PROCEEDINGS

OF THE

j 1988 INTERNATIONAL CONFERENCE
ON

<
Q
D
ﬁ
o
=
=
@
0
[l
c:
q
o

3
m
"5
=
~
o
<
>
(e
O
o
_Z
.
)
m
> i
M
m
o
<
g
r
r
m
r
s
m
8
,
Qﬂ

PARALLEL PROCESSING

August 15-19, 1988

PROCEEDINGS

OF THE

1988 INTERNATIONAL CONFERENCE
ON
PARALLEL PROCESSING

August 15-19, 1988

Vol. | Architecture
Fayé A. Briggs, Editor

Sponsored by

Department of Electrical Engineering
PENN STATE UNIVERSITY
University Park, Pennsylvania

THE PENNSYLVANIA STATE UNIVERSITY PRESS
UNIVERSITY PARK AND LONDON

The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover
and title page. They reflect the authors’ opinions and are published as presented and without change in
the interests of timely dissemination. Their inclusion in this publication does not necessarily constitute

endorsement by the editors, Penn State Press, or the Institute of Electrical and Electronics Engineers,
Inc.

Library of Congress Catalog Card Number 79-640377
ISSN 0190-3918
ISBN 0-271-00654-4
IEEE Computer Society Order Number 889
IEEE Catalog Number 88CH2625-2

Copyright © 1988 The Pennsylvania State University
All rights reserved
Printed in the United States of America

Additional copies may be obtained from:
Penn State Press
215 Wagner Building
University Park, PA 16802

PREFACE

Interest in the field of parallel processing continues to climb. This trend is evidenced by the sharp increase in
papers submitted to the International Conference on Parallel Processing during recent years:

Papers Papers
Year Submitted Accepted Percent
1980 170 65 57
1983 240 136 57
1986 400 170 43
1987 487 174 36
1988 590 173 29

Although the number of submissions continues to increase, the number of accepted papers this year and in the
past two years has remained relatively unchanged. This is due to the limitation imposed by the fixed number
of hours available for the conference. As a result, a record number of papers had to be rejected. This year,
the conference proceedings is being published in three volumes according to the subject category. The
breakdown of submissions and acceptances in the three main categories of this conference is as follows:

Papers Papers
Category Submitted Accepted Percent
Architecture 264 74 28
Software 144 43 30
Algorithms and Applications 182 56 31

Of the 173 papers that were accepted, 79 were accepted as regular papers and 94 were accepted as short
papers. Many papers that normally would have been accepted as long papers were accepted as short papers in
order to meet the maximum number of paper-sessions allotted for the conference.

Finding sufficient numbers of qualified reviewers to evaluate the record number of submissions this year was a
particularly challenging task. Over 1,000 professionals in the field participated in this process. This year the
process of selecting referees was simplified by the use of questionnaires, which were mailed to previous
participants in the conference. The information on the completed questionnaires was entered into databases,
which then allowed the conference chairmen to select reviewers qualified in fairly specialized fields. Even so,
numerous papers were so highly specialized that custom selection of referees was still required. It appears
that an even more detailed breakdown of specializations will be needed for these questionnaires in the future.
Greater effort will also be required in the future to find additional reviewers to adequately evaluate the
increasing numbers of submissions.

I am grateful to Sun Microsystems Inc., for the support and in particular, to Wayne Rosing (Vice President of
Advanced Development) for giving me the opportunity to co-chair the ICPP88 program. I am very grateful to
the reviewers for their timely and thorough evaluation, and the many other persons who assisted in the
program effort this year. Many thanks are due to administrators, Janice Barnes and Marianne Witkop, in
helping to make the proceedings a reality. In particular, I would like to express my appreciation to Alex Kwok,
Michel Cekleov and Roland Lee who assisted in selecting referees and in handling the correspondence. Special
thanks are due to Alex Kwok for developing user—friendly author and referee databases, and for automating
the generation of correspondence for handling the papers. Finally, I wish to thank Prof. Tse-yun Feng for his
guidance, support and encouragement in this effort.

Fayé A. Briggs

1988 Program Co-chair
Sun Microsystems, Inc.
Mountain View, CA 94043

iii

Aboelaze, M.
Abonamah, A.
Abraham, S.
Abu-Sufah, W.
Adams, S.
Adams, J.
Aggarwal, J.
Agrawal, D.
Alnuweiri, H.
Ammar, H.
Anderson, R.
Archibald, J.
Atwood, J.
Azimi, M.
Baer, J.L.
Bagherzadeh, N.

Bandyopahyay, S.

Banerjee, U.
Banerjee, P.
Barad, H.
Barbour, A.
Batcher, K.
Baumgartner, T.
Baxter, B.
Bayoumi, M. A.
Beetem, J. F.
Bermond, J. C.
Bhavsar, V. C.
Bhuyan, L. N.
Bic, L.

Bodnar, B.
Bounds, P.
Brooks, E. D. III
Brown, R. H.
Brule, M.
Bucher, 1. Y.
Burns, J.
Butner, S. E.
Calahan, D.A.
Cappello, P. R.
Carlson, D. A.
Casavant, T. L.
Cekleov, M.
Chalasani, S. B.
Chandna, A.
Chang, Y.
Chao, P.

Chen, M.S.
Chen, S. S.
Chen, D. J.
Cheng, K. H.
Cherkassky, V.
Chesley, G.
Chiang, Y. P.
Chiarull, D. M.

LIST OF REFEREES

Purdue U.

U. of Wisconsin

U. of Michigan

Virginia Polytechnic Inst.
C.S. Draper Labs.

The U. of Pittsburgh

U. of Texas at Austin
North Carolina State U.

Clarkson U.

Lawrence Livermore National Lab

Brigham Young U.
Concordia U., CANADA
Michigan State U.

U. of Washington

U. of Ca., Irvine

U. of Windsor, CANADA
Control Data Corporation

U. of Illinois

Tulane U.

U. of Illinois, Chicago
Goodyear Aerospace Corp

A T&T Bell Laboratories
Intel

U. of Southwestern Louisiana
U. of Wisconsin, Madison
Simon Fraser U., CANADA
U. of New Brunswick

U. of Southwestern Louisiana
U. of California, Irvine
AT&T Bell Labs, Naperville
Allied/Signal Oceanics Div.
Lawrence Livermore Nat. Lab
Hartford Graduate Center
Syracuse U.

Los Alamos National Lab
Georgia Inst. of Tech.

U. of Santa Barbara

U. of Michigan, Ann Harbor
U. of California, Santa Barbara
Institute for Defense Analyses
Purdue U.

Sun Microsystems, Inc

U. of Southern Calif., LA
Case Western Reserve U.
Penn. State U.

U. of Michigan, Ann Arbor
U. of North Carolina

The U. of Texas at Arlington
U. of Houston

U. of Minnesota

Sun Microsystems, Inc
Washington State U.

U. of Pittsburgh

iv

Chin, C.Y.
Chow, Y.C.
Chow, E. T.
Chronopolos, A.

Chuang, H. Y. H.

Cok, R. S.
Coletti, N.
Daasch, R.
Daghi, A.
Das, C.R.
Davis, N. J.
Deering, M. F.
DeGroot, D.
Desai, B. C.
Dickey, S.
Dubois, M.
Dunne, R. C.
Emberson, D. R.

Eshaghian, M. M.

Fang, Z.
Faroughi, N.
Fellman, R. D.
Fernandez, E. B.
Foo, S. Y.P.
Fortes, J. A.
Fu, J.

Gait, J.
Ganesan, S.
Garcia, A. B.
Garner, R.
Ghafoor, A.
Ghosal, D.
Ghosh, J.
Ghozati, S.
Goldstein, J. D.
Gooley, M.
Gubharoy, B.
Gupta, R.
Hac, A.

Hai, A.

Hall, R. W.
Hare, D.
Harper, D. T. III
Hayes, A. H.
Heath, J.R.
Ho, C.T.
Houle, J.L.
Hsu, Y.

Hsu, W.

Hsu, W.J.

Humphreys, S. L.

Hurson, A. R.
Hwang, F. K.
Hyde, D. C.
Tacoponi, M. J.

General Electric Company

U. of Florida

Jet Propulsion Lab

U. of Minnesota

U. of Pittsburgh

Eastman Kodak Co.

Institute for Defense Analyses
Portland State U.

Sun Microsystems, Inc.
Pennsylvania State U.

Air Force Institute of Tech
Schlimberger Palo Alto Res.
Texas Instruments

Concordia U., CANADA
Courant Inst. of Mathematical Sci.
U. of Southern California

Eaton Corporation, AIL Division
Sun Microsystems, Inc.

U. of Southern California

Cal. State Sacramento

Florida Atlantic U.

U. of South Carolina

Purdue U.

U. of Illinois, Urbana
Teltronix

Oakland U.

Wright-Patterson AFB

Sun Microsystems, Inc
Syracuse U.

U. of Southwestern Louisiana

Queens College
The Analytic Sciences Corp.
U. of Illinois, Urbana

Philips Labs.

AT&T Bell Labs, Naperville
Bell Labs, Middleton

U. of Pittsburgh

Sun Microsystems, Inc.

The U. of Texas At Dallas

Los Alamos National Laboratory
U. of Kent.

Yale U.

Ecole Poly. de Montreal, CANADA

IBM Yorktown Heights

U. of Illinois

Michigan State U.

Sandia National Laboratories
The Pennsylvania State U.
AT&T Bell Labs, Murray Hill
Bucknell U.

Harris Corporation

Ibrahim, H. A. H.
Jager, W. J.

Jain, R.
Jayakumar, R.
Jayasimha, D. N.
Jin, L.

Jou,J. Y.

Juang, J.Y.

Kale, L. V.
Kermaani, K.
Kichul, K.

Kim, S. M.

Kim, M. H.
Kim, K.

Kim, D.

Kim, D.W.
Kimura, T. D.
King, C.T.

Konstantinidou, S.

Kothari, S. C.
Kowalik, J. S.

Krishnamurthy, B.

Kumar, V. K. P.
Kung, S.Y.
Kunkel, S. R.
Kuszmaui, B. C.
Kwok, A.
Ladkin, P. B.
Lakhani, G.

Lakshmivaraham, S.

Lam, H.
Lam, M.
Lan, Y.
Landis, D. L.
Lang, T.
Larson, B. R.
Lastra, A.
Lee, G.

Lee, C.

Lee, C.

Lee, D.

Lee, T.C.
Lee, K.

Lee, D.L.
Lee, R.

Li, H. F.

Li, Q.

Lien, Y.N.
Lillevik, S. L.
Lin, T.C.

Lin, Y.B.
Lin, T. C.
Lin, T.Y.

Lin, W.

Liou, D.M.
Little, R. R.
Lopresti, D.
Loucks, W. M.
Lougheed, R. M.
Loui, M. C.
Lovcks, W. M.

Columbia U.

U. of Waterloo

U. of S. Calif.

Concordia U., CANADA
U. of Illinois, Urbana
Pennsylvania State U.
AT&T Bell Labs, Murray Hill
Northwestern U.

U. of Illinios at Urbana-Champaign
Sun Microsystems, Inc.
uscC

R.PL .
Michigan State U.

Univ of S. Calif.

U. of Southern California
U. of Texas at Austin
Washington U.

Michigan State U.

U. of Washington

Towa State U.

Boeing

Tektronix Laboratories

U. of Southern California
Princeton U.

IBM, Encott

Thinking Machines/MIT
Sun Microsystems, Inc.
Kestrel Institute

Texas Tech U

U. of Oklahoma

U. of Florida

Carnegie Mellon U.

IEEE Computer Society
Penn State U.

U. of California, Los Angeles
Unisys Corporation

Duke U.

U. of Southwestern Louisiana
U. of California, Berkeley
U. of Florida

U. of Illinois

U. of Tennessee

Ohio State U.

York U., CANADA

Sun Microsystems, Inc.
Concordia U., CANADA
Florida International U.
Ohio State U.

Intel Corp.

U. of Texas, Arlington

U. of Washington

The U. of Texas at Arlington
Calif. State U., Northridge
USC
Illinois Inst. of Tech.
Clemson U.
Brown U.
U. of Waterloo
ERIM
U. of Hllinois, Urbana
U. of Waterloo

Lubachevsky, B. O. A T&T Bell Laboratories, Murray Hill

Lumpp, J. E.
McElvany, M. C.
McGahee, K. L.
McGuire, P.
McMillen, R.
McMillin, B. M.
Majumdar, A.
Mak, V.
Malony, A. D.
Marquardt, D.
Martin, A. J.
Mathieson, 1.
Maurer, P. M.
Mayer, H. G.
Mazina, M.
Mazumder, P.
Melhem, R.
Meybodi, M. R.
Midkiff, S. F.
Miller, R.
Mittal, V.
Moreno, J. H.
Mossaad, K.
Mudge, T.
Mukkamala, R.
Murata, T.
Najjar, W. A.
Nakazawa, S.
Nation, W. G.
Neches, P. M.
Nelson, V. P.
Ni, L. M.
Nicol, D. M.
Nolan, J.
O’Hallaron, D. R.
O’Keefe, M.
Otto, S. W.
Padmanabhan, K.
Pakzad, S.
Pargas, R. P.
Patton, P. C.
Peir, J K.
Peterson, J.C.
Place, J.

Polychronopoulos, C.

Poplawski, D. R.
Pramanik, S.
Prins, P. R.
Probst, D. K.
Przytula, K. W.
Putcha, K.

Raghavendra, C. S.

Rajopadhye, S. V.
Ramachandran, U.
Ramkumar, B.
Rancourt, D. R.
Rau, D.

Ravi, S.S.

Reed, D. A.
Reeves, A. P.

Purdue U.

Allied Bendix

Rockwell International
Hewlett-Packard

Hughes Aircraft

Michigan State U.

USC

Bell Comunications Res.

U of Illinois at Urbana-Champaign
Sequent Computer Systems
Caltech

LaTrobe U., AUSTRALIA
Univ of Florida

Rice U.

U. of Michigan, Ann Arbor
U. of Pittsburgh

Ohio U.

Virginia Polytechnic Inst. & State U
SUNY-Buffalo

Ohio State U.

U. of California, LA

U. of Texas, Austin

U. of Michigan, Ann Arbor
Old Dominion U.

U. of Illinois at Chicago
USC Inform. Sciences Inst.
MARC Anal. Res. Corp.
Purdue U.

Teradata Corporation
Auburn U.

Michigan State U.

College of William & Mary
Department of Defense
General Electric Co.
Purdue U.

Caltech

AT&T Bell Lab, Murray Hill
Penn. State U.

Clemson U.

Consortium for Supercomputer Res.
IBM, Yorktown

Jet Propulsion Lab

U. of Missouri-Kansas City
U. of Illinois, Urbana
Michigan Technological U.
Michigan State U.

Calvin College

Concordia U., CANADA
Hughes Res. Labs

U. of Southern California

U. of Oregon

Georgia Institute of Technology
U. of Illinois

SUNY at Albany
U. of Illinois, Urbana
U. of Illinois, Dept. of Comp. Sci.

Reinhardt, S.
Ribeiro, J.
Ricket, N. W.
Saad, Y.

Salfi, R. E.
Sanz, J.L. C.
Sarma, D.
Scherson, 1. D.
Scheurich, C.
Schwederski, T.
Sehr, D.
Seidel, S. R.
Sengupta, A.
Seow, C. H.
Serlin, O.
Shaffer, P. L.
Shang, W.
Sharma, R.
Shaw, W. H.
Shea, D. G.
Shepard, T.
Sheth, A. P.
Shih, Y. L.
Shin, K. G.
Shirazi, B.
Shu, R.

Siegel, H.J.
Silberschatz, A.
Simmons, M. L.
Sinclair, J. B.
Singhal, M.
Slaney, M.
Smiarowski, A.
Smith, J.
Smith, S. P.
Smitley, D. L.
So, K.

Somani, A. K.
Sterling, T. L.
Strik, C. W.
Stormon, C.
Subramanian, R.
Sung, Y.
Szymanski, T. H.
Tai, HM.
Takefuji

Tang, J.H.
Tantawi, A. N..
Tao, L.

Tarbet, D.
Testa, J.
Thakkar, J. D.
Thomas, D. R.
Thomasian, A.
Trimble, G. M.
Tsai, W. T.
Tseng, P.S.
Tsin, Y. H.
Tzeng, N.F.
Varadarajan, R.
Varma, A.

Cray Res., Inc
Syracuse U.
Northern Illinios U.
U. of Illinois, Urbana

IBM, San Jose

U. of Cincinnati

Princeton U.

U. of Southern California
Purdue U.

U. of Illinois, Urbana
Michigan Technological U.

U. of South Carolina

MIT Lab.

ITOM International Co.
General Electric Co.

Purdue U.

A T&T Bell Labs, Murray Hill
AFIT/ENG

IBM Res., Yorktown

Royal Military College, CANADA
UNISYS West Coast Res. Cntr.
Ametek

U. of Michigan, Ann Arbor
Southern Methodist U.

Supercomputing Res. Center
U. of Texas Austin
Los Alamos National Lab.

.Rice U.

Ohio State U.

Schlumberger Palo Alto Res.
Tennessee Technological U.
Astronautics Tech Center
MCC

Supercomputing Res. Center
IBM Res., Yorktown

U. of Washington

Harris Corp.

BDM Corp.

Syracuse U.

AT&T Bell Lab, Columbus
Memphis State U.

Columbia U.

U. of Tulsa

U. of S. Carolina

U. of Illinois

IBM, Yorktown

U. of Penn.

Sun Microsystems, Inc.
Sequent Computer Systems
Harris Corp.

IBM, Yorktown

Lockheed Missiles & Space Co.
U. of Minnesota

Carnegie Mellon U.

U. of Windsor, CANADA

U. of Southwestern Louisiana
U. of Florida

IBM, Yorktown

Varma, A.
Vranesic, Z.G.
Wah, B. W.
Walicki, J.
Wallace, R. M.

- Wang, Y. X.

Wang, W.H.
Warter, N.
Weems, C.
Widlicka, R.
Wiltsie, W. F.
Wing, O.
Winsor, D. C.
Witten, M.
Wolf, J. J.
Wu, C.L.
Wu, K.L.
Yalamanchili, S.
Yang, C.
Yasrebi, M.
Yew, P.C.
Yoon, H.
Youn, H. Y.
Young, W.
Young, H. C.
Young, B. B.
Yu, C.T.

Van Zandt, J.

Zhang, C. N.
Zhu, C.Q.
Zipf, M. E.
Zubair, M

IBM T. J Watson Res. Center
U. of Toronto

U. of Illinois

Colorado State U.
AFWAL/AADE

Purdue U.

U. of Washington

U. of Illinois

U. of Massachusetts

New Mexico State U.
AT&T, Basking Ridge
Columbia U.

U. of Michigan

U. of Louisville

Colorado State U.

U. of Texas Austin

U. of Illinois, Urbana
Honeywell Systems & Res. Cntr.
Naval Postgraduate School
IBM Corp., Austin

U. of Illinois, CSRD

Ohio State U.

U. of Mass.

AT&T Bell Labs, Holmdel
IBM Almaden Res. Center
Cray Res.

uUsC

RCA

North Carolina A & T U.
U. of Illinois, Urbana

U. of Pittsburgh

Old Dominion U.

Abraham,
Abraham,
Abraham,
Aggarwal,
Anderson,
Balakrishnan,
Banerjee,
Baron,
Bayoumi,
Becker,
Bermond,
Bernstein,
Bhuyan,
Bollinger,
Boppana,
Boxer,
Calahan,
Casavant,
Chakravarty,
Chan,
Chang,
Chao,
Chen,
Cheng,
Cheong,
Chern,
Chiang,
Chikayama,
Chin,
Choudhary,
Chung,
Das,

Davis,
Dimpsey,
Dubois,
Esfahanian,
Evripidou,
Fineberg,
Forgy,
Fourneau,
Gaudiot,
Ghosh,
Gottlieb,
Gupta,
Gutierrez,
Harper III,
Hartmann,
Hosseini,

JA.

S.G.
JK.
V.S.
M.

M.A.
D.J.
J.C.
D.
L.N.
S.W.
R.

D.A.

359
90
166, 331
452
47
103
331
410
367
156
187
430
130
1
196
323
299
444
339
225
249
217
315
363
138
217
400
18
388
383
286
392
166
174
118, 146
86
244
444
271
187
244, 256
74
240
271
261
422
78
343

AUTHOR INDEX

vii

Hwang,
Ichiyoshi,
Ing,

Ishii,

Iyer,

Jain,
Jayasimha,
Jean,

Jou,

Kale,

Kalp,
Kawabe,
Kerola,
Kim,
Kinney,
Kondratyev,
Krishnamurti,
Kumar,
Kung,
Kurisaki,
Lang,
Lastra,
Lee,

Lee,
Lee-Kwang,
Liang,

Lin,
Linebarger,
Ling,

Louri,
Lovett,

Lu,

Ma,
Macaluso,
Malek,
Maurer,
Midkiff,
Miller,
Mitra,
Moreno,
Mukkamala,
Musciano,
Nakashima,
Newell,
Newman,
Ni,

Oh,

URBA®ZR
Z ~

SNl
<Lz

5> KR

=

>

tm

EoCRA»zu=g0QEeoyrdre<mp»>rgadnUl

© ©
o

1.
LM.
H.R.

Padmanabhan, K.

55

18
410
291

174, 404
103

23

249

359

271
291
78
286
83
51
434
39, 205
249
191
28, 191
126
201
256
286
315
392
422
367
55
303
95
13, 434
392
351
235
1
205, 323
404
28
182
156
18
271
65
86
286
90

Park,
Patel,
Patnaik,
Peng,

Polychronopoulos

Raghavendra,
Ratcliffe,
Reddy,
Reeves,
Reinhardt,
Reisis,
Robert,
Rokusawa,
Rosenblum,
Sagan,
Sastry,
Scheurich,
Schwederski,
Shultz,
Siegel,
Singh,
Smith,
Snyder,
Sohn,
Solworth,
Song,
Starmer,
Sterling,
Stout,
Sunwoo,
Tambe,
Temma,
Thakkar,
Tokerud,
Toverud,
Tsali,

Tsai,

Tseng,
Uchida,
Underwood,
Upadhyaya,
Varadarajan,
Veidenbaum,
Wada,
Wang,
Wang,

Wei,

Wu,
Yakovlev,
Yan,

Yang,

Yau,
Yazawa,

KH.
JH.
LM.
Z

C.S.

M.

AL. N
AP.

FAQPECORTO®
<m ‘
»

w v
A’

DpARA2ERIL
SRS

T
Q

I
.

PRORP QN
(@]

, C.D.

286
383
414
69
108
103, 196
410
331
261
311
205
410
18
51
86
414
118
444
182
444
375
65
281
256
113
83
126
156, 225
205
452
271
209
303
47
47
315
39
32
209
65
339
13
138
291
146
426
201
400, 426
51
388
130
351
291

viii

Youn,
Yu,

375
74

TABLE OF CONTENTS

Preface. e e iii
List of Referees. o oo e e iv
Author Index. e vii
SESSION 1A: Distributed Systems
(R): Processor and Link Assignment in Multicomputers Using Simulated Annealing. 1
S.W. Bollinger and S.F. Midkiff (Virginia Polytech Inst., USA)
(S): Comparing the Performance of Two Dynamic Load Distribution Methods. 8
L.V. Kale (Univ. of Ili-Urbana, USA)
(S): An Approximate Load Balancing Model with Resource Migration in Distributed Systems. 13
R. Varadarajan (Univ. of Florida, USA) and Y.E. Ma (Univ. of Pennsylvania, USA)
(S): An Efficient Termination Detection and Abortion Algorithm for Distributed Processing
Sy IS, L e e e e e e e 18
K. Rokusawa, N. Ichiyoshi and T. Chikayama. (Inst. for New Generation Computer Tech., Japan)
and H. Nakashima (Mitsubishi Elec. Corp., Japan)
(S): Distributed Synchromizers. it e 23
D.N. Jayasimha (Univ. of Ill-Urbana, USA)
SESSION 2A: Systolic Arrays I
(S): Graph-based Partitioning of Matrix Algorithms for Systolic Arrays: Application to Transitive
CIOSUTE. . . . o e e e 28
J.H. Moreno and T. Lang (Univ. of Cal-Los Angeles, USA)
(R): Sparse Matrix Computations on Warp.ttt e 32
P.S. Tseng (Carnegie Mellon Univ., USA)
(R): Mapping Two Dimensional Systolic Arrays to One Dimensional Arrays and Applications. 39
V.K. P. Kumar and Y-C. Tsai (Univ. of So. Cal., USA)
(S): CESAR - The Architecture and Implementation of a High Performance Systolic Array
Processor. e 47
B. Tokerud, V.S. Anderson and M. Toverud (Norwegian Defence Research Estab., Norway)
SESSION 3A: Logic Design and Tools
(S): Signal Graphs: A Model for Designing Concurrent Logic. 51
A.Y. Kondratyev, LY. Rosenblum, A.V. Yakovlev (Leningrad Elec. Eng. Inst., USSR)
(R): Optical Arithmetic Using Signed-Digit Symbolic Substitution. e 55
K. Hwang and A. Louri (Univ. of So. Cal, USA)
(S): An Analysis of Parallel Logic Simulation on Several Architectures. 65
S. P. Smith, B. Underwood, and J. Newman (MCC, USA)
(S): Semantics of a Parallel Computation Model and its Applications in Digital Hardware
Design. e e 69
Z. Peng (Linkoping Univ, Sweden)
(S): An Asynchronous Distributed Approach for the Simulation of Behavior-Level Models
on Parallel Processors. 74
S. Ghosh and M-L. Yu (AT&T Bell Lab, USA)
SESSION 3C: Meshes
(S): Operational Analysis on Hyper-Rectangulars. 78
T. Kerola. (Univ of Helsinki, Finland) and A. Hartmann (MCC, USA)
(S): Distributed Termination ona Mesh. 83

J. Song and L. Kinney (Univ of Minnesota, USA)

ix

(S): On Enhancing Hypercube Multiprocessors.ttt ... 86
A-H. Esfahanian, L.M. Ni and B.E. Sagan (Michigan State Univ., USA)

(S): Reliability of the Hypercube.ttt e e 90
S. Abraham (Univ of lll-Urbana, USA) and K. Padmanabhan (AT&T Bell Labs., USA)

(R): Solving Visibility Problems on MCC’s e 95
M. Lu (Texas A & M Univ., USA)

SESSION 4A: Multiprocessor Issues

(S): On Array Storage for Conflict-Free Memory Access for Parallel Processors 103
M. Balakrishnan, R. Jain and C.S. Raghavendra (Univ. of So. Cal, USA)

(S): The Impact of Run-Time Overhead on Usable Parallelism. 108
C.D. Polychronopoulos (Univ. of lll-Urbana, USA)

(S): The Microflow Architecture.ttt e e 113
J.A. Solworth (Univ. of Ill-Chicago, USA) '

(R): Concurrent Miss Resolution in Multiprocessor Caches. 118
C. Scheurich and M. Dubois (Univ. of So. Cal, USA)

(S): POET: A Tool for the Analysis of the Performance of Parallel Algorithms. 126

A.A. Lastra and C.F. Starmer (Duke Univ., USA)

SESSION 5A: Multiprocessor Cache Coherence

(R): A Queueing Network Model for a Cache Coherence Protocol on Multiple-bus Multiprocessors. . 130
Q. Yang and L.N. Bhuyan (Univ. of Southwestern Louisiana, USA)

(R): Stale Data Detection and Coherence Enforcement Using Flow Analysis. 138
H. Cheong and A.V. Veidenbaum (Univ. of Ill-Urbana, USA)
(R): Shared Data Contention in a Cache Coherence Protocol. 146
M. Dubois and J-C. Wang (Univ. of So. Cal., USA)
SESSION 6A: Multiprocessor Performance
(R): Multiprocessor Performance Measurement Using Embedded Instrumentation. 156
T.L. Sterling, A.J. Musciano and D.J. Becker (Harris Corp., USA)
(R): Blocking for Parallel Sparse Linear System Solvers. «............. 166
S.G. Abraham (Univ. of Michigan, USA) and T.A. Davis (Univ. of Ill-Urbana, USA)
(R): Performance Analysis of a Shared Memory Multiprocessor: Case Study. 174
R.T. Dimpsey and R.K. Iyer (Univ. of Ill-Urbana, USA)
SESSION 7A: Networks
(S): Performance Comparision of Two Multiprocessor B-Link Tree Implementations. 182

R. Mukkamala (Old Dominion Univ., USA) and R.K. Shultz (Rockwell-Collins Int’l, USA)
(S): Independent Connections: An Easy Characterization of Baseline- Equivalent Multistage

Interconnection Networks. oottt e e e 187
J.C. Bermond and J.M. Fourneau (Univ. Paris Sud Orsay, France)

(S): Nonuniform Traffic Spots (NUTS) in Multistage Interconnection Networks. e 191
T. Lang and L. Kurisaki (Univ. of Cal.-Los Angeles, USA)

(S): On Self Routing in Bene$ and Shuffle Exchange Networks. 196

R. Boppana and C.S. Raghavendra (Univ. of So. Cal, USA)
(S): Design and Analysis of A Fault-Tolerant Multistage Interconnection Network for

Large-Scale Shared Memory Parallel Computerst 201
G. Lee and S. Wei (Univ. of Southwestern Louisiana, USA)
(S): Data Movement Operations and Applications on Reconfigurable VLST Arrays. 205

R. Miller (State Univ of NY-Buffalo, USA), V.K. Prasanna Kumar and
D.I. Reisis (Univ. of So. Cal, USA), and Q.F. Stout (Univ of Michigan, USA)

SESSION 8A: New Directions in Architecture and Technology
Panel Discussion.

SESSION 9A: Dataflow I
(R): A Pipelined Dataflow Processor Architecture Based on the Variable Length Token Concept. 209
K. Uchida and T. Temma (NEC Corp, Japan)
(R): A Dynamic Dataflow Architecture For Image Generation. 217
P.C. Chao and M.Y. Chern (AT&T Bell Labs, USA)
(R): A Practical Static Data Flow Computer Based on Associative Methods. 225

T.L. Sterling and E.Y. Chan (Harris Corp., USA)

SESSION 10A: Dataflow II

(S): Mapping the Data Flow Model of Computation into an Enhanced Von Neumann Processor. . . . 235
P.M. Maurer (Univ. of So. Florida, USA)
(S): Dynamic Structured Dataflow: Preserving the Advantages of Sequential Processing in a

Data Driven Environment. e e 240
1. Gottlieb (Bar Ilan Univ., Israel) '

(S): Iterative Algorithms in a Data-Driven Environment. 244
P.E. Evripidou and J-L. Gaudiot (Univ. of So. Cal, USA)

(R): Graceful Degradation Schemes for Static/Dynamic Wavefront Arrays. 249
S.N. Jean and C.W. Chang (Univ. of So. Cal, USA) and S.Y. Kung (Princeton Univ., USA)

(S): Data-Driven Multiprocessor Implementation of the Rete Match Algorithm. 256

J-L. Gaudiot, S. Lee and A. Sohn (Univ. of So. Cal., USA)
SESSION 10B: Parallelism

(R): On Measuring the Performance of a Massively Parallel Processor. 261
A.P. Reeves (Univ. of lll-Urbana, USA) and M. Gutierrez (Cornell Univ., USA)
(R): Parallel OPS5 on the Encore Multimax. 271

A. Gupta(Stanford Univ., USA), C.L. Forgy, D. Kalp, A. Newell and M. Tambe (Carnegie—
Mellon Univ., USA)

(S): A Taxonomy of Synchronous Parallel Machines. 281
L. Snyder (Univ. of Washington, USA)
(S): Parallel Execution Schemes ina Petri Net. 286

W.H. Chung and H.R. Oh (KAIST, Korea), H. Lee—-Kwang. (KIT, Korea), K.H. Park and
M. Kim (KAIST, Korea)

SESSION 11A: Commercial Systems

(R): High-Speed Vector Instruction Execution Schemes of HITACHI Supercomputer S-820 System. . 291
H. Wada, K. Ishii, S. Yazawa and S. Kawabe (Hitachi Ltd., Japan)

:? (S): Characterization of Memory Conflict Loading on the CRAY-2. 299
D.A. Calahan (Univ. of Michigan, USA)
(R): The Symmetry Multiprocessor System.ttt e 303
T. Lovett and S. Thakkar (Sequent Computer Systems, USA)
//_? (S): Two Parallel Processing Aspects of the Cray Y-MP Computer System. 311

S. Reinhardt (Cray Research, Inc., USA)

SESSION 12A: Hypercubes

(R): Loops and Multi-Dimensional Grids on Hypercubes: Mapping and Reconfiguration Algorithms. .315
S-K. Chen, C-T. Liang, W-T. Tsai (Univ. of Minnesota, USA)

(R): Dynamic Computational Geometry on Meshes and Hypercubes. 323
L. Boxer. (Niagara Univ., USA) and R. Miller (State Univ. of NY, USA)
(R): I/O Embedding in Hypercubesttt it e e e 331

A.L.N. Reddy and P. Banerjee (Univ. of Ill, USA), and S.G. Abraham (Univ. of Michigan, USA)

xi

SESSION 13A: Fault Tolerance

(S): A Unified Approach to Designing Fault-Tolerant Processor Ensembles. 339
S. Chakravarty and S.J. Upadhyaya (State Univ. of NY., USA)
(R): Fault-Tolerant Scheduling of Independent Tasks and Concurrent Fault-Diagnosis in

Multiple Processor Systems. e e e 34
S. H. Hosseini (Univ. of Wisconsin-Milwaukee, USA)

(R): The Resiliency Triple in Multiprocessor Systems.ttt 351
M. Malek and K.H. Yau (Univ. of Texas—Austin, USA)

(S): Fault-Tolerant Algorithms and Architectures for Real Time Signal Processing. 359

J-Y. Jou (AT&T Bell Labs, USA) and J.A. Abraham (Univ. of Ill-Urbana, USA)
SESSION 14A: Systolic Arrays I

(S): Efficient Designs of Priority Queue 363
K. H. Cheng (Univ. of Houston, USA)

(R): Algorithms for High Speed Multi-Dimensional Arithmetic and DSP Systolic Arrays. 367
N. Ling and M.A. Bayoumi (Univ. of Southwestern Louisiana, USA)

(R): A Highly Efficient Design for Reconfiguring the Processor Array in VLSI. 375
H.Y. Youn and A.D. Singh (Univ. of Massachusetts, USA)

(S): A Parallel Processing Architecture for an Integrated Vision System. 383

A.N. Choudhary and J.H. Patel (Univ. of 1ll-Urbana, USA)
SESSION 14B: Reliability

(S): An Optimal Solution for Consensus Problem in an Unreliable Communications System. 388
K.Q. Yan and Y.H. Chin (Nat’'l Tsing—Hua Univ., Taiwan)

(R): A Reliability Predictor for MIN-Connected Multiprocessor Systems. 392
J.J. Macaluso, C.R. Das and W. Lin: (Pennsylvania State Univ., USA)

(S): Adaptive Checkpointing and Rollback in Multiprocessor Systems. 400

C-Y. Chiang and C.L. Wu (Univ. of Texas—Austin, USA)

(R): Measurement-Based Analysis of Multiple Latent Errors and Near-Coincident Fault

Discovery in a Shared Memory Multiprocessor., 404
S.G. Mitra (Sun Microsystems, USA) and R.K. Iyer (Univ of Ill-Urbana, USA)

SESSION 15A: Logic Programming and Pipelined Systems

(S): A Distributed Architecture for the PEPSys Parallel Logic Programming System. 410
U. Baron, B. Ing, M. Ratcliffe, and P. Robert (ECRC, West Germany)
(R): A Dataflow Architecture for OR-Parallel Execution of Logic Programs. 414

AV.S. Sastry and L.M. Patnaik (Indian Inst. of Science, India)
(S): Storage Schemes for Efficient Computation of a Radix 2 FFT in a Machine with Parallel

MemoTies. oo e e e e e 422
D.T. Harper IIl and D.A. Linebarger (Univ of Texas-Dallas, USA)

(S): Distributed Instruction Set Computer.ttt 426
L. Wang and C-L. Wu (Univ. of Texas-Austin, USA)

(S): An Improved Approximation Algorithm for Scheduling Pipelined Machines. 430

D. Bernstein (IBM T.J. Watson Research Center, USA)
SESSION 15B: Reconfigurable Systems

(R): The Processor Partitioning Problem In Special-Purpose Partitionable Systems. 434
R. Krishnamurti (Simon Fraser Univ, Canada) and Y.E. Ma (Univ of Pennsylvania, USA)
(R): Non-Deterministic Instruction Time Experiments on the PASM System Prototype. 444

S.A. Fineberg, T.L. Casavant and T. Schwederski (Purdue Univ, USA) and H.J. Siegel
(Supercomputing Research Center, Lanham, USA)

(R): Flexibly Coupled Multiprocessors for Image Processing. 452
M.H. Sunwoo and J.K. Aggarwal (Univ of Texas-Austin, USA)

xii

PROCESSOR AND LINK ASSIGNMENT IN MULTICOMPUTERS
USING SIMULATED ANNEALING

S. Wayne Bollinger and Scott F. Midkiff

Bradley Department of Electrical Engineering
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

ABSTRACT

In the design of multicomputer systems, the scheduling
and mapping of a parallel algorithm onto a host architecture
has a critical impact on overall system performance. In this
paper we develop a graph-based solution to both aspects of
the mapping problem using the simulated annealing opti-
mization heuristic. A two phase mapping strategy is formu-
lated: 1) process annealing assigns parallel processes to
processing nodes, and 2) connection annealing schedules traf-
fic connections on network data links so that interprocess
communication conflicts are minimized. To evaluate the
quality of generated mappings, cost functions suitable for
simulated anncaling are derived that accurately quantify
communication overhead. Application examples are pre-
sented using the hypercube as a host architecture, with host
graphs containing up to 512 nodes.

L. INTRODUCTION

Multicomputers are a form of parallel processing system
composed of many processing elements (PE’s), cach with its
own local memory. Individual PE’s are connected to other
PE’s by point-to-point links that allow the bidirectional
transfer of data. The cost of connecting every processor to
every other processor is typically prohibitive, so links connect
only selected processors, forming an interconnection
topology such as a mesh, tree, or binary hypercube. Each
processor executes a task or process. Local references by a
process are eflicient, since the PE contains local memory, but
communication with processes executing on other PE’s can
significantly limit system throughput if data must be trans-
ferred over many links or if links are congested due to exces-
sive traffic. To realize the full potential of a multicomputer’s
capabilities, it is essential that the distance between commu-
nicating processes be minimized and that link traffic is mini-
mized to reduce delay.

The mapping problem maps an image architecture, a set
of processes and their communication requirements, onto a
multicomputer or host architecture. The problem consists
of two components: 1) assignment of processes to processors,
and 2) assignment or scheduling of interprocess communi-
cation traflic over network links. This paper presents a new
approach to processor and link assignment in multicomput-

This work was supported in part by a Digital Faculty Program/Incentives
for Excellence grant from the Digital Equipment Corporation.

ers based on the simulated annealing heuristic. The proce-
dure has been implemented for binary hypercube host
architectures. Results indicate that the technique produces
good, and often optimal, mappings within reasonable com-
putation times.

The paper first discusses the mapping problem, recent
research, and communication overhead cost functions that
can be used in an objective function. Simulated annealing is
then applied to the mapping problem to find processor and
link assignments that minimize the objective function for
given host and image architectures. The final section pre-
sents results for mapping two image architectures, each con-
taining up to 512 processes, onto a binary hypercube
multicomputer.

II. THE MAPPING PROBLEM

The assignment and scheduling problem concerns the
mapping of an arbitrary image architecture onto a general-
purpose host or target architecture in a manner that mini-
mizes communication conflicts among concurrent processes.
For our purposes, the image architecture consists of a set of
synchronous, static ‘processes with communication require-
ments known prior to run time. The host architecture de-
scribes a point-to-point multiprocessor network with a fixed
interconnection topology. To evaluate the quality of an as-
signment, an objective function is used to quantify the com-
munication cost. The behavior of the mapping algorithm
and the quality of gencrated assignments depend on the ob-
jective function chosen.

A. Host Architecture

The host architecture is represented by a host graph that
describes the interconnection of processors in a multi-
processor network. The host graph is denoted by the undi-
rected graph Gy= <V, E;> where Vy is a set of
processors, and Ey is a set of edges describing the communi-
cation paths between processors. Every vertex in Vy corre-
sponds to a distinct processing element, referred to as a
node. Every edge (n, n,) € Ey corresponds to a bidirectional
data link between nodes #; and n,. This implies that a single
physical network link exists between each pair of directly
connected processors. ‘The host graph is assumed to be a
connected graph, disallowing the possibility of isolated
processor nodes. The following terminology is used when
referring to the host architecture.

N The number of nodes in the host network,
N=|Vyl.

n, A node j in the network, 1 <j< N.
by A link permitting communication from node #; to

node n,. Note that I, and /,; are equivalent.

ty The amount of communication traffic, in packets
or units of traffic, flowing from node #; to #,.

d(n;, n) The distance between two nodes n, and n,, or the

minimum number of links forming a path between

the nodes. Several paths of length d(n, n,) may ex-

ist between the processes.

B. Image Architecture

The image architecture to be mapped onto the host net-
work is represented by an image graph that describes the
communication dependencies between concurrent processes.
The image graph is a directed graph G,= <V, E, W;>.
Every vertex in V; corresponds to an individual process. Ev-
ery edge (p,p,) € E; corresponds to a one-way data con-
nection between processes p, and p,. This does not impose
any limitations on process communication, as a mutual data
dependency may be represented as two opposing directed
edges. The weight of an image edge w, € W, represents the
expected traflic from p, to p,. The following terminology is
used when referring to the image architecture.

P The number of processes to be mapped, P = |V,]|.

D A process j in the image architecture, 1 <j < P.

Wi The communication requirement in packets or units
of traffic between processes p; and p,.

Cix The effective communication cost of a connection

between processes p; and p,.

£ Jf; € Vy such that the mapping function f: V; - Vy
assigns process p; to node f,.

d(p, p) The minimum number of links forming a path be-
tween the nodes which execute processes
p; and p,, i.e. d(f, /) Several paths of length
ai(pj, p,) may exist between the processes.

An abbreviated form of the distance function d, is used
where the meaning is apparent {rom context. The term d,
may be interpreted as either d(n, n,) or d(p;, p,) when appro-
priate. Communication weights are integer numbers, and
traffic between two processes is indivisible; the traffic may
not be split and routed along different network paths. Ordi-
narily, the number of processes P is equal to the number of
available nodes N to maximize the use of processor resources.
If P is less than N, however, N — P dummy processes may
be added to theimage graph. To accommodate the possibil-
ity of isolated processes, the image graph G; may be uncon-
nected. The case P> N poses load sharing problems which
are not considered in this paper.

C. Prior Work

One evaluation criteria commonly implemented in opti-
mization algorithms is the objective function found in the
quadratic assignment problem [1]. Cast in terms of the
mapping problem, the problem may be stated as {ollows. A
set of P processes has associated with it a communication
traffic intensity w, between each pair of processes p, and p,.
A set of N processor nodes are configured with a distance or
delay d(n,, n,) between nodes n, and n, . Then the communi-

I

cation overhead between two processes j and & is the product
of w, and d(f, f;), and the optimal mapping f minimizes

> - d(f).

ik

This objective function treats the communication traflic be-
tween every pair of processes as if it is independent of all
other processes, which is only true if nodes communicate
along dedicated network links. Thus it does not accurately
characterize the high local traffic densities and communi-
cation bottlenecks that may arise among concurrent proc-
esses.

A mapping strategy using the cardinality of the mapping
for the objective function was investigated by Bokhari [2].
Using cardinality as a measure of assignment quality, the
objective is to maximize the number of pairs of communi-
cating processes that fall on pairs of directly connected
processors, thereby maximizing the number of image edges
that map to host edges. This strategy fails to account for the
significant effect that unmatched pairs of edges can have on
the total communication overhead. Also, the algorithm as-
signs a uniform traffic intensity to all pairs of communicating
processes, which limits its application. Bokhari states that a
mapping algorithm using cardinality as an objective function
exhibits behavior very similar to the quadratic assignment
problem.

Bianchini and Shen [3]-[4] describe a method to auto-
matically assign interprocessor communication in special
purpose multiple processor systems, e.g. digital signal proc-
essing systems. The objective function used in the algorithm
determines a communication cost based on the utility of
network links, where utility is defined as the fraction of link
capacity utilized by traffic. They do not consider the issue
of process assignment; the traffic scheduler accepts a fixed
placement of processes in the host architecture and then
generates an optimal communication schedule for that par-
ticular assignment. This is acceptable when considering only
dedicated heterogeneous architectures, where there may be
little opportunity for optimizing the assignment of the image
architecture to the processor nodes. For general-purpose
homogeneous architectures, however, the assignment of
processes has a substantial impact on the quality of the final
traffic schedule and the overall system throughput.

To overcome the inadequacies of traditional objective
functions, Lee and Aggarwal [5] formulate a set of new ob-
jective functions that accurately quantify communication
overhead. Their functions measure the optimality of a map-
ping for general applications by considering the communi-
cation cost of all image edges along with the overall mode
of communication, synchronous or asynchronous. This al-
lows realistic evaluation of the network contention that oc-
curs when concurrent processes compete for communication
resources. Lee and Aggarwal also describe an efficient map-
ping strategy developed for the objective functions. While
the mapping strategy addresses the problem of optimal
process assignment, it utilizes a fixed routing scheme for
traflic scheduling. Such a mapping scheme does not consider
the possibility of exploiting the routing rules of a network to
optimize the assignment of the image connections to network
data paths.

D. Objective and Cost Functions

The objective function determines the performance
characteristics of the mapping algorithm by specifying an
appropriate optimization goal. To provide a realistic evalu-

ation of the total communication overhead, the traffic inten-
sity of each weighted image connection must be considered.

Cost Functions: The communication cost ¢, of an image
connection between p; and p, is a function of the weight or
traflic intensity of the corresponding edge in the image graph.
If the connection is routed along dedicated network links, the
communication cost C1 may represented as

Cl = ¢y = wy, - d(f;, fi)-

In this case the cost of the connection is determined by the
distance separating the nodes which p;, and p, are mapped
onto.

In general, a connection is established along network
links that are shared by a number of different processes.
Some links may be used by several processes, and communi-
cation along the connection will experience delays due to link
sharing. The delay encountered at a network link is propor-
tional to the total traffic intensity supported by that link.
To quantify the effect of the overall delay on the cost of the
connection, the delay at every link must be taken into ac-
count. Some additional definitions are needed.

L, Link number / (1 <i<d,) in the connection be-
tween p; and p, under consideration.

D, The amount of delay at link L.

UJ(L) U(L)=1 if the connection between processes p,

and p, is routed along link L; U, (L) =0 otherwise.

Then the delay at each link in the connection is represented
by

Di=) wy- UylL),
5,1

and the cost of a connection between p; and p, by

4
C2=c4=) Ds
i=1

If subscripts j and & are interpreted to mean the nodes », and
n, connected by link L, then the above expression for D, is
equivalent to #,, the traffic intensity of link /,. Therefore the
delay or communication cost of a network link is propor-
tional to the total traffic routed along the link.

Given a means to calculate the communication cost of
each image connection, an objective function can be defined
to determine the overall cost of a mapping. The following
functions are adaptations of two of the four objective func-
tions investigated in [5].

Objective Functions: A simple optimization criterion used
in VLSI placement problems involves summing the costs as-
sociated with pairs of components to obtain an overall sys-
tem cost. In the mapping problem, this corresponds to
summing the communication cost between every pair of
processes in the network. The total communication cost F1

can be written as
Fl=) ¢

Jik

Using this function with cost function C1 does give some
measure of the quality of an assignment, but it ignores the

conflicts due to link sharing by different image connections.
Thus F1 should be combined with cost function C2 to form
an objective function suitable for the mapping problem.

To more accurately describe the quantity being opti-
mized in multiprocess communication, a second objective
function F2 can be defined. When all processes in the nct-
work are synchronized, the image connection with the largest
communication cost determines the overall performance. To
characterize this behavior, F2 is defined as

F2 = max(cy).
%X(cjk)

F2 may be used with either cost function Cl or C2 . Mini-
mizing either F1 or I2 does not necessarily minimize the
other, so the objective function used must be chosen with
care. The choice depends on the application under consider-
ation as well as the mapping algorithm used.

H1. ASSIGNMENT AND SCHEDULING USING
SIMULATED ANNEALING

For large scale mapping problems, obtaining an exact
optimal solution is not practical. Iterative improvement al-
gorithms have been employed in the mapping problem with
some success, however, they tend to produce solutions that
are locally but not globally optimal. The simulated annealing
method supplements iterative improvement by providing a
mechanism to escape local optima and has been found to
exhibit desirable solutions in combinatorial optimization
problems similar to the mapping problem [6]. Existing
mapping algorithms utilizing iterative improvement provide
a basis for a new approach to the mapping problem that uses
simulated annealing.

A. Partitioning the Problem for Simulated Anncaling

In the mapping problem, both the assignment of proc-
esses to the host network and the scheduling of communi-
cation paths are critical to the overall system performance.
To optimize the mapping of the image graph to the host
graph, a two phase mapping strategy is required. The first
phase is essentially a placement problem; it attempts to de-
termine the best mapping of processes onto nodes without
considering the details of traflfic routing. The second phase
is analogous to the wiring problem; it optimizes the decom-
position of traflic connections onto network links, operating
within the constraints imposed by the routing rules of the
network. Both optimization phases may be implemented us-
ing simulated annealing.

The design of a good simulated annealing algorithm re-
quires the specification of four elements: system configura-
tion, annealing schedule, move set, and objective function
[6]. By varying the elements, a single annealing algorithm
can be extended to work with both optimization phases. In
the following sections, we concentrate on the aspects of sim-
ulated annealing unique to the mapping problem. A general
objective function suitable for annealing is formulated, and
algorithm modifications specific to the assignment and
scheduling phases are described.

B. Objective Function for Annealing

For effective annealing, the objective function should
exhibit a wide range of values corresponding to the factors
being optimized. Optimal configurations should have mini-
mum cost, and inferior or physically unrealizable configura-
tions should be penalized by high costs. Of the two objective
functions previously defined, F1 produces a greater variation

in cost, making it more desirable as a cost metric for simu-
lated annealing. However, objective function F2 more accu-
rately characterizes the quantity being optimized in the
mapping problem. To satisfy these conflicting requirements,
both F1 and F2 should be considered. Examining the form
of Fl and F2 shows that there is negligible overhead incurred
by keeping track of F2 as F1 is being calculated for a config-
uration. 'An assignment that minimizes F1 but increases F2
is not desirable, as F2 describes the actual limiting factor in
synchronous multiprocess communication.

A new objective function is formulated to provide a sin-
gle evaluation criterion by including both FI and F2 as terms.
Introducing a constant weight factor W, one possibility for
such a function is

F=F1+W-F2,

where W penalizes any configuration that increases F2. The
magnitude of I should be large enough so that the minimum
variation in W . F2 for a single move is greater than the
maximum variation of FI. This ensures that a move in-
creasing (decrcasing) F2 will produce an increase (decrease)
in the overall cost of a configuration. To achieve a similar
effect, we consider both F1 and F2 during annealing by: 1)
ignoring F2 during high temperature annealing when tempo-
rary increases in F2 and the objective function are to be ex-
pected, and 2) rejecting all moves generated during low
temperature annealing that increase F2. This objective func-
tion used for annealing and defined as F1 combined with F2
will be referred to as the standard objective function.

C. Processor Assignment

The first mapping phase assigns image processes to host
network processing nodes. The basic strategy of this phase
is to assign processes with large mutual communication re-
quirements to neighboring nodes in the host network. This
phase does not consider detailed traffic routing. However,

the spatial locality and communication requirements of

processes must be considered simultaneously to generate an
optimal mapping. Mapping phase one will be referred to as
process annealing, and is characterized as follows:

1. Move Set: Moves are generated by pairwise exchanges
of processes, Monte Carlo style. To evaluate the effect
of a move on the objective function, the only process
connections that need to be considered are those associ-
ated with the two swapped processes.

2. Objective Function: Since traffic routing is not consid-
ered during process assignment, cost function C1 must
be used. Thus the cost of a connection is the product of
the communication intensity and the distance between
the nodes hosting the processes. The overall assignment
cost is determined by C1 used with the standard objective
function.

For process assignment the spatial location of nodes to
which the process will be assigned are fixed by the physical
structure of the host network. The only possible move is the
pairwise exchange of two processes. However, one of the
processes may be a dummy process inserted in the host net-
work to account for excess processing nodes. This form of
move corresponds to a process translation. For the special

case N> P, this move gives the mapping algorithm an addi-

tional degree of freedom, enabling it to move processes
among surplus nodes to determine the best distribution of
processes. In the final stages of process annealing, the ex-
change of distant processes is unlikely to result in an im-
provement in the objective function, and only processes

separated by small distances are considered for exchange.
Limiting the range of attempted moves in this fashion maxi-
mizes the number of feasible moves attempted at each tem-
perature stage.

D. Link Assignment

The second phase of mapping, referred to as connection
annealing, schedules the interprocess communication onto a
physical network topology. Given the fixed process mapping
generated by process annealing, connection annealing deter-
mines an optimal assignment of image connections to host
network data paths. This phase routes the connection be-
tween every pair of communicating processes onto a path of
one or more network data links between the source and des-
tination nodes. When communicating processes are assigned
to directly connected nodes, the corresponding data path for
the connection will consist of a single link. Otherwise, the
connection must be routed along a series of data links. In
general, a connection should be routed along the least possi-
ble number of links to minimize network path delay. How-
ever, an indirect route may be necessary to avoid heavily
utilized data links if adding traffic to that link would exceed
its capacity.

Unless all processes are assigned to directly connected
nodes, corresponding to a perfect mapping, the possibility
exists for link sharing among image connections. To avoid
communication delays caused by the resulting link con-
tention, the link assignment phase should route traffic along
links supporting minimum traffic intensity whenever possible.
By evenly distributing the traffic load among network links,
the total network throughput can be maximized. Thus con-
nection annealing must consider both path length and traffic
intensity to determine an optimal link assignment. The

annealing algorithm for link assignment incorporates the fol-
lowing elements:

I. Move Set: Path moves are more difficult to generate
than the simple random pairwise exchanges in process
annealing. A path is formed by starting at the source
node, and then choosing links according to criteria based
on both traffic intensity and remaining path distance.
The link may be selected by fixed or adaptive means,
depending on network routing rules. To evaluate the ef-
fect of a move on the communication cost of an assign-
ment, the only data links that need to be considered are
those affected by the connection being altered.

2. Objective Function: To characterize the interaction and
contention between image connections that arise during
traffic routing, cost function C2 must be used. Thus the
cost of a connection is the sum of the traffic intensities
supported by the network links assigned to the con-
nection. The overall assignment cost is determined by
C2 used with the standard objective function.

In process annealing the method used to generate moves
is basically limited to the pairwise exchange of processes.
For connection annealing, however, several possibilities exist
for move generation. The method selected to rearrange a
path depends on the routing flexibility allowed by the host
network and the objective function used for scheduling.
Given a source and destination node in the network and a
criteria for selecting links, the path generator must establish
a path if none is present, or produce a permutation of an
existing path.

The scheme used by the host network for traffic sched-
uling limits the routing strategy used for link assignment.
When the assignment of specific data links to a network path

is predctermined by the routing rules of the network, path
generation is limited to fixed path selection. If network
routing rules allow for several possible paths between source
and destination nodes, link assignments may be based on an
adaptive selection criterion.

During path gencration, the adaptive assignment ap-
proach considers the existing traflic conditions produced by
previously routed image connections. Starting with the
source node, there may be several feasible choices for an ini-
tial path link that reduce the remaining path distance. The
adaptive criterion specifies that the link /, supporting the
minimum traffic #, should be selected. If multiple links sup-
port the same minimum ¢,, then the next path link is selected
from them randomly. This process is repeated, selecting
minimum cost links until the path is completed. Due to its
greedy nature, adaptive selection will not always produce a
least cost path. In addition, there is no guarantee that a re-
arranged path will actually be different from the original
path. Adaptive path selection is more efficient than random
path generation, and is useful for both the initial link assign-
ment and the connection annealing optimization phase.

E. Initial Assignment

For process and connection annealing, assignment of the
initial system configuration can have a profound eflect on
both required run time and final mapping quality. Instead
of relying on a random initial configuration, a procedure can
be used to achieve a good initial assignment, and annealing
can begin at a lower starting temperature to reduce run time.
Using an initial assignment algorithm produces a system
configuration that contains partially ordered domains. If the
initial mapping is prepared carefully, the structure of these
partially ordered regions corresponds to those existing in an
optimal system configuration. Thus the amount of anncaling
required to locate a globally optimal mapping is greatly re-
duced. To preserve the advantages of a good initial mapping,
the starting temperature must be chosen low enough to
search the immediate state space without destroying the de-
sirable features of the mapping. Starting too low, however,
may cause the annealing algorithm to become trapped in an
inferior local minimum.

Our experience indicates that using an initial assignment
algorithm to gencrate process assignments for large image
architectures can produce suboptimal configurations that are
difficult to escape by low temperature annealing. Conse-
quently we do not utilize the initial assignment algorithm for
process annealing, and rely instead upon a random initial
assignment with a complete temperature annealing run. The
additional computation time is justified by the higher quality
of final solutions obtained.

Unlike the case of initial process assignment, we found
that the quality of traffic configurations produced by an ini-
tial link assignment algorithm coupled with a low temper-
ature connection annealing run were comparable to those
generated by a random initial assignment and full annealing.
Conncction assignments produced by such an algorithm are
greatly superior to the unbalanced, chaotic network paths
generated by a random initial connection assignment. The
selection of the initial annealing temperature is crucial for an
eflicient interface between the initial link assignment and
connection annealing algorithms.

1V. APPLICATIONS USING HYPERCUBE

In this section the performance of simulated annealing
is demonstrated using two image architectures. The host
network is implemented as a binary hypercube topology, a
popular architecture for large scale multicomputers [7]. In
the following discussion, D is the dimension of the
hypercube, and L is the number of communication links in
the hypercube, where L = D - 201,

A. Hypercube as host architecture

In a sizable hypercube network incorporating hundreds
or thousands of processor nodes, node assignment and com-
munication scheduling are difficult problems. Process as-
signment is complicated by the ability to map a number of
different, complex image topologies onto the hypercube. In
addition, for every pair of communicating nodes separated
by d, links, there are d,! possible paths along which a con-
nection can be routed. Determining a suitable mapping for
a large hypercube network exercises the full power of the
simulated annealing assignment algorithms.

For a general image graph, the communication overhead
of the optimal mapping is unknown prior to assignment and
scheduling. Due to the nondeterministic and heuristic nature
of simulated annealing algorithms, there is no guarantee that
the best mapping will be found. To accurately measure the
performance of the mapping algorithm, an image graph with
a known global minimum is used as a test case. The image
graph chosen is similar in form to that of the hypercube host
graph.

B. Hypercube Traffic Problem

The hypercube image graph is denoted by
Gui= <V,E,W>,
(pj’ p)eEY Pj Pr € v I d(pjv pk) =1,
IEl =D-2°,
wie=1VY (p;, p) € E.

Here the distance function d() is defined as {or the hypercube,
but is used instead with process indices. The connection
structure of the graph corresponds to the hypercube graph,
with weight 1 on each edge. [For every communication link
in the hypercube, there are two opposing directed edges in
the hypercube image graph.

The performance of the mapping algorithm is evaluated
by mapping random permutations of the hypercube image
graph onto the hypercube host. The optimal solution is
known in this case, so the relative quality of assignments
generated by the algorithm can be determined. In the ideal
mapping, every network link supports two connections with
weight 1, so

FlippaL= Zczjla
Ik

If the algorithm succeeds in finding the optimal assign-
ment for this graph, all pairs of communicating processes fall

Number of Moves

T 1 T 1 I]
8 16 32 64 128 256 512
Problem Size

Fig. 1. Total Generated Moves vs. Problem Size

on nearest neighbor connected nodes in the hypercube, and
no traffic scheduling is needed. Thus the first phase of
annealing, processor assignment, is critical for this image ar-
chitecture. For an optimal assignment, the actual communi-
cation overhead equals the ideal communication overhead.
-The mapping algorithm was run on hypercube traffic graphs
containing from 8 to 512 processes. The results are tabulated
in Table 1, and represent average values obtained using ran-
dom initial assignments. The total moves column gives the
total number of moves generated during all stages of
annealing. Figure 1 demonstrates the relationship between
computational effort and problem size.

By adjusting values for the initial temperature and rate
of annealing according to the problem size, we were #ble to
converge into optimal solutions consistently for N < 128.
The initial temperature is taken high enough so that the ratio
of accepted moves to total proposed moves exceeds 0.9, en-
suring that the majority of generated moves are accepted.
Large problem sizes require a slower cooling rate to investi-
gate a greater portion of the problem search space. This in-
creases the probability of finding an optimum solution, at the
expense of increased execution time.

C. Tree Traffic Problem

Tree image graphs are frequently encountered in parallel
processing applications. The graph considered here has the
form of a binary tree, described by

Gr= <V,E,W>,
[El =2-(N—1),
wie=1VY p,pre V| (p, pi) € Grrep:

An extra process is added to the graph and connected to the
root of a standard binary tree so that N is a power of 2. There
is no known closed form solution for the minimum commu-
nication overhead for a mapping of the tree graph onto a
hypercube, so Fl,,.,, and F2,,,,, are unknown.

To map the tree graph onto a hypercube, both process
and connection annealing were used. FEach phase of
annealing is effective in reducing the overall communication
cost. In all cases a random initial configuration was used,
and the parameters for the anncaling schedule were chosen
to provide a good balance between mapping optimality and
algorithm computation requirements. Table 2 shows the re-

sults for tree sizes containing 8 to 512 nodes. The tabulated
values for total moves reflect the sum of process moves gen-
erated during process annealing, and path moves gencrated
during connection annealing. Mapping results show that the
hypercube network provides excellent support for the com-
munication requirements of the tree image graph.

V. CONCLUSIONS

A graph-based scheme utilizing the simulated annealing
optimization heuristic has been developed for the automated
mapping of an arbitrary image graph onto a general-purpose
multiprocessor architecture. The complete procedure em-
ploys two annealing-based optimization phases. Process
annealing attempts to assign processes that exhibit high mu-
tual communication requirements to neighboring nodes in
the host network. Connection anncaling incorporates an in-
itial assignment procedure, and further reduces communi-
cation costs by performing traflic routing of data paths. A
communication cost function is formulated that captures the
effect of transmission delays and bottlenecks arising as proc-
esses compete for communication resources.

The simulated annealing technique is easily extended to
generate mappings for a large class of host and image archi-
tectures. The underlying annealing procedure is completely
general, and makes no assumptions about the intercon-
nection structure of the host or image architectures. De-
pending on the application, varying parameters such as the
class of moves generated, the cost functions, and the
annealing schedule enable the behavior of the mapping algo-
rithm to be modified for maximum performance. As cur-
rently implemented, the procedure uses a binary hypercube
topology as the host architecture. The mapping scheme has

‘been evaluated using a variety of image graphs. We were

able to anneal into optimal solutions for N < 128, and near-
optimal solutions for larger image architectures. Our results
show that the strategy scales well for large problem sizes,
obtaining good results with computational effort propor-
tional to small powers of N.

REFERENCES

[1] M. Hanan and J. M. Kurtzberg, “A review of the
placement and quadratic assignment problems,”
SIAM Rev., vol. 14, pp. 324-342, Apr. 1972.

[2] S. H. Bokhari, “On the mapping problem,” IEEE Trans.
Comput., vol. C-30, pp. 207-214, Mar. 1981.

[3] R. P. Bianchini, Jr. and J. P Shen, “Interprocessor traf-
fic scheduling algorithm for multiple-processor net-
works,” IEEE Trans. Comput., vol. C-36, pp. 396-409,
Apr. 1987.

[4] R. P. Bianchini, Jr. and J. P. Shen, “Automated compi-
lation of interprocessor communication for multiple
processor systems,” in Proc. IEEE Int. Conf. Comput.
Des., Oct. 1986, pp. 262-268.

[5] S.-Y. Lee and J. K. Aggarwal, “A mapping strategy for
parallel processing,” IEEE Trans. Comput., vol. C-36,
pp. 433-442, Apr. 1987.

[6] S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi,
“Optimization by simulated annealing,” Science, vol.
220, May 1983, pp. 671-680.

[7] C. L. Seitz, “The Cosmic Cube,” CACM, vol. 28, no.
1, pp. 22-33, Jan. 1985.

Table 1. Results for Hypercube Traffic Problem
Total Initial Comm. Final Comm. Ideal Comm.

N Moves Overhead Overhead Overhead
1 12 Fl F2 FI, F2,
8 110 272 14 48 2 48 2
16 940 756 21 128 2 128 2
32 9,000 2,384 28 320 . 2 320 2
64 37,500 8,400 49 768 2 768 2
128 212,200 26,060 64 1,792 2 1,792 2
256 1,415,600 72,780 82 5,004 12 - 4,096 2
512 | 6,536,100 203,350 101 13,912 20 9,216 2

Table 2. Results for Tree Traffic Problem

Total Initial Comm. Final Comm. Ideal Comm.*
N Moves Overhead Overhead Overhead *
Fl F2 I'1 F2 Fl, F2,
8 35 92 10 32 4 32 4
16 250 248 15 72 4 64 4
32 7,600 558 20 144 4 128 4
64 49,800 1,340 22 272 4 256 4
128 280,300 2,752 24 546 4 512 4
256 1,552,400 6,182 30 1100 4 1024 4
512 6,802,000 12,974 32 2144 4 2048 4

‘Lower bound.

COMPARING THE PERFORMANCE OF

TWO DYNAMIC LOAD DISTRIBUTION METHODS

L.V. Kalé !,

Department of Computer Science

University of Illinois at Urbana~Champaign

1304 W. Springfield Ave., Urbana, IL-61801

Abstract — Parallel processing of symbolic computa-
tions on a message-passing multi-processor presents one
challenge: To effectively utilize the available processors,
the load must be distributed uniformly to all the proces-
sors. However, the structure of these computations can-
not be predicted in advance. So, static scheduling
methods are not applicable. In this paper, we compare
the performance of two dynamic, distributed load
balancing methods for small-grained tasks on large
parallel machines.

1. Introduction

Processor utilization is a key factor that decides the
speedup provided by a parallel system. A thousand pro-
cessor system can provide a speedup of 1000 only :f all
the processors can be kept busy all the time. Ideally, the
computation should be divided in P equal parts (where P
is the number of processors), one for each processor.
But, it is usually impossible to identify ‘P equal parts’
except for highly structured computations. An alterna-
tive is to divide the computation into many small
granules. Then, even if these granules are of unequal
sizes, their large number would allow us to distribute
them equally. Many parallel evaluation schemes for
functional programs, logic programs, problem-solving,
searching ete., offer such a small grain of parallelism.

The large pool of tasks may lead to a increased
speedup only if there is an effective load distribution
scheme, one that ensures that no processors remain idle
while there is work available in the system. This is par-
ticularly true on a message—passing multiprocessor.

What sort of load balancing system is needed for a
message passing system? The unpredictability of compu-
tation structures implies that it must be a dynamic or
run-time strategy, as opposed to a static or compile-time
strategy. For scalability, it must not be centralized at a
few PEs, but distributed on all of them. Also, it should
not depend on global information. Each PE should only
use the information provided by its neighbors.

There has been a substantial amount of research on
the problem of load balancing and load distribution [1, 2,
8]. However, most of it has been in the context of either
large—grain tasks, or a relatively small number of proces-
sors, or in the context of real-time tasks. Much work

Thig research was supported in part by the National Science
Foundation under grant number CCR-87-00988.

has been done for static load balancing?, where the
task-to—processor mapping is decided ahead of run—time.
There has been very little work on dynamic load balanc-
ing for fine-grained parallel tasks running on a large
number of (100s to tens 6f thousands) parallel processors.

In this paper, we compare the performance of two
such load balancing schemes. One of them is ‘contract-
ing within a neighborhood (CWN), a relatively simple
strategy proposed by us [3]. The other is the Gradient
Model (GM) proposed by Lin and Keller [6].

2. The Competitors

The small grain tasks found in most application
domains have some interesting features in common.
When activated, they execute for a short time, and then
either complete, or start some sub-tasks and awaits
response from them. The same cycle is repeated on
receiving a response. Usually, it is prohibitively expen-
sive to move a task from a PE to another after it has
spawned sub-tasks. Both the strategies we describe
avoid that. They do differ as to when a task is distri-
buted: CWN schedules a task on some PE as soon as it is
created; the GM keeps the newly created tasks on the
source PE, and distributes them when required.

2.1. Contracting Within Neighborhood

This scheme is based on the fact that allowing com-
munication between arbitrary pairs of PEs is not scalable.
In a system with global communication, as the number of
PEs is increased, a point is reached beyond which the sys-
tem is always communication bound. This is true for any
interconnection scheme which uses a fixed number of
connections per PE [4]. It is possible to avoid global com-
munication in tree structured computations as the com-
munication is almost exclusively between parent and
child tasks. So CWN restricts a child task to be within a
fixed radius — neighborhood — from its parent. Also, in
the interest of agility, CWN sends every subgoal out to
another PE as soon as it is created.

% In some of the large—grain load balancing literature, a distinction is
made between the terms load balancing and load distribution. There the
former term refers to initial distribution of work, whereas the latter refers to
what we call redistribution of work. On fine-grained systems, the tasks are
being created throughout the life cycle of the a computation with almost
equal rate. We use the term load balancing to refer to the general problem
of maintaining adequate levels of load on all processors.

Each PE maintains the load information about its
immediate neighbors. This information can be a combi-
nation of various factors that gauge the current and
future ‘load’ on that PE. A simple measure is the
number of messages waiting to be processed by that PE.
This information is maintained by broadcasting a very
short message to all the neighbors periodically, or as an
optimization, piggy-backing the load information ‘word’
with regular messages. Any time a subgoal is created on
a PE it sends a new goal message to its least loaded
neighbor. The message also includes a count field that
says how many hops the message has traveled from the
source. A PE that receives such a message keeps the
goal for processing if the hop count is equal to the
allowed radius. Otherwise it sends the goal to its least
loaded neighbor after incrementing the count. If a PE
finds its own load is less than its least loaded neighbors,
it keeps the goal provided the message has already trav-
eled a stipulated minimum hops. Thus, a new subgoal
travels along the steepest load gradient to a local
minimum. A goal, once it is accepted by a PE, remains
there, and is finally executed by that PE.

As it follows the local load gradients, this scheme
may not send a given subgoal to the least loaded PE in
the neighborhood, because of the horizon affect. How-
ever, looking for the least loaded PE in the neighborhood
would be expensive. The minimum hops are stipulated
-to alleviate this problem to some extent. A source PE
cannot keep a piece of work even if it is the least loaded
among its neighbors. It must send it some distance to
‘look over the horizon’, and then possibly get it back.

The scheme is naive on several counts. First,
requiring every piece of work to be contracted out to
another PE seems excessive. Also, once a goal reaches its
‘destination’ it remains stuck there, which removes
opportunities for a correction as time goes on. However,
the strategy is meant as a starting point. The simula-
tion studies should suggest specific ways of improve-
ment.

The scheme has two parameters: the radius, i.e. the
maximum distance a goal message is allowed to travel,
and the horizon, i.e. the minimum distance a goal mes-
sage is required to travel.

2.2. The Gradient Model

The gradient model is a more elaborate scheme
than CWN. A newly generated subgoal is simply entered
in the local queue. A separate, asynchronous process
handles the load-balancing functions. This process
wakes up periodically, and computes the load on the PE
as in CWN. Using two parameters, the low-water-mark
and high-water-mark, it decides the state of the node as
follows. If the load is below the low-water-mark, the

state is 1dle. If the load is above the htgh—water-mark,
the state is abundant; Otherwise, it is neutral. It then
computes its prozimity: The proximity of an idle node
is 0. For others, it is one more than the smallest prox-
imity of their immediate neighbors. All the PEs initially
assume that the proximities of their neighbors are 0. If
the calculated proximity is more than network diameter,
then it is set to (network diameter +1), to avoid
unbounded increase in proximity values. If the proxim-
ity is different from its previous value, it is broadcast to
all the neighbors. If the state were idle or neutral, the
process sleeps until the next interval. If the state were
abundant, it sends a goal message from the local queue
to the neighbor with least proximity. The neighbor just
adds the message to its queue. This may change its state
which is noticed when the gradient process on that PE
wakes up.

The proximity of a PE represents a guess at the
shortest distance to an idle PE. It is a ‘guess’ because by
the time the information about an idle PE reaches
another PE via the update-and-broadcast—proximity
sequence, the state of some PEs may have changed.

The rationale behind the GM is to keep work locally
as far as possible, and to send work out towards a PE
that is in danger of being idle. This strategy is
parameterized by: the low-water-mark, the high-water—
mark, and the sleeping interval between two execution
cycles of the gradient process.

3. The simulation set—up

The simulations were carried out on ORACLE, a
multi-processor simulation system we are developing.
ORACLE is written in SIMSCRIPT, which supports pro-
cess abstraction. ORACLE has one process for each user
process running on a PE, and one process for each com-
munication channel. Thus it models contention for the
basic resources of a parallel system.

ORACLE accepts input specifications such as the
number of PEs and their interconnection scheme, the
load balancing strategy to be used (from its repertoire of
strategies), control strategy options, form and kind of
output information required, a program to execute and
times to be charged for primitive operations. ORACLE
can provide statistics on a variety of performance
aspects such as the overall average PE utilization, aver-
age utilization of individual PEs, average and individual
utilizations of communication channels, and the time to
completion.

A point worth noting is that when we run a pro-
gram on ORACLE, we get the result of the program, in
addition to the performance statistics. In contrast, a
trace driven simulation approach would be to carry out
the computation in advance, producing a trace, which

will then be used by the simulation system to get the
performance figures. We found such an approach would
not save much in terms of simulation time. Another
approach could be to use a statistical model of computa-
tion. In absence of any uniform model of parallel com-
putations, it was thought to be too unreliable and ad—
hoc an option. So we opted for executing specific com-
putations with well-understood structures.

The sample points at which to compare the two
schemes vary on many dimensions: the interconnection
topologies, the number of PEs, the computation struc-
ture and size, and the communication to computation
ratio.

We selected 2 interconnection topologies: the 2-
dimensional grid (nearest neighbor grid) with wrap-
around connections and the double-lattice—mesh (DLM)
topologies. The grid was used in simulations of the gra-
dient model by Lin [7]. The DLM is a bus-based topol-
ogy proposed by us [4]. We also decided to simulate
systems with 25 to 400 PEs. Beyond 400 PEs, the time
required for simulations was prohibitive. This range
should be sufficient to understand how the schemes will
behave when the size of the system changes.

To be able to interpret the simulation results, and
get an understanding of how the load balancing schemes
behave, we needed a predictable computation, whose
structure is easy to grasp. Then, there won’t be ambi-
guities about whether a certain feature that is seen in
the simulation data is due to the nature of the computa-
tion or due to the load-balancing scheme. We chose to
use divide—and-conquer, and naive-fibonacct programs
for these reasons. The divide-and-congquer (abbreviated
dc) program was used by Lin, and may be written as:
de(M,N) «— if M = N then M

else dc(M,(M+N)/2) + dc(1 + (M+N)/2, N)
The natve—fibonacet is the doubly recursive function to
compute fibonacci numbers.
fib(M) «— if M < 2 then M else fib(M-1) + fib(M-2)
It must be pointed out that we are not really interested
in how to compute this functions in parallel. There are
much more efficient methods for computing them.

We used 6 different computation sizes for each pro-
gram. Fibonacci of 7, 9, 11, 13, 15 and 18, and the dc
computations of the same sizes, namely: de(1,n) for
n=21, 55, 144, 377, 987 and 4181. As we wanted to
focus on effectiveness of load distribution, we decided to
isolate the factor of communication load. We chose the
ratio of communication to computation to be such that
communication stagnation does not occur.

3.1. The optimization experiments

Each scheme has a few parameters that have to be
selected. In the interest of fairness, the parameters

10

must be chosen in such a way each scheme is working at
its best. We chose a few sample points in the space of
planned experiments, and ran the simulations for vari-
ous combination of parameters. The winning combina-
tions were used for the comparison experiments. The
parameters so chosen are shown in the table below.

It is worth noting that the 20 units interval is fairly
low, as the total execution time for simulations ranged
from 1000 to 23000 units. That means the gradient pro-
cess is running very frequently, which should be an asset
to its performance. Also, we assume a communication
co-processor to handle the routing and load-balancing
functions (for both strategies). Without such a co-
processor, the gradient model will suffer more, because
it executes a more complex code and more frequently.

parameter grids lattice-meshes
CWN: radius/horizon 9/2 5/1

GM: high/low-water-mark | 2/1 1/1

GM: sleeping interval: 20 units | 20 units

Table 1: Selected Parameters
4. Simulation Results, and Interpretation

The choices of sample points mentioned above lead
to 240 simulation runs (2 problem types * 6 problem
sizes * 2 topology types * 5 topology sizes * 2 stra-
tegies). The simulations were run on a VAX Each run
took between 15 minutes to 3 hours of time on a Vax-
750.

Plots 1 through 6 show the performance of the two
schemes on the divide-and-conquer computations. (See
[5] for the complete set of plots, including simulations
for hypercubes). Each plot depicts experiments done on
a specific topology, for one problem type. Thus Plot 1
shows the results of 6 dc computations of varying sizes,
running on a double-lattice-mesh with 400 (20x20) PEs.
The Y-axis shows the average PE utilization in percents.
The X-axis is the problem-size in total number of goals
generated during the computation. The speedup can be
computed by multiplying the number of PEs by (average
utilization percentage/100).

On the grid topologies, the CWN is a clear winner
by substantial margins. On the double lattice—meshes
also CWN consistently performs better than the GM.
The only one case seen in these plots where CWN is out-
performed by the GM occurs in plot 2, while running
dc(1,4181) on a DLM with 100 PEs.

The comparative figures from all the runs are
shown in table 2. For each run, we show the ratio of
speed-ups obtained using CWN to that obtained using

GM. In 118 out of 120 cases, the CWN is seen to be
better. In 110 of those cases, the difference is
significant, i.e. more than 10%. On grids at times the
CWN leads to thrice as much speed as (i.e. the response
time) GM.

The DLM topologies have smaller diameters (4-5)
compared to the grids (ranges from 8 to 38). The supe-
rior performance of CWN on the grids leads us to conjec-
ture that it performs better than the GM on large sys-
tems, which of course tend to have larger diameters.

To understand the operation of each method, we
plot the utilizations during short sampling intervals
throughout the course of computation, for a few selected
computations. Plots 7 through 9 show the utilization as
time varies for 3 Fibonacci computations on both topo-
logies with 100 PE. The CWN has much faster ‘rise—
time’ than GM: it spreads work quickly to all the PEs at
beginning. The pitfalls of CWN are also seen, e.g. in
Plot 7 and 8. Although it takes the system close to
100% utilization quickly, it cannot maintain the perfor-
mance at that level. The Gradient model manages to
maintain 100% when it reaches that level (plot 7). This
is because of GM’s ability to re-distribute work. For
CWN, once a goal is sent to a PE, it must be executed
there, although the load conditions may change after
that. It can correct such imbalances only by using
newly created goals, which limits its ability to supply
work to idle processors.

The main problem with GM is that it is not agile
enough. PEs hoard work until they are sure they are
‘abundant’. On the grids, a stronger flattening is seen
(plot 9). When about 40% of the PEs have received
work, most PEs think there is not sufficient work to dis-
tribute it to others, and so keep the new goals they gen-
erate, which leads to loss of parallelism, and as a result
not enough work gets generated. This ‘vicious cycle’ is
responsible for the flattening of the plot.

Examination of the detailed simulation output, not
shown here, reveals another potential problem with
CWN. Typically, it requires thrice as much communica-
tion as the GM. In GM, the average distance traveled by
a goal message is typically less than 1. A significant
number of goals just stay at the PE they were created
on. On the grids, with CWN the distance traveled is
about 3. For example, in computing fib(18) on a 10x10
grid, the average distance was 3.15 for CWN and 0.92 for
GM.

6. Conclusions and Future Work

Although CWN performs better than GM in most
experiments reported here, it still has a large room for
improvement. First, CWN does not allow a goal to be
re—distributed once it has been sent to another PE. As

seen in Plots 7 and 8, the available work is just
sufficient to keep every PE busy, but as the CWN cannot

11

re-shuffle work, some PEs remain idle. However, re—
shuffling is not useful when the work is more than
sufficient or when it is too little. So, a small, well-
controlled (i.e. responsive to run-time conditions) re—
distribution component should be added to CWN. Also,
the larger communication distances indicate that CWN
needs saturation control: When the system is running at
100% utilization, there is no need to send every goal out
to other PEs. Detecting such a situation and then keep-
ing goals locally until the situation changes would be
worth investigating. Both of these amount to incor-
porating the good features of GM in CWN. Care must be
taken not to lose the agility of CWN while modifying it.

A note of caution is in order. We chose a low com-
munication to computation ratio to ensure that com-
munication stagnation does not interfere with the pro-
perty we were trying to measure: namely, the ability to
distribute computation load effectively. When the ratio
is higher, CWN, as it is, may lose some of its edge.
Techniques of the last paragraph will then be necessary.

Acknowledgement: I am grateful to Michael Carroll,
Valerie Rasmussen, and Wennie Shu for their help with
the simulations.

6. References

1. D. L. Eager, E. D. Lazowska and J. Zahorjan,
““Adaptive Load Sharing in Homogeneous
Distributed Systems’, IEEE Transactions on
Software Eng., SE-12, 5 (May 1986), 662-674.

2. D. L. Eager, E. D. Lazowska and J. Zahorjan, “A
Comparison of Reciever-Initiated and Sender—
Initiated Adaptive Load Sharing’, Performance
Evaluation, 8, 1 (March 1986), 53-68.

3. L. V. Kale, “Parallel Architectures for Problem
Solving”, Doctoral Thesis, Dept. of Computer

Science, SUNY, Stony Brook, NY-11794.,
December 1985.

4. L. V. Kale, “Optimal Communication
neighborhoods’, Proc. of ICPP, St. Charles,

Illinois, August 1986.

5. L. V. Kale, “Comparing the Performance of Two
Dynamic Load Distribution Methods”, Tech.
Report No. UIUCDCS-R-87-1387, September
1987.

6. R. Keller and F. C. H. Lin, “Simulated
Performance of a Reduction Based
Multiprocessor’’, Computer, 17, 7 (July 1984), .

7. F. C. H. Lin, “Load Balancing and fault tolerance
in applicative systems’, Doctoral Thesis, Dept. of
Computer Science, Univ. of Utah, August 1985.

8. J. A. Stankovic, “Simulations of Three Adaptive,
Decentralized Controlled, Job Scheduling
Algorithms”, Computer Networks, 8, 3 (June
1984), 199-217.

% PE Utilization

% PE Utilization

% PE Utilization

i 80F
40°r
60}
30
: 40L
20
20 | 20 ;:
10 Plot 1 Plot 2 : Plot 3
DLM 20%x20, w:5 DLM 10x10, w:5 . DLM 8x8, w4
Divide and Conquer Divide and Conquer y Divide and éonquer
0 . Lass Lo L . L 0 Loidaaail . Lowat . . 0 " Lt x s L
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 . 4000 6000 8000
Plot &
Plot 4 Grid 10x10
Grid 20x20 i d O
20l Divide and Conquer Divide and Conquer 6ok
40
10} 3 R
....................... - 20 Z ‘?...
e V' Divide and Conquer
0 . . L Ssastinaal Lot 0 L Leaiat . . Lavaan " 0 . Lodail . . L :
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
x-axis: No. of Goals
0 E
100f wasssom, 10 Plot 8 Plot 9
£ . - . %rid 10x10 80k F'(l})rid 10_)(1{)5
g0l : a3 sof | Fibonacci (18) ibonacci (15)
B S 60}
60 L P H 60F) 7 &)
a0} i T I A 0
b ? b B e F =
20f | 4 " 20/ ’ 20} :
H Plot 7 s, : @ h
E ¢ DLM 10x10, w:5 \a, 7
0 .° Fibonacci (15) 43 0 ; M“% 0 %,ma
N N N L L N > n L PP > it L L L N N L L
0 1000 2000 3000 0 10000 20000 0 2000 4000 6000 8000
x—-axis: Time
Grids Double Lattice Meshes
-=- Nbrhood Contracting PEs | 25 64 100 | 256 | 400 |f 25 64 100 | 256 | 400
o Gradient Model
fib(7) 1.56 | 1.57 | 1.44 | 1.57 | 1.57 || 1.30 | 1.18 | 1.24 | 1.18 | 1.23
fib(9) 1.56 | 1.53 | 1.30 | 1.56 | 1.56 || 1.06 | 1.14 | 1.33 | 1.14 | 1.21
fib(11) 1.56 | 1.56 | 1.79 | 1.92 | 1.92 || 1.09 | 1.12 | 1.06 | 1.11 | 1.16
fib(13) 1.60 | 1.92 | 1.83 | 1.71 | 1.71 }| 1.09 | 1.08 | 1.09 | 1.04 | 1.10
fib(15) 1.58 | 2.14 | 2.03 | 2.56 | 2.56 | 1.21 | 1.14 | 1.04 | 1.05 | 1.04
fib(18) 1.74 | 1.72 | 2.18 | 3.03 | 3.09 || 1.24 | 1.20 | 0.87 | 1.09 | 1.08
de(1,21) 1.46 | 1.47 | 1.44 | 147 | 1.47 | 1.41 | 1.46 | 1.51 | 1.46 | 1.51
de(1,55) 1.37 | 1.33 | 1.37 | 1.33 | 1.33 || 1.17 | 1.51 | 1.35 | 1.51 | 1.38
de(1,144) 1.39 | 1.48 | 1.38 | 1.48 | 1.48 || 1.25 | 1.25 | 1.40 | 1.32 | 1.52
dc(1,377 1.28 | 1.72 | 1.34 | 1.65 | 1.65 || 1.17 | 1.16 | 1.11 | 1.12 | 1.44
Speedup of CWN over GM P (4,377) o8 7 06 | 129
. . . 2.09 | 2.0 . . . K .
Table 1T ¢(1,987) | 1.38 | 1.89 | 1 9 | 117 | 1.21 | 1.09 | 1.0
de(1,4181) | 1.36 | 1.42 | 2.27 | 2.91 | 2.82 || 1.30 | 1.27 | 0.96 | 1.18 | 1.31

12

AN APPROXIMATE LOAD BALANCING MODEL
WITH RESOURCE MIGRATION IN DISTRIBUTED
SYSTEMS

Ravi Varadarajan
Computer and Information Sciences Department
University of Florida, Gainesville, FL 32611

Eva Ma
Department of Computer and Information Science
University of Pennyslvania,Philadelphia, PA 19104

Abstract — Resource migration in a distributed com-
puter system can be performed for performance enhance-
ment as well as for reliability or availability improvement.
The intractability of the general load balancing model with
both job and resource migration suggests obtaining ap-
proximate solutions. The existing approach is to use heuris-
tic rules to find approximate solutions. In this paper,
we adopt an alternative approach of separating the job
and resource migration problems and propose an approx-
imate model (commodity distribution) for resource mi-
gration which can be solved by a polynomial-time algo-
rithm. We demonstrate the application of this model to
two load balancing problems: file migration in distributed
databases and host migration in mobile computer net-
works. We also outline our efficient algorithm for solving
a special case of this model.

Introduction

A resource in a computer system is defined as any hard-
ware or software entity required for the execution of a
user job. Examples of resources include processors, memo-
ries, interconnection networks, system processes, data files,
database relations and file servers. In a distributed com-
puter system, some of these resources are distributed amo-
ng the various nodes in the system. If the distribution of a
resource among the nodes can vary with time, then we call
this resource a ‘migratable’ resource. Examples of such re-
sources include datafiles, processes and mobile hosts. Tra-
ditionally, the term ‘load balancing’ refers to the operation
of distributing or redistributing the user tasks among the
different nodes in a distributed system, to achieve a de-
sirable performance level; typical performance measures
include job response time, throughput and processor uti-
lization. We extend this definition of load balancing to
include the operation of distributing or redistributing the
migratable resources of a computer system to achieve a de-
sirable performance level. Redistribution of the user jobs
among the nodes in the system is known as job migra-
tion. We call the redistribution of migratable resources as
resource migration.

Load balancing models without resource migration have
been extensively studied in the literature (e.g. [3], [5]).
We give a few examples of applications where resource mi-
gration is also used for load balancing. In a distributed

13

database system, file migration is performed in order to
maintain at all times, a desirable relation between the file
access rates and the distribution of file copies among the
nodes. Another example of resource migration in a dis-
tributed computer system can occur when a job in one host
needs the services of a system process such as a file server,
query processing program and editor process, running on
a remote host. Here, instead of sending the request to the
remote host and transferring the results back, the required
process itself can be migrated from the remote host. An
example in which a processor itself can migrate is a mo-
bile computer network which consists of mobile hosts and
in which the topology can change from time to time.

An important issue in load balancing with both job and
resource migration is the problem of deciding which jobs
or resource units to migrate. We refer to this problem the
general load balancing problem with resource migration.
In this problem, it is necessary to find a proper distribu-
tion of resources and jobs among the various nodes of the
system so that the desired trade-off occurs between the
job migration cost and the resource migration cost. In one
formulation of this problem, the total migration cost (of
jobs and resources) is minimized. This optimization prob-
lem had been shown to be NP-hard ([2]). The total cost
criterion is useful when the resources and the jobs have to
be migrated one at a time as for example, when a single
broadcast bus such as Ethernet is used for migrating the
resources and the jobs among the nodes. The bottleneck
cost criterion is more appropriate when the resources and
the jobs can be migrated in parallel. The load balanc-
ing problem with the bottleneck cost criterion can also be
shown-to be NP-hard. We omit the problem formulation
and the proof of its intractability here (see [7]).

The exact solutions for the load balancing problem
need either exhaustive or heuristic search procedures, all
of which are prohibitively expensive to be executed in real
time. As a result, approximate solutions are usually used
instead for the problem. One approach which is common
to all the existing techniques is to use heuristic rules for
guiding the search to an approximate solution. However,
the heuristic rules for obtaining approximate solutions are
generally difficult to derive and the accuracy of the solu-
tions are hard to verify. In this paper, we propose a new
approximation approach to solve the general load balanc-

ing problem.

In the new approach first we focus on resource migra-
tion only but with a view to reducing the job migration
costs. For this resource migration problem, we propose
an approximate model which can be solved in polynomial
time. This approximate model partitions the given system
into regions such that all the jobs as well as the resources
in a region have similar characteristics. The partitioning
helps to achieve local approximations for the job and re-
source characteristics (the smaller the regions, the better
the approximations) as well as to separate job and resource
migration problems. By suitable partitioning, good ap-
proximate solutions to resource migration problem can be
obtained. The approximate model for resource migration
reduces to a bottleneck transportation problem and hence
can be solved by a polynomial-time algorithm.

In the next section, we introduce our approximate mod-
el for load balancing and also give a brief outline of an
effcient algorithm we have developed for solving a special
case of this problem. In Section 3, we discuss in detail the
application of this model to file migration problem in dis-
tributed databases and the simulation results on two small
examples. In Section 4, we discuss briefly the application
of the model to host migration in mobile computer net-
works. Finally, we give conclusions and future directions.

- Approximate Model for Resource Migration

First, we partition the given distributed system into a cer-
tain number of regions (say m) Wy, Ws,. .., W, such that
all the jobs within a region have similar characteristics such
as resource requirements. In our model, we only consider
the migration of the resources but not the jobs among the
regions. It may be possible that even after resource migra-
tion, a job at a node may need a resource which may not
be available at the same node. In this case, the request
for the resource can be processed remotely at some node
within the same region or the job itself can be migrated
to the node containing the resource. In either case, after
resource migration, all the resource requirements within
a region must be met by the resources that exist in the
same region; this restriction is specified as a constraint in
our problem.

A word on notation. We denote the set of non-negative
'mtegers by N. Now we define the following parameters:

fr — fixed cost of migrating one unit of resource

cr — unit distance resource migration cost

b; — average resource requirements for a job in region W;
M; — Number of jobs in region W; that need the resource
N; — Number of resource units in region W; before migra-
tion

h; — average time for a node in region W; to communicate
a resource request to a remote node within W; and send
the results back

a; — average time to process a resource request in region
w;

d;; — average distance between regions W; and W;

T — desired average job response time

The quantities a; and b; are averages over all the nodes

14

and the jobs respectively while h; is an average over all
pairs of nodes in the region W;. The quantity d;; is an av-
erage over all pairs of nodes (v1,v;) such that v; € W; and
vy € W;. We assume that the total number of resource
units remains the same after resource migration.

With the bottleneck migration cost criterion, the re-
source migration problem is formulated as follows:

(fr + cr-dji)

{(J:k)lzjk>0}

Minimize
M .bj.a;
Ek:l Zk]
. m
D gk =
k=1
ij €

st b+ =

IN

T,forall1<j<m

Nj,foralll<j<m
N, foralll<j,k<m.

The variable z;; denotes the number of resource units that
need to migrate from the region W; to the region Wj. The
quantity R; = [%{—_bﬁ] is the minimum resource capacity
(expressed in number of resource units) needed to meet
the requirements of jobs in region W;. The quantity ¢;; =
(fr + cr.dji) is the cost of migrating a resource unit from
the region W; to the region Wi.

With these notations, we reformulate the load balancing
problem as follows :

Minimize max i
{(:k)lzx>0}
m
s.t. szj > Rj,foralll <j<m
k=1
m
Ezjk = Njforalll1<j<m
k=1
zjx € N, foralll1 <jk<m.

The above formulation is known as the bottleneck trans-
portation problem in the Operations Research literature.
It is also possible to define two sets of regions, one for
the resource distribution before migration and the other
for the distribution after migration. We call these regions
“supply” regions and “destination” regions respectively.
The supply regions can be defined depending on the basis
of job characteristics and also on the network character-
istics to a certain extent. The destination regions can be
defined on the basis of resource migration costs. Note that
the number of supply regions need not be the same as the
number of destination regions. This variation in the model
provides a close approximation to the exact model we have
defined and also it can be used to reduce the dimension of
the problem with very little additional approximation.
Several efficient algorithms for the bottleneck trans-
portation problems have been proposed in the literature
(e.g. [4]). One special case of the problem is the 2 x n
(n x 2) bottleneck transportation problem in which there
are two suppliers (destinations) and n destinations (sup-
pliers). We have developed an O(n?) algorithm to solve
this special case. We will give a brief outline of our algo-
rithm here (refer to [6] for details). The algorithm for the
2 % n problem uses the fact that there is an optimal solu-
tion in which at most one destination needs to be supplied
by both the suppliers. Hence we restrict our attention to

only those solutions which satisfy this property. At each
iteration, a new feasible solution is obtained which has a
bottleneck value less than or equal to that of the previous
solution. An upper bound for the optimal value is implic-
itly defined by each new feasible solution. In addition, we
determine at each iteration, the optimal shipments and
the corresponding suppliers for one or more destinations.
Hence after each iteration, a new bottleneck problem is
solved with these destinations eliminated. The bottleneck
value among the eliminated destinations is used to define
a lower bound for the optimal value. The algorithm stops
when the lower bound is greater than or equal to the upper
bound or when the optimal shipments can be determined
for all the destinations.

To summarize our approach to solve the load balanc-
ing problem, we use an approximate model to obtain an
approximate solution for the exact model of the load bal-
ancing problem with resource migration. This approach
avoids using heuristic rules to obtain the approximate so-
lutions directly from the exact model. The heuristic rules
are difficult to derive in many instances and do not take
into account the specific nature of the applications. In the
approximate model we propose, how the system is par-
titioned into regions affects the accuracy of the solution
and this partitioning can exploit the characteristics of the
specific application domain. For example, in the case of
local area networks gatewayed together, each local area
network with its resources can be considered a region in
the approximate model.

In the next section, we discuss in detail the application
of this load balancing model to the file migration problem
in distributed systems.

Database File Migration

In a distributed relational database, relations are parti-
tioned either vertically (across attributes) or horizontally
(across instances of the relations) into possibly overlapping
fragments which are referred to as database files. These
files are distributed (also replicated) across the nodes in
the network. A transaction submitted by the user at a
node can be either a query or an update on the database.
The update transaction translates into requests to all the
relevant sites or nodes for updating the appropriate files.
We do not address the query decomposition problem here.
If the file required by a subquery or a query does not exist
locally (i.e. on the node at which the query is generated)
then the subquery is sent to a remote node containing the
file and processed there. We will explain later how a re-
mote node is chosen for processing a subquery.

All the database transactions thus generate over a pe-
riod of time an access pattern for the various database files;
these access requests are classified into query and update
requests. When the locality of file access patterns changes
with time, files (along with the programs to process the
subqueries) need to migrate among the nodes. For simplic-
ity, we only consider the problem of single file migration

(that is, the problem of migrating the multiple copies of a
file).

15

The following costs are incurred during file migration:
(1) costs of file and program storage , (2) costs of updat-
ing all file copies, (3) costs of file migration and (4) query
costs. In determining optimal file migration, we want to
minimize the first three costs while maximizing the av-
erage query throughput or minimizing the average query
response time. The query response time consists of the
following two components: (1) query communication time
which includes the time for sending the request and receiv-
ing the results back and (2) query processing time which
includes the time for processing the file access request. In
formulation of the file migration problem, we make the
following assumptions:

1. A constant number of file copies is maintained at all
times.

2. Due to the first assumption, whenever a new file copy
is generated at a node, some other existing copy at
another node needs to be deleted.

3. All file copies can migrate in parallel.

4. Query communication delay is independent of the
query traffic and is dependent only on the commu-
nication distance. We assume that the nodes have a
limited processing capacity (expressed in file access
requests per unit time) and the processing capacity
is the same for all nodes. Hence the query process-
ing delay is directly proportional to the query traffic
directed to the node containing the file copy.

These assumptions, justifiable in many instances, are made
primarily to simplify the presentation of our model, and to
illustrate that even under these simplifying assumptions,
the problem is already NP-hard. We use the following no-
tations:

V — set of all nodes in the system and P(V') its power set
I,I' — set of nodes containing file copies after and before
migration

f:(I—=TI)— I' — migration function specifying how the
files migrate

g : V — I — query assignment function specifying where
a query request from a node needs to be processed

h : I — P(V) — indicates for a file copy node, the set
of nodes whose queries need to be processed by that node
(i.e. inverse function of g)

n — number of nodes in the system

¢ — query processing capacity of a node (file access re-
quests per unit time)

Uz,b, — update and query request rates from node z

My y,Sz,y — unit update and query communication costs
from node z to node y

F, — cost per unit time of storing a file copy at node y
E;, — cost of migrating a file copy from node z to node

§: I — N — query delay function indicating the average
delay in processing a query at a node
T — desired maximum average query response time

There are three cost components, namely the file copy

overhead cost (denoted by U(I)), the query cost (denoted
by Q(1,9)) and the migration cost (denoted by R(I, f)).
These costs are defined as follows:

R(I7 f) = yl’élla;)%, Ef(y),y
ull) = Z[Z UMy + Fy
yel zeV
Qlyg) = max [soew) +6(g(2))]

Here 8(y) = X sen(y) bz/q- The general file migration prob-
lem is posed as follows: Find I, g and f (injective) such
that R(Z, f) is minimized with the constraint that
Q(1,9) £ T,U(I) £ C (T and C are positive constants)
and |I| = |I'|.

A different formulation of the file migration problem is
given in [8]. In this model, the total cost criterion is used
‘for all the above three costs and the sum of all these three
costs is minimized while fixing g and f as follows: g(z) =
minger $zy and f(z) = minyep Ey . Also in this model,
Q(I,9) = Yzev bz g(z), that is, the query processing time
is assumed to be dependent only on the communication
cost but not on the query traffic. In our formulation (we
call it “bottleneck file migration problem”), we separate
the query cost into a constraint on query response time.
This formulation is useful to guarantee a maximum query
response time.

We can easily show that the bottleneck file migration
problem is NP-hard even if there is no constraint on the
file copy overhead cost (U(I)); for the proof see [7]. We
will illustrate how our approximate model can be used to
solve this problem. In our approximate model, we simplify
the problem by first eliminating the constraint on the file
copy overhead cost. In most applications, when a con-
stant number of file copies is maintained, this overhead
cost would not differ significantly among different alloca-
tions of these copies to the nodes. Next we separate the
query access problem (i.e., determining g) from the file
migration problem (i.e., determining f and I). For this,
we partition the set of nodes into regions Wy, W, ..., W,
Let If, I},. .., I/, be the corresponding sets of nodes in the
regions containing file copies before file migration; that is,
I' = {z € Wj|z € I'}, for 1 < j < m. One of the pos-
sible rules for partitioning is discussed below. First we
introduce the following additional notations:

number of file copies in W; before migration
= |{z € Wjlz € I'}]
; = number of nodes in region W; (= |W;|)
= average query communication cost in region W;
= Er,yGWj 3z,y/(L? - L])
E}\ = average cost of file copy migration from W; to Wy
= Toert Lyewi-13) Bay/(Nj X (Lk = Ny))
= total query traffic in region W; (= Cew, b:)
= number of copies to be migrated from W; to W

@

Zjk

One possible rule to use in the partitioning is to require
that the nodes in each region have similar migration cost
characteristics and communication cost characteristics.

More formally, for 1 < j < m and z,y € W; with = # y,

16

|52,4—S}| < €, for €; very small. Alsofor1 < j,k <m,z €
W; and y € Wy, |Ez,y — Ef ;| < €, for €2 very small. Larger
the values of €; and €, larger will be the number of regions
and greater will be the time to solve the problem. On the
other hand, smaller these values, smaller the number of
regions but further from optimality the solution from this
model will be. Thus a “good” partitioning rule makes
a suitable trade-off between accuracy and time and this
trade-off depends on the specific distributed system under
consideration.

Now we formulate the file migration problem as follows:

Minimize max__Ej,
{(Gk)zx>0
! —Q; < T,foralll1 <j<
s.t. S+ < T,forall1<j<m
T e #ki-q
Zij = Njforalll <j<m
k=1
zitr € N,foralll <jk<m.

As in Section 2, if we introduce for each j = 1,2,...,m,
the quantities R; = [(—1,—_03?)—;], then the problem becomes

a bottleneck transportation problem. R; represents the
minimum number of file copies needed in region W; to
satisfy all the query requests within region W;. We require
here that any query request within a region be directed to
a location within the same region.

In our preliminary investigation of the performance of
this model, we considered the five-node example given in

[1] and an eight node example. We approximated the file
migration problems in these examples by the 2 X n bot-
tleneck transportation models and used the algorithm we
have developed to solve these problems. For each exam-
ple, we considered different partitioning of the system into
regions. Since the diameters of the graphs (with respect
to query communication cost) in the examples were small
compared to the response time, only the second partition-
ing rule (that is, the one requiring the regions to have
similar communication characteristics) could be tested in
this experiment. For each partition, we had 500 runs and
in each run, we varied the file access (both the query and
the update request) pattern randomly according to an uni-
form distribution. For each run, we compared the optimal
solution of the exact model with the optimal solution of
the approximate model based on whether the number of
file copies in each destination region is the same in the
two solutions. When the nodes within a region have sim-
ilar communication cost characteristics, about 50% of the
runs gave solutions that agreed with the optimal solutions.
For the arbitrary partitions, this figure varied from 2% to
25%. Thus the partitioning rule we have mentioned before
has a significant impact on the “goodness” of the solutions.

Though the file copy overhead cost was not considered
in the approximate model, we also compared these costs
for the exact and the approximate models; for the approxi-
mate model, these costs can only be estimated since the ex-
act locations of the file copies are unknown. For a “good”
partitioning such as the one in which nodes within a re-

gion have small costs to communicate within themselves,
the difference in these costs averaged to within 20% over
all the runs. Thus the file copy overhead does not ap-
preciably change due to elimination of this cost from the
approximate model. These results are encouraging consid-
ering that only a simple partitioning rule has been used
in these examples. We plan to perform a more extensive
analysis of the performance of the proposed model and of
different partitioning rules in particular, by applying it to
larger scale examples.

Host Migration in Mobile Computer Networks

A mobile computer network consists of mobile hosts which
communicate with each other, using wireless radio chan-,
nels. Thus the topology of a mobile computer network
changes from time to time. The mobile computer net-’
works are becoming a commercial reality due to the rapid
advances that are being made in mobile communication
technology. Another practical example of a mobile com-
puter network arises in robotics applications, where a team
of robots is employed to perform certain tasks in a co-
operative manner. The robots in this case, in addition to
having the processing power, also must have the ability to
communicate with each other within an operational area
like mining fields and other harsh environments.

In a mobile computer network, the mobility of the hosts
can be used to advantage in balancing the workload among
the hosts. In the load balancing problem in a mobile com-
puter network with homogeneous hosts, the objective is to
minimize the host migration cost with a constraint on the
job response time. There may also be an additional con-
straint in that the hosts must be able to communicate with
each other at all times either directly or using many hops.
Further we may also require that the results of running a
job must be available at a host which can at most be at a
distance r from the location of the host to which the job
is submitted.

Since this problem is NP-hard (see [6]), we can use
the approximate model proposed in Section 2 to solve this
problem. For this, we partition the network into geograph-
ical regions. One partitioning rule to use is as follows: the
distance between any two nodes in a region is less than
r; smaller the value of r, more the number of regions and
vice versa. The value or r also affects the “goodness” of the
solutions obtained through the approximate model. The
network can also be partitioned on the basis of the struc-
ture of the backbone network that is usually defined for
communication among the hosts. In a mobile computer
network, hosts are divided into clusters with a clusterhead
for each cluster. A backbone network connects the cluster
heads in some configuration. The hosts within a cluster
communicate with each other directly while the interclus-
ter communication takes place using the backbone net-
work. ‘A natural choice of regions here will be the clusters
themselves. We can then formulate the approximate load
balancing model in the same fashion as defined in Section
2. The bottleneck transportation problem here determines
the number of host units that should migrate from one re-
gion to another such that the bottleneck host migration

17

cost is minimized while guaranteeing the maximum aver-
age response time.

Conclusions

‘We have proposed a commodity distribution model as a
tractable approximate model for load balancing with re-
source migration. If the given distributed system is par-
titioned on the basis of job and network characteristics,
then the approximate solution is reasonably close to the
optimal solution of the exact model. This has been demon-
strated to a certain extent in the case of file migration
in distributed data bases. A special case of this prob-
lem can be solved by an efficient algorithm which we have
developed. This resource migration model must be sup-
plemented with appropriate job migration models for load
balancing within each region. Though we have demon-
strated that partitioning rules have an impact on the ac-
curacy of the solutions, a formal analysis supported by
experimental results is necessary. This is the subject of
our future investigation.

References

[1] R. G. Casey, “Allocation of Copies of a File in an
Information Network,” SJCC, 1972, pp.617-625.

K. P. Eswaran, “Placement of Records in a File and
File Allocation in a Computer Network,” Information
Processing 74, IFIPS, 1974, pp.304-307.

D. J. Farber, et. al.,“The Distributed Computer Sys-
tem,” Proc. Seventh Annual IEEE Computer Society
International Conference,February 1973.

(2]

[3

—

[4] R. S. Garfinkel and M. R. Rao, “The Bottleneck
Transportation Problem,” Nav. Res. Logistics Quar-

terly, 18, 1971, pp.465-472.

[5] J. A. Stankovic and I. Sidhu, “An Adaptive Bid-
ding algorithm for Processes,Clusters and Distributed
groups,” Proc. Int. Conf. Distributed Comp. Systems,
May 1984.

[6] Ravi Varadarajan, “Reliability and Performance
Models for Reconfigurable Computer Systems,” De-
partment of Computer and Information Sciences, Uni-
versity of Pennsylvania, PA, Technical report MS-
CIS-87-65. ~

[7] Ravi Varadarajan and Eva Ma, “Load Balancing
Models with Resource Migration in Distributed Sys-
tems,” Computer and Information Sciences Depart-
ment, University of Florida, Gainesville, Technical
Report in preparation.

[8] Benjamin W. Wah, “A systematic Approach to the
Management of Data on Distributed Databases,”
Ph.D. thesis, University of California, Berkeley, 1979.

An Efficient Termination Detection and Abortion Algorithm
for
Distributed Processing Systems

Kazuaki Rokusawa Nobuyuki Ichiyoshi

Abstract

This paper describes an algorithm for termination detection
and abortion in distributed processing systems, where pro-
cesses may exist not only in processing elements but also
in transit. The algorithm works correctly whether the com-
munication channels are first-in-first-out or not, and no ac-
knowledgement message is required. Assigning weights to
all processes and maintaining the invariant that the sum of
the weights is zero are the main features of the algorithm.

1 Introduction

Termination detection and abortion of all processes in a
system are major functions in parallel processing. They
are easy in closely-coupled systems, such as shared memory
multiprocessors, but difficult in distributed systems, partic-
ularly when there are processes in transit.

We have devised an algorithm for termination detection
and abortion in distributed processing systems, where pro-
cesses may exist not only in processing elements but also in
transit. This algorithm is called the weighted throw count-
ing scheme, which is an application of the weighted refer-
ence counting scheme [1] [5], a garbage collection scheme for
parallel processing systems.

The algorithm will be applied to parallel implementation
of KL1, a parallel logic programming language based on
GHC [4], on the Multi-PSI [3], a collection of Personal Se-
quential Inference Machines [6] (PSI’s) interconnected by a
fast communication network.

This paper is organized as follows. Section 2 defines the
computation model employed. Section 3 shows the prob-
lems of termination detection and abortion in distributed
systems. A naive solution is presented in section 4. Sec-
tion 5 describes the algorithm for termination detection
and abortion where the communication channels are first-
in-first-out. The algorithm for the system with non-first-in-
first-out communication is presented in section 6. Finally

*Fourth Research Laboratory, Institute for New Generation Com-
puter Technology, 4-28, Mita 1-chome, Minato-ku, Tokyo 108 JAPAN

tComputer Systems Development Department, Information Sys-
tems and Electronics Development Laboratory, Mitsubishi Electric
Corporation, 1-1, Ohfuna 5-chome, Kamakura-shi, Kanagawa 247
JAPAN

Takashi Chikayama

Institute for New Generation Computer Technology *

18

Hiroshi Nakashima
Mitsubishi Electric Corporation t

the comparison of the algorithm with the naive one is given
in section 7.

2 Computation Model

The following process model is assumed:

e A process pool consists of one controlling process and
a finite number of child processes;

There are a finite number of process pools in the sys-
tem;

Each process pool is assigned a unique process pool

identifier (PID);
A child process can terminate at any time;

A child process can generate another child process hav-
ing the same PID and a new process pool having a new
PID as well.

In this paper, “process” means “child process” unless oth-
erwise indicated. A process pool terminates if all the chil-
dren terminate. Aborting a process pool is forcing all the
children to terminate. A process pool described above is
distributed over the following machine:

¢ A finite number of processing elements (PEs) intercon-
nected by a communication network;

e No global storage; PEs may communicate by passing
messages;

e Asynchronous communication, in which messages are
delivered with arbitrary finite delay.

It is assumed that a PE can detect the termination of
all processes in it having the same PID and can force them
to terminate. The controlling process and PEs can com-
municate in both directions. A PE may send a message to
the controlling process informing it of the termination of all
processes, and the controlling process may send a message
to abort processes.

Although there exist a finite number of process pools in
the system at a given time, there is no limitation of total

: Process pool identifier (PID)
: Child process A
: Controlling process B

: Process pool

Figure 1: Computation Model

number of process pools, since any process can generate a
new process pool at any time.

Processes may migrate among PEs for load balancing. To
achieve this, a PE may throw a process in the PE to an-
other PE and the thrown process is delivered with arbitrary
finite delay. Therefore, at a given time, processes may be in
transit in the communication network but not in any PEs.

3 Problems

This section describes why termination detection and abor-
tion of processes distributed over several processors are dif-
ficult, particularly when there are processes in transit.

3.1 Termination Detection

The controlling process must detect the termination of all
processes having the same PID as the controlling process.

Each PE can detect the termination of all processes with
the same PID in the PE locally and can send a message
indicating termination (terminated message) to the corre-
sponding controlling process.

However, even if the controlling process receives termi-
nated messages from all PEs, it is not sure that all processes
have terminated. There may be processes in transit, which
will be received by a PE after the PE has sent a terminated
message.

3.2 Abortion

The controlling process must force to terminate all processes
having the same PID as the controlling process.

If the controlling process broadcasts a message causing
a process to terminate (abort message), it is possible to
abort all the processes in the PE, but impossible to abort
the processes in transit. After receiving an abort message

19

and aborting the processes, the PE may receive a thrown
process.

If a PE memorizes the PID carried by the abort mes-
sage, and, ignores received processes with the same PID as
that memorized, the abortion by broadcast scheme described
above may work. However, this scheme has disadvantages.
First, if only a few PEs have the process to be aborted,
most of abort messages are useless. Second, it is impossi-
ble to reuse a PID, because the controlling process cannot
detect the termination of the abortion; this is a major dis-
advantage.

4 The Naive Scheme

Ichiyoshi et al. [2] describe a termination detection scheme
using acknowledge messages. It effectively does the follow-
ing, although different terminology is used. A non-empty
set of processes in one PE having the same PID forms a
subpool of processes, which is called a “process subpool”,
or a “subpool” in short. Processes in a PE are under the
control of a subpool. On receiving a thrown process, the
PE decides whether there is already a subpool having the
same PID as the thrown process. If there is, the PE adds
the process received to the subpool and sends back an ac-
knowledge message; otherwise, creates a new subpool and
memorizes the sender PE of the process in it. Each subpool
has a counter which is incremented on throwing a process,
and is decremented on receiving the acknowledge message
or terminated message. When all processes in it are termi-
nated and the value of the counter reaches zero, the subpool
terminates and sends a terminated message to the PE mem-
orized.

This scheme is simple and termination can be detected
correctly; if the value of the counter reaches zero, there is
neither process thrown from the corresponding subpool in
transit nor subpool created by the thrown process from the
corresponding subpool. However, it has a serious disad-
vantage; termination of a subpool depends on terminations
of other subpools. Since subpools form a tree structure, a
root cannot terminate unless all its leaves terminate. In
the worst case, a chain of subpools is created, where each
subpool terminates sequentially.

5 The WTC Scheme

We have devised a new scheme which requires no acknowl-
edge message and makes it possible to reuse the PID. This
new scheme is the weighted throw counting (WTC) scheme
which is an application of the weighted reference counting
scheme [1] [5], a garbage collection scheme for parallel pro-
cessing systems.

5.1 Termination Detection

We associate weight with the controlling process, each pro-
cess and each subpool. The weight of a process in transit
and that of a subpool are positive integers, while the weight

of the controlling process is a negative integer. The WTC
scheme maintains the invariant that:

The sum of the weights is zero.

This ensures that the weight of the controlling process
reaches zero if and only if all processes terminate; there is
no processes neither in a PE nor in transit (see figure 2).

When a PE throws a process from a subpool, the PE as-
signs a weight to the thrown process and subtracts the same
amount from the weight of the subpool. The new weight of
the subpool and that assigned to the thrown process should
both be positive, and the sum of the two weights is equal
to the original weight of the subpool. For example, if a
subpool originally weighs 1000, the weight of a thrown pro-
cess and the new weight of the subpool can be set to 50
and 950. When a PE receives a thrown process, it adds the
weight assigned to the received process to the weight of the
subpool having the same PID. If there is no subpool with
the same PID, a PE creates a new subpool containing the
received process and sets its initial weight at the weight of
the received process.

When the weight of a subpool becomes one, the PE can-
not throw a process, because non-zero weight must be as-
signed to the thrown process and non-zero weight must re-
main also in the subpool after throwing. The operation
when this situation occurs is described in section 5.3.

When all processes in it are terminated, the subpool ter-
minates and sends a terminated message to the correspond-
ing controlling process. This terminated message gives no-
tification of the termination of the subpool and carries the
weight of the terminated subpool. On receiving a termi-
nated message, the controlling process adds the weight car-
ried by the terminated message to its (negative) weight. If
the weight of the controlling process reaches zero, the ter-
mination of all processes is detected.

5.2 Abortion

This section describes an abortion scheme for the computa-
tion model with first-in-first-out communication; messages
are delivered in the order sent. A scheme without this as-
sumption is described in section 6.

The controlling process should be able to force all pro-
cesses with the same PID as the controlling process to ter-
minate, and detect the termination of all processes to reuse
the PID. Termination is detected using the WTC scheme
described above. Thus, only delivery of the abort message
to each PE containing the subpool is required. To achieve
this, the controlling process needs to detect the creation of
a subpool and to send an abort message to a PE containing
a subpool.

We introduce here a new message, named the ready mes-
sage which gives notification of the creation of a subpool.
On creation of a subpool, a PE sends a ready message to
the corresponding controlling process. On receiving a ready
message, the controlling process memorizes the sender PE,
which is deleted on receiving a terminated message.

20

controlling process

O

weight = -550
& subpool

subpool O
O | mee— | O
20

O O Weight,) weight = 300

subpool

oNe
O

* weight = 80

weight = 150

Figure 2: The WTC Scheme

The controlling process performs the following operations
to achieve the abortion:

(1) Sending an abort message to each PE memo-
rized;

(2) Sending an abort message to the sender PE of
a ready message received after operation (1).

Once the controlling process receives a ready message, a
subpool may exist in the sender PE until a terminated mes-
sage is received from the same PE. The controlling process
therefore performs operation (1), which aborts all subpools
already detected by the controlling process. Operation (2)
aborts such subpools that were not recognized by the con-
trolling process when operation (1) was carried out; a sub-
pool that is created after operation (1), or created before
operation (1) but whose ready message is still in transit.

It is necessary to assign a weight to an abort message
like the thrown process, while not necessary to a ready mes-
sage, because once the controlling process receives a ready
message, it will receive a terminated message later from the
sender PE of the ready message (the FIFO assumption).

On receiving an abort message, a PE performs either of
the following operations:

(3a) Forcing the subpool with the specified PID
to terminate, and sending back a terminated
message which carries the sum of the weight
of the terminated subpool and the abort mes-
sage;

(3b) If there is no subpool having the specified
PID, sending back a return message which
carries back the weight assigned to the abort
message.

Figure 3 shows the abortion operations described above.
When a subpool terminates before receiving an abort mes-

sage, an abort message may reach a PE having no subpool

with the same PID as the abort message. In this case,

controlling process

PE = i, j
pEi T/ PE k
subpool \
abort
O PE j %rocess
O O subpool

O
O

2) .
controlling process
5y o PEK
ready subpoo
teminated ,PE = 1, j\
i O
subpool
© T T 77 terminated
I I PEj
| | created
| : subpool
L-=-d | 1
terminated | I
| 1
[
terminated
-3) controlling process PE k
@ @. subpool
PE = k O
PE i

PEj

Figure 3: Abortion Operations

operation (3b) is performed and the return message is sent
as the response to the abort message. On receiving a re-
turn message, the controlling process adds the weight of
the message to its own weight. If the weight of the control-
ling process reaches zero by this operation, the termination
of all processes is guaranteed.

During the operations of abortion, the following cyclic
situation may occur. The controlling process sends an abort
message to abort a subpool. A process is thrown from the
subpool before the abort message arrives. The thrown pro-
cess is delivered to a PE where there is no subpool having
the same PID as the thrown process. Then a new subpool
is created and a ready message is sent. On receiving the
ready message, the controlling process sends again an abort
message to abort this newly created subpool.

On receiving one abort message, one subpool is aborted
and the non-zero weight of the subpool is sent back to the
controlling process. Since the sum of the weights of subpools
and processes in transit is finite, all processes can be aborted
by sending a finite number of abort messages, even if the
above situation occurs.

21

5.3 When the Weight becomes One

As mentioned in the section 5.1, when the weight of a sub-
pool becomes one, the PE cannot throw a process.

In this case, the PE sends a message requesting more
weight (request message) to the controlling process. Pro-
cess throwing is suspended until the weight of the subpool
becomes more than one. On receiving a request message,
the controlling process sends back a message which carries
some weight to the sender PE (supply message) and reduces
the same amount from its own weight. When a PE receives
a supply message, it adds the weight carried by the supply
message to the weight of the subpool, which enables it to
throw any suspended processes. Since receiving of a thrown
process also increases the weight of the subpool, a subpool
may terminate before receiving a supply message, and a sup-
ply message may reach a PE that contains no subpool. In
this case, a return message is sent back to the controlling
process. This is similar to the action when a PE without a
subpool receives an abort message.

It is not necessary to assign any weight to the request mes-
sage, because a terminated message is delivered to the con-
trolling process only after this request message (the channel
is FIFO), and the weight of the controlling process never
reaches zero, leaving request messages in transit.

5.4 How to Assign a Weight

This section describes the strategy to assign a weight which
decreases the number of additional messages (request and
supply messages).

In the worst case, that is, to assign a weight of one in
any case, the same number of additional messages as the
thrown processes are required, while no additional messages
are required in the best case. If the weight carried by a
supply message is large enough compared with the weight
assigned to a thrown process, the weight of the subpool will
not reach easily one after receiving a supply message. The
weight assigned to the thrown process must be less than the
weight of the subpool, while the weight carried by a supply
message does not have this limitation. Using the following
strategy, one subpool almost always needs only to send a
request message once.

o Assign a fixed weight (say 2'°) to a thrown process if
the weight of the subpool is more than twice of that;
otherwise assign half of the weight of the subpool.

o A supply message carries a very large weight (say 22°).

On receiving a supply message, the weight of the subpool
becomes more than 2%° and it can throw a process at least
210 times without receiving any weight.

If a subpool receives a supply message before its weight
becomes one, it need not to send a request message. A
subpool which is created by receiving a process assigned a
weight of 21° can throw a process at least 10 times until its
weight becomes one:. Therefore, if the controlling process
sends back a supply message on receiving a ready message,
a request message is expected to be needless.

6 Non-FIFO Communication

In the computation model with non-first-in-first-out com-
munication, the following situations may occur:

o A terminated message may be delivered before a ready
message and a request message.

e The controlling process may receive several ready mes-
sages (or terminated messages) before receiving a ter-
minated message (or a ready message).

The former may cause the weight of the controlling pro-
cess to reach zero, leaving ready messages or request mes-
sages in transit. On account of the latter, simply memo-
rizing or deleting the sender PE of a ready message or a
terminated message will not work. To cope with the situa-
tions mentioned above, we modify the scheme as follows:

o Assign a weight to a ready message and a request mes-
sage (a request message will be sent when the weight
reaches two). \

e The controlling process has a set of counters corre-
sponding to each PE, which is incremented on receiving
a ready message and is decremented on receiving a ter-
minated message.

The former change assures that the weight of the con-
trolling process never reaches zero leaving any messages or
processes in transit. By the latter change, if a subpool may
exist in a PE, the value of the corresponding counter be-
comes positive. The controlling process thus performs the
following operations to achieve the abortion:

(1) Sending an abort message to each PE whose
corresponding count is positive;

(2) Sending an abort message to the sender PE of
a ready message received after operation (1)
if the count corresponding to the sender PE,
after increment, is positive.

Since no more than one subpool can exist in one PE at a
time, it is enough to send one abort message to one PE.

7 Comparison

The WTC scheme is much superior to the naive scheme
using acknowledgement in two points. :

First, the WTC scheme requires fewer additional mes-
sages than in the naive scheme. The number of subpools
created is expected to be small enough compared with the
number of thrown processes. The WTC scheme requires
about the same number of request messages and supply mes-
sages as the number of the creations of subpools, while the
naive scheme requires almost the same number of acknowl-
edge messages as the number of thrown processes.

Second, in the WTC scheme, each subpool can terminate
independently, while in the naive scheme, termination of a
subpool depends on terminations of other subpools.

22

8 Summary

We have devised an efficient algorithm for termination de-
tection and abortion. Its major advantages are as follows.

¢ Only a few additional messages are required.
¢ Each subpool can terminate independently.
o Reuse of the process pool identifier is possible.

The techniques described in this paper are applicable to
many kinds of distributed processing systems.

A cknowledgements

We thank the members of the Multi-PSI group in the ICOT
Research Center and cooperating companies, the Director
of ICOT, Dr. Kazuhiro Fuchi, and Dr. Shunichi Uchida for
valuable discussions and encouragement.

References

[1] D. I. Bevan. Distributed garbage collection using refer-
ence counting. In Proceedings of Parallel Architectures
and Languages Furope, pages 176-187, June 1987.

[2] N. Ichiyoshi, T. Miyazaki, and K. Taki. A Distributed
Implementation of Flat GHC on the Multi-PSI. Techni-
cal Report TR-230, ICOT, 1987. Also in Proceedings of
the Fourth International Conference on Logic Program-

ming, 1987.

K. Taki. The parallel software research and development
tool: Multi-PSI system. In Proceedings of France-Japan
Artificial Intelligence and Computer Science Symposium
1986, pages 365-381, 1986.

[4] K. Ueda. Guarded Horn Clauses. Technical Report TR-

103, ICOT, 1985.
(3]

P. Watson and I. Watson. An efficient garbage collec-
tion scheme for parallel computer architectures. In Pro-
ceedings of Parallel Architectures and Languages Europe,

pages 432-443, June 1987.

M. Yokota, A. Yamamoto, K. Taki, H. Nishikawa, and
S. Uchida. The Design and Implementation of a Per-
sonal Sequential Inference Machine: PSI. ICOT Tech-
nical Report TR-045, ICOT, 1984. Also in New Gener-
ation Computing, Vol.1 No.2, 1984.

DISTRIBUTED SYNCHRONIZERS

Doddaballapur N. Jayasimha
Center for Supercomputing Research and Development
University of Illinois, Urbana, IL 61801.

Abstract

In this paper we introduce a new synchronization primitive,
the distributed synchronizer. This primitive, based on the notion of
partially shared variables, suits the synchronization requirements of
parallel algorithms executing on large, shared memory multiproces-
sors. We consider the commonly required forms of synchronization
in a multiprocessor: barrier, reporting, and mutual exclusion. We
introduce the synchronization tree through an algorithm to imple-
ment barrier synchronization. An efficient implementation of the dis-
tributed synchronizer primitive requires a) the embedding of the syn-
chronization tree in the processor-memory multistage interconnec-
tion network, and b) simple hardware enhancements at the switching
elements of the network. For n processors, this primitive imple-
ments reporting with zero synchronization overhead and the barrier
with a log n cycle overhead. We show that the implementation of
the semaphore operations using the distributed synchronizer is
bounded fair. Finally, we discuss some implementation issues and a
few limitations of our synchronization scheme.

1. Introduction

It is well known that the synchronization overheads have a
deleterious effect on the speedup of parallel algorithms. It has been
observed that for some applications with extensive synchronization
requirements, the speedup reaches a maximum for a small number of
processors, and thereafter decreases [Axel86]. In this paper we intro-
duce a new synchronization primitive, the distributed synchronizer.
An implementation of this primitive is shown be efficient and
bounded fair. The primitive is based on the notion of partially
-shared variables, and suits the synchronization requirements of
parallel algorithms executing on large, shared memory multiproces-
sors. Examples of such architectures are the Cedar system [Kuck84],
the Ultracomputer [GGKM83], and the RP3 [Pfis85]. Typically such
a multiprocessor consists of n homogenous and autonomous process-
ing elements (PEs). An interconnection network connects the PEs to

a set of main memory modules such that each PE can access any
memory module.

2. Synchronization
2.1. Classification

Multiprocessors commonly require the following forms of syn-
chronization: a) barrier, b) reporting, and c¢) mutual exclusion.
(Note: Mutual exclusion is necessary in the first two cases also.) Fol-
lowing Axelrod [Axel86], we define a synchronization barrier to be a
logical point in the control flow of an algorithm at which all
processes must arrive before any of them are allowed to proceed
further. Reporting requires that all processes must arrive at a con-
trol point before another specified process continues.

We illustrate the need for these forms of synchronization
through the following example: suppose the maximum of r numbers
is to be computed on an n-PE shared memory multiprocessor. Let
M be a shared variable initialized to ~co. Each PE computes the
(local) maximum [of the numbers that it is assigned, and updates M

to ! if | > M. To detect the completion of finding the maximum,
eachi PE decrements a shared variable S (initialized to n) after it
updates M. The decrementing of § to zero implies that the max-
imum has been computed. Note that each PE requires exclusive
access to update M and §. Suppose a specific PE is required to com-
pute the maximum. It continually checks S until § becomes zero,
and then reads M. The form of synchronization that we have

{This work was supported in part by the National Science Foundation
under Grant No. NSF MIP-8410110, by the US Department of Energy
under Grant No. DOE DEG02-85ER25001, and by the IBM donation.

23

described is an example of reporting. Alternatively, assume that
every PE must obtain the maximum for its subsequent computa-
tions. Every PE checks S until S becomes zero and then reads M.
This form of synchronization where values are reported (the value of
S is updated by all the PEs) and then communicated to all the PEs
is an example of barrier synchronization. The barrier is said to be
complete when every PE knows that S is zero. The synchronization
overheads (owing to the continual checking of S and the exclusive
accesses to M and S) cause serious performance degradation in mul-
tiprocessors, especially as the number of PEs increases [Axel86,
Jaya87a, PfNo85). To reduce these overheads, various schemes have
been proposed [GGKMS83, GLee86, Jaya87a, P{No85, YeTL86]. A
particularly elegant method, called combining, has been proposed for
the Ultracomputer [GGKMS3], and is being considered for imple-
mentation on the RP3 [PfNo85). Combining, which detects and
combines memory requests to the same location, requires expensive
hardware. Furthermore, simulations show that combining may not
be required, or effective in many cases [GLee86]. In the Cedar sys-
tem, synchronization overheads are reduced by providing additional
hardware at each memory module to perform simple synchronization
related computations [ZhYe84]. Both combining and the Cedar
scheme require the locking of shared variables in order fo access
them with mutual exclusion. Consequently, algorithms using these
schemes generate wasted memory traffic due to busy waiting. Our
synchronization technique does not require the locking of globally
shared variables.

2.2. Walk-in Walk—out Scheme

Rather than force all PEs to access a single variable, we could
allow a fixed number of PEs, m (2<m<n) to access each variable.
(We assume n to be a power of m throughout the paper). Such a
scheme increases the number of synchronization variables required
but might reduce memory contention. In particular, we could
arrange the synchonization variables in the form of a synchroniza-
tion tree as shown in Figure 2.1. All the variables in the tree are ini-
tialized to m. If a PE decrements a variable and finds the resulting
value to be zero, then it proceeds to the next higher level of the tree.
Otherwise the PE waits for the variable to assume a special value,
say, —1. The last arriving PE decrements the root to zero and sets it
to —1. At this time the walk—in ends. When a PE finds the variable
on which it is waiting to be -1, it communicates this information to
the next lower level. This procedure is repeated recursively. The
completion time would be the time at which the last PE at the
lowest level finds its variable to be —1. At this time the walk—out
ends. This algorithm is similar to the software combining algorithm
proposed in [YeTL86].

1/ z? e i/'E \m 1/% !\m
{2 {20m) 17 2. m 2w

Figure 2.1 Synchronization Tree for the Walk-in ‘Walk—out Scheme.

Notation: In the figures, the PEs and the nodes of the syn-
chronization tree are numbered from left to right. We number the
PEs from 1 to n. The PE with number ¢ is denoted by PE;. Upper
and lower case names represent shared and local variables respec-
tively. Let h = log,,n, the number of stages in the interconnection
network.

3. The New Primitive

3.1. Partially Shared Variables

The Walk—-in Walk-out scheme has the advantage of requiring
only a fixed number of PEs m to access a node of the synchroniza-
tion tree. Furthermore, a node at level i need be shared only by m’
PEs (note: some m out of these m’ PEs access the node). This
observation suggests that the nodes of the synchronization tree may
be placed in a memory hierarchy according to the degree to which
the nodes are shared. By a memory hierarchy we mean a set of par-
tially shared memories such that a variable at the level 1 is shared
by more number of PEs than a variable at the level j (j < ¢). Vari-
ables could be placed at an appropriate level in the memory hierar-
chy, thus eliminating expensive global memory trips to access shared
variables that need to be only partially shared. The multi-memory
hierarchy effectively distributes the "von Neumann bottleneck"” and
consequently achieves a better performance. The partial sharing of
variables would lead to an increased complexity in the hardware and
memory management.

3.2. Distributed Synchronizer

Consider any multistage interconnection network with the full
access capability (which means that any input terminal of the net-
work can reach any output terminal in one pass through the net-
work) and the unigue path property (which means that each input
terminal has exactly one path through the network to reach any par-
ticular output terminal). Feng [Feng81] surveys such interconnec-
tion networks. Examples of these networks include the Omega, the
baseline, the banyan, and the indirect binary n—cube. They are typ-
ically designed using log,, n stages of m X m switching elements. We
embed the synchronization tree into the interconnection network
with the leaves placed in the switching elements at the first stage and
the root placed in a switching element at the last stage of the net-
work. The connections between stages that lead to the switching ele-
ment containing the root correspond to the branches of the tree.
Figure 3.1 shows an embedding of the binary synchronization tree
(with eight leaves) into an 8-input 2 X2 Omega network. The heavy
lines in the figure represent branches of the tree. Each stage of the
interconnection network corresponds to an intermediate level in the
memory hierarchy mentioned earlier, and each node in a switching
element to a partially shared variable. Mutual exclusion must be
guaranteed among the m children accessing their parent node. We
explain how this is achieved for each synchronization operation in
the relevant sections. The name distributed synchronizer refers to
the embedded synchronization tree together with the operations
defined on the tree.

4. Reporting and Barrier

A switching element in the network is a m X m bidirectional
router. On its PE side each switching element has m input ports
PI,, ..., PI,, and m output ports PO, ..., PO,. On its memory side
each switching element has m input ports MI ..., MI,, and m out-
put ports MO, ..., MO,,. An input port PI; on the PE side gets
connected to an output port MO; on the main memory side during a
message transfer (message originating at a PE). Similarly, an input
port MI; gets connected to an output port PO; during a message
transfer (message originating at the main memory). Additionally,
each switching element has a modulo m counter, a decoder, and
some combinational logic.

For simplicity, we make the following assumptions:

(A1) All PEs participate in the synchronization operation.
(A2) At any instant at most one concurrent set of synchronization
operations is being executed.

24

Hiiuiain

]

[] []

Fig. 3.1 Embedding a Synchronization Tree into an 8X8 Omega Network.

| S——

4.1. Reporting

To perform the reporting operation, each PE executes the
Rep(S) instruction. S is a flag variable in global memory which is
initially reset. S is set after all PEs have reported. The semantics of
Rep(S) are shown in Figure 4.1, and are informally described below:
A PE executing Rep(S) enters the synchronization tree at its
appropriate leaf node. It decrements the counter at the switching
element. If it finds the value of counter to be zero, then it is the last
arriving PE for this synchronization operation at the node. It reini-
tializes the counter to m and proceeds to the node in the next higher
level of the tree. Otherwise the instruction completes. This pro-
cedure is repeated recursively. The PE that decrements the root to
gero then sets S, at which time the synchronization operation com-
pletes. This scheme has the following advantages: a) The shared
variable S need not be locked. To ensure mutual exclusion, tradi-
tional multiprocessors use locking, which incurs an unnecessary glo-
bal memory access whenever a PE tries to lock a variable that has
been already locked by some other PE. The decrementing of the
counter at a node has to be performed atomically. But this is easily
achieved in the hardware. b) There are no synchronization over-
heads except for the constant time to execute the Rep(S) instruction.

Note that the reinitialization of the synchronization tree is
achieved in a distributed manner since the last arriving PE at each
node sets the counter to its initial value.

Algorithm Rep (S, PE#, level#);
/*The counter variables Cj; are initialized to m, and § is reset */
begin

|

1. j:=
2. Croattt,i = Creoert,i — 1
3. if Clyuy,; = 0 then /* last arriving PE at some node */

PE#
m level#

4. if level# = h then
begin

5. Cleoert,j = m; [* reinitialize */

8. set S; /* reporting is done */
end
else /* last arriving PE at a non-root node */
begin

7. Cieoerst,j = m; [* reinitialize */

8. Rep(S, PE#, (level# +1)); /* to next higher level */
end

end Rep;

PE; executes Rep(S, 1, 1).
Figure 4.1 Semantics of the Rep(S) Instruction.

The following cases: a) requirement of d (d>1) concurrent
synchronization operations, and b) requirement of reporting among
only n; (n; < n) PEs, are discussed in [Jaya87b].

4.2. Barrier

We will assume that (A1) and (A2) hold. Each PE performs
the barrier synchronization by executing the instruction Barrier(v);
v refers to a flag, initially reset, that is present in each PE. The
semantics of the instruction, shown in Figure 4.2, are essentially an
implementation of the Walk-in Walk—out scheme in hardware. The
hardware requirements are the same as for reporting, except for the

Algorithm Barrier (v, PE#, level#);
/*The counter variables C;; are initialized to m, and v is reset */
begin

. _| PE# .
L Ji= mlcnl#] ’
2 Cleul#,j = Clcul#,j -1
3. if Cjpup,; = 0 then/* last arriving PE at some node */
4. if level# = h then/* last arriving PE at barrier */
5 Walkout (v, level#, §) /* begin walk—out */

else /* last arriving PE at a node which is not the root */
6. Barrier(v, PE#, (level# +1)); /* to next higher level */

end Barrier;

procedure Walkout(v, level#, k);
begin

1. if (level# = 1)then

2. set the flag in each PE
else
3. forl:=(k—1)Xm + 1to kXm do
begin
4. place return request in each PO; port;
5. Walkout(v, (level# —1), 1);
end;
end Walkout;

PE; executes Barrier(v, ¢, 1).

Figure 4.2 Semantics of the Barrier(v) Instruction.

extra bit flag in each PE. If a request finds the counter at a stage to
be zero, it proceeds to the next stage. Otherwise the requesting PE
waits for its flag v to be set. The request that decrements the
counter at the root to zero is the last process to arrive at the barrier.
It signals the completion of the barrier to the (m —1) requests wait-
ing at the root by placing a return request containing the address of
the instruction, at each of the m PO ports of the root’s switching
element. The procedure of "walking out" is recursively repeated till
the leaves are reached. The final step consists in setting the v flag of
each PE, at which time every PE comes to know that the barrier has
been completed.

The delay between the time at which the last process finishes
(i.e., the time at which the root is decremented to zero), and the time
at which every PE knows that the barrier is complete is just log,n
cycles (assuming no network conflicts). The synchronization is
accomplished with no wasted memory accesses, and without the need
for any shared globally variables.

Each PE could "busy wait" on the flag v till it is set, or could
context switch to a different process after executing the Barrier(v)
instruction. In the latter case, the PE may be interrupted to signal
the completion of the barrier. Observe that, unlike normal busy
waiting, PEs in the former case do not generate wasteful memory

_ traffic, which can cause a degradation in performance.

Assumptions (A1) and (A2) may be relaxed by ptoviding extra

hardware. See [Jaya87b] for details.

25

5. Semaphore Operations

A semaphore is a shared variable S together with the atomic
operations P(S) and V(S) defined as follows: P(S):
<while § <0do skip; S:i=8-1>; V(5):<8:=8+1>;
(Instructions within the angle brackets are executed atomically).
The variable S is initialized to one.

Most implementations of P and V require the continual check-
ing of S, as implied by the while loop, before the P operation is suc-
cessful. An alternative to this busy waiting on § on an unsuccessful
P operation is to context switch to a different process. Context
switching, however, requires intervention by the operating system,
and consequently large overheads. Further, self scheduling and
guided self scheduling algorithms [PoKu87, TaYe86], which are used
in a number of application programs in a multiprocessor system,
require some form of busy waiting.

We next describe P and V implemented with the new primi-
tive. For simplicity, we deal with binary (m =2) synchronization
trees. We will also assume that assumption (A2) holds. Not all PEs
need participate in the synchronization, however. Each node of the
tree is a bit variable which is initially zero (reset).

5.1. The DSP Instruction

To implement the P operation, each PE executes the
Distributed Synchronizer P (DSP) instruction, the semantics of
which are shown in Figure 5.1. The P operation for a process
belonging to a PE is complete if it can set the node at the root of the
synchronization tree. If a process finds that the root is already set,
then another process is in the critical region.

In the following discussion, when we talk of a node at level 1, it
refers to the node at level 7 that lies between the PE of interest and
the root. Note that by the unique path property, there is only one
path from a PE to the root, and hence there is a single node on the
path at any level. A request contains the address of the instruction
and the address of the PE where it originates. Consider a request
which has reached level 7 successfully by setting the node at level <.
If the node at level ¢ +1 has not been already set (by an earlier pro-
cess), then the node at level 7 +1 is set and the node at level 7 is
reset atomically. Otherwise, the process waits at level 1. The atomic
operation is accomplished easily, without starvation, in hardware
[Jaya87b]. Nodes with their bit variables set represent processes
waiting to enter their critical regions. We next describe a schedule
to wake up waiting processes.

5.2. The DSV Instruction

To describe the Distributed Synchronizer V (DSV) operation,
we use another property that the class of interconnection networks
described in Section 3.2 share: they can employ simple and distri-
buted routing algorithms. Recall that & =logyn, and let
@pau_y *** aiag be the binary expansion of an integer 5. Further,
let PE; have a request that is waiting at the node at level ¢ to enter

Algorithm DSP (j, k);

/* Let FL;y, FL;,, ..., FL;; be the partially shared

nodes on the path from PE; to the root. FL;, is a bit variable
in PE; */

begin
1. if k = h then enter critical region;
else
2. if FL; 4,,=0 then
begin
3. <FLj44y :=1; if k 0 then FLj := 0;> /* atomically

done in the hardware */

4. DSP(j, k+1);
end;

end DSP;

PE; executes DSP(j, 0) to enter its critical region.
Figure 5.1 Semantics of the DSP Insttuction.

the critical region. The request stores the values a; and a;,, as part
of its information at the node. The semantics of DSV are shown in
Figure 5.2, and informally explained below. Let a process belonging
to PE; finish, and let kyk, _; *** k kg be the binary expansion of k.
By virtue of the semantics of DSP, if there are processes waiting at
level i, then there are processes waiting at level (i +1) also. Hence
PE; has to check only the children at the root of the synchronization
tree. If PE, is at a leaf of the left (right) subtree, then the switching
element logic at the root enables a waiting process, if any, at the
right (left) subtree (i.e., a PE whose address in the (h +1)th position
is k,, the complement of k). If there is no such process waiting,
then a process, if any, belonging to its own subtree is enabled. The
awakened ' process repeats this procedure recursively using the
appropriate position of the binary expansion of its PE number.
Thus the process belonging to PE;, when awakened at a node at
level ¢, decides which new process should occupy the vacant node by
examining j; and the ith positions of the PE numbers of the
processes at the children of the node.

Algorithm DSV (j, k);

/* Let FL;y, FLjs, ..., FL;, be the partially shared

nodes on the path from PE; to the root. FL;q is a bit variable
in PE;. Let g, * - a; * * * ag be the

binary expansion of j */

begin
1. MWFL, .. g 41 =1then
begin
2. FL,, e =1
3. tranefer procua from FL, g 41 to nezt higher level;
4. FL, ... - agk—1 =05

5. DSV(newPE k—1); /* newPE is the address of the PE on
which the new process runs */

end
else
8. ifFL,...q ... q4—1=1then
begin
7. FL,, ok =15
8. tmnsfcr process fromFL, ..., ... agk—1 to next higher level;
9. FLy.......qppori=0;
10. DSV(newPE k —1); /* newPE is the address of the PE on
which the new process runs */
end
end DSV;

PE; executes DSV(j, h) after leaving its critical region.
Figure 5.2 Semantics of the DSV Instruction.

Example: Consider an 8-PE system with the synchronization
tree as shown in Figure 5.3a. All the nodes in the tree are initially
reset. The timing figure of Figure 5.3b shows a particular set of
requests to the critical section and the order in which they are
honored. In that figure, r stands for a request to enter the critical
region, h for a request honored by the scheduler, and ¢ for the com-
pletion of the use of the critical region. The prefix digit denotes the
PE number. Observe that, for this example, PEs 5 and 7 get ser-
viced out of turn. The order in which the requests are honored is
readily seen by following the informal explanations given for DSP
and DSV.

The hardware requirements at a switching element are a 3-bit
‘register and simple logic (to perform the logical OR and the reset
operations atomically). If the first bit of the 3-bit register at level 1
is set, then some process belonging to PE,; is waiting at this node.
The other two bits then store the ith and the (i + 1)st position of the
binary expansion of k.

The following cases: a) relaxing assumption (A2), and b) the
case of m = 2! (I>1), are considered in [Jaya87b).

26

Sl

PE, PE

Figure 5.3a Illustration of DSP and DSV.

Ir 1h 2r bar 6r 7r lc,5h 5¢,2h 2¢,7h. T7c,6h 6e

Time

Figure 5.3b Ilustration of DSP and DSV (contd).

5.3. Bounded Fairness

Many notions of fairness for concurrent systems have been pro-
posed [Fran88]. In the context of (mutually exclusive) access to a
shared resource (such as a critical region), fairness is synonymous
with "starvation freedom". The P and V operations are used to
ensure mutual exclusion. Many implementations of P and V require
busy waiting on the semaphore variable, which, in turn, may lead to -
starvation. We show that DSP and DSV not only are starvation
free, but satisfy the stronger notion of bounded fairness [JaDe86].
For our purposes, we define bounded fairness within the context of a
scheduler (which may be centralized or distributed). A scheduler g is
k—bounded fair if a process p wishing to enter its critical region is
guaranteed to do so at one of the next k times that ¢ schedules either
p or a a process arriving after p (k is referred to as the bounded fair-
ness number). For example, a FIFO scheduler is 1-bounded fair.

We first make the following observations before we prove the
bounded fairness of DSP and DSV.

Observation 5.1: The semantics of DSP ensure that a process
wishing to enter its critical region either does so, or traverses to a
level of the synchronization tree until it can no longer proceed.

Observation 5.2: From the above observation, we can infer that it
is sufficient for a process leaving the critical region to activate
another process to enter its critical region by examining the nodes at
the children of the root of the synchronization tree.

Observation 5.8: Further, by virtue of the semantics of DSV and
the above observations, a process that "vacates” an internal node (to
travel to the next higher level of the synchronization tree) can also
decide which new process should occupy the vacant node by examin-
ing the children of the node.
Theorem 5.1t For an
(2n — (1 +logyn))-bounded fair.

n—-PE multiprocessor, DSV is
Proof: Let us append the n PEs as leaves of the synchronization
tree and call the result the eztended synchronization tree. Consider
such a tree shown in Figure 5.4. Suppose a process belonging to PE;
sends a request r to enter the critical region. In the case of a conflict
among the processes in the m (m =2) subtrees at a mnode, the
scheduling policy (i.e., the semantics of DSV) chooses the subtree
which has not been most recently chosen. From observation 5.3, this
selection can indeed be done by examining the children at the root of
the subtree of interest. Hence, in the worst case, the request r
accesses the root (i.e., enters its critical region) in at most as many
tries (each entry into a critical region by any process is a try) as the
number of nodes in the subtrees T, and Tk, i.e., 2(n —1). The fol-
lowing cases arise:

Case 1: If r accesses the root in at most (27 — (1+logzn)) tries, then
the condition for bounded fairness is trivially satisfied.

ROOT

PE |
i

e o —= ——

Figure 5.4 Extended Synchronization Tree for Proviné Bounded Fairness.

l=— 12

Case 2: If r accesses the root in exactly 2(n —1) tries, then at every
node on the path from PE; to the root, a PE from the subtree not
belonging to the subtree containing PE; was chosen. By induction it
is clearly seen that at every node on the path from PE; to the root,
PE; should have a request sent before r. Hence the number of

requests in the tree before r is at least logz% (i.e., the height of the

subtree whose leaves are one level higher than the leaves of Tj).
Since the request r can be satisfied in 2(n —1) tries, and there were

at least logz—;—— requests before r, k, the bounded fairness number is

2(n—1)— 105% (2n — (1 +1loggn)).

Case 8 (Sketch): If r accesses the root in (2n —(1+logyn)) <i<
2(n —1) tries, then by an argument similar to that used in case 2, it
can be shown that there are at least (i —(2n — (1 +logyn))) nodes on
the path between PE; and the root that contain requests sent from
PE; before r. The bounded fairness result immediately follows. &

Note: The bounded fairness result may be extended to m-ary syn-
chronization trees. In [Jaya87b] it is shown in such a case that DSV
.nm—1 .

is (—1 — log,, n)-bounded fair.

8. Further Remarks

Our implementation of the synchronization operations has a
few limitations. They are the following:
(1) Number of Synchronization Operations: The present imple-
mentation of the distributed synchronizer allows only a limited
number of concurrent synchronization operations.
Restricted Schedules: In the case that barrier and reporting
are required only among n,(n;<n) PEs, the root of the syn-
chronization tree may be placed at an intermediate stage of the
interconnection network. In such a case, not every subset of
PEs could use the distributed synchronizer to perform these
operations. This observation translates to a restriction on pro-
cessor scheduling.

)

(3) Process Migration: In our barrier and reporting schemes,
processes may not migrate across PEs. This is not a serious
limitation (except when fault tolerance is to be provided),
since, for efficiency reasons, most multiprocessor operating sys-
tems do not allow processes to migrate.

These limitations may be partially overcome. See [Jaya87b]
for details.

7. Conclusion

Synchronization and communication overheads become impor-
tant performance criteria in large multiprocessors. A number of
researchers have recognized that synchronization requirements lead
to serious performance degradation in such systems. In this paper
we have introduced a new synchronization primitive based on the
notion of partially shared variables. Using this primitive, we have
shown that the commonly required synchronization operations may
.be efficiently performed with practically no overheads. Though this
implementation of the distributed synchronizer does not wholly
remove the need for conventional synchronization operations based

27

on the locking of shared variables, our paper shows a promising way
to distribute synchronization operations and to exploit the power of
partially shared variables. An interesting extension of this work is
to make the distributed synchronizer fault tolerant. An important
research area is the feasibility of architectures based on the notion of
hierarchical memories.

Acknowledgements: The author is thankful to Professor Dun-
can Lawrie for initial discussions on the subject. He is indebted to
Professor Michael Loui for constructive comments on the form and
content of this paper. The author is also thankful to one of the
anonymous referees whose comments have helped improve the qual-
ity of the presentation of this paper.

REFERENCES
[Axel86] T. S. Axelrod, “Effects of Synchronizations Barriers on
Multiprocessor Performance,” Parallel Computing, Vol.
3, pp. 129-140, May 1986.
N. Francez, “Bounded Fairness,” Springer-Verlag New

York Inc., 1986.

G. Lee, “Some Issues in General Purpose Shared
Memory Multiprocessing: ParallelismExploitation and
Memory Access Combining,” Ph.D. thesis, Center for
Supercomputing Research and Development Report No.
589, June 1986.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. M.
McAuliffe, L. Rudolph, M. Snir, “The NYU Ultracom-
puter — Designing an MIMD Shared Memory Parallel
Computer,” IEEE Trans. on Computers, Vol. C-32, No.
2, 1983.

D. N. Jayasimha, N. Dershowitz, “Bounded Fairness,”
Rpt. No. 615, Center for Supercomputing Research and
Development, University of Illinois, Dec. 1986.

[Fran8s]

[GLee86]

[GGKMs3]

[JaDes8]

[Jaya87a] D. N. Jayasimha, ‘“Parallel Access to Synchronization
Variables,” Proc. International Conference on Parallel
Processing, pp. 97-100, Aug. 1987.

D. N. Jayasimha, “Distributed Synchronizers,” Rpt. No.
713, Center for Supercomputing Research and Develop-
ment, University of Illinois, Nov. 1987.

D. J. Kuck, et al., “Cedar,” Proc. of COMPCON,
Spring 1984.

G. F. Pfister, et al., “The IBM Research Parallel Proces-
sor Prototype (RP3): Introductionand Architecture,”
Proc. International Conference on Parallel Processing,
pp. 764-771, 1985.

G. F. Pfister, V. A. Norton, ‘’Hot Spot’ Contention and
Combining in Multistage InterconnectionNetworks,”
Proc. International Conference on Parallel Processing,
pp. 790-797, 1985,

C. D. Polychronopoulous, D. J. Kuck, “Guided Self-
Scheduling: A Practical Scheduling Scheme for Paral-
lelSupercomputers,” IEEE Trans. on Comput., vol. C-
36, no. 12, pp. 1425-1439, Dec. 1987.

P. Tang, P. C. Yew, ‘“Processor Self-Scheduling for
Multiple-Nested Parallel Loops,” Proc. International
Conference on Parallel Processing, pp. 528-535, 1986.

P. C. Yew, N. F. Tzeng, D. H. Lawrie, “Distributing
Hot Spot Addresssing in Large Scale Multiprocessors,”

[Jaya87b]

[Kucks4]

[Pfis85]

[PfNo85]

[PoKu87]

[TaYes86]

[YeTL86]

Proc. International Conference on Parallel Processing,
pp. 51-58, Aug. 1986.

C. Q. Zhy, P. C. Yew, “A Synchronization Scheme and
its Application for Large MultiprocessorSystems,” Proc.
International Conference on Distributed Computing Sys-
tems, pp. 486-493, 1984.

[ZhYes4]

Graph-based partitioning of matrix algorithms
for systolic arrays: application to transitive closure

Jaime H. Moreno and Tom4s Lang *
Computer Science Department
University of California, Los Angeles
3680 Boelter Hall
Los Angeles, Calif. 90024

Abstract. We propose a technique to partition algorithms for
execution in systolic arrays, based on transformations to the
dependency graph of algorithms. We illustrate this method
through its application to the computation of transitive clo-
sure of a directed graph. We derive linear and two-dimensional
structures for such algorithm that exhibit maximal utilization,
no overhead due to partitioning and simple control. In the
process, we obtain a graph suitable for an array for fixed-size
problems that exhibits better characteristics than arrays pre-
viously proposed for this algorithm. Our method also allows
evaluating trade-offs among implementations.

Introduction

The implementation of matrix algorithms as collections of reg-
ularly connected processing elements (arrays of PEs) has been
extensively studied lately. Many applications require process-
ing large matrices for which it is not feasible to build an ar-
ray of the required size, while others require solving problems
of variable size using the same array. In such cases, it be-
comes necessary to decompose the problem into sub-problems
so that the sub-problems fit into a target array. This is known
as partitioning the algorithm and has been studied by many
researchers [1]-[5].

In this paper, we summarize a partitioning technique based
on the dependency graph of algorithms. A complete description
of the technique can be found in [6]. This is a transformational
approach, that uses a fully—parallel dependency graph as the
description of the algorithm. Such a graph is first transformed
to remove properties not desirable for an implementation (i.e.,
data broadcasting, bi-directional data low) and converted into
a graph suitable for partitioning (i.e., with simple communica-
tion requirements). The resulting graph is mapped onto the
target array. The transformations are performed taking into
account issues such as I/O bandwidth, throughput, delay, and
utilization of PEs. We illustrate the technique through its ap-
plication to the design of arrays for partitioned computation of
the transitive closure of a directed graph. We derive and evalu-
ate linear and two—dimensional structures to compute such al-
gorithm. These arrays exhibit maximal utilization, no overhead
and simple control. In addition, we show that an intermediate
graph used by the methodology is suitable for implementation
of fixed-size arrays for transitive closure, with better charac-
teristics than arrays previously proposed for such computation.

We have applied our partitioning technique to several
algorithms for matrix computations, among them LU-

*J. Moreno has been supported by an IBM Computer Sciences
Fellowship. This research has also been supported in part by the
Office of Naval Research, Contract N00014-83-K-0493 “Specifi-
cations and Design Methodologies for High~Speed Fault—Tolerant
Algorithms and Structures for VLSI”

28

decomposition, QR-decomposition, and Faddeev algorithm [7].
Our results show that the graphical nature of our approach
makes it easier to use than methodologies based on math-
ematical expressions proposed in the literature. Moreover,
the method allows evaluating trade—offs between linear and
two-dimensional arrays for partitioned execution of algorithms.
This technique is an extension to one for the design of arrays
for fixed-size problems that we have previously proposed [8,9].

Partitioning the computation of transitive closure of a di-
rected graph has been recently addressed by Nuiiez and Tor-
ralba [10]. They propose an algorithm and partition it through
decomposition into a block-algorithm. Although they do
not address the details of an implementation, their algorithm
requires rather complex control to chain the different sub—
problems.

Graph-based partitioning

Partitioning consists of mapping the computation of an algo-
rithm with large-size data onto an array smaller than the size
of the data. Three basic approaches have been proposed to
achieve such mapping:

e coalescing [1,5]
o cut-and-pile [1]
¢ decomposition into subalgorithms [1]

The relative merits of these approaches are discussed in [6].

We summarize here a partitioning technique based on the
dependency graph of algorithms that uses the cut-and-pile ap-
proach due to its generality and smaller memory requirements.
A complete description of such technique is given in [6]. This
partitioning procedure is as follows:

1. Transform the dependency graph to remove properties
undesirable for an implementation, such as data broad-
casting or bi-directional data flow. Procedures for these
purposes have been presented in [8,9].

2. Transform the graph obtained in (1) into a new graph,
which we call the G-graph, by collapsing groups of nodes
into new nodes (G-nodes). The objective of this transfor-
mationis to obtain a graph more suitable for partitioning,
that is, with simple communication requirements.

Criteria to perform the selection of primitive nodes com-
posing a G-node are reported in [6].

3. Map G-nodes to a target array with m cells by schedul-
ing sets of m neighbor G-nodes (a G-set) for concurrent
computation. G-sets scheduled successively are executed
in overlapped (pipelined) manner in the array. The se-
lection of G-sets depends on the structure of the target

array. In addition, for maximal utilization, all nodes in a
G-set should have the same computation time.

The G-graph obtained with our procedure can be directly
used to implement an array for a fixed-size problem. However,
since the G-graph might be composed of nodes with different
computation time, its direct implementation could lead to low
utilization of cells.

Partitioned Computation of Transitive Closure

We present now the application of the proposed partitioning
technique to the design of arrays to compute transitive closure
of a directed graph. We first describe briefly the algorithm and
then apply the three-step procedure indicated above.

The transitive closure problem

A directed graph G is a tuple G(V,E), where V is the set of
nodes and E is the set of edges in the graph. G can be described
by the adjacency matriz A, where element a;; = 1 if there is
an edge from node i to node j or if i = j, otherwise a;; = 0. A
directed graph Gt (V, E*) is called the transitive closure of G
if it has the same vertex set as G and has an edge from node
v to node w if and only if there is a path of length zero or
more from v to w in G. Gt can be described by the adjacency
matriz At

The computation of the transitive closure of a graph is usu-
ally performed by Warshall’s algorithm [11]. Given the adja-
cency matrix A, then At is obtained through the application
of the following recurrence:

For k fromlton
For ¢« from1lton
For 3 fromlton

k—1 k—1 k-1
ok 2 @ (2 @ 7]
In this expression, X0 = A, At = X" and the operators @
and ® stand for binary-OR and binary—AND, respectively.

The fully-parallel dependency graph [8] of the transitive clo-
sure algorithm is shown in Figure 1, for a problem of size n = 4
(i.e., to compute the transitive closure of a directed graph with
four nodes). The graph has four levels, where each level corre-
sponds to one iteration of the outermost index in the algorithm
above.

Some evaluations of the expression in the algorithm above
do not change the corresponding a:g‘j. In particular, the value
of a diagonal element in the adjacency matrix is always 1, be-
cause a node in the directed graph is always adjacent to itself.
In addition, for k = i or k = j one of the two operands in
:z:','_1 ® .1::'.'1 becomes a:z;l which is a diagonal element and
thus always equal to 1. Consequently, the result from the ®
operation is equal to the second operand, the @ operator gets
two identical operands (z:‘,;" Lor :t:;'l) and the result is that
same operand. These properties can be utilized to simplify the
design of arrays to compute the transitive closure and to reduce
the complexity of the algorithm since fewer operations need to
be performed. Nodes surrounded by dashed areas in Figure 1
correspond to superfluous nodes (i.e., they do not need to be
computed).

29

8y Ay Ay By By By By By By By By By By By By By
ket
eififed f2a] [iad] ffeat {34 fixar] e)
ka2
et} fza) ez} fuauf{ o) ol 1) ez} el Haa)
ka3
2] {[xza) o} [ead) o) o) o) o] eat] el
ked
= S
x11f]fx1 x14f]1x21] fix: x24} [x31 34
+ + + + + + + + + + + + + + + +
8y 8y By3 8y 8y 8y 8y 8 By 8y By By, 8, 8, 3, 8y,

Figure 1: Fully—parallel dependence graph of transitive closure

Arrays for partitioned computation of transitive
closure

We apply now our partitioning procedure to the computation of
the transitive closure of a directed graph. The fully—parallel de-
pendency graph shown in Figure 1 is not suitable for implemen-
tation, because it exhibits broadcasting of data and complex
communication requirements. We address these issues first, ac-
cording to the procedure described previously.

There are two types of data broadcasting in Figure 1. At
the k-th level of the graph, data elements from row k of the
matrix are broadcasted to all other rows. Moreover, the k-th
element of each row of the matrix is broadcasted to all other
elements within each row. Because of the varying pattern of
broadcasting, other researchers have considered transitive clo-
sure an irregular algorithm [13].

We transform the graph replacing broadcasting by pipelin-
ing, as suggested in [8]. Given that the k-th row of the adja-
cency matrix remains unchanged at the k-tk level of the graph,
we remove the nodes corresponding to updating those values
and draw the flow of data for such row horizontally and inter-
secting with the flow of data of the other rows of the matrix.
Such modification is shown in Figure 2. Data which is evalu-
ated at each level of the graph flows vertically, while the data
element broadcasted within each row of the matrix flows diag-
onally through the row.

Because of the varying source of broadcasting, the trans-
formed graph in Figure 2 exhibits bi-directional flow of data.
However, this bi-directional flow can be eliminated by mov-
ing nodes dependent on the broadcasted data to one side of
the source of broadcasting. We have described such transfor-
mation as an approach to solve this problem in dependence
graphs [9]. In this case, the transformation is applied in two
steps: first, nodes to the left of sources of horizontal broad-
casting are flipped to the right end of each row of the graph.
Then, nodes above sources of diagonal broadcasting are flipped
to the bottom end of such diagonals. In addition, delay nodes
are placed at the boundaries of the graph with the same depen-

Q21 857 8z 8y 83985 833 B34 84y "4: 8,3 8y,

e e dachd

PP 22

=

deccece

e

9 superfluous node

—=& broadcast data

Figure 2: Replacing broadcasting by pipelining

a‘ 1 a!zataauaztaazazﬁaa:n aﬂq.ﬂ%‘ a‘l al!al!a“
PN

G
PR i)
el Tyl TN TV
et T Iy
] Ml iat
O 1
b T Y
AT DA
™ ™ N ™
al-Tsh Tl T
W delay node Iy S s Y
™A TN A X
ST
T

Figure 3: Transformed transitive closure dependence graph

dency structure that dominates the graph, as proposed in [9].
The resulting graph is shown in Figure 3.

Once properties of the original dependency graph not suit-
able for partitioning have been eliminated, we apply the re-
maining of our partitioning procedure. We first transform the
graph into a G-graph by selecting sets of primitive nodes in
such a way as to reduce communication requirements and ob-
tain G-nodes with the same computation time. In this case,
diagonal paths are a good alternative for grouping, because
nodes in such paths communicate among themselvesin a repet-
itive manner and all paths have the same number of primitive
nodes. The result of performing such grouping is the G-graph
shown in Figure 4.

As an aside, Figure 4 is suitable for direct implementation as
an array for fixed-size problems. Such an array achieves max-
imum utilization because all G-nodes have the same computa-
tion time and the algorithm is computed in pipelined manner
in the array. Throughput is 1/n because the computation time
of G-nodes is n cycles. Successive instances of the algorithm
can be chained without restrictions. This array is simpler than
the one proposed in [13] because it has a single communication
path between cells and no control complexity. Furthermore,
data transfers and computations are overlapped while the ar-
ray proposed in [13] requires that “data be first loaded in the
nodes and then reused for a period of n cycles” so that “certain
control is required in the systolic array.”

30

:m oo
0
j | lgm (T
=m soe

Wik

T
I

i
K
I

2
E
7

TRl T
o -
i S
: 3 3
b : + au
q % 2 =

[Memory l

Figure 5: Mapping G—graph onto a linear array

Another advantage of the array for fixed-size problems de-
scribed above relies on the simplicity of its derivation through
the graph-based methodology. This is in contrast with the
scheme in [13], which uses a rather complex mathematical ap-
proach. Furthermore, the G—graph in Figure 4 can be collapsed
into a linear structure by grouping each horizontal path into a
single node. The resulting graph can be directly mapped onto
a linear array with throughput [n(n + 1)]~! and all cells fully
utilized.

Arrays to compute the transitive closure in partitioned mode
can be derived directly from the G-graph in Figure 4, as we
describe next.

Linear array

Let’s assume that we want to partition the computation of
transitive closure of a directed graph with n nodes so that it
fits in a linear structure with m cells, where m € n. We
map G-sets from the transformed graph onto a linear array
by selecting G-sets of m G-nodes from horizontal paths, as
shown in Figure 5 for m = 4. Intermediate results from G-sets
are saved in external memories. Such data is available at the
boundary of the set, so that saving it in external memories is
straight—forward.

[}
[N)
L]

e
e

3

| Memory l

Figure 6: Mapping G-graph onto two-dimensional array

f
PE

Memory

The structure resulting from this approach enjoys maximal
utilization because all G-nodes executed concurrently have the
same computation time, except when executing boundary sets
in some horizontal paths that might not use all cells in the
array. The number of connections to external memoriesis m+1.

Two-dimensional array

Mapping- the G-graph for execution in a two-dimensional
structure with m cells requires to simulate a triangular array
and a square array, because those are the major components
of the G—graph. Both requirements can be fulfilled in a square
array. G-sets are selected as square blocks of /m by /m
nodes, excepting sets at the boundaries of the G-graph which
are composed of triangular blocks of G-nodes. As in the linear
case, intermediate results are saved in external memories. The
structure resulting from this approach is shown in Figure 6 for
m = 4. Utilization of this array is maximal, except when exe-
cuting boundary sets because such sets do not use all cells in
the array. The number of connections to external memories is

2/,

To use the arrays obtained above it is necessary to schedule
the execution of G-sets. Such scheduling is discuss in detail
in [6] and it is shown that linear and two-dimensional arrays
require the same I/O bandwidth from the host.

Conclusions

We have proposed a technique to partition algorithms for ex-
ecution in arrays, based on dependency graphs of algorithms.
We described the application of such technique to the compu-
tation of transitive closure of a directed graph. Through this
example, we have shown that the approach is general and pow-
erful. This technique is suitable for a class of important ma-
trix algorithms, produces implementations with maximal uti-
lization of cells and no overhead due to partitioning, and al-
lows evaluating trade-offs between linear and two-dimensional
structures. Moreover, this graph-based approach is simpler to
use than schemes based on mathematical expressions.

We derived linear and two-dimensional arrays for parti-
tioned ‘computation of transitive closure. In the process, we
have obtained a dependence graph which is suitable for im-
plementation of a fixed-size array for transitive closure, with

31

better characteristics than structures previously proposed for
this algorithm.

In [6], we describe other issues in partitioning algorithms, in
particular trade—offs between linear and two—dimensional struc-
tures. We show there that, with the same number of cells, lin-
ear arrays are simpler, have the same throughput and require
the same I/O bandwidth from the host than two-dimensional
ones, and might exhibit better utilization. Moreover, linear
arrays are more advantageous than two-dimensional ones be-
cause they are better suited to incorporate fault-tolerant ca-
pabilities. Consequently, we conclude that linear arrays offer
better performance and implementation than two-dimensional
arrays for partitioned erecution of algorithms.

References

[1] J. Navarro, J. Llaberia, and M. Valero, “Partitioning: an
essential step in mapping algorithms into systolic array
processors,” IEEE Computer, vol. 20, pp. 77-89, July
1987.)

D. Moldovan and J. Fortes, “Partitioning and mapping
algorithms into fixed size systolic arrays,” IEEE Transac-
tions on Computers, vol. C-35, pp. 1-12, Jan. 1986.

S. Kung, VLSI Array Processors, pp. 374-382. Prentice
Hall, 1988.

K. Hwang and Y. Cheng, “Partitioned matrix algorithms
for VLSI arithmetic systems,” IEEE Transactions on
Computers, vol. C-31, pp. 1215-1224, Dec. 1982.

J. Nash, S. Hansen, and K. Przytula, “Systolic partitioned
and banded linear algebraic computations,” in SPIE Real-
Time Signal Processing IX, pp. 10-16, 1986.

J. Moreno and T. Lang, “Graph-based partitioning of
matrix algorithms for systolic arrays,” Technical Re-
port CSD-880015, Computer Science Department, Uni-
versity of California Los Angeles, March 1988.

J. Moreno and T. Lang, “On partitioning the Faddeev al-
gorithm,” in International Conference on Systolic Arrays,
May 1988.

J. Moreno and T. Lang, “Design of special-purpose arrays
for matrix computations: preliminary results,” in SPIE
Real-Time Signal Processing X, pp. 53-65, 1987.

J. Moreno and T. Lang, “Reducing the number of cells in
arrays for matrix computations,” Technical Report CSD-
880014, Computer Science Department, University of Cal-
ifornia Los Angeles, March 1988.

F. Niiiez and N. Torralba, “Transitive closure partition-
ing and its mapping to a systolic array,” in International
Conference on Parallel Processing, pp. 564-566, 1987.

A. Aho, J. Hopcroft, and J. Ullman, The Design and Anal-
ysis of Computer Algorithms. Addison-Wesley, 1974.

J. Moreno, “A proposal for the systematic design of arrays
for matrix computations,” Technical Report CSD-870019,
Computer Science Department, University of California
Los Angeles, May 1987.

S. Kung, VLSI Array Processors, pp. 248-266. Prentice
Hall, 1988.

(2]

3]
[4]

(5]

(6]

(7]

(8]

(o]

(10]

(11]

(12]

(13]

Iterative Sparse Linear System Solvers on Warp

P. S. Tseng

Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

Warp is a systolic computer developed by CMU and
manufactured by GE. The machine has 10 or more
linearly connected cells. Each cell in the array is capable
of performing 10 million floating point operations per
second (10 MFLOPS). The 10-cell array can achieve a
peak performance of 100 MFLOPS. This paper describes
parallel iterative sparse linear system solvers developed
for the Warp systolic computer. For general sparse linear
systems, Warp achieves 12.5 MFLOPS in sparse matrix
vector multiplication, which competes with supercom-
puters such as Cray-1S and Cyber-205. We implemented
the general sparse linear system solver IC-PCCG
(Incomplete Choleski Pre Conditioned Conjugate
Gradient method) using the sparse matrix vector mul-
tiplication kernel. The solver was exercised on sparse
linear systems derived from production finite element ap-
plications. Speedups of more than 100 over the VAX/780
with floating point accelerator are achieved. For solving
regular sparse linear systems, domain partitioning is used
to speedup solving finite difference equations on a regular
mesh. For a model problem of Laplace’s equation on a
square mesh of 500 by 500 unknowns, Warp is able to
achieve 14.6 MFLOPS using the generic SOR relaxation
scheme and 49.4 MFLOPS using the 2-color SOR relaxa-
tion scheme.

1. Introduction

Large sparse linear systems of order 10* to 10° frequently
arise in large scale scientific and engineering analysis such as
computational fluid dynamics, structural mechanics,
electronic device simulation and electric magnet field
analysis. Direct methods designed for solving dense linear
systems such as LU and Choleski decomposition are imprac-
tical for solving very large sparse systems, because very large
storage is required. Driven by demands from applications,
extensive efforts have been invested in the search for practical
solvers for large sparse linear systems. There are two ap-
proaches. One is to pick an appropriate direct method and
adapt it to exploit the sparsity of linear systems. Typical

The research was supported in part by Defense Advanced Research
Projects Agency (DOD) monitored by the Space and Naval Warfare
Systems Command under Contract N00039-87-C-0251, and in part
by the Office of Naval Research under Contracts N00014-87-K-0385
and N00014-87-K-0533.

32

adaptation strategies involve the intelligent use of data struc-
ture and special pivoting strategies that minimize fill-in of the
coefficient matrix [5, 6]. In contrast to the direct methods are
the iterative methods. These methods start with an initial
guess to the solution and generate a sequence of successively
improved solutions until it converges to the desired solution
within the accepted tolerance. Iterative methods are much
more efficient for very large sparse systems because the coef-
ficient matrix is not decomposed and remains unchanged
throughout iterations, therefore no fill-in is created.

In this paper, several iterative sparse linear system solvers
on the CMU Warp machine are described. We first give a
brief review of the Warp machine and its architectural
strength in supporting sparse matrix computations. Secondly,
we consider the crucial kernels used in solving general sparse
linear systems, sparse matrix vector multiplication and sparse
triangular system solving. Implementation of these kernels on
Warp are described and compared with vector supercom-
puters such as Cray-1S and Cyber-205. These kernels were
integrated into the general sparse linear system solver IC-
PCCG and exercised on sparse linear systems derived from
production finite element applications. Speedups of more than
100 over the VAX/780 with floating point accelerator are
achieved. - Finally, we consider the problem of solving finite
difference equations on a square mesh. For the model
problem of Laplace’s equation on a square mesh of 500 by
500 unknowns, Warp is able to achieve 14.6 MFLOPS using
the generic SOR relaxation scheme and 49.4 MFLOPS using
the 2-color SOR relaxation scheme.

2. The Warp Machine

A brief overview of the Warp machine is given below. (for
architectural details, programming tools, and its other applica-
tions see [1, 2, 3]) The Warp machine has three components -
the Warp processor array, or simply Warp array, the interface
unit, and the host, as depicted in Figure 2-1. The Warp
processor array performs the bulk of the computation. The
interface unit handles the input/output between the array and
the host. The host has two functions: carrying out high-level
application routines and supplying data to the Warp processor
array.

The Warp processor array is a programmable, linear sys-
tolic array, in which all processing elements (Warp cells) are
identical. Data flow through the array on two data paths (X
and Y) (as shown in the Figure 2-1). Each Warp cell contains
one floating-point multiplier, one floating point ALU and one
integer ALU. The floating-point units can deliver up to 5§
MFLOPS each. This performance translates to a peak
processing rate of 10 MFLOPS per cell or 100 MFLOPS for a
10-cell processor array. A 32K-word memory is provided for
resident and temporary data storage. The datapath of a Warp
processor cell is shown in Figure 2-2. The host is a general
purpose computer (currently a Sun workstation, with added
MC68020 cluster processors for I/O and control of the Warp
array). It is responsible for executing high-level application
routines as well as coordinating all the peripherals.

HOST
INTERFACE
UNIT
X 3 X
cellF cell : 2 :cellol
11yl 2 . v
WARP PROCESSOR ARRAY

Figure 2-1: The Warp systolic computer

Xout
Xin X
Queue
. Yout
Yin I
1 Queue
. 1 A
litera Reg Alu
Adr
Gen - Jove
Mem
AV
Mem
M
Reg Mpy _'I

Figure 2-2: Warp cell datapath

A feature that distinguishes the Warp cell from many other
processors of similar computation power is its high intercell
communication bandwidth - an important characteristic for
systolic arrays. Each Warp cell can transfer up to 20 million
words (80 Mbytes) to and from its neighboring cells per
second. We have been able to implement this high bandwidth
communication link with only modest engineering efforts,
because of the simplicity of the linear interconnection struc-
ture and clocked synchronous communication between cells.
This high inter-cell communication bandwidth makes it pos-
sible to transfer large volumes of intermediate data between

33

neighboring cells and thus supports fine grain problem
decomposition. For communicating with the outside world,
the Warp array can sustain a 20 Mwords/sec peak transfer
rate. In the current setup, the host can only support up to 2
Mwords/sec transfer rates.

3. General Sparse Linear Systems

The compact matrix storage structure makes sparse matrix
computations different from those for dense matrices. Figure
3-1 shows a widely used storage structure for general sparse
matrices. The A array stores the non-zero elements of the
matrix, the JA array stores the column index of each non-zero
elements, and the IA array is an index array which points the
starting element of each row in the A and JA arrays. This
compact matrix format is used in general sparse matrix
packages such as the Itpack [8].

We identify two sparse matrix kernels which dominate the
computation of the iterative solvers under our consideration.
They are

e sparse matrix vector multiplication;

e sparse triangle system solving.

12 0 4 0 0

0 113 0 0 16

210 1 0 0 O

032 0 1 0 36

042 0 0 1 0

51 053 0 0 1
A =1[1, 2, 4; 1,13,16;21, 1;
32, 1,36;42, 1;51,53, 1]
JgA=1[10,1, 3; 1, 2, 5;: 0, 2;
i, 3, 5: 1, 4; 0, 2, 5]

IA=10[0, 3, 6, 8,11,13]

Figure 3-1: Sparse matrix storage

3.1. Sparse Matrix Vector Multiplication
Consider the algorithm for multiplying a sparse matrix with
a dense vector y=AX":

for i := 0 to n-1 do begin
jbgn := IA[i] ; jend := IA[i+l]
sum := 0.0;

- 1;

for j := jbgn to jend do begin
sum := sum + A[j] * x[JA[Jj]];
end :
y[i] := sum;
end

The algorithm steps through the sparse matrix row by row and
does an inner product of the sparse row vector with the dense
vector ¥. The inner product computation is optimized by
collecting elements from the dense vector indexed by the
sparse vector to avoid multiplication and addition with zeros.
This process of randomly collecting elements from a dense
vector to match a sparse vector is known as the gather opera-
tion. The sparse matrix vector multiplication algorithm is an
example where the innermost loop is sequential while the
outer loop is completely parallel. To parallelize the computa-

tion, we simply distribute the rows of the matrix to the 10-cell
array by interleaving, that is, cell ¢ has rows 10k+i, for
0>k=|n/10]. The dense vector is duplicated on all the cells.
Because of the 7-stage pipelined floating point adder, a Warp
cell can only do the sparse dot product step at the rate of one
every 8 cycles, that is, 1.25 MFLOPS out of its 10MFLOPS
peak performance. The 10-cell Warp array can achieve 12.5
MFLOPS in sparse matrix vector multiplication. This perfor-
mance figure is as good as or better than supercomputers such
as Cray-1S (Gather: 5 to 11 MFLOPS, Peak 210 MFLOPS)
and Cyber-205(Gather: 4 to 17 MFLOPS, Peak 800
MFLOPS) [4]. Note that, Warp is a single precision machine
while the performance on CRAY-1S and Cyber-205 are
double precision results. The relatively bad performance on
vector computers is due to their heavily pipelined memory
system and vector oriented processor units, which do not
perform well in random indirect addressing and short vector
computations.

3.2. Sparse Triangular System Solving

Sparse triangular system solving is an inherently sequential
process. Consider the algorithm for solving sparse lower
triangular system AX=y":

for i := 0 to n-1 do begin
j := IA[i];
sum := y[i];

while (JA[j] < i) do begin
sum := sum - A[j] * x[JA[j]];

j = j+1;
end
x[i] := sum;

end

and similarly the algorithm for solving sparse upper triangular
system AY=y":
for i := n-1 to 0 do begin
§ := IA[i+1]-1;
sum := y[i];
while (JA[j] > i) do begin
x[i] := =[i] - A[3] * x[JA[]]]

=13 -1
end
x[i] := sum;
end
1 N - N
x1 1
N\, y
1
%2 y2
Ll 0
1

3 3
L2 A X y
1

4
0\ x yv4

L1,L2,L3are general sparse matrices.

L3

Figure 3-2: p-color ordered sparse triangular system, p=4

34

The innermost loops of these algorithms are gather opera-
tion and its outer loops are strictly sequential, which is not the
case in matrix vector multiplication. The technique of multi-
color reordering suggested in [11, 10] is used to restructure
the sparse matrix and parallelize the computation of sparse
triangular system solving.- As shown in Figure 3-2, a p-color
sparse triangular matrix has p identity blocks along the
diagonal. Note that they are blocks of identity matrices, not
blocks of identical size. A triangular system with such a
structure can be solved in p—1 steps instead of n—1 steps,
where n is the degree of the system. Each step of the solving
is a sparse matrix vector multiplication, for example, Figure
3-3 shows the 3 steps for solving a 4-color triangular system.
Since sparse matrix vector multiplication can be done in
parallel, the sparse triangular system solving is thus paral-
lelized.

x1 vl
x2 |=| |¥2 |- = Step 1
Ll
%3 k v3 |- S T 2 Step 2
x4 vd |- x1|— 22| | 13 }{3
Step 3

Figure 3-3: Forward solving : a 4 color ordered system

3.3. The IC-PCCG Solver

The Conjugate Gradient (CG) method was developed by
Hestenes and Stiefel in 1952 [7] and subsequently widely
used for solving minimization problems. Only since the 70’s
has the CG method been used for solving linear systems of
equations with the symmetric positive definite (SPD)
property. Its success is connected with the development of
the Pre Conditioned CG (PCCG) iterations. The Incomplete
Choleski precondion (IC-PCCG) [9] is one of the most suc-
cessful general purpose precondition strategies popularly used
in practice.

Let A be a symmetric positive definite (SPD) n by n sparse
matrix. We want to solve a linear system with AX =5. If we
define the error functional as

F@) = 12@-2)A®@-2) = 12(7) A~ 1)

where X¥—Z" is the error vector and the residual vector 7 is
defined as 7 =5—Az". This functional is minimized by the
exact solution of Az> =F. The CG method prescribes how to
choose a sequence of approximations ¥ & such that the func-

tional F(¥';) is minimized in an optimal way. In the steepest
descent method the new approximation X’ k41 is found in the
direction of the gradient, which is the residual vector 7.

F(7k+1) = min, FX) + ocf’k)

The CG method converges in at most n iterations in the
absence of round-off errors, the convergence rate is strongly
determined by the clustering of the eigen values of the A
matrix. The generic CG method is not practical for applica-
tions because of its slow convergence rate. The PCCG method
is thus introduced, which instead of solving the system
AX =, solves the preconditioned system

M lA = (1)

where M is the precondition matrix with the properties that
® M is positive definite
e M 1A has better spectral properties than those of

A, that is, a smaller spectral radius and more
clustered eigen values.

e It is relatively cheap to solve a system with M,
Mz =2a.
Although the detailed theory of PCCG may be complicated, it
turns out that the approximation of ¥, can be simply com-
puted by the following iterative algorithm with § as the stop-
ping criterion.

Initialization:
)?0_= o
17() =v
Solve: M?0= v
k=0
Iteration:
While V2, ¢ 7, > (do
7, F’k
(x,k = —
Py APy

Xpe1 =Xt 4Py

= _ ~
Pre1 =T g~ MAP
Solve: M?k+1=r_)k+l

= =
23 751

B, =
¢ 7pery

Prr1 =Tk + Bk
k=k+1

For IC-PCCG algorithm, the precondition matrix
M =LDLT is derived from the incomplete Choleski decom-
position of A, where D is a diagonal matrix and L is a lower
triangular matrix with the same sparse pattern as A. A detailed
discussion of IC-PCCG algorithm can be found in [9]. In
addition to the vector additions (@+s?) and inner products
(@), a sparse matrix vector multiplication and two sparse
triangular system solving are kernels used inside an IC-PCCG
iteration.

35

In our implementation of the IC-PCCG algorithm, matrix A
is first multi-color renumbered and then M is derived from the
renumbered matrix by incomplete Choleski decomposition.
Matrices A and M are ditributed to the 10 processor cells by
row interleaving. Vectors P, 7, Z and X" are also distributed
to the 10 processor cells by interleaving. Scalars are dupli-
cated in all cells. One working vector of length n is allocated
in each cell for sparse matrix vector multiplication and tri-
angular system solving. The p’ vector is copied to the work-
ing vector before AP is performed. A segement of the Z’
vector is generated after a parallel forward (backward) sub-
stitution step completes. The segement is then copied to the
working vector before the next parallel forward (backward)
substitution step starts. The inner products are done by com-
puting the partial result in each cell. All the partial results are
summed together from the first cell to the last cell then broad-
cast backwards from the last cell to all the cells. Vector
additions are naturally parallelized because the vectors are
distributed. Scalar computations and convergence test are per-
formed by all cells, that is, sequential computations are dupli-
cated. The host is not involved in the iterative process at all,
thus its limited host I/O bandwidth does not affect the com-
putation.

t=20 y-queue y—queue
[[
036
X X X
Z X X
ZZ Z PO
—Ple3 o0 ——474 1]
£l La¢ [25 8|4
0z x z 1 =z 12
3z ¥ z 4 = z x5
6 = 7 = %8
—> I —He3 0
t =6
I [258)4
01 x 01 z1 2
34 % 34 #4050
6 7 = 6 7 78
N s T S e
t =10
C— ¢ —
012 012 012
345 345 345
67 8 678 67 8

Figure 3-4: Copy a distributed vector to all the cells

Copying a distributed vector to all the cells is the major
communication overhead in this mapping. With the support of
the systolic communication pathway, we are able to reduce
this overhead significantly. Figure 3-4 shows a method to

achieve fast communication. The method can copy a dis-
tributed vector of length n to all the cells in n+c—2 cycles,
where c is the number of cells. Limited by the local memory
bandwidth, this result is only ¢-2 cycles away from the best
possible achievable result of n cycles. We have exercised our
IC-PCCG implementation on sparse matrices arising in the
finite element analysis applications from GE Corporate
Research and Development, GE-CRD. Limited by the small
cell memory, these matrices have no more than 4000 un-
knowns. The performance of GE production IC-PCCG code
run on a VAX-780 (with floating point accelerator) VMS
system is compared with Warp. Warp is more than 100 times
faster, depending on the sparsity of a matrix.

4. Regular Sparse Linear Systems

In this section, we describe the mapping methods for solv-
ing finite difference equations on a regular mesh, or equiv-
alently a sparse linear system with multiple nonzero diagonals
in the coefficient matrix. Problems of this type frequently
arise in numerical solution of partial differential equations by
finite difference approximation. The regular structure of the
sparse matrix makes index vectors obsolete and more effec-
tive mapping schemes can be used to improve the computa-
tion speed.

7) (")
[3

5

4

3

2 g

1

0 00 U 19

01 2 3 4 5 6 7

Figure 4-1: Descretized square domain (5-point stencil)

For simplicity and ease of presentation, we illustrate the
example of solving Laplace’s equation on a square domain
with a Dirchlet boundary condition. The domain is
descretized using the five point difference scheme , as shown
in Figure 4-1. Linear equations of the form

=0

Auy gy g gt i1

i 1+u

i+
are obtained for the interior grid points. The solution of u; J
can be derived by the method of Successive Over Relaxations
(SOR) [13]. Of course, the problem can be solved using other
fast methods [12]. But, it makes a convenient example with
which we are able to illustrate a mapping scheme for general
problems of this type. The SOR iteration can be formulated
by the recurrence equation:

k k-1 k k k—~1 k-1
uid=(1—m)uiJ +0'25(’)(“1'-1J+uij—l+”iJ+1+“i+1J)
where the super script denotes the iteration number and is
the relaxation parameter. The generic SOR iteration is con-

36

sidered sequential on vector computers. It can not be vec-
torized in either the column or the row dimension because of
the recurrence definition in the algorithm. For Warp, even the
nested recurrence computation can naturally be parallelized
using the systolic pathway. '

Our mapping is based on a simple domain partition, no
preprocessing is needed to achieve the splitting. Consider the
mapping on a linear array of two processor cells. The mesh
of unknowns is evenly partitioned into 2 cells on the column
dimension with one column overlapped, as shown in Figure
4-2. In one relaxation step, the computations between two
cells are scheduled as follow. When cell O completes the
computation for the first half of row i, it sends the overlapped
element to cell 1 and continues to compute row i+1 in its
domain. In the mean timg, cell 1 receives the value generated
by cell 0 and continues the computation on the second half of
row.i. Cell 1 sends its overlapped element back to cell 0
when it is generated. The datum is stored in the queue and
will not be retrieved by cell 0 until it finishes the computation
of the first half of row i+1. This process repeats until the last
row. Figure 4-3 illustrates the communication between two
cells.

g
H
g

N
4

0 0 0 0 0 6 0 0 0 O
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0O 0 0 0 O
0 0 0 0 © 0 0 0 0 O
0 0 0 0 O 0O 0 0 0 0
0 0 0 0 © 0 0 0 0 O
0 0 0 0 O 0 0 0 0 O
0 0 0 0 0 0 0 0 0 O
cell 0 cell 1

Figure 4-2: Domain partition

In this example, the queue between processors is used both
for communication and synchronization, a unique feature of
systolic arrays. With the combined communication and
synchronization scheme, the mapping is free of overhead.
The zero cost of synchronization remains as the number of
processor increases and the granularity between synchroniza-
tions decreases. This nice property can not be achieved in
many shared memory multiprocessors, where the
synchronization is done sequentially. A complete SOR algo-
rithm needs to compute the norm of error vector between

successive iterations to determine the convergence of the
solution. The norm of error vector is computed locally inside
each cell. After one relaxation step is completed, the partial
norms of all cells are combined together from the first cell to
the last cell then broadcast backward from the last cell to all
the cells. The convergence test is done by all the cells. As in
the IC-PCCG algorithm, the host is not involved in the itera-
tive process. For a mesh of 500 by 500, the Warp computer
can finish one SOR iteration with convergence test in 187 ms,
which is 754 ns per point per iteration or 14.6 MFLOPS. The
bad absolute performance is caused by the 7-stage pipelined
processing unit inside each cell. A simple fix to avoid the cell
pipeline problem is to use the 2-color relaxation scheme. In
the first half of an iteration, we update the unknowns Upps
where i+j is even. In the second half of an iteration we update
Ugps where i+j is odd. Each half iteration is completely parallel,
thus the cell pipeline unit can be utilized more effectively.
One complete 2-color SOR relaxation for the 500 by 500
mesh can be done in 54 ms, which is 224 ns per point per
iteration or 49.4 MFLOPS.

2 x oz x-—0] H0 0 0 0 O
0000 o2 o oo 0 o
0 0 0 0 0| y-quewe| © 0 0 0 0
0 0 0 0 O 0 0 0 0 O
0 0 0 0 O 0 0 0 0 O
0O 0 0 0 O 0O 0 0 0 O
0O 0 0 0 O [::::: 0 0 0 0 O
0 0 0 0 0 yguene| 0 0 0 0 0
cell 0 cell 1
x x x z 0 x x 0 0 O
x 0 0 0 0 ::::] o 0 0 0 O
0 0 0 0 O - 0 0 0 0 O
0 0 0 0 O 0 0 0 0 O
0 0 0 0 O 0 0 0 0 O
0O 0 0 0 O 0 0 0 0 O
00 0 0 0 00 0 0 0
0 0 0 0 0/ yquewe|© 0 0 0 0
cell 0 cell 1
¥ X X X X X X X X X
x oz =z 08— =0 0 0 0 o
0 0 0 0 0V xquege| © 0 0 0 0
0 0 0 0 O 0O 0 0 0 O
0 0 0 0 O 0O 0 0 0 O
0 0 0 0 O 0 0 0 0 O
0 0 0 0 O [::::: 0O 0 0 0 O
0 0 0 0 0| ygquene| 0 0 0 0 0
cell 0 cell 1

Figure 4-3: Parallel SOR relaxation on a 2-cell array

5. Conclusions

We have demonstrated that a linear systolic array of power-
ful processors like Warp can be used effectively in solving
sparse linear systems. The high bandwidth systolic intercell
pathway is very powerful for fast communication and
synchronization. It is used to reduce the communication
overhead in the IC-PCCG algorithm and to parallelize the

37

nested recurrence computation in the generic SOR relaxation.
The MIMD array is useful because multiple gather operations
in the sparse matrix vector multiplication can not be se-
quenced by a single instruction stream across the array. It is
the heavily pipelined processor cell, not the linear array,
limits the achieved performance. The cell’s single precision
floating point arithmetic and the small local memory capacity
also limit the Warp computer’s use for large scale sparse
matrix applications.

References

1. Annaratone, M., Arnould, E., Gross, T., Kung, H. T., Lam,
M., Menzilcioglu, O. and Webb, J. A. "The Warp Computer:
Architecture, Implementation and Performance". IEEE
Transactions on Computers C-36, 12 (December 1987),
1523-1538.

2. Annaratone, M., Bitz, F., Deutch, J., Hamey, L., Kung,

H. T., Maulik, P., Ribas, H., Tseng, P. and Webb, J. Applica-
tions Experience on Warp. Proceedings of the 1987 National
Computer Conference, AFIPS, 1987, pp. 149-158.

3. Bruegge, B., Chang, C., Cohn, R., Gross, T., Lam, M.,
Lieu, P., Noaman, A. and Yam, D. The Warp Programming
Environment. Proceedings of the 1987 National Computer
Conference, AFIPS, 1987, pp. 141-148.

4. Bucher, I. The Computational Speed of Supercomputers.
The Proceeding of ACM Sigmetrics Conference on Measure-
ment and Modeling of Computer Systems, ACM, August,

1983, pp. 151-165.

5. Duff, I. The Solution of Sparse Linear Equation on the
CRAY-1. Proceedings of the NATO Workshop on High
Speed Computations, NATO, 1984, pp. 293-309.

6. George, J. and Liu, J.. Computer Solution of Large Sparse
Positive Definite Systems. Prentice-Hall, Englewood Cliffs,
N.J., 1981.

7. Hestenes, M. and Stiefel, E. "Methods of Conjugate
Gradients for Solving Linear Systems". Journal of Research
Naional Bureau of Standard. 49 (1952), 409-439.

8. Kincaid, D., Respess, J., Young, D. and Grimes, R.
"Algorithm 586 ITPACK 2C: A FOTRAN Package for Solv-
ing Large Sparse Linear Systems by Adaptive Accelerated
Iterative Methods". ACM Transactions on Mathematical
Software 8, 3 (September 1982), 1302-1322.

9. Manteuffel, T. Shifted Incomplete Cholesky Factorization.
Sparse Matrix Proceedings, SIAM, Nov, 1978, pp. 41-61.

10. Poole, E. and Ortega, J. Incomplete Choleski Conjugate
Gradient on CYBER 203/205. In Supercomputer
Applications, Plenum Press, New York, 1984, pp. 19-28.

11. Schreiber, R and Tang, W. Vectorizing the Conjugate
Gradient Method. Proceedings Symposium Cyber205 Ap-
plications, CDC, 1982.

12. Swarztrauber, P. and Sweet, R. "Algorithm 541:
FORTRAN Subprograms for the Solution of Seperable Ellip-
tic Partial Differential Equations". ACM Transactions on
Mathematical Software 5, 3 (September 1979), 325-364.

13. Young, D.. Iterative Solution of Large Linear Systems.
Academic Press, New York, 1971.

38

Mapping Two Dimensional Systolic Arrays

to One Dimensional Arrays and Applications

1

V. K. Prasanna Kumar and Yu-Chen Tsai

Department of Electrical Engineering-Systems
University of Southern California
Los Angeles, CA 90089-0781

Abstract — A general methodology to map the computa-
tions of two dimensional systolic arrays onto one dimensional
arrays is developed. Since two dimensional arrays have been de-
veloped for a large class of problems, using our technique they
can be translated into one dimensional arrays with bounded I/O
bandwidth requirement. As applications of our methodology we
show a) improved linear systolic arrays for several matrix ori-
ented computations such as matrix multiplication, transitive clo-
sure and dynamic programming, b) systolic arrays with tradeoff
between number of PEs, local storage and 1I/O bandwidth and
c) fault tolerant systolic designs which can be implemented in

afer Scale Integration. Compared to known designs in the lit-
erature our methodology leads to modular systolic arrays with
constant hardware in each PE, few control lines, lexicographic
data input/output format and improved delay time.

1. Introduction

VLSI arrays have been designed to implement cost effective and
efficient parallel solutions in hardware. Using this methodol-
ogy, parallel solutions to a large class of numerical, signal and
image processing problems have been implemented in hardware
[7][15]. Most of these designs consist of two dimensional array
of PEs which solve problems involving O(n®) computations in

O(n) time using O(n?) PEs. In general, such two dimensional
arrays have O(r(? 1/O bandwidth and hence data can be easily
e

aligned for the desired operations to be performed as the data
flows through the array.

Recently design of parallel algorithms for linear arrays has
become increasingly important [23][12][3]. Linear arrays offer
several advantages compared to two dimensional arrays. They
require constant I/O bandwidth. As the problem size becomes
larger, linear arrays become attractive to implement because
only a fixed number of I/O pins are needed on the chip. Also, in
Wafer Scale Integration (WSI), it has been shown [8] that unidi-
rectional linear array structure leads to 100% utilization of good
PEs. No technique 1s known to result in high PE utilization on
a wafer in case of two dimensional arrays (in the worst case) [29]
[4]. However, due to the limited I/O access in the one dimen-
sional arrays, the mapping techniques in the literature cannot
be directly utilized to design such arrays or result in complex
systolic designs. Some of the known linear systolic array design
methodologies lead to bidirectional data flow which is not de-
sirable in wafer scale integration [29] [13]. Other methodologies
lead to complicated control and nonuniform I/O which makes it
difficult to interface with the host [23] [24] [28] [29].

In this paper, we develop a general mapping technique to
map the computations of two dimensional arrays onto one di-
mensional arrays. Using our method, ”clean” linear systolic ar-
rays can be designed for a general class of problems (;)ncluding
Matrix Multiplication, Transitive Closure, Dynamic Program-
ming etc.) for which two dimensional arrays have been designed
in the past. The resulting linear arrays have continuous I/O se-
quence and modular extensibility property. Using our method-
ology, family of linear systolic arrays for matrix multiplication
and related problems in signal and image processing can be de-
signed, exhibiting tradeoff between I/O bandwidth, local stor-
age, processor complexity and number of PEs. In addition, our
technique also leads to designs with unidirectional flow of data

1This research was supported in part by the National Science
Foundation under grant 1R1-8710836 and by a grant from USC

Faculty Research and Innovation Fund.

39

and control which makes our designs easily implementable in
well known reconfiguration schemes proposed for WSI.

The rest of the paper is organized as follows. In section 2,
we present our technique to map algorithms onto linear systolic
arrays which results in simple designs for many problems. In
section 3, we apply our mapping methodology to design 1) lin-
ear systolic arrays for some matrix problems, 2) family of linear
arrays, and 3) fault tolerant linear arrays. Finally, some com-
parisons and conclusions are made.

2. Mapping from 2-D to 1-D arrays

In this section, we discuss the basic idea of our mapping tech-
nique and its limitations. Timing analysis and details of imple-
mentation are discussed in the following sections.

Our technique starts with a two dimensional systolic array.
For clarity of presentation of our ideas, we will consider a two
dimensional array to compute C=A x B (where A, B and C are
matrices) as an example. A 4x4 array is shown in figure 1 where
the PEs are numbered in row major order. The input data in
each row (and each column) flow through the row (and column)
of the array. For example, aj; passes through PE,, PE;, PEj,
PE, and by; passes through PEy, PEs, PEg, PE3. All the
computations to compute C;; are performed in PE(;_1)un+j. AS
a data item passes through a PE it performs computation with
the data arriving at its other input and updates C;;. For exam-
ple, in figure 1, if the computations begin at t=1, then a3 will
meet bg4 at time =7 in PFEjg to calculate Ca4.

One way of mapping the above two dimensional array into
a linear array is by partitioning each row and stretching it with
their links in row major order as shown in figure 2. Thus, the
resulting linear array will have n> PEs. The PEs in a row in
the 2-D array correspond to a block (of n PE’s) in the 1-D
array. However, the array in figure 2 is not the desired linear
array. The data has to be fed to internal PEs in the array,
which is not allowed in a one dimensional array. The desired
structure is shown in figure 3. It features local connections with
I/O performed at the leftmost and rightmost PE. The input
matrices A and B are partitioned into A and B bands as shown
in figure 1. The input data is fed at the leftmost PE of the array
as shown in figure 3.

In order to enforce the linear array in figure 3 to simulate the
1-D array in figure 2, we have to address the following problems.

1. Activation of PEs

This problem is concerned with activating the PEs to per-
form operations when the desired operands arrive at a
PE. In the above example, in order to simulate the op-
erations of the 2-D array with linear array, we use some
control signals to let a;; be ‘activated’ from PE; to PE,
and be ‘deactivated’ in other PEs. When a;; is acti-
vated in a PE, it performs a computation (of the form
c11 +— c11tan * blj) with by, in PEj;, 1 < j < 4. Sim-
ilarly, by; is activated only in PEy, PEs, PEy, PE;3 to
compute with a;1, 1 < ¢ < 4. In other words, in the lin-
ear array, aj; is transported from PEs to PE;g without
doing any operation and by; is transported through PE,,
PES’ PE4’ PEG, PE7’ PEB; PEIO) PEll’ PElz, PE143
PE:5, PE;¢ while being deactivated. In the above ex-
ample, the element a;; is to be activated at PE(;_1)untm
where 1 < m < n, and b;; be activated at PE(x—1)un+;j
with1 <k <n.

2. Operand alignment . .)
This problem is concerned with ensuring the right operands
meet in a PE to perform an operation. In order to sat-
isfy the alignment of operands in the linear array, we use
two types of channels: fast and slow channels. Suppose
the data in the fast channel takes a time units to pass
through a PE while the data in the slow channel takes vy
time units where o < . If the elements of A (B) matrix
are fed into a slow (fast) channel in a column (row) major
order, then, for y = 2°and @ = 1, if ax ar_xd bi; reach
PE, at time o, then a;; will meet by ;41 at time to + 1at

PEp1.

. Transportation of data from row to row

This problem is concerned with simulating the movement
of data from one row to another row in the 2-D array
(those data crossing the dashed lines in figure 1) on the
one dimensional array. We use an extra chanqel .(1n the
above example, BS) to transport this data within each
block, the data to be used by the PEs in the next block
is stored in this channel.

In summary, a general design methodology is as follows:

1. Start with a 2-D systolic array with data flow along the
positive coordinate direction. Without loss of generality
let the array size be m x n without diagonal connections.

. Partition the array and compress it into a linear array. A
general partition rule will be given in section 3.3.

. Assume there are z channels along the X axis and y chan-
nels along the Y axis connecting adjacent PEs in the 2-D
array. Each horizontal channel in the 2-D array corre-
sponds to one slow channels connecting adjacent PEs in
the resulting 1-D array and each vertical channel corre-
sponds to a slow and a fast channel. Thus, we have z+2y
channels connecting PEs in the 1-D array.

4. Feed the A and B bands into the leftmost PE.
5. Design a scheme to solve

(a) The activation of operations (using control signals).

(b) The alignment of operands (using fast and slow chan-
nels).

(c) The transportation of operands (using transporta-
tion channel and mechanism to switch data chan-
nels).

. The delays in each PE can be determined by the following
procedure:

(a) Let the amount of delay within each PE of each
channel be a parameter.
(b)

Using the design scheme in step 5 above, obtain tim-
ing equations of channels involving these parame-
ters.

Using the alignment and activation requirements,
obtain constraint equations to assure that the de-
sired data meet in the active PEs.

Using the timing equations and constraint equations
choose the optimal set of parameters to minimize
delay. _

An important requirement for this methodology to be appli-
cable is the data flow in the original two dimensional array is
unidirectional along coordinate axes. The following proposition
states that our methodology can be applied to arbitrary two
dimensional arrays [9].

(<)

(d)

Proposition 1 If a computation can be performed in O(n) time
on a two dimensional n X n systolic array, then it can be trans-
formed such that the resulting array has O(n?) PEs and the data
flow is unidirectional along X and Y axis with no asymp-
totic loss in time. This array can be further transformed into a

unidirectional linear array using the proposed mapping tech-
nique.

40

3. Applications

In this section, we illustrate our mapping technique by designing
linear systolic arrays for several applications.

3.1 A linear array for Matrix Multiplication

Consider the 2-D array for matrix multiplication as shown in
figure 1. The linear systolic array shown in figure 3 consists
of n? PEs numbered 1,...,n? from left to right. The PEs are
connected by three data channels which carry the input data,
i.e. a fast Channel BF for elements of B, and two slow channels
AS and BS for the elements of A and B respectively. One bit
wide control lines ACT, I, J connect adjacent PEs. All the
control signals and data move from left to right only. We will
use the above connections to solve the following problems (step
5 in our method).

Activation of PEs

When the AS and BF channels have data which commute in
a PE, then the PE must be activated to perform a computation
of the form Ci; <= Cij + ai * bxj. We implement this by
inputing a control signal denoted ACT at the left end of the
array to set a flag ACTIVE inside each PE. A PE is said to be
active if it has ACTIVE set to 1. It will then perform a partial
product computation during that clock period. In our design,
when ACTIVE=1, a;x in AS channel is multiplied with by; in
BF channel.

Alignment of Operands

To get the correct operands together to perform an operation
in each PE data channels with different speeds are used to align
the operands. There are two types of alignment in our matrix
multiplication design. The first type concerns the alignment
of operands within a row. The second type concerns with the
alignment of operands from block to block. For example, an
activated a;; (in the #** block) has finished all its operations
with bgjs (1 < j < n) when it reaches PEy,,;, ai41 (which
immediately follows a;x) is activated and performs operations
with bys in the next block (These bg;s in BS are also copied to
BF at the beginning of block;; to supply the operands that are
needed in that block). To implement this type of alignment we
use a multiplexer M4 to make the data in the AS channel to
gain one time unit at the last PE of each block. This multiplexer
is controlled by a flag 4 which is set at the last PE of each block.
Flag ¢ is set by control signals I and J whose operations are
described in the appendix. Notice the signal in ACT channel
does not gain one unit of time at the end of each block. Thus,
in block;t1, ait1,k is active if a;; was active in block;, for some

k.
Transportation of Data from Row to Row

To simulate the data flow from one row to another row in the
2-D array on the 1-D array, an extra slow channel BS is used to
transport the data. The data from a block to its adjacent block
is saved in this slow channel. This data will be used by the PEs
in the next block (by copying the data in slow channel BS into
the fast channel BF at the beginning of that block) as operands
of that block. Switching of data from BS to BF is implemented
by multiplexer Mp which is also controlled by the flag 1.

The overall system structure is shown in figure 4. The struc-
;ullie of PE is shown in figure 5. The operation of the PEs is as
ollows:

Read data into registers from input ports.
If (ACTIVE=1) then C <= C + AS.LR+BF.R
If (¢=1) then
begin
M4 selects data from AS.LR.

Mp selects data from BS.RR.
end

else
begin
M4 selects data from AS.RR.
Mp selects data from BF.R.
end

The algorithm uses a simple data input sequence in which the
data is input in every clock continuously without any delay. At
to, ayy is fed into AS channel, and by; is fed into BS and BF
channels of PE; (leftmost PE) in the array. Matrix A is fed
in column major order, i.e., aj1, a1, @31, " @n1, G12, * *,Gnn.
Matrix B is fed in row major order, i.e., by, bys, big, « ,b1n,
b21,"* bnn. Also, the control input ACT is set to 1 every time
a1k, 1 < k < n, is inserted into the array.

Timing Analysis

By assuming the delay of each channel within each PE as
a parameter, the transportation of data in each channel can be
described by timing equations and the alignment and activation
requirements can be described by constraint equations. Using
these timing and constraint equations, optimal parameters can
be chosen to minimize the delay. In the following design we
assume that the computations begin at t=1.

Timing equations

Let

I(a,u,v)

= time at which a,, is input to PE;, 1 < u,v < n.
=(wv-1)*n+u

(b, r, 8)

= time at which b,, is input to PE;, 1<r,s<n
=(r—1)*n+s

I(ACT, k)

= time at which k** ACT = 1isinput to PE;, 1< k<n
=(k-1)*n+1 ®
The following are the timings of the data ayy, bys and control

signal ACT that appear at processor p, 1 < p < n?. PE,
computes Cy; where p is given by,

(1)

)

p=({—-1)*n+j (4)

1. For ayy, 1 < u,v <,

t(a3 u! v’ p)
= time at which a,, appears at PE,

= I(a,u,v)+a(p—1) - Bl(p — 1)/n] (5)

In the above equation, the first term is the time at which a,,
was input to PE;. The second term is the delay experienced in
AS channel of (p — 1) PEs. o is the delay of the AS channel
within a PE. The last term corresponds to the time gained at
the end PE of those |(p —1)/n| blocks in front of PE,. f§ is the
time gained by a,, at the end of each block.

2. For bys, 1< r,s<m,

t(b,r,s,p)
= time at which b,, appears at PE,

=I(b,r,s)+~* [(p—1)/n| *n+ 8((p— 1) mod n) (8)

In the above equation, the first term corresponds to the time at
which b, is input to PFE;. The second term corresponds to the
delay experienced by the data as it travels in the BS channel
in all the blocks before the block to which p belongs. « is the
delay in the BS channel. The last term is the delay experienced
within the block to which PE, belongs. § is the delay in the
fast channel BF.

41

3. For ACT signal,

t(ACT, k,p)
= time at which k** ACT = 1 (denoted as ACT}) appears in
PE,

= I(ACT,k) + w(p—1))
In the above equation, the first term corresponds to the time at
which ACT signal is input to PE;. The second term corresponds
to the delay experienced by the data as it travels in the control
channel. w is the delay of the control channel within each PE.

Constraint equations

In order to correctly perform matrix multiplication, we need
to implement the following operation: activate PE, to perform
operations of the type Cj; <= Cj; + a;x * by; during the acti-
vation period, where p = (f — 1) * n + 5. That is, when ACT}
arrives at PE;, the specific a;x and bi; should also be in that
PE. Thus, the data ayy, b., and ACT arriving at a PE must
satisfying the following conditions:

1.u=1¢
2. 8= 75
.v=r=1%k

4. t(a, u, v, p) =t(ACT, k, p) =t(b, r, s, p)

Using the timing and constraint equations we obtain the follow-
ing equations:

lLw-6=1
2. 8=1
. w=a=9v

A set of values satisfying the above are:

a=2,8=1,7=2,6=1Lw=2.

The above parameters mean that in each PE there are 2 time
units delay in AS channel, a,, gain 1 unit time at the end of
each block. The rest of the delays of channels are: [BS 2|, [BF
1}, [ACT 2| where [z, y] denotes there is y units of delay in the
z channel. O

The above analysis leads to:

Theorem 1 The 1-D array correctly performs all the compu-
tations of the 2-D array for matriz multiplication at the end of
time t = 3n? — n — 1, assuming the computation begins at time
t=1.

3.2 Linear Arrays for Transitive Closure

As another illustration of the mapping technique, we design lin-
ear arrays for the transitive closure problem by mapping the
computations of a well known 2-D array.

A 2-D systolic array for the transitive closure problem has
been derived in [5]. Its structure is shown in figure 6 which is
the same as figure 1 except for the end around connections.

The input is two copies of nxn adjacency matrix, with 1’s on
the diagonal, read into an n X n array of processors. The output
is found in the processor array and is read out of the right and
‘Fot]tom edges. Three passes are needed for the computations
26).

Unlike the systolic array for matrix multiplication the data
in the array is updated at certain times by the PEs in each row

(column) before moving to the next row (column). Two control
signals DIAGA and DIAGB can be used to implement this
update. DIAGA (DIAGB) is associated with a;; (b;;) such that
if i = j then DIAGA (DIAGB)=1 else DIAGA (DIAG B)=0.

When PE;; receives DIAG A it updates b;; (i-e., bij<= C;,:)
if DIAGA=1. Similarly when DIAGB is equal to 1, a;; is
updated (i.e., a;j <= C;;). We call this the update mechanism.

To map the 2-D array in figure 6 into 1-D array, we use the
same partitioning and stretching method as in matrix multipli-
cation. Therefore solution to the alignment, transportation and
activation of PEs problems are the same in this design. Hence,
we will only address two major differences compared to matrix
multiplication: (1) Simulation of the end around connections in
the 2-D array and (2) implementation of the update mechanism.

The activation design of PEs in matrix multiplication makes
the O(n) end around connections in the 2-D array easy to imple-
ment in the 1-D array. For example, in the 2-D array aj; goes
from PE; through PEj and back to PE;. This operation can
be simulated in 1-D array by letting a;; go through PE; to PEy
activated and from PFEj to PE;g deactivated and then back to
PFE; again. The same design can be used for the elements in
B matrix. In this way, 2n end around connections in the 2-D
array can be simulated by 2 connections in the 1-D array.

We now consider implementing the update mechanism in
the 1-D array. The control signals for update mechanism can
be associated with the data as in the 2-D case. The data to be
moved from row to row is the B matrix. However, in the 1-D
case the b;; that does the operation with a;; is in the BF channel
while b;; to be updated and transported to the next block is in
the BS channel. This does not lead to any timing problems,
since the b;; in BF is moving faster than the corresponding b;;
in BS. Thus, the updated data inside a PE must be placed onto
the slow channel corresponding to the B matrix.

The linear array is shown in figure 7. There are n? PEs

numbered 1 to n?. The PEs are connected by the following
data paths (figure 8).

1. Two slow channels corresponding to A and DIAGA in-
puts.

2. Two slow channels corresponding to B and DIAGB in-
puts.

3. Two fast channels corresponding to B and DIAGB in-
puts.

. One bit control signal which passes through the array is
used to indicate whether the b;; in the BS channel has
been updated or not. The control signal, U Pg, together
with flag NEWp, is used to update the b;; in the BS

%hgnnel. It is initialized to O when it is fed at the leftmost

The detailed operation of the PE during each clock period and
the operation of the array can be found in [11].

Using the timing analysis as in matrix multiplication, it is easy
to show:

Theorem 2 The 1-D systolic array of figure 10 computes the

the transitive closure of a n X n adjacency matriz in time Tn? —
3n+ 1.

3.3. Family of Arrays for Matrix Computations

A general methodology to design a family of arrays for ma-
trix computations is as follows.

1. Partition the 2-D array into collection of disjoint rows
CROW,, CROW., ..., CROW,, r=[n/m]. The number
of rows in a collection is equal to memory size m available
in each PE, except CROW, which may have less than m
rows.

42

2. The linear array consists of [n/m] blocks each block hav-
ing n PEs. The computations performed by the PEs in
block; is the same as the computations of PEs in CROW;,
1<i<r.

3. Feed the A and B bands of the input matrices at the
leftmost PE.

. Selectively activate the PEs to perform a step of the ma-
trix multiplication algorithm.

5. Within each block save the elements of B matrix in a slow
channel which will be used by the PEs in the next block.
At the end of each block, switch the B matrix data from
slow to fast channel so that they can commute with the
elements of A matrix within the next block.

We will use the above technique to map the two dimensional
array for matrix multiplication onto two linear array models. In
each model we will show different partitioning schemes to result
in an optimal family of arrays for matrix multiplication.

‘Variable Memory Family (VMF) Model

In this model, the number of I/O channels is fixed. Thus,
when designing a special purpose chip, the number of pins per
chip is fixed for all members in this family.

Suppose we can build chips with O(s) storage and an ALU.
In this scheme, the 2-D array having n row is partitioned into
collection of disjoint rows as follows: C ROW; has s consecutive
rows starting at (i — 1)s + 1*» row of the 2-D array. Thus, there
are [n/s] CROWs. The resulting linear array will have n[n/s]
PEs grouped into [n/s] blocks of n PEs. The PEs in the i**
block perform the computations of the PEs of the it CROW.
The computations of PE;; 1 < i,j < n in the 2-D array is
performed by PE(;,_1)n4; in the 1-D array, where m= [i/s] .
The resulting linear array consists of n[n/s] PEs.

As an illustration consider 4 x 4 matrix multiplication. A
partitioning of 2-D array for 4 X 4 matrix multiplication and its
mapping to linear array are shown in figure 9 and figure 10 for
s=2. In this example, CROW; has rows 1 and 2 and CROW,
has rows 3 and 4 of the 2-D array for matrix multiplication.
Since [n/s]=2 there are two blocks of PEs each block having
n=4 PEs. Thus, the resulting linear array has 8 PEs as shown in
figure 10. The PEs are connected by three channels which carry
the input data: fast channel (BF), and two slow channels AS
and BS which are used by the elements of A and B respectively.
In addition, one bit wide control lines ACT, OC, I, J connect
adjacent PEs. The detailed design can be found in flO].

The performace of the design can be summarized as follows:

Theorem 3 The above method performs the multiplication of
two n X n matrices using n[n/s| PEs having O(s) memory per
PE in time t = n? + 2n[n/s] — [n/s] + 1.

Variable Channel Family (VCF) Model

In this model we assume we can build k I/O channels, 1 <
k < n, per PE. In this scheme, the 2-D array having n row is
partitioned into collection of disjoint rows as follows: CROW;
has i + (r — 1)([n/s])** row of the 2-D array, where 1 < r < s.
Thus, there are [n/s| CROWs. The resulting linear array will
have n[n/s| PEs grouped into [n/s] blocks of n PEs. The PEs
in the i** block perform the computations of the PEs of the
i CROW. The computations of PE;; 1 < 4,5 < nin the 2-
D array is performed by PE(;,_1)ny; In the 1-D array, where
m= (f mod s). The partition graph and its mapping to linear
array are shown in figure 11 and figure 12 for a 4 X 4 matrix
multiplication with k=2.

The systolic array in general consists of n[n/k] PEs where k
is the number of channels. There are k slow channels AS[i], 1 <

1 < k, which are used by the elements of A matrix. The elements
of B matrix are fed in row major order, which correspond to B
bands in figure 1. However, the elements of A matrix are input in
the following way. Channel AS|l] carries [n/k] elements of each
column of A starting at the [n/k](l — 1)+1° element. Append
n— [n/k] dummy data denoted ”A” at the end of each column
data. Thus, for n = 4, k = 2 the input sequence is a3, as1, A ,
A, aj2, azz, A , A, aps,... to AS[I . Similarly asy, a41, A , A

b
ass, a4z, A, A, ags,... is the input sequence to AS[2].

By performing a timing analysis [10], we can show:

Theorem 4 : The above method performs the multiplication of
n X n matrices using n[n/k] PEs, each PE having O(k) storage
and O(k) I/O channels in time t = n® + 2n[n/k]| — [n/k] + 1.

The time complexity of matrix multiplication on both VMF
and VCF models is the same. The VMF model has fixed num-
ber of I/O channels. The time available for the execution of a
scalar multiplication is one clock cycle. Thus, high speed mul-
tipliers are needed in this design. The VCF model uses more
I/O channels but if k channels are used, then k scalar multipli-
cations need to be performed over n cycles. Thus, if k is small
compared to n then multipliers with low hardware complexity
is sufficient to implement this design.)

3.4 Designing Fault Tolerant Systolic Arrays
for Wafer Scale Integration

The advantages of a special class of linear systolic arrays
suitable for WSI technology have been reported in [8]. The
most important property of this type of linear array is that all
its data flows is in one direction. By modeling a systolic array
as a directed graph, the following result has been shown in [8]:

Proposition 2 For any design, if all the edges in a cut set are
unidirectional, adding the same delay (bypass) registers (which
simulate faulty PEs) to all the edges in the cut will result in an
equivalent design.

As a result, the faulty PEs can be replaced by bypass regis-
ters. The above discussion can be captured in the following
fault model which will be used in this paper [29]:

1. The PEs are arranged in a straight line with a system
of buses running parallel to them. Each bus can has a
constant number of buffer registers (per PE) embedded
in it. The buffer registers correspond to the delay when
a signal passes through a PE. Also, a switch mechanism
is used to select the data route of each bus. The route
depends on the fault pattern.

2. Propagation delay is assumed to be proportional to the
wire length. We incorporate this into our design by intro-
ducing a constant unit of delay whenever a signal byp

The intended partition rules are similar to that in VMF
model. However, the scheme to solve the alignment and trans-
portation problems is similar to the VCF model. These are
summarized as belows:

1. Partition the 2-D array for matrix multiplication into Col-
lection of disjoint ROWs, CROW,, CROW}, ..., CROW 1,

The number of rows in a collection is equal to \/n.

2. The linear array consists of /n blocks, each block having
n PEs. The computations performed by the PEs in block;
is same as the computations of PEs in CROW;, 1 <1 <

Jn.

3. Divide each columns of A matrix (each rows of B matrix)
into /n parts and feed them into AB; (BB;) buses 1 <
i < y/n, in column major order (row major order).

This leads to [9]:

Theorem 5 The above systolic array computes the elements of
C = A X B in time 3ny/n — 2 + 2r where r is the number of
faulty PEs. Further all the data flows are unidirectional and the
distance covered by every signal is one unit in each clock period.

4. Conclusion

In this paper, we presented a new technique to design lin-
ear systolic arrays with limited I/O bandwidth. All our designs
have simple control, lexicographic 1/O and require a minimum
number of processors. These designs can be shown to be opti-
mal with respect to area and time [6]. Table 1 compares the
performance of several designs in the literature with the pro-
posed design for matrix multiplication on linear arrays. Table
2 compares the designs for transitive closure on linear arrays.
Table 3 compares the designs for family of linear arrays. In ad-
dition, our designs result in unidirectional data flow. Therefore,
they can be easily implemented in WSI with fault tolerance ca-
pability. Table 4 compares our matrix multiplication design on
the fault model with known results in the literature.

This Paper Method in [20] Method in [23]
1. Number of Processors n’ n? =~ 3/2n?
2. Delay Time 3nf-—n- 1 4n? -3 > 9/2n?
3. Data input simple need to insert zeros complex

Table 1: Comparison of Matrix Multiplication on Linear Array

a PE.

3. Asin other models, the buses and switches are assumed to
be reliable, while the PEs may be faulty. Fault tolerance
is achieved by hooking working PEs into a desired logical
structure, in our case, a linearly connected array.

The complexity of matrix multiplication on this model has
been studied in [29]. They establish the following lower bound:

Proposition 3 Any systolic algorithm computing the product
of n X n matrices using n® scalar multiplications on the above
model must take Q(n\/n) time.

In [29)], a matrix multiplication algorithm is designed on the
above model which has O(n,/n) delay. Our technique in section
2 also leads to a simple optimal fault tolerant array for matrix
multiplication with improved performance.

This Paper | Method in [27]
1. Number of processors n? 2n— 1
2. Delay Time Tn¥f— 3n+ 1| 9n¥+n- 2
3. Area of PE 0o(1) O(n)

Table 2: Comparison of Transitive Closure on Linear Array

This Paper Method in [24]
1. Number of processors n[n/s]| > n[n/s
2. Memory Space O(s) O(s)
3. Delay Time nl+ 2n/sin—[n/s|+ 1| >n*+ 2p
4. Data input sequence continuous complex

Table 3: Comparison of family of Linear Array for Matrix Multiplication

43

This Paper | Method in [29]
1.Number of processors ny/n ny/n
2.Delay Time 3nyn—2 [4ny/n—n—3/n
3.Total number of buses | 2,/n+2 4y/n

Table 4: Comparison of optimal matrix multiplication
on the fault model with known result

References

[1] M. C. Chen. A design methodology for synthesizing par-
allel algorithm and architectures. Journal of Parallel and
Distributed Computing, 1986.

[2] P. R. Cappello and K. Seiglitz. Unifying VLSI array de-

signs with geometric transformation. In International Con-

ference on Parallel Processing, 1983.

[3] K. A. Doshi and P. J. Varman. Optimal graph algorithms

on a fixed-size linear array. IEEE transactions on Comput-

ers, C-36(4), 1987.

[4] J. A. B. Fortes and C. S. Raghavendra. Gracefully degrad-

able processor arrays. IEEE transactions on Computers,

C-34(11), 1986.

[5] L. J. Guibas, H. T. Kung, and C. D. Thompson. Direct

VLSI implementation of combinatorial algorithms. In Cal-

" tech Conference on VLSI, 1979.

J. Ja’Ja’ and V. K. Prasanna Kumar. Information trans-
fer in distributed computing with applications to VLSI.
JACM, January 1984.

(6]

[7] H. T. Kung and C.E. Leiserson. Systolic arrays (for VLSI).
In SIAM Conference on Applied Mathematics, pages 256—
282, 1979.

[8] H. T. Kung and Monica S. Lam. Wafer-scale integration
and two-level pipelined implementations. Journal of Par-
allel and Distributed Computing, 1(1), 1984.

[9] Yu-Chen Tsai. Linear Systolic Array Design for Wafer
Scale Integration. Ph.D Thesis, Department of EE-
systems, USC, in preparation.

[10] V. K. Prasanna Kumar and Yu-Chen Tsai. On designing
an optimal family of linear systolic arrays for matrix mul-
tiplication. Technical Report CRI-87-43, USC, June 1987.
[11] V. K. Prasanna Kumar and Yu-Chen Tsai. Designing Lin-
ear Systolic Arrays. In Journal of Parallel and Distributed
Computing, 1988.

H. T. Kung. Systolic algorithms for the CMU WARP pro-
cessor. In Seventh International Conference on Computer
Vision and Pattern Recognition, July 1984.

[12)

[13] S. Y. Kung. On supercomputing with systolic/wavefront

array processors. In proceedings of the IEEE, July 1984.
[14] F. T. Leighton and C. E. Leiserson. Wafer-Scale Integra-
tion of systolic arrays. In 28rd Annual Symposium on Foun-
dations Computer Science, November 1982, ’
[15] C. Mead and L. Conway. Introduction to VLSI system.
Addison-Wesley Publishing Company, 1980.
[16] W. L. Miranker and A. Winkler. Space time representa-
tions of computational structures. Computing, 1984.
[17] D. I Moldovan and J. A. B. Fortes. Partitioning and map-
ping algorithms into fixed size systolic arrays. IEEE trans-
actions on Computers, C-35(1), 1986.

44

[18] R. G. Melhem and W. C. Rheinbold. A mathematical
model for the verification of systolic networks. SIAM Jour-
nal on Computing, 13(3), August 1984.

[19] S. Purushothaman. Reasoning about modular systolic algo-

rithms. In International Conference on Parallel Processing,

1987.

[20] C.S. Raghavendra, V. K. Prasanna Kumar, and A. Varma.

On systolic processing with bounded I/O bandwidth. In

ICCD, 1985.

[21] A. Rosenberg. The Diogenes approach to testable fault-

tolerant networks of processors. IEEE transactions on

Computers, C-32(10), 1983.

[22] 1. V. Ramakrishnan and P. J. Varman. Modular matrix

multiplication on a linear array. IEEE transactions Com-

puters, C-33(11), 1984.

[23] I. V. Ramakrishnan and P. J. Varman. Synthesis of an Op-

timal Family of Matriz Multiplication Algorithms on Linear

Arrays. Technical Report, University of Maryland, Com-

puter Science Department, 1985.

[24] 1 V. Ramakrishnan and P. J. Varman. Synthesis of an op-

timal family of matrix multiplication algorithms on linear

arrays. IEEE transactions on Computers, C-35(11), 1986.

[25] C. D. Thompson. A complezity theory for VLSI PhD
thesis, Carnegie-Mellon University, Pittsburgh, Pa., 1979.

[26] J. D. Ullman. Computational Aspects of VLS. Computer

Science Press, 1984.

[27] P.J. Varman and I. V. Ramakrishnan. Dynamic program-

ming and transitive closure on linear pipelines. In Interna-
tional Conference on Parallel Processing, 1984.

[28] P.J. Varman and [.V. Ramakrishnan. Optimal matrix mul-

tiplication on fault-tolerant VLSI arrays. In ICALP, 1985.

[29] P. J. Varman and I. V. Ramakrishnan. A fault-tolerant

VLSI matrix multiplier. In International Conference on
Parallel Processing, 1986.

Appendix

Setting of ¢

I and J are used to set ¢ inside each PE. I is set to 1 every
n clock periods, and J is set to 1 at the start of the operation
of the array. Thus, for to <t <tg+3n%—n-—1.

ift=to+n*x(1-1),1<i<(n-1).
otherwise.

if t =to.
otherwise.

The signals I, J are fed at the leftmost PE and are prop-
agated with delay of one and two units respectively in each
PE. Let I, and Ji denote I,J that enter PEj) respectively
(1 £ k < n?). Then,

Ik=1att=to+(k——l)+n*i,ISkSnz.
Je=latt=ty+2(k—1)+1,1< k< nk

It is easy to verify that Iz = 1 and Ji = 1 only when k= n *1.
This occurs at time t = to +2(n *¢) — 1.

My
AS — AS.LR AS.RR

\
B BAND

G]

BF > BF.R |]@‘M"

BS (BSIR }—{BSRE] =

A CONTROL UNIT 4 4

ACT
A BAND / i PE; [PEs > —{]
@34 @33 agz/ag 5 ACTIVE

1]

______ .
044 @43 842841/ - ----= J > =} -

cut lines

Figure 1: Partitioning a 2-D array Figure 5: The internal structure of PE

byy bz baz bag
b3y byy bsz bas
bii by bz bu

ay a1z a13 a4 az) azz azs ag4 asgy asz @33 as4 G4) Q42 @43 O44

Figure 2: Stretching to form a linear array

(a11821 @31 641)(a12022 @32 @42)(213023 33 043)(G14024 G34 G44)
A bands

block1 | block 2 ! block3 ! block 4 @34 d33 dsz/as
= S
I . o 18
BER=PE=R=R=RERERENEN Y=
| : | i
+
1

L - (buibiz bis big)(b21bzz bas baa)(b31bsz bas bas)(barbaz bas bad)
B bands

A BAND

-
>
|

44 Q43 Q42/041) -~ - - -~

. . . cut lines
Figure 3: Linear array fed with continuous data

Figure 6: Transitive Closure on 2-D Array

AS s
BF ——= [
BS L
ACT e o o S
I b
J fr—
PE PE, PE;s PE, PE,,

Figure 4: System structure of linear array for matrix multiplication

45

Delay

LJ
AS —
BF —>1 -
> — —>
c‘;gf:otle BS Cy > Ciz | Cis || Cu —= Cu
signals —> e]
ACT— > = 0000 —>
f— —
PE, PE; PEs PE, PEss

@ : Multiplexer

Figure 7: System structure for Transitive Closure on Linear Array for n=4

AS ——F—-s—71>
DIAGA ——>O——>0——1>

BS . >
DIAGB —}—-}—r-—s—{>

igm!

BF = slow E
DIAGB ., fast
UPg () > <

ontrol
C_Ivews
ACT —P! Same as in matrix [T~

I — multiplication g

J — o
CLOCK — . .

Figure 8: The PE structure for transitive closure

B BAND

A BAND

Q44 Q43 G420

cut lines
Figure 9: A Partition of a 2-D Array

Figure 11: Partitioning 2-D array for n=4 and k=2

Figure 10: Mapping onto VMF model for n = 4 and s =2

AS[1] : .
Bs Cu Cu Cm Cu C’n sz Cza
BF > ol G Caf™| Co™ Cal™ Cal| Casl
AS[2] a1[~] Csg~)| Cas™ ng a™ Cao™] Cas[7]
PE PEs PE; PE; PEg

1 PE; PE; PE,

Figure 12: Mapping onto VCF model for n=2 k=2

46

CESAR — THE ARCHITECTURE AND IMPLEMENTATION OF A
HIGH PERFORMANCE SYSTOLIC ARRAY PROCESSOR

Bard Tokerud, Vidar S. Andersen, Morten Toverud
Division for Electronics
Norwegian Defence Research Establishment
N-2007 Kjeller, Norway

Abstract

This paper describes the architecture and implementation
of the CESAR computer system. The computing unit in
CESAR has from one to four programmable systolic arrays
working strictly in parallel, representing a SIMD (Single
Instruction Multiple Data) structure. Each array consists of
128 custom designed processing elements capable of
performing bit-serial operations on 32-bit data. Including
control logic and memory units, a complete CESAR system
with four systolic arrays is implemented on 13 circuit boards.
Originally developed for processing of images from Synthetic
Aperture Radar, CESAR is also suitable for other
applications demanding extensive vector processing.

tro. io!

Parallelism and pipelining are two classical concepts which
have proven to be the keys to exploitation of the huge
resources offered by today’s VLSI technology.l In the
CESAR computer system,2-4 parallelism and pipelining are
combined on different levels to achieve the necessary
throughput for computationally intensive problems. Focusing
on processing of images from Synthetic Aperture Radar
(SAR), the CESAR computer is a result of comprehensive
research and development activities at the Norwegian Defence
Research Establishment over the past decade.

CESAR SYSTEM

r
Multiport Channel

i

Local Data Bus

I
MULTIPORT 1
MEMORY | | el BUFFER MEMORY
1 | conTROL MAIN
HOST i NIt § A MEMORY
COMPUTERf COMPUTING UNIT
| 320 Mflops
|
|
|

Figure 1 _The CESAR Computer System

47

CESAR Architecture

The fundamental structure of the computing unit in
CESAR resembles that of a systolic array architecture.5, 6 As
shown in Fig.2 a), an 8x16 array of bit—serial processing
elements operates on strings of data that flow regularly
through the network and interact where they meet. Each
serial element (S—element) is a custom designed 2u CMOS
chip, capable of performing 32-bit floating point or integer
arithmetic and logic operations. In parallel with performing
mathematical operations, an S—element allows data to be
routed through. By adding programmable time delays for
synchronization, computed results and bypassed data can be
merged in neighbouring S-elements for new computations as
shown in Fig.2 b).

INPUT DATA

A
bbb i !
: So.0 : So. : So.2 : : : ': So,15 : : 4 r
' vy ¥ X3y ! ¥
> > -1 — — > — >
S10 St S1.2 S5 X
—] p] —_—— - -
R} vy 'y iy
-: 52,0 : 52,1 : 52‘2 : : by 52,15 B : D :
ST L [[
[[[N/ (| (|
(I I I S N I [
y ¥ ¥y V¥ vy y ¥
>] 1 - — — >} — Rt
S| d s | dsa |, _Sus] B O -
OUTPUT DATA C=(A+B)¥A
Figure 2 a) igure 2 b
Figure 2 The Systolic Array of S—elemen
As shown in Fig.3, the two-dimensional array is

configured as a cylinder, where pairs of input data are fed
from the top, and the outputs are tapped at the bottom.
When a pair of 32-bit input data have been fetched from
memory, a serial conversion starts, whereby data is shifted
into the selected column of the cylinder. With an internal
cycle time of 50 ns, the total shift-in time for 32 bits
becomes 32*50ns = 1600ns.

Figure 3 MALU - Microprogrammable Arithmetic Logic
Uni

Since the buffer memory is capable of delivering a pair of
32-bit data every 100ns and also receiving a 32-bit result at
the same speed, 16 columns can be run in parallel. Enabling
each column of the cylinder successively, data flows in and
out of the S—elements as continous bit streams consisting of
32-bit words lying head to tail. The parallel to serial
conversion in MALU is accomplished by having three
distributed shiftregisters in each column of the array.

Buffer Memory Serial Input

T T T] n.
1 L 4 [
1 1 4, =N
' L 7 51‘]—[‘] S| Row 0
: m'c’l : Y '
IS aEl P ;
v 1 Z,) < [:
1 1= 1< @l L : '
1 '3} 1 4 1,
| 1 4, ;E’ J']]:]
|] 4, = S | Row 6
| | ing!
| |
1 ' 4, Tl [
4, e o)
: — S [S| Row 7
| G
[- I t
. 4 Serial Output

Figure 4 Parallel to Serial Converision in MALU

The S-element has a four bit parallel input/output register
for each of the three data channels to the buffer memory.
The eight S—elements in a column together form a 32 bit

48

shiftregister whose output is shifted in at the top. Similarly,
the results are serially output at the bottom and shifted
upwards in their respective columns.

For many algorithms, the cylinder can be divided into
strips, each strip performing the same pipeline of
computations as its neighbouring strips. Representing a
SIMD structure, this level of parallelism provides a high
utilization of the computing power available in CESAR.
Since each S—element is producing a result every 32 clock
cycles, i.e every 1600ns, the theoretical maximum capacity of
one complete MALU is ;

128 flops =
1.6 * 10-6

80 Mflops

This capacity is obtained when, for a certain algorithm, every
S-element is doing a (floating point) computation. As
inherent in the CESAR architecture, a complex algorithm
utilizing many S—elements yields a higher performance than a
simple algorithm occupying few elements.

MALU is fully programmable; that is, a combination of
instruction words in the S-elements constitutes a MALU
program. The S—elements are fitted with on—chip RAM
with a capacity of 32 programs (instructions, routing and
delay) and 32 constants for use in the computations.
Changing MALU programs between two bursts of data is
done by merely switching the global program address to the
arrays. In the applications studied so far, the program
memory has proven to be large enough to cover the entire
algorithm without having to perform a program reload. Thus,
all setup can be done in an initialization phase to avoid a
degradation of the computational performance. In addition,
each of the three data paths between the buffer memory
(BUF) and MALU are easily configurable as either inputs or
outputs, allowing consecutive refinements of the results
without having to move data between BUF banks.

In the current version of CESAR, four identical pairs of
MALUSs and buffer memories are working strictly in parallel.
During a computation, all the four MALUs execute the same
program, but on different sets of data. These data (vectors)
are located at the exact same addresses relative to the start of
their buffer memories. The system has been designed to
facilitate the distribution of input data to the four buffer
memories and the collection of results without any extra
overhead compared to a single MALU version. Listed in
Table 1 is a selection of existing MALU algorithms and their
actual capacity in a four—-MALU version:

Actual cap
Name of Algorithm (Mflops)
FFT Radix 4 Butterfly 170
Convolution with 4 pt. filter 280
Addition of complex numbers 40
Complex Multiplication 120
Folding with 4 pt. filter 280

Table 1 Actual Capacity for Different Algorithms

Another commonly used way of measuring system
performance is in terms of time required for a specific
computation, e.g. a 1024 point complex FFT. On a
four-MALU CESAR this typical signal processing application
executes in 0.257 milliseconds (average) compared to 0.4037
milliseconds on an 8.5 nanosecond Cray X-MP.

The execution time is specific for each instruction, which
affects the time it takes from data enters the MALU array
until the first results are ready at the outputs. This is often
referred to as the tail of the computation pipeline and differs
in length depending on the algorithm. For most signal
processing algorithms the tail varies from 10-40 psec, which
for a 32k vector contributes 0.2%-0.6% of the total
processing time. It should also be noted that once the array is
filled with data, operands are presented and results are
produced at the same rate independent of the program
executed.

Compared to what we often see in other systolic arrays,
MALU has several striking characteristics:

A. MALU.

0 Each array element is capable of performing relatively
complex operations.

Q The array elements have rich connections to their
neighbours (6 inputs, 6 outputs).

Q The elements are individually programmable, and
grouped together they form variable pipelines of
computations.

B. Other known systolic arrays.

Q Array cells are usually limited to simple bit—serial
operations.

Q Hardwired interconnections are often used between the
elements.

0 Each element is only capable of doing one, dedicated
operation.

Hardware Realization
In Fig.5, a block diagram shows the different hardware
modules in the prototype version of CESAR, which is

currently in its final stage of debugging and testing. A full
system with four MALUSs is implemented on 13 PCBs, each

L BUS

MPM ADD-
‘—{ RESS BUF BUF

BUF
HOST MAIN BUF
compuTer| | AP | | aem] [TRAP

t t ‘t MALU |

MALU|
VME BUS MALU
[sEQ MALU

====
===

I

—

CONTROL

CESAR PROTOTYPE 1988

Figure 5 Hardware Modules in CESAR

49

of size 11' by 16. Compared to other systems with
approximately the same performance, the hardware is
compact, and, due to the use of CMOS and TTL logic, small
sized fans is the only cooling necessary. A brief description of
the modules is given below:

0 MALU (Microprogrammable Arithmetic Logic Unit)

A complete array of 8x16 S-elements is fitted on one
circuit board. The S-elements are packaged in 68 pin
PLCCs which are surface mounted on both sides of the
board. This rather complex hardware solution did,
however, put some restrictions om the design of the
S—element in terms of power consumption, and the 100K
transistor chip only dissipates 0.25W at 20 MHz.

o BUF (BUFfer Memory)
Each BUF contains three separate two—port 2 Mbyte static
RAM banks for intermediate storage of MALU data.

0 MAINMEM (MAIN MEMory)
CESAR has 32Mbytes of main memory for storage of
intermediate data when BUF space is inadequate.

o TRAP (TRiple Address Processor)
The three bit—slice address processors on TRAP are
necessary for selecting the correct data to be sent into the
MALU and addressing the storage area for the results.
Each address processor is programmable for different
addressing algorithms, e.g. data stored with fixed
increments or FFT bitreversing.

a CP (Control Processor)

CP is based on the Motorola 68020 microprocessor and is
responsible for the overall control in CESAR. The
application programs written in the high level language
CESAR Pascal® as well as system software are executed in
CP. A local VMEbus® is used to interchange control
information between CP and the other hardware modules
in CESAR.

0 SEQ (SEQuencer)
The Sequencer provides the detailed control signals for the
CESAR computations. It synchronizes the address
generation in TRAP with the internal computations in
MALU to ensure correct dataflow between BUF and
MALU.

o DAP (DAta Port)
The Dataport controls all DMA transfers between separate
memory modules, i.e the buffer memories, main memory
and the multiport memory residing in the host computer.
DAP also enables CP to access any location in the different
memories.

As can be seen in Fig.5, the system is flexible with respect
to memory access. Controlled and addressed by the Dataport
(DAP), the physical data transfers take place on the Local
Data Bus called LBUS. LBUS is a 40 Mbyte/s data channel
capable of serving all four BUFs with altogether 12
connections to the MALUs.

The complexity of the MALU circuit board makes it hard
to debug in production and in the field. To help solving this
problem, the S-element has a built-in selftest option that
enables the system or user to run a parallel diagnostic in all

512 S-elements in CESAR. The selftest, which is based on
signature analysis, tests the entire chip with exception of the
on—chip static RAM. The RAM is verified by the control
processor before the selftest is initiated. The S—element can
also be set in a special mode to enhance the testability during
production testing, reducing the number of testpatterns
significantly.

Programming the System

In parallel with designing the hardware, a substantial effort
has been put into the development of software tools for
programming and debugging of the CESAR system. At the
application level, a high order language called CESAR Pascal
has been developed.® In addition to standard Pascal, it
includes special features for describing and synchronizing
concurrent processes as well as data transfers between the
memory modules inside and outside CESAR.

Typically, a library of the most commonly used
vector—/signal processing algorithms will be supported. If,
however, the user wants to write his own MALU or TRAP
programs, several tools are available. A graphic editor for
MALU programs allows the user to interactively choose
instructions and create data paths between the S—elements in
the array. An assembler automatically adds routing delays for
synchronization, and a simulator verifies the correctness of
the algorithm. Similarily, the address processors are
programmable in a "C"-like language with constructs for
generating complex address sequences. A TRAP simulator is
developed to check the address programs before downloading
to the hardware.

Conclusion

A major goal in the research.and development of the
CESAR computer system has been to create a powerful
number cruncher for processing of SAR images, while
retaining a low cost/performance ratio. Preliminary studies
have also shown that the CESAR architecture provides the
necessary flexibility to solve other computationally intensive
vector problems, such as the ones in seismic and
metheorological processing.# Also in a variety of other
applications, the ever increasing demand for extensive
computing capacity clearly manifests the need for
unconventional, high performance designs like CESAR.

50

Commonly Used Terms

BUF Buffer memory
CESAR Computer for Experimental Synthetic

Aperture Radar
FFT Fast Fourier Transform
LBUS Local Data Bus
MALU Microprogrammable Arithmetic Logic Unit
Mflops Million Floating Point Operations per Second
PCB Printed Circuit Board
PLCC Plastic Leadless Chip Carrier
SAR Synthetic Aperture Radar
TRAP Triple Address Processor
VLSI Very Large Scale Integration

References

1. L. Snyder, "Introduction to the Configurable, Highly

Parallel Computer,” IEEE Computer, Volume 15, 1, (Jan.
1982), pp. 47-56.

2. V. Andersen, T. Haugland, and O. Sorasen, "CESAR -
A Programmable Systolic Array Multiprocessor System”,

Proc. IEEE First International Conference on
Supercomputers, (Dec. 1985), pp. 8-15.
3. V. Andersen, and T. Haugland, "CESAR - A

Programmable Systolic Array Multiprocessor System”,
NDRE Report—86/7020, (Aug. 1986), 34 pp.

4. O. Sorasen, "CESAR-maskiner med utvidete muligheter”,
NDRE Report—87/7068, (June 1987), 56 pp.

5. H.T. Kung, "Why Systolic Architectures?”, IEEE

Computer, Volume 15, 1, (Jan 1982), pp. 37-46.

6. J.A.B. Fortes, and B.W. Wah, "Systolic Arrays - From
Concept to Implementation”, IEEE Computer, Volume
20, 7, (July 1987), pp. 12-17. .

7. G.R. Lang et al. "An Optimum Parallel Architecture for
High—Speed Digital Signal Processing”, IEEE Computer,
Volume 21, 2, (Feb. 1988), pp. 47-57.

8. D. Belsnes, O. Hanseth, S. Meldal, "The HOLM
Language, a Proposal”, Norwegian Computing Center
Report no. 728, ISBN 82—5390209—3 (Dec. 1982), 144 pp.

9. Micrology pbt, Inc. "VMEbus Specification Manual,
Revision C.1", (Oct. 1985), 263 pp.

SIGNAL GRAPHS: A MODEL FOR DESIGNING CONCURRENT LOGIC

A.Yu.Kondratyev, L.Ya.Rosenblum, A.V.Yakovlev

Computing Science Department
Leningrad Electrical Engineering Institute

Leningrad

Abstract -- Asynchronous digital
circuits exhibit a high degree of concur-
rency. Self-timed implementation is the
most appropriate design discipline for
them., We examine the signal graphs that
are subject to formal treatment and
mechanical translation to delay-insensi-
tive circuits. An example of designing a
piece of logic for typical interface
adapter effectively illustrates the
approach and sheds light on future work.

1 Introduction

Modern technologies allow to build
VLSI circuits whose internal behavior
exhibits a high degree of parallelism.

To operate correctly under the presence
of such undesired phenomena as electronic
metastability, signal skews due to higher
values of wire vs gate delay ratios,
parametric instabilities of gates etc.
these circuits are designed using self-
timed, or delay-insensitive fashion E,Z].
The most widely cited examples of concur-
rent hardware are regular structures like
pipeline and wavefront arrays which are
easily decomposed in sequential,parallel
or recursive way. On the other hand such
objects as asynchronous interface adap-
ters which are & lot less regular but

can be equally concurrent are far from
being attempted at a formal treatment as
they have been the privelege of engineers
using normally timing diagrams or flow
charts.

The ultimate goal of our research is
to mechanize the design process to such
a degree when it is comfortably fitted
in a CAD environment for developing dis-
tributed systems, e.g. for translating
a physical layer protocol specification
into a collection of self-timed modules.
This paper demonstrates the technique of
using a formal model of concurrency for
constructing basic units of interfacing
logic. This technique accomodates a step-
wise design procedure involving such
steps like architectural decomposition,
functional specification of components,
their behavioral signalling expansion,
and its validation with respect to
correctness and completeness notions,
and finally Boolean function derivation.

2. llodelling concurrency in logic

A self-timed system is often
regarded as a collection of self-timed
modules thgt_communicate via asynchronous
protocols 1]. It does not require a

51

197022 USSR

global clock. All system level events
are ordered in time by the causal
relations between the modules actions,.
The order as it has been established by
the designer must further be preserved
in a final circuit thereby guaranteeing
the correct operation independently of
element and wire delays.

The evolution of logic design
methods shows that the Huffman state
machine model is no longer an adequate
model for asynchronous logic since it
can not deal with "granulagted" concur-
rency in VLSTI. The existing formal
models for self-timed VLSI systems can
be split into four groups:

(i) graphical notations, state or event
oriented, like Petri nets, transition
diagrams, parallel flow charts etc.;

(ii) symbolic notations, like traces or
path expressions;

(iii) models based on high level program-
ming languages, e.g. Ada-like notation;
(iv) combined models.

The study of these formalisms shows
that the usefulness of a model for the
self-timed circuit design depends on a
large number of various issues. For
example, it is affected by the structure
type (regular vs non-regular, or data-
flow vs control-flow), the degree or
granularity of parallelism and data
dependence, the nececssity of abstract
data typing, the depth of delay-indepen-—
dence (with respect to transistor, gate
or component level).

Our formalism, a signal graph based
on a subclass of Petri nets, is an
effective substitute for widely used
timing diagrams because it can be
analyzed in a mathematically sound
manner and mechanically translated to
Boolean functions implementation.

3. Signal graphs: properties

and analysis

Signal graphs are very attractive
formal model for analyzing behavioral
specifications of both signalling proto-
cols and corresponding interface logic.
They represent a more narrow class of
processes than that that can be generally
defined by, say, Petri nets. This is
concerned with their inability to define
alternatives in processes. However, when
we need to define a highly concurrent
behavior they provide the succinct
description and what is more important,
the polynomially complex analysis.

We presume some knowledge of Petri
nets and their subclasses, particularly
marked graphs. Marked graph (MG) gene-
rates distributive marilng diagram (NMD)

3 . MD is an oriented graph whose
vertices are reachable markings and arcs-
are labeled with firing transitions. The
term "distributivity" is related to the
lattice which can be defined on a set of
vectors of transition firing numbers with
respect to a given initial marking.

In order to define a signal graph a
get of binary variables (signals) 2
is introduced. We denote

ZysZps ...,zn}
transitions of signal Zy: from O to 1 by
+24 and from 1 to O by =Ze

Signal graph (3G) is defined as an
MG in w%icﬁ verglces are labeled with
signal transitions (changes) of the form
dz; where d€ {+,-} .

We call a labeling function conflict
~free if for each reachable marking and
variable z4 there is at most one enabled

vertex labeled with dzi . 5G with a

conflict~free labeling is called coherent.
The coherence is not sufficient for)
specification to be correct because
despite all the changes for each z; are

linear-ordered they may be unmatched with
respect to their signs.

Wie call a labeling function sign-
balanced if for each sequence of signal
transitions with respect to initial
marking between any two transitions of
the same sign there exists at least one
transition of the other sign. SG with a
sign~balanced labeling is called
consistent. The consistency implies the
necessary level of correctness of a
specification given by SG that is
expressed in the following statement.

Statement 1. A consistent SG generates a
state transition diagram.

A state transition diagram (STD) is
an oriented graph whose vertices are
labeled with full states of a specified
circuit, i.e. they are binary n-tuples
of values of Zios and arcs are labeled

with corresponding changes dzi. The

values that can change between a given
state and another one connected to each
other by an arc are marked with *-token.
A variable whose value in n-tuple is
marked with * is called excited in a
given state. In this paper we omit the
description of algorithms of converting
a consistent SG to STD and vice verss.
We only hint that such a conversion may
use the ordinary procedure of building an
D by the depth~first search where each
marking in MD relates to a corresponding
state in STD.

52

A consistent SG may however
generate a STD with multiple states, i.e.
the states which are labeled with equal
n-tuples of signal values. Such an STD
is called contradictory. Informally, the
contradiction of this kind means that
the system is under-specified and some
components are still hidden from the
designer's eye. For example, when SG
defines an interface protocol these
components may be interpreted as an
internal memory of controller.

We further incorporate a higher
level of correctness into the hierarchy
of 3G classes by the notion of a normal
SG-which guarantees the completeness of
a specification. An SG is called normal
if it is consistent and for each allowed
sequence of markings it has no proper
subset of variables Z'€ Z which can
proceed through the full cycle of their
values while other variables (from
ZN\Z') stay unchanged. An STD of a
normal 5G is non-contradictory and
distributive [3].

It is suitable to check the
consistency and normalicy using the
relations of precedence and concurrency
built on the set of signal transitions.
The formelization of these relations
requires the introduction of a concept
of & history, or so-called unfolding,
which is an infinite and acyclic object
generated by an SG. Each occurrence of a
transition in an SG yields a unique
vertex in the unfolding. This technique
due to the lack of space can not be
fully described here though we mention
that the unfolding can be floored to its
first two periods and the above relati-
ons can thus be computed on a finite
object. The algorithm of checking 3
consistency has the complexity of O(n~)
where n is the number of vertices in the
original SG.

In order to establish whether a
consistent SG is normal we use a special
formal concept - operational coupledness.
We define a coupled relation on a set
of variables Z. This relation has the
following hierarchy: directly strongly
coupled, strongly coupled, weakly
coupled of rank » , r>» 0, and coupled.
The coupled relation partitions the set
Z into the disjoint classes. Omiting
here formal definitions and proofs which
can be found elsewhere [}J we only state
the following.

Statement 2. A consistent SG is normal
1ff a 1ts variables belong to single
coupledness classe.

The complexity of an, algorithm for
normelicy check is of o(n).

The main advantage of our checking
techniques stems from the fact that
they do not require to convert an SG to

MD or STD -~ a step having exponential
complexity with respect to the power of

4. An example of self-timed

logic design

In the above section we have
sketched how we can check the normalicy
of an SG which is a sufficient condition
for the existence of a distributive STD
and hence of a delay-insensitive circuit

[2] . The circuit can be derived from
- the normal SG by means of obtaining the
Boolean functions (BFs) for variables z.
of set 2 using a truth table (TT) which™
can be built from the STD corresponding
to the SG. However the chain SG~-STD=-TT-
BFs involves exponentially complex steps.
Therefore we look for an alternative
technique for the direct (but semantics
preserving) conversion of the SG to the
system of BPFs. Such a bridling of the
design complexity is concerned, first of
all, with laying out some restrictions
upon the complexity of the coupledness
hierarchy.

In this paper we are far from being
ambitious to show how the problem of
obtaining the general way of deriving
functions directly from an 3G can be
solved. We rather illustrate our design
approach with an instructive example of
designing a piece of interface logic.

FIFO buffers are typically incorpo-
rated in interfacing adapters as they
help to keep the performance of the
whole distributed system at its highest
communication rate. The original specifi-
cation of a one-value FIFO cell was
inspired by [5] .

Let the FIFO cell consist of two
subcells: the data cell (DC) and the
control cell (CC) as shown in Fig.l.

I/PO: DATA CELL —__:O/PO
I/P1 0/P1
AD] AU H
AQ=<—— CONTROL CELL p~— AI
Figure 1. The structure of FIFO cell

The meaning of the signals is as
follows. I/PO and I/P1 are data inputs,
and 0/PO and 0/P1 are data outputs. Both
use the two-rail coding discipline |1
where for "zero" and "one" values the
combinations 10 and 01 are respectively
used on the above pairs, and the all-zero
spacer (00) is used for representing the
"data undefined" value. AO and AI are
the acknowledgement signals: AO is
generated by the cell and AT is produced
by the environment. AD is "All defined"
indication signal, AU is "All undefined"

53

indication signal, and H is "Hold"
command signal. AD and AU are both used

to detect the state of the inputs (if
1/PO = I/P1 = O then AD = 0, AU =.1, and
if I/PO # I/P1 then AD = 1, AU = O). H
directs the DC to latch the incoming
value. All AD, AU, and H wires run the
width of the buffer.

Fig.2 shows the SG specification of
the CC operation. Analyzing this SG we
can establish that it is consistent:
each variable has all its transitions
ordered within one synchrocycle (a
ecycle containing exactly one token).
However the SG is not normal. The
coupled relation partitions the set Z
{ AT,A0,AD,H,AUY into two disjoint
classes: K1 = {AIL,H} and K2 = {AD,AU,
A0} . It can be shown that adding only
one extra variable to the specification
while preserving the established order
of signal changes for variables in Z
will not suffice for making all variables
coupled., After adding two variables d1
and d2 we obtain the resulting SG shown
in Fig.3 which is normal.

-0 DD~
-0

An original SG specification
of the control cell operation

Figure 2.

A normal SG obtained after
adding extra variables

Figure 3.

From this SG we derive BFs in the
following form:
Sz + Rzez,
where 3z is the set function and Rz is
the reset function. Both Sz and Rz are
independent of z. We also demand that the
invariant Sz<¢Rz = O holds in order to
avoid conflicts between transitions
which may lead to undesired races in a

circuit.
In order to derive Sz and Rz we

search through the SG for immediate pre-—
decessors of the transition +z for
including them into the essential Sz-
term, and those of transition -z for
Rz-term. If these predecessors correspond
to the variables that are strongly
coupled with z we proceed further to the
orthogonalization step. If some of the

72 =

variables whose transition is a predece-
ssor for a given transition dz is weakly
coupled (of any rank r> 0) with z then
there is a so-called overtaeking of the
essential term by some other term which
must be added to corresponding set or
reset function. For example, when
deriving function SAO the essential term

is Hed2 but before AO changes from O to
1 H may begin to change from 1 to O (in
parallel with AO changing), and hence we
must cure the overtsking by an additional
term which will involve a variable that
is strongly coupled with H, i.e. the

term dl1ed2. Using d2 in both terms for
SAO helps us also to eliminate the
inclusion of the term for RAO which is

simply d2 because 42 is immediately
gtrongly coupled with AO. Thus we cbtain
a BF for A0 which is non-selfdependent,
i.e. free of feedback

A0 = (H + d1)ed2 + d2-40 = (H + d1)d2.

One of the important issues in
deriving Sz and Rz is their mutual ortho-
gonglization, i.e. providing that
SzeRz = O is satisfied. This can be done
by strengthening their terms with common
variables. For example, when we obtained
SAO we had d2 as such a variable.

Another example is the function for H
whose SH = d1+d2 is strengthened by

d1 because RH = di.

Finally, the above technique yields
the following system of BFs:

d1 = AD-AI-d2 + AI-dl
d2 = AU-H-d1 + AU-d2
H = d1:d2 + dl1-H
A0 = di-d2 + d2.H

This system is easily implemented with
four AND-OR-NOT gates and six inverters
(four of them produce d1,d2,H,40, and
the other two complement AI and AU,
however the latter can obviously be
eliminated at the transistor level by
using the inhibit inputs of the first
two gates).

The circuit is delay-insensitive
with respect to delays in gates and
inverters as well as in those wires
which are not the feedback connections.
The feedback delays are presumed negli-
gible as the corresponding elements are
accommodated within equichronic regions.

5. Conclusion

The main characteristic of the
above approach comparing it with those
given elsewhere[6,7,8]is that it
provides the technique for effective
managing with concurrency at the logic
level using the formal model which is

54

quite simple for comprehension for a
wide audience of hardware designers used

to timing diagrams, and at the same time
powerful enough to be formally analyzed
with respect to correctness and complete-
ness by means of such key concepts as
normalicy and coupledness. This facili-
tates some constructive ways to the
correction of specifications while
preserving the original semantics of
signal change ordering. The method has
been tested on a large number of
difficult examples including designing
asynchronous control logic for inter-
faces (Unibus, Futurebus, token ring
etc.) and FIFO buffers of various
architectures.

The proposed technigque obviously
needs further research efforts both in
theory as, for example, in establishing
restrictions on coupledness classes
to find out how they affect the BF
derivation rules outlined above, and in
practical aspects through developing
the software for such a mechanized
translation to be a versatile interacti-
ve design environment. Some pieces of
such an environment are in progress now.

References

[1] c.L. seitz, System Timing, Chapter 7
~ in: Introduction to VLSI Systems,
C.llead and L.Conway, Addison-Wesley,
(1980), 400 pp.

[2] V.I.Varshavsky, Hardware Support of
Parallel Asynchronous Processes,
Digital Syst. Lab., Helsinki Univer-
sity of Technology, Series A, No.2,
(Sept. 1987), 236 pp.

[3] L.Ya. Rosenblum, A.V. Yakovlev, Sig-
nal Graphs: from Self-Timed to Timed
Ones, Intern. Workshop on Timed
Petri Nets, Torino, Italy,(1985),
pp.199-207.

P} A.V. Yakovlev, Design and Implemen-

“ tation of Asynchronous Interface
Protocols, PhD Thesis, (1982).

[5] L.,E. Barton, Non-metric Design
Methodology for VLSI, in: VLSI-81,
Academic Press, London, (1981),

4 PPe 25-34.

EJ A.J. Martin, Compiling Communicating
Processes into Delay-Insensitive
VLSI Circuits, Distributed Computing,

., Vol. 1, Ho. 4 (1986), pp. 205-225.

[7] 2.-4. chu, on the Models for

“ Designing VLSI Asynchronous Digital
Systems, Integration, the VLSI
journal, Vol.4d (1986), pp. 99-113.

[8] P.F., Lister, A.l. Alhelveni, Design
Methodology for Self-Timed Systems,
Proc. IEE, Pt. E, Vol. 132, No.1
(1985), pp 25-32.

Optical Arithmetic Using Signed-Digit
Symbolic Substitution

Kat Hwang and Ahmed Louri
Department of EE-Systems
University of Southern California
Los Angeles, California, 90098-0781

Abstract A new class of digital arithmetic algorithms is
presented in this paper for supporting massively parallel
computing with state-of-the-art optical technology. We use
a two-dimensional symbolic substitution approach. Signed-
digit (SD) representation is used to enable carry-free ad-
dition/subtraction. Based on SD addition, parallel algo-
rithms for SD multiplication and division are developed.
The potential advantages of performing digital arithmetic
with optics include the significant increase in speed, full
exploitation of massive parallelism, higher communication
bandwidth, and higher system throughput; as compared
with existing electronic arithmetic computers. We con-
centrate on optical computing using the signed digit set
{1,0,1}. The parallel algorithms being presented can be
easily extended to perform optical arithmetic with higher
radices.

1 Introduction

The signed-digit (SD) representation was originally pro-
posed by Avizienis[1], and recently introduced to the opti-
cal community by Drake et al.[2]. The binary SD system
uses the digit set {I,0, 1}, where I stands for -1. The intro-
duction of redundancy (three values for a binary system)
provides a much weaker interdigit dependency as opposed
to the strong dependency manifested by carry propagation
in a nonredundant number system using the digit set {0,1}.
As a consequence of weak dependency, carry generated at
any stage is confined within two adjacent digital positions
in the SD code. This makes it possible to perform the addi-
tion/subtraction of any two SD numbers of arbitrary length
in constant time[1,3].

Based on the SD addition, we have developed new algo-
rithms for SD multiplication and SD diviston. The multipli-
cation of two n-digit SD numbers is done in O(log, n) time
by first generating all the n partial products simultaneously
and then adding them in a tree-like fashion. The parallel
generation of all partial products is done in constant time,
independent of the word length n. It is the adder tree that
requires log, n time. The SD division algorithm is gener-
alized from the quadratic convergence division method[4].
With the provision of high-speed multiplication and paral-
lel addition, the number of required iterations for SD divi-

55

sion is reduced to O(log, n), where n is the fraction length.
The advantages of optics have been expounded upon on nu-
merous occasions|5,6]. These include high space-bandwidth
and time-bandwidth produts, and inherent parallelism.

2 Symbolic Substitution Technique

In order to exploit the massive parallelism and ultra-
high speed in optics, Huang|7] introduced a technique called
symbolic substitution (SS) for performing digital arithmetic
optically. In his method, information is represented by op-
tical patterns within a two-dimensional image. An optical
pattern is a spatial arrangement of dark and bright spots
corresponding to binary values 0 and 1. Computation pro-
ceeds in transforming these patterns into other patterns
according to predefined SS rules. Symbolic substitution
logic is sensitive not only to the values of pizels (picture
elements) carrying information, but also to their spatial
locations in the binary image (image of bright and dark
spots).

In order to implement SD arithmetic optically, we need
an optical encoding for the digit set {1,0,1}. There are sev-
eral properties of light that can be used. These include light
intensity and light polarization as illustrated in Fig.1a-b.
Using light intensity, two pixels of different light intensity
are needed to encode the three digits. A possible encoding
scheme is to represent the digit 1 by a bright pixel above
a dark one, the digit 1 by a reversed pixel pattern, and
the digit 0 by two dark pixels as shown in Fig.l1a. Note
that, the extra pattern consisting of two bright pixels can
be used as a delimiter to denote the fraction point. Using
light polarization we need three states of polarization. A
possible encoding scheme would be to represent 1 by verti-
cally polarized light, 1 by horizontally polarized light, and
0 by light polarized at 45° as shown in Fig.1b. In this pa-
per, we have chosen to represent the digit set with light
intensity exclusively.

Symbolic substitution consists of two phases: a recog-
nition phase where the presence of a specific pattern is
detected within a binary image and a substitution phase,
where the present pattern is replaced by another pattern
according to a predefined SS rule. Optical implementa-
tion of the two SS phases have been investigated by several

researchers|[8,9,10].

i 0 1

] %

(a) Light intensity encoding of the digit set {i,o,1}
i = %
(b) Light polarization encoding of the digit set {1, 0, 1}
Fig.1 Optical encoding of the signed-digit set {1,0,1}

3 Optical SD Addition/Subtraction

Given an SD number ¥ = yp—1Yn-2°**Y0.Y-1°"*Y=m,
the algebraic value of Y is evaluated as :

t=n-—1
Yo= > wix2, where y;€{1,0,1} (1)

i=—-m

In this number system, there is no need for an explicit
sign digit. In fact, the polarity of the most significant digit
Yn—1 determines the sign of Y. Although the representation
of an SD number is not unique, the zero (0) is uniquely
represented with all zero digits.

The addition of two SD numbers represented as X =
Tp—1°"*20.L-1T—2...T-pmandY =y, 1 Y0.Y-1¥Y-2-..Y-m
results in an SD number S = $,85-1°**80.8-18-2 ..+ 8—m.
Avizenis has defined three pipelined steps to perform the
SD addition[3]. At the first step, z; + yi = 2t;41 + w; is
performed at the i-th digit position, for ¢t = —m,...,n—1,
where w; and t;4, are called the interim sum digit and the
transfer digit respectively. These digits assume the follow-
ing values:

1 ifz,~+y.~=i 1 fz;+y;>1
w; = 9 if |a:;+y;| #1 tiyi=4 0 ifz;+y; =0 (2)
1 fz+y=1 I fm+y<1

At the second step, w; + t; = 2t},; + w} is performed to
produce another pair of digits, w} and ¢} :

1 fw+t=1
wh=14 0 if jwi+t|#1 tipr =
I fw+t;=1

ifw; +t =2

- O -

fw;+¢=-2

The third step generates the final sum digst, s;, as specified
below:

if lwi +84]#2 (3)

56

if wi+¢;>1
if w4+t =0 (4)
if wh+t <1

! !
s;=w‘~+t;=

O

Figure 2 shows a totally parallel adder constructed by three
types of optically implemented logic Cells (I, II, IIT), whose
truth-table specifications are given in Table 1. There is
no carry propagation beyond any two adjacent digits in
the adder. Each sum digit s; depends on only six digits
(zi, %), (%i-1,vi-1), and (zi-3,Yi-2). Zeros are padded at
the second and the third stages to preserve the same in-
put/output format at each stage.

Fig2. A totally parallel optical adder with 3 pipeline

stages

Ezample 1 below illustrates the addition of two SD
numbers, X = (—0.125);0 = (1.111)sp, and Y = (0.375);0 =
(0.101)sp using the same 3-stage adder shown in Fig.2.
The result is an SD number S = (0.25);0 = (000.110)sp.
In this example, ¢ represents a padded zero.

Signed-digit subtraction is performed by first negating
the nonzero digits of the subtrahend and then performing
the addition of the two operands. Since the negation oper-
ation can be done in parallel for all digits, subtracting two
SD numbers can also be done in parallel across all digits.

Ezample 1(SD Addition)

X = (1011),4 =1 0 1 1I=(-T
+

Y= (OIOT)M =0 1 0 1= (3)10
Stage 1 ¢ 1 1 1 0 w;

1 1 1 1 ¢ tiv1
Stage2 0 1 0 O 0 w}

¢ 1 0 1 ¢ ti
Stage3 0 0 0 1 0 0 s

Z = (00100),q = (—4)10

Using the truth tables in Table 1, we derive below a set
of SS rules required for optical implementation of the SD
addition. The search patterns of these rules correspond to
the input combinations and the replacement patterns are

the truth table entries as shown in Fig.3. Note that for
Cell Type I and II, the replacement patterns are spatially
displaced by one digit position, which accounts for the fact
that the transfer digits (¢; and ¢, respectively) are to be
combined with the next higher-order digit in the addition
process.

On the surface, it seems that we need 3% = 27 SS rules
corresponding to the nine entries of each of the 3 truth
tables. However, a closer look at Table 1, reveals that the
logic for the first and the second stages are very similar.
Furthermore, if we pad the third stage output with 0, five
of the nine entries become similar to stages 2 and 3. There-
fore, the total SS rules needed for SD addition becomes 17.
In fact, when the search pattern is all dark (both operands
digits are 0) the replacement pattern is also all dark, which
does not need any optical processing. Consequently, the
actual number of useful rules for the SD addition becomes
16. The subtraction needs one extra stage to perform the
digit-wise negation. This stage requires two additional SS
rules to negate the nonzero digits as shown in Fig.3d.

Table 1 Truth-table of three Cell Types used
in designing the optical adder in Fig.2

i Type I Cell w;s Type II Cell _
D 1 0 1 N1 0 1
¢ 1 1 0 t 1 0 0
1 - 1
w0 1 0 w’ 0 1)
1 0 i 0 0 0
o B 0 _
i 0 1 1 0 1
] o i i | o 0 i
i i ~
0 1 0 0 i 0

 Type III Cell

N1 0 I
1ls1 1 0
0 1 0 1
i 0 i i

To illustrate the use of these SS rules, let us consider
Example 1 in light of 2-D symbolic substitution. The in-
put operands are optically encoded and stacked on each
other as illustrated in Fig.4a. Next, the SS rules for Cell
type I are applied to the input image. All nine input com-
binations are searched and then replaced in parallel. This
results in 3 successive new images as shown in Fig.4b-d,
corresponding to the outputs of the 3 adder stages.

lr] r a

2 1 H
—a B
\dars L} W, @]

(d) substitution rules for signed-digit negation

Fig.3 Optical symbolic substitution rules for signed-digit
addition and negation

In Fig.5 we show a schematic block diagram for an op-
tical digital adder using the signed-digit symbolic substi-
tution technique. Note that 17 rules are used. The optical
implementation of each substitution rule is detailed in [10].
there are other methods that have been reported to imple-
ment the SD addition optically[11,12].

4 Optical SD Multiplication

The optical multiplication of two SD numbers X =
Tpoy- Lo L1T—z ZomandY =yn_1°-Yo.Y-1Y-2°*Y-m
produces an SD product
P = pan_1Pan—2""* Po-P-1P-2 * * * P-2m+1P-2m, €xpressed as:

P= (g1 *X)x 2" 4 oot (yom* X) x 2°(5)

where y; is the i-th multiplier digit, and * is thg signed
AND operation defined as follows for any z,y € {1,0,1}:

1 fz=y=1
zxy=4 0 if(z=0)V(y=0) (6)
1 if(z=1Ay=1)Vv(z=1IAy=1)

X =1111

Y =0.101

i110 ¢ A 7
61010 %
IANA__)

(b) Output after applying the SS rules of Cell I

01000 ¢ ,//////A%% %
. DO 7
| _{AA_

(c) Output after applying the SS rules of Cell II
$00110 %
AAAA_ A
| I |

The desired sum
(d) Output after applying the SS rules of Cell III

Z

DY DN
DY N

¢ 101

Fig.4 An SD addition example showing the use
of symbolic substitution rules

Optical feedback
Substitution rule 1 (r;)
Recognition Replacement
L]
L[]
- . Combined
image
Input Substitution rule 19 (ry)
image Recognition Replacement

Fig.5 An optical adder(subtracter) symbolic
substitution

58

The notations, V and A are used to represent the conven-
tional logical OR and the logical AND operations. The
notation y; * X defines the following digit-wise operations:

Yi * X = Ui ¥ Tp1,Y5 * Tnz, ..., Yj ¥ Tep, (n

We have previously developed a sequential algorithm for
computing the product P in n + m iterations using SD
additions and right shifts[13]. In what follows, we present
a parallel algorithm that computes the product of two SD
numbers in log,(n+m) iterations, where (n+m) is the word
length including n integer digits and m fraction digits. For
clarity, we use integer numbers where the fractional length
m = 0. The algorithm is composed of three steps :

Step 1: Given two signed n-digit numbers, generate all
n partial products concurrently, each having length n as
follows:

Pyj=yj*X forj=0,...,n—1 (8)

where the term Py ; is an n-digit SD number representing
the j-th partial product.

Step 2: Introduce the necessary shifts for each partial
product. Each initial partial product P, ; will be shifted
J digits to the left, corresponding to the weight factor 27
shown in Eq.5:

Pyj=yi*Xx2 - forj=0,...,n—1 (9)

Step 8: Pairwise add all the partial products by means
of an adder tree. With a total of n partial products at the
leaves of the tree, the summation process takes log, n levels
in the tree. At each level i, we perform n/2' SD additions
in parallel :

Pij=Pi1gj-2 + Pi_ygj1 for j =1,2,...,n/2°(10)

The final product is produced at the root of the tree after
log; n iterations. Step 1 and Step 2 are carried out in
constant time. For a multiplier of length n, Step 3 requires
log, n iterations. Since each SD addition takes constant
time, then the multiplication of two n-digit SD numbers
can be carried out in O(log, n) time.

Ezample 2 below shows the parallel multiplication of
two 4-digit SD numbers, X = (1.011)sp = (0.375)1p and
Y = (1.011)sp = (0.875)1. In Step 1, we generate all
the partial products using Eq.8. In Step 2, we introduce
the necessary shifts. Finally, we add all the shifted partial
products according to Eq.10), using a tree of SD adders to
produce the final product P = 000.100101 = (0.546875)1,.

Ezample 2:

Step One : Generation of the partial products

Po.o = Yy-3 * X = 10ﬁ
Pop=y2*xX = 1.011
Po2 = y-1 * X = 0.000
Pos=yo*xX= 1.011

Step Two: Shift the partial products
(y-3 * X) x 2° = 0001011
(y—z * X) x 2! = 0010110
(y-1* X) x 2% = 0000000
(yo * X) x 2% = 1011000

Step Three: Summation of all the shifted partial products

0001011
> 00000111
0010110

0000000
_ >1iiomoo
1011000

X x Y = Z = (000.100101)sp = (0.546875);0

000.100101

The SD multiplication algorithm uses the signed AND
operation (*) in generating all partial products simultane-
ously, and a tree of SD adders to sum them up. Using
Eq.6, we derive the SS rules needed for implementing the
* operation as shown in Fig.6. Let us consider the op-
tical implementation of the computations in Example 2.
The multiplicand and multiplier are arranged in 1-D ar-
rays as shown at the left of Fig.7. The multiplicand is
shown horizontally and the multiplier is shown vertically.
The generation of all partial products Py ; for y =0,...,3
is carried out in three stages. First, the multiplicand is
spread out vertically by the astigmatic optics (represented
by the cylindrical lens L1) to fill the 4 X 4 data plane M1.
Similarly, the multiplier is spread out horizontally using
the cylindrical lens L2, so that each digit of the multiplier
is duplicated vertically 4 times to fill the 4 x 4 plane M2.
Next, planes M1 and M2 are 2-D perfect shuffied [10] and
then stored in an 8 x 4 plane R. For clarity, the optics re-
quired for the 2-D perfect shuffle permutations is omitted
from Fig.7. The 2-D shuffle permutations intended here
affect only the row position, leaving the column position
of the data unchanged.

The resulting image, R, has alternating rows from M1
and M2 such that odd rows contain the multiplicand and
even rows contain a replicated digit of the multiplier. There-
fore, row 1, row 3, row 5, ..., row n — 1 contain the mul-
tiplicand X; and row 2, row 4, row 6, ..., row n, contain
the replicated digits y1,y2,¥s, - .-, Yn—1 of the multiplier re-
spectively. In the third stage, plane R is replicated 9 times,
each copy is used for applying one SS rule of the * opera-

59

Fig.86 Symbolic substitution rules for the SD AND

tion. Therefore, every combination of the input operands
is searched and is replaced in parallel. Finally, the output
planes of all the SS rules applied are optically superim-
posed. To this end, all the partial products have been
generated in parallel as shown in plane P of Fig.8. Step 2
of the SD multiplication algorithm involves spatial shifts.
There are a variety of ways one can perform spatial shifts
in optics|14].

Lens L1

Plane M1

N\

AN ATCATAY-IAN
\v—u \._q \Hl \,_. \b—‘l

l—‘\)—‘l\b—‘ \ H\"" \

o\o

NN NN\ NI NN

N \= \eo

\._.\O \

AERANCANEAN

1 Plane R

2-D perfect shuffle of
planes M1 and M2

= N o N\ N\~ 1\

Multiplier

Lens L2

Plane M2

Fig.7 The spreading of the operands in Example 2
for parallel SD multiplication

The plane P, consisting of all partial products with ap-
propriate shifts, is then fed to the adder described in the
previous section in order to perform the last step of the
multiplication algorithm. This is accomplished by apply-
ing the SD addition rules for log, 4 iterations.

In general , with a multiplicand of length » and a mul-
tiplier of length m, the planes M1, M2, and P in Fig.7 are
all m x n arrays, R is a 2m X n array, and the shifted P is a
mX (m-+n) array. It should be noted that, if the 1-D arrays
which are used to input the operands are replaced by 2-D
arrays and associated optics for spreading and shuffling,
many operand pairs can be multiplied in parallel using the
same set of SS rules.

Search patterns

SS Rule (r27)

[SA

<

4

%
rl:} . } SS Rule (rz0) /{1 Poo
Hd A1)/
L}}/}/ SS Rule (r21) A 0 / . Po
e §75%
Y| WY ® /0/ Po,2
avdp : A
.})/1/ . / 00/_ Pos
é}{} 6%
% 0% /0

%

1
2 4
,1: / 1 SS Rule (r2s) Pla.nt‘e P
| 1 V (Partial
],)I V products)

==
~

Plane R

Fig.8 Parallel generation of partial products using
the SS rules for the SD AND operation

5 Optical SD Division

The conventional restoring and nonrestoring division
methods require knowledge of the sign of the partial re-
mainder for exact selection of the quotient digits. How-
ever, in SD representation, the sign of a partial remainder
is not readily available if several most significant digits
are zero. This difficulty prevents the use of conventional
methods for SD division. Robertson division method[15]
was applied in [1] for SD number systems with radix r > 3.
In that method, the quotient is represented in redundant
form and the value of the next quotient digit is selected
by comparing approximated values of both the divisor and

60

the partial remainder. In searching for an effective divi-
sion algorithm for SD numbers with radix r = 2, we have
to achieve the following two goals:

(Z) The algorithm should overcome the difficulty of testing
the polarity of the remainder after each iteration.

(2) The algorithm should make effective use of the 2-D
parallel SD addition and multiplication schemes de-
scribed in previous sections.

An SD division algorithm satisfying the above goals is
developed below based on the convergence approach[4,16,17].
Let us consider a dividend X and a divisor ¥ both SD frac-
tions in normalized from, that is:

1/2<|X|<Y <1 (11)

We want to compute the quotient @ = X/Y without a
remainder. The algorithm consists of finding a sequence of
multiply factors mg,my, mg,...,mysuchthat Y x (H::Z{,‘ m;)
converges to 1 (within an acceptable error criterion). Ini-
tially, we set Xo = X, and Yo = Y. The algorithm repeats
the following recursions:
Xit1 = Xi x my,

Y=Y xm (12)

such that for a small n:

Y x (ﬁm,) -1, Q=Xx (ﬁm.) (13)

The effectiveness of this method relies on the ease of com-
puting the multiply factors m;’s, using only SD addition
and SD multiplication operations. The recursive formula
of Eq.12 can be rewritten as:

Yip =Y xm; = f(Y) (14)
We desire the function f(Y;) to converge to 1, starting from

an initial value Yy = Y. Equation 14 can be rewritten in
a polynomial form:

fY)-Yi=0 (15)

Flynn has described several iterative methods [16] to
enable such a polynomial to converge to a given value say k.
We are interested only in the quadratic convergence as this
appears more convenient for optical realization. To achieve
this, let us rewrite Eq.15 in a more general quadratic form:

f(Y) = Yi= (Vi — k1) (Yi — k2) =0 (16)

One of the roots of Eq.16 should be equal to the conver-
gence limit 1. Krishnamurthy[17] has found that in order
for Y; x m; to converge quadratically to 1, the factors m;’s
should be selected as:

m; =2—Y; provided that 0<Y; <2. (17)

Equation 17 implies that the multiply factor for each
iteration can be easily obtained as the two’s complement
of the denominator Y;. In SD code, the arithmetic ex-
pression 2 — Y; can be computed in constant time using
SS rules for SD negation and addition. Since the conver-
gence is quadratic, the accumulated denominator length is
doubled after each iteration. Hence for a desired quotient
of length n, the maximum number of iterations needed is
log, n. The convergence division of two SD numbers is for-
mally specified below:

SD Diviston Algorithm

begin
for ¢ := 0 to log,n — 1 do
m;:=2-Y;
Xit1 1= Xi x my 5
Y1 =Y x my;
endfor;

Q:= Xlog, n—1j
end.

Ezample 3 illustrates the SD convergence division of
X = (O.iO)SD = (-—-0.5)10 by Y = (0.11)31) = (0.75)10.
For a 16-digit precision, the algorithm generates the quo-
tient after 3 iterations, @ = (1.111011101111111)sp =
(—0.66664)19. As for the optical implementation of the
algorithm, each iteration of the SD division consists of
three major operations : a pair of two SD multiplications,
Yiy1 = Y; x m; and X4y = X; X m;, and a two’s comple-
ment operation m; = 2—Y;. Each SD multiplication can be
optically carried out as described in Section 4. The two’s
complement is carried out by an SD negation followed by

an SD addition. The subtrahend Y; is negated using the
SS rules in Fig.3d. All nonzero digits of Y; are negated
in parallel. The expression 2 — Y; then becomes 2 + Yi,
which is computed using the SD addition rules in Fig.3a-
¢. The two SD multiplications required to generate X,
and Y;,; can be computed concurrently by replicating the
SD multiplication hardware into two channels, one for the
numerator and one for the denominator as shown in Fig.9.

6 Performance Analysis

We estimate the potential speed of the optical arith-
metic algorithms introduced in this paper. The analysis
is based on the optical implementation models presented
in previous sections. These estimates should reflect the
state-of-the-art in optical computing technology. Our esti-
mates cover both conservative and optimistic sides of the
expected performance.

The SD addition is performed in three stages. The to-
tal time to perform each stage is attributed to the time
needed : (1) to replicate the input image; (2) to propagate
the image through the first hologram to provide the shifts;
(3) to activate the optical NOR-gate array for inverting
the superimposed image; (4) to propagate light through
the second hologram for substitution; (5) to superimpose
the output of all the rules; and (6) to feed back the in-
termediate result. Therefore the total SD addition time is
expressed as:

W ® ® @ 6 (©)
A~ = e S —
Tosa = 3(Ty + Ty + Toue + T, + Tp) +27T; (18)

where:

T, = Propagation time of a light beam through passive
optical devices such as lenses, beam splitters, holo-
grams, etc.

T; = Feedback time (light propagation through the feed-
back interconnect)

Tyetiv = Response time of an optical NOR-gate array used
for inversion and thresholding.

Ezample 8 : SD division steps based on repeated multiplications

Iteration | Multiply Accumulated Accumulated
step factor denominator numerator
1=0 mp=2-Y, Y1=Y_0Xm0 X1 = Xo X mg
(I.OI)SD (1.0001)51) (O.iilo)sp
] | = (1.25)10 | = (0.9375)10 | = (-0.625)10° |
i=1 m1=g—Yoxm0 Yo=Yy X mg xmy X, = Xo X mg X my
(I.OOII)SD (1.0000001)5[) (i.lil()i-l_l())sp
| | = (1.0625)10 | (0.99509)10 | (—0.66406)10 |
1=2 m2=2—Y0_XmOXm1 Ys =Yy Xmgxmy Xxmyg | X3 = Xo X mgX my Xmgy
(1.0000001) sp (1.0000000000000001)sp | @ = (1.111011101111111)5p
| | = (1.00890625)10 | ¥s—1 = (—0.6666..)10]

_IX.'+1

N-Channel for

Numerator

Q
multiplication

SS Rules
for negation

<

addition

SS Rules for

Yin
D-Channel for
Denominator

multiplication

Fig.9 An optical convergence divider using two channels

of optical multipliers

The numbers over the braces in Eq.(18) indicate the
times needed to accomplish each subtask. T, and Ty can be
approximated by 0.1 nsec[14] (light propagates at 1 ft/nsec
in free space). The dominant limitation to speed is the
switching time of the optical NOR-gate array, representing
the only active element in the addition path. Therefore,
the total SD addition time would be T,44 &~ 3T4cti. An
n-digit SD addition requires (n + 1) X 4 pixels, where the
factor 4 is introduced by the encoding scheme used (2 light
pixels for each digit). Therefore, for an optical gate. array
of size I X | pixels and a switching time 7, the optical SD
adder is able to perform ©, n-digit additions per second,
where:

_ Ixl
* T 3rx((n+1) x4)

(SD additions/sec) (19)

Optical gate arrays of very small sizes (say 2 X 2 to
5 x 5) have been recently demonstrated [18]. These ar-
rays offer the possibility of achieving a 10712 sec switch-
ing time. However, these optical gate arrays can not be
used in a practical system due to their small size and high
power consumption. If we were to use a commercial spa-
tial light modulator (SLM) such as the liquid crystal light
valve (LCLV) with a 500 x 500 pixel resolution and 20 ms
switching time, we can perform about 63 x 10® 32-digit SD
additions per second. This yields to an average of 1/,
= 15 X 107® sec per SD addition. This speed is not much
faster than today’s fast adders. However, faster SLMs are
being produced in research laboratories[18]. If the response
time of the SLM were reduced to 0.01 usec, a 500 x 500
resolution will bring the 32-digit SD addition time down
to 1.5 x 107!2 sec (0.15 ps), which will represent 10* times
improvement over electronic adders of the same size.

Referring to the optical implementation model in Sec.4,
the SD multiplication time is attributed to the time needed
: (1) to generate the partial products; (2) to shift them;
and (3) to add up the shifted partial products. This time

62

is expressed as:

(1) ’(12)\ (3)
Tmult = Ta + 4Tp + Tacts‘v + Tp + Tadd X 1032 n (20)

where T, represents the time needed to spread and to shuf-
fle the operands. This time corresponds to light propaga-
tion through passive devices which can be estimated by
0.1 nsec. Since T, ~ T, << Tyetiv and Toga ~ 3Tuctiv,
hence Ty, = Toctiv(1 + 3log, n), where n is the precision
of the multiplier. An n-digit SD multiplication requires
4 X (n X 2n) pixels, where the factor 4 is related to the
light encoding of the digit set {I, 0, 1}. Using an SLM
with ! x | pixel resolution and 7 switching time, we obtain
the number 0, of n-digit multiplications performable per
second:

Ixl

O, =
™ 4x(nx2n)x71x(1+3log,n)

(21)

If we were to use standard off-the-shelf SLM (LCLV),
there could be 96 SD multiplications per second. This
corresponds to a speed of 1/0,, = 10 msec per one 32-digit
SD multiplication. This looks very slow. However, if the
switching time of the SLM were reduced to 0.01 usec, the
32-digit SD multiplication time would be reduced to 5 nsec,
which is 100 times faster than today’s fastest electronic
multipliers of the same word length.

Consider the optical implementation shown in Fig.9,
the time required to perform one'iteration of the SD di-
vision consists of the time needed : (1) to generate the
multiplicative factor m; ; and (2) to produce the next nu-
merator and denominator X;41,Y;y;. This time is then
multiplied by the logarithm of the fraction length to ob-
tain the total SD division time Tj;,:

(1) . (@
Tdt'o = (4Tp + Tactt’u + Tadd + Tf + Tmult + Tf’ X log2 n(22)

Substituting Togs and Ty in Eq.22 with Eq.18 and Eq.20
respectively, we obtain Ty & Tuctiv log, n(5+3log, n). An
important feature of the SD division algorithm is that sev-
eral dividends can be divided simultaneously by the same
divisor. This is due to the fact that the multiply factors
and the convergence rate depend only on the magnitude of
the divisor. An n-digit SD division requires 4 X (n x 2n)
pixels to hold the accumulated numerators or denomina-
tors (assuming that we are truncating the intermediate
products by n digits after each iteration). Therefore, for
an optical gate array of I x I resolution and 7 switching
time, we estimate the number of SD division per second
as:

Ix1
" 4% (nx2n) x 7 x log,n(5 + 3log; n)

04

(23)

For a resolution ! X | = 500 x 500 and a switching time
7 = 0.01usec, the time needed for a 32-digit SD division
would be 1/0,4 which is around 30 nsec, a rather impressive
figure that no existing electronic divider can achieve.

In Fig.10a, we plotted the optical addition, multiplica-
tion and division times against a wide range of the optical
clock rate (or the inverse of the optical switching time 7).
The speedup of the optical arithmetic operations over their
electronic counterparts is plotted in Fig.10b. We fixed the
resolution of the optical gate arrays to I x! = 500 x 500, and
the precision n = 32 SD digits. For the speedup curves, we
used 20 nsec, 500 nsec, and 2 psec for 32-bit electronic ad-
dition, multiplication and division, based on current elec-
tronic technology [19,3]. Both scales are in logarithm with
base 10.

Compute time (nsec)
o = Addition time
103t * = Multiplication time
o = Division time
10?
10 T
1+
107!
1072 ¢
1073 ¢
1074 T
107 >1/7
10Mhz 100Mhz 1Ghz 10Ghz 100Ghz
Fig.10a Optical compute time as a function

of the clock rate (1/7)

Speedup o = Speedup for addition

* = Speedup for multiplication
1074\ o= Sgeedug for division

106 S
10°
104 L
10% ¢

10% ¢

10
yr

100Ghz

t t

100Mhz 1Ghz 10Ghz

10Mhz

Fig.10b Potential speedup of optical over
electronic arithmetic computations.

7 Conclusions

The SD representation allows parallel addition to be
performed in constant time. The execution times of the
proposed SD multiplication and SD division algorithms are
both proportional to log, n, where n is the length of the
multiplier and of the divisor. We have presented the op-
tical setups to achieve 2-D optical symbolic substitution.
The carry-free nature of SD arithmetic matches well with
the space-invariant property of optical symbolic substitu-
tion.

We have introduced two new sets of SS rules for im-
plementing SD arithmetic in optics. The optical imple-
mentations are based on available optical hardware. We
have assessed the performance of optical arithmetic based
on the state-of-the-art optical and electro-optical technolo-
gies. We conclude that the speedup over electronic coun-
terparts is rather limited due to the slow switching time of
today’s 2-D spatial light modulators.

If the switching time of the optical gate arrays were re-
duced to nanosecond range, we could perform 32-digit op-
tical addition, multiplication and division with a speedup
ranging from O(10%) to O(10%) over existing electronic coun-
terparts as shown in Fig.10b. Therefore, the potential
of building future supercomputers with optical arithmetic
units looks very promising and encouraging. The algo-
rithms developed in this paper are meant to prepare com-
puter designers for the new challenges brought over by op-
tical technology.

Acknowledgments

This research was supported by an ONR Contract No.
N14-86-k-559 and in part by a grant AFOSR-86-8

References

[1] A. Avizienis, “Signed-digit number representations
for fast parallel arithmetic,” Trans. Elect. Computers,
vol. EC-10, pp. 389-398, 1961.

[2] B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patter-
son, and W. J. Miceli, “Photonic computing using the
modified signed-digit number representation,” Optical

Engineering, vol. 25, pp. 038 — 043, Jan. 1986.

[3] K. Hwang, Computer Arithmetic : Principles, Archi-
tecture, and Design. John Wiley & Sons, New York,

1979.

S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and
D. M. Powers, “The IBM system/360 model 91, float-
ing point execution unit,” IBM J. Res. and Develop.,
vol. 11, pp. 34 — 53, Jan. 1967.

(4]

[5] A. Huang, “Architectural considerations involved in
the design of an optical digital computer,” Proceedings

of the IEEE, vol. T2, pp. 780 — 787, July 1984.

[6] A. A. Sawchuk and T. C. Stand, “Digital optical com-
puting,” Proceedings of the IEEE, vol. 72, pp. 758~
779, July 1984.

[7] A. Huang, “Parallel algorithms for optical digital
computers,” in Proceedings IEEE Tenth Int’l. Opti-

cal Computing Conf., 1983.

[8] K. H. Brenner, A. Huang, and N. Streibl, “Digital op-
tical computing with symbolic substitution,” Applied

Optics, vol. 25, 15 Sept 1986.

Y. Li, G. Eichmann, R. Dorsinville, and R. R. Alfano,
“An AND operation-based optical symbolic substitu-
tion,” Optics Communications, vol. 63, pp. 375-379,
15 September 1987.

(o]

[10] A. Louri and K. Hwang, “A bit-plane architecture
for optical computing with two-dimensional symbolic
substitution,” In Proc. of the 15th Int’l. Symp. on
Computer Architecture, Honalulu, Hawaii, May 30 -
June 2, 1988. (An extended version has been submit-

ted for Journal publication).

64

[11] P. A. Ramamoorthy and S. Anthony, “Optical modi-
fied signed-digit adder using polarization-coded sym-
bolic substitution,” Optical Engineering, vol. 26,
no. 18, Aug. 1987.

[12] Y. Li and G. Eichmann, “Conditional symbolic mod-

ified signed-digit arithmetic using optical content-

addressable memory logic elements,” Applied Optics,
vol. 26, no. 12, 15 June 1987. -

[13] K. Hwang and A. Louri, “New symbolic substitution

algorithms for optical arithmetic using signed-digit

representation,” Proc. Soc. Photo-Opt. Instr. Eng.

(SPIE), vol. 880, January 1988, (A significantly ex-

tended version has been submitted for Journal pub-

lication under the title ”Parallel Optical Arithmetic

Using 2-D Symbolic substitution).

[14] A. Huang, Y. Tsunoda, J. W. Goodman, and S. Ishi-

hara, “Optical computation using residue arithmetic,”

Applied Optics, vol. 18, no. 2, 15 Jan. 1979.

[15] J. E. Robertson, “A new class of division methods,”

IRE Trans. Electronic Computers, vol. EC-7, pp. 218

— 222, Sept. 1958.

[16] M. J. Flynn, “On division by functional iteration,”

IEEE Transactions on Computers, vol. C-19, no. 8,

pp. 702 - 706, Aug. 1970.

[17] E. V. Krishnamurthy, “On optimal iterative schemes

for high-speed division,” IEEFE Transactions on Com-

puters, vol. C-19, no. 3, pp. 227 - 231, March 1970.

[18] A. D. Fisher and J. N. Lee, “Current status of two-
dimensional spatial light modulators,” In Proc. SPIE,
optical and Hybrid Computing, vol. 634, pp. 352 — 372,
1986.

[19] K. Hwang, “Advanced parallel processing with su-
percomputer architectures,” Proceedings of the IEEE,

vol. OC- 75, pp. 1348 — 1379, Oct. 1987.

AN ANALYSIS OF PARALLEL LOGIC SIMULATION
ON SEVERAL ARCHITECTURES
Steven P. Smith, Bill Underwood & Joe Newman

Microelectronics and Computer Technology Corporation
Computer Aided Design Program
3500 West Balcones Center Drive
Austin, Texas 78759

ABSTRACT

Due to its tendency towards large and unpredictable
amounts of interprocessor communication, parallel
logic simulation places enormous demands on the
performance of both individual processor elements
and interprocessor communications. To explore the
relative importance of processor and communications
speed and to compare the merits of different architec-
tures for this application, results are offered from the
simulation of a number of test circuits on models of
five parallel architectures. Three different schemes
are used to partition the circuit representations across
processors, and both 4 and 16 processor
configurations are considered for each architecture.
The relative cost of device evaluation and signal com-
munication is also varied. The five architectures
examined are: a parallel processor with a single inter-
processor communications bus, a ring of processors, a
simple processor array with nearest-neighbor connec-
tions, a hypercube, and a processor array with
crossbar communications. The results are compared
both to the single processor case and to the ideal
parallel case, and they indicate that the performance
potential of parallel event driven logic simulation at
this level is questionable.

INTRODUCTION

The march towards ever larger and faster computer
systems has continually outpaced the rate of advances in the
computer aided design (CAD) tools used to develop them.
Nevertheless, CAD tool developers struggle to keep up by
employing combinations of three basic tactics. The first tactic
seeks to reduce the size of the problem, either through hierarchi-
cal modeling of computer systems or by considering only small
portions of the design at a time. The second tactic centers on
the discovery of more efficient algorithms. And the third tactic
involves the exploitation of parallel architectures.

Approaches to parallel logic simulation can generally
be divided into two categories. Those in the first category pur-
sue speed gains by breaking the algorithm into pieces that are
then executed on separate processors. Although parallel logic
simulators of this variety have been successfully implemented in
hardware," their performance potential would appear to be too
severely restricted by the limited parallelism inherent in tradi-
tional simulation algorithms to be of lasting interest.
Approaches in the second category attempt to leverage the paral-
lelism evident in the behavior of real circuits by partitioning the
circuit representation being simulated among several processors.

At first blush, it seems reasonable to speculate that
the performance of parallel logic simulators based on circuit par-
titioning need not degrade markedly as the size of circuit
representations increases. Two factors invalidate this specula-
tion. First is the fact that in traditional event driven logic simu-

65

lators, it is necessary to maintain the same simulation time
across all processors, requiring all processors to complete their
work at a given time unit before any may proceed to the next
time at which there is activity. The second factor is the time
expense incurred by communicating signal values for devices
modeled on one processor needed as input to devices on another
Pprocessor.

The goal was to explore the potential of parallel logic
simulation based on circuit partitioning in light of these con-
siderations. To aid in comparative analysis, an instrumented
event driven simulator was employed to model performance for
five different parallel architectures using a set of 11 test circuits.
The five architectures examined were: a parallel processor with
a single interprocessor communications bus, a ring of processors,
a simple processor array with nearest-neighbor connections, a
hypercube, and a processor array with crossbar communications.
Three circuit partitioning algorithms were tried in each case to
examine the sensitivity of simulator performance to this task.
And finally, four different sets of device evaluation time to sig-
nal transmission time ratios were used to determine the relative
performance criticality of these parameters.

PARALLEL LOGIC SIMULATION

In this section, we define the parallel logic simulation
algorithm to be used in the analysis below. As mentioned ear-
lier, parallel techniques can generally be divided into those that
distribute the algorithm among several processors and those that
distribute the data. The limitations on useful decomposition of
the basic logic simulation algorithm renders approaches in the
first category unworkable for large scale parallelism. Therefore,
the discussion at hand will be restricted to approaches that distri-
bute the circuit representation among processors.

Circuit models used in logic simulators are typically
composed of structure instances that represent individual device
occurrences with electrical connectivity indicated via pointers
from structure to structure. This representation is split among
processors for parallel logic simulation using one of the parti-
tioning algorithms presented in the following section. Once
every device structure (and hence every device model) is
assigned to a processor, the circuit representation is loaded onto
the appropriate element. Devices that drive inputs not found on
the same processor are tagged so that when their outputs change,
sink devices on other processors can be notified of the change
via a signal change message.

Assuming a standard one-pass simulation algorithm, it
is possible to develop simple equations for determining perfor-
mance. For simulation on a single processor, the time for a
simulation run is given by

sim_passes

Y €ValSpass, * Loval.
=

Lsim = (1)
Ignoring the negligible synchronization overhead, the general
equation for simulation on a machine with multiple processor
elements (PEs) is given by

sim_passes

tain= X, MAX MAX{I:M,-"'I*chtml;‘.}], @

i=1

where the maximum communications time is architecture depen-
dent and will be discussed in due course, and the maximum
evaluations time at each pass is equal to the product of the-larg-
est evaluation count found on the processors and the time per
evaluation. In qualitative terms, Equation 2 states that the time
per simulation pass is equal to the maximum time required by
any of the individual processors and that this time is determined
by the maximum of the communication and evaluation times.
And, of course, the total simulation time is equal to the sum of
the times spent on all of the passes. The single evaluation time
added to the communications time simply indicates that, if the
time consumed by a given processor is dominated by communi-
cation then after the last signal for the current pass has been
received, a final evaluation must be performed to complete the
pass. Note that for our analysis, all evaluations are assumed to
take the same amount of time. This assumption is valid for most
hardware implementations using simple look-up tables for
evaluations,” and is a reasonable approximation in general. With
these equations, we can calculate the speed-up of parallel logic
simulation directly from

..
speed—up = ——.
psim
Eque'ion 2 will be elaborated for each of the five architecture
models presented below to account for the effect of the different
architectures on communications performance.

3

CIRCUIT PARTITIONING

The goal of circuit partitioning is to assign devices to
processors in a manner which maximizes the resultant simulation
speed-up. As shown in Equation 2, this speed-up is dependent
upon message transmission time and gate evaluation time. The
optimal partition will produce the minimum number of messages
as well as an even distribution of evaluations at each processor
for each simulation pass, however finding such a partition is a
dramatically more expensive process than the simulation task
itself. Therefore, two heuristics are used that have been shown
to produce satisfactory results for a variety of circuits:” input
cone and output cone partitioning. These schemes involve plac-
ing occurrences into the circuit block to which they have the
greatest attraction, that is, the block that contains the greatest
number of occurrences in their input or output cone. In addition
to the two heuristic schemes, random assignment partitioning is
also included as a baseline. Since signal activity tends to be
clustered for many circuits, this method offers the potential for
relatively high degrees of processing concurrency. However, the
advantage is frequently offset by large numbers of message
transfers.

Clearly, the success of any given partitioning scheme
is dependent on the relative weighting of communication and
evaluation costs. Since partitioning by cones seeks to minimize
interprocessor communications by grouping connected devices
on the same block, the performance of these approaches hinges
on the assumption that communications costs dominate simula-
tion time.

THE PARALLEL ARCHITECTURES

In this section, we describe the five architectures
modeled in our analysis. To aid in relative comparisons, the
same performance assumptions are made in each case. To wit, it
is assumed that direct point-to-point signal change messages
require a constant amount of time, and that processors do not
buffer these messages. This assumption implies that a message
being sent through a single intermediary processor will require
one message time unit on the originating processor, two units on
the intermediary processor, and one unit on the destination pro-
CesSOor.

66

Processor elements are assumed to be identical gen-
eral purpose machines capable of performing both the device
evaluation and local time-management tasks. The time con-
sumed during a device evaluation is assumed to be constant and
includes scheduling overhead so-that in the absence of any mes-
sage traffic, the time per simulation pass on a processor simply
equals the product of the evaluation count during the pass and
the time per evaluation.

Finally, it is assumed that none of the architectures
possess any global memory. The local memory on each proces-
sor element contains both a unique portion of the circuit being
simulated and the simulation time management structures
required during simulation. Devices that drive signals on other
processors are tagged with the data needed to route the informa-
tion to its destination.

The data presented below were gathered from a
heavily instrumented event driven logic simulator operating on
test circuits partitioned during preprocessing. Partition blocks
were assigned to processor elements randomly. Message traffic
figures obtained from the simulations are exact and represent a
complete picture of the expected interprocessor communications
load for the 11 test cases used in our analysis. In taking this
approach, it has proven remarkably easy to model new architec-
tures and to focus on the considerations currently of greatest
interest, namely, the effects of processor count and interconnec-
tion architectures.

Single Bus Architecture

A bus supports the transmission of only one message
at a time, but arbitration is assumed to occur in parallel and is
therefore not considered in overall simulation time. From Equa-
tion 2 it is clear that the time consumed by a processor per simu-
lation pass is roughly equal to the greater of the communications
time and the evaluation time. The evaluation time per processor
is independent of the interconnection architecture in use, but the
communications time per processor is highly dependent on this
factor. For the single bus architecture, the communications time
per pass is given by

COM bpass i e s = ’é:‘mgsmi*tcm + ¥ty 4
which states simply that, since all messages are transmitted via
the same channel, the communications time is determined by the
total count of interprocessor messages. As mentioned earlier, the
single evaluation time is added to account for the work required
after the last signal change message is received. For the single
bus architecture, the maximum and average path for messages is

equal to one, but this one channel is likely to be very busy.

Ring Architecture

For our ring model, we assumed unidirectional mes-
sage flow. Assuming that each message flows in a clockwise
direction until its destination processor is encountered, and
assuming that messages are not buffered, the communications
time per simulation pass is

COM lpass, = A{gX {src msgspg +dest msgspeHaa2*via ”ngSpEl,"‘}\ (&)

and the total time per pass is again the greater of this value and
the largest of the individual evaluation times. The assumption
that messages going through intermediary processors consume
two message time units is rather pessimistic, but is made to
maintain consistency with the other models. If there are N pro-
cessor elements, then

message pathugey = M—1 6)

and

message path,, = L. @
T2

The average path assumes a random distribution of message
traffic. For 4 processors, the longest path visits 3 processor ele-
ments and the average path visits 2, and for 16 processors, the
longest path is 15 and the average path is 8.

Array Architecture

A simple array architecture has up to four nearest-
neighbor connections per processor element. In the model, there
are frequently multiple paths for a message from a given source
element to its destination, so two approaches were used for
selecting paths under these circumstances. In the first approach,
the route was selected randomly; and in the second, the link at
each step with the lowest cumulative message traffic was always
chosen. The relative worth of these approaches will be dis-
cussed along with the rest of the results in the following section.
The communications time per processor element for each simula-
tion pass is the same as that for the ring and is given in Equa-
tion 5.

A square array of M elements will have a longest path
for interprocessor communications of

message pathp, = 2% [‘fﬁ—l] ®)
and an average path of
message patha, = \/ﬁ*% &)

For the 4 processor case, the longest path is 2 and the average
path is 1.33. For 16 processors, these values become 6 and
2.67, respectively.

Hypercube Architecture

A hypercube architecture with eight processor ele-
ments has dimensionality of k=log;m)=3. The most common
scheme for routing messages in hypercube architectures uses a
fixed routing scheme based on the difference between the bit
encoded destination processor identifier and the current location
of the message.” However, to maintain comparable communica-
tions schemes, the approach for message routing used in the
array model is also employed for hypercubes. The results are
roughly equivalent to fixed routing for the random routing case,
and better than fixed for the balanced case. Each processor ele-
ment in a hypercube of dimensionality & has k interprocessor
communications paths. A hypercube with n elements will have a
longest communications path of

message pathyg = logy(n) (10)
and, if k is the dimensionality, an average path of
v
g€ pathy,, = > (11

For the 4 processor case, the cube collapses to an array. For the
16 processor case, the longest path is 4 and the average path is
2.13.

Crossbar Architecture

A crossbar switch architecture contains point to point
connections from each processor to every other processor. In
this case, the communications time consumed per processor in
each simulation pass is given by

oM bpass = I\%KSX {src msgspg+dest msgspg+1 *tm,} (12)

RESULTS AND ANALYSIS

This section presents results for parallel logic simula-
tion on the five models described above. 11 test cases were run
for each model using thre¢ partitioning schemes and four
different assumptions about the relative cost of interprocessor
message transfers and device evaluations. The first circuit was a

67

simple ALU bit-slice; the rest were obtained from the 1985
International Symposium on Circuits and Systems.

The four evaluation to communication cost ratios used
were 1t00,3t01,1to1,and 1to 3. A ratio of 3 to 1 implies
that a single evaluation is assumed to require three times the
time required to complete a single message transmission between
two processors. The 1 to O ratio is intended to model an ideal
situation, i.e., a system that can transmit messages instantane-
ously.

Table 1 lists average ideal concurrency figures for 4
and 16 processor systems using all three partitioning schemes.
Each entry indicates the attainable speed-up using the applicable
partitioning approach and processor count if messages could be
sent in zero time. As such, these data address how well the
three partitioning schemes evenly distribute evaluation work
among processors. A concurrency figure equal to the number of
processors could occur only if the same number of evaluations
are performed on each processor during every simulation pass.
The average figure of 3.471 for random partitioning into 4
blocks represents a peak processor usage efficiency of 87%. For
the 16 processor case, the efficiency drops to 66% for random
partitioning.

Although the random partitioning exhibits clearly
superior evaluation concurrency behavior, its appeal diminishes
greatly when message transmissions are weighed into the figures.
Tables 2 and 3 show the performance improvement of the other
two partitioning schemes as the message transmission time is
weighed in more heavily. In qualitative terms, it is not surpris-
ing that cone partitioning schemes generate fewer interprocessor
messages; their entire goal is to group signals with the devices
they drive.

The results also indicate that, even for as few as 4
processors, it is quite possible to actually slow down a logic
simulator by implementing it in parallel. Regardless of how the
circuit is partitioned, if an evaluation takes one third the time of
a message transfer, parallel simulation on the bus or ring archi-
tectures will on average result in a speed-up of less than unity
(i.e., an overall decrease in performance). For a "hardwired"
simulation engine with evaluation routines based on high speed
table lookups, ratios of this order are not at all unlikely. For
output cone partitioning, if message transfers are three times as
fast as evaluations, the resultant speed-up of approximately 3
implies that 75% of the ideal result is achieved.

The crossbar interconnection results shown in Table 2
illustrate the attraction of the architecture where feasible. How-
ever, if interconnect usage efficiency is considered, then the
results are less impressive. A 50% increase in processor links
over the array architecture yields average performance improve-
ments of less than 20% in all cases.

Table 3 presents results for the test cases executed
using 16 processor models. For the bus and ring architectures
with a 1 to 3 ratio, concurrencies of less than zero are produced.
The array and hypercube results show that for higher processor
counts, the message routing scheme has a greater influence on
performance than was the case for 4 processors.

It is interesting to note that, for the case in which
message transfers are assumed to consume three evaluation
times, only 71% of the test runs resulted in a performance
increase over the single processor case. Also worthy of mention
is the modest size of performance increases from the 4 to 16
processor systems for each of the architectures. Four times as
many processors increased the average performance of the single
bus architecture by at most 80%. For the ring, the larger system
improved the speed-up by only 62%. A 400% increase in pro-
cessor elements brought about up to a 162% increase in overall
speed for the array. The hypercube achieved a 190% overall
speed-up for the 16 processor system relative to the smaller

configuration. Finally, the crossbar managed a 199% increase in
going from 4 to 16 processors. Of course, these figures are all
the more disappointing in light of the significant increase in
interconnect hardware which accompanies the expansion of these
systems (excepting the single bus system) from 4 to 16 proces-
sors.

CONCLUSIONS

We have compiled detailed modeling data for event
driven parallel logic simulation on five architectures varying both
circuit partitioning schemes and processor and interconnect per-
formance. The results indicate that performance is extremely
sensitive to both the partitioning scheme and the interprocessor
communications speed. These two factors are obviously related:
when the average device evaluation time dominates message
transmission time, random partitioning produces the best results.
But, as the relative cost of message transfers rises, the two cone
based partitioning schemes which seek to minimize message
traffic surpass random partitioning. This seems to imply that
simulation algorithms such as fault simulation and high level
simulation that can exploit this relationship show significant
potential for parallel applications.

At the same time, the results are not really very
encouraging. In order for the 16 processor crossbar architecture
to gain a factor of 10 performance advantage over a single pro-
cessor, it was necessary to add 15 processors and 120 intercon-
nection links. If a more likely cost ratio of unity is used, the
speed-up is halved. Obviously, these results do not bode well
for parallel logic simulation of gate level design representations.

This work has led us to focus on a search for simula-
tion algorithms better suited for parallel processing. For exam-
ple, if simulation were carried out at a higher level so that the
time cost of evaluations could be substantially increased relative
to communications costs, results much closer to the ideal con-
currency figures of Table 2 might be possible. Other areas of
interest in ongoing work include configuration heuristics for
parallel simulation. Which partitioning scheme is most appropri-
ate for a given circuit? What number of processor elements will
yield the briefest simulation time?

REFERENCES

1. Barto, R. and S. Szygenda, "A Computer Architecture for
Digital Logic Simulation," Electronic Engineering, Sep-
tember, 1980, pp. 35-66.

2. Brglez, F., P. Pownall, and R. Hum, "Accelerated ATPG and
Fault Grading Via Testability Analysis," Proceedings of the
International Symposium on Circuits and Systems, 1985.

3. Heath, M., "The Hypercube: A Tutorial Overview," Hyper-
cube Multiprocessors 1986, Siam, Philadelphia, 1986, pp. 7-
10.

4. Pfister, G., "The Yorktown Simulation Engine: Introduc-
tion," Proceedings of the 19" Design Automation Confer-
ence, June, 1982, pp. 51-54.

5. Smith, S. P., Underwood, B., and M. R. Mercer, "An
Analysis of Several Approaches to Circuit Partitioning for
Parallel Logic Simulation," Proceedings of the 1987 Interna-
tional Conference on Computer Design, October, 1987, pp.
664-667.

6. Smith, S. P., Wood, B., Little, J. and P. Hunter, "Proteus-1:
A General Accelerator for CAD," Proceedings of the 1987

Fall Joint Computer Conference, November, 1987, pp. 512-
519.

68

Table 1
Average ldeal Ci and Message T issions for Different F ing Sch
DEPENDENT INPUT CONE OUTPUT CONE RANDOM
MEASURE n=4 | n=16 n=4d n=16 | n=4 | n=16
TDEAL CONCURRENCY 2576 7.708 3.123 8.604 3471 10.543
MESSAGE TRANSMISSIONS || 27607 40056 25553 38403 | 116367 | 128704
Table 2
Average Concurrency Figures for 4 Node Architectures
INPUT CONE OUTPUT CONE - RANDOM
ARCHITECTURE
31 1:1 1:3 31 11 L2 31 11 i3
SINGLE BUS 2574_| 1987 | 0905 | 2987 | 1813 | 0.870 [2909 | 1.0G3 | 0337
RING 2560 | 1.832 | 0744 | 2.784 | 1568 | 0.718 | 2.570 | 0.876 | 02%
ARRAY* 2575 | 2.195 | 1.087 | 3.011 | 2.074 | 1.026 | 3.285 | 1.317 | 0443
ARRAY** 2576 | 2313 | 1191 | 3.035 | 2201 | 1.116 | 3363 [1424 | 0480
CROSSBAR 2576 | 2462 | 1310 | 3.040 | 2337 | 1312 | 3465 | 1.764 | 0.588
* Random message routing
** Balanced message routing
Table 3
Average Concurrency Figures for 16 Node Architectures
INPUT CONE OUTPUT CONE RANDOM
ARCHITECTURE
31 L1 1:3 31 1:1 1:3 31 11 1:3
SINGLE BUS 4651 | 1916 | 0654 | 4009 | 1.793 | 0.65: | 2512 | O.BSS | 0.287
RING 4151 [1534 | 0518 | 3.285 | 1406 | 0501 | 2.265 | 0.775 | 0.257
ARRAY* 583 [2786 | 0980 | 5070 [2475 [0942 | 4.0i7 | 1362 | 0465
ARRAY** 6807 | 3473 | 125 | 6117 | 3.092 | 1.224 | 5173 | 1.793 | 0.606
HYPERCUBE* [7.113 | 3847 | 1431 | 6571 | 3408 | 1.401 | 6471 | 2261 | 0.766
HYPERCUBE** |[7492 | 4563 | 1.858 | 7436 | 4.108 | 1.799 | 7.588 | 3.06¢ | 0.916
CROSSBAR 7695 | 5798 | 2372 | 7978 | 4813 | 2128 | 10106 | 4700 | 1.566

* Random message routing
** Balanced message routing

Semantics of a Parallel Computation Model and its Applications

in Digital Hardware Design

Zebo Peng

Department of Computer and Information Science
Link6éping University

S-581 83 Linkdping,

Abstract

This paper describes a parallel computation model based on a
data/control flow notation which consists of separate but related
sub-models of data path and control. The data path is formulated
as a directed graph. The control structure, on the other hand, is
modelled as a Petri net. This model is used for specification and
synthesis of digital hardware with a high degree of concurrency and
parallelism. The semantics of the proposed model is defined in
terms of its interactions with the environment. That is, two pieces
of hardware are considered to be semantically equivalent if they
interact with an environment in the same way. This allows
manipulation of the internal structure of the hardwares to improve
performance as well as reduce cost. A set of transformations for the
model which preserve its semantics is presented. A sequence of such
transformations can be used to move a design from an abstract
description to a final implementation.

1. Introduction

One approach to the design of complex digital hardware for VLSI
implementation is to use top-down synthesis technique. A synthesis
approach starts the design with an abstract specification and refines
it step by step towards a physical implementation by adding details
[6]. Automated synthesis of parallel systems requires a parallel
computation model to support the description of the system being
designed. Such a computation model must be able to express the
existence of multiple hardware resources for data storage,
computation, and communication. At the same time, it must be

able to represent the existence of multiple control flows and

synchronization schemes.

This paper describes a parallel computation model in which a data
path is used to represent the available hardware resources for data
manipulation. The organization of this set of hardware resources to
perform the prescribed computation is defined as a control structure
which specifies the partial ordering of the given operations. Those
operations which are not ordered, i.e., do not dependent on each
other, can be carried out in parallel by physically distributed
hardware resources. The control structure is formulated as a Petri
net in the proposed model.

One important task of a hardware synthesis process is to perform
design optimization. As such, there must be as much freedom as
possible to alter parts of the control as well as data path in ways
that do not change the behavior of the given system. For this
possible, we must be able to characterize the behaviors of a system
and define precisely the concept of equivalent systems. The
semantics of the proposed model is defined in terms of its
interactions with the environment. That is, only the external events
are relevant to the semantics of the system. In this way, the
internal structure of the digital system can be change without
changing its semantics. The system’s interaction with its
environment is in turn defined based on two factors. First the
functional relationship between each output variable and its
relevant input variables must be the same; secondly the temporal
relationship between input/output operations should not be

This work was supported in part by the Swedish National Board for
Technical Development (STU).

69

Sweden

different. This definition differs from other approaches which
consider only the input/output functional relation in terms of the
values being exchange between a system and its environment.

Most of other parallel system models have concentrated only on the
synchronization aspect, or the partial ordering of communications,
of parallel systems [5], [2]. For example, a Petri nets could be used
to represent event/condition system where a partial ordering of the
occurrence of events is specified but the contain of the events are
ignored [5]. CCS (a Calculus for Communicating Systems) defined
by Milner [2], on the other hand, models the occurrence of
potentially concurrent events as a shuffle (interleaving) of those
events; i.e., the events can occur in either order. As such, it has the
composition explosion problem. That is when several agents are
composed together, the possible number of behaviors are of the
exponential order of the number of agents. Consequently the
complexity of the behavioral expressions is also increase
exponentially. Further, the computational aspects are also
abstracted away in CCS. Our model, on the other hand, model both
the computations and their synchronizations, which are necessary
for synthesis of hardware systems.

Another description model for hardware synthesis which also used
external events to characterize semantics of a system has been
proposed by McFarland [1]. However, it uses regular expression to
formulate the event structures. Consequently it is difficult to deal
with concurrent event structures. We are more interested in
synthesis of algorithms (finally implemented as hardware) which are
expressed as partially ordered events. ’

2. Definition of the Computation Model

The proposed computation model is based on the concepts of data
flow and control flow. The data flow part is modelled as a data
path, which represent the existence of multiple hardware resources
to perform different operations. The control flow, on the other
hand, dictates the partial ordering of these operations. In a parallel
computation, there exist more than one control signal streams
which move on with their own paces and synchronize with each
other only when necessary. The partial ordering relationship
between different set of operations is modelled by a Petri net
notation.

Definition 2.1: A data path, D, over an algebraic structure is a
five-tuple, D = (V, I, O, A, B),
where V = {Vi,Ve,...,Vn} is a finite set of vertices each of which
represents a data manipulation node;
I=1I(Vi) U I(Ve) U..UI(Va) with I(V5) = the set of input
ports associated with vertex Vj;
O = O(Vz) U O(Ve) U ..U O(Vn) with O(V;) = the set of
output ports associated with vertex Vj; }
P = TU O is the set of ports; it is assumed that IN O = @.
ACOXxI= { (0) I) l o€ O(W)) IEI(VJ): ij=12,..n} is
a finite set of arcs each of which represents a connection from an

output port of a vertex to an input port of another vertex or the
same vertex;

B : O — OP, is a mapping from output ports to operations.
OP = {OP1, OPg, ..., OPm} is a set of operations which define

the functional relation between an output port of a vertex and
its input ports. The set of operations are divided into the
sequential set SEQ and the combinatorial set COM.

Intuitively, a data path is a directed graph with each node having
possibly multiple input ports and output ports. The nodes are used
to model data manipulation units, for example data storages,
arithmetic operators, or communication channels. The arcs are used
to model the connections of these data manipulation units.

Therefore, the above definition is concerned mainly with the
structure rather than the function of the data path. How the data
path is used to perform computation is not explicitly defined. We
assume that there exists an implicit interpretation of the underlying
algebraic structure which supports the computation rules. Such an
algebraic structure should consist of a domain of values for
constants and variables, an assignment of values to the constants
and a function definition for each operator. This algebraic structure
is not considered here as it does not directly affect the basic
formulation of the model. Further, to define the semantics of the
system independent of any particular interpretation makes it
possible to cope with different implementation environments.
However, we assume that some modules exist in a module library
which can perform the defined operations of the data path.

The notion of ports here is used as a basic abstraction of the
input/output behavior of a data manipulation unit and thus
separates the implementation of the operation associated with the
vertices from the specification. The operation of the vertices are
defined only by the relation between the output ports and the input
ports. It is assumed that the output port will present a value which
has the given relationship with the values present in the input
ports.

Definition 2.2: A data/control flow system, T, is a seven-tuple,
r=(D,STFC,G, M)

where D = (V, I, O, A, R) is a data path;

S = {51, S, ..., Sn} is a finite set of S-elements, or control states
(places);

T = {T1, Te, ..., Tm} is a finite set of T-elements, or transitions;

F C (S x T) U(T x 8) is a binary relation, the flow relation.

C:S8S— 2'A is a mapping from control states to sets of arcs of
the given data path; an arc Ai is controlled by a control state Si
if Ai € C(S3).

G:0 — 2T is a mapping from output ports of data path
vertices to sets of transitions; a transition 7V is guarded by
output port Oj if Ti € G(0j).

Mo:S — { 0,1} is an initial marking function.

The definition of the data/control flow model is based on the
marked Petri net notation. The Petri net S-elements are used to
capture the control state concept. When a control state holds a
token, a control signal will be generated to control the
corresponding arcs in the data path specified by the control
mapping function C. As there could be more than one control state
which holds tokens, there exist multiple control signals in the
systems. Further, the flow of these control signals (the temporal
relation between signals) is defined by a partial ordering structure,
which is captured by the flow relation F. To express the control
flow being affected by the results of some internal computation, we
must be able to use conditional signals (as results of some
computation) to affect the control flow. For this purpose, the
guarding condition concept is introduced into the Petri net
notation; a transition may be guarded by a condition produced from
the data path represented as the output port of some vertices.

Definition 2.8: For a data/control flow system I' = (D, S, T, F,
C, G, Mo):

1. X = SUT is the set of control structure elements.

70

2. F* = {F" | n» € N" }, where F° = identity and F* = Fo
F"* for n € N" | is the transitive closure of F.

3. Si=> Siiff (85 5) € F'; «=(=)"

4, « = =>U<. Si and S are said to be in sequential order if
Six Sj.

5. || = (Sx 8 \ x). Si and Sj are said to be in parallel order if
St Sj.

The data path consists of two kinds of elements, the nodes together
with their ports representing the data manipulation units and the
arcs representing the connection between those units. Each arc is
controlled by, or said to be associated with, some control signals
coming from the control Petri net. We can also associate the data
manipulation units with the control signals by the following
definition.

Definition 2.4: Vk is said to be associated with Sy if
3o, 5) € A[(1€ X(VE)) N ({03) € C(S))) |

By this definition, only the input ports of a vertex are significant
for the associative relation. The output ports are irrelevant here
because an output port can send data to more than one place at a
time without resulting in conflicts. A single input port, on the other
hand, cannot receive signals simultaneously from more than one
resource.

The set of vertices and arcs associated with a control state S forms
a subgraph of the data path graph. This graph is called the
associated graph of S.

Definition 2.5: The arcs and vertices associated with control state
Si, denoted by ASS(Si), are said to be active under Si.

Intuitively, the arcs representing the data paths (e.g., a bus) are
open, i.e., allow signal to pass, when their associated control signals
are on; the associated data manipulation units, on the other hand,
will perform predefined operations.

Before we go to the formal definition of the concepts of semantics
and semantic equivalence, let us look at some simple examples.
Under the above formulation, a simple adder with two input ports
and one output port can be modelled as a vertex Vi with I(Vi1) =
{Pi1, Pig}, O(V1) = {Po1}. A register can be modelled as a vertex
Ve with I(Ve) = {Pis} and O(Ve) = {Poe}. A data path which
connects the output of the adder to the register can be modelled as
an arc A1 = (Po1, Pis), which states that the output port of the Vi
component is connected to the input port of Ve.

If the output of the adder is only fed into the register when control
state S1 is on, then A1 € C(Sz) and {Ve, A1} C ASS(S1). Note
that Vi need not necessarily be associated with Si1; if, for example,
the adder has a local accumulator, a series of additions can be
performed and finally the sum be fed into register Ve when Sz is on.
When the sum is being sent to Ve, Vi can continue with another
addition associated with, e.g., Se without conflict.

3. Semantics of the Model

We now turn our attention to the definition of the semantics of the
proposed computation model. The basic idea is that we can
characterize the semantics of a system by the external events, i.e.,
its interactions with the outside world. An external event is either a
read or write operation of the externally accessible ports. The
semantics of a hardware system is defined as a set of events
observed in its external ports.

Before formally giving the definition of semantics of the
computation model, we have to define the behaviors of the system
which is in turn based on the execution rules of the control Petri
net and its interaction with the data path.

Definition 3.1: Given a data/control system I' = (D, S, T, F, C,
G, Mo), its behavior is defined as below:

1. A function M: S8— N is called a markingof T (N = {0, 1,
2, ... }). A marking is an assignment of tokens to the
S-elements.

2. Initially there is a token in each of the initial control states,
or the set of S-elements S: such that Mo(Si) = 1 as defined by
the initial marking Mo.

3. A transition T is enabled at a marking M iff for every S such
that (S, T) € F,M(S) 2> 1; that is, all the T-elements’ input
control states have at least one token.

4. A transition T may be fired when it is enabled and the guard
condition is true (i.e., the output port which guards T has a
TRUE value). If a transition has more than one guard
condition, an OR operation is applied to them; therefore, if
any guard condition is true, the transition’s guard condition
as a whole is true.

5. Firing an enabled transition T removes a token from each of
its input control states and deposits a token in each of its
output control states.

6. If no token exists in any of the control states, the execution is
terminated.

7. V(P) is the data value present at port P.

8. When a control state, S, holds a token, its associated arcs in
the data path will open for data to flow; i.e., the data value
presents at the input port, I, is equal to the corresponding
output port, O, which is denoted as V(1) 45 VY(0).

9. For every vertex V, Y(0) := OP(V(1(V))), where OP € B(0).
The assignment operator, :=, means that if OP is sequential
it takes the last defined value of the expression; otherwise it
takes the present value of the expression.

i

10. If all the pending arcs of an input port are not active, its
value is undefined. If the operation of an output port is not a
sequential one and the output port depends on an undefined
input value, its value is also undefined.

The possible existence of an undefined value and the intrinsic
non-deterministic properties of the Petri net firing sequence
together result in difficulties in determining the behavior of a
system. We would like to exclude the nondeterministic properties
by the following definition.

Definition 8.2: A data/control flow system T = (D, S, T, F, C,
G, M) is properly designed if:

1. ASS(S) n ASS(S) = @, if S || 8.

2. There should not be more than one token appearing at the
same control state; that is, the Petri net must be safe.

3. If (S, T1) €F, (S, Ts) € F, T1€ G(Pos), and T2€ G(Pos),
then V(Po1) AND VY(Pog) = FALSE. That is, the Petri net

must be conflict-free.

4. The subgraph that belongs to a control state should not
include a combinatorial loop.

5. VSi €S ASS(Si) must include at least one sequential
vertex.

This definition singles out those data/control flow systems which
are safe, conflict-free and well-behaved. From now on we only
consider properly designed systems.

Definition 3.8: For a data path D = (V, I, O, A, R), there is a
set of exzternal vertices, Ve, which only have either one single input
port (the set of output vertices, Vo) or one single output port (the
set of input vertices, Vi). The set of ports of the external vertices
Ve are called ezsternal ports. The set of arcs, Ae, which connect to
the external ports, are called ezternal arcs.

Definition 3.4: A esternal event is a pair (As, vi), with Ai being an

external arc and v a value passed over the arc. A external event is
controlled by, or labelled with, the Petri net control state that is

71

associated with the arc. That is, the external event happens at the
time when the associated control state has a token.

Definition 8.5: Given a data/control flow system I' = (D, S, T,
F, C, G, Mo), its ezternal event structure is defined as §(T') = (E,
<, X) where

E = {F1, E, ..., En} is a set of external events;

< C(E x E) is a binary relation, the precedent relation. E:i <
E; with Ei = (Ai, v) and Ej = (Aj, v), iff Ei occurs before Ej
and Si = Sj, where Ai € C(S:) and A; € C(S));

X C (E x E) is a binary relation, the concurrent relation. Ei X
E; with Ei = (Ai, v) and Ej = (4;, v), iff Ei and Ej occurs at
the same time and Ai € C(S), 4; € C(S).

An external event structure specifies all the possible external events
of a system as well as the temporal relationship between them. If
two external events are in'the precedent (concurrent) relation, they
must always occur in the specified order (simultaneously). On the
other hand, if two events are not in either of the two relations, they
can occur in any order and are said to be in a casual relation. In a
distributed system with a set of modules, for example, the temporal
relations between some of the external events of two different
modules can best be expressed as having a casual relation. Trying
to force a total ordering on events of different modules will simply
introduce unnecessary constraints and make it difficult to
implement the system.

In the above discussion, we assume that when an external event
occurs whose operation is to obtain a value from the outside world,
the environment will supply a value of the appropriate type to the
system. We also assume that a sequence of such values is implicitly
predefined for each input vertex, when an external event structure
is specified.

Definition 3.6: The semantics of a data/control flow system T,
denoted also by §(T'), is defined by its external event structure.

4. Semantics Equivalence

Two systems are considered to be semantically equivalent if they
behave identically with respect to the corresponding external ports;
their internal behavior does not matter.

Definition 4.1: Two data/control flow systems T and T’ are
semantically equivalent, denoted by I' = T'”, if §(T') = §(T’).

For the purpose of synthesis, however, the above semantic
equivalence relation is still too weak. In general, it is undecidable
whether two systems are equivalent to each other by this definition.
It is very difficult, or simply impossible in some cases, to analyze a
data/control flow system and obtain the complete external event
structure as specified by definition 3.5. We have thus to introduce a
stronger equivalence relation which requires every data dependence
operation to be carried out in exactly the same order. This latter
requirement is stronger than necessary. For example, two addition
operations can be carried out in reverse order without changing the
outcome of the computation. This strong definition, however,
greatly reduces the complexity of the synthesis process and still
provides enough room for the optimization algorithm to make large
changes in the described system.

Definition 4.2: The domain of a control state S, denoted as
dom(S), is defined as the set of vertices that have some output port
connected to an arc controlled by S. The codomain of S, denoted as
cod(S8), is defined as the set of vertices which have some input port
connected to an arc controlled by S. The operations performed on a
control state S are the set of operations defined on the output ports
of its codomain. The subset of vertices of the codomain of S that
consists of some sequential output ports is called the result set of S
and denoted as R(S).

Definition 4.3: Si and S; are directly data dependent, denoted as
Si «+ Sj, if one of the following is true:
(a) R(S:) Nndom(S;) # B.

(b) R(S) Nndom(S:) # @.

() R(S)NR(S) # 3.

(d) Si and S; are in a control dependence relation; i.e., M{Si)
depends on a subset of R(S;) or vice versa.

(e) C(S:) and C(S;) both contain some external arcs.

Definition 4.4: The transitive closure of ++, denoted by ¢, ie., ¢
= &% is called a data dependence relation.

The data dependence relation is defined as the relationship between
the operations which will contribute "data” to each other; in other
words, two operations are data dependent if they must be executed
in the predefined order in order to retain the semantic integrity of
the prescribed computation. Those sets of control signals which are
not in a data dependence relation, however, can be arranged in any
order without changing the semantics of the system.

Definition 4.5: Given T = (D, S, T, F, C, G, Mo) and '’ = (D,
S, T, F’, C, G, Mo), T and I'’ are data-invariantly equivalent to
each other, iff

for every Si=> Sjand Si¢ S5inT' (S:€ S, S5 €8),

we have Si=>’ Sjand Si¢’ SjinT'";
and vice versa.

\

The above definition ensures that two operations are performed in
parallel only if they are data independent and all of the data
dependent operations in the two systems are performed exactly in
the same order. Therefore the data-invariant equivalence relation
satisfies the semantic equivalence relation. This means that we can
reconstruct the control structure (without changing the data path)
of a hardware system to improve system performance, for example,
by carrying out as much operations in parallel as possible.

Theorem 4.1: The data-invariant equivalence relation satisfies the
semantic equivalence relation.

Proof 4.1: see the appendiz.

Definition 4.6: Given T = (D, S, T, F, C, G, Mo) with D = (V,
1,0O,A,B)and T’ = (D", S, T, F, C, G’, Mo) with D’ = (V*,
I’,0°, A°, B°), T and T’ are control-invariantly equivalent to
each other, iff ' is the result of a vertez merger of Viinto Vjof T,
both Vi and V; have the same operational definition and port
structure, and their associated control states are in sequential order.
The result of a vertex merger is defined as:

V' =V.-{vi}.

I’ =1-{1(Vy)}.

0’ =1-{0(V)}.

A’ is the same as A except that each (0O, I} with Oi € O(Vi) is

replaced by (0j, I) with O;€ O(V;) and each (O, L) with

L € I(Vi) replaced by (O, Ij) with I € I(V;).

G’ is the same as G except that each T € G(0x) is substituted

by T € G(0y).

The intrinsic property of a merger operation is to share hardware
resources by operations so as to improve the implementation in
terms of cost. For example two addition operations can be
implemented with the same adder by merging the two addition
vertices together. By merging communication channels together we
can also create structure components like buses in the
implementation.

As a merger is only performed when the two vertices have their
associated control states in sequential order, they will not attempt
to use the vertex at the same time. As such the two sets of
operations can share the same operator safely. Because the two
vertices to be merged also have the same operational definition and
port structure, the merger will not change the computational aspect
of the given system.

Theorem 4.2: The control-invariant equivalence relation satisfies
the semantic equivalence relation.

Proof 4.2: see the appendiz.

72

5. Hardware Synthesis

This section discusses briefly the application of the proposed
parallel computation model in a hardware synthesis environment.
For a detailed description of the synthesis algorithms and
comparisons to other related works, please see [3] and [4].

To synthesize hardware from some algorithmic description of its
behavior, we first transform the description into the data/control
flow notation. Based on such a formal description, some formal
analysis techniques can first be used to check whether the systems
are properly designed before the synthesis process starts [4].

The major part of the synthesis process is carried out by a sequence
of control-invariant and data-invariant transformations as defined
in the previous section. Since both transformations do not change
the semantics of the system, they can freely be applied to transform
a design to satisfy certain given criteria. For example, adding one
more control flow path in the Petri net and possibly additional data
manipulation units in the data path will allow more operation units
to operate at the same time, thus increasing the parallelism of the
computation.

The synthesis algorithm starts with a preliminary design and
transforms it step by step towards an optimal one. As from each
step there are usually several ways to go, it is necessary to have
some strategy to guide the transformation process. A critical path
analysis technique is used for this purpose. The set of trans-
formation, analysis, and optimization algorithms has been designed
and implemented in the CAMAD design aid system (3], [4].

6. Conclusions

We have given the formal definition of a data/control flow model
for parallel computation and its semantic equivalence notation. The
concept of semantic equivalence is defined based on two criteria.
First the functional relationship between each output variable and
its relevant input variables must be the same; secondly the
temporal relationship between input/output operations should also
be the same.

Unlike other computation models used mainly for descriptive and
analysis purposes, the proposed model addresses issues of design
directly and allows graphical representations of the structures as
well as behaviors of hardware system. To apply this model for
hardware synthesis, we have introduced two basic transformations
which change the internal structure of the hardware but keep the
data dependency operations in the predefined order. The
requirement that all data dependency operations be carried out in
the predefined order is actually stronger than necessary. For
example, two addition operations can be carried out in a reversed
order without changing the outcome of the computation. It,
however, greatly reduces the complexity of the synthesis process.
The use of such a formal computation model to represent the design
of parallel hardware has led to the efficient use of CAD and
automatic tools in the synthesis process.

Appendix

Proof 4.1: Let T = (D,S, T, F,C, G, Mo), I’ = (D, S, T’,
F’,C, G, Mo), and T and T'* are data-invariant equivalent to each
other, ie., for every Si=> Sjand Si¢ S;in T (Si€ S, S;€S), we
have Si=>’ S5 and S:<¢’ Sjin I'’; and vice versa. We will show
that the external event structure of I' and that of I'* are the same.

Suppose that a sequence of external events, (As, viz), (Ai, vig), (A,
vis), ..., are observed in arc A: which is associated with control state
S in system I'. As the data path of system I'* is the same as that of
T, Ai should also be present in I'* as an external arc and controlled
by Sin I'".

For the values exchanged over Ai, we have two situations:

(1) If A:i is connected to an input vertex, the function of the
external events is ‘to input data from the environment. The
values passéd over the arc are then provided by the
environment. As we assume that the sequence of such values

provided for each input vertex is fixed when we check the
semantic equivalence relation between different systems, the
same sequence of external events will be observed in system
I

(2) If Ai is connected to an output vertex, the function of the
external events is to output data to the environment. The
values passed over Ai are, therefore, determined by the
computation performed by the systems.

Let Ai = (O, I), and when M(S) = 1, an external event (A4, vi)
occurs with vi = V(O) (definition 3.4). If O€ O(V) and V'is an
input vertex (i.e., A¢ connects an input vertex directly to an
output vertex), VY(O) depends again on the environment.
Therefore, both systems exchange the same values at Au.

If O€ O(V) and V is not an input vertex, we have V(0) :=
OP(V(I(V))), where OPE€ B(O); and V(L) 4S: V(Oj) for each L
€ I(V) (definition 3.1). As VE dom(S) and VE R(S:) (we have
assumed that V is a sequential vertex, without loss of
generality), we have S Si and, therefore, Si = S. Since both
systems have the same data path and Si = S in both
situations, the values exchanged at Ai should be the same
provided that each V(0s) for the corresponding systems is the
same.

To show that V(0i) is the same for T and I'’, we can use the
same proof process as above. This recursive procedure will also
converge to the situation where V is an input vertex. At that
time the same argument as from (1) can be applied again.
Therefore, the the same sequence of external events will be
observed in A: of both system I' and T'".

From (1) and (2), it is clear that the sequence of external events
observed at Ai of I'” is exactly the same as that of T' in any
situation. As Ai can be any arbitrary external arc, this means that
the sequence of external events which occur at every ezternal arc is
the same for both systems.

As T and T’ have the same number of corresponding external arcs,
it follows from the above result that the complete sets of external
events for both systems are the same.

Next let us look at the partial relation between the external events
of the two systems. Suppose that Bv < FEj with Ei = (As, v) and E5
= (Aj, v) in T'. That is, Ei occurs before Ej and Si = Sj, where Ai
€ C(Si) and A; € C(S)). By definition, we have Si =’ S; in I'’,
where Ai € C(Si) and A5 € C(S5), because Si ¢ Sj (thus Si ¢*).

Assuming Ej occurs before Ei in I'*, then we must have S5 = Si in
both T’ and T. That is, Si and S; are in a loop situation.
Consequently, there exists a total ordering between the external
events associated with these two control states, and it should be the
same in both T' and I'’. Thus the assumption that Ej occurs before
Eiin IT'’ is a contradiction. Therefore we have also Ei occurs before
Ejin T’. That is,Ei < Ejis alsoin T'".

Finally, we show that the concurrent relations of both systems are
also the same as follows.

If Ei = (As, v) and Ej = (Aj, v) occur at the same time and Ai €
C(9), A5 € C(8) in T, then we should have Ai € C(S), A; € C(S)
in I'’, because the control mapping C is the same for both systems.
Consequently, Fi and Ej should also occur at the same time in IT'’
as they are associated with the same control state. Therefore, both
system have the same concurrent relation.

Since both system I' and T'" have the same external event set, the
same precedent relation, and the same concurrent relation, §(T') =
S(I'’). That is, they are semantically equivalent to each other.

Proof 4.2: Let I and T'’ be control-invariant equivalent to each
other. That is, (a) I'* is resulted from a vertez merger of Viinto Vj
of T, (b) both Vi and Vj have the same operational definition and
port structure, and (c) their associated control states are in
sequential order.

73

Assume that the merger of Vi and Vj changes the semantics of the
system. That is, §(T) # $(T'’), or (E, <, X) # (B, <*, X').
Because the control structures of both systems are the same, the
temporal relationship between any two control states remain the
same for both systems.

As the number of arcs also remains the same after the merger
operation and they are controlled by the same control states, the
number of external events and their temporal relation remain the
same for both systems. That is, the precedent relation and
concurrent relation of both systems are the same. Therefore, the
only. possible difference between the two external event structures is
that some of the external events have different values.

For the external events that occur at an arc connected to an input
vertex, the same argument of Proof 4.1(1) can be used to prove that
both T' and T’ have the same values passed in these external
events.

For the external arcs that are connected to an output port, let A =
(0, I) with I€ I(Ve) and Ve€ Vo; { (4, vi1), (A, vig), (4, vis), ... }
C E and occur in the listing order in I'; and { (A4, viz), (4, vwe), (4,
v8), ... } € E’ and occur in the listing order in I'*.

Let also (A, vik) and (A, vk) occur when M(S) = 1in T and T’
respectively. We have vik = Y(0) in T and vk = V(0) in I'".

IfO € O(V) and V is an input vertex in T, we have alsoO € O(V)
and V as an input vertex in I'’. Since in both cases Y(0) depends
on the environment, vk = vsk.

IfO € O(V), Vis not an input vertex, and V # Vi, we have
YV(0) := OP(V(I(V))), where OP€ B(0) both in T' and T’. By
definition 3.1, V(&) 1S V(Oi) for each L € I(V). As both system
have Si = S (see Proof 4.1), vik = vk, provided that each V(0 for
both systems is the same.

IfO € O(V), Vis not an input vertex, and V= Viin T, we have
Y(0) := OP(V(I(V¥))), where OP€ B(0) in T and Y(0) =
OP(V(I(V3))), where OP € B(O) in T'’. Since (a) both Vi and Vj
have the same operational definition and port structure; (b) V(I)
48:i V(0i) for each k € I(Vi) in T with V(L) -S: V(0s) for each i €
I(Vj) in T'’; and (c) both systems have Si = S; we have vik = wjk,
provided that each V(Os) for both systems is the same.

To show that VY(O:) is the same for I' and T'* in the above two
cases, we can use the same proof process again. The recursive
procedure will also converge to the situation where V is an input
vertex; then the same argument as from Proof 4.1(1) can be
applied. Therefore, the same sequence of external events will be
observed in A of both T and T'’.

This result contradicts the assumption that some corresponding
events of I' and I'” are different. That is, the assumption must be
false. Therefore, T' = I'".

References

(1] McFarland, Mickeal C. and Parker, Alice C., An Abstract
Model of Behavior for Hardware Descriptions, IEEE Trans. on
Computers, Vol.32, No.7, 1983, pp.621-637

[2] Milner, R., A Calculus for Communicating Systems, Lecture
Note in Computer Science, No. 92, 1980

[8] Peng, Z., Synthesis of VLSI Systems with the CAMAD Design
Atd, Proc. 23rd ACM/IEEE Design Automation Conf., 1986,
Pp.278-284

[4] Peng, Z., A Formal Methodology for Automated Synthesis of
VLSI Systems, Ph.D. Dissertation, Dept. of Computer and
Information Science, Linkdping University, No. 170, 1987

[5] Peterson, J., Petri Net Theory and the Modeling of Systems,
Prentice-hall, 1981

[6] Thomas, D., Hitchcock, C., Kowalski, T., Rajan, J., and
Walker, R., Automatic Data Path Synthesis, Computer, IEEE,
1983, pp.59-70

An Asynchronous Distributed Approach for the Simulation of
Behavior-Level Models on Parallel Processors

Sumit Ghosh

Meng-Lin Yu

AT&T Bell Laboratories Research
Holmdel, NJ 07733.

Abstract

This paper presents an asynchronous distributed approach for the
simulation of behavior-level models representing complex digital and
VLSI components on a parallel processor. The underlying architec-
ture is a set of concurrent processors that share data through explicit
messages such as a hypercube [1]. The approach is implemented on
the Bell Labs hypercube [2] that consists of 64 concurrent processors
connected by a network of point-to-point communication channels in
the plan of a binary 6-cube and provides a protocol-based operating
system. A complex design is first partitioned and the behavior-level
models corresponding to the components of each partition are assigned
to a processor. A model determines, based on the input signal tran-
sitions at the input ports, whether it may be scheduled for execution
and, consequently, scheduling is distributed in the models. However,
within each processor, only one behavior model may execute at any
time instant. During execution of a behavior description, the signal
transitions at an output port may be determined based on the signal
values at all input ports defined up to t = ¢; such that every input
signal is is defined up to t = ¢;. In addition, the assertion of a signal

transition at an output port is deferred until the model description
may determine with certainty that no future input signals may prove

it inconsistent and require its deletion [3,4]. The behavior of digital
and VLSI components including complex timing are expressed through

the language constructs of C++ [5].

1 Introduction

The discipline of synchronous distributed simulation of digital designs
at the logic level on parallel processors has been addressed by the
Yorktown Simulation Engine [6], IBM Los Gatos Logic Simulation
Machine [7], and ZYCAD [8]. The subject of asynchronous distributed
simulation with a focus on queuing networks has been addressed in the
recent past by Misra [9], Chandy [10], Lamport [11] and Peacock [12].
The Daisy Megalogician [13] and ULTIMATE [14] machines address
the issues of parallelizing a simulation algorithm.

Behavior models of complex digital and VLSI devices are flexible
and provide a competitive means of system simulation [15] and results
of simulation are more comprehensive to the high-level architects as
opposed to the gate-level simulation results. Consequently, the impor-
tance of distributed simulation of such models on parallel processors is
obvious. The difference between this approach and the one proposed

by Misra [9] may be expressed as follows.

. Accurate representation of components’ behavior including tim-
ing in the models require the representation of the unique high-to-low
(tpni) and low-to-high (t,4;) propagation delays for every component.
For an input signal transition at t = ¢;, the “predictability” condition

[9] would imply the generation of an output transition at t-= ¢ + tpm

74

or t =t + tpin depending on the nature of the transition and its asser-
tion at the output port. The predictability condition is an important
aspect of the approach proposed by Misra [9]. Such an assertion may
cause incorrect simulation results as an input signal transition at a fu-

ture time t = ¢, ({2 > t;) may, under certain circumstances, generate a
new output transition that requires the previous output transition to

be discarded [3,4]. The cause of such potentially unreliable simulation
results may be attributed to the anticipatory semantics of the behav-
ior description language and event driven simulation. In the approach
presented in this paper, the behavior description first determines with
certainty that an output transition may not be discarded and then
asserts it at the output port. In contrast to Chandy’s [10] proposal
of simulating to a deadlock and then recovering from it, the approach

presented here may be characterized by an absence of deadlocks.

2 Asynchronous Distributed Simulation on Parallel
Processors
An asynchronous distributed approach for the simulation of behavior

models on a special parallel processor architecture - hypercube, is pre-
sented in this section. The potential advantage of this approach over
conventional sequential simulation on an uniprocessor is faster speed.
Execution of digital or VLSI hardware may be characterized by ex-
change of signals between the component modules that is constituted
by a sequence of signal transitions. A transition may be character-
ized by a logical value and assertion time. In conventional simulation,
the ordering of the signal transitions or events for correct results is
achieved through a global entity - time, and centralized control. In
this approach, the ordering is guaranteed by a sequence of messages
between the models and their proper interpretation and usage by each
of the behavior models. In this paper a message represents a signal
transition. The overall philosophy may be expressed as follows. Each
and every behavior model correctly interprets messages at the input
ports, determines the output signal transition based on the input sig-
nals, and asserts only correct output assignments at the output port
through messages. Consequently, for a given set of external signals
at the primary input ports, correct simulation results are guaranteed.

In addition, explicit identification of the clock lines are not required
and as transitions corresponding to every signal including clocks may

be expressed through messages and the oﬁtput determined by the be-
havior description in a model solely based on the input transitions,
synchronous and asynchronous including self-timed designs may be
simulated in this approach.

First a given digital or VLSI design is partitioned into 63 or less
partitions corresponding to 63 processors and processor 0 is dedicated
to the task of asserting the external signal transitions at the primary
input ports of the design. For a modest-size design with less than 63
behavior models, each processor may be allocated a model for simula-

tion.

The task of scheduling behavior models for execution is distributed
in them and a model schedules itself when it determines that necessary
conditions, described subsequently, have been satisfied at the input
ports. Given n input ports Ii,...,I, of a component C and signal
transitions at the ports defined up to t = ¢, ..., t = t,, respectively, the
corresponding model may execute and determine the signal transition
at the output port that is based on the input signals defined up to
t = t; where t; is the minimum of {¢y, ..., ,}. Assuming a value
“d” for the propagation delay of the component, the output signal
transition may be defined at t = t; + d but its assertion is deferred
because of the possibility that a future input transition defined at
t > t, may cause an output transition that is inconsistent with the
previously generated transition at t = ¢, + d and require its deletion.
An output transition that is defined at t < ¢, and was generated
corresponding to a previous execution of the model may not be affected
by any future input transition defined at t > ¢, and the behavior model
may, with certainty, assert the transition at the output port. This
principle is referred to as the deferred assertion of output assignments.
The issue of generation, detection, and deletion of inconsistent output
assignments is detailed in [3,4] and is not presented here.

Consider the simulation of a circuit shown in Figure 1. Although
a simple circuit is chosen for simplicity of explanation, the distributed
approach applies equally to complex behavior models. The output
ports of components A and B are connected to the inputs of the two-
input AND gate C and the signal transitions generated by each of A
and B between t = 0 and t = 30 are shown in Figure 1. Assuming
models A and B are allocated arbitrarily to processors 2 and 3, A and
B are executed asynchronously and, as a result, the real time during
simulation at which the signal transitions are propagated from A to C
and B to C may not relate to each other. The individual transitions
fromAtoC—-mny: 0att=0,n,: 1att =10, nz: 0 at t = 20, and ny:
1 at t = 30 where t represents the simulation time are guaranteed to
be asserted in order that is represented in logical time [11] as shown
in Figure 2a. Figure 2b represents a similar ordering of the transitions
fromBtoC-my: latt=0,my: Oatt=20,and m3: 1 at t =
30 in logical time. For the purpose of explanation, assume that the
ordering of the transitions in real time is represented by Figure 3. The
correctness of the distributed approach is invariant to the ordering of
the events in real time given that the logical ordering specified in each
of the Figures 2a and 2b is preserved. In Figure 3, assume m;y, ny, na,
ng, ma, ma, and ny are asserted at C at real times T = s;, T = s,,
T =53, T = 54, T = 85, T = 86, and T = s7 respectively, where T
represents the progress of real time during simulation on the parallel

processor.

Corresponding to the assertion of an input transition at T = sy,
C is unable to schedule for execution as the signal transition at port
2 is yet to be specified for t = 0 where t represents the progress of
simulation time and corresponds to the hardware execution. At T =
s2, C schedules itself for execution and an output transition y: 0 at
t=20 + 5 = 5 is determined. Given that the previous value of the

output was 0, /; does not imply any new information and is ignored.

75

Corresponding to each of ns and n3 at T = s3 and T = s4 respectively,
the behavior description of C is not executed as the signal transition
at port 2 has not been asserted beyond t = 0. At T = s5, signal
transitions have been specified at t = 20 at both ports 1 and 2 and C
is scheduled for execution. Output transitions lp: 1 at t = 10 + 16 =
26 and I3: 0 at t = 20 + 5 = 25 are generated but I is observed to
be inconsistent with I3 and consequently discarded. Assertion of the
output transition l3: 0 at t = 25 is deferred as the transitions at the
input port of C are defined at t = 20 and the model is yet unable to
conclude with certainty that I3 may not be discarded in the future. At
T = sg, transition mg is asserted at an input port of C but the input
signal at port 1 is yet undefined beyond t = 20. Consequently neither
C may be executed nor any decision regarding I3 be finalized. At T
= s7, input signals at ports 1 and 2 are both defined at t = 30 and
given that I3 has not yet been shown inconsistent and 30 > 25, it may
be asserted, with certainty, at the output port of C and consequently
propagated to other components that are connected to the output
port of C. In addition, the behavior description of C is executed and
an output assignment l4: 1 at t = 30 4+ 16 = 46 is determined and
stored within the model.

3 Blocking and Deadlock

The number of active gates during gate-level simulation has generally
been observed to be between 5% and 20% and may be assumed to hold
true for behavior level simulation. Such a low activity may cause the
following scenario during asynchronous distributed simulation. For
example, in Figure 1 assume component A executes a number of times
due to signal transitions at its input ports between t = Ons and t =
1000ns (say) and asserts a number of transitions at port 1 of C. Also
assume B executes infrequently due to a limited set of transitions at
its input port between t = Ons and t = 1000ns with the consequence
that only one transition at t = 2ns (say) is asserted at port 2 of C. The
value of the signal at port 2 remains essentially unchanged between
t =
t

being component B. In addition, other components, if any, that are

2ns and t =1000ns. Consequently, C may not execute beyond

2ns and this situation constitutes blocking [12] with the source

connected to the output port of C either directly or indirectly will

be blocked implying a possibility of very low overall activity during
simulation.

Blocking does not correspond to a physical process in hardware ex-
ecution and its cause may be explained as follows. Event driven simu-
lation with selective trace requires, for efficiency, that only changes in
the logical value of a signal be propagated. Consequently, the value of
the signal between two consecutive transitions e; and e, is identical
to the value indicated in e; in an uniprocessor environment. Such an
assumption is dangerous in the distributed asynchronous simulation
on a parallel processor as a message to the input port of a component
may be delayed due to asynchrony and the behavior model may erro-
neously interpret the absence of message to imply “no change” in the
logical value at that port. Consequently, a component must execute
based on signals at input ports at t = ¢; such that transitions have

been asserted at all input ports at t > ¢;. Such a mechanism as well as

the principle of deferred assertion of output assignments may increase

the possibility of occurrence of blocking.

In the event that blocking occurs during simulation of a design, it is
first detected in the following manner. When the number of input as-
signments at an input port of a component that have not yet been used
to generate output events exceed a threshold, the component raises an
exception. As a consequence of the exception, the execution mode of
every processor is set to “exception-mode”. The execution mode of the
processors is reset from exception-mode when the cause of blocking is
removed i.e., the number of outstanding input assignments at the in-
put port of the component falls below the threshold. The actual value
of the threshold is empirically determined and it influences the rel-
ative durations of normal- and exception-modes during a simulation.
The characteristics of the exception-mode may be expressed as follows.
Signal values are asserted at all input ports of components including
the primary input ports even when the logical values are unchanged

from their previous values. In addition, when a model is executed at t
= 11, either a previously generated correct signal transition that was

not yet asserted at the output port is propagated to the output or the
most recent logical value at the output is asserted at t = ¢; plus the
minimum of the high-to-low and low-to-high propagation delays of the
component.

Assume that the components A and B in Figure 1 are executed on
processor I of a parallel processor system while model C is executed on
another processor II of the system. Assume further that a significant
number of signal transitions are asserted at the input ports of A and
that the signals at the input ports of B are virtually unchanged in their
logical values. Consequently, A is executed frequently and B is exe-
cuted very infrequently and very few output transitions are asserted at
the input port 2 of C. The model C is unable to execute in the absence
of signal transitions at the input port 2 and the number of outstanding
input entries at the input port 1 of C may exceed the threshold. Con-
sequently, C raises an exception and the execution modes of all the
processors is set to exception-mode. In this mode, signal transitions
are asserted at the input ports of B even though they are unchanged
in their logical values. Consequently, B is executed more frequently
and a modest number of output transitions are asserted at the port
2 of C. The model C is executed and the outstanding entries at the
port 1 are utilized to generate output assignments and the cause of
blocking is removed.

The possibility of deadlocks during asynchronous distributed simu-
lation of designs with feedback loops and their resolution is addressed
in the remainder of this section. Consider simulation of a simple latch
shown in Figure 4.

Assume the presence of signal transitions defined between t = Ons
and t = 1000ns at the input ports 1 and k of components A and B
respectively. Neither A nor B may execute as explained subsequently.
A may schedule itself for execution when transitions are propagated
to its input port R from the output of B following execution of B.
However, B may not schedule itself for execution until A has executed
and asserted transitions at its input ports. Conséquently, a deadlock

is achieved. This paper presents an approach that ensures absence

76

of deadlocks and implements the principle of deferred scheduling for
correctness of the results. A somewhat similar approach has been

proposed by Peacock [12].

Every component on a feedback arc is identified and the behav-
ior descriptions corresponding to such components are modified to
perform the following action. Given that ¢, and t,;; values are as-
sociated with every component, execution of a behavior model at t =
t; may generate an output transition at t = t; + fps ort =t +
tpni depending on the nature of the transition. Where tp1n < tpn and
the assertion time of the output transition is given by t = t; + a1,
the transition is stored within the body of the model and its assertion
deferred until a later time. Instead, a timestamp with the assertion
time given by t = t1 + ¢, is generated and propagated through the
output port as the logical value of the signal at the output port will,
with certainty, remain unchanged up to t < ¢; + tpa. Where the as-
sertion time of the output transition is given by t = t; + tp, it may
be asserted at the output port immediately as no future transitions
at the input port beyond t = ¢; may cause the output transition to
be discarded. A limitation of this approach is that the efficiency of
simulation of circuité with feedback loops may be low when the com-

ponents constituting the feedback loop are distributed over 2 or more
processors and the frequency of the signal at the non feedback port is

considerably lower as compared to the sum of the propagation delays

of the components constituting the feedback loop.

4 Analysis of Performance of the Asynchronous
Distributed Approach

The asynchronous distributed simulation approach has been imple-
mented on the Bell Labs hypercube [2] that consists of 64 concurrent
processors and provides a protocol-based operating system. The be-
havior models of VLSI and digital components are described through
the C++ [5] language constructs.

In an experiment to estimate the performance of the asynchronous
distributed approach, a typical example design - two-bit adder, is con-
sidered where the individual gates are replaced by models whose exe-
cution times may be parametrically controlled. The model execution
times are varied from 0.34ms through 3.4ms, 34ms, 170ms, and 340ms
to 3.4 sec and are based on estimates of model sizes of AM2903, Intel
8086, Motorola 6809, and the VHDL benchmarks. First, in the ex-
periment the entire design is simulated on a single processor. Then,
the circuit is partitioned into two, four, eight, and sixteen parts and
simulated with 2, 4, 8, and 16 processors. For each case, performance
data is collected by varying the number of input vectors from 100 to
1000 and the model sizes from 0.34ms to 34sec.

The graphs in Figures 5a, 5b, and 5¢ present a logarithmic plot of
the CPU time versus the input vector size for varying model sizes for
the cases of 1, 4, and 8 processors. It may be observed from the graphs
that the performance of the algorithm is linear. The graphs in Figure
6 present a logarithmic plot of the CPU time versus the model size for
varying input vector sizes for a four processor simulation. The knees of

the individual plots corresponding to the model size of 0.34ms reflect

the dominance of message communication in the hypercube over model
computation for model sizes smaller than 0.34ms and the dominance
of the model computation over communication for model sizes larger
than 0.34ms. Figure 7 presents a plot of the speedup factor versus the
number of processors for three specific pairs of model and vector sizes.
The graph corresponding to the model size of 0.34ms and vector size
100 resembles a saturation curve and refelcts the dominance of the
message communication over model computation in the hypercube.
The other two graphs are both linear indicating that the speed up
factor increases linearly with increasing number of processors and,
consequently, the performance of the proposed approach is linear. The
maximum speedup factor for the example is observed to be 12 when
the design is partitioned and simulated with 16 processors. The slope
differences of the graphs also indicate that increasing CPU time is
spent in model computation as opposed to communication and other

overhead for increasing model sizes.

5 Conclusions

This paper has presented a distributed asynchronous approach for the
simulation of behavior models on parallel processors. In this approach,
a model determines based on the input signal transitions at the input
ports whether it may be scheduled for computation and, consequently,
scheduling is distributed in all the models. In addition, the principle
of deferred scheduling ensures that inconsistent output events are de-
tected and deleted with the consequence that correct signals are gener-
ated. The approach guarantees the absence of deadlocks and resolves
blocking by temporarily forcing the execution mode of all processors
to exception-mode wherein the cause of blocking is removed. The ap-
proach has been implemented on the Bell Labs hypercube and the data
obtained from the simulation of designs indicate that the performance

of the approach is linear.

References

[1] C. Seitz, “The Cosmic Cube,” CACM, Jan 1985, pp.22-33.

[2] E. DeBenedictis, “Multiprocessor Programming with Distributed Vari-
ables,” Proc. of the Conf. on Hypercube Multiprocessor, Aug 1985.

[3] D.C. Luckham, A. Stanculescu, Y. Huh, and S.Ghosh, “The Seman-
tics of Timing Constructs in Hardware Description Languages,” Proc. of
the ICCD, Oct 1986, pp.10-14.

[4] S. Ghosh and M. Yu, “A Preemptive Scheduling Mechanism for Ac-
curate Behavioral Simulation of Digital Designs,” Accepted for publication
in the IEEE Trans on Computers.

[5] The C++ Programming Language, B. Stroustrup, Addison Wesley
1986. ’

[6] M.M. Denneau, “The Yorktown Simulation Engine,” Proc. of the
19th ACM/IEEE DA Conference, 1983, pp.55-59.

[7] J.K. Howard, etal, “Introduction to the IBM Los Gatos Logic Simu-
lation Engine,” Proc of the ICCD, Oct 1983, pp.580-583.

[8] The ZYCAD Logic Evaluator: Product Description, ZYCAD Corpo-
ration, N. Roseville, Minnesota, 1983.

[9] J. Misra, “Distributed Discrete-Event Simulation,” Computing Sur-
veys, Vol 18, No 1, March 1986, pp.39-65.

[10] K.M. Chandy, etal, “Distributed Deadlock Detection,” ACM Trans-
actions on Computer Systems, Vol 1, No 2, May 1983, pp.144-156.

[11] Leslie Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” CACM, Vol 21, No 7, 1978, pp. 559-565.

[12] J.K. Peacock, etal, “Distributed Simulation Using a Network of
Processors,” Computer Networks, Vol 3, No 1, 1979, pp.44-56.

[13] Daisy Megalogician: Product Description, Daisy Systems, Mountain
View, 1984.

. ! Acknowledgements: The authors wish to express their sincere appreciation to
Erik Debenedictis and Boris Lubachevsky of AT&T Bell Labs

71

[14] M.E. Glazier, etal, “ULTIMATE: A Hardware Logic Simulation
Engine,” Proc. of the 20th ACM/IEEE DA Conference, 1984, pp. 336-342.

[15] M. Bloom, “Behavior Models Take the Pain Out of System Simula-
tion,” Computer Design, 15 February 1987, pp. 38-46.

na 10ns 20ns 30ns time

2
B Lm Z0na 30ns time

Figure 1: AN EXAMPLE DESIGN.

B

c A c
logical
time
nl (b)
=, j m1
3 me
4 m3

Figure 2: LOGICAL ORDERING OF EVENTS IN AN ASYNCHRONOUS
DISTRIBUTED SIMULATION.

A

C B
ml

Figure 3: REAL TIME ORDERING OF EVENTS IN
AN ASYNCHRONOUS DISTRIBUTED SIMULATION

n§

Figure 4: SIMULATION OF A CIRCUIT

WITH A FEEDBACK LOOP.

log(CPU) log(CPU) log(CPU)
10000scc /
1000sec /"’% MS=340, /‘;w»/
MS=384ma MS =170

” / ® MS=3ims <)
100scc MS=38.4ms
/ MS=3.4ms
MS=0.
5=0.34ms MS=0.34ma
100 1000 100
log(vector sise)

/4‘;1,'»//

10ace T5=0.94ms

1000 100 1000
log(vector sise)

Figure 6: GRAPHS OF CPU TIME VS. VECTOR SIZE.

(a) Uniprocessor (b) Four processors (c) Eight processors

log(vector size)

log(CPU)

VS=1000
VS=1750
VS=500
V5=400
V5=300
VS=200
VS=100

lUUUDuc"

1000sec

Speed up
factor

100see
MS=340ms VS=100

10sce MS=84ms VS=100

Fims 340ms

log(model sise)

0.3§ma 4ms
s MS=3.4ms VS=100

Figure 6: GRAPHS OF CPU TIME ?

VS. MODEL SIZE FOR FOUR
PROCESSORS.

1 4 F 18

No. of processors

Figure 7. GRAPHS OF SPEED UP
VS. NUMBER OF PROCESSORS.

Operational Analysis on Hyper-Rectangulars

Teemu Kerola
Univ. of Helsinki
Teollisuuskatu 23

SF-00510 Helsinki, Finland

Hyper-rectangulars are a generalization of m-ary d-cube networks
(arbitrary radiz hypercubes), where the width of the network can be
different in each dimension. This gives them configuration flexibil-
ity advantages over their single radiz constrained subset. Hyper-
rectangulars are studied in four classes of configurations, one with
all nodes in any one dimensional line in the graph connected to the
same channel (bus), and the others with adjacent nodes connected
with dedicated links. The dedicated links may be unidirectional or
bidirectional, and the nodes can be connected linearly or as a toroid.
Given a uniform message rate from each node and uniform target-
ing to each node, simple formulae are derived for message traffic in
all cases. Simplicity of the formulae for most cases does not suffer
from the generalization to hyper-rectangular topology, and the
results are more broadly applicable. Beyond the operational
analysis, stochastic assumptions about the message rates are used to
compute overall message latencies and queue lengths within the sys-
tem. The results have been verified by stmulation.

1. Introduction

Interconnection networks are important in the design of computer
and communication systems and have been studied in great detail
over many decades. Prior to the rise of computers during the last
few decades, most of these studies centered on the telecommunica-
tions domain, with its large conglomeration of terminal equipment
and intermediate switching stations. Thus much of the early work
in this area focused on networks comprised of two node types—
terminal nodes and intermediate nodes. Messages originated at a
terminal node (the source node) and were routed to another termi-
nal node (the destination node) via the intermediate nodes. With
the rise of computers, and particularly with the contemporary focus
on parallel computing, more attention has been given to networks
that simply interconnect computing nodes without making any dis-
tinction between terminal nodes and intermediate nodes.

A computer interconnection network has an abstract representation
as a graph whose nodes are switching points and whose arcs are
communication links. Messages originate at a source node and pass
along one or more links to the destination node. If more than one
link is employed along a path between the source and destination
nodes, then intermediate nodes perform routing functions for the
messages along the way. If every node in the network can both
originate and absorb messages, as well as serve as intermediate
nodes, then we say the network is static, whereas if there are some
nodes that may only serve as intermediaries (i.e. for routing) then
we say the network is dynamic [9].

In the following we discuss a general class of static networks which
we call hyper-rectangulars; these are a direct generalization of the
more common hypercube networks.

Consider a connected graph of m? nodes with the following pro-
perties: (i) each node is designated by a d-digit radix-m number,
and (ii) there exists an arc between any two nodes whose numbers
differ by one in exactly one digit position, and which are equal in
all other digit positions. With these properties a network is called
an m-ary d-cube, or hypercube. If m =2 then it is an example of
a binary hypercube, of which there are a number of commercial
examples [2]. If d =2 or d =3 then it is typically called a two- or
a three-dimensional mesh structure.

Hypercubes are interesting because of the simple routings which are
possible (see below) and because of the range of simpler networks
which can be topologically mapped onto them [8]. For a given
number of nodes, M =m?, the optimal value for d, the hypercube
dimensionality, is a matter of debate [3]. At least one author has
proposed that lower dimensionality hypercubes, say d <5, are
preferable to higher dimension hypercubes such as the binary

78

Alfred Hartmann
MCC

P.O. Box 200195
Austin, Texas 78720-0195
hypercube. While we take no position on the matter here, we note
that it may be desirable to have some flexibility in the choice of
M, the number of network nodes, regardless of the value of d
chosen. For example if we choose d =4 and M =256, then m =4
and the very next larger value of m, m =5, would multiply the
size, and presumably the cost, of the system by over 244%, to 625
nodes. It may also be desireable, perhaps for physical packaging
reasons, to add nodes to a system on only one or a few dimensions.
For these reasons we broaden our discourse from hypercubic to
hyper-rectangular structures.

If we generalize our d-digit node designators to a mixed radix
number system, where the node positions in the ¢th dimension,
0<7<d-1, are in the range 0, ..., m; -1, so that all dimensions are
not necessarily the same width, then the resulting network is a
hyper-rectangular network. (Our generalization differs from [1].)

Routing

There are several obvious routing algorithms for m-ary d-cubes,
and most of them also apply for hyper-rectangulars. We use the
standard left-to-right routing algorithm, which solves the routing
problem one dimension at a time, starting from the lowest declared
dimension.

One could also turn this order around and do right-to-left routing,
or any fixed permutation of the dimension orders could be chosen
as long as it is consistent across all nodes. Even random selection of
a dimension is acceptable, the important factor being consistent
routing by all nodes so that the routing is uniform across the net-
work. If non-uniform routing is employed then it is possible for
expected channel message rates to be affected by non-uniformities
in the routing strategy the analysis which follows may not apply.

Notation

def
d = number of dimensions, numbered 0, 1,..., d -1

def
m; = number of nodes in dimension 7, numbered 0, 1,..., m; -1

def d-1

= []m; = total number of nodes.

i=0

A standard m-ary d-cube is a special case when m;=m /7.
Nodes are labeled according to their d-dimensional position in the
structure: .

def

wo=(ng ny,...,n), 0= n < my-L

An index n for node % is

def d-1 d-1
n=n@)= Y,m* [[mi, 0<n<M
k=0 i=k+1
and
def
A = message rate originating out from node #.

2. Assumptions

The throughput analysis below is based on the following assump-
tions. Later on we will introduce additional assumptions that are
required for computation of average queue lengths and response
times.

Assumption A: Each node sends messages to the network at the

same average rate, \:’

A\ =\ W@

Assumption B: For every message, the target node is selected

from the uniform distribution over all nodes:

Prob { node @ is target } = L
M
Message routing is done one dimension at a time,
in any order, as long as all nodes use the same
method, as discussed earlier. For example, the
standard left-to-right routing algorithm can be
used.

Assumption C:

Assumption D: The system is assumed to be in a steady state.
This implies that flow balance [4] applies at
every server (node or link), i.e., the message rate
into a server equals the message rate out of it. It

also implies that the network is not saturated.

3. End-to-end Channels

In this section we assume that all nodes on any one dimensional
line are connected to the same channel. Technically the channel
could be implemented as a bus or an ethernet, for example. For
any dimension ¢, there are now

M

mg

Mo * My .. % my_ ¥ my . *..% my_1 =

channels. The channels in dimension ¢ are named

Cik 0 S k< ﬁ"
m;
in the order of increasing smallest node index in the channel. The
set of nodes on the channel ¢;; are denoted with the same symbol,
i ; it will be clear from context whether ¢;; denotes a channel or
the nodes on it. We denote

;% = avg. message rate (over time) through ¢y, \Vk 0<k <—A-4—,

mg
Consider how the channels in dimension ¢ are used. There are M
nodes in the whole system. Each node has message origination rate
X\, and so

At — M\ = total message origination rate.

It is easy to show that if the hyper-rectangular inter-connection
network is implemented with end-to-end channels in each dimen-
sion and the assumptions A, B, and C apply, then, given any chan-
nel ¢y , in dimension 7, the message rate on it is

e = (m;-1) X Vi 0§i<d,0§k<—]\—l—.
m;
Every channel in any dimension ¢ has the same traffic density, and

the average rate (over time) through any channel in any dimension
7 is (my =)\

Node Traffic

Let @ be any node in the system. Consider the message rate into
from an arbitrary adjacent channel ¢; . The probability of a
message in c¢; arriving from some node other than 7 is
(m;~1)/m;, and the probability of such a message being targeted to

=

7 is 1/(m;—1). So the overall message rate from ¢y to @ is
mi-1 1 1

——— g ==
m; m;-1 m; "

The total message rate into @, and because of Assumption D, the
total message rate through @ is thus
d-1 d-1 m. -1
=t =0T = d[l_%] N<d
i=0 M m

i=0 i

where 7 is the harmonic mean,

79

m =
1

1y
mgo Mg -1

In an end-to-end network, the message rate on each channel is rela-
tively large, (m; ~1)\, but the node traffic rate is dependent only on
the number of dimensions in the network. For example, for m -ary
d -cubes the channel traffic is O (m), whereas the node traffic is
O (d).

4. Point-to-Point Channels

Consider now a point-to-point inter-connection network, where
adjacent nodes (node addresses differing in one dimension by one)
are connected via some type of dedicated link. Adjacent links in
the same direction are thought to compose an end-to-end channel,
which is denoted as ¢, just as in the earlier case. There are m;
nodes on that channel,

Ta; M5 0<j <m;-l,
and m; -1 links,
ey V5 1<j<m;-l,

between them. The nodes and links are numbered as shown in Fig-
ure 1.

Figure 1: Node and link indexes across an end-to-end channel

Consider any end-to-end channel, ¢y, in a hyper-rectangular net-
work. If Assumptions A, B, and C apply, then all possible paths
through c; are equally likely, each with probability

_r
m; (m;-1)

If ¢ is any channel in dimension 7 in a hyper-rectangular net-
work, and cg; is any link on it, 1<y <m;-1, and if Assumptions
A, B, and C apply, then

s 25 (m;—5)
Piya = P {cuj d ; d} = ——— 1<y <m;-1.

5|k {Ctlcj use l Cix use } m; (m;—l)) SIS myg

Now, if a hyper-rectangular inter-connection network is imple-
mented with point-to-point links, and the assumptions A, B, and C
apply, then the message rate on each link, cy;, is

M .
—, 1< <m;.
m;

Tigy = 21’[1 - }Z]"J N ik, 0<i<d, 0<k <
i

The above equation proves that, for example, the message rate on

any link in the dimension ¢ depends only on its distance from the

dimension ¢ edge in the rectangular and not on distances from

other edges of the network.

The message rate for any dimension 7 link is largest in the middle
of a channel, i.e., when the distance from the dimension ¢ edge is
the largest. If the busiest link onto dimension ¢ is denoted as
3™, then the corresponding message rate on it is

m; . .

Tik(m)/e T T A\, if m; is even

Ty = . .
t] . .

ik (m, x1)/2 = [T - 2_m_,_] N\, if m; is odd.

Node Traffic
Let # be any node. The traffic into @, ", consists of two parts:
traffic destined for %, rﬁ.dm, and traffic passing through # on its

thru

way elsewhere, "™, or

in __ . dest
4 ™= +

=

<

r T;.hru’

Slmllarly the traffic out of @,

=

n,

, consists of traffic originating at

,,°"g plus the same through traﬁic, thru 5 e,

out

ro =

ong + 7t thru

In steady state operation (Assumption D) the rates must have the
obvious balance:
def

=ry

7 "S
o

dest __
% 7

o n __ r_ﬁont

We call r, the message rate at node % .

It can be shown that if the hyper-rectangular interconnection net-
work is implemented with point-to-point (non-toroidal) links, and if
Assumptions A, B, C, and D apply, then the nodal message rate,
75, for any node % is bounded by

d-1 1 d-1
Zm—'-=>\d[1——-] <r_.<i m,-=—>121i-77i,
=0 my |=0

where #n is the previously defined harmonic mean and @ is the
arithmetic mean,
=
o= —

4 'gom; .

For low-dimension hyper-rectangulars this means r; can vary
between approximately dX and -’%"T-X, a very broad range. This
makes homogeneous nodes wasteful due to the tapering loads near
the perimeter links. This can be corrected by going to toroidal
point-to-point constructions which we consider in a moment.

For binary hypercubes, where m =2 and d =log,M, the expected
value for r, is exactly Ad /2 and all nodes are equally loaded, since
a bidirectional end-to-end channel with only two nodes on it is
equivalent to a circular (toroidal) channel organization.

If we replace each bi-directional link, c;;, in the hyper-rectangular
with two uni-directional links, ¢y; and cg;, then the link message
rates are halved,

rig= raiy= f[l——l—l Mk, 0<i<d, 0k <M 1<i<m,
my; mg

because the message rate on any link is the same in each direction.
However, the node message rates remain the same,

d-1
=) L

i=0

5. Toroids

Suppose now, that, for each dimension 7
dimension, there is an additional link from the last node (m;-1) to
the first node (0) in that row. Further assume that each link is
now unt-directional, with messages routed only in the index order
0—1— -+ —m;-1—-0. Such circular structures are generally
called toroids, and we call the ones described here as uni-
directional circular hyper-rectangulars. All the assumptions stated
before (Assumptions A, B, C, and D) still apply.

We now derive the message throughput on individual links. Select
any dimension ¢ channel ¢y, and consider the message rate
through the links, cy;, on it. The total message rate through all of
the dimension ¢ channels is .

m; -1
—M X\

mg

r‘.total —

Because of the homogeneous structure of the toroid, all channels on
dimension ¢ are equally busy, and there are M /m; channels for
dimension ¢. Thus, the total message rate on cy , i, is

, for each node row in that’

80

r."" al

M/m;

Let j be any link on ¢y .
through ¢ , and

g = X = (m-1) \.

There are m;(m;—1) different routes

mi—1+mi—24+ - +2+1

of them go through 7. So the probability that a message using c;

goes through ¢x;, Pj |,
m; -1
7 .
—g=t =
Pi I = m,-(m; —1) 2
Now, the message rate on the given link ¢;; is
my -1
ra; = e * Pjla =—5— X\

Let @ be any node on any channel ¢; in dimension 7, and let

def

j; —dimension i link leading to @, Vi 0<i <d.

The message rate through # is the sum of the message rates on all

links leading to @ :

d-1)\
e = M, = 5
=0

= Ad,_
g m;—1) = —2—(m -1).

Bi-Directional Toroids

Another possibility is to use bi-directional links to connect the
nodes in the hyper-rectangular toroid. Assumption C requires a
balanced routing algorithm. The deductions below are made based
on the assumption that, if two paths of equal lengths exist from
node @'y to node @y, then either one of them is selected with proba-
bility 1/2. If some other balanced method is selected, similar
deductions can still be made.

Let 5 be any link, between nodes @; and @, on any channel ¢, .
The message rate through it is now

(m,- —1) A if my =2,
m; .
i = |~ A if m; even, m; >2,
m,»2—1 .
if m; odd, m; >2.
4m,-

=

The message rate through any node @
rates of adjacent links,

is again half of the message

)],

Tikj
e = s

d-1 m—2
=% [ru, + (1-05 % 1™
ity adjacent =0
to @ ,
where j; is an index for a dimension ¢ link adjacent to @, and

1 if X is true,
0 otherwise.

Idx={

8. Queue Lengths and Response Times

The total hyper-rectangular network has an arrival rate of M.
We have already derived the overall message rates on individual
nodes and links. To obtain the queue lengths and response times
we need more information of the system. We need the processing
speed for every device (node, bus, or link) in the system. Also for
the analytic solution to be tractable, i.e., for the network to be

separable [7], we need two additional assumptions:
Assumption E: The system can be defined as a sequence of

events that occur at distinct times.

Assumption F: The completion rate from a server does not

depend on the load at other servers.

One additional assumption is needed for a simple solution to be
available:

Assumption G: The completion rate from a busy server must
not depend on the queue length for that

server.

We also need some new notation. Let

def
S; = average service time at device 7 per message (sec/msg).

For further analysis, we transform the message rates into wvisit
ratios, which define the average number of times that any message
routed through the system passes through a device. Given the
actual message rate, r;, through a device (here a node, bus, or a
link), and the total message rate arriving to (originating at) the
system, M X, the corresponding visit ratio at device (server) 7 is

V; =

rl . .

visits/msg).
i (visits/msg)
We can now use well known operational analysis theory for open
queueing networks ([7]) and compute the queue lengths and
response times for every device 7 in the system.
The average work demand per message for device ¢ is

D; = V;5; (sec/msg),

and the processing capacity of the system is determined by the
device with the largest demand,

Do = max D;.

The maximum system throughput, i.e., the network capacity, is

1
C = ,
D max
and thus, we must have
1 . 1
M < , le, AN ———o

to avoid saturating the network. If \>1/MD ,,,, Assumption D is
violated, the system becomes saturated, and queue lengths and
response times ‘“‘explode” to infinity.

In general, to compute the total average system response time, we
need to consider all nodes, busses, and/or links. However, node
delays can often be ignored in practice, because they are often
included in the link service times.

If two uni-directional links replaced each bi-directional link, and
the maximum message rate for the uni-directional link were half of
that for bi-directional links, then the maximum visit ratio would be
half of that before, but the average demand would be the same.
Thus, all other performance measures given above would be the
same as they were for the network with bi-directional links.

One-Dimensional End—to—End Channels

For hyper-rectangulars with end-to-end channels, the response
times and queue lengths can be expressed in a more condensed
form because

m; -1

= — forall M channels ¢;; in dimension ¢, Vi 0<¢ <d.
M m;

ik

The average total channel residence time (time spent in all

channels per average message) is

d-1 1

Rlinke
;g—;u m __1__ R
* ("l‘. —1)S link

Similarly, for each node, @,

81

d
W Mz 1_— Ml__

i =0 mg m

and the average total node residence time is

Suode d[l_Tl']
m

1-X\ Snode dll__

R_,_

R nodes Z

ko

The average total message latency is R "¢ 4 R nodes

Uni-Directional Toroids

For uni-directional toroids and for any link ¢;; on any channel cy
in dimension ¢,

_ om-l linke __ 1
Vc'.h. = and R = ‘go_____.__2 - .
(m"__l)sb'nk
For each node @
1 & d

Vo, = — —1) = —(fm-1
and

R nodes 1

1)

st g(m-1)
The average total response time is R“™* 4 Ignoring
R "f’“‘ for the moment and taking the network response time to be
RY™¢ e can get a simplified form for the case of m-ary d-cubes
(arbitrary radix hypercubes):

R nodes

m -1 d
—_
1 -1, °

g link - m2 A

We can recognize the numerator as & , the average number of link
traversals (hops) for a message in the network (3], the first term in
the denominator as C'"" | the single link capacity in messages per
second, and the second term in the denominator as r“™ | the single
link traffic rate (ry; is the same everywhere in a uni-directional

links _—
Rhypercube =

toroidal hypercube under our assumptions). Thus
Riinke h
hypercube — O"""— T“"k ’

indicating that the network response time (exclusive of node
service) in a hypercube is just the average message distance divided
by the idle link capacity (in messages per second). This result is
reported by earlier authors [5, p.272].

Note that the expression for the average number of hops (link
traversals) per message, h used above, is easily derivable as

d(m-1)
YV, =—5

ik,

def
k = E[link traversals] =

Note also that we may be justified in ignoring R™%‘ in our
analysis if the node is implemented so that traffic on all d dimen-
sions is handled in parallel within the node. The above expression
for R, assumes that a node acts as a single server device. If, in
fact, all of a node’s ports to the network operate in parallel, then
the node service time, $™% can just be treated as part of the link
service time, "% | and R™%* then becomes zero.

Bi-Directional Toroids
For bi-directional toroids and for any link cj; on any channel c
in dimension ¢,

> if m; =2,
m:
Vc,/;,' = 4]\'/[if m; even, m; >2,
miz_ .
m if m; Odd, m; >2,
1
and
-1 - mo—2
Vo =Y, [V,M *(1-05*Id™)],
i=0

where ¢;; is any link on any channel ¢ in dimension ¢. Overall
message latencies and queue lengths are then computed with the
standard formulae.

7. Conclusions

We have derived simple formulae for channel and link throughput
in end-to-end and point-to-point networks under generally applica-
ble assumptions. The analytical link and node throughputs are
summarized in Table 1.

Queueing delays within the network will slow down any individual
message, but they do not affect the message rates. Queueing
behavior cannot be anticipated with operational analysis alone; sto-
chastic assumptions are needed. For separable open networks we
have relatively simple closed form solutions for queue lengths and
response times in the system.

An important part of the analysis was the decision to include the
sending node as a possible target node, so that every node was
equally likely to receive every message. This simplified the analysis
in many places. If one rules out messages to the sending node, and
denotes the actual message rate out from each node as J, then all
the formulae given earlier apply for
M+1
A= % B.

As a special case, we can use the formulae described earlier to
derive link and node throughput for m-ary d-cubes and hypercubes.
The derived formulae are given in Tables 2 and 3. Also, the
response times and device queue lengths reduce to simpler forms
for these special cases. For example, when m; =2, the link queue
lengths and link residence times become

Glink 5 . d
— ’ d R links __ .
Q“-t 1 — Glinky an 1
S
S 1N

Remark: This paper is a shortened version of a technical report [6],
which contains proofs for all the results presented here in addition

to examples, supporting simulation results, and additional discus-
sion.

Acknowledgements: Herb Schwetman gave constructive criticism
and we also thank Bill Alexander and Bonnie Kerola for their help-
ful comments.

List of References

[1] Bhuyan, LM., D.P. Agrawal, “Generalized Hypercube and Hyperbus
Structures for a Computer Network”, IEEE Trans. on Computers, C-33, 4
(April 1984), pp. 323-333.

[2] Bond, J., “Parallel-Processing Concepts Finally Come Together in Real
Systems”, Computer Design, June 1, 1987, pp. 51-74.

[3] Dally, W.J., “Wire-Efficient VLSI Multiprocessor Communication Net-
.works”, Proc. 1987 Stanford Conf. on Advanced Research in VLSI, pp.
391-415, 1987.

[4] Denning, P.J., J.P. Buzen, “The Operational Analysis of Queueing Net-
work Models”, ACM Computing Surveys, 10, 3 (September 1978), pp. 225-
261.

82

[5] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer
communication switching technique,” Computer Networks, 3 (1979), pp.
267-286.

[6] T. Kerola and A. Hartmann, “Operational Analysis on Hyper-
Rectangulars,” MCC Technical Report PP-199-87, 22 p.

[7] Lazowska, ED., J. Zahorjan, G.S. Graham, K.C. Sevcik, Quantitative
System Performance, Prentice-Hall, New Jersey, 1984.

[8] Wu, AY., “Embedding of Tree Networks into Hypercubes”, J. of
Parallel and Distr. Comp., 2 (1985), pp. 238-249.

[9] Wu, C-1, T.-y. Feng, “Chapter 1: Introduction”, Tutorial: Intercon-
nection Networks for Parallel and Distributed Processing, pp. 1-3. IEEE
Computer Society Press, 1984.

Table 1: Hyper-Rectangular Throughput

Message rate out from each node: X\
mg-mi— * * - —my_; Hyper-Rectangular
7 is link index from edge
Connection Topology | Link Rate Node Rate
1
one-dimensional bus (m;=1) X\ [1—-:—) dX
m
. J 1
node-to-node 2511 - - X = 3 ray
m; 2 Py
adjacent
to @
m; -1 -1
uni-dir. toroid — "
2 2
m; n
i-di i — X — dX
bi-dir. toroid 7 .

Table 2: Throughput in m-ary d-cubes

Message rate out from each node: X m;=m M=m?*
Connection Topology Link Rate Node Rate
1
one-dimensional bus (m-1)x [1 - 7n—] dX
node-to-node -%'— A < dL;— N
- -1
uni-dir. toroid m-ly Ly
2 2
m m
o " m PN
bi-dir. toroid) X)

Table 3: Throughput in binary hypercubes

Message rate out from each node: A\ m;=2 M =2¢
Connection Topology Link Rate Node Rate
d
one-dimensional bus A 0 N
d
nod<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>