in which they exist in a fiie. 
Same as sequential processing. See also random 
processing. 

console display. A display that can be requested 
only at the system console. From a console display 
an operator can display, send, and reply to messages 
and use all control commands. 

constant. A data item with a value that does not 
change. Contrast with variable. 

continuation line. A line of a source statement 
into which characters are entered when the source 

statement cannot be contained on the previous line 
or lines. 

control break. A change in the contents of a 
control field. 

control fiel.d. A field that identifies a record's 
relationship to other records (such as a part number 
in an inventory record). Control fields are 
compared from record to record to determine when 
certain operations are to be performed. 

control-level indicator. An indicator used to 
specify certain fields as control fields and to control 
which operations are performed at total and detail 
time in the RPG program cycle. 

;L;<lHiltll":Gft station. The pnmary or controlling 
computer on a multipoint line. The control station 
controls the sending and receiving of data. 

(~u'1\boll stoj("age Storage in the computer that 
contams the programs used to cnntrol input and 
output and the use of main storage. 
Contrast with main storage. 

conversatio11rnJ file. A BSC file that allows 
sending data characters as a response instead of 

acknowledgment characters. 

r:ireatmirn 11:!,ate. The program date at the time a fifa 
is created. See also program date, session date, and 
system date. 

current Hbrary. The first library searched for any 
required members. The current library can be 
specified during sign-on or while running programs 
and procedures. 

C\l!l'."ifelt';t r~:corr-iL The record that is currently 
available to the program. 

c~n-sor. A movable symbol (such as an underline) 
on a display, usually used to indicate to the 
operator where to type the next character. 

data conu1n1!.micatious.. 'fhe transmission of data 
between computers and/or remote devices (usually 
over a long distance). 

data display station. A display station from 
which an operator can only enter data. A data 
display station is acquired and controlled by a 
program. Contrast with command display station. 

data link escape (DLE) character. In BSC, a 
transmission control character usually used in 
transparent text mode to indicate that the next 
character is a transmission control character. 

Glossary G-3 



data management. The System Support Program 
Product support that processes a request to read or 
write data. 

data terminal equipment (DTE). The data 
processing unit that uses communications lines. 

data type. A category that identifies the 
mathematical qualities and internal representation 
of data. 

debug. To detect, locate, and remove mistakes 
from a program. 

decimal. Pertaining to a system of numbers to the 
base ten; decimal digits range from 0 through 9. 

default value. A value stored in the system that is 
used when no other value is specified. 

•iefine-the-file (DTF). A control block containing 
;,".lfrnrmation that is passed between data 
management routines and users of the data 
management routines. 

delete--capable file. A file from which records can 
be logically removed without compressing the file. 

delta position. The position in the edit word that 
corresponds to the leftmost position in the data 
field. 

demand file. A file that can be specified as an 
input, update, or combined file and that is used with 
the READ or KEY operation code. 

descending key sequence. The arrangement of 
data in order from the highest value of the key field 
to the lowest value of the key field. Contrast with 
ascending key sequence. 

detail record. A record that contains the daily 
activities or transactions of a business. For 
example, the items on a customer order are typically 
stored in detail records. Contrast with header 
record. 

detail time. A portion of the RPG program cycle 
during which calculation and output operations for 
specified fields are performed for each record read. 

development support utility (DSU). A program 
product that can be used to create, edit, remove, 
view, or print source members and procedure 
members. DSU has a full screen editor that allows 
to edit an entire screen of data at a time. For the 
RPG programmer, DSU can check RPG II or 
Autoreport statements for syntax errors as the 

G-4 

statements are entered, or all at once after the 
statements have been entered. DSU can co-reside 
with SEU, and requires no conversion of data. 

diagnosed-source file. A library member 
containing source statements and associated error 
messages. 

diagnosed-source member. See diagnosed-source 
file. 

direct file. (1) A disk file in which records are 
referenced by the relative record number. Contrast 
with indexed file and sequential file.(2) See relative 
file. 

disk. A storage device made of one or more flat, 
circular plates with magnetic surfaces on which 
information can be stored. 

disk file. A set of related records on disk that are 
treated as a unit. 

diskette. A thin, flexible magnetic plate that is 
permanently sealed in a protective cover. It can be 
used to store information copied from the disk. 

display. (1) A visual presentation of information 
on a display screen. (2) To show information on the 
display screen. 

display format. Data that defines (or describes) a 
display. 

display layout sheet. A form used to plan the 
location of data on the display. 

display screen. The part of the display station on 
which information is displayed. 

display station. A device that includes a keyboard 
from which an operator can send information to the 
system and a display screen on which an operator 
can see the information sent or receive information 
from the system. 

DLEo See data link escape character. 

do group. A group of operations that can be 
performed repeatedly and is delimited and 
controlled by a DO, DOUxx, DOWxx, or IFxx 
operation and an associated END operation. 

DSU. See development support utility. 

DTE. See data terminal equipment. 

DTF. See define-the-file. 



storage, 
h~l$ bepn rhn·n·or.=-:v3" 

JRJRC1:UH.C 
inclrn:led 

part 
Dat11 that 

the form or format of data; foJ 

To check the accuracy 

EXC:ii:PT group name, A name used in the 
of indicators to a record or group of records 
written at 

execution-time array. An array that Ioadecl 
after the pn:igram 
rcom,pile.,iime array and army. 

extended binary-coded decimal 
code (EBCDIC), A set of 256 

tt';)Y,-t•c:1 

ano~},r.:;· 

l7'/h·i 3 

let.ch 
disk 

:.;,;,, 

that is cumrnon 
Contrast with detail record. 



hex. See hexadecimal. 

hexadecimal. Pertaining to a system of numbers 
to the base sixteen; hexadecimal digits range from 0 
(zero) through 9 (nine) and A (ten) through F 
(fifteen). 

host system. The primary or controlling computer 
in the communications network. See also control 
station. 

I/0. See input/output. 

ID. Identification. 

ideographic data. Two-byte characters enclosed 
by the shift-out (S/O) control character (hex OE) and 
the shift-in (S/I) control character (hex OF). 

index. (1) A table containing the key value and 
location of each record in an indexed file. (2) A 
computer storage position or register, the contents 
of which identify a particular element in a set of 
elements. 

indexed file. A file in which the key and the 
position of each record is recorded in a separate 
portion of the file called an index. Contrast with 
direct file and sequential file. 

indicator. An internal switch that communicates a 
condition between parts of a program or procedure. 

informational message. A message that provides 
information to the operator, but does not require a 
response. 

initialize. To prepare for use. For example, to 
initialize a diskette. 

input. Data to be processed. 

input/output (I/0). Pertaining to either input or 
output, or both. 

inquiry. (1) A request for information in storage. 
(2) A request that puts a display station into inquiry 
mode. (3) In data communications, a request for 
information from another system. 

inquiry mode. A mode during which the job 
currently running from a display station is 
interrupted so that other work can be done. The 
operator puts the display station in inquiry mode by 
pressing the Attn key. 

inquiry program. (1) A program that allows an 
operator to get information from a disk file. (2) A 
program that runs while the system is in inquiry 
mode. 

G-6 

interactive. Pertains to activity involving 
requests and replies as, for example, between an 
operator and a program or between two programs. 

Interactive Communications Feature 
(SSP-ICF). A feature of the System Support 
Program Product that allows a program to 
interactively communicate with another program or 
system. 

interactive processing. A processing method in 
which each operator action causes a response from 
the program or the system. Contrast with batch 
processing. 

intermediate block check. In binary synchronous 
communications, an option that permits checking 
each record, instead of checking the contents of the 
total buffer, when large buffers of data are received. 

intermediate-text-block (ITB) character. In 
binary synchronous communications, the 
transmission control character used to indicate the 
end of a section of data to be checked. See 
intermediate block check. 

interrupt. (1) To temporarily stop a process. (2) In 
data communications, to take an action at a 
receiving station that causes the sending station to 
end a transmission. 

ITB. See intermediate-text-block character. 

job. (1) A unit of work to be done by a system. (2) 
One or more related procedures or programs 
grouped into a procedure. 

job queue. A list, on disk, of jobs waiting to be 
processed by the system. 

job step. A unit of work represented by a single 
program or a procedure that contains a single 
program. A job consists of one or more job steps. 

K-byte. 1024 bytes. 

key. One or more characters used to identify the 
record and establish the record's order within an 
indexed file. 

label. The name that identifies a statement. 

level indicator. Two characters (LO through L9 
and LR) that control calculation and output 
processing during total time. 

library. (1) A named area on disk that can contain 
programs and related information (not files). A 



hhrarv 'on-,1c;t;..; pf d1tfr~rPn1 ~<>ct1nnf', r·;;llPd lihrilry 

rnemb"'" Pl ThP "et. nf pnhlic;it1nnc; for n RY"tem 

library member. A mimed rnl1PCt1on of rPcnrds or 
statements rn a lihrnry. The tvpes pf lihrBry 
members are lnad member, pror·Pd11r1' mPmher, 1wurre 

rrwmber, 11nd s11hro11.hne memfwr. 

hm1t,. fil•~ A file th;;t • nntmnR nppPr ;rnd lnwPr 
V"l111;s of •hP record kPV" that c•1n bP u.;N! tn r».nd 
frnrn an HHiPXPO fi )p 

link-editing. To comhir1P, hy the ovPrhv 11nk'1ge 
Pd1tnr, a numhPr of lnarl memhPrs .<inrl/nr suhrrrntinp 
mPrntlPrs into onP prngr!lrn 

hnkrige. Tl1P ,~r.d··ng th11t p;i"·"P" rnntrnl i'lnd 
P"'r'lm»ier-: hPtWP"YI tw0 rnutm»<; 

litl"ral. A f:ymhol 0r a qmrntity in a sour,·e 
program that JS itRPlf nflt::i, r::JthPr th:in ;:! rr>ff'renrp 
t.o ch1t"J. 

lmul (1) Tn mnv<> dilifl 01· prni;.:rnrns intn storngP 
{Z) To plarP 11 rl1!>kPttP intn ::i fl">kPttP drivP 0r A 
m"!gl!-,H1P intn A cl15kpttp T"'H!'""'"P drivP. (.1) Te> 

1nsp~1 pape.r 1nto <i. printer. 

load membt>r. A library memhPr th::it contains 
rnformat10n 1.1!" a form that the systf'rn c;:i11 USP 
ri1rertly, surh fl« ::i i!1qp]ay form>it. Crmtr>i!>l wiin 

.~nurr:P rn<?mber 

load morlnle. .A progrnm P1 11 fnrni that ran hP 
loaded int<> m::nn Rtorage and run. The load mrniulP 
1s thP 011t.put of the rwerl11v l 1n lo1gP Pd1tor. 

local. Pntain1ng to H dl:'v1r·p that 1" dirPdly 
rrmnPrtprJ to yonr sy"tPrn w1thont thP ll"" of n 
rnmmunic::it1nn" lin•• f"onlrHsl with rPmnfP. 

local da.ta arP!l. A sn hvte arr>a on di-.k thf't can 

hP •18ed to pass mform11hon hetWPPn inh" ;md 1ob 

su•ps rlunng a spssHm A sep:uatc" lorn 1 r1::it:i ;.irPa 
exists for each command display station. 

location name. In inter;:idivP r:omm11nirations, 
the tdPntlfy1ng name assoct;:ttPrl w1th a particular 
remote systi:>m or riPvire. 

look-ahead field. A field that allows the program 
to look at information in a field on the next rPcord 
that is available for processing in any input or 
update file. 

loop. A sequence of instructions that is performed 
repeatedly until an ending condition is reached. 

machine language. A language that can be used 
directly by a computer without intermediate 
processing. 

mf!in f'tOrllgP, Tfw part of thP prnri'-.. ,1ng 1in1t 

wtwrf' prngr:im'< 111'!' nin. Cnntt;1~.; w1th 1·onlrol 

: ... h)rt1!:.(P. 

manual answlf'r. Tn di1bi cnmmnninitinn';, t\w 
npPn1tor C1ctirrn<; ri>quirPd tn rPn•1vo> ;i c;dl nvPr ;i 

:,\,:ltch.prl_ l1n<"l. f'nnt-r~1,~t v .. ·Jtl: a~,lnnn . .-;u :'r. 

n1anual nilL Tr1 rl:ita rnmmunif';ihnn~. tlw 

npr>n1tor ;irt1nns rPquin~d tn phicP :i f'Hll "'"'r ;.i 

sw1tf'hP<l lm<> ('nntr;i~t with n11tornll. 

mR!'tf'r file. A f'n!J.>rtinn of Jlf'rm;>nPnt 
1nformflhnn., ~.11eh :1 ... : a cn~tnmPr prlrlr0c: 1.-: fdn. 

match fields. \Vh»n prncp;;~ing mnrP thin onP fi\1 
\.•.nth HPf~, fir,Jd.; th::tr <irP rnrnpr--.rcirl, t0 rl<"·t·~·i ... 1tt1r~r.. 
\Vht->th,-·r npi)rrd }1-n•c. shnn ld hP dnnP. 

m;:itrh ]PvPl. ThP v:~]11p id»ntifiPd tlw m;itch 

fiPld indirf!torc; Ml thro11gh J\rn. Th" m;ifrh ]Pvcl 
irlPntifies mAtf'h f10lrls 

nwmory resiilPrit cwerl<'v (lVfRO). :i.,, nptinn lhBr 

allo~t.~ fl progr,qf':'l tn rrquP~t t• 1 1t its rPrr·Ern 

1ri rni>1n ,;tnr;ig<>. 

mel"Sflg'e. InformBtion E'Pnt to Rn opPrator nr 
prngrBrnmf'r from R prngr<im. A lnf'SSBgP nrn bP 
P1ther rl1~01AYP<l or pnntPd. 

nH'"sage identifiration. A fiplrl rn the display <»r 
prrnfnut of il mPSSfl(!(' that OirPf'.ts the llSPr tn th0 
rlec;crrptinn nf thP mPss;cige ma mPssl'!gf> ~~11irle nr ;1 
rPh~rpnrP mHnn:-:.L '"f'hi..;. fH~id i··nnc.;1sL~ nf'UP tn fn1~r 

nlphah(;tir: ch<irnr:t.r>rs, fnllnwPrl by n <l<Jc;h, followiorl 
hv the mPSsHgP irlentifirnti(>n f'n!.fo. 

nwss:igP identificatirm !'Oi!P (l\HC), A fr111· rlii:nt 
numhPr that identifiPs a rPcord in a message 
mPmlwr. This num1wr ran hP p;1rt of thP mn,-;~flgP 
ir!Pnt1f1,..:i.tinn. 

ml"S!'llg'P mPmher. A Jihrnry m0mhn Hrnt defines 
the t0xt of i!nch message anrl 1t~- ~ .. :::::.;q • ._.-~0t 0d mPss2g~ 

idPntifiration code. 

MIC. See message identification code 

mode. A method of operation. Fur an example, see 
enter/updaie mode. 

MRO. See memory resident OVl!rlay. 

Glossary G-7 



MRT program. See multiple requester terminal 
program. 

multiple requester terminal (MRT) program. A 
program that can process requests from more than 
one display station or SSP-ICF session at the same 
time using a single copy of the program. Contrast 
with single requester terminal (SRT) program. 

NEP. See never-ending program. 

never-ending program (NEP). A long-running 
program that does not share system resources. 
except for shared files and the spool file. 

noncontiguous key. A key made up of characters 
or character strings which occur in separate areas 
of a record. 

nonswitched line. A connection between 
computers or devices that does not have to be 
established by dialing. Contrast with switched line. 

not-found indicator. An indicator that is set on 
when the specified record cannot be found. 

numeric. Pertaining to any of the digits 0 through 
9. 

object module. A set of instructions in machine 
language. The object module is produced by a 
compiler from a subroutine or source program and 
can be input to the overlay linkage editor. 

OCL. See operation control language. 

offline. Neither controlled directly by, nor 
communicating with, the computer, or both. 
Contrast with online. 

OLE. See overlay linkage editor. 

online. Being controlled directly by, or directly 
communicating with, the computer, or both. 
Contrast with offline. 

operation. A defined action, such as adding or 
comparing, performed on one or more data items. 

operation control language (OCL). A language 
used to identify a job and its processing 
requirements to the System Support Program 
Product. 

output. The result of processing data. 

overflow indicator. An indicator that signifies 
that the last line on a page has been printed or 
skipped. 

G-8 

overflow line. The line specified as the last line to 
be printed on a page. 

overlay. (1) To write over (and therefore destroy) 
an existing file. (2) A program segment that is 
loaded into main storage and replaces all or part of 
a previously loaded program segment. 

overlay linkage editor (OLE). The part of the 
System Support Program Product that combines 
object programs to produce code that can be run 
and allows the user to determine overlays for 
programs. 

overlay region. A continuous area of main 
storage in which segments can be loaded 
independently of other n~gions. 

override. (1) A parameter or value that replaces a 
previous parameter or value. (2) To replace a 
parameter or value. 

packed decimal format. A format in which each 
byte (except the rightmost byte) within a field 
represents two numeric digits. The rightmost byte 
contains one digit and the sign. For example, the 
decimal value + 123 is represented as 0001 0010 
0011 1111. Contrast with zoned decimal format. 

packed key. An index key in packed decimal 
format. 

parameter. A value supplied to a procedure or 
program that either is used as input or controls the 
actions of the procedure or program. 

physical file. An indexed file containing data for 
which one or more alternative indexes have been 
created. 

point-to-point line. A communications line that 
connects a single remote station to a computer. 

poll. To execute a polling sequence. 

polling. A method for determining whether each of 
the stations sharing a communications line has data 
to send. 

preexecution-time array. An array that is loaded 
at the same time as the user program, before the 
program begins. Contrast with compile-time array 
and execution-time array. 

preexecution-time table. A table that is loaded at 
the same time as the user program, before the 
program begins. Contrast with compile-time table. 

primary file. The main file from which a program 
reads records. 



primary index. The index that is built when an 
indexed file is created. Contrast with alternative 
index. 

printout. Information from the computer that is 
produced by a printer. 

priority. The relative ranking of items. For 
example, a job with high priority in the job queue 
will be run before one with medium or low priority. 

problem determination. The process of 
identifying why the system is not working. Often 
this process identifies programs, equipment, data 
communications facilities, or user errors as the 
source of the problem. 

procedure. A set of related operation control 
language statements (and, possibly, utility control 
statements and procedure control expressions) that 
cause a specific program or set of progra;ns to be 
performed. 

processing unit. The part of the system unit that 
performs instructions and contains main storage. 

program. (1) A sequence of instructions for a 
computer. See source program and load module. (2) 
To write a sequence of instructions for a computer. 
Same as code. 

program cycle. Jn RPG, the series of operations 
performed by the computer for each record read. 

program date. The date associated with a 
program (job step). See also creation date, session 
date, and system date. 

program product. A licensed program for which a 
fee is charged. 

prompt. A displayed request for information or 
operator action. 

queue. A line or list formed by items waiting to be 
processed. 

random access. An access method in which 
records can be read from, written to, or removed 
from a file in any order. 

random by key. A processing method for chained 
files in which record keys identify records to be 
processed. 

random by relative record number. A 
processing method for chained files in which 
relative record numbers identify the records to be 
processed. 

random processing. The processing of records in 
an order other than the order that they exist in a 
file. See also consecutive processing and sequential 
processing. 

record. A collection of fields that is treated as a 
unit. 

record address file. An input file that indicates to 
a program which records are to be read from a disk 
file, and the order in which these records are to be 
read from the disk file. 

record identification code. Characters placed in 
a record to identify that record type, 

record-identifying indicator. An indicator that 
identifies the record just read. 

record type. The classification of records in a file. 

region. The amount of main storage available for a 
program. See also job region and step region. 

relative record number. A number that specifies 
the location of a record in relation to the beginning 
of the file. 

remote. Pertaining to a system or device that is 
connected to your system throt<gh a 
communications line. Contrast with local. 

requester. A display station or interactive 
communications session that requests a program to 
be run. 

resulting indicator. An indicator that is set 
depending on the result of an operation. 

return code. In data communications, a value 
generated by the system or subsystem that is 
returned to a program to indicate the results of an 
operation issued by that program. 

reverse-interrupt character (RVI). In binary 
synchronous communications, a request by the 
receiving station to the sending station to stop 
sending and receive a message. 

root segment. The first segment of an program 
with overlays. The root segment remains in main 
storage at all times while the program is being run. 

routine. A set of statements in a program that 
causes the system to perform an operation or a 
series of related operations. 

run. To cause a program, utility, or other machine 
function to be performed. 

Glossary G-9 



scratch file. A file, usually used as a work file, 
that exists until the program that uses it ends. 

screen design aid (SDA). The part of the Utilities 
Program Product that helps the user design, create, 
and maintain displays and menus. Additionally, 
SDA can generate specifications for RPG and WSU 
work station programs. 

SDA. See screen design aid. 

search word. Data used to find a match in a table 
or array. 

secondary file. Any input file other than the 
primary file. 

sequential access. An access method in which 
records are read from, written to, or removed from a 
file based on the logical order of the records in the 
file. 

sequential by key. A method of indexed file 
processing in which records are read or written in 
the order of the record keys. 

sequential file. A file in which records occur in 
the order in which they were entered. Contrast 
with direct file and indexed file. 

sequential processing. The processing of records 
in the order in which they exist in a file. Same as 
consecutive processing See also random processing. 

session.. (1) The logical connection by which a 
System/36 program or device can communicate with 
a program or device at a remote location. (2) The 
length of time that st.arts when an operator signs on 
the system and ends when the operator signs off the 
system. 

session date. The date associated with a session. 
See also creation date, program date, and system 
date 

session library. The library specified, or assigned 
as a default, when signing on or while running a 
program. 

SEU . See source entry utility. 

shift-in (S/I) control character:. A character 
that indicates the end of a string of ideographic 
characters. The shift-in control character is 
represented by hex OF. 

shift-out (S/0) control character:. A character 
that indicates the start of a string of ideographic 

G-10 

characters. The shift-out control character is 
represented by hex OE. 

single requester terminal (SRT) program. A 
program that can process requests from only one 
display station or SSP-ICF session from each copy of 
the program. Contrast with multiple requester 
terminal program. 

SNA. See systems network architecture. 

source entry utility (SEU). The part of the 
Utilities Program Product used by the operator to 
enter and update source and procedure members. 

source member. A library member that contains 
information in the form in which it was entered, 
such as RPG specifications. Contrast with load 
member. 

source program. A set of instructions that are 
written in a programming language and that must 
be translated to machine language before the 
program can be run. 

special character. A character other than an 
alphabetic or numeric character. For example;*, 
+ , and % are special characters. 

specification sheets. Forms on which a program 
is coded and described. 

spool file. A disk file that contains output that has 
been saved for later printing. 

spool-writer. The part of the System Support 
Program Product that prints output that has been 
saved in the spool file. 

spooling. The part of the System Support Program 
Product that saves output on disk for later printing. 

SRT program. See single requester terminal 
program. 

SSP. See System Support Program Product. 

SSP-ICF. See Interactive Communications Feature. 

standby display. A display that allows an 
operator to enter data only. When a standby 
display appears, the display station can be acquired 
by a program. Contrast with command display. 

start-of-text (STX) character. In binary 
synchronous communications, a transmission 
control character used to begin a logical set of 
records that will be ended by the end-of-text 
character or end-of-transmission-block character. 



storage usage map. An overlay linkage editor 
printout that shows the names and storage locations 
of routines that make up the load member. 

STX character. See start-of-text character. 

subconsole. A display station that controls a 
printer or printers. 

subconsole display. A display that can be 
requested only from a command display that appears 
on a subconsole. From a subconsole display an 
operator can display and send messages, and enter 
all control commands except those that can be 
entered only at the system console. See also console 
display. 

subroutine. A group of instructions that can be 
called by another program or subroutine. 

switched line. In data communications, a 
connection between computers or devices that is 
established by dialing. Contrast with nnnswitched 
line. 

synchronous. Occurring in a regular or 
predictable sequence. 

synchronous data link control (SDLC)o A form 
of communications line control that uses c:m1m.::cndn 
to control the transfer of data over a 
communications line. Compare with binary 
synchronous communications. 

synchronous transmission. In data 
communications, a method of transmission in which 
the sending and receiving of characters is 
controlled by timing signals. Contrast with 
asynchronous transmission. 

system. The computer and its associated devices 
and programs. 

system configuration. A process that specifies 
the machines, devices, and programs that form a 
particular data processing system. 

system console. A display stat10n from which an 
operator can keep track of and control system 
operation. 

system date. The date assigned by the system 
operator during the initial program load procedure. 
See also creation date, program date and session 
date. 

system library. The library, provided with the 
system, that contains the System Support Program 
Product and is named #LIBRARY. 

System Support Program Product (SSP). A 
group of licensed programs that manage the running 
of other programs and the operation of associated 
devices, such as the display station and printer. 
The SSP also contains utility programs that perform 
common tasks, such as copying information from 
diskette to disk. 

systems network architecture (SNA). A set of 
rules for controlling the transfer of information in a 
data communications network. 

table. (ANSI) A collection of data in which each 
item is uniquely identified by a label, by its position 
relative to the other items, or by some other means. 

temporary-text-delay (TTD) character. A BSC 
transmission control character that mdicates to the 
receiving station that there is a temporary delay in 
the transmission of data. 

total operations. Calculation And 011tput 
operations pPrformerl only after A group of rf'cords 
has been processed. 

total time. The part of the RPG program cycle in 
which calculation and output operations specified 
for a group of records arf' done. 

tr.1u1.s::!.ct:irnn,, {1) An item of business. The 
handling of customer orders and customer billing 
are examples of transactions. (2) Jn interactive 
communications, the communication between the 
application program and a specific item (usually 
another application program) at the remote system. 

transaction file. A file containing data, such as 
customer orders, that is usually used only with a 
master file. 

transmission control characters. In data 
communications, special characters that are 
mcluded in a message to control communication 
over a data link. For example, the sending station 
and the receiving station use transmission control 
characters to exchange information; the receiving 
station uses transmission control characters to 
indicate errors in data it receives. 

transparent data. Data that can contain any 
hexadecimal value. 

transparent literal. a literal (or constant) that 
begins with an apostrophe followed immediately by 
the shift-out (S/0) control character (hex OE), and 
up to ~ ideographic characters for a literal or up to 
11 ideographic characters for a constant, and ends 
with the shift-in (S/I) control character (hex OF) 
followed immediately by an apostrophe. 

Glossary G-11 



transparent text mode. A mode that allows BSC 
to send and receive messages containing any of the 
256 character combinations in hexadecimal, 
including transmission control characters. 

tributary station. In data communications, a 
secondary device on a multipoint line. 

truncate. To shorten a field or statement to a 
specified length. 

TTD character. See temporary-text-delay character. 

unique. The only one. 

update file. A disk file from which a program 
reads a record, updates fields in the record, and 
writes the record back into the location it came 
from. 

Utilities Program Product. A program product 
that contains the data file utility (DFU), the source 
entry utility (SEU), the work station utility (WSU), 
and the screen design aid (SDA). 

utility program. A System Support Program 
Product program that allows you to perform a 
common task, such as copying information from 
diskette to disk. 

valid. (1) Allowed. (2) True, in conforming to an 
appropriate standard or authority. 

variabie. A name used to represent a data item 
whose value can change while the program is 
running. Contrast with constant. 

work file. A file that is used for temporary storage 
of data being processed. 

G-12 

work station. A device that lets people transmit 
information to or receive information from a 
computer; for example, a display station or printer. 

work station utility (WSU). The part of the 
Utilities Program Product that helps you to write 
programs for data entry, editing, and inquiry. 

World Trade. (1) Pertains to the distinction 
between the US and the rest of the world. (2) 
Pertains to the combination of: 

IBM World Trade Americas/Far East 
Corporation 
IBM W or Id Trade Europe/Middle 
East/ Africa Corporation 

WSU. See work station utility. 

X.21. In data communications, a specification of 
the CCITT that defines the connection of data 
terminal equipment to an X.21 (public data) 
network. 

X.21 feature. The feature that allows System/36 to 
be connected to an X.21 network. 

zero suppression. The substitution of blanks for 
leading zeros in a number. For example, 00057 
becomes 57 when using zero suppression. 

zoned decimal format. A format for representing 
numbers in which the digit is contained in bits 4 
through 7 and the sign is contained in bits 0 
through 3 of the rightmost byte; bits 0 through 3 of 
all other bytes contain ls (hex F). For example, in 
zoned decimal format, the decimal value of + 123 is 
represented as 1111 0001 1111 0010 1111 0011. 
Contrast with packed decimal format. 



for a ''lifORKSTN file 6-9 

Im:ncatrnn 
line 15-38 

auto reporrc 

use with edit code 

sequence 

arrays (ff tables 
file translation table 17-10 
look-ahead fields 25-1::1 

'kAUTO 



*SIZE keyword 6-31 
*STATUS keyword 6-30 
*suppress (auto report) 15-11 
*ZERO 26-16 
*ZEROS 26-16 

A$$SUM subroutine (auto report) 15-58 
accumulating totals (auto report) 15-35 
ACQ (acquire) operation code 

bytes of created code 18-21 
description 28-12 
used with a WORKSTN file 6-40 

acquiring a device 6-40 
ADD (add) operation code 

bytes of created code 18-21 
description 28-12 

adding entries to arrays and tables 13-25 
adding records to a file 

file description specifications 
entry 21-39 

RECNO continuation-line option 21-36 
output specifications entry 27-8 
to a direct file 5-57 
to a sequential file 

at the end of a file 5-21 
between records in a file 5-24 

to an indexed file 
randomly by key field 5-95 

additional input/output area 21-28 
address output (addrout) file 

definition G-1 
file description specification 
charts 21-2 

reading a direct file 5-44 
reading a sequential file 5-10 
reading an indexed file 5-84 
updating a direct file 5-56 
updating a sequential file 5-20 
updating an indexed file 5-94 

addressing characters (BSCA file) 10-5, 24-13 
addrout file (see address output 
file) 

adjusting arithmetic results 
(half-adjust) 26-23 

allowing command keys to be used 6-22, 9-27 
with a WORKSTN file 6-22 

allowing function keys to be used 6-24 
alphabetized operation codes 28-12 
alphameric literal 26-14 
ALTERCOM procedure 

X-2 

blocked records 10-14 
changing configuration 10-9 
multiple-file support (MULTFILE 
parameter) 10-14 

removing imbedded blanks (COMPRESS 
parameter) 10-7 

removing trailing blanks (TRUNCATE 
parameter) 10-8 

retry count (errors) 10-9 
alternating format (related arrays and 
tables) 13-5 

alternative collating sequence 
changes to 17-5 
coding sheet 17-4 
control specification entry 17-3 
record format 17-7 

alternative index for an indexed file 
creating 5-65 
using 5-68 

ALTSEQ 17-7 
ampersand (&) 

auto report copy function 15-18 
use in edit word 16-13 

AND and OR lines 
*AUTO page-heading specifications 15-24 
calculation specifications 26-5 
indicators conditioning output 12-54 
input specifications 25-5 
output specifications 7-7, 27-7 
record-identifying indicators 12-6 

apostrophe 
used with output constant 27-23 

AREA field (SUBR21) 6-42 
areas of main storage 18-14 
arithmetic operations 28-4 
array LOKUP 28-62 
array name 22-8 
arrays (see also tables) 

adding entries to 13-25 
alternating 

definition of 13-5 
extension specification entry 22-18 

binary format 22-16 
calculating totals by using 
arrays 13-32 

changing the contents of 
permanently 13-24 
temporarily 13-22 

compile-time 
definition of 13-2 
loading 13-8 
placement in source program 13-9 

creating input records for 13-5 
decimal positions 22-16 



defrn ~ !:i h 

d1fl»·rT!lCI''°· fipt\,\d'I''> ;l[Til\ S dlld 

tnhl1·:-; Ll i 

uf I:\ 

/\!i.l.HHt, ,,,)1)1 ptnr!,f'H!Tl (n1;;1nr:11n1nj!, ,.,., 

i.d ;;ml:, l't'\'\'IVCihiP fiJ1•) ti (it!, 

pr(tg~·ain (req1.1t 1 ~t.1ng 

1'./Cl.h 1-\1 

f· ;iro;;r·:i,·•1 (pr 

execution !.tnll' '1•;;;,·mh1.-.r-lnngnngc· si.1hrnut1 

definition of 1:3 E lT np1.·rnth.1n hO 
l.-rnd1ng J:l. Jil 

P\:.t'l~lH1.on ~p1-·c1hcat1ons 

fi \pn;mw (when 

1mkx 11 ·J 
krnds ot 1:~ 

prP~·:Axecnnnn-t1n1P 1;~ 

lowc•d pr·r pn1gr<1 '.l') : 

Padmg,1 Fi 2R 
;:i,s resnli fipld in r;;iicnl;:itinn 

spec1ficM1ons ~~fl- fl 
exter1" 

preexecutHrn time 
definition oi ];i 2 
l1rnding 1:l n 

prmting elements, examples of 13 ::lfi 

xeferr1 ng to 

sequence (extenswn 
entry 22-17 

] 

similanties betvncen array,; and 
tables 13-1 

specifying arrays ;i 21 

summing the elements of 
operation) 28-115 

using an array name and mdex l:J-14 
writing 18 26 

AR230R, sample program into an 

H , :\ Pil, np,pr·;1h 

,:-:;1 r IU\Ol g .\ 

;1:.::'-~-1r:~n1r1g cnntY-nl -!{'·\.rt1 -l 1nd1r;;1~rn''::-.; !?--1F·~ 

prngr::nrtrning nids lf; G1 

fnrrnat :l ;'i-4!l 

plncem•'nt of and 

tocall and X 2! '"Ipport 
JO 

B- a 
3 26 

1;{ 

Index 



backspace (Record Backspace) key 
*STATUS keyword code 6-30 
as exception 6-24 

BEGSR (begin subroutine) operation code 
description 28-13 
in INFSR subroutine 6-35 

binary field 
comparison with packed-decimal and 
zoned-dedmal fields 25-32 
for table or array file 22-16 
format 25-32 
input specifications entry 25-28 
output specifications entry 27-22 

binary synchronous communications (BSC) 
functions 10-10 

binary synchronous communications adapter 
(BSCA) 

(see also BSCA file) 
defining 10-1 
device-dependent considerations 10-13 
programming considerations 10-6 
sample programs 10-17 
systems that use BSC 10-12 

bit operations 28-9 
(see also BITON, BITOF, and TESTB 
operations) 

bit testing (TESTB operation code) 28-113 
BITOF (set bit oft) operation code 

bytes of created code 18-22 
description 28-14 

BITON (set bit on) operation code 
bytes of created code 18-22 
description 28-16 

blank after 
*AUTO output 15-32 
*AUTO page headings 15-2fl 
output specifications 27-20 

blanks 
imbedded, removing (compressing 
data) 10-7 

trailing, removing (truncating 
data) 10-8 

BLDINDEX procedure 5-65 
block length 

file description specifications 
entry 21-20 

X-4 

relation to record length entry 21-22 
branching (GOTO operation code) 28-56 
branching to assembler-language 
subroutine 28-10 

branching within RPG 28-10 
BSC (binary synchronous 
communications) 10-1 

BSCA files 
addressing characters 24-13 
configuring your system for BSC 10-9 
defining 10-1 

file description specifications 10-2 
telecommunications 
specifications 10-4 

descriptions of BSC functions 
receive-only function 10-10 
send-and-receive function 10-10 
send-only function 10-10 

dE=-vice-dependent considerations 
IBM 3740 data entry system 10-13 
IBM 3750 (world trade only) 10-16 

file description specifications 10-2 
last file 24-12 
permanent-error indicator 24-10 
polling characters 24-12 
programming considerations 

autocall and X.21 support 10-6 
compressing the data 10-7 
configuring your system for BSC 10-9 
control breaks 10-8 
data formats 10-8 
diagnostics 10-9 
errors 10-9 
first program cycle 10-6 
removing strings of embedded 
blanks 10-7 

removing trailing blanks 10-8 
truncating the data 10-8 

sample programs 
send interspersed with receive 10-24 
send only 10-17 
System/36 tr. 3740 10-21 

system that use BSC 10-12 
telecommunications specifications 10-4 
wait time 24-11 

buffer for CONSOLE file, erasing 9-14 
bypassing a KEY operation 9-20 
bytes of created code for 
calculations 18-20 



CR and - in edit words 16-13 
C/Z/D (character/zone/digit) entry in input 
specifications 25-24 

calculation specifications 2-5, 26-1 
calculation::; 

bytes of created code 18-20 
neated by auto report 15-6 
detail 19-1 
fctctor 1 261' 
factor 2 26-18 
indiu1tors 

co11ditioning 12-51 
control-level 12-14 
in AND relationship 12-53 
resulting 12-24 

operation codes 28-1 
::iurnmary chart 26-9, 28-2 

specifications 26-1 
subroutines 

coding of 28-51 
total time 19-1 

CASxx (Case) operation code 
description 28-18 
bytes of created code 18-22 
xx portion of 18-9, 28-7 
rules of comparing factor 1 with factor 2 28-6 
CAS group 28-18 

CFILE continuation-line option 6-14 
CHAIN (chain) operation code 

bytes of created code 18-22 
description 28-20 

chained files 
description 21-17 
random processing 28-21 

changing the contents of arrays and 
tables 13-22 

character 
collating sequence 17-3 
grouping by zone or digit 25-26 
hexadecimal values 17-2 
in rncord identification code 25-23 
unprintable 20-12 

Clear key 
*ST A 'l'US keyword code 6-30 
as exception 6-24 

Crnd (see command key) 
codes 

edit 16-2 
exception/error 6-30 
operation 28-1 
record identification 25-23 

WORKSTN return 6-32 
coding a data structure 14-1 
coding a RPG program 2-1 
coding subroutines 28-51 
coding techniques 18-17 
collating sequence 17-1 
column headings created by auto 
report 15-51 

overflow of print line::; 15-52 
reformatting 15 51 
spacing and skippmg 15-49 

combi11ed files 21-14 
COMM statement 

PHONE paramettr 10-6 
1{.l<.:8TORE parm>:eter 10-7 

umm1and dit>play ;;;tatwn, detimtio:t1 
of G-2 

command function keys (i>ee command 
keys) 
command-key in,~icators 12-46 
command keys 

corresp011ding ir.dicators 12-46 
with a KEYBORD file 9-27 
with a WORKSTN file 6-22 

comments (::;ee column 7 in chapters 20 
through 27) 
common processing variation;; 6-22 
COMP (compare) operation code 

bytes of created code 18-22 
descri:µtion 28-24 

compare and testing operations 28-6 
rules of comparing fields '28-6 

compilation, solving problems that 
occur at 3-33 

compile-time anays 
defining 13-6 
description of 13-2 
loading 13-8 

compile-time tables 
defining 13-6 
description of 13-2 
loading 13-8 

compiler listing 
output options for AUTOC procedure 3 26 
output options for RPGC proceduri:: 3-16 
output options for RPGONL 
procedure 3-11 

output options for RPGR procedure 9-10 
overlay linkage editor storage usage 
map 18-14 

compiling 
auto report program (AUTOC 
procedure) 3-26 

interactive program development (RPGONL 

Index X-5 



procedure) 3-4 
load module for display formats (RPGR 
procedure) 9-8 

MRT program 6-43 
RPG program (RPGC procedure) 3-15 

compressing data 10-7 
conditional branching 18-2 
conditioning indicators 

bytes of created code 18-28 
conditioning calculations 12-51 
conditioning output 12 54 

configuration (telecommunications 
specifications entry) 24·5 

consecutive processing 
of a direct file 

reading 5-35 
updating 5-50 

of an indexed file 5-70 
of a sequential file 

reading 5-6 
updating 5-l:i 

CONSOLE file 
buffer, erasing 9-14 
changing the display format 9-14 
creating display formats (RPGR 
procedure) 9-8 

erasing the buffor 9-14 
RPGR procedure 9-8 
subfields 9 .. 5 
with KEYBORD and CRT files 9-15 

constants 
*AUTO output specifications 

A in column 39 15-34 
B or blank in columns 39 15-32 
C in column 39 1539 
1-9 or R in column 39 15-43 

*AUTO page headings 15-23 
on output specifications 27-23 
with edit words 16-11 

continuation-line options 6-11 
CFILE 6-14 
FM'l'S 6-13 
ID 6-13 
IND 6-12 
INFDS 6-14 
INFSR 6-13 
NUM 6-12 
REC NO 

adding records between records in a 
sequential file 5-24 

adding records to a direct file 5-57 
creating a direct file that allows 
deletions 5-32 

SAVDS 6-12 

X-6 

SLN 6-13 
control break 12-14, 19-1 
control break, unwanted 12-17 
control field 12-14, 19-1 
control group 12-14, 19-1 
control language statements to run a 
program 4-1 

control-level indicators 
as field-record-relation 
indicators 25-40 

as record-identifying indicators 25-12 
assigning 12-15 
description of 12-14 
on calculation specifications 26-6 
split control fields 12-20 
with auto report 

*AUTO output specifications 15-28 
effect on group printing 15-38 

with subroutines 28-10 
control specification 2-3, 20-1 
controlled loop 18-4 
copy function, auto report 15-13 
CR (sign for negative balance) 16-2 
created specifications, auto report 15-5 
created total fields, auto report 15-35 
creating a direct file 

that allows deletions 5-32 
that does not allow deletions 5-29 

creating a sequential file 5-3 
creating an alternative index 5-65 
creating an indexed file 

by writing records in an ordered 
sequence 5-62 

by writing records in an unordered 
sequence 5-63 

creating display formats for a CONSOLE file 
(RPGR procedure) 9-8 

creating display formats for a WORKSTN 
file 6-9 

coding edit words 16-10 
creating edit words with printer spacing 
chart 16-19 

creating input records for arrays or 
tables 13-5 

creating or changing an RPG or auto report 
program (RPGSEU procedure) 3-13 

creating or changing display formats 
(RPGSDA procedure) 3-32 

creating overlays 18-15 
cross-reference listing 

creating (RPGX procedure) 3-22 
option on AUTOC procedure 3-26 
option on RPGC procedure 3-17 



option on RPGONL procedure 3-7 
CRT file 

coding the specifications 9-30 
displaying data 9-32 

currency symbol 
control specification entry 20-7 
with an edit code 16-5 
with an edit word 16-13 

cycle, program 
detailed 19-6 

overview 19-1 
processing matching records 11-6 
processing WORKSTN files 6-52 

D-* AUTO 15-28 
data communications (BSCA file) 10-1 
data formats 25-28 
data structures 

as factor 1 26-8 
as factor 2 26-18 
as result field 26-19 
coding 14-1 

data structure statement 14-2 
subfields 14-2 

examples 
defining one area of storage more than 
one way 14-4 

defining subfields within a 
field 14-6 

reorganizing fields in an input 
record 14-8 

overlapping subfields 26-8 
referred to in RLABL operation 28-98 
special data structures 

file information data structure 
(INFDS) 6-27, 14-10 

local data area for a display 
station 14··10 

local data area for a display station 
(SUBR21) 6-42 

SAVDS continuation-line option 6-12 
SAVDS data structure 14-9 

subfields 14-2 
date created for *AUTO page 
headings 15-23 

suppressing the date 15-23 
date edit (control specifications) 20-8 

date editing with edit codes 16-8 
date editing with edit word (example) 16-17 

date fields 27-19 

date format 20-7 
date option 20-7 
date suppression (auto report) 15-23 
DEBUG (debug) operation code 4-3, 28-27 

bytes of created code 18-22 
control specification entry (column 
15) 20-6 

overriding in AUTOC procedure 3-29 
overriding in RPGC procedure 3-19 
overriding in RPGONL procedure 3-7 

records written by the DEBUG 
operation 4-4, 28-28 

debugging a program that uses a WORKSTN 
file 4-4 

debugging an RPG load module 4-2 
decimal comma 20-8 

decimal data format 
packed 25-30 
zoned 25-29 

decimal period 20-8 
decimal positions 

calculation 213-23 
created total fields 
report) 15-35 

extension specifications entry 22-Hi 
input specifications 
with move remai.nd;e:i 
operation 28-87 

with squ.are :root (SQRT) 28 112 

define the array (D'l"l'j l3 7 
define the file (DTF} 

equates 8-6 
format 8-5 

DEFINEPN procedure 10-16 
DEFN operation 28-29 
defining a BSCA file HJ1 
defining a field in calculations (:result 
field) 26-19 

defining arrays and tables 13-6 
defining one area of storage more than one 
way 14-4 

definition of terms G-1 
DEFINX21 procedure 10-6 
DEL entry in output specifications 27-8 
delete-capable file 5-32 
deleting records from a direct file 5-49 
deleting records from a sequential 
file 5-14 

deleting records from an indexed 
file 5-88 

demand files 
(see also READ operation code) 
description 21-18 
device types and file types that can 

Index X-7 



use 21-16 
possible processing methods 21-24 

demand WORKSTN file 
file description specifications 6-10 
reaching end of file 6-46 

descriptions of BSC functions 10-10 
designing an RPG program 1-1 
designing your program 1-4 

designing the input 1-6 
designing the output 1-5 
designing the processing 1-6 

detail lines (*AUTO output 
specifications) 15-28 

detail records 27 -7 
detail time 19 .. 1 
detailed RPG program cycle 19-6 
development support utility (DSU) 3-5, 3-9, 3-10 
device-dependent considerations for BSCA 
files 

IBM 3740 data entry system 10-13 
blocked records 10-14 
multiple-file support 10-14 
restrictions 10-13 
RPG specifications 10-15 
single-file support 10-13 

IBM 3750 (world trade only) 10-16 
device entry on file description 
specifications 21-30 

associated file types 21-31 
BSCA 21-35 
CONSOLE 21-34 
CRT 21-34 
DISK 21-33 
KEYBORD 21-34 
PRINTER 21-34 
SPECIAL 21-34 
WORKSTN 21-33 

device, definition of 6-1 
DFILE parameter on control language FILE 
statement 5-32 

differences between arrays and 
tables 13-1 

differences between RPG on System/36 and 
RPG on System/34 30-1 

digit 
character grouping by 25-26 
portion of character used as record 
identification code 25-24 

direct files 
adding records to 5-57 
creating a direct file that allows 
deletions 5-32 

creating a direct file that does not 
allow deletions 5-29 

X-8 

deleting records from 5-49 
reading 

consecutively 5-35 
randomly by addri:>.'lS output (addrout) 
file 5-44 

randomly by relative record 
number 5-39 

randomly by relative record number 
and/or consecutively 5-43 

updating 
consecutively 5-50 
randomly by address output (addrout) 
file 5-56 

randomly by relative record 
number 5-51 

randomly by relative record number 
and/or consecutively 5-55 

DISK files 
di:;.·ect files 

adding records to 5-57 
creating a direct file that allows 
deletions 5-32 

creating a direct file that does not 
allow deletions 5-29 

deleting records from 5-49 
reading 5-35 
updating 5-48 

indexed files 
adding records to 5-95 
creating 5-62 
deleting records from 5-88 
reading 5-70 
updating 5-88 

sequential files 
adding records to 5-21 
creating 5-3 
deleting records from 5-14 
reading 5~6 

updating 5-13 
display formats 

creating or changing (RPGSDA 
procedure) 3-32 

for CONSOLE file 
changing 9-14 
creating (RPGR procedure) 9-8 
format of 9-11 

for WORKSTN file 
creating 6-9 
relationship between input 
specifications and 6-17 

relationship between output 
specifications and 6-21 

display station 
acquiring 6-40 



requesting the program by 5 41 
display station local data area 1 W 

display station local data mea 
(SUBR21) 6-42 

DIV (divide} operation cot.le 
(see also M V R 
bytes of created code id z::l 
description 28-34 

do group 18-9, 28-8 
Do Until structme 186 
Do While structure 18--4 

d.oHar sign m edit 'Words 
code 

description 28-37 
bytes of created code 
rules of comparing factor 2 with 

the result fieid 28.,6 

:rules of COI!lpBiI'IIJ.g fa..ctOi' l lAli'th. 

vvith. conditior.uil indicato:r·§ 2R.~~, 

dynamic array 

edit codes 
*AUTO output 

A in column 39 15-37 
B in column 39 15·32 

*AUTO page-headings 
specifications 15-26 

asterisks used with 16-7 
currency symbol used with 
date field 16·8 
editing numeric fields with 16 

effect on end positwn Hi-9 
examples of 16-3 

inverted print 20-8 

summary chart of 16-2 
zero suppress 16-2 

edit words 
*AUTO output specifications 15-44 
& (Ampersand) ll0-13 

examp.ies of Hl-14 

imoedded blanks 

CONSOLE file 9-U 
file description specifications 

specifications 
A in column 39 15-38 
B in column 39 15-32 
output specifications 

ENDSR (end subroutine) 
description 28-40 
in INFSR subroutine 6-35 

and 
entering source statements 

34 

code 



RPGSEU procedure 3-13 
equates for DTF fields 8-6 
ERASE entry, calculation 
specifications 26-19 

erasing the CONSOLE file buffer 9-14 
error codes, INFDS subroutine 

*STATUS keyword 6-30 
WORKSTN return codes 6-32 

error handling 
description 6-24 
INFDS data structure 6-27 
INFSR subroutine 6-34 

error, definition of 6-24 
exception/error handling 

description 6-24 
INFDS data structure 6-27 
INFSR subroutine 6-34 

exception output records 27-8 
(see also EXCPT operation code) 

exception, definition of 6-24 
EXCPT (exception output) operation 
code 28-41 

EXCPT group name 27-19 
definition G-5 

EXCPT names 27-19 
execute subroutine (EXSR) operation 
code 28-52 

execute, size to 20-6 
execution-time array 

defining 13-6 
description of 13-2 
loading 13-10 

EXIT (exit to an external subroutine) 
operation code 28-50 

(see also RLABL operation code) 
EXSR (execute subroutine) operation code 

bytes of created code 18-24 
description 28-52 

extension specifications 2-3, 22-1 
external indicators 

as file-conditioning indicator 21-40 
as output indicators 27-12 
description 12-27 
setting and restoring (SUBR20) 6-41 
used to condition calculations 12-51 
used to condition output 12-54 

X-10 

factor 1 
description 26-8 
figurative constant 26-16 
in arithmetic operations 28-4 
in LOKUP operation 28-62 
literals 26-14 

factor 2 
description 26-18 
in arithmetic operations 28-4 

fetch overflow routine 7-15 
field description entries on input 
specifications 25-28 

field indicators 12-21 
field length 

arithmetic operations 28-4 
calculation specifications 26-21 
COMP (compare) operation code 28-24 
input specifications 25-34 
key field 21-25 
output specifications 27-21 

field location, input 
specifications 25 34 

field name 
creatt:d by auto report 15-32 
in HLABL operation 28-100 
input specifications 25-35 

in OR relationships 25-34 
output specifications 27-13 
result field, calculation 
specifications 26-19 

rules for 27-13 
special words 27-14 

(see also *PLACE, PAGE, PAGE1-PAGE7, 
and UDATE) 

field-record-relation indicators 
assigning 12-40 
description 12-39 
input specifications entry 25-41 

figurative constants 26-16 
file 

address output (addrout) 
reading a direct file by 5-44 
reading a sequential file by 5-10 
reading an indexed file by 5-84 
updating a direct file by 5-56 
updating a sequential file by 5-20 
updating an indexed file by 5-94 

array 21-18 
BSCA 10-1 
chained 21-17 



combined 21 14 
CONSOLE !H 
CRT 930 
demand 21-18 
direct 5-28 
DISK 5-1 
full-procedural 21-17 
indexed 5-60 
input 21-14 
KEYBORD 9-16 
output 21-14 
primary 11-1 
PRINTER 71 
record address 2117 
secondary 11 1 
sequential 5 2 
SPECIAL 8·1 
table 2118 
update 2114 
WORKSTN 6-1 

file addition 
direct file 5.5·7 
file description specificatiuns 
entry 21-:~9 

indexed file 
randomly by key field with 
chaining 5 95 

randomly by key field without 
chaining 5-99 

sequentially by key field 6-99 
sequential file 

at the end of a file 5-21 
between records in a file 5 24 

file condition 2140 
file-conditioning indicators 12-38 
FILE control language statement 

adding records to a direct file 5-57 
adding records to a sequential 
file 5-21 

adding records to an indexed file 5-95 
creating a direct file that allows 
deletions 5-32 

creating a sequential file 5.3 
creating an alternative index for an 
indexed file 5-65 

deleting records from a direct 
file 5-49 

deleting records from a sequential 
file 5-14 

deleting records from an indexed 
file 5-88 

updating DISK files in a MRT 
program 6-44 

file description charts 21-2 

file description specifications 2-3, 21-1 
file designation 

(see also chained file, demand file, 
full-procedural file, primary file, 
record address file, secondary file, and 
table file) 
file description specifications 
entry 21-15 

file format 21-19 
file information data structure 
(INFDS) 6-25 

file organization 
(see also direct files .. indexed 
files, and sequential files) 
DISK files 5-1 
file description specifications 
entry 21-28 

file processing methods 
(see also consecutive processing, 
random processing, and sequential 
processing) 
file description specifH::atiow; 
entry 21-28 

file sharrng 20-10 
file translation 17-9 
file type 

(see also t:ombined file, input file, 
output file, and update file) 

file description specifications 
entry 21 -13 

filename 
extension specifications 
from filename 22-6 
input specifications 25-5 
line counter specifications 23-4 
output specifications 27-5 
telecommunications specifications 24-5 
to filename 22-7 

files that allow records to be 
deleted 5-32 

first-page forms position 20-11 
first-page indicator 12-29 
first RPG program cycle 19-5 
fixed currency symbol 

with an edit code 16-6 
with an edit word 16-13 

fixed-length format 21-19 
floating currency symbol 

with an edit code 16-5 
with an edit word 16-13 

flowchart 
detailed program cycle 19-7 
handling exceptions and error>' in WORKS'l'N 
files 6-26 

Index X-11 



overview of program cycle 19-4 
processing WORKSTN input files 6-55 
program cycle for WORKSTN files 6-53 

FMTS continuation-line option 6-13 
FORCE (force) operation code 

bytes of created code 18-24 
FORCE (force) operation code (continued) 

description 28-54 
form length, line counter 
specifications 23-4 

form type (see column 6 in chapters 20 
through 27) 

format of specifications created by auto 
report 15-5 

format, data 25-28 
format, date 20-7 
format, display 

for CONSOLE file 9-8 
for WORKSTN file 6-9 

format, file 21-19 
from filename, extension 
specifications 22-6 

full arrays and tables 22-12 
full-procedural files 

file description specifications 
entry 21-17 

reading a direct file 5-43 
reading a sequential file 5-9 
reading an indexed file 5-80 
updating a direct file 5-55 
updating a sequential file 5-19 
updating an indexed file 5-94 

function keys 
*STATUS keyword codes 6-30 
as exceptions 6-24 

glossary (definition of terms) G-1 
GOTO (branch to) operation code 

(see also TAG operation code) 
bytes of created code 18-24 
description 28-56 

group indication, auto report 15-74 
group printing, auto report 15-44 
grouping characters by zone and 
digit 25-26 

X-12 

H-*AUTO record description 15-23 
half-adjust 26-23 
halt indicators 12-48 
halt messages 4-2 
handling exceptions and errors 6-24 
handling overflow 7-10 
header (control) specification 20-1 
heading records, output 
specifications 27-7 

Help key 
*STATUS keyword code 6-30 
as exception 6-24 

hexadecimal value of characters 
changing the collating sequence 17-3 
duplicate character values 6-47 
translating a file 17-9 

Home key 
*STATUS keyword code 6-30 
as exception 6-24 

IBM-written subroutines 
SUBROl (system input for SPECIAL 
files) 8-4 

SUBR20 (setting and restoring external 
indicators) 6-41 

SUBR21 (reading and writing the local 
data area for a display station) 6-42 

SUBR22 (reading a work station utility 
transaction file) 8-9 

SUBR23 (retrieving messages) 28-102 
SUBR95 (inline inquiry) 20-10 

IBM 3740 data entry system 10-13 
IBM 3750 10-16 
ICF (interactive communications feature) 

compared with batch BSC feature 10-1 
using a WORKSTN file 6-1 

ID continuation-line option 6-13 
identification 

of programs 20-14 
of record types 25-23 

ideographic data 31-1 
ideographic comments 31-3 
ideographic device support .31-8 
ideographic fields 31-2 
ideographic literals and constants 31-1 
ideographic tables and arrays 31-2 



messages 31-8 
moving ideographic data and adding control 
characters (SUBR41) 31-7 

moving ideographic data and deleting control 
characters (SUBR40) 31-5 

processing considerations 31-3 
If-Then-Else structure 18-2 
IFxx (If Then) operation code 

description 18-2, 28-59 
bytes of created code 18-24 
xx portion of 18-9, 28-7 
rules of comparing factor 1 with factor 2 28-6 
with conditioning indicators 28-56 

IND continuation-line option 6-12 
index, array 13-14 
indexed files 

adding records to 
randomly by key field 5-95 

alternative indexes for 
creating 5-65 
using 5-69 

creating 
by writing records in an ordered 
sequence 5-62 

by writing records in an unordered 
sequence 5-63 

deleting records from 5-88 
reading 

randomly and/or sequentially by key 
field 5-80 

randomly by address output (addrout) 
file 5-84 

randomly by key field 5-79 
sequentially by key field 5-70 
sequentially within key-field 
limits 5-72 

updating 
randomly and/or sequentially by key 
field 5-94 

randomly by address output (addrout) 
file 5-94 

randomly by key field 5-91 
sequentially by key field 5-90 
sequentially within key-field 
limits 5-90 

indicators 
command-key 12-46 
conditioning 12-38 
conditioning calculations 12-51 
conditioning output 12-54 
control-level 12-14 
defined on RPG specifications 12-3 
external 12-27 
field 12-21 

field-record-relation 12-39 
file-conditioning 12-38 
first-page 12-29 
halt 12-48 
internal 12-29 
last-record 12-32 
level-zero 12-43 
matching-record 12-35 
overflow 12-4 
permanent-error 24-10 
record-available 24-12 
record-identifying 12-6 
resulting 12-24 

INFDS continuation-line option 6-14 
INFDS data structure 

coding 6-27 
handling exceptions and errors 6-24 

INFSR continuation-line option 6-13 
INFSR subroutine 

coding 6-34 
handling exceptions and errors 6-24 

inline inquiry subroutine (SUBR95) 20-10 
input and output, programmed control 
of 28-11 

input file 21-14 
input for AUTO report 15-3 
input record 

number allowed in a sequenced 
group 25-10 

reorganizing fields in 14-8 
input specifications 2-4, 25-1 

field description entries 25-28 
file and record-type identification 
entries 25-3 

mqmry 
accounts receivable (sample program 
AR230R) 6-63 

inline (SUBR95) 20-10 
inserting new records (see adding 
records to a file) 

interactive communications feature (ICF) 
alternative to batch BSC feature 10-1 
using a WORKSTN file 6-1 

interactive data definition utility (IDDU) 6-58 
interactive program-development procedure 
(RPGONL) 3-4 

intermediate block checking (ITB) 
data formats 10-8 
telecommunications specifications 
entry 24-9 

internal indicators 
first-page indicator 12-29 
last-record indicator 12-32 

Index X-13 



matching-record indicator 12-35 
inverted print 20-8 
ITB (intermediate block checking) 

data formats 10-8 
telecommunications specifications 
entry 24-9 

K (1024 bytes of main storage) 20-6 
K edit code created by auto report 

A in column 39 15-37 
B in column 39 15-32 

KA through KN, KP through KY (command-key 
indicators) 

description 12-46 
used with a KEYBORD file 9-27 
used with a WORKSTN file 6-22 

KEY (key) operation code 
bypassing 9-20 
bytes of created code 18-24 
calculation specifications for 9-17 
description 28-61 
examples of 9-19 
using 9-20 
with SET operation 9-29 

key field 
adding records randomly by 5-95 
length of 21-25 
limits 

reading sequentially within 5-72 
updating sequentially within 5-90 

part of index entry 5-60 
reading randomly and/or sequentially 
by 5-80 

reading randomly by 5-79 
reading sequentially by 5-70 
starting location 21-28 
updating randomly and/or sequentially 
by 5-94 

updating randomly by 5-91 
updating sequentially by 5-90 

KEYBORD file 9-16 
allowing command keys to be 
pressed 9-27 

KEY operation 
bypassing 9-20 
calculation specifications for 9-17 
using 9-20 

SET operation 9-23 
using a message member 9-21 

keywords 

X-14 

*CANCL 6-35 
*DETC 6-35 
*GETIN 6-35 
*INP 6-31 
*MODE 6-31 
*OPCODE 6-31 
*OUT 6-32 
*RECORD 6-31 
*SIZE 6-31 

with the POST operation 6-51 
*STATUS 6-30 

kinds of arrays and tables 13-2 

label exit 21-36 
last program cycle 19-5 
last-record indicator 12-32 
level-zero indicator 12-43 
limits record 5-7 4 
limits, key field 

reading sequentially within 5-72 
updating sequentially within 5-90 

line counter specifications 2-4, 23-1 
link editing 

option on AUTOC procedure 3-30 
option on RPGC procedure 3-20 
option on RPGONL procedure 3-7 
overlaying storage 18-13 

linking to assembler subroutines 
EXIT operation code 28-50 
for SPECIAL file 8-3 
RLABL operation code 28-98 

literals 26-14 
load module (object program) 

compiling 
AUTOC procedure 3-26 
RPGC procedure 3-15 
RPGONL procedure 3-4 
RPGR procedure 9-8 

debugging 4-2 
running 4-1 

load module size considerations 18-20 
loading arrays 

compile-time 13-8 
execution-time 13-10 
preexecution-time 13-9 

loading tables 
compile-time 13-8 
preexecution-time 13-9 

local data area for a display station, 



reading and writing (SUBR21) 6-42 
LOKUP (lookup) operation code 

bytes of created code 18-24 
description 28-62 

look-ahead field 25-13 
lookup operation (LOKUP operation 
code) 28-59 

LR (last-record) indicator 12-32 
LO (level-zero) indicator 12-43 

main storage 
size to compile 20-4 
size to execute 20-6 
areas 18-11 

match fields 
assigning matching-record indicators 
to 12-35 

coding 11-1 
in primary and secondary files 11-1 
input specifications entry 25-38 
rules for coding 11-3 

matching-record indicator 12-35 
matching-records, processing 11-6 
memory resident overlays (MRO) 18-14 
message identification codes (MIC) 

calculation specifications entry 26-17 
using 6-49 

message-retrieving subroutine 
(SUBR23) 28-105 

MHHZO (move high to high zone) operation 
code 

bytes of created code 18-24 
description 28-64 

MHLZO (move high to low zone) operation 
code 

bytes of created code 18-24 
description 28-64 

MIC (message identification code) 
calculation specifications entry 26-17 
using 6-49 

MLHZO (move low to high zone) operation 
code 

bytes of created code 18-24 
description 28-65 

MLLZO (move low to low zone) operation code 
bytes of created code 18-25 
description 28-65 

mode of processing 21-23 
mode, display station (COMMAND and 

ST AND BY) 6-40 
modifier statement, auto report 15-15 
MOVE (move) operation 

bytes of created code 18-25 
description 28-64 

move remainder (MVR) operation 
bytes of created code 18-25 
description 28-90 

move zone operations 28-6 
MOVEA (move array) operation code 

bytes of created code 18-25 
description 28-69 

MOVEL (move left) operation code 
bytes of created code 18-25 
description 28-87 

moving ideographic data and adding 
control characters (SUBR41) 31-7 

moving ideographic data and deleting 
control characters (SUBR40) 31-5 

MRO (memory resident overlays) 18-11 
MRT (multiple requester terminal) program 

acquiring a display station 6-40 
compiling 6-43 
reaching end of file 6-46 
releasing a display station 6-39 
requesting the program by one or more 
display stations 6-41 

running 6-43 
updating DISK files in 6-44 
using 6-37 

MULT (multiply) operation code 
bytes of created code 18-25 
description 28-90 

multiple-file processing 11-1 
multiple-index files 5-65 
MVR (move remainder) operation code 

bytes of created code 18-25 
description 28-90 

N (not) 
calculation specifications 26-6 
input specifications 25-23 
output specifications 27-12 

name 
array 22-8 
field 

factor 1 on calculation 
specifications 26-8 

factor 2 on calculation 
specifications 26-18 

Index X-15 



input specifications 25-35 
output specifications 27-13 
result field on calculation 
specification 26-20 

program 20-14 
table 22-8 

name of label exit 21-36 
negative balance 

edit codes 16-2 
edit words 16-13 

negative indicator 27-12 
numbers 25-29 

negative square root 28-112 
never-ending program 

on AUTOC procedure 3-27 
option on RPGC procedure 3-17 

on RPGONL procedure 3-8 
operation code 

of created. code 18-25 
28-91 

in MRT program 6-38 
key 

specifications 5-67 
in alternative index file 5-65 

characters 20-12 
normal sequence 17-1 
NUM continuation-line option 6-12 
numbe:r of entries per record 22-11 
number of entries per table or array 22-12 

lines per page 23-4 
pages (PAGE special word) 

25 .. 35 

numeric fields 
data format 25-28 
moving 28-67 

numeric literals 26-14 

27-14 

module (compiled subroutine), 

AU'rOC procedure 3-30 
RPGC procedure 3-20 
RPGONL procedure 3-7 

object program (load module) 
compiling 

AUTOC procedure 3-26 
procedure 3-15 

procedure 3-4 
4-2 

runnmg 4-1 
OE140R, sample program (entering orders 
from customers) 6-87 

OE400R, sample program (updating an indexed 
file randomly by key field) 5-91 

OLE (overlay linkage editor) 
changing the overlay structure 18-13 
creating the overlays 18-12 
memory resident overlays (MRO) 18-11 
overlay process 18-10 
over laying storage 18-10 
reducing the program size 18-13 
storage usage map 18-14 

online program-development procedure 
(RPGONL) 3-4 

OP field 
in SUBR20 6-41 
in SUBR21 6-42 

operation codes 26-9, 28-1 
ACQ (acquire) 28-12 
ADD (add) 28-12 
BEGSR (begin subroutine) 28-13 
BITOF (set bit off) 28-14 
BITON (set bit on) 28-16 
CHAIN (chain) 28-20 
COMP (compare) 28-24 
DEBUG (debug) 28-27 
DIV (divide) 28-31 
ENDSR (end subroutine) 28-43 
EXCPT (exception output) 28-44 
EXIT (exit to an external 
subroutine) 28-50 

EXSR (execute subroutine) 28-51 
FORCE (force) 28-54 
GOTO (branch to) 28-56 
KEY (key) 28-61 
LOKUP (lookup) 28-62 
MHHZO (move high to high zone) 28-64 
MHLZO (move high to low zone) 28-64 
MLHZO (move low to high zone) 28-64 
MLLZO (move low to low zone) 28-64 
MOVE (move) 28-67 
MOVEA (move array) 28-69 
MOVEL (move left) 28-87 
MULT (multiply) 28-90 
MVR (move remainder) 28-90 
NEXT (next) 28-91 
POST (post) 28-92 
READ (read) 28-93 
READE (read equal key) 28-95 
READP (read prior record) 28-96 
REL (release) 28-97 
RLABL (RPG label) 28-98 
SET (set) 28-105 



SETLL (set lower limits) 28-107 
SETOF (set oft) '.28-108 
SETON (set on) 28-108 
SHTDN (shutdown) 28-109 
SORTA (sort an array) ~~8-110 

SQRT (square root) 28112 
SUB (subtract) 28-112 
TAG (tag) 28-113 
TESTB (test bit) 28-113 
TESTZ (test zone) 28-116 
TIME (tlme of day) 28-117 
XFOOT (summing the elements of an 
army) 28-118 
z ii.DD U!H.1 

Z-SUB 28-118 
option specificatiom auto report. 15-9 
OR relationship 

calculation specifications 12-52 
input specifications 12-8 
output specifications 12-54 

crder of specifications created by auto 
report 15-6 

ordered sequence., 
in 5-62 

output 

des1gnmg l.-5 
detail 

an indexed fil£ 

output specifications entry 27-7 
part of program cycle 19-1 

exception 27-8 
heading 27-7 
total 

output specifications entry 27-8 
part of program cycle 19-1 

output fields 
end position 27-21 
name 27-13 
repeating with *PLACE 27-15 

output files 21-14 
output indicators 27-12 
nutput records 

detail 27-7 
end position 27-21 
exception 27-8 
heading 27-7 
total 27-8 

output specifications 2-5, 27-1 
created by auto report 15-7 

output, indicators conditioning 12-54 
overflow 

automatic 7-10 
fetch 7-15 
handling 7-10 
line 23-4 

using indicators 7-11 
overflow indicators 12-4 
overflow line 23-4 
overlapping data structure subfields 26-8 
overlay linkage editor (OLE) 

changing the overlay structure 18-13 
creating the overlays 18-12 
overlay process 18-13 
overlaying storage 18-10 
overlays (memory-resident) 18-11 
reducing the program size 18··li3 
storage usage map 18-14 

overriding fields ia a display 
format 6-49 

overriding the debug option in the source 
program 

AUTOC procedure 3-29 
RPGC procedure 3-19 
RPGONL procedure 3-7 

overriding the print option in the source 
program 

AUTOC procedure 3-28 
RPGC procedure 3-18 
RPGONL procedure 3-6 

overriding the size-to-execute option in 
the source program 

AUTOC procedure 3-29 
RPGC procedure 3-19 
RPGONL procedure 3-7 

overview of auto :report 15-1 
overview of program cycle 19-1 

packed-decimal format 
input specifications 25-30 
record address type 21-26 

page (columns 1 and 2) 20-3 
page headings, auto report 

placement of 15-51 
reformatting 15-51 

page numbering (PAGE, PAGE1-PAGE7) 
input specifications entry 25-36 
output specifications entry 27-14 

performance-improvement techniques 18-22 
permanent-error indicator 

autocall and X.21 support 10-6 
telecommunications specifications 24-10 

physical file 5-65 
placement of headings and fields, auto 
report 15-51 

polling characters 24-12 

Index X-17 



positioning printer forms 20-11 
positi~ns 23 through 26 of INFDS data 
structure 6-32 

POST (post) operation code 
bytes of created code 18-25 
description 28-92 
with WORKSTN file 6-51 

preexecution-time arrays and tables 
defining 13-6 
description of 13-2 
loading 13-9 

primary files 
file description specifications 
entry 21-16 

used with secondary files 11-1 
Print key 

*STATUS keyword code 6-30 
as exception 6-24 

print option in source program 20-5 
overriding in AUTOC procedure 3-28 
overriding in RPGC procedure 3-18 
overriding in RPGONL procedure 3-6 

print, inverted 20-8 
PRINTER files 

description 7-1 
file description specifications 7-1 
handling overflow 7-10 

automatic overflow 7-10 
fetch overflow routine 7-15 
overflow indicators 7-11 

line counter specifications 7-3 
output specifications 7-4 

AND and OR lines 7-7 
field-description entries 7-7 
file and record-identification 
entries 7-4 

sample program 7-17 
spacing and skipping 7-16 

printing an RPG cross-reference listing 
(RPGX procedure) 3-22 

problem determination 
problem determination procedure 32-1 

how to use 32-1 
contacting IBM service representative 32-7 

problems at compilation time, 
solving 3-33 

procedures 
AUTOC 3-26 
RPGC 3-15 
RPGONL 3-4 
RPGP 3-2 
RPGR 9-8 
RPGSDA 3-32 
RPGSEU 3-13 

X-18 

RPGX 3-22 
processing methods 21-23 
processing the duplicate character 
value 6-47 

processing, multifile 11-1 
program cycle 

detailed 19-6 
flowchart 19-7 

for a WORKSTN file 6-52 
flowchart 6-53 
processing of input files 6-55 

overview 19-1 
flowchart 19-4 

program identification 20-14 
programmed control of input and 
output 28-11 

programming aids, auto report 15-61 
programming, structured 18-8 
programming operation codes, 
structured 18-9, 28-7 

PROMPT control language statement 6-36 
prompt format for CONSOLE file 9-14 

random processing 
definition of 5-8 
of direct files 

reading by address output (addrout) 
file 5-44 

reading by relative record 
number 5-39 

reading by relative record number 
and/or consecutively 5-43 

updating by address output (addrout) 
file 5-56 

updating by relative record 
number 5-51 

updating by relative record number 
and/or consecutively 5-55 

of indexed files 
adding records by key field with 
chaining 5-95 

adding records by key field without 
chaining 5-99 

reading by address output (addrout) 
file 5-84 

reading by key field 5-79 
reading by key field and/or 
sequentially 5-80 

updating by address output (addrout) 



file 5-94 
updating by key field 5-91 
updating by key field and/or 
sequentially 5-94 

of sequential files 
reading by address output (addrout) 
file 5-10 

reading by relative record number 5-8 
reading by relative record number 
and/or consecutively 5-9 

updating by address output (addrout) 
file 5-20 

updating by relative record 
number 5-18 

updating by relative record num~er 
and/or consecutively 5-19 

RCODE field 
for SUBR20 6-41 
for SUBR21 6-42 

reaching end of file 6-8 
reaching end of file for a MR'!' program 

demand file 6-46 
primary file 6-46 

READ (read) operation code 
bytes of created code 18-25 
description 28-93 

read under format 6-36 
READE (read equal key) operation code 

bytes of created code 18-25 
description 28-95 

reading a direct file 
consecutively 5-35 
randomly by address output (addrout) 
file 5-44 

randomly by relative record number 5-39 
randomly by relative record number and/or 
consecutively 5-43 

reading a sequential file 
consecutively 5-6 
randomly by address output (addrout) 
file 5-10 

randomly by relative record number 5-8 
randomly by relative record number and/or 
consecutively 5-9 

reading an indexed file 
randomly and/or sequentially by key 
field 5-80 

randomly by address output (addrout) 
file 5-84 

randomly by key field 5-79 
sequentially by key field 5-70 
sequentially within key-field 
limits 5-72 

reading and updating a work station utility 

transaction file 
(SUBR22) 8-9 

reading and writing the local data area for 
a display station 

(SUBR21) 6-42 
reading data from a display shown by a 
previous program 6-36 

READP (read prior record) operation code 
bytes of created code 18-25 
description 28-96 

receive-only BSC function 10-10 
RECNO continuation-line option 

adding records to a direct file 5-57 
adding records to a sequential 
file 5-21 

creating a direct file that allows 
deletions 5-32 

description 21-36 
record addition 

file description specifications 
entry 21-39 

RECNO continuation-line option 21-36 
output specifications entry 27-8 
to a direct file 5-57 
to a sequential file 

at the end of a file 5-21 
between records in a file 5-24 

to an indexed file 
randomly by key field with 
chaining 5-95 

randomly by key field without 
chaining 5-99 

sequentially by key field 5-99 
record address file 

(see also address output ( addrout) 
file) 

description 21-17 
reading a direct file randomly by 5-44 
reading a sequential file randomly 
by 5-10 

reading an indexed file randomly 
by 5-84 

summary charts 21-6 
updating a direct file randomly by 5-56 
updating a sequential file randomly 
by 5-20 

updating an indexed file randomly 
by 5-94 

record address type 21-26 
record-available indicator 24-12 
record-description specifications 

*AUTO output specifications 15-29 
*AUTO page-heading specifications 15-23 
input specifications 25-3 

Index X-19 



output specifications 27-1 
record identification code 

for CONSOLE file 9-12 
input specification entries 25-23 

record-identifying indicators 
AND relationship 12-8 
conditioning calculations 12-51 
conditioning output 12-54 
description 12-6 
OR relationship 12-8 

record length 21-21 
record type (see record identification 
code) 

records written by the DEBUG 
operati0n 4-4, 28-28 

referring to a data structure 28-100 
referring to a field 28-100 
referring to an array or table 28-101 
referring to an indicator 28-100 
REL (release) operation code 

bytes of created code 18-25 
description 28-97 
used with a WORKSTN file 6-39 

related arrays and tables 
creating 13-5 
defining separately or in alternating 
format 13-3 

description of 13-2 
searching 13-19 

relative record number 
definition of 5-8 
reading randomly by 

direct file 5-39 
sequential file 5-8 

reading randomly by and/or consecutively 
direct file 5-43 
sequential file 5-9 

updating randomly by 
direct file 5-51 
sequential file 5-18 

updating randomly by and/or consecutively 
direct file 5-55 
sequential file 5-19 

releasing a display station (REL operation 
code) 

description 28-94 
in a MRT program 6-39 

remainder, move (MVR operation 
code) 18-25, 28-87 

removing embedded blanks (compressing 
data) 10-7 

removing trailing blanks (truncating 
data) 10-8 

repeating an operation 

X-20 

Do Until Structure 18-6 
Do While Structure 18-4 

repeating output fields (*PLACE) 27-15 
result field 

ERASE 26-19 
field name, table name, array name, array 
element, or data structure 26-20 

resulting indicators 12-24 
return codes for WORKSTN files 6-32 
RLABL (RPG label) operation code 

description 28-101 
referring to a data structure 28-103 
referring to a field 28-103 
referring to an array or table 28-104 
referring to an indicator 28-103 

Roll Down key 
*ST A TUS keyword code 6-30 
as exception 6-24 

Roll Up key 
*STATUS keyword code 6-30 
as exception 6-24 

rolling totals, auto report 15-28 
root segment 18-10 
rounding numbers in the result field 
(half-adjust) 26-23 

RPG halt messages 4-2 
RPG procedures 

AUTOC 3-26 
RPGC 3-15 
RPGONL 3-4 
RPGP 3-2 
RPGR 9-8 
RPGSDA 3-32 
RPGSEU 3-13 
RPGX 3-22 

RPG program cycle 
detailed 19-6 
effect of indicators on 12-1 
overview 19-1 

RPG programming menu 3-2 
running a MRT program 6-43 
running an RPG load module 4-1 

sample programs 
AR230R (inquiring into an accounts 
receivable file) 6-63 

AR330R (maintaining an accounts 
receivable file) 6-68 

AR935R (requesting a printout of accounts 



receivable 6-81 
AR936R (printing accounts 
receivable) 7-17 

auto report 15-66 
BSCA file progrn.ms 

send interspersed V%lith receive l!l··24 
send 10-17 
System/36 to 3740 10-21 

DISK file programs 
adding records at the end of a 
sequential file 5-22 

adding records between records in a 
sequential file 5-26 

addmg records to an mdexed file 

.,_,,.,.,..,,,6 records to an indexed file 
sequentially by key field 5-HH 

:relative record number 5-40 
a direct file 

6-87 

OE400R (updating an indexed file 
5-9! 

wo:rk 
iransacLwn file 6-14 

SPECIAL file program 8-14 
SUBR22 8-14 
WORKSTN file programs 

entering orders from customers 
(OE140R) 6-87 

inquiring into an accounts receivable 
file (AR230R) 6-63 

maintaining an accounts receivable file 
(AR330R) 6-67 

requesting a printout of accounts 

:receivable 
SA VDS continuation-line 
SA VDS data st:ructure 14·-9 

file 6~·9 

RPG 

searching an array 13--17 
arrays a.nd 
one table 13-1£1 
related tables 

file 5-20 

~~·~"""' records 
reading by 
reading key field 



randomly 5-80 
reading within key-field limits 5-72 
updating by key field 5-90 
updating by key field andior 
randomly 5-94 

updating within key-field limits 5-90 
SET (set) operation code 

bytes of created code 18-26 
description 28-107 
with a KEYBORD file 9-23 
with the KEY operation code 9-29 

SETLL (set lower limits) operation code 
bytes of created code 18-26 
description 28-110 
reading an indexed file 5-76 

SETOF (set oft) operation code 
bytes of created code 18-26 
description 28-111 

SETON (set on) operation code 
bytes of created code 18-26 
description 28-111 

SETON and SETOF operations 28-9 
setting and restoring external indicators 
(SUBR20) 6-41 

shift-in (S/I) control character 31-1 
shift-out (S/O) control character 31-1 
short arrays and tables 22-6, 22-12 
SHTDN (shut down) operation code 

bytes of created code 18-26 
description 28-112 

sign (positive or negative) 
binary format 25-32 
packed-decimal format 25-30 
zoned-decimal format 25-29 

similarities between arrays and 
tables 13-1 

single requesting terminal (SRT) 
program 6-37 

size to compile 20-4 
size-to-execute option in source 
program 20-6 

overriding in AUTOC procedure 3-29 
overriding in RPGC procedure 3-19 
overriding in RPGONL procedure 3-7 

skip after 27··11 
skip before 27-10 
skipping 

description 7-16 
output specifications entry 27-10 
with auto report 15-49 

SLN continuation-line option 6-13 
solving problems that occur at compilation 
time 3-33 

SORTA (sort an array) operation code 

X-22 

bytes of created code 18-26 
description 28-113 

source program 
compiling 

AUTOC procedure 3-26 
RPGC procedure 3-15 
RPGONL procedure 3-4 

creating or changing (RPGSEU 
procedure) 3-13 · 

entering 
RPGONL procedure 3-4 
RPGSEU procedure 3-13 

space after 27-10 
space before 27-10 
spacing 

description 7-16 
output specifications entry 27-10 
with auto report 15-49 

special data structures 
file information data 
structure 6-27, 14-10 
local data area for a display 
station 14-10 

local data area for a display station 
(SUBR21) 6-42 

SAVDS continuation-line option 6-12 
SA VDS data structure 14-9 

special device support 8-1 
SPECIAL file 

restrictions for 8-3 
SUBROl 8-4 
SUBR22 8-9 
using a subroutine for input and 
output 8-3 

your own subroutine 8-5 
special words 

*PLACE 27-15 
PAGE, PAGE1-PAGE7 25-36, 27-14 
UDATE, UDAY, UMONTH, UYEAR 27-19 

specifications 
calculations 26-1 
control 20-1 
extension 22-1 
file description 21-1 
input 25-1 
line counter 23-1 
option 15-9 
output 27-1 

specifications created by auto 
report 15-5 

split control fields 12-20 
SQRT (square root) operation code 28-112 
SR entry on calculation 



specifications 2h 4 
SRT (singlr> reqrn·sti.ng ir>rmin;:;J) 
program 6-;:n 

SRyzzz (subroutine name for SPEC1/\L 
file) 8-2 

SSP-ICF (interactive communications 
feature) 

;:is alternative to lrntch RSC 
feature 10 1 

using a WORKSTN file fl-1 
STATUS COMM command Hl-9 

in using a WORKSTN file 6 9 
steps ]n us1ng RPG 1-1 
STOP SYSTE:l\1- umtrnl comrmmrl H1 
storage dump of ~rn RPG program :29 l 
storage-saving techniques 18-20 

xx 
rule'; of' comparing fndnr '· 

storage usage map 18-14 hfields 
structured programming 18-10 data strueture 

conditional branching 18-2 
description 18-1 
repeating an operation 18-4 lmbroutine 
sequential operation 18-1 

structured programming operation codes 
CASxx 

description 28-18 
of created code 18-22 

rules of factor l with factor 
with conditional indicators 28-lfl 

DO (Do) 
description 28-34 
bytes of created code 18-23 
rules of comparing factor with 

the result field 28-6 
with conditional mdicators 

description 18-6, 28-32 
bytes of created code 18-23 
xx portion of 18~9, 28-·7 
rules of comparing factor 1 with factor 2 28-6 
with conditional indicators 28-33 

DOWxx (Do While) 
18-4. 28-35 

xx of 28-7 
rules of comparing factor l with factor 2 28-6 
with conditional indicators 28-36 

ELSE (Else Do) operation code 
description 28-38 
bytes of created code 18-23 

END operation code 
description 28-39 
END/CASxx 28-39 

bytes of created code 18-23 
END/DO 28-39 

summary charts 
edit codes 16-2 
extension 22-3 
file description specifications 21°0 2 



indicators 12-2 
operation codes 26-9, 28-2 

suppressing asterisk indication (auto 
report) 15-38 

suppressing date and page (auto 
report) 15-23 

suppressing leading zeros 
with edit codes 16-2 
with edit words 16-12 

switch (see external indicators) 
System/34, differences from 
System/36 30-1 

System/36-to-3740 program 10-21 
systems that use BSC 10-12 

T-* AUTO, auto report 15-28 
table LOKUP 28-62 
table name 22-8 
table or array files 21-18 
tables 

(see also arrays) 
adding entries to 13-25 
alternating 

definition of 13-5 
extension specifications entry 22-18 

changing the contents of 
permanently 13-24 
temporarily 10-22 

compile-time 
definition of 13-2 
loading 13-8 
order in source program 13-8 

creating input records for 13-5 
decimal positions 22-16 
defining 13-6 
differences between tables and 
arrays 13-1 

element 13-1 
example of using tables 13-37 
extension specifications 22-1 
filename (when required) 21-13 
kinds of 13-2 
length of entry 22-14 
loading 

compile-time 13-8 
placement in source program 13-8 
preexecution-time 13-9 

LOKUP operation 28-62 
maximum allowed for each program 22-1 
name 

X-24 

as factor 1 26-8 
as factor 2 26-18 
as field name in *AUTO 
output 15-32, 15-37 

as field name in *AUTO page 
headings 15-26 

as result field 26-19 
extension specifications entry 22-8 
output specifications entry 27-13 

number of entries per record 22-11 
number of entries per table or 
array 22-12 

packed-decimal format 22-16 
preexecution-time 

defined in alternating format 13-4 
defined separately 13-3 
definition of 13-2 
loading 13-9 

referring to in RLABL operation 28-101 
related 13-2 
searching 

description 13-16 
one table 13-19 
related tables 13-19 

sequence (extension specifications 
entry) 22-17 

short 22-6, 22-12 
similarities between tables and 
arrays 13-1 

writing 13-26 
TAG (tag) operation code 28-113 
techniques for efficient coding 18-1 
telecommunications 
specifications 2-4, 24-1 

with BSCA file 10-1 
TESTB (test bit) operation code 

bytes of created code 18-26 
description 28-113 

testing an RPG program 4-1 
testing and compare operations 28-6 

rules of comparing fields 28-6 
TESTZ (test zone) operation code 

bytes of created code 18-27 
description 28-113 

TIME (time of day) operation code 
bytes of created code 18-27 
description 28-117 

TNAME field 
for SUBR20 6-41 
for SUBR21 6-42 

to filename (extension 
specifications) 22-7 

total fields, auto report 
asterisk indication 15-38 



description 15-35 
resetti:::ig to zero 15-38 

total operations 19-1 
total output records 27-7 
total rolling, auto report 15-28 
total time in program cycle 19-1 
trailing blanks, removing 10-8 
translating a file 

coding the records that translate a 
file 17-10 

coding the translation 17-9 
example 17-11 

translation table and alternate collating 
sequence coding sheet 17-4 

transparent literal 20-13, 31-1 
truncating data (removing trailing 
blanks) 10-8 

UDATE 27-19 
UDAY 27-19 
UMONTH 27-19 
unordered sequence, creating an indexed 
file by writing records in 5-63 

update files 21-14 
updating a direct file 

consecutively 5-50 
deleting records 5-49 
randomly by address output (addrout) 
file 5-56 

randomly by relative record number 5-51 
randomly by relative record number 
consecutively 5-55 

updating a sequential file 
consecutively 5-15 
deleting records 5-14 
randomly by address output (addrout) 
file 5-20 

randomly by relative record number 5-18 
randomly by relative record number and/or 
consecutively 5-19 

updating an indexed file 
deleting records 5-88 
randomly and/or sequentially by key 
field 5-94 

randomly by address output (addrout) 
file 5-94 

randomly by key field 5-91 
sequentially by key field 5-90 
sequentially within key-field 

limits 5-90 
updating DISK files in a MRT program 

avoiding these errors 6-45 
possible errors 6-44 

using a BSCA file 10-1 
using a CONSOLE file 9-1 
using a CONSOLE file with KEYBORD and CRT 
files 9-15 

using a CRT file 9-30 
using a DISK file 5-1 
using a KEY operation 9-20 
using a KEYBORD file 9-16 
using a message member 9-21 
using a MRT program 6-3'7 
using a PRINTER file 71 
using a SPECIAL file 8-1 
m,,ng a SRT program 6-37 
using a subroutine for input and 
output 8-3 

a WORKSTN file 6-1 
using an alternate index 5-69 

an array '1ame and index 13-14 
using arrays and tables 13-1 
using auto report 15-1 
using command keys 

with a KEYBORD file 9-27 
V\lOB.KST~~T file 6-22 

data structures 14-1 
using displays with a CONSOLE file 9-11 
using IBM's subroutine, SUBROl 8-4 
using ideographic data 31-1 
using indicators 12-1 
using message identification codes 6-49 
using one or more display stations 6-37 
using and files 11-1 

the DEBUG ~rno~nh 4-3 

using the POST operation 6-51 
the RPG procedures 3-1 

using the SET and KEY operations 
together 9-29 

using your own subroutine 8-5 
UYEAR 27-19 

wait time for BSCA file 24-11 
when arrays and tables can be loaded 13-1 
work station utility transaction file, 

reading and updating a (SUBR22) 8-9 
WORKSTN files 

ACQ operation 6-40 
acquiring one or more display stations by 

Index X-25 



the program 6-40 
advanced topics 6-47 
coding the INFDS data structure 6-27 
coding the INFSR subroutine 6-34 
coding the RPG specifications 6-10 
common processing variations 6-22 
compiling and running a MRT 
program 6-43 

continuation-line options 6-11 
FMTS 6-13 
ID 6-1.3 
IND 6-12 
INFDS 6-14 
INFSR 6-13 
NUM 6-12 
SAVDS 6-12 
SLN 6-13 

creating the display formats 6-13 
end of file 

MRT program 6-46 
reaching 6-8 

exception/error-processing subroutine 
(INFSR) 6-34 

file information data structure 
(INFDS) 6-27 

FMTS continuation-line option 6-13 
function keys 

*STATUS keyword codes 6-30 
as exceptions 6-24 

handling exceptions and error<i 6-24 
how WORKSTN files are processed 6-52 
INFDS data structure 6-27 

*INP keyword 6-31 
*MODE keyword 6-31 
*OPCODE keyword 6-31 
*OUT keyword 6-32 
*RECORD keyword 6-31 
*SIZE keyword 6-31 
*STATUS keyword 6-30 

NEXT operation code 6-38 
overriding fields in a display 
format 6-49 

processing the duplicate character 
value 6-47 

program cycle 6-53 
reaching end of file 6-8 
reachin~ end of file for a MRT 
program 6-46 

read under format 6-36 
reading and writing the local data area 
for a display station 6-42 

reading data from a display shown by a 
previous program 6-36 

REL (release) operation code 6-39 

X-26 

releasing a display station 6-39 
requesting the program by one or more 
display stations 6-41 

sample programs 6-63 
SAVDS continuation-line option 6-12 
setting and restoring external indicators 
(SUBR20) 6-41 

SLN continuation-line option 6-13 
steps in using a WORKSTN file 6-9 
SUBR20 (setting and restoring external 
indicators) 6-41 
SUBR21 (reading and writing the local 
data area for a display station) 6-42 

updating DISK files in a MRT 
program 6-44 

using a MRT program 6-37 
using a SRT program 6-37 
using command keys 6-22 
using message identification codes 6-49 
using one or more display stations 6-37 
using the POST operation 6-51 

WORKSTN input file processing 6-55 
WORKSTN operations 28-11 
WORKSTN return codes 6-32 
writing arrays and tables 13-26 

X edit code 16-2 
X.21 support (BSCA files) 10-6 
XFOOT (summing the elements of an array) 
operation code 

bytes of created code 18-27 
description 28-118 

Y edit code 16-2, 16-8 

Z (zone portion of character) 25-24 
Z-ADD (zero and add) operation code 

bytes of created code 18-27 
description 28-118 

Z-SUB (zero and subtract) operation code 
bytes of created code 18-27 



description 28-118 
zero suppress10n 

with edit codes 16-2 
with edit words 16-12 

zone 
character grouping by 25-26 

move operation codes 28-64 
zoned-decimal format 25-29 

lP (first-page indicator) 12-29 

Index X-27 



X-28 · 



System/36: 
Programming with RPG II SC21-9006-4 

READER'S COMMENT FORM 

Please use this form only to identify publication errors or to request changes in publications. Direct any 
requests for additional publications, technical questions about IBM systems, changes in IBM programming support, and 
so on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding that IBM may use or 
distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. 

D If your comment does not need a reply (for example, pointing out a typing error) check this box and do not 
include your name and address below. If your comment is applicable, we will include it in the next revision 
of the manual. 

D If you would like a reply, check this box. Be sure to print your name and address below. 

Page number(s): Comment(s): 

No postage necessary if mailed in the U.S.A. 

Please contact your nearest IBM branch office· to request 
additional publications. 

Name 

Company or 
Organization 

Address 

City State Zip Code 



SC21-9006-4 

Fold and tape 

Fold and tape 

Please do not staple 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Information Development 
Department 532 
Rochester, Minnesota 55901 

Please do not staple 

lnternational Business Machines Corporation 

Fold and tape 

NO POSTAGE 
NECESSARY IF 
MAILED IN THE 
UNITED STATES 

Fold and tape 

0 c ... 

= 

,r· 



System/36: 
Programming with RPG II SC21-9006-4 

READER'S COMMENT FORM 

Please use this form only to identify publication errors or to request changes in publications. Direct any 
requests for additional publications, technical questions about IBM systems, changes in IBM programming support, and 
so on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding that IBM may use or 
distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. 

D If your comment does not need a reply (for example, pointing out a typing error) check this box and do not 
include your name and address below. If your comment is applicable, we will include it in the next revision 
of the manual. 

D If you would like a reply, check this box. Be sure to print your name and address below. 

Page number(s): Comment(s): 

No postage necessary if mailed in the U.S.A. 

Please contact your nearest IBM branch office to request 
additional publications. 

Name 

Company or 
Organization 

Address 

City State Zip Code 



SC21-9006-4 

Fold and tape 

Fold and tape 

Please do not staple 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N. V. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Information Development 
Department 532 
Rochester, Minnesota 55901 

Please do not staple 

International Business Machines Corporation 

Fold and tape 

NO POSTAGE 
NECESSARY IF 
MAILED IN THE 
UNITED STATES 

Fold and tape 

Ir 
I 

.. 

/ 

"· 



( •' 

System/36: 
Programming with RPG II SC21 -9006-4 

READER'S COMMENT FORM 

Please use this form only to identify publication errors or to request changes in publications. Direct any 
requests for additional publications, technical questions about IBM systems, changes in IBM programming support, and 
so on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding that IBM may use or 
distribute whatever information you supply in any wi:Jy it believes appropriate without incurring any obligation to you. 

D If your comment does not need a reply (for example, pointing out a typing error) check this box and do not 
include your name and address below. If your comment is applicable, we will include it in the next revision 
of the manual. 

D If you would like a reply, check this box. Be sure to print your name and address below. 

Page number(s): Comment(s): 

No postage necessary if mailed in the U.S.A. 

Please contact your nearest IBM branch office to request 
additional publications. 

Name 

Company or 
Organization 

Address 

City State Zip Code 



SC21-9006-4 

Fold and tape 

Fold and tape 

Please do not staple 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Information Development 
Department 532 
Rochester, Minnesota 55901 

Please do not staple 

lnternational Business Machines Corporation 

Fold and tape 

NO POSTAGE 
NECESSARY IF 
MAILED IN THE 
UNITED STATES 

Fold and tape 

I 
I 
I 
I 
(_ 

)..J ~. 

0 c ... 

C/l 
0 
~ 

I u, 

I~ 
I .s. 

I 
I 
r 



' 

IBM System/36: 
Programming with RPG II SC21-9006-4 

What Is Your Opinion of This Manual? 

Your comments can help us produce better manuals. Please take a few minutes to evaluate this manual as soon as you become 
familiar with it. Circle Y (Yes) or N (No) for each question that applies. IBM may use or distribute whatever information you supply in 
any way it believes appropriate without incurring any obligation to you. 

FINDING INFORMATION USING INFORMATION 
y N Is the table of contents helpful? y N Does the information apply to your situation? 

What would make it more helpful? Which topics do not apply? 

y N Is the index complete? y N Is the information accurate? 
List specific terms that are missing. What information is inaccurate? 

y N Are the chapter titles and other headings meaningful? y N Is the information complete? 
What would make them more meaningful? What information is missing? 

y N Is information organized appropriately? y N Is only necessary information included? 
What would improve the organization? What information is unnecessary? 

y N Does the manual refer you to the appropriate places y N Are the examples useful models? 
for more information? What would make them more useful? 

List specific references that are wrong or 
missing. 

y N Is the format of the manual (shape, size, color) 
effective? 

What would make the format more effective? 
UNDERSTANDING INFORMATION 

y N Is the purpose of this manual clear? 
What would make it clearer? 

OTHER COMMENTS 

y N Is the information explained clearly? Use the space below for any other opinions about this manual 
Which topics are unclear? or about the entire set of manuals for this system. 

y N Are the examples clear? 
Which examples are unclear? 

YOUR BACKGROUND 

y N Are examples provided where they are needed? What is your job title 7 
Where should examples be added or deleted? 

What is your primary job responsibility? 

y N Are terms defined clearly? How many years have you used computers? 
Which terms are unclear? 

Which programming languages do you use? 

y N Are terms used consistently? How many times per month do you use this manual? 
Which terms are inconsistent? 

Your name 
y N Are too many abbreviations and acronyms used? Company name 

Which ones are not understandable? Street address 
City, State, ZIP 

y N Are the illustrations clear? 

Which ones are unclear? 
No postage necessary if mailed in the U.S.A. 



. .:1-9006-4 

Fold and tape 

Fold and tape 

Please do not staple 

111111 

BUSINESS REPLY MAIL 
i-IRST CLASS PERMIT NO. 40 ARMONK, N. Y. 

POSTAGE WILL BE PAID SY ADDRESSEE: 

International Business Machines Corporation 
Development Laboratory 
Information Development, Department 532 
Rochester, Minnesota 55901 

Please do not staple 

International Business Machines Corporation 

Fold and tape 

NO POSTAGE 
NECESSARY IF 
MAILED IN THE 
UNITED STATES 

Fold and tape 

I 
~ .. 
)> 
0 
::J 

IO 

r-
5· 
CD 

L 
I 




