File No. S38-01

©
-
™
™
o
<
N
<
O

GA21-9331-6

- T
L v __—

IBM System/38

IBM System/38
Functional Reference Manual=Volume 1

Seventh Edition (September 1985)

This major revision makes obsolete GA21-9331-5. See About This Manual for a
summary of major changes in this edition.

The information in this publication applies to the IBM System/38 Instruction Set.
The information herein is subject to change. These changes will be reported in
technical newsletters or in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving
your locality.

This publication could contain technical inaccuracies or typographical errors. A
form for readers’ comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Information
Development, Department 245, Rochester, Minnesota, U.S.A. 55901. IBM may
use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981, 1982, 1983,
1984, 1985

ABOUT THISMANUAL
Purpose of This Manual

Organization of This Manual
How to Use This Manual
Summary of Changes
What You Should Know

If You Need More Information

ABBREVIATIONS AND ACRONYMS
CHAPTER 1. INTRODUCTION
Instruction Format
Operation Code Field
Operation Code Extender Field
Instruction Operands
Instruction Format Conventions Used in This Manual . .
Definition of the Operand Syntax

CHAPTER 2. COMPUTATION AND BRANCHING
INSTRUCTIONS
Add Logical Character (ADDLC)
Add Numeric (ADDN)
And (AND)
Branch (B) e e e
Cipher (CIPHER)
Cipher Key (CIPHERKY)
Compare Bytes Left-Adjusted (CMPBLAB or

CMPBLAI)
Compare Bytes Left- Ad]usted W|th Pad

(CMPBLAPB or CMPBLAPI)

Compare Bytes Right-Adjusted

(CMPBRAB or CMPBRAI)
Compare Bytes Right-Adjusted with Pad

(CMPBRAPB or CMPBRAPI)
Compare Numeric Value (CMPNVB or CMPNVI)
Compute Array Index (CAI)
Compute Math Function Using One Input Value

(CMF1)

Compute Math Function Using Two Input Values
(CMF2)
Concatenate (CAT)

Convert BSC to Character (CVTBC)
Convert Character to BSC (CVTCB)
Convert Character to Hex (CVTCH)
Convert Character to MRJE (CVTCM)
Convert Character to Numeric (CVTCN)
Convert Character to SNA (CVTCS)
Convert Decimal Form to Floating-Point (CVTDFFP)
Convert External Form to Numeric Value (CVTEFN)
Convert Floating-Point to Decimal Form (CVTFPDF)
Convert Hex to Character (CVTHC)
Convert MRJE to Character (CVTMC)
Convert Numeric to Character (CVTNC)
Convert SNA to Character (CVTSC)
Copy Bits with Left Logical Shift (CPYBTLLS)
Copy Bits with Right Logical Shift (CPYBTRLS) ..
Copy Bytes Left-Adjusted (CPYBLA)
Copy Bytes Left-Adjusted with Pad (CPYBLAP) . .

Contents

Copy Bytes Overlap Left-Adjusted (CPYBOLA) 2-82
Copy Bytes Overlap Left-Adjusted with

Pad (CPYBOLAP) 2-83
Copy Bytes Repeatedly (CPYBREP) 2-84
Copy Bytes Right-Adjusted (CPYBRA) 2-85
Copy Bytes Right-Adjusted with Pad (CPYBRAP) . . . 2-86
Copy Hex Digit Numeric to Numeric (CPYHEXNN) . . 2-87
Copy Hex Digit Numeric to Zone (CPYHEXNZ) 2-88
Copy Hex Digit Zone to Numeric (CPYHEXZN) 2-89
Copy Hex Digit Zone to Zone (CPYHEXZZ) 2-90
Copy Numeric Value (CPYNV) 2-91
Divide (DIV) 2-92
Divide with Remainder (DIVREM) 2-95
Edit (EDIT) 2-97
Exchange Bytes (EXCHBY) 2-105
Exclusive OR (XOR) e e e e e e e e e 2-106
Extended Character Scan (ECSCAN) 2-108
Extract Exponent (EXTREXP) 2-11
Extract Magnitude (EXTRMAG) 2-113
Multiply (MULT) 2-115
Negate (NEG) 2-117
No Operation (NOOP) 2-119
No Operation and Skip (NOOPS) 2-119
Not (NOT) 2-120
Or(OR) e 2-122
Remainder (REM) 2-123
Scale (SCALE) 2-126
Scan (SCAN) e e e e 2-128
Scan with Control (SCANWC) 2-130
Search (SEARCH) 2-137
Set Instruction Pointer (SETIP) 2-139
Store and Set Computational Attributes (SSCA) . . . 2-140
Subtract Logical Character (SUBLC) 2-143
Subtract Numeric (SUBN) 2-144
Test and Replace Characters (TSTRPLC) .. 2-146
Test Bits under Mask (TSTBUMB or TSTBUMI) . . . 2-147
Translate (XLATE) 2-149
Translate with Table (XLATEWT) 2-150
Trim Length (TRIML) 2-152
Verify (VERIFY) 2-153

CHAPTER 3. POINTER/NAME RESOLUTION
ADDRESSING INSTRUCTIONS 31
Compare Pointer for Object Addressability

(CMPPTRAB or CMPPTRAI) 3-1
Compare Pointer Type (CMPPTRTB or CMPPTRTI) 3-3
Copy Bytes with Pointers (CPYBWP) 3-4
Create Context (CRTCTX) 3-6
Destroy Context (DESCTX) 3-9
Materialize Context (MATCTX) 3-10
Modify Addressability (MODADR) 3-13
Rename Object (RENAME) 3-15
Resolve Data Pointer (RSLVDP) 3-16
Resolve System Pointer (RSLVSP) 3-18
CHAPTER 4. SPACE OBJECT ADDRESSING
INSTRUCTIONS 41
Add Space Pointer (ADDSPP) 4-1

Contents i

Compare Pointer for Space Addressability (CMPPSPADB
or CMPPSPADI) 4-2
Compare Space Addressability

(CMPSPADB or CMPSPADI) 4-4
Set Data Pointer (SETDP) 4-6
Set Data Pointer Addressability (SETDPADR) 4-7
Set Data Pointer Attributes (SETDPAT) 4-8
Set Space Pointer (SETSPP) 4-9
Set Space Pointer with Displacement (SETSPPD) . . . 4-10
Set Space Pointer from Pointer (SETSPPFP) 4-11
Set Space Pointer Offset (SETSPPO) 4-13
Set System Pointer from Pointer (SETSPFP) 4-14
Store Space Pointer Offset (STSPPO) 4-15

Subtract Space Pointer Offset (SUBSPP) . .

CHAPTER 5. SPACE MANAGEMENT INSTRUCTIONS 5-1

Create Space (CRTS) 5-1
Destroy Space (DESS) 5-4
Materialize Space Attributes (MATS) 5-6
Modify Space Attributes (MODS) 5-8

CHAPTER 6. INDEPENDENT INDEX INSTRUCTIONS . 6-1
Create Independent Index (CRTINX) 6-1
Destroy Independent Index (DESINX) 6-5
Find Independent Index Entry (FNDINXEN) 6-6
Insert Independent Index Entry (INSINXEN) 6-8
-10

3

4

Materialize Independent Index Attributes (MATINXAT) . 6-1
Modify Independent Index (MODINX) 6-1
Remove Independent Index Entry (RMVINXEN) 6-1

CHAPTER 7. AUTHORIZATION MANAGEMENT

INSTRUCTIONS 71

Create User Profile (CRTUP) 7

Destroy User Profile (DESUP) 7

Grant Authority (GRANT) e 7-6
7

Grant-Like Authority (GRNTLIKE)

Materialize Authority (MATAU) 7-11
Materialize Authorized Objects (MATAUOBJ) 7-13
Materialize Authorized Users (MATAUU) 7-17
Materialize User Profile (MATUP) 7-19
Modify User Profile (MODUP) e e .. 7-22
Retract Authority (RETRACT) 7-24
Test Authority (TESTAU) 7-26
Transfer Ownership (XFRO) 7-29
CHAPTER 8. PROGRAM MANAGEMENT

INSTRUCTIONS 8-1
Create Program (CRTPG) 8-1
Delete Program Observability (DELPGOBS) 8-8
Destroy Program (DESPG) e e e 8-9
Materialize Program (MATPG) 8-10
CHAPTER 9. PROGRAM EXECUTION

INSTRUCTIONS 9-1
Activate Program (ACTPG) e e e 9-1
Call External (CALLX) 9-5
Call Internal (CALLI) e 9-9
Clear Invocation Exit (CLRIEXIT) 9-10
De-Activate Program (DEACTPG) 9-10
End (END) 9-12
Modify Automatic Storage Allocation (MODASA) . . . 9-13
Return External (RTX) 9-14
Set Argument List Length (SETALLEN) 9-16
Set Invocation Exit (SETIEXIT) 9-17

Store Parameter List Length (STPLLEN)
Transfer Control (XCTL)

CHAPTER 10. EXCEPTION MANAGEMENT

INSTRUCTIONS

Materialize Exception Description (MATEXCPD)

Modify Exception Description (MODEXCPD) . . .
Retrieve Exception Data (RETEXCPD)
Return from Exception (RTNEXCP)
Sense Exception Description (SNSEXCPD)
Signal Exception (SIGEXCP)
Test Exception (TESTEXCP)

CHAPTER 11. PROCESS MANAGEMENT

INSTRUCTIONS
Create Process Control Space (CRTPCS)
Destroy Process Control Space (DESPCS)
Initiate Process (INITPR)

Materialize Process Attributes (MATPRATR)

Modify Process Attributes (MODPRATR)

Resume Process (RESPR)
Suspend Process (SUSPR)
Terminate Instruction (TERMINST)
Terminate Process (TERMPR)
Wait on Time (WAITTIME)

CHAPTER 12. QUEUE MANAGEMENT

INSTRUCTIONS
Create Queue (CRTQ)
Dequeue (DEQ, DEQB, or DEQI)
Destroy Queue (DESQ)
Enqueue (ENQ)
Materialize Queue Attributes (MATQAT)
Materialize Queue Messages (MATQMSG)

CHAPTER 13. RESOURCE MANAGEMENT

INSTRUCTIONS
Create Access Group (CRTAG)
Create Duplicate Object (CRTDOBJ)
Destroy Access Group (DESAG)
Ensure Object (ENSOBJ)

Materialize Access Group Attributes (MATAGAT)

Materialize Resource Management Data (MATRMD) .
Modify Resource Management Controls (MODRMC) .
Reset Access Group (RESAG)
Set Access State (SETACST)
Suspend Object (SUSOBJ)

CHAPTER 14. OBJECT LOCK MANAGEMENT
INSTRUCTIONS
Lock Object (LOCK)
Lock Space Location (LOCKSL)
Materialize Allocated Object Locks (MATAOL) . . .
Materialize Data Space Record Locks (MATDRECL) . .
Materialize Object Locks (MATOBJLK)
Materialize Process Locks (MATPRLK)

Materialize Process Record Locks (MATPRECL)

Materialize Selected Locks (MATSELLK)

Transfer Object Lock (XFRLOCK)
Unlock Object (UNLOCK)
Unlock Space Location (UNLOCKSL)

CHAPTER 15. EVENT MANAGEMENT

INSTRUCTIONS
Cancel Event Monitor (CANEVTMN)

Disable Event Monitor (DBLEVTMN)
Enable Event Monitor (EBLEVTMN)

Materialize Event Monitor (MATEVTMN)
Modify Process Event Mask (MODPEVTM) . .
Monitor Event (MNEVT) e
Retrieve Event Data (RETEVTD) .

Signal Event (SIGEVT) .

Test Event (TESTEVT, TESTEVTB or TESTEVTI)
Wait on Event (WAITEVT)

CHAPTER 16. DATA BASE MANAGEMENT
INSTRUCTIONS
Activate Cursor (ACTCR) . .

Copy Data Space Entries (CPYDSE)

Create Cursor (CRTCR) .

Create Data Space (CRTDS) ...

Create Data Space Index (CRTDSINX)

Data Base Maintenance (DBMAINT) . .
De-Activate Cursor (DEACTCR) . . .

Delete Data Space Entry (DELDSEN) . .

Destroy Cursor (DESCR)

Destroy Data Space (DESDS) .

Destroy Data Space Index (DESDSINX)

Ensure Data Space Entries (ENSDSEN) . .
Estimate Size of Data Space Index Key Range
(ESTIDKR) . .

Insert Data Space Entry (INSDSEN) .
Insert Sequential Data Space Entries (INSSDSE)
Materialize Cursor Attributes (MATCRAT) .
Materialize Data Space Attributes (MATDSAT) .
Materialize Data Space Index Attributes (MATDSIAT)
Modify Data Space Attributes (MODDSAT) . .
Modify Data Space Index Attributes (MODDSIA)
Release Data Space Entries (RLSDSEN)

Retrieve Data Space Entry (RETDSEN) . . .
Retrieve Sequential Data Space Entries (RETSDSE)
Set Cursor (SETCR) .

Update Data Space Entry (UPDSEN)

CHAPTER 17. SOURCE/SINK MANAGEMENT
INSTRUCTIONS
Create Controller Description (CRTCD) . .
Create Logical Unit Description (CRTLUD)
Create Network Description (CRTND)
Destroy Controller Description (DESCD) . .
Destroy Logical Unit Description (DESLUD) .
Destroy Network Description (DESND) .
Materialize Controller Description (MATCD) . .
Materialize Logical Unit Description (MATLUD)
Materialize Network Description (MATND)
Modify Controller Description (MODCD) .
Modify Logical Unit Description (MODLUD)
Modify Network Description (MODND) .
Request 1/0 (REQIO)
Request Path Operation (REQPO)
Contents of the Path Operation Template
Format and Contents of the Feedback Record
Byte O Error Attributes
Byte 1 Error Type .
Request Path Operation T|me out Con5|deratlons .

CHAPTER 18. MACHINE OBSERVATION
INSTRUCTIONS
Cancel Invocation Trace (CANINVTR) .

Cancel Trace Instructions (CANTRINS) . .

156-2
15-4
15-5
16-7
15-8

15-12

15-14
15-16
15-19

16-1
16-1
16-6

16-11

16-30
16-36
16-50
16-54
16-55
16-57
16-58
16-60
16-61

16-62
16-66
16-69
16-72
16-75
16-77
16-81
16-84
16-87
16-89
16-90
16-97

16-109

Contents

Materialize Instruction Attributes (MATINAT) 18-3
Materialize Invocation (MATINV) 18-7
Materialize Invocation Entry (MATINVE) 18-10
Long Materialization 18-10
Short Materialization Type 1 18-11
Short Materialization Type 2 . . . 18-11
Short Materialization Type 3 18-11
Short Materialization Type 4 . . . 18-11
Materialize Invocation Stack (MATINVS) . 18-13
Materialize Pointer (MATPTR) 18-16
Materialize Pointer Locations (MATPTRL) . . . 18-19
Materialize System Object (MATSOBJ) . . . 18-21
Modify System Object (MODSOBJ) 18-23
Trace Instructions (TRINS) 18-25
Trace Invocations (TRINV) 18-26
CHAPTER 19. MACHINE INTERFACE SUPPORT
FUNCTIONS INSTRUCTIONS 191
Diagnose (DIAG) e e e e e e e e e 19-1
Materialize Machine Attnbutes (MATMATR) 19-2
Modify Machine Attributes (MODMATR) 19-12
Reclaim Lost Objects (RECLAIM) e 1917
Terminate Machine Processing (TERMMPR) 19-19
CHAPTER 20. JOURNAL MANAGEMENT
INSTRUCTIONS 201
Apply Journaled Changes (APYJCHG) 20-1
Create Journal Port (CRTJP) 20-7
Create Journal Space (CRTJS) 20-11
Destroy Journal Port (DESJP) . e e e e 20-14
Destroy Journal Space (DESJS) 20-15
Journal Data (JRNLD) 20-17
Journal Object (JRNLOBJ) . 20-19
Materialize Journal Port Attributes (MATJPAT) 20-21
Materialize Journal Space Attributes (MATJSAT) 20-23
Materialize Journaled Object Attributes
(MATJOAT) 20-27
Materialize Journaled Objects (MATJOBJ) 20-29
Modify Journal Port (MODJP) 20-31
Retrieve Journal Entries (RETJENT) 20-34
CHAPTER 21. COMMITMENT CONTROL
INSTRUCTIONS 211
Commit (COMMIT) 21-1
Create Commit Block (CRTCB) 21-3
Decommit (DECOMMIT) 21-5
Destroy Commit Block (DESCB) 21-6
Materialize Commit Block Attributes (MATCBATR) . . . 21-8
" Modify Commit Block (MODCB) . 21-11
CHAPTER 22. DUMP SPACE MANAGEMENT
INSTRUCTION 221
Create Dump Space (CRTDMPS) 22-1
Destroy Dump Space (DESDMPS) 22-4
Insert Dump Data (INSDMPD) 22-5
Materialize Dump Space (MATDMPS) 22-8
Modify Dump Space (MODDMPS) 22-10
Retrieve Dump Data (RETDMPD) 22-12
CHAPTER 23. EXCEPTION SPECIFICATIONS 231
Machine Interface Exception Data 23-1
Exception List 23-2
02AccessGroup 23-5
04 Access State 23-5
06 Addressing 23-6

\

08 Argument/Parameter
OA Authorization

0C Computation

OE Context Operation .

10 Damage .

12 Data Base Management
14 Event Management

16 Exception Management .

18 Independent Index .

1A Lock State

1C Machine-Dependent Exceptlon
1E Machine Observation . .

20 Machine Support

22 Object Access . . .

24 Pointer Specification .

26 Process Management

28 Process State . . .

2A Program Creation

2C Program Execution . . .

2E Resource Control Limit .

30 Journal Management . .

32 Scalar Specification
34 Source/Sink Management
36 Space Management .
38 Template Specification . . .
3A Wait Time-Out
3C Service

3E Commitment Control

40 Dump Space Management

CHAPTER 23. EVENT SPECIFICATIONS

Event Definition Elements
Event Identification e e
Compare Value Qualifier
Event-Related Data . .

Event Definitions
0002 Authorization
0004 Controller Descnptlon
0007 Data Space . . o
0008 Data Space Index
000A Lock .
000B Logical Unit Descnptlon
000C Machine Resource . . e e e e e
000D Machine Status
000E Network Description .
000F Ownership
0010 Process
0011 Program
0012 Queuve . .
0014 Timer
0016 Machine Observation
0017 Damage Set
0019 Service . .
001A Journal Port
001B Commitment Control .
001C Journal Space
001D User Qualified Timer .

CHAPTER 24. PROGRAM OBJECT SPECIFICATION
General ODT Description
ODV s e e e
OES s
ODT Entries in Detail
Data Object
Entry Point

vi

BranchPoint 25-16
Instruction Definition List 25-16
Operand List . . e e e e e e 25-18
Constant Data Object 25-20
Exception Descriptions 25-23
References to OES Offsets Greater than 64 K-1 25-26
Space Pointer Machine Object 25-26
APPENDIX A. INSTRUCTION SUMMARY A1
Number of Operands A-1
Extender Usage A-1
Resulting Conditions e e e e A-1
Optional Forms A-2
Instruction Stream Syntax A-2
Program Object Definitions A-3
System Object Declarations A-3
Resulting Conditions Definitions A-4

Instruction Summary (Alphabetical Listing by
Mnemonic)

PURPOSE OF THIS MANUAL

This publication describes the System/38 machine
interface instruction set. It describes the functions that
can be performed by each instruction and also the
necessary information to code each instruction. It
provides reference information for the systems engineer
and the program support customer engineer.

ORGANIZATION OF THIS MANUAL

The information in this publication is arranged as
follows:

« Chapter 1 describes the basic information for coding
instructions.

« Chapters 2 through 22 contain detailed descriptions
of all the instructions.

« Chapter 23 contains explanations for the possible
exceptions that error conditions may signal.

« Chapter 24 contains detailed descriptions of the
events that the user can monitor.

« Chapter 25 contains the attributes; specifications; and
ODT (object definition table), ODV (ODT directory
vector), and OES (ODT entry string) formats for each
program object of the machine interface.

« Appendix A provides a summary of all the
instructions and an abbreviated format for each
instruction.

HOW TO USE THIS MANUAL

Refer to Chapters 2 through 22 to find the information
needed to code the various instructions.

Refer to Chapters 23 through 25 to find detailed
specifications for the exceptions, events, and program
objects.

About This Manual

Refer to Appendix A for a summary of all instructions,
which contains the abbreviated description of the
instruction and the page number where the detailed
description of the instruction can be found.

SUMMARY OF CHANGES

The following new instructions have been added to this
manual:

« Cipher (CIPHER)

« Cipher Key (CIPHERKY)

« Create Dump Space (CRTDMPS)
+ Destroy Dump Space (DESDMPS)

« Estimate Size of Data Space Index Key Range
(ESTDSIKR)

« Insert Dump Data (INSDMPD)

« Materialize Dump Space (MATDMPS)
o Modify Dump Space (MODDMPS)

« Retrieve Dump Data (RETDMPD)

« Scan with Control (SCANWC)

« Terminate Instruction (TERMINST)

Chapter 22 contains descriptions of the new dump
space management instructions.

Also, miscellaneous changes have been made
throughout this manual.

About This Manual vii

WHAT YOU SHOULD KNOW

You should read the IBM System/38 Functional
Concepts Manual, GA21-9330, in its entirety. This
manual provides information for the machine interface
and its functions.

viii

IF YOU NEED MORE INFORMATION

IBM System/38 Functional Reference Manual—Volume 2,
GA21-9800

IBM Systems Network Architecture Format and Protocol
Reference Manual: Architecture Logic, SC30-3112

IBM Synchronous Data Link Control General Information
Manual, GA27-3093

ABI
ABO
ACK
ACR
ACTLU
ACTPU
ACU
AIMPL
AIPL
ALU
ANSI

APPC

ASCII

Bin
BOT
bpi

bps
BSC
BSCT
BSTAT

CA
CCItT

CcD

Char
CPU
CRC
CRT
CSA
CTS

DAF
DBI
DCE
DEA
DLE
DS
DSI
DSR
DSTAT
DTE
DTR

address bus in

address bus out

alternating positive acknowledgment
abandon call and retry

activate logical unit

activate physical unit

autocall unit

alternate initial microprogram load
alternate initial process load
arithmetic and logic unit

American National Standards
Institute

advanced program to program
communications

American National Standard Code for
Information Interchange

byte

binary

beginning of tape

bits per inch

bits per second

binary synchronous communications

binary synchronous communications tributary
basic status

channel address

The International Telegraph and
Telephone Consultative Committee
controller description

character

central processing unit

cyclic redundancy check
cathode-ray tube

control storage address

clear to send

destination address field

data bus in

data communications equipment
data encryption algorithm

data link escape

. data space

data space index

data set ready

device status

data terminal equipment
data terminal ready

Abbreviations and Acronyms

EBCDIC extended binary-coded decimal interchange

ENQ
EOF
EOR
EOT
EOV
EPA
ERP
ETB
ETX

FBR
FIFO
FOB
FM
FMD

HDLC
HDR

1/0
IAR
IC

ID
IDL
10C
IOM
IMPL
IMPLA
IPL
ITB

L/D
LEAR
LENR
LIFO
LRC
LSRD
LSRO
LSUP
LU
LUD

code

enquiry

end of file

end of record

end of tape

end of volume

encapsulated program architecture
error recovery procedure

end of text block

end of text

feedback record

first in, first out
function operation block
frequency modulation
function manager data

high-level data link control
header

input/output

instruction address register
insert cursor

identification

instruction definition list
input/output controller
input/output manager
initial microprogram load
initial microprogram load abbreviated
initial program load
intermediate text block

1024 bytes

load/dump

lock exclusive allow read

lock exclusive no read

last in, first out

longitudinal redundancy check
lock shared read

lock shared read only

lock shared update

logical unit

logical unit description

Abbreviations and Acronyms

MB
MCR
MDT
MFM
MISR
MPL
MRJE
MSCP
MTAM

NaN
ND
NRL
NRZI

oDT
obv
OEM
OES
omMT
ORE
ou
OU#

PAG
PASA
PCO
PCS
PDEH
PE
PIN
PP
PSSA
PU

RCB
RD
RFT
RH
RI
RIU
RNR
ROS
RPS
RTS
RU
RVI

megabyte

machine configuration record
modified data tag

modified frequency modulation

machine initialization status record

multiprogramming level

MULTI-LEAVING remote job entry

machine services control point

MULTI-LEAVING telecommunication access

method

not-a-number

network description

name resolution list
non-return-to-zero (inverted)

object definition table

ODT directory vector

original equipment manufacture
ODT entry string

object mapping table

operation request element
operational unit

operational unit number

process access group

process automatic storage area
process communication object
process control space

process default exception handler

phase encoding

personal identification number
presentation position

process static storage area
physical unit

record control block
request descriptor
request for text
request/response header
ring indicator

request information unit
receive not ready
ready-only storage
rotation position sensor
request to send
request/response unit
reverse interrupt

S-PTR
SBA
SCB
SCS
SDLC
SNA
SOH
SRCB
SSCP
SSD
SSR
STX

TH

UCSB

VAT
VLOG
VoL
VvTOC

WACK
WSC

XID

system pointer

set buffer address

string control byte

standard character stream
synchronous data link control
systems network architecture
start of header

sub record control byte
system service control point
source/sink data
source/sink request

start of text

transmission header
temporary text delay

universal character set buffer
virtual address table

VMC log

volume

volume table of contents

wait before transmitting
work station controller

exchange identification

This chapter contains the following:

« Detailed descriptions of the System/38 machine
interface instruction fields and the formats of these
fields

« A description of the format used in describing each
instruction

« A list of the terms in the syntax that define the
characteristics of the operands

You should read this chapter in its entirety before
attempting to write instructions.
INSTRUCTION FORMAT

This section describes the formats for the three fields in
an instruction. The three fields are:

« Operation code

« Operation code extender

« Operand

See the Functional Concepts Manual for an explanation of
how particular instruction fields are used, the

relationships between the fields, and other basic
concepts concerning instructions.

Chapter 1. Introduction

Operation Code Field

The operation code field of an instruction is a 2-byte
field that supplies information about the instruction
format, the instruction status, and the basic operation to
be performed by the instruction.

The format of the operation code field is as follows:

Bits
012 3 4 5.....15
~ N e/

Operation flag field (bits 0-4):

® Reserved

@ Branch target

® Format specifications
— Computational format
— Noncomputational format

® Extender field present

Operation specification field (bits 5-15)

The format of the operation specification field is as
follows for the computational format (bit 3 equals 1):

Bits

Optional instruction forms (bits 5-7):

® Extender specification
— Branch form
— Indicator form

® Round form

® Short form

Basic functions (bits 8-15)

For the noncomputational format (bit 3 equals 0), bits
5-15 define the basic function.

Introduction 1-1

Operation Flag Field (Bits 0-4)

The operation flag field (bits 0-4) specifies the

following:

Bits

0-1

2

1-2

Meaning

These bits are reserved. They must be 00.
Branch target

0 = This instruction is not a branch target.

1 = This instruction is a branch target
operand in some branch instructions
elsewhere in the instruction stream.
This branch target includes branch
points defined in the ODT (object
definition table), branch targets defined
in an IDL (instruction definition list),
branch targets assigned to an
instruction pointer, immediate
instruction numbers used as branch
operands, and instructions referenced
as entry points.

Note: The bit encoding of the operation
code for each instruction assumes a O for
this bit.

Format specification

0

Noncomputational-The instruction does
not have the format of the
computational instructions and does
not allow any optional forms. The
definition of the operation and the
format of the instruction are completely
defined by the operation code
specification field (bits 5-15).

Computational-The instruction has the
computational instruction format. The
basic operation is defined in the basic
function field (bits 8-15) of the
operation code. However, the
instruction may allow one or more of
the optional instruction forms (indicated
by bits 5-7) that define additional
information about the operation to be
performed, the number of operands, or
the format of the instruction.

Extender field present

0

The instruction does not have an
operation code extender field.

The instruction has an operation code
extender field.

Operation Code Specification Field (Bits 5-15)

The operation code specification field contains
information describing the operation to be performed by
the instruction and possibly information about the
instruction. Its contents depend upon whether this
instruction has a computational or a noncomputational
format.

« Computational format:
Bits Meaning

5 Extender specification—The extender field
present flag must be on (bit 4 equals 1)
before this field has meaning. If bit 4 equals
0, then bit 5 must equal 0.

0 = Indicator form—The format of this
instruction is an indicator form of the
computational format. An indicator
form instruction uses an operation
extender field and a character scalar
indicator(s) to specify the conditional
indicator option(s) and the indicators to
be set, respectively.

1 = Branch form—The format of this
instruction is a branch form of the
computational instruction form. A
branch form instruction uses a standard
format operation extender field and
branch target operand field(s) to
specify the conditional branch option(s)
and location(s), respectively.

6 Round form

0

This instruction is not a round form.

-—
I

The fractional portion of the result of
the operation defined for this
instruction is to be rounded before
being truncated and placed in the field
specified by the receiver operand field.
A floating-point receiver is not allowed
for instructions specified with the round
form.

7 Short form

0 = This instruction is not a short form.
The format of this instruction is in its
normal form with all its required
operand fields present.

1 = The format is in the optional short form
in which the receiver operand field acts
as the first source operand field and is
not duplicated as an operand.

8-15 Basic function—These bits indicate the
operation to be performed by this instruction
(for example, add numeric).

« Noncomputational format:
Bits Meaning

5-15 Basic function—These bits indicate the
operation to be performed by this instruction
(for example, create program or set space
pointer).

Operation Code Extender Field

The operation code extender field of an instruction is a
2-byte field that further defines the operation to be
performed by the instruction and/or the format of the
instruction. The extender field is indicated by a 1 in bit
4 of the operation code.

The format and contents of this field are determined by
the specific instruction in which it appears. The two
types of operation codes extender fields, branch options
and indicator options, are described on the following
pages.

Introduction 1-3

Branch Options

The branch options operation code extender field
contains information needed by instructions that involve
conditional branching (comparison instructions and
optional branch forms of computational instructions).
This field indicates how many branch target operand
fields are in the instruction and which of the resulting
status conditions relate to each of these target
operands.

The following are allowed as branch targets:
« Branch point

« Absolute instruction number (unsigned immediate
operand value)

« Relative instruction number (signed immediate
operand value)

« Instruction pointer (simple operand that is not an
element of an array)

Up to three mutually exclusive status conditions can be
specified for a given instruction. The status conditions
can be one of the following:

« Ignored

« Associated with a branch target operand field such
that:
— The branch occurs if the condition occurs.
— The branch occurs if the condition does not occur.

Only one of these three actions can be specified for
each condition. Only those conditions meaningful for a
particular instruction can have the last two actions
specified for them. Conditions that have either of the
last two actions specified for them are associated with
their branch target operands in left-to-right order.

Branch option operation code extender fields consist of
four 4-bit fields. Each of the fields defines one branch
condition. The fields must be specified in left-to-right
order and correspond to the order of the branch target
operands. A field of hex O indicates that no branch
target is associated with this condition and that no more
conditions are defined in any field to the right.

1-4

The following codes are valid for branch conditions:

Bit Hex Meaning

0000 O No branch target, no further fields
are checked

0001 1 High, positive, mixed, zero and
carry, truncated record, normalized

0010 2 Low, negative, ones, not-zero and
no carry, exception ignored,
completed record, receiver overrun,
denormalized, null compare operand

0011 3 Reserved

0100 4 Equal, zero, zeros, zero and no carry,
signaled, exception deferred,
dequeued, authorized, source
exhausted, infinity

0101 5 Reserved

0110 6 Reserved

0111 7 Unequal, not-zero and carry, escape
code encountered, unordered, NaN

1000 8 Reserved

1001 9 Not high, not positive, not mixed,
not-zero and carry, not truncated
record, not normalized

1010 A Not low, not negative, not ones, not
not-zero and no carry, not
completed record, not receiver
overrun, not denormalized, not null
compare operand

1011 B Reserved

1100 C Not equal, not-zero, not zeros, not
dequeued, not-zero and no carry,
not signaled, not authorized, not
source exhausted, not infinity

1101 D Reserved

1110 E Reserved

1111 F Not unequal, not not-zero and carry,

not escape code encountered, not
unordered, not NaN, not found

The branch options specified for an instruction must be
mutually exclusive. The user must not specify a branch
to more than one branch target on the same condition;
that is, two 4-bit fields cannot specify the same
condition.

A not condition refers to any condition other than the
one specified. That is, not equal is satisfied with a high,
low, or unordered condition. Therefore, the same
condition cannot be specified as negative and positive in
the same extender (for example, not equal and high
cannot be specified together).

If unordered, negation of unordered, equal, negation of
equal, zero, or negation of zero conditions are not
specified on the instruction and an unordered resultant
condition occurs, the floating-point invalid operand
exception is signaled. If the exception is masked at the
time of detection, the instruction resumes execution and
performs the specified branch or indicator processing.
For the optional branch forms of computational
instructions, this exception occurs because the implicit
comparison operation is performed after the assignment
of the result of the operation to the receiver operand.
Since the receiver is implicitly being used as a source
operand for the comparison operation, the receiver is
not set with a NaN value as it would be for a masked
occurrence of the floating-point invalid operand
exception.

The same branch target can be used for multiple
conditions. For example, if branch conditions high and
equal are specified separately, each of the
corresponding branch targets can reference the same
instruction. An instruction supporting the high, low, and
equal resultant conditions could be accomplished by just
a not low condition.

Examples
Hex 4000 means:
« One branch target is present in the instruction.

« Branch to the ﬁrst' branch target operand if an equal
condition occurs.

« Otherwise, execute the next sequential instruction.
Hex 1900 means:
« Two branch targets are present in the instruction.

« Branch to the first branch target operand if a high
condition occurs.

« Branch to the second branch target operand if a high
condition does not occur.

Hex 1210 is not allowed because branch condition 1
(high) is specified twice.

Hex 1A00 is not allowed because condition 1 (high) is
also specified as part of condition A (not low).

Indicator Options

The indicator options operation code extender field
contains information needed by instructions that allow
conditional indicator setting (comparison instructions and
optional indicator forms of computational format
instructions). The field indicates how many indicator
operand fields are in the instruction and which of the
resulting status conditions relate to each of these
indicator operands.

The preceding discussion of the usage, conditions,
ordering, and encoding of branch options also applies to
indicator options.

If a condition that is being monitored by the indicator
option occurs, the leftmost byte of the associated
indicator target is assigned a value of hex F1; otherwise,
the leftmost byte of the indicator target is assigned a
value of hex FO.

Introduction 1-5

Example Immediate Operands

Hex 4000 means: The value of this type of operand is encoded in the
instruction operand. Immediate operands may have the

« One indicator target is present in the instruction. following values:

« Assign a value of hex F1 to the indicator target if the « Signed binary-representing a binary value of negative
equal condition occurs. 4096 to positive 4095.

« Assign a value of hex FO to the indicator target if the « Unsigned binary-representing a binary value of O to
equal condition does not occur. 8191.

In this example, the indicator form of the operand must « Byte string-representing a single byte value from hex

be a character or a numeric scalar data object. Only the 00 to hex FF.

first byte of the operand is used. This operand must be

a simple operand and cannot be a compound subscript « Absolute instruction number—representing an

operand, a compound substring operand, or a compound instruction number in the range of 1 to 8191.

based operand.
« Relative instruction number—representing a
displacement of an instruction relative to the

Instruction Operands instruction in which the operand occurs. This operand
value may identify an instruction displacement of
Each instruction requires from zero to four operands. negative 4096 to positive 4095.

Each operand may consist of one or more fields that
contain either a null operand specification, an immediate

data value, or a reference to an ODT object. The size of ODT Object References

the operand field depends on the version of the program

template. If the version number is O, the size of the This type of operand contains a reference (possibly

operand field is 2 bytes. If the version number is 1, the qualified) to an object in the ODT. Operands that are J
size of the operand field is 3 bytes. ODT object references may be simple operands or

compound operands.

Null Operands

Simple Operands: The value encoded in the operand
Certain instructions allow certain operands to be null. In refers to a specific object defined in the ODT. Simple
general, a null operand means that some optional operands consist of a single 2-byte operand entry.
function of the instruction is not to be performed or that
a default action is to be performed by the instruction.

1-6

Compound Operands: A compound operand consists of a
primary (2-byte) operand and a series of one to three
secondary (2-byte) operands. The primary operand is an
ODT reference to a base object while the secondary
operands serve as qualifiers to the base object.

A compound operand may have the following uses:
« Subscript references

An individual element of a data object array, a pointer
array, or an instruction definition list may be
referenced with a subscript compound operand. The
operand consists of a primary reference to the array
and a secondary operand to specify the index value
to an element of the array.

« Substring references

A portion of a character scalar data object may be
referenced as an instruction operand through a
substring compound operand. The operand consists
of a primary operand to reference the base string
object and secondary references to specify the value
of an index (position) and a value for the length of
the substring.

The length secondary operand field can specify
whether to allow or not allow for a null substring
reference (a length value of zero).

« Explicit base references

An instruction operand may specify an explicit
override for the base pointer for a based data object
or a based addressing object. The operand consists
of a primary operand reference to the based object
and a secondary operand reference to the pointer on
which to base the object for this operand. The
override is in effect for the single operand. The
displacement implicit in the ODT definition of the
primary operand and the addressability contained in
the explicit pointer are combined to provide an
address for the operand.

The explicit base may be combined with either the
subscript or the substring compound operands to
provide a based subscript compound operand or a
based substring compound operand.

Format of Instruction Operand

The format for an instruction operand depends on the
version of the program template.

For program template version number O, the format for
an instruction operand (primary or secondary) field is as
follows:

Operand Field (Bits 0-15)

Type Specification J

Operand Specification

Introduction 1-7

Type Specification Field: The type specification field
occupies bits 0-2 of the operand. It indicates whether
the operand is an immediate data value, a simple ODT

reference, or a compound ODT reference.

The following illustrations show the type specifications
allowed for primary operands and secondary operands.

Primary Operand -

Secondary Operand

1-8

Number of
Type Secondary
Operand Function Bits Operand Operands 1 2 3
Simple ODT Reference or 000 ODT reference or 0
Null Operand null
Unsigned Immediate Value 001 Unsigned 0
immediate value
Subscript Compound 010 Array ODT 1 Index
Operand reference
Substring Compound 011 String ODT 2 Index Length
Operand reference
Explicit Base Compound 100 Based ODT 1 Base pointer
Operand object reference
Signed Immediate Value 101 Signed 0
immediate value
Explicit Based Subscript 110 Based array ODT 2 Base pointer |Index
Compound Operand reference
Explicit Based Substring 111 Based string 3 Base pointer | Index Length
Compound Operand ODT reference
Type Secondary
Operand Function Bits Operand
Index 000 ODT reference
001 Unsigned
immediate value
Length (Disallow Null 000 ODT reference
Substring)
001 Unsigned
immediate value
Length (Allow Null 010 ODT reference
Substring)
011 Unsigned
immediate value
Base Pointer 000 Pointer ODT
reference

Operand Specification Field: The operand specification
field occupies bits 3-15. It can be an ODT reference or
an immediate value. The ODT reference occupies bits
3-15 of the operand field. It contains a binary integer
value indicating which ODV (object definition vector)
entry in the ODT to use for this operand’'s definition.
This value is an index value for the one-dimensional
array ODV, not a byte displacement into the ODT. Thus,
a maximum of 8191 ODV objects are addressable in any
program. The first ODT reference is 1. If the value of
the operand specification field is O, the operand is null.

The following primary operands are allowed:
« ODT reference (type bits equal 000)

The operand consists of a simple ODT reference. The
value of bits 3-15 of the operand defines an index
into the ODT. The range of this value may be from 1
to the size of the ODT (maximum size of 8191).

« Null (type bits equal 000)

A null operand consists of a O value for bits 3-15 of
the operand. The null operand is used in several
instructions to indicate that a function is not to be
performed or that a default action is to occur.

‘ « Unsigned immediate value (type bits equal 001)

The operand is interpreted as an unsigned immediate

data value. Three uses can be made of this form:

— For numeric operands, an unsigned binary value
from O to 8191 can be specified in bits 3-15 of
the operand.

— For character (or byte) operands, a single 8-bit
value can be specified in bits 8-15 of the operand.

~— For branch target operands, an unsigned binary
value of 1 to 8191 can be specified in bits 3-15;
that value is interpreted to contain an instruction
number. A value of O is invalid.

« Array ODT reference (type bits equal 010)

When the operand type bits are 010, the operand
specification (bits 3-15) must be an ODT reference to
an array of scalars, an array of pointers, a data
pointer that defines an array of scalars, or an
instruction definition list. The array indexing operation
is performed on this ODT object. If the referenced
ODT object is an array of data pointers that define
arrays, the indexing operation is performed on the
array of data pointers only (this combination is invalid
on instructions that require scalar operands). If the
ODT object is a data pointer that defines an array,
the indexing operation is performed on the defined
array.

A secondary operand is required to specify the array
index value.

« String ODT reference (type bits equal 011)

When the operand type bits are 011, the operand
specification (bits 3-15) must be an ODT reference to
a data object, data pointer, or a constant data object
that has the attributes of a character scalar. The
substring operation refers to a portion of this ODT
object.

Two secondary operands are required: one for the
index (position) and one for the length of the
substring.

The length secondary operand field can specify
whether to allow or not allow for a null substring
reference (a length value of zero).

« Based ODT object reference (type bits equal 100)
When the operand type bits are 100, this operand
specification (bits 3-15) must be an ODT reference to

a data object with based addressability.

A secondary operand is required to specify the
overriding base pointer.

Introduction 1-9

« Signed immediate value (type bits equal 101) The following are allowed as secondary operands.
Secondary operands that have the same type value as a

The operand is interpreted as a signed immediate primary operand also have the same format for the

data value. Negative values are represented in twos

complement form in bits 3-15. Bit 3 is the sign bit.

Two uses can be made of this form:

— For numeric operands, a signed value can be
specified in the range of negative 4096 to positive
4095.

— For branch target operands, a signed binary value
of negative 4096 to positive 4095 can be
specified, and it is interpreted as a relative
instruction number.

Based array ODT reference (type bits equal 110)

When the operand type bits are 110, the operand
specification (bits 3-15) must be an ODT reference to
an array of scalars or an array of pointers with the
array based on a space pointer. Explicit basing and
array indexing are performed for the operand.

Two secondary operands are required: one for the
base pointer and one for the index value.

Based string ODT reference (type bits equal 111)

When the operand type bits are 111, the operand
specification must be an ODT reference to either a
character scalar data object based on a space pointer
or a character scalar data pointer based on a space
pointer. Explicit basing and the substring function are
performed for the operand.

Three secondary operands are required: a base
pointer, an index value, and a length value.

The length secondary operand field can specify
whether to allow or not allow for a null substring
reference (a length value of zero).

operand specification field. (Note that secondary
operands cannot be compound operands.)

Index

A secondary operand representing an index value

may be one of the following:

— An ODT reference to a binary data object (type
bits equal 000)

— An ODT reference to a binary constant data object
(type bits equal 000)

— An unsigned immediate binary value (type bits
equal 001)

An exception is signaled if the value of the index is
not greater than O or if it is greater than the size of
the primary operand (number of bytes for strings,
number of elements for arrays, or number of
elements for an instruction definition list). The user
can suppress the verification of this valid index value
for substrings of character strings and elements of
arrays by specifying the appropriate constraint
attribute when the program is created.

Length

A secondary operand representing a length value that

disallows a null substring reference (a zero value

length) may be one of the following:

— An ODT reference to a binary data object (type
bits equal 000)

— An ODT reference to a binary constant data object
(type bits equal 000)

— An unsigned immediate binary value (type bits
equal 001)

A secondary operand representing a length value that

allows a null substring reference (a zero value length)

may be one of the following:

— An ODT reference to a binary scalar (type bits
equal 010)

— An ODT reference to a binary constant scalar
object (type bits equal 010)

— An unsigned immediate binary value (type bits
equal 011)

The operand specification field formats for length
secondary operands with type bits equal to 010 and
011 are the same as those for primary operands with
type bits equal to 000 and 001, respectively.

An exception is signaled if the length value is not
greater than O when a null substring reference is not
allowed or is not greater than or equal to O when a
null substring reference is allowed, or if the sum of
the index and length values describes a string that
cannot be contained in the bytes of the primary
operand. The user can suppress verification of this
valid index value for substrings of character strings by
specifying the appropriate constraint attribute on
program creation.

Base pointer

If the primary operand is a data object, the base
pointer secondary operand must be an ODT reference
to a space pointer data object or a space pointer
machine object (type bits equal 000).

Examples

The following are examples of instruction operands:

Operand Values
(Hex) Meaning

0007 A simple ODT reference to
ODT object 7

0000 A null operand

2000 An unsigned immediate
value of O (type bits equal
001)

3FFF An unsigned immediate
value of 8191 (type bits
equal 001)

A000 A signed immediate value
of O (type bits equal 101)

AFFF A signed immediate value
of 4095 (type bits equal
101)

BFFF A signed immediate value
of minus 1 (type bits equal
101)

Operand Values
(Hex) Meaning

400A2006 A subscript compound
operand reference to array
element 6 of the array
defined in ODT object 10

EO09000800070006 An explicit based substring
compound operand that
disallows a null substring
reference:

« ODT object 9 is a based
string.

« ODT object 8 is a space
pointer.

« ODT object 7 is a binary
data object that provides
the index.

« ODT object 6 is a binary
data object that provides
the length.

600900074006 A substring compound
operand that allows a null
substring reference:

« ODT object 9 is a scalar
string.

« ODT object 7 is a binary
scalar index.

« ODT object 6 is a binary
scalar length.

The format for an instruction operand depends on the
version of the program template.

For program template version number 1, the format for
an instruction operand (primary or secondary) field is as
follows:

Operand Fields (Bits 0-23)

Reserved I

Type Specification

Operand Specification

Introduction 1-11

Type Specification Field: The type specification field
occupies bits 2-7 of the operand. It indicates whether
the operand is an immediate data value, a simple ODT
reference, or a compound ODT reference.

The following illustrations

show the type specifications

allowed for primary operands and secondary operands.

Primary Operand

Secondary Operand

Compound Operand

ODT reference

Number of
Type Secondary
Operand Function Bits Operand Operands 1 2 3
Simple ODT Reference or 000 000 | ODT reference or 0
Null Operand null
Unsigned Immediate Value 000 001 | Unsigned 0
immediate value
Subscript Compound 000 010 | Array ODT 1 Index
Operand reference
Substring Compound 000 011 |String ODT 2 Index Length
Operand reference
Explicit Base Compound 000 100 |Based ODT 1 Base pointer
Operand object reference
Signed Immediate Value 000 101 | Signed 0
immediate value
Explicit Based Subscript 000 110 |Based array ODT 2 Base pointer | Index
Compound Operand reference
Explicit Based Substring 000 111 | Based string 3 Base pointer | Index Length

Operand Function

Type Secondary
Bits Operand

Index

000 000 |ODT reference

000 001 |Unsigned
immediate value

Length (Disallow Nuili
Substring)

000 000 |ODT reference

000 001 |Unsigned
immediate value

Length (Allow Null
Substring)

000 010 |ODT reference

000 011 | Unsigned
immediate value

Base Pointer

000 000 |Pointer ODT
reference

Operand Specification Field: The operand specification
field occupies bits 8-23. It can be an ODT reference or
an immediate value. The ODT reference occupies bits
8-23 of the operand field. It contains a binary integer
value indicating which ODV (object definition vector)
entry in the ODT to use for this operand’s definition.
This value is an index value for the one-dimensional
array ODV, not a byte displacement into the ODT. Thus,
a maximum of 65 526 ODV objects are addressable in
any program. The first ODT reference is 1. If the value
of the operand specification field is O, the operand is
null.

The following primary operands are allowed:
« ODT reference (type bits equal 000 000)

The operand consists of a simple ODT reference. The
value of bits 8-23 of the operand defines an index
into the ODT. The range of this value may be from 1
to the size of the ODT (maximum size of 65 526).

« Null (type bits equal 000 000)

A null operand consists of a O value for bits 8-23 of
the operand. The null operand is used in several
instructions to indicate that a function is not to be
performed or that a default action is to occur.

« Unsigned immediate value (type bits equal 000 001)

The operand is interpreted as an unsigned immediate

data value. Three uses can be made of this form:

— For numeric operands, an unsigned binary value
from O to 8191 can be specified in bits 8-23 of
the operand.

— For character (or byte) operands, a single 8-bit
value can be specified in bits 16-23 of the
operand.

— For branch target operands, an unsigned binary
value of 1 to 8191 can be specified in bits 8-23;
that value is interpreted to contain an instruction
number. A value of 0 is invalid.

« Array ODT reference (type bits equal 000 010)

When the operand type bits are 000 010, the
operand specification (bits 8-23) must be an ODT
reference to an array of scalars, an array of pointers,
a data pointer that defines an array of scalars, or an
instruction definition list. The array indexing operation
is performed on this ODT object. If the referenced
ODT object is an array of data pointers that define
arrays, the indexing operation is performed on the
array of data pointers only (this combination is invalid
on instructions that require scalar operands). If the
ODT object is a data pointer that defines an array,
the indexing operation is performed on the defined
array.

A secondary operand is required to specify the array
index value.

« String ODT reference (type bits equal 000 011)

When the operand type bits are 000 011, the
operand specification (bits 8-23) must be an ODT
reference to a data object, data pointer, or a constant
data object that has the attributes of a character
scalar. The substring operation refers to a portion of
this ODT object.

Two secondary operands are required: one for the
index (position) and one for the length of the
substring.

The length secondary operand field can specify
whether to allow or not allow for a null substring
reference (a length value of zero).

« Based ODT object reference (type bits equal 000 100)
When the operand type bits are 000 100, this
operand specification (bits 8-23) must be an ODT

reference to a data object with based addressability.

A secondary operand is required to specify the
overriding base pointer.

Introduction 1-13

« Signed immediate value (type bits equal 000 101)

The operand is interpreted as a signed immediate
data value. Negative values are represented in twos
complement form in bits 8-23. Bit 8 is the sign bit.
Two uses can be made of this form:

— For numeric operands, a signed value can be
specified in the range of negative 4096 to positive
4095.

— For branch target operands, a signed binary value
of negative 4096 to positive 4095 can be
specified, and it is interpreted as a relative
instruction number.

Based array ODT reference (type bits equal 000 110)

When the operand type bits are 000 110, the
operand specification (bits 8-23) must be an ODT
reference to an array of scalars or an array of
pointers with the array based on a space pointer.
Explicit basing and array indexing are performed for
the operand.

Two secondary operands are required: one for the
base pointer and one for the index value.

Based string ODT reference (type bits equal 000 111)

When the operand type bits are 000 111, the
operand specification must be an ODT reference to
either a character scalar data object based on a space
pointer or a character scalar data pointer based on a
space pointer. Explicit basing and the substring
function are performed for the operand.

Three secondary operands are required: a base
pointer, an index value, and a length value.

The length secondary operand field can specify
whether to allow or not allow for a null substring
reference (a length value of zero).

The following are allowed as secondary operands.
Secondary operands that have the same type value as a
primary operand also have the same format for the
operand specification field. (Note that secondary
operands cannot be compound operands.)

Index

A secondary operand representing an index value

may be one of the following:

— An ODT reference to a binary scalar (type bits
equal 000 000)

— An ODT reference to a binary data pointer that
defines a binary scalar (type bits equal 000 000)

— An ODT reference to a binary constant scalar
object (type bits equal 000 000)

— An unsigned immediate binary value (type bits
equal 000 001)

An exception is signaled if the value of the index is
not greater than O or if it is greater than the size of
the primary operand (number of bytes for strings,
number of elements for arrays, or number of
elements for an instruction definition list). The user
can suppress the verification of this valid index value
for substrings of character strings and elements of
arrays by specifying the appropriate constraint
attribute when the program is created.

Length

A secondary operand representing a length value that

disallows a null substring reference (a length value of

zero) may be one of the following:

— An ODT reference to a binary scalar (type bits
equal 000 000)

— An ODT reference to a binary data pointer that
defines a binary scalar (type bits equal 000 000)

— An ODT reference to a binary constant scalar
object (type bits equal 000 000)

— An unsigned immediate binary value (type bits
equal 000 001)

A secondary operand representing a length value that

allows a null substring reference (a length value of

zero) may be one of the following:

— An ODT reference to a binary scalar (type bits
equal 000 010)

— An ODT reference to a binary constant scalar
object (type bits equal 000 010)

— An unsigned immediate binary value (type bits
equal 000 011)

C

The operand specification field formats for length
secondary operands with type bits equal to 000 010
and 000 011 are the same as those for primary
operands with type bits equal to 000 000 and

000 001, respectively.

An exception is signaled if the value of the length is

not greater than O when a null substring reference is
not allowed or is not greater than or equal to O when

a null substring reference is allowed, or if the index
plus the value of the length is greater than the
number of bytes in the primary operand. The user

can suppress verification of this valid index value for

substrings of character strings by specifying the
appropriate constraint attribute on program creation.

« Base pointer

If the primary operand is a data object, the base

pointer secondary operand must be an ODT reference

to a space pointer data object or a space pointer
machine object (type bits equal 000 000).

Examples

The following are examples of instruction operands:

Operand Values
(Hex)

000007

000000

010000

O11FFF

050000

O50FFF

O5FFFF

Maeaning

A simple ODT reference to
ODT object 7

A null operand

An unsigned immediate
value of O (type bits equal
000 001)

An unsigned immediate
value of 8191 (type bits
equal 000 001)

A signed immediate value
of O (type bits equal
000 101)

A signed immediate value
of 4095 (type bits equal
000 101)

A signed immediate value
of minus 1 (type bits equal
000 101)

Operand Values
(Hex)

02000A010006

A subscript compound
operand reference to array
element 6 of the array
defined in ODT object 10
(type bits for the primary
operand equal 000 010 and
type bits for the secondary
operand equal 000 001)

070009000008000007000006

030009000007020006

An explicit based substring
compound operand that
disallows a null substring
reference:

« ODT object 9 is a based
string.

« ODT object 8 is a space
pointer.

« ODT object 7 is a binary
data object that provides
the index.

« ODT object 6 is a binary
data object that provides
the length.

A substring compound
operand that allows a null
substring reference:

+ ODT object 9 is a
character scalar string.

« ODT object 7 is a binary
scalar index.

« ODT object 6 is a binary
scalar length.

Introduction 1-15

INSTRUCTION FORMAT CONVENTIONS USED IN
THIS MANUAL

The user of this manual must be aware that not every
instruction uses every field described in this section.
Only the information pertaining to the fields that are
used by an instruction is provided for each instruction.

In this manual, each instruction is formatted with the
instruction name followed by its base mnemonic.
Following this is the operation code (op code) in
hexadecimal and the number of operands with their
general meaning.

Example:

ADD NUMERIC (ADDN)

Op Code Operand Operand Operand
(Hex) 1 2 3
1043 Sum Addend 1 Addend 2

This information is followed by the operands and their
syntax. See Definition of the Operand Syntax later in this
chapter for a detailed discussion of the syntax of
instruction operands.

Example:

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Optional Forms: The mnemonics and bit encodings for
the optional instruction operation codes are given along
with a brief description of the options.

The optional forms are short form, round form, branch
form, and indicator form. For a more detailed
description of these forms see Operation Code Field
earlier in this chapter.

Extender: A brief description of the extender options is
given.

Description: A detailed description and a functional
definition of the instruction is given.

Authorization Required: A list of the object authorization
required for each of the operands in the instruction or
for any objects subsequently referenced by the
instruction is given.

Lock Enforcement: Describes the specification of the
lock states that are to be enforced during execution of
the instruction.

The following states of enforcement can be specified for
an instruction:

« Enforcement for materialization

Access to a system object is allowed if no other
process is holding a locked exclusive no read (LENR)
lock on the object. In general, this rule applies to
instructions that access an object for materialization
and retrieval.

« Enforcement for modification

Access to a system object is allowed if no other
process is holding a locked exclusive no read (LENR)
or locked exclusive allow read (LEAR) lock. In
general, this rule applies to instructions that modify or
alter the contents of a system object.

« Enforcement of object control

Access is prohibited if another process is holding any
lock on the system object. In general, this rule
applies to instructions that destroy or rename a
system object.

Resultant Conditions: These are the conditions that can
be set at the end of the standard operation in order to
perform a conditional branch or set a conditional
indicator.

Events
The Events sections contain a list of events and the
corresponding event numbers (in hexadecimal form) that

can be caused by the instruction.

A detailed description of the events is in Chapter 24.

Exceptions

The Exceptions sections contain a list of exceptions that
can be caused by the instruction. (The detailed
description of exceptions is in Chapter 23.) Exceptions
related to specific operands are indicated for each
exception by the Xs under the heading operand. An
entry under the word, Other, indicates that the exception
applies to the instruction but not to a particular operand.

DEFINITION OF THE OPERAND SYNTAX

Syntax consists of the allowable choices for each
instruction operand. The following are the common
terms used in the syntax and the meanings of those
terms:

o Numeric: Numeric attribute of binary, packed decimal,
zoned-decimal, or floating-point

o Character: Character attribute

o Scalar:
— Scalar data object that is not an array (see Note 1)
— Constant scalar object
— Immediate operand (signed or unsigned)
— Element of an array of scalars (see Notes 1 and 2)
— Substring of a character scalar or a character
scalar constant data object (see Notes 1 and 3)

« Data Pointer Defined Scalar:
— A scalar defined by a data pointer
— Substring of a character scalar defined by a data
pointer (see Notes 1 and 3)

« Pointer:
— Pointer data object that is not an array
(see Note 1)
— Element of an array of pointers
(see Notes 1 and 2)
— Space pointer machine object

« Array: An array of scalars or an array of pointers (see
Note 1)

« Variable Scalar: Same as scalar except constant
scalar objects and immediate operand values are
excluded.

« Data Pointer: A pointer data object that is to be used
as a data pointer.

— If the operand is a source operand, the pointer
storage form must contain a data pointer when the
instruction is executed.

~ If the operand is a receiver operand, a data pointer
is constructed by the instruction in the specified
area regardless of its current contents (see Note
4).

« Space Pointer: A space pointer data object or a space
pointer machine object.

« Space Pointer Data Object: A pointer data object that
is to be used as a space pointer.

— If the operand is a source operand, the pointer
storage form must contain a space pointer when
the instruction is executed.

— If the operand is a receiver operand, a space
pointer is constructed by the instruction in the
specified area regardless of its current contents
(see Note 4).

« System Pointer: A pointer data object that is to be
used as a system pointer.

— If the operand is a source operand, the specified
area must contain a system pointer when the
instruction is executed.

— If the operand is a receiver operand, a system
pointer is constructed by the instruction in the
specified area regardless of its current contents
(see Note 4).

» Relative Instruction Number: Signed immediate
operand.

« Instruction Number: Unsigned immediate operand.

« Instruction Pointer: A pointer data object that is to be
used as an instruction pointer.

— If the operand is a source operand, the specified
area must contain an instruction pointer when the
instruction is executed.

— If the operand is a receiver operand, an instruction
pointer is constructed by the instruction in the
specified area regardless of its current contents
(see Notes 4 and 5).

« Instruction Definition List Element: An entry in an
instruction definition list that can be used as a branch
target. A compound subscript operand form must
always be used (see Note 5).

Introduction 1-17

Notes:

1. An instruction operand in which the primary operand
is a scalar or a pointer may also have an operand
form in which an explicit base pointer is specified.

See ODT Object References earlier in this chapter for
more information on compound operands.

2. A compound subscript operand may be used to
select a specific element from an array of scalars or
from an array of pointers.

See ODT Object References earlier in this chapter for
more information on compound operands.

3. A compound substring operand may be used to
define a substring of a character scalar, or a
character constant scalar object.

A compound substring operand that disallows a null
substring reference (a length value of zero) may,
unless precluded by the particular instruction, be
specified for any operand syntactically defined as
allowing a character scalar. A compound substring
operand that allows a null substring reference may be
specified for an operand syntactically defined as
allowing a character scalar only if the instruction
specifies that it is allowed. Whether a compound
substring operand does or does not allow a null
substring reference is controlled through the
specification of the length secondary operand field.

See ODT Object References earlier in this chapter for
more information on compound operands.

4. A compound subscript operand form may be used to
select an element from an array of pointers to act as
the operand for an instruction.

See ODT Object References earlier in this chapter for
more information on compound operands.

5. Compound subscript forms are not allowed on branch
target operands that are used for conditional
branching. Selection of elements of instruction
pointer arrays and elements of instruction definition
lists may, however, be referenced for branch
operands by the Branch instruction.

Alternate choices of operand types and the allowable
variations within each choice are indicated in the syntax
descriptions as shown in the following example.

Operand 1: Numeric variable scalar.
Operand 2: Numeric scalar.

Operand 3: Instruction number, branch point or instruction
pointer.

Operand 1 must be variable scalar. Operands 1 and 2
must be numeric. Operand 3 can be an instruction
number, branch point or instruction pointer.

When a length is specified in the syntax for the
operand, character scalar operands must be at least the
size specified. Any excess beyond that required by the
instruction is ignored.

Scalar operands that are operated on by instructions
requiring 1-byte operands, such as pad values or

indicator operands, can be greater than 1 byte in length;

however, only the first byte of the character string is
used. The remaining bytes are ignored by the
instruction.

5

Chapter 2. Computation and Branching Instructions

This chapter describes all the instructions used for
computation and branching. These instructions are
arranged in alphabetic order. For an alphabetic summary
of all the instructions, see Appendix A. Instruction
Summary.

ADD LOGICAL CHARACTER (ADDLC)

Op Code Operand Operand Operand
(Hex) 1 2 3
1023 Sum Addend 1 Addend 2

Operand 1: Character variable scalar (fixed-length).
Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

Optional Forms

Op Code
Mnemonic (Hex) Form Type
ADDLCS 1123 Short
ADDLCI 1823 Indicator
ADDLCIS 1923 Indicator, Short
ADDLCB 1C23 Branch

ADDLCBS 1D23 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
{second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The unsigned binary value of the addend 1
operand is added to the unsigned binary value of the
addend 2 operand and the result is placed in the sum
operand.

Operands 1, 2, and 3 must be the same length;
otherwise, the Create Program instruction signals an
invalid length exception. The length can be a maximum
of 256 bytes.

The addition operation is performed according to the
rules of algebra. The result value is then placed
(left-adjusted) in the receiver operand with truncating or
padding taking place on the right. The pad value used in
this instruction is a byte value of hex Q0.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions: The logical sum of the character
scalar operands is zero with no carry out of the leftmost
bit position, not-zero with no carry, zero with carry, or
not-zero with carry.

Computation and Branching Instructions 2-1

Events

000C Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands

Exception 12 3

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X
08 Argument/Parameter

01 Parameter reference violation X X X
10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X
1C Machine-Dependent Exception

03 Machine storage limit exceeded
20 Machine Support

02 Machine check

03 Function check
22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X
24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation
05 Invalid op code extender field

06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
09 Invalid branch target operand

OA Invalid operand length X X X
0C Invalid operand ODT reference X X X
0D Reserved bits are not zero X X X

2C Program Execution
04 Branch target invalid

2-2

Other

ADD NUMERIC (ADDN)

Op Code Operand Operand Operan&
{Hex) 1 2 3
1043 Sum Addend 1 Addend 2
Operand 1: Numeric variable scalar.
Operand 2: Numeric scalar.
Operand 3: Numeric scalar.
Optional Forms

Op Code
Mnemonic (Hex) Form Type
ADDNS 1143 Short
ADDNR 1243 Round
ADDNSR 1343 Short, Round
ADDNI 1843 Indicator
ADDNIS 1943 Indicator, Short
ADDNIR 1A43 Indicator, Round
ADDNISR 1B43 Indicator, Short, Round
ADDNB 1C43 Branch
ADDNBS 1D43 Branch, Short
ADDNBR 1E43 Branch, Round
ADDNBSR 1F43 Branch, Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand)}.
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The signed numeric value of the addend 1
operand is added to the numeric value of the addend 2
operand, and the result is placed in the sum operand.

All operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

-

J

Decimal operands used in floating-point operations
cannot contain more than 15 total digit positions.

For a decimal operation, alignment of the assumed
decimal point takes place by padding with O’'s on the
right end of the addend with lesser precision.

Floating~-point addition uses exponent comparison and
significand addition. Alignment of the binary point is
performed, if necessary, by shifting the significand of
the value with the smaller exponent to the right. The
exponent is increased by one for each binary digit
shifted until the two exponents agree.

The operation uses the lengths and the precision of the
source and receiver operands to calculate accurate
results.

The addition operation is performed according to the
rules of algebra.

The result of the operation is copied into the sum
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the sum, aligned at the
assumed decimal point of the sum operand, or both
before being copied. Length adjustment and decimal
point alignment are performed according to the rules of
arithmetic operations outlined in the Functional Concepts
Manual. If nonzero digits are truncated on the left end
of the resultant value, a size exception is signaled.

For the optional round form of the instruction,
specification of a floating-point receiver operand is
invalid.

For fixed-point operations, if nonzero digits are
truncated off the left end of the resultant value, a size
exception is signaled.

For floating-point operations involving a fixed-point
receiver field, if nonzero digits would be truncated off
the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

For a floating-point sum, if the exponent of the resultant
value is either too large or too small to be represented

in the sum field, the floating-point overflow and
floating-point underflow exceptions are signaled,
respectively.

If operands overlap but do not share all of the same
bytes, resuits of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: Positive, negative, or zero—The
algebraic value of the numeric scalar sum operand is
positive, negative, or zero. Unordered-The value
assigned a floating-point sum operand is NaN.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-3

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range
06 Optimized addressability invalid
08 Argument/Parameter
01 Parameter reference violation
0C Computation
02 Decimal data
03 Decimal point alignment
06 Floating-point overflow
07 Floating-point underflow
09 Floating-point invalid operand
OA Size
OC Invalid floating-point conversion
0D Floating-point inexact resuit
10 Damage Encountered
04 System object damage state
44 Partial system object damage
1C Machine-Dependent Exception
03 Machine storage limit exceeded
20 Machine Support
02 Machine check
03 Function check
22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended
24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
2A Program Creation
05 Invalid op code extender field
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
09 Invalid branch target operand
0OC Invalid operand ODT reference
OD Reserved bits are not zero
2C Program Execution
04 Branch target invalid

2-4

Operands

123

X X X X

x
x
x

X X X X
X X X X

x

AND (AND)

Op Code Operand Operand Operand
(Hex) 1 2 3

1093 Receiver Source 1 Source 2

Operand 1: Character variable scalar.
Operand 2: Character scalar.

Operand 3: Character scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
ANDS 1193 Short
ANDI 1893 Indicator
ANDIS 1993 Indicator, Short
ANDB 1C93 Branch
ANDBS 1D93 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
{second source operand).

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean AND operation is performed
on the string values in the source operands. The
resulting string is placed in the receiver operand. The
operands must be character strings that are interpreted
as bit strings.

The length of the operation is equal to the length of the
longer of the two source operands. The shorter of the
two operands is logically padded on the right with hex
00 values. This assigns hex 00 values to the results for
those bytes that correspond to the excess bytes of the
longer operand.

C

The bit values of the result are determined as follows:

Source 1 Source 2 Result
Bit Bit Bit

1 1 1

0 1 0

1 0 0

0 0 0

The result value is then placed (left-adjusted) in the
receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a
byte value of hex 00.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. |f overlapped operands
share all of the same bytes, the results are predictable
wheiflirect addressing is used. If indirect addressing is
useavihat is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1, 2, and 3. The effect of
specifying a null substring reference for either or both
of the source operands is that the result is all zero and
instruction’s resultant condition is zero. When a null
substring reference is specified for the receiver, a result
is not set and the instruction’s resultant condition is
Zero regardless of the values of the source operands.

Resultant Conditions: Zero—The bit value for the bits of
the scalar receiver operand is either all zero or a null
substring reference is specified for the receiver. Not
zero—The bit value for the bits of the scalar receiver
operand is not all zero.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions
Operands

Exception 123 Other
06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X
08 Argument/Parameter

01 Parameter reference violation X X X
10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check X
22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X
24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X
2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X X X

OC Invalid operand ODT reference X X X

0D Reserved bits are not zero X X X X
2C Program Execution

04 Branch target invalid X

Computation and Branching Instructions 2-5

BRANCH (B)

Op Code Operand
(Hex) 1
1011 Branch Target

Operand 1: Instruction number, relative instruction number,
branch point, instruction pointer, or instruction .definition list
element.

Description: Control is unconditionally transferred to the
instruction indicated in the branch target operand. The
instruction number indicated by the branch target
operand must be within the instruction stream
containing the branch instruction.

The branch target may be an element of an array of
instruction pointers or an element of an instruction
definition list. The specific element can be identified by
using a compound subscript operand.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-6

Exceptions

Exception

06

08

10

1C

20

22

24

2A

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

09 Invalid branch target operand
0C Invalid operand ODT reference
OD Reserved bits are not zero
Program Execution

04 Branch target invalid

Operand
1

xX X

X X X X X

x

Other

CIPHER (CIPHER)

Op Code Operand Operand Operand
(Hex) 1 2 3
10EF Receiver Controls Source

Operand 1: Space pointer.
Operand 2: Character(32) variable scalar.

Operand 3: Space pointer.

Description: The cipher operation specified in the
controls (operand 2) is performed on the string value
addressed by the source (operand 3). The result is
placed into the string addressed by the receiver
(pperand 1).

The first character of the source and receiver strings is
addressed by their respective operand pointers. The
data length field of the controls operand specifies the
length of the input source data. The length of data
returned in the receiver is determined from the length of
the source. When the data padding option specifies no,
the length of data returned in the receiver is equal to the
length of the source. When the data padding option
specifies yes, the length of data returned in the receiver
is not equal to the length of the source and is returned
in the data length field of the controls operand. Refer to
the discussion of the data padding option for details on
the amount of data returned in this case.

The controls operand must be a character variable scalar
which specifies information to be used to control the
cipher operation. It must be at least 32 bytes long and
have the following format:

« Controls operand Char(32)
— Function identifier Char(2)
Must be a hex 0001
— Data length Char(2)
— Options Char(1)
— Encrypt or decrypt Bit O
0 = Encrypt
1 = Decrypt
— Use cipher block chaining Bit 1
0= No
1 =Yes

— Data padding Bit 2
0 =No
1= Yes
— Reserved {must be 0) Bit 3-7
— Cryptographic key Char(8)
—Key type Char(1)

Hex 00 = Unencrypted
Hex 01 = Encrypted with master key

— Initial chaining value Char(8)
— Pad character Char(1)
— Reserved Char(9)

The function identifier specifies the function number for
the cipher operation. it must specify a hexadecimal
value of 0001. Any other value causes a template value
invalid exception to be signaled.

Hex 0001 Function identifier value of 1 specifies that
the ANSI (American National Standard
Institute) DEA (data encryption algorithm} is
to be used in conjunction with the
cryptographic key for an encryption or
decryption operation.

The data length field specifies the length of the data
addressed by the source operand. The data length value
must be nonzero, and when the data padding and use
cipher block chaining options specify no, a multiple of 8
bytes. An incorrect data length value results in the
signaling of the template value invalid exception. When
the data padding option specifies yes, the length of the
data placed into the receiver is returned in this field.

The encrypt or decrypt option specifies whether an
encryption or decryption operation is to be performed.

The cipher block chaining option specifies whether or
not cipher block chaining is to be used during the cipher
operation.

When the cipher block chaining option specifies yes for
an encryption operation, the first block of data from the
source operand is exclusive ORed with the initial
chaining value and then encrypted. For subsequent
blocks of data, the prior block of encrypted data from
the receiver operand is exclusive ORed with the current
data block from the source operand and the result is
encrypted.

Computation and Branching Instructions 2-7

When the cipher block chaining option specifies yes for
a decryption operation, the blocks of data from the
source operand, starting with the last and then moving
from right to left, are decrypted and then exclusive
ORed with the prior block of encrypted data from the
source operand to return the original data. When the
first block of data in the source operand is encountered,
it is decrypted and then exclusive ORed with the initial
chaining value to return the original data.

The data padding option specifies whether data padding
is to be used during the cipher operation. When the
data padding option specifies no, padding is not
performed and the data length value must be a muitiple
of 8 bytes. When the data padding option specifies yes,
padding is performed. In this case, the length of the
data returned in the receiver is different from the source
length and is returned in the data length field for both
encrypt and decrypt operations.

When the data padding option specifies yes for an
encryption operation, the data from the source operand
is padded out to the next multiple of 8 bytes; for
example, a source length of 20 is padded to 24, 32 is
padded to 40, and so forth. When the source length is
not a multiple of eight, the final block of source data is
padded with zero to six repetitions of the pad character
until the block length is 7 bytes in length. The eighth
byte is then filled with a 1-byte binary counter
containing the number of pad characters used (a value
from zero to six) and the block is encrypted. When the
source length is a multiple of eight, the final block of
source data is encrypted as is and padding produces an
extra block of data which is the encryption of the value
formed from seven repetitions of the pad character
followed by a 1-byte binary value of seven. In this case,
the receiver is set with this extra eight byte block of
encrypted data even though the source length was a
multiple of eight.

When the data padding option specifies yes for a
decryption operation, the final block of data is decrypted
and the last byte of data, which contains the pad
character count (a value from zero to seven), is removed
and used to determine the number of additional pad
characters to remove from the data. The specified
number of pad characters are then removed from the
source data prior to placing the remaining decrypted
data in the receiver operand.

2-8

The cryptographic key field specifies the key to be used
for the cipher operation. The cryptographic key may be
provided in either an unencrypted or encrypted form
through control of the key type.

The key type field specifies whether the cryptographic
key is being supplied in an unencrypted or encrypted
form. The field must contain a valid key type {one
defined in the template). Any other value causes a
template value invalid exception to be signaled.

The unencrypted key type specifies the cryptographic
key is to be used as is to encrypt or decrypt the source
operand. This value is not valid when the use cipher
block chaining or data padding options are yes.

The encrypted under master key key type specifies the
cryptographic key is to be decrypted using the master
key prior to encrypting or decrypting the source
operand.

The initial chaining value field specifies the 8-byte value
to be used in conjunction with cipher block chaining
when the cipher block chaining option specifies yes. In
this case, the initial chaining value must not be binary
zero or the template value invalid exception is signaled.
When the cipher block option specifies no, this field is
ignored. Refer to the description of the cipher block
chaining option for details on how this value is used in
the cipher operation.

The pad character field specifies the value to be used as
a pad character when the data padding option specifies
yes. When the data padding option specifies no, this
field is ignored.

Specific Properties of ANSI DEA

The encrypt or decrypt operation is performed iteratively
upon 8-byte blocks of the source operand. Each block
is encrypted/decrypted using DEA and the information
specified in the controls and the resulting value is placed
into the receiver at the same relative location as that
from which the source data was accessed from the
source operand. The process is repeated until the data
in the source is exhausted.

Encryption and decryption use the same key, but in a
different key schedule according to the algorithm’s rules.

Valid results are produced for the case of the receiver
and source operands being coincident with one another.
The source data is accessed first, then the result is

stored in the receiver.

Partial overlap between the source and receiver
operands may produce invalid results.

Events

000C Machine resources
0201 Machine auxiliary storage exceeded

000D Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Exceptions

Exception

06

10

1C

20

22

24

2A

2E

32

38

Operands

Addressing

01 Space addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability
invalid

Argument/Parameter

01 Parameter reference violation X X X

Computation

OF Master key not defined or X
invalid

Damage Encountered

X X X X
X X X X
X X X X

44 Partial system object damage X

Machine Dependent Exception

03 Machine storage limit X

exceeded

08 Requested function not valid X

Machine Support

02 Machine check X
03 Function check X

Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X
Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X
Program Creation

06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OA Invalid operand length

0C Invalid operand ODT reference X
0D Reserved bits are not zero X
Resource Control Limit

X X
X X

X X X X X X

02 Process storage limit exceeded X

Scalar Specification

01 Scalar type invalid X X X
Template Specification

01 Template value invalid X

Computation and Branching Instructions

123 Other

2-9

CIPHER KEY (CIPHERKY)

Op Code Operand Operand Operand
(Hex) 1 2 3
10FF Receiver Controls Source

Operand 1: Character(8) variable scalar.
Operand 2: Character(24) variable scalar.

Operand 3: Character(8) scalar.

Description: The cipher key operations specified in the
controls (operand 2) are performed on a source key
value either accessed from the source (operand 3) or
generated by the machine and the result is placed into
the string addressed by the receiver (operand 1).

The source and receiver strings must be at least 8 bytes
in length. Any excess bytes are ignored.

The controls operand must be a character variable scalar
which specifies information to be used to control the
cipher key operation. It must be at least 24 bytes long
and has the following format:

« Controls Operand Char(64)

— Source operation Char(1)
Hex 00 = No decrypt

Hex 01 = Decrypt using master key

Hex 02 = Decrypt using template key

Hex 03 = Generate random key

Hex 04 = Decrypt using master key

variant 1

Hex 05 = Decrypt using master key
variant 2

Hex 06 = Decrypt using master key
variant 3

2-10

— Receiver operation
Hex 00 = Encrypt using master key
Hex 01 = Encrypt using master key

variant 1

Hex 02 = Encrypt using master key
variant 2

Hex 03 = Encrypt using master key
variant 3

Hex 04 = Encrypt using template key
Hex 05 = Verify master key

Hex 06 = Generate PIN

Hex 07 = Verify PIN

Hex 08 = Translate PIN

Hex 09 = No encrypt

— Template key type
Hex 00 = Encrypted using master key
variant 1
Hex 01 = Encrypted using master key
variant 2
Hex 02 = Use variant 1 of template key
Hex 03 = Use variant 2 of template key
Hex 04 = Use variant 3 of template key

— Template key

— PIN operation parameters
PIN validation key
PIN decimalization key
PIN protection key
PIN pad character
PIN check length
PIN offset data
Encrypted PIN

— Reserved

Char(1)

Char(1)

Char(8)

Char(42)
Char(8)
Char(8)
Char(8)
Char(1)
Char(1)
Char(8)
Char(8)

Char(3)

The source operation specifies how the source key is to
be accessed for the cipher key operation to be
performed. It must specify a valid source operation (one
defined in the template). Any other value causes a
template value invalid exception to be signaled.

The no decrypt source operation specifies that the
source key is to be accessed directly from the source
operand with no decryption.

The decrypt using master key source operation specifies
that the source key is to be accessed from the source
operand and decrypted using the master key held
internally in the machine.

The decrypt using template key source operation
specifies that the source key is to be accessed from the
source operand and decrypted using the template key
specified in the controls operand.

The generate random key source operation specifies that
the source key is to be produced by the machine rather
than being accessed from the source operand. In this
case, the machine generates a random key as the
source key for the cipher key operation to be performed.
If the receiver operation is encrypt, using master key
variant 1, 2, or 3, an 8-byte value must be specified in
the source operation to be used as a seed for the
random key generator. If the receiver operation is
encrypt using master key, values contained in the
system are used to generate the random key.

The decrypt using master key variant 1 source operation
specifies that the source key is to be accessed from the
source operand and decrypted using variant 1 of the
master key held internally by the machine.

The decrypt using master key variant 2 source operation
specifies that the source key is to be accessed from the
source operand and decrypted using variant 2 of the
master key held internally by the machine.

The decrypt using master key variant 3 source operation
specifies that the source key is to be accessed from the
source operand and decrypted using variant 3 of the
master key held internally by the machine.

The receiver operation specifies how the receiver key is
to be set for the cipher key operation to be performed.

It must specify a valid receiver operation (one defined in
the template). Any other value causes a template value

invalid exception to be signaled.

The encrypt using master key receiver operation
specifies that the receiver key is to be set by encrypting
the processed source key using the master key held
internally in the machine. This operation is not valid
when the source operation specifies decrypt using
master key or decrypt using template key when template
key is encrypted under master key variant 1. Any invalid
combination will result in a template value invalid
exception being signaled.

The encrypt using master key variant 1 receiver
operation specifies that the receiver key is to be set by
encrypting the processed source key using variant 1 of
the master key held internally in the machine. This
operation is not valid when the source operation
specifies decrypt using master key or decrypt using
template key. Any invalid combination will result in a
template value invalid exception being signaled.

The encrypt using master key variant 2 receiver
operation specifies that the receiver key is to be set by
encrypting the processed source key using variant 2 of
the master key held internally in the machine. This
operation is not valid when the source operation
specifies decrypt using master key or decrypt using
template key. Any invalid combination will result in a
template value invalid exception being signaled.

Computation and Branching Instructions 2-11

The encrypt using master key variant 3 receiver
operation specifies that the receiver key is to be set by
encrypting the processed source key using variant 3 of
the master key held internally in the machine. This
operation is not valid when the source operation
specifies decrypt using master key or decrypt using
template key. Any invalid combination will result in a
template value invalid exception being signaled.

The encrypt using template key receiver operation
specifies that the receiver key is to be set by encrypting
the processed source key using the template key
specified in the controls operand. This operation is not
valid when the source operation specifies no decrypt,
decrypt using template key, or generate random key.
The template key type must be encrypted under master
key variant 2. Any invalid combination will result in a
template value exception being signaled.

The verify master key receiver operation returns the
4-byte verification code for the host master key in the
receiver operand. The source operand is not used.

The generate PIN (personal identification number)
receiver operation returns a plain text intermediate PIN
generated from the data supplied in the PIN operation
parameters and source operand. The PIN validation key
and PIN decimalization data must be specified in the
PIN operations parameters. The validation data must be
specified in the source operand and the source
operation must be no decrypt. Any invalid combination
will result in a template value invalid exception being
signaled.

The verify PIN receiver operation verifies the encrypted
PIN parameter using the data supplied in the PIN
operation parameters and source operand and returns a
hex FO2 for a valid PIN and a hex F1 for an invalid PIN.
All PIN operation parameters must be specified. The
validation data must be specified in the source operand
and the source operand must be no decrypt. Any invalid
combination will result in a template value invalid
exception being signaled.

The translate PIN receiver operation translated the
encrypted PIN specified in the source operand using the
PIN validation key PIN parameter as the input PIN
protection key and the PIN protection key PIN parameter
as the output PIN protection key. The PIN encrypted
under the output PIN protection key is returned. The
PIN validation key and PIN protection key PIN
parameters must be specified. The encrypted PIN to be
translated must be specified in the source operand and
the source operation must be no decrypt. Any invalid
combination will result in a template value invalid
exception being signaled.

The no encrypt receiver operation specifies that the
receiver key is to be set without performing an
encryption operation. This option is only valid when the
source operation is generate random key. Any invalid
combination will result in a template value invalid
exception being signaled.

The template key type specifies the variant of the
master key that was used to encrypt the template key.
It must specify a valid template key type (one defined in
the template). Any other value causes a template value
invalid exception to be signaled. This field is ignored
when the template key is not to be used.

The encrypted under master key variant 1 template key
type specifies that the template key is encrypted under
variant 1 of the master key and must be decrypted prior
to use. This type is not valid when the source operation
specifies decrypt using template key. Any invalid
combination will result in a template value invalid
exception being signaled.

The encrypted under master key variant 2 template key
type specifies that the template key is encrypted under
variant 2 of the master key and must be decrypted prior
to use. This type is not valid when the source operation
specifies decrypt using template key and the receiver
operation specifies encrypt using master key variant 1,
encrypt using master key variant 2, or encrypt using
template key. Any invalid combination will result in a
template value invalid exception being signaled.

The use variant 1 of template key template key type
specifies that variant 1 of the template key is to be
calculated and used for the required operation.

The use variant 2 of template key template key type
specifies that variant 2 of the template key is to be
calculated and used for the required operation.

The use variant 3 of template key template key type
specifies that variant 3 of the template key is to be
calculated and used for the required operation.

The template key field specifies the key to be used for a
cipher key operation which specifies usage of the
template key for an encrypt or decrypt operation. This
field is ignored when the template key is not to be used.

The PIN operation parameters contain the information
needed to perform the generate PIN, verify PIN, or
translate PIN functions.

The PIN validation key is used when a generate PIN,
verify PIN, or translate PIN function is being performed.
For generate PIN and verify PIN, this field contains the
PIN validation key encrypted under variant 3 of the host
master key. For the translate PIN function, this field
contains the input PIN protection key encrypted under
variant 3 of the host master key.

The PIN decimalization data is used when a generate
PIN or verify PIN function is being performed. This data
is used to decimalize enciphered validation data from the
source operand.

The PIN protection key is used when a verify PIN or
translate PIN function is being performed. For verify
PIN, this contains the input PIN protection key
encrypted under variant 3 of the host master key. For
the translate PIN function, this field contains the output
PIN protection key encrypted under variant 1 of the host
master key.

The PIN pad character is used only when a verify PIN
function is being performed. This is the PIN pad
character presented by the application.

The PIN check length is used only when a verify PIN
function is being performed. This is the PIN check
length presented by the application.

The encrypted PIN is used only when a verify PIN
function is being performed. This is the encrypted PIN
presented by the application.

Valid results are produced for the case of the receiver
and source operands being coincident with one another.
The source data is accessed first, then the result is
stored in the receiver.

Partial overlap between the source and receiver
operands may produce invalid results.

All keys processed by this instruction which are
encrypted under variant 1, 2, or 3 of the host master
key must have odd parity in each byte when decrypted
for use. If the parity of any key byte is not odd, a key
parity invalid exception will be signaled.

The following table lists the source operation values and
the valid receiver operation and template key type values
for each source operation.

Valid
Source Receiver Valid Template
Operation Operations Key Types
Hex 00 Hex 00 n/a
Hex 01
Hex 02
Hex 03
Hex 04
Hex 05
Hex 06
Hex 07
Hex 08
Hex 01 Hex 04 Hex 00
Hex 01
Hex 02 Hex 00 Hex 01
Hex 03 Hex 00
Hex 09
Hex 04 Hex 04 Hex 02
Hex 03
Hex 04
Hex 05 Hex 04 Hex 02
Hex 03
Hex 04
Hex 06 Hex 04 Hex 02
Hex 03
Hex 04

Computation and Branching Instructions 2-13

Events

000C Machine resource
0201 Machine auxiliary storage exceeded

000D Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Exceptions

Exception

06

Q7

ocC

10

1C

20

22

24

2A

2E

32

38

Addressing

01 Space addressing violation
02 Boundary alignment violation
03 Range

Operands

123

X
X
X

06 Optimized addressability invalid X

Argument/Parameter
01 Parameter reference violation
Computation

OF Master key not defined or
invalid

10 Weak key not valid

11 Key parity invalid

Damage Encountered

44 Partial system object damage
Machine Dependent Exception

03 Machine storage limit
exceeded

08 Requested function not
available

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid
Program Creation

06 Invalid operand type

07 Invalid operand attribute
08 Invalid operand value range
OA Invalid operand length

0C Invalid operand ODT reference
0D Reserved bits are not zero
Resource Control Limit

02 Process storage limit exceeded
Scalar Specification

01 Scalar type invalid
Template Specification

01 Template value invalid

X

X X X X

x
x

x

X X X X X X

X X X X

Other

COMPARE BYTES LEFT-ADJUSTED
(CMPBLAB or CMPBLAI)

Op Code Operand Operand Operand
(Hex) Extender 1 2 3[4, 5]
1CC2 Branch Compare Compare Branch
options operand 1 operand 2 target
18C2 Indicator Indicator
options target

Operand 1: Numeric scalar or character scalar.
Operand 2: Numeric scalar or character scalar.
Operand 3 [4, 5]:

s Branch Form—Instruction number, relative instruction
number, branch point, or instruction pointer.

« Indicator Form—Numeric variable scalar or character variable
scalar.

Extender: Branch or indicator options.

Either the branch or indicator option is required by the
instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 3 and optional for operands 4 and 5. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: This instruction compares the logical string
values of two left-adjusted compare operands. The
logical string value of the first compare operand is
compared with the logical string value of the second
compare operand (no padding done). Based on the
comparison, the resulting condition is used with the
extender field to:

« Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

« Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either character or
numeric. Any numeric operands are interpreted as
logical character strings.

The compare operands are compared byte by byte, from
left to right with no numeric conversions performed.
The length of the operation is equal to the length of the
shorter of the two compare operands. The comparison
begins with the leftmost byte of each of the compare
operands and proceeds until all bytes of the shorter
compare operand have been compared or until the first
unequal pair of bytes is encountered.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for either or both compare
operands is that the instruction’s resultant condition is
equal.

Resultant Conditions: The scalar first compare operand
has a higher, lower, or equal string value than the
second compare operand.

Computation and Branching Instructions 2-15

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

10

1C

20

22

24

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

06 Optimized addressability
invalid

Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit
exceeded

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

OC Invalid operand ODT reference
0D Reserved bits are not zero
Program Execution

04 Branch target invalid

Operands
1 2 3[4,5]

xX X X X
X X X X
X X X X

xX X
xX X
xX X

x
x
x

Other

J

COMPARE BYTES LEFT-ADJUSTED WITH PAD
(CMPBLAPB or CMPBLAPI)

Op Code Operand Operand Operand
(Hex) Extender 1 2 3
1CC3 Branch Compare Compare Pad
options operand 1 operand 2
18C3 Indicator
options

Operand 1: Numeric scalar or character scalar.
Operand 2: Numeric scalar or character scalar.
Operand 3: Numeric scalar or character scalar.
Operand 4 [5, 6]:

e Branch Form-Instruction number, relative instruction
number, branch point, or instruction pointer.

« [Indicator Form—Numeric variable scalar or character variable
scalar.

Extender: Branch or indicator options.

Either the branch or indicator option is required by the
instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 4 and optional for operands 5 and 6. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: This instruction compares the logical string
values of two left-adjusted compare operands (padded
if needed). The logical string value of the first compare
operand is compared with the logical string value of the
second compare operand. Based on the comparison, the
resulting condition is used with the extender field to:

« Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

« Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either character or
numeric. Any numeric operands aré interpreted as
logical character strings.

Operand
4[5, 6]

Branch

Indicator

The compare operands are compared byte by byte, from
left to right with no numeric conversions being
performed.

The length of the operation is equal to the length of the
longer of the two compare operands. The shorter of the
two compare operands is logically padded on the right
with the 1-byte value indicated in the pad operand. If
the pad operand is more than 1 byte in length, only its
leftmost byte is used. The comparison begins with the
leftmost byte of each of the compare operands and
proceeds until all the bytes of the longer of the two
compare operands have been compared or until the first
unequal pair of bytes is encountered. All excess bytes in
the longer of the two compare operands are compared
to the pad value.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for one of the compare
operands is that the other compare operand is compared
with an equal length string of pad character values.
When a null substring reference is specified for both
compare operands, the resultant condition is equal.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for operand 3.

Resultant Conditions: The scalar first compare operand
has a higher, lower, or equal string value than the
second compare operand.

Computation and Branching Instructions 2-17

Events Exceptions

000C Machine resource Operands J
0201 Machine auxiliary storage threshold exceeded Exception 1 2 3 4[5,6] Other
0010 Process 06 Addressing
0701 Maximum processor time exceeded 01 Space addressing violation X X X X
0801 Process storage limit exceeded 02 Boundary alignment X X X X
03 Range XX X X
0016 Machine observation 06 Optimized addressability X X X X
0101 Instruction reference invalid
- 08 Argument/Parameter
0017 Damage set 01 Pprarpeter reference XX X X
0401 System object damage set violation
0801 Partial system object damage set 10 Damage Encountered
04 System object damage X X X X X
state
44 Partial system object X X X X X
damage
1C Machine-Dependent Exception
03 Machine storage limit X
exceeded
20 Machine Support
02 Machine check X
03 Function check X
22 Object Access
01 Object not found X X X X
02 Object destroyed X X X X
03 Object suspended X X X X ;
24 Pointer Specification J
01 Pointer does not exist X X X X
02 Pointer type invalid X X X X
2A Program Creation
05 Invalid op code extender X
field
06 Invalid operand type X X X X
07 Invalid operand attribute X X X X
08 Invalid operand value range X X X X
09 Invalid branch target X
operand
OA Invalid operand length X X
0C Invalid operand ODT X X X X
reference
0D Reserved bits are not zero X X X X X
2C Program Execution
04 Branch target invalid X

COMPARE BYTES RIGHT-ADJUSTED
(CMPBRAB or CMPBRAI)

Op Code Operand Operand Operand
(Hex) Extender 1 2 3[4, 5]
1CC6 Branch Compare Compare Branch
options operand 1 operand 2 target
18C6 Indicator Indicator
options target

Operand 1: Numeric scalar or character scalar.
Operand 2: Numeric scalar or character scalar.
Operand 3 [4, 5]:

« Branch Form—Instruction number, relative instruction
number, branch point, or instruction pointer.

« Indicator Form—Numeric variable scalar or character variable
scalar.

Extender: Branch or indicator options.

Either the branch or the indicator option is required by
the instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 3 and optional for operands 4 and 5. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: This instruction compares the logical string
values of two right-adjusted compare operands. The
logical string value of the first compare operand is
compared with the logical string value of the second
compare operand (no padding done). Based on the
comparison, the resulting condition is used with the
extender field to:

« Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

« Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either string or numeric.
Any numeric operands are interpreted as logical
character strings.

The compare operands are compared byte by byte, from
left to right with no numeric conversions performed.
The length of the operation is equal to the length of the
shorter of the two compare operands. The comparison
begins with the leftmost byte of each of the compare
operands and proceeds until all bytes of the shorter
compare operand have been compared or until the first
unequal pair of bytes is encountered.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for either or both compare
operands is that the instruction’s resultant condition is
equal.

Resultant Conditions: The scalar first compare operand
has a higher, lower, or equal string value than the
second compare operand.

Computation and Branching Instructions 2-19

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-20

Exceptions

Exception

06

08

10

1C

20

22

24

2A

2C

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability
invalid

Argument/Parameter

01 Parameter reference violation

Damage Encountered

04 System object damage state

44 Partial system object damage

Machine-Dependent Exception

03 Machine storage limit
exceeded

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

OC Invalid operand ODT reference
OD Reserved bits are not zero
Program Execution

04 Branch target invalid

Operands
1 2 3[4,5]

X X X X
X X X X
X X X X

x X
x X
xX X

x
x
x

Other J

COMPARE BYTES RIGHT-ADJUSTED WITH PAD
(CMPBRAPB or CMPBRAPI)

Op Code Operand Operand Operand
(Hex) Extender 1 2 3
1CC7 Branch Compare = Compare Pad
options operand 1 operand 2
18C7 Indicator
options

Operand 1: Numeric scalar or character scalar.
Operand 2: Numeric scalar or character scalar.
Operand 3: Numeric scalar or character scalar.
Operand 4 [5, 6]:

« Branch Form—Instruction number, relative instruction
number, branch point, or instruction pointer.

« Indicator Form—Numeric variable scalar or character variable
scalar.

Extender: Branch or indicator options.

Either the branch or the indicator option is required by
the instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 4 and optional for operands 5 and 6. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: This instruction compares the logical string
values of the right-adjusted compare operands (padded
if needed). The logical string value of the first compare
operand is compared with the logical string value of the
second compare operand. Based on the comparison, the
resulting condition is used with the extender field to:

« Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

« Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either character or
numeric. Any numeric operands are interpreted as
logical character strings.

Operand
4[5, 6]

Branch
target

Indicator
target

The compare operands are compared byte by byte, from
left to right with no numeric conversions performed.

The length of the operation is equal to the length of the
longer of the two compare operands. The shorter of the
two compare operands is logically padded on the left
with the 1-byte value indicated in the pad operand. If
the pad operand is more than 1 byte in length, only its
leftmost byte is used. The comparison begins with the
leftmost byte of the longer of the compare operands.
Any excess bytes (on the left) in the longer compare
operand are compared with the pad value. All other
bytes are compared with the corresponding bytes in the
other compare operand. The operation proceeds until all
bytes in the longer operand are compared or until the
first unequal pair of bytes is encountered.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for one of the compare
operands is that the other compare operand is compared
with an equal length string of pad character values.
When a null substring reference is specified for both
compare operands, the instruction’s resultant condition
is equal.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for operand 3.

Resultant Conditions: The scalar first compare operand
has a higher, lower, or equal string value than the
second compare operand.

Computation and Branching Instructions 2-21

Events Exceptions

000C Machine resource

Operands
0201 Machine auxiliary storage threshold exceeded Exception 1 2 3 4[5 6] Other
0010 Process 06 Addressing
0701 Maximum processor time exceeded 01 Space addressing violation X X X X
0801 Process storage limit exceeded 02 Boundary alignment X X XX
03 Range X X X X
0016 Machine observation 06 Optimized addressability X X X X
0101 Instruction reference invalid
08 Argument/Parameter
0017 Damage set 01 lfaran:reter reference X X X X
0401 System object damage set violation
0801 Partial system object damage set 10 Damage Encountered
04 System object damage X X X X X
state
44 Partial system object X X X X X
damage
1C Machine-Dependent Exception
03 Machine storage limit X
exceeded
20 Machine Support
02 Machine check X
03 Function check X
22 Object Access
01 Object not found X X X X
02 Object destroyed X X X X
03 Object suspended X X X X
24 Pointer Specification
01 Pointer does not exist X X X X
02 Pointer type invalid X X X X
2A Program Creation
05 Invalid op code extender X
field
06 Invalid operand type X X X X
07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

09 Invalid branch target X
operand

OA Invalid operand length

0C Invalid operand ODT
reference

0D Reserved bits are not zero X X X X X

2C Program Execution
04 Branch target invalid X X

xX X
xX X
x
x

2-22

COMPARE NUMERIC VALUE
(CMPNVB or CMPNVI)

Op Code Operand Operand Operand
(Hex) Extender 1 2 34,5, 6]
1C46 Branch Compare Compare Branch
options operand 1 operand 2 target
1846 Indicator Indicator
options target

Operand 1: Numeric scalar.
Operand 2: Numeric scalar.
Operand 3 [4, 5, 6]:

o Branch Form—Instruction number, relative instruction
number, branch point, or instruction pointer.

« Indicator Form—Numeric variable scalar or character variable
scalar.

Extender: Branch or indicator options.

Either the branch or indicator option is required by the
instruction. The extender field is required along with
from one to four branch targets (for branch option) or
one to four indicator operands (for indicator option). The
branch or indicator operands are required for operand 3
and optional for operands 4 and 5. See Chapter 1.
Introduction for the bit encoding of the extender field
and the allowed syntax of the branch and indicator
operands.

Description: The signed numeric value of the first

compare operand is compared with the numeric value of
the second compare operand. Based on the comparison,
the resulting condition is used with the extender field to:

« Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

« Assign a value to each of the indicator operands
(indicator form).

Both the compare operands must be numeric with any
implicit conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual. For a decimal operation, alignment of
the assumed decimal point takes place by padding with
0’s on the right end of the compare operand with lesser
precision.

Decimal operands used in floating-point operations
cannot contain more than 15 total digit positions.

The length of the operation is equal to the length of the
longer of the two compare operands. The shorter of the
two operands is adjusted to the length of the longer
operand according to the rules of arithmetic operations
outlined in the Functional Concepts Manual.

Floating-point comparisons use exponent comparison
and significand comparison. For a denormalized
floating-point number, the comparison is performed as
if the denormalized number had first been normalized.

For floating-point, two values compare unordered when
at least one comparand is NaN. Every NaN compares
unordered with everything including another NaN value.

Floating-point comparisons ignore the sign of zero.
Positive zero always compares equal with negative zero.

A floating-point invalid operand exception is signaled
when two floating-point values compare unordered and
no branch or indicator option exists for any of the
unordered, negation of unordered equal, or negation of
equal resultant conditions.

When a comparison is made between a floating-point
compare operand and a fixed-point decimal compare
operand that contains fractional digit positions, a
floating-point inexact result exception may be signaled
because of the implicit conversion from decimal to
floating-point.

Computation and Branching Instructions 2-23

Resultant Conditions: High, low, or equal-The first Exceptions

compare operand has a higher, lower, or equal numeric

value than the second compare operand. Operands J
Unordered—The first compare operand is unordered Exception 1 2 3[4.5] Other

compared to the second compare operand.
’ 06 Addressing

01 Space addressing violation X X X
Events 02 Boundary alignment X X X
03 Range X X X
000C Machine resource 06 Optimized addressability X X X
invalid
0201 Machin ili |
20 chine auxiliary storage threshold exceeded 08 Argument/Parameter
0010 Process 01 Parameter reference violation X X X
. . 0C Computation
0701 Maximum processor time exceeded .
0801 Process storage limit exceeded 02 Decimal data X X
9 03 Decimal point alignment X X
0016 Machine observation 09 Floating-~point invalid operand X X
0D Floating-point inexact result X

0101 Instruction refer
uction reference 10 Damage Encountered

0017 Damage set 04 Syst.em object da'mage state X X X X
. 44 Partial system object damage X X X X
0401 System object damage set) .
0801 Partial system object damage set 1C Machine-Dependent Exception
03 Machine storage limit X
exceeded
20 Machine Support
02 Machine check X
03 Function check X
22 Object Access .
01 Object not found X X X J
02 Object destroyed X X X
03 Object suspended X X X
24 Pointer Specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X
2A Program Creation
05 Invalid op code extender field X
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
09 Invalid branch target operand X
0C Invalid operand ODT reference X X X
0D Reserved bits are not zero X X X X
2C Program Execution
04 Branch target invalid X

2-24

COMPUTE ARRAY INDEX (CAl)

Op Code Operand Operand Operand Operand
(Hex) 1 2 3 4
1044 Array index Subscript A Subscript B Dimension

Operand 1: Binary(2) variable scalar.
Operand 2: Binary(2) scalar.
Operand 3: Binary(2) scalar.

Operand 4: Binary(2) constant scalar object or immediate
operand.

Description: This instruction provides the ability to
reduce multidimensional array subscript values into a
single index value which can then be used in referencing
the single-dimensional arrays of the system. This index
value is computed by performing the following
arithmetic operation on the indicated operands.

Array Index = Subscript A + ((Subscript B-1) X

Dimension)

The signed numeric value of the subscript B operand is
decreased by 1 and multiplied by the numeric value of
the dimension operand. The result of this multiplication
is added to the subscript A operand and the sum is
placed in the array index operand.

All the operands must be binary with any implicit
conversions occurring according to the rules of
arithmetic operations. The usual rules of algebra are
observed concerning the subtraction, addition, and
multiplication of operands.

This instruction provides for mapping multidimensional
arrays to single-dimensional arrays. The elements of an
array with the dimensions (d1, d2, d3, ..., dn) can be
defined as a single-dimensional array with
d1*d2*d3*...*dn elements. To reference a specific
element of the multidimensional array with subscripts
(s1,s2,s3,...sn), it is necessary to convert the multiple
subscripts to a single subscript for use in the
single-dimensional System/38 array. This single
subscript can be computed using the following:

s1+((s2-1)*d1)+(s3-1)*d1*d2)+...+((sn-1)*d*d2*d3*...*dm),
where m=n-1

The CAl instruction is used to form a single index value
from two subscript values. To reduce N subscript values
into a single index value, N-1 uses of this instruction
are necessary.

Assume that S1, S2, and S3 are three subscript values
and that D1 is the size of one dimension, D2 is the size
of the second dimension, and the D1D2 is the product
of D1 and D2. The following two uses of this
instruction reduce the three subscripts to a single
subscript.

CAIl INDEX, S1, S2, D1 Calculates s1+(s2-1)*d1
CAIl INDEX, INDEX, S3, D1D2 Calculatess1+(s2-1)
*d1+(s3-1)*d2*d1

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-25

Exceptions

Exception

06

08

10

1Cc

20

22

24

2A

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability
invalid

Argument/Parameter

01 Parameter reference violation

Damage Encountered

04 System object damage state

44 Partial system object damage

Machine-Dependent Exception

03 Machine storage limit
exceeded

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended
Pointer Specification

01 Pointer does not exist
02 Pointer type invalid
Program Creation

06 Invalid operand type

07 Invalid operand attribute
08 Invalid operand value range

OC Invalid operand ODT reference

OD Reserved bits are not zero

2-26

Operands
1234

X X X X
X X X X
X X X X
X X X X

x
x
x
x

x
x
x
x

X X X X X
X X X X X
X X X X X
X X X X X

COMPUTE MATH FUNCTION USING ONE INPUT
VALUE (CMF1)

Op Code Operand Operand Operand
(Hex) 1 2 3
100B Receiver Controls Source
Operand 1: Numeric variable scalar.
Operand 2: Character(2) scalar.
Operand 3: Numeric scalar.
Optional Forms

Op Code
Mnemonic (Hex) Form Type
CMF1I 180B Indicator
CMF1B 1C0B Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The mathematical function, indicated by the
controls operand, is performed on the source operand
value and the result is placed in the receiver operand.

The calculation is always done in floating-point.
The source and receiver operands must both be

specified as floating-point with the same length (4 bytes
for short format or 8 bytes for long format).

The controls operand must be a character scalar that
specifies which mathematical function is to be
performed. It must be at least 2 bytes in length and has
the following format:

« Controls operand Char(2)

— Hex 0001 = Sine

— Hex 0002 = Arc sine

— Hex 0003 = Cosine

— Hex 0004 = Arc cosine

— Hex 0005 = Tangent

— Hex 0006 = Arc tangent

— Hex 0007 = Cotangent

— Hex 0010 = Exponential function

— Hex 0011 = Logarithm based e
(natural logarithm)

— Hex 0012 = Sine hyperbolic

— Hex 0013 = Cosine hyperbolic

— Hex 0014 = Tangent hyperbolic

— Hex 0015 = Arc tangent hyperbolic

— Hex 0020 = Square root

— All other values are reserved

The controls operand mathematical functions are as
follows:

« Hex 0001-Sine
The sine of the numeric value of the source operand,
whose value is considered to be in radians, is
computed and placed in the receiver operand.
The result is in the range:

-1 < SIN(x) < 1

« Hex 0002—-Arc sine
The arc sine of the numeric value of the source
operand is computed and the result (in radians) is
placed in the receiver operand.

The result is in the range:

-pi/2 < ASIN(x) < +pi/2

Hex 0003-Cosine
The cosine of the numeric value of the source
operand, whose value is considered to be in radians,
is computed and placed in the receiver operand.
The result is in the range:

-1 < COS(x) < 1
Hex 0004—Arc cosine
The arc cosine of the numeric value of the source
operand is computed and the result (in radians) is
placed in the receiver operand.
The result is in the range:

0 < ACOS(x) < pi
Hex 0005-Tangent
The tangent of the source operand, whose value is
considered to be in radians, is computed and the
result is placed in the receiver operand.
The result is in the range:

-infinity < TAN(x) < +infinity
Hex 0006—Arc tangent
The arc tangent of the source operand is computed
and the result (in radians) is placed in the receiver
operand.
The result is in the range:

-pi/2 < ATAN(x) < pi/2
Hex 0007—-Cotangent
The cotangent of the source operand, whose value is
considered to be in radians, is computed and the
result is placed in the receiver operand.

The result is in the range:

-infinity < COT(x) < +infinity

Computation and Branching Instructions 2-27

« Hex 0010-Exponential function « Hex 0015—-Arc tangent hyperbolic

The computation e power (source operand) is The inverse of the tangent hyperbolic of the numeric
performed and the result is placed in the receiver value of the source operand is computed and the
operand. result (in radians) is placed in the receiver operand.
The result is in the range: The result is in the range:
0 < EXP(x) < +infinity -infinity € ATANH(x) < +infinity
« Hex 0011-Logarithm based e (natural logarithm) « Hex 0020-Square root
The natural logarithm of the source operand is The square root of the numeric value of the source
computed and the result is placed in the receiver operand is computed and placed in the receiver
operand. operand.
The result is in the range: The result is in the range:
-infinity < LN(x) < +infinity 0 < SQRT(x) < +infinity
« Hex 0012-Sine hyperbolic Null substring references (a length value of zero) cannot

be specified for this instruction.
The sine hyperbolic of the numeric value of the
source operand is computed and the result (in
radians) is placed in the receiver operand.
The result is in the range:
-infinity < SINH(x) < +infinity
« Hex 0013-Cosine hyperbolic
The cosine hyperbolic of the numeric value of the
source operand is computed and the result (in
radians) is placed in the receiver operand.
The result is in the range:
+1 < COSH(x) < +infinity
+ Hex 0014-Tangent hyperbolic
The tangent hyperbolic of the numeric value of the
source operand is computed and the result (in
radians) is placed in the receiver operand.

The result is in the range:

+1 < TANH(x) < +1

2-28

The following chart shows some special cases for
certain arguments (X) of the different mathematical
functions in projective and affine mode.

X |Masked |Unmasked Maximum | Minimum

Functio NaN NaN +infinity |-infinity |+0 0 Value Value Other
Sine g Ale) A(f) Alf) +0 -0 Al1,f) A(1,) B(3)
Arc sine g Ale) Alf) Alf) +0 -0 A(6.f) Al6.f) -
Cosine g Afe) Alf) Alf) +1 +1 A(1,1) A(1.9) B(3)
Arc cosine |g Ale) A(f) Alf) +pi/2 |+pi/2 |Al6,f) A(6.f) -
Tangent g Ale) A(f) A(f) +0 -0 A(1,1) A(1,1) B(3)
Arc tangent |g Ale) +pi/2 -pi/2 +0 -0 - - -
Cotangent |g Ale) Alf) Alf) +inf -inf Al1,1) A(1,1) B(3)
Exponent Ale) +inf +0 +1 +1 C(4,a) D(5,b) -

| Logarithm _|g Ale) +inf Alf) -inf -inf = - A(2,f)
Sine Ale) +inf -inf +0 -0 - - -
hyperbolic
Cosine g Ale) +inf +inf +1 +1 - - -
hyperbolic
Tangent g Ale) +1 -1 +0 -0 - - -
hyperbolic
Arc tangent |g Ale) Alf) Alf) +0 -0 A(6,f) A(6,f) -
hyperbolic
Square root |g Ale) +inf A(f) +0 -0 - - A(2,f)

Capital letters in the chart indicate the exceptions, small
letters indicate the returned results, and Arabic numerals
indicate the limits of the arguments (X) as defined in the
following lists:

A = Floating-point invalid operand (no result stored if
unmasked; if masked, occurrence bit is set)

B = Floating-point inexact result (result is stored
whether or not exception is masked)

C = Floating-point overflow (no result is stored if
unmasked; if masked, occurrence bit is set)

D = Floating-point underflow (no result is stored if
unmasked; occurrence bit is always set)

1= | pi*2%50 | = Hex 432921FB54442D18

2= Argument is in the range: -inf < x < -0

3= | pi*2**26 | = Hex 41A921FB54442D18

a = Result follows the rules that depend on round mode
= Result is +0 or a denormalized value

¢ = Result is +infinity

d = Result is -infinity

e = Result is the masked form of the input NaN
= Result is the system default masked NaN

g = Result is the input NaN

inf = Result is infinity

4 = 1n(2**1023) = Hex 40862E42FEFA39EF
5= 1n(2**-1021.4555) = Hex C086200000000000
6 = Argument is in the range: -1 < x € +1

Computation and Branching Instructions 2-29

The following chart provides accuracy data for the
mathematical functions that can be invoked by this

instruction.
Accuracy Data
Function Sample Selection Relative Error (e) Absolute Error (E)
Name A Range of x D MAX(e) SD(e) MAX(E) SD(E)
Arc cosine |9 0<=x<=3.14 U 8.26 * 10**-14 [2.11 * 10**-15
Arc sine 10/ -157<=x<=157 |U [1.02 * 10**-13 [2.66 * 10**-15
Arc tangent |1 -pi/2 < x < pi/2 1 3.33 * 10**-16 |9.57 * 10**-17
Arc tangent |14 -3<=x<=3 U 1.06 * 10**-14 [1.79 * 10**-15
hyperbolic
Cosine - {See Sine below) - = - - -
Cosine (See Sine Hyperbolic
hyperbolic below)
Cotangent |11 -10 <= x <= 100 U (483 * 10**-16 (1.48 * 10**-16
.000001 <= x <= ,001 U (436 * 10**-16 (1.49 * 10**-16
4000 <= x <= 4000000 |U |5.72 * 10**-16 (1.46 * 10**-16
Exponential |2 -100<=x<=300 [U |5.70 * 10**-14 [1.13 * 10**-14
Natural 3 05 <=x<=1.5 U 2.77 * 10**-16__|8.01 * 10**-17
logarithm |4 |-100 <= x <= 700 E [2.17 * 10**-16 |7.37 * 10**-17
Sine -10 <= x <= 100 U 2.22 * 10**-16 _|1.31 * 10**-16
cosine 5 [.000001 <= x <= .001 U 2.22 * 10**-16_|1.56 * 10**-16
4000 <= x <= 4000000 U 2.22 * 10**-16 |1.28 * 10**-16
-10 <= x <= 100 U 3.33 * 10**-16 [8.39 * 10**-17
6 |.000001 <= x <= .001 U 4.33 * 10**-19 [1.28 * 10**-19
4000 <= x <= 4000000 U 3.33 * 10**-16 [8.17 * 10**-17
Sine/cosine [12]-100 <= x <= 300 U (6.31 * 10**-16 [1.97 * 10**-16
hyperbolic
Square root |7 |-100 <= x <= 700 E |14.13 * 10**-16 [1.27 * 10**-16
Tangent -10 <= x <= 100 U 459 * 10**-16 [1.54 * 10**-16
8 [.000001 <= x <= .001 U (442 * 10**-16 [1.44 * 10**-16 |3.25 * 10**-19 (8.06 * 10**-20
4000 <= x <= 4000000 (U 4.77 * 10**-16 [1.43 * 10**-16
Tangent 13(-100 <= x <= 300 U [2.22 * 10**-15 [6.26 * 10**-17 |2.22 * 10**-16 |3.64 * 10**-17
hyperbolic

CoOoNDO A WN =

14.

and +pi/2.

Algorithm Notes:

f(x) = x, and g(x) = ATAN(TAN(x)).
f(x) = e**x, and g(x) = e**(1n(e**x)).
f(x) = 1n(x), and g(x) = 1n(e**(1n(x))).
f(x) = x, and g(x) = 1n(e**x).

Sum of squares algorithm. f(x) = 1, and g(x) = SIN(x))**2 + (COS(x))**2.
Double angle algorithm. f(x) - SIN(2x), and g(x) = 2*(SIN(x)*COS(x)).
f(x) = e(**x, and g(x) = (SQR(e**x))**2.

f(x) = TAN(x), and g(x) = SIN(x) / COS(x).

f(x) = x, and g(x) = ACOS(COSI(x)).
f(x) = x, and g(x) = ASIN(SIN(x)).
11. f(x) = COT(x), and g(x) = COS(x) / SIN(x).

12. f(x) = SINH(2x), and g(x) = 2*(SINH(x)*COSH(x)).
. f(x) = TANH(x), and g(x) = SINH(x) / COSH(x).
f(x) = x, and g(x) = ATANH(TANH(x)).

Distribution Note: The sample input arguments were tangents of numbers, x, uniformly distributed between -pi/2

2-30

The vertical columns in the accuracy data chart have the
following meanings:

L, « Function Name: This column identifies the principal
mathematical functions evaluated with entries
arranged in alphabetical order by function name.

« Sample Selection: This column identifies the selection
of samples taken for a particular math function
through the following subcolumns:

— A: identifies the algorithm used against the
argument, x, to gather the accuracy samples. The
numbers in this column refer to notes describing
the functions, f(x) and g(x), which were calculated
to test for the anticipated relation where f(x)
should equal g(x). An accuracy sample then, is an
evaluation of the degree to which this relation held
true. The algorithm used to sample the arctangent
function, for example, defines g(x) to first calculate
the tangent of x to provide an appropriate
distribution of input arguments for the arctangent
function. Since f(x) is defined simply as the value
of x, the relation to be evaluated is then
x=ARCTAN(TAN(x)). This type of algorithm, where
a function and its inverse are used in tandem, is
the usual type employed to provide the appropriate
comparison values for the evaluation.

— Range of x: gives the range of x used to obtain

\’ the accuracy samples. The test values for x are
uniformly distributed over this range. It should be
noted that x is not always the direct input
argument to the function being tested; it is
sometimes desirable to distribute the input
arguments in a nonuniform fashion to provide a
more complete test of the function (see column D
below). For each function, accuracy data is given
for one or more segments within the valid range of
x. In each case, the numbers given are the most
meaningful to the function and range under
consideration.

— D: identifies the distribution of arguments input to
the particular function being sampled. The letter E
indicates an exponential distribution. The letter U
indicates a uniform distribution. A number refers
to a note providing detailed information regarding
the distribution.

o Accuracy Data: The maximum relative error and

standard deviation of the relative error are generally
useful and revealing statistics; however, they are
useless for the range of a function where its value
becomes zero. This is because the slightest error in
the argument can cause an unpredictable fluctuation
in the magnitude of the answer. When a small
argument error would have this effect, the maximum
absolute error and standard deviation of the absolute
error are given for the range.
— Relative Error (e): The maximum relative error and
standard deviation (root mean square) of the
relative error are defined:

MAX(e):

= MAX(ABSI(f(x) - g(x)) / f(x)))

where: MAX selects the largest of its
arguments and ABS takes the absolute value of
its argument.

SD(e):

= SQR((1/N) SUMSQ((f(x) - gix)) / f(x)))
where: SQR takes the square root of its
argument and SUMSQ takes the summation of

the squares of its arguments over all of the test
cases.

— Absolute Error (E): The maximum absolute error

produced during the testing and the standard
deviation (root mean square) of the absolute error
are:

MAX(E):

= MAX(ABS(f(x) - g(x)))

where: the operators are those defined above.

SD(E):

= SQR((1/N) SUMSQ(f(x) - gix)))

where: the operators are those defined above.

Resultant Conditions: Positive, negative, or zero—The
algebraic value of the receiver operand is positive,
negative, or zero. Unordered—The value assigned to the
floating-point result is NaN.

Computation and Branching Instructions 2-31

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

000D Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation
0201 Object location reference

0017 Damage set
0801 Partial system object damage set

2-32

Exceptions

Exception

06

08

oc

10

1Cc

20

22

24

2A

2C

2E

32

Addressing

01 Space addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability
invalid

Argument/Parameter

01 Parameter reference violation

Computation

06 Floating-point overflow

07 Floating-point underflow

09 Floating-point invalid operand

0D Floating-point inexact result

Damage Encountered

44 Partial system object damage

Machine-Dependent Exception

03 Machine storage limit exceeded

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op-code extender field

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

09 Invalid branch target operand

0OC Invalid operand ODT reference

0D Reserved bits are not zero

Program Execution

04 invalid branch target

Resource Control Limit

02 Process storage limit exceeded

Scalar Specification

01 Scalar type invalid

03 Scalar value invalid

Operands
12 3 Other ’
X X X
X X X
X X X
X X X
X X X
X
X
X
X
X
X
X
X
X X X
X X X
X X X
X X X
X
X X X
X X X
X X X
X
X X X
X X X X
X
X
X X X
X

COMPUTE MATH FUNCTION USING TWO INPUT
VALUES (CMF2)

Op Code Operand Operand Operand Operand
(Hex) 1 2 3 4

100C Receiver Controls Source 1 Source 2

Operand 1: Numeric variable scalar.
Operand 2: Character(2) scalar.
Operand 3: Numeric scalar.

Operand 4: Numeric scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
CMF2| 180C
CMF2B 1CoC

Indicator
Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The mathematical function, indicated by the
controls operand, is performed on the source operand
values and the result is placed in the receiver operand.

The calculation is always done in floating-point.

The source and receiver operands must both be
specified as floating-point with the same length (4 bytes
for short format or 8 bytes for long format).

The controls operand must be a character scalar that
specifies which mathematical function is to be
performed. It must be at least 2 bytes in length and
have the following format:

« Controls operand
— Hex 0001= Power (x to the y)
— All other values are reserved

Char(2)

The computation x power y, where x is the first source
operand and y is the second source operand, is
performed and the result is placed in the receiver
operand.

Substring operand references that allow for a null

substring reference (a length value of zero) may not be
specified for this instruction.

Computation and Branching Instructions 2-33

The following chart shows some special cases for
certain arguments of the power function (x**y). Within
the chart, the capitalized letters X and Y refer to the
absolute value of the arguments x and y; that is,

X =Ix| and Y = |yl.

y —inf y<0, |y<O0| y<O |[-1| -1/2 |+0| +1/2 +1 y>0 | y>0 | y>0 +inf [Masked{ Un-
y=2n+1|y=2n| real or y=2n+1| y=2n real NaN |masked
X -0 NaN
+inf +0 +0 +0 +0 | +0| 40 |+1}| +inf +inf +inf +inf | +inf +inf b A(c)
+1 [+ 41 [+1] #1
x>1 +0 —_— +1{SQRT(x) X x*y x**y x**y +inf b Alc)
x**Y | x**Y| x**Y | x [SQRT(x)
x=+1 +1 +1 +1 +1 | +1] +1 [+1| +1 +1 +1 +1 +1 +1 b A(c)
+1 +1 +1 [+1 +1
0<x<1 +inf _ + 1|SQRT(x) X x**y x**y x**y +0 b Alc)
x**Y [x**Y | x**Y | x |SQRT(x)
x=+0 E(f) E(f) E(f) E(H |E(F| EFH |+1| +0 +0 +0 +0 +0 +0 b Alc)
x=—0 E(f) E(g) E(f) E(fl |E(g)| E(g |+1 -0 -0 -0 +0 +0 +0 b A(c)
-1 +1 -1
O>x>-1| Afa) A@@ | — | A(a |+1[A(a) X X"y | X**y | A(a) Ala) b Alc)
Xeey | X**Y X
x=—1 Ala) -1 +1 Afa) | —-1| Afa [|+1] A(a) -1 -1 +1 A(a) Afa) b A(c)
-1 +1 -1
x<-1 A(a) Afa) | —| Afa) [+1| A(a) X —-X*"y [X"y | A(a) Ala) b Alc)
X*eY | xeey X
x=—inf | A(a) -0 +0| A(@) |-0| A(@@ |+1| A(a) —inf —inf +inf | A(a) Ala) b A(c)
Masked
NaN b b b b b b b b b b b b b d Ale)
Un-
masked | A(c) Alc) | Alc)| A(c) |A(c)] A(c) |Alc) Alc) Alc) Alc) Alc) Alc) Alc) Ale) Ale)
NaN

Capital letters in the chart indicate the exceptions and small letters indicate the returned results as defined in the fol-

lowing list:

I

oo om)p
1

2-34

Floating-point invalid operand
Divide by zero
Result is the system default masked NaN
Result is the same NaN
Result is the same NaN masked

Q -0 o

Result is the larger NaN

Result is the larger NAN masked

= Result is +infinity
= Result is —infinity

C

The following chart provides accuracy data for the
mathematical function that can be invoked by this

instruction.
Function Sample Selection Accuracy Data
Name X Yy MAX(e) SD(e)
Power 1/3 -345 <=y <= 330 [4.99 * 10**-16 [1.90 * 10**-16
.75 -1320 <=y <= 296 * 10**-16 |2.39 * 10**-16
1320
9 -3605 <=y <= [1.23 * 10**-16 |1.02 * 10**-16
3605
10 -165 <=y <= 165 (7.10 * 10**-16 |3.18 * 10**-16
712 -57 <=y <=57 |1.75* 10**-15 |7.24 * 10**-16

The vertical columns in the accuracy data chart have the
following meanings:

« Accuracy Data: The maximum relative error and

Function Name: This column identifies the
mathematical function.

Sample Selection: This column identifies the selection
of samples taken for the power function. The
algorithm used against the arguments, x and y, to
gather the accuracy samples was a test for the
anticipated relation where f(x) should equal g(x,y):

where:
fix) =x
glx,y) = (x**y)**(1/y)

An accuracy sample then, is an evaluation of the
degree to which this relation held true.

The range of argument values for x and y were
selected such that x was held constant at a particular
value and y was uniformly varied throughout a range
of values which avoided overflowing or underflowing
the result field. The particular values selected are
indicated in the subcolumns entitled x and vy.

standard deviation (root mean square) of the relative
error are generally useful and revealing statistics.
These statistics for the relative error, (e), are provided
in the following subcolumns:

MAX(e):
= MAX(ABS((f(x) - g(x)) / f(x)))

where: MAX selects the largest of its arguments
and ABS takes the absolute value of its argument.

SD(e):
= SQR((1/N) SUMSQ((f(x) - g(x)) / f(x))
where: SQR takes the square root of its argument

and SUMSAQ takes the summation of the squares
of its arguments over all of the test cases.

Resultant Conditions: Positive, negative, or zero—The
algebraic value of the receiver operand is positive,
negative, or zero. Unordered-The value assigned to the
floating-point result is NaN.

Computation and Branching Instructions 2-35

Events Exceptions

000C Machine resource Operands :
0201 Machine auxiliary storage threshold exceeded Exception 12 3 4 Other ‘)
000D Machine status 06 Addressing
0101 Machine check 01 Space addressing violation X X X X
02 Boundary alignment violation X X X X
0010 Process 03 Range X X XX
0701 Maximum processor time exceeded 06 Optimized addressability X X X X
0801 Process storage limit exceeded invalid
08 Argument/Parameter
0016 Machine observation 01 Parameter reference violation X X X X
0101 Instruction reference 0C Computation
06 Floating-point overflow X
0017 Damage set 07 Floating-point underflow X
0801 Partial system object damage set 09 Floating-point invalid operand X X
0OC Invalid floating-point X
conversion
OD Floating~-point inexact result X
OE Floating-point zero divide X
10 Damage Encountered
44 Partial system object damage X
1C Machine-Dependent Exception
03 Machine storage limit X
exceeded
20 Machine Support
02 Machine check X
03 Function check X E
22 Object Access J
01 Object not found X X X X
02 Object destroyed X X X X
03 Object suspended X X X X
24 Pointer Specification
01 Pointer does not exist X X X X
02 Pointer type invalid X X X X
2A Program Creation
05 Invalid op-code extender fieid X
06 Invalid operand type X X X X
07 Invalid operand attribute X X X X
08 Invalid operand value range X X X X

09 Invalid branch target operand X

0OC Invalid operand ODT reference X X X X

OD Reserved bits are not zero X X X X X
2C Program Execution

04 Invalid branch target X
2E Resource Control Limit

02 Process storage limit exceeded X
32 Scalar Specification

01 Scalar type invalid X X X X

03 Scalar value invalid X

<

2-36

C

CONCATENATE (CAT)

Op Code Operand Operand Operand
(Hex) 1 2 3
10F3 Receiver Source 1 Source 2

Operand 1: Character variable scalar.
Operand 2: Character scalar.

Operand 3: Character scalar.

Description: The character string value of the second
source operand is joined to the right end of the
character string value of the first source operand. The
resulting string value is placed (left-adjusted) in the
receiver operand.

The length of the operation is equal to the length of the
receiver operand with the resulting string truncated or is
logically padded on the right end accordingly. The pad
value for this instruction is hex 40.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1, 2, and 3. The effect of
specifying a null substring reference for one source
operand is that the other source operand is used as the
result of the concatenation. The effect of specifying a
null substring reference for both source operands is that
the bytes of the receiver are each set with a value of
hex 40. The effect of specifying a null substring
reference for the receiver is that a result is not set
regardless of the value of the source operands.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand ODT reference
0D Reserved bits are not zero

Computation and Branching Instructions

Operands

123

X X X X
X X X X
X X X X

x
x
x

x
x
x

X X X X X X

x
x

X X X X X X
X X X X X X

Other

2-37

CONVERT BSC TO CHARACTER (CVTBC)

Op Code Operand Operand Operand
(Hex) 1 2 3
10AF Receiver Controls Source

Operand 1: Character variable scalar.
Operand 2: Character(3) variable scalar (fixed-length).

Operand 3: Character scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
CVTBCI 18AF Indicator
CVTBCB 1CAF Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: This instruction converts a string value from
the BSC (binary synchronous communications)
compressed format to a character string. The operation
converts the source (operand 3) from the BSC
compressed format to character under control of the
controls (operand 2) and places the result into the
receiver (operand 1).

2-38

The source and receiver operands must both be
character strings.

The controls operand must be a character scalar that ‘)
specifies additional information to be used to control the
conversion operation. It must be at least 3 bytes in

length and have the following format:

« Controls operand Char(3)
— Source offset Bin(2)
— Record separator Char(1)

The source offset specifies the offset where bytes are to
be accessed from the source operand. If the offset is
equal to or greater than the length specified for the
source operand (it identifies a byte beyond the end of
the source operand), a template value invalid exception
is signaled. As output from the instruction, the source
offset is set to specify the offset that indicates how
much of the source is processed when the instruction
ends.

The record separator, if specified with a value other than
hex 01, contains the value used to separate converted
records in the source operand. A value of hex 01
specifies that record separators do not occur in the
converted records in the source.

Only the first 3 bytes of the controls operand are used.)
Any excess bytes are ignored. -

The operation begins by accessing the bytes of the
source operand located at the offset specified in the
source offset. This is assumed to be the start of a
record. The bytes of the record in the source operand
are converted into the receiver record according to the
following algorithm.

The strings to be built in the receiver are contained in
the source as blank compression entries and strings of
consecutive nonblank characters.

The format of the blank compression entries occurring in
the source are as follows:

« Blank compression entry Char(2)
— Interchange group separator Char(1)
— Count of compressed blanks Char(1)

The interchange group separator has a fixed value of
hex 1D.

The compressed blanks count provides for describing up
to 63 compressed blanks. The count of the number of
blanks (up to 63) to be decompressed is formed by
subtracting hex 40 from the value of the count field.
The count field can vary from a value of hex 41 to hex
7F. If the count field contains a value outside of this
range, a conversion exception is signaled.

Strings of blanks described by blank compression
entries in the source are repeated in the receiver the
number of times specified by the blank compression
count.

Nonblank strings in the source are copied into the
receiver intact with no alteration.

If the receiver record is filled with converted data
without encountering the end of the source operand, the
instruction ends with a resultant condition of completed
record. This can occur in two ways. If a record
separator was not specified, the instruction ends when
enough bytes have been converted from the source to
fill the receiver. If a record separator was specified, the
instruction ends when a source byte is encountered with
that value prior to or just after filling the receiver record.
The offset value for the source locates the byte
following the last source record (including the record
separator) for which conversion was completed. When
the record separator value is encountered, any remaining
bytes in the receiver are padded with blanks.

If the end of the source operand is encountered
(whether or not in conjunction with a record separator or
the filling of the receiver), the instruction ends with a
resultant condition of source exhausted. The offset value
for the source locates the byte following the last byte of
the source operand. The remaining bytes in the receiver
after the converted record are padded with blanks.

If the converted form of a record cannot be completely
contained in the receiver, the instruction ends with a
resultant condition of truncated record. The offset value
for the source locates the byte following the last source
byte for which conversion was performed, unless a
blank compression entry was being processed. In this
case, the source offset is set to locate the byte after the
blank compression entry. If the source does not contain
record separators, this condition can only occur for the
case in which a blank compression entry was being
converted when the receiver record became full.

Any form of overlap between the operands on this
instruction yields unpredictable results in the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions: Completed record—The receiver
record has been completely filled with converted data
from a source record. Source exhausted—All of the
bytes in the source operand have been converted into
the receiver operand. Truncated record-The receiver
record cannot contain all of the converted data from the
source record.

Events

000C Machine resource
0201 Machine auxiliary storage exceeded

000D Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-39

Exceptions

Exception

06

08

oc

10

1Cc

20

22

24

2A

2C

32

38

Addressing

01 Space addressing violation
02 Boundary alignment violation
03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Computation

01 Conversion

Damage Encountered

44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

OC Invalid operand ODT reference
0D Reserved bits are not zero
Program Execution

04 Invalid branch target

Scalar Specification

01 Scalar type invalid

Template Specification

01 Template value invalid

2-40

Operands

123

X X X X

x
x
x

X X X X

X X X X

CONVERT CHARACTER TO BSC (CVTCB)

Op Code Operand Operand Operand
(Hex) 1 2 3
108F Receiver Controls Source

Operand 1: Character variable scalar.
Operand 2: Character(3) variable scalar (fixed-length).

Operand 3: Character scalar.

Optional Forms

Op Code
Mnemonic. (Hex) Form Type
CVTCBI 188F Indicator
CVTCBB 1C8F Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operations immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: This instruction converts a string value from
character to BSC (binary synchronous communications)
compressed format. The operation converts the source
(operand 3) from character to the BSC compressed
format under control of the controls (operand 2) and
places the result into the receiver (operand 1).

The source and receiver operands must both be
character strings.

The controls operand must be a character scalar that
specifies additional information to be used to control the
conversion operation. It must be at least 3 bytes in
length and have the following format:

« Controls operand Char(3)
— Receiver offset Bin(2)
— Record separator Char(1)

The receiver offset specifies the offset where bytes are
to be placed into the receiver operand. If the offset is
equal to or greater than the length specified for the
receiver operand (it identifies a byte beyond the end of
the receiver), a template value invalid exception is
signaled. As output from the instruction, the source
offset is set to specify the offset that indicates how
much of the receiver has been filled when the
instruction ends.

The record separator, if specified with a value other than
hex 01, contains the value used to separate converted
records in the receiver operand. A value of hex 01
specifies that record separators are not to be placed into
the receiver to separate converted records.

Only the first 3 bytes of the controls operand are used.
Any excess bytes are ignored.

The source operand is assumed to be one record. The
bytes of the record in the source operand are converted
into the receiver operand at the location specified in the
receiver offset according to the following algorithm.

The bytes of the source record are interrogated to
identify the strings of consecutive blank (hex 40)
characters and the strings of consecutive nonblank
characters which occur in the source record. Only three
or more blank characters are treated as a blank string
for purposes of conversion into the receiver.

As the blank and nonblank strings are encountered in
the source they are packaged into the receiver.

Blank strings are reflected in the receiver as one or
more blank compression entries. The format of the
blank compression entries built into the receiver are as
follows:

« Blank compression entry Char(2)
— Interchange group separator Char(1)
— Count of compressed blanks Char(1)

The interchange group separator has a fixed value of
hex 1D.

The compressed blanks count provides for compressing
up to 63 blanks. The value of the count field is formed
by adding hex 40 to the actual number of blanks {up to
63) to be compressed. The count field can vary from a
value of hex 43 to hex 7F.

Nonblank strings are copied into the receiver intact with
no alteration or additional control information.

When the end of the source record is encountered the
record separator value if specified is placed into the
receiver and the instruction ends with a resultant
condition of source exhausted. The offset value for the
receiver locates the byte following the converted record
in the receiver. The value of the remaining bytes in the
receiver after the converted record is unpredictable.

If the converted form of a record cannot be completely
contained in the receiver (including the record separator
if specified), the instruction ends with a resultant
condition of receiver overrun. The offset value for the
receiver remains unchanged. The remaining bytes in the
receiver, starting with the byte located by the receiver
offset, are unpredictable.

Any form of overlap between the operands on this
instruction yields unpredictable results in the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions: Source exhausted—All of the bytes
in the source operand have been converted into the
receiver operand. Receiver overrun—An overrun condition
in the receiver operand was detected before all of the
bytes in the source operand were processed.

Events

000C Machine resources
0201 Machine auxiliary storage exceeded

000D Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-41

Exceptions

Exception

06

08

10

1C

20

22

24

2A

2C

32

38

Addressing

01 Space addressing violation
02 Boundary alignment violation
03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

0OC Invalid operand ODT reference
OD Reserved bits are not zero
Program Execution

04 Invalid branch target

Scalar Specification

01 Scalar type invalid

Template Specification

01 Template value invalid

2-42

Operands

123

x X X X X
X X X X

x
x

X X X X

CONVERT CHARACTER TO HEX (CVTCH)

Op Code Operand Operand
(Hex) 1 2
1082 Receiver Source

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Description: Each character (8-bit value) of the string
value in the source operand is converted to a hex digit
(4-bit value) and placed in the receiver operand. The
source operand characters must relate to valid hex digits
or a conversion exception is signaled.

Characters Hex Digits
Hex FO-hex F9 Hex O-hex 9
Hex C1-hex C6 = Hex A-hex F

The operation begins with the two operands
left-adjusted and proceeds left to right until all the hex
digits of the receiver operand have been filled. If the
source operand is too small, it is logically padded on the
right with zero characters (hex FO). If the source
operand is too large, a length conformance or an invalid
operand length exception is signaled.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for the source is that the
bytes of the receiver are each set with a value of hex
00. The effect of specifying a null substring reference
for the receiver is that no result is set.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

9

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range
06 Optimized addressability invalid
08 Argument/Parameter
01 Parameter reference violation
0C Computation
01 Conversion
08 Length Conformance
10 Damage Encountered
04 System object damage state
44 Partial system object damage
1C Machine-Dependent Exception
03 Machine storage limit exceeded
20 Machine Support
02 Machine check
03 Function check
22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended
24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
2A Program Creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
OA Invalid operand length
0C Invalid operand ODT reference
OD Reserved bits are not zero

Operands

1

xX X X X
X X X X

x
x

x

X X X X X X

2

CONVERT CHARACTER TO MRJE (CVTCM)

Op Code
(Hex)

108B
Operand 1:

Operand 2:

Operand 3:

Operand Operand Operand
1 2 3
Receiver Controls Source

Character variable scalar.
Character(13) variable scalar (fixed-length).

Character scalar.

Optional Forms

Mnemonic

CVTCMI
CVTCMB

Op Code

(Hex) Form Type
1888 Indicator
1C8B Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: This instruction converts a string of
characters to MRJE (MULTI-LEAVING remote job entry)
compressed format. The operation converts the source
(operand 3) from character to the MRJE compressed

format under control of the controls (operand 2) and

places the results in the receiver (operand 1).

The source and receiver operands must both be
character strings. The source operand cannot be

specified as either a signed or unsigned immediate

value.

Computation and Branching Instructions

2-43

The source operand can be described through the
controls operand as being composed of one or more
fixed length data fields, which may be separated by
fixed length gaps of characters to be ignored during the
conversion operation. Additionally, the controls operand
specifies the amount of data to be processed from the
source to produce a converted record in the receiver.
This may be a different value than the length of the data
fields in the source. The following diagram shows this
structure for the source operand.

Actual Source Operand Bytes

data field gap data field gap data field gap

Data Process as Source Records

record rec ord record record reco

The controls operand must be a character scalar that
specifies additional information to be used to control the
conversion operation. It must be at least 13 bytes in
length and have the following format:

« Controls operand Char(13)
— Offset into the receiver operand Bin(2)
— Offset into the source operand Bin(2)
— Algorithm modifier Char(1)
— Source record length Char(1)
— Data field length Bin(2)
— Offset to next gap in source Bin(2)
operand
— Gap length Bin(2)
— Record control block (RCB) value Char(1)

As input to the instruction, the source and receiver
offset fields specify the offsets where bytes of the
source and receiver operands are to be processed. If an
offset is equal to or greater than the length specified for
the operand it corresponds to (it identifies a byte
beyond the end of the operand), a template value invalid
exception is signaled.

2-44

As output from the instruction, the source and receiver
offset fields specify offsets that indicate how much of
the operation is complete when the instruction ends.

The algorithm modifier has the following valid values:
« Hex 00 = Perform full compression.
¢« Hex 01 = Perform only truncation of trailing blanks.

The source record length value specifies the amount of
data from the source to be processed. If a source
record length of O is specified, a template value invalid
exception is signaled.

The data field length value specifies the length of the
data fields in the source. Data fields occurring in the
source may be separated by gaps of characters, which
are to be ignored during the conversion operation.
Specification of a data field length of O indicates that
the source operand is one data field. In this case, the
gap length and gap offset values have no meaning and
are ignored.

The gap offset value specifies the offset to the next gap
in the source. This value is both input to and output
from the instruction. This is relative to the current byte
to be processed in the source as located by the source
offset value. No validation is done for this offset. It is
assumed to be valid relative to the source operand. The
gap offset value is ignored if the data field length is
specified with a value of 0.

The gap length value specifies the amount of data
occurring between data fields in the source operand
which is to be ignored during the conversion operation.
The gap length value is ignored if the data field length is
specified with a value of O.

The record control block (RCB) field specifies the RCB
value that is to precede the converted form of each
record in the receiver. It can have any value.

Only the first 13 bytes of the controls operand are used.
Any excess bytes are ignored.

C

The operation begins by accessing the bytes of the
source operand at the location specified by the source
offset. This is assumed to be the start of a source
record. Only the bytes of the data fields in the source
are accessed for conversion purposes. Gaps between
data fields are ignored, causing the access of data field
bytes to occur as if the data fields were contiguous with
one another. Bytes accessed from the source for the
source record length are considered a source record for
the conversion operation. They are converted into the
receiver operand at the location specified by the receiver
offset according to the following algorithm.

The RCB value is placed into the first byte of the
receiver record.

An SRCB (sub record control byte) value of hex 80 is
placed into the second byte of the receiver record.

If the algorithm modifier specifies full compression (a
value of hex 00) then:

The bytes of the source record are interrogated to
locate the blank character strings (2 or more
consecutive blanks), identical character strings (3 or
more consecutive identical characters), and
nonidentical character strings occurring in the source.
A blank character string occurring at the end of the
record is treated as a special case (see following
information on trailing blanks).

If the algorithm modifier specifies blank truncation (a
value of hex 01) then:

The bytes of the source record are interrogated to
determine if a blank character string exists at the end
of the source record. If one exists, it is treated as a
string of trailing blanks. All characters prior to it in
the record are treated as one string of nonidentical
characters.

The strings encountered (blank, identical, or nonidentical)
are reflected in the receiver by building one or more
SCBs (string control bytes) in the receiver to describe
them.

The format of the SCBs built into the receiver is:

The bit meanings are:

Bit Value
o 0

Meaning

End of record; the EOR SCB
is hex 00.

1 All other SCBs.

The string is compressed.
1 The string is not compressed.

1 For k = O:
0 Blanks (hex 40s) have been
deleted.

1 Nonblank characters have
been deleted. The next
character in the data stream is
the specimen character.

Fork = 1:

This bit is part of the length
field for length of
uncompressed data.

il Number of characters that
have been deleted if k = 0.
The value can be 2-31.

1iiiij Number of characters to the
next SCB (no compression) if
k = 1. The value can be 1-63.
The uncompressed
(nonidentical bytes) follow the
SCB in the data stream.

When the end of a source record is encountered, an
EOR (end of record) SCB (hex 00) is built into the
receiver. Trailing blanks in a record including a record of
all blanks are represented in the receiver by an EOR
character if either full compression or trailing blank
truncation is specified.

If the end of the source operand is not encountered, the

operation then continues by reapplying the above
algorithm to the next record in the source operand.

Computation and Branching Instructions 2-45

If the end of the source operand is encountered
(whether or not in conjunction with a record boundary),
the instruction ends with a resultant condition of source
exhausted. The offset value for the source locates the
byte following the last source record for which
conversion was completed. The gap offset value
indicates the offset to the next gap relative to the
source offset value set for this condition. The gap offset
value has no meaning and is not set when the data field
length is 0. The offset value for the receiver locates the
byte following the last fully converted record in the
receiver. The value of the remaining bytes in the
receiver after the last converted record is unpredictable.

If the converted form of a record cannot be completely
contained in the receiver, the instruction ends with a
resultant condition of receiver overrun. The offset value
for the source locates the byte following the last source
record for which conversion was completed. The gap
offset value indicates the offset to the next gap relative
to the source offset value set for this condition. The
gap offset value has no meaning and is not set when
the data field length is 0. The offset value for the
receiver locates the byte following the last fully
converted record in the receiver. The value of the
remaining bytes in the receiver after the last converted
record is unpredictable.

Any form of overlap between the operands of this
instruction yields unpredictable results in the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Resultant Conditions

Source exhausted—All complete records in the source
operand have been converted into the receiver operand.
Receiver overrun—An overrun condition in the receiver
operand was detected prior to processing all of the
bytes in the source operand.

If source exhausted and receiver overrun occur at the
same time, the source exhausted condition is. recognized
first. When source exhausted is the resultant condition,
the receiver may also be full. In this case, the offset
into the receiver may contain a value equal to the length
specified for the receiver, and this condition will cause
an exception on the next invocation of the instruction.
The processing performed for the source exhausted
condition provides for this case when the instruction is
invoked multiple times with the same controls operand
template. When the receiver overrun condition is the
resultant condition, the source always contains data that
can be converted.

Events

000C Machine resources
0201 Machine auxiliary storage exceeded

000D Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0201 Object location reference

0017 Damage set
0801 Partial system object damage set

Exceptions

Exception

06

10

1C

20

22

24

2A

2C

32

38

Addressing

01 Space addressing violation
02 Boundary alignment violation
03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

0OC Invalid operand ODT reference
OD Reserved bits are not zero
Program Execution

04 Invalid branch target

Scalar Specification

01 Scalar type invalid

Template Specification

01 Template value invalid

Operands
123

X X X X
X X X X

x
x
x

Other

CONVERT CHARACTER TO NUMERIC (CVTCN)

Op Code Operand Operand Operand
(Hex) 1 2 3
1083 Receiver Source Attributes

Operand 1: Numeric variable scalar or data-pointer-defined
numeric scalar.

Operand 2: Character scalar or data-pointer-defined character
scalar.

Operand 3: Character(7) scalar or data-pointer-defined
character scalar.

Description: The character scalar specified by operand 2
is treated as though it were a numeric scalar with the
attributes specified by operand 3. The character string
source operand is converted to the numeric forms of the
receiver operand and moved to the receiver operand.
The value of operand 2, when viewed in this manner, is
converted to the type, length, and precision of the
numeric receiver, operand 1, following the rules for the
Copy Numeric Value instruction.

The length of operand 2 must be large enough to
contain the numeric value described by operand 3. If it
is not large enough, a scalar value invalid exception is
signaled. If it is larger than needed, its leftmost bytes
are used as the value, and the rightmost bytes are
ignored.

Normal rules of arithmetic conversion apply except for
the following. M operand 2 is interpreted as a zoned
decimal value, a value of hex 40 in the rightmost byte
referenced in the conversion is treated as a positive sign
and a zero digit.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Computation and Branching Instructions 2-47

The format of the attribute operand specified by
operand 3 is as follows:

» Scalar attributes
— Scalar type
Hex 00 = Binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
— Scalar length
If binary:
Length (L)
(where L = 2 or 4)
If floating-point:
Length (L)
(where L = 4 or 8)
If zoned decimal or packed
decimal:
Fractional digits (F)
Total digits (T) (where
1<T<31andO0O<F<T)
— Reserved (binary 0)

Char(7)
Char(1)

Bin(2)

Bits 0-15

Bits 0-15

Bits 0-7
Bits 8-15

Bin(4)
Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-48

Exceptions

Exception

06

08

ocC

10

1Cc

20

22

24

2A

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

04 External data object not found
06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Computation

02 Decimal data

06 Floating-point overflow

07 Floating-point underflow

09 Floating-point invalid operand
OA Size

OC Floating-point conversion

0D Floating-point inexact result
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 bbject not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
0D Reserved bits are not zero
Scalar Specification

01 Scalar type invalid

02 Scalar attribute invalid

03 Scalar value invalid

Operands

123

X X X X X
X X X X X
X X X X X

x
x
x

X X X X X X x x
x

X X X X X X

x
x

x

X X

CONVERT CHARACTER TO SNA (CVTCS)

Op Code Operand Operand Operand
(Hex) 1 2 3
10CB Receiver Controls Source

Operand 1: Character variable scalar.
Operand 2: Character(15) variable scalar.

Operand 3: Character scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
CVTCSI 18CB Indicator
CVTCSB 1CCB Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: This instruction converts the source
(operand 3) from character to SNA (systems network
architecture) format under control of the controls
(operand 2) and places the result into the receiver
(operand 1).

The source and receiver operands must both be
character strings. The source operand may not be
specified as an immediate operand.

The source operand can be described by the controls
operand as being one or more fixed-length data fields
that may be separated by fixed-length gaps of
characters to be ignored during the conversion
operation. Additionally, the controls operand specifies
the amount of data to be processed from the source to
produce a converted record in the receiver. This may be
a different value than the length of the data fields in the
source. The following diagram shows this structure for
the source operand.

Actual source operand bytes

data data data
field | 9% | field | 9% | field

gap]

Data processed as source records

record | rec ord | record record | reco

The controls operand must be a character scalar that
specifies additional information to be used to control the
conversion operation. The operand must be at least 15
bytes in length and has the following format:

« Controls operand Char(15)
— Offset into the receiver operand Bin(2)
— Offset into the source operand Bin(2)
— Algorithm modifier Char(1)
— Source record length Char(1)
— Data field length Bin(2)
— Gap offset Bin(2)
— Gap length Bin(2)
— Record separator character Char(1)
— Prime compression character Char(1)
— Unconverted source record bytes Char(1)

When the source and receiver operands are input to the
instruction, they specify the offsets where the bytes of
the source and receiver operands are to be processed.
If an offset is equal to or greater than the length
specified for the operand, the offset identifies a byte
beyond the end of the operand and a template value
invalid exception is signaled. When the source and the
receiver are output from the instruction, they specify
offsets that indicate how much of the operation is
complete when the instruction ends.

Computation and Branching Instructions 2-49

The algorithm modifier specifies the optional functions
to be performed. Any combination of functions can be
specified as indicated by the bit meanings in the
following chart. At least one of the functions must be
specified. If all of the algorithm modifier bits are zero, a
template value invalid exception is signaled. The
algorithm modifier bit meanings are:

Bits Meaning

0 0 = Do not perform compression.
1

Perform compression.

1-2 00 = Do not use record separators and
no blank truncation.
Do not perform data transparency
conversion.
01 = Reserved.
10 = Use record separators and perform

blank truncation.
Do not perform data transparency
conversion.

11 = Use record separators and perform
blank truncation.
Perform data transparency

conversion.
3 0 = Do not perform record spanning.
1 = Perform record spanning.
(allowed only when bit 1 = 1)
4-7 (Reserved)

The source record length value specifies the amount of
data from the source to

be processed to produce a converted record in the
receiver. Specification of a source record length of zero
results in a template value invalid exception.

The data field length value specifies the length of the
data fields in the source. Data fields occurring in the
source may be separated by gaps of characters that are
to be ignored during the conversion operation.
Specification of a data field length of zero indicates that
the source operand is one data field. In this case, the
gap length and gap offset values have no meaning and
are ignored.

2-50

The gap offset value specifies the offset to the next gap
in the source. This value is both input to and output
from the instruction. This is relative to the current byte
to be processed in the source as located by the source
offset value. No validation is done for this offset. It is
assumed to be valid relative to the source operand. The
gap offset value is ignored if the data field length is
specified with a value of zero.

The gap length value specifies the amount of data that
is to be ignored between data fields in the source
operand during the conversion operation. The gap
length value is ignored if the data field length is zero.

The record separator character value specifies the
character that precedes the converted form of each
record in the receiver. It also serves as a delimiter when
the previous record is truncating trailing blanks. The
Convert SNA to Character instruction recognizes any
value that is less than hex 40. The record separator
value is ignored if do not use record separators is
specified in the algorithm modifier.

The prime compression character value specifies the
character to be used as the prime compression character
when performing compression of the source data to
SNA format. It may have any value. The prime
compression character value is ignored if the
compression function is not specified in the algorithm
modifier.

The unconverted source record bytes value specifies the
number of bytes remaining in the current source record
that are yet to be converted.

When the record spanning function is specified in the
algorithm modifier, the unconverted source record bytes
value is both input to and output from the instruction.
On input, a value of hex 00 means it is the start of a
new record and the initial conversion step is yet to be
performed. That is, a record separator character has not
yet been placed in the receiver. On input, a nonzero
value less than or equal to the record length specifies
the number of bytes remaining in the current source
record that are yet to be converted into the receiver.
This value is assumed to be the valid count of
unconverted source record bytes relative to the current
byte to be processed in the source as located by the
source offset value. As such, it is used to determine the
location of the next record boundary in the source
operand. This value must be less than or equal to the
source record length value; otherwise, a template value
invalid exception is signaled. On output this field is set
with a value as defined above that describes the number
of bytes of the current source record that have not yet
been converted.

When the record spanning function is not specified in
the algorithm modifier, the unconverted source record
bytes value is ignored.

Only the first 15 bytes of the controls operand are used.
Any excess bytes are ignored.

The description of the conversion process is presented
as a series of separately performed steps that may be
selected in allowable combinations to accomplish the
conversion function. It is presented this way to allow for
describing these functions separately. However, in the
actual execution of the instruction, these functions may
be performed in conjunction with one another or
separately depending upon which technique is
determined to provide the best implementation.

The operation is performed either on a record-by-record
basis, record processing, or on a nonrecord basis, string
processing. This is determined by the functions selected
in the algorithm modifier. Specifying the use record
separators and do blank truncation function indicates
record processing is to be performed. If this is not
specified, in which case compression must be specified,
it indicates that string processing is to be performed.

The operation begins by accessing the bytes of the
source operand at the location specified by the source
offset.

When record processing is specified, the source offset
may locate the start of a full or partial record.

When the record spanning function has not been
specified in the algorithm modifier, the source offset is
assumed to locate the start of a record.

When the record spanning function has been specified
in the algorithm modifier, the source offset is assumed
to locate a point at which processing of a possible
partially converted record is to be resumed. In this case
the unconverted source record bytes value contains the
length of the remaining portion of the source record to
be converted. The conversion process in this case is
started by completing the conversion of the current
source record before processing the next full source
record.

When string processing is specified, the source offset
locates the start of the source string to be converted.

Only the bytes of the data fields in the source are
accessed for conversion purposes. Gaps between data
fields are ignored causing the access of data field bytes
to occur as if the data fields were contiguous. A string
of bytes accessed from the source for a length equal to
the source record length is considered to be a record for
the conversion operation.

When during the conversion process the end of the
source operation is encountered, the instruction ends
with a resultant condition of source exhausted.

When record processing is specified in the algorithm
modifier, this check is performed at the start of
conversion for each record. If the source operand does
not contain a full record, the source exhausted condition
is recognized. The instruction is terminated with status
in the controls operand describing the last completely
converted record. For source exhausted, partial
conversion of a source record is not performed.

When string processing is specified in the algorithm
modifier, then compression must be specified and the
compression function described below defines the
detection of source exhausted.

If the converted form of the source cannot be
completely contained in the receiver, the instruction ends
with a resultant condition of receiver overrun. See the
description of this condition in the conversion process
described below to determine the status of the controls
operand values and the converted bytes in the receiver
for each case.

Computation and Branching Instructions 2-51

When string processing is specified, the bytes accessed
from the source are converted on a string basis into the
receiver operand at the location specified by the receiver
offset. In this case, the compression function must be
specified and the conversion process proceeds with the
compression function defined below.

When record processing is specified, the bytes accessed
from the source are converted one record at a time into
the receiver operand at the location specified by the
receiver offset performing the functions specified in the
algorithm modifier in the sequence defined by the
following algorithm.

The first function performed is trailing blank truncation.

A truncated record is built by logically appending the
record data to the record separator value specified in the
controls operand and removing all blank characters after
the last nonblank character in the record. If a record has
no trailing bianks, then no actual truncation takes place.
A null record, a record consisting entirely of blanks, will
be converted as just the record separator character with
no other data following it. The truncated record then
consists of the record separator character followed by
the truncated record data, the full record data, or no
data from the record.

If either the data transparency conversion or the
compression function is specified in the algorithm
modifier, the conversion process continues for this
record with the next specified function.

If not, the conversion process for this record is
completed by placing the truncated record into the
receiver. If the truncated record cannot be completely
contained in the receiver, the instruction ends with a
resultant condition of receiver overrun. When the record
spanning function is specified in the algorithm modifier,
as much of the truncated record as will fit is placed into
the receiver and the controls operand is updated to
describe how much of the source record was
successfully converted into the receiver. When the
record spanning function is not specified in the
algorithm modifier, the controls operand is updated to
describe only the last fully converted record in the
receiver and the value of the remaining bytes in the
receiver is unpredictable.

2-52

The second function performed is data transparency
conversion.

Data transparency conversion is performed if the
function is specified in the algorithm modifier. This
provides for making the data in a record transparent to
the Convert SNA to Character instruction in the area of
its scanning for record separator values. Transparent
data is built by preceding the data with 2 bytes of
transparency control information. The first byte has a
fixed value of hex 35 and is referred to as the TRN
(transparency) control character. The second byte is a
1-byte hexadecimal count, a value ranging from 1 to
255 decimal, of the number of bytes of data that follow
and is referred to as the TRN count. This contains the
length of the data and does not include the TRN control
information length.

Transparency conversion can be specified only in
conjunction with record processing and, as such, is
performed on the truncated form of the source record.
The transparent record is built by preceding the data
that follows the record separator in the truncated record
with the TRN control information. The TRN count in this
case contains the length of just the truncated data for
the record and does not include the record separator
character. For the special case of a null record, no TRN
control information is placed after the record separator
character because there is no record data to be made
transparent.

If the compression function is specified in the algorithm
modifier, the conversion process continues for this
record with the compression function.

If not, the conversion process for this record is
completed by placing the transparent record into the
receiver. If the transparent record cannot be completely
contained in the receiver, the instruction ends with a
resultant condition of receiver overrun.

When the record spanning function is specified in the
algorithm modifier, as much of the transparent record as
will fit is placed into the receiver and the controls
operand is updated to describe how much of the source
record was successfully converted into the receiver. The
TRN count is also adjusted to describe the length of the
data successfully converted into the receiver; thus, the
transparent data for the record is not spanned out of the
receiver. The remaining bytes of the transparent record,
if any, will be processed as a partial source record on
the next invocation of the instruction and will be
preceded by the appropriate TRN control information.
For the special case where only 1 to 3 bytes are
available at the end of the receiver, (not enough room
for the record separator, the transparency control, and a
byte of data) then just the record separator is placed in
the receiver for the record being converted. This can
cause up to 2 bytes of unused space at the end of the
receiver. The value of these unused bytes is
unpredictable.

When the record spanning function is not specified in
the algorithm modifier, the controls operand is updated
to describe only the last fully converted record in the
receiver and the value of the remaining bytes in the
receiver is unpredictable.

The third function performed is compression.

Compression is performed if the function is specified in
the algorithm modifier. This provides for reducing the
size of strings of duplicate characters in the source data.
The source data to be compressed may have assumed a
partially converted form at this point as a result of
processing for functions specified in the algorithm
modifier. Compressed data is built by concatenating one
or more compression strings together to describe the
bytes that make up the converted form of the source
data prior to the compression step. The bytes of the
converted source data are interrogated to locate the
prime compression character strings (two or more
consecutive prime compression characters), duplicate
character strings (three or more duplicate nonprime
characters) and nonduplicate character strings occurring
in the source.

The character strings encountered (prime, duplicate and
nonduplicate) are reflected in the compressed data by
building one or more compression strings to describe
them. Compression strings are comprised of an SCB
(string control byte) possibly followed by one or more
bytes of data related to the character string to be
described.

The format of an SCB and the description of the data
that may follow it are:

« SCB Char(1)
— Control Bits 0-1
00= n nonduplicate characters are between

this SCB and the next one; where n is
the value of the count field (1-63).
01= Reserved
10= This SCB represents n deleted prime
compression characters; where n is the
value of the count field (2-63). The

next byte is the next SCB.

This SCB represents n deleted

duplicate characters; where n

is the value of the count field

(3-63). The next byte contains

a specimen of the deleted characters.

The byte following the specimen character

contains the next SCB.

— Count

This contains the number of
characters that have been deleted for
a prime or duplicate string, or the
number of characters to the next SCB
for a nonduplicate string. A count
value of zero cannot be produced.

11

Bits 2-7

When record processing is specified, the compression is
performed as follows.

The compression function is performed on just the
converted form of the current source record including
the record separator character. The converted form of
the source record prior to the compression step may be
a truncated record or a transparent record as described
above, depending upon the functions selected in the
algorithm modifier. The record separator and TRN
control information is always converted as a
nonduplicate compression entry to provide for length
adjustment of the TRN count, if necessary.

The conversion process for this record is completed by
placing the compressed record into the receiver. If the
compressed record cannot be completely contained in
the receiver, the instruction ends with a resultant
condition of receiver overrun.

Computation and Branching Instructions 2-53

When the record spanning function is specified in the
algorithm modifier, as much of the compressed record
as will fit is placed into the receiver and the controls
operand is updated to describe how much of the source
record was successfully converted into the receiver. The
last compression entry placed into the receiver may be
adjusted if necessary to a length that provides for filling
out the receiver. This length adjustment applies only to
compression entries for nonduplicate strings.
Compression entries for duplicate strings are placed in
the receiver only if they fit with no adjustment. For the
special case where data transparency conversion is
specified, the transparent data being described is not
spanned out of the receiver. This is provided for by
performing length adjustment on the TRN count of a
transparent record, which may be included in the
compressed data so that it describes only the source
data that was successfully converted into the receiver.
For the special case where only 2 to 5 bytes are
available at the end of the receiver, not enough room for
the compression entry for a nonduplicate string
containing the record separator and the TRN control,
and up to a 2-byte compression entry for some of the
transparent data, the nonduplicate compression entry is
adjusted to describe only the record separator. By doing
this, no more than 3 bytes of unused space will remain
in the receiver. The value of these unused bytes is
unpredictable. Unconverted source record bytes, if any,
will be processed as a partial source record on the next
invocation of the instruction and will be preceded by the
appropriate TRN control information when performing
transparency conversion.

When the record spanning function is not specified in
the algorithm modifier, the controls operand is updated
to describe only the last fully converted record in the
receiver. The value of the remaining bytes in the
receiver is unpredictable.

When string processing is specified, the compression is
performed as follows.

The compression function is performed on the data for
the entire source operand on a compression string basis.
In this case, the fields in the controls operand related to
record processing are ignored.

The conversion process for the source operand is

completed by placing the compressed data into the
receiver.

2-54

When the compressed data cannot be completely
contained in the receiver, the instruction ends with a
resultant condition of receiver overrun. As much of the
compressed data as will fit is placed into the receiver
and the controls operand is updated to describe how
much of the source data was successfully converted into
the receiver. The last compression entry placed into the
receiver may be adjusted if necessary to a length that
provides for filling out the receiver. This length
adjustment applies only to compression entries for
nonduplicate strings. Compression entries for duplicate
strings are placed in the receiver only if they fit with no
adjustment. By doing this, no more than 1 byte of
unused space will remain in the receiver.

When the compressed data can be completely contained
in the receiver, the instruction ends with a resultant
condition of source exhausted. The compressed data is
placed into the receiver and the controls operand is
updated to indicate that all of the source data was
successfully converted into the receiver.

At this point, either conversion of a source record has
been completed or conversion has been interrupted due
to detection of the source exhausted or receiver overrun
conditions. For record processing, if neither of the
above conditions has been detected either during
conversion of or at completion of conversion for the
current record, the conversion process continues on the
next source record with the blank truncation step
described above.

At completion of the instruction, the offset value for the
receiver locates the byte following the last converted
byte in the receiver. The value of the remaining bytes in
the receiver after the last converted byte are
unpredictable. The offset value for the source locates
the byte following the last source byte for which
conversion was completed. When the record spanning
function is specified in the algorithm modifier, the
unconverted source record bytes value specifies the
length of the remaining source record bytes yet to be
converted. When the record spanning function is not
specified in the algorithm modifier, the unconverted
source record bytes value has no meaning and is not
set. The gap offset value indicates the offset to the next
gap relative to the source offset value set for this
condition. The gap offset value has no meaning and is
not set when the data field length is zero.

Any form of overlap between the operands on this
instruction yields unpredictable results in the receiver
operand.

Resultant Conditions: Source exhausted—All bytes in the
source operand have been converted into the receiver
operand. Receiver overrun—An overrun condition in the
receiver operand was detected before all of the bytes in
the source operand were processed.

Programming Notes:

If the source operand does not end on a record
boundary, in which case the last record is spanned out
of the source, this instruction performs conversion only
up to the start of that partial record. In this case, the
user of the instruction must move this partial record to
combine it with the rest of the record in the source
operand to provide for its being processed correctly
upon the next invocation of the instruction. If full
records are provided, the instruction performs its
conversions out to the end of the source operand and
no special processing is required.

For the special case of a tie between the source
exhausted and receiver overrun conditions, the source
exhausted condition is recognized first. That is, when
source exhausted is the resultant condition, the receiver
may also be full. In this case, the offset into the
receiver operand may contain a value equal to the length
specified for the receiver, which would cause an
exception to be detected on the next invocation of the
instruction. The processing performed for the source
exhausted condition should provide for this case if the
instruction is to be invoked multiple times with the same
controls operand template. When the receiver overrun
condition is the resultant condition, the source will
always contain data that can be converted.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

000D Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-55

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment violation
03 Range
06 Optimized addressability
invalid
08 Argument/Parameter
01 Parameter reference violation
10 Damage Encountered
44 Partial system object damage
1C Machine-Dependent Exception
03 Machine storage limit exceeded
20 Machine Support
02 Machine check
03 Function check
22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended
24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
2A Program Creation
05 Invalid op-code extender field
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length
0OC Invalid operand ODT reference
2C Program Execution
04 Invalid branch target
32 Scalar Specification
01 Scalar type invalid
38 Template Specification
01 Template value invalid

2-56

Operands

123

X X X X

X X X X

X X X X

CONVERT DECIMAL FORM TO FLOATING-POINT
(CVTDFFP)

Op Code Operand Operand Operand

(Hex) 1 2 3
107F Receiver Decimal Decimal significand.
exponent

Operand 1: Floating-point variable scalar.
Operand 2: Packed scalar or zoned scalar.

Operand 3: Packed scalar or zoned scalar.

Description: This instruction converts the decimal form
of a floating-point value specified by a decimal
exponent and a decimal significand to binary
floating-point format, and places the result in the
receiver operand. The decimal exponent (operand 2) and
decimal significand (operand 3) are considered to specify
a decimal form of a floating-point number. The value of
this number is considered to be as follows:

Value = S * (10**E)

where: S = The value of the decimal
significand operand.
E = The value of the decimal
exponent operand.
* Denotes multiplication.
** Denotes exponentiation.

The decimal exponent must be specified as a decimal
integer value; no fractional digit positions may be
specified in its definition. The decimal exponent is a
signed integer value specifying a power of 10 which
gives the floating-point value its magnitude. A decimal
exponent value too large or too small to be represented
in the receiver will result in the detection of the
appropriate floating-point overflow or floating-point
underflow exception.

The decimal significand must be specified as a decimal
value with a single integer digit position and optional
fractional digit positions. The decimal significand is a
signed decimal value specifying decimal digits which
give the floating-point value its precision. The
significant digits of the decimal significand are
considered to start with the leftmost nonzero decimal
digit and continue to the right to the end of the decimal
significand value. Significant digits beyond 7 for a short
float receiver, and beyond 15 for a long float receiver
exceed the precision provided for in the binary
floating-point receiver. These excess digits do
participate in the conversion to provide for uniqueness
of the conversion as well as for proper rounding.

The decimal form floating-point value specified by the
decimal exponent and decimal significand operands is
converted to a binary floating-point number and

rounded to the precision of the result field as follows:

Source values which, in magnitude M, are in the range
where (10**31-1) * 10**-31 <= M <= (10**31-1)
*10**+31 are converted subject to the normal rounding
error defined for the floating-point rounding modes.

Source values which, in magnitude M, are in the range
where (10**31-1) * 10**-31 > M > (10**31-1)
*10**+31 are converted such that the rounding error
incurred on the conversion may exceed that defined
above. For round to nearest, this error will not exceed
by more than .47 units in the least significant digit
position of the result in relation to the error that would
be incurred for normal rounding. For the other
floating-point rounding modes, this error will not exceed
1.47 units in the least significant digit position of the
result.

The converted and rounded value is then assigned to
the floating-point receiver.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

000D Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-57

Exceptions

Exception

06

ocC

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment violation
03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Computation

02 Decimal data

06 Floating-point overflow

07 Floating-point underflow

0D Floating-point inexact result
Damage Encountered

44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op-code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
0D Reserved bits are not zero
Scalar Specification

01 Scalar type invalid

2-58

Operands

123

X X X X
X X X X
X X X X

x

x

X X X X X X

x

x
x

x

X X X X X X

x
x

xX X

X X X X X X

CONVERT EXTERNAL FORM TO NUMERIC VALUE
(CVTEFN)

Op Code Operand Operand Operand
(Hex) 1 2 3
1087 Receiver Source Mask

Operand 1: Numeric variable scalar or data-pointer-defined
numeric scalar.

Operand 2: Character scalar or data-pointer-defined character
scalar.

Operand 3: Character(3) scalar, null, or data-pointer-defined
character(3) scalar.

Description: This instruction scans a character string for
a valid decimal number in display format, removes the
display character, and places the results in the receiver
operand. The operation begins by scanning the
character string value in the source operand to make
sure it is a valid decimal number in display format.

The character string defined by operand 2 consists of
the following optional entries:

¢ Currency symbol-This value is optional and, if
present, must precede any sign and digit values. The
valid symbol is determined by operand 3. The
currency symbol may be preceded in the field by
blank (hex 40) characters.

« Sign symbol-This value is optional and, if present,
may precede any digit values (a leading sign) or may
follow the digit values (a trailing sign). Valid signs are
positive (hex 4E) and negative (hex 60). The sign
symbol, if it is a leading sign, may be preceded by
blank characters. If the sign symbol is a trailing sign,
it must be the rightmost character in the field. Only
one sign symbol is allowed.

o Decimal digits—Up to 31 decimal digits may be
specified. Valid decimal digits are in the range of hex
FO through hex F9 (0-9). The first decimal digit may
be preceded by blank characters (hex 40), but hex 40
values located to the right of the leftmost decimal
digit are invalid.

The decimal digits may be divided into two parts by
the decimal point symbol: an integer part and a
fractional part. Digits to the left of the decimal point
are interpreted as integer values. Digits to the right
are interpreted as a fractional values. If no decimal
point symbol is included, the value is interpreted as
an integer value. The valid decimal point symbol is
determined by operand 3. If the decimal point
symbol precedes the leftmost decimal digit, the digit
value is interpreted as a fractional value, and the
leftmost decimal digit must be adjacent to the
decimal point symbol. If the decimal point follows
the rightmost decimal digit, the digit value is
interpreted as an integer value, and the rightmost
decimal digit must be adjacent to the decimal point.

Decimal digits in the integer portion may optionally
have comma symbols separating groups of three
digits. The leftmost group may contain one, two, or
three decimal digits, and each succeeding group must
be preceded by the comma symbol and contain three
digits. The comma symbol must be adjacent to a
decimal digit on either side. The valid comma symbol
is determined by operand 3.

Decimal digits in the fractional portion may not be
separated by commas and must be adjacent to one
another.

Examples of external formats follow. The following
symbols are used.

$ — currency symbol
— decimal point
— comma

D - digit (hex FO-hex F9)

b - blank (hex 40)

+ — positive sign

- — negative sign

Format Comments

$+DDDD.DD Currency symbol, leading sign,
no comma separators

DD,DDD- Comma symbol, no fraction,
trailing sign

-.DDD No integer, leading sign

$DDD,DDD- No fraction, comma symbol,
trailing sign

b$b+bDD.DD Embedded blanks before digits

Operand 3 must be a 3-byte character scalar. Byte 1 of
the string indicates the byte value that is to be used for
the currency symbol. Byte 2 of the string indicates the
byte value to be used for the comma symbol. Byte 3 of
the string indicates the byte value to be used for the
decimal point symbol. If operand 3 is null, the currency
symbol (hex 5B), comma (hex 6B), and decimal point
(hex 4B) are used.

If the syntax rules are violated, a conversion exception is
signaled. If not, a zoned decimal value is formed from
the digits of the display format character string. This
number is placed in the receiver operand following the
rules of a normal arithmetic conversion.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-59

Exceptions

Exception

06

08

oc

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Computation

01 Conversion

0A Size

Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0OC Invalid operand ODT reference
0D Reserved bits are not zero
Scalar Specification

01 Scalar type invalid

02 Scalar attribute invalid

2-60

Operands

123

X X X X

x
x
x

X X X X

X X

X X X X X X

x

X X X X

X X

X X X X X X

CONVERT FLOATING-POINT TO DECIMAL FORM
(CVTFPDF)

Op Code Operand Operand Operand

(Hex) 1 2 3

10BF Decimal Decimal Source
exponent significand

Operand 1: Packed variable scalar or zoned variable scalar.
Operand 2: Packed variable scalar or zoned variable scalar.

Operand 3: Floating-point scalar.

Optional Form

Op Code
Mnemonic (Hex) Form Type
CVTFPDFR 12BF Round

Description: This instruction converts a binary
floating-point value to a decimal form of a
floating-point value specified by a decimal exponent and
a decimal significand, and places the result in the
decimal exponent and decimal significand operands.

The value of this number is considered to be as follows:
Value = S * (10**E)

where: S = The value of the decimal
significand operand.
E = The value of the decimal
exponent operand.
* Denotes multiplication.
b Denotes exponentiation.

The decimal exponent must be specified as a decimal
integer value. No fractional digit positions are allowed.
It must be specified with at least five digit positions.
The decimal exponent provides for containing a signed
integer value specifying a power of 10 which gives the
floating-point value its magnitude.

The decimal significand must be specified as a decimal
value with a single integer digit position and optional
fractional digit positions. The decimal significand
provides for containing a signed decimal value specifying
decimal digit is which give the floating-point value its
precision. The decimal significand is formed as a
normalized value, that is, the leftmost digit position is
nonzero for a nonzero source value.

)

C

When the source contains a representation of a
normalized binary floating-point number with decimal
significand digits beyond the leftmost 7 digits for a short
floating-point source or beyond the leftmost 15 digits
for a long floating-point source, the precision allowed
for the binary floating-point source is exceeded.

When the source contains a representation of a
denormalized binary floating-point number, it may
provide less precision than the precision of a normalized
binary floating-point number, depending on the
particular source value. Decimal significand digits
exceeding the precision of the source are set as a result
of the conversion to provide for uniqueness of
conversion and are correct, except for rounding errors.
These digits are only as precise as the floating-point
calculations that produced the source value. The
floating-point inexact result exception provides a means
of detecting loss of precision in floating-point
calculations.

The binary floating-point source is converted to a
decimal form floating-point value and rounded to the
precision of the decimal significand operand as follows:

« The decimal significand is formed as a normalized
value and the decimal exponent is set accordingly.

« For the nonround form of the instruction, the value to
be assigned to the decimal significand is adjusted to
the precision of the decimal significand, if necessary,
according to the current float rounding mode in effect
for the process. For the optional round form of the
instruction, the decimal round algorithm is used for
the precision adjustment of the decimal significand.
The decimal round algorithm overrides the current
floating-point rounding mode that is in effect for the
process.

« Source values which, in magnitude M, are in the
range where (10**31-1) * 10**-31 <= M <=
(10**31-1) * 10**+31 are converted subject to the
normal rounding error defined for the floating-point
rounding modes and the optional round form of the
instruction.

« Source values which, in magnitude M, are in the
range where (10**31-1) * 10**-31 > M > (10**31-1)
* 10**+31 are converted such that the rounding error
incurred on the conversion may exceed that defined
above. For round to nearest and the optional round
form of the instruction, this error will not exceed by
more than .47 units in the least significant digit
position of the result, the error that would be incurred
for a correctly rounded result. For the other
floating-point rounding modes, this error will not
exceed 1.47 units in the least significant digit position
of the result.

« If necessary, the decimal exponent value is adjusted
to compensate for rounding.

« The converted and rounded value is then assigned to
the decimal exponent and decimal significand
operands.

A size exception cannot occur on the assignment of the
decimal exponent or the decimal significand values.

The result of the operation is unpredictable for any type

of overlap between the decimal exponent and decimal
significand operands.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

000D Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-61

Exceptions

Exception

06

08

oc

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment violation
03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Computation

OC Invalid floating-point conversion
0D Floating-point inexact result
Damage Encountered

44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op-code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
0D Reserved bits are not zero
Scalar Specification

01 Scalar type invalid

2-62

Operands

123

X X X X

x
x
x

X X X X X X
X X X X X X

x
x
x

X X X X

X X X X

X X X X X X

CONVERT HEX TO CHARACTER (CVTHC)

Op Code Operand Operand
(Hex) 1 2
1086 Receiver Source

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Description: Each hex digit (4-bit value) of the string
value in the source operand is converted to a character
(8-bit value) and placed in the receiver operand.

Hex Digits Characters
Hex 0-9 = Hex FO-F9
Hex A-F = Hex C1-C6

The operation begins with the two operands
left-adjusted and proceeds left to right until all the
characters of the receiver operand have been filled. If
the source operand contains fewer hex digits than
needed to fill the receiver, the excess characters are
assigned a value of hex FO. If the source operand is too
large, a length conformance or an invalid operand length
exception is signaled.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for the source is that the
bytes of the receiver are each set with a value of hex
FO. The effect of specifying a null substring reference
for the receiver is that no result is set.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Computation

08 Length conformance
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0OC Invalid operand ODT reference
OD Reserved bits are not zero

Operands

1

X X X X
X X X X

x
x

x
x

x
x

X X X X X X
X X X X X X

2

CONVERT MRJE TO CHARACTER (CVTMC)

Op Code Operand Operand
(Hex) 1 2

10AB Receiver Controls

Operand 1: Character variable scalar.

Operand 2: Character(6) variable scalar (fixed-length).

Operand 3: Character scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
CVTMCI 18AB Indicator
CVTMCB 1CAB Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand

listed above. See Chapter 1. Introduction for the

encoding of the extender field and the allowed syntax of

the branch and indicator operands.

Computation and Branching Instructions

2-63

Description: This instruction converts a character string
from the MRJE (MULTI-LEAVING remote job entry)
compressed format to character format. The operation
converts the source (operand 3) from the MRJE
compressed format to character format under control of
the controls (operand 2) and places the results in the
receiver (operand 1).

The source and receiver operands must both be
character strings. The source operand cannot be
specified as either a signed or unsigned immediate
value.

The controls operand must be a character scalar that
specifies additional information to be used to control the
conversion operation. It must be at least 6 bytes in
length and have the following format:

« Controls operand Char(6)
Offset into the receiver operand Bin(2)
Offset into the source operand Bin(2)
Algorithm modifier Char(1)
Receiver record length Char(1)

As input to the instruction, the source and receiver
offset fields specify the offsets where bytes of the
source and receiver operands are to be processed. If an
offset is equal to or greater than the length specified for
the operand it corresponds to (it identifies a byte
beyond the end of the operand), a template value invalid
exception is signaled. As output from the instruction,
the source and receiver offset fields specify offsets that
indicate how much of the operation is complete when
the instruction ends.

The algorithm modifier has the following valid values:

« Hex 00 = Do not move SRCBs (sub record control
bytes) from the source into the receiver.

« Hex 01 = Move SRCBs from the source into the
receiver.

2-64

The receiver record length value specifies the record
length to be used to convert source records into the
receiver operand. This length applies to only the string
portion of the receiver record and does not include the
optional SRCB field. If a receiver record length of O is
specified, a template value invalid exception is signaled.

Only the first 6 bytes of the controls operand are used.
Any excess bytes are ignored.

The operation begins by accessing the bytes of the
source operand at the location specified by the source
offset. This is assumed to be the start of a record. The
bytes of the records in the source operand are
converted into the receiver operand at the location
specified by the receiver offset according to the
following algorithm.

The first byte of the source record is considered to be
an RCB (record control byte) that is to be ignored during
conversion.

The second byte of the source record is considered to
be an SRCB. If an algorithm modifier of value hex 00
was specified, the SRCB is ignored. If an algorithm
modifier of value hex 01 was specified, the SRCB is
copied into the receiver.

" The strings to be built in the receiver record are

described in the source after the SRCB by one or more
SCBs (string control bytes).

The format of the SCBs in the source are as follows:

The bit meanings are:

Bit Value
o 0

End of record; the EOR SCB
is hex 00.

1 All other SCBs.

The string is compressed.
1 The string is not compressed.

1 For k = 0:

0 Blanks (hex 40s) have been
deleted.

1 Nonblank characters have
been deleted. The next
character in the data stream is
the specimen character.

Fork =1:

This bit is part of the length
field for length of
uncompressed data.

iiiii Number of characters that
have been deleted if k = 0.
The value can be 1-31.

1jiiii Number of characters to the
next SCB (no compression) if
k = 1. The value can be 1-63.
The uncompressed
(nonidentical bytes) follow the
SCB in the data stream.

A length of O encountered in an SCB results in the
signaling of a conversion exception.

Strings of blanks or nonblank identical characters
described in the source record are repeated in the
receiver the number of times indicated by the SCB count
value.

Strings of nonidentical characters described in the
source record are moved into the receiver for the length
indicated by the SCB count value.

When an EOR (end of record) SCB (hex 00) is
encountered in the source, the receiver is padded with
blanks out to the end of the current record.

If the converted form of a source record is larger than
the receiver record length, the instruction is terminated
by signaling a length conformance exception.

If the end of the source operand is not encountered, the
operation then continues by reapplying the above
algorithm to the next record in the source operand.

If the end of the source operand is encountered
(whether or not in conjunction with a record boundary,
EOR SCB in the source), the instruction ends with a
resultant condition of source exhausted. The offset value
for the receiver locates the byte following the last fully
converted record in the receiver. The offset value for
the source locates the byte following the last source
record for which conversion is complete. The value of
the remaining bytes in the receiver after the last
converted record are unpredictable.

If the converted form of a record cannot be completely
contained in the receiver, the instruction ends with a
resultant condition of receiver overrun. The offset value
for the receiver locates the byte following the last fully
converted record in the receiver. The offset value for
the source locates the byte following the last source
record for which conversion is complete. The value of
the remaining bytes in the receiver after the last
converted record is unpredictable.

Any form of overlap between the operands on this
instruction yields unpredictable results in the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

If the source exhausted and the receiver overrun
conditions occur at the same time, the source exhausted
condition is recognized first. In this case, the offset into
the receiver operand may contain a value equal to the
length specified for the receiver which causes an
exception to be signaled on the next invocation of the
instruction. The processing performed for the source
exhausted condition provides for this case if the
instruction is invoked multiple times with the same
controls operand template. When the receiver overrun
condition is the resultant condition, the source always
contains data that can be converted.

Computation and Branching Instructions 2-65

Resultant Conditions: Source exhausted—All full records
in the source operand have been converted into the
receiver operand. Receiver overrun—An overrun condition
in the receiver operand was detected prior to processing
all of the bytes in the source operand.

Events

000C Machine resources
0201 Machine auxiliary storage exceeded

000D Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

2-66

Exceptions

Exception

06

10

1C

20

22

24

2C

32

38

Addressing

01 Space addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability
invalid

Argument/Parameter

01 Parameter reference violation

Computation

01 Conversion

08 Length conformance
Damage Encountered

44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

OC Invalid operand ODT reference
0D Reserved bits are not zero
Program Execution

04 Invalid branch target

Scalar Specification

01 Scalar type invalid

Template Specification

01 Template value invalid

Operands
123

X X X X
X X X X
X X X X

C

CONVERT NUMERIC TO CHARACTER (CVTNC)

Op Code Operand Operand Operand
(Hex) 1 2 3
10A3 Receiver Source Attributes

Operand 1: Character variable scalar or data-pointer-defined
character scalar.

Operand 2: Numeric scalar or data-pointer-defined numeric
scalar.

Operand 3: Character(7) scalar or data-pointer-defined
character(7) scalar.

Description: The source numeric value (operand 2) is
converted and copied to the receiver character string
(operand 1). The receiver operand is treated as though it
had the attributes supplied by operand 3.

Operand 1, when viewed in this manner, receives the
numeric value of operand 2 following the rules of the

Copy Numeric Value instruction.

The format of operand 3 is as follows:

« Scalar attributes Char(7)
— Scalar type Char(1)
Hex 00 = Binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
— Scalar length Bin(2)
If binary:
Length (L) Bits 0-15
(where L = 2 or 4)
If floating-point:
Length Bits 0-15
(where L = 4 or 8)
If zoned decimal or packed
decimal:
Fractional digits (F) Bits 0-7
Total digits (T) (where Bits 8-15

1<T<31andO0O<F<T)

— Reserved (binary 0) Bin(4)

The byte length of operand 1 must be large enough to
contain the numeric value described by operand 3. If it
is not large enough, a scalar value invalid exception is
signaled. If it is larger than needed, the numeric value is
placed in the leftmost bytes and the unneeded rightmost
bytes are unchanged by the instruction.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-67

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range
04 External data object not found
06 Optimized addressability
invalid
08 Argument/Parameter
01 Parameter reference violation
0C Computation
02 Decimal data
06 Floating-point overflow
07 Floating-point underflow
09 Floating-point invalid operand
OA Size

0OC Invalid floating-point
conversion

0D Floating-point inexact result
10 Damage Encountered

04 System object damage state

44 Partial system object damage
1C Machine-Dependent Exception

03 Machine storage limit
exceeded

20 Machine Support
02 Machine check
03 Function check
22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended
24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
2A Program Creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
OA Invalid operand length
OC Invalid operand ODT reference
0D Reserved bits are not zero
32 Scalar Specification
01 Scalar type invalid
02 Scalar attribute invalid
03 Scalar value invalid

2-68

Operands
1 2 3[4,5]

X X X X X
X X X X X
X X X X X

xX X

X X

X X X X X X

x

X X X X X X x X

xX X

CONVERT SNA TO CHARACTER (CVTSC)

Op Code Operand Operand Operand
(Hex) 1 2 3

10DB Receiver Controls Source

Operand 1: Character variable scalar.
Operand 2: Character(14) variable scalar.

Operand 3: Character scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
CVTSCI 18DB Indicator
CVTSCB 1CDB Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: This instruction converts a string value from
the SNA (systems network architecture) format to
character. The operation converts the source (operand
3) from SNA format to character under control of the
controls (operand 2) and places the result into the
receiver (operand 1).

The source and receiver operands must both be
character strings. The source operand may not be
specified as an immediate operand.

The controls operand must be a character scalar that
specifies additional information to be used to control the
conversion operation. [t must be at least 14 bytes in
length and have the following format:

» Controls operand base template Char(14)

— Receiver offset Bin(2)

— Source offset Bin(2)

— Algorithm modifier Char(1)

— Receiver record length Char(1)

— Record separator Char(1)

— Prime compression Char(1)

— Unconverted receiver Char(1)
record bytes

— Conversion status Char(2)

— Unconverted transparency Char(1)
string bytes

— Offset into template Bin(2)
to translate table

» Controls operand optional Char(64)
template extension
— Record separator translate Char(64)

table

Upon input to the instruction, the source and receiver
offset fields specify the offsets where bytes of the
source and receiver operands are to be processed. If an
offset is equal to or greater than the length specified for
the operand it corresponds to (it identifies a byte

beyond the end of the operand), a template value invalid
exception is signaled. As output from the instruction
they are set to specify offsets that indicate how much of
the operation is complete when the instruction ends.

The algorithm modifier specifies the optional functions
to be performed. Any combination of functions not
precluded by the bit definitions below is valid except
that at least one of the functions must be specified. All
algorithm modifier bits cannot be zero. Specification of
an invalid algorithm modifier value results in a template
value invalid exception. The meaning of the bits in the
algorithm modifier is the following:

Bits Meaning

o] 0 = Do not perform decompression.
Interpret a source character value
of hex 00 as null.

1 = Perform decompression. Interpret
a source character value of hex 00
as a record separator.

1-2 00 = No record separators in source, no
blank padding.
Do not perform data transparency
conversion.
01 = Reserved.

10 = Record separators in source,
perform blank padding.
Do not perform data transparency
conversion.

11 = Record separators in source,
perform blank padding.
Perform data transparency
conversion.

3-4 00 = Do not put record separators into

receiver.

01 = Move record separators from
source to receiver (allowed only
when bit 1 = 1).

10 = Translate record separators from
source to receiver (allowed only
when bit 1 = 1).

11 = Move record separator from
controls to receiver.

5-7 Reserved

The receiver record length value specifies the record
length to be used to convert source records into the
receiver operand. This length applies only to the data
portion of the receiver record and does not include the
optional record separator. Specification of a receiver
record length of zero results in a template value invalid
exception. The receiver record length value is ignored if
no record separator processing is requested in the
algorithm modifier.

Computation and Branching Instructions 2-69

The record separator value specifies the character that is
to precede the converted form of each record in the
receiver. The record separator character specified in the
controls operand is used only for the case where the
move record separator from controls to receiver function
is specified in the algorithm modifier, or where a
missing record separator in the source is detected.

The prime compression value specifies the character to
be used as the prime compression character when
performing decompression of the SNA format source
data to character. It may have any value. The prime
compression value is ignored if the decompression
function is not specified in the algorithm modifier.

The unconverted receiver record bytes value specifies
the number of bytes remaining in the current receiver
record that are yet to be set with converted bytes from
the source.

When record separator processing is specified in the
algorithm modifier, this value is both input to and output
from the instruction. On input, a value of hex 00 means
it is the start of processing for a new record, and the
initial conversion step is yet to be performed. This
indicates that for the case where a function for putting
record separators into the receiver is specified in the
algorithm modifier, a record separator character has yet
to be placed in the receiver. On input, a nonzero value
less than or equal to the record length specifies the
number of bytes remaining in the current receiver record
that are yet to be set with converted bytes from the
source. This value is assumed to be the valid count of
unconverted receiver record bytes relative to the current
byte to be processed in the receiver as located by the
receiver offset value. As such, it is used to determine
the location of the next record boundary in the receiver
operand. This value must be less than or equal to the
receiver record length value; otherwise, a template value
invalid exception is signaled. On output, this field is set
with a value as defined above which describes the
number of bytes of the current receiver record not yet
containing converted data.

When record separator processing is not specified in the
algorithm modifier, this value is ignored.

2-70

The conversion status value specifies status information
for the operation to be performed. The meaning of the
bits in the conversion status is the following:

Bits Meaning
0 0]

No transparency string active.

1 = Transparency string active.
Unconverted transparency string
bytes value contains the remaining
string length.

1-15 Reserved

This field is both input to and output from the
instruction. It provides for checkpointing the conversion
status over successive executions of the instruction.

If the conversion. status indicates transparency string
active, but the algorithm modifier does not specify
perform data transparency conversion, a template value
invalid exception is signaled.

The unconverted transparency string bytes value
specifies the number of bytes remaining to be converted
for a partially processed transparency string in the
source.

When perform data transparency conversion is specified
in the algorithm modifier, the unconverted transparency
string bytes value can be both input to and output from
the instruction.

On input, when the no transparency string active status
is specified in the conversion status, this value is
ignored.

On input, when transparency string active status is
specified in the conversion status, this value contains a
count for the remaining bytes to be converted for a
transparency string in the source. A value of hex 00
means the count field for a transparency string is the
first byte of data to be processed from the source
operand. A value of hex 01 through hex FF specifies the
count of the remaining bytes to be converted for a
transparency string. This value is assumed to be the
valid count of unconverted transparency string bytes
relative to the current byte to be processed in the
source as located by the source offset value.

On output, this value is set if necessary along with the
transparency string active status to describe a partially
converted transparency string. A value of hex 00 will be
set if the count field is the next byte to be processed for
a transparency string. A value of hex 01 through hex FF
specifying the number of remaining bytes to be
converted for a transparency string, will be set if the
count field has already been processed.

When do not perform data transparency conversion is
specified in the algorithm modifier, the unconverted
transparency string bytes value is ignored.

The offset into template to translate table value specifies
the offset from the beginning of the template to the
record separator translate table. This value is ignored
unless the translate record separators from source to
receiver function is specified in the algorithm modifier.

The record separator translate table value specifies the
translate table to be used in translating record
separators specified in the source to the record
separator value to be placed into the receiver. It is
assumed to be 64 bytes in length, providing for
translation of record separator values of from hex 00 to
hex 3F. This translate table is used only when the
translate record separators from source to receiver
function is specified in the algorithm modifier. See the
record separator conversion function under the
conversion process described below for more detail on
the usage of the translate table.

Only the first 14 bytes of the controls operand base
template and the optional 64-byte extension area
specified for the record separator translate table are
used. Any excess bytes are ignored.

The description of the conversion process is presented
as a series of separately performed steps, which may be
selected in allowable combinations to accomplish the
conversion function. It is presented this way to allow for
describing these functions separately. However, in the
actual execution of the instruction, these functions may
be performed in conjunction with one another or
separately, depending upon which technique is
determined to provide the best implementation.

The operation is performed either on a record-by-record
basis, record processing, or on a nonrecord basis, string
processing. This is determined by the functions selected
in the algorithm modifier. Specifying the record
separators in source, perform blank padding or move
record separator from controls to receiver indicates
record processing is to be performed. If neither of these
functions is specified, in which case decompression
must be specified, it indicates that string processing is
to be performed.

The operation begins by accessing the bytes of the
source operand at the location specified by the source
offset.

When record processing is specified, the source offset
may locate a point at which processing of a partially
converted record is to be resumed or processing for a
full record is to be started. The unconverted receiver
record bytes value indicates whether conversion
processing is to be started with a partial or a full record.
Additionally, the transparency string active indicator in
the conversion status field indicates whether conversion
of a transparency string is active for the case of
resumption of processing for a partially converted
record. The conversion process is started by completing
the conversion of a partial source record if necessary
before processing the first full source record.

When string processing is specified, the source offset is
assumed to locate the start of a compression entry.

When during the conversion process the end of the
receiver operand is encountered, the instruction ends
with a resultant condition of receiver overrun.

When record processing is specified in the algorithm
modifier, this check is performed at the start of
conversion for each record. A source exhausted
condition would be detected before a receiver overrun
condition if there is no source data to convert. If the
receiver operand does not have room for a full record,
the receiver overrun condition is recognized. The
instruction is terminated with status in the controls
operand describing the last completely converted record.
For receiver overrun, partial conversion of a source
record is not performed.

When string processing is specified in the algorithm
modifier, then decompression must be specified and the
decompression function described below defines the
detection of receiver overrun.

Computation and Branching Instructions 2-71

When during the conversion process the end of the
source operand is encountered, the instruction ends with
a resultant condition of source exhausted. See the
description of this condition in the conversion process
described below to determine the status of the controls
operand values and the converted bytes in the receiver
for each case.

When string processing is specified, the bytes accessed
from the source are converted on a string basis into the
receiver operand at the location specified by the receiver
offset. In this case, the decompression function must be
specified and the conversion process is accomplished
with just the decompression function defined below.

When record processing is specified the bytes accessed
from the source are converted one record at a time into
the receiver operand at the location specified by the
receiver offset performing the functions specified in the
algorithm modifier in the sequence defined by the
following algorithm.

Record separator conversion is performed as requested
in the algorithm modifier during the initial record
separator processing performed as each record is being
converted. This provides for controlling the setting of
the record separator value in the receiver.

When the record separators in source option is
specified, the following algorithm is used to locate them.
A record separator is recognized in the source when a
character value less than hex 40 is encountered. When
do not perform decompression is specified, a source
character value of hex 00 is recognized as a null value
rather than as a record separator. In this case, the
processing of the current record continues with the next
source byte and the receiver is not updated. When
perform data transparency conversion is specified, a
character value of hex 35 is recognized as the start of a
transparency string rather than as a record separator.

If the do not put record separators into the receiver
function is specified, the record separator, if any, from
the source record being processed is removed from the
converted form of the source record and will not be
placed in the receiver.

If the move record separators from the source to the
receiver function is specified, the record separator from
the source record being processed is left as is in the
converted form of the source record and will be placed
in the receiver.

2-72

If the translate record separators from the source to the
receiver function is specified, the record separator from
the source record being processed is translated using
the specified translate table, replaced with its translated
value in the converted form of the source record and,
will be placed in the receiver. The translation is
performed as in the translate instruction with the record
separator value serving as the source byte to be
translated. It is used as an index into the specified
translate table to select the byte in the translate table
that contains the value to which the record separator is
to be set. If the selected translate table byte is equal to
hex FF, it is recognized as an escape code. The
instruction ends with a resultant condition of escape
code encountered, and the controls operand is set to
describe the conversion status as of the processing
completed just prior to the conversion step for the
record separator. If the selected translate table byte is
not equal to hex FF, the record separator in the
converted form of the record is set to its value.

If the move record separator from controls to receiver
function is specified, the controls record separator value
is used in the converted form of the source record and
will be placed into the receiver.

When the record separators in source do blank padding
function is requested, an assumed record separator will
be used if a record separator is missing in the source
data. In this case, the controls record separator
character is used as the record separator to precede the
converted record if record separators are to be placed in
the receiver. The conversion process continues,
bypassing the record separator conversion step that
would normally be performed. The condition of a
missing record separator is detected when during initial
processing for a full record, the first byte of data is not
a record separator character.

Decompression is performed if the function is specified
in the algorithm modifier. This provides for converting
strings of duplicate characters in compressed format in
the source back to their full size in the receiver.
Decompression of the source data is accomplished by
concatenating together character strings described by
the compression strings occurring in the source. The
source offset value is assumed to locate the start of a
compression string. Processing of a partial
decompressed record is performed if necessary.

C

C

The character strings to be built into the receiver are
described in the source by one or more compression
strings. Compression strings are comprised of an SCB
(string control byte) possibly followed by one or more
bytes of data related to the character string to be built
into the receiver.

The format of an SCB and the description of the data
that may follow it is as follows:

« SCB
— Control
00= n nonduplicate characters are
between this SCB and the next one;
where n is the value of the
count field (1-63).
01= Reserved.
10= This SCB represents n deleted prime
compression characters; where n is
the value of the count field (1-63).
The next byte is the next SCB.
This SCB represents n deleted duplicate
characters; where n is the value of
the count field (1-63). The next
byte contains a specimen of the
deleted characters. The byte following
the specimen character contains the
next SCB.
— Count
This contains the number of
characters that have been deleted
for a prime or duplicate string, or
the number of characters to the next SCB
for a nonduplicate string. A count value
of zero is invalid and results in the
signaling of a conversion exception.

Char(1)
Bits 0-1

11

Bits 2-7

Strings of prime compression characters or duplicate
characters described in the source are repeated in the
decompressed character string the number of times
indicated by the SCB count value.

Strings of nonduplicate characters described in the
source record are formed into a decompressed character
string for the length indicated by the SCB count value.

If the end of the source is encountered prior to the end
of a compression string, a conversion exception is
signaled.

When record processing is specified, decompression is
performed one record at a time. In this case, a
conversion exception is signaled if a compression string
describes a character string that would span a record
boundary in the receiver. If the source contains record
separators, the case of a missing record separator in the
source is detected as defined under the initial
description of the conversion process. Record separator
conversion, as requested in the algorithm modifier, is
performed as the initial step in the building of the
decompressed record. A record separator to be placed
into the receiver is in addition to the data to be
converted into receiver for the length specified in the
receiver record length field. The decompression of
compression strings from the source continues until a
record separator character for the next record is
recognized when the source contains record separators,
or until the decompressed data required to fill the
receiver record has been processed or the end of the
source is encountered whether record separators are in
the source or not. Transparency strings encountered in
the decompressed character string are not scanned for a
record separator value. If the end of the source is
encountered, the data decompressed to that point
appended to the optional record separator for this
record forms a partial decompressed record. Otherwise,
the decompressed character strings appended to the
optional record separator for this record form the
decompressed record. The conversion process then
continues for this record with the next specified
function.

When string processing is specified, decompression is
performed on a compression string basis with no record
oriented processing implied. The conversion process for
each compression string from the source is completed
by placing the decompressed character string into the
receiver. The conversion process continues
decompressing compression strings from the source
until the end of the source or the receiver is
encountered. When the end of the source operand is
encountered, the instruction ends with a resultant
condition of source exhausted. When a character string
cannot be completely contained in the receiver, the
instruction ends with a resultant condition of receiver
overrun. For either of the above ending conditions, the
controls operand is updated to describe the status of
the conversion operation as of the last completely
converted compression entry. Partial conversion of a
compression entry is not performed.

Computation and Branching Instructions 2-73

Data transparency conversion is performed if perform
data transparency conversion is specified in the
algorithm modifier. This provides for correctly identifying
record separators in the source even if the data for a
record contains value that could be interpreted as record
separator values. Processing of active transparency
strings is performed if necessary.

A nontransparent record is built by appending the
nontransparent and transparent data converted from the
record to the record separator for the record. The
nontransparent record may be produced from either a
partial record from the source or a full record from the
source. This is accomplished by first accessing the
record separator for a full record. The case of a missing
record separator in the source is detected as defined
under the initial description of the conversion process.
Record separator conversion as requested in the
algorithm modifier is performed if it has not already
been performed by a prior step. Then the rest of the
source record is scanned for values of less than hex 40.

A value greater than or equal to hex 40 is considered
nontransparent data and is concatenated onto the record
being built as is.

A value equal to hex 35 identifies the start of a
transparency string. A transparency string is comprised
of 2 bytes of transparency control information followed
by the data to be made transparent to scanning for
record separators. The first byte has a fixed value of
hex 35 and is referred to as the TRN (transparency)
control character. The second byte is a 1-byte
hexadecimal count, a value remaining from 1 to 255
decimal, of the number of bytes of data that follow and
is referred to as the TRN count. A TRN count of zero is
invalid and causes a conversion exception. This contains
the length of the transparent data and does not include
the TRN control information length. The transparent
data is concatenated to the nontransparent record being
built and is not scanned for record separator characters.

A value equal to hex 00 is recognized as the record
separator for the next record only when perform
decompression is specified in the algorithm modifier. In
this case, the nontransparent record is complete. When
do not perform decompression is specified in the
algorithm modifier, a value equal to hex 00 is ignored
and is not included as part of the nontransparent data
built for the current record.

2-74

A value less than hex 40 but not equal to hex 35 is
considered to be the record separator for the next
record, and the forming of the nontransparent record is
complete.

The building of the nontransparent record is completed
when the length of the data converted into the receiver
equals the receiver record length if the record separator
for the next record is not encountered prior to that
point.

If the end of the source is encountered prior to
completion of building the nontransparent record, the
nontransparent record built up to this point is placed in
the receiver and the instruction ends with a resultant
condition of source exhausted. The controls operand is
updated to describe the status for the partially converted
record. This includes describing a partially converted
transparency string, if necessary, by setting the active
transparency string status and the unconverted
transparency string bytes value.

If the building of the nontransparent record is completed
prior to encountering the end of the source, the
conversion process continues with the blank padding
function described below.

Blank padding is performed if the function is specified in
the algorithm modifier. This provides for expanding out
to the size specified by the receiver record length the
source records for which trailing blanks have been
truncated. The padded record may be produced from
either a partial record from the source or a full record
from the source.

The record separator for this record is accessed. The
case of a missing record separator in the source is
detected as defined under the initial description of the
conversion process. Record separator conversion, as
requested in the algorithm modifier, is performed if it
has not already been performed by a prior step.

The nontruncated data, if any, for the record is
appended to the optional record separator for the
record. The nontruncated data is determined by
scanning the source record for the record separator for
the next record. This scan is concluded after processing
enough data to completely fill the receiver record or
upon encountering the record separator for the next
record. The data processed prior to concluding the scan
is considered the nontruncated data for the record.

The blanks, if any, required to pad the record out to the
nontruncated data for the record, concluding the forming
of the padded record.

If the end of the source is encountered during the
forming of the padded record, the data processed up to
that point, appended to the optional record separator for
the record, is placed into the receiver and the instruction
ends with a resultant condition of source exhausted.
The controls operand is updated to describe the status
of the partially converted record.

If the forming of the padded record is concluded prior to
encountering the end of the source, the conversion of
the record is completed by placing the converted form
of the record into the receiver.

At this point, either conversion of a source record has
been completed or conversion has been interrupted due
to detection of the source exhausted or receiver overrun
condition. For record processing, if neither of the above
conditions has been detected either during conversion of
or at completion of conversion for the current record,
the conversion process continues on the next source
record with the decompression function described
above.

At completion of the instruction, the offset value for the
receiver locates the byte following the last converted
byte in the receiver. The value of the remaining bytes in
the receiver after the last converted byte are
unpredictable. The offset value for the source locates
the byte following the last source byte for which
conversion was completed. When record processing is
specified, the unconverted receiver record bytes value
specifies the length of the receiver record bytes not yet
containing converted data. When perform data
transparency conversion is specified in the algorithm
modifier, the conversion status indicates whether
conversion of a transparency string was active and the
unconverted transparency string bytes value specifies
the length of the remaining bytes to be processed for an
active transparency string.

Any form of overlap between the operands on this
instruction yields unpredictable results in the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

This instruction does not provide support for
compression entries in the source describing data that
would span records in the receiver. SNA data from
some systems may violate this restriction and as such
be incompatible with the instruction. A provision can be
made to avoid this incompatibility by performing the
conversion of the SNA data through two invocations of
this instruction. The first invocation would specify
decompression with no record separator processing.
The second invocation would specify record separator
processing with no decompression. This technique
provides for separating the decompression step from
record separator processing; thus, the incompatibility is
avoided.

This instruction can end with the escape code
encountered condition. In this case, it is expected that
the user of the instruction will want to do some special
processing for the record separator causing the
condition. In order to resume execution of the
instruction, the user will have to set the appropriate
value for the record separator into the receiver and
update the controls operand offset values correctly to
provide for restarting processing at the right points in
the receiver and source operands.

For the special case of a tie between the source
exhausted and receiver overrun conditions, the source
exhausted condition is recognized first. That is, when
source exhausted is the resultant condition, the receiver
may also be full. In this case, the offset into the
receiver operand may contain a value equal to the length
specified for the receiver, which would cause an
exception to be detected on the next invocation of the
instruction. The processing performed for the source
exhausted condition should provide for this case if the
instruction is to be invoked multiple times with the same
controls operand template. When the receiver overrun
condition is the resultant condition, the source will
always contain data that can be converted.

This instruction will, in certain cases, ignore what would
normally have been interpreted as a record separator
value of hex 00. This applies (hex 00 is ignored) for the
special case when do not perform decompression and
record separators in source are specified in the
algorithm modifier. Note that this does not apply when
perform decompression is specified, or when do not
perform decompression and no record separators in
source and move record separator from controls to
receiver are specified in the algorithm modifier.

Computation and Branching Instructions 2-75

Resultant Conditions

Source exhausted—The end of the source operand is
encountered and no more bytes from the source can be
converted. Receiver overrun—An overrun condition in the
receiver operand is detected before all of the bytes in
the source operand have been processed. Escape code
encountered—A record separator character is
encountered in the source operand that is to be treated
as an escape code.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

000D Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

2-76

Exceptions

Exception

06

08

ocC

10

1C

20

22

24

2A

2C

32

38

Addressing

01 Space addressing violation

02 Boundary alignment violation
03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Computation

01 Conversion

Damage Encountered

44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op-code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

0OC Invalid operand ODT reference
Program Execution

04 Invalid branch target

Scalar Specification

01 Scalar type invalid

Template Specification

01 Template value invalid

Operands

123

X X X X
X X X X
X X X X

x
x
x

COPY BITS WITH LEFT LOGICAL SHIFT
(CPYBTLLS)

Op Code Operand Operand Operand
(Hex) 1 2 3
102F Receiver Source Shift control

Operand 1: Character variable scalar or numeric variable scalar.
Operand 2: Character scalar or numeric scalar.

Operand 3: Character(2) scalar.

Description: This instruction copies the bit string value
of the source operand to the bit string defined by the
receiver operand with a left logical shift of the source bit
string value under control of the shift control operand.

The operation results in copying the shifted bit string
value of the source to the bit string of the receiver while
padding the receiver with bit values of O and truncating
bit values of the source as is appropriate for the specific
operation.

No indication is given of truncation of bit values from
the shifted source value. This is true whether the values
truncated are O or 1.

The operation is performed such that the bit string of
the source is considered to be extended on the left and
right by an unlimited number of bit string positions of
value 0. Additionally, a receiver bit string view (window)
with the attributes of the receiver is considered to
overlay this conceptual bit string value of the source
starting at the leftmost bit position of the original source
value. A left logical shift of the conceptual bit string
value of the source is then performed relative to the
receiver bit string view according to the shift criteria
specified in the shift control operand. After the shift,
the bit string value then contained within the receiver bit
string view is copied to the receiver.

The source and the receiver can be either character or
numeric. Any numeric operands are interpreted as
logical character strings. Due to the operation being
treated as a character string operation, the source
operand may not be specified as a signed immediate
operand. Additionally, for a source operand specified as
an unsigned immediate value, only a 1-byte immediate
value may be specified.

The shift control operand may be specified as an
immediate operand or as a character(2) scalar. It
provides an unsigned binary value indicating the number
of bit positions for which the left logical shift of the
source bit string value is to be performed. A zero value
specifies no shift.

Operands 1 and 2 may be specified as variable length
substring compound operands.

Operand 3 may not be specified as a variable length
substring compound operand.

Substring operand references that allow for a null

substring reference (a length value of zero) may not be
specified for this instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

000D Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-77

Exceptions

Exception

06

08

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment violation
03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

44 Partial system object damage
Machine Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand ODT reference
OD Reserved bits are not zero
Scalar Specification

01 Scalar type invalid

2-78

Operands

123

X X X X
X X X X

x
x
x

x
x

X X X X X X
X X X X X X

x
x
x

X X X X

x X

X X X X X X

COPY BITS WITH RIGHT LOGICAL SHIFT
(CPYBTRLS)

Op Code Operand Operand Operand
(Hex) 1 2 3
103F Receiver Source Shift control

Operand 1: Character variable scalar or numeric variable scalar.
Operand 2: Character scalar or numeric scalar.

Operand 3: Character(2) scalar.

Description: This instruction copies the bit string value
of the source operand to the bit string defined by the
receiver operand with a right logical shift of the source
bit string value under control of the shift control
operand.

The operation results in copying the shifted bit string
value of the source to the bit string of the receiver while
padding the receiver with bit values of O and truncating
bit values of the source as is appropriate for the specific
operation.

No indication is given of truncation of bit values from
the shifted source value. This is true whether the values
truncated are 0 or 1.

The operation is performed such that the bit string of
the source is considered to be extended on the left and
right by an unlimited number of bit string positions of
value 0. Additionally, a receiver bit string view (window)
with the attributes of the receiver is considered to
overlay this conceptual bit string value of the source
starting at the leftmost bit position of the original source
value. A right logical shift of the conceptual bit string
value of the source is then performed relative to the
receiver bit string view according to the shift criteria
specified in the shift control operand. After the shift,
the bit string value then contained within the receiver bit
string view is copied to the receiver.

The source and the receiver can be either character or
numeric. Any numeric operands are interpreted as
logical character strings. Due to the operation being
treated as a character string operation, the source
operand may not be specified as a signed immediate
operand. Additionally, for a source operand specified as
an unsigned immediate value, only a 1-byte immediate
value may be specified.

The shift control operand may be specified as an
immediate operand or as a character(2) scalar. It
provides an unsigned binary value indicating the number
of bit positions for which the right logical shift of the
source bit string value is to be performed. A zero value
specifies no shift.

Operands 1 and 2 may be specified as variable length
substring compound operands.

Operand 3 may not be specified as a variable length
substring compound operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

000D Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Exceptions

Exception

06

o8

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment violation
03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

44 Partial system object damage
Machine Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0OC Invalid operand ODT reference
0D Reserved bits are not zero
Scalar Specification

01 Scalar type invalid

Computation and Branching Instructions

Operands

123

X X X X

x
x
x

x
x

x
x
x

X X X X X X

x
x
x

X X X X

X X X X X X

X X X X

X X X X X X

Other

2-79

COPY BYTES LEFT-ADJUSTED (CPYBLA)

Op Code Operand Operand
(Hex) 1 2
10B2 Receiver Source

Operand 1: Character variable scalar, numeric variable scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (no padding done).

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
shorter of the two. operands. The copying begins with
the two operands left-adjusted and proceeds until the
shorter operand has been copied.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for either operand is that no
result is set.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-80

Exceptions

Exception

06

08

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found
06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
0D Reserved bits are not zero
Scalar Specification

01 Scalar type invalid

Operands

1

X X X X X
X X X X X

x
x

x
x

x
x

X X X X X X

x
x

2

X X X X X X

COPY BYTES LEFT-ADJUSTED WITH PAD
(CPYBLAP)

Op Code Operand Operand Operand
(Hex) 1 2 3
10B3 Receiver Source Pad

Operand 1: Character variable scalar or numeric variable scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (padded if needed).

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
receiver operand. If the source operand is shorter than
the receiver operand, the source operand is copied to
the leftmost bytes of the receiver operand, and each
excess byte of the receiver operand is assigned the
single byte value in the pad operand. If the pad operand
is more than 1 byte in length, only its leftmost byte is
used. If the source operand is longer than the receiver
operand, the leftmost bytes of the source operand
(equal in length to the receiver operand) are copied to
the receiver operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for the source is that the
bytes of the receiver are each set with the single byte
value of the pad operand. The effect of specifying a null
substring reference for the receiver is that no result is
set.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for operand 3.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process

0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found
06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
OD Reserved bits are not zero
Scalar Specification

01 Scalar type invalid

Computation and Branching Instructions

Operands
123

X X X X X

x
x

x
x

X X X X X X

X X X X X X

x
x

X X X X X

Other

2-81

COPY BYTES OVERLAP LEFT-ADJUSTED
(CPYBOLA)

Op Code Operand Operand
(Hex) 1 2
10BA Receiver Source

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (no padding done).

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
shorter of the two operands. The copying begins with
the two operands left-adjusted and proceeds until the
shorter operand has been copied. The excess bytes in
the longer operand are not included in the operation.

Predictable results occur even if two operands overlap
because the source operand is, in effect, first copied to
an intermediate result.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for either operand is that no
result is set.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-82

Exceptions

Exception

06

08

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine~Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand ODT reference
0D Reserved bits are not zero
Scalar Specification

01 Scalar type invalid

Operands

1

X X X X
X X X X

x
x

x
x

xX X
X X

X X X X X X

X X X X X X

x
x

2

COPY BYTES OVERLAP LEFT-ADJUSTED WITH
PAD (CPYBOLAP)

Op Code Operand Operand Operand
(Hex) 1 2 3
10BB Receiver Source Pad

Operand 1: Character variable scalar or numeric variable scalar.
Operand 2: Character scalar or numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand.

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
receiver operand. If the source operand is shorter than
the receiver operand, the source operand is copied to
the leftmost bytes of the receiver operand and each
excess byte of the receiver operand is assigned the
single byte value in the pad operand. If the pad operand
is more than 1 byte in length, only its leftmost byte is
used. If the source operand is longer than the receiver
operand, the leftmost bytes of the source operand
(equal in length to the receiver operand) are copied to
the receiver operand.

Predictable results occur even if two operands overlap
because the source operand is, in effect, first copied to
an intermediate result.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for the source is that the
bytes of the receiver are each set with the single byte
value of the pad operand. The effect of specifying a null
substring reference for the receiver is that no resuit is
set.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for operand 3.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process

0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0OC Invalid operand ODT reference
OD Reserved bits are not zero

Computation and Branching Instructions

Operands

123

X X X X
X X X X
X X X X

x
x
x

x
x

x
x

X X X X X X
X X X X X X

Other

2-83

COPY BYTES REPEATEDLY (CPYBREP)

Op Code Operand Operand
(Hex) 1 2
10BE Receiver Source

Operand 1: Numeric variable scalar or character variable scalar
{fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The logical string value of the source
operand is repeatedly copied to the receiver operand
until the receiver is filled.

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The operation begins with the two operands
left-adjusted and continues until the receiver operand is
completely filled. If the source operand is shorter than
the receiver, it is repeatedly copied from left to right (all
or in part) until the receiver operand is completely filled.
If the source operand is longer than the receive operand,
the leftmost bytes of the source operand (equal in
length to the receiver operand) are copied to the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for either operand is that no
result is set.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-84

Exceptions

Exception

06

08

10

1C

20

22

24

2A

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand ODT reference
0D Reserved bits are not zero

Operands

1

x X X X X

x
x

xX X

X X X X X X

2

X X X X

x

xX X

X X X X X X

COPY BYTES RIGHT-ADJUSTED (CPYBRA)

Op Code Operand Operand
(Hex) 1 2
10B6 Receiver Source

Operand 1: Character variable scalar, numeric variable scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (no padding done).

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
shorter of the two operands. The rightmost bytes {equal
to the length of the shorter of the two operands) of the
source operand are copied to the rightmost bytes of the
receiver operand. The excess bytes in the longer
operand are not included in the operation.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for either operand is that no
result is set.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found
06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
OD Reserved bits are not zero
Scalar Specification

01 Scalar type invalid

Computation and Branching Instructions

Operands

1

X X X X X
X X X X X

x
x

x
x

x
x

X X X X X X

x
x

2

X X X X X X

Other

2-85

COPY BYTES RIGHT-ADJUSTED WITH PAD
(CPYBRAP)

Op Code Operand Operand Operand
(Hex) 1 2 3
10B7 Receiver Source Pad

Operand 1: Character variable scalar, numeric variable scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (padded if needed).

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
receiver operand. If the source operand is shorter than
the receiver operand, the source operand is copied to
the rightmost bytes of receiver operand, and each
excess byte is assigned the single byte value in the pad
operand. If the pad operand is more than 1 byte in
length, only its leftmost byte is used. If the source
operand is longer than the receiver operand, the
rightmost bytes of the source operand (equal in length
to the receiver operand) are copied to the receiver
operand.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for the source is that the
bytes of the receiver are each set with the single byte
value of the pad operand. The effect of specifying a null
substring reference for the receiver is that no result is
set.

Substring operand references that allow for a null

substring reference (a length value of zero) may not be
specified for operand 3.

2-86

Events

000C Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found
06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand ODT reference
0D Reserved bits are not zero
Scalar Specification

01 Scalar type invalid

Operands

123

X X X X X
X X X X X

x

x
x
x

X X X X X X
X X X X X X
X X X X X X

x
x

x

COPY HEX DIGIT NUMERIC TO NUMERIC
(CPYHEXNN)

Op Code Operand Operand
(Hex) 1 2
1092 Receiver Source

Operand 1: Numeric variable scalar or character variable scalar
(fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The numeric hex digit value (rightmost 4
bits) of the leftmost byte referred to by the source
operand is copied to the numeric hex digit value
(rightmost 4 bits) of the leftmost byte referred to by the
receiver operand.

The operands can be either character strings or numeric.
Any numeric operands are interpreted as logical
character strings.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

iC

20

22

24

2A

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

OC Invalid operand ODT reference
OD Reserved bits are not zero

Computation and Branching Instructions

Operands

1

X X X X
X X X X

x
x

x

x
x

X X X X X X

2

X X X X X X

Other

2-87

COPY HEX DIGIT NUMERIC TO ZONE (CPYHEXNZ2)

Op Code Operand Operand
(Hex) 1 2
1096 Receiver Source

Operand 1: Numeric variable scalar or character variable scalar
(fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The numeric hex digit value (rightmost 4
bits) of the leftmost byte referred to by the source
operand is copied to the zone hex digit value (leftmost 4
bits) of the leftmost byte in the receiver operand.

The operands can be either character strings or numeric.
Any numeric operands are interpreted as logical
character strings.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-88

Exceptions

Exception

06

08

10

1C

20

22

24

2A

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0OC Invalid operand ODT reference
0D Reserved bits are not zero

Operands

1

X X X X
X X X X

x
x

x

x
x

x
x

X X X X X X

2

X X X X X X

COPY HEX DIGIT ZONE TO NUMERIC (CPYHEXZN)

Op Code Operand Operand
(Hex) 1 2
109A Receiver Source

Operand 1: Numeric variable scalar or character variable scalar
(fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The zone hex digit value (leftmost 4 bits) of
the leftmost byte referred to by the source operand is
copied to the numeric hex digit value (rightmost 4 bits)
of the leftmost byte referred to by the receiver operand.

The operands can be either character strings or numeric.
Any numeric operands are interpreted as logical
character strings.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

10

1C

20

22

24

2A

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand ODT reference
0D Reserved bits are not zero

Computation and Branching Instructions

Operands

1

X X X X
X X X X

x
x

x
x

X X X X X X
X X X X X X

2

x

Other

2-89

COPY HEX DIGIT ZONE TO ZONE (CPYHEXZZ2)

Op Code Operand Operand
(Hex) 1 2
109E Receiver Source

Operand 1. Numeric variable scalar or character variable scalar
(fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The zone hex digit value (leftmost 4 bits) of
the leftmost byte referred to by the source operand is
copied to the zone hex digit value (leftmost 4 bits) of
the leftmost byte referred to by the receiver operand.

The operands can be either character strings or numeric.
Any numeric operands are interpreted as logical
character strings.

Substring operand references that allow for a null
substring reference {a length value of zero) may not be
specified for this instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-90

Exceptions

Exception

06

08

10

1C

20

22

24

2A

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0OC Invalid operand ODT reference
OD Reserved bits are not zero

Operands

1

X X X X

x
x

x
x

x
x

x
x

X X X X X X
X X X X X X

2

X X X X

COPY NUMERIC VALUE (CPYNV)

Op Code Operand Operand
(Hex) 1 2
1042 Receiver Source

Operand 1: Numeric variable scalar or data-pointer-defined
numeric scalar.

Operand 2: Numeric scalar or data pointer-defined-numeric
scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
CPYNVR 1242 Round
CPYNVI 1842 Indicator
CPYNVIR 1A42 Indicator, Round
CPYNVB 1C42 Branch

CPYNVBR 1E42 Branch, Round

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The signed numeric value of the source
operand is copied to the numeric receiver operand.

Both operands must be numeric. If necessary, the
source operand is converted to the same type as the
receiver operand before being copied to the receiver
operand. The source value is adjusted to the length of
the receiver operand, aligned at the assumed decimal
point of the receiver operand, or both before being
copied to it. Length adjustment and decimal point
alignment are performed according to the rules of
arithmetic operations outlined in the Functional Concepts
Manual. If significant digits are truncated on the left end
of the source value, a size exception is signaled.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Conversions between floating-point integers and integer
formats (binary or decimal with no fractional digits) is
exact, except when an exception is signaled.

An invalid floating-point conversion exception is
signaled when an attempt is made to convert from
floating-point to binary or decimal and the result would
represent infinity or NaN, or nonzero digits would be
truncated from the left end of the resultant value.

For the optional round form of the instruction, a
floating-point receiver operand is invalid.

For a fixed-point operation, if significant digits are
truncated from the left end of the source value, a size
exception is signaled.

For a floating-point receiver, if the exponent of the
resultant value is too large or too small to be
represented in the receiver field, the floating-point
overflow and floating-point underflow exceptions are
signaled, respectively.

Resultant Conditions: Positive, negative, or zero—The
algebraic value of the numeric scalar receiver operand is
either positive, negative, or zero. Unordered-The value
assigned a floating-point receiver operand is NaN.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-91

Exceptions

Exception

06

08

ocC

10

1C

20

22

24

2A

2C

32

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found
06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Computation

02 Decimal data

06 Floating-point overflow

07 Floating-point underflow

09 Floating-point invalid operand
OA Size

OC Invalid floating-point conversion
0D Floating-point inexact result
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OC Invalid operand ODT reference
OD Reserved bits are not zero
Program Execution

04 Invalid branch target

Scalar Specification

01 Scalar type invalid

2-92

Operands

1

X X X X X
X X X X X

x
x

2

DIVIDE (DIV)

Op Code Operand Operand Operand
(Hex) 1 2 3
104F Quotient Dividend Divisor

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
DIVS 114F Short
DIVR 124F Round
DIVSR 134F Short, Round
DivI 184F Indicator
DIVIS 194F Indicator, Short
DIVIR 1A4F Indicator, Round
DIVISR 1B4F Indicator, Short, Round
DIVB 1C4F Branch
DIVBS 1D4F Branch, Short
DIVBR 1E4F Branch, Round
DIVBSR 1F4F Branch, Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands will immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

J

Description: The signed numeric value of the dividend
operand is divided by the numeric value of the divisor
operand, and the result is placed in the quotient
operand.

All of the operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

Decimal operands used in floating-point operations
cannot contain more than 15 total digit positions.

If the divisor has a numeric value of zero, a zero divide
or floating-point zero divide exception is signaled
respectively for fixed-point versus floating-point
operations. If the dividend has a value of zero, the
result of the division is a zero quotient value.

If the divisor has a numeric value of O, a zero divide
exception is signaled. If the dividend has a value of O,
the result of the division is a zero value quotient.

For a decimal operation, the precision of the resuit of
the divide operation is determined by the number of
fractional digit positions specified for the quotient. In
other words, the divide operation will be performed so
as to calculate a resultant quotient of the same precision
as that specified for the quotient operand. If necessary,
internal alignment of the assumed decimal point for the
dividend and divisor operands is performed to ensure
the correct precision for the resultant quotient value.
These internal alignments are not subject to detection of
the decimal point alignment exception. An internal
quotient value will be calculated for any combination of
decimal attributes which may be specified for the
instruction’s operands. However, the assignment of the
result to the quotient operand is subject to detection of
the size exception thereby limiting the assignment to, at
most, the rightmost 31 digits of the calculated result.

Floating-point division uses exponent subtraction and
significand division.

If the dividend operand is shorter than the divisor
operand, it is logically adjusted to the length of the
divisor operand.

For fixed-point computations and for the significand
division of a floating-point computation, the division
operation is performed according to the rules of algebra.

For a floating-point computation, the operation is
performed as if to infinite precision.

The result of the operation is copied into the quotient
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the quotient operand, aligned
at the assumed decimal point of the quotient operand,
or both before being copied to it. Length adjustment
and decimal point alignment are performed according to
the rules for arithmetic operations as outlined in the
Functional Concepts Manual. If significant digits are
truncated on the left end of the resultant value, a size
exception is signaled. A decimal point alignment
exception is also signaled when a division operation is
performed in decimal and one of the following
conditions occurs:

« The dividend operand is aligned, and the number of
fractional digits specified in the divisor operand plus
the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the dividend operand exceeds 31.

« The divisor operand is aligned, and the number of
fractional digits specified for the dividend operand
minus the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the divisor operand exceeds 31.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

For the optional round form of the instruction,
specification of a floating-point receiver operand is
invalid.

For fixed-point operations, if nonzero digits are
truncated from the left end of the resultant value, a size
exception is signaled.

For floating-point operations that involve a fixed-point
receiver field, if nonzero digits would be truncated from
the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

For a floating-point quotient operand, if the exponent of
the resultant value is either too large or too small to be
represented in the quotient field, the floating-point
overflow and floating-point underflow exceptions are
signaled, respectively.

Computation and Branching Instructions 2-93

Resultant Conditions: Positive, negative, or zero—The Exceptions

algebraic value of the numeric scalar quotient is positive,

negative, or zero. Unordered—The value assigned a Operands ;
floating-point quotient operand is NaN. Exception 123 Other)
06 Addressing
Events 01 Space addressing violation X X X
02 Boundary alignment X X X
000C Machine resource 03 Range X X X
0201 Machine auxiliary storage threshold exceeded 06 Optimized addressability invalid X X X
08 Argument/Parameter
0010 Process 01 Parameter reference violation X X X
0701 Maximum processor time exceeded 0C Computation
0801 Process storage limit exceeded 02 Decimal data X X
06 Floating-point overflow X
0016 Machine observation 07 Floating-point underflow X
0101 Instruction reference 09 Floating-point invalid operand X X
OA Size X
0017 Damage set 0B Zero divide X
0401 System object damage set OC Invalid floating-point conversion X
0801 Partial system object damage set 0D Floating-point inexact result X
OE Floating-point divide by zero X
10 Damage Encountered
04 System object damage state X X X
44 Partial system object damage X X X
1C Machine-Dependent Exception
03 Machine storage limit exceeded
20 Machine Support
02 Machine check
03 Function check
22 Object Access
01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X
24 Pointer Specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X
2A Program Creation
05 Invalid op code extender field
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
09 Invalid branch target operand
0C Invalid operand ODT reference X X X
OD Reserved bits are not zero X X X

2-94

2C

Program Execution
04 Invalid branch target

DIVIDE WITH REMAINDER (DIVREM)

Op Code Operand Operand Operand Operand
(Hex) 1 2 3 4
1074 Quotient Dividend Divisor Remainder

Operand 1: Numeric variable scalar.
Operand 2: Numeric scalar.
Operand 3: Numeric scalar.

Operand 4. Numeric variable scalar.

Optional Forms

(The optional forms apply to the quotient only.)

Op Code
Mnemonic (Hex) Form Type
DIVREMS 1174 Short
DIVREMR 1274 Round
DIVREMSR 1374 Short, Round
DIVREMI 1874 Indicator
DIVREMIS 1974 Indicator, Short
DIVREMIR 1A74 Indicator, Round
DIVREMISR 1B74 Indicator, Short, Round
DIVREMB 1C74 Branch
DIVREMBS 1D74 Branch, Short
DIVREMBR 1E74 Branch, Round
DIVREMBSR 1F74 Branch, Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: The signed numeric value of the dividend
operand is divided by the numeric value of the divisor
operand; the quotient is placed in the quotient operand;
the remainder is placed in the remainder operand.

The operands must be numeric with any implicit
conversions occurring according to the rules for
arithmetic operations as outlined in the Functional
Concepts Manual.

If the divisor operand has a numeric value of O, a zero
divide exception is signaled. If the dividend operand has
a value of 0, the result of the division is a zero value
quotient and remainder.

For a decimal operation, the precision of the result of
the divide operation is determined by the number of
fractional digit positions specified for the quotient. In
other words, the divide operation will be performed so
as to calculate a resultant quotient of the same precision
as that specified for the quotient operand. If necessary,
internal alignment of the assumed decimal point for the
dividend and divisor operands is performed to ensure
the correct precision for the resultant quotient value.
These internal alignments are not subject to detection of
the decimal point alignment exception. An internal
quotient value will be calculated for any combination of
decimal attributes which may be specified for the
instruction’s operands. However, the assignment of the
result to the quotient operand is subject to detection of
the size exception thereby limiting the assignment to, at
most, the rightmost 31 digits of the calculated result.

If the dividend operand is shorter than the divisor

operand, it is logically adjusted to the length of the
divisor operand.

Computation and Branching Instructions 2-95

The division operation is performed according to the
rules of algebra. The quotient result of the operation is
copied into the quotient operand. If this operand is not
the same type as that used in performing the operation,
the resultant value is converted to its type. If necessary,
the resultant value is adjusted to the length of the
quotient operand, aligned at the assumed decimal point
of the quotient operand, or both before being copied to
it. Length adjustment and decimal point alignment are
performed according to the rules of arithmetic
operations as outlined in the Functional Concepts Manual.
If significant digits are truncated on the left end of the
resultant value, a size exception is signaled. A decimal
point alignment exception is also signaled when a
division operation is performed in decimal and one of
the following conditions occurs:

« The dividend operand is aligned, and the number of
fractional digits specified in the divisor operand plus
the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the dividend operand exceeds 31.

« The divisor operand is aligned, and the number of
fractional digits specified for the dividend operand
minus the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the division operand exceeds 31.

After the quotient numeric value has been determined,
the numeric value of the remainder operand is calculated

as follows:

Remainder = Dividend - (Quotient*Divisor)

2-96

If the optional round form of this instruction is being
used, the rounding applies to the quotient but not the
remainder. The quotient value used to calculate the
remainder is the resultant value of the division. The
resultant value of the calculation is copied into the
remainder operand. The sign of the remainder is the
same as that of the dividend operand unless the
remainder has a value of O, in which case its sign is
positive. If the remainder operand is not the same type
as that used in performing the operation, the resultant
value is converted to its type. If necessary, the resultant
value is adjusted to the length of the remainder operand,
aligned at the assumed decimal point of the remainder
operand, or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operations as
outlined in the Functional Concepts Manual. If significant
digits are truncated off the left end of the resultant
value, a size exception is signaled.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar quotient is positive, negative, or O.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

oc

10

1C

20

22

24

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

06 Optimized addressability
invalid

Argument/Parameter

01 Parameter reference violation
Computation

02 Decimal data

OA Size

0B Zero divide

Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit
exceeded

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OC Invalid operand ODT reference
0D Reserved bits are not zero
Program Execution

04 Branch target invalid

Operands
12 3 4

X X X X

X X X X
X X X X

X X X X

EDIT (EDIT)

Op Code Operand Operand Operand
(Hex) 1 2 3
10E3 Receiver Source Edit mask

Operand 1: Character variable scalar or data-pointer-defined
character scalar.

Operand 2: Numeric scalar or data-pointer-defined numeric
scalar.

Operand 3: Character scalar or data-pointer-defined character
scalar.

Description: The value of a numeric scalar is
transformed from its internal form to character form
suitable for display at a source/sink device. The
following general editing functions can be performed
during transforming of the source operand to the
receiver operand:

« Unconditional insertion of a source value digit with a
zone as a function of the source value’'s algebraic
sign

« Unconditional insertion of a mask operand character
string

« Conditional insertion of one of two possible mask
operand character strings as a function of the source
value’s algebraic sign

« Conditional insertion of a source value digit or a mask
operand replacement character as a function of
source value leading zero suppression

« Conditional insertion of either a mask operand
character string or a series of replacement characters
as a function of source value leading zero
suppression

« Conditional floating insertion of one of two possible
mask operand character strings as a function of both
the algebraic sign of the source value and leading
zero suppression

The operation is performed by transforming the source
(operand 2) under control of the edit mask (operand 3)
and placing the result in the receiver (operand 1).

The mask operand (operand 3) is limited to no more
than 256 bytes.

Computation and Branching Instructions 2-97

Mask Syntax: The source field is converted to packed
decimal format. The edit mask contains both control
character and data character strings. Both the edit mask
and the source fields are processed left to right, and the
edited result is placed in the result field from left to
right. If the number of digits in the source field is even,
the four high-order bits of the source field are ignored
and not checked for validity. All other source digits as
well as the sign are checked for validity, and a decimal
data exception is signaled when one is invalid.
Overlapping of any of these fields gives unpredictable
results.

Ten types of control characters can be in the edit mask,
hex AA through hex AD and hex AF through hex B3.
Four of these control characters specify strings of
characters to be inserted into the result field under
certain conditions; and the other five indicate that a digit
from the source field should be checked and the
appropriate action taken. There is one variable value
control character (end-of-string character) that is in the
edit mask. This control character indicates the end of a
string of characters. The value of the end-of-string
character can vary with each execution of the instruction
and is determined by the value of the first character in
the edit mask. If the first character of the edit mask is a
value less than hex 40, then that value is used as the
end-of-string character. If the first character of the edit
mask is a value equal to or greater than hex 40, then
hex AE is used as the end-of-string character.

A significance indicator is set to the off state at the start
of the execution of this instruction. It remains in this
state until a nonzero source digit is encountered in the
source field or until one of the four unconditional digits
(hex AA through hex AD) or an unconditional string (hex
B3) is encountered in the edit mask.

When significance is detected, the selected floating
string is overlaid into the result field immediately before
(to the left of) the first significant result character.

When the significance indicator is set to the on state,
the first significant result character has been reached.
The state of the significance indicator determines
whether the fill character or a digit from the source field
is to be inserted into the result field for conditional
digits and characters in conditional strings specified in
the edit mask field. The fill character is a hex 40 until it
is replaced by the first character following the floating
string specification control character (hex B1).

2-98

When the significance indicator is in the off state:

« A conditional digit control character in the edit mask
causes the fill character to be moved to the result
field.

« A character in a conditional string in the edit mask
causes the fill character to be moved to the result
field.

When the significance indicator is in the on state:

« A conditional digit control character in the edit mask
causes a source digit to be moved to the result field.

« A character in a conditional string in the edit mask is
moved to the result field.

The following control characters are found in the edit
mask field.

End-of-String Character

One of these control characters (a value less than hex
40 or hex AE) indicates the end of a character string and
must be present even if the string is null.

Static Field Character

Hex AF This control character indicates the start of
a static field. A static field is used to
indicate that one of two mask character
strings immediately following this character
is to be inserted into the result field,
depending upon the algebraic sign of the
source field. If the sign is positive, the first
string is to be inserted into the result field;
if the sign is negative, the second string is
to be inserted.

Static field format:

Hex AF positive string. . .less than hex 40
or hex AE negative string. . .hex AE

Floating String Specification Field Character

‘ Hex B1

This control character indicates the start of
a floating string specification field. The first
character of the field is used as the fill
character; following the fill character are
two strings delimited by the end-of-string
control character. If the algebraic sign of
the source field is positive, the first string is
to be overlaid into the result field; if the
sign is negative, the second string is to be
overlaid.

The string selected to be overlaid into the
result field, called a floating string, appears
immediately to the left of the first
significant result character. If significance is
never set, neither string is placed in the
result field.

Conditional source digit positions (hex B2
control characters) must be provided in the
edit mask immediately following the hex B1
field to accommodate the longer of the two
floating strings; otherwise, a length
conformance exception is signaled. For
each of these B2 strings, the fill character
is inserted into the result field, and source
digits are not consumed. This ensures that
the floating string never overlays bytes
preceding the receiver operand.

Floating string specification field format:

Hex B1 fill character positive string. . .

end-of-string character negative
string. . .end-of-string character

hex B2. ..

Conditional String Character

Hex BO

This control character indicates the start of a
conditional string, which consists of any
characters delimited by the end-of-string
control character. Depending on the state of
the significance indicator, this string or fill
characters replacing it is inserted into the
result field. If the significance indicator is
off, a fill character for every character in the
conditional string is placed in the result field.
If the indicator is on, the characters in the
conditional string are placed in the result
field.

Conditional string format:

Hex BO conditional string. . .end-of-string
character

Unconditional String Character

Hex B3

This control character turns on the
significance indicator and indicates the start
of an unconditional string that consists of
any characters delimited by the
end-of-string control character. This string
is unconditionally inserted into the result
field regardless of the state of the
significance indicator. If the indicator is off
when a B3 control character is
encountered, the appropriate floating string
is overlaid into the result field before (to the
left of) the B3 unconditional string (or to
the left of where the unconditional string
would have been if it were not null).

Unconditional string format:

Hex B3 unconditional
string. . .end-of-string character

Computation and Branching Instructions 2-99

Control Characters That Correspond to Digits in the
Source Field

Hex B2 This control character specifies that either
the corresponding source field digit or the
floating string (hex B1) fill character is
inserted into the result field, depending on
the state of the significance indicator. If
the significance indicator is off, the fill
character is placed in the result field; if the
indicator is on, the source digit is placed.
When a source digit is moved to the result
field, the zone supplied is hex F. When
significance (that is, a nonzero source digit)
is detected, the floating string is overlaid to
the left of the first significant character.

Control characters hex AA, hex AB, hex AC, and hex AD
turn on the significance indicator. If the indicator is off
when one of these control characters is encountered,
the appropriate floating string is overlaid into the result
field before (to the left of) the result digit.

Hex AA This control character specifies that the
corresponding source field digit is
unconditionally placed in the 4 low-order
bits of the result field with the zone set to

a hex F.

Hex AB This control character specifies that the
corresponding source field digit is
unconditionally placed in the result field. If
the sign of the source field is positive, the
zoned portion of the digit is set to hex F
(the preferred positive sign); if the sign is
negative, the zone portion is set to hex D
(the preferred negative sign).

Hex AC

Hex AD

This control character specifies that the
corresponding source field digit is
unconditionally placed in the result field. If
the algebraic sign of the source field is
positive, the zone portion of the result is
set to hex F (the preferred positive sign);
otherwise, the source sign field is moved to
the result zone field.

This control character specifies that the
corresponding source field digit is
unconditionally placed in the result field. If
the algebraic sign of the source field is
negative, the zone is set to hex D (the
preferred negative sign); otherwise, the
source field sign is moved to the zone
position of the result byte.

&

¢

The following table provides an overview of the results
obtained with the valid edit conditions and sequences.

Mask
Character

AF

AA

AB

AC

AD

Figure 2-1 (Part 1 of 2). Valid Edit Conditions and Results

Previous
Significance
Indicator

Off/On
Off/On
off

Off

On
Off

Off

On
Off

Off

On
On
Off

Off

On
On

Source
Digit
Any
Any
0-9

0-9

0-9
0-9

0-9

0-9
0-9
0-9

0-9

0-9
0-9
0-9

0-9

0-9
0-9

Source
Sign

Positive
Negative

Positive

Negative

Any

Positive

Negative

Positive
Negative

Positive

Negative

Positive
Negative

Positive

Negative

Positive

Negative

Result Character(s)
Positive string inserted
Negative string inserted

Positive floating string overlaid;
hex F, source digit

Negative floating string overlaid;
hex F, source digit

Hex F, source digit

Positive floating string overlaid;
hex F, source digit

Negative floating string overlaid;
hex D, source digit

Hex F, source digit
Hex D, source digit

Positive floating string overlaid;
hex F, source digit

Negative floating string overlaid;
source sign and digit

Hex F, source digit
Source sign and digit

Positive floating string overlaid;
source sign and digit

Negative floating string overlaid;
hex D, source digit

Source sign and digit

Hex D, source digit

Computation and Branching Instructions

Resulting
Significance
Indicator

No Change
No Change
On

On

On
On

On

On
On
On

On

2-101

Mask
Character

BO

B1
(including
necessary
B2s)

B2 (not for
a B1 field)

B3

Notes:

Previous
Significance
Indicator
Off

On
Off

Off

Off

Off

Off

Off

Source
Digit
Any

Any
Any

0-9
Any

Any

Any

Source
Sign
Any

Any
Any

Any

Positive

Negative

Any

Positive

Negative

Any

Result Character(s)

Insert fill character for each BO
string character

Insert BO character string

Insert the fill character for each
B2 character that corresponds
to a character in the longer of
the two floating strings

Insert fill character

Overlay positive floating string
and insert hex F, source digit

Overlay negative floating string
and insert hex F, source digit

Hex F, source digit

Overlay positive floating string
and insert B3 character string

Overlay negative floating string
and insert B3 character string

Insert B3 character string

1. Any character is a valid fill character, including the end-of-string character.
2. Hex AF, hex B1, hex B0, and hex B3 strings must be terminated by the end-of-string character even if they are null

strings.

Resulting
Significance
Indicator

Off

On
No Change

Off

3. If a hex B1 field has not been encountered (specified) when the significance indicator is turned on, the floating
string is considered to be a null string and is therefore not used to overlay into the result field.

4. If the positive and negative strings of a static field are of unequal length, additional static fields are necessary to
ensure that the sum of the lengths of the positive strings equal the sum of the lengths of the negative strings;
otherwise, a length conformance exception is signaled because the receiver length does not correspond to the
length implied by the edit mask and source field sign.

Figure 2-1 (Part 2 of 2). Valid Edit Conditions and Results

2-102

C

C

The following figure indicates the valid ordering of

control characters in an edit mask field.

AA, AB, AC, AD

Control
Character X

Explanation:

Condition

0

Control Character Y

AF

BO

B1

B2

B3

AF BO B1 B2 B3
0 0 2 2 2 0
0 0 0 0 0 0
1 0 0 2 0 1
1 0 1 3 1 1
1 0 0 2 0 1
0 0 2 2 2 0

Definition

Both X and Y can appear in the edit mask field in either order.

Y cannot precede X.

X cannot precede Y.

Both control characters (two B1's) cannot appear in an edit mask field.

Violation of any of the above rules will result in an edit mask syntax exception.

Figure 2-2. Edit Mask Field Control Characters

Computation and Branching Instructions

2-103

The following steps are performed when the editing is

done:

« Co

nvert Source Value to Packed Decimal

The numeric value in the source operand is
converted to a packed decimal intermediate value
before the editing is done. If the source operand
is binary, then the attributes of the intermediate
packed field before the edit are calculated as
follows:

Binary(2) = packed (5,0) or
Binary(4) = packed (10,0)

« Edit

The editing of the source digits and mask insertion
characters into the receiver operand is done from
left to right.

« Insert Floating String into Receiver Field

If a floating string is to be inserted into the
receiver field, this is done after the other editing.

Edit Digit Count Exception

An edit digit count exception is signaled when:

« The end of the source field is reached and there are
more control characters that correspond to digits in
the edit mask field.

+ The end of the edit mask field is reached and there
are more digit positions in the source field.

Edit Mask Syntax Exception

invalid edit mask control character is encountered or

An edit mask syntax exception is signaled when an ,
when a sequence rule is violated.

Length Conformance Exception
A length conformance exception is signaled when:

« The end of the edit mask field is reached and there
are more character positions in the result field.

« The end of the result field is reached and more
positions remain in the edit mask field.

« The number of B2s following a B1 field cannot
accommodate the longer of the two floating strings.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded ’

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06

08

oc

10

1C

20

22

24

2A

32

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found

06 Optimized addressability
invalid

Argument/Parameter

01 Parameter reference violation

Computation

02 Decimal data

04 Edit digit count

05 Edit mask syntax

08 Length conformance

Damage Encountered

04 System object damage state

44 Partial system object damage

Machine-Dependent Exception

03 Machine storage limit exceeded

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

0OC Invalid operand ODT reference

0D Reserved bits are not zero

Scalar Specification

01 Scalar type invalid

02 Scalar attributes invalid

Operands

123

X X X X X
X X X X X
X X X X X

xX X

X X X X X X

x

xX X

X X X X X X

x X

EXCHANGE BYTES (EXCHBY)

Op Code Operand Operand
(Hex) 1 2
10CE Source 1 Source 2

Operand 1: Character variable scalar (fixed-length) or numeric
variable scalar.

Operand 2: Character variable scalar (fixed-length) or numeric
variable scalar.

Description: The logical character string values of the
two source operands are exchanged. The value of the
second source operand is placed in the first source
operand and the value of the first source operand is
placed in the second operand.

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings. Both operands must have the same length.

Substring operand references that allow for a null
substring reference (a length value of zero) may not be
specified for this instruction.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-105

Exceptions EXCLUSIVE OR (XOR)

Operands

Exception 1 2 Other &pm((:)ode Ope:and Ope;and Ope;and)
06 Addressing .
01 Space addressing violation X X 1098 Receiver Source 1 Source 2
02 Boundary alignment X X Operand 1: Character variable scalar.
03 Range X X
06 Optimized addressability invalid X X Operand 2: Character scalar.
08 Argument/Parameter
01 Parameter reference violation X X Operand 3: Character scalar.
10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X Optional Forms
1C Machine-Dependent Exception
03 Machine storage limit exceeded Mnemonic ((:'pe::)ode Form Type
20 Machine Support
02 Machine check XORS 1198 Short
03 Function check XORI 189B Indicator
22 Object Access XORIS 1998 Indicator, Short
0 Ot o e < x S S
02 Object destroyed X X !
03_ Object s”_s_pe".ded X X If the short instruction option is indicated in the op
24 P°'"tef Specification _ code, operand 1 is used as the first and second
01 Painter does not exist X X operational operands (receiver and first source operand).
02 Pointer type invalid X X Operand 2 is used as the third operational operand
2A Program Creation {second source operand).
06 Invalid operand type X X
07 Invalid operand attribute X X)
08 Invalid operand value range X X Extender: Branch or indicator options.
OA Invalid operand length X X
0C Invalid operand ODT reference X X If the branch or indicator option is specified in the op
OD Reserved bits are not zero X X

2-106

code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean EXCLUSIVE OR operation is
performed on the string values in the source operands.
The resulting string is placed in the receiver operand.

The operands must be character strings and are
interpreted as bit strings.

The length of the operation is equal to the length of the
longer of the two source operands. The shorter of the
two operands is padded on the right. The operation
begins with the two source operands left-adjusted and
continues bit by bit until they are completed.

9

C

The bit values of the result are determined as follows:

Source 1 Source 2 Result
Bit Bit Bit

1 1 0

0 0 0

1 0 1

0 1 1

The result value is then placed (left-adjusted) in the
receiver operand with truncating or padding taking place
on the right.

The pad value used in this instruction is a hex 00.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1, 2, and 3. The effect of
specifying a null substring reference for one source
operand is that the other source operand is EXCLUSIVE
ORed with an equal length string of all hex 00s. When
a null substring reference is specified for both source
operands, the result is all zero and the instruction’s
resultant condition is zero. When a null substring
reference is specified for the receiver, a result is not set
and the instruction’s resultant condition is zero
regardless of the values of the source operands.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

Resultant Conditions: Zero—The bit value for the bits of
the scalar receiver operand is either all zero or a null
substring reference is specified for the receiver. Not
zero—The bit value for the bits of the scalar receiver
operand is not all zero.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands

Exception 12 3 Other

06 Addressing

01 Space addressing violation X X X
02 Boundary alignment X X X
03 Range X X X
06 Optimized addressability invalid X X X
08 Argument/Parameter
01 Parameter reference violation X X X
10 Damage Encountered
04 System object damage state X X X X

44 Partial system object damage X X X X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check X
22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X
24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X
2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X X X

OC Invalid operand ODT reference X X X

0D Reserved bits are not zero X X X X
2C Program Execution

04 Branch target invalid X

Computation and Branching Instructions 2-107

EXTENDED CHARACTER SCAN (ECSCAN)

Op Code Operand Operand Operand Operand
{Hex) 1 2 3 4
10D4 Receiver Base Compare Mode

operand operand

Operand 1: Binary variable scalar or binary array.
Operand 2: Character scalar.

Operand 3: Character scalar.

Operand 4: Character(1) scalar.

Optional Forms

Op Code
Mnemonic {Hex) Form Type
ESCANI 18D4 Indicator
ESCANB 1CD4 Branch

Extender: Branch or indicator options.

Either the branch option or indicator option is required
by the instruction. The extender field is required along
with from one to three branch targets (for branch
option) or one to three indicator operands (for indicator
option). The branch or indicator operands are required
for operand 3 and optional for operands 4 and 5. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: This instruction scans the string value of
the base operand for occurrences of the string value of
the compare operand and indicates the relative locations
of these occurrences in the receiver operand. The
character string value of the base operand is scanned
for occurrences of the character string value of the
compare operand under control of the mode operand
and mode control characters embedded in the base
string.

2-108

The base and compare operands must both be character
strings. The length of the compare operand must not be
greater than that of the base string. The base and
compare operand are interpreted as containing a mixture
of 1-byte (simple) and 2-byte (extended) character
codes. The mode, simple or extended, with which the
string is to be interpreted, is controlled initially by the
mode operand and thereafter by mode control
characters embedded in the strings. The mode control
characters are as follows:

« Hex OE= Shift out of simple character
mode to extended mode.
« Hex OF= Shift into simple character

mode from extended mode. This
is recognized only if it occurs

in the first byte position of an
extended character code.

The format of the mode operand is as follows:

« Mode operand Char(1)
— Operand 2 initial mode Bit O
indicator
0 = Operand starts in simple
character mode.
1 = Operand starts in extended
character mode.
~ Operand 3 initial mode Bit 1
indicator
0 = Operand starts in simple
character mode.
1 = Operand starts in extended
character mode.
— Reserved (binary 0) Bits 2-7

The operation begins at the left end of the base string
and continues character by character, left to right.
When the base string is interpreted in simple character
mode, the operation moves through the base string 1
byte at a time. When the base string is interpreted in
extended character mode, the operation moves through
the base string 2 bytes at a time.

The compare operand value is the entire byte string
specified for the compare operand. The mode operand
determines the initial mode of the compare operand.
The first character of the compare operand value is
assumed to be a valid character for the initial mode of
the compare operand and not a mode control character.
Mode control characters in the compare operand value
participate in comparisons performed during the scan
function except that a mode control character as the
first character of the compare operand causes
unpredictable results.

The base string is scanned until the mode of the
characters being processed is the same as the initial
mode of the compare operand value. The operation
continues comparing the characters of the base string
with those of the compare operand value. The starting
character of the characters being compared in the base
string is always a valid character for the initial mode of
the compare operand value. A mode control character
encountered in the base string that changed the base
string mode to match the initial mode of the compare
operand value does not participate in the comparison.
The length of the comparison is equal to the length of
the compare operand value and the comparison is
performed the same as performed by the Compare
Bytes Left Adjusted instruction.

If a set of bytes that matches the compare operand
value is found, the binary value for the relative location
of the leftmost base string character of the set of bytes
is placed in the receiver operand.

If the receiver operand is a scalar, only the first
occurrence of the compare operand is noted. If the
receiver operand is an array, as many occurrences as
there are elements in the array are noted.

If a mode change is encountered in the base string, the
base string is again scanned until the mode of the
characters being processed is the same as the initial
mode of the compare operand value, and then the
comparisons are resumed.

The operation continues until no more occurrences of

the compare operand value can be noted in the receiver

operand or until the number of bytes remaining to be

scanned in the base string is less than the length of the

compare operand value. When the second condition
occurs, the receiver value is set to zero. If the receiver
operand is an array, all its remaining elements are also
set to zero.

If the escape code encountered result condition is
specified (through a branch or indicator option),
verifications are performed on the base string as it is
scanned. Each byte of the base string is checked for a
value less than hex 40. When a value less than hex 40
is encountered, it is then determined if it is a valid mode
control character.

If a byte value of less than hex 40 is not a valid mode
control character, it is considered to be an escape code.
The binary value for the relative location of the character
(simple or extended) being interrogated is placed in the
receiver operand, and the appropriate action (indicator or
branch) is performed according to the specification of
the escape code encountered result condition. If the
receiver operand is an array, the next array element after
any elements set with locations or prior occurrences of
the compare operand, is set with the location of the
character containing the escape code and all the
remaining array elements are set to zero.

If the escape encountered result condition is not
specified, verifications of the character codes in the
base string are not performed.

Resultant Conditions: Positive or zero—The numeric
value(s) of the receiver operand is either positive or zero.
In the case where the receiver operand is an array, the
resultant condition is zero if all elements are zero.
Escape code encountered—An escape character code
value was encountered during the scanning of the base
string.

Substring operand references that allow for a null

substring reference (a length vaiue of zero) may not be
specified for this instruction.

Computation and Branching Instructions 2-109

Events Exceptions

000C Machine resource Operands)
0201 Machine auxiliary storage threshold exceeded Exception 1234 Other
000D Machine status 06 Addressing
0101 Machine check 01 Space addressing violation X X X X
02 Boundary alignment violaton X X X X
0010 Process 03 Range X X X X
0701 Maximum processor time exceeded 06 Optimized addressability invalid X X X X
08 Argument/Parameter
0016 Machine observation 01 Parameter reference violation X X X X
0101 Instruction reference 0C Computation
08 Length conformance X X X
0017 Damage set 10 Damage Encountered
0801 Partial system object damage set 44 Partial system object damage X
1C Machine-Dependent Exception
03 Machine storage limit X
exceeded
20 Machine Support
02 Machine check X
03 Function check X
22 Object Access
01 Object not found X X X X
02 Object destroyed X X X X
03 Object suspended X X X X
24 Pointer Specification
01 Pointer does not exist X X X X
02 Pointer type invalid X X X X
2A Program Creation -
05 Invalid op-code extender field X
06 Invalid operand type X X X X
07 Invalid operand attribute X X X X
08 Invalid operand value range X X X X
09 Invalid branch target operand X
OA Invalid operand length X X
0OC Invalid operand ODT reference X X X X

OD Reserved bits are not zero X X X X X
2C Program Execution

04 Invalid branch target X
32 Scalar Specification

01 Scalar type invalid X X X X

03 Scalar value invalid X

2-110

EXTRACT EXPONENT (EXTREXP)

Op Code Operand Operand
(Hex) 1 2
1072 Receiver Source

Operand 1: Binary variable scalar.

Operand 2: Floating-point scalar.

Optional Forms

Op Code
Mnemonic {Hex) Form Type
EXTREXPI 1872 Indicator
EXTREXPB 1C72 Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operations immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: This instruction extracts the exponent
portion of a floating-point scalar source operand and
places it into the receiver operand as a binary variable
scalar.

The operands must be the numeric types indicated
because no conversions are performed.

The source floating-point field is interrogated to
determine the binary floating-point value represented
and either a signed exponent, for number values, or a
special identifier, for infinity and NaN values, is placed
in the binary variable scalar receiver operand.

The value to be assigned to the receiver, is dependent
upon the floating-point value represented in the source
operand as described below. It is a signed binary
integer value and a numeric assignment of the value is
made to the receiver.

When the source represents a normalized number, the
biased exponent contained in the exponent field of the
source is converted to the corresponding signed
exponent by subtracting the bias of 127 for short or
1023 for long to determine the value to be returned.
The resulting value ranges from -126 to +127 for short
format, -1022 to +1023 for long format.

When the source represents a denormalized number, the
value to be returned is determined by adjusting the
signed exponent of the denormalized number. The
signed exponent of a denormalized number is a fixed
value of -126 for the short format and -1022 for the
long format. It is adjusted to the value the signed
exponent would be if the source value was adjusted to a
normalized number. The resulting value ranges from
-127 to -149 for short format, -1023 to -1074 for long
format.

When the source represents a value of zero, the value
returned is zero.

When the source represents infinity, the value returned
is +32767.

When the source represents a not-a-number, the value
returned is -32768.

Resultant Conditions: Normalized—The source operand
value represents a normalized binary floating-point
number. The signed exponent is stored in the receiver.
Denormalized—The source operand value represents a
denormalized binary floating-point number. An adjusted
signed exponent is stored in the receiver. Infinity—The
source operand value represents infinity. The receiver is
set with a value of +32767. NaN-The source operand
value represents a not-a-number. The receiver is set
with a value of -32768.

Computation and Branching Instructions 2-111

Events Exceptions

000C Machine resource Operands)
0201 Machine auxiliary storage threshold exceeded Exception 1 2 Other

000D Machine status 06 Addressing
0101 Machine check 01 Space addressing violation
02 Boundary alignment violation
0010 Process 03 Range
0701 Maximum processor time exceeded 06 Optimized addressability invalid
0801 Process storage limit exceeded 08 Argument/Parameter
01 Parameter reference violation
0016 Machine observation 10 Damage Encountered
0101 Instruction reference 44 Partial system object damage X
1C Machine-Dependent Exception
0017 Damage set 03 Machine storage limit exceeded X
0801 Partial system object damage set 20 Machine Support
02 Machine check X
03 Function check X
22 Object Access
01 Object not found X X
02 Object destroyed X X
03 Object suspended X X
24 Pointer Specification
01 Pointer does not exist X X
02 Pointer type invalid X X
2A Program Creation
05 Invalid op-code extender field X
06 Invalid operand type X X)
07 Invalid operand attribute X X
08 Invalid operand value range X X
09 Invalid branch target operand X
0C Invalid operand ODT reference X X X
0D Reserved bits are not zero X X X
2C Program Execution
04 invalid branch target X
32 Scalar Specification
01 Scalar type invalid X X

X X X X
X X X X

x
x

2-112

EXTRACT MAGNITUDE (EXTRMAG)

Op Code Operand Operand
(Hex) 1 2
1052 Receiver Source

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
EXTRMAGS 1152 Short
EXTRMAGI 1852 Indicator
EXTRMAGIS 1952 Indicator, Short
EXTRMAGBSB 1C52 Branch

EXTRMAGBS 1D52 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
{second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands. “

Description: The numeric value of the source operand is
converted to its absolute value and placed in the
numeric variable scalar receiver operand.

The absolute value is formed from the source operand
as follows:

« Binary
— Extract the numeric value and form twos
complement if the source operand is negative.

« Packed/Zoned
— Extract the numeric value and force the source
operand’s sign to positive.

« Floating-point
— Extract the numeric value and force the significand
sign to positive.

The result of the operation is copied into the receiver
operand according to the rules of the Copy Numeric
Value instruction. If this operand is not the same type
as that used in performing the operation, the resultant
value is converted to its type. If necessary, the resuitant
value is adjusted to the length of the receiver operand,
or aligned at the assumed decimal point of the receiver
operand, or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operations outlined
in the Functional Concepts Manual. If significant digits
are truncated on the left end of the resultant value, a
size exception is signaled. An attempt to extract the
magnitude of a maximum negative binary value to a
binary scalar of the same size also results in a size
exception.

When the source floating-point operand represents
not-a-number, the sign field of the source is not forced
to positive and this value is not altered in the receiver.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

For a fixed-point operation, if significant digits are
truncated from the left end of the resultant value, a size
exception is signaled. An attempt to extract the
absolute value of a maximum negative binary value into
a binary scalar of the same size also results in a size
exception.

Computation and Branching Instructions 2-113

For floating-point operations that involve a fixed-point
receiver field, if nonzero digits would be truncated from
the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

For a floating-point receiver operand, if the exponent of
the resultant value is either too large or too small to be
represented in the receiver field, the floating-point
overflow or the floating-point underflow exception is
signaled.

Resultant Conditions: Positive or zero—The algebraic
value of the receiver operand is either positive or zero.
Unordered-The value assigned a floating-point receiver
operand is NaN.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-114

Exceptions

Exception

06

08

oc

10

1C

20

22

24

2C

Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Computation

02 Decimal data

06 Floating-point overfiow

07 Floating~point underflow

09 Floating~point invalid operand
OA Size

0D Floating-point inexact result
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine~Dependent Exception
03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
0OC Invalid operand ODT reference
0D Reserved bits are not zero
Program Execution

04 Branch target invalid

Operands

1

X X X X
X X X X

x

2

x

MULTIPLY (MULT)

Op Code Operand Operand Operand
(Hex) 1 2 3
104B Product Multiplicand Multiplier

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
MULTS 114B Short
MULTR 1248 Round
MULTSR 134B Short, Round
MULTI 184B Indicator
MULTIS 194B Indicator, Short
MULTIR 1A4B Indicator, Round
MULTISR 1B48B Indicator, Short, Round
MULTB 1C4B Branch
MULTBS 1D4B Branch, Short
MULTBR 1E4B Branch, Round

MULTBSR 1F4B Branch, Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The signed numeric value of the
multiplicand operand is multiplied by the numeric value
of the multiplier operand and the result is placed in the
product operand.

The operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

Decimal operands used in floating-point operations
cannot contain more than 15 total digit positions.

If the multiplicand operand or the multiplier operand has
a value of 0, the result of the multiplication is a zero
product.

For a decimal operation, no alignment of the assumed
decimal point is performed for the multiplier and
multiplicand operands.

The operation occurs using the specified lengths of the
multiplicand and muitiplier operands with no logical zero
padding on the left necessary.

Floating-point multiplication uses exponent addition and
significand multiplication.

For nonfloating-point computations and for significand
multiplication for floating-point operations, the
multiplication operation is performed according to the
rules of algebra.

The result of the operation is copied into the product
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the product operand, aligned at
the assumed decimal point of the product operand, or
both before being copied to it. Length adjustment and
decimal point alignment are performed according to the
rules of arithmetic operations outlined in the Functional
Concepts Manual.

For the optional round form of the instruction,
specification of a floating-point receiver operand is
invalid.

For fixed-point operations, if nonzero digits are

truncated from the left end of the resultant value, a size
exception is signaled.

Computation and Branching Instructions 2-115

For floating-point operations involving a fixed-point Exceptions

receiver field (if nonzero digits would be truncated from

the left end of the resultant value), an invalid Operands J
floating-point conversion exception is signaled. Exception 1 2 3[4.5] Other

For a floating-point product operand, if the exponent of 06 Addressing

the resultant value is either too large or too small to be 01 Space addressing violation X X X

represented in the product field, the floating-point 02 Boundary alignment X XX

overflow or the floating-point underflow exception is 03 Range X X X

signaled. 06 Optimized addressability invalid X X X
08 Argument/Parameter

If operands overlap but do not share all of the same 01 Parameter reference violation X X X

bytes, results of operations performed on these 0C Computation

operands are not predictable. If overlapped operands 02 Decimal data X X

share all of the same bytes, the results are predictable 06 Floating-point overflow X

when direct addressing is used. If indirect addressing is 07 Floating-point underflow X

used (that is, based operands, parameters, strings with 09 Floating-point invalid operand X X X

variable lengths, and arrays with variable subscripts), the 0A Size X

results are not always predictable. 0C Invalid floating-point X

conversion

. 0D Floating-point inexact result X
If a decimal to binary conversion causes a size exception

. . . 10 Damage Encountered
to be signaled, the binary value contains the correct 9

truncated result only if the decimal value contains 15 or 04 Sys‘,em object da_mage state X X X X
fewer significant nonfractional digits. 44 Partial system object damage X X X X
1C Machine-Dependent Exception
03 Machine storage limit X
exceeded
Resultant Conditions: Positive, negative, or zero—The 20 Machine Support
algebraic value of the numeric scalar product is positive, 02 Machine check X
negative, or zero. Unordered—The value assigned a 03 Function check X)
floating-point product operand is NaN. 22 Object Access
01 Object not found X X X
02 Object destroyed X X X
Events 03 Object suspended X X X
24 Pointer Specification
000C Machine resource 01 Pointer does not exist X X X
0201 Machine auxiliary storage threshold exceeded 02 Pointer type invalid X X X
2A Program Creation
0010 Process 05 Invalid op code extender field X
0701 Maximum processor time exceeded 06 Invalid operand type X X X

0801 Process storage limit exceeded

07 Invalid operand attribute X X X
08 Invalid operand value range X X X
0016 Machine observation 09 Invalid branch target operand X
0101 Instruction reference 0OC Invalid operand ODT reference X X X
0D Reserved bits are not zero X X X X
0017 Damage set 2C Program Execution
0401 System object damage set 04 Branch target invalid X

0801 Partial system object damage set

2-116

NEGATE (NEG)

Op Code Operand Operand
(Hex) 1 2
1056 Receiver Source

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
NEGS 1156 Short
NEGI 1856 Indicator
NEGIS 1956 Indicator, Short
NEGB 1C56 Branch
NEGBS 1D56 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender fieid and the allowed syntax of
the branch and indicator operands.

Description: The sign of the numeric value in the source
operand is changed as if it had been multiplied by a
negative one (-1). The result is placed in the receiver
operand.

The sign changing of the source operand value (positive
to negative and negative to positive) is performed as
follows:

« Binary
— Extract the numeric value and form the twos
complement of it.

» Packed/Zoned
— Extract the numeric value and force its sign to
positive if it is negative or to negative if it is
positive.

« Floating-point
— Extract the numeric value and force the significand
sign to positive if it is negative or to negative if it
is positive.

The result of the operation is copied into the receiver
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the receiver operand, aligned
at the assumed decimal point of the receiver operand, or
both before being copied to it. Length adjustment and
decimal point alignment are performed according to the
rules of arithmetic operations outlined in the Functional
Concepts Manual. If significant digits are truncated on
the left end of the resultant value, a size exception is
signaled. An attempt to negate a maximum negative
binary value to a binary scalar of the same size also
results in a size exception. If a packed or zoned O is
negated, the result is always positive 0.

When the source floating-point operand represents
not-a-number, the sign field of the source is not forced
to positive and this value is not altered in the receiver.

For a fixed-point operation, if significant digits are
truncated from the left end of the resultant value, a size
exception is signaled. An attempt to negate a maximum
negative binary value into a binary scalar of the same
size also results in a size exception.

For floating-point operations that involve a fixed-point
receiver field, if nonzero digits would be truncated from
the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

Computation and Branching Instructions 2-117

For a floating-point receiver operand, if the exponent of
the resultant value is either too large or too small to be
represented in the receiver field, the floating-point
overflow and the floating-point underflow exceptions
are signaled.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: Positive, negative, or zero—The
algebraic value of the receiver operand is either positive,
negative, or zero. Unordered—The value assigned a
floating-point receiver operand is NaN.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

2-118

Exceptions

Exception

06

08

oc

10

1Cc

20

22

24

2A

2C

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid
Argument/Parameter

01 Parameter reference violation
Computation

02 Decimal data

06 Floating-point overflow

07 Floating-point underflow

09 Floating-point invalid operand
OA Size

OC Invalid floating-point conversion
OC Floating-point inexact result
Damage Encountered

04 System object damage state
44 Partial system object damage
Machine-Dependent Exception

03 Machine storage limit exceeded
Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Program Creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
0C Invalid operand ODT reference
0D Reserved bits are not zero
Program Execution

04 Branch target invalid

Operands

X X X X
X X X X

x
x

xX X X
X X X

2

NO OPERATION (NOOP)

Op Code
(Hex)

0000

Description: No function is performed. The instruction
consists of an operation code and no operands. The
instruction may not be branched to and is not counted
as an instruction in the instruction stream.

The instruction may be used for inserting gaps in the
instruction stream. These gaps allow instructions with
adjacent instruction addresses to be physically
separated.

The instruction may precede or follow any machine
instruction except the End instruction, and any number
of No Operation instructions may exist in succession.

NO OPERATION AND SKIP (NOOPS)

Op Code Operand
(Hex) 1

0001 Skip count

Operand 1: Unsigned immediate value.

Description: This instruction performs no function other
than to indicate a specific number of bytes within the
instruction stream that are to be skipped during
encapsulation. It consists of an operation code and 1
operand. Operand 1 is an unsigned immediate value
that contains the number of bytes between this
instruction and the next instruction to be processed.
These bytes are skipped during the encapsulation of this
program. A value of zero for operand 1 indicates that
no bytes are to be skipped between this instruction and
the next instruction to be processed.

If the operand 1 skip count indicates that the next
instruction to process is beyond the end of the
instruction stream, an invalid operand value range
exception is signaled.

This instruction may be used to insert gaps in the
instruction stream in such a manner that allows
instructions with adjacent instruction addresses to not
be physically adjacent.

This instruction may not be branched to, and is not
counted as an instruction in the instruction stream.

The instruction may precede or follow any machine
instruction except the End instruction, and any number
of No Operation and Skip instructions may exist in
succession.

Note: When this instruction is used in an existing
program template, the following items within the
template may be adversely affected:

« The actual count of instructions may be altered to be
different than the count of instructions that is
specified in the program template header.

« Object definitions that reference instructions may now

be out of range or may not reference the intended
instruction.

Computation and Branching Instructions 2-119

The actual number of bytes skipped includes the bytes
containing the instruction plus the number of bytes
specified by the skip count value. The number of bytes
skipped per template version is as follows:

« Version 0 = 4 plus the skip count value.

« Version 1 = 5 plus the skip count value.

Exceptions
Operand
Exception 1 Other
2A Program Creation
06 Invalid operand type X
08 Invalid operand value range X
0D Reserved bits are not zero X X

2-120

NOT (NOT)

Op Code Operand Operand
(Hex) 1 2

108A Receiver Source

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
NOTS 118A Short
NOTI 188A Indicator
NOTIS 198A Indicator, Short
NOTB 1C8A Branch
NOTBS 1D8A Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean NOT operation is performed
on the string value in the source operand. The resulting
string is placed in the receiver operand.

The operands must be character strings; they are
interpreted as bit strings.

The length of the operation is equal to the length of the
source operand.

The bit values of the result are determined as follows:

Source Result
Bit Bit

1 0

0 1

The result value is then placed (left-adjusted) in the
receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a
hex 00 byte.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1 and 2. The effect of specifying
a null substring reference for the source operand is that
the result is all zero and the instruction’s resultant
condition is zero. When a null substring reference is
specified for the receiver, a result is not set and the
instruction’s resultant condition is zero regardless of the
value of the source operand.

Resultant Conditions: Zero—The bit value for the bits of
the scalar receiver operand is either all zero or a null
substring reference is specified for the receiver. Not
zero—The bit value for the bits of the scalar receiver
operand is not all zero.

Events

000C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions
Operands

Exception 1 2 Other
06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X
08 Argument/Parameter

01 Parameter reference violation X X
10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check X
22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X
24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X
2A Program Creation

05 Invalid op code extender X

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

09 Invalid branch target operand X

OA Invalid operand length X X

OC Invalid operand ODT reference X X

OD Reserved bits are not zero X X X
2C Program Execution

04 Branch target invalid X

Computation and Branching Instructions 2-121

OR (OR)

Op Code Operand Operand Operand
(Hex) 1 2 3
1097 Receiver Source 1 Source 2
Operand 1: Character variable scalar.
Operand 2: Character scalar.
Operand 3: Character scalar.
Optional Forms

Op Code
Mnemonic (Hex) Form Type
ORS 1197 Short
ORI 1897 Indicator
ORIS 1997 Indicator, Short
ORB 1C97 Branch
ORBS 1D97 Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or Indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean OR operation is performed on
the string values in the source operands. The resuilting
string is placed in the receiver operand.

The operands must be character strings; they are
interpreted as bit strings.

The length of the operation is equal to the length of the
longer of the two source operands. The shorter of the
two operands is logically padded on the right with hex
00. The excess bytes in the longer operand are
assigned to the results.

2-122

The bit values of the result are determined as follows:

Source 1 Source 2 Result
Bit Bit Bit

1 1 1

0 1 1

1 0 1

0 0 0

The result value is then placed (left-adjusted) in the
receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a
hex 00.

Substring operand references that allow for a null
substring reference (a length value of zero) may be
specified for operands 1, 2, and 3. The effect of
specifying a null substring reference for one source
operand is that the other source operand is ORed with
an equal length string of all hex 00s. This causes the
value of the other operand to be assigned to the result.
When a null substring reference is specified for both
source operands, the result is all zero and the
instruction’s resultant condition is zero. When a null
substring reference is specified for the receiver, a result
is not set and the instruction’s resultant condition is zero
regardless of the values of the source operands.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>