


When You Are: 

Communicating 
with Another 
Computer or 
Remote Device 

Determining 
the Cause 
of a Problem 

Planning for and 
Adding New 
Programming 
Support 

Using Your IBM 
PC with the 
System/36 

Managing Your 
System/36 
Office 

Doing 
Office 
Tasks 

"-

You Can Find Information In: 

Using System/36 Communications 
Communications and Systems Management Guide 
Distributed Data Management Guide 
Advanced Peer-to-Peer Networking (APPN) Guide 
Remote Operation/Support Facility Guide 
MSRJE Guide 
3270 Device Emulation Guide 
SSP-ICF Guide and Examples 
Interactive Communications Feature: Base Subsystems Reference 
Interactive Communications Feature: Finance Subsystem Reference 
Interactive Communications Feature: U pline Subsystems Reference 
Interactive Communications Feature: Programming for Subsystems and 
Intra Subsystem Reference 
Using the Asynchronous Communications Support 
(message manuals) 

(message manuals) 
System Problem Determination 
(online problem determination) 

Planning for New Devices and Programming Available at Release 5 
(new program product manuals) 
Changing Your System Configuration 

5250 Emulation Program User's Guide 
Enhanced 5250 Emulation Program User's Guide 
PC Support/36 Technical Reference 
PC Support/36 User's Guide 
PC Support/36 Organizer 

System/36 in the Office 
Planning Your System/36 Office 
Setting Up Your System/36 Office 
Administering Your System/36 Office 
Planning for System/36 Office in a Network 
Administering Personal Services/36 in the Office 

Getting Started with Interactive Data Definition Utility 
Getting Started with Query/36 
Getting Started with Personal Services/36 
Getting Started with DisplayWrite/36 
Business Graphics Utilities/36 User's Guide 
Practicing with DisplayWrite/36 
Practicing with Personal Services/36 
Practicing with Query/36 
Practicing with Interactive Data Definition Utility 
Using DisplayWrite/36 
Online Information: 

Query/36 
Personal Services/36 
DisplayWrite/36 
Interactive Data Definition Utility 

89015015-9 



When You Are: 

Planning to 
Install Your 
Computer 

Getting Your 
Computer 
Ready to Use 

Operating 
Your 
Computer 

Programming 
Your 
Computer 

You Can Find Information In: 

r What to Do before YOiJr Computer Arrives 
Converting from System/34to System/36 
System/34 to System/36 Migration Aid 

I... Planning for New Devices and Programming Available at Release 5 

r 
Setting Up Your Computer 
Installing Your New Features 
Performing the First System Configuration 
System Security Guide 

'- Updating to a New Release 

r Learning About Your Computer 
Operating Your System 
Development Support Utility Guide 
Source Entry Utility Guide 
Data File Utility Guide 
Work Station Utility Guide 
Changing Your System Configuration 
Using and Programming the 1255 Magnetic Character Reader 
Using Your Display Station 

(language manuals) 
(message manuals) 
Concepts and Programmer's Guide 
System Reference 

{ RPG II, BASIC, COBOL 
FORTRAN IV, Assembler 

Getting Started with Interactive Data Definition Utility 
Development Support Utility Guide 
Source Entry Utility Guide 
Creating Displays: Screen Design Aid and System Support Program 
Data File Utility Guide 
Sort Guide 
Functions Reference 
Overlay Linkage Editor Guide 
System Measurement Facility Guide 
Character Generator Utility Guide 
Ideographic Sort Guide 

59015001-9 



--------- -------= ..:::::§~~ System/36 

U sing the Asynchronous 
Communications Support 

Program Numbers: 5727-SS1 
5727-8S6 

File Number 
S36-38 

Order Number 
SC21-9143-2 



Third Edition (June 1987) 

This major revision makes obsolete SC21-9143-1. See "About This Manual" for a summary of major 
changes to this edition. Changes or additions to the text and illustrations are indicated by a vertical 
line to the left of the change or addition. 

This edition applies to Release 5, Modification Levell, of IBM System/36 System Support Program 
Product (Program 5727-SS1 for the 5360 and 5362 System Units and Program 5727-SS6 for the 5364 
System Unit), and to all subsequent releases and modifications until otherwise indicated. Changes 
are periodically made to the information herein; any such changes will be reported in subsequent 
revisions or Technical Newsletters. 

References in this publication to IBM products, programs, or services do not imply that IBM intends 
to make these available in all countries in which IBM operates. Any reference to an IBM licensed 
program in this publication is not intended to state or imply that only IBM's licensed program may 
be used. Any functionally equivalent program may be used instead. 

The numbers at the bottom right of illustrations are publishing control numbers and are not part of 
the technical content of this manual. 

Publications are not stocked at the address given below. Requests for IBM publications should be 
made to your IBM marketing representative or to your IBM-approved remarketer. 

This publication could contain technical inaccuracies or typographical errors. A form for readers' 
comments is provided at the back of this publication. If the form has been removed, comments may 
be addressed to IBM Corporation, Information Development, Department 245, Rochester, Minnesota, 
U.S.A. 55901. IBM may use or distribute whatever information you supply in any way it believes 
appropriate without incurring any obligation to you. 

© Copyright International Business Machines Corporation 1986, 1987 



Contents 

About This Manual Vll 

What you should know . .. Vlll 

If you need more information . . . lX 

How this manual has changed. . . x 

Chapter 1. Introduction to the Asynchronous Communications 
Support 1-1 

The Asynchronous Communications Subsystem 1-3 
Communications Lines Supported 1-6 

5360 System Unit 1-6 
5362 System Unit 1-7 
5364 System Unit 1-7 

Chapter 2. Configuring the Asynchronous Communications 
Subsystem 2-1 

Explanation of Displays 2-3 
Subsystem Member Definition 2-4 

Display 1.0 SSP-ICF Configuration Member Definition 2-4 
Display 2.0 SSP-ICF Configuration Member Type 2-5 
Display 5.0 Asynchronous Configuration Member Type 2-6 
Display 25.0 Subsystem Member Definition 2-7 
Display 29.0 Remote Location Selection 2-8 
Display 60.0 Asynchronous Subsystem Attributes 2-10 

Modifying a Subsystem Configuration 2-11 
Using the DEFINLOC Procedure 2-12 

Chapter 3. Using the Asynchronous Communications 
Subsystem 3-1 

Enabling and Disabling an Asynchronous Communications Subsystem 3-1 
Enabling a Subsystem 3-1 

ENABLE Procedure Command 3-3 
Disabling a Subsystem 3-4 

DISABLE Procedure Command 3-5 
Starting Communications Sessions 3-5 

SESSION Statement 3-6 
Procedure Start Requests 3-7 

Communications Operations for the Asynchronous Communications 
Subsystem 3-8 

Programming Considerations for the Asynchronous Communications 
Subsystem 3-8 

SUBRA1 Subroutine 3-8 
Calling the SUBRA1 Subroutine from a COBOL Program 3-9 
Calling the SUBRA1 Subroutine from a RPG II Program 3-9 
SUBRA1 Subroutine Parameters 3-10 

Contents V 



Asynchronous Communications Subsystem Operations and Codes 3-11 
Accept Input Operation 3-12 
Acquire Operation 3-13 

Acquire Operation Examples 3-13 
Cancel Invite Operation 3-14 
End of Session Operation 3-15 

Ending a Session Started by an Evoke Operation from Another 
Program 3-15 

Evoke Operations 3-16 
Assembler Evoke Operation (Macroinstructions) 3-17 
BASIC Evoke Operation Parameters 3-19 
COBOL Evoke Operation Parameters 3-20 
RPG II Evoke Operation Parameters 3-21 

Fail Operation 3-23 
Get Operation 3-24 
Invite Operation 3-25 
Put Operation 3-26 
Release Operation 3-29 
Set Timer Operation 3-30 

Return Codes 3-31 

Chapter 4. Using the Interactive Terminal Facility 4-1 
Starting ITF 4-1 
Selecting ITF Functions 4-5 

ITF Command Keys 4-6 
Sending or Receiving a Library Member, Data File, or DisplayWrite/36 

Document 4-9 
Sending or Receiving a Library Member 4-10 
Sending or Receiving a Data File 4-13 
Sending DW/36 Documents 4-16 
Sending a File of DW /36 Documents 4-17 
Receiving DW/36 Documents 4-17 

Appendix A. PAD Emulation A-I 
Recommendation X.3 A-I 
Recommendation X.28 A-3 
Recommendation X.29 A-6 

Using the Asynchronous Communications Subsystem to Send and 
Receive X.29 PAD Messages A-6 

Put FMH Operation A-7 
Return Code 0004 A-7 

Appendix B. Rotary Dial B-1 
Creating an Asynchronous PAD Phone List B-1 

Appendix C. Establishing a Communications Link C-1 
Using Asynchronous Communications Support C-2 

To Establish the Communications Link C-2 
To End the Communications Link C-2 

Glossary G-1 

Index X-I 

VI Using the Asynchronous Communications Support 



About This Manual 

This manual contains information for using the IBM System/36 
asynchronous communications support. It is intended primarily for 
application and system programmers. This manual is also intended for the 
System/36 user who needs information about how to operate the interactive 
terminal facility (ITF). ' 

This manual covers the following topics: 

• Configuration: The procedures needed to describe the asynchronous 
communications subsystem to the system. 

• The asynchronous communications subsystem: The commands needed to 
enable and disable the subsystem, the operation of the subsystem, and 
the return codes sent by the subsystem. 

• The interactive terminal facility (ITF): A description of how to start and 
run ITF. 

Information not covered in this manual can be found in the manuals listed 
in the section "If You Need More Information." 

Note: Throughout this manual, the term remote system refers to the system 
or device with which System/36 is communicating. 

About This Manual Vll 



What you should know ... 

Before you use this manual, you should know or have the following 
information for writing application programs using the asynchronous 
communications support: 

• You should be familiar with System/36 programming terminology, 
particularly work station programming, and you should be able to 
program in whatever language you intend to use. 

• You should know the concepts of data communications as described in 
the manual Data Communications Concepts, GC21-5169. 

• You should be familiar with interactive communications concepts as 
described in Chapters 1 through 5 of the System/36 manual Interactive 
Communications Feature: Guide and Examples, SC21-7911. The 
SSP-ICF Guide and Examples manual introduces SSP-ICF concepts. 

• You should use the workbook Planning for Data Communications, 
SA21-9441 for the 5360 System Unit, SA21-9482 for the 5362 System Unit, 
or SA21-9844 for the 5364 System Unit. 

VIll Using the Asynchronous Communications Support 



If you need more information . . . 

The following System/36 manuals contain additional information you may 
need when you use the System/36 asynchronous communications support: 

• SSP-ICF Programming for Communications Subsystems and Intra 
Communications Subsystem Reference, SC21-9533 contains general 
information about SSP-ICF and detailed information about the Intra 
subsystem. It describes the operations, the OCL statements, and all the 
return codes for the Intra subsystem. It also contains examples of 
programming in Assembler, COBOL, BASIC, and RPG II. 

• Using System/36 Communications, SC21-9082 contains information 
about: 

Configuring communications, including the X.25 programming 
support 

File transfer subroutines and file transfer subroutine messages 

• Changing Your System Configuration, SC21-9052 contains instructions 
for installing communications support. 

• System Security Guide, SC21-9042 describes how to implement various 
levels of security on System/36. 

• System Problem Determination, SC21-7919 for the 5360 System Unit, 
SC21-9063 for the 5362 System Unit, or SC21-9375 for the 5364 System 
Unit provides procedures to help you find the cause of communications 
problems. 

• System Messages, SC21-7938 describes the system messages that are 
displayed when you run programs that use the interactive 
communications features. 

• System Reference, SC21-9020 describes the OCL statements, system 
utilities, and system procedures you need when you use System/36. 

• Functions Reference Manual, SA21-9436 describes the machine 
instructions, status bytes, and other information needed to understand 
system programs from the hardware viewpoint. 

You may need to refer to one or more of the following System/36 language 
manuals while using this manual: 

• Programming with Assembler, SC21-7908 

• Programming with BASIC, SC21-9003 

• Programming with COBOL, SC21-9007 

• Programming with RPG II, SC21-9006 

About This Manual IX 



How this manual has changed ... 

The following information has been added to this manual since the previous 
edition: 

• X.25 line support on the 5364 System Unit, Chapter 1. 

• Changes to the "Programming Considerations," Chapter 3. 

• Changes to the DATAL parameter, Chapter 3. 

• Carriage return character, Chapter 4. 

• Change to the connect command, Appendix A. 

• Miscellaneous technical changes have also been made. 

Note: This manual may refer to products that are announced, but not yet 
available. Such information is for planning purposes only and is 
subject to change before general availability. 

x Using the Asynchronous Communications Support 



Chapter 1. Introduction to the Asynchronous 
Communications Support 

The IBM System/36 asynchronous communications support, part of the base 
Communications feature, lets System/36 or a host system use the 
asynchronous communications support to communicate with a remote 
station, either directly or through a packet switched data network (PSDN). 

The asynchronous communications support includes the following parts: 

• The asynchronous communications subsystem 

• The file transfer subroutines (also used by other subsystems) 

• The interactive terminal facility (ITF) 

• Support for one to three X.25 lines 

The asynchronous communications subsystem provides program-to-program 
communications between systems using the asynchronous and/or enhanced 
X.25 data link protocols. It also provides an internal X.25 packet 
assembler/disassembler (PAD) function, which allows a terminal connected 
to System/36 to communicate with a host system through a PSDN. 

The file transfer subroutines, called from your application program, let you 
send and receive System/36 data files and library members. See the manual 
Using System/36 Communications for more information. 

Chapter 1. Introduction to the Asynchronous Communications Support 1-1 



ITF allows System/36 to connect to applications such as the TELEMAIL 
service of the GTE Telenet data network 1. Using ITF, you can send or 
receive not only simple memos, but also System/36 library members, data 
files, and DisplayWrite/36 (DW/36) documents. See Chapter 4, "Using the 
Interactive Terminal Facility," for more information. 

The asynchronous communications support includes support for up to three 
X.25 lines on the 5360 and 5362 System Units, and one X.25 line on a 5364 
System Unit. 

TELEMAIL and Telenet are registered servicemarks of the GTE Telenet 
Communications Corporation 

1-2 Using the Asynchronous Communications Support 



The Asynchronous Communications Subsystem 

The asynchronous communications subsystem allows System/36 to 
communicate, using an asynchronous communications line, with another 
asynchronous location or with a PAD, which gives System/36 access to an 
X.25 PSDN. Using enhanced X.25 support on an X.25 line, the 
asynchronous communications subsystem can communicate directly 
through an X.25 network, or it can emulate (imitate) a PAD using CCITT 
recommendations X.3, X.28, and X.29. The asynchronous communications 
subsystem, when emulating a PAD, makes a terminal that is locally 
attached to System/36 appear to be connected to an X.25 PAD over an 
asynchronous data link. This function allows System/36 terminals to 
communicate with any X.25 host system that communicates with 
asynchronous terminals. See Appendix A, "PAD Emulation." 

In addition, the asynchronous communications subsystem provides both 
interactive and batch communications interfaces between application 
programs. The programs can be written in System/36 Assembler, BASIC, 
COBOL, orRPG II. 

When the asynchronous communications subsystem is in use: 

• System/36 programs can initiate procedures on a remote system, and the 
remote system can initiate procedures on the local System/36. Security 
options for both systems are supported. 

• System/36 can send and receive memos and electronic mail, including 
data files, library members, and DW /36 documents, using the interactive 
terminal facility (ITF) along with network or host system services. See 
Chapter 4, "Using the Interactive Terminal Facility." 

• System/36 can send and receive data files and library members using the 
file transfer subroutines and program-to-program communications. See 
the manual Using System/36 Communications for more information. 

• A switched or nonswitched point-to-point communications line can be 
used. For a subsystem using asynchronous communications, the 
physical line can be switched or nonswitched. For a subsystem using 
X.25 support to connect directly to the PSDN, the physical line is 
nonswitched, but the connection through the network to another system 
may be a permanent virtual circuit (PVC) or a switched virtual circuit 
(SVC). If you use the file transfer subroutines, you must have a SVC 
connection. 

• Rotary dial, a function of the System/36 PAD support, can be used. See 
Appendix B, "Rotary Dial." 

Chapter 1. Introduction to the Asynchronous Communications Support 1-3 



System/36 

The following example shows sample configurations of the asynchronous 
communications support network using the asynchronous communications 
subsystem. 

Application Program 

SSP-ICF Data Management 

, 
" ...... 

Commu~ications Adapter "" , 

System/36 

Application Program 

Other X.25 
Host System 

AA0001-1 

1-4 Using the Asynchronous Communications Support 



Line 0 is a nonswitched communications line from System/36 to an 
asynchronous device. The asynchronous communications subsystem uses 
asynchronous communications support for this line. This communications 
link requires a System/36 application program to communicate with or 
provide services to the device; such an application program is not part of 
the asynchronous communications support. 

Line 0 is a nonswitched line to the PSDN. This asynchronous 
communications subsystem communicates through the PSDN directly, using 
X.25 support. 

Lines G and e are switched asynchronous lines. These asynchronous 
communications subsystems use the asynchronous communications support; 
they make switched connections to a PAD, which adapts their data for 
transmission over the PSDN. 

Line 0 is a nonswitched line to the PSDN. The asynchronous 
communications subsystem connected to line 0 emulates a PAD, using 
CCITT recommendations X.3, X.28, and X.29. This internal PAD interfaces 
with the X.25 support. The internal PAD lets a locally attached work 
station communicate through the PSDN, appearing to be an asynchronous 
terminal. 

Chapter 1. Introduction to the Asynchronous Communications Support 1-5 



Communications Lines Supported 

System Unit 

Adapter 

Lines Available 

Asynchronous 
Communications 

5360 System Unit 

System/36 can have as many as eight communications lines. Each 
asynchronous communications subsystem requires at least one 
communications line to communicate with a remote system; an 
asynchronous communications subsystem can support up to eight 
asynchronous lines at once. However, the maximum number of lines 
available is controlled by the communications adapter and the features 
installed on your system. 

Your System/36, the 5360 and 5362 System Units, can have one of several 
communications adapters: 

• The eight-line communications adapter (ELCA) 

• The multiline communications adapter (MLCA) 

• The single-line communications adapter (SLCA) 

The following chart shows, by system unit and adapter, the number of 
communications lines available, and the number of asynchronous 
communications lines that can be used. 

5360 System Unit 5362 System Unit 

SLCA SLCA MLCA ELCA SLCA MLCA 
2500 2550 4500 4550 2910 2915 

lline lline 1 to 4 1 to 8 1 to 2 1 to 4 
lines lines lines lines 

N/A lline N/A 8 lines 2 lines 4 lines 

Refer to the Functions Reference Manual for more detailed information on 
the communications adapters. 

If a System/36 with the 5360 System Unit has the ELCA feature installed, 
up to three X.25 lines can be configured with the following conditions: 

• If one X.25 line is configured, it can be any of the eight lines on the 
ELCA. The other communications lines are available for use by other 
protocols (such as asynchronous, BSC, or SDLC). 

• If two X.25 lines are configured, they can be any two lines except for 
line 8, which is reserved. Therefore, only five lines are available for use 
by other protocols. 

• If three X.25 lines are configured, they can be any three lines except for 
lines 7 and 8, which are reserved. This leaves three lines to be used by 
other protocols. 

1-6 Using the Asynchronous Communications Support 



5362 System Unit 

5364 System Unit 

If a Systemj36 with the 5362 System Unit has the MLCA feature installed, 
asynchronous communications support allows up to three X.25 lines to be 
configured. These can be any of the four communications lines on the 
MLCA. No lines are reserved; the remaining lines are available for use by 
other protocols. 

A Systemj36 with the 5364 System Unit emulates an MLCA. However, only 
two communications lines are available with the following restrictions: 

• When a BSC or SDLC adapter is on the system, line 1 must be used for 
communications. 

• When two Asynchronous adapters are on the system unit, both lines 1 
and 2 can be used for asynchronous communications. 

• When asynchronous communications is active, BSC, SDLC, or local 
area network (LAN) cannot be used. 

If the 5364 System Unit has the IBM Realtime Interface Co-Processor 
installed, up to three communications lines are available with the following 
restrictions: 

• Line 1 can only be used for asynchronous communications if an 
Asynchronous adapter is installed. 

• Line 2 is not supported. 

• The IBM Realtime Interface Co-Processor supports up to two SDLC 
lines or one X.25 line. 

For SDLC, lines 3 and 4 can be used for SDLC communications. 

For X.25, line 3 can be used for X.25 communications. If line 3 is 
configured as an X.25 line, line 4 is reserved and unavailable for 
use. 

Note: SDLC and X.25 are mutually exclusive. 

Chapter 1. Introduction to the Asynchronous Communications Support 1-7 



1-8 Using the Asynchronous Communications Support 



Chapter 2. Configuring the Asynchronous 
Communications Subsystem 

Before you can use the asynchronous communications support, it must be 
installed on your system. In addition, a complete asynchronous 
communications subsystem configuration must be defined. For an 
asynchronous communications subsystem that uses X.25 support, you must 
also describe the packet switched data network (PSDN) to System/36 (using 
the CNFIGX25 procedure). 

This section describes the displays and all the parameters (shown in prompt 
form) needed to define and create an asynchronous communications 
subsystem configuration, using the CNFIGICF procedure. (A general 
description of the process of configuration is contained in the manual Using 
System/36 Communications.) 

The following diagram shows the sequence in which the CNFIGICF displays 
are presented, and shows what displays you use to create a communications 
line member and what displays you use to create a subsystem member. 

Note: You must define a line member for the communications line support 
before you can define an asynchronous communications subsystem 
member. If the line member is later modified, its new attributes are 
reflected in your subsystem the next time it is enabled. Some changes 
to the line member, however, also require that you modify each 
subsystem member using that line member before the subsystem is 
enabled again. To ensure compatibility between the line and the 
subsystem, you should always edit (modify) all the subsystem members 
affected by the changed line member. Refer to the manual Using 
System/36 Communications for information on defining an 
asynchronous communications line member. 

Chapter 2. Configuring the Asynchronous Communications Subsystem 2-1 



I 

Start the CNFIGICF Procedure 

I 
Name the Memb er 

1.0 
2.0 
5.0 

SSP-ICF Config 
SSP-ICF Config 

ura 
ura 
tio Async Configura 

and Select the Type 

tion Member Definition 
tion Member Type 
n Member Type 

I 
Define the Line Member Define the Subsystem Member 

12.1 Async Line Member Attributes 25.0 Subsystem Member Definition 
12.2 Async Line Member Attributes 

~ i 
Define Remote System(s) Define Remote location(s) 

12.5 Remote System Selection 

29.0 Remote Location Selection 
60.0 Async Subsystem Attributes 

AA0002-0 

2-2 Using the Asynchronous Communications Support 



Explanation of Displays 

On the following displays for the asynchronous communications CNFIGICF 
procedure: 

• All of the prompts that can be displayed to define an asynchronous 
communications subsystem are shown on the displays and are described 
in the text. The prompts are shown for all the parameters that are 
needed either to create a new asynchronous communications 
configuration member or to change (edit), delete, or review an existing 
member. 

Note: The prompt lines that you actually see on succeeding displays 
depend on the task specified on display 1.0 and on the options that 
you select from other displays. Prompt lines that are not shown do 
not apply for the task or options previously selected. 

• For this set of example displays only, the values to the right of the 
prompts are shown with: 

Default values, supplied by the system. If the system provides a 
default value, that value is shown here. (You can enter a different 
value if you wish.) 

Sample values, as typical examples. If fewer characters are shown 
than the field allows, the remaining positions in the field are 
underscored. Note that once a value has been entered in a field, it 
becomes the default value for any related fields on the succeeding 
displays. 

Chapter 2. Configuring the Asynchronous Communications Subsystem 2-3 



Subsystem Member Definition 

Display 1.0 SSP-ICF Configuration Member Definition 

1.0 

On display 1.0, specify the name of the subsystem configuration member you 
are creating or using in some way, and specify what is to be done with the 
member. 

SSP-ICF CONFIGURATION MEMBER DEFINITION Wl 

1. Configuration member name 

2. Library name .... 

3. Select one of the following: 
1. Create new member 
2. Edit existing member 
3. Create new member from existing member 
4. Remove a member 
5. Review a member 

Option .......... . 1-5 

4. Existing member name ... . 

5. Existing member library name 

Cmd7-End Cmd19-Cancel 

1. Configuration member name: Enter the name that identifies this 
configuration of the subsystem. This subsystem member name is used to 
store the subsystem configuration member in a library, and it is also 
used in the ENABLE and DISABLE procedures to start and stop the 
subsystem. 

2. Library name: Enter the name of the library in which the subsystem 
configuration member is to be stored. The default is the library that 
you are currently using. 

Note: The line member and subsystem member must be in the same 
library. When X.25 support is needed, the X.25 configuration 
member also must be in the same library. 

3. Select one of the following: Specify which of the five options you 
want. For example, if you are creating a new asynchronous 
communications subsystem member, select option 1. 

4. Existing member name: This prompt is displayed only if you selected 
option 3 for prompt 3. Enter the name of the existing SUbsystem 
configuration member that is to be used to create the new member. 
(The existing member is not changed.) 

2-4 Using the Asynchronous Communications Support 



5. Existing member library name: This prompt is displayed only if you 
selected option 3 for prompt 3. Enter the name of the library that 
contains the existing member. The default is the library name specified 
for prompt 2. 

Display 2.0 SSP-ICF Configuration Member Type 

2.0 

On display 2.0, specify the type of subsystem member you want to define or 
redefine. 

SSP-ICF CONFIGURATION MEMBER TYPE ASCSUBSl Wl 

Select one of the following options: 
1. Intra 
2. BSC 
3. SNA 
4. Async 
5. PC Support/36 

Option: 4 

Cmd3-Previous display 
Cmd7-End 

Cmd5-Restart CNFIGICF 
Cmd19-Cancel COPR IBM Corp. 1986 

• Select one of the following options: Enter a 4 when you are defining 
an asynchronous communications configuration member. 

Chapter 2. Configuring the Asynchronous Communications Subsystem 2-5 



Display 5.0 Asynchronous Configuration Member Type 

5.0 

On display 5.0, specify the type of asynchronous communications 
configuration member you want to define or redefine. 

ASYNC CONFIGURATION MEMBER TYPE ASCSUBSI 

Async member type: ............... 1,2,3 
1. Async subsystem member 
2. Async line member 
3. Async/X.25 line member 

WI 

Cmd3-Previous display 
Cmd7-End 

Cmd5-Restart CNFIGICF 
Cmd19-Cancel COPR IBM Corp. 1986 

• Asynchronous member type: Enter a 1 when you are defining the 
subsystem member for your asynchronous communications subsystem. 

2-6 Using the Asynchronous Communications Support 



Display 25.0 Subsystem Member Definition 

On display 25.0, enter information that defines the subsystem member. 

25.0 SUBSYSTEM MEMBER DEFINITION ASCSUBSI WI 

1. Line member name 

2. Location name 

3. Local ID ... 

Cmd3-Previous display 
Cmd7-End 

Cmd5-Restart CNFIGICF 
Cmd19-Cancel COPR IBM Corp. 1986 

1. Line member name: Enter the name of the line member that will be 
used with this subsystem configuration. 

Note: The line member must be in the same library as the subsystem 
member. You must define a line member for the communications 
line support before you can define an asynchronous subsystem 
member. Refer to the manual Using System/36 
Communications for more information. 

2. Location name: Specifies the name that identifies your System/36 to 
any remote locations that your subsystem calls. Enter a name of up to 
8 characters. If you do not enter a location name, the subsystem 
configuration member name is also used as the location name. This 
name must be the same as the name specified by the remote system 
using the DEFINLOC procedure. 

3. Local ID: Specifies the identifier by which this subsystem is known to 
the remote system. This must be the same as the ID that the remote 
system specified for this location name using the DEFINLOC procedure. 
Enter up to 8 characters. 

For more information on the DEFINLOC procedure, see "Using the 
DEFINLOC Procedure" later in this chapter. 

Chapter 2. Configuring the Asynchronous Communications Subsystem 2-7 



Display 29.0 Remote Location Selection 

On display 29.0, enter information that defines the remote location. 

29.0 REMOTE LOCATION SELECTION ASCSUBSl Wl 

1. Select from the following options: 
l-Create 3-Create from existing 
2-Edit 4-Remove 

5-Review 

Options ......... . 
2. Remote location name . . . . . . . . . 
3. Remote system name ......... . 
4. Existing location name ....... . 

OPTION LOCATION REMOTE SYSTEM Page 1 of 1 

Cmd5-Restart CNFIGICF 
Cmd7-End Cmd8-Reset Cmd19-Cancel Roll-Page COPR IBM Corp.1986 

On this display, select the remote locations with which this subsystem 
communicates. You can define a remote location for each remote system in 
the corresponding line member. 

All previously defined remote locations and all remote systems from the 
corresponding line member are listed. You may edit, remove, or review any 
of these remote locations by entering the correct option number in the 
column to the left of the remote location with which you want to work. 

2-8 Using the Asynchronous Communications Support 



If no locations have been defined for any of the remote systems, the only 
option shown on display 29.0 is i-Create, and prompt 4 is not shown. 

1. Select from the following options: Specify which of the available 
options you want to use: 

I-Create defines a new remote location. 

2-Edit changes an existing remote location. 

3-Create from existing defines a new remote location using an 
existing remote location as a base. 

4-Remove deletes a remote location. It will no longer exist in this 
member. 

5-Review displays an existing remote location. The configuration 
member cannot be changed. 

2. Remote location name: Enter the location name of the remote 
system which your system will call. Each remote system identified in 
this subsystem member must have a unique remote location name. 
The remote location name specified here must not be the same as the 
location name specified (on display 25.0) at the remote system. 

When a SESSION statement is used by any program in the local 
System/36 to start a session at the remote location, the remote location 
name specified here must also be specified in the LOCATION 
parameter of that statement. 

3. Remote system name: This is the name you used to identify the 
remote system during line member definition. 

4. Existing location name: Specify the name of the existing remote 
location that is to be used as a base when creating a new remote 
location. 

When you press the Enter key, display 60.0 appears. You further define 
each remote location on display 60.0. 

When you have finished defining remote locations, press the Cmd7 key. 
Display 1.0 reappears. 

Chapter 2. Configuring the Asynchronous Communications Subsystem 2-9 



Display 60.0 Asynchronous Subsystem Attributes 

60.0 

On this display, enter the attributes for the asynchronous communications 
subsystem. 

ASYNC SUBSYSTEM ATTRIBUTES ASCSUBSl Wl 

Remote system Remote location 

1. Is this remote location a System/36 ? Y,N Y 

2. Data network identification code? . 

3. Should subsystem emulate an X.25 PAD? 

Cmd3-Previous display 
Cmd7-End 

Cmd5-Restart CNFIGICF 
Cmd19-Cancel 

Y,N N 

COPR IBM Corp.1986 

1. Is this remote location a System/36? Specify a Y for Yes or an N for 
No. The default is Y. 

Note: Prompts 2 and 3 are not displayed unless you are defining an 
asynchronous/ X.25 subsystem member. 

2. Data network identification code? Specify the 4-digit data network 
identification code of the network to which your location is connected. 

3. Should subsystem emulate an X.25 PAD? Specify a Y for Yes or an 
N for No. If you specify N, this location will be connected to the 
remote system as an X.25 host. The default is N. 

Note: This prompt is not displayed for all data network identification 
codes. 

For more information about PAD emulation, see Appendix A. 

Note: Display 29.0 appears again (after you enter the prompts on display 
60.0) to allow you to configure additional remote locations. 

2-10 Using the Asynchronous Communications Support 



Modifying a Subsystem Configuration 

To change one or more of the attributes defined in either a line or 
subsystem member of an existing asynchronous communications subsystem 
configuration, you can use the CNFIGICF procedure to change (edit) the 
member. (For the changed attributes to take effect, any subsystem using 
the member being changed must be disabled and enabled again.) On display 
1.0 of the procedure, specify the name of the member to be changed and 
specify option 2 (edit existing member) for prompt 3. On display 5.0, specify 
which type of member it is (line or subsystem), and then, on the following 
displays, change the values of only the attributes that need to be changed. 
After the CNFIGICF procedure is completed, the updated member definition 
is used each time any subsystem associated with the changed member is 
enabled. 

Note: The ENABLE procedure (if the SHOW parameter is specified in the 
ENABLE command) can be used to display (not change) all the values 
specified in the subsystem configuration member of the subsystem that 
is being enabled. 

Chapter 2. Configuring the Asynchronous Communications Subsystem 2-11 



Using the DEFINLOC Procedure 

1.0 

You use the DEFINLOC procedure to set up a list of the names and 
location IDs of remote locations that you allow to call your subsystem (an 
asynchronous communications subsystem using X.25 support only). 

When your subsystem receives a connect request, the system checks the 
location ID of the calling system. If the location ID and location name are 
listed in DEFINLOC, the call is accepted; otherwise, it is rejected. If the 
call is accepted, the remote system is connected through an available 
logical channel and assigned to a generic remote system. 

When you use the DEFINLOC procedure, you enter information on a set of 
displays. From the DEFINLOC main menu, you can choose to look at a list 
of locations already entered, add new locations, change (update) existing 
locations, or delete locations. 

To start, enter the DEFINLOC procedure command, which has no 
parameters. The following menu appears: 

REMOTE LOCATION DEFINITION 

Select one of the following o~tions: 
1. Display remote locat10ns 
2. Add remote locations 
3. Update remote locations 
4. Delete remote locations 

Option: 

Cmd7-End 
COPR IBM Corp. 1986 

Select an option and press the Enter key. For more information about how 
to use the DEFINLOC procedure, press the Help key from display 1.0. You 
can also press the Help key for information about each DEFINLOC display. 
If you need more information, refer to the manual Using System/36 
Communications. 

2-12 Using the Asynchronous Communications Support 



Chapter 3. Using the Asynchronous Communications 
Subsystem 

Enabling and Disabling an Asynchronous 
Communications Subsystem 

The ENABLE and DISABLE procedures are used to start and end an 
asynchronous communications subsystem. 

Enabling a Subsystem 

The ENABLE procedure is used to start (enable) an asynchronous 
communications subsystem on System/36. You must specify the name of the 
subsystem on the ENABLE procedure command, along with the line 
number of the communications line to be used by the subsystem. 

The ENABLE procedure associates the asynchronous communications 
subsystem with a particular subsystem configuration and with a 
communications line. The result of the ENABLE procedure is an active 
subsystem that has the attributes specified during configuration. 

You can enable a subsystem by having the ENABLE procedure 
automatically run after initial program load (IPL). See the System 
Reference manual for a description of how to specify a procedure (named 
#STRTUP2) to be run automatically after IPL. 

When the ENABLE procedure command is used to start a subsystem, it 
performs the following functions: 

• Ensures compatibility between the subsystem configuration and the 
communications hardware 

• Determines whether the requested communications line is available 

• Loads the subsystem support for the asynchronous communications 
subsystem if it is not already active 

• Loads the subsystem configuration that contains the attributes of the 
subsystem that is being enabled 

• Assigns storage for required data areas and buffers 

Chapter 3. Using the Asynchronous Communications Subsystem 3-1 



The ENABLE procedure only prepares the local end of the line to 
communicate with the remote location; the remote location must also be 
prepared for communications. When both ends are prepared, 
communications can begin. 

A program that uses an asynchronous communications subsystem can be 
loaded before the subsystem is enabled, but no sessions for that subsystem 
can be started until it is enabled. After the subsystem has established 
communications, programs can begin acquiring sessions using that 
subsystem. The subsystem waits for an acquire operation to be issued by a 
local System/36 program or for a procedure start request to be issued by a 
remote program. 

If the line type set in the subsystem configuration record does not 
correspond to the type of line (identified by line number in the ENABLE 
command) to be used by the subsystem, a message is issued and the 
ENABLE procedure is terminated. You can use the SETCOMM or 
ALTERCOM procedure to change the line type. These two procedures are 
described in the manual Using System/36 Communications. 

In general, the ENABLE procedure ensures that all remote location names 
associated with a subsystem configuration are unique in the system. If a 
subsystem is active and one of its location names matches a remote location 
name in the configuration of the subsystem being enabled, a message is 
issued indicating that the location you specified is already active. You are 
then given the option of continuing the ENABLE procedure and skipping 
that location or of canceling the entire ENABLE procedure. 

An exception to the rule of unique location names is generic location 
names. Generic location names are numbers assigned by the system during 
CNFIGICF that allow incoming calls to be completed (see CNFIGICF 
display 12.2 in the manual Using System/36 Communications). The 
ENABLE procedure does not check to see if these numbers are unique. 

3-2 Using the Asynchronous Communications Support 



ENABLE Procedure Command 

ENABLE 

The syntax of the ENABLE procedure command is: 

subsystem configuration name, [library name 1 
current library 
.:....:.:...-"---"-----~ 

, [line number], 

AA0005-1 

Subsystem configuration name: Specifies the subsystem member name of 
the subsystem configuration to be enabled. This is the name that was 
specified when the CNFIGICF procedure was used to configure the 
subsystem. This parameter is required for an asynchronous 
communications subsystem. 

Library name: Specifies the name of the library that contains the 
specified subsystem configuration. (The line member and subsystem 
member must be in the same library.) If no library name is specified, the 
current library is assumed, and only that library is searched. 

Line number: Specifies the number of the communications line for which 
this subsystem is to be enabled. This parameter is required. 

SHOW or NOSHOW: Specifies whether subsystem configuration 
parameters are to be displayed before the subsystem is enabled. If SHOW is 
specified, the subsystem member configuration parameters are displayed (not 
the line member parameters); however, no changes can be made to the 
values displayed while the ENABLE procedure is being performed. If no 
parameter is specified, NOSHOW is assumed. 

Location name: Specifies the name of the remote location to be enabled. 

Line member name: Specifies the name of the line member to be enabled. 
This prompt is not valid when using asynchronous communications support. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-3 



Disabling a Subsystem 

To disable an asynchronous communications subsystem, the DISABLE 
procedure command must be run. When a disable operation is requested for 
a subsystem, the following functions are performed: 

• If no sessions are active for the subsystem being disabled, the subsystem 
is disabled, and the main storage being used is freed. Also, if no other 
asynchronous communications subsystem is active, the asynchronous 
communications subsystem support is terminated. 

• If sessions are active for the subsystem, a message is issued to the 
operator who issued the DISABLE command. The operator can respond 
with one of the following options: 

o Hold (pend) the disable request. New sessions cannot be started 
for this subsystem; and when all sessions have been completed, a 
normal disable occurs (see note). 

1 Retry the disable request. Check again for any active sessions for 
this subsystem. 

2 Cancel active sessions and disable the subsystem or location. 
Active sessions for this subsystem are immediately terminated, and 
the DISABLE procedure is performed. 

3 Ignore the disable request. The DISABLE procedure is canceled 
and must be run again when the subsystem is to be disabled. 

• If a disable request is pending (waiting to be performed) or is in 
progress, a message is issued to the operator. You cannot disable the 
subsystem immediately; you must either wait for the session to 
terminate or have the system operator cancel the session. 

Note: When a disable request is pending, each program performing a 
successful input operation to the location(s) affected by the DISABLE 
procedure receives a major return code indicating that a disable 
operation is pending (02xx). 

When a remote location is disabled, main storage for that location is freed. 
The rest of the subsystem remains active. 

3-4 Using the Asynchronous Communications Support 



DISABLE Procedure Command 

The syntax of the DISABLE procedure command is: 

DISABLE subsystem configuration name, [location name], [line nUmber] 

AA0006-1 

Subsystem configuration name: Specifies the subsystem member name 
of the subsystem to be disabled. 

Location name: Specifies the name of the remote location to be disabled. 
The subsystem remains enabled as long as there are other active locations. 
If the location name is not specified, all remote locations will be disabled. 

Line number: Specifies the number of the line to be disabled. This prompt 
is not valid when using asynchronous communications support. 

Starting Communications Sessions 

System/36 communications sessions using an asynchronous communications 
subsystem can be started in one of two ways: 

• Your program can issue an acquire operation to start (acquire) the 
session. The acquire operation identifies the session to be started and 
must match the session identifier specified in an associated SESSION 
'Statement. 

• A program on a remote system can also issue an acquire operation to 
start a session. Then it can issue an evoke operation, which causes a 
procedure start request to be sent to the local System/36. The procedure 
start request initiates a procedure that starts your program, which can 
then communicate with the remote program. 

Note: Only the local or remote program that issues the acquire operation can 
issue evoke operations in that session. The program that is evoked 
cannot issue any evoke operations in that session. 

The following sections describe the SESSION statement and procedure start 
requests for an asynchronous communications subsystem. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-5 



SESSION Statement 

Each program (except BASIC programs) that is to acquire a session must 
have at least one SESSION statement included in the procedure that loads 
the program. The SESSION statement must be placed between the LOAD 
and RUN OCL statements used for the program. The SESSION statement 
can be used to specify the following: 

• It identifies, using the SYMID parameter, the session to be acquired 
later in the program. 

• It identifies, using the LOCATION parameter, the remote location with 
which the program is to communicate. Before the SESSION statement 
is processed, the asynchronous communications subsystem that also 
specifies the name of the remote location must have already been 
enabled. (The location name was specified in the subsystem's 
configuration member.) 

The SESSION statement, then, identifies the session and the remote 
location with which your program is to communicate; it also indirectly 
identifies the subsystem having the necessary attributes for the session. 

Note: A BASIC program does not require a SESSION statement if an 
OPEN statement is used that specifies the remote location name in the 
LOC parameter. 

The syntax of the SESSION statement for the asynchronous 
communications subsystem is: 

II SESSION LOCATION-name,SYMID-session id 

LOCATION parameter: Specifies the remote location name to be 
associated with this session. The remote location name, specified on 
display 30.0 during subsystem configuration, refers to the remote location 
with which your program is to communicate. This parameter has no 
default. 

SYMID parameter: Specifies the symbolic identifier of the session with 
which this SESSION statement is associated. Your program uses this 
identifier when it acquires the session and whenever it issues any operation 
in the session. The identifier must be 2 characters: The first character 
must be numeric (0 through 9), and the second character must be alphabetic 
(A through Z, $, #, or @). This parameter has no default. 

3-6 Using the Asynchronous Communications Support 



Procedure Start Requests 

When a remote program on another System/36 uses an asynchronous 
communications subsystem to start a procedure on System/36, the remote 
program issues an evoke operation, which is sent as a procedure start 
request to the asynchronous communications subsystem on System/36. The 
subsystem starts the specified System/36 procedure, which then starts a 
program that communicates with the remote program. Up to 120 bytes of 
data, including the name of the procedure to be started, can be specified by 
the user to be sent by the procedure start request. 

When the asynchronous communications subsystem receives a procedure 
start request from the remote system, it uses the information included with 
the procedure start request statement to start the specified System/36 
procedure. (Any procedure parameters needed by the procedure are 
included in the data.) If the procedure was coded to accept data 
(PDATA-YES was specified on the COPY control statement for $MAINT, or 
a Y was entered in response to the Program Data In The Include 
Statements prompt on the end of job menu for the SEU procedure), the 
subsystem passes any data to the evoked program on its first input 
operation. An evoked System/36 program must perform an input operation 
as its first communications operation. 

The format for the procedure start request for an asynchronous 
communications subsystem is as follows: 

*EXEC or *EXEX, blank, Procedure Name, 
blank,Procedure Parameters or Program Data, 
< CR > ,User ID, < CR > ,Library, < CR >, 
Password, < CR > , < EOT > 

< CR > = Carriage return (hex OD) 
< EOT > = End of transmission (hex 37) 

For information on how to write programs that are to be started by 
procedure start requests, see "Writing a Program That Is Started by the 
Remote System" in the SSP-lCF Guide and Examples manual. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-7 



Communications Operations for the Asynchronous 
Communications Subsystem 

This section describes all the input and output operations that can be coded 
in a program that is to communicate, using the asynchronous 
communications subsystem, with another System/36. For complete details 
of how these operations work and how to use them, see the SSP-ICF Guide 
and Examples manual. 

Programming Considerations for the Asynchronous Communications 
Subsystem 

Before you start coding the input and output operations, you should note 
the following programming considerations for an asynchronous 
communications subsystem: 

• Maximum data length of 160 bytes for a read operation 

• Maximum data length of 4096 bytes for a write operation 

• User application program dependencies: 

SUBRAl Subroutine 

User application is responsible for error detection, recovery, and 
data acknowledgment. 

Only parity errors detected with notification are passed to the user 
application. 

Note: On the 5360 and 5362 System Units, the parity bit is passed, 
with the data, to the user application. On the 5364 System 
Unit, the parity bit is stripped from the data by the 
communications adapter. If a parity error occurs, the user 
application is notified. 

Variable length data is received and passed to the user application. 
The user application must examine the data to determine the 
amount received and form the data into logical records. The 
define-the-file (DTF) control block contains the length of the data 
received. Assembler and BASIC programs have access to the DTF. 
COBOL and RPG IT programs may use the asynchronous subroutine, 
SUBRAl, to obtain the data length. 

The SUBRAI subroutine allows COBOL and RPG II programs to retrieve 
the data length from the DTF for the last get operation. 

3-8 Using the Asynchronous Communications Support 



Calling the SUBRAI Subroutine from a COBOL Program 

The format for the call to the SUBRAI subroutine from a COBOL program 
is as follows: 

CALL 'SUBRA1' USING WSNAME,SYMID,DATAL,RCODE 

The parameters to be passed to the subroutine are described under the topic 
"SUBRAI Subroutine Parameters" later in this chapter. 

Calling the SUBRAI Subroutine from a RPG II Program 

To call the SUBRAI subroutine from a RPG II program, make the following 
entries on the calculation specification: 

T=~~ RPG CALCULATION SPECIFICATIONS GX21-9093-3 UM/OSO. 

=:::::::;:=~= International Bu.lness ~achlne. Corporation Printed In U.S.A. 

® 
Program 

Programmer 

C "i -
'" dl> 

!l ]~ 
Uno 

~ 2~ 

~ ~~ ~ 
J • 5 6 7 • • 10 

o , c 
o 2 c 
o J c 
o • c 
o 5 C 
o 6 C 
o 7 C 

o 8 C 
o • C 
, 0 C 
1 , C 
, 2 C 

1 J C 
, . C 
, 5 C 

1 2 
75 76 77 78 79 80 

I Koyln, Graphic ~ 1 I L I J Card Electra Number 
p0geOJOf _ r;:~ill~tion I I I I I I I 

Dote I Instruction Koy I I I I I I I 
Indicators Result Field Result n; 

Indicators 

Arithmetic 

Plus Minus Zero 
Ad Ad Foctor 1 Operation Foetor 2 Commentfl Compare 

Name lIIngth 1> 2 1 « 2 , .. 2 

LockupCFoctor 2)la 

~ ~ High Low Equol 

11 12 1314- 1516 718192021222324252627 282930 31 32 33 34 35 36 37 3839 40 41 42 43 44 45 46 4148 49 50 51 5455 657 5859 60 61 62 63 64 65 66 8768 69 70 71 7273 7 

IElx IT .s 18R f<\1 

IfiL ABL .s~ IdD 
IfiL ABL ![)f 7 AL '4 
Iii L ABL I Ii'e:: rDIE 

AA0004-1 

The parameters to be passed to the subroutine are described under the topic 
"SUBRAI Subroutine Parameters" later in this chapter. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-9 



SUBRAI Subroutine Parameters 

WSNAME This character field contains the name of the file assigned to 
the work station. This field is required only for COBOL 
programs. 

SYMID 

DATAL 

ReDDE 

This 2-character field is the session identifier. 

This 4-character name contains the length, in decimal format, 
of the actual data received from the last get operation. 

This 2-character field contains the return code. The 
subroutine returns this value to the application program to 
indicate the result of the request. Valid values are as follows: 

40: Normal completion 

41: Invalid DTF address or DTF address not found 

42: Not an asynchronous subsystem session 

3-10 Using the Asynchronous Communications Support 



Asynchronous Communications Subsystem Operations and Codes 

The following summary chart presents all the asynchronous 
communications subsystem operations and their operation codes. Then, in 
the topics that follow, each operation or group of related operations is 
described, its operation codes in all languages are shown in a smaller chart, 
and coding examples (if appropriate) are given. 

Language Operation Codes 

Asynchronous 
Communi-
cations 
Subsystem 
Operations Assembler BASIC COBOL RPGII 

Accept input ACI WAITIO and READ2 READ3 
READl 

Acquire ACQ OPEN ACQUIRE ACQ 
Cancel invite CNI $$CNLINV $$CNLINV $$CNLINV 
End of session EOS $$EOS $$EOS $$EOS 
Evoke EVK $$EVOKNI $$EVOKNI $$EVOKNI 
Evoke end of EVE $$EVOKET $$EVOKET $$EVOKET 
transaction 

Evoke then get EVG - - -

Evoke then invite EVI $$EVOK $$EVOK $$EVOK 
Fail FAIL $$FAIL $$FAIL $$FAIL 
Get GET READ READ4 NEXT and 

READ5 
Get attributes GTA ATTRIBUTE$ ACCEPT -

Invite INV $$SEND $$SEND $$SEND 
Put PUT $$SENDNI $$SENDNI $$SENDNI 
Put then get PTG - -- -

Put then invite PTI $$SEND $$SEND $$SEND 
Put FMH PFM $$SENDNF $$SENDNF $$SENDNF 
Release REL CLOSE DROP REL 
Set timer STM $$TIMER $$TIMER $$TIMER 

lIn BASIC, an accept input operation is performed only if the W AITIO 
operation is followed by a READ operation. 

2In COBOL, an accept input operation is performed only if the 
TERMINAL option of the READ statement is not specified or is 
specified with blanks. 

3In RPG II, an accept input operation is performed only if the READ 
operation is not preceded by a NEXT operation. 

4In COBOL, a get operation is performed only if the TERMINAL option 
of the READ statement is specified with nonblanks. 

5In RPG II, a get operation is performed only if a NEXT operation is 
executed before the READ operation. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-11 



Accept Input Operation 

Your program can use the accept input operation to perform the following 
functions: 

• Obtain data from any program or any display station that has responded 
to an invite operation that was previously issued in your program. If 
data becomes available to your program from more than one program or 
display station before the accept input operation is issued, your 
program receives the data that was first made available, whether it was 
from another program or from a display station. 

• Wait for a new requester. 

If your program was evoked, it should issue an accept input 
operation as its first operation to determine the identifier of the new 
requester. Your program is notified of the new requester by the 
resulting Olxx return code at the end of the accept input operation. 
(See "Return Codes" later in this chapter for information about 
return code Olxx.) 

If your program is an MRT NEP program and no previous invite 
operation is in effect, it should issue an accept input operation so it 
can wait for a new requester. 

Except for the first accept input operation in evoked programs or in MRT 
NEP programs, all accept input operations in all programs should be issued 
to receive data only after an invite operation is issued. 

Operation Assembler BASIC COBOL RPGII 
Accept input ACI WAITIO and READ2 READ3 

READl 

lIn BASIC, an accept input operation is performed only if the W AITIO 
operation is followed by a READ operation. 

2In COBOL, an accept input operation is performed only if the 
TERMINAL option of the READ statement is not specified or is 
specified with blanks. 

3In RPG II, an accept input operation is performed only if the READ 
operation is not preceded by a NEXT operation. 

3-12 Using the Asynchronous Communications Support 



Acquire Operation 

Your program uses the acquire operation to establish a session between 
your program and the asynchronous communications subsystem in 
System/36. The session being established is identified in the acquire 
operation statement, and its identifier must match the session identifier 
given in the SYMID parameter of your program's SESSION statement for 
this session. 

The session started by the acquire operation is initialized with the 
parameters specified in the SESSION statement. 

Note: In BASIC, a SESSION statement is not needed if a special acquire 
operation is performed. In this case, the location name is specified in 
the LOC parameter of the OPEN statement to indicate which location 
is to communicate with this session. 

Operation Assembler BASIC COBOL RPGII 
Acquire ACQ OPEN ACQUIRE ACQ 

Acquire Operation Examples 

Assembler 

$WSIO DTF-ICDTF2,TERMID-2S,OPC-ACQ 

This $WSIO macro is used to acquire the session identified as 2S in the 
TERMID parameter. The DTF to be used for sending or receiving data is 
identified as ICDTF2. (For a complete description of the $WSIO macro's 
communications parameters, see "$WSIO Macro" in the SSP-ICF 
Programming for Communications Subsystems and Intra Communications 
Subsystem Reference manual.) The SYMID parameter of the SESSION 
statement must also be 2S. 

BASIC (Normal Acquire) 

OPEN #1: "SESSION,ID=lS,RECL=255" IOERR ICFERR 

This OPEN statement opens interactive communications file #1 and 
acquires the session identified as lS. The maximum record length that can 
be sent or received is 255 bytes. If the acquire operation is not successful, 
the program branches to the statement labeled ICFERR. A SESSION 
statement that specifies SYMID-1S is required. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-13 



BASIC (Special Acquire) 

OPEN #1: "SESSION,LOC=CHICAGO,RECL=255" IOERR ICFERR 

This OPEN statement opens interactive communications file #1 and 
acquires a session with the remote location identified as CHICAGO. No 
SESSION statement is used. For this acquire operation to be successfully 
performed, a subsystem configuration specifying the location name 
CHICAGO must already be enabled. 

COBOL 

ACQUIRE COMM-SESSION FOR COMMUNICATIONS-FILE. 

This ACQUIRE statement acquires the session that has the same session 
identifier as the value in the COMM-SESSION field. The COMM-SESSION 
field must be defined as a 2-character field with a valid session identifier 
(such as PIC XX VALUE, 'IS'). The session is acquired for the 
TRANSACTION file named COMMUNICATIONS-FILE, which has been 
opened as 1-0. A SESSION statement that specifies SYMID-1S is required. 

RPGII 

Field: Factor 1 Operation Factor 2 Indicator 

Positions: 18-27 28-32 33-42 56-57 

Value: 'IS' ACQ ICFILE 90 

This ACQ operation acquires the session specified by the identifier 'IS' in 
factor 1 of the calculation specifications. Factor 2 specifies the name of the 
WORKSTN file from the file description specifications. A SESSION 
statement that specifies SYMID-1S is required. 

Cancel Invite Operation 

Your program uses the cancel invite operation to cancel any valid invite 
operation for which no input has yet been received from any invited 
session. (The cancel invite operation is the only valid cancel operation for 
the asynchronous subsystem.) 

The cancel invite operation is valid only when it is issued after any valid 
invite operation. Normally, no data is in the subsystem's input buffer when 
the cancel invite operation is issued. If the data is in the input buffer, the 
operation fails and the return code 0412 is received by the program. Your 
program must issue an input operation to receive the data. 

Operation Assembler BASIC COBOL RPGII 
Cancel invite CNI $$CNLINV $$CNLINV $$CNLINV 

3-14 Using the Asynchronous Communications Support 



End of Session Operation 

Your program uses the end of session operation to terminate a session. 
Unlike the release operation, the end of session operation always 
terminates the session (if it still exists), and it always gives a normal 
completion return code (0000). For example, your program could issue the 
end of session operation after an error has occurred on one of its previous 
operations; it may be an error from which your program cannot easily 
recover. 

Ending a Session Started by an Evoke Operation from Another Program 

The end of session operation can be issued in a session that was started by 
an evoke operation issued by another program in System/36. In this case, 
your program should issue the end of session operation after the 
conversation has ended. The end of session operation frees that session so 
that it can be started again by another program. 

If your program does not issue an end of session operation, the session 
exists until your program (or multiple-program procedure) terminates. To 
prevent your program from terminating abnormally because of a 
communications error, you may want to code the end of session operation 
in your program as a general recovery action for all unexpected errors that 
you have not handled individually in your program. The end of session 
operation could be used to terminate the session rather than retrying the 
failing operation in that session or specifying some special recovery action 
for each error. 

Operation Assembler BASIC COBOL RPGII 

End of session EOS $$EOS $$EOS $$EOS 

Chapter 3. Using the Asynchronous Communications Subsystem 3-15 



Evoke Operations 

The evoke operation starts a procedure (and a transaction) on the remote 
system. The procedure then starts a program that will handle the 
transaction. You can issue an evoke operation in your program only after 
a session has been acquired. Multiple evoke operations can be issued in an 
asynchronous communications session. (However, only one transaction at 
a time can be active; the previous transaction must have ended before the 
next evoke operation can be issued.) 

The evoke operation must include an evoke parameter list, and can 
optionally include either procedure parameters for the procedure being 
started or user-supplied data for one of the programs started by the 
procedure. The parameters specified in the evoke parameter list (including 
the name of the procedure being started) are described for each language 
later in this topic. 

The following types of evoke operations can be used in an asynchronous 
communications session to start another procedure on a remote system. 

• Evoke: Evokes the specified procedure, sends data to the subsystem (if 
specified by the user), and then waits until that procedure has been 
started before control is returned to your program. 

• Evoke end of transaction: Evokes the specified procedure, sends any 
data specified by the user to one of the programs started by that 
procedure, and then ends the transaction without allowing the program 
to communicate in return. Control is returned to your program 
immediately, without confirmation that the remote program has or has 
not started successfully. 

• Evoke then get (assembler only): Evokes the specified procedure, 
sends any data specified by the user, and then waits for input to be 
received from one of the programs started by the procedure. 

• Evoke then invite: Evokes the specified procedure, sends any data 
specified by the user, and invites one of the programs started by that 
procedure to send data; your program regains control without having it 
wait for the invited data to be received. Control is returned to your 
program after the remote system acknowledges that the remote program 
has or has not started successfully. An accept input or a get operation 
must be issued later in this transaction to receive the data in your 
program's input buffer. 

Operation Assembler BASIC COBOL RPGn 
Evoke EVK $$EVOKNI $$EVOKNI $$EVOKNI 
Evoke end of EVE $$EVOKET $$EVOKET $$EVOKET 
transaction 

Evoke then get EVG - - -

Evoke then invite EVI $$EVOK $$EVOK $$EVOK 

3-16 Using the Asynchronous Communications Support 



The evoke parameter list associated with each evoke operation contains the 
name of the procedure to be started, the name of the library in which the 
procedure is located, and the password and user identifier associated with 
that procedure. (The password and user identifier are needed only if 
security is being used on System/36.) The evoke operation can optionally 
include either parameters to be sent to the evoked procedure or data to be 
passed to one of the programs started by the procedure. 

The total length of the procedure name and data (or procedure parameters) 
specified in the program to be sent to the subsystem cannot exceed 120 
bytes. (This does not include the other three evoke list parameters, each of 
which can be 8 bytes long.) 

Assembler Evoke Operation (Macroinstructions) 

$WSIO Macro: To perform an evoke operation in assembler, use the 
$WSIO macro. You specify the evoke operation code (EVK) in the OPC 
parameter of the macro (for example, OPC-EVK). You must use another 
macro, $EVOK, to specify the evoke parameters needed to perform the 
evoke operation specified on the $WSIO macro. (For a complete description 
of the communications parameters for the $WSIO macro, see "$WSIO 
Macro" in the SSP-ICF Programming for Communications Subsystems and 
Intra Communications Subsystem Reference manual.) 

User data or procedure parameters (in either positional or keyword form) to 
be passed to the other program or procedure are specified in the RCAD and 
OUTLEN parameters on the $WSIO macro. The INLEN parameter is 
ignored. 

Example of $WSIO Macro: 

EVOK $WSIO DTF-ICDTF1"RCAD-IOBUFF, 
OPC-EVK,PL@-EVKLST,OUTLEN-112 

This $WSIO macro (in your program) evokes a procedure on the remote 
System/36, starts a transaction in the acquired session, and then waits until 
that procedure has been started before control is returned to your program. 
The parameters to be used in the operation are those identified by the label 
EVKLST (shown in the following $EVOK example). There are 112 bytes of 
output data or procedure parameters in your program buffer named 
IOBUFF that are to be sent to the other program or procedure. Then, when 
input is received from the program, the data is placed in your program's 
buffer (IOBUFF), which is 256 bytes long. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-17 



$EVOK Macro: The $EVOK macro builds a parameter list to be associated 
with an evoke operation. The label on this macro should be the label 
specified on the PL@ parameter of the $WSIO macro performing the evoke 
operation. (For a complete description of the $EVOK macro and its 
parameters, see "$EVOK Macro" in the SSP-ICF Programming for 
Communications Subsystems and Intra Communications Subsystem Reference 
manual.) 

Example of $EVOK Macro: 

EVKLST 

ICPROC 

ICLIB 

USERID 

PASS 

• 
• 

$EVOK V-ALL ,PNAME-ICPROC ,LNAME-ICLIB , 
UID-USERID,PWORD-PASS 

• 
• 

EQU * 
DC CL8'ICFPROC , 
EQU * 
DC CL8'COMMLIB , 
EQU * 
DC CL8'JJOHNSON' 
EQU * 
DC CL4'J4AG' 

This $EVOK example shows an evoke parameter list, used by a $WSIO 
macro (such as the previous $WSIO macro example), that causes the 
procedure named ICFPROC in the library named COMMLIB to be evoked. 
The user identifier JJOHNSON is located at the address labeled USERID, 
and the user's password J4AG is at the address PASS. 

3-18 Using the Asynchronous Communications Support 



BASIC Evoke Operation Parameters 

The following parameters are associated with BASIC evoke operations; 
System/36 uses the first four parameters to form the evoke parameter list. 
If you don't use a parameter (defined as a field in the BASIC evoke 
operations), enter the correct number of blanks for the unused field. 

Positions Field Description 
1 through 8 The name of the procedure in System/36 to be 

evoked (left-adjusted) 

9 through 16 Your password (left-adjusted), to be checked by 
System/36 (if security is being used) to ensure that 
your program is allowed to start the specified 
procedure 

17 through 24 Your user identifier (left-adjusted), to be checked 
by System/36 (if security is being used) 

25 through 32 The name of the library that contains the 
procedure to be started (left-adjusted) 

33 through xxxx User data or procedure parameters (leading blanks 
are ignored) 

BASIC Example (Evoke Operation): 

030 WRITE #l,USING 40,FORMAT "$$EVOK": "BASICR", 
PASS$,USERID$,& &"#LIBRARY", 
"ICFPROG,USERLIB" IOERR ICFERR 

040 FORM 4*C S,C 15 

The WRITE statement at line 30 writes data to communications file #1 
using the FORM statement at line 40. The WRITE statement issues a 
$$EVOK (evoke then invite) operation to evoke the BASICR procedure, 
which is in #LIBRARY in System/36. The variable P ASS$ and the intrinsic 
function USERID$ contain the password and user identifier needed to sign 
on to the system. The BASICR procedure calls the program ICFPROG that 
is in the user library USERLIB. The FORM statement at line 40 indicates 
that the $$EVOK operation is to send four fields (evoke parameters) of 8 
characters (4*C 8) each and 15 bytes of positional parameters (C 15). If an 
error occurs, the program branches to the statement labeled ICFERR. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-19 



COBOL Evoke Operation Parameters 

The following parameters are associated with COBOL evoke operations; 
System/36 uses the first four parameters to form the evoke parameter list. 
All the parameters must be defined by your program in the output area for 
COBOL evoke operations. All values in these fields must be character 
values. If a field is not used, space must still be reserved for it in the 
output area. 

Bytes Field Description 

8 The name of the procedure to be evoked in the remote 
System/36 

8 The password you use to sign on the system if security is 
being used 

8 The user identifier you use to sign on the system if security 
is being used 

8 The name of the library containing the procedure to be 
started 

20 Reserved 

4 Length (i~ decimal) of user data or procedure parameters, if 
any 

xxxx User data or procedure parameters 

COBOL Example (Evoke Operation) 

******************************************************* 
* EVOKE PARAMETER LIST * 
******************************************************* 

57 
58 
59 
60 
61 
62 
63 

• 
• 
• 

01 EVOKE-RECORD. 
03 PROCEDURE-NAME PIC 
03 PASSWORD PIC 
03 USERID PIC 
03 LIBRARY PIC 
03 FILLER PIC 
03 EVOKE-DATA-LENGTH PIC 

X(8) VALUE 'ICFREM 
X(8) VALUE 'T123 
X(8) VALUE 'OURSYSTM' . 
X(8) VALUE ' THEIRLIB' . 
X(20) VALUE SPACES. 
9(4) VALUE O. 

95 WRITE SCREEN-SSP-ICF-RECORD FROM EVOKE-RECORD, 
FORMAT IS '$$EVOKNI', TERMINAL IS ICF-SESSION. 

The WRITE statement at line 95 issues the $$EVOKNI (evoke) operation to 
evoke a procedure (ICFREM) in the session identified by ICF-SESSION. 
Lines 57 through 63 give the values of the parameters used in the evoke 
operation performed by the WRITE statement. 

3-20 Using the Asynchronous Communications Support 



RPG II Evoke Operation Parameters 

The following parameters are associated with RPG IT evoke operations; 
System/36 uses the first four parameters to form the evoke parameter list. 
These parameters are defined as fields for the RPG IT evoke operations. For 
any parameters that are not used, enter the correct number of blanks in the 
fields. 

Positions Field Description 
1 through 8 The name of the procedure (left-adjusted) to be 

evoked in the remote System/36 

9 through 16 The password (left-adjusted) you use to sign on the 
system if security is being used 

17 through 24 The user identifier (left-adjusted) you use to sign 
on the system if security is being used 

25 through 32 The name of the library in the system containing 
the procedure to be started (left-adjusted) 

33 through 52 Reserved 

53 through 56 Length (in decimal) of user data or procedure 
parameters, if any (right-adjusted) 

57 through xxxx User data or procedure parameters 

Chapter 3. Using the Asynchronous Communications Subsystem 3-21 



RPG II Example (Evoke Operation) 

'i''R'!&.E RPG OUTPUT SPECIFICATIONS 0)(21-1090-4 UWICI50 &:D:ei§: International Busln ••• Maohln •• Corporatton 
Printed In U.S.A. 

4!> 

II P"'I""" 
II Programmer 

0 r-

! 
Filename ... 

Llno Record Nome 
~ 

oJ! 

3 •• 8 7 8 9 10 11 12 -13 

o 1 O~ <;;/ 
o 2 0 
o 3 0 
o • 0 
o 5 0 

o • 0 
o 7 0 
o • 0 
o • 0 
1 0 0 

1 2 75 18 77 78 79 80 

I Keyi,. Graphic 1 1 1 L J J Card Electro Number "-9·OJoI _ =:tif~tio"1 I II I I I .. to I Instruction Koy I I I I I I 

g 
~ 11 ~p,,, Skip Output Indicators Commal Ze: :rl~tce. No Sign CR - .--
~I~ PIUII stan 

Field Nome 

~ ~ . , Y· Oat" s-a .. 

! ~ At .L 
E)(CPT Name Yo. Yeo 1 A J rl.ld~1t U .... 

l End Yo. N. 2 a K z. Zero Defined 
~R d! .. No Yo. 3 C L Suppress 

~ 

!II 
Po.ition 

DEL 
~ ~ i, N. N. • 0 M 

ADD Output :i o • ~ ~ ~ ·AUTO 
Record O! Constant or Edit Word 

A N 0 11: 123'5.7 •• Wn~UM~ffiDffim~~n~u 

14 5 1617 181920 122 32' 25 • 2728 2.3 3132333435363 3.'" 4041 424.1 ... 454647484-950515253545558575859808162836485.'87 .18Sl7g 71 72 73 74 

~ 06 I I I I I I I I I I 
K!8 'I" I":£!\I kA / ' I III I I I I I I I I I I 

18 '~ IR!T /A \I , 
(procedure name) 

16 'IP I/IH!.3 , 
(password) 

14 'IT IRiHo , 
(user identifier) 

310 ' / lelF Ll B' (library name) 
1.5 6 '18 ' (length of user data) 
614 ' 1 121.3 14,5 67 6 ' (user data) 

1 I 1 1 1 I II I I I I I I 
L I I I I I I I I I 

AAOOO3·2 

This example shows a $$EVOKNI (evoke) operation being used to evoke an 
MRT procedure named MRTINV that is located in the library ICFLIB. The 
user identifier is TRW and the password is P7H3. Eight bytes of user data 
are to be passed to one of the programs that is started by the MRTINV 
procedure. 

3~22 Using the Asynchronous Communications Support 



Fail Operation 

Your program uses the fail operation to indicate that it has detected an 
abnormal condition while it was sending or receiving data. The fail 
operation causes the asynchronous communications subsystem to send a 
break signal to the remote system. The application programs determine the 
error recovery after a fail operation. 

The fail operation causes a return code to be sent to the other prograItl, 
indicating that the fail operation was issued. 

If a program that is in the send state issues a fail operation, it may indicate 
that the data just sent was in error or that some other condition occurred. 
(The last record before the fail operation was issued is still sent to the other 
program.) 

If a program that is in the receive state issues a fail operation, it indicates 
that the data received was in error. The program issuing the fail operation 
should immediately do at least one output operation so it can indicate why 
it sent the fail operation. (No data can be sent with a fail operation.) The 
record sent by the output operation should identify what the error is and 
where the other program should restart. 

In either case, the program that issued the fail operation should send, and 
the program that receives the fail return code (0302) should receive. 
Otherwise, the program that was sending cannot determine which record 
failed or with which record it should begin sending again. 

If both programs issue a fail operation at the same time, the program that 
was receiving will be successful and should send. The program that was 
sending will receive return code 0302, indicating that its next operation 
must be an input operation. 

Operation Assembler BASIC COBOL RPGn 
Fail FAIL $$FAIL $$FAIL $$FAIL 

Note: When a program that is in the receive state issues a fail operation, any 
other records following the record that failed are ignored by the 
receiving subsystem. 

Chapter 3. Using the Asynchronous Communications Subsystem .3-23 



Get Operation 

Your program uses the get operation to obtain data from either a specific 
program or a specific display station. In an asynchronous communications 
session, the get operation causes the subsystem to get data from the 
program with which your program is communicating (and which has 
already been evoked). The get operation also causes your program to wait 
for the data if it is not available immediately. Your program receives 
control when the data is available. 

Note: The get operation obtains data from a specific program or display 
station, and the accept input operation allows the data to come from 
any previously invited program or display station. 

In the asynchronous communications subsystem, the get operation can be 
issued by itself. Only in assembler language can the get operation be issued 
in combination with another operation such as evoke and followed with get 
or put then get. 

The get attributes operation (assembler, BASIC, and COBOL only) can be 
issued at any time during a session to determine the status of that session. 
(In BASIC, the ATTRIBUTE$ intrinsic function is used.) The operation 
gets the current status information about the session to which your 
program is communicating. 

Operation Assembler BASIC COBOL RPGII 

Get GET READ READl NEXT and 
READ2 

Get attributes GTA ATTRIBUTE$ ACCEPT -

lIn COBOL, a get operation is performed only if the TERMINAL option 
of the READ statement is specified with nonblanks. 

2In RPG II, a get operation is performed only if a NEXT operation is 
executed before the READ operation. 

Note: The get attributes operation is not used in RPG II. 

3-24 Using the Asynchronous Communications Support 



Invite Operation 

The status information received by the get attributes operation contains (in 
10 bytes) the following fields: 

Position Value Meaning 

1 A Session not yet acquired. 

C Session is an acquired session. 

R Session is a remotely started session. 

2 N Input not invited for this session. 

I Input invited for this session, but 
no input is available. 

a Invited input is available for this session. 

3 through 10 Name Location name (specified during subsystem 
configuration and on the SESSION OCL 
statement). 

Your program uses the invite operation to request input data from another 
program (via the associated session), but it receives control without waiting 
for the input. To obtain the data, your program must issue an accept input 
or get operation later in this transaction. 

Operation Assembler BASIC COBOL RPGn 

Invite INV $$SENDl $$SENDl $$SENDl 

lln BASIC, COBOL, or RPG II, only an invite operation is performed if 
$$SEND is issued with a record length of 0 bytes. Otherwise, $$SEND 
performs a put then invite operation. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-25 



Put Operation 

The put operation passes data records from the issuing program to the other 
program in this transaction and returns control to your program without 
waiting for the operation to be completed. Each put operation sends only 
one record to the subsystem. You can issue put operations only during a 
transaction. To issue a put operation without sending any data, specify an 
output record length of zero. 

The following types of put operations can be issued in an asynchronous 
session. 

• Put: Issues a put operation to the subsystem to send a data record to 
the remote program, and returns control to your program without 
waiting for the operation to complete. 

• Put then get (assembler only): Issues a put operation to send a record 
to the remote program, and then waits for the remote program to send 
data to your program. Control is not returned to your program until 
the data is received. (See "Get Operation" earlier in this chapter.) 

• Put then invite: Issues a put operation to send a record to the remote 
program, followed by an invite operation so it can receive data from 
that program. (See "Invite Operation" earlier in this chapter.) Control 
is returned to your program without waiting for the remote system to 
send the data. (An accept input or a get operation must be issued later 
in this transaction to receive the invited input.) 

3-26 Using the Asynchronous Communications Support 



• Put FMH: Used either to set the translation mode or parity setting for 
your session or to send X.29 PAD messages. 

Setting translation mode: When an asynchronous 
communications translation mode is XLATE-Y, perform translation. 
User data is translated from EBCDIC to ASCII on put operations 
and from ASCII to EBCDIC on get operations. 

You can use the put FMH operation to change the translation mode 
in your program: 

If you issue a put FMH operation with the data string XLATE·N 
in your output buffer, data is not translated. 

If you issue a put FMH operation with the data string XLATE·Y 
in your output buffer, data is translated. 

The output record length must be set to 7. 

Therefore, if you do not want user data in a program to be 
translated, you must issue a put FMH (XLATE·N) operation before 
you issue any put or get operations in your program. 

Setting parity: When an asynchronous session is first acquired, 
the specified in display 12.1 of the CNFIGICF procedure (see 
Chapter 11 in the manual Using System/36 Communications). This 
value remains in effect until you issue another put FMH operation, 
or disable the line. You can use the put FMH operation to change 
the parity setting in your session: 

If you issue a put FMH operation with the data string 
PARITY·N in your output buffer, data will be sent with no 
parity. 

If you issue a put FMH operation with the data string 
PARITY-O in your output buffer, data will be sent with odd 
parity. 

If you issue a put FMH operation with the data string 
PARITY·E in your output buffer, data will be sent with even 
parity. 

The output record length must be set to 8. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-27 



- Sending X.29 PAD messages: For information about using the 
put FMH operation to send X.29 PAD messages, see· .. . 
Appendix A, "PAD Emulation," later in this manual. 

Operation Assembler BASIC COBOL RPGII 
Put PUT $$SENDNI $$SENDNI $$SENDNI 
Put then get PTG - - -

Put then invite PTI $$SEND $$SEND $$SEND 
PutFMH PFM $$SENDNF $$SENDNF $$SENDNF 

3·28 Using the Asynchronous Communications Support 



Release Operation 

Your program uses the release operation to attempt to terminate a session. 
Depending on how the session was started, the release operation produces 
different results: 

• If the session was acquired by your program, the release operation 
terminates the session immediately (unless some error condition 
occurs). The operation frees the resources that were used during the 
session. (If the release operation is not successful, the end of session 
operation can be issued to terminate the session.) The same or another 
session can then be acquired. 

• If the session was started when your program was evoked by another 
program, and your program is: 

An MRT program, the release operation passes the session to the 
next step in your procedure. The system then executes any 
additional OCL statements in the procedure. 

An SRT program, the release operation is delayed until your 
program terminates. 

Operation Assembler BASIC COBOL RPGII 

Release REL CLOSE DROP REL 

Chapter 3. Using the Asynchronous Communications Subsystem 3-29 



Set Timer Operation 

Your program can use the set timer operation to set a timer and wait for it 
to expire before performing some specified function such as an accept input 
operation. The set timer operation specifies an interval of time (in hours, 
minutes, and seconds) to wait before your program receives a timer expired 
return code (0310). Your program continues to execute, and all operations 
are valid during the time interval. Your program must issue an accept 
input operation some time after it has issued the set timer operation, so 
that it can accept the 0310 return code after the timer has expired. 

Only one time interval can be maintained for your program. If a previous 
set timer operation has been issued and the timer has not yet expired, the 
old time interval is replaced by the new interval. 

You can use the set timer operation to retry other operations that may not 
be successful, possibly because of a temporary lack of resources (for 
example, during an acquire operation). To do this, issue the set timer 
operation and then perform accept operations until the timer expires. (The 
accept operations allow the program to continue receiving input from other 
invited programs and display stations while waiting for the timer.) 

Note: If your program is a BASIC or RPG II program, a set timer 
($$TIMER) operation is not valid unless at least one display station or 
session is attached to your program. (This restriction does not apply 
to the TIMER intrinsic function in BASIC.) 

Operation Assembler BASIC COBOL RPGII 
Set timer STM $$TIMER $$TIMER $$TIMER 

3-30 Using the Asynchronous Communications Support 



Return Codes 

This section describes all the return codes that are valid for the 
asynchronous communications subsystem. These are interactive 
communications return codes that are sent to your program at the end of 
each subsystem operation to indicate the results of that operation. The 
appropriate return code is sent by the subsystem to the application program 
that issued the operation; the program can then check the results and act 
accordingly. 

The return code is a 4-digit value; the first 2 digits contain the major code, 
and the last 2 digits contain the minor code. Assembler programs receive 
the return codes in binary form (2 bytes long). BASIC, COBOL, and RPG II 
programs receive the return codes in EBCDIC hexadecimal form (4 bytes). 

Notes: 

1. In the return code descriptions, your program refers to the local 
System/36 application program that initiates the operation and receives 
the return code from the subsystem. The remote program refers to the 
remote system's application program with which your application program 
is communicating. 

2. Several references are also made in the descriptions to input and output 
operations. The following chart shows all the input and output 
operations that are valid for the asynchronous communications subsystem. 
Although all the operations shown are valid for asynchronous 
communications subsystems, their validity also depends on the logical 
sequence of communications events occurring between your System/36 and 
the remote system. 

Input Operations Output Operations 
to Your Program from Your Program 

Accept input Acquirel 

Get End of session 

Invite Evoke 

Evoke end of transaction 

Fail 

Put 

Release 

INormally, the acquire operation should be followed by an 
evoke operation in order to establish a transaction. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-31 



Major Code 00 - Operation completed successfully. 

General Description: The input or output operation issued by your 
program was completed successfully. The operation sent or 
received some data, or it received a message from the remote 
system. 

General Considerations: Check the minor return code for an end of 
transaction indication, and continue with the next operation. 

Code Indication/Action 

0000 Normal Indication: For input operations performed by your 
program, 0000 indicates that some data was received on a 
successful input operation. The remote program now wants to 
receive some data; your program must send it. 

For output operations performed by your program, 0000 indicates 
that the last output operation was completed successfully and 
that your program can continue to send data. 

Normal Action: If return code 0000 was received on an input 
operation, issue an output operation. 

3·32 Using the Asynchronous Communications Support 



In This Session, 
If Your Program: 

Started the session 
(this is an acquired 
session) 

Was evoked 1 (by a 
remote procedure 
start request) 

For the actions that can be taken (in this session) after 0000 is 
returned for an output operation, refer to the following chart: 

And the Last Output 
Operation Was: Then (In This Session): 

Acquire operation Issue an evoke operation. 

Evoke end of Issue an(other) evoke operation, 
transaction issue a release operation, continue 
operation local processing, or terminate 

your program. 

Any other output Issue another output (except evoke) 
operation operation, or issue an input 

operation. 

Any output Your session has ended. Continue 
operation local processing, or terminate 

your program. 

Issue another output (except evoke) 
operation, or issue an input 
operation. 

lAn evoked program (started by a procedure start request) cannot issue an evoke operation in 
this session; it can issue an evoke only in a different session that it has first acquired. An 
evoked program that is part of a multiple-program procedure can issue a release operation at any 
time to pass the session on to the next program in the procedure. (An end of session operation 
would end the session, not pass it.) If the evoked program is an SRT program and it issues 
another communications operation after it issues the release operation, error code 2800 is 
returned to that program. Subsequent communicating operations in the next program, however, 
are processed normally. 

Chapter 3. Using the Asynchronous Communica~ions Subsystem 3-33 



Code Indication! Action 

0001 No~~al Indication: Your program has received some data on a 
successfuLinput operation~ It must continue to receive input until 
SSP-ICF returns a code of xxOO (a change direction indication, 
which allQws your program to send data). 

Nor-n",lAction: Issue another input operation. However, if your 
prograIlldetects something that indicates the remote program is 
ready to receive data, your program can issue an output operation. 

0004 Normal Indication: An X.29 PAD message was received. The 
mess~ge may be a parameter indication or an error message. See 

. ·4PpeIulix A, "PAD Emulation." . 

.. 0016 .NorJ;llal Indication: Your program has received some data on a 
successful input operation. However, the data received contains a 
parity error. 

Normal Action: Notify remote program to resend the data. 

3~34 Using the Asynchronous .CommunicationsSupport 



Major Code 01 - Successful operation with a new requester. 

The new requester is a program on a remote system that initiated a 
session with your program by sending a procedure start request to 
the local system. The request caused your program to be evoked if 
it is an SRT program or if it is an MRT program that was not 
already loaded and active. The procedure start request was 
initiated by the remote program with an evoke operation (EVK or 
$$EVOKNI). The request may have included some data for your 
program. 

Normal Description: A 01xx return code indicates either that the 
input operation issued by your program and responded to by a new 
requester completed successfully, or that the output operation 
issued by your program in response to a new requester completed 
successfully. 

If the operation was an input operation, your program may have 
received some data from the requester. Any data that was received 
from the remote system was included in the incoming procedure 
start request statement. 

If your program is an SRT program that was evoked by an 
incoming procedure start request and the initial operation is an 
output operation, the operation sent some data to the new 
requester. However, although the operation did complete 
successfully, if the procedure start request statement also included 
data for your program, that data is lost. Or, if an end of 
transaction indication was sent with the request, the data sent by 
your output operation is lost and the requesting program is 
released from your program. 

If your program is an assembler program, the length of the data is 
returned in the input length field of the program's DTF. If the 
input length in the DTF is zero, no data was sent by the requester; 
if the input length is greater than zero, data was sent. 

Note: The new requester return codes are returned only to evoked SRT 
programs and to active or evoked MRT programs. 

General Considerations: Check the minor return code for an end of 
transaction indication, and continue with the next operation. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-35 



Code Indica tionl Action 

0100 Normal Indication: On a successful input operation from a new 
requester, a procedure start request was received, and some data 
may have been received with the request. 

For output operations performed by an evoked SRT program, the 
operation completed successfully. 

Normal Action: For an input operation, handle any data that may 
have been passed with the request. For both input and output 
operations, perform any necessary record keepingl for the new 
requester, and issue an input operation or an output operation. 

For some situations, no record keeping for the session is necessary. In other 
situations, you should record the session ID of the new requester. You may 
also want to keep a table containing the IDs of all active requesters, or to 
maintain a history log of all requests. 

3-36 Using the Asynchronous Communications Support 



Major Code 02 - Successful operation, but a stop system request or a 
disable subsystem request is pending. 

Normal Description: The input operation issued by your program was 
completed successfully. Your program received some data, or it 
received a message from the remote system. However, because a 
stop system request or a disable subsystem request is pending, no 
new sessions using the subsystem can be initiated. 

General Considerations: Your program should complete its 
communications processing as soon as possible so that the pending 
request to stop the system or to disable the subsystem can be 
completed in an orderly manner. (For example, you can issue an 
end of session operation at the earliest logical stopping point.) 
Also, check the minor return code for an end of transaction 
indication, and continue with the next operation. 

Code Indication/Action 

0200 Normal Indication: On a successful input operation, an indication 
was received that a stop system request or a disable subsystem 
request is pending; no new sessions using the subsystem can be 
initiated. Also, 0200 indicates that some data was received. 

Normal Action: Issue an output operation. 

0201 Normal Indication: Your program has received some data on a 
successful input operation. Also, a stop system request or a disable 
subsystem request is pending; no new sessions using the subsystem 
can be initiated. Your program must continue to receive input until 
SSP-ICF returns a code of xxOO. 

Normal Action: Issue another input operation. If your program 
detects something that indicates the remote program is ready to 
receive data, your program can issue an output operation. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-37 



Major Code 03 - Successful operation, but no data received. 

Normal Description: The input operation just performed was 
completed successfully, but no data was sent or received. 

General Considerations: Check the minor return code for an end of 
transac~ion indication, and continue with the next operation. 

Code Indication/Action 

0300 Normal Indication: No data was received on a successful input 
operation. This return code indicates that a get operation issued 
earlier has completed successfully and there is no data to process. 

Normal Action: Issue an output operation or continue to issue 
input operations. 

0302 . Normal Indication: A fail indication was received with no data on 
a successful input operation. The remote program has issued a 
FAIL or the session has abnormally terminated. 

Normal Action: Issue end of session. 

0310 Normal Indication: The time interval specified by a set timer 
operation in your program has expired. 

Note: If your program has an exception handling routine, you 
should check for the 0310 return code before you make any 
checks based on the WSID field. 

Normal Action: Issue the operation that is to perform the 
intended function (such as displaying a message) after the specified 
time interval has expired. 

3-38 Using the Asynchronous Communications Support 



Major Codes 04-34 - Miscellaneous program errors. 

Error Description: The operation just attempted by your program 
failed, or an output exception occurred. 

• An operation may have failed because it was issued at the 
wrong time or because a data record was too long. 

• An output exception may have occurred because your program 
attempted to send output when it should be receiving the output 
that has already been sent by the remote program. 

Recovery Action: Refer to the individual return code descriptions for 
the appropriate recovery actions. 

Code Indicationl Action 

0412 Normal (Exception) Indication: An output exception occurred 
because your program attempted to send output when it should be 
receiving the output that has already been sent by the remote 
program. Your program's output was not sent and should be sent 
later, after the remote program's data (still waiting in the subsystem 
input buffer) has been received. 

Normal Action: Issue an input operation to receive the data 
waiting in the subsystem input buffer. 

0800 Error Indication: The acquire operation just performed was not 
successful. It tried to acquire a session that has already been 
acquired by your program and that is still active. 

Recovery Action: If the session requested by the original acquire 
operation is the one needed, your program can begin communicating 
in the session because it is already available. If a different session 
is desired, issue another acquire operation for a different session by 
specifying a different session ID. (The identifier must have been 
specified in the SYMID parameter of a SESSION statement that 
preceded the program.) 

Chapter 3. Using the Asynchronous Communications Subsystem 3-39 



1100 Error Indication: The accept operation just performed in your 
program was not successful for one of the following reasons: (1) 
your MRT program may have just released its last requester, 
indicating that your program can begin to terminate normally; (2) 
your program may have attempted to accept input when no invite 
'operations have been issued and the program is not an MRT or NEP 
. prograqi; (3) your program is both an MRT and an NEP program, 
axid a ~:top system condition is in effect, which suppresses the 
implied invites to all potential requesters. 

Recovery Action: If you still have a requester or an acquired 
session, issue an invite operation (or a combined operation that 
includes an invite) followed by an accept input operation. This 
return code indicates the logical end of file for WORKSTN files in 
RPG II programs and TRANSACTION files in COBOL programs. 

2800 Error Indication: Your program (which is an SRT program that 
has been evoked by a new requester) has issued a release operation 
in the session in which it was evoked, and is now attempting to 
communicate with the evoking program. Because that session was 
released from your program, this operation was not performed, and 
any further attempts to communicate with that program results in 

. another. 2800 return code. (The session is ended for your program 
()nly, ifit is part of a multiple-program procedure.) 

Recovery Action: Continue local processing or terminate your 
program. Your program may be in error; you should correct it so 
that the release operation is issued after all communications with 
the requesting program have been completed. 

3401 Error Indication: This input operation was rejected because the 
record length of the data sent by the remote program exceeds the 
length of your program's input buffer. 

Recovery Action: Issue a message about the error to the local 
system and terminate your program. Then, in your program, change 
the record length of the input buffer to be at least as long as the 
longest data record to be received. For assembler programs only, 
the record length of the rejected data is contained in the DTF, at 
offset $WSEFFL. For other program types, the length is not 
available; only the error indication is received. 

3-40 Using the Asynchronous Communications Support 



Major Code 80 - Permanent (nonrec~verable) subsystem error. 

Error Description: A nonrecoverable error has occurred in the 
subsystem; the subsystem has been (or is being) disabled, and your 
session has been terminated. The error indication has been sent as 
a message to the display station or to the system console; the 
operator can refer to the System Messages manual for additional 
information. The error indication is also returned to your program 
as a return code; the minor code portion indicates the specific 
cause. (Each return code is described on the following pages.) The 
subsystem must be enabled again before communications can 
resume. 

General Recovery Actions: The following general actions can be 
taken for each SOxx return code. Other specific actions are given 
in each return code description. 

• Issue, to the system operator or to the display station operator 
who started the program,. a message requesting that the 
subsystem be enabled again. 

• Issue an end of session (EOS or $$EOS) operation for the 
session that has terminated. Your program can: (1) wait for 
the subsystem to be enabled by issuing a set timer ($$TIMER) 
operation or by using the TIMER intrinsic function (in BASIC 
only); (2) continue local processing; or (3) terminate. Note that 
if your program is a BASIC or RPG IT program, the $$TIMER 
operation is not valid unless at least one display station or 
session is attached to your program. 

• If the session should be started again after the subsystem is 
enabled, it must be reacquired by your program or restarted by 
the remote program. 

Note: If the session is started again, it starts from the 
beginning, not at the point where the session error 
occurred. 

Chapter 3. Using the Asynchronous Communications Subsystem 3·41 



Code Indication/Action 

8081 Error Indication: An SSp-rCF error caused the abnormal 
termination of either this subsystem or its interrupt handler. 

Recovery Action: This subsystem has been disabled; it must be 
enabled again before communications can resume. Your program 
can continue local processing, wait to reissue the acquire 
operation, or terminate. 

8082 Error Indication: This session is being terminated immediately 
because the subsystem controlling the session is currently being 
disabled; the subsystem is not waiting for any of its active 
sessions to be completed normally. 

Recovery Action: Communications with the remote program 
cannot be resumed until the subsystem has been enabled again. 
Your program can continue local processing, it can wait until the 
subsystem has been enabled again and reissue the acquire 
operation, or it can terminate. 

3-42 Using the Asynchronous Communications Support 



Major Code 81 - Permanent (nonrecoverable) session error. 

Error Description: A nonrecoverable error has occurred in the 
session; the session cannot be continued and has been terminated. 
The error indication has been sent as a message to the display 
station or to the system console; the operator can refer to the 
System Messages manual for additional information. The error 
indication is also returned to your program as a return code; the 
minor code portion indicates the specific cause. Before 
communications can resume, the session must be acquired again or 
be started by another procedure start request. 

General Recovery Actions: The following general actions can be 
taken for each 81xx return code. Other specific actions are given 
in each return code description. 

• If the session should be started again, it must be reacquired by 
your program or restarted by the remote program before 
communications can resume. 

• An end of session (EOS or $$EOS) operation should be issued 
for the session that has terminated. Your program can also 
continue local processing, or it can terminate. 

Note: If the session is started again, it starts from the beginning, 
not at the point where the session error occurred. 

Code Indicationl Action 

8191 Error Indication: A permanent line I/O error has occurred; data 
may have been lost. The session has been terminated. 

Recovery Action: If your program started the session, reissue the 
acquire operation to restart the session. If your program was 
evoked, it can wait to be evoked again (MRT programs only), 
continue local processing, or terminate. 

8193 Error Indication: A disconnect indication (for switched lines only) 
was received on an output operation. A disconnect time-out in the 
remote system was exceeded, the line was unexpectedly 
disconnected, or your program may have sent some invalid data. 
The session has been terminated. 

Recovery Action: Verify that your program did not cause a 
time-out and that it did not send data that was invalid. Also, verify 

. that it did not try to send data after the transaction had ended. If 
your program started the session, reissue the acquire operation to 
restart the session. If your program was evoked, it can wait to be 
evoked again (MRT programs only), continue local processing, or 
terminate. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-43 



Major Code 82 - Acquire operation failed. 

Error Description: An attempt to acquire a session was not 
successful; the session was not started. An error indication was 
returned to your program as a return code; the minor portion of 
the code indicates the specific cause. (Each return code is 
described on the following pages.) The error indication has also 
been sent as a message to the display station or to the system 
console; the operator can refer to the System Messages manual for 
additional information. 

General Recovery Actions: Determine why the 82xx error code was 
returned to your program. Read the description of that return code 
to determine what action is needed. 

Code Indication/Action 

8233 Error Indication: On an unsuccessful acquire operation, an 
invalid session identifier was detected. Either no SESSION 
statement was specified between the LOAD and RUN statements for 
this program, or the session identifier in your program does not 
match the identifier specified on the SESSION statement for the 
session being acquired. The session was not started. 

Recovery Action: If the error is in your program, specify the 
correct session identifier in your program. If an incorrect identifier 
was specified on the SESSION statement, specify the correct value 
in the SYMID parameter. 

8281 Error Indication: On an unsuccessful acquire operation, an 
SSP-ICF error condition was detected. The error caused the 
abnormal termination of either this subsystem or its interrupt 
handler. 

Recovery Action: This subsystem has been disabled; it must be 
enabled again before communications can resume. Your program 
can continue local processing, wait to reissue the acquire operation, 
or terminate. 

8282 Error Indication: The acquire operation just performed was 
unsuccessful because the subsystem controlling the session is 
currently being disabled; no sessions can be acquired in the 
subsystem. 

Recovery Action: Communications with the remote program 
cannot be resumed until the subsystem has been enabled again. 
Your program can continue local processing, it can wait until the 
subsystem has been enabled again and reissue the acquire 
operation, or it can terminate. 

3-44 Using the Asynchronous Communications Support 



82A8 Error Indication: The acquire operation was not successful 
because the maximum number of active sessions allowed in the 
system has been reached. No more than 360 sessions can be active 
in System/36 at one time. The session was not started. 

If this acquire operation is associated with a SESSION statement 
(normal acquire), the maximum of 260 normally acquired sessions 
are already active at this time. If this acquire operation is not 
associated with a SESSION statement (BASIC special acquire), the 
IiuiximUIil of 100 specially acquired and/or' evoked sessions &l'e 
already active at this time. 

Recovery Action: Your program can wait for another session to 
end and then reissue the acquire operation. Otherwise, your 
program can continue local processing or terminate. 

82AA Error Indication: The acquire operation just performed was not 
successful either because no subsystems are enabled at this time or 
because, of all the subsystems that are enabled, none contained the 
name of an activated remote location definition that matches the 
location name you specified on your SESSION statement. (That is, 
although the remote location was defined for a subsystem during 
the CNFIGICF procedure, that remote location definition may not 
have been activated when the subsystem was enabled.) 

The subsystem that must be enabled or that must have its remote 
location activated is the one whose subsystem configuration member 
contains the same remote location name as that specified by the 
location parameter in the SESSION statement or on the OPEN 
statement in BASIC. That location name must also have been 
specified on display 30.0 during configuration of the subsystem. The 
session was not started. 

Recovery Action: Verify that the name of the remote location 
(with which your program is attempting to communicate) was 
specified correctly on the location parameter of the SESSION 
statement or on the OPEN statement in BASIC. If the correct name 
was specified, enable the specified subsystem by entering the 
ENABLE procedure command. Then reissue the acquire operation. 
Otherwise, your program can continue local processing, wait to 
reissue the acquire operation, or terminate. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-45 



82AB Error Indication: The acquire operation just performed was not 
successful because the specified subsystem is currently being 
enabled; or, if the subsystem is already enabled for another remote 
location, communications is currently being activated for the 
specified remote location. This condition also may have occurred 
because the subsystem on the remote system has not been enabled. 
The session was not started. 

Recovery Action: Your program can wait until the subsystem has 
been enabled, or until communications has been activated with the 
specified remote location; then it can reissue the acquire operation 
to start the session. If the remote subsystem has not been enabled, 
notify the remote location. 

82BO Error Indication: The acquire operation just performed was not 
successful either because the specified subsystem or the specified 
remote location definition for this session is currently being 
disabled, or because a disable subsystem request for this subsystem 
or location is pending. No new sessions can be started. 

Recovery Action: Your program can wait until the subsystem is 
enabled again or until communications with this location is 
activated again, and then reissue the acquire operation. Otherwise, 
your program can continue local processing, or it can terminate. 

82B3 Error Indication: The acquire operation was not successful 
because all of the sessions specified in the subsystem configuration 
are already in use. The session was not started. 

Recovery Action: Wait for one of the sessions in the subsystem to 
become available, then reissue the acquire operation. Otherwise, 
continue local processing or terminate. 

3-46 Using the Asynchronous Communications Support 



Major Code 83 - Session error occurred. 

Error Description: An error has occurred in the session, but the 
session is still active. Recovery might be possible; the error 
indication was returned to your program as a return code. The 
minor portion of the code indicates the specific cause. (Each 
return code is described on the following pages.) The error 
indication has also been sent as a message to the display station or 
to the system console; the operator can refer to the System 
Messages manual for additional information. 

General Recovery Actions: The following general actions can be 
taken for each 83xx return code. Other specific actions are given 
in each return code description. 

1. Determine why the 83xx error code was returned to your 
program. Read the description of that return code to determine 
what action is needed. 

2. If a parameter value must be changed in the SESSION 
statement associated with your program, terminate only your 
program before correcting your SESSION statement. 

When a parameter can be specified, both in the SESSION 
statement and in the subsystem configuration, the value in the 
SESSION statement overrides the value in the subsystem 
configuration record (for your program only). Therefore, in 
some cases, you may choose to make a change in the SESSION 
statement rather than disabling the subsystem to make the 
change in its configuration record. 

Note: If the session is started again, it starts from the 
beginning, not at the point where the session error 
occurred. 

3. If no change is needed in your program or in the subsystem 
(depending on what the return code description says): 

a. Notify the remote location that a change is required on 
that end to correct the error received. 

b. Retry the operation, if possible. If another operation is not 
successful, retry it only a limited number of times. (The 
limit for retries should be specified in your program.) 

Chapter 3. Using the Asynchronous Communications Subsystem 3-47 



Code Indication/Action 

830B Error Indication: Your program has attempted to execute a 
communications input or output operation either before the session 
was acquired or after it has ended. Your program may have: (1) 
issued an input or output operation either before it issued an 
acquire operation or after it has released the session (by a release or 
end of session operation); or (2) it may have improperly handled an 
81xx (session was terminated) or 82xx (session was not acquired) 
error return code. 

Recovery Action: Check your program to ensure that no input or 
output operation is attempted without an active session and to 
ensure that an 81xx or 82xx return code is handled properly. If you 
want your program to recover from an improperly handled error 
condition, issue another acquire operation. 

831E Error Indication: The operation just issued by your program was 
invalid. Either the subsystem did not recognize the operation code, 
or the specified operation is not supported by the subsystem. The 
session is still active. 

Recovery Action: Your program can try a different operation, 
issue a release or end of session operation, or terminate. Correct 
the error in your program before attempting to communicate with 
the remote program. 

8327 Error Indication: An invalid input or output operation was issued 
when no transaction existed; your program may have expected more 
data when there was none. The remote program has already ended 
the transaction, or your program has ended the transaction, or your 
program has not issued an evoke operation to start communicating 
with the remote program. The session is still active. 

Recovery Action: If you want your program to recover from this 
error, issue an evoke operation to start a transaction. Otherwise, 
issue an end of session operation, then continue local processing or 
terminate your program. If a coding error in your program caused 
the error, correct your program. 

3-48 Using the Asynchronous Communications Support 



Code Indication/Action 

8329 Error Indication: An invalid evoke operation was detected in this 
session. Your program was evoked by an incoming procedure start 
request and cannot, therefore, issue any evoke operations in this 
session. 

Recovery Action: If you want your program to recover from this 
error dynamically, issue a different operation. If you want to issue 
the evoke in another session, issue an acquire operation, then issue 
the evoke operation. Otherwise, you can issue an end of session 
operation to terminate this session; then continue local processing 
or terminate your program. If a coding error in your program 
caused the error, correct your program. 

832C Error Indication: An invalid release operation, following an 
invite operation, was detected in your program. Because your 
program issued the invite operation, it cannot issue a release 
operation to terminate the invited session. 

Recovery Action: Issue an accept or get operation to satisfy the 
invite operation. Otherwise, issue an end of session operation to 
terminate the session. If a coding error in your program caused the 
error, correct your program. 

832D Error Indication: An invalid operation following an invite 
operation was detected in your program. Once you have issued an 
invite operation, the next subsystem operation must be a get or 
accept operation. 

Recovery Action: Issue a get operation or an accept input 
operation to receive the input that was invited. Otherwise, issue an 
end of session operation to terminate the session. If a coding error 
in your program caused the error, correct your program. 

Chapter 3. Using the Asynchronous Communications Subsystem 3-49 



Code Indication/Action 

8333 Error Indication: On an input or output operation; an invalid 
session identifier was detected. The session is still active. 

Recovery Action: Reissue the operation with the correct session 
identifier. Otherwise, issue an end of session operation, then 
terminate the program and correct the programming error that 
caused the communications error. 

83BO Error Indication: The operation just performed was not successful 
either because the specified subsystem is currently being disabled, 
or because it has a disable subsystem request pending. No new 
sessions can be started; this session, however, is still active. 

Recovery Action: Your program can wait until the subsystem is 
enabled again, and then reissue the acquire operation. Otherwise, 
your program can continue local processing or terminate. 

3-50 Using the Asynchronous Communications Support 



Chapter 4. Using the Interactive Terminal Facility 

Starting ITF 

The interactive terminal facility (ITF) allows the System/36 user to send 
and receive data through applications such as electronic message services 
for asynchronous terminals. 

Through ITF, you can use such applications to send messages (for example, 
interoffice memos). In addition, ITF lets you send and receive files, library 
members, and DisplayWrite/36 (DW/36) documents. 

Before you can start ITF, you must enable an asynchronous 
communications subsystem using the ENABLE command. See Chapter 3 in 
this manual. After you have enabled the subsystem, enter the following: 

ITF nnnnnnnn 

where nnnnnnnn is the name of the remote location with which you want 
to communicate. This is the same as the remote location name specified on 
display 29.0 of the CNFIGICF procedure. See Chapter 2 in this manual. 
For example, if you are using ITF to communicate with TELEMAIL, and 
you specified MAIL as the remote location name for TELEMAIL, enter the 
following: 

ITF MAIL 

Note: ITF cannot be started on a generic remote location. 

Chapter 4. Using the Interactive Terminal Facility 4-1 



After you enter the ITF command, the following display appears: 

ITF Data Entry Display 

@ 

Cmdl=Start send/receive 
Cmd4=Send password 

Cmd2=Stop send/receive 
Cmd7=End ITF 

Cmd3=Phone list 
Cmd8=Redial 

Cmd9=Send data as is 
ATTN=Send control characters COPR IBM Corp. 1986 

If you are communicating through a packet switched data network (PSDN), 
you must be connected to the network before you can send or receive 
messages. 

For an asynchronous/X.25 configuration, that connection is made for you 
when you enable the asynchronous subsystem. 

For a configuration using an asynchronous line, you can use one of the 
following ways to make this connection: 

• Make a manual connection to the network by dialing the number on the 
telephone. 

• Type in the telephone number to the network on the ITF Data Entry 
Display and press the Enter key. ITF sends a command to the modem, 
which then calls the number (the modem must support this function). 

• For an asynchronous line, press Cmd3 from the ITF Data Entry Display. 
(Cmd3 and Cmd8 are not available for asynchronous/X.25 lines or for 
lines using packet assembler/disassembler (PAD) emulation.) 

4-2 Using the Asynchronous Communications Support 



If you press Cmd3 from the rTF Data Entry Display, the Phone List Display 
appears: 

ITF Phone List Display 

Type options, press Enter. 
Options: l=Add 2=De1ete 3=Ca11 number 

FUNCTION 
I. 
2. 3 

LOCATION 
Chicago 
St. Paul 

PREFIX 
ATDT 
ATDT 

PHONE NUMBER 
9-1-312-280-9489 
9-1-612-545-8788 

3. 
4. 
5. 
6 
7 
8 
9 

10. 
II. 
12. 
13. 
14. 
15. 

Cmd7=Data Entry Display COPR IBM Corp. 1986 

This display lists the telephone numbers that you can call from ITF. Enter 
a 3 in the function field of the number that you want to call. The system 
calls that number and returns to the rTF Data Entry Display. 

Notes: 

1. The prefix field gives the modem information about how to make the 
switched connection. If your modem does not make the switched 
connection for you, this field is not necessary; leave it blank. 

2. If you are communicating through a PSDN, the telephone number that 
you call is a number for a PAD, which gives you access to the network. It 
is not the number for the remote location. Once you have signed on the 
network, it will route your message to the remote location that you specify. 

3. Only one system user at a time can access the Phone List Display. 

Chapter 4. Using the Interactive Terminal Facility 4-3 



The Phone List Display lets you add, delete, or connect to a remote 
location. 

To add a new remote location to the display, fill in the fields on the display 
with the correct information. Type a 1 in the function field and press the 
Enter key. 

To delete a number from this display, enter a 2 in the function field of that 
number. 

You can type options in more than one function field before pressing the 
Enter key. However, rTF will perform only those functions before the first 
call (3); when the system calls a number from the Phone List Display, it 
stops processing other functions from that display. 

If you press Cmd7, the rTF Data Entry Display appears again. Any data 
that you have typed on the Phone List Display is ignored. 

After the system makes a connection with the network, the Data Entry 
Display appears again. You must now sign on the message application. 
For the commands that you enter to sign on and off, as well as those used 
to send and receive messages, refer to the operator's manual for the 
application. 

4-4 Using the Asynchronous Communications Support 



Selecting ITF Functions 

The ITF Data Entry Display acts as the main menu for ITF. From this 
display, you can enter commands and answer prompts to start the message 
service. You can also enter a message to be sent. Command keys let you 
perform other ITF functions. 

Cmdl=Start send/receive 
Cmd4=Send password 
Cmd9=Send data as is 
ATTN=Send control characters 

ITF Data Entry Display 

Cmd2=Stop send/receive 
Cmd7=End ITF 

Cmd3=Phone list 
Cmd8=Redial 

COPR IBM Corp. 1986 

When you are using ITF, the display station functions as an asynchronous 
terminal. Data is sent and received one record at a time. Thus, when you 
are entering a message to be sent, you must press the Enter key or Cmd9 at 
the end of each line. The display does not automatically roll up at the end 
of a line (unless you type a character on the last position of the second line, 
which automatically enters the line). 

When you press the Enter key or Cmd9, ITF sends the data. The data then 
disappears from the data entry line of your display screen. If the remote 
system echoes the data back to your display, it is written again on another 
line above the data entry line. 

Echo can be set on or off at a PSDN PAD. You should not set echo off at 
the PAD when you are using ITF. Echo must be set on at the PAD in order 
for sent data to appear again on the display after you press the Enter key; 
it must be set on in order for ITF to send files, library members, and DW /36 
documents. 

Note: All data sent either from the display or from a data file, library 
member, or DW/36 document is assumed to be EBCDIC and is 
translated to ASCII. All data received is assumed to be ASCII and is 
translated to EBCDIC before being displayed or placed in a file or 
member. The exception is when sending control characters from the 
ATTN key screen. 

Chapter 4. Using the Interactive Terminal Facility 4-5 



ITF Command Keys 

Command keys have the following functions under ITF: 

• Cmdl-Start send/receive: To select a library member, a file, or a DW/36 
document, press Cmdl. The Start Send/Receive Process display appears; 
on this display, you can tell ITF whether to send data from a member, 
file, or document or receive data into a member or file. This display is 
described under "Sending or Receiving a Library Member, Data File, or 
DisplayWrite/36 Document" later in this chapter. 

• Cmd2-Stop send/receive: To stop the sending or receiving of a library 
member, file, or document, press Cmd2. ITF immediately stops sending 
or receiving and returns control to you. 

• Cmd3-Phone list: To make a switched connection to the remote end, 
press Cmd3. The Phone List Display appears. This display is described 
under "Starting ITF" earlier in this chapter. If you are using PAD 
emulation or an asynchronous/X.25 line, Cmd3 does not appear on the 
ITF Data Entry Display. 

• Cmd4-Send password: If the network asks for your password, press 
Cmd4. ITF presents the ITF Password Display. 

ITF Password Display 

Enter password: 

Cmd7=Data Entry Display Enter=Send password COPR IBM Corp. 1986 

Type in your password to the message application and press the Enter key. 
So that your password remains secure, the characters will not be displayed 
as you type them. 

When you press the Enter key, ITF sends your password. 

4-6 Using the Asynchronous Communications Support 



• Cmd7-End ITF: If you press Cmd7 from the ITF Data Entry Display, 
ITF ends. Pressing Cmd7 from any other ITF display returns you to the 
ITF Data Entry Display; in this case, ITF ignores any data that you 
may have typed on the display. You cannot end ITF if a data send or 
receive is in operation. 

• Cmd8-Redial: If you want to call the last telephone number called from 
the Phone List Display again, press Cmd8. The system automatically 
calls the same number. Cmd8 can only be used to redial numbers that 
were dialed from the Phone List Display. If you are using PAD 
emulation or an asynchronous/X.25 line, Cmd8 does not appear on the 
ITF Data Entry Display. 

• Cmd9-Send data as is: In normal data entry, a carriage return 
character is added to the end of the data when you press the Enter key. 
If you want to send data without a carriage return (for example, to send 
commands to a modem), press Cmd9 instead of the Enter key after 
typing data on the data entry line. 

Chapter 4. Using the Interactive Terminal Facility 4-7 



If you press the Attn key, new lines appear at the bottom of the ITF Data 
Entry Display: 

ITF Data Entry Display 

Type option or control character. 
Choice................... l=Stop send/receive 2=Send break 

_ Control characters: (See help text) 
Cmd7=Data Entry Display ATTN=Inquiry options COPR IBM Corp. 1986 

• I-Stop send/receive: Select option 1 to stop sending a member, file, or 
document or to stop receiving data into a member or file. The remote 
station is not affected by this option. It may continue to send data, but 
the data will not be received into a member or file. 

• 2-Send break: Select option 2 to send a break signal to the remote 
station. 

• Control characters: The control characters are used to perform program 
functions, such as a pause in receiving data. Their meanings are 
determined by the application with which you are communicating. The 
help text tells you which control characters correspond with the work 
station keys. 

Type a 1 or a 2 to select an option. To send a control character, type 
the letter that corresponds to it. You do not need to press the Enter 
key. Press the Attn key to display the system inquiry options. 

4-8 Using the Asynchronous Communications Support 



Sending or Receiving a Library Member, Data File, or DisplayWrite/36 
Document 

With rTF, you can send a library member, data file, or DW/36 document; or, 
you can place received data into a library member or data file. 

rTF will append a carriage return character (CR) to the end of each record 
sent from a data file, library member, or DW /36 document. 

Note: There is no verification of data integrity performed by ITF; 
unpredictable results may occur if you send a data file or library 
member that contains non-text data (such as hexadecimal characters). 

To select a member, file, or document, press Cmdl when the rTF Data Entry 
Display is shown. The Start Send/Receive Process display appears: 

Start Send/Receive Process 

Type choices, press Enter. 
ITEM CHOICE 
Option ............... . 

Type ................. . 

Cmd7=Data Entry Display 

POSSIBLE CHOICES 
l=Send 2=Receive 

l=File 2=Member 3=DW/36 document 

COPR IBM Corp. 1986 

Chapter 4. Using the Interactive Terminal Facility 4-9 



Sending or Receiving a Library Member 

To send a library member, enter 1 in the Option field; to receive data into a 
library member, enter 2 in the Option field. Enter 2 in the Type field, and 
press the Enter key. The following display appears: 

Start Send/Receive Process 

Type choices, press Enter. 
ITEM CHOICE 
Option ................ 1 

Type .................. 2 

POSSIBLE CHOICES 
l=Send 2=Receive 

l=File 2=Member 3=DW/36 document 

Library name .......... TESTLIBR Name of library 

Member name ........... TESTMMBR Name of member 

Cmd7=Data Entry Display COPR IBM Corp. 1986 

Enter the name of the library member and the library that contains this 
member. 

4-10 Using the Asynchronous Communications Support 



If you entered 1 in the Option field, an additional prompt appears: 

Start Send/Receive Process 

Type choices, press Enter. 
ITEM CHOICE 
Option ................ 1 

POSSIBLE CHOICES 
l=Send 2=Receive 

Type .................. 2 l=File 2=Member 3=DW/36 document 

Library name .......... TESTLIBR Name of library 

Member name ........... TESTMMBR Name of member 

Member type ........... 1 l=Source 2=Procedure 

Cmd7=Data Entry Display COPR IBM Corp. 1986 

Type 1 in the member type field if you are sending a source member, or 2 if 
you are sending a procedure member. Press the Enter key. ITF 
immediately starts sending the member. As each record in the member is 
sent, the PAD echoes it so that it appears on your display. (ITF cannot 
send library members if the PAD does not echo.) When the last record is 
sent, ITF displays a message: 

Last record sent 

If you entered a 2 in the Option field and if the member that you specify 
does not already exist in the library, ITF prompts you for more information. 

Start Send/Receive Process 

Type choices, press Enter. 
ITEM CHOICE 
Option ................ 2 

Type .................. 2 

POSSIBLE CHOICES 
l=Send 2=Receive 

l=File 2=Member 3=DW/36 document 

Library name .......... TESTLIBR Name of library 

Member name ........... TESTMMBR Name of member 

Member type........... 1 l=Source 2=Search for header 

Record size ........... 120 Size of record (80,96,120) 

Cmd7=Data Entry Display COPR IBM Corp. 1986 

Chapter 4. Using the Interactive Terminal Facility 4-11 



When ITF sends a library member that is not a normal source member, it 
builds a header that is sent as the first record of the member. ITF builds 
headers for procedure members, TMS source members, BOD format 
members, screen format members, or documents and files of documents. 
This header contains the library member type, the member subtype, the 
number of records in the member, and the length of the records. 

If you are receiving a library member that was sent with a header, specify a 
2 in the member type field. ITF then uses the header record to create a new 
library member. Only data received after the header record is written to 
the new member. 

If you are receiving a normal source member, specify a 1 in the member 
type field. All data received is written to the library member. 

Enter 1 or 2 in the member type field, and enter the record size in 
characters. 

Note: If you are receiving data into a library member, users at other work 
stations cannot send data from or receive data into that library until 
your operation is completed. 

If the member that you specify already exists in the library, ITF asks if you 
want to replace the existing member with the data received. 

start Send/Receive Process 

Type choices, press Enter. 
ITEM CHOICE 
Option ................ 2 

POSSIBLE CHOICES 
l=Send 2=Receive 

Type .................. 2 l=File 2=Member 3=DW/36 document 

Library name .......... TESTLIBR Name of library 

Member name ........... TESTMMBR Name of member 

Replace ............... 1 l=Yes 2=No 

Cmd7=Data Entry Display COPR IBM Corp. 1986 

If you enter 1 (Yes), ITF writes the received data into the existing library 
member, writing over the existing data. If you enter 2 (No), you receive an 
error message, and you must try again with another member. 

Note: ITF cannot append data to an existing library member. 

4-12 Using the Asynchronous Communications Support 



Sending or Receiving a Data File 

To send a data file, type 1 in the Option field; to receive data into a file, 
type 2 in the Option field. Type 1 in the Type field, and press the Enter 
key. The following display appears: 

Start Send/Receive Process 

Type choices, press Enter. 
ITEM CHOICE 
Option ................ 1 

Type ...... , ........... 1 

POSSIBLE CHOICES 
l=Send 2=Receive 

l=File 2=Member 3=DW/36 document 

File name ............. TESTFILE Name of file 

File date ............. 091085 Date of file (optional) 

Cmd7=Data Entry Display COPR IBM Corp. 1986 

Enter the name of the data file. You can also enter the file date, but this 
field is optional. If you do not enter a file date and more than one file with 
this name exists, ITF uses the file with the most current date. 

If you entered a 1 in the Option field, ITF immediately starts sending. Each 
record of the file appears on the display as the receiving application echoes 
it back. (ITF cannot send files if the receiving application does not echo.) 
When the last record is sent, ITF displays a message: 

Last record sent 

Note: ITF can send files with record lengths up to 2048 characters. 
However, some applications can receive only shorter records. For 
example, some electronic mail services can receive only files with 
record lengths of 132 characters or less. If the application receiving 
the file cannot accept files with the record length that you are sending, 
unpredictable results may occur. 

Chapter 4. Using the Interactive Terminal Facility 4·13 



If you entered a 2 in the Option field, ITF prompts you for more 
information. If the file that you specify is a new file, the following prompt 
appears: 

Start Send/Receive Process 

Type choices, press Enter. 
ITEM CHOICE 
Option ................ 2 

Type .................. 1 

File name ............. TESTFILE 

File date ............. 091085 

Record size ........... 080 

Cmd7=Data Entry Display 

POSSIBLE CHOICES 
l=Send 2=Receive 

l=File 2=Member 3=DW/36 document 

Name of file 

Date of file (optional) 

Size of record 

COPR IBM Corp. 1986 

Enter the record size. Valid values are from 1 to 999. 

4-14 Using the Asynchronous Communications Support 



If the file that you specify already exists, ITF asks if you want to replace 
the existing file with the new data. 

Start Send/Receive Process 

Type choices, press Enter. 
ITEM CHOICE 
Option ................ 2 

Type .................. 1 

POSSIBLE CHOICES 
l=Send 2=Receive 

l=File 2=Member 3=DW/36 document 

File name ............. TESTFILE Name of file 

File date ............. 091085 Date of file (optional) 

Replace ............... 1 l=Yes 2=No 

Cmd7=Data Entry Display COPR IBM Corp. 1986 

If you enter 1 (yes), ITF writes the message into the existing file, writing 
over the existing data. If you enter 2 (No), the message is appended to the 
end of the existing data. 

Note: If you specified an existing file with record lengths greater than 2048, 
you receive an error message. 

Chapter 4. Using the Interactive Terminal Facility 4-15 



Sending DW /36 Documents 

To send a DW /36 document, enter 1 in the Option field. Enter 3 in the Type 
field and press the Enter key. The following display appears: 

Start Send/Receive Process 

Type choices, press Enter. 
ITEM CHOICE 
Option ................ 1 

Type .................. 3 

POSSIBLE CHOICES 
l=Send 2=Receive 

l=File 2=Member 3=DW/36 document 

Document name ......... TESTDOCT Name of document 

Folder name ........... TESTFLDR Name of folder 

Cmd7=Data Entry Display COPR IBM Corp. 1986 

Enter the name of the document, or enter ALL for all of the documents in a 
folder. Enter the name of the folder that contains the document(s). After 
you press the Enter key, the ITF Data Entry Display reappears. 

ITF immediately starts sending the document(s). Each record appears on 
the display as the PAD echoes it back. (ITF cannot send if the PAD does 
not echo.) When the last record is sent, ITF displays a message: 

nnnn document(s) sent 

ITF will only send the first 120 characters of each line in the document. 
Any characters beyond the first 120 are truncated and the following 
message appears: 

nnnn document(s) sent. Data truncated. 

If ALL was specified for the document name, all of the documents in the 
folder will be sent. 

Notes: 

1. ITF only sends the base line, superscript, and subscript text from a 
document. No document control characters are sent. Superscripts and 
subscripts are treated as separate records. 

2. ITF attempts to maintain line integrity such as blank lines. 

3. Blank lines are sent between pages of a document and between 
documents. 

4-16 Using the Asynchronous Communications Support 



Sending a File of DW /36 Documents 

You will have to use the TEXTDOC PRTFILE command to resolve the 
documents to the file that you select. See the DW /36 online information for 
more information on TEXTDOC PRTFILE. After you have resolved the 
documents to a file, you can use the ITF Start Send/Receive Process display 
to send the file of documents as a normal file. After the file is sent, the 
messages that indicate the number of documents and whether the 
documents were truncated are displayed. 

Receiving DW /36 Documents 

ITF cannot directly receive DW /36 documents. The information should be 
received as a new library member with a record length of 120. To receive 
these documents, use the Start Send/Receive Process display and specify the 
Member type as a 2 (Search for header). 

When ITF sends documents or a file of documents, a header is sent as the 
first record. ITF searches for the header and uses the information in the 
header to create the library member. 

Chapter 4. Using the Interactive Terminal Facility 4-17 



4-18 Using the Asynchronous Communications Support 



Appendix A. PAD Emulation 

You can configure the asynchronous communications subsystem to emulate 
an X.25 packet assembler/disassembler (PAD). The System/36 PAD supports 
terminals running the interactive terminal facility or application programs, 
and allows them to communicate with any X.25 host system that 
communicates with asynchronous terminals. 

The System/36 PAD follows CCITT recommendations X.3, X.28, and X.29. 
These recommendations are as follows: 

• X.3 defines the parameters that the PAD uses in controlling the session. 

• X.28 defines the interface between the PAD and a terminal. 

• X.29 defines how PAD messages are exchanged between an X.25 host 
system and the PAD. 

Recommendation X.3 

The following X.3 parameters are used to control the session. The host 
system can set and/or read these parameters by sending a SET, SET and 
READ, or READ X.29 PAD message to the System/36 PAD. 

Parameters marked not meaningful in this table are those that System/36 
ignores because they are not used by the terminals supported by System/36. 

Appendix A. PAD Emulation A-I 



Parameter Description Values and Meanings 

1 Escape to command mode 0: No escape possible 
1: Escape possible 

2 Echo· 0: PAD does not echo 
>:." 1: PAD will echo characters 

3 Data forwarding characters 0: None 
1: Alphamerics 
2: Carriage return 
4: Escape 
8: Editing 
16: Terminators 
32: Form effectors 
64: Other control characters 
128: Other characters 

4 Idle timet 0: No time-out 
1-255: 1 to 255 multiples of 0.05 seconds 

5 PAD suspension of input 0: No (PAD cannot suspend input) 
from terminal (System/36 PAD never 1: Yes (PAD can suspend input) 
suspends input) 

6 Suppression of service signals 0: Suppress signals 
1: Deliver signals 

7 Break options 0: Do nothing 
1: Send interrupt 
2: Reset 
4: Send break indication 
8: Escape to command mode 
16: Discard output 

8 Discard output 0: Deliver output 
1: Discard output 

9 Carriage return padding 0: None 
(not meaningful) 1-7: Number of character delays 

10 Line folding 0: None 
1-255: Number of characters 

per line before line folding 

11 Terminal speed (not meaningful) 1-15 

12 Flow control of PAD 0: Not possible 
1: Possible 

13 Line feed insertion after carriage return 0: None 
1: To terminal 
2: From terminal 
4: In echo 

14 Line feed padding (not meaningful) 0-7 

15 Editing 0: Do not use editing 
1: Use editing 

16 Character delete (not meaningful) 0-127 

17 Line delete (not meaningful) 0-127 

18 Line display (not meaningful) 0-127 

,A-2 Using the Asynchronous Communications Support 



Recommendation X.28 

Recommendation X.28 describes the interface between the PAD and a 
terminal. There are two modes of operation: command mode and data 
transfer mode. While in command mode, the terminal sends commands to 
the PAD and receives PAD messages as responses to the commands. The 
commands available to a user are given below. 

Command Abbreviation Description 

Connect C Request connection to specified 
<address> network address 

<ODNIC This connect command allows 
address> you to connect to a different 

network by specifying an 
alternate data network 
identification code (DNIC) other 
than the one you specified on 
display 60.0. 

Reset RESE Reset to default X.3 parameter 
values and reset session to 
preconnect status 

Status STAT Return network address of 
terminal location 

Disconnect D Discontinue communications 

Continue CONT Return to data transfer mode from 
command mode 

SET <list> Set or change X.3 parameter values 
to those specified in the list 

PAR? <list> Request the current values of the 
X.3 parameters listed to be 
displayed 

SET? <list> Request the specified X.3 
parameters to be set and displayed 

<CR>@<CR> Escape from data transfer mode to 
(escape command mode 
sequence) 

Appendix A. PAD Emulation A-3 



The parameter lists following the SET, SET?, and PAR? commands have the 
following format: 

parameter number:value, ... ,number:value <CR> 

Where < CR > = carriage return ('OD'X). 

Note: If you are accessing the PAD using ITF, the < CR> is appended 
automatically by ITF. 

In the following example, parameter 1 is set to 0 and parameter 7 is set to 4: 

SET 1:0,7:4 

The following are the messages from the PAD to the terminal in response to 
the terminal commands. 

Message Description 

@ Acknowledgment and prompt 

? PAD did not understand last command 

<address> connected Connection complete to specified address 

Disconnected Session is disconnected 

< address> available Response to status command when not 
connected to the specified address 

Not connected Response to disconnect command when not 
connected to a remote system 

Invalid address Address supplied with connect command is 
not a valid address 

A-4 Using the Asynchronous Communications Support 



The following service signals from the PAD include an X.25 cause code (CC) 
and diagnostic code (DC). Descriptions of these codes can be found in the 
manual, Multiline Communications Attachment Maintenance Information, 
SY31-9018. 

• < Address> busy CC DC 

• < Address> invalid facility request CC DC 

• < Address> not reachable CC DC 

• < Address> not operating CC DC 

• < Address> illegal source address CC DC 

• < Address> not responding CC DC 

• < Address> remote procedure error CC DC 

• < Address> local procedure error CC DC 

• < Address> refusing collect connection CC DC 

• < Address> still pending CC DC 

• < Address> not available CC DC 

• < Address> illegal address CC DC 

• < Address> network congestion CC DC 

• < Address> invalid logical channel type CC DC 

• < Address> call user data error CC DC 

• < Address> no logical channel available CC DC 

• < Address> call cleared CC DC 

• < Address> rejecting CC DC 

Appendix A. PAD Emulation A·5 



Recommendation X.29 

Recommendation X.29 specifies how PAD messages are sent and received 
between an X.25 host system and an X.25 PAD. The following X.29 PAD 
messages are supported by the System/36 PAD. 

• SET: Sent by the host system to set PAD X.3 parameters. 

• SET and READ: Sent by the host system to set PAD X.3 parameters. 
The PAD responds by sending a parameter indication. 

• READ: Sent by the host system to find out what the PAD X.3 
parameters are set to. The PAD responds by sending a parameter 
indication. 

• PARAMETER INDICATION: Sent by the PAD in response to the host 
system's Set and Read or Read command; it tells the host system what 
values the PAD parameters are set to. 

• INDICATION OF BREAK: Sent by the PAD when the terminal user 
sends a break signal. 

• INVITATION TO CLEAR: Sent by the host system to request the PAD 
to terminate the connection to the terminal after transmission to the 
terminal of all previously received data. 

• ERROR: Used by the System/36 PAD to indicate to a host system that 
an invalid PAD message was received. 

Using the Asynchronous Communications Subsystem to Send and Receive 
X.29 PAD Messages 

You can use an SSP-ICF operation code and return code to send and 
receive X.29 PAD messages within your application programs. The put 
FMH operation lets you send the SET, SET and READ, and READ PAD 
messages to an asynchronous terminal; return code 0004 indicates that a 
PARAMETER INDICATION or ERROR message has been received from the 
terminal. 

The INDICATION OF BREAK PAD message is sent by the fail operation. 

You cannot send an INVITATION TO CLEAR PAD message within an 
application program. 

A-6 Using the Asynchronous Communications Support 



Put FMH Operation 

Return Code 0004 

For an asynchronous communications subsystem using PAD emulation, the 
put FMH operation sends X.29 PAD messages. The format of the put FMH 
operation is as follows: 

Operation Assembler COBOL RPG II 
Put FMH PFM $$SENDNF $$SENDNF 

The put FMH operation sends SET, SET and READ, and READ messages to 
the PAD. These messages are used to set parameter values at the PAD or 
to find out what those values are set to. 

The data sent by this operation must be in the following format: 

code parameter value parameter value parameter value 

Code is a 2-digit number that indicates which X.29 message is being sent: 

• 02 = SET 

• 04 = READ 

• 06 = SET and READ 

Parameter specifies the X.3 parameter that you want to set or to read, 
followed by the value to which you want it set. X.3 parameters and their 
valid values are listed earlier in this appendix. When you send a READ 
message, you can enter a blank for each parameter value, because you are 
not setting values. 

If you do not enter any parameters and values: 

• For a SET message, all parameters are set to their default values. 

• For a SET and READ message, all parameters are set to their default 
values and the values are returned to the program. 

• For a READ message, the values of all parameters are returned to the 
program. 

Return code 0004 indicates that an X.29 PAD message was received. The 
message may be a PARAMETER INDICATION or an ERROR message. 

Appendix A. PAD Emulation A-7 



A~8 Using the Asynchronous Communications Support 



Appendix B. Rotary Dial 

Rotary dial is a function of the System/36 PAD support that automatically 
calls X.25 network addresses specified in a sequentially ordered phone list. 
It continues calling for the specified number of retries, or until a successful 
connection is made. If no successful connection is made, a message is 
returned to the terminal. 

To use this function you must enable an X.25 subsystem with PAD 
emulation configured. You must also create an asynchronous PAD phone 
list by executing the DEFINX25 procedure. Rotary dial can be implemented 
within a user application program or by entering the phone list name via 
ITF. 

Note: The phone list must reside in the same library as the subsystem 
configuration. System/36 will only search for the phone list name in 
the library that is enabled. 

Creating an Asynchronous PAD Phone List 

0.5 

1. To create an asynchronous PAD phone list, enter the DEFINX25 
procedure command. On display 0.5, select option 2 to work with an 
asynchronous PAD phone list. 

X.25 DEFINE PHONE LIST SELECTION W* 

1. Select one of the following: 
1. Work with X.25 phone list 
2. Work with asynchronous PAD phone lists 

Option ............ . • • • 2 

Cmd7- End COPR IBM Corp. 1986 

Appendix B. Rotary Dial B-1 



1.0 

2. On display 1.0, select option 1 to create an asynchronous PAD phone 
list. 

X.2S DEFINE PHONE LIST MENU W* 

Define asynchronous PAD phone list 

1. Select one of the following: 
1. Create an asynchronous PAD phone list 
2. Change an asynchronous PAD phone list 
3. Remove an asynchronous PAD phone list 
4. Print an asynchronous PAD phone list 

Option, ................. . . .. 1 

Cmd7-End Cmd19-Cancel COPR IBM Corp. 1986 

3. On display 2.0, enter information to define the phone list to be created. 

2.0 X.2S PHONE LIST MEMBER SELECTION W* 

Create an asynchronous PAD phone list 

1. Phone list name 

2. Phone list library name 

Cmd7-End Cmd19-Cancel COPR IBM Corp. 1986 

1. Phone list name: Specify the name of the phone list 
member. 

2. Phone list library name: Specify the name of the library 
that contains the phone list. 

B-2 Using the Asynchronous Communications Support 



3.0 

4. On display 3.0, specify the list of network addresses and the number of 
times you want each address to be called. 

X.25 DEFINE PHONE LIST 

Create an asynchronous PAD phone list 

NETWORK ADDRESS 
1-15 Digits,I,D 

I III II III II I III 

111111111111111 

111111111111111 

111111111111111 

RETRY VALUE 
1-255 

III 

III 

III 

III 

W* 

Cmd7-End Cmd19-Cancel Enter-Update Roll-Page COPR IBM Corp. 1986 

• Network address: Specify the address of the network to be called. 
You can enter up to 15 digits for each address. To add a new entry, 
enter an I in the leftmost position of this field. To delete the 
current entry, enter a D in the leftmost position of this field. 

• Retry value: Specify the number of times the address should be 
called. 

At this point you have completed defining the phone list. 

Appendix B. Rotary Dial B-3 



B-4 Using the Asynchronous Communications Support 



Appendix C. Establishing a Communications Link 

To use the communications support on your system, you need to establish a 
communications link between your system and another location. 

This appendix contains the form that you should fill in so your users know 
the steps to use to establish a communications link with the 
communications support that is on your system. 

See the System Messages manual for an explanation of messages received. 

The steps you can take to determine the cause of a problem for 
communications lines are described in the manual System Problem 
Determination. 

Appendix C. Establishing a Communications Link C-l 



Using Asynchronous Communications Support 

To Establish the Communications Link 

At a display station, perform the following steps: 

To End the Communications Link 

At a display station, perform the following steps: 

C-2 Using the Asynchronous Communications Support 



Glossary 

#LIBRARY. The library, provided with the system, 
that contains the System Support Program Product. 
See system library. 

abnormal termination. A system failure or 
operator action that causes a job to end 
unsuccessfully. 

access. To go to or reach; to get at. 

access method. The way that records in files are 
referred to by the system. The reference can be 
consecutive (records are referred to one after 
another in the order in which they appear in the 
file), or it can be random (the individual records can 
be referred to in any order). 

acquire. To assign a display station or session to a 
program. 

acquired session. A session that has been started 
by a System/36 program using an acquire operation, 
or in BASIC, using an OPEN statement. 

adapter. See communications adapter. 

address pool. In data communications, a 
collection of multipoint addresses. Each address 
can be associated with an individual SSP-ICF 
session. 

addressing. (1) In data communications, the way 
that the sending or control station selects the 
station to which it is sending data. (2) A means of 
identifying storage locations. 

advanced program-to-program communications 
(APPC). Communications support that allows 
System/36 to communicate with other systems 
having the same support. APPC is the way that 
System/36 puts the IBM SNA LU-6.2 protocol into 
effect. 

Advanced Peer-to-Peer Networking (APPN). A 
communications feature that routes data in a 
network between two or more APPC systems that 
are not directly attached. See also node and 
network node. 

alert. An error message sent to the system services 
control point (SSCP) at a host system. On 
System/36, the problem management portion of the 
Communications and Systems Management feature 
is used to generate and send alerts. 

allocate. To assign a resource, such as a disk file 
or a diskette file, to perform a specific task. 

alphabetic character. Anyone of the letters A 
through Z (uppercase and lowercase). Some 
program products extend the alphabet to include the 
special characters #, $, and @. 

alphameric. Consisting of letters, numbers, and 
often other symbols, such as punctuation marks and 
mathematical symbols. 

alphanumeric. See alphameric. 

American National Standard Code for 
Information Interchange (ASCII). The code 
developed by ANSI for information interchange 
among data processing systems, data 
communications systems, and associated equipment. 
The ASCII character set consists of 7-bit control 
characters and symbolic characters. 

American National Standards Institute 
(ANSI). An organization sponsored by the 
Computer and Business Equipment Manufacturers 
Association for establishing voluntary industry 
standards. 

ANSI. See American National Standards Institute 
(ANSI). 

AP AR. See authorized program analysis report 
(APAR). 

APPC. See advanced program-to-program 
communications (APpe). 

APPN. See Advanced Peer-to-Peer Networking 
(APPN). 

Glossary G-l 



application program. A program used to perform 
an application or part of an application. 

ASCII. See American National Standard Code for 
Information Interchange (ASCII). 

assembler. A program that converts assembler 
language statements to machine instructions. 

assembler instruction statement. A statement 
that controls what the assembler does, rather than 
what the user program does. 

assembler language. A symbolic programming 
language in which the set of instructions includes 
the instructions of the machine and whose data 
structures correspond directly to the storage and 
registers of the machine. 

asynchronous transmission. In data 
communications, a method of transmission in which 
the bits included in a character or block of 
characters OCCur during a specific time interval. 
However, the start of each character or block of 
characters can occur at any time during this 
interval. Contrast with synchronous transmission. 

attribute. A characteristic. For example, an 
attribute for a displayed field could be blinking. 

authorized program analysis report (AP AR). A 
request for correction of a defect in a current 
release of an IBM-supplied program. 

autoanswer. In data communications, the ability 
of a station to receive a call over a switched line 
without operator action. Contrast with manual 
answer. 

autocall. In data communications, the ability of a 
station to place a call over a switched line without 
operator action. Contrast with manual call. 

autocall unit. A common carrier device that 
allows Systemj36 to automatically call a remote 
location. 

automatic reconnect. An option specified during 
system configuration that allows a remote work 
station controller to be reconnected automatically 
on a switched Or nonswitched line. 

BASIC (beginner's all-purpose symbolic 
instruction code). A programming language 
designed for interactive systems and originally 
developed at Dartmouth College to encourage 
people to use computers for simple problem-solving 
operations. 

G-2 Using the Asynchronous Communications Support 

batch. Pertaining to activity involving little or no 
operator action. Contrast with interactive. 

batch BSC. The System Support Program Product 
support that provides data communications with 
BSC computers and devices via the RPG T 
specification Or the assembler $DTFB 
macroinstruction. 

batch processing. A processing method in which 
a program or programs process records with little or 
no operator action. Contrast with interactive 
processing. 

binary. (1) Pertaining to a system of numbers to 
the base two; the binary digits are 0 and 1. (2) 
Involving a choice of two conditions, such as on-off 
or yes-no. 

bind command. An SNA command used to define 
the protocols for a session. Contrast with unbind 
command. 

bit. Either of the binary digits 0 Or 1. See also 
byte. 

bps. Bits per second. 

buffer. (1) A temporary storage unit, especially 
one that accepts information at one rate and 
delivers it at another rate. (2) An area of storage, 
temporarily reserved for performing input Or output, 
into which data is read or from which data is 
Written. 

byte. The amount of storage required to represent 
one character; a byte is 8 bits. 

cable thru. A standard function or special feature 
that allows multiple work stations to be attached to 
a particular line. 

call. (1) To activate a program or procedure at its 
entry point. Compare with load. (2) In data 
communications, the action necessary in making a 
connection between two stations on a switched line. 

cancel. To end a task before it is completed. 

carriage return character (CR). A format 
effector that causes the print or display position to 
move to the first position on the same line. 

carrier. A continuous frequency that can be 
modulated with a second (information-carrying) 
signal. 

CCITT. Consultative Committee on International 
Telegraphy and Telephone. 



character. A letter, digit, or other symbol. 

character key. A keyboard key that allows the 
user to enter the character shown on the key. 
Compare with command key and function key. 

COBOL (common business-oriented language). 
A high-level programming language, similar to 
English, that is used primarily for commercial data 
processing. 

code. (1) Instructions for the computer. (2) To 
write instructions for the computer. Same as 
program. (3) A representation of a condition, such 
as an error code. 

command. A request to the system to perform an 
operation or a procedure. 

command key. A keyboard key that is used to 
request specific programmed actions. Compare with 
character key and function key. 

communications. See data communications. 

communications adapter. A hardware feature 
that enables a computer or device to become a part 
of a data communications network. 

communications line. The line over which data 
communications takes place; for example, a 
telephone line. 

communications link. See data link. 

communications security. A System Support 
Program Product option that allows the identity of 
a remote location to be verified before that location 
can run programs on your system. 

communications subsystem. See subsystem. 

condition. An expression in a program or 
procedure that can be evaluated to a value of either 
true or false when the program or procedure is 
running. 

configuration. The group of machines, devices, 
and programs that make up a data processing 
system. See also system configuration. 

constant. A data item with a value that does not 
change. Contrast with variable. 

control station. The primary or controlling 
computer on a multipoint line. The control station 
controls the sending and receiving of data. 

current library. The first library searched for any 
required members. The current library can be 
specified during sign-on or while running programs 
and procedures. 

cursor. A movable symbol on a display, used to 
indicate to the operator where to type the next 
character. 

data area. A storage area used by a program or 
device to hold information. 

data circuit-terminating equipment (DCE). The 
equipment installed at the user's location that 
provides all the functions required to establish, 
maintain, and terminate a connection, and the 
signal conversion and coding between the data 
terminal equipment (DTE) and the line. 

data communications. The transmission of data 
between computers and/or remote devices (usually 
over a long distance). 

data link. The equipment and rules (protocols) 
used for sending and receiving data. 

data link escape (DLE) character. In BSC, a 
transmission control character usually used in 
transparent text mode to indicate that the next 
character is a transmission control character. 

data management. See disk data management. 

data mode. In data communications, a time during 
which BSC is sending or receiving characters on the 
communications line. 

data stream. All information (data and control 
information) transmitted over a data link. 

data terminal equipment (DTE). The data 
processing unit that uses communications lines. 

DCE. See data circuit-terminating equipment 
(DCE). 

debug. To detect, locate, and remove errors from a 
program. 

decimal. (1) Pertaining to a system of numbers to 
the base ten; decimal digits range from 0 through 9. 
(2) A proper fraction in which the denominator is a 
power of 10. 

default. See default value. 

default value. A value stored in the system that is 
used when no other value is specified. 

Glossary G-3 



define-the-file. A control block containing 
information that is passed between data 
management routines and users of the data 
management routines. 

delete. To remove. For example, to delete a file. 

disable. In interactive communications, to end a 
subsystem and free the area of main storage used by 
that subsystem. Contrast with enable. 

disk data management. The System Support 
Program Product support that processes a request to 
read or write data. 

display. (1) A visual presentation of information 
on a display screen. (2) To show information on the 
display screen. 

display station. A device that includes a keyboard 
from which an operator can send information to the 
system and a display screen on which an operator 
can see the information sent to or the information 
received from the system. 

DLE. See data link escape (DLE) character. 

DTE. See data terminal equipment (DTE). 

DTF. See define-the-file. 

duplex. Pertains to communications in which data 
can be sent and received at the same time. Same as 
full duplex. Contrast with half duplex. 

EBCDIC. See extended binary-coded decimal 
interchange code (EBCDIC). 

EBCDIC character. Anyone of the symbols 
included in the 8-bit EBCDIC set. 

eight-line communications adapter/attachment 
(ELCA). A feature that allows up to eight 
communication lines to be connected to a 5360 
System Unit. 

ELCA. See eight-line communications 
adapter/attachment (ELCA). 

enable. In interactive communications, to load and 
start a subsystem. Contrast with disable. 

enter. To type in information from a keyboard and 
press the Enter key in order to send the information 
to the computer. 

error code. See system reference code. 

G-4 Using the Asynchronous Communications Support 

evoke. To start a program or procedure so that it 
can communicate with your program. 

expression. A representation of a value. For 
example, variables and constants appearing alone or 
in combination with operators. 

extended binary-coded decimal interchange 
code (EBCDIC). A set of 256 eight-bit characters. 

feature. A programming or hardware option, 
usually available at an extra cost. For example, 
Communications is a feature of the System Support 
Program Product. 

field. One or more characters of related 
information (such as a name or an amount). 

file. A set of related records treated as a unit. 

file name. The name used by a program to identify 
a file. See also label. 

first-level message. A message that is issued 
immediately when an error occurs. See also 
second-level message. 

folder. A named area on disk that contains 
documents, profiles, mail, or data definitions. 
Compare with library. 

full duplex. Same as duplex. 

function key. A keyboard key that requests an 
action but does not display or print a character. 
The cursor movement and Help keys are examples of 
function keys. Compare with command key and 
character key. 

function management header. In SNA, a special 
record or part of a record that contains control 
information for the data that follows. 

generic remote location. A remote location name 
that is reserved for calls from any remote location 
defined by the DEFINLOC procedure to an 
asynchronous subsystem. 

half duplex. Pertains to communications in which 
data can be sent in only one direction at a time. 
Contrast with duplex. 

Help key. A function key that, when pressed, 
displays online information or some part of the 
system help support. 

help text. The part of the system help support that 
offers additional information about displays and 
messages. 



hex. See hexadecimal. 

hexadecimal. Pertaining to a system of numbers 
to the base sixteen; hexadecimal digits range from 0 
(zero) through 9 (nine) and A (ten) through F 
(fifteen). 

host system. The primary or controlling computer 
in a communications network. See also control 
station. 

I/O. See input/output (I/O). 

identifier. (1) A sequence of bits or characters 
that identifies a program, device, or system to 
another program, device, or system. (2) In COBOL, 
a data name that is unique or is made unique by the 
correct combination of qualifiers, subscripts, or 
indexes. 

informational message. A message that provides 
information to the operator, but does not require a 
response. 

initial program load (IPL). The process of 
loading the system programs and preparing the 
system to run jobs. 

input. Data to be processed. 

input/output (I/O). Pertaining to either input or 
output, or both. 

interactive. Pertaining to activity involving 
requests and replies as, for example, between an 
operator and a program or between two programs. 
Contrast with batch. 

interactive communications feature (SSP-ICF). 
A feature of the System Support Program Product 
that allows a program to interactively communicate 
with another program or system. 

interactive processing. A processing method in 
which each operator action causes a response from 
the program or the system. Contrast with batch 
processing. 

interactive terminal facility (ITF). An 
asynchronous communications feature that allows a 
System/36 to communicate with applications that 
can send and receive data such as electronic mail, 
memos, library members, and data files. 

invite. To ask for input data from either a display 
station or an SSP-ICF session. 

IPL. See initial program load (IPL). 

job. (1) A unit of work to be done by a system. (2) 
One or more related procedures or programs 
grouped into a procedure. 

job step. A unit of work represented by a single 
program or a procedure that contains a single 
program. A job consists of one or more job steps. 

key. One or more characters used to identify the 
record and establish the record's order within an 
indexed file. 

label. (1) The name in the disk or diskette volume 
table of contents or on a tape that identifies a file. 
See also file name. (2) The name that identifies a 
statement. 

LAN. See local area network (LAN). 

library. (1) A named area on disk that can contain 
programs and related information (not files). A 
library consists of different sections, called library 
members. Compare with folder. (2) The set of 
publications for a system. 

library member. A named collection of records or 
statements in a library. The types of library 
members are load member, procedure member, source 
member, and subroutine member. 

library member subtype. A specific classification 
of a library member type. For example, a source 
member can be identified as a COBOL source 
member or a DFU source member. 

licensed program. An IBM·written program that 
performs functions related to processing user data. 

link level. A part of Recommendation X.25 that 
defines the link protocol used to get data into and 
out of the network across the full-duplex link 
connecting the subscriber's machine to the network 
node. LAP and LAPB are the link access protocols 
recommended by the CCITT. 

link protocol. See link level. 

load. (1) To move data or programs into storage. 
(2) To place a diskette into a diskette drive or a 
diskette magazine into a diskette magazine drive. 
(3) To insert paper into a printer. (4) To mount a 
tape or insert a tape cartridge into a tape drive. 

load member. A library member that contains 
information in machine language, a form that the 
system can use directly. Contrast with source 
member. 

Glossary G-5 



load module. A program in a form that can be 
loaded into main storage and run. The load module 
is the output of the overlay linkage editor. 

local. Pertaining to a device, file, or system that is 
accessed directly from your system, without the use 
of a communications line. Contrast with remote. 

local area network (LAN). The physical 
connection among devices located on the same 
premises for information transfer. 

log. (1) To record; for example, to log all messages 
on the system printer. (2) See mail log. 

logical channel. In a packet switching data 
network, a path over which data packets flow 
between the sending data terminal equipment and 
the network, and between the network and the 
receiving data terminal equipment. 

mail log. A record of all the mail sent or received 
by a user. 

manual answer. In data communications, a line 
type requiring operator actions to receive a call 
over a switched line. Contrast with autoanswer. 

manual call. In data communications, a line type 
requiring operator actions to place a call over a 
switched line. Contrast with autocall. 

menu. A displayed list of items from which an 
operator can make a selection. 

message. (1) Information sent to one or more 
users or display stations from a program or another 
user. A message can be either displayed or printed. 
(2) An indication of the condition of the system sent 
by the system. (3) For IMS/IRSS, a unit of data sent 
over the communications line. 

message identification. A field in the display or 
printout of a message that directs the user to the 
description of the message in a message guide or a 
reference manual. This field consists of up to four 
alphabetic characters, followed by a dash, followed 
by the message identification code. 

message identification code (MIC). A four-digit 
number that identifies a record in a message 
member. This number can be part of the message 
identification. 

MIC. See message identification code (MIC). 

MLCA. See multiline communications 
adapter/attachment (MLCA). 

G-6 Using the Asynchronous Communications Support 

modem. See modulator-demodulator (modem). 

modified data tag. A bit in each input field that, 
when set, causes that field to be transferred to the 
host system. 

modulation. Changing the frequency or size of 
one signal by using the frequency or size of another 
signal. 

modulator-demodulator (modem). A device that 
converts data from the computer to a signal that 
can be transmitted on a communications line, and 
converts the signal received to data for the 
computer. 

multiline communications adapter/attachment 
(MLCA). A feature that allows up to four 
communication lines to be connected to System/36 
with a 5360 or 5362 System Unit. 

multipoint. In data communications, pertains to a 
network that allows two or more stations to 
communicate with a single system on one line. 

network. A collection of data processing products 
connected by communications lines for information 
exchange between stations. 

network node. A node which is capable of 
performing the intermediate routing functions, 
directory services, and route selection services in an 
APPC network. 

node. (1) An addressable location in a 
communications network that provides host 
processing services. (2) A point where packets are 
received, sorted, and forwarded to another node (or 
DTE) according to a routing method the network 
has defined. 

node identification. A string of characters that 
identifies a node to the system. 

nons witched line. A connection between 
computers or devices that does not have to be 
established by dialing. Contrast with switched line. 

numeric. Pertaining to any of the digits 0 through 
9. 

omine. Neither controlled directly by, nor 
communicating with, the computer, or both. 
Contrast with online. 

online. Being controlled directly by, or directly 
communicating with, the computer, or both. 
Contrast with offline. 



operation. A defined action, such as adding or 
comparing, performed on one or more data items. 

operation code. (1) A code used to represent the 
operations of a computer. (2) In SSP-ICF, a code 
used by a System/36 application program to request 
SSP-ICF data management and/or the subsystem to 
perform an action. For example, the operation 
$$SEND asks that data be sent. 

operation control language (OCL). A language 
used to identify a job and its processing 
requirements to the System Support Program 
Product. 

optional network facilities. Facilities a packet 
switching data network user may request when 
establishing a virtual circuit. See also reverse 
charging, closed user group, and throughput class 
negotiation. 

output. The result of processing data. 

packet. A data transmission information unit. It 
has a header on the front that indicates the 
destination of the packet. Commonly used data field 
lengths in packets are 128 or 256 bytes. 

packet assembly/disassembly (PAD). A 
functional unit that enables data terminal 
equipment (DTEs) not equipped for packet switching 
to access a packet-switched network. 

packet level. A part of Recommendation X.25 that 
defines the protocol for establishing logical 
connections between two DTEs and for transferring 
data on these connections. 

packet switching. The act of transferring and 
routing packets from source to destination based on 
information contained in their headers. 

packet switching data network (PSDN). A 
communications network that uses packet switching 
as a means of transmitting data. 

packet window. A specified number of packets 
that can be sent by the DTE before it receives an 
acknowledgement. 

PAD. See packet assembly/disassembly (PAD). 

parameter. A value supplied to a procedure or 
program that either is used as input or controls the 
actions of the procedure or program. 

password. A string of characters that, when 
entered along with a user ID, allows an operator to 
sign on to the system. 

password security. A System Support Program 
Product option that helps prevent the unauthorized 
use of a display station, by checking the password 
entered by each operator at sign-on. 

permanent virtual circuit (PVC). A virtual 
circuit that has a logical channel permanently 
assigned to it at each DTE. The usual call 
establishment protocol is therefore not required. 

phone list. A list of telephone numbers to be 
called using a communications program and the 
autocall or X.25 feature. 

physical connection. See physical level (X.25). 

physical level (X.25). A standard that defines the 
electrical, physical, functional, and procedural 
methods used to control the physical link running 
between the DTE and the DCE. 

point-to-point line. A communications line that 
connects a single remote station to a computer. 

procedure. A set of related operation control 
language statements (and, possibly, utility control 
statements and procedure control expressions) that 
cause a specific program or set of programs to be 
performed. 

procedure command. A command that runs a 
procedure. 

procedure member. A library member that 
contains the statements (such as operation control 
language statements) necessary to perform a 
program or set of programs. 

program. (1) A sequence of instructions for a 
computer. See source program and load module. (2) 
To write a sequence of instructions for a computer. 
Same as code. 

program product. A licensed program for which a 
fee is charged. 

prompt. A displayed request for information or 
operator action. 

protocol. A set of rules governing the 
communication and transfer of data between two or 
more devices in a communications system. 

PSDN. See packet switching data network (PSDN). 

receive time-out. In data communications, the 
result of no data being received in a given period of 
time. 

Glossary G-7 



Realtime Interface Co-Processor. A feature that 
allows up to three communications lines to be 
connected to a System/36 with a 5364 System Unit. 

Recommendation X.25. A document, CCITT 
Recommendation X.25, that outlines standards for 
the connection of processing equipment to a packet 
switching data network. 

remote. Pertaining to a device, file, or system that 
is accessed by your system through a 
communications line. Contrast with local. 

remotely started session. A session started by an 
incoming procedure start request from the remote 
system. Contrast with acquired session. 

return code. In data communications, a value 
generated by the system or subsystem that is 
returned to a program to indicate the results of an 
operation issued by that program. 

reverse charging. A packet switching data 
network optional facility. It enables the DTE to 
request that the cost of a communications session it 
initiates be charged to the DTE that is called. See 
also optional network facilities. 

rotary dial. (1) In a switched system, the 
conventional dialing method that creates a series of 
pulses to identify the called station. (2) A function 
of the System/36 PAD support that automatically 
calls X.25 network addresses specified in a 
sequentially ordered phone list. 

routine. A set of statements in a program that 
causes the system to perform an operation or a 
series of related operations. 

RPG. A programming language specifically 
designed for writing application programs that meet 
common business data processing requirements. 

run. To cause a program, utility, or other machine 
function to be performed. 

RWS. Remote work station. 

second-level message. A message that supplies 
additional information about an error condition 
when the Help key is pressed for a first-level 
message. See also first-level message. 

session. (1) The logical connection by which a 
System/36 program or device can communicate with 
a program or device at a remote location. (2) The 
length of time that starts when an operator signs on 
the system and ends when the operator signs off the 
system. 

G-8 Using the Asynchronous Communications Support 

sign off. To end a session at a display station. 

sign on. (Verb) To begin a session at a display 
station. 

sign-on. (Noun) The action an operator uses at a 
display station in order to begin working at the 
display station. 

single line communications adapter/attachment 
(SLCA). In data communications, a feature that 
allows a single communications line to be connected 
to System/36. 

SLCA. See single line communications 
adapter/attachment (SLCA). 

source member. A library member that contains 
information in the form in which it was entered, 
such as RPG specifications. Contrast with load 
member. 

source program. A set of instructions that are 
written in a programming language and that must 
be translated to machine language before the 
program can be run. 

SSCP. See system services control point (SSCP). 

SSP. See System Support Program Product (SSP). 

SSP-ICF. See interactive communications feature 
(SSP-ICF). 

statement. An instruction in a program or 
procedure. (COBOL) A syntactically valid 
combination of words and symbols, beginning with a 
verb, that is written in the Procedure Division. 

station. A computer or device that can send or 
receive data. 

status. A condition. For example, the status of a 
printer, a job, or a communications line. 

subroutine. A group of instructions that can be 
called by another program or subroutine. 

subroutine member. A library member that 
contains information that must be combined with 
one or more members before being run by the 
system. 

subsystem. The part of communications that 
handles the requirements of the remote system, 
isolating most system-dependent considerations from 
the application program. 

subtype. See library member subtype. 



switched line. In data communications, a 
connection between computers or devices that is 
established by dialing. Contrast with nonswitched 
line. 

switched virtual circuit (SVC). A virtual circuit 
that is requested from the network through a 
virtual call. It is released when the virtual circuit 
is cleared. 

synchronous. Occurring in a regular or 
predictable sequence. 

synchronous transmission. In data 
communications, a method of transmission in which 
the sending and receiving of characters is 
controlled by timing signals. Contrast with 
asynchronous transmission. 

system. The computer and its associated devices 
and programs. 

system configuration. A process that specifies 
the machines, devices, and programs that form a 
particular data processing system. 

system library. The library, provided with the 
system, that contains the System Support Program 
Product and is named #LIBRARY. 

system program. An IBM-supplied program that 
is installed on the system. The System Support 
Program Product (SSP) is an example. 

system reference code. A four-character code 
that contains information for a service 
representative. This code either is provided as part 
of a message or is displayed on the control panel. 

system services control point (SSCP). A focal 
point within an SNA network for managing the 
configuration, coordinating network operator and 
problem determination requests, and providing 
directory support and other session services for 
network users. 

System Support Program Product (SSP). A 
group of licensed programs that manage the running 
of other programs and the operation of associated 
devices, such as the display station and printer. 
The SSP also contains utility programs that perform 
common tasks, such as copying information from 
diskette to disk. 

system unit. The part of the system that contains 
the processing unit, the control panel, the disk drive 
and the disk, and either a diskette drive or a 
diskette magazine drive. 

temporary-text-delay (TTD) character. A BSC 
transmission control character that indicates to the 
receiving station that there is a temporary delay in 
the transmission of data. 

terminal. In data communications, a device, 
usually equipped with a keyboard and a display 
device, capable of sending and receiving information 
over a communications line. 

transparent text mode. A mode that allows BSC 
to send and receive messages containing any of the 
256 character combinations in hexadecimal, 
including transmission control characters. 

unbind command. An SNA command used to 
reset the protocols for a session. Contrast with 
bind command. 

unique. The only one. 

user ID. See user identification (user ID). 

user identification (user ID). A string of 
characters that identifies a user to the system. 

valid. (1) Allowed. (2) True, in conforming to an 
appropriate standard or authority. 

variable. A name used to represent a data item 
whose value can change while the program is 
running. Contrast with constant. 

virtual circuit. A logical connection established 
between two DTEs. It can be permanent, that is, 
defined when you subscribe to your network port, or 
it can be dynamically established when creating a 
switched virtual circuit. 

volume table of contents (VTOC). An area on a 
disk or diskette that describes the location, size, and 
other characteristics of each file, library, and folder 
on the disk or diskette. 

VTOC. See volume table of contents (VTOC). 

work station. A device that lets people transmit 
information to or receive information from a 
computer; for example, a display station or printer. 

X.21. In data communications, a specification of 
the CCITT that defines the connection of data 
terminal equipment to an X.21 (public data) 
network. 

X.21 feature. The feature that allows System/36 to 
be connected to an X.21 network. 

Glossary G-9 



X.21 short hold mode. An option specified during 
system configuration that allows a circuit switched 
line to be disconnected when the line is not active. 

X.25. In data communications, a specification of 
the CCITT that defines the interface to an X.25 
(packet switching) network. 

X.75. A standard that defines ways of 
interconnecting two X.25 networks. 

G-IO Using the Asynchronous Communications Support 



Index 

I Special Characters I 

_ (underscores) on configuration displays 2-3 
#LIBRARY, definition G-1 

abnormal termination, definition G-1 
accept input operation 

explanation 3-12 
required for timer operations 3-30 

access method, definition G-1 
access, definition G-1 
acquire operation 

description 3-13 
error return codes 3-44 
example 3-13 
starts a session 3-5 

acquire, definition G-1 
acquired session, definition G-1 
acquired sessions 3-5 
adapter, definition G-1 
address pool, definition G-1 
addressing, definition G-1 
Advanced Peer-to-Peer Networking, 
definition G-1 

advanced program-to-program 
communications, definition G-1 

alert, definition G-1 
allocate, definition G-1 
alphabetic character, definition G-1 
alphameric, definition G-1 
alphanumeric, definition G-1 
American National Standard Code for 
Information Interchange, definition G-1 

American National Standards Institute, 
definition G-1 

ANSI 
See American National Standards Institute 

APAR 
See authorized program analysis report 

APPC 
See advanced program-to-program 

communications 
application program, definition G-2 
APPN 

See Advanced Peer-to-Peer Networking 

ASCII 
See American National Standard Code for 
Information Interchange 

assembler instruction statement, 
definition G-2 

assembler language, definition G-2 
assembler, definition G-2 
asynchronous communications 2-1 

making network connection 4-2 
asynchronous communications subsystem 

accept input operation 3-12 
acquire operation 3-13 

starts a procedure 3-5 
ALTERCOM procedure 2-11 
cancel operation 3-14 
canceling sessions, cancel operation 3-14 
CNFIGICF procedure 

defining members 2-1 
modifying attributes 2-11 
prompting facilities 2-1 

coding examples 
$EVOK macro 3-18 
$WSIO macro 3-17 
RPG II evoke operations 3-22 
WRITE statement (BASIC) 3-19 
WRITE statement (COBOL) 3-20 

communications operations 
get 3-24 
get attributes 3-24 
introduction 3-8 
programming considerations 3-8 
set timer 3-30 
status information about 3-25 
summary chart of 3-11 

configuration 
CNFIGICF procedure 2-1 
example of 1-4 
modifying attributes of 2-11 
prompting facilities 2-3 

configuration displays 2-1 
default values 2-3 
explanation of 2-3 
remote location selection (display 29.0) 2-8 
sample values 2-3 
specifying type of subsystem (display 

25.0) 2-7 
subsystem attributes (display 60.0) 2-10 
subsystem member definition 2-4 

description and capabilities 3-1 
displays, descriptions of 2-1 
ENABLE procedure command description 3-1 
end of session operation 3-15 
evoke operations 

assembler macros 3-17 

Index X-I 



asynchronous communications subsystem 
(continued) 

evoke operations (continued) 
BASIC 3-19 
chart of 3·16 
COBOL 3-20 
description 3-16 
optional data, types of 3-16 
programming considerations 3-16 
RPG II 3-21 
types of 3-16 
user-supplied data 3-16 

evoke parameter list 
BASIC 3-19 
COBOL 3-20 
description 3-16 
RPG II 3-21 

example of communications network 1-4 
examples 

$EVOK macro (assembler) 3-18 
$WSIO macro (assembler) 3-17 
acquire operation 3-13 
RPG II evoke operation 3-22 
WRITE statement (BASIC evoke 

operation) 3-19 
WRITE statement (COBOL evoke 

operation) 3-20 
fail operation 3-23 
functions 1-3 
get attributes operation 

description 3-24 
status information 3-25 

get operation description 3-24 
input/output operations summary chart 3-31 
introduction 1-3 
invite operation 3-25 
languages supported 1-3 
line changes 2-11 
line types supported 1-6 
LOCATION parameter on SESSION 
statement 3-6 

modifying a configuration 2-1, 2-11 
name of subsystem member 2-4 
OPEN statement example (BASIC) 3-13 
PDATA parameter 3-7 
procedure start request 

description 3-7 
starts a procedure 3-5 

put operation 3-26 
release operation 3-29 
remote location 2-8 
return codes 

acquire operation error codes (82xx) 3-44 
detailed descriptions of 3-31 
miscellaneous program error codes 

(0412-3401) 3-39 
new requester codes (Olxx) 3-34 

X-2 Using the Asynchronous Communications Support 

asynchronous communications subsystem 
(continued) 

return codes (continued) 
no data received codes (03xx) 3-38 
normal completion codes (OOxx) 3-32 
permanent session error codes (81xx) 3-43 
recoverable session error codes (83xx) 3-47 
stop or disable pending codes (02xx) 3-37 

SESSION statement 
description 3-6 
syntax diagram 3-6 

set timer operation, description 3-30 
SETCOMM procedure 2-11 
setting up 2-1 
starting sessions 

acquire operation 3-13 
communications 3-5 
procedure start request 3-7 

subsystem attributes, configuration displays 2-4 
subsystem member attributes 2-10 
subsystem member configuration displays 2-4 
SYMID parameter 3-13 
SYMID parameter on SESSION statement 3-6 
syntax diagrams, SESSION statement 3-6 
user-supplied data, evoke operations 3-16 

asynchronous communications support 
and PSDNs 1-1 
introduction 1-1 
parts of 1-1 

asynchronous communications support 
subsystem, introduction 1-1 

asynchronous terminal and interactive terminal 
facility 4-5 

asynchronous transmission, definition G-2 
asynchronous/X.25 configurations 4-2 
attribute, definition G-2 
authorized program analysis report, 

definition G-2 
autoanswer, definition G-2 
autocall unit, definition G-2 
autocall, definition G-2 
automatic reconnect, definition G-2 

BASIC (beginner's all-purpose symbolic 
instruction code), definition G-2 

BASIC coding examples for asynchronous 
communications 3-19 

batch BSC, definition G-2 
batch processing, definition G-2 
batch, definition G-2 



binary, definition G-2 
bind command, definition G-2 
bit, definition G-2 
blank fields on configuration displays 2-3 
bps, definition G-2 
break signal 

fail operation 3-23 
sent using ITF 4-8 

buffer, definition G-2 
byte, definition G-2 

cable thru, definition G-2 
call, definition G-2 
cancel 

definition G-2 
operation description 3-14 

carriage return character (CR) 
ITF appends 4-9 

carriage return character, definition G-2 
carrier, definition G-2 
CCITT recommendations 

X.28 A-1, A-3 
X.29 A-1, A-6 
X.3 A-1 

character key, definition G-3 
character, definition G-3 
charts, summary of input/output 
operations 3-31 

CNFIGICF procedure 
default values 2-3 
description 2-1 
prompting facilities 2-1 
sample values 2-3 
sequence of displays 2-1 

COBOL (common business-oriented language), 
definition G-3 

COBOL SUBRA1 subroutine 
SUBRA1 3-9 

code, definition G-3 
coding examples 

$EVOK macro 3-18 
$WSIO macro 3-17 
RPG II evoke operations 3-22 
WRITE statement (COBOL) 3-20 

combined input/output operations summary 
charts 3-31 

command keys 
definition G-3 
interactive terminal facility 4-6, 4-7 

command, definition G-3 

comm unications 
problem determination C-1 
using C-1 

communications adapter, definition G-3 
communications line, definition G-3 
communications lines 

line number specified on ENABLE 
command 3-3 

physical changes requiring configuration 
changes 2-11 

types supported for asynchronous 
communications 1-6 

communications link 
establishing C-2 
establishing a C-1 

establishing for 
problem determination C-1 

communications link, definition G-3 
communications networks, example 1-4 
communications security, definition G-3 
communications subsystem, definition G-3 
communications, definition G-3 
communications, establishing by ENABLE 
procedure 3-1 

condition, definition G-3 
configuration 

modifying attributes of 2-11 
prompting facilities 2-3 

configuration displays 
blank fields (underscores) 2-3 
default values 2-3 
explanation of 2-3 
introduction 2-1 
sample values 2-3 
sequence diagram 2-1 
subsystem member displays 2-4 

configuration member, modifying its 
attributes 2-11 

configuration, definition G-3 
configurations, examples of 1-4 
constant, definition G-3 
control characters, sent using ITF 4-8 
control station, definition G-3 
current library, definition G-3 
cursor, definition G-3 

data area, definition G-3 
data circuit-terminating equipment, 
definition G-3 

data communications, definition G-3 

Index X-3 



data flIes, sending and receiving 4-9, 4-13 
data link escape (DLE) character, 
definition G-3 

data link, definition G-3 
data management, definition G-3 
data mode, definition G-3 
data stream, definition G-3 
data terminal equipment, definition G-3 
DCE 

See data circuit-terminating equipment 
debug, definition G-3 
decimal, definition G-3 
default values 

configuration displays 2-3 
definition G-3 

default, definition G-3 
define-the-file 

definition G-4 
DTF 3-8 

DEFINLOC procedure 2-12 
delete, definition G-4 
determination, problem 

communications C-l 
DISABLE procedure command 

functions performed by 3-4 
syntax diagram of 3-5 

disable, definition G-4 
disabling a subsystem 3-4 
disk data management, definition G-4 
display station, definition G-4 
displaying subsystem attributes, using ENABLE 
procedure 2-11 

displays 
Asynchronous Configuration Member Type 

(5.0) 2-6 
Asynchronous Subsystem Attributes (60.0) 2-10 
definition G-4 
explanation of configuration 2-3 
ITF Data Entry Display . 4-2 
ITF Password Display 4-6 
ITF Phone List Display 4-3 
main menu 4-5 
Remote Location Definition (1.0) 2-12 
Remote Location Selection (29.0) 2-8 
SSP-ICF Configuration Member Definition 

(1.0) 2-4 
SSP-ICF Configuration Member Type (2.0) 2-5 
Start Send/Receive Process 

data files 4-13 
DW/36 documents 4-16 
library members 4-10, 4-11, 4-12 
uses of 4-9 

Subsystem Member Definition (25.0) 2-7 
DLE 

See data link escape character 

X-4 Using the Asynchronous Communications Support 

documents 
receiving DW/36 4-17 
sending DW/36 4-16 

DTE 
See data terminal equipment 

DTF 
See define-the-file 

duplex, definition G-4 
DW /36 document files, sending 4-17 
DW /36 documents 

receiving 4-17 
sending 4-9, 4-16 

EBCDIC 
See extended binary-coded decimal interchange 

code 
EBCDIC character, definition G-4 
echo, interactive terminal facility setting on 
and off 4-5 

editing a member 2-11 
eight-line communications adapter/attachment 

asynchronous communications 1-6 
definition G-4 

ELCA 
eight-line communications adapter 

See attachment 
ENABLE command, interactive terminal 
facility 4-1 

ENABLE procedure command 
description 3-1 
line number parameter 3-3 
syntax diagram of 3-3 
unmatched line types 3-2 

ENABLE procedure, for displaying subsystem 
attributes 2-11 

enable, definition G-4 
end of session operation 3-15 
enter, definition G-4 
error code, def"mition G-4 
establishing a communications link C-2 
evoke operations 

assembler macros 3-17 
BASIC 3-19 
BASIC coding examples 3-19 
chart of 3-16 
COBOL 3-20 
description 3-16 
optional data, types of 3-16 
programming considerations 3-16 
RPG II 3-21 
types of 3-16 
WRITE statement (BASIC) examples 3-19 



evoke parameter list 
BASIC 3-19 
COBOL 3-20 
description 3-16 
RPG II 3-21 

evoke, definition G-4 
examples 

$EVOK macro (assembler) 3-18 
$WSIO macro (assembler) 3-17 
communications network 1-4 
network configuration 1-4 
RPG II evoke operation 3-22 
WRITE statement (COBOL evoke 

operation) 3-20 
expression, definition G-4 
extended binary-coded decimal interchange 

code, definition G-4 

fail operation 3-23 
feature, definition G-4 
field, definition G-4 
file name, definition G-4 
file transfer subroutines, introduction 1-1 
file, definition G-4 
files of documents, sending DW/36 4-17 
first-level message, definition G-4 
folder, definition G-4 
full duplex, definition G-4 
function key, definition G-4 
function management header, definition G-4 

generic remote location, definition G-4 
get attributes operation 

description 3-24 
status information 3-25 

get operation 3-24 

half duplex, definition G-4 
headers 

BGU format members 4-12 
documents 4-12 
procedure members 4-12 
screen format members 4-12 

headers (continued) 
TMS source members 4-12 

Help key, definition G-4 
help text, definition G-4 
hex 

See hexadecimal 
hexadecimal, definition G-5 
host system, definition G-5 

I/O 
See input/output 

identifier, definition G-5 
informational message, definition G-5 
initial program load (IPL), definition G-5 
input/output (I/O), definition G-5 
input/output operations, summary charts 3-31 
input, definition G-5 
Interactive Communications Feature 

(SSP-ICF), definition G-5 
interactive processing, definition G-5 
interactive terminal facility 

adding a remote location 4-3 
asynchronous terminal 4-5 
beginning 4-2 
command keys 4-6,4-7 
connecting to a remote location 4-3 
data files, record lengths 4-13 
deleting a remote location 4-3 
description and capabilities 4-1 
echo 4-5 
ENABLE command 4-1 
header building 4-12 
introduction 1-2 
ITF Data Entry Display 

command keys 4-6,4-7 
entering messages on it 4-5 
introduction 4-2 
selecting functions 4-5 
sending password 4-6 
starting ITF 4-2 
switched connections 4-6 

ITF Password Display 4-6 
ITF Phone List Display 4-3 
list of phone numbers 4-3 
main menu 4-5 
messages 4-13,4-16,4-17 
receiving DW/36 documents 4-17 
redialing last called phone number 4-7 
remote location 4-1 
restrictions for making a connection 4-3 
returning to ITF Data Entry Display 4-7 
sending a break signal 4-8 

Index X-5 



interactive terminal facility (continued) 
sending and receiving data files 4-9,4-13 
sending and receiving library members 4-9 
sending control characters 4-8 
sending data 4-7 
sending DW /36 documents 4-9 
signing on 4-2 
Start Send/Receive Process display 

data files 4-13 
DW/36 documents 4-16 
library members 4-10, 4-11, 4-12 
uses of 4-9 

starting 4-1 
interactive terminal facility, definition G-5 
interactive terminal facility appends 

carriage return character (CR) 4-9 
interactive, definition G-5 
introduction 

asynchronous communications subsystem 1-3 
asynchronous communications support 1-1 
asynchronous communications support 

subsystem 1-1 
file transfer subroutines 1-1 
interactive terminal facility 1-2 

invite operation 3-25 
invite, definition G-5 
IPL 

See initial program load 
ITF 

See interactive terminal facility 
ITF Data Entry Display 

command keys 4-6, 4-7 
interactive terminal facility 4-2, 4-5 

job step, definition G-5 
job, definition G-5 

key, definition G-5 

X-6 Using the Asynchronous Communications Support 

label, definition G-5 
LAN, definition G-5 
languages, asynchronous communications 
subsystem 1-3 

library member subtype, definition G-5 
library member, definition G-5 
library members 

sending and receiving 
interactive terminal facility member 

selection 4-9, 4-10, 4-11, 4-12 
using ITF 4-1 

library, definition G-5 
licensed program, definition G-5 
line attributes, modified by editing 
member 2-11 

line member 
associated with subsystem member 2-7 
configured before subsystem member 2-1 
modifying its attributes 2-1 
shared by subsystems 2-1 

line number (specified on ENABLE 
command) 3-3 

link level, definition G-5 
link protocol, definition G-5 
link, establishing a communications C-l 
load member, definition G-5 
load module, definition G-6 
load, definition G-5 
local area network (LAN), definition G-6 
local, definition G-6 
LOCATION parameter on SESSION 
statement 3-6 

log, definition G-6 
logical channel, definition G-6 

mail log, definition G-6 
manual answer, definition G-6 
manual call, definition G-6 
menu, definition G-6 
message identification code (MIC), 
definition G-6 

message identification, definition G-6 
message, definition G-6 
messages, interactive terminal facility 4-13 
MIC 

See message identification code 



MLCA 1-6 
See also multiline communications 
adapter/attachment 

four communications lines 1-6 
two communications lines 1-6 

modem, definition G-6 
modified data tag, definition G-6 
modifying a configuration member 2-11 
modulation, definition G-6 
modulator-demodulator 

See modem 
multiline communications adapter/attachment 

(MLCA), definition G-6 
multipoint, definition G-6 

network configuration example 1-4 
network node, definition G-6 
network, definition G-6 
node identification, definition G-6 
node, definition G-6 
nons witched line, definition G-6 
numeric, definition G-6 

OCL 
See operation control language 

omine, definition G-6 
online, definition G-6 
OPEN statement example (BASIC) 3-13 
operation code, definition G-7 
operation control language (OCL), 
definition G-7 

operation, definition G-7 
optional network facilities, definition G-7 
output, definition G-7 

packet assembler/disassembler 
interactive terminal facility 4-2 
network configuration example 1-4 

packet assembly 
disassembly, definition G-7 

packet level, definition G-7 

packet switched data network 1-4 
packet switched data network, interactive 
terminal facility 4-2 

packet switching data network (PSDN), 
definition G-7 

packet switching, definition G-7 
packet window, definition G-7 
packet, definition G-7 
PAD 

See packet assembler/disassembler 
PAD emulation 

X.28 A-I, A-3 
X.29 A-I, A-6 
X.3 A-I 

PAD messages A-6 
PAD parameters A-I 
PAD, definition G-7 
parameter list, SUBRAI subroutine 3-10 
parameter, definition G-7 
password security, definition G-7 
password, definition G-7 
passwords, interactive terminal facility 4-6 
permanent virtual circuit (PVC), 

definition G-7 
phone list, definition G-7 
physical connection, definition G-7 
physical level (X.25), definition G-7 
point-to-point line, definition G-7 
problem determination for 
communications C-l 

procedure command, definition G-7 
procedure member, definition G-7 
procedure start request 

description 3-7 
PDATA parameter 3-7 
starts a session 3-5 

procedure, definition G-7 
program product, definition G-7 
program, definition G-7 
programming considerations 

asynchronous communications subsystem 
communications operations 3-8 

programming languages, asynchronous 
communications subsystem 1-3 

prompt, definition G-7 
prompting facilities 2-3 
protocol, definition G-7 
PSDN 

See packet switched data network 
put operation 3-26 

Index X-7 



Realtime Interface Co-Processor 
three communications lines 1-6 
two communications lines 1-6 

Realtime Interface Co-Processor, 
definition G-8 

receive time-out, definition G-7 
Recommendation X.25, definition G-8 
release operation 3-29 
remote location 

adding an interactive terminal facility 4-3 
connecting an interactive terminal facility 4-3 
deleting an interactive terminal facility 4-3 
listed by DEFINLOC procedure 2-12 
name defined on display 29.0 2-8 
specified on SESSION statement 3-6 

remote system attributes, remote system 
name 2-9 

remote system name, remote system selection 
(display 12.5) 2-9 

remote work station 
SeeRWS 

remote, definition G-8 
remotely started session, definition G-8 
remotely started sessions 3-5 
retrying unsuccessful operations, set timer 
operation 3-30 

return code, definition G-8 
return codes 

acquire operation error codes (82xx) 3-44 
detailed descriptions of 3-31 
miscellaneous program error codes 

(0412-3401) 3-39 
new requester codes (Olxx) 3-34 
no data received codes (03xx) 3-38 
normal completion codes (OOxx) 3-32 
permanent session error codes (81xx) 3-43 
recoverable session error codes (83xx) 3-47 
stop or disable pending codes (02xx) 3-37 

reverse charging, definition G-8 
rotary dial B-1 
rotary dial, definition G-8 
routine, definition G-8 
RPG II SUBRA1 subroutine, SUBRAI 3-9 
RPG, definition G-8 
run, definition G-8 
RWS, definition G-8 

X-8 Using the Asynchronous Communications Support 

sample values, configuration displays 2-3 
second-level message, definition G-8 
security 2-12 
security and interactive terminal facility 4-6· 
sequence diagrams for configuration 
displays 2-1 

session errors 
permanent, return code descriptions 3-43 
recoverable, return code descriptions 3-47 

session identifier 3-6 
SESSION statement 

descriptions 3-6 
syntax diagrams 3-6 

session, definition G-8 
set timer operation, description 3-30 
setting up an asynchronous communications 
subsystem 2-1 

short hold mode, definition G-I0 
SHOW parameter of ENABLE procedure 2-11 
sign off, definition G-8 
sign on, definition G-8 
sign-on, definition G-8 
single line communications adapter/attachment 

(SLCA) 
definition G-8 

SLCA 
See also single line communications 
adapter/attachment 

one communications line 1-6 
two communications lines 1-6 

source member, definition G-8 
source program, definition G-8 
SSCP 

See system services control point 
SSP 

See interactive communications feature 
starting sessions 3-5 
statement, definition G-8 
station, definition G-8 
status, definition G-8 
SUBRAI 

COBOL SUBRA1 subroutine 3-9 
RPG II or COBOL SUBRA1 subroutine 3-8 

parameter list 3-10 
RPG II SUBRA1 subroutine 

coding example 3-9 
SUBRAI subroutine 3-8 

description 3-8 
parameter list 3-10 
SUBRA1 for COBOL 3-9 



SUBRAI subroutines 
SUBRA1 for RPG II 3-9 

subroutine member, definition G-8 
subroutine, definition G-8 
subsystem 

configuration examples 1-4 
setting up 2-1 

subsystem member 
attributes defined 2-10 
configuration displays for 2-4 
configured after line member 2-1 
specifying line member for 2-7 

subsystem, definition G-8 
subsystem, description and capabilities 3-1 
subtype, definition G-8 
support for multiple X.25 lines 1-2 
switched line, definition G-9 
switched virtual circuit, definition G-9 
SYMID parameter on SESSION statement 3-6 
synchronous transmission, definition G-9 
synchronous, definition G-9 
syntax diagrams 

DISABLE procedure command 3-5 
ENABLE procedure command 3-3 
SESSION statement 3-6 

system configuration, definition G-9 
system library, definition G-9 
system program, definition G-9 
system reference code, definition G-9 
system services control point (SSCP), 
definition G-9 

System Support Program Product (SSP), 
definition G-9 

system unit, definition 
system, definition G-9 

G-9 

temporary-text-delay (TTD) character, 
definition G-9 

terminal, definition G-9 
timer operations, accept input operation 
required 3-30 

transparent text mode, definition G-9 

unbind command, definition G-9 
underscores L) on configuration displays 2-3 
unique, definition G-9 
user ID 

See user identification 
user identification (user ID), definition G-9 
using 

communications C-1 

valid, definition G-9 
variable, definition G-9 
virtual circuit, definition G-9 
volume table of contents (VTOC), 
definition G-9 

VTOC 
See volume table of contents 

work station, definition G-9 
WRITE statement (BASIC), coding 
examples 3-19 

X.21 feature, definition G-9 
X.21 short hold mode 

See short hold mode 
X.21, definition G-9 
X.25 network, setting up, DEFINLOC 2-12 
X.25, definition G-I0 
X.28, PAD emulation A-I, A-3 
X.29, PAD emulation A-I, A-6 
X.3, PAD emulation A-I 
X.75, definition G-I0 

Index X-9 



; I Numerics I 
5360 System Unit and asynchronous 
communications 

1-6 

5362 System Unit and asynchronous 
communications 

1-6 
5364 System Unit and asynchronous 
communications 

1-6 

X-IO Using the Asynchronous Communications Support 



IBM System/36 
U sing the Asynchronous 
Communications Support SC21·9143·2 

READER'S COMMENT FORM 

Please use this form only to identify publication errors or to request changes in 
publications. Direct any requests for additional publications, technical questions about IBM 
systems, changes in IBM programming support, and so on, to your IBM representative or to your 
IBM· approved remarketer. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or 
distribute whatever information you supply in any way it believes appropriate without incurring any 
obligation to you. 

o If your comment does not need a reply (for example, pointing out a typing error), check 
this box and do not include your name and address below. If your comment is applicable, 
we will include it in the next revision of the manual. 

o If you would like a reply, check this box. Be sure to print your name and address below. 

Page number(s): Comment(s): 

No postage necessary if mailed in the U.S.A. 

Please contact your IBM representative or your IBM-approved 
remarketer to request additional publications. 

Name 

Company or 
Organization 

Address 

Phone No. 

City State Zip Code 

Area Code 



Fold and tape. Please do not staple. 

-----------------------------------------------------------------------------------------, 

BUSINESS REPLY MAIL 
FIRST CLASS / PERMIT NO. 40 / ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Information Development 
Department 245 
Rochester, Minnesota, U.S.A. 55901 

NO POSTAGE 
NECESSARY 
IF MAILED IN THE 
UNITED STATES 

I 
I 
I 
I 
I 
I 
I 

----------------------------------------------------------------------------------------~ I 
Fold and tape. Please do not staple. : 

--------- - ---- ---- - ---- -- ----------_.-




