USER’S MANUAL

ICON /PICK
OPERATING
SYSTEM

e |

AN

ICON INTERNATIONAL

ICON/PICK
USER’S
MANUAL

IC

Z

Copyright © Icon International, Inc., 1986, 1987. All rights reserved worldwide.
No part of this publication may be reproduced without the express written permission of
Icon International, Inc.

This manual has been prepared by the Documentation Support Group of Icon International,

Inc., P.O. Box, 340 Orem, Utah 84057-0340.

Forms for readers’ comments have been provided at the back of this publication.
Comments are welcomed and may be sent to the address on the comments form.

Icon International, Inc. reserves the right to make changes, without notice, to the
specifications and materials contained herein, and shall not be responsible for any damages
(including consequential) caused by reliance on the material as presented, including, but not
limited to, typographical, arithmetic, and listing errors.

Revision A

Order No. 172-026-001 (Manual Assembly)
Order No. 171-010-001 (Pages Only)

WARNING

This manual contains information which is proprietary to and considered a trade secret of
PICK SYSTEMS, INC. It is expressly agreed that it shall not be reproduced in whole or
part, disclosed, divulged, or otherwise made availble to any third party either directly or
indirectly. Reproduction of this manual for any purpose is prohibited without the prior
express written authorization of Icon International, Inc. and PICK SYSTEMS, INC. All
rights reserved.

Trademarks

IC®N is a registered trademark of Icon International, Inc.
PICK is a registered trademark of PICK SYSTEMS, INC.

S

HHEMHFEHWOOJIOUID W N

WO

NMNNUNONNNNNN HEHHEHERRPREFEHE PR
o

HEHEwOVO~JOWUMd W

[SESEVENY
il
S N
NIy

* e ¢ e e+ e e

HiEEWOWOJOUIS W

WWwwwwwwwwwww
H O

TABLE OF CONTENTS

PAGE
INTRODUCTION . . . e e e e e 1
WHAT IS THE PICK COMPUTER SYSTEM’ e e e e e 2
AN OVERVIEW OF PICK COMPUTER SYSTEM'S MAJOR
FEATURES . . e e e e e e 3
THE PICK SOFTWARE PROCESSORS e e e e e e 5
OVERVIEW OF TCL . . e e e e e e e 6
DATA BASE MANAGEMENT PROCESSORS e e e e e e e 7
AN OVERVIEW OF SYSTEM UTILITIES e e e 8
AN OVERVIEW OF ACCESS e e e e e e e e e 8
AN OVERVIEW OF PICK/BASIC C e e e e e e e e e 9
AN OVERVIEW OF THE EDITOR e K0
AN OVERVIEW OF PROC 10
AN OVERVIEW OF THE PICK OPERATING SOFTWARE . N §
SUMMARY OF PICK IMPLEMENTATIONS T 2
A GLOSSARY OF PICK TERMS 13
FILE STRUCTURE ¢« ¢« « « « « « « . . 18
THE FILE HIERARCHY e
FILE ACCESS A
THE DICTIONARIES . . e e e e e e e e e e e 22
SHARING OF DICTIONARIES e e e e e e e e e oL, 24
BASE AND MODULO 1
MODULO SELECTION . . . e e e e e e e e e e w29
ITEM STRUCTURE (PHYSICAL) e e e e e« e+« o« . . 30
ITEM STRUCTURE (LOGICAL) . . B
ITEM STORAGE AND THE HASHING ALGORITHM e o . .. 34
FILE DEFINITION ITEMS . e e e+« « o . . . 35
FILE SYNONYM DEFINITION ITEMS e e« « « .+ .« . . 38
O-POINTERS : REFLEXIVE FORM . O
O-POINTERS : ACCOUNT SPECIFICATION B - 1¢)
QO—-POINTERS : FILE SPECIFICATION T 2
Q-POINTERS : MULTI-FILE SPECIFICATION - N
ATTRIBUTE DEFINITION ITEMS 41
DICTIONARY ITEMS: A SUMMARY . e« + + « + « . . 43
INITIAL SYSTEM FILES/DICTIONARIES e+« . . . 45
OVERVIEW OF FILE MANAGEMENT PROCESSORS 46
CREATING NEW FILES: THE CREATE-FILE PROCESSOR .47
CLEAR-FILE PROCESSOR 49
DELETE-FILE PROCESSOR . « « « +« .+ . . . 50
COPYING DATA: THE COPY PROCESSOR e « « « +« « . . 51
COPYING DATA: FILE TO FILE COPY .. « o . . 52
COPYING DATA: THE COPY PROCESSOR OPTIONS 54
TERMINAL CONTROL LANGUAGE -1
INTRODUCTION TO TCL Y
TCL VERBTYPES « ¢« ¢« « +« « « .« . 59
TCL—-I VERBS -)
TCL-II VERBS . . e Y
LOGON AND LOGOFF PROCESSORS 3
LOGTO . . e X
CHARGE-TO AND CHARGES e e e e e e e e o . . . 64
LOGON PROCS . .. e)
TERM . . e 1)
TABS : SETTING,TAB STOPS e e+ e e« v+« . . . 68
TIME « ¢ v ¢ « ¢ v ¢ v o v v o v e o . . 69

3.12
3.13
3.14
3.15
3.16
3.17

w
-
o]

.

¢ e e e e e s
« e * s e

* e e s

HHEHRFFWOWOVWWOOOWOOIJATAUTUIUTUTULIUIUTUTLES W D W

QOO0 -
LI [N U W ol N = NSO W - wN -

wN

[I R W b o D D b D D D D D DD DD D D D D DD DD D DD DD DD D
W -

N S ol ol ol el nd el ad ol =l =l =
WWNNNNHHHRHEHOOOO
H W AW WWwww

PROGRAM INTERRUPTION (DEBUG FACILITY)
BLOCK—-PRINT . .

UTILITY PROCS : CT, LISTACC, LISTCONN,
LISTDICTS . .

VERB DEFINITION ITEMS IN M/DICT

EDITOR . . e e e e e e e .
EDITOR PROCESSOR AN INTRODUCTION
EDITOR OPERATION : AN OVERVIEW . . .
EDIT VERB : ENTERING THE EDITOR . .
EDITOR COMMAND SYNTAX e e .
EDITOR "strings"
COLON : EDITOR DELIMITER
UP-ARROW : WILDCARD EDITOR CHARACTE
LINE POINTER CONTROL : EDITOR .
"L" - LIST COMMAND : EDITOR e e e e .
NULL COMMAND <CR> : EDITOR
"U" - UP COMMAND : EDITOR ...

"N" - NEXT COMMAND : EDITOR e e e .
"G" GOTO COMMAND : EDITOR e e e e
"T" TOP COMMAND : EDITOR

"B" BOTTOM COMMAND : EDITOR . .
STRING MATCH LOCATING : EDITOR

"L" - LOCATE COMMAND : EDITOR

"A" - AGAIN COMMAND : EDITOR

ENTERING DATA : EDITOR . .

"I" - INPUT COMMAND : EDITOR . . .
INSERTING DATA : EDITOR e e e e

"I" - INSERT COMMAND : EDITOR

.

"ME" - MERGE COMMAND : FROM THE SAME FILE

MERGE COMMAND : FROM OTHER FILES
MERGE COMMAND DEFAULTS .
MINIMAL MERGE . .
DELETING DATA : EDITOR .

"DE" — DELETE COMMAND (SIMPLE) : EDITOR

"DE" - DELETE COMMAND (STRING SEARCH)
REPLACING DATA: REPLACE (R) COMMAND .
"R" REPLACE COMMAND (SIMPLE) : EDITOR
"R" - REPLACE COMMAND (STRING SEARCH) :
"RU" - REPLACE COMMAND (UNIVERSAL STRING
SEARCH) : EDITORo
MULTIPLE REPLACEMENTS WITHIN A LINE

REPLACEMENT AFTER MULTIPLE-LINE REPLACEMENT
MULTIPLE REPLACEMENTS AFTER THE MERGE COMMAND

CREATING NULL LINES - EDITOR

ITEM MANIPULATING - EDITOR

"F" COMMAND - EDITOR . . .
"FI" - FILE ITEM COMMAND : EDITOR
"FS" - FILE SAVE COMMAND : EDITOR
"FD" - FILE DELETE ITEM : EDITOR
"EX" - EXIT COMMAND : EDITOR .
FORMATTING COMMANDS : EDITOR . .
"S" - SUPPRESSION COMMAND : EDITOR
"TB" - TAB COMMAND : EDITOR .
"Z" - ZONE COMMAND : EDITOR
ASSEMBLY FORMATTING : EDITOR

"AS" - ASSEMBLY FORMAT COMMAND : EDITOR

\}\1

ottt w oo um wn (SN0, NS, N6, N, N, NE, L ol ol I I
O ~ aund W

OO (o)) We e e o)) vmutuoo;m S} wm
Oy O Ul W

[\ o

b
S

.12

WWNHH AU WN

(VO Sl

"M" — MACRO EXPANSION COMMAND : EDITOR
MISCELLANEOUS COMMANDS : EDITOR e e e e e
'X' CANCEL COMMAND : EDITOR e e e e e e e
'?' CURRENT LINE COMMAND : EDITOR e e e .
'S°' ITEM SIZE COMMAND : EDITOR
~' WILDCARD TOGGLE COMMAND : EDITOR .
'C' COLUMNAR POSITIONS COMMAND : EDITOR
UNPRINTABLE CHARACTERS« e e .
'Pn' PRESTORE COMMAND - EDITOR .« e e
DEFINING PRESTORE COMMANDS - EDITOR .
PRESTORE COMMAND - DEFAULTS . e e
REPEATING PRESTORE COMMANDS
DISPLAYING PRESTORE COMMANDS
PRESTORES IN PROCS
EDITOR MESSAGES e e e e e e

« e s e
.
.

PROC LANGUAGE e e e e e e e e e e
THE PROC PROCESSOR . . e e e e e e e
PROC LANGUAGE DEFINITION e e e

AN INTRODUCTION TO PROC'S .« e e
INPUT/OUTPUT BUFFER OPERATION .

AN OVERVIEW OF PROC COMMANDS
SELECTING PROC BUFFERS: THE SP, SS AND ST
COMMANDS . . e e e e e
POSITIONING POINTERS THE S, F, B, AND BO
COMMANDS . . .o
MOVING PARAMETERS THE A COMMAND .
INPUTTING DATA: THE IS, IP, AND IT COMMANDS
OUTPUTTING DATA: THE O AND D COMMANDS ..
TERMINAL OUTPUT AND CURSOR CONTROL: THE T
COMMAND .

SPECIFYING TEXT STRINGS AND CLEARING BUFFERS
THE IH, H .

TRANSFERRING CONTROL THE GO n and GO A COMMAND .

CONDITIONAL EXECUTION: THE SIMPLE IF COMMAND
RELATIONAL TESTING: THE RELATIONAL IF COMMAND

PATTERN TESTING: THE PATTERN MATCHING IF COMMAND.

FURTHER FORMS OF THE IF COMMAND: THE IF E
and IF S COMMANDS and SELECT LIST AND PROC
INTERACTION

ADDITIONAL FEATURES: THE PLUS (+S,'MiNiJs'(i); fJ ’

AND C COMMANDS .

PROC EXECUTION AND TERMINATION THE P PH PP,
PW, PX AND X COMMANDS . .
LINKING TO OTHER PROCS: THE LINK COMMAND
SUBROUTINE LINKAGES: THE CALL COMMANDS

SAMPLE PROCS: FILE UPDATE VIA EDITOR

USING SSELECT AND COPY VERBS
USING VARIABLE TESTING, GO AND D COMMANDS

ACCESS . . e e e e .

AN ACCESS PRIMER « e e e e v e e e e

THE ACCESS VERBS . . e e e e e e e .
ACCESS INPUT SENTENCES . .
RULES FOR GENERATING ACCESS SENTENCES ..
ACCESS DICTIONARIES AND ATTRIBUTE- DEFINITION
ITEMS
ACCESS AND THE FILE STRUCTURE .o
THE USING CONNECTIVE. ..

MASTER DICTIONARY DEFAULT

106
108
108
108
108
109
109
109
110
110
110
111
111
112
114

115
116
117
119
121
123

125

127
129
131
133

135

137
138
141
143
145

147
148

151
153
155
157
158
159

161
162
163
165

. 167

168
171
171
172

(6,0 R V)

WWOWOWOJIAND

" e e e o

HOWWOVWWVWWOVWOOWOOOMOOTIJTAOTAANTUId WN
e R R T S)
W+ auld W H WK

e
coo
W N

le XX X Xuka koo koo kua oo oo ko oo Xa oo oo XK o X e e e We We We Wey e We Wej ey Je) le o We We Ne e He Wo Ne W Ne We We) Wo e We Ne We R o)
W N

SEQUENCE OF RETRIEVAL (items from files) . .
ITEM-ID DEFINITIONS WITH Q-POINTERS « e e .
DELIMITERS AND ITEM-ID STRUCTURES e e e . .
ACCESS VERBS : AN OVERVIEW . .

RELATIONAL OPERATORS AND LOGICAL CONNECTIVES
ITEM-LIST FORMATION
EXPLICIT ITEM-LISTS e e e e e e e e e e
IMPLICIT ITEM-LISTS . e e e e e e
SELECTION-CRITERIA FORMATION e .. .
SELECTION-CRITERIA: STRING SEARCHING . e
SELECTION PROCESSOR e e e e e e e e e
ITEM-ID SELECTION DEFAULT e e e e e e e .
SELECTION DELIMITERS
EXPLICIT ITEM-IDS e e e e e e e e e e e
ITEM-ID TESTS . . e e e e e e e
ITEM-ID SELECTION CRITERIA
WITH CONNECTIVE : SELECTION BY DATA VALUE .
DATA EVALUATION
OBTAINING A VALUE (STRING) TO TEST . .
EXISTENCE TEST . . . ¢ v v o o o« o« o o o o &
VALUE STRING
RELATIONAL CONNECTIVES ..

SPECIFIED VALUES AND ATTRIBUTE 7

DATE CONVERSIONS«

TIME CONVERSIONS

MASK CONVERSIONS . . .

OTHER MASKING FUNCTIONS . . e

TRANSLATE CONVERSIONS . . .

SELECTION CONVERSIONS : A SUMMARY . .
SPECIAL CHARACTERS IN SELECTION VALUES ..
SPECIAL CHARACTERS WITH RELATIONAL CONNECTIVES
JUSTIFICATION AND EVALUATION
OR CONNECTIVE WITH VALUE PHRASES .

AND CONNECTIVES WITH VALUE PHRASES
EVALUATING VALUE PHRASES . .

SELECTION CRITERIA RELATIONSHIPS . .

AND CLAUSES : SELECTION CRITERIA . .

DATA SELECTION CRITERIA e e e e e e

ITEM SELECTION CRITERIA e e e e e e
SELECTION PROBLEMS TO AVOID ..

OUTPUT SPECIFICATION : FORMATION

PRINT LIMITERS . . .

DEFAULT OUTPUT-SPECIFICATIONS

SUPPRESSION MODIFIERS e e e e

THE ONLY MODIFIER C e e e e e e

THE ID-SUPP MODIFIER (I option) .o
THE HDR-SUPP MODIFIER (H option) e e .
THE COL-HDR-SUPP MODIFIER (C option)
MODIFIERS AND OPTIONS e e e e e e
THROWAWAY MODIFIERS e e e e e e .

ACCESS PROCESSOR OPTIONS . e e e e e e
HEADINGS AND FOOTINGS e e e e e e e e e e
TOTAL MODIFIER . . e e e e

TOTAL - EVALUATION SEQUENCE e e e e
GRAND-TOTAL MODIFIER e e .
BREAKING ON ATTRIBUTE VALUES .

SUBTOTALS USING CONTROL-BREAKS .

OUTPUT OPTIONS - CONTROL BREAKS

DET-SUPP MODIFIER e e .

LIST VERB

. 213

. 172
. 172
. 173
. 175
. 177
. 179
. 179
. 181

182

. 184

185
185
185
185

. 185
. 187
. 188

188
188
189
190
191
191
191
192
192
192

. 192

193
194
195
196
197
198
198
199
200
200
200
200
202
204
206
207
207
207
207
207
208
211
212

215
217
217
218
219
221
222
224

)

e

()W)})} ()W) WeWe)) (o)) [e) W)} [ea e, [¢)) [e)) N (o)} (o)} (o)} (o)} N O\ [e)) o [N W We We We W W We We We We A O\

oo o ~ (e} wm > w [\ aad

SORT VERB . .

BY and BY—DSND MODIFIERS .

CORRELATIVES and CONVERSIONS WITH SORT KEYS
BY-EXP and BY-EXP-DSND MODIFIERS - EXPLODING
SORTS . . o« e h e e e e e e . .
WITHIN CONNECTIVE .. e e e .
THE LIST-LABEL AND SORT—LABEL VERBS .
THE REFORMAT AND SREFORMAT VERBS .

COUNT VERB ¢ ¢« « « « « « .
SUMVERB

STAT VERB . . e e e e .

THE SELECT AND SSELECT VERBS . ..

THE SAVE-LIST, GET-LIST, AND DELETE—LIST VERBS

THE COPY-LIST, EDIT-LIST AND QSELECT VERBS
ISTAT VERB ¢ ¢« ¢« ¢« v v v v « o .
HASH-TEST VERB . . . e e e e e .
THE T-DUMP AND T-LOAD VERBS, AND THE TAPE
MODIFIER . . . c e e
THE LIST-ITEM AND SORT-ITEM VERBS ..
CONTROLLING AND DEPENDENT ATTRIBUTES: AN
INTRODUCTION

CONTROLLING AND DEPENDENT ATTRIBUTES C AND D .

CODES . .
SUMMARY OF CONVERSION AND CORRELATIVE CODES
'G' CODE : CORRELATIVE AND CONVERSION GROUP
EXTRACTION CODE e e e e e e e e e e e e
'L' CODE : CORRELATIVE AND CONVERSION LENGTH
CODE

'R' CODE : CORRELATIVE AND CONVERSION RANGE
CODE

CODE . . . v v v v v v v v e v e e

'S' CODE : CORRELATIVE AND CONVERSION
SUBSTITUTION CODE e e e e e e e e e

'C' CODE : CORRELATIVE AND CONVERSION
CONCATENATION . . e e e e e e e e e
'T' CODE : CORRELATIVE AND CONVERSION TEXT
EXTRACTION . . e e e e e e e e e e
'D' CODE : CORRELATIVE AND CONVERSION DATE
CODE . . e e e e e e e e
INTERNAL DATE FORMAT ..

'MT' CODE : CORRELATIVE AND CONVERSION MASK TIME

CODE
DEFINING FILE TRANSLATION Tflle CODE

DEFINING ASCII AND USER CONVERSIONS: MX AND U

CODES ..

DEFINING MATHEMATICAL OR STRING FUNCTIONS F
CODE
F CODE SPECIAL OPERANDS e .

The Load Previous Value (LPV) operator
SUMMARY OF F CODE STACK OPERATIONS . .
DEFINING MATHEMATICAL FUNCTIONS: THE A
CORRELATIVE .

HANDLING NUMBERS AND FORMATTING MR AND ML
CODES .

ADDITIONAL CHARACTER MANIPULATION MC CODE
SPECIAL CONTROL CHARACTERS

'P' CODE : CORRELATIVE AND CONVERSION PATTERN

226
226
226

228
230
231
232
235
236
237
238
240
242
245
246

247
250

251

253
255

257
258
259
260
261
262
263

264
266

267
268

270

271
274
276
277

279
282

284
285

NN NN NN NNN NN NN NN NN NN NN NN NN NN YN N NN NN N N NI N NN NN ENENEN) NN NNNNNNNY

L R S N N)

VWWOWWOWWOVWOYWWOLWVWWYWWOWOOOOMOMOMMMAOI~JOANAAUTD DD P DD DD DD DD DD bW www Wwwwwww -

BLWWWWWNH S dsWNH H W

ONIIdIIJoude WNHEHEFH ul W NNV

B W

(S > wN -

wN -

D W N

> W N+

PERIPHERALS e e e e e e e e e e e e e s
AN OVERVIEW e e e e e e e e e e e e e
SPOOLER VERBS .

The SP-ASSIGN, SP*OPEN and SP—CLOSE VERBS
OVERVIEW OF SP-ASSIGN OPTIONS e e e e e e
CLASSES OF SP-ASSIGNMENT PARAMETERS -
Destination specification: . . e e e
THE FORM NUMBER e e e e e e e e e e

THE COPY COUNT . . .

Flndlng out what your a551gnment spec1flcatlon

is . . e e e e e e e e e
PRINTFILE PREDEFINITION . . e e e e e .
The SP-OPEN and SP-CLOSE verbs . .
THE GENERAL FORM OF THE SP-ASSIGN VERB

SP-ASSIGN EXAMPLES. . .

HOLD FILE INTERROGATION: THE SP—EDIT VERB
SP-EDIT OPTIONS. . e e e e . .
PRINT FILE SELECTION OPTIONS e e e e e e
HOLD FILE DESTINATION OPTIONS. .

HOLD FILE TO DATA FILE OPTION e
PROC CONTROL OF THE SP-EDIT PROCESS

THE SOURCE OF HOLD FILES

The SP-EDIT prompt sequence.

THE DISPLAY PROMPT. ..

THE STRING PROMPT.

THE SPOOL PROMPT. Coe e e e

THE Y RESPONSE.

THE T RESPONSE.

THE TN RESPONSE.

THE F RESPONSE.

THE DELETE PROMPT. . .

THE PRINTER CONTROL VERBS .« e .

THE STARTPTR VERB. . . e e .
EXAMPLES OF THE STARTPTR VERB e

THE PRINT FILE SCHEDULING ALGORITHM.
STARTPTR ERROR MESSAGES e

THE STOPPTR VERB . . .

STOPPTR ERROR MESSAGES. . .

The SP-KILL verb and its exten51ons
PRINT FILE TERMINATION. .
DEQUEING PRINT FILES. ..

DELETING A PRINTER FROM THE SYSTEM
SP-KILL MESSAGES. c e ..
General messages. e e e e e e e
SP-KILL messages. RN

SP-KILL F messages. e e e e e e e e
SP—-KILL D messages. e e e e e e e e
THE LISTPEQS VERB.
LISTPEQS OPTIONS. . e e e e e

THE LISTPEQS VERB FORM e e e e e
LISTPEQS STATUS INDICATORS. e e e .
JOB CHARACTERISTICS:
CLOSED CONDITION: . e e

ENQUEUED CONDITION: e e

SP-EDIT conditions: . .

Examples of the LISTPEQS verb.

THE LISTPTR VERB. e e e

THE LISTABS VERB. e .

THE SP-STATUS VERB.

. 324

. 343

286
287
295
298
298
299
299

. 302
. 302

302
303
303

. 304

305
308
308
308
310
311
311
312
318
319
319

. 320

320

. 321

321
322
323

324
326

. 328

329
331
332

. 334
. 335

337

. 339

340
340
340
341
341
342

344
345
345
345
345
346

. 347

350
355
356

SVIENIEN N | ~ ~ NN NN NNNNNNNNNNNNNYY ~

00 CO CO 00 00 CO 00 OO 00 0O OO CO CO 0 O OO OO0 CO 0O CO CO 00 0 €O O O O O
WWWWWLWWWWwWwWwWwuwwuwwwwwwuwuwuwwwwwn -+

wooJoaud W H

we - wN [

[N W -

THE SP-STATUS VERB AS A SYSTEM INFORMATION
DISPLAY . . .
THE SP—STATUS VERB AS SPOOLER AWAKENER .
THE ON-LINE AND OFF-LINE CONDITION. . ..
THE COLDSTART AND THE :STARTSPOOLER VERB .
COLDSTART INITIALIZATION OF THE SPOOLER. .
THE :STARTSPOOLER VERB'S ACTION.
WHEN TO USE THE :STARTSPOOLER VERB. .
SPOOLER VERB OPTIONS HANDLER . .

CONSIDERATIONS ON PROC CONTROL OF THE SPOOLER..

CASES OF PROC INTERACTION.
HOLD FILE RECOGNITION.
TAPE CONTROL.
PRINTER CONTROL UNDER PROC ..

MAGNETIC TAPE FACILITIES. .

COMMUNICATION WITH OTHER PICK-CLASS MACHINES
COMMUNICATIONS WITH NON-PICK-CLASS MACHINES.
MAGNETIC TAPE: TAPE RECORD SIZE
MAGNETIC TAPE: THE T-ATT VERB
MAGNETIC TAPE: THE T-DET VERB

MAGNETIC TAPE CONTROL: THE T-FWD, T-BCK, T-REW,

T-SPACE, AND T-EOD VERBS
MAGNETIC TAPE CONTROL: THE T-WEOF AND T—CHK
VERBS .+ v & v v v e e e e e e e e
MAGNETIC TAPE I/O: THE T-DUMP, S-DUMP AND
T-LOAD COMMANDS« « + « « « . .
THE T-READ COMMAND. . Coe
EXAMPLES OF THE T-READ COMMAND.

THE SP-TAPEOUT VERB. . e e e e
THE T-RDLBL COMMAND. GENERATING AND READING
TAPE LABELS e e e e e e e e
RUNOFF . . .

RUNOFF INTRODUCTION AND RUNOFF VERB FORMAT
RUNOFF SOURCE FILE FORMAT e e e e
RUNOFF COMMANDS «

BEGIN PAGE (BP) . ..)

BOX n,m / BOX OFF (BOX) .

BREAK (B) . .

CAPITALIZE SENTENCES (CS)

CENTER (C) . Ce .

CHAIN {[DICT] [FILE-NAME]} ITEM-ID

CHAPTER text

' % ' THE COMMENT INSTRUCTION

CONTENTS e e e

CRT .« . « « v v o . .

FILL (F)

FOOTING . + v v v v o e v e v o

HEADING . . e e e e e e
HILITE c / HILITE OFF

' — ' TREAPMENT OF HYPHENS . . .
INDENT n (I) . & « « o o o . .

INDENT MARGIN n (IM) . . « + « v v o . . .
INDEX teXt . . « v v v v v vt e e e e
INPUT & v v v e e e e e e e e
JUSTIFY (J) « v v v v u e e e e e

LEFT MARGIN ' « v o « « « .

LINE LENGTH « « « « « . .

LOWER CASE (LC) .

ILPTR

356
356
356
363
363
363
364
367
368
368
370
371
372
374
375
375
378
379
382

383
385

387
389
390
392

394

396
397
398
399
399
399
399
399
400
400
401
401

. 401

401
401

. 402

402
403
403
403

. 403

404
404
404
404
404
404
404

« o s s .

W R R WWWWWWWWWWWWWWWWwwwww

H =0 ~ AU WWN -
wE

(Ve Ve RVo Vo] (e} O WO WWWYWWYWWYWWY 00 O €O 00 0O OO 0O CO 00 CO CO 00 00 CO €O CO CO CO CO 0O 0O 0O CO OO €O
o

www
=
W -

9.15

9.16
9.17

9.18
9.19
9.20
9.21

9.22
9.23

9.24
9.25

 —

NOCAPITALIZE SENTENCES (NCS)
NOFILL (NF) ¢« ¢ v ¢« o o o« o o o «
NOJUSTIFY (NJ) e e e e e e

NOPAGING (N) e e e e e .

NOPARAGRAPH
PAGE NUMBER n ..
PAPER LENGTH n . .
PARAGRAPH n . . .
PRINT INDEX . .

PRINT . . . e . . .
READ {[DICT) [FILE~NAME]} ITEM-ID e ..
READNEXT . . . e e e e e e e
SAVE INDEX flle—name ..
SECTION n text
SET TABS n,n,n,
SKIPn (SK)
SPACE n (SP)
SPACING n e e e e e e e e e e e
STANDARD . . & & & « & o o o o o« o o o o« &
TEST PAGE n e e e e e e e e e e e e e e
UPPER CASE (UC)

SPECIAL CONTROL CHARACTERS .

Upper—- and lower-case controls. . .
Underlining and overstriking.
Tab setting.

e o ¢ s e e
e ¢ o e & @
.
.
.
« & & e e o
.

« & ¢ e

PICK/BASIC . . .« e e

THE PICK/BASIC LANGUAGE .. .
PICK/BASIC LANGUAGE DEFINITIONS

PICK/BASIC FILE STRUCTURE e

THE PICK/BASIC PROGRAM . .

DYNAMIC ARRAYS - FILE ITEM STRUCTURE ..
CREATING AND COMPILING PICK/BASIC PROGRAMS

PICK/BASIC COMPILER OPTIONS: A, C, E, L AND P .

OPTIONS .. e e e e e e e
PICK/BASIC COMPILER OPTIONS : M, S, AND X
OPTIONS .. . e e e
EXECUTING PICK/BASIC PROGRAMS . .
CATALOG AND DECATALOG : SHARING OBJECT CODE
PICK/BASIC EXECUTION FROM PROC

VARIABLES AND CONSTANTS : DATA REPRESENTATION

ARITHMETIC EXPRESSIONS
STRING EXPRESSIONS . . e e .
RELATIONAL EXPRESSIONS . . .
MATCHES : RELATIONAL EXPRESSION PATTERN
MATCHING . e e
OR - AND : LOGICAL EXPRESSIONS

NUMERIC MASK AND FORMAT MASK CODES : VARIABLE

FORMATTING

@ FUNCTION : CURSOR CONTROL .

ABORT STATEMENT : TERMINATION . .
ABS FUNCTION : ABSOLUTE NUMERIC VALUE
ALPHA FUNCTION : ALPHABETIC STRING
DETERMINATION .

ASCII FUNCTION : FORMAT CONVERSION . . .
ASSIGNMENT STATEMENT : ASSIGNING VARIABLE
VALUES
BREAK ON AND OFF : DEBUGGER INHIBITION .
CALL AND SUBROUTINE STATEMENTS : EXTERNAL
SUBROUTINES . . e e e e e e e e e

. 405
. 405
. 405

405

. 405
. 405
. 405
. 405
. 407
. 407
. 407
. 407
. 411
. 411
. 411
. 412
. 412
. 412
. 412
. 412
. 412
. 413
. 413
. 414
. 415

. 416

417

. 419
. 421
. 422
. 423
. 424

426

. 428
. 429
. 430
. 431
. 432
. 434
. 436
. 438

. 440
. 442

. 444
. 447
. 448
. 449

450

. 451

. 452
. 453

454

\\"/’

W WYWWOWOWOWY

O W WWWWWYWY (Voo Ve JiNe] (Y] (Yo Vo Ve Vo) X} WVWOWOWOWOVWOWOUWYWOWOVWOWWOWOWOWWOYOWOWOWY O O O WO WYY O

ARRAY PASSING AND THE CALL (@ STATEMENT :
INDIRECT EXTERNAL SUBROUTINES .. .
CASE STATEMENT : CONDITIONAL BRANCHING . e .
CHAIN STATEMENT : INTERPROGRAM COMMUNICATION
CHAR FUNCTION : FORMAT CONVERSION . e .
CLEAR STATEMENT : INITIALIZING VARIABLE
VALUES . . e e e e e e e e
CLEARFILE STATEMENT : DELETING DATA

COL1() AND COL2() FUNCTIONS : STRING
SEARCHING . . e e e e e e e e e e e e
COMMON STATEMENT : VARIABLE SPACE ALLOCATION
COS FUNCTION : COSINE OF AN ANGLE ..
COUNT FUNCTION : DYNAMIC ARRAYS . .

DATA STATEMENT : STACKING INPUT DATA

DATE() FUNCTION : DATE CAPABILITY .

DCOUNT FUNCTION : DYNAMIC ARRAYS

DELETE STATEMENT : DELETING ITEMS .

DELETE FUNCTION : DYNAMIC ARRAY DELETION

DIM STATEMENT : DIMENSIONING ARRAYS ..
EBCDIC FUNCTION : FORMAT CONVERSION ..
ECHO ON AND OFF : TERMINAL DISPLAY

END STATEMENT e e e e e e e e e e e
ENTER STATEMENT : INTERPROGRAM TRANSFERS
EQUATE STATEMENT : VARIABLE ASSIGNMENT

EXP FUNCTION : EXPONENTIAL CAPABILITY ..
EXTRACT FUNCTION : DYNAMIC ARRAY EXTRACTION
FIELD FUNCTION : STRING SEARCHING . .
FOOTING STATEMENT : PAGE OUTPUT FOOTINGS
FOR...NEXT STATEMENT : PROGRAM LOOPING
FOR...NEXT STATEMENT : EXTENDED PROGRAM
LOOPING e e e e e e e e e e e e e e
GOSUB AND ON...GOSUB STATEMENTS : INTERNAL
SUBROUTINE BRANCHING

GOTO STATEMENT : UNCONDITIONAL BRANCHING
HEADING STATEMENT : PAGE OUTPUT HEADINGS
ICONV FUNCTION : INPUT CONVERSION .

IF STATEMENT : SINGLE-LINE CONDITIONAL
BRANCHING .o .

IF STATEMENT : MULTI—LINE CONDITIONAL
BRANCHING e e e e e e e e e e e e e e
INDEX FUNCTION : SEARCHING FOR SUB-STRINGS
INPUT STATEMENT : TERMINAL INPUT
INPUT (@ STATEMENT : POSITIONING MASKED INPUT
INPUTERR - INPUTTRAP - INPUTNULL : INPUT
FORMS . e e e e e e e e e e e e
INSERT FUNCTION : DYNAMIC ARRAY INSERTION
INT FUNCTION : INTEGER NUMERIC VALUE . .
LEN FUNCTION : GENERATING A LENGTH VALUE

LN FUNCTION : NATURAL LOGARITHM . . .
LOCATE STATEMENTS : LOCATING INDEX VALUES
LOCK STATEMENT : SETTING EXECUTION LOCKS
LOOP STATEMENT : STRUCTURED LOOPING .o .
MAT - ASSIGNMENT AND COPY : ASSIGNING ARRAY
VALUES
MATREAD STATEMENT : MULTIPLE ATTRIBUTES
MATREADU STATEMENT : GROUP LOCKS . .
MATWRITE STATEMENT : MULTIPLE ATTRIBUTES
MATWRITEU STATEMENT : UPDATE LOCKS

NOT FUNCTION : LOGIC CAPABILITY

NULL STATEMENT : NON-OPERATION

.

455

. 456

457
459

460
461

462
463
465
466
467
468
469
470
471

472

473
474
475
476
477
478

. 479

480
481
482

484
486

487
488
489

490

491
493
494
495

496
497
498
499
500
501
502
503

505
506
507
508
509
510
511

9.77
9.78
9.79
9.80
9.81
9.82

9.83
9.84

9.85

9.86
9.87
9.88
9.89
9.90
9.91
9.92
9.93

9.94
9.95
9.96

9.97

9.98

9.99

9.100
9.101
9.102
9.103
9.104
9.105
9.106
9.107

9.108
9.109

9.110
9.111
9.112
9.113
9.114
9.115
9.116
9.117
9.118
9.119
9.120
9.121

9.122
9.123
9.124

9.125
9.126

' VARTOUS DEBUGGER COMMANDS

NUM FUNCTION : NUMERIC STRING DETERMINATION
OCONV FUNCTION : OUTPUT CONVERSIONS . e e .
ON...GOTO STATEMENT : COMPUTED BRANCHING . .

OPEN STATEMENT : OPENING I/O
PAGE STATEMENT : HEADING OUT
PRECISION DECLARATION : SELE
PRECISION e e e e .

PRINT STATEMENT : TERMINAL 0)
PRINT STATEMENT : TABULATION
CONCATENATION . .
PRINTER ON/OFF STATEMENTS :
DEVICE

FILES
PUT
CTING NUMERIC

R PRINTER OUTPUT
AND

SELECTING OUTPUT

PROMPT STATEMENT : INPUT PROMPT CHARACTER

PWR FUNCTION : RAISING BY A
READ STATEMENT : ACCESSING F

POWER . . .
ILE ITEMS

READNEXT STATEMENT : ACCESSING ITEM—-IDS . .o
READT STATEMENT : READING RECORDS FROM TAPE

READU AND READVU STATEMENTS

: GROUP LOCKS

READV STATEMENT : ACCESSING AN ATTRIBUTE .
RELEASE STATEMENT : RELEASING GROUP UPDATE

LOCKS

REM OR MOD FUNCTION : REMAINDER VALUE

-

REPLACE FUNCTION : DYNAMIC ARRAY REPLACENENT
RETURN AND RETURN TO STATEMENTS : SUBROUTINE

RETURNING .

REWIND STATEMENT : REWINDING

RND FUNCTION : RANDOM NUMBER

THE TAPE
GENERATION

SELECT STATEMENTS : SELECTING ITEM-IDS
SEQ FUNCTION : FORMAT CONVERSION

SIN FUNCTION : SINE OF AN ANGLE ..
SLEEP OR RQM STATEMENT : TIME ALLOCATION

SPACE FUNCTION : STRING SPAC

ING

SORT FUNCTION : SQUARE ROOT CABABILITY

STOP STATEMENT : TERMINATION

STR FUNCTION : GENERATING STRING VALUES

.

SYSTEM FUNCTION : CALLING PRE-DEFINED SYSTEM.

VALUES . . .

TAN FUNCTION : TANGENT OF AN
TIME() AND TIMEDATE() FUNCTI
CAPABILITY . . .

TRIM FUNCTION : DELETING EXT
UNLOCK STATEMENT : CLEARING

WEOF STATEMENT : POSITIONING
WRITE STATEMENT : MODIFYING

ANGLE

ONS : TIME AND DATE

RANEOUS SPACES
EXECUTION LOCKS

TAPE .
ITEMS

WRITET STATEMENT : WRITING RECORDS TO TAPE .
WRITEU AND WRITEVU STATEMENTS : UPDATE LOCKS

WRITEV STATEMENT : UPDATING

AN ATTRIBUTE

PICK/BASIC SYMBOLIC DEBUGGER : AN OVERVIEN
USING THE PICK/BASIC DEBUGGER : AN EXAMPLE

THE TRACE TABLE . .
PICK/BASIC DEBUGGER: THE B

D, AND K COMMANDS

E(XECUTE), G(O) AND N(O or BYPASS) COMMANDS :

DEBUGGER EXECUTION

SLASH '/' COMMAND : DISPLAYING AND CHANGING

VARIABLES

FEATURES .
GENERAL CODING TECHNIQUES :
PROGRAMMING EXAMPLES: PYTHAG
PROGRAMMING EXAMPLES: GUESS

: ADDITIONAL

HELPFUL HINTS

512

. 513

514
515
516

517
518

. 520

521

. 522

523

. 524

525
527

. 527
. 528

529
530
531

532
533
534
535
536
537
538
539
540

. 541

542

543
545

546
547
548
549
550
551
552
553
554
556
558
558

560
561
562
563

565
567

a

N

e

w N+

PROGRAMMING EXAMPLES: INV-INQ e e e e
PROGRAMMING EXAMPLES: FORMAT
PROGRAMMING EXAMPLES: LOT-UPDATE
APPENDIX A ¢ v ¢ v ¢« « « « &
APPENDIX B

APPENDIX C . . . e e e e e e e
APPENDIX D . . . e e e e e e e e e e
LIST OF ASCII CODES

APPENDIX F « « « ¢ v o« v « o « .
APPENDIX G + v ¢ v« v v o o o« o« &

-

SYSTEM MAINTENANCE
VIRTUAL MEMORY STRUCTURE . . e e e e e .
ADDITIONAL WORK-SPACE ALLOCATION e e e
THE FILE AREA e e e e e e e e e

FRAME FORMATS .. e e e e e e e
DISPLAYING FRAME FORMATS, THE DUMP VERB
THE SYSTEM FILE and SYSTEM-level FILES

THE BLOCK-CONVERT AND POINTER-FILE
DICTIONARIES ..

THE ERRMSG FILE, LOGON MESSAGES AND THE
PRINT-ERR VERB
USER IDENTIFICATION ITEMS e e e e e
SECURITY . . . e e e e e
THE ACCOUNTING HISTORY FILE AN
INTRODUCTION . e e e e e
THE ACCOUNTING HISTORY FILE SUMMARY AND
EXAMPLES . . . e e e e e
THE ACCOUNTING HISTORY FILE PERIODIC
CLEARING

FILE STRUCTURE: THE ITEM AND GROUP COMMANDS

FILE STRUCTURE: THE ISTAT AND HASH-TEST
COMMANDS . .
DETERMINING NATURE OF GROUP FORMAT ERRORS
GROUP DEFINITION . e e e e e e
GROUP FORMAT ERRORS

RECOVERY FROM GFE's

GENERATING CHECKSUMS: THE CHECK—SUM COMMAND

SYSTEM PROGRAMMER (SYSPROG) ACCOUNT coe
AVAILABLE SYSTEM SPACE: THE POVF COMMAND
CREATING ACCOUNTS and ASSEMBLING MODES
DELETE-ACCOUNT . . e e e e e
FILE STATISTICS REPORT ..

UTILITY VERBS: STRIP-SOURCE, LOCK—FRAME,
UNLOCK-FRAME, . .o
SYS-GEN AND FILE-SAVE TAPES FORMAT
FILE-RESTORE . . .

ERROR RECOVERY DURING FILE LOADS
SELECTIVE RESTORES . . e e

SYSTEM BACKUP : AN OVERVIEW

THE SAVE VERB e e e e

MULTIPLE REEL SAVES .

ACCOUNT-SAVE AND ACCOUNT RESTORE N
SYSTEM STATUS: THE WHAT AND WHERE VERBS
VERIFYING SOFTWARE

. 633

567
568
570
573
575
576
580
582
584
586

587
588
590
591
593
594
596

598

600
602
604

606
608

610
611

613
614
614
614
615
616
617
617
618
619
620

622
624
625
627
628
631
632

634
635
638

N

AN

SECTION 1

INTRODUCTION
TO THE
ICON/PICK
OPERATING
SYSTEM

|CaN’

{//\\
)

Chapter 1
INTRODUCTION

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

C \ PAGE 1

1.1 WHAT IS THE PICK COMPUTER SYSTEM?

The PICK System is a generalized data base management computer system. It
, is a complete system that provides multiple users with the capability to
(‘ instantly update and/or retrieve information stored in the on-line data

files. Users communicate with the system through 1local or remote
terminals to access files that may be private, common, or security-
controlled. Each terminal user's vocabulary can be individually tailored
to specific application vocabularies.

The PICK System includes the powerful, yet simple-to—use ACCESS inquiry
language, the PICK/BASIC and PROC high-level languages, file maintenance
tools, an EDITOR, complete programming development facilities, and a host
of other user amenities. PICK System runs in an on-line, multi-user
environment with all system resources and data files being efficiently
managed by a true Virtual Memory Operating System that provides users with
unrivaled performance and reliability.

The PICK System is exceptional when measured from any angle: system
capability multi-user performance, file management languages, ease of
programming, data structure, and architectural features. The high
performance and fast response of the PICK System are possible only through
the wuse of a unique business-oriented, machine-independent assembly
language which greatly reduces system overhead and program execution time.

The System Software includes:

- Virtual Memory Manager.
- Multi-user Operating System.
. - Special Data Management Instructions.

(‘ - Input/Output Processors.
- ACCESS, PICK/BASIC, PROC, TCL Languages.
- Selectable/automatic report formatting.
- Dynamic file/memory management.
- Selectable levels of file/data security.

The unique file structure provides:

- Variable length files/records/fields.

- Multi-values (and subvalues) in a field.
- Efficient storage utilization.

- Fast accessibility to data items.

- Selectable degrees of data security.

- File size limited only by size of disc.
- Record size up to 32K bytes.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

(PAGE 2

1.2 AN OVERVIEW OF PICK COMPUTER SYSTEM'S MAJOR FEATURES

The PICK System is a system specifically oriented to provide a vehicle
for the implementation of cost-effective data base management. Data
base management systems implemented in the PICK System afford two
major benefits: 1) providing accurate and timely information to form
the basis for significantly improving the decision-making process, and
2) substantially reducing the clerical and administrative effort
associated with the collection, the storage, and dissemination of the
information pertaining to an organization.

The PICK System is a very efficient and effective tool for on-line
data base management. Pick has implemented a truly revolutionary on-
line transaction processing system. Three major components of the
system are especially important:

- The virtual memory operating system
- The software level architecture
- The terminal input/output routines

The virtual memory operating system which has long been used in larger
computer systems had previously been impractical for mini-computers
due to the large amount of overhead needed for the operating system
itself. In the PICK System, the virtual memory operating system has
been optimized and coded in a highly efficient machine-independent
assembly language which executes many times faster than conventional
languages. Thus the overhead time is no 1longer a serious problem on
the smaller computers.

Most sophisticated computer operating systems require vast amounts of
memory to support them. Systems consuming more than one hundred
thousand bytes are common. Only a small amount of main memory 1is
needed to run the PICK System. Everything else (system software, user
software and data) is transferred automatically into main memory from
the disc drive by the wvirtual memory operating system only when
required.

Data in the PICK System is organized into 512-byte pages (frames)
which are stored on the disc. As a frame is needed for processing,
the operating system automatically determines if it is already in core
memory. If it is not, the frame is automatically transferred from the
disc unit (virtual memory) to core. Frames are written back onto the
disc on a "least-recently-used" basis. The virtual memory feature of
the PICK System allows the user to have access to a programming area
not constrained by core memory, but as large as the entire available
disc storage on the system.

CHAPTER 1 - INTRODUCTION ‘ Copyright (c¢) 1985 PICK SYSTEMS

PAGE 3

The second important feature is the software level architecture of the
machine itself. Pick Systems has implemented a machine architecture
expressly designed and optimized for data base management. The
architecture of the PICK System includes very powerful instructions
expressly designed for character moves, searches, compares, and all
supporting operations germane to managing variable length fields and
records. This architecture was designed without the inevitable
restrictions imposed by being tied to any one piece of hardware! It
is truly a machine-independent approach.

The third major feature is the handling of Input/Output (I/0)
communications with the on-line terminals. In any minicomputer on-
line application, one of the main problems is that of managing the I/0O
from on-line interactive terminals. As these terminals increase in
number, the load on the CPU becomes overwhelming and consequently the
response to the terminals degrades dramatically. Pick has implemented
the I/O processing of the on-line terminals with an overlapped
buffering concept. This means that other program execution need not
be held up waiting for terminal input/output to complete. As a
result, the central processing unit is utilized more completely and a
very large number of terminals may be connected to the Pick System
before any significant degradation in response time is detected.

In summary, the PICK System encompasses the following extraordinary
features:

- True data base management.

- Complete small business computer capabilities.
- Virtual Memory Operating System.

- Multi-user capabilities.

- On-line file update/retrieval.

- ACCESS retrieval language.

- Variable file/record/field lengths.

- Dynamic file/memory management.

- Automatic report formatting.

- Total data/system security.

- Fast terminal response.

- Line printer spooling.

- Special data management processors.

- High-speed generalized sort.

- Big computer performance on Minis, Micros and Mainframes.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS
PAGE 4

.3

THE PICK SOFTWARE PROCESSORS THE PICK SOFTWARE PROCESSORS

The processors available on the Pick Computer System comprise the most
extensive data base management software available on any minicomputer. 4

An overview of some of the processors available to all terminal users N
is presented in this topic. All processors are described fully in the
sections devoted to them.

The ACCESS Processor

ACCESS is a generalized information management and data retrieval
language. A typical ACCESS inquiry consists of a relatively free-form
sentence containing appropriate verbs, file names, data selection
criteria, and control modifiers. ACCESS is a dictionary-driven
language. The vocabulary used in composing an ACCESS input sentence
is contained in several dictionaries. Each user's vocabulary can be
individually tailored to his particular application terminology.
ACCESS encompasses the following extended features;

Logical English word order and syntax for user inputs.
Automatic or user-specified output formatting.

Sorting capabilities plus generation of statistical information.
Relational and logical operations.

Verbs such as: LIST, SORT, SELECT, COUNT, STAT, etc.

The PICK/BASIC Processor

PICK/BASIC is an exceptionally powerful yet simple and versatile
programming language suitable for expressing a wide range of

processing capabilities. PICK/BASIC is a language especially easy for

the beginning programmer to master. PICK/BASIC is an extended version R
of Dartmouth BASIC which includes the following features:

Flexibility in selecting meaningful variable names.

Complex and multi-line statements.

String handling with variable length strings.

Integrated with Data Base file access and update capabilities.
Fully structured programming support.

Re-entrant and recursive abilities.

The PROC Processor

The PROC processor allows the user to prestore a complex sequence of
operations which can then be invoked by a single word command. Any
sequence of operations which can be executed from the terminal can
also be prestored via the PROC processor. The PROC processor
encompasses the following features.

CHAPTER

Argument passing.

Interactive terminal prompting.

Conditional and unconditional branching.
Pattern matching.

Free-field and fixed-field character moving.

1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

. Y
PAGE 5 _/

The EDITOR Processor

The EDITOR permits on-line interactive modification of any item in the
data base. The EDITOR may be used to create and/or modify PICK/BASIC

programs, PROC's, assembly source, data files, and file dictionaries.

The EDITOR uses the current line concept; that is, at any given time

there is a current 1line that can be listed, altered, deleted, etc.

The EDITOR includes the following features:

- Absolute and relative current line positioning.

— Merging of lines from terminal or from other file items.
- Character string locate and replace.

- Input/Output formatting.

The File Management Processors

The file management processors provide the capabilities for
generating, managing, and manipulating files (or portions of files)
within the Pick system. The file management processors include the
CREATE-FILE processor, the CLEAR-FILE processor, the DELETE-FILE
processor, the COPY processor, CREATE-ACCOUNT and DELETE-ACCOUNT.

The Utility Processors

Numerous utility processors are also included which provide an
extensive complement of utility capabilities for the system.

Software Processor Usage

These and any other software processors may be used by any or all
terminals simultaneously. Processing is invoked through appropriate
verbs contained in each terminal user's Master Dictionary. User
accessibility to these capabilities may be limited by controlling the
verb selection available in specific user's Master Dictionaries.

1.4 OVERVIEW OF TCL

‘ The Terminal Control Language (TCL) is the primary interface between
the terminal user and the various PICK System processors.

Most processors are invoked directly from the Terminal Control
Language by a single input statement, and return to TCL after
completion of processing. TCL prompts the user by displaying a ">".
This is referred to as the "TCL prompt character". Input statements
are constructed by typing a character at a time from the terminal
until the carriage return or line feed key is depressed, at which time
the entire 1line is processed by TCL. The first word of an input
statement must be a valid PICK "verb".

One of the powerful features of the PICK System is the ability to
customize the vocabulary for each user. Since verbs reside in the
individual user's Master Dictionary (MD), the vocabulary may be added
to or deleted from without affecting the other users. In addition, an

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

C ‘ PAGE 6

1.

5

unlimited number of synonyms may be created for each verb. The PICK
System operates in what is known as an "Echo-Plex" environment. This
means that each data character input by the terminal is sent to the
computer and echoed back to the terminal before being displayed on the
screen. The user is thus assured that if the data character displayed
on the terminal is correct, the data character stored in the computer
is correct.

In addition to the standard ASCII (96) character set recognized,
special operations are performed when certain control characters are
detected. All other control characters are deleted from the input
line that is passed to lower level processors.

DATA BASE MANAGEMENT PROCESSORS DATA BASE MANAGEMENT PROCESSORS

The data base management processors provide the capabilities for
generating, managing, and manipulating files (or portions of files)
within the PICK System. The data base management processors include
the CREATE-FILE processor, the CLEAR-FILE processor, the DELETE-FILE
processor, and the COPY processor.

CHAPTER 1 - INTRODUCTION

The CREATE-FILE Processor

The CREATE-FILE processor is used to generate new dictionaries and/or
data files. The processor creates file dictionary entries in the
user's Master Dictiocnary (MD), and reserves disc space for the
dictionary and data portion of the new file. The user need only
specify the name of the file and value for the desired "modulo". The
"modulo" parameter is selected to balance storage efficiency and
accessing speed, based on the number of items in the file, the average
item size, etc. The required file space is allocated from the
available file space pool. Files may automatically grow beyond their
initial size when the system automatically attaches additional
"overflow" space from the available file space pool upon demand.

The CLEAR-FILE Processor

The CLEAR-FILE processor clears the data from a file. "Overflow"
space that may be linked to the primary file space will also be
released to the available file space pool. Either the data section or
the dictionary section of a file may be cleared.

The DELETE-FILE Processor
The DELETE-FILE processor allows for the deletion of a file. All
allocated file space is returned to the available file space pool.

Either the data section or the dictionary section (or both) of the
file may be deleted.

Copyright (c) 1985 PICK SYSTEMS
PAGE 7

~

1.

6

The COPY Processor

The COPY processor allows the user to copy an entire file (or selected
items from the file) to the terminal, to the line printer, to the
magnetic tape unit, to another file (either in the same account or in
some other user-account), or to the same file under a different name
(item-id).

AN OVERVIEW OF SYSTEM UTILITIES

The Pick Utility processors provide an extensive complement of utility
capabilities for the system.

The Pick Computer System includes a very large number of wutility
processors. These processors provide such capabilities as:

- Magnetic tape unit functions

- Mathematical functions

- Line printer spooling control

- File save/restore functions

- File statistics

- Creation of user-accounts

- Setting of terminal characteristics
- Block printing

- Virtual memory dumping

- Inter-user message communications
- Bootstrapping and cold-start

- Systems accounting

AN OVERVIEW OF ACCESS

ACCESS 1is a user-oriented data retrieval language used for accessing
files within the Pick Computer System.

CHAPTER 1 - INTRODUCTION

ACCESS is a generalized information management and data retrieval
language. A typical ACCESS inquiry consists of a relatively free-form
sentence containing appropriate verbs, file names, data selection
criteria, and control modifiers. Each user's vocabulary can be
individually tailored to his particular application jargon.

ACCESS is a dictionary-driven 1language to the extent that the
vocabulary used in composing an ACCESS sentence 1is contained in
several dictionaries. Verbs and file names are located in each user's
Master Dictionary (M/DICT). User-files consist of a data section and
a dictionary section; the dictionary section contains a structural

definition of the data section. ACCESS references the dictionary
section for data attribute descriptions. These descriptions specify
attribute fields, functional calculations, inter-file retrieval

operations, display format, and more.

Copyright (c) 1985 PICK SYSTEMS
PAGE 8

ACCESS provides the ability to selectively or conditionally retrieve
information and also provides an automatic report generation
capability. Output reports may appear on the terminal or be sent to
the 1line printer and are automatically formatted according to the
user's specifications by the Pick system. The output may be sorted
into any sequence defined by the user, and encompasses the following
extended features:

- Relatively free—form input of word order and syntax.

- Automatic or user-specified output report formats in either
columnar or non-columnar form.

- Generalized data selection using logical and arithmetic
relationships.

- Sorting capability on variable number of descending and/or
ascending sort-keys.

— Generation and retention of multiple specially selected and/or
sorted lists for use by subsequent processors.

— User ability to define variables derivable from the data
in the object file and from other files, and to search,
select, sort, total, output and break on the basis thereof.

- Selection of sub-records within items containing multiple
unit records and sorts and outputs based on them.

- Generation of statistical information concerning files.

- Support of 11 digit signed arithmetic.

1.8 AN OVERVIEW OF PICK/BASIC

The PICK/BASIC Language is an extended version of Dartmouth BASIC,
specifically designed for data base management processing on the PICK
System.

PICK/BASIC is an extremely powerful yet versatile programming language
suitable for expressing a wide range of problems. Developed at
Dartmouth College in 1963, Dartmouth BASIC is a language especially
easy for the beginning programmer to master. PICK/BASIC 1is an
extended version of Dartmouth BASIC with the following features:

- Optional statement labels (statement numbers)
- Statement labels of any length

- Alphanumeric variable names of any length

- Multiple statements on one line

- Complex IF statements

- Multi-line IF statements

- Formatting and terminal cursor control

- String handling with variable length strings
- One and two dimensional arrays

- Magnetic tape input and output

- Decimal arithmetic with up to 14 digit precision
- ACCESS data conversion capabilities

- PICK file access and update capabilities

- Pattern matching

- Dynamic file arrays

- External subroutines

CHAPTER 1 — INTRODUCTION ' Copyright (c) 1985 PICK SYSTEMS

PAGE 9

1.9 AN OVERVIEW OF THE EDITOR

' The EDITOR 1is a PICK processor which permits on-line interactive
modification of any item in the data base.

The Pick EDITOR may be used to create and/or modify PICK/BASIC
programs, PROC's, assembly source, data files, and file dictionaries.

The EDITOR is entered by issuing the EDIT verb. The general command
format is as follows:

EDIT file—name item-id

The item specified by "file-name" and "item-id" will be edited. If
the specified item does not already exist on file, a new item will be
created.

The EDITOR uses the current line concept; that is, at any given time
there is a current line (i.e., attribute) that can be listed, altered,
deleted, etc. The Pick EDITOR includes the following features:

- Two variable length temporary buffers

- Absolute and relative current line positioning
- Line number prompting on input

- Merging of lines from the same or other items
- Character string locate and replace

- Conditional and unconditional line deletion

- Input/Output formatting

- Prestoring of commands

(?“ EDITOR commands are one or two letter mnemonics. Command parameters
follow the command mnemonic.

1.10 AN OVERVIEW OF PROC

procedures called PROC's.

The PROC processor allows the user to prestore a complex sequence of
TCL operations (and associated processor operations) which can then be
invoked by a single command. Any sequence of operations which can be
executed by the Terminal Control Language (TCL) can also be prestored
via the PROC processor. This prestored sequence of operations (called
a PROC) is executed interpretively by the PROC processor and therefore
requires no compilation phase.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

(-PAGE 10

The PROC processor encompasses the following features:

- Four variable length I/0 buffers
- Argument passing

- Interactive terminal prompting N
- Extended I/0 and buffer control commands \\ y
- Conditional and unconditional branching =

- Relational character testing

- Pattern matching

- Free-field and fixed-field character moving
- Optional command labels

- User-defined subroutine linkage

- Inter-Proc linkage

1.11 AN OVERVIEW OF THE PICK OPERATING SOFTWARE

Although the user need never be concerned with the architecture and
instruction set of the Pick computer, the following section is
provided for those readers who would 1like some information on Pick's
unique structure.

In the early development of the PICK System, the task of creating an
efficient, flexible business information system was given to a team of
knowledgeable systems designers. At the time they began, the hardware
selection had not yet occurred. While most people might consider this

a handicap, it was in fact a most fortuitous situation. Not being
constrained by the 1limits of any one type of hardware, the designers

had the freedom to create a new language, an assembly language that

was optimized for business data processing. TN

The power and flexibility in this assembly language is the strength of
the current PICK System. The Pick instruction set has been
specifically designed for character moves, searches, compares, and all
supporting operations pertinent to managing variable length fields and
records. The virtual memory is disc which is divided into 512-byte
frames. The virtual memory addressing range is currently 12,192,320
frames, which is in excess of 6.4 billion bytes of data.

The Virtual Machine has 16 addressing registers and one extended
accumulator for each terminal. A return stack accommodating up to
eleven subroutine calls for each terminal is also provided. By
indirect addressing through any one of the 16 registers, any byte in
the virtual memory can be accessed. Relative addressing 1is also
possible using an offset displacement plus one of the 16 registers to
any bit, byte, word (16 bits), double word (32 bits), triple word (48
bits) or quadruple word (64 bits) in the entire virtual memory. This
means fast response time and very high system throughput.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

)A\

- PAGE 11

1.12

CHAPTER 1 — INTRODUCTION

The PICK Instruction Set

The PICK System has an extensive instruction set. The main features

include:

Bit, byte, word, double-word and triple-word operations.
Memory-to—memory operation using relative addressing on bytes,
words, double-words, and triple—words.

Bit operations permitting the setting, resetting, and branching
on condition of a specific bit.

Branch instructions which permit the comparison of two relative
memory operands and branching as a result of the compare.
Addressing register operations for incrementing, decrementing,
saving, and restoring addressing registers.

Byte string operations for the moving of arbitrarily long byte
strings from one place to another.

Byte string search instructions.

Buffered Terminal Input/Output instructions.

Handling of all data and program address references by the
virtual memory operating system.

Operations for the conversion of binary numbers to printable
ASCII characters and vice versa. .
Arithmetic instructions for loading, storing, adding, sub-
tracting, multiplying, and dividing the extended accumulator
and a memory operand.

Control instructions for branching, subroutine calls, and
program linkage.

Efficient stack operations for use by high level languages.

For further details regarding the PICK instruction set, refer to the
PICK Assembly Manual.

SUMMARY OF PICK IMPLEMENTATIONS

Pick Operating Software is not new or untried. Its origins go

back to the mid 1960's. It has been a commercial success since

the early 1970's. In this time the concepts of user friendly

on—-line inter-action have been validated over and over again.
The PICK System helps solve the biggest problem facing the
expanded use of computers today. The creation of sufficient
high—quality application software to support the new lower-cost
hardware is a monumental task. By providing the best possible
application software development environment coupled with
intelligent data base management functions and a non-procedural
ACCESS language report generator, the PICK System reduces these
programming requirements.

In addition to the direct benefits of the Operating System,
there are many tangible indirect advantages available to new
users. The vast base of application programmers as well as the
many vertical market packages available make finding application
software easier.

PAGE 12

Copyright (c) 1985 PICK SYSTEMS

MICRODATA 1600 (8-bit firmware machine)
INTERTECHNIQUE Multi-6 (8-bit firmware machine)
EVOLUTION 280 (8-bit firmware machine)

ULTIMATE Honeywell Level-6

ULTIMATE DEC LSI-11

ADP HEWLETT-PACKARD H-P 3000/Series 30

ADDS Mentor - Z8000 (16-bit microprocessor)
DATAMEDIA Motorola — M68000 (16-bit microprocessor)
C.D.I./IBM Series 1 (16-bit software machine)
ALTOS - 18086 (1l6-bit microprocessor)

GENERAL AUTOMATION Zebra - M68000 (16-bit microprocessor)
S.M.I./IBM 4300 (32-bit software machine)

PICK SYSTEMS IBM PC-XT (1l6-bit microprocessor)
SMI/IBM CS9000 — M68000 (1l6-bit microprocessor)
PERTEC Sabre — M68000 (16-bit microprocessor)
TAU - M68000 (16-bit microprocessor)

WICAT - M68000 (16-bit microprocessor)

CLIMAX - M68000 (1l6-bit microprocessor)

CIE 680 Series

FUJITSU — 18086 (16-bit microprocessor)

NIXDORF - 8090 VM

Summary of PICK SYSTEM Hardware Implementations.

1.13 A GLOSSARY OF PICK TERMS A GLOSSARY OF PICK TERMS

The very nature of the PICK OPERATING SYSTEM presents certain terms and
definitions which may be unfamiliar to conventional system users. Those
terms and definitions, together with some more universally accepted
acronyms and 'buzz' words, have been combined together in the following
Glossary, to aid the first-time user in deciphering common terminology
used in a PICK SYSTEM Environment.

ABS ABSolute data image - generally taken to mean the
Operating System (PICK) Modes which are loaded to
a particular disk-drive area of frames.

AMC Attribute Mark Count - a wvalue found in a
attribute defining item which contains the count
(# of delimiters) of attribute marks, thereby
specifying which attribute (field of data) in an
item it refers to.

ATTRIBUTE Each item is made up of a number of data fields
or attributes. City, State and Zip would

certainly be three attributes included in a Name
and Address File.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 13

N

NS

BIT

- BOOLEAN

BYTE

CONTROL CHARACTERS

COMPILE

CONVERSIONS

~ CORRELATIVES

CPU

CRT

DEFAULT

BInary digiT - a unit of information equal to one
binary decision. An eight BIT unit is called a
byte. A character of data is represented in the
computer by a byte (or 8 BITS).

Refers to a system of mathematical logic dealing
with classes, propositions, on-off circuits, etc.
Taken by programmers to mean, AND-OR-NOT-EXCEPT-
IF..THEN, thereby allowing for logical decisio
making. :

A group of 8 bits usually processed together in
parallel. A character of data is represented in
the computer by a BYTE (8 bits).

Normal keyboard letters, numbers or symbols which
are entered while the "CONTROL" key is held down.
They are not normally printable characters.

The process of turning user-written code (a
PICK/BASIC program) into machine executable code
which then has meaning to the computer. Source
Code 1is COMPILED in order to execute it.

Instructions may be stored in attribute 7 of
attribute definition items. These CONVERSION
instructions convert formats, (such as time,
date, decimals, etc.) for the data that the
attribute definition refers to. Internal format
is converted to external format upon output and
vice-versa.

Instructions may be stored in attribute 8 of
attribute definition items. Similar to

conversions, they differ only in the times that
their instructions are applied to the data. Both
conversions and correlatives perform a number of
tasks and greatly reduce programming
requirements. '

Central Processing Unit - generally refers to
that electronic circuit board in the computer
which contains the main storage (MOS memory),
arithmetic unit, and special registers.

Cathode-Ray Tube - a terminal with a video
screen, also called a VDT.

The way processing will be done unless otherwise
specified. A default value 1is a value that the
computer will use (pre-programmed) in cases where
user—defined parameters are prompted for and not
supplied by the operator.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 14

DELIMITER

DICTIONARY

EDITOR

FILE

FRAME

GROUP

HARDWARE

ITEM

CHAPTER 1 — INTRODUCTION

Special Characters used to separate data. System
delimiters separate sub-values, values, and
attributes.

A PICK dictionary is a special type of file.
Normally, a data file dictionary will contain two
types of items. One type (called a D-pointer)
contains information about the size and location
of its associated data file on the disk. The
other type of item is the attribute defining item
and is used to define attributes in the data file
associated with the dictionary.

The EDITOR processor permits on-line interactive
modifications to any item in the data base. It
is the normal input processor for writing procs,
programs, system management and the like.

A file is a logical structure which associates a

set of items. On a PICK system, files are

organized into a hierarchical structure. There
are four distinct levels of files, the SYSTEM

DICTIONARY, a users MASTER DICTIONARY, FILE-LEVEL

DICTIONARIES and the DATA FILES. A PICK system

can contain any number of files, which contain

any number of items, limited only by the size of

the disk drive.

Disc drive storage 1is divided into sections
called FRAMES. Each FRAME is numbered giving the
system direct access to that particular frame-id
or FID. The physical size of a frame is machine
dependent, the most common size being 512 or 1024
bytes per disk frame.

The number of GROUPS in a file is the same as the
MODULO for that file. As items are added to the
file, additional overflow frames are linked on to
the "primary frames" as needed. The size of each
GROUP would then depend on how many overflow
frames have been linked on to the primary frame
of that GROUP.

The physical part of the system which you can see
and touch. The CPU, disk drives, tape drives,
terminals and printers are examples of HARDWARE.
A PICK/BASIC program is an example of SOFTWARE.

A record made up of attributes. ITEMS make up a
file. ITEMS are variable in length, the maximum
size being 32,267 bytes. There is no 1limit to
the number of items in a file, other than the
size of the disk drive. The name of an item is
called the "item—-id". The item-id is unique to
the file which contains that ITEM.

Copyright (c) 1985 PICK SYSTEMS

PAGE 15

-

o

(

¢

\

ITEM-ID

MD or M/DICT

MODULO

MONITOR

NULL

0/S

POINTERS

PROC

CHAPTER 1 - INTRODUCTION

The name of an item in a file. An ITEM-ID may be
any combination of numbers or letters, except
system delimiters. If blanks are used in the
ITEM-ID, then the ITEM-ID must be enclosed by
quotation marks when accessed.

MASTER DICTIONARY - each user-account on the
system has a MASTER DICTIONARY associated with
it. It is structurally similar to all other
files on the system. Many things that a user
enters at the TCL prompt are contained in that
users MASTER DICTIONARY (such as verbs, procs,
connectives, file—names, etc.). Upon creation, a
standard set of vocabulary items are copied into
that new account's MASTER DICTIONARY. Additional
items may be added or deleted to customize that
users account, as needed.

The MODULO is the number of ‘"groups" of disk
frames reserved for a file. The MODULO is
specified at the time a file is created and is
based upon an estimate of the number of
characters which will be contained in the file.

The MONITOR is that part of the underlying system
software which handles the operating systems
interaction with peripheral devices. (Disk
requests, Terminal I/O, etc.)

A lack of information as opposed to a zero or
blank for the presence of no information. A
blank or space which you get from the terminal
space bar is not a null.

Operating System. The software that controls the
carrying out of computer programs and other
system functions (scheduling, I/O control, etc.).

POINTERS are items in dictionaries which serve a
number of purposes. "D"-type POINTERS provide
FID information to 1locate items in the data
portion of the file. They reside in that files
dictionary. "Q"-type POINTERS enable users to
access files which are in another account.
"Q"-type POINTERS are also used to shorten
filenames (INV instead of INVENTORY or AH3
instead of ACCOUNT-HISTORY,MARCH).

PROC is short for stored procedure. PROC allows
the user to prestore a complex series of
operations which can be invoked by a single
command. Anything which can be done at the TCL
level, can be accomplished with a PROC.

Copyright (c) 1985 PICK SYSTEMS

PAGE 16

SOFTWARE

STRING

TCL

VALUE (MULTI/SUB)

CHAPTER 1 - INTRODUCTION

Programs, routines, codes and other written
information for use with computers, as
distinguished from equipment, which is referred
to as "HARDWARE". The PICK OPERATING SYSTEM is
SOFTWARE.

A STRING is any succession of characters. They
may be numbers, 1letters, blanks or other
characters. The PICK SYSTEM treats most data
simply as a certain sequence of symbols or
"STRING".

Terminal Control Language processor. TCL is the
primary interface between end-users and the
computer. When the computer "prompt character"
is displayed and is waiting for user input, this
is commonly referred to as being "at TCL". The
TCL processor works on one statement at a time.
Each statement begins with a verb. Only one verb
is allowed per statement.

The contents of an attribute, if not null, is
called its "VALUE". An attribute may contain
more than one value. If it does, each of these
values is called a "MULTI-VALUE". A multi-value,
in turn, may contain more than one value. If it
does, these values are called "SUB-VALUES".

Video Display Terminal. Same as a CRT.

Copyright (c) 1985 PICK SYSTEMS

- PAGE 17

// \\
(;
J

SECTION 2

THE
ICON /PICK
FILE
STRUCTURE

|C&N

a

®

Chapter 2

FILE STRUCTURE

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 2 — FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

(\ PAGE 18

N

2.1 THE FILE HIERARCHY THE FILE HIERARCHY

(

This section describes the hierarchical nature of the files in the the
PICK System.

Throughout these sections the following terms will be used:

NAME CONVENTIONAL NAME
Item Record

Attribute Field

Item—id Record Key

Files are organized in a hierarchical structure, with files at each level
pointing to multiple files at the next 1lower level. Four distinct file
levels exist: System Dictionary, User Master Dictionary, File Level
Dictionary, and Data File.

The term "file" as used in the context of this system refers +to a
mechanism for maintaining a set of 1like items logically together. The
data in a file must be accessed via the DICTIONARY associated with it. A
"Dictionary" is like the "index" to a file. Since the dictionary itself
is also a file, it contains items just as a data file does. The items in
a dictionary then serve to define data files.

The system can contain any number of files. Files can contain any number
of items, and can automatically expand to any size. Items are variable
length, and can contain any number of fields and characters so long as it

~does not exceed a maximum of 32,267 bytes.

8

SYSTEM DICTIONARY (SYSTEM)

The highest 1level dictionary is called the System Dictionary (SYSTEM).
The System Dictionary contains all legitimate user Logon names, along with
associated passwords, security codes, and system privileges. The Logon
names and related information are stored as items in the System
Dictionary. These items function as pointers to the user's Master
Dictionary.

USER MASTER DICTIONARIES (MDs)

The Master Dictionaries (MDs) comprise the next dictionary 1level. Each
user's account has a unique MD associated with it. The MD contains items
which make up most of the users vocabulary, (verbs, PROCs etc.) and items
which function as pointers to accessible files.

When an account is created a standard set of MD vocabulary items are
stored in the account's MD. A user may create synonyms and abbreviated
forms of these standard vocabulary elements (since they are merely items
within his Master Dictionary file) by creating copies of the elements.
The user can also add to the prestored vocabulary statements called PROCs.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 19

The file pointers can reference any file or dictionary in the system;
that 1is, they are not restricted to files defined within the user's
account alone.

FILE LEVEL DICTIONARIES

The File Level Dictionaries describe the structure of the data within the
associated data files. They also contain pointers to the associated Data-
level files. A File-level dictionary may be shared by more than one Data-
level file.

DATA FILES

The Data files contain the actual data stored in variable record/field
length format. 1In addition to the normal record/field data structure, an
attribute (field) can contain multiple values, and a value, in turn, can
consist of multiple sub-values. Thus, data may be stored in a three
dimensional variable length format.

Level O SYSTEM DICTIONARY One per system

passwords accounting
information

Account names with '

AY
Level 1 MASTER DICTIONARY (MD) One per account

verbs, modifiers, etc.

l Vocabulary items; l
filenames

\Y
Level 2 FILE DICTIONARY Possibly many
per account.

inter-relationship
definitions.

I

\Y
Level 3 FILE DATA Possibly many
' per account.

l Data definitions and |

| pData items. |

The Four-level File Hierarchy.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
" PAGE 20

N

2.2 FILE ACCESS FILE ACCESS

The file access system is designed to allow the access of a particular
item (or a number of particular items) in a file, or to access
‘consecutively all items in a file.

A file is a logical structure which associates a set of items so that they
can be accessed for both retrieval and update.

Items are individually variable in length. The maximum size of an item is
32,267 bytes. There is no limit to the number of items which may be
contained in a file, nor any limit to the number of files in an account.
Each item has a "name" which is called its item-id. An item-id is an item
identifier or key that must be unique to the file which contains it.

Items are stored in the file in a "pseudo-random" sequence; this sequence
is determined by the result of a computational "hashing" (randomizing)
technique which is employed by the system for purposes of storage and
retrieval of data on disc. This technique utilizes the item-id along with
other predefined parameters for the file, to produce the disc-—address
(Frame-identifier or FID), which identifies the location of the item.

Items that are stored in a file may be accessed directly, using the item—
id as the key, or sequentially in the pseudo-random sequence. If items
are to be accessed in any sorted sequence, a preliminary pass through the
file to generate the sort sequence is needed (see SORT and SSELECT
functions in ACCESS). The result of the preliminary pass is a list of
item—-ids; this list may be saved for future use, or used to then access
the items in the file in the required sorted sequence (see also SAVE-LIST
- and GET-LIST functions in ACCESS).

(The direct file access technique, using the item-id to 1locate the item
within the file, is an efficient method of locating data, and lends itself
to the on-line nature of the Pick system. The system overhead required to
access an item wusing this technique 1is essentially independent of the
actual size of the file.

Special reserved characters are used as delimiters for storing data within
an item. Attributes are separated by "Attribute-marks" (" ", control-
shift-N on most terminals, hexadecimal value X'FE') which may be
subdivided into Values by "Value-Marks" (']', control-shift-M, hexadecimal
value X'FD'); the values may in turn be subdivided into Sub-values by
"Sub-value—marks" ("\", hexadecimal value X'FC'). This structure allows
each attribute (including values and sub-values) to be of a variable
length. This structure is further discussed in the ITEM STRUCTURE,
PHYSICAL section.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

(PAGE 21

— THE SYSTEM CONTAINS ON-LINE:

— ANY NUMBER OF FILES, WHICH CONTAIN:

o

— ANY NUMBER OF ITEMS (RECORDS), WHICH CONTAIN:
- MULTIPLE ATTRIBUTES (FIELDS), WHICH MAY CONTAIN:
— MULTIPLE VALUES, WHICH MAY CONTAIN:

- MULTIPLE SUB-VALUES.

- ALL FILES, ITEMS, ATTRIBUTES, VALUES, AND SUB-VALUES ARE VARIABLE
IN LENGTH.

- EACH ITEM MUST BE LESS THAN OR EQUAL TO 32,267 CHARACTERS LONG

File Structure Summary.

2.3 THE DICTIONARIES THE DICTIONARIES

A dictionary defines and describes data within its associated file.
Dictionaries exist at several levels within the system.

As introduced in the topic titled THE FILE HIERARCHY, the following
dictionary levels exist within the system:

- System Dictionary (one per system).

- User Master Dictionary (one per user—account).

- File Level Dictionary (one per file or files).
Since the dictionary itself is also a file, it contains items just as a
data file does. The items in a dictionary serve as the actual definitions

for data files. The following types of items are stored in dictionaries:

- File Definition Items (file—names/pointers)
(also called "D"-items)

- File Synonym Definition Items (file-names/pointers)
(also called "Q"-items)

- Attribute Definition Items (attribute names)
(also called "A"-items)

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
PAGE 22 , o

The file definition items and the file synonym definition items are used
to define files. The item—ids of these items are the file—-names of the
files they define or point to. File—names must start with a non—numeric
character, and may be of any length and may contain any character except a
comma (,) or a semi-colon (;). The attribute definition items are used to
define attributes within data file items.

For example, "INVENTORY", "TEST.FILE" and "Z1l" are all legal file-names.
It is common practice to use file—names that are descriptive of the type
of data stored within the file. A file is said to be defined from the
dictionary that contains the "D-item" that points to it. Therefore,
referring to the hierarchy of files in the system, all Master Dictionaries
(or M/DICT's) are defined from the SYSTEM dictionary. In turn, a user may
define any number of wuser dictionaries (with associated file or files)
from his Master dictionary (see CREATE-FILE processor).

In order to access a file in another user's account, a file synonym
definition item ("Q-item"”) may be created by the user, using the EDITOR.
Assuming that the system security structure permits it, such a synonym
file definition allows access to any file within the system.

A synonym file-pointer may also be used for convenience; for example the
INVENTORY file may have a synonym file-name "INV", which reduces the
number of characters the user has to type in order to access the file.

The data within each dictionary item consists of attributes (and optional
multi-values) just as data file items.

For ACCESS processors, special dictionary items (called Attribute
Definition items or A-items) define the nature of the data stored in their
associated file. They contain such additional information as:

- Conversion specifications which are used to perform table
look-ups, masking functions, etc.

- Correlative specifications which are used to describe inter-
file and intra—-file data relationships.

- Type (alphabetic or numeric) and justification (left or right)
for output purposes.

A data file is referenced by its "file-name". The dictionary file which
is associated with that data file is referenced by "DICT" followed by the
data file—name. A dictionary file may have more than one data file
associated with it. This relationship is explained in the following
section.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 23

A dictionary contains:

1. File definitions, or "D-items", that define the physical
extents of other, lower-level, files. . :

2. File synonym definitions, or "Q-items" that point to files
in other accounts.

3. Data definition items "A-items" that are used by the ACCESS
processor and define the structure of data in the data
section of the file.

In addition, a Master Dictionary contains:

1. Verbs (see TCL documentation)

2. PROCs (see PROC documentation)

3. Vocabulary elements of the ACCESS language.

Summary of Dictionary Items.

2.4 SHARING OF DICTIONARIES

A dictionary file may be shared by any number of data files. This
structure allows a unique set of dictionary items to define any number of
like data files.

File-level dictionaries may define a unique data file or multiple data
files. When a dictionary defines multiple data files it is said to be
"shared" by those data files. The characteristics of the data in the data
files are typically similar.

For example, there may be sets of data relating to the various departments
in a corporation. For ease of maintenance, it may be desired to keep
these sets of data in a shared dictionary structure, since the dictionary

items that describe the data are identical for each department. These
dictionary items, used by the ACCESS processor, apply to all of the data
files defined by that dictionary. This structure has the advantage of

requiring only one set of dictionary items to be maintained for a set of
similar files.

Any number of data files sharing a dictionary may be opened
simultaneously. The general form for specification of a data file is:

dictname{,dataname}

CHAPTER 2 - FILE STRUCTURE : Copyright (c) 1985 PICK SYSTEMS

PAGE 24

a

The first parameter, dictname, always specifies the file dictionary. The
second parameter, dataname, specifies the data file and is required ONLY
in the case that multiple data files are using a common dictionary. If
only one data file is using a dictionary then the form:

filename
specifies the dictionary and the data file of the same name.
For example, the inventory file may be called:

INVENTORY

but the departmental data files, whose dictionary is called "DEPT", if
using the shared dictionary structure, require a further specification.
For example,

DEPT, ACCOUNTING or
DEPT ,MAINTENANCE
As mentioned previously, the dictionary of a file contains a "D-item"

which defines the associated data file. 1If the dictionary is NOT shared,
the item-id of this pointer (file-name) is the same as that of the

dictionary; this is the default case. Therefore, for example, the
INVENTORY dictionary will contain an item, also called "INVENTORY", which
is the pointer to the associated inventory data file. The DEPT

dictionary, on the other hand, will contain as many D-items as there are
departments; the item—ids of these pointers may be the department names.

Using the example below, the statements required to create a shared

"~ dictionary structure are:

1. Create the dictionary of the file:
>CREATE-FILE DICT DEPT m [CR]

2. For each data file, create the data section:
>CREATE-FILE DATA DEPT,ACCOUNTING m [CR]

>CREATE-FILE DATA DEPT,MAINTENANCE m [CR]

CHAPTER 2 — FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 25

User M/DICT

|

DEPT l

DEPT Dictionary

v

ACCOUNTING

MAINTENANCE

v

data

file—name: DEPT, ACCOUNTING

Datafile ACCOUNTING

Vv
Datafile MAINTENANCE

data

PROJECT ,MAINTENANCE

Example of the Shared Dictionary Concept.

2.5 BASE AND MODULO

The physical boundaries of the random-access file are defined by two
parameters: the BASE and the MODULO

The physical boundaries of a file
dictionary) in the File-Definition-Item.
File-name.

are stored (in the associated
The item-id of this item is the

Files are defined at the time of creation by the following two parameters:

BASE Is the physical disc address (frame-identifier or
FID) of the start of a contiguous block of reserved
disc space. This is automatically selected by the
system.

MODULO Is the number of groups that the file space is

logically divided into (sometimes called "buckets").
(Selected by user.)

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

- PAGE 26

The selection of the MODULO is «critical to the efficiency of the file
access method. An algorithm for optimum selection is presented in the
next section.

) The BASE and MODULO of the file are stored by the CREATE-FILE processor

(

when the file is created. THESE PARAMETERS SHOULD NEVER BE ALTERED IN ANY
WAY BY THE USER!

Therefore, at the time of file creation, a contiguous block of disc space
is reserved. The size of this contiguous block is defined by the MODULO,
and is called the "PRIMARY SPACE" allocated to the file. This does not
however, define the TOTAL space available for the file. As data is placed
into each group, the group may overflow by linking on additional disc
frames as needed. There is no theoretical limit to this growth, other
than the physical 1limit of disc space available. In practice, however, a
group should be kept as small as possible. This may be achieved by the
optimum selection of the file's MODULO.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 27

Item "INVENTORY" in the M/DICT:

INVENTORY

001 D

002 17324

003 3
FID "Primary" space allocated to the

INVENTORY dictionary file.

17324 | | 1st group
17325 | | 2nd group
17326 l | 3rd group

Item "INVENTORY" in the dictionary INVENTORY

INVENTORY

001 D

002 17573

003 373
FID "Primary" SPace allocated to the INVENTORY

data file.

17573 | | 1st group
17574 | | 2nd group
etc.

Example of a File's Defined BASE and MODULO.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 28

™

(

-

«

2.6 MODULO SELECTION MODULO SELECTION

|

Effective file accessing and efficient disc utilization depends on proper
selection of the MODULO.

' "Modulo" is the number of groups in a file. A file 1is created by

specifying the "new-file-name" and a MODULO parameter; the frames
allocated by the system

Are referred to as the "primary" file-space. As data is placed into the

file, any group may overflow by attaching frames from the available system

space pool; this space is referred to as the "overflow" file-space. To
locate an item given its item—id, the item-id is "hashed" using the MODULO

of the file, which results in a unique number in which it may exist. The

item-ids in that group are then linearly searched for the required item.

A proper selection of the "MODULO" parameter is essential to minimize this

search time.

Selecting a proper MODULO is extremely important, since the number of
groups directly affects the search and update time for an item in the
group. The MODULO selection process will attempt to make the average
GROUP length between 1 and 2 frames. Obviously, if the item—size is of
the order of 250 bytes or greater, this rule must be modified; one should
then try to minimize as far as possible the AVERAGE NUMBER OF FRAMES in a
group. Therefore, the average number of items in a group should be
selected with the average item-size in mind; the larger the item-size,
the smaller the number of items in a group.

The number of disc reads, which is the factor that causes the most
degradation of overall system response, increases dramatically as the
number of frames per group increases, due to the fact that on the average,
one-half of the frames in a group have to be written back to the disc

~after an item update. Thus to update an item in a group, we have to read

every frame in the group, and write and verify one—-half of them.

With this in mind, it is suggested that the tables below be used as a
guide in selecting a proper MODULO.

The discontinuities in the items/group columns are because the selection
of the number is such that the bytes/group figures are close to integral
multiples of frames (500, 1000, 1500, etc.). The 1last figure, 0.8
items/group, may be used for files with relatively few items that are very
large, such as assembly or BASIC program files. If the number of items in
such a file is also very large, adjust the items/group figure upwards,
since the 1lower figure will result in a lot of wasted disc space. Using
the table, one can select an appropriate ITEMS/GROUP value; knowing the
expected number of items in the file then gives the approximate MODULO.

MODULO MUST NOT BE A MULTIPLE OF 2 OR 5.

MODULO SHOULD BE A PRIME NUMBER.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 29

If Then avg. And avg
Avg Item—Size Items/Group Bytes/Group
Is: Should be: Will be: o
20 22.0 440 e
35 13.0 455
50 9.0 450
75 12.0 900
100 9.0 900
125 7.5 937
150 6.0 900
175 8.0 1400
200 7.0 1400
250 5.8 1450
300 6.4 1920
350 5.5 1925
400 4.8 1920
500 3.8 1900
1000 3.0 3000
5000 0.8 4000
Selecting Items/Group
Avg Item Approximate Items/Group Approximate
Size # of Items (From Figure A) Modulo
20 800 / 22.0 = 36 i
40 5000 / 11.0 = 454
210 1800 / 7.0 = 257
4000 230 / 1.0 = 230
Examples of Computing Modulo
2.7 1ITEM STRUCTURE (PHYSICAL) ITEM STRUCTURE (PHYSICAL)

Data within an item are stored in terms of attributes, values and sub-
values, all of which provide for variable 1length storage. This topic
describes the physical item format as stored on disc.

An item consists of one or more variable length attributes, separated by
attribute-marks. An attribute mark is a character with a value of X'FE'
(hexadecimal), which prints out as '"'. The first attribute in an item
(attribute 0) is the item-id. The item—-id is preceded by a four-character
hexadecimal count field which specifies the total number of characters in

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 30 L /7,

(

the item including the count field itself. For example, consider the
following stored item:

002EITEMX LINE1 SMITH, JOHN 1234 MAIN STREET

Attribute 0 is the item-id "ITEMX". It 1is preceded by "OO2E" which
specifies that there are X'O02E' (decimal 46) bytes in the item.
Attribute 1 of "ITEMX" is "LINE 1". Attribute 2 is "SMITH, JOHN". The
last attribute (attribute 3) is "1234 MAIN STREET".

An attribute, in turn, may consist of any number of variable length values
separated by value marks. A value mark has an eight bit value of X'FD',
which prints as "]". Finally, a value may consist of any number of
variable 1length sub-values (also known as secondary values) separated by
sub-value marks. A sub-value mark has an eight bit wvalue of X'FE', which
prints as "\". For example, consider the following item:

ITEM-ID ATT1 ATT3 ATT5——- ATT6 ATT7-—— END OF ITEM

0039ITEMYAQSAAAAAAA123]456]78910;A BT5]188\99\77\5514"XYZ"~

COUNT-FIELD ATT2 MULTI-VALUES ATT4 MULTI-SUB-VALUES
(0039= 57 decimal)

The absence of an attribute wvalue 1is specified by an attribute mark
immediately following the attribute mark indicating the end of the
previous attribute (i.e. '"7'). This maintains the correct attribute
ssequence. The "null" between two adjacent attribute marks may be thought
of as representing the absent attribute.

The mnemonics AM, VM and SVM will be used hereafter to denote attribute
mark, value mark and sub-value mark.

Within a group, there may be =zero or more items whose item—-ids hash to
that group. Such items are stored sequentially in the group, the sequence
being solely dependent on the order in which the items are created.

After determining the group to which an item-id hashes, a linear search is
conducted to find the particular item—-id that is being retrieved. The
count field is used to skip from one item to the next during this search.
The presence of an SM where the count field of the next item should be
indicates the END-OF-GROUP condition. An empty group therefore has an SM
in the very first data position, which is also the condition setup by the
CREATE-FILE and CLEAR-FILE processors.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 31

G R <|J UP
v
' FIRST SECOND I l 1 LAST l
ITEM ITEM ITEM
I
v
COUNT | ATIR O ‘ - ATTRIBUTE | ~ R e l ATTRIBUTE l - I _ I
FIELD AM ONE AM AM LAST AM | SM
|
\'
| FIRST l] I SECOND l] l l] ‘ LAST I
VALUE VM VALUE VM VM VALUE
I
v
I FIRST I \ | SECOND \ \ I LAST
SUB-VALUE SVM SUB-VALUE SVM SVM SUB-VALUE
General File Item Structure
2.8 ITEM STRUCTURE (LOGICAL) ITEM STRUCTURE (LOGICAL)

|This topic describes the item structure at the logical level

While it is important to understand the physical item format, in normal
system usage items are always accessed at a more abstract or higher level.
Files are identified by a file-name. Within a file, items are referenced
by their item-id. Attributes are referred to as lines (e.g. Attribute 1
is called "line 1"). Figure A shows a sample COPY operation where the
item with the item-id ITEMX (in the file SAMPLE-FILE) is being copied to

the terminal. The item is shown to have three attributes (lines) of
sample data.

Utility processors like COPY and the EDITOR deal at the file-item 1line
level. They make no logical distinction in definition between various
lines in an item, other than their implied line numbers.

ACCESS processors, however, add an additional dimension through the use of
the dictionary. The dictionary informs ACCESS as to the nature of the
information stored for each of the attributes.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

"PAGE 32

It was noted that an Item is similar to a "record" in general parlance.
It is more effective to think of and use an Item as a group of related
records, however. 1In the general case one tends to see a unit record as a
collection of fields distributed horizontally, and having meaning by
virtue of their offsets from the initial byte of the record.

}

In the Pick system a data-string has meaning by virtue of the attribute
(line) it is in. Therefore, if one thinks of a unit-record as running
vertically down the horizontal attributes, such that the first field is in
the first attribute, the second field is in the second attribute, and so
on, the nature of the storage structure of the system becomes clearer.
The basic intent of the value mark is to delimit the contents of each unit
record within each attribute, and of the sub-value mark, to delimit
multiple entries within a unit record within an attribute.

It is therefore effective to store transaction records relating to a
single vendor, say, within one item. Within a single attribute the fields
from different unit records are separated by value marks. Attributes used
in this manner are referred to as multi-valued. Continuing the chain, a
value within an attribute may itself contain several values. These are
called sub-values and represent multiple sub-records within a given
transaction record, as in the case of a purchase order specifying several
different parts. The individual unit records remain identifiable because
of the ordinal relationship of the delimiting value marks. The intent of
the ACCESS processor is to generate reports from this storage structure.

The logical item format is identical for all processors. It 1is the
responsibility of the wuser to ascertain the further qualifications of the
various attributes. In the examples below, the item listing in the first
example is shown in the second example as produced by the ACCESS LIST
processor. Here, the SAMPLE-FILE dictionary "defines" attribute 2 (line
- 2) as NAME and attribute 3 (line 3) as ADDRESS. This permits the user to
(reference his data symbolically (through dictionaries) when in fact the
‘actual data stored on file is the same regardless of the processor
accessing it.

Also note that the COPY of the item displays a value of 3746 for attribute
1 of the item, whereas the ACCESS listing displays it as "04/03/78", which
is the same data after conversion using the standard system date code.
(See ACCESS.)

>COPY SAMPLE-FILE ITEMX (T

ITEMX < Item—-id
001 3746 < - Attribute 1
002 SMITH, JOHN <—— Attribute 2
003 1234 MAIN STREET < Attribute 3

An Item Listing Via the COPY Processor.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

(PAGE 33

X=0
FOR J = 1 TO LEN(ITEMID)
X = X*10 + SEQ(ITEMID[J,1])

NEXT J
GROUP = REM(X,MODULO)
FID = GROUP + BASE

where:

ITEMID contains the sequence of characters in the item-id;

The LEN function returns the number of characters in the item-id;

The form ITEMID[J,1l] extracts the j-th. character of the item-id;

The SEQ function converts the above character to binary for addition;
The REM function returns the remainder of the division of X by MODULO;
And FID is the resulting disc address where the item may be found.

Hashing algorithm as expressed in PICK/BASIC terminology.

2.10 FILE DEFINITION ITEMS FILE DEFINITION ITEMS

File definition items are used to define lower level dictionary files or
data files. File definition items are specified by a "D/CODE" of "D",
"DY", or "DX". They are created automatically by the CREATE-FILE verb.

At the System Dictionary level, File Definition items are used to define
the Accounting File and each user's MD (Master Dictionary). File
definition items in the MD are used to define the file level dictionaries,
which in turn may contain one or more file definition items which define
the associated data file(s). The item-id and each attribute of the file
definition item contain required and optional information which describes
(and 'points to') the lower level dictionary file or data file:

Item—id The item-id of a file definition item is the file
name of the dictionary or data file being pointed
to. If the item is pointing to a data level file,
then the item-id must be the same as the name of
the data level file.

Attribute 1 This is the D/CODE attribute; it must contain a
"D", followed optionally by a one or two character
code.

When a file is created, the CREATE-FILE processor
will place a "D" in this attribute. Alternate
forms are:

Dx

x = X Do not save this file on filesave tapes

(the file will not exist after a file
restore).

CHAPTER 2 — FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 35

N

>LIST SAMPLE-FILE "ITEMX" ATTRIBUTE-1 NAME ADDRESS

PAGE 1 09:28:32 12 JAN 1978
(, SAMPLE-FILE. .ATTRIBUTE-1. .NAME............. ADDRESS.........
ITEMX 04,/03/78 SMITH, JOHN 1234 MAIN STREET

An Item Listing Via the ACCESS LIST Processor.

2.9 ITEM STORAGE AND THE HASHING ALGORITHM ITEM STORAGE AND THE HASHING ALGO:

The system employs a computational group hashing technique which utilizes
the item-id and the file parameters (such as defined at the time of file-
creation). This technique generates the disc address (FID) of the group
in which the item is stored.

The hashing formula used by the system to store or retrieve items is shown
below. The item-id is treated as a variable 1length string of binary
bytes; these bytes are accumulated sequentially with each partial sum
being multiplied by 10. Dividing this value by the positive integer
MODULO yields an unsigned integer remainder within the range:

0 <= Remainder < MODULO

This is then the group number (i.e. 0, 1, 2, ..., up to MODULO - 1) where
i’ the item is to be stored. Adding the BASE yields the actual FID of the
'first frame in the group.

After computing a FID to locate the specific group in which the item
resides, each item's item-id in the group must be compared for a "match".
The frames comprising a group are linked both forward and backward. This
system facility makes the group appear as a physically sequential string,
where items are stored one immediately after another. In fact, any
portion of an item may spill across a physically frame boundary.

When a file is created, it is allocated a primary area of frames, the
number of frames being the MODULO parameter. Thus this amount of
contiguous disc space is permanently allocated to the file. As the file
grows, individual groups may fill up. When this happens, an additional

frame is added to the group from a pool of available space. This
additional frame is linked into the group to increase the length of the
logically sequential group. If a delete or update causes the group to

shrink, any unused frames outside the primary area are returned to the
pool of available space.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

(" PAGE 34

Attribute 2
Attribute 3

Attribute 4

CHAPTER 2 - FILE STRUCTURE

X =Y Do not save the data in this file on
filesave tapes (on a file restore, the
file will be recreated in an empty state).

Xx=C The file contains binary data (presently
used only by the system POINTER-FILE).

This is the F/BASE (file base) attribute; it must
contain the base FID (as a decimal number) of the
defined file.

This is the F/MOD (file modulo) attribute; it
must contain the modulo (as a decimal number) of
the defined file.

This is the F/SEP (file separation) attribute; it

must contain the separation (as a decimal number)
of the defined file.

Copyright (c) 1985 PICK SYSTEMS
PAGE 36

WARNING: THE USER SHOULD NEVER ALTER ATTRIBUTES 2 through 4 !

Attributes 5 These attributes are identical to those used in
through 12 attribute definition items; refer to the topic
entitled ATTRIBUTE DEFINITION ITEMS.

Attribute 13 This is the F/REALLOC attribute, which allows for
the reallocation of the physical extents of a file
during a system File—-Restore process (see topic
entitled SYSTEM MAINTENANCE PROCEDURES). The
format of this specification is as follows:

(m,s)

where m and s are decimal numbers specifying the
new modulo and separation parameters of the file.

The example below illustrates a sample file definition item which defines
the file 1level dictionary for the INVENTORY data file. This item has an
item-id of INVENTORY and is stored in the user's MD. It also shows the
file definition item which defines the data area of the INVENTORY file.
This item also has an item—id of INVENTORY but is stored dictionary level
file and points to the data level file.

(Itemid) INVENTORY INVENTORY
D/CODE 001 D 001 D
F/BASE 002 17324 002 17573
: F/MOD 003 3 003 373
! F/SEP 004 1 004 1
005 005
006 006
V/CONV 007 007
008 008
V/TYPE 009 L 009 R
V/MAX 010 10 010 7

Note that the item "INVENTORY" in the Master dictionary has definitions
relating to the items in the DICTIONARY of the INVENTORY file (such as
V/TYPE of "L" and V/MAX of "10"; the item "INVENTORY" in the INVENTORY
DICTIONARY has definitions relating to the items in the DATA section,
such as V/TYPE of "R" and V/MAX of "7".

Sample file-definition items.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

"PAGE 37

2.11 FILE SYNONYM DEFINITION ITEMS FILE SYNONYM DEFINITION ITEMS

File synonym definition items are used to allow access to files in another
account, or to define a synonym to a file which is defined in the same
account. File synonym definition items are specified by a D/CODE of "Q"
and are referred to as "Q-items".

The item-id and attributes of a file synonym definition item are as

follows:

Item—-id

Attribute 1

Attribute 2

Attribute 3

Attribute 4

Attributes 5
through 10

The item-id of a file synonym definition item is
the synonym name by which the defined file may be
referenced.

This is the D/CODE attribute; it must contain a
"Q" .

This attribute must contain the name of the
account in which the actual file definition is to
be found (the account name is an entry in the
SYSTEM dictionary). If this attribute is null,
then the synonym file is defined in the same
account.

This is the S/NAME attribute; it must contain the
item-id of the actual file definition item to
which the synonym equates (i.e., the actual file-
name). If this attribute is null, it is implied
that the synonym file is the user's MD.

Not used.

These attributes are identical to those used in
attribute definition items; refer to the topic
entitled ATTRIBUTE DEFINITION

ITEMS.

A synonym file definition item is required in order to access a file
in another account. 1In addition, there are many cases where it is
convenient to reference a file within the same account by more than
one name. In this case also, a Q—-item must be created; attribute 2
of the Q-item in this case should be NULL. A Q-item to another user's
Master Dictionary should have the user's account-name in attribute 2,
and a NULL attribute 3.

O-items are created using the EDITOR to edit the items into the Master
Dictionary. There 1is also a standard PROC called SET-FILE that
creates a temporary Q-item called QFILE, which may be used to setup a
pointer quickly. This PROC is described in the PROC reference manual.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

"PAGE 38

The

example illustrates a sample INVENTORY file synonym definition

item which allows the user access to the file in the account named
SMITH. The user can reference this file via the synonym file name

INV.

It also shows sample Q-items that point +to another account's

Master dictionary, and to a file within the same account.

(Item—-id) MD INV USER3 SAMPLE
D/CODE 001 Q 001 Q 001 Q 001 Q

F/BASE 002 002 SMITH 002 SMITH 002

S/NAME 003 003 INVENTORY 003 003 SAMPLE-FILE

These are example items in the Master dictionary of account
"JONES"; Item "INV" is a synonym pointer to the file "INVENTORY",
defined as a file in the Master dictionary of account "SMITH".
Note that the form MD must be '001 Q', and that Q-ponters to other
MDs do not have 'MD' in 3. Item "USER3" refers to file "USER3" in
the Master dictionary of account "SMITH", since attribute 3 is
null. Item "SAMPLE" 1is a synonym to the file "SAMPLE-FILE",
defined in the Master dictionary of JONES, since attribute 2 is
null.

Sample Synonym File Definition Items.

>EDIT MD INV

NEW ITEM

TOP
I [CR]
001 Q [CR]
002 SMITH [CR]
003 INVENTORY [CR]
004 [CR]
FI [CR]

'INV' FILED.
NOTE: [CR] = press the carriage return key.

2.11.

CHAPTER 2 - FILE STRUCTURE

Example using the EDITOR to create a new Q-item called "INV".

1 OQ-POINTERS : REFLEXIVE FORM

If attributes two and three are null, the Q-pointer is a pointer
to the file in which it is stored. This case has two
applications. If you type ED MD MD on an PICK System, you will
find that the MD item contains only a Q in attribute 1. This is
sufficient, and any other definition is less efficient. The same
follows for MD or the account name entry.

PAGE 39

Copyright (c) 1985 PICK SYSTEMS

2.

11.

CHAPTER 2 - FILE STRUCTURE

The second use is in the definition of a dictionary-only file. If
you want to reference the file without typing 'DICT' each time, an
entry with the same name as the D-pointer to the dictionary in the
master dictionary is inserted in the file dictionary whose only
contents is a Q.

In the master dictionary

MD<File reference to MD.
001 QReference back to 'where you are now'.

In the dictionary of the file FILENAME
FILENAME<The name referenced by the name FILENAME

in the master dictionary.
001 QReference back to the dictionary itself.

Uses of Q as the only attribute.

The name of the Q-pointer is discarded as soon as the first D-
pointer is encountered. That is, a reference to QFILENAME which
points to the file FILENAME will look for the D-pointer FILENAME
in the dictionary of FILENAME. It will not look for a pointer by
the name of QFILENAME. A partial exception to this is in ACCESS,
which will attempt +to obtain the conversion, length, and
justification from the Q-pointer. If the Q-pointer does not
contain them, then the ACCESS compiler will search the D-pointer
for them. If the D-pointer does not contain them, then the
conversion will default to null, the justification to 'L', and the
field length to 9 bytes. It is therefore possible to specify
various formats for the item-id field for purposes of sorting and
listing.

2 Q-POINTERS : ACCOUNT SPECIFICATION

The second attribute in any Q-pointer references an account name.
If attribute 2 1is null, then the Q-pointer references a file in
the account onto which you are logged. If attribute 2 1is not
null, the file-open processor will search the system dictionary
for a definition of the account name. If the processor does not
find a D-pointer in the system dictionary, the system will respond
with an error message.

Reference to the master dictionary of another account is done with

the name of the D-pointer to the account in attribute 2 and a null
attribute 3.

PAGE 40

Copyright (c) 1985 PICK SYSTEMS

2.11.3 Q-POINTERS : FILE SPECIFICATION

Attribute 3 contains the name of the file referenced by the Q-
pointer. If attribute 3 is null, then the default is the filename
specified by the item-id of the item itself.

In general, the file name referenced in attribute 3 of the Q-
pointer definition must be a D-pointer in the master dictionary of
the account referenced in attribute 2.

2.11.4 Q-POINTERS : MULTI-FILE SPECIFICATION

The contents of attribute 3 of the Q-pointer definition may
contain FILENAME,DATAFILENAME. In this case the Q-pointer will
reference the data in DATAFILENAME only, and will ignore the other
data files referenced 1in the dictionary of FILENAME. The result
is a considerable simplification of the PICK/BASIC programs and
PROCS which reference the various data sets in a multiple-data-
file structure.

Therefore, the following Q-pointer will reference the data file
DATAFILENAME in the dictionary of FILENAME in the account
ACCOUNTNAME.

QFILENAME

001 Q

002 ACCOUNTNAME
003 FILENAME,DATAFILENAME

Referencing a data file with a Q-pointer.

2.12 ATTRIBUTE DEFINITION ITEMS

Attribute definition items define various attributes (lines or fields) in
the data items for use by the ACCESS processors. Attribute definition
items are specified by a D/CODE of "A".

An attribute definition item defines the nature and/or format of the data
in a specific attribute for ACCESS processing. Each attribute definition
item has a value, called the Attribute Mark Count (AMC), which acts as a
pointer to the data field (data item attribute) defined by it. The AMC is
simply the attribute number referred to in the data item (e.g. An AMC of
5 means that the attribute definition item "defines" attribute 5 of data
items). An attribute definition item defines the attribute specified (by
the AMC) for all items in the related data file(s). Moreover, an
attribute definition item provides a symbolic name for an attribute.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 41

Attribute definition items are constructed as follows:

Item—-id

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

1

2

10

The item-id is the symbolic name desired for the
defined attribute. This name would be used in
ACCESS statements to reference the defined
attribute. _ .

This is the D/CODE attribute; it may contain an
"A" or "XH .

This is the A/AMC (attribute mark count)
attribute; it contains the AMC of the defined
attribute (i.e. It specifies which attribute in
data item(s) is being defined). An AMC of ZERO

may be used to reference the item-id. An AMC of °

zero, or a "fake" value higher than the actual
number of attributes that exist in the file, may
be used if the attribute definition item
references data that is not actually stored on the
file, but is computed.

This is the V/TAG attribute; it contains the
optional name used as heading in ACCESS listings.

This is the V/STRUC attribute; it contains the
associative structure code (refer to the ACCESS
reference manual).

Unused.
Unused.

This is the V/CONV attribute; it contains the
conversion specification which is used to convert
from processing format to output format.

This is the V/CORR attributes it contains the
correlative specification which is used to convert
from the internal format to processing format.

This is the V/TYPE attribute; it defines the type
(alphabetic or numeric) and justification (left or
right) for output.

This 1is the V/MAX Attribute; it defines the
maximum length of wvalues for the attribute. An
entry is a decimal numeric, and is mandatory.

The example illustrates sample attributes definition items which
defines different fields in the INVENTORY file.

CHAPTER 2 - FILE STRUCTURE

Copyright (c) 1985 PICK SYSTEMS
PAGE 42

P

\w/

S

(Item—id) QUANTITY LIST-PRICE EXTENDED-PRICE
¢ D/CODE 001 A 001 A 001 A
(’ A/AMC 002 4 002 5 002 300
V/TAG 003 003 LIST PRICE 003
V/STRUC 004 004 004
005 005 005
006 006 006
V/CONV 007 007 MR2S, 007 MR2S,
V/CORR 008 008 008 A;4*5
V/TYPE 009 R 009 R 009 R
V/MAX 010 7 010 8 010 10

Sample Attribute Definition Items in the Dictionary
of the Inventory File.

2.13 DICTIONARY ITEMS: A SUMMARY DICTIONARY ITEMS: A SUMMARY

This +topic presents a summary of the items used in the wvarious
dictionaries in the system.

FILE AND ATTRIBUTE DEFINITION ITEMS

The File Definition items, File Synonym items, Attribute Definition items,

and Attribute Synonym Definition items which may be used as dictionary
(entries are summarized below.

/

'SYSTEM DICTIONARY (SYSTEM) ITEMS

There 1is one and only one System Dictionary for each system. The
System Dictionary should contain only items with D/CODE = D, DX, DY, or
Q, representing user accounts or special system files. The Logon processor
uses these "D" type items to verify users attempting to logon to the
system. Only one "D" type item should be present for each account; if
more than one user-name 1is to be established for the same user-account,
the additional name(s) should be File Synonym Definition ("Q" type) items.
The meaning of Attributes five through eight is different for both "Q" and
"D" type entries in the System Dictionary. Entries in this dictionary
completely control the File-Save process, whereby the data base is saved
on a secondary storage medium (typically magnetic tape).

MASTER DICTIONARY (MD) ITEMS

There is one Master Dictionary for each account. The MD, like any other
dictionary or data file, is comprised of items. Items with D/CODE of "A"
define the attribute formats for all dictionaries. The file defining
items (D/CODE of "D") point to the various files existing in that account.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
(' PAGE 43

In addition to those elements in the MD which define files and attributes,
there are items which define VERBs, PROCs,

and various ACCESS language

elements. Each of these items has a coding structure which uniquely
identifies it; refer to the following chapters for their respective
definitions:
- TCL
- PROC
- ACCESS
FILE
FILE SYNONYM ATTRIBUTE
ATTRIBUTE DEFINITION DEFINITION DEFINITION
NUMBER NAME ITEM ITEM ITEM
1 D/CODE D, DX, DY, Q A, X
DC, DCX,DCY
2 F/BASE Base FID Account- amc
or A/AMC of file name
3 F/MOD or | Modulo of Synonym tag or
V/TAG file file—name heading
4 F/SEP or Separation Not used C/D structure
V/STRUC of file codes
5 L/RET Retrieval lock code(s) Reserved
6 L/UPD Update lock code(s) Reserved
7 V/CONV Conversion specification(s)
8 V/CORR Reserved | Correlative
9 V/TYPE Justification on type code .
10 V/MAX Maximum field length .
11 Reserved .
12 . Reserved . . .
13 F/REALLOC |Reallocation| Reserved .
Specifica-
tion

Summary of File and Attribute Definition Items.

CHAPTER 2 — FILE STRUCTURE

' PAGE 44

Copyright (c) 1985 PICK SYSTEMS

P
\

~

J
e

2.14 INITIAL SYSTEM FILES/DICTIONARIES

lThe files described below are initial System files and are used in the
operation and maintenance of the system.

C

|

The System Programmer (SYSPROG) account is the only account needed to
maintain the system. The system message file (ERRMSG) and the prototype
MD (NEWAC) are defined in this account; the former is accessed by all
users to obtain error and informative messages, while the latter 1is used
to create new accounts' MDs. SYSPROG also contains the system-level PROCs
which perform the File-Save and File—Restore functions, and the
initialization of the Accounting History file on a System Setup.

THE ERRMSG FILE

This dictionary level file in the SYSPROG account contains the system
messages (error and informative, see appendix). Each accounts' MD must
have an item call ERRMSG which points to this file in the SYSPROG account.
(This is automatically created by the CREATE-ACCOUNT PROC.)

THE SYSPROG-PL FILE

This dictionary level file contains the System Maintenance PROCs. These
PROCs can be used from the SYSPROG account. Refer to the topic entitled

SYSTEM MAINTENANCE PROCEDURES for a description of the entries in this
account.

THE NEWAC FILE

This dictionary is defined from the SYSPROG account, and is a prototype MD
that is used as a model from which a new user's MD is created by the
CREATE-ACCOUNT PROC.

THE ACCOUNTING HISTORY FILE

The ACC file contains system accounting history and currently active
(logged-on) users. The format of these entries are described in the
LOGON/LOGOFF section. The Accounting History File should be cleared
periodically to prevent overflow of the file.

THE PROCLIB FILE

The PROCLIB file 1is used to contain all common PROCs (e.g. LISTU, CT,
etc.). Each MD will contain a pointer to PROCLIB and items that transfer
control to the corresponding PROCs in PROCLIB. For further information,
refer to the PROC Reference Manual.

THE BLOCK-CONVERT FILE

This file contains items which are used by the BLOCK-TERM and BLOCK-PRINT
verbs to convert characters to a block format.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 45

THE POINTER FILE

Every pointer-file must contain a 'DC' in attribute 1 of its definition.
It must be two-level, but it is convenient to make the data-level pointer
in the dictionary a Q-pointer +to itself. The name POINTER-FILE 1is

reserved and known to the list handler. It is therefore possible, and may A
be convenient, to call the actual pointer-file or files by names different kw/
than POINTER-FILE, and construct POINTER-FILE as a Q-pointer to the
pointer-file which is desired at the moment. Any pointer-file in the
system may be referenced this way. It is also possible to define several

pointer files within one account, with the intent of using each pointer
file for a particular group of tasks which may be executed on the account.

The pointer-file processor may reference only one pointer file at a time,
however, and all processes logged onto a particular account will reference
the same pointer-file.

THE PICK/BASIC PROGRAM FILES

The PICK/BASIC program file must have a dictionary level and one or more
data-level files, and the master dictionary entry for the PICK/BASIC
program file must contain a 'DC' in attribute 1. The source code must be
in a data-level file, and the dictionary will contain pointers to
executable object code. If there are multiple data files, and if there is
a program with the same name in more than one of them, the 1last one
compiled is the one which will be run.

The CATALOG verb now has the effect of including the name of the program
in the master dictionary, with a pointer to the file which contains the
particular program.

The DECATALOG verb is available to delete the object code from the system.

It does not require that the program has been CATALOGed. ‘<”\
2.15 OVERVIEW OF FILE MANAGEMENT PROCESSORS OVERVIEW OF FILE MANAGEMENT PRO!

|This section describes the data base management processors for the system. |

— —_— — —

The File Management processors provide capabilities for generating,
managing, and manipulating files and items within the system. The File
Management processors include the CREATE-FILE processor, the CLEAR-FILE
processor and the DELETE-FILE processor.

Additional file management procedures (such as the creation of new user

accounts, the saving and restoring of files, etc.) are detailed in the
section entitled SYSTEM MAINTENANCE PROCEDURES.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 46

]
. /

£
\

THE CREATE-FILE PROCESSOR

The CREATE-FILE processor is used to generate new dictionaries and/or data
files. The processor creates the file dictionaries which exist as the "D"
- entries (pointers) in the user's Master Dictionary (MD). The processor
({ reserves and links primary file space. The user need only specify values
for the desired modulo (number of groups in the file).

THE CLEAR-FILE PROCESSOR

The CLEAR-FILE processor clears the data from a file (i.e., it sets the
file to the "empty" state by placing an attribute mark in the first data
position of each group of the file). "Overflow" frames that may be linked
to the primary frame space of the file will be released to the system's
overflow space pool. Either the data section or the dictionary section of
a file may be cleared.

THE DELETE-FILE PROCESSOR

The DELETE-FILE processor allows for the deletion of a file. Either the
data section or the dictionary section (or both) of the file may be
deleted.

If the file level dictionary is shared by several data files, each data
file can be created, cleared or deleted independently of the other data
files associated with the dictionary.

2.16 CREATING NEW FILES: THE CREATE-FILE PROCESSOR

(

The CREATE-FILE processor provides the capability for generating new files
}and dictionaries in the system.

The CREATE-FILE processor is used to create file dictionaries by reserving
disc space and inserting a "D" entry in the user's Master Dictionary (MD)
which points to the file-level dictionary, and to create data files by
reserving disc space and placing a pointer to the space in the file level
dictionary. CREATE-FILE will automatically locate and reserve a
contiguous block of disc frames from the available space pool. The user
need only specify a value for the modulo for both the file dictionary and
the data area. For a discussion of the values to use for modulo, refer to
the topic in this section entitled SELECTION OF MODULO.

There may not be a data file without a file level dictionary pointing to
it. Therefore, the file-level dictionary must be created prior to or
concurrently with the data file. The latter is the preferred method for
creating files and this form of the CREATE-FILE command is shown below.
This enables the creation of both the dictionary and the a data area with
one command. The general forms are:

CREATE-FILE filename ml m2
CREATE-FILE dictname,dataname ml m2

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
(PAGE 47

where "filename" 1is the name of the file, ml is the modulo of the
dictionary (DICT) portion, and m2 is the modulo of the data portion.
Dataname is an optional data file name to be used if multiple data files
will be pointed to by the file dictionary. 1In either case a pointer to
the data file is placed in the file-level dictionary.

A file dictionary may be created without a data fileAby the command:

CREATE-FILE DICT filename ml

The term 'DICT' specifies creation of the dictionary only with modulo ml;
and a pointer to filename is placed in the account's MD. The user should
note that a data area need not be reserved for a single-level file, in

which case the data are to be stored in the dictionary, as in the case of
PROCS.

Once the DICT (Dictionary file) has been created, the primary file space

for the data section of the file can be reserved. The general form of the
command is:

CREATE-FILE DATA dictname{,dataname} m2

where the term 'DATA' specifies creation of the data file dataname, if the
data file is unique to the file-level dictionary, or creation of the data
file dataname under dictionary dictname, if the multiple data file option
is desired. The data file has modulo m2 and the pointer to the reserved
space is placed in the file-level dictionary. This form is also used to

create new data files pointed to by a shared dictionary using the option
{dataname}.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 48

NN

* >CREATE-FILE INVENTORY 3 373 [CR]

Creates a new file called "INVENTORY", with a DICTIONARY section with
modulo of 3, and a DATA section with a modulo of 373. An item called
/"INVENTORY" will be placed in the MD, and a D-item called "INVENTORY" will
be placed in the INVENTORY dictionary.

* >CREATE-FILE DICT TEST/FILE 7 [CR]

Creates a single-level file called "TEST/FILE"; a D-item "TEST/FILE" will
be placed in the Master dictionary, and a D-item "TEST/FILE" will also be
placed in the dictionary created, pointing back to itself.

* >CREATE-FILE DICT DEPT 3 [CR]

Creates a single-level dictionary called "DEPT".

* >CREATE-FILE DATA DEPT,ACCOUNTING 73 [CR]

Creates a new DATA section called "ACCOUNTING" for the dictionary DEPT; a
D-item called "ACCOUNTING" will be placed in the DEPT dictionary. The
data file created will have to be referenced as "DEPT,ACCOUNTING" since it
has the shared dictionary structure.

* >CREATE-FILE DATA DEPT,MAINTENANCE 57 [CR]

Creates a new DATA section called "MAINTENANCE" for the dictionary DEPT.

Examples of CREATE-FILE usage.

NOTE:

If you wish to create a pointer-file or a basic program file, use the
CREATE-FILE verb, and then use the EDITor to change the D-pointer in the
master dictionary to a DC-pointer.

2.17 CLEAR-FILE PROCESSOR CLEAR-FILE PROCESSOR

|Trhe CLEAR-FILE processor is used to clear (i.e., purge) files. I

The CLEAR-FILE processor clears the data from a file (i.e., it sets the
file to the "empty" state by placing an attribute mark in the first data
position of each group of the file). "Overflow" frames that may be linked
to the primary file space will be released to the system's additional
space pool. Either the data section or the dictionary (DICT) section of a
file may be cleared using the CLEAR-FILE command. If the dictionary
section is cleared, and a corresponding data section exists (as implied by
the presence of a file defining item in the dictionary), then it will be

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 49

maintained in the dictionary. The BREAK key is inhibited during the
DELETE process, but not the CLEAR process.

To clear the data section of a file, the following command is used:
CLEAR-FILE DATA filename{,dataname}
In the case that the data file is unique to dictionary filename the data

file "filename" is cleared; in the case that data file "dataname" is one

of multiple data files under dictionary filename, then "dataname" will be
cleared.

To clear the dictionary section of a file, the following command is used:

CLEAR-FILE DICT filename

A

>CLEAR-FILE DATA INVENTORY [CR]
Clears the data section of the INVENTORY file.
>CLEAR-FILE DICT TEST/FILE [CR]

Clears the dictionary of the TEST/FILE of all non-D-items; all
D-ITEMS ARE MAINTAINED in the dictionary.

>CLEAR-FILE DATA DEPT,ACCOUNTING [CR]

Clears the DATA section ACCOUNTING from the shared dictionary
structure whose shared dictionary name is DEPT.

Examples of CLEAR-FILE usage.

2.18 DELETE-FILE PROCESSOR DELETE-FILE PROCESSOR

| The DELETE-FILE processor is used to delete files.

The DELETE-FILE processor allows the deletion of the whole file,
dictionary and data files, the dictionary only (if the dictionary has no
attached data file), the data file in the case of a unique data file, or
any data file in the multiple data file case. A file-level dictionary
which points to a data file can not be deleted. All frames owned by the
deleted file are returned to the available space pool. The BREAK KEY is
inhibited during the DELETE process.

To delete a file-level dictionary and ALL its attached data file(s), use

the command:
DELETE-FILE filename

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
PAGE 50

To delete a file-level dictionary without an attached data file, use the
command:
DELETE-FILE DICT filename

-~ In both cases the file-definition item ("D"-pointer) in the user's Master
(Dictionary is deleted, and the space owned by the deleted file is returned
‘to the available space pool.

To delete the data file, the following command is used:

DELETE-FILE DATA filename{,dataname}
This will delete the pointer to the data file from the file-level
dictionary and return the space owned by the data file to the available
space pool. The parameter "dataname" is necessary to delete a file from a
dictionary with multiple data files.

Files that are defined by file-synonym definitions (Q-POINTERS) in the
user's MD cannot be specified in a DELETE-FILE command.

>DELETE-FILE INVENTORY [CR]
Deletes the INVENTORY dictionary, and all associated data files.
>DELETE-FILE DICT TEST/FILE [CR]
Deletes the dictionary TEST/FILE. If there are any data sections
associated with this dictionary (i.e., if there are any D-items
in the dictionary, this command is not valid.

(>DELETE-FILE DATA DEPT,ACCOUNTING [CR]

Deletes the DATA section ACCOUNTING from the shared dictionary
structure whose shared dictionary name is DEPT.

Examples of DELETE-FILE usage.

2.19 COPYING DATA: THE COPY PROCESSOR COPYING DATA: THE COPY PROCESSOR

The COPY processor allows the user to copy items from a file to the
terminal, the line-printer, to the same file, or to another file (either
in his account, or in some other user—-account).

The COPY processor is invoked via the COPY verb, which is a TYPE-II verb.
The general form of the COPY command is:

COPY {DICT} filename item-list {(options)}

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
(PAGE 51 |

The "filename" parameter specifies the source file. The "item-list"
consists of one or more item-ids separated by blanks, or an asterisk (*)
specifying all items; the "item-list" specifies the items to be copied.
The "options" parameter, if wused, must be enclosed in parentheses.
Options are described in the next section.

Once a COPY command has been issued, the COPY processor will respond
differently depending on whether the copy is to the terminal or 1line-
printer, or to a file. This is specified by the presence of the "T"
option (copy to terminal), or the "P" option (copy to line-printer). If
neither of these options is specified, the copy is to a file.
If the copy is a file-to-file copy, the processor will respond with:

TO:
The response to this request is in general of the form:

{({DICT} filename)} {item—list}

Where:

1) If the data are to be copied to a DIFFERENT FILE, the destination
filename is entered ENCLOSED IN PARENTHESES; the word DICT may optionally
precede the filename if the data are being copied to a destination
dictionary file instead of a data file.

2) If the data are being copied to the SAME file, the parenthetical
specification is omitted.

3) If the item-ids of the items being copied are to be changed, the list
of NEW item-ids must follow.

4) If a null is entered to the "TO" request, a copy to the terminal is
performed (just as if the original COPY statement had the "T" option).

This is discussed further in the next sections.

2.20 COPYING DATA: FILE TO FILE COPY

This section discusses further the copying of data from one file to
another, or within the same file.

In using the COPY operation, multiple items may be specified as the source
and as the destination. Multiple item-ids are separated by blanks, unless
the item—id itself has embedded blanks, in which case the entire item—id
may be enclosed in double-quotes (").

For example, the item-list may be:

1024-24 1024-25 "TEST ITEM" ABC

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 52

N

)

which specifies four item—ids, "1024-24", "1024-25", "TEST ITEM" and
HABC " .

Item—-ids may be repeated within the item 1list. There may be different
numbers of items within the source and destination lists. If the source
item-list is exhausted first, the COPY terminates. If the destination
item-list is exhausted first, the remainder of the items are copied with
NO CHANGE in item—-id.

If the items are to be copied without any change in the item-ids, the
destination file item-list may be null.

If it is desired to copy all existing items, an asterisk (*) may be used
as the source file item-list.

If a preselected LIST of items is to be copied, the source item-list
should be NULL; in this case, the COPY statement must have been preceded
by a SELECT, SSELECT, QSELECT or GET-LIST statement. See the appropriate
sections of other chapters for a discussion of these verbs.

When copying from one dictionary to another, the COPY processor does not
copy dictionary items which have D/CODE of "D" (that is, the D-pointers).
D-pointers must only be created by the CREATE-FILE processor. To recreate
both the dictionary and the data sections of on file in a new file, a
command sequence such as the example shown below must be used.

>COPY DICT SAMPLE COST (I) [CR] (————- Single dictionary
TO: WORTH |[CR] item copied

1 ITEMS COPIED
>COPY SAMPLE 1242-01 [CR] (=== Single data item

TO: 1242-99 [CR] copied

1 1242-01 <- Item—id is listed.
1 ITEMS COPIED

>COPY FLAVORS RED WHITE BLUE [CR] <--— Multiple data items
TO: ALPHA BETA GAMMA ([CR] copied

1 RED
2 WHITE
3 BLUE

3 ITEMS COPIED

Copying Items to the Same File.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
(A PAGE 53

>COPY DICT SAMPLE * (I) [CR] <«(——————- All dictionary
TO: (DICT FLAVORS) [CR] items copied.
[418] FILE DEFINITION ITEM 'SAMPLE' WAS NOT COPIED.

2 ITEMS COPIED

Copying Items to a Different File.

>CREATE-FILE (NEW-SAMPILE 1,1 3,1) [CR] <(——- New file created.
[417] FILE 'NEW-SAMPLE' CREATED; BASE = 15417, MODULO = 1, SEPAR = 1.
[417] FILE 'NEW-SAMPLE' CREATED; BASE = 15418, MODULO = 3, SEPAR = 1.
>COPY DICT SAMPLE * (I) [CR] < All dictionary items

TO: (DICT NEW-SAMPLE) [CR] (except D-pointer) copied.

[418] FILE DEFINITION ITEM 'SAMPLE' WAS NOT COPIED

3 ITEMS COPIED
>COPY SAMPLE * (I) [CR] <«- All data items copied.

TO: (NEW-SAMPLE) [CR]

22 ITEMS COPIED

Recreation of Entire Dictionary and Data Sections.

2.21 COPYING DATA: THE COPY PROCESSOR OPTIONS

This section describes the options that may be specified in the COPY
statement. It also describes the method of copying data to the terminal
or the line-printer.

FORMAT:
COPY {DICT} filename item-list {(options)}

The "options" parameter, if wused, must be enclosed 1in parentheses.
Options are single alphabetic characters; multiple options may be strung
together, or separated by commas for clarity. The table below describes
the options used by the COPY processor. Note that some options operate
differently depending on whether the copy is to the terminal/line-printer,
or is a file copy.

CHAPTER 2 - FILE STRUCTURE ' Copyright (c) 1985 PICK SYSTEMS

PAGE 54

On a terminal or line-printer copy, the data is displayed in the following

format:

item—-id

001 attribute one
002 attribute two

003 attribute three

. e

......

nnn last attribute

For example, the item "ITEMX" in the SAMPLE-FILE may be copied to the
terminal as follows:

>COPY SAMPLE-FILE ITEMX (T [CR]
ITEMX
001 3745
002 SMITH, JOHN
003 1234 MAIN STREET
OPTION NOTEcccc... DESCRIPTION ..ttt ieetesnnoscceennneensas
D 1 Delete item; the original (source item)
is deleted from the file after it is copied.
F 2 Form-feed; each item will cause a new page to begin.
I 1 Item-id list suppress; will inhibit the listing of item-ids.
N 1 New item inhibit; will not copy the items to
the destination file unless the item ALREADY EXISTS there.
That is, NEW items will not be created if this option is set.
2 Will inhibit the automatic end-of-page wait.
0 1 Overwrite items option; will copy the item
to the destination file EVEN if it already exists on file.
P Printer copy; copies the data to the line-printer.
S 1 Suppress error messages; messages indicating that items were
not copied (messages 409, 415 and 418) will not be printed.
2 Suppress line—numbers; the line—-numbers will not be
displayed.
T Terminal copy; copies the data to the terminal.
X 1 Hexadecimal format; the data is displayed in the
hexadecimal form.
Notes: 1. Valid only on a FILE copy.
2. Valid only on a NON-FILE (terminal or line-printer) copy.
COPY Processor Options.
CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
(; ' PAGE 55

SECTION 3

THE
ICON/PICK
TERMINAL
CONTROL
LANGUAGE
(TCL)

IC&N’

O

Chapter 3

(v; TERMINAL. CONTROL LANGUAGE

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

(| PAGE 56

(

(

3.1 INTRODUCTION TO TCL

TCL, meaning Terminal Control Language, is the primary interface between
the wuser and the system. It is from TCL that all other processors
(EDITOR, ACCESS, PICK/BASIC, PROC, ASSEMBLY etc.) are invoked. The TCL
processor is automatically entered at LOGON and whenever a particular
process (such as a LIST or COMPILE) is complete. TCL prompts with a '>'.

A TCL statement calls into effect one of the TCL verbs (action-initiating
commands) residing in the user's Master Dictionary (MD) which either
perform specified functions or invoke other processors to perform
specified functions. For example, the TIME verb prints the current time
and date on the terminal, while the RUN verb invokes the PICK/BASIC Run-
Time processor which 'runs' the specified PICK/BASIC program.

The user is at the TCL level in the system when the system "prompts" with
a ">" character, that is, when the ">" character is printed at the far
left on the terminal, and the system is awaiting input from the terminal.

The TCL verbs belong to three major categories. TYPE-I verbs are those
which perform specified functions but which do not access data in files.
The TIME verb mentioned above is a TYPE-I verb. TYPE-II verbs are those
whose functions involve the accessing of data in files. The RUN verb
mentioned above is a TYPE-II verb. The third category is made up of
ACCESS verbs which are discussed in the ACCESS Manual.

The user may create any number of synonyms for the verb definition items
(and may even remove the pre-defined verb definition items), thereby
creating his own vocabulary. Synonyms may be created by copying the verb
definition item into another item with the desired name as the item—ID.

A TCL statement consists of the TCL verb, any other parameters (words,
file—names, options, etc.) that the specific verb may require, followed by
a carriage-return or line—-feed (shown as [CR] in the documentation. No
action is initiated until the [CR] is input.

All TCL statements may have an "options" entry as the 1last parameter;
options are single alphabets, and/or a single or double number of the form
"n" or "n-m", where n and m may be decimal, or hexadecimal if preceded by
a period (.). The entire option string is enclosed in parentheses.
Options affect the operation of each verb in an unique way. General
options are "P" for routing data to the 1line printer and "N" for
inhibiting the end-of-page wait at the terminal. Multiple options may be
separated by commas for clarity.

CHAPTER 3 - TERMINAL CONTROL. LANGUAGE Copyrighﬁ (c) 1985 PICK SYSTEMS
PAGE 57

During the entry of the TCL statement,
available to the user. A control-H ([cH]) is used to BACKSPACE over the
last character input. Normally, the terminal will also physically
backspace the cursor or carriage to indicate that the 1last entered
character has been deleted. A control-X ([cX]) may be entered to DELETE
entirely the last entered line; a new line is initiated at the terminal
by the system. A control-W ([cW]) may be used to backspace over the last
WORD. A control-R ([cR]) may be used to RETYPE the last line.

certain editing functions are

TCL prompt character Options enclosed in

parentheses (must be at end)

Carriage return,
(or line-feed)

>verb { . Parameters . .

Parameters as required by the
specific verb.

. } { (Options) } {[csO]}

[CR]

Optional continuation character
(Control-shift-O or control-_).

General form of a TCL input statement.

CHARACTER EDITING FUNCTION

carriage-return End of line.

(or line-feed)

Control-H Backspace over last
Character.

Control-w Backspace over last word

Control-X Delete last line.

Control-R Retype last line.

COMMENTS

System will take action on
TCL statement.

No action if at left margin;.
Character echoed by system may
be set by the TERM command.

As above.

No action if at left margin; new
line will be started otherwise.

(Note: the above are system—wide editing functions, and are applicable
whenever the system requests data input from the user's terminal.)

Line-editing characters.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE

PAGE

Copyright (c) 1985 PICK SYSTEMS
58

3.2 TCL VERB TYPES

There are three basic types of TCL verbs. Type I does not reference a
file; type II and ACCESS verbs always reference a file.

TYPE I VERB

The type I TCL verb does not reference a file in the TCL statement. For
example, the verb used to attach the magnetic tape unit is:

>T-ATT

TYPE II VERB

The type II verbs always reference a single file. Typically, one or more
explicitly named items (records) in the file may Dbe accessed.
Alternately, all items in the file may be accessed. For, example, the
verb "ED" invokes the text editor. The command:

>ED INVENTORY 1234

will access the item "1234" in the INVENTORY file.

ACCESS VERBS

ACCESS verbs have the most generalized syntax. In general, ACCESS verbs
specify a single file name, and have a set of selection criteria which is
specified to select a subset of the items in the file. Depending on the
- particular ACCESS verb, further syntactical elements may be present. For
example, the statement below is used to list all employees who were born
before 1/1/35:

>LIST EMPLOYEES WITH BIRTHDATE BEFORE "1,/1/35"

3.3 TCL-I VERBS TCL-I VERBS

TCL-I verbs do not access a file. The format of the TCL statement is
unique to the specific verb, that is, there is no general form of the TCL
statement using this type of verb.

A TCL-I input statement must begin with a TCL-I verb and end with a
carriage return. Some TCL-I verbs additionally allow for various
parameter specifications.

CHAPTER 3 — TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS
(PAGE 59

3.

VERB DESCRIPTIONticicieneenenenenenensoenoeennnnnan

BLOCK-PRINT Sends block characters to spooler

CHARGES Prints current computer usage

CHARGE-TO Keeps track of computer usage

CLEAR-FILE Removes all file items from a file or dictionary.

CREATE-FILE Creates a new file

DELETE-FILE Deletes an entire file

MESSAGE Communicates to other users

MSG Same as MESSAGE

OFF Terminates user's session

P Inhibits printing at terminal

SLEEP Puts a terminal to "sleep" for a specified
time, or until a specified time.

TABS Sets tabs for input or output.

TIME Displays the current time and date.

SP-ASSIGN Sets up assignment status for the spooler.

SP-STATUS Spooler and line printer status.

T-ATT Attaches magnetic tape unit.

T-DET Detaches the magnetic tape unit.

TERM Sets or displays terminal characteristics.

TIME Prints time and date.

WHAT Displays current system parameters.

WHO Prints the line number and account name
to which any terminal is logged on.

4

TCL-II VERBS

EXAMPLES OF TCL-I VERBS

TCL-II VERBS

TCL TYPE-I1 verbs allow access
forming a
statement (refer to the ACCESS Reference Manual).
this restricted format is an enhancement in
statement parsing is quicker.

to a

specified file.
TCL-II input statement is more restrictive than

The format for
for an ACCESS
The advantage gained by
processing speed since

FORMAT:

>verb {DICT} file—name {item-list} { (options) }

A file—name (or DICT file-name) must immediately follow the TCL-II verb.

Item selection

name specifies the desired file.
portion of the file.
separated by one or more blanks.
or parentheses, it must be surrounded by quotes.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE
PAGE 60

is more restricted than in ACCESS statements,
item-id must be explicitly named in the statement
items may be specified via use of the asterisk (*) character).
The DICT option specifies the dictionary
The item-list is made up of one or more item-id's,
"If an item—-id contains embedded blanks

since each
(or, alternately, all
The file

All items in a file may

Copyright (c) 1985 PICK SYSTEMS

be specified by using an asterisk (*) character as the item-list.
Options, if specified, must be enclosed in parentheses at the end of the
input line. The specified options are passed to the appropriate TCL-II
processor.

(/The item-list may be omitted entirely if the TCL-II statement is preceded

«

by a statement that generates a "select-list". The item—-ids are then
obtained from this preselected list. Statements that generate select-
lists are SELECT, SSELECT, QSELECT and GET-LIST, and are described in the
ACCESS chapter. '

VERB DESCRIPTION

COMPILE Compiles a DATA/BASIC program.
CATALOG Catalogs a DATA/BASIC program.

COPY Copies data files and dictionaries.
EDIT Evokes the EDITOR processor.

RUN Executes a DATA/BASIC program.
RUNOFF Evokes the word-processer.

Examples of some TCL-II Verbs.

3.5 LOGON AND LOGOFF PROCESSORS LOGON AND LOGOFF PROCESSORS

The Logon processor provides a facility for initiating a user's session by

identifying valid wusers and their associated passwords. The Logoff
processor is used to terminate the session and should always be evoked via
the verb OFF when the user wishes to terminate. These processors can

accumulate accounting statistics for billing purposes and also will
associate the user with his privileges and security codes.

The user may 1log on to the PICK System when the following message is
displayed:
LOGON PLEASE:

NOTE: The actual form of this message will vary from system to system,
since the message format is obtained from an entry called "LOGON" in the
SYSTEM dictionary!

The user then enters the name (identification) established for him in the
system, followed by a carriage-return. If a password has also been
established, he may follow his identification with a comma, and then the
password, followed by a carriage-return. If the password is not entered
as a response to the LOGON PLEASE message, the system will display the
message:

PASSWORD:

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 61

The system validates the user's identification against the entries in the
SYSTEM Dictionary; if it is illegal, the following message is returned:

USER-1ID?
LOGON PLEASE:

The user must then re-enter his identification and password. If the
user's identification is valid, but the password is not acceptable, the
following message is displayed:

PASSWORD?
LOGON PLEASE:

The user must then re-enter his identification and password. If the user
has successfully 1logged on to the system) i.e., both the identification
and the password have been accepted, the following message is displayed:

< WELCOME TO THE PICK SYSTEM >
< time release date >

> (=== TCL prompt.

where "time" 1is the current time, "date" is the current date, and
"release" 1s the current PICK Systems release level. The ">" is the TCL
prompt character, which indicates that the user may now enter any valid
TCL level command.

LOGGING OFF

FORMAT:
>OFF

Logoff is achieved by entering the word OFF, either at the TCL level or at
the DEBUG 1level. A message indicating the connect time (i.e., number of
minutes that the user was logged on) and the appropriate charge units will
be displayed. The system then displays the LOGON PLEASE message and waits
for the next user session to be initiated. The general form of the logoff
message is as follows:

< CONNECT TIME = n MINS.; CHARGE UNITS = m, LPTR PAGES= x >
< LOGGED OFF AT time ON date >

where "n" is the number of minutes of connect time, "m" is the number of
charge units, "time" is the current time, and "date" is the current date,

and "x" 1is the number of line-printer pages generated. The charge-units
represent usage of the CPU; it is in tenths of a CPU second.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 62

N
N\,

3.

6 LOGTO

(l

J

.

The LOGTO verb allows the user to 1log to another account faster than by
going through the OFF and LOGON process.

FORMAT:

LOGTO account—namef{,password}
where "account-name" is that of the new account that the user wishes to
logon to, and "password" is the password associated with that account-
name. If "password" is not entered, and the account has a password
defined, the message:

PASSWORD:
will be displayed, and the password may then be entered.
If the account—-name is illegal, the message "USER 1ID?" will be printed,
and the user will be back at TCL. If the password is incorrect, the
message "PASSWORD?" will be displayed.
If the account—-name and password are both correct, the current logon
session will be terminated by updating the accounting file with the
appropriate statistics, and a new session started. The message:

<<< CONNECT TIME = n MINS.; CHARGE UNITS = m, LPTR PAGES= x >>>

will be displayed.

Also, the tape unit will be detached, if the user had it attached to his

line prior to the LOGTO.

< WELCOME TO THE PICK OPERATING SYSTEM >
< 09:15:33 RELEASE n 4 JUL 1984 >

>WHO [CR]
7 SMITH

>LOGTO JONES [CR]
PASSWORD: ABC [CR]

<<{< CONNECT TIME = 3 MINS.; CHARGE UNITS = 11, LPTR PAGES= 0 >>>

- >WHO [CR]
7 JONES

Sample usage of LOGTO verb.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 63

3.7 CHARGE-TO AND CHARGES

The CHARGE-TO verb allows the user to charge a particular logon session to
a specific charge number or name. The CHARGES verb displays the charge

statistics for the current logon session. o
FORMAT: N
CHARGE-TO {text}

where "text" is any sequence of non-blank characters. This statement will -
cause the current logon session to be terminated and the account file to
be updated with the appropriate statistics; a new session is started,
with the new user identification of the form:

account—-name*text
where "text" is as specified in the CHARGE-TO statement. This allows the
user to charge his logon sessions to specific names or numbers. If "text"
is null in the CHARGE-TO statement, the user identification will revert to
the form "account-name" alone. The CHARGE-TO statement will also cause
the following message to be displayed:
<< CONNECT TIME = n MINS.; CHARGE UNITS = m, LPTR PAGES= X >>>

FORMAT:
CHARGES

This will display the logon statistics with the following message:

<{<{< CONNECT TIME = n MINS.; CHARGE UNITS = m, LPTR PAGES= x >>>

LOGON PLEASE: SMITH,XYZ [CR]

{ WELCOME TO THE PICK SYSTEM >
< 08:15:25 RELEASE n 5 MAY 1984 >

>WHO [CR]
7 SMITH

>CHARGE-TO A001 [CR]
<<< CONNECT TIME = O MINS.; CHARGE UNITS

7, LPTR PAGES= 0 >>>

>WHO [CR]
7 SMITH*A001

>CHARGES [CR]

<<< CONNECT TIME 0 MINS.; CHARGE UNITS

8, LPTR PAGES= 0 >>>

>CHARGE-TO [CR]
<<< CONNECT TIME

]
I

0 MINS.; CHARGE UNITS 9, LPTR PAGES= 0 >>>

>WHO [CR]
7 SMITH

Sample usage of CHARGE-TO and CHARGES.
CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

'PAGE 64 {

3.8 LOGON PROCS

(~

| Upon logon, the Pick Computer System allows for the execution of a PROC
with an item-id identical to the user's identification.

When the user has logged on to his account, PICK permits the automatic
execution of PROC whose item—-id is the same as the user's identification.
That is, the Master Dictionary of the account will be searched for a PROC
matching the identification which was used to log on to the account; if
1t is found, it will be executed. (See PROC.)

Typically, the Logon PROC is used to perform standard functions that are
always associated with the particular user's needs. For example, setting
of terminal characteristics could be performed by the Logon PROC. When
the user logs on to the system, "his terminal characteristics are set to
the initial conditions listed in the first example (which correspond to an
8 1/2" by 11" page size). These conditions can subsequently be displayed
and altered by the TCL verb TERM. As an example, assume that the PROC
listed in the second example (which includes a TERM operation) is stored as
item SMITH in the wuser's Master Dictionary (MD). If the user's
identification is the word SMITH, then the SMITH PROC will be executed
automatically every time the wuser logs on (i.e., the user's particular
terminal characteristics will automatically be set).

- TERMINAL PRINTER
{ .| Page Width: - 79 characters 132
Page Body: 24 lines 60
Line Skip: 0
Line-Feed Delay: 0
Form-Feed Delay: 0]
Backspace Echo: ‘ 8
Terminal Type: T

Initial Terminal Characteristics Automatically Set at Logon Time.

Item 'SMITH -— a sample logon PROC.' in MD of user SMITH

001 PQ
002 HTERM 118,44,7,6
003 P

004 X**x TERMINAL CHARACTERISTICS SET **

LOGON PLEASE: SMITH,XYZ [CR] < Logon sequence.

< WELCOME TO THE PICK SYSTEM >
< 15:09:50 RELEASE n 13 JULY 1984 >

*% TERMINAL CHARACTERISTICS SET X% (mm—m———— Message from SMITH PROC.

> <~ TCL prompt character.

Automatic Execution of Sample PROC.

i(;/ CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (Cj 1985 PICK SYSTEMS
PAGE 65

3.9 TERM

Terminal and/or line printer characteristics may be displayed or set by a
process via the TERM command.

Ve
FORMAT: _
TERM {a,b,c,d,e,f,qg,h,t}
ARGUMENTS :
a is the terminal line length (i.e.,number of characters per line).
The a parameter must be in the following range: 16<a<140.
b is the number of print lines per page on the terminal.
c 1is the number of blank lines per page on the terminal (sum
of b and c equals page length).
d is the number of delay or idle characters following each carriage

return or line feed. This is used for terminals that require
a pause after a carriage return or line feed (i.e., since the CPU
generates characters faster than the terminal can accept them).
e is the number of delay characters following each top-of-form.
If e is zero, no form—feed character will be sent to either the
terminal or the printer.
If e is non-zero, a form-feed character is also output before each
page; if e is ONE, this character is sent to the line-printer,
but not to the terminal.
If e is greater than 1, the form-feed character is also sent to the
terminal at the beginning of each page, AND that many delay or idle
characters is also sent to allow the terminal time to settle after
the form-feed.
The form-feed character sent to the printer is always a hexadecimal ‘
'0C' (ASCII FF character). 2
f is the backspace character. An ASCII backspace (control-H) is o
always input to backspace over (or erase the last character that
was input; however, the user may set the actual character echoed
to his terminal. This accommodates terminals that cannot physi-
cally backspace, or that have a backspace character other than
the ASCII backspace. The f parameter should be 21 for the ADDS
REGENT terminal, and 8 for the TEC 2402 terminal.
is the line printer line length.
is the line printer page length.
is the terminal type code; this changes the form-feed character
sent by the system to match the terminal requirements, and, more
importantly, sets the appropriate cursor addressing for the
BASIC cursor functions. A few TERMTYPES are:

+s'Q

- ADDS 580

- DIALOG

— LEAR-SIEGLER ADM-3A

ICON DT1200

— ADDS REGENT

- TV950

— ADDS VIEWPOINT

— NO CURSOR ADDRESSING FUNCTIONS

<3 oy
!

CHAPTER 3 — TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS
PAGE 66 | w

Individual parameters may be null (i.e., as specified by two adjacent
commas in the TERM command). If so, the previously defined parameter
remains in force. A TERM command without a parameter list causes display
of the current characteristics. To function properly, the t parameter
must be the last element in any TERM string. It may be the only element
if no other elements are to be changed. The other parameters are
positional, however.

>TERM [CR]
TERMINAL PRINTER
PAGE WIDTH: 79 132
PAGE DEPTH: 24 64
LINE SKIP : 0
LF DELAY : 1
FF DELAY : 1
BACKSPACE : 21
TERM TYPE : R

Standard terminal characteristics set for the ADDS REGENT terminal.
>TER.D¢ rror 2 [CR]

Resets the FF delay to 2, in order to get a clear-screen on the terminal.

>TERM [CR]
TERMINAL PRINTER
PAGE WIDTH: 79 132
PAGE DEPTH: 24 64
LINE SKIP : 0
LF DELAY : 1
FF DELAY : 2
BACKSPACE : 21

>TERM ,,,,,,120,48 [CR]

Resets the line-printer page size to 120x48.

>TERM [CR]
TERMINAL PRINTER
PAGE WIDTH: 79 120
PAGE DEPTH: 24 48
LINE SKIP : 0
LF DELAY : 1
FF DELAY : 2
BACKSPACE : 21

Sample usage of the TERM statement.

CHAPTER 3 — TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 67

3.10 TABS : SETTING TAB STOPS

| Tab stops may be set with the TABS statement. l

- SN
FORMAT: ’ {K P
TABS {Oor I nl,n2,n3...... } ’

TABS {O or I {S}}

where the tabs may be set for input or output, depending on the parameter
"O" or "I" following the TABS verb. nl, n2, etc. are up to fifteen tab-
stop positions; they must be in ascending numerical sequence.

Tabs set for input are then available at any time that the system requests
input from the terminal. By entering a control-I ([cI]), the system will
space over to the next tab-stop position, if any. If there are no more
tab-stop positions, the [cI] is ignored (control-I is also generated by
the TAB key on some terminals). The tab stops set by the TABS I statement
are identical to those set by the TB statement in the EDITOR.

Tabs set for output are only useful for those printing terminals that have
a physical tabbing capability.. Do not set output tabs for a CRT! If
output tab stops are set, the system will replace blank sequences in any
output generated by the system by an appropriate tab character ([cI]),
thus reducing the data output. The user must also setup the physical tab
stops on the terminal to correspond to those set in the TABS O statement.
On many terminals, this entails positioning the carriage and entering a
set-tabs sequence from the keyboard.

Input or output tab stops may be disabled by entering "TABS I" or "TABS O"
respectively. Previously set tab stops may then be recalled by entering /
"TABS I S" or "TABS O 8" for input and output tab stops respectively.
Currently set tab stops can be displayed by entering "TABS" alone.

>TABS I 4,8,12,16,20,24,28 [CR] (sets input tab stops)
>TABS O 10,20,30,40,50,60 [CR] (sets output tab stops)
>TABS [CR] (displays current tab stops)
1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890
I I I I I I I

0 o 0] 0] o) o

>TABS O [CR] (turns off output tab stops)

Examples of TABS statements.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 68 v

3.11 TIME

| The TIME statement displays the current system time and date.

(

FORMAT:
TIME

TIME is a simple TCL-I verb which returns the current system time and date
in external format.

EXAMPLE:

>TIME [CR]
09:21:23 11 MAY 1984

Example of TIME Verb.

3.12 SLEEP

The SLEEP verb is a TCL-I verb that is used to put a terminal to "sleep",
that is, to enter a quiescent state, for a specified period of time, or
until a specified time.

FORMAT:
SLEEP X

The "x" is either a decimal number specifying the number of seconds to
sleep, or is of the form "hh:mm:ss" or "hh:mm", specifying a time in
24-hour format until which to sleep. SLEEP is useful to cause a terminal
to wait until some time to 1run a task, for instance the FILE-SAVE may be
run at 23:00 (11:00PM) every night.

EXAMPILE:
>SLEEP 100 [CR] (terminal will sleep for 100 seconds)
>SLEEP 23:00 [CR] (terminal will wake up at 11:00 pm)

The form of SLEEP with a wake-up time is usable for a maximum of 24 hours.

Sample usage of the SLEEP Verb.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

(" PAGE 69

3.

13 WHO

The WHO statement is a TCL-I verb which is used to display the account-
name that a terminal is currently logged on to.

FORMAT:

WHO {n}

If WHO is entered without the "n", the line-number (channel number) of the
user's terminal is displayed, along with the account-name +that he is

logged on to.

line-number "n",

If the "n" is specified, the same data is displayed for
where n ranges from 0 to the maximum number of lines on

the current system. If the line is non-existent, or if no user is logged
on to that line, the account-name is replaced with "UNKNOWN".

You may specify a range of lines as well. Any non—numeric character will
cause WHO to display all lines and their logon name.

EXAMPIE:

>WHO [CR]
07 SMITH

>WHO O [CR]
00 SYSPROG

>WHO 11 [CR]
11 UNKNOWN

>WHO *
>WHO 1-3
01 JOHN

02 SYSPROG
03 UNKNOWN

>WHO 'SYSPROG'

(this is line—-number 7, logged on to "SMITH")

(line number 0 is logged on to SYSPROG).

(displays accounts using all lines; lines
(which are not logged on display UNKNOWN.)

(displays all lines logged onto the SYSPROG account.)

Sample usage of the WHO Verb.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 70

)

o~

3.14 MsSG MSG

|

The MSG or MESSAGE statement allows one user to send a message to another
user.

(7 EXAMPLE:

FORMAT:
MSG account-name Message text
MSG !port-number Message text

where "account-name" is the name that the other user is logged on to, and
the text of the message follows. The message text is not edited in any
way; there is no "options" parameter in the MSG statement.

Note that ALL users who are logged on to the specified account-name will
receive the message.

Users with system level 2 privileges (see SYSTEM MAINTENANCE) can
broadcast a message to all users by substituting an asterisk (*) for the
"account—-name" in the MSG statement. This message will be received by the
user's terminal also.

The MSG verb will also allow you to direct a message to a particular line
as well as to a particular user by preceding the 1line number with an
exclamation mark (!). This form of the verb will send messages to
terminals which are not logged-on. Further, the user may send a message
to all lines, signed on or not, by using an asterisk.

>MSG JONES*A0001 WHAT'S THE STATUS OF THE INVENTORY REPORT??? [CR]

>MSG JONES HELLO THERE!"%%%%'''$ [CR] _
USER NOT LOGGED ON (JONES is not logged on).

>MSG * SYSTEM FILE-SAVE WILL START IN 5 MINUTES!!! [CR]

>MSG !'7 HELLO [CR] (Send "HELLO" to line 7)

>MSG !'* LOG OFF PLZ [CR] (MSG to all connected terminals)

>MSG '* AUTOMATIC DISK REFORMAT STARTING IN 10 SECONDS. [CR]

Sample usage of the MSG Verb.

CHAPTER 3 — TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 71

3.15 PROGRAM INTERRUPTION (DEBUG FACILITY)

Processing can be interrupted by depressing the BREAK key on the terminal
(INT key on some terminals). This causes an interrupt in the current
processing, and an entry into the DEBUG state. This is inhibited during
critical stages of processing.

When the BREAK (or INT) key has been depressed, and the DEBUG state has
been entered, the following message will be displayed:

I x.d
!

where x and d describe the software location of the interruption (refer to
the DEBUG documentation in the PICK Assembly Language Manual). The DEBUG
prompt character (!) is displayed to prompt the user for a DEBUG command.
For users with system privilege levels zero or one, the commands listed in
the example are the only DEBUG commands allowed. Users with system
privilege level two should refer to the PICK Assembly Language Reference
Manual for further DEBUG facilities.

Upon encountering one of the hardware abnormal conditions, the system will
automatically trap to the DEBUG state with a message indicating the nature
and location of the abort. If the user has system privileges level zero
or one, he must type END or OFF to exit from the DEBUG state. The
hardware abnormal conditions are described in the DEBUG section of the
Pick Assembly Language manual.

COMMAND DESCRIPTION

p Print on/off. Each entry of a P command switches
(toggles) from print suppression to print non-
suppression. The message OFF is displayed if output
is currently suppressed. The message ON is displayed
if output is resumed. This feature is useful in
limiting the output at the terminal.

G or GO. This command causes resumption of process

LINE FEED execution from the point of interruption.
LINE FEED cannot be used if a process ABORT
condition caused the entry to DEBUG.

END Terminates current process and causes an immediate
return to TCL.

OFF Terminates current process and causes the user to
be logged off the system.

DEBUG Commands for Users With System Privilege Levels 0 or 1

CHAPTER 3 — TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 72

O

AN

3.

16 BLOCK-PRINT

(.

The BLOCK-PRINT command will print characters in a 9-by-n block-form on
the 1line printer or the user's terminal, respectively. Any ASCII
characters may be printed.

C

FORMAT:
BLOCK-PRINT character-string {(P}

This command causes the specified character-string to be block-printed on
the terminal. Any character-string containing single quotes (') must be
enclosed in double quotes ("), and vice versa. The surrounding quotes
will not be printed. A character-string not containing quotes as part of
the string need not be surrounded by quotes. For example, to BLOCK-PRINT
JUDY'S JOB, only enclose JUDY'S with double quotes: "JUDY'S" JOB

The option "P" will route the output to the line printer.

Character-strings to be blocked cannot have more than nine characters.
For the BLOCK-PRINT command, the total number of characters must not
exceed the current line length set by the most recent TERM command.

If a BLOCK-PRINT command is illegally formed, any of the error messages
520 through 525 may be displayed (refer to the list of error messages in
the appendix of this manual).

The BLOCK-PRINT commands use a file named BLOCK-CONVERT to create the
blocked characters. A BLOCK-CONVERT file already exists which contains
the conversion specifications for all printable ASCII characters (no lower
case alphas, however). With this file, characters will be printed as
9-by-12 to 9-by-20 blocks.

If it is desired to <change the way any character is printed, it is
necessary to change the corresponding item in the BLOCK-CONVERT file. The
item-id of the item is the character to be converted. Each item in the
file must consist of exactly ten attributes. The first must specify in
decimal the number of horizontal bytes in the blocked character to be
output (i.e., "n" of the 9-by-n block mentioned above). The second and
subsequent attributes provide the conversion specification. These
attributes contain one or more values; each value is separated from the
preceding by a value mark (ASCII 253). The first character of the first
value in each attribute must be "C" or "B"; these signal that the output
matrix line of the blocked character begins with a character or a blank,
respectively. Immediately following must be the number of characters or
blanks (in decimal). The presence of a value mark indicates a switch from
character to blank status (or vice versa) and must be followed by the
number of bytes to be output. The process continues until the attribute
mark at the end of the current line.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 73

EXAMPLE:

BLOCK-PRINT HELLO (CR) will look like this: P
N
HH HH EEEEEE LL LL 000000
HH HH EE 1L 1L 00 00
HH HH EE LL LL 00 00
HHHHHHH EEEEE LL LL 00 00
HH HH EE LL L 00 00
HH HH EE LL LL 00 00
HH HH EEEEEE LLIILI, LILIIIL 000000
>BLOCK-PRINT "JUDY'S" JOB (CR) will look like this:
JJ Uuu UU DDDDDD YY YY e SSSSS
JJ UuU UU DD DD YY YY e SS SS
JJ UuU UU DD DD YY YY tet SS
JJgd Uuu UU DD DD YY SSSSS
JJ Uuu UU DD DD YY SS
JJ JJ Uuu UU DD DD YY SSs SS
Jddd Uuuuuu DDDDDD YY SSSSS
JJ 000000 BBBBBB
JJ 00 00 BB BB
Jgg oo 00 BB BB
JJg o0 OO0 BBBBBB
JJ o0 00 BB BB
JJ JJ 00 00 BB BB N
JJIgI 000000 BBBBBB -
Sample usage of the BLOCK-PRINT verb.
3.17 UTILITY PROCS : CT, LISTACC, LISTCONN, LISTDICTS, LISTFILES,
LISTPROCS, LISTU, LISTVERBS.
| This topic describes various utility PROC's.
CT
CT file—name item-list {options}
The item(s) specified will be copied to the terminal. Options recognized
by the copy verb may be added.
CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS £
PAGE 74 N

LISTACC
LISTACC {account—name}...

This PROC lists accounting data for the account-name(s) specified. If no
(. account-name(s) are specified, accounting data for all users is listed.

LISTCONN
LISTCONN file-name {LPTR}

This PROC sorts all connectives in any dictionary and lists them on the -
terminal (or Line-PrinTeR if specified).

LISTDICTS
LISTDICTS file—-name {LPTR}

The LISTDICTS PROC sorts all attribute synonym definition items in any
dictionary and lists them on the terminal (or Line-PrinTeR if specified).

LISTFILES
LISTFILES file-name {LPTR}

The LISTFILES PROC sorts all file or file synonym definition items in any
dictionary and lists them on the terminal (or Line-PrinTeR if specified).

LISTPROCS
LISTPROCS file—-name {LPTR}

The LISTPROCS PROC sorts all PROC's in any file or dictionary and lists
them along with a brief abstract on the terminal (or Line-PrinTeR if
specified). '

- LISTU
{ LISTU

The LISTU PROC lists the account name of all users currently active on the
system, along with their logon time and channel number.

LISTVERBS
LISTVERBS file—name {LPTR}

The LISTVERBS PROC sorts all verbs (not PROC's in any dictionary and lists
them on the terminal (or Line-PrinTeR if specified).

3.18 VERB DEFINITION ITEMS IN M/DICT

Master Dictionary (MD).

Each verb definition resides as an item in the wuser's Master Dictionary.
The item-id (i.e., attribute zero) of a verb definition item is the wverb
name itself. The user may create any number of synonyms for the verb
definition items (and may even remove the pre-defined verb definition

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

(Z?‘ "PAGE 75

items), thereby creating his own vocabulary.

Synonyms may be created by

copying the verb definition item into another MD item with the desired
synonym name as the item-ID.

ATTRIBUTE NUMBER
0

DESCRIPTION
This is the item—-id, which is the name of
the verb.

Must contain: Pc 1

P identifies the MD item as a verb definition
item. The single character c is passed to the
defined processor. If c¢ is Q, the item is a
PROC not a verb.

This attribute defines the processor entry
point to which TCL passes control (i.e.,

the mode—-id in hex). See PICK ASSEMBLER Manual.

Secondary transfer point. Use depends on
attributes 1 and 2.

Tertiary transfer point. Use depends on
attributes 1 and 2.

TCL-II parameter string. These parameters
govern treatment of the items retrieval by
TCL-II verbs to be passed to the processor
whose entry point is defined in attribute
three. Parameter may be any of the following:

- Copy item to a work area.

— Pick up file parameters only

(ignore item-list).

— Okay if item is not on file.

Print item-id if item-list is "*" (all
items), or if SELECT-ed item-list.)

— Ignore the select-list; item-list
required.

- Items will be updated by processor.

— Final entry required on EOI.

NG W vz 1O
|

WARNING: Do not change any of the data in theses existing verbs!

‘CHAPTER 3 - TERMINAL CONTROL LANGUAGE

Verb Definition Item in MD.

PAGE 76

Copyright (c) 1985 PICK SYSTEMS

o
"

SECTION 4

THE
ICON/PICK
EDITOR

|C2eN’

N
\\\

Chapter 4
EDITOR

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose 1is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
() PAGE 77

et

4.1 EDITOR PROCESSOR : AN INTRODUCTION

The EDITOR is a processor which permits on-line interactive modification
of any item in the data base. The EDITOR may be used to create and/or
(" modify PICK/BASIC programs, PROC's, assembly source, data files, and file
‘ dictionaries. The EDITOR uses the current line concept; that is, at any
given time there is a current line that can be listed, altered, deleted,
etc. The EDITOR includes the following features:

- Two variable length temporary buffers

- Absolute and relative current line positioning
- Line number prompting on input

- Merging of lines from the same or other items
- Character string location and replacement

- Conditional and unconditional line deletion

- Input/Output formatting

- Prestoring of commands

EDITOR COMMAND AND EXAMPLE CONVENTIONS

CONVENTION MEANING
UPPER CASE Characters printed in upper case are required
and must appear exactly as shown.

Lower case Characters or words printed in lower case are
parameters to be supplied by the user (i.e.,
line number, data, etc.).

{1 Braces surrounding a parameter indicate that the
, parameter is optional and may be included or
(omitted at the user's option.
"string" A "string" is a sequence of characters delimited

by any non—numeric character (except a blank or

a minus sign) that does not appear within the

body of the "string" itself. (A further description
of "string" is presented in the topic describing
the Editor syntax).

Conventions Used in EDITOR command Formats

CONVENTION MEANING

* TEXT An asterisk preceding text represents
the user's input.

TEXT Capitalized text represents output printed by
the EDITOR

[CR] This symbol represents a carriage return.

Conventions Used in EDITOR Examples

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
(PAGE 78

4.2 EDITOR OPERATION : AN OVERVIEW

The EDITOR uses two data areas (buffers) to edit an item. The item is
copied into one buffer and updates are assembled in the other. An F
command merges the updates with the item and then toggles the function of
the buffers.

The EDITOR uses two variable length temporary buffers (Buffer 1 and Buffer
2) to create or update an item. When the EDITOR is entered, the item to
be edited is copied from the file to Buffer 1 (the Current Buffer). Each
line (attribute) of the item is associated with a line number. A current
line pointer points to the current line of the item, and an EOI (End-of-
Item) pointer points to the last line of the item. EDITOR operations are
performed on one line at a time (the current line) in an ascending line
number sequence from TOP (line 0) to EOI. As an EDITOR operation is
performed on a 1line, the modified line and all previous lines are copied
to Buffer 2 (the Update Buffer).

The editing process continues working on Buffer 1. As lines in the item
are changed (or lines are inserted or deleted), the EDITOR builds a new
updated version of the item in Buffer 2. Updating must thus continue in
an ascending 1line number sequence until a F command is entered. The F
command merges the updates with the previously existing item, and an
automatic resequencing of the item takes place. The F command does not
permanently file an item; it completes the copy to the Update Buffer
causing all 1lines to be resequenced and the EOI pointer to Dbe
repositioned. It then switches (toggles) the function of the buffers, so
that Buffer 1 becomes the Update Buffer and Buffer 2 becomes the Current
Buffer. Editing then occurs in Buffer 2 with new modifications assembled
in Buffer 1. This toggling of buffers can go in indefinitely until the
item is permanently filed away via a File Item (FI) or File Save (FS)
command.

This editing process is exemplified in the following examples. The first
example shows a four-line item in Buffer 1 (the Current Buffer) with the
current line pointer positioned at 1line 2. Two lines ("1234" and "567")
are then inserted after 1line 2 as can be seen in Buffer 2 (the Update
Buffer). When an F command is issued, the buffers are toggled and the
situation is as shown in the second example. Here Buffer 2 has become the
Current Buffer. Further modifications made to the item will be assembled
in Buffer 1 which has now become the Update Buffer.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 79

N

BUFFER 1 BUFFER 2

(CURRENT BUFFER) (UPDATE BUFFER)
I TOP | TOP
1 AAAAA 1 AAAAA
current
2 BBBB {=——- line 2 BBBB
pointer
3 Cccc 3 12345
4 DDDD {——— EOI 4 567
pointer
Editing Example Before F Command
BUFFER 1 BUFFER 2
(UPDATE BUFFER) (CURRENT BUFFER)
- - - current -
l TOP line —-> | TOP I
- pointer - -
1 AAAA
last
2 BBBB
line
3 1234
4 567
5 Cccc
EOI —> 6 DDDD
pointer
Editing Example After F Command.
CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 80

4.3 EDIT VERB : ENTERING THE EDITOR

| To enter the EDITOR, the EDIT verb is entered at the TCL level.

FORMAT:

ED{IT} {DICT} file—name {item-list} {(options)}
The "item-list" parameter consists of one or more item-id's separated by
blanks, or an asterisk character (*) specifying all items in the specified
file. If multiple item—id's are specified, then the first item specified
will be edited first; when the EDITOR then is terminated via a File Item
(FI), File Delete (FD), or Exit (EX) command, then the EDITOR will
automatically be re-entered and the next item will be edited; and so on.
If the DICT option is used, the specified item(s) in the dictionary
section of the specified file will be edited. If DICT is omitted, the
specified item(s) in the data section of the specified file will be
edited.
If a select-list is in effect (by using a SELECT, SSELECT, QSELECT or GET-
LIST), the item-list is omitted; the item-ids are obtained from the
select-list in this case.

Editor options are specified as a single character; multiple options may
be separated by commas.

EDITOR OPTIONS:

A Turns on the assembly-code formatting option; see
"AS" command.

S Turns on the suppress—-line numbers on suppress
object-code option; see "S" command.

M Turns on the macro expansion flag; see "M" command.
Sends all system ouput to the line printer.

Z Suppresses "TOP" and "EOI" messages.

NOTES ON THE EDITOR:
Once the EDITOR has been entered, the following will be printed:

TOP

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 81

/ RN

£

v/

The current line pointer 1is set to 1line zero, and an EDITOR command 1is
awaited (i.e., the period prompt character (.) indicates that an EDITOR
command is to be entered).

~ If the specified item does not already exist on file, the message "NEW
ITEM" will be printed prior to the "TOP" message. Furthermore, if
‘multiple item-id's were specified, then the item-id of item currently
being edited will be printed.

As noted in the discussion of file structure, the elements subsidiary to
files are items. Structurally they are made up of attributes, and
functionally they all are seen by some processor as data; but intuitively
one may consider items to be of two types: text or data. A data item is
typified by the condition that the meaning of a data string depends upon
which attribute it is in. A text item is a sequential string using the
attribute mark and count at most to delimit sub-strings. Data strings
include Attribute defining items found in dictionaries, and data items in
files to be processed by ACCESS, PICK/BASIC or User exits, wherein
individual lines are properly referred to as attributes. Text items are
made up of lines, which are structurally identical to the attributes of
data items, but which do not have meaning by virtue of their attribute
location. Text items include PICK/BASIC and Assembler language programs,
Procs, and the items processed by RUNOFF.

The EDITOR has the capacity to create, modify, and delete both data and
text items anywhere in the System, within the constraints of the user's
account's privilege level and wupdate lock codes, without respect to the
type of item or its end use.

The EDITOR displays attributes as lines, so that the attribute mark count
within the item and the line number displayed by the EDITOR are identical.
Note that attribute zero is the item-id.

"EXAMPLES :
* >ED F1 Il I2 I3 [CR] (———————— EDIT verb (with multiple item—-id's).
I1 < —— Item Il is edited first.
TOP
* EX (—- - - Exit command (exits EDITOR).
EXIT
I2 <——- - - - EDITOR automatically re-entered
TOP to edit next item (I2).
* EX < - - - Exit command.
EXIT
I3 {————————~ EDITOR automatically re-—entered.
NEW ITEM < - Shows that I3 is a new item.
TOP
* EX (- - Exit command.
EXIT
> (—- Returns to TCL level.
Sample Usage of the EDIT Verb.
CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

(i PAGE 82

4.4 EDITOR COMMAND SYNTAX

| This section describes the syntax of EDITOR commands. |

EDITOR commands are one or two letter mnemonics which must appear as the
first non-blank input character. Command parameters follow the command;
blanks may be inserted between parameters for clarity if desired, but
embedded blanks in parameters are not permitted.

EDITOR commands can be entered either in upper or lower case. This is
especially convenient when editing text items, when the terminal may be in
the lower-case mode.

4.4.1 EDITOR "strings"
Certain EDITOR commands use a "string" which may be defined as a series of
characters that is surrounded, or delimited by a pair of identical, non-
numeric characters that do not appear within the string itself. Lower

case alphabetic characters are not valid as delimiters.

VALID STRINGS

/123 MAIN ST./ /replacement of the/
.abc 123 DEF. " § 9876.54 "

;Open Architecture: ; . "PICK/BASIC is .
AThis test stringA Z That test string Z

For convenience, the closing delimiter of the "string" 1is necessary only
if further parameters follow the string specification, or trailing blanks
are to be included as part of the "string".

4.4.2 COLON : EDITOR DELIMITER

The "string" 1is used in EDITOR commands that specify a search for matching
data in the item. The COLON (:) is a reserved delimiter; if wused, it
indicates that a column—-dependent correspondence between characters in the
string and characters in the line is necessary for a match.

:LOOP

would attempt to find the matching characters "LOOP " in columns 1 through 5
of the line; however, the string:

/LOOP /

would attempt to find the matching characters "LOOP " anywhere within the
line.

CHAPTER 4 - EDITOR - Copyright (c) 1985 PICK SYSTEMS

PAGE 83

£

4.4.3 UP-ARROW : WILDCARD EDITOR CHARACTER

The up-arrow (~) is a reserved character within the body of the "string". The

up-arrow is a wildcard character used with L(ocate) and R{eplace) EDITOR

commands. It indicates that any character in the corresponding position in
he line is acceptable as a match. Note that this feature may be nullified by
sing the """ Command. For example, the string:

/AB"CD/
would attempt to find the matching characters "AB", then any character
whatsoever, then "CD" in the line. This feature may be deactivated by using

the "~ " character alone at the command prompt. Entering it again will toggle
the feature back to activated. The EDITOR outputs /ON\ or /OFF\ accordingly.

COMMAND NAME COMMAND FORMAT
Again A
Assembler Format ON/OFF AS
Bottom B
Column Number List C
Current Line ?
Delete DE{n}
Delete DE{n}"string"{p{-q}}
Exit EX{K}
File Delete FD
File Item FI
File Save FS
F
Goto Gn
Goto n
Input I
Insert I data
List L{n}
Locate L{n}"string"{p{-q}}
Macro expansion M
Merge ME{n}"item" {m}
Next N{n}
Prestore P command
Prestore Call P
Replace R
Replace RU{n}"string 1"string 2" {p{-q}}
Suppress ON/OFF S
Tab TB XX XX XX ... XX
Top T
Up U
X X
XF XF
Zone Z{p{-q}}

EDITOR Command Summary.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

(o PAGE 84

4.5 LINE POINTER CONTROL : EDITOR

The commands that are provided for controlling the the current 1line
pointer and for 1listing the item being edited, are described in this
section.

.5.1 "L" - LIST COMMAND : EDITOR
FORMAT:

L{n}
This command causes n lines to be listed, starting from the current 1line
plus one. If n is omitted, only one line is listed. If n is greater than
or equal to the number of lines from the current line to the EOI, then all
the lines down to the EOI will be listed.
If a List command is issued when the current line pointer 1is at the EOI,
then the next n lines starting from line 1 will be 1listed. The List
command positions the current line pointer at the last line listed.

.5.2 NULL COMMAND <CR> : EDITOR

FORMAT:
<CR>

The Null command is executed by entering a carriage return only. This
command is identical to a List command where n is omitted. The next line
is listed and the current line pointer is advanced one line. This command
is included for convenience when stepping through lines in an item.
.5.3 "U" - UP COMMAND : EDITOR
FORMAT:

U{n}
The Up command decrements the current 1line pointer by n lines, and then

lists the new current line. If n is omitted or is zero, the current line
will be listed.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 85

a

4.5.4 "N" - NEXT COMMAND : EDITOR
FORMAT:
N{n}

' This command increments the current line pointer by n lines, and (one line
if n is omitted), and then lists the new current line.

For all of the above commands, the message TOP will be printed if the
current line pointer is set to zero, and the message EOI m (where m is the
last line number of the item) will be printed if the pointer is set to the
EOI.
4.5.5 "G" GOTO COMMAND : EDITOR
FORMAT:
Gn OR n

These commands position the current line pointer and list line n.

4.5.6 "T" TOP COMMAND : EDITOR
FORMAT:
T

TOP sets the current line pointer to zero.

4.5.7 "B" BOTTOM COMMAND : EDITOR
FORMAT:
B
Bottom sets the current line pointer to EOI.

On the above commands, the message TOP will be printed if the current line
pointer is set to zero, and the message EOI m

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 86

>EDIT FILEl ITEM

TOP

P [CR] <

001
002
003
004

AAAMA
BBEBB
CCccc
DDDDD
005 EEEEE
006 FFFFF
EOI 6

[CR] <

[CR]

TOP
001 AAAAA

[CR] <
BBBBB
[CR] <
DDDDD
[CR] <
BBBBB

002
.N2
004
.02
002

.N9 [CR] <
006 FFFF
EOCI 6

L [CR] <—-

TOP
001
.L3
002

AAAAR
[CR] <
BBBBB
003 ccccce
004 DDDDD

.T [CR] <
TOP

.P [CR] <

001
002
003
004

AAAAA
BBBBB
Ccccc
DDDDD
005 EEEEE
006 FFFFF
EOI 6

.G5 [CR] <--

005 EEEEE

EOI

L [CR] <—-

TOP
001 AAAAA

.3 [CR] <-
003 CCcCC
T [CR] <

B [CR] <--
6

TOP

PO — Prestored command (lists 22 lines

Item consists of only 6 lines,
so entire item is listed.

Null command (since current line
pointer is at EOI, the 1lst line

is listed).

Null command (lists next line).

Next command (goes down 2 lines
and lists line).

Up command (goes up 2 lines and
lists line).

Next command; since the item has
only six lines, the last line

is listed.

List command (since current line
pointer is at EOI, the lst line
is listed).

List command (lists next 3 lines).

Top command (goes to line 0).

Prestored command (list 22 lines).

Item consists of only 6 lines,
so entire item is listed.

Goto command (lists line 5).
Bottom command (goes to EOI).
List command (since current line
pointer is at EOI, the 1lst line
is listed).

Goto command (lists line 3).

Top command (goes to line 0).

Sample Usage of Line Control Commands.

CHAPTER 4 - EDITOR

- PAGE

Copyright (c) 1985 PICK SYSTEMS

87

A

N ,1’/

4.6 STRING MATCH LOCATING : EDITOR

The Locate command causes a search for characters that match a specified
string. The Again command repeats the last Locate command issued.

P |

4.6.1 "L" - LOCATE COMMAND : EDITOR

FORMAT:

L{n}"string"{p{-q}}
This command causes a search for characters matching the "string".
The search 1is restricted to column p, or columns p through q, if
specified. If g<p, g=p is assumed. If the delimiter used in the Locate
command is a colon, ":", then only matching strings starting in the first
column specified (= p) will be located.

If n is not specified, the next ocurrence of "string" is located, and that

line 1is listed; the current 1line pointer is set at the line that is
listed. If n is specified, n 1lines, starting from the current line plus
one, are scanned for the occurrence of "string"; all lines in which the

"string" is found are listed. The current line pointer is incremented by
n, and therefore might not be located at the last line listed.

The scan always begins from the current line plus one.

.6.2 "A" — AGAIN COMMAND : EDITOR

FORMAT:
A

The Again command repeats the last Locate command issued.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 88

* >ED F1 ABC [CR]
TOP
* P [CR]
001 ABCDEFG -
002 12ABCDEFG
003 BCDEFG {m=m———— This is what item ABC looks like.
004 aBC
005 ABCDEFG -=
EOI 5
* T [CR]
TOP
* ,L"ABC [CR] < Locate command (locates next line with
"ABC") .
001 ABCDEFG < Line 1 located.
* T [CR]
TOP
* _L5/ABC/ [CR] <« Locate command (scans 5 lines and
001 ABCDEFG - locates lines containing "ABC").
002 12ABCDEFG
004 ABC (=== Lines 1, 2, 4, and 5 located.
005 ABCDEFG -
EOI 5
* T [CR]
TOP
* _L5<A<3-4 [CR] < Locate command (locates "A" in columns
3 thru 4).
002 12ABCDEFG <—— Line 2 located.
EOI 5
* L5:ABCD: [CR] ({—————————— Locate command (locates "ABCD" column
TOP dependent; i.e., must be in columns 1
thru 4).
001 ABCDEFG -—- '
005 ABCDEFG ——| (————————— Lines 1 and 5 located.
EOI 5
* L5: "AB: [CR] (——————————- Locate command (locates "AB" in columns
TOP 3 thru 4).
002 12ABCDEFG (—————————=———— Line 2 located.
EOI 5
* L: B: [CR] [- - —— Locate command (locates next line with
TOP "B" in column 2).
001 ABCDEFG < - Line 1 located.
* A [CR] (—————— Again command (repeats last Locate).
004 ABC <—- - Line 4 located.
* A [CR] < - Again command (repeats last Locate).
005 ABCDEFG < Line 5 located.
Sample Usage of Locate and Again Commands.

CHAPTER 4 - EDITOR ‘ Copyright (c) 1985 PICK SYSTEMS

PAGE 89

(

4.

7 ENTERING DATA : EDITOR

The Input command is used for data entry. The user may create a new item,
or may insert or add lines to an already existing item.

4.

~

7.1 "I" - INPUT COMMAND : EDITOR "I" - INPUT COMMAND : EDITOR
FORMAT:
I

The Input command, when issued, causes the EDITOR to enter the Input
Environment. All subsequent lines input by the user are then considered
as data input 1lines to the item, until the user exits the Input
environment.

If the Input command is issued for a new item which has not previously
been edited, the new lines will be input to the item starting at line one.
The EDITOR will request data lines by prompting with the line number to
which data are being entered.

If the Input command is issued for an item already containing data, then
the new lines will be inserted following the current line. Input will be
prompted with the current line number, after which the lines are being
inserted, followed by a plus sign. If the current line pointer is at line
zero (TOP), input lines will be inserted before the first line of the item
with a prompt of "000+".

A null input (carriage return or line feed only) will cause the EDITOR to
exit the Input Environment and await the next EDITOR command. (If a null
line is required in the item, it is necessary to create the line with a
fill character and then replace the fill character with a null via the
Replace command; refer to the topic describing the Replace command. The
Insert command can also be used to insert null lines). If there is an
error in the current input 1line, the user can execute a carriage return
twice, to enter the 1line and exit the input environment, then execute a
Replace-string operation to fix the error, and then reenter the input
environment without executing an F command, except on initial input, as
below.

The user should note that when the 1Input Environment is initially exited
for a new item, an automatic F command will be executed by the EDITOR,
thus toggling the function of the EDITOR buffers and allowing the newly
entered lines to be listed.

If an input line is too long to fit on one physical 1line, the line
continuation character (control-shift O) may be entered at the end of the
physical 1line and the input line may then be continued on the next
physical 1line. The 1line-continuation character must be immediately
followed by a carriage return or line feed.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

(PAGE 90

EXAMPLES:

* >EDIT AFILE AITEM [CR]
NEW ITEM < Note that this is a new item.
TOP
.I [CR] K< Input command.
* 001 INPUT -1 < Lines being input.
* 002 DATA [CR] —— .
* 003 [CR] < Input terminated.
TOP < Automatic F command has been
executed.
* 003 [CR] < Input terminated.
TOP < Automatic F command has been
executed.
* L2 < List command.
001 INPUT
002 DATA
EOI 2

Sample Usage of Input Command for New Item.

* >EDIT TESTFILE TESTITEM [CR]
- TOP
* P [CR] <- Prestored command (list 22 lines).
001 LINE 1 -
002 LINE 2 | (=== This is what item currents
003 LINE 3 - contains.
EOI 3
* T [CR] < ——— Top command.
TOP
* I [CR] <——- - Input command.
* 000+ NEW LINE A [CR] < New line input.
* 000+ [CR] < Input terminated.
* .G2 [CR] ——- Goto command.
002 LINE 2
* ., I [CR] {——- - Input command.
* 002+ NEW LINE B [CR] <- New line input.
* 002+ [CR] < Input terminated.
* .F [CR}] < F command toggles buffers.
TOP
* P [CR] < Prestored command (list 22 lines
001 NEW LINE A
002 LINE 1
003 LINE 2
004 NEW LINE B
005 LINE 3
EOI 5
Sample Usage of Input Command for Previously Edited Item.
CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 91

4.8 INSERTING DATA : EDITOR

The Insert command is used to insert one new line. The Merge command 1is
used to insert one or more lines by merging lines from the same item, or
from another item in the same file, or another item in a different file.

4.8.1 "I" - INSERT COMMAND : EDITOR
FORMAT:
I data

The user enters an "I", followed by one blank, followed by the data to be
inserted. The specified data will be inserted as a new line after the
current line. Note that the data to be inserted must be separated from
the "I" by only one blank; all other blanks will be considered as part of
the 1line to be inserted. The line continuation character (control-shift
0) cannot be used to continue data beyond one physical line.

The Insert command is most convenient for either inserting only one line
of data (rather than using the Input command), or for INSERTING A NULL
LINE; the latter is done by entering "I" and one space, followed by a
carriage-return. One may also insert a string of Attribute marks to
generate a string of null lines. This feature is particuarly useful when
entering Dictionary items, which use null lines within their structure.

4.8.2 "ME" - MERGE COMMAND : FROM THE SAME FILE

FORMAT:
ME{n}/item-id/{m}

This command causes n lines (starting from 1line number m) of the item
whose item-id specified by /item—id/ to be merged (inserted) into the item
being edited. The lines will be inserted following the current line. The’
item specified by /item-id/ must be in the same file as the item being
edited. A value of one will be assumed for both n and m if either or both
are omitted. If /item-id/ is null (//), lines will be merged from the
item being edited itself, as it stands in the current buffer, thus
duplicating the specified lines in the item.

The user should note that if the item from which lines are to be merged is
not on file, the message "NOT ON FILE" will be printed.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 92

4.8.3 MERGE COMMAND : FROM OTHER FILES

The extended syntax requires the use of the delimiters "(" and ")" in
place of the "/" delimiter used above. They thus become reserved when
using the merge command in the sense that the colon ":" is reserved when
using the locate, replace, and delete commands. In this case there is the
further peculiarity that "(" and ")" are not the same character, whereas
any character may normally be used as a delimiter, so long as all the
delimiters in a particular string are identical.

FORMAT:
ME{n} ({DICT} [FILENAME] {ITEMNAME}){m}

The use of DICT is conventional. It means the same thing here as is does
at TCL in the reference to files, and in the COPY processor. If there is
no item-id specified, then the processor defaults to the item-id of the
item being edited at the moment. This is wuseful if one wishes to get a
copy of an item into a test file and edit it quickly, or if one wishes to
assure that the item will not be filed inadvertently over the old copy.
Combined with the prestore command structure and the global replace
command, some very powerful things can be done very quickly and easily.

.8.4 MERGE COMMAND DEFAULTS
There are certain other defaults which apply to the merge command, and

which are carried over into this extended form which will be noted below
as a reminder.

ME{n} ({DICT} [FILENAME] {ITEMNAME}

This form does the same thing as above, except that the starting line
number defaults to line 1 in the merge source item.

ME({DICT} [FILENAME] {ITEMNAME}){m}
This does the same thing as above, except that starting-line-number is the
only line which is merged into the destination item. As such, the 1line
may then be modified using the replace command, as noted above.

ME({DICT} [FILENAME] {ITEMNAME}
This simply returns the first line of the merge source item. Note that

the trailing right parenthesis is optional if the starting 1line number
defaults to the first line of the source.

.8.5 MINIMAL MERGE
Obviously, these defaults all apply to the normal merge statement, leading
to the minimal form 'ME/', which simply inserts the first line of the item
currently being edited into the current location in the item, which 1is
useful if you wish to put a given line in several different places in an
item.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

"PAGE 93

EXAMPLES:

l * >EDIT ABC ITEM5 [CR]

. TOP

% P
001 ABCDEFG ——| <

002 HIJK -
EOI 2
* .G1 [CR] <

This is what ITEM5 looks like.

001 ABCDEFG

Goto command.

* I 12345 [CR] <

Insert command.

* ,F [CR] <
TOP

* P [CR]
001 ABCDEFG -

F command (toggles buffers).

002 12345 | <
003 HIJK -
EOI 3

Here is ITEMS5 after insertion.

Sample Usage of Insert Command.

TOP
* P [CR]
001 11111 —-

* >EDIT FILEl ITEM1 [CR]

002 22222 | <—-
003 33333 —-—
EOI 3
/% _EX [CR] <

- —-—— This is what ITEM1 looks like.

EXIT

TOP
* P [CR]
001 AAAAA -

003 CcCccc -
EOI 3
* G2 [CR] <—-

* >EDIT FILEl ITEM2 [CR]

002 BBBBB | <————-

_— _ — Exit command (exits EDITCR).

—————————————— This is what ITEM2 looks like.

002 BBBEB

— Goto command.

* _ME2"ITEM1"1 [CR] <

— Merge 2 lines from ITEM1
starting at line 1.

* .F [CR] <
TOP :

* P [CR]
001 AAAAA -
002 BBBEBB

- F command (toggles buffers).

003 11111 <=
004 22222

005 CcCccC -

EOI 5

Here is ITEM2 after the 2 lines
from ITEM1 have been merged.

CHAPTER 4 - EDITOR

Sample of Merge Command.
Copyright (c) 1985 PICK SYSTEMS

PAGE 94

4.9 DELETING DATA : EDITOR

| The Delete command causes one or more lines to be deleted from the item. |

"/{“\\
NS
4.9.1 "DE" - DELETE COMMAND (SIMPLE) : EDITOR "DE" - DELETE COMMAND (SIMPL

FORMAT:
DE{n}

This command causes n lines to be deleted (one if n is omitted), starting
from the current line. The current line pointer is set to the line after
the deletion, allowing further Editor command sequences.

4.9.2 "DE" - DELETE COMMAND (STRING SEARCH) : EDITOR

FORMAT:
DE{n}"string"{p{-q}}

The complex form of the Delete command causes a search for characters
matching the specified "string" (see EDITOR command syntax). If n is not
specified, n defaults to 1. If n is specified, n lines, starting from the
current line, are scanned for the occurrence of "string"; all lines in
which the '"string" is found are deleted. Lines that are deleted are
listed. The current line pointer is set to the line after the span of the
Delete command (or n lines).

The search for the specified "string" is column-dependent if the delimiter
used in the "string" is a colon, or if parameters p, or p and g are used.
If the colon is wused, the Editor defaults to column 1 for +the "string"
match, regardless of any p or g parameters. If p is used by itself, the
search starts in column p and continues scanning the remaining line for a
match. If both p and g are used, then the scan will match all "strings"
whose first character is in column p or greater, while at the same time,
the last character of the "string" falling before or at column q. If g<p,
g=p is assumed.

The user should note that the scan always begins from the current line.

This is similar to the simple Delete command which starts with the current
line and then continues for the next (n—-1) lines.

CHAPTER 4 - EDITOR ' Copyright (c) 1985 PICK SYSTEMS

PAGE 95

£n
\ . /

EXAMPLES:

* >ED TEST ITEM.1 [CR]
TOP

* .P [CR]
001 123XYZ -
002 AAAAAAA

003 Xyz123 <
004 ABABABAB

005 12345

006 AA -
EOI 6

This is what item ITEM.1l looks like.

* .G5 |[CR] <
005 12345

Goto command.

* _DE2 [CR] <
EOI 6
* .F [CR] <-—-

Delete command (deletes 2 lines).

TOP
x .p [CR]
001 123XYZ —-

002 AAAAAAA I <
003 XYZ123
004 ABABABAB --
EOI 4

* T [CR]
TOP

F command (toggles buffers).

— Here is item ITEM.1l after lines 5

and 6 have been deleted.

- * _DE99,/123 [CR] <

Delete command (deletes lines con-—
taining "123").

001 123XYZ ——l <
002 XYz1l23 -——
EOI 4

* .F [CR]

TOP

* P [CR]

002 ABABABAB —-—
EOI 2

~

001 AAAAAAA ——| (—=—-——-

* .DE: B [CR] <-

Deleted lines are listed.

----- Here is item ITEM.1l after deletion.

- Delete command (deletes lines with "B"
in column 2).

002 ABABABAB < -
EOI 2

* .F [CR]
TOP

* .P [CR]

Deleted line is listed.

001 AAAAAAA <
EOI 1

Here is item ITEM.1 after deletion.

Sample Usage of Delete Commands.

CHAPTER 4 - EDITOR

Copyright (c) 1985 PICK SYSTEMS

PAGE 96

4.10 REPLACING DATA: REPLACE (R) COMMAND

The Replace command may be used to replace a number of lines, or may be
used to replace one character string with another character string (in one
or more lines). The Replace command also allows several executions of the
replace on a single line. The "U" option allows replacement of all copies
of a string within a line with the specified replacement string.

4.10.1 "R" REPLACE COMMAND (SIMPLE) : EDITOR

FORMAT: -
R{n}

The Replace command takes on two general forms. The simple form causes
the Input Environment to be entered (see Input command). Input is
requested for data to replace n lines (one if n is omitted), starting from
the current line. The Input Environment is exited when either:

1) Data for the specified number of lines has been entered, or
2) A null line (i.e., carriage return or line feed only) is entered.
In the latter case, the remainder of the lines (including the line which

received the null input) will remain unchanged. The current line pointer
points to the next line in the current buffer to be edited.

4.10.2 "R" - REPLACE COMMAND (STRING SEARCH) : EDITOR

FORMAT:
R{U}{n}/string 1/string 2/{p{-q}}

This form of the Replace command causes a search for characters matching
"string 1" (see EDITOR command syntax). If n is not specified, then only
the current line is scanned for "string 1". If "string 1" is located then
it is replaced by "string 2". If n is specified, then n lines which
includes the current line are scanned. The first occurrence of "string 1"
in each line is replaced by "string 2". Lines that are changed are listed
in their updated form.

4.10.3 "RU" - REPLACE COMMAND (UNIVERSAL STRING SEARCH) : EDITOR

This option 1is indicated by simply using the form RU, as noted by the {U}
in the above format.

This form of the Replace command allows the replacement of all cases of
"string 1" with "string 2" in the 1line or lines specified. The option
allows multiple-line replacements using the form RUn for the form Rn, and
otherwise is identical to the "R" format.

COLUMN SPECIFICATIONS:

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 97

K’L//

%

As with the "DE" command, if the delimiter is a colon ":", then the column
specification defaults to column 1, regardless of any p oOr g parameters.
If only p is used, then the scan begins in column p and continues for the
rest of the line until a match is found. If the "RU" form is used, the
scan will continue searching for all string matches after column p. If
both p and q are present, a match is made if the first character of
"string 1" falls in column p or greater while at the same +time having the
last character of '"string 1" fall before or at column q. If g<p, g=p is
assumed. Only one delimiter separates "string 1" and "string 2" in the
complex form of this command, and the third delimiter may be left out if
the column specification is not needed. Any non—numeric character not in
"string 1" and "string 2" may be used as the delimiter.

The protocols above are identical for the string locate and the form of
the delete which deletes lines which contain a given string.

* >ED
TOP
.P

001
002
003
EOI
.T

TOP
.R2
001
002
.F

TOP
.P

001
002
003
EOI
.T

TOP
.R3"AB"HHH"
001 123HHHC

F1 ABC |[CR]

* [CR]
ABCDEF
ABCDEF
ABCDEF
3

[CR]

This is what item ABC looks like.

*

[CR] <
123ABC
XXXXXAB
[CR] <——-

Replace command (replaces 2 lines).
[CR] Replacement lines being input.

[CR]

* Ok o ok

F command (toggles buffers).

>*

[CR]
123ABC
XXXXXAB
ABCDEF
3

[CR]

Here is item ABC after replacement.

[CR] (————————— Replace command (replaces "AB" with

" HHHN) .

(

002 XXXXXHHH | < The 3 lines in which replacement took
003 HHHCDEF - place are listed.
EOI 3
* _F [CR]
TOP
* _R3/HHH/S/1-3 [CR] (————————= Replace command (replaces "HHH" in
columns 1 thru 3 with "s").
003 SCDEF < -= Line in which replacement took place
EOQOI 3 is listed.
* .F [CR]
TOP
* _R3/HHH// [CR] < - — Replace command (replaces "HHH" with
null).
001 123C —-— < Lines in which replacement took place
002 XXXXX -- listed.
EOI 3

CHAPTER 4 - EDITCR

Sample Usage of Replace Commands.

PAGE

Copyright (c) 1985 PICK SYSTEMS

98

4.10.3.1 MULTIPLE REPLACEMENTS WITHIN A LINE

Multiple string replacements in a single 1line are possible without
executing a F command if the preceeding update instruction was an Input
command or a Replace-string command. The resulting form will be displayed
after each replacement, and the current line pointer will remain on the
last line to be edited. Re-listing the modified line before an F command
will display the current form rather than the modified form.

The intent of multiple replacements within a line 1is to minimize typing
and buffer switching (the F command). If there are several elements of a
line which you wish to change, you may change them one at a time, using
the R command for each, without using the F command in between. On each
use of the R command in this case, the command operates on the result of
the last command. Only the first use of the R command operates on the
original line. This means that if the X command is used, you move back
to the original line, rather than the line as it was before the last use
of the R command, because the last copy is not saved. 1In general, you can
modify a line indefinitely.

If the replacement was a full-line replacement of the form R, carriage-
return, followed by the prompt, followed by the text and a terminal
carriage-return, the 1line may not be modified by a string replace until
the buffers have been exchanged using the F command. The premise is that
the X command can be used, followed by another replace. If this is not
satisfactory, then the sequence, 'DEKI text<', will have the same result,
and will allow replacements within the inserted line.

.10.3.2 REPLACEMENT AFTER MULTIPLE-LINE REPLACEMENT

You may replace text 1in the 1last line of an Rn group using another R
command without first flipping the buffers (the F command) in the same way
it can be modified after a single-line replacement command. It is not
possible to access lines prior to the 1last without using either the F
command, which exchanges the buffers, or the X command, which cancels the
Rn replace command.

.10.3.3 MULTIPLE REPLACEMENTS AFTER THE MERGE COMMAND

It is possible to merge one or more lines of text into the current
location in the text, and then modify the only or last 1line merged in
using the multiple replace facility. Lines prior to the last can not be
so modified for the reasons noted above. It is possible to do a lot of

text manipulation very quickly using the merge, delete and replace
commands. '

.10.3.4 CREATING NULL LINES - EDITOR

As discussed in the topic describing the Input command, the Replace

command may be used to create null 1lines. This is accomplished by using

the Input command to create lines each containing a fill character (such
as an "."), and then prior to permanently filing the item replace each
fill character with a null via a Replace command (such as R99/.//).
CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 99

AN

EXAMPLES :

(Consider the following line.
‘ 084 The difference between the beginning and ending
To relace 2nd "the" with "any"
c [CR]
1 2 3 4 5
1234567890123456789012345678901234567890123456789012345
Useful aid for column identification.
R/the/any/24 [CR] which will yield:
084 the difference between any beginning and ending
A column range example:
R/the/any/24-26 [CR]
084 the difference between any beginning and ending
Further unrelated examples:
R5/XYZ/123/15 [CR] Replace first occurence of string
"XYZ" after column 15 for the
next 5 lines.
{n,/ RU7/XX/77/20-50 [CR] Replace all occurences of "XX"

between columns 20 to 50 for the
next 7 lines.

Sample usage of column specifications with the replace command.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
(1 PAGE 100

4.11 ITEM MANIPULATING - EDITOR

Editor commands are provided for merging updates into the item, filing the
item, deleting the item, or exiting an item.

™~

///*
N

4.11.1 "F" COMMAND - EDITOR

FORMAT:
F

The F command toggles the function of the EDITOR buffers. Updates are
merged with the previously existing item, and the current line pointer is
set to zero.

4.11.2 "FI" - FILE ITEM COMMAND : EDITOR

FORMAT:
FI{K} or

FI{K} {0} itemname or
FI{K}{O}({DICT}filename {itemname}

The File Item command updates the edited item to the disc-file and returns
control to TCL. When the item has been filed, the message "xxxx FILED"
(where xxxx is the item name) is printed.

You may file the item currently being edited to either a different item in
the current file, or to the same item name or to a different item name in
a different file, by using the complex form of the "FI" command. Note the
delimiter (space or left parenthesis) must immediately the "FI". Use a
blank as a delimiter when only the itemname is specified. The default is
the currently edited file. Any item—ids with embedded blanks may be
enclosed in parenthesis. The DICT or filename, if present must
immediately follow the left parenthesis, (no blanks). A copy of the
edited item is generated to the designated file, and an updated version of
the currently edited item is copied to the disc. Control is returned to
TCL unless a selected list is in effect, in which case the next item is
entered. The "K" option will cancel any selected 1list in effect and
return control to TCL or a calling Proc. The "O" option will overwrite
any item with the same name as the item we have instructed the Editor to
generate, if it already exists in the designated file.

4.11.3 "FS" - FILE SAVE COMMAND : EDITOR

FORMAT:
FS or

FS{0O} itemname or
FS{O}(filename {itemname}

CHAPTER 4 - EDITOR ‘ Copyright (c) 1985 PICK SYSTEMS

Fn
\

PAGE 101

(

The File Save command updates the edited item to the disc-file and returns
control to the EDITOR. The current line pointer is set to zero.

You may file the item currently being edited to either a different item in
the current file, or to the same item name or to a different item name in
a different file, by using the extended syntax forms of the "FS" command.
The "FS" command generates a copy of the item being edited to the
designated file, updates the currently edited item, and returns control to
the Editor. The "O" option would overwrite any pre-existing item in that
designated file. Once again note the blank used as a delimiter with
itemname only, and the need to put DICT or the filename immediately
following the 1left parenthesis, which immediately follows the "FS" in
extended forms of the command.

4.11.4 "FD" - FILE DELETE ITEM : EDITOR

FORMAT:
FD{K}

The File Delete command deletes the item from the disc—-file and returns
control to TCL.

When the item has been deleted, the message "xxxx DELETED" (where xxxx is
the item name) is printed. You can not FD any item other than the one
which you are currently editing. Massive use of the FD can be
accomplished with the DELETE verb (PROC) or by the use of a prestore
command. The delete verb will be faster.

The "K" option returns control to TCL or a calling Proc, before any
remaining selected items need be edited.

(1111.5 "EX" - EXIT COMMAND : EDITOR

FORMAT:
EX{K}

The Exit command terminates the EDITOR session and returns control to TCL.
The item being edited will not be updated to the disc-file. Upon exit,
the message "'ITEM-ID' EXITED" is printed.

The user should again note that if multiple items were specified in the
EDIT verb at the TCL level, then any of the above commands which
ordinarily return control to TCL will instead return control to the EDITOR
to edit the next item which was specified.

The purpose of the "EXK" command is to exit from just such a situation,
and to cause the editing process to proceed to TCL or the PROC which
called the EDITor. The exit process will not recognize a lowercase 'k'.

NOTES: 1In general, anything which the EDITOR either does not understand

or of which the EDITOR disapproves will result in CMND? Error message
when the FI, FS, or EX processes are involved.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

(! PAGE 102

* >ED AFILE ABC [CR]
TOP

* P [CR]
001 AAAAAAAAA ——| (———————=
002 12121212 -
EOI 2

* .DE [CR] <
EOI 2

* .F [CR] <
TOP

* P [CR]
001 AAAAAAAAA <
EOI 1

* .EX [CR] <
'ABC' EXITED

* >ED AFILE ABC [CR]
TOP

* P [CR]
001 AAAAAAAAA ——| (————————
002 12121212 -
EOI 2

* .DE [CR] <
EOI 2

* ,FI [CR] < -
'"ABC' FILED.

* >ED AFILE ABC ([CR]
TOP

* P [CR]
001 AAAAAAAAA < -
EOI 1

* ., FS [CR] <-—-
TOP

* . FD [CR] (-
'ABC' DELETED.

This is what item ABC looks like.

Delete command (deletes line 2).

F command (toggles buffers).

Here is item ABC after deletion.

Exit command (returns control to TCL

but does not file updated item).

Item ABC still contains 2 lines since
Exit command above did not file updated
item.

Delete command (deletes line 2).

File Item command (files item and
Returns control to TCL).

Here is item ABC (note that line 2 is
now permanently deleted).

File Save command (files item and
returns control to EDITOR).

File Delete command (deletes item and
Returns control to TCL).

TCL verb awaited.

Sample Usage of Item Manipulating commands.

CHAPTER 4 - EDITOR

Copyright (c) 1985 PICK SYSTEMS

PAGE 103

i

(

4.

12 FORMATTING COMMANDS : EDITOR

|

The Editor Formatting commands aid the user with some very useful tools to
assist in handling edited items.

4.

4.

/

4.

12.1 "S" - SUPPRESSION COMMAND : EDITOR

FORMAT:
S

The "S" command is used to suppress Editor line numbers. Entry of an "S"
command acts as an alternate-action toggle switch. The Editor will
respond with "SUPPRESS ON" or "SUPPRESS OFF" accordingly.

When the "S" command is used with Assembly Language programs and the "AS"
command (standard assembly 1listing format), it takes on an additional
feature. If the "AS" command is in effect, ("AS-ON") the "S" command
causes the suppression of the Object Code. With "AS" disabled ("AS-OFF"),
the "S" command suppresses line numbers as with a non—-assembler data item.

The suppress feature may also be enabled by using the " (S " option with
an edit command.

12.2 "TB" - TAB COMMAND : EDITOR

FORMAT:
TB n,n,n,

The n's consist of up to 15 Tab Settings (in ascending order), seperated
by commas. .

Tabbing is invoked whenever the EDITOR is in the Input Enviroment and a
control-I or on some terminals a TAB key, is pressed. The TAB key will
cause a series of blanks to be output, thus moving the cursor (or printer)
to the next specified tab stop. A backspace and cancel will backspace
over tabs.

Tabs set by the EDITOR are identical to those set by the external TAB
command.

12.3 "Z" - ZONE COMMAND : EDITOR "Z" - ZONE COMMAND : EDITOR

FORMAT:
Z{p{-q}}

This command sets print column limits for listing output of lines via the
List command (i.e., only column positions p through q of each line will be
listed). If p and q are omitted, the zone is reset so that the entire
line will be listed on output. If g<p, g=p is assumed. Setting a zone
does not affect the search for a "string" in the Locate, Delete or Replace
commands.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 104

EXAMPLES:

¥ o o o o *

* o

*

>ED FN5 XX [CR]
NEW ITEM <

TOP

.TB 9,18 [CR] <«

.I [CR] <
001 ABC [CR]

002 ABCD EF [CR] <
003 123456789 [CR]
004 [CR]

TOP

.22-3 [CR] <«
.P [CR]
001 BC --
002 BC | <«

003 23 -
EOI 3

.T [CR]
TOP

.2 [CR] <
.S [CR] <=

.P [CR]
ABC -

ABCD EF | <
123456789 —-—
EOI 3

.S [CR] <—-—-

.P [CR]
TOP
001 ABC -

002 ABCD EF | <——-

003 123456789 -—-
EOI 3

This is a new item.

Tab command (sets 2 tab stops).
Input command.

Lines being input; note that for line
2 a control-I (which does not print)
was entered after "ABCD" causing the
EDITOR to tab over to the 1lst stop.
Zone commands (limits listing output
to columns 2 thru 3).

Only columns 2 thru 3 are listed.

Zone command (restores full line).
Suppress command (suppresses line
numbers) .

Line numbers are suppressed.

Suppress command (restores line numbers).

Line numbers are listed.

Sample Usage of Editor Formatting Commands.

CHAPTER 4 - EDITOR

Copyright (c) 1985 PICK SYSTEMS

"PAGE 105

4.13 ASSEMBLY FORMATTING : EDITOR

) The Assembly formatting commands are invaluable features when using
(' ~ Assembly Language Code.

4.13.1 "AS" - ASSEMBLY FORMAT COMMAND : EDITOR
FORMAT :
AS
The "AS" command is used to format assembly code source programs in the
standard assembly listing format. The "AS" command acts as an alternate-
action toggle switch to either format assembly code source program lines
in the assembly listing format, or to revert to unformatted form.

The EDITOR will respond with the message "ASM-ON" or "ASM-OFF", depending
on the previous state.

This mode may also be turned on when entering the EDITOR by using the
"(A)" option on the EDIT command.

Assembly-code source programs contain the assembled object code and macro
expansions along with the original source text. If displayed in nomal
form, a line might look like:
007 LOOP STORE D1 SAVE ACCUMALATOR\O1lB A00499
‘ - If the "AS" mode is set on, the same line will be displayed as:

007 01B A00499 LOOP STORE D1 SAVE ACCUMALATOR
...object code... ...source code.comment field...

This display format does not affect the search columns in Locate, Delete
or Replace commands, which use the internal (unformatted) form.

When the "AS mode is on, the "S" (suppress) command will act to suppress
object—-code, not line numbers.
4.13.2 "M" - MACRO EXPANSION COMMAND : EDITOR
FORMAT:
M

When in the "AS" mode the "M" command will cause macros to be expanded. A
Macro Expansion is generally a line of code which breaks down and is
defined by one or more lower machine level instructions. It is normally

off. Execution of the M command will cause the EDITOR to respond with the
message "MACRO-ON" or "MACRO-OFF", depending on the previous state.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
(: PAGE 106

EXAMPLES:

*

»*

ED SM TERMIO [CR]

. TOP

.L3 [CR]

001 FRAME 006] FRM: 006\001 7FF00006] ORG 1\001

002 *SYSTEM*UTILITY

003 *30SEP84

.AS [CR] < Turns assembly formatting
ASM-ON mode ON.

.T [CR]

TOP

.L3 [CR]

001 001 7FF00006 FRAME 006

001 :

002 *SYSTEM*UTILITY

003 *30SEP84

.S [CR] < Suppress object code.
SUPPRESS ON

.T [CR]

.L3 [CR]

001 FRAME 006

002 *SYSTEM*UTILITY

003 *30SEP84

.S [CR] <——- Clear Suppress mode.
SUPPRESS OFF

.AS [CR] < Clear Assembly formatting
ASM-OFF mode.

.T [CR]
TOP

.L3 [CR]

FRAME 006] FRM: 006\001 7FF0006] ORG 1\001

*SYSTEM*UTILITY

*30SEP84

Sample Usage of Assembly Formatting commands.

CHAPTER 4 - EDITOR : Copyright (c) 1985 PICK SYSTEMS
PAGE 107

=

4.14 MISCELLANEOUS COMMANDS : EDITOR

There are a few miscellaneous Editor commands which allow for some helpful
(features in editing items.

4.14.1 'X' CANCEL COMMAND : EDITOR

FORMAT:
X{F}

The "X" command deletes the effect of the last Input, Insert, Delete, or
Replace command that was issued. This is useful if one of these commands
has been erroneously entered.
When the effect of the update command has been deleted, the message "L n"
will be printed (where is the line number of the line whose update was
deleted). The X command will not work after multiple string replacements
within a single line.
The XF command will reverse the effect of all updates executed since the
last buffer exchange (F command).

4.14.2 '?' CURRENT LINE COMMAND : EDITOR
FORMAT:

- ?

' When a Current Line command '?' is entered, the editor will respond with
the item-id and the current line number, of the item being edited.
4.14.3 'S?' ITEM SIZE COMMAND : EDITOR
FORMAT:
S?

The size of the item being edited may be discovered with the S? Command.
It will output the total size of the item for file purposes.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

(PAGE 108

4.14.4 'T' WILDCARD TOGGLE COMMAND : EDITOR

FORMAT:

The """ command acts as an alternate-action toggle switch to turn off or
on the special effect of the " " character within a "string".

The EDITOR will respond with the message "/”\ ON" or "/ \ OFF".

.14.5 'C' COLUMNAR POSITIONS COMMAND : EDITOR
FORMAT :
C

The "C" command will print out a list of column numbers so that the user
can readily determine the columnar position of data in a 1line. This is
particularly helpful when editing fixed-field data, or RUNOFF
documentation.

.14.6 UNPRINTABLE CHARACTERS

Characters which are unprintable include the control characters, between
X'00' and X'lF', inclusive. The Editor marks control characters by
inserting a period, '.', where the control character stands in the text
line. It does not indicate what the character is, however. It may then
be removed by replacing a unique string which includes the control
character with the string of your choice. The control character should be
marked with an = in the first string in the replace.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
PAGE 109

~

4.

15 'Pn' PRESTORE COMMAND - EDITOR

(-

4.

«

The prestore facility allows the storage of up to 10 strings of Editor
commands, and the execution of the string by using the name of the string
as the command.

The allowable string names are PO, Pl, ... , P9. There are therefore a
maximum of ten prestored commands available at any one time. Further,
each prestored command is allocated 100 bytes, so that, if one wishes to
generate a prestored command which exceeds 100 bytes, simply do not
initialize the command whose name is ordinally next. (If Pl is 150 bytes,
do not use P2.)

.15.1 DEFINING PRESTORE COMMANDS - EDITOR

Assume you are currently editing an item and the system is awaiting input
at the " . " (Editor Prompt). In order to create a prestored command,
type in the name of the prestored command, PO, Pl, ..., P9, followed by a
space, followed by the first command to be executed, followed by the
prestore command delimiter, which is a start buffer mark (X'FB'), and
which may be input by typing CONTROL-[(control-left-square-bracket) or
ESCAPE (esc), followed by the next command, and so on. Any valid command
is usable, including prestore command names.

PO 122 This is loaded when you enter the
EDITor. It has the following
synonym:

P L22 This allows the traditional

L22< to be done by P<, which

is generally convenient, since it
is next to the carriage-return
key.

Pl R100/DOG/CAT[F[R100/dog/cat[FI This has the effect of changing
dogs to cats in the first hundred
lines of text.

Creating simple prestores.

15.1.1 PRESTORE COMMAND - DEFAULTS

In the above examples, note first that 'P' is a synonym for 'PO'. It is
automatically loaded with 'L22' at entry to the EDITor. Pl through P9 are
null at entry. Executing them will cause a CMND? Response. All
prestores created since the entry to EDITor are retained until the EDIT
verb is exited. Any of them may be changed by creating another prestore
command string with the same name. The prestores persist from item to
item, whether the EDITor is using an explicit item list, a selected list,
or the whole file.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 110

4.15.2 REPEATING PRESTORE COMMANDS

If one is going to use a prestore command for a repetitive task, it may

either be activated each time it is to be used, or it may call itself, at

which time its termination conditions must be considered. A prestore N
command which calls itself will terminate only when it runs out of items ’&)
to process. This means that a prestore which calls itself must have an -
EX, FI, or FD is the command string. If it does not have such an item
iteration command in the string, it will loop indefinitely in the current

item. The only exit from this condition is a BREAK-and-END. The primary

use of the prestore calling itself is to manipulate many items with a

single instruction string initiated once. It is particularly useful for
searching for specified strings in text files and replacing them as
necessary. The following example searches a BP (BASIC program) file for

the name GENERAL.LEDGER.

ED BP *< Edit the file.
ITEMNAME The first item.
TOP Standard mark.

.P1 L500/GENERAL.LEDGER[EX[P1 Define the search.
.P1 Initiate the run.

At this point the EDITor will
exhibit all lines in the current
item with the desired string,
and then display

EOI nnn the number of lines in the item
'ITEMNAME' EXITED and the name of the item exited.
NEWITEMNAME The name of the next item.

TOP The top mark.

All the lines with the string, if
any, and so on, until the list is
exhausted, at which time the
process will return to TCL.

A prestore command calling itself.

The same maneuver may be executed to the printer by appending the (P
option to the EDIT verb. 1In this case, all information which would have
been displayed on the terminal will be sent to the printer.

4.15.3 DISPLAYING PRESTORE COMMANDS

It is possible to display all currently initialized prestore commands by
using the PD (Prestore Display) command.

In the above example, if the PD command was executed before the Pl
command, the following would result:

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
"PAGE 111 gw/

4.

C

PD The prestore display command

will yeild:
PO L22 The default, and
P1 L500/GENERAL.LEDGER[EX[P1 which is the command

defined above.

The PD command.

15.3.1 PRESTORES IN PROCS

It is possible to create the desired prestored command strings in PROCS in
the same manner that instructions are sent to the various processors from
a PROC.

PQ The PROC definition.
HED BP * The verb.

STON Turn the stack on.
HP1 L500/GENERAL.LEDGER(Specify the prestore.
HP1< Execute the prestore.
P Execute the verb.

Defining a prestore in a PROC.

The example above assumes that a 1list 1is in existence. The verb
activation may include an explicit item list or specify the whole file

- using the conventional asterisk. On entry to the first item from the EDIT

verb, the prestore is automatically set up, and is available for use. All
ten prestores may be initialized this way, allowing the development of
powerful customized EDITor commands.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 112

* >ED CARS TEN
TOP
* .L99
001
002

[CR]
Al234
Cl234

003 Xxxxx1234
004 ABCDE1234
EOCI 4
* .Gl
001
* .DE

Al234
[CR] <

[CR]

* . X [CR] <

L1«
* .F [CR]
TOP
* .L99 [CR]
001 Al1234 <

002 C1234
003 XXXXX1234
004 ABCDE1234
EOI 4

* .? [CR] <«

L 4 <

* .P DE"1234"6-9
* .T [CR]
TOP

* P [CR] <

[CR] (--------

003
* .F
TOP
* P

(CR]
[CR] <

XXXXX1234 <

003
EOI 3

* _F [CR]
TOP

* .L99 [CR]
001 Al234
002 C1234
EOI 2

B e ———

ABCDE1234 (~————————mm———m

This is what item TEN looks like.

Delete command (deletes line 1).

X command (cancels effect of Delete
command) .

Message indicates that update on line
1 was cancelled.

Line 1 was not deleted.

Current Line command.

Current line is line 4.

Prestore command (prestores Delete
command) .

Prestore Call command (calls Delete
into effect).
Line 3 deleted.

" Prestore Call command.

New line 3 deleted.

Here is item TEN after deletions.

Sample Usage of X, Current Line, and Prestore Commands

CHAPTER 4 - EDITOR

Copyright (c) 1985 PICK SYSTEMS

PAGE 113

e . . s S S S S . . . e S S .

.16 EDITOR MESSAGES

This appendix presents a list of the messages output by the EDITOR.

MESSAGE DESCRIPTION EXAMPLE CAUSING ERROR
CMND? Illegal EDITOR command. XYZ
STRING? Illegal specification, or ME 10

missing string (e.qg., R5/ABC/

required string missing for
Merge; second string missing

for Replace). This message may
also occur as a result of an
illegal numeric parameter
specification, which causes

a part of the numeric parameter
to appear as if it were a string.

COL#? Illegal characters follow the L.10.23.
recognized end of the command, R/ABC/DEF/X
or illegal format for a R/M/DICT /MD
column-number limit L,SMITH,JOHN,

specification, or

non—numeric characters used
for p and q in Locate, Replace,
Delete or Merge Commands.

SEQN? Out-of-sequence update;
updating must be done in an
ascending line number sequence
until an F command is entered.

EOI m End-of-item reached at line m.
TOP Top-of-item (line 0) reached.
Ln Specifies that n is the current

line number or specifies that
update action on line N was
deleted via and X command.

NOT ON FILE Item specified in Merge
command is not on the disc-file.

'xxx' EXITED Editor exited via EX command.

'xxx' DELETED Item with name xxx has been
deleted from the disc-file.

'xxx' FILED Item with name xxx has been
updated to the disc-file.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 114

SECTION 5

THE
ICON/PICK
PROC
LANGUAGE

|C&N’

Chapter 5

(' PROC LANGUAGE

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

fhis document contains information which is
proprietary to and considered a trade secret of
[PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

(ixi CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 115

5.

1l THE PROC PROCESSOR

This chapter describes the PROC (stored procedure) processor.

(

The system allows the user to prestore a complex sequence of Terminal
Control Language (TCL) operations (and associated processor operations)
which can then be invoked by a single word command. Any sequence of
operations which can be executed at the TCL level can also be prestored
via the PROC processor. This prestored sequence of operations (called
PROC) is executed interpretively by the PROC processor and therefore
requires no compilation phase.
The PROC processor has the following features:

- Four variable length I/0 buffers

- Parameter passing between buffers

- Interactive terminal prompting

- Extensive I/0 and buffer control commands

- Conditional and unconditional branching

- Relational character testing

- Pattern matching

- Free-field and fixed-field character manipulation

- Optional command labels

- User—-defined subroutine linkage

- Inter-PROC linkage

CHAPTER 5 — PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 116

5.2 PROC LANGUAGE DEFINITION

A PROC provides a means to prestore a highly complex sequence of
operations which can then be invoked from the terminal by a single
command.

The usage of the PROC processor is quite similar to the use of a Job
Control Language (JCL) in some large-scale computer systems. The PROC
language in the Pick Computer System, however, is more powerful since
it has conditional capabilities, and can be used to interactively
prompt the terminal user. Additionally, a PROC can test and verify
input data as they are entered from the terminal keyboard.

A PROC is stored as an item in a dictionary or data file. The first
attribute value (first line) of a PROC is always the code PQ. This
specifies to the system that what follows is to be executed by the

PROC processor. All subsequent attribute wvalues contain PROC
statements that serve to generate TCL commands or insert parameters
into a buffer for interactive processors (such as the EDITOR). PROC

statements consist o©f an optional numeric 1label, a one or two-
character command, and optional command arguments.

PROC's operate on four input/output buffers; the primary input
buffer, the secondary input buffer, the primary output buffer, and the
secondary output buffer (called the stack). Essentially, the function
of a PROC is to move data from either input buffer to either output
buffer, thus forming the desired TCL and processor commands. At any
given time, one of the input buffers is specified as the "currently
active" input buffer, while one of the output buffers is specified as
the ‘'"currently active" output buffer. Buffers are selected as
"currently active" via certain PROC commands. Thus, when moving data
between the buffers, the source of the transfer will be the currently
active input buffer, while the destination of the transfer will be the
currently active output buffer.

The primary input buffer contains the PROC name and any optional
arguments, exactly as they were entered when the PROC was invoked.
The primary output buffer is used to build the command which will
ultimately be submitted at the TCL level for processing.

The secondary input buffer contains data subsequently input by the
user in response to an IN command. Usually the data in this buffer
will be tested for correctness and then moved to the secondary output
buffer (the stack). When all desired data has been moved to the
secondary output buffer, control will be passed to the primary output
buffer via a P or PP command. The command which resides in the
primary output buffer will be executed at the TCL level and the data
in the secondary output buffer (if any) will be used to feed
processors such as ACCESS or EDITOR. When the process is completed,
control returns to the PROC at which time new data may be moved to the
output buffers.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 117

—

Q\\‘

J

‘\“ /

Once a PROC is invoked, it remains in control wuntil it terminates.
When the PROC temporarily relinquishes control to a processor such as
the EDITOR or a user-supplied subroutine, it functionally remains in
control since an exit from the called processor returns control to the
PROC. TCL only regains control when the PROC 1is terminated
explicitly, or when all of the lines in the PROC have been exhausted.

COMMAND BRIEF DESCRIPTION

A Moves data argument from input to output buffers.

B Backs up input pointer.

BO Backs up output pointer.

C Specifies comment.

D Display either input buffer to terminal.

F Moves input pointer forward.

GO Unconditionally transfers control.

H Moves text string to either output buffer.

IF Conditionally executes specified command.

IH Moves text string to either input buffer.

Ip Inputs from terminal to either input buffer.

IS Inputs from terminal to secondary input buffer.

IT Inputs from tape to primary input buffer.

0 Outputs text string to terminal.

P Causes execution of PROC.

PP Displays content of output buffers and executes PROC.

PW As above, waits for user response before proceeding.

PH As in P, but suppresses all terminal output for the verb.

PX As in P, will return to TCL after processing, not to PROC.

RI Clears (resets) input buffers.

RO Clears (resets) output buffers.

S Sets position of input pointer and optionally selects
primary input buffer.

SP Selects primary input buffer.

SS Selects secondary input buffer.

ST ON Selects secondary output buffer (stack on).

ST OFF Selects primary output buffer (stack off).

T Provides formatted terminal output.

U Exits to user-defined subroutine.

X Exits back to TCL level, or calling PROC.

+ Adds decimal number to a parameter in input buffer.

- Subtracts decimal number from a parameter in input
buffer.

() Transfers control to another PROC.

[1] Subroutine call, local or to another PROC.

Summary of PROC Commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 118

5.3 AN INTRODUCTION TO PROC'S

An integral part of the Pick Computer System is the ability to define
stored procedures called PROC'S.

A PROC provides the applications programmer a means of creating a sequence
of operations which can then be invoked from the terminal by a one word
command. Any operation that can be executed by the Terminal Control
Language can be performed in a PROC. This usage of a PROC is quite
similar to the use of a Job Control Language (JCL) in some computer
systems. The PROC language in the Pick Computer System, however, is more
powerful since it has conditional capabilities, and can be wused to
interactively prompt the terminal user. Additionally, a PROC can test and
verify input data as they are entered from the terminal keyboard.

A PROC is executed interpretively by the PROC processor and therefore
requires no compilation phase. A PROC stored as an item in the wuser's
Master Dictionary (M/DICT) is executed in the TCL environment by typing
the item-id of the PROC, any optional arguments, and a carriage return.

While a PROC must exist in the Master Dictionary, the actual body of the
PROC may be within the same item, or it may be stored as an item in any
dictionary or data file. The first attribute (first 1line) of a PROC is
always the code PQ. This specifies to the system that what follows is to
be executed by the PROC processor. All subsequent attribute wvalues
contain PROC statements that serve to generate TCL commands or insert
parameters into a buffer for the interactive processors, such as the
EDITOR or the BATCH processor. PROC statements consist of an optional
numeric label, a one or two character command, and optional command
arguments. PROC's are created using the EDITOR.

The ability to interactively prompt input data from the user (and
subsequently verify these data) is demonstrated. The PROC then prompts
the user for the required data. The PROC could then, for example, store
these data in a buffer which would then be passed to another processor to
update the file.

Once a PROC is invoked, it remains in control until it terminates. When
the PROC temporarily relinquishes control to a processer such as the
EDITOR, PICK/BASIC, etc., or a user-supplied subroutine, it fuctionally
remains in control since an exit from the called processor returns control
to the PROC. TCL only regains control when the PROC is terminated
explicitly, or when all of the lines in the PROC have been exhausted.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 119

f BN

"

>LISTU [CR]
(' CH# PCBF NAME........ TIME... DATE.... LOCATION..........

00 0200 sp 08:00AM 01/01/78 Channel O

02 0240 CM 09:10aM 01/01/78 Channel 2

03 0260 1C 07:30AM 01/01/78 Channel 3

04 0280 JP 10:142M 01/01/78 Channel 4

*06 02CO0 SAL 08:35aM 01/01/78 Channel 6

10 0340 JET 09:00aM 01/01/78 Channel 10

Sample PROC Execution.

>LISTDICTS POLICY [CR]
POLICY............. D/CODE.. A/AMC.. V/CONV..... V/TYP V/MAX
AUDIT-PERIOD A 0l L 4
POLICY-PERIOD-FROM A 02 D L 10
POLICY-PERIOD-TO A 03 D L 11
EXPIRES A 04 D L 12

Sample PROC Execution. (Parameter Passing)

(- - I _ I

>ENTER-DATA [CR]

PART-NUMBER = 3215-19 [CR]
DESCRIPTION = TRANSISTOR [CR]
QUANTITY = FIFTY [CR]
ERROR:NUMERIC DATA ONLY!!
QUANTITY = 50 [CR]

Sample PROC Execution. (Interactive Prompting)
CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

(i_f PAGE 120

5.4 INPUT/OUTPUT BUFFER OPERATION

Operations specified within a PROC involve the movement of data from
either of two input buffers (data storage areas) to either of two output
buffers.

PROC utilize four input/output buffers: the primary input buffer, the
secondary input buffer, the primary output buffer, and the secondary
output buffer (called the stack). The general relationship of these
buffers is illustrated in the first example. Essentially, the function of
a PROC is to move data from either input buffer to either output buffer,
thus forming the desired TCL and processor commands. At any given time,
one of the input buffers is specified as the "currently active" input
buffer, while one of the output buffers is specified as the "currently
active" output buffer. Buffers are selected as "currently active" via
certain PROC commands (these commands are discussed in detail in the
remaining topics of this section). Thus, when moving data between the
buffers, the source of transfer is the currently active input buffer,

while the destination of the transfer is the currently active output
buffer.

The primary input buffer contains the PROC name and any optional
arguments, exactly as they were entered when the PROC was invoked. The
contents of this buffer remain the same througout execution of the PROC
unless explicitly modified by an IP, IT, IH, RI, Plus or Minus command.

The primary output buffer builds the single command which ultimately is
submitted at the TCL 1level for processing. Any command which can be
executed via the terminal at the TCL level can also be constructed and
executed via a PROC.

The secondary input buffer contains data subsequently input by the user in
response to an IS command. The data in this buffer are volatile and are
overwritten by subsequent IS commands. Usually the data in this buffer is
tested for correctness and then moved to the secondary output buffer (the
stack).

The secondary input buffer is now 1loaded with data from several system
processors, most notably the spooler. Information such as last hold file
entry number is placed into this buffer. More information on this can be
found in the spooler documentation in the PERIPHERALS manual. The user
should note that the secondary input buffer is a very temporary entity and
that if 1its contents are to be used, this should be done immediately
subsequent to the execution of the processor which loaded the buffer.

The secondary output buffer ("stack") contains data that is to be used by
the processor called by the PROC generated TCL statement. Zero or more
lines may be stored in the stack. Each request for terminal input by the
called process or (for example each INPUT statement in BASIC) will be
satisfied with a line of data from the stack. In the event that the
called processor requests more data than exists in the stack, data will be
requested from the terminal from that point onwards.

CHAPTER 5 - PROC ' Copyright (c) 1985 PICK SYSTEMS

PAGE 121

AN

&

)

N

Note that each 1line of data in the secondary output buffer must be
terminated by a carriage return which is explicitly placed in the stack
via an H command (refer to the topic describing that command). This 1is
not the case with the primary output buffer; a carriage return is
automatically placed at the end of the TCL command in the primary output
buffer upon execution of that buffer via the P, PW, PH, PX or PP command.

When all desired data have been moved to the output buffers, control is
passed to TCL via a P, PH, PX, PW or PP command. The command which
resides in the primary output buffer is executed at the TCL level and the
data in the secondary output buffer (if any) is used to feed processors
such as PICK/BASIC or the EDITOR. When the process is completed, control
returns to the PROC, at which time new data may be moved to the output
buffers.

Moving data between the buffers is done in terms of "parameters". A
parameter is defined as a string of characters (residing in one of the
buffers) which is surrounded by blanks or surrounded by quotes. To keep
track of the parameters, each buffer has a pointer which points to the
"current" position of that buffer. These pointers are depicted in the
buffer diagrams as small arrows placed beneath the buffer. As a general
illustration of this concept, consider the sample situation illustrated in
the second example. Here the PROC has been invoked by the characters ABC
XYZ, which are then automatically placed in the primary input buffer.
PROC commands have then been processed which position the input pointer of
the primary input buffer to the second parameter (XYZ), and then
subsequently move that parameter to the primary output buffer (i.e., the
currently active buffers are the primary input buffer and the primary
output buffer).

PRIMARY INPUT BUFFER PRIMARY OUTPUT BUFFER

| R | |

-~ ~

SECONDARY INPUT BUFFER SECONDARY OUTPUT BUFFER

-~ -~

*Path taken depends on "currently active" buffers.

PROC Input/Output Buffers.

PRIMARY INPUT BUFFER PRIMARY OUTPUT BUFFER
| ABC XYZ | - | xYz |
SECONDARY INPUT BUFFER SECONDARY OUTPUT BUFFER

- -~

Sample Inter-Buffer Transfer With Both Primary Buffers Currently Active

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 122

5.5 AN OVERVIEW OF PROC COMMANDS

| A PROC consists of any number of PROC commands, one command per line. I

P
The first line (attribute) of a PROC must contain the code PQ. This N
identifies the item as a PROC. The remaining lines in the PROC may
contain any valid PROC commands. There is no limit to the number of lines

in a PROC. However, each line may contain only one command, and each
command must begin in column position one of the line.

PROC commands are listed in alphabetical order in the example. A complete
description of each command type is presented in the remaining topics
within this section.

Any PROC command may optionally be preceded by a numeric label. Such a
label serves to uniquely identify its associated PROC command for purposes
of branching or looping within the PROC. Labels may consist of any number
of numeric characters (e.g., 5, 999, 72, etc.). When a 1label is used |,
the PROC command must begin exactly one blank beyond the 1label. For
example:

1 GO 5

23 A

99 IF A = ABC GO 3
2 ST ON

Only the first occurence of the 1label is used as the destination of any
control transfers; i.e., no check is made for erroneous duplicate labels!

As an introductory example to PROC commands, consider the following PROC
stored as item 'DISPILAY' in the user's MD:

001 PQ

002 HLIST ONLY
003 A2

004 P

Assume that the user types in the following:

>DISPLAY INVENTORY [CR]

This input invokes the above PROC and places the words DISPLAY INVENTORY
in the primary input buffer. The second line of the above PROC is an H
command which causes the text LIST ONLY to be placed in the primary output
buffer. The third line is an A command which picks up the second word
(parameter) in the primary input buffer and places it in the primary
output buffer. Thus the primary output buffer contains the words LIST
ONLY INVENTORY. The last line of the PROC is a P command which submits
the content of the primary output buffer to TCL for processing (i.e., LIST
ONLY INVENTORY is an ACCESS sentence which causes the item-ID's of the
INVENTORY file to be listed; refer to the ACCESS Manual).

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 123 C

G or GO

IF

IH
IP
IS
IT

PP
PW
PH
PX

RI
RO

SP
SS

STON
STOFF

p— o~
d N

BRIEF DESCRIPTION
Moves data from input to output buffers.

Backs up input pointer.
Backs up output pointer.

Specifies comment.

Outputs from either input buffer to terminal.
Moves input pointer forward.

Unconditionally transfers control.

Moves text string to either output buffer.
Conditionally executes specified command.

Moves text string to either input buffer.
Inputs from terminal to either input buffer.
Inputs from terminal to secondary input buffer.
Inputs from tape label to primary input buffer.

Outputs text string to terminal.

Causes execution of a PROC.

Displays contents of output buffers and executes PROC.

As above, waits for user response before proceeding.

As above but suppresses all terminal output for the verb.
As in P, will return to TCL after processing, not to PROC.

Clears (resets) input buffer.
Clears (resets) output buffer.

Positions input pointer.

Selects primary input buffer.
Selects secondary input buffer.

Selects secondary output buffer (stack).
Selects primary output buffer.

Provides formatted Terminal output (Cursor Control).
Exits to user—-defined subroutine.

Exits back to TCL level, or calling PROC.

Adds, subtracts decimal number to parameter in input buffer.

Links to another PROC.
Subroutine call, local or to another PROC.

CHAPTER 5 - PROC

Summary of PROC commands.

PAGE 124

Copyright (c) 1985 PICK SYSTEMS

5

.6 SELECTING PROC BUFFERS: THE SP, SS AND ST COMMANDS

The SP and SS commands select the primary or secondary input buffer,
respectively, and set the input pointer at the beginning of the buffer.
The STON will turn the stack on while the STOFF will turn the stack off.

The input buffers receive data from the terminal and store it so that it
may be transferred to the output buffers. Only one of the two input:
buffers is ‘"currently active". The SP and SS commands are used to select
one or the other input buffer.

At the initiation of a PROC the primary input buffer is automatically
selected, and the buffer-pointer is set to the start of the input buffer,
which contains the name by which the PROC was called from TCL. After the
execute-primary-output-buffer command (P, PH, PX, PP, or PW) the primary
input buffer is selected, and the pointer set to the beginning of the
buffer on return of control +to the PROC from TCL. The contents of the
primary input buffer are not disturbed, however.

The general form of the SP command is:
SP

It selects the primary input buffer and sets the input pointer at the
beginning of the buffer.

The general form of the SS command is:

SS

It selects the secondary input buffer and sets the input pointer at the
beginning of the buffer.

Note that the IS command will also select the secondary input buffer.

The primary output buffer is used to store one TCL statement that is
eventually executed by a P, PH, PX, PP or PW command. The secondary
output buffer (stack), is used to store zero or more lines of data to
satisfy terminal input requests by the processor invoked by the above
mentioned TCL statement. Note that the "stack" is a first-in, first-out
queue.

Only one of the two output buffers is "currently active". The STON or
STOFF commands are used to select one or the other output buffers. Upon
initial entry to a PROC, the stack is off.

The STON command selects the secondary output buffer (the stack) as the

currently active output buffer (i.e., turns the stack on). Its general
form is:

STON or ST ON

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

" PAGE 125

The STOFF Command selects the primary output buffer as the
currently active output buffer (i.e., turns the stack off).
Its general form is:

(‘ STOFF or ST OFF

When the stack is on, all data picked up by the A command are
moved to the secondary output buffer. When the stack is off,
these data are moved to the primary output buffer. The stack
may be turned on or off at any point within the PROC. The
example below shows the results of these instructions. The
pointers indicate currently active buffers in each case.

Initial conditions:

| Primary input buffer | Primary output buffer

-~ . -

After instruction SS

| Secondary input buffer | | Primary output buffer

-~ -~

After instruction STON

‘/) | Secondary input buffer | | Secondary output buffer

-~ ~

After instruction SP

| Primary input buffer | | Secondary output buffer

-~ -~

After instruction STOFF

| Primary input buffer | | Primary output buffer

-~ -~

Sample usage of SS, SP, STON, STOFF Commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS
(ﬁb PAGE 126

5.7 POSITIONING POINTERS: THE S, F, B, AND BO COMMANDS

The S command positions the input pointer and/or selects the primary
input buffer as the currently active input buffer. The F and B commands
move the input pointer forward or backward one parameter, respectively.
The BO command moves the output pointer backward one parameter.

The S command positions the input pointer in the currently active input
buffer. This command may be used in the following general form:

Sp

Sp moves the input pointer to the p'th parameter of the currently active
input buffer, where the parameters are seperated by blanks or enclosed in
single quotes. 1If there is no pth parameter, the pointer is set to the
end of the input buffer. S0 or S1 will set the pointer to the beginning
of the buffer.

The F command causes the input pointer for the currently active input
buffer to move forward one parameter. If the input buffer pointer is
currently at the end of the buffer, this command has no effect.

The general form of the F command is as follows:

F

The B command causes the input pointer for the currently active input
buffer to move backward one parameter. If the input buffer pointer is
currently at the beginning of the buffer, this command has no effect. The
general form of the B command is as follows:

B
The BO command causes the output pointer for the current output buffer to
move backward one parameter. If the output buffer pointer is currently at
the beginning of the buffer, this command has no effect. The general form
of the BO command is as follws:

BO

CHAPTER 5 - PROC ' Copyright (c) 1985 PICK SYSTEMS

PAGE 127

c//)
N

£

=

/

\\ .

BEFORE COMMAND AFTER

(SECONDARY INPUT BUFFER SECONDARY INPUT BUFFER

»*

| ABC DE FGHIJ I S3 | ABC DE FGHIJ I

-~ -~

SECONDARY INPUT BUFFER SECONDARY INPUT BUFFER
| ABC 123 DEF 456 | F * | ABC 123 DEF 456 |
SECONDARY INPUT BUFFER SECONDARY INPUT BUFFER
| ABC 123 DEF 456 | B * | ABC 123 DEF 456 |
PRIMARY OUTPUT BUFFER PRIMARY OUTPUT BUFFER

| XXX YYY 222 [BO * % | XXX YYY 222 |

-~ ~

ACTIVE BUFFER PRIOR TO COMMAND EXECUTION

* primary or secondary input buffer
(** primary output buffer
{

Sample usage of S, F, B, BO Commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 128

5.8 MOVING PARAMETERS: THE A COMMAND

The A command is used to move a parameter from the input buffer to the
output buffer. Either the primary or secondary input buffer may be used
as the source, and either the primary or secondary output buffer may be
used as the destination; the buffers used depend on commands executed
prior to the A command.

The A command may be used in the following general form:

A{c}{p}{,m}

c is the surround character for primary output buffer.
P is the count of the parameter to be moved
m is the count of characters to be moved

The function parameters c¢, p and m are mutually independent, and may be
used in any combination to achieve the desired result.

p specifies the ordinal number of the parameter to be moved from the input
buffer, and resets the input-buffer pointer to the first character of the
p'th parameter in the input buffer. If p is not specified, the input-
buffer pointer remains pointing to the character after the end of the last
character moved, or to the first character of a parameter, if the pointer
was prevoiusly set by an S- or Sp-command, or an F- or B-command.

If p is not specified, the parameter is obtained from the currently active
input buffer, at the current position of the input-buffer pointer.
Leading blanks are deleted from the parameter. The end of the parameter
is designated by the first blank which is encountered, unless the entire
parameter is enclosed in single quotes, in which case the entire string in
the quotes is moved.

When p is used, (where p is a decimal number) the p'th parameter is moved,
- where parameters are separated by blanks, or single quotes.

If the PRIMARY output buffer is active (that is, the stack is OFF), the
parameter is copied with surrounding BLANKS if c¢ is missing. If the
character c¢ is a backslash (\), the parameter is copied without any
surrounding blanks. When the form with ¢ is used (where c is any non-
numeric character except a left-parenthesis character, the character ¢
surrounds the parameter. This feature is useful for picking up item-ID's
and values (which require double quotes) for processing by the ACCESS
language Processor. Note that c is INACTIVE when the stack is ON (i.e.,
parameters are always copied to the stack as they are).

Multiple parameters may be moved to the primary output buffer via a single
A command if these parameters are separated by semicolons in the input
buffer. The parameters will be moved to the primary output buffer with
the semicolons deleted, and surrounded by blanks or the enclosing
character c, if c is specified.

After the execution of an A command, the input buffer pointer points to
the very next character after the string that was moved. Normally this
means the next blank or surround character following the last parameter in
the buffer, if any.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 129

AN

N ,;

A

If there is no parameter, the A command causes no operation at all.

If the optional m is used, where m is a decimal number, only "m"

) characters of the parameter are moved to the output buffer. Each example

(- below assumes that the output pointer is at the beginning of the buffer
prior to the illustrated operation.

PRIMARY INPUT BUFFER COMMAND PRIMARY OUTPUT BUFFER
wEEwa i s - T@
PRIMA;Y INPUT BUFFER COMMAND SECO;DARY OUTPUT BUFFER
Imomonrk | as2 e
PR;MARY INPUT BUFFER COMMAND PRI;ARY OUTPUT BUFFER
lmammecc | a2 o+ |ms e
PR;MARY INPUT BUFFER COMMAND PRI;ARY OUTPUT BUFFER
(aeeoeomm | a2 we

SECOND;RY INPUT BUFFER COMMAND PRIMA;Y OUTPUT BUFFER
| ABC;DEF;GH JKL | AT e | "aBc'vpERTiGH" |
SE;ONDARY INPUT BUFFER COMMAND PRIMARY OUTPUT ;UFFER
Jmmsnoced | a2 | = !
ACTIVE BUFFERS PRIOR TO COMMAND EXECUTION:

* primary or secondary input; primary output

** primary or secondary input; secondary output
*** gecondary input; primary output

Sample usage of A Command.

(ﬁ CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 130

5.9 INPUTTING DATA: THE IS, IP, AND IT COMMANDS

The IS command selects the secondary input buffer and accepts input from
the terminal. The IP command accepts input from the terminal to the
currently active input buffer. And the IT command inputs the next tape
label from tape.

The IS command selects the secondary input buffer as the currently active

input buffer and inputs data from the terminal into the buffer. The
general form of this command is:

IS{r}

If the r specification is used, then that character is a prompt character
at the terminal (r may be any character including a blank). The prompt
character will remain in effect until a new IS or IP command with a new r
specification is executed. If r is omitted, then the TCL prompt is used.
Data input by the user in response to the prompt is placed into the
secondary input buffer. Subsequently, the data may be moved to an output
buffer by using the A command. Any time the IS command is executed, input

from the terminal overwrites all previous data in the secondary input
buffer.

The IP command inputs data from the terminal into the currently active
input buffer. The general form of this command is:

IP{r}

Data input at the terminal in response to an IP command replaces the
current parameter (i.e., as pointed to by the input pointer) of the
currently active input buffer. If several parameters are input at the
terminal, then they will all replace the current parameter in the buffer.
If the input pointer is at the end of the data in the input buffer, then
the new input data will be appended to the end. The r specification is
identical to the r specification for the IS command (see above).

The IT command inputs the tape label from the tape currently attached and
copies that 1label into a cleared currently active input buffer. The
general form of the command is:

IT
The IT command will first clear the currently active input buffer and then
input the tape label into that buffer. If no tape label exists then the
command leaves the active buffer cleared or empty.

Below are the explanations of the commands and options followed by
examples and explanations of the input commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS
" PAGE 131

r'/ B \\\
N/

(

COMMAND

IS

IS=

Ip?

IT

EXPLANATION

Selects secondary input buffer and
inputs data from terminal. Prompt
character is a colon (:).

Selects secondary input buffer and
inputs data from terminal. Prompt
character is an equal sign (=).

Replaces current parameter in
currently active input buffer with
data from terminal. Prompt character
is a question mark (?).

Inputs tape label to primary
input buffer. If no label then
input buffer is cleared.

CHAPTER 5 - PROC

Sample usage of IS, IP, and IT Commands.

Copyright (c) 1985 PICK SYSTEMS

PAGE 132

5.10 OUTPUTTING DATA: THE O AND D COMMANDS

The O command is used to output a specified text string to the terminal.
The D command is used to output parameters from either input buffer to the
terminal. : '

FORMAT:
Of{text} {+}

The O command causes the text which immediately follows the O to be output
to the terminal. If the last character of the text is a plus sign (+),
then a carriage return will not be executed at the end of the text output.
This feature is useful when using the O command in conjunction with an
input command. For example, consider the following commands:

OPART-NUMBER+
IS=

These commands produce the following output on the terminal:

PART-NUMBER=

The specified prompt character (=) 1is displayed adjacent to the output
text since the O command ended with a plus sign (+). The user then enters
the input data right after the prompt character. For example:

PART NUMBER=115020

The D command is used to output parameters from either input buffer to the
terminal. The D command may be used in the following general form:

D{p}{,n}{+}

If the form Dp is used, then the p'th parameter of the currently active
input buffer is displayed on the terminal. If the form D is used, then
the current parameter (i.e., as pointed to by the input pointer) of the
currently active input buffer is displayed on the terminal. If the form
DO (D followed by the number zero) is used, the complete currently active
input buffer is displayed. If the forms Dp,n or D,n are used, then the n
characters starting at the p-th. or current parameter (up to the first
blank character encountered) are displayed.

A plus sign (+) may be appended to the end of the D command, thus

specifying the suppression of a carriage return (as for the O command
described above.) The D command does not affect the input pointer.

CHAPTER 5 — PROC | Copyright (c) 1985 PICK SYSTEMS

PAGE 133

£

COMMAND OUTPUT TO TERMINAL
OTHIS IS AN EXAMPLE THIS IS AN EXAMPLE [CR]

OTHIS IS AN EXAMPLE+ THIS IS AN EXAMPLE

Sample usage of O Command.

PRIMARY INPUT BUFFER COMMAND OUTPUT TO TERMINAL

| aA BBB CC DDD I D * BBB [CR]

-~

SECONDARY INPUT BUFFER COMMAND OUTPUT TO TERMINAL

| AA BBB CC DDD | D4+ ** DDD
PRIMARY INPUT BUFFER COMMAND OUTPUT TO TERMINAL
| ABC XYZ 123 | D,2 *** XY [CR]

-

ACTIVE BUFFER PRIOR TO COMMAND EXECUTION

*primary input buffer
**secondary input buffer
***primary or secondary input buffer

Sample usage of D Command.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 134

5.11 TERMINAL OUTPUT AND CURSOR CONTROL: THE T COMMAND

The T command is used to specify terminal cursor positioning, to output
literals, or to output non-keyable character codes. The cursor functions
are terminal independent. The special terminal function codes are also

availible.

FORMAT :

T {function}, {function},

Where {function} is

"Text" Causes

B Causes
C Causes
Inn Causes
Xnn Causes

(X,Y) Causes
This

any of the following:

the literal text to be output at the current position.
a BELL code to be output

a Clear Screen code to be output

the integer character nn to be output.

the hex character nn to be output.

the terminal cursor to position to X,Y.

is controlled by the term type code. The special

function codes (-1 thru -10) are also supported.

This command allows the user to create formatted screens in PROCs. The
prompting and positioning of formatted screens generally appears cleaner
and more acceptable +to terminal operators. Note that this command does
use the SYSTEM-CURSOR mode and so can be controlled terminal by terminal
with the term type code. It is strongly recommended that the user employ
the terminal independent control codes -1 thru -10 in place of 'hard
coding' these functions for a single terminal type.

The T command may be continued onto multiple 1lines by ending the
preceeding line with a comma. Also comments may be added after the
critical command letters. Thus the code to clear the screen 'C' could
also be spelled out as 'CLEAR', the code for a bell 'B' could be 'BELL',
etc.'. The T command never automaticaly adds a carriage return or line

feed.

CHAPTER 5 - PROC

Copyright (c) 1985 PICK SYSTEMS
PAGE 135

(-1) Generates the clear-screen character; clears the screen
and positions the cursor at 'home' (upper left corner

(: of the screen).

| (—2) Positions the cursor at 'home' (upper left corner).
(—-3) Clears from cursor positon to the end of the screen.
(—-4) Clears from cursor position to the end of the line.
(—5) Starts blinking on subsequently printed data.
(-6) Stops blinking.
(=7) Initiates 'protect' field. All printed data will be

'protected', that is, cannot be written over.

(—-8) Stops protect field.
(-9) Backspaces the cursor one character.
(—-10) Moves the cursor up one line.

Explanation of Cursor Function Values.

{ - COMMAND

T C,B,(10,5),"TITLE"

T (018)1(—4)
T (-5),"twinkle", (-6)

T CLEAR,"TITLE",
(5,5) Comment,"TEXT"

OUTPUT TO TERMINAL

This sequence first clears the screen.

It outputs a bell code to the terminal.

The cursor is postioned to column 10 row 5.
The text "TITLE" is output.

This positions the cursor at column O row 8.
It then clears the entire line assuming that
the terminal used supports that function.

This starts a blinking field, prints the word
"twinkle", and ends the blinking field.
This assumes the terminal supports blinking.

This illustrates the continuation of a
command over a line boundary and the
insertion of a comment in the line.

CHAPTER 5 - PROC

Sample usage of the T command.

Copyright (c) 1985 PICK SYSTEMS

PAGE 136

5.12 SPECIFYING TEXT STRINGS AND CLEARING BUFFERS: THE IH, H,

RI, AND RO COMMANDS

The IH and H commands are used to place a specified text string in the
currently active input or output buffer, respectively. The RI and RO
commands are used to reset the input and output buffers (respectively) to
the empty (null) condition.

FORMAT:
IH text

This command causes the text (including any blanks) immediately following
the IH to replace the current parameter (as specified by the input
pointer) in the currently active input buffer. The input buffer pointer
will remain pointing to the beginning of the inserted string.

FORMAT:
H{text}{<}

This command causes the text (including any blanks) which immediately
follows the H to be placed in the currently active output buffer at the
position pointed to by the output pointer.

When the last parameter of a desired output line has been moved to the
secondary output buffer (the stack), a carriage return specification (X)
must be placed in the stack. For example, the command HXYZ< would be used
to place in the stack the text XYZ followed by a carriage return, while
the command H< would place a carriage return (only) in the stack.

FORMAT:

RI{p}
If the form RI is4used, then both input buffers are reset to the empty
(null) condition. If the form RIp is used, then the primary input buffer
from the p'th parameter to the end of the buffer (as well as the entire
secondary input buffer) are reset to the empty (null) condition. The RI
command always selects the primary input buffer as the active buffer.
FORMAT:

RO
This command resets both output buffers to the empty (null) condition.

The RO command always selects the primary output buffer as the active
buffer.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 137

PRIMARY INPUT BUFFER BEFORE COMMAND PRIMARY INPUT BUFFER AFTER

(,_ | AAA BBB CCC I |HXX YY * I AAA XX YY CCC |
SECONDARY INPUT BUFFER BEFORE SECONDARY OUTPUT BUFFER AFTER
| XYz ABC | H DE< ** | xyz AaBC DE [CR] |
PRIMARY INPUT BUFFER BEFORE PRIMARY INPUT BUFFER AFTER
| ABC DEF GHI JKL | RI3 | ABC DEF |

~ -~

ACTIVE BUFFER PRIOR TO COMMAND EXECUTION:

*primary input buffer
**secondary input buffer

Sample usage of IH, H, and RI Commands.

CHAPTER 5 — PROC Copyright (c) 1985 PICK SYSTEMS
(PAGE 138

5.13 TRANSFERRING CONTROL: THE GO n and GO A COMMAND

Transfer of control (i.e., branching) may be specified within a PROC via

use of the GO. The GO n command provides an unconditional branch I
capability, while the GO A provides a conditional branch capability based L/
on the value of A.

FORMAT:
G{0O} n
G{O} A

The GO n command causes control to unconditionally transfer to the PROC
command which has the numeric label n. For example:

G 10

This command causes control to transfer to the PROC command which begins
with the label 10.

The GO A command causes control to transfer to the PROC command which has
the numeric label represented by the parameter A. (Where A equals the
parameter being pointed to in the currently active input buffer.) For
example:

Input Buffer

10 20 30

-~

GO A _ \

This command causes control to transfer to the PROC command which begins
with label 20. 1If label 20 does not exist within the PROC then the GO A
command will not be executed. This command is especially useful in PROC's
that allow operator job selection. Note that several PROC commands may
begin with the same label. If this is the case, the GO command transfers
control to the first PROC command with begins with the specified label
(scanning from the top).

CHAPTER 5 - PROC ' Copyright (c) 1985 PICK SYSTEMS

o
C

PAGE 139

(

001
002
003
004
005
006
007
008
009
010
011
012

This PROC displays two
NEW VENDORS, and prompt
The entry of a "1" or "
labels otherwise the PR

CHAPTER 5 - PROC

JOB.SELECT

PQ

O 1. LIST VENDORS

O 2. ENTER NEW VENDORS
o

0]

IP
GO A
X NO SELECTION

1 HSORT VENDORS

PX

2 HRUN PROGRAMS VENDOR.UPD
PX

ENTER JOB # +

job alternatives, 1. LIST VENDORS and 2. ENTER

s with the message ENTER JOB #.

2" will transfer PROC control to their respective
OC will exit to TCL with the message "NO SELECTION".

Sample use of GO A Command.

Copyright (c) 1985 PICK SYSTEMS

PAGE 140

5.14 CONDITIONAL EXECUTION: THE SIMPLE IF COMMAND

Conditional execution may be specified within a PROC via use of the IF
command.

The IF command provides for the conditional execution of a specified PROC
command. The IF command takes on three general forms. The simple form is
as follows:

IF {#}a-cmnd proc-cmnd

Where a-cmnd is any legal form of the A command (refer to the topic titled

MOVING PARAMETERS: THE A COMMAND) except for the form using the character

surround feature (i.e., Ac), and where proc-cmnd is any legal PROC
command. If the optional # is not used, the IF command simply tests for
the existence of a parameter in the input buffer as specified by the A

command. If a parameter exists, the specified PROC command is executed;
otherwise, control passes to the next sequential PROC command. For
example:

IF A2 GO 15

This command tests for the existence of a second parameter in the
currently active input buffer. 1If a parameter exists, control passes to
the PROC command beginning with label 15; otherwise, control passes to
the next sequential PROC command. If the # option is wused, the test is
reversed. For example:

IF #A2 GO 15

This command causes control to transfer to the command with label 15 if a
second parameter does not exist.

The user should note that when using an A command as a test condition of
an IF command, parameters are not moved to an output buffer as would be
the case if the A command were used alone. Rather, the A command is used
simply to specify which parameter in the input buffer is to be tested.
However, the input pointer will be re-positioned as specified by the A
command.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 141

N

NOTE: The following examples assume that the primary input buffer
is the currently active input buffer and contains the
following parameters:

| ABC AAA XYZ |

-~

COMMAND EXPLANATION

IF A GO 27 Control is transferred to the command with
label 27.

IF A3 OHELLO Message HELLO is output to terminal; control
then continues with next sequential command.

IF A4 OHELLO Message is not output; control continues
with next sequential command.

IF # All GO 2 Control is transferred to the command with
label 2.

Sample usage of Simple IF Command.

CHAPTER 5 - PROC | Copyright (c) 1985 PICK SYSTEMS

PAGE 142

5.15 RELATIONAL TESTING: THE RELATIONAL IF COMMAND

The relational form of the IF command allows parameters in the input
buffers to be tested relationally.

The relational form of the IF command is an extended version of the simple

IF form (see topic titled TRANSFERRING CONTROL: THE GO AND SIMPLE IF

COMMANDS). The relational form is as follows:
If a-cmnd op string proc-cmnd

Where a-cmnd and proc-cmnd are as defined for the simple IF form, where op
is one of the relational operators listed in Figure B, and where string is
a literal string of characters which the parameter 1is to be compared
against. For example:

IF A,3 = YES GO 5

Here the PROC would transfer control to the command with the label 5 if
the current parameter in the currently active input buffer is the
character string YES.

To resolve a relational condition, character pairs (one from the selected
parameter and one from the literal string) are compared one at a time from
leftmost characters to rightmost. If no unequal character pairs are
found, the strings are considered to be equal. If an unequal pair of
characters are found, the characters are ranked according to their numeric
ASCII code equivalents (refer to the LIST OF ASCII CODES in the Appendix
to this manual). The character string contributing the higher numeric
ASCII code equivalent is considered to be greater +than the other string.
For example, AAB is considered to be greater than AAAA, and 02 is
considered greater than 005.

If the selected parameter and the literal string are not the same length,
but the shorter of the two is otherwise identical to the beginning of the
longer one, then the longer string is considered greater than the shorter
string. For example, the string WXYZ is considered to be greater than the
string WXY.

CHAPTER 5 — PROC Copyright (c) 1985 PICK SYSTEMS
" PAGE 143

s

OPERATOR SYMBOL OPERATION

test for equal

test for not equal

test if parameter less than literal string
test if parameter greater than literal string
test if parameter less then or equal to
literal string

] test if parameter greater than or equal

to literal string

N

Relational Operators.

NOTE: The following examples assume that the primary