1BM System/38
Techmcal Developments

General Systems Division

-

Preface

The IBM System/38 employs both advanced tech-
nology and many new data processing concepts.
While the laboratory in Rochester, Minnesota, had
primary responsibility for design and development,
IBM people in laboratories in Boeblingen, Germany,
Burlington, Vermont, and East Fishkill, New York,
made important contributions.

Our mutual objective was to produce a system that
would be both accessible and extendable, and at the
same time offer efficient conversion facilities.

Function menus, help keys, multilayer messages, and
a system-wide control language are essential elements
of System/38, along with a flexible “user authoriza-
tion” scheme for system integrity and security. We
chose to avoid traditional hardware-dependent
addressing and storage management and instead to
readily accommodate new technologies and storage
organizations through a high-level machine archi-
tecture that not only frees the user from earlier
restrictions but also supports a new kind of data
base facility.

Finally, because System/38 is viewed as a growth
path from present systems, especially the IBM
System/3, we developed conversion techniques rather
than an emulator to give these users an opportunity
to benefit from the novel, even unique, capabilities of
the System/38.

Some 50 authors are represented in this special
collection of papers. I want to thank them and their
many colleagues whose combined efforts made
System/38 a distinguished family of IBM products.

B. G. Utley
Manager, GSD Advanced Systems December 1978

The papers in this volume are not intended to replace 1BM
publications in describing the capabilities of the system
components and how to use them. Keep in mind that the
papers are for general technical communication purposes;
they do not represent an IBM warranty or commitment to
specific capabilities in the referenced products.

Different structures and levels of detail may exist in the
papers because they were written as technical articles by
various developers of the System/38. In order to preserve
their technical integrity and vitality, they have not been
integrated relative to consistency of style, language, or
method of presentation.

Note that these papers will not be updated as changes are
made over time to the System/38 products.

a a

General Systems Di

G. G. Henry

N. C. Berglund
H. W. Curtis
M. N. DonofTrio, B. Flur, and R. T. Schnadt

R. L. Hoffman and F. G. Soltis

M. E. Houdek and G. R. Mitchell

D. O. Lewis, J. W. Reed, and T. S. Robinson

E. F. Dumstorff

F. X. Roellinger, Jr. and D. J. Horn

J. N. Tietjen and W. E. Hammer

D. T. Brunsvold

J. W. Froemke, N. N. Heise, and J. J. Pertzborn

R. A. Peterson

= Product design and development

11
16

19
22
25
28
32
36
38
41
44

IBM S/38 TECH DEV, pp. 1-110, 1978

Table of contents

Introduction to IBM System/38 architecture

ENGINEERING TECHNOLOGY SUPPORT
Processor development in the LS| environment
Integrated circuit design, production, and packaging for System/38

Memory design/technology for System/38

UNDERLYING MACHINE STRUCTURE

Hardware organization of the System/38

Translating a large virtual address

System/38 1/0 structure

Application of a microprocessor for 1/0 control

Microprocessor-based communications subsystem

Microprocessor-based work station controller

Microprocessor control of impact line printers for printing character-string data
System/38 magnetic media controller

Shared function controller design

© 1978 by International Business Machines Corporation. See individual articles for copying information. ISBN 0-933186-00-2. Printed in U.S.A.

S. H. Dahlby, G. G. Henry, D. N. Reynolds,
and P. T. Taylor

V. Berstis, C. D. Truxal, and J. G. Ranweiler

K. W. Pinnow, J. G. Ranweiler, and J. F. Miller
C.T. Watson and G. F. Aberle

R. E. French, R. W. Collins, and L. W. Loen

P. H. Howard and K. W. Borgendale

A.J.Conway and D. G. Harvey
D. G. Harvey and A. J. Conway
C. T. Watson, F. E. Benson, and P. T. Taylor

H. T. Norton, R. T. Turner, K. C. Hu,
and D. G. Harvey

J. H. Botterill and W. O. Evans
C.D. Truxal and S. R. Ridenour
R. O. Fess and F. E. Benson

H. T. Norton and T. R. Schwalen
R. A. Demers

J. K. Allsen

47

51
55
59
63
67

70
74
78
81

83
87
91
94
97
100
103
109

HIGH-LEVEL MACHINE STRUCTURE

System/38—A high-level machine

System/38 addressing and authorization
System/38 object-oriented architecture
System/38 machine data base support
System/38 machine storage management

System/38 machine indexing support

SOME ADVANCES IN PROGRAMMING SUPPORT
User-System/38 interface design considerations

Introduction to the System/38 Control Program Facility
System/38 data base concepts

System/38 work management concepts

The rule-driven Control Language in System/38

File and data definition facilities in System/38

File processing in System/38

Table-driven work management interface in System/38
The generalized message handler in System/38
System/38 common code generation

Authors

Appendix: Reader’s guide

©1978 by International Business Machines Corporation. See individual articles for copying information. ISBN 0-033186-00-2. Printed in U.S.A.

States that new concepts in System/38 architecture include a layered structure providing consistent interfaces, a
unique high-level machine architecture, and capabilities for virtual addressing and task management. Support
- functions are summarized and architectural concepts are described.

The IBM System/38 is a new general-purpose data
processing system designed to provide a high level
of function, ease of use, reliability, serviceability, and
nondisruptive growth. It supports advanced data
base and interactive work station applications as well
as traditional batch applications. These extensive
capabilities are made possible by the use of novel
architecture and design concepts, advanced techno-
logies, and new implementation of system compo-
nents, both hardware and software. The new concepts
include a layered structure providing consistent inter-
faces, a unique high-level machine architecture,
and powerful capabilities for virtual addressing and
task management.

This paper first summarizes the user support provided
by the System/38 components and then introduces
some of the salient architectural concepts that per-
vade the design of System/38.

System function

System/38 consists of a machine and three major
IBM licensed programs: Control Program Facility
(CPF), RPG III, and Interactive Data Base Utilities
(IDU). The CPF provides operating system functions
to other programming components and to the end-
user. RPG III is an enhanced version of the well-
established RPG II language. IDU provides inter-
active data entry, source language entry, and query
functions. These components fit together to provide
a comprehensive and cohesive set of capabilities

HENRY

oriented to support advanced user requirements.

Figure 1 shows a high-level view of the system, in-
cluding the dependency of all programming upon
the machine instruction set and the dependency of
RPG III and IDU upon CPF functions.

Some key characteristics of the user-oriented support
are:

o Extensive data base facilities providing fieldlevel
described data, program independence from physical
file structures through use of logical files, and simul-
taneous access to data by multiple users. The data
base concepts are discussed by Watson, et al [1].
e Flexible work management functions supporting
several different application approaches and allowing
dynamic sharing of storage and other system re-
sources. Work management aspects are treated by
Norton, et al [2,3].

e High levels of device independence provided to
programs—including screen formats and local/remote
transparency. Various aspects are covered by Truxal
and Ridenour [5], and Fess and Benson [12].

e New control language and data definition inter-
faces providing consistent access to all control
program and utility functions. These are discussed
by Botterill and Evans [4], and by Truxal and
Ridenour [5].

e Comprehensive and integrated authorization facili-
ties, which are reviewed by Berstis, et al [6].

o Powerful program development facilities such as

Introduction to
IBM System/38
architecture

G.G. Henry

library, test and debug, source maintenance, and
data base utility functions.

The remainder of this paper addresses the key con-
cepts of System/38 architecture.

Interactive
RlPI:S Data base
Control Utilities
Program
Facility

System/38 machine

Figure 1 A high-level view of the architecture of
System/38

© 1978 by International Business Machines Corporation.
Copying is permitted without royalty provided that (1) each
reproduction is unaltered and (2) the IBM copyright notice
and a reference to this book are on the first page. The title
and abstract may be used without further permission in
information-service systems. Permission to republish in full
should be obtained from IBM GSD Technical Communica-
tions, Atlanta, GA 30301.

INTRODUCTION TO IBM SYSTEM/38 ARCHITECTURE

System-oriented design and implementation

A total-system approach was used for the architec-
ture, design, and implementation of System/38.
That is, system-wide design trade-offs were made
during the design and implementation of all compo-
nents of the system. This approach toward eliminat-
ing potential problems of design mismatch was sup-
ported by imposing no internal compatability con-
straints with previous systems. Furthermore, al-
most all design and implementation of hardware
and programming was done in the same location by a
single organizational entity. This total system trade-
off and design process has resulted in a high degree
of fit between system components, thus eliminating
redundancy and unused function.

Unified function

The combination of the System/38 machine and the
programming products provides a very high level of
function, such as extensive data base facilities.
Typically, these kinds of advanced functions have
been provided on other systems by discrete “sub-
systems,” each having different user interfaces,
specific configuration restrictions, special resource
tuning requirements, and separate installation and
service characteristics. Such a subsystem approach is
partly the result of the lack of system-oriented design
and implementation and the lack of well-defined
architectural structures.

In System/38, the totalsystem design approach
allows these advanced functions to be integrated
into a single machine and a single control program
with a single user interface to all functions on all sys-
tem configurations. That is, all control program
functions (other than I/O dependencies) are auto-
matically available in all System/38 installations,
Furthermore, no “system generation” or complicated
tuning procedure is required to adapt the program-
ming products to different machine configurations.

Figure 2 shows the System/38 integrated structure
contrasted with a general subsystem structure.

4 HENRY

Layered system structure

This approach to system-wide design and integrated
function is supported by the layered structure of the
system. System/38 support is structured into hori-
zontal layers, each providing a consistent interface
that is not dependent upon implementation details
of the other layers.

Subsystem approach

Most systems have a layered structure to some degree.
The significant concepts of the System/38 approach
are that there is only one interface for any general
type of usage; this interface is designed such that
all functions are presented in a consistent and extend-
able fashion, and the interface does not require or
permit use of implementation details of the next
lower level of system support.

Different user interfaces

support

Many SYSGEN base

Data Work station

Duplication of

versions to
select function,
hardware

function, complex
resource tuning, etc.

configuration, etc.

Base control program

Machine

System/38 approach

Single user interface

No SYSGEN

versions

Control Program Facility

All functions integrated
for optimal efficiency, etc.

Machine

Figure 2 Unified structure of System/38 design

1BM S/38 TECH DEV

The System/38 RPG III and Interactive Data Base
Utilities provide traditional highlevel language and
utility interfaces.

The Control Program Facility [7] executes on the
System/38 instruction interface and provides three
interfaces, each providing consistency and implemen-
tation-independent characteristics similar to those
of high-level programming languages.

e A single new control language [4] provides access
to all end-user CPF execution functions through a
consistent and extendable high-level interface. This is
in contrast to having one specialized control language
for the system operator, another for the work station
user, a third for the programmer, a fourth for the user
of a system utility function, and so forth.

e A single new data and file definition language
[5] supports both data base and device file defini-
tions for all devices. This permits easy interchange
of devices or device files with data base files without
modifying programs or file definitions.

e The data management function interfaces [12]
used by both IBM and user programs provide high-
level capabilities and consistency across all devices
and data base functions.

High-level machine architecture

Just as the program product interfaces are improved
in structure and consistency over previous such inter-
faces, so is the machine instruction set interface.
The primary characteristic of System/38 is its unique
high-level machine interface [8, 9]. This provides
many of the basic supervisory and resource manage-
ment functions previously found in operating
systems.

Examples of the System/38 advanced instruction
set functions include physical record level data
management, tasking management, queue manage-
ment functions, generic and late-bound computation-
al functions, and high-level program linkage
functions. To provide these functions, it was neces-

HENRY

sary to employ new architectural concepts. For
example, the instruction interface addressing struc-
ture, discussed by Dahlby, et al [9], is an “object-
oriented, uniformly addressable store”; that is, all
objects reside in storage and all storage on the system
can be addressed with a single device-independent
addressing mechanism. Furthermore, the addressing
mechanism incorporates integrity and authoriza-
tion checking [6] for valid usage. (The use of objects
is discussed by Pinnow, et al [10], and machine stor-
age management is discussed by French, et al [13].)

This generalized addressing scheme demonstrates one
of the most critical general characteristics of the
System/38 instruction set. Its structure is inde-
pendent of underlying implementation characteristics
such as hardware registers, physical I/O access
mechanisms, detailed data formats, and control block
structures.

The significance of this approach is that it extends
the advantage of high-level language interfaces to
lower levels of programming; namely, the high-level
nature of the System/38 instruction set provides
the capability to make design and ‘implementation
changes to the hardware and functions implemented
in microprogramming without affecting IBM or user
programming. In addition, by placing advanced
functions such as data base in microprogramming,
a tight fit with the hardware structures can be
achieved.

The concept of a layered system structure extends
into the machine itself. There are three layers of sup-
port: the physical hardware, and two layers of
microprogramming. The boundaries between these
layers represent internal design criteria and are not
available for external use.

Figure 3 illustrates the total System/38 structure,
including the internal machine divisions.

Several new hardware technologies are used in Sys-
tem/38 [14, 15, 16]. The combination of advanced
capability provided by these technologies and the
system-wide design approach result in new hardware
structures and capabilities. For example, very power-
ful virtual addressing capabilities [11] and task man-
agement support functions [8] are provided by the
hardware.

RPG Interactive
Control i Data base
Program Utilities
Facility
. , Internal
System/38 instruction set /z IBM divisions
Microprogramming layer el /' of effort
___________________ T' R4
Microprogramming layer /'
_________________ -+
Hardware

Figure 3 The total structure of System/38

Summary

From a user viewpoint, System/38 offers a high level
of function and ease of use. This is made possible
by the use of advanced approaches in the underlying
structure, design, and implementation of the system
components. The salient elements are:

e Use of new hardware technology

e Application of system-wide architecture concepts
across all system components

¢ Implementation of advanced technical approaches

The papers that follow address some of these techni-
cal elements in more detail.

References

1. C.T. Watson, F.E. Benson, and P.T. Taylor, “System/38
data base concepts,” page 78.

2. H.T. Norton, R.T. Turner, K.C. Hu, and D.G. Harvey,
“System/38 work management concepts,” page 81.

3. H.T. Norton and T.R. Schwalen, ‘“Table-driven work
management interface in System/38,” page 94.

4. J.H. Botterill and W.O. Evans, “The rule-driven Control
Language in System/38,” page 83.

INTRODUCTION TO IBM SYSTEM/38 ARCHITECTURE 5

S. C.D. Truxal and S.R. Ridenour, “File and data definition
facilities in System/38,” page 87.

. V. Berstis, C.D. Truxal, and J.G. Ranweiler, “System/38

addressing and authorization,” page 51.

. D.G. Harvey and A.J. Conway, “Introduction to the

System/38 Control Program Facility,” page 74.

. R.L. Hoffman and F.G. Soltis, “Hardware organization of

the System/38,” page 19.

S.H. Dahlby, G.G. Henry, D.N. Reynolds, and P.T.

Taylor, “System/38—A high-level machine,” page 47.

10.K.W. Pinnow, J.G. Ranweiler, and J.F. Miller, “System/38
object-oriented architecture,” page 55.

11.M.E. Houdek and G.R. Mitchell, “Translating a large
virtual address,” page 22.

12.R.0. Fess and F.E. Benson, “File processing in
System/38,” page 91.

13.R.E. French, R.W. Collins, and L.W. Loen, “System/38
machine storage management,” page 63.

14.H.W. Curtis, “Integrated circuit design, production, and
packaging for System/38,” page 11.

15.M.N. Donofrio, B. Flur, and R.T. Schnadt, “Memory
design/technology for System/38,” page 16.

16.N.C. Berglund, “Processor development in the LSI en-
vironment,” page 7.

o o N o

6 HENRY IBM S/38 TECH DEV

Presents the problems of testing in the LSI environment and describes the design techniques used in the
development of the System/38 to solve the testing and test generation problems.

The IBM System/38 central processor is implemented
with IBM’s new high performance large scale inte-
gration technology. This technology uses the master-
slice concept wherein each chip contains a fixed num-
ber of logic circuits of various types—receivers,
drivers, nands, etc.—which the system logic designer
interconnects to perform a function. The processor
is made of many such chips, each uniquely person-
alized, as described in the article by Curtis [1],
to perform a portion of the total function. The pro-
cessor, which consists of 29 LSI logic chips with
approximately 20,000 circuits and five arrays, is
packaged on one planar board, 10 by 15 inches.
This concentration of function presents significant
new problems in many phases of development and
manufacturing. In particular, the requirements of
manufacturing testing must be considered on a par
with the needs of the system designers.

The principal problem in designing with LSI is the
inaccessibility of internal signals. This is critical
to problem isolation during the initial debug of
engineering prototype hardware, during manufactur-
ing testing, and in the customer environment. The
conventional techniques used in the past involved
‘testing the chips with complex sequential patterns
which would attempt to exercise all the internal
circuits and to propagate the state of internal signals
to the output pins of the chip where they could be
observed. This process is too complex to lend itself
to efficient utilization of program-generated test
data. System/38 uses a design system called level

BERGLUND

sensitive scan design (LSSD) to solve problems of
testing and test data generation at all levels of pack-
aging—chips, boards, and system. The LSSD
technique allows the LSI chips (Figure 1) to be com-
pletely tested for dc faults using computer-generated
test data.

The LSSD technique

In the LSSD technique, the only type of storage
element (other than arrays) permitted in a logic
design is called a shift register latch (SRL), shown in
Figure 2. An SRL is a pair of polarity hold latches
(type D) with the output of the first latch, called L1,
permanently connected to the data input of the
second latch, called L2. The L1 latch is a functional
storage element to be used by the system designer.
The purpose of the L2 latch is to improve the
effectiveness of chip testing. The L1 and L2 latches,
as connected, form a single stage of a shift register.
The L2 latch has a single data input which is con-
nected to the output of the L1 latch and a single
clock input, called the B clock, which is used to load
the L2 latch from the L1. The L1 latch can be set
from two sources because it has to function as part
of the test system and as a storage element for the
system designer.

One input, called the scan data input (SDI), is re-
served to be connected to the output of another L2
latch on the LSI chip. A clock input, called the A
clock, is used to clock data from the SDI into the L1
latch. The other input is the normal functional data

Processor
development in the
LS! environment

N.C. Berglund

input used by the designer. A separate clock input,
called the system clock input, is used to load data
from this input. All the SRLs on the entire chip are
connected together into a long shift register by con-
necting each L2 output to another L1 SDI. The first
L1 latch in the shift register is connected to a chip in-
put pin which is designated as SDI for this chip.
The output of the last L2 in the shift register is con-
nected to a chip output pin which is designated
scan data out (SDO) for this chip. The A and B clock
inputs of each SRL are connected in common to a
pair of chip input pins designated as the A and B
clock inputs (scan clocks) for this chip. The designer
has lost the use of four chip pins and the circuits re-
quired to implement the L2 latches and associated
clock drivers, but the connection of the SRLs into a
shift register in no way interferes with the normal
functional operation of the chip. When the chip is
tested, the four pins and the L2 latches enable the
test system to control and retrieve the contents
of any storage element on the chip by means of a
simple shift technique.

© 1978 by International Business Machines Corporation.
Copying is permitted without royalty provided that (1) each
reproduction is unaltered and (2) the IBM copyright notice
and a reference to this book are on the first page. The title
and abstract may be used without further permission in
information-service systems. Permission to republish in full
should be obtained from IBM GSD Technical Communica-
tions, Atlanta, GA 30301.

PROCESSOR DEVELOPMENT IN THE LSI ENVIRONMENT 7

3

System clock driver

SDI O= === =1
Aclock O=————dt—p A
=" o OutputJ
B clock O=—————=et—i B A
Combi- B i}
Input | Ot natorial :
logic]
'
]
Fe——————————————— -]
]
L
Input 1+ 1 © [Combi- 5 OutputJ +1
a A natorial
logic
System clock C1 Ot C1 8 -1
1
System clock C2 @————— C2 :
1
1
Combi- bddlded
natorial
logic
put 1 +2 O——p———\ /2| ________ — e e = sDO
Figure 1 Typical LSSD LSI chip
A clock driver
8 0| - S—
Data 0——— L1
Pt 117" :/
1
' H :
A clock Hﬂrﬂ T)y + - L1 output
|
— - - -
lock : N NS L1 outeut L2
System cloc! : : R _:,\/
|) l' -I]
' : AR N L ! 1
') L | Al |
! ' ! ! '
e e e - - - L—-——-_---—---' : Al 1 + L2 output
] []
! i
]]

Figure 2 Shift register latch

8 BERGLUND

r
]
|
!
|
)
'
1
Lo

= L2 B clock driver

Chip testing

When a chip is tested, a test system provides a test
pattern, which is a serial string of binary data, to the
SDI pin of the chip. It operates the scan clocks (A
and B) causing the test pattern to be shifted
(scanned) into the SRLs on the chip. This test pat-
tern, which now resides in the latches on the chip,
and stimuli applied to the chip input pins cause the
combinatorial logic on the chip to take some parti-
cular state. Some of the combinatorial logic is con-
nected to SRL data inputs and some is connected
directly to chip output pins (Figure 1). The output
pins can be observed to determine if the combina-
torial logic is functioning properly; but, to test the
logic which is connected to SRL data inputs, the sys-
tem clocks must be applied to transfer the state of
the combinatorial logic into the SRL L1. The test
system applies a pulse to some or all of the functional
clock inputs of the chip and this changes the state of
some or all of the SRLs. The test system applies the
scan clocks once more, this time observing the serial
binary data coming out of SDO for this chip. This
data represents the state of the SRLs after the system
clocks were operated (which is the same as the state
of the combinatorial logic before the system clocks
were applied). The data is compared to the expected
state of the SRLs as determined from a simulation
model. In this manner the logic on the chip is tested
for typically 98% to 100% of all dc faults with pro-
gram-generated test data.

No complex sequences of system clocks are necessary
to test all stages of counters, shift registers, etc.,
which are buried in the logic of the chip. When using
the LSSD technique, patterns are loaded to test all
stages of counters, etc., without stepping the counter
through all its states. Each system clock will be
pulsed no more than once per test pattern, and this
will be sufficient to test the combinatorial logic
connected to the data input, the clock driver of the
SRL, and the SRL itself.

Circuit cost considerations
But what of the cost of such a system? On first

IBM S/38 TECH DEV

analysis, the LSSD system appears to carry a signifi-
cant overhead in unusable circuits. The extra input to
the L1 latch, the L2 latch, and the extra clock
drivers do require circuits which are then unavailable
to the designer for his unrestricted use in implement-
ing the processor function. These circuits represent
the hardware cost of LSSD and they can approach
20% of the available circuits. These circuits do not,
in fact, have to remain strictly as overhead because
they can be used for implementing the processor
function and for several other features in addition
to their use in the LSSD system.

At the chip level, for example, the L2 latch can be
used to make functional shift registers, counters
and control latches. This is accomplished by logically
OR-ing a system clock with the B clock input to the
L2 latch. The A and B clock inputs are used only
when the chip is tested so no interference exists if the
L2 is used functionally. When combined with a
2-phase, non-overlapping clock, the L1 and L2 latch
acts as a master-slave storage element which can be
used to implement any function that can be imple-
mented with the more traditional storage elements
(JK flip-flops, etc.). Furthermore, the L2 latches of
a register provide a double buffer function which has
many uses such as a backup register for retry or asa
double buffer for data storage.

Test patterns

By extending the LSSD shift register concept to the
planar level, the board can be tested in a manner
consistent with the means for testing chips. All
the chips on the planar are connected into one long
shift register, as indicated in Figure 3, by connecting
the SDO of one chip to the SDI of another. SDI of
the first chip and SDO of the last chip in the shift
register are connected to planar input/output pins.
Test patterns for the entire planar are computer gen-
erated in the same manner as for the chips. In prac-
tice, the chips are grouped into several shift registers
of shorter length which are loaded in parallel to
reduce test time. The planar is inserted in a test fix-
ture, test patterns are loaded into the SRLs of
every chip, stimuli are applied to the planar input
pins, and the system clocks are pulsed. The output
pins are measured, and the SRLs are scanned out;
both are compared to the expected results. Essenti-
ally, no additional hardware is required to support
planar test because the LSSD hardware in each chip
is also utilized for this purpose. This technique tests
the entire processor before it is installed in a system.

The same technique is applied again at the next level
of packaging. The LSSD technique is used at the
system level in the customer environment to provide
a processor checkout each time the machine is turned
on, or when necessary to aid service personnel in
problem isolation. The testing problem in the field
is more complex, however, since the planar is mount-
ed in a system and not in a test fixture. In the sys-
tem, the planar signal pins are connected to channels,
memories, etc., hence, they are not directly observ-
able. But the processor SRLs can be controlled and
they are connected to 90% to 95% of the logic, so an
effective test can be performed. To extend the LSSD
concept to the system level, the planar I/Os—SDI,
SDO, A and B clocks—are connected to the system
control adapter (SCA). The SCA is a separate
microprocessor (not on the planar) used to perform
several system maintenance-related tasks. The SCA
has the ability to provide serial data on the SDI and
the ability to observe the serial data on SDO while.
pulsing the A and B clocks to the shift registers on
the planar. Hence, the state of nearly every storage
latch on the entire planar can be observed and

LSI chips Planar board

: /
The 2-phase clock system, while appearing to present SP0

performance disadvantages for counters, etc., (since
two clocks are required to advance a counter or shift
register by one position), can actually be used to ad-
vantage where overlapped processing is used. Fre-
quently, in high performance processors, the execu-
tion of the next cycle will begin before the current
cycle completes. The SRL is uniquely suited to this
since it consists of two independently clocked
latches. The L2 can be used to hold the information
necessary for the current cycle while the L1 is loaded
to begin the next cycle. In the System/38 processor,
more than 85% of the L2 latches are used function-
ally; these and other uses to be described serve to
overcome the hardware cost of LSSD.

SDI =]

Aclk =

LSSD control Bclk
interface

Service control
adapter

I

Control Main 1/0
store store channel

Figure 3 System/38 planar board and interfaces

BERGLUND PROCESSOR DEVELOPMENT IN THE LS| ENVIRONMENT 9

controlled from the SCA. A small amount of mainte-
nance interface logic on the planar gives the SCA the
ability to shut off the system clocks to the processor
and to pulse those same system clocks for test
purposes. (The latches in the maintenance interface
logic cannot be scanned because they function in
conjunction with the SCA to allow the latches of the
processor to be scanned.) With this support, the SCA
reads test patterns from a system file, loads them into
the latches on the planar, pulses the system clocks,
retrieves the contents of the latches, and compares
the results to the expected results that are also ob-
tained in the file.

Historically, processors are tested in the field with
diagnostic programs. With the LSSD technique,
test patterns can set up conditions to test for specific
faults much easier than can be done by diagnostic
programs which are limited to the capabilities of the

~ machine instruction set. LSSD patterns provide,

however, only a dc test of machine operation. Time
dependent or ac problems must still be located with
diagnostic programs operating at machine speed.
The- combination of LSSD patterns and processor
diagnostics provides an effective means to verify
proper operation.

Console operations

Since the shift registers used in the LSSD concept
provide a way of altering or displaying the state of
every storage element in the processor, they lend
themselves to the support of console manual opera-
tions. Typically all systems will have a console for
displaying the contents of registers, memory, and cri-
tical control latches as an aid for diagnosis of hard-
ware and programming problems. System/38
provides this function by using the LSSD shift regis-
ters as the means for displaying and altering machine
registers from the console.

The SCA has access to the latches through the same
mechanism it used to conduct the LSSD test of the
planar. Maintenance interface logic on the planar

10 BERGLUND

gives the SCA the ability to bring the processor
to a controlled stop, while the SRLs are scanned,
and to restart the processor when the scan is com-
plete. The SCA scans the data from the shift regis-
ters and formats it for display on the CRT. If the dis-
played data is altered, the SCA will take the altered
value and replace it in the processor by scanning
new contents into the machine latches. This tech-
nique saves the extra hardware normally required
to get into and out of the facilities to be displayed
and altered. This technique further provides the
capability to alter and display every latch in the
processor. V

Concluding remarks

In System/38 IBM has found the LSSD technique to
be a cost-effective solution for processor design in
the LSI environment. LSSD, while conceived to solve
LSI chip test problems, has been used to provide an
integrated test and maintenance approach from the
chip to the system level. The circuit overhead and in-
herent restrictions of a single storage element design
are overcome with no significant sacrifice in cost or
performance through functional use of the L2 latches
and by capitalizing on the unique characteristics
of an LSSD design. Program-generated test data,
high test coverage, and the ability to observe and
control every latch are valuable LSSD attributes
which were used to reduce the cost of both develop-
ment and manufacturing and to raise the quality of
the shipped system.

References
1. H.W. Curtis, “Integrated circuit design, production, and
packaging for System/38,” page 11.

IBM S/38 TECH DEV

Discusses steps in the production and packaging of logic chips for System/38. Includes discussion of circuit and
chip topology, processing of the master slice, design automation, and packaging.

This survey paper on System/38 semiconductor component technology represents the summation of technical contributions
made over many years by East Fishkill Development and Manufacturing personnel too numerous to mention.

The announcement of System/38 provides the first
public disclosure of a new level of compatibility in
bipolar, integrated-circuit, array and logic technology.
Based on Schottky T2L circuitry with a nominal de-
lay of about 3 ns per gate, the new logic chips are less
than 25mm square, contain up to 704 logic gates plus
more than 60 off-chip driver circuits, employ three
layers of interconnection wiring above the silicon
surface, and are physically attached to ceramic single-
chip carriers by 132 solder connections. A unique
feature at this level of integration is the logic de-
signer’s ability, through a corporate-wide design auto-
mation system, to request almost any desired inter-
connection of all or part of the 704 available logic
circuits. This is accomplished through the production
use of electron-beam direct exposure of photoresist-
coated wafers. Interchangeable with optical mask
technology, the electron beam is used at several
process steps to avoid the use of masks and their
attendant fabrication time and yield problems.

All logic chips, regardless of ultimate system func-
tion, are produced with the same optically defined
device patterns in the silicon; a silicon wafer contain-
ing these repetitive device structures in each chip area
is termed the “master slice.” As the need for specially
designed ““part number” circuit configurations arises,
“personalization” through metallic interconnection
between devices and between individual circuits is
accomplished using electron-beam photolithographic
technology. The logic designer’s flexibility, using this
“open part number set” approach, enables par-
ticularly efficient use of silicon and of packaging
space and materials.

CURTIS

In the material which follows, logic circuit and chip
topology will be discussed, the geometrical form and
dimensions of devices and metallization will be iden-
tified, and design automation capability will be out-
lined, highlights of the electron beam’s role will be
described, and the method of single chip packaging
will be illustrated.

Circuit and chip topology considerations

Each chip in the System/38 master slice contains a
total of over 7,000 resistors, diodes, and transistors.
These devices are arranged in a series of narrow bands
across each chip, and take up a total area less than
one-half the chip area. The bands are divided into
rectangular circuit component areas. The slightly
wider rows separating the device bands are used as
channels along- which the first level of wiring is
placed. The second level of wiring is placed at right
angles to the first, and a second level conductor may
be electrically connected to the first level wiring at
any intersection by providing an etched via at the de-
sired location in the insulating layer between the
conductors.

First level wiring directly above the device bands
can be configured to provide any of over 100 logic
functions in each circuit area to meet design needs.
Of these possibilities the predominant logic circuit in
System/38 chips is a Schottky T?L gate with either a
three- or four-emitter input transistor, the two assoc-
jated Schottky barrier diodes, and four resistors.
Power for these logic gates is supplied from a 1.5
volt bus. An additional power supply level, 4.5 volts,

INTEGRATED CIRCUIT DESIGN, PRODUCTION, AND PACKAGING FOR SYSTEM/38 11

Integrated circuit design,
production, and packaging
for System/38

Huntington W. Curtis*

is used by emitter-follower off-chip drivers, necessi-
tated by the increased IR drops and capacitance of
the long path lengths compared to the on-chip
interconnections.

One further configuration consequence warrants
discussion: the problem of how, with a limited
number of off-chip connections, to test a chip com-
pletely. Of the electrically conducting solder
connections to the chip, 94 are available for signal
input/output use; the remainder are allocated for
power supply distribution. At a much lower level of
integration than employed here, a chip may provide
only combinational logic, in which each signal pattern
applied to the inputs determines a corresponding
unique signal pattern at the output ports; for this
case, a test pattern for complete testability may
readily be derived. At the 704-circuit LSI level avail-
able in System/38, however, sequential logic within
a chip must be employed; that is, memory registers
or latches store intermediate results of several levels

*The author was associated with the IBM System Products
Division (now the Data Systems Division) in East Fishkill,
NY, when this paper was written. He is now at IBM IRD
Medical Systems, Mt. Kisco, NY.

© 1978 by International Business Machines Corporation.
Copying is permitted without royalty provided that (1) each
reproduction is unaltered and (2) the IBM copyright notice
and a reference to this book are on the first page. The title
and abstract may be used without further permission in
information-service systems. Permission to republish in full
should be obtained from IBM GSD Technical Communica-
tions, Atlanta, GA 30301.

/ P+ Isolation edge \
_ (

Subcollector outline

4 —~
f /Oxide 1so. edge ~
Contact openings
C
_ ,

N+ Collector

P- Wafer substrate

————— —\

VA Y
Si0p [K P+ Resistor (t

N- Epi 2 um

) / Epitaxy
_____ SZ_&_

Figure 1 Top and section drawing of transistor, Schottky barrier diode, and resistor

between input and output. Testing by output-input
comparison in this case would be prohibitively
lengthy, even for a single chip.

This problem has been solved by additionally con-
necting all required latches as a serial shift register.
Not used as such in the normal computer logic
applications of a chip, the shift register latch function
is available in testing to read in initial settings, or to
read out memory states after one logical operation,
thus simplifying the testing problem from sequential

12 CURTIS

to combinational logic. Only four terminals (input,
output, and two shift clocks), are required for this
important feature, leaving 90 I/O ports for the logic
designer’s use.

Master slice

Starting with polished 82 mm diameter wafers cut
from single crystal silicon, the familar steps of sub-
collector and subisolation diffusion, epitaxial silicon
layer growth, collector reach-through diffusion, base

and resistor diffusion, and emitter diffusion are
carried out. Appropriate sequences of silicon oxida-
tion, application of photoresist, exposure to light
through mask patterns, and development and etching
determine the location, type, and spacing of the
devices within each chip area. Figure 1 depicts the
resulting configuration of a typical transistor and
Schottky diode clamp, and also the contact at one
end of a resistor, after master slice processing has
been completed. Some typical dimensions are as
follows: epitaxial layer thickness 2 um; transistor
emitter top surface, 3 um x 8 um; resistor 4.5 um
x 70 um; Schottky diode, 5 um x 6 um. From these
dimensions it should be evident that, although most
of the processing steps are conventional, many im-
provements in process control and photolithography
precision have been achieved to provide the required
circuit density.

The last steps in master slice processing include
etching openings in a blanket surface insulating layer
for later contact to devices by metallic conductors
in the personalization process, vacuum depositing a
thin platinum layer over the entire wafer, and sinter-
ing to form platinum silicide in all contact openings,
thus simultaneously providing ohmic contacts and the
Schottky barriers. After unreacted platinum is re-
moved by etching, the wafer is placed in stock until
required for personalization.

Design automation

In the development of System/38, use is made of an
engineering design system at two levels of packaging:
First, the interconnection of the devices and resulting
circuits within the master slice chip areas to provide
desired logic chip part numbers; and second, the de-
sign of the wiring patterns of the next level of pack-
aging, i.e., the planar board on which the logic and
array single chip modules are mounted and are
interconnected. The objective of this system is to
minimize manual intervention during the design pro-
cess. Identical versions of this engineering design

IBM S/38 TECH DEV

system are now used at more than 25 IBM locations
worldwide.

The chip designer’s input to the system is a descrip-
tion of the logical functions that a chip is to perform.
The automated system provides a logic diagram as a
printed output, through simulation performs a design
verification, and, when this meets the designer’s re-
quirements, does the necessary transformations to
generate the physical design of shapes and patterns
and their precise locations on each of the three
variable-format mask levels needed in the personal-
ization process. In addition, the system generates the
complete set of data required for functional testing
of each chip.

In performing the automated design function for a
particular master slice type, the technology param-
eters for that type are stored as a set of rules. The
physical design of a logic chip resulting from a de-
signer’s input goes through the following steps.

Preliminary checking for possible rules violations such
as logic errors, fan in or fan out violations, exceeding
chip circuit count, or exceeding chip input/output
connection count.

Automatic placement of logic circuit gate locations,
to minimize wiring channel use and to allow for maxi-
mum circuit utilization (out of the 704 possible cir-
cuits in the case of System/38).

Automatic wiring which, together with the placement
function, results in the decision of the final location
for all interconnection patterns on the chip.

Shapes generation which, through use of a graphic
language, identifies the optical mask or electron-
beam patterns needed by manufacturing in appro-
priate personalization process steps. As part of this
shapes-generation step, computer based checking
is performed for possible rules violations on spacings,
overlaps, or other shape constraints. This checking

CURTIS

function includes a physical net check to assure
that allowable signal line voltage drops are not ex-
ceeded, and that maximum capacitance rules affect-
ing circuit speed are not violated.

Test generation is also performed automatically, and
this digital information, together with the results
of the other design steps, is consolidated as part of
a single magnetic tape. This information is trans-
mitted to the manufacturing location, providing all
information needed for rapid fabrication of engineer-
ing or production quantities of a chip “personalized”
to meet the unique needs of the designer.

Personalization

In this portion of the integrated-circuit manufactur-
ing process, chip sites on master slice wafers receive
interconnection wiring and terminal metallurgy,
followed by functional testing. Information on the
shapes message from the designer for a particular part
number, after transformation to electron-beam con-
trol signals, determines the location of first-level
aluminum-copper metal conductors, the location of
via holes through a blanket of planarized SiO, de-
posited over the first metal pattern, and the location
of second-level interconnecting wiring. Another in-
sulating layer is then deposited, and for all part
numbers there is an identical pattern, optically ex-
posed, of via holes to be etched through this layer.
A third interconnecting metal pattern, also identical
for all part numbers, is used principally for power dis-
tribution across the chip, and this is followed by de-
position of a final SiO, insulating layer. Vias are
etched through this final layer in a standard pattern,
after which thin layers of chromium, copper and gold
are vacuum deposited at 132 locations through a
metal mask; then lead-tin solder is deposited through
the metal mask.

During development of individual chip designs (chip
“part numbers”) for the processor for System/38,

the system’s complexity required many engineering
changes for improving the balance between indivi-
dual chip functions and performance in order to
optimize system performance; thus, it was essential
that designers receive very rapid delivery of chips for
each new design. Although classical methods of
optical mask production could be used for the three
patterns unique to a specific part number, many pro-
duction steps with their associated delays are ob-
viated by use of direct electron beam “writing” of the
required patterns on photoresist-coated wafers.
In addition to the saving in time, greater precision
in registration is obtained since each chip site is in-
dividually aligned at four points, as opposed to two-
point alignment of an optical mask to an entire wafer.

Figure 2 shows the vertical structure added during the
personalization process. The three layers of wiring
are separated by deposited SiO, approximately 2 um
thick, and a 3 um SiO, layer covers the third metal
pattern. First and second level metal interconnecting
patterns, each formed from a blanket deposited
aluminum-copper alloy by a selective “lift-off”
process rather than by subtractive etching in order
to obtain better coverage over device areas, have a
minimum width of 4.4 um, with 2.5 um spacing.
In the wiring channels, firstlevel conductors are 5
um wide, the via holes etched to allow first to second
level connections are 6.5 um in diameter, and second
level conductors are 6.5 um wide. This ‘“zero over-
lap via” technology, made possible by extremely
tight photolithography tolerances, is an important
factor in successfully achieving the present wiring
density. The third metal layer is also aluminum-
copper, deposited to be twice as thick as the first and
second layers. It is etched subtractively to provide
conductors with four times the cross-section of the
first and second (principally signal) conductors,
thus improving power distribution capability.

The last steps in the personalization process consist
of etching holes in the top SiO, layer to reach third-

INTEGRATED CIRCUIT DESIGN, PRODUCTION, AND PACKAGING FOR SYSTEM/38

13

Top surface

N

G /N
Second metal, aluminum-copper
SIS 11 IS

Lead-tin solder

Chrome-copper-gold

Third Si0p

Second SiO2

First
Si02

First metal, aluminum-copper
Z L LL

First (planar) SiO2

Si3Ng

{ o

T
! i
1

]

Si0p

Figure 2 Three levels of metallization, showing silicon to solder ball electrical path

level metal at each point where an external connec-
tion will be located and then vacuum depositing
protective chromium-copper-gold metallurgy through
a metal mask. Lead-tin solder is deposited through
the same mask; when the mask is removed, wafers
are heated until the solder flows and surface tension
causes each solder pad to assume a hemispherical
shape. The wafer is then ready for transfer to final
test where electrical functionality of each chip is
evaluated and locations on each wafer of defective

14 CURTIS

chips are automatically recorded. Finally, the tested
wafers are diced, followed by automatic selection and
storage by part number of all good chips.

Packaging

Logic circuitry for System/38 is supplied by 29 logic
chips comprising a total of 22 part numbers. Each
chip has signal I/O plus power connections in an area
array on the device side of the chip. The carrier
for each chip is a 25 mm square of 1.5 mm thick

g o 0
3
7, K]
- ’
Figure 4 Single chip module before cover is added

ceramic (A1,03) which has been fabricated with 116
pins for planar board mounting. Figure 3 shows the
metallization pattern on the ceramic surface in the
vicinity of an attached chip. The outward extension
of this pattern provides the required “space ex-
pander” function connecting each of the 116 rela-
tively wide-spaced module pins to appropriate chip

IBM S/38 TECH DEV

Figure 5 Planar board

contacts. Figure 4 is a picture of the module with a
mounted chip and with a copper ground plane in
place to minimize coupling between signal leads. The
completed single-chip module is protected by an
aluminum cap, is designed to dissipate about one
watt, and is air cooled.

For System/38 a planar board, shown in Figure 5,
provides interconnections among the logic modules
and five array modules. The board is a multilayer
conductor and insulator laminate with through-
plated holes for module pin connections to appro-
priate layers. Four signal distribution planes with
copper conductor patterns determined by computer
instructions generated in the design automation
system are combined with four fixed-pattern power
distribution and ground plane layers. The copper
conductive patterns are supported by and are insulat-
ed from each other by epoxy bonded glass fiber
sheets. These layers are further bonded into a single

CURTIS

planar sheet, into which the single chip module pins
are inserted and soldered.

Summary

This description of some of the steps in IBM inte-
grated circuit production and packaging for System/
38 has centered on the logic chips used in the central
processor. One key element in the successful use of
the “open part number set” concept at the 704 cir-
cuit level of integration has been identified as a design
automation system of extraordinary complexity and
capability. A second is the use of electron-beam
direct wafer exposure. For this powerful photolitho-
graphic tool, the principal features being utilized are
its flexibility in handling a multiplicity of designs
and its ability to align with great precision to each
chip area being exposed; the ability to expose patterns
too small for optical wavelengths is not yet required,
and remains as a potential for further advances.

There are many interrelated factors involved in tech-
nology development decisions; for example, chip
size, circuit density, power dissipation, design flexi-
bility, testability, and the logistics problems of rapid
response by manufacturing to engineering change re-
quirements. Some of the problems involved increase
factorially with increases in circuit count per chip;
very few are made easier. The trade-offs among such
factors, in order to optimize the system performance
and manufacturability, are particularly complex.
This article has identified some of the principal
features which are important to this extension of
IBM’s bipolar, integrated-circuit technology.

INTEGRATED CIRCUIT DESIGN, PRODUCTION, AND PACKAGING FOR SYSTEM/38

15

Memory
design/technology
for System/38

M.N. Donofrio, B. Flur, and R.T. Schnadt*

Three random access memory (RAM) chip designs of
18K, 32K, and 64K bits per chip—all of them manu-
factured in a new field effect transistor (FET) tech-
nology—allow fabrication of modules containing up
to 256K bits. Compared to IBM’s previous main
memory modules, the new modules provide up to 32
times improvement in module density.

The 32K- and 64K-bit chips are used in the System/
38in 11.25 by 17.5 cm (4% by 7 inch) random access
memory cards containing 256 bytes of memory.

The 64K-bit memory chip includes circuitry that pro-
vides additional function at the chip level, such as a
high speed 8-bit register that allows for improved
system data rates.

The chips take advantage of the improved densities
offered by one device cell array invented by IBM
in 1967, and the added density efficiency of a new
FET semiconductor technology and manufacturing
process developed by IBM. In satisfying System/
38 needs, the new memory array designs are utilized

© 1978 by International Business Machines Corporation.
Copying is permitted without royalty provided that (1) each
reproduction is unaltered and (2) the IBM copyright notice
and a reference to this book are on the first page. The title
and abstract may be used without further permission in
information-service systems. Permission to republish in full
should be obtained from IBM GSD Technical Communica-
tions, Atlanta, GA 30301.

16 DONOFRIO, FLUR AND SCHNADT

Describes a new FET technology for a family of single-cell array, random access, memory chips ranging in density
from 18K to 64K bits per chip. Shows array designs for control store module and for main memory modules.

to cover the need for high performance control
store memory and high density (low cost)/moderate
performance main memory. The silicon and alumi-
num metal oxide semiconductor (SAMOS) process
technology allows for the flexibility in performance
and density offered at the array chip and module
level of assembly. The array chip densities and array
chip performances for these new memory chips
span ‘a factor of 2.4 change in chip density (area/
bit) for a factor of 3.1 change in chip performance
(access time).

This paper will briefly describe the new FET process
and the various memory array design and tradeoff
considerations that result in this range of new tech-
nology offerings.

Technology

IBM’s newly developed FET process represents a
significant departure from other FET processes.
The SAMOS process is an n-channel FET process
which implements metal gates, relies upon silicon
nitride to enhance gate reliability relative to gate
shorts, and employs a conductive polysilicon field
shield to control surface leakage.

The objective of this technology was to provide
high density memory chips that have acceptable
performance characteristics, are small in size, simple
in process, and offer optimum manufacturing yields.

The process was developed and optimized for low
cost memory chips by using one-device cell design
(Figure 1) and minimizing the cell and chip area by:
(1) eliminating contact holes in the cell, (2) using a
doped oxide to provide a self-aligned diffusion
source, (3) using the polysilicon field shield as the
reference plate of the storage node capacitor to sim-
plify wiring in the cell, and (4) designing to tight
lithographic ground rules.

The process was developed to maximize yield by
minimizing process complexity and by incorporating
on-chip redundancy. Process complexity was mini-
mized by reducing the number of discrete process
and mask steps. Redundancy is implemented by a
write once read only memory unit built into the
second layer metal of each array chip. This memory
unit is used in conjunction with appropriate on-chip
address compare circuitry to allow one or more
extra storage lines provided on the chips to be used
to replace a like number of possibly defective storage
lines identified when the chips are initially tested.
This significantly enhances productivity and reduces
chip cost.

*Mr. Donofrio and Dr. Flur are with the General Technology
Division in Burlington, VT; Dr. Schnadt is with the System
Products Division in Boeblingen, Germany.

I1BM S/38 TECH DEV

Additionally, better reliability was achieved by using
a multiple layer oxide/nitride gate dielectric and a
multiple layer insulator between the first and second
metal layers. An organic polymer layer is used as
the final insulator layer over the second level metal-
lization. As many as four chips are then mounted
on 2.5 c¢cm (1 inch) metallized ceramic modules
using conventional IBM chip mounting technology.

Array designs

High performance control store RAM array module.
In order to satisfy the need for a high performance
memory to meet the control store memory applica-
tion requirements of the System/38, an 18K-bit
array chip, shown in Figure 2, has been developed
that provides 36K bits worth of storage in a 2.5-cm
square module. The module has an access and cycle
time of 140 nanoseconds and 280 nanoseconds res-
pectively. This array chip is designed and organized
to permit a module organization that meets
System/38’s performance, density, granularity, and
reliability requirements with minimal system over-
head (i.e., support circuitry requirement, cooling and
space considerations).

Figure 1 One-device-cell structure

DONOFRIO, FLUR AND SCHNADT

Design of the 18K-bit chip included a tradeoff of
density for performance. By optimizing the area
occupied by a new one-device-cell design in the new
semiconductor technology, maximum array signal
strength is obtained in the minimum possible time,
allowing for best chip/module performance.

High density main memory RAM array modules. For
main memory applications of the System/38, two
array chips have been developed; one for cost/per-
formance-driven applications and one for cost-driven
applications.

The 32K-bit array chip shown in Figure 3 provides
128K bits of storage in a 2.5-cm square module at an

Figure 2 18K-bit array chip

access and cycle time of 285 ns and 470 ns,
respectively. The chip organization, performance, and
function additionally allows for module level charac-
teristics that satisfy the System/38 application with
minimal system overhead.

The 64K-bit chip shown in Figure 4 provides 256K
bits of storage in a 2.5-cm square module with an
access and cycle time of 440 ns and 980 ns respec-
tively. This design achieves maximum density and
minimum cost through minimum cell size and a new
IBM developed sensing circuit. The chip organiza-
tion, performance, and function for the 64K-bit
chip, as for the 18K-bit chip and 32K-bit chip, allow
for module level characteristics that satisfy memory
system requirements with minimal system overhead.

Figure 3 32K-bit array chip

%

MEMORY DESIGN/TECHNOLOGY FOR SYSTEM/38

17

Figure 4 64K-bit array chip

Summary

By using a family of single-cell array RAM chips rang-
ing in density from 18K to 64K bits per chip, the
System/38 takes advantage of a new FET technology
to provide memory modules covering a range of 36K
to 256K bits in density and 140 ns to 440 ns in per-
formance. Design and process decisions were made
to optimize performance, performance/density (cost),
and density (cost) driven designs to provide the
‘greatest flexibility to the System/38 in addressing
its memory application needs.

18 DONOFRIO, FLUR AND SCHNADT IBM S/38 TECH DEV

Gives an overview of the hardware and microcode architectures for the System/38. Also describes how some
functions traditionally found in programming systems are incorporated into the hardware design.

The IBM System/38 hardware is designed to effi-
ciently support its high-level machine architecture.
An engineering design objective was to take advan-
tage of new technologies such that certain high-
level functions would be implemented in hardware
and microcode. As a result, functions such as task
dispatching, queue handling, virtual storage transla-
tion, stack manipulation, and object sharing became
a basic part of the hardware control structure. A fur-
ther objective was to provide for sufficient extenda-
bility to permit future implementation trade-offs.

Figure 1 shows the hardware configuration of the
System/38. This article describes the hardware or-
ganization and the functions used by the hardware
control structure.

Hardware organization

System/38 hardware consists of a processor com-
municating over a high-speed channel to independ-
ently functioning I/O units. The processor and the
I/O units have access to a main storage array. The
System/38 processor, which is implemented in a new,
high-performance large-scale integration (LSI) tech-
nology [1], fetches 32-bit micro instructions from
the random access memory (RAM) control store
shown in Figure 1 (4K words for the 5381 Model 3,
8K words for the 5381 Model 5). One micro instruc-
tion is executed for each processor cycle. The
processor cycle times are 400 or 500 ns for the 5381
Model 3 (200 or 300 ns for the 5381 Model 5),
depending on the micro instruction operation. In

HOFFMAN AND SOLTIS

a single cycle, either one- or two-byte arithmetic
operations may be performed on signed binary, un-
signed binary, or packed format decimal data.

A new, high-density metal oxide semiconductor
field effect transistor (MOSFET) technology main
storage [2] is available at two performance levels:
1100 ns fetch cycle time for the 5381 Model 3 and
600 ns fetch cycle for the 5381 Model 5. Data path
width is four bytes to either memory. Available
memory capacities are 512K, 768K, and 1024K bytes
for either the Model 3 or 5. In addition, the Model 5
may have memory capacities of 1280K and 1536K
bytes. Error correction circuitry (ECC) is used in
both models.

Direct memory access for I/O units as well as for the
processor is provided by the virtual address trans-
lation (VAT) hardware which converts 6-byte seg-
mented virtual addresses to main storage addresses.
Address translation tables in main storage and a trans-
lation lookaside buffer in hardware provide mapping
from virtual to real main storage addresses, as dis-
cussed by Houdek and Mitchell [3]. Virtual ad-
dresses are used in I/O operations, and page faults
are allowed during data transmissions with low-
speed devices.

Page faults are resolved by data transfer from second-
ary storage. Data is moved to main storage in 512-
byte page units from disk storage via the channel.

Hardware
organization of
the System/38

R.L. Hoffman and F.G. Soltis

Each I/O device is connected to a controller which is
connected to the channel. Magnetic media control-
lers (MMC) [4] are used for high data-rate devices
such as disks, while microprogrammed 1/O controllers
(I0C) [5] handle a multiplicity of lower data-rate
devices.

Each system also includes a system control adapter
(SCA) which shares an I0C with the keyboard dis-
play console. The SCA performs the system main-
tenance functions, including testing the hardware
logic circuitry as described by Berglund [6] .

Control structure

System/38 manipulates a unit of execution called
the “task.” All computer systems need to control
execution and, in multiprogrammed systems like
System/38, switch between units of execution, i.e.,
tasks. Traditionally, an interrupt structure with a
fixed number of interrupt levels or classes, built on
the hardware, is transformed by a software supervisor
into a multilevel, interrupt-driven system to bridge

© 1978 by International Business Machines Corporation.
Copying is permitted without royalty provided that (1) each
reproduction is unaltered and (2) the IBM copyright notice
and a reference to this book are on the first page. The title
and abstract may be used without further permission in
information-service systems. Permission to republish in full
should be obtained from IBM GSD Technical Communica-
tions, Atlanta, GA 30301.

HARDWARE ORGANIZATION OF THE SYSTEM/38

19

Main
storage
Main
storage b = ——
control]
|
]
[}
'
Control Processing VAT I bma
store unit Channel :
1
[}
|
1
S 1/0 channel j
MMC MMC
Disk storage Diskette 10C 10C 10C 10C 10C ioC
controller controller
<> SCA i
CE/OP Printer Card I/0 T Display Communications
panel ape controller controller
(o —
I Keyboard
display X
console

Figure 1 Hardware configuration

the gap between the actual hardware and the abstract
concepts of multiprogramming. The System/38 re-
places this interrupt structure with a single tasking
mechanism which is used to control all processing.

A multilevel, queue-driven task control structure is
implemented in microcode and hardware on the Sys-
tem/38. A task dispatcher implemented in microcode

20 HOFFMAN AND SOLTIS

allocates processor resources to prioritized tasks.
I/O and program processing tasks are integrated in a
common dispatching structure, with their priorities
adjusted for system balance. I/O processing takes
place when system resources are available, not when
an I/O interrupt occurs.

I/O and program processing requests are stacked in
main storage on a linked list called the task dispatch-

ing queue (TDQ). The task dispatcher selects the
highest priority request from the TDQ and gives it
control of the processor. Instructions associated
with this task, known as the active-task, are executed
until control is passed to another task.

A set of system control operations (SEND and RE-
CEIVE) are used to communicate between tasks and
to pass control between tasks via the task dispatcher.

I1BM S/38 TECH DEV

If the active task is to communicate with another
task, it does so by sending a message to a queue in
main storage known to both tasks. If the active
task is to obtain a message from a queue, it executes a
RECEIVE operation. If the message is available on
the queue, the message is passed to the active task
and processing continues. If the message is not avail-
able (e.g., it has not yet been sent), the active task is
made inactive and the task waits for the message.
The task dispatcher is then invoked to select the new
active task from the TDQ. The task dispatcher is also
invoked on a SEND operation if a task of higher
prority than the active tas: is waiting for the
message. If the waiting task is of lower priority than
the active task, the task dispatcher is not invoked, but
the processing request for the waiting task is placed
on the TDQ.

I/0O System/38 is implemented with a queue-driven
command structure using the SEND/RECEIVE mech-
anism to pass information across the I/O interface,
which is described by Lewis et al [7]. To a task,
a device looks like another task. Commands to de-
vices and responses from devices are exchanged in
the same way that messages are communicated be-
tween any two tasks in the system. The messages
sent to the devices are specially formatted and con-
tain the device commands. In addition to individual
commands, a complete channel program can be sent
as a single message. Because a queue structure is
used, command stacking is automatic. In a similar
manner, the device sends response and status
information back to a task via a main storage queue.
Note that only commands and responses use the
queueing structure; data transfers between devices
and main storage are direct.

High-level call/return functions are directly supported
by another set of system control operations which
provide the linkage mechanism between routines
executing within the same task. The performance of
programs written using structured programming tech-
niques is enhanced by the use of this mechanism.
The same linkage mechanism is used by the hardware

HOFFMAN AND SOLTIS

to report program exceptions. With this mechanism,
exceptions for any task (including such things as page
faults) execute at the same priority level as the task
itself. A low priority task incurring an exception
will not interfere with the execution of higher priori-
ty tasks.

Summary

The hardware implementation of System/38 pro-
vides the foundation on which the high-level machine
architecture is built. Through the use of advanced
LSI technologies, System/38 achieves a high level
of processor performance and reliability. The use
of intelligent controllers for I/O device attachments
distributes the I/O workload throughout the system.

A unique aspect of the System/38 hardware and
microcode is the incorporation of very powerful con-
trol functions. These functions provide a single
mechanism which is used to control all processing in
the system. Other high-level functions implemented
in the microcode further enhance the flexibility
and performance of the system.

References

1. H.W. Curtis, “Integrated circuit design, production, and
packaging for System/38,” page 11.

2. M.N. Donofrio, B. Flur, and R.T. Schnadt, “Memory

design/technology for System/38,” page 16.

M.E. Houdek and G.R. Mitchell, “Translating a large

virtual address,” page 22.

J.W. Froemke, N.N. Heise, and J.J. Pertzborn,

“System/38 magnetic media controller,” page 41.

E.F. Dumstorff, “Application of a microprocessor for /O

control,” page 28.

6. N.C. Berglund, “Processor development in the LSI
environment,” page 7.

7. D.O. Lewis, J.W. Reed, and T.S. Robinson, “System/38
1/O structure,” page 25.

> ow

gl

HARDWARE ORGANIZATION OF THE SYSTEM/38 21

Translating
a large virtual
address

M.E. Houdek and G.R. Mitchell

The System/38 supports a large virtual address space
structure, large enough to contain all programs and
data required by the system. To reference this space,
a 48-bit virtual address yielding a 281-trillion-byte
address space is implemented. This virtual space
is very large compared to the portion of the virtual
space that can be in main storage at any given time
[1]. Since the processing unit references the virtual
address space and the hardware references a physical
main storage space, there must be a translation from
the 48-bit virtual address to the smaller main storage
address. Because the virtual address used in System/
38 is so very large, the conventional techniques which
have been used to translate will not work efficiently.
This article describes the translation process deve-
loped for this system.

Translation

The virtual address space is divided into 512-byte
blocks called “pages.” When a page resides in main
storage, all 512 bytes of that page are located in an
area of main storage called a “frame.” The part of
the virtual address that uniquely identifies that page
is called the page address, and the part of the main

© 1978 by International Business Machines Corporation.
Copying is permitted without royalty provided that (1) each
reproduction is unaltered and (2) the IBM copyright notice
and a reference to this book are on the first page. The title
and abstract may be used without further permission in
information-service systems. Permission to republish in full
should be obtained from IBM GSD Technical Communica-
tions, Atlanta, GA 30301.

22 HOUDEK AND MITCHELL

Presents the unique aspects of the virtual storage structure in the System/38. Shows the development of the
virtual address translation method and explains how a large virtual address is converted to a main storage address.

storage address that identifies the frame is called the
frame identifier (FID). The part of the main storage
address that identifies the byte within the frame is
identical to the virtual address part identifying the
byte within a page. This byte address is called the
byte identifier (BID). No translation needs to take
place on the BID. However, the page address needs
to be translated to the FID.

The translation of the page address to the FID is
accomplished by using two tables, a hash index and a
page directory, as shown in Figure 1. The page dir-
ectory contains one entry for every frame in main
storage. The index of a particular entry into the page
directory is identical to the FID for that entry. Thus,
the first entry of the page directory corresponds to
the first frame of the main storage, the second entry
to the second frame, and so on.

One field of the page directory entry contains the
page address of the virtual address located in the cor-
responding frame of the main storage. When this
field matches the page address of the virtual address
to be translated, the index of that page directory
entry becomes the FID for that virtual page. Thus
the FID translated from the page address, along with
the BID from the virtual address together form the
main storage address.

Specific bits from the virtual address are combined
or hashed by the hash generator to select an entry
from the hash index table. The selected hash index

table entry contains an index into the page directory.
A part of the page directory is reserved as a pointer
or index to indicate where additional entries with
the same hash are to be found, if there are any.
Thus, all of the entries with the same hash value
are found on a linked list (or chain) in the page dir-
ectory. The last entry on each chain is distinguished
from the others by an end-of-chain indicator.

During the translation of the virtual address, the page
directory searching mechanism need only find the
chain that contains the virtual page and search only
those entries on that chain, looking for a match
of the virtual page address. If a match is found, then
the index of that page directory entry is the FID for
that virtual page. If an end-of-chain bit is encountered
before a match is found, a page fault is signaled to the
page fault handling routine. This routine can then
resolve that page fault by bringing the page corres-
ponding to that virtual address from secondary
storage to main storage and updating the page
directory.

If, at any given point in time, several virtual addresses
were to hash to the same hash value, long page chain
lengths would result and the performance of the
machine would be degraded. It is therefore advanta-
geous to have many short page chains. This is
accomplished by making the number of entries in the
hash index table larger than the number of entries
in the page directory and providing a hash generator
that produces a uniform distribution of hash index

I1BM S/38 TECH DEV

table entries. It can be shown [2] that, with this
uniform distribution, the average number of page
directory entries probed, N, is dependent on the ratio
of the hash index table size to the page directory
size, R, or

2
]
<+

6}

N

Thus, if the hash index table is twice the size of the
page directory, the average number of probes is 1.25
entries.

If the hash generator does not provide a uniform dis-
tribution of hash index table entries, Eq. (1) does not
hold and the average number of entries probed
would increase since some entries of the hash index
table would be favored over others. Therefore, to
minimize the average number of probes, the hash
generator must provide a uniform distribution
of hash index table entries. The actual hashing
algorithm required to provide the uniform distribu-
tion depends on how addresses are assigned.

Assignment of virtual addresses

Data structures or “objects” [3], as they are called
in this article, are created, destroyed, grow in size, or
shrink in size during the life of a computer system.
In order to facilitate the handling of these objects,
the virtual address space is divided into independent
address spaces called “segments.” Each segment
consists of a linear sequence of addresses, from a
starting virtual address to some maximum. One ob-
ject may be contained in a segment and then is allow-
ed to grow to the maximum size of the segment.
Only the portion of the segment that contains data
physically exists in main storage or secondary storage.
Since the segment is generally larger than the object
it contains, some of the virtual pages associated with
the segment are not used. This leads to a sparse usage
of the virtual address space. The portion of the vir-
tual address that uniquely identifies the segment is

HOUDEK AND MITCHELL

called the segment identifier (SID) and that portion
of the address that identifies the page within the seg-
ment is called the page identifier (PID).

Virtual address

Byte
Page address identifier
Hash
generator
Hash index table
Page
directory
index
Page directory
] Virtual Index
,' page of next
] address | entry
]
[} ,—_/
]
]
/
] Virtual End
,' ,' page of
'1,' address chain
!
Frame Byte
identifier identifier

Main storage address

Figure 1 Virtual address translation

Consider a computer system with a fixed amount of
main storage and secondary storage. There is a
relationship between the number of objects and the
average size of the objects in that system. The system
can be characterized as having a large number of small
objects, a small number of large objects, or some-
where in between. A system with a large number of
small objects has a large SID and a small PID.
Conversely, a system with a small number of large
objects has a small SID and a large PID.

In System/38, two segment sizes are allowed, a small
segment of approximately 65,000 bytes and a large
segment of approximately 16 million bytes. Depend-
ing on its potential size, an object can be assigned
either to a small segment or a large segment, leaving
a portion of the segment vacant. Thus, some mechan-
ism is needed to transform the nonuniform distri-
bution of virtual addresses to a uniform distribution
of hash index table entries. This transformation is
performed by the hash generator.

Hashing algorithm

The hashing algorithm must transform the sparse
usage of the virtual address space to a uniform dis-
tribution of hash index table entries. It is also de-
sirable that consecutive virtual pages, small segments,
or large segments cannot hash to the same hash index
table location since there is a relatively high proba-
bility of consecutive pages or segments being
referenced.

Thus, the hash generator of Figure 2 is used to meet
these requirements. The hash is developed by taking
the exclusive-or of the reverse order of the PID bits,
with the low-order bits of both the small SID and the
large SID.

TRANSLATING A LARGE VIRTUAL ADDRESS 23

Virtual address

Large Small Page Byte
segment segment | ooy | oY
identifier identifier | dentifier | identifier

Exclusive OR

Pointer into
hash index table

Figure 2 Hash generator

The effect of this hashing algorithm when the system
is using a large number of small objects is that more
bits from the SIDs and fewer bits from the PID are
effective in generating the hash. On the other ex-
treme, in the system using a small number of large
objects, fewer bits from the SIDs and more bits
from the PID are effective in generating the hash.
Thus, the hash generator compensates for variations
in the number or the size of the objects contained
in the system.

Since virtual address bits are taken from both the
small segment identifier and the large segment identi-
fier, the ratio of the number of large segments to
small segments is not important to the effectiveness
of the hashing algorithm.

Conclusion
The method has been described for translating a large

24 HOUDEK AND MITCHELL

virtual address to a comparatively small main storage
address on System/38. A hash generator is used to
provide a uniform distribution of hash index table
entries which in turn minimizes the average number
of probes into the page directory resulting in fewer
main storage accesses during translation. Since the
FID is derived from the index of the page directory,
no FID field is required. The page directory is easily
updated without moving entries, by just changing the
chain or chains associated with the virtual addresses
added or removed. This page directory design lends
itself to reverse translation since a frame identifier
can be used to directly index the page directory
entry containing its virtual address.

References

1. R.E. French, R.W. Collins, and L.W. Loen, “System/38
machine storage management,” page 63.

2. R. Morris, “Scatter storage techniques,” Communications
of the ACM, 3843, (January 1968).

3. K.W. Pinnow, J.G. Ranweiler, and J.F. Miller, “System/38
object-oriented architecture,” page 5S.

IBM §/38 TECH DEV

Provides an overview of the System/38 I/O structure by describing the operation of the I/O channel and the System/38 1/0
methods used to attach devices to the system. structure

D.O. Lewis, JW. Reed, and T.S. Robinson

Design objectives
The I/O structure for IBM System/38 was designed [lo—mJ N T Main
to achieve three major objectives. The first was to ' VAT storage
develop a channel architecture which allows model
implementation tradeoffs, exploits current LSI tech- ~ ~-77777777 77 "= oo oo mom 171"ttty T T Tt = ===
nology, utilizes the system’s virtual addressing capa- System 01 o1
bilities, and allows multiprogramming at the channel channel utot Yo
.. boundary Q™ Q| M
program level. The second objective was to decouple 1 Q Q
the processing unit from the channel by means of a =~ oo _ I . -4 ————
queued asynchronous structure which allows channel -
program stacking with minimum impact on the Di;asL, T 'Iﬂ{s—k'—]
processing unit. The third objective was to provide c
multiple I/O product attachment interfaces for H e o
el e1s A oy
ﬂembll.lty pf added features and to accommodate m Channel management - ;;t:‘t::’?c";‘ndm g;;r;gem
user migration. £ — Command/status interface
L — Channel operations (control)
User views of input/output Channel
There are two views of input/output apparent to the bus
System/38 user. The first is at the data management E!E T
level. This level provides device and data independ- External i e D
ence. Input/output managers (IOM) support that device == === —----—---o - - f ------------------ == e m—mm e — e - -
data management level by translating data manage- intertace E,E' R IE
ment I/O requests into channel programs. The 1 !
second view is at the physical attachment level, External world
that is, the external interface. This physical level . :
provides a number of unique machine (UMI) and Figure 1 System/38 1/O structure © 1978 by International Business Machines Corporation.
ulti hi MMI) interf Th ¢ . Copying is permitted without royalty provided that (1) each
multimachine (MMI) interfaces. These two user views reproduction is unaltered and (2) the IBM copyright notice
of input/output are combined by means of an inter- and a reference to this book are on the first page. The title
nal structure, as shown in Figure 1. This structure and- abstract may be used without further permission in
. - information-service systems. Permission to republish in full
consists of: should be obtained from IBM GSD Technical Communica-
e A queued asynchronous system channel boundary. tions, Atlanta, GA 30301.

LEWIS, REED AND ROBINSON SYSTEM/38 1/0 STRUCTURE

¢ A channel processor which executes channel com-
mands or channel programs (multiple commands),
allows direct memory access, multiplexed I/O, and
supports.intelligent I/O adapters (IOA) via a common
channel bus.

e Internal IOAs which give to system designers the
capability of distributing function from IOM com-
ponents to an IOA.

The operational unit task

An important attribute of the System/38’s I/O chan-
nel is the concept of an operational unit (OU) task.
An OU task performs all of the functions of what is
commonly termed a “subchannel” in many channel
structures; that is, it contains all of the informa-
tion necessary to sustain an I/O operation with its
associated I/O unit. In addition, the OU task is the
channel component which executes IOM-formed
channel commands and is capable of competing
for system resources as a system task. Communica-
tion between the IOM and its associated OU task is
accomplished by the sending and receiving of mes-
sages to the operational unit queue (OUQ) and the
input output manager queue (IOMQ). These mes-
sages either carry an IOM-formed channel command
or point to an IOM-formed channel program for OU-
task execution. They also carry an OU task-formed
response, to the IOM-requested work. There are five
channel command types generically referred to in
System/38 as operation blocks (OB). The five OB
types give the IOM programmer the capability of
writing sophisticated channel programs. The OBs
are 16-byte fields and contain the information nec-
essary to initiate, sustain, and terminate an I/O opera-
tion. The data address contained in the OB is a 6-
byte virtual address, hence, System/38 I/O partici-
pates fully in the system’s virtual addressing struc-
ture. I/O unit addressability is accomplished with an
operational unit number, a one-byte descriptor which
is unique to an OU task, and its associated I/O unit.

26 LEWIS, REED AND ROBINSON

P~
ORE

. / ORE
Input/output manager queue SENDM o

10M-Task

~
ORE

ORE
) \
RECM
Operational unit queue

OU-Task

of

) e

Channel management

o SENDM = Send message

o RECM = Receive message
of Jo
IOA/Device
1OM |
Task
ou
Task
IOA/Device
Channel
mgmt.
1 o 1 2] 1 (3] 1 o 1 (5] 1 (6] 1 o 1 o [l

Figure 2 Channel operation

Channel operation

An overview of channel operation is shown in Figure
2. An IOM task requests an asynchronous I/O opera-
tion by sending a send/receive message (SRM) con-
taining a channel program to the OUQ. The OUQ
task responsible for servicing the queue receives the
SRM and initiates the I/O operation by executing the
first OB in the channel program. A channel program
may contain one or more OBs. The distinction is im-

portant because the QU task participates in the
execution of each OB. The IOM task, however, only
participates in the forming and transmission of a
channel program, receiving ending status from the OU
task at the completion of the channel program and
not for each OB executed within the channel pro-
gram. Processing and I/O overlap is, therefore, greatly
enhanced with the effective utilization of channel
programming by the IOM.

IBM §/38 TECH DEV

Each OB (channel command) results in the OU task
sequencing through three distinct phases:

1. Receiving, decoding, and execution of the OB.
In effect, the OU task initializes channel management
such that subchannel operation and the IOA/device
may be initiated and sustained.

2. The OU task quiesces to the dispatchable-wait
state pending completion of the device command by
the I0A/device. During this period, channel manage-
ment selects, transmits the device command, moni-
tors, and services the IOA/device on a multiplexed
prioritized basis. When a command-ending status
is presented to channel management by the IOA/
device, a channel processing function called the I/O
event handler services and presents this ending
status to the OU task which goes to the dispatchable-
ready state.

3. Upon being dispatched again by the system, the
OU task must present the I0A/device ending status
as OU status to the IOM via a message sent to the
IOMQ if the completed operation block (command)
is the final or only operation block in the IOM-
issued channel program. If there are additional OBs in
the channel program, the OU task will return to Phase
1 and process the next OB.

Channel management communicates with attached
IOAs over a common channel bus, as shown in Figure
3. The channel, in selecting and servicing IOAs,
utilizes three distinct sequences:

START A particular IOA is selected and informed
of a pending command in channel.

POLL A particular IOA is informed on a prio-
rity basis that a channel service grant is

available.

GRANT The polled IOA is granted channel service.

The particular sequence is reflected by the aggregate
state of the ten TAG lines, six channel-activated
and four IOA-activated. During the POLL-GRANT

LEWIS, REED AND ROBINSON

Channel

e Start
e Poll
e Grant

Channel e 10 tag lines
bus e Bidirectional data bus

— Device ADDR (OU#)

— Priority code
— Data

10A

External
device --=

interface
< Device }

Figure 3 Channel dialog with device

sequences, the channel operates in a block-multi-
plexed mode over a bidirectional bus with the length
of the block transfer determined by the IOA.

Input/output adapters

The intelligent IOAs are either hardwired [1] for
high-speed devices or microprogrammed controllers
[2] for low- and medium-speed devices. A given
IOA may, depending on speed and function require-
ments, service multiple device attachments. This is
reflected in the many unique machine and multi-
machine interfaces to external devices. Examples of
multimachine interfaces seen on System/38 are SDLC
remote links and the SDLC local loop.

Summary

The I/O structure of System/38 has been developed
to meet demands now posed by the concept of the
attached work station, the distribution of function

to intelligent adapters, and the ever-increasing use of
networking. This, coupled with device multiattach-
ment methods, will permit the user of low-end com-
puters to utilize the functional capabilities normally
associated with much larger systems.

References

1. J.LW. Froemke, N.N. Heise, and J.J. Pertzborn,
“System/38 magnetic media controller,” page 41.

2. E.F. Dumstorff, “Application of a microprocessor for
1/0 control,” page 28.

SYSTEM/38 1/0 STRUCTURE 27

Application of a
microprocessor for
1/0 control

E. F. Dumstorff

Microprocessors are significantly influencing the
design of system structures, particularly in input/
output control. The advent of LSI has made the
extensive use of microprocessors in I/O subsystems
economically feasible. I/O subsystems using micro-
processors have three primary advantages over con-
ventional hardware designs. First, more function from
the CPU can be moved into the I/O subsystem,
leaving more CPU power to drive more micro-
processor-controlled devices or to simply improve
processing unit performance with the same number of
devices. Second, in the LSI environment, the micro-
processor approach minimizes the number of engi-
neering changes and unique part numbers. Once
developed, the microprocessor and its role in I/O
subsystems became the design standard. The shallow-
est possible device-unique adapters are then
developed, making the best possible use of the
microprocessor for each device attached to the
system. The adapter design process in general be-
comes more structured and easier to control. Third,
the microprocessor approach is more flexible. As
development progresses, it is often desirable to move

© 1978 by International Business Machines Corporation.
Copying is permitted without royalty provided that (1) each
reproduction is unaltered and (2) the IBM copyright notice
and a reference to this book are on the first page. The title
and abstract may be used without further permission in
information-service systems. Permission to republish in full
should be obtained from IBM GSD Technical Communica-
tions, Atlanta, GA 30301.

28 DUMSTORFF

Characterizes the microprocessor that was designed specifically for the attachment of devices to the System/38.

function to or from the processing unit or hardware
portion of the adapter, or simply to redefine a
function already designed. In the LSI environment
these types of changes would be disastrous to a
conventional hardware design. However, with the
microprocessor approach, these changes are more
easily handled with microcode changes. Many times
no hardware changes are required. For these reasons,
a microprocessor-based I/O subsystem was chosen for
the IBM System/38.

The I/O structure used in the System/38 [1] makes
multiple use of a microprocessor as an I/O control-
ler. General characteristics of the I/O controller
(IOC) and its connection to the system control
adapter (SCA), system channel, and device adapter
are presented in this article.

1/0 subsystem structure

The I/O subsystem structure used in the System/38 is
shown by Hoffman and Soltis [2], who indicate the
multiple use of the IOC in the I/O structure.

The IOC is connected directly to the system channel
through the channel adapter. It is packaged on a logic
card which contains both the channel adapter and the
IOC. Logic associated with the channel adapter
accounts for one-third of the hardware on the logic
card which is approximately 7 x 9 inches in size. This
logic card is a common field replaceable unit (FRU)
used by device adapters to perform device control
functions and to connect the device adapter to the

system channel. All I/O, with the exception of some
magnetic media devices, connect to the system via the
IOC. Read only storage (ROS) control store that
personalizes the IOC function to a specific device is
packaged with the adapter unique to that device.
Operation of each IOC is initiated by the SCA. At
power-on time, all IOCs, with the exception of the
IOC used by the SCA, are in a stopped, reset state.
The SCA can then start the IOCs one at a time via
SCA control as the system is brought up.

Controller characteristics

The IOC is an 8-bit processor with parity checking.
It includes an internal 512 x 9 data store (DS). An
additional 512 x 9 array is optional. Thirty-two
local store registers (LSRs) are implemented as the
first 32 DS locations in the first 512 x 9 DS array.
The IOC has two program levels, one interrupt and
one background. I/O instructions passing data to
or from the device adapter can be extended in
increments of one IOC clock cycle (670 ns) by the
adapter. The I/O extend function is used to extend
I/O instructions when more time is required in the
adapter to respond to the data on the I/O interface.
This makes the IOC easy to connect to adapters im-
plemented in slower logic technologies. All instruc-
tions, with the exception of extended I/O and BRN
(Branch Register Indirect) instructions, execute in
one controller clock cycle. Thirty instructions are
implemented. The IOC generates a 13-bit control

IBM S/38 TECH DEV

store address (CSA) with parity added, making the
complete address 14 bits.

Data flow

A data flow diagram of the logic contained on the
System/38 I/O controller card is shown in Figure 1.
It is divided into three areas: SCA control decode,
the IOC, and the channel adapter.

The IOC is a two-address machine. During one in-
struction execution (670 ns), it loads two operands
into the ALU operand registers, combines them,
and stores the result. In parallel with the execution
of an instruction, the next instruction to be execu-
ted is being accessed from control store and the
control store address is incremented via a hardware
incrementer.

The IOC data flow is designed to execute four basic
types of instructions. These are LSR to LSR, LSR to
DS and DS to LSR, KI (control immediate), and
I/0. KI instructions are used to pass data between
control space (internal control registers, such as
CSAR save registers for both program levels, check/
status register, data store page register) and LSR
space. I/O instructions pass data between LSR space
and the device adapter.

The IOC is connected to three other logic areas in
the system. These are the SCA, the system channel,
and the device adapter areas. The SCA area generates
ten control lines which are used to control various
internal parts of the system. In the I/O subsystem,
these control lines are used to start, stop, reset,
and perform diagnostic functions on any I0C in the
system concurrent with other IOCs operating the
devices associated with them.

The channel adapter generates a connection one byte
wide to the system channel. This connection, includ-
ing control, consists of 27 lines. Data can be passed
to or from the channel via the channel adapter at
480K bytes/sec. The channel adapter is controlled

DUMSTORFF

SCA INF [e]] —CHANINF _

r -= oP —‘Kl ADDR T -1|

] ! decode |

P — e |

: i O Reg i

1 @.4 ccu :

ey buffer '-<:§

| P] 10x9 HE:)

| 1 [} T
SCA 10 cook | LR] [ARes | [BReg | osp] 1§ .. 1 |
cTL] cTL ! H H

" « store 1 | Reg]

i | €@ 8| s12x9 | '

:.____a 1< | option : I System

1 | l channel

i N/ : |

{

] INCR ALU : :

: fo Y ccu | 14

store] ADDR

|) 480x9 | § INF L

1 | [CSAR Tc5A PSC [PSC ! control i

: save PLO] save PL1 PLO JPL1 H :

' [| Adapt o : i

apter

H CK/ST INET 32x9 ! H

: CSAR control : :

: ALUOUT. | 9bits | :

i

, -0 i :

L | '

—————————————————————— b e e e e e ——— — — —— ———— —— — — — —— — ——— — — —
14 18 10 9
CsA CSD/DBI Clocks Misc DBO ABO

Adapter

Figure 1 A data flow diagram of logic on the System/38 1/O controller card

by the IOC via KI instructions. It is effectively a
native adapter attached to and packaged with the
IOC. This is important in that it makes the controller
easy to adapt to other system environments.

The device adapter interface consists of 72 lines. It
includes the control store interface and I/O interface
for transferring data to and from the adapter. For
I/O write operations, ABO (9-bit address bus out)
and DBO (9-bit data bus out) are sourced directly
from the arithmetic-logic unit (ALU) operand regis-
ters. This permits an I/O write operation, where ad-
dress and data originate in LSR space, in one instruc-
tion cycle (670 ns). When operating with adapters
requiring more time to respond to this interface,

I/O instructions can be extended in increments of
670 ns. This is done by the adapter conditioning the
“I/O extend” line on the adapter interface at the
beginning of the I/O instruction and keeping it condi-
tioned until the required number of instruction cycles
(670 ns each) have occurred.

Instruction timing

Figure 2 shows the timing associated with an 10C
clock cycle. Each clock cycle is divided into ten
clocks, each 67 ns in length. The resulting ten clock
signals are made available to the adapter for use
as desired.

APPLICATION OF A MICROPROCESSOR FOR I/0 CONTROL 29

10C cycle
— e 17 NSEC

0osc oo

0oscC o1 __I—I— ﬁ I [

Clock

670 NS \

/
Cyet /
/ X Operand B X

0X1X2X3X4X5X6X7X8X9\

Operand A X Result \

Operation
 woir N\
y A
LSR ADDR A r2 /(1 r \
A < DBI
AB REG Bl N / A<ps N\
B < KS(Al A<
B « (r2) ALU
e —————
Write LSR
KS[A] < ALU
DS « ALU
(r1) « ALU
/ IC+1 \
Load CSAR A B
BC
CS ADDR
/ Pl change\
Load check/status / Error log \ error log

Figure 2 Operand register/destination sources

Four basic operations are performed during each I0C
cycle. First, the instruction register is loaded during
I time. Second, operand B is loaded from the source
specified by the current instruction. Third, operand
A is loaded similar to operand B. Fourth, the re-
sult is generated and stored in the memory

30 DUMSTORFF

space specified by the instruction.

The possible sources for the operand registers and the
destinations for the result are shown in Figure 2.
This information, along with the instruction descrip-
tion shown in Figure 3, can be used to better under-
stand the IOC data flow for the various instructions.

Controller instruction set

A list of the IOC instructions implemented is shown
in Figure 3. Each instruction contains 17 data bits
plus one parity bit. The function performed by each
instruction is described in Figure 3.

Conclusion

I/O control functions in the system environment
are well suited for application of microprocessors.
The structure chosen for the IBM System/38 I/O sub-
system depends heavily on the use of the micro-
processor described in this paper. This approach was
chosen based on three primary advantages micro-
processor-based I/O structures offer over conven-
tional hardware designs.

In general, more device control function was moved
from the processor to the I/O subsystem. This left
more processor cycles to improve the overall system
performance. The number of engineering changes and
unique part numbers required in the I/O subsystem
were reduced by approximately 30% from a conven-
tional design approach. As the system was developed,
a considerable number of functional changes were
included in the various devices late in the develop-
ment process by making ROS control store changes.
Without the flexibility the microprocessor approach
offers, many of these changes would not have been
possible.

As technology continues to advance, microprocessors
will continue to be used extensively in the system
environment.

References

1. D.O. Lewis, J.W. Reed, and T.S. Robinson, “System/38
I/O structure,” page 25.

2. R.L. Hoffman and F.G. Soltis, ‘“Hardware organization of
the System/38,” page 19.

IBM S/38 TECH DEV

Instr Format PSC
IRRRRRE]
01234567890123456P
KIR 0000 0 A 1
2 KIW (BRN) 0000 1
NRI 0001 L
ARI 0010 A
XRI 0011 | L
LRI 0100 -
CRI 0101 A
ORI 0110 L
TBNI 0111 L
XR 1000 r1 r2 001P L
AYR 1000 010 C
AR 1000 01 A
SYR 1000 100 [
SR 1000 101 A
NR 1000 110 L
OR 1000 1M L
RR 1001 000 R
LR 1001 001 R
CR 1001 011 A
LN 1010 000 -
STN 1010 001 -
IOR 1010 010 L
1ow 1010 011 -
IORI 1010 110 L
1owl 1010 11 -
LND 1011 DH r2 DL -
STND 1100 -
B 1101 B P -
BC 1110 3 MASK -
DBC 1mn -
1 KS refers to control space (i.e., internal control registers)

Description

(r1) «

(r1)
(r1)
(rt1)
(r1)
PSC
(r1)
PSC

E I S

(r1)
(r1)
(r1)
(r1)
(r1)
(r1)
(r1)

trr ot

(r1) «
(r1) «
PSC

4

KS(A]
1 KS[A] « (r1)

(r1)
(r1)
(r1)
|

(r1)
(r1)
(r1)

(r1)
(r1)
(r1)
(r1)
(r1)
(r1)
(r1)

(r2)
(r2)

(M) + 2) + 1

<+

+ |+ 1
A\
A\

VvV (r2)
+ (r2) +
+ (r2)
+ (r2) +
+ (r2) +
. (r2)
V (r2)

ROT RT 1

(r1) < DS[DSP:(r2)]

DS[DSP:(r2)]

« (r1)

(r1) < 108[(r2)]
<« (r1)
108[1:110}

10S[(r2)]
r1) «
10S[1:11

1]

< (r1)

(r1) « DS[(r2):D]
DS[(r2):D]

IC « P

B

« (r1)

IC « ICHI:B*

IC « IC HI:B IFDIAGM

2 A KIW instruction to a particular address is decoded as a BRN (Branch Register Indirect)
which causes the controller to enter a 2-cycle sequence resulting in the control store
address to be sourced from the register address by (r1).

3 Mask following
Condition code

Arithmetic result
Compare result
Logical result
Rotate result

Figure 3 Micro instruction format

DUMSTORFF

100
cco

0

(r1) = (r2)
All Os
All Os

010
cc1

(r1) (r2)
All 1s
High order 1

001
cc2

+
(r1) (r2)
Mixed
Mixed & (+)

000
cc3

Carry
Carry
No branch
Low order

APPLICATION OF A MICROPROCESSOR FOR 1/0 CONTROL 31

Microprocessor-based
communications
subsystem

F.X. Roellinger, Jr. and D.J. Horn

This article highlights the main features of the com-
munications subsystem on the IBM System/38.
This subsystem employs a microprocessor to multi-
plex up to four synchronous data link control
(SDLC) teleprocessing lines through one port on the
system channel. The microprocessor operates under
control of the processing unit, which presents various
sequences of commands (start-up, read, write, etc.)
via the system channel to perform data exchanges
on one or more TP lines. The operation of the sys-
tem channel is described by Lewis, et al [1].

Organization of the communications subsystem

The System/38 communications subsystem employs
a building-block approach to offer diverse and flexi-
ble line-type attachment possibilities. Four build-
ing-block types are used as shown in the subsystem
diagram (Figure 1).

The I/O controller (IOC) is a vertical type micro-
processor utilizing 17-bit-plus-parity control words,
8-bit-plus-parity data paths and a 670 ns instruction
cycle time. Further details of the IOC structure and
operation are discussed by Dumstorff [2].

© 1978 by International Business Machines Corporation.
Copying is permitted without royalty provided that (1) each
reproduction is unaltered and (2) the IBM copyright notice
and a reference to this book are on the first page. The title
and abstract may be used without further permission in
information-service systems. Permission to republish in full
should be obtained from IBM GSD Technical Communica-
tions, Atlanta, GA 30301.

32 ROELLINGER AND HORN

Discusses the building block approach used to implement the communications subsystem on the System/38.

Processing unit

{ System channel %

W o5

Other

System/38

device [CCC

attachments

Y ¥ Y l
ICA IICAJl CAJlCAl
[ova] [ora | forar] IDLA'"
1]
_ System/38
boundary

< 4 communications ports
*DLA types available

1. 1200 bps integrated modem
— Nonswitched
— Switched with auto answer
— Switched with manual answer
— Nonswitched, switched back-up with auto answer

2. External modem adapter (switched or nonswitched use)
— For use at data rates < 9600 bps
— EIA RS232C/V .24 interface

3. External autocall unit adapter (must be used in combination with
an adjacent external modem adapter)

4. Digital service adapter—connects to a channel service unit (CSU)
of the nonswtiched AT&T Data-Phone (registered trademark of
American Telephone and Telegraph Company) data service network
at data rates of 2.4 kb/sec., 4.8 kb/sec., and 9.6 kb/sec.

5. Loop system control adapter—available on an RPQ basis at 9.6 kb/sec.
and 19.2 kb/sec. data rates.

Figure 1
structure

Communications subsystem hardware

A communication adapter (CA) is used for each port
installed. The CA contains hardware function which
is personalized and controlled by the IOC microcode
to support the specific port application.

The communication common control (CCC) provides
function which is common to all CA line appearances
(thus reducing hardware duplication cost) and con-

‘tains the IOC ROS control store.

The data link adapters (DLA) provide capability for
several forms of communication attachments (Figure
1). Each of the different DLA designs provides for
an identical physical connection to the CA. As a re-
sult, it is possible to use the single CA design as part
of each of the various communications attachments.

The partitioning of function within the communi-
cations subsystem is shown in Table 1.

Features of the subsystem

The subsystem provides for half-duplex SDLC opera-
tion over a maximum of four communications ports.
Attachment flexibility is achieved by permitting
installation of any combination of four DLAs which
is consistent with the subsystem maximum aggregate
data rate of 57.6 Kb/sec.

DLA choices provide the capability to operate point-
to-point on analog switched facilities, and point-to-

point or multipoint on analog or digital nonswitched

IBM S/38 TECH DEV

Table 1 Communications subsystem function

Communications adapter (CA) hardware

— Driving and sensing registers for DLA control

— Serialization/deserialization of external SDLC data stream

— SDLC flag detection, abort and idle detection

— SDLC zero bit insert/delete

— NRZI encoding/decoding of data stream (when enabled)

— Internal clock correction for asynchronous modem applications

— Diagnostic capabilities for communications subsystem verification
— Parity checking and generation on subsystem address and data paths

Communication common control (CCC) hardware

SDLC ROS control store, accessing control, and address parity checking
CA line selection/multiplexing control

— Control of functions requested by the system control adapter (SCA)
Internal clock source

— Subsystem reset and register clocking control

— TP line analysis diagnostic support

10C function as implemented in microcode

— Insertion and deletion of SDLC flag characters

— Frame check sequence (FCS) generation and checking

— Data buffering between system channel and CA

— Operation of timer counters for SDLC timeouts (e.g., idle state detect)
— Automatic polling of remote multipoint tributary stations
— Handling of errors detected by system channel

— Switched line connection via the DLA

— Presentation to SCA of DLA status

— 1/0 command fetch and interpretation

— Synchronization of read/write command sequence

— Diagnostic checkout of CA functions

— Handling of parity checks detected by 10C, CCC, or CA

Data link adapter (DLA) hardware (possible types of function)
— Modulation/demodulation

— Voltage level (electrical characteristic) conversion
— External network connection control circuitry

ROELLINGER AND HORN

facilities. Switched connection options include
manual or automatic calling, and manual or auto-
matic answering. Automatic switched network dis-
connect is provided under microcode control. In
addition, primary station control of a local loop
system is available on an RPQ (request for price
quotation) basis.

The microcode provides an automatic polling func-
tion for up to eight multipoint tributary stations
(per communications port). This function removes
from the processing unit the burden of regularly
polling inactive terminals.

Data integrity within the subsystem is ensured by
both hardware and microcode function. Hardware
parity checking is provided on all address and data
paths between the I0C, CCC, and CA building blocks;
external SDLC data stream checking is provided
through microcode frame check sequence (FCS)
generation and checking. Error recovery or reporting
is under microcode control.

Microcode organization

The subsystem includes either 512 or 1024 bytes
of data storage. accessible by the IOC. The size is
dependent on the number of lines installed; if one or
two lines are installed, the 512-byte size may be
used; if three or four lines are installed, the 1024-byte
size must be used. In either case, the first 32
bytes of data storage are used by the IOC as local
store registers (LSRs). The LSRs are used primarily
as temporary work areas, but several are reserved
for flags and status indicators to effect communica-
tion between the two program levels.

Data storage is divided into five general areas: (1)
data buffers for storage of data between the system
channel and the communications lines; (2) tables
indicating which lines are installed and their relative
service priorities; (3) queuing areas of channel

MICROPROCESSOR-BASED COMMUNICATIONS SUBSYSTEM 33

service requests; (4) common work areas, which are
extensions of the LSRs; (5) line parameter tables,
each containing status and personalization data for
one communications line.

The microcode as organized is reusable, so that one
copy may service any of the communications lines.
Before a particular service routine is invoked, a line-
selecting routine is used which sets a base register
according to the line selected for service. This base
register then becomes a line-parameter-table selector
for the line to be serviced. In addition to status and
personalization data, the line parameter table also
contains the data buffer points and information
necessary for communication with the input/output
managers in the processing unit. The line parameter
table is the heart of the line multiplexing capability in
the microcode.

Processor command execution

The same queuing structure used throughout the sys-
tem is also used between the processor and the com-
munications subsystem. When the input/output
manager for communications wishes to activate a
particular function in the subsystem, an I/O
command is placed on a queue in main storage and
the subsystem is notified via a hardware signal on the
system channel. The microcode then fetches the
command from main storage, performs the requested
function, and issues a status reponse to the process-
ing unit. The command/response queue is known as
an Operation Unit (OU) queue.

Each communications line employs two OU queues,
one for transmitting and the other for receiving.
The communications subsystem does not have a
full duplex implementation, but at times commands
may be outstanding on both queues. A typical
example is a read/write sequence in which the sub-
system transmits an SDLC frame with the poll/final
bit on in the control byte, mandating a response from

34 ROELLINGER AND HORN

the remote station. Explicit synchronization of the

transmit/receive sequence is not necessary by the pro-
cessing unit; upon receiving either command, the sub-
system will wait for the other before transmitting.
At the end of the frame, response status is transferred
to the processor for the write command, line turn-
around takes place, and the receive command is
activated to receive the response from the remote
station.

Interrupt structure

The microcode employs two program levels, an in-
terrupt level (0) and a background level (1). A
pseudo-interrupt level is available for hardware parity
checks, which force a trap to error-handling code.
After the startup, data store initialization, and line
priority specification have been completed by the
system control adapter (SCA) and CPU, the mi-
crocode enables program level O interrupts and
remains in the program level 1 idle loop until an in-
terrupt occurs. The following events will cause an
interrupt: a 13.3 ms timer pulse on the CCC, a byte
service request from a CA, or a device-address-ready
signal from the system channel that an I/O command
is outstanding.

Byte service requests are handled directly by program
level O routines, while timer and device-address-ready
interrupts are enqueued for handling by program
level 1. Other program level 1 tasks are: fetching
commands and issuing responses via the system
channel, issuing data-buffer transfer requests to and
from main storage via the system channel, providing
signals for the DLA status display, and execution of
the I/O commands.

As previously stated, program level 0/1 communi-
cations are effected through the LSRs. When
program level O requires processing by program level
1, it merely sets a bit corresponding to the line being
serviced in the appropriate LSR. Service requests

include data transfers for both transmit and receive
data, and logical-operation-end (end of an SDLC
transmitted frame or an SDLC receive frame se-
quence). Program level 1 is the supervising level
in that its execution of I/O commands causes the acti-
vation of program level O code, and because it may
disable interrupts and deactivate the operation of
the interrupt service routines.

Concurrency features

The subsystem allows a considerable amount of flexi-
bility in line operation and diagnosis without inter-
action with other operating lines. Most hardware
errors associated with one DLA or CA will be handled
by the microcode or reported to the processing unit
without affecting the operation of other lines. A
failing line may be removed from the line service
priority table, diagnosed concurrently with other
line operations, and replaced in the service table;
if desired, the service priority may be altered at any
time. This is all in keeping with the concurrent
maintenance philosophy of the entire system.

Diagnostic functions

Various components have been built into the system
to facilitate problem determination by the customer
engineer. These components issue various diagnostic
I/O commands to the subsystem which write and
sense the state of the DLA and exercise the CA to
isolate a failing hardware component. One single
1/0 command is available which, as implemented in
microcode, checks out all of the SDLC functions (ex-
cept zero bit insert/delete) and many of the other
functions performed by the CA.

Other hardware diagnostic capabilities include an in-
ternal trap which allows the customer engineer to

IBM S/38 TECH DEV

record and display both transmit and receive data,
and to display the activity of the DLA dynamically
on the system consoles for any installed line.

References

1. D.O. Lewis, J.W. Reed, and T.S. Robinson, “System/38
1/0O structure,” page 25.

2. E.F. Dumstorff, “Application of a microprocessor for I/O
control,” page 28.

ROELLINGER AND HORN MICROPROCESSOR-BASED COMMUNICATIONS SUBSYSTEM 35

Microprocessor-based
work station
controller

J.N. Tietjen and W.E. Hammer

The 5250 series terminals can be attached to the Sys-
tem/38 using a work station controller or by the
remote communications adapter [1]. The work sta-
tion controller provides a more responsive path from
terminal to user programs. The communications
line-related overhead is eliminated, thereby improving
system response time to a terminal transaction.

The work station controller as shown in Figure 1
is a microprocessor-based control unit designed to
allow the attachment of IBM 5250 series of terminals
to the IBM System/38. The System/38 I/O control-
ler, a dedicated, high-speed microprocessor having a
670 ns instruction time, is used in conjunction with
optional data store cards to allow up to 20 keyboard/
displays and/or printers to be controlled by a single
work station controller. The microcode has been de-
signed to support both keyboard/displays and printer
terminals. Alternate language keyboards can be sup-
ported by loading an appropriate translate table in
the microprocessor data storage. The microprocessor
design allows operation of the supported terminals
to be compatible with remotely located terminals
attached to the IBM 5251 Model 12.

© 1978 by International Business Machines Corporation.
Copying is permitted without royalty provided that (1) each
reproduction is unaltered and (2) the IBM copyright notice
and a reference to this book are on the first page. The title
and abstract may be used without further permission in
information-service systems. Permission to republish in full
should be obtained from IBM GSD Technical Communica-
tions, Atlanta, GA 30301.

36 TIETJEN AND HAMMER

Presents the method used to directly attach multiple work stations to the System/38.

System/38 /0 channel

System/38
1/0 controller|

R
RAM 8K WSA o] 8K RAM
data store RAM base S RAM driver/receiver
card adapter card
8 TWINAX
Dr/Rcvr

< Up toeight
lines

Up to —_—
20 terminals

*With cable-through feature

Figure 1 System/38 work station controller

Hardware overview

The hardware consists of the following elements:
Microprocessor—System/38 I/O controller [2]
Serial-to-parallel converter and control logic
Twinax cable driver receivers

Optional read/write data store

ROS control store

Microprogram overview

The microcode for the work station controller is
assigned to the two program levels within the micro-
processor. Program level O, the interrupt level, is
assigned the major task of keystroke management.
Interrupts are caused either by the expiration of a
program-loadable timer or by the system channel bus
logic, on the microprocessor card, indicating a
processing unit command is available for processing
(device address ready). Recognition of device-
address-ready by the microprogram will cause a flag
to be set to request program level 1 command
servicing.

Program level 1 performs all control functions to the
system channel. These tasks include controlling
the transfer of data to/from main storage, interpret-
ing the controller-defined processing unit commands,
interpreting and executing the (user) data streams
for display control, generating responses, and generat-
ing necessary status information.

As a result of interpreting the (user) data stream,
a format table is built in the data store defining the
location, length, and edit characteristics of all input
fields (i.e., the field control words) on a display.
Data keying is allowed only in screen locations
defined within the format table; that is, before a key-
stroke is written to a display, the cursor location
is checked to determine that the cursor is in a user-
defined field.

1BM S/38 TECH DEV

Keystroke processing

The program-loadable timer will normally be set for
an interval of approximately 32 ms. At the comple-
tion of this interval, each of the attached terminals is
polled by the microcode for keystroke activity.
A poll list, loaded at controller initialization time,
is indexed sequentially by the microcode and used to
control the polling function. The terminal responds
to a poll with a status byte and a scan code byte,
which are processed by the microcode. When the
microprogram determines that a new keystroke is
being presented, the scan code is used to access a
translate table, and the required function is per-
formed. In the case of a data key, the display code is
read from the translate table and sent to the display
after all field edit checks are satisfied. Keys such as
enter, which send data to the host, cause the
microprogram to post the data transfer request to a
first-in first-out (FIFO) stack for handling by the
program level 1 microprogram. In general, all key-
strokes or error conditions requiring data transfer to
main storage are posted to FIFO stacks for handling
by the program level 1 microprogram.

Data stream processing
The data stream received from the user program is
processed for a single terminal at a time. The actual
data stream is in the same format as the data stream
used by a remotely attached terminal (IBM 5251
Model 12). The data stream contains commands
and orders which tell the adapter how to write the
screen and which define the input field edit charac-
teristics. The terminal operator can enter data only
into valid input fields whose characteristics are
defined by the data stream. The following field-level
edit functions are supported by the work station
adapter:

Alpha shift

Alpha only

Numeric shift

Numeric only

Signed numeric

Bypass

TIETJEN AND HAMMER

Dup enable

Auto enter

Field exit required
Monocase

Mandatory enter required
Mandatory fill

Right adjust zero fill
Right adjust blank fill

As part of int<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>