ICON/UXV
Programmer
Guide

ICON
INTERNATIONAL

764 East Timpanogos Parkway
Orem, Utah 84057
(801) 225-6888

A

PROGRAMMER GUIDE

ICON/UXV
Operating
System

© Copyright 1988
Icon International, Inc.
All rights reserved worldwide.

The information contained within this manual is the property of Icon International, Inc. This
manual shall not be reproduced in whole nor in part without pnor written approval from Icon
International, Inc.

Icon International, Inc. reserves the right to make changes, without notice, to the specifications
and materials contained herein, and shall not be responsible for any damages (including
consequential) caused by reliance on the material as presented, including, but not limited to,
typographical, arithmetic, and listing errors.

The UNIX® Software and Text Source for this manual is under license from AT&T.
Copyright © 1984 AT&T Technologies

Order No. 172-036-005 A0 (Manual Assembly)
Order No. 171-063-006 A0 (Manual Pages only)

This manual was set on an IMAGEN 8/300 laser printer driven by the IROFF formatter
operating under the ICON/UXV system.

Trademarks

The ICON logo is a registered trademark and ICON/UXYV is a trademark of Icon International, Inc.
UNIX is a registered trademark of AT&T.

3B, WE, and DOCUMENTER'S WORKBENCH are trademarks of AT&T Technologies.
AUSTEC is a trademark of Austec International, Ltd. (Australia)

DEC, PDP, VAX, UNIBUS, SBI, and MASSBUS are trademarks of Digital Equipment Corp.
DIABLO and Ethernet are trademarks of Xerox Corporation.

HP is a trademark of Hewlett-Packard, Inc.

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a trademark of International Business Machines Corporation.

TEKTRONIX is a registered trademark of Tektronix, Inc.

TELETYPE is a trademark of AT&T Teletype Corporation.

Versatec is a registered trademark of Versatec Corporation.

i ICON INTERNATIONAL

&

Change Record Page

ICON/UXV Programmer Guide

Manual Pages Part No. 171-063-006
Date Revision Description Pages Affected
Apr. 1988 AO Initial production release | All
Aug. 1988 A1 Add Chapter 26 “A Fast TOC, Chapter 26 - all
File System For UNIX” :

PROGRAMMER GUIDE

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

PROGRAMMER GUIDE

° ® N E DD~

S T~ T - T T T N = O ~ U
= T L B O

CONTENTS -

INTRODUCTION

C LANGUAGE

C LIBRARIES

THE OBJECT AND MATH LIBRARIES
COMPILER AND C LANGUAGE

A C PROGRAM CHECKER — “LINT”
SYMBOLIC DEBUGGING PROGRAM — “SDB”
ICON/UXV SYSTEM FORTRAN COMMANDS
FORTRAN 77

- RATFOR

THE PROGRAMMING LANGUAGE EFL

THE CURESES AND TERMINFO PACKAGE

CURSES EXAMPLES

(make) FOR MAINTAINING COMPUTER PROGRAMS
SOURCE CODE CONTROL SYSTEM USER GUIDE
THE M4 MACRO PROCESSOR

THE AWK PROGRAMMING LANGUAGE

THE LINK EDITOR

THE COMMON OBJECT FILE FORMAT

SYSTEM V/68 ASSEMBLER USER’S GUIDE

ARBITRARY PRECISION DESK CALCULATOR
LANGUAGE (BC)

f ~

CHAPTER 22.
CHAPTER 23.
CHAPTER 24.
CHAPTER 25.
CHAPTER 26.

vi

INTERACTIVE DESK CALCULATOR (DC)
LEXICAL ANALYZER GENERATOR (LEX)

YET ANOTHER COMPEER-COMPILER (YACCO)
UNIX SYSTEM TO UNIX SYSTEM COPY (UUCP)
A FAST FILE SYSTEM FOR UNIX

ICON INTERNATIONAL

ICON INTERNATIONAL

(/ Chapter 1

INTRODUCTION

This volume describes two main programming languages supported in the ICON/UXV
operating system. It is also describes the various software “tools” that aid the ICON/UXV
operating system user. The user should have at least 2 years of specialized training in
computer-related fields such as programming or UNIX® system use primarily for software
system development. The following paragraphs contain brief descriptions of the contents of the
chapter in this manual.

e C Language — A medium-level programming language which was used to write most of
the ICON/UXV operating system. Chapter 2 describes the C language. Chapters 3
through 7 describe the libraries and support tools available with the ICON/UXV
operating system for the benefit of the C language programmer. These chapters contain
the following:

C LANGUAGE— Chapter 2 provides a summary of the grammar and rules of
the C programming language.

LIBRARIES— Chapters 3 and 4 describe functions and declarations that support
the C Language and how to use these functions. Chapter 3 describes the C Library
and Chapter 4 describes the Object File and Math Libraries.

THE “‘cc”” COMMAND— Chapter 5 describes the command used to compile C
language programs, produce assembly language programs, and produce executable
programs.

A C PROGRAM CHECKER - “lint”— Chapter 6 describes a program that

attempts to detect compile-time bugs and non-portable features in C programs.

A SYMBOLIC DEBUGGER - “sdb” — Chapter 7 describes a symbolic
debugging program that is used to debug compiled C language programs.

o Fortran — Fortran 77, a rational Fortran preprocessor (Ratfor), and EFL are described
as follows:

ICON/UXV SYSTEM COMMANDS FOR FORTRAN-— Chapter 8 describes
the various commands that may be used with Fortran under an ICON/UXV
operating system.

FORTRAN 77 — Chapter 9 describes the implementation of Fortran 77 under the
ICON/UXV operating system in terms of the variations from the American
National Standard.

) 0. UNIX is a registered trademark of AT&T

PROGRAMMER GUIDE 1-1

INTRODUCTION

RATFOR— Chapter 10 describes the Ratfor preprocessor. This preprocessor
provides a means for writing Fortran in a fashion similar to the C language. This
preprocessor provides (among other things) simplified control-flow statements.

EFL— Chapter 11 describes the programming language EFL.

Chapter 12 describes the curses and terminfo package that provides the programmer with
screen-oriented programming capabilities. Chapter 13 provides examples of curses programs.

Chapters 8, 9, 10 and 11 assume that the user is already familiar with Fortran 77. If not

familiar, review one of the many texts that describes Fortran 77. The following texts are
suggested:

FORTRAN 77
Harry Katzan, Jr.
Van Nostrand Reinhold

FORTRAN 77 - FEATURING STRUCTURED PROGRAMMING
Loren P. Meissner and Elliot 1. Organick
Addison-Wesly

AMERICAN NATIONAL STANDARD PROGRAMMING
LANGUAGE FORTRAN

ANSI x3.9 - 1978

American National Standards Institute

Chapter 14, (make) FOR MAINTAINING COMPUTER PROGRAMS, describes a software tool
for maintaining, updating, and regenerating groups of computer programs. The many
activities of program development and maintenance are made simpler by the make program.

Chapter 15, SOURCE CODE CONTROL SYSTEM (SCCS) USER’S GUIDE, describes the

collection of SCCS programs under the ICON/UXV operating system. The SCCS programs act
as a “custodian” over the ICON/UXYV system files.

Chapter 16, THE M4 MACRO PROCESSOR, describes a general purpose macro processor that
may be used as a front end for rational Fortran, C, and other programming languages.

Chapter 17, THE "awk"” PROGRAMMING LANGUAGE, describes a software tool designed to

make many common information retrieval and text manipulation tasks easy to state and to
perform.

Chapter 18, THE LINK EDITOR, describes a software tool (1d) that creates load files by
combining object files, performing relocation, and resolving internal references.

1-2 ICON INTERNATIONAL

(a\
h

C

INTRODUCTION

Chapter 19, THE COMMON OBIJECT FILE FORMAT (COFF), describes the output file
produced on some ICON/UXYV systems by the assembler and the link editor.

Chapter 20, SYSTEM V/68 ASSEMBLER USER’S GUIDE, describes the ICON/UX resident

assembler, as. The as program allows programmers familiar with the MC68000 family of
processors to be able to program in as.

Chapter 21, ARBITRARY PRECISION DESK CALCULATOR LANGUAGE (BC), describes a
compiler for doing arbitrary precision arithmetic on the ICON/UXV operating system.

Chapter 22, INTERACTIVE DESK CALCULATOR (DC), describes a program implemented on
the ICON/UXV operating system to do arbitrary-precision integer arithmetic.

Chapter 23, LEXICAL ANALYZER GENERATOR (Lex), describes a software tool that
lexically processes character input streams.

Chapter 24, YET ANOTHER COMPILER-COMPILER (yacc), describes the yace program.

The yacc program provides a general tool for imposing structure on the input to a computer
program.

Chapter 25, UNIX SYSTEM TO UNIX SYSTEM COPY (UUCP), describes a network that

provides information exchange (between UNIX systems) over the direct distance dialing
network.

Throughout this document, each reference of the form name(1M), name(7), or name(8) refers
to entries in the ICONJ/UXV Administrator Reference Manual. Each reference of the form
name(l) and name(6) refers to entries in the JCON/UXV Reference Manual. All other
references to entries of the form name(N), where possibly followed by a letter, refer to entry
name in section N of the JCON/UXV Programmer Reference Manual.

PROGRAMMER GUIDE 1-3

Chapter 2
C LANGUAGE

PAGE
LEXICAL CONVENTIONS 21
SYNTAX NOTATIONoooeeeeeeeeeeeeeeeeeeeseseresssssesssseseseessseessesseresssesesss e se s semseeeseeasesasesasesssseeessssesseresseesnen 2.4
NAMEScoveeeeereeeeereresessseeseseen e ee et et e et st s e et et et re e ee s 24
OBJECTS AND LVALUESo..cooooeveeseeeeeseeesaesesesessesesesesseesaesesseseseseessessssesseeesesesesseseeseessasessessssssessssessensens 2.5
CONVERSIONS.......oooo vt eeeeeeee v eeeeeseesesseeeseeseseseeseseseeesseseessessesessessseesee e s s ee s sesesesessesesasseeessaeeseessessseeeseeeses 2.6
EXPRESSIONSoooeveoeeeeeeoeeeeseeeseseeseseeesesseeeeoeeeeeseeeseeseeeeesseessaesseessessseeeeseeesess e s esseessesesseeseessseeresesereees 2.8
DECLARATIONSoooooeoeeveoeeeeeseee e eeseeses oo eeseeee e eseeeessoesseeeseses s e s e ssss e seseseseseeesesesssaeeseseraseraseseseseesseseseessnns 2-16
STATEMENTSoooeoevveeeeseeeeeeeosseeeeseeesseeesseseseseseesesseessesesesessasessasesssmeesssessese s seseseseserasessesseseeeessseeseseseeeseeees 2.8
EXTERNAL DEFINITIONSocoouomtvueeeeenseosseesssesesessssesesesesseeessessesesseseseseseesssesseessssessesseseeseeeeseseesseeesereees 2.32
SCOPE RULESeeoeeoeeeeeeeeeeeeeseeeeserersesereesees e 2.34
COMPILER CONTROL LINESooootuniveoeeeeeeemeeresesesseeesesesessessssseseesessesesesessesssesssessessessssssoesseessesseseseeoes 2.35
IMPLICIT DECLARATIONS ... oooooeooteoeeeeeeeeeeeem s essemseeeseeeeeeseseseesessese e e e es e ss e eseeeeeeesesseees e eeseessenereseseoe 238
TYPES REVISITED...........eoooooveseeoeeeeeseeesesesesesseeesseeseseesseseseesssesesesseeseseens et 2.38

Chapter 2
C LANGUAGE

LEXICAL CONVENTIONS

There are six classes of tokens - identifiers, keywords, constants, strings, operators, and other
separators. Blanks, tabs, new-lines, and comments (collectively, “white space”) as described
below are ignored except as they serve to separate tokens. Some white space is required to
separate otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is
taken to include the longest string of characters which could possibly constitute a token.

Comments

The characters /* introduce a comment which terminates with the characters */. Comments
do not nest.

Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a letter. The
underscore (_) counts as a letter. Uppercase and lowercase letters are different. Although
there is no limit on the length of a name, only initial characters are significant: at least eight
characters of a non-external name, and perhaps fewer for external names. Moreover, some

implementations may collapse case distinctions for external names. The external name sizes
include:

PDP-11 7 characters, 2 cases

VAX-11 >100 characters, 2 cases

AT&T 3B 20 > 100 characters, 2 cases
Keywords

The following identifiers are reserved for use as keywords and may not be used otherwise:

auto do for return typedef
break double goto short union
case else if sizeof unsigned
char enum int static void
continue external long struct ~ while
default float register switch

Some implementations also reserve the words fortran and asm.

PROGRAMMER GUIDE 2-1

C LANGUAGE

Constants

There are several kinds of constants. Each has a type; an introduction to types is given in
“NAMES.” Hardware characteristics that affect sizes are summarized in “Hardware
Characteristics” under “LEXICAL CONVENTIONS.”

Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0
(digit zero). An octal constant consists of the digits O through 7 only. A sequence of digits
preceded by Ox or OX (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits
include a or A through f or F with values 10 through 15. Otherwise, the integer constant is
taken to be decimal. A decimal constant whose value exceeds the largest signed machine
integer is taken to be long; an octal or hex constant which exceeds the largest unsigned
machine integer is likewise taken to be long. Otherwise, integer constants are int.

Explicit Long Constards

A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L is

a long constant. As discussed below, on some machines integer and long values may be
considered identical.

Character Constants

A character constant is a character enclosed in single quotes, as in “x’. The value of a
character constant is the numerical value of the character in the machine’s character set.

Certain nongraphic characters, the single quote (*) and the backslash (\), may be represented
according to the following table of escape sequences:

A3

new-line NL (LF) \n
horizontal tab HT \t
vertical tab vT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote ’ \’
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to
specifly the value of the desired character. A special case of this construction is \0 (not
followed by a digit), which indicates the character NUL. If the character following a
backslash is not one of those specified, the behavior is undefined. A new-line character is illegal
in a character constant. The type of a character constant is int.

2-2 ICON INTERNATIONAL

N

N

C LANGUAGE

Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and
an optionally signed integer exponent. The integer and fraction parts both consist of a
sequence of digits. Either the integer part or the fraction part (not both) may be missing.

Either the decimal point or the e and the exponent (not both) may be missing. Every floating
constant has type double. .

Enumeration Constants

Names declared as enumerators (see “Structure, Union, and Enumeration Declarations” under

“DECLARATIONS”) have type int.

Strings

A string is a sequence of characters surrounded by double quotes, as in "...". A string has type
“array of char” and storage class static (see “NAMES”) and is initialized with the given
characters. The compiler places a null byte (\0) at the end of each string so that programs
which scan the string can find its end. In a string, the double quote character (") must be

preceded by a \; in addition, the same escapes as described for character constants may be
used.

A \ and the immediately following new-line are ignored. All strings, even when written
identically, are distinct.

Hardware Characteristics

The following figure summarizes certain ICON system hardware properties.

ICON properties
(ASCII)
char - 8 bits
int 32
short 16
long 32
float 32
double 64
float range +10 38
double range +10 38

Figure 2-1. ICON HARDWARE CHARACTERISTICS

C LANGUAGE

SYNTAX NOTATION

Syntactic categories are indicated by t¢talic type and literal words and characters in bold type.
Alternative categories are listed on separate lines. An optional terminal or nonterminal
symbol is indicated by the subscript “opt,” so that

{ eapression, , }

indicates an optional expression enclosed in braces. The syntax is summarized in “SYNTAX
SUMMARY?™.

NAMES

The C language bases the interpretation of an identifier upon two attributes of the identifier -
its storage class and its type. The storage class determines the location and lifetime of the
storage associated with an identifier; the type determines the meaning of the values found in
the identifier’s storage.

Storage Class

There are four declarable storage classes:

Automatic
Static
External
Register.

Automatic variables are local to each invocation of a block (see “Compound Statement or
Block” in “STATEMENTS”) and are discarded upon exit from the block. Static variables are
local to a block but retain their values upon reentry to a block even after control has left the
block. External variables exist and retain their values throughout the execution of the entire
program and may be used for communication between functions, even separately compiled
functions. Register variables are (if possible) stored in the fast registers of the machine; like
automatic variables, they are local to each block and disappear on exit from the block.

Type

The C language supports several fundamental types of objects. Objects declared as characters
(char) are large enough to store any member of the implementation’s character set. If a
genuine character from that character set is stored in a char variable, its value is equivalent
to the integer code for that character. Other quantities may be stored into character

variables, but the implementation is machine dependent. In particular, char may be signed or
unsigned by default.

Up to three sizes of integer, declared short int, int, and long int, are available. Longer
integers provide no less storage than shorter ones, but the implementation may make either

2-4 ICON INTERNATIONAL

TN

_/

o

C LANGUAGE

short integers or long integers, or both, equivalent to plain integers. “Plain” integers have the
natural size suggested by the host machine architecture. The other sizes are provided to meet
special needs.

The properties of enum types (see “Structure, Union, and Enumeration Declarations” under
“DECLARATIONS”) are identical to those of some integer types. The implementation may
use the range of values to determine how to allot storage.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2™ where n is the
number of bits in the representation.

Single-precision floating point (float) and double precision floating point (double) may be
synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be
referred to as arithmetic types. Char, int of all sizes whether unsigned or not, and enum will
collectively be called integral types. The float and double types will collectively be called
floating types.

The void type specifies an empty set of values. It is used as the type returned by functions
that generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite class of derived types
constructed from the fundamental types in the following ways:

o Arrays of objects of most types

o Functions which return objects of a given type

e Pointers to objects of a given type

e Structures containing a sequence of objects of various types

e Unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

OBJECTS AND LVALUES

An object is a manipulatable region of storage. An lvalue is an expression referring to an
object. An obvious example of an lvalue expression is an identifier. There are operators which
yield lvalues: for example, if E is an expression of pointer type, then *E is an Ivalue expression
referring to the object to which E points. The name “lvalue” comes from the assignment
expression E1 = E2 in which the left operand E1 must be an lvalue expression. The discussion

of each operator below indicates whether it expects lvalue operands and whether it yields an
lvalue.

PROGRAMMER GUIDE 2.5

C LANGUAGE

CONVERSIONS

A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This part explains the result to be expected from such
conversions. The conversions demanded by most ordinary operators are summarized under

“Arithmetic Conversions.” The summary will be supplemented as required by the discussion of
each operator.

Characters and Integers

A character or a short integer may be used wherever an integer may be used. In all cases the
value is converted to an integer. Conversion of a shorter integer to a longer preserves sign.
Whether or not sign-extension occurs for characters is machine dependent, but it is guaranteed
that a member of the standard character set is non-negative.

On machines that treat characters as signed, the characters of the ASCII set are all non-
negative. However, a character constant specified with an octal escape suffers sign extension
and may appear negative; for example, “\377 * has the value -1.

When a longer integer is converted to a shorter integer or to a char, it is truncated on the
left. Excess bits are simply discarded.

Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a float appears in an
expression it is lengthened to double by zero padding its fraction. When a double must be
converted to float, for example by an assignment, the double is rounded before truncation to
float length. This result is undefined if it cannot be represented as a float.

Floating and Integral

Conversions of floating values to integral type are rather machine dependent. In particular,
the direction of truncation of negative numbers varies. The result is undefined if it will not fit
in the space provided.

Conversions of integral values to floating type are well behaved. Some loss of accuracy occurs
if the destination lacks sufficient bits.

Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in such a case,
the first is converted as specified in the discussion of the addition operator. Two pointers to
objects of the same type may be subtracted; in this case, the result is converted to an integer
as specified in the discussion of the subtraction operator.

2-6 ICON INTERNATIONAL

S

C LANGUAGE

Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain integer is converted
to unsigned and the result is unsigned. The value is the least unsigned integer congruent to the
signed integer (modulo 2‘”°’d5‘.“). In a 2’s complement representation, this conversion is
conceptual; and there is no actual change in the bit pattern.

When an unsigned short integer is converted to long, the value of the result is the same

numerically as that of the unsigned integer. Thus the conversion amounts to padding with
zeros on the left.

Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar way. This
pattern will be called the “usual arithmetic conversions.”

1. First, any operands of type char or short are converted to int, and any operands of
type unsigned char or unsigned short are converted to unsigned int.

2. Then, if either operand is double, the other is converted to double and that is the type
of the result.

3. Otherwise, if either operand is unsigned long, the other is converted to unsigned long
and that is the type of the result.

4. Otherwise, if either operand is long, the other is converted to long and that is the type
of the result.

5. Otherwise, if one operand is long, and the other is unsigned int, they are both
converted to unsigned long and that is the type of the result.

6. Otherwise, if either operand is unsigned, the other is converted to unsigned and that
is the type of the result.

7. Otherwise, both operands must be int, and that is the type of the result.

Void

The (nonexistent) value of a void object may not be used in any way, and neither explicit nor
implicit conversion may be applied. Because a void expression denotes a nonexistent value,
such an expression may be used only as an expression statement (see “Expression Statement”
under “STATEMENTS”) or as the left operand of a comma expression (see “Comma
Operator” under “EXPRESSIONS”).

An expression may be converted to type void by use of a cast. For example, this makes
explicit the discarding of the value of a function call used as an expression statement.

PROGRAMMER GUIDE 2-7

C LANGUAGE

EXPRESSIONS

The precedence of expression operators is the same as the order of the major subsections of this
section, highest precedence first. Thus, for example, the expressions referred to as the operands
of + (see “Additive Operators”) are those expressions defined under “Primary Expressions”,
“Unary Operators”, and “Multiplicative Operators”. Within each subpart, the operators have
the same precedence. Left- or right-associativity is specified in each subsection for the
operators discussed therein. The precedence and associativity of all the expression operators
are summarized in the grammar of “SYNTAX SUMMARY".

Otherwise, the order of evaluation of expressions is undefined. In particular, the compiler
considers itself free to compute subexpressions in the order it believes most efficient even if the
subexpressions involve side effects. The order in which subexpression evaluation takes place is
unspecified. Expressions involving a commutative and associative operator (*, +, &, |,) may
be rearranged arbitrarily even in the presence of parentheses; to force a particular order of
evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is undefined. Most existing
implementations of C ignore integer overflows; treatment of division by 0 and all floating-point
exceptions varies between machines and is usually adjustable by a library function.

Primary Expressions

Primary expressions involving ., ->, subscripting, and function calls group left to right.

primary-expression:
tdentifier
constant
string
(expression)
primary-ezpression [expression |
primary-expression expression-list p)
primary-ezxpression . tdentifier
primary-ezxpression -> identifier

expression-list:
expression
expresston-list , expression

An identifier is a primary expression provided it has been suitably declared as discussed below.
Its type is specified by its declaration. If the type of the identifier is “array of ...”, then the
value of the identifier expression is a pointer to the first object in the array; and the type of
the expression is “pointer to ...”. Moreover, an array identifier is not an lvalue expression.
Likewise, an identifier which is declared “function returning ...”, when used except in the

function-name position of a call, is converted to “pointer to function returning ...”.

A constant is a primary expression. Its type may be int, long, or double depending on its
form. Character constants have type int and floating constants have type double.

2.8 ICON INTERNATIONAL

C LANGUAGE

A string is a primary expression. Its type is originally “array of char”, but following the same
rule given above for identifiers, this is modified to “pointer to char” and the result is a pointer

to the first character in the string. (There is an exception in certain initializers; see
“Initialization” under “DECLARATIONS.”)

A parenthesized expression is a primary expression whose type and value are identical to those
of the unadorned expression. The presence of parentheses does not affect whether the
expression is an lvalue.

A primary expression followed by an expression in square brackets is a primary expression.
The intuitive meaning is that of a subscript. Usually, the primary expression has type “pointer
to ...”, the subscript expression is int, and the type of the result is “...”. The expression
E1[E2] is identical (by definition) to *((E1)+(E2)). All the clues needed to understand this
notation are contained in this subpart together with the discussions in “Unary Operators” and
“Additive Operators” on identifiers, * and +, respectively. The implications are summarized
under “Arrays, Pointers, and Subscripting” under “TYPES REVISITED.”

A function call is a primary expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function.
The primary expression must be of type “function returning ...,”” and the result of the function
call is of type “...”. As indicated below, a hitherto unseen identifier followed immediately by
a left parenthesis is contextually declared to represent a function returning an integer; thus in
the most common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call. Any of type char
or short are converted to int. Array names are converted to pointers. No other conversions
are performed automatically; in particular, the compiler does not compare the types of actual
arguments with those of formal arguments. If conversion is needed, use a cast; see “Unary
Operators” and “Type Names” under “DECLARATIONS.”

In preparing for the call to a function, a copy is made of each actual parameter. Thus, all
argument passing in C is strictly by value. A function may change the values of its formal
parameters, but these changes cannot affect the values of the actual parameters. It is possible
to pass a pointer on the understanding that the function may change the value of the object to
which the pointer points. An array name is a pointer expression. The order of evaluation of
arguments is undefined by the language; take note that the various compilers differ. Recursive
calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an expression. The first
expression must be a structure or a union, and the identifier must name a member of the
structure or union. The value is the named member of the structure or union, and it is an
lvalue if the first expression is an lvalue.

A primary expression followed by an arrow (built from - and >) followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier
must name a member of that structure or union. The result is an lvalue referring to the
named member of the structure or union to which the pointer expression points. Thus the

PROGRAMMER GUIDE 2-9

C LANGUAGE

expression E1->MOS is the same as (*E1).MOS. Structures and unions are discussed in
“Structure, Union, and Enumeration Declarations” under “DECLARATIONS.”

Unary Operators

Expressions with unary operators group right to left.

unary-ezrpression:
* expression
& lvalue
- expression
! expression
" ezpression
++ lvalue
~--lvalue
lvalue ++
lvalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means tndirection ; the expression must be a pointer, and the result is an
lvalue referring to the object to which the expression points. If the type of the expression is
“pointer to ...,” the type of the result is “...”.

The result of the unary & operator is a pointer to the object referred to by the lvalue. If the
type of the lvalue is “...”, the type of the result is “pointer to ...”.

The result of the unary - operator is the negative of its operand. The usual arithmetic
conversions are ,Performed. The negative of an unsigned quantity is computed by subtracting
its value from 2" where n is the number of bits in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator ! 1is one if the value of its operand is zero, zero if
the value of its operand is nonzero. The type of the result is int. It is applicable to any
arithmetic type or to pointers.

The ~ operatior yields the one’s complement of its operand. The usual arithmetic conversions
are performed. The type of the operand must be integral.

The object referred to by the lvalue operand of prefix ++ is incremented. The value is the new
value of the operand but is not an Ivalue. The expression +-+x is equivalent to x=x+1. See

the discussions ‘‘Additive Operators” and “Assignment Operators” for information on
conversions.

2-10 ICON INTERNATIONAL

P

C LANGUAGE

The lvalue operand of prefix - is decremented analogously to the prefix ++ operatdr.

When postfix ++ is applied to an lvalue, the result is the value of the object referred to by the
Ivalue. After the result is noted, the object is incremented in the same manner as for the prefix
++ operator. The type of the result is the same as the type of the lvalue expression.

When postfix — is applied to an lvalue, the result is the value of the object referred to by the
lvalue. After the result is noted, the object is decremented in the manner as for the prefix --
operator. The type of the result is the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the
value of the expression to the named type. This construction is called a cast. Type names are
described in “Type Names” under “Declarations.”

The sizeof operator yields the size in bytes of its operand. (A byte is undefined by the
language except in terms of the value of sizeof. However, in all existing implementations, a
byte is the space required to hold a char.) When applied to an array, the result is the total
number of bytes in the array. The size is determined from the declarations of the objects in
the expression. This expression is semantically an unsigned constant and may be used
anywhere a constant is required. Its major use is in communication with routines like storage
allocators and I/O systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it yields
the size in bytes of an object of the indicated type.

The construction sizeof(type) is taken to be a unit, so the expression sizeof(type)-2 is the
same as (sizeof(type))-2.

Multiplicative Operators

The multiplicative operators *, /, and % group left to right. The usual arithmetic conversions
are performed.

multiplicative expression:
ezxpression * expression
ezpression [expression
expression % expression

The binary * operator indicates multiplication. The * opérator is associative, and expressions
with several multiplications at the same level may be rearranged by the compiler. The binary
/ operator indicates division.

The binary % operator yields the remainder from the division of the first expression by the
second. The operands must be integral.

PROGRAMMER GUIDE 2-11

C LANGUAGE

When positive integers are divided, truncation is toward O; but the form of truncation is
machine-dependent if either operand is negative. On all machines covered by this manual, the

remainder has the same sign as the dividend. It is always true that (a/b)*b + a%b is equal
to a (if b is not 0).

Additive Operators

The additive operators + and - group left to right. The usual arithmetic conversions are
performed. There are some additional type possibilities for each operator.

additive-ezpression:
ezpression + expression
erpression - expression

The result of the + operator is the sum of the operands. A pointer to an object in an array
and a value of any integral type may be added. The latter is in all cases converted to an
address offset by multiplying it by the length of the object to which the pointer points. The
result is a pointer of the same type as the original pointer which points to another object in
the same array, appropriately offset from the original object. Thus if P is a pointer to an

object in an array, the expression P+1 is a pointer to the next object in the array. No further
type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the same level may be
rearranged by the compiler.

The result of the - operator is the difference of the operands. The usual arithmetic conversions
are performed. Additionally, a value of any integral type may be subtracted from a pointer,
and then the same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division
by the length of the object) to an int representing the number of objects separating the
pointed-to objects. This conversion will in general give unexpected results unless the pointers
point to objects in the same array, since pointers, even to objects of the same type, do not
necessarily differ by a multiple of the object length.

Shift Operators

The shift operators << and >> group left to right. Both perform the usual arithmetic
conversions on their operands, each of which must be integral. Then the right operand is
converted to int; the type of the result is that of the left operand. The result is undefined if
the right operand is negative or greater than or equal to the length of the object in bits.

shift-expression:
expression << ezpression
expression >> expression

2-12 ICON INTERNATIONAL

C LANGUAGE

The value of E1I<<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits. Vacated bits
are O filled. The value of E1>>E2 is E1 right-shifted E2 bit positions. The right shift is
guaranteed to be logical (0 fill) if E1 is unsigned; otherwise, it may be arithmetic.

Relational Operators
The relational operators group left to right.

relational-expression:
expression < expression
ezpression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to), and >= (greater
than or equal to) all yield O if the specified relation is false and 1 if it is true. The type of the
result is int. The usual arithmetic conversions are performed. Two pointers may be
compared; the result depends on the relative locations in the address space of the pointed-to

objects. Pointer comparison is portable only when the pointers point to objects in the same
array.

Equality Operators

equality-ezpression:
ETPression == erpression
expression /= ezxpression

The == (equal to) and the != (not equal to) operators are exactly analogous to the relational

operators except for their lower precedence. (Thus a<b == ¢<d is 1 whenever a<b and ¢<d
have the same truth value).

A pointer may be compared to an integer only if the integer is the constant 0. A pointer to
which O has been assigned is guaranteed not to point to any object and will appear to be equal
to 0. In conventional usage, such a pointer is considered to be null.

Bitwise AND Operator

and-ezpression:
expression & expression

The & operator is associative, and expressions involving & may be rearranged. The usual
arithmetic conversions are performed. The result is the bitwise AND function of the operands.
The operator applies only to integral operands.

PROGRAMMER GUIDE 2-13

C LANGUAGE

Bitwise Exclusive OR Operator

ezxclusive-or-ezxpression:
ezpression ~ erpression

The “ operator is associative, and expressions involving “ may be rearranged. The usual
arithmetic conversions are performed; the result is the bitwise exclusive OR function of the
operands. The operator applies only to integral operands.

Bitwise Inclusive OR Operator

inclustve-or-expression:
ezpression | expression

The | operator is associative, and expressions involving | may be rearranged. The usual
arithmetic conversions are performed; the result is the bitwise inclusive OR function of its
operands. The operator applies only to integral operands.

Logical AND Operator

logical-and-expression:
expression 8& expression

The & & operator groups left to right. It returns 1 if both its operands evaluate to nonzero, 0

otherwise. Unlike &, && guarantees left to right evaluation; moreover, the second operand is
not evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types
or be a pointer. The result is always int.

Logical OR Operator

logical-or-ezpression:
ezpression || expression

The |} operator groups left to right. It returns 1 if either of its operands evaluates to nonzero,
0 otherwxse Unlike }, § guarantees left to nght evaluation; moreover, the second operand is not
evaluated if the value of the first operand 1s nonzero.

The operands need not have the same type, but each must have one of the fundamental types
or be a pointer. The result is always int.

2-14 ICON INTERNATIONAL

C LANGUAGE

Conditional Operator

conditional-ezxpression:
ezpression ¢ expression : expression

Conditional expressions group right to left. The first expression is evaluated; and if it is
nonzero, the result is the value of the second expression, otherwise that of third expression. If
possible, the usual arithmetic conversions are performed to bring the second and third
expressions to a common type. If both are structures or unions of the same type, the result has
the type of the structure or union. If both pointers are of the same type, the result has the
common type. Otherwise, one must be a pointer and the other the constant O, and the result
has the type of the pointer. Only one of the second and third expressions is evaluated.

Assignment Operators

There are a number of assignment operators, all of which group right to left. All require an
lvalue as their left operand, and the type of an assignment expression is that of its left
operand. The value is the value stored in the left operand after the assignment has taken
place. The two parts of a compound assignment operator are separate tokens.

assignment-ezxpression:
lvalue = ezpression
lvalue += expression
lvalue -= expression
lvalue *= expression
lvalue [= expression
lvalue %= ezpression
lvalue >»>= ezxpression
lvalue <<= ezpression
lvalue 8= expression
lvalue "= expression
lvalue |= expression

In the simple assignment with =, the value of the expression replaces that of the object
referred to by the lvalue. If both operands have arithmetic type, the right operand is
converted to the type of the left preparatory to the assignment. Second, both operands may
be structures or unions of the same type. Finally, if the left operand is a pointer, the right
operand must in general be a pointer of the same type. However, the constant 0 may be
assigned to a pointer; it is guaranteed that this value will produce a null pointer
distinguishable from a pointer to any object.

The behavior of an expression of the form E1 op = E2 may be inferred by taking it as
equivalent to E1 = E1 op (E2); however, E1 is evaluated only once. In += and -=, the left
operand may be a pointer; in which case, the (integral) right operand is converted as explained
in “Additive Operators.” All right operands and all nonpointer left operands must have
arithmetic type.

PROGRAMMER GUIDE f 2-15

C LANGUAGE

Comma Operator

comma-ezxpression:
expression , expression

A pair of expressions separated by a comma is evaluated left to right, and the value of the left
expression is discarded. The type and value of the result are the type and value of the right
operand. This operator groups left to right. In contexts where comma is given a special
meaning, e.g., in lists of actual arguments to functions (see “Primary Expressions”) and lists of
* initializers (see “Initialization” under “DECLARATIONS”), the comma operator as described
in this subpart can only appear in parentheses. For example,

f(a, (t=3, t+2), ¢)

has three arguments, the second of which has the value 5.

DECLARATIONS

Declarations are used to specify the interpretation which C gives to each identifier; they do not
necessarily reserve storage associated with the identifier. Declarations have the form

declaration:

decl-specifiers declarator-lzstopt ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers
consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-speczﬁerso ;

sc-specifier decl—speczﬁersopt

The list must be self-consistent in a way described below.

Storage Class Specifiers

The sc-specifiers are:

sc-spectfier:
auto
static
extern
register
typedef

2-16 ICON INTERNATIONAL

C LANGUAGE

The typedef specifier does not reserve storage and is called a “storage class specifier” only for
syntactic convenience. See ‘“Typedef” for more information. The meanings of the various
storage classes were discussed in ‘“Names.”

The auto, static, and register declarations also serve as definitions in that they cause an
appropriate amount of storage to be reserved. In the extern case, there must be an external

definition (see “External Definitions”) for the given identifiers somewhere outside the function
in which they are declared.

A register declaration is best thought of as an auto declaration, together with a hint to the
compiler that the variables declared will be heavily used. Only the first few such declarations
in each function are effective. Moreover, only variables of certain types will be stored in
registers; on the PDP-11, they are int or pointer. One other restriction applies to register
variables: the address-of operator & cannot be applied to them. Smaller, faster programs can
be expected if register declarations are used appropriately, but future 1mprovements in code
generation may render them unnecessary.

At most, one sc-specifier may be given in a declaration. If the sc-specifier is missing from a
declaration, it is taken to be auto inside a function, extern outside. Exception: functions are
never automatic.

Type Specifiers
The type-specifiers are

type-specifier:

struct-or-union-spectfier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-spectfiers
basic-type:

char

short

int

long

unsigned

float

double

void

At most one of the words long or short may be specified in conjunction with int; the meaning
is the same as if int were not mentioned. The word long may be specified in conjunction with
float; the meaning is the same as double. The word unsigned may be specified alone, or in
conjunction with int or any of its short or long varieties, or with char.

PROGRAMMER GUIDE 2-17

C LANGUAGE

Otherwise, at most on type-specifier may be given in a declaration. In particular, adjectival
use of long, short, or unsigned is not permitted with typedef names. If the type-specifier is
missing from a declaration, it is taken to be int.

Specifiers for structures, unions, and enumerations are discussed in “Structure, Union, and
Enumeration Declarations.” Declarations with typedef names are discussed in “Typedef.”

Declarators

The declarator-list appearing in a declaration is a comma-separated sequence of declarators,
each of which may have an initializer.

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:

declarator initializer
opt

Initializers are discussed in “Initialization”. The specifiers in the declaration indicate the type
and storage class of the objects to which the declarators refer. Declarators have the syntax:

declarator:
tdentifier
(declarator)
* declarator
declarator ()
declarator [canstant-ezpressionopt/

The grouping is the same as in expressions.

Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the same form as the
declarator appears in an expression, it yields an object of the indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is declared. If an

unadorned identifier appears as a declarator, then it has the type indicated by the specifier
heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of
complex declarators may be altered by parentheses. See the examples below.

Now imagine a declaration

2-18 ICON INTERNATIONAL

C LANGUAGE

T D1

where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this declaration
makes the identifier have type “... T ,” where the “...” is empty if D1 is just a plain
identifier (so that the type of x in ‘int x”’ is just int). Then if D1 has the form

*D
the type of the contained identifier is “... pointer to T .”

If D1 has the form

D()

then the contained identifier has the type ... function returning T.”

If D1 has the form
D|constant-ezpression)
or
D[

then the contained identifier has type “... array of T.” In the first case, the constant
expression is an expression whose value is determinable at compile time , whose type is int, and
whose value is positive. (Constant expressions are defined precisely in “Constant Expressions.”)
When several “array of” specifications are adjacent, a multidimensional array is created; the
constant expressions which specify the bounds of the arrays may be missing only for the first
member of the sequence. This elision is useful when the array is external and the actual
definition, which allocates storage, is given elsewhere. The first constant expression may also
be omitted when the declarator is followed by initialization. In this case the size is calculated
from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or
union, or from another array (to generate a multidimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions
are as follows: functions may not return arrays or functions although they may return
pointers; there are no arrays of functions although there may be arrays of pointers to
functions. Likewise, a structure or union may not contain a function; but it may contain a
pointer to a function.

PROGRAMMER GUIDE 2-19

C LANGUAGE

As an example, the declaration
int i, *ip, f(), *fir(), (*pf)();

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function
fip returning a pointer to an integer, and a pointer pfi to a function which returns an integer.
It is especially useful to compare the last two. The binding of *fip() is *(fip()). The
declaration suggests, and the same construction in an expression requires, the calling of a
function fip. Using indirection through the (pointer) result to yield an integer. In the
declarator (*pfi)(), the extra parentheses are necessary, as they are also in an expression, to
indicate that indirection through a pointer to a function yields a function, which is then called;
it returns an integer.

As another example,
float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. Finally,
static int x3d[3][5][7];

declares a static 3-dimensional array of integers, with rank 3X5X7. In complete detail, x3d is
an array of three items; each item is an array of five arrays; each of the latter arrays is an
array of seven integers. Any of the expressions x3d, x3d[i], x3d[i][j], x3d[i][i](k] may
reasonably appear in an expression. The first three have type “array” and the last has type
int.

Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each member may have
any type. A union is an object which may, at a given time, contain any one of several
members. Structure and union specifiers have the same form.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union tdentifier

struct-or-union:
struct
union

2-20 ICON INTERNATIONAL

N

C

C LANGUAGE

The struct-decl-list is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-lsst

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union.
A structure member may also consist of a specified number of bits. Such a member is also

called a field ; its length, a non-negative constant expression, is set off from the field name by a
colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as the declarations are
read left to right. Each nonfield member of a structure begins on an addressing boundary
appropriate to its type; therefore, there may be unnamed holes in a structure. Field members
are packed into machine integers; they do not straddle words. A field which does not fit into
the space remaining in a word is put into the next word. No field may be wider than a word.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field
useful for padding to conform to externally-imposed layouts. As a special case, a field with a
width of O specifies alignment of the next field at an implementation dependant boundary.

The language does not restrict the types of things that are declared as fields, but
implementations are not required to support any but integer fields. Moreover, even int fields
may be considered to be unsigned. For these reasons, it is strongly recommended that fields be
declared as unsigned. In all implementations, there are no arrays of fields, and the address-of
operator & may not be applied to them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size
is sufficient to contain any of its members. At most, one of the members can be stored in a
union at any time. ‘

A structure or union specifier of the second form, that is, one of

PROGRAMMER GUIDE 2-21

C LANGUAGE

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure specified by the
list. A subsequent declaration may then use the third form of specifier, one of

struct identifier
union tdentifier

Structure tags allow definition of self-referential structures. Structure tags also permit the long
part of the declaration to be given once and used several times. It is illegal to declare a
structure or union which contains an instance of itself, but a structure or union may contain a
pointer to an instance of itself.

The third form of a structure or union specifier may be used prior to a declaration which gives
the complete specification of the structure or union in situations in which the size of the
structure or union is unnecessary. The size is unnecessary in two situations: when a pointer to
a structure or union is being declared and when a typedef name is declared to be a synonym
for a structure or union. This, for example, allows the declaration of a pair of structures which
contain pointers to each other.

The names of members and tags do not conflict with each other or with ordinary variables. A

particular name may not be used twice in the same structure, but the same name may be used
in several different structures in the same scope.

A simple but important example of a structure declaration is the following binary tree
structure:

struct tnode

{
char tword[20];
int count;
struct tnode *left;
struct tnode *right;

which contains an array of 20 characters, an integer, and two pointers to similar structures.
Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a structure of the given
sort. With these declarations, the expression

2-22 ICON INTERNATIONAL

«

C LANGUAGE

sp->count

refers to the count field of the structure to which sp points;
s.left

refers to the left subtree pointer of the structure s; and
s.right->tword|[0]

refers to the first character of the tword member of the right subtree of s.

Enumeration Declarations

Enumeration variables and constants have integral type.

enum-spectfier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
tdentifier
tdentifier = constant-ezpression

The identifiers in an enum-list are declared as constants and may appear wherever constants
are required. If no enumerators with = appear, then the values of the corresponding constants
begin at O and increase by 1 as the declaration is read from left to right. An enumerator with

= gives the associated identifier the value indicated; subsequent identifiers continue the
progression from the assigned value.

The names of enumerators in the same scope must all be distinct from each other and from
those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag
in a struct-specifier; it names a particular enumeration. For example,

PROGRAMMER GUIDE ' 2-23

C LANGUAGE

enum color { chartreuse, burgundy, claret=20, winedark };

enum color *cp, col;
col = claret;
cp = &col;

if (*cp == burgundy) ...

makes color the enumeration-tag of a type describing various colors, and then declares cp as a

pointer to an object of that type, and col as an object of that type. The possible values are
drawn from the set {0,1,20,21}. ‘

Initialization

A declarator may specify an initial value for the identifier being declared. The initializer is
preceded by = and consists of an expression or a list of values nested in braces.

tnitializer:
= ezpression
= { instializer-list }
= { tnitializer-list , }

initializer-list:
expression
initializer-list | tnitializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external variable must be constant
expressions, which are described in “CONSTANT EXPRESSIONS”, or expressions which
reduce to the address of a previously declared variable, possibly offset by a constant expression.
Automatic or register variables may be initialized by arbitrary expressions involving constants
and previously declared variables and functions.

Static and external variables that are not initialized are guaranteed to start off as zero.

Automatic and register variables that are not inmitialized are guaranteed to start off as
garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of
a single expression, perhaps in braces. The initial value of the object is taken from the
expression; the same conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array), the initializer consists of a
brace-enclosed, comma-separated list of initializers for the members of the aggregate written in
increasing subscript or member order. If the aggregate contains subaggregates, this rule

2-24 ICON INTERNATIONAL

/'/ o \‘.
N/

A—

C LANGUAGE

applies recursively to the members of the aggregate. If there are fewer initializers in the list
than there are members of the aggregate, then the aggregate is padded with zeros. It is not
permitted to initialize unions or automatic aggregates.

Braces may in some cases be omitted. - If the initializer begins with a left brace, then the
succeeding comma-separated list of initializers initializes the members of the aggregate; it is
erroneous for there to be more initializers than members. If, however, the initializer does not
begin with a left brace, then only enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to initialize the next member of the
aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive
characters of the string initialize the members of the array.

For example,
intx[]={1,3,5};

declares and initializes x as a one-dimensional array which has three members, since no size
was specified and there are three initializers.

float y[4][3] =

-
-
-

-

-

P SN
0N -
mgmw
L -)

-
-

b

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y[0],
namely y[0][0], y[0][1], and y[0][2]. Likewise, the next two lines initialize y[1] and y[2]. The
initializer ends early and therefore y[3] is initialized with 0. Precisely, the same effect could
have been achieved by

float y[4][3] =

1,3,5,2,4,6,3,5,7
b

The initializer for y begins with a left brace but that for y[0] does not; therefore, three
elements from the list are used. Likewise, the next three are taken successively for y[1] and
y[2]. Also,

PROGRAMMER GUIDE 2-25

C LANGUAGE

float y[4][3] = -

{1h{2} {3}, {4}

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0.

Finally,
char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.

Type Names

In two contexts (to specify type conversions explicitly by means of a cast and as an argument
of sizeof), it is desired to supply the name of a data type. This is accomplished using a “type
name”’, which in essence is a declaration for an object of that type which omits the name of
the object.

type-name: / .
type-specifier abstract-declarator N

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator | constant-ezprcssionop ;]

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to
identify uniquely the location in the abstract-declarator where the identifier would appear if
the construction were a declarator in a declaration. The named type is then the same as the
type of the hypothetical identifier. For example,

2-26 ICON INTERNATIONAL

C LANGUAGE

int (*[3)0)

name respectively the types “integer,” “pointer to integer,” “array of three pointers to
integers,” ‘“pointer to an array of three integers,” ‘“function returning pointer to integer,”
‘“pointer to function returning an integer,” and ‘“array of three pointers to functions returning
an integer.”

Typedef

Declarations whose ‘“‘storage class” is typedef do not define storage but instead define
identifiers which can be used later as if they were type keywords naming fundamental or
derived types.

typedef-name:
tdentifier

Within the scope of a declaration involving typedef, each identifier appearing as part of any
declarator therein becomes syntactically equivalent to the type keyword naming the type
associated with the identifier in the way described in ‘“‘Meaning of Declarators.” For example,
after

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is “pointer to int, ”’ and
that of z is the specified structure. The zp is a pointer to such a structure.

The typedef does not introduce brand-new types, only synonyms for types which could be
specified in another way. Thus in the example above distance is considered to have exactly
the same type as any other int object.

PROGRAMMER GUIDE 2-27

C LANGUAGE

o
STATEMENTS ~ l

Except as indicated, statements are executed in sequence.

Expression Statement

Most statements are expression statements, which have the form
ezTpression ;

Usually expression statements are assignments or function calls.

Compound Statement or Block

So that several statements can be used where one is expected, the compound statement (also,
and equivalently, called “block”) is provided:

compound-statement:

{ declaration-list
opt

statement-list _, }
opt
declaration-list: o
declaration O
declaration declaration-list e

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is
pushed down for the duration of the block, after which it resumes its force.

Any initializations of auto or register variables are performed each time the block is entered
at the top. It is currently possible (but a bad practice) to transfer into a block; in that case
the initializations are not performed. Initializations of static variables are performed only
once when the program begins execution. Inside a block, extern declarations do not reserve
storage so initialization is not permitted.

Conditional Statement

The two forms of the conditional statement are

if (ezpression) statement
if (ezpression) statement else statement

2-28 ICON INTERNATIONAL

C LANGUAGE

In both cases, the expression is evaluated; and if it is nonzero, the first substatement is.
executed. In the second case, the second substatement is executed if the expression is 0. The
“else” ambiguity is resolved by connecting an else with the last encountered else-less if.

While Statement
The while statement has the form

while (ezpression) statement

The substatement is executed repeatedly so long as the value of the expression remains
nonzero. The test takes place before each execution of the statement.

Do Statement

The do statement has the form

do statement while (ezpression) ;

The substatement is executed repeatedly until the value of the expression becomes 0. The test
takes place after each execution of the statement.

For Statement

The for statement has the form:

for (exp-lopt ; exp-.?opt ; e:zp-3opt) statement

Except for the behavior of continue, this statement is equivalent to

exp-1;
while (ezp-2)

statement
exp-8 ;

Thus the first expression specifies initialization for the loop; the second specifies a test, made
before each iteration, such that the loop is exited when the expression becomes 0. The third
expression often specifies an incrementing that is performed after each iteration.

Any or all of the expressions may be dropped. A missing ezp-2 makes the implied while clause
equivalent to while(1); other missing expressions are simply dropped from the expansion above.

PROGRAMMER GUIDE 2-29

C LANGUAGE

Switch Statement

The switch statement causes control to be transferred to one of several statements depending
on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be int.

The statement is typically compound. Any statement within the statement may be labeled
with one or more case prefixes as follows:

case constant-ezxpression :

where the constant expression must be int. No two of the case constants in the same switch

may have the same value. Constant expressions are precisely defined in “CONSTANT
EXPRESSIONS.”

There may also be at most one statement prefix of the form

default :

When the switch statement is executed, its expression is evaluated and compared with each
case constant. If one of the case constants is equal to the value of the expression, control is
passed to the statement following the matched case prefix. If no case constant matches the
expression and if there is a default, prefix, control passes to the prefixed statement. If no case
matches and if there is no default, then none of the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which continues unimpeded
across such prefixes. To exit from a switch, see “Break Statement.”

Usually, the statement that is the subject of a switch is compound. Declarations may appear

at the head of this statement, but initializations of automatic or register variables are
ineffective.

Break Statement
The statement

break ;

causes termination of the smallest enclosing while, do, for, or switch statement; control
passes to the statement following the terminated statement.

2-30 ICON INTERNATIONAL

N

Y

C LANGUAGE

Continue Statement

The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or
for statement; that is to the end of the loop. More precisely, in each of the statements

while (...) { do for (...)

contin: ; contin: ; contin: ;

} } while (...); }

a continue is equivalent to goto contin. (Following the contin: is a null statement, see
“Null Statement”.)

Return Statement

A function returns to its caller by means of the return statement which has one of the forms

return ;
return expression ;

In the first case, the returned value is undefined. In the second case, the value of the
expression is returned to the caller of the function. If required, the expression is converted, as
if by assignment, to the type of function in which it appears. Flowing off the end of a function
is equivalent to a return with no returned value. The expression may be parenthesized.

Goto Statement

Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (see “Labeled Statement”) located in the current function.

Labeled Statement
Any statement may be preceded by label prefixes of the form

identifier :

PROGRAMMER GUIDE | 2-31

C LANGUAGE

which serve to declare the identifier as a label. The only use of a label is as a target of a goto.
The scope of a label is the current function, excluding any subblocks in which the same

identifier has been redeclared. See “SCOPE RULES.”

Null Statement
The null statement has the form

e

A null statement is useful to carry a label just before the } of a compound statement or to
supply a null body to a looping statement such as while.

EXTERNAL DEFINITIONS

A C program consists of a sequence of external definitions. An external definition declares an
identifier to have storage class extern (by default) or perhaps static, and a specified type.
The type-specifier (see “Type Specifiers” in “DECLARATIONS”) may also be empty, in which
case the type is taken to be int. The scope of external definitions persists to the end of the file
in which they are declared just as the effect of declarations persists to the end of a block. The
syntax of external definitions is the same as that of all declarations except that only at this
level may the code for functions be given.

External Function Definitions

Function definitions have the form

function-definition:
decl-spcczﬁersop : function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; see ‘“Scope of
Externals” in “SCOPE RULES” for the distinction between them. A function declarator is

similar to a declarator for a “function returning ...” except that it lists the formal parameters
of the function being defined.

function-declarator:
declarator (parameter-listop ;)

parameter-list:
tdentifier
tdentifier , parameter-list

The function-body has the form

2-32 ICON INTERNATIONAL

C

C LANGUAGE

Junction-body:

declaration-listo

ot compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared in the
declaration list. Any identifiers whose type is not given are taken to be int. The only storage
class which may be specified is register; if it is specified, the corresponding actual parameter
will be copied, if possible, into a register at the outset of the function.

A simple example of a complete function definition is

int max(a, b, c)
int a, b, c;
{

int m;

m=(a>b)la:b;
return((m > ¢) ? m : c);

Here int is the type-specifier; max(a, b, ¢) is the function-declarator; int a, b, ¢; is the
declaration-list for the formal parameters; { ... } is the block giving the code for the statement.

The C program converts all float actual parameters to double, so formal parameters declared
float have their declaration adjusted to read double. All char and short formal parameter
declarations are similarly adjusted to read imt. Also, since a reference to an array in any
context (in particular as an actual parameter) is taken to mean a pointer to the first element
of the array, declarations of formal parameters declared “array of ...” are adjusted to read
“pointer to”

External Data Definitions

An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static but not auto or
register.

PROGRAMMER GUIDE 2-33

C LANGUAGE

SCOPE RULES

A C program need not all be compiled at the same time. The source text of the program may
be kept in several files; and precompiled routines may be loaded from libraries.

Communication among the functions of a program may be carried out both through explicit
calls and through manipulation of external data.

Therefore, there are two kinds of scopes to consider: first, what may be called the lexical scope
of an identifier, which is essentially the region of a program during which it may be used
without drawing ‘“undefined identifier” diagnostics; and second, the scope associated with
external identifiers, which is characterized by the rule that references to the same external
identifier are references to the same object.

Lexical Scope

The lexical scope of identifiers declared in external definitions persists from the definition
through the end of the source file in which they appear. The lexical scope of identifiers which
are formal parameters persists through the function with which they are associated. The
lexical scope of identifiers declared at the head of a block persists until the end of the block.
The lexical scope of labels is the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including the

block constituting a function, any declaration of that identifier outside the block is suspended
until the end of the block.

Remember also (see “Structure, Union, and Enumeration Declarations” in
“DECLARATIONS”) that tags, identifiers associated with ordinary variables, and identities
associated with structure and union members form three disjoint classes which do not conflict.
Members and tags follow the same scope rules as other identifiers. The enum constants are in
the same class as ordinary variables and follow the same scope rules. The typedef names are
in the same class as ordinary identifiers. They may be redeclared in inner blocks, but an
explicit type must be given in the inner declaration:

typedef float distance;

{
auto int distance;

eoe

The int must be present in the second declaration, or it would be taken to be a declaration
with no declarators and type distance.

2-34 ICON INTERNATIONAL

NS

C LANGUAGE

Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere among the files or
libraries constituting the complete program there must be at least one external definition for
the identifier. All functions in a given program which refer to the same external identifier refer
to the same object, so care must be taken that the type and size specified in the definition are
compatible with those specified by each function which references the data.

It is illegal to explicitly initialize any external identifier more than once in the set of files and
libraries comprising a multi-file program. It is legal to have more than one data definition for

any external non-function identifier; explicit use of extern does not change the meaning of an
external declaration.

In restricted environments, the use of the extern storage class takes on an additional meaning.
In these environments, the explicit appearance of the extern keyword in external data
declarations of identities without initialization indicates that the storage for the identifiers is
allocated elsewhere, either in this file or another file. It is required that there be exactly one
definition of each external identifier (without extern) in the set of files and libraries comprising
a mult-file program.

Identifiers declared static at the top level in external definitions are not visible in other files.
Functions may be declared static.

COMPILER CONTROL LINES

The C compiler contains a preprocessor capable of macro substitution, conditional compilation,
and inclusion of named files. Lines beginning with # communicate with this preprocessor.
There may be any number of blanks and horizontal tabs between the # and the directive.
These lines have syntax independent of the rest of the language; they may appear anywhere
and have effect which lasts (independent of scope) until the end of the source program file.

Token Replacement

A compiler-control line of the form
#define identifier token-stringop ;

causes the preprocessor to replace subsequent instances of the identifier with the given string of

tokens. Semicolons in or at the end of the token-string are part of that string. A line of the
form

#define idéntzﬁer(identzﬁer,)token-stringopt

where there is no space between the first identifier and the (, is a macro definition with
arguments. There may be zero or more formal parameters. Subsequent instances of the first
identifier followed by a (, a sequence of tokens delimited by commas, and a) are replaced by

PROGRAMMER GUIDE 2-35

C LANGUAGE

N
Lo
the token string in the definition. Each occurrence of an identifier mentioned in the formal S
parameter list of the definition is replaced by the corresponding token string from the call.
The actual arguments in the call are token strings separated by commas; however, commas in
quoted strings or protected by parentheses do not separate arguments. The number of formal
and actual parameters must be the same. Strings and character constants in the token-string
are scanned for formal parameters, but strings and character constants in the rest of the
program are not scanned for defined identifiers to replacement.
In both forms the replacement string is rescanned for more defined identifiers. In both forms a
long definition may be continued on another line by writing \ at the end of the line to be
continued.
This facility is most valuable for definition of “manifest constants,” as in
#define TABSIZE 100
int table[TABSIZE];
A control line of the form
#undef identifier ~
causes the identifier’s preprocessor definition (if any) to be forgotten.
If a #defined identifier is the subject of a subsequent #define with no intervening #undef,
then the two token-strings are compared textually. If the two token-strings are not identical
(all white space is considered as equivalent), then the identifier is considered to be redefined.
File Inclusion
A compiler control line of the form
#include "filename"
causes the replacement of that line by the entire contents of the file filename. The named file
is searched for first in the directory of the file containing the #include, and then in a sequence
of specified or standard places. Alternatively, a control line of the form
#include <filename>
searches only the specified or standard places and not the directory of the #include. (How the
places are specified is not part of the language.) Py
N

2-36 ICON INTERNATIONAL

C LANGUAGE

#includes may be nested.

Conditional Compilation

A compiler control line of the form
#if restricted-constant-ezxpression

checks whether the restricted-constant expression evaluates to nonzero. (Constant expressions
are discussed in “CONSTANT EXPRESSIONS”; the following additional restrictions apply
here: the constant expression may not contain sizeof casts, or an enumeration constant.)

A restricted constant expression may also contain the additional unary expression

defined :identifier
or
defined(identifier

which evaluates to one if the identifier is currently defined in the preprocessor and zero if it is
not.

All currently defined identifiers in restricted-constant-expressions are replaced by their token-
strings (except those identifiers modified by defined) just as in normal text. The restricted
constant expression will be evaluated only after all expressions have finished. During this
evaluation, all undefined (to the procedure) identifiers evaluate to zero.

A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e., whether it has been

the subject of a #define control line. It is equivalent to #ifdef(identifier). A control line of
the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is equivalent to
#ifldefined(identifier).

All three forms are followed by an arbitrary number of lines, possibly containing a control line

Felse

PROGRAMMER GUIDE ' 2-37

C LANGUAGE

and then by a control line
#endif

If the checked condition is true, then any lines between #else and #endif are ignored. If the
checked condition is false, then any lines between the test and a #else or, lacking a #else, the
#endif are ignored.

These constructions may be nested.

Line Control

For the benefit of other preprocessors which generate C programs, a line of the form

#line constant "filename"

causes the compiler to believe, for purposes of error diagnostics, that the line number of the
next source line is given by the constant and the current input file is named by "filename". If
"filename" is absent, the remembered file name does not change.

IMPLICIT DECLARATIONS

It is not always necessary to specify both the storage class and the type of identifiers in a
declaration. The storage class is supplied by the context in external definitions and in
declarations of formal parameters and structure members. In a declaration inside a function,
if a storage class but no type is given, the identifier is assumed to be int; if a type but no
storage class is indicated, the identifier is assumed to be auto. An exception to the latter rule
is made for functions because auto functions do not exist. If the type of an identifier is
“function returning ...,” it is implicitly declared to be extern.

In an expression, an identifier followed by (and not already declared is contextually declared
to be “function returning int.””

TYPES REVISITED

This part summarizes the operations which can be performed on objects of certain types.

2-38 ICON INTERNATIONAL

C LANGUAGE

Structures and Unions

Structures and unions may be assigned, passed as arguments to functions, and returned by
functions. Other plausible operators, such as equality comparison and structure casts, are not
implemented.

In a reference to a structure or union member, the name on the right of the -> or the . must
specify a member of the aggregate named or pointed to by the expression on the left. In
general, a member of a union may not be inspected unless the value of the union has been
assigned using that same member. However, one special guarantee is made by the language in
order to simplify the use of unions: if a union contains several structures that share a common
initial sequence and if the union currently contains one of these structures, it is permitted to

inspect the common initial part of any of the contained structures. For example, the following
is a legal fragment:

union
{
struct
{
int type;
} n;
struct

{
int type;
int intnode;
} ni;
struct
{
int type;
float floatnode;
} nf;
}u;

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if (u.n.type == FLOAT)

... sin(u.nf.floatnode) ...

Functions

There are only two things that can be done with a function m call it or take its address. If the
name of a function appears in an expression not in the function-name position of a call, a
pointer to the function is generated. Thus, to pass one function to another, one might say

int £();

soe

g(f);

PROGRAMMER GUIDE 2-39

C LANGUAGE

Then the definition of g might read

g(funcp)
(int (*funcp)();

oo

(*funcp)();

Notice that f must be declared explicitly in the calling routine since its appearance in g(f) was
not followed by (.

Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is converted into a pointer
to the first member of the array. Because of this conversion, arrays are not lvalues. By
definition, the subscript operator [} is interpreted in such a way that E1[E2] is identical to
*((E1)+(E2)). Because of the conversion rules which apply to +, if E1 is an array and E2 an
integer, then E1[E2] refers to the E2 -th member of E1. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multidimensional arrays. If E is an n-dimensional
array of rank iXjX...Xk, then E appearing in an expression is converted to a pointer to an (n-
1)}-dimensional array with rank jX...Xk. If the * operator, either explicitly or implicitly as a
result of subscripting, is applied to this pointer, the result is the pointed-to (n-1)-dimensional
array, which itself is immediately converted into a pointer.

For example, consider

int x[3][5];

Here x is a 3X5 array of integers. When x appears in an expression, it is converted to a
pointer to (the first of three) 5-membered arrays of integers. In the expression x[i], which is
equivalent to *(x-+i), x is first converted to a pointer as described; then i is converted to the
type of x, which involves multiplying i by the length the object to which the pointer points,
namely 5-integer objects. The results are added and indirection applied to yield an array (of
five integers) which in turn is converted to a pointer to the first of the integers. If there is
another subscript, the same argument applies again; this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first subscript in the

declaration helps determine the amount of storage consumed by an array. Arrays play no
other part in subscript calculations.

2-40 ICON INTERNATIONAL

TN

A

C LANGUAGE

Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have implementation-dependent
aspects. They are all specified by means of an explicit type-conversion operator, see ‘“Unary
Operators” under EXPRESSIONS” and “Type Names”under “DECLARATIONS.”

A pointer may be converted to any of the integral types large enough to hold it. Whether an
int or long is required is machine dependent. The mapping function is also machine dependent
but is intended to be unsurprising to those who know the addressing structure of the machine.
Details for some particular machines are given below. '

An object of integral type may be explicitly converted to a pointer. The mapping always
carries an integer converted from a pointer back to the same pointer but is otherwise machine
dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer
may cause addressing exceptions upon use if the subject pointer does not refer to an object
suitably aligned in storage. It is guaranteed that a pointer to an object of a given size may be
converted to a pointer to an object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to
allocate, and return a char pointer; it might be used in this way.

extern char *alloc();
double *dp;

dp = (double *) alloc(sizeof(double));
*dp = 22.0 / 7.0;

The alloc must ensure (in a machine-dependent way) that its return value is suitable for
conversion to a pointer to double; then the use of the function is portable.

CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a constant: after case, as array
bounds, and in initializers. In the first two cases, the expression can involve only integer
constants, character constants, casts to integral types, enumeration constants, and sizeof

PROGRAMMER GUIDE 2-41

C LANGUAGE

expressions, possibly connected by the binary operators
+-*/%&|"<K>>=1=<><=>=88&

or by the unary operators
or by the ternary operator

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as discussed above, one
can also use floating constants and arbitrary casts and can also apply the unary & operator to
external or static objects and to external or static arrays subscripted with a constant
expression. The unary & can also be applied implicitly by appearance of unsubscripted arrays
and functions. The basic rule is that initializers must evaluate either to a constant or to the
address of a previously declared external or static object plus or minus a constant.

PORTABILITY CONSIDERATIONS

Certain parts of C are inherently machine dependent. The following list of potential trouble
spots is not meant to be all-inclusive but to point out the main ones.

Purely hardware issues like word size and the properties of floating point arithmetic and
integer division have proven in practice to be not much of a problem. Other facets of the
hardware are reflected in differing implementations. Some of these, particularly sign extension
(converting a negative character into a negative integer) and the order in which bytes are

placed in a word, are nuisances that must be carefully watched. Most of the others are only
minor problems.

The number of register variables that can actually be placed in registers varies from machine
to machine as does the set of valid types. Nonetheless, the compilers all do things properly for
their own machine; excess or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to
write programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. The order in
which side effects take place is also unspecified.

2-42 ICON INTERNATIONAL

C LANGUAGE

(/,' Since character constants are really objects of type int, multicharacter character constants
' may be permitted. The specific implementation is very machine dependent because the order
in which characters are assigned to a word varies from one machine to another.

Fields are assigned to words and characters to integers right to left on some machines and left
to right on other machines. These differences are invisible to isolated programs that do not
indulge in type punning (e.g., by converting an int pointer to a char pointer and inspecting the

pointed-to storage) but must be accounted for when conforming to externally-imposed storage
layouts.

SYNTAX SUMMARY

This summary of C syntax is intended more for aiding comprehension than as an exact
statement of the language.

Expressions

The basic expressions are:

expression:
primary
* expression
&lvalue
- expression
! expression
" expresstion
++ lvalue
--lvalue
lvalue ++
lvalue --
sizeof ezpression
sizeof (type-name)
(type-name) expression
ezpression binop expression
expresston ? expression @ expression
lvalue asgnop ezxpression
expression , expression

=

PROGRAMMER GUIDE 2-43

C LANGUAGE

//«\
primary: R
identifier
constant
string
(expression)
primary (ezpression-list ¢)
primary [ezpression |
primary . identifier
primary -> identifier
lvalue:
tdentifier
primary [ezpression |
lvalue . identifier
primary -> identifier
* expression
(lvalue)
The primary-expression operators
0fn.->
J'/V’ A
have highest priority and group left to right. The unary operators N
* & - ! 7 4+ --sizeof (type-name)
have priority below the primary operators but higher than any binary operator and group
right to left. Binary operators group left to right; they have priority decreasing as indicated
below.
binop:
* | %
+ -
>> <L
< > <= >=
== |=
&
]
]
&&
I
1
The conditional operator groups right to left.
: A’

Assignment operators all have the same priority and all group right to left.

2-44 ICON INTERNATIONAL

C LANGUAGE

= = .= *= /= %: >>= <<= &: f= {:

The comma operator has the lowest priority and groups left to right.

Declarations

declaration:
decl-specifiers init-declarator—listop ¢
decl-specifiers:
type-specifier decl-specifiers
sc-specifier decl-spec{ﬁersOPt

sc-specifier:
auto
static
extern
register
typedef

type-specifier:

struct-or-union-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int

long

unsigned

float

double

void

enum-specifier:
enum { enum-list }

enum identifier { enum-list }
enum :dentifier

C

PROGRAMMER GUIDE 2-45

C LANGUAGE

2-46

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-ezpression

init-declarator-list:
init-declarator
tnit-declarator , init-declarator-list

init-declarator:

declarator initializer
opt

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-ezpressz’onopt]

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator

struct-declarator , struct-declarator-list

struct-declarator:
declarator
declarator : constant-ezpression
: constant-expression

ICON INTERNATIONAL

C LANGUAGE

(snitializer:

= ezpression
= { initializer-list }
= { initializer-list , }

tnitializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ tnitializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
¥ abstract-declarator
abstract-declarator ()
abstract-declarator [constant-ezprcssionop ; /

E‘ 7 typedef-name:
tdentifier

Statements

compound-statement:

{ declaration-list
opt

statement-list t}
declaration-list:

declaration

declaration declaration-list

statement-list:
statement
statement statement-list

PROGRAMMER GUIDE 2-47

C LANGUAGE

statement:
compound-statement
ezpression ;
if (expression) statement
if (ezpression) statement else statement
while (ezpression) statement
do statement while (ezpression) ;
for {expopt;ezpop_t;ezpo ¢/ statement
switch (“ezpression) sgatcment
case constant-ezpression : statement
default : statement
break ;
continue ;
return ;
return ezpression ;
goto identifier ;
tdentifier : statement

;
External definitions

program:
external-definition
ezternal-definition program

ezternal-definition:
Junction-definition
data-definition

function-definition:
dccl—speciﬁeropt function-declarator function-body

function-declarator:
declarator (parameter-listop :)

parameter-list:
tdentifier
tdentifier , parameter-list

Junction-body:

declaration-listo

ot compound-statement

data-definition:
extern declaration ;
static declaration ;

2-48

ICON INTERNATIONAL

C LANGUAGE

Preprocessor

#tdefine identifier token-string

#define identifier(identifier,... foken-string ;
#undef identifier op
#include "filename"

#include <filename>

#Af restricted-constant-ezxpression

#ifdef identifier

#ifndef tdentifier

Felse

#endif

#line constant "filename"

PROGRAMMER GUIDE 2-49

——

Chapter 3

C LIBRARIES

PAGE

GENERAL ...ttt ettt et e et tesereneaeanestasesnaasaessasermssenmsetsesnasstasssassonstesessssensessenreetnsteenssanesiases 3-1
INClUAINg FURCLIONSoiiiiiiiaiiiiiiiiiiieiieiieriaeieerrnonesssiesneensssasessssisesssenssssssssssontssssssessssnssssssnssensosasessscnsrns 3-1
Including Declarations 3-2

THE CLIBRARYcccooiiiiiiiiiiininneee 3-2
Input/Output Control 3-3

Flle Access FUNCUIONSoooiii it ettt e e et et b ea s et st e esnseasseastasanetanenetansernnns 3-3

Flle Status FUNCUIONS ...ttt et st e st et ettt ene e st s an et enensasanenses 3-4
INPUL FUNCTIONS ...ttt eetreet e e s e e euaaacassasaraerasanseestnssstastnnasnenssssseensnnsnstansnrnsennennens 3-4
Output Functions 3-5
Miscellaneous Functions 3-6
String Manipulation Functions.................... ettt —————t ettt et e e et et 3.6
Character ManipulBLIONoiiiiiiiiii it eee e e ettt e e et st saneansaneraastsasnnsensetasensansannsnnaraneen 3-8
Character Testing FUnCtIONScocoiiiiiiiiiiii e e e e aae s e et ane e s et st anssneseenaenaanns 3-8
Character Translation FUNCUIONSc..iviiiiiiiiiiiii e e et e e s er et e e et eae s sanaensetneaneannennaees 3-9

TIME FUNCEIONS ...ooiiiiiiiiiiiiii ittt ettt e ete e s et e e et e et e ae e eeaaeeansanaenseanesesansasesranssssenernnenntennesnnsnsennns
Miscellaneous Functlions
Numerical Conversion
DES Algorithm Access
(€3 713 O § L T PO S PPN

Password Flle Access

Parameter Access...........c..........

Hash Table Management

BInary Tree MBNAGEMENUToooiiiiiiiiiiiiiii i eeetieeeeennteaeetneeeerressetseentetnaetnsanossssstssanssnssnassassnnentsenassanns 3-14
Table MANAGEMIENTc.ocuuiiiiiiiiiiiiitii ittt et eriecta et ees et senserassarasatnesnnsasertnsrresenssnnsrasensenserssssnnneennsens 3-14
MemOPY ALIOCRUION ...ttt et et eee et et s etaensaatanranaeeanesnsanessasnsnessetnsansnssnsnsnssenenees 3-15
Pseudorandom Number Generatlonoiiuiiiiiiiiiiiiiiirciie e ieiiee et re et e vt eeneereeanatnseneenseansesrrtesennesns 3-16
Signal Handling Funetionsc..o.iiviiiiiiiiiiiiiii e eeieeteie e s et stesaesenreesesssnsnanssnsnssensssssssensnsnenssnnemnenens 3-16

Miscellaneous

<\
. //

Chapter 3

C LIBRARIES

GENERAL

This chapter and Chapter 4 describe the libraries that are supported on the ICON/UXV
system. A library is a collection of related functions and/or declarations that simplify
programming effort by linking only what is needed, allowing use of locally produced functions,
etc. All of the functions described are also described in Part 3 of the ICON/UXV Programmer
Reference Manual. Most of the declarations described are in Part 5 of the ICON/UXV
Programmer Reference Manual. The three main libraries on the ICON/UXV system are:

C library This is the basic library for C language programs. The C library is
composed of functions and declarations used for file access, string testing
and manipulation, character testing and manipulation, memory
allocation, and other functions. This library is described later in this
chapter.

Object file This library provides functions for the access and manipulation of object
files. This library is described in Chapter 4.

Math library This library provides exponential, bessel functions, logarithmic,
hyperbolic, and trigonometric functions. This library is described in
Chapter 4. '

Some libraries consist of two portions - functions and declarations. In some cases, the user
must request that the functions (and/or declarations) of a specific library be included in a

program being compiled. In other cases, the functions (and/or declarations) are included
automatically.

Including Functions

When a program is being compiled, the compiler will automatically search the C language
library to locate and include functions that are used in the program. This is the case only for
the C library and no other library. In order for the compiler to locate and include functions
from other libraries, the user must specify these libraries on the command line for the compiler.
For example, when using functions of the math library, the user must request that the math
library be searched by including the argument -lm on the command line, such as:

cc file.c -lm

The argument -lm must come after all files that reference functions in the math library in
order for the link editor to know which functions to include in the a.out file.

PROGRAMMER GUIDE 3-1

C LIBRARIES

This method should be used for all functions that are not part of the C language library.

Including Declarations

Some functions require a set of declarations in order to operate properly. A set of declarations
is stored in a file under the /usr/include directory. These files are referred to as header files.
In order to include a certain header file, the user must specify this request within the C
language program. The request is in the form:

#include <file.h>

where file.h is the name of the file. Since the header files define the type of the functions and

various preprocessor constants, they must be included before invoking the functions they
declare.

The remainder of this chapter describes the functions and header files of the C Library. The
description of the library begins with the actions required by the user to include the functions
and/or header files in a program being compiled (if any). Following the description of the
actions required is information in three-column format of the form:

function reference(N) Brief description.

The functions are grouped by type while the reference refers to section ‘N’ in the JCON/UXV

Programmer Reference Manual. Following this, are descnptxons of the header. files associated
with these functions (if any).

THE C LIBRARY

The C library consists of several types of functions. All the functions of the C library are
loaded automatically by the compiler. Various declarations must sometimes be included by the
user as required. The functions of the C library are divided into the following types:

o Input/output control

o String manipulation

e Character manipulation
e Time functions

o Miscellaneous functions.

3-2 ICON INTERNATIONAL

Input/Output Control

C LIBRARIES

These functions of the C library are automatically included as needed during the compiling of a
C language program. No command line request is needed.

The header file required by the input/outpﬁt functions should be included in the program being
compiled. This is accomplished by including the line:

#include <stdio.h>

near the beginning of each file that references an input or output function.

The input /output functions are grouped into the following categories:

o File access

e File status

e Input

¢ Output

e Miscellaneous.

FUNCTION
fclose

fdopen

fileno

fopen

freopen

fseek

PROGRAMMER GUIDE

File Access Functions

REFERENCE
fclose(3S)

fopen(3S)
ferror(3S)

fopen (3S)

fopen(3S)

fseek(3S)

BRIEF DESCRIPTION
Close an open stream.

Assoclate stream with
an open(2) ed file.

File descriptor associated
with an open stream.

Open a file with
specified permissions.
Fopen returns a pointer
to a stream which is
used in subsequent
references to the file.

Substitute named file
in place of open
stream.

Reposition the file
pointer.

C LIBRARIES

pclose

popen

rewind

setbuf

vsetbuf

FUNCTION

clearerr

feof

ferror

ftell

FUNCTION

fgetc

fgets

fread

fscanf

3-4

popen(3S)

popen(3S)

fseek(3S)

Close a stream opened
by popen.

Create pipe as a stream
between calling process

and command.

Reposition file

setbuf(3S)

setbuf(3S)

File Status Functions

REFERENCE

ferror(3S)

ferror(3S)

ferror(3S)

fseek(3S)

Input Functions

REFERENCE

getce(3S) -

gets(3S)

fread(3S)

scanf(3S)

pointer at beginning
of file.

Assign buffering to
stream.

Similar to setbuf, but
allowing finer control.

BRIEF DESCRIPTION

Reset error condition on
stream.

Test for “end of file”
on stream.

Test for error condition
on stream.

Return current position
in the file.

BRIFEF DESCRIPTION

True function for getc
(3S).

Read string from stream.

General buffered read
from stream.

Formatted read from
stream.

ICON INTERNATIONAL

getc

getchar

gets
getw

scanf

sscanf

ungetc

FUNCTION

fllush

fprintf

fputc

fputs

fwrite

printf

putc

putchar

puts

PROGRAMMER GUIDE

getc(3S)

getc(3S)

gets(3S)
getc(3S)

scanf(3S)

scanf(3S)

ungetc(3S)

Output Functions

REFERENCE

fclose(3S)

printf(3S)

putc(3S)

puts(3S)

fread(3S)

printf(3S)

putc(3S)

putc(3S)

puts(3S)

C LIBRARIES
Read character from
stream.

Read character from
standard input.

Read string from standard input.
Read word from stream.

Read using format from
standard input.

Formatted from
string.

Put back one character on
stream.

BRIEF DESCRIPTION

Write all currently buffered
characters from stream.

Formatted write to
stream.

True function for pute
(39).

Write string to stream.

General buffered write to
stream.

Print using format to
standard output.

Write character to
standard output.

Write character to
standard output.

Write string to
standard output.

3-5

C LIBRARIES

putw putc(3S) Write word to stream.

sprintf printf(3S) Formatted write to
string.

viprintf vprint(3C) | Print using format to

stream by varargs(5)
argument list.

vprintf vprint(3C) "~ Print using format to
standard output by
varargs(5) argument list.

vsprintf vprintf(3C) Print using format to

stream string by
varargs(5) argument list.

Miscellaneous Functions

FUNCTION REFERENCE BRIEF DESCRIPTION

ctermid ctermid(3S) Return file name for
controlling terminal.

cuserid cuserid(3S) Return login name for
owner of current process.

system system(3S) Execute shell command.

tempnam tempnam(3S) Create temporary file
name using directory and
prefix.

tmpnam tmpnam (3S) Create temporary file
name.

tmpfile tmpfile(3S) Create temporary file.

String Manipulation Functions

These functions are used to locate characters within a string, copy, concatenate, and compare
strings. These functions are automatically located and loaded during the compiling of a C
language program. No command line request is needed since these functions are part of the C
library. The string manipulation functions are declared in a header file that may be included
in the program being compiled. This is accomplished by including the line:

#include <string.h>

3-6 ICON INTERNATIONAL

near the beginning of each file that uses one of these functions.

' FUNCTION
strcat

strchr

stremp
strepy

strcspn

strlen
strncat
strncmp
strncpy
strpbrk

strrchr

strspn

strtok

PROGRAMMER GUIDE

REFERENCE

string(3C)

string(3C)

string(3C)
string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

C LIBRARIES

BRIEF DESCRIPTION
Concatenate two strings.

Search string for
character.

Compares two strings.
Copy string.

Length of initial string
not containing set of
characters.

Length of string.

Concatenate two strings
with a maximum length.

Compares two strings
with a maximum length.

Copy string over string
with a maximum length.

Search string for any
set of characters.

Search string backwards
for character.

Length of initial string
containing set of
characters.

Search string for token

separated by any of a
set of characters.

3-7

C LIBRARIES

N
Character Manipulation —
The following functions and declarations are used for testing and translating ASCII characters.
These functions are located and loaded automatically during the compiling of a C language
program. No command line request is needed since these functions are part of the C library.
The declarations associated with these functions should be included in the program being
compiled. This is accomplished by including the line:
#include <ctype.h>
near the beginning of the file being compiled.
Character Testing Functions
These functions can be used to identify characters as uppercase or lowercase letters, digits,
punctuation, etc.
FUNCTION REFERENCE BRIEF DESCRIPTION
isalnum ctype(3C) Is character)
alphanumeric? I\
isalpha ctype(3C) Is character alphabetic?
isascii ctype(3C) Is integer ASCII
character?
iscntrl ctype(3C) Is character a control
character?
isdigit ctype(3C) Is character a digit?
isgraph ctype(3C) Is character a printable
character?
islower ctype(3C) Is character a
lowercase letter?
isprint ctype(3C) Is character a printing
character including
space?
ispunct ctype(3C) Is character a
punctuation character?
isspace ctype(3C) Is character a white N/

space character?

3-8 ICON INTERNATIONAL

C LIBRARIES

isupper ctype(3C) Is character an uppercase
letter?
isxdigit ctype(3C) Is character a hex digit?

Character Translation Functions

These functions provide translation of uppercase to lowercase, lowercase to uppercase, and
integer to ASCII. ‘

FUNCTION REFERENCE BRIEF DESCRIPTION

toascii conv(3C) Convert integer to
ASCII character.

tolower conv(3C) Convert character to
lowercase.

toupper conv(3C) Convert character to
uppercase.

Time Functions

These functions are used for accessing and reformatting the systems idea of the current date
and time. These functions are located and loaded automatically during the compiling of a C

language program. No command line request is needed since these functions are part of the C
library.

The header file associated with these functions should be included in the program being
compiled. This is accomplished by including the line:

#include <time.h>
near the beginning of any file using the time functions.

These functions (except tzset) convert a time such as returned by time(2).

FUNCTION REFERENCE BRIEF DESCRIPTION
asctime ctime(3C) Return string
representation

of date and time.

PROGRAMMER GUIDE 3-9

C LIBRARIES

ctime ctime(3C) Return string
representation of
date and time, given
integer form. '

gmtime ctime(3C) Return Greenwich
Mean Time.

localtime ctime(3C) Return local time.

tzset ctime(3C) Set time zone field
from environment
variable.

Miscellaneous Functions

These functions support a wide variety of operations. Some of these are numerical conversion,
password file and group file access, memory allocation, random number generation, and table
management. These functions are automatically located and included in a program being
compiled. No command line request is needed since these functions are part of the C library.

Some of these functions require declarations to be included. These are described following the
descriptions of the functions.

Numerical Conversion

The following functions perform numerical conversion.

FUNCTION REFERENCE BRIEF DESCRIPTION

ab4l a641(3C) Convert string to
base 64 ASCII.

atof atof(3C) ' Convert string to.
floating.

atoi atof(3C) Convert string to
integer.

atol atof(3C) Convert string to long.

frexp frexp(3C) Split floating into
mantissa and exponent.

13tol 13t0l(3C) Convert 3-byte integer
to long.

3-10 ICON INTERNATIONAL

C LIBRARIES

Itol3 13tol(3C) Convert long to 3-byte
integer.

ldexp frexp(3C) Combine mantissa and
exponent.

164a a641(3C) Convert base 64 ASCII
to string.

modf frexp(3C) Split mantissa into

integer and fraction.

DES Algorithm Access

The following functions allow access to the Data Encryption Standard (DES) algorithm used in
the ICON/UXV operating system. The DES algorithm is implemented with variations to
frustrate use of hardware implementations of the DES for key search.

FUNCTION REFERENCE BRIEF DESCRIPTION

crypt crypt(3C) Encode string.

encrypt crypt(3C) Eﬁcode /decode string of
Os and 1Is.

setkey crypt(3C) Initialize for subsequent

use of encrypt.

Group File Access

The following functions are used to obtain entries from the group file. Declarations for these
functions must be included in the program being compiled with the line:

#include <grp.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

endgrent getgrent(3C) Close group file being
processed.

getgrent getgrent(3C) Get next group file
entry.

getgrgid getgrent(3C) Return next group with -

matching gid.

PROGRAMMER GUIDE 3-11

C LIBRARIES

N
(
getgrnam getgrent(3C) Return next group with N
matching name.
setgrent getgrent(3C) Rewind group file being
processed.
fgetgrent getgrent(3C) Get next group file entry
: from a specified file.
Password File Access
These functions are used to search and access information stored in the password file
(/etc/passwd). Some functions require declarations that can be included in the program being
compiled by adding the line:
#include <pwd.h>
FUNCTION REFERENCE BRIEF DESCRIPTION
endpwent getpwent(3C) Close password file
being processed.
getpw getpw(3C) Search password file o
for uid.
getpwent getpwent(3C) Get next password file
entry.
getpwnam getpwent(3C) Return next entry with
matching name.
getpwuid getpwent(3C) Return next entry with
matching uid.
putpwent putpwent(3C) Write entry on stream.
setpwent getpwent(3C) Rewind password file
being accessed.
fgetpwent getpwent(3C) Get next password file
entry from a specified
file.
/{”‘ \\
N

3-12 , ICON INTERNATIONAL

Parameter Access

C LIBRARIES

The following functions provide access to several different types of paramenters. None require

any declarations.

FUNCTION REFERENCE
getopt getopt(3C)
getcwd getewd(3C)
getenv getenv(3C)
getpass getpass(3C)
putenv putenv(3C)

Hash Table Management

BRIEF DESCRIPTION

Get next option from
option list.

Return string
representation of
current working directory.

Return string value
associated with
environment variable.

Read string from terminal
without echoing.

Change or add value
of an environment
variable.

The following functions are used to manage hash search tables. The header file associated with
these functions should be included in the program being compiled. This is accomplished by

including the line:
#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE
hcreate hsearch(3C)
hdestroy hsearch(3C)
hsearch hsearch(3C)

PROGRAMMER GUIDE

BRIEF DESCRIPTION
Create hash table.
Destroy hash table.

Search hash table for
entry.

3-13

C LIBRARIES

Binary Tree Management

The following functions are used to manage a binary tree. The header file associated with

these functions should be included in the program being compiled. This is accomplished by
including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE BRIEF DESCRIPTION
tdelete tsearch(3C) Deletes nodes from
binary tree.
tfind tsearch(3C) Find element in
‘ binary tree.
tsearch tsearch(3C) Look for and add
element to binary
tree.
twalk tsearch(3C) Walk binary tree.

Table Management

The following functions are used to manage a table. Since none of these functions allocate
storage, sufficient memory must be allocated before using these functions. The header file
associated with these functions should be included in the program being compiled. This is
accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

bsearch bsearch(3C) Search table using
binary search.

lfind Isearch(3C) Find element in
library tree.

3-14 ICON INTERNATIONAL

lsearch Isearch(3C)
gsort geort(3C)

Memory Allocation

The following functions provide a means by which memory can be
freed. .

FUNCTION ‘ REFERENCE
calloc malloc(3C)
free malloc(3C)
malloc malloc(3C)
realloc malloc(3C)

The following is another set of memory allocation functions available.

FUNCTION REFERENCE
calloc malloc(3X)
free malloc(3X)
malloc malloc(3X)
mallopt malloc(3X)
mallinfo malloc(3X)
realoc malloc(3X)

PROGRAMMER GUIDE

C LIBRARIES

Look for and add
element in binary
tree.

Sort table using
quick-sort algorithm.

dynamically allocated or

BRIEF DESCRIPTION
Allocate zeroed storage.

Free previously allocated
storage.

Allocate storage.

Change size of allocated
storage.

BRIFEF DESCRIPTION
Allocate zeroed storage.

Free previously allocated
storage.

Allocate storage.

Control allocation
algorithm.

Space usage.

Change size of
allocated storage.

3-15

C LIBRARIES

Pseudorandom Number Generation

The following functions are used to generate pseudorandom numbers. The functions that end
with 48 are a family of interfaces to a pseudorandom number generator based upon the linear
congruent algorithm and 48-bit integer arithmetic. The rand and srand functions provide an
interface to a multiplicative congruential random number generator with period of 232.

FUNCTION REFERENCE BRIEF DESCRIPTION

drand48 drand48(3C) Random double over
the interval [0 to 1).

lcong48 drand48(3C) Set parameters for

drand48, Irand48,
and mrand48.

Irand48 drand48(3C) Random long over the
interval [0 to 231).

mrand48 drand48(3C) Random long over the
interval [-231 to 231),

rand rand(3C) - Random integer over the
interval [0 to 32767).

seed48 drand48(3C) Seed the generator for
drand48, Irand48, and
mrand48.

srand rand(3C) Seed the generator
for rand.

srand48 drand48(3C) Seed the generator for

drand48, Irand48, and
mrand48 using a long.

Signal Handling Functions

The functions gsignal and ssignal implement a software facility similar to signal(2) in the
ICON/UXV Programmer Reference Manual. This facility enables users to indicate the
disposition of error conditions and allows users to handle signals for their own purposes. The

declarations associated with these functions can be included in the program being complied by
the line

3-16 ICON INTERNATIONAL

\4&/"

#include <signal.h>

These declarations define ASCII names for the 15 software signals.

FUNCTION
gsignal

ssignal

REFERENCE
ssignal(3C)

ssignal(3C)

Miscellaneous

C LIBRARIES

BRIEF DESCRIPTION
Send a software signal.

Arrange for handling
of software signals.

The following functions do not fall into any previously described category.

FUNCTION

abort

abs

ecvt

fevt

gevt

isatty

mktemp

monitor

PROGRAMMER GUIDE

REFERENCE

abort(3C)

abs(3C)
ecvt(3C)

ecvt(3C)
ecvt(3C)
ttyname(3C)

mktemp(3C)

monitor(3C)

BRIEF DESCRIPTION

Cause an IOT signal
to be sent to the
process.

Return the absolute
integer value.

Convert double to
string.

Convert double to
string using Fortran
Format.

Convert double to
string using Fortran
F or E format.

Test whether integer
file descriptor is
associated with a
terminal.

Create file name
using template.

Cause process to record

a histogram of program
counter location.

3-17

C LIBRARIES

swab

ttyname

3-18

swab(3C)

ttyname(3C)

Swap and copy bytes.
Return pathname of

terminal associated with
“integer file descriptor.

ICON INTERNATIONAL

Chapter 4

THE OBJECT AND MATH LIBRARIES

THE OBJECT FILE LIBRARY ...coooiiiiiiiiiiiitiiiiiiiiiiinieceeee e e et rses e e s s e s e s e se s s s aa s saebsaa s asaeesesaeseas
Common Object File Interface Macros (ldfcn.h)

THE MATH LIBRARY ...oiiiiiiiiiiiiiiiitiiieitieettereueeetestnteesstresaresssssanssetnassesssasrsesesorsassenssenesnrsnsasnssessesssansenarsnes
TriIgonometrIc FUNCUIONS ... oo.iiiiiiiiiiiii ettt te e e ettt et et eu s taetnetasteaenstnsnnasncnaasasnsansrnreennesnesnns 4-5
Bessel FUNCUIONS ...t ettt et e et e et e a e e b e e en e ta b e n e e et 4-5
Hyperbolic FURCEIONS.ooviiiiiiiiiiiiiiiiii et e e s e e s s b e st esaeratsaneaneas 4-6
MISCEIANEOUS FUNCLIONSceveioeeiieeeieeaieieiiieeieeeeateenseesteestreenaeessesessssaeesesesssssassessaeesaessatssesnsssasessanesesinenn 4-6

N

Chapter 4
THE OBJECT AND MATH LIBRARIES

GENERAL

This chapter describes the Object and Math Libraries that are supported on the ICON/UXV
operating system. A library is a collection of related functions and/or declarations that
simplify programming effort. All of the functions described are also described in Part 3 of the
ICON/UXV Programmer Reference Manual. Most of the declarations described are in Part 5
of the ICON/UXV Programmer Reference Manual. The three main libraries on the
ICON/UXV system are:

C library This is the basic library for C language programs. The C library is
composed of functions and declarations used for file access, string testing
and manipulation, character testing and manipulation, memory
allocation, and other functions. This library is described in Chapter 3.

Object file This library provides functions for the access and manipulation of object
files. This library is described later in this chapter.

Math library This library provides exponential, bessel functions, logarithmic,
hyperbolic, and trigonometric functions. This library is also described
later in this chapter.

THE OBJECT FILE LIBRARY

The object file library provides functions for the access and manipulation of object files. Some
functions locate portions of an object file such as the symbol table, the file header, sections,
and line number entries associated with a function. Other functions read these types of entries
into memory. For a description of the format of an object file, see "The Common Object File
Format" in the JCON/UXV Support Tools Guide.

This library consists of several portions. The functions reside in /usr/lib/libld.a and are

located and loaded during the compiling of a C language program by a command line request.
The form of this request is:

cc file -11d

which causes the link editor to search the object file library. The argument -lld must appear
after all files that reference functions in libld.a.

PROGRAMMER GUIDE 4-1

THE OBJECT AND MATH LIBRARIES

In addition, various header files must be included. This is accomplished by including the line:

#include <stdio.h>
#include <a.out.h>
#include <ldfen.h>

FUNCTION

ldaclose

ldahread

ldaopen

Idclose

ldfhread

ldgetname

1dlinit

ldlitem

ldlread

ldlseek

ldnlseek

4-2

REFERENCE

ldclose(3X)

ldahread(3X)

ldopen (3X)
ldclose(3X)

ldfhread(3X)

ldgetname(3X)

ldIread(3X)

ldiread(3X)

ldlread(3X)

ldlseek (3X)

1dlseek (3X)

BRIEF DESCRIPTION

Close object file being
processed.

Read archive header.

Open object file for
reading.

Close object file being
processed.

Read file header of
object file being
processed.

Retrieve the name of
an object file symbol
table entry.

Prepare object file for
reading line number
entries via ldlitem.

Read line number entry
from object file after
1dlinit.

Read line number entry
from object file.

Seeks to the line number
entries of the object
file being processed.

Seeks to the line number
entries of the object file
being processed given
the name of a section.

ICON INTERNATIONAL

TN

NS

ldnrseek

ldnshread

ldnsseek

ldohseek

ldopen

ldrseek

ldshread

ldsseek

ldtbindex

ldtbread

ldtbseek

PROGRAMMER GUIDE

ldrseek(3X)

ldshread(3X)

ldsseek(3X)

ldohseek (3X)

ldopen (3X)

ldrseek (3X)

ldshread(3X)

ldsseek (3X)

ldtbindex(3X)

ldtbread(3X)

ldtbseek (3X)

THE OBJECT AND MATH LIBRARIES

Seeks to the relocation
entries of the object file
being processed given
the name of a section.

Read section header of
the named section of the
object file being
processed.

Seeks to the section of
the object file being
processed given the
name of a section.

L
Seeks to the optional
file header of the object
file being processed.

Open object file for
reading.

Seeks to the relocation
entries of the object file
being processed.

Read section header of
an object file being
processed.

Seeks to the section of
the object file being
processed.

Returns the long index
of the symbol table entry
at the current position of
the object file being
processed.

Reads a specific
symbol table entry
of the object file
being processed.

Seeks to the symbol

table of the object file
being processed.

4-3

THE OBJECT AND MATH LIBRARIES

sgetl sputl(3X) Access long integer data
in a machine independant
format.

sputl sputl(3X) : Translate a long integer

into a machine
independant format.

Common Object File Interface Macros (Idfen.h)

The interface between the calling program and the object file access routines is based on the
defined type LDFILE which is defined in the header file ldfen.h (see ldfen(4)). The primary
purpose of this structure is to provide uniform access to both simple object files and to object
files that are members of an archive file.

The function ldopen(3X) allocates and initializes the LDFILE structure and returns a pointer
to the structure to the calling program. The fields of the LDFILE structure may be accessed
individually through the following macros: the type macro returns the magic number of the
file, which is used to distinguish between archive files and simple object files. The IOPTR
macro returns the file pointer which was opened by ldopen(3X) and is used by the
input foutput functions of the C library. The OFFSET macro returns the file address of the
beginning of the object file. This value is non-zero only if the object file is a member of the
archive file. The HEADER macro accesses the file header structure of the object file.

Additional macros are provided to access an object file. These macros parallel the
input foutput functions in the C library; each macro translates a reference to an LDFILE
structure into a reference to its file descriptor field. The available macros are described in
1dfen(4) in the ICON/UXV System Reference Manual.

THE MATH LIBRARY

The math library consists of functions and a header file. The functions are located and loaded

during the compiling of a C language program by a command line request. The form of this
request is:

cc file -Im

which causes the link editor to search the math library. In addition to the request to load the
functions, the header file of the math library should be included in the program being compiled.
This is accomplished by including the line:

#include <math.h>

near the beginning of the (first) file being compiled.

4-4 ICON INTERNATIONAL

TN
{
N/

THE OBJECT AND MATH LIBRARIES

~ |
(‘ The functions are grouped into the following categories:

e Trigonometric functions
o Bessel functions
e Hyperbolic functions

e Miscellaneous functions.

Trigonometric Functions

These functions are used to compute angles (in radian measure), sines, cosines, and tangents.
All of these values are expressed in double precision.

FUNCTION REFERENCE BRIEF DESCRIPTION
acos trig(3M) Return arc cosine.
asin trig(3M) Return arc sine.
(atan trig(3M) Return arc tangent.
atan2 trig(3M) Retm:n arc tangent of
a ratio.
cos trig(3M) Return cosine.
sin trig(3M) Return sine.
tan trig(3M) Return tangent.

Bessel Functions

These functions calculate bessel functions of the first and second kinds of several orders for real

values. The bessel functions are jO, j1, jn, yO, y1, and yn. The functions are located in
section bessel(3M).

o
)
J
%

PROGRAMMER GUIDE 4-5

THE OBJECT AND MATH LIBRARIES

Hyperbolic Functions

These functions are used to compute the hyperbolic sine, cosine, and tangent for real values.

FUNCTION REFERENCE BRIEF DESCRIPTION
cosh sinh(3M) Return hyperbolic cosine.
sinh sinh(3M) Return hyperbolic sine.
tanh sinh(3M) Return hyperbolic tangent.

Miscellaneous Functions

These functions cover a wide variety of operations, such as natural logarithm, exponential, and

absolute value. In addition, several are provided to truncate the integer portion of double
precision numbers.

FUNCTION REFERENCE BRIEF DESCRIPTION

ceil floor (3M) Returns the smallest
integer not less than a
given value.

exp exp(3M) Returns the exponential
function of a given value.

fabs floor(3M) Returns the absolute value

: of a given value.

floor floor (3M) Returns the largest integer
not greater than a given
value. :

fmod floor(3M) Returns the remainder

produced by the division of
two given values.

gamma gamma (3M) Returns the natural log of
the absolute value of the
result of applying the
gamma function to a
given value.

hypot hypot(3M) Return the square root
of the sum of the squares
of two numbers.

4-6 ICON INTERNATIONAL

~

/f

— log

logl0

matherr

pow

sqrt

PROGRAMMER GUIDE

exp(3M)

exp(3M)

matherr(3M)

exp(3M)

exp(3M)

THE OBJECT AND MATH LIBRARIES

Returns the natural
logarithm of a given
value.

Returns the lorarithm base
ten of a given value.

Error-handling function.
Returns the result of a
given value raised to

another given value.

Returns the square root
of a given value.

THE OBJECT AND MATH LIBRARIES

4-8 ICON INTERNATIONAL

Chapter 5

COMPILER AND C LANGUAGE

L0153 0 0) 2l 0 2 § 010 5§ o 1 5 OF U U

COMPILER OPTIONS

Chapter 5

COMPILER AND C LANGUAGE

This chapter describes the ICON/UXV Operating System’s C compiler, ec, and the C

programming language that the compiler translates. The compiler is part of the ICON/UXV
System Software Generation System (SGS).

The SGS is a package of tools used to create and test programs for UNIX Systems. These
tools allow high-level program coding and source-level testing of code. The C language is
implemented for high-level programming; it contains many control and structuring facilities
that greatly simplify the task of algorithm construction. Within the SGS, a C compiler
converts C programs into assembly language programs that are ultimately translated into
object files by the assembler, as. The link editor, 1d, collects and merges object files into
executable load modules. Each of these tools preserves all symbolic information necessary for
meaningful symbolic testing at C-language source level. In addition, a utility package aids in
testing and debugging.

The current manual page for the C compiler can be obtained with the SGS command:

man cc

USE OF THE COMPILER

The main command of the SGS is cc; it operates much like the ICON/UXV ¢cc command. To
use the compiler, first creat a file (typically by using the ICON/UXV text editor) containing C
source code. The name of the file created must have a special format; the last two characters
of the file name must be .c as in filel.c.

Next, enter the SGS command
cc options file.c

to invoke the compiler on the C source file file.c with the appropriate options selected. The
compilation process creates an absolute binary file named a.out that reflects the contents of
file.c and any referenced library routines. The resulting binary file, a.out, can then be
executed on the target system.

Options can control the steps in the compilation process. When none of the controlling options
are used, and only one file is named, cc automatically calls the assembler, as, and the link

editor, 1d, thus resulting in an executable file, named a.out. If more than one file is named in
a command, *

cc filel.c file2.c file8.c

PROGRAMMER GUIDE 5-1

COMPILER AND C LANGUAGE

then the output will be placed on files filel.o, file2.0, and fileS.0. These files can then be linked
and executed through the ld command.

The cc compiler also accepts input file names with the last two characters .8. The .8 signifies a
source file in assembly language. The cc compiler passes this type of file directly to as, which
assembles the file and places the output on a file of the same name with .o substituted for .s.

Cc is based on a portable C compiler and translates C source files into assembly code.
Whenever the command cc is used, the standard C preprocessor (which resides on the file
/lib/cpp) is called. The preprocessor performs file inclusion and macro substitution. The
preprocessor is always invoked by ec and need not be called directly by the programmer.

Then, unless the appropriate flags are set, cec calls the assembler and the link editor to produce
an executable file.

COMPILER OPTIONS

All options recognized by the cc command are listed below:

-c none Suppress the link-editing phase
of compilation and force an
object file to be produced
even if only one file is

compiled.
-g none Produce symbolic debugging
information.
-p none Reserved for invoking a profiler.
-D identifier [=constant/ Define the external symbol identifier

to the preprocessor, and

give it the value constant
(if specified).

-E none Same as the -P option except
output is directed to the
standard output.

-1 directory Change the algorithm that searches
for #include files whose names
do not begin with / to look in the
named directory before looking in
the directories on the standard list.
Thus, #include files whose names are
enclosed in “” are searched for

5-2 ICON INTERNATIONAL

,'/‘ »\‘

S~

- ~

"/

COMPILER AND C LANGUAGE

first in the directory of the file
being compiled, then in directories
named by the -I options, and last

in directories on the standard list.
For #include files whose names are
enclosed in <>, the directory of the
file argument is not searched.

-0 none Invoke an object code optimizer.

-P none Suppress compilation and loading;
i.e., invoke only the preprocessor
and leave out the output on
corresponding files suffixed .i.

-U identifier Undefine the named identifier to
the preprocessor.

-V none Print the version of the assembler
that is invoked.

W c,argl/,arg2...] Pass along the argument(s) arg:
to pass ¢, where ¢ is one of
[p012al], indicating preprocessor,
compiler first pass, compiler second
pass, optimizer, assembler, or link
editor, respectively.

This part provides additional information for those options not completely described above.

By using appropriate options, compilation can be terminated early to produce one of several
intermediate translations such as relocatable object files (-c option), assembly source
expansions for C code (-S option), or the output of the preprocessor (-P option). In general,
the intermediate files may be saved and later resubmitted to the cc command, with other files
or libraries included as necessary.

When compiling C source files, the most common practice is to use the -c¢ option to save
relocatable files. Subsequent changes to one file do not then require that the others be
recompiled. A separate call to cc without the -¢ option then creates the linked executable
a.out file. A relocatable object file created under the -¢ option is named by adding a .o suffix
to the source file name.

The -W option provides the mechanism to specify options for each step that is normally
invoked from the cc command line. These steps are preprocessing, the first pass of the
compiler, the second pass of the compiler, optimization, assembly, and link editing. At this
time, only assembler and link editor options can be used with the -W option. The most
common example of use of the -W option is “~Wa,-m”, which passes the -m option to the
assembler. Specifying “~wl,-m” passes the -m option to the link editor.

PROGRAMMER GUIDE 5-3

COMPILER AND C LANGUAGE

When the -P option is used, the compila.t;ion process stops after only preprocessing, with output
left on file.s. This file will be unsuitable for subsequent processing by cc.

The -O option decreases the size and increases the execution speed of programs by moving,
merging, and deleting code. However, line numbers used for symbolic debugging may be
transposed when the optimizer is used.

The -g option produces information for a symbolic debugger. The SGS currently supports the
SDB symbolic debugger.

5-4 ICON INTERNATIONAL

J

Chapter 6

A C PROGRAM CHECKER—*lint”’

PAGE
GENERAL ...ttt et eee st rreeesa e et e e e et e e e e e aen e e eeas s aesssstaneseansesassassssnstnssssssesesnsrotoneesnssesanns 6-1
BB ...oeiiiiieeiiiiiitee e e et e st eeuaeeuesenaeaaseesenasasssnnsanssassassenssssnssssnsssnssnnsransssnstnnssnsennssnesnntnnsensennsennsenneen 6-1

TYPES OF MESSAGES ..ottt teei ettt st s asas e et s sassensanncresasnstnssestansenssnasessaensansssnnnes
Unused Variables and Functlons
Set/Used Information
Flow of Control
Function Values
Type Checking
TYPE CRBSS ..cnintiiiiiiiiii ettt st e et s e st e e sen s saseeese e s a e s tatta et ent e et et aa st e h e ea e et anenaanas
INODPOPtable Character USecuiiiiiiiiiiiiiieii et reeiee e eeeteeeanettarten et et st snsnennsnesneneresesnesnesnannns
Assignments of ‘‘longs’’ to “‘ints”
Strange Constructionscc.ccceeveunnnnn.
Old Syntaxc...c......

Pointer Alignment
Multiple Uses and Side Effects

...

&

Chapter 6
A C PROGRAM CHECKER—*“lint”

GENERAL

The lint program examines C language source programs detecting a number of bugs and
obscurities. It enforces the type rules of C language more strictly than the C compiler. It may
also be used to enforce a number of portability restrictions involved in moving programs
between different machines and/or operating systems. Another option detects a number of
wasteful or error prone constructions which nevertheless are legal. The lint program accepts
multiple input files and library specifications and checks them for consistency.

Usage

The lint command has the form:
lint [options] files ... library-descriptors ...

where options are optional flags to control lint checking and messages; files are the files to be
checked which end with .c or .In; and library-descriptors are the names of libraries to be used
in checking the program.

The options that are currently supported by the lint command are:

-a Suppress messages about assignments of long values to variables that are not
long.

-b Suppress messages about break statements that cannot be reached.

-c Only check for intra-file bugs; leave external information in files suffixed with .In.

-h Do not apply heuristics (which attempt to detect bugs, improve style, and reduce
waste).

-n Do not check for compatibility with either the standard or the portable lint
library.

-0 name Create a lint library from input files named llib-1name.ln.

-p Attempt to check portability to other dialects of C language.

-u Suppress messages about function and external variables used and not defined or

defined and not used.

PROGRAMMER GUIDE 6-1

A C PROGRAM CHECKER—“lint;”

-v Suppress messages about unused arguments in functions.

-X Do not report variables referred to by external declarations but never used.

When more than one option is used, they should be combined into a single argument, such as,
-ab or -xha.

The names of files that contain C language programs should end with the suffix .c which is
mandatory or lint and the C compiler.

The lint program accepts certain arguments, such as:
—ly

These arguments specify libraries that contain functions used in the C language program. The
source code is tested for compatibility with these libraries. This is done by accessing library
description files whose names are constructed from the library arguments. These files all begin
with the comment:

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts of these
definitions are the declaration of the function return type, whether the dummy function returns
a value, and the number and types of arguments to the function. The VARARGS and
ARGSUSED comments can be used to specify features of the library functions.

The lint library files are processed almost exactly like ordinary source files. The only
difference is that functions which are defined on a library file but are not used on a source file
do not result in messages. The lint program does not simulate a full library search algorithm
and will print messages if the source files contain a redefinition of a library routine. -

By default, lint checks the programs it is given against a standard library file which contains
descriptions of the programs which are normally loaded when a C language program is run.
When the —p option is used, another file is checked containing descriptions of the standard
library routines which are expected to be portable across various machines. The —n option
can be used to suppress all library checking.

TYPES OF MESSAGES

The following paragraphs describe the major categories of messages printed by lint.

6-2 ICON INTERNATIONAL

A C PROGRAM CHECKER—*lint”

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to functions
may become unused. It is not uncommon for external variables or even entire functions to
become unnecessary and yet not be removed from the source. These types of errors rarely
cause working programs to fail, but are a source of inefficiency and make programs harder to
understand and change. Also, information about such unused variables and functions can
occasionally serve to discover bugs.

The lint program prints messages about variables and functions which are defined but not
otherwise mentioned. An exception is variables which are declared through explicit extern
statements but are never referenced; thus the statement

extern double sin();

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C
compiler. In some cases, these unused external declarations might be of some interest and can
be discovered by using the —x option with the lint command.

Certain styles of programming require many functions to be written with similar interfaces;
frequently, some of the arguments may be unused in many of the calls. The —v option is
available to suppress the printing of messages about unused arguments. When —v is in effect,
no messages are produced about unused arguments except for those arguments which are
unused and also declared as register arguments. This can be considered an active (and
preventable) waste of the register resources of the machine.

Messages about unused arguments can be suppressed for one function by adding the comment:
/* ARGSUSED */

to the program before the function. This has the eflect of the -v option for only one function.
Also, the comment:

/* VARARGS */

can be used to suppress messages about variable number of arguments in calls to a function.
The comment should be added before the function definition. In some cases, it is desirable to
check the first several arguments and leave the later arguments unchecked. This can be done
with a digit giving the number of arguments which should be checked. For example:

/* VARARGS2 */

will cause only the first two arguments to be checked.

PROGRAMMER GUIDE 6-3

A C PROGRAM CHECKER—*lint”

There is one case where information about unused or undefined variables is more distracting
than helpful. This is when lint is applied to some but not all files out of a collection which are
to be loaded together. In this case, many of the functions and variables defined may not be
used. Conversely, many functions and variables defined elsewhere may be used. The —u option
may be used to suppress the spurious messages which might otherwise appear.

Set/Used Information

The lint program attempts to detect cases where a variable is used before it is set. The lint
program detects local variables (automatic and register storage classes) whose first use appears
physically earlier in the input file than the first assignment to the variable. It assumes that
taking the address of a variable constitutes a ‘“use”, since the actual use may occur at any
later time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very
simple and quick to implement since the true flow of control need not be discovered. It does
mean that lint can print messages about some programs which are legal, but these programs
would probably be considered bad on stylistic grounds. Because static and external variables
are initialized to zero, no meaningful information can be discovered about their uses. The lint
program does deal with initialized automatic variables.

The set/used information also permits recognition of those local variables which are set and
never used. These form a frequent source of inefficiencies and may also be symptomatic of bugs.

Flow of Control

The lint program attempts to detect unreachable portions of the programs which it processes.
It will print messages about unlabeled statements immediately following goto, break,
continue, or return statements. An attempt is made to detect loops which can never be left
at the bottom and to recognize the special cases while(1) and for(;;) as infinite loops. The
lint program also prints messages about loops which cannot be entered at the top. Some valid
programs may have such loops which are considered to be bad style at best and bugs at worst.

The lint program has no way of detecting functions which are called and never returned.
Thus, a call to exit may cause an unreachable code which lint does not detect. The most
serious eflects of this are in the determination of returned function values (see “Function

Values”). If a particular place in the program cannot be reached but it is not apparent to
lint, the comment

/* NOTREACHED */

can be added at the appropriate place. This comment will inform lint that a portion of the
program cannot be reached.

The lint program will not print a message about unreachable break statements. Programs
generated by yacc and especially lex may have hundreds of unreachable break statements.
The —O option in the C compiler will often eliminate the resulting object code inefficiency.

6-4 ICON INTERNATIONAL

\/

A C PROGRAM CHECKER—*lint”

Thus, these unreached statements are of little importance. There is typically nothing the user
can do about them, and the resulting messages would clutter up the lint output. If these
messages are desired, lint can be invoked with the —b option.

Function Values

Sometimes functions return values that are never used. Sometimes programs incorrectly use

function "values” that have never been returned. The lint program addresses this problem in a
number of ways.

Locally, within a function definition, the appearance of both
return(ezpr);

and
return ;

statements is cause for alarm; the lint program will give the message
function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f(a){ |
if (a) return (3);
g ()

Notice that, if a tests false, f will call ¢ and then return with no defined return value; this will
trigger a message from lint. If g, like exit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature.

On a global scale, lint detects cases where a function returns a value that is sometimes or
never used. When the value is never used, it may constitute an inefficiency in the function

definition. When the value is sometimes unused, it may represent bad style (e.g., not testing
for error conditions).

The dual problem, using a function value when the function does not return one, is also
detected. This is a serious problem.

PROGRAMMER GUIDE 6-5

A C PROGRAM CHECKER—*lint”

Type Checking

The lint program enforces the type checking rules of C language more strictly than the
compilers do. The additional checking is in four major areas:

o Across certain binary operators and implied assignments
o At the structure selection operators
o Between the definition and uses of functions

e In the use of enumerations.

There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional (?:), and relational operators have this property. The
argument of a return statement and expressions used in initialization suffer similar
conversions. In these operations, char, short, int, long, unsigned, float, and double types
may be freely intermixed. The types of pointers must agree exactly except that arrays of 2z’s
can, of course, be intermixed with pointers to z’s.

The type checking rules also require that, in structure references, the left operand of the -> be
a pointer to structure, the left operand of the . be a structure, and the right operand of these

operators be a member of the structure implied by the left operand. Similar checking is done
for references to unions.

Strict rules apply to function argument and return value matching. The types float and
double may be freely matched, as may the types char, short, int, and unsigned. Also,
pointers can be matched with the associated arrays. Aside from this, all actual arguments
must agree in type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not mixed
with other types or other enumerations and that the only operations applied are =
initialization, ==, !=, and function arguments and return values.

If it is desired to turn off strict type checking for an expression, the comment

/* NOSTRICT */

should be added to the program immediately before the expression. This comment will prevent
strict type checking for only the next line in the program.

6-6 ICON INTERNATIONAL

A C PROGRAM CHECKER—*lint”

Type Casts

The type cast feature in C language was introduced largely as an aid to producing more
portable programs. Consider the assignment

p=1;

where p is a character pointer. The lint program will print a message as a result of detecting
this. Consider the assignment

p = (char *)1

in which a cast has been used to convert the integer to a character pointer. The programmer
obviously had a strong motivation for doing this and has clearly signaled his intentions. It
seems harsh for lint to continue to print messages about this. On the other hand, if this code
is moved to another machine, such code should be looked at carefully. The —¢ flag controls the
printing of comments about casts. When —c is in effect, casts are treated as though they were
assignments subject to messages; otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

Nonportable Character Use

On some systems, characters are signed quantities with a range from —128 to 127. On other
C language implementations, characters take on only positive values. Thus, lint will print

messages about certain comparisons and assignments as being illegal or nonportable. For
example, the fragment

char c;

if((c - .getchar() <0)...

will work on one machine but will fail on machines where characters always take on positive
values. The real solution is to declare ¢ as an integer since getchar is actually returning
integer values. In any case, lint will print the message “nonportable character comparison”.

A similar issue arises with bit fields. When assignments of constant values are made to bit
fields, the field may be too small to hold the value. This is especially true because on some
machines bit fields are considered as signed quantities. While it may seem logical to consider
that a two-bit field declared of type int cannot hold the value 3, the problem disappears if the
bit field is declared to have type unsigned

PROGRAMMER GUIDE 8-7

A C PROGRAM CHECKER—*lint”

Assignments of ‘‘longs”’’ to ‘‘ints’’

Bugs may arise from the assignment of long to an int, which will truncate the contents. This
may happen in programs which have been incompletely converted to use typedefs. When a
typedef variable is changed from int to long, the program can stop working because some
intermediate results may be assigned to ints, which are truncated. Since there are a number

of legitimate reasons for assigning longs to ints, the detection of these assignments is enabled
by the —a option.

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are detected by lint. The
messages hopefully encourage better code quality, clearer style, and may even point out bugs.
The —h option is used to supress these checks. For example, in the statement

*p++;

the * does nothing. This provokes the message “null effect” from lint. The following program
fragment:

unsigned x ;
if(x<0)...

results in a test that will never succeed. Similarly, the test
f(x>0)...

1s equivalent to
if(x!=0)

which may not be the intended action. The lint program will print the message ‘“degenerate
unsigned comparison’ in these cases. If a program contains something similar to

if(11=0)...

lint will print the message ‘“‘constant in conditional context” since the comparison of 1 with 0
gives a constant result.

Another construction detected by lint involves operator precedence. Bugs which arise from
misunderstandings about the precedence of operators can be accentuated by spacing and
formatting, making such bugs extremely hard to find. For example, the statement

8-8 ICON INTERNATIONAL

A C PROGRAM CHECKER—*lint”

if(x&077 =0)...
or
x<<2 + 40

probably do not do what was intended. The best solution is to parenthesize such expressions,
and lint encourages this by an appropriate message.

Finally, when the —h option has not been used, lint prints messages about variables which are
redeclared in inner blocks in a way that conflicts with their use in outer blocks. This is legal
but is considered to be bad style, usually unnecessary, and frequently a bug.

Old Syntax

Several forms of older syntax are now illegal. These fall into two classes - assignment
operators and initialization.

The older forms of assignment operators (e.g., =+, =-, ...) could cause ambiguous expressions,
such as:

a =—1 ;

which could be taken as either
a=—1,;

or
a=-—1;

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro
substitution. The newer and preferred operators (e.g., +=, -=, ...) have no such ambiguities.

To encourage the abandonment of the older forms, lint prints messages about these old-
fashioned operators.

A similar issue arises with initialization. The older language allowed

intx1;

PROGRAMMER GUIDE 6-9

A C PROGRAM CHECKER—*“lint”

to initialize z to 1. This also caused syntactic difficulties. For example, the initialization
int x(—1);

looks somewhat like the beginning of a function definition:
imtx(y){...

and the compiler must read past z in order to determine the correct meaning. Again, the
problem is even more perplexing when the initializer involves a macro. The current syntax
places an equals sign between the variable and the initializer:

int x =—1;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines and illegal on others due
entirely to alignment restrictions. The lint program tries to detect cases where pointers are
assigned to other pointers and such alignment problems might arise. The message “possible
pointer alignment problem” results from this situation.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be highly
machine dependent. For example, on machines in which the stack runs backwards, function
arguments will probably be best evaluated from right to left. On machines with a stack
running forward, left to right seems most attractive. Function calls embedded as arguments of
other functions may or may not be treated similarly to ordinary arguments. Similar issues

arise with other operators which have side effects, such as the assignment operators and the
increment and decrement operators.

In order that the efficiency of C language on a particular machine not be unduly compromised,
the C language leaves the order of evaluation of complicated expressions up to the local
compiler. In fact, the various C compilers have considerable differences in the order in which
they will evaluate complicated expressions. In particular, if any variable is changed by a side
effect and also used elsewhere in the same expression, the result is explicitly undefined.

The lint program checks for the important special case where a simple scalar variable is
affected. For example, the statement

ali] = bli++];

6-10 ICON INTERNATIONAL

A C PROGRAM CHECKER—*lint”

C

will cause lint to print the message
warning: i evaluation order undefined

in order to call attention to this condition.

PROGRAMMER GUIDE 6-11

A C PROGRAM CHECKER—*“lint”

6-12

ICON INTERNATIONAL

Chapter 7

SYMBOLIC DEBUGGING PROGRAM—*‘sdb”’

PAGE

GENERAL ...ttt ittt ettt ee et e e aea e setaesttas et basssarsssasstasasstsnssensnssssnseranserensenssenrasstssssntantanns 7-1
USAGE ..ottt ittt e ete et te s s eta s saraenssaeassannsnaessasennsstatanassnssnrsssnassensnsssssasenssnsssssssnssnnnsssnnseessessansssnnns 7-1
PrIntInNg B StaCK PR coooeiieiiiiiiii i ieiireer et etetetteeesesrenatansnsestesnssesestassessnsnsesassernaresnseenssessencnsnren 7-2
ExaminIing VAarlables ..ottt sttt e st s st ensare e eaeaa e 7-2
SOURCE FILE DISPLAY AND MANIPULATION... ..ottt ittt etse st sstnstaneetsstansersneeranaaranns 7-5
DisplayIng the Souree FIe.ttt tee et e et et et tean st ane e ttananeaastnaneanannenns 7-6
Changing the Current Source Flle oF FUunCtionc..ooiniiiiiiiiiiiiiiiiiiiii et cr e et st e e eias 7-6
Changing the Current Line In the Source Fllec.oooiiiiiiiiiii s 7-6

A CONTROLLED ENVIRONMENT FOR PROGRAM TESTINGc.occiiiiiiiiriiiriieneteennetatnanneiaeinsannannne 7-7

Setting and Deleting Breakpoints
Running the Program
Calling Functions

MACHINE LANGUAGE DEBUGGING................
Displaying Machine Language Statements
Manipulating Registers....

OTHER COMMANDS

Chapter 7
SYMBOLIC DEBUGGING PROGRAM—¢‘sdb”

GENERAL

This chapter describes the symbolic debugger sdb(1) as implemented for the C language and
Fortran 77 programs on ICON/UXV. The sdb program is useful both for examining ‘“core
images” of aborted programs and for providing an environment in which execution of a
program can be monitored and controlled.

The sdb program allows interaction with a debugged program at the source language level.
When debugging a core image from an aborted program, sdb reports which line in the source
program caused the error and allows all variables to be accessed symbolically and to be
displayed in the correct format.

Breakpoints may be placed at selected statements or the program may be single stepped on a
line-by-line basis. To facilitate specification of lines in the program without a source listing,
sdb provides a mechanism for examining the source text. Procedures may be called directly
from the debugger. This feature is useful both for testing individual procedures and for calling
user-provided routines which provided formatted printout of structured data.

USAGE

In order to use 8db to its full capabilities, it is necessary to compile the source program with
the -g option. This causes the compiler to generate additional information about the variables
and statements of the compiled program. When the -g option has been specified, sdb can be

used to obtain a trace of the called functions at the time of the abort and interactively display
the values of variables.

A typical sequence of shell commands for debugging a core image is

$ cc -g prgm.c -o prgm

$ prgm

Bus error - core dumped
$ sdb prgm

main:25: x[i] =0;

*

The program prgm was compiled with the -g option and then executed. An error occurred
which caused a core dump. The sdb program is then invoked to examine the core dump to
determine the cause of the error. It reports that the bus error occurred in function main at
line 25 (line numbers are always relative to the beginning of the file) and outputs the source

text of the offending line. The adb program then prompts the user with an * indicating that it
awaits a command.

PROGRAMMER GUIDE 7-1

sdb

It is useful to know that sdb has a notion of current function and current line. In this
example, they are initially set to main and “25”, respectively.

In the above example, sdb was called with one argument, prgm. In general, it takes three
arguments on the command line. The first is the name of the executable file which is to be
debugged; it defaults to a.out when not specified. The second is the name of the core file,
defaulting to core; and the third is the name of the directory containing the source of the
program being debugged. The sdb program currently requires all source to reside in a single
directory. The default is the working directory. In the example, the second and third
arguments defaulted to the correct values, so only the first was specified.

It is possible that the error occurred in a function which was not compiled with the -g option.
In this case, sdb prints the function name and the address at which the error occurred. The
current line and function are set to the first executable line in main. The sdb program will
print an error message if main was not compiled with the -g option, but debugging can

continue for those routines compiled with the -g option. Figure 7-1 shows a typical example of
sdb usage.

Printing a Stack Trace

It is often useful to obtain a listing of the function calls which led to the error. This is
obtained with the t command. For example:

*

t

sub(x=2,y=3) [prgm.c:25]

inter(i=16012) [prgm.c:96]
main(arge=1,argv=0x7fifif54,envp=0x7ffif5¢)[prgm.c:15]

This indicates that the error occurred within the function sub at line 25 in file prgm.c. The sub
function was called with the arguments x=2 and y=3 from tnter at line 96. The ¢nter function
was called from matn at line 15. The main function is always called by the shell with three

arguments often referred to as argc, argv, and envp. Note that argv and enuvp are pointers, so
their values are printed in hexadecimal.

Examining Variables

The sdb program can be used to display variables in the stopped program. Variables are
displayed by typing their name followed by a slash, so

*errflag/

causes 8db to display the value of variable errflag. Unless otherwise specified, variables are

assumed to be either local to or accessible from the current function. To specify a different
function, use the form

7-2 ICON INTERNATIONAL

sdb
*sub:i/

to display variable ¢ in function sub. F77 users can specify a common block variable in the
same manner.

The sdb program supports a limited form of pattern matching for variable and function
names. The symbol * is used to match any sequence of characters of a variable name and ? to
match any single character. Consider the following commands

x/
*sub:y?/
**/

The first prints the values of all variables beginning with z, the second prints the values of all
two letter variables in function sub beginning with y, and the last prints all variables. In the

first and last examples, only variables accessible from the current function are printed. The
command

*k ok |
displays the variables for each function on the call stack.

The sdb program normally displays the variable in a format determined by its type as
declared in the source program. To request a different format, a specifier is placed after the

slash. The specifier consists of an optional length specification followed by the format. The
length specifiers are:

b * One byte
h Two bytes (half word)
1 Four bytes (long word).

The lengths are effective only with the formats d, o, x, and u. If no length is specified, the
word length of the host machine is used. A numeric length specifier may be used for the s or a
commands. These commands normally print characters until either a null is reached or 128
characters are printed. The number specifies how many characters should be printed.

There are a number of format specifiers available:
c Character.

d Decimal.

PROGRAMMER GUIDE 7-3

sdb

| S
u Decimal unsigned. S
o Octal.
x Hexadecimal.
f 32-bitvsingle-precision floating point.
g 64-bit double-precision floating point.
8 Assume variable is a string pointer and print characters starting at the address
pointed to by the variable until a null is reached.

a Print characters starting at the variable’s address until a null is reached.
P Pointer to function. |
i Interpret as a machine-language instruction.
For example, the variable ¢ can be displayed with

*1/x o

which prints out the value of ¢ in hexadecimal.

The sdb program also knows about structures, arrays, and pointers so that all of the
following commands work.

*array(2][3]/
*sym.id/
*psym->usage/
*xsym|[20].p->usage /

The only restriction is that array subscripts must be numbers. Depending on your machine,
accessing arrays may be limited to 1-dimensional arrays. Note that as a special case:

*psym->>/d
displays the location pointed to by psym in decimal.

Core locations can also be displayed by specifying their absolute addresses. The command

*1024/ | O

C

7-4 ICON INTERNATIONAL

sdb

displays location 1024 in decimal. As in C language, numbers may also be specified in octal or
hexadecimal so the above command is equivalent to both

*02000/

and
*0x400/

It is possible to mix numbers and variables so that
*1000.x/

refers to an element of a structure starting at address 1000, and

*1000->x/

refers to an element of a structure whose address is at 1000. For commands of the type

*1000.x/ and *1000->x/, the sdb program uses the structure template of the last structured
referenced.

The address of a variable is printed with the =, so

*i—

displays the address of 7. Another feature whose usefulness will become apparent later is the
command

*./

which redisplays the last variable typed.

SOURCE FILE DISPLAY AND MANIPULATION

The sdb program has been designed to make it easy to debug a program without constant
reference to a current source listing. Facilities are provided which perform context searches
within the source files of the program being debugged and to display selected portions of the
source files. The commands are similar to those of the system text editor ed(1). Like the
editor, sdb has a notion of current file and line within the file. The sdb program also knows
how the lines of a file are partitioned into functions, so it also has a notion of current function.

As noted in other parts of this document, the current function is used by a number of sdb
commands.

PROGRAMMER GUIDE 7-5

sdb

Displaying the Source File

Four commands exist for displaying lines in the source file. They are useful for perusing the
source program and for determining the context of the current line. The commands are:

Prints the current line.

w Window; prints a window of ten lines around the current line.

z Prints ten lines starting at the current line. Advances the current line by
ten.

control-d Scrolls; prints the next ten lines and advances the current line by ten. This

command is used to cleanly display long segments of the program.

When a line from a file is printed, it is preceded by its line number. This not only gives an
indication of its relative position in the file but is also used as input by some sdb commands.

Changing the Current Source File or Function

The e command is used to change the current source file. Either of the forms

*e function
*e file.c

may be used. The first causes the file containing the named function to become the current
file, and the current line becomes the first line of the function. The other form causes the
named file to become current. In this case, the current line is set to the first line of the named

file. Finally, an e command with no argument causes the current function and file named to be
printed.

Changing the Current Line in the Source File

The z and control-d commands have a side effect of changing the current line in the source
file. The following paragraphs describe other commands that change the current line.

There are two commands for searching for instances of regular expressions in source files. They
are

* [regular expression/
*?regular expression?

The first command searches forward through the file for a line containing a string that
matches the regular expression and the second searches backwards. The trailing / and ? may
be omitted from these commands. Regular expression matching is identical to that of ed(1).

7-6 ICON INTERNATIONAL

sdb

The + and - commands may be used to move the current line forwards or backwards by a
specified number of lines. Typing a new-line advances the current line by one, and typing a
number causes that line to become the current line in the file. These commands may be
combined with the display commands so that

*4+152

advances the current line by 15 and then prints ten lines.

A CONTROLLED ENVIRONMENT FOR PROGRAM TESTING

One very useful feature of sdb is breakpoint debugging. After entering sdb, certain lines in
the source program may be specified to be breakpoints. The program is then started with a
sdb command. Execution of the program proceeds as normal until it is about to execute one of
the lines at which a breakpoint has been set. The program stops and sdb reports the
breakpoint where the program stopped. Now, sdb commands may be used to display the trace
of function calls and the values of variables. If the user is satisfied the program is working
correctly to this point, some breakpoints can be deleted and others set; then program execution
may be continued from the point where it stopped.

A useful alternative to setting breakpoints is single stepping. The sdb program can be
requested to execute the next line of the program and then stop. This feature is especially
useful for testing new programs, so they can be verified on a statement-by-statement basis. If
an attempt is made to single step through a function which has not been compiled with the -g
option, execution proceeds until a statement in a function compiled with the -g option is
reached. It is also possible to have the program execute one machine level instruction at a
time. This is particularly useful when the program has not been compiled with the -g option.

Setting and Deleting Breakpoints

Breakpoints can be set at any line in a function which contains executable code. The
command format is:

*12b
*proc:12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current file. The line numbers are relative to
the beginning of the file as printed by the source file display commands. The second form sets
a breakpoint at line 12 of function proc, and the third sets a breakpoint at the first line of
proc. The last sets a breakpoint at the current line.

Breakpoints are deleted similarly with the commands

PROGRAMMER GUIDE 7-7

sdb

*12d
*proc:12d
*proc:d

In addition, if the command d is given alone, the breakpoints are deleted interactively. Each

breakpoint location is printed, and a line is read from the user. If the line begins with a y or
d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a B command, and the D command
deletes all breakpoints. It is sometimes desirable to have sdb automatically perform a

sequence of commands at a breakpoint and then have execution continue. This is achieved
with another form of the b command.

*12b t;x/

causes both a trace back and the value of z to be printed each time execution gets to line 12.
The a command is a variation of the above command. There are two forms:

*proc:a
*proc:12a

The first prints the function name and its arguments each time it is called, and the second
prints the source line each time it is about to be executed. For both forms of the a command,
execution continues after the function name or source line is printed.

Running the Program

The r command is used to begin program execution. It restarts the program as if it were
invoked from the shell. The command

*r args

runs the program with the given arguments as if they had been typed on the shell command
line. If no arguments are specified, then the arguments from the last execution of the program
are used. To run a program with no arguments, use the R command.

After the program is started, execution continues until a breakpoint is encountered, a signal
such as INTERRUPT or QUIT occurs, or the program terminates. In all cases after an
appropriate message is printed, control returns to sdb.

The ¢ command may be used to continue execution of a stopped program. A line number may
be specified, as in:

ICON INTERNATIONAL

s
|

"
/(' ~

sdb

*proc:12¢

This places a temporary breakpoint at the named line. The breakpoint is deleted when the ¢
command finishes. There is also a ¢ command which continues but passes the signal which
stopped the program back to the program. This is-useful for testing user-written signal
handlers. Execution may be continued at a specified line with the g command. For example:

*17¢

continues at line 17 of the current function. A use for this command is to avoid executing a
section of code which is known to be bad. The user should not attempt to continue execution
in a function different than that of the breakpoint.

The s command is used to run the program for a single line. It is useful for slowly executing
the program to examine its behavior in detail. An important alternative is the S command.
This command is like the 8 command but does not stop within called functions. It is often used

when one is confident that the called function works correctly but is interested in testing the
calling routine.

The i command is used to run the program one machine level instruction at a time while
ignoring the signal which stopped the program. Its uses are similar to the 8 command. There is
also an I command which causes the program to execute one machine level instruction at a
time, but also passes the signal which stopped the program back to the program.

Calling Functions

It is possible to call any of the functions of the program from sdb. This feature is useful both
for testing individual functions with different arguments and for calling a function which prints
structured data in a nice way. There are two ways to call a function:

*proc(argl, arg2, ...)
*proc(argl, arg2, ...)/m

The first simply executes the function. The second is intended for calling functions (it executes
the function and prints the value that it returns). The value is printed in decimal unless some
other format is specified by m. Arguments to functions may be integer, character or string
constants, or values of variables which are accessible from the current function.

An unfortunate bug in the current implementation is that if a function is called when- the
program is not stopped at a breakpoint (such as when a core image is being debugged) all
variables are initialized before the function is started. This makes it impossible to use a
function which formats data from a dump.

PROGRAMMER GUIDE 7-9

sdb

s
MACHINE LANGUAGE DEBUGGING S
The sdb program has facilities for examining programs at the machine language level. It is
possible to print the machine language statements associated with a line in the source and to
place breakpoints at arbitrary addresses. The sdb program can also be used to display or
modify the contents of the machine registers.
Displaying Machine Language Statements

To display the machine language statements associated with line 25 in function main, use the
command

*main:25?
The ? command is identical to the / command except that it displays from text space. The
default format for printing text space is the i format which interprets the machine language
instruction. The control-d command may be used to print the next ten instructions.
Absolute addresses may be specified instead of line numbers by appending a : to them so that

*0x1024:?)

. . N

displays the contents of address 0z1024 in text space. Note that the command

*0x1024?
displays the instruction corresponding to line 021024 in the current function. It is also possible
to set or delete a breakpoint by specifying its absolute address;

*0x1024:b
sets a breakpoint at address 0z1024.

Manipulating Registers

The x command prints the values of all the registers. Also, individual registers may be named
instead of variables by appending a % to their name so that

*r3%
displays the value of register r8.

/ﬁ" AN

7-10 ICON INTERNATIONAL

C

sdb

OTHER COMMANDS

To exit sdb, use the q command.
The ! command is identical to that in ed(1) and is used to have the shell execute a command.

It is possible to change the values of variables when the program is stopped at a breakpoint.
This is done with the command

*variablelvalue

which sets the variable to the given value. The value may be a number, character constant,
register, or the name of another variable. If the variable is of type float or double, the value
can also be a floating-point constant.

$ cat testdiv2.c
main(arge, argv, envp)
char **argv, **envp; {
int i;
i =div2(-1);
printf("—1/2 = %d\n", i);

div2(i) {
int j;
j=i>>1;
return(j);

$ cc —g testdiv2.c

$ a.out

—1/2 = -1

$ sdb

No core image # Warning message from sdb
*/"div2 # Search for function "div2"

7: div2(i) { # It starts on line 7

*z # Print the next few lines

7: div2(i) { |

8: int j;

9: j=i1>>1;

10: return(j);

11: }

*div2:b # Place breakpoint at beginning of "div2"
div2:9 b # Sdb echoes proc name and line number
*r # Run the function

a.out # Sdb echoes command line executed
Breakpoint at # Executions stops just before line 9
div2:9: j=i>>1;

*t, # Print trace of subroutine calls
div2(i=—1) [testdiv2.c:9]

PROGRAMMER GUIDE 7-11

sdb

main(arge=1,argv=0x7ffif50,envp=0x7ffi{58)[testdiv2.c:4]
*i/ # Print i

-1

*s # Single step

div2:10: return(j); # Execution stops before line 10
*i/ # Print j

-1

*ad # Delete the breakpoint
*div2(1)/ # Try running "div2" with different arguments
0

*div2(—2)/
~1
*div2(-3)/
-2

*q

$

Figure 7-1. EXAMPLE OF sdb USAGE

7-12 ICON INTERNATIONAL

Chapter 8

ICON/UXV FORTRAN SYSTEM COMMANDS
An ICON/UXV Fortran 77 user should be familiar with the following commands:

o f77 [options] files - This command invokes the ICON/UXV Fortran 77 compiler
o ratfor [options| [files] - This command invokes the Ratfor preprocessor

« efl [options] [files] - This command compiles a program written in Extended Fortran Language
(EFL) into clean Fortran

e asa [files] - This command interprets the output of Fortran programs that utilize ASA
carriage control characters

o faplit options files - This command splits the named file(s) into separate files, with one
procedure per file.

For more information about the above commands, see the ICON/UXV User Reference Manual.

PROGRAMMER GUIDE 8-1

./”\»
S

Chapter 9

FORTRAN 77
PAGE
USAGEotiiiiiniiiiiititiieiieiitietemte s etur ettt e teateeesasasaessnsssesessssansssesestassnsstesssssstassssansssnassetnsssssnssersssesnssstoseransesnnss 0-1
LANGUAGE EXTENSIONS ... iiiiiiitiiciiititieneeeeienteeasmnssrastosiortnrsermessssenssonsssnsaassrmsstssssssssastassasssnssssssnssans 0-1
Double Complex Data Type... 9-2
INtermal Fles ...ttt et st s ree et s et e s e s e as s aa st ae s en e aentna ettt s asnarnaenenaas 9-2
Implicit Undeflned StatemMent.c.oveiiiiiiiiiiiiii ettt ettt et ra st eeneensea e s nenennanene 9-2
RECUPSIONiitiiiiii ittt st e ettt ettt e e e e bae e et e tantanssseasanssnssssassnsensastnsnssnstnsenssesnsnnsnnssensansens 9-2
AUTOIMATIC S O AR . .. oeitiiiitiiiiiiietiiiiiitieiieeneeeturanetettetarsesetnsasencantusenssssesssnsnstessensresnsnssesasssnsassasernssstenarnens 9-2
Variable Length INPut LINes ...ttt et et ean e e tae e anasessasaaasnnssrensresnsnnssssnees 9-2
INclude StAtEMENT.coicuiiiuiiiiiiiiiie ittt ra et sttt etbsaresresesstatesaseraesatesrsssanesassestrasertrresnnts 9-3
Binary Inltlallzation ComStants oottt iee et etereeseaeeertensasanenenesnrnsserasarsnesssennnnens 9-3
OB ACEr S P IS ..ottt te e et etrteereetnsetssteaassneaseerearnscnsraransestsncsstasensansensnssnssnsnvenssnsnnsnnes 9-3
b 2 00 1 3 1+ O PO U PP PPPTPNS 9-4
EquIvAlence STALEMENTSc.uiiuiiiiiiiiiiiriiirieeieeeiieee ettt eteena et et ennsrasaasaannsensrassaesscmnsmaseenstsraneesseneres 0-4
ONE-TIIP DO LOOPS ...iuiiiiiiiiiiiiiiiiit ittt eteeee it ttretrene et sasrtearerettieetnssetasrsssnssntestustnsensensnsssesassersssnstereasnnes 9-4
Commas In Formatted INPUt..........ooooiiiiiiiiiiiiiiii ettt e e e ta e et e eb e aeraeetneennaenaans 9-5
- Short Integers........c..ceevieiniennn.e. 9-5
‘ Additional Intrinsic Functions 9-5
VIOLATIONS OF THE STANDARD ..ottt e eier et s et et et etae et senetraretnersnstantansaenseneeneeassrnnrnnsen 0-8
Double Precision Alignment 9-8
Dummy Procedure Arguments 9-8
T ANA TL FOPIMBES....cuiiiiniiiiiiiiiiiiiiiietiticateatsasestatanesseaenrnriotstnsssesassssnsesasansnsensns TR 9-8
INTERPROCEDURE INTERFACE...... ..ottt eitteetaeeettriasenesttassatsastsnstesssseriestasaessnesansssenneres 9-9
Procedure INAIMEScooiiiiiiiiiii ittt e e e s b s s eat s eeraena s e see s eastn e sansaanstnnennsennsnnatuetasteneenns -9
Data RePreSentatIOnSc.c.uiiiuiiiiiiiiiiiiiiieiieirrete ettt eetaeener et eanaetasensannasnssaneetnessnsrnnesnensesnesomennssas 8-9
RELUPII VAIUES ...ttt ettt e e et ettt s et e eaeaa et sansasssbresassebastaesaustsesaesanssaesansanne 9-9
ArgUment LESUS.....coo.oiiiniiiiiiiiii et e ea e e et eta e b e n e eaan e enae 9-10
FILE FORMATS ...ttt et e et tee s trane s et as e e s e ne s e e sas s eaus s asttseetanernsessasstasssstnssesanserenesmsnnsennssmnnsanns 9-11
Structure of FOrtran FIIes.ttt etr e e st sre s e sanseassanrannenns 8-11
Preconnected Flles and Flle PosItIons.ooiiiiiiiiiiiiiiiii s e 9-11

O

Chapter 9
FORTRAN 77

This chapter describes the compiler and run-time system for Fortran 77 as implemented in
ICON/UXV. This chapter also describes the interfaces between procedures and the file
formats assumed by the I/O system.

USAGE

The command to run the compiler is

f77 options file

The f77(1) command is a general purpose command for compiling and loading Fortran and
Fortran-related files into an executable module. EFL (compiler) and Ratfor (preprocessor)
source files will be translated into Fortran before being presented to the Fortran compiler. The
f77 command invokes the C compiler to translate C source files and invokes the assembler to
translate assembler source files. Object files will be link edited. [The f77(1) and cc(1)
commands have slightly different link editing sequences. Fortran programs need two extra

libraries (1ibI77.a, 1ibF77.a) and an additional startup routine.] The following file name suffixes
are understood:

Ry Fortran source file

e EFL source file

.r Ratfor source file

.c C language source file
8 Assembler source file
.0 Object file.

LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. The most important additions are a
character string data type, file-oriented input/output statements, and random access 1/O.
Also, the language has been cleaned up considerably.

In addition to implementing the language specified in the Fortran 77 American National
Standard, this compiler implements a few extensions. Most are useful additions to the
language. The remainder are extensions to make it easier to communicate with C language
procedures or to permit compilation of old (1966 Standard Fortran) programs.

PROGRAMMER GUIDE 9-1

FORTRAN 77

Double Complex Data Type

The data type double complex is added. Each datum is represented by a pair of double-

precision real variables. A double complex version of every complex built-in function is
provided.

Internal Files

The Fortran 77 American National Standard introduces internal files (memory arrays) but
restricts their use to formatted sequential I/O statements. This I/O system also permits
internal files to be used in direct and unformatted reads and writes.

Implicit Undefined Statement

Fortran has a rule that the type of a variable that does not appear in a type statement is
integer if its first letter is ¢, j, k, I, m or n. Otherwise, it is real. Fortran 77 has an implicit

statement for overriding this rule. An additional type statement, undefined, is permitted. The
statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic for
each variable that is used but does not appear in a type statement. Specifying the -u compiler
option is equivalent to beginning each procedure with this statement.

Recursion

Procedures may call themselves directly or through a chain of other procedures.

Automatic Storage

Two new keywords recognized are static and automatic. These keywords may.appear as
“types” in type statements and in implicit statements. Local variables are static by default;
there is exactly one copy of the datum, and its value is retained between calls. There is one
copy of each variable declared automatic for each invocation of the procedure. Automatic
variables may not appear in equivalence, data, or save statements.

Variable Length Input Lines

The Fortran 77 American National Standard expects input to the compiler to be in a 72-
column format: except in comment lines, the first five characters are the statement number,
the next is the continuation character, and the next 66 are the body of the line. (If there are
fewer than 72 characters on a line, the compiler pads it with blanks; characters after the first
72 are ignored.) In order to make it easier to type Fortran programs, this compiler also
accepts input in variable length lines. An ampersand (&) in the first position of a line
indicates a continuation line; the remaining characters form the body of the line. A tab
character in one of the first six positions of a line signals the end of the statement number and
continuation part of the line; the remaining characters form the body of the line. A tab
elsewhere on the line is treated as another kind of blank by the compiler.

9-2 - ICON INTERNATIONAL

TN

(

FORTRAN 77

In the Fortran 77 Standard, there are only 26 letters.

— Fortran is a one-case language. Consistent with ordinary system usage, the new compiler
expects lowercase input. By default, the compiler converts all uppercase characters to
lowercase except those inside character constants. However, if the -U compiler option is
specified, uppercase letters are not transformed. In this mode, it is possible to specify external
names with uppercase letters in them and to have distinct variables differing only in case. In
this mode only lowercase keywords are recognized.

Include Statement
The statement

include "stuff"

is replaced by the contents of the file stuff. Includes may be nested to a reasonable depth,
currently ten.

Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement by a binary
constant, denoted by a letter followed by a quoted string. If the letter is b, the string is binary,
and only zeroes and ones are permitted. If the letter is o, the string is octal with digits zero
through seven. If the letter is z or x, the string is hexadecimal with digits zero through nine, a
through f. Thus, the statements

integer a(3)
data a/b’1010°,0’12",2’a’/

initialize all three elements of a to ten.

Character Strings

For compatibility with C language usage, the following backslash escapes are recognized:

\n New-line
\t Tab

\b ‘ Backspace
\f Form feed
\0 Null

PROGRAMMER GUIDE 9-3

FORTRAN 77

\’ Apostrophe (does not terminate a string)

\" Quotation mark (does not terminate a string)

\\ \

\x Where x is any other character.

Fortran 77 only has one quoting character — the apostrophe (’). This compiler and I/O
system recognize both the apostrophe and the double quote ("). If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated quote
or backslash escapes.

Every unequivalenced scalar local character variable and every character string comstant is
aligned on an integer word boundary. Each character string constant appearing outside a data
statement is followed by a null character to ease communication with C language routines.

Hollerith

Fortran 77 does not have the old Hollerith (nh) notation though the new Standard
recommends implementing the old Hollerith feature in order to improve compatibility with old
programs. In this compiler, Hollerith data may be used in place of character string constants
and may also be used to initialize non-character variables in data statements.

Equivalence Statements

This compiler permits single subscripts in equivalence statements under the interpretation

that all missing subscripts are equal to 1. A warning message is printed for each such
incomplete subscript.

One-Trip DO Loops

The Fortran 77 American National Standard requires that the range of a do loop not be
performed if the initial value is already past the limit value, as in

dol10i=21

The 1966 Standard stated that the effect of such a statement was undefined, but it was
common practice that the range of a do loop would be performed at least once. In order to

accommodate old programs in violation of the 1966 Standard, the -onetrip compiler option
causes nonstandard loops to be generated.

9-4 ICON INTERNATIONAL

-

-

FORTRAN 77

Commas in Formatted Input

The I/O system attempts to be more lenient than the Fortran 77 American National Standard
when it seems worthwhile. When doing a formatted read of non-character variables, commas
may be used as value separators in the input record overriding the field lengths given in the
format statement. Thus, the format

(i10, f20.10, i4)
will read the record
-345,.05¢-3,12

correctly.

Short Integers

On machines that support half word integers, the compiler accepts declarations of type
integer*2. (Ordinary integers follow the Fortran rules about occupying the same space as a
REAL variable; they are assumed to be of C language type long int; half word integers are of
C language type short int.) An expression involving only objects of type integer*2 is of that
type. Generic functions return short or long integers depending on the actual types of their
arguments. If a procedure is compiled using the -I2 flag, all small integer constants will be of
type integer*2. If the precision of an integer-valued intrinsic function is not determined by
the generic function rules, one will be chosen that returns the prevailing length (integer*2
when the -I2 command flag is in effect). When the -I2 option is in effect, all quantities of type
logical will be short. Note that these short integer and logical quantities do not obey the
standard rules for storage association.

Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard. In
addition, there are functions for performing bitwise Boolean operations (or, and, xor, and
not) and for accessing the command arguments (getarg and iargc).

The following lists the Fortran intrinsic function library plus some additional functions. These
functions are automatically available to the Fortran programmer and require no special
invocation of the compiler. The asterisk (*) beside some of the commands indicates they are
not part of standard F77. In parenthesis beside each function description listed below is the
location for the command in the ICON/UXV Programmer Reference Manual.

The following is a revised list that includes the additional F77 1.1 functions:

PROGRAMMER GUIDE 8-5

FORTRAN 77

abort*
abs
acos
aimag
aint
alog
alogl0
amax0
amaxl
amin0
aminl
amod
and*
anint
asin
atan
atan2
btest*

Terminate program [abort(3F)]
Absolute value [max(3F)|
Arccosine [acos(3F)]

Imaginary part of complex argument [aimag(3F)]
Integer part [aint(3F)]

Natural logarithm [log(3F))

Common logarithm [log10(3F))

Maximum value [max(3F)]
Maximum value [max(3F)]

Minimum value [min(3F)]

Minimum value [min(3F))

Remaindering [mod(3F)]
Bitwise Boolean [bool(3F)]
Nearest integer [round(3F)
Arcsine [asin(3F)]

Arctangent [atan(3F)|

Arctangent [atan2(3F)]

Bit field manipulation function

[mil(3F)]

cabs
ccos
cexp
char
clog
cmplx
conjg
oS
cosh
csin
csqrt
dabs
dacos
dasin
datan
datan2
dble
dcmpm
dconjg*
dcos
dcosh
ddim
dexp
dim

dimag*

dint
diog
dlogl0
dmaxl
dminl
dmod
dnint
dprod
dsign
dsin
dsinh
dsart
dtan
dtanh
exp
float
getarg*

9-8

Complex absolute value [abs(3F)]
Complex cosine [cos(3F)|
Complex exponential [exp(3F)]
Explicit type conversion [Ftype(3F)]
Complex natural logarithm [log(3F))
Explicit type conversion [Ftype(3F)]
Complex conjugate [conjg(3F)]
Cosine [cos(3F)|
Hyperbolic cosine [cosh(3F)]
Complex sine [sin(3F)]
Complex square root [sqrt(3F))]
Absolute value [abs(3F)|
Arccosine [acos(3F)|
Arcsine [asin(3F))
Arctangent [atan(3F)]
Double precision arctangent [atan2(3F))
Exphc:t type conversion [fty pe(3F)]
Explicit type conversion [fty pe(3F)|
Complex conjugate [conjg(3F)]
Cosine [dcos(3F)|
Hyperbolic cosine [cosh(3F)]
Positive difference [dim(3F)|
Exponential [exp(3F)|
Positive difference [dim(3F)|
Imaginary part of complex argument [aimag(3F)]
Integer part [aint(3F)|
Natural logarithm [log(3F)]
Common logarithm {log10(3F)]
Maximum value {max(3F)]
Minimum value [min(3F))
Remaindering [dmod(3F))
Nearest integer [round(3F)]
Double precision product [dprod(SF)]
Transfer of sign [sign(3F)]
Sine [sin(3F)]
Hyperbolic sine [sinh(3F)|
Square root [sqrt(3F)|
Tangent [tan(3F)]
Hyperbolic tangent [tanh(3F)]
Exponential [exp(3F)|
Explicit type conversion [ftype(3F)]
Return command-line argument [getarg(3F)|

ICON INTERNATIONAL

&

getenv* Return environment variable [getenv(3F)]

iabs Absolute value [abs(3F)]

iand* Bit field manipulation intrinsic functions
[mil(3F)]

iarge Return number of arguments [iargc(3F)|

ibclr* Bit field manipulation intrinsic functions
[mil(3F))

ibits* Bit field manipulation intrinsic functions
[mil(3F))

ibset* Bit field manipulation intrinsic functions
[mil(3F))

ichar Explicit type conversion [fty pe(3F)]

idim Positive difference [dim(3F)]

idint Explicit type conversion [ftype(3F)|

idnint Nearest integer [round(3F)]

ieor* Bit field manipulation intrinsic functions
|mil(3F))

ifix Explicit type conversion [ftype(3F)|

index Return location of substring [index(3F)]

int Explicit type conversion [ftype(3F)]

ior* Bit field manipulation intrinsic function
|mil(3F))]

irand* Random number generator [rand(3F)|

ishft* Bit field manipulation intrinsic function
[mil(3F))

ishftc* Bit field manipulation intrinsic function
|mil(3F)]

isign Transfer of sign [sign(3F)]

len Return location of string [len(3F)

Ige String comparison [stremp(3F))

igt String comparison [stremp(3F)]

fle String comparison [stremp(3F))

114 String comparison [stremp(3F)]

log Natural logarithm [log(3F)]

logl0. Common logarithm [log10(3F)]

Ishift* Bitwise Boolean [bool(3F))

max Maximum value [max(3F)]

max0 Maximum value [max(3F)|

maxl Maximum value [max(3F)|

mclock* Return Fortran time accounting [mclock(3F)]

min Minimum value [min(3F))

min0 Minimum value [min(3F)|

minl Minimum value [min(3F)]

mod Remaindering [mod(3F)]

nint Nearest integer [bool(3F))|

not* Bitwise Boolean [bool(3F)]

or* Bitwise Boolean [bool(3F))

rand* Random number generator [rand(3F)|

real Explicit type conversion [ftype(3F)]

rshift* Bitwise Boolean [bool(3F))

sign Transfer of sign [sign(3F)]

signal* Specify action on receipt of system signal
[signal(3F)] '

sin Sine [sine(3F)]

sinh Hyperbolic sine [sinh(3F)]

sngl Explicit type conversion [fty pe(3F)]

sqrt Square root [sqrt{3F)]

srand* Random number generator [rand(3F)]

stremp String comparison [stremp(3F)]

system* Issue a shell command [system(3F)]

tan Tangent [tan(3F)]

PROGRAMMER GUIDE

FORTRAN 77

FORTRAN 77

tanh Hyperbolic tangent [tanh(3F)]
xor* Bitwise Boolean [bool(3F)|
zabs* Complex absolute value [abs(3F)].

For more information on the Fortran intrinsic function commands, see the ICON/UXV Programmer
Reference Manual.

VIOLATIONS OF THE STANDARD

The following paragraphs describe only three known ways in which this implementation of Fortran 77
violates the new American National Standard.

Double Precision Alignment

The Fortran 77 American National Standard permits common or equivalence statements to force a
double precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,c
equivalence (a(1),b), (a(4),¢)

Some machines require that double precision quantities be on double word boundaries; other machines
run inefficiently if this alignment rule is not observed. It is possible to tell which equivalenced and
common variables suffer from a forced odd alignment, but every double-precision argument would have
to be assumed on a bad boundary. To load such a quantity on some machines, it would be necessary to
use two separate operations. The first operation would be to move the upper and lower halves into the
halves of an aligned temporary. The second would be to load that double-precision temporary. The
reverse would be needed to store a result. All double-precision real and complex quantities are required
to fall on even word boundaries on machines with corresponding hardware requirements and to issue a
diagnostic if the source code demands a violation of the rule.

Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of that procedure
must be declared in an external statement. This requirement arises as a subtle corollary of the way we

represent character string arguments. A warning is printed if a dummy procedure is not declared
external. Code is correct if there are no character arguments.

T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective. These codes
allow rereading or rewriting part of the record which has already been processed. The implementation
uses “‘seeks”; so if the unit is not one which allows seeks (such as a terminal) the program is in error. A
benefit of the implementation chosen is that there is no upper limit on the length of a record nor is it

necessary to predeclare any record lengths except where specifically required by Fortran or the
operating system.

9-8 ' ICON INTERNATIONAL

FORTRAN 77

INTERPROCEDURE INTERFACE

To be able to write C language procedures that call or are called by Fortran procedures, it is necessary
to know the conventions for procedure names, data representation, return values, and argument lists
that the compiled code obeys.

Procedure Names

Under ICON/UXV operating systems, the name of a common block or a Fortran procedure has an
underscore appended to it by the compiler to distinguish it from a C language procedure or external
variable with the same user-assigned name. Fortran library procedure names have embedded
underscores to avoid clashes with user-assigned subroutine names.

Data Representations

The following is a table of corresponding Fortran and C language declarations:

Fortran C Language

integer*2 x short int x;

integer x long int x;

logical x long int x;

real x float x;

double precision x double x;

complex x struct { float r, i; } x;
double complex x struct { double dr, di; } x;
character*s x char x[6];

By the rules of Fortran, integer, logical, and real data occupy the same amount of memory.

Return Values

A function of type integer, logical, real, or double precision declared as a C language function
returns the corresponding type. A complex or double complex function is equivalent to a C language
routine with an additional initial argument that points to the place where the return value is to be
stored. Thus, the following:

complex function f(. . .)
is equivalent to

struct { float r, i; } temp;
f_(&temp, . ..)

A character-valued function is equivalent to a C language routine with two extra initial arguments —
a data address and a length. Thus, :

character*15 function g(. . .)

PROGRAMMER GUIDE 9-9

FORTRAN 77

is equivalent to

char result|];
long int length;
g-(result, length, . . .)

and could be invoked in C language by

char chars[15];

g._.(c.hars, 15L,...);

Subroutines are invoked as if they were integer-valued functions whose value specifies which alternate
return to use. Alternate return arguments (statement labels) are not passed to the function but are
used to do an indexed branch in the calling procedure. (If the subroutine has no entry points with
alternate return arguments, the returned value is undefined.) The statement

call nret(*1, *2, *3)
is treated exactly as if it were the computed goto
goto (1, 2, 3), nret()

Argument Lists

All Fortran arguments are passed by address. In addition, for every argument that is of type character
or that is a dummy procedure, an argument giving the length of the value is passed. (The string lengths
are long int quantities passed by value.) The order of arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument.

Thus, the call in

external f
character*7 s
integer b(3)

call sam(f, b(2), s)

is equivalent to that in

9-10 ICON INTERNATIONAL

FORTRAN 77

int f();
char s(7];
long int b[3];

sam_(f, &b[1], s, OL, 7L);

Note that the first element of a C language array always has subscript 0, but Fortran arrays begin at 1
by default. Fortran arrays are stored in column-major order; C language arrays are stored in row-
major order.

FILE FORMATS

Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and direct formatted

and unformatted. Under ICON/UXV operating systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

Fortran 1/0 is based on “records.” When a direct file is opened in a Fortran program, the record length
of the records must be given; and this is used by the Fortran I/O system to make the file look as if it is
made up of records of the given length. In the special case that the record length is given as 1, the files
are not considered to be divided into records but are treated as byte-addressable byte strings; i.e., as
ordinary files under the ICON/UXV operating system. (A read or write request on such a file keeps
consuming bytes until satisfied rather than being restricted to a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will ever be read
or written by any means except Fortran I/O statements. Each record is preceded and followed by an
integer containing the record’s length in bytes.

The Fortran 1/O system breaks sequential formatted files into records while reading by using each
new-line as a record separator. The result of reading off the end of a record is undefined according to
the Fortran 77 American National Standard. The I/O system is permissive and treats the record as
being extended by blanks. On output, the 1/O system will write a new-line at the end of each record.
It is also possible for programs to write new-lines for themselves. This is an error, but the only eflect
will be that the single record the user thought was written will be treated as more than one record when
being read or backspaced over.

Preconnected Files and File Positions

Units 5, 6, and O are preconnected when the program starts. Unit 5 is connected to the standard input,
unit 6 is connected to the standard output, and unit O is connected to the standard error unit. All are
connected for sequential formatted 1/0O.

All the other units are also preconnected when execution begins. Unit n is connected to a file named
fort.n. These files need not exist nor will they be created unless their units are used without first
executing an open. The default connection is for sequential formatted 1/0.

PROGRAMMER GUIDE 9-11

FORTRAN 77

The Fortran 77 Standard does not specify where a file which has been explicitly opened for sequential
1/0 is initially positioned. In fact, the I/O system attempts to position the file at the end. A write will
append to the file and a read will result in an “end of file” indication. To position a file to its

beginning, use a rewind statement. The preconnected units 0, 5, and 6 are positioned as they come
from the parent process.

9-12 : ICON INTERNATIONAL

Chapter 10

RATFOR
PAGE
10-1
10-1
10-1
THE *“if-else’” CONSTRUCTION 10-2
Nested U STALEIMENTSc.uiiiiiiiiiiiiii et eeete et et e e ca st st e stba s aassetbassaianasannseannsaansraans 10-3
THE “‘switch” STATEMENTcoiiiiiiiiii ettt e et e e et s e e et b s e e abas e s eaia s eaanees 10-4
THE “do” STATEMENToiiiiiiiiiiiiiii ittt et s e te s baat e s et e et aaai s e s s anaa s eetanseeesnaseenunanns 10-5
THE “‘break” AND “next’ STATEMENTScoiitiiiiiiiiiii it ee e sr s st et e e s s e s ensen 10-5
THE *“*While’ STATEMENTttt i et ettt e eeeaaer e et etee ettt tata s tetanaan e etataaeeettnnassteunraentonaen 10-6
THE “for’ STATEMENT ...t et e et re e s et ane e e e sttt s etanna e e ebraueeestansseenaanserns 10-7
THE “‘repeat-uUntl] ST A T EMEN Tottt rtetartresestaarsenetasnrnesernstesesarnsnsresenesnenrnensnnn 10-8
THE *‘return” STATEMENT B TP PP 10-8
THE ““‘deflne’ STATEMENT ettt ettt e tte et e ettt et ettt e aetsetteetnaaesnarenaasns 10-9
THE “‘Include’” STATEMENT ... o ettt ettt e e e ertatb bt e ae ettt e eaettnaaaaeatntnaeartransaernnaaaaranaeeeen 10-9
FREE-FORM INPUT ...ttt ettt e ettt ee e e e e e e et e e eetht e e e et tannaeeetannaeeentnaaarennnnns 10-10
TRANSL ATION S Lttt e e ettt ettt ettt e e tas e e et e e tass et e e aae e eeaa e aeae e aetan e ana e enn e ananseraneenneanns 10-10
WARNINGS .o e ettt ettt e e ettt et e s eas e e rea e oa s e aae et e teaa e eas e eaban e atnseasnaenensannnsasnsaenns 10-11

AN

Chapter 10
RATFOR

GENERAL

This chapter describes the Ratfor(1) preprocessor. It is assumed that the user is familiar with
the current implementation of Fortran 77 in the ICON/UXV operating system.

The Ratfor language allows users to write Fortran programs in a fashion similar to C
language. The Ratfor program is implemented as a preprocessor that translates this
“simplified” language into Fortran. The facilities provided by Ratfor are:

o Statement grouping

if—else and switch for decision making

while, for, do, and repeat—until for looping

break and next for controlling loop exits

Free form input such as multiple statements/lines and automatic continuation
Simple comment convention

Translation of >, >=, etc., into .gt., .ge., etc.

return statement for functions

define statement for symbolic parameters

include statement for including source files.

USAGE

The Ratfor program takes either a list of file names or the standard input and writes Fortran
on the standard output. Options include -8x, which uses x as a continuation character in
column 6 (the ICON/UXV system uses & in column 1), -h, which causes quoted strings to be
turned into nH constructs and -C, which causes Ratfor comments to be copied into the
generated Fortran.

STATEMENT GROUPING

The Ratfor language provides a statement grouping facility. A group of statements can be
treated as a unit by enclosing them in the braces { and }. For example, the Ratfor code

if (x > 100)
{ call error("x>100"); err = 1; return }

will be translated by the Ratfor preprocessor into Fortran equivalent to

PROGRAMMER GUIDE 10-1

RATFOR

if (x .le. 100) goto 10
call error(5hx>100)
err =1
return

10

which should simplify programming effort. By using { and }, a group of statements can be used
instead of a single statement.

Also note in the previous Ratfor example that the character > was used instead of .GT. in
the if statement. The Ratfor preprocessor translates this C language type operator to the
appropriate Fortran operator. More on relationship operators later.

In addition, many Fortran compilers permit character strings in quotes (like "z>100"). But
others, like ANSI Fortran 66, do not. Ratfor converts it into the right number of Hs.

The Ratfor language is free form. Statements may appear anywhere on a line, and several

may appear on one line if they are separated by semicolons. The previous example could also
be written as

if (x > 100) {
call error("x>100")
err =1
return

which shows grouped statements spread over several lines. In this case, no semicolon is needed

at the end of each line because Ratfor assumes there is one statement per line unless told
otherwise.

Of course, if the statement that follows the if is a single statement, no braces are needed.

THE ‘‘if-else’’ CONSTRUCTION

The Ratfor language provides an else statement. The syntax of the if-else construction is:

if (legal Fortran condition)
ratfor statement
else

ratfor statement

where the else part is optional. The legal Fortran condition is anything that can legally go
into a Fortran Logical IF statement. The Ratfor preprocessor does not check this clause since
it does not know enough Fortran to know what is permitted. The "ratfor” statement is any

10-2 ICON INTERNATIONAL

N

RATFOR

Ratfor or Fortran statement or any collection of them in braces. For example:

if (a <=b)

{ sw =0; write(6, 1) a, b }
else

{sw =1, write(6, 1) b, a }

is a valid Ratfor if-else construction. This writes out the smaller of a and b, then the larger,
and sets sw appropriately.

As before, if the statement following an if or an else is a single statement, no braces are
needed.

Nested “if”’ Statements

The statement that follows an if or an else can be any Ratfor statement including another if
or else statement. In general, the structure

if (condition) action
else if (condition) action
else action

provides a way to write a multibranch in Ratfor. (The Ratfor language also provides a switch
statement which could be used instead, under certain conditions.) The last else handles the
“default” condition. If there is no default action, this final else can be omitted. Thus, only the
actions associated with the valid condition are performed. For example:

if (x <0)
x=0

else if (x > 100)
x = 100

will ensure that x is not less than 0 and not greater than 100.

Nested if and else statements could result in ambiguous code. In Ratfor when there are more
if statements than else statements, else statements are associated with the closest previous if
statement that currently does not have an associated else statement. For example:

if (x > 0)

if (y > 0)
write(6,1) x, y
else
write(6,2) y

PROGRAMMER GUIDE 10-3

RATFOR

is interpreted by the Ratfor preprocessor as

if (x> 0){
if (y > 0)
write(6, 1) x, y
else
write(6, 2) y

in which the braces are assumed. If the other association is desired it must be written as

if (x > 0) {
if (y > 0)
write(6, 1) x, y
}
else
write(6, 2) y

with the braces specified.

THE ‘“‘switch” STATEMENT

The switch statement provides a way to express multiway branches which branch on the value
of some integer-valued expression. The syntax is

switch (ezpression) {
case ezxprl :
statements
case expr?, expr3:
statements

default:
statements

where each case is followed by an integer expression (or several integer expressions separated
by commas). The switch ezpression is compared to each case ezpr until a match is found.
Then the statements following that case are executed. If no cases match expression, then the
statements following default are executed. The default section of a switch is optional.

When the statements associated with a case are executed, the entire switch is exited
immediately. This is different from C language.

10-4 ICON INTERNATIONAL

RATFOR

THE ‘‘do’” STATEMENT

The do statement in Ratfor is quite similar to the DO statement in Fortran except that it
uses no statement number (braces are used to mark the end of the do instead of a statement
number). The syntax of the ratfor do statement is

do legal-Fortran-DO-text {
ratfor statements
}

The legal-Fortran-DO-tezt must be something that can legally be used in a Fortran DO
statement. Thus if a local version of Fortran allows DO limits to be expressions (which is not
currently permitted in ANSI Fortran 66), they can be used in a ratfor do statement. The
ratfor statements are enclosed in braces; but as with the if, a single statement need not have
braces around it. For example, the following code sets an array to zero:

doi=1,n
x(i) = 0.0

and the code

doi=1,n
doj=1,n
m(i, j) =0

sets the entire array m to zero.

THE ‘‘break” AND “next’’ STATEMENTS

The Ratfor break and next statements provide a means for leaving a loop early and one for
beginning the next iteration. The break causes an immediate exit from the do; in effect, it is
a branch to the statement after the do. The next is a branch to the bottom of the loop, so it
causes the next iteration to be done. For example, this code skips over negative values in an
array

doi=1,n{
if (x(i) < 0.0)
next
process positive element

The break and next statements will also work in the other Ratfor looping constructions and
will be discussed with each looping construction.

PROGRAMMER GUIDE 10-5

RATFOR

rﬁ)
The break and next can be followed by an integer to indicate breaking or iterating that level
of enclosing loop. For example:
break 2
exits from two levels of enclosing loops, and
break 1
is equivalent to break. The
next 2
iterates the second enclosing loop.
THE ‘“‘while’” STATEMENT
The Ratfor language provides a while statement. The syntax of the while statement is P
while (legal-Fortran-condition)
ratfor statement
As with the if, legal—Fortran—condition is something that can go into a Fortran Logical IF,
and ratfor statement is a single statement which may be multiple statements enclosed in
braces.
For example, suppose nextch is a function which returns the next input character both as a
function value and in its argument. Then a while loop to find the first nonblank character
could be
while (nextch(ich) == iblank)
where a semicolon by itself is a null statement (which is necessary here to mark the end of the
while). If the semicolon were not present, the while would control the next statement. When
the loop is exited, ich contains the first nonblank.
A
NS

10-6 ICON INTERNATIONAL

RATFOR

THE ‘“‘for”” STATEMENT

The for statement is another Ratfor loop. A for statement allows explicit initialization and
increment steps as part of the statement.

The syntax of the for statement is

for (init ; condition ; increment)
ratfor statement

where init is any single Fortran statement which is executed once before the loop begins. The
increment is any single Fortran statement that is executed at the end of each pass through the
loop before the test. The condition is again anything that is legal in a Fortran Logical IF.
Any of init, condition, and increment may be omitted although the semicolons must always be
present. A nonexistent condition is treated as always true, so

for (;;)

is an infinite loop.

For example, a Fortran DO loop could be written as
for(i=1;i<=nji=i+1)..

which is equivalent to

i=1
while (i <=n) {

i=1+1

The initialization and increment of ¢ have been moved into the for statement.

The for, do, and while versions have the advantage that they will be done zero times if n is
less than 1. In addition, the break and next statements work in a for loop.

The tncrement in a for need not be an arithmetic progression. The program

sum = 0.0
for (i = first; i > 0; 1 = ptr(i))
sum = sum + value(i)

PROGRAMMER GUIDE 10-7

RATFOR

steps through a list (stored in an integer array ptr) until a zero pointer is found while adding
up elements from a parallel array of values. Notice that the code also works correctly if the
list is empty.

THE ‘“‘repeat-until’”’ STATEMENT

There are times when a test needs to be performed at the bottom of a loop after one pass

through. This facility is provided by the repeat-until statement. The syntax for the repeat-
until statement is

repeat
ratfor statement
until (legal-Fortran-condition)

where ratfor—statement is done once, then the condition is evaluated. If it is true, the loop is
exited; if it i1s false, another pass is made.

The until part is optional, so a repeat by itself is an infinite loop. A repeat-until loop can be
exited by the use of a stop, return, or break statement or an implicit stop such as running
out of input with a READ statement.

As stated before, a break statement causes an immediate exit from the enclosing repeat-

until loop. A next statement will cause a skip to the bottom of a repeat-until loop (i.e., to
the until part).

THE ‘‘return” STATEMENT

The standard Fortran mechanism for returning a value from a routine uses the name of the
routine as a variable. This variable can be assigned a value. The last value stored in it is the

value returned by the function. For example, in a Fortran routine named equal, the
statements

equal =0
return

cause equal to return zero.

The Ratfor language provides a return statement similar to the C language return
statement. In order to return a value from any routine, the return statement has the syntax

return (expression)

10-8 ICON INTERNATIONAL

RATFOR

where ezpression is the value to be returned.

If there is no parenthesized expression after return, no value is returned.

THE ‘‘define’’ STATEMENT

The Ratfor language provides a define statement similar to the C language version. Any
string of alphanumeric characters can be defined as a name. Whenever that name occurs in
the input (delimited by nonalphanumerics), it is replaced by the rest of the definition line.
(Comments and trailing white spaces are stripped off.) A defined name can be arbitrarily long
and must begin with a letter. '

Usually the define statement is used for symbolic parameters. The syntax of the define
statement is

define name value

where name is a symbolic name that represents the quantity of value. For example:

define ROWS 100

define CLOS 50

dimension a(ROWS), b(ROWS, COLS)
if (i > ROWS | j > COLS) ...

causes the preprocessor to replace the name ROWS with the value 100 and the name COLS
with the value 50. Alternately, definitions may be written as

define(ROWS, 100)

in which case the defining text is everything after the comma up to the right parenthesis. This
allows multiple-line definitions.

THE “‘include” STATEMENT

The Ratfor language provides an include statement similar to the #include <...> statement
in C language. The syntax for this statement is

include file

which inserts the contents of the named file into the Ratfor input file in place of the include
statement. The standard usage is to place COMMON blocks on a file and use the include
statement to include the common code whenever needed.

PROGRAMMER GUIDE 10-9

RATFOR

FREE-FORM INPUT

In Ratfor, statements can be placed anywhere on a line. Long statements are continued
automatically as are long conditions in if, for, and until statements. Blank lines are ignored.
Multiple statements may appear on one line if they are separated by semicolons. No semicolon
is needed at the end of a line if Ratfor can make some reasonable guess about whether the
statement ends there. Lines ending with any of the characters

are assumed to be continued on the next line. Underscores are discarded wherever they occur.
All other characters remain as part of the statement.

Any statement that begins with an all-numeric field is assumed to be a Fortran label and
placed in columns 1 through 5 upon output. Thus:

write(6, 100); 100 format("hello")
is converted into

write(6, 100)
100 format(5hhello)

TRANSLATIONS
When the -h option is chosen, text enclosed in matching single or double quotes is converted to
nH... but is otherwise unaltered (except for formatting — it may get split across card

boundaries during the reformatting process). Within quoted strings, the backslash (\) serves as
an escape character; i.e., the next character is taken literally. This provides a way to get
quotes and the backslash itself into quoted strings. For example:

l!\ 41l

is a string containing a backslash and an apostrophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more general.)

Any line that begins with the character 9% is left absolutely unaltered except for stripping off
the % and moving the line one position to the left. This is useful for inserting control cards
and other things that should not be preprocessed (like an existing Fortran program). Use %

only for ordinary statements not for the condition parts of if, while, etc., or the output may
come out in an unexpected place.

The following character translations are made (except within single or double quotes or on a
line beginning with a %):

10-10 ICON INTERNATIONAL

RATFOR

== .eq.
= _.ne.
> gt
>= .ge.
< It
<= ..
& .and.
| .or.

! .not.

In addition, the following translations are provided for input devices with restricted character
sets:

—_—

&8 =®

WARNINGS
The Ratfor preprocessor catches certain syntax errors (such as missing braces), else statements

without if statements, and most errors involving missing parentheses in statements.

All other errors are reported by the Fortran compiler. Unfortunately, the Fortran compiler
prints messages in terms of generated Fortran code and not in terms of the Ratfor code. This
makes it difficult to locate Ratfor statements that contain errors.

The keywords are deserved. Using if, else, while, etc., as variable names will cause

considerable problems. Likewise, spaces within keywords and use of the Arithmetic IF will
cause problems.

The Fortran nH convention is not recognized by Ratfor. Use quotes instead.

PROGRAMMER GUIDE 10-11

RATFOR

// \\\
EXAMPLE OF RATFOR CONVERSION N !

As an example of how to use the Ratfor program, the following program prog.r (where the .r
indicates a Ratfor source program), is written in the Ratfor language:

ICNT=0
10 WRITE(S,SI)
31 FORMAT("INPUT FIRST NUMBER")
READ(5,32) A
32 FORMAT(F10.2)
WRITE(6,83)
33 FORMAT("INPUT SECOND NUMBER")
READ(5,34) B
34 FORMAT(F10.2)
IF(A(B)
WRITE(S,SG) A,B
ELSE WRITE(6,37)A,B
36 FORMAT(F10.2," < ",F10.2)
' 37 FORMAT(F10.2," Se= ",F10.2)
ICNT=ICNT+1
IF(ICNT.EQ.S)
GOTO 100
GOTO 10
100 END

The command
ratfor prog.r > prog.f

causes the Fortran translation program prog.f to be produced. (The Ratfor program prog.r
remains intact.) The Fortran program prog.f follows:

A
_/

10-12 ICON INTERNATIONAL

RATFOR

lcnt=0

10 write(6,31)

31 format("INPUT FIRST NUMBER")
read(5,32) a :

32 format(f10.2)
write(6,33)

33 format (" INPUT SECOND NUMBER")
read(5,34) b

34 format(f10.2)

if(.not.(a.lt.b))goto 23000
write(6,36) a,b
goto 23001

23000 continue
write(6,37)a,b

23001 continue

36 format(f10.2," < ",f10.2)

37 format(f10.2," >= ",f10.2)
lent=icnt+1
if(.not.(icnt.eq.5))goto 23002

goto 100
23002 continue

goto 10
100 end

The Fortran program prog.f is compiled using the command
{77 prog.f

An object program file prog.o and a final output file a.out are produced. Since the output file
a.out is an executable file, the command

a.out

causes the program to run.

The Ratfor program prog.r can also be translated and compiled with the single command
{77 prog.r

where the .r indicates a Ratfor source program. An object file prog.o and a final output file
a.out are produced.

PROGRAMMER GUIDE 10-13

g

RATFOR

10-14

NOTES

ICON INTERNATIONAL

Chapter 11

THE PROGRAMMING LANGUAGE EFL

PAGE
INTRODUGTION ..ottt st esss et e s e ee et e s st eeste s et s b st e e st s s seese st asas s b s ass bbb sesbassasnasasssesne 11-1
00 € (XN P 20) 3% SOOI
PROGRAMFORMcooiiiiiiiiiiicccierri et

DATA TYPES AND VARIABLES
EXPRESSIONS ...t e

DECLARATIONS L..oiiitiiiiieiiitteetree st te st e ettt e sttt sasbee s ateeesaseeessteeaateemsaessasbaeaeeasteensseeeasseeaanseeeeseeeeeannees
EXECUTABLE STATEMENTS
PROCEDURES

..

ATAVISMS L. e et ce ettt at e e e e ettt st s e s tn s te b e s e abas s s as b b s e e s e bt et s e e b e e s b aa e e aaa s raes
COMPILER OPTIONS ..ottt s s s e et et e bbb e s s s e s e s e s baabaaa e e e eabans
EXAMPLES ... et e e et e et a b e e e n e s taa s et e baa s aeaaeees
|20 30 NN 23 1 05 R U
DIFFERENCES BETWEEN RATFOR AND EFLcoociiiiiiiiiii et 11-41
(070 . § o £) 0] 3 PR 11-42
CONSTRAINTS ON EFL ..ottt e s et e e e e s e eessab e e e raateeesaaeens 11-44

C

Chapter 11
THE PROGRAMMING LANGUAGE EFL

INTRODUCTION

EFL is a clean, general purpose computer language intended to encourage portable
programming. It has a uniform and readable syntax and good data and control flow
structuring. EFL programs can be translated into efficient Fortran code, so the EFL
programmer can take advantage of the ubiquity of Fortran, the valuable libraries of software
written in that language, and the portability that comes with the use of a standardized
language, without suffering from Fortran’s many failings as a language. It is especially useful
for numeric programs. Thus, the EFL language permits the programmer to express
complicated ideas in a comprehensible way, while permitting access to the power of the
Fortran environment.

The name EFL originally stood for “Extended Fortran Language.” The current compiler is
much more than a simple preprocessor: it attempts to diagnose all syntax errors, to provide
readable Fortran output, and to avoid a number of niggling restrictions.

In examples and syntax specifications, boldface type is used to indicate literal words and
punctuation, such as while. Words in italic type indicate an item in a category, such as an
ezxpression. A construct surrounded by double brackets represents a list of one or more of those
items, separated by commas. Thus, the notation

[item]
could refer to any of the following:

item
item, ttem
item, ttem, item

The reader should have a fair degree of familiarity with some procedural language. There will
be occasional references to Ratfor and to Fortran which may be ignored if the reader is
unfamiliar with those languages.

PROGRAMMER GUIDE 11-1

EFL

LEXICAL FORM

Character Set

The following characters are legal in an EFL program:

letters abcdefghijklm
nopqrstuvwxyz

digits 0123456789

white space blank tab

quotes r-

sharp #

continuation —

braces { }

parentheses ()

other sy 30t .+ = %/
L< > & ~ 18

Letter case (upper or lower) is ignored except within strings, so “a” and “A” are treated as the
same character. All of the examples below are printed in lower case. An exclamation mark

(“?”) may be used in place of a tilde (“~”). Square brackets ([’ and “]”) may be used in place
of braces (“{” and “}”).

Lines

EFL is a line-oriented language. Except in special cases (discussed below), the end of a line
marks the end of a token and the end of a statement. The trailing portion of a line may be
used for a comment. There is a mechanism for diverting input from one source file to another,
so a single line in the program may be replaced by a number of lines from the other file.
Diagnostic messages are labeled with the line number of the file on which they are detected.

White Space

Outside of a character string or comment, any sequence of one or more spaces or tab
characters acts as a single space. Such a space terminates a token.

Corrunents

A comment may appear at the end of any line. It is introduced by a sharp (#) character, and
continues to the end of the line. (A sharp inside of a quoted string does not mark a comment.)
The sharp and succeeding characters on the line are discarded. A blank line is also a
comment. Comments have no effect on execution.

11-2 ICON INTERNATIONAL

C

EFL

Include Files

It is possible to insert the contents of a file at a point in the source text, by referencing it in a
line like

include joe

No statement or comment may follow an include on a line. In effect, the include line is
replaced by the lines in the named file, but diagnostics refer to the line number in the included
file. Includes may be nested at least ten deep. '

Continuation
Lines may be continued explicitly by using the underscore (_) character. If the last character
of a line (after comments and trailing white space have been stripped) is an underscore, the

end of a line and the initial blanks on the next line are ignored. Underscores are ignored in
other contexts (except inside of quoted strings). Thus

1_000_000_
000

equals @10 sup 9@.

There are also rules for continuing lines automatically: the end of line is ignored whenever it is
obvious that the statement is not complete. To be specific, a statement is continued if the last
token on a line is an operator, comma, left brace, or left parenthesis. (A statement is not
continued just because of unbalanced braces or parentheses.) Some compound statements are
also continued automatically; these points are noted in the sections on executable statements.

Multiple Staternenits on a Line

A semicolon terminates the current statement. Thus, it is possible to write more than one
statement on a line. A line consisting only of a semicolon, or a semicolon following a semicolon,
forms a null statement.

Tokens

A program is made up of a sequence of tokens. Each token is a sequence of characters. A
blank terminates any token other than a quoted string. End of line also terminates a token
unless explicit continuation (see above) is signaled by an underscore.

PROGRAMMER GUIDE 11-3

EFL

A0
Identifiers ~
An identifier is a letter or a letter followed by letters or digits. The following is a list of the
reserved words that have special meaning in EFL. They will be discussed later.
array exit precision
automatic external procedure
break false read
call field readbin
case . for real
character function repeat
common go return
complex goto select
continue if short
debug implicit sizeof
default include static
define initial struct
dimension integer subroutine
do internal true
double lengthof until
doubleprecision logical value
else long while
end next write)
equivalence option writebin
The use of these words is discussed below. These words may not be used for any other purpose.
Strings
A character string is a sequence of characters surrounded by quotation marks. If the string is
bounded by single-quote marks (/), it may contain double quote marks ("), and vice versa. A
quoted string may not be broken across a line boundary.
'hello there’
"ain’t misbehavin’”
Irdeger Constants
An integer constant is a sequence of one or more digits.
0
57
123456
AN

o/

11-4 ' ICON INTERNATIONAL

EFL

Floating Poinit Constants

A floating point constant contains a dot and/or an exponent field. An ezponent field is a letter
d or e followed by an optionally signed integer constant. If I and Jare integer constants and E
is an exponent field, then a floating constant has one of the following forms:

g

L
LJ
IE
LE
JE
LIJE

Punctuation
Certain characters are used to group or separate objects in the language. These are

parentheses ()
braces {}
comma ,
semicolon ;
colon :
end-of-line

The end-of-line is a token (statement separator) when the line is neither blank nor continued.

Operators

The EFL operators are written as sequences of one or more non-alphanumeric characters.

+ — % [*x

< <= >= == =
&& |l & |

3 —— = kok=—
&&= = &= =

> . 3§

A dot (“.”) is an operator when it qualifies a structure element name, but not when it acts as a
decimal point in a numeric constant. There is a special mode (see "ATAVISMS") in which

some of the operators may be represented by a string consisting of a dot, an identifier, and a
dot (e.g., .It.).

PROGRAMMER GUIDE 11-5

EFL

AN

.
Macros

EFL has a simple macro substitution facility. An identifier may be defined to be equal to a
string of tokens; whenever that name appears as a token in the program, the string replaces it.
A macro name is given a value in a define statement like

define count n+4+=1

Any time the name count appears in the program, it is replaced by the statement
n+=1
A define statement must appear alone on a line; the form is

define name rest-of-line

Trailing comments are part of the string.

PROGRAM FORM

Files

A file is a sequence of lines. A file is compiled as a single unit. It may contain one or more

procedures. Declarations and options that appear outside of a procedure affect the succeeding
procedures on that file.

Procedures

Procedures are the largest grouping of statements in EFL. Each procedure has a name by
which it is invoked. (The first procedure invoked during execution, known as the main

procedure, has the null name.) Procedure calls and argument passing are discussed in
"PROCEDURES."

Blocks

Statements may be formed into groups inside of a procedure. To describe the scope of names,
it is convenient to introduce the ideas of block and of nesting level. The beginning of a program
file is at nesting level zero. Any options, macro definitions, or variable declarations are also at
level zero. The text immediately following a procedure statement is at level 1. After the
declarations, a left brace marks the beginning of a new block and increases the nesting level by
1; a right brace drops the level by 1. (Braces inside declarations do not mark blocks.) (See
"Blocks" under "EXECUTABLE STATEMENTS.") An end statement marks the end of the Y
procedure, level 1, and the return to level 0. A name (variable or macro) that is defined at M/
level K is defined throughout that block and in all deeper nested levels in which that name is

11-6 ICON INTERNATIONAL

EFL

not redefined or redeclared. Thus, a procedure might look like the following:

block O
procedure george
real x
x=2
if(x > 2)
{ # new block
integer x # a different variable
dox =1,7
write(,x)
} # end of block
end # end of procedure, return to block 0
Statements

A statement is terminated by end of line or by a semicolon. Statements are of the following
types:

Option
Include
Define

Procedure

End

Declarative
Executable

The option statement is described in "COMPILER OPTIONS". The include, define, and end
statements have been described above; they may not be followed by another statement on a
line. Each procedure begins with a procedure statement and finishes with an end statement;
these are discussed in "PROCEDURES". Declarations describe types and values of variables
and procedures. Executable statements cause specific actions to be taken. A block is an
example of an executable statement; it is made up of declarative and executable statements.

Labels

An executable statement may have a label which may be used in a branch statement. A label
is an identifier followed by a colon, as in

read(, x)
if(x < 3) goto error

error: fatal("bad input”)

PROGRAMMER GUIDE 11-7

EFL

DATA TYPES AND VARIABLES

EFL supports a small number of basic (scalar) types. The programmer may define objects

made up of variables of basic type; other aggregates may then be defined in terms of previously
defined aggregates.

Basic Types
The basic types are

logical
integer
field(m:n)
real

complex

long real
long complex
character(n)

A logical quantity may take on the two values frue and false. An integer may take on any
whole number value in some machine-dependent range. A field quantity is an integer restricted
to a particular closed interval @([m:n])@. A ‘“real” quantity is a floating point approximation
to a real or rational number. A long real is a more precise approximation to a rational. (Real
quantities are represented as single precision floating point numbers; long reals are double
precision floating point numbers.) A complex quantity is an approximation to a complex

number, and is represented as a pair of reals. A character quantity is a fixed-length string of n
characters.

Constants
There is a notation for a constant of each basic type.

A logical may take on the two values

true
false

An integer or field constant is a fixed point constant, optionally preceded by a plus or minus
sign, as in

17
—94
+6
0

A long real (“double precision”) constant is a floating point constant containing an exponent
field that begins with the letter d. A real (“single precision”) constant is any other floating

11-8 ICON INTERNATIONAL

EFL

point constant. A real or long real constant may be preceded by a plus or minus sign. The
following are valid real constants:

17.3

—4

7.9e—8 @("="7.9 times 10 sup -6)@
14e9 (@("="1.4 times 10 sup 10)@

The following are valid long real constants

7.9d—8 @("="7.9 times 10 sup -6)@
5d3

A character constant is a quoted string.

. Variables

A variable is a quantity with a name and a location. At any particular time the variable may
also have a value. (A variable is said to be undefined before it is initialized or assigned its first

value, and after certain indefinite operations are performed.) Each variable has certain
attributes:

Storage Class

The association of a name and a location is either transitory or permanent. Transitory
association is achieved when arguments are passed to procedures. Other associations are
permanent (static). (A future extension of EFL may include dynamically allocated variables.)

Scope of Names

The names of common areas are global, as are procedure names: these names may be used
anywhere in the program. All other names are local to the block in which they are declared.

Precision

Floating point variables are either of normal or long precision. This attribute may be stated
independently of the basic type.

Arrays

It is possible to declare rectangular arrays (of any dimension) of values of the same type. The
index set is always a cross-product of intervals of integers. The lower and upper bounds of the
intervals must be constants for arrays that are local or common. A formal argument array
may have intervals that are of length equal to one of the other formal arguments. An element
of an array is denoted by the array name followed by a parenthesized comma-separated list of
integer values, each of which must lie within the corresponding interval. (The intervals may
include negative numbers.) Entire arrays may be passed as procedure arguments or in

PROGRAMMER GUIDE 11-9

EFL

f\\
input foutput lists, or they may be initialized; all other array references must be to individual N)
elements.

Structures
It is possible to define new types which are made up of elements of other types. The compound
object is known as a structure; its constituents are called members of the structure. The
structure may be given a name, which acts as a type name in the remaining statements within
the scope of its declaration. The elements of a structure may be of any type (including
previously defined structures), or they may be arrays of such objects. Entire structures may be
passed to procedures or be used in input/output lists; individual elements of structures may be
referenced. The uses of structures will be detailed below. The following structure might
represent a symbol table:
struct tableentry
character(8) name
integer hashvalue
integer numberofelements
field(0:1) initialized, used, set
field(0:10) type
//k
EXPRESSIONS
Expressions are syntactic forms that yield a value. An expression may have any of the
following forms, recursively applied:
primary
(expression) .
unary-operator ezpression
ezpression binary-operator ezpression
In the following table of operators, all operators on a line have equal precedence and have
higher precedence than operators on later lines. The meanings of these operators are described
in "Unary Operators” and "Binary Operators” under "EXPRESSIONS".
—> .
**
* [unary+ — ++ —
+ e
< <== > >= = Ve
& &&
_L
s r/t/\ ‘\‘\
(‘

11-10 ICON INTERNATIONAL

EFL

Examples of expressions are

a<b && b<c
—(a + sin(x)) / (5+cos(x))*+2

Primaries
Primaries are the basic elements of expressions. They include constants, variables, array

elements, structure members, procedure invocations, input/output expressions, coercions, and
sizes.

Constants *
Constants are described in "Constants” under "DATA TYPES AND VARIABLES".

Variables

Scalar variable names are primaries. They may appear on the left or the right side of an
assignment. Unqualified names of aggregates (structures or arrays) may appear only as
procedure arguments and in input/output lists.

Array Elements

An element of an array is denoted by the array name followed by a parenthesized list of
subscripts, one integer value for each declared dimension:

a(5)
b(6,—3,4)

Structure Members

A structure name followed by a dot followed by the name of a member of that structure
constitutes a reference to that element. If that element is itself a structure, the reference may
be further qualified.

a.b
x(3).y(4).2(5)

Procedure Invocations

A procedure is invoked by an expression of one of the forms

procedurename ()
procedurename (ezpression)
procedurename (ezpression-1, ..., expression-n)

PROGRAMMER GUIDE 11-11

EFL

The procedurename is either the name of a variable declared external or it is the name of a
function known to the EFL compiler (see "Known Functions” under "PROCEDURES"), or it is
the actual name of a procedure, as it appears in a procedure statement. If a procedurename
is declared external and is an argument of the current procedure, it is associated with the
procedure name passed as actual argument; otherwise it is the actual name of a procedure.

Each ezpression in the above is called an actual argument. Examples of procedure invocations
are

f(x)
work()

g(x) y+3, ’xx’)

When one of these procedure invocations is to be performed, each of the actual argument
expressions is first evaluated. The types, precisions, and bounds of actual and formal
arguments should agree. If an actual argument is a variable name, array element, or structure
member, the called procedure is permitted to use the corresponding formal argument as the
left side of an assignment or in an input list; otherwise it may only use the value. After the
formal and actual arguments are associated, control is passed to the first executable statement
of the procedure. When a return statement is executed in that procedure, or when control
reaches the end statement of that procedure, the function value is made available as the value
of the procedure invocation. The type of the value is determined by the attributes of the
procedurename that are declared or implied in the calling procedure, which must agree with
the attributes declared for the function in its procedure. In the special case of a generic

function, the type of the result is also affected by the type of the argument. See
"PROCEDURES".

Input/ Output Expressions

The EFL input/output syntactic forms may be used as integer primaries that have a non-zero

value if an error occurs during the input or output. See "Input/Output Statements” under
"EXECUTABLE STATEMENTS".

Coercions

An expression of one precision or type may be converted to another by an expression of the
form

attributes (expression)

At present, the only attributes permitted are precision and basic types. Attributes are
separated by white space. An arithmetic value of one type may be coerced to any other
arithmetic type; a character expression of one length may be coerced to a character expression
of another length; logical expressions may not be coerced to a nonlogical type. As a special
case, a quantity of complex or long complex type may be constructed from two integer or

real quantities by passing two expressions (separated by a comma) in the coercion. Examples
and equivalent values are

11-12 ICON INTERNATIONAL

AN
L/

EFL

integer(5.3) =5
long real(5) = 5.0d0
complex(5,3) = 5+3i

Most conversions are done implicitly, since most binary operators permit operands of different
arithmetic types. Explicit coercions are of most use when it is necessary to convert the type of
an actual argument to match that of the corresponding formal parameter in a procedure call.

Sizes

There is a notation which yields the amount of memory required to store a datum or an item
of specified type:

sizeof (leftside)
sizeof (attributes)

In the first case, leftside can denote a variable, array, array element, or structure member.
The value of sizeof is an integer, which gives the size in arbitrary units. If the size is needed
in terms of the size of some specific unit, this can be computed by division:

sizeof(x) / sizeof(integer)
yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal sizeof because certain
data types require final padding on some machines. The lengthof operator gives this larger
value, again in arbitrary units. The syntax is

lengthof (leftside)
lengthof (attributes)

Parentheses

An expression surrounded by parentheses is itself an expression. A parenthesized expression
must be evaluated before an expression of which it is a part is evaluated.

Unary Operators

All of the unary operators in EFL are prefix operators. The result of a unary operator has the
same type as its operand.

PROGRAMMER GUIDE 11-13

EFL

Arithmets

Unary + has no effect. A unary — yields the negative of its operand.

The prefix operator ++ adds one to its operand. The prefix operator — subtracts one from
its operand. The value of either expression is the result of the addition or subtraction. For
these two operators, the operand must be a scalar, array element, or structure member of
arithmetic type. (As a side effect, the operand value is changed.)

Logical

The only logical unary operator is complement (~). This operator is defined by the equations

~ true = false
~ false = true

Binary Operators

Most EFL operators have two operands, separated by the operator. Because the character set
must be limited, some of the operators are denoted by strings of two or three special
characters. All binary operators except exponentiation are left associative.

Arithmetic

The binary arithmetic operators are

+ - addition

@@ subtraction

* multiplication
/ division

*k exponentiation

Exponentiation is right associative: a*xbxkc = a*x(bx*c) = @a sup {(b sup c.)}@ The
operations have the conventional meanings: @8+2"="10@, @8-2 "=~ 6@, @8 2 "=~ 16(@,
@8/2"=" 4@, @8 *x 2 "="8sup 2 "=" 64@.

The type of the result of a binary operation @A op B@ is determined by the types of its
operands:

Type of B
Typeof A | 1 T Ir c lc
1 i r Ir c lc
r r r Ir c lc
Ir Ir Ir Ir le lec
c c c lc c le
le le le le le lec

11-14 ICON INTERNATIONAL

a0

N

EFL

1 = integer

r = real

] r = long real

¢ = complex

1 ¢ = long complex

If the type of an operand differs from the type of the result, the calculation is done as if the
operand were first coerced to the type of the result. If both operands are integers, the result is
of type integer, and is computed exactly. (Quotients are truncated toward zero, so @8/3 =

2@)

Logical
The two binary logical operations in EFL, and and or, are defined by the truth tables:
A B AandB_ _AorB
false false false false
false true false true
true false false true
true true true true

Each of these operators comes in two forms. In one form, the order of evaluation is specified.
The expression

a&&b

is evaluated by first evaluating a; if it is false then the expression is false and b is not
evaluated; otherwise, the expression has the value of b. The expression

allb
is evaluated by first evaluating a; if it is true then the expression is true and b is not
evaluated; otherwise, the expression has the value of b. The other forms of the operators (&

for and and | for or) do not imply an order of evaluation. With the latter operators, the
compiler may speed up the code by evaluating the operands in any order.

Relational Operators

There are six relations between arithmetic quantities. These operators are not associative.

EFL Operator Meaning

< < less than

<= @<=@ less than or equal to
== @=@ equal to

~a= @=@ not equal to
> > greater than
>= @>=@ greater than or equal

PROGRAMMER GUIDE 11-15

EFL

Since the complex numbers are not ordered, the only relational operators that may take
complex operands are == and ~=. The character collating sequence is not defined.

Assignment Operators

All of the assignment operators are right associative. The simple form of assignment is
basic-left-side = ezxpression

A basic-left-stde is a scalar variable name, array element, or structure member of basic type.
This statement computes the expression on the right side, and stores that value (possibly after
coercing the value to the type of the left side) in the location named by the left side. The
value of the assignment expression is the value assigned to the left side after coercion.

There is also an assignment operator corresponding to each binary arithmetic and logical
operator. In each case, @a “op = ~ b@ is equivalent to @2 "=" 2 ~ op” b@. (The operator
and equal sign must not be separated by blanks.) Thus, n+=2 adds 2 to n. The location of
the left side is evaluated only once.

Dynamic Structures

EFL does not have an address (pointer, reference) type. However, there is a notation for
dynamic structures,

leftside —> structurename

This expression is a structure with the shape implied by structurename but starting at the
location of leftside. In effect, this overlays the structure template at the specified location.
The leftside must be a variable, array, array element, or structure member. The type of the
leftside must be one of the types in the structure declaration. An element of such a structure is
denoted in the usual way using the dot operator. Thus,

place(i) —> st.elt

refers to the elt member of the st structure starting at the @i sup th@ element of the array
place.

Repetition Operator
Inside of a list, an element of the form

integer-constant-expression $ constant-expression

is equivalent to the appearance of the ezpression a number of times equal to the first
expression. Thus,

11-16 ICON INTERNATIONAL

N

S

(

EFL

(3, 384, 5)
is equivalent to

(3,4,4,4,5)

Constant Expressions

If an expression is built up out of operators (other than functions) and constants, the value of
the expression is a constant, and may be used anywhere a constant is required.

DECLARATIONS

Declarations statement describe the meaning, shape, and size of named objects in the EFL
language.

Syntax

A declaration statement is made up of attributes and variables. Declaration statements are of
two forms:

attributes variable-list
attributes { declarations }

In the first case, each name in the variable-list has the specified attributes. In the second, each
name in the declarations also has the specified attributes. A variable name may appear in
more than one variable list, so long as the attributes are not contradictory. Each name of a
nonargument variable may be accompanied by an initial value specification. The declarations
inside the braces are one or more declaration statements. Examples of declarations are

integer k=

long real b(7,3)

common(cname)
integer i

long real array(5,0:3) x, y
character(7) ch

PROGRAMMER GUIDE 11-17

EFL

Attributes

Basic Types

The following are basic types in declarations

logical

integer
field(@m:n @)
character(@k@)
real

complex

In the above, the quantities @k@, @m@, and @n@ denote integer constant expressions with
the properties @k>0@ and @n>m@.

Arrays

The dimensionality may be declared by an array attribute

Each of the @b sub i@ may either be a single integer expression or a pair of integer
expressions separated by a colon. The pair of expressions form a lower and an upper bound;
the single expression is an upper bound with an implied lower bound of 1. The number of
dimensions is equal to @n,@ the number of bounds. All of the integer expressions must be
constants. An exception is permitted only if all of the variables associated with an array
declarator are formal arguments of the procedure; in this case, each bound must have the
property that @upper - lower + 1@ is equal to a formal argument of the procedure. (The
compiler has limited ability to simplify expressions, but it will recognize important cases such
as (0:n—1). The upper bound for the last dimension @b sub n)@ may be marked by an

asterisk (*) if the size of the array is not known. The following are legal @bold array@
attributes:

array(5)

array(5, 1:5, —3:0)
array(5, *)
array(0:m—1, m)

Structures

A structure declaration is of the form
struct structname { declaration statements }

The structname is optional; if it is present, it acts as if it were the name of a type in the rest of
its scope. Each name that appears inside the declarations is a member of the structure, and
has a special meaning when used to qualify any variable declared with the structure type. A

11-18 ' ICON INTERNATIONAL

O

EFL

name may appear as a member of any number of structures, and may also be the name of an
ordinary variable, since a structure member name is used only in contexts where the parent
type is known. The following are valid structure attributes

struct xx

{

integer a, b
real x(5)

struct { xx z(3); character(5) y }

The last line defines a structure containing an array of three @bold xx ’s@ and a character
string.

Precision

Variables of floating point (@bold real@ or @bold complex@) type may be declared to be
@bold long@ to ensure they have higher precision than ordinary floating point variables. The
default precision is short.

Common

Certain objects called common areas have external scope, and may be referenced by any
procedure that has a declaration for the name using a

common (commonareaname)

attribute. All of the variables declared with a particular common attribute are in the same
block; the order in which they are declared is significant. Declarations for the same block in
differing procedures must have the variables in the same order and with the same types,
precision, and shapes, though not necessarily with the same names.

External

If a name is used as the procedure name in a procedure invocation, it is implicitly declared to
have the external attribute. If a procedure name is to be passed as an argument, it is
necessary to declare it in a statement of the form

external [name |

If a name has the external attribute and it is a formal argument of the procedure, then it is
associated with a procedure identifier passed as an actual argument at each call. If the name
is not a formal argument, then that name is the actual name of a procedure, as it appears in
the corresponding procedure statement.

PROGRAMMER GUIDE 11-19

EFL

Variable List

The elements of a variable list in a declaration consist of a name, an optional dimension
specification, and an optional initial value specification. The name follows the usual rules.
The dimension specification is the same form and meaning as the parenthesized list in an
array attribute. The initial value specification is an equal sign (=) followed by a constant
expression. If the name is an array, the right side of the equal sign may be a parenthesized list
of constant expressions, or repeated elements or lists; the total number of elements in the list
must not exceed the number of elements of the array, which are filled in column-major order.

The Initial Statement

An initial value may also be specified for a simple variable, array, array element, or member of
a structure using a statement of the form

initial | var = val |

The @var@ may be a variable name, array element specification, or member of structure.

The right side follows the same rules as for an initial value specification in other declaration
statements.

EXECUTABLE STATEMENTS

Every useful EFL program contains executable statements, otherwise it would not do anything
.and would not need to be run. Statements are frequently made up of other statements. Blocks
are the most obvious case, but many other forms contain statements as constituents.

To increase the legibility of EFL programs, some of the statement forms can be broken without

an explicit continuation. A square (O) in the syntax represents a point where the end of a line
will be ignored.

Expression Statements

Subroutine Call

A procedure invocation that returns no value is known as a subroutine call. Such an
invocation is a statement. Examples are

work(in, out)
run()

Input/output statements (see “Input/Output Statements” under "EXECUTABLE
STATEMENTS") resemble procedure invocations but do not yield a value. If an error occurs
the program stops.

11-20 ICON INTERNATIONAL

EFL

Assignment Staternents
An expression that is a simple assignment (=) or a compound assignment (+= etc.) is a
statement:

a=Db
a = sin(x)/6
X*=y

Blocks

A block is a compound statement that acts as a statement. A block begins with a left brace,
optionally followed by declarations, optionally followed by executable statements, followed by a
right brace. A block may be used anywhere a statement is permitted. A block is not an
expression and does not have a value. An example of a block is

{

integer i # this variable is unknown
outside the braces

big =0
doi=1,n
if(big < a(i))
big = a(i)

Test Statements

Test statements permit execution of certain statements conditional on the truth of a predicate.

If Statement

The simplest of the test statements is the if statement, of form
if (logical-ezpression) O statement

The logical expression is evaluated; if it is true, then the statement is executed.

If-Else

A more general statement is of the form

if (logical-ezpression) O statement-10
else O statement-2

If the expression is true then statement-1 is executed, otherwise, statement-2 is executed.
Either of the consequent statements may itself be an if-else so a completely nested test

PROGRAMMER GUIDE 11-21

EFL

sequence is possible:

if(x<y)
if(a<b)
k=1
else
k=2
else
if(a<b)
m=1
else
m=2

An else applies to the nearest preceding un-elsed if. A more common use is as a sequential
test:

if(x==1)
k=1

else if(x==3 | x==>5)
k=2

else
k=3

Select Statement

A multiway test on the value of a quantity is succinctly stated as a select statement, which
has the general form

select(ezpression) O block
Inside the block two special types of labels are recognized. A prefix of the form
case [constant | :

marks the statement to which control is passed if the expression in the select has a value equal
to one of the case constants. If the expression equals none of these constants, but there is a
label default inside the select, a branch is taken to that point; otherwise the statement
following the right brace is executed. Once execution begins at a case or default label it

continues until the next case or default is encountered. The else-if example above is better
written as :

11-22 ICON INTERNATIONAL

£

)

L

/
/

AN

EFL

select(x)

case 1:
k=1
case 3,5:
k=2
default:
k=3
}

Note that control does not “fall through” to the next case.

Loops

The loop forms provide the best way of repeating a statement or sequence of operations. The
simplest (while) form is theoretically sufficient, but it is very convenient to have the more

general loops available, since each expresses a mode of control that arises frequently in
practice.

Whale Statement

This construct has the form
while (logical-ezpression) O statement

The expression is evaluated; if it is true, the statement is executed, and then the test is
performed again. If the expression is false, execution proceeds to the next statement.

For Statement

The for statement is a more elaborate looping construct. It has the form

for (tnitial-statement , O logical-expression ,
D iteration-statement) O body-statement

Except for the behavior of the next statement (see "Branch Statement” under "EXECUTABLE
STATEMENTS"), this construct is equivalent to

initial-statement
while (logical-expression)

body-statement
tteration-statement

}

This form is useful for general arithmetic iterations, and for various pointer-type operations.

PROGRAMMER GUIDE 11-23

EFL

The sum of the integers from 1 to 100 can be computed by the fragment N/

n=20
for(i=1,1<=100,i +=1)
n+4=i

Alternatively, the computation could be done by the single statement

for({n=0;i=1},i<=100,{n +=i;++ })

’

Note that the body of the for loop is a null statement in this case. An example of following a
linked list will be given later.

Repeat Staternerd

The statement
repeat O statement

executes the statement, then does it again, without any termination test. Obviously, a test ‘ ’
inside the statement is needed to stop the loop. « S

Repeat ... Until Statemerd

The while loop performs a test before each iteration. The statement
repeat O statement O until (logical-ezpression)

executes the statement, then evaluates the logical; if the logical is true the loop is complete;
otherwise, control returns to the statement. Thus, the body is always executed at least once.
The until refers to the nearest preceding repeat that has not been paired with an until. In
practice, this appears to be the least frequently used looping construct.

Do Loop

The simple arithmetic progression is a very common one in numerical applications. EFL has a
special loop form for ranging over an ascending arithmetic sequence

do variable = expression-1, expression-2, expression-3
statement

g
The variable is first given the value expression-1. The statement is executed, then expression-8 ((
is added to the variable. The loop is repeated until the variable exceeds ezpression-2. If

11-24 ICON INTERNATIONAL

EFL

expression-8 and the preceding comma are omitted, the increment is taken to be 1. The loop
above is equivalent to

t2 = expression-2

t3 = expression-3

for(variable=expression-1, variable<=t2, variable+=t3)
statement

(The compiler translates EFL do statements into Fortran DO statements, which are in turn
usually compiled into excellent code.) The do variable may not be changed inside of the loop,
and ezpression-1 must not exceed expression-2. The sum of the first hundred positive integers
could be computed by

n=0
doi=1, 100
n+4=i

Branch Statements

Most of the need for branch statements in programs can be averted by using the loop and test
constructs, but there are programs where they are very useful.

Goto Statement

The most general, and most dangerous, branching statement is the simple unconditional
goto label

After executing this statement, the next statement performed is the one following the given
label. Inside of a select the case labels of that block may be used as labels, as in the following
example:

select(k)

case 1:

error(7)
case 2:

k=2

goto case 4
case 3:

k=5

goto case 4
case 4:

fixup(k)
PROGRAMMER GUIDE ' 11-25

EFL

goto default

default:

}

(If two select statements are nested, the case labels of the outer select are not accessible from
the inner one.)

prmsg(“ouch™)

Break Staterment

A safer statement is one which transfers control to the statement following the current select
or loop form. A statement of this sort is almost always needed in a repeat loop:

repeat

{

do a computation

if (finished)
break
}

More general forms permit controlling a branch out of more than one construct.
break 3

transfers control to the statement following the third loop and/or select surrounding the

statement. It is possible to specify which type of construct (for, while, repeat, do, or select)
is to be counted. The statement

break while
breaks out of the first surrounding while statement. Either of the statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

Next Statermerd

The next statement causes the first surrounding loop statement to go on to the next iteration:
the next operation performed is the test of a while, the iteration-statement of a for, the body

of a repeat, the test of a repeat...until, or the increment of a do. Elaborations similar to
those for break are available:

11-26 ICON INTERNATIONAL

—
\

EFL

next

next 3
next 3 for
next for 3

A next statement ignores select statements.

Return

The last statement of a procedure is followed by a return of control to the caller. If it is
desired to effect such a return from any other point in the procedure, a

return

statement may be executed. Inside a function procedure, the function value is specified as an
argument of the statement:

return (ezpression)

Input/Output Statements

EFL has two input statements (read and readbin), two output statements (write and
writebin), and three control statements (endfile, rewind, and backspace). These forms may
be used either as a primary with a integer value or as a statement. If an exception occurs
when one of these forms is used as a statement, the result is undefined but will probably be
treated as a fatal error. If they are used in a context where they return a value, they return
zero if no exception occurs. For the input forms, a negative value indicates end-of-file and a

positive value an error. The input/output part of EFL very strongly reflects the facilities of
Fortran.

Input/ Output Units

Each I/O statement refers to a “unit,” identified by a small positive integer. Two special units
are defined by EFL, the standard input unit and the standard output unit. These particular
units are assumed if no unit is specified in an I/O transmission statement.

The data on the unit are organized into records. These records may be read or written in a
fixed sequence, and each transmission moves an integral number of records. Transmission
proceeds from the first record until the end of file.

Binary Input/ Output

The readbin and writebin statements transmit data in a machine-dependent but swift
manner. The statements are of the form

PROGRAMMER GUIDE 11-27

EFL

writebin(unit , binary-output-list)
readbin(unit , binary-input-list)

Each statement moves one unformatted record between storage and the device. The unit is an
integer expression. A binary-output-list is an iolist (see below) without any format specifiers. A
binary-input-list is an iolist without format specifiers in which each of the expressions is a
variable name, array element, or structure member.

Formatted Input/ Output

The read and write statements transmit data in the form of lines of characters. Each
statement moves one or more records (lines). Numbers are translated into decimal notation.
The exact form of the lines is determined by format specifications, whether provided explicitly
in the statement or implicitly. The syntax of the statements is

write(unit , formatted-output-list)
read(unit , formatted-input-list)

The lists are of the same form as for binary I/O, except that the lists may include format
specifications. If the unst is omitted, the standard input or output unit is used.

Iolists

An 1olist specifies a set of values to be written or a set of variables into which values are to be
read. An iolist is a list of one or more toexpressions of the form

expression
{ iolist }
do-specification { iolist }

For formatted I/O, an foezpression may also have the forms

toezpression : format-specifier
: format-specifier

A do-specification looks just like a do statement, and has a similar effect: the values in the
braces are transmitted repeatedly until the do execution is complete.

Formats

The following are permissible format-specifiers. The quantities @w@, @A @, and @k@ must
be integer constant expressions.

i(w) integer with