
<
~1 - -
~~
n m
:! ::D z
~~
~o
CD z

)>
r-
0

mo
-oe Z
ca·~
(Q ::D
"'m z

0 m
0 z

~
~ r­
r­m
r­.,,
8
m z
C)

PENN
STATE

PROCEEDINGS
OF THE

1988 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING
August 15-19, 1988

PROCEEDINGS
OF THE

1988 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING
August 15-19, 1988

Vol. I Architecture

Faye A. Briggs, Editor

Sponsored by

Department of Electrical Engineering
PENN STATE UNIVERSITY

University Park, Pennsylvania

THE PENNSYLVANIA STATE UNIVERSITY PRESS
UNIVERSITY PARK AND LONDON

The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover
and title page. They reflect the authors' opinions and are published as presented and without change in
the interests of timely dissemination: Their inclusion in this publication does not necessarily constitute
endorsement by the editors, Penn State Press, or the Institute of Electrical and Electronics Engineers,
Inc.

Library of Congress Catalog Card Number 79-640377
ISSN 0190-3918

ISBN 0-271-00654-4
IEEE Computer Society Order Number 889

IEEE Catalog Number 88CH2625-2

Copyright © 1988 The Pennsylvania State University
All rights reserved

Printed in the United States of America

Additional copies may be obtained from:
Penn State Press

215 Wagner Building
University Park, PA 16802

PREFACE

Interest in the field of parallel processing continues to climb. This trend is evidenced by the sharp increase in
papers submitted to the International Conference on Parallel Processing during recent years:

Papers Papers
Year Submitted Accepted Percent

1980 170 65 57
1983 240 136 57
1986 400 170 43
1987 487 174 36
1988 590 173 29

Although the number of submissions continues to increase, the number of accepted papers this year and in the
past two years has remained relatively unchanged. This is due to the limitation imposed by the fixed number
of hours available for the conference. As a result, a record number of papers had to be rejected. This year,
the conference proceedings is being published in three volumes according to the subject category. The
breakdown of submissions and acceptances in the three main categories of this conference is as follows:

Papers Papers
Category Submitted Accepted Percent

Architecture 264 74 28
Software 144 43 30
Algorithms and Applications 182 56 31

Of the 173 papers that were accepted, 79 were accepted as regular papers and 94 were accepted as short
papers. Many papers that normally would have been accepted as long papers were accepted as short papers in
order to meet the maximum number of paper-sessions allotted for the conference.

Finding sufficient numbers of qualified reviewers to evaluate the record number of submissions this year was a
particularly challenging task. Over 1,000 professionals in the field participated in this process. This year the
process of selecting referees was simplified by the use of questionnaires, which were mailed to previous
participants in the conference. The information on the completed questionnaires was entered into databases,
which then allowed the conference chairmen to select reviewers qualified in fairly specialized fields. Even so,
numerous papers were so highly specialized that custom selection of referees was still required. It appears
that an even more detailed breakdown of specializations will be needed for these questionnaires in the future.
Greater effort will also be required in the future to find additional reviewers to adequately evaluate the
increasing numbers of submissions.

I am grateful to Sun Microsystems Inc., for the support and in particular, to Wayne Rosing (Vice President of
Advanced Development) for giving me the opportunity to co-chair the ICPP88 program. I am very grateful to
the reviewers for their timely and thorough evaluation, and the many other persons who assisted in the
program effort this year. Many thanks are due to administrators, Janice Barnes and Marianne Witkop, in
helping to make the proceedings a reality. In particular, I would like to express my appreciation to Alex Kwok,
Michel Cekleov and Roland Lee who assisted in selecting referees and in handling the correspondence. Special
thanks are due to Alex Kwok for developing user-friendly author and referee databases, and for automating
the generation of correspondence for handling the papers. Finally, I wish to thank Prof. Tse-yun Feng for his
guidance, support and encouragement in this effort.

Fay~ A. Briggs
1988 Program Co-chair
Sun Microsystems, Inc.
Mountain View, CA 94043

iii

LIST OF REFEREES

Aboelaz~, M. Purdue U. Chin, C.Y. General Electric Company
Abonamah, A. U. of Wisconsin Chow, Y.C. U. of Florida
Abraham, S. U. of Michigan Chow,E. T. Jet Propulsion Lab
Abu-Sufah, W. Virginia Polytechnic Inst. Chronopolos, A. U. of Minnesota
Adams,S. C.S. Draper Labs. Chuang, H. Y. H. U. of Pittsburgh
Adams, J. The U. of Pittsburgh Cok,R. S. Eastman Kodak Co.
Aggarwal, J. U. of Texas at Austin Coletti, N. Institute for Defense Analyses
Agrawal,D. North Carolina State U. Daasch,R. Portland State U.
Alnuweiri, H. Daghi, A. Sun Microsystems, Inc.
Ammar,H. Oarkson U. Das, C.R. Pennsylvania State U.
Anderson, R. Lawrence Livermore NationalLab Davis, N. J. Air Force Institute of Tech
Archibald, J. Brigham Young U. Deering, M. F. Schlumberger Palo Alto Res.
Atwood,J. Concordia U., CANADA DeGroot,D. Texas Instruments
Azimi,M. Michigan State U. Desai,B. C. Concordia U., CANADA
Baer, J.L. U. of Washington Dickey, S. Courant Inst. of Mathematical Sci.
Bagherzadeh, N. U. of Ca., Irvine Dubois,M. U. of Southern California
Bandyopahyay, S. U. of Windsor, CANADA Dunne,R.C. Eaton Corporation, AIL Division
Banerjee, U. Control Data Corporation Emberson, D. R. Sun Microsystems, Inc.
Banerjee, P. U. of Illinois Eshaghian, M. M. U. of Southern California
Barad, H. Tulane U. Fang,Z.
Barbour, A. U. of Illinois, Chicago Faroughi, N. Cal. State Sacramento
Batcher, K. Goodyear Aerospace Corp Fellman, R. D.
Baumgartner, T. A T &T Bell Laboratories Fernandez, E. B. Florida Atlantic U.
Baxter, B. Intel Foo,S. Y.P. U. of South Carolina
Bayoumi, M. A. U. of Southwestern Louisiana Fortes, J. A. Purdue U.
Beetem, J. F. U. of Wisconsin, Madison Fu,J. U. of Illinois, Urbana
Bermond, J. C. Simon Fraser U., CANADA Gait, J. Teltronix
Bhavsar, V. C. U. of New Brunswick Ganesan, S. Oakland U.
Bhuyan, L. N. U. of Southwestern Louisiana Garcia, A. B. Wright-Patterson AFB
Bic,L. U. of California, Irvine Gamer,R. Sun Microsystems, Inc
Bodnar,B. AT&T Bell Labs, Naperville Ghafoor, A. Syracuse U.
Bounds, P. Allied/Signal Oceanics Div. Ghosal, D. U. of Southwestern Louisiana
Brooks, E. D. III Lawrence Livermore Nat. Lab Ghosh, J.
Brown, R.H. Hartford Graduate Center Ghozati, S. Queens College
Brule, M. Syracuse U. Goldstein, J. D. The Analytic Sciences Corp.
Bucher, I. Y. Los Alamos National Lab Gooley,M. U. of Illinois, Urbana
Burns, J. Georgia Inst. of Tech. Guharoy, B.
Butner, S. E. U. of Santa Barbara Gupta, R. Philips Labs.
Calahan, D.A. U. of Michigan, Ann Harbor Hae, A. AT&T Bell Labs, Naperville
Cappello, P.R. U. of California, Santa Barbara Hai, A. Bell Labs, Middleton
Carlson, D. A. Institute for Defense Analyses Hall,R. W. U. of Pittsburgh
Casavant, T. L. Purdue U. Hare, D. Sun Microsystems, Inc.
Cekleov,M. Sun Microsystems, Inc Harper, D. T. III The U. of Texas At Dallas
Chalasani, S. B. U. of Southern Calif., LA Hayes, A.H. Los Alamos National Laboratory
Chandna, A. Case Western Reserve U. Heath, J.R. U. of Kent.
Chang, Y. Penn. State U. Ho,C.T. YaleU.
Chao,P. Houle, J.L. Ecole Poly. de Montreal, CANADA
Chen,M.S. U. of Michigan, Ann Arbor Hsu,Y. IBM Yorktown Heights
Chen, S.S. U. of North Carolina Hsu,W. U. of Illinois
Chen,D.J. The U. of Texas at Arlington Hsu, W.J. Michigan State U.
Cheng,K. H. U. of Houston Humphreys, S. L. Sandia National Laboratories
Cherkassky, V. U. of Minnesota Hurson, A. R. The Pennsylvania State U.
Chesley, G. Sun Microsystems, Inc Hwang, F. K. AT&T Bell Labs, Murray Hill
Chiang, Y. P. Washington State U. Hyde,D. C. Bucknell U.
Chiarull, D. M. U. of Pittsburgh Iacoponi, M. J. Harris Corporation

iv

Ibrahim, H. A. H. Columbia U. Lubachevsky, B. 0. AT&T Bell Laboratories, Murray Hill
Jager, W. J. U. of Waterloo Lumpp, J.E. Purdue U.
Jain, R. U. of S. Calif. McElvany, M. C. Allied Bendix
Jayakumar, R. Concordia U., CANADA McGahee, K. L. Rockwell International
Jayasimha, D. N. U. of Illinois, Urbana McGuire, P. Hewlett-Packard
Jin, L. Pennsylvania State U. McMillen, R. Hughes Aircraft
Jou, J. Y. AT&T Bell Labs, Murray Hill McMillin, B. M. Michigan State U.
Juang, J.Y. Northwestern U. Majumdar, A. USC
Kale, L. V. U. of Illinios at Urbana-Champaign Mak,V. Bell Comunications Res.
Kermaani, K. Sun Microsystems, Inc. Malony, A. D. U of Illinois at Urbana-Champaign
Kichul, K. USC Marquardt, D. Sequent Computer Systems
Kim,S. M. R.P.I. Martin, A. J. Caltech
Kim,M.H. Michigan State U. Mathieson, I. LaTrobe U., AUSTRALIA
Kim, K. Univ of S. Calif. Maurer, P. M. Univ of Florida
Kim,D. U. of Southern California Mayer,H.G.
Kim,D.W. U. of Texas at Austin Mazina, M. Rice U.
Kimura, T. D. Washington U. Mazumder, P. U. of Michigan, Ann Arbor
King, C.T. Michigan State U. Melhem, R. U. of Pittsburgh
Konstantinidou, S. U. of Washington Meybodi, M. R. OhioU.
Kothari, S. C. Iowa State U. Midkiff, S. F. Virginia Polytechnic Inst. & State U
Kowalik, J. S. Boeing Miller, R. SUNY-Buffalo
Krishnamurthy, B. Tektronix Laboratories Mittal, V. Ohio State U.
Kumar, V. K. P. U. of Southern California Moreno, J. H. U. of California, LA
Kung, S.Y. Princeton U. Mossaad, K. U. of Texas, Austin
Kunkel, S. R. IBM, Encott Mudge, T. U. of Michigan, Ann Arbor
Kuszmaui, B. C. Thinking Machines/MIT Mukkamala, R. Old Dominion U.
Kwok, A. Sun Microsystems, Inc. Murata, T. U. of Illinois at Chicago
Ladkin, P. B. Kestrel Institute Najjar, W. A. USC Inform. Sciences Inst.
Lakhani, G. Texas Tech U Nakazawa, S. MARC Anal. Res. Corp.
Lakshmivaraham, S. U. of Oklahoma Nation, W. G. Purdue U.
Lam,H. U. of Florida Neches, P. M. Teradata Corporation
Lam,M. Carnegie Mellon U. Nelson, V. P. Auburn U.
Lan, Y. IEEE Computer Society Ni,L.M. Michigan State U.
Landis, D. L. Penn State U. Nicol, D. M. College of William & Mary
Lang, T. U. of California, Los Angeles Nolan, J. Department of Defense
Larson, B. R. Unisys Corporation O'Hallaron, D. R. General Electric Co.
Lastra, A. DukeU. O'Keefe,M. PurdueU.
Lee,G. U. of Southwestern Louisiana Otto, S. W. Caltech
Lee,C. U. of California, Berkeley Padmanabhan, K. AT&T Bell Lab, Murray Hill
Lee,C. U. of Florida Pakzad, S. Penn. State U.
Lee,D. U. of Illinois Pargas, R. P. Clemson U.
Lee, T.C. U. of Tennessee Patton, P. C. Consortium for Supercomputer Res.
Lee,K. Ohio State U. Peir, J.K. IBM, Yorktown
Lee, D.L. York U., CANADA Peterson, J.C. Jet Propulsion Lab
Lee, R. Sun Microsystems, Inc. Place, J. U. of Missouri-Kansas City
Li,H.F. Concordia U., CANADA Polychronopoulos, C. U. of Illinois, Urbana
Li,Q. Florida International U. Poplawski, D.R. Michigan Technological U.
Lien, Y.N. Ohio State U. Pramanik, S. Michigan State U.
Lillevik, S. L. Intel Corp. Prins, P.R. Calvin College
Lin, T.C. U. of Texas, Arlington Probst, D. K. Concordia U., CANADA
Lin, Y.B. U. of Washington Przytula, K. W. Hughes Res. Labs
Lin, T. C. The U. of Texas at Arlington Putcha, K.
Lin, T.Y. Calif. State U., Northridge Raghavendra, C. S. U. of Southern California
Lin, W. USC Rajopadhye, S. V. U. of Oregon
Liou, D.M. Illinois Inst. of Tech. Ramachandran, U. Georgia Institute of Technology
Little, R. R. Clemson U. Ramkumar, B. U. of Illinois
Lopresti, D. Brown U. Rancourt, D.R.
Loucks, W. M. U. of Waterloo Rau,D.
Lougheed, R. M. ERIM Ravi, S.S. SUNY at Albany
Loui,M. C. U. of Illinois, Urbana Reed, D. A. U. of Illinois, Urbana
Lovcks, W. M. U. of Waterloo Reeves, A. P. U. of Illinois, Dept. of Comp. Sci.

v

Reinhardt, S.
Ribeiro, J.
Ricket, N. W.
Saad, Y.
Salli, R. E.
Sanz, J. L. C.
Sanna, D.
Scherson, I. D.
Scheurich, C.
Schwederski, T.
Sehr, D.
Seidel, S. R.
Sengupta, A.
Seow,C.H.
Serlin, 0.
Shaffer, P. L.
Shang, W.
Sharma,R.
Shaw, W.H.
Shea, D. G.
Shepard, T.
Sheth,A.P.
Shih, Y. L.
Shin, K. G.
Shirazi, B.
Shu, R.
Siegel, H.J.
Silberschatz, A.
Simmons, M. L.
Sinclair, J. B.
Singhal, M.
Slaney, M.
Smiarowski, A.
Smith, J.
Smith, S. P.
Smitley, D. L.
So,K.
Somani, A. K.
Sterling, T. L.
Strik, C. W.
Stormon, C.
Subramanian, R.
Sung, Y.
Szymanski, T. H.
Tai,H.M.
Takefuji
Tang,J.H.
Tantawi, A. N.
Tao,L.
Tarbet, D.
Testa, J.
Thakkar, J. D.
Thomas, D. R.
Thomasian, A.
Trimble, G. M.
Tsai, W. T.
Tseng, P.S.
Tsin, Y. H.
Tzeng,N.F.
Varadarajan, R.
Varma, A.

Cray Res., Inc
Syracuse U.
Northern Illinios U.
U. of Illinois, Urbana

IBM, San Jose
U. of Cincinnati
Princeton U.
U. of Southern California
PurdueU.
U. of Illinois, Urbana
Michigan Technological U.
U. of South Carolina
MIT Lab.
ITOM International Co.
General Electric Co.
Purdue U.
A T &T Bell Labs, Murray Hill
AFIT/ENG
IBM Res., Yorktown
Royal Military College, CANADA
UNISYS West Coast Res. Cntr.
Ametek
U. of Michigan, Ann Arbor
Southern Methodist U.

Supercomputing Res. Center
U. of Texas Austin
Los Alamos National Lab.

,Rice U.
Ohio State U.
Schlumberger Palo Alto Res.
Tennessee Technological U.
Astronautics Tech Center
MCC
Supercomputing Res. Center
IBM Res., Yorktown
U. of Washington
Harris Corp.
BDMCorp.
Syracuse U.
AT&T Bell Lab, Columbus
Memphis State U.
Columbia U.
U. of Tulsa
U. of S. Carolina
U. of Illinois
IBM, Yorktown
U.of Penn.

Sun Microsystems, Inc.
Sequent Computer Systems
Harris Corp.
IBM, Yorktown
Lockheed Missiles & Space Co.
U. of Minnesota
Carnegie Mellon U.
U. of Windsor, CANADA
U. of Southwestern Louisiana
U. of Florida
IBM, Yorktown

vi

Varma, A.
Vranesic, Z.G.
Wah,B.W.
Walicki, J.
Wallace, R. M.
Wang, Y.X.
Wang, W.H.
Warter, N.
Weems,C.
Widlicka, R.
Wiltsie, W. F.
Wing,O.
Winsor, D. C.
Witten, M.
Wolf,J.J.
Wu,C.L.
Wu,K.L.
Yalamanchili, S.
Yang, C.
Yasrebi, M.
Yew,P.C.
Yoon, H.
Youn, H. Y.
Young, W.
Young,H. C.
Young,B. B.
Yu,C.T.
Van Zandt, J.
Zhang,C. N.
Zhu, C.Q.
Zipf,M. E.
Zubair, M

IBM T. J Watson Res. Center
U. of Toronto
U. of Illinois
Colorado State U.
AFWAL/AADE
PurdueU.
U. of Washington
U. of Illinois
U. of Massachusetts
New Mexico State U.
AT&T, Basking Ridge
Columbia U.
U. of Michigan
U. of Louisville
Colorado State U.
U. of Texas Austin
U. of Illinois, Urbana
Honeywell Systems & Res. Cntr.
Naval Postgraduate School
IBM Corp., Austin
U. of Illinois, CSRD
Ohio State U.
U. of Mass.
AT&T Bell Labs, Holmdel
IBM Almaden Res. Center
Cray Res.
USC
RCA
North Carolina A & TU.
U. of Illinois, Urbana
U. of Pittsburgh
Old Dominion U.

AUTHOR INDEX

Abraham, J.A. 359 Hwang, K. 55
Abraham, s. 90 Ichiyoshi, N. 18
Abraham, S.G. 166, 331 Ing, B. 410
Aggarwal, J.K. 452 Ishii, K. 291
Anderson, v.s. 47 Iyer, R.K. 174, 404
Balakrishnan, M. 103 Jain, R. 103
Banerjee, P. 331 Jayasimha, D.N. 23
Baron, u. 410 Jean, S.N. 249
Bayoumi, M.A. 367 Jou, J-Y. 359
Becker, D.J. 156 Kale, L.V. 8
Bermond, J.C. 187 Kalp, D. 271
Bernstein, D. 430 Kawa be, s. 291
Bhuyan, L.N. 130 Kerola, T. 78
Bollinger, s.w. 1 Kim, M. 286
Boppana, R. 196 Kinney, L. 83
Boxer, L. 323 Kondratyev, A. 51
Calahan, D.A. 299 Krishnamurti, R. 434
Casavant, T.L. 444 Kumar, V.K. P. 39, 205
Chakravarty, s. 339 Kung, S.Y. 249
Chan, E.Y. 225 Kurisaki, L. 191
Chang, c.w. 249 Lang, T. 28, 191
Chao, P.C. 217 Lastra, A.A. 126
Chen, S.K. 315 Lee, G. 201
Cheng, K.H. 363 Lee, s. 256
Cheong, H. 138 Lee-Kwang, H. 286
Chem, M.Y. 217 Liang, C.T. 315
Chiang, C-Y. 400 Lin, w. 392
Chikayama, T. 18 Linebarger, D.A. 422
Chin, Y.H. 388 Ling, N. 367
Choudhary, A.N. 383 Lauri, A. 55
Chung, W.H. 286 Lovett, T. 303
Das, c. R. 392 Lu, M. 95
Davis, T.A. 166 Ma, Y.E. 13, 434
Dimpsey, R.T. 174 Macaluso, J.J. 392
Dubois, M. 118, 146 Malek, M. 351
Esfahanian, A-H. 86 Maurer, P. M. 235
Evripidou, P. 244 Midkiff, S.F. 1
Fineberg, S.A. 444 Miller, R. 205, 323
Forgy, C.L. 271 Mitra, S.G. 404
Foumeau, J.M. 187 Moreno, J.H. 28
Gaudiot, J.L. 244, 256 Mukkamala, R. 182
Ghosh, S. 74 Musciano, A.J. 156
Gottlieb, I. 240 Nakashima, H. 18
Gupta, A. 271 Newell, A. 271
Gutierrez, M. 261 Newman, J. 65
Harper III, D.T. 422 Ni, L.M. 86
Hartmann, A. 78 Oh, H.R. 286
Hosseini, S. H. 343 Padmanabhan, K. 90

vii

Park, K.H. 286 Youn, H.Y. 375
Patel, J.H. 383 Yu, M. 74
Patnaik, L.M. 414
Peng, z. 69
Polychronopoulos, C.D. 108
Raghavendra, c.s. 103, 196
Ratcliffe, M. 410
Reddy, AL. N. 331
Reeves, AP. 261
Reinhardt, s. 311
Reisis, D. 205
Robert, P. 410
Rokusawa, K. 18
Rosenblum, L. 51
Sagan, B.E. 86
Sastry, AV.S. 414
Scheurich, c. 118
Schwederski, T. 444
Shultz, R. 182
Siegel, H.J. 444
Singh, AD. 375
Smith, S.P. 65
Snyder, L. 281
Sohn, A 256
Sol worth, J. A 113
Song, J. 83
Starmer, C.F. 126
Sterling, T.L. 156, 225
Stout, Q.F. 205
Sunwoo, M.H. 452
Tambe, M. 271
Temma, T. 209
Thakkar, S. 303
Tokerud, B. 47
Toverud, M. 47
Tsai, W.T. 315
Tsai, Y-C. 39
Tseng, P.S. 32
Uchida, K. 209
Underwood, B. 65
Upadhyaya, S.J. 339
Varadarajan, R. 13
Veidenbaum, AV. 138
Wada, H. 291
Wang, J-C. 146
Wang, L. 426
Wei, s. 201
Wu, C-L. 400, 426
Yakovlev, A. 51
Yan, K.Q. 388
Yang, Q. 130
Yau, K. 351
Yazawa, s. 291

viii

TABLE OF CONTENTS

Preface iii

List of Referees ... iv

Author Index. vii

SESSION lA: Distributed Systems

(R): Processor and Link Assignment in Multicomputers Using Simulated Annealing 1
S.W. Bollinger and S.F. Midkiff (Virginia Polytech Inst., USA)

(S): Comparing the Performance of Two Dynamic Load Distribution Methods 8
L. V. Kale (Univ. of Ill-Urbana, USA)

(S): An Approximate Load Balancing Model with Resource Migration in Distributed Systems 13
R. Varadarajan (Univ. of Florida, USA) and Y.E. Ma (Univ. of Pennsylvania, USA)

(S): An Efficient Termination Detection and Abortion Algorithm for Distributed Processing
Systems. 18

K. Rokusawa, N. !chiyoshi and T. Chikayama. (Inst. for New Generation Computer Tech., Japan)
and H. Nakashima (Mitsubishi Elec. Corp., Japan)

(S): Distributed Synchronizers ... 23
D.N. Jayasimha (Univ. of Ill-Urbana, USA)

SESSION 2A: Systolic Arrays I

(S): Graph-based Partitioning of Matrix Algorithms for Systolic Arrays: Application to Transitive
Closure ... 28

J.H. Moreno and T. Lang (Univ. of Cal-Los Angeles, USA)
(R): Sparse Matrix Computations on Warp .. 32

P.S. Tseng (Carnegie Mellon Univ., USA)

(R): Mapping Two Dimensional Systolic Arrays to One Dimensional Arrays and Applications 39
V.K. P. Kumar and Y-C. Tsai (Univ. of So. Cal., USA)

(S): CESAR - The Architecture and Implementation of a High Performance Systolic Array
Processor. .4 7

B. Tokerud, V.S. Anderson and M. Toverud (Norwegian Defence Research Estab., Norway)

SESSION 3A: Logic Design and Tools

(S): Signal Graphs: A Model for Designing Concurrent Logic 51
A. Y. Kondratyev, L. Y. Rosenblum, A. V. Yakovlev (Leningrad Elec. Eng. Inst., USSR)

(R): Optical Arithmetic Using Signed-Digit Symbolic Substitution 55
K. Hwang and A. Lauri (Univ. of So. Cal, USA)

(S): An Analysis of Parallel Logic Simulation on Several Architectures 65
S. P. Smith, B. Underwood, and J. Newman (MCC, USA)

(S): Semantics of a Parallel Computation Model and its Applications in Digital Hardware
Design ... 69

Z. Peng (Linkoping Univ, Sweden)

(S): An Asynchronous Distributed Approach for the Simulation of Behavior-Level Models
on Parallel Processors .. 74

S. Ghosh and M-L. Yu (AT&T Bell Lab, USA)

SESSION 3C: Meshes

(S): Operational Analysis on Hyper-Rectangulars 78
T. Kero/a. (Univ of Helsinki, Finland) and A. Hartmann (MCC, USA)

(S): Distributed Termination on a Mesh .. 83
J. Song and L. Kinney (Univ of Minnesota, USA)

ix

(S): On Enhancing Hypercube Multiprocessors 86
A-R Esfahanian, L.M. ·Ni and B.E. Sagan (Michigan State Univ., USA)

(S): Reliability of the Hypercube ... 90
S. Abraham (Univ of Ill-Urbana, USA) and K. Padmanabhan (AT&T Bell Labs., USA)

(R): Solving Visibility Problems on MCC's 95
M. Lu (Texas A & M Univ., USA)

SESSION 4A: Multiprocessor Issues

(S): On Array Storage for Conflict-Free Memory Access for Parallel Processors 103
M. Balakrishnan, R. Jain and C.S. Raghavendra (Univ. of So. Cal, USA)

(S): The Impact of Run-Time Overhead on Usable Parallelism 108
C.D. Polychronopoulos (Univ. of Ill-Urbana, USA)

(S): The Micro flow Architecture. 113
J.A. Solworth (Univ. of Ill-Chicago, USA)

(R): Concurrent Miss Resolution in Multiprocessor Caches 118
C. Scheurich and M. Dubois (Univ. of So. Cal, USA)

(S): POET: A Tool for the Analysis of the Performance of Parallel Algorithms 126
A.A. Lastra and C.F. Starmer (Duke Univ., USA)

SESSION SA: Multiprocessor Cache Coherence

(R): A Queueing Network Model for a Cache Coherence Protocol on Multiple-bus Multiprocessors .. 130
Q. Yang and L.N. Bhuyan (Univ. of Southwestern Louisiana, USA)

(R): Stale Data Detection and Coherence Enforcement Using Flow Analysis 138
H. Cheong and A. V. Veidenbaum (Univ. of Ill-Urbana, USA)

(R): Shared Data Contention in a Cache Coherence Protocol. 146
M. Dubois and J-C. Wang (Univ. of So. Cal., USA)

SESSION 6A: Multiprocessor Performance

(R): Multiprocessor Performance Measurement Using Embedded Instrumentation 156
T.L. Sterling, A.J. Musciano and D.J. Becker (Harris Corp., USA)

(R): Blocking for Parallel Sparse Linear System Solvers. 166
S.G. Abraham (Univ. of Michigan, USA) and T.A. Davis (Univ. of Ill-Urbana, USA)

(R): Performance Analysis of a Shared Memory Multiprocessor: Case Study 174
R. T. Dimpsey and R.K. Iyer (Univ. of Ill-Urbana, USA)

SESSION 7A: Networks

(S): Performance Comparision of Two Multiprocessor B-Link Tree Implementations 182
R. Mukkamala (Old Dominion Univ., USA) and R.K. Shultz (Rockwell-Collins Int'!, USA)

(S): Independent Connections: An Easy Characterization of Baseline- Equivalent Multistage
Interconnection Networks. 187

J.C. Bermond and J.M. Fourneau (Univ. Paris Sud Orsay, France)
(S): Nonuniform Traffic Spots (NUTS) in Multistage Interconnection Networks · 191

T. Lang and L. Kurisaki (Univ. of Cal.-Los Angeles, USA)
(S): On Self Routing in Benes and Shuffle Exchange Networks 196

R. Boppana and C.S. Raghavendra (Univ. of So. Cal, USA)
(S): Design and Analysis of A Fault-Tolerant Multistage Interconnection Network for
Large-Scale Shared Memory Parallel Computers 201

G. Lee and S. Wei (Univ. of Southwestern Louisiana, USA)
(S): Data Movement Operations and Applications on Reconfigurable VLSI Arrays 205

R. Miller (State Univ of NY-Buffalo, USA), V.K. Prasanna Kumar and
D.I. Reisis (Univ. of So'. Cal, USA), and Q.F. Stout (Univ of Michigan, USA)

x

SESSION SA: New Directions in Architecture and Technology

Panel Discussion.

SESSION 9A: Dataflow I

(R): A Pipelined Dataflow Processor Architecture Based on the Variable Length Token Concept. 209
K. Uchida and T. Temma (NEC Corp, Japan)

(R): A Dynamic Dataflow Architecture For Image Generation 217
P.C. Chao and M.Y. Chern (AT&T Bell Labs, USA)

(R): A Practical Static Data Flow Computer Based on Associative Methods 225
T.L. Sterling and E.Y. Chan (Harris Corp., USA)

SESSION 1 OA: Dataflow II

(S): Mapping the Data Flow Model of Computation into an Enhanced Von Neumann Processor 235
P.M. Maurer (Univ. of So. Florida, USA)

(S): Dynamic Structured Dataflow: Preserving the Advantages of Sequential Processing in a
Data Driven Environment. 240

I. Gottlieb (Bar Ilan Univ., Israel)
(S): Iterative Algorithms in a Data-Driven Environment. 244

P.E. Evripidou and J-L. Gaudiot (Univ. of So. Cal, USA)
(R): Graceful Degradation Schemes for Static/Dynamic Wavefront Arrays 249

S.N. Jean and C. W. Chang (Univ. of So. Cal, USA) and S.Y. Kung (Princeton Univ., USA)
(S): Data-Driven Multiprocessor Implementation of the Rete Match Algorithm 256

J-L. Gaudiot, S. Lee and A. Sohn (Univ. of So. Cal., USA)

SESSION lOB: Parallelism

(R): On Measuring the Performance of a Massively Parallel Processor 261
A.P. Reeves (Univ. of Ill-Urbana, USA) and M. Gutierrez (Cornell Univ., USA)

(R): Parallel OPSS on the Encore Multimax 271
A. Gupta(Stanjord Univ., USA), C.L. Forgy, D. Kalp, A. Newell and M. Tambe (Carnegie-
Mellon Univ., USA)

(S): A Taxonomy of Synchronous Parallel Machines 281
L. Snyder (Univ. of Washington, USA)

(S): Parallel Execution Schemes in a Petri Net 286
W.H. Chung and H.R. Oh (KA/ST, Korea), H. Lee-Kwang. (KIT, Korea), K.H. Park and

M. Kim (KA/ST, Korea)

SESSION 1 lA: Commercial Systems

(R): High-Speed Vector Instruction Execution Schemes of HITACHI Supercomputer S-820 System .. 291
H. Wada, K. Ishii, S. Yazawa and S. Kawabe (Hitachi Ltd., Japan)

~ (S): Characterization of Memory Conflict Loading on the CRAY-2 299
D.A. Calahan (Univ. of Michigan, USA)

(R): The Symmetry Multiprocessor System .. 303
T. Lovett and S. Thakkar (Sequent Computer Systems, USA)

----=, (S): Two Parallel Processing Aspects of the Cray Y-MP Computer System 311
S. Reinhardt (Cray Research, Inc., USA)

SESSION 12A: Hypercubes

(R): Loops and Multi-Dimensional Grids on Hypercubes: Mapping and Reconfiguration Algorithms .. 315
S-K. Chen, C-T. IJ.ang, W-T. Tsai (Univ. of Minnesota, USA)

(R): Dynamic Computational Geometry on Meshes and Hypercubes 323
L. Boxer. (Niagara Univ., USA) and R. Miller (State Univ. of NY, USA)

(R): 110 Embedding in Hypercubes .. 331
A.L.N. Reddy and P. Banerjee (Univ. i:Jf Ill, USA), and S.G. Abraham (Univ. of Michigan, USA)

xi

SESSION 13A: Fault Tolerance

(S): A Unified Approach to Designing Fault-Tolerant Processor Ensembles 339
S. Chakravarty and S.J. Upadhyaya (State Univ. of NY., USA)

(R): Fault-Tolerant Scheduling of Independent Tasks and Concurrent Fault-Diagnosis in
Multiple Processor Systems ... 34~

S. H. Hosseini (Univ. of Wisconsin-Milwaukee, USA)
(R): The Resiliency Triple in Multiprocessor Systems 351

M. Malek and K.H. Yau (Univ. of Texas-Austin, USA)
(S): Fault-Tolerant Algorithms and Architectures for Real Time Signal Processing 359

J-Y. Jou (AT&T Bell Labs, USA) and J.A. Abraham (Univ. of Ill-Urbana, USA)
SESSION 14A: Systolic Arrays II

(S): Efficient Designs of Priority Queue ... 363
K. H. Cheng (Univ. of Houston, USA)

(R): Algorithms for High Speed Multi-Dimensional Arithmetic and DSP Systolic Arrays 367
N. Ling and M.A. Bayoumi (Univ. of Southwestern Louisiana, USA)

(R): A Highly Efficient Design for Reconfiguring the Processor Array in VLSI. 375
H.Y. Youn and A.D. Singh (Univ. of Massachusetts, USA)

(S): A Parallel Processing Architecture for an Integrated Vision System 383
A.N. Choudhary and J.H. Patel (Univ. of Ill-Urbana, USA)

SESSION 14B: Reliability

(S): An Optimal Solution for Consensus Problem in an Unreliable Communications System 388
K.Q. Yan and Y.H. Chin (Nat'! Tsing-Hua Univ., Taiwan)

(R): A Reliability Predictor for MIN-Connected Multiprocessor Systems 392
J.J. Macaluso, C.R. Das and W. Lin (Pennsylvania State Univ., USA)

(S): Adaptive Checkpointing and Rollback in Multiprocessor Systems 400
C-Y. Chiang and C.L. Wu (Univ. of Texas-Austin, USA)

(R): Measurement-Based Analysis of Multiple Latent Errors and Near-Coincident Fault
Discovery in a Shared Memory Multiprocessor. , 404

S.G. Mitra (Sun Microsystems, USA) and R.K. Iyer (Univ of Ill-Urbana, USA)

SESSION 15A: Logic Programming and Pipelined Systems

(S): A Distributed Architecture for the PEPSys Parallel Logic Programming System 410
U. Baron, B. Ing, M. Ratcliffe, and P. Robert (ECRC, West Germany)

(R): A Dataflow Architecture for OR-Parallel Execution of Logic Programs414
A. V.S. Sastry and L.M. Patnaik (Indian Inst. of Science, India)

(S): Storage Schemes for Efficient Computation of a Radix 2 FFT in a Machine with Parallel
Memories ... 422

D.T. Harper III and D.A. Linebarger (Univ of Texas-Dallas, USA)
(S): Distributed Instruction Set Computer. 426

L. Wang and C-L. Wu (Univ. of Texas-Austin, USA)
(S): An Improved Approximation Algorithm for Scheduling Pipelined Machines 430

D. Bernstein (IBM T.J. Watson Research Center, USA)

SESSION 15B: Reconfigurable Systems

(R): The Processor Partitioning Problem In Special-Purpose Partitionable Systems 434
R. Krishnamurti (Simon Fraser Univ, Canada) and Y.E. Ma (Univ of Pennsylvania, USA)

(R): Non-Deterministic Instruction Time Experiments on the PASM System Prototype 444
S.A. Fineberg, T.L. Casavant and T. Schwederski (Purdue Univ, USA) and H.J. Siegel
(Supercomputing Research Center, Lanham, USA)

(R): Flexibly Coupled Multiprocessors for Image Processing 452
M.H. Sunwoo and J.K. Aggarwal (Univ of Texas-Austin, USA)

xii

PROCESSOR AND LINK ASSIGNMENT IN MULTICOMPUTERS
USING SIMULATED ANNEALING

S. Wayne Bollinger and Scott F. Midkiff

Bradley Department of Electrical Engineering
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

ABSTRACT

In the design of multicomputer systems, the scheduling
and mapping or a parallel algorithm onto a host architecture
has a critical impact on overall system performance. In this
paper we develop a graph-based solution to both aspects of
the mapping problem using the simulated annealing opti­
mization heuristic. A two phase mapping strategy is formu­
lated: l) process annealing assigns parallel processes to
processing nodes, and 2) connection annealing schedules traf­
fic connections on network data links so that interprocess
communication conflicts are minimized. To evaluate the
quality of generated mappings, cost functions suitable for
simulated annealing are derived that accurately quantify
communication overhead. Application examples are pre­
sented using the hypercube as a host architecture, with host
graphs containing up to 512 nodes.

I. INTRODUCTION

Multicomputers arc a form of parallel processing system
composed or many processing elements (PE's), each with its
own local memory. Individual PE's are connected to other
PE' s by point-to-point links that allow the bidirectional
transfer of data. The cost of connecting every processor to
every other processor is typically prohibitive, so links connect
only selected processors, forming an interconnection
topology such as a mesh, tree, or binary hypercube. Each
processor executes a task or process. Local references by a
process are efficient, since the PE contains local memory, but
communication with processes executing on other PE's can
significantly limit system throughput if data must be trans­
ferred over many links or if links are congested due to exces­
sive traffic. To realize the full potential of a multicomputer's
capabilities, it is essential that the distance between commu­
nicating processes be minimized and that link trafTic is mini­
mized to reduce delay.

The mapping problem maps an image architecture, a set
of processes and their communication requirements, onto a
multicomputer or host architecture. The problem consists
of two components: I) assignment of processes to processors,
and 2) assignment or scheduling of interprocess communi­
cation traflic over network links. This paper presents a new
approach to processor and link assignment in multicomput-

This work was supported in part by a Digital Faculty Program/Incentives
for Excellence grant from the Digital Equipment Corporation.

ers based on the simulated annealing heuristic. The proce­
dure has been implemented for binary hypercube host
architectures. Results indicate that the technique produces
good, and often optimal, mappings within reasonable com­
putation times.

The paper first discusses the mapping problem, recent
research, and communication overhead cost functions that
can be used in an objective function. Simulated annealing is
then applied to the mapping problem to find processor and
link assignments that minimize the objective function for
given host and image architectures. The final section pre­
sents results for mapping two image architectures, each con­
taining up to 512 processes, onto a binary hypercube
multicomputer.

II. THE MAPPING PROBLEM

The assignment and scheduling problem concerns the
mapping of an arbitrary image architecture onto a general­
purpose host or target architecture in a manner that mini­
mizes communication conflicts among concurrent processes.
For our purposes, the image architecture consists of a set of
synchronous, static 'processes with communication require­
ments known prior to run time. The host architecture de­
scribes a point-to-point multiprocessor network with a fixed
interconnection topology. To evaluate the quality of an as­
signment, an objective function is used to quantify the com­
munication cost. The behavior of the mapping algorithm
and the quality of generated assignments depend on the ob­
jective function chosen.

A. Host Architecture

The host architecture is represented by a host graph that
describes the interconnection of processors in a multi­
processor network. The host graph is denoted by the undi­
rected graph GH = < V1h EH> where V H is a set of
processors, and EH is a set of edges describing the communi­
cation paths between processors. Every vertex in V" corre­
sponds to a distinct processing element, referred to as a
node. Every edge (n1, n2) E Ea corresponds to a bidirectional
data link between nodes n1 and n,. This implies that a single
physical network link exists between each pair of directly
connected processors. The host graph is assumed to be a
connected graph, disallowing the possibility of isolated
processor nodes. The following terminology is used when
referring to the host architecture.

N The number of nodes in the host network,
N= IVnl·

n1 A nodej in the network, I ::;.j:::;. N.

l;k A link permitting communication from node n1 to
node n*. Note that 11* and /*1 are equivalent.

~k The ~mount of communication traffic, in packets
or umts of traffic, flowing from node n1 to nk.

d(n,, n*) T~e. distance between two nodes n1 and nk, or the
!lllmmum number of links forming a path between
~he nodes. Several paths of length d(n1, nk) may ex­
ist between the processes.

B. Image Architecture

The image architecture to be mapped onto the host net­
work is represented by an image graph that describes the
communication dependencies between concurrent processes.
~·he image graph is a directed graph G, = < V" E" W, > .
Every vertex in V, corresponds to an individual process. Ev­
ery edge (pi. p2) e E, corresponds to a one-way data con­
nection between processes p, and p2• This does not impose
any limitations on process communication, as a mutual data
dependency may be represented as two opposing directed
edges. The weight of an image edge w12 e W, represents the
expected traffic from p, to p2• The following terminology is
used when referring to the image architecture.

P The number of processes to be mapped, P = IV, I .

P; A process j in the image architecture, I ::;.j:::;. P.

w1k The communication requirement in packets or units
of traffic between processes p1 and Pk·

C;k The effective communication cost of a connection
between processes P; and Pk·

J; J; e,V11 such that the mapping function/: V,--> V11

assigns process P; to node J;.

d(p,, h) The minimum number of links forming a path be­
tween the nodes which execute processes
P; and Pk• i.e. d(f;,f,,) Several paths of length
d(p1, h) may exist between the processes.

An abbreviated form of the distance function d.k is used
where the meaning is apparent from context. Th~ term d.k
may be interpreted as either d(n1, nk) or d(p., pk) when apprd­
priate. Communication weights are integer numbers, and
traffic bet;veen two processes is indivisible; the traffic may
not be spht and routed along different network paths. Ordi­
narily, the number of processes Pis equal to the number of
available nodes N to maximize the use of processor resources.
If P is less tha~ N, however, N - P dummy processes may
be added to the·unage graph. To accommodate the possibil­
ity of isolated processes, the image graph G, may be uncon­
nected. The case P > N poses load sharing problems which
are not considered in this paper.

C. Prior Work

. qne evalu~tion c.riteria co~.only implemented in opti­
!lllzation algonthms is th~ ob1ect1ve function found in the
quadratic assignment problem [l]. Cast in terms of the
mapping problem, the problem may be stated as follows. A
set of P processes has associated with it a communication
traffic intensity w1k between each pair of processes p1 and Pk·
A set of N processor nodes are configured with a distance or
delay d(n,, n.) between nodes n, arid n. . The·n the communi-

2

cation overhead between two processesj and k is the product
ofw1* and d(/;,f,,), and the optimal mapping/minimizes

:L>}k . d0,fk).
j,k

This objective function treats the communication traffic be­
tween every pair of processes as if it is independent of all
other processes, which is only true if nodes communicate
along de~icatt:d ne~work links. Thus it does not accurately
charactenze the lngh local traffic densities and communi­
cation bottlenecks that may arise among concurrent proc­
esses.

A maI?pin.g strateg!' using t~e car~inality of the mapping
for. the ob1~ct1ye function was mvest1gated by Bokhari [2].
Us!ng. car~mabty a~ ~ measure of assignment quality, the
obi~ct1ve ts to max1!lllze the number of pairs of communi­
catmg processes that fall on pairs of directly connected
processors, thereby· maximizing the number of image edges
t~at. map to host edges. This strategy fails to account for the
s1gmficant effect that unmatched pairs of edges can have on
t~e total ~ommunication overhead. Also, the algorithm as­
signs a umfor~ tr~~c i~tensity. to ~ll pairs of communicating
processes, which h!lllts its application. Bokhari states that a
mapping algorithm using cardinality as an objective function
exhibits behavior very similar to the quadratic assignment
problem.

Bianchini and Shen [3]-[4] describe a method to auto­
matically ass!gn interprocessor communication in special
pu~pose multiple processor systems, e.g. digital signal proc­
essmg ~ystems. The object!ve function used in the algorithm
deter!lllnes a commumcation cost based on the utility of
network links, where utility is defined as the fraction of link
capacity utilized by traffic. They do not consider the issue
of process assignment; the traffic scheduler accepts a fixed
placement of processes in the host architecture and then
g.enerates ~n optimal c.o~unication schedule for that par­
ticular assignment.)"his 1s acceptable when considering only
dedicated heterogeneous architectures, where there may be
little opportunity for optimizing the assignment of the image
architecture to the processor nodes. For general-purpose
homogeneous architectures, however, the assignment of
processes has a substantial impact on the quality of the final
traffic schedule and the overall system throughput.

To overcome the inadequacies of traditional objective
functions, Lee and Aggarwal [5] formulate a set of new ob­
jective functions that accurately quantify communication
overhead. Their functions measure the optimality of a map­
ping for general applications by considering the communi­
cation cost of all image edges along with the overall mode
of communication, synchronous or asynchronous. This al­
lows realistic evaluation of the network contention that oc­
curs when concurrent processes compete for communication
r~sources. Lee and Aggarwal also describe an efficient map­
ping strategy developed for the objective functions. While
the mapping strategy addresses the problem of optimal
process assignment, it utilizes a fixed routing scheme for
traffic scheduling. Such a mapping scheme does not consider
the possibility of exploiting the routing rules of a network to
optimize the assignment of the image connections to network
data paths.

D. Objective and Cost Functions

The objective function determines the performance
characteristics of the mapping algorithm by specifying an
appropriate optimization goal. To provide a realistic evalu-

ation of the total communication overhead, the traffic inten­
sity of each weighted image connection must be considered.

Cost Functions: The communication cost c1, of an image
connection between pi and p, is a function of the weight or
traflic intensity of' the corresponding edge in the image graph.
If the connection is routed along dedicated network links, the
communication cost Cl may represented as

Cl = cjk = wjl, · d(jj,JjJ

In this case the cost of the connection is determined by the
distance separating the nodes which pi and p, are mapped
onto.

In general, a connection is established along network
links that are shared by a number of dif1erent processes.
Some links may be used by several processes, and communi­
cation along the connection will experience delays due to link
sharing. The delay encountered at a network link is propor­
tional to the total traffic intensity supported by that link.
To quantify the effect of the overall delay on the cost of the
connection, the delay at every link must be taken into ac­
count. Some additional definitions are needed.

U,,(L,)

Link number i (1 :<::: i ::;; ~.) in the connection be­
tween pi and p, under consideration.

The amount of delay at link L,.

U,,(L1) = l if the connection between processes p,
and p, is routed along link L,; U,,(L,) = 0 otherwise.

Then the delay at each link in the connection is represented
by

D; = I>st. Us/L;),
s, t

and the cost of a connection between p1 and Pk by

d;k

C2 = cjk = LD1.

i=I

If subscriptsj and k are interpreted to mean the nodes ni and
n, connected by link L,, then the above expression for D, is
cg uivalent to t1., the traffic intensity oflink 11,. Therefore the
delay or communication cost of a network link is propor­
tional to the total traflic routed along the link.

Given a means to calculate the communication cost of
each image connection, an objective function can be defined
to determine the overall cost of a mapping. The following
functions are adaptations of two of the four objective func­
tions investigated in [5].

Objective Functions: A simple optimization criterion used
in VLSI placement problems involves summing the costs as­
sociated with pairs of components to obtain an overall sys­
tem cost. In the mapping problem, this corresponds to
summing the communication cost between every pair of
processes in the network. The total communication cost Fl
can be written as

Using this function with cost function Cl docs give some
measure of the quality of an assignment, but it ignores the

3

conflicts due to link sharing by different image connections.
Thus Fl should be combined with cost function C2 to form
an objective function suitable for the mapping problem.

To more accurately describe the quantity being opti­
mized in multiprocess communication, a second objective
function F2 can be defined. When all processes in the net­
work are synchronized, the image connection with the largest
communication cost determines the overall performance. To
characterize this behavior, F2 is defined as

F2 = max(cjk)·
j, k

F2 may be used with either cost function Cl or C2 . Mini­
mizing either Fl or F2 docs not necessarily minimize the
other, so the objective function used must be chosen with
care. The choice dcpcn<ls on the application under consider­
ation as well as the mapping algorithm use<l.

lll. ASSIGNMENT AND SCHEDULING USING
SIMULATED ANNEALING

For large scale mapping problems, obtaining an exact
optimal solution is not practical. Iterative improvement al­
gorithms have been employed in the mapping problem with
some success, however, they tend to produce solutions that
are locally but not globally optimal. The simulated annealing
method supplements iterative improvement by providing a
mechanism to escape local optima and has been found to
exhibit desirable solutions in combinatorial optimization
problems similar to the mapping problem [6]. Existing
mapping algorithms utilizing iterative improvement provide
a basis for a new approach to the mapping problem that uses
simulated annealing.

A. Partitioning the Problem for Simulated Annealing

In the mapping problem, both the assignment of proc­
esses to the host network and the scheduling of communi­
cation paths are critical to the overall system performance.
To optimize the mapping of the image graph to the host
graph, a two phase mapping strategy is required. The first
phase is essentially a placement problem; it attempts to de­
termine the best mapping of processes onto nodes without
considering the details of traflic routing. The second phase
is analogous to the wiring problem; it optimizes the decom­
position of traflic connections onto network links, operating
within the constraints imposed by the routing rules of the
network. Both optimization phases may be implemented us­
ing simulated annealing.

The design of a good simulated annealing algorithm re­
quires the specification of four elements: system configura­
tion, annealing schedule, move set, and objective function
[6]. By varying the elements, a single annealing algorithm
can be extended to work with both optimization phases. In
the following sections, we concentrate on the aspects of sim­
ulated annealing unique to the mapping problem. A general
objective function suitable for annealing is formulated, and
algorithm modifications specific to the assignment and
scheduling phases arc described.

B. Objective Function for Annealing

For effective annealing, the objective function should
exhibit a wide range of values corresponding to the factors
being optimized. Optimal configurations should have mini­
mum cost, and inferior or physically unrealizable configura­
tions should be penalized by high costs. or the two objective
functions previously defined, Fl produces a greater variation

in cost, making it more desirable as a cost metric for simu­
lated annealing. However, objective function F2 more accu­
rately characterizes the quantity being optimized in the
mapping problem. To satisfy these conflicting requirements,
both Fl and F2 should be considered. Examining the form
of Fl and F2 shows that there is negligible overhead incurred
by keeping track of F2 as Fl is being calculated for a config­
uration. ·An assignment that minimizes Fl but increases F2
is not desirable, as F2 describes the actual limiting factor in
synchronous multiprocess communication.

A new objective function is formulated to provide a sin­
gle evaluation criterion by including both FI and F2 as terms.
Introducing a constant weight factor W, one possibility for
such a function is

F=Fl + W·F2,

where W penalizes any configuration that increases F2. The
magnitude of W should be large enough so that the minimum
variation in W · fi2 for a single move is greater than the
maximum variation of Fl. This ensures that a move in­
creasing (decreasing) F2 will produce an increase (decrease)
in the overall cost of a configuration. To achieve a similar
effect, we consider both Fl and F2 during annealing by: I)
ignoring F2 during high temperature annealing when tempo­
rary increases in F2 and the objective function are to be ex­
pected, and 2) rejecting all moves generated during low
temperature annealing that increase F2. This objective func­
tion used for annealing and defined as FI combined with F2
will be referred to as the standard objective function.

C. Processor Assignment

The first mapping phase assigns image processes to host
network processing nodes. The basic strategy of this phase
is to assign processes with large mutual communication re­
quirements to neighboring nodes in the host network. This
phase does not consider detailed traffic routing. However,
the spatial locality and communication requirements of
processes must be considered simultaneously to generate an
optimal mapping. Mapping phase one Will be referred to as
process annealing, and is characterized as follows:

I. Move Set: Moves are generated by pairwise exchanges
of processes, Monte Carlo style. To evaluate the effect
of a move on the objective function, the only process
connections that need to be considered are those associ­
ated with the two swapped processes.

2. Objective Function: Since traffic routing is not consid­
ered during process assignment, cost function Cl must
be used. Thus the cost of a connection is the product of
the communication intensity and the distance between
the nodes hosting the processes. The overall assignment
cost is determined by Cl used with the standard objective
function.

For process assignment the spatial location of nodes to
which the process will be assigned are fixed by the physical
structure of the host network. The only possible move is the
pairwise exchange of two processes. However, one of the
processes may be a dummy process inserted in the host net­
work to account for excess processing nodes. This form of
move corresponds to a process translation. For the special
case N > P, this move gives the mapping algorithm an addi­
tional degree of freedom, enabling it to move processes
among surplus nodes to determine the best distribution of
processes. In the final stages of process annealing, the ex­
change of distant processes is unlikely to result in an im­
provement in the objective function, and only processes

4

separated by small distances are considered for exchange.
Limiting the range of attempted moves in this fashion maxi­
mizes the number of feasible moves attempted at each tem­
perature stage.

D. Link Assignment

The second phase of mapping, referred to as connection
annealing, schedules the interprocess communication onto a
physical network topology. Given the fixed process mapping
generated by process annealing, connection annealing deter­
mines an optimal assignment of image connections to host
network data paths. This phase routes the connection be­
tween every pair of communicating processes onto a path of
one or more network data links between the source and des­
tination nodes. When communicating processes are assigned
to directly connected nodes, the corresponding data path for
the connection will consist of a single link. Otherwise, the
connection must be rou~ed along a series of data links. In
general, a connection should be routed along the least possi­
ble number of links to minimize network path delay. How­
ever, an indirect route may be necessary to avoid heavily
utilized data links if adding traffic to that link would exceed
its capacity.

Unless all processes are assigned to directly connected
nodes, corresponding to a perfect mapping, the possibility
exists for link sharing among image connections. To avoid
communication delays caused by the resulting link con­
tention, the link assignment phase should route traffic along
links supporting minimum traffic intensity whenever possible.
By evenly distributing the traffic load among network links,
the total network throughput can be maximized. Thus con­
nection annealing must consider both path length and traffic
intensity to determine an optimal link assignment. The

annealing algorithm for link assignment incorporates the fol­
lowing elements:

1. Move Set: Path moves are more difficult to generate
than the simple random pairwise exchanges in process
annealing. A path is formed by starting at the source
node, and then choosing links according to criteria based
on both traffic intensity and remaining path distance.
The link may be selected by fixed or adaptive means,
depending on network routing rules. To evaluate the ef­
fect of a move on the communication cost of an assign­
ment, the only data links that need to be considered are
those affocted by the connection being altered.

2. Objective Function: To characterize the interaction and
contention between image connections that arise during
traffic routing, cost function C2 must be used. Thus the
cost of a connection is the sum of the traffic intensities
supported by the network links assigned to the con­
nection. The overall assignment cost is determined by
C2 used with the standard objective function.

In process annealing the method used to generate moves
is basically limited to the pairwise exchange of processes.
For connection annealing, however, several possibilities exist
for move generation. The method selected to rearrange a
path depends on the routing flexibility allowed by the host
network and the objective function used for scheduling.
Given a source and destination node in the network and a
criteria for selecting links, the path generator must establish
a path if none is present, or produce a permutation of an
existing path.

The scheme used by the host network for traffic sched­
uling limits the routing strategy used for link assignment.
When the assignment of specific data links to a network path

is predetermined by the routing rules of the network, path
generation is limited to fixed path selection. If network
routing rules allow for several possible paths between source
and destination nodes, link assignments may be based on an
adaptive selection criterion.

During path generation, the adaptive assignment ap­
proach considers the existing traffic conditions produced by
previously routed image connections. Starting with the
source node, there may be several feasible choices for an ini­
tial path link that reduce the remaining path distance. The
adaptive criterion specifies that the link Ip, supporting the
minimum traffic t,k should be selected. If multiple links sup­
port the same minimum tf'' then the next path link is selected
from them randomly. This process is repeated, selecting
minimum cost links until the path is completed. Due to its
greedy nature, adaptive selection will not always produce a
least cost path. In addition, there is no guarantee that a re­
arranged path will actually be different from the original
path. Adaptive path selection is more efficient than random
path generation, and is useful for both the initial link assign­
ment and the connection annealing optimization phase.

E. Initial Assignment

For process and connection annealing, assignment of the
initial system configuration can have a profound effect on
both required run time and final mapping quality. Instead
of relying on a random initial configuration, a procedure can
be used to achieve a good initial assignment, and annealing
can begin at a lower starting temperature to reduce run time.
Using an initial assignment algorithm produces a system
configuration that contains partially ordered domains. If the
initial mapping is prepared carefully, the structure of these
partially ordered regions corresponds to those existing in an
optimal system configuration. Thus the amount of annealing
required to locate a globally optimal mapping is greatly re­
duced. To preserve the advantages of a good initial mapping,
the starting temperature must be chosen low enough to
search the immediate state space without destroying the de­
sirable features of the mapping. Starting too low, however,
may cause the annealing algorithm to become trapped in an
inferior local minimum.

Our experience indicates that using an initial assignment
algorithm to generate process assignments for large image
architectures can produce suboptimal configurations that are
difficult to escape by low temperature annealing. Conse­
quently we do not utilize the initial assignment algorithm for
process annealing, and rely instead upon a random initial
assignment with a complete temperature annealing run. The
additional computation time is justified by the higher quality
of final solutions obtained.

Unlike the case of initial process assignment, we found
that the quality of trafTic configurations produced by an ini­
tial link assignment algorithm coupled with a low temper­
ature connection annealing run were comparable to those
generated by a random initial assignment and full annealing.
Connection assignments produced by such an algorithm are
greatly superior to the unbalanced, chaotic network paths
generated by a random initial connection assignment. The
selection of the initial annealing temperature is crucial for an
eflicient interface between the initial link assignment and
connection annealing algorithms.

5

IV. APPLICATIONS USING HYPERCUBE

In this section the performance of simulated annealing
is demonstrated using two image architectures. The host
network is implemented as a binary hypercube topology, a
popular architecture for large scale multicomputers [7]. In
the following discussion, D is the dimension of the
hypercube, and L is the number of communication links in
the hypercube, where L = D · 2v-1•

A. Hypercube as host architecture

In a sizable hypercube network incorporating hundreds
or thousands of processor nodes, node assignment and com­
munication scheduling are diflicult problems. Process as­
signment is complicated by the ability to map a number of
different, complex image topologies onto the hypercube. In
addition, for every pair of communicating nodes separated
by d;, links, there are ~,! possible paths along which a con­
nection can be routed. Determining a suitable mapping for
a large hypercube network exercises the full power of the
simulated annealing assignment algorithms.

For a general image graph, the communication overhead
of the optimal mapping is unknown prior to assignment and
scheduling. Due to the nondeterministic and heuristic nature
of simulated annealing algorithms, there is no guarantee that
the best mapping will be found. To accurately measure the
performance of the mapping algorithm, an image graph with
a known global minimum is used as a test case. The image
graph chosen is similar in form to that of the hypercube host
graph.

B. llvpercube Traffic Problem

The hypercube image graph is denoted by

Gill= < V, E, W>,

(pj, P1J EE v Pj• Pk Ev I d(pj,P1J = 1,

IEI = D. 2D,

wjk = 1 V (pj, p1J E E.

Here the distance function d() is defined as for the hypercube,
but is used instead with process indices. The connection
structure of the graph corresponds to the hypercube graph,
with weight 1 on each edge. For every communication link
in the hypercube, there are two opposing directed edges in
the hypercube image graph.

The performance of the mapping algorithm is evaluated
by mapping random permutations of the hypercube image
graph onto the hypercube host. The optimal solution is
known in this case, so the relative quality of assignments
generated by the algorithm can be determined. In the ideal
mapping, every network link supports two connections with
weight 1, so

FllDEAL= LC2jl<'
j,k

=D·2D+I,

Fl/DEAL.= 2.

If the algorithm succeeds in finding the optimal assign­
ment for this graph, all pairs of communicating processes fall

7
10

6
10

"' g? 5 0 10 :2:
0
Q; 4
.0 10 E
::::J
z

3
10

2
10

8 16 32 64 128 256 512

Problem Size

Fig. I. Total Generated Moves vs. Problem Size

on nearest neighbor connected nodes in the hypercube, and
no traffic scheduling is needed. Thus the first phase of
annealing, processor assignment, is critical for this image ar­
chitecture. For an optimal assignment, the actual communi­
cation overhead equals the ideal communication overhead.
The mapping algorithm was run on hypercube traffic graphs
containing from 8 to 512 processes. The results are tabulated
in Table I, and represent average values obtained using ran­
dom initial assignments. The total moves column gives the
total number of moves generated during all stages of
annealing. Figure l demonstrates the relationship between
computational effort and problem size.

By adjusting values for the initial temperature and rate
of annealing according to the problem size, we were Pble to
converge into optimal solutions consistently for N:,::; 128.
The initial temperature is taken high enough so that the ratio
of accepted moves to total proposed moves exceeds 0.9, en­
suring that the majority of generated moves are accepted.
Large problem sizes require a slower cooling rate to investi­
gate a greater portion of the problem search space. This in­
creases the probability of finding an optimum solution, at the
expense of increased execution time.

C. Tree Traffic Problem

Tree image graphs are frequently encountered in parallel
processing applications. The graph considered here has the
form of a binary tree, described by

Gn = < V, E, W>,

IEI =2·(N-l),

w1k = l V p1, Pk E V I (p1, Pk) E GTREE·

An extra process is added to the graph and connected to the
root of a standard binary tree so that N is a power of 2. There
is no known closed form solution for the minimum commu­
nication overhead for a mapping of the tree graph onto a
hypercube, so FlwEAL and F2wEAL are unknown.

To map the tree graph onto a hypercube, both process
and connection annealing were used. Each phase of
annealing is effective in reducing the overall conununication
cost. In all cases a random initial configuration was used,
and the parameters for the annealing schedule were chosen
to provide a good balance between mapping optimality and
algorithm computation requirements. Table 2 shows the re-

6

suits for tree sizes containing 8 to 512 nodes. The tabulated
values for total moves reflect the sum of process moves gen­
erated during process annealing, and path moves generated
during connection annealing. Mapping results show that the
hypercube network provides excellent support for the com­
munication requirements of the tree image graph.

V. CONCLUSIONS

A graph-based scheme utilizing the simulated annealing
optimization heuristic has been developed for the aut0mated
mapping of an arbitrary image graph onto a general-purpose
multiprocessor architecture. The complete procedure em­
ploys two annealing-based optimization phases. Process
annealing attempts to assign processes that exhibit high mu­
tual communication requirements to neighboring nodes in
the host network. Connection annealing incorporates an in­
itial assignment proce<lure, and further reduces communi­
cation costs by performing traffic routing of data paths. A
communication cost function is formulated that captures the
effoct of transmission delays and bottlenecks arising as proc­
esses compete for communication resources.

The simulated annealing technique is easily extended to
generate mappings for a large class of host and image archi­
tectures. The underlying annealing procedure is completely
general, and makes no assumptions about the intercon­
nection structure of the host or image architectures. De­
pending on the application, varying parameters such as the
class of moves generated, the cost functions, and the
annealing schedule enable the behavior of the mapping algo­
rithm to be modified for maximum performance. As cur­
rently implemented, the procedure uses a binary hypercube
topology as the host architecture. The mapping scheme has
been evaluated using a variety of image graphs. We were
able to anneal into optimal solutions for N::::; 128, and near­
optimal solutions for larger image architectures. Our results
show that the strategy scales well for large problem sizes,
obtaining good results with computational effort propor­
tional to small powers of N.

[l]

[2]

[3]

[4]

[5]

[6]

REFERENCES

M. Hanan and J. M. Kurtzbcrg, "A review of the
placement and quadratic assignment problems,"
SIAM Rev., vol. 14, pp. 324-342, Apr. 1972.

S. H. Bokhari, "On the mapping problem," IEEE Trans.
Cornput., vol. C-30, pp. 207-214, Mar. 1981.

R. P. Bianchini, Jr. and J. P Shen, "Interprocessor traf­
fic scheduling algorithm for multiple-processor net­
works," IEEE Trans. Cornput., vol. C-36, pp. 396-409,
Apr. 1987.

R. P. Bianchini, Jr. and J. P. Shen, "Automated compi­
lation of interprocessor communication for multiple
processor systems," in Proc. IEEE Int. Conf Comput.
Des., Oct. 1986, pp. 262-268.

S.~Y. Lee and J. K. Aggarwal, "A mapping strategy for
parallel processing," IEEE Trans. Comput., vol. C-36,
pp. 433-442, Apr. 1987.

S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi,
"Optimization by simulated annealing," Science, vol.
220, May 1983, pp. 671-680.

[7] C. L. Seitz, "The Cosmic Cube," CACM, vol. 28, no.
l, pp. 22-33, Jan. 1985.

Table 1. Results for Hypercube Traffic Problem
Total Initial Corrun. Final Comm. Ideal Comm.

N Moves Overhead Overhead Overhead

Fl F2 Fl F2 FI, F21

8 110 272 14 48 2 48 2

16 940 756 21 128 2 128 2

32 9 ,000 2,384 28 320 2 320 2

64 37,500 8,400 49 768 2 768 2

128 212,200 26,060 64 1,792 2 1,792 2

256 1,415,600 72,780 82 5,004 12 4,096 2

512 6,536, 100 203,350 10 l 13,912 20 9,216 2

Table 2. Results for Tree Traffic Problem
Total Initial Comm. Final Comm. Ideal Comm.'

N Moves Overhead Overhead Overhead

Fl F2 Fl F2 Fl, F2,

8 35 92 10 32 4 32 4

16 250 248 15 72 4 64 4

32 7 ,600 558 20 144 4 128 4

64 49,800 1,340 22 272 4 256 4

128 280,300 2,752 24 546 4 512 4

256 1,552,400 6,182 30 1100 4 1024 4

512 6,802,000 12,974 32 2144 4 2048 4
'Lower bound.

7

COMPARlNG THE PERFORMANCE OF

TWO DYNAMIC LOAD DISTRIBUTION METHODS

L.V. Kale 1 .

Department of Computer Science

University of Illinois at Urbana-Champaign

1304 W. Springfield Ave., Urbana, IL-61801

Abstract - Parallel processing of symbolic computa­
tions on a message-passing multi-processor presents one
challenge: To effectively utilize the available processors,
the load must be distributed uniformly to all the proces­
sors. However, the structure of these computations can­
not be predicted in advance. So, static scheduling
methods are not applicable. In this paper, we compare
the performance of two dynamic, distributed load
balancing methods for small-grained tasks on large
parallel machines.
1. Introduction

Processor utilization is a key factor that decides the
speedup provided by a parallel system. A thousand pro­
cessor system can provide a speedup of 1000 only i/ all
the processors can be kept busy all the time. Ideally, the
computation should be divided in P equal parts (where P
is the number of processors), one for each processor.
But, it is usually impossible to identify 'P equal parts'
except for highly structured computations. An alterna­
tive is to divide the computation into many small
granules. Then, even if these granules are of unequal
sizes, their large number would allow us to distribute
them equally. Many parallel evaluation schemes for
functional programs, logic programs, problem-solving,
searching etc., offer such a small grain of parallelism.

The large pool of tasks may lead to a increased
speedup only if there is an effective load distribution
scheme, one that ~nsures that no processors remain idle
while there is work available in the system. This is par­
ticularly true on a message-passing multiprocessor.

What sort of load· balancing system is needed for a
message passing system? The unpredictability of compu­
tation structures implies that it must be a dynamic or
run-time strategy, as opposed to a static or compile-time
strategy. For scalability, it must not be centralized at a
few PEs, but distributed on all of them. Also, it should
not depend on global information. Each PE should only
use the information provided by its neighbors.

There has been a substantial amount of research on
the problem of load balancing and load distribution [1, 2,
8]. However, most of it has been in the context of either
large-grain tasks, or a relatively small number of proces­
sors, or in the context of real-time tasks. Much work

This research was supported in part by the National Science
Foundation under grant number CCR-87-00988.

has been done for static load balancing2, where the
task-to-processor mapping is decided ahead of run-time.
There has been very little work on dynamic load balanc­
ing for fine-grained parallel tasks running on a large
number of (lOOs to tens Of thousands) parallel processors.

In this paper, we compare the performance of two
such load balancing schemes. One of them is 'contract­
ing within a neighborhood' (CWN), a relatively simple
strategy proposed by us [3]. The other is the Gradient
Model (GM) proposed by Lin and Keller [6].
2. The Competitors

The small grain tasks found in most application
domains have some interesting features in common.
When activated, they execute for a short time, and then
either complete, or start some sub-tasks and awaits
response from them. The same cycle is repeated on
receiving a response. Usually, it is prohibitively expen­
sive to move a task from a PE to another after it iias
spawned sub-tasks. Both the strategies we describe
avoid that. They do differ as to when a task is distri­
buted: CWN schedules a task on some PE as soon as it is
created; the GM keeps the newly created tasks on the
source PE, and distributes them when required.
2.1. Contracting Within Neighborhood

This scheme is based on the fact that allowing com­
munication between arbitrary pairs of PEs is not scalable.
In a system with global communication, as the number of
PEs is increased, a point is reached beyond which the sys­
tem is always communication bound. This is true for any
interconnection scheme which uses a fixed ~umber of
connections per PE [4]. It is possible to avoid global com­
munication in tree structured computations as the com­
munication is almost exclusively between parent and
child tasks. So CWN restricts a child task to be within a
fixed radius - neighborhood - from its parent. Also, in
the interest of agility, CWN sends every subgoal out to
another PE as soon as it is created.

8

1 In some of the large-grain load balancing literature, a distinction is
ma.de between the terms load balancing and load distribution. There the
former term refers to initial distribution of work, whereas the latter refers to
what we call redistribution of work. On fine-grained systems, the tasks are
being created throughout the life cycle of the a. computation with almost
equal rate. We use the term load balancing to refer to the general problem
of maintaining adequate levels of load on all processors.

Each PE maintains the load information about its
immediate neighbors. This information can be a combi­
nation of various factors that gauge the current and
future 'load' on that PE. A simple measure is the
number of messages waiting to be processed by that PE.
This information is maintained by broadcasting a very
short message to all the neighbors periodically, or as an
optimization, piggy-backing the load information 'word'
with regular messages. Any time a subgoal is created on
a PE it sends a new goal message to its least loaded
neighbor. The message also includes a count field that
says how many hops the message has traveled from the
source. A PE that receives such a message keeps the
goal for processing if the hop count is equal to the
allowed radius. Otherwise it sends the goal to its least
loaded neighbor after incrementing the count. If a PE
finds its own load is less than its least loaded neighbors,
it keeps the goal provided the message has already trav­
eled a stipulated minimum hops. Thus, a new subgoal
travels along the steepest load gradient to a local
minimum. A goal, once it is accepted by a PE, remains
there, and is finally executed by that PE.

As it follows the local load gradients, this scheme
may not send a given subgoal to the least loaded PE in
the neighborhood, because of the horizon affect. How­
ever, looking for the least loaded PE in the neighborhood
would be expensive. The minimum hops are stipulated
to alleviate this problem to some extent. A source PE
cannot keep a piece of work even if it is the least loaded
among its neighbors. It must send it some distance to
'look over the horizon', and then possibly get it back.

The scheme is naive on several counts. First,
requiring every piece of work to be contracted out to
another PE seems excessive. Also, once a goal reaches its
'destination' it remains stuck there, which removes
opportunities for a correction as time goes on. However,
the strategy is meant as a starting point. The simula­
tion studies should suggest specific ways of improve­
ment.

The scheme has two parameters: the radius, i.e. the
maximum distance a goal message is allowed to travel,
and the horizon, i.e. the minimum distance a goal mes­
sage is required to travel.
2.2. The Gradient Model

The gradient model is a more elaborate scheme
than CWN. A newly generated subgoal is simply entered
in the local queue. A separate, asynchronous process
handles the load-balancing functions. This process
wakes up periodically, and computes the load on the PE
as in CWN. Using two parameters, the low-water-mark
and high-water-mark, it decides the state of the node as
follows. If the load is below the low-water-mark, the

9

state is idle. If the load is above the high-water-mark,
the state is abundant; Otherwise, it is neutral. It then
computes its proximity: The proximity of an idle node
is O. For others, it is one more than the smallest prox­
imity of their immediate neighbors. All the PEs initially
assume that the proximities of their neighbors are 0. If
the calculated proximity is more than network diameter,
then it is set to (network diameter +1), to avoid
unbounded increase in proximity values. If the proxim­
ity is different from its previous value, it is broadcast to
all the neighbors. If the state were idle or neutral, the
process sleeps until the next interval. If the state were
abundant, it sends a goal message from the local queue
to the neighbor with least proximity. The neighbor just
adds the message to its queue. This may change its state
which is noticed when the gradient process on that PE
wakes up.

The proximity of a PE represents a guess at the
shortest distance to an idle PE. It is a 'guess' because by
the time the information about an idle PE reaches
another PE via the update-and-broadcast-proximity
sequence, the state of some PEs may have changed.

The rationale behind the GM is to keep work locally
as far as possible, and to send work out towards a PE
that is in danger of being idle. This strategy is
parameterized by: the low-water-mark, the high-water­
mark, and the sleeping interval between two execution
cycles of the gradient process.
3. The simulation set-up

The simulations were carried out on ORACLE, a
multi-processor simulation system we are developing.
ORACLE is written in SIMSCRIPT, which supports pro­
cess abstraction. ORACLE has one process for each user
process running on a PE, and one process for each com­
munication channel. Thus it models contention for the
basic resources of a parallel system.

ORACLE accepts input specifications such as the
number of PEs and their interconnection scheme, the
load balancing strategy to be used (from its repertoire of
strategies), control strategy options, form and kind of
output information required, a program to execute and
times to be charged for primitive operations. ORACLE
can provide statistics on a variety of performance
aspects such as the overall average PE utilization, aver­
age utilization of individual PEs, average and individual
utilizations of communication channels, and the time to
completion.

A point worth noting is that when we run a pro­
gram on ORACLE, we get the result of the program, in
addition to the performance statistics. In contrast, a
trace driven simulation approach would be to carry out
the computation in advance, producing a trace, which

will then be used by the simulation system to get the
performance figures. We found such an approach would
not save much in terms of simulation time. Another
approach could be to use a statistical model of computa­
tion. In absence of any uniform model of parallel com­
putations, it was thought to be too unreliable and ad­
hoc an option. So we opted for executing specific com­
putations with well-understood structures.

The sample points at which to compare the two
schemes vary on many dimensions: the interconnection
topologies, the .number of PEs, the computation struc­
ture and size, and the communication to computation
ratio.

We selected 2 interconnection topologies: the 2-
dimensional grid (nearest neighbor grid) with wrap­
around connections and the double-lattice-mesh (DLM)
topologies. The grid was used in simulations of the gra­
dient model by Lin [7]. The DLM is a bus-based topol­
ogy proposed by us [4]. We also decided to simulate
systems with 25 to 400 PEs. Beyond 400 PEs, the time
required for simulations was prohibitive. This range
should be sufficient to understand how the schemes will
behave when the size of the system changes.

To be able to interpret the simulation results, and
get an understanding of how the load .balancing schemes
behave, we needed a predictable computation, whose
structure is easy to grasp. Then, there won't be ambi­
guities about whether a certain feature that is seen in
the simulation data is due to the nature of the computa­
tion or due to the load-balancing scheme. We chose to
use divide-and-conquer, and naive-fibonaeei programs
for these reasons. The divide-and-conquer (abbreviated
de) program was used by Lin, and may be written as:
dc(M,N) +- if M = N then M

else dc(M,(M+N)/2) + dc(l + (M+N)/2, N)
The naive-fibonacci is the doubly recursive function to
compute fibonacci numbers.
fib(M) +- ifM < 2 then M else fib(M-1) + fib(M-2)

It must be pointed out that we are not really interested
in how to compute this functions in parallel. There are
much more efficient methods for computing them.

We used 6 different computation sizes for each pro­
gram. Fibonacci of 7, 9, 11, 13, 15 and 18, and the de
computations of the same sizes, namely: dc(l,n) for
n=21, 55, 144, 377, 987 and 4181. All we wanted to
focus on effectiveness of load distribution, we decided to
isolate the factor of communication load. We chose the
ratio of communication to computation to be such that
communication stagnation does not occur.
3.1. The optimization experiments

Each scheme has a few parameters that have to be
selected. In the interest of fairness, the parameters

10

must be chosen in such a way each scheme is working at
its best. We chose a few sample points in the space of
planned experiments, and ran the simulations for vari­
ous combination of parameters. The winning combina­
tions were used for the comparison experiments. The
parameters so chosen are shown in the table below.

It is worth noting that the 20 units interval is fairly
low, as the total execution time for simulations ranged
from 1000 to 23000 units. That means the gradient pro­
cess is running very frequently, which should be an asset
to its performance. Also, we assume a communication
co-processor to handle the routing and load-balancing
functions (for both strategies). Without such a co­
processor, the gradient model will suffer more, because
it executes a more complex code and more frequently.

parameter grids lattice-meshes

CWN: radius/ horizon 9/2 5/1

GM: high/low-water-mark 2/1 1/1

GM: sleeping interval: 20 units 20 units

Table 1: Selected Parameters
4. Simulation Results, and Interpretation

The choices of sample points mentioned above lead
to 240 simulation runs (2 problem types * 6 problem
sizes * 2 topology types * 5 topology sizes * 2 stra­
tegies). The simulations were run on a VAX Each run
took between 15 minutes to 3 hours of time on a Vax-
750.

Plots 1 through 6 show the performance of the two
schemes on the divide-and-conquer computations. (See
[5] for the complete set of plots, including simulations
for hypercubes). Each plot depicts experiments done on
a specific topology, for one problem type. Thus Plot 1
shows the results of 6 de computations of varying sizes,
running on a double-lattice-mesh with 400 (20x?O) PEs.
The Y-axis shows the average PE utilization in percents.
The X-axis is the problem-size in total number of goals
generated during the computation. The speedup can be
computed by multiplying the number of PEs by (average
utilization percentage/100).

On the grid topologies, the OWN is a clear winner
by substantial margins. On the double lattice-meshes
also OWN consistently performs better than the GM.
The only one case seen in these plots where CWN is out­
performed by the GM occurs in plot 2, while running
de{l,4181} on a DLM with 100 PEs.

The comparative figures from all the runs are
shown in table 2. For each run, we show the ratio of
speed-ups obtained using OWN to that obtained using

GM. In 118 out of 120 cases, the OWN is seen to be
better. In 110 of those cases, the difference is
significant, i.e. more than 10%. On grids at times the
OWN leads to thrice as much speed as (i.e. the response
time) GM.

The DLM topologies have smaller diameters (4-5)
compared to the grids (ranges from 8 to 38). The supe­
rior performance of OWN on the grids leads us to conjec­
ture that it performs better than the GM on large sys­
tems, which of course tend to have larger diameters.

To understand the operation of each method, we
plot the utilizations during short sampling intervals
throughout the course of computation, for a few selected
computations. Plots 7 through 9 show the utilization as
time varies for 3 Fibonacci computations on both topo­
logies with 100 PE. The OWN has much faster 'rise­
time' than GM: it spreads work quickly to all the PEs at
beginning. The pitfalls of OWN are also seen, e.g. in
Plot 7 and 8. Although it takes the system close to
100% utilization quickly, it cannot maintain the perfor­
mance at that level. The Gradient model manages to
maintain 100% when it reaches that level (plot 7). This
is because of GM's ability to re-distribute work. For
OWN, once a goal is sent to a PE, it must be executed
there, although the load conditions may change after
that. It can correct such imbalances only by using
newly created goals, which limits its ability to supply
work to idle processors.

The main problem with GM is that it is not agile
enough. PEs hoard work until they are sure they are
'abundant'. On the grids, a stronger flattening is seen
(plot 9). When about 40% of the PEs have received
work, most PEs think there is not sufficient work to dis­
tribute it to others, and so keep the new goals they gen­
erate, which leads to loss of parallelism, and as a result
not enough work gets generated. This 'vicious cycle' is
responsible for the flattening of the plot.

Examination of the detailed simulation output, not
shown here, reveals another potential problem with
OWN. Typically, it requires thrice as much communica­
tion as the GM. In GM, the average distance traveled by
a goal message is typically less than 1. A significant
number of goals just stay at the PE they were created
on. On the grids, with OWN the distance traveled is
about 3. For example, in computing fib(18) on a lOxlO
grid, the average distance was 3.15 for OWN and 0.92 for
GM.
6. Conclusions and Future Work

Although OWN performs better than GM in most
experiments reported here, it still has a large room for
improvement. First, OWN does not allow a goal to be
re-distributed once it has been sent to another PE. As

seen in Plots 7 and 8, the available work is just
3ufficient to keep every PE busy, but as the OWN cannot

11

re-shuffle work, some PEs remain idle. However, re­
shuffling is not useful when the work is more than
sufficient or when it is too little. So, a small, well­
controlled (i.e. responsive to run-time conditions) re­
distribution component should be added to OWN. Also,
the larger communication distances indicate that OWN

needs saturation control: When the system is running at
100% utilization, there is no need to send every goal out
to other PEs. Detecting such a situation and then keep­
ing goals locally until the situation changes would be
worth investigating. Both of these amount to incor­
porating the good features of GM in OWN. Care must be
taken not to lose the agility of OWN while modifying it.

A note of caution is in order. We chose a low com­
munication to computation ratio to ensure that com­
munication stagnation does not interfere with the pro­
perty we were trying to measure: namely, the ability to
distribute computation load effectively. When the ratio
is higher, OWN, as it is, may lose some of its edge.
Techniques of the last paragraph will then be necessary.

Acknowledgement: I am grateful to Michael Carroll,
Valerie Rasmussen, and Wennie Shu for their help with
the simulations.
6. References

1. D. L. Eager, E. D. Lazowska and J. Zahorjan,
"Adaptive Load Sharing in Homogeneous
Distributed Systems", IEEE Transactions on
Software Eng., SE-12, 5 (May 1986), 662-674.

2. D. L. Eager, E. D. Lazowska and J. Zahorjan, "A
Comparison of Reciever-Initiated and Sender­
Initiated Adaptive Load Sharing'', Performance
Evaluation, 6, 1 (March 1986), 53-68.

3. L. V. Kale, "Parallel Architectures for· Problem
Solving", Doctoral Thesis, Dept. of Computer
Science, SUNY, Stony Brook, NY-11794.,
December 1985.

4. L. V. Kale, "Optimal Communication
neighborhoods'', Proc. of ICPP, St. Charles,
Illinois, August 1986.

5. L. V. Kale, "Comparing the Performance of Two
Dynamic Load Distribution Methods", Tech.
Report No. UIUCDCS-R-87-1387, September
1987.

6. R. Keller and F. C. H. Lin, "Simulated

7.

8.

Performance of a Reduction Based
Multiprocessor", Computer, 17, 7 (July 1984),.

F. C. H. Lin, "Load Balancing and fault tolerance
in applicative systems", Doctoral Thesis, Dept. of
Computer Science, Univ. of Utah, August 1985.

J. A. Stankovic, "Simulations of Three Adaptive,
Decentralized Controlled, Job Scheduling
Algorithms", Computer Networks, 8, 3 (June
1984), 199-217.

.. ·
.. ... ··

Plot 1
DLM 20x20, w:5

Divide and Conquer

J

2000 4000 6000 8000

r- Plot4 l Grid 20x20
20 t Divide and Conquer

.~ t
10 r
.. lO~ s t
::; f ••••••• -er ·····
re
~

[_ ······
I ,..····"

0 ____;,._......_._..~......._._.........._._._._,~~ ~
0 2000 4000 6000

0
0

r Plot 7
~· DLM lOxlO w:5

.:.._~ Fibonacci (15)

1000 2000

8000

3000

80

60

40

20
Plot 2

DLM lOxlO, w:5
Divide and Conquer

...

O"-'-'-........_.........._........._.~_.._.._........_, ~ ~
0

60

40

20

100

80

60

2000 4000 6000 8000

Plot o
Grid lOxlO

Divide and Conquer

.

....
·"

....
.... ······"°"

2000 4000 6000 8000
x-axis: No. of Goals

Plot 8
Grid lOxlO

Fibonacci (18)

JP:a r~.
40 <? O'ir;"d :

0
!P~ IP:

,'!a .
20

.

·"""'-· o,,,._.~_,__,_~-'-lo-~-'--~'-'--'-~lo-L...J

0 10000 20000
x-axis: Time

,--· . - ----

--e- Nbrhood Contracting
•e• • Gradient Model

Speedup of CWN over GM

Table lt

PEs

fib{7}

fib(9}

fib{11}

fib{19}

fib{15}

fib{18}

dc{1,1!1}

dc{1,55}

dc(1,1U)

dc{1,971}

dc(1,987}

dc{l,,/181}

25

1.56

1.56

1.56

1.60

1.58

1.74

1.46

1.37

1.39

1.28

1.38

1.36

Grid11

64 100 256

1.57 1.44 1.57

1.53 1.30 1.56

1.56 1.79 1.92

1.92 1.83 1.71

2.14 2.03 2.56

1.72 2.18 3.03

1.47 1.44 1.47'

1.33 1.37 1.33

1.48 1.38 1.48

1.72 1.34 1.65

1.89 1.98 2.09

1.42 2.27 2.91

12

80

60

40

·······
······ ······ ······

Plot a
DLM 8x8 w:4

Divide and Conquer
o _......_,.........cc,_,_._..w..-....i... ~_,

0

60

40

20

80

60

40

20

2000 4000 6000 8000

...
...

...

Plot 8

······"' ...

Grid 8x8
Divide and Conquer

2000 4000 6000 8000

Plot 9
Grid lOxlO

Fibonacci (15)

2000 4000 6000 8000

Double Lattice Me11he11

400 25 64 100 256 400

1.57 1.30 1.18 1.24 1.18 1.23

1.56 1.06 1.14 1.33 1.14 1.21

1.92 1.09 1.12 1.06 1.11 1.16

1.71 1.09 1.08 1.09 1.04 1.10

2.56 1.21 1.14 1.04 1.05 1.04

3.09 1.24 1.20 0.87 1.09 1.08

1.47 1.41 1.46 1.51 1.46 1.51

1.33 1.17 1.51 1.35 1.51 1.38

1.48 1.25 1.25 1.40 1.32 1.52

1.65 1.17 1.16 1.11 1.12 1.44

2.09 1.17 1.21 1.09 1.06 1.29

2.82 1.30 1.27 0.96 1.18 1.31

AN APPROXIMATE LOAD BALANCING MODEL
WITH RESOURCE MIGRATION IN DISTRIBUTED

SYSTEMS

Ravi Varadarajan
Computer and Information Sciences Department

University of Florida, Gainesville, FL 32611

Eva Ma
Department of Computer and Information Science
University of Pennyslvania,Philadelphia, PA 19104

Abstract - Resource migration in a distributed com­
puter system can be performed for performance enhance­
ment as well as for reliability or availability improvement.
The intractability of the general load balancing model with
both job and resource migration suggests obtaining ap­
proximate solutions. The existing approach is to use heuris­
tic rules to find approximate solutions. In this paper,
we adopt an alternative approach of separating the job
and resource migration problems and propose an approx­
imate model (commodity distribution) for resource mi­
gration which can be solved by a polynomial-time algo­
rithm. We demonstrate the application of this model to
two load balancing problems: file migration in distributed
databases and host migration in mobile computer net­
works. We also outline our efficient algorithm for solving
a special case of this model.

Introduction

A resource in a computer system is defined as any hard­
ware or software entity required for the execution of a
user job. Examples of resources include processors, memo­
ries, interconnection networks, system processes, data files,
database relations and file servers. In a distributed com­
puter system, some of these resources are distributed amo­
ng the various nodes in the system. If the distribution of a
resource among the nodes can vary with time, then we call
this resource a, 'migratable' resource. Examples of such re­
sources include datafiles, processes and mobile hosts. Tra­
ditionally, the term 'load balancing' refers to the operation
of distributing or redistributing the user tasks among the
different nodes in a distributed system, to achieve a de­
sirable performance level; typical performance measures
include job response time, throughput and processor uti­
lization. We extend this definition of load balancing to
include the operation of distributing or redistributing the
migratable resources of a computer system to achieve a de­
sirable performance level. Redistribution of the user jobs
among the nodes in the system is known as job migra­
tion. We call the redistribution of migratable resources as
resource migration.

Load balancing models without resource migration have
been extensively studied in the literature (e.g. [3], [5]).
We give a few examples of applications where resource mi­
gration is also used for load balancing. In a distributed

13

database system, file migration is performed in order to
maintain at all times, a desirable relation between the file
access rates and the distribution of file copies among the
nodes. Another example of resource migration in a dis­
tributed computer system can occur when a job in one host
needs the services of a system process such as a file server,
query processing program and editor process, running on
a remote host. Here, instead of sending the request to the
remote host and transferring the results back, the required
process itself can be migrated from the remote host. An
example in which a processor itself can migrate is a mo­
bile computer network which consists of mobile hosts and
in which the topology can change from time to time.

An important iss~e in load balancing with both job and
resource migration is the problem of deciding which jobs
or resource units to migrate. We refer to this problem the
general load balancing problem with resource migration.
In this problem, it is necessary to find a proper distribu­
tion of resources and jobs among the various nodes of the
system so that the desired trade-off occurs between the
job migration cost and the resource migration cost. In one
formulation of this problem, the total migration cost (of
jobs and resources) is minimized. This optimization prob­
lem had been shown to be NP-hard ([2]). The total cost
criterion is useful when the resources and the jobs have to
be migrated one at a time as for example, when a single
broadcast bus such as Ethernet is used for migrating the
resources and the jobs among the nodes. The bottleneck
cost criterion is more appropriate when the resources and
the jobs can be migrated in parallel. The load balanc­
ing problem with the bottleneck cost criterion can also be
shown· to be NP-hard. We omit the problem formulation
and the proof of its intractability here (see [7]).

The exact solutions for the load balancing problem
need either exhaustive or heuristic search procedures, all
of which are prohibitively expensive to be executed in real
time. As a result, approximate solutions are usually used
instead for the problem. One approach which is common
to all the existing techniques is to use heuristic rules for
guiding the search to an approximate solution. However,
the heuristic rules for obtaining approximate solutions are
generally difficult to .derive and the accuracy of the solu­
tions are hard to verify. In this paper, we propose a new
approximation approach to solve the general load balanc-

ing problem.
In the new approach, first we focus on resource migra­

tion only but with a view to reducing the job migration
costs. For this resource migration problem, we propose
an approximate model which can be solved in polynomial
time. This approximate model partitions the given system
into regions such that all the jobs as well as the resources
in a region have similar characteristics. The partitioning
helps to achieve local approximations for the job and re­
source characteristics (the smaller the regions, the better
the approximations) as well as to separate job and resource
migration problems. By suitable partitioning, good ap­
proximate solutions to resource migration problem can be
obtained. The approximate model for resource migration
reduces to a bottleneck transportation problem and hence
can be solved by a polynomial-time algorithm.

In the next section, we introduce our approximate mod­
el for load balancing and also give a brief outline of an
effcient algorithm we have developed for solving a special
case of this problem. In Section 3, we discuss in detail the
application of this model to file migration problem in dis­
tributed databases and the simulation results on two small
examples. In Section 4, we discuss briefly the application
of the model to host migration in mobile computer net­
works. Finally, we give conclusions and future directions.

Approximate Model for Resource Migration
First, we partition the given distributed system into acer­
tain number of regions (say m) Wi, W2 , ••• , Wm such that
all the jobs within a region have similar characteristics such
as resource requirements. In our model, we only consider
the migration of the resources but not the jobs among the
regions. It may be possible that even after resource migra­
tion, a job at a node may need a resource which may not
be available at the same node. In this case, the request
for the resource can be processed remotely at some node
within the same region or the job itself can be migrated
to the node containing the resource. In either case, after
resource migration, all the resource requirements within
a region must be met by the resources that exist in the
same region; this restriction is specified as a constraint in
our problem.

A word on notation. We denote the set of non-negative
integers by N. Now we define the following parameters:

Jn - fixed cost of migrating one unit of resource
en - unit distance resource migration cost
b; - average resource requirements for a job in region W;
M; - Number of jobs in region W; that need the resource
N; - Number of resource units in region W; before migra­
tion
h; - average time for a node in region W; to communicate
a resource request to a reme>te node within W; and send
the results back
a; - average time to process a resource request in region
W;
d;; - average distance between regions W; and W;
T - desired average job response time

The quantities a; and b; are averages over all the nodes

14

and the jobs respectively while h; is an average over all
pairs of nodes in the region W;. The quantity d;; is an av­
erage over all pairs of nodes (v1, v2) such that v1 E W; and
v2 E W;. We assume that the total number of resource
units remains the same after resource migration.

With the bottleneck migration cost criterion, the re­
source migration problem is formulated as follows:

Minimize max Un + cn.d;k)
{(j,k)lz;k>O}

s.t.
h M;.b;.a;

$ T, for all 1 $ j $ m ;+Em
k=l Zkj

m

LZjk N;,forall1jm
k=l

Zjk E N, for all 1 $ j, k $ m.

The variable z;k denotes the number of resource units that
need to migrate from the region W; to the region Wk. The
quantity R; = r-7:J.X;"{l is the minimum resource capacity
(expressed in number of resource units) needed to meet
the requirements of jobs in region W;. The quantity t;k =
Un+ cn.d;k) is the cost of migrating a resource unit from
the region W; to the region W,..
With these notations, we reformulate the load balancing
problem as follows :

Minimize max t;k
{(j,k)lz;k>O}

m

s.t. LZkj ~ R;, for all 1 $ j $ m
k=l
m

LZjk = N;,forall1jm
k=l

Zjk E N, for all 1 $ j, k $ m.

The above formulation is known as the bottleneck trans­
portation problem in the Operations Research literature.

It is also possible to define two sets of regions, one for
the resource distribution before migration and the other
for the distribution after migration. We call these regions
"supply" regions and "destination" regions respectively.
The supply regions can be defined depending on the basis
of job characteristics and also on the network character­
istics to a certain extent. The destination regions can be
defined on the basis of resource migration costs. Note that
the number of supply regions need not be the same as the
number of destination regions. This variation in the model
provides a close approximation to the exact model we have
defined and also it can be used to reduce the dimension of
the problem with very little additional approximation.

Several efficient algorithms for the bottleneck trans­
portation problems have been proposed in the literature
(e.g. [4)). One special case of the problem is the 2 x n
(n x 2) bottleneck transportation problem in which there
are two suppliers (destinations) and n destinations (sup­
pliers). We have developed an O(n2) algorithm to solve
this special case. We will give a brief outline of our algo­
rithm here (refer to (6] for details). The algorithm for the
2 x n problem uses the fact that there is an optimal solu­
tion in which at most one destination needs to be supplied
by both the suppliers. Hence we restrict our attention to

only those solutions which satisfy this property. At each
iteration, a new feasible solution is obtained which has a
bottleneck value less than or equal to that of the previous
solution. An upper bound for the optimal value is implic­
itly defined by each new feasible solution. In addition, we
determine at each iteration, the optimal shipments and
the corresponding suppliers for one or more destinations.
Hence after each iteration, a new bottleneck problem is
solved with these destinations eliminated. The bottleneck
value among the eliminated destinations is used to define
a lower bound for the optimal val~e. The algorithm stops
when the lower bound is greater than or equal to the upper
bound or when the optimal shipments can be determined
for all the destinations.

To summarize our approach to solve the load bala,nc­
ing problem, we use an approximate model to obtain an
approximate solution for the exact model of the load bal­
ancing problem with resource migration. This approach
avoids using heuristic rules to obtain the approximate so­
lutions directly from the exact model. The heuristic rules
are difficult to derive in many instances and do not take
into account the specific nature of the applications. In the
approximate model we propose, how the system is par­
titioned into regions affects the accuracy of the solution
and this partitioning can exploit the characteristics of the
specific application domain. For example, in the case of
local area networks gatewayed together, each local area
network with its resources can be considered a region in
the approximate model.

In the next section, we discuss in detail the application
of this load balancing model to the file migration problem
in distributed systems.

Database File Migration

In a distributed relational database, relations are parti­
tioned either vertically (across attributes) or horizontally
(across instances of the relations) into possibly overlapping
fragments which are referred to as database files. These
files are distributed (also replicated) across the nodes in
the network. A transaction submitted by the user at a
node can be either a query or an update on the database.
The update transaction translates into requests to all the
relevant sites or nodes for updating the appropriate files.
We do not address the query decomposition problem here.
If the file required by a subquery or a query does not exist
locally (i.e. on the node at which the query is generated)
then the subquery is sent to a remote node containing the
file and processed there. We will explain later how a re­
mote node is chosen for processing a subquery.

All the database transactions thus generate over a pe­
riod of time an access pattern for the various database files;
these access requests are classified into query and update
requests. When the locality of file access patterns changes
with time, files (along with the programs to process the
subqueries) need to migrate among the nodes. For simplic­
ity, we only consider the problem of single file migration
(that is, the problem of migrating the multiple copies of a
file).

15

The following costs are incurred during file migration:
(1) costs of file and program storage , (2) costs of updat­
ing all file copies, (3) costs of file migration and (4) query
costs. In determining optimal file migration, we want to
minimize the first three costs while maximizing the av­
erage query throughput or minimizing the average query
response time. The query response time consists of the
following two components: (1) query communication time
which includes the time for sending the request and receiv­
ing the results back and (2) query processing time which
includes the time for processing the file access request. In
formulation of the file migration problem, we make the
following assumptions:

1. A constant number of file copies is maintained at all
times.

2. Due to the first assumption, whenever a new file copy
is generated at a node, some other existing copy at
another node needs to be deleted.

3. All file copies can migrate in parallel.

4. Query communication delay is independent of the
query traffic and is dependent only on the commu­
nication distance. We assume that the nodes have a
limited processing capacity (expressed in file access
requests per unit time) and the processing capacity
is the same for all nodes. Hence the query process­
ing delay is directly proportional to the query traffic
directed to the node containing the file copy.

These assumptions, justifiable in many instances, are made
primarily to simplify the presentation of our model, and to
illustrate that even under these simplifying assumptions,
the problem is already NP-hard. We use the following no­
tations:

V - set of all nodes in the system and P(V) its power set
I ,I' - set of nodes containing file copies after and before
migration
f: (/ - I')-+ I' - migration function specifying how the
files migrate
g : V -+ I - query assignment function specifying where
a query request from a node needs to be processed
.h : I -+ P(V) - indicates for a file copy node, the set
of nodes whose queries need to be processed by that node
(i.e. inverse function of g)
n - number of nodes in the system
q - query processing capacity of a node (file access re­
quests per unit time)
u,,,b,, - update and query request rates from node x
m,,,y,s:r:,y - unit update and query communication costs
from node x to node y
Fy - cost per unit time of storing a file copy at node y
E:r:,y - cost of migrating a file copy from node x to node
y
8 : I -+ A! - query delay function indicating the average
delay in processing a query at a node
T - desired maximum average query response time

There are three cost components, namely the file copy

overhead cost (denoted by U (I)), the query cost (denoted
by Q(l,g)) and the migration cost (denoted by R(I,f)).
These costs are defined as follows:

R(I,f)

U(I)

Q(I,g)

y!f/1ij, EJ(y),y

IJ~= Uxmx,y + Fy]
yEJ xEV

max [sxg(x)+h'(g(x))]
{xEVlbx>O} '

Here h'(y) = Lxeh(y) bx/ q. The general file migration prob­
lem is posed as follows: Find I, g and f (injective) such
that R(I, f) is minimized with the constraint that
Q(I,g) ST, U(I):::; C (T and Care positive constants)
and /I/ = /!'/.

A different formulation of the file migration problem is
given in [8]. In this model, the total cost criterion is used
'for all the above three costs and the sum of all these three
costs is minimized while fixing g and f as follows: g(x) =
minyEJ Sx,y and f (x) = minyEJ' Ey,x· Also in this model,
Q(I,g) = Lxev b,, g(x), that is, the query processing time
is assumed to be dependent only on the communication
cost but not on the query traffic. In our formulation (we
call it "bottleneck file migration problem"), we separate
the query cost into a constraint on query response time.
This formulation is useful to guarantee a maximum query
response time.

We can easily show that the bottleneck file migration
problem is NP-hard even if there is no constraint on the
file copy overhead cost (U(I)); for the proof see [7]. We
will illustrate how our approximate model can be used to
solve this problem. In our approximate model, we simplify
the problem by first eliminating the constraint on the file
copy overhead cost. In most applications, when a con­
stant number of file copies is maintained, this overhead
cost would not differ significantly among different alloca­
tions of these copies to the nodes. Next we separate the
query access problem (i.e., determining g) from the file
migration problem (i.e., determining f and /). For this,
we partition the set of nodes into regions Wi, W2 , ••• , Wm.
Let I~, I~, ... , I:,, be the corresponding sets of nodes in the
regions containing file copies before file migration; that is,
Ij = {x E Wi/x E I'}, for 1 :::; j :::; m. One of the pos­
sible rules for partitioning is discussed below. First we
introduce the following additional notations:

Ni = number of file copies in Wi before migration
= /{x E Wi/x EI'}/

Lj =number of nodes in region Wj (= /Wi/)
Sj = average query communication cost in region Wi

= Lx,yEWj Sx,y/(LJ - Lj)
Ej,k = average cost of file copy migration from Wi to Wk

= LxEij LyE(W.-1~) Ex,y/(Nj X (Lk - Nk))
Qj = total query traffic in region Wj (= Lxew, b,,)
Zj,k = number of copies to be migrated from Wj to wk

One possible rule to use in the partitioning is to require
that the nodes in each region have similar migration cost
characteristics and communication cost characteristics.
More formally, for 1:::; j:::; m and x,y E Wj with x =f. y,

16

/s,,,y-Sj/ < Ei, for E1 very small. Also for 1 $ j, k :::; m, x E
Wi and y E Wk, /Ex,y - Ej,k/ < E2 for E2 very small. Larger
the values of c1 and E2 , larger will be the number of regions
and greater will be the time to solve the problem. On the
other hand, smaller these values, smaller the number of
regions but further from optimality the solution from this
model will be. Thus a "good" partitioning rule makes
a suitable trade-off between accuracy and time and this
trade-off depends on the specific distributed system under
consideration.

Now we formulate the file migration problem as follows:

Minimize max Ejk
{(j,k)lz3•>0} '

s.t. s~ + Qj
J Lk=l Zkj·q

:::; T, for all 1 :::; j :::; m

m z: Zjk Nii for all 1 :::; j :::; m
k=l

Zjk E N, for all 1 :::; j, k :::; m.

As in Section 2, if we introduce for each j = 1, 2, ... , m,

the quantities Rj = r (T~~j).q 1, then the problem becomes
a bottleneck transportation problem. Rj represents the
minimum number of file copies needed in region Wj to
satisfy all the query requests within region Wi. We require
here that any query request within a region be directed to
a location within the same region.

In our preliminary investigation of the performance of
this model, we considered the five-node example given in

[1] and an eight node example. We approximated the file
migration problems in these examples by the 2 x n bot­
tleneck transportation models and used the algorithm we
have developed to solve these problems. For each exam­
ple, we considered different partitioning of the system into
regions. Since the diameters of the graphs (with respect
to query communication cost) in the examples were small
compared to the response time, only the second partition­
ing rule (that is, the one requiring the regions to have
similar communication characteristics) could be tested in
this experiment. For each partition, we had 500 runs and
in each run, we varied the file access (both the query and
the update request) pattern randomly according to an uni­
form distribution. For each run, we compared the optimal
solution of the exact model with the optimal solution of
the approximate model based on whether the number of
file copies in each destination region is the same in the
two solutions. When the nodes within a region have sim­
ilar communication cost characteristics, about 50% of the
runs gave solutions that agreed with the optimal solutions.
For the arbitrary partitions, this figure varied from 2% to
25%. Thus the partitioning rule we have mentioned before
has a significant impact on the "goodness" of the solutions.

Though the file copy overhead cost was not considered
in the approximate model, we also compared these costs
for the exact and the approximate models; for the approxi­
mate model, these costs can only be estimated since the ex­
act locations of the file copies are unknown. For a "good"
partitioning such as the one in which nodes within a re-

gion have small costs to communicate within themselves,
the difference in these costs averaged to within 20% over
all the runs. Thus the file copy overhead does not ap­
preciably change due to elimination of this cost from the
approximate model. These results are encouraging consid­
ering that only a simple partitioning rule has been used
in these examples. We plan to perform a more extensive
analysis of the performance of the proposed model and of
different partitioning rules in particular, by applying it to
larger scale examples.

Host Migration in Mobile Computer Networks

A mobile computer network consists of mobile hosts which
communicate with each other, using wireless radio chan-,
nels. Thus the topology of a mobile computer network
changes from time to time. The mobile computer net-·
works are becoming a commercial reality due to the rapid
advances that are being made in mobile communication
technology. Another practical example of a mobile com­
puter network arises in robotics applications, where a team
of robots is employed to perform certain tasks in a co­
operative manner. The robots in this case, in addition to
having the processing power, also must have the ability to
communicate with each other within an operational area
like mining fields and other harsh environments.

In a mobile computer network, the mobility of the hosts
can be used to advantage in balancing the workload among
the hosts. In the load balancing problem in a mobile com­
puter network with homogeneous hosts, the objective is to
minimize the host migration cost with a constraint on the
job response time. There may also be an additional con­
straint in that the hosts must be able to communicate with
each other at all times either directly or using many hops.
Further we may also require that the results of running a
job must be available at a host which can at most be at a
distance r from the location of the host to which the job
is submitted.

Since this problem is NP-hard (see [6]), we can use
the approximate model proposed in Section 2 to solve this
problem. For this, we partition the network into geograph­
ical regions. One partitioning rule to use is as follows: the
distance between any two nodes in a region is less than
r; smaller the value of r, more the number of regions and
vice versa. The value or r also affects the "goodness" of the
solutions obtained through the approximate model. The
network can also be partitioned on the basis of the struc­
ture of the backbone network that is usually defined for
communication among the hosts. In a mobile computer
network, hosts are divided into clusters with a clusterhead
for each cluster. A backbone network connects the cluster
heads in some configuration. The hosts within a cluster
communicate with each other directly while the interclus­
ter communication takes place using the backbone net­
work. A natural choice of regions here will be the clusters
themselves. We can then formulate the approximate load
balancing model in the same fashion as defined in Section
2. The bottleneck transportation problem here determines
the number of host units that should migrate from one re­
gion to another such that the bottleneck host migr,ation

cost is minimized while guaranteeing the maximum aver­
age response time.

Conclusions

'We have proposed a commodity distribution model as a
tractable approximate model for load balancing with re­
source migration. If the given distributed system is par­
titioned on the basis of job and network characteristics,
then the approximate solution is reasonably close to the
optimal solution of the exact model. This has been demon­
strated to a certain extent in the case of file migration
in distributed data bases. A special case of this prob­
lem can be solved by an efficient algorithm which we have
developed. This resource migration model must be sup­
plemented with appropriate job migration models for load
balancing within each region. Though we have demon­
strated that partitioning rules have an impact on the ac­
curacy of the solutions, a formal analysis supported by
experimental results is necessary. This is the subject of
our future investigation.

17

References

[1] R. G. Casey, "Allocation of Copies of a File in an
Information Network," SJCC, 1972, pp.617-625.

[2] K. P. Eswaran, "Placement of Records in a File and
File Allocation in a Computer Network," Information
Processing 74, IFIPS, 1974, pp.304-307.

[3] D. J. Farber, et. al., "The Distributed Computer Sys­
tem," Proc. Seventh Annual IEEE Computer Society
International Conference,February 1973.

[4] R. S. Garfinkel and M. R. Rao, "The Bottleneck
Transportation Problem," Nav. Res. Logistics Quar­
terly, 18, 1971, pp.465-472.

[5] J. A. Stankovic and I. Sidhu, "An Adaptive Bid­
ding algorithm for Processes,Clusters and Distributed
groups," Proc. Int. Conj. Distributed Comp. Systems,
May 1984.

[6] Ravi Varadarajan, "Reliability and Performance
Models for Reconfigurable Computer Systems," De­
partment of Computer and Information Sciences, Uni­
versity of Pennsylvania, PA, Technical report MS­
CIS-87-65.

[7] Ravi Varadarajan and Eva Ma, "Load Balancing
Models with Resource Migration in Distributed Sys­
tems," Computer and Information Sciences Depart­
ment, University of Florida, Gainesville, Technical
Report in preparation.

[8] Benjamin W. Wah, "A systematic Approach to the
Management of Data on Distributed Databases,"
Ph.D. thesis, University of California, Berkeley, 1979.

An Efficient Termination Detection and Abortion Algorithm
for

Distributed Processing Systems

Kazuaki Rokusawa Nobuyuki lchiyoshi Takashi Chikayama

Institute for New Generation Computer Technology *
Hiroshi Nakashima

Mitsubishi Electric Corporation t

Abstract

This paper describes an algorithm for termination detection
and abortion in distributed processing systems, where pro­
cesses may exist not only in processing elements but also
in transit. The algorithm works correctly whether the com­
munication channels are first-in-first-out or not, and no ac­
knowledgement message is required. Assigning weights to
all processes and maintaining the invariant that the sum of
the weights is zero are the main features of the algorithm.

1 Introduction

Termination detection and abortion of all processes in a
system are major functions in parallel processing. They
are easy in closely-coupled systems, such as shared memory
multiprocessors, but difficult in distributed systems, partic­
ularly when there are processes in transit.

We have devised an algorithm for termination detection
and abortion in distributed processing systems, where pro­
cesses may exist not only in processing elements but also in
transit. This algorithm is called the weighted throw count­
ing scheme, which is an application of the weighted refer­
ence counting scheme [1] [5], a garbage collection scheme for
parallel processing systems. ·

The algorithm will be applied to parallel implementation
of KLl, a parallel logic programming language based on
GHC [4], on the Multi-PSI [3], a collection of Personal Se­
quential Inference Machines [6] (PSI's) interconnected by a
fast communication network.

This paper is organized as follows. Section 2 defines the
computation model employed. Section 3 shows the prob­
lems of termination detection and abortion in distributed
systems. A naive solution is presented in section 4. Sec­
tion 5 describes the algorithm for termination detection
and abortion where the communication channels are first­
in-first-out. The algorithm for the system with non-first-in­
first-out communication is presented in section 6. Finally

*Fourth Research Laboratory, Institute for New. Generation Com­
puter Technology, 4-28, Mita 1-chome, Minato-ku, Tokyo 108 JAPAN

!Computer Systems Development Department, Information Sys­
tems and Electronics Development Laboratory, Mitsubishi Electric
Corporation, 1-1, Ohfuna 5-chome, Kamakura-shi, Kanagawa 247
JAPAN

18

the comparison of the algorithm with the naive one is given
in section 7.

2 Computation Model

The following process model is assumed:

• A process pool consists of one controlling process and
a finite number of child processes;

• There are a finite number of process pools in the sys­
tem;

• Each process pool is assigned a unique process pool
identifier (PID);

• A child process can terminate at any time;

• A child process can generate another child process hav­
ing the same PID and a new process pool having a .new
PID as well.

In this paper, "process" means "child process" unless oth­
erwise indicated. A process pool terminates if all the chil­
dren terminate. Aborting a process pool is forcing all the
children to terminate. A process pool described above is
distributed over the following machine:

• A finite number of processing elements (PEs) intercon-
1!-ected by a communication network;

• No global storage; PEs may communicate by passing
messages;

• Asynchronous communication, in which messages are
delivered with arbitrary finite delay.

It is assumed that a PE can detect the termination of
all processes in it having the same PID and can force them
to terminate. The controlling process and PEs can com­
municate in both directions. A PE may send a message to
the controlling process informing it of the termination of all
processes, and the controlling process may send a message
to abort processes.

Although there exist a finite number of process pools in
the system at a given time, there is no limitation of total

PE i

PEj

...

[fil ~
.................................. ®

® ®

PE k

@!
@ :

.

A,B
@

: Process pool identifier (PID)

: Child process A

[fil : Controlling process B

: Process pool

Figure 1: Computation Model

number of process pools, since any process can generate a
new process pool at any time.

Processes may migrate among PEs for load balancing. To
achieve this, a PE may throw a process in the PE to an­
other PE and the thrown process is delivered with arbitrary
finite delay. Therefore, at a given time, processes may be in
transit in the communication network but not in any PEs.

3 Problems

This section describes why termination detection and abor­
tion of processes distributed over several processors are dif­
ficult, particularly when there are processes in transit.

3.1 Termination Detection

The controlling process must detect the termination of all
processes having the same PID as the controlling process.

Each PE can detect the termination of all processes with
the same PID in the PE locally and can send a message
indicating termination (terminated message) to the corre­
sponding controlling process.

However, even if the controlling process receives termi­
nated messages from all PEs, it is not sure that all processes
have terminated. There may be processes in transit, which
will be received by a PE after the PE has sent a terminated
message.

3.2 Abortion

The controlling process must force to terminate all processes
having the same PID as the controlling process.

If the controlling process broadcasts a message causing
a process to terminate (abort message), it is possible to
abort all the processes in the PE, but impossible to abort
the processes in transit. After receiving an abort message

19

and aborting the processes, the PE may receive a. thrown
process.

If a PE memorizes the PID carried by the abort mes­
sage, and, ignores received processes with the same PID as
that memorized, the abortion by broadcast scheme described
above may work. However, this scheme has disadvantages.
First, if only a few PEs have the process to be aborted,
most of abort messages are useless. Second, it is impossi­
ble to reuse a PID, because the controlling process cannot
detect the termination of the abortion; this is a major dis­
advantage.

4 The Naive Scheme

lchiyoshi et al. [2] describe a termination detection scheme
using acknowledge messages. It effectively does the follow­
ing, although different terminology is used. A non-empty
set of processes in one PE having the same PID forms a
subpool of processes, which is called a "process subpool",
or a "subpool" in short. Processes in a PE are under the
control of a subpool. On receiving a thrown process, the
PE decides whether there is already a subpool having the
same PID as the thrown process. If there is, the PE adds
the process received to the subpool and sends back an ac­
knowledge message; otherwise, creates a new subpool and
memorizes the sender PE of the process in it. Each subpool
has a counter which is incremented on throwing a process,
and is decremented on receiving the acknowledge message
or terminated message. When all processes in it are termi­
nated and the value of the counter reaches zero, the subpool
terminates and sends a terminated message to the PE mem­
orized.

This scheme is simple and termination can .be detected
correctly; if the value of the counter reaches zero, there is
neither process thrown from the corresponding subpool in
transit nor subpool created by the thrown process from the
corresponding subpool. However, it has a serious disad­
vantage; termination of a subpool depends on terminations
of other subpools. Since subpools form a tree structure, a
root cannot terminate unless all its leaves terminate. In
the worst case, a chain of subpools is created, where each
subpool terminates sequentially.

5 The WTC Scheme

We have devised a new scheme which requires no acknowl­
edge message and makes it possible to reuse the PID. This
new scheme is the weighted throw counting (WTC) scheme
which is an application of the weighted reference counting
scheme [1] [5], a garbage collection scheme for parallel pro­
cessing systems.

5.1 Termination Detection

We associate weight with the controlling process, each pro­
cess and each subpool. The weight of a process in transit
and that of a subpool are positive integers, while the weight

of the controlling process is a negative integer. The WTC
scheme maintains the invariant that:

The sum of the weights is zero.

This ensures that the weight of the controlling process
reaches zero if and only if all processes terill.inate; there is
no processes neither in a PE nor in transit (see figure 2).

When a PE throws a process from a subpool, the PE as­
signs a weight to the thrown process and subtracts the same
amount from the weight of the subpool. The new weight of
the subpool and that assigned to the thrown process should
both be positive, and the sum of the two weights is equal
to the original weight of the subpool. For example, if a
subpool originally weighs 1000, the weight of a thrown pro­
cess and the new weight of the subpool can be set to 50
and 950. When a PE receives a thrown process, it adds the
weight assigned to the received process to the weight of the
subpool having the same PID. If there is no subpool with
the same PID, a PE creates a new subpool containing the
received process and sets its initial weight at the weight of
the received process.

When the weight of a subpool becomes one, the PE can­
not throw a process, because non-zero weight must be as­
signed to the thrown process and non-zero weight must re­
main also in the subpool after throwing. The operation
when this situation occurs is described in section 5.3.

When all processes in it are terminated, the subpool ter­
minates and sends a terminated message to the correspond­
ing controlling process. This terminated message gives no­
tification of the termination of the subpool and carries the
weight of the terminated subpool. On receiving a termi­
nated message, the controlling process adds the weight car­
ried by the terminated message to its (negative) weight. If
the weight of the controlling process reaches zero, the ter­
mination of all processes is detected.

5.2 Abortion

This section describes an abortion scheme for the computa­
tion model with first-in-first-out communication; messages
are delivered in the order sent. A scheme without this as­
sumption is described in section 6.

The controlling process should be able to force all pro­
cesses with the same PID as the controlling process to ter­
minate, and detect the termination of all processes to reuse
the PID. Termination is detected using the WTC scheme
described above. Thus, only delivery of the abort message
to each PE containing the subpool is required. To achieve
this, the controlling process needs to detect the creation of
a subpool and to send an abort message to a PE containing
a subpool.

We introduce here a new message, named the ready mes­
sage which gives notification of the creation of a subpool.
On creation of a subpool, a PE sends a ready message to
the corresponding controlling process. On receiving a ready
message, the controlling process memorizes the sender PE,
which is deleted on receiving a terminated message.

20

controlling process

g
weight = -550

subpool

~ sub pool

lo0ol ~ weight = 20
weight 300

subpool

~
weight 150

weight = 80

Figure 2: The WTC Scheme

The controlling process performs the following operations
to achieve the abortion:

(1) Sending an abort message to each PE memo­
rized;

(2) Sending an abort message to the sender PE of
a ready me~sage received after operation (1).

Once the controlling process receives a ready message, a
subpool may exist in the sender PE until a terminated mes­
sage is received from the same PE. The controlling process
therefore performs operation (1), which aborts all subpools
already detected by the controlling process. Operation (2)
aborts such subpools that were not recognized by the con­
trolling process when operation (1) was carried out; a sub­
pool that is created after operation (1), or created before
operation (1) but whose ready message is still in transit.

It is necessary to assign a weight to an abort message
like the thrown process, while not necessary to a ready mes­
sage, because once the controlling process receives a ready
message, it will receive a terminated message later from the
sender PE of the ready message (the FIFO assumption).

On receiving an abort message, a PE performs ~ither of
the following operations:

(3a) Forcing the subpool with the specified PID
to terminate, and sending back a terminated
message which carries the sum of the weight
of the terminated subpool and the abort mes­
sage;

(3b) If there is no subpool having the specified
PID, sending back a return message which
carries back the weight assigned to the abort
message.

Figure 3 shows the abortion operations described above.
When a subpool terminates before receiving an abort mes­

sage, an abort message may reach a PE having no subpool
with the same PID as the abort message. In this case,

1)

2)

3)

controlling process
[]

PE i abort/ PE = i' j PE k

subpool / \
abort /

PE j /process
subpool

l§
controlling process

rr=i1 PE k
lb!J ~y subpool

PE rmmat7d PE= i, J ~
subpool \

1 - - - 1 terminated
I PEj
I I

L - - - _J

terminated

PE i

subpool ,---,
I

I I

L - - - _J

terminated

created

controlling process
rr=i1 PE k
lb!J --!!}:_ort subpool

PE•k ---~

PEj

Figure 3: Abortion Operations

operation (3b) is performed and the return message is sent
as the response to the abort message. On receiving a re­
turn message, the controlling process adds the weight of
the message to its own weight. If the weight of the control­
ling process reaches zero by this operation, the termination
of all processes is guaranteed.

During the operations of abortion, the following cyclic
situation may occur. The controlling process sends an abort
message to abort a subpool. A process is thrown from the
subpool before the abort message arrives. The thrown pro­
cess is delivered to a PE where there is no subpool having
the same PID as the thrown process. Then a new subpool
is created and a ready message is sent. On receiving the
ready message, the controlling process sends again an abort
message to abort this newly created subpool.

On receiving one abort message, one subpool is aborted
and the non-zero weight of the subpool is sent back to the
controlling process. Since the sum of the weights of sub pools
and processes in transit is finite, all processes can be aborted
by sending a finite number of abort messages, even if the
above situation occurs.

21

5.3 When the Weight becomes One

As mentioned in the section 5.1, when the weight of a sub­
pool becomes one, the PE cannot throw a process.

In this case, the PE sends a message requesting more
weight (request message) to the controlling process. Pro­
cess throwing is suspended until the weight of the subpool
becomes more than one. On receiving a request message,
the controlling process sends back a message which carries
some weight to the sender PE (supply message) and reduces
the same amount from its own weight. When a PE receives
a supply message, it adds the weight carried by the supply
message to the weight of the subpool, which enables it to
throw any suspended processes. Since receiving of a thrown
process also increases the weight of the subpool, a subpool
may terminate before receiving a supply message, and a sup­
ply message may reach a PE that contains no subpool. In
this case, a return message is sent back to the controlling
process. This is similar to the action when a PE without a
subpool receives an abort message.

It is not necessary to assign any weight to the request mes­
sage, because a terminated message is delivered to the con­
trolling process only after this request message (the channel
is FIFO), and the weight of the controlling process never
reaches zero, leaving request messages in transit.

5.4 How to Assign a Weight

This section describes the strategy to assign a weight which
decreases the number of additional messages (request and
supply messages).

In the worst case, that is, to assign a weight of one in
any case, the same number of additional messages as the
thrown processes are required, while no additional messages
are required in the best case. If the weight carried by a
supply message is large enough compared with the weight
assigned to a thrown process, the weight of the subpool will
not reach easily one after receiving a supply message. The
weight assigned to the thrown process must be less than the
weight of the subpool, while the weight carried by a supply
message does not have this limitation. Using the following
strategy, one subpool almost always needs only to send a
request message once.

• Assign a fixed weight (say 210) to a thrown process if
the weight of the subpool is more than twice of that;
otherwise assign half of the weight of the subpool.

• A supply message carries a very large weight (say 220).

On receiving a supply message, the weight of the subpool
becomes more than 220 and it can throw a process at least
210 times without receiving any weight.

If a subpool receives a supply message before its weight
becomes one, it need not to send a request message. A
subpool which is created by receiving a process assigned a
weight of 210 can throw a process at least 10 times until its
weight becomes one, Therefore, if the controlling process
sends back a supply message on receiving a ready message,
a request message is expected to be needless.

6 Non-FIFO Communication

In the computation model with non-first-in-first-out com­
munication, the following situations may occur:

• A terminated message may be delivered before a ready
message and a request message.

• The controlling process may receive several ready mes­
sages (or terminated messages) before receiving a ter­
minated message (or a ready message).

The former may cause the weight of the controlling pro­
cess to reach zero, leaving ready messages or request mes­
sages in transit. On account of the latter, simply memo­
rizing or deleting the sender PE of a ready message or a
terminated message will not work. To cope with the situa­
tions mentioned above, we modify the scheme as follows:

• Assign a weight to a ready message and a request mes­
sage (a request message will be sent when the weight
reaches two).

• The controlling process has a set of counters corre­
sponding to each PE, which is incremented on receiving
a ready message and is decremented on receiving a ter­
minated message.

The former change assures that the weight of the con­
trolling process never reaches zero leaving any messages or
processes in transit. By the latter change, if a subpool may
exist in a PE, the value of the corresponding counter be­
comes positive. The controlling process thus performs the
following operations to achieve the abortion:

(1) Sending an abort message to each PE whose
corresponding count is positive;

(2) Sending an abori message to the sender PE of
a ready message received after operation (1)
if the count corresponding to the sender PE,
after increment, is positive.

Since no more than one subpool can exist in one PE at a
time, it is enough to send one abori message to one PE.

7 Comparison

The WTC scheme is much superior to the naive scheme
using acknowledgement in two points.

First, the WTC scheme requires fewer additional mes­
sages than in the naive scheme. The number of subpools
created is expected to be small enough compared with the
number of thrown processes. The WTC scheme requires
about the same number of request messages and supply mes­
sages as the number of the creations of subpools, while the
naive scheme requires almost the same number of acknowl­
edge messages as the number of thrown processes.

Second, in the WTC scheme, each subpool can terminate
independently, while in the naive scheme, termination of a
subpool depends on terminations of other subpools.

22

8 Summary

We have devised an efficient algorithm for termination de­
tection and abortion. Its major advantages are as follows.

• Only a few additional messages are required.

• Each subpool can terminate independently.

• Reuse of the process pool identifier is possible.

The techniques described in this paper are applicable to
many kinds of distributed processing systems.

Acknowledgements

We thank the members of the Multi-PSI group in the ICOT
Research Center and cooperating companies, the Director
of ICOT, Dr. Kazuhiro Fuchi, and Dr. Shunichi Uchida for
valuable discussions and encouragement.

References

[1] D. I. Bevan. Distributed garbage collection using refer­
ence counting. In Proceedings of Parallel Architectures
and Languages Europe, pages 176-187, June 1987.

[2] N. Ichiyoshi, T. Miyazaki, and K. Taki. A Distributed
Implementation of Flat GHC on the Multi-PSI Techni­
cal Report TR-230, ICOT, 1987. Also in Proceedings of
the Fourth International Conference on Logic Program­
ming, 1987.

[3] K. Taki. The parallel software research and development
tool: Multi-PSI system. In Proceedings of France-Japan
Artificial Intelligence and Computer Science Symposium
1986, pages 365-381, 1986.

[4] K. Ueda. Guarded Hom Clauses. Technical Report TR-
103, ICOT, 1985.

[5] P. Watson and I. Watson. An efficient garbage collec­
tion scheme for parallel computer architectures. In Pro­
ceedings of Parallel Architectures and Languages Europe,
pages 432-443, June 1987.

(6] M. Yokota, A. Yamamoto, K. Taki, H. Nishikawa, and
S. Uchida. The Design and Implementation of a Per­
sonal Sequential Inference Machine: PSL ICOT Tech­
nical Report TR-045, ICOT, 1984. Also in New Gener­
ation Computing, Vol.l No.2, 1984.

DISTRIBUTED SYNCHRONIZERS

Doddaballapur N. Jayasimha
Center for Supercomputing Research and Development

University of Illinois, Urbana, IL 61801. .

Abstract
In this paper we introduce a new synchronization primitive,

the diatributed aynchronizer. This primitive, based on the notion of
partially shared variables, suits the synchronization requirements of
parallel algorithms executing on large, shared memory multiproces­
sors. We consider the commonly required forms of synchronization
in a multiprocessor: barrier, reporting, and mutual exclusion. We
introduce the synchronization tree through an algorithm to imple­
ment barrier synchronization. An efficient implementation of the dis­
tributed synchronizer primitive requires a) the embedding of the syn­
chronization tree in the processor-memory multistage interconnec­
tion network, and b) simple hardware enhancements'at the switching
elements of the network. For n processors, this primitive imple­
ments reporting with zero synchronization overhea.d and the barrier
with a log n cycle overhead. We show that the implementation of
the semaphore operations using the distributed synchronizer is
bounded fair. Finally, we discuss some implementation issues and a
Cew limitations of our·synchronization scheme.

1. Introduction
It is well known that the synchronization overheads have a

deleterious effect on the speedup or parallel algorithms. It has been
observed that Cor some applications with extensive synchronization
requirements, the speedup reaches a maximum Cor a small number of
processors, and therea.Cter decreases [Axel86]. In this pa.per we intro­
duce a. new synchronization primitive, the distributed •11nchronizer.
An implementation of this primitive is shown be efficient and
bounded Cair. The primitive is based on the notion of partially

.. shared variables, and suits the synchronization requirements of
parallel ~gorithms executing on large, shared memory multiproces­
sors. Examples of such architectures are the Cedar system [Kuck84],
the Ultracomputer [GGKM83], and the RP3 [Pfis85]. Typically such
a multiprocessor consists of n homogenous and autonomous process­
ing elements (PEs). An interconnection network connects the PEs to
a. set of main memory modules such that each PE can access any
memory module.

2. Synchronization
2.1. Classification

Multiprocessors commonly require the following forms of syn­
chronization: a) barrier, b) reporting, and c) mutual exclusion.
(Note: Mutual exclusion is necessary in the first two cases also.) Fol­
lowing Axelrod [Axel86], we define a synchronization barrier to be a
logical point in the control How of an algorithm at which all
processes must arrive before any of them are allowed to proceed
Curther. Reporting requires that all processes must arrive at a con­
trol point before another specified process continues.

We illustrate the need for these Corms of synchronization
through the following example: suppose the maximum oC r numbers
is to be computed on an n-PE shared memory multiprocessor. Let
M be a shared variable initialized to -oo. Ea.ch PE computes the
(local) maximum I of the numbers that it is assigned, and updates M
to I if l > M. To detect the completion of finding the maximum,
each PE decrements a shared variable S (initialized to n) after it
updates M. The decrementing of S to zero implies that the max­
imum has been computed. Note that each PE requires exclusive
access to update M and S. Suppose a specific PE is required to com­
pute the maximum. It continually checks S until S becomes zero,
and then reads M. The form of synchronization that we have . .
!This work was supported in pa.rt by the National Science Foundation
·under Grant No. NSF MIP-8410110, by the US Department of Energy
under Grant No. DOE DEG02-85ER25001, and by the IBM donation.

described is an example of reporting. Alternatively, assume that
every PE must obtain the maximum for its subsequent computa­
tions. Every PE checks S until S becomes zero and then reads M.
This form of synchronization where values are reported (the value of
S is updated by all the PEs) and then communicated to all the PEs
is an example of barrier synchronization. The barrier is said to be
complete when every PE knows that S is zero. The synchronization
overheads (owing to the continua.I checking of S and the exclusive
accesses to M and S) cause serious performance degradation in mul­
tiprocessors, especially as the number of PEs increases [Axel86,
Jaya87a, PCNo85]. To reduce these overheads, various schemes have
been proposed [GGKM83, GLee86, Jaya.87a, PCNo85, YeTL86]. A
particularly elegant method, called combining, has been proposed for
the Ultra.computer [GGKM83], and is being considered for imple­
mentation on the RP3 [PCNo85]. Combining, which detects and
combines memory requests to the same location, requires expensive
hardware. Furthermore, simulations show that combining may not
be required, or effective in many cases [GLee86]. In the Cedar sys­
tem, synchronization overheads are reduced by providing additional
hardware at each memory module to perform simple synchronization
related computations [ZhYe84]. Both combining and the. Cedar
scheme require the locking of shared variables in order to access
them with mutual exclusion. Consequently, algorithms using these
schemes generate wasted memory traffic due to busy waiting: Our
synchronization technique does not require the locking of globally
shared variables.

23

2.2. Walk-in Walk-out Scheme
Rather than force all PEs to access a single variable, we could

allow a fixed number of PEs, m (£$.m<.n} to access each variable.
(We assume n to .be a power of m throughout the paper). Such a
scheme increases the number of synchronization variables required
but might reduce memory contention. In particular, we could
arrange the synchonization variables in the form of a synchroniza­
tion tree as shown in Figure 2.1. All the variables in the tree are ini­
tialized to m. If a PE decrements a variable and finds the resulting
value to be zero, then it proceeds to the next higher level of the tree.
Otherwise the PE waits for the variable to assume a special value,
say, ,--1. The last arriving PE decrements the root to zero and sets it
to -1. At this time the walk-in ends. When a PE finds the variable
on which it is waiting to be -1, it communicates this information to
the next lower level. This procedure is repeated recursively. The
completion time would be the time at which the last PE at the
lowest level finds its variable to be -1. At this time the walk-out
ends. This algorithm is similar to the software combining algorithm
proposed in [YeTL86).

~ i m i. "'

d~.
\. 2. ••• M i 2 ••• m

1~m

Figure 2.1 Synchronization Tree for the Walk-in Walk-out Scheme.

Notation: In the figures, the PEs and the nodes of the syn­
chronization tree are numbered from left to right. We number the
PEs from 1 to n. The PE with number i is denoted by PE;. Upper
and lower case names represent shared and local variables respec­
tively. Let h =log.,. n, the number of stages in the interconnection
network.

3. The New Primitive

3.1. Partially Shared Variables

The Walk-in Walk-out scheme has the advantage of requiring
only a fixed number of PEs m to access a node of the synchroniza:
tion tree. Furthermore, a node at level i need be shared only by m'
PEs (note: some m out of these m; PEs access the node). This
observation suggests that the nodes of the synchronization tree may
be placed in a memory hierarchy according to the degree to which
the nodes are shared. By a memory hierarchy we mean a set of par­
tially shared memories such that a variable at the level i is shared
by more number of PEs than a variable at the level j (; < i). Vari­
ables could be placed at an appropriate level in the memory hierar­
chy, thus eliminating expensive global memory trips to access shared
variables that need to be only partially shared. The multi-memory
hierarchy effectively distributes the "von Neumann bottleneck" and
consequently achieves a better performance. The partial sharing of
variables would lead to an increased complexity in the hardware and
memory management.

3.2. Distributed Synchronizer

Consider any multistage interconnection network with the full
access capability (which means that any input terminal of the net­
work can .reach any output terminal in one pass through the net­
work) and the unique path property (which means that each input
terminal has exactly one path through the network to reach any par­
ticular output terminal). Feng [Feng81] surveys such interconnec­
tion networks. Examples of these networks include the Omega, the
baseline, the banyan, and the indirect binary n,-cube. They are typ­
ically designed using log.,. n stages of m X m switching elements. We
embed the synchronization tree into the interconnection network
with the leaves placed in the switching elements at the first stage and
the root placed in a switching element at the last stage of the net­
work. The connections between stages that lead to the switching ele­
ment containing the root correspond to the branches of the tree.
Figure 3.1 shows an embedding of the binary synchronization tree
(with eight leaves) into an 8-input 2 X 2 Omega network. The heavy
lines in the figure represent branches of the tree. Each stage of the
interconnection network corresponds to an intermediate level in the
memory hierarchy mentioned earlier, and each node in a switching
element to a partially shared variable. Mutual exclusion must be
guaranteed among the m children accessing their parent node. We
explain how this is achieved for each synchronization operation in
the relevant sections. The name distributed synchronizer refers to
the embedded synchronization tree together with the operations
defined on the tree.

4. Reporting and Barrier
A switching element in the network is a m X m bidirectiqnal

router. On its PE side each switching element has m input ports
PI1, ... , PI.,. and m output ports P0 1, ... , PO.,., On its memory side
each switching element has m input ports MI1, ... , MI.,. and m out­
put ports M0 1 ... , MO.,.. An input port PI; on the PE side gets
connected to ar:. output port MO; on the main memory side during a
message transfer (message originating at a PE). Similarly, an input
port MI; gets connected to an output port PO; during a. ~essage
transfer (message originating at the main memory). Add1tionally,
each switching element has a modulo m counter, a decoder, and
some combinational logic.

For simplicity, we make the following assumptions:
(Al) All PEs participate in the synchronization operation.
{A2) At any instant at most one concurrent set of synchronization
operations is being executed.

24

Fig. 3.1 Embedding a. Sync~ronization Tree into an 8X8 Omega Network.

4.1. Reporting

To perform the reporting operation, each PE executes the
Rop(S) instruction. S is a flag variable in global memory which is
initially reset. S is set after all PEs have reported. The semantics of
Rep(S) are shown in Figure 4.1, and are informally described below:
A PE executing Rep(S) enters the synchronization tree at its
appropriate leaf node. It decrements the counter at the switching
element. Ir it finds the value of counter to be zero, then it is the last
arriving PE Cor this synchronization operation at the node. It reini­
tializes the counter to m and proceeds to the node in the next higher
level of the tree. Otherv1ise the instruction completes. This pro­
cedure is repeated recursively. The PE that decrements the root to
zero then sets S, at which time the synchronization operation com­
pletes. This scheme has the following advantages: a) The shared
uariable S need not be locked. To ensure mutual exclusion, tradi­
tional multiprocessors use locking, which incurs an unnecessary glo­
bal memory access whenever a PE tries to lock a variable that has
been already locked by some other PE. The decrementing of the
counter at a node has to be performed atomically. But this is easily
achieved in the hardware. b) There are no synchronization over­
heads except for the constant time to execute the Rep(S) instruction.

Note that the reinitialization of the synchronization tree is
achieved in a distributed manner since the last arriving PE at each
node sets the counter to its initial value.

Algorithm Rep (S, PE#, level#);
/*The counter variables C;; are initialized to m, and S is reset * /

:.egi; := r :,~~# l ;
2. 01, .. 1#.i := 01 .. ,1#,; - 1; *
3. if Oi .. c1#,j = 0 then /* last arriving PE at some node /
4. if leuel# = h then

begin
5. 0 1,..1#,; := m; /*reinitialize * /
6. set S; /* reporting is done * /

end
else /* last arriving PE at a non-root node * /
begin

7. 01,..1# 1 := m; /* reinitialize * /
8. Rep(S, PE#, (le1Jel# +1)); /*to next higher level*/

end
end Rep;

PE; executes Rep'(S, i, 1).

Figure 4.1 Semantics of the Rep(S) Instruction.

The following cases: a) requirement of d (d > 1) concurrent
synchronization operations, and b) requirement of reporting among
only n 1 (n 1 < n) PEs, are discussed in [Jaya87b].

4.2. Barrier
We will assume that (Al) and (A2) hold. Each PE performs

the barrier synchronization by executing the instruction Barrier (v);
11 refers to a flag, initially reset, that is present in each PE. The
semantics of the instruction, shown in Figure 4.2, are essentially an
implementation of the Walk-in Walk-out scheme in hardware. The
hardware requirements are the same as for reporting, except for the

Algorithm Barrier (v, PE#, level#);
/*The counter variables C;; are initialized to m, and 11 is reset * /
begin

1 i ·- r_!!§jf___ l · • ·- mlnel# '

2. 0 1 ... 1*.i := c, ... ,*.i - 1;
3. if C1 ... 1jf,j = 0 then/* last arriving PE at some node*/
4. if /eve/# = h then/* last arriving PE at barrier * /
5. Walkout(11, level#, i) /*begin walk-out*/

else /* last arriving PE at a node which is not the root * /
6. Barrier(11, PE#, (level# +1)); /*to next higher level*/
end Barrier;

procedure Walkout(v, level#, k);
begin
1. if (/eve/# = l)then
2. aet the ftag in each PE

else
3. for I:= (k-l)Xm + 1 to kxm do

begin
4. place return request in each PO; port;
5. Walkout(v, (/eve/# -1), /);

end;
end Walkout;

PE; executes Barrier(v, i, 1).

Figure 4.2 Semantics of the Barrier(11) Instruction.

extra bit flag in each PE. If a request finds the counter at a stage to
be zero, it proceeds to the next stage. Otherwise the requesting PE
waits for its flag v to be set. The request that decrements the
counter at the root to zero is the last process to arrive at the barrier.
It signals the completion of the barrier to the (m -1) requests wait­
ing at the root by placing a return request containing the address of
the instruction, at each of the m PO ports of the root's switching
element. The procedure of "walking out" is recursively repeated till
the leaves are reached. The final step consists in setting the v flag of
each PE, at which time ever11 PE comes to know that the barrier has
been completed.

The delay between the time at which the last process finishes
(i.e., the time at which the root is decremented to zero), and the time
at which every PE knows that the barrier is complete is just logm n
cycles (assuming no network conflicts). The synchronization is
accomplished with no wasted memory accesses, and without the need
for any shared globally variables.

Each PE could "busy wait" on the flag v till it is set, or could
context switch to a different process after executing the Barrier (v)
instruction. In the latter case, the PE may be interrupted to signal
the completion of the barrier. Observe that, unlike normal busy
waiting, PEs in the former case do not generate wastefill memory

. traffic, which can cause a degradation in performance.
Assumptions (Al) and (A2) may be relaxed by ptoviding dtra

hardware. See [Jaya87b] for details.

6. Semaphore Operations
A semaphore is a shared variable S together with the atomic

operations P(S) and V(S) defined as follows: P(S):
<while S ~ 0 do skip; S := S-1>; V(S): <S := S+l>;
(Instructions within the angle brackets are executed atomically).
The variable S is initialized to one.

25

Most implementations of P and V require the continual check­
ing of S, as implied by the while loop, before the P operation is suc­
cessful. An alternative to this busy waiting on S on an unsuccessful
P operation is to context switch to a different process. Context
switching, however, requires intervention by the operating system,
and consequently large overheads. Further, self scheduling and
guided self scheduling algorithms (PoKu87, TaYe86], which are used
in a number of application programs in a multiprocessor system,
require some form of busy waiting.

We next describe P and V implemented with the new primi­
tive. For simplicity, we deal with binary (m=2) synchronization
trees. We will also assume that assumption (A2) holds. Not all PEs
need participate in the synchronization, however. Each node of the
tree is a bit variable which is initially zero (reset).

6.1. The DSP Instruction
To implement the P operation, each PE executes the

Distributed Synchronizer P (DSP) instruction, the semantics of
which are shown in Figure 5.1. The P operation for a process
belonging to a PE is complete if it can set the node at the root of the
synchronization tree. If a process finds that the root is already set,
then another process is in the critical region.

In the following discussion, when we talk of a node at level i, it
refers to the node at level i that lies between the PE of interest and
the root. Note that by the unique path property, there is only one
path from a PE to the root, and hence there is a single node on the
path at any level. A request contains the address of the instruction
and the address of the PE where it originates. Consider a request
which has reached level i successfully by setting the node at level i.
If the node at level i + 1 has not been already set (by an earlier pro­
cess), then the node at level i + 1 is set and the node at level i is
reset atomically. Otherwise, the process waits at level i. The atomic
operation is accomplished easily 1 without starvation, in hardware
[Jaya87b]. Nodes with their bit variables set represent processes
waiting to enter their critical regions. We next describe a schedule
to wake up waiting processes.

6.2. The DSV Instruction
To describe the Distributed Synchronizer V (DSV) operation,

we use another property that the class of interconnection networks
described in Section 3.2 share: they can employ simple and distri­
buted routing algorithms. Recall that h = log2n, and let
aAaA-1 • · · a1ao be the binary expansion of an integer j. Further,
let PE; have a request that is waiting at the node at level i to enter

Algorithm DSP (j, k);
/* Let FL;11 FL;2, ••• , FL;A be the partially shared
nodes on the path from PE; to the root. FL;o is a bit variable
in PE;*/
begin
1. if le = h then enter critical region;

else
2. if FL;,HI =0 then

begin
3. <FL;,i.+1 := 1; if k ;6 0 then FL;1 := O;> /* atomically
done in the hardware * /
4. DSP(i, k+l);

end;
end DSP;

PE; executes DSP(i, 0) to enter its critical region.

Figure 5.1 Semantics of the DSP Inst•uction.

the critical region. The request stores the values a; and a;+l as part
of its information at the node. The semantics of DSV are shown in
Figure 5.2, and informally explained below. Let a process belonging
to PE1 finish, and let k,.k,._ 1 • • • k 1k0 be the binary expansion of k.
By virtue of the semantics of DSP, if there are processes waiting at
level i, then there are processes waiting at level (i + 1) also. Hence
PE1 has to check only the children at the root of the synchronization
tree. If PE1 is at a leaf of the left (right) subtree, then the switching
element logic at the root enables a waiting process, if any, at the
rigl.!_t (left) subtree (i.e., a PE whose address in the (h + l)th position
is k,., the complement of k,.). If there is no such process waiting,
then a process, if any 1 belonging to its own subtree is enabled. The
awakened· process repeats this procedure recursively using the
appropriate position of the binary expansion of its PE number.
Thus the process belonging to PE1, when awakened at a node at
level i, decides which new process should occupy the vacant node by
examining f; and the ith positions of the PE numbers of the
processes at the children of the node.

Algorithm DSV (j, k);
/* Let FL/I, FL12, ••• , FL1,. be the partially shared
nodes on the path from PE1 to the root. FL10 is a bit variable
in PE1• Let a,. • • • a1 • • • a0 be the
binary expansion of i * /
begin

1. if FL.,. .. . "•···•,,•-l = 1 then
begin

2. FL.,. ... •• ... •o,• := 1;
3. transfer proceBB from FL.,. . .. 04 •••• ,,k-l to ne:i:t higher level;

4. FL.,. ... 04 ••• • ,,1_ 1 := O;

5. DSV(newPE, k-1); /* newPE is the address of the PE on
which the new process runs * /

end
else

6. if FL.,. ... •• ... 40,1_ 1 = 1 then
begin

7. FL.,. ... •• ...• ,.• := 1;
8. transfer process from FL.,. . .. •• ... 40,1 _ 1 to ne:i:t higher level;

9. FL.,. . .. •• ... •,.•-l := O;
10. DSV(newPE, k-1); /* newPE is the address of the PE on
which the new process runs * /

end
end DSV;

PE1 executes DSV(j, h) after leaving its critical region.

Figure 5.2 Semantics of the DSV Instruction.

Examples Consider an 8-PE system with the synchronization
tree as shown in Figure 5.3a. All the nodes in the tree are initially
. reset. The timing figure of Figure 5.3b shows a particular set of
requests to the critical section and the order in which they are
honored. In that figure, r stands for a request to enter the critical
region, h for a request honored by the scheduler, and e for the com­
pletion of the use of the critical region. The prefix digit denotes the
PE number. Observe that, for this example, PEs 5 and 7 get ser­
viced out of turn. The order in which the requests are honored is
readily seen by following the informal explanations giv:en for DSP
and DSV.

The hardware requirements at a switching element are a 3-bit
·register and simple logic (to perform the logical OR and the reset
operations atomically). If the first bit of the 3-bit register at level i
is set, then some process belonging to PE1 is waiting at this node.
The other two bits then store the ith and the (i + l)st position of the
binary expansion of k.

The following cases: a) relaxing assumption (A2), and b) the
case of m = 21 (1>1), are considered in [Jaya87b].

26

Figure 5.3a Illustration of DSP and DSV.

lr lh 2r 5r 6r 7r le, Sh Sc, 2h 2c, 7h 7c~ 6h 6c

Time

Figure 5.3b Illustration of DSP and DSV (contd).

6.3. Bounded Fairness
Many notions of fairness for concurrent systems have been pro­

posed (Fran86]. In the context of (mutually exclusive) access to a
shared resource (such as a critical region), fairness is synonymous
with "starvation freedom". The P and V operations are used to
ensure mutual exclusion. Many implementations of P and V require
busy waiting on the semaphore variable, which, in turn, may lead to
starvation. We show that DSP and DSV not only are starvation
free, but satisfy the stronger notion of bounded fairness [JaDe86].
For our purposes, we define bounded fairness within the context of a
scheduler (which may be centralized or distributed). A scheduler q is
k-bounded fair if a process p wishing to enter its critical region is
guaranteed to do so at one of the next k times that q schedules either
p or a a process arriving after p (k is referred to as the bounded fair­
ness number). For example, a FIFO scheduler is 1-bounded fair.

We first make the following observations before we prove the
bounded fairness of DSP and DSV.

Observation 5.1: The semantics of DSP ensure that a process
wishing to enter its critical region either does so, or traverses to a
level of the synchronization tree until it can no longer proceed.

Observation 5.2s From the above observation, we can infer that it
is sufficient for a process leaving the critical region to activate
another process to enter its critical region by examining the nodes at
the children of the root of the synchronization tree.

Observation 6.3s Further, by virtue of the semantics of DSV and
the above observations, a process that "vacates" an internal node (to
travel to the next higher level of the synchronization tree) can also
decide which new process should occupy the vacant node by examin­
ing the children of the node .

Theorem 6.1: For an n-PE multiprocessor, DSV is
(2n -(1 + log2n))-bounded fair.

Proofs Let us append the n PEs as leaves of the synchronization
tree and call the result the eztended synchronization tree. Consider
such a tree shown in Figure 5.4. Suppose a process belonging to PE1
sends a request r to enter the critical region. In the case of a conflict
among the processes in the m (m = 2) subtrees at a node, the
scheduling policy (i.e., the semantics of DSV) chooses the subtree
which has not been most recently chosen. From observation 5.3, this
selection can indeed be done by examining the children at the root of
the subtree of interest. Hence, in the worst case, the request r
accesses the root (i.e., enters its critical region) in at most as many
tries (each entry into a critical region by any process is a try) as the
number of nodes in the subtrees TL and Ta, i.e., 2(n -1). The fol­
lowing cases arise:
Case 1: If r accesses the root in at most (2 n - (1 + log2n)) tries, then
the condition for bounded fairness is trivially satisfied.

!-E-- n/2 ~ 1--E--- n/2 ~

Figure 5.4 Extended Synchronization Tree for Proving Bounded Fairness.

Case !!: If r accesses the root in exactly 2(n -1) tries, then at every
node on the path from PE; to the root, a PE from the subtree not
belonging to the subtree containing PE; was chosen. By induction it
is clearly seen that at every node on the path from PE; to the root,
PE; should have a request sent before r. Hence the number of

requests in the tree before r is at least log2 ..!!.. (i.e., the height of the
2

subtree whose leaves are one level higher than the leaves of TR).
Since the request r can be satisfied in 2(n -1) tries, and there were

at least log2f requests before r, k, the bounded fairness number is

2(n-1)-log2..!!..= (2n-(l+log2n)).
2

Case 9 (Sketch}: If r accesses the root in (2n -(1 + log2n)) < i <
2(n -1) tries, then by an argument similar to that used in case 2, it.
can be shown that there are at least (i -(2n - (1 + log2n))) nodes on
the path between PE; and the root that contain requests sent from
PE; before r. The bounded fairness result immediately follows. •

Note: The bounded fairness result may be extended to m-ary syn­
chronization trees. In [Jaya87b] it is shown in such a case that DSV

is (nm - l - logm n)-bounded fair.
m-1

6. Further Remarks
Our implementation of the synchronization operations has a

few limitations. They are the following:

(1)

(2)

Number of Synchronization Operations: The present imple­
mentation of the distributed synchronizer allows only a limited
number of concurrent synchronization operations.

Restricted Schedules: In the case that barrier and reporting
are required only among n 1(n 1 < n) PEs, the root of the syn-
chronization tree may be placed at an intermediate stage of the
interconnection network. In such a case, not every subset of
PEs could use the distributed synchronizer to perform these
operations. This observation translates to a restriction on pro­
cessor scheduling.

(3) Process Migration: In our barrier and reporting schemes,
proc~sses may not migrate across PEs. This is not a serious
limitation (except when fault tolerance is ·to be provided),
since, for efficiency reasons, most multiprocessor operating sys­
tems do not allow processes to migrate.

These limitations may be partially overcome. See [Jaya87b]
for details.

7. Conclusion
Synchronization and communication overheads become impor­

tant performance criteria in large multiprocessors. A number of
researchers have recognized that synchronization requirements lead
to serious performance degradation in such systems. In this paper
we have introduced a new synchronization primitive based on the
notion of partially shared variables. Using this primitive, we have
shown that the commonly required synchronization operations may

. be efficiently performed with practically no overheads. Though this
implementation of the distributed synchronizer does not wholly
remove the need for conventional synchronization operations based

on the locking of shared variables, our paper shows a promising way
to distribute synchronization operations and to exploit the power of
partially shared variables. An interesting extension of this work is
to make the distributed synchronizer fault tolerant. An important
research area is the feasibility of architectures based on the notion of
hierarchical memories.

Acknowledgements: The author is thankful to Professor Dun­
can Lawrie for initial discussions on the subject. He is indebted to
Professor Michael Loui for constructive comments on the form and
content of this paper. The author is also thankful to one of the
anonymous referees whose comments have helped improve the qual­
ity of the presentation of this paper.

REFERENCES

· [Axel86] T. S. Axelrod, "Effects of Synchronizations Barriers on
Multiprocessor Performance," Parallel Computing, Vol.
3, pp. 129-140, May 1986.

27

[Fran86] N. Francez, "Bounded Fairness," Springer-Verlag New
York Inc., 1986.

[GLee86] G. Lee, "Some Issues in General Purpose Shared
Memory Multiprocessing: ParallelismExploitation and
Memory Access Combining," Ph.D. thesis, Center for
Supercomputing Research and Development Report No.
589, June 1986.

[GGKM83] A. Gottlieb, R. Grishman, C. P. Kruskal, K. M.
McAuliffe, L. Rudolph, M. Snir, "The NYU Ultracom­
puter - Designing an MIMD Shared Memory Parallel
Computer," IEEE Trans. on Computers, Vol. C-32, No.
2, 1983.

(JaDe86] D. N. Jayasimha, N. Dershowitz, "Bounded Fairness,"
Rpt. No. 615, Center for Supercomputing Research and
Development, University of Illinois, Dec. 1986.

[Jaya87a] D. N. Jayasimha, "Parallel Access to Synchronization
Variables," Proc. International Conference on Parallel
Processing, pp. 97-100, Aug. 1987.

[Jaya87b] D. N. Jayasimha, "Distributed Synchronizers," Rpt. No.
713, Center for Supercomputing Research and Develop­
ment, University of Illinois, Nov. 1987.

[Kuck84] D. J. Kuck, et al., "Cedar," Proc. of COMPCON,
Spring 1984.

[Pfis85] G. F. Pfister, et al., "The IBM Research Parallel Proces­
sor Prototype (RP3): Introductionand Architecture,"
Proc. International Conference on Parallel Processing,
pp. 764-771, 1985.

[PfNo85] G. F. Pfister, V. A. Norton, '"Hot Spot' Contention and
Combining in Multistage InterconnectionNetworks,"
Proc. International Conference on Parallel Processing,
pp. 790-797, 1985.

[PoKu87] C. D. Polychronopoulous, D. J. Kuck, "Guided Self­
Scheduling: A Practical Scheduling Scheme for Paral­
lelSupercomputers," IEEE Trans. on Comput., vol. C-
36, no. 12, pp. 1425-1439, Dec. 1987.

(TaYe86] P. Tang, P. C. Yew, "Processor Self-Scheduling for
Multiple-Nested Parallel Loops," Proc. International
Conference on Parallel Processing, pp. 528-535, 1986.

[YeTL86] P. C. Yew, N. F. Tzeng, D. H. Lawrie, "Distributing
Hot Spot Addresssing in Large Scale Multiprocessors,"

[ZhYe84]

Proc. International Conference on Parallel Processing,
pp. 51-58, Aug. 1986.

C. Q. Zhu, P. C. Yew, "A Synchronization Scheme and
its Application for Large MultiprocessorSystems," Proc.
International Conference on Distributed Computing Sys­
tems, pp. 486-493, 1984.

Graph-based partitioning of matrix algorithms
for systolic arrays: application to transitive closure

Jaime H. Moreno and Tomas Lang •
Computer Science Department

University of California, Los Angeles
3680 Boelter Hall

Los Angeles, Calif. 90024

Abstract. We propose a technique to partition algorithms for
execution in systolic arrays, based on transformations to the
dependency graph of algorithms. We illustrate this method
through its application to the computation of transitive clo­
sure of a directed graph. We derive linear and two-dimensional
structures for such algorithm that exhibit maximal utilization,
no overhead due to partitioning and simple control. In the
process, we obtain a graph suitable for an array for fixed-si:ie
problems that exhibits better characteristics than arrays pre­
viously proposed for this algorithm. Our method also allows
evaluating trade-offs among implementations.

Introduction

The implementation of matrix algorithms as collections of reg­
ularly connected processing elements (arrays of PEs) has been
extensively studied lately. Many applications require process­
ing large matrices for which it is not feasible to build an ar­
ray of the required si:ie, while others require solving problems
of variable si:ie using the same array. In such cases, it be­
comes necessary to decompose the problem into sub-problems
so that the sub-problems fit into a target array. This is known
as partitioning the algorithm and has been studied by many
researchers [1]-[5].

In this paper, we summarize a partitioning technique based
on the dependency graph of algorithms. A complete description
of the technique can be found in [6]. This is a transformational
approach, that uses a fully-parallel dependency graph as the
description of the algorithm. Such a graph is first transformed
to remove properties not desirable for an implementation (i.e.,
data broadcasting, bi-directional data flow) and converted into
a graph suitable for partitioning (i.e., with simple communica­
tion requirements). The resulting graph is mapped onto the
target array. The transformations are performed taking into
account issues such as I/O bandwidth, throughput, delay, and
utilization of PEs. We illustrate the technique through its aP­
plication to the design of arrays for partitioned computation of
the transitive closure of a directed graph. We derive and evalu­
ate linear and two-dimensional structures to compute such al­
gorithm. These arrays exhibit maximal utilization, no overhead
and simple control. In addition, we show that an intermediate
graph used by the methodology is suitable for implementation
of fixed-size arrays for transitive closure, with better charac­
teristics than arrays previously proposed for such computation.

We have applied our partitioning technique to several
algorithms for matrix computations, among them LU-

• J. Moreno has been supported by an IBM Computer Sciences
Fellowship. This research has also been supported in part by the
Office of Naval Research, Contract N00014-83-K-0493 "Specifi­
cations and Design Methodologies for High-Speed Fault-Tolerant
Algorithms and Structures for VLSI"

28

decomposition, QR-decomposition, and Faddeev algorithm (7].
Our results show that the graphical nature of our approach
makes it easier to use than methodologies based on math­
ematical expressions proposed in the literature. Moreover,
the method allows evaluating trade-offs between linear and
two-dimensional arrays for partitioned execution of algorithms.
This technique is an extension to one for the design of arrays
for fixed-size problems that we have previously proposed (8,9].

Partitioning the computation of transitive closure of a di­
rected graph has been recently addressed by Nunez and Tor­
ralba [10). They propose an algorithm and partition it through
decomposition into a block-algorithm. Although they do
not address the details of an implementation, their algorithm
requires rather complex control to chain the different sub­
problems.

Graph-based partitioning

Partitioning consists of mapping the computation of an algo­
rithm with large-size data onto an array smaller than the size
of the data. Three basic approaches have been proposed to
achieve such mapping:

• coalescing (1,5]
• cut-and-pile [1]
• decomposition into subalgorithms [1]

The relative merits of these approaches are discussed in [6].

We summarize here a partitioning technique based on the
dependency graph of algorithms that uses the cut-and-pile aP­
proach due to its generality and smaller memory requirements.
A complete description of such technique is given in [6]. This
partitioning procedure is as follows:

1. Transform the dependency graph to remove properties
undesirable for an implementation, such as data broad­
casting or bi-directional data flow. Procedures for these
purposes have been presented in (8,9].

2. Transform the graph obtained in (1) into a new graph,
which we call the G-graph, by collapsing groups of nodes
into new nodes (G-nodea). The objective of this transfor­
mation is to obtain a graph more suitable for partitioning,
that is, with simple communication requirements.

Criteria to perform the selection of primitive nodes com­
posing a G-node are reported in (6].

3. Map G-nodes to a target array with m cells by schedul­
ing sets of m neighbor G-nodes (a G-set) for concurrent
computation. G-sets scheduled successively are executed
in overlapped (pipelined) manner in the array. The se­
lection of G-sets depends on the structure of the target

array. In addition, for maximal utilization, all nodes in a
G-set should have the same computation time.

The G-graph obtained with our procedure can be directly
used to implement an array for a fixed-size problem. However,
since the G-graph might be composed of nodes with different
computation time, its direct implementation could lead to low
utilization of cells.

Partitioned Computation of Transitive Closure

We present now the application of the proposed partitioning
technique to the design of arrays to compute transitive closure
of a directed graph. We first describe briefly the algorithm and
then apply the three-step procedure indicated above.

The transitive closure problem

A directed graph G is a tuple G(V, E), where V is the set of
nodes and E is the set of edges in the graph. G can be described
by the a.dja.cency ma.trix A, where element a;; = 1 if there is
an edge from node i to node j or if i = j, otherwise a;; = 0. A
directed graph G+(V,E+) is called the tra.naitive cloaure of G
if it has the same vertex set as G and has an edge from node
v to node w if and only if there is a path of length zero or
more from v tow in G. a+ can be described by the a.dja.cency
ma.tr1'x A+.

The computation of the transitive closure of a graph is usu­
ally performed by Warshall's algorithm [11). Given the adja­
cency matrix A, then A+ is obtained through the application
of the following recurrence:

For k from 1 to n
For from 1 to n
For j from 1 to n

In this expression, XO = A, A+ =)(n and the operators Ell
and 0 stand for binary-OR and binary-AND, respectively.

The fully-parallel dependency graph [8] of the transitive clo­
sure algorithm is shown in Figure 1, for a problem of size n = 4
(i.e., to compute the transitive closure of a directed graph with
four nodes). The graph has four levels, where each level corre­
sponds to one iteration of the outermost index in the algorithm
above.

Some evaluations of the expression in the algorithm above
do not change the corresponding x~j" In particular, the value
of a diagonal element in the adjacency matrix is always 1, be­
cause a node in the directed graph is always adjacent to itself.
In addition, for k = i or k = j one of the two operands in
x~,;- 1 18) x!j1 becomes x!;;-1 which is a diagonal element and
thus always equal to 1. Consequently, the result from the 181
operation is equal to the second operand, the ED operator gets
two identical operands (x~,;- 1 or xt"1) and the result is that
same operand. These properties can be utilized to simplify the
design of arrays to compute the transitive closure and to reduce
the complexity of the algorithm since fewer operations need to
be performed. Nodes surrounded by dashed areas in Figure 1
correspond to superfluous nodes (i.e., they do not need to be
computed).

29

Figure 1: Fully-parallel dependence graph of transitive closure

Arrays for partitioned computation of transitive
closure

We apply now our partitioning procedure to the computation of
the transitive closure of a directed graph. The fully-parallel de­
pendency graph shown in Figure 1 is not suitable for implemen­
tation, because it exhibits broadcasting of data and complex
communication requirements. We address these issues first, ac­
cording to the procedure described previously.

There are two types of data broadcasting in Figure 1. At
the k-tk level of the graph, data elements from row k of the
matrix are broadcasted to all other rows. Moreover, the k-tk
element of each row of the matrix is broadcasted to all other
elements within each row. Because of the varying pattern of
broadcasting, other researchers have considered transitive clo­
sure an irregu/a.r algorithm [13].

We transform the graph replacing broadcasting by pipelin­
ing, as suggested in [8]. Given that the k-tk row of the adja­
cency matrix remains unchanged at the k-tk level of the graph,
we remove the nodes corresponding to updating those values
and draw the flow of data for such row horizontally and inter­
secting with the flow of data of the other rows of the matrix.
Such modification is shown in Figure 2. Data which is evalu­
ated at each level of the graph flows vertically, while the data
element broadcasted within each row of the matrix flows diag­
onally through the row.

Because of the varying source of broadcasting, the trans­
formed graph in Figure 2 exhibits bi-directional flow of data.
However, this bi-directional flow can be eliminated by mov­
ing nodes dependent on the broadcasted data to one side of
the source of broadcasting. We have described such transfor­
mation as an approach to solve this problem in dependence
graphs [9]. In this case, the transformation is applied in two
steps: first, nodes to the left of sources of horizontal broad­
casting are flipped to the right end of each row of the graph.
Then, nodes above sources of diagonal broadcasting are flipped
to the bottom end of such diagonals. In addition, delay nodes
are placed at the boundaries of the graph with the same depen-

m euperfluou• node __. broadcast data

Figure 2: Replacing broadcasting by pipelining

't1 _,i,
~ ..::'.l ~ ~

"""1: ~ ~ ~ ~h .. :'!,J ~
!"-.. ["-. £"...A ['-.._.
I~ ~ 5 ~ J_ J:'!,J ['.} ~ ,._

~ ~ ~ r:::i.
:"-.. D, ~~~~ :'!,J :'!,J
I ~ ~ ~ ~

•delay node ',,[~ ~ ~ ~ - £".... D, ['-....),
":'!,J ~ ~
~ ~ ~

';[~ :'!,J r.. - 'l\ 1\ ;\

Figure 3: Transformed transitive closure dependence graph

dency structure that dominates the graph, as proposed in [9].
The resulting graph is shown in Figure 3.

Once properties of the original dependency graph not suit­
able for partitioning have been eliminated, we apply the re­
maining of our partitioning procedure. We first transform the
graph into a G-graph by selecting sets of primitive nodes in
such a way as to reduce communication requirements and ob­
tain G-nodes with the same computation time. In this case,
diagonal paths are a good alternative for grouping, because
nodes in such paths communicate among themselves in a repet­
itive manner and all paths have the same number of primitive
nodes. The result of performing such grouping is the G-graph
shown in Figure 4.

As an aside, Figure 4 is suitable for direct implementation as
an array for fixed-size problems. Such an array achieves max­
imum utilization because all G-nodes have the same computa­
tion time and the algorithm is computed in pipelined manner
in the array. Throughput is 1/n because the computation time
of G-nodes is n cycles. Successive instances of the algorithm
can be chained without restrictions. This array is simpler than
the one proposed in (13] because it has a single communication
path between cells and no control complexity. Furthermore,
data transfers and computations are overlapped while the ar­
ray proposed in (13] requires that "data be first loaded irt the
nodes and then reused for a period of n cycles" so that "certain
control is required in the systolic array."

30

. : .
• . . . • a•1 . • 8 31 .
8 21

a11

• :
: • • • +

• .
a;1

a.1 •
a;1 a;t

Figure 4: Transitive closure G-graph

~--(.&
~:~

~
Figure 5: Mapping G-graph onto a linear array

Another advantage of the array for fixed-size problems de­
scribed above relies on the simplicity of its derivation through
the graph-based methodology. This is in contrast with the
scheme in [13], which uses a rather complex mathematical aP­
proach. Furthermore, the G-graph in Figure 4 can be collapsed
into a linear structure by grouping each horizontal path into a
single node. The resulting graph can be directly mapped onto
a linear array with throughput [n(n + 1))-1 and all cells fully
utilized.

Arrays to compute the transitive closure in partitioned mode
can be derived directly from the G-graph in Figure 4, as we
describe next.

Linear array

Let's assume that we want to partition the computation of
transitive closure of a directed graph with n nodes so that it
fits in a linear structure with m cells, where m < n. We
map G-sets from the transformed graph onto a linear array
by selecting G-sets of m G-nodes from horizontal paths, as
shown in Figure 5 for m = 4. Intermediate results from G-sets
are saved in external memories. Such data is available at the
boundary of the set, so that saving it in external memories is
straight-forward.

~--~
• . . .

~-~

Figure 6: Mapping G-graph onto two-dimensional array

The structure resulting from this approach enjoys maximal
utilization because all G-nodes executed concurrently have the
same computation time, except when executing boundary sets
in some horizontal paths that might not use all cells in the
array. The number of connections to external memories is m+ 1.

Two-dimensional array

Mapping· the G-graph for execution in a two-dimensional
structure with m cells requires to simulate a triangular array
and a square array, because those are the major components
of the G-graph. Both requirements can be fulfilled in a square
array. G-sets are selected as square blocks of ...;m by ...;m
nodes, excepting sets at the boundaries of the G-graph which
are composed of triangular blocks of G-nodes. As in the linear
case, intermediate results are saved in external memories. The
structure resulting from this approach is shown in Figure 6 for
m = 4. Utilization of this array is maximal, except when exe­
cuting boundary sets because such sets do not use all cells in
the array. The number of connections to external memories is
2...;m.

To use the arrays obtained above it is necessary to schedule
the execution of G-sets. Such scheduling is discuss in detail
in [6] and it is shown that linear and two-dimenaional arraya
require the aame 1/0 bandwidth from the hoat.

Conclusions

We have proposed a technique to partition algorithms for ex­
ecution in arrays, based on dependency graphs of algorithms.
We described the application of such technique to the compu­
tation of transitive closure of a directed graph. Through this
example, we have shown that the approach is general and pow­
erful. This technique is suitable for a class of important ma­
trix algorithms, produces implementations with maximal uti­
lization of cells and no overhead due to partitioning, and al­
lows evaluating trade-offs between linear and two-dimensional
structures. Moreover, this graph-based approach is simpler to
use than schemes based on mathematical expressions.

We derived linear and two-dimensional arrays for parti­
tioned \computation of transitive closure. In the process, we
have obtained a dependence graph which is suitable for im­
plementation of a fixed-size array for transitive closure, with

31

better characteristics than structures previously proposed for
this algorithm .

In [6], we describe other issues in partitiouing algorithms, in
particular trade-offs betwe~n linear and two-dimensional struc­
tures. We show there that, with the sam:e number of cells, lin­
ear arrays are simpler, have the same throughput and require
the same 1/0 bandwidth from the host than two-dimensional
ones, and might exhibit better utilization. Moreover, linear
arrays are more advantageous than two-dimensional ones be­
cause they are better suited to incorporate fault-tolerant ca­
pabilities. Consequently, we conclude that linear arraya offer
better performance and implementation than two-dimenaional
array• for partitioned e:i:ecution of a/gorithma.

References

[1] J. Navarro, J. Llaberia, and M. Valero, "Partitioning: an
essential step in mapping algorithms into systolic array
processors," IEEE Computer, vol. 20, pp. 77-89, July
1987.

[2] D. Moldovan and J, Fortes, "Partitioning and mapping
algorithms into fixed size systolic arrays," IEEE Tranaac­
tiona on Computer•, vol. C-35, pp. 1-12, Jan. 1986.

[3] S. Kung, VLSI Array Proceaaora, pp. 374-382. Prentice
Hall, 1988.

[4] K. Hwang and Y. Cheng, "Partitioned matrix algorithms
for VLSI arithmetic systems," IEEE Tranaactiona on
Computer•, vol. C-31, pp. 1215~1224, Dec. 1982.

(5) J, Nash, S. Hansen, and K. Przytula, "Systolic partitioned
and banded linear algebraic computations," in SPIE Rea/­
Time Signal Proceaaing IX, pp. 10-16, 1986.

(6] J. Moreno and T. Lang, "Graph-based partitioning of
matrix algorithms for systolic arrays," Technical Re­
port CSD-880015, Computer Science Department, Uni­
versity of California Los Angeles, March 1988.

(7) J. Moreno and T. Lang, "On partitioning the Faddeev al­
gorithm," in International Conference on Syatolic Arraya,
May 1988.

[8] J. Moreno and T. Lang, "Design of special-purpose arrays
for matrix computations: preliminary results," in SPIE
Real-Time Signal Proceaaing X, pp. 53-65, 1987.

(9) J. Moreno and T. Lang, "Reducing the number of cells in
arrays for matrix computations," Technical Report CSD-
880014, Computer Science Department, University of Cal­
ifornia Los Angeles, March 1988.

(10] F. Nunez and N. Torralba, "Transitive closure partition­
ing and its mapping to a systolic array," in International
Conference on Parallel Proceaaing, pp. 564-566, 1987.

[11) A. Aho, J. Hopcroft, and J. Ullman, The Deaign and Anal­
yaia of Computer Algorithma. Addison-Wesley, 1974.

(12] J. Moreno, "A proposal for the systematic design of arrays
for matrix computations," Technical Report CSD-870019,
Computer Science Department, University of California
Los Angeles, May 1987.

(13] S. Kung, VLSI Array Proceaaora, pp. 248-266. Prentice
Hall, 198,8.

Iterative Sparse Linear System Solvers on Warp

P. S. Tseng

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Warp is a systolic computer developed by CMU and
manufactured by GE. The machine has 10 or more
linearly connected cells. Each cell in the array is capable
of performing 10 million floating point operations per
second (10 MFLOPS). The 10-cell array can achieve a
peak performance of 100 MFLOPS. This paper describes
parallel iterative sparse linear system solvers developed
for the Warp systolic computer. For general sparse linear
systems, Warp achieves 12.S MFLOPS in sparse matrix
vector multiplication, which competes with supercom­
puters such as Cray-IS and Cyber-205. We implemented
the general sparse linear system solver IC-PCCG
(Incomplete Choleski Pre Conditioned Conjugate
Gradient method) using the sparse matrix vector mul­
tiplication kernel. The solver was exercised on sparse
linear systems derived from production finite element ap·
plications. Speedups of more than 100 over the V AX/780
with floating point accelerator are achieved. For solving
regular sparse linear systems, domain partitioning is used
to speedup solving finite difference equations on a regular
mesh. For a model problem of Laplace's equation on a
square mesh of 500 by 500 unknowns, Warp is able to
achieve 14.6 MFLOPS using the generic SOR relaxation
scheme and 49.4 MFLOPS using the 2-color SOR relaxa­
tion scheme.

1. Introduction
Large sparse linear systems of order 104 to 105 frequently

arise in large scale scientific and engineering analysis such as
computational fluid dynamics, structural mechanics,
electronic device simulation and electric magnet field
analysis. Direct methods designed for solving dense linear
systems such as LU and Choleski decomposition are imprac­
tical for solving very large sparse systems, because very large
storage is required. Driven by demands from applications,
extensive efforts have been invested in the search for practical
solvers for large sparse linear systems. There are two ap­
proaches. One is to pick an appropriate direct method and
adapt it to exploit the sparsity of linear systems. Typical

The research was supported in part by Defense Advanced Research
Projects Agency (DOD) monitored by the Space and Naval Warfare
Systems Command under Contract N00039-87-C-0251, and in part
by the Office of Naval Research under Contracts N00014-87-K-0385
and N00014-87-K-0533.

32

adaptation strategies involve the intelligent use of data struc­
ture and special pivoting strategies that minimize fill-in of the
coefficient matrix [5, 6]. In contrast to the direct methods are
the iterative methods. These methods start with an initial
guess to the solution and generate a sequence of successively
improved solutions until it converges to the desired solution
within the accepted tolerance. Iterative methods are much
more efficient for very large sparse systems because the coef­
ficient matrix is not decomposed and remains unchanged
throughout iterations, therefore no fill-in is created.

In this paper, several iterative sparse linear system solvers
on the CMU Warp machine are described. We first give a
brief review of the Warp machine and its architectural
strength in supporting sparse matrix computations. Secondly,
we consider the crucial kernels used in solving general sparse
linear systems, sparse matrix vector multiplication and sparse
triangular system solving. hnplementation of these kernels on
Warp are described and compared with vector supercom­
puters such as Cray-IS and Cyber-205. These kernels were
integrated into the general sparse linear system solver IC­
PCCG and exercised on sparse linear systems derived from
production finite element applications. Speedups of more than
100 over the VAX(780 with floating point accelerator are
achieved. Finally, we consider the problem of solving finite
difference equations on a square mesh. For the model
problem of Laplace's equation on a square mesh of 500 by
500 unknowns, Warp is able to achieve 14.6 MFLOPS using
the generic SOR relaxation scheme and 49.4 MFLOPS using
the 2-color SOR relaxation scheme.

2. The Warp Machine
A brief overview of the Warp machine is given below. (for

architectural details, programming tools, and its other applica­
tions see [1, 2, 3]) The Warp machine has three components -
the Warp processor array, or simply Warp array, the interface
unit, and the host, as depicted in Figure 2-1. The Warp
processor array performs the bulk of the computation. The
interface unit handles the input/output between the array and
the host. The host has two functions: carrying out high-level
application routines and supplying data to the Warp processor
array.

The Warp processor array is a programmable, linear sys­
tolic array, in which all processing elements (Warp cells) are
identical. Data flow through the array on two data paths (X
and Y) (as shown in the Figure 2-1). Each Warp cell contains
one floating-point multiplier, one floating point ALU and one
integer ALU. The floating-point units can deliver up to 5
MFLOPS each. This performance translates to a peak
processing rate of 10 MFLOPS per cell or 100 MFLOPS for a
10-cell processor array. A 32K-word memory is provided for
resident and temporary data storage. The datapath of a Warp
processor cell is shown in Figure 2-2. The host is a general
purpose computer (currently a Sun workstation, with added
MC68020 cluster processors for 1/0 and control of the Warp
array). It is responsible for executing high-level application
routines as well as coordinating all the peripherals.

Yin

[HOST

INTERFACE
UNIT

WARP PROCESSOR ARRAY

Figure 2-1: The Warp systolic computer

Figure 2-2: Warp cell datapath

A feature that distinguishes the Warp cell from many other
processors of similar computation power is its high intercell
communication bandwidth - an important characteristic for
systolic arrays. Each Warp cell can transfer up to 20 million
words (80 Mbytes) to and from its neighboring cells per
second. We have been able to implement this high bandwidth
communication link with only modest engineering efforts,
because of the simplicity of the linear interconnection struc­
ture and clocked synchronous communication between cells.
This high inter-cell communication bandwidth makes it pos­
sible to transfer large volumes of intermediate data. between

33

neighboring cells and thus supports fine grain problem
decomposition. For communicating with the outside world,
the Warp array can sustain a 20 Mwords/sec peak transfer
rate. In the current setup, the host can only support up to 2
Mwords/sec transfer rates.

3. General Sparse Linear Systems
The compact matrix storage structure makes sparse matrix

computations different from those for dense matrices. Figure
3-1 shows a widely used storage structure for general sparse
matrices. The A array stores the non-zero elements of the
matrix, the JA array stores the column index of each non-zero
elements, and the IA array is an index array which points the
starting element of each row in the A and JA arrays. This
compact matrix format is used in general sparse matrix
packages such as the Itpack [8].

We identify two sparse matrix kernels which dominate the
computation of the iterative solvers under our consideration.
They are

• sparse matrix vector multiplication;

• sparse triangle system solving.

[

1 2 0
0 1 13
21 0 1
0 32 0
0 42 0

51 0 53

4
0
0
1
0
0

0 OJ 0 16
0 0
0 36
1 0
0 1

A = [1, 2, 4; 1, 13, 16;21, l;
32, 1,36;42, 1;51,53, 1]

JA = [0, 1, 3; 1, 2, 5; 0, 2;
1, 3, 5; 1, 4; 0, 2, 5]

IA = 0, 3, 6, 8, 11, 13]

Figure 3-1: Sparse matrix storage

3.1. Sparse Matrix Vector Multiplication
Consider the algorithm for multiplying a sparse matrix with

a dense vector y=AX':
for i := 0 to n-1 do begin

jbgn := IA[i] jend := IA[i+l] - 1;
sum := 0.0;
for j .- jbgn to jend do begin

sum :=sum+ A[j] * x[JA[j]];
end
y [i] := sum;

end

The algorithm steps through the sparse matrix row by row and
does an inner product of the sparse row vector with the dense
vector x. The inner product computation is optimized by
collecting elements from the dense vector indexed by the
sparse vector to avoid multiplication and addition with zeros.
This process of randomly collecting elements from a dense
vector to match a sparse vector is known as the gather opera­
tion. The sparse matrix vector multiplication algorithm is an
example where the innermost loop is sequential while the
outer loop is completely parallel. To parallelize the computa-

tion, we simply distribute the rows of the matrix to the 10-cell
array by interleaving, that is, cell i has rows lOk+i, for
O~k~Ln/lOJ. The dense vector is duplicated on all the cells.
Because of the 7-stage pipelined floating point adder, a Warp
cell can only do the sparse dot product step at the rate of one
every 8 cycles, that is, 1.25 MFLOPS out of its lOMFLOPS
peak performance. The 10-cell Warp array can achieve 12.5
MFLOPS in sparse matrix vector multiplication. This perfor­
mance figure is as good as or better than supercomputers such
as Cray-IS (Gather: 5 to 11 MFLOPS, Peak 210 MFLOPS)
and Cyber-205(Gather: 4 to 17 MFLOPS, Peak 800
MFLOPS) [4]. Note that, Warp is a single precision machine
while the performance on CRA Y-lS and Cyber-205 are
double precision results. The relatively bad performance on
vector computers is due to their heavily pipelined memory
system and vector oriented processor units, which do not
perform well in random indirect addressing and short vector
computations.

3.2. Sparse Triangular System Solving
Sparse triangular system solving is an inherently sequential

process. Consider the algorithm for solving sparse lower
triangular system AX' =.Y':
for i := 0 to n-1 do begin

j := :IA[i];
sum:=y[i];
while (JA[j] < i) do begin

sum :=sum - A[j] * x[JA[j]];
j := j+l;

end
x [i] := sum;

end

and similarly the algorithm for solving sparse upper triangular
system AX'=y:
for i := n-1 to 0 do begin

j := :IA[i+l]-1;
sum := y[i];
while (JA[j] > i) do begin

x[i] := x[i] - A[j] * x[JA[j]]
j := j -1;

end
x[i] .- sum;

end

1~1

Ll ~
L2 ~
Er~

I xl I
I x2 I

I x3 I

I x4 I

yl

y2

y3

y4

Ll,L2,L3are general sparse matrices.

Figure 3-2: p-color ordered sparse triangular system, p=4

34

The innermost loops of these algorithms are gather opera­
tion and its outer loops are strictly sequential, which is not the
case in matrix vector multiplication. The technique of multi­
color reordering suggested in [11, 10] is used to restructure
the sparse matrix and parallelize the computation ·of sparse
triangular system solving. As shown in Figure 3-2, a p-color
sparse triangular matrix has p identity blocks along the
diagonal. Note that they are blocks of identity matrices, not
blocks of identical size. A triangular system with such a
structure can be solved in p-l steps instead of n-l steps,
where n is the degree of the system. Each step of the solving
is a sparse matrix vector multiplication, for example, Figure
3-3 shows the 3 steps for solving a 4-color triangular system.
Since sparse matrix vector multiplication can be done in
parallel, the sparse triangular system solving is thus paral­
lelized.

xl yl

x2 =
y2

- ~~l'I Step 1

x3 I=
y3 - lxll- 12 I x21 Step 2

x4 y4 - H-~l+l:JH
'------'

Step 3

Figure 3-3: Forward solving : a 4 color ordered system

3.3. The IC-PCCG Solver
The Conjugate Gradient (CG) method was developed by

Hestenes and Stiefel in 1952 [7] and subsequently widely
used for solving minimization problems. Only since the 70's
has the CG method been used for solving linear systems of
equations with the symmetric positive definite (SPD)
property. Its success is connected with the development of
the Pre Conditioned CG (PCCG) iterations. The Incomplete
Choleski precondion (IC-PCCG) [9] is one of the most suc­
cessful general purpose precondition strategies popularly used
in practice.

Let A be a symmetric positive definite (SPD) n by n sparse
matrix. We want to solve a linear system with AX'= 71. If we
define the error functional as

where x-'Z' is the error vector and the residual vector r is
defined as r = 71-A'Z'. This functional is minimized by the
exact solution of A'Z' = 71. The CG method prescribes how to
choose a sequence of approximations x k such that the func-

tional F(x k) is minimized in an optimal way. In the steepest

descent method the new approximation x k+ 1 is found in the

direction of the gradient, which is the residual vector r k·

F(x k+ 1) =min a F(x k + ark)

The CG method converges in at most n iterations in the
absence of round-off errors, the convergence rate is strongly
determined by the clustering of the eigen values of the A
matrix. The generic CG method is not practical for applica­
tions because of its slow convergence rate. The PCCG method
is thus introduced, which instead of solving the system
AX= 11, solves the preconditioned system

where M is the precondition matrix with the properties that

•Mis positive definite

• ~ 1 A has better spectral properties than those of
A, that is, a smaller spectral radius and more
clustered eigen values.

•It is relatively cheap to solve a system with M,
MZ' ="if.

Although the detailed theory of PCCG may be complicated, it
turns out that the approximation of x k can be simply com­
puted by the following iterative algorithm with I; as the stop­
ping criterion.

Initialization:
-Xo.= O'
p0 =11

Solve: MZ' o= ff
k=O

Iteration:

While YZ'k • rk > I; do

z>k•rk
ak=----

pk•Apk
-xk+1 =xk HxJ/ k

rk+l =rk-a0Pk·

Solve: MZ' k+ 1= r k+ 1

z> k+1 • rk+1
13k=---­

Z'k•rk

P' k+ 1 = z> k+ 1 + 13J]1 k
k=k+l

For IC-PCCG algorithm, the precondition matrix
M = WLT is derived from the incomplete Choleski decom­
position of A, where D is a diagonal matrix and L is a lower
triangular matrix with the same sparse pattern as A. A detailed
discussion of IC-PCCG algorithm can be found in [9]. In
addition to the vector additions (a+sT!) and inner products
(a•Ti), a sparse matrix vector multiplication and two sparse
triangular system solving are kernels used inside an IC-PCCG
iteration.

35

In our implementation of the IC-PCCG algorithm, matrix A
is first multi-color renumbered and then Mis derived from the
renumbered matrix by incomplete Choleski decomposition.
Matrices A and Mare ditributed to the 10 processor cells by
row interleaving. Vectors p, r, Z' and x are also distributed
to the 10 processor cells by interleaving. Scalars are dupli­
cated in all cells. One working vector of length n is allocated
in each cell for sparse matrix vector multiplication and tri­
angular system solving. The p vector is copied to the work­
ing vector before Ap is performed. A segement of the z>
vector is generated after a parallel forward (backward) sub­
stitution step completes. The segement is then copied to the
working vector before the next parallel forward (backward)
substitution step starts. The inner products are done by com­
puting the partial result in each cell. All the partial results are
summed together from the first cell to the last cell then broad­
cast backwards from the last cell to all the cells. Vector
additions are naturally parallelized because the vectors are
distributed. Scalar computations and convergence test are per­
formed by all cells, that is, sequential computations are dupli­
cated. The host is not involved in the iterative process at all,
thus its limited host 1/0 bandwidth does not affect the com­
putation.

t

t

t

t =

0 3 6
x x x
x x x
x x ::.:

0 x x
3 :-:. x

6 "• x

0 1 x
3 4 x
6 7 x

0 1 2
3 4 5
6 7 8

1 4 7
z z z
,_ z •..
.. z ..

x 1 ..
z 4 ..
•·. 7 ..

1 .-.
3 4 :-:
6 7 ..

0 1 2
3 4 5
6 7 8

2 5 8
z .-.
..

z .. 2
z .. 5
x .. 8

z 1 2
z 4 5
.. 7 8

0 1 2
3 4 5
6 7 8

Figure 3-4: Copy a distributed vector to all the cells

Copying a distributed vector to all the cells is the major
communication overhead in this mapping. With the support of
the systolic communication pathway, we are able to reduce
this overhead significantly. Figure 3-4 shows a method to

achieve fast communication. The method can copy a dis­
tributed vector of length n to all the cells in n+c-2 cycles,
where c is the number of cells. Limited by the local memory
bandwidth, this result is only c-2 cycles away from the best
possible achievable result of n cycles. We have exercised our
IC-PCCG implementation on sparse matrices arising in the
finite element analysis applications from GE Corporate
Research and Development, GE-CRD. Limited by the small
cell memory, these matrices have no more than 4000 un­
knowns. The performance of GE production IC-PCCG code
run on a V AX-780 (with floating point accelerator) VMS
system is compared with Warp. Warp is more than 100 times
faster, depending on the sparsity of a matrix.

4. Regular Sparse Linear Systems
In this section, we describe the mapping methods for solv­

ing finite difference equations on a regular mesh, or equiv­
alently a sparse linear system with multiple nonzero diagonals
in the coefficient matrix. Problems of this type frequently
arise in numerical solution of partial differential equations by
finite difference approximation. The regular structure of the
sparse matrix makes index vectors obsolete and more effec­
tive mapping schemes can be used to improve the computa­
tion speed.

7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7

Figure 4-1: Descretized square domain (5-point stencil)

For simplicity and ease of presentation, we illustrate the
example of solving Laplace's equation on a square domain
with a Dirchlet boundary condition. The domain is
descretized using the five point difference scheme , as shown
in Figure 4-1. Linear equations of the form

4u. ~(U· l +U· · 1+U· · 1+U· 1 ·) = 0 IJ I- J IJ- IJ+ I+ J

are obtained for the interior grid points. The solution of uiJ
can be derived by the method of Successive Over Relaxations
(SOR) [13]. Of course, the problem can be solved using other
fast methods [12]. But, it makes a convenient example with
which we are able to illustrate a mapping scheme for general
problems of this type. The SOR iteration can be formulated
by the recurrence equation:

k k- I k k k-1 k- I
u. =(1-ro)u .. + 0.25ro(u. 1 .+u. · 1+u. ·+1+u.+1 ·) IJ IJ I- J IJ- IJ I J

where the super script denotes the iteration number and ro is
the relaxation parameter. The generic SOR iteration is con-

36

sidered sequential on vector computers. It can not be vec­
torized in either the column or the row dimension because of
the recurrence definition in the algorithm. For Warp, even the
nested recurrence computation can naturally be parallelized
using the systolic pathway.

Our mapping is based on a simple domain partition, no
preprocessing is needed to achieve the splitting. Consider the
mapping on a linear array of two processor cells. The mesh
of unknowns is evenly partitioned into 2 cells on the column
dimension with one column overlapped, as shown in Figure
4-2. In one relaxation step, the computations between two
cells are scheduled as follow. When cell 0 completes the
computation for the first half of row i, it sends the overlapped
element to cell 1 and continues to compute row i+ 1 in its
domain. In the mean tiIIJS!, cell 1 receives the .value generated
by cell 0 and continues the computation on the second half of
row i. Cell 1 sends its overlapped element back to cell 0
when it is generated. The datum is stored in the queue and
will not be retrieved by cell 0 until it finishes the computation
of the first half of row i+ 1. This process repeats until the last
row. Figure 4-3 illustrates the communication between two
cells.

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

cell 0 cell 1

Figure 4-2: Domain partition

In this example, the queue between processors is used both
for communication and synchronization, a unique feature of
systolic arrays. With the combined communication and
synchronization scheme, the mapping is free of overhead.
The zero cost of synchronization remains as the number of
processor increases and the granularity between synchroniza­
tions decreases. This nice property can not be achieved in
many shared memory multiprocessors, where the
synchronization is done sequentially. A complete SOR algo­
rithm needs to compute the norm of error vector between

successive iterations to determine the convergence of the
solution. The norm of error vector is computed locally inside
each cell. After one relaxation step is completed, the partial
norms of all cells are combined together from the first cell to
the la~t cell then broadcast backward from the last cell to all
the cells. The convergence test is done by all the cells. As in
the IC-PCCG algorithm, the host is not involved in the itera­
tive process. For a mesh of 500 by 500, the Warp computer
can finish one SOR iteration with convergence test in 187 ms,
which is 754 ns per point per iteration or 14.6 MFLOPS. The
bad absolute performance is caused by the 7-stage pipelined
processing unit inside each cell. A simple fix to avoid the cell
pipeline problem is to use the 2-color relaxation scheme. In
the first half of an iteration, we update the unknowns uij'

where i+j is even. In the second half of an iteration we update
uij' where i+j is odd. Each half iteration is completely parallel,
thus the cell pipeline unit can be utilized more effectively.
One complete 2-color SOR relaxation for the 500 by 500
mesh can be done in 54 ms, which is 224 ns per point per
iteration or 49.4 MFLOPS.

x x x x 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 x-queue 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 c= 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 y-queue 0 0 0 0 0

cell 0 cell 1

x x x x 0 x x 0 0 0
x 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 y-queue 6 0 0 0 0

cell cell 1

x x x x x x x x
x x x x 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 y-queue 0 0 0 0 0

cell 0 cell 1

Figure 4-3: Parallel SOR relaxation on a 2-cell array

5. Conclusions
We have demonstrated that a linear systolic array of power­

ful processors like Warp can be used effectively in solving
sparse linear systems. The high bandwidth systolic intercell
pathway is very powerful for fast communication and
synchronization. It is used to reduce the communication
overhead in the IC-PCCG algorithm and to parallelize the

37

nested recurrence computation in the generic SOR relaxation.
The MIMD array is useful because multiple gather operations
in the sparse matrix vector multiplication can not be se­
quenced by a single instruction stream across the array. It is
the heavily pipelined processor cell, not the linear array,
limits the achieved performance. The cell's single precision
floating point arithmetic and the small local memory capacity
also limit the Warp computer's use for large scale sparse
matrix applications.

References

1. Annaratone, M., Arnould, E., Gross, T., Kung, H. T., Lam,
M., Menzilcioglu, 0. and Webb, J. A. "The Warp Computer:
Architecture, Implementation and Performance". IEEE
Transactions on Computers C-36, 12 (December 1987),
1523-1538.

2. Annaratone, M., Bitz, F., Deutch, J., Hamey, L., Kung,
H. T., Maulik, P., Ribas, H., Tseng, P. and Webb, J. Applica­
tions Experience on Warp. Proceedings of the 1987 National
Computer Conference, AFIPS, 1987, pp. 149-158.

3. Bruegge, B., Chang, C., Cohn, R., Gross, T., Lam, M.,
Lieu, P., Noaman, A. and Yam, D. The Warp Programming
Environment. Proceedings of the 1987 National Computer
Conference, AFIPS, 1987, pp. 141-148.

4. Bucher, I. The Computational Speed of Supercomputers.
The Proceeding of ACM Sigmetrics Conference on Measure­
ment and Modeling of Computer Systems, ACM, August,
1983, pp. 151-165.

5. Duff, I. The Solution of Sparse Linear Equation on the
CRAY -1. Proceedings of the NA TO Works hop on High
Speed Computations, NATO, 1984, pp. 293-309.

6. George, J. and Liu, J .. Computer Solution of Large Sparse
Positive Definite Systems. Prentice-Hall, Englewood Cliffs,
N. J., 1981.

7. Hestenes, M. and Stiefel, E. "Methods of Conjugate
Gradients for Solving Linear Systems". Journal of Research
Naional Bureau of Standard. 49 (1952), 409-439.

8. Kincaid, D., Respess, J., Young,D. and Grimes, R.
"Algorithm 586 ITPACK 2C: A FOTRAN Package for Solv­
ing Large Sparse Linear Systems by Adaptive Accelerated
Iterative Methods". ACM Transactions on Mathematical
Software 8, 3 (September 1982), 1302-1322.

9. Manteuffel, T. Shifted Incomplete Cholesky Factorization.
Sparse Matrix Proceedings, SIAM, Nov, 1978, pp. 41-61.

10. Poole, E. and Ortega, J. Incomplete Choleski Conjugate
Gradient on CYBER 203/205. In Supercomputer
Applications, Plenum Press, New York, 1984, pp. 19-28.

11. Schreiber, Rand Tang, W. Vectorizing the Conjugate
Gradient Method. Proceedings Symposium Cyber205 Ap­
plications, CDC, 1982.

12. Swarztrauber, P. and Sweet, R. "Algorithm 541:
FORlRAN Subprograms for the Solution of Seperable Ellip­
tic Partial Differential Equations". ACM Transactions on
Mathematical Software 5, 3 (September 1979), 325-364.

13. Young, D .. Iterative Solution of Large Linear Systems.
Academic Press, New York, 1971.

38

Mapping Two Dimensional Systolic Arrays
to One Dimensional Arrays and Applications 1

V. K. Prasanna Kumar and Yu-Chen Tsai

Department of Electrical Engineering-Systems
University of Southern California

Los Angeles, CA 90089-0781

Abstract - A general methodology to map the computa­
tions of two dimensional systolic arrays onto one dimensional
arrays is developed. Since two dimensional arrays have been de­
veloped for a large class of problems, using our technique they
can be translated into one dimensional arrays with bounded 1/0
bandwidth requirement. As applications of our methodology we
show a) improved linear systolic arrays for several matrix ori­
ented computations such as matrix multiplication, transitive clo­
sure and dynamic programming, b) systolic arrays with tradeoff
between number of PEs, local storage and 1/0 bandwidth and
c) fault tolerant systolic designs which can be implemented in
Wafer Scale Integration. Compared to known designs in the lit­
erature our methodology leads to modular systolic arrays with
constant hardware in each PE, few control lines, lexicographic
data input/output format and improved delay time.

1. Introduction

VLSI arrays have been designed to implement cost effective and
efficient parallel solutions in hardware. Using this methodol­
ogy, parallel solutions to a large class of numerical, signal and
image processing problems have been implemented in hardware
[7][15]. Most of these designs consist of two dimensional array
of PEs which solve problems involving O(n3) computations in
O(n) time using O(n2) PEs. In general, such two dimensional
arrays have Q(n) 1/0 bandwidth and hence data can be easily
aligned for the desired operations to be performed as the data
flows through the array.

Recently design of parallel algorithms for linear arrays has
become increasingly important [23][12)[3]. Linear arrays offer
several advantages compared to two dimensional arrays. They
require constant 1/0 bandwidth. As the problem size becomes
larger, linear arrays become attractive to implement because
only a fixed number of 1/0 pins are needed on the chip. Also, in
Wafer Scale Integration (WSI), it has been shown [8] that unidi­
rectional linear array structure leads to 100% utilization of good
PEs. No technique is known to result in high PE utilization on
a wafer in case of two dimensional arrays (in the worst case) [29]
[4]. However, due to the limited 1/0 access in the one dimen­
sional arrays, the mapping techniques in the literature cannot
be directly utilized to design such arrays or result in complex
systolic designs. Some of the known linear systolic array design
methodologies lead to bidirectional data flow which is not de­
sirable in wafer scale integration [29] [13]. Other methodologies
lead to complicated control and nonuniform 1/0 which makes it
difficult to interface with the host [23] [24] [28] [29].

In this paper, we develop a general mapping technique to
map the computations of two dimensional arrays onto one di­
mensional arrays. Using our method, "clean" linear systolic ar­
rays can be designed for a general class of problems {including
Matrix Multiplication, Transitive Closure, Dynamic Program­
ming etc.) for which two dimensional arrays have been designed
in the past. The resulting linear arrays have continuous 1/0 se­
quence and modular extensibility property. Using our method­
ology, family of linear systolic arrays for matrix multiplication
and related problems in signal and image processing can be de­
signed, exhibiting tradeoff between 1/0 bandwidth, local stor­
age, processor complexity and number of PEs. In addition, our
technique also leads to designs with 'unidirectional flow of data

lThis research was supported in part by the National Science
Foundation under. grant UU-8710836 and by a grant from USC
Faculty Research and Innovation Fund.

and control which makes our designs easily implementable in
well known reconfiguration schemes proposed for WSI.

The rest of the paper is organized as follows. In section 2,
we present our technique to map algorithms onto linear systolic
arrays which results in simple designs for many problems. In
section 3, we apply our mapping methodology to design 1) lin­
ear systolic arrays for some matrix problems, 2) family of linear
arrays, and 3) fault tolerant linear arrays. Finally, some com­
parisons and conclusions are made.

2. Mapping from 2-D to 1-D arrays

In this section we discuss the basic idea of our mapping tech­
nique and its limitations. Timing analysis and details of imple­
mentation are discussed in the following sections.

Our technique starts with a two dimensional systolic array.
For clarity of presentation of our ideas, we will consider a two
dimensional array to compute C=A x B (where A, Band Care
matrices) as an example. A 4X4 ar~ay is shown in ~gure 1 whe~e
the PEs are numbered in row maJor order. The mput data m
each row (and each column) flow through the row (and column)
of the array. For example, au passes through P Ei, P E2, P Es,
PE4 and bu passes through PE1, PE5, Plpg, PE1s. All the
computations to compute C;; are performed m PEc1-1)on+;· As
a data item passes through a PE it performs computation with
the data arriving at its other input and updates C;;. For ex~­
ple in figure 1, if the computations begin at t=l, then a2s will
me~t b34 at time t=7 in P Ea to calculate 024.

39

One way of mapping the. above two dimensional :i-rr~y iJ?-to
a linear array is by partitioning each row.and stretching 1t with
their links in row major order as shown m figure 2. Thus, the
resulting linear array will have n2 P Es. The P Es in a row in
the 2-D arrav corresoond to a block (of n PE's) in the 1-D
array. However the array in figure 2 is not the desired linear
array. The data has to be fed to internal PEs in the array,
which is not allowed in a one dimensional array. The desired
structure is shown in figure 3. It features local connections with
1/0 performed at the leftmost and rightmost PE. The input
matrices A and B are partitioned into A and B bands as shown
in figure 1. The input data is fed at the leftmost PE of the array
as shown in figure 3.

In order to enforce the linear array in figure 3 to simulate the
1-D array in figure 2, we have to address the following problems.

1. Activation of PEs
This problem is concerned with activating the PEs to per­
form operations when the desired operands arrive at a
PE. In the above example, in order to simulate the op­
erations of the 2-D array with linear array, we use some
control signals to let au be 'activated' from PE1 to PE4
and be 'deactivated' in other P Es. When au is acti­
vated in a PE, it performs a computation (of the form
cu+-- cu+ au* b1;) with b1;, in PE;, 1 :5 j :5 4. Sim­
ilarly, bu is activated only in PEi, PE5, PEg, PE1s to
compute with a;i, 1 :5 i :5 4. In other words, in the lin­
ear array, au is transported from P E5 to P Eis without
doing any operation and bu is transported through PE2,
PE3 , PE4, PE6 , PE1, PEa, PE10, PEu, PE12, PE14,
PE15, PE16 while being deactivated. In the above ex­
ample, the element a;; is to be activated at PE(i-l)•n+m
where 1 :5 m :5 n, and b;; be activated at PE(lc-l)•n+;
with 1 :5 k :5 n.

2. Operand alignment . . .
This problem is concerned with ensur.mg the right operands
meet in a PE to perform an operation. In order to sat­
isfy the alignment of operands in the linear array, we use
two types of channels: fast and slow c~annel~. Suppose
the data in the fast channel takes a time umts to pass
through a PE while the data in the slow channel takes .'Y
time units where a< "f· If the elements of A (B) matrix
are fed into a slow (fast) channel in a .column (row) major
order, then, for "f = 2 and a = 1, 1f a;k ai:;id h1c; reach
PE at time t0 , then a;1c will meet b1c,;+1 at time to+ 1 at
P~+1·

3. Transportation of data from .row .to row.
This problem is concerned with s1mulatmg the movement
of data from one row to another row in the 2-D array
(those data crossing the dashed lines in figure 1) ~n the
one dimensional array. We use an extra channel (m the
above example BS) to transport this data within each
block, the dat~ to be used by the PEs in the next block
is stored in this channel.

In summary, a general design methodology is as follows:

1. Start with a 2-D systolic array with data flow along the
positive coordinate direction. Without loss of generality
let the array size be m x n without diagonal connections.

2. Partition the array and compress it into a linear array. A
general partition rule will be given in section 3.3.

3. Assume there are x channels along the X axis and y chan­
nels along the Y axis connecting adjacent PEs in the 2-D
array. Each horizontal channel in the 2-D array corre­
sponds to one slow channels connecting adjacent PEs in
the resulting 1-D array and each vertical channel corre­
sponds to a slow and a fast channel. Thus, we have x+2y
channels connecting PEs in the 1-D array.

4. Feed the A and B bands into the leftmost PE.

5. Design a scheme to solve

(a) The activation of operations (using control signals).
(b) The alignment of operands (using fast and slow chan­

nels).
(c) The transportation of operands (using transporta­

tion channel and mechanism to switch data chan­
nels).

6. The delays in each PE can be determined by the following
procedure:

(a)

(b)

Let the amount of delay within each PE of each
channel be a parameter.
Using the design scheme in step 5 above, obtain tim­
ing equations of channels involving these parame-
ters.

(c) Using the alignment and activation requirements,
obtain constraint equations to assure that the de­
sired data meet in the active PEs.

(d) Using the timing equations and constraint equations
choose the optimal set of parameters to minimize
delay.

An important requirement for this methodology to be appli­
cable is the data flow in the original two dimensional array is
unidirectional along coordinate axes. The following proposition
states that our methodology can be applied to arbitrary two
dimensional arrays [9].

Propositi<;>n 1 !fa computation c.an be performed in O(n) time
on a two dimensional n X n systolic array, then it can be trans­
f orm~d suc.h !hat t~e resulting array has O(n2) PEs and the data
flo'!l is un!d1~ect10n~l along X and Y axis with no asymp­
tot!c foss i.n time .. This array ca!I be further transformed into a
u:i;i1d1rect1onal linear array using the proposed mapping tech­
nique.

3. Applications

In this section, we illustrate our mapping technique by designing
linear systolic arrays for several applications.

3.1 A linear array for Matrix Multiplication

Consider the 2-D array for matrix multiplication as shown in
figure 1. The linear systolic array shown in figure 3 consists
of n2 PEs numbered l,. .. ,n2 from left to right. The PEs are
connected by three data channels which carry the input data,
i.e. a fast Channel BF for elements of B, and two slow channels
AS and BS for the elements of A and B respectively. One bit
wide control lines ACT, I, J connect adjacent PEs. All the
control signals and data move from left to right only. We will
use the above connections to solve the following problems (step
5 in our method).

Activation of PEs

When the AS and BF channels have data which commute in
a PE, then the PE must be activated to perform a computation
of the form C;; <== C;; + a;1c * b1c;. We implement this by
inputing a control signal denoted ACT at the left end of the
array to set a flag ACTIVE inside each PE. A PE is said to be
active if it has A CT IVE set to 1. It will then perform a partial
product computation during that clock period. In our design,
when ACTIVE=l, a;1c in AS channel is multiplied with h1c; in
BF channel.

Alignment of Operands

To get the correct operands together to perform an operation
in each PE data channels with different speeds are used to align
the operands. There are two types of alignment in our matrix
multiplication design. The first type concerns the alignment
of operands within a row. The second type concerns with the
alignment of operands from block to block. For example, an
activated a;1c (in the ith block) has finished all its operations
with b1c;s (1 :=::; j :=::; n) when it reaches P En•i• a;+l,k (which
immediately follows a;1c) is activated and performs operations
with h;s in the next block (These b1c;s in BS are also copied to
BF at the beginning of block;+! to supply the operands that <1-re
needed in that block). To implement this type of alignment we
use a multiplexer MA to make the data in the AS channel to
gain one time unit at the last PE of each block. This multiplexer
is controlled by a flag 1/J which is set at the last PE of each block.
Flag 1/J is set by control signals I and J whose operations are
described in the appendix. Notice the signal in ACT channel
does not gain one unit of time at the end of each block. Thus,
in block;+1, a;+1,1c is active if a;1c was active in block;, for some
k.

Transportation of Data from Row to Row

To simulate the data flow from one row to another row in the
2-D array on the 1-D array, an extra slow channel BS is used to
transport the data. The data from a block to its adjacent block
is saved in this slow channel. This data will be used by the PEs
in the next block (by copying the data in slow channel BS into
the fast channel BF at the beginning of that block) as operands
of that block. Switching of data from BS to BF is implemented
by multiplexer MB which is also controlled by the flag 1/J.

The overall system structure is shown in figure 4. The struc­
ture of PE is shown in figure 5. The operation of the P Es is as
follows:

40

Read data into registers from input ports.

If (ACTIVE=l) then C <== C + AS.LR*BF.R
If (1/J=l) then

begin

end

MA selects data from AS.LR.
MB selects data from BS.RR.

else
begin

end

MA selects data from AS.RR.
Ms selects data from BF .R.

The algorithm uses a simple data input sequence in which the
data is input in every clock continuously without any delay. At
ta, au is fed into AS channel, and bu is fed into BS and BF
channels of PE1 (leftmost PE) in the array. Matrix A is fed
in co~umn. major. order, i.e.,, au, a21, a31,- .. ,an1, a 12 ,· · -,ann·
Matrix B 1s fed m row maJo.r order, i.e., bu, b12, bis,·· ·,bin,
b2i,' · ·,bnn· Also, the control mput ACT is set to 1 every time
a11c, 1 :S k :S n, is inserted into the array.

Timing Analysis

By assuming the delay of each channel within each PE as
a parameter, the transportation of data in each channel can be
described by timing equations and the alignment and activation
requirements can be described by constraint equations. Using
these timing and constraint equations, optimal parameters can
be chosen to minimize the delay. In the following design we
assume that the computations begin at t=l.

Timing equations

Let

!(a, u, v)
= time at which a.,. is input to P Ei, 1 :S u, v :S n.
=(v-l)*n+u
I(b, r, s)
= time at which b,, is input to P E 1 , 1 :S r, s :S n
= (r - 1) * n + s

I(ACT,k)

= time at which kth ACT = 1 is input to P Ei, 1 :S k :S n

(1)

(2)

=(k-l)*n+l (3)

The following are the timings of the data a.,v, b,8 and control
signal ACT that appear at processor p, 1 :S p :S n2. P Ep
computes C;; where p is given by,

p = (i - 1) * n + j

1. For a ... , 1 :S u,v :Sn,

t(a, u, v,p)
= time at which auv appears at P Ep

=!(a, u, v) + a(p - 1) - .Bl(P - 1)/nj

(4)

(5)

In the above equation, the first term is the time at which auv
was input to P Ei. The second term is the delay experienced in
AS channel of (p - 1) PEs. a is the delay of the AS channel
within a PE. The last term corresponds to the time gained at
the end PE of those l(p-1)/nj blocks in front of PEp. ,Bis the
time gained by auv at the end of each block.

2. For b,., 1 :S r, s :S n,

t(b, r, s,p)
= time at which brs appears at P Ep

= I(b, r, s) + ')' * l(P - 1)/n J * n + S((p - 1) mod n) (6)

In the above equation, the first term corresponds to the time at
which b,, is input to PE1. The second term corresponds to the
delay experienced by the data as it travels in the BS channel
in all the blocks before the block to which p belongs. 7 is the
delay in the BS channel. The last term is the delay experienced
within the block to which P Ep belongs. 8 is the delay in the
fast channel BF.

41

3. For ACT signal,

t(ACT,k,p)

= time at which kth ACT = 1 (denoted as ACTk) appears in
PEo

=!(ACT, k) + w(p- 1) (7)

In the above equation, the first term corresponds to the time at
which ACT signal is input to P Ei. The second term corresponds
to the delay experienced by the data as it travels in the control
channel. w is the delay of the control channel within each PE.

Constraint equations

In order to correctly perform matrix multiplication, we need
to imp~ement the following operation: activate P Ef to perform
operations of the type C;; -<== C;; + a;k * bk; durmg the acti­
vation period, where p = (i - 1) * n + j. That is, when ACTk
arrives at P Ep, the specific a;k and bk; should also be in that
PE. Thus, the data a.,., b,, and ACT arriving at a PE must
satisfying the following conditions:

1. u = i

2. s= j

3. v = r = k

4. t(a, u, v, p) = t(ACT, k, p) = t(b, r, s, p)

Using the timing and constraint equations we obtain the follow­
ing equations:

1. w-8=1

2. (3 = 1

3. w = °' = ')'

A set of values satisfying the above are:

°' = 2, (3 = 1, ')' = 2, 8 = 1, w = 2.

The above parameters mean that in each PE there are 2 time
units delay in AS channel, auv gain 1 unit time at the end of
each block. The rest of the delays of channels are: [BS 2], [BF
1], [ACT 2] where [x, y] denotes there is y units of delay in the
x channel. O

The above analysis leads to:

Theorem 1 The 1-D array correctly performs all the compu­
tations of the £-D array for matrix multiplication at the end of
time t = 3n2 - n - 1, assuming the computation begins at time
t = 1.

3.2 Linear Arrays for Transitive Closure

As another illustration of the mapping technique, we design lin­
ear arrays for the transitive closure problem by mapping the
computations of a well known 2-D array.

A 2-D systolic array for the transitive closure problem has
been derived in [5]. Its structure is shown in figure 6 which is
the same as figure 1 except for the end around connections.

The input is two copies of n x n adjacency matrix, with 1 'son
the diagonal, read into an n x n array of processors. The output
is found in the processor array and is read out of the right and
bottom edges. Three passes are needed for the computations
[26].

Unlike the systolic array for .matrix multiplication the data
in the array is updated at certain times by the P Es in each row

(column) before moving to the next row (colum~). Two contrc;il
signals DIAGA and DIAGB can be used to implement this
update. DIA GA (DIA GB) is associated with a;; (b;;) such that
if i = j then DI AG A (DIAGB)=l else DI AG A (DIAGB)=O.

When PE;; receives DI AG A it updates b;; (i.e., b;;<== C;;)
if DIAGA=l. Similarly when DIAGB is equal to 1, a;; is
updated (i.e., a;; <;=== C;;). We call this the update mechanism.

To map the 2-D array in figure 6 into 1-D array, we use the
same partitioning and stretching method as in matrix multipli­
cation. Therefore solution to the alignment, transportation and
activation of PEs problems are the same in this design. Hence,
we will only address two major differences compared to ~atr!x
multiplication: (1) Simulation of the end around connections m
the 2-D array and (2) implementation of the update mechanism.

The activation design of PEs in matrix multiplication makes
the O(n) end around connections in the 2-D array easy to imple­
ment m the 1-D array. For example, in the 2-D array au goes
from P Ei through P E4 and back to P Ei. This operation can
be simulated in 1-D array by letting au go through PEi to PE4
activated and from P Es to P E16 deactivated and then back to
P Ei again. The same design can be used for the elements in
B matrix. In this way, 2n end around connections in the 2-D
array can be simulated by 2 connections in the 1-D array.

We now consider implementing the update mechanism in
the 1-D array. The control signals for update mechanism can
be associated with the data as in the 2-D case. The data to be
moved from row to row is the B matrix. However, in the 1-D
case the b;; that does the operation with a;; is in the BF channel
while b;; to be updated and transported to the next block is in
the BS channel. This does not lead to any timing problems,
since the b;; in BF is moving faster than the corresponding b;;
in BS. Thus, the updated data inside a PE must be placed onto
the slow channel corresponding to the B matrix.

The linear array is shown in figure 7. There are n2 P Es
numbered 1 to n 2 • The P Es are connected by the following
data paths (figure 8).

1. Two slow channels corresponding to A and DI AG A in­
puts.

2. Two slow channels corresponding to B and DIAGB in­
puts.

3. Two fast channels corresponding to B and DIAGB in­
puts.

4. One bit control signal which passes through the array is
used to indicate whether the b;; in the BS channel has
been updated or not. The control signal, UPB, together
with flag NEW B, is used to update the b;; in the BS
channel. It is initialized to 0 when it is fed at the leftmost
PE.

The detailed operation of the PE during each clock period and
the operation of the array can be found in [11].

Using the timing analysis as in matrix multiplication, it is easy
to show:

Theorem 2 The 1-D systolic array of figure 10 computes the
the transitive closure of an x n adjacency matrix in time 7n2 -

3n+ 1.

3.3. Family of Arrays for Matrix Computations

A general methodology to design a family of arrays for ma­
trix computations is as follows.

1. Partition the 2-D array into collection of disjoint rows,
CROW~, CROW2 1 ... 1 CROW., r=fn/ml. The number
?f rows m a collection is equal to memory size m available
m each PE, except CROW, which may have less than m
rows.

42

2. The linear array consists of f n/m l blocks each block hav­
ing n PEs. The computations performed by the PEs in
block; is the same as the computations of PEs in CROW;,
1::; i::; r.

3. Feed the A and B bands of the input matrices at the
leftmost PE.

4. Selectively activate the PEs to perform a step of the ma­
trix multiplication algorithm.

5. Within each block save the elements of B matrix in a slow
channel which will be used by the PEs in the next block.
At the end of each block, switch the B matrix data from
slow to fast channel so that they can commute with the
elements of A matrix within the next block.

We will use the above technique to map the two dimensional
array for matrix multiplication onto two linear array models. In
each model we will show different partitioning schemes to result
in an optimal family of arrays for matrix multiplication.

Variable Memory Family (VMF) Model

In this model, the number of 1/0 channels is fixed. Thus,
when designing a special purpose chip, the number of pins per
chip is fixed for all members in this family.

Suppose we can build chips with O(s) storage and an ALU.
In this scheme, the 2-D array having n row is partitioned into
collection of disjoint rows as follows: CROW; has s consecutive
rows starting at (i - l)s +1th row of the 2-D array. Thus, there
are fn/sl CROWs. The resulting linear array will have nf n/sl
PEs grouped into f n/ s l blocks of n PEs. The PEs in the ith

block perform the computations of the PEs of the ith CROW.
The computations of PE;; 1 ::; i,j ::; n in the 2-D array is
performed by PE(m-i)n+j in the 1-D array, where m= f i/sl .
The resulting linear array consists of nf n/ s l PEs.

As an illustration consider 4 x 4 matrix multiplication. A
partitioning of 2-D array for 4 x 4 matrix multiplication and its
mapping to linear array are shown in figure 9 and figure 10 for
s=2. In this example, CROWi has rows 1 and 2 and CROW2
has rows 3 and 4 of the 2-D array for matrix multipliCation.
Since r n/ s l =2 there are two blocks of PEs each block having
n=4 PEs. Thus, the resulting linear array has 8 PEs as shown in
figure 10. The PEs are connected by three channels which carry
the input data: fast channel (BF), and two slow channels AS
and BS which are used by the elements of A and B respectively.
In addition, one bit wide control lines ACT, OC, I(J connect
adjacent PEs. The detailed design can be found in 10].

The performace of the design can be summarized as follows:

Theorem 3 The above method performs the multiplication of
two n x n matrices using nf n/sl PEs having O(s) memory per
PE in time t = n 2 + 2nfn/sl - f n/sl + 1.

Variable Channel Family (VCF) Model

In this model we assume we can build k I/O channels, 1 ::;
k ::; n, per PE. In this scheme, the 2-D array having n row is
partitioned into collection of disjoint rows as follows: CROW;
has i + (r - l){f n/s l)'h row of the 2-D array, where 1 ::; r::; s.
Thus, there are fn/sl CROWs. The resulting linear array will
have nf n/ s l PEs grouped into f n/ s l blocks of n PEs. The PEs
in the ith block perform the computations of the PEs of the
jth CROW. The computations of PE;; 1 ::; i,j ::; n in the 2-
D array is performed by PE(m-l)n+j in the 1-D array, where
m= (i mods). The partition graph and its mapping to linear
array are shown in figure 11 and figure 12 for a 4 x 4 matrix
multiplication with k=2.

The systolic array in general consists of nf n/k 1 PEs where k
is the number of channels. There are k slow channels AS[i], 1 ::;

i ~ k, which are used by the elements of A matrix. The elements
of B matrix are fed in row major order, which correspond to B
bands in figure 1. However, the elements of A matrix are input in
the following way. Channel AS[l] carries r n/k l elements of each
column of A starting at the r n/kl(l- 1)+1'1 element. Append
n- r n/k l dummy data denoted ".A" at the end o.f each column
data. Thus, for n = 4, k = 2 the mrut sequence IS an, a2i, A ,
A , a12, a22, A , A , a13,. .. to AS[l . Similarly asi, a4i, A , A ,
a:i2, a42, A, A, aa3,. .. is the input sequence to AS[2].

By performing a timing analysis [10], we can show:

Theorem 4 : The above method performs the multiplication of
n x n matrices using nr n/k l PEs, each PE having O{k} storage
and O{k} I/O channels in time t = n2 + 2nrn/kl - rn/kl + 1.

The time complexity of matrix multiplication on both VMF
and VCF models is the same. The VMF model has fixed num­
ber of 1/0 channels. The time available for the execution of a
scalar multiplication is one clock cycle. Thus, high speed mul­
tir,liers are needed in this design. The VCF model uses more
1/0 channels but if k channels are used, then k scalar multipli­
cations need to be performed over n cycles. Thus, if k is small
compared to n then multipliers with low hardware complexity
is sufficient to implement this design.

3.4 Designing Fault Tolerant Systolic Arrays
for Wafer Scale Integration

The advantages of a special class of linear systolic arrays
suitable for WSI technology have been reported in (8]. The
most important property of this type of linear array is that all
its data flows is in one direction. By modeling a systolic array
as a directed graph, the following result has been shown in (8]:

Proposition 2 For any design, if all the edges in a cut set are
unidirectional, adding the same delay (bypass} registers (which
simulate faulty PEs) to all the edges in the cut will result in an
equivalent design.

As a result, the faulty PEs can be replaced by bypass regis­
ters. The above discussion can be captured in the following
fault model which will be used in this paper [29]:

1. The PEs are arranged in a straight line with a system
of buses running parallel to them. Eacli bus can has a
constant number of buffer registers (per PE) embedded
in it. The buffer registers correspond to the delay when
a signal passes through a PE. Also, a switch mechanism
is used to select the data route of each bus. The route
depends on the fault pattern.

2. Propagation delay is assumed to be proportional to the
wire length. We incorporate this into our design by intro­
ducing a constant unit of delay whenever a signal bypasses
a PE.

3. As in other models, the buses and switches are assumed to
be reliable, while the PEs may be faulty. Fault tolerance
is achieved by hooking working PEs into a desired logical
structure, in our case, a linearly connected array.

The complexity of matrix multiplication on this model has
been studied in (29]. They establish the following lower bound:

Proposition 3 Any systolic algorithm computing the product
of n x n matrices using n3 scalar multiplications on the above
model must take n(nvfn) time.

In (29], a matrix multiplication algorithm is designed on the
above model which has O(nyn) delay. Our technique in section
2 also leads to a simple optimal fault tolerant array for matrix
multiplication with improved performance.

43

The intended partition rules are similar to that in VMF
model. However, the scheme to solve the alignment and trans­
portation problems is similar to the VCF model. These are
summarized as belows:

1. Partition the 2-D array for matrix multiplication into Col­
lection of disjoint ROWs, CROW1, CROW2, .. ., CROW Vn'
The number of rows in a collection is equal to yn.

2. The linear array consists of yn blocks, each block having
n PEs. The computations performed by the PEs in block;
is same as the computations of PEs in CROW;, 1 ~ i ~
yn.

3. Divide each columns of A matrix (each rows of B matrix)
into yn parts and feed them into AB; (BB;) buses 1 ~
i ~ yn, in column major order (row major order).

This leads to (9]:

Theorem 5 The above systolic array computes the elements of
C = A x B in time 3nyn - 2 + 2r where r is the number of
faulty PEs. Further all the data flows are unidirectional and the
distance covered by every signal is one unit in each clock period.

4. Conclusion

In this paper, we presented a new technique to design lin­
ear systolic arrays with limited 1/0 bandwidth. All our designs
have simple control, lexicographic 1/0 and require a minimum
number of processors. These designs can be shown to be opti­
mal with respect to area and time [6]. Table 1 compares the
performance of several designs in the literature with the pro­
posed design for matrix multiplication on linear arrays. Table
2 compares the designs for transitive closure on linear arrays.
Table 3 compares the designs for family of linear arrays. In ad­
dition, our designs result in unidirectional data flow. Therefore,
they can be easily implemented in WSI with fault tolerance ca­
pability. Table 4 compares our matrix multiplication design on
the fault model with known results in the literature.

This Paper Method in [20] Method in [23]
I. Number of Processors n n' "'3/2n2

2. Delay Time 3n2 - n - 1 4n -3 2 9/2n
3. Data input simple need to insert zeros complex

Table 1: Comparison of Matrix Multiplication on Lin.ear Array

This Paper Method in [27]
1. Number of processors n' 2n- 1
2. Delay Time 7n2 - 3n + 1 9r12"+n- 2
3. Area of PE 0(1) O(n)

Table 2: Comparison of Transitive Closure on Linear Array

This Paper Method in [24]

1. Number of processors ".l~s1 > "._[n/sl
2. Memory Space O(s) O(s)

3. Delay Time n2 + 2fn/sln - fn/sl + 1 > n2 + 2p

4. Data input sequence continuous complex

Table 3: Comparison of family of Linear Array for Matrix Multiplication

This Paper Method in [29]
1.Number of processors ~n ~
2.Delay Time 3'!{n - 2 4'!{n-n-~n
3. Total number of buses ~+2 ~n

Table 4: Comparison of optimal matrix multiplication
on the fault model with known result

References

[l] M. C. Chen. A design methodology for synthesizing par­
allel algorithm and architectures. Journal of Parallel and
Distributed Computing, 1986.

[2] P. R. Cappello and K. Seiglitz. Unifying VLSI array de­
signs with geometric transformation. In International Con­
ference on Parallel Processing, 1983.

[3] K. A. Doshi and P. J. Yarman. Optimal graph algorithms
on a fixed-size linear array. IEEE transactions on Comput­
ers, C-36(4), 1987.

[4] J. A. B. Fortes and C. S. Raghavendra. Gracefully degrad­
able processor arrays. IEEE transactions on Computers,
C-34(11}, 1986.

[5] L. J. Guibas, H. T. Kung, and C. D. Thompson. Direct
VLSI implementation of combinatorial algorithms. In Cal­

, tech Conference on VLSI, 1979.

[6] J. Ja'Ja' and V. K. Prasanna Kumar. Information trans­
fer in distributed computing with applications to VLSI.
JACM, January 1984.

[7] H. T. Kung and C.E. Leiserson. Systolic arrays (for VLSI).
In SIAM Conference on Applied Mathematics, pages 256-
282, 1979.

[8] H. T. Kung and Monica S. Lam. Wafer-scale integration
and two-level pipelined implementations. Journal of Par­
allel and Distributed Computing, 1(1), 1984.

[9] Yu-Chen Tsai. Linear Systolic Array Design fQr Wafer
Scale Integration. Ph.D Thesis, Department of EE-
systems, use, in preparation.

[10] V. K. Prasanna Kumar and Yu-Chen Tsai. On designing
an optimal family of linear systolic arrays for matrix mul­
tiplication. Technical Report CRl-87-43, USC, June 1987.

[11]

[12]

V. K. Prasanna Kumar and Yu-Chen Tsai. Designing Lin­
ear Systolic Arrays. In Journal of Parallel and Distributed
Computing, 1988.

H. T. Kung. Systolic algorithms for the CMU WARP pro­
cessor. In Seventh International Conference on Computer
Vision and Pattern Recognition, July 1984.

[13] S. Y. Kung. On supercomputing with systolic/wavefront
array processors. In proceedings of the IEEE, July 1984.

[14] F. T. Leighton and C. E. Leiserson. Wafer-Scale Integra­
tion of systolic arrays. In H9rd Annual Symposium on Foun-
dations Computer Science, November 1982. ·

[15] C. Mead and L. Conway. Introduction to VLSI system.
Addison-Wesley Publishing Company, 1980.

[16] W. L. Miranker and A. Winkler. Space time representa­
tions of computational structures. Computing, 1984.

[17] D. I. Moldovan and J. A. B. Fortes. Partitioning and map­
ping algorithms into fixed size systolic arrays. IEEE trans­
actions on Computers, C-35(1), 1986.

44

[18] R. G. Melhem and W. C. Rheinbold. A mathematical
model for the verification of systolic networks. SIAM Jour­
nal on Computing, 13(3), August 1984.

[19] S. Purushothaman. Reasoning about modular systolic algo­
rithms. In International Conference on Parallel Processing,
1987.

[20] C. S. Raghavendra, V. K. Prasanna Kumar, and A. Varma.
On systolic processing with bounded 1/0 bandwidth. In
ICCD, 1985.

[21] A. Rosenberg. The Diogenes approach to testable fault­
tolerant networks of processors. IEEE transactions on
Computers, C-32(10), 1983.

[22] I. V. Ramakrishnan and P. J. Yarman. Modular matrix
multiplication on a linear array. IEEE transactions Com­
puters, C-33(11), 1984.

[23] I. V. Ramakrishnan and P. J. Yarman. Synthesis of an Op­
timal Family of Matrix Multiplication Algorithms on Linear
Arrays. Technical Report, University of Maryland, Com­
puter Science Department, 1985.

[24] I. V. Ramakrishnan and P. J. Yarman. Synthesis of an op­
timal family of matrix multiplication algorithms on linear
arrays. IEEE transactions on Computers, C-35(11), 1986.

[25] C. D. Thompson. A complexity theory for VLSL PhD
thesis, Carnegie-Mellon University, Pittsburgh, Pa., 1979.

[26] J. D. Ullman. Computational Aspects of VLSI. Computer
Science Press, 1984.

[27]

[28]

P. J. Yarman and I. V. Ramakrishnan. Dynamic program­
ming and transitive closure on linear pipelines. In Interna­
tional Conference on Parallel Processing, 1984.

P. J. Yarman and I. V. Ramakrishnan. Optimal matrix mul­
tiplica~ion on fault-tolerant VLSI arrays. In IOALP, 1985.

[29] P. J. Yarman and I. V. Ramakrishnan. A fault-tolerant
VLSI matrix multiplier. In International Conference on
Parallel Processing, 1986.

Appendix

Setting of t/J
I and J are used to set tjJ inside each PE. I is set to 1 every

n clock periods, and J is set to 1 at the start of the operation
of the array. Thus, for to ::; t ::; to + 3n2 - n - 1.

I= { 01 if t =to+ n * (i - 1), 1 ~ i::; (n - 1).
otherwise.

J = { 1 if t = to.
0 otherwise.

The signals I, J are fed at the leftmost PE and are prop­
agated with delay of one and two units respectively in each
PE. Let I1c and J,. denote I, J that enter PE1c respectively
(1 ::; k::; n2). Then,

I1c = 1 at t =to+ (k - 1) + n d, 1::; k::; n2 •

J,. = 1 at t =to+ 2(k - 1) + 1, 1 ::; k ~ n2 •

It is easy to verify that I1c = 1 and J1c = 1 only when k = n * i.
This occurs at time t =to+ 2(n * i) - 1.

bu
b21
b31
b41

cut lines
Figure 1: Partitioning a 2-D array

6'2 613 6;,
622 b23 6,.
632 633 b34
b., 643 6,,

au au a13 ai.

Figure 2: Stretching to form a linear array

(a11a21 a31 a41)(a1,a22 a32 a.,)(a1sa2s a33 a4s)(a1.a2• a34 a,,)
A bands

block 1 1 block 2 block 3 1 block 4

2>[J:~~~ii
I

~ - (bub12 613 b14)(b21622 623 6,.)(6s16s2 633 634)(641642 b,, 6,,)
B bands

Figure 3: Linear array fed with continuous data

AS

BF
BS

ACT ...
J

PE, PE, PEs PE4

li
PEn•

Figure 4: System structure of linear array for matrix multiplication

45

Figure 5: The internal structure of PE

cut lines

Figure 6: Transitive Closure on 2-D Array

update
control
signals

PE1 PE2

0' : Multiplexer

Delay

PEs

Figure 7: System structure for Transitive Closure on Linear Array for n=4

y

AS
DIAGA --!--;..rl--......,.n---1-;~

BS
DIAGB -J--;~--~1 "----k..

BF-+--_____,~,1------1-

DIAGB -i----;o.J:::J----J.,..

UPs

ACT

I
J

CLOCK

Same as in matrix

multiplication

Figure 8: The PE structure for transitive closure

cut lines
Figure 9: A Partition of a 2-D Array

(
AS

slow es
BF

fast (AC~
ontrol 0 !

46

I I I !

~/ ' ' ' '
'

- -- _J
----~----~----~----+-----

~)
I t t I /

~
v v v v

Figure 11: Partitioning 2-D array for n=4 and k=2

Figure 10: Mapping onto VMF model for n = 4 and s = 2

AS[l]

BS
BF

AS[2j

PE1 PE2 PEs PE4 PEs PE6 PE7 PEs

Figure 12: Mapping onto VCF model for n=2 k==2

CESAR - THE ARCIDTECTURE AND IMPLEMENTATION OF A
filGH PERFORMANCE SYSTOLIC ARRAY PROCESSOR

Bard Tokerud, Vidar S. Andersen, Morten Toverud
Division for Electronics

Norwegian Defence Research Establishment
N-2007 Kjeller, Norway

Abstract

This paper describes the architecture and implementation
of the CESAR computer system. The computing unit in
CESAR has from one to four programmable systolic arrays
working strictly in parallel, representing a SIMD (Single
Instruction Multiple Data) structure. Each array consists of
128 custom designed processing elements capable of
performing bit-serial operations on 32-bit data. Including
control logic and memory units, a complete CESAR system
with four systolic arrays is implemented on 13 circuit boards.
Originally developed for processing of images from Synthetic
Aperture Radar, CESAR is also suitable for other
applications demanding extensive vector processing.

Introdnct!on

Parallelism and pipelining are two classical concepts which
have proven to be the keys to exploitation of the huge
resources offered by today's VLSI technology .1 In the
CESAR computer system,2-4 parallelism and pipelining are
combined on different levels to achieve the necessary
throughput for computationally intensive problems. Focusing
on processing of images from Synthetic Aperture Radar
(SAR), the CESAR computer is a result of comprehensive
research and development activities at the Norwegian Defence
Research Establishment over the past decade.

CESAR SYSTEM
r-----------------------,

Mulllporl 1Channol Local Data Bus :

MULTIPORT
MEMORY

MAIN
HOST MEMORY

COMPUTER

I Control Bus : ! _______________________ _

Figure 1 The CESAR Computer Svstem

47

CESAR Architecture

The fundamental structure of the computing unit in
CESAR resembles that of a systolic array architecture.5. 6 As
shown in Fig.2 a), an 8x16 array of bit-serial processing
elements operates on strings of data that flow regularly
through the network and interact where they meet. Each
serial element (S-element) is a custom designed 2µ CMOS
chip, capable of performing 32-bit floating point or integer
arithmetic and logic operations. In parallel with performing
mathematical operations, an S-element allows data to be
routed through. By adding programmable time delays for
synchronization, computed results and bypassed data can be
merged in neighbouring S-elements for new computations as
shown in Fig.2 b).

INPUT DATA

'-/ I
/'- I

~==~
OUTPUT DATA

FiiUre 2 a)

I
I

¥
C=(A+Bl*A

Figure 2 b)

Fi&ure 2 The Systolic Array of S-elements.

As shown in Fig.3, the two-dimensional array is
configured as a cylinder, where pairs of input data are fed
from the top, and the outputs are tapped at the bottom.
When a pair of 32-bit input data have been fetched from
memory, a serial conversion starts, whereby data is shifted
into the selected column of the cylinder. With an internal
cycle time of 50 ns, the total shift-in time for 32 bits
becomes 32*50ns = 1600ns.

INPUT

v

v
OUTPUT

Figure 3 MALU - Microprograromable Arithmetic Logic
lln.i!

Since the buffer memory is capable of delivering a pair of
32-bit data every lOOns and also receiving a 32-bit result at
the same speed, 16 columns can be run in parallel. Enabling
each column of the cylinder successively, data flows in and
out of the S-elements as continous bit streams consisting of
32-bit words lying head to tail. The parallel to serial
conversion in MALU is accomplished by having three
distributed shiftregisters in each column of the array.

Buffer Memory

m u,
1< ·~· ·~ :~:~:
IZ
I-<(m

1<,00 ,m

L...-
1-I-

I
J

l

l

I
I

J

_l

I
I _______ J

4
4

4

4
4
4

4
4
4

Serial Input

Row 0

;:::;
:r:
u

f.I s 1-1--
~
~I-I

Row 6

;:::
:r:

~f-f.I
~~

s Row 7

D
Serial Output

Figure 4 Parallel to Serial Converision in MALU

The S-element has a four bit parallel input/output register
for each of the three data channels to the buffer memory.
The eight S-elements in a column together form a 32 bit

48

shiftregister whose output is shifted in at the top. Similarly,
the results are serially output at the bottom and shifted
upwards in their respective columns.

For many algorithms, the cylinder can be divided into
strips, each strip performing the same pipeline of
computations as its neighbouring strips. Representing a
SIMD structure, this level of parallelism provides a high
utilization of the computing power available in CESAR.
Since each S-element is producing a result every 32 clock
cycles, i.e every 1600ns, the theoretical maximum capacity of
one complete MALU is ;

128 flops 80 Mflops

1.6 * 10-6

This capacity is obtained when, for a certain algorithm, every
S-element is doing a (floating point) computation. As
inherent in the CESAR architecture, a complex algorithm
utilizing many s-elements yields a higher performance than a
simple algorithm occupying few elements.

MALU is fully programmable; that is, a combination of
instruction words in the S-elements constitutes a MALU
program. The S-elements are fitted with on-chip RAM
with a capacity of 32 programs (instructions, routing and
delay) and 32 constants for use in the computations.
Changing MALU programs between two bursts of data is
done by merely switching the global program address to the
arrays. In the applications studied so far, the program
memory has proven to be large enough to cover the entire
algorithm without having to perform a program reload. Thus,
all setup can be done in an initialization phase to avoid a
degradation of the computational performance. In addition,
each of the three data paths between the buffer memory
(BUF) and MALU are easily configurable as either inputs or
outputs, allowing consecutive refinements .of the results
without having to move data between BUF banks.

In the current version of CESAR, four identical pairs of
MALUs and buffer memories are working strictly in parallel.
During a computation, all the four MALUs execute the same
program, but on different sets of data. These data (vectors)
are located at the exact same addresses relative to the start of
their buffer memories. The system has been designed to
facilitate the distribution of input data to the four buffer
memories and the collection of results without any extra
overhead compared to a single MALU version. Listed in
Table 1 is a selection of existing MALU algorithms and their
actual capacity in a four-MALU version:

Actual cap
Name of Algorithm (Mflops)

FFT Radix 4 Butterfly 170

Convolution with 4 pt. filter 280

Addition of complex numbers 40

Complex Multiplication 120

Folding with 4 pt. filter 280

Table 1 Actual Capacity for Different Algorithms

Another commonly used way of measuring system
performance is in terms of time required for a specific
computation, e.g. a 1024 point complex FFT. On a
four-MALU CESAR this typical signal processing application
executes in 0.257 milliseconds (average) compared to 0.4037
milliseconds7 on an 8.5 nanosecond Cray X-MP.

The execution time is specific for each instruction, which
affects the time it takes from data enters the MALU array
until the first results are ready at the outputs. This is often
referred to as the tail of the computation pipeline and differs
in length depending on the algorithm. For most signal
processing algorithms the tail varies from 10-40 µsec, which
for a 32k vector contributes 0.2%-0.6% of the total
processing time. It should also be noted that once the array is
filled with data, operands are presented and results are
produced at the same rate independent of the program
executed.

Compared to what we often see in other systolic arrays,
MALU has several striking characteristics:

A. MALU.

c:i Each array element is capable of performing relatively
complex operations.

c:i The array elements have rich connections to their
neighbours (6 inputs, 6 outputs).

c:i The elements are individually programmable, and
grouped together they form variable pipelines of
computations.

B. Other known systolic arrays.

c:i Array cells are usually limited to simple bit-serial
operations.

c:i Hardwired interconnections are often used between the
elements.

c:i Each element is only capable of doing one, dedicated
operation.

Hardware Realization

In Fig.5, a block diagram shows the different hardware
modules in the prototype version of CESAR, which is
currently in its final stage of debugging and testing. A full
system with four MALUs is implemented on 13 PCBs, each

MPM

HOST

CESAR PROTOTYPE 1988

Fi~ure 5 Hardware Modules in CESAR

49

of size 11' by 16'. Compared to other systems with
approximately the same performance, the hardware is
compact, and, due to the use of CMOS and TIL logic, small
sized fans is the only cooling necessary. A brief description of
the modules is given below:

Cl MALU (Microprogrammable Arithmetic Logic Unit)
A complete array of 8x16 S-elements is fitted on one
circuit board. The S-elements are packaged in 68 pin
PLCCs which are surface mounted on both sides of the
board. This rather complex hardware solution did,
however, put some restrictions om the design of the
S-element in terms of power consumption, and the lOOK
transistor chip only dissipates 0.25W at 20 MHz.

c:i BUF (BUFfer Memory)
Each BUF contains three separate two-port 2 Mbyte static
RAM banks for intermediate storage of MALU data.

c:i MAINMEM (MAIN MEMory)
CESAR has 32Mbytes of main memory for storage of
intermediate data when BUF space is inadequate.

c:i TRAP (TRiple Address Processor)
The three bit-slice address processors on TRAP are
necessary for selecting the correct data to be sent into the
MALU and addressing the storage area for the results.
Each address processor is programmable for different
addressing algorithms, e.g. data stored with fixed
increments or FFT bitreversing.

c:i CP (Control Processor)
CP is based on the Motorola 68020 microprocessor and is
responsible for the overall control in CESAR. The
application programs written in the high level language
CESAR Pascals as well as system software are executed in
CP. A local VMEbus9 is used to interchange control
information between CP and the other hardware modules
in CESAR.

Cl SEQ (SEQuencer)
The Sequencer provides the detailed control signals for the
CESAR computations. It synchronizes the address
generation in TRAP with the internal computations in
MALU to ensure correct dataflow between BUF and
MALU.

c:i DAP (DAta Port)
The Dataport controls all DMA transfers between separate
memory modules, i.e the buffer memories, main memory
and the multiport memory residing in the host computer.
DAP also enables CP to access any location in the different
memories.

As can be seen in Fig.5, the system is flexible with respect
to memory access. Controlled and addressed by the Dataport
(DAP), the physical data transfers take place on the Local
Data Bus called LBUS. IBUS is a 40 Mbyte/s data channel
capable of serving all four BUFs with altogether 12
connections to the. MALUs.

The complexity of the MALU circuit board makes it hard
to debug in production and in the field. To help solving this
problem, the S-element has a built-in selftest option that
enables the system or user to run a parallel diagnostic in all

512 S-elements in CESAR. The selftest, which is based on
signature analysis, tests the entire chip with exception of the
on-chip static RAM. The RAM is verified by the control
processor before the selftest is initiated. The S-element can
also be set in a special mode to enhance the testability during
production testing, reducing the number of testpattems
significantly.

Programming the System

In parallel with designing the hardware, a substantial effort
has been put into the development of software tools for
programming and debugging of the CESAR system. At the
application level, a high order language called CESAR Pascal
has been developed.8 In addition to standard Pascal, it
includes special features for describing and synchronizing
concurrent processes as well as data transfers between the
memory modules inside and outside CESAR.

Typically, a library of the most commonly used
vector-/signal processing algorithms will be supported. If,
however, the user wants to write his own MALU or TRAP
programs, several tools are available. A graphic editor for
MALU programs allows the user to interactively choose
instructions and create data paths between the S-elements in
the array. An assembler automatically adds routing delays for
synchronization, and a simulator verifies the correctness of
the algorithm. Similarity, the address processors are
programmable in a "C"-Iike language with constructs for
generating complex address sequences. A TRAP simulator is
developed to check the address programs before downloading
to the hardware.

Conclusion

A major goal in the research and development of the
CESAR computer system has been to create a powerful
number cruncher for processing of SAR images, while
retaining a low cost/performance ratio. Preliminary studies
have also shown that the CESAR architecture provides the
necessary flexibility to solve other computationally intensive
vector problems, such as the ones in seismic and
metheorological processing.4 Also in a variety of other
applications, the ever increasing demand for extensive
computing capacity clearly manifests the need for
unconventional, high performance designs like CESAR.

50

BUF
CESAR

FFT
LBUS
MALU
Mflops
PCB
PLCC
SAR
TRAP
VLSI

Commonly Used Terms

Buffer memory
Computer for Experimental Synthetic
Aperture Radar
Fast Fourier Transform
Local Data Bus
Microprogrammable Arithmetic Logic Unit
Million Floating Point Operations per Second
Printed Circuit Board
Plastic Leadless Chip Carrier
Synthetic Aperture Radar
Triple Address Processor
Very Large Scale Integration

References

1. L. Snyder, "Introduction to the Configurable, Highly
Parallel Computer," IEEE Computer, Volume 15, 1, (Jan.
1982), pp. 47-56.

2. V. Andersen, T. Haugland, and O. Sorasen, "CESAR -
A Programmable Systolic Array Multiprocessor System",
Proc. IEEE First International Conference on
Supercomputers, (Dec. 1985), pp. 8-15.

3. V. Andersen, and T. Haugland, "CESAR A
Programmable Systolic Array Multiprocessor System",
NDRE Report-8617020, (Aug. 1986), 34 pp.

4. 0. Sorasen, "CESAR-maskiner med utvidete muligheter",
NDRE Report-8717068, (June 1987), 56 pp.

5. H.T. Kung, "Why Systolic Architectures?", IEEE
Computer, Volume 15, 1, (Jan 1982), pp. 37-46.

6. J.A.B. Fortes, and B.W. Wah, "Systolic Arrays - From
Concept to Implementation", IEEE Computer, Volume
20, 7, (July 1987), pp. 12-17.

7. G.R. Lang et al. "An Optimum Parallel Architecture for
High-Speed Digital Signal Processing", IEEE Computer,
Volume 21, 2, (Feb. 1988), pp. 47-57.

8. D. Belsnes, 0. Hanseth, S. Meldal, "The HOLM
Language, a Proposal", Norwegian Computing Center
Report no. 728, ISBN 82-5390209-3 (Dec. 1982), 144 pp.

9. Micrology pbt, Inc. "VMEbus Specification Manual,
Revision C.1", (Oct. 1985), 263 pp.

SIGNAL GRAPHS: A MODEL l!10R DESIGNING CONCURRENT LOGIC

A.Yu.Kondratyev, L.Ya.Rosenblum, A.V.Yakovlev
Computing Science Department

Leningrad Electrical Engineering Institute
Leningrad 197022 USSR

Abstract Asynchronous digital
circuits exhibit a high degree of concur­
rency. Self-timed imple~entation is the
most appropriate design discipline for
them. We examine the signal graphs that
are subject to formal treatment and
mechanical translation to delay-insensi­
tive circuits. An example of designing a
piece of logic for typical interface
adapter effectively illustrates the
approach and sheds light on future work.

1. Introduction

Modern technologies allow to build
VLSI circuits whose internal behavior
exhibits a high degree of parallelism.
To operate correctly under the presence.
of such undesired phenomena as electronic
metastability, signal skews due to higher
values of wire vs gate delay ratios,
parametric instabilities of gates etc.
these circuits are designed using self-
t imed, or delay-insensitive fashion 0 , 2] •
The most widely cited examples of concur­
rent hardware are regular structures like
pipeline and wavefront arrays which are
easily decomposed in sequential,parallel
or recursive way. On the other hand such
objects as asynchronous interface adap­
ters which are a lot less regular but
can be equally concurrent are far from
being attempted at a formal treatment as
they have been the privelege of engineers
using normally timing diagrams or flow
charts.

The ultimate goal of our research is
to mechanize the design process to such
a degree when it is comfortably fitted
in a CAD envirorunent for developing dis­
tributed systems, e.g. for translating
a physical layer protocol specification
into a collection of self-timed modules.
This paper demonstrates the technique of
using a formal model of concurrency for
constructing basic units of interfacing
logic. This technique accomodates a step­
wise design procedure involving such
steps like architectural decomposition,
functional specification of components,
their behavioral signalling expansion,
and its validation with respect to
correctness and completeness notions,
and finally Boolean function derivation.

2. Modelling concurrency in logic

A self-timed system is often
regarded as a collection of self-timed
modules. tha,.t communicate via asynchronous
protocols rJ• It does not require a

51

global clock. All system level events
are ordered in time by the causal
relations between the modules actions.
The order as it has been established by
the designer must further be preserved
in a final circuit thereby guaranteeing
the correct operation independently of
element and wire delays.

The evolution of logic design
methods shows that the Huffman state
machine model is no longer an adequate
model for asynchronous logic since it
can not deal with "granulated" concur­
rency in VLSI. The existing formal
models for self-timed VLSI systems can
be split into four groups:
(i) graphical notations, state or event
oriented, like Petri nets, transition
diagrams, parallel flow charts etc.;
(ii) symbolic notations, like traces or
path expressions;
(iii) models based on high level program­
ming languages, e.g. Ada-like notation;
(iv) combined models.

The study of these formalisms shows
that the usefulness of a model for the
self-timed circuit design depends on a
large number of various issues. For
example, it is affected by the structure
type (regular vs non-regular, or data­
flow vs control-flow), the degree or
granularity of parallelism and data
dependence, the necessity of abstract
data typing, the depth of delay-indepen­
dence (with respect to transistor, gate
or component level).

Our formalism, a signal graph based
on a subclass of Petri nets, is an
effective substitute for widely used
timing diagrams because it can be
analyzed in a mathematically sound
manner and mechanically translated to
Boolean functions implementation.

3. Sif1al ~ra~hs: properties
an ana ysis

Sie;nal graphs are very attractive
formal model for analyzing behavioral
specifications of both signalling proto­
cols and corresponding interface logic.
They represent a more narrow class of
processes than that that can be generally
defined by, say, Petri nets. This is
concerned with their inability to define
alternatives in processes. However, when
we need to define a highly concurrent
behavior they provide the succinct
description and what is more important,
the polynomially complex analysis.

We presume some knowledge of Petri
nets and their subclasses, particularly
marked graphs. Marked ~raph (MG) gene­
rates distributive marfing dia~ram (MD)

3 • MD is an oriented graph w ose
vertices are reachable markings and arcs
are labeled with firing transitions. The
term 11 distributivity11 is related to the
lattice which can be defined on a set of
vectors of transition firing numbers with
respect to a given initial marking.

In order to define a signal graph a
set of binary variables (signals) Z =
{z1 ,z2 , ••• ,zn} is introduced. We denote
transitions of signal zi: from 0 to 1 by
+zi and from 1 to 0 by -zi.

Siffral grauh (SG) is defined as an
MG in wlich vertices are labeled with
signal transitions (changes) of the form
dzi where d E { +, - } •

We call a labeling function conflict
-free if for each reachable marking and
variable zi there is at most one enabled
vertex labeled with dzi • SG with a
conflict-free labeling is called coherent.
The coherence is not sufficient for the
specification to be correct because
despite all the changes for each zi are
linear-ordered they may be unmatched with
respect to their signs.

We call a labeling function sign­
balanced if for each sequence of signal
transitions with respect to initial
marking between any two transitions of
the same sign there exists at least one
transition of the other sign. SG with a
sign-balanced labeling is called
consistent. The consistency implies the
necessary level of correctness of a
specification given by SG that is
expressed in the following statement.
Statement 1. A consistent SG generates a
state transition diagram.

A state transition dia~ram (STD) is
an oriented graph whose ver~ices are·
labeled with full states of a specified
circuit, i.e. they are binary n-tuples
of values of zi , and arcs are labeled
with corresponding changes dzi. The
values that can change between a given
state and another one connected to each
other by an arc are marked with *-token.
A variable whose value in n-tuple is
marked with * is called excited in a
given state. In this paper we omit the
description of algorithms of converting
a consistent SG to STD and vice versa.
We only hint that such a conversion may
use the ordinary procedure of building an
MD by the depth-first search where each
marking in MD relates to a corresponding
state in STD.

52

A consistent SG may however
generate a STD with multiple states, i.e.
the states which are labeled with equal
n-tuples of signal values. Such an STD
is called contradictor*. Informally, the
contradiction of this ind means that
the system is under-specified and some
components are still hidden from the
designer's eye. For example, when SG
defines an interface protocol these
components may be interpreted as an
internal memory of controller.

We further incorporate a higher
level of correctness into the hierarchy
of SG classes by the notion of a normal
SG which guarantees the completeness of
a specification. An SG is called normal
if it is consistent and for each allowed
sequence of markings it has no proper
subset of variables z 1 c Z which can
proceed through the full cycle of their
values while other variables (from
Z 'Z') stay unchanged. An STD of a
normal SG is no~-contradictory and
distributive [.3J.

It is suitable to check the
consistency and normalicy using the
relations of precedence and concurrency
built on the set of signal transitions.
The formalization of these relations
requires the introduction of a concept
of a histor;y, or so-called unfolding,
which is an infinite and acyclic object
generated by an SG. Each occurrence of a
transition in an SG yields a unique
vertex in the unfolding. This technique
due to the lack of space can not be
fully described here though we mention
that the unfolding can be floored to its
first two periods and the above relati­
ons can thus be computed on a finite
object. The algorithm of checking
consistency has the complexity of O(n.3)
where n is the number of vertices in the
original SG.

In order to establish whether a
consistent SG is normal we use a special
formal concept - operational coupledness.
We define a coupled relation on a set
of variables z. This relation has the
following hierarchy: directly strongly
coupled, strongly coupled, weakly
coupled of rank r , r :>,:. O, and coupled.
The coupled relation partitions the set
Z into the disjoint classes. Omiting
here formal definitions and proofs which
can be found elsewhere [4] we only state
the following.
Statement 2. A consistent SG is normal
iff all its variables belong to single
coupledness class.

The complexity of an4algorithrn for
norrnalicy check is of O(n).

The main advantage of our checking
techniques stems from the fact that
they do not require to convert an SG to

MD or STD - a step having e:x:ponential
complexity with respect to the power of
z.

4. An example of self-timed
logic design

In the above section we have
sketched how we can check the normalicy
of an SG which is a sufficient condition
for the existence of a distributive STD
and hence of a delay-insensitive circuit
[2] • The circuit can be derived from

the normal SG by means of obtaining the
Boolean functions (BFs) for variables z.
of set Z using a truth table (TT) whichi
can be built from the STD corresponding
to the SG. However the chain SG-STD-TT­
BFs involves exponentially complex steps.
Therefore we look for an alternative
technique for the direct (but semantics
preserving) conversion of the SG to the
system of BFs. Such a bridling of the
design complexity is concerned, first of
all, with laying out some restrictions
upon the complexity of the coupledness
hierarchy.

In this paper we are far from being
ambitious to show how the problem of
obtaining the general way of deriving
functions directly from an SG can be
solved. We rather illustrate our design
approach with an instructive example of
designing a piece of interface logic.

FIFO buffers are typically incorpo­
rated in interfacing adapters as they
help to keep the performance of the
whole distributed system at its highest
comi;iunication rate. The original specifi­
cation of a one-value FIFO cell was
inspired by [?J •

Let the F!FO cell consist of two
subcells: the data cell (DC) and the
control cell (CC) as shown in Fig.1.

I/PO
DATA CELL

I/P1

AD AU H

AO CONTROL CELL AI

Figure 1. The structure of FIFO cell
The meaning of the signals is as

follows. I/PO and I/P1 are data inputs,
and 0/PO and O/P1 are data outputs.)~th
use the two-rail coding discipline ~.J
where for "zero" and "one" values tne·
combinations 10 and 01 are respectively
used on the above pairs, and the all-zero
spacer (00) is used for representing the
"data undefined" value. AO and AI are
the acknowledgement signals: AO is
generated by the cell and AI is produced
by the environment. AD is 11All defined"
indication signal, AU is 11All undefined"

53

indication signal, and H is "Hold"
command signal. AD and AU are both used
to detect the state of the inputs (if
I/PO= I/P1 = 0 then AD= O, AU =.1, and
if I/PO~ I/P1 then AD= 1, AU= O). H
directs the DC to latch the incoming
value. All AD, AU, and H wires run the
width of the buffer.

Fig.2 shows the SG specification of
the CC operation. Analyzing this SG we
can establish that it is consistent:
each variable has all its transitions
ordered within one synchrocycle (a
cycle containing exactly one token).
However the SG is not normal. The
coupled relation partitions the set Z =
{AI,AO,AD,H,AU} into two disjoint

classes: K1 = \AI,H} and K2 = {AD,AU,
AO} • It can be shown that adding only
one extra variable to the specification
while preserving the established order
of signal changes for variables in Z
will not suffice for making all variables
coupled. After adding two variables d1
and d2 we obtain the resulting SG shown
in Fig.3 which is normal.

@+.~@::e=@
+H +A -H

Figure 2. An original SG specification
of the control cell operation

Figure 3. A normal SG obtained after
adding extra variables

From this SG we derive BFs in the
following form:

z = Sz + Rz•z,
where Sz is the set function and Rz is
the reset function. Both Sz and Rz are
independent of z. We also demand that the
invariant Sz•Rz = 0 holds in order to
avoid conflicts between transitions
which may lead to undesired races in a
circuit.

In order to derive Sz and Rz we
search through the SG for immediate pre-­
decessors of the transition +z for
including them into the essential Sz­
term, and those of transition -z for
Rz-term. If these predecessors correspond
to the variables that .are strongly
coupled with z we proceed further to the
orthogonalization step. If some of the

variables whose transition is a predece­
ssor for a given transition dz is weakly
coupled (of any rank r~ 0) with z then
there is a so-called overtaking of the
essential term by some other term which
must be added to corresponding set or
reset function. For example, when
deriving function SAO the essential term
is H•d2 but before AO changes from 0 to
1 H may begin to change from 1 to 0 (in
parallel with AO changing), and hence we
must cure the overtaking by an additional
term which will involve a variable that
is strongly coupled with H, i.e. the
term d1·d2. Using d2 in both terms for
SAO helps us also to eliminate the
inclusion of the term for RAO which is
simply d2 because d2 is immediately
strongly coupled with AO. Thus we obtain
a BF for AO which is non-selfdependent,
i.e. free of feedback

AO= (H + d1)•d2 + d2•AO = (H + d1)d2.
One of the important issues in

deriving Sz and Rz is their mutual ortho­
gonalization, i.e. providing that
Sz•Rz = 0 is satisfied. This can be done
by strengthening their terms with common
variables. For example, when we obtained
SAO we had d2 as such a variable.
Another example is the function for H
whose SH = d1•d2 is strengthened by
d1 because RH= d1.

Finally, the above technique yields
the following system of BFs:

d1 = .AD•AI,d2 + AI·d1
d2 = .Afr. H·d1 + AU·d2
H = d1·d2 + d1• H
AO = d1°d2 + d2·H

This system is easily implemented with
four AND-OR-NOT gates and six inverters
(four of them produce d1,d2,H,AO, and
the other two complement AI and AU,
however the latter can obviously be
eliminated at the transistor level by
using the inhibit inputs of the first
two gates).

The circuit is delay-insensitive
with respect to delays in gates and
inverters as well as in those wires
which are not the feedback connections.
The feedback delays are presumed negli­
gible as the corresponding elements are
accommodated within equichronic regions.

5. Conclusion

The main characteristic of the
above approach comparing it with those
given elsewhere[6,7,S]is that it
provides the technique for effective
managing with concurrency at the logic
level using the formal model which is

54

quite simple for comprehension for a
wide audience of hardware designers used
to timing diagrams, and at the same time
powerful enough to be formally analyzed
with respect to correctness and complete­
ness by means of such key concepts as
normalicy and coupledness. This facili­
tates some constructive ways to the
correction of specifications while
preserving the original semantics of
signal change ordering. The method has
been tested on a large number of
difficult examples including designing
asynchronous control logic for inter­
faces (Unibus, Futurebus, token ring
etc.) and FIFO buffers of various
architectures.

The proposed technique obviously
needs further research efforts both in
theory as, for example, in establishing
restrictions on coupledness classes
to find out how they affect the BF
derivation rules outlined above, and in
practical aspects through developing
the software for such a mechanized
translation to be a versatile interacti­
ve design environment. Some pieces of
such an environment are in progress now.

[8]

References

C.L. Seitz, System '.Ciming, Chapter 7
in: Introduction to VLSI Systems,
C.Mead and L.Conway, Addison-Wesley,
(1980) ' 400 pp.
V.I.Varshavsky, Hardware Support of
Parallel Asynchronous Processes,
Digital Syst. Lab., Helsinki Univer­
sity of Technology, Series A, No.2,
(Sept. 1987), 236 pp •
L.Ya. Rosenblum, A.V. Yakovlev, Sig­
nal Graphs: from Self-Timed to Timed
Ones, Intern. Workshop on Timed
Petri Nets, Torino, Italy,(1985),
pp.199-207.
A.V. Yakovlev, Design and Implemen­
tation of Asynchronous Interface
Protocols, PhD Thesis, (1982).
E.E. Barton, Non-metric Design
Methodology for VLSI, in: VLSI-81,
Academic Press, London, (1981),
PP• 25-34.
A.J. Martin, Compiling Communicating
Processes into Delay-Insensitive
VLSI Circuits, Distributed Computing,
Vol. 1, No. 4 (1986), pp. 205-225.
T.-A. Chu, On the Models for
Designine; VLSI Asynchronous Digital
Systems, Integration the VLSI
journal, Vol.4 (1986), pp. 99-113.
P.F. Lister, A.M. Alhelvani, Design
Methodology for Self-Timed Systems,
Proc. IEE, Pt. E, Vol. 132, No.1
(1985), pp 25-32.

Optical Arithmetic Using Signed-Digit
Symbolic Substitution

Kai Hwang and Ahmed Louri
Department of EE-Systems

University of Southern California
Los Angeles, California, 90098-0781

Abstract A new class of digital arithmetic algorithms is
presented in this paper for supporting massively parallel
computing with state-of-the-art optical technology. We use
a two-dimensional symbolic substitution approach. Signed­
digit (SD) representation is used to enable carry-free ad­
dition/subtraction. Based on SD addition, parallel algo­
rithms for SD multiplication and division are developed.
The potential advantages of performing digital arithmetic
with optics include the significant increase in speed, full
exploitation of massive parallelism, higher communication
bandwidth, and higher system throughput; as compared
with existing electronic arithmetic computers. We con­
centrate on optical computing using the signed digit set
{i, O, 1}. The parallel algorithms being presented can be
easily extended to perform optical arithmetic with higher
radices.

1 Introduction

The signed-digit (SD) representation was originally pro­
posed by Avizienis[l], and recently introduced to the opti­
cal community by Drake et al.[2]. The binary SD system
uses the digit set {i, O, l}, where i stands for -1. The intro­
duction of redundancy (three values for a binary system)
provides a much weaker interdigit dependency as opposed
to the strong dependency manifested by carry propagation
in a nonredundant number system using the digit set {O, l}.
As a consequence of weak dependency, carry generated at
any stage is confined within two adjacent digital positions
in the SD code. This makes it possible to perform the addi­
tion/ subtraction of any two SD numbers of arbitrary length
in constant time[l,3].

Based on the SD addition, we have developed new algo­
rithms for SD multiplication and SD division. The multipli­
cation of two n-digit SD numbers is done in O(log2 n) time
by first generating all the n partial products simultaneously
and then adding them in a tree-like fashion. The parallel
generation of all partial products is done in constant time,
independent of the word length n. It is the adder tree that
requires log2 n time. The SD division algorithm is gener­
alized from the quadratic convergence division method[4].
With the provision of high-speed multiplication and paral­
lel addition, the number of required iterations for SD divi-

55

sion is reduced to O(log2 n), where n is the fraction length.
The advantages of optics have been expounded upon on nu­
merous occasions[5,6]. These include high space-bandwidth
and time-bandwidth produts, and inherent parallelism.

2 Symbolic Substitution Technique

In order to exploit the massive parallelism and ultra­
high speed in optics, Huang[7] introduced a technique called
symbolic substitution (SS) for performing digital arithmetic
optically. In his method, information is represented by op­
tical patterns within a two-dimensional image. An optical
pattern is a spatial arrangement of dark and bright spots
corresponding to binary values 0 and 1. Computation pro­
ceeds in transforming these patterns into other patterns
according to predefined SS rules. Symbolic substitution
logic is sensitive not only to the values of pixels (picture
elements) carrying information, but also to their spatial
locations in the binary image (image of bright and dark
spots).

In order to implement SD arithmetic optically, we need
an optical encoding for the digit set {i, O, 1}. There are sev­
eral properties of light that can be used. These include light
intensity and light polarization as illustrated in Fig.la-b.
Using light intensity, two pixels of different light intensity
are needed to encode the three digits. A possible encoding
scheme is to represent the digit 1 by a bright pixel above
a dark one, the digit i by a reversed pixel pattern, and
the digit 0 by two dark pixels as shown in Fig.la. Note
that, the extra pattern consisting of two bright pixels can
be used as a delimiter to denote the fraction point. Using
light polarization we need three states of polarization. A
possible encoding scheme would be to represent 1 by verti­
cally polarized light, i by horizontally polarized light, and
0 by light polarized at 45° as shown in Fig.lb. In this pa­
per, we have chosen to represent the digit set with light
intensity exclusively.

Symbolic substitution consists of two phases: a recog­
nition phase where the presence of a specific pattern is
detected within a binary image and a substitution phase,
where the present pattern is replaced by another pattern
according to a predefined SS rule. Optical implementa­
tion of the two SS phases have been investigated by several

researchers[S,9,10].

0 1

(a) Light intensity encoding of the digit set {1, 0, 1}

(b) Light polarization encoding of the digit set {I, O, 1}

Fig.1 Optical encoding of the signed-digit set {1,0, 1}

3 Optical SD Addition/Subtraction

Given an SD number Y = Yn-lYn-2 · · · Yo·Y-1 · · · Y-m.•
the algebraic value of Y is evaluated as :

i=n-1
Yv = L Yi x 2i, where Yi E {i,O, 1} (1)

i=-m.

In this number system, there is no need for an explicit
sign digit. In fact, the polarity of the most significant digit
Yn-1 determines the sign of Y. Although the representation
of an SD number is not unique, the zero (0) is uniquely
represented with all zero digits.

The addition of two SD numbers represented as X =
Xn-1 • • • Xo.X-1X-2 ••• X-m and Y = Yn-1 · • · Yo·Y-1Y-2 · · · Y-m
results in an SD number S = SnSn-1 • • • so.s-1 S-2 ... S-m·

A vizenis has defined three pipelined steps to perform the
SD addition[3]. At the first step, Xi + Yi = 2t;+1 + w; is
performed at the i-th digit position, for i = -m, ... , n - 1,
where w; and t;+1 are called the interim sum digit and the
trans/ er digit respectively. These digits assume the follow­
ing values:

ifx;+y;=i
if lx;+y;I i 1
ifx;+y;=l

if X; + y; ~ 1
if X; + y; = 0 (2)
ifx;+y;$I

At the second step, w; + t; = 2t~+t + wi is performed to
produce another pair of digits, wi and t~+t:

if W; + t; = 1 ! 1
if \w; +t•I i_l t~+l = ~
if Wi + t; = 1 1

if Wi +ti= 2
if lw; +t;I i 2 (3)
if w; + t; = -2

The third step generates the final sum digit, s;, as specified
below:

ifwi+t~~l
ifwl+t~=O
ifwl+t~::=;I

(4)

Figure 2 shows a totally parallel adder constructed by three
types of optically implemented logic Cells (I, II, III), whose
truth-table specifications are given in Table 1. There is
no carry propagation beyond any two adjacent digits in
the adder. Each sum digit s; depends on only six digits
(x;, y;), (x;-i, Y1-1), and (x;-2, Yi-2). Zeros are padded at
the second and the third stages to preserve the same in­
put/ output format at each stage.

Fig2. A totally parallel optical adder with 3 pipeline

stages

Example 1 below illustrates the addition of two SD
numbers, X = (-0.125)t0 = (i.lll)sn, and Y = (0.375)to =
(O.lOi)sn using the same 3-stage adder shown in Fig.2.
The result is an SD number S = (0.25)t0 = (000.liO)sv.
In this example, </> represents a padded zero.

Signed-digit subtraction is performed by first negating
the nonzero digits of the subtrahend and then performing
the addition of the two operands. Since the negation oper­
ation can be done in parallel for all digits, subtracting two
SD numbers can also be done in parallel across all digits.

Example 1{SD Addition}

X = (1011).a =i 0 1 I = (-7ho
+
Y = (0101).a =0 1 0 1 = (3)io

Stage 1 <P 1 1 1 0 W;

I 1 1 I <P t;+1

Stage 2 0 1 0 0 0 0 w!
I

<P I 0 I 0 <P t:+l

Stage 3 0 0 0 i 0 0 S;

z = (ooioo).a = (-4ho

Using the truth tables in Table 1, we derive below a set
of SS rules required for optical implementation of the SD
addition. The search patterns of these rules correspond to
the input combinations and the replacement patterns are

56

the truth table entries as shown in Fig.3. Note that for
Cell Type I and II, the replacement patterns are spatially
displaced by one digit position, which accounts for the fact
that the transfer digits (t; and t~+l respectively) are to be
combined with the next higher-order digit in the addition
process.

On the surface, it seems that we need 33 = 27 SS rules
corresponding to the nine entries of each of the 3 truth
tables. However, a closer look at Table 1, reveals that the
logic for the first and the second stages are very similar.
Furthermore, if we pad the third stage output with O, five
of the nine entries become similar to stages 2 and 3. There­
fore, the total SS rules needed for SD addition becomes 17.
In fact, when the search pattern is all dark (both operands
digits are 0) the replacement pattern is also all dark, which
does not need any optical processing. Consequently, the
actual number of useful rules for the SD addition becomes
16. The subtraction needs one extra stage to perform the
digit-wise negation. This stage requires two additional SS
rules to negate the nonzero digits as shown in Fig.3d.

Table 1 Truth-table of three Cell Types used

in designing the optical adder in Fig.2

Yi Type I Cell
1 0 I

X;
t 1 1 0

Ty IICll W; pe e . 1 0 I
t' 1 0 0

1
WQ I 0

1
w'O 1 0

1 0 I 0 0 0
0

I 0 1 1 0 I

0 I I
I

0 0 1
I

0 1 0 0 I 0

Type III Cell
w~ 1 0 I t'. . I

1 s 1 1 0

0 1 0 I

I 0 I I

To illustrate the use of these SS rules, let us consider
Example 1 in light of 2-D symbolic substitution. The in­
put operands are optically encoded and stacked on each
other as illustrated in Fig.4a. Next, the SS rules for Cell
type I are applied to the input image. All nine input com­
binations are searched and then replaced in parallel. This
results in 3 successive new images as shown in Fig.4b-d,
corresponding to the outputs of the 3 adder stages.

;B-----~---; ;i-----~---; I I I I
I I I I
I _. I I _., I

: r1 : : r2 : L--------J L--------J

;~-----\---; I I
I I

I - I

: T3 : L--------J

;~-----~---;
I I
I I

I - I

: T4 : L--------J ;,-----\---; ;~-----~---;
I I I I : _.. : : _.... :
: rs : : r5 : L--------J L--------J

re _____ \ ___ i ;;-----~---;
I I I I : _... : : :
: r1 : : rs :
L--------J L--------J

;a-----~---; I I
I I

I -- I

: Tg : L--------J
(a) Substitution rules for Cell Type I

;i-----~---; ;~-----\---; ;~-----~---; ;;-----~---;

57

I I I I I I I I
I 11 I I 11 ~ I
I _., It _,. I I _., 1 I I

: r 10 : : r11 : : r12 : : r13 :

L--------J L--------J L--------J L--------J
r- ______ (!?~ ~§§itl<2~<!1_ ~ul~~ f!?!:_q_~~ :[Y,P_e_ !I _____ , Ii ,. ·e:,I I~ ~I·; ~I I I I t I 1 : :
I ~ 11 II ~ 1 1 _.,.. I

: r 14 : : r 1s l : r15 l ! r11 !
L--------J L--------J L--------J L--------J

(c) Additional rules for Cell Type III

;~-------~-;
I- I
I Tis I L--------J

;~------~--~
I- I
I T19 I L--------.J

(d) substitution rules for signed-digit negation

Fig.3 Optical symbolic substitution rules for signed-digit

addition and negation

In Fig.5 we show a schematic block diagram for an op­
tical digital adder using the signed-digit symbolic substi­
tution technique. Note that 17 rules are used. The optical
implementation of each substitution rule is detailed in [10].
there are other methods that have been reported to imple­
ment the SD addition optically[ll,12].

4 Optical SD Multiplication

The optical multiplication of two SD numbers X =
Xn-1 · · · Xo.X-1X-2 • • • X-m and Y = Yn-1 · · · Yo·Y-1Y-2 · · · Y-m
produces an SD product
P = P2n-1P2n-2 · · · Po·P-1P-2 · · · P-2m+1P-2m, expressed as:

P = (Yn-1 * X) X 2n+m-l + • • • + (Y-m * X) X 2°(5)

where y; is the i-th multiplier digit, and * is the signed
AND operation defined as follows for any x, y E {i, O, 1 }:

ifx=y=l
if(x = O) v (y = o) (6)
if (x = 1 /\ y = i) V (x = I/\ y = 1)

x = I.111

y = 0.101

(a) Initial operands at the input end

1110</l

q, 1 o 1 o

(b) Output after applying the SS rules of Cell I

0 1 0 0 0 "'

</llOllO

(c) Output after applying the SS rules of Cell II

q,00110

The desired sum

(d) Output after applying the SS rules of Cell ill

Fig.4 An SD addition example showing the use
of symbolic substitution rules

Fig.5

Optical feedback

Recognition

•
•
•

Substitution rule 19 r19

Recognition Replacement

An optical adder(subtracter) symbolic
substitution

58

The notations, V and A are used to represent the conven­
tional logical OR and the logical AND operations. The
notation Yi * X defines the following digit-wise operations:

Yi * X = Y; * Zn-b Y; * Zn-2• • • •, Y; * X-m (7)

We have previously developed a sequential algorithm for
computing the produ~t P in n + m iterations using SD
additions and right shifts[l3J. In what follows, we present
a parallel algorithm that computes the product of two SD
numbers in log2(n+m) iterations, where (n+m) is the word
length including n integer digits and m fraction digits. For
clarity, we use integer numbers where the fractional length
m = 0. The algorithm is composed of three steps :

Step 1: Given two signed n-digit numbers, generate all
n partial products concurrently, each having length n as
follows:

Po,;= Yi* X for j = 0, ... , n - 1 (8)

where the term Po,; is an n-digit SD number representing
the j-th partial product.

Step I!: Introduce the necessary shifts for each partial
product. Each initial partial product Po,; will be shifted
j digits to the left, corresponding to the weight factor 2i
shown in Eq.5:

Po.; = Yi * X x 2i - for j = O, ... , n - 1 (9)

Step 9: Pairwise add all the partial products by means
of an adder tree. With a total of n partial products at the
leaves of the tree, the summation process takes log2 n levels
in the tree. At each level i, we perform n/2; SD additions
in parallel :

Pa,; = Ps-1,2;-2 + P;-1,2;-1 for j = 1, 2, ... , n/2;(10)

The final product is produced at the root of the tree after
log2 n iterations. Step 1 and Step 2 are carried out in
constant time. For a multiplier of length n, Step 3 requires
log2 n iterations. Since each SD addition takes constant
time, then the multiplication of two n-digit SD numbers
can be carried out in O(log2 n) time.

Example 2 below shows the parallel multiplication of
two 4-digit SD numbers, X = (1.0H)sD = (0.375)i0 and
Y = (1.0il)sv = (0.875)i0 • In Step 1, we generate all
the partial products using Eq.8. In Step 2, we introduce
the necessary shifts. Finally, we add all the shifted partial
products according to Eq.10), using a tree of SD adders to
produce the final product P = 000.100101 = (0.546875)i0 •

Example 2:

Step One : Generation of the partial products

Po,o = Y-3 * X = 1.0lI

Po,1 = Y-2 * X = i.Oll
Po,2 = Y-1 * X = 0.000

Po,3 = Yo * X = 1.0li

Step Two: Shift the partial products

(Y-3 * X) x 2° = OOOlOii

(Y-2 * X) x 21 = OOlOllO
(Y-1 * X) x 22 = 0000000

(Yo * X) x 23 = 10nooo

Step Three: Su=ation of all the shifted partial products

00010n

_ >OOOOOiil>
0010110

0000000

__ >11101000
1011000

000.100101

X x Y = Z = (000.lOOlOI)sn = (0.546875)i0

The SD multiplication algorithm uses the signed AND
operation (*) in generating all partial products simultane­
ously, and a tree of SD adders to sum them up. Using
Eq.6, we derive the SS rules needed for implementing the
* operation as shown in Fig.6. Let us consider the op­
tical implementation of the computations in Example 2.
The multiplicand and multiplier are arranged in 1-D ar­
rays as shown at the left of Fig.7. The multiplicand is
shown horizontally and the multiplier is shown vertically.
The generation of all partial products Po,; for i = 0, ... , 3
is carried out in three stages. First, the multiplicand is
spread out vertically by the astigmatic optics (represented
by the cylindrical lens Ll) to fill the 4 X 4 data plane Ml.
Similarly, the multiplier is spread out horizontally using
the cylindrical lens L2, so that each digit of the multiplier
is duplicated vertically 4 times to fill the 4 x 4 plane M2.
Next, planes Ml and M2 are 2-D perfect shuffled [10] and
then stored in an 8 x 4 plane R. For clarity, the optics re­
quired for the 2-D perfect shuffie permutations is omitted
from Fig.7. The 2-D shuffie permutations intended here
affect only the row position, leaving the column position
of the data unchanged.

The resulting image, R, has alternating rows from Ml
and M2 such that odd rows contain the multiplicand and
even rows contain a replicated digit of the multiplier. There­
fore, row 1, row 3, row 5, ... , row n - 1 contain the mul­
tiplicand X; and row 2, row 4, row 6, ... , row n, contain
the replicated digits Yi. Y2, y3, ... , Yn-1 of the multiplier re­
spectively. In the third stage, plane R is replicated 9 times,
each copy is used for applying one SS rule of the * opera-

59

.-----------,
I~ I

I I

: ~:
I - I I I
I I
I I
I I
I T2Q I

L----------.J r-i----------:
: ~: I I

I - I I I
I I
I I
I T25 I L----------.J
.-----------, Ii I I I

I ~I I I

I - I I I
I I
I I
I r23 I
L.----------.J

.-----------,
I~ I

I I

I ~I I I

I - I I I
I • I
I I
I T24 I

L.----------.J

r-~----------:
I I

I ~I I I

I - I I I
I I
I I
1 r 28 1

L.----------.J

Fig.6 Symbolic substitution rules for the SD AND

tion. Therefore, every combination of the input operands
is searched and is replaced in parallel. Finally, the output
planes of all the SS rules applied are optically superim­
posed. To this end, all the partial products have been
generated in parallel as shown in plane P of Fig.8. Step 2
of the SD multiplication algorithm involves spatial shifts.
There are a variety of ways one can perform spatial shifts
in optics[l4].

.,, 6 ',
1

....
....................

Multiplicand

Multiplier Lens L2

Lens Ll

Plane M2

Plane Ml

Plane R

2-D perfect shuffle of
planes Ml and M2

Fig. 7 The spreading of the operands in Example 2

for parallel SD multiplication

The plane P, consisting of all partial products with ap­
propriate shifts, is then fed to the adder described in the
previous section in order to perform the last step of the
multiplication algorithm. This is accomplished by apply­
ing the SD addition rules for log2 4 iterations.

In general , with a multiplicand of length n and a mul­
tiplier of length m, the planes Ml, M2, and P in Fig. 7 are
all m x n arrays, Risa 2m x n array, and the shifted Pis a
mx (m+n) array. It should be noted that, ifthe 1-D arrays
which are used to input the operands are replaced by 2-D
arrays and associated optics for spreading and shuffling,
many operand pairs can be multiplied in parallel using the
same set of SS rules.

Search patterns

Plane R

SS Rule (r20)

SS Rule (r21)

•
•
•

I SS Rule (r21)

SS Rule (r2s) Plane P
(Partial

products)

Fig.8 Parallel generation of partial products using
the SS rules for the SD AND operation

5 Optical SD Division

The conventional restoring and nonrestoring division
methods require knowledge of the sign of the partial re­
mainder for exact selection of the quotient digits. How­
ever, in SD representation, the sign of a partial remainder
is not readily available if several most significant digits
are zero. This difficulty prevents the use of conventional
methods for SD division. Robertson division method[15]
was applied in [1] for SD number systems with radix r ?: 3.
In that method, the quotient is represented in redundant
form and the value of the next quotient digit is selected
by comparing approximated values of both the divisor and

60

the partial remainder. In searching for an effective divi­
sion algorithm for SD numbers with radix r = 2, we have
to achieve the following two goals:

(1) The algorithm should overcome the difficulty of testing
the polarity of the remainder after each iteration.

(2) The algorithm should make effective use of the 2-D
parallel SD addition and multiplication schemes de­
scribed in previous sections.

An SD division algorithm satisfying the above goals is
developed below based on the convergence approach[4,16,17].
Let us consider a dividend X and a divisor Y both SD frac­
tions in normalized from, that is:

1/2 :::; IXI < y < 1 (11)

We want to compute the quotient Q = X/Y without a
remainder. The algorithm consists of finding a sequence of
multiply factors m 0 , mi, m2, ••• , mn such that Y x (II:~o m;)
converges to 1 (within an acceptable error criterion). Ini­
tially, we set Xo = X, and Yo= Y. The algorithm repeats
the following recursions:

X;+1 = X; x m;, (12)

such that for a small n:

i=n i=n

Y x (Il m;) --+ 1, Q =Xx (Il m;) (13)
i=O i=O

The effectiveness of this method relies on the ease of com­
puting the multiply factors m;'s, using only SD addition
and SD multiplication operations. The recursive formula
of Eq.12 can be rewritten as:

Yi+i = Yi x m; = f(Y;) (14)

We desire the function f(Y;) to converge to 1, starting from
an initial value Yo = Y. Equation 14 can be rewritten in
a polynomial form:

f(Y;) - Yi= 0 (15)

Flynn has described several iterative methods [16] to
enable such a polynomial to converge to a given value say k.
We are interested only in the quadratic convergence as this
appears more convenient for optical realization. To achieve
this, let us rewrite Eq.15 in a more general quadratic form:

(16)

One of the roots of Eq.16 should be equal to the conver­
gence limit 1. Krishnamurthy[17] has found that in order
for Y; x m; to converge quadratically to 1, the factors m;'s
should be selected as:

m; = 2 - Y; provided that 0 < Y; < 2. (17)

Equation 17 implies that the multiply factor for each
iteration can be easily obtained as the two's complement
of the denominator Y;. In SD code, the arithmetic ex­
pression 2 - Y; can be computed in constant time using
SS rules for SD negation and addition. Since the conver­
gence is quadratic, the accumulated denominator length is
doubled after each iteration. Hence for a desired quotient
of length n, the maximum number of iterations needed is
log2 n. The convergence division of two SD numbers is for­
mally specified below:

SD Division Algorithm

begin

for i := 0 to log2 n - 1 do

m; := 2-Y;;

X;+i := X; x m; ;

Yi+i := Y; x m;;

endfor;

Q := X1og2 n-li

end.

Example 9 illustrates the SD convergence division of
X = (O.iO)sv = (-0.5)10 by Y = (O.ll)sv = (0.75) 10.
For a 16-digit precision, the algorithm generates the quo­
tient after 3 iterations, Q = (i.lilOiilOiilllil)sv =
(-0.66664) 10. As for the optical implementation of the
algorithm, each iteration of the SD division consists of
three major operations : a pair of two SD multiplications,
Yi+i = Y; x m; and X;H = X; x m;, and a two's comple­
ment operation m; = 2-Y;. Each SD multiplication can be
optically carried out as described in Section 4. The two's
complement is carried out by an SD negation followed by

an SD addition. The subtrahend Y; is negated using the
SS rules in Fig.3d. All nonzero digits of Y; are negated
in parallel. The expression 2 - Y; then becomes 2 + Y;,
which is computed using the SD addition rules in Fig.3a­
c. The two SD multiplications required to generate X;+1
and Yi+1 can be computed concurrently by replicating the
SD multiplication hardware into two channels, one for the
numerator and one for the denominator as shown in Fig.9.

6 Performance Analysis

We estimate the potential speed of the optical arith­
metic algorithms introduced in this paper. The analysis
is based on the optical implementation models presented
in previous sections. These estimates should reflect the
state-of-the-art in optical computing technology. Our esti­
mates cover both conservative and optimistic sides of the
expected performance.

The SD addition is performed in three stages. The to­
tal time to perform each stage is attributed to the time
needed : (1) to replicate the input image; (2) to propagate
the image through the first hologram to provide the shifts;
(3) to activate the optical NOR-gate array for inverting
the superimposed image; (4) to propagate light through
the second hologram for substitution; (5) to superimpose
the output of all the rules; and (6) to feed back the in­
termediate result. Therefore the total SD addition time is
expressed as:

(1) (2) (3) (4) (5) (6)

--,---..-~­Tadd = 3(Tp + Tp + Tactiv + Tp + Tp J + 2 T, (18)

where:

Tp = Propagation time of a light beam through passive
optical devices such as lenses, beam splitters, holo­
grams, etc.

T1 = Feedback time (light propagation through the feed­
back interconnect)

Tactiv = Response time of an optical NOR-gate array used
for inversion and thresholding.

Example 9 : SD division steps based on repeated multiplications

Iteration
step
i-0

i=l

i=2

Multiply
factor
mo=2-Yo
(1.0l)sv

I = (1.25)10

mi= 2-Yo x mo
(1.00li)sv

I = (1.0625)10

m2 = 2 - Yo x mo x mi
(l.OOOOOOI)sv

I = (i.ooa90625)10

Accumulated
denominator
Y1=Y0Xmo
(1.000i)sv

I = (o.9a75ho

Y2 = Yo x mo x mi
(1.000000l)sD

I (o.99509)10

Accumulated
numerator
X1 = Xo x mo
(O.iilO)sv

I = (-o.625ho ·

X2 = Xo x mo X mi
(Lli10ii10)sv

1 c-o.66406ho

Y3 = Yo x mo X mi x m2 X3 = Xo x mo x mi x m2
(i.oooooooooooooooi)sv Q = (i.li1on10n1ilil)sv

I Y3--> 1 I = (-0.6666 ..)10

61

Xo l X;
N-Channel for J

p.. Numerator I--multiplication Q

Y; SS Rules I Yi • SS Rules for m;=2+Y:

' for negation addition

Yo

~
Yi+1

D-Channel for I-
...l'.'.i... Denominator

multl!>lication

Fig.9 An optical convergence divider using two chan~els
of optical multipliers

The numbers over the braces in Eq.(18) indicate the
times needed to accomplish each subtask. Tp and T1 can be
approximated by 0.1 nsec[14] (light propagates at 1 ft/nsec
in free space). The dominant limitation to speed is the
switching time of the optical NOR-gate array, representing
the only active element in the addition path. 'Therefore,
the total SD addition time would be Tadd 1'::$ 3Tactiv• An
n-digit SD addition requires (n + 1) x 4 pixels, where the
factor 4 is introduced by the encoding scheme used (2 light
pixels for each digit). Therefore, for an optical gate. array
of size l ~ l pixels and a switching time r, the optical SD
adder is able to perform 0a n-digit additions per second,
where:

0 - l x l
a - 3r x ((n + 1) X 4) (SD additions/sec) (19)

Optical gate arrays of very small sizes (say 2 x 2 to
5 X 5) have been recently demonstrated [18]. These ar­
rays offer the possibility of achieving a 10-12 sec switch­
ing time. However, these optical gate arrays can not be
used in a practical system due to their small size and high
power consumption. If we were to use a commercial spa­
tial light modulator (SLM) such as the liquid crystal light
valve (LCLV) with a 500 x 500 pixel resolution and 20 ms
switching time, we can perform about 63 x 103 32-digit SD
additions per second. This yields to an average of 1/0a
= 15 x 10-6 sec per SD addition. This speed is not much
faster than today1s fast adders. However, faster SLMs are
being produced in research laboratories [18]. If the response
time of the SLM were reduced to 0.01 µsec, a 500 x 500
resolution will bring the 32-digit SD addition time down
to 1.5 x 10-13 sec (0.15 ps), which will represent 104 times
improvement over electronic adders of the same size.

Referring to the optical implementation model in Sec.4,
the SD multiplication time is attributed to the time needed
: (i) to generate the partial products; (2) to shift them;
and (3) to add up the shifted partial products. This time

62

is expressed as:

(1) (2) (3) - ..-------..... Tmu1t = T, + 4Tp + Tactiv + Tp + Tadd x log2 n (20)

where T, represents the time needed to spread and to shuf­
fle the operands. This time corresponds to light propaga­
tion through passive devices which can be estimated by
0.1 nsec. Since T, ~ Tp << Tactiv and Tadd ~ 3Tactiv,
hence Tm ~ Tactiv(l + 3 log2 n), where n is the precision
of the multiplier. An n-digit SD multiplication requires
4 x (n x 2n) pixels, where the factor 4 is related to the
light encoding of the digit set {i, 0, 1}. Using an SLM
with l x l pixel resolution and r switching time, we obtain
the number 0m of n-digit multiplications performable per
second:

0 _ lxl ()
m - 4 X (n X 2n) X r X (1+3log2 n) 21

If we were to use standard off-the-shelf SLM (LCLV),
there could be 96 SD multiplications per second. This
corresponds to a speed of 1/9m = 10 msec per one 32-digit
SD multiplication. This looks very slow. However, if the
switching time of the SLM were reduced to 0.01 µsec, the
32-digit SD multiplication time would be reduced to 5 nsec,
which is 100 times faster than today's fastest electronic
multipliers of the same word length.

Consider the optical implementation shown in Fig.9,
the time required to perform one· iteration of the SD di­
vision consists of the time needed : (1) to generate the
multiplicative factor m; ; and (2) to produce the next nu­
merator and denominator Xi+li Yi+i· This time is then
multiplied by the logarithm of the fraction length to ob­
tain the total SD division time Td;u:

(1) (2)

Tdiu = (4Tp + Tactiu +Tadd+ Ti+ ~mu1:+ Ti) X log2 n(22)

Substituting Tadd and Tmult in Eq.22 with Eq.18 and Eq.20
respectively, we obtain Tdiv ~ Tactiv log2 n(5+3 log2 n). An
important feature of the SD division algorithm is that sev­
eral dividends can be divided simultaneously by the same
divisor. This is due to the fact that the multiply factors
and the convergence rate depend only on the magnitude of
the divisor. An n-digit SD division requires 4 x (n x 2n)
pixels to hold the accumulated numerators or denomina­
tors (assuming that we are truncating the intermediate
products by n digits after each iteration). Therefore, for
an optical gate array of l x l resolution and T switching
time, we estimate the number of SD division per second
as:

(23)

For a resolution l x l = 500 x 500 and a switching time
r = O.Olµsec, the time needed for a 32-digit SD division
would be 1/0d which is around 30 nsec, a rather impressive
figure that no existing electronic divider can achieve.

In Fig.lOa, we plotted the optical addition, multiplica­
tion and division times against a wide range of the optical
clock rate (or the inverse of the optical switching time T).
The speedup of the optical arithmetic operations over their
electronic counterparts is plotted in Fig.lOb. We fixed the
resolution of the optical gate arrays to l x l = 500 x 500, and
the precision n = 32 SD digits. For the speedup curves, we
used 20 nsec, 500 nsec, and 2 µsec for 32-bit electronic ad­
dition, multiplication and division, based on current elec­
tronic technology [19,3]. Both scales are in logarithm with
base 10.

Compute time (nsec)

103

102

10

1

10-1

10-2

10-s

<> = Addition time
* = Multiplication time
o = Division time

10-5 -1-~~~ ~~~--+~~~-...~~~--'~1/r

10Mhz lOOMhz lGhz lOGhz

Fig.lOa Optical compute time as a function
of the clock rate (1/r)

lOOGhz

63

Speedup

101

<> = Speedup for addition
* = Speedup for multiplication
o = Speedup for division

1 T

lOMhz lOOMhz lGhz lOGhz lOOGhz

Fig.lOb Potential speedup of optical over
electronic arithmetic computations.

7 Conclusions

The SD representation allows parallel addition to be
performed in constant time. The execution times of the
proposed SD multiplication and SD division algorithms are
both proportional to log2 n, where n is the length of the
multiplier and of the divisor. We have presented the op­
tical setups to achieve 2-D optical symbolic substitution.
The carry-free nature of SD arithmetic matches well with
the space-invariant property of optical symbolic substitu­
tion.

We have introduced two new sets of SS rules for im­
plementing SD arithmetic in optics. The optical imple­
mentations are based on available optical hardware. We
have assessed the performance of optical arithmetic based
on the state-of-the-art optical and electro-optical technolo­
gies. We conclude that the speedup over electronic coun­
terparts is rather limited due to the slow switching time of
today's 2-D spatial light modulators.

ff the switching time of the optical gate arrays were re­
duced to nanosecond range, we could perform 32-digit op­
tical addition, multiplication and division with a speedup
ranging from 0(102) to 0(105) over existing electronic coun­
terparts as shown in Fig.lOb. Therefore, the potential
of building future supercomputers with optical arithmetic
units looks very promising and encouraging. The algo­
rithms developed in this paper are meant to prepare com­
puter designers for the new challenges brought over by op­
tical technology.

Acknowledgments

This research was supported by an ONR Contract No.
N14-86-k-559 and in part by a grant AFOSR-86-8

References

[1] A. Avizienis, "Signed-digit number representations
for fast parallel arithmetic," Trans. Elect. Computers,
vol. EC-10, pp. 389--398, 1961.

[2] B. L. Drake, R. P. Bocker, M. E. Lasher, R.H. Patter­
son, and W. J. Miceli, "Photonic computing using the
modified signed-digit number representation," Optical
Engineering, vol. 25, pp. 038 - 043, Jan. 1986.

[3] K. Hwang, Computer Arithmetic : Principles, Archi­
tecture, and Design. John Wiley & Sons, New York,
1979.

[4] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and
D. M. Powers, "The IBM system/360 model 91, float­
ing point execution unit," IBM J. Res. and Develop.,
vol. 11, pp. 34 - 53, Jan. 1967.

[5] A. Huang, "Architectural considerations involved in
the design of an optical digital computer," Proceedings
of the IEEE, vol. 72, pp. 780 - 787, July 1984.

[6] A. A. Sawchuk and T. C. Stand, "Digital optical com­
puting," Proceedings of the IEEE, vol. 72, pp. 758-
779, July 1984.

[7] A. Huang, "Parallel algorithms for optical digital
computers," in Proceedings IEEE Tenth Int'/. Opti­
cal Computing Con/., 1983.

[8] K. H. Brenner, A. Huang, and N. Streibl, "Digital op­
tical computing with symbolic substitution," Applied
Optics, vol. 25, 15 Sept 1986.

[9] Y. Li, G. Eichmann, R. Dorsinville, and R. R. Alfano,
"An AND operation-based optical symbolic substitu­
tion," Optics Communications, vol. 63, pp. 375-379,
15 September 1987.

[10] A. Louri and K. Hwang, "A bit-plane architecture
for optical computing with two-dimensional symbolic
substitution," In Proc. of the 15th Int'l. Symp. on
Computer Architecture, Honalulu, Hawaii, May 30 -
June 2, 1988. (An extended version has been submit­
ted for Journal publication).

64

[11] P.A. Ramamoorthy and S. Anthony, "Optical modi­
fied signed-digit adder using polarization-coded sym­
bolic substitution," Optical Engineering, vol. 26,
no. 18, Aug. 1987.

[12] Y. Li and G. Eichmann, "Conditional symbolic mod­
ified signed-digit arithmetic using optical content­
addressable memory logic elements," Applied Optics,
vol. 26, no. 12, 15 June 1987.

[13] K. Hwang and A. Louri, "New symbolic substitution
algorithms for optical arithmetic using signed-digit
representation," Proc. Soc. Photo-Opt. Instr. Eng.
{SPIE}, vol. 880, January 1988, (A significantly ex­
tended version has been submitted for Journal pub­
lication under the title "Parallel Optical Arithmetic
Using 2-D Symbolic substitution).

[14] A. Huang, Y. Tsunoda, J. W. Goodman, and S. Ishi­
hara, "Optical computation using residue arithmetic,"
Applied Optics, vol. 18, no. 2, 15 Jan. 1979.

[15] J. E. Robertson, "A new class of division methods,"
IRE Trans. Electronic Computers, vol. EC-7, pp. 218
- 222, Sept. 1958.

[16] M. J. Flynn, "On division by functional iteration,"
IEEE Transactions on Computers, vol. C-19, no. 8,
pp. 702 - 706, Aug. 1970.

[17] E. V. Krishnamurthy, "On optimal iterative schemes
for high-speed division," IEEE Transactions on Com­
puters, vol. C-19, no. 3, pp. 227 - 231, March 1970.

[18] A. D. Fisher and J. N. Lee, "Current status of two­
dimensional spatial light modulators," In Proc. SPIE,
optical and Hybrid Computing, vol. 634, pp. 352 - 372,
1986.

[19] K. Hwang, "Advanced parallel processing with su­
percomputer architectures," Proceedings of the IEEE,
vol. OC- 75, pp. 1348 - 1379, Oct. 1987.

AN ANALYSIS OF PARALLEL LOGIC SIMULATION

ON SEVERAL ARCHITECTURES

Steven P. Smith, Bill Underwood & Joe Newman

Microelectronics and Computer Technology Corporation
Computer Aided Design Program

3500 West Balcones Center Drive
Austin, Texas 78759

ABSTRACT

Due to its tendency towards large and unpredictable
amounts of interprocessor communication, parallel
logic simulation places enormous demands on the
performance of both individual processor elements
and interprocessor communications. To explore the
relative importance of processor and communications
speed and to compare the merits of different architec­
tures for this application, results are offered from the
simulation of a number of test circuits on models of
five parallel architectures. Three different schemes
are used to partition the circuit representations across
processors, and both 4 and 16 processor
configurations are considered for each architecture.
The relative cost of device evaluation and signal com­
munication is also varied. The five architectures
examined are: a parallel processor with a single inter­
processor communications bus, a ring of processors, a
simple processor array with nearest-neighbor connec­
tions, a hypercube, and a processor array with
crossbar communications. The results are compared
both to the single processor case and to the ideal
parallel case, and they indicate that the performance
potential of parallel event driven logic simulation at
this level is questionable.

INTRODUCTION
The march towards ever larger and faster computer

systems has continually outpaced the rate of advances in the
·computer aided design (CAD) tools used to develop them.
Nevertheless, CAD tool developers struggle to keep up by
employing combinations of three basic tactics. The first tactic
seeks to reduce the size of the problem, either through hierarchi­
cal modeling of computer systems or by considering only small
portions of the design at a time. The second tactic centers on
the discovery of more efficient algorithms. And the third tactic
involves the exploitation of parallel architectures.

Approaches to parallel logic simulation can generally
be divided into two categories. Those in the first category pur­
sue speed gains by breaking the algorithm into pieces that are
then executed on separate processors. Although parallel logic
simulators of this variety have been successfully implemented in
hardware, 1 their performance potential would appear to be too
severely restricted by the limited parallelism inherent in tradi­
tional simulation algorithms to be of lasting interest.
Approaches in the second category attempt to leverage the paral­
lelism evident in the behavior of real circuits by partitioning the
circuit representation being simulated among several processors.

At first blush, it seems reasonable to speculate that
the performance of parallel logic simulators based on circuit par­
titioning need not degrade markedly as the size of circuit
representations increases. Two factors invalidate this specula­
tion. First is the fact that in traditional event driven logic simu-

65

lators, it is necessary to maintain the same simulation time
across all processors, requiring all processors to complete their
work at a given time unit before any may proceed to the next
time at which there is activity. The second factor is the time
expense incurred by communicating signal values for devices
modeled on one processor needed as input to devices on another
processor.

The goal was to explore the potential of parallel logic
simulation based on circuit partitioning in light of these con­
siderations. To aid in comparative analysis, an instrumented
event driven simulator was employed to model performance for
five different parallel architectures using a set of 11 test circuits.
The five architectures examined were: a paraller processor with
a single interprocessor communications bus, a ring of processors,
a simple processor array with nearest-neighbor connections, a
hypercube, and a processor array with crossbar communications.
Three circuit partitioning algorithms were tried in each case to
examine the sensitivity of simulator performance to this task.
And finally, four different sets of device evaluation time to sig­
nal transmission time ratios were used to determine the relative
performance criticality of these parameters.

PARALLEL LOGIC SIMULATION
In this section, we define the parallel logic simulation

algorithm to be used in the analysis below. As mentioned ear­
lier, parallel techniques can generally be divided into those that
distribute the algorithm among several processors and those that
distribute the data. The limitations on useful decomposition of
the basic logic simulation algorithm renders approaches in the
first category unworkable for large scale parallelism. Therefore,
the discussion at hand will be restricted to approaches that distri­
bute the circuit representation among processors.

Circuit models used in logic simulators are typically
composed of structure instances that represent individual device
occurrences with electrical connectivity indicated via pointers
from structure to structure. This representation is split among
processors for parallel logic simulation using one of the parti­
tioning algorithms presented in the following section. Once
every device structure (and hence every device model) is
assigned to a processor, the circuit representation is loaded onto
the appropriate element. Devices that drive inputs not found on
the same processor are tagged so that when their outputs change,
sink devices on other processors can be notified of the change
via a signal change message.

Assuming a standard one-pass simulation algorithm, it
is possible to develop simple equations for determining perfor­
mance. For simulation on a single processor, the time for a
simulation run is given by

sim_JNUHJl

t8n = r, evalspau. * ttn101.
i=l J

(1)

Ignoring the negligible synchronization overhead, the general
equation for simulation on a machine with multiple processor
elements (PEs) is given by

t,.. .. = '""f"' MAXrMAXft +1 *t....i. 1,,.,Jl, (2)
i=l P&[l 1 iJJ

where the maximum communications time is architecture depen­
dent and will be discussed in due course, and the maximum
evaluations time at each pass is equal to the product of the· larg­
est evaluation count found on the processors and the time per
evaluation. In qualitative terms, Equation 2 states that the time
per simulation pass is equal to the maximum time required by
any of the individual processors and that this time is determined
by the maximum of the communication and evaluation times.
And, of course, the total simulation time is equal to the sum of
the times spent on all of the passes. The single evaluation time
added to the communications time simply indicates that, if the
time consumed by a given processor is dominated by communi­
cation then after the last signal for the current pass has been
received, a final evaluation must be performed to complete the
pass. Note that for our analysis, all evaluations are assumed to
take the sanie amount of time. This assumption is valid for most
hardware implementations using simple look-up tables for
evaluations,4 and is a reasonable approximation in general. With
these equations, we can calculate the speed-up of parallel logic
simulation directly from

speed-up = t, .. . ,,,... (3)

Eqm•·ion 2 will be elaborated for each of the five architecture
models presented below to account for the effect of the different
architectures on communications performance.

CIRCUIT PARTITIONING
The goal of circuit partitioning is to assign devices to

processors in a manner which maximizes the resultant simulation
speed-up. As shown in Equation 2, this speed-up is dependent
upon message transmission time and gate evaluation time. The
optimal partition will produce the minimum number of messages
as well a8 an even distribution of evaluations at each processor
for each simulation pass, however finding such a partition is a
dramatically more expensive process than the simulation task
itself. Therefore, two heuristics are used that have been shown
to produce satisfactory results for a variety of circuits:5 input
cone and output cone partitioning. These schemes involve plac­
ing occurrences into the circuit block to which they have the
greatest attraction, that is, the block that contains the greatest
number of occurrences in their input or output cone. In addition
to the two heuristic schemes, random assignment partitioning is
also included as a baseline. Since signal activity tends to be
clustered for many circuits, this method offers the potential for
relatively high degrees of processing concurrency. However, the
advantage is frequently offset by large numbers of message
transfers.

Clearly, the success of any given partitioning scheme
is dependent on the relative weighting of communication and
evaluation costs. Since partitioning by cones seeks to minimize
interprocessor communications by grouping connected devices
on the same block, the performance of these approaches hinges
on the assumption that communications costs dominate simula­
tion time.

THE PARALLEL ARCIDTECTURES
In this section, we describe the five architectures

modeled in our analysis. To aid in relative comparisons, the
same performance assumptions are made in each case. To wit, it
is assumed that direct point-to-point signal change messages
require a constant amount of time, and that processors do not
buffer these messages. This assumption implies that a message
being sent through a single intermediary processor will require
one message time unit on the originating processor, two units on
the intermediary processor, and one unit on the destination pro­
cessor ..

66

Processor elements are assumed to be identical gen­
eral purpose machines capable of performing both the device
evaluation and -local time-management tasks. The time con­
sumed during a device evaluation is assumed to be constant and
includes scheduling overhead so. that in the absence of any mes­
sage traffic, the time per simulation pass on a processor simply
equals the product of the evaluation count during the pass and
the time per evaluation.

Finally, it is assumed that none of the architectures
possess any global memory. The local memory on each proces­
sor element contains both a unique portion of the circuit being
simulated and the simulation time management structures
required during simulation. Devices that drive signals on other
processors are tagged with the data needed to route the informa­
tion to its destination.

The data presented below were gathered from a
heavily instrumented event driven logic simulator operating on
test circuits partitioned during preprocessing. Partition blocks
were assigned to processor elements randomly. Message traffic
figures obtained from the simulations are exact and represent a
complete picture of the expected interprocessor communications
load for the 11 test cases used in our analysis. In taking this
approach, it has proven remarkably easy to model new architec­
tures and to focus on the considerations currently of greatest·
interest, namely, the effects of processor count and interconnec­
tion architectures.

Single Bus Architecture
A bus supports the transmission of only one message

at a time, but arbitration is assumed to occur in parallel and is
therefore not considered in overall simulation time. From Equa­
tion 2 it is clear that the time consumed by a processor per simu­
lation pass is roughly equal to the greater of the communications
time and the evaluation time. The evaluation time per processor
is independent of the interconnection architecture in use, but the
communications time per processor is highly dependent on this
factor. For the single bus architecture, the communications time
per pass is given by

com tpa11 . •- · = 1:msgspE.*tcom + 1 *twa1,
.rmgicblU ·p& '

(4)

which states simply that, since all messages are transmitted via
the same channel, the communications time is determined by the
total count of interprocessor messages. As mentioned earlier, the
single evaluation time is added to account for the work required
after the last signal change message is received. For the single
bus architecture, the maximum and average path for messages is
equal to one, but this one channel is likely to be very busy.

Ring Architecture
For our ring model, we assumed unidirectional mes­

sage flow. Assuming that each message flows in a clockwise
direction until its destination processor is encountered, and
assuming that messages are not buffered, the communications
time per simulation pass is

com I,_. =MAX {src msgspg,+dest msgspg+t.,.12*via msgspg.+} (5)
""BP& ' i I

and the total time per pass is again the greater of this value and
the largest of the individual evaluation times. The assumption
that messages going through intermediary processors consume
two message time units is rather pessimistic, but is made to
maintain consistency with the other models. If there are 11 pro­
cessor elements, then

message path,,,,. = TJ-1 (6)

and

message pat~ = -I. (7)

The average path assumes a random distribution of message
traffic. For 4 processors, the longest path visits 3 processor ele­
ments and the average path visits 2, and for 16 processors, the
longest path is 15 and the average path is 8.

Array Architecture
A simple array architecture has up to four nearest­

neighbor connections per processor element. In the model, there
are frequently multiple paths for a message from a given source
element to its destination, so two approaches were used for
selecting paths under these circumstances. In the first approach,
the route was selected randomly; and in the second, the link at
each step with the lowest cumulative message traffic was always
chosen. The relative worth of these approaches will be dis­
cussed along with the rest of the results in the following section.
The communications time per processor element for each simula­
tion pass is the same as that for the ring and is given in Equa­
tion 5.

A square array of 11 elements will have a longest path
for interprocessor communications of

message path,,.,= 2*(Vr\-1)
and an average path of

message path.,,. = Vr*t

(8)

(9)

For the 4 processor case, the longest path is 2 and the average
path is 1.33. For 16 processors, these values become 6 and
2.67, respectively.

Hypercube Architecture

A hypercube architecture with eight processor ele­
ments has dimensionality of k=log,,(11)=3. The most common
scheme for routing messages in hypercube architectures uses a
fixed routing scheme based on the difference between the bit
encoded destination processor identifier and the current location
of the message.3 However, to maintain comparable communica­
tions schemes, the approach for message routing used in the
array model is also employed for hypercubes. The results are
roughly equivalent to fixed routing for the random routing case,
and better than fixed for the balanced case. Each processor ele­
ment in a hypercube of dimensionality k has k interprocessor
communications paths. A hypercube with 11 elements will have a
longest communications path of

message path,,., = log2(11)

and, if k is the dimensionality, an average path of

ck*2k-I
message path.,,8 = 2,_ 1 .

(10)

(11)

For the 4 processor case, the cube collapses to an array. For the
16 processor case, the longest path is 4 and the average path is
2.13.

Crossbar Architecture

A crossbar switch architecture contains point to point
connections from each processor to every other processor. In
this case, the communications time consumed per processor in
each simulation pass is given by

com t,,.., =MAX fsrc msgspe.+dest msgspe.+1 *t.,.,} (12)
CJ"t)ubar PEa l ' '
RESULTS AND ANALYSIS

This section presents results for parallel logic simula­
tion on the five models described above. 11 test cases were run
for each model using three partitioning schemes and four
different assumptions about the relative cost of interprocessor
message transfers and device evaluations. The first circuit was a

67

simple ALU bit-slice; the rest were obtained from the 1985
International Symposium on Circuits and Systems.2

The four evaluation to communication cost ratios used
were 1 to 0, 3 to 1, 1 to 1, and 1 to 3. A ratio of 3 to 1 implies
that a single evaluation is assumed to require three times the
time required to complete a single message transmission between
two processors. The 1 to 0 ratio is intended to model an ideal
situation, i.e., a system that can transmit messages instantane­
ously.

Table 1 lists average ideal concurrency figures for 4
and 16 processor systems using all three partitioning schemes.
Each entry indicates the attainable speed-up using the applicable
partitioning approach and processor count if messages could be
sent in zero time. As such, these data address how well the
three partitioning schemes evenly distribute evaluation work
among processors. A concurrency figure equal to the number of
processors could occur only if the same number of evaluations
are performed on each processor during every simulation pass.
The average figure of 3.471 for random partitioning into 4
blocks represents a peak processor usage efficiency of 87%. For
the 16 processor case, the efficiency drops to 66% for random
partitioning.

Although the random partitioning exhibits clearly
superior evaluation concurrency behavior, its appeal diminishes
greatly when message transmissions are weighed into the figures.
Tables 2 and 3 show the performance improvement of the other
two partitioning schemes as the message transmission time is
weighed in more heavily. In qualitative terms, it is not surpris­
ing that cone partitioning schemes generate fewer interprocessor
messages; their entire goal is to group signals with the devices
they drive.

The results also indicate that, even for as few as 4
processors, it is quite possible to actually slow down a logic
simulator by implementing it in parallel. Regardless of how the
circuit is partitioned, if an evaluation takes one third the time of
a message transfer, parallel simulation on the bus or ring archi­
tectures will on average result in a speed-up of less than unity
(i.e., an overall decrease in performance). For a "hardwired"
simulation engine with evaluation routines based on high speed
table lookups, ratios of this order are not at all unlikely. .For
output cone partitioning, if message transfers are three times as
fast as evaluations, the resultant speed-up of approximately 3
implies that 75% of the ideal result is achieved.

The crossbar interconnection results shown in Table 2
illustrate the attraction of the architecture where feasible. How­
ever, if interconnect usage efficiency is considered, then the
results are less impressive. A 50% increase in processor links
over the array architecture yields average performance improve­
ments of less than 20% in all cases.

Table 3 presents results for the test cases executed
using 16 processor models. For the bus and ring architectures
with a 1 to 3 ratio, concurrencies of less than zero are produced.
The array and hypercube results show that for higher processor
counts, the message routing scheme has a greater influence on
performance than was the case for 4 processors.

It is interesting to note that, for the case in which
message transfers are assumed to consume three evaluation
times, only 71 % of the test runs resulted in a performance
increase over the single processor case. Also worthy of mention
is the modest size of performance increases from the 4 to 16
processor systems for each of the architectures. Four times as
many processors increased the average performance of the single
bus architecture by at most 80%. For the ring, the larger system
improved the speed-up by only 62%. A 400% increase in pro­
cessor elements brought about up to a 162% increase in overall
speed for the array. The hypercube achieved a 190% overall
speed-up for the 16 processor system relative to the smaller

configuration. Finally, the crossbar managed a 199% increase in
going from 4 to 16 processors. Of course, these figures are all
the more disappointing in light of the significant increase in
interconnect hardware which accompanies the expansion of these
systems (excepting the single bus system) from 4 to 16 proces­
sors.

CONCLUSIONS
We have compiled detailed modeling data for event

driven parallel logic simulation on five architectures varying both
circuit partitioning schemes and processor and interconnect per­
formance. The resqlts indicate that performance is extremely
sensitive to both the partitioning scheme and the interprocessor
communications speed. These two factors are obviously related:
when the average device evaluation time dominates message
transmission time, random partitioning produces the best results.
But, as the relative cost of message ·transfers rises, the two cone
based partitioning schemes which seek to minimize message
traffic surpass random partitioning. This seems to imply that
simulation algorithms such as fault simulation and high level
simulation that can exploit this relationship show significant
potential for parallel applications.

At the same time, the results are not really very
encouraging. In order for the 16 processor crossbar architecture
to gain a factor of IO performance advantage over a single pro­
cessor, it was necessary to add 15 processors and 120 intercon­
nection links. If a more likely cost ratio of unity is used, the
speed-up is halved. Obviously, these results do not bode well
for parallel logic simulation of gate level design representations.

This work has led us to focus on a search for simula­
tion algorithms better suited for parallel processing. For exam­
ple, if simulation were carried out at a higher level so that the
time cost of evaluations could be substantially increased relative
to communications costs, results much closer to the ideal con­
currency figures of Table 2 might be possible. Other areas of
interest in ongoing work include configuration heuristics for
parallel simulation. Which partitioning scheme is most appropri­
ate for a giveri circuit? What number of processor elements will
yield the briefest simulation time?

REFERENCES

1. Barto, R. and S. Szygenda, "A Computer Architecture for
Digital Logic Simulation," Electronic Engineering, Sep­
tember, 1980, pp. 35-66.

2. Brglez, F., P. Pownall, and R. Hum, "Accelerated ATPG and
Fault Grading Via Testability Analysis," Proceedings of the
International Symposium on Circuits and Systems, 1985.

3. Heath, M., "The Hypercube: A Tutorial Overview," Hyper­
cube Multiprocessors 1986, Siam, Philadelphia, 1986, pp. 7-
10.

4. Pfister, G., "The Yorktown Simulation Engine: Introduc­
tion," Proceedings of the 19th Design Automation Confer­
ence, June, 1982, pp. 51-54.

5. Smith, S. P., Underwood, B., and M. R. Mercer, "An
Analysis of Several Approaches to Circuit Partitioning for
Parallel Logic Simulation," Proceedings of the 1987 Interna­
tional Conference on Computer Design, October, 1987, pp.
664-667.

6. Smith, S. P., Wood, B., Little, J. and P. Hunter, "Proteus-1:
A General Accelerator for CAD," Proceedings of the 1987
Fall Joint Computer Conference, November, 1987, pp. 512-
519.

68

Table I
Average ldea1 Concurrency and Message Transmissions for Different Partitioning Schemes

o:":ntm: 11-~..:IN:::~"P.;.IJ'f:..;::.CO:::~ NE.:::. "°'1•,..+--=~-~:.TPUT::.;.=,:.co::-~>;E~ ,.,..+-=::.RA:.4-NDT, 0-=~M:::.c; .. ;rl

IDEAL CON CY 2.576 7.708 3.1 3 &.604 10.543

Table2
Average Concurrency Figures for 4 Node Architectures

INPUT CONE OUTPUT CONE -
ARClUTECTlJllE

3:1

SIN~BUS J 2S4
RING 2.560

AllR.AY• 2S1S
AltR.AY•• 2.576

CROSSBAR 2.576

* Random message routing
** BaJanced message routing

1:1

·~ 1.832
2.195
2313

2A62

1'3 3'1 l:l l::
0.909 ~7 1.813 0.870

0.744 2.784 J.568 0.718
1.087 3.011 2.074 1.026
1.191 3.03S 2.201 1.116

1.310 3.040 2.337 1.312

Table 3

3:1

l2""'
2570
3.285
3.363
3.405

Average Concurrency Figures for 16 Node Architectures

11\'PUTCOXE OUTPUfCONE
ARCHITECTURE

3:1 l:l 1'3 3:1 l:l 1:3 3:1
SINGLE BUS 4.651 1.916 0.654 4.009 l.793 0.651 2.512

RING 4.151 1.534 0518 3.285 1.406 0.501 2.265
ARRAY• 5.836 2.786 0980 S."70 2.475 0.942 4.017

ARRAY•• 6.807 3.473 1.256' 6.117 3.092 1.224 5.173
HYPERCUBE• 7.113 3.847 1A31 6.571 3.408 1.401 6.471

HYPERCUBE•• 7.492 4.563 USB 7.436 4.108 1.799 7.588

CROSSBAR 7.695 S.798 2372 7.978 4.813 2.128 10.106

• Random message routing
** Balanced message routing

RANDOM

l:l 1:3

1.003 0.337

0.876 0.294
1.317 OA43
1.424 0.480
1.764 0588

RANDOM

l:l 1:3
0.85! 0.287

0.775 0.257

13!i2 0.465

1.793 0.606

2.261 0.766
3.06t'· 0.916
4,7{)(1 1.566

Semantics of a Parallel Computation Model and its Applications

in Digital Hardware Design

Zebo Peng

Department of Computer and Information Science
Linkoping University

S-581 83 Linkoping, Sweden

Abstract

This paper describes a parallel computation model based on a
data/control flow notation which consists of separate but related
sub-models of data path and control. The data path is formulated
as a directed graph. The control structure, on the other hand, is
modelled as a Petri net. This model is used for specification and
synthesis of digital hardware with a high degree of concurrency and
parallelism. The semantics of the proposed model is defined in
terms of its interactions with the environment. That is, two pieces
of hardware are considered to be semantically equivalent if they
interact with an environment in the same way. This allows
manipulation of the internal structure of the hardwares to improve
performance as well as reduce cost. A set of transformations for the
model which preserve its semantics is presented. A sequence of such
transformations can be used to move a design from an abstract
description to a final implementation.

1. Introduction

One approach to the design of complex digital hardware for VLSI
implementation is to use top-down synthesis technique. A synthesis
approach starts the design with an abstract specification and refines
it step by step towards a physical implementation by adding details
[6]. Automated synthesis of parallel systems requires a parallel
computation model to support the description of the system being
designed. Such a computation model must be able to express the
existence of multiple hardware resources for data storage,
computation, and communication. At the same time, it must be
able to represent the existence of multiple control flows and
synchronization schemes.

This paper describes a parallel computation model in which a data
path is used to represent the available hardware resources for data
manipulation. The organization of this set of hardware resources to
perform the prescribed computation is defined as a control structure
which specifies the partial ordering of the given operations. Those
operations which are not ordered, i.e., do not dependent on each
other, can be carried out in parallel by physically distributed
hardware resources. The control structure is formulated as a Petri
net in the proposed model.

One important task of a hardware synthesis process is to perform
design optimization. As such, there must be as much freedom as
possible to alter parts of the control as well as data path in ways
that do not change the behavior of the given system. For this
possible, we must be able to characterize the behaviors of a system
and define precisely the concept of equivalent systems. The
semantics of the proposed model is defined in terms of its
interactions with the environment. That is, only the external events
are relevant to the semantics of the system. In this way, the
internal structure of the digital system can be change without
changing its semantics. The system's interaction with its
environment is in turn defined based on two factors. First the
functional relationship between each output variable and its
relevant input variables must be the same; secondly the temporal
relationship between input/output operations should not be

This work was supported in part by the Swedish National Board for
Technical Development (STU).

69

different. This definition differs from other approaches which
consider only the input/output functional relation in terms of the
values being exchange between a system and its environment.

Most of other parallel system models have concentrated only on the
synchronization aspect, or the partial ordering of communications,
of parallel systems [5], [2]. For example, a Petri nets could be used
to represent event/condition system where a partial ordering of the
occurrence of events is specified but the contain of the events are
ignored [5]. CCS (a Calculus for Communicating Systems) defined
by Milner [2], on the other hand, models the occurrence of
potentially concurrent events as a shuffle (interleaving) of those
events; i.e., the events can occur in either order. As such, it has the
composition explosion problem. That is when several agents are
composed together, the possible number of behaviors are of the
exponential order of the number of agents. Consequently the
complexity of the behavioral expressions is also increase
exponentially. Further, the computational aspects are also
abstracted away in CCS. Our model, on the other hand, model both
the computations and their synchronizations, which are necessary
for synthesis of hardware systems.

Another description model for hardware synthesis which also used
external events to characterize semantics of a system has been
proposed by McFarland [1]. However, it uses regular expression to
formulate the event structures. Consequently it is difficult to deal
with concurrent event structures. We are more interested in
synthesis of algorithms (finally implemented as hardware) which are
expressed as partially ordered events. ·

2. Definition of the Computation Model

The proposed computation model is based on the concepts of data
flow and control flow. The data flow part is modelled as a data
path, which represent the existence of multiple hardware resources
to perform different operations. The control flow, on the other
hand, dictates the partial ordering of these operations. In a parallel
computation, there exist more than one control signal streams
which move on with their own paces and synchronize with each
other only when necessary. The partial ordering relationship
between different set of operations is modelled by a Petri net
notation.

Definition 2.1: A data path, D, over an algebraic structure is a
five-tuple, D = (V, I, 0, A, B),

where V = { V1, Ve, ... , Vn} is a finite set of vertices each of which
represents a data manipulation node;

I = I(V1) u I(Ve) u ... u I(Vn) with I(Vi) = the set of input
ports associated with vertex Vi;

0 = 0(V1) U 0(Ve) U ... U 0(Vn) with 0(Vi') = the set of
output ports associated with vertex Vi;
P =I U 0 is the set of ports; it is assumed that In 0 = 0.

A~ 0 x I= { (0, J) I 0 E O(Vi), l.E I(VJ'), i,j = 1,2, ... ,n }, is
a finite set of arcs each of which represents a connection from an
output port of a vertex to an input port of another vertex or the
same vertex;

B : 0--+ OP, is a mapping from output ports to operations.
OP = { OP1, OPe, ... , OPm} is a set of operations which define

the functional relation between an output port of a vertex and
its input ports. The set of operations are divided into the
sequential set SEQ and the combinatorial set COM.

Intuitively, a data path is a directed graph with each node having
possibly multiple input ports and output ports. The nodes are used
to model data manipulation units, for example data storages,
arithmetic operators, or communication channels. The arcs are used
to model the connections of these data manipulation units.

Therefore, the above definition is concerned mainly with the
structure rather than the function of the data path. How the data
path is used to perform computation is not explicitly defined. We
assume that there exists an implicit interpretation of the underlying
algebraic structure which supports the computation rules. Such an
algebraic structure should consist of a domain of values for
constants and variables, an assignment of values to the constants
and a function definition for each operator. This algebraic structure
is not considered here as it does not directly affect the basic
formulation of the model. Further, to define the semantics of the
system independent of any particular interpretation makes it
possible to cope with different implementation environments.
However, we assume that some modules exist in a module library
which can perform the defined operations of the data path.

The notion of ports here is used as a basic abstraction of the
input/output behavior of a data manipulation unit and thus
separates the implementation of the operation associated with the
vertices from the specification. The operation of the vertices are
defined only by the relation between the output ports and the input
ports. It is assumed that the output port will present a value which
has the given relationship with the values present in the input
ports.

Definition 2.2: A data/control flow system, r, is a seven-tuple,
r = (D, S, T, F, C, G, Mo)

where D = (V, I, 0, A, R) is a data path;

S = {S1, Se, ... , S .. } is a finite set of S-elements, or control states
(places};

T = { T1, Te, ... , Tm} is a finite set of T-elements, or transitions;

F ~ (S X T) U (T X S) is a binary relation, the flow relation.

C : S -+ 2A is a mapping from control states to sets of arcs of
the given data path; an arc Ai is controlled by a control state S;
if Ai E C(S;).

G : 0 -+ 2T is a mapping from output ports of data path
vertices to sets of transitions; a transition Ti is guarded by
output port O; if Ti E G(0;).

Mo : S -+ { 0, 1 } is an initial marking function.

The definition of the data/control flow model is based on the
marked Petri net notation. The Petri net $-elements are used to
capture the control state concept. When a control state holds a
token, a control signal will be generated to control the
corresponding arcs in the data path specified by the control
mapping function C. As there could be more than one control state
which holds tokens, there exist multiple control signals in the
systems. Further, the flow of these control signals (the temporal
relation between signals) is defined by a partial ordering structure,
which is captured by the flow relation F. To express the control
flow being affected by the results of some internal computation, we
must be able to use conditional signals (as results of some
computation) to affect the control flow. For this purpose, the
guarding condition concept is introduced into the Petri net
notation; a transition may be guarded by a condition produced from
the data path represented as the output port of some vertices.

Definition 2.3: For a data/control flow system r = (D, S, T, F,
C,G,Mo):

1. X = S U T is the set of control structure elements.

2. F+ = {F" I n EN+ }, where F 0 = identity and F"
F"-' for n EN+ , is the transitive closure of F.

3. Si=> S; iff (Si; S;) E F+; <= = (=>f'

Fo

4. oc = => U <=. Si and S; are said to be in sequential order if
Si oc S;.

5. II = (S X S \ oc). Si and S; are said to be in parallel order if
Sill S;.

The data path consists of two kinds of elements, the nodes together
with their ports representing the data manipulation units and the
arcs representing the connection between those units. Each arc is
controlled by, or said- to be associated with, some control signals
coming from the control Petri net. We can also associate the data
manipulation units with the control signals by the following
definition.

Definition 2.4: Vk is said to be associated with S; if
3(o,i) EA [(iE I(Vk)) n ({o,i) E C(S;))].

By this definition, only the input ports of a vertex are significant
for the associative relation. The output ports are irrelevant here
because an output port can send data to more than one place at a
time without resulting in conflicts. A single input port, on the other
hand, cannot receive signals simultaneously from more than one
resource.

The set of vertices and arcs associated with a control state S forms
a subgraph of the data path graph. This graph is called the
associated graph of S.

Definition 2.5: The arcs and vertices associated with control state
Si, denoted by ASS(Si), are said to be active under Si.

Intuitively, the arcs representing the data paths (e.g., a bus) are
open, i.e., allow signal to pass, when their associated control signals
are on; the associated data manipulation units, on the other hand,
will perform predefined operations.

70

Before we go to the formal definition of the concepts of semantics
and semantic equivalence, let us look at some simple examples.
Under the above formulation, a simple adder with two input ports
and one output port can be modelled as a vertex Vi with I(Vi) =
{Pi1, Pm}, 0(Vi) = {Poi}: A register can be modelled as a vertex
Ve with I(Ve) = {Pis} and O(V.e) = {Poe}. A data path which
connects the output of the adder to the register can be modelled as
an arc A1 = (Po1, Pis), which states that the output port of the Vi
component is connected to the input port of V.e.

If the output of the adder is only fed into the register when control
state Si is on, then A1 E C(Si) and { V.e, Ai} ~ ASS(Si). Note
that Vi need not necessarily be associated with Si; if, for example,
the adder has a local accumulator, a series of additions can be
performed and finally the sum be fed into register V.e when Si is on.
When the sum is being sent to V.e, Vi can continue with _another
addition associated with, e.g., Se without conflict.

3. Semantics of the Model

We now turn our attention to the definition of the semantics of the
proposed computation model. The basic idea is that we can
characterize the semantics of a system by the external events, i.e.,
its interactions with the outside world. An external event is either a
read or write operation of the externally accessible ports. The
semantics of a hardware system is defined as a set of events
observed in its external ports.

Before formally g1vmg the definition of semantics of the
computation model, we have to define the behaviors of the system
which is in turn based on the execution rules of the control Petri
net and its interaction with the data path.

Definition 3.1: Given a data/control system r = (D, S, T, F, C,
G, Mo), its behavior is defined as below:

1. A function M: 8--+ N is called a marking of r (N = { O, 1,
2, ... }) . A marking is an assignment of tokens to the
S-elements.

2. Initially there is a token in each of the initial control states,
or the set of S-elements Si such that Mo(S;) = 1 as defined by
the initial marking Mo.

3. A transition T is enabled at a marking Miff for every S such
that (S, 7j E F,M(S) ~ 1; that is, all the T-elements' input
control states have at least one token.

4. A transition T may be fired when it is enabled and the guard
condition is true (i.e., the output port which guards T has a
TRUE value). H a transition has more than one guard
condition, an OR operation is applied to them; therefore, if
any guard condition is true, the transition's guard condition
as a whole is true.

5. Firing an enabled transition T removes a token from each of
its input control states and deposits a token in each of its
output control states.

6. H no token exists in any of the control states, the execution is
terminated.

7. 'V(P) is the data value present at port P.

8. When a control state, S, holds a token, its associated arcs in
the data path will open for data to flow; i.e., the data value
presents at the input port, I, is equal to the corresponding
output port, 0, which is denoted as 'V(l) -IS 'V(0).

9. For every vertex V, 'V(O) := OP('V(I(V))),where OPEB(O).
The assignment operator, :=, means that if OP is sequential
it takes the last defined value of the expression; otherwise it
takes the present value of the expression.

10. H all the pending arcs of an input port are not active, its
value is undefined. H the operation of an output port is not a
sequential one and the output port depends on an undefined
input value, its value is also undefined.

The possible existence of an undefined value and the intrinsic
non-deterministic properties of the Petri net firing sequence
together result in difficulties in determining the behavior of a
system. We would like to exclude the nondeterministic properties
by the following definition.

Definition S.2: A data/control flow system r
G, Mo) is properly designed if:

1. ASS(Si) n ASS(S,) = 0, if Si II S1.

(D, S, T, F, C,

2. There should not be more than one token appearing at the
same control state; that is, the Petri net must be safe.

3. H (S, T1) E F, (S, Te) E F, T1E G(Po1), and TeE G(Poe),
then 'V(Po1) AND 'V(Poe) = FALSE. That is, the Petri net
must be conflict-free.

4. The subgraph that belongs to a control state should not
include a combinatorial loop.

5. VS; E S ASS(Si) must include at least one sequential
vertex.

This definition singles out those data/ control flow systems which
are safe, conflict-free and well-behaved. From now on we only
consider properly designed systems.

Definition S.S: For a data path D = (V, I, 0, A, R), there is a
set of external vertices, Ve, which only have either one single input
port (the set of output vertices, Vo) or one single output port (the
set of input vertices, Vi). The set of ports of the external vertices
Ve are called external ports. The set of arcs, Ae, which connect to
the external ports, are called external arcs.

Definition S.4: A external event is a pair (Ai, vi), with A; being an
external arc and Vi a value passed over the arc. A external event is
controlled by, or labelled with, the Petri net control state that is

71

associated with the arc. That is, the external event happens at the
time when the associated control state has a token.

Definition S.5: Given a data/control flow system r = (D, S, T,
F, C, G, Mo), its external event structure is defined as S(r) = (E,
-<,::::)where

E = {E1, E£, .. ., En} is a set of external events;

-< ~ (E x E) is a binary relation, the precedent relation. Et -<
E1 with E; = (Ai, v;) and E1 = (Ai, VJ'), iff E; occurs before E1
and S; => S3-, where A; E C(Si) and A; E C(S,);

;::: ~ (E x E) is a binary relation, the concurrent relation. Ei ;:::
E; with E; = (A;, vi) and E; = (Ai, v;), iff Ei and E; occurs at
the same time and Ai E C(S), Ai E C(S).

An external event structure specifies all the possible external events
of a system as well as the temporal relationship between them. H
two external events are in' the precedent (concurrent) relation, they
must always occur in the specified order (simultaneously). On the
other hand, if two events are J\Ot in either of the two relations, they
can occur in any order and are said to be in a casual relation. In a
distributed system with a set of modules, for example, the temporal
relations between some of the external events of two different
modules can best be expressed as having a casual relation. Trying
to force a total ordering on events of different modules will simply
introduce unnecessary constraints and make it difficult to
implement the system.

In the above discussion, we assume that when an external event
occurs whose operation is to obtain a value from the outside world,
the environment will supply a value of the appropriate type to the
system. We also assume that a sequence of such values is implicitly
predefined for each input vertex, when an external event structure
is specified.

Definition S.6: The semantics of a data/control flow system r,
denoted also by S(r), is defined by its external event structure.

4. Semantics Equivalence

Two systems are considered to be semantically equivalent if they
behave identically with respect to the corresponding external ports;
their internal behavior does not matter.

Definition 4.1: Two data/control flow systems r and r' are
semantically equivalent, denoted by r = r ', if S(r) = S(r ').

For the purpose of synthesis, however, the above semantic
equivalence relation is still too weak. In general, it is undecidable
whether two systems are equivalent to each other by this definition.
It is very difficult, or simply impossible in some cases, to analyze a
data/control flow system and obtain the complete external event
structure as specified by definition 3.5. We have thus to introduce a
stronger equivalence relation which requires every data dependence
operation to be carried out in exactly the same order. This latter
requirement is stronger than necessary. For example, two addition
operations can be carried out in reverse order without changing the
outcome of the computation. This strong definition, however,
greatly reduces the complexity of the synthesis process and still
provides enough room for the optimization algorithm to make large
changes in the described system.

Definition 4.2: The domain of a control state S, denoted as
dom(S), is defined as the set of vertices that have some output port
connected to an arc controlled by S. The codomain of S, denoted as
cod(S), is defined as the set of vertices which have some input port
connected to an arc controlled by S. The operations performed on a
control state S are the set of operations defined on the output ports
of its codomain. The subset of vertices of the codomain of S that
consists of some sequential output ports is called the result set of S
and denoted as R(S).

Definition 4.S: Si and S1 are directly data dependent, denoted as
Si +-+ S1, if one of the following is true:

(a) R(S•) n dom(S;) f- 0.

(b)
(c)
(d)

R(S;) n dom(Si) I 0.
R(Si) n R(S;) / 0.
$; and S; are in a control dependence relation;
depends on a subset of R(S;) or vice versa.

(e) C(Si) and C(S;) both contain some external arcs.

i.e., M(Si)

Definition 4.4: The transitive closure of -, denoted by ¢, i.e., ¢
= - + , is called a data dependence relation.

The data dependence relation is defined as the relationship between
the operations which will contribute "data" to each other; in other
words, two operations are data dependent if they must be executed
in the predefmed order in order to retain the semantic integrity of
the prescribed computation. Those sets of control signals which are
not in a data dependence relation, however, can be arranged in any
order without changing the semantics of the system.

Definition 4.5: Given r = (D, S, T, F, C, G, Mo) and r' = (D,
S, T', F', C, G, Mo), rand r• are data-invariantly equivalent to
each other, iff

for every Si=> S; and Si¢ S; in r (Si ES, S; ES),
we have Si => ' S; and Si ¢ ' S; in r ';

and vice versa.
,_

The above definition ensures that two operations are performed in
parallel only if they are data independent and all of the data
dependent operations in the two systems are performed exactly in
the same order. Therefore the data-invariant equivalence relation
satisfies the semantic equivalence relation. This means that we can
reconstruct the control structure (without changing the data path)
of .a hardware system to improve system performance, for example,
by- carrying out as much operations in parallel as possible.

Theorem 4.1: The data-invariant equivalence relation satisfies the
semantic equivalence relation.

Proof 4.1: see the appendix.

Definition 4.6: Given r = (D, S, T, F, C, G, Mo) with D = (V,
I, 0, A, B) and r' = (D', S, T, F, C, G', Mo) with D' = (V',
I', O', A', B'), r and r' are control-invariantly equivalent to
each other, iff r' is the result of a 11ertex merger of V; into V; of r,
both Vi and V; have the same operational definition and port
structure, and their associated control states are in sequential order.
The result of a vertex merger is defmed as:

V' = V- {Vi}.
I' = I - {I(Vi)}.
O' = I-{O(Vi)}.
A' is the same as A except that each (Oi, l} with Oi E 0(Vi) is
replaced by (O;, l} with O; E 0 (V;) and each (O, Ji) with
Ji E I(Vi) replaced by (0, lJ) with li E I(V;).
G' is the same as G except that each TE G(Oi) is substituted
by TE G(O;).

The intrinsic property of a merger operation is to share hardware
resources by operations so as to improve the implementation in
terms of cost. For example two addition operations can be
implemented with the same adder by merging the two addition
vertices together. By merging communication channels together we
can also create structure components like buses in the
implementation.

As a merger is only performed when the two vertices have their
associated control states in sequential order, they will not attempt
to use the vertex at the same time. As such the two sets of
operations can share the same operator safely. Because the two
vertices to be merged also have the same operational definition and
port structure, the merger will not change the computational aspect
of the given system.

Theorem 4.2: The control-invariant equivalence relation satisfies
the semantic equivalence relation.

Proof 4.2: see the appendix.

72

5. Hardware Synthesis

This section discusses briefly the application of the proposed
parallel computation model in a hardware synthesis environment.
For a detailed description of the synthesis algorithms and
comparisons to other related works, please see [3] and [4].

To synthesize hardware from some algorithmic description of its
behavior, we fll'st transform the description into the data/control
flow notation. Based on such a formal description, some formal
analysis techniques can first be used to check whether the systems
are properly designed before the synthesis process starts [4].

The major part of the synthesis process is carried out by a sequence
of control-invariant and data-invariant transformations as defined
in the previous section. Since both transformations do not change
the semantics of the system, they can freely be applied to transform
a design to satisfy certain given criteria. For example, adding one
more control flow path in the Petri net and possibly additional data
manipulation units in the data path will allow more operation units
to operate at the same time, thus increasing the parallelism of the
computation.

The synthesis algorithm starts with a preliminary design and
transforms it step by step towards an optimal one. As from each
step there are usually several ways to go, it is necessary to have
some strategy to guide the transformation process. A critical path
analysis technique is used for this purpose. The set of trans­
formation, analysis, and optimization algorithms has been designed
and implemented in the CAMAD design aid system [3], [4].

6. Conclusions

We have given the formal defmition of a data/control flow model
for parallel computation and its semantic equivalence notation. The
concept of semantic equivalence is defmed based on two criteria.
First the functional relationship between each output variable and
its relevant input variables must be the same; secondly the
temporal relationship between input/output operations should also
be the same.

Unlike other computation models used mainly for descriptive and
analysis purposes, the proposed model addresses issues of design
directly and allows graphical representations of the structures as
well as behaviors of hardware system. To apply this model for
hardware synthesis, we have introduced two basic transformations
which change the internal structure of the hardware but keep the
data dependency operations in the predefined order. The
requirement that all data dependency operations be carried out in
the predefmed order is actually stronger than necessary. For
example, two addition operations can be carried out in a reversed
order without changing the outcome of the computation. It,
however, greatly reduces the complexity of the synthesis process.
The use of such a formal computation ·model to represent the design
of parallel hardware has led to the efficient use of CAD and
automatic tools in the synthesis process.

Appendix

Proof 4.1: Let r = (D, S, T, F, C, G, Mo), r' = (D, S, T',
F', C, G, Mo), and rand r· a.re data-invariant equivalent to each
other, i.e., for every Si=> S; and Si¢ S; in r (Si ES, S; ES), we
have Si =>' S; and S; ¢ ' S; in r '; and vice versa. We will show
that the external event structure of r and that of r' are the same.

Suppose that a sequence of external events, (Ai, 11i1), '{Ai, llie), (Ai,
11is), ... , are observed in arc Ai which is associated with control state
Sin system r. As the data path of system r· is the same as that of
r, A; should also be present in r' as an external arc and controlled
b:r..Sinr'.

For the values exchanged over Ai, we have two situations:

(1) If Ai is connected to an input vertex, the function of the
external events is ·to input data from the environment. The
values passei:l over the arc are then provided by the
environment. As we assume that the sequence of such values

provided for each input vertex is fixed when we check the
semantic equivalence relation between different systems, the
same sequence of external events will be observed in system
r·.

(2) H Ai is connected to an output vertex, the function of the
external events is to output data to the environment. The
values passed over Ai are, therefore, determined by the
computation performed by the systems.

Let Ai= (0, .l}, and when M(S) = 1, an external event (A;, vi)
occurs with vi= 'V(0) (definition 3.4). H OE 0(V) and Vis an
input vertex (i.e., Ai connects an input vertex directly to an
output vertex), 'V(0) depends again on the environment.
Therefore, both systems exchange the same values at Ai.

H 0 E 0 (V) and V is not an input vertex, we have 'V(0) :=
OP('V(I(V))), where OPE B(O); and 'V(Ii) -iSi V(Oi) for each Ii
E I(V) (definition 3.1). As VE dom(S) and VE R(Si) (we have
assumed that V is a sequential vertex, without loss of
generality), we have S¢ Si and, therefore, Si => S. Since both
systems have the same data path and Si => S in both
situations, the values exchanged at Ai should be the same
provided that each 'V(Oi) for the corresponding systems is the
same.

To show that 'V(Oi) is the same for r and r ', we can use the
same proof process as above. This recursive procedure will also
converge to the situation where Vis an input vertex. At that
time the same argument as from (1) can be applied again.
Therefore, the the same sequence of external events will be
observed in Ai of both system r and r '.

From (1) and (2), it is clear that the sequence of external events
observed at Ai of r ' is exactly the same as that of r in any
situation. As Ai can be any arbitrary external arc, this means that
the sequence of external events which occur at every external arc is
the same for both systems.

As r and r' have the same number of corresponding external arcs,
it follows from the above result that the complete sets of external
events for both systems are the same.

Next let us look at the partial relation between the external events
of the two systems. Suppose that.& -< E; with E; = (Ai, vi) and E;
= (A;, v,~ in r. That is, E; occurs before E; and St=> S;, where Ai
E C(Si) and A; E C(S;). By definition, we have Si=>' S; in r',
where AiE C(Si) and A;E C(S;), because Si¢ S; (thus Si¢' S;).

Assuming E; occurs before Ei in r ', then we must have S; => Si in
both r' and r. That is, Si and S; are in a loop situation.
Consequently, there exists a total ordering between the external
events associated with these two control states, and it should be the
same in both r and r '. Thus the assumption that E; occurs before
Ei in r ' is a contradiction. Therefore we have also Ei occurs before
E; in r '. That is,.& -< E; is also in r '.

Finally, we show that the concurrent relations of both systems are
·. also the same as follows.

H Ei = (Ai, w) and. E; = (A;, 11,7) occur at the same time and Ai E
C(S), A; E C(S) in r, then we should have Ai E C(S), A; E C(S)
in r ', because the control mapping C is the same for both systems.
Consequently, E; and E; should also occur at the same time in r'
as they are associated with the same control state. Therefore, both
system have the same concurrent relation.

Since both system r and r' have the same external event set, the
same precedent relation, and the same concurrent relation, S(r) =
S(r '). That is, they are semantically equivalent to each other.

Proof 4.2: Let r and r' be control-invariant equivalent to each
other. That is, (a) r' is resulted from a vertex merger of Vi into V,·
of r, (b) both Vi and V; have the same operational definition and
port structure, and (c) their associated control states are in
sequential order.

73

Assume that the merger of Vi and V; changes the semantics of the
system. That is, S(r) I- S(r '), or (E, -<, :=:) I- (E ', -< ', x ').
Because the control structures of both systems are the same, the
temporal relationship between any two control states remain the
same for both systems.

As the number of arcs also remains the same after the merger
operation and they are controlled by the same control states, the
number of external events and their temporal relation remain the
same for both systems. That is, the precedent relation and
concurrent relation of both systems are the same. Therefore, the
only. possible difference between the two external event structures is
that some of the external events have different values.

For the external events that occur at an arc connected to an input
vertex, the same argument of Proof 4.1(1) can be used to prove that
both r and r ' have the same values passed in these external
events.

For the external arcs that are connected to an output port, let A =
(0, .l} with IE I(V.) and VeE Vo; {(A, Vi1), (A, v;.e), (A, Vis), ... }
~ E and occur in the listing order in r; and { (A, v;1), (A, v;.e), (A,
v;s), ... } ~ E' and occur in the listing order in r '.
Let also (A, Vik) and (A, v;k) occur when M(S)· = 1 in r and r'
respectively. We have Vik = 'V(0) in r and v;k = 'V(0) in r '.
HOE O(V) and Vis an input vertex in r, we have alsoO E O(V)
and V as an input vertex in r '. Since in both cases 'V(0) depends
on the environment, Vik = v;k.

H 0 E 0 (V), V is not an input vertex, and V f. Vi, we have
'V(O) := OP('V(I(V))), where OPE B(O) both in r and r'. By
definition 3.1, 'V(Ii) -iSi V(Oi) for each Ii E I(V). As both system
have Si=> S (see Proof 4.1), vile= Vik, provided that each 'V(Oi) for
both systems is the same.

HO E 0(V), Vis not an input vertex, and V = Vi in r, we have
'V(0) := OP('V(I(Vi))), where OPE B(0) in r and 'V(0) :=
OP('V(I(V.i))), where OPE B(O) in r'. Since (a) both Vi and V;
have the same operational definition and port structure; (b) 'V(Ii)
-iSi 'V(Oi) for each Ii E I(Vi) in r with 'V(Ii) -iSi 'V(Oi) for each Ii E
I(V;) in r '; and (c) both systems have Si => S; we have Vik = Vik,
provided that each 'V(Oi) for both systems is the same.

To show that 'V(0;) is the same for r and r ' in the above two
cases, we can use the same proof process again. The recursive
procedure will also converge to the situation where V is an input
vertex; then the same argument as from Proof 4.1(1) can be
applied. Therefore, the same sequence of external events will be
observed in A of both r and r '.
This result contradicts the assumption that some corresponding
events of r and r' are different. That is, the assumption must be
false. Therefore, r :: r '.

References

[1] McFarland, Mickeal C. and Parker, Alice C., An Abstract
Model of Behavior for Hardware Descriptions, IEEE Trans. on
Computers, Vol.32, No.7, 1983, pp.621-637

[2] Milner, R., A Calculus for Communicating Systems, Lecture
Note in Computer Science, No. 92, 1980

[3] Peng, Z., Synthesis of VLSI Systems with the CAMAD Design
Aid, Proc. 23rd ACM/IEEE Design Automation Conf., 1986,
pp.278-284

[4] Peng, Z., A Formal Methodology for Automated Synthesis of
VLSI Systems, Ph.D. Dissertation, Dept. of Computer and
Information Science, Linkoping University, No. 170, 1987

(5] Peterson, J., Petri Net Theory and the Modeling of Systems,
Prentice-hall, 1981

[6] Thomas, D., Hitchcock, C., Kowalski, T., Rajan, J., and
Walker, R., Automatic Data Path Synthesis, Computer, IEEE,
1983, pp.59-70

An Asynchronous Distributed Approach for the Simulation of
Behavior-Level Models on Parallel Processors

Sumit Ghosh Meng-Lin Yu

Abstract

AT&T Bell Laboratories Research
Holmdel, NJ 07733.

This paper presents an asynchronous distributed approach for the

simulation of behavior-level models representing complex digital and

VLSI components on a parallel processor. The underlying architec­

ture is a set of concurrent processors that share data through explicit

messages such as a hypercube (1]. The approach is implemented on

the Bell Labs hypercube (2] that consists of 64 concurrent processors

connected by a network of point-to-point communication channels in

the plan of a binary 6-cube and provides a protocol-based operating

system. A complex design is first partitioned and the behavior-level

models corresponding to the components of each partition are assigned

to a processor. A model determines, based on the input signal tran­

sitions at the input ports, whether it may be scheduled for execution

and, consequently, scheduling is distributed in the models. However,

within each processor, only one behavior model may execute at any

time instant. During execution of a behavior description, the signal

transitions at an output port may be determined based on the signal

values at all input ports defined up to t = ti such that every input

signal is is defined up to t = ti. In addition, the assertion of a signal

transition at an output port is deferred until the model description
may determine with certainty that no future input signals may prove

it inconsistent and require its deletion (3,4]. The behavior of digital

and VLSI components including complex timing are expressed through

the language constructs of c++ (5].

1 Introduction
The discipline of synchronous distributed simulation of digital designs

at the logic level on parallel processors has been addressed by the

Yorktown Simulation Engine [6], IBM Los Gatos Logic Simulation

Machine (7), and ZYCAD (8]. The subject of asynchronous distributed

simulation with a focus on queuing networks has been addressed in the

recent past by Misra (9], Chandy (10], Lamport (11] and Peacock (12].

The Daisy Megalogician (13] and ULTIMATE (14] machines address

the issues of parallelizing a simulation algorithm.

Behavior models of complex digital and VLSI devices are flexible

and provide a competitive means of system simulation (15] and results

of simulation are more comprehensive to the high-level architects as

opposed to the gate-level simulation results. Consequently, the impor­

tance of distributed simulation of such models on parallel processors is

obvious. The difference between this approach and the one proposed,

by Misra (9) may be expressed as follows.

Accurate representation of components' behavior including tim­

ing in the models require the representation of the unique high-to-low

(tp1a1) and low-to-high (tp1a1) propagatiOn delays for every component.

For an input signal transition at t = ti, the "predictability" condition

[9] would imply the generation of an output transition at t ,= ti + tphl

or t =ti+ tplh depending on the nature of the transition and its asser-

tion at the output port. The predictability condition is an important

aspect of the approach proposed by Misra (9]. Such an assertion may

cause incorrect simulation results as an input signal transition at a fu­

ture time t = t2 (t2 >ti) may, under certain circumstances, generate a
new output transition that requires the previous output transition to

be discarded (3,4]. The cause of such potentially unreliable simulation

results may be attributed to the anticipatory semantics of the behav­

ior description language and event driven simulation. In the approach

presented in this paper, the behavior description first determines with

certainty that an output transition may not be discarded and then

asserts it at the output port. In contrast to Chandy's (10) proposal

of simulating to a deadlock and then recovering from it, the approach

presented here may be characterized by an absence of deadlocks.

2 Asynchronous Distributed Simulation on Parallel
Processors
An asynchronous distributed approach for the simulation of behavior

models on a special parallel processor architecture - hypercube, is pre­

sented in this section. The potential advantage of this approach over

conventional sequential simulation on an uniprocessor is faster speed.

Execution of digital or VLSI hardware may be characterized by ex­

change of signals between the component modules that is constituted

by a sequence of signal transitions. A transition may be character­

ized by a logical value and assertion time. In conventional simulation,

the ordering of the signal transitions or events for correct results is

achieved through a global entity - time, and centralized control. In

this approach, the ordering is guaranteed by a sequence of messages

between the models and their proper interpretation and usage by each

of the behavior models. In this paper a message represents a signal

transition. The overall philosophy may be expressed as follows. Each

and every behavior model correctly interprets messages at the input

ports, determines the output signal transition based on the input sig­

nals, and asserts only correct output assignments at the output port

through messages. Consequently, for a given set of external signals

at the primary input ports, 'correct simulation results are guaranteed.

In addition, explicit identification of the clock lines are not required
and as transitions corresponding to every signal including clocks may

be expressed through messages and the output determined by the be­

havior description in a model solely based on the input transitions,

synchronous and asynchronous including self-timed designs may be

simulated ,in this approach.

First a given digital or VLSI design is partitioned into 63 or less

partitions corresponding to 63 processors and processor 0 is dedicated

to the task of asserting the external signal transitions at the primary

input ports of the design. For a modest-size design with less than 63

behavior models, each processor may be allocated a model for simula­

tion.

74

The task of scheduling behavior models for execution is distributed

in them and a model schedules itself when it determines that necessary

conditions, described subsequently, have been satisfied at the input

ports. Given n input ports fi,. .. ,ln of a component C and signal

transitions at the ports defined up to t = tl, .. ., t = tn, respectively, the

corresponding model may execute and determine the signal transition

at the output port that is based on the input signals defined up to

t = tx where tx is the minimum of {t1, .. ., tn}· Assuming a value

"d" for the propagation delay of the component, the output signal

transition may be defined at t = ix + d but its assertion is deferred

because of the possibility that a future input transition defined at

t > ix may cause an output transition that is inconsistent with the

previously generated transition at t = ix + d and require its deletion.

An output transition that is defined at t ::; ix and was generated

corresponding to a previous execution of the model may not be affected

by any future input transition defined at t > tx and the behavior model

may, with certainty, assert the transition at the output port. This

principle is referred to as the deferred assertion of output assignments.

The issue of generation, detection, and deletion of inconsistent output

assignments is detailed in [3,4] and is not presented here.

Consider the simulation of a circuit shown in Figure 1. Although

a simple circuit is chosen for simplicity of explanation, the distributed

approach applies equally to complex behavior models. The output

ports of components A and B are connected to the inputs of the two­

input AND gate C and the signal transitions generated by each of A

and B between t = 0 and t = 30 are shown in Figure 1. Assuming

models A and B are allocated arbitrarily to processors 2 and 3, A and

B are executed asynchronously and, as a result, the real time during

simulation at which the signal transitions are propagated from A to C

and B to C may not relate to each other. The individual transitions

from A to C - n 1 : 0 at t = 0, n 2 : 1 at t = 10, na: 0 at t = 20, and n 4 :

1 at t = 30 where t represents the simulation time are guaranteed to

be asserted in order that is represented in logical time [11] as shown

in Figure 2a. Figure 2b represents a similar ordering of the transitions

from B to C - m 1 : 1 at t = 0, m 2 : 0 at t = 20, and ma: 1 at t =
30 in logical time. For. the purpose of explanation, assume that the

ordering of the transitions in real time is represented by Figure 3. The

correctness of the distributed approach is invariant to the ordering of

the events in real time given that the logical ordering specified in each

of the Figures 2a and 2b is preserved. In Figure 3, assume m 1 , n 1 , n 2 ,

na, m2, ma, and n4 are asserted at Cat real times T = 8 1 , T = s 2 ,

T = 83, T = s4, T = 85, T = 85, and T = 87 respectively, where T

represents the progress of real time during simulation on the parallel

processor.

Corresponding to the assertion of an input transition at T = 8 1 ,

C is unable to schedule for execution as the signal transition at port

2 is yet to be specified for t = 0 where t represents the progress of

simulation time and corresponds to the hardware execution. At T =

s2, C schedules itself for execution and an output transition 11 : 0 at

t = 0 + 5 = 5 is determined. Given that the previous value of the

output was 0, 11 does not imply any new information and is ignored.

75

Corresponding to each of n2 and na at T = 83 and T = 84 respectively,

the behavior description of C is not executed as the signal transition

at port 2 has not been asserted beyond t = 0. At T = s5, signal

transitions have been specified at t = 20 at both ports 1 and 2 and C

is scheduled for execution. Output transitions 12: 1 at t = 10 + 16 =

26 and 13 : 0 at t = 20 + 5 = 25 are generated but 12 is observed to

be inconsistent with 13 and consequently discarded. Assertion of the

output transition 13 : 0 at t = 25 is deferred as the transitions at the

input port of C are defined at t = 20 and the model is yet unable to

conclude with certainty that 13 may not be discarded in the future. At

T = s6 , transition m3 is asserted at an input port of C but the input

signal at port 1 is yet undefined beyond t = 20. Consequently neither

C may be executed nor any decision regarding la be finalized. At T

= s7, input signals at ports 1 and 2 are both defined at t = 30 and

given that /3 has not yet been· shown inconsistent and 30 > 25, it may

be asserted, with certainty, at the output port of C and consequently

propagated to other components that are connected to the output

port of C. In addition, the behavior description of C is executed and

an output assignment 14 : 1 at t = 30 + 16 = 46 is determined and

stored within the model.

3 Blocking and Deadlock

The number of active gates during gate-level simulation has generally

been observed to be between 5% and 20% and may be assumed to hold

true for behavior level simulation. Such a low activity may cause the

following scenario during asynchronous distributed simulation. For

example, in Figure 1 assume component A executes a number of times

due to signal transitions at its input ports between t = Ons and t =

lOOOns (say) and asserts a number of transitions at port 1 of C. Also

assume B executes infrequently due to a limited set of transitions at

its input port between t = Ons and t = lOOOns with the consequence

that only one transition at t = 2ns (say) is asserted at port 2 of C. The

value of the signal at port 2 remains essentially unchanged between

= 2ns and t =lOOOns. Consequently, C may not execute beyond

t = 2ns and this situation constitutes blocking [12] with the source

being component B. In addition, other components, if any, that are

connected to the output port of C either directly or indirectly will

be blocked implying a possibility of very low overall activity during

simulation.

Blocking does not correspond to a physical process in hardware ex­

ecution and its cause may be explained as follows. Event driven simu­

lation with selective trace requires, for efficiency, that only changes in

the logical value of a signal be propagated. Consequently, the value of

the signal between two consecutive transitions e1 and e2 is identical

to the value indicated in el in an uniprocessor environment. Such an

assumption is dangerous in the distributed asynchronous simulation

on a parallel processor as a message to the input port of a component

may be delayed due to asynchrony and the behavior model may erro­

neously interpret the absence of message to imply "no change" in the

logical value at that port. Consequently, a component must execute

based on signals at input ports at t = t 1 such that transitions have

been asserted at all input ports at t ~ i 1 . Such a mechanism as well as

the principle of deferred assertion of output assignments may increase

the possibility of occurrence of blocking.

In the event that blocking occurs during simulation of a design, it is

first detected in the following manner. When the number of input as­

signments at an input port of a component that have not yet been used

to generate output events exceed a threshold, the component raises an

exception. As a consequence of the exception, the execution mode of

every processor is set to "exception-mode". The execution mode of the

processors is reset from exception-mode when the cause of blocking is

removed i.e., the number of outstanding input assignments at the in­

put port of the component falls below the threshold. The actual value

of the threshold is empirically determined and it influences the rel­

ative durations of normal- and exception-modes during a simulation.

The characteristics of the exception-mode may be expressed as follows.

Signal values are asserted at all input ports of components including

the primary input ports even when the logical values are unchanged

from their previous values. In addition, when a model is executed at t
= t1, either a previously generated correct signal transition that was

not yet asserted at the output port is propagated to the output or the

most recent logical value at the output is asserted at t = t 1 plus the

minimum of the high-to-low and low-to-high propagation delays of the

component.

Assume that the components A and B in Figure 1 are executed on

processor I of a parallel processor system while model C is executed on

another processor II of the system. Assume further that a significant

number of signal transitions are asserted at the input ports of A and

that the signals at the input ports of B are virtually unchanged in their

logical values. Consequently, A is executed frequently and B is exe­

cuted very infrequently and very few output transitions are asserted at

the input port 2 of C. The model C is unable to execute in the absence

of signal transitions at the input port 2 and the number of outstanding

input entries at the input port 1 of C may exceed the threshold. Con­

sequently, C raises an exception and the execution modes of all the

processors is set to exception-mode. In this mode, signal transitions

are asserted at the input ports of B even though they are unchanged

in their logical values. Consequently, B is executed more frequently

and a modest number of output transitions are asserted at the port

2 of C. The model C is executed and the outstanding entries at the

port 1 are utilized to generate output assignments and the cause of

blocking is removed.

The possibility of deadlocks during asynchronous distributed simu­

lation of designs with feedback loops and their resolution is addressed

in the remainder of this section. Consider simulation of a simple latch

shown in Figure 4.

Assume the presence of signal transitions defined between t = Ons

and t = lOOOns at the input ports 1 and k of components A and B

respectively. Neither A nor B may execute as explained subsequently.

A may schedule itself for execution when transitions are propagated

to its input port R from the output of B following execution of B.

However, B may not schedule itself for execution until A has executed

and asserted transitions at its input ports. Consequently, a deadlock

is achieved. This paper presents an approach that ensures absence

76

of deadlocks and implements the principle of deferred scheduling for

correctness of the results. A somewhat similar approach has been

proposed by Peacock (12].

Every component on a feedback arc is identified and the behav­

ior descriptions corresponding to such components are modified to

perform the following action. Given that tphl and tplh values are as­

sociated with every component, execution of a behavior model at t =
ti may generate an output transition at t = ti + tplh or t = ti +
tphl depending on the nature of the transition. Where tp1h < tphl and

the assertion time of the output transition is given by t = ti + tphl,

the transition is stored within the body of the model and its assertion

deferred until a later time. Instead, a timestamp with the assertion

time given by t = tl + tplh is generated and propagated through the

output port as the logical value of the signal at the output port will,

with certainty, remain unchanged up tot < t1 + tplh· Where the as­

sertion time of the output transition is given by t = ti + tplh, it may

be asserted at the output port immediately as no future transitions

at the input port beyond t = ti may cause the output transition to

be discarded. A limitation of this approach is that the efficiency of

simulation of circuits with feedback loops may be low when the com­

ponents constituting the feedback loop are distributed over 2 or more
processors and the frequency of the signal at the non feedback port is

considerably lower as compared to the sum of the propagation delays

of the components constituting the feedback loop.

4 Analysis of Performance of the Asynchronous
Distributed Approach

The asynchronous distributed simulation approach has been imple­

mented on the Bell Labs hypercube [2] that consists of 64 concurrent

processors and provides a protocol-based operating system. The be­

havior models of VLSI and digital components are described through

the c++ [5] language constructs.

In an experiment to estimate the performance of the asynchronous

distributed approach, a typical example design - two-bit adder, is con­

sidered where the individual gates are replaced by models whose exe­

cution times may be parametrically controlled. The model execution

times are varied from 0.34ms through :i.4ms, 34ms, 170ms, and 340ms

to 3.4 sec and are based on estimates of model sizes of AM2903, Intel

8086, Motorola 6809, and the VHDL benchmarks. First, in the ex­

periment the entire design is simulated on a single processor. Then,

the circuit is partitioned into two, four, eight, and sixteen parts and

simulated with 2, 4, 8, and 16 processors. For each case, performance

data is collected by varying the number of input vectors from 100 to

1000 and the model sizes from 0.34ms to 34sec.

The graphs in Figures 5a, 5b, and 5c present a logarithmic plot of

the CPU time versus the input vector size for varying model sizes for

the cases of 1, 4, and 8 processors. It may be observed from the graphs

that the performance of the algorithm is linear. The graphs in Figure

6 present a logarithmic plot of the CPU time versus the model size for

varying input vector sizes for a four processor simulation. The knees of

the individual plots corresponding to the model size of 0.34ms reflect

the dominance of message communication in the hypercube over model

computation for model sizes smaller than 0.34ms and the dominance

of the model computation over communication for model sizes larger

than 0.34ms. Figure 7 presents a plot of the speedup factor versus the

number of processors for three specific pairs of model and vector sizes.

The graph corresponding to the model size of 0.34ms and vector size

100 resembles a saturation curve and refelcts the dominance of the

message communication over model computation in the hypercube.

The other two graphs are both linear indicating that the speed up

factor increases linearly with increasing number of processors and,

consequently, the performance of the proposed approach is linear. The

maximum speedup factor for the example is observed to be 12 when

the design is partitioned and simulated with 16 processors. The slope

differences of the graphs also indicate that increasing CPU time is

spent in model computation as opposed to communication and other

overhead for increasing model sizes.

5 Conclusions

This paper has presented a distributed asynchronous approach for the

simulation of behavior models on parallel processors. In this approach,

a model determines based on the input signal transitions at the input

ports whether it may be scheduled for computation and, consequently,

scheduling is distributed in all the models. In addition, the principle

of deferred scheduling ensures that inconsistent output events are de­

tected and deleted with the consequence that correct signals are gener­

ated. The approach guarantees the absence of deadlocks and resolves

blocking by temporarily forcing the execution mode of all processors

to exception-mode wherein the cause of blocking is removed. The ap­

proach has been implemented on the Bell Labs hypercube and the data

obtained from the simulation of designs indicate that the performance

of the approach is linear.

References

[l] C. Seitz, "The Cosmic Cube," CACM, Jan 1985, pp.22-33.
[2] E. DeBenedictis, "Multiprocessor Programming with Distributed Vari­

ables," Proc. of the Conf. on Hypercube Multiprocessor, Aug 1985.
[3] D.C. Luckham, A. Stanculescu, Y. Huh, and S.Ghosh, "The Seman­

tics of Timing Constructs in Hardware Description Languages," Proc. of
the ICCD, Oct 1986, pp.10-14.

[4] S. Ghosh and M. Yu, "A Preemptive Scheduling Mechanism for Ac­
curate Behavioral Simulation of Digital Designs," Accepted for publication
in the IEEE Trans on Computers.

[5] The c++ Programming Language, B. Stroustrup, Addison Wesley
1986.

[6] M.M. Denneau, "The Yorktown Simulation Engine," Proc. of the
19th ACM/IEEE DA Conference, 1983, pp.55-59.

[7] J .K. Howard, etal, "Introduction to the IBM Los Gatos Logic Simu­
lation Engine," Proc of the ICCD, Oct 1983, pp.580-583.

[8] The ZYCAD Logic Evaluator: Product Description, ZYCAD Corpo­
ration, N. Roseville, Minnesota, 1983.

[9] J. Misra, "Distributed Discrete-Event Simulation," Computing Sur­
veys, Vol 18, No 1, March 1986, pp.39-65.

[to] K.M. Chandy, etal, "Distributed Deadlock Detection," ACM Trans­
actions on Computer Systems, Vol 1, No 2, May 1983, pp.144-156.

[11] Leslie Lamport, "Time, Clocks, and the Ordering of Events in a
Distributed System," CACM, Vol 21, No 7, 1978, pp. 559-565.

[12] J.K. Peacock, etal, "Distributed Simulation Using a Network of
Processors," Computer Networks, Vol 3, No 1, 1979, pp.44-56.

[13] Daisy Megalogician: Product Description, Daisy Systems, Mountain
View, 1984.

1 Acknowledgements: The authors wish to express their sincere appreciation to
Erik Debenedictis a.nd Boris Lobachevsky of AT&T Bell Labs

77

[14] M.E. Glazier, eta!, "ULTIMATE: A Hardware Logic Simulation
Engine," Proc. of the 20th ACM/IEEE DA Conference, 1984, pp. 336-342.

[15] M. Bloom, "Behavior Models Take the Pain Out of System Simula­
tion," Computer Design, 15 February 1987, pp. 38-46.

J. ,[l,[
A

B

Figure 1: AN EXAMPLE DESIGN.

J (b)

"'
"'

Figure 2: LOGICAL ORDERING OF EVENTS IN AN ASYNCHRONOUS
DISTRIBUTED SIMULATION.

ml

Figure 3: REAL TIME ORDERING OF EVENTS IN
AN ASYNCHRONOUS DISTRIBUTED SIMULATION

log(CPU)

lOOOOut

log{ CPU)

Figure 4: SIMULATION OF A CIRCUIT

WITH A FEEDBACK LOOP.

log(CPU)

~
~e)

~
~~

~ -----;fS~'lm~

~ MS=0 . .1.lmt

~~
~m1

100 1000 100 1000 100

log(vector si•e) log(vector 1i1e) !og(vector siu)

Figure 6: GRAPHS OF CPU TIME VS. VECTOR SIZE.
(a) Uniprocessor (b) Four processors (c) Eight processors

log(CPU)

11°::.·::~~~Iill
10•«~

0 .94rru 4m1 f~ml .940m•
log(modd sise)

Figure 6: GRAPHS OF CPU TIME

VS. MODEL SIZE FOR FOUR

PROCESSORS.
No. orproee.uora

1000

Figure 7: GRAPHS OF SPEED UP
VS. NUMBER OF PROCESSORS.

Ooerational Analysis on Hyper-Rectangulars
Teemu Kero/a Alfred Hartmann

Univ. of Helsinki MCC
Teollisuuskatu 23 P.O. Box 200195

SF-00510 Helsinki, Finland Austin, Texas 78720-0195

Hyper-rectangu/ars are a generalization of m-ary d-cube networks
{arbitrary radix hypercubes), where the width of the network can be
different in each dimension. This gives them configuration flexibil­
ity advantages over their single radix constrained subset. Hyper­
rectangulars are studied in four classes of configurations, one with
all nodes in any one dimensional line in the graph connected to the
same channel (bus), and the others with adjacent nodes connected
with dedicated links. The dedicated links may be unidirectional or
bidirectional, and the nodes can be connected linearly or as a toroid.
Given a uniform message rate from each node and uniform target­
ing to each node, simple formulae are derived for message traffic in
all cases. Simplicity of the formulae for most cases does not suffer
from the generalization to hyper-rectangular topology, and the
results are more broadly applicable. Beyond the operational
analysis, stochastic assumptions about the message rates are used to
compute overall message }atencies and queue lengths within the sys­
tem. The results have been verified by simulation.

1. Introduction

Interconnection networks are important in the design of computer
and communication systems and have been studied in great detail
over many decades. Prior to the rise of computers during the last
few decades, most of these studies centered on the telecommunica­
tions domain, with its large conglomeration of terminal equipment
and intermediate switching stations. Thus much of the early work
in this area focused on networks comprised of two node types­
terminal nodes and intermediate nodes. Messages originated at a
terminal node (the source node) and were routed to another termi­
nal node (the destination node) via the intermediate nodes. With
the rise of computers, and particularly with the contemporary focus
on parallel computing, more attention has been given to networks
that simply interconnect computing nodes without making any dis­
tinction between terminal nodes and intermediate nodes.

A computer interconnection network has an abstract representation
as a graph whose nodes are switching points and whose arcs are
communication links. Messages originate at a source node and pass
along one or more links to the destination node. If more than one
link is employed along a path between the source and destination
nodes, then intermediate nodes perform routing functions for the
messages along the way. If every node in the network can both
originate and absorb messages, as well as serve as intermediate
nodes, then we say the network is static, whereas if there are some
nodes that may only serve as intermediaries (i.e. for routing) then
we say the network is dynamic [9].

In the following we discuss a general class of static networks which
we call hyper-rectangulars; these are a direct generalization of the
more common hypercube networks.

Consider a connected graph of m d nodes with the following pro­
perties: (i) each node is designated by a d -digit radix-m number,
and (ii) there exists an arc between any two nodes whose numbers
differ by one in exactly one digit position, and which are equal in
all other digit positions. With these properties a network is called
an m -ary d -cube, or hypercube. If m =2 then it is an example of
a binary hypercube, of which there are a number of commercial
examples [2]. If d =2 or d =3 then it is typically called a two- or
a three-dimensional mesh structure.

Hypercubes are interesting because of the simple routings which are
possible (see below) and because of the range of simpler networks
which can be topologically mapped onto them [8]. For a given
number of nodes, M =m d, the optimal value for d, the hypercube
dimensionality, is a matter of debate [3]. At least one author has
proposed that lower dimensionality hypercubes, say d ~5, are
preferable to higher dimension hypercubes such as the binary

78

hypercube. While we take no position on the matter here, we note
that it may be desirable to have some ,flexibility in the choice of
M, the number of network nodes, regardless of the value of d
chosen. For example if we choose d =4 and M =256, then m =4
and the very next larger value of m , m =5, would multiply the
size, and presumably the cost, of the system by over 244%, to 625
nodes. It may also be desireable, perhaps for physical packaging
reasons, to add nodes to a system on only one or a few dimensions.
For these reasons we broaden our discourse from hypercubic to
hyper-rectangular structures.

If we generalize our d -digit node designators to a mixed radix
number system, where the node positions in the i th dimension,
0 ~ i ~ d -1, are in the range 0, .. ., m; -1, so that all dimensions are
not necessarily the same width, then the resulting network is a
hyper-rectangular network. (Our generalization differs from [1].)

Routing

There are several obvious routing algorithms for m -ary d -cubes,
and most of them also apply for hyper-rectangulars. We use the
standard left-to-right routing algorithm, which solves the routing
problem one dimension at a time, starting. from the lowest declared
dimension.

One could also turn this order around and do right-to-left routing,
or any fixed permutation of the dimension orders could be chosen
as long as it is consistent across all nodes. Even random selection of
a dimension is acceptable, the important factor being consistent
routing by all nodes so that the routing is uniform across the net­
work. If non-uniform routing is employed then it is possible for
expect.ed channel message rates to be affected by non-uniformities
in the routing strategy the analysis which follows may not apply.

Notation

def

d =number of dimensions, numbered 0, 1, .. ., d -1
def

m; = number of nodes in dimension i, numbered 0, 1, .. ., m;-1
def d-1

M = II m; = total number of nodes.
i=O

A standard m -ary d -cube is a special case when m; =m \-/i.
Nodes are labeled according to their d -dimensional position in the
structure:

def

n =(no, ni, ... 'nd-1), 0::::; ni < mi-1.

An index n for node n is
def d-1 d-1

n = n (n) = E nk * II m1 , O'.Sn <M
k=O i=k+l

and
def

Aw = message rate originating out from node n.

2. Assumptions

The throughput analysis below is based on the following assump­
tions. Later on we will introduce additional assumptions that are
required for computation of average queue lengths and response
times.

Assumption A: Each node sends messages to the network at the
same average rate,).:

Assumption B: For every message, the target node is selected
from the uniform distribution over all nodes:

Prob { node n is target } = ~

Assumption G: Message routing is done one dimension at a time,
in any order, as long as all nodes use the same
method, as discussed earlier. For example, the
standard left-to-right routing algorithm can be
used.

Assumption D: The system is assumed to be in a steady state.
This implies that flow balance [4] applies at
every server (node or link), i.e., the message rate
into a server equals the message rate out of it. It
also implies that the network is not saturated.

3. End-to-end Channels

In this section we assume that all nodes on any one dimensional
line are connected to the same channel. Technically the channel
could be implemented as a bus or an ethernet, for example. For

any dimension i, there are now

M
mo* m1 *···* mi-1 * mi+l *···* md-1 = -­

m;

channels. The channels in dimension i are named

in the order of increasing smallest node index in the channel. The
set of nodes on the channel c;k are denoted with the same symbol,
c;k; it will be clear from context whether c;k denotes a channel or
the nodes on it. We denote

r;k = avg. message rate (over time) through c;k, \-/k O::'Sk < _!:!__
ni;

Consider how the channels in dimension i are used. There are M
nodes in the whole system. Each node has message origination rate
A, and so

),.total =MA.= total message origination rate.

It is easy to show that if the hyper-rectangular inter-connection
network is implemented with end-to-end channels in each dimen­
sion and the assumptions A, B, and C apply, then, given any chan­
nel c;k , in dimension i, the message rate on it is

\-/i ,k O::'Si <d, O::'Sk <-M.
1ni

Every channel in any dimension i has the same traffic density, and
the average rate (over time) through any channel in any dimension
i is (m;-l)A..

Node Traffic

Let n be any node in the system. Consider the message rate into
n from an arbitrary adjacent channel c;k. The probability of a
message in c;k arriving from some node other than n is
(m;-1)/m;, and the probability of such a message being targeted to
n is l/(m;-1). So the overall message rate from c;k ton is

m;-1 1 1
~ rni -1 rik = -;;:-rik.

The total message rate into n, and because of Assumption D, the
total message rate through n is thus

d-1 1 d-1 m;-1 [1)
r-.. = ~ -r;k = ~ -- A. = d 1--::- A. < d A.,

i=O mi i=O mi m

where m is the harmonic mean,

1 -+
mo

d
1 +-­

md-1

In an end-to-end network, the message rate on each channel is rela­
tively large, (m;-l)A., but the node traffic rate is dependent only on
the number of dimensions in the network. For example, for m -ary
d -cubes the channel traffic is 0 (m), whereas the node traffic is

79

0 (d).

4. Point-to-Point Channels

Consider now a point-to-point inter-connection network, where
adjacent nodes (node addresses differing in one dimension by one)
are connected via some type of dedicated link. Adjacent links in
the same direction are thought to compose an end-to-end channel,
which is denoted as c;k , just as in the earlier case. There are m;

nodes on that channel,

nikf \-/j o::=;j ::=;on;-1,

and m;-1 links,

cikf \-/j 1:'.Sj :'.Sm;-1,

between them. The nodes and links are numbered as shown in Fig­
ure 1.

f:\ 1 f.'_J__ j-1 ~ j {,\ i+l_ "'.:::!~
~----~~----tj

Figure 1: Node and link indexes across an end-to-end channel

Consider any end-to-end channel, c;k, in a hyper-rectangular net­
work. If Assumptions A, B, and C apply, then all possible paths
through c;k are equally likely, each with probability

1
m;(m;-1) ·

If c;k is any channel in dimension i in a hyper-rectangular net­
work, and cikf is any link on it, l:'.Sj:'.Sm;-1, and if Assumptions
A, B, and C apply, then

def 2j (m;-j)
Pi I ik = P { cikf used I c;k used} = () , 1:::; j :::; m; -1.

mi mi-1

Now, if a hyper-rectangular inter-connection network is imple­
mented with point-to-point links, and the assumptions A, B, and C
apply, then the message rate on each link, cikf , is

r;k;=2j[1-_j_] A.,\-/i,k,j O::'Si<d, O::'Sk<J:i., l::'Si<m;.
mi mi

The above equation proves that, for example, the message rate on
any link in the dimension i depends only on its distance from the
dimension i edge in the rectangular and not on distances from

other edges of the network.
The message rate for any dimension i link is largest in the middle
of a channel, i.e., when the distance from the dimension i edge is
the largest. If the busiest link onto dimension i is denoted as
cikfa.x, then the corresponding message rate on it is

\

'ri,k,(m,l/2 = "~i A, if m; is even

[m; 1]),. if m; is odd.
r;,k,(m,±1)/2 = 2 - Zm; '

r;,kjax

Node Traffic
Let n be any node. The traffic into n, r.,j", consists of two parts:
traffic destined for n, ri"'. and traffic passing through n Oil its

way elsewhere, r.,jhru, or

Similarly the traffic out of n, r1t"1, consists of traffic originating at
n' r.,;°'ig, plus the same through traffic, r.,/h'", i.e.

In steady state operation (Assumption D) the rates must have the
obvious balance:

def
rrt = r.Jn = rnout; r,/est = ,.,trig.

We call rw the message rate at node rt.

It can be shown that if the hyper-rectangular interconnection net­
work is implemented with point-to-point (non-toroidal) links, and if
Assumptions A, B, C, and D apply, then the nodal message rate,
rn', for any node n is bounded by

d-1 m;-1 [1 l :>.. d-1 >..d ->-I;--= >..d 1-- < r~ <-Em·= -m
i =0 mi in - n 2 i =0 I 2 '

where m is the previously defined harmonic mean and m is the
arithmetic mean,

1 d-1

m = dL;m;.
i=O

For low-dimension hyper-rectangulars this means rw can vary
between approximately d), and d: >., a very broad range. This

makes homogeneous nodes wasteful due to the tapering loads near
the perimeter links. This can be corrected by going to toroidal
point-to-point constructions which we consider in a moment.

For binary hypercubes, where m =2 and d =logzM, the expected
value for rw is exactly >..d /2 and all nodes are equally loaded, since
a bidirectional end-to-end channel with only two nodes on it is
equivalent to a circular (toroidal) channel organization.

If we replace each bi-directional link, Cikf , in the hyper-rectangular
with two uni-directional links, cikf and c;k;, then the link message
rates are halved,

>..,'i/i,k,j O~i<d, O~k<.3!_, l~j<m,
m,

because the message rate on any link is the same in each direction.
However, the node message rates remain the same,

d-1

rrt = E rrti·
i=O '

5. Toroids

Suppose now, that, for each dimension i, for each node row in that
dimension, there is an additional link from the last node (m;-1) to
the first node (0) in that row. Further assume that each '!ink is
now uni-directional, with messages routed only in the index order
0->l-+ · · · -+m;-1-+0. Such circular structures are generally
called toroids, and we call the ones described here as uni­
directional circular hyper-rectangulars. All the assumptions stated
before (Assumptions A, B, C, and D) still apply.

We now derive the message throughput on individual links. Select
any dimension i channel c;k , and consider the message rate
through the links, cikj, on it. The total message rate through all of
the dimension i channels is

total - m .. - 1
r; ---M :>...

m;

Because of the homogeneous structure of the toroid, all channels on
dimension i are equally busy, and there are M /m; channels for
dimension i. Thus, the total message rate on c;k , r;k , is

r·total

r·k = -'--A= (m;-1) :>...
' M/m;

Let j be any link on c;k . There are m; (m;-1) different routes

through c;k , and

m;-1 + m;-2 + · · · + 2 + 1

of them go through j . So, the probability that a message using c;k

goes through c;kj , Pi I ik , is
mi-1

Bi
j=I

P1 I ik = m;(m;-1) 2

Now, the message rate on the given link c;kf is

= m;-1 '.
rikf = r;k * Pi I ik 2 "

Let n be any node on any channel c;k in dimension i, and let

def
j,. =dimension i link leading to n, 'di 0 ~ i < d.

The message rate through n is the sum of the message rates on all

links leading to n :
d-1 >- d-1 >..d

rw =I; r;kJ, = -L:;(m;-1) = -(m-1).
i=O 2 i=O 2

Bi-Directional Toroids

Another possibility is to use bi-directional links to connect t;1e
nodes in the hyper-rectangular toroid. Assumption C requires a
balanced routing algorithm. The deductions below are made based
on the assumption that, if two paths of equal lengths exist from
node n 1 to node n 2, then either one of them is selected with proba­
bility 1/2. If some other balanced method is selected, similar
deductions can still be made.

Let j be any link, between nodes n 1 and n z, on any channel C;k •

The message rate through it is now

(m1 -l)>-

~>-
4

m· 2-l
-'-->-

4m;

if m; =2,

if m; even, m; >2,

if m; odd, m; >2.

The message rate through any node n is again half of the message
rates of adjacent links,

r·k· d-1 [
rn = ~ -'-'- = E riki1

cikj adjacent 2 i =O
to ;t

where j; is an index for a dimension i link adjacent to n' and

80

ux - { 1 - 0
if X is true,
otherwise.

6. Queue Lengths and Response Times

The total hyper-rectangular network has an arrival rate of MA.
We have already derived the overall message rates on individual
nodes and links. To obtain the queue lengths and response times
we need more information of the system. We need the processing
speed for every device (node, bus, or link) in the system. Also for
the analytic solution to be tractable, i.e.; for the network to be
separable [7], we need two additional assumptions:

Assumption E: The system can be defined as a sequence of
events that occur at distinct times.

Assumption F: The completion rate from a server does not
depend on the load at other servers.

One additional assumption is needed for a simple solution to be
available:

Assumption G: The completion rate from a busy server must
not depend on the queue length for that
server.

We also need some new notation. Let
def

Si =average service time at device i per message (sec/msg).

For further analysis, we transform the message rates into visit
ratios, which define the average number of times that any message
routed through the system passes through a device. Given the
actual message rate, r;, through a device (here a node, bus, or a
link), and the total message rate arriving to (originating at) the
system, M>.., the corresponding visit ratio at device (server) i is

r;
V; = M>.. (visits/msg).

We can now use well known operational analysis theory for open
queueing networks ([7]) and compute the queue lengths and
response times for every device i in the system.

The average work demand per message for device i is

D; = V; Si (sec/msg),

and the processing capacity of the system is determined by the
device with the largest demand,

Dmax =max Di.
i

The maximum system throughput, i.e., the network capacity, is

0=-1-
Dmax'

and thus, we must have

M>.. < _1_
- Dmax'

i.e., \ < 1
"-~' ma.x

to avoid saturating the network. If >.. > 1/ MD max> Assumption D is
violated, the system becomes saturated, and queue lengths and
response times "explode" to infinity.

In general, to compute the total average system response time, we
need to consider all nodes, busses, and/or links. However, node
delays can often be ignored in practice, because they are often
included in the link service times.

If two uni-directional links replaced each bi-directional link, and
the maximum message rate for the uni-directional link were half of
that for bi-directional links, then the maximum visit ratio would be
half of that before, but the average demand would be the same.
Thus, all other performance measures given above would be the
same as they were for the network with bi-directional links.

One-Dimensional End-to-End Channels

For hyper-rectangulars with end-to-end channels, the response
times and queue lengths can be expressed in a more condensed
form because

m;-1 M v.,, = -M for all -- channels cik in dimension i, \-/i O::Si < d.
mi

The average total channel residence time (time spent in all

channels per average message) is
d-1

Rlink1 = = E
i=O

mi

Similarly, for each node, n,

81

v,.. = .2:.. I: [1 - -1] = _i_ [1--:1:-J
Mi~o m; M m

and the average total node residence time is

R nod" = L;R,.. = MR,.. ..
The average total message latency is R link• + R nodes .

Uni-Directional Toroids

For uni-directional toroids and for any link c;k; on any channel cik

in dimension i 1

d-1

L:-----
i~o ___ 2 ____ A

(mi-l)Slink

For each node n,
1 d-1 d

v,.. = 2M L;(mi-1) = 2M(m-1),
t=O

and

R nodeB

------->..
so.de d (m-1)

The average total response time is R Unk• + Rn.des . Ignoring
R nodes for the moment and taking the network response time to be
R link• we can get a simplified form for the case of m -ary d -cubes
(arbitrary radix hypercubes):

m-1
--d

2
_1 __ m-1)..
stink 2

We can recognize the numerator as 'h, the average number of link
traversals (hops) for a message in the network [3], the first term in
the denominator as clink, the single link capacity in messages per
second, and the second term in the denominator as r link , the single
link traffic rate (Tiki is the same everywhere in a uni-directional
toroidal hypercube under our assumptions). Thus

h
Rl~~~cube = -.,,.-.,--,.,-,-

Clink~ rlink 1

indicating that the network response time (exclusive of node

service) in a hypercube is just the average message distance divided
by the idle link capacity (in messages per second). This result is
reported by earlier authors [5, p.272].

Note that the expression for the average number of hops (link
traversals) per message, h used above, is easily derivable as

_def d(m-1)
h = E[link traversals] = .L: .v.,,1 = --2-- ·

I ,k ,J

Note also that we may be justified in ignoring R n.d" in our
analysis if the node is implemented so that traffic on all d dimen­
sions is handled in parallel within the node. The above expression
for R,.. assumes that a node acts as a single server device. If, in
fact, all of a node's ports to the network operate in parallel, then
the node service time, s•ode can just be treated as part of the link
service time, slink, and R nodes then becomes zero.

Bi-Directional Toroids
For bi-directional toroids and for any link cikf on any channel c;k

in dimension i ,

and

m;

4M

m12-1

4Mm;

if m1 =2,

if m1 even, m; >2,

d-1 [m-=2] v ... = L; V,,. * (1 - 0.5 * Id ') ,
i=O 1

where cikJ is any link on any channel c;k in dimension i . Overall
message latencies and queue lengths are then computed with the
standard formulae.

7. Conclusions

We have derived simple formulae for channel and link throughput
in end-to-end and point-to-point networks under generally applica­
ble assumptions. The analytical link and node throughputs are
summarized in Table 1.

Queueing delays within the network will slow down any individual
message, but they do not affect the message rates. Queueing
behavior cannot be anticipated with operational analysis alone; sto­
chastic assumptions are needed. For separable open networks we
have relatively simple closed form solutions for queue lengths and
response times in the system.

An important part of the analysis was the decision to include the
sending node as a possible target node, so that every node was
equally likely to receive every message. This simplified the analysis
in many places. If one rules out messages to the sending node, and
denotes . the actual message rate out from each node as /3, then all
the formulae given earlier apply for

>-=M+l/3 M .

As a special case, we can use the formulae described earlier to
derive link and node throughput for m-ary cl-cubes and hypercubes.
The derived formulae are given in Tables 2 and 3. Also, the
response times and device queue lengths reduce to simpler forms
for these special cases. For example, when m; =:2, the link queue
lengths and link residence times become

glink >.
Q.,, = l- glink>. and Rlink• d

Remark: This paper is a shortened version of a technical report [6],
which contains proofs for all the results presented here in addition
to examples, supporting simulation results, and additional discus­
sion.

Acknowledgement8: Herb Schwetman gave constructive criticism
and we also thank Bill Alexander and Bonnie Kerola for their help­
ful comments.

List of References

[l] Bhuyan, L.M., D.P. Agrawal, "Generalized Hypercube and Hyperbus
Structures for a Computer Network", IEEE Trans. on Computers, C-33, 4
(April 1984), pp. 323-333.

[2] Bond, J., "Parallel-Processing Concepts Finally Come Together in Real
Systems", Computer Design, June 1, 1987, pp. 51-74.

[3] Dally, W.J., "Wire-Efficient VLSI Multiprocessor Communication Net­
.works", Proc. 1987 Stanford Con!. on Advanced Research in VLSI, pp.
391-415, 1987.

[4] Denning, P.J., J.P. Buzen, "The Operational Analysis of Queueing Net­
work Models", ACM Computing Surveys, 10, 3 (September 1978), pp. 225-
261:

82

[5] P. Kermani and L. Kleinrock, "Virtual cut-through: A new computer
communication switching technique," Computer Networks, 3 (1979), pp.
267-286.

[6] T. Kerola and A. Hartmann, "Operational Analysis on Hyper­
Rectangulars," MCC Technical Report PP-199-87, 22 p.

[7] Lazowska, E.D., J. Zahorjan, G.S. Graham, KC. Sevcik, Quantitative
System Performance, Prentice-Hall, Ne~ Jer;ey, 1984.

[8] Wu, A.Y., "Embedding of Tree Networks into Hypercubes", J. of
Parallel and Distr. Comp., 2 (1985), pp. 238-249.

[9] Wu, C.-1., T.-y. Feng, "Chapter 1: Introduction", Tutorial: Intercon­
nection Networks for Parallel and Distributed Processing, pp. 1-3. IEEE
Computer Society Press, 1984. . ·

Table 1: Hyper-Rectangular Throughput

Message rate out from each node: >.
m0-m 1- • • • -m,_1 Hyper-Rectangular
j is link index from edge

Connection Topology Link Rate Node Rate

one-dimensional bus (m1-1) >. [1- ~) d >.

node-to-node 2;[1- ~. l >. 1
L: 2

rikj
Cj}j

a.dja.cent
ton'

uni-dir. toroid
m1 -1 >.

2
m-1 d>.

2

bi-dir. toroid ..'.?2._ >. m d>.
4 4

Table 2: Throughput in m-ary cl-cubes

Message rate out from each node: >. miE!E!!m M=m 4

Connection Topology Link Rate Node Rate

one-dimensional bus (m-1)>. [1- ~)d>.
node-to-node ~>. <d~>.

2 - 2

uni-dir. toroid m-1 >.
2

dm-1 >.
2

bi-dir. toroid ~>.
4

d~>.
4

Table 3: Throughput in binary hypercubes

Message rate out from each node: >. m;=2 M=2 4

Connection Topology Link Rate Node Rate

one-dimensional bus >. .!!..>,
2

node-to-node >. .!!._ >.
2

uni-dir. toroid
>. .!!._ >. -
2 4

bi-dir. toroid >. .!!._ >.
2

DISTRIBUTED TERMINATION ON A MESH

Jianjian Song and Larry Kinney

Department of Electrical Engineering
University of Minnesota
Minneapolis, MN 55455

Abstract

A method for distributed termination detection is proposed that naturally
fits the structure of an array of mesh-connected processing elements. Two
sufficient conditions are given which guarantee that any one of the
processing elements may detect the termination of computation on the
mesh. The method is fully distributed, symmetric, asynchronous, and
efficient in that it combines termination detection with the computation
process and it does not require any global information transmission until
termination of computations has been detected. The method was originated
for use with parallel processing for finite element analysis on a mesh of
processing elements, but it is applicable to any asynchronous iterative
computations on the mesh. The method can also be used for termination
detection when execution of successive tasks are overlapped on the mesh.

1 . Introduction

Computation of the finite element analysis can be distributed on an array
of processing elements (PEs). The PEs are usually connected as a mesh
since a mesh is a good match to the grid patterns used in the finite
element analysis. The computation can be carried out by either direct or
iterative solution techniques. Iterative solutions have been found more
suitable for utilizing the power of parallel processing [1] [2]. Iterative
methods can be either synchronous or asynchronous. Asynchronous
iterations have been attracting more attention [3] [4]. Being asynchronous,
the computation has all the attributes of other distributed computations: a
PE is either active in doing its computation or passive when is is done
with its computation; passive PEs may be activated again by messages
from active PEs; and the pattern of message transmission can not be
decided a priori. One of the challenges in using iterative solutions is to
determine when the computation is completed. The solution to this
problem can be a centralized or distributed one. An ideal solution should
have the following properties:

(1) It does not interfere with the computation process (transparency).
(2) It does not require dedicated communication channels.
(3) It does not use a predesignated processor (host, root etc.) that

observes the states of all the PEs, i.e., the solution should be
fully distributed and symmetric.

(4) Message transmission may be delayed in communication
channels, i.e., the transmission is not instantaneous.

In [1], [2] and [4] termination detection was solved by appealing to a
global synchronization mechanism. When a PE is finished with its
current computation, it will report its state to a predesignated PE (called
the host or root). The host collects the states of all the PEs and decides if
the computation is terminated. Global termination detection is hard to
implement in case of asynchronous iteration, since a passive PE may be
activated again by a message from other PEs and this change in PE status
must be made known to the host. The host may never know the real
status of the computation due to communication delays unless message
transmission is assumed instantaneous. Global synchronization may also
take much extra time since global communication is usually slower than
local communication; hence, PEs must wait for synchronization.

Techniques for distributed termination must be used when global
synchronization is not a good choice. The problem of distributed
termination has been discussed in the literature [5] [6] [7] [8] [9]. The
previous approaches have the following characteristics.

(1) A dedicated communication network, CN, is assumed for the
purpose of termination detection (tree in [5] [9]; ring in [6] [7]).

83

(2) Termination detection is a continuous, trial and error process. A
detecting probe (tokens, control message) or detecting wave is
initiated and circulated periodically in CN until the probe has
detected the system termination.

(3) All algorithms, except the one in [7], use a predesignated
processor to detect tf(rmination. While the algorithm in [7] is
distributed and symmetric in the sense that any processor may
detect termination, it uses a common clock which is not
desirable in practice.

There are drawbacks in these approaches. First, CN can not be used for
transmitting a computation message (data message). Otherwise, the speed
of termination detection and computation would both be reduced. There
must be another network for computation messages; thus, CN adds
hardware and complexity to a parallel computer system. The second
problem with these methods is the large number of messages travelling in
CN. Some messages that will eventually be destroyed must pass through
several processors even though they have become obsolete at the
beginning of the journey [7]. The problems are inherent in the ring
structure and the assumption that data messages can be passed between
any processor pair.

The situation is different in a mesh-connected array of processors.
Communication in the mesh is through nearest-neighbor connections
which are fixed and local. Only local messages between adjacent PEs
exist. Taking advantage of the mesh structure, a token (or probe) passing
method is proposed for distributed termination of computation on a
rectangular mesh. When finished with its computation, each PE sends its
termination state to its neighbor PEs. One token from each side of the
rectangular mesh is initiated once. The tokens will be travelling in the
mesh according to rules derived below. Their traces and positions will
indicate the computation status of the mesh. One or more of the PEs will
eventually be able to detect termination of the computation by examining
its own record of the token arrival, its state, and its neighbor's states. The
method is fully distributed and symmetric in the sense that no PE has
more responsibility than the others [7].

The following paragraphs describe the proposed method. Some
assumptions about the rectangular mesh and PEs as well as some
definitions are given in Section 2. The case where there is no data
message (values for actual computation) is considered in Sec. 3. In this
case a PE will keep passive once it is in passive state, which makes it
easier to detect termination. The method is improved further in Section 4
so that it works even if data messages exist. Correctness proofs, time
analysis and discussions are given in Sections 5 and 6.

2 . Assumptions and Definitions

The definitions of array, states, arrows, tokens, data messages and control
messages are given in this section. Some assumptions about the mesh are
also listed.

As shown in Fig. l, the array consists of mesh-connected processing
elements (PEs) with each PE connected to its four nearest neighbors. A
PE may be in one of two states: "active" and "passive". A PE is active
when it is contributing to the computation and passive when it is finished
with its assigned computation. The two states are indicated by circles and
black dots, respectively. Token "North passive" indicates that all PEs
north of (not including) the west-east line where the token resides have
been passive. The definitions of the other tokens are similar. The tokens

• Iii El
passive PE South passive North passive

0 DI []

active PE West passive East passive

Fig. 1 Structure and notations.

are represented by black-and-white squares. They are messengers travelling
in the mesh to collect global information about the state of the mesh.
Totally, there are four tokens, one for each side of the mesh. The state of
passiveness of a PE can be passed to other PEs. This message is
represented by arrows pointing from the sender PE to the receiver PE. An
arrow is a passive state messenger. Messages are grouped under data and
control. Data messages are those that carry values used in computation.
Control messages carry information on the state of a PE, e.g., an arrow or
a token. A passive PE may be activated again by data messages from
other PEs. A passive PE may communicate with other PEs by control
messages to decide the status of the mesh as a whole.

Computation is completed when all PEs are passive and there is no data
message in any communication channel. Detection of this state by one of
the PEs is called the distributed termination problem. -

One assumption is that message transmission is instantaneous, which
was an assumption made in all previous papers on distributed termination
known to us. Another assumption is that there is a continuous
communication process that handles messages between PEs no matter
whether computation is in process or not.

To simplify the discussion, some combinations of the arrow reception
patterns are named as shown below.

_J +
Single Normal Collision Cross

Single and Collision are the most important patterns.

There are two ways in which tokens may be passed. One is called shift­
pass and the other cross-pass as illustrated below:

A
I .-o ...

shift-pass cross-pass

For example, consider the south passive token which tends to travel to the
north in the mesh. Assume that the token is impending on PE A. Shift­
pass simply shifts the token along the horizontal line through PE A. This
movement is caused by the single or normal reception patterns. Cross­
pass sends the token across its horizontal line; this movement is caused
by the colilsion reception pattern that is east-west oriented.

84

3. A Distributed Termination Solution In the
Absence of Data Messages

We describe a method for detecting, in distributed fashion, termination of
computations without a data message on the mesh. The absence of data
messages makes the detection problem simpler since a PE can not be
activated again once it is passive. (This is removed later in Section 4 by
a modification of the method). The method is based on three sets of rules:
state transition rules, arrow passing rules, and token passing rules. A PE
will maintain a record of the arrival of tokens and arrows from its
neighbors. The principle behind the method is that a token will never
cross a line of PEs if any PE on this line has never been passive. A
tokens location indicates that PEs on lines passed by the token have been
passive. The rules are listed below.

State Transition Rules:

(0) Boundary PEs are always passive and ready to pass control
messages (the arrows and tokens).

(1) A PE is activated by initialization or program loading.
(2) A PE becomes passive if it is finished with the assigned

computation.

Arrow Passing Rules·

An active PE does not pass any arrow. A passive PE does not pass arrows
before receiving arrows from its neighbors.

(0) A boundary PE passes its arrow to all its neighbors as soon as
the computation starts.

(1) A PE passes its own arrows in the opposite directions of the
arrows it has received. There may be two cases as depicted
below.

Case 1: Single state

arrow received
-+I;---· arrow passed

Case 2: Normal state

arrows received

arrows passed

(2) A PE passes its arrow to both neighbors if it receives two
opposite arrows (Collision) from its neighbors.

Rule (0) assures starting the termination detection process. Rule (1)
makes the state of passiveness propagate along a line. And Rule (2) is to
send the line passiveness information to all the PEs on the same line.
This information will be needed to decide whether a token should be cross­
passed.

Token Passing Rules:

There are four different tokens residing initially on the four boundaries of
the mesh. The initial locations of the tokens are not important as long as
they are on their corresponding boundary sides. A passive PE may deliver
tokens to other PEs when it receives tokens. The following is a list of
rules for token passing.

(0) Boundary PEs cross-pass their tokens as soon as the computation
starts.

(1) A PE in Single or Normal states shift-passes the tokens it has
received in the direction of its arrow.

(2) A PE in Collision or Cross states cross-passes the tokens it
receives.

(3) A boundary PE keeps any tokens it has received.

The arrival of the tokens will be recorded by PEs that they have visited in
order to detect termination of the computation. Termination may be
detected by any PE. The following are two sufficient terminating
conditions :

CONDITTON 1 Any PE can declare that the computation is terminated
when the PE has a record of the arrival of all four tokens.
The tokens may or may not be with the PE at the time
of the decision.

CONDITION 2 A boundary PE can declare that the computation is
terminated when it receives one token since this token
must be from the side opposite to the PE's side.

The correctness of the conditions can be explained using the definitions of
the tokens. There are four sides on a rectangular mesh. Each token
indicates that its corresponding side is passive. The whole mesh is
obviously passive once all four tokens meet at one PE, i.e., all four sides
are passive. The first condition will occur if there is one and only one
Cross on any line of the mesh and there is no Collision. The second
condition will occur when there is no Cross or more than one Cross on
any lines of the mesh.

An alternative technique is to use one token and let it travel from one side
to the opposite side of the mesh. This will be sufficient for termination
detection according to Condition 2. Detection time may be shorter if four
tokens and Condition 1 are used.

4 . A Solution with the Existence of Data Messages

When data messages exist, a passive PE may be activated by data
messages from another PE. One fact is that a PE that sends a data
message destroys the arrow from a passive PE that will receive the
message. Termination can also be decided when data messages are present
if another state transition rule is added:

State Transition Rule (3):

(3) If a PE sends a data message to a passive PE, the sender may not
declare itself passive until the receiver becomes passive again.

This rule guarantees that the token indicating that the receiver was passive
will never be cross-passed to the next level by the sender or any PEs on
the same line as the sender unless the receiver becomes passive again.
Now we can use all the rules and the two sufficient conditions listed in
Section 3 to detect termination when data messages exist.

5 . Correctness Proof and Primitive Time Analysis

We prove that Condition 1 and 2 in Section 3 are sufficient even in the
presence of data messages. Proof of the first condition reads as follows:
assume that a passive PE receives four tokens while the system is not
terminated. There must exist one originally active PE (i.e., it has never
been passive before) according to the state transition rule (3) specified in
Section 4. But then the tokens should not have crossed the two Jines on
which this PE resides, which implies that no PE could have received four
tokens. This contradicts the assumption that the passive PE has received
four tokens. Proof of Condition 2 follows the same path. After any token
has crossed the mesh from one side to the opposite side, there would exist
no originally active PEs, which implies that every PE has been passive
and the system is terminated.

Consider a square mesh of n PEs (Vn on each side). Assuming that the
, system is already terminated, the worst time for the algorithm to detect
the termination is O(n), which is the time for one token to travel through
a ring that connects every PE. The best time is O(Vn) (order of square root
of n) which is the time for a token to travel across the mesh or four

85

tokens meet at the center of the mesh.The above time estimates represent
the worst case situation. Since the token passing is performed in parallel
with actual computations, the execution of our termination algorithm
may be completely overlapped with actual computations so that
termination detection could be completed as soon as computation is over.
In comparison, the algorithm developed in [7] will always take O(n) time
where n is the number of PEs on a ring since it is the last token (the
counter in the paper) that starts the terminating wave.

6. Discussion

The proposed method discussed in this paper has all the merits that the
other methods for distributed termination detection claim:
asynchronousness, distributiveness, symmetry, etc. It is also more
efficient, faster and better than the ring-based algorithms. It is efficient
since no additional communication network is needed; messages are only
passed the shortest distance possible when they are needed, and global
communication is not required until the computation terminates. It is
faster since messages may be travelling in parallel with each other unlike
sequential message passing in the ring approach. It is better since the
mesh structure is fully utilized.

The application of the method is not limited to the finite element
analysis. It is useful for any distributed termination detection on an array
of mesh-connected processing elements. An immediate example is to
solve nonlinear partial differential equations, where iterative solutions
techniques are essential (10] (11]. The method is also applicable to multi­
task cases. Tokens, control and data messages may be colored to represent
different tasks so that a few finite element analysis computations may be
running simultaneously. Another application of the algorithm could be to
the solutions of three-dimensional partial differential equations.

References

[1] R. Morison and S. Otto, " The Scattered Decomposition for Finite
Elements", Technical Report c3p 286, Caltech Concurrent
Computation Group, Caltech, Pasadena, CA 91125, May 1985,
ppl-22

[2] David D. Loendorf, Advanced Computer Architecture for
Engineering Analysis, PhD Dissertation, The University of
Michigan, 1983 ,

[3] Gerard M. Baudet, "Asynchronous Iterative Methods for
Multiprocessors", Journal of the ACM, Vol 25 No. 2, April 1978,
pp226-244.

(4] Daniel A. Reed and Merrell L. Patrick, "A Model of Asynchronous
Iterative Algorithms for Solving large, Sparse, Linear Systems:",
Proceedings, 13th International Conference on Parallel Processing,
1984, pp402-409.

[5] Edsger W. Dijkstra and C. S. Scholten, "Termination Detection for
Diffusing Computations", Information. Processing Letters 11-1,
1980, ppl-4.

[6] Edsger W. Dijkstra, W.HJ. Feijen and AJ .M. van Gasteren,
" Derivation of a Termination Detection Algorithm for Distributed
Computations", Information Processing Letters 16, 1983,
pp217-219

(7] S.P. Rana, " A Distributed Solution of the Distributed Termination
Problem", Information Processing Letters 17, 1983, pp43-46

[8] Rodney W. Topor, "Termination Detection for Distributed
Computations", Information Processing Letters 18, 1984, pp33-36.

[9] Ron Cytron, " Useful Parallelism in a Multiprocessing
Environment", Proceedings, 14th Inter. Conference on Parallel
Processing, Aug. 1985, pp450-457.

(10] John R. Rice, "Parallel Methods for Partial Differential Equations",
The Characteristics of Parallel Algorithms, The MIT Press, 1987,
pp209-231.

(11] Garrett Birkhoff and Robert E. Lynch, Numerical Solution of
Elliptic Problems, SIAM Philadelphia 1984.

ON ENHANCING HYPERCUBE MUL Tl PROCESSORS t

Abdol-Hossein Esfahanian, 1 Lionel M. Ni, I;l Bruce E. Sagan3

1 Department of Computer Science

Michigan State University
East Lansing, MI 48824

2Division of Mathematics and Computer Science

Argonne National Laboratory
Argonne, IL 60439

3Department of Mathematics

Michigan State University
East Lansing, MI 48824

ABSTRACT
We show that by exchanging any two independent edges in any

shortest cycle of the n-cube (n ~ 3), its diameter decreases by one unit.
This leads us to define a new class of n-regular graphs, denoted TQn, with
zn vertices and diameter n - l, which has the (n-1)-cube as subgraph.
Other properties of TQn such as connectivity and the lengths of the dis­
joints paths are also investigated. Moreover, we show that the complete
binary tree on zn - 1 vertices, which is not a subgraph of the n-cube, is a
subgraph of TQn. Finally, we discuss how these results can be used to
enhance existing hypercube multiprocessors.

1. INTRODUCTION
The possibility of interconnecting a number of processors together to

solve very large problems in scientific computation has been extensively
considered in the past [HwBr84]. Distributed-memory multiprocessor sys­
tems have proven to be one of the most straightforward and the least
expensive methods to build such arrays with hundreds or even thousands
of processors [Seit85]. In such networks, each processor has its own
memory and message passing is the means of information exchange
between processors.

It is well-known that the topology of the interconnection network
plays a significant role in system performance, especially for large scale
distributed-memory multiprocessors [SaSc85]. Several efforts on design­
ing interprocessor communication networks have been reported [WuLi81].
Among various architectural configurations, the point-to-point topology
has attacted a great deal of attention due to its simpler communication pro­
tocols and direct communication paths among the nodes [HwGh87].
Several features have to be considered when evaluating a point-to-point
interconnection network. These features include the ability to embed other
problem topologies, the ability to meet the demands of massive parallel­
ism, the connectivity, the worst case communication delay between two
nodes, the tolerance of faulty components, the communication bandwidth
of each node, and the ease of routing between any two nodes.

Among point-to-point topologies, the hypercube has been a dominat­
ing topology used in the first generation of distributed-memory multipro­
cessors [ShFi88J. The strong connectivity of hypercube and its regularity,
symmetry, and ability to embed many other topologies, have made it a

. powerful candidate for a wide class of applications [Foxg86]. Many other
interconnection topolgies have been proposed for distributed-memory mul­
tiprocessors, such as tree [DePa78], cube-connected cycle [PrVu81],
block-shuffle hypercube [HsYZ87], and hypernet [HwGh87]. These vari­
ous interconnection topologies have their own advantages and disadvan­
tages based on the above evaluation criteria. In this paper, we present the
least expensive approach to enhance the hypercube interconnection
scheme.

An n -dimensional hypercube multiprocessor consists of N = zn pro­
cessors interconnected as follows. Each processor is labeled by a. different

t This research was supported in part by the Applied Mathematical Sciences subprogram of
the Office of Energy Research, U.S. Department of Energy, under contract W-31-109-Eng-
38 and in part by the DARPA ACMP project.

86

n-bit binary number (bn-ibn-z · · · b 1b 0). Two processors are connected by
a full duplex link if and only if their binary labels differ in exactly one bit
position. The popularity of hypercube multiprocessors is due to its underly­
ing topology which is known as the n -cube graph Qn. The n-cube graph
has been the subject of many research projects in recent years, mainly
because of the availability of hypercube multiprocessors [SaSc85]. As a
result,' many properties of the n-cube have been discovered [BrSc85].

The rest of this paper is organized as follows. Our notation and ter­
minology are given in the next section. A new interconnection topology,
-denoted TQn, which is based on a simple modification of the n-cube is
given in Section 3. We will show in Sections 4 through 7 that TQn has cer­
tain topological advantages over Qn. In particular, it is shown that the
diameter of TQn is one less than that of Qn, and its vertex-connectivity is
the same as that of Qn. It is known that the complete binary tree on zn - 1
vertices, Tn, is not a subgraph of Qn [SaSc85]. However, Tn-l is contained
in Qn [BrSc85]. We prove that TQn has the complete binary tree Tn as sub­
graph. Other subgraphs of TQn are also identified. Finally, practical impli­
cations of our results are given in Section 8.

2. NOTATION AND TERMINOLOGY
We will closely follow the graph theoretical terminology and nota­

tion of [Hara72]; terms not defined here can be found in that book. Let
G (V,E) represent a graph with point or vertex set V (G) = V and edge set
E (G) = E. If an edge e = uv e E then vertices u and v are said to be
adjacent, the edge e is said to be incident to these vertices, and u and v are
the end points of edge e. Two edges are said to be independent if they do
not share an end point. For a vertex v e V, I (v) represents the set of all
edges incident to v in G, and its cardinality II (v) I is the degree deg (v) of
vertex v. We denote by o(G) and t.(G) the minimum and maximum degrees
respectively of vertices of G. If o(G) = t.(G) = k, then G is said to be
k-regular. For a set X cE (or X c V), the notation G -X represents the
graph obtained by removing the edges (vertices) in X from G. The vertex­
connectivity, K(G), of a graph G is the least cardinality IXI of a set
X c V (G) such that G - X is either disconnected or consists of a single
vertex.

The distance d (u, v) between two distinct vertices u and v is the
length (in number of edges) of a shortest path between these vertices. The
diameter d(G) of graph G is then defined to be
d(G)=max(d(u,v)I u,ve V). If Hand Gare graphs then His iso­
morphic to a subgraph of G if there is a one-to-one function
f: V(H) ~ V(G) such that each edge uv e E(H) is carried to an edge
f(u)f(v) e E(G). By an abuse oflanguage we will often merely say that
His a subgraph of G (where in reality it is f (H) which is a subgraph of G)
and will write H r;;;. G.

Two specific graphs with which we will be concerned are complete
binary trees and n-cubes. As indicated before, Tn will represent the com­
plete binary tree on 2n - 1 vertices. The root of Tn is the unique vertex
whose degree is 2. If Qn is the n-cube then li(Qn) = t.(Qn) = n, d (Qn) = n,
and K(Qn) = n. The binary label of a vertex v e V (Qn) will be referred to
by an n-bit binary number b(v). Also, O(b(v)) and Z(b(v)) will denote
the number of ones and zeros, respectively, in the binary number b (v).

3. THE TWISTED N·CUBE
Let C be any shortest cycle (i.e., a cycle of four vertices) in Q •.

Also, let u.x and vy be any two independent edges in C. The
twisted n-cube graph TQ. is then constructed as follows. Delete edges u.x
and vy from Q •. Then, connect, via an edge, vertex u to vertex y, and ver­
tex v to vertex x. That is, TQ. = Q. - {u.x, vy} + {uy, vx). Figure 1 shows
Q 3 and TQ 3. Note that by construction, TQ. is n-regular just as Q. is.
Also, observe that TQ. has two disjoint Q._1 as subgraphs.

Although the cube can be twisted around any 4-cycle, we will usually use
the canonically twisted Q. where vertices u, v, x, and y have the labels
b(u) = 000 · .. 0, b(v) = 010 · .. 0, b(x) = 100 · · · 0, and
b(y) = 110 · · · 0. In the subsequent sections we describe some of the pro­
perties of the twisted cube TQ •.

4. DIAMETER OF TQ.

Figure 1.

It is well-known that d(Q.) = n. Also, between any pair of vertices u
and v in Q. there are n disjoint paths, of which d (u, v) are of length d (u, v)
and the rest are of length d(u,v)+2 [Kuhl80, SaSc85]. As a result, if
d(u,v)Sn-1 then there are at least n-2 disjoint paths between u and v,
each of which is of length at most n-1. This property of Q. will be used
shortly.
Theorem 1: d(TQ.) = n-1, for n 2: 3.
Proof'. Let TQ. be the canonically twisted cube. The theorem can easily
be verified when n equals 3 and 4. Thus assume that n 2: 5. Now, lets and t
be any two vertices in TQ •. We will show that in TQ. we have
d(s,t) sn-1 for alls, t with equality forat least one pair. Depending on
the value of d (s,t) in Q., the following two cases are considered.
Case 1: In Q. we have d(s,t) s n-1. Then there are at least n-2 2: 3 dis­
joint paths between s and t in Q., each of which is of length at most n-1.
Thus, removal of edges u.x and vy from Q. can destroy at most two of such
paths. This implies thatin TQ. we have d(s,t) s n-1.
Case 2: In~ w~ ha!e d(s,t)_= .!!· Let b(s] = (b._1b._2b._3 • · · b 1b0) so
that b(t) = (b.-1b._2b._3 · · · b 1b 0) where bi is the binary complement of
bi. A shortest s-t path in TQ. can be constructed as follows.

First concentrate on the ones of b(s) in positions n-3, n-4, · · ·, 0.
We can change these ones to zeros by traveling over a single edge for each
exchange. Thus, after traveling O(b._3b.-4 · · · b0) edges we will arrive at
one of the vertices u, v, x, or y (which one is determined, of course, by the
two leading bits b.~1 b.-2 of s). Next, we can change b._1 b._2 to 'b._1 'b._2
by using a single edge of TQ •. That edge will be uy or vx depending upon
which of the four vertices we were led to by the first part of the path.
Finally, all the zeros in (bn-3bn-4 · · · b0) must be turned to ones. Again a
single edge is used for each of the Z(b._3b•-4 · · · b 0) bits involved. Hence
the total number of edges in our s-t path is

O(b._3b.-4 · · · bo) + Z(b,._3bn-4 • · · bo)+ 1=(n-2)+1 = n-1.
It is easy to see that there is no shorter s-t path: traveling over any

edge of TQ. changes only one bit with the exception of uy and vx which

87

change two. It can be easily seen that edges uy and vx cannot both appear
in any shortest path. Since b (s) and b (t) differ in all n positions, at least
n-1 edges are needed to transform all bits. It follows that d(s,t) = n-1 by
the construction above. Combining this fact with Case 1, we see that

d (TQ.) = n-1 as desired. D

5. VERTEX-CONNECTIVITY OF TQn
It is known that ic(Q.) = n [ArGr81, Kohl80]. We next prove that

ic(TQ.) = n. In fact we prove a more general connectivity theorem. Let G 1
and G2 be two connected graphs with the same number p of vertices.
Furthermore, let V(G 1) = {u" u2, ···,Up) and
V(G2)={111>112. ···,vp). Then H=G1 G> G2 represents the graph
obtained by taking G 1 and G2 and connecting, via a new edge, vertex U; to
vertex vi, for 1 s i Sp. Tliat is,

V(H) = V(Gi) u V(G 2)
and

E(H) =E(G 1) uE(G2) u {u1v11 u1eE(G 1), v1eE(G2), lSiSp }.
The uivi edges will be referred to as cross edges. Note that operation G>
may generate different H graplis depending on how the vertices in graphs
G 1 and G2 are labeled {Hede69].
Theorem 2: Let G 1 and G2 be connected graphs defined as above, and let
H = G1 0 G2. Then ic(H) 2: 1 + min(ic(G1), ic(G2)).
Proof'. Let k = min(K(G 1), K(G 2)), and let X be an arbitrary subset of
V(H) such that IXI =k. We prove the theorem by showing that H-X is
connected. Observe that H contains at least k + 1 cross edges since k must
be smaller than the number of vertices in each of the graphs G 1 and G2.
Therefore, romoval of k vertices from H cannot cause deletion of all cross
edges. Now if X n V(G 1> = 0 (respectively X n V(G2) = 0) then G1
(respectively G 2) is a connected subgraph of H - X. Furthermore, every
remaining vertex of G 2 (respectively G1) is connected to this connected
subgraph. Hence H - Xis connected.

Now supposeX nV(G 1> =X1 ,<0 andX n V(G2)=X2 ,<0. We
must then have 1 sjX1 I Sk-1and1 sjX21 Sk-1. This implies that both
G1 -Xi and G2 -X2 are connected by definition of k. Since there is at
least one cross edge, say e, in H- X, the end points of e lie in G 1 - X 1 and
G2 - X 2. and therfore H -X must be connected. D
Theorem 3: ic(TQ.) = n.
Proof: Clearly it is possible to take two copies of Q._1 and label their ver­
tices such that TQ. = Q._1 0 Q.+ Since ic(Q._1) = n-1, Theorem 2
implies that ic(TQ.) 2: n. Also for any n-regular graph G, ic(G) s n, hence
the desired result. D

6. LENGTHS OF DISJOINT PATHS IN TQn
It is well-known that if G is a graph with ic(G) = n, then given any

two distinct vertices s, t e V(G) we can find n disjoint s-t paths in G
[Hara72]. The following theorem gives an explicit description of such
paths in TQ.. Its proof, which is long, is omitted due to space constraint,
but can be found in [EsNS88].

Possible Paths Lengths
Exception

d-1 d d+l d+2 d+3

I. There is one fixed l in suf (s) and

(a) bn-1 bn-2 = Cn-1 Cn-2• or d l n-d-1
(b) either S, t are adjaoent to U, X or

S, t are adjacent to v, y d n-d-1 l

2. There is no fixed l in suf (s) and

(a) bn-1 bn-2 = Cn-1 Cn-2• or l d-1 n-d
(b) bn-1 bn-2 = Cn-1 Cn-2

with exactly one of S, t equal

toU, v, X, y.or d n-d-1 I

(cl b.-1 bn-2 = c.-1 c.-2
with exactly one of s, t equal

toU, V, X, y.or d l n-d-1

(d) bn-1 bn-2 = Cn-1 Cn-2
with s or t equal

to U, V, X, J d-1 2 n-d-1

Theorem 6: Let TQ. be the canonically twisted n-cube and consider
s,teV(TQ.) with b(s)=b._1bn-2• ··-,bo and
b(t) = Cn-iCn-2• · · ·, c0 • If d(s, t) =din Q. then a set of n disjoint paths
consisting of d of length d and n -d of length d +2 continues to exit in TQ.
with the exception of the cases noted in the following table. If the entry in
row i and colunm d+j is k this means that there are k disjoint s-t paths of
length d + j for exception i. A blank indicates no such paths. All paths for a
given row can be taken to be disjoint. 0

Note that in all exceptional cases but two (specifically I(b) and 2(a))
the average length of then paths in the table is at least as short as the aver­
age length between the same two points in Q •. In fact for some of the cases
above the paths from Q. still exist in TQ. but the listed set of the paths will
be shorter.

7. SOME SUBGRAPHS OF TQ0

In this section, we will identify some of the subgraphs of TQ •. By
construction, Q._1 is a subgraph of TQ. and thus all its subgraphs are con­
tained in TQ •. In fact any subgraph of Q. which does not contain two
independent edges belonging to some 4-cycle of Q., is also contained in
TQ •. This implies that TQ. contains a 2"-cycle, and any 2-dimentional
mesh which is a subgraph of Q •. While Q. contains only even cycles, TQ.
conatins odd cycles as well.

In what follows we will show that the complete binary tree on 2• - I
vertices, r., is a subgraph of TQ •. It is known that r. is not a subgraph of
Q. [SaSc85]. However, T._1 is contained in Q. [BrSc85]. To present our
result, we need to show that two disjoint copies of T._1 can be found in
Q •. This was first demonstrated by Prada, rediscovered independently by
Bhatt and Ipsen, and then re-rediscovered by us [Prah74, Bhip85]. We
include the proof for the sake of completeness.

Lets. denote the graph obtained by taking two disjoint complete
binary tree T._1 and connecting their roots by a path of length 3. A picture
of S 4 is given in Figure 2.
Theorem 7: For n ~ 2, s. is a subgraph of Q •. Furthermore, for n ~ 3 the
roots r and u of the
two copies of T._1 can be labeled so that b (r) and b (u) differ in exactly

three positions.
Proof: Figure 3 gives labelings which embed s. in Q. for n = 2, 3. Note
that in the latter case the labels along the path r-s-t-u of length 3 are
OOI, 011, llI, and 110 respectively. By induction we may assume that
s._1 is isomorphic to a subgraph of Q._1 with

b(r)=OOI ···I
b(s)=Oll ···I
b(t) =I 11 · · · I
b(u) = 11 · · · IO.

Now we can find two disjoint subgraphs isomorphic to s._,, call them S~-1
and S~_1 , in Q._1 as follows. S~-l is obtained by prefixing every label of
s._1 with a 0. Thus the labels of the corresponding path of length 3 are

b(r0) = OOOI · • · I
b(s0) = 0011 · · · I
b(t0) = Oill ···I

b(u0) = 011 · · · IO.
If \I E Sn-I is labeled b (v) = (bn-2bn-3 · · · bo) in Qn-1 then in S~-1 we let
b(v 1) = (Ibob1 · · · b.-2). In particular,

b(r 1)= 11 · · · IOO
b(s1) = 11···110
b(t 1)= 11 ···Ill
b(u1)= IOI··· II.

A schematic drawing of these subgraphs is displayed in Figure 4(a). Now,
the graph S • is created by letting

s.=S~-1uS~-1 + (sou1, tot1, uos')- {touo, t1u1)
as in Figure 4(b). Finally the new roots are s0 and s1 with labels OOI · · · I
and 11 · · · IO respectively, which differ in exactly three positions. 0

Theorem 8: T. is subgraph of TQ •.
Proof: Find a subgraph of Q. which is isomorphic to s. with the path
r-s-t-u labeled as in Theorem 7, that is

b(r)=OOI · · · 1
b(s)=Oll···l
b(t) =Ill··· l
b(u)= 11 ···IO.

88

If v e V (Q.) has label b (v) = IO I · · · I then we can construct
TQ. = Q. - (rs, tv) +{rt, sv}.

Clearly T. = s. + {rt} - (s} is a subgraph of TQ. (note that tv fi. E (S.) so
that the removal of this edge from Q. causes no difficulties). 0

Figure2.

r s t u u

®--®--®---@
n=2
~

@{ '§ @ '@
n=3

Figure 3: Embeddings. in Q. for n = 2, 3

(a) Two copies of Sn-I

,o

(b) Constructing s. using two copies of s._1

Figure4.

8. CONCLUDING REMARKS
The hypercube interconnection topology, due to its powerful topo­

logical properties, has been widely adopted in the construction of
distributed-memory multiprocessors. In this paper, we have shown that by
exchanging any two independent edges in any shortest cycle of the hyper­
cube, an interconnection topology, namely TQ., can be achieved which
has some nice properties. Existing hypercube multiprocessors can be
modified to take advantage of this new topology in two ways. A hypercube
can be converted to TQ. by exchanging two of its physical links. Second,
two extra physical links can be added to a hypercube multiprocessor to
obtain a topology which has both Q. and TQ. as subgraphs. In both cases,
other components of the system should be modified accordingly. One
major component is the router at each processing node. In what follows we
address this issue for both cases.

Each processor (vertex) in the hypercube multiprocessor has a router
to handle the interprocessor communication [LaNE87]. The function of the
router may be performed by the processor or by a dedicated router chip. In
a hypercube multiprocessor, upon receiving a message, a routing tag
(r._1r.-2r._3 · · · r 0) is obtained by taking a bit-wise exclusive-OR opera­
tion between the router's local address (c._1 c._2 • • • c 0) and the destina­
tion address (d._1 d._2 • • • d0) of the message. The message can then be
forwarded to one of the neighboring processors through the j-th link if
rj = 1for0 s;j s; n-1.

To support the TQ. topology, the function of the routers should be
slightly modified. For these routers, the routing tag is computed as above.
Suppose TQ. is the canonically twisted n-cube. Let's first consider the four
routers at vertices u, v, x, and y; we will refer to these routers as twisted
routers. If r._1r._2 = 01 then the message is forwarded through the
(n-2)-nd link, that is, either uv or xy. If r._1r._2 = 11 then the message is
forwarded through the (n-1)-st link, that is, either uy or vx. Note that in
this case one routing step is saved compared with that in Q.. If
r._1r._2 = 10 then the message is forwarded through the (n-2)-nd link if
rj = 0 for all 0 s;j s; n-3, otherwise, the message is forwarded through
some j-th link with rj = 1 where 0 s; j s; n-3. Note that in the former case,
it will take two routing steps rather than one as required in Q.. However,
this additional routing step may not be necessary if the message is for­
warded through other links first as in the latter case.

The function of the remaining 2• - 4 routers will also have to be
slightly modified in order to take advantage of a possible saving of one
routing step. If r •-Ir •-2 = 11 then one routing step can be saved by first
forwarding the message to the node d._1d._200 · · · 0, one of the four
twisted routers, and then the message is forwarded to the final destination.
If r._1r._2 = 10, then the message has to be forwarded through the (n-1)­
th link if there exists only one j (0 s; j s; n-3) such that rj = 1. This is to
avoid having an additional routing step. For all other cases, the message
can be forwarded to any j-th link so as long as rj = 1.

For the case where two edges (i.e., uy and vx) are added to Q., the
routers are modified as follows. For the four twisted routers, now each with
n+l links, if r._1r._2 = 11 then the message should be forwarded through
the added link. Thus, one routing step is saved. For all other cases, the nor­
mal routing procedure should be followed. For the remaining 2• - 4
routers, if r._1r._2 = 11, then one routing step can be saved by first for­
warding the message to the node d._1 d._200 · · · 0, one of the four twisted
routers, and then the message is forwarded to the final destination.

In summary, the twisted n-cube, TQ., has the following properties as
the n-cube Q.. TQ. consists of two disjoint Q._1 subgraphs. Even rings
and 2-dimensional mesh are subgraphs of TQ •. TQ. is n-regular and its
vertex connectivity remains n. In addition, TQ. has the following unique
properties not possessed by Q •. Any odd length ring with 2• - 1 or fewer
vertices is contained in TQ •. A complete binary tree with 2"-1 vertices,
which is a highly demanded topology by many applications, is a subgraph
of TQ •. The worst case number of routing steps is reduced from n to n-1.
Furthermore, the average number of routing steps is also reduced. This
implies improvement on communication delay which is critical to system
performance.

89

[ArGr81]

[Bhlp85]

[BrSc85]

[DePa78]

[EsNS88]

[Foxg86]

[Hara72]

[Hede69]

9. REFERENCES

J.R. Armstrong and F.G. Gray, "Fault diagnosis in a Boolean
n-cube array of microprocessors," IEEE Trans. on Comput.,
Vol. C-30, No. 8, pp. 587-590, August 1981.

S.N. Bhatt and C.F. Ipsen, "How to embed trees in hyper­
cubes," Research Report YALEU!DCS!RR-443, Department of
Computer Science, Yale University, December 1985.

J.E. Brandenburg and D.S. Scott, "Embeddings of communi­
cation trees and grids into hypercubes," Technical Report,
Intel Scientific Computers, 1985.

A.M. Despain and D.A. Patterson, "X-Tree: A tree structured
multiprocessor computer architecture," Proc. of the 5th Annu.
Symp. Computer Architecture., pp.144-151, August 1978.

A.-H. Esfahanian, L.M. Ni and B.E. Sagan, "On enhancing
hypercube multiprocessors," Technical Report, MSU-ENGR-
88-012, Department of Computer Science, Michigan State
university, January 1988.

G.C. Fox, "Caltech concurrent computation program annual
report 1985-1986," Caltech Concurrent Computation Program
Technical Report C3 P-290B, October 1986.

P. Harary, Graph Theory, Addison Wesley, 1972.

S. Hedetniemi, "On Classes of Graphs defined by Special
Cutsets of Lines," The Many Facets of Graph Theory, Lecture
Notes in Mathematics, Vol. 110, Springer-Verlag, 1969, pp.
171-189.

[HsYZ87] W.T. Hsu, P.C. Yew and C.Q. Zhu, "An enhancement scheme
for hypercube interconnection networks," Proc. of the 1987
Int' l Conf on Parallel Processing, pp.820-823, August 1987.

[HwBr84] K. Hwang and P.A. Briggs, Computer Architecture and Paral­
lel Processing, McGraw-Hill, 1984.

[HwGh87] K. Hwang and J. Ghosh, "Hypemet: A Communication­
Efficient Architecture for Constructing Massively Parallel
Computers," IEEE Trans. on Comput., Vol. C-36, No. 12, pp.
1450-1467, Dec. 1987.

[Prah74] L.N. Praha, "On cubes and dichotomic trees," Casopis Pro
Pestovani Matematiky, roe. 99 (1974).

[PrVu81] F.P. Preparata and J. Vuillemin, "The cube-connected cycles:
A versatile network for parallel computations," Commun.
ACM, pp.300-309, May 1981.

[SaSc85] Y. Saad and M.H. Schultz, "Topological properties of hyper­
cubes," Technical Report, Y ALEU/DCS/RR-389, Department
of Computer Science, Yale University, June 1985.

[Seit85] C.-Seitz, "The cosmic cube," Commun. of ACM, Vol. 28, No.
1, pp. 22- 33, January 1985.

[ShPi88] Y. Shih and J. Pier, "Hypercube systems and key applica­
tions," Parallel Processing for Supercomputing and Artificial
Intelligence, K. Hwang and D. DeGroot, eds., New York:
McGraw-Hill, 1988.

[WuLi81] S.B. Wu and M.T. Liu, "A cluster structure as an interconnec­
tion network for large multimicrocomputer systems," IEEE
Trans. on Computers, pp.254-265, April 1981.

RELIABILITY OF THE HYPERCUBE

Seth Abraham
Department of Computer Science

University of Illinois
Urbana, Illinois 61801

ABSTRACT
Several analytical models are presented and solved in this paper for the
subcube reliability problem associated with the hypercube multiprocessor
architecture. This problem refers to the ability of a binary d-cube, in the
presence of component failures, to embed disjoint functional subcubes of
various sizes in the damaged structure. Partitioning of a fault-free
hypercube into subcubes that can be allocated to different tasks is a
common practice, so that the degradation in this ability is a good meas­
ure of the effect of failures. We provide models that account for node
failures only, link failures only, or both node and link failures. These
show that the architecture is quite resilient to failures in terms of the
ability to salvage functional subcubes out of a damaged hypercube.

1. INTRODUCTION
11le boolean d-cube network (7,9,10] consisting of processing elements

placed at the vertices of a d-dimensional hypercube, has proved to be a
popular structure for direct-connected multiprocessor systems. The
reader is referred to the various papers in [5] for the basis of this popu­
larity. In this paper, we are concerned with a particular aspect of the
hypercube architecture, viz., its reliability. A hypercube system has 2d
nodes (processing elements) and d2d-t (full duplex) connecting links. In
large systems of this kind, it is obvious that some components of the
system will fail before long, so that characterization of the degraded sys­
tem is important to determine how many of the failures can be tolerated.
In the next three sections of this paper, we provide analytical models for
a particular version of this reliability problem. The rest of this section
will be devoted to terminology and problem definition.

Let us begin with a brief summary of the structural and topological
properties of the hypercube that are relevant to our analyses. A complete
discussion of this subject can be found in [2,8]. The N = 2d nodes of the
d-dimensional hypercube can be labeled using d-bit addresses and the
connections between them specified as follows: two nodes whose
addresses differ in exactly one bit position i, 0::; i ::; d-1, are connected
by a link. This link is said to span dimension i of the cube, so that each
of the d dimensions has N/2 links spanning it. We refer to d as the
order of the hypercube. Each node in a d-cube has degree d and the dis­
tance between two nodes x and y, whose addresses differ in j bit posi­
tions, is given by the Han1ming distance H(x ,y) = j. Fig. 1 shows the
structure of a binary 4-cube.

A j-subcube of a d-cube is a subgraph consisting of 2j nodes (and the
connecting links between them) obtained by choosing d-j dimensions ii.
i 2 ,. .. ,id-j• and considering all the nodes that have the same address bit in
each of these bit positions. Fig. 1 illustrates two 3-subcubes
(highlighted) in a binary 4-cube. Such a j-subcube can be thought of as
being generated by the following process: split the d-cube across dimen­
sion i 1 , separating it into two (d-1)-subcubes, each consisting of nodes
containing the same bit in position i 1 ; choose one of these cubes and
split it across dimension i 2 , resulting in two (d-2)-subcubes, etc., con­
tinuing until a U+l)-subcube is split across dimension id-j to result in
two j-subcubes.

This recursive construction of the hypercube from smaller subcubes
proves very useful in ta~k allocation and partitioning the cube for appli­
cations. The subcubes have all the structural properties of the larger
cube so that many of the algorithms designed for hypercubes may be
written with the order of the available cube as a runtime parameter. The
AXIS operating system for the NCUBE multiprocessor, for instance, per­
mits the main cube array to be shared among two or more tasks, allocat­
ing the subcube of the appropriate size to each task [4]. Because the
subcubes are disjoint from each other, allocation of the partitions is par­
ticularly simplified and each task considers itself as working on an i-cube
(with nodes relabeled accordingly). It is possible to view an incoming

90

Krishnan Padmanabhan
Distributed Systems Research Department

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

task as a set of interacting modules that have to be assigned to the nodes
of a subcube with adjacencies between modules in the task graph being
preserved in the subcube; algorithms have been developed to determine
the size of the subcube required for each task under this condition [3].
In addition, efficient algorithms for many applications are designed to
exploit the subcube partitioning ability of the hypercube, quite often in a
recursive or divide-and-conquer fashion [6,11]. It is useful to see how
much of this ability is lost when failures begin to occur in the system.

So the problem that we will address in this paper can be expressed as
follows. We seek expressions for the reliability and mean time to failure
of a d-cube system for a variety of breakdown conditions. These condi­
tions will be defined in terms of the ability to embed disjoint subcubes of
different sizes in a hypercube. In all but one of the cases that we con­
sider, we analyze conditions in which at least a (d-1)-subcube, the larg­
est proper subcube, is functional. Additional disjoint subcubes of smaller
sizes could coexist, and these will be captured in the definitions of vari­
ous system states. Section 2 considers this problem under the node
failure model, in which only the effect of node failures will be con­
sidered. Section 3 develops a similar model for the link failure case, and
Section 4 analyzes the system when both link and node failures are per­
mitted in the model. In Section 5, we present schemes for remapping
the node addresses so that functional subcubes can be salvaged from the
damaged hypercube system.

For an alternate formulation of the reliability problem for the hyper­
cube, and some issues related to its fault tolerance, see [l].

2, NODE FAILURE MODEL
Consider first the embedding of a functional (d-1)-subcube in the

presence of failures. While it is true that a single node failure must
always leave an undamaged (d-1)-subcube, as few as two failures could
destroy all such subcubes. For example, if node 0 and node N - 1 fail,
there is no way to embed an undamaged (d-1)-subcube in the damaged
d-cube. Given an arbitrary set of n xle failures, a fault free (d-1)­
subcube exists if and only if all the faulty nodes may be contained in an
i-subcube, i < d. (Necessity follows from the example presented above;
sufficiency becomes obvious when considering that a d-cube may be
divided into two disjoint (d-1)-subcubes and all faulty nodes positioned
totally within one of the subcubes.)

We define S; to be the system state in which all node failures in the
cube are contained in an i-subcube, but not in an (i--1)-subcube for
0 ::; i < d. In terms of functional subcubes, state S; can be characterized
as embedding exactly d-i disjoint subcubes of order d-1, d-2, ... ,i,
respectively. (To see this, split the d-cube into two (d-1)-cubes with
one of these cubes containing the faulty i-subcube; split the latter (d-1)­
cube into two (d-2)-cubes, with one of these cubes containing the faulty
i-subcube, etc.) This sequence of functional subcube sizing is unique if
we insist on a maximal disjoint subcube at each point in the sequence.
(Note that while the size sequence is unique, there may be many ways to
generate a subcube of a particular size.) Also worth noting is the fact
that even though no additional disjoint subcube of order :<: i may be
embedded, it might be possible to embed functional subcubes of order
< i-1 inside the faulty i-subcube. In state Sd, no embedding of a func­
tional (d-1)-subcube is possible. Finally, s. represents the initial, fault­
free state of the d-cube. We assume that all nodes have an identical
exponential failure distribution with constant failure rate A.. The transi­
tions between these states are shown in Fig. 2.

The transition from state S; to state S;+j (0 < j ::; d-i) occurs when an
additional fault has occurred outside the damaged i-subcube and the new
damaged cube will be of size i +). To determine the rate, imagine the d­
cube as split across i din1ensions such that each node in the original
damaged i-cube is in a separate partition. Each of the resultant 2; parti­
tions is a (d-i)-cube containing exactly one node from the damaged i-

cube. The new failure must be in one of these partitions, say C; further,
all paths within region C cross none of the i dimensions used during the
original splitting process. Therefore, if the new failure in C is distance j
away from the node in C that belongs to the damaged i-cube, all dam­
aged nodes in the system may be contained in an (i + j)-subcube. There

are (d ·/> such nodes in each C, leading to a transition rate of A2; ~ ·/).

Let us denote the probability of being in state S; as a function of time
as P;(t). Then the state equations for this system are given by

oP. oPo
at= -A.NP. , at= -A.(N - l)Po +A.NP. ,

oP· i-1 [d ') T = -')...(N - 2j)P; + l:A.2i . =~ pi , 0 < i ~ d .
at j=() I J

The initial conditions are P.(0) = l, and P;(O) = 0 for all i. It can be
shown (by induction on i) that the solution to this system of equations
can be written as:

P;(t)=(-li+I [4] 2d-ie-'J..Nt + [4] :E(-l)i-m r i] 2d-me-<N-2!"))J.
l l m::O ~

Let us now define the cumulative probabilities R;(t), 0< i <d, as

Ro(t) = P.(t), R 0(t) = P 0(t) + R.(t), R;(t) = P;(t)+ R;_1 (t), i >0 .

Thus, R;(t) is the probability that all node failures (if any) up to time t
are contained within an i-subcube, leaving d-i functional disjoint sub­
cubes of order d-1, d-2, ... , i. These functions are plotted in Fig. 3 for a
10-cube. (A conservative node failure rate of A.= 10-5 per hour is
assumed.) R;(t) represents the reliability of the system, if our system
breakdown condition is based on a fault-containment criterion, viz., all
the node failures are not contained in an i-subcube. The system's mean
time to failure (T) can be evaluated under this criterion by integrating the
expression for R;(t). It is easy to see that for 0 < i < d,

1
T. =NA. ,

T· = T·_ + (-l)i+I [4] _!__ + [4] ~ (-lf"" (i] 2d-m
I ' I I 2').. I m~ ~ (N - 2m)f..

These are evaluated in Table 1 for various system sizes.
All the numbers in Table 1 would scale linearly with A.. Let us inter­

pret these numbers using the 10-cube as an example. The mean time to
the first node failure is 98 hours. If the system can stay operational with
disjoint subcubes of order 9,8,7,6,5, and 4, (i.e., all the failures are
confined to a 4-cube), then the MITF increases to about 10 days. Note
that much of this increase materializes from just the ability to tolerate
one node failure - T 0 = 195 hours. However, as we relax our fault
containment criterion beyond a 5-cube (a (dt2}-cube in general), the
increases in MTTF are much more substantial. For very large cubes
(d <:: 12), insistence on a functional (d-1}-subcube is indeed a stiff con­
dition to satisfy, as the MTTF numbers testify.

3. LINK FAILURE MODEL
We now consider the state of the damaged cube under a link failure

model. As in the last section, we are interested only in system
configurations that can embed at least a (d-1)-subcube. Link failures
affect the topology of the cube in a fundamentally different way than
node failures do. Two disjoint (d-1)-cubes are formed each time a d­
cube is split across one of its dimensions. Since there are exactly d
ways to perform this split, there are only 2d possible (d-1}-subcubes that
may be embedded in a d-cube. Let us label these subcubes C;,j for
0 ~ i < d and 0 ~ j ~ 1. (Refer to Fig. 1.) C;,j will denote the subcube
comprised of nodes with a j in their ith bit (and the links between these
nodes). Obviously, subcube C;,o is disjoint from C;, 1 for 0 ~ i < d.
Any other pair of subcubes C;,i and Ck,1 (i '# k) will share a (d-2)-cube
comprised of exactly those nodes (and interconnecting links) with a j in
their ith bit and an I in their kth bit. If one of the links in this (d-2}­
cube fails, then both C;,i and Ck,i will be damaged. In fact, the first link
failure to occur in a cube will damage d-1 subcubes; subsequent failures
may or may not affect the remaining undamaged subcubes. To deter­
mj.ne subcube reliability, we must characterize the effect of the failure of
each link in the system for all relevant system states.

91

For the moment, consider the failure of the link between nodes 0 and
1. This damages only subcubes C;,0 , i > 0 leaving the remaining sub­
cubes undamaged. While any link in the system is equally likely to fail,
for the purposes of analysis, we can relabel all the nodes in the cube so
that the faulty link is mapped into the link between nodes 0 and 1.
Since only one dimension is fixed by this procedure (the dimension
which must be labeled 0), there are (d-1)! equally satisfactory ways to
label the remaining dimensions. When additional links fail, an appropri­
ate labeling for the remaining non-fixed dimensions may be chosen from
this set of (d-1)! labelings so that the subcubes C;,1> (i > 0) may be
thought of as being damaged in order. That is, C 1,1 is damaged first,
then Ci.1, etc., and finally Cd-l,I· (The cubes Co,o and C0,1 may be
damaged at any point in this sequence; we will consider them presently.)
This ordering of damaged subcubes does not constitute an ordering of
the link failures; it. is only the selection of a particular labeling for the
nodes as each failure occurs to describe the system state compactly.

We now characterize the state of the system by the set of undamaged
(d-1)-subcubes in the system. The possible system states (for 0 ~ i < d)
are:

s. = {Ck,i• 0 ~k <d, o·~j ~ l}, S2,; = {Co,o,Co,1>Cj,1• i <j < d},

S 1,i = { Co,1> Ci. 1> i < j < d }, So,i = {Ci. I• i < j < d}.

Note that the (d-1 }-subcubes in any state above are not all disjoint. It is
possible to characterize these states in terms of disjoint subcubes, in a
manner similar to the state definitions for the node failure model. The
states S2 i each support two disjoint (d-1)-subcubes and these are the
only stat~s for which there are no equivalent states under the node failure
model. State S 1; embeds d-i fault-free disjoint subcubes of order d-1,
d-2, .. ., i. (The~ are Co,1> cd-1,1 n Co,1> cd-2,1 n cd-1,1 n Co,1> .. .,
respectively.) State S o,i-i, 0 < i < d, is an equivalent state in terms of
disjoint functional subcubes, supporting d-i subcubes of order d-1,
d-2, ... , i. (These are Cd-1,h Cd-2,I ("\ Cd-1,I>"'' respectively.) Thus it
is possible to summarize the correspondence between the node and link
failure models (Figs. 2 and 4) as follows: states S2,; in the link failure
model do not have equivalent states in the node model. State S 1,0
corresponds to state S 0 in the node model; and states S 1,i and S o.i-1
together correspond to state S;, 0 < i < d, in the node model. Finally,
state S 0 d-I in the link model corresponds to Sd in the node model, the
state in ~hich no functional (d-1)-subcube embedding is possible.

As before, we assume an identical, exponential failure distribution
(rate A.) for each component (link) in the system. In Fig. 4 we see the
state diagram with the transitions between the 3d + 1 states. The transi­
tion rate from s. to S 2 0 is clearly A.J2d-I as the failure of any link in a
fault free system will ~sult in a system state of S i.o· A detailed descrip­
tion of the transition rates between the remaining states now follows.

Let us first consider the transitions from state S 2.0 to state S 2.i; C o.o
and C 0 1 are both undamaged in these transitions. Any link failure con­
tributing to this transition must span dimension 0. Without loss of gen­
erality, let the new failed link be incident to node x, x e C 0,0. Consider
such nodes with exactly j 1 bits in the node address. We may remap all
the nodes in the cube so that the j 1 bits in the address of node x will be
in bit positions 1, 2,. .. , j. Note that x and its new faulty link (across
dimension 0) are now in Ck, 1 for all k, 0 < k ~ j. Therefore, exactly j
additional subcubes have been damaged. We may count the number of
nodes x by counting the nodes in C o,o with exactly j 1 bits; this results

in a transition rate from state S 2,0 to state S 2.i of A.(d-/).

To generalize this for the S 2,; to S 2.i+j transition, (0 S i < d,
0 < j < d-i) we are again concerned only with faulty links that span the
0th dimension. Since the subcubes Ck 1 0 < k ~ i are already damaged,
only the d-1-i subcubes Ck. 1, i < k • < d need be considered. Let us
consider a faulty link incident to node x, x e C 0,0, with a node address
containing exactly j 1 bits in the bit positions greater than i. Since the
only dimension labels fixed from previous mappings are those S i, we
may remap all the nodes in the cube so that the j 1 bits just described
are in bit positions i+l, i+2, .. ., i+j. Clearly x and its new faulty link are
in Ct 1 for all k, i < k Si +j. Thus, we count the number of nodes in
C 0 0 °with an address containing exactly j 1 bits in bit positions k,

i ; k < d and obtain a transition rate of A.2; (d-J-i). This rate (among

others) is shown in Fig. Sa.
The remainder of the transitions from state S 2 i involve the links

which do not span dimension O; failure of any of the non-zero dimen- ·
sioned links will damage either C o,o or Co, 1 plus j additional subcubes
0 s; j < d-i. Since we may remap the cube so that C o,o is always dam­
aged first, we may consider links in C o,o without loss of generality. To
account for link failures in Co, 1 the final rate will be doubled.

Consider some node x in C o,o with an address containing j 1 bits in
the d-l-i bit positions greater than i. As before, we may remap all the
nodes in lhe cube so that lhe j 1 bits just described are in bit positions
i+l, i+2, ... , i+j. We need to determine all the links incident to x (other
than the link spanning dimension 0) such that x and this link will be in
Ck, I for all k, i < k $ i+j. The only links which fit this description span
the dimensions 1, 2, ... , i, i+j+l, i+j+2, ... , d-l. We may determine the
number of nodes x by counting the number of nodes in C 0 0 with an
address containing exactly j 1 bits in bit positions k, i < k < d. How­
ever, we may not simpiy multiply this figure by d-1-j to obtain the
number of links since the links which span dimensions 1, 2, ... , i are
incident to two nodes with exactly j I bits in bit positions k, i < k < d.
Thus, half of these links must be subtracted out so that the total number

of links is 2i(1-J-i)(d-l-i/2-j). To take into account links in Co,1> we

double this figure to obtain the rate for the S 2,; to S l,i+j transition as

ui+if1-J-i)(d-l-i/2-j) for 0 $ i < d, 0 $ j < d-i.

The transitions from state S 1 ; , 0 s; i < d (Fig. Sb), are similar to the
transitions out of state S2,;. F~r th~ S 1,; to S 1,i+j (0 < j < d-i) transi­

tion, start with the rate Ali (1-J-1) for links spanning dimension 0.

Since C o,o is already damaged, we must add some of the links within
C 0 0 • (In the S2,i case, failure of these links caused a transition from

' . .d 1 .
state S 2,; to state _s 1,i+j·) Thus we add A.2'r· -j - 1)(d-l-i/l-j) for a total

rate of A.2if-;-1)(d-i/2-j). The transition from state S 1,; to state So,i+j

(0 $ j < d-i) is identical to the S 2,i to S i,i+j case except lhat since C o,o
has already been damaged, we do not need to double the rate. Thus the

transition rate is simply ujf1-J-ixd-l-i/2-j).

J::1jnally, the transitions from state So,i 0 s; i < d (Fig. Sc) may be
obtained by adding the S 1,; to S i,i+i transition rate to the S 1.i to S o,i+i
transitions rate for 0 < j < d-i. Thus we obtain a rate of

u;ci-~-i><U-2j-i-l).
1

Now that we have completely specified lhe rates of all transitions in
the state diagram, we may write the state equations. Let P;,i(t) be the
probability of being in state S;,i at time t. Solutions for P;,j(t) and P.(t)
may be expressed as sums of exponentials, just as lhe solutions for the
node model were. However, we have been unable to obtain closed form
solutions for the coefficients in this case and have evaluated these numer­
ically. Based on the results, one can define the following probabilities:

P • (t) = Probability that no failures have occurred

P2-(d-l)cubes(t)= Probability that link failures have occurred, but two
d-1

disjoint (d-1)-subcubes can be embedded= :I:;P 2,;(t)
j={j

P;(t) =Probability that link failures have occurred leaving

d-l functional disjoint subcubes of order d-1, .. ., i.

{ p 1,o(I) i = 0

= P1,;(t)+ Po,i-1(t) i > 0 .

Reliability measures are then given by:

R•(t) = Po(t), R2-(d-l)cubes(I) = R•(I) + P2-(d-l)cubes(I),

Ro(t) = R2-(d-l)cubes(I) + Po(t), R;(t) = R;-1(t) + P;(t), 0 < i < d.

The mean time to failure figures, T, corresponding to these reliability
measures are shown in Table 2 for a 10-cube with A. = 10-9 per hour.

Note that we have used a lower failure rate for the links than that for
the nodes, to account for their lower logical complexity. It is interesting
to see from Tables 1 and 2 that the increase in MITF over the node
model is not commensurate with the decreased failure rate. Ford= 6,
the increase in T;'s is by a factor of 4 to S, whereas for d = 12, the

92

increase is about a factor of 2. The effects of link and node failures on
the system are indeed different A single node failure damages d possi­
ble (d-1)-subcubes, while a link failure destroys only d-1 of these. As
few as two node failures can destroy all (d-1)-subcube embeddings in a
d-cube, whereas this requires three failures under the link model. The
more catastrophic effect of node failures on the system is offset by the
fact that there are d/2 times as many links as there are nodes. This
second effect begins to dominate as the size of the network increases
(beyond d = 3). In particular, if identical failure rates were assumed for
nodes and links, the mean time to failure under the link model would be
less than that under the node model ford> 3.

Other observations made in the last section regarding Table 1 also
apply here. One way to relax the size of the functional subcubes is to
insist on 2d-i disjoint i-subcubes, (d-i) > l, for the system to be func­
tional. The mean time to failure for this condition can be derived in a
straightforward manner. We defined - i + 2 states Sj, 0 s; j s; (d-i+l),
with all the faulty links in state Si spanning exactly j dimensions. State
Sd-i+i is the breakdown state. The number of link failures that can cause
a transition from state sj to sj+l is (d-j)2d-l. The state equations for
this new system can be solved and it can be shown that the mean time to
failure is given by

2 d-i [~ j Wc-v-m
T;=-:I:; ~J :I:;----

N j={) J m={) (d-m)A.

This is evaluated in Table 3 for d = 10, 11, and 12, and various values of
i. We can see a significant increase in M'ITF as the size of the functional
portions is reduced. Thus in a 12-cube, lhe M'ITF for two functional
11-cubes is SS hours, whereas it is over 300 hours for 32 functional 7-
cubes.

4. COMBINED NODE AND LINK FAD..URE MODEL
While we have explored the probability of embedding functional sub­

cubes in a damaged d-cube under a node failure model and a link failure
model, we have not considered what happens when both node and link
failures may occur. Under the classic node failure model we considered
earlier, link failures may be disregarded since a link failure may be
modeled as the failure of one of its terminal nodes. Thus the node
failure rate encompassed the failure of the node and all its incident links.
However, to apply this technique to the link failure model would necessi­
tate modeling a node failure as the sin. ultaneous failure of all the node's
incident fault free links. This would violate the assumption that failures
are independently distributed. For this reason, a combined node and link
failure fault model is developed here.

The node failure rate will be denoted by A.. and the link failure rate by
A.1• Both rates are constant and independent. For our new model, let us
begin with the link failure model developed in the last section. The
question now arises as to what happens to the links incident to a failed
node. A link failure is significant to the analysis of the previous section
if and only if it belongs to some (as yet) .undamaged (d-1)-subcube.
Links incident to failed nodes are not a part of any undamaged subcube
and thus may be ignored in the combined model. Thus the state diagram
and link failure transitions (with A. = A.1) depicted in Figs. 4 and S accu­
rately describe the transitions due to link failures (alone) for the new
model. All that remains is to add the node failure transition rates.
These rates are developed in the following paragraphs.

When a node failure occurs in a previously fault free system, the fault
may be mapped to node 0. Oearly this damages d subcubes (C;,o for
0 $ i < d) and corresponds to the system state S 1,0• Thus we have a
new transition from state s. to state S 1,0 with rate A..2d (see Fig. 6a).
Any node failure in state S2,;, 0 $ i < d, puts the system into state S 1,i+j•
0 s; j < d-i, since it damages either C 0,0 or Co,1> and j subcubes Ct, 1>
i < k < d. The rates of these transitions may be derived in a manner
similar to the way link failures were derived, i.e., counting the number of
nodes with addresses containing j 1 bits in the d - l-i bit . positions
greater than i. The rate must be doubled to account for failures in both
C o,o and Co, 1> leading to the transitions depicted in Fig. 6a.

In state s 1 i, 0 $ i < d, a node failure will damage all, some or none
of the remainmg subcubes. First considering the nodes in C 0 0 , we note
that only those nodes with addresses containing 1 bits in btt positions

greater than i will damage additional subcubes. These are the transitions
from state S 1.i to state S l,i+j• 0 < j < d-i shown in Fig. 6b. Next, if the
faulty node is in C o.1> at least one subcube (Co, tl will be damaged; j
additional subcubes 0 ~ j < d-i will be damaged for nodes with
addresses containing j 1 bits in bit positions greater than i. These are
the transitions from st'.lte S l,i to state So,i+j depicted in Fig. 6b. Note
that only these 2d - 2' node failures are relevant for the transitions to
state So,i+j·

Finally, the transitions from state S O.i, 0 ~ i < d, (Fig. 6c) correspond
to the failure of nodes with addresses containing j 1 bits, 0 < j < d-i, in
bit positions greater than, i.

All the node transition rates described above can now be combined
with the link failure rates developed in the previous section to derive the
system state equations. When "-• = 0, this system is obviously identical
to that developed in the preceding section for the link failure model.
When A.1 = 0, the states S 2.i are no longer a part of the model. This
removes the difference between the link and node failure models referred
to in the previous section so that states S 1,; and So.i-l combined can be
renamed S;, to derive the node model. (State S 1,0 would correspond to
S0 , and state So.d-l to Sd.) We can solve the state equations for the
combined model numerically to obtain the state probability distributions.
Reliability measures defined in the last section can be computed under
this model, and corresponding MITF's are shown in Table 4.

aearly the reliability and MTTF of the networlc are lower when both
link and node failures are taken into account, than when only one of
them is. Node failures have the dominant effect, but only due to their
higher failure rate as discussed at the end of Section 3. However the
results of this section show that neither component can be neglected
(unless one has a much lower failure rate than the other) and the com­
bined model gives a more accurate picture of system degradation.

We close this section by presenting a model that would seem initially
to be a gross approximation to the combined model, but whose accuracy
relative to its simplicity turns out to be excellent. Let us go back to the
node failure model of Section 2 and define a supernode to be a node plus
half its incident links. (Each link thus "belongs" to one node.) The
failure of any of the (1 +d-2) components of the supemode would lead to
its failure. (This is where the approximation lies.) The failure rate for
each supemode is then given by A.=A.. +dA.112. When dis odd, we will
use this expression as an estimate for the supemode failure rate, even
though we cannot associate the same number of links with each super­
node. Substituting this value of A. into the node failure model of Section
2, we derive the mean time to failure figures in Table 5. The approxima­
tion is clearly conservative in that not every link failure would in reality
affect the node (say, A) to which it is assigned; if the other end of the
link is connected to a node which has already failed, then node A need
not be brought down when the link fails. However, it provides results
very close to those from the exact model.

5. REMAPPING THE CUBE NODES
All the mappings described in previous sections were intended solely

for the purposes of analysis; in this section we describe a procedure for
selecting an appropriate mapping for the nodes in the cube so that
undamaged subcubes may be used by application tasks. The first step is
to determine which of the possible embedded (d-1)-subcubes are undam­
aged. Next, the number and orders of disjoint subcubes must be
identified. The final chore of remapping is then reduced to fixing some k
bits 'in the node address resulting in a d-k subcube. We first describe
the procedure for the case where we have subcubes of order d-1, d-2,. . .,
i; subsequently, the procedure for 2d-i functional subcubes is explained.

We label the possible (d-1)-subcube embeddings Ci.j• 0 ~ i < d,
0 ~ i ~ 1 as described earlier. When some node x fails, it damages
exactly d of these embeddings. The identity of the damaged cubes is
determined using the following algorithm:

for all bits Xi in the node address x, set C;.x, = DAMAGED;
As each link fails, it damages exactly d-1 embeddings. For embedding
C;.j to be damaged, both nodes incident to the faulty link must lie in
Ci,j· If we describe the damaged link as incident to node x across
dimension j, we may use the following algorithm to determine what
embeddings are no longer possible:

for all bits x; in the node address x, if (i 1' J) set Ci.x; =DAMAGED;

93

After the list of current failures has been evaluated, the system may
support two disjoint (d-1)-subcubes if and only if there exists an integer
k such that both C *· 0 and Ck. 1 are undamaged. (This corresponds to a
system state of S 2.;.) Otherwise, there are k undamaged, non-disjoint
(d-1)-subcubes. Let these subcubes be labeled Ci 1.j,, Ci 2 .h•···• C;.,h.
From these, k disjoint subcubes of order d-1, d-2, ... , d-k may be
obtained as follows: the (d-1)-subcube is comprised of all nodes x such
that x;, = h; the (d-2)-subcube is comprised of all nodes x such that

x; 2 = h and Xi 1 1' h; etc. In general, the (d-1)-subcube is comprised of

all nodes x such that xi, = j,, and Xim 1' jm for all m < 1. This completely
identifies the disjoint, functional subcubes.

The procedure for 2d-i embedded subcubes of order i is somewhat
simpler. Each node need only keep track of dimensions that have no
faulty links. That is, when a link failure occurs across some dimension
j, then that dimension is no longer considered fault free. As long as the
number of fault free dimensions is at least i, the embedding is possible.
The subcubes may be identified by fixing all but the i lowest fault free
dimensions yielding the 2d-i subcubes.

6.SUMMARY
We have attempted to characterize in this paper the reliability and

degradation of the hypercube structure as network components begin to
fail., The analysis was based upon the damaged subcube 's ability to
embed functional subcubes of different sizes. Three different models
were presented: one that considered node failures alone, another that con­
sidered only link failures, and a third that permitted both node and link
failures. The latter two models have comparable complexity, so that the
real choice is between the relatively simple node model and the more
realistic, but complex combined node and link model. We have also sug­
gested a technique to incorporate link failures into the nodes, that yields
a simple but effective approximation to the combined model. While the
effect of a single link failure is less catastrophic than that of a node
failure, the larger number of links results in their having the dominant
effect on system reliability, if nodes and links have comparable failure
rates. These studies show that even though the d-cube structure is des­
troyed by the very first component failure, the cube is quite resilient in
terms of its ability to support several smaller subcubes in the damaged
structure.

REFERENCES
[l] S. Abraham and K. Padmanabhan, "Fault Tolerance and Reliability

Analysis of the Hypercube Structure," To be published.
[2] J.R. Armstrong and F.G. Gray, "Fault Diagnosis in a Boolean n­

Cube Array of Microprocessors," IEEE Trans. on Computers, Vol.
C-30, No. 8, Aug. 1981, pp 587-590.

[3] M-S. Chen and K.G. Shin, "Embedding of Interacting Task
Modules into a Hypercube," in Hypercube Multiprocessors 1987,
pp 122-129.

[4] J.P. Hayes, T.N. Mudge, Q.F. Stout, S. Colley, and J. Palmer,
"Architecture Qf a Hypercube Supercomputer," Proc. 1986 Int.
Conf. on Parallel Processing, pp 653-660, Aug. 1986.

[5] M.T. Heath (Ed.), Hypercube Multiprocessors 1987, SIAM, Phi­
ladelphia, 1987.

[6] J. Lee, E. Shragowitz, and S. Sahni, "A Hypercube Algorithm for
the 0/1 Knapsack Problem," Proc. 1987 Int. Conf. on Parallel Pro­
cessing, pp 699-706, Aug. 1987.

[7] M. C. Pease, III, "The Indirect Binary n-Cube Microprocessor
Array," IEEE Trans. on Computers, Vol. C-26, No. 5, pp. 458-473,
May 1977.

[8] Y. Saad and M.H. Schultz, "Topological Properties of Hyper­
cubes," Yale University, Depilrtment of Computer Science,
Research report 389, June 1985.

[9] C. L. Seitz, "The Cosmic Cube," Communications of the ACM,
Vol. 28, No. 1, pp. 22-33, Jan. 1985.

[10] H. Sullivan and T. R. Bashkow, "A Large Scale, Homogeneous,
Fully Distributed Parallel Machine, I," Proc. 4th Symp. on Com­
puter Architecture, pp 105-117, Mar. 1977.

[11] B. Wagar, "Hyperquicksort: A Fast Sorting Algorithm for Hyper­
cubes," in Hypercube Multiprocessors 1987, pp 292-299.

1.0

0.8

0.6

0.4

0.2

0.0

Figure I. Structure of the
binary 4-cube

= ... ~
').,'l/f~I)

J

d N

6 64
7 128
8 256
9 512

10 1024
11 2048
12 4006

Figure 2. System state diagram (Node failure model)

R 9(t)

Rs(t)

~~m
R~(t)

0 100 200 300 400 500
Time (in hours)

Table 1. MTIF (Hours) for node failure model (A. = 10--s I hour)

d N T• To T1 T2 T3 T4 Ts T6 T1 Ts T9 Tio Tu

6 64 1563 3150 3303 3726 4468 5611 7867
7 128 781 1569 1612 1750 2014 2400 2968 4094
8 256 391 783 795 839 934 1079 1272 1554 2118
9 512 195 391 394 408 442 498 573 668 808 1090

10 1024 98 195 196 201 212 234 264 301 348 418 559
11 2048 49 98 98 99 103 111 124 139 157 180 216 286
12 4006 24 49 49 49 51 54 59 65 73 81 93 111 146

Table 2. MTIF (Hours) for link failure model (A.= lo--6 I hour)

T• Ti- To T1 T2 T3 T4 Ts T6 T1 Ts T9 Tio Tu

5208 11458 11740 12957 15298 18552 23434 33361
2232 4836 4897 5213 5924 6945 8273 10284 14353
977 2093 2106 2188 2406 2753 3184 3745 4601 6324
434 . 922 925 947 1013 1132 1288 1471 1715 2088 2835
195 412 413 419 438 479 537 605 685 793 958 1287
89 186 187 188 194 207 229 256 285 321 369 443 591
41 85 85 85 87 92 100 110 122 135 151 173 206 273

Table 3. MTTF (Hours) for 2d-i i-subcubes

d N Ts T6 T1 Ts T9 Tio T11

10 1024 1652 1261 935 656 412
11 2048 915 719 551 417 295 186
12 4096 498 400 319 249 188 134 85

So,i 1-------~. So,i+i

Figure 4. State diagram (Link model) (c)
Figure 3. 10-cube reliabilities R;(t) (Node model) Figure 5. Transition rates for Fig. 4.

Table 4. MTIF (Hours) for combined model ('A,1 = 10-6 /hour, A,. = 10--s I hour)

d N T• Ti- To T1 T2 T3 T4 Ts T6 T1 Ts T9 Tio Tu

6 64 1202 1490 2443 2599 2982 3603 4532 6369
7 128 579 735 1170 1215 1341 1559 1862 2305 3187
8 256 279 362 563 515 616 695 806 950 1162 1587
9 512 135 178 271 275 288 316 359 412 481 583 787

10 1024 65 88 131 132 136 146 163 184 20'J 242 291 390
11 2048 32 43 63 64 65 68 75 83 93 105 121 145 193
12 4096 15 21 31 31 31 32 35 38 42 47 53 61 72 95

Table 5. MTIF (Hours) for supemode failure model ('A = ').,,. + d'A1/2)

d N T• To T1 T2 T3 T4 Ts T6 T1 Ts T9 Tio Tu

6 64 1202 2423 2541 2866 3437 4316 6051
7 128 579 1162 1194 1296 1491 1778 2198 3033
8 256 279 559 568 600 667 771 909 1110 1513
9 512 135 270 272 282 305 344 395 461 558 752

10 1024 65 130 131 134 142 156 176 201 232 279 373
11 2048 32 63 63 64 67 72 80 . 90 101 116 139 185
12. 4096 15 31 31 31 32 34 37 41 45 51 58 69 91

94

A,.2i+1('-~-i)

~
(c)

Figure 6. Additional rates for
combined model·

SOLVING VISIBILITY PROBLEMS ON MCC'S

Mi Lu

Department of Electrical Engineering
Texas A&M University

College Station, TX 77843

Abstract - In this paper, we present MCC algorithms
to solve the visibility problem for a set of disjoint simple
objects such as line segments, circles, and simple polygons in
the plane. For a collection of n such objects, our algorithms
show how to compute, on a fax fa MCC, a view of these
objects in 0(fa) time. Both parallel and perspective view
are considered. The previous algorithms for computing the
views are sequential and have 0(nlogn) time complexity
[I).

For the above tasks, we also describe methods to solve
problems of size n on MCC's with p processors, where
p < n. Analysis will be given on the time complexity and
the limitations imposed by the computational and commu­
nication requirements.

I. Introduction

The Mesh-Connected Computer operates as a single in­
struction stream, multiple data stream (SIMD) computer in
which each PE can directly communicate with at most four
neighbors. A fax fa MCC consists of n identical PE's
arranged on a two dimensional grid with processors at. the
grid points and connections between every horizontal and
vertical pairs of PE's. Each PE has a constant number of
storage registers, and each can perform standard arithmetic
or boolean operations in 0(1) time. MCC have been widely
used in different areas, and MCC algorithms have been de­
signed to solve various problems [2-6].

An important and fundamental algorithmic problem in
computer graphics is the following: Given a set of objects
in three-dimensional space, compute the view from some
fixed direction or point. The main issue is to eliminate all
parts of the objects that cannot been seen (i.e., that lie
behind some other object). It is a generalization of the hid­
den line problem in which objects have straight line edges.
The problem also has numerous applications in the motion
planning of robotics, and VLSI layout which have attracted
considerable attention in the recent years. In our consid­
eration, we simplify the preceding problem conceptually to
two-dimensional space, not only because that it is often used
as a subproblem in other geometric problems, (the shortest.­
path problem, for example,) but also due to that the solu­
tion for two-dimensional problem is the main part of the
tree-dimensional solution, and will show directions for fur­
ther research on the corresponding problems in three and
higher-dimensional space.

In the rest of the paper, we present in Chapter II
the MCC algorithms for solving visibility problems, and in
Chapter Ill the problem solution on MCC's of smaller size.
Chapter IV will give the conclusion remarks.

95

II. Solving Visibility Problem on MCC'S

The approach we use to solve the visibility problem is
divide-and-conquer. Applying on the mesh, we divide the
mesh into two submeshes of.equal size, called left and right
(or upper and lower respectively) submeshes. We recur­
sively solve the two subproblems on two submeshes in par­
allel, and then combine the two subsolutions to obtain the
final result. Elegant data movement need to be designed for
the merge step to exploit the inherent concurrency.

2.1 The visibility problem

A view is a picture one sees looking from a direction
or a point. A view from a point is a perspective view. In
this case the view consists of a circle on which the parts of
the objects one can see from the given point are projected.
A view from a direction is a parallel view. In this case, the
view consists of a line on which the parts of the objects that
are visible from the direction are projected. Perspective
views correspond to our natural way of viewing from a place
close to the object set, and parallel views correspond to the
viewing from a place far from the object set.

A simple object is a bounded convex object with the
following properties:
I. Any parallel or perspective view of it can be computed
in constant time.
2. If the views of two simple objects overlap, then constant
time suffices. to decide which one of the two objects can be
seen entirely.
3. The up to. four common tangents of two simple objects
can be computed in constant time. Two objects that touch
each other (i.e., objects whose boundaries overlap but do not
cross) are by definition nonint.ersecting. Typical examples of
simple objects are line segments, disks, and convex polygons
with a bounded number of edges. A set of simple objects
is shown in Figure 1. Figure 2 is the perspective view of
them, and Figure 3 is the parallel view of them.

The visibility problem can be formally stated as follows:
Given a set of n disjoint simple objects, and a point or a
direction, report in order the parts of the objects that are
visible from the given point or the given direction. A point p
is visible from q if the line segment pq intersects no objects
in the set.

The research work done on ·visibility problem are in­
cluded in the following papers. For the case of a single
polygon El Gindy and Avis (7] and Lee (8] presented O(n)
algorithms. Asano (1] gave an O(n+hlogh) time algorithm
for the case where the h disjoint polygons are convex, and
an 0(nlogh) time algorithm for the general problem. It
has been proved that for h disjoint polygons with n edges,

the optimal time complexity to find the visibility polygon
using O(n) space is bounded by O(n+hlogn) (9]. In [10],
Edelsbrunner et al. used O(n) search time, O(n2 logn) pre­
processing time and 0(n 2 logn) space to solve the visibility
polygon problem. Recently, Asano et al. [9) solved the visi­
bility polygon problem in O(n2) preprocessing time, O(n2)

space and 0(n) time. The visibility graph of disjoint poly­
gons with n edges can be found by solving the visibility
problem from each vertex of those polygons. This prob­
lem had been previously solved in time 0(11,2 logn) by Lee
[11) and recently by Welzl [lZ] and Asano et al. [9] indepen­
dently in 0(n 2) time. The shortest path between two points
in the plane with polygonal obstacles can be computed by
applying Dijkstra's algorithm to the visibility graph of the
obstacles. This problem is of current interest because it
is an instance of a general class of important problems in
robotics, known as collision avoidance problems (see, for
example, Lozano-Perez and Sesley [13]).

Z.Z Computing the parallel view

A parallel view of a set of objects consists of a partition
of a line. Each part of the line corresponds to an object in
the set (from the direction of view). The lowest part of the
objects in the interval (k, k + 1) is visible, and we want to
find the lowest part in all intervals, i.e., the lower envelope
of the set of objects. (See Figure 4.)

To each part of the line we assign the index of the cor­
responding object. If the part corresponds to a place where
one can look through the set we assign NULL to it. It is
possible that different parts of the line correspond to the
same object, and hence, are assigned the same index (see,
for example, object Z in Fig. 4). A partition point corre­
sponds to a leftmost point of an object (Fig. 5(A)) or a
rightmost point of an object (Fig. 5(B)), with respect to
the direction of view. (A part of the line might consist of
one point if it corresponds to a line segment in the direction
of view. In this case we treat it as a double partition point).
It can be proved that the parallel view of a set of n objects
from a fixed direction consists of at most Zn + 1 parts and
at most Zn partition points [10].

For computing the view of a set of objects from
a fixed direction we will use a divide-and-conquer tech­
nique. Divide the set S of n objects into subsets A
and B, each containing approximately equal number of
objects. Let the partition points of a view of A be
{ao, a 1, · · ·, ak}. k ::; Zn-1, and the parts of the view of A
be {aoa1, a1a2, · · ·, ak_1ak}· Similarly, let the partition
pointsofaviewofBbe{bo, b1, ···, bi,},k::;zn-1,and
the parts of the view of B be {bob1, b1b2, ···, bk_ 1bk}.
A part of the view of A, a;a;+ 1, is a part of the view of
S = AU B if f projecting a;a;+ 1 to the view does not
cross any other objects, that is, no part. of the view of B
falls (even partially) in the interval of (a;, a;+i), or part

b;bj +1 falls in the interval but a;a;+ 1 is "closer" to the ob­

server than b;bj+i· We can compute the view of S =AUE
by checking at each partition point of both views whether or
not this point is also a partition point of the total view. As a
result of the definition of a simple object, this checking can
be done in constant time. Recursively partition the prob­
lem into two equal-sized subproblems, compute the views

96

of the two subsets simultaneously, and merge the results.
Assuming that the merge of two subproblems, whose sizes
sum to n, needs time M (n), the total time needed, T(n),
is given by the following recurrence:

T(n) = T(n/Z) + M(n)

We show below that M (n) is bounded by 0(vfn) in the
mesh-connected computer implementation.

Distribute the partition points on an MCC, one point
per PE. Since there are Zn part.ion points in a view of n
objects, 2vfn x .Jn or .Jn x 2vfn PE's are sufficient. The
PE containing partition point a; maintains the part a;a;+i ·
Let a submesh of size Z' be A, and its adjacent submesh
be B. Submesh A contains the view of the subset A E S,
and submesh B contains the subset B E S. The merging
of the views of subsets A and B is performed recursively
on submeshes A and B, which is of size 2•+ 1. In iteration
i, zi+ 1 PE's are involved. The two phases involved in the
merge are as follows:
(i) Each partition point a; in the view of A finds the part
bjbj+ 1 such that a; falls in the interval of b;bj+l • and vice
versa. (Fig. 6 is a reference.)

(ii) Decide whether bjbj+ 1 prevents the part a;a;+ 1 from
being visible, and vice versa.

Phase (i) can be done by finding the difference
of globaLrank and locaLrank of a;, which tells the
locaLrank of bj. We complete phase (ii) by a transforma­
tion of the coordinate system. Let the angle of the observing
direction be a. Rotate the coordinate axes by a to obtain
the new axes system. The point with the coordinates (:c', y')
under the old axis system will have coordinates (:c, y) under
the new axis system such that

{

I •
;r. = ;r. cosa - y sina
y' = ;r. sina - y cosa

Then the view of a single object is just the horizontal line
segment with the leftmost point and the rightmost point of
the object as its end points. The projection of the object in
subset A, say i, will across the object in subset B, say j, if f
Yi ~ Yi, where Yi is the y coordinate of the leftmost point
or rightmost point of object i and YJ is the y coordinate of
the leftmost point or rightmost point of object j. The MCC
algorithm will be given in algorithm Parallel View.

The record maintained in each PE includes the follow­
ing field:

VIEW 1: Record

/* index of the PE, can be also used as index of the
object * /

;r., y /* coordinates of the leftmost or the rightmost
point of the object * /

see /* the index of the part in the view, NULL if no
object is visible * /

locaLrank /* indicating in 1'th iteration the rank of
the partition point in the view of Z'
objects * /

globaLTank /* indicating in Tth iteration the rank of
the partition point in the view of zr+ l
objects * /

base /* recording in Tth iteration the (logn + 1 - T)
MSB's of the PE index * /

biase/* temporary variable to record the locaLTank of
a partition point in the view to be merged * /

end (/* of record * /)

Algorithm Parallel View

1. Distribute the n objects on the MCC, so that each con­
secutive two PE's contain the same object, say i.

2. PE(2k) finds the leftmost point of the object it contains
and PE(2k + 1) finds the rightmost point of the object it
contains, fork = 0, 1, · · ·, n - I. /*initialize the partition
points * /
Record the coordinates of the points found as (x, y).
PE(2k) sets see= i. PE(2k + 1) sets see= NULL.

for T:=l to logn do the following:

3. base= (logn + 1 - T) MSB's of i. /*represented by

bk ···bi bo *I
4. Sort the partition points in non-decreasing order by x,
on the zr+i submesh. Find the globaLTank of each point.

5. Sort the partition points in non-decreasing order by y,
on the zr submesh. Find the locaLTank of each point.

6. Each PE compute

bias = globaLTank - locaLTank - 1.

and concatenates it to base with the LSB complemented
(denoted as base(bo)).

7. Each PE performs a RAR from PE(addr) to get Xadb

and seeaddr.

8. if((y > Yaddr) /\ (seeaddr =-,NULL)) V ((y :S Yaddr)
/\(see= NULL))

see= seeaddr·

end(/* of algorithm Parallel View*/)

Step 1 takes 0(yn) time. Step 2 needs only constant.
time since that the objects are simple. Step 3 needs constant
time also. Sorting in step 4 and step 5 requires 0(..;zr+l)
time and 0(ff) time respectively. The time needed by
steps 6 and 8 are constant. The RAR performed in step 7
uses time 0(2r). Thus, the time required in iteration T is
bounded by 0(#) and the total time needed in all the
iterations is:

T(n) = J2 +# + ... + ~ = O(yn).

We have considered the view from a given direction,
i.e., a par·allel view. However, there is another interest­
ing type of view, called a peTspective view, which consists
of the portions of the objects that are visible from a given
point. The problem of finding the perspective view from an
arbitrary point is discussed in the following section.

97

2.3 Computing the perspective view

Let S be a set of n simple objects, and q be an arbitrary
query point. We want to find the parts of the objects in S
that are visible from q, that is, find the perspective view.

A perspective view of a set of objects consists of a par­
tition of a circle. Each circle segment corresponds to a part
of an object that one can see from the fixed point or to a
place where one can look through the set (see Fig. 7 as an
example).

It is easy to verify that a perspective view contains at
most 2n partition points and hence at most 2n + 1 parts.

Consider a polar coordinate system with the point q as
the origin and the positive y-axis as the reference. Denote
the polar angle of a point p; by B(p;), where the polar angle
increases counterclockwise around q. The polar coordinates
of a point can be represented as (p, 8). The leftmost point
Pl or the rightmost point Pr of an object is the tangency
point such that the line emanating from q is tangent to the
object at it and B(pz) > B(pr).

Computing the perspective view is similar to the com­
puting of parallel view. A similar divide-and-conquer tech­
nique is adopted. If po, pi, · · ·, Pk, k ~ 2n - 1, denote
the partition points, then Pi~Pi+i indicates the part of the
view. We will distribute the partition points on the mesh
with each PE containing one partition point and maintain­
ing the record of the part PJ~Pi+i ·

The problem of finding the perspective view can be de­
composed into the following two subproblems.
(i) Each partition point a; in the view of A finds the part
bj~b;+ 1 such that B(bj) :S B(a;) < B(bj+ 1), and vice versa.
(ii) Decide the visible part of the objects in the interval

(p;, Pi+1)·
The visibility can be checked by determining which is. the
nearest to q among those objects with the ray emanating
from q, extended from B(pi) to B(Pi+i), passed through its
interior. We will show below that we can find, in polar or­
der, the parts of the given set of n objects that are visible
from q in 0(yn) ti\ne. In fact, if we cut the plane along
the ray emanating upwards from q and spread it out accord­
ing to the angular and radial orders, the spread-out view is
similar to the one we discussed in last section.

The transformation of the coordinate system needs not
only a rotation but also a translation of the axes. Let (x', y')
be the coordinates before the rotation, (x", y") the ones be­
fore the translation, and (h, v) the position of the observer
in the old coordinate system. We have

and

In addition,

{ x' = x cosa - y sina
y' = ;r sina - y cosa

{ x" = x' + h
y"=y'+v

{
p2 = x2 + y2

tan e = ~
will complete transforming Cartesian system to polar sys­
tem. We consider below the algorithm Perspective View, an

MCC algorithm for computing a perspective view from a
given point.

In Algorithm Perspective View, the record VIEW 2
maintained in each PE is similar to record VIEW 1 given in
section 2 .2, except that the field ":r, y" is changed to "p, 8".
Algorithm Perspective View is identical to Algorithm Paral­
lel View except for step 8. Following is a modified version
of step 8.
8'. if((p > Paddr) /\ (seeaddr =-,NULL)) V ((y :S Yaddr)
/\(see= NULL))

see = seeaddr.

The same analysis will show that the time needed to find a
perspective view of a set of n simple objects is bounded by
O(yn).

The visibility problem from a point for a set of h (not
necessarily convex) disjoint polygons with n edges in total
can be solved with the same time complexity by applying
the above algorithms to the edges of those polygons. We
first compute the visible portion of the boundary of each
polygon from the point. The result is a sequence of edges
from each polygon. Then the sequence can be decomposed
where the visible parts in the view are found.

A visibility graph of n arbitrary oriented segments is a
graph whose vertices are endpoints of those segments and
whose edges are the straight line segments joining vertices
that are visible from each other. This graph can be con­
structed by solving the visibility problem from each vertex
for the given segments. As an application of this result, the
shortest path between two points in the plane with polyg­
onal obstacles having n edges can be solved by Dijkstra's
algorithm, provided that the visibility graph is available.

III. Solving Problem on MCC'S of Smaller Size

The described results in the previous chapter were ob­
tained using the unbounded model of parallel computation,
i.e. we imposed no limit on the number of processors used by
our algorithms. We discussed in several papers [14-17] the
methods to solve some geometrical problems using MCC's
of the same size as the size of the problem, that is, the num­
ber of the elements to be processed is equal to the number
of the processors in an MCC. Obviously, in any practical sit­
uation we will be required to handle varying problem sizes
with a fixed number of processors. The situation that the
size of the MCC we have is smaller than the problem size
occurs very often. We introduce in this chapter the algo­
rithms to solve problems on the smaller size MCC's, and
analyze their time complexity and the limitations imposed
by the computational and communication requirements.

3.1 Basic approach

If a problem has n pieces of data initially distributed
one per PE in a mesh of size n, we now consider what hap­
pens when we try to solve the problem on a mesh of size p,
1 :S p :S n, where each PE is initially given i pieces of data.
This requires that the processors have sufficient memory to
handle. the largest problem size that will be encountered. A
processor with its local storage is referred to as a node.

98

The basic approach to solve problems using MCC's of
smaller size is to combine parallel and sequential processing
on the MCC's. Previously developed MCC algorithms are
used for inter-node processing, while sequential algorithms
are used for intra-node processing. The algorithms include
two phases:

(i) Each PE operates on the i elements it contains inde­
pendently. Each finds the partial result of the problem
using the sequential algorithm.

(ii) PE's distribute their partial results to other processors,
using the parallel merging algorithms discussed previ­
ously.

Of course, the time taken by each PE to broadcast its initial
data is i times as much as before.

As described above, n pieces of input data are dis­
tributed on a JP x JP MCC, with i pieces of data per PE.
Two sorting orders are considered, consecutive order and
cyclic order. In consecutive order, i successive elements of
the sorted sequence are stored in each node, with successive
sets of i elements being stored in nodes in order of increas­
ing node address (see Fig. 8(a)). In cyclic order, node i
stores the elements in the set {j I i = Tank(j) mod p}
such that i = j mod p. We describe below the details of
sorting into consecutive order (see Fig. 8(b)). Rearrange­
ment of consecutive to cyclic storage order (or vice versa)
can be carried out in time OG + p), by pipelining the data
transfers.

The sorting is carried out first by intra-node processing
and then inter-node processing. A local sort is performed
initially. Batcher's [18,19) odd-even merge is then mapped
onto the MCC. When doing the local sort, each PE sorts
the data it contains independently. This can be done by
using sequential algorithms within 0(ilogi) time. After
that, the !! elements stored in a node is a sorted sequence.
The merg: of the sorted sequences can be accomplished by
inter-node processing in 0(:jp) time [20].

Similar to algorithms for performing RAR and RAW
on MCC's with constant memory [3], our RAR and RAW
algorithms on the MCC's with i memory are performed
using the well-defined operations SORT, RANK, CON­
CENTRATE, DISTRIBUTE and GENERALIZE. The time
complexity for both RAR and RAW is bounded by 0(:jp +
ilog i) [20].

Since the previously described MCC algorithms for
solving computational geometry problems are based on sort­
ing, RAR and RAW techniques, the results of sorting, RAR
and RAW on MCC's of smaller size provide the solutions
of solving computational geometry problems on MCC's of
smaller size.

3.2 Lower bound time and optimal size

We have presented the parallel algorithms for solv­
ing computational geometry problems on the mesh of un­
bounded model and on the mesh of smaller size. The new
questions brought to our attentions are: what is the trade
off between the time complexity and the number of proces­
sors? Is it true that the more processors we have, the less
time are required?

Given n elements distributed on p processors with ~
elements per PE, where p < n, Figure 9 shows the relation­
ship of T versus VP· The line T = VP indicates the influ­
ence of the diameter of the mesh. Two curves, T = ~logn
and T = _Ji,, are also given which indicate the time needed
for inner-node processing and for intra-node processing re­
spectively.

Since moving a data from, say, the upper left corner of
a mesh to the lower right corner needs time no less than
2y'n, T should be greater than y'n. In the meantime, we
can find that Ji, > ~logn in general. Thus our working

area is above the line T = VP and the curve T = :JF· It

can be observed that the minimal T is given at the point
(n, y'n). That means, if n processors are provided, we can
obtain the optimal time complexity which is 0(y'n).

The sequential algorithms to solve the previous geomet­
ric problems have an optimal time complexity of O(nlogn).
With p processors, 0(~logn) time performance is desired.

However, it can be realized only when p ::=; log 2 n, where
:)p > ~logn. The number of the processors used are very

few in that case and the utility of each processor is 1003,
although the time needed is greater than 0(y'n).

When p > log2 n, our working area is bounded by
T = Tn and the processors can not be utilized with 1003
efficiency. This is because of the bandwidth limitation. The
machine model we used is a limited-connectivity processor
network. We avoided the complicate interconnections in the
machine building at the cost of the loss in time performance.

When n10re than n processors are given where n is the
size of the problem, we can find in surprise that T increases
as p increases. It demonstrates that to put more than n pro­
cessors in operation is just a west. We can not gain anything
in time performance, because of that the time complexity
is bounded by the diameter of the mesh.

In a word, 0 < p < log 2 n corresponds to the computa­
tion bound region in Fig. 9, log 2 n < p < n corresponds to
the connection bound region, and p > n corresponds to the
diameter bound region.

IV. Conclusions

Parallel MCC algorithms for solving visibility problems
are presented. Given a set of n simple objects in the plane,
our algorithms can find a parallel view or a perspective view
of them on a fox fo MCC, and have the optimal 0(y'n)
time complexity. Methods for solving above tasks on MCC's
with p processors, is also described, where p < n. We ana­
lyzed their time complexity and the limitations imposed by

the computational and communication requirements. The
result is considerable significant since it provides a well per­
formed approach for solving a general problem often occured
in practical MCC applications.

References

[l] T. Asano, "Efficient algorithms for finding the vis­
ibility polygons for a polygonal region with holes,"

99

manuscript, Dept. of Electrical Engineering and Com­
puter Science, University of California at Berkeley,
1984.

[2] C. D. Thompson and H. T. Kung, "Sorting on a mesh­
connected parallel computer," Commun. ACM, vol. 20,
no. 4, Apr. 1977, pp. 263-271.

[3] D. Nassimi and S. Sahni, "Data broadcasting in SIMD
computers," IEEE Trans. on Computers, Vol. C-27,
no. 2, 1979, pp. 2-7.

[4] AD. Nassimi and S. Sahni "Finding connected compo­
nents and connected ones on a mesh-connected Parallel
Computer," SIAM J. Comput., Vol. 9, No. 4, 1980,
pp. 744-757.

[5] M. J. Atallah and S. R. Kosaraj, "Graph problems on a
mesh-connected processor array," J. of ACM, Vol. 31,
no. 3, July, 1984, pp. 649-667.

[6] R. Miller and Q. F. Stout, "Computational geometry on
a mesh-connected computer," Proc. of 1984 Int. Conf.
on Parallel Processing, 1984, pp. 66-73.

[7] H. El Gindy and D. Avis, "A linear algorithm
for computing the visibility polygon from a point,"
J. of Algorithms, Vol. 2, 1981, pp. 186-197.

[8] D. T. Lee, "Visibility of a simple polygon," Computer
Vision, Graphics, and Image Processing, Vol. 22, 1983,
pp. 207-221.

[9] Takao Asano, Tetsuo Asano, L. Guibas, J. Hershberger
and H. Imai, "Visibility-polygon search and Euclidean
shortest paths," Proc. of Symp. Found. Comput. Sci.,
1985, pp. 155-164.

[10] H. Edelsbrunner, M. H. Overmars and D. Wood,
"Graphics in flatland: a case study," Advances !.!!
Computing Research, F. P. Preparata, ed., Vol. I, JAI
Press Inc., 1983, pp. 35-59.

[11] D. T. Lee, "Proximity and reachability in the plane,"
Ph.D. Dissertation, University of Illinois at Urbana­
Champaign, 1978.

[12] E. Welz!, "Constructing the visibility graph for n
line segments in 0(n 2) time," Inform. Processing Lett.,
Vol. 20, 1985, pp. 167-171.

[13] T. Lozano-Perez and M. A. Wesley: "An algorithm for
planning collision-free paths among polyhedral obsta­
cles," Commun. ACM, Vol. 22, 1979, pp. 560-570.

[14] M. Lu and P. Yarman, "Solving geometric proximity
problems on mesh-connected computers," Proc.of 1985
IEEE Comp. Soci. Workshop on Comp. Architec. for
Pattern Analysis and Image Database Management,
Miami Beach, Florida, Nov. 1985, pp. 248-255.

[15] M. Lu, Ph.D. Dissertation, Department of Electrical
and Computer Engineering, Rice University, 1987.

[16] M. Lu and P. Yarman, "Optimal algorithms for
rectangle-intersection problems on a mesh-connected
computer," Journal of Parallel and Distrib. Comput.,
5, 1988, pp. 154-171.

[17] M. Lu and P. Yarman, "Geometric problems on two­
dimensional array processors," Circuit, Control and
Signal Processing, Vol. 7, No. 2, 1988, pp. 191-211.

[18] K. E. Batcher, "Sorting networks and
cations," Proc. AFIPS 1968 SJCC, Vol.
Press, Montvale, N. J., pp. 307-314.

Figure l

0

their appli-
32, AFIPS

Direction of view

0

Figure 3 • A parallel view of a set of objects

[19] D. E. Knuth, The Art. of Computer Programming, Vol.
3: Sorting and Searching, Addison-Wesley, Reading,
Mass., 1973.

[20] M. Lu, "Solving problems on MCC's of smaller size,"
to be published.

Figure 2. A perspective view of a set of objects.

't>Q I I I
I 1 I I
I I i':;-.1 I
I I "2..J I
I I I I I

a-l--____j / / /
l~

3 2 I view O

Figure 4

100

A:
B:

A B

0
I

0
I

Figure 5·. Two partition points: (A) at the leftmost point
of an object and (B) at the rightmost point of an object.

View View View
of A of B AUB

. 0 0 0

~,, 5 ~ I . - ~

' .3 0 ~'\ '--- I

~'0
z 5 5 y 8 8

- ., 4

~I
-- 4 4 -- ' < 1

16'

·1
1

'-.I \ I
6 \ I

"
0

Figure 6

Figure 7

101

of

T

(a)

T=fif

r=..!!..
JP

(b)

Figure 8 Figure 9

102

On Array Storage For Conflict-Free
Memory Access For Parallel Processors 1

Meera Balakrishnan, Rajiv Jain and C. S. Raghavendra
Department of Electrical Engineering - Systems

University of Southern California
Los Angeles, CA 90089-0781

Abstract

In a parallel processing system with N processors sharing N
memory modules, storing a matrix for conflict free access is
an important problem. In this paper we propose a method
for storing an N x N matrix in N memory modules such
that any row, column, forward or backward diagonal of the
matrix can be accessed by the processors without conflicts.
It is shown that this problem is similar to the Magic Square
Puzzle, and algorithms are presented for storing the matrix
when N = 2n for n 2". 2 and for odd N.

1 Introduction

Pipelined machines and array processors depend on an un­
interrupted flow of data for high performance and hence
the organization of vector elements in the memory mod­
ules is of prime importance. Any conflicts in data fetch can
severely degrade the performance of these machines. For
example, a matrix application program may generate an
access request for a row of an N x N matrix (vector) stored
in N memory banks. If all the N vector elements are in one
memory module, N separate memory accesses will be re­
quired to retrieve an N element vector. On the other hand,
a single access is sufficient if the vector elements are spread
across N memory modules. In the case of memory con­
flicts additional cycles are required to resolve the conflict.
The processor-memory speed will no longer be balanced,
reducing the processor speed by a factor proportional to
the number of conflicts in any memory module.

In our model of a parallel processing system, we consider
N = 2n, n 2". 2, processors connected to N memory modules
by an interconnection network, as shown in Fig. 1. Given
an N x N matrix, we have to find a storage organization for
each element a;; of the matrix, such that the elements of
any row, column, forward or backward diagonal of the ma­
trix are in different memory modules and can be accessed
simultaneously. The problem, thus, is to find a mapping
f such that for every element a;;, f(i,j) = m. Here m is
the memory module number in which a;; is stored and f is
such that rows, columns and diagonals can be retrieved in
a single memory access.

1This research was supported by the NSF (Contract No. MIP-
8452003) with matching funds from the AT&T Information Systems.

2

PL2

Interconnectton Network

Ftg.1 Parallel Processtng System Model

Definitions And Related Re­
search

In the remainder of this paper, N = 2n denotes the num­
ber of processors and M denotes the number of memory
modules.

Many authors [3,4,5,6,7,8] have addressed the issue of
conflict-free access to various vectors (ex. rows, columns,
diagonals) of a matrix. The function /which assigns a mem­
ory module to each element of the matrix is called the skew
function. f is a linear skew function if the indices. of th~
element a;; form a linear combination of the type ki i + k2J,
where k1 and k2 are integer constants. Lawrie [5] has shown
that for M = N, and even value of M, it is not possible
to find a linear skew function for conflict-free access to the
rows columns and diagonals of an N x N matrix. Bud­
nick 1and Kuck [3] have shown that for an N x N matrix
(N = 22k, k is a positive integer), a linear skew function
cannot provide conflict-free access to the rows, columns,
diagonals and N~ x N~ blocks when stored in N = M
memory modules.

Furthermore, Shapiro [6] has claimed that for rows,
columns and diagonals (forward and backward), if there
does not exist a linear skew function for M = N = 2n for
providing conflict-free access, then, there is no valid skew­
ing scheme of any type whatsoever. Deb [4] has provided
a counter example (Fig. 2) which shows that it is indeed
possible to store a 4 X 4 matrix (i.e. M = N = 2n, n = 2
) with conflict-free access to rows, columns and the main ·
forward and backward diagonals.

In the remainder of the paper we show that an N x N matrix
can be skewed for conflict-free access to rows, columns and
the main forward and backward diagonals for N = 2n for
n > 2 and for odd N by mapping the problem to a variation
of the famous Magic Square Puzzle. We assume that M =

103

N. The following paragraph defines the mapping to the
Magic Square Puzzle.

Fig. 3a shows a 4 x 4 matrix without skewing and with
the linear address of each element marked. Fig. 3b shows
the elements in their skewed positions as determined by
some (unknown) skew function. Let us reduce the linear
addresses of Fig. 3b to their mod-4 values, add 1 and gen·
erate the matrix in Fig. 3c. It can be seen that the numbers
1, 2, 3 and 4 occur in each row, column and main diago­
nals exactly once. If we superimpose Fig. 3c on Fig. 3a
to generate the matrix in Fig. 3d, we see that associated
with each element of the unskewed matrix is a number that
assigns it to a memory module. Notice that the skewing
has made no change in the row index of the element. This
assignment results in the skewed matrix in Fig. 3b.

We see that for any N x N matrix, if there exists an­
other N x N matrix A whose elements only take on values
1, 2, · · ·, N such that each value occurs exactly once in any
row, column or diagonal (or any other desired vector), then
each of these vectors of length N can be accessed without
conflict when stored in N parallel memory modules. The
matrix A is called the N x N assignment matrix. Fig. 3c
is an example of a 2 x 2 assignment matrix.

The following definitions are valid for N = 2n.

Definition 2.1 Let a vector (1, 2, ... , N) be partitioned into
equal segments of size k = 2•, for some integer e ~ 0. Then
the k-segment image permutation of the vector is defined
for 1 S x S N, as

As an example, the following is a 2-segment image permu­
tation for N = 8.

(12345678)
2 1 4 3 6 5 8 7

In the following definition a sequence of integers which oc­
curs in the construction of the assignment matrix is defined.

Definition 2.2 Let the bit representation of integer x,
(1 S x S N -1}, be XnXn-1 • • • X2X1. Consider the represen­
tation of all integers from 1 to 2n - 1 arranged in ascending
order such that each integer occurs exactly once. Let x; bit
of the representation be given a weight of 2;. Then the jth

element of the sequence is defined as the weight of the least
significant occurrence of 1 in the binary representation of
the jfh integer in the sorted list.

For example, if n = 3, the sequence of length 7 is (2, 4, 2,
8, 2, 4, 2). Also, sequence(i), 1 sis N - I, returns the ;th

element of this sequence.

0 1 2 3

a11 a12 a13 a14
a23 a24 a21 a22
a34 a33 a32 a31
a42 a41 a44 a43

Ftg.2 Counter Example

a41 a42 a43 a44

(a) Unskewed Matrtx
wtth Llnear Addresses

1 2 4 3

3 4 2 1

2 1 3 4

4 3 1 2

(c) Linear Addresses
After Taking Modulus 4

and Adding 1

a43 a44 a42 a41

<bl Skewed Matrtx
wt th Ltnear Addresses

a41 a42 a43 a44

(d) Matrtx with Memory
Module Asstgnment

Ftg. 3 Memory Module Asstgnment
for 4•4 Matrtx

The rows of the assignment matrix A are numbered from 1
(topmost) through N (bottom) and the columns are num­
bered from 1 (leftmost) through N (rightmost).

3 Proposed Solution

In the Magic Square Puzzle [2] numbers ranging from 1 to
N 2 are entered in an N x N matrix such that the sum of
each row, column or diagonal is a constant. Our problem
requires numbers ranging from 1 to N to be entered such
that each row, column and diagonals add up to N(~+ll. We
solve the problem by breaking it into two cases, namely,
N = 2n for an integer n ::=:: 2 and an odd value of N. We
shall consider the former case first as the latter case has a
trivial solution.

104

3.1 N=2n,n2:'.2

Benson and Jacoby [2] have generated all possible magic
squares of the 4th order (ie. 4 x 4 matrix) using numbers
ranging from 1 to 16 exactly once. This was done in the
1970's with the aid of the computing facilities at Dickinson
College, Carlisle, Pennsylvania [2]. Exactly 880 such magic
squares were generated by the computer. This verified the
result claimed by Frenicle who published the 880 magic
squares in 1693.

These squares have been classified into twelve basic types,
depending on the relation between numbers of the same
row, column, forward diagonal or back-diagonal [2]. One of
the basic types is shown in Fig. 4. Arcs have been drawn
between elements whose sum is a constant. Also, each col­
umn adds up to a constant. This type is the most relevant
of the squares-types to our problem of generating the as­
signment matrix for conflict-free access. Compare Fig. 4
with Fig. 3c. Using this clue we were able to systematically
generate the skewed matrix for N = 2n, n;::: 2.

Fig. 5 shows the assignment matrices for N = 4, N = 8,
and N = 16. These matrices are divided into four quad­
rants, of If- x If- cells each. We observe that some properties
of the assignment matrix help to simplify its construction.

Property 1: Exactly 1 through N numbers are used as
valid entries.

Property 2: Each of the numbers occur exactly once in
any row, column or diagonal.

Property 3: Every two numbers specified by the arcs in
Fig. 4 add up to N + 1. Thus all entries in any of the upper
(lower) quadrants can be generated if the entries in the
corresponding lower (upper) quadrants are known. That
is, A[N + 1 - i][j] = N + 1 - A[i][j], where (1 ::; i::; ~).

Property 4: Every column i, (1 ::; i ::; Jf-), in the left
quadrant (upper or lower) is a If- - segment image permuta­
tion of the (N + 1- i) column of the corresponding (upper
or lower) right quadrant.

It is therefore sufficient to generate any one quadrant of
the N x N matrix. The remaining quadrants can be easily
generated from this quadrant as shown by the above prop­
erties. Algorithm 1 gives the construction of the N x N
assignment matrix A. The algorithm is coded in the C
programming language.

Lemma 3.1.1 If any vector X of size 2n is a permutation
in the range 1 to 2n then, a vector Y which is computed as

Y[i] = zn+i + 1 - X[i]; 1 ::; i ::; 2n

is a permutation in the range (zn + 1) to zn+l.

Theorem 3.1.1 Algorithm 1 generates an N x N assign-

diagonal.

((((
Fig.4 A Basic Type of

a 4*4 Magic Square

Proof: We shall individually prove that every row, column
and the forward and backward diagonal is a permutation.
Each of these proofs is done using the induction technique.

We shall prove that the forward diagonal elements form a
permutation. The proof for the backward diagonals can be
done using similar reasoning. Fig. 6a shows the structure
of the assignment matrix for N = zi, and Fig 6b. for N =
2H1 . Tracing through the algorithm, we observe that it
maps the shaded areas of the Fig. 6a to the corresponding
shaded areas in Fig. 6b.

Basis : N = 4. The assignment matrix given in Fig. 5a is
generated from the algorithm. The diagonal elements form
a permutation on numbers in the range 1 to 4 in the 22 x 22

assignment matrix.

Hypothesis : The diagonal elements form a permutation
on numbers in the range 1 to 2i in a 2i x zi assignment
matrix (Fig. 6a).

Induction Step : Consider the blocks along the forward
diagonal of Fig. 6b. The diagonal elements of the shaded
blocks form a permutation in the range 1 to 2i (induction
hypothesis). We shall now show that the values along the
forward diagonal of the unshaded blocks form a permuta­
tion in the range 2; + 1 to 2H1 • Notice that the diagonal
elements of the unshaded blocks are generated from the
elements of the back diagonal of the matrix of Fig. 6a ac­
cording to the following equation:

A[i][k] = zi+l +I - A[zi +I - jj[k]

\;/ j, k E diagonal elements of the unshaded blocks.

Since A[zi + 1 - j][k] lists the elements of the back diago­
nals of the assignment matrix of dimension 2; x 2; and is a
permutation in the range 1 to 2', the diagonal elements of
the unshaded blocks must be. a permutation in the range
21 +1 to 21+1 (by Lemma 3.1.1). This completes the proof
that the forward diagonal is a permutation.

We shall now prove that every column of Fig. 6b forms a
permutation.

ment matrix such that each integer between 1 and N occurs Basis : For N = 4, every column of the 4 x 4 matrix of
exactly once in every row, column, forward and backward Fig. 5a is a permutation.

105

Hypothesis : The columns of the 2• x 2• matrix shown in
Fig. 6a are permutations in the range 1 to 2•.

Induction Step : Consider a single column of blocks in
Fig. 6b. From the induction hypothesis the columns of
the shaded blocks form a permutation in the range 1 to 21•

From Property 3 (Section 3) it is clear that each shaded
block generates one unshaded block according to

A[jJ[k] = 21+1 + 1 - A[21 +1 - jJ[k]

Vj, k E unshaded blocks. Therefore A[j][k] are unique in the
range 21+1to21+1 and by Lemma 3.1.1 form a permutation.

Finally, we shall prove that every row of the assignment
matrix A also forms a permutation.

Basis : By inspection of Fig. 5a, for N = 4, every row is
a permutation.

Hypothesis : The rows of a 2• x 21 assignment matrix
(Fig. 6a) are permutations. We first show that rows of the
lower right quadrant when concatenated with the rows of
the upper left quadrant form a permutation in the range 1
to 21 (Fig. 6a). The reasoning is as follows. By Property 4
(Section 3), the lower left quadrant is generated from the
lower right quadrant by performing an If- segment image
permutation on the columns of the lower right quadrant.
This transformation maps row j of the lower right quadrant

Nby2 = N / 2;
/*Generate the lower-right quadrant*/
for (i = l; i :S N; i += 2) {

il = Nby2 + ((i - 1) I 2);
A[il][Nby2] = N - i;
A[il][Nby2 + l] = N - i + 1; }

for (i = l; i < (Nby2 - 1) / 2 + 1; i++) {
il = sequence[i - l];

}

x = Nby2 + (i - 1) * 2;
y = Nby2 + (i * 2);
for (a= O; a< (Nby2 / il); a++)

for (b = O; b < il; b++) {
A[Nby2 + (a+ 1) * i1 - b - l][y] =
A[Nby2 + (a* il) + b][x];
A[Nby2 + (a+ 1) * il - b - l][y + 1] =
A[Nby2 + (a* il) + b][x + 1]; }

/* Generate the remaining quadrants * /
for (i = O; i < Nby2; i++)

for (il = O; il < Nby2 / 2; il++) {
A[il + Nby2 I 2][i] = A[il + Nby2][i + Nby2];
A[il][i] = A[il + (3 * Nby2) I 2][i + Nby2];}

for (i = O; i < Nby2; i++)
for (il = O; il < Nby2; il ++) {

A[il + Nby2][i] = N + 1 - A[Nby2 - 1 -il][i];
A[il][i + Nby2] = N + 1 - A[N - 1 - il][i + Nby2];}

Algorithm 1: Generation of Assignment Matrix

to row (N + 1 - j) of the lower left quadrant (1 ::; j::; Jf).
Thus the numbers in row (If- + 1 - j) of the lower left
quadrant are identical (though not in the same order) with
those in row j of the lower right quadrant. The numbers in
row j of upper left quadrant are obtained from row (If +
1 - j) of lower left quadrant by Property 3. Therefore,
row j of the upper left quadrant cannot· have numbers in
common with the numbers in row (Jf +l -j) of the lower
left quadrant, and hence are also different to the numbers
in row;' of the lower right quadrant. Furthermore, row j of
the upper left quadrant is a permutation. This proves that
the rows of the lower right quadrant when abutted with the
rows of the upper left quadrant, form a permutation in the
range 1 to 2•. We will use this result in the induction step
to show that the rows of Fig. 6b are indeed permutations.

Induction Step : We have proved in the hypothesis step
that the rows of the upper left quadrant and the lower right
quadrant of Fig. 6a when abutted form a permutation.
Thus, the shaded top row of Fig. 6b is a permutation. By
Lemma 3.1.1, the bottom unshaded row in Fig. 6b is a
permutation in the range 21 + 1 to 21+1. Thus the whole
of the bottom row, the shaded as well as the unshaded,
together form a permutation. Using a similar argument,
every row of the assignment matrix can be shown to be a
permutation.

Hence every row, column and the forward and backward di­
agonal of the assignment matrix A generated by Algorithm
1 is a permutation. •

Algorithm 1 has a complexity of O(N2) as each cell of the
matrix A is visited exactly once and there are N 2 cells. The
assignment matrix is superimposed on the data matrix to
obtain the memory module assignment for each element of
the data matrix for conflict-free access to rows, columns
and main diagonals. That is, if the number corresponding
to a;; is m in the assignment matrix, then element a1; is
stored in memory module m.

procedure generate-quadrant(N)
{

}

y=l;i=O;j= r/fl:
A[i][j] = y;
while (there is an empty cell) {

y = (y)mod(N) + 1:

}

if (A[(i - l)mod(N)][(j + l)mod(N)] is empty) {
i = (i - l)mod(N);
j = (j + l)mod(N);
A[i][j] = y;

}
else {

}

i = (i + l)mod(N);
A[i][j] = y;

Algorithm 2: Procedure to generate assignment matrix for
odd N

106

3.2 Odd Values of N

In this case, where N is odd, the solution of the magic
square problem is trivial. Let the cells of the N x N matrix
be labelled as a;;, where 0 :::; j :::; (N - 1). Algorithm 2
generates the desired assignment matrix. The proof that
Algorithm 2 generates a permutation can be found in [2].
An example of an assignment matrix for N = 7 is given in
Fig. 7.

4 Conclusion

In this paper we have presented an algorithmic solution to
the problem of aligning data for conflict-free access to rows,
columns and the main diagonals. The method presented in
this paper for generating module numbers can be used in
the table lookup technique as employed in GFll [1]. How­
ever, it is not practical for large matrices. A skew function
therefore needs to be extracted from the information in the
assignment matrix so that, given the indices, the function
assigns the memory module. It appears that this function

is nonlinear. An alignment interconnection network that
will implement the permutation defined by the skew func­
tion can then be synthesized. The feasibility of modifying
the assignment matrix to accommodate conflict-free access
to broken diagonals and N! x N! sub-matrices, also needs
to be studied. Furthermore, the possibility of N taking
any even value, not necessarily a power of 2 needs to be
considered.

4 2 8 6 5
2 4 6 8 7

1 2 4 3 8 6 4 2 1
3 4 2 1 6 8 2 4 3
2 1 3 4 6
4 3 1 2 2 1 4 3 5 6 7 8

8 7 6 5 3 4 1 2
(a) N = 4 6 5 8 7 1 2 3 4

(b) N = 8

7 8 5 6 3 4 1 2 16 15 14 13 12 11 10 9
5 6 7 8 1 2 3 4 14 13 16 15 10 9 12 11
3 4 1 2 7 8 5 6 12 11 10 9 16 15 14 13
1 2 3 4 5 6 7 8 10 9 12 11 14 13 16 15

15 16 13 14 11 12 9 10 8 7 6 5 4 3 2 1
13 14 15 16 9 10 11 12 6 5 8 7 2 1 4 3
11 12 9 10 15 16 13 14 4 3 2 1 8 7 6 5

9 10 11 12 13 14 15 16 2 4
-8- 7 6 5 4 3 2 1 15 16 13 14 11 12 9 10

6 5 8 7 2 1 4 3 13 14 15 16 9 10 11 12
4 3 2 1 8 7 6 5 11 12 9 10 15 16 13 14
2 1 4 3 6 5 8 7 9 10 11 12 13 14 15 16

16 15 14 13 12 11 10 9 7 8 5 6 3 4 1 2
14 13 16 15 10 9 12 11 5 6 7 8 1 2 3 4
12 11 10 9 16 15 14 13 3 4 1 2 7 8 5 6
10 9 12 11 14 13 16 15 1 2 3 4 5 6 7 8

(c) N = 16

Fig. 5 Assignment Matrices

References

[1] J. Beetem et. al, The GFll Supercomputer, 12th.
Annual Inter. Symp. on Comp. Arch., 1985.

[2] W. H. Benson and 0. Jacoby, New Recreations
With Magic Squares, Dover Publications Inc., New
York, 1976.

[3] P. Budnick and D. J. Kuck, The Organization and
Use of Parallel Memories, IEEE Trans. Comp.,
Vol.C-20, No.12, Dec. 1971.

[4] A. Deb, Conflict-Free Access of Arrays - A
Counter Example, Inf. Proc. Letters, Vol.10, No.1,
Feb 1980.

[5] D. H. Lawrie, Access and Alignment of Data in
an Array Processor. IEEE Trans. Comp., Vol.C-24,
No.12, Dec. 1975

[6] H. D. Shapiro, Theoretical Limitations on the use
of Parallel Memories, Ph.D. Thesis, University of
Illinois at Urbana-Champaign, 1976.

[7] H. D. Shapiro, Theoretical Limitations on the Ef­
ficient Use of Parallel Memories, IEEE Trans.
Comp., Vol.C-27, No.5, May 1978.

[8] H. A. G. Wijshoff and J. Van Leeuwen, On Linear
Skewing Schemes and d-Ordered Vectors, IEEE
Trans. Comp., Vol C-36 No.2, Feb. 1987.

•
(a) N = zi (b) N = zi+1

Fig 6. Proof for Diagonal and Back Diagonal

2 4 6 3 5 7
3 5 7 2 4 6 1

4 6 3 5 7 2
5 7 2 4 6 1 3

6 1 3 5 7 2 4

7 2 4 6 1 3 5

1 3 5 7 2 4 6

Fig. 7 Assignment matrix for N = 7

107

THE IMPACT OF RUN-TIME OVERHEAD
ON USABLE PARALLELISM

Constantine D. Polychronopoulos

Center for Supercomputing Research and Development
and Dept. of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

ABSTRACT

During the execution of a program on a parallel machine
run-time overhead incurs from activities such as scheduling,
interprocessor communication and synchronization. This
overhead is added to the execution time in the form of proces­
sor latencies and busy waits. As overhead increases, the
amount of parallelism that can be exploited decreases. We
consider two models of run-time overhead. In the first model
overhead increases linearly with the number of processors
assigned to a parallel task. In the second case, overhead is
logarithmic on the number of processors. We discuss ways of
computing optimal or close to optimal number of processors
for each case, as well as critical task size.

1. Introduction

The overhead involved with the simultaneous applica­
tion of many processors to the same task can be very
significant [PoKu87], [Poly86), [Rein85], [Cytr85). So far
most of the existing parallel processor systems have not
addressed the overhead issue adequately nor have they taken
it into account either in the compiler or in the hardware.
On the Cray X-MP, for example, microtasking can be
applied at any level, although it has been shown that below
a given degree of granularity microtasking results in a slow­
down [Cray85].

In this paper we analyze two widely used models of
overhead and their impact on the degree of parallelism that
we can exploit. Using these models we can compute an
approximation to the optimal number of processors for a
given parallel task. This is also equivalent to computing the
minimum size of an allocatable task. With these models we
then perform some measurements using simple parallel
loops. Finally we discuss ways of computing approximate
execution times of tasks at compile time.

2. Overhead of Parallel Tasks

As our machine model we choose a p-processor shared
memory or message passing system with homogeneous pro­
cessors. If T1 and TP are the serial and parallel exec~tion
times (on p processors) for a program PROG respectively,
then we define the speedup S of PROG on a p processor

p • f system to be SP = T 1/ TP. The efficiency of execut10n o

This work was supported in part by the National Science Foundation
under Grant No. NSF DCR84-10110 and NSF DCR84-06916, the U. S.
Department of Energy under Grant No. DOE DE-FG02-85ER25001,
and by donations from the Control Data Corporation and the IBM
Corporation.

108

PROG is then defined by EP = Sp/P [Kuck78]. It is clear
that for each program and for each system 1 ::; SP ::; p and
0 < EP ::; 1 [Bane79]. It is usually hard to precisely compute
T and T at compile-time. However, close approximations

1 P • 1 d are adequate in estimating overhead and performmg re ate
optimizations.

A program is composed of a collection of tasks where
tasks can be serial or parallel. Any pair of tasks can be data
dependent or independent on each other. The tasks and the
dependence relationships among tasks define the task graph
for a given program. Parallel tasks are composed of a set of
independent processes. Processes are serial entities i.e., they
always execute on a single processor. We assume that the
execution of a process is nonpreemptive.

We will consider the worst-case overhead incurred
with the parallel execution of processes. This is the familiar
fork/join operation which is employed, for instance, in gen­
erating several processes from a parallel DO loop. Such
parallel loops can be specified by the programmer or can be
the result of program restructuring. A particular type of
parallel loops which is used in this paper is the DOALL loop
[KLPL81]. The iterations of a DOALL loop are data
independent and therefore can be assigned to different pro­
cessors and can be executed in any order. A DOALL loop
defines a task; one or more iterations executing concurrently
on the same processor define a process. Parallelism at the
task level can be utilized by executing different tasks simul­
taneously. This is also known as high level spreading.

The question of interest to us is the estimation of the
critical process size or CPS. Informally, the CPS can be
defined as the minimum size of a process for which the exe­
cution time on a single processor is equal to the associated
overhead. When a parallel task is distributed to several pro­
cessors at run-time, it incurs a penalty or overhead that
limits the degree of exploitable task granularity. Consider
the parallel execution of a DOALL loop whose iterations are
spread across processors at run-time. Run-time overhead
may include several activities that do not occur during serial
execution. All processors involved, for example, will have to
access the ready-task queue in a serial mode since it is a
critical section. Different processors will get different itera­
tions of the same loop; At the end of the loop all processors
involved must pass through a barrier to determine that the
loop has been executed and that they are allowed to proceed
with the next task [PoKu87]. The fetching of instructions at
run-time can also be considered part of the overhead. Espe-

cially with self-scheduling, instruction prefetching cannot
work since, by definition, it is impossible to predict which
processor will execute the next task or the next iteration of a
loop. All these activities prolong the parallel execution time
of a program. None of the above occurs during serial
execution. This overhead, as would be expected, makes it
inefficient to execute in parallel small tasks or to use a very
large number of processors on even large parallel tasks. If
the task is not large enough to amortize the overhead, we
may end up with a parallel execution time which is larger
than the serial execution time.

The tasks involved in an instance of high level spread­
ing can be thought of as iterations of a DOALL loop whose
loop-body contains conditional statements, and therefore
different iterations have different execution times. Therefore
high level spreading can be reduced to the parallel loop case
where the number of iterations equals the number of
independent tasks in that set. Since it is impossible to pre­
cisely estimate the execution time of a loop body with condi­
tional statements, either at compile-time or at run-time, we
assume an average or a worst case value as discussed in Sec­
tion 5. For the moment let us assume that the loop-body for
a given parallel loop has a constant execution time.

Consider a DOALL loop with N iterations whose body
execution time is B units, and which is to be executed on a
system with p processors. Let us see how one can compute
an approximation to the CPS, i.e., the minimum number of
iterations (chunk) allocated to each idle processor. Each time
a processor dispatches one or more iterations of the loop it
incurs an overhead O". The question is to determine the
minimum chunk size k for which SP > I, or equivalently,

NB s = > 1.
P N/k

-(kB +O")
p

After simplification we get

k>----
B(p - I)

As one would expect, the chunk size is inversely proportional
to the number of processors executing the loop. For exam­
ple, if O" = B and p = 2 then at least k = 2 iterations should
be allocated each time. In what follows we concentrate on
determining the optimal number of processors that should
be allocated to a given parallel loop.

3. Two Run-Time Overhead Models

To analyze the run-time overhead we use two conjec­
tures that have been backed by empirical results [Cytr85],
[LeKK86], [Ston87). The first conjecture states that during
the parallel execution of a task the run-time overhead is
linearly proportional to the number of processors involved.
The second conjecture states that the run-time overhead is
logarithmically proportional to the number of processors.
Let us consider two examples where these two conjectures
are valid.

Consider the execution of a DOALL loop. on a set of p
processors connected to a common bus. If the iterations of
this DOALL are spread among the p processors, then all p
processors must execute a join operation before they are
allowed to proceed with the next task. If two lexically adja­
cent DOALLs Li and L 2 operate on the same array, it will

109

be necessary (in general) to execute a barrier synchroniza­
tion (join) between Li and L 2• Thus all processors executing
Li must finish before they start on L 2• Clearly the execution
of a barrier operation on a bus-based multiprocessor
involves O(p) steps in the worst case [Ston87]. In a
dynamic scheduling environment this overhead will also
occur during dispatching of iterations, assuming all proces­
sors start on a loop at the same time.

If the same example is used for p processors intercon­
nected in a tree structure, the barrier operation will take
O(logp) steps to complete. A more real-world example of
logarithmic run-time overhead are shared memory mul­
tiprocessors such as the Cedar and the Ultracomputer which
employ multistage interconnection networks. If no special
hardware is used and if synchronization is done through the
shared memory, then the logarithmic overhead case applies
here as well. The results presented in this section can be
used by the compiler to draw exact or approximate conclu­
sions for each task in a program, and can be used at run­
time to avoid inefficient processor allocations.

3.1. Run-time Overhead is O(p)
As mentioned above we can identify a parallel task

with a DOALL loop without loss of generality. Let T1 and
TP denote, as usual, the serial and parallel execution time of
a given task. Let N be the number of iterations of a
DOALL loop and B the execution time of the loop-body. If
the loop-body has a varying execution time the procedure of
Section 5 can be used to derive a worst case or average value
for B.

In this section we consider the case where the run-time
overhead is linearly proportional to the number of proces­
sors assigned to a parallel loop. Let O" 0 be the run-time
overhead constant which in general depends on the charac­
teristics of the code and the machine architecture. The com­
piler can supply the value of O" 0 for each loop (parallel task)
in the program. The serial execution time of a loop with N
iterations and a loop-body execution time of B would be
Ti=NB. The parallel execution time then on p-processors
would be

(I)

Consider (1) as a function of p. If overhead was zero, (1)
would be an integer-valued decreasing function. Since (1) is
not continuous it is not amenable to analytical study. We
can approximate the function in (1) by a continuous func­
tion, by eliminating the ceiling. We thus get

T(p)=NB/p +0"0 p. (2)

T(p) is a continuous real function in the interval (0, +oo),
with continuous first and second derivatives. Therefore we
can study its shape and determine the point where overhead
becomes minimal. In other words we want to find the value
of p for which (1) becomes minimum and therefore the
speedup of that task is maximized. The minimum value is
given by the following theorem.

Theorem 1. T(p) in (2) is minimized when the task is exe­
cuted on a number of processors given by

p0 =YNB /0"0 • (3)

Proof: First we show how (3) is derived and then prove that
it is indeed the optimal value for that task (loop). Consider
(2) which is an approximation to the parallel execution time
defined by (1). T(p) has a first derivative

dT(p) =T'(p)=- NB +O"o.
dp p2

(4)

The local extreme points of (2) are at the roots of its first
derivative, that is, at

Pol =±YNB /O"o (5)

and since we are only interested for values in the interval
(0, +oo), we discard the negative root Pr The second deriva­
tive of T(p) is

iT(p) "() 2NB > = T p = 0.
d 2 3
p p

(6)

T"(p) is always greater than zero and therefore the extreme
at (p 0 , T(p0)) is a minimum, where p0 is given by (5). If p0

is an integer that divides N, then the parallel execution time
TP is also minimized and it is given by

NB
T =----+0"0 YNB /0"0 =

P, YNB/O"o

VNii;: + VNii;: = 2VNif;:. (7)

Indeed if TP is the parallel execution time for any other p,
then p can be expressed asp= cYNB/0"0 where c is a
positive rational number. Then TP, < TP, or equivalently,

2VNiJ;: < Y(NB)20"0 / c2(NB) + V c20"!(NB) / 0"0 (8)

and if we· substitute x = NB O" 0 in (8) we have

2Vz < '\f;j1 + \l;2; -+ 0 < x(l + c4 - 2c 2)

and since x > O, we get (1 - c 2)2 > 0 which is always true.

•
Therefore p0 is the optimal value for T(p) and in certain
cases the optimal value for TP.

Corollary 1. For 0"0 ~ (NB)/4 the approximation function
T(p) defined in (2) satisfies

T(p) ~NB (9)

for any integer p ~ 0.
Proof: By substituting T(p) from (2) in (9) we have

NB 2
-+0"0 p >NB or 0"0 p +p(NB)+NB >O{lO)

p

(10) is a quadratic equation of p and since 0"0 > O, the ine­
quality in (10) is always true if the determinant D of the
equation in (10) is negative, i.e.,

2 NB
D =(NB) - 40"0 (NB) < 0 which gives us 0"0 > -.•

4

Corollary 2. If 0"0 ~ (NB)/k then the parallel execution
time for p ~ k is greater than the serial execution time, i.e.,
TP >Tr

3.2. Run-Time Overhead is O(logp)

Let us assume that the run-time overhead is loga­
rithmically proportional to the number of processors

assigned to a parallel task. Therefore, in this case the paral­
lel execution time is given by

T, = r~~ +0"0 logp. (11)

To determine the optimal number of processors that can be
assigned to a parallel task, we follow the same approach as
in the previous case. Again since (11) is not a continuous
function we approximate it with

NB
T(p) = - + 0"0 logp (12)

p

which is continuous in (0, +oo), with continuous first and
second derivatives. The corresponding theorem follows.

Theorem 2. The approximate parallel execution time
defined by (12) is minimized when

NB
Po=--.

O"o

Proof: The first derivative of (12) is given by

Ehl 1 NB O"o
= T(p) = - - + -.

dp p2 p
(13}

T 1(p) has an extreme point at

NB
Po=--.

O" 0

(14)

The second derivative of (12) at p0 is

• 2NB -0"0 p
3

T (p) =
3

p

• O" 0

and T(NB/O"o)=-->o
(NB)2

Therefore T(p) has a minimum at p = p 0 • •

However p0 is not necessarily a minimum point for (11). We
can compute an approximation to the optimal number of
processors for (11) as follows. Let E = rP,. 1- Po where
0 < E < 1. Then the number of processors p0 that "minim­
izes" the parallel execution time TP in (11) is given by

I - {LP.J if E:::;; 0.5

Po - rPo 1 if E > 0.5
(15)

where p0 = NB/0"0 • In the next section we see that (15) is a
very close approximation to the optimal number of proces­
sors for (11). The overhead problem was studied in a simi­
lar context in [Cytr85].

4. }.ieasurements

We can use the above models to derive an approximate
estimate of the effect of run-time overhead on the degree of
usable parallelism, and thus on execution time. We used (1)
to compute the actual execution time of a parallel task, and
(2) to compute its approximation function for the linear
overhead case. Similarly (11) and (12) were used for the log­
arithmic overhead case.

Figure 1 illustrates the execution time versus the
number of processors for a DOALL with N=150 and B=8
under (a) linear overhead, and (b) under logarithmic over­
head. Figures 2, 3, and 4 illustrate the same data for three

110

different DOALLs, whose N and B values are shown in each
figure. The solid lines plot the values of T,, the actual paral­
lel execution time. Dashed lines give the approximate execu­
tion times T(p). For these measurements a value of u0 = 4
was used. The overhead constant although optimistically
low, is not unrealistically small for (hypothetical) systems
with fast synchronization hardware. In all cases we observe
that as long as p :=;; N (which is the case of interest), the
difference between the values of the approximation function
T(p) and the actual parallel execution time T, is negligible.

Looking at Figures la and 3a we observe that when the
loop body is small, the associated overhead limits severely
the number of processors that can be used on that loop. For
these two cases for example, only 1/10 and 1/40 of the ideal
speedup can be achieved. When B is large however the over­
head has a less negative impact on performance. For the
case of Figure 2a for instance, 1/2 of the maximum speedup
can be obtained in the presense of linear overhead. The same
is true for Figure 4a. In all cases the logarithmic overhead
had significantly less negative impact on speedup.

5. Deciding the Minimurn Unit of Allocation

Estimating the projected execution time of a piece of
code (on a single processor) can be done by the compiler or
the run-time system with the same precision. Let us take
for example the case of a DOALL loop without conditional
statements. All that needs to be done is estimate the execu­
tion time of the loop body, and let it be B. For ou:r purpose,
the exact number of loop iterations need not be known at
compile-time. Since we know the overhead for the particular
machine and the structure of a particular loop, we can find
the critical block size for that DOALL that is, the minimum
number X of iterations that can be allocated to a single pro­
cessor such thats, > 1. This number X can be "attached"
to that DOALL loop as an attribute at compile-time. Dur­
ing execution the run-time system must assign to an idle
processor X or more iterations of that loop (but no less). In
case X :::;; N the loop is treated as serial.

Let us consider the code inside a DOALL loop. The
control-flow graph of a code module with conditional state­
ments can be uniquely represented by a directed graph. Con­
sider for example the code module of Figure 5 which consti­
tutes the loop body of some DOALL. The corresponding
control-flow graph is shown in Figure 6. Since there is no
hope of accurately estimating the execution time either in
the compiler or at run-time, we choose to follow a conserva­
tive path. The execution time of each basic block B 1, ••• , B 7

can be estimated quite precisely. We take the execution time
of the loop body to be equal to the execution time of the
shortest path in the tree.

The shortest path can be found by starting from the
root of the tree and proceeding downwards labeling the
-nodes as follows. Let t1 be the execution time of node 110

and 11 be its label. The root 111 is labeled 11 = tr Then a
node "; with parent node 111 is labeled with 11 = 11 + t1• AB
we proceed we mark the node with the minimum (so far)
label. In case we reach a node that has already been labeled
(cycle) we ignore it. Otherwise we proceed until we reach the
leaves of the tree. Note that the labeling process does not
have to be completed: If at some point during the labeling
process the node that has the minimum label happens to be
a leaf, the labeling process terminates. The path 11' that con-

111

sists of the marked nodes is the shortest execution path in
that code. The number of iterations required (conserva­
tively) to form the critical size is a function of the number of
processors as shown in Section 3. B, the execution time of 11',

1: B1
if cl then Bz
else :83

Bz
if c2 then goto
else if C3 then

exit

Ba

else B5

if C4 then B6
e·lse B7

1

B4

Figure 5. An example of conditional code.

c,c,

Figure 6. The control llow tree or Figure 5.

is given by the label of the last node of path 11'. A less conser­
vative approach would be to take the average path length,
assuming all branches in the code are equally probable. In
the example of Figure 6 the above procedures give us
B = 12 and B = 33.33 respectively.

8. Conclusions

Run-time overhead is an important issue for parallel
processor machines. Even moderately low run-time over­
head can significantly limit the amount of program parallel­
ism that can be exploited. In this paper we analyzed two
models of run-time overhead and we computed the optimal
number of processors that can be used for each case. The
measurements indicated that the approximations used model
closely the exact formulation of the problem.

Acknowledgernents: The author would like to thank the
anonymous referees for many useful suggestions.

REFERENCES
[Amda67] G. M. Amdahl, "Validity of the Single Processor

Approach to Achieving Large Scale Computing Cap&­
bilities,'' AFIPS Computer Conference Proc., Vol. 30,
1967.

[Bane79] U. Banerjee, "Speedup of Ordinary Programs," Ph.D.
Thesis, University of Illinois at Urbana-Champaign,
DCS Report No. UIUCDCS-R-79-989, October 1979.

Parallel
Execullon
Time

(•)

Pu""1
Tim•

(lo)

1000

10

' '

'
' '
' --------r·- ----
' __ T _____ _

prcJL,. 1000 10000

-----r-------r-------r-------
---·-:-·------r-------

.... ' : -·-r-·---·
101.-.~-i.-~-._~__

1 10 1000 1-
Figure 1. (a) linear and (b) logarithmic overheade !or /ol-200, B-4.

Parallel
Execution
Time

(a)

p...,,,,
(lo)

10 prcJL,. 1000 10000

10 1000 10000

Figure 2. (a) linear and (b) logarithmic overheade !or /ol-100, B•lOO.

(Cray85] "Multitasking User Guide," Cray Computer Systems
Technical Note, SN-0222, January, 1985.

[Cytr85] R.G. Cytron, "Userul Parallelism in a Multiprocessing
Environment," Proceedings of the 1985 International
Conference on Parallel Processing, St. Charles, IL, pp.
450-457, August, 1985.

[KLPL81] D.J. Kuck, R. Kuhn, D. Padua, B. Leasure, and M.
W olre, "Dependence Graphs and Compiler Optimiza­
tions," Proceedings of the 8-th ACM Symposium on
Principles of Programming Languages, pp. 207-218,
January 1981.

[Kuck78] D.J. Kuck, The Structure of Computers and Computa­
tions, John Wiley & Sons, New York, 1978.

[LeKK86J G. Lee, C. Kruskal, and D. J. Kuck, "The Effectiveness
or Combining in Shared Memory Parallel Computers in
the Presence oC 'Hot Spot'," Proceedings of the 1986

112

' .
' . .

Parallel
Ezccullon
Time

--1--·-··-·1------··;-·
(•)

... ----r-----
1 ~-.__~____

1

.
' ' ' '

lr ··-· ··t·----·;---·-··t··-----
1o' -·-----(-- -·:·--·-·-.t_·_-_-_-_-_-_-

1o' -------r-----(-- r

lo''--'~-~~ ~._._ ~_
1 10 1000

Figure 3. (a) linear and (b) logarithmic overhead& tor N-COOI, s-io.

'
' ' ' ' ' --·-'--·-----.1.--------'--------' ' ' ' ' '

Parallel 1
: :

Executloa 1 1 '

~~· lo' ··-·--·i--· --·!-··-----:--·-··-
1o' -------r-·---(--·-···-----

Pu""1
(lo)

1o•i...... - ~-._~__

lo'

lo'

101

l 10 ProJ.llon 1000 10000

'
'

.......................
'
'

---1--+------
' ' '

_______ ... ________ ... ________ ._ __
' ' ' ' ' ' ' ' '

..•
' ' ' ' ' '

10 1000 10000

Figure 4. (a) linear and (b) logarithmic overheads !or N-coo1, B-7000.

International Conference on Parallel Proceasing, St.
Charles, IL, August, 1986.

[PoKu87] C. D. Polychronopoulos and D. J. Kuck, "Guided SelC­
Scheduling: A Practical Scheduling Scheme ror Parallel
Supercomputers", IEEE Transactions on Computer1,
Vol. C-36, No. 12, December 1987.

[Poly86] C. D. Polychronopoulos, "On Program Restructuring,
Scheduling and Communication ror Parallel Processor
Systems", Ph.D. Dissertation, TR No. CSRD 595,
Center for Supercomputing R & D, University or Illi­
nois, August 1986.

[Rein85} S. Reinhardt, "A Data-Flow Approach to Multitasking
on CRAY X-MP Computers," Proceedings of the 10th
ACM Symposium on Operating Syste,,,,j Principles,
December, 1985.

[Ston87] H. Stone, "High Performance Computer Architecture",
Addison Wesley, Boston, 1987.

THE MICROFLOW ARCHITECTURE

Jon A. So/worth

Department of EECS (M/C 154)
University of Illinois at Chicago

P. 0. Box 4348
Chicago, Illinois 60680

(312) 996-0955

Abstract

An MIMD architecture dubbed Microflow is presented
which combines very low cost communication and syn­
chronization with the latency avoidance techniques of
uniprocessor architectures. The communication and syn­
chronization is implemented with extremely fast message
passing by having targets of messages be general purpose
registers. Communication between adjacent nodes can be
accomplished in the time it takes to execute one instruc­
tion.

A Microflow processor contains multiple windows, each
containing a context. This mechanism enables high per­
formance servers to be constructed in software while ena­
bling the server to have high priority and low overhead.

The message passing elements integrate smoothly with
RISC or even moderately horizontal instruction sets, ena­
bling Microflow to perform well even on those parts of the
code which do not parallelize well.

1. Introduction

In this paper, an MIMD architecture dubbed Microflow
is presented which combines very low cost communication
and synchronization with the latency avoidance techniques of
uniprocessor architectures. The name Microflow is derived
from extremely fine-grained message passing which extends
functional unit style data- and control- flow synchronization
and communication across processors. The peak communica­
tions performance per processor in Millions of Transmissions
Per Second (MTPS) is equal to the processor MIPS rate.

Assume a switch transition rate of four times the proces­
sor instruction rate. This message transmission rate means
that:

• Neighboring processors can communicate and syn­
chronize in about a few instruction cycles.

• Monitors (and other forms of remote procedure
calls) can be invoked in a few instruction cycles

And, on a computer with a thousand processors:

• Most distant processors can communicate and syn­
chronize in 4 machine instructions.

• Computer-wide synchronization can be achieved in
tens of instructions.

• Summing, enumeration, and-trees and or-trees can
also be achieved in tens of instructions.

The speed at which a parallel processor performs com­
munications and synchronization is an important metric of
performance. However, when the degree of parallelism is

113

larger than the number of processors, then the computation
can be broken into parallel chunks, each chunk can be most
efficiently run sequentially. Also, when the degree of paral­
lelism is smaller than the number of processors then it is the
speed of the uniprocessor which will increasingly determine
computation performance. Unlike other fine-grained archi­
tectures that we are aware of, Microflow performs serial code
at uniprocessor speeds. Hence, all of the traditional latency
avoidance speedup techniques are applicable, including:
memory hierarchy, prefetching, pipelining, word parallel
arithmetic and so forth. In addition, compiler optimizations
enable each processor to execute only those instructions
which are necessary for its part of the computation.

The Microflow design conservatively extends the tech­
niques for high-performance uniprocessor by integrating
switching hardware and augmenting processor design with
message passing. Although the hardware extensions are con­
servative, both new programming language constructs and
new compilation techniques are necessary to fully exploit the
Microflow Architecture [Sol87].

Our benchmark computation is to efficiently operate on
pointer-based data structures, although Microflow is also very
effective at both systolic processing and coarse grain parallel
processing. Pointer-based computations arise in symbolic
processing as in compiler optimization, computer-aided
design, data bases, and artificial intelligence applications.

2. Design

We shall define an integrated architecture as one which
combines both message passing and shared memory. Logi­
cally, message passing and shared memory are equivalent in
the sense that either technique can be used to simulate the
other. Integrated architectures have advantages over either
shared memory or message passing only if the hardware per­
formance of each is significantly better than simulation in
software. We describe how these performance advantages
are attained in Microflow.

2.1. Implementation of integrated architecture

In the succeeding sections, the implementation of loads
(shared memory) and of sends (message passing) are
described. All large scale parallel processors have an inter­
connection network, as shown in Figure 1. If the computer is
a message passing system, then the interconnection network
routes network messages from processors to nodes; if it is a
shared memory system, then the interconnection network
routes network messages between the memory modules and
the processors. Hence, in either case it is network messages
which are routed on the network.

Proco Proc1

Interconnection Network

Figure 1 - General large scale parallel processor scheme

2.1.1. Implementation of load

Loads are implemented in Microflow the same way as
on other high performance processors. Associated with each
register is a Full/ Empty bit. Registers with valid contents are
marked Full; Empty denotes that the register is reserved for
the result of an outstanding load.

A load performs the following functions:

(1) The register is marked as Empty.

(2) A network message is sent off-chip and routed to
the addressed memory module.

(3) The memory module fetches the value and replies
with a return network message which is routed to
the originating processor.

(4) The value is put in the register and the register is
marked as Full.

As in other high-performance computers, the processor
continues to issue instrut:tions until an instruction is encoun­
tered which requires a register which is marked Empty. Two
advantages are obtained:

• Multiple loads with different target registers can
execute simultaneously

• The use of both control flow pipelining (instruction
counter) and data flow (returning load values) is
more efficient than either mechanism. 1

2.1.2. Implementation of send

Before we discuss the architectural implementation,
message passing is presented on a more abstract level. The
semantics are that proc; sends a value to a communications
variable (cv) at nodej. As with registers, communications
variables are marked with Full! Empty. The sequence for a
send is:

(1) The originator, proc; sends a network message to cv
at nodej.

(2) The processor at nodej, procj issues a receive
instruction which marks the receiving cv as Empty.

(3) When the message is at nodej, and the cv to which
it is destined is marked Empty, the value is loaded
into the cv and the cv is marked Full.

Note that since the originating. and destination proces­
sors operate asynchronously, steps 1 and 2 may be inter­
changed. Nevertheless, the Full/ Empty interlock ensures
correct operation.

1 The instruction counter, while limiting choice, speeds up the execution by fetching
and decoding instruction prior to the arrival of data. In pure data flow schemes, it is the ar­
rival of data which triggers an instruction fetch, thereby adding a delay to data execution.

114

Architecturally, the issue arises whether to map these
cvs to memory locations or to registers. If the cvs are mapped
to memory, then the cv space is as large as the variable space,
but access is slow. Alternatively, if cvs are mapped to regis­
ters, there is only a small number of them available, but they
are at least an order of magnitude faster. Moreover, if the
receiver is ready before the sender, ne~ther memory nor net­
work bandwidth is consumed while the receiver busy waits.
Given sufficiently fast context switching, work could even be
done in the interim.

In Microflow, communications variables are mapped to
registers. The additional hardware is negligible since, in
effect, a send looks like a remote load.2 It is also worth noting
that the target of a send is a general purpose register; this
enables the compiler to choose the allocation between com­
putation and communication registers that best suit the pro­
gram.

The implementation of send ensures that a processor can
send or receive a message every cycle. Hence, peak
transmission rate is equal to instruction rate, enabling compu­
tations to exhibit speedups when executing only 1-3 instruc­
tions between transmissions.

The above arguments show that message passing and
shared memory easily integrate into the same architecture.
The judicious use of message passing also reduces network
traffic. For example, a shared memory implementation of
producer-consumer requires three uni-directional network
messages (one for the write, and two for the read). Using
message passing, the same function is performed by one net-

work message.3

2.1.3. Communication variable queues
Associated with each communications variable is a

queue which can contain up to P elements. The queue serves
two purposes:

(1)

(2)

It allows each processor to send to a cv without first
getting permission. This avoids an extra round trip

of network latency. 4

It reduces the amount of work each processor per­
forms by requiring it to look one place for "work".
Hence, no polling of cvs is required.

There is insufficient room on the processor chip to store
the queue. Therefore, both the initial segment of the queue
and the queue management control are implemented in the
cache. Once the queues grow beyond a certain size, the tail
of the queue is stored in main memory. This size is chosen so
that main memory references are infrequent.

Another issue that arises is how the processor and cache
chip communicate about the queue. Every time a processor
issues a receive or a load, the register and window specified
are provided to the cache. The cache maintains a duplicate

2 Since it is illegal for the software to use a register for both a cv and a load target, one
set of Full/Empty bits is sufficient for both putposes.

3 The example is simplified since a) multiple reads might be needed if the consumer
started reading before the producer produced the data and b) that there is. no handshaking to
ensure the message is not lost. The cost of handshaking can be made arb1tranly small by as­
sociating queues of length L and handshaking after every L items.

4 Large fan-in cvs do not imply a serialization point since the number of sends to a cv
may be of size p in the worst case, but is usually much smaller. For example, breadth first
search must ass.ume a graph-node at a processor node is connected to a node at every other
processor, even if this will rarely happen.

set of Full! Empty bits. Whenever the cache receives a value
for a register which is empty, that value is right away sent to
the processor chip, otherwise it is cached.

2.2. Context switching
Rapid context switching in Microflow is used for two

principle reasons; latency avoidance and the implementation
of servers. The use of fast context switching for latency
avoidance is well known. However, we believe its applica­
tion to servers is new.

Windowo

Window1

Window2

Off Chip Connnection
Figure 2 - Multiple windows per processor

The rapidity of context switching is achieved by replica­
tion of hardware resources. Each processor chip contains W
sets of registers, called windows and one ALU (see Figure 2).
Independent instruction streams are executed in Microflow's
windows, unlike the overlapping windows used in some
RISC architectures. Each window contains the entire proces­
sor state for a context; at most one context (or window) is
designated as current. The multiplicity of registers means
that not only can context switching be· performed without
saving or restoring registers but that the pipeline does not
even need to be flushed.

Ro

R,_1
Program Counter

Countdown timer

Quanta

1"""""00 B•tfu I
11 · I I

Status .__ __ _J

CAR'--------~
Figure 3 - Registers per window

Each window contains a set of general purpose registers,
a program counter, a countdown timer, a quanta size, an
instruction buffer, a status register, and a Communications
and Addressing Register (CAR). See figure 3. The CAR is a

115

multifield i;egister which enables the construction of very
complex network messages; however, most network mes­
sages are produced by a single 3-address RISC instruction.

Attempted use of
empty register

Reg becomes Full

Figure 4 - State diagram for windows

A window which is currently active remains active until
either its countdown timer reaches zero (expired) or it
attempts to use a register which is marked Empty (blocked).
The context then switches to the next window which is nei­
ther blocked nor expired and the countdown timer on the pre­
vious window is reset to the quanta size. This context switch
and reseting of timer the takes place concurrently with
instruction execution. Hence, no cycles are lost due to con­
text switching; and it is possible, for example, to run HEP
style instruction interleaving [Smi81] by setting the quanta to
one in all windows.

The processor instruction set is a normal RISC instruc­
tion set augmented with instructions for constructing complex
message (using the CAR) and the instructions:

send dest_processor,dest_register,value
receive R;

Where dest _processor and value are register contents and
dest _register is a literal. To send a message to a different
window, the window field of the CAR is set immediately
before the send.

The first window contains the application code and is
expected to consume the lion's share of the processor cycles.
Other windows contain server code that are invoked by the
application and proceed independently. Example of servers
include fetch&add, and-trees, and or-trees.

The server acts on a demand basis. Since context
switching is free (if no other window has any work to do, a
window will "switch" to itself), a small quanta is assigned to
the application thread, with larger quanta assigned to the
server thread. The application thread will execute only when
the server has nothing to do, and the server (which is infre­
quently busy) will respond almost at once.

Of course, server code could be executed in the applica­
tion window. But message arrival is asynchronous requiring
the application window to performed only message code (and
be idle waiting for messages) or to continue running the
application and interrupt on message arrival (implying a large
overhead). Neither of these alternatives are acceptable. By
using separate windows, the application can request a service
before the service needs it, thereby overlapping the applica­
tion with the server and avoiding latency.

The organization of separate server windows (and the.

low cost of embedding trees in the Microflow network)
makes servers sufficiently fast to perform combining opera­
tions in software (for fetch&add operations), and to replace
combining of reads with broadcast operations. We believe
that this should speed up switch operation by a factor of two
over combining switches [DKS85], while more easily ena­
bling high fan-in/fan-out switches. Not only will the network
run faster, but the software servers enable the construction of
trees that perform blocking functions. For example, the
and-tree requires all processors to supply a vote before any
result is returned. Such algorithms require busy waiting with
network combining techniques.
2.3. Node design

Each node consists of a processor, memory, and a
switch as shown in figure 5.

Memory -~-.... Processor

Switch

Cube Connection

Cycle
Out

Figure 5 - A Microflow Node

Each memory module is physically adjacent to some
processor, although all memory is globally addressable.
Since the processor node has a cache, the memory can be
constructed from inexpensive dynamic RAM chips. Since
the cache is snoopy, the processor can cache shared variables
whose location is in the local memory. This enables the
accessing of "hot-spot" variables to occur at cache rates
rather than at the much slower memory speeds. The switch
design performs only simple routing most of the time; when
the network becomes congested the switch starts to perform a
deadlock avoidance algorithm. This enables the switch to be
built for the maximum speed possible, and as we shall see,
this is particularly important on high fan-in/fan-out switches.

2.4. Network

The target applications and granularity of Microflow
require that trees (for the purposes of control) be inexpen­
sively embedded in the network, that is adjacent nodes in the
tree would be adjacent in the network. We have chosen
Cube-Connected Cycles (CCC) as our network [PrV81].
CCCs maintain many of the properties of Hypercubes,
including logarithmic diameter and good performance on
many Hypercube algorithms, but require hardware propor­
tionate to the number of processors P. (A Hypercube
requires hardware PlogP).

Fast switches play an important role in fine-grain paral­
lel processing. The switch shown in Figure 3 conceptually
contains two cycle connections, one cube connection and one
processor connection; however, k adjacent switches in a cycle
can be coalesced into one k-ary switch.

The number of wires in the interconnection network and
especially switch design will require messages to be packet­
ized. However, it is advantageous for a processor to have

116

parallel access to its memory. Therefore, the switch design
merges k packetized processor ports into a single sh~ed. bus.
Studies in uniprocessor systems with snoopy caches mdicate
that busses can support at least eight processors. For
Microflow this number is likely to be somewhat lower since
the bus is also being used for network traffic and because
more bus activity is required because of the fine-grain of the
application.

Memo Proco

cleln k-Switch CycleOut

CubeP k CubeP(j:ubeP o
Figure 6 - k-ary switch with shared bus

We note that in addition to the single cycle bus access,
by low interleaving the memory modules, a processor (or net­
work switch) can perform stores at peak performance. This
design enables this balance performance to be achieved with
a smaller number of total memory modules (over the design
in Figure 6).

3. Comparison to other architectures

The technique of multiple windows for latency
avoidance dates back at least to the peripheral processor units
(PPU) on the CDC 6600 [Tho70] and was first (and very
elegantly) proposed for parallel processors in CHOPP
[SuB77], in which the logarithmic random access delay was
masked by log(P) windows. Snoopy caches were first pro­
posed by Goodman [Goo83].

The use of Full! Empty bits on registers, or more com­
plex schemes, also dates back at least to the CDC 6600, and
probably much earlier. The first commercial computer to use
Full/Empty bits on memory is the Denelcor HEP [Smi81],
which used the bits as a means of performing fine-grained
dataflow handshaking. However, a consuming process would
have to busy wait if it was ready before the corresponding
producing process. To eliminate busy waiting, I-structures
[ArT80] provide a queue of waiting reads, which were
automatically triggered when a write occurred. Microflow's
message structure is more general than I-structures (and is
faster). For example, if a large number of reads are pending,
I-structures produce a serial bottleneck - in Microfiow, a
broadcast tree can be constructed resulting in no bottlenecks.

The Denelcor HEP also had Full/Empty bits on regis­
ters, and processes running on the same processor could com­
municate through sharing of register address spaces. How­
ever, there was no way for processes running on different
processors to effect each others register set, so that this
mechanism was not very heavily used.

The designs which Microflow is mostly closely related
to in spirit are the Connection Machine [Hil85] and
Message-Driven Processor (MDP) [DCC87]. The Connec­
tion Machine achieves synchronization by two means: its
SIMD instruction execution and a global network empty sig­
nal which ensures that all messages have been delivered. In
Microflow, fast point-to-point synchronization is the basic
mechanism. When global synchronization is needed, trees
are constructed in software. This mechanism enables a
heterogeneous set of operations to occur (MIMD), for net­
work accesses to be pipelined, for each processor to execute
only those instructions relevant it, to take advantage of
memory hierarchy (both faster and cheaper access).

The MDP communicates only by messages, but simuc
lates shared memory by having a message unit which is able
to simulate reads and writes. The MDP messages are sent to
objects which then must be invoked, resulting in delays to
fetch instructions and a very limited register set which caused
accesses to be made to local memory. To make these
accesses as fast as possible, memory is implemented on chip
thus restricting its size. The constraint of on-chip memory
also limits the ability to take advantage of the memory hierar­
chy, which reduces average access time, and its small size
increases communication and latency requirements.

4. Performance Parameters

The Performance Parameters for a Microflow architec­
ture are described in terms of the basic instruction rate of a
processor. Using current technology, a Microflow processor
would be implemented as a RISC augmented with multiple
independent windows and message passing instructions. Our
unit of time, the cycle time, is the rate of instruction execu­
tion. A network switch hop can be conservatively imple­
mented in .25 cycles. This means that adjacent node can
communicate in about 1 instruction time, for a k=4, pack­
ets=4 switch. Table 1 shows the Microflow parameters.

ODerati~n C_ycles
_lll'OCessor instruction 1
switch hop .25
adlacent node communication 1
furthest node communicati~ (P = 2K) 3
cache sJJ_eed .5
mem~ry_ module speed 2
mem~ read from furthest node (P = 2K) 8

Table 1 - Microflow architecture speed parameters

We have coded up a nutllber of algorithms, including
summing, enumeration, sorting (parallel quicksort), breadth-

first search, parallel prefix on linked-lists, matrix multiply
and inversion, and transitive closure. The number of server
windows was between 0 and 3 (with an average of 1/2).
Moreover, the number of registers needed were never larger
than logarithmic in the number of processors. Hence a lim­
ited number of communications variables seem to be needed
in an integrated architecture.

5. Conclusions
We have described some of the effects of implementing

integrated architectures (those containing both shared
memory and message passing) and discussed their perfor­
mance advantages over either shared memory or message
passing. The Microflow architecture is a very efficient imple­
mentation of.an integrated architecture. Microflow:

117

• Provides extremely fast message passing by having
targets of messages be general purpose registers.

• Provides enqueuing of messages destined to a single
register both to reduce handshaking delays across
the network and to eliminate polling by the receiv­
ing processor.

• Uses windows not only for latency toleration, but
for latency avoidance by extending hardware
latency avoidance techniques to software.

• Is extremely fine grained while maintaining the per­
formance advantages on serial code.

[ArT80]

References

Arvind and R. H. Thomas, "I-Structures: An
Efficient Data Type for Functional Languages",
Laboratory of Computer Science, Tech. Memo.
178, 1980.

[DCC87] W. J. Daley, L. Chao, A. Chien, S. Hassoun, W.
Horwat, J. Kaplan, P. Song, B. Totty and S.
Wills, ''Architecture of a message-driven
processor", 14th Annual Symposium on ARCH,
Pittsburgh, June, 1987.

[DKS85] S. Dickey, R. Kenner, M. Snir and J. A.
Solworth, "A VLSI combining network for the
NYU Ultracomputer", Proc., ICCD, October,
1985.

[Goo83] J. R. Goodman, "Using cache memory to reduce
processor-memory traffic", Proceedings of the
10th Annual Conf. on Computer Architecture,
Stockholm, 1983.

[Hil85] W. D. Hillis, The Connection Machine, The MIT
Press, Cambridge, Mass., 1985.

[PrV81] F .. Preparata and J. Vuillemin, "The Cube­
connected cycles: a versatile network for parallel
computation", Communications of the
Association for Computing Machinery 24, 5

(May 1981), 300-309.

[Smi81] B. J. Smith, "Architecture and applications of
the HEP multiprocessor computer system", Real
Time Signal Processing N, Proceedings of SPJE
298 (1981), 241-248, The International Society
of Optical Engineering.

[Sol87] J. A. Solworth, "Epochs", C. S. Dept, Jan. 1987.

[SuB77] H. Sullivan and T. R. Brashkow, "A large scale
homogeneous machine I & II'', Proceedings of
the 4th Annual Symposium on Computer
Architecture, 1977, 105-124.

[Tho70] J. E. Thornton, The Design of a Computer: The
Control Data 6600, Scott, Foresman and
Company Publishers, Glenview, Illinois, 1970.

Concurrent Miss Resolution in Multiprocessor Caches*

C. Scheurich and M. Dubois
Department of Electrical Engineering

University of Southern California
Los Angeles, California, 90089-0781

(213) 743-8080, dubois@priam.usc.edu

Abstract-The performance of cache-based, shared-memory
multiprocessors can suffer greatly from moderate cache miss
rates because of the usually high ratio between memory-access
and cache-access times. In this paper we propose a cache de­
sign in which the handling of one or several cache misses occurs
concurrently with processor activity. In multiprocessors, such
lockup-free caches aggravate the memory coherence problem.
The proposed design relies on a cache-block size of one word
and as a result is simple and efficient. A multiprocessor archi­
tecture, using lockup-free caches, is described and shown to be
correct. Through performance models, we identify system con­
figurations for which lockup-free caches are effective. Compiler
techniques, to take advantage of the proposed design, are illus­
trated at the end of the paper.

1. INTRODUCTION
Cache memories are commonly used to reduce the memory ac­
cess latency for both data and instruction accesses. Caches can
do this very effectively and economically [1). In shared-memory
multiprocessors caches are more important than in uniproces­
sors because the individual processors of a multiprocessor must
be connected to the shared memory through an interconnec­
tion. Increased memory access latency and conflicts reduce the
efficiency of each processor. Prefetching, which can reduce the
apparent access latency visible to the processors, is also more
difficult in multiprocessors because of the coherence problem
[2].

It is possible to design caches which do not block the pro­
cessor on an access miss-they are called lockup-free caches. In
such designs the processor may continue sending requests to
the cache both for data and instructions while the cache and
the main memory system are resolving one or several previ­
ous misses. Such a scheme was described by Kroft in [3] for
a uniprocessor. When processors are part of a shared-memory
multiprocessor, the design of lockup-free caches becomes diffi­
cult because of the added problem of maintaining cache coher­
ence.

In this paper we describe a multiprocessor architecture which
allows caches to be lockup-free and in which synchronization is
enforced by means of "hardware-guarded" primitives. We show
that the operation of the caches is, with a few exceptions, very
similar to that of lockup-free caches of uniprocessors. Further­
tnore, a straight-forward, snoopy cache coherence protocol can
be used to enforce inter-cache consistency. The benefit of this
architecture is that the overall cache 1niss penalty (i.e., the av­
erage time a processor is blocked because of a cache rniss) is
reduced and hence a small block size can be used to minimize

'This· research is supported by an NSF Research Grant No. CC:R-
8709997.

118

overall cache-memory traffic. Goodman [4, 5) has argued that a
block size of one word reduces memory traffic. Reduced memory
traffic increases the possible system throughput for a given in­
terconnection. In a different context, Lee et al. [6] have shown
that in a multiprocessor it is preferable to use a small block
size and to offset the penalty due to increased misses through
processor prefetching. In such systems "blind" prefetching of
instructions and data resulting from a larger block size is re­
placed by "smart" prefetching performed in the processor and
assisted by the compiler.

The performance advantage which can be reaped from a
lockup-free cache depends on the average shared memory access
time and on the dependencies within each instruction stream.
A performance model including these two parameters is devel­
oped and design trade-offs are discussed.

2. MULTIPROCESSOR CACHE OBSTACLES
2.1 Multiprocessor Cache Perforniance
Even small cache miss rates can have detrimental effects on the
throughput of high-speed processors. As the following evalua­
tion demonstrates, the efficiency of the processor can go down
rapidly when the memory access time is large or when the hit
ratio is low.

Let us assume a processor system with the following charac­
teristics:

X is the maximum throughput of the processor in MIPS (Mil­
lion of Instructions Per Second) if all accesses can be re­
solved by the cache (i.e., a cache hit rate of 1.0). X can
oft.en be easily estimated for a given processor architecture
and instruction mix.

d is the average number of accesses per instruction execution,
including instruction fetches, operand fetches and resultant
stores. It is called the demand rate.

Tm is the average time to resolve a miss via main memory.

h is the average cache hit rate.

t;,0 is the average time it takes to execute one instruction if all
accesses are cache hits (i.e., t;,o = 1/ X).

If the processor blocks on every miss, the average time to exe­
cute one instruction, t; is given by t; = t;,o+(l-h)dTm. Hence,
the average performance of the system, in MIPS, is reduced to

X' = X 1 ,,,+ci'~-'h)dT,,,. Dividing by t;,o and letting T,?, = Tm/t;,o,

yields X' = X H(l-\)dT~, = X F,. F, is called the slowdown fac­
to1'. It varies between 0 and 1 and the closer it is to 1, the better
the processor efficiencies. In Figure 1, the performance degra­
dation of a cache-based system is shown for different values of

h and T,~. As can be seen in Figures 1, even a system with
a relatively high hit rate of 0.98 can suffer substantially, if the
average main memory access time is high relative to the cache
access time. Particularly in the case of fast processors, the ratio
r::, is likely to be in the upper ranges shown in Figure 1.

In uniprocessors hit rates of 1 could not be obtainecl even
if the cache size was infinite, because of the initial loading of
instructions and data. After a context switch the cache expe­
riences a cold start period when most of the blocks of the new
process have to be reloaded [7, 8]. In multiprocessor caches,
data must also be invalidated because of the modification of
cached data by other processors. These invalidations reduce
the cache hit rate as compared to the uniprocessor case [9,
10]. Finally, it is well known [11], that a high average hit ratio
hides wide variations in the hit ratio of individual programs. A
truly general-purpose system should exhibit more uniform per­
formance for different workloads.

2.2 Multiprocessors vs. Uniprocessors
The easiest way to build cache-based multiprocessors is to in­
terconnect them with one or several buses. Since the buses
provide a broadcast medium which automatically serializes all
accesses, maintaining cache coherence is simplified. The prob­
lem with using buses lies with their limited bandwidth. Even if
processors have large private caches, a great deal of memory to
cache conununication is still necessary due to the need to prop­
agate data updates (usually in the forni of an (1) invalidation,
(2) fet.ch block sequence). Frequent updates and consequent
invalidations have two effects-they strain the bandwidth ca­
pabilities of the bus and they lower the invalidated caches' hit
rates. While small block sizes can reduce bus traffic, there is
the detrimental effect of lowering overall hit rates since caches
cannot benefit from the spatial locality of code and data. The
effect is particularly bad during cold start periods-after a con­
text switch, for example-when the cache misses on a large
number of consecutive accesses.

The benefits of small block sizes can be reaped if processors
are not constrained to wait for individual misses to be resolved
before initiating another access. The use of lockup-free caches
in multiprocessors is restricted, though, by the fact that logical
problem can arise when accesses are perfonned out of program
order. This may be the case in a lockup-free cache if, for ex­
ample, a miss is followed by a hit, with the result that the
access which hits is performed before the access which misses
because of the longer time to resolve the miss. The restriction
on the order in which accesses must be performed is due to the
possibility of inter-process dependencies [12].

If a system makes no attempt to enforce all inter-process de­
pendencies, and the progranm1er and compiler are aware of this
fact, then the out-of-program order execution of accesses by a
single process is allowable. (Of course intra-process dependen­
cies must still be preserved.) In such a system it is possible
to design caches to be lockup-free. However, after having re­
moved the possibility of using shared variables to implement
synchronization, there must be an alternate method available
to allow processes to synchronize. Special hardware recognized
primitives, such as the test&:set instruction, can be used to
implement synchronization.

2.3 Restrictions On Ordering
With respect to 'the ordering of events within a multiproces-

119

sor, the user (or compiler) may expect the system to adhere to
one of two logical models of behavior. In [12] these models are
called the strongly ordered and the weakly ordered model of be­
havior. In a strongly ordered system, processors must initiate
memory accesses one-by-one, in program order [13]. Further­
more, all processors must "observe" all other processors' write
operations in the same order. (By "observe" it is meant that an
update becomes readable.) A system that is strongly ordered is
sequentially consistent and can implement synchronization by
software alone.

A weakly ordered system assumes three types of shared data.

1. Instructions\ private data, and non-writable data can be
accessed and cached by all processors in any possible or­
der. Since non-writable data are never modified, no inter­
process dependencies can exist on such data. This is also
true for private data which are only modfied and read by
one processor.

2. All other ordinary shared writable data can only be mod­
illed in mutual exclusion. These are data used to transfer
information from one process to another.

3. Synchronization variables are data used to enforce mutual
exclusion on 11ri te accesses to ordinary shared writable
data. Synchronization variables are hardware recognizable
as such.

Data of type (1) pose no difficulty and will not be further dis­
cussed. Data of type (2) are user/compiler generated. Accesses
to such data must be protected by critical sections or semi­
critical sections [10]. In the first case data may only be read or
11ri tten by one processor at a time-the processor which has
gained access to the appropriate critical section. In the second
case, several processes are allowed to read the same data at the
same time hut updates must occur in a critical section.

Accesses to data of type (3) are synchronization primitives
such as test&:set operations. Since data modified within a
critical section cannot be read by another processor, while the
modifying processor is still executing the critical section, the
order in which the data are modified within the critical section
is immaterial. The only constraint for correctness is that all up­
dates have properly propagated when the critical section is ex­
ited. However, a processor is not "aware" whether it is presently
executing a critical section or not. Since critical sect.ions may
be nested or overlapped, keeping track of critical sections by the
processor is not simple. For correctness, though, it is sufficient
that all accesses of type (2) have propagated and completed,
before an access of type (3) can complete. If a synchronization
variable access is encountered, either a critical section is ent~red
into or one is exited from-in either case all previous accesses
must have been performed.

We summarize this section by defining four properties that
must he maintained for a weakly ordered system to remain cor­
rect:

Pl: Intra-process dependencies must be observed at all times.
Such dependencies must be treated as in any conventional
uniprocessor.

1We assume separation of instructions and data so that inst~uctions can
never be modified.

P2: Memory coherence must be maintained at all times. This
is true for all three data types. Any processor's read oper­
ation will always reflect the most recent write operation to
the datum. (Memory coherence of type (2) data only has
to be restored before the processor that modifies it exits
the critical section. However, since it is easy, we assume
that memory coherence is maintained at all times.)

P3: All modifications of type (2) data must be performed from
within critical sections. The compiler or the prograrmner
must ensure that no two or more processes can be in the
same critical section at the same time.

P4: All pending misses must be resolved before an access to
type (3) data can proceed, within a processor.

3. LOCKUP-FREE CACHES IN WEAKLY OR-
DERED SYSTEMS
We limit our discussion here to weakly ordered bus-based sys­
tems which adhere to property P2, decribed in the above Sec­
tion (i.e., memory coherence is maintained at all times for all
data).

3.1 Basic Operation
Most of the time the cache responds to processor requests of
type (1) and type (2) data. With respect to such data, the op­
eration of the cache is equivalent to the operation of a unipro­
cessor lockup-free cache. Kroft described the implementation
of such a cache in [3]. A basic overview of Kroft's principle
of operation is given here; for more details the original paper
should be consulted.

Multiple misses are resolved by storing information about
each and then forwarding the miss request, packaged along with
some vital return information, to the main memory. This is
accomplished with the following in mind.

• Local dependencies must be observed.

• If a missed and to-be-returned block is to be allocated,
space must be reserved in the cache for that block and, if
necessary, a replacement must be made.

• Miss requests must be tagged such that:

1. The word of the block which caused the miss is known.

2. The functional unit which the word is to be forwarded
to is known.

3. The slot in cache which is reserved for the block is
known.

Most of the above qualities are implemented by a set of asso­
ciatively accessible registers, called MSHR registers (Miss In­
formation/Status Holding Register), which keep track of the
status of all pending misses. Returned blocks are buffered in a
stack which can either be emptied, as contention allows, or can
directly be accessed to speed up irmnediate demands.

3.2 Multiprocessor Issues
Multiprocessor caches must react in a specific way upon type
(3) data accesses. An access to type (3) data means that a
synchronization point has been encountered. To adhere to P3,
a type (3) access must be disallowed until all pending accesses
have been resolved. In Kroft's type of architecture, this implies

120

that all MSHR registers must be empty before the synchroniza­
tion access can proceed. Once the access has been performed,
the cache continues to operate as usual, resolving misses and
hits concurrently, until another synchronization is encountered.

Type (3) data may be cached and are subject to coherence
control as are all other data. The only constraint on type (3)
data is that they are recognizable by the hardware. In modern
processors this is done by accessing these data through special
synchronization primitives, such as test&set operations. The
processor can inform the cache at the time of the access that
type (3) data are the target. A test&set instruction can be
executed indivisibly at the cache if an ownership scheme [14] is
used to implement cache coherence.

4. A SAMPLE ARCHITECTURE
Figure 2 depicts a sample architecture. The multiprocessor is
bus- based, with N processors connected to M memory modules
by one or several packet-switched buses. The programmer and
the compiler assume that the system behaves in a weakly or­
dered manner. The block size of the cache is one word (32 bits).

4.1 Processors
The specifics of the individual processor architectures are not
important. For the system to be useful, processors should be
able to prefetch operands and instructions as far ahead as pos­
sible. Since the block size is one word, write operations can
always proceed, whether or not the block is in the cache. That
is, since a write redefines the value of an entire block, the
block need not be fetched before modification. (How coherence
is maintained on such write operations is discussed in the next
Section.) However, this means write operations to bytes, or
half-words must be compiled to preserve the correct outcome
of the intended operation. We believe that this drawback is far
outweighed by the fact that write operations always hit at the
cache.

4.2 Caches and Cache Coherence
The complexity of the cache architecture depends on both the
number of MSHR registers implemented and on the cache co­
herence protocol used. The coherence protocol we suggest is a
bus-based, "snoopy cache" protocol. This protocol works either
for single or multiple packet-switched buses. In the absence of
better evidence, we assume that the number of MSHR registers
is four.

The cache block size is one word. Each block can be in one
of three states. Namely, RO (Read Only) to indicate that the
block may be shared with other caches and may not be modified
without broadcasting invalidations; RW (Read Write) indicates
that the block is private and may be modified without delay;
I (Invalid) indicates that the block is not valid (not in cache)
and must be requested over the bus if it is to be read.

The coherence protocol is very simple. A read hit may pro­
ceed at any time if the block is in state RO or in state RW. If
a read miss occurs on a block in state I, a request for the block
is placed on the bus (assuming that an MSHR register is avail­
able, otherwise the cache locks and the request will be posted
after the first MSHR register becomes available). A write op­
eration always appears to hit. If the block to be written is
indeed in state RW it may be modified without further action.
If the block is in state RO it is modified, and an invalidation
for the block is placed on the bus. The state of the block is

changed from RO to RW. If the block is either initially invalid
or not present it is immediately allocated and an invalidation
is broadcast. The modification of a block without having pre­
viously been fetched is allowed, since a single wri ta operation
always modifies the entire block. Note that it is not possible for
two processors to update the sarne block concurrently because
mutual exclusion prevents this from happening.

Only in three cases (read nliss, broadcast invalidations, and
write back) is the bus accessed. In the first case, the read re­
quest may either proceed to the memory for service, or the read
request is interrupted by the cache which contains the requested
block in state RW. The previous "owner" cache forwards the
block to the requesting cache, and changes the block's state
from RW to RO. During the transfer of the block, memory is
updated as well. The second type of bus activity (an invalida­
tion) causes all caches that contain the block (either in states
RO or RW) to invalidate their copies. Write-backs are only
necessary if a to-be-replaced block is in state RW. Blocks in
state RO can be overwritten.

The cache performs four basic tasks:

1. It responds to and services access requests from the pro­
cessor.

2. It monitors the buses for invalidations and accesses it must
respond to.

3. It receives returned blocks on which it previously nussed,
either from the memory or from another cache.

4. It replaces cache blocks as necessary.

4.2.1 Task 1: Processor Requests
If a read request of type (1) or type (2) data hits at the cache,
the word is imrnediately supplied to the processor. A read miss
results in the following activity:

1 Check all MSHR registers whether the requested block is
already in transit (the processor is in this case accessing the
same word twice in a row): If this is the case it is allocated
to another MSHR register along with the target register of
the processor. If no MSHR register is available, the cache
locks. When the block is returned, it is allocated in the
cache, the MSHR register is deallocated, and the word is
forwarded to the processor.

1 If there is no MSHR match, then the block is allocated
in a reserved cache frame (a replacement is triggered if
necessary) and a MSHR register stores the necessary return
information. A reserved cache frame is marked as reserved.

• If no MSHR register is available, the processor locks until
one becomes available.

For any wri ta request, the block is written, whether or not it
is present. If the block was not present or was in state RO,
an invalidation with the address of the block is broadcast. No
MSHR register is allocated to the access in this case. If the
block was not present it may cause a replacement and a write
back. The block will be in state RW. It is not possible for a
block causing a write miss to be already present in an MSHR
register, since this would imply an intra-processor dependency.

If the request is to type (3) data, the cache locks until all
MSHR registers are empty (all pending misses have been re­
solved). Then the access to type (3) data is resolved like any

121

other access. If it causes a miss, the cache remains locked until
the access is completely resolved (i.e., the data are returned).
Then t.he cache is unlocked and may proceed to resolve nlisses
to type (1,2) data concurrently.

4.2.2 Task 2: Bus Watching
The buses are monitored continuously. If an invalidation of a
present block is detected, the block is invalidated. It is not pos­
sible for a bus invalidation to occur for a block presently being
fetched (i.e., a block referenced in one of the MSHil registers)
since this would violate property P3 of Section 2. If a read
request for a block present in state RW is detected then the
appropriate bus is interrupted and the block is placed on the
bus. The block is forwarded to both the requesting cache arnl
to main memory. The block remains allocated but the state is
changed to RO.

4.2.3 Task 3: Returned Blocks
When a nliss is resolved, either by the memory or by another
cache, the MSHR registers are checked to find out where the
block is allocated and which processor register it is intended for.
The block is placed in the reserved cache frame and forwarded
to the processor. One more contingency nrnst be taken care
of. The cache frame which was reserved for the nliss may have
been "replaced"2 • This is handled by marking the appropriate
MSHR register if a reserved block is replaced. In this case the
word is only forwarded to the processor but does not get allo­
cated at the cache.

4.2.4 Task 4: Block Replacements
A block is replaced when the cache frame it resides in is needed.
Two flags, associated with the cache frame need to be checked.
If the block is in state RW t.he block needs to be written back
to main memory. Otherwise it may be overwritten. A block
marked as reserved means that the word of a pending ·nuss is
intended to reside in the frame. In this case, the cache frame
may he used but only after checking the MSI-IR registers and
flagging the appropriate MSHR register. The flag indicates that
the returned block has lost its reserved cache frame and is only
to be forwarded to the processor and not written to cache.

4.3 Memory System.
The memory is interleaved into M modules. FIFO (First In
First Out) meniory buffers queue requests for each module. The
coherence of the system is not affected by the buffers [12].

The architecture allows for virtual memory addressing. In
this case, each processor has a TLB (Translation Lookaside
Buffer) which caches the most recently performed virtual-to­
physical address translations. The cache, however, must lock if
a TLB nliss occurs. The TLB nuss may result in a page fault.
If a page fault occurs, prefetching and writing memory words
beyond the access causing the page fault must he prevented.

5. ANALYSIS
Two rnodels are presented here. Both tnodels are approxiniate,
but useful information can be derived from them. 'vVe make the
following assumptions in our model:

1. A processor makes d tnernory references per instruction.

2 It can not be invalidated, as inent.ioned before, but in the case of a
direct rnappecl cache nrny have been overwritten by either another read

miss or a write which tnapped to the sa1ne cache fra1ne.

2. The distance between references with dependencies in the
reference string of a process is fixed and is equal to l.
Hence, after a miss, up to l references can be made be­
fore the processor blocks and has to wait for the miss to be
resolved.

3. For each access the probability of a hit is h and the prob­
ability of a nliss is (1 - h). Successive accesses are inde­
pendent. Therefore, the number of references between two
consecutive misses is geometrically distributed with mean
1/(1 - h). (Figure 3 illustrates the concept.)

4. The memory access time is constant and equal to Tm-

5. The time to execute an instruction if all accesses hit in the
cache is constant and equal to ti,O· We associate a time of
ti,o/d with each reference.

6. Effects of synchronization and of TLB misses are neglected.

There are several approximations in the model. First of all,
in a practical system the dependency distance is usually vari­
able and the memory access time is random because of memory
conflicts. These two approximations were made here to facili­
tate the solution of the model. Second, successive accesses to
the cache are correlated; however, the hypothesis of indepen­
dent accesses is often made in cache models (see for example
[15]) and is as good as any other hypotheses in the absence of
real program traces. Overall, we feel that the models include
the most important parameters affecting the performance of
the lockup-free caches and should give indications as to system
configurations for which the complexity of lockup-free caches is
warranted ..

5.1 Model 1: One MSHR Register
It is assumed that only one MSHR register exists in the cache.
A single miss does not cause the cache to lock i1mnediately. The
cache will block either if a second nliss occurs, or if a depen­
dency with the reference of the first miss prohibits any further
prefetching. We have to consider two different cases. In the
first case, the memory access time is larger than the time during
which the processor can continue prefetching without encoun­
tering a dependency with a previous nliss. That is, t;/ < Tm-

In the second case, we assume the opposite, that is t;dol 2'. 7'm.
Case 1: When a nliss is encountered, it is immediately for­

warded to the memory. The number of references which can be
overlapped while the miss is being resolved is a. This number is
governed by the probability that a miss occurs during the next
l accesses before the processor blocks due to a dependency with
an access that missed (Figure 3). Hence a is given by:

a= (1 - h) + 2h(l - h) + 3h2 (1 - h) + ...

+(l- l)h1- 2(1- h) + 11i1- 1(1- h) + lli
which can be reduced to:

1- h1
a=---

1-h

If TN is the time to execute N instructions then

122

The time to execute one instruction is:

Hence the slowdown factor is:

hi+ (1 - h)dT~

Case 2: In this case the amount of overlap of hits is only
limited by the probability that a second miss occurs before the
first miss is resolved. This case may result if the code is re­
structured by the compiler such that the distance between de­
pendencies which cause the processor to block is very large. Let
N be the number of references between two successive misses.
fir = 1/(1 - h) and the average time to execute between two
misses beco1nes

t· = t· =
TN= ~o LkP[N == k] == ~ LP[N 2 k]

k=O d k=l

t· hdTi;.
-T +~
- m d 1-h

This result comes from the fact that if the inter-nliss distance
N is less than dT,~, the cache blocks the processor for a time
Tm - N~;,o. The average time per instruction is given hy:

dT hdT!
rn + li 10!='h

1
1-h

The slowdown factor for this case is:

1
hdT:'., -j- (1 - h)dT,~,

5.2 Model 2: Infinite Number of MSHR Registers
In this model, it is assumed that the number of MSHR registers
is infinite. As for the previous model, we consider two cases.

Case 1: In this case we assume ti,ol/d <Tm. After the first
miss, at reference 1/(1-h), l references can be generated by the
processor while the first miss is resolved by the memory system
in time Tm. Therefore, a processing time oft;,ol/d can be over­
lapped with the first miss. If any one of these l references causes
a miss, it can he serviced immediately because there are an infi­
nite number of buffers. The misses occurring for the l references
do not cause additional blocking due to dependencies because
the processor has to wait until the first miss is resolved before
initiating new references. When the first miss is completed, the
processor can continue execution, and because of the geo1netric
distribution assumption, the next miss occurs 1/(1 - h) refer­
ences later, on the average. The sequence of events after the
first miss is repeated.

Therefore, in a time

ti,O 1
dl-h +Tm

a number of !~h + l references are performed, corresponding to

--+I -(1) 1
1- h d

instructions.
The average time per instruction is

t;,o + Tmd(l - h)
1+1(1- h)

and the slowdown factor is

l+l(l-h)
1 + T:!,d(l - h)

Case 2: In this case we assume that t;,01/d 2'. Tm. When a
reference has a dependency with a previous access that missed,
the miss has had the time to complete and therefore, the de­
pendencies do not block the processor. We have achieved total
overlap of miss handling and the slowdown factor reaches its
maximum value of 1.

6. DISCUSSION
6.1 Perfornmnce Interpretations
Figure 4 shows the ratios of MIPS rates of a system with one
MSHR buffer per cache and of a system with locking caches.
The i\nprovement is greatest for low hit rates and memory ac­
cess times in the range of T! < l/d. This is due to the fact
that ifT! > l/d, most misses will cause some blocking, because
before a miss can be resolved a dependency will occur with the
reference that misses. If T,~ < l / d, however, the cache will only
lock if a second miss occurs during the service of the first miss;
some misses will be totally overlapped with other references and
the amount of overlap also increases with T!.

For larger hit rates, such as h=0.98, the improvement due to
the lockup-free cache with only one MSHR is low because misses
are rare and the only savings per miss, with respect to a locking
cache, are l references. These results confirm Kraft's results
for the average access time as a function of the the number
of MSHR registers. Kraft's results (derived from a prototype)
indicate very poor performance for a cache with a single MSHR
register and very good performance for a cache with up to four
MSHR registers. Kroft further states that very little is to be
gained by using more than four registers.

Figure 5 shows the ratio of MIPS rates of a system with an in­
finite number ofMSHR buffers and a system with locking caches
for different hit rates, as a function of T!. The improvement of
performance is highest for a low hit rate of h=0.8. This is to
be expected, since a high miss ratio results in multiple misses
in a streak of l consecutive references and these misses can be
overlapped. In the ideal case, for example, l misses occur se­
quentially, until the system blocks due to a dependency with
the first miss (we assume l/d < T!)- The misses are resolved
one after another and the total penalty paid for the sequence of
I misses is only T!. Hence, the system benefits from frequent
misses.

For l/d > T!, the system with an infinite number of buffers
operates at maximum speed, with a slowdown factor of 1. In
this case no miss ever causes a penalty, since the system does
not block on multiple misses and all misses are always resolved
before a dependency can occur. For higher hit rates the proba­
bility of overlapping misses decreases and performance ratio de­
generates to the case of the cache with only one MSHR buffer.·
The number of buffers used, on average, is an interesting pa­
rameter. It is possible to estimate the average number of busy
buffers in the cache as follows. Let t; be the average time per
instruction. The average time to execute N instructions is Nt;

123

and a total of Nd(1 - h) misses must be processed, requiring a
total service time of Nd(1- h)Tm from the miss buffers. There­
fore the average number of busy buffers is

d(l - h)Tm
t;

d(l - h)T!
1 + d(l _ h)T:!, [1+1(1 - h)] (case 1)

or = d(l - h)T! (case 2)

This value is upper-bounded by 1+1(1 - h). For all of the
examples of Figure 5, the average number of busy buffers is less
than 2.75.

6.2 Consequences
For an otherwise efficient lockup-free cache to be of consequen­
tial benefit, multiple MSHR registers must be implemented.
Only in the case when the hit rate is low, and T,~, < l/d does a
single MSHR buffer offer ~orthwhile improvement.

A cache with a number of MSHR buffers can, however, he
very useful. Such a cache can offer substantial improvement
over a locking cache when the hit rate is not very high. This
fact can benefit systems in three particular circumstances.

1. Any system with a low hit rate benefits from lockup-free
caches consistently. In our sample architecture, two ben­
efits are derived from the fact that the cache block size is
one word. Namely, the bus traffic is minimized and write
operations always hit at the cache. The drawback of the
small block size is, however, a lowered hit rate. The system
can accommodate this lower hit rate because a lockup-free
cache is used.

2. Context switches always cause very low transitory hit rates.
A lockup-free cache can help "smoothen" the performance
dip in the system behavior after such context switches.

3. A cache which usually exhibits a good hit rate, may be
sensitive to particular "pathological" workloads which can
lower the hit rate for particular applications, or, espe­
cially, for operating system calls. As in the case of context
switches, the cache can adapt to such workload changes if
it is lockup-free.

It is interesting to note, that a system with single word blocks,
while likely to lower the hit rate, also experiences a favorable
shift in the distribution of misses. Misses are much more likely
to appear in bursts, since an initial sequential access to an array
or other data structures will cause a miss for every access. This
is also the case when double- or quad-words are accessed. A
system with lockup-free caches, will exhibit better performance
if misses are clustered together than if they are homogeneously
distributed. This characteristic can be taken advantage of if the
compiler can generate load instructions for data to be used in
the future, ahead of time. In this case the "blind" prefetching
associated with larger block sizes, has been replaced with selec­
tive "smart" prefetching under compiler control.

6.3 Dependency Effects
Figure 6 shows the MlPS ratio of the infinite buffer system
and the locking cache system as a function of l. For this case,
T! = 20 and d = 1.5. As is to be expected the performance
ratio increases linearly until l / d = T! up to a point where the
lockup-free cache system operates at peak speed and remains

constant. In the case of a hit rate h = 0.8, the maximum per­
formance improvement over the locking cache system is 700%.
Since the inter-dependency distance l affects the performance
of the system greatly, techniques on how to increase l are im­
portant.

(1) The compiler can attempt to increase l within the in­
struction stream by reordering instructions in a more favorable
way.

(2) All load instructions should be non-blocking; as they are
implemented in the IBM RT processor [16].

(3) The compiler can generate special instructions which ex­
plicitly load data into cache, long before they are needed. Such
non-blocking load operations enable the compiler to control se­
lective prefetching of data. These loads should be generated in
bursts.

(4) For instruction access misses not to cause blocking, several
consecutive instructions can be prefetched ahead of instruct:ion
decode time. Only branch instructions will cause blocking in
this case. If branches are delayed as in RISC processors, l can
be increased.

(5) Some architectures can naturally exhibit a high value for
l. For example, if a vector processor is attached to the system,
long strings of vector register load instructions are likely to be
executed frequently.

7. CONCLUSION
In this paper we have shown how a multiprocessor can be con­
figured with lockup-free caches. Vital to such a system are three
key concepts:

1. The correctness of the system.
2. The efficiency of the interconnect.
3. The efficiency of the cache architecture.
We have shown that the processors of a multiprocessor sys­

tem may resolve multiple misses concurrently if the system is
weakly ordered. Weakly ordered multiprocessors require that
shared writable data are modified exclusively from within crit­
ical sections. This restriction can be enforced by the compiler.

The interconnect we propose consists of packet-switched
buses. By using a cache block size of one word, the bus traffic
is minimized. Hence, more processors can be connected to the
buses and contention is lower. The fact that a one word block
size decreases the cache hit rate is overcome by the fact that
the caches are lockup-free.

We have shown that in a weakly ordered systern, maintaining
cache coherence is very simple, when the cache block size is
one word. The assumption of a one word cache block size,
eliminates all cache writ a misses and minimizes bus traffic since
prefetching is controlled by the compiler and is not done blindly.

Overa!I, we believe that bus-based multiprocessors with
lockup-free caches are both viable and useful. One of the most
interesting features of such a system is the adaptability to the
cache miss rate it exhibits. When hit rates are high, the im­
provement due to overlapping misses is low. However, when
the hit rate declines, the efficiency of the lockup-free caches im­
proves rapidly. This characteristic makes lockup-free caches a
particularly appealing feature for systems with a large variety
of types of workloads, and hence varying hit rates.

8. REFERENCES

[1) A.J. Smith, "Cache Memories'', ACM Computing Surveys,
Vol. 14, No.3, Sept. 1982, pp.473-530.

124

[2] L. M. Censier and P. Feautrier, "A New Solution to Coher­
ence Problems in Multicache Systems," IEEE Transactions
on Computers, Vol. C-27, No.12, December 1978.

[3) D. Kroft, "Lockup-free Instruction Fetch/Prefetch Cache
Organization," Proceedings of the 8th International Sym­
posium on Computer Architecture, June, 1981.

[4] .J.R. Goodman, "Using Cache Memory to reduce Processor­
Memory Traffic", Proceedings of the 10th International
Symposium on Computer Architecture,, June 1983, Stock­
holm, Sweden, pp. 124-131.

[5] J.R. Goodman, "Cache Memory Optimization to Reduce
Processor /Memory Traffic," Journal of VLSI and Com­
puter Systems, 2,2 (1987), pp.61-86.

[6) R.L. Lee, P.-C. Yew, and D.H. Lawrie, "Multiprocessor
Cache Design Considerations," Proceedings of the 14th In­
ternational Symposium on Computer Architecture, Pitts­
burgh, June 1987.

[7] M.C. Easton and R. Fagin, "Cold-start vs. Warm-start miss
ratios,'' CACM, Vol. 21, No. 10, Oct. 1978.

[8) H. S. Stone, "Footprints in the Cache," Proceedings of Per­
formance '86 and ACM Sigmetrics 1986 Joint Conference
on Modelling, Measurement and Evaluation, May 1986.

[9] M. Dubois and F.A. Briggs, "Effects of Cache Coherency in
Multiprocessors," IEEE Transactions on Computers, Vol.
C-31, No.11, November 1982.

[10) M. Dubois, "Effect of Invalidations on the Hit Ratio of
Cache-Based Multiprocessors,'' Proceedings of the 1987 In­
ternational Conference on Pd.ml/el Processing, Aug. 1987.

[11] A.J. Smith, "Cache Evaluation and the Impact of Work­
load Choices,'' Proceedings of the 12th International Syrn­
posiurn on Computer Architecture, 1985.

[12) M. Dubois, C. Scheurich and F. Briggs, "Memory Ac­
cess Buffering In Multiprocessors," Proceedings of the 13th
International Symposium on Computer Architectv.re, June
1986.

[13] C. Scheurich and M. Dubois, "Correct Memory Opera­
tion of Cache-Based Multiprocessors,'' Proceedings of the
14th International Symposium on Computer Architecture,
Pittsburgh, June 1987.

[14) J.A Archibald and J.-L. Baer, "Cache Coherence Pro­
tocols: Evaluation using a Multiprocessor Simulation
Model," ACM Transactions on Computer Systems, Vol. 4,
No. 4, Nov. 1986.

[15] J .H. Patel, "Analysis of Multiprocessor with Private Cache
Memories," IEEE Transactions on Computers, Vol. C-31,
No. 4, April 1982.

[16] C.E. Gimarc and V.M. Milutinovic,"A Survey of RISC
Processors and Computers of the Mid-1980's," IEEE Com­
p·u.ter, Sept. 1987.

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

y

0: d=l.25
0: d=l.50
• : d=l.75

X: r,,'.
Y : Slowdown factor

(c)

+-~t----+~-+~-+-~+---<~-+~-+-~-+-~+---..x
2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 25.00

Figure 1: Slowdown factor vs. Tg. for hit rates of (a) h=0.8,
(b) h=0.95, and (c) h=0.98.

Data
Invalidations
Bus watch

Figure 2: A cache-based multiprocessor with lockup-free caches.

l;,oid
H

processor's
reference
string

procesaor1s

reference

string

T

(•)

up to l references

(b)

Figure 3: Timing of a lockup-free cache with one buffer. (a)
No miss occurs in the l references following the first miss; max­
imum overlap is achieved. (b) A miss occurs. Only k < l
references can be overlapped.

125

MIPS ratio improvement

1.8

1.6

1.4

~ h=.5 ~ :: 1.2

1.0

0.8

0.6

0.4

0.2

10 15 20 25 T!

Figure 4: MIPS ratio improvement with one miss buffer, d =
1.5,l = 10.

MIPS ratio improvement

3.0
=O.

2.5

2.0

h=0.95
1.5

/~---
~ h=0.98

1.0

0.5

10 15 20 25 T!

Figure 5: MIPS ratio improvement with an infinite number
of buffers, d = 1.5, l = 10.

MIPS rate improvement
h=0.8

4

h=0.95

h=0.98

W W W ~ WI

Figure 6: MIPS ratio improvement as a function of l, Tg.
20,d= 1.5.

POET: A Tool for the Analysis of the Performance of Parallel Algorithms*

Anselmo A. Lastra and C. Frank Starmer

Departments of Computer Science and Medicine

Duke University

Durham, NC 27710

Abstract

A tool to aid in the analysis of the execution time of

parallel algorithms is presented. The tool consists of a

simple language for describing the algorithms and an

interpreter that determines the execution time on a

given number of processors.

The key concept is the separate specification of local

computation and remote memory access in the

algorithm description. This allows the interpreter to

simulate the communications of the target parallel

machine. An accurate simulation of the memory

access delays coupled with the specified amount of

local computation results in the predicted parallel

execution time. Operation of the system has been

validated by comparing predicted versus observed

execution times for numerical algorithms on the

Butterfly and Butterfly Plus Parallel Processors.

Introduction

The exploration of the time performance of

algorithms is ubiquitous in computer science.

Practitioners range from the novice programmer

deciding upon a sorting algorithm to the computer

scientist investigating the theoretical complexity of

algorithms. The tool described in the paper is aimed at

an investigator between these two extremes. It is

designed for the practical and speedy performance

analysis of algorithms for shared memory parallel

architectures.

There have been parallel performance analysis tools

described in the literature. In particular, those for

analyzing the speedup of FORTRAN code6, and as part

of a program development environment5 , as well as

*Supported in part by grant HL-32994 from the National Institutes of

Health and contract ONR-4414804 from the Office of Naval Research

126

theoretical 8 and probabilistic3 models of~ parallel

performance. These, however, don't address the needs

of someone trying to decide on a particular algorithm

or investigating the suitability of a particular

architecture. Presumably at that stage programs have

not been written and may never be. What is needed is

a tool that analyzes performance given a simple

description of an algorithm. This paper describes

such a tool. POET (Prediction of Execution Times) is a

system to facilitate execution time analysis of the

parallel implementations of algorithms. POET consists

of a language for specifying algorithms and an

interpreter for the language that predicts the time

performance of the algorithm on an MIMD shared

memory parallel machine.

On a single processor, a good way to predict the

execution time of a section of code is to "count

operations". In other words, combine an analysis of

the flow of control with an estimate of the run time of

small sections of code, such as inner loops or

individual operations. This yields an analytical

expression, or perhaps just a value, for the execution

time of the algorithm.

This method fails on a parallel machine because of

interactions between processors. On a shared memory

machine the execution time of code on a particular

processor is affected not only by memory access to

remote memories, but also, on some architectures, by

accesses of the local memory by other processors.

Other memory related phenomena that affect

execution time are cache utilization or bus saturation.

Since the factors that perturb execution time are

memory related, it is reasonable to assume that by

separating purely local computation from remote

memory access, one could use a modified version of

the method that worked for the uniprocessor. This is

what POET accomplishes. The algorithm specification

language allows for the separate specification of local

computations from remote fetches and stores. The

interpreter then uses this information to simulate the
memory transfer behavior of the target parallel
machine. The estimated times of local computations
combined with the delays incurred by the memory
access patterns then constitute the total run time.

Currently simulation modules for the Butterfly1 and
Butterfly Plus2 parallel processors have been

implemented and validated. We believe that
implementations simulating other shared memory
MIMD machines, such as the RP34 , will require

modifications of only one module.

The Language

To determine flow of control, the simulator interprets

a language with a syntax similar to that of C. New
statements were added to describe the parallelism and
memory transfers. Only a restricted subset of the data
types and expressions in C were retained, mainly to

keep the implementation of the interpreter more
manageable. An example ·program is shown in Figure
I. Note that whenever "processor" is mentioned, it

denotes a simulated processor, not one on which POET
is running.

There are two statements for specifying the use of
time by the algorithm, compute and transfer. The

compute statement specifies an amount of purely local
computation. It has one argument which is an
expression that, when evaluated, yields the time that
the computation adds to the clock. . For example, for
matrix multiplication an individual computation may

consist of the sum of the execution times of an add and

a multiply. The execution time specified for the
compute statement may be an estimated time,

instruction execution times from the manufacturer of
the hardware, or perhaps time from a benchmark.

The transfer statement represents a store or fetch
operation to a remote memory. There are three
arguments. The first argument specifies which
remote memory is to be accessed. The second
argument specifies the time that a memory access
adds to the local machine and the third the time
consumed by the remote processor (due to one or
more lost memory cycles perhaps). These times are
variables because one may want to specify different
types of transfers, such as an integer, double
precision floating point, or maybe a block of bytes. If

simulating single memory architectures, the first and

for(i = 0; i < n; i = i + procs)

for(j = O; j < n; j++)(
for(k = O; k < n; k++){

transfer(meml, FetchDouble, RemoteFetchDouble);

transfer(mem2, FetchDouble, RemoteFetchDouble);

compute(DoubleAdd + DoubleMult);

transfer(mem3, StoreDouble, RemoteStoreDouble);

Figure I. Simplified code fragment for matrix multiply. The two
matrices of size n are on memories meml and mem2 with the result
going to mem3. DoubleAdd and DoubleMult are the execution times
of an add and a mt11tiply, respectively. FetchDouble is the time
consumed by the local processor for fetching a double precision
floating point number while RemoteFetchDouble is the time that
the remote processor is delayed because of the fetch. store Doub 1 e

and RemoteStoreDouble are analogous times for storing a number.
P r o cs is the number of iirocessors. This simple model does not
include the overhead of index or pointer calculations.

third arguments, the remote memory number and
time penalty on remote processor, are not applicable.
Times for data transfers are obtained from the

manufacturer's specifications or from benchmarks.

The parallel and wait statements control the parallel

execution of the simulator. They are used to begin
simulated execution on the user specified number of
processors, to implement critical regions, to

synchronize, and to return execution to one
processor. The wait statement places the processor
executing it into an idle state until the expression
specified as an argument becomes true. Wait is a
useful construct for synchronizing groups of

processors.

127

Initial simulated execution is on one processor. The
parallel statement causes the simulator to begin
simulated execution on the number of processors, or
perhaps just different processes, specified as an
argument. Upon· reaching the end of the parallel
block, simulated processors are set to an idle state.
When all processors have completed the block,

processing is continued on processor number 0, the

processor on which original execution began.

All variables in the POET language must be declared.

There are two main classes of variables, local and
shared. An individual copy of each of the local

variables is made for each of the simulated processors
while there exists only one copy of each of the global

variables.

Other statements in the POET language are identical to
those in C. They include statements for flow of control

such as if and for. The more commonly used

arithmetic and logical operators have been
implemented.

The Simulator

The simulator loads a program, in the language

described above, that specifies the flow of execution to

be modelled. The program is parsed and converted

into an intermediate language. The intermediate

language consists of a restricted subset of

instructions. For example, the for statement is

broken up into an if statement, two arithmetic

expressions, and a goto statement. In a manner

similar to an assembly language without the word size

restrictions. Having such a restricted set of

instructions made the interpreter easier to design and
modify.

The interpreter works on one simulated processor at a

time and continues working on that processor until

an instruction is reached that consumes execution

time or affects another processor. The processor on

which to work is determined by a scheduler described

below. State information is kept for each of the

simulated processors. This includes the contents of all

of the local variables, a program counter, and the

current processor state such as transferring data,
computing, idle, and waiting.

A clock is also kept for each simulated processor. A

processor's clock is incremented when a compute or

t ran sf er instruction is interpreted. The scheduler

uses these clocks to determine which processor to

simulate next. The process to schedule next is the one

that has the smallest value on its execution clock. If

there is more than one clock with the same minimum

time, they are scheduled for the interpreter in a

round robbin fashion. This scheduling algorithm

should yield an execution trace very close to that of

the processors executing in parallel. A global clock is

kept which shows how far the simulation has come.

This clock eventually yields the overall run time.

The key to the simulator is the module in the

interpreter that mimics the processor to memory

communication of the target machine. For the

current target machine, the BBN Butterfly, it is

particularly easy to implement. When a processor

requests access to another memory (the memory of

another processor) with a transfer instruction, the

simulator examines the state of the remote processor.

128

If the remote processor is executing a local

computation (a co mp u te statement) or is idle, the

simulated transfer occurs immediately. The remote

processor is penalized for lost memory cycles and the

transfer time is added to the execution time of the

local processor. Both of these times are specified as

arguments to the transfer instruction.

If the remote processor is busy transferring data, a

retry would occur after the remote processor

completes the transfer or transfers. In the simulator

instead of executing a retry, a queue is kept of data

requests for each processor. This queue is examined

when the processor completes a data transfer. The

requesting processor blocks until the simulated

transfer completes.

Note that we do not model individual paths through

the Butterfly switch, we assume that one is available.

This turns out to be a good simplifying assumption

because the switches on the Butterfly do not block

when a transfer fails2, 7 . Rather, the path is released

and the transfer is retried a short random time in the

future. Another reason that a particular path need

not be simulated is that many Butterfly processor

configurations have alternate paths between nodes.

It is true that a high volume of data transfers would

produce path saturation and cause this

implementation of POET to produce inaccurate

timings. However, when simulating extreme volumes

of interprocessor transfers, high accuracy was not

deemed necessary since the degree of parallelism

would have presumably reached a plateau. This model

trades a slightly limited range for simplicity.

The memory access simulator is the only one which

varies with target architectures .. Simulators for some

architectures would be more difficult to implement.

For example, on an architecture with a single memory

and a large cache for each processor, a model of the

steady state distribution of cache hits would have to be

developed. Also a characterization of the delay on the

global bus would be important.

The simulator maintains timing information for

individual processors and can output the results in a

variety of ways. Control is also provided over the

number of processors in a simulation. Optional

tracing is provided as an aid in debugging or to

visualize bottlenecks .in the algorithms being studied.

Performance of the BBN Butterfly version of POET was

validated by comparing predicted execution times

generated by POET with measured execution times of

numerical algorithms. The testing was conducted on

both a Butterfly Parallel Processor, and the newer,

faster, Butterfly Plus.

The algorithms used are representative of those used

for scientific calculations. They included matrix

manipulation algorithms, and those for the solution of

ordinary differential equations.

Agreement between predicted and measured

execution times was generally excellent. The only

exceptions were algorithms designed to cause the path

saturation effect described above. One memory was

accessed repeatedly by all of the processors. When

this occurred, the simplified Butterfly data transfer

model of this version of POET resulted in optimistic

execution times. For our purposes this was acceptable

since these were artificially poor algorithms designed

for testing POET. If more accurate results were desired

under these conditions, a more complex data transfer

model would be necessary.

Conclusions

We believe that there are many advantages to this

technique for exploring algorithm performance.

First, it is easy to specify the algorithms. Working

code does not have to be produced before estimates

can be made of the execution time. Many different

algorithms may be tested experimentally in the time it

would take to code and debug only one. Second, the

simulator runs quickly. Even if code is available,

benchmarking it is likely to take much longer than

testing it on POET. Third, the parallel hardware does

not have to be available. One may explore ideas when

the parallel machine is busy, or down, or even while

awaiting delivery.

Another use for POET might be in testing ideas for

parallel machines. By varying the times specified for

computation and for data transfer, one can predict the

increase or decrease in the degree of parallelism for a

given change in the speed of the processor, memory,

or interprocessor switch. With modifications to the

interconnect module of POET, the performance of

experimental network topologies may be studied.

An interesting addition to POET would be a graphical

display of simulated execution. This would aid in

detecting bottlenecks and in understanding the

parallel execution of algorithms. Another, more

difficult, enhancement would be automatic

benchmarking of existing code.

REFERENCES

l. Butterfly Parallel Processor Overview, B B N

Laboratories Inc., 1985.

2. Inside the Butterfly Plus, BBN

Computers Inc., 1987.

Advanced

129

3. Lester, B. P., A System for Computing the Speedup

of Parallel Programs in Proc. of the 1986

Conference on Parallel Processing, 1986, 145-152.

4. Pfister, G. F., Brantley, D. A., George, D. A., Harvey,

S. L., Kleinfelder, W. J., McAuliffe, K. P., Melton, E.

A., Norton, V. A., Weiss, J., The IBM Research

Parallel Processor Prototype (RP3): Introduction

and Architecture in Proc. of the 1985 Conference

on Parallel Processing, 1985, 764-771.

5. Purtilo, J., Reed, D. A., Grunwald, D. C.,

Environments for Prototyping Parallel

Algorithms, University of Illinois Department of

Computer Science Technical Report, 1987.

6. So, K., Bolmarcich, A. S., Darema, F., Norton, V. A., A

Speedup Analyzer for Parallel Programs in Proc.

of the 1987 Conference on Parallel Processing,

1987' 653-661.

7. Thomas, Robert, H., Behavior of the Butterfly T M

Parallel Processor in the Presence of Memory Hot

Spots in Proc. of the 1986 Conference on Parallel

Processing, 1986, 46-50:

8. Vrsalovic, D.,

Gerhinger, E.

Multiprocessor

Siewiorek, D. P., Segall, Z. Z.,

F., Performance Prediction for

Systems in Proc. of the 1984

Conference on Parallel Processing, 1984, 139-146.

A Queueing Network Model
For

A Cache Coherence Protocol On Multiple-bus Multiprocessors*

Qing Yang and Laxmi N. Bhuyan

The Center for Advanced Computer Studies
University of Southwestern Louisiana

Lafayette, LA 70504-4330.

Abstract
The memory latency in a shared memory mul­

tiprocessor system can be reduced by either the use of
a high bandwidth interconnection network or the
incorporation of private cache memories. This paper
presents the performance analysis of a system that
employs a high bandwidth multiple-bus network and
private cache memories. The cache coherence proto­
col is a modified version of the Write-once protocol
proposed for single bus architecture and the
multiple-bus network is asynchronous packet
s,. itched. A queueing network model consisting o.f
mixed multiple class customers has been developed.
The model captures the effects of both multiple-bus
contention and the cache coherence protocol on the
system performance. To reduce the computational
complexity of the model, a simplified algorithm based
on flow equivalence technique has been developed.
Numerical results obtained from our model show that
a high· bandwidth network such as multiple-bus is
necessary for a large system because the single bus
gets saturated very rapidly and creates system
bottleneck.

1. Introduction
The problem of memory latency has been con­

sidered as a major obstacle in the evolution of
shared-memory multiprocessor systems. Extensive
studies aiming at reducing the memory latency have
been carried out in the past. There are two basic
ways of dealing with this memory latency problem: 1)
design of a more cost-effective interconnection net­
work that offers high communication bandwidth [2];
2) use of private cache memory to reduce memory
access time and memory bandwidth requirement [10].

A great deal of work has . been done in design
and analysis of various interconnection networks such
as crossbar, multistage interconnection networks, and
multiple-buses. Compared to crossbar and multistage
interconnection networks, multiple-bus interconnec­
tion provides several advantageous features such as
flexibility, expandability and fault tolerance [3, 8,
16]. One can configure the multiprocessor system in
a variety of ways to provide a range of trade-offs
among bandwidth, connection cost and reliability.
However, as was pointed out by Winsor and Mudge
[15], the cache based multiple-bus multiprocessor may
suffer from difficult synchronization problems. Hence,
asynchronous multiple-bus systems seem to be more
attractive for large size cache based multiprocessors.

*This research is supported by NSF Grant #DMC-8513041
and a grant from Louisiana Board of Regents.

130

In [17], queueing network models have been developed
to analyze the performance of asynchronous, packet­
switched multiple-bus system with buffers. It has
been shown [17] that a packet switched multiple-bus
system provides high bandwidth and flexibility. None
of the previous studies on multiple-bus system takes
into account the incorporation of private cache
memories, except for [5] where some theoretical
bounds for the system throughput are developed.
The use of private cache memories in a multiproces­
sor system introduces the complex cache coherence
problem [4, 10] because multiple copies of a merr_iory
block may reside in different caches at any given
time. Modification of any copy of a shared memory
block by a processor in its local cache may cause an
obsolete value of the shared data in the main memory
and other caches that are currently having a copy of
this block. The avoidance of this cache inconsistency
problem is vital to the correct operation of the
shared-memory multiprocessors.

A number of cache coherence protocols have
been proposed in the literature recently, which can be
broadly classified into two gro_ups. The first gro~p
employs a centralized global directory scheme while
allowing a general interconnection network to be used
[13]. The second group allows. the cache consist.en~y
to be maintained in a decentralized manner but hm1t­
ing the interconnection to be only single shared bus
[1, 6]. The write-once protocol, proposed by Good­
man[6], was the first distributed .protocol to app.ear
that provides a good compromise _between wr1t~­
through and write-back protocols which are used m
commercial machines [9]. However, both of these two
classes of protocols have potential problems. The
central directory protocols allow a general IN to be
used but the performance of the system is highly
dependent on the central directory. The distributed
protocol, on the other hand, tries to remove this
bottleneck, but instead it is passed from the central
directory to the single shared bus. As has been
shown in [1] and [14], the single bus creates system
bottleneck when the number of processors exceeds 10.
Hence it seems to be necessary to develop cache
coher~nce protocols that allow high bandwidth inter­
connection network to be used while keeping the
advantage of distributed control. In this paper, we
consider a cache coherence protocol based on
Goodman's Write-once protocol that can be applied
to high bandwidth packet switched multiple-bus sys­
tems [17].

Archibald and Baer have presented a comprehen­
sive performance comparison of various single bus
protocols by means of simulation [1]. An a:r:alytical
model for the single bus protocol based on write-once

as well as its variants has been reported by Vernon
and Holliday in their paper [14]. Their model is exact
and is based on Generalized. Timed Petri Nets tech­
nique. However, it can not be easily extended to
large system sizes because of the complexity. In this
paper, a queueing network for cache based asynchro­
nous multiple-bus multiprocessors will be developed
that consists of both open and closed customer classes
[7]. The effects of both multiple-bus contention and
the cache protocol on the system performance will be
studied. The model can be solved by using standard
MV A algorithm and flow equivalence technique[7] to
obtain performance values for a variety of system
parameters with reasonable computational cost.

In the following section, we will give a brief
description of the system organization and the cache
protocol for the proposed system. The assumptions
that are used in our analysis and the queueing net­
work model of the cache based multiple-bus multipro­
cessor are presented in Section 3. Section 4 discusses
the performance results and Section 5 presents the
conclusions.

2. The System Organization and Operational
Characteristics.

Fig.1 illustrates the cache-based multiple-bus
multiprocessor configuratiOn. Associated with each
processor is a private cache memory through which
all memory accesses pass. A set of B packet
switched buses connect all the N caches with shared
main memory which is also divided into M inter­
leaved modules. The communication between the
caches and between a cache and the main memory is
performed through system buses. A requesting cache
(called master) which issues a memory access request
releases the bus immediately after the request packet
containing the memory address, master id., and
desired operation(read/write), etc. has been sent to
the slave device. The released bus can be used for
other purpose while the desired operation in the slave
(memory controller or cache controller) is in progress.
After the operation is finished, the slave device acts
as a pseudomaster to packetize the response data and
sends it back to the requesting cache through a sys­
tem bus. As a result of this, the system buses can be
well utilized and high system throughput can be
expected. However, buffers that temporarily hold
incoming and outgoing packets from each device are
necessary. The packet transmission can be done on
any one of the system buses as determined by the
arbiter. The cache and memory controllers must be
able to receive more than one packets simultaneously
from the buses, otherwise a packet may be lost.

The timing of the system buses is asynchronous
in the sense that there is no centralized global clock
that distributes clock signals to all the devices in the
system. The data transfer on a bus is done by means
of interlock handshaking. However, the intern.al cycle
times of all processors and caches are assumed to be
the same and this cycle time constitutes the basic
time unit in our foregoing analysis. In f 18], we have
presented a somewhat detailed design of the internal
organization of each private cache as well as the
cache protocol for synchronous packet switched bus
systems. It has been shown in [18] that the proposed
system satisfies the sequential consistency require­
ment [12]. For asynchronous buses, concerned in this
paper, the design of cache organization and protocol
should be similar except for different implementations

131

at the circuit level. For the purpose of completeness,
a brief review of the cache protocol follows.

The state of a memory block viewed by a partic­
ular cache can be one of the following: 0), not
present, 1), valid, 2), written-once, 3), dirty, and 4),
invalid (see Figure 2). When a processor read results
in a cache hit, the cache controller will supply the
requested word to the processor without changing the
state of the cache block containing the word. On a
read miss, the cache controller locates the place where
the requested memory block resides, flushes a cache
block to make room for the incoming block, and loads
the block through one of the system buses. The
memory block is read from one of the main memory
modules provided that none of the caches has a dirty
copy of the memory block. Otherwise, the memory
block is loaded from the cache that has a correspond­
ing cache block with dirty state. Once the block is
loaded, the state is set valid. When the cache con­
troller receives a write request from the processor, it
first checks the state of the cache block into which
the write is to be performed. If the state of the block
is dirty or written-once, the write can proceed
without any delay except for setting the state to be
dirty. If the state of the block is valid, the cache
controller has to acquire one of the system buses to
broadcast an invalidation signal to other caches and
write through the word to be modified into main
memory before the write operation can be per­
formed. Upon a write miss, the cache controller per­
forms the same operation as for a read miss except
that the requested memory block is loaded with dirty
state and other copies in the system are invalidated.

There are B snooping controllers associated with
each private cache. Each of the B snooping controll­
ers monitors one of the system buses for read and
write from other caches. There are basically four
types of bus transactions: Shared Read (SR), Dirty
Read (DR), Write Invalidation (WI), and Write Back
(WB). An SR transaction is due to a read miss
request issued by a cache. Upon a write miss, a cache
controller will generate a DR (since the requested
block is loaded with dirty state) request. A WI

88
I I

D

. .

EJ El

De

. . ..

System
buses

EJ
Figure 1. A cache based multiple-bus multiprocessor.

transaction is started by a cache that serves its
processor's write request into a valid cache block. If
a block to be flushed (in order to make room for a
incoming block) is in dirty state, the write back of
this block is necessary. The WB transaction is
caused by a cache that writes back a replaced block.
If a snooping controller detects an SR or DR, it first
determines whether its own cache has a dirty copy of
the block requested on the bus. If so, the snooping
controller must inhibit the main memory from
responding to the bus read and provide the data to
the requesting cache. The local copy of the block is
changed to invalid in case of DR. In case of SR, the
block is written back to the main memory and the
state is changed to valid. If the local copy of the
block is in a state other than dirty, the snooping con­
troller invalidates the copy upon a DR request and
sets state to valid upon an SR request. The snooping
controller invalidates the corresponding cache block
in its local cache when a WI bus transaction is
detected. During each of these cache operations
requested by snooping controllers, requests from the
processor are suspended.

Due to the multiple buses, directly applying the
above protocol to the multiple-bus system may result
in race and hazard conditions. In [18], we have
defined 5 types of hazard conditions, namely DR-SR
hazard, DR-DR hazard, DR-WI hazard, SR-WI
hazard and WI-WI hazard. An occurrence of any
hazard condition described above may cause a pro­
gram error. These problems can be resolved by using
the same technique as described in [18].

3. Queueing Analysis

3.1. Assumptions and The Work Load Model
In the analysis presented in this section, we shall

assume homogeneity of processors, memory modules
and buses. That is, all processors in the system are
considered to be behaviorally identical, so are the
memory modules and buses. After an amount of
internal computation, called thinking time, a proces­
sor generates a memory request which is sent to its
private cache. The thinking time of each processor is
a random variable, depending on the type of the
instruction, and is assumed to be arbitrarily distri­
buted with a mean of Z cycles. Memory access time
and the transfer time of a data block on a bus are
assumed to be fixed at T and t, cycles, respectively.
The cycle time of a cache memory is assumed to be
constant value which is same as a processor cycle.
These assumptions are reasonable because for a given
design of a machine, the basic data unit that is
transferred between the main memory and caches
(such as a block) or between a processor and its local
cache (such as a word) is fixed in size. However, the
model developed in this paper can be easily extended
to deal with generally distributed random variables of
memory access times and bus transfer times.

The work load model selected for our analysis is
similar to the one developed by Dubois and Briggs [4].
The memory reference stream generated by a proces­
sor is the merging of two streams: one for private
memory blocks that can be accessed only by one pro­
cessor and the other for shared blocks which can be
read or written by any processor in the system.
There are totally N8 b shared memory blocks in the
system and each private cache is assumed to be capa­
ble of holding Sc cache blocks(shared or private).

132

1
B;(l-h JP. m

not present

(1-h JP. m/S,

o...· "'--. ,,f,
"'- :!:.

•,
"'-

1-(1-B,,.)B

dirty invalid

Figure 2. Markov state diagram for a memory block.

The probability that a memory request issued by a
processor addresses one of the N 8 b shared blocks is
represented by q8 and the probability of addressing a
private block is 1-q8 • Similarly, a memory request is
a read with probability fr and a write with probabil­
ity f w • It is also assumed that a shared memory
request addresses any one of N 86 blocks equally
likely, i.e. a uniform reference model for shared
blocks is assumed. If a request is for a private block,
it is a cache hit with probability h and miss with
probability 1-h. When a cache miss occurs, the
cache controller randomly selects one cache block to
be replaced to make room for the incoming block. In
most of the existing cache systems, LR U (Least
Recently Used) replacement policy is primarily
employed. The random replacement policy is
assumed here to simplify our analysis. One should
note, however, that this random replacement algo­
rithm does exist such as in PDP-11/70. With this
replacement algorithm, the probability that a shared
block is selected to replace is equal to the percentage
of shared blocks in the cache at the time when the
miss occurs. If the selected block to replace is
private, it is modified and needs to be written back
with probability md. Hence, the probability that it
is not modified and no action is needed is 1-md .

Consider a particular processor in our multipro­
cessor system. It can be in one of two states: busy or
idle. A processor is said to be busy when it is doing
some internal computation and the processor is idle
after it issues a memory request until . the request is
satisfied. If the memory request results in a cache hit,
the processor resumes busy again immediately after
the cache operation is complete. Additional delay
may be incurred if one of the followings is true. 1)
The request results in a cache miss so that a bus
transaction is needed; 2) The request is a write that
modifies a shared and clean cache block. In this case,
the processor can not perform the write immediately

until other copies of the memory block are invali­
dated; 3) The cache controller is busy serving requests
from snooping controllers that observed bus transac­
tions which require the cache controller to invalidate
certain cache block or to supply a cache block on to
the buses. The proportion of the time that the pro­
cessor remains busy is defined to be the processor
utilization. Since the system throughput is directly
related to this processor utilization, we shall use the
processor utilization and processing power (the pro­
duct of processor utilization and number of processors
) as performance metrics in our analysis.

3.2. The Model
The cache based multiple-bus multiprocessor

described above is modeled by a mixed queueing net­
work that consists of both closed and open customer
classes [71, as shown in Figure 3. The processors are
modeled by delay servers labeled Pi 's. The memory
modules, M 1 M 2 · · · MM, are represented by FCFS
service centers with service rate 1 IT . The N private
caches Ci 's are also modeled by FCFS service centers
with service rate of 1. The possible "customers" in a
private cache queue are the requests from its local
processor and the requests from other processors for
invalidation and supplying data, etc.. The bus sys­
tem is represented by a flow equivalence service
center [7] as shown in the figure. In case of central­
ized control, the bus system queue is simply a load
dependent service center. There are a total of N dis­
tinct customers in the network that belong to closed
class, each of which is associated with a specific pro­
cessor. The routing of each of these closed class cus­
tomers can be described as follows.

Initially a customer stays in the delay center
associated with it for a random amount of time to
represent the thinking period of the processor. The
processor then requests a cache service (read or write)
and the "customer" is threaded to the cache queue.
If the request can be satisfied within the private
cache, the "customer" goes back to the delay center
and the processor stays busy again. If the cache
request results in a cache miss or a cache hit but
requiring invalidation signal to be sent, then a bus
transaction is necessary. In this case, the request will
join the bus system queue in which a free bus is to be
obtained. Once the processor gets a bus, the request
packet will be transmitted to different places in the
system depending on the nature of the request.
According to the write-once protocol, the requested
memory block can be acquired either from one of the
memory modules or from one of the remaining
caches. The block is supplied by a memory module
only when none of the remote caches has a dirty copy
of the requested block. In this case, the request
packet joins one of the memory queues (equally
likely). Once the request packet reaches the head of
the queue, the required memory operation takes
place. After the operation is finished, the memory
controller formats a response packet that contains
both the requested data and the identification of the
requesting processor. The response packet is then
returned to the requesting cache through one of the
system buses and the particular data item requested
by the processor goes directly to the processor. Simi­
larly, if the missed block is to be supplied by a
remote cache, instead of joining a memory queue the
request packet joins the corresponding cache queue
from where the cache controller supplies the data

133

through the system buses. It is ,clear that the exact
routing behavior of a "customer" depends on a set of
routing probabilities. For instance, upon emerging
from a cache queue, the customer may go back to its
processor with probability Rep and go to bus queue
with probability Rcb • Determination of these proba­
bilities requires a careful analysis of stochastic sharing
behavior of the system. This is the task of next sub­
section.

Readers may have already noticed that in our
cache coherence protocol there are cases that a
memory request may spawn into a number of requests
that go to different places in the network. For exam­
ple, when a processor writes. into a valid cac~e bl<;>ck,
both write-through into mam memory and mvahda­
tion signals to other caches are to be sent. Also when
a block being fetched upon a miss arrives at a proces­
sor, the requested word in the block goes to the
requesting processor directly and the block needs to
join the cache queue to be written into cache
memory. As another example, if a cache observes a
DR or SR request on a bus and ·it has a written-once
copy of the requested block, then appropriate state
changes are necessary. In all these cases, more than
one "customers" are generated by one customer.
This phenomenon is called customer forking in the
queueing network and is very difficult to analyze, if
not impossible [7]. However, a careful examination of
the cache protocol shows that the only effect of an
invalidation signal on the system performance is its
contribution to the load of the cache queue in which
the invalidation is to be done. And similarly the
effects of write-back and write-through into the main
memory are contributions of the traffic load on the
buses and memories. Therefore, to capture these

M,

SC~,

Figure 3. The queueing network model for the cache
based multiple-bus multiprocessor system.

effects we shall use open class customers by adding
sources and sinks as shown in Figure 3. The sources
SC; 's and sinks SK; 's are used to represent the effect
of invalidations, block loading and state changing on
the caches and SCwb -SKwb and SC wt -SKwt are used
to represent the effect of write-back and write­
through on the buses and memories, respectively.
The arrival and departure rates of these sources and
sinks will be discussed shortly.

7ro
(I-h)

O(I-p 2,2)-0(I-p 2,2)P 1,1-ap 1,2-"/P 1,4'

P 0,3P 2,iI-p 2,2)7ro+[p 1,4(1-p 2,2)(1-p 3,3)+p l,2P 2,4(1+p0,3-p 3,3)7r 1

O(I-P22)

3.3. Routing Probabilities
Recall that a memory block can be in one of five

different states as seen by a processor: not-present(O),
valid-and-clean(!), once-written(2), dirty(3) and
invalid(4). The Markov state diagram that represents
these states is shown in Figure 2. Let 7r; denote the
steady state probability of a memory block being in
state i . Note that the state of a memory block can
be changed by a request either from the processor or
from a system bus. Let Pi be the probability that
the particular memory block i is addressed by a
request generated by the local processor. The state
transition rate of a shared block i , from state 0 to
state l is q P; fr Pu P 0 / Z and to state 3 is
q8 Pi f w P" Pa '/ Z due to the local processor read and
write respectively, where Pa is the probability that a
processor can get a bus at a cache cycle. Bus
requests, on the other hand, are mainly the effects
from remote processors. For example, if the local
cache observes an SR request on a bus and it has a
dirty copy of the requested block, this SR request
brings the block from the original dirty state to
valid-and-clean state(i.e. from 3 to 1). This is because
the local cache supplies the block to the requesting
cache, writes it back to the main memory and
changes the block state to valid-and-clean. As
another example, the state of a block changes from
valid-and-clean(!) to invalid(4) upon receiving a WI
for that block on a bus. Let Bari , Bdri , and Bwii
represent the probabilities that there is a bus request
on a bus for block i that is of SR, DR, and WI
respectively. Then we get a set of transition rates of
the Markov process as marked in Figure 2.

It should be pointed out that our Markov state
diagram represents discrete Markov process based on
cache cycles. However, the state transition between
state 0 and other states may take more than one
cycle due to the bus contention. This effect is taken
care of by incorporating Pa's into the transition rate.
Since our purpose at this moment is to derive the
steady state probabilities of a memory block being in
each state, we will momentarily set Pa to be 1. The
bus contention will be modeled at higher level queue­
ing model. Obviously, the Markov process shown in
Figure 2. is aperiodic and irreducible. Solving the
balance equations yields the following expressions for
7ri 's.

where P; j is the transition rate from state i to state
j as shown in Figure 2. And 0, f;, a and "/ are given
by

0=(1-p 3 3)(1-p 4 4)-Po 3p 2 4•
I I I I

8=(1-p 2,2)[0p o,1+P 0,3P 2,1(1-p 4,4)+p o,1P 0,3P 2,4],

a=Op l,2+P o,3P 2,1(1+p2,4-p 4,4)+p o,1P 2,4(1+p0,3-p 3,3),

"f=P o 3P 2 1(1-p 2 2)+p o 1(1-p 2 2)(1-p 3 3}.
I I I J I 1

The quantities of Bdri, B 8 ,;, and Bwii are given by
1

Having obtained the values of 7r; 's, we are now
ready to derive the routing probabilities of queueing
network of Figure 3. Let us consider Rep , the proba­
bility that a customer will go back to the processor
after it comes out from the cache queue. Rep is also
the proportion of cache requests that can be success­
fully served by the local cache. Clearly, it is given by

Rep =(I-q.)h +qs fr (7r1+7r2+7r3)+q. f w (7rz+7r3).

The proportion of cache requests that need to access
bus system, Reb, is simply I-Rep. A memory request
on a bus can be served by either a cache or a memory
module as described previously. Hence, a customer
coming out of bus system may get into service center
representing memory modules or go to one of remain­
ing cache queues. The probability of going to a cache
queue, R 6e , is given by

Bd·+B· B··
R - Tl Sri [1-(1-)N-1]+ Wll

be -q. B B B 7r3 qs B B B '
dri + sri + wii dri + sri + wii

134

and the probability of going to one of memory
modules is given by Rbm =1-Rbc. It is assumed in
our analysis, that once a request goes to the memory
queues it will join one of the M memory queues
equally likely. Similarly if the request goes to cache
queues, it will enter any one of N-1 cache queues with
same probability.

The behavior of the open customers is deter­
mined by the arrival and departure rates. In order
for the system to be stable, the arrival and departure
rates for each open class must be equal. Let R 8 c ,
Rwb and Rwt be the arrival rates to the system from
source SC; 's, SCwb and SCwt, respectively. They are
given by

R B (Pu Pu
sc =7r1 wii + 1-h)(1-qs)z-+rroqs z-+Bdri (rr1+rr2)+Bsri 11"2,

and

3.4. Solution of the Model
In the queueing network model defined above

each of N closed class customers has its own routing
behavior w~i~h ~iffers from others. For example, a
customer ongmatmg from delay server p. will never
;risit the delay server labeled Pi for i ~'/. Thus, it
1s necessary to use multiple class solution technique
[7] to .solve the model. Moreover, the bus system
queue m the model has load dependent service rate.
There!ore, we end up with a mixed, multiple class
queuemg network containing a load dependent service
center. The exact solution of such a model can be
obtained by applying exact multiple class MV A algo­
rithm[7] provided that all the service times of FCFS
servers are exponentially distributed. In our case
where the memory access time, bus transfer delay and
cache cycles are constant values, the heuristic algo­
rithm proposed by Reiser [11] can be used. However
the algorithms described above requires large amount
of CPU time and memory space. In fact the time
and space complexities of the algorithm are of O (2N)
which is an exponential function of the number of
processors. In order for our model to be practically
useful, we shall develop a less complex algorithm that
can be used to estimate the system performance for a
variety of system parameters.

We begin with defining an aggregated queue that
consists of N-1 processors and cache queues as shown
in Figure 4. This queueing network is obtained by
shorting out one processor-cache system, bus, and
memory system queues. The queueing network of
Figure 4 will be solved in isolation for each feasible
population. The solutions of this model will then be
used to solve the high level queueing model shown in
Figure 5. In this high level queueing model, the
entire queueing network of Figure 4 is considered as
one single flow equivalence center. The processor­
cache system (P 1 and Ci) in Figure 5 is then used to
capture the detail behavior of the processor and cache
operations while the rest of N-1 processors and caches
are considered as a flow equivalence queue that cap-

135

Figure 4. The queueing network representing
N-1 processor-cache system.

tures only their aggregated effects on the entire
queueing network.

In solving the low level queueing model of Figure
4, we still use the heuristic multiple class MV A [11]
but the simplified approximate one [71 because the
model is much simpler than the original model. The
solution outputs of this model that are relevant to
the high level model are the service rates of class 1
customer from P 1 and the summation of the
throughput of the remaining N-1 classes of customers
for each possible placement of customers in the
queueing network of Figure 4. Once we obtained
these service rates, the high level queueing model of
Figure 5 is solved with 2 classes. Class 1 consists of 1
customer from P 1 and class 2 consists of N-1 custo­
mers in the flow equivalence center. As a result, the
time and space complexity can be reduced to approxi­
mately 0 ((I+ N)2) instead of 0 (2N) provided that
the low level solutions are available. The complexity
of solving low level model of Figure 4 is hard to quan­
tify due to the iterative nature of the simplified algo­
rithm. However, it is known that the number of
operations per iteration is 0 ((N-l)n) for the popula­
tion of n and empirically less than two dozen
iterations are _typically required for convergence to
less than a 0.1 % change in queue length.

In summary, the solution of the queueing net­
work involves the following steps: 1) Obtain the rout­
ing probabilities of closed class customers, arrival
rates and departure rates of open class customer by
setting the processor utilization Pu to 1; 2) Solve the
queueing network model of Figure 4 for each feasible
population to obtain two set of load dependent ser­
vice rates; 3) use the results obtained in step 2 to
solve the high level queueing model of Figure 5 to
obtain the performance metrics including processor
utilization Pu; 4) Derive a new set of arrival and
departure rates for open class customers by using the
new value of P,, and repeat this procedure from step
2 until the required accuracy is reached.

SC wt

FESC
for N-1 P-C. s

Figure 5. The high level queueing network
representing the system.

4. Results and Discussions
Solving the queueing network model defined in

the previous sections, we can obtain a set of system
performance metrics such as the mean queue length
of each service center, the response time of a memory
access, processor utilization and processing power.
The processing power is the sum of the processor util­
izations in the system which takes into account both
the number of processing elements and the queueing
effects of cache protocol on the multiprocessor sys­
tem. Hence, we shall use processing power as the per­
formance metrics in our following discussions. The
goal of our experiments here is to study the effects of
the number of buses and degree of sharing on the per­
formance of the cache based multiple-bus multipro­
cessor systems for a given set of architectural and
work load parameters.

The architectural parameters used in this section
are chosen close to the statistic values that appeared
in the literature. The size of each private cache is
assumed to be 2K blocks and the cycle time of a
cache is the same as that of a processor. There are in
total 32 shared memory blocks (Nsb) in the system.
The memory operation takes 4 processor cycles. The
transfer time of a packet on a bus is assumed to be 1
cycle. This assumption is reasonable because most of
the existing s~stem buses have data bus width of 64
or 128 lines [9]. As a result, a block of 4 or more
words can be transferred in one bus transaction. The
fraction of read (! r) is 70% and write (! w) 30%.
The probability of a private block being modified,
md, is 20%.

Figure 6 shows the processing power as a func­
tion of mean processor thinking time for 16 processors
and up to 4 buses. The thinking time is also the
interrequest time that indicates the offered load of
processors to the rest of the system. The memory
request rate which is the reciprocal of the thinking
time represents the behavior of programs that are run
on the multiprocessor system. Obviously, CPU­
bound jobs have low values of request rates that gen­
erate less memory requests and consequently requires
less communication overhead. As a result of this, the
performance difference between the systems with
different number of buses is not significant at very
low value of request rate. However, as the request
rate increases, the performance gain of more buses
becomes significant. In particular, the processing
power is almost doubled by adding one more bus to

136

the single shared bus multiprocessor for the request
rate more than 0.4.

Figure 7 shows the system processing power as a
function of number of processors and for same
numbers of buses. For a small number of processors,
the performance difference due to different number of
buses is not significant, which indicates that a single
bus does not create a severe system bottleneck. This
result is consistent with that observed by Archibald
and Baer [1] in their simulation studies. However, as
the number of processors increases, the difference
between the curves becomes large. In other words,
the single bus gets saturated very quickly and
degrades the system performance. For a large system
size, the difference in behavior for different number of
buses will be more pronounced.

The effects of the degree of sharing on the sys­
tem performance are shown in Figure 8, where three
curves are illustrated for different values of q8 , the
probability that a given request is for a shared
memory block. As expected, larger q8 increases the
bus traffic in order to enforce the coherence protocol.
Moreover, each cache controller dedicates more time
to update remote requests from the system buses. As
a result, a lower processor utilization is observed.

5. Conclusions
As one type of high bandwidth interconnection

network for multiprocessors, multiple-bus structure
has drawn a considerable interest among computer
architecture community. A great deal of work has
been done in design and analysis of such structures.
However, the previous analyses of multiple-bus struc­
tures did not consider the effect of cache coherence
protocols. In this paper, we consider the packet­
switched multiple-bus multiprocessors that use a
modified write-once protocol to enforce cache coher­
ence. A queueing network model that consists of
mixed multiple class customers has been developed.
The model captures the effects of both the multiple­
bus contention and the cache coherence protocol on

:.;
QJ

" 0
P.,

tJ">
.::

·rl
Ul
Ul
QJ
CJ
0
:.;
P.,

15

10

5

0.2 0.4

N=M=l6,
h=90%,
qg=20%.

0.6

l/Z -

0.8

Figure 6. Processing power as a function
of request rate.

1

6 B=4
B=3
B=2

5

)..< 4
(lJ

:>:
0

°' B=l

°' a
rn 3
rn
Q)
u
0
)..<

°' 2 l/Z=0.5,

M=N,
h=90%,

l q 5 =20%.

5 10 15 20

N --
Figure 7. Processing power as a function

of the number of processors.
the system performance. To reduce the complexity of
solution of the model, a simplified algorithm based on
flow equivalence technique has been developed.

From the numerical results obtained from the
model, we conclude that both the number of buses
and the degree of sharing have significant effects on
system performance. A high bandwidth network such
as multiple-bus is necessary for a large system
because the single bus gets saturated very rapidly and
creates a system bottleneck. Although the snooping
system and cache controller designs become complex
with the increase in the number of buses, we believe
that the design of a 2 to 4-bus system is quite feasi­
ble.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

References

J. Archibald and J-L. Baer, "Cache coherence
protocols: Evaluation using multiprocessor simu­
lation model," ACM Tran. on Comput. Systems,
Vol. 4 No.4, pp. 273-2Q8, Nov. 1Q86.
L. N. Bhuyan, "Interconnection networks for
parallel and distributed processing," Guest
Editor's Introduction, IEEE Computer, pp. Q-12,
June 1Q87.
C.R. Das and L. N. Bhuyan, "Bandwidth avai­
lability of multiple-bus multiprocessors," IEEE
Trans. on Comput., Vol. C-34, pp. Q18-Q26, Oct.
1Q85.
M. Dubois and F. Briggs, "Effect of cache
coherency in multiprocessors," IEEE Tran. on
Comput., C-31, No.11, pp. 1083-lOQQ, Nov. 1Q82.
M. Dubois, "Throughput analysis of cache-based
multiprocessor with multiple buses," IEEE Tran.
on Comput., Vol. 37, pp. 58-70, Jan. 1Q88.
Goodman, J. R., "Using cache memory to reduce
processor-memory traffic", 10th Annu. Symp. on
Comput. Arch., pp. 124-132, 1Q83.
E.D. Lazowska, et al., Quantitative System
Performance---Computer System Analysis Using
Queueing Network Models, Prentice-Hall, Inc.,
Englewood Cliffs, 1984. ·

137

6

5

)..<
Q)

:>:
0

°'
t;i
a

·.-1
rn
rn
Q)

u
0
)..<

°' 2

l

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

5 10

N-

q 5 =10%
q 5 =20%

q 5 =30%

l/Z=0.5,
M=N,
B=2,
h=90%.

15 20

Figure 8. The effect of degree of sharing
on the system performance.

T. N. Mudge, J. P. Hayes and D. C. Winsor,
"Multiple-bus architectures," IEEE Computer,
Special Issue on Interconnection Networks, June
1Q87.
Multimax Technical Summary. Encore Com­
puter Corporation, Marlboro, Massachusetts
01752, rev a edition, May 1985.
J. H. Patel, "Analysis of multiprocessors with
private cache memories," IEEE Tran. on Com­
put., Vol. C-31, Apr. 1982, pp. 296-304.
M. Reiser, " A queueing network analysis of
computer communication networks with window
flow control," IEEE Tran. on Commun. Vol.
COM-27, pp. 1199-120Q, Aug. 197Q.
C. Scheurich and M. Dubois, "Correct memory
operation of cache-based multiprocessors", in
The L{th Ann. Int'l Symp. on Comput. Arch., pp.
234-243, June 1987.
Tang, C. K., "Cache System Design in Tightly
Couple Multiprocessor System", AF/PS Proc.,
Natl. Comput. Conf, Vol. 45, pp. 749-753,1976.
M. K. Vernon and M. A. Holliday, " Perfor­
mance analysis of multiprocessor cache
coherency protocols using generalized Timed
Petri Nets," Proc. ACM SIGMETRICS Conj.,
pp. 9-17, 1Q86.
D.C. Winsor and T.N. Mudge, "Crosspoint cache
architecture," Proc. 87'/ntl. Conj. on Parallel
Processing, pp. 266-269, 1987.
Q. Yang and S. G. Zaky, "Communication per­
formance in multiple-bus systems," To appear in
IEEE Trans. on Comput ..
Q. Yang, L. N. Bhuyan, and R. Pavaskar, "Per­
formance analysis of packet-switched multiple­
bus multiprocessor systems,'' The Eighth Real­
Time Systems Symposium pp. 170-178, Dec.
1987.
Q. Yang and L.N. Bhuyan, "Analysis of a cache
coherence protocol for synchronous packet­
switched multiple-bus multiprocessors", Techni­
cal Report: TR 88-3-1, GAGS, UBL.

Stale Data Detection and Coherence Enforcement Using Flow Analysis

Hoichi Cheong and Alexander V. Veidenbaum

Center for Supercomputing Research and Development

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

Abstract

Software-assisted cache coherence enforcement schemes
for large multiprocessor systems with a shared global memory
and interconnection network have gained increasing attention.
Such schemes rely on software to decide which memory refer­
ences access potentially stale cache copies of variables. The
algorithms used usually overestimate the number of such
references. Few have pursued techniques to more accurately
identify accesses to stale cache copies. In this paper, we pro­
pose an approach based on flow analysis to detect such
accesses. Software-based cache coherence schemes that can
utilize the detected results are discussed. We then show our
recently prop_osed approach which has less unnecessary invali­
dation and is faster than other proposed coherence schemes.

1. Introduction

Properly managed private cache memory in multiproces­
sor systems with shared global memory and interconnection
networks can decrease memory access time and reduce net­
work congestion and contention in the shared memory. How­
ever, cache coherence has to be enforced before private caches
can be effectively used in such systems. The discussion will be·
restricted to the problems of maintaining cache coherence in
large-scale multiprocessor systems with interconnection net­
works and shared global memory (or simply large-scale mul­
tiprocessor systems).

A cache coherence violation occurs when a cache copy of
a processor does not have the up-to-date value of the vari­
able. Such a copy is called a stale copy and an access to the
copy a stale access.

Most proposed cache coherence schemes rely entirely on
run-time mechanisms to maintain cache coherence. All
schemes in this category use some form of shared media, a bus
or directories, such that a processor can either monitor or be
notified of each modification of a variable by another processor
[Tang76, CeFe78, Good83, ArBa84, McCr84, PaPa84, RuSe84,
KaEW85J. Cache copies that become stale due to a
modification by other processors can then be updated or
invalidated, and cache coherence is maintained. However,
these schemes are not suitable for large-scale multiprocessor
systems since bus-based systems support only a limited
number of processors. On the other hand, qirectory

This work is .1upported in parl by National Science Foundation under Grant
No. US NSF DCR84-10110, the U.S. Department of Energy under Grant No. US
DOE DE--FG02-85ER25001, and IBM Corporation.

138

. approaches are expensive to construct and cause global

. memory accesses to be serialized to different degrees, or they
incur high communication cost.

Software-assisted approaches have been proposed and
present an alternative for cache coherence in large-scale mul­
tiprocessor systems. In these approaches, potentially stale
cache copies of variables are purged at specific locations in
program execution. Copies known to be up-to-date, which
are usually kept in the shared global memory, are then
accessed [Smit85, BrMW85, EGKM85, McAu86, Veid86,
LeYL87, Lee87, ChVe87J. High communication cost associated
with run-time detection of stale cache copies is avoided.

Efficient invalidation of stale copies is crucial to software
assisted schemes. However, existing schemes also invalidate
non-stale cache copies and may result in low hit ratios. This
is the price paid for not relying on run-time detection of stale
cache copies. To limit the number of invalidations of non­
stale cache copies, alternatives to run-time detection of stale
accesses are important but have not been fully addressed in
software-assisted schemes.

The objectives of this work are (1) to develop a compile­
time flow analysis algorithm to detect stale accesses in parallel
programs, and (2) to discuss possible enforcement schemes
based on the detection results.

In the following sections, the formulation of the cache
coherence problem in terms of flow analysis is presented first.
Then, an algorithm for stale access detection is introduced.
Possible cache coherence schemes based on the detection result
are discussed. Finally, a brief discussion of the scheme that
we recently proposed [ChVe88J is presented.

2. The Cache Coherence Problem and A Flow Analysis
Model

Efficient cache coherence maintenance depends on the
stale access detection. In this section, the issues associated
with compile-time detection of stale accesses and the proposed
solutions are covered.

2.1. Aaaumptiona about Parallel Execution

For clarity, our discussion will focus on parallel programs
with Doall-type [LuBa80] parallel loops (loops with no depen­
dences across iterations). Barrier synchronization is assumed
at parallel loop boundaries. Also, it is assumed that synchroni­
zation operations are necessary to preserve the correctness of

the program; otherwise, a variable cannot be written and read
by distinct processors. All operations and memory accesses of
processors need to be completed before they can proceed
across a synchronization point. Synchronization variables are
not cacheable. It is also assumed that processor assignment to
a parallel loop is unknown at compile time. The following dis­
cussion focuses on intra-procedural analysis and an empty
cache is assumed at the beginning of a procedure.

2.2. Conditions for Stale Accesses Detection

Following the ideas in [Veid86], the occurrence of a stale
access to a variable Xk by a processor P; is determined by the
following sequence of events in execution: (e 1) a cache copy of
Xk is loaded in the cache of the P;, (synchronization opera­
tions take place), (e 2) the latest write to xk is executed by a
processor P;, j '/"- i, (synchronization operations take place),
and (ea) processor P; reads Xk. The synchronization opera­
tions in the sequence are implied under the earlier assumption.
Since our discussion is focused on parallel programs with Doall
loops, synchronization is done where a processor assignment
(PA) to loop iterations takes place. However, the approach is
general enough to deal with other cases.

Notice that the sequence of e1 and e2 constitutes the
sufficient condition for the existence of a stale copy of Xk in
P;. A stale copy, unless being accessed, does not cause
incorrect computation. However, since events e1 through e2 in
a sense determine whether processor P; in ea will access a
stale cache copy, let us call e1 through e2 collectively, deter­
mining sequence (DS) of the stale access to variable Xk by P;.

Compile-time detection of stale accesses faces a major
obstacle. Namely, the details of processor assignment are unk­
nown at compile-time. For example, it may not be known at
compile-time whether processors in e2 and ea are the same. If
they are, the access in ea will not be stale. The identities of

.processors involved in the sequence are important. Without
this knowledge, a compile-time detection scheme can not accu­
rately predict the occurrence of the DS.

The next best thing to detect is a set of sequences of
events which includes the DS. Such a set of sequences serves as
a necessary condition under which some processor may access
a stale copy of a variable Xk. The set is represented by the fol­
lowing relaxed determining sequence (RDS) of variable Xk:
(E1) a cache copy of Xk is loaded into the cache of some pro­
cessor, (E2) one or more P A's occurs, (E3) a write to Xk is exe­
cuted, (E4) one or more PA's occurs, and the event pair Ea
and E 4 may be repeated.

The DS of a stale access to a variable by a particular
processor is a specific case of the RDS of the stale access to the
variable. E 1 establishes the existence of an initial cache copy
of a variable. Each occurrence of E 3 represents a new value
assigned to the variable. The PA separating the writes imply
that each such write may be executed by a different processor
and can turn existing cache copies stale. The terminating PA
of the RDS is necessary to determine that the lastest write in
the RDS and the subsequent read after the RDS may be exe­
cuted by different processors. Hence, a read following these
events may use any one of the cache copies which are all stale
except the one written last.

When an RDS of Xk precedes a read from Xk with no
write in between, the read from Xk is considered a stale access.

139

In some cases, an RDS of Xk, a write to Xk, and a read from
Xk occur in a sequence. If the execution of the read implies the
execution of the preceding write to xk, the read from xk is not
stale. This will be discussed in details in later sections.

Notice that an RDS contains no read accesses except pos­
sibly in E 1 since a read access does not modify the existing
value of a cache item and hence does not cause staleness. To
simplify detection, one needs to look only for write events.
The following sequence, however, will not be detected: a read,
PA, a write, PA, This is the case when a read is not pre­
ceded by any write to the same variable in a subroutine. For
such a read, a dummy write to the variable is assumed in the
analysis. The dummy write accounts for the initial loading of
the cache copy due to the read.

2.3. Flow Analysis Formulation and the Flow Graph

To detect an RDS at compile time, let us look for an exe­
cution sequence of at least two ordered pairs of write - PA
events at compile time. Flow analysis is a good tool for such a
task.

Let us now formulate the detection in the flow analysis
terms (AhSU86]. A write access to a variable is a definition
{def) and a read access is a use. A def that is followed by P A's
is called a determining def (DD). Given a set of DD's of a vari­
able, each DD represents a potentially distinct cache copy.
Thus, the detection of the RDS of a variable is nothing but
finding consecutive occurrences of DD's (By consecutive
occurrences of DD's, the sequence of write - PA, write - PA,
... , is implied in order to be distinguished from the sequence
of write, write, ... , PA. The latter does not form an RDS).

The reaching def algorithm (AhSU86] can determine
whether a value defined earlier in program execution can be
used by a read reference. It will be applied to determine
whether distinct cache copies, represented by DD's, can be
used by a read access .

To find reaching defs, the concepts of kill, generate, and
reach are used. A def of variable X is generated by a
statement S; when the statement contains a write reference to
X. A def of X, d;, in S; is killed by another def of X, d;, in
S; if there is a path in the flow graph from S; to S;. A def of
X, d;, in S; is said to reach Sk if there is path from S; to S;
and no other def of X kills d; on the path.

The goal of using the reaching def algorithm is to check if
DD's can reach a use without being killed so that the use may
access the values associated' with such DD's. A def, d;, kills
another def, d;, with respect to a subsequent use when the use
of the variable accesses only the value written by d;.

The following two facts are important for detecting an
RDS and ultimately stale accesses. First, for cache manage­
ment purposes, it is assumed that a new def of an array vari­
able will result in generating new values, thus potentially
creating new cache copies. Since it is not known for sure if a
new assignment generates the same array elements as the pre­
vious one, let us assume that' array defs are not killed by sub­
sequent defs. Secondly, consider the flow graph. Let d; be the
a def of a scalar X between two adjacent PA's, PA; and
PA;+i· Let the execution of uses between d; and PA;+l always
be preceded by d;. Then, these uses access only the value
written by d;. However, the uses after PA;+l may access the
value written by d; or values by defs prior to PA;. Thus, the
"scope" of the kill by d; is limited only to uses between d1 and

PA;+i· For uses subsequent to PA;+l• defs prior to PA. are
not killed by d;. The defs prior to PA; can thus reach the
uses subsequent to PA;+l· This is called reaching due to pro­
cessor assignment.

2.4. Modified Flow Graph

A flow graph that models parallel execution is created by
adding a cobegin and a coend node at the beginning and the
end of each parallel loop. These nodes are the places of proces­
sor assignments (P A's). The nodes of a flow graph are basic
blocks [AhSU86]. Each of the cobegin and coend nodes is con­
sidered as a special type of basic block, namely, a processor
assignment block (P AB).

The reaching def algorithm applied to conventional flow
graphs cannot properly handle reaching due to processor
assignment. The flow graph is modified to correct this. An
edge serving as a by-pass for defs prior to a PA; to reach the
uses after PA;+1 is added to adjacent pairs of PA' s. Since
scalars are not written in parallel loops, edges are only added
from the coend node of an outermost parallel loop to the cobe­
gin node of the outermost parallel loop(s) next in the flow
direction. These are called augmenting edges. The examples
of a flow graph and its modified version are given as G0 and
G1, respectively, in Figure 1.

2.5. The Detection Algorithm

. Detection of stale accesses is performed as follows. First,
a flow analysis algorithm is applied to G1 to compute the DD's
reaching each block. Secondly, the existence of an RDS for

BO

Bl

B2

B3

B4

B5

B6

BS

dl:X(j) = ...
if() goto BO

r---------------1
I

BO

Bl

Augmenting
B edges

B46J
B56

o~g1~
B60 B7QJ

~~n \.
BS G

I t I

L---------------~

Figure 1. G0 and G1 of an example.

140

each read reference in the block i~ determined from the DD's
reaching a block. Finally, each read reference in a basic block
is checked to determine if it indeed accesses a potentially stale
cache copy.

First, a gen set and a kill set are computed. for each basic
block, B. The gen set, gen(B), contains the statements
which have a def of a variable that is not killed in B. The kill
set, kill(B) contains the set of statements, not in B, with defs
that will be killed by a def in B provided there is a path from
those statements to B. Each block is also associated with the
following sets: in (B) set, in 1(B), out(B), and out'(B). in (B)
contains defs reaching B. in1(B) contains the DD's reaching
B, namely, defs which reach a cobegin or co end node before
reaching B. Defs that reach the entry of B or are generated in
B are included in out(B) if they also reach the exit of B. If B
is not a P AB, out'(B) contains DD's that reach B but are not
killed in B. If B is a P AB, all defs reaching B are turned into
DD's and are included in out1(B). The sets are defined by the
following equations:

out (B) =gen (B) U (in (B) - kill (B))

{
in'(B) - kill (B)

out'(B) = in'(B) LJ in (B)
if B is not a PAB
if Bis a PAB

in (B) = LJ out (B;),
for all j

in1(B) = LJ out1(B;),
for all j

where B; is an immediate predecessor block of B.

Next, an iterative algorithm is used to find in(B) and
in'(B) for each block B in G1• The algorithm converges when
in(B) and in1(B) of every block both stay unchanged for two
consecutive iterations. When the algorithm converges, in1 (B)
contains all DD's reaching B.

For convenience in our discussion, let in1 (B) be parti­
tioned into subsets each containing statements defining a
specific variable. For a variable X, let in'x(B) represent the
subset in in'(B) such that,

in1(B) = LJ in'x(B),
for all X

where X is a variable that has a def reaching B. The results
of the algorithm on the example program in Figure 1 are given
in Table 1.

2.5.1. Finding an RDS from Determining Definitions

The next step is to find out if the in 1(B) to a block may
result in an RDS. The conditions under which a pair of dis­
tinct DD's of the same variable reaching a block may result in
an RDS are shown below:

Lemma 1

Two distinct determining defs of a variable d. and d. . . , ,
reachmg a block Bk, may result in an RDS to Bk if
d; E in1(B;), where d; EB;.

in'
Block gen kill in

in'x in'w in's in'y

~ _{dil_ nil l!hl nil nil nil nil

l!.i_ _l<hl nil J.!!i.~ _l<hl _l<hl nil J.hl
~ _l<hl_ nil J.!!i.~ _ldi.}_ J.hl nil J.hl
~ nil nil ~di.}_ _ldJ_ _ldi.}_ nil _ldJ_

B, {d,,d,} nil {d,,d,,d,, { d,} { d,} nil { d,} d, dJ_

B, nil nil
{ d,,d,, d,, {d,} { d,} nil { d.}

t!.u_d_J_

B, { d,} nil
{d,,d,,d,, { d,, d,, d,} { d,} nil { d,}

d...ILhl_

B, { d,} nil
{ d,,d,,d,,d,, { d,} { d,} nil { da}
~

B, { d,} nil
{ d1,d2,d1,d,, { d,,d,, d,} { d,} {d,} { d,}
~<hl

Table 1. Analysis results for .the example in Figure 1.

Proof

By the definition of in'(B), if d; E in'(Bi) and d; EB;, a
path between the block containing d; and B; must contain a
cobegin or a coend node. Since d; is a DD reaching Bk, there
is a cobegin or coend node on the path between B; and Bk.
Then the following sequence is obtained: (E1) d;, (E 2) a PA,
(Ea) d;, and (E 4) a PA.

A single determining def in the source program may also
result in an RDS to a block. This is the case when d; is
enclosed by a serial loop or a backward branch that also
encloses a parallel loop. This case is covered by the following
Lemma.

Lemma 2

A determining def d;, reaching Bk, results in an RDS to
Bk if d; E in'(B;) and d; EB;.

Proof

By the definition of in1(B;), if d; E in'(B;) and d; EB;, a
backward path to B; must contain a cobegin or a coend node.
Since d; is a DD reaching Bk, d; must reach a cobegin or coend
node before reaching Bk. Thus, to block Bk, there exists the
RDS: (E1) d;, (E 2) a PA, (Ea) d;, and (E4) a PA.

The following theorem can be used to detect the
existence of an RDS.

Theorem 1

The in 1x set of Bk results in an RDS to a read access to
X in Bk if and only if the following is true: (1) there exists
d; E in'x(Bk) such that d; E in'x(B;) and d; EB;, or (2)
there exists {d;, d;}~ in'x(Bk) such that d; E in'x(B;), where
d; EB;.

141

Proof

The if part is straight forward by Lemma 1 and Lemma
2. The proof of the only-if part is as follows. Suppose that
neither (1) or (2) is true. The case of an empty in'x is trivial.
If in'x (Bk) is not empty and (1) and (2) are both false, the fol­
lowing must be true: blocks containing members of in'x(Bk)
are not connected by paths containing cobegin or coend nodes
since no member of in'x(Bk) appears in the in'x sets of other
blocks containing members of in'x(Bk). Then, there is no PA
between the execution of the def(s). As a result, there can be
no RDS involving any def pair d; and d; or multiple d/s. It
has just been shown that the in'x(Bk) cannot result in an RDS
if (1) and (2) are both false. So if in 1x(Bk) results in an RDS,
either (1) or (2) has to be true. Q.E.D.

2.5.2. An Implementation of RDS Detection

The following is a possible implementation of RDS detec­
tion from the in'x set. For each variable X, the DD's in the
union of in'x sets of all blocks and the RDS's formed by DD's
are represented by an undirected graph MIN'x(V,E), in which

a node v; E V represents a DD and an edge e E E, between
nodes v; to v;, denotes that the DD's represented by v; and v;
together result in an RDS.

To determine, for block B; of Gl> if in'x(B;) of a vari­
able X results in an RDS of X, MIN'x(V,E) is examined. For

a def, d;E in'x (B;), if there is an edge in MIN'x(V,E), between

the node representing the d; and a node representing another
def, dkEin'x(B;) or d;, the in'x(Bi) set results in an RDS to
B;.

MIN'x(V,E) can be represented by an adjacency matrix

MIN'x· The MIN'x(V,E) graphs and the MIN'x matrices for the
variables used in our example are shown in Figure 2 and Table
2. The in'x(B;) sets for different blocks containing uses of
variable X are shown as augmented columns to the i:natrix.

VarX VarW VarY Var S

Figure 2. MIN'(V,E) of different variables.

d, d, d,
in'x

B B B, B~
d, 0 1 1 1 1 1 1
d, 1 0 0 0 1 0 1

~ 1 0 0 0 1 0 1

d,
in'w
~

d,
in 1y

1-----1 d,
in's

r----
B,_ BJ.. B,

d, 1 1 d, 1 1 d, 0 1

Table 2. MIN' matrices for the example.

Take B 6 as an example. Its in'x set contains d1 d4 and
d5 (in the augmented column with in'x and B6 as headings).
From the adjacency matrix, since entries (row d1, col d5) and
(d11 d4) are 1, either one of these DD pairs in in1x(B6) forms
an RDS.

2.8. Finding Stale Uses in a Basic Block

Now, the nature (stale or non-stale) of uses in a basic
block can be determined. The uses of scalars and arrays are
treated differently.

For uses of scalars in a basic block, uses are divided into
upwardly-exposed uses and non-upwardly-exposed uses.
An upwardly-exposed use is a use in a block which is pre­
ceded by no def of the same variable in the block. An
non-upwardly-exposed use is preceded by at least one def of
the same variable.

Theorem 2.1

An upwardly-exposed use of a scalar variable X in a
block is considered a stale access if in 'x of the block results in
an RDS.

Proof

If in'x to the block results in an RDS in the system, the
de/in E 3 in the RDS has turned the cache copy, written by the
de/in E 1, into a stale copy prior to the execution of the block.
It is possible that the processor executing the block has the
stale copy of the variable in its cache.

Non-upwardly-exposed uses are not stale regardless of
whether the in1 set of the variable results in an RDS, since the
preceding def in the same block always supplies the uses of the
scalar with an up-to-date copy.

Recall that a def of an array does not kill an earlier def
Thus, a use of an array element may not access only the
values written by a preceding def in the same basic block. The
use has to be assumed stale. Therefore, for array variables,
no distinction between upwardly-exposed and
non-upwardly-exposed uses is. made. The following theorem
is for detecting stale accesses to arrays and the proof is similar
to the one for Theorem 2.1.

Theorem 2.2

A use of an array variable X in a block is considered a
stale access if in'x to the block results in an RDS.

In our example, the uses of X in B 1 and B 7 are non-stale
accesses, and those in B 6 and B 8 are stale. The use of W in B 8

and the use in Y in B 4 are stale. The use of S in B 8 is non­
stale.

2.8.1.. Optimization Using Data-Dependence Analysis

The algorithm in the above discussion does not use sub­
script expressions when dealing with array variable accesses.
As a result, an array def is included in in1X (B) even if the
the elements assigned by the def are not used in B. This hap­
pens when the subset of array elements used has no element in
common with the subset defined. A larger in1x set to a block
is more likely to result in an RDS, hence the uses are more

142

likely regarded as stale accesses. Also, when two DD's of an
array write two disjoint subsets of array elements, these DD's
should not result in an RDS even if the conditions of Theorem
1 are met. If such a case can be detected, fewer stale uses will
occur. Another result is Theorem 2.2, in which no distinction
between upwardly-exposed and non-upwardly-exposed uses of
arrays is made, regardless of whether the use will access only
up-to-date copies supplied by preceding defs in the same
block. Using data-dependence analysis, a more accurate
detection can be achieved.

Data dependence analysis can be used to refine the in'x
for a use of array X or to detect that two DD's in in'x write
no array element in common. A reaching def can be deleted
from the in'x for a use of X if the use does not depend on that
def of X. A use with a smaller in'x has a better chance of
being a non-stale access. Since each use of array X may have
a different subscript expression than the other uses in a basic
block, the in'x set has to be refined each time a use of X with
a different subscript expression is investigated.

On can also use the analysis of subscript expressions to
determine whether the uses are preceded by defs with the
same subscript expression in the same block. Such uses will
not be treated as stale accesses. This can be done by using
direction vectors [Wolf82]. A use preceded by a def, with an
all-equal direction vector in the same block, is not stale.

3. PoBBible Coherence Schemes by Selective Invalida­
tion

Software-directed cache coherence schemes can benefit
from the stale access detection. Possible approaches to invali­
date stale cache copies and related issues are discussed. Then,
a scheme that uses the detection results and a fast selective
invalidation approach is shown.

3.1. Invalidation Schemes

There are several ways to make a reference access only
the up-to-date copy of a variable. It can be achieved either
by invalidating the stale cache copies, by loading the up-to­
date copy by forcing a cache miss (also considered as a form of
invalidation), or by updating all cache copies as soon as a
modification is done. We believe that the last approach is not
suitable for large-scale multiprocessor systems because it
necessarily (1) has high communication cost, (2) updates cache
copies which are not going to be used later, or (3) requires
more run-time bookkeeping. The following discussion will con­
centrate on invalidation.

The goal is to achieve cache coherence without communi­
cation to other processors. It can be ~ccomplished by letting
each processor manage its own cache through invalidation. To
simplify the discussion, let us assume that the global memory
always contains the up-to-date copies of the variables after
each synchronization point or cache line replacement.

Invalidation schemes in previous work suffer from a com­
mon disadvantage, namely, over-invalidation. They all invali­
date at fixed program locations, such as where processor
assignments (PA's) or synchronization operations occur. Some
methods invalidate all shared variables at each such location.
Others invalidate the entire cache (indiscriminate invalidation)
in favor of fast invalidation time. Cache variables that are
not stale are often invalidated (Ch Ve88].

Our discussion of invalidation schemes will focus on the
following issues: (1) when to invalidate, (2) what to invalidate,
and (3) how to invalidate. To address these issues, the invali­
dation approaches are divided into two classes, the post-access
invalidation and the pre-access invalidation. In one approach,
each processor invalidates the cache copies after its references
in order to prevent future stale accesses. In the other
approach, each processor invalidates before accessing what has
been detected as stale. Both approaches depend on the
knowledge that an access has been detected as stale. These
approaches are fundamental for software-directed invalida­
tion. The division equally applies to selective and indiscrim­
inate invalidations. However, selective invalidation is of pri­
mary interest in this study. The indiscriminate approach has
been thoroughly discussed in [Veid86, ChVeB7, Lee87].

3.1.1. Post-Access Invalidation

Post-access invalidation is a preventive coherence
scheme in the sense that cache copies are invalidated before
they can become stale due to a write by another processor.
Cache copies created by read or write accesses need to be
invalidated if they may turn stale before being accessed by
future uses. The condition under which such cache copies are
detected is similar to that for detecting an RDS and is given in
the following:

Cl. A cache copy created by any def or use that reaches a
PA, a def, and a PA before reaching a use is considered a
stale copy that may be accessed by the use.

The post-access approach puts the responsibility to
invalidate on the processor that creates such cache copies. Let
us define the post-access approach as follows:

In the post-access invalidation, a processor invalidates the
cache copies that it created if they satisfy condition 01.

In the post-access approach, invalidations can be immediate or
delayed. In immediate invalidation, the cache copy is invali­
dated right after each reference. Otherwise, the invalidation is
called delayed.

Immediate invalidation results in over-invalidation since
the number of invalidations of a variable can be as large as the
number of references. As a result, a cache item may be invali­
dated more than once even though the one after the last refer­
ence is sufficient. Temporal locality of multiple references of a
variable between a pair of adjacent P A's is destroyed.

Using delayed invalidation, one can take advantage of
such temporal locality and can invalidate less items. Between
a pair of adjacent P A's, delayed invalidation can rely on stan­
dard optimizations to reduce or eliminate over-invalidation.
In the case of scalar variables, what should be invalidated by
delayed invalidation can be easily determined. Flow analysis
can show which scalar variable is referenced on a path between
a pair of adjacent P A's. Invalidation of the cache copy can be
delayed until the processor is done with the references to the
variable. Delayed invalidation of array variables has to
depend on subscript analysis. However, in cases where sub­
script analysis is inexact, immediate invalidation, in which the
exact subscript expression of an array reference is used to
determine the elements to be invalidated, can be used (or
invalidating indiscriminately before the subsequent PA).

While it is conceivable to delay invalidations beyond the
PA immediately following the accesses, the growing complex-

143

ity and inaccuracy of determining what to invalidate make
such a delay impractical. Consider the case in which invalida­
tions of the cache copies created before PA; are postponed
until after PA; but before PA;+i· At compile-time, it may be
impossible, especially when the details of processor assignment
are not known, to determine exactly which elements of an
array the processor has referenced prior to PA,. When invali­
dation is delayed after PA1, a much larger number of the
array elements have to be assumed present in the cache and
they will have to be invalidated.

Although such delayed invalidation is more difficult to
perform, it does have an advantage; it can preserve temporal
locality in the following case. Consider a sequence of refer­
ences of a variable in the following form: non-stale use, PA,
. .. , non-stale use, PA, def, PA, stale use. The cache copies of
the variable do not become stale until the def is executed. If
invalidation can be delayed until after the last non-stale use
in the sequence, processors accessing these cache copies before
the def can have cache hits. When the cache copies of the
non-stale uses are invalidated before each PA, potential hits
by the non-stale accesses separated by P A's are lost.

3.1.2. Pre-AcceBB Invalidation

As a dual to the preventive approach of post-access
invalidation, cache copies are allowed to turn stale and are left
alone. Stale cache copies are invalidated only when they may
be accessed. Pre-access invalidation is defined in the following:

In pre-access invalidation, a processor invalidates the
cache copy be/ ore the detected stale access by the processor.

Similar to the post-access approach, an invalidation is
called immediate if it is done right before each stale access.
Otherwise, it is called early. Since there can be several paths
leading to a use, early invalidation has to make sure that the
potentially stale cache copy is invalidated no matter which
path is taken.

As in the post-access approach, immediate invalidation
has the disadvantage of over-invalidation. Neither does it
exploit temporai locality between a pair of adjacent P A's since
newly loaded cache copies due to preceding uses or defs are
also invalidated. Early invalidation has the same advantages
as delayed invalidation in the post-access approach. Between
a pair of adjacent P A's, early invalidation tries to determine
1) the first use, or 2) the first def (only for arrays) that is
always executed prior to the stale use of the same variable or
array element. If 1) is found, invalidation is needed only
before the first use. Invalidation is not needed if 2) is found.
For scalar variable accesses, flow analysis can handle the
above easily. For array variables, subscript analysis is needed.
When subscript analysis does not help, the worst case solution
is to use immediate invalidation, or indiscriminate invalidation
after the PA immediately preceding a stale use.

Invalidating earlier than the PA immediately preceding a
stale use is difficult. The difficulties are similar to the ones in
postponing invalidation beyond the PA immediately following
an access in the post-access approach. A processor in pre­
access early invalidation thus, in practice, invalidates the stale
copy no earlier than the PA immediately preceding a stale
access. Therefore, potential temporal locality of detected stale
accesses across P A's cannot be preserved. Such temporal
locality exists in the following partial sequence of a variable:
PA, stale use, PA, stale use, ... , PA, stale use.

Pre-accesa invalidation has an advantage in that cache
copies a~cessed by non-stale accesses are not invalidated. AB a
result, temporal locality of accessing non-stale cache copies
can be extended beyond a pair of adjacent P A's.

3.1.3. Selective Invalidation

Invalidation is usually accomplished by in1Jalidate
instructions. Since in1Jalidate instructions consµme processor
cycles, it is essential to keep their number at minimum. Early
and the delayed invalidations are better than immediate since
multiple invalidations of the same cache item can be avoided.
However, even though the early and the delayed approaches
can reduce the number of in1Jalidate instructions, to selectively
invalidate cache items by executing the invalidate instructions
is a sequential process, and it increases the execution time.
Also, in the worst case, immediate invalidation has to be used
and the number of in1Jalidate instructions executed becomes
even larger.

Jn1Jalidate instructions can be replaced by reference
marking. Stale accesses are detected and marked. Provided
the processor can issue a different kind of read accesses for
references marked stale, the cache controller will load the up­
to-date copies from the global memory at access time upon
such read requests. This is essentially a variation of pre­
access immediate invalidation (this does not apply to post­
access invalidation). However, it saves processor cycles since
no explicit in1Jalidate instructions are required.

3.2. Faat Selective Invalidation

This approach was proposed in [ChVe88]. It is a pre­
access approach with hardware assist. ln1Jalidate instructions,
which increase execution time, are replaced by reference mark­
ing. In addition, status bits in the cache memory help to take
the advantages of temporal locality and the reduced over­
invalidation associated only with early invalidation. Further­
more, this approach is not affected by 01Jer -in1Jalidation as in
cases when subscript analysis does not help pre-access early
invalidation.

The fast selective invalidation scheme works as follows.
References detected as stale accesses are marked
memory-read and the non-stale accesses are marked
cache-read. Each cache word has a change bit and a clear
bit. It is assumed that the processor sets the change bits of the
whole cache in one clock upon executing a change -cache
instruction. The clear bit can be similarly set by a
clear-cache instruction. The change -cache instruction is
inserted· after each PA. The cache controller differentiates a
memory-read from a cache -read. Whenever a cache -read
is executed, the cache-controller will report a hit if the refer­
enced item is in the cache. Whenever a memory-read is exe­
cuted, the cache controller handles the access in two ways
when a cache copy exists:

(1) If the change bit of the referenced word is set, the con­
troller reports a miss. The word is loaded from the global
memory and the change bit is reset.

(2) If the change bit is not set and the tags are matched, the
controller reports a hit.

A write to a cache word always resets the corresponding
change bit.

One advantage of this scheme is that it is faster than
invalidating page table entries or cache items one-by-one as in
previously proposed schemes [Smit85, McAu86]. Also, fewer
non-stale cache copies than in any previously proposed scheme
are invalidated since both accesses to read-only variables and
non-stale accesses to read-write shared variables require no
invalidation of the cache copies.

The change bit helps preserve temporal locality and
helps reduce over-invalidation between a pair of adjacent
P A's. In so doing, no subscript analysis is needed as in pre­
access early or post-access delayed approaches. When a stale
access is preceded, in exe.cution, by another stale use or a def
of the same element, the change bit is reset due to the earlier
access. Even though it is marked memory-read, the reset
change bit indicates that a fresh copy has been loaded and
prevents it from being invalidated again by another load from
the shared global memory.

A restricted version of stale access detection has been
implemented. Parallelized Fortran programs by Parafrase, a
Fortran preprocessor [KKLW80], are used as inputs. The
simulated performance of the fast selective invalidation
scheme was evaluated and the results were presented in
[ChVe88].

4. Conclusion

In this paper, a flow analysis algorithm for detecting
stale accesses is proposed. Even though the detection of stale
accesses is an important step in software-assisted cache coher­
ence schemes in multiprocessor systems, it has not been fully
addressed in previous work. A modified flow graph for model­
ing parallel execution and its effects on cache coherence is
introduced such that the standard flow analysis techniques can
be applied to detect stale accesses.

Possible approaches to coherence enforcement using the
result of the detection scheme are discussed. The advantages
and disadvantages of such approaches are described. A
recently proposed scheme that relies on both hardware and
software to enforce cache coherence is shown. The new
approach achieves better selective invalidation and does it fas­
ter than previously proposed schemes.

The detection algorithm proposed can also be extended
to manage other types of memory systems, such as local
memory and multilevel cache systems in multiprocessor sys­
tems. Also, even though only one type of parallelism has been
considered, e.g., Doalls, throughout this paper, the results can
be extended to other parallel loop types and other types of
parallelism.

144

Acknowledgements

Our thanks to Tim Davis, John Fu, and Elana Granston
for their valuable comments.

References

[AhSU86] Aho, Alfred V., Ravi Sethi and Jeffrey D. Ullman.
Compilers Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[ArBa84] Archibald, James and Jean-Loup Baer. An Economicil.l
Solution to the Cache Coherence Problem. 11th Int.
S)'mp. on Comp. Arch. (June 1984) pp.355-362.

[BrMW85] Brantley, W. C., K. P. McAuliffe and J. Weiss. RPS
Processor-Memor11 Element. Proc. of the 1986 Int.
Conf. on Parallel Processing (1985) pp. 782-789.

[CeFe78] Censier, L. M. and P. Feautrier. A New Solution to
Coherence Problems in Mv.lticache Systems. IEEE
Trane. Comput., Vol. C-27 (Dec. 1978) pp. 1112-
1118.

[ChVe87] Cheong, H. and A. V. Veidenbaum. The Performance
of Software-Managed Multiprocessor Caches on Parallel
Numerical Programs. International Conference on
Supercomputing (June 1987).

[ChVe88] Cheong, H. and A. V. Veidenbaum. A Cache Coherence
Scheme With Fast Selective Invalidation. To appear in
Proc. 16th International Symposium on Com­
puter Architecture (June, 1988).

[EGKM85J Edler, Jan, Allan Gottieb, Clyde P. Kruskal, Kevin
McAuliffe, Larry Rudolph, Marc Snir, Patricia Teller
and James Wilson. Issues Related to MIMD Shared­
Memor11 Computers: The NYU U/tracompv.ter
Approach. Proc. 12th Int. Symp. on Comp. Arch.
(June, 1985) pp. 126-135.

[Good83] Goodman, James R. Using Cache Memory to Reduce
Processor-Memory Traffic. Proc. 10th Annual
Intern'.ational Symposium on Computer Archi­
tecture (June, 1983) pp. 124-131.

[KaEW85] Katz, R. H., S. J. Eggers, D. A. Wood, C. L. Perkins
and R. G. Sheldon. Implementing a Cache Consistency
Protocol. Proc. 12th Ann. Int. Symp. on Comp.
Arch. (June, 1985) pp. 276-283.

[KKLW80] Kuck, D. J., R. H. Kuhn, B. Leasure and M. Wolfe.
The Structure of an Advanced Vectorizer for Pipelined
Processors. Fourth International Computer
Software and Applications Conference (Oct.,
1980).

[LeYL87] Lee, R. L., P. C. Yew anJi D. H. Lawrie. Multiprocessor
Cache Design Considerations. The 14th Annual
International Symposium on Computer Archi­
tecture (June, 1987) pp. 253-262.

[Lee87] Lee, Roland L. The Effectiveness of Caches and Data
Pre/etch Buffers in Large-Scale Shared Memory Mv.l­
tiprocea1ora. Ph.D. Thesis, Tech. Rep 870, Center
of Supercomputing Research and Development,
U. of Illinois at Urbana-Champaign (August
1987).

[LuBa80] S. F. Lundstrom and G.H. Barnes, Controllable MIMD
Architecture. Proceedings of the 1980 ICPP (1980)
pp. 19-27.

[McAu86] McAuliffe, Kevin K. Analysis of Cache Memories in
Highly Parallel Systems. Ph. D. Thesis, Tech. Rep.
#289, Courant Institute of Mathematical Sci­
ences, New York University, New York (1986)

[McCr84] McCreight, Edward M. The Dragon Computer System:
An Earl11 Overview. Technical Report (June, 1984).

[PaPa84] Papamarcos, Mark and Janak Patel. A Low-Overhead
Coherence Solution for Multiproee .. ors with Private
Cache Memories. Proc. 11th Ann. Int. Symp. on
Comp. Arch. (June, 1984) pp. 348-354.

[RuSe84] Rudolph, Larry and Zary Segall. Dynamic Decentral­
ized Cache Schemes for MIMD Parallel Architectures.
Proc. 11th Ann. Int. Symp. on Comp. Arch.
(June, 1984) pp. 340-347.

[Smit85] Smith, Alan Jay. CPU Cache Consistency with
Software Support and Using "One Time Identifiers".
Proceeding of the Pacific Computer Communi­
cations '86 (1985) pp. 153-161.

[Tang76] Tang, C. K. Cache System Design in the Tightly Gov.­
pied Multiprocessor System. Proc. AFIP National
Computer Conference (1976) vol. 45, pp. 749-753.

[Veid86]

[Wolf82]

145

Veidenbaum, Alexander V. A Compiler-Assisted Cache
Coherence Solution for Multiprocessors. 1988 Proc.
ICPP (Aug., 1986) pp. 1029-1036.
Wolfe, M. J. Optimizing Sv.percompilers for Supercom­
puters. Ph. D. Thesis, Tech. Rep No. UIUCDCS­
R-82-1106, Department of Computer Science,
U. of Illinois at Urbana-Champaign (October
1982).

SHARED DATA CONTENTION IN A
CACHE COHERENCE PROTOCOL

Michel Dubois and Jin-Chin Wang

Department of Electrical Engineering
University of Southern California

University Park, Los Angeles, CA 90089-0781
(213)743-8080, dubois@priam.usc.edu

ABSTRACT

In many shared-memory multiprocessors, private caches are
associated with each processor and coherence among caches is
maintained in hardware by a cache coherence protocol on the
memory bus. Multithreading, or the concurrent execution of
the multiple processes forming a task is also often supported in
these systems. The efficiency of multiprocessor systems for a
parallel algorithm depends to a large extent on the amount of
sharing in the algorithm and on the effectiveness of the cache
protocol for shared data accesses. Even if the cache sizes were
infinite, the number of processors which can be connected to a
bus would still be limited by the bus traffic due to the initial
loading of data and instructions in each cache, and to the active
sharing of writable data.

In this paper, we analyze shared data contention in parallel
algorithms and its effects on the performance of a cache coher­
ence protocol under the assumption of infinite cache sizes. A
simple program model for data sharing is introduced and an an­
alytical closed-form solution is found for all components of the
cache coherence overhead. We then study the overhead due to
shared data contention in five parallel algorithms: the iterative
Jacobi algorithm, the iterative S.O.R. algorithm, the parallel
quicksort, and the shuffling and the non-shuffling F.F.T. Fi­
nally, these overheads are compared with the predictions of the
analytical model.

1. INTRODUCTION

In modern multiprocessors, a given algorithm may be de­
co?1"posed into cooperating processes that run in parallel [2];
th!S technique is called multitasking or multithreading. In a
shared-memory multiprocessor processes working in parallel on
the same algorithm cooperate through the sharing of data in
memory. Usually, in a shared-memory multiprocessor a cache
[16] is associated with each processor, in order to reduce both
memory access latency and memory-bus traffic. Shared data
may be cached provided a hardware protocol maintains con­
sistency among multiple copies of the same data in different
caches. By caching shared data one hopes to increase the av­
erage hit ratio and to reduce the bus traffic.

Three techniques are possible to analyze the performance
of cache-based multiprocessors: measurements on an existing

146

system, trace-driven simulations [13], and simulations or ana­
lytical models based on a program behavior model. These three
techniques vary in cost, flexibility and accuracy. H an analyti­
cal model is shown valid for a number of significant systems and
algorithms, then it can be used to predict their performance at
reduced cost.

Early work on the analytical evaluation of cache-based sys­
tems was done by Patel [14] and Briggs and Dubois (4]; these
papers either ignored the cache coherence effect or assumed
that shared data are not cached. In order to include the effect
of data coherence in the models, several authors have taken
the approach of modeling the workload with an analytical pro­
gram model (17]; the workload model is then used in a sim­
ulation or in an analytical model. In (7], Dubois and Briggs
introduced a model for multiprocessor program behavior and
derived a closed-form solution in the case of a multiprocessor
system with finite caches and LRU (Least Recently Used) re­

placement policy. Archibald and Baer [3] published simulation
results comparing various cache protocols. In (18] Vernon and
Holliday introduced a timed Petri net model driven by the same
program model as in (7]; no closed-form solution was proposed.

In this paper, we introduce a new program behavior model
based on the observation that shared data are modified in crit­
ic~ sect~ons; a closed form solution is derived for the average
rmss ratio and penalty. Finally, the model is applied to several
algorithms and effect of cache block size is investigated.

2. INFINITE CACHE MODEL AND GENERAL AS­
SUMPTIONS

Several simplifying assumptions are made throughout this
paper. We first list them, then we discuss their validity.

Assumption 1: The size of all caches is infinite.
Assumption 2: The models are in steady-state. Initial tran­
sients are not included.
Assumption 3: Process preemption and migration are disal­
lowed; i.e., a process executes from start to finish on the same
processor and without interruption.

The major motivation for studying the infinite cache model
is its simplicity. Most parameters of the cache do not affect
the model prediction, such as cache size, cache organization or
cache replacement policy; ,the resulting models are therefore
parsimonious. Moreover, present trends in memory chip sizes

indicate that fast and large caches are becoming possible. In
these caches, most of the misses are due to the initial loading
of the data, and to coherence invalidations. It is expected that
the infinite cache model will become more and more relevant
as the level of integration of static RAM chips increases.

Modeling transient effects in an infinite cache is not diffi­
cult, but the models are not very interesting. For example, at
program start, caches are empty; every block referenced in a
parallel algorithm must first be brought into one of the caches;
this initial miss is not counted in the models. The number of
these initial misses is simply equal to the total number of differ­
ent blocks accessed during the whole execution of the parallel
algorithm.

The third assumption may be the most restrictive. It is
realistic in systems supporting group scheduling [11]. Under
the group scheduling strategy, all processes participating in a
task are scheduled and preempted together. We will reconsider
this assumption in Section 7.

3. CACHE COHERENCE PROTOCOL

The cache coherence protocol considered in this paper is an
invalidation based protocol described for example in [lO](page
522); other protocols have been designed [3], and the techniques
described in this paper could be applied to any one of them.

Generally, in a coherence protocol, multiple copies of the
same cache block may be present in different caches, provided
the copies are Read-Only (RO copies), that is, provided no
processor has modified any word in the block. If a processor
needs to modify a word in a block, it must obtain a Read-Write
copy (RW copy), i.e. a unique copy of the block: this may
involve invalidating copies of the block in other caches. Usually,
a block containing only instructions, private data or shared
constants will be tagged as RO, while blocks containing shared
writable data may be tagged as RW. Therefore, we distinguish
between S-blocks and P-blocks. An S-block contains at least
one shared writable data item while a P-block contains only
instructions, private data or shared Read-Only data. In the
protocol selected for this study, the following cache events on
an S-block may occur in a multiprocessor systems with infinite
caches and in steady-state (refer to Figure 1):

1. Miss: this event occurs when the data is referenced and
is not present in the cache. We denote this event as M
(Miss). All misses occurring as a result of the following
events are accounted for as M events.

2. Transition from RO to RW: this event occurs when a
processor needs to modify a block already present in an­
other cache as RO; a miss may occur and an invalidation
must be sent to the processor(s) possessing RO copy(ies);
we denote this event as IN_RO (for INvalidation of RO
copy(ies));

3. Transition from RW to RO: this event occurs when a
processor reads a block present in another cache as RW;
besides the occurrence of a miss, a signal must be sent
to the cache possessing the RW copy and this cache must
update the main memory; we denote this event as CS_RW
(Change State of a RW copy).

147

4. Transition from RWto RWin a different cache: this event
occurs when a cache needs to modify a block which is
owned as RW by another cache; it implies a miss, an
invalidation, and the update of main memory; we denote
this event as IN_RW (INvalidation of a RW copy).

When writable blocks are actively shared, copies must be trans­
ferred among caches and invalidation signals must be sent. As
the number of processors actively sharing a block increases, the
invalidation activity usually increases.

4. ANALYTICAL MODELS

The access pattern to shared data in multiprocessor systems
depends on the algorithm". We can distinguish between two
broad classes of shared variables: synchronization data (such
as locks) and other shared operands. Synchronization data
are used to coordinate process execution or to protect shared
operand accesses.

Kung [12] classifies multitasked algorithms into synchro­
nized and asynchronous algorithms. In asynchronous algo­
rithms, accesses to shared operands are not protected and each
processor may access the data as it needs them. In synchro­
nized algorithms, accesses to shared data are restricted, either
by explicit synchronization or simply by structuring the fork­
ing and joining of processes. In synchronized algorithms, shared
writable data are accessed either in critical sections [2] (only
one process can access the data at a time either to Read or to
Write) or in semi-critical sections [5] (multiple processors
can read a data item at a time, but if a process has to modify
the data item, it must do so in mutual exclusion). Figures 2
(a) and (b) illustrate both access patterns. In these Figures,
only accesses to a specific shared datum are shown.

4.1 Analytical Model for one S-block

The program model is derived from the model in [17]. We
had to extend this model because it did not capture the locality
of references to shared writable data. In another paper [6], we
presented two additional program models for which the effect
of cache coherence can be solved analytically and which take
into account the accesses made in critical sections and semi­
critical sections. All these program models can be defined as a
special case of the following model. The program model that we
are about to define assumes that accesses by one processor to a
shared writable block are done in uninterrupted bursts. Besides
modeling critical section accesses, the burst model takes into
account the locality of reference on shared blocks. We use the
same notation as in [7].

The P processors execute independent streams of instruc­
tions and generate homogeneous streams ofreferences. S-blocks
belong to different sets; all S-blocks in a set are accessed with

the same pattern, even if they are accessed by different pro­
cessors; the program model, model parameters and coherence
overheads are identical for all the S-blocks in a set.

Let q. be the fraction of references to S-blocks. The fraction
of S-block accesses that are for a particular S-block i is Pi with
i=l, ... ,N. and N. is the total number of shared writable blocks.
S-block i is shared by Ji processors (Ji ~ P, the total number
of processors in the system). Processors access an S-block i in

bursts. l; is the average burst size, i.e. the average number
of accesses to the block during an access burst. An isolated
access is counted as ·a burst of size one. The average burst
size can be found by dividing the total number of references by
the number of access bursts. For example, for the examples of
Figure 2 the average burst sizes are l; = 2 (Figure 2(a)) and
l; = 1.75 (Figure 2(b)), assuming that one cache block contains
only one data element.

The fraction of processor references which start an access
burst for a given S-block i is ~· The basic approximation
of the model is that access bur~ts are independent from one
another. When a processor completes an access burst, all the J;
processors have the same probability of starting the next access
burst to the shared block. We designate by W; the probability
that the block is modified during an access burst. Because of
the infinite cache assumption, there is no interference among
cache accesses to different blocks and the events occurring for
one block are independent of the events occurring for any other
block; the state transitions of S-block i can be observed in
isolation.

The global state of an S-block i is described by the num­
ber of caches possessing a copy of the block and by the status
RO or RW of the block. The global states are denoted by
LRW, LRO, 2_RO, ... , J;_RO. We can ignore the identity of
specific processors because the multiprocessor is homogeneous
and symmetric.

The Markov chain for the state transitions of S-block i is
shown in Figure 3 (we have dropped the index i in the Figure
for clarity. Note that all parameters are for a given S-block
i). The state of the Markov chain is the global state of the
block whenever an access burst is completed (except for the
state M EM, which is the state of the block before the first
reference to it). It is clear from Figure 3(a) that states MEM
and LRO are transient states. Figure 3(b) shows the reduced
Markov chain where the transient states have been removed.
We will only solve the Markov chain of Figure 3(b). A state
transition occurs in this state diagram every time a burst of
accesses is completed by one processor. The transition proba­
bilities from state k..RO, k < J;, are found as follows.

1. From state k..RO to state k + 1..RO: The probability of
this transition is the product of of the probability that
the next burst contains only Read accesses, (1- W;), and
of the probability that the access burst is made in one of
the J; - k other caches,<¥>·

2. From state k_RO to state k_RO: This is the case when
the next access burst contains only Read accesses to one
of the k caches. The transition probability is (1- W;)*·

3. From state k..RO to state 1..RW: This is the case when
the next access burst modifies the block. The transition
probability is W;.

The transition probabilities from states 1..RW and J;_RO are
derived from similar arguments.

This finite state Markov chain is aperiodic and irreducible.
Let's denote by Pr(l) and by Pr(k), k=2, ... ,J;, the state prob­
abilities of state LRW and states k..RO respectively. The state
probability distribution is given by the set of equations: (see
for example [1))

148

Pr(k) = (J; - k + 1)(1- W;) • Pr(k - 1)
(J; - k)(l - W;) + J;W; '

(1)

fork= 2, ... ,J;

and

J.·. W.·
Pr(l) - ' '

- (J; - 1)(1 - W;) + J; · W;
(2)

With these state probabilities, one can compute the proba­
bility of occurrence of each coherence event. When there are k
copies in k processor caches a miss occurs at the beginning of
a new access burst, i.e. at a state transition in Figure 3(b), if
the next processor to start an access burst is one of the (J; - k)
processors without a copy in their cache. Therefore, the frac­
tion of references to S-block i which miss in the cache is equal
to the fraction of state transitions causing a miss divided by
the average burst length I;.

1
M;=­

l;
Pr(l) • (J; - l) + Pr(2) · (J;J.- 2) + ...

J; i

1
+Pr(J; - 1) · J;I (3)

After some transformations, one finds simply (see [9)):

M.- _ !_ (J; - 1) · W;
I - l; 1 + (J; - 1). W;

(4)

In the Markov graph of Figure 3(b) a transition from state
LRW to state LRW results from three possible sequences of
events:

1. the processor owning the RW copy of the block has
started a new burst of accesses for the same block; no
event is recorded for S-block i in this case;

2. a different processor has started an access burst for S­
block i and its first access to the block is a Write; an
event of type IN..RW must be recorded for S-block i;

3. a different processor has started an access burst for S­
block i an!f its first access to the block is a Read followed
by a Write; one event of type CS_RW followed by one
event of type IN..RO must be recorded.

In order to differentiate between the 2nd and the 3rd cases,
we have to introduce a new factor /;, which is the fraction
of Write bursts1 such that the first access is a Write. /; can
easily be computed from a string of references. For example,
in Figure 2(a), /; = .75, and, in Figure 2(b), /; = .5.

An invalidation of RO copies occurs whenever an access
burst modifies a block in an RO state. It also occurs in a tran­
sition from 1..RW to 1..RW, provided the second access.burst
is executed by a different processor and starts with a Read.
Therefore, the fraction of accesses to S-block i invalidating RO
copies in other caches is given by:

1 [J; - 1] I;= 'fi W;(l - Pr(l)) + W;(l - /;)Pr(l)--;,;-

1By definition, a Write burst is an access burst containing at leaat one
Write access.

A change of state from RW to RO occurs whenever a burst
leaving the block in state L.RW is followed by a burst starting
with a Read access by any other processor. Therefore, the
fraction of references to S-block i changing the state from RW
to RO is:

1 [J; - 1 J.· - 11
G; = /; Pr(l)(l - W;)~ + Pr(l)W;(l - f;)T

Finally, an invalidation of a RW copy occurs whenever an access
burst leaving the block in state LRW is followed by a Write
from any other processor. The fraction of references to S-block
i causing such an event is therefore:

1 J· - 1
D; = -1 Pr(l)f;W;-'-

; J;

In these equations, Pr(l) is given by equation (2).

4.2 System Effects

The results of the previous section are combined to model
the effect of cache coherence on the overall system performance
under the assumptions of Section 2. Two performance mea­
sures are derived: the miss ratio and the average coherence
penalty.

4.2.1 Miss ratio

In the infinite cache model, if we neglect the transients, the
miss rate is given by the miss rate on shared writable data, i.e.,

N,

M= q,Lp;M; (5)
i=l

where N, is the total number of shared writable blocks. The
value for M; is obtained by applying equation (4) and depends
on different values of the parameters for different S-block i. In
many cases, the terms in the above sum can be clustered by
grouping the shared writable blocks into sets; within a set all
blocks are referenced with the same pattern, and therefore have
the same value of M;.

To find M from equation (5), one need to specify the model
parameters for all sets of blocks. In the studies presented in
[7,3,18], there is only one set of parameters. Implicitly, it is
assumed that the models can be applied to a single average set
including all the shared writable data. Parameters are there­
fore computed as averages. For the five examples presented in
Sections 5 and 6, this approach has proven to be acceptable.

4.2.2 Average Coherence Penalty

A processor runs at maximum speed when no cache misses
or coherence events occur. To each coherence event corresponds
an average penalty, AEVENT· The penalty associated with an
event is defined as the average time that a processor is blocked
at the occurrence of the event. The average coherence penalty
per memory reference to S-block i is:

>..; = M;>..M + l;>..1N...Ro + G;>..cs...Rw + D1>..1N...RW

M;, I;, C;, and D; were defined in Section 4.1.

149

If we neglect the transients, the average coherence penalty
per memory reference is given by the sum of the coherence
penalties on each shared writable block i: that is,

N,

Atotal = q, LPiAi
i=l

(6)

As for the system miss rate, S-blocks can be clustered into a few
sets in which blocks have the same average coherence. penalty.
The average penalty could also be approximated by the penalty
for an average block.

The average coherence penalty adversely affects the pro­
cessor efficiency. In powerful and expensive main frame mul­
tiprocessors, any loss of processor efficiency is critical for the
performance/ cost ratio of the system. 2

5. APPLICATION TO MULTITASKED ALGO-
RITHMS (CACHE BLOCK SIZE IS ONE)

If the cache block size is one data element, then the values
of the parameters are straight forward. This section deals with
a caclie block size of one. In Section 6, we will investigate the
block size effect.

We compare the model predictions with the simulation of
specific algorithms running on shared-memory multiprocessors
in which each processor has a private data cache of infinite
size. The behavior of the relaxation and FFT algorithms are
data independent. To simulate these algorithms a simulation
methodology described in [8] was applied. In this methodology,
the algorithm is actually executed on a uniprocessor and the
multiprocessing effect is obtained by executing the program of
each simulated processor in turn. The simulator switches from
one simulated processor to the next on each shared data access
and synchronization primitive execution. A slightly different
teclinique was applied to the quicksort algorithm and will be
explained in Section 5.2. Many simulation results can be de­
rived analytically. These analytical derivations whenever they
are possible are presented in [9]. Also the computation of the
model parameters for each case is given in [9].

5.1 Relaxation Algorithms for Partial Differential
Equations

We consider two iterative schemes [20]: the Jacobi and the
Successive Over Relaxation (S.O.R.) algorithms. In the Jacobi
iterative algorithm, the computation consists in repetitively up­
dating each point of a grid as follows:

x· .(K+l) = .!:. [x·+l .(K) + x· 1 .(K) + x· ·+1(K) + x·. l(Kl]
1,3 4 ' ,, ·- ,, '·' 1,3-

The Jacobi iterative algorithm requires to maintain two
grids. In each iteration, each point of one grid is updated by
using the values of the 4 neighbors in the other grid. Then the
processors synchronize and the two grids are interchanged. For
a M x N grid, there are 2(M+N) boundary grid points and
these points are not modified during execution: these points

2 If T1 is the mean execution time of an instruction in the uniprocessor
system (in microsecond), and if r is the average number of memory refer­
ences per executed instruction, the average instruction execution time in
the multiprocessor is T, + r A total, and the MIPS rate (Million of Instruc­
tions Per Second) per processor is MIPS rate= Ti+•~to••• .

are Read-Only and can be treated as P-blocks. The grid points
adjacent to these boundary points are called outer grid points.
The reference pattern to outer grid points is different from the
pattern to inner grid points. Consider, for example, two square
grids of size 8 x 8 for which we allocate one processor to each
subgrid of size 4 x 4, as displayed in Figure 4. The sets of
shared writable data are circled in Figure 4. There are only
three sets of S-blocks (in the sense of Section 4.1), (1) inner
grid points with J = 2, (2) outer grid points with J = 2, and
(3) inner grid points with J = 3.

Shared writable data are accessed in semi-critical section
in the Jacobi iterative algorithm. In one iteration, the shared
data in one grid are Read-Only and are accessed by different
processors, and in the next iteration they are modified by a
single processor in a critical section phase. Since the models
developed in this paper are for infinite caches in steady-state,
we consider iterations n and n+l where n>l and we assume
that the data caches are large enough to contain the two sub­
grids accessed by each processor.

In the S.O.R. algorithm, only one copy of the grid is needed
and iterates are updated according to the red/black ordering:
grid elements which are in even positions (the sum of the in­
dexes is even) are tagged as black, others as red. Each iteration
proceeds in two sweeps. The red elements are updated in the
first sweep, and the black elements are updated in the second
sweep. After each sweep, each processor has to synchronize
with at most 4 neighbors. Each processor has the same num­
ber of red and of black iterates. The equation for the update
of an iterate in the (K + 1)th iteration is :

x· .(K+l) - (1 - w) x\~l ,,, - ,,,

+

where w is the relaxation factor.
During one sweep of the algorithm, some shared grid points

are read by multiple processors, and some others are read and
modified by one processor. As for the Jacobi iterative algo­
rithm, there are 3 sets of shared writable grid points.

5.2 Quicksort

Quicksort is a divide-and-conquer algorithm, which sorts
a file A[l], A[2], A[N] by rearranging it to make the
condition that A[l], AU-1]:::; A[j]:::; AU+l], ... A[N] hold
for some j, and by recursively applying the same procedure to
the subfiles A[l], ... A[j-1] and AU+l], ... A[N]. A program
for the quicksort on a uniprocessor is given in Figure 5 [15].
In a multiprocessor, at the end of each splitting phase, one
subfile is processed by the same processor and the other subfile
is sent to a different processor, until all processors are busy.
The computation proceeds in a tree-like fashion with as many
leaf nodes as there are processors, as displayed in Figure 6. At
the leaf of the computation tree, each processor is assigned the
quicksorting of one subfile.

In an infinite cache environment, coherence activity occurs
mostly while the tree is growing. We only consider the part of
the execution from the start of the algorithm until a processor
has reached the bottom of the tree and has finished the first
iteration of its local quicksort. While a processor splits a sub­
file no other processor accesses any data item in the subfile.

150

Therefore shared data are accessed in critical sections. The P
subfiles obtained at the leaves of the tree (P is the total number
of processors), correspond to P different paths in the compu­
tation tree; the data in these subfiles are shared to various
degrees. For example, one subfile is accessed by the same pro­
cessor from start to finish, and therefore is not shared. Other
subfiles may be shared by J processors, J = 2, ... , log2P + 1.
P - 1 sets of shared writable data can be identified. Each set
can be associated with a leaf in the computation tree. Figure
6 illustrates the different sets for P = 8.

Let's assume that the probability of an exchange is q dur­
ing each splitting phase. The values of the parameters for the
model are l = 1 + q, W = q, and J = 2, ... ,log2P + 1. The
exact values for the miss rate and for the average penalty can
be computed and verified by simulation. The simulation of the
quicksort proceeds as follows. We take a file of size N and
scan it repetitively as in the quicksort algorithm. However, we
do not execute the quicksort, because its behavior is data de­
pendent. Rather, in the simulation, shared data accesses are
generated as follows. Every time an element of a subfile is
visited, we decide to exchange with probability q; a subfile is
always split into two equal halves.

5.3 Fast Fourier Transform (FFT)

The one-dimensional non-shuffiing FFT algorithm for N
data items is represented by a butterfly graph with log2N
stages. A bit-reversal permutation is applied at some point of
the algorithm, so that the results are stored in the same order

as the initial data items. Let s(k),k=0,1,2, ... ,N-1 be N samples
of a time function. The DFT (Discrete Fourier Transform) of
s(k) is defined to be the discrete function x(j)j=0,1,2, ... ,N-1,
where

N -1 1...!..J_j__!

x(j) = L s(k) e N

k=O

where j=0,1, .. N-1 and i= J=T.
In the non-shuffiing FFT algorithm, we divide the array of

N items into P chunks containing i consecutive items. Each
processor computes the FFT for its chunk, containing i data
items. For N =16 and P=4, the non-shuffiing FFT algorithm
is illustrated in Figure 7. In general, each block is shared by
log2P + 1 processors and the algorithm can be divided into two
parts. In the first part, i.e., the first log2 i stages of the but­
terfly, every shared block is accessed by one processor. In the
second part, i.e., in each of the last log2P stages of the butter­
fly, each shared block is first read by two processors and then
modified by a single processor in a critical section. Since there
is no coherence activity in the first part of the non-shuffiing
FFT algorithm, we examine the second part of the algorithm.
Synchronization is necessary in this algorithm and is denoted
by dotted lines in Figure 7. In general, 2 log2P synchroniza­
tion points are needed in the second part (If the algorithm used
two copies of the array and alternated between the copies only
log2P synchronization points would be needed.) There is only
one set of shared writable data in this problem.

Another algorithm for FFT in multiprocessors is the shuf­
fling FFT. In this algorithm, computations of partial FFTs

alternate with shuffiing stages in which data are passed among
processors. Figure 8 presents the shuffiing FFT algorithm for
an example where N=16 and P=4. During each butterfly com­
putation and each shuffiing stage, each shared block is read and
updated by a single processor. There is only one set of shared
writable data and each data is shared by J = 2 processors.

5.4 System Effects

Table 1 records the overall miss rate on data and the av­
erage coherence penalty for the five algorithms. The unit for
the penalties is the average penalty for a miss. We have cho­
sen the following penalties for each event: >..M = >..cs..RW =
>..rN..RW = 1, >..rN..RO = 0.5. There are three numbers per
entry in the Table. The first one is obtained summing by ap­
plying the model to each set and by the contributions of each
set. The second number is obtained by computing the aver­
age values of the model parameters and by applying the model
with these average values. These two numbers are very close
because there is only one set of data, or one set dominates,
or all sets are accessed with the same probability. The third
number is obtained by simulation. Remember that these per­
formance estimates apply to the part of th~ algorithm where
sharing of writable data occurs, and that the first miss and its

associated penalty are not counted.

6. EFFECT OF CACHE BLOCK SIZE

Cache block size is an important factor that affects the sys­
tem performance. When a cache block contains more than one
datum, access bursts to an S-block have different characteristics
and in general, it is much more difficult to apply the models.

In this section, we show how the cache block size, B, affects
the model and simulation results.

We chose the following penalties rate for each coherence
event: >..M = >..cs..Rw = >..rN..RW = 0.75 + 0.25B and
>..rN ..RO = 0.5. We therefore model the penalty for a block
transfer by a simple linear function of the block size.

6.1 Relaxation Algorithms for Partial Differential
Equations

In the two iterative algorithms, when the cache block size
increases, the number of sets of S-blocks also increase. For
instance, there are five sets of S-blocks when B is two, eight
sets of S-blocks when Bis four, and ten sets of S-blocks when B
is eight. For the Jacobi iterative algorithm, Figure 9 illustrates
the eight different types of S-blocks, named type 1 to type 8
when the cache block size is four data elements.

In the case of an M x M Jacobi array, when the cache block
size exceeds $f; + 1, processors update S-blocks alternatively,
and hence the number of references l in each burst is equal to
one; J can be as high as 2 ·..JP or even P.

We have identified all sets and we have applied the model to
each set for block sizes from 1 to 256, and for a grid size of 128
X 128. Figures 10 and 11 show the comparison between model
prediction(dotted curve) and simulation (plain) for the system
miss ratio and the system penalty (obtained by summing the

151

contributions of all sets). These curves are valid for any number
of processors P provided B < $f; + 1. These two Figures show
that the analytical program model yields very good predictions
for the Jacobi iterative algorithm when the cache block size is
greater than two (error is less than 2%).

In the S.0.R. algorithm, for any cache block size, the num­
ber of sets of S-blocks are the same as in the Jacobi iterative
algorithm; however, the reference patterns to the blocks in the
sets are different.

In the case of an M x M S.O.R. array, when the cache
block size exceeds ~ + 1, S-blocks are updated alternatively

by different processors. In this case, J can be as high as 2 ·..JP
or even P.

Figures 12 and 13 illustrate the results of the system miss
ratios and system penalities for different cache block sizes for
a 128 x 128 grid. These curves are independent of the number
of processors provided B < 7i> + 1. The model (dotted) is
compared to the simulation (plain). Again, the Figures show

that the model is very reliable.

6.2 Quicksort

For simplicity we have considered only the ideal quicksort:
the number of processors and of elements in the file is a power of
2 and each split is perfect, i.e. a subfile of size n is exactly split
in two subfiles of size I. When the number of data elements in
one cache block is less than or: equal to ; , where N is the total
number of data elements, a cache block can only be referenced
by one processor in a splitting phase.

Figures 14 and 15 show the results of the system miss ratio
and the system penalty for the model (dotted) and for the sim­
ulation (plain). In these simulations, the file size was N=64K,
and the number of processors was 8. Different curves would be
obtained for different number of processors. The relative error
in these two Figures is less than 20%.

6.3 Fast Fourier Transform (FFT)

In the non-shuffiing FFT algorithm, there is only one set of
S-blocks. When the number of data elements in a cache block
is less than or equal to ;, each S-block is shared by log2P + 1
processors.

When the number of data elements in one cache block ex­
ceeds ;, S-blocks bounce back and forth among processors at
every Write. In this case, each block is shared by more than
log2P + 1 processors.

In the shuffiing FFT algorithm, there is also only one set
of S-blocks. When the number of data elements in a cache
block is less than or equal to ;, each S-block is shared by two
processors. Otherwise, when the number of data elements in
one cache block is larger than ;, S-blocks move back and forth
among processors.

Figures 16-19 show the results for non-shuffiing and shuf­
fling FFT algorithms. The file size is 64K and the number of
processors is four. These curves would be different but would
have the same shape for larger number of processors. The
relative errors between model predictions and simulations are
between 20% and 30% for the system miss ratio, and between

5% and 20% for the system penalty.

7. DISCUSSION OF RESULTS

It has been observed that the combined effects of critical
sections {for all block sizes) and of the spatial locality [16] of
accesses (for block sizes larger than one) to shared writable
data result in access bursts to such data by different proces­
sors. This is the basic premise of the paper. Based on this
observation, we have extended a previous program model for
the sharing of data, and we have tried to match the model pre­
dictions and the predictions of simple simulations of algorithms
in multiprocessors with infinite caches.

It appears that. iterative algorithms such as the Jacobi or
S.O.R. are very well suited to cache-based systems with large

data caches, because shared data contention is low (in realistic
cases, the number of processors sharing a given writable block
is less than four and the fraction of accesses to shared writable
data is low). Figures 10-13 show that bigger block sizes do
not improve the overall hit rate on shared data and cause more
penalty: the average miss rate on each S-block access decreases
(i.e. M; decreases) but the number of accesses to such blocks
increases (i.e. q8 increases); the probability of a coherence event
per access to S-blocks decreases, but this is more than compen­
sated by the increase of q, and of the penalty associated with
each coherence event. For shared data accesses, the block size
should be small (one or two data elements). Note that this
conclusion is only valid if the caches are large enough to con­
tain all data across successive iterations; moreover, the first
iteration causes large number of misses for the initial load of
data and instructions. These transients are helped by a bigger
block size. From the Figures, we observe that a block size of
16 data elements is acceptable for shared data accesses. These
conclusions are valid for many configurations of processors as
explained in Section 6.1.

The results on the quicksort are somewhat artificial because
we have simulated the ideal quicksort only, to simplify. In prac­
tice, one would have to run simulations for multiple random
input files and take averages. Nonetheless, the stochastic sim­
ulation does represent one possible execution of the quicksort.
Bigger block sizes are a definite advantage in the ideal quick­
sort algorithm, up to a size of B = 16. If the algorithm used to
estimate the median is good, this conclusion should hold also
in the general case (we expect however more contention).

Bigger block sizes also improve the performance of the FFT
routines (strangely enough up to a block size of 16 data el­
ements, again). While the penalties on individual coherence
events increase with the block size, the fraction of shared-data
accesses causing these events decreases and the total number
of accesses stays constant, as the block size increases.

In all the simulations we ran, there is a maximum block size
beyond which the performance drops sharply. This block size
depends on the size of the problem and on the decomposition
of the algorithm (i.e. the number of processors).

From Tables 1-6 and from Figures 10-18, it appears that
for the five algorithms studied in this paper, the precision of
the model based on the idea of access bursts is good in many
cases. We never expected the models to fit exactly each case:
because of the large data reduction in the stochastic models,
a given model with given parameter values maps on different

algorithms with different behaviors. It appears however that
the models and their parameters are sufficient to approximate
the shared data contention effect for some important parallel
algorithms, and in the case of the infinite cache model.

152

If we look at the comparisons between model and simula­
tions, it appears that the quicksort and the non-shuffling FFT
result in the worst predictions; in the case of the non-shuffling
FFT, the model predicts that the coherence overhead will in­
crease with P, the number of processors, while the simulations
predict that it remains constant. A closer look at Figure 7
shows that an S-block is not shared by all log2P + 1 processors
at all times but rather that it is shared by different groups of
two processors at different stages of the computation. Applying
the model with J =2 would yield a much improved prediction
of the model.

We have assumed all along that preemptions and migra­
tions of processes were disallowed. Indeed, in all the algorithms
we have studied, processes are statically scheduled. We mostly
made this assumption to simplify the analysis of the algorithms.
However, in many cases, the bursty behavior of accesses would
be preserved if preemption, migration, and dynamic schedul­
ing were allowed. The reason is that bursts of accesses are
short and unlikely to be interrupted by preemption. Migration
and dynamic scheduling would increase the randomness in the
selection of the processor to start the next access burst, and
therefore would alleviate the problem observed in the quick­
sort and non-shuffling FFT. While the parameters W, f and I
would remain the same as in this paper (assuming that time be­
tween preemptions is very large compared to the average burst
time), the parameter J would have to be different. If migration
is allowed, then private writable data will behave like shared
writable data and the model could be applied to private data,
as well.

8. CONCLUSIONS

In this paper, we have presented and solved a simple model
for the caching of shared writable data in multiprocessor sys­
tems executing parallel algorithms. The simplicity and gen­
erality of the results stem from the infinite cache hypothesis.
The infinite cache model is independent of all cache parameters
(e.g, organization or replacement policy).

There are many extensions possible to this work. First of
all, one could analyze the behavior bf more parallel algorithms
and compare it to the model predictions. One could investi­
gate the effect of migration, preemption or dynamic scheduling.
Some parameters in the model, such as I, are easier to estimate
directly than others [9], such as J when migration and pre­
emption is allowed. Besides using the results of simulations or
measurements to estimate these parameters, one can use the
model to derive upper bounds (for example, if J=P or if W=l,
then the miss ratio obtained through equation (4) is an upper
bound.) Finite-cache effects should be studied.

Finally, given the simplicity of the program behavior mod­
els, one can derive simple results for proposed coherence proto­
cols in order to compare their effectiveness in handling shared
writable data [19].

Acknowledgement. This research is supported by an NSF
Research Grant No. CCR-8709997.

References
[1] A.O. Allen. Probability, Statistics, and Queueing Theory.

Academic Press, 1978.
[2] G.R. Andrews and F.B. Schneider. Concepts and notations

for concurrent programming. Computing Surveys, 15(1),
March 1983.

[3] J. Archibald and J.L. Baer. Cache-coherence protocols:
evaluation using a multiprocessor simulation model. A CM
Transactions on Computer Systems, 4(4):273-298, Novem­
ber 1986.

[4] F .A. Briggs and M. Dubois. Effectiveness of private caches
in multiprocessor systems with parallel-pipelined memo­
ries. IEEE Transactions on Computers, C-32(1), January
1983.

[5] P.J. Courtois, F. Heymans, and D.L. Parnas. Concurrent
control with readers and writers. Communications of the
ACM, 14(10):667-668, October 1971.

[6] M. Dubois. Effect of invalidations on the hit ratio of cache­
based multiprocessors. In Proceedings of the 1987 Inter­
national Conference on Parallel Processing, August 1987.

[7] M. Dubois and F .A. Briggs. Effects of cache coherency in
multiprocessors. IEEE Transactions on Computers, C-
31(11):1083-1099, November 1982.

[8] M. Dubois, F.A. Briggs, I. Patil, and M. Balakrishnan.
Trace-driven simulations of parallel and distributed algo­
rithms in multiprocessors. In Proceedings of the 1986 In­
ternational Conference on Parallel Processing, pages 909-
916, August 1986.

[9] M. Dubois and J.C. Wang. Shared Data Contention in a
Cache Coherence Protocol. Technical Report CRI 88-26,
CRI Department of Electrical Engineering, University of
southern California, 1988.

GS.entry GS.exit GS.entry GS.exit

by P1 by P1 by ?3 by Ps

lx x x l lx xl
R1 R, w, Ws Ws

(a)

GS.entry GS.exit

by Ps by Ps

x x x lxxx x xl x
R, Rs R, Ws Rs Ws R, Ws R,

(b)

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

K. Hwang and F.A.Briggs. Computer Architecture and
Parallel Processing. Mac Graw-Hill, 1984.

A.K. Jones and P. Schwartz. Experence using multipro­
cessor systems - a status report. Computing Surveys,
12(2), June 1980.

H.T. Kung. Algorithms and Complexity: New Directions
and Recent Results. J.F. Traub Ed., New York: Academic
Press, 1976.

R.L. Lee, P-C Yew, and D.H. Lawrie. Multiprocessor
cache design considerations. In Proceedings of 14th An­
nual International Symposium on Computer Architecture,
June 1987.

J .H. Patel. Analysis of multiprocessors with private cache
memories. IEEE Transactions on Computers, C-31(4):296-
304, April 1982.

R. Sedgewick. Quicksort. New York: Garland Publishing,
Inc., 1980.

A.J. Smith. Cache memories. Computing Surveys, 14(3),
September 1982.

J.R. Spirn. Program Behavior : Models and Measure­
ments. Elsevier Computer Science Library, 1977.

M.K. Vernon and M.A. Holliday. Performance analysis of
multiprocessors cache consistency protocols using gener­
alized timed petri nets. In Performance '86 and ACM
Sigmetrics 1986 Joint Computer Performance Modelling,
Measurement and Evaluation, pages 9-17, May 1986.

J.C. Wang and M. Dubois. A performance comparison
of cache coherence protocols based on the access burst
model. In Second Annual Parallel Processing Symposium,
pages 73-87, April 1988.

D. Young. Iterative Solution of Large Linear Systems.
Academic Press: New York, 1971.

GS.entry GS.exit GS.entry GS.exit

by P2 by P2 by P1 by P1

lxl lx xl- time

GS.entry GS.exit

by P1 by P1

lx x xl-x x "' time

R1 w, R1 R, Rs

Figure 2: (a) Access pattern to a shared writable datum protected by critical sections. (b) Access pattern to a shared
writable datum protected by semi·-critical sections. (R;: Read access to shared datum X by processor j, W;: Write access
to shared datum X by processor j.)

R(i)

R(i) W(j)

Figure 1: State diagram for a given block in cache i (infinite
cache assumption)(R(i) : Read block by processor i, R(j) :
Head block by processor j, W(i) : Write to block by processor
i, W(j) : Write to block by processor j.)

' ' ' (Al !JUter po_ints, J =2

tB i~~~~ C~i~~:: ~~§
Figure 4: The three data sets in the Jacobi iteration.

153

w

w
(a)

(b)

l-W

Procedure quicksort (1,r:integer);
var n,t,iJ : integer;
begin

ifr > l then

end;

begin ,
n:=a(r]; i:=l-1; j:=r;
repeat

repeat i:=i+luntil a(i] ~ n;
repeat j:=j-luntil a[i] ::; n;
t:=a(i]; a(i]:=aUJ; aUJ:=t;

untilj ::; i;
aUJ:=a(i]; a(i]:=a[r]; a(r]:=t;
quicksort (l,i-1);
quicksort(i+ 1,r)

end

Figure 5: Program for the uniprocessor quick-
1 - W sort.

Figure 3: (a)Markov chain for the state transitions of an S-block shared by J pro­
cessors (including transient states). (b)Markov chain for the state transitions of an
S-block shared by J processors (without transient states).

Pl P2
1st
set

P3 P4 PS
2nd 4th 3rd
set set set

P6 P7
5th 6th
set set

PS
7th
set

Figure 6: Computation tree for the quicksort al­
gorithm (P=8). ·

* I

Figure 7: Non-shuffiing FFT
algorithm for P=4 and N=16.

154

Figure 8: Shuffiing FFT algo­
rithm for P=4 and N=l6.

Table 1: System Effects (block size of one)

(1) Model using average values of the parameters
(2) Sum of the contributions of each set (model)

(3) Sum of the contributions of each set (simulation)
In the following Table, parameters, J, W, I, f, are average values.

Algorithm
Jacobi iteration

S.0.R. iteration

Quicksort
(P=8)

Non-shufiling
FFT
(P=4)

·(P=16)

Shufiling FFT
{P=4)

(P=l6)

M
0.200I
0.175
0.150
0.007
0.006

0.004

0.002

J
2.01

2.01

2.72

3.00

5.00

2.00

2.00

w I
0.201 1

0.201 1.201

0.500 1.5

0.333 1

0.333 1

0.600 17.8

0.600 15.4

0.00 +--1-+-+-+-+-l-+-+-- B
1 4 16 64 256

Figure 10: The system miss ratio
for Jacobi iteration algorithm

M

0.2001 0.180

g:!~g~_···· 0.012

0.008 ···

0.004 ·

0.000 B
1 4 16 64 256

Figure 12: The system miss ratio
for s.o.n. iteration algorithm

Figure 14: The system miss ratio
for quicksort algorithm

I q, N, miss penalty
1 0.0309 1016 {1) 0.0052 0.0125

{2) 0.0052 0.0124
(3) 0.0063 0.0156

0 0.0309 508 (1) 0.0043 0.0108
{2) 0.0043 0.0104
{3) 0.0053 0.0130

0 0.8750 57344 {l) 0.2692 0.6079
{2) 0.2584 0.5869
(3) 0.2512 0.5294

1 1.0000 65536 {1) 0.4000 0.7810
(2) 0.4000 0.7810
{3) 0.3333 0.8333

1 1.0000 65536 (!) 0.5714 0.9817
(2) 0.5714 0.9817
{3) 0.3333 0.8333

0.4 0.7500 49152 (1) 0.0158 0.0348
(2) 0.0158 0.0348
(3) 0.0171 0.0426

0.4 0.9375 61440 {l) 0.0228 0.0502
(2) 0.0228 0.0502
(3) 0.0247 0.0617

Atotal

0.200I
0.175
0.150
0.007
0.006

0.004

0.002

0.00 .i==-1--+-+--1-+-+-- B
1 4 16 64 256

Figure 11: The system total
penalty for Jacobi iteration algo­
rithm

5.3/1
4.00
2.67
1.33
0.40

0.27

0.13

o.oo ==-+-+-1--+-+-+--.. B
1 16 64 256

Figure 13: The system total
penalty for S.O.R. iteration algo­
rithm

Atoeal

120001 9000
6000
10.0
0.90

0.60

0.30

16 256 4K 64K

Figure 15: The system total
penalty for quicksort algorithm

155

Type 2

Typ~,.~mi~~~~~~~~~~~--
'

ype 7

Figure 9: The eight sets of S-blocks in the Jacobi iteration
when Bis equal to four.(M=l6, P=4)

M
0.50

0.40.

0.30·

0.20

0.10

16 256 4K 64K

Figure 16: The system miss ratio
for Non-shufiling FFT algorithm

M
0.05

0.04

0.03

0.02

0.01 l_
0.00 B

1 16 256 4K 64K

Figure 18: The system miss ratio
for Shufiling FFT algorithm

Atofol

6000.0l
2000.0
8000.0
4000.0

0.09

0.06

0.03
·· ..

0.00 B
1 16 256 4K 64K

Figure 17: The system total
penalty for Non-shuilling FFT al­
gorithm

Afot.Jl

6000.0l
2000.0
8000.0
4000.0

0.09

0.06

0.03

0.00
1 16

Figure 19:
penalty for
rithm

256 4K 64K
B

The system total
Shuilling FFT algo-

plain line : simulation result
dotted line : model prediction

Multiprocessor Performance Measurement
Using Embedded Instrumentation

Thomas L. Sterling
Albert J. Musciano
Donald J. Becker

Advanced Technology Department
Harris Corporation

PO Box 37, MS 3A/1912
Melbourne, FL 32902

Randy B. Osborne
MIT Laboratory for Computer Science

545 Tech Square, Room 205
Cambridge, MA 02139

Abstract

The multiprocessor is a powerful medium for con­
ducting empirical studies of parallel processing techniques
and architectures. Critical to the success of this approach
is the nature, detail, and accuracy of the measurements
acquired to evaluate system behavior. While software
methods of determining behavior characteristics are flexi­
ble, they are intrusive, perturbing the operation of the sys­
tem and yielding measurements of marginal accuracy. This
paper describes two hardware instruments developed for
multiprocessor behavior analysis that help circumvent the
intrusive properties of software measurement techniques.
One instrument, DLA, measures memory access latencies
and delays due to contention for shared resources. Another
instrument, SySM, monitors processor software activity,
providing execution profiling statistics. This paper discuss­
es three examples of their use in parallel processing
research on the Concert Multiprocessor Testbed.

1. Introduction

The future of high performance computing will rely on
current research into parallel processing architectures and
techniques. Effective tools are needed to explore parallel
program characteristics and parallel architecture behavior.
Two major classes of tools currently being used are simula­
tors and prototype parallel systems.

Simulators[l][2][3] are widely employed due to
their flexibility and ease of modification. Unfortunately,
they suffer from innate slowness, restricting the applica­
tions that can be run on the simulated target system.
Another tool is a prototype system on a parallel computer:
experimental and commercial multiprocessors[4] and
SIMD[5] machines capable of executing significant parallel
algorithms in acceptable time. While these systems enable
programmers to run significant applications and make
coarse measurements with software, they do not permit

156

easy evaluation of behavioral details. Software support for
detailed measurements is intrusive, perturbing the behavior
of the parallel system by the act of measurement.

Software simulation can provide detailed traces of
any activity within a modeled system, often producing enor­
mous amounts of information. Real time instrumentation
cannot access all of the elements of a system; it does not
have the time and storage resources available to collect
exhaustive traces in a nonintrusive manner. Fortunately,
some experiments only require a simple set of statistics,
rather than a time domain trace. In these cases, instru­
ments can be devised that record these statistics instead of
going through the intermediate step of acquiring a time
trace.

Harris Corporation's Advanced Technology Depart­
ment and the MIT Laboratory for Computer Science have
each developed a version of a multiprocessor called Con­
cert. Concert[6] features embedded instrumentation, allow­
ing parallel processing experiments to be performed in real
time with a minimum of intrusion. The nature and functional­
ity of Concert's instrumentation and examples of its use in
parallel processing research will be given.

SySM and DLA are instruments in Concert which
measure performance loss parameters. SySM[7] provides
hardware support for monitoring software behavior in a
nearly nonintrusive manner. The programmer divides the
application program into a set of mutually exclusive seg­
ments. As execution shifts from one segment to another,
the application informs SySM of the transition. SySM accu­
mulates the .number of entries and the total time spent in
each segment, and tracks nested interrupts. DLA[8] pro­
vides nonintrusive measurements of the time lost due to
memory access latency and contention for shared communi­
cation channels. It determines the amount of time each pro­
cessor spends waiting for access to shared buses, the
amount of time it spends accessing hierarchical memory,

Ethernet

Multibus

To Arbiter

To Previous
Cluster

MIT Machine Only

To Next To GCM
Cluster Crossbar

Harris Machine Only

Figure 1. A Typical Concert Cluster

and the number of times atomic test-and-set operations are
performed. SySM and DLA provide a powerful mechanism
for observing those elements of a multiprocessor that result
in performance loss.

Three different research projects have utilized Con­
cert, SySM and DLA: the ~9] parallel execution envi-

ronment, an interpreter for the Multilisp[IO] language, and
an emulator of the Y ARC static dataflow architecture[11].
These experiments illustrate how SySM and DLA can be
used to reveal the behavior of both the application software
and the multiprocessor hardware. The disparate functionali­
ty of the tools is used to advantage, as each application
uses the tools in a different manner.

2. Background

The development of SySM and DLA was based
upon the needs of the researchers investigating parallel per­
formance degradation, and was shaped by the architecture
of Concert Multiprocessor. The details of Concert, and the
approach used to analyze degradation, played a significant
role in the design and subsequent use of SySM and DLA.

2.1. The Concert Multiprocessor Testbed

The Concert multiprocessor was developed as a
flexible facility for empirical research in the field of parallel
processing. Two versions of Concert have been implement­
ed: the first at the MIT Laboratory for Computer Science
and the second at the Advanced Technology Department of
Harris Corporation's Government Systems Sector. They
are logically equivalent, supporting the same software envi­
ronments and executing a shared base of applications. The
two Concerts differ in the means by which global memory is
shared and system wide communication is performed. Con­
cert has been used to study parallel algorithms, languages,
computing models, system run time strategies, and parallel
computer architecture. The Concert environment consists
of the multiprocessor hardware, a message passing library
for parallel program development, and a set of utilities sup-

157

porting local area network communication and a disk file
system.

Concert is a tightly coupled shared memory multipro­
cessor. It incorporates up to 64 MC68000[12] microproces­
sors, organized in eight clusters of up to eight processors
each. Each processor has 512 Kbytes of local memory; the
system also has 8 Mbytes of global memory. In addition, a
set of globally accessible registers provide interprocessor
interrupts. The eight clusters are connected with the global
memory and registers by one of two communication mecha­
nisms.

The cluster is the basic unit of the Concert multipro­
cessor. It contains up to eight processors, each with its
own local memory connected via a private high· speed bus.
Some clusters include disk controllers for secondary stor­
age and Ethernet interface boards. All boards within the
cluster use a common Multibus. Each cluster contains a
global memory interface board. Each cluster also contains
DLA and SySM instrumentation hardware. A typical Con­
cert cluster is shown in Figure 1.

The MIT Concert uses a dynamically segmented
RingBus to interconnect eight clusters of four processors
each. Each cluster holds 1 Mbyte of the 8 Mbyte global
memory. Processors accessing global memory within their
cluster use the cluster's internal bus; memory in other clus­
ters is accessed via the RingBus. A central arbiter pro­
cesses requests for RingBus access from the clusters,
establishing non-overlapping paths between the requesting
clusters and the desired global memory segments. A clus­
ter is attached to the RingBus by means of the RIB
(RingBus Interface Board). which also contains the relevant
subset of the system global registers. The system level
architecture of the MIT Concert multiprocessor is shown in
Figure 2a.

The Harris Concert employs a conventional cross­
bar switch to connect its eight clusters of eight processors
each to the system's global memory and registers. The
memory is organized in a 16-way interleaved structure of
512 Kbyte blocks. This interleaving reduces memory con-

tention by distributing memory references across the
blocks. An additional block contains the global system reg­
isters. The architecture of the Harris Concert multiproces­
sor is shown in Figure 2b.

2.2. Performance Degradation

The performance of a multiprocessor is intimately
coupled to the factors which contribute to performance
degradation. These factors cause the actual performance of
a multiprocessor to deviate from the ideal case. By quanti­
fying and reducing these losses, overall performance can be
improved. There are four general sources of loss which
must be observed to characterize a multiprocessor perfor­
mance. These are:

Starvation the time a processor is idle due to inade­
quate parallelism in the application pro­
gram.

Contention the delay experienced by a processor
attempting to obtain exclusive access to
a shared resource already in use. Two
processors accessing the same queue,
for example, must serialize their access­
es in order to retain queue integrity.

Overhead the work that must be performed by a
processor to manage the application's
parallelism. This work would not be per­
formed by a uniprocessor executing the
same application. Overhead includes

Latency

synchronization, task creation, and task
scheduling.

the time required to access distant mem­
ory objects ii} systems with distributed
communication and ·-memory. This
includes the impact of cache misses due
to frequent context switching.

Measuring each of these losses permits the characteriza­
tion of the multiprocessor's performance model.

3. Embedded Instrumentation

Hardware support for efficient monitoring of multi­
processor system behavior has been realized in two e1'lbed­
ded instruments within the Concert Multiprocessor
testbed. Two classes of behavior are examined: contention
and latency at the hardware level, and starvation and over­
head at the software level.

3.1. DLA: Monitoring Contention and
Latency

Performance loss due to hardware operation
includes contention for access to shared physical resources
and latency of access to nonlocal objects. Contention in
Concert occurs when multiple processors require access to
the same Multibus, RingBus segment, or global memory
block simultaneously. Losses resulting from latency occm
when processors must access data in global memory, which
has a slower cycle time than local memory. Neither of

Cluster 0 Cluster 2

Cluster 1 Cluster 3 Cluster 5 Cluster 7

(a) The MIT Ma~hine (b) The Harris Machine

Figure 2. The Concert Multiprocessors

158

DLA Internal Control Bus
User 1----1

Control t----t-'

l Interface
Statistics Proc 7 Block
Memory [

Proc 1 Block

RAM Counters Timers Proc 0 Block
~

f---1.---

[FreeTime J
i--t---
i--,___

Counter
t-"-1--
t--1---

E
CJ>
> t--r--- w [J t--t---

t--~
FT'"

Contention Measurement

Request

Master

Busy

Control

Address

Data

/

>

Arbiter S.!g_nals

Multibus S_!g_nals

I _[
Bus Master TAS J
Statistics Detect Unit

Figure 3. The DLA Block Diagram

these losses occurs in a uniprocessor; such degradation can
be attributed to parallel processing. The DLA
(Degradation due to Latency and Arbitration) hardware
installed in each cluster of Concert measures the time each
processor spends waiting for and using the Multibus, and
accessing memory.

DLA measures several aspects of Multibus activity,
including:

FreeTime the time in which the Multibus is idle.

Wait Time time a processor spends contending for
use of the Multibus.

Access Time time the processor spends using the
bus. DLA also counts read and write
operations within each block of global
memory.

Global memory latency is the global memory cycle
time, plus global communication arbitration time, plus con­
tention for an individual global memory block. On Concert,
the loss resulting from memory block contention can be
determined by measuring the uncontended cycle time and
subtracting this from the total memory access time.

Another source of loss is contention for shared data
structures protected by some mutual exclusion discipline,
such as atomic test-and-set operations. Although this
loss is not a type of hardware degradation, DLA can be
used to estimate it. DLA counts the number of successful
and unsuccessful TAS operations for each processor. The
ratio of failed to successful T AS operations gives an indica­
tion of the amount of performance loss caused by contention

for shared data structures.

The functional block diagram for DLA is shown in
Figure 3. Information is acquired from two external
sources: the Multibus and its arbitration unit. DLA has
four parts: free time measurement, bus contention measure­
ment, bus cycle statistics, and DLA control. These are
depicted with their external and primary internal connec­
tions.

The free time module monitors the busy signal from
the Multibus and determines the amount of time the bus is
not in use. The contention module maintains separate
timers dedicated to each bus master to measure the amount
of time lost by each processor waiting for the bus. An
extended measurement range is obtained by incrementing
counters in RAM when a particular timer overflows. A
timer is active when its respective processor has requested
the bus but has not been granted master status by the
arbiter. Any number of timers can be active simultaneously
depending on the traffic density.

The majority of measurements come from the bus
master statistics module. Only one processor is involved
at a time since only one can be master of the bus at a time.
The measurements to be updated in the statistics memory
are determined by the current bus master, the memory
block accessed, and the type of access. Both the event
counter and the accumulated time for the specific event type
are modified. In addition, the T AS detect module senses if
a compound test-and-set operation is being performed and
updates the appropriate counter based upon its result.

The user control and interface module initializes the
DLA, starts and stops each experiment, and collects the

159

Register~ .. ···"

Bank 0

Banko Segment o

I Segment o I
Segment 1

Bank 7 ...

!segment 2ssl
Current J S~ment

I Time I Entered

Nested

\
lnterru_ms

Interrupt
' Time

i

\
\ .

Time Base

System Bus

I Entry
Count

' \
\
\

IJ Interrupt
Count

,1 Total
Time

Figure 4. The SySM Block Diagram

I
J
I

results. Measurement intervals can be started and stopped
independently on a per processor basis. Between succes­
sive measurement intervals, statistics values can be reset
or allowed to accumulate.

3.2. SySM: Monitoring Software Behavior

SySM (System Software Monitor) is an instrument
for monitoring the behavior of software running on individual
processors within a tightly coupled multiprocessor. While
the DLA can be used with no software modifications, the
SySM requires a small amount of interaction with the appli­
cation code. A program is divided into a set of mutually
exclusive segments. At any point in time, the program is in
one of these segments. When the program passes into a
new segment, an instruction included by the programmer
sends a single word message to SySM identifying the new
segment being entered. SySM tracks the amount of time
each processor spends in each segment and the number of
times each segment is entered. The result is a profile of the
computation in terms of the user defined segments.

A SySM board is installed in each cluster of the
Concert multiprocessor, monitoring the software behavior of
processors in the cluster. SySM consists of eight banks of
segment registers, a control module, a time base, and exter­
nal interfaces, as shown in Figure 4. Each bank of segment
registers is .dedicated to a specific processor in the cluster.
SySM interfaces to the cluster's Multibus and the bus
arbiter. The control module accepts state transition com­
mands from the Multibus and modifies the appropriate reg­
ister bank accordingly, using the current time base value.

A bank of segment registers is dedicated to each
processor. Each bank is divided into 255 segments, each
segment containing three registers. These registers
include number of entries, time in segment, and number of
interrupts. The number of entries register indicates the
number of times the segment was entered. The time in seg­
ment register is the total time spent in the segment by the
processor. . The number of inte"upts register shows the
number of times the processor was interrupted while in that

160

program segment.

There are four additional registers in each bank.
These are the cu"ent segment register, the time entered
register, . the number of nested interrupts register, and the
time in interrupt register. The current segment register
indicates the program segment that is being executed. The
time entered register contains the value of the time base at
the time of the most recent segment change. The number of
nested interrupts register indicates the current interrupt
nesting level. The time in interrupt register indicates the
total time spent servicing interrupts.

Unlike other profiling methods that produce stochas­
tic measurements[13], the data obtained from SySM is
deterministic. SySM permits this data to be collected in an
almost non-intrusive manner, causing little perturbation to
system behavior. SySM provides measurements with one
microsecond resolution; the intrusion of each SySM access
is 3.2 microseconds. Segment as small as 20 microseconds
can be measured accurately. The user defines and can easi­
ly alter the definition of segments in order to narrow down
the source of a particular behavior characteristic. This is
useful in determining the amount of overhead incurred by
the executing program. Overhead can be isolated from use­
ful work in order to measure its impact on overall perfor­
mance.

4. Examples In Parallel Processing

SySM and DLA have been used in a variety of paral­
lel applications. These applications range from impleme!J.ta­
tions of high-level parallel applications to a low-level simu­
lation of a static data flow architecture. The differences in
these applications serve to illustrate the range of applicabil­
ity the SySM and DLA provide.

4.1.~

The .poc project is the implementation of the Simul­

taneous Pascal programming language[14][15] on the Coµ­
cert Multiprocessor. The project encompasses the design
and implementation of several significant software compo­
nents, including compilers and language tools, user inter­
face software for the Concert host, and machine dependent
runtime support software which runs on the Concert hard­
ware. Programs written in Simultaneous Pascal are com­
piled on the host machine, downloaded to Concert, and exe­
cuted. Statistics are gathered and displayed by the runtime
software.

Simultaneous Pascal is an extension of standard
Pascal[16], providing the programmer with a set of explicit
parallel control structures. These parallel statements
include forall, allowing homogeneous parallelism, fork,
allowing heterogeneous parallelism, and traverse, allow­
ing parallel access to dynamic data structures. In addition,
fine grained scoping and parallel expression evaluation are
supported. The threads created by these parallel con-

structs are dynamically scheduled by the underlying runtime
support software.

The compiler translates Simultaneous Pascal pro­
grams into MC68000 object code, intermixed with calls to
library routines which create, schedule, synchronize, and
destroy threads. These library routines are the heart of the
¥ runtime system, and map the virtual Simultaneous

Pascal machine onto the physical Concert multiprocessor
hardware. The effective performance and scalability of
Simultaneous Pascal applications depends upon the effi­
cient implementation of these routines.

SySM was instrumental in analyzing and tuning the
¥runtime library. A goal of the¥ development team

was to reduce the overhead per thread to under 100
microseconds. Using SySM, the time spent in each portion
of the runtime library was determined. In some cases, each
routine was then subdivided into smaller parts, as short as
ten microseconds, and SySM was used to measure the time
each processor spent in each routine segment. The devel­
opers could then focus on those segments which were exe­
cuted most often, and would yield the biggest payoff in per­
formance tuning. The average segment times for the run­
time package shown in Figure 5 indicate that this tuning
operation was a success. The two critical routines, task
fetch and do join, together execute in just 88 microsec­
onds.

Application programmers can take advantage of
SySM instrumentation via compiler directives.[17] The
compiler generates instructions which access SySM during
execution, and the runtime software gathers and displays
the desired statistics when the application has completed.
Such profiling provides detailed insight into how parallel
applications perform, allowing application programmers to
evaluate algorithms without worrying about the machine
level details of SySM access. For example, a parallel appli­
cation involving digital image processing was thought to be
constrained by serialized access to global memory, and
SySM was used to time the portions of the application
which accessed the image data. A second version of the
application was coded, exploiting locality by copying por­
tions of the image into memory local to each processor.
SySM data showed. that the global version of the applica­
tion ran faster, since the cost of copying the image exceed­
ed the time saved by the local accesses. Without SySM
instrumentation to analyze individual statement execution
times, such insight could only be guessed at, rather than
determined empirically.[18] The execution times of a typi­
cal instrumented application are shown in the second por­
tion of the table in Figure 5. In particular, this data shows
how programmer defined segments appear within the dis­
play of SySM statistics.

The ¥ system also uses SySM to derive comput­

ing profiles of executing applications.[19] A .computing pro­
file allows the programmer to determine how many proces­
sors are active at any point during execution, and to

Processor 07: (all times in microseconds)
State Entered Time Average Percent
System

Awaiting Work 358 11257 31. 44 0.17
Task Fetch 358 11677 32.62 0.18
Executing 372 781204 2100.01 11. 97
Do Fork 0 0 0.00
Do Forall 7 30560 4365.71 0.47
Do T:caverse 0 0 0.00
Do Join 364 20242 55.61 0.31

Application
Thin Pixel 364 2717114 7464.60 41.62
Neighbors 4150 866067 208.69 13.27
Pattern 4150 1526713 367.88 23.39
Condition C 4150 279607 67. 38 4.28
Condition D 4150 283728 68.37 4.35

** Total ** 6528169

Figure 5. ¥Execution Statistics Generated by SySM

161

determine what each processor is doing at any time. In
order to derive a computing profile, each processor records
the time (provided by SySM) each state transition occurs.
After execution, the runtime software collects this data and
passes it to the Concert host machine. Subsequent pro­
cessing by host based tools yields the computing profile
and processor activity chart shown in Figure 6. The com­
puting profile relates processor utilization to time, and the
activity graph uses various shadings to indicate which state
of a processor at each moment. These graphs are invalu­
able for analyzing the performance and behavior of parallel
applications, and allow the programmer to see which Parts
of his application are serialized, reducing effective scalabili­
ty.

The DLA hardware allows the ¥ implementors to

determine the effect of various queuing strategies on the
global memory access time. The scalability of Simultane­
ous Pascal applications depends upon the efficiency of the
runtime software, which can degrade due to excessive
memory contention. Different queuing strategies (varying
the number and location of queues), coupled with tech­
niques which reduce the number of memory accesses (such
as exponential falloff and interprocessor interrupts) will
alter memory access patterns and affect contention. The
DLA provides immediate feedback about changes in con­
tention and access times, and allows the implementors to
obtain quantitative results which document the effects of
each runtime system modification.

Application programmers can obtain DLA statistics
from the runtime package, and can use the resulting data to
determine how object distribution in Concert's hierarchical
memory affects application performance. DLA provides
information about activity within each global memory bank,
giving insight into how well data objects were distributed
throughout global memory. Often, parallel algorithms rely
upon locality of reference to exploit the available paral­
lelism, and DLA provides insight as to how effectively the
programmer (and the language tools) have exploited the
locality available in Concert.

j
j

Proc: 6 __,,, __

Proc: s 1----==­
Proc: 4 1----
Proc: 3 ---
Proc I

Proc: 1------
Proc: 0

1
Time (microoeconds)

T°IDIC ~)
Figure 6. Computing Profile (top) and Activity Graph

generated by SPoC using SySM

4.2. Multilisp

Multilisp is an extended version of the Scheme pro­
gramming language [20] with explicit. parallel constructs.
The principal such construct is the future. (future x)

creates a task to evaluate x and returns a placeholder-a
future-for the result of x. When this result is computed, it
replaces the placeholder; the future is then said to be deter­
mined. Meanwhile, the original task may continue execu­
tion. If a task attempts to perform a strict operation--one
which requires a value, not a placeholder--on an undeter­
mined future, the task is suspended and placed on a queue
of tasks awaiting determination of the value. These tasks
are activated when the future becomes determined.

Multilisp programs are compiled to a stack oriented
machine language called MCODE which is then executed
by an interpreter written in C and assembly language. Each
processor runs an identical copy of the interpreter code.
Further information is available in [21]-[24].

The MCODE interpreter running on Concert has
been instrumented with SySM to determine the overhead
associated with futures. The simple expression (touch

(future nil)) was used as a basis for data collection.
touch is a strict identity operator: it returns the result of
evaluating its argument. If the result is an undetermined
future the task is suspended until the future is determined.
The average time for various future operations computed
from SySM data collected while evaluating (touch
(future nil)) is shown in Figure 7.

The data collected by DLA for one processor in clus­
ter five during the execution of a Multilisp application is
shown in Figure 8. Several aspects of Multilisp behavior
are revealed. First, the large fraction of accesses to cluster
five's global memory indicates that the Multilisp implemen­
tation possesses a fair degree of locality. The associated
access tillles are relatively small because the processors in
a cluster have direct access to the cluster's global memory
via the Multibus. Second, the large number of accesses to

162

cluster seven is due primarily to MCODE instruction fetch­
es. MCODE instructions are stored in the heap in global
memory. The location of these instructions varies due to
garbage collection activity. Consequently, Multilisp perfor­
mance varies unpredictably, depending on the cluster in
which the instructions reside. A "hot spot" caused by
large number of accesses to cluster seven leads to the large
access time for the downstream clusters (clusters zero,
one, and two). Third, many of the accesses to cluster zero
(particularly the TASes) are for global Multilisp and Con­
cert system information. Finally, the access time tends to
increase with the number of RingBus segments required for
the access. In this case, the cluster seven hot spot
obscures this trend.

The ratio of state transitions for the touch and
ffib examples discussed earlier is about 2500 and 8700
transitions per second, per processor, respectively. This
yields an average time penalty of 3% (for touch) and 7% (for
ffib) due to SySM segment transition commands.

The SySM and DLA have allowed concrete identifi­
cation of the time inefficiencies in the Multilisp implementa­
tion and have been instrumental in speeding the execution
of Multilisp programs by a factor of two to three. For exam­
ple, an earlier version of the implementation suffered from
frequent accesses to global information in cluster zero. A
significant illlProvement in performance was achieved by
minimizing the global information stored in cluster zero.
The severity of the RingBus contention resulting from the
original centralization of this information was not realized
until DLA data was available.

4.3. YARC

The Y ARC project encompasses the development of
a practical static dataflow system[25][26]. Given the
small number of physical implementations of dataflow archi­
tectures and the resulting inadequate understanding of their
behavior, it would be useful to estimate the performance
and identify the bottlenecks of proposed systems. The Con­
cert multiprocessor was used to simulate one such system.

The purpose of the simulator is twofold: to provide
an accurate emulation of the proposed machine architecture
that is fast enough to run significant programs and, more
importantly, to analyze the dynamics of the proposed archi-

Operation Average Time
create a future object 1.00 msec
dete:z:mine a future

0 tasks queued on future 0.43 msec
1 task queued on future 1.1 msec

touch a future
future determined 0.24 msec
future undetermined

until task enqueued on future 0.86 msec
total, excluding time to find task 2.6 msec

start new task (once a task found) 1.2 msec

Figure 7. SySM Timings for Various Future Operations

!--------------- Cluster Number ---------------\
0 l 2 3 4 5 6 7 Sy SM

RinqBus Distance 3 4 5 4 3 n/a 1 2 n/a

Number Reads 8592 1086 460 342 3206 108833 5070 53729 0

Avq Read Time (usec) 4.9 6.4 6.5 3.5 3.5 0.8 3.4 5.0 0.0

Number Writes 626 100 59 0 0 48428 537 276 43553

Avq Write Time (usec) 6.5 6.6 7.1 0.0 0.0 0.9 3.9 6.0 0.8
Number TAS Successes 568 48 25 0 0 5039 253 142 0

Number TAS Failures 8 17 0 0 0 252 27 17 0

Figure 8. Multibus Traffic Generated by a Processor in Cluster Five While Executing (ffib 20)

tecture. In order to reveal the characteristics of an architec- 1

ture, programs of significant size must be run. Without run­
ning sufficiently large programs, the true dynamics of the
system cannot be observed.

Modeling a parallel computer is a job particularly
well suited to parallel computers. The problem of simulat­
ing a physical system naturally decomposes into parallel
subproblems because of its inherently distributed nature.
The Concert multiprocessor is general enough to support
simulation of the YARC static dataflow architecture, and
fast enough to allow large programs to be executed. The
simulator uses the hardware instrumentation in Concert to
measure the pertinent parameters of execution and to sepa­
rate the details of the Concert system from the those of the
Y ARC architecture.

The Y ARC system simulated on Concert is a token­
based static dataflow system. A collection of template
I storage modules/token processors is associated with an
arithmetic function unit to form a processing ensemble. Pro­
cessing ensembles are connected by a routing unit in a ring
or toroidal configuration.

This target architecture is mapped directly onto Con­
cert. The similarities between the organization of Concert
and Y ARC permit each processing ensemble to be mapped
onto a Concert cluster. The inter-cluster communication
directly reflects the communication between the processing
ensembles in the Y ARC system. In a similar manner, the
individual template stores are mapped onto Concert proces­
sors. All template storage module communication takes
place in Concert global memory.

This direct mapping permits the execution of the
simulator on Concert to approximate the actions of the
YARC architecture. SySM and DLA are used to accoun.t
for (and factor out) the anomalous effects of the Concert
architecture as well as monitor the execution of Y ARC.
This is a crucial aspect of the simulator system. The static
mapping of simulated entities to specific processors permits
the instrumentation, which is processor-oriented, to be
brought directly to bear.

As an example of usefulness of the SySM data, see
Figure 9. Many of the entries are an exact enumeration of
Y ARC's activity. This data, along with performance mod­
els of various potential physical Y ARC implementations,
can be used to predict the performance of those systems.

163

Actions such as queueing or dequeueing are made
necessary only by the structure of the simulator. The time
it takes on Concert is unimportant to the extent that it does
not affect the rest of tht< target system by serializing opera­
tions. The average time for each entry represents the token
activity in Y ARC, and may be used to better understand or
model its activity. Any variation from the average repre­
sents contention for global memory, which provides an
approximation of the contention YARC would experience.
While the time data produced by SySM is not directly use­
ful, the variation among different executions represents dif­
fering utilization of the target system.

A substantial portion of the total token traffic is
acknowledgments (ACK tokens) to the data tokens, as
shown in Figure 9. Acknowledgment tokens constitute
synchronization overhead in the static dataflow model.
There are techniques to reduce such overhead at the
expense of reducing parallelism.

The lack of parallelism in this problem, due to the
statically distributed nature of the model, is indicated by the
large value of the Queue wait entry. This processor spent
about 33% of its time waiting for incoming data. In contrast,·
the processor that contained the critical path waited only
twice, and other processors in the system spent up to 63%
of their time waiting. This imbalance shows that the simple
allocation scheme used needs much improvement.

Processor 62: (all times are in microseconds)
State Entered Time Average Percent
INITIALIZE 1 1956 0.05
Total tokens 4128 237562 57.55 6 .27
Memory tokens 0 0 0.00
Data tokens 1744 58314 33.44 1.54
ACK tokens 2384 39254 16.47 1. 04
Complete check 4128 367502 89.03 9.70
Template firings 1288 151090 117.31 3.99
Inspect Token 4528 253876 56.07 6.70
Reset template 1288 124893 96.97 3.30
Tokens enqueued 4144 151223 36.49 3.99
Queue wait 294 1253528 4263.70 33.09
Dequeue token 4128 482214 116. 82 12.73
Local enqueue 0 0 0.00
Foreign enqueue 4144 624905 150.80 16.49
Termination chk 472 42232 89.47 1.11
Termination inc 0 0 0.00
** Total ** 3788549

Figure 9. YARC Simulation Data Obtained by SySM

5. Conclusions

Special purpose instrumentation can be an effective
tool for .evaluating the performance of a multiprocessor.
Two devices were developed and used in a 64 processor
shared memory multiprocessor. DLA measures the delay
processors experience contending for shared physical
resources and the losses attributed to memory access
la~e~cy. SyS~ pro~ides execution profiling statistics with a
rmm~um of mtrus10n. The functionality and operation of
bo:11 mstruments were described. Examples of their appli­
catlon t.o parallel processing research were presented,
alon~ '?th data reflecting petformance losses within each
apphcauon. The SySM and DLA provide a mechanism for
o?s~rving det~led characteristics of system operation, pro­
viding quantltative feedback to support systematic
research.

. SyS~ and DLA can be used to provide performance
data m a vanety of parallel applications. The Y ARC emula­
tor ~s~s the highest level tool, SySM, as an intrinsic and
explicitly coded part of the simulator, but does not use the
low-level measurement capabilities of DLA. ~ uses

bo~ tools as part of the run-time system, and provides
opuonal user coded SySM states. Multilisp uses SySM to
measure a small but important sections of the run-time sys­
te~ and, in contrast to YARC, makes heavy use of DLA to
estimate communication and locality.

There are several advantages in the current SySM
and DLA hardware. The small amount of intrusion in SySM,
and lack thereof in DLA, minimize the impact of measure­
ment on application performance. In addition the small
intrusion allows accurate, fine-grained measure~ents to be
ma~e. SySM and DL~ operate in real time; the data they
denve represent real times, not synthetic values produced
from simulation. The ability to integrate both devices into
significant parallel applications with a minimum of overhead
is an important fe~ture for systems developers.

The use of SySM and DLA has revealed limitations
that should be considered in the design of more advanced
instrumentation. SySM and DLA were developed sepa­
rately; each performs its monitoring functions independently
of the other. An unfortunate consequence is that data from
each SySM segment cannot be directly correlated with con­
tention and latency losses derived from DLA. Integration
of the two systems would permit easy determination of
hardware performance losses within each segment. Cur­
re?tly, this can only be estimated from the averages sup­
plied by DLA or by starting and stopping DLA measure­
ments on the boundaries of a specific segment.

While SySM is only slightly intrusive, there is a
lower bou~~ on the. effecti:e segment length. Each seg­
?1ent transinon requires a smgle instruction cycle, obscur­
mg the measurement of short instruction sequences. This
problem can be alleviated by providing an associative buffer
that stores the segment transition addresses. The buffer
would monitor the address bus, looking for matches. When

164

a match occurs, the registers of the relevant segment would
be updated. This mechanism performs the same function as
the current SySM but in a totally nonintrusive manner.

The associative buffer technique could also be used
to control experiment interval windows. DLA and SySM
could be turned on and off at selected points during program
execution to acquire measurements of just part of the pro­
gram. The size of the time interval that can be effectively
windowed is currently constrained by the intrusive nature of
the start and stop commands that must be provided explicit­
ly in the code. The use of an associative buffer would elimi­
nate this source of intrusion, permitting fine grained window
intervals for experiments.

Parallel programs that are dynamically scheduled by
underlying run time software do not reside on any one pro­
cessor but migrate throughout the system. SySM measure­
ments are processor oriented, unable to track specific tasks
as they move among processors. This processor orienta­
tion can make it difficult to study dynamically scheduled
applications. More sophisticated instrumentation is needed
to support this type of analysis. SySM and DLA compute
the average execution time of a specific event, but do not
provide information about events of variable duration. Two
solutions to this problem have been implemented in other
experimental instruments. The System Activity Moni­
tor[27] calculates the sum of squares in real time, yielding
the variance of the parameters being measured. The Spec-

1 tron[28] generates histograms of the parameters, rather
than averages.·

Although SySM can be used to acquire traces of pro­
cessor activity versus time, the cost in processor overhead
and memory utilization is prohibitive. Future instrumenta­
tion hardware should migrate this functionality from the pro­
cessor into the monitoring hardware. In conjunction with
this problem, synchronizing multiple SySM time bases in
different clusters is difficult. Future versions of SySM
should be less cluster chauvinistic, and support system
wide communication.

_ Finally, performance losses are not the only way to
characterize system behavior. While loss measurement
focuses on the temporal resources of a parallel computing
system, alternate measurements could examine system
resources such as memory usage. This can be particularly
important when studying cache demands in multitasking
and virtual memory systems, areas in which the described
work does not readily apply.

Acknowledgments

The authors wish to express their appreciation to
their many colleagues at Harris and MIT who have con­
tributed to the development of the Concert research envi­
ronment. In particular, we wish to recognize Steve
Mitchell, Maria Laprade, and Marcus Neal for their critical
contributions to the design and implementation of DLA and
SySM, as well as Ken Laprade and Mike Noakes for their

valuable efforts in helping to apply these tools to parallel
processing research. In addition, Juan Loaiza provided sig­
nificant assistance in helping to understand the MIT Multil­
isp implementation. Lastly, we wish to thank Ellery Chan
for his invaluable assistance in the composition of this
paper.

References

[l] Denning, P. J. and J. P. Buzen, The Operational Analy­
sis of Queuing Network Models, ACM Computing
Surveys 10:3, September, 1978.

[2] Heidelberger, P. and Lavenberg, Computer Peifor­
mance Evaluation Methodology, IEEE Transactions
on Computers C-33:12, pp. 1195-1220, December,
1984.

[3] Law, A. and W. Kelton, Simulation Modeling and
Analysis, McGraw-Hill, 1982.

[4] Swan, R. J., S. H. Fuller and D. P. Siewiorck, CM* - A
Modular, Multi-Microprocessor, AFIPS 46, NCC
1977, pp. 637-644.

[5] Hillis, W. D., The Connection Machine, MIT Press,
1985.

[6] Halstead, R., T. Anderson, R. Osborne, and T. Ster­
ling, Concert: Design of a Multiprocessor Develop­
ment System, 13th Annual Symposium on Computer
Architecture, Tokyo, June 1986, p. 40-48.

[7] Sterling, T. L., and Becker, D. J., System Software
Monitor (SySM) Overview, Harris GSS internal note,
October 21, 1985.

[8] Laprade, M., Degradation from Latency and Arbitra­
tion (DLA), Harris GSS internal note, June 29, 1987.

[9] Sterling, T. L., A. J. Musciano, E. Y. Chan, D. A.
Thomae, ¥-' An Effective Implementation of a Par-

allel Language on a Multiprocessor, IEEE Micro,
December, 1987.

[10) Halstead, R., An Assessment of Multilisp: Lessons
From Experience, International Journal of Parallel
Programming 15:6, December, 1986, Plenum Press,
New York

[11] Becker, D. J., A Multiprocessor Emulation of a Static
Data Flow Parallel Architecture, Proceedings of the
25th Annual Southeast Regional Conference, April 1,
1987, pp. 465-472.

[12) Motorola Corporation, MC68000 16132-bit Micropro­
cessor Programmer's Reference Manual, Prentice­
Hall, Inc., 1984.

[13) Graham, S. L., P. B. Kessler, M. K. McKusick, gprof:

165

A Call Graph Execution Profiler, Proceedings of the
SIGPLAN 1982 Symposium on Compiler Construc­
tion, SIGPLAN Notices 17:6, pp. 120-126, June, 1982.

[14) Musciano, A. J., The Simultaneous Pascal Language
Reference Manual, Harris GSS internal report,
September, 1987.

[15) Sterling, T. L., Parallel Control Flow Mechanisms for
Dynamic Scheduling of Tightly Coupled Multiproces­
sors, MIT/EECS Ph.D Thesis, May, 1984.

[16] Cooper, Doug, Standard Pascal User Reference Manu­
al, W.W. Norton and Company, 1983.

[17) Musciano, A. J., ¥ Note 24: Incorporating SySM

into~ Harris GSS internal note, June 4, 1987.

[18] Musciano, A. J., ¥Note 23: The Results of Locali­

ty Exploitation in ~ Harris GSS internal note,

May 13, 1987.

[19) Musciano A. J., ¥£ Note 26: Deriving Computing

Profiles in ~ Harris GSS internal note, September

10, 1987.

[20] Abelson, H. and G. Sussman, Structure and Interpre­
tation of Computer Programs, MIT Press, Cambridge,
MA., 1984.

[[21) Halstead, R., Multilisp: A Language for Concurrent
Symbolic Computation, ACM Trans. on Prog. Lan­
guages and Systems, October, p. 501-538.

[22] Halstead, R., J. Loaiza, and M. Ma, The Multilisp
Manual, Parallel Processing Group, MIT Laboratory
for Computer Science, June 1986.

[23] Halstead, R., Parallel Symbolic Computing, IEEE
Computer 19:8, August 1986, p. 35-43.

[24] Halstead, R., Parallel Computing Using Multilisp, J.
Kowalik, ed., Parallel Computation and Computers for
Artificial Intelligence, Kluwer Academic Publishers,
1987.

[25] Rumbaugh, J., A Data Flow Multiprocessor, IEEE
Transactions on Computers C-26:2, pp. 138-146,
February, 1977.

[26] Watson, Ian and John Gurd, A Practical Data Flow
Computer, Computer, pp. 51-57, February, 1982.

[27] Chan, E. Y., System Activity Monitor (SAM)
Overview, Harris GSS internal note, October 27, 1985.

[28] Chan, E. Y., The Spectron, Harris GSS internal note,
September, 1984.

BLOCKING FOR PARALLEL SPARSE LINEAR SYSTEM SOLVERS

Santosh G. Abraham
Dept. of Electrical Engineering and Computer Science

University of Michigan
1301 Beal A venue

Ann Arbor, MI 48109

ABSTRACT

We consider the parallel solution of sparse systems of linear
equations. In such systems, parallelism and communication pat­
terns are dependent on the nature of sparsity in the input matrix
system. A new algorithm, Block Solve, in which processors
access blocks of rows from shared memory, is described. Experi­
ments were canied out on the eight-processor Alliant FX/8 to
determine the effectiveness of various blocking strategies in reduc­
ing execution times. An average block size of between four and
eight minimized execution times. The Alliant FX/8 was used to
emulate the execution of Block Solve on a shared memory mul­
tiprocessor with private memories.

l. INTRODUCTION

In shared-memory multiprocessor architectures, communica­
tion and synchronization overhead can significantly affect perform­
ance. Synchronization overhead is incurred when serialized access
to shared variables must be enforced thus resulting in contention
on shared lock variables. In shared-memory multiprocessors
where each processor has a local memory or private cache [1],
access to variables in the shared global memory is slower than
accesses to variables in the private cache. For such multiprocessor
systems, the communication delay is the difference between the
delay in a write followed by a read on a shared variable from
shared memory and the delay in a write followed by a read on a
private variable from local memory. In many algorithms and
problems, increasing the task granularity decreases the communi­
cation and synchronization overhead. However, allocation of large
tasks to processors increases the likelihood of some processors
being forced to idle, i.e., worsens load balancing. In problems
and algorithms, where communication and parallelism are rela­
tively independent of-the input data, analytic models and deter­
ministic schedules are applicable, e.g., FFT algorithm. However,
such models are not usually applicable where the communication
patterns are not uniform and regular.

This research is supported in part by DOE grant DE-FG02-85ER25001,
NSF grants DCR-84-10110 and DCR-85-09970, a donation from IBM,
and by an American Electronics Association fellowship for Mr. Davis
(with funds from Digital Equipment Coiporation).

Timothy A. Davis
Center for Supercomputing Research and Development

University of Illinois

166

104 S. Wright Street
Urbana, IL 61801

In this paper, we consider the solution of sparse systems of
linear equations, in which parallelism and communication patterns
are dependent on the nature of sparsity in the input matrix system.
An asynchronous parallel algorithm is developed to solve the
matrix system. Dynamic techniques are used in this algorithm to
estimate the current parallelism, i.e., the number of row operations
that can be performed simultaneously. The estimate of the current
parallelism is used to continuously balance parallelism and com­
munication requirements. When a large amount of parallelism is
available, individual processors are assigned large tasks. How­
ever, when the parallelism decreases, for instance, towards the end
of the computation, the task granularity is decreased to improve
the -utilization of the processors.

A new algorithm, Block Solve, in which processors access
blocks of rows from shared memory, is described. This algorillun
is a generalization of Gaussian Elimination with pairwise pivoting,
in which processors only access pairs of rows from shared
memory. In the Block Solve algoritlnn, processors access blocks
of rows, where the block size, (the number of rows brought into
local memo1y) need not necessarily be two as in pairwise pivoting.
Various blocking strategies that control the block size, i.e., the
number of rows accessed by each processor on each access to
shared memory, are described. Blocking is an attempt to
parameterize the behavior of the linear system solver with respect
to interprocessor communication. The right choice of block size
balances communication requirements and parallelism and optim­
izes perfom1ance.

Experiments were carried out on the eight-processor Alliant
FX/8 to determine the effectiveness of these blocking strategies in
reducing execution times for various linear systems. The execu­
tion of the Block Solve algorithm on a multiprocessor system with
private caches for each processor and a slower shared global
memory is emulated on the Alliant FX/8. The interrelationship
between blocking and global communication delay was examined
by measuring pe1formance for different types of matrix systems
using a range of block sizes and global delays.

Increasing the block size reduces communication and syn­
chronization overhead and thereby reduces completion times.
However, a large block size increases idle time of processors.
Measurements indicate that a moderate block size of between four
and eight balances these conflicting requirements and minimizes

execution times on the Alliant FX/8 for a range of matrix systems.
In a multiprocessor system with a shared memory and local
memories for each processor, the effect on performance of large
shared global memory delays relative to local memory delays is
reduced if appropriate block sizes are chosen through the blocking
strategies presented in this paper.

The number of processors in shared-memory multiprocessor
systems continues to increase. In future systems, the shared glo­
bal memory will be much slower than the private local memories
of individual processors. The algorithm described here attempts to
reduce the number of accesses to the relatively slow global
memory and therefore is likely to be superior to existing direct
solvers for such multiprocessor systems. Furthermore, the tech­
nique of modifying task granularity based on a current parallelism
estimate, may be applicable to other important numerical algo­
rithms.

In Section 1, the problem domain and the algorithm that was
implemented are described. In Section 2, the tradeoff between
synchronization and computation is examined. In Section 3, the
results obtained by varying the block size in a parallel linear sys­
tem solver running on the Alliant FX/8 are presented. In Section

4, the Alliant FX/8 is used to emulate a machine with private
memories and a single shared global memory. In each of the
above two sections, details of the machine and the algorithm are
followed by the results of experiments performed by running the
algorithm.

2. THE SOLUTION OF SPARSE LINEAR SYSTEMS

The problem domain is the solution of a sparse system of n
simultaneous linear equations, represented as Ax = b, where A
is a (possibly unsymmetric) sparse NxN coefficient matrix, and x
and b are N -vectors. A and b are known and it is necessary to
determine the N -vector x. In a general sparse system, there are
relatively few nonzero elements in A, but the distribution of the

[c sl [ail

-s c ajl

ail
c

8

...] ~ f ""
ajn 0

ai2

a.;2

a. l In

a. ,,.

Fig. I. Pairwise reduction and Givens' reduction

a] In

a. ,,.

167

nonzero elements does not fall into any regular pattern. A large
number of computationally expensive scientific and engineering
applications, e.g., structural analysis, fluid dynamics, aerodynam­
ics, computer-aided design, and circuit simulation, are based on
the solution of large sparse systems of linear equations [2]. It is
therefore important to develop good parallel algorithms for solving
sparse linear systems.

LU decomposition is a direct method for solving linear sys­
tems [3]. It involves a forward reduction phase that obtains lower
and upper triangular matrices, L and U, where A= LU, and a
back substitution phase to get the solution vector x. Only per­
formance of the forward reduction phase is analyzed in this paper
since it is computationally more expensive than the back substitu­
tion phase. Parallel algorithms for solving A x = b when A is
dense (i.e., when most coefficients are non-zero) employ schedules
where the actions of each of the processors are predetermined
before run time [4]. These algorithms are not efficient for general
sparse systems.

2.1. Pairwise Solve

Pairwise Solve, or PSolve, is an asynchronous, nondeter­
ministic, parallel algorithm based on pairwise pivoting [5, 6]. Con­
sider two rows of the A matrix whose leading (or leftmost)
nonzero elements lie in the same colUlllIL H one row (called the
pivot row) is multiplied by an appropriate factor and added to the
second row, the leading nonzero of the second row can be reduced
to zero, thus simplifying the equation corresponding to the reduced
row. In pairwise pivoting then, elementary 2 x 2 stabilized elimi­
nators S are constructed and the pair of rows is premultiplied by S
to create a zero (Figure l) [7]. The column index of the leading
nonzero element in a row is referred to as the column index of the
row.

The algorithm uses the data structures shown in Figure 2 to
detect parallelism efficiently. A column list, coli, associated with

eoit:

~·12 0 0 0 •u1

0 9.,3 a,4 &is 0

@o •aa 0 0 &ae

0 0 9-.. x=b
0 0

0 ~. 8M
ass 0

0 0 0 0 &ee

col1:
A matrix

Fig. 2. Sparse matrix data structure

each column j , is a list of rows that have a column index of j .
Rows with fewer nonzeros are kept to the front of the column lists
to reduce fill-in, i.e., the extent to which zero-valued elements in
the original A matrix are converted to nonzero elements by the
reduction process. Only the nonzero values of the rows are actu­
ally stored and operated on.

To find work, a processor scans the column lists for a list
with two or more rows. It removes the first two rows in the list,
reads the pivot row and returns it to the original list unchanged,
and reduces the second row, thereby increasing its column index
by at least one. The second row is put in a new column list
corresponding to its new column index. The algorithm completes
when the A matrix is upper triangular and each column list con­
tains exactly one row. The advantages of PSolve have been
demonstrated by measuring execution times on the Alliant FX/8
for 38 test matrices from the Harwell/Boeing sparse matrix collec­
tion [6].

2.2. Characterization of parallelism in Psolve

The amount of parallelism, i.e., the number of row reduc­
tions that can be executed simultaneously in this context, is a
function of the input matrix structure, specifically the pattern of
zero and nonzero elements. Parallelism also varies during the exe­
cution of the algorithm. The amount of parallelism detennines the
number of processors that can be used effectively and the follow­
ing attempts to characterize the parallelism in Pairwise Solve.

Let nj be the number of rows in column list j . Let N 1 and
Nz be the number of cohunn lists with nj equal to one and zero,
respectively. Asswne that, during each row reduction, only the
row being reduced is locked for exclusive access by a processor
and a pivot row is simply read and released. An upper bound on
the maximum number of simultaneous row reductions and hence
the currently available parallelism is N - N 1 - 1, since the N 1

rows belonging to the N 1 column lists with ni =l cannot take part
in row reductions.

Lemma 1. The pairwise algorithm terminates within N (N -1)/2
reduction steps, if the N xN matrix, A, is nonsingular.

Each reduction step creates a new zero below the diagonal. Such
zeros are not converted back to nonzero elements. Since the ini­
tial maximum number of nonzero elements below the diagonal is
N(N-1)/2, the pairwise algorithm te1minates within N(N-1)/2
reduction steps. 0

Lemma 2. The currently available parallelism is Nz.

Proof: Column lists, j, with n j ;:: 2 contain rows on which further
reductions can be currently performed. In such columns lists, nj-1
rows can be simultaneously reduced by nj-1 processors using the
remaining 11; tl1 row. Thus, the parallelism for Pairwise Solve, P z,

is N

P2 = :E (11rl)
j=l
ni>O

(1)

Since each of the N rows is associated with exactly one column
N

list, 'f./lj=N. Expanding (1) gives
j=I

N N
P 2 = I;(nj-1) - I: (11rl)

j=I j=I
"1=0

N N N

= L11j - I;l + LI =NZ
j=I i=l j=I

n1=0
(2)

168

Thus, the parallelism, P 2, is N,, the number of empty column
lists. O

Lemma 3. The currently available parallelism, Pk, is a monotoni­
cally nonincreasing function of time during the execution of the
algorithm.

Proof: No row reduction can eliminate the last row from a
column list. Hence, once a column list, j, has n /21, it will con­
tinue to have /1 j >0. Therefore, N, and hence P 2 are monotoni­
cally nonincreasing. O

2.3. Block Solve

Block Solve is a new algorithm developed in this paper to
explore blocking. It is based on the Pairwise Solve algorithm. In
Block Solve, a processor accesses a block of k rows from a set of
contiguous column lists. The row containing tl1e leading element
that has the largest absolute value among tl1e rows with the least
column index is not reduced. All other rows may be reduced and
are locked for exclusive access. Pairwise row reduction steps are
performed on rows within the block unlil no two rows share the
same column index. At this stage, no further row reductions can
be perfom1ed locally within the block. The processor releases the
block of rows and accesses a fresh set of rows. TI1is is a generali­
zation of Pairwise Solve in the sense that Block Solve with a
block size of two is identical to Pairwise Solve, where block size,
k, is the number of rows accessed. The available parallelism with
a block size of k, Pk> is the number of size k blocks that can be
reduced simultaneously. Since each processor reserves (k-1)
rows for exclusive access, the maximum parallelism in Block
Solve is (N - l)/(k - 1), as compared to N -1 in Pairwise Solve.
As the block size, k, increases, the parallelism decreases. If the
number of processors, p , is constant, some processors must idle
when Pk falls below p.

Despite this drawback, a block size, k, greater than two
results in better performance when interprocessor communication
is expensive. In a multiprocessor system with private caches and
a shared global memory, a block size of k>2 reduces the com­
munication time of a processor, i.e., the time spent accessing data
from global memory. In the ideal case, the communication time is
reduced by a factor of (k-1)/2 as indicated in the following.

A row i is k-solid if the k-1 elements following the lead­
ing nonzero element are also nonzero, i.e., {a;,1, • · · ai,j-il are
zero and (a;,j, · · · ai,j+k-il are nonzero. A block of k rows is
solid if all rows are k-solid and have the same column index.
Since k(k-1)/2 elements in the block must be reduced to zero
before releasing the block and since each row reduction step
reduces one element to zero, a processor performs k (k-1)/2
reductions after accessing a solid block of k rows. Therefore, the
compute-to-communication ratio is (k-1)/2 in units of "row
reductions per globally accessed row." In rare instances, a row
reduction step may reduce two or more elements to zero, and con­
sequently, a processor may petform fewer than k(k-1)/2 reduc­
t.ions. In such cases, the compute-to-communication ratio
approaches, but is less than, (k-1)/2.

A solid block represents the ideal case. In general, a proces­
sor may not find k k-solid rows with the same column index and,
in this case, the compute-to-communication ratio is less than
(k-1)/2. Each processor scans successive columns for a column
list, j, with /1 j ;:: 2. The first set of rows is dequeued from this
column list. This criterion is used because if the first row is from
a column list with nj=l, then this row cannot be used in any row
reduction step. A processor then scans additional columns, if

needed, until it acquires a total of k rows. Single rows may be
acquired from succeeding column lists, i.e., rows from column
lists j with n j = 1, because row reductions can usually be per­
formed on such rows. For instance, if two rows are acquired from
column 5 and a single row is acquired from column 6, a row
reduction involving the two rows from column 5 usually results in
a row with a leading nonzero element in column 6. A row reduc­
tion step is then performed using the row from column 6 and the
reduced row obtained from the first row reduction.

The following early-quit criterion may terminate a scan
before k rows are acquired. A scan is obviously terminated once
column N has been scanned. The scan is also abandoned when
the difference between the current column and the column from
which the first row was acquired is greater than the number of
rows already acquired. TI1is early-quit criterion abandons a scan if
it is expected that acquiring an additional row will not reduce
communication time. If this condition holds, rows from the
current column list cannot be reduced using the rows already
acquired. TI1erefore, accessing additional rows reduces parallelism
but does not reduce communication time. For instance, if a pro­
cessor acquires the first two rows from column five, reserves a
total of four rows, and is scanning column nine, then the scan is
ended and the processor attempts to reduce the four rows
acquired. Acquiring additional rows from column nine does not
reduce communication, since the four rows acquired cannot be
used to reduce rows acquired from column nine. However,
acquiring additional rows would reduce the number of rows avail­
able to the remaining processors.

2.4. Givens' reduction

Another basic difference between the Pairwise Solve algo­
rithm [5] and the Block Solve algorithm presented here is in the
strategy used to create zeros to transform the matrix A into upper
triangular form. While pairwise pivoting was used in PSolve,
Givens' reduction is used here. In Givens' reduction, the premul­
tiplication is pe1formed by the 2 x 2 matrix shown in Figure 1.
The computation required in Givens' reduction to create a zero is
twice that in pairwise pivoting. Furthermore, in a parallel imple­
mentation, both rows involved in a row reduction step must be
locked, as both rows are modified. Since the earlier results on
parallelism assumed that only one of the rows is locked, those
results must be modified appropriately. The major advantage of
Givens' reduction is its increased numerical stability.

2.5. Matrix systems

In this paper, results obtained on two types of sparse
matrices are presented. Synthetic sparse mattices are parameter­
ized by the size of the matrix and width, ewidth and scatter. An
element, a;1, is nonzero if I i-j I:,; width and has a probability,
scatter, of being nonzero if width <I i - j I 5. ewidth ; it is always
zero if I i - j I > ewidth . Two types of synthetic sparse matrices
were chosen with the parameters, (width, ewidth, scatter) chosen
to be (3, 60, 0.01) and (10, 100, 0.01), respectively. Six real
sparse matrices were chosen from the Harwell/Boeing sparse
matrix collection [8].

3. BLOCKING ON THE ALLIANT FX/8

Execution times were determined on the Alliant FX/8 for a
range of matrices and block sizes. The Alliant FX/8 is a shared­
memory multiprocessor in which all eight processors share a com­
mon cache. 1herefore, access to shared and nonshared variables
takes the same time, and communication delay is zero. However,

169

a large block size reduces the number of mutually exclusive
accesses to colU11111 lists. As a result, a large block size reduces
the degree of contention for shared variables and consequently the
synchronization time.

The PSolve algorithm was observed to have a speedup of
between five and seven on an eight-processor system for a wide
range of matrices from the Harwell/Boeing collection. The Block
Solve algorithm improves on this speedup by varying block size.
Since the PSolve algorithm achieves appreciable speedup, the

improvement that can be obtained using Block Solve on an eight­
processor system is limited. However, in larger multiprocessor
systems, the degree of contention and hence the synchronization
overhead increases. In such systems, the blocking techniques in
Block Solve that reduce synchronization overhead are more
effective.

3.1. Constant and variable blocking

The maximum block size is the maximum number of rows
that a processor can acquire on each access. If one of the early­
quit criteria is applicable, a processor may terminate a block
access and perform a block reduction on a block size smaller than
the maximum block size. In constant blocking, the maximum
block size is fixed throughout program execution. In variable
blocking, the maximum block size is based on an estimate of the
currently available parallelism. Variable blocking is superior
because parallelism decreases during program execution (Lemma
3) and the choice of block size should attempt to rebalance com­
munication and parallelism continuously in order to optimize per­
formance.

Two strategies for obtaining an estimate of the available
parallelism are described in the following. In the C 1 method, a
count, c., of the number of elements in the set, C Jo of consecutive
column lists { 1 ... c I I with n r=I is maintained. Since 110 reduc­
tions can be perfonned on the set of rows with column indices in
the set C 1, (N-c 1) is an estimate (rather optimistic) of the avail­
able parallelism. In the Nz method, a count of the number of
columns with 111=0, Nz is maintained. The implementation of this
method uses the fact that once 11 i has a nonzero value it will never
be zero again. Before program execution, Nz is initialized to its
correct value. When a reduced row is returned to shared storage
by a processor, Nz is decremented if no other row has the same
column index.

TI1e Nz method of estimating parallelism is more accurate
than the C 1 method. For instance, consider the solution of a tridi­
agonal system using the Block Solve algorithm. In a tridiagonal
matrix, element a; i is nonzero if and only if I i - j I ::; 1. Exactly
one row reduction can be performed at each step and the parallel­
ism is one. However, the amount of parallelism indicated by the
first method is N - c 1, where c 1 is initialized to zero and is incre­
mented after each reduction. The Nz method accurately indicates
a parallelism of exactly one throughout the reduction phase, since
only one column, column N, has nj=O. When the last reduced
row is returned, nN=I, the available parallelism is zero and the
reduction phase is complete. However, the C 1 method is
sufficiently accurate for dense matrices. Furthermore, the count,
c., is maintained by one processor. In contrast, since the count,
N,, is decremented by all processors, contention on the
corresponding variable can degrade performance in a large system
with several processors.

In a variable blocking scheme, an estimate of the parallelism
is multiplied by some factor in order to obtain the current max­
imum block size. Since the C 1 method overestimates parallelism,

this factor compensates in part for the overestimation. Even in the
accurate N, method, performance may be improved by varying the
multiplicative factor. Two methods of specifying the multiplica­
tive factor are outlined. The first specifies the maximum block
size, kmax• when there is full parallelism. Thus, the current max­
imum block size is chosen to be max(2.kmu·(N-c 1)/N) or
max(2,kmu·(N,/N)). The choice of kmu should be based on the
ratio of actual to estimated parallelism and on the number of pro­
cessors in the system. The second method specifies blocking
independently of the number of processors as a parallelism factor.
Given a parallelism factor, Ptac, the block size is chosen to be
max(2,(N-c 1)/(p.p/ac)) or max(2,N,/(p.p1°")). The kmu method
limits the maximum number of rows that are brought into local
memory. This restriction is useful, for instance, if the size of a
processor's local memory poses a limitation on block size. In the
Ptac method, the specification of the parameter Ptac is independent
of the number of processors. Thus, the optimum Ptm: on a partic­
ular multiprocessor system might be expected to give good per­
formance on a system with a different number of processors.

3.2. Data structures in the implementation of Block Solve

The real-valued arrays a and b contain the nonzero array ele­
ments of A and the vector b. The N x N array c contains the
column index of the corresponding element in a. For instance, if
c(ij) contains k, then the element a(i,j) is the value of A(i,k).
Thus, only the nonzero elements of A are stored explicitly. The
integer array e of length N contains the number of nonzero ele­
ments in each row of the matrix. On each row access, the
corresponding element in the array e is used to determine the
number of elements that should be accessed from a and c. In
addition, the array row_next of length N is used to maintain
column lists. Since a row belongs to one column list at any
instant, all the N column lists are maintained using row _next.
Each column list has a head pointer that points to the first row in
the list. The row_next pointer of the first row points to the next
row in the list and so on. The row_next pointer of the last row in
the list is set to NULL.

The data structures also maintain column-based information.
A column is locked by a test-and-set instruction on the
corresponding element in col_lock. The j th entry in the array
col_ elements contains n i, the nwnber of rows with column indices
equal to j , minus any rows currently reserved from column list j
by processors. The entries in the array coLmissing contain the
number of rows reserved for exclusive access by processors.

During a block reduction, when no further reductions can be per­
formed with a row, it is transferred back to shared storage and the
corresponding col_elements entry is incremented. At the end of a
block reduction, a processor subtracts its contribution from the
array col_missing. The j th element in the pointer array col_head
points to the first row in the list of rows with column index j .

The following data structures are used in Block Solve but
not in PSolve. A scalar integer head_col that points to. the first
column with npl is maintained. The value of head_col is equal
to (c 1+1) and hence head_col is useful in obtaining an estimate of
the current parallelism in the C 1 method. Since columns j with
j :::; c ; have n i = l, no further reductions are possible on rows
contained in columns { 1, · · · ,c ii. Therefore, processors use
head_col to skip over the first c 1 columns. Thirdly, when
head_col is N, the matrix is in upper triangular form and the
reduction phase is complete. Therefore, the processors .check
head_col and terminate execution when head_col is equal to N.

170

The head_col pointer is maintained to improve performance;
an up-to-date value of head_col is not necessary for the correct­
ness of the algorithm. The head_col pointer is initialized to 1, and
thereafter, in order to simplify implementation· and reduce syn­
chronization, only processor 1 advances head_col. To the other
processors, head_col is a read-only variable. Processor 1 incre­
ments head_col if, during a block access, the column indexed by
head_col has col_elements equal to 1 and col_missing equal to 0.

Lemma 4. The procedure for advancing head_col guarantees that
all columns j with j < head_col always have ni=l.

Proof: Reduction steps performed by the processors never
decrease the colwnn index of a row. Therefore, if a row is read
with column index l and is written back with a column index m ,
then m <'!: l. When head_col is incremented, the column previ­
ously indexed by head_col has only one row associated with it.
Ensuring that col_missing is zero guarantees that rows accessed
from these columns have been returned before head_col is
advanced. Rows accessed from column lists j with j <'!: head_col
will be returned to column lists with indices no less than head_col.
Therefore, all column lists j with j < head_col will continue to
contain exactly one row. D

3.3. Implementation of the algorithm

A processor scans column lists beginning from head_col. It
precedes accesses to column data structures by a lock operation on
the corresponding element of col_lock and releases the lock on
completing the data access. On encountering a column list with
col_elements greater than l, the processor dequeues all rows up to
a maximum of the current maximum block size. If the number of
rows acquired is less than the muxim1,1m l:ll\.lck &i~. th~ processor
scans additional columns accessing one or- more rows. A scan

may be terminated by the early-quit criteria

Once a set of rows has been reserved exclusively for a pro­
cessor, Givens' reduction is used to reduce the set of rows until
no two rows share the same column index. A local list of rows in
the current block is maintained in sorted order using the respective
column indices as the first key and the number of nonzero entries
in a row as the second key. The second key is chosen to reduce
fill-in. If the two rows at the head of the local list have different
column indices, the row at the head is written back to shared
storage since it cannot be used for performing further reductions.
Otherwise, the rows are dequeued, one of the rows is reduced and
the two rows are inserted into their correct positions in the local
list. Ultimately, when there is just one row left, it too is written
into shared storage. At this stage, since all rows have been
returned, the col_missing array is updated. The above is repeated
until head_col is advanced to N.

3.4. Measurements and analysis

This section describes, presents and analyzes the measure­
ments that were taken to explore blocking on the Alliant FX/8.
The four blocking schemes that were implemented and the current
maximwn block size, max_blk, for each of the four schemes are

(1) const_blk blocking uses constant blocking where the max-
imum block size is fixed throughout program execution and
is one of the command-line parameters.

(2) hd_ var blocking uses variable blocking where an estimate of
the parallelism from the head_col variable, is scaled by a
command-line parameter, kmax• which is the maximum
blocking size with full parallelism.

(3)

[
kmax·((N+l)-head_col)]

max_blk = max 2, N (3)

pf_ var blocking is similar to hd_ var except that the parallel­
ism estimate is scaled by the command-line parameter, Ptac•
and the number of processors in the system.

blk [2 ((N+l)-head col)] max =max ,
- Ptac·P.N

(4)

(4) nz_var blocking is similar to pf_ var but uses the number of
columns with nj=O, N., to estimate parallelism. The same
value of the command-line parameter, Pfac,nz, might be
expected to give similar performance for a range of matrices,
since the program dynamically adjusts to the available paral-

lelism. max_blk =max f 2.~] (5)
l Pfac,nz ·P

Experiments were conducted by running Block Solve on the
Alliant FX/8 using various maximum block sizes and parallelism
factors, for each of the matrices and blocking schemes described
above. In each case, the execution time, and the average block
size were measured and tabulated. The average block size is the
average number of rows that a processor acquires on each access
to the global queue. This number is never greater than the max­
imum specified indirectly through the command-line parameters,
kmax or Pfac· Other measurements that were carried out for each
run of the program include the error norm, the density of nonzeros
in the upper triangular matrix, the number of floating-point opera­
tions, the munber of row reductions, the number of accesses, the
number of columns scanned on each access (skips), and the
megaflops rating attained.

E
J:

u
t

18

18

i 14
0
n

m

12

f
nz_var

5 10
Average block size

' '

~
/4 I

.. I\/

,./ta
" .. ,, .,

'I
'I

'' ' ' ,' A

' ' ~
' ' ' ' ,),

' '

: const.

20

Fig. 3. Execution time (seconds) vs. average block size
(for various blocking schemes on a type2 size 1000 matrix)

171

Each of the four different blocking schemes that were imple­
mented restricts the number of rows that a processor can acquire
on each access. This restriction implicitly determines the average
number of rows that a processor acquires on each access and
thereby affects performance. For each blocking scheme, different
ranges of the command-line parameters exhibit near-optimal per­
formance. The execution times are therefore plotted versus the
average block size, rather than versus the value of the command­
line parameter.

In Figure 3, the execution times are plotted versus the aver­
age block size for each blocking scheme for a type2 matrix of size
1000. The points correspond to observed values of execution time
and average block size, for each value of kmax (or Ptac). A line
joins each point to the point corresponding to the next higher
value of k111 ... A higher valu~ of kmax does not necessarily result
in a higher average block size because there may be fewer rows
for tile otller processors if one processor accesses a larger block.
As a result, t11e lines occasionally move to the left. In general, the
execution time decreases slightly with increasing block size for
small block sizes, but then increases for larger block sizes. A
block size of four, in general, gives better performance than a
block size of two. Command-line parameter choices that result in
average block sizes of between three and four are optimal for the
variable blocking schemes, whereas a maximum block size
specification of eight (with resulting average block size of 7 .4) is
optimum for the const blocking scheme. The more sophisticated
blocking schemes are more robust in the sense tliat they give
near-optimal performance over a wider range of the command-line
parameters, kmax and Pfac· In particular, the execution time with
nz_var blocking remains close to the minimum of 10.50 seconds
for any choice of tl1e command-line parameter, Ptac, in the range
[0.3-6.0], whereas the execution time with const blocking remains

A
v
e

a
g
e

b
I
0

•
k

10

0 2
Parallelism factor

Fig. 4. Average block size achieved vs.
specified parallelism factor, Ptac

(for type2 matrices with sizes 200, 400, 800, 1000)

close to the mm1mum only for a choice of the command-line
parameter, maximum block size, in the range [4-10].

For the rest of this section, runs using nz_var blocking on
type2 matrices are examined further. Figure 4 shows the relation­
ship between the command-line parameter, Ptac, and the resulting
average block size. When Pfac>I, the number of rows available
for reduction exceeds the sum of the sizes of blocks in individual
processors. The sizes of the acquired blocks are indeed limited by
the maximum block size. Since the maximum block size varies
inversely as Pfac, the average block size also varies. inversely as
Ptac· However, when Ptac<l, the block sizes are limited by the
parallelism in the matrix system. Thus, each processor attempts to
acquire blocks of size greater than Nz /p , but since there are only
N, rows available, the processors, in general, acquire fewer rows
than specified by the maximum block size. Therefore, for Ptac<l,
the average block size is only weakly dependent on Pfac.

In this section, various blocking schemes were analyzed.
Blocking can improve performance to some extent even in mul­
tiprocessor systems that have a shared cache and effectively zero
communication delay because of a reduction in synchronization
overhead. An average block size between three and four leads to
minimum execution times for variable blocking schemes. Execu­
tion time curves are fairly flat over block size ranges near their
optimum value. The performance of all four blocking schemes
with the corresponding optimal choices of command-line parame­
ters is comparable. However, a choice of maximum block size
outside the near-optimum range can greatly increase execution
time for the const blocking scheme. In contrast, the sophisticated
blocking schemes, pf_ var and nz_ var, are more robust because a
nonoptimal choice of Ptac does not significantly affect perform­
ance.

4. EMULATION OF GLOBAL DELAYS

An eight-processor system where each processor has its own
private memory and all the processors share a common global
memory was emulated using the Alliant FX/8. The emulation was
accomplished by identifying shared variables in the program and
inserting additional accesses for each shared variable access to
model the shared memory access time. The interrelationship
between blocking and global communication delay was examined
by measuring pe1forma11ce for different types of systems using a
range of parallelism factors and global delays.

4.1. Global delays

In order to emulate a shared global memory multiprocessor
with private memories for each processor, occurrences of variables
shared between processors are identified. In the linear system
application, the following are shared and therefore in global
memory: a, b, c, e, row_next, col_elements, col_lock, col_missing.
Thus, the entire sparse matrix data structure as represented in Fig­
ure 2 resides in global memory. A block of rows is accessed
from global memory and stored in local memory. Subsequent
accesses to a row contained in the block are satisfied by the local
memo1y.

To .emulate the additional time that it would lake to complete
accesses on shared variables from global memory, g_dly - 1 addi­
tional accesses are made to locations in an otherwise wmsed array
where g_dly is the factor by which the global memory is slower
than local memory. Additional vector and scalar accesses are
introduced for vector and scalar accesses respectively in the origi­
nal program. Provided that all accesses on the host multiprocessor

on which .the emulation runs (the Alliant FX/8, in this case) take
identical time, this strategy should emulate the global delay accu­
rately.

172

However the Alliant FX/8 has a hierarchical memory struc­
ture with a vi;tual memory and a cache which pose special prob­
lems in performance evaluation [9]. Therefore, the additional
accesses used to emulate global delay were structured so that they
do not benefit from the cache prefetching effect any more than the
nonnal accesses (i.e., they have similar spatial locality). For
sufficiently large problems, cache hits are primarily due to_ pr~­
fetching an entire line (spatial locality). When. t~e problem size is
large, cached data tends to be replaced before it 1s reused. 1~ere­
fore, the temporal locality is small and does not contnbute
significantly to cache hit ratio. With ca~e take.n t? preserve the
amow1t of spatial locality, tlle cache miss ratio is expected to
approximate the miss ratio in the original program. Furthermore,
the size of the dUillmy arrays used to emulate global accesses was
chosen to be an order of magnitude smaller than the largest array
in the program. This reduced the likelihood of thrashing on the
disk. Thus, the paging activity in the emulation is expected to
approximate that in the original program. Further study is ne~es­
sary to verify that these steps are sufficient for accurate emulat10n.

4.2. Measurements and analysis

The program was run on synthetic and real sparse s~stems.
For each matrix system, the program was executed for choices of
11 in the range 0.1 through 5.0 and global delays of 1 through foe
10 times the private memory access delays.

In Figure 5, the execution times for the matrices, _bp_IO_oo
from the Harwell-Boeing collection, synthetic sparse matrix of size
1000 of type2, and synthetic sparse matrix of size 800. of type I,
are plotted against parallelism factor, Pfac. The multiprocessor
system that is emulated has a global ~emory that is ~ve times
slower than the individual local memones. A parallehsm fa~tor
slightly less than one is found to give the minimum execution t~me
for the synl11etic sparse matrix systems, whereas a parallelism

factor around 0.5 is ideal for the bp_lOOO matrix. Because of the
early-quit criteria, the average block size is less than the maximum
block size, even if sufficient parallelism is present. A parallelism
factor of 0.5, therefore, does not imply that only half the proces­
sors are busy.

The execution times for fs_541_2 are examined in Figure 6.
The global delay is chosen to be 3, 5, and 9 times the local delay
and execution times are plotted against l11e parallelism factor.
Parallelism factors at either ends of the range result in large exe­
cution times, either because of a lack of parallelism or because of
large communication delays. Furthermore, in the optimUill range
of Pfac• llte effect of global comm.unication delays is mask~d an~
execution times for global delays of 3, 5, and 9 are nearly iden!I­
cal. This masking occurs because although changes in global
delays do affect communication time, communication time is not a
significant part of execution time in the optimllill range of Pfac. A
choice of parallelism factor around 0.5 minimizes execution times
for all lllfee global delays. An average block size of approxi­
mately 13 is achieved with Pfac=0.5 which implies that on the
average only about one-fifth of the 541 rows in fs_541_2 are typi­
cally reserved by processors for exclusive access.

5. CONCLUSIONS

This paper examined blocking in the context of linear system
solvers. A large block size decreases connnunication and syn­
chronization at the expense of reduced parallelism. Four different

implementations of blocking were examined by solving various
linear systems on the Alliant FX/8. For the type2-1000 matrix
running on eight processors, minimum execution times were
obtained with an average block size of approximately four for
variable blocking schemes and an average block size of 7.4 for the
const blocking scheme. The more sophisticated blocking schemes
that adjust the block size to match the currently available parallel­
ism give good performance even if the user-specified parameters
do not match the problem and lhe multiprocessor.

The emulation of the execution of the Block Solve algorithm
on a multiprocessor system with global memory that is slower
than the private memories of the processors was described.
Blocking is more useful in such a system because the communica­
tion delays (as well as synchronization overhead) are reduced with
larger block sizes. Parallelism factors are used to define task
granularity for multitasking large problems; very small or very
large factors result in large execution times either because of a
lack of parallelism or because of large communication deiays,
respectively. A parallelism factor of approximately 0.5 minimizes
execution lime for a range of global delays. (Note that because of
the early-quit criteria, a parallelism factor less than one does not
necessarily imply that some processors are idle.) Furthermore, as
gloiJal delay is increased, the execution time docs not increase

rapidly with this choice of paralleli.~m factor. With an average
block size of 13, communication time is not significant compared
to computation time; hence, execution time is not affected
significantly by changes in communication delay.

This paper presents a new algorithm, Block Solve, for solv­
ing sparse systems of linear equations that is a generalization of
the Psolve algorithm discussed in [6]. For most test matrices, the
Psolve algorithm was found to run faster on the Alliant FX/8 mul­
tiprocessor than Gaussian Elimination which does not exploit spar­
sity and the Yale Sparse Matrix Package which does not exploit
parallelism. In this paper, the performance' of Block Solve with
moderate block sizes is found to be superior to a block sj7p ,,f
two, which is required by Psolve. The algorithm presented here is
likely to find application in shared-memory multiprocessors that

B

• i
m

20

10

9.1

typ•t-800

0.2 0.6 1
Parall@flmt ,factor

-,­
•

Fig. 5. Emulated execution time (seconds) vs. parallelism factor
(for various matrices on an eight-processor system

with global delay five times local delay)

173

have private local memories that are significantly faster than the
shared global memory. The Block Solve algorithm also introduces
techniques to estimate parallelism during program execution and
continuously balance communication requirements and parallelism
based on tl1e parallelism estimate. These techniques may be use­
ful in other asynchronous algorithms.

REFERENCES

[1] G. F. Pfister, W. C. Brantley, D. A. George, S. I. Harvey, W. J.
Kleineder, K. P. McAuliffe, E. A. Melton, V. A. Norton, and J.
Weiss, "The IBM Research Parallel Processor Prototype (RP3):
Introduction and architecture," Proc. Int. Conf Parallel Process­
i11g, pp. 764-771, 1985.

[2] H. F. Jordan, "Experience with pipelined multiple instruction
streanis," Proc. IEEE, vol. 72, pp. 113-123, 1984.

[3] G. Dahlquist and A. Bjork, Numerical Methods. London: Pren­
tice Hall, 1974.

[4] Y. Saad, "Communication complexity of the Gaussian Elimina­
tion algorithm on multiprocessors," Dept. of Computer Science,
Yale University, Research Report No. Y ALEU/DCS/RR-348, pp.
1-18, July 1985.

[5] T. A. Davis, "Psolve: A concurrent algorithm for solving sparse
systems of linear equations," Center for Supercomputing
Research and Development, University of Illinois at Urbana­
Chanipaign, CSRD Report No. 612, pp. 1-56, Dec. 1986.

[6] T. A. Davis and E. S. Davidson, "PSOLVE: A concurrent algo­
rithm for solving sparse systems of linear equations," Proc. lilt.
Conf. Parallel Processing, pp. 483-490, 1987.

[7] D. C. Sorensen, "Analysis of pairwise pivoting in Gaussian El­
imination," IEEE Tra11s. Comput., vol. C-34, pp. 274-278, Mar.
1985.

[8] Harwell/Boeing Computer Services Sparse Matrix Test Collec­
tion.

[9] W. Jalby an~ U. Meier, "Optimizing matrix operations on a
parallel mult1~rocessor with a hierarchical memory system,••
Proc. lilt. Conj. Parallel Processing, pp. 429-432, 1986.

E

m .

..

..

..

0.1 0.1 o.& 1
Paralletam faetor

Fig. 6. Hm11lntPll execution time (seconds) vs. p:imllelism factor
(for fs_541_2 matrix on a eight processor ::,·~!em

with global delays of 3, 5, 9 times local delay)

PERFORMANCE ANALYSIS OF A SHARED MEMORY MULTIPROCESSOR: CASE STUDY

R. T. Dimpsey and R. K.. Iyer
Coordinated Science Laboratory, Computer Systems Group

University of lllinios at Urbana-Champaign
1101 W. Springfield Ave.
Urbana, Illinois, 6.1801

Abstract - This paper presents an analysis of an
Alliant FX/8 system running Xylem (Cedar's operating
system) at the University of Illinois Center for
Supercomputing Research and Development. Results
for two distinct, real, s<;ientiftc workloads executing on
an Alliant FX/8 are discussed. A combination of user
concurrency and system overhead measurem~nts were
taken for both workloads. Statistical cluster analysis is
used to extract a state transition model to jointly

· characterize user concurrency and system overhead. A
skewness factor, is introduced and used to bring out
the effects of unbalanced clustering when determining
states with significant transitions.

1. INTRODUCTION

The evaluation of a parallel processor often
consists of determining numerical performance indices,
such as MFLOPS, for the machine using standard
benchmarks. Although these indices are useful in
detecting global weaknesses of the system, they are
unable to provide detailed insight into system
behavior •. It is important to have methods which
provide information about the system's performance
under a certain workload, along with insight into how
the workload and system interact. With such
methods, the system can be more easily tuned for
speciftc applications and vice versa.

This paper presents an analysis of an Alliant FX/8
system running the Cedar1 operating system, Xylem, at
the University of Illinois Center for Supercomputing
Research and Development (CSRD). Results for two
distinct, real, scientific workload samples executing on
an Alliant FX/8 are presented. In the analysis, a
combination of user concurrency and system overhead
measurements are employed. Statistical clustering is
performed on these measurements to identify

-commonly recurring patterns of resource usage. State
transition models are extracted and interpreted for
both sampled workloads to obtain practical insight into
the system behavior. Skewness factors are then
calculated for each interstate transition in the
identified model and used to determine significant
transitional relationships among the states of the
machine.

The results show that during the collection of the

1The Cedar project is a parallel supercomputing experiment
which consists of interconnecting Alliant FX/8's to a large
shared global memory [1] and [2]. Each Alliant is known as
a cluster of the Cedar machine.
This ~ was supported by the National Aeronautical
and Space Administration under NASA grant NAG-1-613.

174

first sample, the system was operating in states of high
user concurrency approximately 79% of the time. The
second sample, on the other hand, captures a system
operating in states of high user concurrency only 26%
of the time. In addition, the analysis shows that high
system overhead is usually accompanied by low user
concurrency. The analysis also indicates that for both
workloads, the state of the system was highly
predictable. This predictability was largely due to
slow changes in system states. In particular, states
with extremely high values of paging or user
concurrency are usually preceded by states with less
paging and user concurrency, much like stair climbing.
A stepping down effect is observed when the machine
leaves these extreme !i.tates.

1.1 Related Research

There have been several studies which analyze the
_performance of multiprocessor systems. Most of these
employ simulati&n or analytical-based techniques [3],
[4], [5]. Few have investigated the effect of a real
workload on system performance. In McGuire and
Iyer [6] concurrency of real workloads executing on an
Alliant is monitored and analyzed. The rest of the
performance related work on the Alliant FX/8 has
dealt mainly with the use of tools for evaluation or
determination of performance indices [7], [8], and [9].

The current study not only analyzes real
performance and resource usage data but also extracts
transition models to represent the measured workload
environment. The models are interpreted to gain
insight into the interaction of the workload and system
and to determine the amount of concurrency in the
workloads.

A major step in obtaining the workload models is
statistical clustering.· In recent years, this approach has
found many uses in the field of computer evaluation
[10). Devarakonda and Iyer [11) use clustering as a
step in creating transition models which are then used
to predict resource usage. Hsueh et al. [12) use similar
techniques to create performability models for a
multiprocessor system. Ferrari [13), on the other hand,
uses clustering in the creation of artificial workloads.

The next section contains a discussion of the
measured environment. Section 3 introduces the
measurements used in this study. A number of
prelimlriary results for the two samples are presented
in Section 4. Section 5 describes the modeling
techniques and presents the cluster and transition
models obtained for the two samples. Section 6
summarizes the major results and suggests possibilities
for future work.

Measure DescrfJ:>_tion
CONCUSER % of time CEs clustered and running user code
clsyst % of cluster time spent running system code
cluset % of cluster time spent running user code
CLUSTIM % of time spent in the cluster configuration
ipsyst % of time IPs spent running system code
CEUT Utilization of entire CE complex
IPUT Utilization of entire IP complex

Table 1
Measurement Descriptions

2. THE MEASUREMENT ENVIRONMENT

The measurements for this study were taken from
real, scientific workloads being executed by an Alliant
FX/8 on weekday afternoons. The FX/8 is a
multiprocessor mini-supercomputer with a 32
Megabyte shared global memory [14]. It can best be
understood as two complexes or clusters2 of processors.
The main complex, the Computational Element (CE)
cluster, consists of eight processors. These either work
concurrently in the "clustered" configuration or
separately in the detached configuration. When the
CEs are detached, they can be used as eight separate
processors working on different jobs, or groups of them
can be used to multiprocess the same job. When in the
clustered configuration, the concurrency control bus
synchronizes the eight CEs to concurrently process a
single job.

The second complex of processors on the measured
Alliant consists of three Motorola MC68012
microprocessors called the Interactive Processors (IPs).
In the measured system, the IPs handle all accesses to
secondary memory and interactive user work such as
editing jobs. It is important to note that the operating
system on the measured machine is Xylem, which was
specifically designed for the Cedar supercomputer, and
not Concentrix, Alliant's operating system. For this
reason, this paper is more an analysis of a single cluster
Cedar supercomputer, and less of an analysis of the
Alliant FX/8.

The measured FX/8 is used for application and
algorithm development at (CSRD). This diverse
environment is representative of many scientific,
parallel program developmental situations. The
measured programs include those specifically designed
to optimize the concurrency allowed by the Alliant's
architecture along with jobs that were suboptimal.

3. MEASUREMENTS

Two software facilities developed at UICSRD were
used to measure system behavior. The facilities
monitored the system concurrently so both types of

2The use of the word cluster is admittedly overused in this
paper. The Alliant FX/8s are clusters of the Cedar. while
the FX/8·s have their own clusters. Later. cluster models
will be introduced. This confusion was inevitable. in order
to maintain consistency with the results in the other
literature on these subjects.

175

measurements were collected approximately
simultaneously.

The first facility was used to measure the amount
of concurrency in the workload. It used a high
resolution (10 microsecond) timer to measure the
amount of time each processor was executing system
and user code, as well as the amount of time each
processor was idle. These measurements were taken
separately for the two CE configurations (i.e., detached
and clustered). The percentage of time the CEs were
clustered and executing user code (CONCUSER) was
then determined. The CONCUSER parameter thus
measures user concurrency in the workload and should
be high for observations with well-tuned applications
running.

The second software facility measured the
overhead associated with virtual memory and system
operations such as paging, swapping, system calls,
context switches, and file searches. Of approximately
150 meters available, those presented in this paper are
context switches, page-ins, and page-outs. Page·-ins are
defined as the number of disk accesses to bring pages
into main memory. Correspondingly, page-outs are the
number of separate disk accesses for writing back to
disk. It should be noted that the O/S facility does not
provide separate measurements for each processor, but
running totals for all the processors combined.

All measurements discussed above were sampled
approximately simultaneously every 45 seconds. In
addition to these measurements, the parameters
summarized in Table 1 were calculated. Notice that
some of the percentages in the table are calculated over
the entire 45-second period, and others are calculated
just over the time spent in a specific configuration.

Each 45-second period is one observation of the
system, and the measurements collected during that
period depict the state of the system for that
observation. The length of the observation was
experimentally determined and chosen so that it
would best correspond to the length of an actual,
physical state of the machine.

Several workload samples were collected for this
study. In this paper, two markedly different workload
samples are presented. The first sample was taken over
a 138-minute period. The second sample, on the other
hand, is 168 minutes long. To provide a broad
understanding of the two workloads and their
interactions with the system, some preliminary
statistical analysis is presented in the next section.

Parameter
Sample One Sample Two

mean std. dev. mean std. dev.
context switches 1782.508 508.201 1503.382 665.230
device interrupts 20389.339 5976.630 18459.958 11929.022
page-ins 0.109 1.016 24.747 66.278
page-outs 1.869 14.630 18.116 40.957
CE utilization 0.723 0.077 0.393 0.246
IP utilization 0.304 0.078 0.271 0.101
CLUSTIM 71.632 10.472 63.920 14.971
cluset 90.165 4.946 39.879 34.000
clsyst 9.835 4.946 21.727 15.159
ipsyst 23.716 5.325 17.231 4.146
CONCUSER 64.625 10.470 27.028 26.028

· Table 2
Measurement Means and Standard Deviations

4. PRELIMINARY ANALYSIS

4.1 Means and Standard Deviations

Table 2 summarizes the means and standard
deviations of each parameter studied. Sample One is
characterized by high user concurrency and CE
utilization. The relatively small standard deviations
for the parameters indicate stable activity during the
collection of the sample. Sample Two, on the other
hand, is characterized by low user concurrency and CE
utilization. The standard deviations for this sample are
high (e.g. see CONCUSER) indicating that the sample
captured a workload consisting of bursts of work
surrounded by idleness.

The table also shows an imbalance between the IP
and CE utilizations for both samples. This imbalance,
especially for Sample One, may be partially attributed
to the low paging activity. (All accesses to disk must
be made through IPO, thus when the paging is low the
IP utilization tends to be low.) Another cause of this
imbalance is Xylem's scheduling policy. Whenever
possible jobs are scheduled on the CEs because they are
much faster than the IPs.

Table 2 also highlights the paging differences
between the two sampled workloads. Sample One
contains very little paging, while Sample Two has a
substantial amount of paging. The standard deviations
for the paging activities of both samples are quite high,
suggesting intervals of high paging activity interspersed
with periods of little or no paging. The periods of little
paging activity are easily explained by the large 32-MB
physical memory found in the Alliant.

4.2 Individual System/User/Idle Times

In this section the behavior of the individual
processors is studied. Figures 1 and 2 show· the
percentage of time each processor spends executing
system and user code, along with the percentage of
time the processors are idle. The bars shown for the
individual CEs, CEO-CE7, pertain to the time spent in
detached configuration. The cluster bar (CL) shows the
breakdown for the CEs' utilizations while in the
clustered.configuration (only one bar is needed because
all CEs work on the same job in this configuration).

176

It is important to realize that these percentages are not
calculated over the whole period, but only the period
in which the CEs are in the specified configuration. For
example, Figure 1 shows that while detached, CE7 is
idle 45% of the time, executing system code 30% of the
time, and executing user code 25% of the time.

Figures 1 and 2 confirm the low utilization of the
IPs. They also show that the work done on the IPs is
evenly balanced. Note also the low utilization of the
lowered numbered CEs while in the detached mode.
The majority of the work in the detached mode is done
by CE6 and CE7. These results suggest that a better
design may be to allow the four lower CEs to form
their own cluster. Thus, when the detached mode is
needed, the upper four processors can break free and
handle the work. Meanwhile, the lower four stay in
clustered configuration and continue to service the jobs
waiting on the cluster queue.

In summary, the preliminary analysis shows that
Sample One captured a system with high, steady CE
utilization, little paging, and a high degree of user
concurrency. This is the result of a relatively stable
workload. Sample Two, on the other hand, is made up
of observations with high variability in their CE
utilization, and the amount of paging they capture. On
average, the sample also shows. very little user
concurrency. This is the result of a generally light
workload with bursts of high activity. In addition, for
both samples, the lower numbered CEs in the detached
configuration and all three IPs showed low utilization.

5. MODELEXTRACTION

In this section we extract state transition models
to quantify the variation in system activity for each
workload. Four parameters were selected to jointly
characterize user concurrency and system overhead.
These were IPUT, context switches, CONCUSER, and
pagact (pagact = page-in5 + page.:.Outs, the total number
of accesses to disk). Each observation is treated as a
point in four-dimensional space. Statistical clustering
analysis is used to identify similar classes (clusters) in
this space. Each cluster is then defined as a system
state, and a state transition model (consisting of
intercluster transition probabilities) is developed.

100
I
I
I
I
I
15
I
I
I
I
I
I

50
I
I
I
I
I
I

25
I
I
I
I

01234567cl012
Computational Elements

Figure 1
User/System/Idle times

IPs

These transition probabilities may be used to predict
forthcoming states of the machine. They also provide a
solid understanding of the relationships between states.

Next the extracted cluster model is interpreted by
computing "skewness factors" for each transition. The
skewness factors quantify the degree to which
transitional relations between states were caused by
random transitions. More specifi.cally, a skewness
factor determines the skewness of a etransition
probability with respect to the transition probability
that would be obtained if each inter-observation
transition was equally likely. The skewness factor
(SiJ) of a transition from state i to state j is defi.ned as

observed number of transitions from state i to state j

SiJ = probable* number of transitions from state i. to state j

*Assuming that the transition to any observation is
equally likely regardless of the cluster it is in.

The skewness factors bring out the effect of
unbalanced clusters and quantify signifi.cant transitions
between clusters. A signifi.cant transition is one that
may an have underlying system-related cause, and is
not just the result of random action. In some cases,
small transition probabilities can mask these signifi.cant
transitions. In other cases, the skewness factor may
show that transitions which appear to be signifi.cant
(because of high transition probabilities) may actually
be explained by random transitions among states. A
skewness factor near unity indicates that there is
probably not a signifi.cant transition between states.

II
100
I
I

User I

II

I
I
15
I
I
I
I

System I

D
lei le

177

I
50
I
I
I
I
I
I
25
I
I
I
I

01234567cl0l2
Computational Elements

Figure 2
User/System/Idle times

IPs

Following this, skewness factors are calculated and
used to detect signifi.cant transitional relationships
between the states of the system.

5.1 Clustering. Transition Models. Skewness Factors

The cluster models were obtained using the
FASTCLUS procedure from the SAS software package
[15]. This procedure uses a K-means clustering
method, grouping observations into clusters that
minimize the intracluster distances between points,
while maximizing the intercluster distances. All
distances are Euclidean.

The cluster models obtained are studied from
three different perspectives, each providing different
types of results. At the most basic level, the
clusterings of observations are studied verbatim to
determine the characteristics of the different states in
which the machine is -found. By the number of
observations in each cluster, the percentage of time the
machine is in each of these states may be determined.
From this, the efficiency of the machine may be
ascertained.

The second form of analysis requires the creation
of a state transition model, which consists of the
probabilities for each intercluster (interstate)
transition. These probabilities are easily estimated
from the collected data with the following formula
(PiJ - probability of transition from state i to state j):

observed number of transitions from state i to state j
pi) = -----------------

observed number of transitions from state i

"1 1~e, .
cluster number %ofobs.,. context switches CONCUSER IPUT pagact

one 6.01 2978 52.97 0.4668 0.000
two 12.02 1965 51.21 0.4176 o.ooo
three 2.73 2124 51.95 0.3441 65.86
four 26.78 1963 57.13 0.3136 0.3795
fi.ve 30.05 1716 71.16 0.2787 0.000
six 22.40 1195 76.69 0.2169 0.3354

Table 3
Centroids of Clusters: Sample One

The most desirable state, i.e., high user
concurrency, is captured by the observations found in
clusters fi.ve and six. Cluster six contains observations
with higher user concurrency, lower IP utilization, and
fewer context switches than the observations in cluster
fi.ve. It is interesting to note that the high user
concurrency captured by observations in these clusters
is accompanied by relatively low IP utilization and few
context switches.

The system is in a state of high user concurrency
approximately 52% of the time (clusters ftve and six),
with less, but still impressive amounts of concurrency
being seen about 27% of the time (cluster four). The
undesirable states (one and two) account for only 18%
of the sample.

The transition model extracted for Sample One is
shown in Figure 3. The high self-loop transition
probabilities suggest that for all states (except state
three, where the self-loop probability is only 0.2),
there is a good chance the machine will operate in the
same state during the following observation. The
skewness factors confirm this relationship, and show
that state three also has an affinity to return to itself.

178

In summary, the skewness factor may be viewed
as a validity test which provides a measure of
credibility for the state transition model. In other
words, it indicates whether there is any 'real'
information in the transition model, or whether it just
captured random activity.

5.2 Cluster Analysis for Sample One

The cluster model extracted from Sample One is
summarized in Table 3. Cluster one, depicts a system
with a high context switch rate, relatively high IP
utilization, and low user concurrency. Cluster two has
similar characteristics, except they are not quite as
extreme. The observations in these clusters most likely
reflect a high degree of multiprogramming which may
have reduced the concurrency exploitation.

The third cluster, which only accounts for 2.73%
of the sample, contains observations with considerable
paging activity. As expected, the paging activity is
accompanied by above-average values for both IP
utilization and context switching. These observations
also show a lower than average user concurrency.

.47/1.6

.54/2.4

Figure 3
Transition Model: Sample One

transition probability/skewness factor

cluster number % of obs. context switches CONCUSER IPUT ~act

one 7.11 2391 10.61 0.2985 8.972

two 49.78 1174 6.362 0.1932 9.127

three 14.2 1032 68.91 0.2585 11.46

four 12.00 2362 41.76 0.4376 164.9

five 12.44 1563 55.24 0.3564 24.24

six 4.44 2797 31.84 0.4485 298.2

Table 4
Centroids of Clusters: Sample Two

This is a good example of a skewness factor identifying
a significant transition that the transition probability
by itself would have masked.

An interesting phenomenon brought out by the
transition model is the lack of interaction between the
high and low concurrency states. The only observed
transitions into the high user concurrency· state (six)
were from states four, five, or six, which are other
states depicting substantial user concurrency. This
phenomenon is also seen for transitions into state five,
the state depicting the second highest degree of
concurrency in this model. Conversely, there are few
observed transitions from the two high concurrency
states (five and six) to the low concurrency states Cone
and two). Thus, it can be concluded that the machine
does not experience sudden jumps from high user
concurrency to low user concurrency, or vice versa.
Transitions from these extremes are made by stepping
through intermediate states, such as state four.

The near unity skewness factors for all six
transitions from state four indicate that the transitions
from this state were almost uniformly distributed
among the observations, regardless of the clusters
obtained. Obviously, the behavior of the machine after
being in this state would be the most difficult to
predict. As hinted at above, state four acts as the
dispenser, or lowest step, to the extreme states of the
system.

A final point of interest is the relationship
between state one and state three as indicated by the
skewness factors (but masked by the transition
probabilities). The transition probabilities between
these states are not very high, but the skewness factors
are both 3.3. Recall that both states depict a system of
low user concurrency, with state three also
corresponding to high paging activity, and state one
corresponding to high IP utilization. Thus the
skewness factor is able to bring out an underlying
system related dependency between paging and IP
utilization.

5.3 Cluster Analysis for Sample Two

A summary of the cluster model extracted for
Sample Two is presented in Table 4. The dominant
cluster in the model is cluster two which accounts for
almost half of the observations. Although the cluster
depicts a near idle system, it should not be regarded as
a weakness of the machine, but a consequence of

monitoring real workloads. (Long periods of time
passed with an extremely light workload while this
sample was taken.) In the analysis, cluster two is
ignored, when possible, because it reveals little about
the system's behavior under a substantial workload. A
more revealing cluster is cluster one. The observations
in this cluster show very little user "concurrency,
relatively high IP utilization, and a large number of
context switches.

179

The desirable state, high user concurrency, is
captured by the observations in clusters three and five.
Cluster three contains observations with high user
concurrency low IP utilization, little paging activity,
and few context switches. Cluster five contains
observations with similar, but less extreme
characteristics.

The paging activity that was first observed in the
preliminary analysis is captured by the observations in
clusters four and six. Of the two, cluster six contains
the observations with the higher paging activity. The
high paging is accompanied by high IP utilization, and a
large number of context switches. It should also be
pointed out that both paging clusters contain
observations having low user concurrency, with cluster
six (extreme paging observations) showing less
concurrency than cluster four (medium paging
observations). Note that for both samples, paging is
seen to adversely affect the amount of user
concurrency exploited.

If we work under the assumption that cluster two
contains only observations of the system under a light
workload, we can discard these values for a quick
analysis of the efficiency of the system under
substantial workload. With the cluster two
observations discarded, the percentage of observations
for the other clusters is doubled. This puts the system
in the desirable clusters (three and five) about 52% of
the time, which is similar to Sample One. In addition,
we find the system is in the paging clusters about 32%
of the time, and in the undesirable cluster (one) about
14% of the time. In summary, the analysis shows that
while the machine was under a substantial workload,
which was only about half the time, user concurrency
was high at times, but not consistently high.

The transition model for Sample Two is presented
in Figure 4. As in Sample One, the transition
probabilities and skewness factors are largest for self­
loops. This indicates that the state of the system is
fairly stable.

The skewness factors for the two paging clusters
(four and six) are especially interesting because there
are few nonzero values. The only way to get to state
six (high paging) is through state four (medium
paging), and the only way to leave it is again through
state four. This stepping-stone effect goes even further.
The only way to get to state four (beside itself or six)
is through state five, the third highest paging state.
Therefore, the system gradually builds up to high
levels of paging and then gradually dissipates back
down to nothing. In addition, as in Sample One, this
stepping-stone effect is also seen for the user
concurrency measurement.

6. Conclusions

In this paper we have presented an analysis of an
Alliant FX/8 system running Xylem (Cedar's operating
system) at the University of Illinois Center for
Supercomputing Research and Development.
Preliminary analysis showed that the first workload
sample was comprised of consistently high user
concurrency, low system overhead, and little paging.
The second sample captured much less user
concurrency, but had significant paging and system
overhead. In addition, it was seen that both the IPs
and the four lowered numbered CEs, while detached,
were underutilized.

The results from the statistical models showed
that during the collection of the first sample, the
system was operating in states of high user

180

.50/4.0

.56/12.4

Figure 4
Transition Model: Sample Two

transition probability /skewness factor

concurrency approximately 79% of the time. The
second workload sample captured the system in high
user concurrency states only 26% of the time. In
addition, it was discovered that high system overhead
was usually accompanied by low user concurrency.
The analysis also showed a high predictability of
system behavior, for both workloads. This
predictability was largely due to slow changes in
system states. In particular, states with extremely
high values of paging or user concurrency are usually
preceded by states with less paging and user
concurrency, much like stair climbing. A stepping
down effect was observed when the machine left
these extreme states.

Future research will include cluster analysis of
individual programs and benchmarks to determine
their behavior on the system, and to further evaluate
the techniques developed. Similar studies on other
multiprocessor environments are also in the planning
stages.

Acknowledgments

The authors would like to thank the researchers at
CSRD for their assistance during the course of this
work. In particular thanks are due to Richard Barton
and Bob McGrath for use of their software and to
Allen Maloney for many useful discussions. Thanks
are also due to Sujatha Subramani for her assistance
with this work and to Janet Adams for her careful
proofreading.

References

[1] D. J. Kuck, E. S. Davidson, D. H. Lawrie and A. S.
Sameh, Parallel Supercomputing Today and the
Cedar Approach, CSRD Report No. 652, University
of Illinois at Urbana-Champaign, June 1987.

[2] P. Yew, Architecture of the Cedar Supercomputer,
Proc. IBM Institute of Europe, pp. 8-12, August
1986.

[3] P. Heidelberger, and K. Trivedi, Queueing Network
Models for Parallel Processing with Asynchronous
Tasks, IEEE Trans. Comp., vol. C-31, pp. 1099-
1108, 1982.

[4] P. Heidelberger, and K. Trivedi, Analytic Queueing
Models for Programs with Internal Concurrency,
IEEE Trans. Comp., vol. C-32, pp. 73-82, January
1983.

[5] U. Herzog, W. Hoffman, and W. Kleinoder,
Performance Modeling and Evaluation for
Hierarchically Organized Multiprocessor Computer
Systems, Proc. 1979 Int'l. Conf. on Parallel
Processing, pp. 103-114.

[6] McGuire, P.J., Iyer, R.K., A Measurement-Based
Study of Concurrency in a Multiprocessor, Proc. of
the 1987 Int. Conf. on Parallel Proc. August,
1987.

[7] W. Abu-Sufah and A. Kwok, Performance
Prediction Tools for Cedar: A Multiprocessor
Supercomputer, Proc. 12th Int'l. Symp. Computer
Architecture, pp. 406-413, 1985.

181

[8] A. Malony, Cedar Performance Measurements,
CSRD Report No. 579, University of Illinois at
Urbana-Champaign, June 1986.

[9) A. Malony, Cedar Performance Evaluation Tools: A
Status Report, CSRD Report No. 582, University of
Illinois at Urbana-Champaign, July 1986.

[10] D. Ferrari, G. Serazzi, and A. Zeigner,
Measurement and Tuning of Computer Systems,
Englewood Cliffs, NJ:Prentice-Hall, Inc., 1981.

[11] M. Devarakonda, and R. K. Iyer, Predictability of
Process Resource Usage: A Measurement-Based
Study of Unix, Ph.D. dissertation, University of
Illinois at Urbana-champaign, October 1987.

[12] M. C. Hsueh, R. K. Iyer, and K. Trivedi, A
Measurement-Based Performability Model for a
Multiprocessor System, IEEE Transactions on
Computers, pp. 478-484, April 1988.

[13] Ferrari, D., On the Foundations of Artificial
Workload Design, ACM, 1984.

[14] Alliant Computer System Corp., FX/Series
Product Summary, June 1985.

[15] H. Artis, Workload Characterization using SAS
PROC F ASTCWS, Proc. Int'l. Workshop
Workload Characterization Computer Systems
and Computer Networks, October 1985.

PERFORMANCE COMPARISON OF TWO MULTIPROCESSOR B-LINK TREE
IMPLEMENTATIONS

Ravi Mukkamala

Department of Computer Science
Old Dominion University

Norfolk, VA 23529.

Abstract

In this paper, we investigate the interaction of concur­
rent database algorithms with the underlying multiproces­
sor computer architectures. We implement an optimistic
concurrent B-link tree access algorithm on two simulated
multiple processor computer architectures: a shared sec­
ondary storage system, and a processor-per-secondary stor­
age system. It has been observed that the average de­
gree of concurrency and the transaction throughput of the
processor-per-secondary storage system are much greater
than those of the shared secondary storage system.

1. Introduction

The performance of a distributed system is influenced·
both by the underlying architecture and the algorithms
that control the execution of the system. Among the sev­
eral architectural factors that influence the perforr:iance of
a multiprocessor based distributed system, the interconnec­
tion of processors and secondary memories is an important
consideration. Similarly, the concurrency control algorithm
employed by a. distributed system greatly influences the
availability of the system to its users. Currently, we are in­
vestigating the interaction between concurrency control al­
gorithms and the underlying computer system components
in a distributed system.

We study two configurations of processors and memo­
ries, each communicating on a shared interconnection net­
work. Both systems contain processors that execute search
and insert operations on a shared file indexed by a B-tree
based structure. Due to its efficient sequential and random
access mechanism, we chose the the B-link tree of Lehman
and Yao [5].

Previous experiments in this area investigated a centrally­
accessed data object (a B-link tree) shared between a set of
processors [3]. The experiments presented here investigate
the performance characteristics of a distributed B-link tree.
The addition of these results allows us to compare two dif­
ferent system architectures executing the same concurrency
control methods.

This paper is organized as follows. Section 2 describes
concurrent access algorithms for B-tree systems. Section 3
briefly describes an evaluation scheme for the B-tree con­
currency algorithms. Section 4 describes the proposed im­
plementation of the B-link tree system. Section 5 briefly
describes the simulation parameters. Section 6 describes
the evaluation metrics adopted in this paper. Section 7

182

Roger K. Shultz

Rockwell-Collins International
Cedar Rapids, IA 52498.

presents the results obtained from the current experiments
and compares it with the earlier results. Finally, Section 8
has some concluding remarks.

2. A Concurrent B-tree System

Our focus in this paper is on evaluation of the opti­
mistic B-tree system proposed by Lehman and Yao [5].
This system uses a modified form of B-tree, called a B­
link tree, which provides multiple access paths to terminal
data nodes. Users are provided with a high degree of con­
current access to the shared tree through a limited set of
operations, which include Search, Insert, and a simplified
Delete (this Delete is a logical Delete - it removes key val­
ues but does not cause tree restructuring). More complete
discussions of B-tree algorithms can be found in [3,5].

The key performance parameters in the algorithm are:
frequency of interference, cost of validation (a static quan­
tity), and cost of recovery (a dynamic quantity). In a previ­
ous study, interference and recovery of multiple processors
accessing a shared B-link tree were measured [3]. Average
number of interferences per processor were found to ap­
proach a constant as the number of processors increased.
Also, it was found that an average of between one and two
links were traversed during each recovery [3].

3. Concurrent System Evaluation

Performance evaluation of concurrent tree algorithms
have typically involved modeling and analysis, with high­
level simulation used to provide additional support for an­
alytical results. Analytical techniques are primarily used
to predict (bound) certain aspects of concurrent algorithm
performance. Markov chain models have been used to de­
rive throughput and response time of static locking on a
centralized database system [SJ. Probabilistic analysis has
proved useful in estimating the expected number of wait­
ing updaters (processes), waiting readers, and the number
'Of locks held by the processes [1]. Kung and Robinson em-

ploy probabilistic analysis to compute the number of con­
flicts between transactions that occur for locking protocols
[4]. Because of the complexity of concurrent transaction
systems and the simplifying assumptions necessary for us­
~ng analytical models, we concentrate on simulation exper­
iments to measure system performance.

Evaluation of a binary search tree shared among trans­
action and maintenance processors using a two-phase lock­
ing protocol has been performed in [6]. In this study, each
processor has its own local memory and shares a common

global memory. The average ratio of processor waiting time
to total processor execution time is determined as a func­
tion of the number of operations per transaction (6]. Lock­
ing protocols for A VL-trees, 2-3 trees, and linear hashing
[2] have been proposed and evaluated through analysis and
high-level simulation; these evaluations have the average
number of concurrently busy transactions as the metric of
interest.

4. User Transaction Managers and
Shared Resource Managers

A range of possible multiprocessor architectures may
support a concurrent B-link system. We have narrowed
this investigation to systems composed of user transaction
managers (UTMs), shared resource managers (SRMs), and
an interconnection network.

A user transaction manager executes a B-link tree ac­
cess algorithm on behalf of user transactions. There is
one user transaction manager per processor to manage the
transaction requests received at that processor (or network
node). Each user transaction manager executes the same
access method and uses the system interconnection network
to access the nodes of the B-link tree(s). Each UTM coordi­
nates the processing of a transaction by sending the access
requests to shared resource managers, and processing the
received B-link tree node data.

A. shared resource manager maintains and controls the

acccess to the B-link trees (or their partitions). The B-link
tree is itself stored on a secondary storage system. The
shared resource manager communicates with the secondary
storage device to execute the requests received from the dif­
ferent user transaction managers. An SRM grants locks on
disk pages, unlocks pages, transfers pages to-and-from the
secondary store, and communicates with the user trans­
action managers through the interconnection network. All
low-level hardware related secondary storage functions such
as disk allocation and physical data format are hidden from
the user transaction managers.

In this paper, we discuss two alternative computer ar­
chitectures to interconnect URMs and SRMs. These are
shown in Figures 1 and 2.

System 1 consists of multiple user transaction managers
each communicating with a single shared resource manager.
Communications between the managers is achieved over a
shared network. In Figure 1, Putm represents a proces­
sor executing one of the user transaction managers. Sim­
ilarly, Parm represents a processor executing the one and
only shared resource manager. Snw represents the shared
bus system. Finally, Maa represents the secondary storage
system that stores the B-link tree and the corresponding
data associated with the keys in this tree (3].

In System 2, each processor in the muliprocessor system
contains a user transaction manager and a shared resource
manager. Each processor is associated with a dedicated sec­
ondary storage device (Maa)· The two separate functions
of System 1, user transaction manager and shared resource
manager, are multiprogrammed on the same processor in
System 2. Thus Putm and Parm are logical processors cor-

183

responding to one physical processor. The processors are
interconnected on a shared communication network (Snw)·

5. Simulation Parameters

The performance of the application system is governed
by the operation workload and the execution characteris-

tics of each of the following components: the processors,
the user transaction managers, .secondary storage access,
shared bus, and the shared resource managers. Figure 3
describes one cycle of user transaction execution. This fig­
ure describes a non-local access to a B-tree. It consists of
three parts: processing by UTM, transmission of requests
and replies through the shared bus, and the processing at
the SRM.

We consider two different workloads to represent dif­
ferent kinds of B-tree app'iications: Search-intensive (70%
Searches and 30% Inserts or 70/30) and Insert-intensive
(30% Searches and 703 Inserts, or 30/70). The previous
investigations revealed that it is sufficient to have 25 trans­
actions for each experiment. We decided to have 100 trans­
actions from each processor in the system per experiment.
Each experiment was repeated four time to provide a 953
confidence level.

Specific event timings in the simulator are based on pub­
lished component speeds in a Hewlett-Packard HP Series
200 SRM configuration. In order to relate processing and
data access costs, the processing speeds of each statement
of user transaction manager's code are expressed in terms
of the time required to write one word to disk. This corre­
lates with other experiments performed with the simulation
system (7].

6. Performance Measures

In order to compare the performance of System 1 11-nd
System 2, we have selected the following metrics: cyclic pro­
cessing power, system throughput, degree of concurrency,
average waiting time for the bus, and the average waiting
time for SRM. We have also measured the number of in­
terferences, the average time for a search transaction, and.
the average time for an insert operation. Due to space lim­
itation, all these measurements are not presented in this
paper. Except for cyclic processing power, the rest of the
metrics assume the usual meaning and hence are not ex-

plained here.

6.1. Cyclic Processing Power

In order to provide an algorithm-independent measure
of the effectiveness of the concurrent algorithm in a par­
ticular application; we use the concept of cyclic processing
power (CPP) described by Vrasalovic, et al. [9]. lntutively,
cyclic processing power measures the percentage time a pro­
cessor actively executes its user program, as opposed to the
time it waits for service from a system resource.

Let us consider the processing cycle in Figure 3. The
local processing (in each cycle) that a user request in~ti.a~ly
receives at a processor is denoted by tp. After the m1tial
processing, if the initiating processor decides to access a

non-local shared resource manager, then the corresponding
user transaction manager attempts to access the shared
bus. The waiting time to access the shared bus is indicated
by twbus· The time to completely transmit the request and
release the bus is indicated by ta. The time for the remote
processor (or SRM) to. execute this request and send the
reply is indicated by twsrm· As shown in Figure 3, twsrm
consists of four components of time: wait time in the SRM's
queue prior to processing, time to process the request, wait
time before accessing a bus to send the reply, and time. to
transmit the reply. The total waiting time per processing
cycle is defined as tw = twbus + iwsrm·

In case the initiator decides to execute the request lo­
cally, there is no need to access the bus. Thus the time
spent by the initiator to acess and transmit a request (twbua)
and the time spent by the SRM to access the bus and trans­
mit the reply are avoided.

If we'have n processors (or UTMs) in the system, then

the average cyclic processing power per processor may be

defined as:

CPP=
L~- tai+tpj

i-1 tai+tpi+twi

n
(1)

where the subscript i indicates the measurements corre­
sponding to the processing cycle at the ith processor.

7. Simulation Results

Tables 1-4 summarize the measurements of access time
(t ..), processing time (tp), waiting time for the shared bus
(twbus), the waiting time for the SRM, and the cyclic pro­
cessing power (C PP). These timings represent measure­
ments averaged over all processors and over all the trans­
actions for a given number of processors (n). CPP is com­
puted from the other average values using Equation (1).

1. Degree of Concurrency: As shown in Tables 3 and
4, processors of both systems show a decrease in de­
gree of concurrency with an increase in the number
of processors. From Tables 1-4 it may be observed
that System l's concurrency is reduced primarily due
to the time spent waiting for the SRM to send the
results of a command. In System 2, however, concur­
rency decreases with the addition of processors (and
their transactions) due to competition for access to
the shared network.

2. Throughput: Tables 3 and 4 summarize the through­
put measurements for Systems 1 and 2. As the num­
ber of processors increase, the parallel execution of
SRM operations boosts the throughput of System 2
higher than System 1. For System 1, the through­
put decreases with the number of processors. This is
attributed to the contention at the single SRM. For
System 2, however, the throughput increases with the,
number of processors. The throughput of System 2

184

should keep increasing until enough processors and
transactions ·are added to cause high contention on
the shared network for remote SRM requests. At this
point the migration of operations to data rather than
the movement of data to operations may be a good
approach.

3. Shared Bus Access: From Table 1 it may be observed
that twbus is much higher in System 2 as compared
to System 1. This is attributed to the increased pro­
cessing activity at the processors in System 2 due to
the distribution of the B-Tree. In System 1, the pro­
cessors spend most of the time waiting for the SRM's
reply, and hence there is less contention on the bus.
The twbus, however, does not linearly increase with
the number of processors. This is also clear from the
throughput statistics in Tables 1 and 2.

4. SRM Access: From Table 1 it is clear that the shared
resource manager is the bottleneck in System 1. The
waiting time for a user transaction manager to await
a reply from the central SRM continues to grow with
the number of processors (or requestors). This wait­
ing time also increases with the number of insert
transactions in the input mix. The possible node
splits and the resulting increase in read/write actions
on B-tree nodes can explain this phenonmenon. Due
to the distributed nature of the B-tree processing,
shared resource manager is no longer the bottleneck
in System 2.

5. Cyclic Processing Power: The cyclic processing power
(in both Systems 1 and 2) decreases with the increase
in the number of processors. This is due to the idle
time of the processors due to either waiting for the
reply from SRM (in System 1) or due to contention for
the bus (in System 2). Over all, the cyclic processing
power of System 2 appears to be slightly higher than .. .

that of System 1. So by speeding up the shared bus,
we can reduce the waiting time for bus access, and in
turn increase the cyclic processing power of System
2. No such improvements are possible for System 1.

8. Conclusion

In this paper, we described the results that we obtained
during the implementation of a B-link tree system on a mul­
tiprocessor system with two different architectures. System
1 implements the B-tree on a single processor with sec­
ondary memory. System 2 implements a distributed version
of the B-tree.

The current investigations have lead to several interest­
ing (some may be obvious) observations. Without much
additional hardware or software cost, performance of con­
current B-link tree operations can be improved dramati­
cally~ System 2 requires additional secondary storage de­
vices (with divided capacity). This cost is more than bal­
anced by the increase in performance (throughput and trans­
action response time). Since each node in System 2 con-

tains a copy of SRM and UTM software (the same as in
System 1), costs for software maintenance should be simi­
lar in both systems. Thus, we conclude that parallel disk
access and multiprogramming of UTM and SRM functions
make System 2 far superior.

References
[1] Bayer, R, and M Scholnick, "Concurrency of Op­

erations on B-Trees,'' Acta Informatica, Vol. 9,
pp. 1-21, 1977.

[2] Ellis, C S, "Concurrency and Linear Hashing,"
Proceedings of the 1985 Symposium on Principles

of Database Systems, Portland, Oregon, pp. 1-7,
April 1985.

[3] Ford, R, M Jipping, and R K Shultz, "On the Per­
formance of an Optimistic Concurrent Tree Algo­
rithm"
Depa~tment of Computer Science TR # 85-07,
September 1985.

[4] Kung, H T, and J T Robinson, "On Op­
timistic Methods for Concurrency Control,"
ACM Transactions on Database Systems, Vol. 6,
No. 6, pp. 213-226, June 1981.

User
Reques

User
Reques

User p
Reques utm

[5] Lehman, P J, and S B Yao, "Efficient Lock­
ing for Concurrent Operations on B-Trees,''
ACM Transactions on Database Systems, Vol. 6,
No. 4, pp. 650-670, Decemeber 1981.

[6] Manber, U, "Concurrent Maintenance of Binary
Search Trees,"
IEEE Transactions on Software Engineering,
Vol. SE-10, No. 6, pp. 777-784, November 1984.

[7] Shultz, R K, "Simulation
of Multiprocessor Computer Architectures using
ACL,'' Technical Report, TR 83-11, Department
of Computer Science, Universityof Iowa, 1983.

[8] Thomasian, A, "Performance Evaluation of
Centralized Databases with Static Locking,''
IEEE Transactions on Software Engineering,
Vol. SE-11, No. 4, pp. 346-355, April 1985.

[9] Vrsalovic,
D, D Siewiorek, Z Segall, and E Gehringer, "Per­
formance Prediction for Multiprocessor Systems,"
Proceedings of the 1984 International Conference
on Parallel Processing, Michigan, August 1984.

Figure 1: System 1 Architecture

User
Requests

User
equests

Figure 2: System 2 Architecture

185

User
Requests

'---~--.J

#of

UTM
Begin
cycle

request
bus

obtain interrupt relinquish
bus SRM bus

receive
response

i i i i i
lri~n~te~r~na_l~lr----~1~w~r~it~e,,.,,...il--=q~u~eu~e:-.-i1--------------i1· proc. onto bus request
.,...._tp____._.._twbur-+...__--t----------<,wsrm-----

deq. proc. write
reques reques on o us

t t t b . reques o tam
bus bus SRM

Figure 3: 'Breakdown of a Single UTM Cycle for a Remote SRM Access

#of System 1 System 2
Proc. ta tp twbus tswrm CPP ta tp twbus tswrm CPP
1 0.068 0.202 0.000 0.694 0.280 0.094 0.159 0.000 0.222 0.533
4 0.066 0.186 0.377 4.692 0.047 0.124 0.204 8.306 1.303 0.033
7 0.070 0.202 0.371 9.772 0.026 0.112 0.186 8.188 1.825 0.025
10 0.071 0.202 0.383 17.054 0.015 0.108 0.182 9.255 1.976 0.025
13 0.072 0.211 0.395 17.634 0.016 0.106 0.179 11.237 , 2.534 0.020
16 0.073 0.216 0.401 20.900 0.013 0.106 0.177 12.674 2.879 0.018
19 0.074 0.217 0.411 27.480 0.010 0.103 0.173 14.545 3.085 0.013
25 - - - - - 0.104 0.170 17 .145 3.255 0.013

Table 1: Simulation Results for Systems 1 and 2: 70/30 Mix

#of System 1 System 2
Proc. ta tp twbus lswrm CPP ta tp iwbus tswrm CPP
1 0.080 0.219 0.000 0.666 0.310 0.112 0.144 0.000 0.207 0.553
4 O.G74 0.185 0.258 12.677 0.020 0.140 0.192 22.332 6.223 0.012
7 0.074 0.177 0.258 27.426 0.009 0.129 0.186 27.230 2.345 0.011
10 O.G78 0.200 0.281 22.389 0.012 0.125 0.175 23.267 1.825 0.012
13 0.077 0.193 0.282 34.202 0.008 0.119 0.169 23.289 8.134 0.009
16 O.G78 0.197 0.287 39.636 0.007 0.108 0.160 24.378 10.030 0.008
19 0.079 0.196 0.296 55.242 0.005 0.104 0.154 24.145 10.457 0.007
25 - - - - - 0.100 0.145 24.235 11.178 0.007

Table 2: Simulation Results for Systems 1 and 2: 30/70 Mix

System 1 System 2 #of System 1 System 2

Procs. Av. Cone. Av. Thro. Av. Cone Av. Thro. Procs. Av. Cone. Av. Thro. Av. Cone Av. Cone.

n
1
4
7
10
13
16
19
25

Dc1 Th1 Dc2 Th2
0.35 0.2 1.0 0.3
0.11 0.25 0.69 0.35
0.07 0.25 0.63 0.49
0.05 0.21 0.63 0.62
0.05 0.19 0.63 0.71
0.05 0.18 0.63 0.80
0.05 0.18 0.63 0.89

- - 0.63 0.91

Table 3: Average Degree of Concurrency and

Throughput for 70/30 Mix

186

n
1
4
7
10
13
16
19
25

Dc1 Th1 Dc2 Th2
0.35 0.14 1.0 0.2
0.11 0.18 0.62 0.25
O.o7 0.18 0.61 0.38
0.05 0.18 0.58 0.45
0.05 0.18 0.58 0.53
0.05 0.18 0.58 0.60
0.05 0.18 0.58 0.68
- - 0.58 0.72

Table 4: Average Degree of Concurrency and

Throughput for 30/70 Mix

INDEPENDENT CONNECTIONS : AN EASY CHARACTERIZATION
OF BASELINE-EQUIVALENT MULTISTAGE INTERCONNECTION NETWORKS

J.C. BERMOND *
J. M. FOURNEAU **

* LR.I., UA 410 CNRS, bat 490, Universite Paris Sud Orsay, France
** l.S.E.M., bat 490, Universite Paris Sud Orsay, France

Abstract : we study topological properties of multistage intercon­
nection networks. We state a graph characterization of all the networks
topologically equivalent to the Baseline networks and we explain why
networks defined by some types of permutations are equivalent.
Independent Connections are the link between graph theory and net­
work definition using a numerical characterization for adjacency rela­
tionship. We establish that Banyan networks built with independent
connections are topologically equivalent. We also consider the PIPID
field, an useful set of permutations, which allow the construction of the
usual multistage interconnection networks, and which are easily
modeled by independent connections.

1. Introduction

Several multistage interconnection networks have been proposed for
communication in parallel architectures. They are typically designed
using at least n=log 2(N) stages of N /2 2x2 switching cells to connect
N inputs to N outputs [8). Topological properties of these networks
have been extensively studied, as only few parameters (number of
stages, type and number of cells, connections between stages) may
drastically change their functionalities. Topological equivalence
between the "classical" networks (Omega [11) , Flip [3) , Indirect
Binary Cube [14) , Modified Data Manipulator [6) , Baseline and
Reverse Baseline (see Fig. 1) [7]) has been proved by Wu and Feng [7)
who have exhibited one to one mappings of the nodes between each
network and the Baseline network.

Another approach consists in modeling the networks by graphs or
directed graphs. Such an approach was considered by Agrawal in [2)
(see also [l]). He proposed a characterization of this class by "Buddy
Properties"; unfortunately, the assertion of Theorem 1 of [2) is not
sufficient to prove equivalence as it has been stated in [5).

Kruskal and Snir [10] within the graph theory framework, used a label­
ing schemes to describe routing in the network. They defined a net­
work isomorphism as a graph isomorphism, which furthermore
preserves the vertices labels. They obtained a sufficient condition,
called bidelta property, to insure that a network is isomorphic, in their
sense, to the classical ones.

Extending Agrawal 's property, we obtain a graph theoretical characteri­
zation of topologically equivalent networks [4] using connected com­
ponents of families of subgraphs which is unfortunately difficult to
apply to the networks definition. The aim of this paper is to show the
relation between our graph characterization and the usual definitions of
Multistage Interconnection Networks using a set of permutations.

In section II, we introduce the notations, and we state the characteriza­
tion in terms of graph theory. Section III is devoted to the study of
Independent Connection : our link between graph theory and networks
definition using permutations. In section IV we consider the PIPID
field, an useful set of permutations which allow the construction of the
six "classical" networks. PIPID permutations on N symbols are defined
by a permutation of the index digit of the binary representation of these
symbols. We show that PIPID permutations used to built Banyan net­
·works may easily be modeled by independent connections. The main
result of this paper is to establish that banyan networks built with
PIPID permutations are topologically equivalent to the Baseline net­
work. Note that the six networks studied by Wu and Feng [7) are

This research is supported by a C.N.R.S. C3 grant for the REGAL project.

187

designed using a subset of PIPID and that such a design allow an
efficient bit directed routing.

2. A Graph Characterization

Interconnection networks may easily be modeled by directed graphs
(digraphs) in which nodes represent the switching cells and arcs the
communication links. We do not add extra nodes for the inputs and the
outputs of the network as their do not play any role in the graph iso­
morphism.
Let C be a set of nodes, we will denote by r +(C) the set of children
of nodes in C, and by r -(C) the set of parents of nodes in C.

A multistage interconnection digraph (MI-digraph) with n stages is a
digraph whose nodes are partitioned into n ordered stages. We denote
by V; the nodes of the i'h stage. There are arcs only from nodes of the
i 111 stage to nodes of the (i + l)'h stage (i.e. from V; to Vi+1). The nodes
are of indegree 2 and outdegree 2 except the nodes from the first artd
the last stage.

With this definition, we say that two multistage interconnection net­
works are topologically equivalent if and only if their MI-digraphs are
isomorphic. Two digraphs are isomorphic if and only if there exists a
bijection from the nodes of the first digraph into the nodes of the
second digraph, which preserves the relationship of adjacency.

Fig. 1 : Baseline Network and Baseline Ml-digraph

Remark : In all figures, the arcs are directed from the left to the right.

Banyan Property Definition : One minimal requirement is to allow a
connection between any pair of input and output nodes. We say that a
network has the Banyan Property if and only if for any input and any
output there exists a unique path connecting them.

Definition : The connected components of an MI-digraph are those of
the undirected underlying graph, obtained from the digraph by deleting
the arcs orientation.

Definition : We denote by (G)i,J the subgraph of G that contains the
vertices of the stages from i to j : ViUVi+tU · · · uv1

P(iJ) Property Definition : We say that an MI-digraph with n stages
satisfies the P(i,j) property. for l<;;j:>j:>n if and only if the 'subdigraph
(G);,1 has exactly 2•-1-U-•> connected components. And we say that
an MI-digraph satisfies property P(l,*) if and only if it satisfies P(lj)
for every j such that 1 :> j :> n . Similarly it satisfies property P(* ,n) if
and only if satisfies P(i,n) for every i.

Using this notations, the next theorem states the weakest condition of
topological equivalence for multistage interconnection networks.

Theorem : All the MI-digraphs with n stages satisfying the Banyan
property P(* ,n) and P(l,*) are isomorphic. Although these properties
are easy to check, the proof is too long to be included here; it will
appear in [4]. The proof is done by induction, using the left and right
recursive construction of the Baseline to design the isomorphism.

The assumptions of the theorem are very easy to check numerically
using breadth first search algorithm to compute the number of con­
nected components and the number of nodes at distance k. Unfor­
tunately, these conditions are hardly related to numerical definitions of
multistage interconnection networks (i.e. the permutations realized at
each stage). For instance, the Omega network is defined by n perfect
shuffles, and it is not obvious to understand why this type of definition
implies the P(l,*) and P(* ,n) topological properties.

In the next section, we define independent connections as a pair of
mappings satisfying numerical constraints. We prove, using the former
theorem, that banyan graphs built with these connections are iso­
morphic to the Baseline MI-digraph. Furthermore, we show that the set
of permutations on N symbols, defined by a permutation of the binary
digits of the symbol representation, may easily be associated to
independent connections. Like the perfect shuffle, permutations used to
design multistage interconnection networlcs often exhibit this property,
and the equivalence relationship between "classical" networks becomes
obvious.

3. Independent Connection

As we consider networks defined in term of permutations on N sym­
bols, we add a labeling of the nodes in the graph. At each stage, nodes

are labeled from O to N-1=2•-1-1, following the natural order of the
drawing (Fig. 2). The label of a node is a n-1 tuple (x•-1'··.Xi). in
base 2, so (x•-1'··.Xi) e [Z12Z1•-1• We consider the usual addition in
the field ([Z12Z1•-1,+).

(0,0,0) (0,0,0)

(0,0, 1) (0,0,1)

(0,1,0) (0,1,0)

(0, 1,1) (0,1,1)

(1,0,0) (1,0,0)

(1,0,1) (1,0,1)

(1,1,0) (1,1,0)

(1,1,1) (1,1,1)

Fig.2 : Labeling of an MI-digraph

Now, we define connections and independent connections. The major
result of this section is that banyan networks built with independent
connections are topologically equivalent.

Consider a MI-digraph G and its subgraph (G);;+i· Recall that this
, subgraph is a bipartite graph consisting in two consecutive set, V;, Vi+i
of nodes labeled in [Z12Z1•-1, and a set of arcs from V; to Vi+i·

Definition of a Connection : For all i ;tn, a connection (f , g) from
the i -th stage of the MI-digraph G is a pair of functions f and g
defined on [Z12Zr' such that, if x is a node of the i-th stage of G (i.e.
V;) then the two children of x in the i + 1-th stage (i.e. Vi+i) are f (x)
and g(x) (i.e. r +(x)=(f (x),g(x)}).

188

Such a decomposition of the adjacency relationship exists as the outde·
gree of a node is always two, except in the last stage.

Definition of an Independent Connection : a connection (f ,g) is
independent if and only if

[
Va e Z2Z, a ;t (0, .. ,0), 3 p e [Z12ZJ•-1 such that
V x E [Z12ZJ•-1 ,

f(x +a)= P + f(x) and g(x +a)= P + g(x)

We exhibit in section IV some examples of independent connections.

Proposition 1 : A banyan graph built with independent connections
satisfies the buddy property [2] (i.e. the interconnection pattern between
nodes of consecutive stages is the K Z2 graph).

Proof : Let x and y be two nodes in V;, such that x and y share one
neighbour in V;+i· As connection (f ,g) between V; and Vi+i is
independent we have

h1(x) = h2(y).

where h1 and h2 are either f or g. Indeed x and y share one neigh­
bour, but we do not know if this child is obtained by function f or g.
Let us denote by a. the difference between y and x , then there exists p

[
h1(X + 0.) = h1(y) = h1(X) + P
h2(x +a)= h2(y) = h2(x) + P

Then h2(x) = hb) - P = h 1(x) - p = h 1(y).
Hence x and y share two neighbours in row Vi+t> and the MI-digraph
satisfies the Buddy Property. Following Agrawal in [2], we define x
and y as buddy nodes. Note that f (x) and f (y) are buddy nodes two.
Indeed buddy nodes share two children or two parents.

We give now a definition and a technical lemma that help us to prove
one of the assumptions of theorem 1 : the P(l,*) property.

Definition of a translated set : Let A be a subset of V;, and v a vec­
tor in [Z12Zr', we call the v-translated set of A, the set of nodes

(a; + v} when a; takes all values in A.

Lemma 2 : Consider an independent connection (f ,g). Let A be a
subset of V; such that the number of nodes in both A and r -(A) is 2t.
Let v be an arbitrary vector of [Z/2ZJ•-1• If B is a v-translated set of
A , then r -(B) has 2t nodes and is a translated set of r -(A).

Proof:

As A and r -(A) have the same number of nodes, all nodes of A are
buddy nodes. Similarly all nodes in r-(A) are buddy nodes. Let a1

and a 2 be two buddy nodes in A, and b1 and b 2 their v-translated
nodes. We first show that b 1 and b2 are buddy nodes too. We have,

[f(b'.) = f(a'. + v) = f(a'.) + w for i=l,2

g(b')=g(a' +v)=g(a')+w fori=l,2

as a 1 and a 2 are buddy, we have

h1(a 1) = h2(a2)

where both h1 and h2 are either function f or function g. Therefore:

h1(b 1) = h1(a 1) + w = h2(a2) + w = h2(b 2)

Hence b 1 and b2 are buddy nodes.

Now, we terminate the proof by showing that r -(B) is a translated set
of r -(A). Let x be a node in A , let y be the v -translated of x, let w
(resp. z) be a parent of x (resp. y). We have:

h1(z)+v =h2(w)

where both h1 and h2 are function f or g.

Then, let u be an arbitrary point of r -(B), and a. = u - w. We prove
that node u + z - w is in r-(A).

h2(u) = hiw +a.)= h2(w) + P(a.) = h 1(z) + v + p(cx)

According to the definition of an independent connection we have :

h 1(z +a.)= p(a) + h1(z)

A

B

Fig. 3 : Construction of the sets

Therefore,

h1(z +a)= h2(u) - v

For any node u in r -(B), nodes (r(u) - v } are in A . Therefore,
node z + a is a node in r -(A) and node u is w-z -translated node in
r -(A). This is true for any node u, so r -(B) is a (w-z)-translated
set of r -(A).

•
Lemma 3 : A banyan MI-digraph built with independent connections
satisfies the P(l,*) property.

Proof : the proof proceeds by induction.

• Lemma 1 proves that such an MI-digraph satisfies property
P(l,2). Indeed, Buddy Property and P(I,2) property are
equivalent We prove in the following that P (I,j) implies
P(Ij+l) under the assumptions of Lemma 3.

• Let x be a node of V 1 and K be the connected component of
(G)1j containing x. Let Z be the set of children of x in Vi+I>
and A; be the intersection of K and V;, for all i, I5'i :>.j.
According to the induction hypothesis, the number of nodes in A;
is 2i-1• As the graph is banyan, each node of Z has only one
parent in A; and each node of A; has two children in Z.

x

v
1

v

Fig. 4 : Construction of G

v
I 1+1

Let Bi be the set of buddy nodes of Ai. We will prove that Bi is
a translated set of Ai. Let a 1 and b 1 be two arbitrary buddy
nodes in Ai x Bi and l!;lt y be an arbitrary node in Ai.

[
a=y-al

f (a 1 + a) = f (a 1) + p
g(a 1 +a)= g(a 1) + p

As a 1 and b 1 are buddy nodes, we have

h1(a 1) = h2(b 1)

189

•

where both h 1 and h2 are function f or g. Furthermore

h2(b 1 +a)= hz(b 1)+P = h1(a 1 +a)

Hence b 1 +a and a 1 +a are buddy nodes, and Bi is a (b1-a1)­
translated set of Ai .

Then, we apply Lemma 2 twice on Ai, and Bi. Indeed, accord­
ing to the buddy property, the sets Ai and Ai-I have the same
number of nodes, and according to the banyan property we have :

r -(Aj) = Ai-1

As we denote by Bi-I the set r -(Bi)• Lemma 2 implies that this
set is a translated set of Ai-I and has the same number of nodes
than Ai-I (i.e. 21). We define Bk as the set r -(Bk+1). We can
now apply Lemma 2 on Ai-I and Bi-I to show that the set Bi_2
has the right number of nodes. By induction we prove this pro­
perty on every set Bk.

As the connected component of (G)i,j+i containing Z is exactly
Z and K and the union of Bk sets, we have shown that (G)1J+l

has 2i•1 nodes per stage. Hence the graph G satisfies the
P(l j+ I) property.

•
Similarly we prove by induction the following lemma :

Lemma 4 : A banyan MI-digraph G built with independent connec­
tions satisfies the P(* ,n) property.
Indeed Lemma I proves that G satisfies property P(n-1,n). We prove
that the property P(j,n) implies P(j-1,n) under the assumption of the
Lemma. We apply the same technique than in Lemma 3 : we decom­
pose a connected component of (G)j-l,n in a connected component of
(G)i.• called K, the parents of K in Vi-I called Z, and the others chil­
dren of Z in Vi. Then, we prove that at each stage, this set of children
has the right number of nodes. The proof is too long to be included
here.

•
According to our graph characterization, we can state the announced
result whose corollary are developed in the next section. We consider
in the following section some connections defined by a perm.utation of
the digital representation (i.e. the tuple (x.-1> .. .Xi)) and we show the
relations between these connections and the PIPID set of permutations.
Fortunately enough, these connections are independent connections,
allowing us to use our main theorem :

Theorem S : A banyan MI-digraph built with independent connections
is topologically equivalent to Baseline MI-digraph.

•
4. Pipid Permutations

Consider now a labeling of the links of the network at the inputs and
outputs of all cells following the natural order of the drawing. A label
is a number between 0 and N - I whose binary representation is denoted
by (x.-i. .. .x1,x0). Each link is defined by two labels and each stage is
defined by a permutation of these N labels.

Multistage interconnection networks have been often defined using
these permutations and functional properties have been derived from
this model [13]. For instance, the Omega network is defined as n
stages of perfect shuffle. A perfect shuffle CJ may be defined as a circu­
lar left shift of the binary representation of the operand. Similarly, the
k-subshuffle CJk, the k-butterfly, Pt. and the bit reversal, p, are easily
defined by permutations on the bits of the number representation (see
[9] for more definitions). These permutations have been used to design
the six networks studied by Wu and Feng and one may ask if this
scheme of construction is the rea~on of the networks topological
equivalence.

Consider numbers from 0 to N -1 and their binary representation
(xn-1>··.X1.Xo). Following Lenfant [12), we define PIPID pennutations
on these numbers, by a permutation on the index of the representation.

[
;\ e PIPID(N=~") <~ 3: 9 permutation on n symbols such that

A(Xn-1>00 .X1.Xo) - (Xe(n-1)>00 .Xe(l).XecoJ>

Perfect shuffle, bit reversal and butterfly are examples of Permutations
Induced by a Permutation on the Index Digits (PIPID). We prove in the
following that these permutations are also associated to a family of
very simple independent connections.

Compare now the label of the node or a cell used in section III and the
labels of the links connected to the outputs of this cell as stated in the
beginning of this section. One can obviously remark that the n -1 first
bits of a link label are exactly the binary representation of the incident
node label.

Let I. be an arbitrary permutation of PIPID used to design a stage of a
network, and let 9 be the associated permutation of the index. Let x be
a node or cell label, x = (x.-i. .. .x1). The links connected to this cell
are labeled :

[y0 = (x.-i. .. .x1,D)

Y1 = (Xn-1>··.Xi>l)

Applying permutation ;\ on these two labels give the two labels of the
links (z 0,z 1) in the next stage.

[
z0 =!.(yo)

zl = A.(yl)

Let k = 0-1(0) and m = 9(0). We have

[
z0 = (Xecn-1)> .. ,Xe(k+ll•O,xe(k-J)> .. ,Xe(1).Xec<J))

z 1 = (xecn-1)>··.Xeck+l)>l.Xe(k-l)>··.Xe(l).XecoJ>

And, if we consider only the (n-1) first digits, we obtain the labels of
the cells connected to cell x :

[
(xa(n-1)···.Xa(k+l)>O,Xa(k-l),..,x e(IJ)

(Xe(n-1)> 00 .Xe(k+l)>l ,x O(k-1)> 00 .X e(!J)

Now, we have to identify the two mappings f and g and to check that
the connection (f ,g) satisfy the independence property.

Note that we had supposed in the former equations that k is not zero.
Indeed, we can give up this particular case as such permutations are
not useful to build banyan networks. If k is zero, then there are two
links between the cells, and the graph do not obviously satisfy the
banyan property.

Let us suppose that k # 0 and let cp denote the following permutation
on [l..n-1].

rv i * m cj>(i) = 9(i)

l<i>(m) = k

To compute the labels of the cells connected to cell x, one just have to
apply the permutation <I> on the index of the binary representation of x
and force to 0 or I the k'h bit. We suggest to use the following two
functions f and g to design an independent connection which realize
this operation. We define the two functions by their projections fi and
gi, for all i, lin-l.

fi(x) = x,(i) V <l>(i) * m

gi(X) = Xqci) V cj>(i) # m

fk(x) = I+Xm

gk(x) = Xm

Therefore, the connection (f ,g) is independent. Let a be an arbitrary
non zero vector, we obtain the vector ~ by applying the permutation <I>

on the index of the binary representation of a.

190

So, we can associate independent connections to the PIPID permuta­
tions used to build banyan networks. We have now an easy to check
sufficient condition of equivalence with the Baseline network : all
banyan multistage networks built with PIPID permutations are topologi­
cally equivalent to the Baseline network. As Omega, Baseline, Reverse
Baseline, Flip, Indirect Binary Cube and Modified Data Manipulator
networks are designed using PIPID permutations, they are topologically
equivalent.

5. Conclusion

We stated a characterization of Baseline equivalent networks using a
graph model of multistage interconnection networks. As this character­
ization is difficult to apply to networks defined by permutations, we
design a new tool, independent connections. The independence pro­
perty is a numerical constraint on the adjacency relationship. We
derived from this constraint a characterization of permutations (PIPID)
which can be used to build equivalent networks. As these permutations
are associated to a very simple bit directed routing, they have been
used to design most of the multistage interconnection networks
presented in the literature. Note that the results obtained here apply
only to networks built with 2x2 switching cells, whereas our graph
characterization have been generalized to arbitrary size of cells.
Finally, we hope that this approach will be useful to study others topo­
logical or functional properties of multistage interconnection networks.

References

I. Agrawal, D.P. and Kim, S.C., "On non-equivalent multistage
interconnection networks," Proc. Int. Conf Parallel Processing,
pp. 234-237, 1981.

2. Agrawal, D.P., "Graph theoretical analysis and design of multis­
tage interconnection networks," IEEE Trans. Computers, vol.
C32, pp. 637-648, Jul. 1983.

3. Batcher, K.E., "The flip network in Staran," Proc. Int. Conf
Parallel Processing, pp. 65-71, Aug 1976.

4. Bermond, J.C., Foumeau, J.M., and Jean-Marie, A., "A graph
theoretical approach to equivalence of multistage interconnection
networks," Rapport LR.I 242, Nov 1985. to appear in Discrete
Applied Math.

5. Bermond, J.C., Foumeau, J.M., and Jean-Marie, A., "Equivalence
of multistage interconnection networks," Inf Proc. Let., vol. 26,
pp. 45-50, Sept. 1987. Rapport LRI 217

6. Feng, T., "Data manipulating functions in parallel processors and
their implementations," IEEE Trans. Computers, vol. C23, pp.
309-318, Mar. 1974.

7. Feng, T. and Wu, C., "On a class of multistage interconnection
networks," IEEE Trans. Computers, vol. C29, pp. 694-702, Aug.
1980.

8. Feng, T. and Wu, C., Tutorial : Interconnection networks for
parallel and distributed processing, IEEE Publications, 1984.

9. Hockney, R.W. and Jesshope, C.R., Parallel Computers, Adam
Hilger Ltd, 1981.

IO. Kruskal, C. P. and Snir, M., "A unified theory of interconnection
network structure," Th. Comp. Sci., vol. 48, no. I, pp. 75-94,
1986.

II. Lawrie, D.H., "Access and alignment of data in an A.P.," IEEE
Trans. Computers, vol. C24, pp. 1145-1155, Dec. 1975.

12. Lenfant, J. and Tahe, S., "Permuting data with the omega net­
work," Acta Informatica, vol. 21, pp. 629-641, 1985.

13. Parker, D.S., "Notes on shuffle/exchange type networks," IEEE
Trans. Computers, vol. C29, pp. 213-222, Mar. 1980.

14. Pease, M.C., "The indirect binary cube microprocessors array,"
IEEE Trans. Computers, vol. C26, pp. 458-473, May 1977.

NONUNIFORM TRAFFIC SPOTS (NUTS) IN MULTISTAGE INTERCONNECTION NETWORKS

Tomas Lang and Lance Kurisaki
Computer Science Department

University of California, Los Angeles

Abstract
The performance of multistage interconnection networks

with blocking switches is degraded when the traffic pattern pro­
duces nonuniform congestion in the switches, that is, when there
exist nonuniform traffic spots (NUTS). For some specific patterns
we evaluate this degradation in performance and propose modifi­
cations to the network organization and operation to reduce the de­
gradation. Successful modifications are the use of diverting
switches and the extension of' the network to include alternate
paths. The use of these modifications to the basic blocking policy
for control of contention makes the network more effective for a
larger variety of traffic patterns.

1. Introduction
Multistage interconnection networks (MIN) are used in

multiprocessor systems to connect processors with other proces­
sors or with memory modules. These networks provide a
compromise between networks of low latency and high cost, such
as the crossbar, and networks of high latency and low cost, such as
the shared bus. Moreover, MINs can be pipelined to provide a
bandwidth comparable to that of the crossbar for suitable traffic
patterns. In addition, the control of routing is simple. A large body
of work has been done on the structure, operation, and perfor­
mance of these networks; a comprehensive reference is [l]. These
networks were initially introduced for use in array computers of
the SIMD type; in this context the interconnection networks are
sometimes called permutation networks. More recently, tl1ey 'are
being proposed and used in multiprocessors of the MIMD type,
especially of the shared-memory variety [2]. In this paper we are
concerned with this second type of use.

MINs, in their basic form, provide a unique path between
any source-destination pair. However, the paths for different pairs
are not disjoint and, therefore, conflicts might occur when simul­
taneous communication is established between several source­
destination pairs. The basic method used to handle this problem is
to use a packet-switched type of operation and to buffer the pack­
ets in the switches. Blocking occurs whenever the buffers become
full.

It has been shown that the performance of these networks
is satisfactory for uniform traffic [3]. More recently, sev.eral stu­
dies [4] have indicated that the performance of the network is de­
graded significantly when the traffic includes hot-spot traffic, that
is, when each source generates a larger fraction of the traffic to one
particular destination. This type of traffic occurs because of access
to shared variables, such as semaphores. To overcome this degra­
dation, a network with combining switches has been proposed.

The topic of this paper is a more general type of nonuni­
form traffic, in which there is no concentration of the traffic to one
destination, but the traffic is not uniformly distributed an10ng the
switches, producing nonuniform traffic spots (NUTS). We illus­
trate some typical cases of this type of traffic and show the degra­
dation in network performance produced by them. We then explore
solutions to reduce this performance degradation.

Of course, in this case the use of combining switches is not
a solution since the contention packets do not necessarily have the
same destination. We show that randomization of the traffic, pro­
posed for reducing contention in multicomputers [5], is not suit­
able either. As positive alternatives to improve the performance,

191

we consider the use of diverting switches, with several diverting
policies, and networks with alternate paths. Because of the reduc­
tion in degradation produced, the proposed modifications to the
basic network with blocking make the multistage network suitable
for a larger variety of multiprocessor applications.

The performance of the proposed solutions is evaluated by
simulation. The objective of this evaluation is to show that, under
reasonable conditions, performance of the original network with
blocking switches is badly degraded by the presence of NUTS and
that the modifications proposed significantly reduce this degrada­
tion. On the other hand, it is not our objective to give an extensive
set of graphs from which the performance of particular networks
with specific traffic patterns can be determined. Consequently, we
select a set of reasonable network parameters and traffic patterns
and use these for the simulation. More detail can be found in [6].

2. Multistage Network Structure and Operation
We now give a brief description of the structure and opera­

tion of the multistage network, emphasising the assumptions we
make. A more detailed discussion can be found in [l]. The type of
multistage interconnection network we are considering has N = 2"
inputs (sources) and outputs (destinations). It consists of n stages
of N 12 2x2 switches, as shown in Figure 1. The outputs of stage-i
switches are connected to the inputs of stage-(i-1) switches, with
the network inputs going to stage-(n-1) switches and the network
outputs coming from the stage-0 switches.

Sources Destinations

0 0
1

2 2
3 3

4 4
5 5

6 6
7 7

Figure 1. An 8x8 Omega Network

Several specific multistage networks have been proposed,
differing in the interconnection pattern between stages. Since the
characteristics, in terms of type of operation and performance, are
similar for all these different topologies, we consider here the
Omega network [7], which has been extensively studied [8] and is
being used in several multiprocessor systems.

The routing of packets in the network is unique since there
is a single path from a specific source to a specific destination. The
control of routing is done using a destination tag associated with
the message as part of each packet.

Since each output can send only one message per cycle,
(the network is synchronous and pipelined) there is a conflict when
both packets entering a switch in a cycle have to be routed to the
same output. One solution to this conflict is to have a buffer for
each output and to store tl1e additional packet in such a buffer. Of
course, these buffers are finite so it is necessary to have an opera­
tion policy when the buffer is full. The basic scheme used is a

blocking policy in which the predecessor switches do not send
packets to a full buffer. To support this policy it is necessary to

have signals from a switch to its predecessors indicating that the
corresponding buffer(s) is full (Figure 2). Note that since both
predecessors can send messages to the same buffer, it is necessary
to establish a policy also for the case in which there is just one
space in the buffer. In such a case, we select alternatively the
predecessor that is blocked.

To switch bufferO full From switch
feeding input o.,. buffer1 ful fed by output O

I

Input 0 Output 0
" ~ ·;;,
0 " -I .0

Input 1 ~ Output 1
0

(.)

:§
.<>

ufferO ful ufferO full
To switch From switch
feeding input 1 bufferl full fed by output 1

Figure 2. Blocking Switch With FULL Control Signals

In this paper we do not evaluate the different buffering or­
ganizations and policies. The degradation produced by NUTS is
inherent to the blocking operation of the network, which is present
for any of the buffer organizations and policies. Consequently, we
perform our analysis using output buffers with FIFO policy. but
the

When processors send request packets to remote memory
modules, traffic in the opposite direction is also generated. These
return packets must traverse an analogous network to reach the
processors. The analysis of this type of traffic is similar to the re­
quest traffic, and is not considered here.

3. Performance evaluation by simulation
We now describe the measures that we will use to evaluate

the performance of the networlc. We also indicate the types of traff­
ic and network parameters considered. As discussed in the intro­
duction, we select a reasonable set of parameters and perform
simulations to compare the performance for the original network
and for the modifications proposed.

Of importance in our study are the different traffic pat­
terns used, since the degradation due to nonuniform traffic spots
(NUTS) and the applicable solutions depend on the traffic patterns
considered. In the next section we present the patterns used.

In addition to the traffic pattern, the traffic load is of im­
portance. We distinguish two types of systems: open and closed
systems. In an open system, each processor generates a packet
each r cycles, so that the load is specified by the fraction l/r. In a
closed system, on the other hand, the load is defined by the max­
imum number of outstanding packets. We have found that the
results are qualitative! y similar for both cases for the same total
throughput. Consequently, to concentrate on significant parame­
ters, we only report on results for open systems.

We evaluate the steady-state behavior of the system, that
is, we assume that the traffic pattern under consideration remains
for a period long enough to achieve this steady state.

The fundamental parameters for the network are its size
and the size of the queues. We have found that the relative perfor­
mance of the network remains essentially the same for different
values of these parameters. Consequently, we report our results for
a network of size 64 and queues of size 2, which are also con­
venient because they produce a relatively small delay, except for

the blocking case where, because of the way the full signal is gen­
erated, this size of queue is not adequate. In this latter case, we use
a queue of size 4.

The main performance measures of interest are the
throughput of the network in packets/cycle, and the average de­
lay of the packets. The maximum throughput is of N packets per
cycle and the minimum delay is of n cycles. This performance is
obtained when there are no conflicts, that is, when in all cycles all
switches receive two packets and route one to each output. For oth­
er cases, the performance is shown by the function delay vs.
throughput.

In a multiprocessor system all processors cooperate in the
execution of a task and have to synchronize periodically. Conse­
quently, it is convenient for all processors to advance at a uniform
pace, so that processors do not have to wait unnecessarily for
slower processors. The measure we use to evaluate the relative ad­
vance of the processors is the distribution of throughput.

For the simulations we built a network simulator using as a
basis SIMON, a general-purpose multiprocessor simulator
developed at the University of Utah [9] .

Several studies have been reported on the performance of
multistage interconnection networks with uniform traffic [3]. The
results of our simulations for uniform traffic confirm what previ­
ous studies have indicated.

4. Traffic patterns producing NUTS
The evaluation studies that have been made for the ''hot

spot'' problem point to a more general situation with nonuniform
traffic. The same type of degradation should occur whenever the
traffic is such that one or more switches carry a larger fraction of
the total traffic than its share. This degradation is due to the same
"tree saturation" effect observed in the hot-spot case. In the con­
text of the Omega network, switc!J. i of stage j carries the traffic
going from a specific subset of 2' sources to a specific subset of

192

destinations (Figure 1). Consequently, switch congestion occurs
whenever this traffic is excessive. This can occur even in situations
in which the fraction of traffic going to each destination is the
same. The main objective of this research is to identify the traffic
patterns that produce non-uniform traffic spots (NUTS), to evalu­
ate the degradation in performance, and to propose and evaluate
solutions to this problem.

To study the influence of NUTS on performance we have
considered two types of traffic as follows. These types are just ex­
amples to illustrate the problem and evaluate the solutions; they
correspond to situations that could occur, but are not specific prac­
tical patterns.

Traffic o(Type I.
In the first type, each source issues all its requests to one

destination and no pair of sources sends to the same destination. In
the shared memory case, this type of pattern models a system in
which each processor has a preferred memory module that contains
both the code and the data for that processor. It might be argued
that in such a case it would be better to assign to each processor a
local memory module with direct access without going through the
network (this is the scheme used, for example, in the BBN Butterf­
ly). However, the use of the network to have a uniform access time
from any processor to any memory module, permits a flexible
dynamic scheduling approach that is not possible in the local
scheme. In this dynamic scheduling model, a processor can have
its code/data in any memory module, and this module can vary
with time. This type of traffic would model also situations in
which the communication is among pairs of processors.

Some specific instances of this type of traffic patterns pro­
duce significant NUTS while others do not. We use two different
instances for our study. In instance l, we use a bit-reversal per­
mutation which is known to produce a large contention in the

Omega network as evident from the switch positions shown in Fig­
ure 3. This is an extreme case, it shows a lower bound on the im­
provement that can be achieved with the techniques used. To
model a more typical situation, as instance 2 we generated an arbi­
trary permutation.

0

2
3

4
5

6
7

0
1

2
3

4
5

6
7

Figure 3. Switch Positions for the Bit Reversal Permutation

The throughput-delay for these patterns is shown in Figure
4. As can be seen, there is significant degradation in performance,
as compared with the uniform traffic case.

40

30

20

10

Delay (in cycles)

1Bit Reversal

: JTJFOS I ry
1 nifonn
I
I
I

0 0.2 0.4 0.6 0.8
Relative throughput

(4) Blocking switches

0.8

0.6

Normalized Throughput

0.4 Arbitrary Pennutation

0.2

0-t-"""""T~r--r--.--.---,~

0 10 20 30 40 50 60
Processor Number

(5) Throughput Distribution

Figures 4 and 5. Simulation Results for Blocking Switches

Moreover, in case of the arbitrary permutation there is a
large variation between the throughput of the different processors
(Figure 5). As mentioned before, this is not desirable when the
processors are cooperating in a single task.

Traffic of Type II.

The second traffic pattern we consider consists of requests
going from even numbered sources to destinations in the first half
and from odd numbered sources to destinations in the second half
(EFOS). This pattern serves to illustrate a case in which each
source accesses a subset of destinations. In this case, there are also
NU:I'S. The performance of the net is shown in Figure 4.

We conclude from these simulations that the performance
of the network is badly degraded by the NUI'S, with respect to the
performance for uniform traffic. We now explore ways to reduce
this degradation.

S. Unsuccessful solutions: randomization and discarding
We now report on randomization and discarding, two ap­

proaches to reduce the degradation due to NUI'S which turned out
to be unsuccessful.

Randomization

As a first solution to the degradation due to NUTS, we
consider the use of randomization of the traffic. In this approach,
proposed previously to handle load imbalances in routing of multi­
computers [5, 10], packets are first sent to random destinations and
then rerouted to their final destinations. This scheme has the effect
of making the traffic pattern uniform and, therefore, of eliminating
the added congestion of nonuniform traffic.

193

40

30

20

10

Delay (in cycles)
Bit Revenal (blocking)

iRandomization
I
I
I
I

t EFOS (blocking)
I ~rbitrary (blocking)

I
4 niform (blocking)

0 0.2 0.4 0.6 0.8
Relative throughput

Figure 6. Randomization

In the context of multistage networks, the use of this
scheme implies that all messages make two passes through the net­
work. This has the two negative effects of doubling the minimum
delay and reducing the effective throughput to half, because of the
additional traffic through the net produced by rerouting. The
results of simulations for the two types of traffic described in the
previous section are shown in Figure 6, which exhibits the expect­
ed throughput and delay. As seen from there, randomization pro­
duces a relatively small improvement for the extreme bit-reversal
case, while it is detrimental for the others.

Discarding Switch
Another solution we considered was the use of discarding

switches. Switches of this type resolve congestion by discarding
overflow packets. The original source of the packet is made aware
of the status of the packet, through an explicit signal from the
switch or a timeout mechanism, and retransmits it. Note that this
requires the source to buffer all outstanding packets until an ack­
nowledgement is received from the destination. The switches also
require the ability to signal the appropriate source that a particular
packet was discarded. This requires additional interconnect and
more complex control. This type of switch is used in the Butterfly
Parallel Processor to deal with contention in the network and avoid
"tree saturation" [11].

The simulations show that, for the traffic patterns con­
sidered, there is no improvement with respect to the network with
blocking switch. This can be explained by the fact that the discard­
ed traffic is reissued by the same processor as the first time and,
therefore, follows the same path leading to the NUI'S.

6. Diverting Switch
In a diverting switch the messages in front of the buffers

are always sent to the successors, irrespective of whether there is
space for them in the corresponding destination buffers. If both
messages that arrive to a switch go to the same output buffer and
there is no space for both, then one of the messages is diverted to
the other buffer of the switch (Figure 7). Note that there is always
at least space for one message in each buffer since one message
departs from each buffer in every cycle. Of course, the diverted
message will go to a wrong destination (since there is just one path
in the network for each source/destination pair); therefore, the
message will have to be resent into the network to the correct des­
tination. Consequently, this mode of operation requires a connec­
tion between each network output and corresponding input (a
wrapped-around organization).

Figure 7. Behavior of the Diverting Switch

Diversion has potentially a better perfonnance than dis­
carding because the packets are rerouted from a source that is dif­
ferent from the original source. This makes it possible for the mes­
sage to avoid the NUTS in the second pass.

Since to obtain a good perfonnance it is convenient to
reduce the number of packets that are diverted, whenever a conflict
occurs and one of the packets in the conflict has already been
diverted (in that pass through the network) we give preference to
the nondiverted packet (to go to the correct destination).

Because of the diversions, a message might traverse the
network several times before getting to its destination. A possible
problem with this fonn of operation is that it is not possible to as­
sure that a particular message will have a bounded delay. To avoid
this and make the delay more unifonn, we give preference to older
packets.

Diverting policies
Once a packet is diverted in the network, it cannot reach

its desired destination during that pass; it has to go through the net­
work again. This means that we now have a great deal of freedom
in deciding where to route these diverted packets. The main goal
is to route the diverted packet to an interim destination that has a
"clear" path to the true destination, so that it will not be diverted
again.

40

30

20

10

Delay (in cycles)

~Complement
[

ocking

,,
.. ?' .,, ,,,,.

0 0.2 0.4 0.6 0.8
Relative throughput

(a)Bit-reversal Permutation

40 Delay (in cycles)

30

20

10

0 0.2 0.4 0.6 0.8
Relative throughput

(c)EFOS Traffic

40

30

20

10

0.8

Delay (in cycles)

0 0.2 0.4 0.6 0.8
Relative throughput

(b)Arbitrary Permutation

Normalized Throughput

0 102030405060
Processor Number

(d)Distribution of Throughput

Figure 8. Simulation Results for Diverting Switches

194

We have experimented with several diverting policies. We
present here the results of two of them, to show that diverting pro­
duces an improvement in the perfonnance and that the specific
diverting policy has an impact.

The first diverting policy we call direct diverting. In it the
routing of the diverted message continues using the destination tag.
That is, each time the message is diverted, tlte actual destination is
wrong in the corresponding· bit. As shown in Figure 8 the perfor­
mance is significantly better than with the blocking policy.

The second diverting policy we call complement diverting.
In this case, once a message is diverted, instead of using the desti­
nation tag for routing, it is routed using a tag corresponding to the
complement of the source. On its .next pass through the network,
the original destination tag is again used. This policy has the ad­
vantage that it assures that the rerouted message will avoid the
NUTS where it was diverted in the first pass. Of course, it can
pass through some other NUTS.

Figures 8(a-c) show the corresponding perfonnance for the
various traffic patterns. We see that this policy produces a some­
what better perfonnance than the direct policy.

These simulation results indicate that the use of diverting
switch improves the throughput-delay characteristic of the network
when the traffic produces NUTS. Moreover, the use of diverting
switches makes the distribution of throughput more uniform, as
shown in Figure 8(d).

7. Network with alternate paths
The MIN's previously considered have the characteristic

of a unique path between each source-destination pair. Several re­
ports [12, 13, 14] have described adding redundant paths to MIN.'s
to improve fault tolerance characteristics. These alternate paths
can also improve the perfonnance of a fully functional network.

In particular [13] and [14] propose the addition of links to
connect switches in the same stage into rings so that from any
switch in a particular ring packets can reach the same subset of
destinations. The application of this technique to the OMEGA net­
work is illustrated in Figure 9(a). If a packet entering a switch
finds the desired output queue full, it can be re-routed to another
switch in the same group via the alternate path link, and still be
able to reach its true destination directly without a second pass
through the network.

This modified OMEGA network requires augmented
switches acting as a 3x3 crossbar, as shown in Figure 9(b). The
routing control is somewhat more complex than for the origi'nal
2x2 switch. We still use a diverting policy, because this has given
better performance for the original network and this policy is also
simpler to control since no "full signals" are needed. Each cycle
up to three packets enter the switch. They are placed in the output
queues giving priority to the older packets that have not been
diverted (in that pass). The highest-priority packet is always placed
in the correct queue, since there is always at least one space in
each queue (because one packet leaves each queue each cycle).
The next packet is placed in the correct queue, if there is space, or
in the alternate queue. Finally, the least-priority packet is placed in
the correct queue, in the alternate queue, or in the wrong queue
(diverted).

Stage: 2 1 O
(a) 8x8 Omega network with altemate peth Onks

Alternate Path input

Input O~Output O

Input 1~0utput 1

Alternate Path output

(b) An augmented switch element

Figure 9. An Alternate Path Network and Switch Element

Figure 10 shows the performance of the network with al­
ternate paths for two of the traffic patterns. We can see that the in­
troduction of alternate paths produces a significant reduction in the
degradation due to NUTS.

40

30

20

10

0

Delay (in cycles) 40
Delay (in cycles)

30
Bloc kin tcrect

20 1comp
I ...)

10 ' J\ltemate paths

0

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Relative throughput Relative throughput

Arbitrary Permutation EFOS Traffic

Figure 10. Throughput-Delay Graph (alternate paths)

8. Conclusions

We have' shown several traffic patterns that produce NUTS
in multistage interconnection networks and therefore result in a de­
gradation of performance. The randomization technique, proposed
for eliminating imbalances of loading in multicomputers, is not ap­
propriate in this case because it increases the delay of each packet
and the real traffic through the network. The use of discarding
switches is not advantageous either because the discarded traffic
has to be resent through the same congested path.

As positive solutions, we have shown that diverting
switches produce a significant reduction in the degradation. More­
over, the control of congestion is simpler than that for blocking
switches because no "full signals" are needed. However, to imple­
ment this policy, it is necessary to have a network with wrap­
around connections.

The performance is much better using networks with alter­
nate paths. However, this network require 3x3 switches instead of
the basic 2x2, which complicates the implementation.

The use of these modifications to the basic blocking policy
in the control of contention in multistage interconnection networks
makes it possible to use the network effectively for a larger variety
of traffic patterns.

Acknowledgement
This research was sponsored in part by the State of Cali­

fornia MICRO program and Hughes Aircraft Co.

9. References

[1] H. J. Siegel, "Interconnection Networks for Large-Scale Paral­
lel Processing, Theory and Case Studies'', Lexington Books, 1985.

[2] K. Hwang and F. Briggs, "Computer Architecture and Parallel
Processing'', McGraw Hill, 1984.

[3] D. Dias and R. Jump, ''Packet Switching Interconnection Net­
works for Modular Systems", Computer, December 1981, pp. 43-
54.

[4] G. F. Pfister and V. A. Norton, "Hot Spot Contention and
Combining in Multistage Interconnection Networks", IEEE Tran­
sactions on Computers, vol. C-34, No. 10, October 1985, pp. 943-
948.

[5] L.G. Valiant, "A Scheme for Fast Parallel Communication'',
SIAM J. Comput. Vol. 11, No. 2, May 1982, pp. 350-361.

[6] T. Lang and L. Kurisaki, "Nonuniform Traffic Spots (NUTS)
In Multistage Interconnection Networks", UCLA Technical Re­
port CSD-880001, January 1988.

195

[7] D.H. Lawrie, ''Access and Alignment of Data in an Array Pro­
cessor", IEEE Transactions on Computers, Vol. C-24, No. 12,
Dec. 1975, pp. 1145-1155.

[8] P. Chen, D. Lawrie, and P. Yew, "Interconnection Networks
Using Shuffles", Computer, December 1981, pp. 55-64.

[9] R.M. Fujimoto, "The CSIMON Interface", Computer Science
Department, University of Utah, 1986.

[10] D. Mitra, "Randomized Parallel Communications", Proc. of
the 1986 Int. Conf. on Parallel Processing, pp. 224-230.

[11] R.H. Thomas, "Behavior of the Butterfly Parallel Processor
in the Presence of Memory Hot Spots'', IEEE Parallel Processing,
1986.

[12] G.B. Adams and H.J. Siegel, "The Extra Stage Cube: A
Fault-Tolerant Interconnection Network for Supersystems' ', IEEE
Transactions on Computers, Vol. C-31, No. 5, May 1982, pp. 443-
454. .
[13] V. P. Kumar and S. M. Reddy, "Design and Analysis of
Fault-Tolerant Multistage Interconnection Networks With Low
Link Complexity", 12th Annual Symposium on Computer Archi­
tecture, pp. 376-386 (June 1985).

[14] N. Tzeng, P. Yew, and C. Zhu, "A Fault-Tolerant Scheme for
Multistage Interconnection Networks'', 12th Annual Symposium
on Computer Architecture, pp. 368-375 (June 1985).

[15] W. C. Brantley, K. P. McAuliffe, J. Weiss, "RP3 Processor­
Memory Element", Proceedings of the 1985 International Confer­
ence in Parallel Processing, August 1985, pp. 782-789.

(16] A. Gottlieb, et al. "The NYU Ultracomputer--Designing an
MIMD Shared Memory Parallel Computer'', IEEE Transactions
on Computers, Vol. C-32, No. 2, pp. 175-189.

[17] M. Kumar and G. Pfister, "The Onset of Hot Spot Conten­
tion", Proceedings of the 1986 International Conference on Paral­
lel Processing, August 1986.

[18] C.P. Krustal and M. Snir, ''The Performance of Multistage In­
terconnection Networks for Multiprocessors", IEEE Transactions
on Computers, Vol. 32, No. 12, December 1983, pp. 1091-1098.

[19] R. Lee, "On Hot Spot Contention", Computer Architecture
News, Vol. 13, No. 5, December 1985, pp. 15-20.

[20] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W.
J. Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A. Norton, J.
Weiss, "The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture", Proceedings of the 1985 Interna­
tional Conference in Parallel Processing, August 1985, pp.764-
771.

[21] D. S. Rosenblum and E. W. Mayr, "Simulation of an Ultra­
computer with Several 'Hot Spots' ", Stanford Technical Report
STAN-CS-86-1119, June 1986.

On Self Routing in Benes and Shuffi.e Exchange Networks*

Rajendra Boppana C. S. Raghavendra
Dept. of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089

Abstract
A self routing algorithm for passing Linear class of permu­
tations in Benes, 7r a.nd (2n - 1)-stage shuffie exchange
networks of N = 2" inputs/outputs is presented. In these
networks, switches in the first (n - 1) stages are set by
comparing the destination tags of the inputs to the switch;
switches in the remaining stages are set by the self rout­
ing n algorithm. Thus, the total time required for routing
any Linear permutation is O(n), same as the network de­
lay time. The algorithm also routes n-1 permutations in
Benes and n permutations in 7r network trivially. The class
of permutations that are routable by the algorithm is much
richer than the class of Linear permutations. This algo­
rithm routes all possible permutations for 4 input/output
Benes network 8(2) (same as 3-stage shuffie exchange net­
work) and 7r-network, since all the permutations are in the
Linear Class.

1 Introduction
Typically, a parallel computer consists of a number of pro­
cessors and an interconnection network for exchange Qf
information between them as well as with memory mod­
ules. Considering a processor /memory network model, any
processor should be able to communicate with any mem­
ory module which is called full access. To support SIMD
type computations, ideally we would like the network to be
able to perform all the permutations that allow simulta­
neous use of the memory modules. Such capabilities exist
in crossbar networks and networks that are rearrangeable,
for example the Benes network.
We view parallel computing as computation steps-during
which time some or all of the processors are busy comput­
ing, and communication steps-at which some permuta­
tion function is set up by the network to allow data ex­
changes. If the underlying network can not support a re­
quired permutation function then it has to be realized in
multiple steps. The advantage with a rearrangeable net­
work is that any permutation can be realized in one com­
munication step. Further, if they are built using smaller
switches such as 2 x 2, then they are relatively cheaper
than crossbar networks. Therefore rearrangeable networks

are used in some parallel computer implementations (e.g.
GF-11 (1]). .
A well known rearrangeable network· is the Benes net-

*This research is supported by the NSF Presidential Young Inves­
tigator Award No. MIP 8452003, DARPA/ARO Contract No. DAAG
29-84-k-0066, ONR Contract No. N00014-86-k-0602.

196

work [2] which is built in a recursive manner using 2 x 2
switches, and is shown in figure 1. In such networks, it
takes some time to set up the switches to realize a given
arbitrary permutation. For an N = 2n inputs and out­
puts Benes network, determining the switch settings to re­
alize an arbitrary permutation takes O(N log N) time on
a uniprocessor computer[7]. If the required permutations
change frequently while computing a problem, the commu­
nication time may become a bottleneck. An approach to
solve this problem is to compute the switch settings for a
given permutation using a parallel computer with N PE's.
A separate network with static links between the PE's in
the parallel computer under consideration could be used
for this computation as suggested by Nassimi and Sahni[6].
Alternatively, the Benes network itself can be set to realize
perfect shuffie permutation easily, to convert the parallel
computer under consideration to a perfect shuffie computer
and determine the switch settings in O(n5) time using the
algorithm proposed by Nassimi and Sahni[5]. However, it
still takes considerable amount of time to realize a permu­
taion compared to the propogation delay O(n).
We are interested in developing fast self-routing algo­
rithms for many useful permutations required in paral­
lel processing, if not for all the N! permutations. Due
to the nature of techniques used in developing parallel
algorithms, the permutaitons required are generally nice
and regular and can be expressed as algebraic functions.
Some work was done on developing self-routing algorithms
for classes of permutations, in particular Bit-Permute­
complement (BA'.!) by Nassimi and Sahni[6]. They also
prove that their algorithm routes the Lenfant's FUB
families[3].
In this paper we develop f!elf-routing algorithms for the
Linear Class (.C) of permutations. The algorithm is very
simple and routes many other classes of permutations as
well. We consider Benes network as well as the 7r network
of Yew and Lawrie[8] and (2n - 1)-stage shuffie exchange
network. The results include simple routing algorithms

for the classes £ (we extend this class with complements
of bits), n, and n-1 on all these networks. For other per­
mutations one can use a general looping type algorithm or
break it into multiple simpler permutations.

2 Routing in Benes Network
We will use I to represent any source and 0 to represent
its destination tag. All binary additions in this paper are
modulo 2.

B(n-1)

B(n-1)

Figure 1: 2n input/output Benes network B(n).

0
1

N-2
N-1

Definition 1 A permutation is said to be a linear
permutation[4] if for all input I (whose binary represen­
tation is (In In-l ... 11)) and output 0 (whose binary rep­
resentation is (On On-l ... 0 1)) pair there exists a non
singular binary matrix Qnxn that satisfies 1.

oT = Q x 1T (l)

Definition 2 Let I' = (In In-l ... 11 , 1). A permutation
is a Linear-Complement (IX) permutation if there exists
a binary matrix Pnxn+i where the submatrix of P formed
by taking first n columns is non singular, such that every
(I, 0) pair satisfies the equation 2.

OT = p X J'T (2)
With the definition given above, IC contains BPC.
Throughout this paper we will assume that the num­
ber of inputs/outputs to the interconnection network is
N = 2n. We will denote linear-complement, omega and

inverse omega permutations on N inputs in compact form
as CC(n), n(n) and n-1(n) respectively. And B(n) denotes
Benes network with N inputs/outputs.

2.1 Routing Algorithm
Let the output lines of a switch be numbered as 'O' and
'1' for upper and lower outputs respectively. Each input
line to a switch will have a routing bit. An input line
to a switch is connected to the output line of the switch
indicated by its routing bit. If the bit is '1' then that input
is connected to the lower output of the switch otherwise, it
is connected to the upper output of the switch. Routing of
IX permutations in Benes network is given by the following
algorithm.

Algorithm 1 For the first (n - 1) stages, an input line to
a switch in stage i, 1 :S i :S (n - 1) will have i-th bit of its
destination tag as its routing bit. For the next n stages, an
input line to a switch in stage j, n :S j :S (2n - 1) will have
(2n- j)-th bit of its destination tag as its routing bit. For
the first (n-1) stages, switches are set up such that input
line with smaller destination tag value is routed according
to its routing bit. For the next n stages switches, are set
up such that both the inputs are routed according to their

routing bits. I

197

In first (n - 1) stages, conflicts are resolved by giving pri­
ority to one of the input lines. This algorithm is different
from that of Nassimi and Sahni's[6) since in case of con­
flict in setting up a switch, their algorithm gives priority to
the top input line, whereas our algorithm gives priority to
the input line with smaller destination tag value. Consider
figure 2(a) with destination tags for its inputs as shown.
Let the bit indicated by the arrow be the routing bit. In
this case, routing bit for both the inputs is '1' so there is
a conflict. This is resolved by comparing the destination
tags and giving priority for the input with smaller destina­
tion tag value, which in this case is the lower input. The
other input line is automatically routed to the remaining
output line. In figure 2(b) routing bits for both inputs are
different so they get what they want and the switch is set
as shown.

(a) (b)

Figure 2: An example showing switch settings done by the
algorithm.

Figure 3: Routing a IX permutation in Benes using the
algorithm proposed

A complete example of this routing scheme is given in fig­
ure 3. Destination tags for each input line to a switch are
given in the binary form. Routing bit for each stage is
indicated by an arrow. This permutation is not routable
by Nassimi and Sahni's (see figure 4) algorithm. The IX
permutation given in the figures 3 and 4 has the functional
form given below.

03 = I1; 02 = f3; 01 = f3 + I2
In the first stage (figure 3), routing bit is same for both the
inputs to a switch. Hence switches in the first stage are set
up such that input with smaller destination tag is routed
correctly, which in this case are top input lines. After the

first stage of routing, there exists £C permutation between
0 3 , 0 2 of destination tag and I2, I1 of input line, for both

t t t t t

Figure 4: Routing an £C in Benes using Nassimi and
Sahni's algorithm fails. Incorrectly routed inputs are indi­
cated by an asterisk.

top 4 x 4 Benes network B(2) given as,

03 = I2 + I1; 02 = I2
and bottom B(2) given as,

03 = 1 + I2 + I1; 02 = I2
There exists conflict in setting up switches in the second
stage of the network as well. For top most and bottom
most switches in the second stage top input line has a
smaller _destination tag value, so these switches are set to
route top input line correctly. For the other two switches
bottom input lines have smaller destination tag value,
hence, those switches are set to route bottom input lines
correctly. Conflict exists only in the first two stages of the
network. Last 3 stages are routed without any conflicts as
given by the algorithm.

2.2 Proof of Correctness
Theorem 1 Any £C(n) permutation is routable by the
routing algorithm 1, in B(n).

Proof: We will use the fact that stages 2, ... , 2n - 2 of
B(n) are just two B(n - 1) networks, to prove the theorem
by induction. To do this we need to show that after first
stage of routing, the resulting permutation between most
significant (n - 1) bits of the destination tag to an input
of B(n - 1) is still an £C(n - 1) permutation.

More formally, this is true for n = 1. Let _it be true for all
m < n. Now consider the following lemma.

Lemma 1 After one stage of routing of an £C(n) per­
mutation using the algorithm 1, for any input-output
pair I and 0, the permutation between (On, ... , 0 2) and
(In-1, ... , I1) for the top and bottom Benei networks for
2n-l inputs/outputs belong to J:C{n-1).

Proof for the lemma: Inputs to a switch differ only in bit
I1. So depending on whether the equation for routing bit
01 contains I 1 or not, the routing tags of the inputs to a
switch are different or are same. Consider the first case;

the equation for 01 will be of the form 0 1 = I1 + LF1 ,

where LF1 is independent of I 1 • Since each input is routed
according to its routing bit because there are no conflicts
the equation for 0 1 after exchange is given as 0 1 = I1. S~
the effect of exchange is like substituting [1 + LF1 in all
occurrences of I1 in the equations for On, ... , 0 1. Since an
inverse shuffie is performed after exchange, all the top out­
puts of the switches go to the top Benes network B(n - 1)
and all bottom outputs of the switches go to bottom Benes
network B(n -1). So substituting I 1 = 0(1) in the equa­
tions for bits On, ... , 02 of the routing tags of the inputs
routed to top(bottom) B(n -1) we get £C(n - 1) permuta­
tion as desired. In the second case, the equation for 0 1 will
be of the form, 01 = LFi, where LF1 is independent of J1.
Let k be the most significant bit in which two destinations
differ. Then the equation for Ok contains I 1 and is given
as Ok= I1 +LFk, LFk is independent of [1 • The algorithm
routes inputs such that input with 0 1 = Ok is routed to
top ouput line of the switch and the other input to the
bottm ouput line of the switch. So after the exchange op­
eration 01 = I1 + Ok. So the net effect is equivalent to
substituting I1 + LF1 + LFk in all the occurrences of equa­
tions for On, . .. , 01. Since an inverse shuffie is performed
after exchange, as in the previous case we get £C (n - 1)
permutation between On, ... , 0 2 bits of the routing tags
and inputs In-1, ... ,l1 of the top and bottom B(n - 1)
networks. I

From the above lemma £C (n) is routed in the first stage
of B(n) such that there exists £C(n - 1) permutation be­

tween On,··· ,02 and the inputs of B(n - 1). Since this
is correctly routed by induction hypothesis, after (2n - 2)
stages all the outputs are in the correct place as far as
first n - 1 bits are concerned. This means two destinations
which differ only in the last bit of their destination do not
exist in the same B(n - 1). A shuffie and exchange will
route these inputs to the correct places. I

3 Routing in Shuffle Exchange
Networks

We will modify the routing algorithm to route £C permu­
tations in Jr-network. A Jr-network is a cascade of two !1
networks [8].

3.1 Routing Algorithm
Algorithm 2 For the first n stages of the pi-network, an
input to a switch in stage i, 1 :S i :S n, will have (n -i + 1)­
th bit of its destination tag as the routing bit. Routing is
done as follows. First the destination tags are bit reversed
and then compared. The smaller one will be routed accord­
ing to its routing bit as before. For the next n stages of
the network we use the standard !1 self-routing algorithm.

I

A complete example is given in figure 5. Routing bit in
each stage is indicated by an arrow. This permutation is
not routable by the self routing algorithm given in [8].

198

Consider second switch from top in stage 1 of figure 5.
Both inputs have the same routing bit '1 '. But upper input
has destination tag with smaller value when compared to
that of lower one after bit reversal of the destination tags.
Hence upper input is routed to the lower output of the
switch. But in the case of bottom most switch in the first
stage lower input has smaller destination tag value after
bit reversal. So, that switch is set such that lower input is
routed according to its routing bit which is lower output
of the switch.

3.2 Proof of Correctness
We need the following lemmas, to prove that the algorithm
works correctly.

Figure 5: Routing an[{', permutation in ?T-network using
the algorithm proposed

Lemma 2 If a permutation is [{', permutation then after
a shuffle on the input bits, the resulting permutation is still
Jr.

Proof is obvious, hence omitted. I

Lemma 3 If a permutation is [{', permutation then after
performing an exchange operation on the inputs using the
algorithm 2 the resulting permutation is still Jr.

Proof for this lemma follows very closely that of lemma
1. Crucial part of the proof is showing that for the first
n stages the algorithm performs exchange operation such
that routing bit O; is set to In-i+I if the equation for 0;
contains In-i+I, otherwise to In-i+I + Oj for some j < i as
specified by the algorithm. I

In the case of Benes network we noted that two input lines
to a switch in stage 1 differ only in I 1 • However, in the
case of the ?T network we shall take into account the fact
that a shuffle was performed before the exchange operation
hence In becomes Ii. So the two input lines to a switch
in the first stage of a ?T network differ only in In. In the
first stage, algorithm 2 will route using On as the routing
bit. So there will not be any conflicts if On contain:s In.
Proceeding in this manner it is easy to see that for the first
n stages there will not be any conflicts if the routing bit
On-i+I contains In-i+I ·

Lemma 4 Routing an [{', permutation using algorithm 2
will always assure that at any stage i, 1 ::S: i ::S: n, the

destination tags for the inputs of a switch will differ atleast
in one of the bits On-i+I through 01.

Proof: This is true for stage 1 since £C is a bijection. Af­
ter (m - 1) stages of shuffle-exchange I will be of the
form (In-m+1, ... , I1, in, ... , in-m+2). i; means either I;
or !;, complement of I;. After a shuffle I will be of the

form (In-m, ... ,I1,in, ... ,in-m+2,In-m+1). So destination
tags for the two inputs of a switch will not differ in any
of the bits On-m+1 , ••• , 01 iff none of the equations for
On-m+l > ••• , 01 contain In-m+l · From lemma 3 we know
that after an exchange operation at stage i, On-i+I is set
to In-i+1 or to In-i+I + Oh j < i, whereupon Oi is set to
In-i+1 + On-i+l· So the equations for On, ... , On-m+2 are
either independent of In-m+l or if they contain the term
In-m+l then the equatiop. for some Oj, 1 ::S: j < (n-m+2)
will also contain that term. I

Theorem 2 [{', permutations are routable using the algo­
rithm 2 in ?T-network.

Proof: From lemmas 2 and 3 it follows that after routing
one stage of shuffle and exchange the resulting permuta­
tion is still an [{', permutation but it could be different
form the earlier one. So to distinguish this, we use super­
script for the matrix Pnx(n+I)· So the P matrix in the[{',
permutation for stage i is indicated as pi. The P matrix
for the first stage denoted as P 1 is same as the P matrix
in the original [{', permutation.
Consider an input I = (In, ... ,I1) with destination 0 =

(On, ... , 0 1). Let I be of the form D = (Dn, ... , Di) after
routing first n stages using the algorithm. From lemma 3
and the discussion following the lemma, at any stage i, 1 ::S:
i ::S: n, Dn-i+l is same as On-i+l if the destinations have
different (n - i + 1)-bit, which is true only when PA =J=

0. Otherwise, Dn-i+l = On-i+l + Oj, j < (n - i + 1).
Therefore we have,

Dn-i+I = On-i+l + piil Oj, 1 ::=:: i ::=:: n (3)

Thus the equations for Dn, ... , D 1 will be of the form given
below.

On+ P{i Oj, for some j < n

On-1 + Pi1 Oh for some j < n - 1

Dl = 01
We can rewrite these equations such that they are in then
characteristic equation form. For example we can rewrite
the equation for Dn as given below.

On = Dn +Pi\ Oj, for some j < n

But, Oj can again be rewritten in the form given above.
In general we can substitute Dk + Pf:1 Oi> for some j < k,
for Ok. Proceeding in this manner we obtain the equation
for On only in terms of D's. In the same manner we can
rearrange equations to get equations for all O's as given
below.

O; = D; + F;(D;-1, ... ,D1), 1 ::S: i ::S: n (4)
Clearly these equations are in n form hence routable by

199

the last n stages of the ?r-network. I
As an example consider the IX permutation in figure 5
characterized by the following set of equations.

03 = Il; 02 = I3; 01 = I3 + I2
Here 0 3 does not contain I3 but 01 does. Hence substitut­
ing I 3 + I 1 (= LF3) + I 2 (= LFi) in all the occurrences of Ia
and performing a shuffle on input bits we get the following
set of equations which characterize IX permutation for the
second stage.

~=h; ~=h+h+h; ~=h+h
One can verify that these equations hold after the first
stage of switches. D3 is given by the following equation.

D3 = 03 + Oi
In a similar manner we can obtain equations for D2 and
Di as given below.

D2 = 02; Di= Oi
Rewriting these equations we get,

03 = Ds + Di; 02 = D2; Oi = Di
which are in characteristic n form, hence routable in the
last three stages of the network (same as 8 input/output
f2 network). I

3.3 (2n - 1)-stage Shuffle Exchange Net-
work

In the proof given above, we showed that Di = Oi. This
implies that all the switches in the last stage are set
straight. Hence, we can eliminate all the switches in the
last stage. So, we need only (2n - 1) stages of shuffle ex­
change and a perfect shuffle. However, we can eliminate
this shuffle at the output as follows.
We change the algorithm to treat destination tags as if
a shuffle was performed on them. i.e., O; is treated as
O(i+i) mod n· Let the given permutation be denoted as II.
With the modification the algorithm treats as if a shuffle
was performed on II. Hence in effect it routes II'= (uII).
After routing for (2n -1) stages au is required to route II'
correctly. So, after (2n - 1) stages we have routed (u-i II')
correctly. But, u-1 II' = u-10-II =II. Hence,

Theorem 3 IX is routable in (2n - l)-stage shuffie ex­
change using the modified algorithm described above.

4 Conclusions
In this paper we have presented algorithms to route IX
permutations on Benes, 1r and (2n - 1)-stage shuffle ex­
change networks. Since there will not be any conflicts in
the first n stages of the Benes network if the permutation
is in n-i, this algorithm routes n-i permutations as well.
In fact the class of permutations routable using the algo­
rithm given in this paper is much larger than IX class.
With a similar argument any n permutation is routable
using the algorithm in 7r network. It is interesting to note
that it routes all permutations in B(2) for 4 input/output
Benes network. However this algorithm does not route

all f2 permutations in Benes networks, with N > 4. If the
permutation is known to be n then it can be routed by set­
ting the first (n - 1) stages of the Benes network straight
as suggested by Nassimi and Sahni [6).

References
[1] J. Beetem, M. Denneau, and D. Weingarten. The GF11

Supercomputer. In Int'l Symp. on Comput. Arch.,
pages 108-115, 1985.

[2) V. E. Benes. On rearrangeable three-stage connect­
ing networks. The Bell System Technical Journal,
XLI(5):1481-1492, 1962.

[3] J. Lenfant. Parallel permutations of data: a Benes
network control algorithm for frequently used permu­
tations. IEEE Trans. on Computers, c-27(7), 1978.

[4) M. C. Pease, III. The indirect binary n-cube micro­
processor array. IEEE Trans. on Computers, c-26(5),
1977.

[5] D. Nassimi and S. Sahni. Parallel permutation algo­
rithms to set up the Benes permutation network. IEEE
Trans. on Computers, c-31(2):148-154, 1982.

[6] D. Nassimi and S. Sahni. A self-routing Benes network
and parallel permutation algorithms. IEEE Trans. on
Computers, c-30(5), 1981.

[7] A. Waksman. A permutation network. J. Assoc. Com­
put. for Mach., 15(1), 1968.

200

[8) P. Yew and D. H. Lawrie. An easily controlled net­
work for frequently used permutations. IEEE Trans.
on Computers, c-30(4), 1981.

DESIGN AND ANALYSIS OF A FAULT-TOLERANT MULTISTAGE INTERCONNECTION
NETWORK FOR LARGE-SCALE SHARED MEMORY PARALLEL COMPUTERS

Gyungho Lee and Sizheng Wei

The Center for Advanced Computer Studies
University of Southwestern Louisiana

P.O. Box 44330
Lafayette, Louisiana 70504-4330

Abstract

This paper introduces a class of multiple path multis­
tage interconnection networks termed Reduced Size Intercon­
nection (RSI). A RSI-m network of size N is designed to
have m unique path multistage networks of size N /m. This
approach of designing the network allows to construct a
fault-tolerant network at the same cost for a unique path
multistage network of the same size. We have considered the
cost-effectiveness of RSI networks for reliability and for per­
formance. RSI networks are shown to be compared favor­
ably with some well-known multistage networks.

1. Introduction
Multistage interconnection networks such as Omega

networks [6] and Delta networks [10], have been favored for
processor-memory connection in "large-scale" shared memory
machines because of its cost-effectiveness. However, as is
well known, the multistage network lacks fault-tolerant capa­
bility because of its basic property that there is only a single
path between any source-destination pair (unique path net­
work). This lack of fault-tolerant capability has received
considerable attention, and many ways of providing fault­
tolerance to the network have been proposed.

The basic idea of fault-tolerant network is to provide
multiple paths for a source-destination pair so that alternate
paths can be used in case of faults in a path. Providing mul­
tiple paths can be done in various ways. The methods
include increasing the number of stages [2], using multiple
links between switches [3, 7, 9], increasing the size of
switches [8], partitioning a unique path network into several
subnetworks [5, 12], and incorporating multiple copies of a
unique path multistage network [4, 11]. Compared to the
unique path networks, these multiple path networks certainly
have higher reliability but with increased hardware complex­
ity, which not only increases cost but also puts some wrinkle
on the claim of enhanced reliability.

In this paper, a class of multiple path multistage inter­
connection networks, dubbed as "Reduced Size Interconnec­
tion", is proposed to provide a cost-effective fault-tolerant
network for large-scale shared memory parallel computers.
The network is designed to provide fault-tolerant capability
without increasing hardware complexity and cost over a
unique path multistage network.

2. Reduced Size Interconnection Network
Suppose, for a network of size N, ·i.e., with N sources

and N destinations, m disjoint partitions of N / m sources

and N / m destinations are formed first, where m (~2) and
N (> m) are the powers of 2. 1 In a Reduced Size Intercon­
nection (RSI} network of size N, m unique path multistage
networks of size N / m are provided, i.e. one for each parti­
tion, and each source and destination are linked to all the m
unique path networks via m X 1 multiplexers and l X m
demultiplexers, respectively (the rules for the connection

come shortly). Thus, a RSI-m network of size N has one

m X 1 multiplexer stage (input stage), log2 N stages (inter-
m

201

mediate stages) of 2 X 2 crossbar switches, and one 1 X m
demultiplexer stage (output stage). There are N /2 switches
in each of the intermediate stages, N multiplexers in the
input stage, and N demultiplexers in the output stage. Each
unique path network of size N /m plus its associated multi­
plexers and demultiplexers will be called a subnetwork.
These subnetworks will be denoted by c 0, G 1, ..• ' cm-1.

Although it is possible to have different types of unique path
networks, we assume that all the m unique path networks
are of identical type. The type of unique path network
taken is called base network .

Let S; ,f and D; ,f denote the source j and the destina­
tion j' respectively, which are associated with a subnetwork
a• based Oil the partition (O~i :=;m-1 and O~j ~N /m-1).
Also, let MUX1 k and DEMUX1 k represent the multiplexer k
and demultiple~er k in G 1 , r~spectively, where O~I ~m-1
and O~ k ~ N / m -1. Then, the sources and destinations are
connected to each subnetwork as follows:
i) Each S; ,j is connected to every i th input port of the m

multiplexers from MUXo,j to MUXm-l,j.
ii) Every i 1h output port of the m demultiplexers from

DEMUX o,j to DEMUXm-l,j is connected to each D; ,J.

An example of RSI-2 network of size 8, in which Omega net­
work is used as the base network, is illustrated in Figure 1.

Routing in a RSI network can be divided into three
steps, assuming that the selection of a path out of the m dis­
joint paths is already done at a source. At the input stage,
i.e. the stage of multiplexers, a request with a routing tag
just passes a multiplexer in a subnetwork which is chosen by
the source. None of the tag is consumed because a multi­
plexer is always with only one output port. After that, the
routing of the request in the intermediate stages is the rout-

ing in the base network of size N /m by using log2 N bits.
m

1Each partition may have different sizes. Also, the number of partitions may
vary. However, in this paper, we consider only the equal partitioning and the
"small" value of m (2 or 4). Also, for the sake of simplicity, our discussion is res­
tricted to 11rectangular" networks, i.e. having the same number of inputs and out­
puts, of 2 X 2 switches.

Source MUX DEMUX Destination

So,o Do.o

So,1 Do,1

Go
s.,, Do,2

s ... Do,3

S1,o D1,o

S1,1 D1,1

G'
S1,2 D1,2

s1,3 D1,3

Figure I. A RSI-2 network of size 8 with 2x2 switches.

Finally, the request arriving at the output stage, i.e. the
stage of demultiplexers, is routed to the proper destination
by using log2m bits, the rest part of the tag. Notice that
selecting any particular subnetwork does not change the
routing in a RSI network: the routing algorithm is always the
same regardless of the subnetwork selected by a source.

3. Reliability of RSI Network
We consider the reliability of RSI networks under the

"full access" criterion, and measure their reliability in terms
of "Mean Time to Failure" (MTTF). We assume that any of
the switching components - crossbar switches, multiplexers,
and demultiplexers - in a RSI network can fail. Based on
the recent survey by Adams, Agrawal, and Siegel [I], the
fault model and the fault-tolerance criterion applied in our
analysis are common and strict.

Before we are involved in the reliability analysis in
terms of MTTF, the number of faults that RSI networks can
tolerate is worth to be mentioned. Since a RSl-m network
provides m disjoint paths for each source-destination pair
through the m independent subnetworks, it is (m-1)-fault
tolerant and is robust in the presence of more than m-1

faults, up to m -I (N log2 N +2N) faults in the network.
m 2 m

To make the analysis of MTTF tractable, we use
assumptions similar to the ones that have been made previ­
ously in other studies of fault-tolerant networks. Each com­
ponent has an independent, Poisson distribution of failures
with a constant failure rate. The failure rate is assumed to
be proportional to the gate complexity of a switching com­
ponent. The complexity of a component is considered in
terms of a "crosspoint." Thus, we assume the failure rate for
a m X 1 multiplexer or an 1 X m demultiplexer 'X' =
(m-l)X'X/4, if the failure rate for a 2X2 crossbar switch is
'X, because an m XI multiplexer or an lXm demultiplexer
has m-1 crosspoints while a 2X2 crossbar switch has 4
crosspoints.

By considering each stage of the network separately, we
have an optimistic probability that a RSI-m network is not
faulty for a time period (0, t) :

RRSI-m (t)=[1-(1-e-XI)m]M1 X [1-(1-e-{m-l)XI 14)m JM",

where M1=2:!..x(log2 N) and M 2=2N/m. So, we have
2m m

the upper bound

00

MTTF!/s1-m= J RRSI-m (t)dt
0

Since a sufficient condition for the network to be operative is
that at least one of the subnetworks is fault-free, the lower
bound is

L oo -(M,+MoX (m4-l))XI m
MTTFRs1-m=f[I-(I-e) jdt

0

where M 1=2:!_ X (log2 N) and M 2=2N / m .
2m m

For comparison purpose, we obtained the MTTFs of
Omega network and some other fault-tolerant networks (ESC
[2], 3-replicated [4], and INDRA with R =2 [11]) in a similar
way. Although Omega network is not a fault-tolerant net­
work, we use its reliability as a yardstick to measure the
improved reliability of RSI networks. The ratios of the
bounds on MTTF of the fault-tolerant networks to that of
Omega network are shown in Figure 2, in which the network
size N varies from 16 to 1024; one can easily see that RSI
networks have significant improvement on the reliability
compared to Omega network.

4. Performance of RSI Networks
The important performance measure for unbuffered

interconnection networks is "bandwidth (BW)" or "probabil­
ity of acceptance (PA)". The performance analysis of
unbuffered RSI networks is based on the assumptions made
for the usual "uniform traffic model" [4, 5, 10, 11]. Concern­
ing the selection of a particular path out of the m disjoint
paths in the network, we assume "uniform random" selection
at each processor; each path is selected randomly with equal
probability. We also assume that destinations are able to
accept more than one requests simultaneously, i.e., the
memory modules are considered as multi-ported memory
units which can be accessed through more than one ports at
the same time.

202

R

1a3

10

*- --- .._ ___ ..__ - - ..__ -- .._ ___ ___ ..
.._ ____ ..._ ____ .._ - - - - - - - - - .._ _ - - -*

2 4 8

N : network size

RSI-4

3-Rep

RSI-2
ESC

INDRA

RSl-4

ESC
RSI-2
3-Rep

INDRA

R = MTI'F of a.fault tolerant networkfMTTF of Omega network
--- : for lower bound
- : for upper bound

All the networks are of 2 X 2 switches.

Figure 2. Ratios of MTTF for some fault-tolerant networks
with respect to that of Omega network

PA

0.8

0.6

0.4

0.2

N ; network size

PA : probability or acceptance

Request generation rate p = 0.5

All the multistage networks are of 2X2 switches.

Crossbar

RSl-4

.&11'1§!."2

10 log2N

Figure 3. Comparison of PA of Unbuffered Networks.

Following the analysis of Delta network by Patel [IO],
the P A's of RSI-2 network and RSI-4 network of size N from
16 to 1024 were computed. A typical comparison of PA's of
RSI networks with those of Omega network and crossbar
network is shown in Figure 3. We can find that with an
increased value of m , a RSI network may provide higher
bandwidth and probability of acceptance than those of an
Omega network of the same size, which is the result of hav­
ing multiple ports at each memory module. As one of the
paths becomes faulty, the number of paths a processor can
utilize decreases. Assuming that a faulty subnetwork of the
RSI network is totally unusable, we considered the perfor­
mance degradation with at most m -1 faulty subnetworks.
Figure 4 shows the probability of acceptance of an
unbuffered RSl-4 network with the number of faulty subnet­
works from 0 to 3, when the request generation rate p equals
0.5 and 0.1, respectively. From this Figure, we can see that
RSI networks can achieve graceful degradation of the perfor­
mance and that the performance degradation will not be
significant when the traffic is "light." The performance study
of buffered RSI networks has also been carried out, and the
results are similar to the case of unbuffered RSI networks.

5. Cost-Effectiveness
For an interconnection network designed for large-scale

general-purpose parallel computers, one of the important
considerations is its cost-effectiveness. If the high perfor­
mance and reliability of a network comes at the expense of
too high cost, it may have little value in practice.

For the cost-effectiveness, we first need to figure out the
cost of the networks. To estimate the cost of a network of
size N, one common method is to calculate the switch com­
plexity with an assumption that the cost of a switch is pro­
portional to the number of gates involved, which is roughly
proportional to the number of "crosspoints" within a switch
[10, 13]. For example, a 2X2 switch has 4 units of hardware
cost whereas a m X 1 multiplexer has m -1 units. In this
way, Omega, 3-replicated, INDRA (R =2) networks of 2X2

203

PA

1.0

--- _
----

0.8

-....
-....

0.6

0.4

0.2

N : network size

the number of the faulty subnetworks

PA probability of acceptance

request generation rate p = 0.1

- : request generation rate p = 0.5

The network is of 2 X 2 switches.

----' ---'
' ' --'

.
' '

' .

N~l6

N~64

N~256

N=1024

N~64

N=256
N ~1024

Figure 4. Probability of Acceptance of an Unbuffered
RSI-4 with Faulty Subnetworks.

switchs and crossbar network have costs of 2Nlog2N,
6N log2N, 4N (!og2N + 1) and N 2, respectively. Also, a RSI­

N m network has the cost of 2N(log2-+m -1), and an ESC
m

network has the cost of 2N (log2N +2).

Now, a simple measure of the cost-effectiveness for relia­
bility can be given by comparing MTTFs of the networks
with respect to the cost. Let the cost-effectiveness, 71, of a
network for reliability be the ratio of its MTTF to its cost.
The cost-effectiveness 7/ of some fault-tolerant networks rela­
tive to that of Omega network (for both upper bounds and
lower bounds) are shown in Figure 5. In the same way, a
simple measure of the cost-effectiveness for performance can
be given by comparing the probability of acceptance of the
networks with respect to the costs. Figure 6 shows the cost­
effectiveness of RSI networks and crossbar networks for per­
formance relative to that of Omega network. We can see
that many advantages of RSI networks in reliability and in
performance comes at a modest cost.

6. Conclusion
We proposed and analyzed a class of fault tolerant mul­

tistage interconnection networks, named Reduced Size Inter­
connection (RSI). By providing m identical subnetworks of
size N / m for a RSI-m network of size N, we can achieve
significant reliability gain and good performance at the same
cost for constructing a unique path multistage network of the
same size.

The performance analyses of unbuffered and buffered
RSI networks have been carried out. We considered the per­
formance in the fault-free situation and in the presence of
faults. The results showed that compared to a unique path

R,

Jo' .

10'

10

RSl-4

RSI-2
3-Rep
ESC

INDRA

multistage network, a RSI network improved reliability
without decreasing the performance. Also, the performance
degradation due to faulty subnetworks can be insignificant
for "light" traffic.

To show the cost-effectiveness of RSI networks, the
comparison with other networks for reliability and for perfor­
mance was made. The results indicated that RSI networks
are compared favorably with other fault-tolerant networks
such as ESC, INDRA (R =2), and 3-replicated network.

RSI-4 References

10

IV : network size

Re = 1J of a fault tolerant network/17 of Omega network, where

~ ~ MTTF of a network/Cost of the network
--- : for lower bound
-- : for upper bound

All the networks are of 2X2 switches.

llSl-2
ESC

INDRA
3-Rep

log2N

Figure 5. Ratios of MTTF /Cost for some fault-tolerant
networks with respect to that of Omega network

R

LO RSI-2

RS!-4

0.8

0.6

0.4

0.2

Crossbar

10 log N

N: network size

R = Tf of a network/q of Omega network, where

1J "'"" probabiliLy of acceptance of a network/Cost of the network
Request generation rate p :c-= 0.5

All the multistage networks are of 2 X 2 switches.

Figure 6. Ratios of PA/Cost for some unbuffered networks
with respect to that of Omega network

[l]

[2]

G. B. Adams III, D. P. Agrawal, H.J. Siegel, "A Survey
and Comparison of Fault-Tolerant Multistage Intercon­
nection Networks," Computer, Vol. 20, No. 6, June
1987, pp. 14-27.
G. B. Adams III, H. J. Siegel, "The Extra Stage Cube: A
Fault-Tolerant Interconnection Network for Supersys­
tems,'' IEEE Trans. Comp., Vol. 31, May 1982, pp.
443-454.

[3] L. Ciminiera, A. Serra, "A Connecting Network with
Fault Tolerance Capabilities," IEEE Trans. Comp., Vol.
35, June 1986, pp. 578-580.

[4] C. P. Kruskal, M. Snir, "The Performance of Multistage
Interconnection Networks for Multiprocessors,'' IEEE
Trans. Comp., Vol. 32, Dec. 1983, pp. 1091-1098.

[5] V. P. Kumar, S. M. Reddy, "Design and Analysis of
Fault-Tolerant Multistage Interconnection Networks
with Low Link Complexity," 12th International Sympo­
sium on Computer Architecture, June 1985, pp. 376-386.

[6] D. H. Lawrie, "Access and Alignment of Data in an

[7]

Array Processor,'' IEEE Trans. Comp., Vol. 24, Dec.
1975, pp. 99-109.
R. J. McMillen, H. J. Siegel, "Performance and Fault­
Tolerance Improvements in the Inverse Augmented
Data Manipulator Network," Proc. 9th Annual Sympo­
sium on Computer Architecture, June 1982, pp. 63-72.

[8] K. Padmanabhan, D. H. Lawrie, "A Class of Redundant
Path Multistage Interconnection Networks," TA'EE
Trans. Comp., Vol. 32, Dec. 1983, pp. 1099-1108.

[9] D. S. Parker, C. S. Raghavenda, "The Gamma Net­
work: A Multiprocessor Interconnection Network with
Redundant Paths,'' Proc. 9th Annual Symposium on
Computer Architecture, June 1982, pp. 73-80.

[10] J. H. Patel, "Performance of Processor-Memory Inter­
connections for Multiprocessors," IEEE Trans. Comp.,
Vol. 30, Oct. 1981, pp. 771-780.

[11] C. S. Raghavendra, A. Varma, "INDRA: A Class of
Interconnection Networks with Redundant Paths,'' 1984
Real-Time Systems Symp., Computer Society Press,
Silver Spring, Md., 1984, pp. 153-164.

[12] S. M. Reddy, V. P. Kumar, "On Fault-Tolerant Multis­
tage Interconnection Networks,'' 1984 Int'/ Conj. Paral­
lel Processing, Computer Society Press, Silver Spring,
Md., 1984, pp. 155-164.

[13] N. Tzeng, P. Yew, C. Zhu, "A Fault-Tolerant Scheme
for Multistage Interconnection Networks,'' 12th
International Sympo~ium on Computer Architecture,
June 1985, pp. 36~375.

204

Data Movement Operations and Applications on Reconfigurable VLSI Arrays

1

Russ Miller
Dept. of Comp. Sci.
SUNY-Buffalo
Buffalo, NY 14260

Abstract

V. K. Prasanna Kumar
Dept. of EE-Systems
USC
Los Angeles, CA 90089

This paper considers a mesh with reconfigurable bus (re­
configurable mesh}, that consists of a VLSI array of processors
connected to a reconfigurable bus system. The N PEs are
laid out as a square mesh in O(N) VLSI area. The recon­
figuration scheme can be used to dynamically obtain various
interconnection patterns between the PEs. In fact, the ar­
ray can be used as a universal chip capable of simulating any
O(N) area organization with a planar wiring layout without
loss in time. The reconfiguration scheme also supports several
parallel techniques developed for the CRCW PRAM. In this
paper, we develop fundamental data movement operations for
the reconfigurable mesh. These operations are used to give
efficient solutions to a variety of problems involving graphs
and digitized pictures. The running times of these algorithms
are asymptotically superior to those developed for the mesh
with multiple broadcasting, the mesh with multiple buses, the
mesh-of-trees, and the pyramid computer.

Introduction

In this paper, we consider a reconfigurable VLSI array of processing
elements that combines the advantages of a number of architectures

including the mesh, pyramid, mesh-of-trees, and meshes with broad­
cast buses. Due to page limitations, this paper will only summarize
a subset of the results that we have obtained for the reconfigurable
mesh. The reader is referred to (7) for discussions and algorithms

associated with the results given in this paper.
The mesh with reconfigurable bus {reconfigurable mesh) of size N

consists of an N 112 x N 112 array of processors connected to a grid­

shaped reconfigurable broadcast bus, where each processor has four
locally controllable bus switches, as shown in Figure 1. Other than the
buses and switches, the reconfigurable mesh is similar to the standard

mesh in that it operates in SIMD mode and has O(N) area, under
the assumption that processors, switches, and individual links have
constant size. In one unit of time each processor can perform standard
arithmetic and boolean operations on its own data, can set any of its

four switches, and can send and receive a piece of data from the bus.

Q Processor

Reconfigurable Bus

e Switch

Figure 1: A reconfigurable mesh of size 16.

Dionisios I. Reisis
Dept. of EE-Systems
USC

Quentin F. Stout
Dept. of EECS
Univ. Michigan

Los Angeles, CA 90089 Ann Arbor, MI, 48109

205

In each subbus shared by multiple processors, at any given time
we assume that at most one processor may use the bus to broadcast
a value, where a value consists of O(log N) bits. Notice that. by

setting the switches properly, sub-row (column) buses can be created
within each row (column), sub-meshes with reconfigurable buses can
be created, a global broadcast bus can be created, distinct buses can
be created within distinct sets of contiguously labeled processors, and

so forth.
Major advantages of the reconfigurable mesh are as follows.

1. Buses can be used to speed up parallel arithmetic and logic op­
erations among data stored in different processors. The recon­
figuration scheme supports several CRCW PRAM techniques.
In fact, for some problems the reconfigurable mesh is superior

to the PRAM.

2. The reconfigurable mesh provides an environment for efficient
sparse data movement operations.

3. A significant asymptotic improvement can be achieved in the
running times of algorithms that solve several problems on the
reconfigurable mesh compared to efficient algorithms for the
mesh-of-trees, pyramid, and mesh with static broadcast buses.

4. The reconfigurable mesh can act as a universal chip in that VLSI
organizations with equivalent area and a planar wiring layout
can be simulated without loss in time.

Many of the algorithms for the reconfigurable mesh (c.f., [7]) will
continually reconfigure the system by setting the switches to give the

desired substructures.

2 Related Architectures

It should be noted that although there are similarities, the reconfig­
urable mesh is very different from the CHiP project [15], the mesh
augmented with broadcast buses[l, 3, 12, 16], and the bus automa­
ton [4). However, the reconfigurable mesh is similar to the polymorphic­
torus network [6], with the major difference being that in the
polymorphic-torus network there is an arbitrary crossbar in each pro­
cessor to control connections between the north, south, east, and west
bus ports. Finally, the reconfigurable mesh appears to be almost iden­
tical to the latest version of the Content Addressable Array Parallel
Processor (CAAPP} [18], which was developed independently of the

reconfigurable mesh.

3 Data Movement Operations

Data movement operations form the foundation of numerous algo­
rithms for machines constructed as an interconnection of processors.

Proposition 3.1 Given a set S ={a;} of N values, distributed one

per processor on a reconfigurable mesh of size N so that processor

P; contains a;, 0 :::; i :::; N - 1, and a unit-time binary associative

operation®, in 8(1og N) time the parallel prefix problem can be solved

so that each processor P; knows a0 0 a 1 0 ... 0 a;.

We introduce a technique called bus splitting, in which processors
exploit the ability to locally control the effective size of subbuses, to

obtain the following Proposition.

Proposition 3.2 Given a reconfigurable mesh of size N, in which

each processor stores a bit of data, the logical OR of the data in each

row (column), or the entire reconfigurable mesh, can be determined in

8(1) time.

The reconfigurable mesh can be superior to other parallel models
for performing some computations. Consider, for example, computing
the exclusive OR (EXOR) function of N 112 values stored in a row of
the mesh. Note that [5) has shown that the exclusive OR function

cannot be computed in 0(1) time on a PRAM using a polynomial
number of processors. However, by exploiting the reconfigurability
available, the EXOR function can be computed in 8(1) time on the
reconfigurable mesh.

Proposition 3.3 Given a reconfigurable mesh of size N, in which

each processor stores a bit of data, the exclusive OR (EXOR) of the

N 112 data stored in a row (column) can be computed in 8(1) time.

Lemma 3.4 Given a reconfigurable mesh of size N, suppose each

processor in a row (column) stores a bit of data dj, 0:::; j:::; N 112 -1.

Then, the computation of :F; given by :F; = 2:{=0 d;, 0:::; j:::; N11~-1,
can be performed in 8(1) time.

Many parallel algorithms are designed to reduce data at interme­
diate stages of the algorithm. It is, therefore, often useful to be able
to efficiently perform fundamental operations on reduced sets of data.

Proposition 3.5 Given a reconfigurable mesh of size N, in which

no more than one processor in each column stores a data value, the

minimum (maximum) of these O(N 112) data items can be determined

in 8(1) time.

By a somewhat more complicated sequence, Valiant's PRAM al­
gorithm for finding the maximum [17) can be simulated on a recon­

figurable mesh to find the maximum of all N values, assuming they
are stored one value per processor.

Proposition 3.6 Given a set of data items S of size N stored one

per processor on a reconfigurable mesh of size N, the maximum value

of S can be determined in O(loglog N) time.

Proposition 3. 7 Given a set of bits S of size N stored one per pro­

cessor on a reconfigurable mesh of size N, the EXOR of all items in

S can be computed in O(log log N) time.

Proposition 3.8 Suppose on a reconfigurable mesh of size N each

processor has a label from a set of k distinct labels, 1 :::; k :::; N.

Further, suppose processors having the same label form arbitrary con­

tiguous regions on the mesh. Then, each processor can know whether

there is at least one tagged processor with its label in 8(1) time. Also,

given that there is at least one tagged processor for each label and all

tagged processors with the same label store identical data, the tagged

data can be broadcast to all other processors with the same label in

the above time, for all labels in parallel.

206

It is often desirable to model PRAM algorithm8 on other ma­

chines. In order to efficiently simulate the CRCW PRAM, one must
be able to efficiently simulate the concurrent read and concurrent

write properties. Define a Random Access Read (RAR) to be a data
movement operation that models a concurrent read, in which each

processor knows the index of another processor from which it wants
to read data [11). Similarly, a Random A~cess Write (RAW) will
model a concurrent write in that each processor knows the index of a
processor that it wishes to write to [11). In case of multiple writes to

the same processor, a tie-breaking scheme is used, such as minimum
or maximum data value, or arbitrarily letting one value succeed.

Proposition 3.9 Given a reconfigurable mesh of size N, in O(k 112 +
log N) time k data items may be moved in a RAR or RAW, where

k::; N.

In fact, more efficient data movement can be performed if the dis­
tribution of the source processors, i.e., those processors sending data,

as well as the destination processors, i.e., those processors receiving
data, is uniform over the reconfigurable mesh.

Proposition 3.10 Given a reconfigurable mesh of size N, ifthe num­

ber of source and destination processors within any block of size k 2

is O(k), 1 :::; k :::; N 112 then RAR and RAW can be performed in

O(log N) time.

Another fundamental operation that involves data movement is
data reduction. Assume that each processor has at most one record
having a key field and a data field. Data reduction will perform an

associative binary operation on the data of records having the same

key. At the end of the data reduction operation, each processor with
key k will have the result of the binary operation performed over all
data with key k.

Proposition 3.11 Given a binary associative operator©, data re­

duction can be performed on k distinct keys in O(k112 + logN) time

on a reconfigurable mesh of size N, so that each processor knows the

result of applying 0 over all data items with its key.

Lernrna 3.12 Given a reconfigurable mesh of size N with k distinct

keys randomly distributed one key per processor, the number of dis­

tinct keys can be determined in O(k112 +log N) time.

4 Applications

In this section, we illustrate the performance of the reconfigurable
mesh by giving simulations of other low wire area organizations, such

as the mesh-of-trees and pyramid, discussing the use of the recon­
figurable mesh as a universal chip, and by giving efficient parallel
algorithms to solve problems involving graphs and images.

4.1 Simulations

Well known organizations such the mesh-of-trees and pyramid com­

puter can be efficiently simulated by the reconfigurable mesh due to
the numerous communications patterns that the reconfigurable mesh
provides. In the first part of this section, we consider step by step
simulation of the mesh-of-trees and pyramid.

A mesh-of-trees (MOT) of base size N, where N is an integral
power of 4, has a total of 3N - 2N 112 processors. N of these are base
processors arranged as a mesh of size N. Above each row and above
each column of the mesh is a perfect binary tree of processors. Each
row (column) tree has as its leaves an entire row (column) of base

processors. All row trees are disjoint, as are all column trees. Every
row has exactly one leaf processor in common with each column tree.
Each base processor is connected to 6 other processors (assuming they
exist): 4 neighbors in the base, a parent in its row tree, and a parent
in its column tree. Each processor in a row or column tree that is
neither a leaf nor a root is connected to exactly 3 other processors in
its tree: a parent and 2 children. Each root in a row or column tree is
connected to its 2 children. Notice that in the MOT the processors in
each row and in each column can be looked upon as placed at levels

O, 1, ... , k where N 112 = 2k.
Define a c-embedding of a hierarchical organization onto the re­

configurable mesh to have the following properties.

1. A constant number of processors of the hierarchical organization
are mapped to each processor of the reconfigurable mesh.

2. The number of communication links between levels 1 and 1 + 1,
O :S I :S k - 1, incident on any row or column bus segment is

:Sc.

Define a class of algorithms on a hierarchical organization to be nor­

malized algorithms if the following hold.

1. During a computation step of a hierarchical algorithm, all data
operated on are located at the same level of the hierarchical
organization.

2. During a communication step of a hierarchical algorithm, com­
munication is performed between at most two adjacent levels of
the hierarchical organization.

[9] shows how to embed the mesh-of-trees into a mesh. This em­
bedding is used to embed the mesh-of-trees into the reconfigurable
mesh and obtain the following two propositions.

Proposition 4.1 Any normalized algorithm running in T(N) time

on a mesh-of-trees of base size N can be simulated on a reconfigurable

mesh of size N to finish in O(T(N)) time.

Proposition 4.2 Any algorithm running in T(N) time on a mesh­
of-trees of base size N, can be simulated on a reconfigurable mesh of

size N to finish in O(T(N) log N) time. Further this time is optimal.

We now turn our attention to the simulation of the reconfigurable
mesh by the mesh-of-trees. During the execution of an algorithm
on the reconfigurable mesh the buses are continuously configured. A
configuration of the bus corresponds to partitioning the mesh into
disjoint sets of contiguous processors. Reconfiguration of the bus can
be simulated on the mesh-of-trees by identifying contiguous processors
in the mesh. This reduces to the problem of identifying connected 1 's
in an N 112 x N 112 digitized image (see Section 5.2 for more details).
On the mesh-of-trees this can be done in 0(1~gir;;N) time [9, 10].

Proposition 4.3 A mesh-of-trees of base size N can simulate a re­

configurable mesh of size N in O(T\1:~}i1::[tt) time if the switch set-

tings are dynamic, or O(Tf~l1~~g~ N + log2 N) if the switch settings
are static.

We now turn our attention to relationships between the reconfig­
urable mesh and the pyramid computer. A pyramid computer (pyra­

mid) of size N is a machine that can be viewed as a full, rooted,
4-ary tree of height log4 N, with additional horizontal links so that
each horizontal level is a mesh. It is often convenient to view the
pyramid as a tapering array of meshes. A pyramid of size N has at

207

its base a mesh of size N, and a total of ~ N - l processors. The levels
are numbered S() that the base is level 0 and the apex is level log4 N.
A processor at level i is connected via bidirectional unit-time com­
munication links to its 9 neighbors (assuming they exist): 4 siblings
at level i, 4 children at level i - 1, and a parent at level i + 1.

An embedding of the pyramid into the reconfigurable mesh, simi­
lar to the mesh-of-trees embedding used in Propositions 4.1 and 4.2,
is used to give the following.

Proposition 4.4 Any algorithm running in time T(N) on a pyramid

of size N can be simulated on a reconfigurable mesh of size N in

O(T(N)) time.

The 0(N114) time solution to the connected l's problem on a
pyramid of size N [8] is used to give the following.

Proposition 4.5 Any algorithm running on the reconfigurable mesh
of size N in time T(N) can be simulated on a pyramid of size N in

O(T(N)N114) time. This simulation is optimal.

Theorem 4.1 Any architecture that can be laid out in an N 112 x
N 112 grid and use a planar wiring (assuming wires have unit width)

can be simulated by the reconfigurable mesh in constant time per unit
time of the target architecture.

4.2 Graph Problems

The first problem considered in this section is that of computing the
connected components of an undirected graph with N 112 vertices,
given as an adjacency matrix. The (i,iYh entry of the adjacency
matrix of the graph is initially stored in processor P;J of the recon­
figurable mesh. The algorithm that we use is based on the O(log N)
time algorithm presented for the CRCW PRAM [14].

Theorem 4.2 Given the adjacency matrix of an undirected graph

with N 112 vertices distributed so that the (i,iYh element of the matrix

is stored in processor Pi,j of a reconfigurable mesh of size N, the

connected components of the graph can be determined in O(log N)
time.

The reconfigurable mesh can also be used to provide efficient solu­
tions to some graph problems that assume unordered edges as input.

Theorem 4.3 The connected components of a V vertex graph given

in unordered edge input format, can be computed in O(V 112) time on

the reconfigurable mesh of size N, where N 112 :S V :S N.

Corollary 4.6 A minimal spanning forest of a V vertex graph given
in unordered edge input format, can be computed in O(V112) time on

the reconfigurable mesh of size N, where N 112 :S V :S N.

Several graph properties can be deduced once a spanning tree
of the graph is determined [2]. Using Corollary 4.6 and the data
movement operations presented in Section 3, the following results
can be obtained.

Corollary 4. 7 Given N edges of a graph G with V vertices dis­
tributed one vertex per processor in a reconfigumble mesh of size N,

Nl/2 :::; V:::; N, in O(V112) time, one can

a) check if G is bipartite,

b) compute the cyclic index of G, and

c) compute the articulation points of G.

4.3 Image Problems

Many problems involving digitized images can be solved efficiently on
the reconfigurable mesh. The input to these problems is an N 112 x
N 112 digitized image distributed one pixel per processor on a recon­
figurable mesh of size N so that processor P;,j has pixel (i,j). The
problems that we examine focus on labeling figures (connected compo­

nents) and determining properties of the figures. The reconfigurable
bus is used to isolate individual figures so as to be able to efficiently
extract information concerning multiple figures in a digitized image.
A subbus is created and dedicated to keep track of all deliberations
with respect to each figure.

Theorem 4.4 Given an N 112 x N 112 digitized image mapped one

pixel per processor onto the processors of a reconfigurable mesh of

size N in a natural fashion, in O(log N) time the figures (connected

components) can be labeled.

Theorem 4.5 GiVen an N 112 x N 112 digitized image mapped one

pixel per processor onto the processors of a reconfigurable mesh of

size N in a natural fashion, in O(logN) time a closest figure to each

figure can be determined.

Theorem 4.6 Given an N 112 x N 112 digitized image mapped one

pixel per processor onto the processors of a reconfigurable mesh of

size N in a natural fashion, in O(log2 N) time the extreme points of

the convex hull can be enumerated for every figure.

Theorem 4. 7 Given an N 112 x N 112 digitized image mapped one

pixel per processor onto the processors of a reconfigurable mesh of

size N in a natural fashion, in 0(1) time several geometric proper­

ties of a set S of pixels can be determined. These properties include

marking and enumerating the extreme points of the convex hull of the
points, determining the diameter of the points, determining a small­

est enclosing box of the points, and determining a smallest enclosing

circle of the points.

5 Conclusion

This paper considers the reconfigurable mesh as a viable alternative
to a variety of processor organizations. We have presented efficient
implementations of fundamental data movement operations for the
reconfigurable mesh and have shown that it can be used as a uni­
versal chip, in that the reconfigurable mesh is capable of simulating
any organization of processors occupying the same area and using a
planar wiring layout without loss of time. We have also presented al­
gorithms that show how the reconfigurable mesh can efficiently solve
a number of graph and image problems using the fundamental data
movement operations. The running times of these algorithms are
asymptotically superior to running times of solutions for the mesh

with multiple broadcasting, the mesh with multiple buses, the mesh­
of-trees, and the pyramid computer. Further, we have shown that
there are problems for which solutions on the reconfigurable mesh are
more efficient than those possible for a PRAM.

6 Acknowledgments

The work of R. Miller was supported in part by NSF grant DCR-
8608640. The work of V.K. Prasanna-Kumar was supported in part
by NSF grant IRl-8710863. The work of D.I. Reisis was supported in
part by DARPA contract F 33615-84-K-1404 monitored by the Air

, Force Wright Aeronautical Laboratory. The work of Q.F. Stout was

208

supported in part by NSF grant DCit-8507851, and by an Incentives
for Excellence Award from Digital Equipment Corporation.

References

[1] Alok Aggarwal, Optimal Bounds for Finding Maximum on Ar­

ray of Processors with k Global Buses, IEEE Transactions on
Computers, vol. C-35, no 1, pp 62-64, Jan 1986.

[2] M. Atallah and R. Kosaraju, Graph problems on a mesh con­

nected processor array, JACM, 1983.

(3) S. H. Bokhari, Finding Maximum on an Array Processor with a

Global Bus, IEEE Transactions on Computers, Vol. C-33, No. 2,
February 1984, pp 133-139.

[4] D. M. Champion and J. Rothstein, Immediate parallel solution

of the longest common subsequence prob/e~, 1987 International
Conference on Parallel Processing, 70-77.

[5] M. Furst, J. Saxe and M. Sipser; Parity, Circuits and Polynomial

Time Hierarchy, Proc. IEEE Foundations on Computer Science,
pp. 260-270, 1981.

(6) H. Li and M. Maresca, Polymorphic-Torus Network, Proc. Inter­
national Conference on Parallel Processing, 1987.

[7] R. Miller, V.K. Prasanna Kumar, D. Reisis, and Q.F. Stout,
Parallel computations on reconfigurable meshes, Tech. Rept. 229,
Dept. of EE-Systems and IRIS, USC, March, 1988.

(8) R. Miller and Q. F. Stout, Data Movement Techniques for the

Pyramid Computer, SIAM Journal on Computing, Vol. 16, No.
1, pp. 38-60, February 1987.

(9) R. Miller and Q. F. Stout, Some graph and image processing

algorithms for the hypercube, Hypercube Multiprocessors 1987,
SIAM, pp. 418-425, 1987.

(10) R. Miller and Q. F. Stout, Parallel Algorithms for Regular Ar­

chitectures, The MIT Press, 1988.

[11) D. Nassimi and S. Sahni, Data Broadcasting in SIMD Computers,

IEEE Transactions on Computers 1981.

[12) V. K. Prasanna Kumar and C. S. Raghavendra, Array Proces­

sor with Multiple Broadcasting, Proceedings of the 1985 Annual
Symposium on Computer Architecture, June 1985.

[13) V. K. Prasanna Kumar and M. Eshaghian, Parallel Geometric
algorithms for Digitized pictures on Mesh of Trees organization,

International Conference on Parallel Processing, 1986.

[14) Y. Shiloach and' U. Vishkin, A O(logN) Parallel Connectivity

Algorithm, Journal of Algorithms 3, 1982.

[15] L. Snyder, Introduction to the Configurable, Highly Parallel Com­

puter, Computer 1S(1):47-56, January, 1982.

[16) Q. F. Stout, Mesh Connected Computers with Broadcasting,
IEEE Trans. on Computers C-32, pp. 826-830, 1983.

[17] L. G. Valiant, Parallelism in comparison problems, SIAM J. on
Computing 3, 1975.

[18) C.C. Weems, S.P. Levitan, A.R. Hanson, E.M. Riseman, J.G.
Nash, D.B. Shu,. The image understanding architecture, COINS
Tech. Rept. 87-76, University of Massachusetts at Amherst.

A Pipelined Dataflow Processor Architecture

Based on a Variable Length Token Concept

Kaoru UCHIDA and Tsutonm TEMMA

C&C Information Technology Research Laboratories
NEC Corporation

Miyamae, Kawasaki, 213 Japan

Abstract

A data.flow processor architecture is presented which en­
ables achieving high speed processing for vector data through a
pipelining technique. A new datafiow concept, "Variable Length
Token", is proposed for enhancing data processing capability
and flexibility.

A variable length token-··VLT-, is a token set consisting
of a specifiable quantity of fixed size tokens. Multiple tokens
to be processed together form a VLT and flow so as to main­
tain their consecutivity. In the proposed processor, a VLT is
taken as a unit of processing both in firing control and in oper­
ations. This technique reduces the inter-token synchronization
and communication overhead common to conventional datafiow
machines, and it facilitates the handling of composite data, such
as multiple precision data, vector data, and structured data, in
a static datafiow model.

Also discussed is a system architecture with the multiple
processor elements able to operate in parallel. System pe1for­
mance analysis results show that the system is particularly well
suited to pattern processing.

1. Introduction

A data-driven computation model, in which the activation
of an instruction execution is determined by the availability of
its operands, can efficiently extract and exploit the concurrency
inherent in computation [1]-[3]. Since the model was proposed,
several computers with datafiow architecture have been pro­
posed, designed and became operational in various fields [4]-[6].

Dynamic architecture is adopted in several ma.chines, in­
cluding. for example. the University of Manchester's machine
[7], the machine. by MIT's Arvind and his group [.5], and the
SIGMA-1 by the Electrotechnica.l Laboratory in Japan [8].
They are intended to cover rather large scale computation with
big· hardware--and sometimes multiprocessor-system.

NEC"s TIP (Template-controlled Image Processor) project
[9][10] has designed and developed a static data.flow VLSI
''lmPP" (µPD7281), which can achieve high speed processing
on a sequence of data. through a. pipeline approach and thus
is especially well-suited to image processing applications [11].
lnRtruction level parallelism is achieved by pipelining the exe­
cution of operations in ImPP. Accordingly, this :fine-grain data.­
driven parallelism enables efficient utilization of the processing
(functional) unit, which leads to increased performance, for "ir­
regular" data as well as regular vector data. In an ImPP mul­
tiprocessor system, moreover, individual ImPPs. sequentially
connected in an array, can execute programs in parallel The
system has consequently been able to prove its high speed pro­
cessing capability on a. large amount of data in such applications
as image processing, etc. [12][13].

Pattern processing, on the other hand, deals with a huge
a.mount of two dimensional data and thus requires high speed
computation capability, which has so far only been met with
special and expensive hardware. Nevertheless, the practical
systems to cover it have to be handy and with high cost-

. performance. The computations involved in such applications,
furthermore, may demand extreme flexibility and a. high level
programmability for the processors.

Pipelining technique, which permits concurrent operations,
is an effective approach to meet those demands and is widely
used to attain high performance with comparatively small hard­
ware. To assure that the pipeline hardware would be flexible
and optimally utilized. data-driven control is an appropriate
measure.

In a conventional datafiow approach, however, and espe­
cially in static models, the UI~it of computation is always a single
<la.ta packet-known a.s a token-; at the most only two to­
kens can be processed at one time. To handle composite data.,
such as multiple precision data, vector-type data., or structured
data, synchronization and communication among those com­
posite data. tokens have to be programmed by combinations of
dyadic operations, overhead of which leads to a large .a.mount of
token flow traffic and thus degrades the performance.

This paper describes a data.flow pipeline processor architec­
ture employing the authors' newly proposed ''Variable Length
Token" technique to overcome the problems described above.
A variable length token (VLT) is a token set consisting of a
specifiable quantity of fixed size tokens; the proposed processor
·T-TIP'' (I.ernplate-cont.rolled Image E.rocessor with .YLT) deals
with it as a unit of computation. Tokens in a VLT always ftow
consecutively in the V-TIP processor element and in the V-TIP
multiprocessor system, which enables composite operations.

209

In Section 2. the V-TIP processor architecture is explained
in detail; Section 3 covers the concept, implementation, and re­
sulting usefulness of the variable length token. The axchitecture
for a. <la.tallow processing system with this proposed processor is
presented in Section 4. which further explains how the parallel
processing is implemented. Finally, the V-TIP system perfor­
mance is discussed in Section .5.

2. Advanced Datafiow Processor V-TIP

Pipeline and Data:flow
In pattern processing, such a.s image proc€ssing and pat­

tern recognition, and in general purpose numerical computation,
such as numerical simulations and solution of large systems of
equations, vector data. is the major element in the computations.
To handle efficiently a laJ·ge amount of uniform and sequential
data like vectors, a pipeline technique is very convenient and is
widely used in all kinds of high speed processors. Pipeline t€ch­
niques may be classified into two categories: one is instruction

level pipelining, in which data items flow through functioning
elements that are lined up in sequence and operate in parallel;
the other is more fine-grained pipelining, in which each instruc­
tion execution is partitioned into multiple stages of subfunctions
that operate in parallel on each data item in a pipeline manner.

With both of these approaches, however, though designs
can be optimized for high level performance in specific appli­
cations, the number and allocation of stages are fixed, which
considerably limits flexibility.

In the system proposed in this paper, in order to make
pipelining more flexible and programmable, dataflow architec­
ture has been adopted in the processor. In the dataflow ap­
proach, a tag to identify the data accompanies the data itself
through the pipeline. A single data item with its tag is called a
token, the unit to be handled and processed in dataflow comput­
ers. As Fig. l(a) illustrates, a token in our architecture, when in
the V-TIP processor element, comprises a Link Table Address,
a. flag called control flag, and a data value. A Module Number
for specifying the processor of destination is affixed while the
token is on the outer system bus (outer TIP bus) outside the
processor elements (Fig. l(b)).

(a)

(b)

Link Con-

Table trol data

Address Flag

Module Link Con-
Number Table trol data

Address Flag

Figure 1. V-TIP token format.
(Control Flag field contains a "VLT Flag".)
(a): when in a V-TIP processor element
(b): when on the outer TIP bus

The Link Table Address is an address for accessing the
program table-LT(Link Table)-in the processor element. The
control flag specifies the class of the token-whether it is a pro­
gram load token, status dump token or an executable token-.
and gives information about VLT structure.

With this dataflow pipeline architecture, there is no need
for the processor to "fetch'' instructions between carrying out
them, allowing all the pipeline stages to operate fully. The
processor will maintain maximum performance, so long as data
is constantly fed to the pipeline. Thus, vector data processing
is especially efficient, since its flow is uniform and consecutive.
This makes this particular architecture especially well-suited to
pattern processing and scientific numerical computations that
must handle large amounts of vector and matrix data.

Overall Architecture

Figure 2 shows the a.rchitecture of the proposed proces­
sor, V-TIP (I.emplate-contmlled Image Erocessor with J!.ariable
length token).

As Fig. 2 shows, V-TIP is composed of multiple functional
modules which operate upon the flowing tokens completely in
parallel. Some of the modules, moreover, are partitioned into
several stages to achieve more concurrency and to speed up

Bus

Token

Table
it<-__ !._···...iJ:::::;:···~~;~::: :~~::~:::~]

~--~

Bus

Output

Queue

Bus

..... -----------.. __

11~ Inner

.C V-TIP ••)
"'! Ring

Precessing

Unit

Queue

0
c:
~ .. .,

Output

Controller

__________ ,.,
Data
Memecry

210

Bus

Input

Controller

I.. ink

Table

Function

Table

Queue

Figure 2. V-TIP architecture.

Function

Table

the pipeline cycles. A token flows along the outer TIP bus
and goes into the processor through a Bus Input Controller
(BIC). Tokens on the outer TIP bus each contain data to be
processed, a Module Number (MN) to identify their processor
of destination, a Link Table Address (LTA) to refer to the inner
program table in the destination processor, and a control flag
(CTLF). Part of the control flag-the "VLT flag field"- is also
used to identity the tokens in VLT from others tokens. VLT
implementation and usage will be described later.

If the destination of the token. indicated by its MN field,
matches the MN assigned to the V-TIP beforehand, the token
is sent into its Link Table (LT). If the destination is not for this
V-TIP, on the other hand, the token is sent directly back to
the outer TIP bus through the Bus Output Controller (BOC)
as a "pass token". The Link Table maps the Link Table Ad­
dress (LTA) field of the incoming token to a next LTA and to
a Function Table (FT) access address. The token is sent to the
FT through the Function Table Queue.

Firing Control and Operand Fetch

In the Function Table (FT), the incoming token undergoes
firing control -wherein it is checked to determine if the two
operands needed for the dyadic operation are both available-,
and the waiting token, if it exists, is extracted from the Data
Memory (DM). The V-TIP employs "queued architecture'"' and
thus multiple tokens --or multiple VLTs-can wait in a first­
in-first-out (FIFO) buffer area allocated in the DM.

The firing control at the Function Table and Data Memory
enables both inter-token synchronization and inter-VLT syn­
chronization. A VLT can wait for the corresponding VLT and,
when they match, they are sent to the Processing Unit together.
By use of this matching mechanism, two VLTs, of length M and
of N, can be synchronized and concatenated to construct a VLT
of length M +N. (Here, "A VLT of length L" means, naturally,
·'a VLT consisting of L tokens.'')

Token generation is needed in the Function Table, in case
a, longer VLT than the input token is needed as a result of
firing control, as in the above-mentioned VLT concatenation for
example. While the generation is carried out in the Function
Table, a busy signal from the Function Table keeps the Function
Table Queue from sending successive tokens to the Function

Table.
When the token pafr is fired in the Function Table, it then

fetches a PU instruction code there and is sent to the Processin
llnit Queue (PllQ). The PUQ serves as a token buffer and has
tokens wait till the Processing Unit accepts the next token in­
put. This buffering is indispensable to smooth irregularities of
processing and thus to attain effective utilization of the process­
ing power.

Processing Unit Architecture

The Processing l1 nit (PU) consists of a Multiplier Proces­
sor (MLP), an ALl1 ProcesROr (ALUP) and a Token Formator
(TF). that aJ'e connected sequentially and operate in a pipeline
ma.nner.

The Multiplier Processor (MLP) contains a multiplier and
executes one-word by one-word multiplication, bit shift and bit
rotate operations on fixed point format data.. An adder for the
exponent parts of floating point format data is also provided to
carry out floating point data multiplication.

The ALU Processor (AL UP) performs arithmetic and log­
ical operations. The ALUP ha.s ~egisters and carrys out status
dependent processings using registers. The register is used, for
example, to accumulate values or to detect the minimum value
in the sequence of tokens.

The Token Format.or (TF) makes up a result token data
from the ALUP output by normalizing floating point data for­
mat. The LTA field for the result token which indicates its
destination, can be modified a.ccording to the result of the PU
operation. indicated by the status flags of the ALU, ca.using the
token to branch conditionally to other destinations.

The Processing llnit can also be used to generate multiple
tokens out of one given token. It is used mainly to:

1) Copy and distribute result data to different destinations.
2) Make a sequence of tokens (like tokens with data 'O', '1 ',

·2', .. , '15'), when given the initial data 0, the difference
1, and the length of the sequence 16.

3) Generate VLTs out of given tokens, which is accomplished
by modifying the VLT-flag field for each token.

When multiple tokens a.re being generated, the Processing Unit
sends a busy signal to the Processing Unit Queue; accordingly,
the Processing Unit Queue stops its output to the Processing
Unit.

After a set of operations is applied to a token in the Pro­
cessing Unit, the PU output token is sent either to the Link Ta­
ble or to the Bus Token Table, depending on the code. If more
operations are to be performed on the token in this processor, it
is accepted by the LT, goes on to the next operation, and keeps
on going around the Inner V-TIP Ring (circular pipeline), which
consists of the LT, FTQ. FT, DM, PUQ and PU, until finally
outputting to the outer TIP bus.

Token Output

If the token from the Processing Unit is to be sent to the
outer TIP bus, it is passed on to the Bus Token Table (BTT).
In the BTT, the token accesses the table and fetches a set of
identifiers. a Module Number (MN), and an Link Table address
(LTA) that are needed for tokens on the outer bus. The token
is then sent to the Bus Output Queue (BOQ), where it is kept
waiting while the outer TIP bus is busy, and to the outer TIP
bus through the Bus Output Controller (BOC). In the BOC,
the pass token flow from the Bus Input Controller and the out­
put token flow from the Bus Output Queue are controlled aJ1d
merged.

211

3. Variable Length Token

VLT Concept
In conventional st.a.tic data.flow machines, the unit of com­

putation is always one token. Therefore, to handle composite
data., such as multiple precision data, vector data and structured
data., it is necessaJ·y to program explicitly the synchronization
and communication among those data tokens by combinations
of dyadic operations. The reduction in the effective utilization
of processing power, due to this synchronization overhead, is
one of the biggest problems in fine-grained data.flow machines.

When adding two double precision values with fixed point
format using conventional data.flow machines like the µPD7281,
for example, a flow graph, such as that illustrated in Fig. 3, is
needed to describe the program. This flow graph shows that the
token has to go around the inner ring of the processor sequen­
tia.lly twice. Moreover, the lower word processing and higher
word processing should be prograJnmed separately, considering
synchronization between them.

Operandi
-Low

Result

Operand2
-Low

Operandi

-Hi ch

Result

-Low -High

Operand2

-Hi ch

operand

-High

Figure 3. Datafl.ow graph for double-precision
data addition in a conventional dataflow ma.
chine.

The variable length token technique, newly proposed here,
provides a. solution to these problems. A variable length token
(VLT) is a token set consisting of a specifiable quantity of fixed
size tokens. The tokens in a VLT always flow consecutively in
the V-TIP processor element and in the system using the pro­
cessor. The VLT is taken as a unit of processing both in firing
control at the Function Table and in operations at the Pro­
cessing Unit just as a single token is considered in conventional
da.ta.flow machines.

The VLT technique enables flexible flow control and en­
ables high speed processing of composite data structures in a
static data.flow model. It p~ovides the following three major ad­
vantages. details of which will be explained in the next section:

a .. Overhead reduction
To reduce the communication overhead between tokens,
the VLT technique provides a. way to increase data granu­
larity by concatenating relevant data set together.

b. Functionality in vector operations
The functionality of vector operations can be assured by
the consecutivity of the data items involved, which are
chained in a VLT. Vector data can. therefore, be efficiently
handled with the help of registers, in case of data sequence
accumulation. for example.

c. Affixation of control information
Appending an index or a. relevant address by means of VLT
allows the control information to go with the data token,
when the token changes its path depending on its data
value. This technique facilitates the re-ordering for token
streams when they are to be merged after branching.

VLT Implementation
A token has a VLT flag for VLT identification. which is a

part of the control flag field, besides a data value and a Link
Ta.ble Address. Tokem: in a VLT. though they may have dif­
ferent VLT flags. have the same Link Table Address and are
destined to the same node in the data.flow graph. The VLT flag
of a token indicates whether:

a) It is the last (tail) token for a VLT or it is a. single-token­
VLT.

b) It is in the midst of a VLT. so that the next tokens must
be handled consecutively in regard to the previous token.

c) The token has a special meaning, such as an ''index" token,
which will be explained later.

VLT consecutivity is assured by controlling the merging
of the two token streams using the information included in the
VLT flag of the tokens involved. For example, in the Link Table
(LT). where tokens from the Bus Input Controller (BIC) and
from the. Processing Unit (PU) merge, the LT checks the VLT
flag of the token currently being sent to the Function Table
Queue, then determines from which direction it should accept
the next token. If the flag indicates the token is not the tail
of the VLT, the next token must be accepted from the same
direction as the previous one, since the two belong to the same
VLT and the sequence may not be broken. If it is the tail token,
on the other hand, then the direction of the next token may
be determined according to the priority rule, as there are no
other restrictions. The same control scheme is employed at the
Bus Output Controller, which accepts tokens from Bus Output
Queue and Bus Input Controller.

In the Function Table (FT) and Data Memory (DM), as
has been explained in Section 2, the firing (enabling) control
for tokens is carried out. In token synchronizations by firing
control, VLTs are regarded as one token. When two VLTs are
to be synchronized, th(e one that comes to the FT first waits
in DM till the other comes. The two VLTs then match each
other in the FT and go to the Processing Unit together. As is
shown in Fig. 4, the Queue-Concatenate operation allows two
VLTs, of length M and length N, to synchronize, and then to
construct a. VLT of length Af + N by concatenation.

VLT of

length M
VLT of

length

Q u e u e

Concatenate

VLT of

length (M+Nl

Figure 4. Synchronization and concatenation
of two VLTs.

212

VLT: Use and Effectiveness
The following presents some examples of the use and ef­

fectiveness of the VLT technique in handling composite data
in various processings, in comparison with conventional tech­
niques.

i) Multiple Precision Data Multiple precision data, like
double precision or quad precision data, can be represented us­
ing VLTs. In the case of double precision data, a VLT consisting
of two tokens, one token with the lower word data at the front
and one with the higher word data in the back, represents a data
item (See Fig. 5 (a)). When two double precision data are to be
added, for example, two operand VLTs meet in corresponding
order in the Function Table and the Data Memory. (In Fig. 5,
a.n operand VLT, with data opd2 L and opd2 H -the opera.nd2
low word and high word, respectively--, had been waiting in the
Data Memory.) In FT, at the same time, the tokens fetch an
PU instruction code add-multiple (Fig. 5 (b)).

The token with lower operands goes into the Processing
lT nit (PU) first, two operands are added there, and the carry
of the addition is kept in its carry register. The tail token with
the higher word operands then goes into the PU, where another
addition is performed. But this time, the carry from the lower
words addition.is added at the same time. The resultant data,
as in Fig. 5 (c), is sent out from the Processing Unit in the same
form as in the start of the previous operation: the two token
VLT, with the lower word in the front and the higher word in
the back.

la2

la2

(b)

la2

la2

la2

la2

(a)

=:> L i n k

Tab I e

FTaddr tf
opd1 L fa 1

Function Table
opd1 H fa 1 =:> Cadd-multipleJ

If'
dataA dataB PU

Copd2 LJ Copd2 HJ
op-code

opd1 opd2 add-multi. Data Memory
opd 1 H opd2 H add-multi.

6 Buffer Queue

sum (c)
<===i Processing

sum Unit

Figure 5. Token format transition in double­
precision data addition with VLT.

With this technique, a data with multiple precision can
be handled in the sa.me manner a.s a single precision ordinary
data.. The processing cost for synchronization between lower
and higher tokens with a conventional data.flow approach can
be elin;inated, as may he seen in Fig. 6, a data.flow graph il­
lustrating a. program for double precision data addition. This
figure, fo-r a processor using the VLT technique, may be com­
pa.red to the graph in Fig. 3, for a conventional case. The time
lag between the start of and end of an operation (latency) may,
m~reover, be red need by half.

······--·---·-····-···········-
Operand1-Low

----·······-···-·---·---···----·

--~-~-~-~-~-~-~-:-~-~-~-~-~---)

r•••••••••••••••••••••••••••••i

l Operand2-Low l
c~:~:~:~:~:~:~:~:~:~:~:~:~J

queue-VLT

a d d - m u 1 t i p 1 e

... --------------------------·-
' ' ' ' : Result-Low i
f ---R~~~i"t::fi·i~h···:
1----------------------------J

Figure 6. Dataflow graph for double-
precision data addition in the proposed
V-TIP.

This approach can be applied to multiple (longer than two)
word data addition. A similar technique, moreover, can cover
multiplication of a multiple word data (A1 , A2 , ... , An) with a
single word data B. In the latter case, each word of the 'A' data,
A"' is multiplied by B in the Multiplier Processor, and then, in
the ALU Processor, the lower part of the product p(low)h the
higher part of the previous product p(high_ 1 , and the carry of
the previous addition Ck-! are added. In order to multiply two
multiple word values, moreover, the enabling section (the Func­
tion Table and the D.ata Memory) provides facilities to decom­
pose one VLT to single component. tokens before multiplications
and add the products with word shifts afterwards.

ii) Vector Accumulation A set of vector data can be rep­
resented by a VLT, and by using registers in the Processing
l'nit, the summation of the data. in a V<'ctor can be obtained.
One practical example is the calculation of the inner product of
two vectors. which is often used in matrix multiplications and
convolutions in spatial filters.

To calculate the inner product SJV of vector ai a.nd vector bi,
for i= 1 to N, one must calculate sequentially, with conventional
machines such as the µ.PD7281, as follows:

S1 = a.1/J1

82 = t2 + 81

BN-1 = fJV-1 + SN-2

t2 = a2b2

t 3 = a3b3

In this case, the whole operation is carried out using combina­
tions of dyadic operations and takes 2N - 1 processing clocks,
and the latency is N - 1 times the number of steps required for
the token to go around along the inner loop of the processor
(with µPD7281, it is 7 steps).

In the V-TIP proposed data.flow processor, a vector is rep­
resented by a VLT with the same word length. In this case,
a VLT consisting of N tokens with data. a1 , ... , aN comes into
the processor from the outer TIP bus, while the coefficients
bi , bN reside in the Data Memory. A token with data ak

in the incoming VLT matches(and fetches) the corresponding
. coefficient bk in the Data Memory, and the two operands go to
the Processing Unit.

In the Multiplier Processor of the PU, da.ta ak and bk are
multiplied. Immediately after the multiplication, the product is

213

added to the value in the register of the ALU Processor, whose
initial value is 0. Accordingly, after the multiplication of the
last N-th vector components, the product aNbN is added to the
value in the register, which is the (N-1)th partial sum SJV_ 1 ,

and the inner product SJV, is obtained. The token with the total
sum is then sent out and the register in the ALUP used in the
operation is cleared to zero for the next use. Consequently,
calculation of the inner product of two vectors of length N can
be accomplished in N processing clocks. Moreover, the latency
is only N clocks.

This improvement has been made possible by the fact that
the Processing Unit has a multiplier (in the Multiplier Pro­
cessor) a.nd an adder with a register (accumulator, in the ALU
Processor) in sequential order, both operating in parallel. Thus,
the two component operations, multiplication and addition, can
b0 executed in a pipeline manner.

One thing that should be noted here is the use of a regis­
ter in data.flow ma.chines. One of the advantages of the data.flow
computation model is the referential transparency ensured by
the functionality of operations. The use of registers in data.flow
machines is, therefore, generally considered ha.rmful, as it causes
side effects a.ncl detracts from the a.hove advantage, a.lthough the
introduction of registers does serve to speed up the processing.
In the proposed V-TIP architecture, however, the status de­
pendencies are confined in VLTs, as the data. on the registers
is set, referenced and modified only by the tokens in the same
VLT -whidi alway:o; flow consecutively-, and is cleared by its
tail token. Tims register use has no side effect on tokens, other
than those in the involved VLT. Consequently, users will be
able to benefit from the high speed computation enabled by the
registers, without having to give consideration to the exclusive
register utilization or to progra.m specifically the management
of inter-token synchroniza.tions. in order to avoid side effects.

iii l Indexing In this V-TIP. as in µPD7281. the sequence
of tokens flowing on the same a.re in a. fixed order and carrying
out same instructions is called a "stream data.." Data in this
stream will be processed as intended, if and only if the order
of tokens in the strea.m is preserved. Da.ta in a :o;trea.m are, for
example, retrieved from the memory, undergo several instruc­
tions a.nd are fina.lly stored in the memory in the correct place,
because the final order of the data tokens in the stream is the
same as that of the prepared address tokens.

However. when some of the tokens in the stream condition­
all:• sv.:itch -as a result of a conditional-branch instruction-­
' depending on the token data value and take a different data.flow
path from that of others, then the token sequence from different
paths cannot satisfy the above condition after the paths merge.
This is because the steps, which the tokens on different paths
require to run from the branch point to the merging point, differ
depending on the pa.th involved.

In this case, it is possible to make a VLT of a token pa.ir, a
data. token and the address token with which the data. is finally
to be stored in the memory. (Here, the second token carrys
control additional information for the first data. token, so ca.n
be c ailed an "index token".) This technique causes the index
token with the address to "accompany" the data token along
the same path, and makes it possible to ensure the correctness
of memory storage in whatever order the data is written into the
memory, when this write action takes place after the processing
is over.

A token with a number, instead of a memory address, to
indicate the original position of the data token in the stream,

can also be appended to it as an index token in the form of a
VLT. This number can be used to re-order the tokens using a
temporary buffer.

Figure 7 shows how this is done. An index token with
"Context-k" (k = 1,2,. .. ,N), which de~otes the original posi­
tion of the "Data-k" token in the sequence, is affixed to the data
token using VLT. It always goes with the data token but passes
through the Processing Unit with no-operation being carried
out. When branching depending on the data value occurs the
Link Table Address field -which serves as a token identifier­
of the index token is modified accordingly, and keeps on taking
the same route as the data token. Finally when the VLTs from
different paths are to be merged, they come into the same node
and there the data tokens are written into the memory at the
address indicated by the "context" in the index token. After all
the tokens arrive and are stored into the memory, the original
data stream, Data-1, Data-2, ... , Data-N, can be obtained by
reading it sequentially.

B Oa ta-N
Context-N

B
Oata-3
Context-3

B Oa ta-2
Context-2

B Oa ta-1

Context-1

dN
CJ

I
CJ d3

CJ d2

CJ d1

Figure 7. Context addition to data tokens
using VLT. Tokens from different paths can
be re-<1rdered using the indexes appended to
the data tokens.

This technique facilitates the handling of stream data with
less consideration for execution timing and provides an advan­
tageous way to high level language programming.

In another example, when subroutines are to be called from
different places, the information about the calling sites has to
be preserved to distinguish the invocations and to return to the

214

original calling sites. The user, in that case, can append con­
text information, an identifier for the invocation, to the data
token as an index token by means of VLT. (It should be noted
here that the tagged-token approach used in dynamic archi­
tecture machines, which is common and effective in handling
reentrancy, requires complicated hardware and is not appropri­
ate for implementation on simple VLSI oriented machines like
V-TIP [6].)

As has been shown, any additional control information as­
sociated with the data can be affixed to the data token by an
index token using VLT. While these index tokens pass the Pro­
cessing Unit with no-operations carried out and the indexes un­
touched, these no-operations result in waste of the PU com­
putation power. Therefore, during the operations that do not
change the order of the stream data-which is often the case-,
the index token can be removed from the data token and can
wait in the memory. When it is necessary, the data and index
tokens are synchronized and concatenated again.

4. V-TIP Multiprocessor System

The authors propose here a system with V-TIP datafiow
processors for practical implementation of the VLT technique.

The basic system, shown in Fig. 8, consists of multiple data
fl.ow processor elements (V-TIPs) and an "Interface Processor"
(IFP), connected by a ring-shaped outer TIP bus. The Interface
Processor, as well as the V-TIP, is data-driven and deals with
the interfaces among the V-TIP, the Memory Unit and the host'
computer. Individual V-TIPs operate concurrently and inde­
pendently, depending on the programs loaded into them. They
access data in the Memory Unit by sending read and write re­
quest tokens to the IFP ..

Cl
c
CD .,
_,
.... ,,
"" c ..

V-TIP

V-TIP

V-TIP

Interface

Processor (IFP)

Memory Unit

Host

Computer

U s e r

Figure 8. V-TIP Multiprocessor System.

At the very beginning, the V-TIP program is stored in the
Memory Unit in the form of program load tokens. When the
user gi~es a program load command through the host computer,
the IFP begins reading program loading tokens in the Memory
llnit and sending them to individual processors. Tokens reach
the V-TIP, which is denoted by its Module Number field, and
the contents of the tokens are set to the local memories in the
processor. i.e. to the Link Table, the Function Table, the Data
Memory, and the Bus Token Table.

When the user commands the processing start by send­
ing tokens to V-TIPs. V-TIPs begin operating by sending data

rea.d request tokens to the IFP; the IFP then fetches the data
from the Memory Unit, constructs tokens a.nd sends the da.ta.
sequences (strea.ms) to the requesting V-TIPs. The tokens flow
into a. V-TIP, circulate a.long the inner ring bus, undergo the
pertinent progra.mmed opera.tions, a.nd a.re sent out to the IFP
as data. write tokens when the processing is over. The IFP
automa.tica.lly generates sequences of write addresses, and the
a.rriving strea.m <la.ta. a.re stored in the Memory Unit in the a.p­
propria.te positions.

Genera.lly the dock rate with which the processor element
operates and the token transmission rate on the outer TIP bus
(.50 nsec to 100 nsec) is much faster tha.n the memory a.ccess
ra.te at the Memory Unit, i.e. a.round 400 nsec to 600 nsec with
Dyna.mic RAM. (With Static RAM, of course, the access time
is comparable to the clock cycle. However, for achieving high
cost-performance in a. compact system with a. large a.mount of
memory. Dynamic RAM is more rea.listic.) Thus, a. technique
to enhance the total memory access rate is needed to make the
most of the processing speed available when using the V-TIPs.

In the proposed Interface Processor for the V-TIP system,
simultaneous memory access by interleaved memory is used to
permit ra.pid access to the Memory Unit. The Memory Unit for
the system comprises 16 memory modules and supports para.Ile!
access to any consecutive addresses, in both horizonta.l and ver­
tical sequence of 16 points on a 2-dimensiona.l area.. When the
sequentia.l memory rea.d is requested by a. V-TIP, for example,
the Interface Processor generates access addresses, sets them
in the registers ea.ch corresponding to the 16 memory modules,
and gives the read signa.l. The retrieved data. are copied into
the data registers. Each register set has two groups of registers;
there are 16 plus 16 read address registers, for instance. Those
two groups are used like swinging (double) buffers.

By connecting multiple V-TIPs on the ring bus, as with
this system, the system performance is enhanced in proportion
to the number of V-TIPs, since the processors can work indepen­
dently and concurrently. In such a case, of course, performance
degradation due to a bus bottleneck and shared-memory ac­
cess contention has to be considered. Moreover, when memory
access is so frequent that it imposes the limit of system per­
formance (for example, the interleaved memory cannot provide
increased speed for random access to the Memory Unit), multi­
ple Memory Units have to be and are able to be connected to
the outer TIP bus. In this case, each Memory Unit is connected
to the outer TIP bus through an IFP, and is assigned a. different
module number for accessing.

As has been explained, the V-TIP system has concur­
rency in two levels; individua.l instructions are partitioned into
pipeline stages that function in para.lie!, and processors in the
system function in para.lie! as tokens flow.

To meet larger-sea.le computation requirements, a. more
highly-pa.ra.llel system can be built by connecting a number of
the above TIP ring units (multiple V-TIP elements and an In­
terface Processor connected by the outer Tip bus) together.
The Interface Processor (IFP) has communication ports that
exchange communication packets in a. byte-serial manner with
IFPs in the neighboring TIP ring units. Thus, this architecture
permits construction of a massively para.Ile! system, suited to
the needs of the user.

5. System Performance

The V-TIP system performance was eva.luated by ana.lyz­
ing and simulating ha.sic image processing and numerica.l com-

215

putation application programs.

Evaluation

Eva.luation was begun by making a. data.flow graph for an
application computation, the equiva.lent of a flow chart and a.
program description for control-flow ma.chines, and then sum­
ming up the clock cycles needed for the Processing Unit to cover
the whole process. Underutilization is ana.lyzed by estimating
the number of idle steps during the execution. The number of
idle steps can be approximated by ca.lcula.ting the quantity .of
token flow on a.res and ana.lyzing the dependency among the
instruction nodes in t·he data.flow graph. This is because if only
one token flows between two nodes and if there is no other para.1-
lelism, for example, the instructions on those nodes are executed
sequentia.lly and cannot be pipelined, thus leading to an idling
of the Processing Unit between two instruction executions.

Assumed Parameters

In the performance a.nalysis, the pipeline cycle for the
data.flow processor V-TIP was assumed to be 40 nsec, token
transmission rate on the outer TIP bus to be 80 nsec/token,
and memory access speed to be 400 nsec/a.ccess. (Remember
that the memory unit is 16-way interleaved, so it can both read
and write data in 50 nsec, if the access is sequentia.l.) This
means that a V-TIP can attain a. maximum performance of 25
MOPS if the stream data are fed to the processor element at a
sufficient rate and its Processing Unit functions fully.

Applications and Speeds

al Spatia.l Filter In a. spatia.l filter operation with a 3 x 3
kernel on a. 256 x 256 pixel image, three VLTs containing 3 pairs
of data -for 3 neighboring points-and the coefficients effec­
tively utilize the pipeline ha.rd ware. The nine-point convolution
operation for one output pixel requires 23 clocks of the Process­
ing Unit, i.e. 920 nsec/pixel (40nsec x 23). The number of mem­
ory access requests from the V-TIP to the Interface Processor
(IFP) can be reduced to only a pair of read and write requests
per unit convolution by storing three lines of the original im­
age in the Data Memory. In other words, a. unit convolution
occupies 160 nsec in the bus transmission and 100 nsec in the
memory access. This means that this computation is processing­
bound. not memory access bound or outer TIP bus transmission
bound, and can be speeded up by using more V-TIPs in parallel.
Since the token transmission rate is 160 nsec/unit (One rea.d­
request token and one write-data token go from a V-TIP to the
IFP and this becomes the bottleneck), maximum overa.11 perfor­
mance ca.n be attained when 6 processors a.re used in para.lie!,
this being 160 nsec/unit, i.e. 10.5 msec (160nsec x 256 x 256)
for a 2.56 x 256 image.

b) FFT A 2-dimensiona.l complex Fast Fourier Transform
was implemented with constant geometry a.lgorithm on a .512 x
.512 image of floating point format data. One butterfly requires
4 input tokens and 4 output tokens. taking 320 nsec (80nsec x 4)
for token transmission. One butterfly ca.lculation consumes 18
Pll clock cycles. that is. 40nsec x 18 = 720nsec. Accordingly, a
two V-TIP system can complete this computation twice as fa.st
as one V-TIP system, namely 360 nsec/butterfly. Thus, using
this two V-TIP system. the whole opera.tion takes 360ns x 128 x
256(/ines) x 9(stagEs) x 2(directions) = 0.21 sec.

c) Character Recognition To demonstra.te the suitability
of the V- TIP system for pattern processing, character recog­
nition processing performance was studied. This method for

recognizing printed alphanumeric characters, based on multiple
discriminant analysis, includes the following procedures [14]:

1. Resa.mple of the input image by a 5 x 5 spatial filter, thus
composing a .50-dimension feature vector.

ii. Reduction of the dimension of the feature vector by multi­
plication with a 50 x 48 matrix.

iii. Calculation of the distances for ea.ch of the dictionary vec­
tors.

1v. Detection of the nearest matching vector in the given dic­
tionary by comparison of the distances.

The first a.nd second steps ea.ch take 0.2 msec. In the third
a.nd fourth step, tokens for dictionary vector elements flow into
the processor one after a.not her. Differences from the corre­
sponding elements a.re accumulated a.nd then compared to the
existing minimum. Ea.ch distance calculation takes 120 PU cy­
cles a.nd this is repeated 91 times, the number of dictionary
vectors; thus, the la.st two steps calls for 0.44 msec.

The above evaluation shows, therefore, that a. system with
one opera.ting V-TIP ca.n perform printed cha.ra.cter recognition
a.t the rate of (0.2 + 0.2 + 0.44 =) 0.84 msec/cha.r with a. 91-
cha.racter dictionary of 48 dimensions. This performance, 1190
cha.ra.cters/sec, is a.bout 240 times faster than that of a. 16 bit
micro-computer system implementing the same algorithm[14].

6. Conclusion

The proposed processor, V-TIP, consists of multiple func­
tiona1 modules opera.ting in pa.ra.llel. The inherent concurrency
in computations is extracted a.nd effective utilization of the Pro­
cessing Unit is possible by employing <la.ta.flow scheme compu­
tation. The pipelining technique enables high speed processing,
especially of vector data..

A new data.flow concept, the Variable Length Token (VLT)
technique, is introduced to enhance data. processing capabil­
ity a.nd flexibility, in which multiple tokens are controlled so
that they flow consecutively throughout the system a.nd a.re
processed together. This technique, by providing a. means to
increase data. granularity, reduces the inter-token synchroniza­
tion and communication overhead for conventional data.flow ma.­
chines. Thus, it facilitates high speed processing of composite
data, structures in a. static data.flow model. Its effectiveness ha.s
been shown in multi-precision data. computation a.nd re-ordering
of tokens.

The enabling section of the V-TIP offers measures to con­
trol VLTs, such as allowing two VLTs to synchronize, concate­
nating them and decomposing one into single component tokens;
the Processing Unit operates on VLTs.

The architecture of a. system with multiple V-TIP process­
ing elements, an Interface Processor (IFP), and a. Memory Unit
has been explained. V-TIPs in the system can operate concur­
rently and independently, exchanging tokens with ea.ch other
a.nd with the IFP. The IFP supports interleaved parallel access
to the Memory Unit so that the V-TIPs a.re supplied tokens a.t
a. sufficient rate.

V-TIP system performance has been estimated by analyz­
ing application progra.m executions. Results indicate that the
system with the VLT technique produces high performance for
vector-type data.. The proposed architecture appears especially
snita.ble for pattern processing.

216

Acknowledgments

The authors would like to thank Ma.sanori Mizoguchi for
his immense contribution to the work. They are also grateful
to Ko Asai, Masao Iwashita. and other laboratory members for
their encouragement and advice.

References

[1] J.B. Dennis et a.l, "Data. flow schemas,'' Int. Symp. on The­
oretical Programming, Lecture Notes in Computer Science,
Vol.5, Springer-Verlag, 1974, 187-216.

[2] J.B. Dennis and D.P. Misunas, "A Preliminary Ar­
chitecture for a Ba.sic Dataf!ow Processor," Proc. 2nd
Ann. Int. Symp. Computer Architecture, IEEE, 1975, 126-
132.

[3] J.B. Dennis, "The Varieties of Data Flow Computers,"
Proc. 1st Int. Conf. Distributed Computing Systems, 1979,
430--439.

[4] P.C. Trelea.ven et al, "Data-Driven a.nd Dema.nd­
Driven Computer Architecture," ACM Computing Sur­
veys, vol.14, No.1, Mar. 1982, 93-143.

[5] Arvind and D.E. Culler, "Da.taflow Architectures," Annual
Review of Computer Science, vol.1, Annual Reviews Inc. ,
1986, 225-253.

[6] A.H. Veen, "Da.taflow Machine Architecture," ACM Com­
puting Surveys, vol.18, No.4, Dec. 1986, 365-396.

[7] J.R .. Gurd et al, "The Manchester Prototype Dataflow
Computer,'' Commun. ACM, vol. 28, No. 1, Jan. 1985,
34-.52.

[8] K. Hiraki et al, "Maintenance Architecture and Its LSI Im­
plementation of a. Data.flow Computer with a. Large Num­
ber of Processors," Proc. of 1.986 Int. Conf. on Parallel
Processing, 1986, .584--.591.

[9] T. Temma et al, "Template-Controlled Image Processor
TIP,1 Performance Evaluation," Proc. of IEEE CVPR,
198:3, 468--473.

[10] M. Iwashita, T. Ternrna et a.l, ''Modular Data Flow Im­
age Processor," Proc. IEEE COMPCON Spring '83, 1983,
464-467.

[11] T. Temma et al, "'Data Flow Processor Chip for Image
Processing," IEEE Trans. Electron Devices, vol. ED-32,
Sep. 1985, 1784-1791.

[12] T. Temma. et a.l, "Chip-Oriented Data-Flow Image Proces­
sor TIP-3," Proc. IEEE COMPCON Fall '84, 1984, 245-
254.

[13] M. Iwashita. and T. Temma., "Data. Flow Chip ImPP a.nd
Its System for Image Processing," Proc. IEEE ICAS'S'P
'86, Tokyo, Apr. 1986, 785-788.

[14] H. Ka.mi et a.l, "Character Recognition by Two Stage
Discriminant. Analysis," NEC Re.search €9 Development,
No.87, Oct. 1987, 20-2.5.

A DYNAMIC DATAFLOW ARCHITECTURE FOR IMAGE GENERATION

Philip C. Chao and Ming Y. Chern

AT&T Bell Laboratories
Naperville, IL 60566

Abstract -- In computer graphics, the ray tracing
algorithm can generate highly realistic images. However,
it has a major disadvantage : the high computational
expense associated with generation of an image. To
increase the image generation speed, our approach is to
map the computation processes of ray tracing into a
specialized dynamic data flow architecture for parallel
processing. To support the computation further, we used
a spatial-information hierarchy. A model for ray tracing
computation based on probability is used to analyze the
load. The architecture is modeled with a closed queueing
network. Through the analytical models, we have studied
the relative performance of the architecture under various
load conditions.

1. Introduction

Dataflow architecture is an alternative to Von Neumann
architecture and is capable of efficiently exploiting a mas­
sive amount of parallelism inherent in many types" of com­
putation. A dynamic dataflow architecture uses tagged
tokens to unfold iterative computations so that a high
degree of parallelism can be achieved [2] [13] [16]. This
paper proposes a specialized dynamic dataflow architec­
ture for the ray tracing image generation and investigates
its performance for the task.

Ray tracing is a technique for generating images of three
dimensional objects with a computer. Programs using ray
tracing can simulate the effects of reflection, refraction
and shadows to produce computer images that possess a
strikingly high degree of realism. The technique was ori­
ginally suggested by Appel [1] and later enhanced by
Whitted and others to generate images according to the
laws of optics [18] [12] [4].

In this scheme, a ray is fired from the viewer through the
pixel into the world. The intersection between this ray
and objects in the world determines the visible surface.
Shadows are determined by firing rays from the
intersection point toward the light sources. Two addi­
tional rays may also be fired from the intersection point
depending on the surface characteristics, one along the
reflected direction and the other along the direction of
transmission. Figure 1 shows the ray tracing terminology
used in this paper.

In the rendering process, the color of a pixel is deter­
mined by an intersection tree. The pixel is the root node
()f the tree. All other nodes in the tree represent ray­
surface intersection points. Each arc in the tree

217

represents a ray used to determine the color of the root
pixel. A leaf node of the tree corresponds to an intersec­
tion point between the ray and either a non-reflecting,
non-transparent surface, or the boundary of the modeled
world. Figure 2 shows an example of an intersection tree.
In the case of surfaces aligned in such a way that a branch
of the tree is very deep (for example, two reflective sur­
faces in parallel can cause a tree to have infinite depth),
the branch may be truncated at a predefined depth. This
is reasonable since the truncated portion contributes very
little to the color of the pixel. After the tree is com­
pletely grown, the colors of all nodes in the tree are com­
puted and are used to find the color of their root pixel.

Using ray tracing, we may model accurately the distor­
tions of reflecting and refracting surfaces, thus producing
highly realistic images. However, there is a major draw­
back to ray tracing : very high computational expense.
To determine the color of each pixel requires one to com­
pute the intersection points between every ray in the tree
and the surfaces in the scene. One way to reduce the
amount of computation needed to produce an image is to
divide the modeled space into subvolumes and to keep a
note of the surfaces in each subvolume [3] [7] [10] .. As a
ray propagates from one subvolume to the next, the sur­
faces in each subvolume become candidates for ray inter­
section. Thus the nearest objects are the first candidates
for intersection, leading to a quick determination of the
closest object. One way to partition the space is to divide
it uniformly. In this scheme, the traversing algorithm
which traces only the relevant subvolumes is based on a
three-dimensional scan conversion algorithm. Therefore,
the time to find a small set of surfaces that potentially
intersect the ray is O(M), where M is the number of sub­
divisions on each axis, and it is independent of the
number of objects in the scene.

Ullner proposed a 2-D array of processor elements (or
PEs) for ray tracing based on the 3D world space division
parallelism model [17]. Each PE contains a general pur­
pose processor, an intersection processor, and a memory
module. Only those surface models intersecting a subvo­
lume are kept in the corresponding PE that covers the
subvolume. The two axes of the 3D space are directly
mapped onto the processor array. The third dimension of
the partitioning grid must be simulated within each pro­
cessor in the array. As a ray travels across the space, the
ray message travels across the corresponding processors.
This approach has several disadvantages : (1) high storage
requirement due to the need to store copies of the same
object model in multiple PEs; (2) as the number of PEs in

the system increases, the time for the ray to transverse in
space increases; (3) difficulty in balancing the load due to
its rigid mapping between subvolume and processor.
Dippe and Swensen [6] relaxed the mapping function in
order to balance the load and proposed a 3-D array of
processor elements to perform ray tracing. However, the
approach does not eliminate the other shortcomings and
the mapping function is more difficult to implement.

In the paper (5] and (14], a different parallel processing
scheme for ray tracing was proposed. In this scheme, the
screen is partitioned into subscreens and each subscreen is
processed by a PE in a multimicrocomputer environment.
Object models are stored in each ·PE if their projection
intersects the subscreen of the PE (called Y-clipping [5]).
Additional object models may be fetched by a PE if there
is a need due to the computation for shadow, reflection,
or transmission. There are several disadvantages to this
scheme: (1) it explores parallelism only at image level
(i.e., screen); (2) as the area of each subscreen
decreases, the number of copies of each object model' in
the system increases, and the benefit of using Y-clipping
diminishes.

In viewing the shortcomings of the above architectures,
we list the desirable features for a parallel ray tracing
architecture as follows:

• Allowing parallelism among rays and among different
computation processes for each ray.

• Keeping only one copy of each object model in the
system regardless of the number of PEs used. This
reduces the memory requirement of the system and
improves the updatability for the object models in the
scene.

• Allowing the empty-space transversal time for each
ray to be virtually independent of the number of PEs
in the system.

To achieve these goals, we proposed a dynamic dataflow
architecture with a hierarchy of spatial information (loca­
tions of objects in space) and specialized execution
modules for ray tracing image generation.

The next section describes the proposed architecture. A
model for the ray tracing image generation computation
based on probability is described in section 3. The queu­
ing network of the proposed architecture is also described
in section 3. The results are discussed in section 4. Sec­
tion 5 concludes the paper.

2. The Architecture

To explore the parallelism in ray tracing image genera­
tion, a dataflow graph for ray tracing based on space sub­
division is presented in figure 3a. The data tokens for the
operators are shown in figure 3b. Basically, the diagrams
indicate· how to grow an intersection tree from a root
pixel. The color of a pixel is obtained by accumulating all
the color components inside the corresponding intersection
tree.
In this paper, we propose to use a specialized dynamic

dataflow architecture for ray tracing image generation.
The processes in figure 3a map directly onto the modules
in the dynamic dataflow architecture shown in figure 4.
This architecture contains six types of modules : Ray
Generator (RG), Empty Space Processor' (ESP), Fetch
Unit (FU), Intersection Processor (IP), Intersection
Result Buffer (IRB) and Color Accumulator (CA). The
modules are connected in a circular-pipelined fashion.
Because all intersection trees are mutually independent,
many intersections may be processed simultaneously. To
allow a high degree of parallelism, multiple copies of each
type of module may be used. In each module, execution
starts once the "operand token" is available. If more than
one "operand token" enters a processor, the processor
places them in a queue, and executes them one at a time.
In the system, the "root pixel'' is used as the tag for most
tokens for the purpose of accumulating color for each
pixel. Tokens from P4 to P6 in figure 3a have longer tags
due to the unfolding of iterative computation P5.

218

The ray tracing system keeps a hierarchy of subvolume
and surface information. This "spatial-information" hierar­
chy includes an Object Model Storage (OMS), Subvolume
Surface Lists (SSL), and an Empty Subvolume Map
(ESM). (See Figures 3 and 4) The ESM stores
empty/non-empty bits for all the subvolumes in the scene.
This map is used to determine the first non-empty subvo­
lume encountered as a ray travels in space. It allows rays
to bypass empty subvolumes quickly. The SSL is a list of
surfaces intersecting a Jtiven subvolume. Each entry in
the SSL contains a surface ID and a pointer pointing to
the beginning of the surface in the OMS. The SSL; how­
ever, adds a level of indirection for reading surface
models; instead of having multiple copies of a surface in
several subvolumes, now, in a multiple IP-OMS system,
we need only pointers in multiple SSLs, one for each
intersecting subvolume. Therefore, we need only one copy
of each surface description in a multiple IP-OMS system.

The following describes the function of each module and
how the architecture works.

The architecture acts as a display system attached to a
host computer. After first initializing the system, the host
computer must program the system with parameters.
(For example, how to partition the world into subvo­
lumes, the position and color of every light source, and
parameters of the viewing pyramid.) Then, the host com­
puter transfers all the object models and texture maps in
the scene to the display system. This information is distri­
butively stored in the OMS to allow parallel accessing.

The spatial information hierarchy is created by perform­
ing clipping on all the surfaces in the scene with each sub­
volume. In this clipping operation, the majority of the
subvolumes are trivially rejected and only a small set of
subvolumes becomes candidates for a more detailed clip­
ping test. Such a test can be performed either by the IP
or by different dedicated hardware. The results of the
clipping operations for each · subvolume are stored in the
SSL for the subvolume, and the empty/non-empty condi­
tions for all subvolumes are stored in the ESM. Another

alternative to the detailed clipping test is not to perform
the detailed clipping test at all. In this case, surfaces are
always included in the SSL of their candidate subvolumes.
The load for the intersection processor becomes heavier
due to the longer SSL lists. To avoid counting any inter­
section point multiple times during image generation, the
IP must compute and output only those intersection points
that reside inside the intended subvolume.

As the number of subvolumes increases, the average
length of the SSL becomes shorter, and the ray-surface
intersection computation becomes faster. Thus, the pro­
posed spatial-information hierarchy can reduce both the
object storage requirement and the ray tracing time.

When the initial transferring of the system parameters and
object models is complete, the RG begins to generate pri­
mary rays and sends these rays to the ESP to find the first
non-empty subvolume on the path of the ray. Once the
ESP finds the first non-empty subvolume, the ray with the
subvolume number is transferred to the FU. The FU
identifies all surfaces contained in the subvolume and
sends a sequence of "ray-surface ID" pairs to the IP. The
IP retrieves the surfaces from the OMS and computes the
intersection point between the pair. The IRB then com­
pares the intersection points from the output of IP and
keeps only the intersection point closest to the origin of
the ray in its register.

If there is no intersection in a subvolume, the ESP is so
informed. The ESP finds the next non-empty subvolume
on the path of the ray. Once the intersection point closest
to the origin of the ray is found, shadow rays are fired
from this point toward all the light sources in the scene.
These shadow rays are sent to the ESP. If the intersected
surface is reflective or transparent, a reflection ray or a
transmission ray is fired and sent to the ESP. The color
of each intersection point is determined by either the IP
or the IRB, depending upon the type of ray. The color of
each pixel is determined in the CA by accumulating the
color of all nodes in an intersection tree.

3. Analytical Models

3.1 Load Model

The amount of system load for ray tracing an image is
modeled stocastically. First, we find the amount of com­
putation needed to trace a ray. Then, we determine the
total number of rays needed to be traced for an image. A
numerical example is given to illustrate our model. All
mathematical symbols used in the model are listed in
table 1.

Assume that the 3-dimensional modeled scene is uni­
formly divided into M3 subvolumes and that there are N
surfaces in the scene.

Let S = average number of subvolumes that a surface
occupies. Then, S is a function of the ratio between the
average object surface size and the subvolume size. Let's
assume that S is proportional to M2 , and call the propor­
tional constant [3, the average surface size coefficient.
Then, S= f3· M2 • f3 is related to the ratio between the

219

average surface area and the area covered by one side of
the scene.

Let p be the probability of a surface in a subvolume.
Since a surface on the average occupies S subvolumes,
and there are a total of M3 subvolumes,

-~-~-Ji_
p- M3 - M3 - M

Let f(x) be the probability of having x surfaces in a sub­
volume. Assuming the surfaces in the scene are similar in
sizes, and are placed randomly, the probabilit~ of having
a set of x surfaces in a subvolume is px(l-p) -x. How­
ever, this is merely one way of haviN1 x surfaces in a sub-

volume. There are a total of (x J different ways of

selecting x surfaces in a subVolume. Therefore, f(x) fol­
lows a binomial distribution and can be expressed as:

f(x) = lx")px(l-p)N-x

Let n be the average number of surfaces in a subvolume.
According to the binomial distribution,

n= ~ =N·p= ~
M 3 M

The probability that a subvolume is empty is f(O).

f(O) = (~)po(l-p)N-0 = (l-p)N

This is true because f(O) is the probability that not all N
surface are in the subvolume.

Let q be theJ,robability of a ray intersecting any surface.
q= 1-f (0)

In our numerical example we will assume f3 = 0.001 and
M = 200, then p = 5.0 x 10-6 , n = 0.005 and q =
0.632. Figure 6 shows q as a function of f3 and N.

If we assume that there are 1,000 surfaces in the scene,
then f(O) = 0.995.

Let g(x) be the probability that a ray travels x-1 empty
subvolumes before reaching a non-empty subvolume.

g(l)= 1-f(O)
g(2)=f(O)·[l-f(O)]

g(x)=[f(O)]x-l .[1-f(O)]

Assume that we can always find a ray-surface intersection
once a non-empty subvolume is reached. In other words,
the IP never rejects a subvolume which is given by the
ESP because it could not find a surface to intersect.

Let D = . average number of empty subvolumes traveled
by a ray before reaching a non-empty subvolume. Then:

M M
D=M·(l- L g(x))+ L x·g(x)

x=l x=l

M
=M·fM(O)+ L x·[f(O)]x-l .[1-f(O)]

x=l

Using the parameters already assumed in our numerical
example, D = 127.

Let tg = average ray generation time (for any type of ray)
te = average computation time to by-pass an empty

subvolume
tr = average time to fetch a Subvolume Surface List
to = average time to fetch a surface from OMS
tb = average time to compare intersection points
t;_ = average computation time for each ray-surface

intersection
tc = average time to determine the color value of

the intersection point
ts = average color summation time

Then,
TR = average computation time per ray in a serial

computer.
= average ray generation time (for any type of ray)
+ average time to travel across the empty space
+ average time to find intersection point in a

subvolume ,
+ average time to accumulate color for the pixel
=tg+ D·te +tr+n·(to +t;_ +tb) +tc+ts

Let's call u and w the average percentages of reflective
and transparent surfaces in all subvolumes respectively.
Therefore, 1-u-w is the percentage of opaque surfaces.
Let I be the number of light sources in the scene and R be
the ray tracing resolution of the image. In our example,
assuming the screen resolution is 512 x 512 pixels and each
pixel has 4 supersamples for anti-aliasing, then R = 1024.
Next, we will determine the average number of nodes in
an intersection tree and the average number of rays traced
for an intersection tree.
The root node of each tree represents a pixel point and,
by definition, it has exactly one primary ray to be traced
for it. Its probability of intersecting a surface is q.
Therefore, on the average, it has q child nodes. Among
them, q·u nodes are created. by intersecting a reflective
surface and q·w nodes are created by intersecting a tran­
sparent surface. As a result, a total of q-(u+w) rays is
traced for the next level of the tree. In addition, to deter­
mine whether the intersection points are directly
illuminated by any light source, q·l shadow rays need to
be traced. The same reasoning is used to determine the
total number of rays traced and the total number of child
nodes for the entire intersection tree. They are listed as
follows:
Total number of nodes per tree

= 1 + f qx+ 1(u+wr = 1 + 9
x=O 1-q(u+w)

Total number of vision rays traced per tree
00 1

= L qx(u+w)x = ----
x=O 1-q(u+w)

Total number of shadow rays traced per tree
= (total number of node per tree - 1) · l
- q·l
- 1-q(u+w)

Total number of rays traced per tree
= total number of vision rays
+ total number of shadow rays in the tree

1 + g·l
1-q(u+w)

220

Let B be the total number of rays for the final image.

B=(the total number of intersection trees)
· (the total number of rays traced per tree)

=R2· 1 + q·l
1-q(u+w)

where the ratio between the total number of vision rays
and shadow rays is equal to 1 : q· l. Figure 7 shows B as a
function of the number of light sources in the scene (1)
andq.

Therefore, the estimated total ray tracing time for gen­
erating an image based on space subdivision on a serial
processor is <I>, where
<I>= TR·B

M
= [tg + te· (M·fM(O)+ Lx·[f(O)]x-l,[1-f(O)])

·x=l
+tr+ .~:J!.(to + t;_ + tb) + tc + tsl ·R2· l+g·l

M 1 1-~~+~

The time used for clipping objects against each subvolume
can be substantial on a serial processor. However, other
algorithms to reduce the need for intersection tests
between every ray and every surface in the scene have
high overhead too [11]. The modeling of the clipping
overhead for a serial processor is beyond the scope of this
paper.

In our example, we will further assume that t;_ = 50
micro-seconds and all other time measurements in the TR
equation are 2 micro-seconds. Also assume the number
of light sources l = 4 and u + w = 0.15. Then, the total
number of rays B = 4.57 x 106 , the average ray tracing
time per ray TR = 2.62 x 10-4 seconds. In a serial pro­
cessor, the estimated total ray tracing time for an image is
1198 seconds. The performance of our parallel architec­
ture is estimated by developing and analyzing its queueing
model.

3.2 Performance Model

Our goal of modeling is to obtain relative performance
measures of the proposed architecture under various load­
ing conditions. Although queueing models for dynamic
dataflow architectures have been studied recently [8] [9],
they are not suitable for o'ur proposed architecture
because of the specialized modules used in the architec­
ture. Figure 5 shows our architecture as a network of
queues. Service centers are the RG, ESP, FU, OMS, IP,
and IRB. Due to different routings, we need to distin­
guish two types of jobs· in the queueing network. They
are jobs associated with vision rays (i.e., primary ray,
reflective ray, and transmission ray) and jobs associated
with shadow rays. The following describes the sources
and sinks in the model.

Sink 1 : When a vision ray travels in space, there is a
chance that it does not intersect any surface before exiting
the modeled space. If this happens, no further processing
is needed for the ray, and the background color should be
returned to the Color Accumulator. According to our
load model, the probability of this is 1-q.

Sink 2 : When a shadow ray travels in space, there is a
chance that it does not intersect any surface before reach­
ing a light source. If this happens, the color of the light
source should be used to compute the color of the ray­
surface intersection point and return the color of the inter­
section point to the Color Accumulator. According to
our load model, the probability of this is also 1-q.

Source 1 : The intersection computation between a vision
ray and the multiple surfaces inside a subvolume is
modeled by the feedback route. The feedback probability
depends upon the average length of a Subvolume Surface
List. For a vision ray, in order to determine the closest
intersection point to the origin of the ray, the IP must
perform intersection computation between the ray and
every surface in the SSL. Due to the nature of the com­
putation, only the vision ray enters the IRB.

Source 2 : Intersection computations between a shadow
ray and the multiple surfaces inside a subvolume are
modeled by the feedback route. The feedback probability
also depends upon the average length of a Subvolume Sur­
face List. However, for a shadow ray, only one ray­
surface intersection is required to determine that a light
source does not directly illuminate a point. Therefore, on
the average, half of the SSL is tested for intersection with
a shadow ray before finding a blocking surface.

Because of the large degree of parallelism available in ray
tracing image generation, we assume that the system is
overloaded most of the time. A throttling mechanism is
assumed to be used among the modules to limit the
number of jobs in the system below a threshold. This
threshold is used as the job size in the closed queueing
network. Other assumptions made for the performance
model are listed as follows:

Assumption 1 : In the model, the IP and the OMS are
inside a feedback loop. They are assumed to be the
system's bottleneck. Multiple OMSs and IPs are used to
increase the system throughput. A close-coupled IP-OMS
arrangement is used to reduce the interconnection over­
head between them.

Assumption 2 : A ray will always find an intersection
point within a non-empty subvolume. This is not true in
general. However, it is true if the number of subvolumes
approaches infinity.

Assumption 3 : The service rate for each service center is
an exponentially distributed random variable. In addi­
tion, the queueing discipline at each service center follows
a first come first served (FCFS) policy.

4. Results and Discussions

The main intention of this paper is to show a new parallel
architecture for ray tracing and to determine the relative
performance of the proposed architecture under different
load conditions based on the analytical model. For this
purpose, we have chosen some of the system parameters
based on the current hardware technology. The service
rates of the service centers in the queueing model are as

221

follows. Each IP has an average service rate of 0 .1 mil­
lion ray-surface intersections per second. This is derived
from the data provided in [17] assuming all surfaces are
convex polygons and specialized parallel hardware is used
in the IP. Also, based on the above, we assume that the
OMS can fetch 0.25 million surfaces per second. The
IRB has an execution rate of 5 million comparisons per
second. We also assume the ESP can retrieve empty bits
at a rate of 10 million retrievals per second, the average
ray generation rate is 1 million rays per second, and the
SSL retrieval rate is 1 million SSLs per second. To esti­
mate the performance of the system, the load model of
the image generation task and the queueing model of the
system are combined and analyzed by the PANACEA
[15]. PANACEA is a software package for analyzing
multiple job class Markovian queueing network.

Figures 6 and 7 show how image complexity (parameter­
ized by q) relates to the composition of the image. Fig­
ure 8 shows the average time to travel across empty space
in the scene and the average time to find an intersection
point inside a subvolume as a function of the number of
subvolumes on each axis (M). In this figure, we have
normalized the time scale to the empty-bit retrieval time
and assumed that the ray-surface intersection time is
equal to 100. Three images with a different number of
surfaces are plotted in figure 8, which shows that for a
simple scene, a low value of M is a better choice because
the Empty Space Processor is the system's bottleneck.
However, for a complex scene, a large number of subvo­
lumes substantially improves the performance of the sys­
tem. This is due to the fact that for a complex scene, the
Intersection Processor becomes the system's bottleneck.
In this case, the higher M reduces the average length of
Subvolume Surface List, consequently reducing the time
to find an intersection point inside a subvolume. An
optimal M which gives a minimum computation time
exists for each image.

Table 2 lists the queue length in each server and the
system's processing time for a vision ray and a shadow ray
as functions of q. The results indicate that there are two
ways that image complexity affects the performance of
the system. A higher q increases the number of rays that
need to be traced. Also, it increases the percentage of
rays entering a non-empty subvolume, consequently

increasing the number of intersection computations
required. This causes a higher queue length at the IP­
OMS, as shown in table 2.

Table 3 shows the queue length of the service centers
against the variation of the number of IPs. The shifting of
the bottleneck from the IP-OMS to the ESP and the FU
in table 3 is similar to the bottleneck shifting from the
execution unit to the match unit in a dynamic dataflow
computer. To relax the potential of being the bottleneck
of the system, additional ESPs or FUs may be added in
parallel. In this case, an interconnection ·structure must
be used between ESPs and FUs and between FUs and
IP-OMSs.

Figure 9 shows the intersection test processing power
(total number of busy IPs) against the number of IPs in
the system for two different degrees of image complexity.
It shows that the processing power approaches a constant
when the number of IPs is large. However, more inter­
section test processing power is usable if the work load to
the IPs increases. Figure 10 shows the time to generate
an image frame against the number of IPs. The result
shows that there is an optimal number of IPs which
require minimum time to generate an image frame. This
optimal number of IPs increases as the image complexity
increases.

In summary, image complexity affects the system load in
several ways and can cause the system's bottleneck to
shift. When the image complexity is high, our architec­
ture allows several ways to improve its performance:
1. It uses the spatial-information hierarchy for faster

empty space transversal.

2. It allows one to increase the subvolume resolution
(M), consequently reducing the total number of
intersection computations needed to produce an
image.

3. It uses multiple IPs and OMSs in a close-coupled
arrangement for a higher intersection-test rate. If
the bottleneck shifts to the ESP and FU, one may
also add more ESPs and FUs in parallel to relax the
bottleneck.

5. CONCLUSION

In this paper, we have proposed a specialized dynamic
dataflow architecture for ray tracing image generation.
Our architecture reduces the object storage requirement
and increases the image generation rate especially when
the complexity of the image is high. We have developed
a load model for ray tracing computation based on proba­
bility. This parallel architecture is modeled with a closed
queuing network. The results of the load model provide
some parameters for the queueing model. Through these
analytical models we have learned the relative perfor­
mance of the architecture under various load conditions.

6. References

[1] A. Appel, "Some Techniques for Shading Machine
Renderings of Solids," Proc. AFIPS JSCC, Vol.32,

1968, pP.37-45.
[2] Arvind and K. P. Gostelow, 'The U-lnterpreter,"

IEEE, Computer, Vol. 15, No. 2, Feb 1982.
pp.42-50.

[3] S. Coquillart, "An Improvement of the Ray­
Tracing Algorithm," Eurographics'85. pp.77-88.

[4] R. L. Cook, T. Porter, L. Carpenter, "Distributed
Ray Tracing," Computer Graphics (Proc. SIG­
GRAPH 84), vol.18 No.3, July 1984. pp. 137-
145.

[5] H. Deguchi, et al., "A Parallel Processing Scheme
for Three-Dimensional Image Generation," Proc.
International Symposium on Circuits and Systems,

222

1984. pp.1285-1288.
[6] M. Dippe, J. Swensen, "An Adaptive Subdivision

Algorithm and Parallel Architecture for Realistic
Image Synthesis," Computer Graphics Volume 18,
Number 3, July 1984. pp.149-158.

[7] A. Fujimoto, K. Iwata, "Accelerated Ray Trac­
ing," Proceedings of Computer Graphics, Tokyo
1985. pp. 41-66.

[8] D. Ghosal, L. N. Bhtiyan, "Analytical Modeling
and Architectural Modifications of a Dataflow
Computer," Proceeding of International Sympo­
sium on Computer Architecture, 1987, pp.81-89.

[9] D. Ghosal, L. N. Bhuyan, "Performance Analysis
of the MIT Tagged Token Dataflow Architecture,"
Proceeding of International Conference on Parallel
Processing, 1987, pp.680-683.

[10] A. S. G~assner, "Space Subdivision for Fast Ray

Tracing," IEEE CG&A, October 1984. pp. 15-
22.

[11] J. Goldsmith, J. Salmon, "Automatic Creation of
Object Hierarchies for Ray Tracing," IEEE Com­
puter Graphics and Applications, May 1987. pp.
14.

[12] R. A. Hall, D. P. Greenberg, "A Testbed for
Realistic Image Synthesis," IEEE Computer
Graphics and Applications, November, 1983. pp.
10-20.

[13] K. Hwang, F. A. Briggs, "Computer Architecture
and Parallel Processing," McGraw-Hill, 1984.

[14] H. Nishimura, et al., ''LINKS-1: A Parallel Pipe­
lined Multimicrocomputer System for Image Crea­
tion," Proc. 10th Symposium on Computer Archi­
tecture, 1983. pp.387-394.

[15] K. G. Ramakrishnan, D. Mitra, "An Overview of
PAN ACEA, A Software Package for Analyzing
Markovian Queueing Networks," Bell System
Technical Journal, Vol.61, No.10, Dec.1982,
pp.2849-2872.

[16] V. P. Srini "An Architectural Comparison of
Dataflow System," IEEE Computer, Vol. 19,
no.3, March 1986. pp.68-87.

[17] M. K. Ullner, "Parallel Machines for Computer
Graphics," PhD Dissertation, California Institute
of Technology, 1983.

[18] T. Whitted, "An Improved lliumination Model for
Shaded Display," Communications of the ACM,
Volume 23, Number 6, June 1980. pp.343-349.

IOOtpixel

ftpre 2. INTERSECllON TREE FOR A PIXEL

In ray tracing scheme. the OJlor of a pixel is derennincd by an intersection tree. The root node of the
~ comsponds IO a pixel in tho image. All other noda in tho intenec:tion troc corraponds ., tho
,._oa poims. And, arcs c:onospond ., rays. In this figure, I, P. R, T, S and N indicate pixel,
pnmary ray, -on rays. transmission rays. !hadow ra!". and swfaa: nonnab rcspccli...ty.

R= the ray tracing resolution of the image.
N= the number of surfaces in the scene.
M= the number of subdivisions in each axis.

I= the number of light sources in the scene.
u= the percentage of reflective surfaces in all subvolumes.
w= the percentage of transparent surfaces in all subvolumes.
S= the average number of subvolumes that a surface ()C(.-upies.
~= the average surface Size coefficient.

i.e. the proportional constant between S and M2

p= the probability of a surface in a subvolume.
f(x)= the probability of having x surfaces in a subvolume.

n= the average number of surfaces in a subvolume.
q= the probability of a ray intersecting any swface.

g(x)= the probability of a ray traveling x-1 Empty subvolumes
before reaching a non-Empty subvolume.

D= the average number of Empty subvolumes traveled by a ray
before reaching a non-Empty subvolume.

t8= the average ray generation time (for any type of ray).
t.= the average computation time To bypass an Empty ;ubvolume.
t,= average time To fetch a Subvolume Surface List.
lo= average time To fetch a surface OMS.

lt> = average time To compare intersection points.
t; = the average computation time for each ray-surface intersection.
~ = the average time To determine the color value of the intersection point.
t, = the average color summation time.

TR= the average computation time per ray.
B= the total number of rays traced for generating an image.
<I>= the total ray tracing time for generating an image on a serial processor.

Table !. MA TIIBMA TIC SYMBOLS USED IN TIIIS PAPER

PROCESS TIME
q

V,RAY S.RAY

0.1 •o 15
o. 2 Sf l1
O.l Bl " 0.f 109 56
o.s ll6 69
0.6 ••• .,
0.1 ... 97
o.e 219 111
0.9 247 125

V,RAY • VISION RAY
S,RAY • SHADOW RAY

NUMBER OF' IP-OHS • B
TOTAL POPULATION • 10

QUEUE LENGTH

EP FU IP-OHS

29.S 0.11 1.01
e.o 0.20 J. 70
2.] 0.27 4.46
1.2 0 .. 29 4.60
0.86 0, JO 4. 66
0.66 0.31 1.69
0.5J o. 32 •• 71
0.45 O.JJ I. 72
0.39 O,JJ 4. 7J

IRB

0.06
0.07
o.oss
0.046
0.040
O.OJJ
O.OJO
0.021
0.02'

Table 2. QUEUE LENGTH AND RAt PROCESSING TIME (in micro-second)
YS THE PROBABILITY OF A RAY INTERSECTING ANJ SURf'ACB (q)

NUHBBR QUEUE LBNGTH
or

IP-OMS •• FU IP-OHS lRB

1 o.os 0.04 38.9 0.00.4
2 0.09 0.00 19.4 0.008 • 0.21 0.16 ... 0.014
8 0.15 O.JJ f.7 0.027

12 o. 7J O.Si l.1 O.Ol7
16 1.05 0. 70 2.] 0.046

" ... 1.09 1.5 0.061
32 2. 7 1.5 I.OS 0.072 •• f.5 2.1 0.65 0.086 •• 6,0 2.4 0,46 0.093

q .. 0.8
TOTAL POPULATION • 40

Table J. QUEUE LENGTH vs THE NUMBER OF JP-OMS IN THB SYSTEM

7 Viewer

Figure 1. RAY TRACING '!ERMJNOLOGY USED IN 1llE PAPER

Primary ray : The first ray traced for a pixel. Primary rays are created by projecting pixels in the
viewing direction.

Scconda!y ray : all ..tlected rays and transmitted rays.

Vision ray : all primacy rays • and secondary raYJ.
Shadow ray : the ray fired from intersection point toward a light source.

A vision ray may be terminated in the following three ways :

t. intersecting a aon·rcfl.cctivc and non-transparent surface, (shown in this figure).
2. cEting the world been modeled.

3. 1"rminatcd at pn:ddined - depth.

A shadow ray terminaic., after reaching a surface or a light soun::c.

223

vi•wi,,g
d1ract1on

l ((!~~~~-
\ <fJ'_J

J
--@

ESM i '-r
'"

' terrn1na1: ton ol
- • stiedow ray

detected

intar~utc1:

- axist:11

er
er

11gh1:
/ source

ESM : EMPTY SUBVOLUME MAP

SSL : SUBVOLUME SURFACE LIST

color component
lor a s:i1xal

Figure Ja. A DATAFLOW GRAPH FOR THE RAY TRA_CING COMPUTATION

vlew1ng
dtractton

I r
plxal,

p1xe!,
intersect

I

er
s;it>1at.,

"°Y

s;ihce1, 11ght
Intersect source

\I

1
s;itxel,

ray

ray, surface s;iixel,

Empty
pixel, Suovcl

ray ...
\I r
s;ilx•l.

ray,
subvol

subvol. d•scri• subvol, s;itxa\, light
sur1'acaIO ptton tntarsect intersect sourc•

\I

r
s;liMel,

suovol,
intersect

\/

r
pt1<al,

intersect

PO : G•nerat• s:irtmary ray
P1 Geriarate secondary ray
P::Z Generate shadow ray
P3 Transverse empty space

\I

er
color component
tor th• pixel

p1xal, Subvol
ray. Sur1'&Clil

sub1.1ol List

\I

A
plx•l,

ray,
subvol,

surlacaIO

P4 R•tri•v• surlace•ID ins1d• a non-empty suovolume p' Coms:iut• 1:1"1• ray-surface int•rsect1on
PEi Oetarm1na the tntersactton point

clos•st to tt'1• ortg1n ol th• ray
P7 Calculate color co111Ponant for th• ptxal bes•d on

th• type of th• ray and lnt•r1'•Cttng surlac•

Figure 3b. OPERATORS USEC IN TH£ RAY TRACING COMPUTATION

Figure 5. PBRPORHAHCB HODBL or THI& ARCHITBCTURB

•ourca 1

T T ~[~·=
CG----G-G-~

Figure 4. PARALLEL ARCHITECTURE FOR RAY TRACING IMAGE GENERATION

(additional modules of each type may be added in parallel)

6 typies of module :
RG Ray Generator
EP Empty Space Processor
FU Fetch Unit
IP Intersect ion Processor
IRB Intersection Result Buffer
CA Color Accumulator

spatial-information hierarchy :
ESM : Empty Subvolume Map
SSL : Subvol ume Sur face Li st
OMS : Object Model Storage

•t u ..
U::

·····~~mil
a":o:; 0.1 o.~ 0..3 C1.4 o.s- Q.6 0.7 o.g a.CJ f.o

PROBABIUTY OF A RAY INTERSECTING ANY SURFACE (q)

....... 1. NUMBEJt. OF RAY TR.ACED FOR AN IMAGE " PROBABILITY OF A RAY
tNTERSECI'ING ANY SURFACE

............ "''
: : : : l l :~,-rn.,.,..,;.,.,,..,,,,

...
·-- _ ---·--NUMB-_E!'._OF SURFACE_,!1-~_.SCENB __ .:_(N):_ __

Figun: 6. PROBABILTI'Y C1I A RAY INTERSECnNO ANY SURFACE.
vt NUMUER OF SURFACE IN Tim SCEl'ffi

8

224

1 l.. + 12. 10 20 '24 28 3:a. 3' -to 41 •8 52. 56 6.o '+

I~

., ..
. ,., ...
! I 9•

!. 8•

~ 1"

~ -"'

i
i

NUMBER OP IP-OMS

7.-+ 8 T~ _

Ficufe Lo: IMAGE GEN'ERATIQf TIME vs .NUMBER OF IP-OMS

A PRACTICAL STATIC DATA FLOW COMPUTER
BASED ON ASSOCIATIVE METHODS

Thomas L. Sterling
Ellery Y. Chan

Government Systems Sector
Harris Corporation

P.O. Box 37
Melbourne, Florida 32902

Abstract

The static data flow model of computation offers high perfor­
mance and scalability by exploiting fine-grained parallelism
and flow control constrained only by data precedence. Unfor­
tunately, the token driven mechanism upon which most
proposed static data flow architectures are based is inefficient
for communication and synchronization, being profligate in its
use of memory bandwidth and micro-operations. Associative
templates have been proposed as a temporally efficient alterna­
tive to tokens. This approach applies associative processing
methods to data flow communication and synchronization. This
paper presents a practical associative template based architec­
ture that provides effective, fine-grained static data flow
computation.

1. Introduction

Efficient techniques for managing fine-grained parallelism are pre­
requisite to very high performance computation. In the static data
flow model (1, 2] of computation, program execution is typically
coordinated by tokens (3), directed packets providing communication
and synchronization among operation templates. Token-based data
flow architectures (4, 5) have memory bandwidth requirements {the
number of memory accesses per operation) and serial temporal over­
head (lhe number of primitive micro-operations !hat must be
performed sequentially per instruction execution) greatly in excess ·of
equivalent characteristics for conventional uniprocessors performing
the same tasks. The present dearth of data flow machines in the high
performance computing arena is due, in part, to the intrinsic inefficien­
cy of the Loken driven approach. Viable static data flow awaits an
alternate execution mechanism.

The associative template [6) mechanism evolved from the need to
significantly reduce overhead and make better use of communication
bandwidth between integrated circuits. It employs associative process­
ing methods to perform program flow control in a data flow
context. The associative template mechanism fully satisfies the seman­
tic requirements of the static data flow model, and has previously
been described (7) in the context of a single-node system.

Associative diffusion, a related associative processing technique
that extends the associative template approach to multi-node systems,
is a new method for supporting communication between adjacent nodes
in a mesh interconnected topology. For this specific class of system
structures, associative diffusion provides nearest neighbor communica­
tion without tokens, and without incurring an additional time
penalty. It does so by overlapping the domains of associativity across
adjacent node boundaries. There is an overhead cost in time for com­
munication between nonadjacent nodes, so this method is best suited
for those algorithms that can be statically mapped onto the node array

225

to require mostly nearest neif':hbort transactions.

Together, the associative template and associative diffusion con­
cepts establish an alternate approach to static data flow architecture.
By eliminating tokens, static data flow architectures of much greater
efficiency can be realized. However, the unsophisticated implementa­
tion of these associative methods can result in specifications that
exceed the capability of today's technology in terms of packaging,
power dissipation, and electrical characteristics.

This paper presents a new static data flow architecture based on
associative templates and associative diffusion. The Associative Tem­
plate Dataflow (ATD) computer architecture separates the
synchronization control and data communication functions of the asso­
ciative template and associative diffusion mechanisms, providing the
low-overhead communication between neighbors at little additional
cost, and resulting in a system organization whose components can be
realized with current technology.

For certain classes of storage allocation and program structure the
architecture permits maximum throughput of critical components.
This is achieved by decoupling the synchronization of modules into an
ensemble of asynchronously interacting client and server components,
maximizing throughput utilization across the interfaces to critical
(expensive, performance constraining) system elements, and minimiz­
ing the number of such transactions that must be performed per
operation execution (template firing).

In the following sections, the associative template and associative
diffusion concepts are reviewed in their generalized form, and. a sim­
plistic single node architecture is described to demonstrate that the
semantic criteria of the static data flow computing model are met.
The ATD architecture embodies associative templates and associative
diffusion in a practical implementation. The architecture is functional­
ly decomposed, the modules are described in detail, and some of the
variations and trade-offs are considered. The concluding discussion
focuses on unresolved problems of hardware implementation and exe­
cution of real world applications.

2. Background

2.1 The Static Data Flow Model

The static data flow model of computation is a set of semantic
policies that must be supported by the underlying execution medium.
Foremost among these are:

I) A data flow operator will execute when its operands
have been computed by its argument source operators ------t In the class of interconnection schemes discu~sed here, nearest neighbor transactions are

al ways of distance one.

A B

~z
SELECTY

A

SWITCH i
k'

Figure 1. The Select and
Switch operators. The
Select operator passes
either its A or B operand
based on the value of the
'third operand, Z. This tem­
plate can fire prior to the
arrival of Iha operand not
selected. The Switch opera­
tor passes its A operand to
one of two groups of recipi­
ents, based on the value of Z.

(dat.a driven synchroniza­
tion).

2) Only a single instantia­
tion of each operator at a
time is pennitted. An
operator will execute
only when the operatars
that use its result values
(the recipients) have com­
pleted their most recent
execution and are pre­
pared to accept new
operand values.

Each operator in a data flow program
is represented by a template, a small data
structure that explicitly or implicitly
specifies the operation to be performed;
the source templates that supply the argu­
ment values, the recipient templates that
use the result values as operands, and the
transient internal state of the operator as
it progresses through its execution cycle.
Conditional flow control is supported by
special templates. The select template
chooses as its result value one of two

argument values depending on the Boolean value of its third argu­
ment. The switch template makes its primary input datum available
to one of two sets of prescribed recipient templates depending on the
value of its other Boolean operand (see Figure 1).

In most proposed static data flow arehitectures the assumed imple­
mentation mechanism is the token, a small message packet for
synchronization and communication among templates. In such architec­
tures each operator execution involves a number of token handling
micro-operations and a number of memory accesses to the template
store, resulting in temporal overhead and memory bandwidth require­
ments almost an order of magnitude greater than that of executing the
same operation on a conventional RISC microprocessor [8].

2.2 Associative Processing for Flow Control

The conventional application of associative processing [9] has been
the searching of sets of data to detect records that contain a field
matching a specified key value. Associative mechanisms have been
applied to database operations for sorting and searching [10], to cache
memories [11, 12] for fast instruction fetching and data access, and to
translation lookaside buffers [13] for rapid virtual memory mapping.
The associative template mechanism applies associative processing [9 -
13] to program execution flow control. Instead of managing program
data as in the case of the previously cited applications associative tem­
plates use associative methods to directly modify the control state of
an executing data flow computer.

Associative techniques are used to manage dat.a flow control
because the control state of the system is distributed among the tem­
plates: the generation of a new result value can affect elements of the
control state in different parts of the system. In a token driven sys­
tem, each portion of the control state change invoked by an executing
template is performed as a distinct token handling operation. By
employing broadcast communication techniques, the knowledge of a
template ftring event can be distributed to all necessary parts of the
control state at the same time. Templates recognize relevant broad­
cast events and adjust their own part of the program control state.
This includes both reporting availability of new operands to recipient
templates (templates for which result values are destined), and updat­
ing the source templates (templates from which argument values are
derived) with the acknowledge status of their recipients. All of these

226

actions can be done simultaneously,
but require memories configured
with internal logic for the purpose.

2.3 Associative Diffusion for Com­
munication

The initial associative template
architecture was developed for a
system consisting of a single pro­
cessing element, or node. The
architecture exploits parallelism to
sustain peak performance of a
pipelined functional arithmetic
unit. The concept of associative dif- Figure 2. Domains of assoclatM·
fusion was devised to extend ty. The gray node monitors the tem-

plate activity of Iha two black nodes
associative mechanisms to the and the white node in the gray cir­
important but still restrictive case cle. The white node references val­
of communication between adjacent ues produced by nodes in the out­
nodes of a multi-node associative line circle. The domains for the
template system. Unfortunately, ,__black __ no_de_s are __ no_1_sh_ow_n_he_re_. __
the cost in transistors and package pin count of a direct application of
the associative diffusion concept to the implementation of a. static data
flow computer incorporating associative templates would be pro­
hibitive.

Associative diffusion extends the domain of associativity of a
node across node boundaries to encompass the operation space of its
nearest neighbors. Every template in a node monitors the operation of
the other templates contained within its local node and in its adjacent
nodes (see Figure 2), and watches the result values produced by tem­
plates of its own and its neighboring nodes. In this way, a template
can reference result values of other nodes and determine when they
become available. Templates can reference arguments across node
boundaries and respond to requests for result values from other
nodes. A template monitoring argument references from executing
templates of its neighboring nodes as well as those of its own node
can ascertain the acknowledge status (for dat.a flow synchronization)
of recipient templates in its local node and in the neighboring nodes.

Associative diffusion supports nearest neighbor communication
that is as fast as communication between templates in the same node.
Since that efficiency does not extend beyond adjacent nodes, it best
suits applications whose locality properties can be easily mapped onto
mesh-like system organizations. Although this is somewhat restric­
tive, many important classes of scientific computation exhibit such
behavior. Even for applications where some longer distance transac­
tions are required, multiple hop transfers can be supported within the
scope of this mechanism. Doing so, however, will impact latency
time and degrade system performance to a degree proportional to the
average communication distance.

2.4 Advantages and Disadvantages

The associative template mechanism circumvents much of the bur­
densome overhead in time and space imposed by the token mechanism.
Some of the specific advantages include reduced memory bandwidth,
higher throughput, free acknowledgments, smaller memory, and queue
elimination.

With these gains comes the inconvenience of requiring custom inte­
grated circuits for all of the principal elements. The template storage
module, which for a token driven system is conventional RAM, must
be implemented as a very smart memory. The templates require at
least six comparators each, along with other custom logic, even in a
single node system.

This paper presents an architecture that, while employing the asso­
ciative template and associative diffusion concepts to eliminate the·
need for token mechanisms, assumes a structure that is within the capa-

bility of current engineering practices. A direct
application of the previously described mecha­
nisms to a system architecture presents serious
difficulties in implementation. The number of
transistors and pins required for system node-to­
node interfacing would appear to be prohibitive.
Additional problems of bus loading and power
consumption strain the system's feasibility. The
machine described below captures the strengths
of the associative diffusion mechanism without
the expected prohibitive costs. The result is a
practical architecture for tokenless static data
flow computation.

RESULT CHANNEL ADDRESS

ACKNOWLEDGE SIGNAL
OPERATION CHANNEL

Figure 3. An associative template. The triangles are 'comparators that monitor the various busses for
addresses that match the template's operand address fields. A result address match will set the A or B

3. A Single Node Architecture operand arrival flag. An operand bus address match will cause the template to generate an acknowledge sta­
tus signal that will be sampled by the operand's source template. When the template fires, it places its opcode

A simple, single-node associative template onto the operation channel and its operand addresses onto the operand address busses. Later, it receives
data flow machine has one high throughput, ,_i;.;;;ts..;.n;.;.ew"--"va""lu;..;;e...;o.;.;.n..;.th;..;.e_res_ul_t c_h_an_ne_I_. _Wh_en_i_t i_s _a _so_u_rce_.'-it_,,p_lace_s_its-'-te_s_ul_t va_lu_e_on_to_th_e_,ope.__ra_ti_on_ch_an_n_e_I. __

pipelined functional computation unit (FCU), functional in the sense result value is no longer needed by its recipients. The dispatching log-
that no internal state is kept between operations. The FCU accepts ic will select one of the pending templates for execution.
operation packets containing an opcode, the necessary operand values,
and a result address, and produces packets containing the value result­
ing from the computation performed and the result address. The FCU
is driven by the graph coordinator, which stores and manages execu­
tion of the static data flow program. The graph coordinator embodies
the associative template techniques. It fires a new template every
cycle, delivering an operation packet to the FCU for processing. At
the same time, it assimilates a result from the FCU every cycle and
updates the control state of all recipient templates.

The graph coordinator is a collection of associative templates and
the logic that controls their execution (dispatching logic). A tem­
plate for a dyadi~ operator has five entries: a status field, two
operand source addresses,' an opcode, and a result value buffer. It
receives results computed by the FCU on the result channel, and pass­
es more work to the FCU on the operation channel (see Figures 3 and
4). When a template fires, its address and the contents_ of its opcode
field are written to the operation channel, and its operand address
fields cause the source templates to write their result value fields to
the operation channel as shown in Figure 4.

A section of logic having access to every template's status flags,
called the dispatching logic, determines when a template can fire. A
template that is eligible to fire, called pending, has its A and B flags
set, indicating that its operands have been computed and are available

The A or B flag of a template is set when the result channel
address matches the template's A or B address field, respectively,
which occurs when the FCU produces a needed operand value and
returns it to the graph coordinator. The acknqwledge flag, which per­
forms the static data flow acknowledge synchronization function,
stores the negated current value of the wired-OR acknowledgment sig­
nal whenever the template's result value is accessed by a recipient.
The acknowledgment signal is asserted by other recipients of the tem­
plate's result value that have not yet fired, signifying that the result
value is still needed for future computation. These recipients are iden­
tified by matching the contents of either of their source address fields
with the contents of either of the operation channel's operand address
bosses.

The graph coordinator accepts a result value and produces an opera­
tion packet during each cycle of its interface. During the cycle, all .
templates that are recipients of the computed result update their con­
trol state simultaneously to reflect its availability. At the same time
that the operation packet is being assembled, the acknowledge status
for both referenced operand source templates is derived. This wealth
of very low level parallelism in the operation of the associative tem­
plate mechanisms is responsible for its high throughput and interface
bandwidth efficiency.

_fo_r_a_cc_e_s_s;_an_d_ha_s_i_ts_ac_kn_ow_led_g_e_na_g_se_t_, _in_di_·c_a_tin_g_th_a_t _its_c_urr_e_n_t _________ __, 4. The ATD Architecture

FIRING TEMPLATE
(MASTER TEMPLATE)

ADDRESS {A ADDRESS l B ADDRESS I STATUS I OPCODE 1 RESULT VALUEJ
1

A OPERAND ADDRESS

B OPERAND ADDRESS

y_ (A SOURCE TEMPLATE) I RESULT VALUE]

L-[(B SOURCE TEMPLATE) I RESULT VALUE_]

l

The A ID architecture is a practical static
data flow architecture embodying the associa­
tive template and assoc1auve diffusion
concepts. This section describes the A TD
architecture in detail, building on the back­
ground material and presentation of the
simple single node system.

4.1 System Level Architecture

The ATD architecture extends the single
node architecture to support multiple, inter­
connected nodes while retaining the
efficiencies derived from its associative prop­
erties. Very tight coupling of the graph

OPERATION CHANNEL coordinator and the FCU is essential for high
Figure 4. A template firing. When a template's operands have become available and its current result value is performance. The associative domain is aug-'
no longer needed, it can fire when selected by the dispatching logic. The firing sequence causes the opcode mented to include the nearest neighbors
and the master template's address to be placed directiy onto the operation channel. The A and B operand without an overwhelming increase in cost or
addresses cause the source templates to also place their values onto the operation channel. The completed complexity.
operation packet is submitted to the FCU.

227

Figure 5. Mesh topologies. Nodes of degree 3 can be used to create mesh
structures. In a) degree 3 nodes are combined to form a degree 4 mesh build­
ing block. In b) the nodes form a degree 6 building block.

Some simplifying assumptions are imposed on this architecture to
reduce complexity of its nodes while assuring system scalability. The
system level architecture is chosen to be a large mesh [14] with effi­
cient adjacent node communication. Longer distance transactions may
experience proportionally longer latencies and performance degrada­
tion. Exploiting locality to eliminate or severely limit long distance
transactions opens the way to vast systems comprising millions of
nodes without a reduction in the average useful throughput per node,
assuming sufficient problem size and node reliability. Many problems
of interest, such as systolic algorithms [15], finite element methods
[16, 17], and signal processing applications [18] have communication
patterns that can be statically mapped onto such a structure.

The mesh system organization can be realized with nodes of only
degree 3 (nodes with three external interface ports). The relatively
small number of ports for each node is important in constraining the
module's complexity while achieving the essence of the associative dif­
fusion mechanism. Two examples of mesh topologies that can be
supported with degree three nodes are shown in Figure 5. Cube-con­
nected cycles [19] can also be implemented with degree three nodes.

putation unit that is only responsible for processing operation packets
generated within the node. A dominant specification of the architec­
ture is to sustain peak throughput of this unit. Its design is matched
to the performance of other units that determine the rate of operation
packet generation.

The fields comprising a data flow template are distributed among
three of the node elements. The parts of the template that specify the
flow graph topology and program control state, namely the operand
addresses and the status flags, are stored in the graph coordinator. The
operation code for each template· is located in the node's opcode store.
The result values produced by the templates are held in the node's mul­
tiport data memory, the data store.

The opcode store is a simple small memory with the number of
entries equal to the number of templates managed by the node and
wide enough to hold the number of bits necessary to distinguish
among the set of operations performed by the functional computation
unit

The data store stores the results computed by the FCU and pro­
vides the result values to the operation packet builder of the local and
adjacent nodes upon request It contains two two-pon memories, each
with separate read and write portS. The duplicate memories increase
the throughput of the data store. The result values of the functional
computation unit are stored in both memories simultaneously via their
write ports. Each data memory services four sources of read requests,
one from its own node and one from each of the connected neighboring
nodes. These requests come from the graph coordinators of each of the
nodes. The data values are returned to the operation packet builder of
the node originating the access.

The operation packet builder constructs operation packets for
delivery to the FCU. It acquires the source template address directly
from the graph coordinator. The opcode of the operation to be per­
formed is provided by the opcode store. The argument values come
from the data memories of either the host node or the neighboring
n~ holding the result value.

The system level architecture employs a non-global address space.
This is acceptable under the assumption that almost all references are The graph coordinator stores the data flow graph topology' main-

tains the program control state, and determines the order in which the either intra-nodal or to adjacent,-----------------~....:::.. _____ __;, _____________ _

nodes. For those cases where multi-

RESULT
ADDRESSES
&

ple hop communication is necessary,
forwarding templates can be
employed at the proportional cost of
template storage space and node
throughput.

LSBOFVALUE .,....--1~~~~+-~~~~~~~~~~~~~~---1

4.2 Node Architecture

The architecture of the A TD
node comprises a small number of
specially devised elements that OPERAND

INTER-NODE
INTERFACE

implement the associative template DATA VALUES __ +-----+---i
and associative diffusion mecha-
nisms. These clements operate in a
manner similar to that of the simpli­
fied architecture described earlier,
but also support communication
with three nearest neighbors. The
elements are 1) the inter-node inter­
face, 2) the data store, 3) the
functional computation unit, 4) the
operation packet builder, 5) the
graph coordinator, and 6) the opcode
store. The structure of a node is
shown in Figure 6.

OPERAND
ADDRESSES
AND
ACKNOWLEDGE
STATUS

DATA
STORE

RESULT ADDRESS & VALUE

Figure 6. A node of the ATD architecture. Additional communication channels exchange template addresses and data
Every node has a functional com- values with neighboring nodes.

228

RESULT ADDRESS & LSB OF DATA

OPERAND ADDRESS

OPERAND VALUE

ACKNOWLEDGE STATUS

NODE A NODES

RESULT ADDRESS & LSB OF DATA

OPERAND ADDRESS

OPERAND VALUE

ACKNOWLEDGE STATUS

Figure 7. A node and Its Inter-node connection to one neighbor. Each
neighbor connects in the same manner, with the lull complement of signals
being exchanged.

program templates fire. It receives addresses of fired templates from
the functional computation units of its own and its three neighboring
nodes. It also gets acknowledge synchronization signals from the
graph coordinators of all four nodes. The means by which these two
classes of event information are used to update the program control
state approximates the domain of associative diffusion for the host
node and its three adjacent neighbors. The graph coordinator generates
a new three-tuple each cycle specifying the address of the executing
template and the addresses of the source templates for its arguments.
For each of the two argument template addresses, the graph coordina­
tor provides a single bit acknowledge signal indicating whether or not
it contains other templates that still require that operand to be avail­
able. A key architectural objective is to maximize graph coordinator
utilization.

4.3 The Inter-Node Interface

receiving the acknowledge signal. This information comes from the
operation channel of the sending node's graph coordinator and is des­
tined for one of two of the acknowledge ports of the receiving node's
graph coordinator. This information is used to set the state of the
acknowledge flags for the selected template.

4.4 The Data Store

The data store (see Figure 8) resolves operand addresses into
operand values. It accepts addresses from each domain member (node),
and can return values to any member. The particular method used to
accomplish the diffusion of result values across the domain is embod­
ied in the choice of implementation of the data store. One
configuration is described here.

The configuration shown in Figure 8 has two banks. Results of
computation are stored in the data memory, duplicated in each bank.
This structure, allowing two operands to be resolved simultaneously,
increases the availability of the operand data.

An address register latches the incoming operand address until it
can be resolved by the data memory. Arbitration logic selects one of
the waiting addresses, which is then used to retrieve the operand value
from the data memory. The selected address is also supplied, accompa­
nied by the acknowledge status to the graph coordinator.

4.5 The Operation Packet Builder

Because the delay between the initiation of the execution sequence
of a template (when the graph coordinator selects an eligible template
from those that are pending) and the arrival of its operand values can
vary, and since there are multiple (in this case, four) sources of
operand values, greater throughput can be achieved by allowing the
template firing logic to start building operation packets for several
templates at once. The short latency incurred by the operation packet
builder does not degrade system performance as long as there are
enough templates continuously ready to keep the FCU pipeline full.
This creates the need for a small buffer area where the opcode and
result address are temporarily stored while the operand addresses are
being resolved. When the operand data values are obtained, the com-

Adjacent nodes are connected by means of a symmetrical interface
as shown in Figure 7. There are ..----'-----------------------0-P-ER_A_N_D_A_D_D_R_ES_S_& __

;four groups of interface signals ACKNOWLEDGE STATUS
between two neighbor nodes, A and (TO GRAPH CONTROLLER)
B. The first group supports data '
driven synchronization. The result
address of operations performed by
the functional computation unit of
one node are sent to the result bus
of the other node's graph coordina­
tor, indicating the availability of
the result values for the identified
templates.

The next two groups support
data access service requests from the
nodes' data memories. The service OPERAND ADDRESS -

ADDRESS
REGISTERS

requests originate with the node's OPERAND VALUE - __,..._...r---,_ _ _..
graph coordinator. The data values
are returned to the requesting node's
operation packet builder.

The last group of interface sig-
nals provides acknowledge
synchronization information
between adjacent nodes. Again, two ARBITRATION
complete paths are provided in each LOGIC

\
OPERAND
ADDRESS

RESULT ADDRESS
& RESULT DATA

direction. The acknowledge infor- Figure a. The data store. The data store has two data memories containing dupficate sets of result values, and two access
mation consists of the acknowledge ports, one to each memory, for each node in the domain. As operands are fetched, the accompanying acknowledge status
condition state and the template is forwarded to the graph coordinator. New result values are stored as they arrive from the FCU.

229

OPERATION PACKET DOMAIN/BANK

RESULT ADDRESS A OPERAND

OPERATION
PACKET

BUILDER

Aa • 0 .!J VALUES

DATA
STORE

A and B DOMAIN/BANK ADDRESS

OPCODE and RESULT ADDRESS

OPERAND ADDRESS REGISTER STATUS
~ ,,

A and B OPERAND ADDRESSES

!~~~~~~---~
Figure 9. The operation packet builder. The
operation packet builder begins building a packet
when it receives the domain and bank addresses
of the operands and the result template address.
It will later receive the opcode for the packet and
the two operand values, which may arrive at sepa­
rate times. When all the fields have been filled,
the completed packet is sent to the FCU.

.._~~..:·~~-~~~-~~~~~~~-~__,CJ._

pleted packet is submitted to the FCU. The operation packet builder
(see Figure 9) accomplishes those tasks.

The operation packet builder accepts an opcode, a result address,
and, for each operand, a domain/bank address (three bits specifying the
neighbor and which of the two ports). These it places in one of its
buffers. The domain/bank address is used to route the arriving operand
value to the proper operation packet buffer field. Once an operand val­
ue has arrived and has been stored, the operand address register used
for the access is free again to be used by another firing template. The
status of the operand address registers is used by the graph coordina­
tor, which chooses a pending template that can use currently available
registers.

4.6 The Functional Computation Unit

Operations on the operand data values, which include arithmetic
and Boolean manipulations, are performed by the functional computa­
tion unit (FCU). The FCU accepts a stream of operation packets from
the operation packet builder, each containing an opcode, two operand
values, and a result address (see Figure 10). Since the FCU is purely
functional, the result of any operation will be the same independent of
the ordering of the arrival of operation packets. The actual internal
FCU architecture is not discussed here, but can be assumed to employ
pipelining to increase its throughput, and one or more VLSI floating
point or special purpose functional units.

4.7 The Graph Coordinator

The A TD graph coordinator extends the simple single node archi­
tecture presented in Section 2 to provide associative diffusion for
associative template operation between adjacent nodes. It provides
data driven synchronization from neighbor nodes, acknowledgment
reporting by neighbors, and template firing based on available
resources. These extensions are presented in this section. The new

230

graph coordinator architecture is designed to yield chip, pin, and device
counts considered practical by standards of contemporary technology.

4.7.1 Result Value Handling

As previously indicated, result values are no longer stored in the
graph coordinator. Instead, a separate dedicated multiport data store
is provided. This transfer of fllllctionality reduces the requirements
imposed on the graph coordinator, drastically lowering its interface
pin count, permitting more uniform chip layout, and concentrating
available on-chip devices on the task of flow control. While the
result data of the FCUs are not applied to the graph coordinator, the
result addresses that identify the source templates of the operations
are still supplied. This is necessary for the unit to synchronize on
completed operations and update its control state. Furthermore, for
the distributed architecture, (as opposed to the single node system)
result addresses from adjacent nodes as well as those from the host
node's FCU must be monitored associatively.

In the single node system, each template argument source address
field employs a field-wide comparator to monitor the result address
bus. Associative diffusion requires that the result addresses of all
four nodes in an associative domain be equally accessible, and thus four

OPCODE

A OPERAND VALUE

B OPERAND VALUE

RESULT ADDRESS _---1~·

FCU

RESULT VALUE

RESULT ADDRESS

Figure 10. The functional computation unit. The lunctional computation
unit receives a stream of operation packets and produces a stream of result val­
ues accompanied by their destination addresses.

result address busses, one from each node's functional computation
unit, are used with the AID graph coordinator. Address widths are
expected to be in the range of twelve bits, which would require forty­
eight input pins. A few additional pins are needed for conditional tem­
plates and timing.

The direct realization of associative diffusion would imply that
the single source address field comparator should tJe expanded to four
comparators, one to monitor each of the four result address busses.
Fortunately, the computing model is constrained, so this is not neces­
sary. Because of the static allocation of data flow templates, the
argument template referenced by a source address field can come from
only one of the four domain nodes. Therefore each source address field
need monitor only one of the four result address busses. The bus to be
monitored is specified by the two most significant bits of the tem­
plate address. Instead of adding three more comparators, the graph
coordinator is augmented with a 4 to I multiplexer with input selec­
tion controlled by the two most significant address bits (the domain
bits), as shown in Figure 11. This approach is far less expensive than
the four comparator approach in terms of both transistor count and
power consumption.

4.7.2 Synchronization by Acknowledgment

The single node associative template method of synchronizing
with recipient (children) templates, referred to here as acknowledge
synchronization, can be thought of as consisting of two parts: generat­
ing the acknowledge condition state, and recording the current state in
the appropriate template's acknowledge flag. When all templates
were in the same node, both parts could be performed simultaneously.
In the ATD machine, recipient templates may be located in any one of
a template's domain nodes. The direct method of implementing asso­
ciative diffusion would be to tie all nodes of a domain into one large
node. To maintain parallelism, there would have to be four times as

Figure 11. An A TO associative template. The acknowl­
edge flag of the single node system has been replaced by
an expected flag and a received flag for each neighbor.

ACKNOWLEDGE ADDRESS COMPARATORS

z z
FLAG VALUE

;f '

many operation channel address bosses and as many additional compara­
tors per source address field. The costs of such a structure are clearly
prohibitive.

The A ID architecture approximates this structure by separate! y
handling the acknowledge synchronization of a node for each of the
nodes in its domain. When a node creates an acknowledge condition
signal, it needs only to go to one of its four domain nodes, that being
the same node to which the argument data request is directed. Instead
of broadcasting the condition signal across the entire domain, it is sent
only to the node in which the argument template resides. All tem­
plates in one node that use the results of a template in another node of
their domain participate associatively as in the single node architecture
to determine whether a).! of them are done with that operand. An
acknowledge condition signal received from another node indicates
whether the entire node is finished with the operand. Thus the first
part, that of creating an acknowledge condition signal for a template,
is done on a per node basis.

The second part, that Of recording the acknowledge condition
state, is facilitated by replacing the original acknowledge flag with
four flags and four mask bits (see Figure 12). Each flag reflects the
acknowledge condition state of one of the four nodes in the domain for
the template's result value. If a particular neighboring node contains
no resident templates that use the result of a host's template, then the
mask bit corresponding to that neighbor node is set. A template's
acknowledge status is satisfied when either the flag or its mask bit is
set for all of the domain nodes.

To set the flags, the graph coordinator is augmented with two
acknowledge select busses. Each of these bosses can independently
choose a template and load the state of one of the acknowledge flags.
One of these busses is associated with each of the node's two data
store memories, and the current acknowledge status is stored in the
appropriate flag at the same time that the data value for that template

ACKNOWLEDGE
FLAGS

RESULT ADDRESS BUS
FROM EACH DOMAIN MEMBER

EXPECTED RECEIVED

231

ACKNOWLEDGMENT ACKNOWLEDGMENT
EXPECTED RECEIVED

OPERAND
AVAILABLE

If\

RESULTNOLONGERNEEDED
BY ANY RECIPI~ .___ ____ __.

TEMPLATE CAN
FIRE

Figure 12. Firing logic. The dispatching logic uses the acknowledge flags
and the operand available flags to determine whether a template is eligible for fir­
ing.

is being fetched from the data memory. The additional acknowledge
bosses increase the pin count by twenty-eight. Since these are common
select bosses, no additional comparators are required to extend the
utility of the graph coordinator from single node operation to associa­
tive diffusion emulation.

4.7.3 Dispatching

The dispatching logic in the single node architecture served the
simple task of choosing almost arbitrarily among the pending tem­
plates ready for execution. The ATD architecture relies heavily on the
dispatching logic for a second critical function, that of resource man­
agement. The potential for bottlenecks exists in the A TD architecture
because of the possibility of contention for access to the data memo­
ries shared among the four nodes of a domain. It is the job of the
dispatching logic to prevent such contention from degrading the
throughput of the graph coordinator and indirectly the throughput of
theFCU.

A node has two interface ports to the data memory of each of its
domain's nodes. Each port can only support one data access request
from a memory at a time. The dispatching logic receives empty/full
signals from all of the ports. The set of full ports restricts the cate­
gories of templates (based on the source nodes of the arguments) from
which the next one to fire may be chosen. The dispatching logic con­
tinues to select templates as long as ports are available to . carry out
. the argument access requests, and as long as templates that make use
of available data store ports are pending.

4.8 Template Execution

To summarize the operation of the ATD architecture the execution
cycle of an associative template is examined. Assume this template
gets its A operand from a local source template and its B operand
from a source template in a neighboring node (Figure 13). Also
assume that its result values are used by two local recipient templates
and one recipient template in a neighboring node.

The cycle begins with the template ready to fire. The dispatching
logic of the graph coordinator selects the pending template for execu­
tion when a port to the local data memory and a port to the node

232

containing its B operand are available, then sends the address of the fir­
ing template to the opcode store and to the operation packet builder.
The firing template asserts the contents of its two source argument
address fields on the A and B operand address bosses within the graph
coordinator. The A operand address is applied to the access port of
one of the two data memories in the local node. The B operand
address is applied to the access port of one of the two data memories .
in the neighbor node containing the B source template.

An acknowledge condition state signal accompanies each of the
two operand access service reque~. Other templates in the local node
monitor the operation channel and, if either of their argument source
template fields match either of the source template addresses on the
operation channel, they assert an active signal on the appropriate wired­
OR acknowledge signal line indicating that they still require the
operand to be available. Otherwise, the templates output an inactive
signal on the acknowledge lines. These signals tell the source tem­
plates whether or not there are other templates in that node for which
the result value must remain available. The firing template's parame­
ters are distributed to the designated data stores, opcode store, and
packet builder, and the acknowledge status for ~ach of the arguments
is produced. The argument and acknowledge flags of the firing tem­
plate are then reset.

The operation packet builder chooses a free operation packet buffer
and records from which data memory output ports the two argument
values are to come. It immediately stores the firing template's identi­
fying address, which is also applied to the opcode store. The
operation's opcode is provided during the second cycle and is loaded
into the operation packet buffer.

The data store for the neighbor node supplying the B operand arbi­
trates in a round-robin fashion among the four access ports (from the
adjacent nodes) it services. When it comes to the port for the firing
template, the data memory reads the contents of its addressed value
and returns it to the dedicated output buffer of the local node. This
output buffer directly feeds the local operation packet builder. At the
same time, the acknowledge condition state accompanying the argu­
ment value request is passed to the graph coordinator's acknowledge
port along with the source template address. The address selects the
source template, and the acknowledge condition state is loaded into
the acknowledge flag associated with the local node.

The operation packet builder continuously acquires the contents of
data memory output buffers to which values have been written and
stores them in the appropriate fields of the designated operation packet
buffers. When all components of the operation packet have been
assembled in the buffer, the buffer's ready flag is set. Shortly there­
after, the functional computation unit detects the ready condition of
the operation packet in the buffer and assimilates its contents.

Figure 13. Template
Execution. The firing
template interacts with
other templates in its
own node and in a
neighboring node.

LOCAL NODE NBGHBORING NODE

The functional computation unit processes the operation packet.
After some number of cycles, due to the latency of the unit, (which is
unspecified by the architecture,) the result value of the operation and
the address of the template responsible for its creation are produced.
The result value is immediately stored in both halves of the node's
data memory via their respective write ports. The constraints of the
data flow model guarantee that no location of the data memory will
be both written and read at the same time, so conflict cannot occur.
The result address is distributed to the graph coordinator result busses
of each of the nodes within the domain.

The template source address fields monitor the result busses of
the nodes from which their operand values are derived. The A source
address field monitors the local result bus with its comparators con­
nected to the bus through its multiplexor set by its address' two most
significant bits. The B source address field similarly monitors the
result bus of the neighboring node containing the template referenced
by the field. When these source templates fire (A locally and B in the
neighboring node) the template determines the availability of their
result values by detecting a match between the fields' contents and
those of the respective result busses. Upon this occasion, the appropri­
ate argument flags, A or B, are set.

As the template's recipient templates fire, they access the node's
data memory for the template's result value and return acknowledge
condition state signals to the acknowledge ports of the graph coordina­
tor. When the recipient template in the neighboring node fires, there
are no other templates using the local template's result value as
operands, so the acknowledge condition state returned to the local
graph coordinator causes the corresponding acknowledge condition flag
to be set. When the first of the two local recipients fires, the
acknowledge flag will remain clear because the second local recipient
still requires the template's result value to be available. Upon firing
of this second local recipient, however, the local acknowledge flag is

set because no other templates in the local node require the result val­
ue to perform their own operations.

Both the A and B flags are set indicating that both operands are
available. The local acknowledge flag and that associated with one of
the neighbor nodes (the one containing the recipient template) are set
while the masks of the other two acknowledge flags are set because
those adjacent nodes do not contain any recipients of the template.
Under these conditions, the dispatch logic determines that the tem­
plate is again ready to fire, thus completing the execution cycle.

5. Conclusions

A new architecture for static data flow computation has been pre­
sented that employs associative mechanisms for program flow control
and communication in lieu of more conventional token driven tech­
niques. Tokens impose too much overhead for effective fine-grained
parallel processing and are wasteful of memory bandwidth. It has
been shown that by using associative techniques, associative templates
suppon the semantics of static data flow more efficiently than do
tokens. That concept alone, however, has been inadequate to formulate
a complete distributed static data flow architecture. It has not provid­
ed the means by which interaction among multiple nodes is conducted.
A second concept, that of associative diffusion, had also been put for­
ward to fill this gap. It proposed that the domains of associativity of
nearest neighbor processing elements, or nodes, be overlapped so that
the activities of one node could be directly monitored by its immediate
neighbors. This provides the vehicle for extending the associative tem­
plate mechanisms across node boundaries. While feasible methods of
implementing a single node system with associative templates exist,
the direct method of extending that architecture with associative diffu­
sion requires a prohibitive amount of logic. The new architecture
presented in this paper provides the first practical means without

233

tokens of realizing an associative template static data flow computer
with an approximation of associative diffusion for synchronization and
communication.

The ATD architecture exhibits substantial promise for high perfor­
mance parallel computing in general, and static data flow computation
in particular. But a number of questions still remain to be investigat­
ed before it can be proved wonhy of implementation. One is the logic
intensity of the control unit The architecture requires an interface to
this element that is entirely realizable. However, the circuitry
required per template is substantial. Preliminary designs have estab­
lished that approximately a thousand transistors are required per
template in the control unit. While the layout structure is particular­
ly orderly promising good utilization of chip real estate and simple
design, this is still a lot of logic. Current technology can thus pro­
duce control units capable of containing about 256 such templates.
The A TD architecture supports connecting these units in groups of
four to permit a thousand templates per node. Before judgement can
be made regarding its acceptability, this cost must be weighed against
alternate methods of applying that scale of logic to parallel comput­
ing.

A second challenge that must be satisfactorily met is the means
by which programs are distributed among the nodes in the assumed
mesh system level structure. While a number of classes of problems
are known to be easily mapped onto such a structure to maximize near­
est node communication, the degree to which intra-node program
parallelism is needed to fill the latency cycles of the memory access
paths must be studied and automated allocation techniques must be
developed.

Finally, a range of data memory/packet builder structures present
themselves. How performance varies for these different structures
with respect to real world application programs has yet to be under­
stood and needs to be explored. At this point, the success of the A TD
architecture is that it demonstrates a complete and viable alternate
approach to the token mechanism for static data flow architecture and
opens a new area of performance/cost trade-offs in the design of data
flow computers. It is hoped that this work, as preliminary as it is,
will inspire other researchers in this field to reexamine the data flow
computing model in light of these new structures and to consider the
potential of their advancement.

Acknowledgments

The authors wish to recognize the valuable contributions to the
ATD architecture made by D. S. Wills of the MIT Artificial Intelli­
gence Laboratory. They also wish to convey their appreciation to
Professor R. H. Halstead of the MIT Laboratory for Computer Sci­
ence for his critical evaluation of the associative template concept.
Lastly, many thanks to Dr. D. B. Bradley, D. A. Thomae, A. J. Mus­
ciano, and G. H. Thaker of Harris Government Systems Sector for
their in-depth review of this paper.

References

[l] Karp, R.M., and Miller, R.E., "Properties of a Model for Par­
allel Computations: Determinacy, Termination, Queueing,"
SIAM Journal of Applied Mathematics, Vol. 14, No. 6, Nov.
1966, pp. 1390-1411.

[2] Dennis, J.B., "Programming Generality, Parallelism and Com­
puter Architecture," Information Processing 68, North-Hol­
land, Amsterdam, 1969, pp. 484-492.

[3] Dennis, J.B. and Misunas, D.P., "A Preliminary Architecture
for a Basic Data-Flow Processor," Proceedings of the Second

Annual Symposium on Compuier Architecture, Dec. 1974, pp.
126-132.

[4) Gord, J.R., Kirkham, C.C., Watson, I., ''The Manchester Proto­
type Dataflow Computer," Communications of the ACM, Vol.
28, No. 1, Jan. 1985, pp. 34-52.

[5] Hiraki, K., Shimada, T., Nishida, K., "A Hardware Design of
the Sigma-I, a Data Flow Computer for Scientific Computa­
tions," Proceedings of the 1984 lnternational Conference on
Parallel Processing, Aug. 1984, pp. 524-531.

[6] Sterling, T.L., "Intuitive Templates: A Static Data-Flow
Architecture without Tokens," White Paper, Harris Govern­
ment Systems Sector, May 25, 1987.

[7] Sterling, TL., Wills, D.S., Chan, E.Y., ''Tokenless Static Data
Flow using Associative Templates," submitted to Supercomput­
ing '88, 1988.

[8] Patterson, D., "Reduced Instruction Set Computers," Communi­
cations ofthe ACM, Vol. 28,No. l, Jan. 1985,pp. 8-21.

[9] Foster, C.C., Content Addressable Parallel Processors, Van
Nostrand Reinhold Co., New York, 1976.

[10) Yau, S.S., Fung, H.S., "Associative Processor Architecture - A
Survey," ACM Computing Surveys, Vol. 9, No. 1, Mar. 1977,
pp.3-28

234

[11) Smith, AJ., "Cache Memories," ACM Computing Surveys,
Vol. 12, No. 3, Sept. 1982, pp. 473-530.

[12) Archibald, J., Baer, J.-L., "Cache Coherence 'Protocols: Evalua­
tion Using a Multiprocessor Simulation Model," ACM Trans­
actions on Computer Systems, Vol. 4, No. 4, Nov. 1986, pp.
273-298.

[13) Moussouris, J., et al, "A CMOS RISC Processor with Integrat­
ed System Functions," Proceedings 1986 COMPCON, IEEE,
Mar. 1986, pp. 126-131.

[14) Hwang, K., Briggs, F., Computer Architecture and Parallel
Processing, McGraw-Hill, New York, 1984.

[15) Kung, H.T., "Why Systolic Architectures?" Computer, Vol.
15, No. 1, Jan. 1982, pp. 37-46.

[16) Huebner, K.H., Finite Element Method for Engineers, John
Wiley & Sons, New York, 1975.

[17) Strang, G., Fix, G., An Analysis of the Finite Element Method,
Prentice-Hall, Englewood Cliffs, NJ., 1973.

[18) Oppenheim, A.V., Applications of Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ., 1978.

[19) Preparata, F.P., Vuillemin, J., ''The Cube-Connected Cycles:
A Versatile Netwmk for Parallel Computation," Communica­
tions of the ACM, Vol 24, No. 5, May 1981, pp. 300-309.

MAPPING TIIE DATA FLOW MODEL OF COMPUTATION INTO AN ENHANCED VON NEUMANN PROCESSOR*

Peter M. Maurer

Department of Computer Science and Engineering
University of South Florida

Tampa, FL 33620
Abstract -- The SAM architecture is an enhanced von Neumann comparison and a conditional jump, and that all instructions are
processor that contains inexpensive features for supporting data me~o~y to memory. It wil~ be possible to relax. these
flow style of parallelism. The architecture gets is name from restncuons later. T"'.o addre~smg ~odes are ~uppo~ted, the
the basic instructions for supporting parallelism, Split and fu~l-address mode which provides direct addressm~ usmg ~ull-
Merge. It is shown that these instructions can be used to width addresses~ and the short-address mode wh1c~ requires
implement the parallel structure of an arbitrary acyclic data flow fewer address bits than the _full-address mode and is used to
graph. Features for supporting dynamic parallelism and access th~ low-a~dress p~rU<;>n of memory. ~hort addresses
multiple run-time environments are presented. Implementation may be eith~r direct or mdirect. The portion of memory
issues for supporting instruction execution and the handling of addressable m the ~hort-addr~ss mode is cal.led th~ short-
faults and interrupts ar also discussed. addre~s space, an,d_ will be d~scnbed more fully m secuon 4. In

some implementllt:ions, poruon~ of the short-address space may
1. Introduction. be mapped to registers or a high-speed cache. There are no·

programmer-addressable registers.
One of the main focuses of current research in computer
architecture is the design of hardware organizations that support
the parallel execution of instructions (see [1] for several
examples.). Data flow parallel architectures continue to recdve
a great deal of attention [3] [4]. In a data flow architecture an
instruction may execute as soon as its operands become
available, permiting a degree of parallelism bounded only by
the flow of data between instructions. In spite of their intuitive
appeal, data flow machines have been slow to reach the
marketplace, and it appears that much work must be done to
make data flow machines competitive with other parallel
architectures[5].

In spite of the objections raised by [5], data flow is appealing,
and it is reasonable to ask whether it can be adapted to a more
conventional architecture. The approach taken in this paper is
to start with a von Neumann processor, and by adding features,
enable it to ex~ute programs in the highly parallel manner
characteristic··of data flow machines. The objective is to
develop inexpensive parallel architectures that can exploit
parallelism without sacrificing compatiblity with existing
software. Compatiblity with existing software is important
because it represents an enormous investment for the computer
user, and it is necessary to preserve this investment. The
architecture presented in this paper is called the SAM
architecture for reasons that will be explained in section 2. The
features of this architecture are similar to those found in multi­
threading machines [2][6][7], but are somewhat simpler. In
spite of this, the features presented here can be used to program
some of the more complicated features found in other
machines.

Section 2 describes the architecture and the primitive features
for supporting parallelism. Section 3 shows how the
architecture supports arbitrarily complex static parallelism.
Section 4 introduces features that support dynamic parallelism
and multiple run-time environments. Section 5 discusses
implementation issues, and section 6 draws conclusions.

2. The Basic Architectural Features.

The SAM architecture supports arithmetic and logical
instructions as well as conditional and unconditional jumps.
Initially it is assumed that conditional jumps perform both a

* This research was supported by the university of South
Florida Center for Microelectr~mics Design and Test.

The SAM architecture is a MIMD machine that allows the
degree of parallelism to vary with time. Two types of
parallelism are supported, static parallelism where the degree of
parallelism is determined at compile time, and dynamic
parallelism whi;r.e the degree of parallelism depends in part on·
the data being jn"Qcessed. There is no upper limit on the degree
of parallelism. The features for supporting parallelism are
motivated by the differences between the execution histories of
sequential machines and those of data flow machines. On a
sequential machine each instruction has exactly one predecessor
and exactly on successor, while on a data-flow machine, each
instruction has several predecessors and successors. In order
to support parallelism whose degree varies with time, it is
necessary to have insJructions that have more than one
predecessor and successor. In the SAM architecture the "split"
instruction has one predecessor and two successors, while the
"merge" instruction has two predecessors and one successor.
These instructions form the core around which the rest of the
architecture is designed, hence the name "SAM" for "Split And
Merge." The split instruction has the format of an
unconditional jump, one successor is the branch target, while
the other is the following instruction. The split instruction
creates two independent instruction streams. The merge
instruction has one operand that is normally initialized to zero.,
When its operand is zero, the merge instruction sets it to 1 and
terminates the execution of the current instruction stream.
Otherwise the it· sets its operand to zero and continues execution
with the next instruction. The merge instruction operates
atomically on its operand. Figure 1 shows how the
combination of split and merge can be used to evaluate the
statement "e=(a+b)+(c+d)." with the sub-expressions evaluated
in parallel.

1 split L1
2 add a,b,tl
3 merge x
4 jump L2
5 Ll: add c,d,t2
6 merge x
7 L2: add tl,t2,3

Figure 1. Parallel Evaluation of e=(a+b+(c+d).

Most of the instructions Figure 1 are self explanatory. The
'labels "a," "b," "c," "d," and "e" are the variables named in the
expression, while the labels "tl" and "t2" are temporary
• 1ariables. The label "x" is a temporary variable that is

235

initialized to zero. The split instruction on line 1 causes the add
instructions on lines 2 and 5 to be executed in parallel. The
first two operands of these instructions are added and the result
is placed in the third operand. In this example,. a sepa~ate
merge instruction is placed at the end of each mstruct10n
stream. An equivalent way to program this example would be
to omit the merge instruction on line 3 and move the label "L2"
from line 7 to line 6.

Figure 1 shows that the split instruction adds three or four
instructions of overhead to each stream (the two merge
instructions cannot execute in parallel). If the end of both
streams. is moved to line 6, the overhead can be reduced to three
instructions per stream. Assuming that all instructi?ns exe~ute
in one time unit, each stream must be at least four mstructions
long for there to be any benefit fron;i the parallelisn;. introd1:1ced
by a split. However, if the split and me~ge ms~rucuons
execute quickly as compared to the other mstrucuons, the
length of the stream could be reduced without negating the
beneficial effects of parallelizing the code.

At this point it is assumed that all instruction streams execute in
the same environment, which restricts the way code can be
parallelized. Methods for removing these restrictions will be
discussed in section 4.

3. Translating Data Flow Code to Split/Merge Streams.

The translations presented in this section are based on the
intermediate form of data flow code presented in [8]. A
program is represented as a combinatorial expression of the
form (C opO ... opn), where C is an Abdali combinator[9], and
opO through opn are the operands of the combinator. An
operand may be a constant or another expression. The

combinator may be of the form B!, 1!, or Km. If it is of the

form B! then opO will be the name of an instruction and opl

through opn will supply the operands of the instruction. If the

combinator is of the form 1!, opO through opn will not be

present, and if it is of the form Km, opO will be a constant and

opl through opn will not be present. For any expression, all
subscripts will have the same value . A subscript of m signifies
that m inputs are need to evaluate the expression. Combinators

of the form B! are used to evaluate n-input functions, those of

the form Km are used to introduce constants into ap.

expression, while those of the form I! are used to select the

nth input from a list of m inputs. For example, the expression

x+y+l can be translated into the expression

(B~ + (B ~ + (Ii) (I~) (K2 1)). As was pointed out in [8]

"these expressions are simply linearized forms of data flow
graphs.

Because the language presented in [8] does not contain
conditionals loops or assignments, no provision was made for
handling them. In addition because the language is applicative,
no provision was made for handling sets of independent
statements that communicate by side effects. To make the
results of this section as general as possible, it is necessary to
introduce the functions "if," "while," "assign," and "set" to

236

handle conditionals, loops, assignments, and sets of

independent statements. In addition, the new combinator Q~1 is
introduced to distinguish between sets of statements that are
independent, and those that have data dependencies. The

combinator Q! is mathematically equivalent to B~1, but when

code is generated for the expression (B! xO xl ... xn) each

of the expressions will be evaluated in parallel. When code is

generated for the expression CQ! xO xl ... xn), the

expressions xl through xn will be evaluated serially. The Qr;:
combinator can also be used near the "leaves" of an expression
if it is necessary to place a lower bound on the length of
independently executed instruction streams. To illustrate the

use of the Q! combinator, consider the usual form of the

combinatorial expression for e=(a+b)+(c+d) which is

2. 12 223 245 (B5assign(I5)(B5+(B5+(I5)(I5))(B5+(I5)(I5)))). When code

is generated for this expression, the code-generation algorithm
will create two independent instruction streams to evaluate the
sub-expressions (a+b) and (c+d) in parallel. The two streams
will be merged to complete the final addition. The following
slight modification in the combinatorial expression will cause

the three additions to be executed serially,

Code can be generated for combinator expressions in a
straightforward manner. A separate instruction stream is
created to evaluate each operand of a
B-type combinator, while the operands of a Q-type combinator
are evaluated serially. The operands of "if" and "while"
functions are always executed serially, although parallelism
within the evaluation of the operands is not precluded. When
code is generated for the body of a loop, it begins and ends as a
single instruction stream, which prevents the iterations of a
loop from getting out of sync.

If expressions of the form (Q! set xl ... xn) are translated

using the most straightforward algorithm, parallelism will be
lost. For example, consider the following two-statement
sequence.

a=b+c
e=(d+f)*a

The subexpressions "b+c" and "d+f" can be executed in
parallel, but if the statements are serialized due to the data
dependency, this parallelism will be lost. A more sophisticated
method of translating these functions is needed. The procedure
is easier to visualize if it is assumed that the set of statements
has been described as a data flow graph. Each node in the
graph represents one statement in the set. (Complex
expressions have been broken into separate statements.) All
arcs that do not begin and end on a node are omitted, along
with all duplicate arcs. The result is a directed acyclic graph
with one or more source nodes and one or more sink nodes.
Assume that there are j source nodes and k sink nodes. Since

the source nodes use only those data items that are assumed to
be present before the execution of the set begins, they can all be
executed in parallel. The code for the set begins with aj-label
msplit instruction, which is the single predecessor of each
source node. Similarly, the code for the set ends with a k-label
mmerge instruction, which is the single successor of every sink
node. Msplit and mmerge are standardized sequences of
instructions that create and merge an arbitrary number of
streams. An n-label msplit acts as an n-way branch, while an
n-label mmerge acts as an n-label branch-target. Their
construction is straightforward. The code for a node with m
·predecessors and n successors begins with an m-label mmerge
instruction and ends with an n-label msplit instruction. In each
case the labels on the msplit instruction match the labels on the
mmerge instruction of the successor nodes. The nodes of the
data flow graph can represent arbitrarily complex expressions
and are not restricted to individual instructions. A node may
have a high degree of internal parallelism as long as it has a
single entry and a single exit. This method of translating set
functions allows arbitrary acyclic data flow graphs to be
implemented using the split and merge instructions. An
example of this procedure is illustrated in Figure 2.

msplit LA 1.LB 1
mmerge LAl
-----A-------
msplit LC1.LD1.LE1
mmerge LBl
-----B-------
msplit LD2.LE2.LF2
mmerge LCl
-----C-------
msplit LGl

Figure 2. Data Flow Parallelism with Split and Merge

4. Creating Multiple Environments.

Although a high degree of parallelism can be realized with the
split instruction in a single environment, multiple environments
are needed to support dynamic parallelism and shared
subroutines. One method of supporting multiple environments
would be to have several data and address registers that are
replicated for each instruction stream. Such a mechanism is
used in some multiprocessors, but since not all independent
instruction streams require separate environments, it is
desirable to separate the function of creating an instruction
stream from the function of creating a new environment. Recall
that the SAM architecture provides a short-addressing mode
that is used to access the short-address space. Associated with

each instruction stream is a register called the prefix register that
contains the location of the short-address space. The prefix'
register is assumed to contain the high-order address bits of the
short-address space, with the low order bits being supplied by
the instruction. The instructions. "readp" and "writep" are
provided to read and write the prefix register. Instruction
streams that require separate environments may use these,
instructions to create a new short-address spaces. The current
value of the prefix register is replicated on a split which causes
the two independent streams to execute in the same
environment. Since the two streams will generally begin
execution at two different points in memory, distinct
environments can be created for each stream. The merge
instruction does not affect the contents of the prefix register.
Although the prefix register can be used to solve the problem of
dynamic parallelism and the problem of calling the same·
subroutine in two different instruction streams, the stack-based
addressing scheme for passing arguments and saving return
addresses cannot be used in a multi-threading environment
without elaborate support mechanisms or rigid controls on how
it is used. In a multi-thread environment it is not possible to
predict when memory for one set of arguments will be
deallocated with respect to the memory for another sets. In the
SAM architecture, allocation of space is made the responsibility
of either the support software or the compiler, because the most
efficient method for doing so depends on the problem being
solved,. Efficient implementation of the basic features of the
architecture should allow many different allocation schemes to
be programmed efficiently.

237

To illustrate how the prefix register can be used to achieve
dynamic parallelism, consider the code illustrated in Figures 3
and 4. It is assumed that each instruction stream requires an
environment of size 2x, and that 2i instruction streams are to be
created. In addition to a number of temporary variables, each
environment contains its starting address, its size, the number
of the current instruction stream, the total number of instruction
streams, and a pointer to the parent environment. There is also
a word initialized to zero, which will be used as a merge target.
Figure 3 illustrates the serial creation of instruction streams,
while Figure 4 illustrates the logarithmic creation of instruction
streams. The logarithmic initiation of instruction streams
operates by creating a single environment of size 2x+i and
repeatedly splitting it in half until environments of the proper
size have been created. In the process the proper number of
instruction streams will be initiated.

allocate 2x+i bytes;
for j=l to zi

init env j and make it current;
split to shared code;

end for -
for j=l to 2i

exec merge in env j;
endfor

shared_ code:

for j=current_stream to 2i
execute merge in environmentj;

endfor;

Figure 3. Serial Stream Initiation.

Creating a separate environment for each stream causes the
overhead for each stream to be greatly increased. When
multiple environments are being used, it may be more·

allocate 2x+i bytes;
init as one size 2x+i env & make current;
while (env_size > 2x)

env _size = env _size I 2; .
init new env in second half of current env &

make current;
split to x;
restore parent env

x:
endwhile;
... shared code ...
while (total_streams > 1)

if (curr_stnn_num is even)
make env at env,_adr+env _size current;

endif;
exec merge; restore parent env;
divide curr_stnn_num and total_streams by 2;

endwhile;
restore patent env;

Figure 4. Logarithmic Stream Initiation.

convenient to treat the independent streams as individual
'processes that communicate through a producer/consumer
structure as proposed by several others [2]. The simplest way
·to model the producer/consumer relationship is to follow the
'.producer by the instruction "split x" and precede ~he consumer
'by the instruction "x: merge k" where k is a variable that has
been initialized to zero. · Overruns can be prevented by
preceding the consumer by the instruction "y: merge j" _where j
Is a variable that is initialized to one, and followmg the
consumer with the instruction "split y." This scheme will work
only if each data item has a single producer and a single
consumer. To support multiple producers and consumers, it is
·necessary to introduce the hardware equivalent of semaphore P
and V operations. The P operation is modeled by th~. "seq"
:instruction, which has a single operand. If the operand is non­
.zero when the "seq" instruction will set it to zero and
instruction execution continues with the next instruction. If the
operand is zero, both it and the pr"gram counter ~r the current
/stream remain unchanged. The seq instructrnn operates
atomically on its operand,and executes repeatedly until i~s
:operand is set to zero. The detrimental effect of.the bus~ wait
can be minimized by spinning the seq instruction off mto a
separate instruction stream. The.seq instruction can be used for
multiple-producer multiple-consumer problems and other types
of synchronization.

5. Implementation Issues

The SAM architecture will be i.mplemented as a shared pipeline
similar to that found in the HEP multiprocessor[2]. The
number and function of the pipeline stages is not fixed by the
architecture but for defmiteness consider the pipeline pictured
in Figure s: This is a typical pipeline augment~d with two
additional stages to fetch and wnte stream descnptors. Each
·stream descriptor contains the current PC for t_he stream as w~ll
as the current prefix register value. The descnptor may contam

·other items as explained below.

Descrtptor
Fet::h

ll'lllt.
Decode

Operand
Fet::h

Figure 5. An Augmented Pipeline.

Descrtp10r
Wrt12

·The descriptor fetch stage of the pipeline obtains descriptors
from many different sources. In particular, each stage of the

pipeline can serve as a source of descriptors, which allows the
pipeline to be fully utilized even when only a small number.of
descriptors exist. When descriptors are fetched from the earher
stages of the pipeline, potential pipeline hazards must be
provided for either in the hardware, or by some software
scheduling technique.

fhe descriptor write stage of the pipeli°:e provides for internal
buffering for descriptors. When the,.mternal buffer of the
descriptor write stage i~ full and a split instruction cr~ates a n~w
descriptor, several actions can be taken. The ~escnptor wn~e
stage can provide storage management for a circular buffer m
some form of backing store, or it can cause a fault to occur
when the number of streams reaches a high-water mark. The
support software has the choice of suspending the execution of
the stream until the number of streams fell below a low-water
mark, or of passing the descriptor to a second processor.

To support the simultaneous execution of several processes,
each of which may have several instruction streams the SAM
archi~ecture provides features for handling interrupts and faults.
An interrupt is handled by initiating a new instruction stream in
response to an external e_vent. The "r~turn fr<;>m in~errupt" is
accomplished by executing a merge mstruction with a zero
argument. An interrupt vector consists of a pointer to the
executable code for handling the interrupt, and a pointer to the
short-address space for the interrupt handler.

Since several program faults of the same type may occur
simultaneously, it is necessary to have some ~ethod of
serializing the first portion _of t~e foul~ handler, which allo_ws
the descriptor of the offending mstrucnon str~am to be cop~ed
into the environment of the fault handler without destroymg
data that is still needed to process a previous fault of ~e same
type. This problem is solved by adding a globa~ register for
masking faults, and a status register to the descnptor of each
stream. When a fault occurs and the corresponding fault-type
is masked, the descriptor of the offending stream will have a
"suspended" bit set in its status register. A de~cri~tor w~th the
suspended bit set propagates through the pipelme without

. ·change. When the descriptor reaches the stage where the fa~ t
originally occurred, the stage will schedule the fau~t-handle~. if
the fault type is now unmasked. A more expensive solution
would be to allow the descriptor write stage of the pipeline to
queue descriptors waiting for the fault to become unmasked.

At times the support software may need to terminate a process
in response to a program fault or othe~ event. Because e~ch
process can have many i_nstr~ctrnn stre~ms . active
simultaneously, some mechamsm 1s nc:eded to identl~y and
terminate all instruction streams belongmg to the termmated
process. To solve this problem a process-id, wh~ch can be
used to identify and terminate instruction s.tr~ams, ~s ~ded to
the descriptor of each stre~._ The p~oce~s-id is copied 11~to the
new descriptor when a split mstructlon is executed but it n:ay
be changed by the support software. One w~y to :i-ccomphsh
this is to combine the assignment of process-ids with memory
management. For example, the process-id could be a pointer to
the segment or page table for the process. The. me_mory
management hardware could be used t~ force the termmatlon <;>f
instruction streams. Another method is to pass the pro?ess:id
of a failed process to the descriptor writ~ stage of the pipe~me
and allow this stage to purge all descnptors with matchmg
process-ids.

The addition of status bits to the stream descriptor permits the
implementation of privileged. _instr~ction_s, allo~s more
conventional compare and cond1t1onal Jump ~nstruc~rnns to. be
-used, and allows for local masking of faults m the mstructlon

238

streams. There are a number of implementation issues that
remain to be solved, but these should be readily addressed as
work on the SAI\1 architecture progresses.

6. Conclusion.

The SAM architecture is the first step in developing an
inexpensive method for supporting data flow style parallelism
in a von Neumann architecture. The features presented here are
intended to be inexpensive to implement, and easy to use by a
compiler. Although the split and merge instructions are simple,
it has been shown that they can be used to implement arbitrarily
complex static parallelism in a single environment. Using the
prefix register to create multiple environments, it is possible to
implement arbitrarily complex dynamic parallelism at a cost
somewhat higher than that for static parallelism.
Implementation issues have been discussed that allow for
multiple processes as well as interrupt and fault handling. It is
hoped that the SAM architecture will soon lead to the
development of one or more small inexpensive
multiprocessors.

REFERENCES

1. R. H. Kuhn, D. A. Padua (eds.) "Tutorial on Parallel
Processing," IEEE Computer Society Press, Silver Spring
Md, 1981.

2. B. J. Smith "Architecture and Applications of the HEP
Multiprocessor Computer System," Real Time Signal
Processing IV, Proceedings of SPIE, 1981, pp. 241-248.

239

3. Arvind, D. E. Culler, "Dataflow Architectures," Annual
Reviews in Computer Science, 1986,.Vol 1, Annual
Reviews Inc., 1986, pp. 225-253.

4. J. B. Dennis, "Data Flow Supercomputers," Computer
Vol. 13, No. 11, Nov. 1980, pp. 48-56.

5. D. D. Gajski, D. A. Padua, D. J. Kuck, R.H. Kuhn, "A
Second Opinion on Data-Flow Machines and Languages,"
Computer, Vol. 15, No. 2, Feb. 1982, pp. 58-69.

6. L. M. Pedersen, "Design for MISP: A Multiple Instruction
Stream Shared Pipeline Processor," Technical Report
CSG-37, Coordinated Science Laboratory, Computer
Systems Group, University of Illinois at Urbana­
Champaign, 1984.

7. P. C. Trealeven, R. P. Hopkins, P. W. Rautenbach,
"Combining Data Flow and Control Flow Computing,"
The Computer Journal, Vol. 25, No. 2, 1982, pp. 207-
217.

8. P. M. Maurer, A, E. Oldehoeft, "The Use of Combinators
in Translating a Purely Functional Language into Low­
Level Data-Flow Graphs," Computer Languages, Vol. 8,'
No. 1, 1983, pp. 27-45.

9. S. K. Abdali, "An Abstraction Algorithm for Combinatory·
Logic," The Journal of Symbolic Logic, Vol. 41, 1976,
pp. 222-224.

Dynamic Structured Data Flow:
Preserving the Advantages of Sequential Processing

in a Data Driven Environment

Israel Gottlieb

Bar Ilan University
Tel Aviv, Israel

Abstract. An architectural model is presented which enjoys. the
automatic sequencing of parallel operations characteristic of
dataflow. However, the processors employed incorporate program
counters and execute dependent sequences of actors in a
sequential, fetch/execute, Von Neumann fashion. The synthesis
of these -- ordinarily opposing -- approaches, is achieved without
sacrificing the fine grained parallelism of classical dataflow. As a
theoretical model, the machine is shown to achieve uninterrupted
sequential execution of all critical paths in an arbitrary algorithm,
subject to a single class of system overhead: context initiation.

Introduction

Dataflow computing systems have generally been motivated by
the need to get away from an underlying machine model which
is inherently sequential, to one which naturally supports
parallelism. Proceeding from this fundamental perspective,
proponents of these systems argue that we require a machine
which relates independently to each elementary computing
activity, scheduling them for execution subject only to
dependence constraints inherent in the algorithm. The notion
of independently scheduling each activity however, does not
properly follow from the first premise. A cursory look at
almost any computation graph shows that there are paths of
computation activity of significant length; i.e. groups of
activities that are inherently sequential. By saying that these
sequentiality constraints are imposed by the algorithm we do
not change the fact that they would be much more efficiently
executed by a sequential processor than by one-at-a-time
scheduling of each instruction. These and other efficiency
problems of classical dataflow have been documented by Kuck
and others (see for example [5]).

Indeed no processor can be more than a sequential machine;
even the execution units in dataflow systems can only do one
thing at a time. The goal of parallel architectures is to have
many such units working together. This goal should not
obscure the fact that an individual processor can perform
significantly better by being optimized for sequential
processing. Two decades of engineering experience with
uniprocessor CPU's has taught us how to incorporate
instruction caching, lookahead, pipelining etc.; forcing an
execution unit to work on elementary tasks that are
independently scheduled is retrogressive. Further, a typical
dataflow machine consists of a long pipeline of independent
units operating asychronously to each other. Apart from the
length of the pipe itself, the full handshake protocols required
at each unit to unit interface exact a significant price in
performance -- over comparable synchronous systems.

In [3] a basic deficiency of the Von Neumann architecture was
eloquently expressed: A single active processor is controlling a
passive memory state. Elaborating, we may say that since the
contents of memory represent the algorithm, the Von Neumann
mach.ine has the algorithm as the passive agent, with an

240

additional artificial level of control being imposed upon it by
the single CPU. We require the opposite arrangement: the
algorithm should dictate control of the system resources, with
processor power being merely one such resource. However,
as noted above, the algorithm itself dictates sequential
execution along paths in the computation graph (perhaps many
such paths in parallel), as often or more often than not.

For algorithms which have static structure, i.e. no branches or
loop variables that are determined dynamically, we can partition
the computation graph into a set of sequential paths that
communicate with each other (see e.g. [8]). Paths are statically
allocated to different processors. If an operand being
communicated from path A to a node b on path B, does not
arrive in time for consumption by the processor executing B,
the latter is suspended via a form of exception handling. The
path is restarted when the operand arrives. The partition
chosen assumes a worst case time for each elementary
operation and tries to minimize the number of such "operand
late" exceptions. A method for finding an optimal partition is
given in [7]. The Hughes Data Flow Machine [4] and other
projects have incorporated similar techniques in their designs.

This approach is workable for static programs. In dynamic
code however, it is clearly not possible to allocate paths
beforehand; we have no idea -- before the program actually
runs -- how the partition should look. In this paper we
propose a parallel architecture in which any processor may be
conscripted to execute dynamically determined segments of
sequential code. Thus the unit which we schedule for
execution is an execution path rather than a single elementary
activity as in classical dataflow. On the other hand we wish to
realize Backus' directive for an architecture in which the
algorithm is the active agent allocating passive resources.
Accordingly, execution paths will be dynamically scheduled in
accordance with the arrival of operands; no central control is
imposed by a CPU. In particular our approach does not dictate
the level of granularity used; parallelism at the lowest level may
be exploited. We have dubbed this abstract machine Dynamic
Structured Data Flow (DSDF).

In what follows we shall assume that a name is associated with
each token generated by a computation, after the manner of e.g.
the U interpreter [1]. Tokens are matched in a matching store
to form executable operand pairs. This approach elegantly
solves the problem of different contexts and also provides a
convenient conceptual separation of instructions and data.
Other reasons for this choice are elaborated in the sequel.

An additional assumption which we shall make in the DSDF
architecture is that all processors have local access to all
program code. The issue of implementation will be treated in a
later section of this paper.

The Execution Discipline

In what follows, we assume an algorithm is represented by a
directed graph G, in which arcs represent the flow of data and
nodes correspond to activities. A weight may be associated
with each node corresPonding to its execution time.

Definition 1: A sequential instruction path(SP) is a subset of
the activities in G which are linearly ordered with respect to
dependence and where, for activities a and bin the SP, if a<
b then there is no c not in the subset such that a < c < b.
Equivalently, an SP is a path in G.

Definition 2: An execution process(EP) will denote an instance
of execution of an SP. An EP is created by asssociating it
with a particular instruction; not with a general SP. Since a
single instruction is also an SP, the resultant process created
is in fact an EP consistent with this definition. However, an
EP will, in general, progress with its activity in such a way
as to execute an arbitrary SP. All activity of an EP is a
coherent unit: execution is not data driven but rather proceeds
according to sequence. If an operand required for the
execution of some node along the SP has not arrived, the
result is an EP disabled exception . EP's progress according
to the EP execution rule given below.

Definition 3: A node which represents a unary instruction, or
for which one operand has been made available, is called EP
enabled.

EP execution rule: If a node v, with out-degree > 0, has been
executed by an EP a then:

1) if the out-degree of v =l, and its successor v' is EP
enabled, a proceeds with the execution of v' .

2) if the out-degree of v is > 1, a proceeds with an
arbitrary successor v' which is EP enabled.

In all cases, a COMmunicates its result to any successors
with which it does not continue. An EP terminates at a node
v when either a) v has out-degree 0, or b) none of its
successors are EP enabled.

If an operand is COM'd to a node which is EP enabled, a
context initiation (Cl) results. The CI corresponds to the
creation of a new EP.

The net effect is that an EP is created to execute an SP of
unknown extent. Moreover, even specifying an EP by initial
node and length does not uniquely determine the SP which will
be executed; more than one path may be possible.

To fix the above ideas more concretely let us consider the

creation, execution and termination of a particular EP a., in a
DSDF machine. All operands will be deposited in a central
associative memory, with their tags as a search key. We
associate with each EP a Home(H) datum; this is the datum
kept by the processor in its internal register for the duration of
an EP execution. It may be thought of as the context for the
EP. A processor executing a binary operator node w uses its H
datum as one operand and the tag of its H datum to address the
token memory to retrieve the second operand. However, the
value of the token is also sent in the memory access. If the
match fails, the access is interpreted as a write; the value and its
tag are installed in the memory, to await the arrival of a match.
If the match succeeds, the access is interpreted as a read; the
operand is returned to the processor. Thus the COM operation
in the execution rule is no different in practice from an ordinary
access to token memory. We associate the notion of
communication with a token when the arc being traversed is not

241

on the execution path of any EP. This is the only case of
inter-EP communication in the DSDF machine. Returning to
the specific example, some EP f3 created a when it executed a
node v which had more than one successor that was EP
enabled. That is, an operand was COM'd by ~from v to say v'
, resulting in a CI. In terms of our architecture, the instruction
v specified two successors, i.e. two context tags. The
processor executing v successfully retrieved the second
operand from the matching store for one of its successors and
continued execution with that path. For the other successor v',
it sent the tag and value to the store with an indication that it is
busy. The matching store controller detects the condition
"match-with-processor-busy" and initiates a new EP a.. The

result of executing v' becomes the H datum for a.; the H datum
undergoes transformation with each node executed by a and
provides the context with which matching operands are
retrieved for each subsequent instruction. a terminates when
all attempts to retrieve a matching operand fail, or when an
instruction specifies no successor.

Decision and loop constructs are handled by the usual branch
type instructions rather than the elaborate switches of dataflow.
This is possible because SPs are sequential sequences of
instructions meant to be fetched/executed by a processor which
incorporates the usual program counter. The arrangement for
an If-Then-Else construct incorporating a single SP is shown in
figure l(a). BC denotes a Branch on Condition.

If more than one SP is involved in an If-Then-Else, we can
provide a compound SP as a program structuring aid. This is
a group of static paths that communicate with one another, and
which have a distinguished set of inputs and outputs. The
If-Then-Else is then constructed from 3 compound SPs, as
shown in figure 2. SPl and SP2 are the alternate code
sequences to be chosen; they must match in their numbers of
inputs and outputs. The third SP is a control token generator ;
it may take some subset of the inputs to SP1/SP2 and outputs
the single boolean token which controls the IF construct.

The BC instruction is shown here accepting the boolean control
token as a second operand. This operand is in effect
communicated to it by an SP within the control token
generator. An important issue is how to efficiently implement
the distributor. We shall return to this problem in a later
section.

Figure l(b) illustrates looping in the DSDF machine. The usual
tag operators for a dynamic machine are employed, allowing
many instances of the Loop to execute concurrently. The loop
body may be extended to a compound SP in a manner
analogous to the IF construct; tag operators are added for each
sequential path as required.

We now proceed to characterize the performance advantage
accruing to the DSDF execution discipline.

Definition 4: Let v' , a successor of v, be a node which
experiences a context initiation(CI). At the time of the CI, v'
must have been EP enabled. If v' is a binary operation, let
the node which provided its first operand be other than v. If
the EP executing v continued with some other successor,
say v", the CI experienced by v' is called inherent.

Since v continued with some other successor v", it follows by
the execution rule that v" could not have been executed by an
EP arriving via another predecessor, say w , as follows: v" has
two predecessors, v and w, and hence is a binary operation.
For the EP executing w to have continued with v", it would

have had to find it EP enabled by v, in which case the EP
executing v could not have continued it. Hence the EP
executing v was the only one that could have continued with
either of the nodes v' or v". Stated differently,

Lemma. l: An inherent CI can be avoided only at the cost of
another CI.

Hence the name -- inherent. Note thatthe question of whether
a CI is inherent or not is dynamically determined, as illustrated
in figure 3. If b arrives at c before d, there will be no inherent
Cl, while if d arrives first, the EP executing b will be the only
one able to continue with either a or c, hence an inherent CI
will occur at one of them.

For a computation graph G, let Gu(E) be the graph derived
from G by "unravelling" all loops, specifying all branch
decisions and ascertaining the actual execution time of every
node, in accordance with some particular execution instance E
of G. Gu(E) is a weighted, directed, acyclic graph. If E

executed on a DSDF machine, Gu(E) will have been partitioned
into a set of SPs which communicate with one another. In
particular, the EPs generated by the DSDF execution constitute
a path cover for Gu(E) in which arcs in the cover correspond to

transformations in place on the Home datum of a processor,
and other arcs correspond to communication between EPs. We
would expect that an EP may be held up by late arrival of
operands which must be communicated by other EP's. Such
an EP will have to be. suspended and in effect, broken in two
EP's -- each of which executes without interruption. Some
optimal path cover exists for Gu(E) which allows maximal
uninterrupted sequential processing. That is, if a processor is
allocated to each of the paths in the cover, the number of
uninterrupted sequences executed will be minimal, or
equivalently, the average length of uninterrupted sequences will
be maximal. This is similar to what is done in [7] for static
programs; in our case however, Gu(E) does not exist until
execution completes and hence the optimal cover is undefined a
priori.

Lemma 2: Let Gu(E) represent an instance of execution of G.
If E was executed by a DSDF machine, then the following
hold:

1) all nodes in Gu(E) will have executed,
2) all EPs generated in the course of E progress without

interruption, and
3) if an EP terminates at a node v then either the

out-degree of v is 0 or any Cls experienced by
successors of v must be inherent.

Proof: A node v' fails to be executed by the same EP which
executed its predecessor v in one of 2 cases:

a) v is not EP enabled. This implies some other
predecessor w, which must supply a second operand to
v'. Hence when the EP executing w checks v', it will
find it EP enabled. Execution will continue with v', or
with some other successor v", which is also EP
enabled. For the latter, case (b) below, applies.

b) The EP executing v continued with some other
successor. The rule specifies that a CI occurs, a new
EP is created and hence v' is executed.

The DSDF machine begins by initiating an EP for each node

242

in G with in-degree 0. by induction and the application of (a)
and (b) above, we have that all nodes in Gu(E) are executed.

Assertion (2) follows directly from the execution rule: there
are no provisions for suspension/resumption; an EP can only
progress or terminate.

Further, a CI at a node v' occurs only. if the node is EP
enabled and subsequently has an operand COM'd to it from
some predecessor v. By the execution rule, there must have
been some other successor v" of v, also EP enabled, to'
which the EP executing v continued. The CI occuring at v'
is therefore inherent, whence all Cl's which occur in the
course of E must be inherent. 0

Our basic result follows directly from the Lemma. We say that
a path pin Gu(E) is a critical path, ifw(p) ~ w(q) for all paths
q, where w(p) denotes the sum of the weights of the nodes on
p. As before, weights correspond to execution times.

Theorem 1: All critical paths in Gu(E) are executed in an
uninterrupted sequential manner except for the system
overhead associated with Cls. Further, only inherent Cls are
experienced by a critical path.

Proof: Let p be a critical path. If p is executed by a single EP,
then by Lemma 2(2) it cannot be interrupted. Let v be the
node at which the first EP executing p terminated. If the
successor v' of v on p is not EP enabled, there must be some
other predecessor w of v' on an path q, which supplies the
other operand to v', and which has not yet done so. Then p
cannot be a critical path to v' because w(q) > w(p) up to the
node v' and hence p cannot be a critical path in Gu(E).

Thus if the EP executing p -- a critical path -- terminated at v
and sent an operand to v', the latter must have been EP
enabled. By the execution rule a CI immediately results and
an EP is created which continues with v'. By Lemma 2(3)
this CI must be inherent. 0

It is important to note that we have used the notion of a critical
path in a somewhat loose fashion. In particular, it is critical
paths in Gu(E) that we are treating in Theorem 1. Gu(E)
represents execution on a DSDF machine, and CI times are
treated as part of the weight value of nodes which experienced
them. In terms of the exe<;ution times of elementary operations
alone, it may be that w(q) > w(p) holds for some instance of
execution of G, while if CI times are added to the weights, the
inequality is reversed. However, only inherent Cls will occur
regardless of the amount of time they add to a path's execution.
Further, it is clear that as the time overhead of a CI approaches
zero, the critical paths of Theorem 1 become determined only
by the inherent costs of the operations of the algorithm.

In sum, the EPs generated by a DSDF computation never wait
-- if they are on a critical path. Further Theorem 1
demonstrates that the theoretical limit of parallel speedup can be
achieved for any algorithm to the extent that we can reduce the
CI time.

Since processors in DSDF are active and access the token
memory in much the same way as a Von Neumann CPU, many
of the pipeline stages of a typical dataflow machine, e.g. packet
formation, packet arbitration etc., are eliminated. Tighter
coupling and synchronous communcation protocols between
processor and memory should be possible.

Conclusion

Theorem 1 highlights the central role played by Cls in system
pe1formance. If we bring specialized architectural resources to
bear on this particular function, we should expect significantly
increased performance. In a related paper [6], a new process
spawn technique is described, which is designed to minimize
system overhead in the DSDF environment. The method
provides a standard interface from algorithm to processors
which is used in a uniform fashion to support all basic code
constructs which generate multiple processes. The 'distributor'
node discussed earlier is easily treated as a special case.

A basic difficulty to be overcome is that of contention by
multiple processors for the matching store. The usual solution
to memory contention -- distributed access via interleaving of
modules -- is not directly applicable to an associative store
because a central controller must match the tag against all
locations. In the Irvine machine model for example [1,2], each
processor node has its own matching unit. Code is statically
distributed to tlte different processors and no runtime variation
.on tltis partitioning is permitted. The same type of static criteria
are used to decide which matching store in tlte network or ring
is to receive result tokens generated by the program. This
approach however, is unlikely to permit realization of the kind
of performace potential described in this paper for DSDF:
uninterrupted sequential execution of critical paths. The
assumption that code and data are allocated statically
necessarily implies that processor resources are not, in general,
available for any executable activity. Only a matching store that
is accessible by all processors would allow this generality of
resource distribution. This issue, among others is being
explored by a research group at Bar Ilan University which is
developing an architecture and programming system based on
DSDF principles.

References

(1] Arvind and Gostelow, K.P., "The U-lnterpreter," IEEE
Computer, Vol. 15, No. 2, February 1982.

(2] Arvind, Kathail, V., and Pignali, K., "A Dataflow Architecture
with Tagged Tokens," Rep. LCS/TM-174, MIT, September
1980.

(3] J. Backus, "Can Programming be Liberated from the Von
Neumann Style? A Functional Style and its Algebra of
Programs," Communications of the ACM, Vol. 21, No. 8,
August 1978, pp. 613-641.

(4] M.L. Campbell, "Static Allocation for a . Data Flow
Multiprocessor," Int'/ Conference on Computer Architecture,
1985

[5] D.D. Gajski, D.A.Panda, D.J.Kuck and RH.Kuhn, "A Second
Opinion on Dataflow Machines and Languages," Computer,
Feb. 82, pp. 58-70.

[6] Gottlieb, I., "Efficient Process Spawning in Functional
Multiprocessor Environments," Technical Report
TR-CS102PA, Dept. of Computer Science, Bar llan University,
January 1988.

[7] Gottlieb, I., "The Partitioning of OSDF Computation Graphs," to
appear in Distributed Computing, 1988

[8] Gottlieb, I., "SDF-The Structured Dataflow Model of Computing
and its Architecture," First Int'/ Conference on
Supercomputing, Dec. 1985

J2: ->

243

SP
1

SP

(a)

A:-->

LOOP BODY

STATIC
PATH

(increment
cont e:d iterali on#

(b)

• •

BC Jl

Static Poth 1

•

Static Poth 2

d

c

Figure 3

ITERATIVE ALGORITHMS IN A DATA-DRIVEN ENVIRONMENT~

Paraskevas Evripidou and Jean-Luc Gaudiot
Computer Research Institute

Department of Electrical Engineering-Systems
University of Southern California

Los Angeles, California
(213) 743-0249

Abstract- Data-flow principles of execution are an
elegant way to synchronize many parallel processes in a
large scale multiprocessor system. However, the execution
by runtime detection of data dependencies also introduces
many inefficiencies. In this paper, we apply the data-flow
principles to a numerically intensive application: the Ja­
cobi method for solving linear systems. We introduce a
modification to the algorithm which allows a full exploita­
tion of the parallelism inherent in the method by "vectoriz­
ing" a portion of the calculation and allowing some amount
of "look-a.head" in the termination criterion. Resource al­
location issues are then considered and we demonstrate by
a. combination of a.na.lyt.ica.l and siniulation methods a. pri­
ority mechanism which allows both an increase in perfor­
mance as well as better resource utilization.

1 Introduction

The computing needs of the near future a.re far beyond the
power of any supercomputer available today. Physical con­
straints are placing an upper bound on the speed of single
processors. Current technology is rapidly approaching this
limit. A natural solution consists of having many proces­
sors collaborating to solve large problems. However the ba­
sic principles of von Neumann architectures preclude their
ext.ension to parallel execution environments (1]. Data­
flow principles of execution on the other hand, offer easy
programmability and tolerance to high memory latencies
which a.re inevitable in large scale multiprocessors(2]. It.er­
a.ti ve algorithms are very powerful tools for solving linear
systems, and are particularly efficient in the solution of
large sparse systems. These sparse systems are frequently
encountered in the solution of Partial Differential Equa­
tions.

The data-flow model of execution [3] represents programs
as graphs. The nodes (actors) of a data-flow graph are the
instructions of the program. Tokens flow along the arcs
carrying data from the producer actors to consumer ac­
tors. The static model of execution has been described
by Dennis (4]. This model of execution allows only one
instantiation of each actor at any given time. In the "dy­
namic" model (Arvind et al.) (2], multiple instantiations
of the same actor are allowed. This is done by associating

i . 'This material is based upon work supported in part by the U.S.
'Department of Energy under Grant No. DE-FG03-87ER25043

244

a different color (tagging) with the tokens which belong to
different instances of the s.ame actor. The rules for tagging
the tokens are referred to as the "U-Interpreter".

Dynamic data-flow provides an efficient way of exploring
the parallelism present in an a,lgorithm. It has been shown
[2] that the U-lnterpreter principles are particularly effi­
cient in conjunction with the FORALL type of constructs.
This is the same type of construct which the von Neumann
model of execution targets for optimization through vector­
ization. However, iterative algorithms have been tradition­
ally implemented by using REPEAT-UNTIL and WHILE
constructs. The U-interpreter cannot unravel these loops.
These REPEAT-UNTIL loops can become more efficient
for parallel execution if a FORALL (For i = 1, n) is in­
serted into their body. This allows the U-interpreter to
simultaneously unravel n iterations instead of merely one.
This paper examines the behavior of iterative algorithms in
a dynamic data-driven environment and the enhancement
in performance provided by the REPEAT-UNTIL transfor­
mation. V\Te analyze our proposed scheme by a determinis­
tic simulator of a dynamic data-flow architecture.

The goal of this paper is thus to study the performance
of a dynamic data-flow architecture applied to a muneri­
cally intensive problem. A modification of the scheme is
then introduced and a new execution priority mecha.nism
is analyzed. In Section 2, we review essentials of the Jacobi
met.hod for solving linear sys t.ems. We also briefly discuss
some data-flow principles relevant to the implement.ation of
iterative algorithms. In Section 3, our transformation tech­
nique is introduced and simulation results are provided.
The priority mechanism is presented and analyzed in Sec­
tion 4, while concluding remarks are made in Section 5.

2 Iterative Algorithms in a Data-Driven
Environment

Iterative techniques are very frequently used for the solu­
tion of systems of equations. An iterative l;echnique to solve
an n x n linear system Ax=b starts with an initial approx­
imation x< 0 l to the solution x, and generates a sequence of
vectors {x(k)}~0 which can be shown to converge to x.
The Jacobi method for solving linear systems is shown by
equation 1.

for i = 1,2, ... ,n (1)

If A is strictly diagonally dominant, then for any choice
of x(O), the Jacobi method gives a sequence { x(k)}~0 tha.t

converges to the solution of Ax=b.

Graph construction

The simulation model follows in principle the U-interpreter
model of execution. The a,rchitectura.l model is a 64 Proces­
sor hypercube, based on the MIT Tagged Token Data.flow
Architecture [2]. gach operation (match, fetch etc.) takes
one time unit. Also one time unit delay per commnnication
hop is assumed.

Loop indices generation and the treatment of condition­
als is the dominant. pa.rt of da.t.a-flow graphs for iterative
algorithms. The lack of global state and the single as­

signment principle make 1.he da.ta-flow graphs (programs)
fundamentally different from conventional programs. The
handling of loop indices receives different treatment in
a data-flow environment.. Consider the following nested
loops:

For i in 1,k cross j in 1,1
In a von Neumann environment, the variable i will be up­
dated h; times while j will be updated k x l times. However
in a data-flow environment there is no notion of variable,
therefore the value i has to be created k x l times. The same
holds for j. In other words, all the indices of the outer loops
have to be created as irnrny times a.s the index of the inner­
most loop. Another notable characteristic of the data-How
environment is the treatment of conditionals. Ea.ch input.
value of the true block of a conditional has to be ga.ted
through a. true gate (T). In a similar fashion, each input
value to the false block has to be ga.tecl through a false
gate (F). This means that the tokens carrying the condi­
tional must reach all the gates involved and all gates will

fire. Loop indices a.nd conditionals introduce a lot of "corn­
municat.ion/ synchronization" overhe0.d in data-flow graphs
of iterative algorithms. The transformation technique pre­
sented in the next section targets this overhead for a more
efficient execution.

3 Transformation Techniques

In a data-flow en viroument all the parallelism present in
an algorithm is inherently preserved, nevertheless, some
changes in the implementation of algorithms can help take
full advantage of the potential of the data-flow principles.
In the remainder of this Section, our transformation tech­
nique for improving the performance of iterative algorithms
in a dynamic data-flow ma.chine is described.

3.1 Transformation algorithm

Item tive a.lgori thms have t.radi tionally been implemented
in a step at a time approach. This was very natural at
the pre-computer era since scientists a.nd mathematicians
would typically manually undertake the procedure. The
same approach is very natural in conventional von Neu­
mann architectures, because the (single) h uma.n bra.in is
replaced by a single powerful processor. In von Neumann

245

architectures, iterations a.re handled by REP EAT- UNTlL
a.nd WHILE constructs. The stopping criterion is nat.ll­
ra.lly checked at each iteration. These REPEAT- UNTIL
constructs severely limit the performance of p;ira.lJel pro­
cessors because they cannot be vectorized and/ or nrn lt.i­
ta.sked. In addition, the performance of parallel processors
is restricted by the fact tlrnt the stopping criterion is calcu­
lated a.tea.ch iteration which usually involves a lot of syn­
chroniza.t.iou overhead. This synchronization overhea.d is
sequent.ia.l in nature which has been shown (Amd;chl's law)
t.o have a very negative effect on the maximum achievable
speedup.

For the great. majority of iterative algoritluns, we can
theoretically estimate the order O(n) of the number of it­
erntions needed. When a com put.al.ion is cxped.cd t.o take
100 iterations, for example, it. docs not. serve any purpose
to Lest. the stopping cri t.erion d uriug the early i I.era.I.ions.

3.1.l Basic Principles

Jleduction of the overhea.d is possible by inserting a
FOHALL loop ([For i = 1, n] loop) inside a REP EAT­
U NTlL construct.. This allows us to check the stopping
criterion every n iterations. In addition to the reduction of
overhea.<1 due to the decrease in the number of eva.lnat.ions
of the stopping criterion, we can execute some parts of the
V<trious iterations in parallel.

The basic form of t.he modified .Jacobi implementation
is shown in Figure la. Fignre I b shows the traditional
implementation of the .Jacobi algorithm.

n = expected_nrunber_of_iterations(...)
REPEAT

For i=1,n do Jacobi(...)
check_stopping_criterion(...)
n = evaluate_n(...)

UIHIL norm_of_error < tol

Fil~ure .la. The modified Jacobi lrnplement.0.tion.

REPEAT
Jacobi (...)
check_stopping_criterion(...)

UNTIL norm_of_error < tol

Figure lb. Traditional Jacobi Irnplementn.tion.

The function expected_nwnber_of_i terations () is
used t.o give an initial estiurnt.e of the number of iterations
needed. The decision will be based on the nature of the
prol;lem and the convergence ra.t.e of the a.lgorithm. The
function evaluate_n() estimates the number of it.erat.ions
needed to achieve the required accuracy.

Unravelling the FORALL loops yields considerable po-
1.eut.ial for parallel execution. However, it shonld be noted
t.lrn.t. almost 703 of a typical iterative program, coded using
the U-Interpret.er principles, is synchroniza.1.ion overhead
related to the interpreter i I.self.

The "overhead/synchronization" actors a.re the target. of,
our proposed scheme. In an it.era.Live algorithm, the cur-.
rent. iteration depends on all or part. of the previous itera­
tion. This means that in a. da.ta.-flow environment., detec--

tion of data dependencies remains at the level of instruc­
tions, thereby allowing maximum pi~elining among the it­
erations. For example, as soon as :z:~) has been calculated,
the next iteration k + 1 can be initiated without awaiting
the whole production of the vector ;z:(k).

3.1.2 Estimating the number of iterations

The implementation of the evaluate...n() function is ap­
plication dependent. For our experiments we used a func­
tion based on the observed convergence rate of the algo­
rithm. Testing the stopping criterion consists of :first cal­
culating the distance dn = //x(n-l) - x(n)I/ between the
nth approximation and the previous approximation. If this
distance dn is less than the desired value tol, the execution
terminates. Otherwise, it proceeds to the next iteration.

The reduction coefficient Ref

R _ dn-1 _ llx(n-l) - X(n- 2)/I
cf - dn - / lx(n) - x(n-1) 11

(2)

indicates how many times the distance dn at iteration n
has been reduced w.r.t. the distance at iteration n - 1.

Sometimes, a converging iterative process oscillates at
the :first few steps. To compensate for this phenomenon,
the reduction coefficient Ref can be estimated by averaging
the effect oft iterations:

()
1/t

Rct = d~=t (3)

Assuming that the reduction coefficient is uniform through
the iterative process, we should expect that.

(4)

and finally
new n = fkl (5)

Equations 2 to 5 form the basic structure of the function
evaluate...n (...) . Analytical proof for this function is be­
yond the scope of this paper.

3.2 Simulation Results

Both the Jacobi algorithm and our modified Jacobi im­
plementation were evaluated for various problem sizes and
machine configurations. Simulations were performed for
problem sizes 3 x 3 to 32 x 32. The results, for the 8 x 8
and 32 x 32 systems, in terms of simulation time and
speedup, are shown in Table I. The numbers shown under
the "Repeat" column correspond to the traditional imple­
mentation of the Jacobi method and the ones under the
"Forall" heading correspond to the modified Jacobi. Actu­
ally in order to access the effect of the Forall insertion only,
we further modified our modified Jacobi Implementation.
The inserted FOR loop (FORALL) is performed only once.
The total number of iterations was known beforehand and
"forced" .into the p~ogram g~aph. The stopping criterion in

246

#PEs Repeat For all
Time Speedup Time Speedup

8x8
1 40948 - 36569 -
2 22029 1.86 21322 1.72
4 13470 3.04 12111 3.02
8 10572 3.87 7564 4.83

16 9088 4.51 ,5941 6.15
32 8513 4.81 4738 7.71
64 8420 4.86 4164 8.78

32x32
1 562269 - 499319 -
2 289632 1.94 253749 1.97
4 157435 3.57 131747 3.78
8 91273 6.16 70379 7.09
16 57240 9.82 38997 12.80
32 42382 13.27 23356 21.38
64 34935 16.09 16975 29.41

Table I: Simuation results for the traditional implementation
of Jacobi (Repeat) and the modified irn1>lementation (Forall).

speedu_p
t

28

24

20

o: 8x8 Repeat
o: 8x8 Forall
~ 32x32 Repeat

l®=_ 32x32 Fora!@···
/

____ .• ------····~·--·/

16 _/// ·············· •
12 !if .--·-··· ... -·--· -

:~==~
8 16 24 32 40 48 56 64 # of PEs

Figure 2: Speedup vs # of Pes for the 8x8 and 32x32
problem for both Jacobi and Modified Jacobi lmplemena.­
tions.

the traditional implementation of the algorithm was cho­
sen in such a way that exactly 10 iterations were neces­
sary. This was done for all problem sizes. In other words,
all the results shown in Table I correspond to an ·execu­
tion of 10 iterations. Also, the stopping criterion (check if
llx(kJ _x(k-l)/I < tol) is inside the For loop unlike the mod­
ified Jacobi implementation of Figure la. Therefore both
implementations (Repeat and Forall) are identical, the only
difference is that the FORALL construct will initiate all
the iterations from the beginning. This indeed isolates and
exacerbates the effect of the FOR.ALL insertion.

The speedup vs. # PE's curve, for the 8 x 8 and 32 x 32
problems is shown in Figure 2. This plot shows clearly that
the implementation with the FORALL outperforms the
traditional implementation throughout the whole space.

However, alt.hough the FORALL implementation out.­
performs the traditional implementation over the whole

space of experiments and it even projects higher margins
of improvement, it is still not as efiicient as expected. This
modified scheme targets the "overhead/ synchronization"
actors introduced by the U-interpreter. Since this con­
stitutes a.bout 703 of the total graph, the improvement
should have been higher. Among all possible factors, we
examine the effect of the fact that the critical pa.th is get­
ting no special treatment. The critical pa.th in this context
is the data dependencies among successive iterations, i.e.,
computation actors.

4 Mechanism for Priority Handling

By completely unraveling more than one iteration a.t a.
time, more parallelism is exploited because we have the
overhead/synchronization actors of a.11 n iterations initi­
ated from the beginning. However the actors belonging to
the actual computation (for the rest of this paper they will
be referred to as computation actors while the rest will be
referred to as synchronization actors), get no special treat­
ment. Therefore, at any given time t they ha.veto compete
with the synchronization actors for machine resources. The
probability of a computation actor belonging to iteration i
at time t to be allocated a specific resource r is given by:

c (t)
P(. t) '·'"

i, r, · = "'~· (S (t) -1 C· (t)) L...J=l J,r r _;J,r

(6)

where Sj,r(t) is the number of synchroniza.tion actors of it­
eration j at time t competing for resource r, and Cj,r(t)
is the number of the computation actors, also belonging
to iteration j at time t competing for resource r and fi­
nally n is the number of active iterations. In other words
the numerator of the r.h.s. of equation 6 is the number of
computation actors waiting for resource r, and the denom­
inator is the total number of actors waiting for resource r.
Therefore the expected wait E,.(i, t) time for any compu­
tation actor belonging to iteration i to get hold of resource
1· at any time t is

I:'~ (S (t) + C (t))
E,.(i,t) = (P(i,r,t)t 1 = ;=l J~ () J,r (7)

i,1· t .

Calculating the expected duration of each iteration analyt­
ically is not a trivial matter; as demonstrated by equation
6 and 7, it is very complex to estimate how long it will
take to gain access to a single resource. However it is clear
that if there a.re many more synchronization actors than
computation actors (per iteration) the expected wait time
for a. resource will be high.

4.1 The priority algorithm

The modified Jacobi implementation is motivated by the
fact that otherwise idle processors can be kept busy by
dealing with future iteration actors. However as suggested
in the previous section the a.ct.ors of the future iterations
are actually competing with the actors of the current iter­
ation. It has been shown in [6] that this indeed extends
dramatically the lifetime of the early iterations. Therefore

247

some sort of priority hierarchy is needed to ensure that the
early iterations a.re not delayed. A good candidate to be
used as a. priority field is the tag associated with ea.ch token.
The 11.c.s.i. tag can he mapped by a. one-to-one functional
f : tag -+ N. This means that by sorting the ta.gs of the
tokens in the firing queue (or any other queue), we can
guarantee that the ordering imposed by the programmer is
observed.

If no such strict priority is required then, the preference
to tokens expected to be needed first can be enabled by
using the iteration pa.rt i of the tag 1i.c.s.i. of the out­
ermost level. Whether a loop is incrementing (For i=i0 ,n
where n> i0) or decrementing (For i-=-u,i,, where n> in) the
iteration pa.rt i of the tag is always incrementing. There­
fore, if tokens with lower iteration values have priority over
other tokens with higher ,iteration values, the competition
for resources remains among actors belonging to the same
iteration. In short, the priority mechanism is:

Tokens with lower· tag iteration identifier i at
the outermost level of their tag have priority over
other tokens.

This policy works well with various kinds of loop con­
structs. However, more complex analyses and policies may
be required for more complex graphs.

4.2 Simulation Results

Having successfully tested the influence of both the inserted
FORALL and the priority mechanism [6], we proceed by
testing the entire modified Jacobi implementation with the
priority mechanism enforced. The priority was enforced a.t
the outer FORALL loop (the inserted loop). The same
problem sizes, as in the previous Section, were investi­
gated. Simulations results for the 8 x 8 and 32 X 32 systems
a.re shown in Tables II and III. The results under column
"FOR+ PRI" correspond to our modified algorithm imple­
mentation with the priority policy enforced. The manner
in which the speedup is calculated for this set of results dif­
fers from the definition of the speedup used for the previous
set of results. Rather than compa.ring the performance of
the algorithm using multiple PEs with that of the same al­
gorithm using a single PE, we compare the performance of
the algorithm using multiple PEs with the performance of
the standard unmodified algorithm using a. single PE. This
wa.s done because the object under evaluation was not the
architectura.l model but the modified Jacobi implementa­
tion.

Figure 3 shows the plots for 8 x 8 and 32 x 32 for both the
traditional implementation of Jacobi and the modified im­
plementation with the priority mechanism enforced. The
modified implementation (FOR+PRI) outperforms the tra­
ditional implementation throughout the whole space. The
results for the rest of the problem sizes were similar to the
ones presented. The speedup enhancement of the modified
over the tra.ditional implementation is in the range of 3.

Overall, the simulation results show that the proposed
modification to the algorithm and the priority mechanism

Pes REPEAT FORALL FOR+PRI
Time s Time s Time s

1 302118 - - - - -
2 161364 1.82 157013 1.92 151517 1.99
4 97573 3.10 88703 3.41 78406 3.85
8 75778 3.99 54180 5.58 42231 7.15

16 64775 4.66 39684 7.61 27483 10.99
32 60979 4.95 32087 9.41 21571 14.01
64 59213 5.10 27461 11.00 19890 15.19

Table II: Simulation time and speedup (S) for the 8x8 matrix
and n=40,20,10,5

Pes REPEAT FOR+PRI
Time Speedup Time Speedup

1 1281060 - - -
2 657115 1.94 650813 1.96
4 352485 3.63 332168 3.86
8 200807 6.38 173836 7.36
16 123343 10.39 93598 13.69
32 890'70 14.38 58292 21.98
64 73164 17.50 39217 32.66

Table III: Simulation time and speedup for the for the 32 X 32·
matrix and n=l5,5,3.

provide very good enhancement to the performance of the
iterative algorithms. For "real life" applications with prob­
lem sizes in the range of 103 - 104 the enhancement in
speedup should be much higher. The interested reader can
refer to [6] for a more complete and detailed presentation
and analysis of the results.

5 Conclusions

In this paper, we have identified an important source of
inefficient operations in data-driven machines. We have
presented a program graph optimization scheme which can

speedup.

32 o: 8x8 Repeat--·®
o: 8x8 Forall _ ··

28 '! 32x32 Repeat /

24 I®= 32x32 Forall ,,,,.

.W

20 ,/'/ .--·-·····

:: ~~
4 t---·····€>-··-·-·-··-···--·····tl-·····-··-···-·--·-·-···--···-··-··-····-···--G

OJ

8 16 24 32 40 48 56 64 #of PEs

Figute 3: Speedup vs # of PEs for the 8x8 and 32x32
problem for both Jacobi an<l Modified Jacobi Implementa­
tions with the priority Mechanism enforced.

248

be applied to iteratively-based algorithms in dynamic data­
flow environments. In our scheme, we rewrite the conven­
tional WHILE (also referred to as REPEAT) operator and
replace it by a WIIILE/FORALL construct. This allows
a more efficient "block" execution which bypasses much of
t.he overhead traditionally associated with data-flow com­
putations by enabling a certain amount of "look-ahead" on
the termination criterion. We have verified our scheme by
a combination of analytical and deterministiC simulation
means. We have shown that the speedup of the modified
implementation is considerably enhanced over the tradi­
tional implementation. This is brought about by the larger
amount of instructions which can be executed concurrently
in an asynchronous fashion.

However, it has been discovered that this very "anar­
chy" in the scheduling of operations would underutilize
the resources by favoring "low-yield" operations (i.e., those
overhead instructions which spawn few other actors in the
"computation" part of the program while conversely en­
abling more "overhead/synchronization" actors: a case of
bureaucratic folly!). Ill order to make sure that the compu­
tation work would be performed immediately, possibly at
the expense of overhead work in higher iterations, we have
hence developed a hierarchy mechanism which tends to give
higher priority to the execution of instructions in lower it­
erations. Both analytical and simulation results show that
the priority mechanism reduces the lifetime of the individ­
ual iterations of the modified algorithm. This yields con­
siderably better resource utilization and faster execution.
Higher performance is achieved as a direct combined effect
of the modified algorithm and the priority mechanism.

References

[1] J. Backus, "Can programming be liberated from The
von-Neurnann Style? A functional style and its alge­
bra. of programs,'' Communication of the A CM 21 (8),
(Aug., 1978), pp. 613-641.

[2] Arvind, R. S. Nikhil, "Executing a program on the
MIT Tagged-Token Dataflow Architecture" ,Parallel
Architectures and Langnages Europe, volume II,
(June, 1987), Springer-Verlag, pp. 1-26.

[3] IEEE Computer magazine, Special issue on data-flow
systems (Feb., 1982.)

[4] J. B. Dennis, "First version of a data flow procedure
language,'' In Proceedings of the Colloque sttr la Pro­
grammation, (Apr., 1974), Springer-Verlag, pp. 362-
376.

[5] Arvind, and R. E. Thomas, I-Structures: An efficient
data type for fmu;tional languages Rep. LCS/TM-178,
Lab. for Computer Science, MIT, (June, 1980).

[6] P. Evripidou, and J-L Gaudiot. Numerical Algoritluns
in a Data-Driven Environment, Technical Report CRI
88-19, Computer Research Institute, USC Department
of Electrical Engineering-systems (Apr., 1988).

Graceful Degradation Schemes for Static/Dynamic
Wavefront Arrays*

S. N. Jean C. W. Chang

University of Southern California
Signal and Image Processing Institute
Department of Electrical Engineering

University Park MC-0272
Los Angeles, CA 90089, U.S.A.

Abstract

In this paper, we propose two graceful degra­
dation schemes for two-dimensional wavefront ar­
rays. The first scheme is the static dataflow scheme
which can be applied to both run-time and compile­
time applications. The second scheme is the dy­
namic dataflow scheme which is mainly used for
run-time applications. For the static scheme, top­
ics discussed include program complexity and load
balancing. For the dynamic scheme, the focus is on
the routing control. Without broadcasting, a dis­
tributed routing algorithm which is self-adaptive to
different faulty patterns is developed. An upper
bound analysis of the system survival probability
for both schemes is presented. Results of Monte­
Carlo simulations for both schemes are compared
and the tradeoff between fault-tolerant capability
and hardware complexity is explored.

1 Introduction

VLSI/WSI processor arrays have regular and modular
structures that match the computational requirements of
most signal and image processing algorithms. Their par­
allel/pipelined processing characteristics will satisfy the
very high computational throughputs in real-time appli­
cations. However, it is almost impossible to guarantee
that an array with a large number of processing elements
(PEs) will have all the PEs running correctly in a mis­
sion time. Therefore, fault-tolerant techniques must be
incorporated into.these systems. A desired objective of a
fault-tolerant design is to maximize reliability while min­
imizing the corresponding hardware and time overhead.

Fabrication defects and operational faults on wafers
are inevitable in today's IC technology. The motivation
for incorporating fault tolerance in VLSI/WSI processor
arrays is two-fold: yield enhancement in fabrication
time and reliability improvement in run-time. As to
yield enhancement, the fabrication defect problem can be
solved by using static restructuring techniques [9) to con­
nect the good components.

*This research was supported in part by the National Science
Foundation under Grant MIP-87-14689, and by the Innovative Sci­
ence and Technology Office of the Strategic Defense Initiative Orga­
nization, administered through the Office of Na val Research under
Contract No. N00014-85-K-0469 and N00014-85-K-0599.

S. Y. Kung

Princeton University
Department of Electrical Engineering

Princeton, NJ 08544, U.S.A.

As to reliability improvement, operational faults have
a much lower probability of occurrence as compared to
production defects. Reconfiguration and graceful degra­
dation have been used to deal with operational faults. A
host-driven fault-stealing reconfiguration method is pro­
posed by Sarni and Stefanelli [11) to replace faulty PEs
with good spare PEs. On the other hand, a distributed re­
configuration algorithm is proposed in [5). In these meth­
ods, spare PEs are used and thus the size of the physical
array is greater than the size of the logical array. When
the logical array size is equal to the physical array size,
graceful degradation techniques, which use time redun­
dancy instead of space redundancy, should be applied. The
row/column elimination method by Fortes and Raghaven­
dra [2) is a typical example. Their design uses switches to
bypass the whole row (or column) of a faulty PE and thus
reduce the size of the logical array. Since the size of the

logical array is reduced, the algorithm needs to be recom­
piled and the host computer is involved. A lot of time may
be consumed in the recompilation and the propagation of
data/ control signals between the host computer and the
array. This paper propose graceful degradation methods
which require no recompilation of algorithms.

In VLSI array processing, it is critical to avoid large
clock skews in synchronizing systolic computing network.
A simple solution is to take advantage of the datafl.ow
computing principle such as in wavefront array processing
[6). Conceptually, a wavefront array equals a systolic array
plus static datafiow computing. Thus the requirement for
correct timing in the systolic array is now replaced by a
requirement for correct sequencing in the wavefront array.
Graceful degradation schemes are proposed in this paper
for two-dimensional wavefront arrays.

The paper is organized as follows: In Section 2, the
array topology and fault assumptions are described. In
Section 3, an upper bound analysis of the system survival
probability is presented. Distributed adaptive routing al­
gorithms with static and dynamic datafl.ow are described
in Sections 4 and 5, respectively. Finally, we summarize
some comparisons in Section 6.

2

249

Two Dimensional Grid Network
Model

Topology Most signal and image processing algorithms
are dominated by filtering, transfer techniques, and some
key linear algebraic methods. These algorithms, possess­
ing common properties such as regularity, recursiveness
and locality, can be efficiently computed in processor ar­
rays with mesh-type interconnections. For example, Fig­
ure l(a) shows some arrays with mesh-type interconnec­
tions. Different algorithms may require different kinds
of interconnections. An array which exactly match the
requirement of an algorithm is called a logical array. Ap­
parently, the array that people build, the physical array,
can not be the same as all the different logical arrays.
In this paper, a torus topology (or called k-ary 2-cube
interconnection network [1]), as shown in Figure l(b), is
provided for the physical array. Note that in a torus array,
the failure of boundary PEs can be treated the same as
that of internal PEs. From the implementation point of
view, the wraparound interconnections of a torus are fea­
sible on PC boards and wafers. Since adjacent PEs on the
array are interconnected directly, no external switches [4]
are required among PEs. Thus some VLSI area and hard­
ware design work can be saved. Furthermore the model
requires no global wires like that used in the host-driven
global reconfiguration technique (10] or that used in the
row/column elimination method [2]. In our model, bidi­
rectional ·information flows are allowed in the logical ar­
ray. Compared to unidirectional information flow as in
[11], this model will have broader applications.

In the -proposed grid network,

1. Each PE is self-tested (including computation and
routing parts) and its test results are transmitted to
adjacent PEs. Note that these fault signaling wires
are not shown in Figure l(b).

2. Since a faulty PE may contaminate data which pass
through it, a PE will disconnect the communication
links between itself and a neighbor faulty PE. This
will force data flow only through good PEs and links,

3. When the system is failed by one part of the array, a
system failure signal should be generated so that the
host and the other part of the array can be notified.
This system failure signal is very critical and a bad
method would result in a very unreliable system. A
double checking procedure should be used to make
sure the signal is not from a faulty PE. The adop­
tion of global links is not a good way to solve this
problem from this point of view. Thus the system
failure signal is also propagated locally with O(N)
time penalty for an array with size N x N, PEs
which receive a system failure signal is responsible
for executing the double checking procedure.

Fault Assumptions In this paper, we make the follow­
ing fault assumptions:

1. The self-testing part is fault free. Some kinds of

250

rrn~-~1
IQ:J~~I
''"""'"""'""'""'"""""""'""""""""""""'""""""""'""'""'"'"""""'""")

(a)

(b)

Figure 1: Two dimensional processor array grid network
model. (a) Logical arrays, (b) Physical array - Torus.

hardware redundancies, e.g., TMR, may be incor­
porated to assure this assumption.

2. The communication links are fault free. Some error­
correcting-code techniques may be incorporated so
that this assumption can be made.

3. Fault signaling wires to neighbor PEs are fault free.
Because the information transmitted over each wire
is only one bit, a robust design can be developed
without causing too much hardware overheads.

4. System failure signaling is fault free.

Algorithm Matching Many algorithms, when executed
on a processor array, require more communication links
than what a torus array can support. For example, a
southeastern link may be required for some algorithms.
The problem of mapping a logical array to a physical ar­
ray is called a matching problem. In order to implement
such algorithms on a torus array, data which can not be
transmitted over direct links should route through several
links to reach their destinations.

1. If synchronous design is to be adopted, then the
communication links have to be time-shared in or­
der to accommodate all the data links required by
algorithms. A time-shared scheme for the communi­
cation links was proposed in [7]. Their idea is to use
buffers of different size for different data so that the
data usages of the link can be time-multiplexed. Be­
ing able to determine the buffer size, they are able to
use synchronous arrays to handle those algorithms.

2. If asynchronous design is to be adopted, then either
static or dynamic dataflow schemes can be used.

• A data token may route through several com­
munication links to reach its destination. But
the sequence of transmitting multiple data to­
kens within each PE is predetermined and can

thus be incorporated into the program within
each PE. This is a 8tatic dataflow approach.

• All data tokens can be tagged with information
about their destination PEs. In this case, data
tokens reach their destination via some routing
algorithms. The routing path is not predeter­
mined. This is a dynamic dataflow approach.

In this paper, only asynchronous designs are consid­
ered.

Two Steps in Graceful Degradation For a graceful
gradable dataflow array, two steps are involved.

1. Once a PE is faulty, its task should be reassigned to
a good PE. This is called job rea88ignment.

2. Once job reassignment is fixed, data routing is needed
to implement the logical array on the faulty phys­
ical array. Two routing schemes are discussed in
this paper, namely; static and dynamic dataflow ap­
proaches.

3 Job Reassignment and Upper
Bound Analysis

Job Reassignment Job reassignment strategies directly
affect the control complexity of PEs and the system fault­
tolerance capability. In general, the more flexible the job
reassignment is, the more complicated the PE hardware
will be. However, the increase of reassignment flexibility
also increases the fault-tolerance capability. To simplify
the discussion, the job handled by each PE is assumed
to be non-breakable. Since the slowest PE in an array
determines the array throughput, jobs of different faulty
PEs should be reassigned to different good PEs. Here we
focus on the design with fixed reassignment, i.e., the job
of faulty PE is always assigned to its left neighbor PE.
Thus a good PE possesses at most two PE jobs.

Definition: The 3y3tem 8urvival probability, P 8 , is the
probability that the system (array) works with tolerable
degradation in performance given that the system works
initially.

If r is the PE reliability, i.e., the probability that a
PE is good (given that the PE is good initially), then for
an array with size N X M,

NxM
p s = L r(NxM)-i(l - r)i D; (1)

i=O

where D; is the number of successful faulty patterns with
i faulty PEs.

Upper Bound Analysis of Ps In our scheme, the task
of a faulty PE is always reassigned to its left neighbor
PE. Thus no two adjacent PEs in the same row will be

251

c 1.0
D
E
c
.!!'
:
.! 0.9

~
.... r=0.99 ... r=0.98

II r=0.97 u r=0.96 u
:I 0.8 .. rn r=0.95
0
.a
I! ...

0.7 -i-~...--~-.--~--.---.---.---.--.:r-~-1
7 8 9 10 11 12 13

N (Array Size - N x N)

Figure 2: Upper bound for system survival probability vs.
array size.

allowed to be faulty at the same time. Here we want to
calculate the probability that a system fails due to the
existence of two adjacent PEs in the same row. First, a
linear array is considered. The result is then extended
to a ring array. Finally, results for two-dimensional torus
arrays are obtained.

1. Assume there are M PEs in a linear array and q of
them are faulty; denote the number of successful
reassignments as f(M, q). Then f(M, q) can be
computed from the following recurrence equations.

{

f(M,q) = f(M-1,1M+f(M-2,q-1)
M~2, h-J~q~l,

f(M, 0) = 1 M ~ 1,
f(M, 1) M M ~ 2,
f(M, q) 0 otherwise.

2. If the array structure is a ring, the number of suc­
cessful reassignments, g(M, q), can be computed
by noting the following relation between f(·,·). and
g(·,·).

g(M,q) = f(M -1,q) + f(M - 3,q)

3. Assume that the array size is N rows and M columns
in our torus model. If there are q faulty PEs and
denote the number of successful reassignments as
h(N, M, q), then

q

h(N,M,q) = L h(N-1,M,q-k)g(M,k) N ~ 2,
k=O

(2)

with h(l,M,q)=g(M,q).

Once we obtain h(N, M, q), we may compute Ps,

NxM
P s = L h(N, M, q)r(NxM)-q(l - r)q (3)

q=O

Let's assume the 2-D array is square (i.e., N=M) and
compute Ps. The result is shown in Figure 2.

The accurate performance of the model depends on
achievement of both job reassignments and token routings.
In the above analysis, we consider successful job reassign­
ment cases without any routing consideration. Hence the
results in Figure 2 are the upper bound performance.

(a) (b)

Figure 3: The communication patterns: (a) before the
fault occurrence; (b) after the fault occurrence and task
reassignment.

4 Static Dataflow Scheme

For a wavefront array, the dataflow sequences within each
PE are predetermined and can be handled by the program
within each PE. Here we propose a static dataflow graceful
degradation scheme.

Definition: An N(a, b) neighbor region of a PE is a ax b
region with the PE as the center of the region. Here a and
b are odd integers.

First let's consider the case with single faulty PE.
The tasks originally handled by a faulty PE can be shared
by PEs on its N(3, 3) neighbor region. The load sharing
scheme can be predetermined and thus can be handled
by programs. Note that PEs located outside the N(3,3)
neighbor region need not change their dataflow sequences.

The more complicated faulty patterns we try to han­
dle, the more complicated the program would be. To sim­
plify the programming, we propose to handle only cases
where no two N(3, 3) neighbor regions of faulty PEs
overlap.

Program Complexity A comparison of communica­
tion patterns as shown in Figure 3 illustrates the com­
plexity of the program to be written into each PE. Once a
fault occurs, PEs on the N(3, 3) neighbor region should be
notified. Thus eight error signaling wires should be used
for each PE. Fudhermore, when a fault occurs, the rout­
ing functions of PEs in the N(3, 3) neighbor region are
different. In Figure 3(b), there are seven PEs with differ­
ent faulty routing functions and one PE (the one on the
right-upper corner) with the normal routing function. To
adapt to different faulty patterns, each PE must be able
to execute eight different routing functions, i.e., the nor­
mal function and seven emergency functions. These eight
function~ are predetermined and can be implemented ei­
ther by hardware, some kind of router, or by software

252

programming. 1

Note that arrays with different number of faulty PEs
possess almost the same throughput since their slowest
PEs have the same number of PE jobs. If a PE job can
be shared by several PEs, then load balancing should be
taken into account. Since load balancing can be predeter­
mined and handled by programs, the degradation of ar­
ray throughput can be minimized without increasing the
hardware complexity.

Monte-Carlo Simulation In this scheme, P s is the
probability that, in the array, no two N(3, 3) neighbor
regions of faulty PEs overlap. Thus a faulty pattern is
successful if and only if no two N(3, 3) neighbor regions
of faulty PEs overlap. A necessary and sufficient condition
for a faulty pattern to be successful is all the faulty PEs
are located outside the N(5, 5) neighbor regions of other
faulty PEs.

To estimate P., a Monte-Carlo simulation was per­
formed for different array size (N) and different PE reli­
ability (r). In the simulation, to estimate Di (cf., Eq. 1),
100,000 random faulty patterns, each with i faulty PEs,
are used and the number of successful faulty patterns are
counted. In this way, we estimate Di and then use Eq. 1
to compute P 8 • The results for different PE reliability, r,
are shown in Figure 4. Note that for a system without
fault-tolerance capability, the system reliability is rNxN

and is also shown in Figure 4.

Compile-Time Environment As we can see, Ps for
this scheme is not very attractive. The problem is the
requirement of non-overlapping N(3, 3) neighbor regions
to reduce the complexity of the program residing in each
PE. If higher Ps is required for run-time environment,
the dynamic dataflow scheme, as explained later, may be
used. However, if the compile-time fault tolerance is to
be considered, then N(3, 3) neighbor regions need not be
non"overlapping and P s can be improved drastically. This
is explained below.

Compile-time fault-tolerance is for arrays which are
designed as "general purpose" machines with array com­
pilers to compile array programs into PE programs. Users
write programs in the array level and produce array pro­
grams. To execute an array program, the array is first ex­
amined to see if there are any faulty PEs. Then, adaptive
to different faulty patterns, the array compiler produces
PE programs. At last, PE programs are loaded into the
array and executed.

In this case, the error detection time can be longer
(compared to run-time environments), more complete fault
location operations can be enforced, and communication
link errors may be detected (i.e., the fault assumptions
can be reduced). The PE programs loaded into PEs may
be different. But each PE needs only one PE program
disregard the faulty pattern. In this case, the faulty pat-

1 Some checkpoints or resynchronization are required to restart PEs
on the same neighbor region.

1.0

~
:;; 0.8 ..
.D
I! 0.6 D.

j
·~

0.4 ~
rn
E

i 0.2

0.0

1.0

~
:;;
_g 0.8
I!
D.

!
~ 0.6

cil
E
-! 0.4
ill

7

Static Scheme

~

~

~ ~
r:0.95

10 11 12 13

N (Arrey Size - N x N)

~
Static Scheme

r:0.99

10 11 12 13

N (Arrey Size - N x N)

Figure 4: System survival probability with/without static
graceful degradation.

OC'U'JCE
x y IN-PORT DATA

I I I I
H H

w B

Figure 5: Protocol of data token.

tern can be more complicated without greatly increasing
the complexity of each PE's program. Thus the system
can handle some faulty patterns with overlapping N(3, 3)
neighbor regions offaulty PEs and drastically increase PS·

5 Dynamic Dataflow Scheme

An array with dynamic dataflow is an array whose data
are tagged with some header. By extending the header,
graceful degradation may be achieved.

A data token definition (see Figure 5) for fault-tolerance
can be stated as follows:

1. X/Y field: used to denote the relative position of
the current PE (which the token resides) to the des­
tination PE before reassignment.2 If the current

2 Since all fault signaling wires are for local communication, the
source PE may not know the failure of the destination PE. Thus the
location of the destination PE before reassignment must be used.

253

PE and the destination PE locations are (i,j) and
(iD,fo) respectively, then x/y, the value of the X/Y
field, is defined as x = i - in and y = j - jn.

2. IN-PORT field: used to denote the original input
port of the destination PE. In a torus array, two
bits are required to distinguish the four input ports
(see Figure l(a)). If the links in the array are unidi­
rectional, one bit is sufficient to distinguish the two
input ports.

3. BOUNCE field: used to indicate the number of times
the token is kept away from the destination PE (be­
cause of the existence of faulty PEs).

Routing Algorithm The basic idea is to locally up­
date the X/Y field so that the destination PE is gradually
approached. A 0/0 value in the X/Y field means the des­
tination PE is reached. Then the IN-PORT field can be
used to distinguish the source PE. If the destination PE
is faulty, then the data token will reach the reassigned PE
with its X/Y field as -1/0. Note that the X/Y field can
be used for the reassigned PE to distinguish whether the
token is for itself or for its faulty right neighbor PE.

When a faulty PE is encountered during a routing, a
data token might be kept away from its destination PE.
The BOUNCE field is used to constrain the number of
"bounces", i.e., the action that forces a data token to leave
its destination PE. For example, the number of bounces
cannot be more than 3 if 2 bits are used for the BOUNCE
field. When the number of bounces for a data token is over
3, the system is declared "failed". Apparently, the larger
the number of bits for the BOUNCE field, the higher the
number of faulty PEs the system can tolerate and thus
the higher Ps. The purpose of the BOUNCE field is to
avoid infinite loops which will be explained later.

In the routing algorithm, no backtracking is allowed.
That means once leaving a PE, a data token is not allowed
to return to the PE immediately. This is to avoid some
useless routing steps.

Loop Free Requirement Because of the lack of global
information, most distributed routing algorithms need to
solve the problem of infinite looping [8,3]. That is, tokens
may be trapped in some loops forever. In a fault-tolerant
array, data token may be trapped in infinite loops for some
peculiar faulty patterns.

To solve the infinite loop problem, a straightforward
way is to use an AGE field in the data token to indicate
the number of links the data token has traveled through.
Apparently, if an upper bound is set on the AGE field
of a token, it is impossible to have an infinite loop. The
problem with this scheme is too many bits would be used
for the AGE field. By using the BOUNCE field, the pro­
posed algorithm can avoid infinite loops with less number
of bits.

1.0 1 -"'!===m===m==+==a--,

fo.9 ·~~,·= lo.a -~-~
Iii r=0.98

I 0.7
W=3,B:3 r=0.95

7 8 9 10 11 12 13
N (Array Size - N x N)

Figure 6: System survival probability for dynamic
datafiow scheme with W =3 and B=3.

Monte-Carlo Simulation Let W be the number of
bits in the X/Y field. and B be the number of bits in
the Bounce field. To take routing into account, a Monte­
Carlo simulation was performed where, for each specific
case (with specific array size and specific number of faulty
PEs), 100,000 random faulty patterns were used. In the
simulation, the unidirectional mesh array communication
is assumed to be the logical array. The simulation results
for W =3 and B=3 are summarized in Figure 6.

Tradeoff Since W constrains the range which tokens
can flow and B sets an upper bound on the number of
faulty PEs which can be tolerated, increasing W and B
will improve· the routing capability and PS· However, the
hardware cost is increased accordingly. Monte-Carlo sim­
ulations were made to illustrate the system survival prob­
abilities and the results for four cases (W=2, B=2; W=2,
B=3; W=3, B=2; and W=3, B=3) are summarized in
Figure 7.

Note that Ps for the case W=3 and B=3 are very

close to the upper bounds. It means that very few routings

fail and thus no more bits should be used for Wand B.

Communication Overhead To illustrate the commu­

nication overhead of the routing scheme, we define the

maximum routing distance for a successful faulty pattern

as the length of the longest routing path. The average

maximum routing distance of an array is the average of the

maximum routing distances over all the successful faulty

patterns. This parameter indicates the involved commu­

nication overhead and can be expressed as

where L; is the average maximum rout,ing distances for

successful faulty patterns with i faulty PEs and can be

estimated by simulations. Table 1 shows the simulation

results for the average maximum routing distance.

254

0.994 ,.
0.992 :ii • .a

I!
0.990 11.

j
'!

0.988 " "' i
! 0.986

0.984
7

0.98

i"i 0.97 :ii
J
I!

0.96 11.

j
e 0.95 " "' E •
1 0.94

0.93
7

8 9 10 11 12
N (Array Size- N x N)

8 9 10 11
N (Array Size - N x N)

13

12

..,. Upper Bound
+ W=3,B·3
+ W=3.B=2
+ W=2,B·3
+ w.2.e.2

13

Figure 7: System survival probabilities for cases with dif­
ferent W and B.

r Array W=2 W=2 W=3 W=3
Size B=2 B=3 B=2 B=3

0.99 8x8 2.45 2.45 2.45 2.45
9x9 2.73 2.74 2.74 2.74

lOxlO 2.97 2.97 2.97 2.97
llxll 3.21 3.21 3.21 3.21
12xl2 3.42 3.42 3.42 3.42

0.98 8x8 3.38 3.38 3.38 3.39
9x9 3.66 3.67 3.67 3.68

lOxlO 3.91 3.91 3.91 3.93
llxll 4.10 4.10 4.11 4.13
12x12 4.26 4.26 4.26 4.28

0.97 8x8 4.00 4.01 4.01 4.05
9x9 4.27 4.27 4.28 4.32

lOxlO 4.49 4.50 4.51 4.55
llxll 4.65 4.66 4.66 4.72
12x12 4.79 4.80 4.81 4.88

0.96 8x8 4.46 4.47 4.48 4.55
9x9 4.71 4.72 4.73 4.80

lOxlO 4.92 4.93 4.95 5.04
llxll 5.11 5.13 5.14 5.26
12x12 5.30 5.32 5.33 5.47

0.95 8x8 4.81 4.82 4.85 4.98
9x9 5.10 5.13 5.14 5.29

lOxlO 5.33 5.35 5.37 5.53
llxll 5.54 5.57 5.58 5.79
12x12 5.75 5.78 5.79 6.04

Table 1: The average maximum routing distances.

6 Conclusion

Two graceful degradation schemes are proposed in this pa­
per for wavefront arrays in run-time applications. A grace­
ful degradation scheme without tagging data is proposed
for the static datafiow array. For the dynamic datafiow
array, a scheme which extends the header of data token is
stated. An upper bound analysis of the system survival
probability for both schemes is presented. Simulations
were made to estimate the system survival probabilities
of both schemes. It is found that the dynamic dataflow
scheme exhibits higher system survival probabilities (see
Figure 8) which are very close to the upper bounds. This
is at the expense of higher hardware complexity. In the
compile-time environment, the system survival probability
can be improved for the static dataflow scheme by relax­
ing the constraints that no two N(3, 3) neighbor regions
of faulty PEs overlap. It is noted that although the array
compiler will be somewhat more involved, the hardware
complexity remains the same.

1.0

~
:ii 0.8 !
I!
a.

1 0.6
!:
iii
~ 0.4 ;;
:;

0.2

1.0

~ 0.8 :;;
• ~
I! 0.6 a. ..
~
!: 0.4 iii
E ..
;;
>-

0.2
I/)

0.0

1.0

~ 0.8 :;; .
~

I! 0.6 a. ..
~
!: 0.4 " I/)

E
" ;; 0.2 :;

0.0

7

7

7

~..._~-...__~...._~~W~=~

Static Scheme

8 9 10 11 12
N (Array Size - N x N)

r=0.98

8 9 10 11 12
N (Array Size - N x N)

-----.___ r=0.97

Static Sc~

13

13

9 10 11 12 13
N (Array Size - N x N)

Figure 8: Comparison of static scheme and dynamic
scheme in terms of the system survival probability.

255

References

[1] W. J. Dally. Wire-efficient VLSI multiprocessor com­
munication networks. In Advanced Research in VLSI,
pp. 391-415, 1987.

[2] J. A. B. Fortes and C. S. Raghavendra. Gracefully
degradable processor arrays. IEEE Transactions on
Computers, pp. 1033-1044, November 1985.

[3] J. M. Jaffe and F. H. Moss. A responsive dis­
tributed routing algorithm for computer networks.
IEEE Transactions on Communications, pp. 1758-
1762, July 1982.

[4] I. Koren and D. K. Pradhan. Yield and performance
enhancement throitgh redundancy in VLSI and WSI
multiprocessor systems. Proc. IEEE, pp. 699-711,
May 1986.

[5] S. Y. Kung, C. W. Chang, and C. W. Jen. Real-time
reconfiguration for fault-tolerant VLSI array proces­
sors. Proc. Real-Time Systems Symposium, pp. 46-
54, December 1986.

[6] S. Y. Kung, S. C. Lo, S. N. Jean, and J. N. Hwang.
Wavefront array processors: from concept to imple­
mentation. IEEE Computer Magazine, pp. 18-33,
July 1987.

[7] S. Y. Kung, S. N. Jean, and S. C. Lo. Matching
algorithm to array processors. In A CM-IEEE Proc.
of FJCC, October 1987, pp. 357-365.

[8] P. M. Merlin and A. Segall. A fairsafe distributed
routing protocol. IEEE Transactions on Communi­
cations, pp. 1280-1287, September 1979.

[9] W. R. Moore. A review of fault-tolerant techniques
for the enhancement of integrated circuit yield. Proc .
IEEE, pp. 684-698, May 1986.

[10] M. Sarni and R. Stefanelli. Fault-tolerance and func­
tional reconfiguration in VLSI arrays. In Proc. IS­
CAS 1986, pp. 643-648, 1986.

[11] M. Sarni and R. Stefanelli. Reconfigurable architec­
tures for VLSI processing arrays. Proc. IEEE, pp.
712-722, May 1986.

Data-Driven Multiprocessor Implementation
of the Rete Match Algorithm*

Jean-Luc Gaudiot, Sukhan Lee, and Andrew Sohn
Computer Research Institute

Department of Electrical Engineering - Systems
University of Southern California

Los Angeles, California 90089-0781

Abstract
Much effort has been expended on developing special ar-
chitectures dedicat.ed to the efficient execution of produc­
tion systems. While data-flow principles of execution offer
the promise of high programmability for numerical com­
putations, we demonstrate here that the data driven prin­
ciples can also be applied to symbolic computations. In
par' icular, we consider a mapping of the Rete match algo­
rithm on the MIT Tagged Token Data-flow Architecture.
The results of a deterministic simulation of this multipro­
cessor architecture demonstrate that artificial intelligence
production systems can be efficiently mapped on clata­
driven architectures.

1. Introduction
In rule-based production systems, it is often the case that
the rules and the facts needed to represent a particular
production system. in a certain problem domain would be
very large. It is thus known that simply applying software
techniques to the matching process would yield untoler­
able delays. Indeed, as [Fo82] has pointed out, the time
taken to match patterns over a set of rules can reach 90%
of the total computation time spent in expert systems.
The need for faster execution of production systems has
spurred research in both the software and hardware do­
mains. The conventional control flow model of execution
is limited by the "von Neuman bottleneck" [Ba78]. Ar­
chitectures based on this model cannot easily deliver large
amounts of parallelism [A183]. The data driven model of
execution has therefore been proposed as a solution to
these problems. These principles have been surveyed by
[Ga87]. The purpose of this paper is to demonstrate the
applicability of data-flow principles of execution and of
architecture design to the solution of artificial intelligence
(AI) oriented problems. For this purpose, a subset of pro­
duction systems problems, the Rete match algorithm has
been chosen.

Section 2 briefly introduces production systems and the
Rete algorithm. Section 3 discusses mapping the Rete

*This material is based upon work supported in part by the Na­
tional Science Foundation under Grant No. CCR-8603772 and by the
USC Facu_lty Research and Innovation Fund.

256

algorithm to data-flow architectures. There, we iden­
tify the problems associated with the Rete algorithm in
a multiprocessor environment and give solutions to these
problems through the allocation and distribution policies
we have developed. In section 4, simulations are carried
out and perfonnaJ1ce observations obtained for a data.­
driven environment are compared to those of a conven­
tional control-flow approach. Concluding remarks as well
as future research topics are discussed in section 5.

2. Production systems and the Rete algorithm

A production system is a program composed entirely of
conditional statements called productions or rules. The
left hand side (LHS) is the condition pa.rt of a production
rule, while the right hand side (RHS) is the action part.
The collection of all the production rules in a produc­
tion system forms a rule base, called a production mem­
ory. The productions in the production memory operate
on a working memo1·y which is a set of assertions called
W01·hng Memory Elements (WMEs). Bot.h patterns and
V\TMEs have a list of elements, called A tfribute Value Pairs
(AVPs). The value of a.n attribute can be either fixed (in
lowercase) or variable (in uppercase).

Production Memory

Rule 1
[(a Z) (b Y)]
[(c X) (cl Y)]
[(p 1) (q 2) (r X)]
==?

[Modify (c Y) (cl X)]

Working Memory

1: [(p 1) (q 2) (r *)]
2: [(p 1) (q +) (r =)]
3: [(a+) (b 6)]

Rule 2
[(p 1) (q 2) (r X)]
[(c X) (d W)]
[(1 5) (m 6) (n W) (o Z)]

[Remove 1st pattern]

4: [(15) (m 6) (n 6) (o 2)]
5: [(1 5) (m 7) (n 6) (o @)]
6: [(c *)(cl 6)]

A t.ypical execution cycle of production systems is com­
posed basically of three steps: matching, conflict resolu­
tion, followed by rule firing: In the matching cyde, the
LHSs of all the producti~n rules are matched against the
current WMEs to de.t.errnine the set of satisfied produc­
tions. The conflict resolution cycle selects one production, ·

if the set of satisfied productions is non-empty. The ac­
tions specified in the RHS of the selected productions arc
performed in the rule firing cycle. In this paper, we limit
ourselves to the matching step only since it takes most
of the computation time in the evaluation of production

systems.

The Rete rn.atch algoritlun [Fo82J is one of the best
known approaches used in the matching of objects in pro­
duction systems. It constructs a condition dependency
network, saves in 1nemory the information concerning the
changes in the working memory between product.ion cy­
cles, and then utilizes them at a later time. This is based
on the observation, called temporal 1·edundancy [BF85],
that there is little change in the working rn.emory between
production cycles. The Rete algorithm further reduces the
matching time by sharing identical tests among produc­
tions. It stems from the fact that the productions have
many similar or identical parts, called structural similar­

ity. A condition-dependency network for the two rules
listed above has been constructed in Figure 1. The net­
work consists of several types of nodes: root node, one­
input nodes, two-input nodes, negated two-input nodes
and terminal nodes (see [Fo82J for details).

3. Data-flow implementation of the Rete algo­
rithm
In this section, we identify the necessary mapping schemes
to suit the Rete match algorithm and the data-flow multi­
processor. Bottlenecks in the Rete algorithm are identified
and possible solutions are suggested.

3.1. Suitability of the data-driven execution model

Executing the Rete algorithm on a data-flow multiproces­
sor has many advantages over execution on a conventional
control-flow computer: First, the execution principles of
the Rete algorithm are driven by incoming data tokens,
i.e., execution rnay proceed whenever data are available.
In any situation, multiple firings of actor in data-flow and
comparison tests in the Rete algorithm are possible. Sec­
ond, both are based on the single assignment principle,
i.e., no data modifications except arrays. Third, both a
data-flow machine and the Rete algorithm need depen­
dency graphs. Fourth, the requirement for the memo­
rization capability in two-input nodes of the Rete algo­
rithm assumes a good structure handling technique and
this can be effected by using the I-Structure Controller
in Arvincl's Dynamic Data-flow machine. Finally, the dy­
namic data-flow architecture allows an easy manipulation
of the counters (see [Fo82]) since the counter for negated­
pattern processing can be treated the same as other tags
in the dynamic architectures.

3.2. The Rete algorithm in a multiprocessor envi­
ronment

Mapping production systems onto multiprocessor systems
has been done in several ways in the recent literature. Di-

257

rect mapping employed by [SM84, St87] for DADO uses
"full distribution," which allocates one rule to an avail­
able PE to achieve the production-level parallelism. In
[Gu84] a relevancy between the rules and the WMEs is
identified and used to directly allocate rules to PEs. It
has been suggested by [Bi85] that the semantic network
can directly be viewed as a data-flow graph. Each node
in the semantic network corresponds to an active element
capable of accepting, processing, and emitting value to­
kens traveling a.synchronously along the arcs. The other
approach suggested by [TM85J may be considered an in­
direct mapping. In this approach, all productions are an­
alyzed and grouped according to the dependency existing
between productions to enable parallel firing of rules.

The ma.pping scl1eme adopted for our simulation, how­
ever, is somewhat different from the forementioncd ap­
proaches. The motivation for the choice of an alterna­
tive method is in two facts: First, the architecture we
have adopted is based on data-flow principles of execu­
tion. Since the parallel model employed in this paper ex­
ploits parallelism at the production level, condition level,
and further attribute-value pair level, the mapping scheme
must be efficient to utilize all the possible forms of paral­
lelism inherent to both data-How principles and the Rete
algorithm.

Second, the Rete algorithm presents two bottlenecks
which substantially degrade the performance of the pro­
duct.ion system in our parallel machine: Since the root
node distributes tokens one at a time to all PEs, tokens
will pile up on the input arcs as shown in Figure 2. This is
due to the fa.ct that rules cannot be copied to all PEs. The
second inefficiency can also be seen on Figure 2. Assume
that m tokens are received and matched on the left input
arc of the two-input node. Further assume tha.t a token is
received and matched on the other input of the two-input
node. The arrival of this last token will trigger the invoca­
tion of m comparisons with the values received and stored
in the left memory LM3 of the two-input node. On the av­
erage, there will be O(m) such tests. Should the situation
have been reversed and n tokens be in the righl memory
RM6 , a token on the left side would provoke O(n) com­
parisons. The internal workings of this two-input node are
therefore purely sequential. In order to avoid the wasted
time in searching through the entire memory, an effective
allocation of two-input nodes and one-input nodes should
be devised.

3.3. Allocation of productions
The allocation policy we are going to use does not follow
the structural similarity discussed in section 2. Those con­
dition patterns that are shared by different productions
are copied and allocated to different PEs. It is based on
the fact that by copying shared pat.terns and allocating to
different PEs the overhead in inter-processor communica­
tion can be substantially reduced. However, this policy
will consume a lot of processor space and be costly as

the number of productions that share patterns or part of
patterns increases.

Suppose that n PEs are available. They are logically
partitioned into Vn groups, where each group has Vn
PEs. Those condition patterns that have i AVPs in each
pattern are allocated to PEs in group i. Each two-input
node is split into two memories; left- and right memories.
Memories are allocated to PEs, where the corresponding
one-input nodes are allocated. Those memories that have
no corresponding one-input nodes are are allocated to PEs
in Group 0. Allocating a memory to a PE will ensure an
even distribution of processing load across the processor
space. At the same time, we can realize parallel match­
ing in condition level. Terminal nodes are not explicitly
allocated to PEs for our simulation.

Based on the above allocation policy, the network is al­
located to PEs, shown in Figure 3. PEs are partitioned
into 5 different groups, where Group 1 is not used in our
example since no condition pattern has only one AVP.
Consider the first pattern of Rule 2, [(p 1) (q 2) (r X)],
for example. The sequence of nodes in the pattern and
the left memory for that pattern are labeled 9 through
12 in Figure 1 (9 through 11 are one-input nodes). Since
the pattern has 3 AVPs, it is classified into Group 3 and
allocated to PE1 of Group 3, designated PE3 ,1 . The sec­
ond pattern of the Rule 2 has 2 AVPs and right memory,
labeled 13 through 15. It is classified into Group 2 and
allocated to PE2 of Group 2, designated PE2 ,2 • In gen­
eral, the number of PEs needed to allocate productions is
proportional to the number of inter-element feature tests
in the productions.

3.4. Dynamic WMEs distribution
In order to overcome the bottleneck at the root node
we propose one schem.e which simultaneously distributes
many different tokens to many PEs at a time if many
WMEs are available at the same time for distribution.
WMEs that have i AVPs never match patterns that have
j AVPs such that i < j. The network shown in Fig­
ure 1 is, therefore, modified to a network with multiple
root nodes, as depicted in Figure 4. Whenever the new
WMEs that are generated due to the rule firings become
ready for distribution, PEs distribute WMEs based on the
group numbers attached to the WMEs.

Assume that the .two rules are compiled and allocated
to the PEs according to the allocation policy descril>ed
in section 3.3. Suppose further that a set of WMEs
shown in section 2 is available and is about to be dis­
tributed into the network. If the Rete algorithm dis­
tributes one WME a.t a time to the network through
the root node in Figure 1, it would take 6 time units
to distribute them. Furthermore, a. number of compar­
ison tests which are performed at the very first one-input
nodes (1, 4, 9, 13, and 16) will reach 36 (= 6 PEs x
6 WMEs). This is depicted in Figure 5(a), where one
WME at a time is sequentially distributed to all PEs. For

258

example, when WME1 is distributed, all 6 PEs to which
patterns are allocated make a comparison test simulta­
neously. Only two PEs, PE3,0 and PE3 ,1 , will succeed in
matching. This forces the machine to operate in Single­
Instruction-strea.rn-Multiple-Data-stream (SIMD) execu­
tion mode although it has a Multiple-Instruction-stream­
Multiple-Data-stream (MIMD) processing capability.

Applying our distril>ution policy, the 6 WMEs are par­
titioned into 3 groups and the group numbers are assigned
to WMEs. WMEs 3 and 6 get group #2 while 1 and 2 get
#3 and 4 and 5 get #4. The total number of comparison
tests performed at the very first one-input nodes in three
sequences reduces to 12 (= 2x2 + 3x2 + lx2), as shown
in Figure 6(b). There are three bins in Figure 6(b), where
each bin corresponds to a group. In each group, WMEs
are sequentially distributed to PEs belonging to the corre­
sponding group in the PE space. However, between groups
WMEs are simultaneously distributed. The speed-up for
the distribution policy would then be 36/12=3 for the
given set of WMEs. The number of groups in WMEs de­
tennines the speed-up. In the worst case, only one WME
can be distributed to all PEs at a. time as shown in Fig­
ure 6(a.). Note that in the original Rete algorithm, a se­
quential distribution, analogous to our worst case, would
be implemented. Instead, our improvement provides the
extra. parallelism although this scheme depends heavily on
the fact that WMEs will be evenly classified to all groups.

4. Simulation and performance evaluation
4.1. Simulation
In this simulation, various WMEs and rules a.re used.
First, one-input nodes and array operations are tested by
1 PE. Simulation results show that a. sequence of one­
input nodes takes about 15 simulation time units. Each
additional matching takes 13 time units. Second, three
conditions of the Rule 2 are tested separately one at a.
time with various WMEs. Simulation results indicate that
WME 1 matches against \VME 6 of RM15 in 76 time units.
Third, two patterns are executed in parallel by two PEs
and take a.bout 200-500 time units to match \VMEs de­
pending upon the number of WMEs that have reached
either LM12 or RM1s·

4.2. Perfonnance evaluation
The following assumptions are made in the simulation:
No tokens wait for their partner for more than 1 time
unit. The routing time for a token to reach any PE is
set to 1 time unit. Each PE can execute 10 comparison
tests at a time. On the average, there are 3 patterns per
rule. One simulation time unit is set to lµsec. With
the simulation results and assumptions listed above we
identify the following results:

1. T0 , the time units for a. PE to process one-input. nodes
and variable bindings with 1 WME, < 20.

2. Tn, the time units for a PE to process a. two-input

node with one WME, < 100,

3. 1~ 2 , the time units for 2 PEs to process a two-input
node with various WMEs, < 125.

4. 7;,, the time units for 2 PEs to process a negated
two-input node, < 300.

5. Tr, the Lime units to instantiate a rule that has 1
regular and 1 negated two-input nodes, = Tt + T,, ""
400.

Suppose that a certain production system has rules
with average number of two inter-element features (1
two-input node and 1 negated two-input node) per rule
and that there is only one WME matched through the
one-input nodes and stored in each memory. The data.­
flow model would instantiate a rule in 400 simulation
time units, which is equivalent to 0.4 msec. lf there are
more than 1 WME matched through one-input nodes and
stored in each memory, Tr, the tirne taken to instanti­
ate a rule will be proportional to the number of WMEs
stored in each memory, as verified by our simulation re­
sults. When there are on the average n WMEs in each
memory, Tr "" 400n = 0.4n msec in the absence of conflict
resolution.

When the conflict resolution step (103 of total compu­
tation time [Fo82]) is taken into account, 7~ = 0.4(1 +
l0/90)n "" 0.5n msec, where n is an average number
of WMEs stored in a memory. This 7~ in turn gives
1000/0.5n = 2000/n rule firings/second. Compared to
the analysis of the implementation of OPS5 onto DADO
[Gu84], the choice of a data-flow multiprocessor gives a
2000/lOOn = 20/n fold in speed-up since DADO is esti­
mated to be able to fire below 100 rules/second.

5. Conclusion
In this paper, we have explored the potential of data-flow
multiprocessor systems for the efficient implementation of
symbolic computations. Among the various data-flow ar­
chitectures proposed, The MIT Tagged Token Data-flow
Machine has been chosen for our simulation model. As
a benchmark of symbolic computations, the Rete match
algorithm has been chosen.

Inefficiencies in the implementation of the Rete algo­
rithm on parallel rnachines have been identified and pos­
sible solutions to the problems have been worked out in
our data-flow environment. Simultaneous distribution of
many WMEs to many PEs has proven effective in deliv­
ering the parallelism inherent to the Rete algorithm and
allowed by a given configuration of our data-flow architec­
ture. Allocating conditions to different PEs, we have com­
pletely distributed O(n) iterations throughout the system.

The Rete algorithm has been successfully implemented
into a data-flow processing environment. The results we
obtained reveal that symbolic computations on a. data­
flow multi processor computer can indeed be processed ef­
ficiently. Comparison with conventional computers has

259

shown that a high speed-up could be obtained from this
approach. However, some problems in applying data-flow
principles of execution remain unsolved. One of the prob­
lems is the programmability in high-level language. Also,
a complete implementation of the conflict resolution step
will be next undertaken. In conclusion, it appears that the
data-flow principles of execution are not limited to uumer­
ica.l processing but will also find applications in some AI
problems.

References

[Al83] Arvind, Iannucci, R.A., "Two fundamental is­
sues lll multiprocessing: the data-flow solu­
tions," MIT Laboratory for Computer Science,
MlT/LCS/TM-241, September 1983.

[Ba.78] Backus, J., "C.a.n programming be liberated from
the von Neumann style? A functional style and
its algebra of programs,'' Commun. A CM 21, 8
(Aug. 1978), pp.613-641.

[BF85] Brownston, L., Farrell, R., Kant, E., Martin,
N., "Programming Expert Systems in OPS5,"
Addison-Wesley Publishing Company, 1985.

[Bi85] Bic, L., "Processing of Semantic Nets on Data­
f!ow Architecture," in Artificial Intelligence 27,
1985, pp.219-227.

[Fo82] Forgy, C.L., "Rete: A Fast Algorithm for
the Many Pattern/Many Object Pattern Match
Problem,'' in Artificial Intelligence 19, Septem­
ber 1982, pp.17-37.

[Ga.87] Gaudiot, J.L., "Data-driven multicomputers in
digital signal processing applications," in Pro­
ceedings of the IEEE, September 1987.

[Gu84] Gupta., A., "Implementing OPS5 Production
Systems on DADO,'' in !'roe. IEEE Interna­
tional Conference on Parallel Proce<1sing, August
1984, pp.83-91.

[St87] St.olfo, S.J ., "Initial Performance of the DAD02
Prototype," in IEEE Computer, January 1987,
pp.75-83.

[SM84] Stolfo, S.J., Miranker, D.P., "DADO: A Parallel
Processor for Expert Systems,'' in Proc. IEEE
Inte1·1wtional Conference on Parallel Processing,
August 1984, pp.74-82.

[TM85] Tenorio, M.F.M., Moldovan, D.I., "Mapping
Production Systems into Multiprocessors," in
Proc. IEEE International Conference on Par­
allel Processing, Angust 1985, pp.56-62.

1

2

Test X's

B 8 (oZ 19
Test X's LM12

TIN12, s

~ I RMs I T~IN---...-------'
L:J 7'8 Test W's

RULE1 satisfied
TIN20,21

I LM20 11 RM211

RULE2 satisfied

PEoo

Group OD
PE20

Group2B

r7.I Group3~

Group 4
16 17 18
19 21

~
~ []
DD

Figure 3: A simple redundant allocation policy.

6WMEs

~ 0 0"' 0 0Lp] 0 ~
Figure 1: The condition-dependency network. Group 2 13 14 15

mWMEs n comparisons
n WMEs

LMs m comparisons RMs

Figure 2: Two bottlenecks in the implementation.

RN for
GROUP3

RN for
GROUP4

Figure 4: A modified condition-dependency network.

260

(a)
Group 3

Group 4

Group 2

(b)

Group 3

Group 4
19 21

9 10
11 12 D
DD

D
DD

Figure 5: (a)Sequential- (b)Parallel distribution of

WMEs.

ON MEASURING THE PERFORMANCE OF
A MASSIVELY PARALLEL PROCESSOR*

Anthony P. Reeves
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Abstract

An important performance characteristic of a parallel
processor is its ability to implement data permutations; this is
especially true for massively parallel processors which have
restricted interconnection networks. Efficient programming of
a massively parallel processor requires a non-conventional
programming language. The overhead incurred when using a
high-level programming language is also an important
performance issue. The performance of a number of
fundamental algorithms which have been implemented on
NASA's Massively Parallel Processor is presented and the data
permutation capability of the MPP is examined. These
algorithms include: data permutations, the FFT, convolution,
and arbitrary data mappings. The MPP is programmed in the
high level language Parallel Pascal and the impact of using a
simple implementation of this language is estimated.

1. Introduction

In order to analyze the performance of a massively
parallel processor system it is necessary to characterize its data
permutation ability. In this paper a characterization scheme is
proposed which involves measuring the ability to perform a set
of regular permutations. These permutations occur in many
scientific problems and knowledge of their performance may
also be useful in guiding a programmer to develop efficient
programs. The performance of these permutations on NASA's
Massively Parallel Processor (MPP) is presented and the
overhead due to their implementation in a high level language
is also given.

Massively Parallel systems are suitable for the large class
of scientific applications which involve regular operations on
large data arrays. The main interest is in evaluating th._
systems performance for these well matched applications.
Many of these applications involve matrix operations such as
the Fast Fourier Transform (FFT) and matrix convolution; the
performance of both of these operations on the MPP is
considered in detail.

In the remainder of this section the MPP is described and
the performance of its primitive operations is presented. In
section two the performance of the MPP for a number of
important data permutations is considered in detail. The
performance of the MPP for matrix convolution is considered
in section three and the FFT is considered in section four. The
r.onvolution operation can be analyzed by means of the
primitives presented in section one while analysis of the FFT
requires knowledge of the data permutations presented in
section two. Finally, in section five, a heuristic data mapping
algorithm is considered which is data dependent and requires

*'l his work was funded in part by NASA Grant 5-403

Maria Gutierrez
School of Electrical Engineering

Cornell University
Ithaca, New York 14853

information to be acquired form the processor array in order
to determine the instruction sequence.

1.1. The Massively Parallel Processor

The Massively Parallel Processor consists of 16384 bit­
serial Processing Elements (PE's) connected in 128 x 128 mesh
[1]. That is, each PE is connected to its 4 adjacent neighbors
in a planar matrix. The two dimensional grid is one of the
simplest interconnection topologies to implement, since the
PE's themselves are set out in a planar grid fashion and all
interconnections are between adjacent components.

The PE's are bit-serial, i.e. the data paths are all one bit
wide. This organization offers the maximum flexibility, at the
expense of the highest degree of parallelism, with the minimum
number of control lines. The minimal architecture of the MPP
is of particular interest to study, since any architecture
modifications to improve performance would result in a more
complex PE or a more dense interconnection strategy.

The MPP Processing Element

The MPP processing element is shown in Figure 1. All
data paths are one bit wide and there are 8 PE's on a single
CMOS chip with the local memory on external memory chips.
Except- for the shift register, the design is essentially a minimal
architecture of this type. The single bit full adder is used for
arithmetic operations and the Boolean processor, which
implements all 16 possible two input logical functions, is used
for all other operations. The NN select unit is the interface to
the interprocessor network and is used to select a value from
one of the four adjacent PE's in the mesh.

The S register is used for I/O. A bitplane is slid into the S
registers independent of the PE processing operation and it is
then loaded into the local memory by cycle stealing one cycle.
The G register is used in masked operations; when masking is
enabled only PE's in which the G register is set perform any
operations. Not shown in Figure 1. is an OR bus output from
the PE. All these outputs are connected (ORed) together so
that the control unit can determine if any bits are set in a
bitplane in a single instruction. On the MPP the local memory
has 1024 words (bits) and is implemented with bipolar chips
which have a 35 ns access time. The clock cycle time is 100 ns
which is sufficient for a memory access and an ALU operation.

The main novel feature of the MPP PE architecture is
the reconfigurable shift register. It speeds up integer
multiplication by a factor of two and also has an important
effect on floating-point performance.

261

Program

Control

Unit

ToNN
PEI

-----128-----..

N-bit shift 1'1Qister

Lac:al~

Figure 1. The MPP Processing Element

kray Edge Connections

128

The interprocessor connections at the edge of the
processor array may either be connected to zero or to the
opposite edge of the array. With the latter option rotation
permutations can be directly implemented. A third option is
to connect the opposite horizontal edges displaced by one bit
position. With this option the array is connected in a spiral by
the horizontal connections and can be treated like a one­
dimensional vector of 16384 elements.

The MPP Control Unit

A number of processors are used to control the MPP
processor array; their organization is shown in Figure 2. The
concept is to always provide the array with data and
instructions on every clock cycle. The host computer is a VAX
11/780; this is the· most _convenient level for the user to
interact since it provides a conventional environment with
direct connection to terminals and other standard peripherals.
The user usually controls the MPP by developing a complete
subroutine which is down loaded from'the VAX to the main
control unit (MCU) where it is executed. The MCU is a high
speed 16-bit minicomputer which has direct access to the
microprogrammed processor array control unit (PCU). It
communicates to the PCU by means of macro instructions of
the form "add array A to array B". The PCU contains
runtime microcode to implement such operations without
mis~ing any clock cycles. A first in-first out (FIFO) buffer is
used to connect the MCU to the PCU so that the next macro
operation generation in the MCU can be overlapped with the
execution in the PCU. A separate 1/0 control unit (IOCU) is
used to control input and output operations to the processor

•,

Host Computer Data Bus Staging Memory
(VAX 111780) 32Mb

I >'II

"'
Main Control 1/0 Control
Unit (MCU) fot Unit (IOCU) • I

Processor Array

i f1FO I I 28 x 128 PE's I

.!,
Processor Array
Control Unit (PCU)

' It----------

Figure 2. The System Organization of the :rvfPP

array. It controls the swapping of bitplanes between the
processor array and the staging memory independent of the
array processing activity. Processing is only halted for one
cycle in order to load or store a bitplane.

The staging memory is a large data store which is used as
a data interface between peripheral devices and the processor
array; it provides two main functions. First, it performs
efficient data format conversion between the data element
stream which is most commonly used for storing array data to
the bitplane format used by the MPP. Second, it provides
space to store large data structures which are too large for the
processor array local memory.

1.2. Parallel Pascal

Parallel Pascal is an extended version of the Pascal
programming language which is designed for the convenient
and efficient programming of parallel computers. It is the first
high level programming language to be implemented on the
MPP. Parallel Pascal was designed with the MPP as the
initial target architecture; however, it is also suitable for a
large range of other parallel processors. A more detailed
discussion of the language design is given in [2].

In Parallel Pascal all conventional expressions are
extended to array data types. There are three fundamental
classes of operations on array data which are are primitives on
processor arrays but which are not available in conventional
programming languages, these are: data reduction, data
permutation and data broadcast. These operations have been
included as primitives in Parallel Pascal. Mechanisms for the
selection of subarrays and for selective operations on a subset
of elements are also important language features.

The Parallel Pascal compiler generates a parallel P-code
[3]. A code generator has been developed for NASA which
generates MCU assembly language for procedures which are to
directly use the MPP. Runtime support is provided in both
the MCU and the PCU. No code for the PCU is directly
generated by the compiler. Also, the code generator does not
have a conventional optimization stage.

262

1.3. Performance Measurements

The execution times of several primitive operations
implemented in Parallel Pascal were measured using program

loops and timing routines. For example, to measure the time
for a parallel array multiplication the following program
segments were timed:

var a,b: Parallel array [1..128,1..128] of real;

Program segment #1:
For i := 1 to 1000 do
begin
a:=b
end;

Program segment #2:
For i := 1 to 1000 do
begin
a:= a* b
end;

The time required to execute the first program segment was
6.60 msec, and the time to execute the second program
segment was 87.7 msec. The difference between these time
measurements is due to the 1000 array multiply operations.
Therefore, the time required for a parallel multiplication is
given by:

tps2 - tprrl
t =
rm 1000

where the t,m is the time for a real multiplication, and tp•l and
tp, 2 are the measured times for program segment #1 and
program segment #2 respectively.

1.4. MPP Primitive Operations

The cost of the basic primitive parallel operations of the
MPP, when programmed in Parallel Pascal, were measured
using the procedure outlined above. When calculating the
execution times of operations on 8-bit integers or Boolean data
types, the time to execute program segment #1 is equal to 6.48
msec. The measured operation costs are presented in Table 1.
Optimal times for these operations were estimated for the
processor array by itself; these are also presented in Table 1.
Optimal floating point arithmetic times were obtained from
[1], and the remaining optimal times were derived by counting
the clock cycles for optimal microcode instruction sequences
applied to the PE array hardware. The difference between the
measured and optimal times is due to three main factors: (a)
MCU overhead, (b) overhead introduced by the Parallel Pascal
compiler, and (c) overhead in the PCU microcode.

From Table 1. we can see that Boolean operations are the
least efficiently implemented. The MCU adds an overhead of 3
or more µsec. per operation, which in the case of Boolean
operations, dominates the execution times and causes an order
of magnitude in loss of performance. On average, the Boolean
measured times are about 20 times slower than the
corresponding optimal times. For floating point operations,
the 3 or more µsec. overhead is negligible since the execution
times of the operations are on the order of tens or hundreds of
µsecs. The floating-point add operation required about twice
the stated optimal time. We do not know the reason for this;
one possibility is that the run time implementation is
significantly different from that used by Batcher in [1]. It is
important to note that the implementation of floating-point

263

Table 1. Optimal and Measured execution times of some typical
operations.

Qperation Qptimal time Measured time

assignment r 6.4 6.6
assignment i8 1.6 1.8
assignment b 0.2 1.6
add r 38.1 75.8
mult r 75.8 81.l
mult r X s 43.9 87.7
sin r - 334.
add i8 2.5 4.0
multi8 8.8 9.0
mult i8 X s 7.0 7.5
div i8 17.6 24.1
mod i8 1.7.6 24.0
trunc 38.1 145.
round 38.l 145.
and 0.3 13.7
or 0.3 13.8
not 0.3 3.4
odd(i8) 0.5 2.9
any 0.5 2.4
min(r) 32.0 71.5
max(r) 32.0 71.2
min(i8) 8.0 33.l
max(i8) 8.0 33.1
compare i8 2.5 3.9
where b 0.1 3.1
shift(r,0,1) 3.2 9.9
shift(r,0,64) 205. 212.
shift(r,64,64) 410. 505.
shift(i8,0,1) 0.8 4.3
shift(i8,0,64) 51.2 62.9
shift(iB,64,64) 102. 126.
shift(b,0,1) 0.1 4.3
shift(b,0,64) 6.4 7.6
shift(b,64,64) 12.8 14.5

_£!Ocedure call - 150J..~

time in µsec.
s =scalar, r =array of real, i8 = array of 8-bit integer, b =
array of Boolean.
(*) The measured time for a procedure call varies according to
the variables passed on the call.

operations is programmable since the PE's are bit serial. For
example, Batcher used the IBM format while the current MPP
run-time system implements the VAX floating-point format.
Finally, it was noted that shift operations are least efficient
when either the number of bits to be shifted is small or the
shift distance is small.

1.5. Optimal Performance Estimation

In the following, when an algorithm is presented, the
corresponding measured and estimated execution times will be
given. The measured times were obtained using the timing
functions of the MPP as previously discussed for primitive
operations. The estimated optimal times were calculated by
tracing the Parallel Pascal code of the algorithm and adding
the optimal execution times, given in Table 1, of the
encountered array instructions. Any scalar operations,
executed by the MCU, were assumed to be concurrent with the

execution of the array operations, and thus, were not taken
into account. AB an example, the following is a program
segment of the shuffle permutation, for which the calculation
of the estimated execution time is shown.

x := 1; y := 0 -1-
tmxl := mx; -2-
tmx2 := mx; -3-

num := 2; -4-
while num < tn do -5-

begin
tmxl := shift(tmxl, -x, -y); (* shift down *) -6-
where id= num do -7-

mx := tmxl; -8-
num := num + 2; -9-

end;

where x and '!I are integers, and num and tn are 8-bit integers
(tn = 128); id is a parallel array of 8-bit integer; mx, tmx1,
and tmxf! are parallel arrays of either 32-bit reals, 8-bit
integers, or Boolean. Let the number of bits in the data
elements beNb .

The optimal execution time is equal to the sum of:
• 2 assign array of Nb = 2 X (0.2 X Nb) (-2- and -3-)

the following are executed .!!!:._ - 1 (i.e. 63) times:
2

•shift array of Nb by 1 = 0.3 X Nb (-6-)
•where b +compare i8 = 0.1 + 2.5 (-7-)
•assign array of Nb = 0.2 X Nb (-8-)

Note that an assignment operation takes two cycles per bit,
and a shift operation takes per bit two cycles (for load and
store) plus the shift distance. The total optimal time is equal
to 31.9 X Nb + 163.8 µsec. For example, for arrays of 8-bit
integer where Nb = 8 , the optimal time is 419.1 µsec.

1.6. The Transfer Ratio

A comparative measure, the transfer ratio [4], is used to
express the cost of an algorithm. The transfer ratio is defined
as the ratio of the time for the data transfer over the time for
an elemental operation. The time for an elemental operation is

defined as the average between the time of a multiplication and
the time of an addition on the processor array. Based on the
optimal execution times given in Table 1., the time for an
elemental operation for 32-bit floating point elements is 57
µsec, and for 8-bit integer elements it is 5.65 µsec. For
Boolean elements, the time for an elemental operation is taken
to be two clock cycles i.e., 0.2 µsec [4].

2. Data Permutations

The performance of the MPP for a number of classical
regular data permutations is considered here; however, the
method presented is not limited to these permutations. A
permutation function is performed on an ordered set of N
elements, and it is defined by a one-to-one function ir (x) [5].
Both x and ir (x) are integers between 0 and N-1; x and ir (x)
represent the addresses of the elements before and after the
permutation, respectively.

2.1. The Shift Permutation

The near-neighbor interconnection network of the MPP
can only directly implement the shift permutation. This
permutation is possible because the PE array has, in addition
to the near neighbor connections, toroidal end-around edge
connections. Any other permutation can only be achieved
through the shift permutation.

In Parallel Pascal, the shift permutation is specified with
the built in function 'rotate'. Its arguments consist of the array
to be shifted, and the amount and direction of the shift. For
the MPP, the cost of a shift permutation (t,) depends on the
amount of the shift (d) and on the number of bits of the array
elements (Nb)· The optimal cost for the shift permutation is
given by

t, = (2 + d) * 0.1 * Nb µsec

2.2. The Test Permutations

The permutations which have been implemented for the
MPP are exchange (E), shuffle (u), butterfly (!'), and bit reversal
(p). Where applicable, the respective Sub and Super
permutations were also implemented. Conceptually, a Sub
permutation involves a partitioning of the vector into groups
of adjacent elements such that each group is mapped into itself
only. A Super permutation involves partitioning the vector
into groups of adjacent elements such that each group moves
the same distance in the permutation. In general, the
implementation of a sub or super permutation involves less
work on the MPP than for the regular form of the
permutation.

A permutation will be defined by considering the binary
representation of x:

x = (b,., b,._1, ... ,b1)

The above expressions represent the binary address of an
element in N = 2" , and a permutation is defined by the
permutation on the bits of this address [5].

The Exchange Permutation

E(k) (x) = (b,., .. . , hi,, .. . ,b1) where 1 S k Sn

The exchange permutation consists of complementing bit
k of the input address. Thus, this permutation consists of
exchanging every pair of elements, where two elements form a
pair if their addresses are the same except for the kth bit.

In the exchange permutation all the elements move an
equal distance, except that half of the elements move in one
direction and the other half move in the opposite direction.
This procedure is accomplished in two steps:

1 - Calculate the amount of the shift which is equal to 2k-l

2 - Perform the exchange of pairs: where bk = 1 then shift
up (or left), and where bk = 0 then shift down (or right).

The Shuffle Permutation

u(x)=(b,._1, b,.-'-2, ••• , bv b,.)

The shuffle pern:nitation consists of a circular left shift of

264

the bits of the input address. The resulting permutation
consists of splitting in half the set of N elements, and then
interleaving them like in a perfect card shuffle.

The algorithm for the shuffle permutation is as follows:

1 - Map the upper half of the input matrix by shifting the

elements down a total of N - 1 steps. For each shift
2

down, one element will be located in the correct position,
and therefore stored in the result array.

2 - Map the lower half of the input matrix. The same
procedure of step 1 is followed except that the elements
are shifted up.

The Sub-Shuffie permutation is specified by:

u(k) (x) = (bn, ... , bk+1' bk-1' ... , b11 bk)

In the sub-shuffie permutation, the set of elements is
divided into 2n-k groups, each one of size 2k, and a perfect
shuffle is performed on each of the subgroups. The sub-shuffie
algorithm is the same as for the shuffie, except that there are
2n-k halves, and total amount of the shift is 2k-l - 1.

The Super-Shuffie permutation is specified by:

u(k) (x) =(bn-1' ... , bn-k+1' bn, bn-k• •··'bi)

The super-shuffie permutation, performs a perfect shuffle on
the whole set, except that now an 'element' consists of a group
of 2n-k elements. The super-shuffie algorithm is similar to the
shuffie algorithm, except that instead of shifting by one, a shift
by zn-k is performed at each step.

The Butterfly Permutation

f3(x) =(b 11 bn-1' ... , b2, bn)

The butterfly permutation consists of exchanging the most
significant bit (MSB) and the least significant bit (LSB). Three
cases arise from this exchange: First, if the bits are equal (i.e.
both are equal to 1 or to 0), the permuted addresses are
unchanged, and therefore the corresponding elements remain in
their initial positions. Second, if MSB = 1 and LSB =0, the
corresponding elements have to move up 2n-l - 1 locations
away. Third, if the MSB = 0 and LSB =1, the corresponding
elements have to move down 2n-l - 1 locations away.

Similarly to the butterfly, the sub-butterfly permutation
consists of exchanging bit k (MSB) and bit 1 (LSB); and the
super-butterfly permutation consists of exchanging bit n (MSB)
and bit n-k+l (LSB); The binary representations of these two
permutations are:

f3(k) (x) = (bn, ... , bk+1' bk-l• bv ... , bk)

13(k) (x) = (bn-k+1' .. •' bn-k+2• b,,, bn-k• ... 'bi)

The butterfly algorithm consists of two steps:

1 - Generate two Boolean masks: 'shiftup' indicates the
positions where the MSB of the address is equal to 0 and
the LSB is equal to 1, and 'shiftdown' indicates the
positions where the MSB is equal to 1 and the LSB is
equal to 0. Nothing needs to be done where MSB = LSB.

2 - Perform the shifts: where 'shiftup' is true, the elements
are obtained with a shift up by a distance of 2n-l - l;
where 'shiftdown' is true, the elements are obtained with
a shift down by a distance of 2n-l - 1.

265

The same algorithm applies for the sub and super
butterfly permutations, except that in the sub-butterfly a
2k-l - 1 shift is performed, and in the super-butterfly a
(2k-l - 1)(2n-k) shift is performed.

The Bit Reversal Permutation

p (x) =(b1, b2, ••• , bn-l• b,,)

The bit reversal permutation consists of reversing the
order of the bits of the input address. Similarly, the sub-bit
reversal at bit k reverses the k least significant bits: bit k to
bit 1, and the super-bit reversal reverses the k most significant
bits: bit n to bit n-k+l. The binary representations of these
two permutations are:

P(k) (x) = (bn, ... ' bk+l• bi, b2, ... ' bk)

p(k) (x) = (bn-k+l• bn-k+2• .. •' b,,, bn-k•. •.'bi)

The bit reversal permutation can be achieved with a series
of bit exchanges between the pairs of corresponding MSB and
LSB, i.e. between b,, and b1, bn-l and b2, ••• , b,,_m and bm+l

where m < l ; J. Therefore, a bit reversal can be realized by a

series of butterflies where the distance of each shift is
calculat~d from the bits position numbers. Exchanging MSB
bit j with LSB bit i, requires a shift of length 2i-l - 2i-l. The

algorithm consists of l ; J iterations, where each iteration

consists of:

1 - Determine which pair of bits is to be exchanged, and
calculate the amount of the shift.

2 - Similarly to the butterfly, create the shifts masks, and
then perform the shifts.

The same algorithm applies for the sub and super bit
reversal permutations, except that the bit exchanges are
performed only to the k least significant bits or the k most
significant bits, respectively. In both cases, the number of

iterations is equal to l ; J.
2.3. Performance Evaluation

Each permutation was coded in Parallel Pascal and was
run on the MPP using three types of data: 32-bit floating
point, 8-bit integers, and Boolean. Program details and the
timing results are given in [6]. These programs accept a
parameter k and generate the masks for the permutations
each time that they are called. Some of the overhead incurred
by the initialization code could be avoided.

The results from the optimal time estimations are used
first to characterize the performance of the MPP processor
array hardware for data permutations, then these are
combined with the measured results to characterize the
efficiency of the Parallel Pascal compiler and the MPP control
units.

Due to the orthogonality of the test permutations, the
performance of the MPP can be characterized by considering
only one dimension of the processor array. On the MPP each
permutation is performed concurrently on each row of the
processor array; i.e., 128 sets of 128 elements (the performance

for permuting the columns is identical). Since all the
permutations considered are orthogonal with respect to the
two dimensions of the MPP mesh connections, these results
may be simply extended to the case of permuting a 16384
element vector (or 128 x 128 matrix); the transfer ratio cost
will be doubled and the compiler efficiency will remain the
same.

For each permutation, expressions for the optimal
execution times (to ..) for a one dimensional permutation on the
MPP have been derived from the optimal execution times of
the primitive operations given in Table 1. These execution
times are optimal in the sense that they represent the cost of a
direct translation of the highl levellanguage program without
any overhead from the program control unit; i.e. the processor
array is doing useful work on every clock cycle. In some cases
a faster realization could be achieved by careful programming
at the microcode level. In Table 2. expressions are given for
sub-permutation costs to .. ,. and super-permutation costs
to ;:, where k is an intege~ in the range of 1 to 7 which is

"• 5

related to the group size. In the time expressions,Nb
represents the number of bits in the data elements: Nb is equal
to 32 for floating point elements, to 8 for integer elements, and
to 1 for Boolean elements. The time unit used in all
expressions is µseconds.

Table 2. Optimal Permutation Costs for one dimension of the
MPP.

71" Cost

to,, le 52 + Nb * (0.6 + 0.1 * 2,.)
toO',,. 17.6 + 0.4 * Nb + (0.5 * Nb + 2.6) (2,. - 2)
tou, E 17 .6 + 0.4 * Nb + [(12.8 * rk + 0.4)Nb + 2.6)(21e - 2)

to/J, 1e 0.4 * N6 + 24.2 + 0.1 * N6 21e
top, k 13.4 * Nb + 24.2 - 25.6 * N6 * r1e

(no+o.6 • N.J[: j+o.2(2'-JLJt1)N, top,,.

top,' (m + o.6 • N.J [: f25.6(1-2-~j_ ,-[ft r')N,

The permutation transfer ratios for the different data
types are given in Figures 3-5. The horizontal axis spans the
range of sub and super permutations with the usual
permutation at k = 7 since, when N 128,
7r(z) = ,..(7) (z) = ,..(7) (z). For the exchange permutation, the
kth sub and super permutations are considered to be identical.
Note that the transfer ratio is plotted on a logarithmic scale
and that the actual time in µsecs is also provided at the right
side of each graph.

The transfer ratios are in the range 1-20 for floating
point data, 6-200 for integer data and 100-2000 for Boolean
data. Recall that the transfer ratio is the number of
arithmetic operations of that data type which can be
performed in the time of one permutation. Ideally, if the
transfer ratios can be made less than 1 then permutations will
not impact the performance of the system. In many cases the
range for floating point numbers will .not be a problem since a
number of operations are typically performed between
permutations in most algorithms. However, there is a
significant difference in performance between the shuffle and

100 Exchange 5600 ... Shuffle Butterfly
Bit Reverse

0

~ 10 560 cc
Q> - E

~ i= c: e
I-

56

0.1 +-~~~~..-~+-~~..-~~~~-1- 5.6
3 5 7 5 3

Sub k Super

Figure 3. Transfer Ratios for Floating Point data Permutations

266

1000

0

~ 100 cc -~
c: e
I- 10

...... Exchange 5000 ... Shuffle Butterfly ... Bit Reverse

500
Q>
E
i=

50

+-~~~-,--r-~~~~----,L 5
5 3 7

k
3 5

Sub Super

Figure 4. Transfer Ratios for 8-bit Integer Permutations

10000

0
~ 1000
cc

.... ...

......

Exchange 2000
Shuffle
Butterfly

200

20

10 +-~~3~-5,.........-47--5--r~3 ~~~-+ 2

Sub k Super

Q>
E
i=

Figure 5. Transfer Ratios for Boolean data Permutations

bit reverse permutations compared to the others and these
permutations should be avoided if possible on the MPP.

For the integer and Boolean data these permutations may
incur a significant overhead unless they occur very infrequently
in the algorithm. For small data sizes the addi~ional
operations necessary to implement the permutation dominate
the permutation cost especially for the shuffle and bit reverse
permutations. Since the performance of the permutations
differs by more than an order of magnitude; the careful
selection of the most appropriate permutation for a task is
even more important than for the floating point case.

The efficiency of the programming language and control
units for a permutation is expressed by the ratio of the optimal
time to the measured time. The percentage efficiency of the
Parallel Pascal implemented permutations is shown for the
different data types in Figures 6-8. The efficiency for the
permutations ranges from 30-75 percent for floating point
data, 20-50 percent for integer data and 10-28 percent for
Boolean data.

The thee main potential causes for inefficiency are the
lack of code optimization, MCU overhead, and the loss of
useful cycles in the PCU microcode. The first inefficiency
causes the processor array to do extra useless work such as
copying arrays to temporary buffers, the second occurs when
the MCU has too many operations to perform between MPP
macro operations such that the FIFO buffer empties and the
PCU waits idle for the next operation, the last case may occur
when the microcede architecture is unable to perform all
necessary operations in a single 100 ns cycle such that the
array must miss a useful processing cycle.

It is difficult to ascertain the exact cause of inefficiency
from Figures 6-8.; however, it is possible to determine the
benefit which could be achieved with an optimally coded
control system. The implementation of floating point data
permutations is already reasonably efficient in most cases while
the implementation of the Boolean data types is not very
efficient. The results suggest that the main loss of efficiency is
caused by the MCU overhead. The code generated by the
Parallel Pascal Compiler is of a similar efficiency for each data
type; furthermore, it is reasonable to assume that the PCU
unit can efficiently manage single bitplane data. On the other
hand, Boolean data places the largest load on the MOU since it
must generate macro instructions for the POU at a much
higher rate than for other data types.

3. Convolution

Convolution is an important operation in many signal
processing and image processing applications. A two­
dimensional convolution involves convolving a large data
matrix D with a given small matrix W, the convolution
kernel, as specified by

m m

R[i,j] = E E W[x,y] * D[i+x, j+y]
:t:=-m 11=-m

where Wis of size (2m + 1) X (2m + 1).

Conceptually, the convolution result for a given element
R [i ,j] is obtained by superposing the W kernel onto the
matrix (with the center of W at position i,J), and multiplying
each kernel element with the corresponding matrix element.
The convolution result for i,j is then equal to the summation of

these products.

On the MPP, D is distributed on the processor array and
a convolution operation is implemented by a series of shift­
multiply-add operations (one for each element of the kernel).
The performance, on the MPP, of a two-dimensional
convolution operation involving a 5X5 kernel was examined.
The measured execution time for matrices with 8-bit integer
elements was 987 µsec, and for matrices with 32-bit floating
point elements was 5.28 msec. This is a processing rate of 830
MOPS for 8-bit integer data and 155 MFLOPS for 32-bit
floating point data. The time required for just the arithmetic

267

80

70

>. 60 (,) c Exchange

"' Shuffle
~ 50 Butterfly
i:U Bit-Reverse

40

30

20
3 5 7 5 3

Sub k Super

Figure 6. Efficiency of Floating Point data Permutations

50

40

>.
...... Exchange

(,) 30 Shuffle c:

"' Butterfly
~ -- Bit-Reverse w 20

10

0
3 5 7 5 3

Sub k Super

Figure 7. Efficiency of 8-bit Integer Permutations

30

>.
(,)
c:

"'
~ 20
jjj

10

Figure 8.

3
Sub

5 7
k

5 3
Super

...... Exchange Shuffle Butterfly -- Bit-Reverse

Efficiency of Boolean data Permutations

computations is 325 µsec (33% of the total time) for 8-bit
integer data and 3.92 msec (74% of the total time) for 32-bit
floating point data.

4. The Fast Fourier Transform

A Fast Fourier Transform (FFT) program, that involves
the /3, u, and p permutations, was developed. The Fourier
Transform is the frequency domain representation of a

function and it is frequently used in several different scientific
applications. The FFT is a fast method to compute the
Discrete Fourier Transform (DFT), since it reduces the
calculation of the FT from O(n2) for the DFT to O(n log2n).
An N-point DFT is specified by:

N-1
X (n) = E x0 (k) * wnk, n = 1, 2, ... , N-1

k=O
.2ir

-1-
where w = e N and N is a power of 2 [7].

4.1. The FFT Algorithm

The input to the FFT program is an NXN array, and the
FFT is performed concurrently on either the rows or the
columns of the array, depending on the coordinate chosen.
Consequently, a two dimensional FFT is achieved by
performing an FFT on the columns and then on the rows, or
vice versa.

In general, the algorithm used to perform a FFT to a
given row of length N (or column) is defined as follows:
For a bit reversed result:

FFTn = fl(n) W fJ(n-1) W ... fJ(2) Wu W where N = 2n

For a naturally-ordered result:

FFT,. = fi(n) W fi(n-l) W ... fJ(2) Wu W p where N = 2"

fJ, u, and p refer to the permutations presented in the previous
section; W represents the following operation:

XI Xl-1 + wP *t/i-1

.271'
-1-

where w = e N, p represents the power of w, I represents the
iteration number, and x and y are dual nodes ([7] p. 154).

This is only one formulation of' the FFT algorithm; for
example, an alternative well known FFT formulation is
obtained if every fJ is replaced by a u. The best permutation
sequence to use depends upon the relative speeds of the regular
permutations discussed in section 2. For the applications
programmer, the performance of the permutations on the total
system is required. The transfer ratios obtained from the time
measurements, normalized by the attainable floating point
arithmetic speed of 80 µs are shown in Figure 9. From this
graph it can be seen that the butterfly permutation is an order
of magnitude faster than the shuffle permutation and sub
butterflys are faster still. Therefore, it will always be better to
use butterfly permutations on the MPP rather than shuffles
whenever possible. Furthermore, a reasonable computational
performance may be anticipated since all butterfly
permutations have a transfer ratio of less than 10 which is the
order of the number of operations involved with each node pair
calculation.

As mentioned previously, the FFT algorithm has
complexity 0(n log2n), but on the MPP, it takes log2n steps
because there are N PE's for N elements, as opposed to one PE
for N elements (N = 128). In the MPP, a step or iteration l
consists of the following:

1 - Perform the fJ(n-l+l) permutation except when l = n, in
this case a u permutation is performed. At this point all
the dual nodes pairs are located in adjacent PE's.

268

100

0

~ 10 a:
...
~
rn
c:
~
I- Exchange Shuffle -Butterl1y Bit Reverse

0.1
3 5 7 5 3

Sub k Super

Figure 9. Measured Transfer Ratios for
Floating Point data Permutations

Table 3. FFT operation Times

O~ratio ,,J time measwed time

'3(1) 851 993

fl(6) 451 617

fi(s) 252 445

fi(4) 154 379

fi(a) 107 771

'3(2) 85 362
u 4390 7290

w 437 765
pgen I= 2 41.9 294
pgen I= 3 64.6 393
pgen I= 4 87.3 493
pgen I= 5 110.0 593
pgen l = 6 133.0 692

..1!.Jl..en l = 7 4.2 23

Total FFT 14820 22420

8000

800

80

Ql

E
i=

2 - Calculate the weights, wP 's. First the values of the p's are
generated, these are dependent on I and on the
corresponding array position. Then the real part of w is

equal to cos (~ p) and the imaginary part is equal to

. (2ir) -sin NP.
3 - Calculate x1's and y1's, i.e. perform the W operation

presented above. Initially, the x1_ 1's are in the even
numbered PE's and a copy is send to the corresponding
dual odd numbered PE; the opposite is done to the y1_ 1's.
Then the complex multiplication and addition are
performed.

4.2. Performance Evaluation

An FFT7 has been investigated on the MPP which is
defined by:

FFT7 = /3(7) W fl(s) W fi(s) W fi(4) W fi(a) W fJ(z) Wu W

The times for the various operations of the FFT algorithm are
given in Table 3. The execution times of these permutation
functions are more than the execution times of the same

permutations presented in section 2, because, in the FFT, the
data elements used are complex numbers i.e. two 32-bit
floating point elements. The execution time of the W
operation is independent of l, the iteration number. The pgen
function generates the p values and its execution time depends
on the value of l.

The measured time for the FFT is greater than the
estimated optimal time by a factor of 1.5. The execution times
of the FFT's are dominated by arithmetic operations (W
calculation) and by shifting operations (permutations); no
reduction functions are used. The MCU overhead is likely to
be minimum since most of the operations are array operations
of 32-bit floating point elements; therefore, the differences
between estimated and measured times are probably mainly
due to the lack of code optimization and the inefficient
implementation of Parallel Pascal primitive operations.

As a performance measure of the FFT, the number of
MFLOPS was calculated. An operation is defined as either a
floating point multiplication or an addition. It was determined
that the sine and cosine operations, used in the calculation of
the weight factors, have a measured execution time equal to
334 µsec, and thus, a sine or cosine operation on the MPP has
a cost equivalent to four floating point multiplication
operations.

In an FFT, two main calculations are performed at each
iteration: first, the weights factors are generated, and second,
the W operation is performed. In general, at each iteration 9
floating point operations per processor are necessary for _the
weights calculation and 8 are necessary for the W operation.
There are seven iterations on 1282 processors, and the FFT
takes 0.0224 seconds. Therefore, the FFT calculation achieves
an approximate rate of 87 MFLOPS.

In addition to the MFLOPS calculation, the percentage of
time spent on shift operations and the percentage of ti~e
spend on arithmetic calculations were found. The shift
operations consist of the by.tterfties and the shuffle
permutations, and the arithmetic operations .consists of ~he
weight factors calculation (pgen and the sme and cosme
operations), and of the W operation. The F!T progr~m
spends approximately 46% of the execution time on shift
operations, and approximately 54% on arithmetic operations.

5. Arbitrary Data Mapping

A parallel data mapping for a two-dimensional matrix
may be specified by two coordinate-index matrices. Th~se are
called the r matrix (for row index) and the c matrix (for
column index). A mapping from an input matrix M to a result

matrix R is specified by

R[i,j] =M[r[i,j], c[i,j]]

Two algorithms have been explored to perfo:~ this ~apping
function: a simple direct algorithm and a heuristic algorithm.

5.1. The Simple Algorithm
The simple algoritlp. requires every element of the inp.ut ·

matrix to be passed by every position of the output matrix.
When an element is located at the appropriate output position,
that is when it has moved the correct distance according to
the r a~d c matrices, its value is then stored at this position.

269

For i := 1 to n do
begin

For j := 1 to n do
begin

where r = i and c = j do
R:=M;

M := rotate(M, O, 1);
end;

M := rotate(M, 1, O);
end;

The cost complexity of this algorithm is O(n2) where n is
equal to the number of rows (or columns) in the matrix. This
algorithm always requires n 2 iterations and a total of n2+n
data rotations.

5.2. The Heuristic Algorithm

A heuristic algorithm [8] has been developed for the MPP
which takes advantage of uniformity or locality existing in the
movement of the data elements. Its performance depends upon
the available locality in the specific mapping operation. The
general concept ·is that the matrix M is only shifted to
positions where data elements are to be mapped to R. In order
to know how far M can be moved in one step it is necessary to
find the shortest distance to the next needed displacement.
This is achieved by min reduction functions applied to relative
versions of the c and r matrices. Therefore, the number of
iterations is reduced but each iteration is more complex since a
calculation involving two or more reductions is needed to
determine the displacement to the next iteration.

The worst case cost of the heuristic algorithm is 0(n 2), as
this algorithm may conceivably require up to n 2 iterations;
however, this has never been observed in practice.

5.3. Performance Evaluation

The performance results obtained from applying the
heuristic algorithm to a set of six different matrix rotation
mappings are shown in Table 4. The performance of the
simple algorithm (which is the same for all data mappings) is
shown in the last 1'.0W of Table 4. The first two columns give
the number of iterations and bit-shift operations required for
each mapping. The next column · gives the number of
reductions required by the algorithm The last four columns
give the estimated and measured timing results for 8 and 32-
bit data; all times in this table are in milliseconds.

The results show that, even with the more complex
iterations, the heuristic algorithm is significantly faster than
the simple algorithm for most of the given data mappings
when the optimal times are considered. However, in practice,
the simple algorithm is usually faster. The measured results
for the simple algorithm were about 4 times longer than the
optimal results for 8-bit data and 2 times longer for 32-bit
data which is comparable to previous results. For the
heuristic algorithm the corresponding figures are about 12 for
8-bit data 8 for 32-bit data.

Three main factors which contribute to the unusual
behavior of the heuristic algorithm are as follows. First, the
implementation of the primitive reduction functions is not very
efficient (see Table 1.). The implemented functions are more

Table 4. Cost of the Heuristic Algorithm for Matrix Rotation

ml!Il_ () iterations rotations reductions
map15 910 1451 2666
map30 2619 3359 7759
map45 4069 5838 12098
map60 3882 7975 11553
map75 2232 9029 6659
m~90 128 8129 382
simple 16384 16512 0

than 4 times slower than the optimal case and 44% of the
estimated execution time of the heuristic algorithm is
accounted for by these reductions. The simple algorithm does
not involve any reductions. Second, after a reduction function
is executed the result is used in a conditional branch statement
in the MOU. This causes the FIFO buffer to empty and the
MOU must do additional work before the next macro
instruction can be generated. Third, 20% of the optimal
estimated time is accounted for by Boolean array operations;
Boolean operations are the least efficiently implemented when
controlled from the MOU. On average Boolean operations are
about 20 times slower than the optimal case. The simple
algorithm does not involve any Boolean operations.

Conclusion

The capability of the MPP to perform a set of regular
permutations has been studied in detail. The results indicate
that the optimal implementation times for floating point data
transfers ma1 be reasonable for many applications but the
permutation of small length data may not be very efficient.
The performance of the total system for permutations is also
quite good for floating point data but significant savings might
be made if the shorter data type permutations were
reprogrammed in POU microcode. The analysis techniques
presented could be applied to other highly parallel
architectures.

Several characteristic algorithms have been considered:
convolution which is implemented with a few primitive
operations, the FFT which involves significant data
permutations, and the heuristic algorithm which has a data
dependent behavior. In general, the Parallel Pascal Compiler
performed well for large data types and deterministic
algorithms (which provided the lightest load for the MOU). It
did not perform as well fqr complex algorithms involving
Boolean data or reduction functions; however, in this case it
was still quite adequate for algorithm prototyping. It is not
clear that an optimizing compiler would be very much faster,
for the difficult algorithms, unless it generated PCU microcode
for critical sections.

In terms of processing speed, using Batchers figures [1]
the peak performance of the MPP is 288 MFLOPS; from our
primitive operation measurements the fastest rate we could

to _{_8-bitl_ tmJ8-bit) to (32-bit) tm (32-bit)

50.47 577.4 75.19 579.0
146.2 1684.0 216.2 1687.0
228.4 2628.0 339.l 2634.0
220.1 2511.0 331.5 2523.0
130.4 1451.0 205.3 1468.0

13.62 87.99 36.19 109.1

153 600 350 685

270

expect to attain is 210 MFLOPS (due to the slower add time).
For the convolution algorithm a rate of 155 MFLOPS was
attained and for a 128 x 128 FFT the rate was 87 MFLOPS.
These algorithms were conveniently programmed in Parallel
Pascal. Furthermore, 128 x 128 is the worst case size for the
FFT implementation on the MPP; for either larger or smaller
matrix sizes the comparative overhead due to interprocessor
communication would be less.

References

1. K. E. Batcher, "Design of a Massively Parallel
Processor," IEEE Transactions on Computers C-
29(9) pp. 836-840 (September 1981).

2.

3.

4.

5.

6.

7.

8.

A. P. Reeves, "Parallel Pascal: An Extended Pascal for
Parallel Computers," Journal of Parallel and Distributed
Computing 1 pp. 64-80 (1984).

J. D. Bruner and A. P. Reeves, "A Parallel P-Code for
Parallel Pascal and Other High Level languages," 1989
International Conference on Parallel Processing, pp.
240-243 (August 1983).

A. P. Reeves, "The Massively Parallel Processor: A
Highly Parallel Scientific Computer," pp. 239-252 in
Data Analysis in Astronomy II, ed. V. Di Gesu, Plenum
Press (1986).

R. W. Hockney and C. R. Jesshope, Parallel Computers,
Adam Hilger Ltd, Bristol (1981).

M. Gutierrez, Algorithms and Performance Analysis for
the Massively Parallel Processor, MS Thesis, Cornell
University, January 1988.

E. 0. Brigham, The Fast Fourier Transform, Prentice­
Hall, Englewood Cliffs, N.J. (1974).

A. P. Reeves and C. H. Moura, "Data Mapping and
Rotation Functions for the Massively Parallel
Processor," Proceedings of Computer Architecture for
Pattern Analysis and Image Database Management, pp.
412-419 (November 1985).

Parallel OPS5 on the Encore Multimax

Anoop Gupta
Department of Computer Science, Stanford University, Stanford, CA 94305

Charles L. Forgy, Dirk Kalp, Allen Newell, and Milind Tambe
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213

Abstract

Until now, most results reported for parallelism in production
systems (rule-based systems) have been simulation results -- very
few real parallel implementations exist. In this paper, we present
results from our parallel implementation of OPS5 on the Encore
multiprocessor. The implementation exploits very fine-grained
parallelism to achieve significant speed-ups. For one of the
applications, we achieve 12.4 fold speed-up using 13 processes.
Our implementation is also distinct from other parallel
implementations in that we parallelize a highly optimized C-based
implementation of OPS5. Running on a uniprocessor, our C-based
implementation is 10-20 times faster than the standard lisp
implementation distributed by Carnegie Mellon University. In
addition to presenting the performance numbers, the paper
discusses the amount of contention observed for shared data
structures, and the techniques used to reduce such contention.

1. Introduction
As the technology of production systems (rule-based systems) is

maturing, larger and more complex expert systems are being built
both in industry and in universities. Often these large and complex
systems are very slow in their execution, and this limits their
utility. Researchers have been exploring many alternative ways for
speeding up the execution of production systems. Some efforts
have been focussing on high-performance uniprocessor
implementations [2, 10), while others have been focussing on high­
performance parallel implementations [3, 6, 11, 9, 12, 13, 14].
This paper focusses on parallel implementations.

Until now, most results reported for parallelism in production
systems have been simulation results. In fact, very few real
parallel implementations exist. In this paper, we present results
from our parallel implementation of OPS5 on an Encore Multimax
shared-memory multiprocessor with sixteen CPUs. The
implementation, called PSM-E (Production System Machine

project's Encore implementation), exploits very fine-grained
parallelism to achieve up to 12.4 fold speed-up for match using 13
processes. Our implementation is distinct from other parallel
implementations in that we parallelize a highly optimized C-based
implementation of OPS5. This is in contrast to other efforts where
slow lisp-based implementations are being parallelized. Running
on a uniprocessor, our C-based implementation is 10-20 times
faster than the lisp implementation of OPS5 distributed by
Carnegie Mellon University. A consequence of parallelizing a
highly-optimized implementation is that one must be very careful
about overheads, else the overheads may nullify the speed-up. One
need not be as careful when parallelizing an unoptimized
implementation. In this paper, we first discuss the design of an
optimized implementation of OPS5, and then discuss the additions
that were made for the parallel implementation. For the parallel

271

implementation, we discuss the synchronization mechanisms that
were used, the contention observed for various shared data
structures, and the techniques used to reduce such contention.1

The paper is organized as follows. Section 2 presents some
background information about ihe OPS5 language, the Rete match
algorithm, and the Encore Multimax multiprocessor. Section 3
gives an overview of the parallel interpreter and then goes into the
implementation details describing how the rules are compiled and
how various synchronization and scheduling issues are handled.
Section 4 presents the results of the implementation on the Encore
multiprocessor. Finally, in Section 5 we summarize the results and
conclude.

2. Background
This section is divided into three parts. The first subsection

describes the basics of the OPS5 production-system language -- the
language which we have implemented in parallel. The second
subsection describes the Rete algorithm -- the algorithm that forms
the basis for our parallel implementation. The third subsection
describes the Encore Multimax computer system -- the
multiprocessor on which we have done the parallel
implementation.

2.1. OPS5
An OPS5 [l] production system is composed of a set of if-then

rules called productions that make up the production memory, and
a database of temporary assertions called the working memory.
The assertions in the working memory are called working memory
elements (wmes). Each production consists of a conjunction of
condition elements corresponding to the if part of the rule (also
called the left-hand side of the production), and a set of actions
corresponding to the then part of the rule (also called the
right-hand side of the production). The actions associated with a
production can add, remove or modify working memory elements,
or perform input-output. Figure 2-1 shows a production named
find-colored-block with two condition elements in its left-hand side
and one action in its right-hand side.

(p find-colored7b1ock
(goal Atype find-block Acolor <c>)
(b1ock Aid <i> Acolor <c> Aselected no)

-->
(modify 2 Aselected yes))

Figure 2-1: A sample production.

The production system interpreter is the underlying mechanism
that determines the set of satisfied productions and controls the

1This paper presents only a summary of the results. A more in depth analysis is
presented in [5].

execution of the production system program. The interpreter
executes a production system program by performing the following
recognize-act cycle:

•Match: In this first phase, the left-hand sides of all
productions are matched against the contents of
working memory. As a result a conflict set is
obtained, which consists of instantiations of all
satisfied productions. An instantiation of a production
is an ordered list of working memory elements that
satisfies the left-hand side of the production.

• Conflict-Resolution: In this second phase, one of the
production instantiations in the conflict set is chosen
for execution. If no productions are satisfied, the
interpreter halts.

• Act: In this third phase, the actions of the production
selected in the conflict-resolution phase are executed.
These actions may change the contents of working
memory. At the end of this phase, the first phase is
executed again.

A working memory element is a parenthesized list consisting of
a constant symbol called the class of the element and zero or more
attribute-value pairs. The attributes are symbols that are preceded
by the operator A. The values are symbolic or numeric constants.
For example, the following working memory element has class Cl,

the value 12 for attribute attrl and the value 15 for attribute attr2.

(Cl "attrl 12 "'attr2 15)

The condition elements in the left-hand side of a production are
parenthesized lists similar to the working memory elements. They
may optionally be preceded by the symbol -. Such condition
elements are called negated condition elements. Condition
elements are interpreted as partial descriptions of working memory
elements. When a condition element describes a working memory
element, the working memory element is said to match the
condition element. A production is said to be satisfied when: (1)
For every non-negated condition element in the left-hand side of
the production, there exists a working memory element that
matches it; (2) For every negated condition element in the left-hand
side of the production, there does not exist a working memory
element that matches it.

Like a working memory element, a condition element contains a
class name and a sequence of attribute-value pairs. However, the
condition element is less restricted than the working memory
element; while the working memory element can contain only
constant symbols and numbers, the condition element can contain
variables, predicate symbols, and a variety of other operators as
well as constants. Variables are identifiers that begin with the
character "<" and end with ">" -- for example, <i> and <C> are
variables. A working memory element matches a condition
element if they belong to the same class and if the value of every
attribute in the condition element matches the value of the
corresponding attribute in the working memory element. The rules
for determining whether a working memory element value matches
a condition element value are: (1) If the condition element value is
a constant, it matches only an identical constant. (2) If the
condition element value is a variable, it will match any value.
However, if a variable occurs more than once in a left-hand side,
all occurrences of the variable must match identical values. (3) If
the condition element value is preceded by a predicate symbol, the

272

working memory element value must be related to the condition
element value in the indicated way.

The right-hand side of a production consists of an unconditional
sequence of actions which can cause input-output, and which are
responsible for changes to the working memory. Three kinds of
actions are provided to effect working memory changes. Make
creates a new working memory element and adds it to working
memory. Modify changes one or more values of an existing
working memory element. Remove deletes an element from the
working memory.

2.2. The Rete Match Algorithm
In this subsection, we describe the Rete algorithm used for

performing the match-phase in the execution of production
systems. The match-phase is critical because it takes 90% of the
execution time and as a result it needs to be speeded up most. Rete
is a highly efficient algorithm for match that is also suitable for
parallel implementations. A discussion of alternative match
algorithms can be found in [3]. The Rete algorithm gains its
efficiency from two optimizations. First, it exploits the fact that
only a small fraction of working memory changes each cycle by
storing results of match from previous cycles and using them in
subsequent cycles. Second, it exploits the similarity between
condition elements of productions (both within the same
production and between different productions) to reduce the
number of tests that it has to perform to do match. It does so by
performing common tests only once.

The Rete algorithm uses a special kind of a data-flow network
compiled from the left-hand sides of productions to perform match.
The network is generated at compile time, before the production
system is actually run. Figure 2-2 shows such a network for
productions pl and p2, which appear in the top part of the figure.
In this figure, lines have been drawn between nodes to indicate the
paths along which information flows. Information flows from the
top-node down along these paths. The nodes with a single
predecessor (near the top of the figure) are the ones that are
concerned with individual condition elements. The nodes with two
predecessors are the ones that check for consistency of variable
bindings between condition elements. The terminal nodes are at
the bottom of the figure. Note that when two left-hand sides
require identical nodes, the algorithm shares part of the network
rather than building duplicate nodes.

To avoid performing the same tests repeatedly, the Rete
algorithm stores the result of the match with working memory as
state within the nodes. This way, only changes made to the
working memory by the most recent production firing have to be
processed every cycle. Thus, the input to the Rete network
consists of the changes to the working memory. These changes
filter through the network updating the state stored within the
network. The output of the network consists of a specification of
changes to the conflict set.

The objects that are passed between nodes are called tokens
which consist of a tag and an ordered list of working-memo~
elements. The tag can be either a+, indicating that something has
been added to the working memory, or a -, indicating that
something has been removed from it. No special tag for working-

(p pl (Cl Aattrl <x> Aattr2 12)
(C2 Aattrl 15 Aattr2 <x>)

- (C3 Aattrl <x>)
-->

(remove 2))

(p p2 (C2 Aattrl 15 Aattr2 <y>)
(C4 Aattrl <y>)

-->
(modify 1 Aattrl 12))

root

constant-[o>a~~
test \ j
nodes

attr2=12 attrl=l5 class=C3

class=C4

Figure 2-2: The Rete network.

memory element modification is needed because a modify is
treated as a delete followed by an add. The list of working·
memory elements associated with a token corresponds to a
sequence of those elements that the system is trying to match or
has already matched against a subsequence of condition elements
in the left-hand side.

The data-flow network produced by the Rete algorithm consists
of four different types of nodes. These are:

1. Constant-test nodes: These nodes are used to test if
the attributes in the condition element which have a
constant value are satisfied. These nodes always
appear in the top part of the network. They have only
one input, and as a result, they are sometimes called
one-input nodes.

2. Memory nodes: These nodes store the results of the
match phase from previous cycles as state within
them. The state stored in a memory node consists of
a list of the tokens that match a part of the left-hand
side of the associated production. For example, the
right-most memory node in Figure 2-2 stores all
tokens matching the second condition-element of
production p2.

3. Two-input ·nodes: These nodes test for joint
satisfaction of condition elements in the left-hand
side of a production. Both inputs of a two-input node
come from memory nodes. When a token arrives on
the left input of a two-input node, it is compared to
each token stored in the memory node connected to
the right input. All token pairs that have consistent
variable bindings are sent to the successors of the
two-input node. Similar action is taken when a token
arrives on the right input of a two-input node.

4. Terminal nodes: There is one such node associated
with each production in the program, as can be seen
at bottom of Figure 2-2. Whenever a token flows
into a terminal node, the corresponding production is
either inserted into or deleted from the conflict set.

273

The most commonly used interpreter for OPSS is the Rete-based
Franz Lisp interpreter. 1n this interpreter a significant loss in the
speed is due to the interpretation overhead of nodes. 1n the OPSS
implementation we present in this paper, the interpretation
overhead has been eliminated by compiling the network directly
into machine code. While it is possible to escape to the interpreter
for complex operations during match or for setting up the initial
conditions for the match, the majority of the match is done without
an intervening interpretation level. This has led to a speed-up of
10-20 fold over the Franz Lisp interpreter (see Table 4-4). 1n
addition to this speed-up, our parallel implementation gets further
speed-up by evaluating different node activations in the Rete
network in parallel.

2.3. Encore Multimax
1n this subsection, we describe the Encore Multimax shared­

memory multiprocessor ·· the computer system on which parallel
OPS5 runs. The Multimax consists of 2-20 CPUs, each of which is
connected to the shared-memory through a high performance bus.
The shared-memory is equally accessible to all of the processors,
in that each processor sees the same latency for memory accesses.

The processors used in our Encore Multimax are National
Semiconductor NS32032 chips along with NS32081 floating point
coprocessors, each processor capable of approximately 0.75
million instructions per second. There are two processors
packaged per board and they share 32 Kbytes of cache memory.
The processor boards use a combination of write-through strategy
and bus-watching logic to keep the caches on different processor
boards consistent. The bus us·ed on the Encore Multimax is called
the Nanobus. It is a synchronous bus and it can transfer 8 bytes of
new information every 80 nanoseconds, thus providing a data

transfer bandwidth of 100 Mbytes/second.

The version of Encore Multimax available to us at CMU has 16
processors, 32 Mbytes of memory, and runs the MACH operating
system developed at Carnegie Mellon University. The operating
system provides a UNIX-like interface to the user, although the
internals are different and several extensions have been made to
support the underlying parallel hardware. It provides facilities to
automatically distribute processes amongst the available processors
and it provides facilities for multiple processes to share memory
for communication and synchronization purposes. The results
reported in this paper correspond to this configuration of the
Encore Multimax.

3. Organization and Details of the Parallel
Implementation

When studying parallelism in production systems (or in any
other application for that matter), it is important to compute the
speed-ups with respect to the performance of the most efficient
uniprocessor implementations. It is indeed quite easy to obtain
large speed-ups with respect to inefficient implementations of the
application, but such results have little practical utility. In the case
of OPSS, the most efficient uniprocessor implementations are
currently based on the Rete algorithm and they compile the Rete
network directly into machine code and use global register
allocation. Such compilation into machine code gives
approximately 10-20 fold speed-up over Rete-based lisp
implementations of OPSS (see Table 4-4). For this reason, our
parallel implementation of OPSS on the Encore is also Rete-based
and compiles the Rete network directly into (NS32032) machine
code.2 Another effect of parallelizing a highly efficient
implementation versus an inefficient one is that the number of
instructions executed in each parallel subtask (for the same task
decomposition) is smaller in the highly efficient implementation.
This is equivalent to exploiting parallelism at a finer granularity,
and as a result, the issues of synchronization and scheduling are
more critical.

3.1. High-Level Structure of the Parallel Implementation
The parallel OPS5 implementation on the Encore (PSM-E)

consists of one control process and one or more match processes.
The number of match processes is a user specified parameter, but it
is fixed for the duration of any particular run. The system is
generally used in a mode where the computer contains at least as
many free processors as there are processes in the matcher; this
permits each process to be assigned to a distinct processor for the
duration of the run (provided the operating system is reasonably
clever about assigning processes to processors).

The control process is responsible for performing conflict
resolution, evaluating the right-hand side of rules, handling
input/output, and all the other functions of the interpreter except
for performing match. It is also responsible for starting up the
match processes at the beginning of the run and killing them at the
end of the run. The match processes do nothing except perform the
match. The match processes pipeline their operation with the
control process. Thus when RHS evaluation begins, the match

2Note that the argwnent in the beginning of this paragraph does not say that one
has to use the same algorithm (as the most efficient uniprocessor one) for the
parallel implCmentation. It just turns out in our case, that the efficient
uniprocessor algorithm is also very good for parallel implementation.

274

processes are idle. However, as soon as the first working memory
change is computed, information about that change is passed to the
match processes and they start to work. The control process
continues evaluating the RHS, and as more changes are computed,
the information is passed immediately to the match processes for
them to handle as soon as they are able. When the control process
finishes evaluating the RHS, it becomes idle and waits for the
match processes to finish. When the last match process finishes,
the control process performs conflict resolution and then begins
evaluating the next RHS, thus starting the cycle over again. 3

To perform match, the match processes use the Rete algorithm
described in Section 2:2. The match processes exploit the
dataflow-like nature of the Rete algorithm to achieve speed-up
from parallelism. In particular, a single copy of the Rete network
is held in shared memory. The match processes cooperate to pass
tokens through the network and update the state stored in the
memory nodes as indicated by the tokens. The match is broken
into fairly small units of work called tasks, where a task is an
independently schedulable unit of work that may be executed in

parallel with other tasks. In our parallel implementation:

• Small groups of constant-test node activations
constitute a task. Multiple constant-test nodes are
processed as a group, because individual constant-test
node activations take only 3 machine instructions to
execute, and that is too fine a granularity.

• The memory nodes in the Rete network are coalesced
with the two-input nodes that are below them. Each
activation of these coalesced two-input nodes
constitutes a single task. The reasons for this
coalescing are discussed in [4]. As an example, the
task corresponding to the left activation of a two-input
node involves: (i) the addition/deletion of the
incoming token to the left memory node; (ii)
comparison of this token with all tokens in the
opposite memory node checking for consistent
variable bindings; and (iii) scheduling of matching
token pairs for execution as new tasks. Note that
multiple activations of the same two-input node
constitute different tasks and these can be processed in
parallel.

• Each individual terminal node activation constitutes a
task.

In our current implementation, each task is represented by a data
object called a token. The token in the parallel implementation is
essentially the same as that used in the sequential Rete matcher (as
described in Section 2.2), except that it has two extra items of
information: the address of the node to which the token is to be
sent, and if that node is a two-input node, an indication of whether
to send it to the left or right input. The list of tokens that are
awaiting processing is held in a central data structure called a task
queue. The individual match processes perform match by
executing the following loop.

3For simplicity, we are ignoring two kinds of optimizations that are possible.
First, it is possible to overlap conflict-resolution with match. Second, if
speculative parallelism is used (we are willing to be wrong in our prediction
sometimes and know how to recover from the error), it is possible to make a guess
about the production that will fire next and to evaluate its right-hand side before
conflict-resolution is completely finished. We choose to ignore these two
optimizations for the present, because conflict-resolution and RHS evaluation are
not the bottlenecks in our current implementation.

match processes

8 8 ...

task
queue

lock B left
hash
table

shared copy
of the
Rete network

right
hash
table

token memories

shared memory

Figure 3-1: Use of shared-memory by various processes.

1. Remove a token from the task queue. If the queue is
empty, wait until something is added.

2. Process the token. If new tokens are to be sent out,
push them onto the task queue.

3. Go to step 1.

3.2. Implementation Details
All communication between processes (both the match processes

and the control process) takes place via shared memory. The
virtual address spaces are set up so that the objects in shared
memory have the same virtual address in every process. Hence
processes can simply pass pointers around in essentially the same
way routines within a single process can. For example, the tokens
are created in shared memory, and the address of a given token is

the same in every virtual address space in the system. Thus when a
process places a token onto the central task queue, all it really has
to do is to put the address of the token into the task queue. Figure
3-1 shows how the shared-memory is used to communicate
between the various processes.

Synchronization within the program is handled explicitly by
executing interlocked test-and-set instructions. The
synchronization primitives provided by the operating system (for
example, semaphores, barriers, signals, etc) are not used because of
the large overhead associated with them. When a process finds
that it is locked out of a critical region it spins on the lock, waiting
for a chance to enter the region. In order to minimize the amount
of bus traffic generated by the spinning processes, a "test and test­
and-set" synchronization mechanism is used. In this scheme, a
process uses ordinary memory-read instructions to test the status of
a lock until it finds that it is free; then the process uses a test-and­
set interlocked instruction to ie-read the lock and set it (if it is still
free). Note that while the lock is busy, the process spins out of its
cache and does not use the bus. This is more efficient than using
only the "test-and-set" interlocked instruction for the lock. In this
case, the process generates bus traffic to perform the writes while it

275

is busy waiting.

The control process communicates with the match processes
primarily through the shared task queue. Whenever the evaluation
of an RHS results in a change to working memory, a token is
created and marked as being destined for the root node of the
network. The control process pushes these tokens onto the task
queue in exactly the same way as the match processes push the
tokens they create. The tokens are picked up and processed by
waiting match processes. When the evaluation of an RHS begins,
the match processes are idle. The first token created by the control
process causes the match processes to start up. After the first
token, the control process proceeds in parallel with the match
processes.

Depending on the granularity of tasks (number of instructions
executed per task) that are scheduled using the task queue and
depending on the number of processors that are trying to access the
task queue in parallel, it is quite possible that a single task queue
would become a bottleneck. For this reason, Gupta [4] proposed a
hardware task scheduler for scheduling the fine-grained tasks. So
far we have not implemented the hardware scheduler, and in this
paper we present results only for the case when one or more
software task queues are used.

After the control process finishes evaluating the RHS, it must
wait for the match processes to finish before it can perform the
next conflict resolution operation. A global counter, TaskCount, is
used to determine when all the match processes have finished.
This counter contains the sum of:

• the number of tokens that are currently on the task
queue, and

• the number of tokens that are being processed by the
match processes.

This count is maintained quite simply. Every time a token is put
onto the task queue, the counter is incremented. Every time a
match process finishes working with a token, the counter is

decremented. The match phase is finished when the counter goes
to zero.

Shifting our focus back to the evaluation of individual two-input
node activations, we note that instead of having separate memories
for each two-input node, the matcher has two large hash tables
which hold all the tokens for the entire network. One hash table
holds tokens for left memories of two-input nodes, and the other
for right memories of two-input nodes. An alternative scheme is to
have separate hash tables for each two input node, but such a

scheme was considered to be wasteful of space. The hash function
that is applied to the tokens takes into account

• the values in the token which will have equality tests
applied at the two-input node, and

• the unique identifier of the two-input node which
stored the tokens.

This permits the two-input nodes to locate any tokens that are
likely to pass the equal-variable tests quickly. It also permits
multiple activations of the same two-input node to be processed in
parallel.

The processing performed by the individual node activations in
the parallel implementation is similar to the processing done in the
sequential matcher with two exceptions:

• Code has been added to the two-input nodes to handle
conjugate token pairs.

• Sections of code that access shared resources are
protected by spin locks to insure that only one process
at a time can be accessing each resource.

A conjugate pair is a pair of tokens with opposite signs (an add
token request and a delete token request), but which refer to the
same working memory element or list of working memory
elements. Conjugate pairs arise in the match operation for a
variety of reasons, which are too complex to go into here (see [4]).
They occur in both sequential and parallel implementations of
Rete, but they present much greater problems in a parallel system.
The reason for this is that in a parallel system it is not possible to
insure that the tokens will be processed in the order in which they
are generated, and consequently in some cases a token with a -
(delete) flag will arrive at a two-input node before the
corresponding token with the + (add) flag. The parallel matcher
code handles this by saving the - tokens that arrive early on an
extra-deletes-list without otherwise processing the token. When
the corresponding + token arrives both tokens are discarded.

Many resources in a parallel system have to be protected with
mutual-exclusion locks -- the task queues, the count of the number
of active tokens, the conflict set, etc. Most of these are relatively
straight-forward to protect and a simple variation of standard spin
locks is used. The exception is the locks used to control access to
the token hash tables. There are several different operations that
are performed on the token hash tables, for example, searching for
matching tokens, adding and removing tokens, adding and
removing conjugate tokens, and we would like many of these
operations to proceed in parallel without having any undesirable
effects. Because of the importance of the hash tables to the

performance of the system, several locking schemes were
implemented and tried. Two of these schemes are described here.

276

The first scheme, the simple one, is easy to describe and it
provides a departure point for describing the second more complex
one. We define a "line" as a pair of corresponding buckets
(buckets with the same hash index) from the left and right hash
tables along with their associated extra-deletes lists. In this
scheme, each line in the hash table has a flag controlling its use.4

The flag takes on two values: Free and Taken. When a process has
to work with the hash table, it examines the flag for the line it
needs. If the flag is Free, it sets the flag to Taken and proceeds to
perform the necessary operations; when it finishes, it sets the flag
back to Free. If a process finds the flag set to Taken, it waits until
the flag is set to Free. Of course, the act of testing and setting the
flag must be an atomic operation. This synchronization scheme
works, but it is a potential bottleneck when several tokens arrive at
a node about the same time, and if all of them require access to the
same hash table line.

The second scheme is a complex variant of the
multiple-reader-single-writer locking scheme. It permits several
tokens to be processed in the same line at the same time, though
even here, some serialization of the processing is necessary when
destructive modifications to the lists of tokens are performed. This
scheme requires two locks, a flag, and a counter for each line in the
hash table. The flag takes on three values: Unused, Left, and Right,
to indicate respectively that the line is not currently being
processed, that it is being used to process tokens arriving from the
left, or that it is being used to process tokens arriving from the
right. The counter indicates how many processes ate using that
line in the hash table; it is needed only so that the last process to
finish using the line can set the flag back to Unused. The first lock
insures that only one process at a time can access the flag and the
counter. When a process first tries to use a line in the hash table, it
gets this lock, and checks the flag. If the flag indicates that tokens
from the other side are being processed, the process releases the
lock and put the token back onto the task queue. If the flag allows
the process to continue, it sets the flag if necessary, increments the
counter, and releases the lock. For the remaining time that the
process uses this line in the hash table, it leaves the flag and the
counter untouched; finally, when the process f""mishes using the line
it decrements the counter and if appropriate sets the flag to Unused

(again, all within a section of code protected by this lock). All this
is to insure that tokens from two different sides are not processed at
the same time. The second lock is used to insure that only one
process at a time can be modifying the token lists. Recall that the
first task in processing a two-input node is to update the list of
tokens stored in the memory node. To do this, the process gets the
modification lock, searches the conjugate or regular token list, and
it either adds the token to or deletes it from one of these lists.
When it has finished, it releases the modification lock and proceeds
with searching the tokens in the opposite hash-table bucket to find
those that satisfy the variable binding tests.

More complex locking schemes can be devised and, in fact, were
implemented and tested. One other scheme that was tried
permitted more than one process to be searching the token lists to
find tokens to delete; in this scheme the only serialization of the
tasks occurred when the actual destructive modification of the
token list was performed. As in all implementations, the main

4Note that any given operation on the token hash tables requires access to only
a single line of the hash tables. Jn other words processing a single node activation
never requires access to multiple hash table lines.

Table 4-1: Uniprocessor versions on Microvax-II.

VSl VS2 Total number Total number
PROGRAM List-based Hash-based of WM-changes of node

memories memories
(sec) (sec)

Weaver 101. 5 85.8

Rubik 235.2 96.9

Tourney 323.7 93.5

tradeoff to keep in mind is that in an attempt to speed-up the rare
cases, one should not slow-down the normal case.

3.3. RHS Evaluation and Conflict Resolution
In our system, the rules' RHSs are compiled into a form of

threaded code which is interpreted at run time [8]. Interpreting the
threaded code is slower than executing the compiled code, but
since RHS evaluation is not a bottleneck to the performance,
threaded code, which is simpler to compile was considered fast
enough. Conflict resolution in the system is handled by code
written in the C language. This code is executed by the control
process.

4. Results
We present results for the parallel execution of three production­

system programs in this paper. These are:

•Weaver [7], a VLSI routing program by Rostom
Joobbani with 637 rules.

•Rubik, a program that solves the Rubik's cube by
James Allen with 70 rules.

•Tourney, a program that assigns match schedules for a
tournament by Bill Barabash from DEC with 17 rules.

We have chosen Weaver because it represents a fairly large
program and it demonstrates that our parallel OPS5 can handle real
systems. Rubik is a smaller program that demonstrates some of the
strengths of our parallel implementation and the Tourney program
demonstrates some of the weaknesses of our parallel

implementation.

4.1. Results ior the Uniprocessor Implementations of
OPSS

Before we did a parallel implementation on the Encore, we
initially did several uniprocessor C-based implementations of
OPS5. In this subsection, we present results for two of these
uniprocessor implementations, vsl and vs2, for the Microvax-II
workstation.5 The performance results for vsl and vs2
implementations are shown in Table 4-1. The base version is vsl,
and it is characterized by the use of linear lists to store tokens in
node memories, just as uniprocessor lisp implementations do.6

5Tue results are presented for Microvax-II and not for Encore, because the
uniprocessor implementations were done on the Microvax and only one of these
was later taken over to the Encore.

6Note that memory nodes are not shared in either vsl or vs2 versions of OPSS,
unlike in the Franzlisp version of OPSS. This optimization was not used in vsl or
vs2 because it is not possible to share memory nodes in the parallel
implementations of OPSS (see [4]), and we did not want to spend the effort just
for the uniprocessor implementations.

277

processed activations

1528 3711 73

8350 554051

987 72040

The second version, vs2, uses a global hash table to store all
memory-node tokens, as discussed in the previous section. If there
are equality tests at the two-input node, the hash-table based
scheme (i) reduces the number of tokens that have to be examined
in the opposite memory to locate those that have consistent
variable bindings, and (ii) for deletes, it reduces the number of
tokens that have to be examined in the same memory to locate the
token to be deleted. The statistics for the reduction in tokens
examined in the opposite memory for the three programs are given
in Table 4-2. Note the statistics are computed only for those node
activations where the opposite memory is not empty. The statistics
for the reduction in tokens examined in the same memory for
delete requests are given in Table 4-3. As can be seen from the

two tables, the savings are substantial, especially for the Tourney
program. The time-saving effect of hash-based memories can be
seen from numbers in Table 4-1.

The second last column in Table 4-1 gives the total number of
wme-changes processed during the run for which data are
presented, and the last column gives the total number of node
activations processed during the run (this is also equal to the
number of tasks that are pushed/popped from the task queue in the
parallel version). Dividing the time in column vs2 by the number
of tasks, we get the average duration for which a task executes.
This has implications for the amount of synchronization and
scheduling overhead that may be tolerated in the parallel
implementation. Doing this division we get that the average
duration of a task for Weaver is 230 microseconds (or
approximately 115 machine instructions, as the VAX executes
about 500,000 instructions per second), for Rubik is 175
microseconds, and for Tourney is 1300 microseconds.

Finally, Table 4-4 gives the speed-up that our uniprocessor C­
hased implementation achieves over the widely available
Franzlisp-based OPS5 implementation when running on the

Microvax-II. As the table shows, we get a speed-up of about 10-20
fold over the Franzlisp based implementation. The problem in the
past has been that due to lack of availability of better uniprocessor
performance numbers, researchers have ended up comparing the
performance of their highly optimized parallel OPS5
implementations with the slow Franzlisp-based implementation.
We think that such apples to oranges comparison can be
misleading, and we hope that in the future the performance of
parallel implementations would be compared to the performance of
this optimized uniprocessor implementation.

Table 4-2: Number of tokens examined in opposite memory.

Tokens in opp mem Tokens in opp mem
for left actvns

PROGRAM
for right actvns

lin mem hash mem lin mem hash mem

Weaver 10.l 7.7 5.2 1. 0

Rubik 31. 0 3.8 1. 6 1. 8

Tourney 47.6 5.9 270.1 23.3

Table 4-3: Number of tokens examined in same memory for deletes.

Tokens in same mem Tokens in same mem
for left actvns

PROGRAM
for right actvns

lin mem hash mem lin mem hash mem

Weaver 6.2 3.6 7.0 5.1

Rubik 23.5 2.6 8.1 3.7

Tourney 254.4 40.1 3.8 2.9

Table 4-4: Speed-up of C-based over Franzlisp-based implementation

VS-lisp VS2

PROGRAM Lisp-based Hash-based Speed-up

implemen. memories VS-lisp/VS2
(sec) (sec)

Weaver 1104. 0 85.8 12.9

Rubik 11 75. 0 96.9 12.1

Tourney 2302.0 93.5 24.6

4.2. Results for the Multiprocessor Implementation of
OPSS

While the uniprocessor C-based implementations of OPS5 were
done on the Microvax-II, the parallel version was done on the
Encore Multimax multiprocessor. In this section, we present
speed-up numbers for our implementation on the Encore and the
results of our experiments as we varied (i) the number of task
queues that were used and (ii) the locking structures used for token
hash-table buckets.

Table 4-5 shows results for the case when a single task queue is
used and when simple locks (described in Section 3.2) are used
with the token hash-table buckets. The first column simply gives
the name of the programs. The second column gives the time
taken to do the match when only one process is used (time for
conflict-resolution and RHS evaluation is not included). The
timing numbers in the second column correspond to version vs2
discussed earlier. The numbers here are larger than the
corresponding numbers in Table 4-1 because the NS32032
processor used in Encore is slower than the Microvax-II processor
and because of the presence of extra synchronization and
scheduling code in the parallel implementation. The numbers
given in the remaining columns are speed-up figures with respect
to the time given in the second column. The number of proc.esses

278

used in the parallel match are given in the second row from the top
in the table. These numbers are expressed as "l+k", where the "1"
indicates the control process and the "k" indicates the number of
match processes. The third row from the top indicates the number
of task queues used, which is one for all entries in this table.

In Table 4-5, the speed-up for the case when number of
processes is "1+1" is in two cases greater than one. This is because
the set of node activations is different when the RHS evaluation
and match are proceeding in parallel (even though match is being
done by only one process), as compared to the case when match
does not start until RHS evaluation is completely finished. The
speed-up with multiple match processes is also quite disappointing
for all three programs and especially for Tourney. Possible reasons
are: (i) contention for access to the single task queue, (ii)
contention for access to the hash-table buckets, and (iii) low
intrinsic parallelism in the programs. We now explore the effects
of removing the first two bottlenecks by using multiple task queues
and by using more complex hash-table locking schemes.

Table 4-6 presents results for the case when multiple task queues
are used, while retaining simple hash-table locks. The speed-up
increases significantly for both Weaver and Rubik, indicating that
the contention for pushing and popping task queues must have
been a bottleneck. The speed-up for Weaver for 1+13 processes
goes up from 3.9-fold to 8.2-fold and that for Rubik goes up from
6.3-fold to 11.4-fold. The speed-up for Tourney remains about the
same at 2.4-fold. To get more insight into these results, we
instrumented the task queue to get data on contention. The results
are shown in Table 4-7. The table shows the contention among the
processes for the centralized task queue as the number of match
processes is increased. We see from the table that as the number of
processes is increased, there is indeed significant contention for the
single task queue in case of Weaver and Rubik. For Tourney, there

does not seem to be significant contention for the task queue, and
that is why the speed-up does not increase when multiple task
queues are used. The contention numbers drop from 24.62, 26.89,
and 8.93 for single task queue to 4.85, 6.12, and 4.75 for eight task
queues for Weaver, Rubik, and Tourney respectively when 13
match processes are used.

Examining the speed-up for Rubik in Table 4-6, it is interesting
to note that we get 3.9-fold speed-up for Rubik using only 3 match
processes. In this case, the speed-up is larger than the number of
match processes because when the Rete network is evaluated in
parallel, it is quite possible that the total number of node
activations evaluated and their complexity is less than that in the
sequential implementation. Of course, the final result of the match
is still the same as the sequential implementation.

In Table 4-8 we present results for the case when multiple task
queues are used and when coinpfox multiple-reader-single-writer
locks (described in Section 3.2) are used for controlling entry to the
token hash tables. We expected the complex locks to benefit those
programs that (i) generate cross-products, that is, there are multiple
activations of the same two-input node from the same side that
need concurrent processing, and (ii) have long lists of tokens in
hash-table buckets, where the complex locks help by allowing
multiple processes to read the opposite memory at the same time.

Table 4-5: Speed-up for single task queue and simple hash-table locks.

Speed-ups with multiple processes

Uniproc
PROGRAM Execution 1+1 1+3 1+5 1+7 1+11 1+13

Time

(sec) 1 Que 1 Que 1 Que 1 Que 1 Que 1 Que

Weaver 119. 9 1.02 2.55 3.65 3.97 3.91 3.90

Rubik 257.9 1.00 2.80 4.47 5.48 6.18 6.30

Tourney 98.0 1.10 1. 90 2.70 2.59 2.43 2.41

Table 4-6: Speed-up for multiple task queues and simple hash-table locks.

Speed-up with multiple processes
Uniproc

PROGRAM Execution 1+1 1+3 1+5 1+7 1+11 . 1+13
Time

(sec) 1 Que 2 Que 4 Que 8 Que 8 Que 8 Que

Weaver 118.2 1. 02 2.88 4.51 5.80 7.56 8.15

Rubik 253.6 1. 07 3.93 6.41 8.49 10.66 11.42

Tourney 97.7 1.12 2.02 2.17 2.33 2.47 2.30

Table 4-7: Contention for the centralized task queue. Measured by the number
of times a process spins on the lock before it gets access to the task queue.

contention for the central task queue

PROGRAM l+l 1+3 1+5 1+7 1+11 1+13

1 Que 1 Que 1 Que 1 Que 1 Que 1 Que

Weaver 1. 03 2.68 6.31 11.58 20.05 24.62

Rubik 1.01 2.63 5.92 10.58 22.66 26.89

Tourney 1. 00 1. 57 2.53 3.94 7.22 8.93

Table 4-8: Speed-up for multiple task queues and multiple-reader-single-writer hash-table locks.

Speed-ups
Uniproc

PROGRAM Execution 1+1 1+3
Time

(sec) 1 Que 2 Que

Weaver 134.9 1. 02

Rubik 289.4 1.04

Tourney 100.8 1. 07

However, programs for which the above two conditions are not
true may slow down when complex locks are used, because of the
extra overhead that they incur due to complex locks. Table 4-9
presents some results about contention when simple locks are used
versus contention when complex locks are used. We see that the

contention for the hash-table buckets decreases for all three
programs when complex locks are used, although the increase in
speed-up is not much. However, Table 4-9 does give an indication

3.02

3.98

2.06

279

with multiple processes

1+5 1+7 1+11 1+13

4 Que 8 Que 8 Que .8 Que

4.63 6.14 8.18 9.02

6.40 9.01 11.33 12.35

2.58 2.40 2.57 2.67

as to why we are getting very poor speed-up for the Tourney
program. The poor speed-up for the Tourney program is due to the
large contention for the hash-table locks resulting from multiple
node activations trying to access the same hash-table bucket. This,
in turn, is the result of a few culprit productions in Tourney that
have condition elements with no common variables. By modifying
two such productions using domain specific knowledge, we could
increase the speed-up achieved using 1+13 processes from 2.7-fold
to 5.1-fold.

Table 4-9: Contention for token hash-table locks. Measured by the number of
times a process spins on a lock before it gets access to the hash-table bucket.

contention with simple locks contention with mrsw locks

PROGRAM 6 processes 12 processes 6 processes 12 processes

left right left

Weave·r 20.4 1. 0 51.2

Rubik 11.0 1.1 23.0

Tourney 137.1 4.9 377. 7

5. Conclusions
In this paper we have presented the details of a parallel

implementation of OPS5 running on the Encore Multimax. The
first observation is that it is important to speed-up an optimized
sequential implementation, otherwise most of the benefits are lost.
For example, speeding-up the Franzlisp implementation by 10-20
fold from parallelism just brings us to the uniprocessor speed of the
C-based implementation. Furthermore, the issues in parallelizing
an optimized implementation are different from those in an
unoptimized implementation, because only very limited overheads
can be tolerated in an optimized implementation.

The second observation we make is that it is possible to obtain
significant speed-ups for OPS5 using fine-grained parallelism on a
shared-memory multiprocessor. We get up to 12.4 fold speed-up
for Rubik using 13 match processes. However, this does not work
for all programs. The Tourney program, because of the presence
of cross-products [4], resisted all our attempts to obtain higher
speed-up. The average length of the individual tasks in our parallel
implementation varies between 100-700 machine instructions for
the three programs that we studied. In trying to exploit this fine­
grained parallelism, we found that the scheduling of tasks on
processors was a major bottleneck. We found it essential to use
multiple task queues (instead of a single task queue) to obtain
reasonable speed-up. For the Rubik program, going from one task
queue to multiple task queues increased the speed-up from 6.3-fold
to 11.4-fold.

The other variation that we explored to reduce the contention for
shared data structures was in the complexity of locks used for
hash-based memory nodes. We used both simple spin-locks and
complex multiple-reader-single-writer locks. We observed that

special note must be taken of rare-case versus normal-case
execution. Trying to handle rare cases efficiently can slow down
the normal case, and can result in overall poorer performance. For
example, the provision of complex hash-table locks reduced the
contention for the hash-table buckets, but it slowed down the
overall execution speed of the programs.

6. Acknowledgments
This research was sponsored by the Defense Advanced Research

Projects Agency (DOD), ARPA Order No. 4864, monitored by the
Air Force Avionics Laboratory under Contract N00039-85-C-0134
and by the Encore Computer Corporation. Anoop Gupta is also
supported by DARPA contract MDA903-83-C-0335 and an award
from the Digital Equipment Corporation.

right left right left right

1. 4 4.7 2.0 15.7 2.1

1.5 3.7 2.0 12.9 2.1

15.7 49.9 2.9 134.9 33.3

280

References

1. Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin.
Programming Expert Systems in OPSS: An Introduction to Rule­
Based Programming. Addison-Wesley, 1985.

2. Charles L. Forgy. The OPS83 Report. Tech. Rept. CMU­
CS-84-133, Carnegie-Mellon University, Pittsburgh, May, 1984.

3. Anoop Gupta, Charles Forgy, Allen Newell, and Robert Wedig.
Parallel Algorithms and Architectures for Production Systems.
13th International Symposium on Computer Architecture, June,
1986.

4. Anoop Gupta. Parallelism in Production Systems. Ph.D. Th.,
Carnegie-Mellon University, March 1986. Also available from
Morgan Kaufmann Publishers Inc ..

5. Anoop Gupta, Charles Forgy, Dirk Kalp, Allen Newell, and
Milind Tambe. Parallel Implementation of OPS5 on the Encore
Multiprocessor: Results and Analysis. To appear in International
Journal of Parallel Programming.

6. Bruce K. Hillyer and David E. Shaw. "Execution of OPS5
Production Systems on a Massively Parallel Machine". Journal of
Parallel and Distributed Computing 3 (1986), 236-268.

7. Rostam Joobbani and Daniel P. Siewiorek. Weaver: A
Knowledge-Based Routing Expert Design Automation
Conference, 1985.

8. Peter M. Kogge. "An Architectural Trail to Threaded-Code
Systems". Computer March (1982).

9. Edward J. Krall and Patrick F. McGehearty. "A Case Study of
Parallel Execution of a Rule-Based Expert System". International
Journal of Parallel Programming 15, 1(1986),5-32.

10. Theodore F. Lehr. The Implementation of a Production
System Machine. Hawaii International Conference on System
Sciences, January, 1986.

11. naniel P. Miranker. TREAT: A New and Efficient Algorithm
for Al Production Systems. Ph.D. Th., Columbia University, 1987.

12. Kemal Oflazer. Parallel Execution of Production Systems.
International Conference on Parallel Processing, IEEE, August,
1984.

13. Raja Ramnarayan, Gerhard Zimmerman, and Stanley
Krolikoski. PESA-1: A Parallel Architecture for OPS5 Production
Systems. Hawaii International Conference on System Sciences,
January, 1986.

14. M.F.M. Tenorio and D.I. Moldovan. Mapping Production
Systems into Multiprocessors. International Conference on
Parallel Processing, IEEE, 1985.

A Taxonomy of Synchronous Parallel Machines
Lawrence Snyder

Department of Computer Science
University of Washington

Seattle, Washington 981951

Abstract: A new classificational scheme is presented which
is consistent with Flynn's taxonomy but is more expres­
sive. The crucial idea is to recognize that a reference
stream is composed of both values and addresses; their
treatment exposes critical features of an architecture. This
insight, together with the accompanying formal mecha­
nism built on top of it, enables a large variety of recently
developed (since Flynn's work) machines to be distinguished,
including VLIW, multigauge, systolic arrays, and the Con­
nection Machines. Though the resulting taxonomic struc­
ture is illuminating, the most important result of the clas­
sification is the discovery that synchronous execution is
NOT a defining property of computer architectures, but
is a derived property, a consequence of other architectural
features. The evidence for this result and the consequences
for machine classification are presented.

1 Introduction

In 1966 Flynn [1) introduced his classification of comput­
ers. This taxomony proved to be very useful, giving us
terminology like SIMD and MIMD that endures to this
day. The taxonomy, however, has long been described as
too coarse, unable to distinguish between computers that
seem to computer architects to be quite different. Though
other classifications have been offered [2-5), the fact that
Flynn's classification has lasted for so long without being
replaced and enhanced is a testament to the difficulty of
discovering something better.

In this paper a new taxonomy is presented for syn­
chronous parallel computers. It has no pretentious of be­
ing complete nor of capturing all features of synchronous
parallel computers. The taxonomy does clarify important
distinctions among recently developed parallel computers,
such as the VLIW machines, multigauge machines and cer­
tain SIMD machines such as the Connection Machines.

The key idea of the taxonomy is to quantify the compo­
nents of the fetch/ execute cycle that process I-streams and
D-streams. To make fine distinctions among machines, one
must separate these reference streams into their address
and value components, because addressing and value pro­
cessing are crucial features by which machines differ.

Using this kind of analysis, a taxonomy is constructed.
Many of the machines that are placed into different classes
here would have been classified by Flynn's scheme as SIMD,
so this approach permits finer distinctions to be made.
Only a small number of classes have been described, and
only one or two machines per class have been identified.
Thus, there remain substantial opportunities for further
research.

1 This research funded in part by the Office of Naval Research Con­
tract N00014-86-K-0264, National Science Foundation Grant CCR-
8416878 and Air Force Office of Scientific Research Contract 88-0023.

281

Perhaps the most important result derived from the
taxonomy concerns the property of "synchroneity". The
author and apparently many other researchers have treated
synchroneity as a primary classificational property; we have
spoken of "the synchronous vs. the asynchronous" ma­
chines as if this should be an important way to distinguish
between machines. It is not. The criterion used for clas­

sifying machines in this taxonomy tells when a machine
must have all of its instructions start at the same time,
and when it is not necessary. This determination is based
on how the machine addresses and processes instructions
and data. Machines which must begin all instructions
at the same time will automatically be synchronous; for
those machines that need not begin their instructions at
the same time it is an "engineering decision" whether to
make them synchonous or asynchronous. Thus the qual­
ity of being synchronous is a derived property: A machine
must have it because of other features, or it is a noncritical
implementation feature.

2 Preliminaries

A reference stream, S, of a computer is a finite set of infinite
sequences of pairs,

S={(a1 <t1>)(a2<t2>).,
(b1 < U1 >) (b2 < U2 >) . . ., . · .,

(C1 < V1 >) (C2 < V2 >) · · ·}

the first component of each pair being a nonnegative in­
teger, called an address, and the second component being
an n-tuple of nonnegative integers, called values, such that
n is the same for all tuples of all sequences. An element
of a reference stream is called a reference sequence. An
I-stream is a reference stream whose values are interpreted
as instructions; a D-stream is a reference stream whose
values are interpreted as data.

The interpretation of these definitions is simple. The
elements of reference sequences are address, value pairs,
the values simply being the contents fetched from (or stored
to) memory at the address. A sequence of elements can
be thought of as the history of the addresses and values
moving between a processor and its memory space. An
I-stream is made up of a finite set of these sequences, the
number depending on how many instruction sequences the
machine can process at one time; and a D-stream is made
of a finite set of data sequences, the number depending on

how many distinct operations the machine can perform at
one time.

Although the I-streams and D-streams have been de
fined in an intuitive manner, their form is not convenient

for analysis. Accordingly, the following reassociation must
be performed. Let

S = { (a 1 < t1 >) (ai < t2 >) . . . ,
(b1 < U1 >)(b2 < U2 >) ... , ... ,

(C1 < V1 >)(C2 < V2 >) ... }

be a reference stream. Define two sequences: The address
sequence of S, denoted Sa, is a sequence whose ith element
is a tuple formed from the addresses from the ith elements
of each sequence of S,

Sa =< aib1c1 >, < a2b2c2 >, .

and the value sequence of S, denoted Sv, is the sequence
whose ith element is a tuple formed by concatenating the
value tuples from the ith elements of each reference se­
quence of S,

Sv =< t1u1v1 >, < t2U2V2 >,

Notice that although a reference stream is a set of se­
quences, address and value sequences are just sequences
of tuples.

It is possible to interpret these definitions as grouping
the corresponding addresses and corresponding value tu­
ples of a reference stream S into Sa and Sv, respectively.

Let Sx be a sequence of n-tuples; the width of the se­
quence, w(Sx) = n.

Proposition l: Let S be a reference stream with n-tuple
values, then

w(Sa) =IS I and w(Sv) = n IS I
where / X I denotes the cardinality of the set X.

A computation is a pair (I,D), where I is an I-Stream
and D is a D-stream. Computers are classified by the com­
putations they execute. A computer executes the computa­
tion (I,D) provided it presents w(Ia) instruction addresses
to memory to be fetched simultaneously, it decodes and
interprets w(Iv) instructions simultaneously, it presents
w(Da) operand addresses to memory simultaneously, and
it performs w(Dv) operations on distinct data values si­
multaneously. The computer is described by the notation

1w(Ia)w(Iv) Dw(Da)w(Dv)·

Notice that we speak of the computation executed by a
computer. This is a definitional simplification, and is suf­
ficient since any desired sequence of instructions or data
is a subsequence of the infinite streams of the computa­
tion. Observe the relationship between this point and the
Enumeration Theorem of recursive function theory.

Let di, d2, d3 and d4 be predicates called class desig­
nators; then a machine is said to be member of the class
denoted by

Example 2: By appropriating for our class designators
Flynn's "s" and "m" to denote the predicates "is-one" and.
"is-many', it is possible to classify some familiar machines
using the mechanisms developed so far.

Let a von Neumann machine, which Flynn classified as
SISD, execute the computation (I,D). From his classifica­
tion we have

I I l=I DI= 1.

By Proposition 1, then, we have

w(Ia) = w(Da) = 1.

Moreover, since instructions are decoded serially, w(Iv) =

1 and since they are executed serially, w(Dv) = 1. There­
fore the von Neumann machine is described as

li,1D1,1 ·

It is classified with the present notation as

lssDss

since the predicate "s"is true for all four widths.
Now consider two machines that Flynn's taxonomy lumped

in the SIMD category, the MPP and the Illiac IV. (Ignore
for the moment the fact that these have bit serial and word
parallel PEs, respectively.) The single instruction stream
means I I I = 1 for both machines. By the same reasoning
just used for the von Neumann machine, the instruction
streams for both machines are described as lss·

For data, consider the MPP first. Recall that the MPP
controller broadcasts the same data memory address to all
PEs [6], and so the machine has a single D-stream in our
terminology; I D I = 1. However, a value is fetched from
each PE memory, so the values of this stream are 16384-
tuples. Thus,

w(Da) = 1 and w(Dv) = 16384,

which certainly satisfies the "multiple" class designator.
So, the MPP is described as

and is classified as

lssDsm·

The MPP has a "multiple data stream" but the multiplic­
ity applies only to the data values, not to the data value
addressing.

For the Illiac IV on the other hand, the controller
broadcasts a base address to all PEs, each of which may
produce its own address by adding in the contents of a
local index register [7]. This means that I D I = 64; there
are 64 operand address streams simultaneously produced
by the machine and each of them references a single value,
i.e. each data address is associated with a I-tuple. Ac­

ifand only if di (w(Ia)), d2(w(Iv)), d3(w(Da)), and d4(w(Dv)). cordingly,
(Commas may occasionally be inserted between the sub­
scripts for clarity.) w(Da) = w(Dv) = 64

282

and the Illiac IV is described as

which places it in the

IssDmm

class. It has "multiple data streams" too, but its mul­
tiplicities are for addressing and data reference. Clearly,
the present taxonomy retains the distinctions achieved by
Flynn, but it is also capable of making finer distinctions.

3 Discussion

It is possible to give an intuitive interpretation to much
of the foregoing formalism. The key idea is to recognize
that the formalism quantifies funtional components of a
fetch/ execute cycle. Thus, the machine described as

IavDa'v'

presents instruction addresses to memory for a threads of
control (presumably from a PCs but data flow computers
qualify as well); it receives v different instructions back
from memory at once and interprets them; it presents a'
different operand addresses to memory for data values, and
it receives v' data values back and operates upon them
concurrently. So, when the MPP is described as

11, 1D1,16384

it is immediately obvious that its PEs all use the same
address for accessing their operand values, even though
they are capable of independently performing operations
on the resulting data.

The interpretation of the classification is intended to
carry the implication that if the n-tuple of values < ti >
is received from memory upon presentation of address ai
then the machine is capable of processing all n elements
at once. This applies to both instructions and data. So
even if a computer makes a memory reference to address
ai and fetches k words, perhaps to cache them, if it only
processes one of them, then n = 1 in this model.

Finally, notice that our classificational scheme is a com­
pletely formal system with a precise meaning. Its utility in
classifying computers depends entirely on our interpreting
this formalism as meaningful. Though it is possible for two
scientists to differ in their interpretation, and thus to differ
on a ~lassification, the underlying scheme is unambiguous.

4 Properties of Address and Value
Sequences

To simplify discussing computer families, it is convenient
to adopt a simple abbreviation. The expression

1d1d2Dd3d4

will be abbreviated by the string

283

Thus, the von Neumann machine class is abbreviated ssss,
while the MPP is in sssm. String expressions will be used
as shorthand to abbreviate several classes.

There are several important properties of this taxo­
nomic system which influence the kind of machine classes
definable.

Proposition 3: Any machine IavDa'v' satisfies the in­
equalities:

a :-:; v and a' :-:; v'

These inequalities follow from the fact that in a reference
stream every address is paired with at least one value, so
the width of the address stream is a lower limit to the width
of the corresponding value stream. The interpretation of
these inequalities seems intuitively correct: The number
of addresses presented to memory should never exceed the
number of values returned. As a corollary, any nonempty
machine class will satisfy these relationships, where the
definition of the relation is suitably extended:

Convention 4: Any machine IavDdJ will satisfy the
inequality:

v :-:; v'

Unlike the preceding propositions which are artifacts of
the taxonomy's abstraction, this convention is adopted pri­
marily for semantic consistancy. Its interpretation is that
the number of instructions being interpreted should not
exceed the data available.

Since it is a convention, it is open to debate. On the
positive side the convention helps avoid "problem" ma­
chines like Flynn's MISD; this machine doesn't make much
sense and has often been criticized. Here, the convention is
worthwhile, considering that the finer control of this tax­
onomy permits greater opportunities to create such du­
bious classes. On the negative side, adopting the conven­
tion might prevent accurately describing certain machines,
though none has come to the author's attention. Since a
taxonomy is descriptive (as opposed to being prescriptive)
and given that architects are not likely to have their cre­
ativity constrained by this convention, we adopt it.

5 More Machine Classes

The efficacy of a classificational system usually depends to
some degree on interpretation. (It always does in biological
taxonomy.) Usually there is a large range (sometimes a
continuum) of values that a property can assume, and we
wish to assign certain segments of this range to different
classes. But there may not be any effective way to identify
the boundaries of these ranges, and so membership is often
a matter of judgement. This characteristic will persist for
this taxonomy, but confusion can be minimized by being
somewhat more precise about the terminology that we've
already used.

Define the class designators as follows:

• sis the predicate "equals I",

• c is the predicate "from 1 to some (small) constant",
and

• m is the predicate "from 1 to an arbitrarily large
finite number"

Though the c and m designators have no upper limit in
principle, they are intended to convey two different mean­
ings. When the c designation is used the range has a hard
upper limit usually due to internal constraints in the ar­
chitecture and cannot be easily increased by a substantial
amount. An example might be the number of instructions
that can be packed in the instruction word of a VLIW
machine[8); for any given word size it is fixed, and even
though the word size can be increased this is probably not
the intended nor the rational way to generalized the given
machine. The m designation, however, is used when the
quantity can be easily generalized or scaled. An example
is when additional PEs can be added as with the MPP.
. These distinctions are not always clear, of course, and
Judgement must be applied. An example is the question
of how to classify a machine with processors connected
to a bus [9). In principle, there is no limit to how many
processors can be attached to a bus, but with the addition
of each processor the congestion increases, and this is an
internal constraint reducing the performance. Is this a "c"
or "m" case? Arguments can be made on both sides· we
leave the question open for the moment. '
.. It is now possible, using the class designators, Propo­

s1t1on 3 and the convention to define a number of machine
classes. Notice that there is no attempt to be complete in
either defining classes or categorizing machines:

IssDss
IssDsc

IssDcc

IssDmm

IscDcc

von Neumann machines.
"packed" von Neumann[IO); the machine can
fetch several distinct data values from fixed
postions from one address and simultaneously
apply the same operation to them. Many ma­
chines have some instructions of this form, e.g.
performing 2 half word adds on the word at a
given address; all (ALU) instructions for a ma­
chine in this class would have this capability.

SIMD Parallel Machines with no addressabil­
ity, such as the MPP, the Connection Machine
1 [11) and systolic arrays [12).

SIMD Multigauge machines [13]; these are
von Neumann machines which can (option­
ally) split their datapath to process multiple,
independent operand streams at once.

Addressable SIMD Parallel Machines, such as
Illiac IV and the CM2 [14).

VLIW Machines [8); the machine fetches and
executes several instructions stored in one in­
struction address.
MIMD Multigauge machines [13); these are
von Neumann machines which can (option­
ally) split their fetch/ execute cycle to pro-

cess multiple, independent instructions con­
currently.

ImmDmm MIMD Parallel Machines, including machines
such as the Ultracomputer[15) and the Cosmic
Cube[16).

284

Cle~rly, the list is not complete in terms of either the
classes listed or the machines recognized as members of
any given class. Much work remains.

6 Discussion of the Taxonomy and
The Origins of Synchronous Com­
putation

One is struck by at least two aspects of the foregoing clas­
sification: A large and diverse set of machines are lumped
into the last classification, mmmm, and nowhere in the tax­
onomy has the synchronous requirement been mentioned,
except in the paper's title. These two observations are
related.

In effect the taxonomy uses as its "criterion for classi­
fication" the number of repeated instances of the principle
functional activities of the fetch/ execute cycle. So, ma­
chines are distinguished by how many instructions they
can decode at once or how many operations on separate
data they can perform simultaneously. But these are not
the characteristics we think of as distinguishing the differ­
ent MIMD parallel computers. Rather, we think of them
as being different depending on whether or not they have
global shared memory or what their interconnection topol­
ogy is. These are features unrelated to the fetch/execute
cycle. So, lumping MIMD parallel computers in the mmmm
class says only that by the criterion applied, they are all
equivalent.

This is unsurprising and is not evidence of weakness
in the classification. Indeed, it might point to why efforts
to find criteria suitable for classifying all parallel machines
have so far been unsuccessful: Qualities that are important
~or some computers are for other computers, unimportant,
irrelevant or even misleading as a guide to classification.
To the extent that the taxonomy provides insight by its
classifications, the "criterion" amounts to being a useful
way of looking at some computers. (For cases where topol­
ogy matters for sychronous machines, e.g. between the
MPP and the CMl, see the next section.)

Interestingly, the "criterion" apparently mandates the
synchronous property. By using "the number of repeated
instances of the principle functional activities of the fetch/
execute cycle" as the basis for classification, we are think-

ing of machines as either a single f/ e cycle that has certain
components replicated, or multiple copies of a f/ e cycle.
In the former case (all legal machines of the form sy, y
E { s,c, m }3) synchronous execution is mandated because
there is only one cycle running. With the current structure
of the taxonomy this leaves only the cy classes and mmmm.
Though there is no requirement in the model that these be
synchronous, the class designators provide some basis for
deciding: The c designation carries with it the implication

of "other constraints" limiting the extent to which the f/e
cycle can be replicated; it is reasonable to presume that
these constraints might well mandate synchronous execu­
tion. (For example, they do mandate synchronous execu­
tion for the MIMD Multigauge members of the cccc class.)
However the m designation carries no such constraints and
the possibility of arbitrary scaling would seem to imply a
weaker coupling consistant with asynchronous execution.

Thus, except for the mmmm machines, these computers
are synchronous because of the structure of their reference
streams, and not the other way around. Synchronous ex­
ecution is a derived property. Indeed, the mmmm class is
the only one where there is a possibility for making an "en­
gineering" choice between synchronous and asynchronous.

7 Applications of the Taxonomy

So far the foundations of a classificational scheme have
been laid, a taxonomy of synchronous machines defined,
and a number of machines assigned to classes. This is
about all that can be presented here. The taxonomy's
structure is more extensive and the analysis is more com­
plete. For example, consider the following:

The classification has thus far clustered machines to­
gether in broad groups, but in doing so it has glossed over
significant differences among them. For example, the 11-
liac IV and the CM2 (Connection Machine 2 [14]) are both
in the class ssmm, yet they have the following differences,
among others, some or all of which are probably signifi­
cant:

Number of PEs
Data path width (bits)
Freq'cy PE gen'ates

Illiac IV
64
64

65,536
1

op'nd addrs (instr.) 1 32
Topology "torus" trunc. bin. cube

Blurring such distinctions is a necessary role for tax­
omonies: The higher the classificational level the greater
the distinctions being ignored. When detail matters, how­
ever, these distinctions must be expressed. The classific­
tional scheme has been extended to capture such things
as the size of the data items, the bandwidth to memory,
topology, etc. These added features not only permit a de­
scription of the differences between the Illiac IV and the
CM2, but they have suggested apparently new architec­
tures [17].

8 Acknowledgment

The results described here have their antecedents in recent
work with Chyan Yang, and years earlier, with Dan Reed.
It is· a pleasure to thank these gentlemen for the many
hours of pleasant and incisive technical discussions which
have obviously influenced this resea:i;ch.

9 References
[1] M. J. Flynn, Very High Speed Computing Systems,

Proceedings of the IEEE, 54:1901-1909, 1966

[2] T. Y. Feng, Some Characteristics of Associa­
tive/Parallel Processing, Proceedings 1972 Sagamore
Computer Conference, Syracuse University, pp. 5-16,
1972

[3] W. Handler, The Impact of Classification Schemes
on Computer Architecture, Proceedings International
Conference on Parallel Processing, IEEE, pp. 7-15,
1977

[4] D. Siewiorek, C. G. Bell, and A. Newell, Principles of
Computer Structures, McGraw-Hill, 1980

[5] Kai Hwang and Faye A. Briggs, Computer Archi­
tecture and Parallel Processing, McGraw-Hill, 32-40,
1984

[G] Kenneth E. Batcher, The design of a massively parallel
processor, Transactions on Computers C-29:836-840,
IEEE, 1977

[7] W. J. Bouknight, S. A. Denenberg, D. E. Mcintyre, A.
H. Sameh and D. L. Slotnick, The Illiac IV System,
Proceedings of IEEE 60(4):369-388, 1972

[8] J .A. Fisher, The VLIW Machine: A Multiprocessor
for Compiling Scientific Code, Computer 17(7), 1984.

[9] G. Fielland, D. Rogers, 32-bit computer system shares
load equally among up to 12 processors, Electronic
Design, pp. 153-68, 1984.

[10] L. Snyder, An Inquiry into the Benefits of Multigauge
Parallel Computation,Proceedings of the International
Conference on Parallel Processing, IEEE, pp. 488-492,
August 1985.

[11] W. Daniel Hillis, The Connection Machine, The MIT
Press, 1985.

[12] H. T. Kung and C. E. Leiserson, Systolic Arrays, In,
Carver Mead and Lynn Conway, Introduction to VLSI
Systems, Addison Wesley, 1980

[13] Chyan Yang, An Investigation of Multigauge Archi­
tectures, Technical Report 87-10-05, Department of
Computer Science, University of Washington, Ph.D.
dissertation, 1987.

· [14] Thinking Machines Corporation Connection Machine
Model CM-2 Technical Summary, Technical Report,
HA87-4, 1987.

285

[15] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P.
McAuliffe, L. Rudolph and M. Snir, The NYU Ul­
tracomputer - Designing an MIMD Shared Memory
Parallel Computer, Transactions on Computers, C-
35(2):175-189, 1983

[16] C. E. Seitz, The Cosmic Cube, Communications of the
A CM 28(1):22-33.

[17] Lawrence Snyder, A Taxonomy of Computers, In
preparation.

PARALLEL EXECUTION SCHEMES IN A PETRI NET

Won Ho Chung•, Ha Ryoung Oh•, Hyung Lee-Kwang••, Kyu Ho Park• and Myunghwan Kim•

•Department of Electrical Engineering, KAIST, •• S h 1 f El p c oo o ectronic and Computer Science KIT
.0. Box 150 Cheongyangni, Seoul, Korea 300-31, Daejeon, Choong-Nam, Korea.' '

ABSTRACT - In constructing modules for parallel execution
an important thing to be considered is what execution schem~
will be taken for parallelism. In this paper, we develop some
parallel execution schemes in the Petri net model of a task and
present a module construction algorithm for each scheme. The
maximum firing rule is used for large amount of parallelism.
This is useful in the early stage of software development for a
multiprocessor.

1. INTRODUCTION
In a parallel processing system, a task is assumed to con­

sist of modules interconnected with each other and a module
consists of actions. Petri nets and related graph models pro­
vide an important formalism for modeling and analyzing asyn­
chronous and concurrent activities of a task. These models
have been widely used for representing and analyzing those
tasks in various applications [1]-[3]. However, little work has
be~n done for constructing modules for parallel execution,
wl?ch can be run on a multiprocessor. There is an important
tlung to be solved, i.e., what execution scheme will be taken
for th~ parallelism. An execution scheme was proposed in [4]
for tlus problem. But, that scheme requires a lot of synchroni­
zation, so the timing overhead for task control becomes large
when it is implemented in a multiprocessor.

I~ this paper, we develop some Petri net based parallel
cxccut10n schemes and present an algorithm for constructing
modules by using each of the schemes. They are focused on
increasing asynchronous activity and thus reducing the control
overhead. The maximum firing rule is used for large amount
of parallelism. Further, how the execution scheme will be real­
ized as a software, which is effective in the respects of modu­
larity, modifiability, and so on, is considered. It is based on
the hierarchical decomposition teclmique proposed in [5].
Thus, if a task can be represented by a tree-structured form
w!th a ~ertain hierarchy, task assignment in a multiprocessor
with arbitrary number of processors becomes no longer the NP
problem [6]. We omit the definitions of Petri nets and related
details including languages, and follow ones in [7].

2. PRELIMINARIES

In a Petri net, a place p is an input (or an output) place
of a transition t if and only if there exists at least an arc (p, t)
(?'. (t, _p)). The bag of all input (or output) places of a tran­
sition IS called the precondition (or postcondition) and denoted
as I(t) (or O(t)). Thus, a marked Petri net N is defined as a
5-tuple N = (P, T, I, 0, M 0). We consider the places with
non-zero markings for the representation of a state. Thus the
initial marking of the net in Fig. 1, is represented by a ~tate
{3p 1}. We regard the firing of a transition as an action and a
module consists of actions.

Now, we give a formal definition of maximal parallelism.
It is justified by the maximal-firings of which each element is
a maximal set of transitions firable in a state.

Definition-I (Maximal-firings M)
Let N = (P, T, I, 0, M 0) be a marked Petri net, S be a

state represented by a bag of places and p(y) be the power set
of a set y. All the enabled transitions in the state S, M, (S) is
the set defined as

M,(S) = {t. ET I I(t.) ~ S}
The maximal-firings in S, M1 (S) is th~ set of all maximal X's

286

over M,(S) such that
x E p(M,(S)) and c2,,;.xl(t;)) ~ s.

Remarks for justification : Obviously, the M (S) is the
set of all the transitions enabled in the state S but ~ay not be
simultaneously firable, because some transitions may share their
input places. Therefore, every set of simultaneously firable
transitions in S must reside in the power set p(M (S)). Since
~ch e)ement X o~ the M1_(S~ is defined as one of'the elements
rn the power set, its domam 1s M (S). Moreover, since an ele­
ment X must satisfy the conditio~ (2: l(t)) ~ S, all transi­
tions in ~ are simultaneously firable '{/!. S. Finally, we select
only max1m~l ones am?ng such X's, ~erefore M 1 (S) is the set
of all maximals of simultaneously flrable transitions. Note
that transitions which share input places need not be in conflict.
If the marking has sufficient tokens in the shared input places
to enable each contending transition individually, then those
transitions can fire simultaneously II

All the transitions i~ ~ach element of M1 fire simultaneously,
thus we call such a fmng scheme maximum firing rule.

Some concurrency metrics are extracted from M (S) and
each state of a Petri net in execution is characterized1by using
them. Note that t11e M 1 (S) has the general form of

M1 (S) = {X 1 ,X 2 ,. .. ,XN}, where 1 s N s !r(M, (S)I,
and each Xk E M (S) has the form of

xk = ftko ,tkl ,. .. ,tkn}, where 0 s n s IT!.

Definition-2 (Concurrency Metrics)
Let M1 (S) = {Xk I 1 s k s N integer}.
(a) degree of concurrency : C(S) = _2: =l/v I Xk I ,
(b) degree of decision : D(S) = IM (S~!,
(c) concurrency to decision ratio : CDR(S) = C(S)/D(S).

F.or example, in the Petri net shown in Fig. 1, suppose S 1 is
g1~en by {pi,p 2 ,p3 ,p 4}, then M1 (S 1) = {{t 1 ,t3}, {t.z,t3}}. In
tlus case, C\S) = 4 and D(S) = 2 so that CDR(S) 1s 2, which
means that the average number of transitions which can fire
simultaneously in S 1 is two.

According to C(S) and D(S), each state of a Petri net in
execution under the maximum firing rule can be classified into
five classes such as class-0, class-1, class-2, class-3 and class-4
as shown in Table-1 [8]. Every state of a marked Petri net in
execution under the maximum firing rule belongs to one of
these classes. They show what transitions and how (sequentially
or disjunctively or concurrently) they can fire.

3. PARALLEL EXECUTION SCHEMES

Three parallel execution schemes are developed and a
module construction algorithm for each of them is presented.
We use the classes of states for describing those construction
algoritluns, because each state of a Petri net in execution can
be identified by its class. First, two partial states called the
firing state and idle state are defined and a state S is decom­
posed to them.

Definition-3
For a given state S, the firing state and the idle state for

each Xk E M1 (S) are defined as s1k = (2: -v I(t)) and sk =
k . t~k l

S s1 respectively, where each state is a bag of places.

As shown in Table-1, since there is no parallelism in
those states of the class-1 and class-2, execution schemes for
them are sequential or disjunctive. The class-4 is just the
combined case with the class-2 and class-3. Thus, class-1,
class-2 and class-4 are excluded in our discussion of parallel
execution schemes. From now on, we only consider the class-3
and each procedure corresponding to class-1, class-2 and class-
4 is separately described in Fig. Al.

Procedures for class-I, class-2 and class-4

Class-1 : (• M t<S) = {{ t}}, deterministic and sequential •)

begin

end

s1 = I(t) ; Si = S - s1 ; execute the action t ;

S' = O(t) + Si ; invoke this algorithm for S' ;

Class-2 : c· Mf(S) = Ht1}, {t2}, ... , {tN}}, disjunctive and sequential •)
for k = 1 to N

begin

s: = l(tk) ; S1k = S - sj ; execute the action tk ;

s1 = O(tk) + sf ; invoke this algorithm for sk ;

endfor

Class-4: (• M1 (S) = {Xl'X2'··-.XN}, disjunctive and concurrent•)

for k=l to N

follow the procedure Class-2 or Class-3 according to IXtl ;

(" The procedure Class-3 will be described in each scheme ")
endfor

Fig. Al. The procedures for class-1, class-2 and class-4.

3 1 Lock-Sts:p Synchronization (LSS) Scbeme

The LSS scheme is based on a lock-step manner with a
single-step parallelism. The scheme for a state S belonging to
the class-3 is as follows: 1) find M1 (S), 2) decompose S to the
firing state and the idle state, 3) all the actions in X E Ml. (S)
are executed simultaneously and 4) a next state is generateo by
merging the resulting output states (O(t)) with the idle state.
If the next state is belongs to class-3, ~s procedure is contin­
ued with the next state, otherwise follow the procedures in Fig.
Al. Therefore, if the class-3 states are continued, the module
construction using the LSS scheme is represented as a task
a LSS by using a prefix language.

(3-1)

and each mi is

mi= Cl I w1 w2 ···wk), (3-2)

where the dot O and a double-bar (II) are used as control
operators representing sequential and concurrent operations
respectively. In (3-2), each wi is a single action. Thus, the
module construction with this scheme is represented by a
sequence of parbegin/parend of actions. Suppose that a mul­
tiprocessor consists of a single control unit (CU) and related
number of processing elements (PE), and they are intercon­
nected by an appropriate communication network. An advan­
tage of this kind of parallelism is that the module construction
for a task is easily accomplished in the CU, and thus its allo­
cation to the related number of PE's is ·simple. However, this
scheme has a major defect that the synchronization must take
place whenever each module mi is completed, and then another
module m. is allocated to the PE's by the CU. The number
of synchro'nizations is large. Moreover, in constructing modules
for parallel execution with this scheme, the completion of each
module mi will take the maximum time among the parallel
actions, i.e. T(m.) = max{T(w.)} + a, where a is the time
penalty required for a synchroni~ation. The control overhead of
parallel execution for a task with this scheme is too high if the
class-3 states are continued.

Now, we present two other execution schemes for reducing
the number of synchronizations.

287

3 2 Partial State Branching (PSB) Scheme

This PSB scheme, in contrast with the LSS scheme,
exploits asynchronous parallelism in depth to reduce the over­
head caused by large number of synchronizations in the LSS
scheme. The basic idea is when concurrent actions are executed
in parallel, the local output state O(tk) of each action is
independently branched and the M 1 is exploited in each of the
local output states. The same procedure is repeated until each
state is terminated (class-0) or duplicated. An algorithm for
constructing modules with this scheme is shown in Fig. A2.

<ALGORITHM PSB>
(• HLIST and QLIST are global data structures•)

c· and they are initialized to be empty •)
(• The HLIST is a buffer for stori11g those states already examined, •)
(• and the QLIST is a fifo queue storing those states to be examined •)
Step 1: if (S E HUST) then return ; (• duplicated state is excluded •)

else save S into HLIST ; (" for duplication check •)
Step 2: Find the M t<S) and the CLASS of S ;

Step 3: case CLASS •

Class-0 : break ; (" terminated state •)
(" refer to Fig. Al for class-1, class-2 and class-4 •)

Class-3 : (• M1(S) = {{t1, .. , 1.}} : deterministic-concurrent")

begin

(* Parallel module, use double bars•) s, = ~k~1/Ct1); Si = s - s, ;
fork=ltoN

begin

execute the action t1 ; s1 = O(tk) ;
invoke this algorithm for S k ;

endfor

endclass
endcase

s· = L 1 =1,.o(r1) + s,
invoke this algorithm for S'

cndPSB.

Fig. A2. A parallel module construction algorithm with PSB scheme.

If we also assume that the class-3 states are continued, then the
module construction by using the PSB scheme will be described
by a task a PSB

aPSB =(· ml m2 ··· mn)

and each mi is also expressed by

mi=(! I wl W2 •• wk),

(3-3)

(3-4)

. . . (1 2 j) . but wi = ai 1s a smgle action or wi = · ai ai ·· ai 1s a
seHuential module consisting of actions or wi = Cl I
a.1 a.2 ·· a~) is a parallel module consisting of actions. The
dlffe:ence ~tween the modules constructed by the LSS and the
PSB can be found from (3-2) and (3-4). The W; in (3-2)
must be a single action while the wi of the PSB scheme may
be a sequence of actions or a parallel module as described by
(3-4). This means that the asynchronousity is higher than that
of the LSS scheme, i.e., lwi ILss -::;: lwi IPsB· However, we
can find that subparallelism may occur in the PSB scheme
because each wi can be a parallel module and thus each ai
can also be a parallel module. For example, the following
task described by a has such a subparallelism.
cr = (· 01 (· a Cll (· c e) (· d f)) h) (· b g)) i)
When the subparallelism occurs, the number of PE's is a deci­
sion factor whether the subparallelism will be serialized or not.
If it is less than the maximum edge-cut (3 in this case), some
parallelism will be lost. However, if it is at least equal to
three, the maximal parallelism can be achieved.

'\3 Extended Partial State Branching (XPSB) Scheme

This is an extension of the PSB for higher asynchronou­
sity than the PSB scheme. In the PSB scheme, all states ter­
minated locally are merged regardless of possibility of execu­
tion of another action in each terminated state (See Fig. A2).
Such possibility can appear at the time when each locally ter­
minated state is joined with a part of Si . Hence, in the XPBS
scheme, when all states are terminated locally during the PSB
scheme, S; is distributed to those terminated states and further
executable actions are explored. If some actions are executable
in the state joined with a part of Si, they are further executed.
More precisely, during the PSB algorithm (Fig. A2), a part of
the idle state is distributed to those terminated states that can
have executable actions when they are joined with a part of S ..
The idle state is changed when this kind of distribution occur~.
When each terminated state is not executable any more even if
the idle state is partially or totally joined, a next state is gen­
erated by merging those terminated states with the changed idle
state (if it exists). When the same part of S. denoted by P(S.)
is distributed to more than one terminated ;tate, the followi~g
conflicts can occur.

the executable actions are the 1) same or 2) different.
The first-come/first-fit strategy can be used for the first case,
because the executable actions are the same. However, for the
second case, the P(Si) is not considered for the distribution but
the other P(Si) is considered for the distribution to those states
or the other terminated states are considered for the distribution
of the P(Si). If this scheme is used for exploiting parallelism,
higher asynchronousity than the PSB scheme can be obtained
and thus rare synchronization is achieved, because lwi I PSB ~
,lwi I XPSB. Since the subparallelism can also occur in this
scheme, the same concept as the PSB is applied. Therefore,
the module construction by using this scheme has the same
descriptions as ones represented in (3-3) and (3-4), but their
task sizes are different. The construction algorithm using this
scheme is given in Fig. A3.

Let a LSS , a PSB and a XPSB be tasks obtained by using the
LSS, PSB and XPSB schemes respectively, and let N,(a) be
the number of synchronizations occurring in the task a. Then
we can find that

N,(aLSS) ";;:: N,(aPSB) ";;:: N,(aXPSB)

This is appeared as an overhead due to the synchronization,
because this overhead degrades the performance of a task in a
parallel processing environment using those parallel execution
schemes. Less the total synchronization overhead, better the
performance of a system.

'l .4 Parallel Behavior Re_presentation

A labeled directed graph called an AND/OR reachability
graph is used for representing the parallel execution of a task.
It is a labeled directed graph, G = (V, E, L), where V is a set
of nodes, E ~ V xv is a set of directed edges and L : E - T
is an edge labeling function mapping a transition to each edge.
Obviously, each node represents a state and each directed edge
is labeled by an action. The graph is a reachability graph of
a marked Petri net under the maximum firing rule, so that it
must be able to describe both of parallel and disjunctive
behaviors. Thus, as mentioned before, double-bar (llJ and plus
·r +) arc used for indicating a parallel module and a disjunctive
module respectively. The former is assigned to the class-3
nodes and the latter is assigned to the class-2 nodes. Both of
them are used for class-4 nodes because they have both opera­
tional properties of class-2 and class-3 nodes.

There are four branching rules prescribed for the con­
struction of an AND/OR reachability graph. They are the
sequential .branching with a single action (SBS), sequential

288

<ALGORITHM XPSB>

Step 1: ·;r (S • HLIST) then return ; (* duplicated state is excluded *)
else save S into HLIST ; (• for duplication check •)

Step 2: Find the M f(S) and the CLASS of S ;

Step 3: case CLASS

Class-0 : break ;

(*refer to Fig. Al for class-1, class-2 and class-4 *)
Class-3 : (' Mf(S) = {{ti' . ., t.}} *)
begin

sf = 2:k=1/(tk); si = s - sf ;
for k = 1 to N (* Start PSB *)

begin

execute the action tk ; sk = O(tk)

invoke this algorithm for S k ;

endfor
endclass

endcase

(* all the states are terminated and thus Si is distributed *)

for each sk
if Sk can be executable when a P(Si) is joined

then begin

sk = sk + P(S;) ; Si = Si - P(S;) ;

invoke this algorithm for sk ;
end

endfor

(* there are no more executable states *)

S' = 2: k=l,n 0 (tk) + S; ; (* a next state •)

invoke this algorithm for S'
cnc!XPSB.

Fig. A3. A parallel module construction algorithm with XPSB scheme.

branching with n multiple actions (SBM), disjunctive branching
(DB) of n actions and parallel branching (PB) of n actions.
Each of the branching rules is represented graphically as shown
in Fig. 2 by using the concurrency and disjunction marks (II
and +). They are described as follows:

(1) Sequential Branching with a Single action (SBS)
(S = Sf + S;) -t (S' = O(t) + Si), where Sf = l(t)

(2) Sequential Branchiug1 :wi1 'th n Multiple actions (SBM)
'111 .. t " ()) (S =sf +Si) - • (S' = ..::Jk=l,no tk + S; '

where Sf = 2:k=l,nl(tk) and use the mark 11-
(3) Disjunctive Branching (DB) of n actions

fork= 1 ton
(S = s; + S~) -'k (Sk = O(tk) + s;),

where sk = I(tk)
endf or Cuse the mark +)

(4) Parallel Branching (PB) of n actions
fork = 1 ton

(S =Sf +S.) -'k (Sk O(tk)),
where sf = :sk=l,/(tk)
end/or l use the mark II)

As we see, there are two different cases in the sequential
branching such as the SBS and the SBM which are used for
class-1 nodes and class-3 nodes respectively. The SBM is the
synchronous parbegin/parend represented by a single step paral­
lelism, while the PB is an asynchronous parbegin/parend. An
important aspect is that the SBS, SBM and DB generate the
global states as next states while the PB generates the partial
states as next states. Therefore, it is notified that the PB is
necessary to describe the PSB and the XPSB. However, it is
not required for the description of the LSS scheme.

The following elimination rule is also used to detect
whether a node must be branched or not.

Elimination rule :
If a state is terminated or duplicated, any branching is
not carried out.

The termination is detected by checking whether the state
belongs to the class-0 or not and the duplication is detected by
checking a queue (HLIST) which stores all the states generated
before. Therefore, the elimination rule can be implemented by
the procedure checking the class of a state and the queue.

The maximal-firings is computed in a current state and
characterized by one of the five classes, so that the AND/OR
reachability graph is dynamically constructed by the enumera­
tion of classes of states and actions together with several data.
Thus, each graph corresponding to each of the parallel execu­
tion schemes the LSS, the PSB and the XPSB can be con­
structed by using those algorithms represented in Fig. Al, A2
'and A3. We have used the depth-first method for their con­
structions.

4. A PROCESS FOR SOFTWARE GENERATION

For the design representation of a software using Petri
nets, various control modules have been developed for
representing software structures [3], [9]. We classify them into
4 control modules such as a begin -end, an if-then -else
module, a do -while module and a parbegin -parend module.
Each of those control modules can be expressed by a Petri net
language. To represent the PN language as a prefix language,
four control operators with same precedence are used. They
are the serial operator (-), the disjunction operator (+), the
concurrency operator (IJ) and the loop operator (*) and they
are used for the four control modules respectively. Note that
the do -while module is regarded as a loop of several actions
or modules with a single loop counter le , and we assume that
the iteration is finite. For example, a PN language (a · (b +
(c II d)) · e · f) le is represented by the prefix notation (* (· a
(+ b (II c d)) e f) le), where le is a loop counter.

A 4-step process is proposed for realizing an architectural
software.

(Step-1) Construct a AND/ORreachability graph describing a
parallel execution scheme.

(Step-2) Get the Petri net language described by a prefix
notation.

(Step-3) Decompose the language and generate a hierarchical
relation among decomposed modules.

(Step-4) Generate a software structure with the hierarchical
relation.

The steps (1) and (2) can be carried out by using the algo­
rithms represented in Fig. Al, A2 and A3. The step (3)
decomposes a Petri net language and generates a hierarchical
relation among decomposed modules represented by a tree
called a fork tree . The decomposition of a language gives us
a decomposition of the task. The root node (module(O, 0)) of
a fork tree is just the given language. In (Step-4) a hierarchi­
cally structured program for the task described by a Petri net
language is generated by using the four control modules.

S. PERFQRMANCE COMPARISON BY AN EXAMPLE

An example illustrating each parallel execution scheme is
given for a Petri net model and performance comparison
between them is discussed. The Petri net shown in Fig. 3 is
the model of a simple CPU which consists of three operation
cycles under the maximum firing rule. They are an arithmetic
cycle (AC), a store cycle (SC) and a branch cycle (BC). All
of them start from the instruction decoding action a and are
classified by the action. We exclude the branch cycle because
there is no parallelism in the cycle. The two task-cycles, which
are constructed by applying the LSS, PSB and XPSB schemes
to AC and SC, are represented by the Petri net languages with
prefix notations as follows:

289

For the LSS scheme,

(· a b1 c (II f I) 8 2 i n)

(· a b2 d Cl I 8 1 I) j n)

For the PSB scheme,

(- a b1 c (ii (· f 8 2 i) I) n)

(· a b2 d (II 8i l) j n)

For the XPSB scheme,

ACXPSB =

SCXPSB =

(· a b1 c (ii (· f 8 2 i) I) n)

(· a b2 d Cll (· 8 1 j) I) n)

Consider the arithmetic cycle (AC) for the comparison between
the LSS and the PSB scheme. We can find that the task-cycle
of the ACLSS consists of a 7-module sequence with one paral­
lelism, where the two actions - f and l - are executed simul­
taneously. And the task-cycle of the ACPSB consists of a 5-
module sequence, where the module (· f g 2 i) and the action
l can be simultaneously executed. Therefore the asynchronou­
sity for the PSB is higher than that of the LSS. Furthermore,
the execution according to the PSB is equal to or faster than
that according to the LSS when they are implemented in a 2-
processor system, because the execution of the module (· (II f
l) g 2 i) takes longer time than that of the parallel module (II
(· f g2 i) l).

Consider the store cycle (SC) for the comparison between
the PSB and XPSB schemes. The task-cycle of SCPSB consists
of a 6-module sequence, where the two actions g 1 and l can
be executed in parallel, while the task-cycle of SCXPSJl consists
of a 5-module sequence, where the module (· g 1]) and the
action l can be executed in parallel. The asynchronousity for
the XPSB is higher than that of the PSB. In the same sense,
the execution according to the XPSB is equal to or faster than
that according to the PSB when they are implemented in a 2-
processor. Moreover, if the execution of the action l is longer
than that of the module (· f g 2 i), the PSB scheme is much
better than the LSS. Also, if the execution of the action l is
longer than that of the module (· g 1 j), the XPSB is much
better than the PSB.

From this example, we can find that, the PSB scheme is
more efficient than the LSS, and the XPSB than the PSB due
to higher asynchronousity. With enhancement of asynchronou­
sity in the PSB and the XPSB schemes, the timing overhead for
task control in a multiprocessor is reduced from the LSS
scheme. Each of three parallel execution schemes describes the
parallelism for a special computer architecture. For example,
the LSS scheme describes the synchronized parallelism with
lock-step manner and thus it may be better that the LSS
scheme is applied for SIMD machines such as array processors,
while the PSB and the XPSB schemes are for a message-based
distributed system or a loosely-coupled multiprocessor system
(especially tree-structured machine) due to high asynchronousity
among parallelly processable modules, and thus the overhead
for the task control is reduced.

6. CONCLUSION

We have presented three parallel execution schemes in a
Petri net and discussed differences between them. A module
construction algorithm for each of them is given and imple­
mented in a functional language Lisp. Main consideration is
to increase the asynchronous activity for reducing the number
of synchronizations when a task is executed in a multiprocessor.
The extent of asynchronousity differs by an employed scheme,
but their parallelism is kept to be maximal, because the execu­
tion of a Petri net follows the maximum firing rule character­
ized by simultaneously executing the maximal-firings in each
state. We have shown that the timing overhead for the control

of a task in a multiprocessor is reduced by increasing the asyn­
chronousity. The schemes are followed by the hierarchical
software construction which represents the dynamic behavior of
a task. The overall procedure can be automated by a 4-step
process. This is useful in the early stage of software develop­
ment for a multiprocessor.

8.REFERENCES

(1] M. Diaz, "Modeling and Analysis of Communication
and Corperation Protocols Using Petri Nets Based
Models," 'Computer Networks, Vol. 6, North-Holland,
1982, pp.419-441.

[2] C. V. Ramarmoothy and G. S. Ho, "Performance
Evaluation of Asynchronous Concurrent System Using
Petri Nets," IEEE Trans. Software Eng., Vol. SE-6,
pp.440-449, Sept. 1980.

(3] T. Agerwala,"Putting Petri Nets to Work," IEEE Com­
puter, pp. 85-94, Dec. 1979.

[4]

(5]

H. D. Burkhard, "On the Priorities of Parallelism: Petri
Nets under Maximum Firing Strategy", Logics of Pro-
grams and Their Applications, Lecture Notes in Com­
puter Science, Berlin, Springer-Verlag, No. 148, pp86-97
H. Lee-Kwang, J. Favre! and G. R. Oh, "Hierarchical
Decomposition of Petri Net Languages," IEEE Trans. on
SMC, Vol. SMC-17, No. 5, Sept./Oct. 1987, pp.877-878.

(6] H. S. Stone and S. H. Bokhari,"Control of Distributed
Processes," IEEE Computer, Vol. 11, pp. 97-106, July
1978

(7] J. L. Peterson, Petri Net Theory and The Modeling of
Systems, Englewood Cliffs, Prentice-Hall, 1981.

[8] W. H. Chung, H. Lee-Kwang, K. H. Park and M. Kim,
"State Characterization By Maximal Set of Concurrently
Firable Actions in Petri Net Based Models," IEEE
Region 10 Conference, Seoul, Aug. 1987.

(9] T. Murata, "Modeling and Analysis of Concurrent Sys­
tems," in Handbook of Software Engineering, edited by
C. V. Ramamoorthy and C. R. Vick, Van Nortrand,
Rein-Hold, 1984.

:Fig. I. A marked Petri net wilh S 0 = {3p 1).

Table-!. The state characterization by C(S) and D(S)
-

Class Form of M1 (S) C(S) D(S) Remarks

0 JI 0 0 no action
1 {{t}} 1 1 deterministic-

scqucnti<1I
2 {{r 1), {12), •••) C(S) = D(S) :;:-, 2 D(S) = C(S) :;:-, 2 disjunctive-

scQuential
3 {{11' r,. ...)) "'2 1 dctcrmiui~lic-

concurrent

4 {X 1 ,Xz. .. ,XN)

where C(S) > D(S) :;:-, 2 C(S) > D(S) :;:-, 2 disjunctive-

x, = {tkO,. .. , 1kn} co11currcnt

290

~
S2

t1 tn

S' = f O(tk) + S 1

O(t) + S1

(a) Sequential Branching (b) Sequential Branching

with a Single action (SMS) with n Multiple actions (SBM)

+

(c) Disjunctive Branching (DB)

of n actions

S = Sf+ S; =)~ I (t1<)+S1
k

ls_ks_11

(d) Parallel Branching (PB)

.r
S = O(t1) · · S11= O(t 11)

of n actions

P1

Fig. 2. Graphical representation of four branching rules.

n

P16
m

P15

Transition modules
n

b,
b,
b,
c
d

gt

•.i
I

n
kl
k,
t
m

So= {p,)

PG
>---1-----·-·--------o

_...-k2 P13

Precondition.~ Pos1comli1i011s
(p,} Ir"}
{p,} (p,J
{p,} {p,J
{p,} {p,)
{p,J {p,, I' 14}
{p,) {p,, Pu• P14)
{p,) {"'""'Ii (p ,l {p,, P10
{p,) {p,)
{p,) {p,}
V19· l' 10) IJ>u)
(p,. Pul {p,j}
IJ> 12> P1ol (p,
(p13} (1'14}
{1'13} (p 16}
{p14} (pl6}
(J1 ") {p 16)

Fig. 3. A Petri net model of a simple CPU.

HIGH-SPEED VECTOR INSTRUCTION EXECUTION SCHEMES OF HITACHI SUPERCOMPUTER
S-820 SYSTEM

Hideo Wada, Koichi Ishii, Shigeko Yazawa and Shun Kawabe
Computer Development Department
Kanagawa Works, Hitachi, Ltd.
1 Horiyamashita, Hadano, Kanagawa 259-13
Japan

Abstract. The HITACHI supercomputer S-820
has been developed as Hitachi's top end super­
computer. It is also rated as one of the most
powerful supercomputers in the world.

To achieve the performance goal, the S-820 em­
ploys advanced vector execution control. Of the
features of the S-820's vector processing, this
paper discusses parallelism between scalar and
vector processing, elementwise parallel execution
and instruction stacking.
Parallelism between scalar and vector processing

greatly speeds up processing of short vectors.
Elementwise parallel execution greatly speeds up

calculations which have few terms.
Instruction stacking greatly speeds up process­

ing of short vectors and increases the efficiency
of elementwise parallel execution.

1. Introduction

With the progrss of science and technology,
demand is increasing for processing large-scale,
complex data in many fields, such as structural
analysis, molecular science, nuclear fusion,
semiconductors and natural resource exploration.

Many supercomputers capable of processing large
amounts of data as vectors have been developed to
meet such growing demand. Their application is
expanding to new fields such as computational
experiments and large-scale simulations, which
typically require more computation power and
larger data storage capacities than other appli­
cations.
The HITACHI supercomputer S-820 has been devel­

oped to meet these systems requirements based on
state-of-the-art LSI technology. This paper
introduces high-speed vector instruction execu­
tion schemes of the S-820.
These high-speed vector instruction execution

schemes of the S-820 have been developed aiming
at three goals described as follows.

(1) Performance enhancement of short vector
calculations

Before starting the vector calculations, the
preprocessing for the vector calculation such as
generating the addresses of vectors is executed.
Since the time required for this preprocessing

is independent of vector length, the proportion
of it to the vector calculation time, which is
in proportion to vector length, becomes large in
case of short vectors. On the contrary, in case
of long vectors, the time required for the pre­
processing becomes negligible compared with vec­
tor calculation time.

Thus the time required for the preprocessing
becomes a great start up time and degrades the
performance of short vector calculation.

291

Therefore performance of not only long vector
calculations but also short vector calculations
should be enhanced.

(2) Performance enhancement of calculations which
consist of few terms

The peak performance of a supercomputer is deter­
mined as follows.

Number of•arithmetic units
MFLOPS = (1)

Pipeline period (micro. sec)
To increase vector processing performance, the

processor usually must have as many arithmetic
units which can operate in parallel as possible.

But in case of calculations which consist of few
terms, such as the calculation which consists of
only one addition of two vectors, many arithmetic
units are idling while the calculation is in exe­
cution, since few (i.e. not all) arithmetic units
are necessary for the calculation.

As a result, the performance of the processor
becomes by far lower than its peak performance.
Therefore the performance of calculations which

consist of few terms should be enhanced.

(3) Reduction of loss time caused by instruction
switching

When the execution of the instruction in an ar­
ithmetic unit ends and the next instruction is
given to it, the loss time is caused by instruc­
tion switching. This loss time has greater effect
on the performance of the processor as vector 1.cal­
culation time becomes shorter.
Therefore this switching time should be reduced.

To achieve the first goal (1), the highly paral­
lelized processing between the scalar processor
and the vector processor has been realized.
This scheme is presented in section 6.1.
To achieve the second goal (2), the elementwise

parallel processing scheme has been developed.
This scheme is presented in section 6.2.
To achieve the bhitd goal (3), the instruction

stacking scheme has been developed.
This scheme is presented in section 6.3.

2. Architecture

The architecture of the S-820 is shown in Fig.l.
The S-820 consists of the scalar processor and the
vector processor. The architecture of the scalar
processor is compatible with Hitachi's general
purpose computer M-series systems. Thus the
S-820 supports standard data processing environ­
ments, such as TSS(Time Sharing System) and RJE
(Remote Job Entry).
The architecture of the vector processor includes

90 vector instructions, 32 sets of vector regis-

ters, 16 sets of vector mask registers, 32 sets of
scalar registers, 48 sets of vector address regis­
ters, vector address translation feature and the
vector processing timer.

lllTAClll

M-series Architecture Extended Vector Archi lecture

M-series instructions 216 Vector instructions

General-purpose registers 16 Vector registers

Floating-point registers 16 Vector mask registers

Control registers 16 Scalar registers

Address trans I a ti on Vector address registers

Storage protection Vector address translation

TOD clock Vector processing timer

CPU timer

CJ ock comparator

Extr11dcd d1a1111c I s]s Lem

Fig.l S-820 Architecture

3. Processor Organization

The S-820 is available in two models:
S-820 model 80 (S-820/80)
S-820 model 60 (S-820/60).

90

32

16

32

48

The S-820/80 is twice as powerful as the S-820/60
and has a larger maximum storage capacity.

The 820 consists of vector processor, the scalar
processor, the main storage, the extended storage,
the input/output processor(s) and the service
processor.
Fig.2 shows the processor organization. Table 1

shows the specification of the S-820.

MS
ES
SC
SVP
!OP

SC

Main Storage
Extended Storage
Storage Controller
Service Processor
I/0 Processor

BS : Buffer Storage
FPR : Floating-Point Register
GR : General Registers
SR : Scalar Register
VAR : Vector Address Register
VR : Vector Register
VMR : Vector Mask Register

Fig.2 Processor Organization

292

Table 1 Specification of S-820

Model S-820/60 I --o·u;u, ~
Peak Performance !. 5 GFLOPS I 3. 0 GFLOPS L

No. of Vector Instructions 90

General Registers 16 (32bits)

Floating-point Registers 16 (64bits)

Registers Vector Registers 32 x 256Words I 32 x 512Words
Proc

Vector Mask Registers 16 x 256bi ts 116 x 512bi ts
On it

Scalar Registers 32 (64bits)

Integer 32 bits
Data

Floating-point 32/64 bits
Length

Logical 64 bits

Vector Processing Timer Supported

Buffer Storage 256 KB

Capacity (MB) 64. 128. 256 I 128. 256. 512
Main

Storage 1 Bit Error Correction
Error Checking

and 2 Bit Error Detection

Capacities (GB) 0. 5-6. 0 I 0. 5-12. 0
Extended
Storage Error Checking 2 Bit Error Correction

Max Transfer Rate (GB/s) I or 2

l/O No. of Channels 16. 32. 48, 64
Proc

Max Transfer Rate (MB/s) 288

4. Outline of Vector Processing

Like the predecessor S-810(1], the S-820 features
parallel operations between scalar and vector
processing, as illustrated below.

For example, a DO loop in a FORTRAN program:
-µo 20 I = 1, N

20 A(I) = B(I) x C(I)
is compiled into a chain of vector instruc~

tions:
VLD
VLD 7

Where,

VEMD
VSTD

VLD
VEMD
VSTD
VRi

VRO, B
VR2, C
VR4,
VR4,

VRO, VR2
A

Vector Load
Vector Elementwise Multiply
Vector Store
i-th Vector Register

~~1:{;
. ~I ()o
~\II Q,"

I I\)
A (I), B (I) and C(I) are vectors. The execution r·

of this program is shown in Fig.3. The scalar
processor (SP) performs preprocess for this chain~
of instructions and passes control to the vector
processor (VP).
After this preprocessing, the SP issues an EXVP

(Execute Vector Processing) instruction. The VP
begins vector processing, i.e., fetches the vector
instruction chain, executes a VLD instruction to
load vector B to vector register 0, a VLD instruc­
tion to load vector C to vector register 2, a
VEMD instruction to multiply vector B by vector C
and to store the result in vector register 4 and
a VSTD instruction to store the result held in
vector register 4 in vector A.

During the vector processing by the VP, the SP

can execute another scalar processing or preproc­
essing for next vector processing. Parallel proc­
essing between the SP and the VP shortens total
program execution time.

SP

VP

Preprocess i og EXl'P Scalar processing EXVP
for vector instruction or instruction
processing Preprocessing for

vector processing

c Vector ~'"' ins true ti on
chain Vector

instruct
VLD VRO. B chain
VLD VR2, C
VEllD VR4. VRO, VRJ
VSTD VR4. A

Fig.3 Parallel Operation between
Scalar and Vector Processing

ion

5. Outline of Vector Instruction Execution Control

5.1 Structure of Vector Instruction Control Unit

Fig.4 shows the structure of the vector instruc­
tion control unit of the S-820.

Main Storage

Vector Instruction Fetch Part

S2

S7

Sl

Instruction Decode Part

Sl

Register
Conflict
Check
Part

S4

Resource
Conflict
Check
Part

Instruction Issue Part

S8

Sll

Vector Register Con'trol

Sil

IECP Instruction Excution Control Part
MO Memory Requester O
Ml Memor)I Requester I
Ad Adder
Mu Multiplier

514

Part

Sl6

Sl2

Fig.4 Structure of Vector Instruction Control Unit

The main storage stores instructions and data op-

erands. The vector instruction fetch part fetches
a chain of vector instructions from the main stor­
age when the SP issues an EXVP instruction and
then it sends vector instructions in a chain to
the instruction decode part.

The instruction decode part puts the vector in­
structions in the queue and decode them.

The register conflict check part checks whether
the destination register of the current vector in­
struction becomes a source for the next vector in­
struction, and has the information about the sta­
tus of each vector register.
The instruction issue part ,sends the decoded

vector instruction to the instruction execution
control part.
Memory requester 0, memory requester 1, adder and

multiplier are called "resources".
These resources are explained briefly as follows.

Memory requester sends main storage access re­
quests to the storage controller. Adder executes
addition on operands. Multiplier executes multi­
plication on operands. Each resource processes

~-four vector elements ~n pa:ttallel(See section 6. 2)
c..;::; These four resources must execute different vec­

tor instructions in a pipeline manner while main­
taining the correct sequence of access (storing
and referencing) of vector registers.

The resource conflict check part .checks the con­
flict in use of any of the resources between the
current vector instruction and the next vector in­
struction, and has the information about the sta­
tus of each resource.
The instruction execution control part, which is

attached to each resource, controls the execution
of the vector instruction in each resource.

The vector register control part controls data
transfer to and from the vector registers.

5.2 Vector Instruction Execution Process

In this section the vector instruction execution
process of the S-820 is explained by means of
Fig.4.

As mentioned in section 4, vector instructions
are started by an EXVP instruction, which is a
scalar instruction. The SP senses the condition
of the VP and starts the VP when the VP is ready
for execution of vector instructions.

The vector instruction fetch part sends the vec­
tor instructions to the instruction decode part at
a rate of one instruction per machine cycle.

At first the vector instruction which is sent
from the vector instruction fetch part is decoded
in the instruction decode part, that is, the vec­
tor instruction is decoded into op-code, vector
length, vector register number, resource number
and so forth.
After decoding the vector instruction, the in­

struction decode part sends the aforementioned
information to the instruct.ion issue part, sends
the register number of the vector register des­
ignated in the vector instruction to the register
conflict check part and sends the resource number
of the resource used in the vector instruction to
the resource conflict check part.
In the register conflict check part, conflict in

use between the vector registers used in the de­
coded vector instruction and the vector register
used in the vector instruction in execution is

293

checked.
In the same manner conflict in the use of re­

sources is checked in the resource conflict check
part.

When no conflict is detected, the instruction
issue part sends the information necessary for the
execution of the vector instruction, that is, op­
code, vector register number, mask information,
chaining information and other control information
, which is shown as data path S8 in Fig.4, and in­
struction start signal, which is shown as S7 in
Fig.4, to the instruction execution control part
corresponding to the resource which executes the
vector instruction.

When any conflict is detected, the instruction
issue part waits until the conflicts disappear.
Each instruction execution control part sends the

instruction to the corresponding resource by way
of one of the data paths S9, SlO, Sll and Sl2 and
instructs the resource to execute the instruction.
The resources and the vector register control

part executes the instruction sent from the in­
struction execution control part.
The vector register control part reads the vec­

tor data operands from the vector register desig­
nated in the instruction and sends them to the
resource which needs them.

The vector register control part also writes the
vector data which are sent from the resources to
the vector register designated in the instruction.

When the vector register control part ends read­
ing/writing, it informs the resource and the in­
struction control part by the signals Sl3, Sl4,
Sl5 and Sl6 and also informs the register conflict
check part.

When a resource ends the operation, it informs
the resource conflict check part and updates the
resource status in the resource conflict -check
part.
It should be noted that vector instructions exe­

cuted by different resources can operate in paral­
lel when no conflict is detected, since each re­
source is independent of other resources.

6. Vector Instruction Execution Schemes

6.1 Highly Parallelized Processing between the
Scalar Processor and the Vector Processor

As described in section 4, parallel processing
between the SP and the VP effectively shortens the
total program execution time.
In order to further enhance performance the S-820

employs the following two processing schemes:
(1) Vector processing linking

While the VP is executing a vector operation
the execution of the next chain of vector
instruction can be started.

(2) Vector processing signaling
Even when the VP has not completed all the
operations in the chain of the vector in­
structions, the part of the scalar program
which needs the result of a part of vector
operations can be started, when it is ready.

Fig.5(a) shows parallel processing between the
SP and the VP described in section 4, taking an
example of a chain of vector instructions which
is divided into two vector operations.

294

First the SP executes preprocessing for vector
operations Q) , @ .

Next the SP starts the VP by means of EXVP in­
struction.;

While the VP executes the vector operation, the
SP can .execute scalar processing such as preproc­
essing of the next vector operations.

As soon as current vector processing has com­
pleted, the SP can start the VP for the next vec­
tor operation which has been kept waiting.

Fig.5(b) illustrates how vector processing link­
ing improves the performance.
In case that the control information for the vec­

tor operation @ is not necessary for the vector
operation Q), the SP starts the VP immediately
after preparing the control information necessary
for the vector operation Q).
Next, the SP sets up the VP with the information

necessary for the vector operation @ and signals
"linking operation" to the VP.,

The VP links the vector operation @ with the
vector operation Q), i.e., executes the vector
operation © and the vector operation @ in a
synchronized manner.

As compared with Fig.5(a), the degree of paral~
lelism is increased. As a result overall perfor­
mance is enhanced.

The compiler automatically partitions a chain of
vector instructions into two or more smaller
chains so that parts of them can be processed in
an overlapped manner.

Fig.5(c) illustrates how vector signaling en­
hances performance, taking an example of a chain
of vector instructions which is divided into two
vector instructions, where the first vector in­
struction generates a ,scalar result which is nec­
essary for following scalar processing.
In Fig.5(c), the vector instruction © is the

only instruction in a vector instruction chain
which stores the calculation result in a scalar
register. Such vector instruction is given the
"signaling flag" by the compi.ler.
The vector instruction Q) stores the result i.n

the scalar register, which can then be accessed by
a subsequent scalar instruction ® .

The vector instruction © in such a case is
given the "signaling flag" as mentioned above.

When the vector instruction © finishes the op­
erati.on, the VP tells the SP to start subsequent
scalar instruction ® .

Since the scalar instruction ® does not wait
until the vector instruction @ which immediately
follows the vector instruction © completes the
operation, the SP and the VP operate in parallel
after the completion of the operation of the vec­
tor instruction © .

As a result overall performance is enhanced.

The realization of these two schemes, vector
processing linking and vector processing signaling
, utilizing vector instruction control unit shown
in Fig.4 is described as follows.

To realize vector linking, the vector instruction
fetch part executes the following control.

When an EXVP instruction without a "linking flag"
is issued by the SP, the vector instruction fetch

SI'

VI'

SP

VI'

RP

VP

st:<dar inslnu.:Liu11s s1:<.tlar i11slrucliu11s
for pn•prort'ssini; for pre1•roressi11g

for uexl. \'ec-lor 011eralio11
~ ,-------"---.,

l'XVI' EXVI'

(i)

vec-tor operation next vector
opera.lion

Fig.5(a) Parallel Processing of the Scalar
Processor and the Vector Processor

scalar iust.rurtious
for· 11reprocessing

se;tlar inslruclions
for preprocessing
fur uext veclor operalion

,-A--. ~ ,-------A----..

CD EXVI' CD LINK LINK

vector 0J1l'ration

Fig~,5 (b) Performance Enhancement by
Vector Processing Linking

signaling

CD

vector instruction

Fig.5(c) Performance Enhancement by
Vector Processing Signaling

nrxt VPC tor
operation

para.I lei
processing

part senses the instruction decode part and the
instruction issue part. In case that there are
either instructions being executed or instructions
in the instruction decode part, it does not send
a chain of vector instructions to the instruction
decode part.
When an EXVP instruction with a "linking flag" is

issued by the SP, the vector instruction fetch
part send a chain of vector instructions to the
instruction decode part in case that there is no
instruction in instruction decode part.

To realize vector signaling, T• the vector register
control part executes the following control.
When the vector register control part ends writ­

ing the result in the scalar register which is
specified in the vector instruction with "signal­
ing flag", it sets the specific register called
signal register.

The SP senses this signal register and executes
subsequent scalar instruction which needs the data
held in the scalar register when it finds the
signal register to be one.
These "linking flag" and "signaling flag" are

specified by the compiler.

6.2 Elementwise Parallel Processing Scheme

The elementwise parallel processing operation is
realized as follows.

The arithmetic unit of the S-820 model 80 con-

295

sists of four fully segmented pipelines. These
four pipelines are operated concurrently. Thus
memory requester 0, memory requester 1, adder and
multiplier in Fig.4 all consist of four fully seg­
mented pipelines. Therefore four elements can be
processed in one machine cycle, whereas a single
pipeline scheme would allow only one element to be
processed in one machine cycle.
Fig.6 shows elementwise parallel processing for

addition of two vectors in the vector register
NO.O(VRO) and the vector register N0.4(VR4). The
result is to be stored in the vector register N0.8
(VR8).
At first, element NO.O, NO.l, N0.2 and N0.3 are

processed concurrently as follows. Adder in Fig.4
consists of four fully segmented pipelines, which
are called AdderO, Adderl, Adder2 and Adder3.

The vector register control part reads these four
elements from VRO and VR4 and sends them to these
four adder units, Addero; Adderl, Adder2 and Ad,..J
der 3 concurrently.
Next, the vector register control part sends exe­

cuting signal to the AdderO, Adderl, Adder2 and
Adder3 in parallel.
Finally, the vector register control part writes

the four results of additions to VR8 in parallel.
These procedures are repeated for further ele­

ments.
Thus four consecutive elements are processed con­

currently as one unit.

VR8 7--- VRO + VR4

>---+--+--' +1--4 ~;~! Vector
VRO VR4 10 11 vector

write to vector register
3 ~~------------'

Fig.6 Elementwise Parallel Processing

Fig.7(a) and Fig 7(b) show processing by means of
single pipeline scheme and elementwise parallel
pipeline (processing) scheme respectively, taking
an example of vector calculation

Ai = Bi x Ci +Di. (2)
The vector length is assumed to be 20. The num­

ber in Fig.7 means the element number.
In Fig.7, load unit, load/store unit, adder unit

and multiplier unit correspond to memory requester
0, memory reque"~ter 1, adder and multiplier re­
spectively in Fig. 4.

Loading of vector B, loading of vector C and
loading of vector D are executed by the load unit.
Multiplication of vector B and vector C is exe-

1 .. 17 1 .. 17

2 .. 18 2 .. 18

3 .. 19 3 •. 19 I I 2 l 4 •... D . • . . 20
- -, L _______________________ _ 4 .• 20 4 .. 20 _J

I 1 2 3 4 A L/ST ,- I .. 17 1 •. 17

I _________________________ ! I 2 .. 18 2 •. 18

I ________________________ ! 3 .. 19 3 .. 19

L ________________________ I 4 •. 20 4 •• 20

I !1 2 3 4 + 20 I -, Ad 1 .. 17 l

I I

I ========================:

2 .• 18

3 .• 19

I 4 .. 20

1-
I .. 17

---1

2 .. 18

Ii 2 3 4 x 20 I --, M
I - --1

I------------------------,
I------------------------,

(a) single pipeline

L : Load unit
L/ST : Load/Store unit
Ad : Adder unit
M : Multiplier unit

(b)

3 .. 19

4 .. 20

e I ementwise
parallel
pipeline

Fig.7 Performance Enhancement by
Elementwise Parallel Processing

cuted by the multiplier unit.
Addition of the result of the multiplication,

that is B x C, and vector D is executed by the ad­
der unit.
Storing the final result, that is B x C + D, in a

vector A is executed by the load/store unit.
Since each unit in elementwise parallel process­

ing consists of four fully segmented pipelines,
the time required in each operation such as load­
ing and adding is one fourth of that in single
pipeline scheme.

Thus the overall performance is improved.

6.3 Instruction Stacking Scheme

The point of this paper is "Instruction Stacking
Scheme" described below.

The aim of "Instruction Stacking Scheme" is to
reduce the loss time caused by instruction switch­
ing. "Instruction Stacking Scheme" is employed in
the instruction execution control part.
Fig.S shows the structure of the instruction exe­

cution control part.
The instruction execution control part Gan have

up to two vector instructions including the in­
struction in execution, and starts the execution
of vector instructions in order of their arrival.

The current instruction register holds the vector
instruction being executed. The next instruction
register holds the next vector instruction.
These two instruction registers play the role of

296

S8 1wxt S7 Sl5

selector

EX inslruction
f-------, regi5ter

S22

S24
523

current instruction register

control
circuit

Fig.S Structure of the Instruction Execution
Control Part

stacks, that ia, two instructions can be stacked
for each resource. Therefore these two instruc­
tion registers are also called instruction stack~

As an example, the instruction execution control
part for the adder is explained below.

Data path SS means the information necessary for
execution of the instruction, that is, op-code,
vector register number, mask information, chain-,1.
ing information and other control information and
the signal S7 is the instruction start signal
which means that the vector instruction is issued
as explained in section 5.2. The signal Sl5 means
that the execution of the instruction by the re­
source and the vector register control part ende~

In Fig.S data path SS, signal S7 and signal Sl5
are called "EX", "I" and "E" respectively, and
data path SS is also called "instruction".

The counter consists ofl 2 bits and represents
the number of instructions included in the in­
struction execution control part.
The control circuit updates the counter, issues

the signal S21 which sets the next instruction
register, issues the signal S23 which:sets the
current instruction register and issues the sig­
nal S22 which switches the selector.
Fig.9 is the status transition graph of the

counter. Each node represents one value of the
counter. The value 00/01/10 means that there are
0/1/2 instructions in the instruction execution
control part. The value 11 signifies that a mal­
function has occurred and a machine check signal
is sent to the SP in this case.

In Fig.9, "I" means that signal "I" is issued
and "f" means that signal "I" is not issued.
This convention applied also to "E" and "E".

The status transition of one example case is ex­
plained as follows.

Suppose that the signal 11111 is not issued and
the signal "E" is issued when the contents of the
counter are "10".

In this case, since the execution of the in­
struction in the current instruction register
ended and the new instruction is not issued, the
contents of the current instruction register is
replaced by those of the next instruction regis­
ter and the next instruction register becomes
empty. As a result the value of the counter be­
comes "01", since there is one instruction in the
instruction execution control part.
The control circuit in Fig.S operates as follows.
Table 2 shows the values of signals S21, S22 and

1-TI C)J'"'' 1-E co I·E

l

T·E

' j T· E

1 j
1-if

8 q
f.F

Fig.9 Status Transition Graph of the Counter

Table 2. The Value of Control Signals in
the Instruction Execution Control Part

CQU!lter uu Ul Ul IU

I I I I 0

E 0 0 I I

SB I I 0 I I

821 0 I 0 0

822 0 u 0 l

S23. In Fig.8 signals S21 and S23 set the next
instruction register and the current instruction
register respectively and signal S22 selects the
contents of the next instruction register to data
path S24 when its value is 1 and selects data
path S8 when its value is 0.

In this example case, the value of the counter,
that of signal "I" and that of signal "E" are
"10", "O" and "l" respectively. According to
Table 2 the value of signal S22 becomes 1 and
that of signal S23 becomes 1 so that the contents
of the current instruction register may be re­
placed by the contents of the next instruction
register in this case.

The other cases can be explained in the same way.
The resource conflict check part has the status

of these two instruction stacks, that is, the
current instruction register and the next instruc­
tion register so that superfluous instruction
start signals (S7) may not be issued.

By controlling the instruction execution as de­
scribed above, outline of system control becomes
as follows.

When there is no instruction in execution, the
instruction sent from the instruction issue part
is held in the current instruction register.
When there is an instruction in execution, the

instruction sent from the instruction issue part
is held in the next instruction register and the
contents of the current instruction register is
replaced by those of the next instruction regis­
ter upon completion of the instruction.

297

6.4 Effect of the Instruction Stacking Scheme

By employing the instruction stacking scheme de­
scribed in 6.3, immediately after the execution
of the instruction in each resource ends, the
next instruction can be given to the resource.

As a result, the resource can be "4Sed,1m<!lre effi­
ciently since vector data to be processed by the
current instruction and the next instruction can
be given to the resources without a break.

In order to show the effect of the instruction
stacking scheme, the timiag charts of the case
where successive instructions use the same re­
source are shown in Fig.10.

The vector length of every instruction is assumed
to be 3. In Fig.10, the number represents the in­
struction.
Fig.lO(a) shows the case that there is no in­

struction stack. Fig.lO(b) shows the case that
there are two instruction stacks, that is, the
current instruction register and the next in­
struction register in Fig.8.

In Fig.10, the instruction start signal corre­
sponds to S7 and the execution ending signal cor­
responds to Sl3, Sl4, Sl5 ord Sl6 in Fig.4.

In Fig.lO(a), the execution on elements has one
vacant cycle at the point of instruction switch­
ing.

In Fig.lO(b), the execution on elements is con­
tinuous and resources do not have idle time.

Next, the time T from the instruction start sig­
nal for the first instruction to the execution
ending signal for the N-th instruction is com­
pared between Fig.lO(a) and Fig.lO(b) as follows.
L means the vector length.

Fig.10-0a) : T = N x L + N - 1 (3)
Fig.lO(b) : T = N x L (4)

Therefore, the effect of the instruction stack­
ing scheme to no instruction stack case is

p = (3) I (4) = 1 + l/L - l/NL (5)
When number of instructions is large, (5) becomes

P = 1 + l/L (6)
Table 3 shows the effect on the S-820 model 80(

4 elements are processed concurrently by element­
wise parallel processing).

Table 3 shows that the instruction stacking
scheme greatly improves the performance in case
of short vectors.

In order to enhance the performance, supercomput­
ers generally employ elementwise parallel pipeline
processing scheme, and furthermore the degree of
elementwise parallel pipeline becomes larger, that
is, the number of elements which can be processed
concurrently becomes larger.

As a result the number of elements to be process­
ed per pipeline becomes smaller.
In this situation, this instruction stacking

scheme which has a great effect on processing of
short vectors becomes important.

instruction start signal

eJ emen l

execution ending signal

(a.) no instruction s,t,:tr:I\ c:rne

instruction start si,gna.I
! I

e 1 ement

execution ending sig.ual

(b) two instruction stacks case

Fig.10 Timing charts of the
Instruction Stacking Scheme

Table 3 Effect of the Instruction Stacking Scheme

vcc lor length number of effect (P-J)
<•lements per
l'il1L'lilll'

I - 4 I IUU%

5 - 8 2 50%

9 - 12 3 33%

13 - 16 4 25%

: : :

37 - 40 10 10%

: : :

7. Performance Evaluation

Table 4 shows the algebraic average of the mea­
surement results of Lawrence Livermore Laborato­
ry's 14 Kernels under the following 4 conditions.

normal condition
without vector processing linking
without vector instruction stacking
without vector processing linking

and vector instruction stacking

Table 4 Algebraic Average of the Measured
Results of Lawrence Livermore
Laboratory's 14 Kernels

condition CD ® Q) ©
MFLOPS 419.4 400.3 394.5 380.9

The following considerations are derived from
Table 4.

298

The effect of vector processing linking is
fJ)J®-1=3.6% (7)

The effect of vector instruction stacking is
@I® - 1 = 5.1 % (8)

The effect of combination of vector processing
linking and vector instruction stacking is

©I® - 1=10.1 % (9)

The effect of elementwise parallel processing
has not been measured. Therefore it is roughly
estimated as follows.
The following two assumptions are made.
First, performance improvement of the S-820 on

the S-810 is assumed to be attributed to reduc­
tion of machine cycle, elementwise parallel proc­
essing, vector processing linking, vector proc­
essing signaling and vector instruction stacking.

Second, the effect of vector processing signal­
ing is assumed to be negligible since the cases
where vector processing signaling applies are
somewhat limited.
Since machine cycle of the S-820 is 57.1% of

that of the S-810 and the algeblaic average of
14 Kernels on the S-810 is 137.9 MFLOPS, the ef­
fect of elementwise parallel processing is

380. 9 (@ in Table 4)
---------- x 0.571 - 1 = 58% (10)

p7.9

8. Conclusions

This paper presented high-speed vector instruc­
tion execution schemes of the Hitachi supercom­
puter S-820.
Parallelism between scalar and vector processing

, elementwise parallel processing and instruction
stacking have been introduced as these schemes.

In particular instruction stacking greatly im­
proves the performance of processing of short
vectors and increases the efficiency of element­
wise parallel processing.

By the performance measurement on Lawt'.ence
Livermore Laboratory's 14 Kerri.els, vector proc­
essing linking (which enhances parallelism bet­
ween scalar and vector processing), vector in­
struction stacking and elementwise parallel
processing improve the overall performance by
3.6%, 5.1% and 58% respectively (, where the ef­
fect of elementwise parallel processing is esti­
mated value).

References

[l] T.Odaka, S.Nagashima, S.Kawabe,
"Hitachi Supercomputer S-810 array
processor system."

SUPERCOMPUTERS, Class VI Systems,
Hardware and Software, S.Fernbach (Editor),
Elsevier Science Publishers B.V.,
pp.113-136, 1986

CHARACTERIZATION OF MEMORY CONFLICT LOADING
ONTHECRAY-2

D. A. Calahan

Dept. of Electrical Engineering & Computer Science

University of Michigan

Ann Arbor, MI, 48109

Abstract -- Empirically-derived models are constructed of the shared­
memory accessing delays associated with the dynamic-memory CRAY-2.

Introduction

Although memory accessing studies of conflict delays have been carried out
for the CRAY X-MP [1][2][3][4], the introduction of the slow massive
dynamic memory of the CRA Y-2 (abbr. C-2) - producing typical algorithm
delays in the range of 20-40% - has emphasized the need for further analysis
of this phenomenon.

The origin of this conflict problem is principally not collisions along
multiple memory paths as studied in the 1970s [5], but rather from the
bank reservation time (Tbr). i.e., the time for a chip to recover from an
access. Although its effect can be lessened by memory reorganization, the
qualitative effects of a large Tbr can be compensated principally by
increasing the number of banks, which is limited by space and hardware
considerations with fast clock periods.

Once a memory technology is proposed, then the principal question is the
number of processors a given number of banks can support.
Unfortunately, little insight is offered by current literature on the critical
load parameters to be accommodated. There is, for example, no descriptor
such as "hit-ratio" common in cache memory design.

The C-2 common memory organizationa is not as amenable to
mathematical analysis (or even simulation) as that of the CRAY X-MP, in
part because the C-2 contains a variety of buffering and bank-enhancement
techniques ("pseudo-banking") to compensate for the small number of
banks relative to T br· Consequently, this paper proposes load parameters
derived from measurements made on a dedicated C-2 1- a "black-box"
approach - and develops related mathematical and graphical models.

Experimental Model

The experiments to be reported in this report are based on use of a dedicated
C-2. The four processors are conceptually divided into one processor
executing a ~ £Qfill instrumented to measure delays and 0-3 active

Figure 1. Experimental model

TEST CODE

a See reference [6] for a partial description.

299

processors executing a l2ild ~(Figure 1); load processors are selectively
rendered inactive by running a no-access code. The following experiments
involve selection of test and load codes which are intended give insight into
factors which influence the effects of load codes on a test code.

Model Parameter Selection:
The Scalaitvector Loading Anomaly

It has been noted in measurement of conflict-induced performance
degradation that vectorized codes incurred inexplicably large delays relative
to scalar codes with a similar total number of memory accesses. Table 1
gives illustrative percent delays incurred in a test code when identical load
codes are run on three processors. Both a scalar and vector load code were
run against four representative test codes. The table graphically shows
that, although a scalar test code is marginally impacted by another scalar
load, the same scalar load produces large degradations in a vector test code
similar to that produced by a high-access-rate matrix multiply vector load.
That is, a low-access scalar code presents a large ~ load to vector
codes running in other processors.

Table 1. Algorithm delay(%) of test codes. All codes are Fortran.
Run on NAS C-2 on 5/10/86.

Load Codes

Scalar (SORT) Vector (MXM)
'Test Codes (Matrix multiply)

Scalar

GATHER 2.6% 18.3%

SORT 3.2% 26.3%

Vector

~
FLUIDS KERN. 32.0% 34.7%

UNROLLED M*V 73.1% 85.6%

Measurement Probes

To develop a measurement standard not dependent on accessing peculiarities
of an application code, the accessing delay will be measured directly in two
test codes which perform scalar and vector accesses only. These will be
termed "probes", because their purpose will be to illuminate the
discrepancies noted from Table 1.

These probes will be calibrated by measuring access delays on a dedicated
C-2 under a variety of loads with known key parameter values. As a result,
an equation for each probe will be developed in terms of these parameters.
Measurements with these probes can then be inverted to find the parameters
of an unknown load.

Matltematjc;a! Model of Probes

With Table l as a guide, the parameters chosen to represent the load are
1. the average startup rate (Rs) of accesses from all loads

(startups/cp), and
2. the average rate <Ra) of accesses from all load (accesses/cp).

For a vector access with length VL, Ra = Rs *VL. The dependence on Rs
represents the influence of accessing irregularity introduced by scalars and
short vectors; the effect of memory traffic of ~ origin is given by
dependence on Ra.

The access delay (D) measured in the probe is defined as the extra time in
cps either (I) to secure an scalar element in a register for the scalar probe or
(2) to clear the memory path after a vector access in the vector probe. It is
to be represented in a N-variable Taylor's series truncated after the Mth
order, viz, with variables Ra and Rs and M=3

D = a1 + a2Ra + a3Rs + 34RaRs + a5Ra2 + 36Rs2 + a1Ra2Rs

+ a8RaRs2 + 89Ra3 +a IoRs3 (1)

The delays for the scalar and vector test probes will be indicated Dps and
Dpv• respectively.

Memory Saturation

The limiting rate at which accesses can be made occurs when all memory
banks are continuously reserved due to Tbr· If the load accessing rate is
Ra• the test code accessing rate is Rtca , and the number of banks is Nb•
then define the memory saturation fraction as

~I

The proximity of Fsat to unity will be a measure of the load intensity.

Scalar Probe

Calibration

(2)

(3)

In the scalar probe, a read is performed whenever the previous scalar read is
secured in a register - a high but representative rate for scalar codes.
Successive reads are one address apart to avoid self-conflicts. Average delays
in five groups of 4000 reads are recorded (20000 total); these group
averages are scanned for consistency and a resulting overall average
determined.

To calibrate the probe, the load codes are chosen to contain only unit-stride
vector accesses, but these are performed at selectable no-load rates. To
compensate for the regularity of the scalar test code, the load codes are
chosen to have irregular accessing, viz,

(I) vector lengths are chosen uniformly random over 13 selected
ranges given by VLmin = { l,2,4,8,16,32,64,1,8,16,24,1,4} and VLmax =
(I,2,4,8,16,32,64,63,56,48,40,15,12}, yielding the average load vector
length vi= {l,2,4,8,16,32,64,32,32,32,32,8,8}; the latter six vis test the
use of the mean vector length as a load descriptor irrespective of the
standard deviation of vector lengths;

(2) the addresses of the first access of each vector are uniformly
randomly distributed across 256 banks, to accommodate the branch­
doubling effects of pseudo-banking in extending 128 physical banks;

(3) the average no-load startup rate of load vectors are identical for
all active load processors during a single experiment, but are varied at six
selectable rates between experiments.
The thirteen vis and six startup rates yield 78 experiments. In addition, it
was noted that the accessing rates of the load codes are slowed by conflicts;
the load codes are consequently themselves instrumented to measure their
~ average accessing rates (another 78 experiments). These measured
loaded average startup rates will be denoted rs; the averaged measured values_
for Ra are denoted ra and determined from ra = r8*vl. All experiments are

perfonned automatically by multitasking. Approximately three minutes of
elapsed time are required to carry out the 156 experiments on the C-2.

An elementary requirement of the calibration process is that the loads be
chosen so that the delays are in the range of those of daytime loads. In
these 78 tests, the average measured probe delay was 28cp, whereas a
typical daytime delays on the NAS 80-nsec system is 35cp.

Onler=l

Order=2

Onler=l

Onler=2

Onler=3

Table 2. Results of least squares fitting of probe data.
80-nsec dynamic C-2 memory (NAS)

(a) Scalar probe

#of Correl. RMS error/
terms Coefficient ave. value

rs 2 .053 66.5%

ra 2 .9981 3.45%

rs.ra 3 .9987 3.43%

rs 3 .831 34.8%
ra 3 .9992 2.73%

rs.ra 6 .9992 2.63%

(b) Vector probe

#of Correl. RMS error/
terms Coefficient ave. value

rs 2 .. 799 36.7%
ra 2 .564 50.4%

rs.ra 3 .967 15.6%

rs 3 .. 831 34.0%

ra 3 .567 50.4%

rs.ra 6 .992 7.60%

rs 4 .833 33.7%
ra 4 .567 50.4%

rs.ra IO .993 7.19%

The measured data was fitted in the least squares sense with the expression
of Eq. (!),using only rs, only ra, and then both rs and ra as variables. The
order of fit was also appropriately varied (see discussion of vector probe
fitting). The results of curve fitting are shown in Table 2(a), with the linear
fit in ra only chosen (bold type). The resulting linear model has the form

300

Dps = 1.61 + 6.59 ra (4)

This expression invites the following observations.
(1) ~parameters. The fact that a good fit - as indicated by the

correlation coefficient and the RMS error - is achieved with a function of
only ra in spite of the above variety of loading conditions supports the
intuitive notion that access delays in scalar reads are explicit functions
only of total memory traffic and not of load vector lengths or the frequency
of vector startups. That is, 64 scalar accesses produce the same loading to
scalar reads as a single 64-length vector access; otherwise, Dps would be a
function ofr s·

(2) ~ .tm:m.. The constant term of represents the effects of
memory refresh on scalar reads.

(3) Li®3f l!:lln coefficient. The coefficient of r a is a succinct direct
measure of the effective access delay caused by loading. Unfortunately,
measurements on other C-2 memories [7] show that these coefficients are
not obviously relatable to Tbr• as might be expected.

Use of the Scalar Probe

Since the scalar probe measures only ra, it becomes a convenient
measurement of total memory accessing. Toward this goal, measurements
were made of the NAS 80-nsec C-2 during a daytime load by averaging S
million scalar probe accesses. The following estimate of total memory
accessing was obtained, using Eq. (4).

Dps = 5.2 cp ---> ra = .544 accesses/cp

Below, ra will be used below to determine a complete memory load
characterization.

Vector Probe

Calibration

The vector probe consists of reading 64-length unit-stride vectors initiated
at successive addresses 64 banks apart so as to scan all 256 pseudo-memory
banks in four reads. In the vector test code, each vector read is initiated
whenever the memory path becomes available, a maximum rate
representative of many vector codes for which the single memory path is a
data flow bottleneck. The same selection of loads are used as in the scalar
probe calibration above (156 experiments total). The average probe delay
measured in these calibration runs is 4.7 cp, close to a typical measured
daytime value of 5 cp.

l&ast-squares fitting and modeling

The results of fitting equations to the vector read probe data are shown in
Table 2(b). It was decided to choose the second order fit Dpv in bQ1h r a and
rs (bold type) because

(1) fits in only ra or only rs of any order yielded unacceptable
RMS error, and

(2) in choosing between first, second, and third order fits
involving both ra and rs, the second order fit produced by far the greater
improvement from lower orders.

It should be noted that, although higher-order approximations are
necessarily better fits for the measured data, they often suffer from higher
volatility over the entire range of fitting and offer less insight in
extrapolations beyond the range of measurement.

A graphical model

The leasts squares fit corresponding to the choice in Table 2(b) is

Dpv = 3.34 - 6.23ra + 418.rs +8.22ra2 + 467.rsra - 691.rs2 (6)

The constant term (3.34 cp) represents the effects of memory refresh; this
agrees with no-load measurement.

Contour representations of Dpv are shown in Figure 2. Since ra=vl*rs,
constant-vi lines can be drawn radially through the origin; they are shown
for vl=l, 8, and 64. This presentation invites the following comments.

(a) It is clear that the contour curvature increases as vi decreases,
correlating with previous observations concerning the degrading effects of
scalars.

(b) In the region denoted "heavy vector load", the ra cannot be
increased by increasing no-load accessing rate, indicating a saturated
condition. Eq. (2) yields Fsat = .75, using Nb= 128.

(c) With preselected no-load startup rates, a maximum delay of 69cp
is produced when vl=8, represented by the radial line shown. This
combines the worst conditions of high vector startup rate (rs) and high total
memory activity (ra), and shows that short vectors rather than scalars can
be the most destructive of performance.

It is felt that Figure 2 represents the principle feature of this load
characterization, namely, the ability to succinctly depict an accurate
nonlinear delay model dependent on only two parameters (ra and rs), with a
third parameter (vi) easily represented and defining the limits of model
validity.

301

Figure 2. Contour representation of Dpv
(no measurements in shaded areas)

Moderate scalar load
(Fsat = .23)

Gather/scatter accessing

Maximum delay
(Fsat = .43)

Super-scalar oerf orrnance

Heavy vector load
(Fsat = .75)

The increasing nonlinearity of the contours of Figure 2 in the scalar region
invites more tests to investigate the limitations of the model in this
region. Accordingly, the three load processors executed gather/scatter
vector operations with VL=l,2,4,8, and 16, to produce a series of scalar
experiments with .11 $. rs=ra $. .32 and 45 $. Dpv $. 110 cp. (Note that
the gather/scatter proceeds at a maximum rate of .25 accesses/cp/processor
on the C-2). To evaluate the error of the nonlinear model of Eq. (6), the
latter was specialized to the scalar case by setting ra=rs, yielding

Dps = 3.34 +412.ra - 215.ra2 (7)

For these S points, an error ratio (RMS error/average value) = 6.4% was
achieved, in comparison with the ratio of 7.6% of Table 2(b). Thus, the
model ofEq. (6) appears quite good extended along the vl=l line of Figure
2. It must be pointed out that for VL=32 and 64, the group averages read
from the probe became erratic, possibly indicating a surging under intense
memory loading.

Non-unit-stride accessing

All of the load accessing reported above has involved non-unit-stride
vectors. It is felt, however, that typically 10-20% of site accessing is non­
unit-stride, principally due to complex arithmetic. To indicate the effects
of such accessing, a series of tests were made with 3-processor loads of
strides ranging from 1 to 127. Figure 3 shows selective resulting average
delays measured by the vector test probe; they are seen to range to 277cp,
an astounding delay for a 64-length access. The explanation is likely that
successive accesses have the same effect as random scalar accesses, such as
occur in the above gather/scatter; however, this vector access proceeds at
full rate, unlike gather/scatters on the C-2. The largest average delay
observed has been 284 cp for a stride of 75. This indicates the possibility
of stride being a dominant load parameter under certain conditions, thus
establishing a limit on a model involving only Ta and rs. As the latter
model is refined, it may be possible to add the average load stride as a third
parameter. The resulting 3-D contours could offer insight similar to Figure
2 concerning design criticality to a variety of loads.

Figure 3. Delays of vector probe with non-unit-stride loads

300

~ 200

~
r-1 8 100

277 cp

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Stride

Complete Site Memorv Load Modeling: The Inverse Problem

In summary of the above models, identification of the memory as 80-nsec
dynamic (the C-2 supports two other memory technologies) establishes a
set of eight coefficients of Dps(ra) and Dpv(ra,rs)· Knowledge of the load
rate parameters ra and rs then permits an estimate of the probe delay, i.e.,

{ ra, rs) ===> { Dps• Dpv)
It is also clear that the simple functional forms of Dps and Dpv permits
solution of the inverse problem, i.e .•

{ ra, rs)<== { Dps• Dpv)
This raises the prospect of being able to infer both load rate parameters of a
site from execution of the two probes. Specifically, Figure 4 shows that r a
is derived from measurement of Dps and use ofEq. (4); rs is then found
from Dpv• ra, and Eq. (6) by solving a quadratic equation.

Figure 4. Modeling from site measurement probes

R
s

... -- ... »

This process can be viewed as a potential software performance monitoring
tool, in lieu of monitoring hardware absent in the C-2. For example,
these probes were run with a daytime load on the 80-nsec NAS C-2
memory, obtaining ra = .491 from Eq.(4), rs= .083 from Eq. (6), and vi=
rJrs = 5.56. The relatively low average load vector length likely occurs
because (1) both (scalar) addressing data accesses and floating-point~data
accesses are counted in this measure, (2) the above model does not include
non-unit-stride accesses, which would have a tendency to appear partlly as
scalars, and (3) although the average model error has been determinl:d in
Table 2, the error in computing the model inverse has not. Thus, this
calculation should be regarded as illustrative at the time of this writing.

302

Conclusions

The above offers a mixture of formal and anecdotal modeling observations,
representing the state of information gleaned from an initial series of
dedicated tests. As this modeling process continues and all the major load
parameters Me identified, it may be possible to relate them both to (1)
design parameters using simulation, and (2) application code performance
The latter, however, will require development of a feedback model allowing
the determination of loaded response from an unloaded accessing parameter
characterization; this in turn necessitates a method for characterizing
application code sensitivity to access delays. In summary, this effort is the
first step - parameter identification - in a much longer research study.

Acknowledgements

The programming assistance of Milind Pandit is acknowledged. This
research was supported by the Research Institute for Advanced Computer
Science and the NAS Projects Office at Ames Research Center, and by the
Air Force Office of Scientific Research under Grant AF 84-0096. Dedicated
CRA Y-2 time was supplied by NAS and the Air Poree Weapons
Laboratory, Albuquerque.

References

[l] Cheung, T. and Smith, J.E., A Simulation Study of the CRAY X-MP
Memory System, Trans. IEEE, vol. C-35, (July 1986) pp. 613-622.

[2] Calahan, D.A., An Analysis and Simulation of the CRAY X-MP
Memory System, Proc. First Intl. Conf. on Supercomputing Systems, St.
Petersburg, FL, (December 1985) pp. 568-574.

[3] Oed, W., and Lange, 0. Modelling, Measurement, and Simulation of
Memory Interference in the CRAY X-MP, Parallel Computing, vol 3, no.
4 (October 1986) pp. 343-358.

[4] Calahan, D.A., An Analysis of Vector Startup Access Delays, Trans.
IEEE on Computers, in print.

[5] Kuck, D.J., The Structure of Computers and Computations, vol.
!,Wiley (1978).

[6] Bailey, D.H., Vector Computer Memory Bank Contention, Trans.
IEEE , Vol. C-36, No. 3 (March 1987) pp. 293-298.

[7] Calahan, D.A., "Measurements on the C-2 Memory System,"
Technical report in progress.

The Symmetry Multiprocessor System

Tom Lovett
Shreekant Thakkar

Sequent Computer Systems
15450 SW Koll Parkway

Beaverton, Oregon

Abstract

The Symmetry Series [Gif87] is a bus-based, shared­
memory multiprocessor system which can contain from
two to thirty 32-bit microprocessors with a total perfor­
mance of around 100 MIPS. Each processor subsystem
contains an Intel 80386/80387 microprocessor/floating
point unit, optional Weitek 1167 floating point accelerator,
and private cache. The system features a 53 Mbyte/sec
pipelined system bus, up to 240 Mbytes of main memory,
and a diagnostic and console processor. The cache
hardware supports two different cache coherence policies:
write-through and copyback. Symmetry represents one of
the first shared-memory bus-based multiprocessor systems
to use both write-through and copyback protocol with split
transaction system bus. The performance of the two cache
coherence policies has been measured and is compared
here for various benchmarks and applications.

1. Introduction

The performance of bus-based shared-memory mul­
tiprocessors is limited by the bandwidth supplied by the
bus and memory subsystems, and by the demands made on
them by each processor subsystem. Typically, such mul­
tiprocessor systems use local caches to reduce a
processor's demand on the bus. The use of multiple
caches on a common bus causes the cache coherence
problem. Many different solutions have been proposed to
solve this problem [ArB86] with a wide range of cost -and
performance tradeoffs. The Balance multiprocessor sys­
tem [TGF88) used write-through caches per processor
[MaE84] to reduce the demand on the bus. Our studies
[Tha87j showed that many writes generated by each proces­
sor in a bus-based shared-memory multiprocessor can be a
limitation in performance when increasing the number and
speed of the individual processors. Thus this cache policy
was a problem in the design of Symmetry whose goal was
to have 4-5 times the performance of Balance. Another
design requirement of the Symmetry system was that it be
_an extension of the Balance system and that it remain com­
patible with the Balance I/O controllers. In addition, the
Symmetry boards had to function when installed in Bal­
ance systems with Balance memories. This requirement
led to the implementation of two different cache policies,
one write-through and the other copyback, the choice of
which depended on the hardware environment. Copyback
caches have been shown to increase performance of a sys­
tem by reducing the writes to the memory in a uniproces­
sor environment [AKC86). Embedded hardware now
offered us the ability to measure the performance of the
system with the two different caching policies.

303

First, we review some of the protocols that have been
described to solve the cache coherence problem. Next we
describe how the Balance architecture was extended for
the Symmetry Series. Finally, we describe performance of
the two cache coherence schemes using bus utilization as a
metric.

2. Multiprocessor Cache Protocols For Bus Based Sys­
tems

The use of multiple private caches on a bus causes
the cache coherence problem; a write to main memory
from a processor or input/output (IO) device must be
reflected into the contents of all caches that reside on the
bus. Many different cache protocols have been developed
to reduce a processor's bus requirements while solving the
cache coherence problem.

The simplest approach involves the use of a write­
through cache. In a write-through cache each cache block
is tagged as either VALID or INVALID. On a read hit
the data is returned to the processor from the cache,
without any bus traffic required. On a read miss the block
containing the requested data is read from main memory
and installed into the cache and marked VALID. The
data is then passed to the processor. All writes cause the
data being written to be passed over the system bus into
main memory. If the block is present in the cache the
cached copy is also modified. To maintain coherence in a
bus-based multiple cache system all caches watch the bus
for writes (thus called snoopy caches.). When a cache
detects a write on the bus to a block marked VALID, the
block is simply invalidated. The next access to that block
results in a miss and the modified data is retrieved from
main memory.

Since all writes are passed directly to main memory, a
write-through cache does not reduce write traffic on the
shared bus. This can be tolerated in systems where the
bandwidth required by an individual processor is a small
fraction of the bandwidth available on the bus as observed
on Balance systems [Tha87]. As the individual processors
get faster, the write-through protocol will consume too
much bus bandwidth to support a moderate numbers of
processors.

Copyback caches do not send all write traffic through
to main memory. The cached copy is written locally, if
present, and the modified data is not written back to main
memory until the cache block is replaced. Copyback
caches have the potential for removing much of the write
traffic from the bus in addition to the read traffic, but at
some expense in terms of complexity. Copyback caches
have been shown to give at least 30% increase in perfor­
mance over write through caches [AKC86]. This suggests

that multiple writes are done to a block before it is
replaced. Thus copyback caches represent an attractive
choice for bus-based multiprocessor system because they
remove these writes from the bus.

In a copyback cache there are at least three states:
INVALID, VALID, and MODIFIED, where MODI­
FIED indicates that the block has been written locally, but
main memory has not been updated. When a MODIFIED
block is replaced it must be copied-back to main memory.
Reads are handled as they are in write-through caches.
Most copyback protocols use write allocation, so that write
misses cause a block to be allocated in the cache and the
data to be written into the newly-installed block. A write­
miss is turned into a read-miss on the bus. Write hits
cause the data to be written directly into the cache block,
leaving the block MODIFIED, and generating no bus
traffic.

Several different protocols have been proposed for
maintaining coherency in multiple cache copyback systems
[ArB86]. Most of these protocols solve the coherence
problem by allowing a MODIFIED block to exist in only
one cache at a time. Before a write can occur in a cache
the cache must have ownership of the block it wants to
modify. This means that the cache must have the only
valid cached copy of that data in the system. A write miss
at the cache requires a read on the bus to acquire the data
and ownership of the block. Only in the case where the
block is already in the cache and known to exist in no
other cache is no bus activity required for a write. The
data is written back to the memory only when the modified
data needs to be replaced to make room for new data.
The Berkeley [KEW85] and Illinios [PaP84] protocols are
based on the ownership principal. They use write invalida­
tion scheme to invalidate SHARED copies in other caches
before a write is allowed to proceed in a cache. Thus
these schemes allow multiple readers but only a single
writer. Heavy active write sharing can degrade the perfor­
mance of these systems because the blocks of data must be
shuttled back and forth between caches sharing this data.
Results from our studies suggest that active write sharing is
almost insignificant in the parallel applications we ran on
the Balance system [Tha87].

The Dragon [McC85] and Firefly [ThS87] protocols
allow MODIFIED blocks to be held in multiple caches,
but require all writes to these shared blocks to be broad­
cast across the bus (ie. uses write broadcast as opposed to
write invalidate). A SHARED state is usually added to
distinguish between unmodified blocks that are privately
held and those that may exist in other caches. This allows
writes to non-SHARED blocks to proceed without gen­
erating any bus traffic. These schemes work better when
there is significant amount of active write sharing in the
applications since they prevent shuttling of blocks between
caches.

In all of these schemes caches that own MODIFIED
blocks must watch the bus for accesses to those blocks and
ensure that the response reflects the modifications. There
are two basic approaches for this. Either the cache
responds to the access itself, or it holds up the access,

writes the modified data to memory, and then allows the
memory to respond.

304

Caches must also watch the bus for accesses to
blocks marked PRIVATE and SHARED and take actions
appropriately. Bus transactions may cause the state of a
block to change from PRIVATE to SHARED, or cause
the state to change to INVALID.

3. Design Criteria for Symmetry

In 1984 Sequent introduced the Balance Series of
multiprocessors, based on a shared-memory architecture
and a high speed bus interconnect. The bus contains a 32
bit multiplexed address and data path and uses a split
response protocol. The split response protocol releases
the bus between a read request and its corresponding
response. This allows the bus to be used for other transac­
tions during an otherwise idle period. The bus protocol
defines three pipes, a read pipe, a write pipe, and an IO
pipe, which allows memory accesses to proceed indepen­
dent of IO accesses. It also allows reads to proceed
independent of write accesses, except that requests to an
individual memory subsystem must be serviced by that sub­
system in order of receipt. The bus protocol limits the
outstanding requests to 3 read requests, 2 write requests
and 1 IO request. This is done in a distributed manner,
with each requester maintaining a current pipe count. If
the count shows that the required pipe is full no new
requests will be issued. Responses are always returned in
the order of the requests, obviating the need for a reques­
ter tag. Requesters make a note of the current pipe count
when their request is placed on the bus and count off the
responses as they are returned. The bus, memory and pro­
cessors all run synchronously at 10Mhz. The bus and
memory subsystems support a sustained bandwidth of 26.7
Mbytes/sec.

Bus cycles are identified by a 5 bit Cycle Type field
which is placed on the bus along with the address or data.
The cycle type field identifies the current cycle as an
address or data cycle, a read or write operation, and, for
address cycles, the size of the transaction. Transactions
from one to sixteen bytes are supported.

Bus arbitration is handled by a central arbiter. Pro­
cessor priority is assigned on a rotating round robin basis
with the processor which last used the bus assigned the
lowest priority. When a processor receives a bus grant but
cannot use the bus because the desired pipe is full, the
grant is held until the pipe becomes free. This provides
each processor fair access to the bus.

The cache is an 8 Kbyte, 2 way set associative cache
[MaE84]. It uses a write-through protocol with bus watch­
ing to maintain coherency. The bus watching is imple­
mented with a second set of tags so that bus watching look­
ups can proceed in parallel with processor cache accesses.
Since the processor runs synchronous to the bus, maintain­
ing two sets of tags is simple. Bus watching invalidations
occur only on writes. Since write addresses are always fol­
lowed by at least one write data cycle, the processor tags
can be updated during that cycle, stealing the cycle from
the processor.

This design was able to support thirty 0.7 MIP proces­
sors in many useful applications, with a wide range of
benchmarks showing up to 28 effective processors. There
were, however, several applications where the write traffic

generated by 30 processors was enough to swamp the bus.
The size of the cache was also a limitation for certain float­
ing point applications [Tha87]. As we were contemplating
implementing the system with the latest generation of
microprocessors it was apparent that supporting thirty 3-4
MIP processors would require a different approach.

4. Symmetry Series

In 1986 Sequent began the design of a Symmetry
Series multiprocessor system based on the Intel 80386
microprocessor. A major goal was to be able to support
as many processors as the Balance Series while maintain­
ing compatibility with the Balance peripheral controllers.
Since the new processor had 4-5 times the performance of
the Balance processor we needed a 4-5 fold increase in the
ratio of available bandwidth to processor demand, without
drastically altering the bus subsystem. The bus bandwidth
was increased by doubling the width of the datapath to 64
bits. This doubles the sustainable bandwidth to 53.4
Mbytes/sec.

To reduce the demand placed on the bus by the pro­
cessors we increased the cache size to 64 Kbytes per pro­
cessor, and implemented a copyback protocol to remove
write traffic from the bus. The protocol is similar to the
Illinois cache coherency scheme [PaP84]. It has been
shown that the performance of the Illinois scheme is as
good as the best of the copyback schemes in systems with
moderate sharing. Since our studies showed only minimal
active write sharing a more complex scheme was not
necessary. The Illinois scheme has been shown to have
superior performance in handling PRIVATE blocks when
compared to other coherence protocols [ArB86]. Our stu­
dies suggested that this was a more important considera­
tion.

Two additional cycle type bits were added to the bus
to extend the bus protocol to support copyback cache
coherency scheme. The first bit is used to identify transac­
tions using the extended 64 bit width of the bus. The
second bit allows an address to be tagged with whether or
not it should cause an invalidation. This can be used with
a read address if a cache needs to insure that it holds the
only copy of a block (ie. gain ownership).

5. Symmetry Cache and Bus Protocols

The Symmetry cache and bus protocols are related to
each other to support cache coherency in the system. The
Symmetry cache protocol [Gif87] makes use of four cache
states: INVALID, PRIVATE, SHARED, and MODI­
FIED.

These states are defined as follows:

INVALID - Block is not currently valid in the cache.

PRIVATE - Block has been read and does not exist
in any other cache in the system.

SHARED - Block has been read and may exist in
another cache.

MODIFIED - Block has been modified and does not
exist in any other cache in the system.

305

The System Bus in the Balance multiprocessor sup­
ported the following cycles to support the write-through
protocol:

RA - Read Address cycle
W Ai - Write Address with Invalidate cycle
RDF/RDL - Read data first and last cycles
WDF/WDL - Write data first and last cycle.

The System Bus protocol was extended in Symmetry to
support the copyback cache coherency scheme by adding
the following cycles:

RAi - Read Address with Invalidate
WA - Write Address
IA - Invalidate Address Cycle
In addition, two status lines were added to the bus to

support the protocol. The first, SHARED, indicates that
a RA cycle on the hit a block that exists in another cache.
This lets a requester know whether to install a new block
as PRIVATE or SHARED. The second, OWNED, indi­
cates that a RA or RAI cycle on the bus hit a block that is
held MODIFIED by another cache. This lets the memory
subsystems know that a cache will respond to the request.

The scheme, in general, works as follows:

READ_HIT No bus activity is required and requested
data is supplied to the processor.

READ_MISS An RA type cycle is issued on the bus. If
any cache has a copy of the block of data
in PRIVATE or SHARED state it
changes its state to SHARED, and asserts
the SHARED line on the backplane. If
any cache has the data in MODIFIED
state it asserts OWNED, responds to the
request and changes its local state to
INVALID. The state could have been
changed to SHARED instead of
INV AUD but our implementation does
not allow this. The memory subsystem
observes this transaction, noting the asser­
tion of the OWNED signal, and takes a
copy of the data as it is being passed from
one cache to the next (called implied copy­
back operation). This allows the cache to
relinquish ownership. If no cache signals
ownership then the memory responds to
the request with its copy of the requested
block. The receiving processor sets his
tags to PRIVATE, if SHARED was not
asserted, or SHARED otherwise.

WRITE_IHT If the block is in MODIFIED state then
this implies that this cache already owns
the block and can complete the write.
No bus activity is necessary. If the block
is in the PRIVATE state, then the cache
changes the state to MODIFIED and
completes the write. If the block is in the
SHARED state then the cache issues an

IA cycle on the bus, causing all other
caches to invalidate their copies (ie. write
invalidate operation), and changes its state
to MODIFIED.

WRITE_MISS An RAi cycle is issued on the bus to
obtain the current copy of the block and
to signal all other caches to invalidate
their copy. If any cache has the copy of
the block in MODIFIED state then it
responds to the request. Any cache which
holds the block in PRIVATE or
SHARED state invalidates its copy. If no
cache holds the block MODIFIED then
memory will respond to the request. The
receiving cache installs the block as
MODIFIED and completes the write.

I/O devices do not participate in the caching protocol
and therefore can issue writes to blocks that caches hold
MODIFIED. These WAi cycles are absorbed by the
caches which own the block being written.

6. Implementation

The Symmetry system (Figure 1) consists of proces­
sor subsystems, memory subsystem, disk controller(s),
SCED(s), and Multibus adapter(s). The processor sub­
system and memory subsystems are implemented to sup­
port the new copyback and bus protocols.

A processor subsystem (Figure 2) consists of an Intel
80386/80387 processor and floating point unit pair, an
optional Weitek floating point subsystem, Cache Memory
Controllers (CMCs), Bus Interface Controller (BIC) and
Bus Data Path (EDP) devices, System Link and Interrupt
Controller (SLIC) (BKT87], memory chips for cache
address and data fields, some address decoding logic and
bus transcievers. Two such systems are implemented per
board, and they are identical in all respects except they
share a BIC.

The cache coherency and bus protocols form the key
part of the Symmetry system and are implemented across
three VLSI devices: CMC, BIC and BDP. These devices
are all implemented in 1.2 micron CMOS technology; .the
CMC and BIC are implemented in gate arrays while the
BDP in standard cell array.

The CMC has two modes, master and slave, which
allow several of them to be cascaded to support set associ­
ative cache organization. In current release two CMCs are
used to support a 64K byte cache. The CMC is soft
configurable to vary block and transfer sizes and support a
variety of configurations. The CMC communicates to the
BIC when it needs access to the bus. It acts as an initiator
of requests when it needs to service cache misses and as a

responder to requests for accesses to blocks it holds
MODIFIED (owned accesses). Such owned request
addresses are queued inside the BDP. The BDP also
queues addresses from bus transactions which cause invali­
dates: The BDP generates owned and invalidate requests
to the CMC accordingly. The CMC is able to supply data
to the 80386 in pipeline mode with zero wait states on
cache hits.

306

The CMC has address, address tag and state tag
inputs to allow comparison of address tags and checking of
the state for each block of data. Two sets of tags are pro­
vided; processor side and bus side to allow concurrent
access. The CMC accesses the bus side tags to perform
bus-watching, when it needs to interrogate bus side state
tags or when it installs a block. The CMC interrogates the
bus side tags when it needs to differentiate between the
PRIVATE and SHARED states (Gif]. The distinction is
not maintained in the processor tags because of the
difficulty of atomically changing states across an asynchro­
nous boundary.

The BIC contains two channels which handle both ini­
tiator and responder functions. Each processor subsystem
on a board uses one of the channels. The memory subsys­
tems also makes use of the BIC but uses only the reponder
functions of one channel. The BIC contains logic to arbi­
trate between the channels, make requests onto the bus,
respond to owned and invalidate transactions, load/unload
the BDP queues and maintain the state of read, write and
IO pipes. The BIC supports the bus watching or snooping
function to maintain coherency across the system. Follow­
ing an address cycle on the bus, the BIC informs the CMC
of any necessary operations to perform on the bus-side
tags. The BIC also receives hit/miss information from the
CMC and uses this to load the appropriate BDP queues.

The BDP contains 5 queues, an OWNED REQUEST
address queue, an INVALIDATE address queue, a
READ RESPONSE data queue, a WRITE DATA queue,
and an OUTPUT DATA queue. The OWNED
REQUEST queue contains the addresses of cycles which
hit modified blocks in this processor's cache. The
INVALIDATE queue contains addresses which cause
cache blocks to be invalidated. Whenever the OWNED or
INVALIDATE queue is loaded an owned or invalidate
request is made to the CMC. The READ RESPONSE
queue holds the response of read requests generated by
this cache's misses. The WRITE DATA queue holds the
data associated with write addresses in the OWNED

REQUEST queue. The OUTPUT DAT A queue holds the
data associated with both owned read responses from the
cache, and write requests (ie. copybacks) from the cache.
Just like the CMC, both the BDP and the BIC are also
software configurable to handle different block and transfer
sizes.

As an example, a transaction involving a RAI cycle
on the bus is handled as follows. The cycle after the
address is on the bus, the address is used to search the bus
side tags. If a match is detected the state tags for the block
are changed to INVALID. In addition, the CMC reports
the result of the lookup to the BIC. The BIC uses the
result of the lookup to generate load strobes for the two
address input queues in the EDP. The BDP latches the
address while it is on the bus, and can load it into either
queue in the following cycle. If the state is PRIVATE or
SHARED the address is loaded into the INVALIDATE
queue. If the state is reported to be MODIFIED, the
address is loaded into the OWNED REQUEST queue
and, during the second cycle after the address, the BIC
will assert OWNED on the bus. The memory controller
recognizes the OWNED signal and aborts its processing of
the request. Once a queue is loaded the corresponding

queue empty flag is deasserted to inform the CMC that the
queue requires service. These owned or invalidate requests
to the CMC normally have higher priority than processor
requests. However, if the CMC has made a request to the
bus and is waiting for a response of its own it may ignore
the request. To avoid deadlock and maintain data integrity
the CMC will service the OWNED REQUEST queue if
and only if the request in the OWNED queue appeared on
the system bus before the request from this CMC. An
owned RAI is serviced by transferring the data from the
cache into the BDP output queue, and changing the
processsor-side state tags to INVALID. The CMC then
signals the BIC to respond to the request.

Invalidate address (IA) cycles are similarly handled
using the INVALIDATE queue in the BDP. If the opera­
tion is just an invalidate no data is transferred. The CMC
just changes the processor-side tags to INVALID and pops
the queue.

The SLIC on the Symmetry system is used for
configuring the system (setting up registers in the VLSI)
and for handling interrupts in the system. The gates used
by the kernel for mutual exclusion in the Balance system
are no longer used because of the faster transparent paral­
lel locks [Gif]. Unlike the Balance system both the kernel
and users use the same type of locks for mutual exclusion.

The memory subsystem can currently support up to
240 Mbytes of memory_on 6 controller/expansion pairs.
The controllers support two-way interleaving which allows
the subsystem to support the 53 Mbyte/sec bandwidth of
the bus. 'lhe BIC and BOP are also used on memory con-

Yolier to support the bus interface and data path functions.
The memory controller can respond to both wide and nar­
row transactions of from 1 to 16 bytes, and are fully com­
patible with the Balance environment.

The memory controllers perform two special func­
tions that are necessary to support the copyback protocol.
The first is the recognition of caches claiming ownership of
blocks. When a cache asserts OWNED in response to a
request on the bus, the memory must avoid responding to
the request. Often the controller is near completion of the
request before it recognizes ownership and must abort the
request. In cases where the controller was busy when the
request arrives it can merely discard the request from the
BDP's queue and continue with the following request.

The second function is the implied copyback opera­
tion. If an RA request for a full cache block is claimed as
owned by a cache the memory controller must watch for
the response from the cache and grab the data as it is
being passed over the bus. The data is written back into
memory so that the copy in main memory is up to date and
the cache can give up ownership. The BIC monitors the
bus for the OWNED signal and maintains a set of flags
that the controller logic examines as it pulls addresses out
of the BDP. In addition the BIC determines which read
response is associated with the owned RA and loads the
data into the BDP's queue.

7. Performance Monitoring

The performance of the Balance system was meas­
ured using a hardware monitor, DYNAPROBE [Com77],
which can measure different events for a given period.

307

The events can be setup using a logic patch board. This
proved capable but was severely limited by the number of
probe points, which is a .real limitation for a multiproces­
sor system. Thus, on Symmetry a decision was made to
incorporate the performance monitoring hooks into
hardware which can be accessed by special system
software. The hardware includes counters, masks and
multiplexing logic. The mask can be set and appropriate
events of interest selected before the counters are started.
The counters can be stopped and read by system software
via SLIC chip.

The types of events that can be measured include all
types of accesses to the CMC by the processor, accesses
from the bus to CMC (i.e owned and invalidate opera­
tions), and state changes. This allows us to detect the
accesses to shared blocks, etc. Other events that can be
measured include the different types of bus cycles and
other aspects of bus protocol. These features give us a
unique opportunity to study this architecture and its
behavior under different applications.

8. Performance

The performance of a multiprocessor needs to
observed in the following domains:

Single Thread Performance
Parallel Program Performance
Multi Stream Performance

8.1. Single Thread Performance

In figure 3 we show the performance of two small
integer benchmarks that measure the processor perfor­
mance across the Balance and different Symmetry
configurations. The table shows that the project goal of
increasing processor performance to 4-5 times that of a
Balance processor has been achieved. Figure 4 shows the
floating point performance of the Symmetry processor
relative to the Balance processor. Both single precision
and double prec1s1on performance has increased
significantly for linpack and whetstone benchmarks. The
narrow bus indicates a 32 bit bus while wide bus indicates
a 64 bit bus.

For small programs such as Dhrystone and Dhamp­
stone benchmarks, in write-through system, the cache size
and bus size has affect on performance. Increasing the
cache size to two sets (64K bytes) increases the perfor­
mance of these benchmarks by 5% and increasing the bus
width to 64 bits has 3% increase in performance. The
copyback system does not show such increases, increasing
the cache size and bus width had a small affect for these
programs (1 %). There is less bus activity for copyback
caches since these small program are now entirely running
out of the cache.

The 64K byte cache yielded a 99% hit-rate for several
integer and floating point benchmarks for both write­
through and copyback protocols. This is a significant
improvement over the Balance 8Kbyte cache which gave
95% hit-rate for integer benchmarks and 85% for floating­
point benchmarks [Tha87].

8.2. Parallel Program Performance

Several parallel benchmarks and applications were
run to observe the bus utilization of the Symmetry system
with write-through and copyback caches. The benchmark
and applications include:

Parallel Linpack Benchmark (LINP ACK)
2D Monte Carlo Simulation (STMC2D)
Butterfly Switch Simulator (SIM)
Ray Tracing (SMOKE)

The bus utilization shows (Figure 5) a significant
improvement for the Symmetry system with copyback
caches over that with write-through caches. The bus
approaches saturation much faster in a system with a
write-through cache and appears to reach a limit with
fewer than 16 processors. The reason for bus utilization
increasing rapidly in a such a system is the number of
writes. Active write sharing in parallel applications does
not seem to affect the bus utilization adversely since it is
insignificant (Figure 6). The IA/RAI cycles indicate shar­
ing on the bus, the RAI cycles reflect the writes to invalid
blocks, IA cycles reflect write to shared blocks. The copy­
back policy removes the most writes from the bus and thus
decreases the demand on the bus.

Note that all the results are from a system with a 64K
bytes, 2 set cache and wide bus in a 16MHz environment.
The benchmarks are not tuned and were run as presented
to us. There may be a potential to tune the algorithms and
increase their performance.

8.3. Multi Stream Performance

At present, the parallel applications represent explicit
attempts at using parallelism in speeding up an application.
However, as Sequent and other manufacturers of similar
multiprocessors have found, a great advantage can be
taken of natural parallelism in a multi-user timesharing
environment to deliver superior performance. The
processes are scheduled independently across the available
processors, thus providing a responsive and available
environment. There is little sharing between the proces­
sors, and hence little contention exists for resources. This
is reflected by both high cache hit-rate and low bus utiliza­
tion. Since the processes have longer time-slices than on a
uniprocessor the large cache provides a large hit-rates
(99%) because there are fewer context switches.

In such an environment the performance of the sys­
tem can be regarded as cumulative of the total number of
processors. One way to approximate multi stream perfor­
mance of a system to consider running n copies of a pro­
gram on an processor system. Figure 7 shows the roll-off
in runtime when running 12 copies of a suite of programs
on a 12 processor write-through system and 28 copies of
the same suite on a 28 processor copyback system. The
suite of programs includes several benchmarks (Dhry­
stones, Sieve, Linpack, Whetstone, Puzzle, Sort), an Nroff
application and some scientific applications (e.g, Butterfly,
Gauss, Barsim). The roll-off for most of the benchmarks
and programs starts occurring early in a write-through sys­
tem. A gentle roll-off occurs for only one program

308

(Butterfly) in a copyback system. The roll-offs in the
write-through systems are really associated with write
traffic generated on the bus. The Butterfly roll-off
improves with the use of memory interleaving (not shown).
Note that this is only an approximation of system perfor­
mance in such environment.

9. Conclusion

Symmetry represents one of the first bus-based
shared-memory multiprocessor to incorporate a copyback
cache with a split transaction bus. Embedded hardware
incorporates performance monitoring hooks to monitor
dynamic behavior of the system. The ability to switch
between write-through and copyback protocols has allowed
us to observe the behavior of the two protocols for several
parallel benchmarks and applications. Results show that a
copyback cache has allowed us to incorporate much faster
processors in a bus-based shared-memory multiprocessor.
Results confirm that there is little active write sharing in
parallel applications and justifies our choice for cache
coherency protocols.

Acknowledgements

We would like to mention Paul Gifford, Wayne
Downer, Bruce Gilbert, Harlan Courtney, and rest of the
folks involved in making of Symmetry. They also thank
Neal Wyse and Joe DiMartino for their contribution to
performance activity; and Eugene Brooks, Jack Dongara
and others for the applications and benchmarks.

(AKC86]

References

Alexander, C., Keshlear, W., Cooper, F. and
Briggs, F., "Cache Memory Performance in A
UNIX environment," SIGARCH NEWS, June
1986.

(ArB86] Archibald, J. and Baer, J. L., "Cache Coherence
Protocols: Evaluation Using a Multiprocessor
Simulation Model," TOCS, vol. 4, 4 (November
1986), , ACM.

[BKT87]Beck, B., Kasten, B. and Thakkar, S. S., "VLSI
Assist in Building a Multiprocessor , " Proceedings
of AP~OS-II, October 1987.

(Com77] Compten, N., Dynaprobe 7816 User Manual,
1977.

[Gif87] Gifford, P. R., "Symmetry: A Shared Memory
Multiprocessor with Copy-back Caches,"
Proceedings of ICCD87, October 1987.

(Gif] Gifford, P. R., "A Write-Back Cache Design for
Shared Memory Multiprocessors," To be
published, .

[KEW85]
Katz, R. H., Eggers, S. J., Wood, D. A.,
Perkins, C. L. and Sheldon, R. G.,
"Implementing a Cache Consistency Protocol,"
Proceedings of the !2th !SCA, 1985.

[MaE84] Mayberry, W. and Effland, G., "Cache Boosts
Multiprocessor Performance," Computer Design,
November 1984.

[McC85] McCreight, E. M., 'The Dragon
System," Proceedings of the NATO
Science Institute on Microarchitecture
Computers, 1985.

Computer
Advanced
of VLSI

[PaP84] Papmarcos, M. and Patel, J., "A low overhead
coherence solution for multiprocessors with
private cache memories.," Proceedings of 11th
ISCA, 1984, pp. 348-354.

[ThS87] Thacker, C. P. and Stewart, L. C., "Firefly: a
Multiprocessor Workstation," Proceedings of
APLOS II, 1987.

[Tha87] Thakkar, S. S., "A Performance Analysis Of A
Shared Memory Multiprocessor," Proceedings of
ICCD87, October 1987.

[TGF88] Thakkar, S. S., Gifford, P. R. and Fieland, G.
F., 'The Balance Multiprocessor System," IEEE
MICRO, February 1988.

Figure 2: The Processor Subsyster

Figure 3: Relative Integer Single Stream Performance

BAU\NCE SYMMETRY

SYSTEM NS32032 180386

10 MHz 16 MHz

Q!O£
WRITE·THRU WRITE·THRU COPtBAO<

8KBYTES 32KBYTES 32KBYTES 32KBYTES 64K BYTES

BUS NAP.PON NAP.ROW WIDE NAP.ROW WIDE

DHRYSTONE
1.0 2.84 3.04 4.75 4.79

.1.1

DHAMPSTONE 1.0 2.97 3.17 4.74

Figure 4: Relative Floating Point Single Stream Performance
(Narrow Bus)

BAlAl\CE SYMMETRY

SYSTEMS ~S32081 • 10 MHz 180387 • 16MHz WIETEK • 16MHz

WRITE·THRU !wRITE-THRU COPYBAa< jwRITE·THRU COPYBAa<

UNPACK (q 1 2.41 2.58 3.29 3.97

UNPACK (S 1 1.32 1.43 2.35 3.14

WHETD (D) 1 3.64 4.63 4.84 7.41

WHETS (S) 1 3.13 3.82 5.72 8. 76

Figure 1: Block Diagram of Symmetry System

MULTIUUS
Adoplat
Oo11rd(s)

2-.l<>
J2-bll CPUa

G-l~-----1.~~~~~ I

--~-= AJllptet

SCSI Dus

(S21Dnlr)

Figure 7: MultiStream Roll-Offs, Write-Thru vs Copyback System

ymmetry •X• ·Y·

309

SI"

UTILIZATIOH (Y.)

Figure 5: Bus Utilization for Parallel Applications

• t.•aa t.•t.•1aze.:i:zz ..
PROC-•O-

Figure 6: Different Bus Cycles For Sim & Simc2d

35
SiHC2D 18

38

25 - IA CYCLES

~ Ml1611 CYCLES

20
UIILJZATION (Y.) 5

IS

:~4

.... M16U CYCLES

, RDFi'RDL CYCLE!

...._ UA16W CYCLES

- VDFlllDL CYCLE!

l 2 1 G B " U tt & IB ~ ~ M U V
PROCESSORS

310

PROCESSORS

- ,, ... ,. r
eorv1N11CM

- IA CYCLES

...... RAl16W CYCL~

-*' M1611 CYCLES

, RDf/IUIL CYCLJ

..,.. UAUN CYCLES

- UDF/\IDL CVCL

Two Parallel Processing Aspects of
The CRAY Y-MP Computer System

Steve Reinhardt
Cray Research, Inc.

Mendota Heights, MN 55409

ABSTRACT

The CRAY Y-MP computer system is a paral­
lel processing supercomputer. The architecture of
the Y-MP is an evolutionary step from the CRAY
X-MP series of computers; in many ways, the Y­
MP is a "bigger X-MP". The Y-MP system pro­
vides eight CPUs compared to four for the X-MP.
On the Y-MP, the CPUs share 32 million words of
central memory, compared to a maximum of 16
million words on the X-MP. The clock period of
each CPU decreases from 8.5 nanoseconds on
recent X-MP models to 6.0 nanoseconds on the Y­
MP.

Many of the features of the X-MP which allow it to
run common programs fast seem to be features
which are particularly hard to scale to systems with
more CPUs. In particular, the design and imple­
mentation of the shared registers and multiple ports
from each CPU to the central memory require care
to preserve high performance as the number of
CPUs grows. We investigate how the central
memory responds to different levels of memory
traffic and how the shared register access times
affect the size of critical regions in common usage.
In short, we look at how well the X-MP architec­
ture scales from four processors to eight.

1. Introduction

This paper looks at the evolution of the CRA Y-1 to the
CRAY X-MP to the CRAY Y-MP to see how the architec­
tural decisions made during that evolution affect the parallel
processing capabilities of the Y-MP. We begin with a short
historical perspective and describe the areas of the CRAY Y­
MP computer system which are of particular importance to
parallel processing. Then we look at the central memory sys­
tem and how the X-MP and Y-MP respond to frequently
occurring memory access patterns. Next we see how the X­
MP and Y-MP shared register reference times affect the size
(time of execution) of multiprocessing synchronization, which
affects the size of critical sections of code which may be
profitably processed in parallel. The emphasis is on how the
X-MP/Y-MP architecture affects the ability of one program to
use the whole machine effectively.

2. The CRAY-1 and CRAY X-MP Computer Systems

The first CRAY-1 computer system was delivered in
1976.1 The central processing unit (CPU) is of register-to­
register type. The clock period is 12.5 nanoseconds. Address
registers are 24 bits wide and scalar registers are 64 bits wide.
No virtual memory support is provided. Central memory pro­
.vides one port to the CPU.

311

The CRAY X-MP represented the first move by Cray
Research into parallel processing and began a concentration on
parallel processing which continues today. The Cray approach
to parallel processing is to make the fastest general-purpose
scientific processor possible and then to put together as many
of those processors as possible. Architecturally this tends to be
an evolutionary, incremental ilpproach.

The basic CPU architecture of the CRAY X-MP is the
same as that of the CRAY -1. New features were three ports
to central memory and flexible chaining. The first CRAY X­
MP computer system (1982) contained two CPUs.2 When one­
and four-CPU models (1984) were introduced, hardware
gather/scatter was added. Multi-CPU models provide clusters
of shared registers, each of which includes a set of one-bit
semaphores and shared address and scalar registers. Early X­
MP models had a 9.5 nanosecond clock period; all models
produced since 1986 have a 8.5 nanosecond clock period.

3. The CRAY Y-MP Computer System

Each CPU of the CRAY Y-MP computer system is
nearly identical to that of the CRAY X-MP. (In fact, X-MP
binaries can be run in an X-MP compatibility mode.) To sup­
port larger address spaces, address registers on the Y-MP are
32 bits wide. The 8 CPUs run at 6.0 nanoseconds.

The central memory is 32 million words arranged in 256
banks. The banks are interleaved oi:J. the low-order bits of the
address; thus consecutively addressed words reside in separate
banks. Each word is 64 data bits plus 8 check bits for
SECDED. The bank cycle time is 5 clock periods (that is,
each bank can only be referenced every 5 clock periods).
Each CPU provides four ports to memory: two read ports, a
write port, and an I/O port. The two read ports and the write
port are under direct control of the CPU. The 1/0 port may
be in use independently of the state of the other three ports.

Block memory operations can use all three CPU ports simul­
taneously. Scalar memory operations wait until all block
transfers are quiet to ensure correct sequences between block
memory operations and scalar operations within a CPU.

A multiprocessing program on the CRAY Y-MP syn­
chronizes its CPUs via a set of shared registers (a cluster)
which includes 32 semaphore bits, eight 32-bit shared B (SB)
registers, and eight 64-bit shared T (ST) registers. The sema­
phore bits have atomic test-and-set, unconditional set, and
clear instructions. The SB and ST registers may be read and
written. Access to the SB and ST registers in a parallel pro­
gram must be controlled with the semaphores.

Physically, the Y-MP is a compact machine. The logic
chassis consists of 41 modules: 8 CPU modules, 32 memory
modules, and 1 clock module. Each module is 11" x 21.2" x
1.4". Each module lies flat. The clock module is on the bot­
tom, then 16 of the memory modules, the 8 CPU modules,
and the other 16 memory modules. The footprint of the main­
frame (including power supplies) is 79" long, 32" wide, and
the machine is 76" tall.

4. Parallel Processing Scalability

In parallel processing, one major distinguishing point
among machines is whether the CPUs share a central memory
or whether most of the system memory is local to the CPUs.
Shared-memory multiprocessors are generally considered
easier to program; private-memory multiprocessors are con­
sidered easier to scale.3 Because the X-MP and Y-MP are
shared-memory multiprocessors, we are very interested in sca­
lability of that type of machine. In the CRAY X-MP/Y-MP
line, the speed of two particular features is crucial to the paral­
lel processing ability of the machine. The central memory
must provide high bandwidth to all processors and minimize
the effects of contention. The shared register clusters must
synchronize CPUs quickly and allow fast communication with
low overhead.

4.1. Main Memory

The CRA Y-1 provides one port between the CPU and
memory. A program can slow down due to memory conflicts
because of IJO references or because the program strides
through memory and re-references banks before the bank cycle

The second algorithm (SDOT) is a FORTRAN code
which does 2N memory references for each element of the
resulting matrix; it is a 2-port code. Both VXS and SOOT
are Basic Linear Algebra Subroutines (BLAS) Level 1 rou­
tines in the LINP ACK naming scheme.7

The third algorithm (MXV) is a single FORTRAN loop
which calls the assembler-coded mxv library routine to multi­
ply a matrix times a vector. The mxv routine does N memory
references for each element of the resulting matrix; it is a 1-
port code. The mxv routine is a BLAS Level 2 LINP ACK
routine.

Table 1 has both megaflops per second (MFLOPS) and
speedup numbers for the above algorithms for a 1000x1000
matrix on the CRAY X-MP and CRAY Y-MP systems. For
this size problem, multiprocessing overheads and granularity
of work are not issues, and total performance is related pri­
marily to memory conflicts. MXV requires one port per clock
period and scales linearly, since its memory traffic requirement
is well within the bandwidth of the machine. SDOT scales
moderately well on an X-MP; the higher total memory
bandwidth of the Y-MP gives a better 4-CPU speedup on the
Y-MP than the X-MP. VXS requires the full memory
bandwidth (3 ports) of each CPU; on either machine speed­
ups are well below linear. Again, the Y-MP gives a better
speed-up for a given number of CPUs. (These runs were
made on the prototype hardware which at the time of these
tests allowed VXS to run on up to 7 processors. Also, at the
time of the tests, the clock period of the prototype was 6.33ns
rather than 6.0ns of the production systems.)

\ \fl)1J \ ()UV Wf.Y1'(?, l(e5
time has expired. A program which uses only stride-one
references will not have bank conflicts. The CRAY X-MP ®
and Y-MP provide three ports between each CPU and 'V I
memory. Memory banks are grouped into sections (both X- ,-----------c..nru ___ ;-.__cnri) ________ _
MP and Y-MP) and subsections (Y-MP only). In addition to
the possible memory conflicts in a CRAY-1, additional
conflicts may arise from two memory operations from the
same CPU competing with each other. In a multiple-processor
X-MP/Y-MP system, additional conflicts arise from separate
CPUs competing with each other.4 The CRAY Y-MP has no
architectural difference from the CRAY X-MP in terms of
CPU to memory connections, so the differences in memory
contention should be attributable to the different number of
processors, number of banks, bank cycle times, number of
sections, etc.

To illustrate the effects of memory contention, we have
chosen one algorithm, matrix multiplication, and coded it in
three different ways, each with its own amount of memory
contention and bandwidth requirement. Matrix multiplication
was chosen because it is important for many applications,
well-known, simple to code, and highly parallel. Each algo­
rithm does N-1 floating-point adds and N floating-point multi­
plies for each element of an NxN matrix. The algorithms run
at different speeds even on a single CPU; what we want to
emphasize here is the speedup of each algorithm relative to
itself. Each algorithm is parallelized by the use of Cray's
microtasking softwares 6.

The first algorithm (VXS) is a FORTRAN code which
does 3N memory references for each element of the resulting
matrix. Because VXS uses three memory ports per clock
period per CPU in its vector portions, it is referred to as a 3-
port algorithm.

312

Algorithm X-MP Y-MP
#CPUs Speedup MFLOPS Speedup MFLOPS

vxs 1 1.00 164 1.00 215
2 1.90 312 1.93 417
3 2.60 427 2.84 612
4 2.97 488 3.74 805
5 4.70 1011
6 5.25 1131
7 6.31 1358
8

SDOT 1 1.00 1.00
2 1.93 1.97
3 2.82 2.90
4 3.69 3.75
5 4.66
6 5.34
7 6.32
8 7.15

MXV 1 1.00 220 1.00
2 2.00 440 2.00 592
3 3.00 659 3.00 886
4 3.99 878 4.00 1183
5 5.00 1480
6 5.99 1772
7 7.00 2070
8 8.00 2366

Table I. Matrix Multiply Speedups"

From these results, one can conclude that MXV is the
best of these algorithms for matrix multi£lication, and that in
genera[ilie smaller the"iiieillOrYloadthe better·me-speed-Uj).
This · is"n6tsiiiPrfsrfig:-"TK1nipeeo-uf5STcir-diITereiiCffieiiiOry
ldads-~elpli programmer predict how well another
algorithm (with some known memory load) will scale (subject
to degree of parallelism). A machine-independent conclusion
is that an important measurement of a parallel machine may be
not only how much memory load can it support per CPU, but
also how much memory load can it support and still achieve
linear speed-ups for highly parallel code.

4.2. Shared Registers
The only architectural difference between X-MP shared

registers and Y-MP shared registers is that the Y-MP shared
B-registers are 32 bits to match the Y-MP A-registers. X-MP
A-registers and shared B-registers are 24 bits. The Y-MP has
9 clusters, the p-CPU X-MP has p+l.

The time to execute instructions which reference the
shared registers has lengthened from the X-MP to the Y-MP.
One reason for the slowdown is physical proximity. In the 2-
processor CRAY X-MP, each CPU comprises about 140 dou­
ble modules in half of four columns. The CPUs are situated
one on top of the other. For speed, the shared registers are
located near the boundary between the CPUs. In the 4-
processor CRAY X-MP, each CPU requires the same space as
the 2-processor. The CPUs are situated as four comers of a
checkerboard, touching at the center of the 8 columns they
occupy. The shared registers are located close to the point
where all four CPUs meet. In the CRAY Y-MP, each CPU
consists of one double module. The CPUs lie flat, one on top
of another. The shared registers are distributed across all
eight CPU modules. Thus the furthest two CPUs are 7 module
slots away from each other. Also, with more CPUs, the
shared register arbitration logic has grown. (Shared register
access times slowed down from the 2-processor X-MP to the
4-processor X-MP for this reason).

Because of these factors, the access time for the shared
registers and semaphores has increased. On the 2-processor
X-MP, to test-and-set a cleared semaphore takes one clock
period (CP). To read or write a shared register takes 1 CP
(assuming no other CPUs are accessing shared registers). On
the 4-processor X-MP, to test-and-set a cleared semaphore
takes 1 CP. Reading/writing a shared register takes 3 CP for
instruction issue (again assuming no conflicts). On the Y-MP,
to test-and-set a cleared semaphore takes 3 CP to issue.
Reading/writing a shared register takes 3 CP to issue (again
assuming no conflicts). However, on the Y-MP, once the
instruction issues, the cluster is blocked for another 3-7 CP,
depending on the instruction, and a second cluster reference
will hold for an extra 3-7 CP. A read from a shared register
waits 7 CP after issue before the data is ready to be used. In
all X-MP models and the Y-MP, shared register references
are slowed down by contention with other CPUs by an
amount proportional to the number of CPUs competing for
access.

Determining the effect of the slower shared-register
accesses on actual programsS is difficult because generally
they have large enough granularity that time spent in critical
regions is small. (A critical region is a portion of code in
which only one CPU may be executing at a time.) Instead, we

313

look at how the execution time of the critical regions used in
microtasking has increased as the machine type and number of
CPUs changes. Predictions of how that effects efficiency for
a particular algorithm are algorithm- and granularity­
dependent.9 lO We use a parallel program which starts a paral­
lel loop and measures how long each CPU takes to enter the
parallel region and get its first piece of work. See Figure 1 for
the source. (The initial set-up time of getting extra CPUs
from the operating system is ignored; the numbers are for the
case where all CPUs are waiting at the beginning of the criti­
cal region.) Table 2 shows the incremental times for the ith
processor to get its work after the i-Jth processor completes.

On both the X-MP and the Y-MP, the cost for the initial
CPU to set up the loop is larger than the times for subsequent
CPUs. The times for subsequent CPUs are not influenced by
the number of CPUs competing. This means that adding more
CPUs to a program will not slow down critical region execu­
tions by prior CPUs.

As the access time for the shared registers grows, the
speed advantage of using them instead of memory decreases.
The advantage on the CRAY X-MP/2, for instance, is 1 CP to ®
read a shared register versus !1,. CP to read from=central U
memory. On the CRAY Y-MP,the difference is 1Q CP for
the shared register versus 18 CP to memory. Indeea, some
work has been done to lookilfil-the possibility of using only the
semaphores of the shared register sets and not using the SB
and ST registers, keeping all data values in memory instead.

SUBROUTINE TIMEIT
IMPLICIT INIBGER (A - Z)
PARAMETER (TRIPLEN = 100, NUMCPUS = 8)
COMMON /CLOCKS/ICPU,ICPU2,0UTCS(NUMCPUS,4)

CMIC$GUARD
IF (ICPU.LE.NUMCPUS) THEN ! determine CPU id

ICPU=ICPU+l ! to store timings later
MCPU=ICPU

ENDIF
CMIC$ END GUARD

CMIC$ DO GLOBAL
DO 100 I=l,TRIPLEN

DO 50 JSPR = 1,10
X = SQRT(l.0)

50 CONTINUE
100 CONTINUE

OUTCS4 = 0
OUTCS3=IRTC()

CMIC$ DO GLOBAL
DO 200 I=l,TRIPLEN

IT= IRTC()
IF(OUTCS4.EQ.O) THEN

OUTCS4 =IT

! first loop just gets all
! CPUs local to subroutine

! use the second loop copy for
! timing, so all CPUs are local

! time for this CPU to enter is
! OUTCS4 - MIN(OUTCS(i,3))

ENDIF ! for 1 <= i <= NUMCPUS
DO 150 JSPR = 1,1000

X = SQRT(l.0)
150 CONTINUE
200 CONTINUE

OUTCS(MCPU,3)=0UTCS3
OUTCS(MCPU,4)=0UTCS4
RETURN
END

! waste some time

! store timings off CPU id

Figure 1. Shared Register Timing Source

However, going to memory incurs a subtle penalty. In the
case of a vector code, much of the time of taking the next
piece of work (that is, executing the critical region) can be
overlapped with vector instructions which have not yet com­
pleted. However, if the critical regions kept key variables in
memory instead of shared registers, the references to memory

for those variables would force a hold issue condition waiting
for the vector memory references to complete. Thus the shared
registers function in a sense as an independent memory port.

CPUs
1
2
3
4
5
6
7
8

S. Conclusions

X-MP/2 X-MP/4 Y-MP/8
78 136 155
31 50 67

48 67
46 67

67
67
67
67

Table 2. Critical Region Times
(in clock periods)

We have looked at two specific aspects of the CRAY
Y-MP which are important to using the whole machine for
one program, and compared timings for the Y-MP to its X­
MP predecessor. In the area of memory contention, the per­
formance of matrix multiplication coded to use only one
memory port per clock period per CPU scales linearly with the
number of processors. Using three memory ports per clock
period per CPU produces less than linear speedups. From this
we may conclude that for parallel applications the number of
ports from each CPU to central memory may not be as impor­
tant as the number of ports which can be referenced from the
same program on all CPUs and still provide linear speed-ups.

In the area of shared registers we looked at execution
times of the standard Cray microtasking critical regions.
These timings have slowed down on the Y-MP, but not as
much as the timings for the shared register instructions might
predict. A positive result of the timings is that extra CPUs do
not slow down the speed of the critical regions for prior
CPUs. Thus there is no need to worry about getting too many
CPUs into a program and hurting overall performance. The
slowdown of the critical region highlights the difficulty of pro­
viding very fast shared registers as the number of communi­
cating CPUs grows. Since most 4-CPU multitasking codes
have granularity sufficient to make synchronization overhead
very small, the effect of the longer critical regions on real
applications is unclear.

6. Acknowledgements

The Y-MP development groups headed by Les Davis in
Chippewa Falls deserve lots of credit for creating a machine
on which measurements can be done. Rick Pribnow patiently
explained the shared registers. Jeff Nicholson and Mike
Booth gave pointers as to how to measure shared register
times in a meaningful way. Paul Leskar shared many long
hours in the machine room doing software checkout. Chuck
Grassl wrote the different matrix multiplication programs used
in the memory tests. John Larson and Mark Furtney edited
drafts and improved clarity in several places.

7. References

314

[l]

[2]

Johnson, P. M., "An Introduction to Vector Processing,"
Computer Design, February 1978, pp. 89-97.

Chen, S. S., "Large-scale and High-speed Multiprocessor
System for Scientific Application - CRAY XMP Series,"
Proceedings NATO Advanced Research Workshop on
High Speed Computation, J. Kowalik, ed., Springer Ver­
lag, Julich, West Germany, June 1983.

[3] Hwang, K., and Briggs, F., "Computer Architecture and
Parallel Processing". McGraw-Hill, New York, 1984.

[4] Oed, W., and Lange, 0., "Modelling, measurement and
simulation of memory interference in the CRAY X-MP",
Parallel Computing, Vol. 3 (1986) pp. 343-358.

[5] Booth, M., and Misegades, K., "Microtasking", Cray
·Channels, Summer 1986, pp. 24-27, Cray Research, Inc.,
Mendota Heights, MN.

[6] CRAY X-MP Multitasking Programmer's Reference
Manual. Publication SR-0222, Cray Research, Inc.,
1987.

[7] Dongarra, J.J., Moler, C.B., Bunch, J.R., and Stewart,
G.W., Linpack User's Guide. SIAM, Philadelphia, PA,
1979.

[8] Calahan, D.A., "Task granularity studies on a many­
processor CRAY X-MP", Parallel Computing, Vol. 2
(1985), pp. 109-118.

[9] Hockney, R.W., "(r(infinity), n(half), s(half)) Measure­
ments on the 2-CPU CRAY X-MP," Parallel Computing,
Vol. 2 (1985), pp. 1-14.

[10) Cornelius, H., "Some Timings for Synchronisation on
the Multiprocessor System CRAY X-MP", Parallel Com­
puting, Vol. 2(1985) pp. 457-462.

LOOPS AND MULTI-DIMENSIONAL GRIDS ON HYPERCUBES:
MAPPING AND RECONFIGURATION ALGORITHMS

Shyh-Kwei Chen, Chung-Ti Liang, and Wei-Tek Tsai

Computer Science Department
University of Minnesota
Minneapolis, Minnesota 55455, U.S.A.

ABSTRACT

This paper investigates reconfiguration algorithms
for loops and multi-dimensional grids in a hypercube
architecture. The reconfiguration algorithms are
invoked when a fault is detected and the original loop
or multi-dimensional grid is no longer valid. The
reconfiguration algorithms are able to reach an
equivalent set of topologies within the same architec­
ture in a distributed manner. We also propose fault­
tolerant mapping strategies for embedding a loop or a
multi-dimensional grid into a hypercube so that the
resulting mapping facilitates the reconfiguration.

1. Introduction

Recently the problem of mapping algorithms to
various computer architectures has received much
attention in parallel processing [1, 2], VLSI systolic
algorithm design [3], distributed processing and fault­
tolerant computing [4, 5, 6, 7, 8, 9]. In parallel process­
ing, specific algorithms are mapped into a set of proces­
sors connected by a certain inter-connection network.
For example, Fast Fourier Transformation and bitonic
sorting algorithms can be mapped into perfect-shuffle,
butterfly, hypercube, mesh-connected networks and so
on [2, 3, 10, 11, 12, 13]. Based on algorithm transforma­
tions, any iterative algorithm can be partitioned and
mapped into fixed size VLSI systolic arrays [14].

More recently, mapping a basic inter-connection
network into a host is also considered by many
researchers [15]. This is usually done by exploiting the
structures of both the embedded and the host networks.
For instance, approaches to map loops, trees, and
mess-connected networks into a hypercube have been
proposed in [16, 17].

Once we have mapped a basic network into a host,
it is desirable that if the host has a fault, it can
reconfigure itself so that the basic network can continue
operation with minimum interrupts. The reconfiguration
process can be either centralized or decentralized. How­
ever, the centralized scheme has several drawbacks,
e.g., the vulnerability of the global supervisor, the lack
of uniformity of each processor, and the tedious infor­
mation collection, computation, and distribution.
Decentralized scheme uses only local information but
can achieve the same goal via the cooperation of pro­
cessors.

315

Studies have been done on the design of the host
for some basic networks so that the reconfiguration can
be carried out. In most cases, the host is actually con­
structed by adding some spare processors and links into
the basic network, and the most popular application is
to add redundant links and processors to loop and tree
networks [18, 19, 20, 21, 22, 23].

However, in many cases, we do not have such lux­
ury to build the underlined host machine, and once the
host machine is selected, it is fixed. This is a more real­
istic assumption, since most machines we use are
manufactured by computer companies and, except for
minor memory, CPU or I/O upgrade, they can not have
drastic changes. Since the host machine is fixed, the
problem is then to find intelligent mapping algorithms
to map the basic network into the host so that the
reconfiguration can be carried out easily. In this paper,
we discuss this problem. The host machine of interest
is a hypercube and the basic networks are loops and
multi-dimensional grids networks.

Hypercube is selected as the host machine because
it has many desirable features [16, 24, 25, 26]:

(1) Each node has the same number of direct
neighbors n, hence it is possible to overlap n different
data transfers from any given node to its n neighbors to
fully utilize the high total bandwidth of hypercube;

(2) It has small diameter thus minimizing the com­
munication cost;

(3) A variety of basic graphs can be embedded in a
hypercube. For example, trees, loops, multi-dimensional
grids, and so on have been mapped into hypercubes;

and

(4) Its homogeneity and symmetry properties make
each node equivalent in fault detection and recovery, by
which we can achieve reconfiguration in a homogeneous
and distributed manner;

Some of the properties of hypercubes may be real­
ized more efficiently by other networks individually [8].
For example, DeBruijn graphs have shorter logarith­
metic internode distance and richer connectivity, tree
networks are most suitable for divide and conquer type
algorithms, also grid structures can be embedded with
loop and linear arrays. Hypercube, however, has many
desirable properties as mentioned above. Most impor­
tantly, several versions of hypercube architectures are
now commercially available, which makes experimental
installment of our algorithms possible. [27]

Loops and multi-dimensional grids networks are
chosen since they are widely used for variety of applica­
tions [2, 11, 12, 28]. We propose fault-tolerant mapping
strategies and corresponding distributed reconfiguration
algorithms for the loop networks, and then apply them
to the multi-dimensional grids networks.

2. Backgrounds

In [16], topological properties of hypercubes were
examined. A hypercube of degree d is an undirected
graph with 24 nodes labeled 0 through 24 - 1. There is
an edge between a given pair of nodes if and only if the
binary representations of their labels differ by exactly
one bit. In this paper, we will represent a hypercube of
degree d by drawing 24-3 independent 3-cubes. We
assume each 3-cube always has the most significant 3
bits (MSBs) labeling as illustrated in Figure 2.1, while
the less significant bits appear on top of each 3-cube in
a left to right order, i.e., the least significant bit (LSB)
is in the rightmost position.

To distinguish the basic network and the host, we
use the term vertex to represent the processor of basic
networks, and node that of host. For simplicity, we
use M. as the image of a loop vertex a into the hyper­
cube, i.e., M. can be viewed as a d-bit binary code.
XOR is the exclusive-or operator and can be performed
on at least 2 operands which are binary codes.

It is easy to see that a hypercube of degree d has
subgraphs which are loops of length 4, 6, ... , 2d

respectively. If the length of the loop equals 2d, the
nodes of the hypercube are fully utilized. However, if
the length is less than 2d, then (24 - n) nodes are left.
We can use these remaining nodes as spares to adjust
the mapping in case of faults so that the new mapping
is still a loop of length n.

Another attractive property of hypercubes is that
an n-dimensional grid of size 2 m, x 2 m 2 x ... x 2 m, can
be perfectly mapped in a d-cube, where d is the sum of
m;'s [16]. All the 2 4 nodes of this d-cube are occupied.
However if we use a larger hypercube of degree d+l as
the host graph, then 2d nodes remain to be spares,
which can be used to adjust the mapping in the pres­
ence of faults so that the topology of the multi­
dimensional grid can still be maintained.

3. Failure Model

The failure model used in this paper follows the
model given in [23]. Each processor of the basic network
has a unique state. The system is in an operational
state if and only if all the distinct states exist. A fault
will cause the missing of a state. The system should be
able to reconfigure itself distributedly via the local
operations of faulty-free processors until the missing
state is recovered.

The usages and definitions are as follows.

• A node M; is in active state if it is one of the image
nodes of the basic graph and faulty-free. It is in
faulty state if it is faulty. If none of the above cases

316

applies, then it is in spare state. Figure 3.1 illus­
trates the state transition diagram of each node. We
represent the spare state by 0, the faulty state by
-1, and each active state by a unique positive
integer.

• S(M;) is the state of node M;. Let M denote a set of
nodes, (MP M 2 , ••• , M;). The state of M is
S(M) = (S(M1), S(M2), • • • , S(M;)), i ;::: 1.

• E(S(M;)) represents the fault that state S(M;) is miss­
ing.

• A system state is valid if and only if all the n active
states are present such that the active nodes labeled
by the states constitute a loop or multi-dimensional
grid. Otherwise it is invalid.

• (M;, M,) is a recovery pair if M; is responsible for
the fault of M;, and we say M; is the parent and M;

is the child. A node M; can detect the states of all
its neighbors. It updates the state information in its
local copy, and recovers any faulty child. The
recovery actions are assumed faulty-free.

We list other assumptions about the failure model.

• Reliable fault diagnosis mechanisms are assumed
available [29, 30, 31]. To ensure the correctness,
each node M; periodically tests itself. If it is faulty,
the state of M; becomes -1.

• A node M, can detect the states of all its neighbors.
It updates the state information in its local copy,
and recovers any faulty child. The recovery actions
are assumed faulty-free.

• The links are faulty-free.

• Only one error can be present in the system.

4. A Reconfiguration Algorithm for Embedded
Loops in Hypercubes

In this section, we describe the system
specification, propose a distributed reconfiguration stra­
tegy and three initial mapping schemes. More examples
and detailed proofs of this paper are in [32].

4.1. State Assignment and Detection

Let L, be a loop of length n mapped into a d-cube,
where n is even and n ~ 2•. Each vertex x of L. has a
unique label representing the state of x. And each node
of the d-cube, c., has a unique ID represented as a
Gray code [2]. Let Gd[L.J be the resulting mapping.
Every node of Gd[L.J can be viewed as having a unique
d-bit ID code and up to n+2 possible states : n active
states denoted by the distinct labels of L., a spare state
denoted by 0 and a faulty state denoted by -1. Figure
4.1 illustrates the basic graph £ 10, and 0 4 [£ 10] associating
with a labeling.

The state of c•[L.] can be expressed as an 2d-tuple
S(Mv M2, • · · , M ,) = (S(M1), S(M2), · • · , S(M ,)). The

2 2

system state may become invalid in case of faults. For
example, consider the system shown in Figure 4.l(b), (1,
O, O, 5, 2, 0, 3, 4, 10, 0, 9, 6, 0, O, 8, 7) is a valid system

state, while (1, 0, O, 5, 2, 0, 3, 4, 10, O, 9, 5, O, 0, -1, 7)
is invalid since state 8 is missing.

The node in state i responds to the missing of the
state i+l, i.e., (E(i+l)), where the addition is modulo-n.
Mi would check the state of node M,· periodically, save
and update the work environment of node Mi. If Mi is
faulty, Mi will recognize this fault during its next detec­
tion, and provide the saved work environment of Mi to
reconfigure the system to a valid state.

The amount of overhead associated with the saving
and updating of the work environment depends on the
frequency of state updates. This involves the problem of
optimal placement of checkpoints, which takes as fac­
tors the state vector of each node, the reliability of
each node, the degree of urgency of fault recovery etc.

4.2. Strategy and Algorithm

In this section we propose a distributed, homo­
geneous strategy with which each node can recover the
fault of state missing of its child.

Lemma 4.1 Suppose vertices i, j, and k are three con­
secutive vertices of a loop, and (M,., Mi), (Mk, M,.) are
recovery pairs, then there exists a node M8, so that Mi,
M,., Mk and M8 constitute the four corner of a 2-D plane
of the hypercube [16].

According to Lemma 4.1, we can get
XOR(Mi, Mi, M.) = M8• That means if each active node Mi
has the backup work environment of its child, say M,.,
the code of Mi, and the code of M,·'s child, say Mk, then
it is possible to reconfigure the system under any possi­
ble single fault E(S(M,.)). When the state of Mi has lost,
node M. can detect this fact and compute
XOR(M;, M,., Mk) to get the code of M8 which is adjacent
to it. It will then reset the node M 8 by sending the miss­
ing state, S(M,.), backup work environment and code Mk.
If node M8 is a spare node, the system has reached a
consistent valid state so that it can resume operation.
However, if S(M8) > o, then a new fault, E(S(M8)), occurs
which in turn will be detected and recovered by M,'s
parent. It seems that the fault will be propagated along
the loop and finally be absorbed by a spare node. It is
easy to see that this strategy will resul.t in a homogene­
ous and distributed algorithm.

However, the strategy does not work for all initial
mappings. Consider a counter example shown in Figure
4.2. A loop of length 12 is mapped into a hypercube of
degree 4. Suppose E(2) occurs. New faults are gen­
erated in sequence of E(4), E(6), E(s), E(lO), E(12), to
recover the previous fault. The system then gets stuck
when it is trying to recover state 12 to a faulty node.
Hence the correctness of the proposed strategy really
depends on initial mappings.

We exclude the case that the length of the loop
equals 4, since no feasible spare nodes are available and
any kinds of initial mappings will only lead to a face of
the hypercube. Nevertheless, we still can solve this
problem by moving two adjacent nodes, one faulty node

and one active node, at the same time. In other words,
more than local information is required.

4.3. Initial Mappings

To design the initial mappings, two alternative
strategies, I and II, may be taken for consideration.
Strategy I is a general scheme which can map any loop
of even length I into a d-cube, where 4::; I s 2d - 2. It
ensures the correctness of reconfiguration process under
any single fault, though the overhead may be large. On
the other hand, Strategy II is to minimize the number
of steps, in terms of state changes, needed to
reconfigure a faulty system back to a valid state. It is
normally employed when our major concern is to reduce
the communication and state switching overhead.

We propose the general scheme in Section 4.3.1
and give two examples for schemes of strategy II in Sec­
tion 4.3.2.

4.3.1. Mapping I

Definition The parity of a node M. whose code equals
x1 x2 · · · xd is even if XOR(xi> x2, · · · , xd) = o; is odd if
XOR(x 1, x2 , · • • , xd) = 1, where xi= o or 1, for 1 s is d.

Definition Suppose a loop of length n has been mapped
into a hypercube of degree d. Let M 0 , Mp ... , M._1 be
the corresponding image nodes. A sequence b1' b2, ••• , b.

is a transition sequence if Mi-i differs from Mi by the
bith MSB, for 1 s bis d, 1::; i::; n - 1, and M._1 differs
from M 0 by the b. th bit. We say b; is the transition
from node Af;_1 to M;.

Example Consider the initial configuration shown in
Figure 4.l(b), let M0 = 1000, i.e., the code of the node
whose state is 2. Then M1 = 1100 (in state 3), M2 = 1110
(in state 4), ... , M9 = 0000 (in state 1), and the transition
sequence from b1 to b10 equals 2, 3, 1, 4, 1, 3, 1, 2, 4, 1.

It is easily seen that if b1, b2, , b. is a transition
sequence for some mapping, n > 2, then bi 7" bi+i· And if
°'=bi, for 1::; as d and 1 sis n, then a must appear
even number of times.

Definition Let the transition graph, as shown in Fig­
ure 4.3, denote that (M,., M;) is a recovery pair, and Mi
differs from Mi by the kth MSB.

Definition Let A(i) denote the maximun length of a
loop which can be mapped into a hypercube of degree
i - 1 to tolerate any single fault, where ;;:::2.

317

We have A(i)=2H-2, and A(i+l)-A(i)=2i-l.

The proposed initial mapping reserves two consecu­
tive feasible spare nodes, i.e., one is with odd parity
and the other with even parity. This can be done by
separating a 3-cube, and assigning the states of six con­
secutive loop vertices and two o states, to corner n?des,
which is shown in Figure 4.4 (a) and (b). M2 and M2 are
end nodes.

We can generate a loop or length six by adding
dashed arrow and transition 1 from M2 to M; (Figure
4.4(a)).

In general, when 21:-=;n:-=;21+1-2, for iz3, and n is
even, we can construct a new loop of length n from a
loop of length n-2 by deleting the dashed line which
labeled n-2, including two new nodes into the loop,
(M(•-2)12, M~•-2)12), and adding one arrow between them.
The transition graph is shown in Figure 4.5, where b13
depends on some b1, lSi<(n-2)/2.

Definition The ith interval contains codes and transi­
ti~n sequence from MA(i) to MA(i+I) (or from MA(i+i) to
MA(i)). The intersection between (i-l)th and (i)th
interval is not empty, but includes MA(i)' Hence the
transition sequence, bA(i)+I' bA(i)+2, bA(i+I)' belongs to
the ith interval, where bA(i)+i = i+l, for iz2.

We propose the rules to decide the transitions, b13 :

bl= 3
b2 = 2

bA(i)+I = i+l, i Z 3 .

bA(i)+i = bA(i)-i+2> 2 S j S 2'-2 + 1
bA(i)+i = b;-2, 21

-
2 + 2 S j S A(i+l) - A(i)

In summary, we copy the reverse transitions of the
(i-l)th interval to that of the first half of the ith
interval, and copy the transitions of the (i-l)th interval
exclude the first transition, bA(i-l)+P to that of the
second half of the ith interval.

Example Let d = 5, M0 = 00000. Applying the proposed
rules, we can obtain the transition graph as shown in
Figure 4.6. M 0 -+ M 1 -+ ... -+ M5 -+ M: -+ M: -+ ...

-+ M~ -+ M 0 is a loop of length 12, and at least 4 bits
are required. While M 0 -+ M 1 --+ ... -+ M7 -+ M; -+ M; -+

... . -+ M~ -+ M 0 is a loop of length 16, and at least 5 bits
are required.

We show that the proposed initial mapping indeed
forms a loop in Theorem 4.1, and outline its single-fault
reconfigurability in Theorem 4.2.

Lemma 4.2 for any possible i and j, i¢j, we have

(1) M1 ¢ M;;

(2) M1 ¢ M;, M,": ¢ M;.

Theorem 4.1 M0 Mi form a loop of length 2n + 2, for
osisn.

Proof Sine~ M1 -+ Mi+)' and Mi+- Mi+u for o::o;isn-1;
and M 0 +- M 0 , M. --+Mn, and for all distinct i, j, Mi¢M;,
Mi¢ M;, so no overlapping is possible. Hence
M 0 --+ M 1 -+ M. -+M~ --+ M~-t --+ .•.. M~ --+ M0 is a loop
of length 2n + 2.

D

Lemma 4.3 If i is even, XOR(M1, Mi+v M1+2) =Mi-I" If i
is odd, XOR(M1, M1+v Mi+2) = Mi+a> for i 2 1.

Leinma 4.4 If i is even, XOR(Mi, Miw Mi+2) = Mi_1. If i
is odd, XOR(Mi, Mi+t> Mi+2) = Mi+a, for i 2 1.

Lemma 4.5 Let MA = XOR(M0, Mv M2), and
M4_ = XOR(JI.[~, M~•' M;). We have MA ¢Mi, MA¢ Mi
MA¢ M1, MA¢ Mi for i 2 O, and i ¢A. In other words,
MA and MA are spare nodes.

Theorem 4.2 The system with the proposed initial
mapping and algorithm can tolerate any single fault.

4.3.2. Mapping II

This section presents two initial mapping schemes
which need only one step to reconfigure to a valid state
in case of a fault.

Lemma 4.6 Let code M 0 = x~ x~ · · · x;} = 000 · · ' o.
And let code Mi = x; x~ · · · x~ = x~-t x~-t · · · xt1 xt1,
for 1::::; is 2d - 1, where x; = O or 1, and 1 s j::; d. x is
the complement of x. Then nodes M0 , Mp ... , M2d-t
form a loop of length 2d.

Lemma 4.7 Let code M~ = y~ y~ · · · Yd= 100 · · · 001,
where bit u/ = o or 1 and 1 s j ::o;d. Codes
Mi = y~ y~ ... y~ = y~-1 y~-1 ... y~-1 y-/-1, for
1 s is 2d - 1, where u; = o or 1 and 1 Si ::::; d. y i~ the
complement of y. We have XOR(M1_ 1, Mi, Mi+il = M;, for
o s i ::::; 2d - 1, where addition and subtraction are
modulo-2d.

Theorem 4.3 For a d-cube, we can map a loop of
length 2d, such that the system with the resulting map­
ping and the proposed strategy can reconfigure any sin­
gle fault within 1 step.

Proof According to Lemma 4.6, M;'s form a loop of
length 2d. We can include arrows to define the parent­
child relations .

Mo __,. M1 __,. lvf2 __,. ·· ·· __,. M2d-2 -+ Mzd-1 --+ Mo

So we know M1_ 1 is M;'s parent, and M1 is M1+i's
parent. Since XOR(M1_v M1, M1+1) =Mi (Lemma 4.7) and
Mi's are spare nodes, Mi can be used immediately when
node M1_ 1 detects the fault E(S(M1)).

D

As a matter of fact, we can start from any node
instead of the nodes with only 1 or 2 blocks of O's and
1 's in their codes, e.g., 0000 · · · 0000, 0011 · · · 11 etc.

Theorem 4.4 For any node N0 in a hypercube of
degree d, let NP N2, N 3, ••• , N24_p N 0 be generated by
the transition sequence 1, 2, ... , d, 1, 2, ... , d. A loop
of length 2d with image nodes N 0 , NP N2, ••• , N24_ 1 can
tolerate any single fault within 1 step, for any possible
starting node N 0•

4.3.3. Performance Analysis

Let c(M;) be the number of reconfiguration steps
needed when node M1 becomes faulty. We can analyze
the performance of Mapping I by computing the aver­
age number of reconfiguration steps as follows.

Let M 0 , M 1 , M2 , •••• , M._1 , M~_1 , M~_2 , , M~ be
the mapping sequence of a loop of length 2n. Then, the

318

total number of reconfiguration steps summing from M 0

to M._1 is:

Case I: n-1 is odd
n-1

2= c(M;) = [c(M1) + c(M3) + + c(M._3)]
i=O

+ c(M._1) + c(M0) + [c(M2) + + c(M._2)]
n-2 n-2 n-4

=(1+2+ +--)+2+2+(--+--+ +1)
2 2 2 2

n -2n 2
= -- + 4 = O(n)

4

Case II: n-1 is even
n-1

2= c(M;) = [c(M1) + c(M3) + + c(M._2)]
i=0

+ c(M0) + [c(M2) + c(M4) + + c(M._1)]
n-1 n-1 n-1

=(1+2+ +-)+2+[(-+-)
2 2 2

n-1 n-3 n-1
+(-+-)+ +(-+1)]

2 2 2
n(n-1) 2

= --+ 2 = O(n)
2

Similarly, the result for summing from M~ to M~_1
is the same. Thus, we have O(n) as the average number
of reconfiguration steps for Mapping I.

The one-step reconfigurable property seems to
make Mapping II a better choice than Mapping I in
terms of the number of reconfiguration steps, especially
when n is 0(2d). However Mapping II allows only limited
length of loops.

5. A Reconfiguration Algorithm for Embedded
Multi-Dimensional Grids in Hypercubes

This section discusses the reconfiguration algorithm
and initial mapping strategy for mapping a multi­
dimensional grid of size 2 m, x 2 m 2 x ... x 2 m. into a

n

hypercube of degree d + 1, where d = 2= m;.

i=l

5.1. State Assignment and Detection
ml m2

We identify each vertex of a 2 x 2 x
grid A by an n-tuple A(i1, i 2, • · · , i.),
0 < ;. < µ. - 1 and µ. = 2 m,.

- 1 - 1 J

Definition The state of grid vertex A(i1, i 2,

defined as follows.
S(A(i,, i2, · · · , i.)) = i1µ2µs · · · µ. + i2µ3µ4 ... µ•

+ i3µ4µ5 . . . µ. +

+ j•rrµ· + ;. + 1

= 2= i;a; + 1
i = 1

n

where a.= 1, and a;= II µk, 1 S j < n.
k =i +l

m x 2 ._

where

, i.) is

Hence the system can have up to µ1Xµ 2X · · · xµ.
active states, one invalid state -1, and one spare state
0.

Definition A state missing due to the fault of a node
changing its state to -1 is called an original fault. If
the fault is induced by a state propagation, it is called
a propagated fault. These two faults are distinguish­
able since the original fault will change the state to -1,
while the propagated fault will switch the node to a
state which is greater than 0.

Definition We define the new parent-child relationship
as follows. Node A(i,, · · · , i;, i;w · · · , i.) is responsi­
ble for detecting and recovering the fault of node
A(i;, · · · , i; + 1, i;w · · · , i.), where 1 s j s n and the
addition is modulo-µ;·

5.2. An Initial Mapping Strategy for Multi­
dimensional Grids

Theorem 5.1 Let Gf denote the ith code in an m-bit
Gray code sequence, where G~ = oo · · · o, and
O s i s 2m - 1. Let Fi denote the code of the ith loop
state when we map a loop of length 2m-i into a hyper­
cube of degree m. For any vertex W = A(i1, i2, · · · , i.),

m m m m +1
let Mw = G; l II G; 2 II . . . II G; n-l II F; "+ 1 ' then these

l 2 n-1 n

image nodes still maintain a multi-dimensional grid of
size 2m 1 x 2m 2 X ... x 2mn

Proof

(1) Two nodes of the hypercube are adjacent iff
they differ by one bit.

(2) Two vertices X = A(i,, i 2, · · · , i 0) and
Y = A(j1, j 2, · · · , j.) of the grid are connected iff there
exists exactly one index a, such that all the other
entries are the same, and i,, = j,, ± 1, i.e., i1 = j 1, for
1 s l s n, and l ;of a.

319

Case (a): If a ;of n:
m m m m m +1

Mx = G; 1 11 G; 2 11 · · · 11 Gj 0 II · · · II Gj n~l II Fj "+ 1 '
J ~ rff n-m nm + 1

My=Gj 1 [IG; 2 il ··· 11Gi 0± 1 II··· llG;"-1 llF;\1,
1 2 a n-1 n

Since c;0± 1 differs from a7° by one bit, so Mx
a a

differs from My by one bit. (Note that Mx and My are
in the same dimension a.)

Case (b) : If a = n:
m m m +1

Mx=G;'ll llG;"-'llF;"+1'
J ~-l ~ +1 m +1

My= G; 1 II 11 G; n-l II F; n ' (or Fj \2
1 n-1 n n

According to the proposed loop construction, we
m +1 m +1

know F; • differs from F; •± 1 by one bit, so Mx differs
n n

from My by one bit.

This completes the proof.
D

5.3. Recovery Strategy

Suppose node y = A(i,, i2, , 1;, 1;+1, · · · , i.) gen-
erates a fault, either original or propagated, it will be
detected by x = A (il> i2, · · · , i; - 1, ii+l' · · · , i0), where
1 s j s n. The recovery procedure for the parent x is as

follows.

Reconfiguration Algorithm

Case (1): If j = n : performs loop reconfiguration along
its nth dimension. In other words, either a spare node
can immediately be available or a propagated fault is
generated which will propagate along the nth dimension
until it is absorbed.

Case (2): If j "' n and the error is original : changes its
state S(x) to -1, thus generates an original fault which
can be detected by A(i11 i 2, · · · , i; - 2, ii+1, , in) and
A(z'1, i2, · · · , ik - 1, ik+u · · · , z~. - 1, i;+v · · · , in), for
1 S: k S: n and j F k.

Case (3): If j F n and the error is a propagated fault :
ignores this kind of fault to ensure the parallel propaga­
tions.

For each X = A(i11 i 2, • • · , in-v in), we have a loop
m m+l

of length 2 • along its nth dimension which has 2 n

nodes. In other words, we can fix i1' i 2, ••• , in-I and
vary in to get a Gray code sequence of length 2 m,.

Since we can vary i1' i2 , ••• , in-I and do the same
rr-1

thing, we have a total of II 2 m, such "parallel" loops.
i =1

Hence we have lemma 5.1 and Theorem 5.2.

Lemma 5.1 If Y = A(j1, j 2, · · • , i.) is faulty, then
2 m, x 2 m 2 x · · · x 2 m,_1 original faults, including E(S(Y)),
will be generated by performing the proposed
reconfiguration algorithm.

Theorem 5.2 The grid system with the proposed algo­
rithm and initial mapping can tolerate any single fault

n
within o(II 2 m, l steps.

z' =1

Example Figure 5.1 is an example of the above stra­
tegy. Suppose node 0010010 (in state 10) becomes
faulty, say event (0), a sequence of events may occur.
In this example, only original faults are generated to
simplify the description, while faults which can not be
recovered immediately should produce further pro­
pagated faults along the nth dimension, and eventually
will be absorbed by a spare node.

6. Conclusion

In this paper, we have presented distributed
reconfiguration algorithms for loops and multi­
dimensional grids embedded in hypercubes. We have
also proposed initial mapping algorithms to map loops
and grids on hypercubes to facilitate reconfiguration.

We are currently investigating one-step
reconfigurable schemes which are more efficient, in
terms of the degree of hypercubes, than Mapping II.
We also invstigate some engineering issues such as the
effect. of the reliability of each node on our mapping

schemes.

7. Reference

[1] Agrawal, D. P., Janakiram, V.K., and Pathak, G.
C., "Evaluating the Performance of Multicomputer
Configurations," IEEE Computer, Vol. 19, No. 5,

May 1986, pp. 23-37.

[2] Quinn, M.J., Designing Efficient Algorithms for
Parallel Computers, McGraw-Hill, NY, 1987.

[3] Ullman, J.D., Computational Aspects of VLSI, Com­
puter Science Press, Rockville, Md, 1984.

[4] Kuhl, J.G., and Reddy, S.M., "Distributed Fault­
Tolerance for Large Multiprocessor Systems," Proc.
of Sym. on Computer Architecture, 1980, pp. 23-30.

[5] Koren, I., "A Reconfigurable and Fault-Tolerant
VLSI Multiprocessor Array," Proc. 8th Annu.
Symp. Comput. Architecture, May 12-14, 1981.

[6] Clarke, E.M., and Nikolaou, C.N., "Distributed
Reconfiguration Strategies for Fault-Tolerant Mul­
tiprocessor Systems," IEEE Trans. on Computers,
Vol. C-31, No. 8, Aug. 1982, pp. 771-784.

[7] Pradhan, D.K., "Fault-Tolerant Processor Network
Architectures," IEEE Trans. on Computers, Vol.
C-34, No. 5, May 1985, pp. 434-447.

[SJ Pradhan, D.K., "Fault-Tolerant Multiprocessor and
VLSI-Based System Communication Architectures,"
in Fault-Tolerant Computing: Theory and Tech­
niques, Vol. 2, Prentice Hall, Englewood Cliffs, New
Jersey 07632, pp. 467-576.

[9] Kuhl, J.G., and Reddy, S.M., "Fault-Tolerance
Considerations in Large Multiple-processor Sys­
tems," IEEE Computer, Vol. 19, No. 3, March 1986,
pp. 56-67.

[10] Stone, H.S., "Parallel Processing with the Perfect
Shuffle," IEEE Trans. on Computers, Vol. C-20, No.
2, Feb. 1971, pp. 153-161.

[11] Thompson, C.D., and Kung, H.T., "Sorting on a
Mesh-Connected Parallel Computer," CACM, Vol.
20, No. 4, Apr. 1977, pp. 263-271.

[12] Nassimi, D., and Sahni, S., "Bitonic Sort on a
Mesh-Connected Parallel Computer," IEEE Trans.
on Computers, Vol. C-28, No. 1, Jan. 1979, pp. 2-7.

320

[13] Wiley, P., "A Parallel Architecture Comes of Age
at Last," IEEE Spectrum, Vol. 24, No. 6, June
1987, pp.46-50.

[14] Moldovan, D.I., and Fortes. J.A.B., ''Partitioning
and Mapping Algorithms into Fixed Size Systolic
Arrays," IEEE Trans. on Computers, Vol. C-35, No.
1, Jan. 1986, pp. 1-12.

[15]

[16]

First International Conference on Hypercube Mul­
tiprocessors, SIAM 1986

Saad, Y., and Schultz, M.H., "Topological Proper­
ties of Hypercubes," Research Report
YALEU/DCS/RR-389, June 1985.

[17] Wu, A.Y., "Embedding of Tree Networks into

Hypercubes," J. of Parallel and Distributed Com­
puting 2, 1985, pp.238-249.

[18] Kwan, C.L., and Toida, S., "Optimal Fault­
Tolerant Realizations of Hierarchical Tree Sys­
tems," Proc. Fault-Tolerant Computing, Oct. 1980,
pp.176-178.

[19] Raghavendra, C.S., Avizienis, A., and Ercegovac,
M.D., "Fault Tolerance in Binary Tree Architec­
tures," IEEE Trans. on Computers, Vol. C-33, No.
6, June 1984, pp. 568-572.

[20] Raghavendra, C.S., Gerla, M., and Avizienis, A.,
''Reliable Loop Topologies for Large Local Com­
puter Networks" IEEE Trans. on Computers, Vol.
C-34, No. 1, Jan. 1985, pp. 46-55.

[21] Kartashev, S.P., and Kartashev, S.I., "Data
Exchange Optimization in Reconfigurable Binary
Trees," IEEE Trans. on Computers, Vol. C-35, No.
3, March 1986, pp. 257-273.

[22] Liang, C.T., Chen, S.K., and Tsai, W.T., "An
Approach to Reconfigure a Fault-Tolerant Loop
Systems" TR 86-58, Computer Science Department,
Univ. of Minnesota, Minneapolis, Dec. 1986 ·

[23] Yanney, R.M., and Hayes, J.P., ''Distributed
Recovery in Fault-Tolerant Multiprocessor Net­
works" IEEE Trans. on Computers, Vol. C-35, No.
10, Oct. 1986, pp. 871-879.

[24] Pease, M.C., "The Indirect Binary n-Cube
Microprocessor Array," IEEE Trans. on Computers,
Vol. C-26, 1977, pp. 458-473.

[25] Bhuyan, L.N., and Agrawal, D.P., "Generalized
Hypercube and Hyperbus Structures for a Com­
puter Network," IEEE Trans. on Computers, Vol.
C-33, 1984, pp. 323-333.

[26] Saad, Y., and Schultz, M.H., "Data Communication
in Hypercubes," Research Report
Y ALEU jDCS /RR-428, Oct. 1985

[27] Seitz, C.L., "The Cosmic Cube," CACM, Vol. 28,
Jan. 1985, pp. 22-33.

[28] Liu, M.T., ''Distributed Loop Computer Networks,"
Advances in Computers, Vol. 17, M.C. Yovits, Ed.
N.Y.: Academic, 1978, pp. 163-221.

[29] Meyer, G.G .. L. and Masson, G.M., "An Efficient
Fault Diagnosis Algorithm for Symmetric Multipro­
cessor Architectures," IEEE Trans. Comput., vol.
C-27, pp. 1059-1063, Nov. 1978

[30] Armstrong, J.R. and Gray, F.G., ''Fault Diagnosis
in a Boolean n-cube Array of Microprocessors,"
IEEE Trans. Comput., vol. C-30, pp. 587-590, Aug.
1981

[31] Bhat, K.V.S., "An Efficient Approach for Fault
Diagnosis in a Boolean n-Cube Array of Micropro­
cessors," IEEE Trans. Comput., Vol. C-32 No. 11,
Nov. 1983, pp. 1070-1071

[32] Chen, S.K., Liang, C.T., and Tsai, W.T., ''Loops
and Multi-Dimensional Grids on Hypercubes : Map­
ping and Reconfiguration Algorithms," TR 87-33,

321

Computer Science Department, Univ. of Minnesota,
Minneapolis, June 1987

1 1 1 1

Figure 2.1 The fixed codes for a 3-cube

Figure 3.1 The state transition diagram of node M,·
Transition 1 --- Node M; becomes faulty
Transition 2 --- Faulty node is repaired
Transition 3 --- Spare node is activated
Transition 4 --- Spare node becomes faulty

3 0 1

(a) (b)

Figure 4.1 An example of an initial configuration for n = 10, d = 4

(a) Basic Graph for L 10

(6) The initial configuration of a'[L,~

Figure 4.2 A counter example of the proposed strategy

M;

Figure 4.3 The transition graph from M; to M;.

® ®
Mo -M, - M2

0J I
I

®
Q): 6

® *. M~-M~ -M2

(a) (b)

Figure 4.4 Reserve two consecutive nodes
'

010 and llO, as spare nodes.

- M(n-2)/2-1

I

M(n-2)/2 -

I

Q)*n-2
v

- M~n-2)/2-1

I
I

Q): n

v
M~n-2)/2 -

Figure 4.5 The attached transition graph

© M; Mo 00000 10000

interval 2 b, +© © 4 t©
M, 00100 ----------~ 1.0 l 0 0 M;

(3 bits) © 6 t®. .
M 2 0 11 0 0 -----------. l 11 0 0 M 2

·················b;···l©···········0··g··················t-©··········:·······
M3 0 l 11 0 ----------- 11 11 0 M3

interval 3 b, +® © 10 t®

000

001

011

010

100

101

111

llO

M, 0 0 l l 0 ----------~ l 0 l l 0

© 12 t©
M,

(4 bits)

M, 0 0 l 1 l -----------c.. I 0 l 1 1

interval 4
blO +® © 22 t®

MIO 0 111 1 ----------~ l l l l l M~o
bll +© © 24 t©

(5 bits)
Mu 0 l 1 0 l ----------~ l l 1 0 l

b,2 +® © 26 t®
M12 0 0 101 -----------. l 0 l 0 1 M;2

b13 +© © 28 t©
M13 O o 0 0 1 -----------. l 0 O O 1 M;,

b14 +® © 30 t®
M14 0 10o1 ----------..,,.. l l 0 0 l M;,

······················l®·······································t®·················

Figure 4.6 Transition Graph for d = 5, M0 = 00000.

18 19 20 21 22 23 24

26 27 28 29 30 31 32
0010 0110 0111 1111 1110 1010 1000

~·~--=::w-~58"'-___,~5~9'---+~60"'-___,~6~1~-+~62"--<1~6~3~....i64
0000 0010 0110 0111 1111 1110 1010 1000

Figure 5.1 An example of how recovery protocol works when node in
state 10 of a 2 X 4 X 8 grid becomes faulty

322

Dynamic Computational Geometry on Meshes and Hypercubes

Laurence Boxer•
Department of Computer and

Information Sciences
Niagara University
Niagara University, NY 14109, USA

Abstract
Parallel algorithms are given for determining geometric prop­

erties of systems of mo11ing object•. The properties investigated
include nearest (far th est) neighbor, closest (farthest) pair, col­
lision, convex hull, diameter, and containment. Several of these
properties are investigated from both the dynamic and steady­
state points of view. Efficient, and often optimal, implementa­
tions of these algorithms are given for the mesh and hypercube.

1 Introduction

Suppose n point-objects are moving in Euclidean space such that for
each object, every coordinate of its motion is a polynomial of time.
For such a system, we present parallel algorithms described in terms
of abstract data movement operations to solve a variety of problems

involving proximity, collision, containment, and convexity. We give
solutions to these problems for the dynamic situation and for the
steady-state situation (as time approaches infinity). We give imple­
mentations of these algorithms that are asymptotically optimal on the

mesh and are efficient on the hypercube.
This paper was motivated by serial algorithms for dynamic com­

putational geometry given in [Atal85].

2 Preliminaries

The notations 0, 0, and 0 will be used in this paper to mean, intu­
itively, "order at most," "order exactly," and "order at least," respec­
tively (see, e.g., [Mill88a]).

We will use the terms proceaaor and proceaaing element (PE) in­
terchangeably.

2.1 Mesh-Connected Computer

A mesh of size n has n PEs arranged as an ni/ 2 x ni/ 2 lattice. The

PEs of a mesh of size n are frequently numbered from 0 to n - 1 so
as to impose an order upon them. In this paper, we assume that the
PEs are indexed via prozimity order [Mill88a] (see Figure 1). The

properties of proximity order that are useful to us are the following.

1. In a mesh of size n, if 0 :s; i < n - 1 then PE; and PE;+i are
neighboring PEs.

2. A mesh may be recursively subdivided into sub-meshes such
that each sub-mesh contains consecutively indexed PEs.

•Research partially supported by a grant from the Niagara University Research
Council.

fResearch partially supported by National Science Foundation grant nwnbcr
DCR-8608640.

Russ Miller t

Department of Computer Science
226 Bell Hall
State University of New York
Buffalo, New York, 14260, USA.

Let E be a nonempty subset of the processors of a mesh. We say
Eis an interval or a string of the mesh if and only if there are integers
io and ii, 0 :s; io :s; i 1 < n, su.ch that E = {PE;lio :s; i :s; ii}. We
will prefer the term string in this paper, as we will often use the term
intef'tlal to refer to a subset of the real line.

0 1 14 15

3 2 13 12

4 7 8 11

5 6 9 10

Figure 1: Proximity order for a mesh of size 16.

2.2 Hypercube Computer

A hypercube of size n, where n is a nonnegative integral power of 2,
has n fEs or nodes indexed by the integers {O, 1, ... , n - 1 }. If we

view each integer in the index range as a (log2 n)-bit string, two PEs

are connected by a bidirectional communication link if and only if
their indices differ in exactly one bit.

It is useful to re-label the PEs of a hypercube so that consecutively
labeled PEs are adjacent, and so that we may split the hypercube into
subcubes such that the subcubes consist of consecutively labeled PEs.
A commonly used method of ordering the PEs of a hypercube with
these properties is the binary reflected Gray code (Rein77]. Through­
out this paper, processors in a hypercube will be labeled not by node
number, but according to a binary reflected Gray code ordering.

A atring of processors in a hypercube will be a nonempty set of

consecutive processors according to Gray code order, i.e., a set E of
PEs for which there are integers i 0 and i 1 such that 0 :s; io :s; ii < n
and E ={PE; lio :s; j :s; ii} according to a binary reflected Gray code

ordering of the processors.

2.3 Pieces and the function .A

Input to problems in this paper consists of descriptions ofreal-valued,
or more generally, Euclidean vector-valued functions fo(t), /i (t), ... ,
fn-i (t) defined on the interval (0, co). We assume that at the start of
a problem, no processor contains a description of more than one of the
functions / 0 , ••• , /n-i · For many problems, these functions describe
the motion of point-objects P0 , ••• , P,._1 , respectively, in Euclidean
cl-dimensional space. If every component of every function f; is a
polynomial of degree no greater than k, then the collective movement

323

of the points is referred to as k-motion. For convenience, we assume
that no pair of the points have the same initial position. That is,

/i(O) =/= f;(O) for i =/= j,O ~ i,j < n.
Given a set ofreal-valued functions F = {fo, ... , fn-i} defined on

[O, oo),, it is often useful to describe the minimum function

h(t) = min{fo(t), ... , fn-i (t)}. (1)

Define a piece of the minimum function generated by F t.o consist of
a description of some f; and an interval I C [O, oo) such that h = f;

identically on I and such that h is not identically equal to any f; over
any interval J C [O,oo) such that I is properly contained in J. A
piece of the mazimum function generated by F is defined similarly.

If hi(t) and h2(t) are real-valued functions defined on [O, oo) whose
pieces are generated by a family of functions F, then a piece of hi - h2
generated by difference. of member• of F consists of a description of

a function g and an interval I C [O, oo) such that

1. there exist fi, /2 E F such that g = fi - /2 identically on [O, oo),

2. hi - h2 = g identically on I, and

3. hi - h2 is not identically equal to g on any interval J c [O, oo)
such that I is a proper subset of J.

Many of our algorithms have processor requirements related to the
number of pieces of a minimum function h(t). Let A(n,s) be the max­

imum number of pieces of functions h(t) = min{/o(t), ... , fn-i(t)},
where the maximum is taken over all sets F = {fo, ... , fn-i} of con­
tinuous real-valued functions defined on [O, oo), no pair of which in­
tersects more than 1 times.

To describe the behavior of A(n, s), we use the "inverse Ackermann
function" a(n), a description of which is given in [Hart86]. Note that
a(n) is a monotone nondecreasing function that grows to oo extremely
slowly. For example, [Hart86) shows that

a(n) ~ 4 for n ~ 22· , (the number of 2's in the tower is 65536,)

and that if we denote log<iJ n =log n, and more generally, log(k+i) n =
log(log<•) n) for integer k > 0, then

a(n) = O(logUl n) for all integer j > 0.

Theorem 2.1 The following reshlta concerning the function A(~1 s)
are known. ,

1. A(n, 1) = n and A(n, 2) = 2n - 1 [Dave65).

2. A(n, 3) = 0(na(n)) [Hart86].

3. Fors 2'. 3,A(n, s) = O(na(n)) (this follow• from the
previous result and the fact that A is an increasing
function of 11}, and

4· Fors 2'. 31 A(n, s) = O(n [a(n)JO(a(n)'-'l) [Shar87].

•
For all problems considered in this paper that use the function

A(n, s), the parameters will be a bounded integer. Under such circum­
stances, the above implies that for "reasonable" values ofn, A(n,s) is
essentially e(n).

The next result gives a property that will be useful for bound­
ing the number of processors in the algorithm associated with Theo-

324

rem 3.2 for constructing the min function.

Lemma 2.2 [Boxe87a] For all positive integers n ands, 2A(n,s) ~

A(2n,a). •

An interval is nondegenerate if and only if it contains more than
one point. Two intervals have a nondegenerate intersection if and
only if their intersection contains a nondegenerate interval. If p is a
piece of a function f and q is a piece of a function g, we say p and q

have nondegenerate intersection if and only if the interval of p and the
interval of q have nondegenerate intersection. The next two results
give useful bounds on the number of pieces in a "combined" fuliction.

Lemma 2.3 [Boxe87a) Let f(t) and g(t) be real-valued functions de­
fined for all t 2'. 0. Let m and n be positive integers. Suppose f(t)
has m pieces and g(t) has n pieces. Then the pieces of f(t) have,
altogether, at most m + n nondegenerate intersection• with the pieces

of g(t). •

Lemma 2.4 [Boxe87a) Let p ands be positive integer1. Let f(t) and
g(t) be real-valued function• defined for all t 2'. 0. Suppo1e that for
every piece of both f(t) and g(t), the function of the piece i1 a polyno­
mial whose degree is at most s. ABlume that the pieces of f(t) have p
nondegenerate intersections with the pieces of g(t). Then the function

min{f(t),g(t)} ha1 no more than p(s + 1) piece1. •

2.4 Datfi movement operations

Our algorithms are given in terms of machine independent fundamen­
tal data movement operations. We assume data values are distributed
among the n PEs of a parallel machine so that no PE has more than
0(1) elements. The operations are performed simultaneously within
disjoint strings. (Notice that the entire machine corresponds to a
single string.)

Operations not based on sorting include semigroup computation
and broadcast. Each of these may be implemented on a mesh in
0(ni/2) time and on a hypercube in e(log n) time.

Sort-based operations include sorting, concurrent read, concurrent
write, parallel prefix, grouping, and splitting the data evenly among
the processors. Each of these may be implemented on a mesh in
0(nif2) time, on a hypercube in 0(log2 n) time, and on a hypercube
in expected 0(logn) time.

See [Mill88a] for descriptions of these operations and details con­
cerning the implementations and proofs of the algorithms.

3 Constructing the MIN function

In this section, we show how a description of the minimum function
may be constructed efficiently, under relatively mild restrictions, from
descriptions of a set of real-valued functions .

The proof of Lemma 3.1 gives an algorithm to construct a descrip­
tion of the function min{f(t),g(t)}. This algorithm can also be used
to construct a description of the function that resul.ts from applying
a,ny of a variety of operations (e.g., max, sum, product) to a pair of
real-valued functions.

If I is a subset of the domain of the function f(t), we denote by
fl1 the re1triction off to I. That is, fl1 is the function whose domain
is I such that fl1(t) = f(t) for all t EI.

Lemma 3.1 Let ct be a family of real-valued functions defined on
(0, oo). Let f(t) and g(t) be real-valued function1 defined on [O, oo)
by pieces generated by ct. Let s be a positive integer. Suppose the
function of every piece of f(t) and of every piece of g(t) has a 0(1)
storage description and can be evaluated for a given t in 0(1) time by
a •ingle processor. Suppo•e that if I is the nondegenerate intersection
of the intervals of apiece of f(t) and apiece ofg(t), andF andG are
members of ct such that fl1 = F identically and gl1 = G identically,

then there are at moat s solutions to the equation F(t) = G(t), and
these 1olutions may be calculated by a single proceasor in 0(1) time.
Suppose m is a positive integer 1uch that the total number of pieces
off and g is at moat m. Suppose the piece• off and the piece• of
g are stored in disjoint strings of a mesh of size m or a hypercube of
size m, at most one piece per PE. Then a description of the function

h(t) = min{f(t), g(t)} can be constructed by the mesh in O(m112)

time; by the hypercube in 0(log2 m) time; and by the hypercube in

ezpected 0(log m) time.

Proof: The general algorithm is given in 8 steps.

1. Since the pieces off and the pieces of g are in disjoint strings,
there is a PE., such that, without loss of generality, pieces off
are stored in PEs whose labels are at most z and pieces of g are
stored in PEs whose labels are greater than z. Broadcast z to

all PEs.

2. In parallel, each PE containing a piece off or a piece of g creates
two sort-records, Left and Right, each containing the following

information.

• A tag whose value is "Left" in Left records, "Right" in
Right-records.

• A source field, whose value is the index of the PE.

• A description of the piece.

• An endpoint field, whose value is the left endpoint of the
interval of the piece for the Left records, the right endpoint

for the Right records.

• An "other_piece" field, initially undefined.

3. Sort all of the Left and Right records together with respect to
the endpoint field. Ties should be broken in favor of a Right
record.

4. A string off is a string whose first PE contains a Left record

off and whose last PE contains a Right record off such that
no intermediate PE contains a record off. Records off are

recognized by having source ::;; z. A string of g is defined anal­
ogously. Use a concurrent read so that each Left record off
(respectively, g) finds the PE-index of its corresponding Right
record off (respectively, g). In parallel, the first PE of each
string off broadcasts throughout its string a description of its
piece of f, which is taken by each record of g in the string as
its other_piece field. In parallel, the first PE of each string of g

broadcasts throughout its string a description of its piece of g,

which is taken by each record off in the string as its other_piece
field.

5. A concurrent read is performed based on the source field so

that each PE gets back copies of the records it started with

325

in Step 2, with all components now defined. Thus each PE

containing a piece of f (respectively, g) now knows the left­

most and right-most pieces of g (respectively, I) with which its
piece has nondegenerate intersection.

6. We now construct the "subpieces" determined by nondegenerate
intersections of a piece of f and a piece of g. All PEs act in
parallel as follows.

If PE; contains a piece p; off, then PE; handles the leftmost
and rightmost nondegenerate intersections of p; with pieces of

g by performing the following three steps, once for the record
with tag "Left" and once for the record with tag "Right."

(a) Compute the intersection, I, of the intervals of p; and the
tag-record's other_piece.

(b) Determine the (at mosts) solutions to the equation fl 1(t) =
gl1(t).

(c) The roots found in (b) determine at most s + 1 closed
nondegenerate subintervals of I with disjoint interiors. For
each such subinterval J, detennine which of fl1 and gl1

is minimal by comparing f(t1) and g(t1), where tl is any
interior point of J.

Let p be a piece of f and let q be a piece of g such that
p and q have nondegenerate intersection and q is neither the

leftmost nor the rightmost piece of g whose intersection with
p is nondegenerate. Then the interval of q is contained in the
interval of p. Hence, in the PE in which q is stored, the Left­

record and Right-record have identical other_piece fields. Such

processors PE; perform the following two steps.

(a) Determine the (at mosts) solutions to the equation /l1(t) =
gl1(t), where J is the interval of the piece of g.

(b) The roots found in (a) determine at mosts+ 1 closed non­

degenerate subintervals of J with disjoint interiors. For
each such subinterval K, determine which of /IK and glK
is minimal by comparing f(tK) and g(tK), where tK is any
interior point of K.

Suppose f has u pieces generated by ct and g has v pieces gen­
erated by ct. By Lemma 2.3, the intervals of the pieces off and

the intervals of the pieces "of g have at most u + v nondegenerate

intersections. By Lemma 2.4 there are at most (a + 1) (u + v)
subpieces determined in this step. Since the pieces off and the

pieces of g were stored one per PE, there are 0(1) subpieces per
PE.

7. Sort the subpieces (their intervals have disjoint interiors) from

left to right so that the subpieces end up in a string such that
each PE of the string has at least one and at most s+ 1 subpieces.

8. At this point, there may be adjacent subpieces with the same
function F(t). Such pairs should be joined into a single piece.

I.e., ifthere are subpieces of the form (F(t), [a, b]) and (F(t), [b, cl)
or (F(t), [b, oo)), they are joined as (F(t), [a, cl) (respectively,
(F(t), [a, oo))). Adjacent subpieces that have the same function
may be joined by creating strings ofsuch functions, broadcasting
the first and last interval to all PEs in the string, letting the first

PE in the string create a description of the combined subpiece,
and using a parallel prefix to pack the final set of intervals.

For the mesh: Step 1 requires 0(mi/ 2) time. Steps 2 and 6 require

0(1) time. Sorting (Steps 3 and 7) requires O(mi/2) time. Concurrent

reads (Steps 4 and 5) require O(mi/2) time. The broadcasting in
Step 4 requires 0(mi/2) time. Step 8 can be implemented by grouping

and parallel prefix operations, both of which require O(mi/2) time.
Therefore, the running time of the algorithm is O(mi/2).

For the hypercube: Step 1 requires 0(log m) time. Steps 2 and

6 require 0(1) time. Sorting (Steps 3 and 7) and concurrent reads

(Steps 4 and 5) require 0(log2 m) time, expected 0(logm) time. The

broadcasting in Step 4 takes O(logm) time. Step 8 can be imple­
mented by grouping and parallel prefix operations, both of which re­
quire 0(log2 m) time, expected 0(logm) time. Therefore, the running

time of the algorithm is 0(log2 m), expected 0(logm). •

It should be noted that for some of our algorithms, running times

for the mesh are given in 0-notation, while all running times for
the hypercube are in 0-notation. This is because min{fo, ... , f,,_i}

may have less than A(n, k) pieces, in which case it may be possible

to use a submesh and obtain asymptotically faster running times.

The same is not true of the hypercube. Roughly, this is because

Ai/2(n,k) # 0(nif2), while logA(n,k) = 0(logn).

Constructing the minimum function for a pair of functions, as de­
scribed above, is part of a recursive algorithm for describing the func­

tion h(t) of Equation (1). An efficient description of h(t) is obtained

by means of the algorithm associated with Theorem 3.2.

Since the number of PEs in a mesh must be a power of 4, define

Since the number of nodes in a hypercube must be a power of2, define

Note Am(n,s) ~ A(n,s), Ah(n,s) ~ A(n,s), Am(n,s) = 0(A(n,s)),

and Ah(n, s) = 0(A(n, s)).

Theorem 3.2 Let Jo, ... , fn-i be continuous real-valued functions
defined on [O, oo), no distinct pair of which intersects more than s
times. Assume a) each f; has a 0(1) storage description, b) each
f;(t) may be calculated in 0(1) time for a given t by a single pro­

cessor, and c) for every distinct pair f; and f;, the {at most s} real
solutions to f;(t) = f;(t) can be computed in 0(1) time by a single

processor. Suppose descriptions of Jo, ... , fn-i are stored one per PE
in a mesh with Am (n, s) P Es or in a hypercube with Ah (n, s) P Es.
Then the minimum function h(t) can be constructed by the mesh in
O(,\i/2(n, s)) time; by the hypercube in 0(1og3 n) time; and by the
hypercube in ezpected 0(log2 n) time. At the end of the algorithm, the
description of h(t) is given with the pieces ordered by their intervals,
one piece per PE.

Proof: A general algorithm is given in 3 steps.

1. Split the descriptions of {10 , Ji, ... , f,,_i} evenly among the pro­

cessors.

2. Recursively, and in parallel, have the string with fo, ... , frn>'l
construct the ordered pieces Pl, ... , Pu for

hi(t) = min{fo(t), ... , fr"?l (t)}

326

generated by {10 , •• ., fr.!!.:..!.l }, while the string with the func-
• > •

tions fr"?l+l' ... , fn-i constructs the ordered pieces qi, ... , q,

representing

h2(t) = min{fr.;ii+i (t), ... , fn-i(t)}

generated by {fr.;ii+i(t), .. .,f,,_i(t)}. Since u,v:::; ,\(n/2,s),
then from Lemma 2.2, each of the PEs is responsible for at most

one piece of a minimum function.

At the end of this step, descriptions of the pieces {Pi, ... ,p,,}
and {qi, ... , q.} are ordered by their intervals in disjoint strings,
each consisting of half of the PEs.

3. Describe h(t) = min{hi(t), h 2(t)} by the algorithm of Lemma 3.1.

Let T(n) be the running time of the algorithm. For the mesh we
have the following analysis. Step 1 requires O(,\i/2 (n, s)) time. Step

2 is a recursive call. Since we have u + v :::; 2A(n/2, s) :::; ,\(n, s),
the latter inequality by Lemma 2.2, it follows from Lemma 3.1 that
Step 3 requires O(,\if2(n, s)) time. Therefore, the running time of the

algorithm satisfies the recurrence T(n) = T(n/2) + O(Aif2 (n, s)). It
follows from Lemma 2.2 that T(n) = 0(Aif2(n, s)).

For the hypercube we have the following analysis. Step 1 requires

0(log2 n) time, expected 0(1og n) time. Step 2 is a recursive call.

Step 3 requires 0(log2 n) time, expected 0(logn) time, by Lemma 3.1.
Therefore, the running time of the algorithm satisfies the recurrence

T(n) = T(n/2)+0(Iog2 n), which is 0(log3 n). The expected running

time satisfies T(n) = T(n/2) + 0(1og n), which is 0(1og2 n). •

The function f(t) has a jump discontinuity at u if both limh,,+ f(t)

and limt-u- f(t) exist, and limt-u+ f(t) # limt-..- f(t). The real­
valued function f(t) whose domain is a subset of [0, oo) has a transi­

tion at t 0 [Atal85J if and only if

• t 0 > O, and

• there exists Ii > 0 such that either

1. for all t such that 0 < t < li,f(t0 -t) is defined and f(to+t)
is undefined, or

2. for all t such that 0 < t < Ii, f(t 0 - t) is undefined and

f(to + t) is defined.

Lemma 3.3 [Boxe87a) Let k be a positive integer. Let fo, ... , fn-i
be real-valued functions of time such that {a) every f; is continu­
ous ezcept for at most p; jump discontinuities, {b} every f; has at
most q; t,ransitions, where (c) p; + q; :::; k 1 and { d) no pair of dis­

tinct functions f; and f; intersect more than s times. Then h(t) =
min{fo(t), ... ,J,,_i (t)} has no more than ,\(n, s+2k) pieces generated

by {fo, · · ·, fn-i}· •

Theorem 3.4 Let k be a positive integer and let fo, ... , fn-i be as
in Lemma 3.3. Assume also that the f; satisfy a), b}, and c) of Theo­

rem 3.2. A description of the function h(t) = min{fo(t),. · ·, fn-i (t)}
can be given in O(,\if2 (n, s+2k)) time by a mesh of size Am(n, s+2k)
so that the pieces are ordered, one per PE. A description of the func­
tion h(t) can be given in 0(1og3 n) time, and in ezpected 0(log2 n)

time, by a hypercube of size Ah(n, s + 2k) so that the pieces are or­

dered, one per PE.

Proof: The assertion may be proved by an argument that is

virtually identical to that given for Theorem 3.2. •

4 Transient Behavior Computations

We apply the results of the previous section to dynamic systems of

point-objects, showing how to determine geometric properties of the

system.

4.1 Closest Points, Farthest Points, and Collision

Let S be a sequence of points closest, say, to P0 , listed in chronological

order. That is, the first member of Sis a closest point to Po at time

t == 0, and the last member of Sis a closest point to Po as t approaches

infinity. Let S' be a sequence of "farthest" points from P0 , listed in

chronological order.

Theorem 4.1 For a •ystem of n points in d-dimensional space with

k-motion, each of S and S' can be constructed on a mesh of size

Am(n-1, 2k) in 0(,\112 (n-1, 2k)) time; on a hypercube of size ,\h(n-

1, 2k) in El(log3 n) time; and on a hypercube of size Ah(n - 1, 2k) in

ezpected E>(log2 n) time.

Proof: Let do; (t) be the Euclidean distance between points Po

and P; at time t. Then each d~;(t) is a polynomial of degree ~ 2k.

We give an algorithm in 3 steps for constructing S. A similar
algorithm may be used to construct S'.

1. Broadcast a description of function / 0 so that, without loss of

generality, PE; has descriptions of the distinct pairs (10 , f;), 0 <
j < n.

2. In parallel, each processor PE; constructs the function d5; (t)
from fo and/;.

3. Construct the min function h(t) of the family of functions d~;(t)

by the algorithm of Theorem 3.2. For each piece of h(t), a pair

of points that yielded the piece corresponds to an element of S.

For the mesh we have the following analysis. Step 1 is accomplish

in 0(,\112(n -1, 2k)) time. Step 2 is accomplished in El(l) time. Step

3 requires 0(,\1l 2(n- l, 2k)) time by Theorem 3.2. Thus, the running
times for the mesh are as claimed.

For the hypercube we have the following analysis. Step 1 is accom­

plish in El(log n) time. Step 2 is accomplished in El(1) time. Step 3

requires El(log3 n) time, and expected El(log2 n) time, by Theorem 3.2.

Thus, the running times for the hypercube are as claimed. •

Sometimes it is more important to determine whether or not two

points collide rather than which pair is closest. Define points P; and

P; to collide at time t if and only if f;(t) == f;(t).

Theorem 4.2 Assume that a system of n points in d-dimensional

space with k-motion is given. Then a chronological list of times at

which Po collidea with any other point of the syatem can be created
in El(n112) time on a mesh of size 4flog• nl; in El(log2 n) time on a

hypercube of size 2flog,nl; and in ezpected El(logn) time on such a
hypercube.

Proof: We observe that Po and P; (j > 0) collide if and only if

d~;(t) == 0 has a solution for t > 0. Without loss of generality, PE;

327

stores a description of f;, 0 ~ i < n.

The algorithm is given in 4 steps.

1. Broadcast to each PE a description of / 0 •

2. In parallel, PE;, 0 < i < n, determines d~(t).

3. In parallel, PE;, 0 < i < n, solves d5;{t) == 0 for its at most 2k

roots (since d5;(t) is a polynomial of degree at most 2k) that are

greater than 0.

4. Sort the roots to obtain the desired list.

Each solution in Step 3 represents a collision of Po with another

point-object of the system.

For the mesh, we have the following analysis. Steps 1 and 4 each

require E>(n112) time. Steps 2 and 3 each require El(l) time. Thus,

our algorithm has El(n112) running time.

For the hypercube, we have the following analysis. Step 1 requires

El(logn) time. Steps 2 and 3 each require El(l) time. Step 4 re­
quires 0(log2 n) time, expected E>(log n) time. Thus, the algorithm

has El(log2 n) running time, and expected El(log n) running time. •

4.2 Convex Hull

The convez hull of a set of points S == {P0 , ... , Pn_1 }, denoted hull(S),

is the smallest convex set containing S. A point P; E Sis an eztreme

point or vertez of hull(S) if P; ~ hull(S - {P;}). In this section, we

develop a general parallel algorithm to generate a description of the

intervals of time over which a given point Po E Sis an extreme point

ofhull(S). We also give efficient implementations of the algorithm for

the mesh and hypercube.

Assume k-motion in the plane. Let T;; (t) be the angle made by

rotating the positively oriented horizontal ray with endpoint P; about

P; until the ray contains the line segment from P; to P; at time t. By

convention, -11' < T;;(t) ~ 11'. Formally, if z;(t), z;(t), y;(t), and y;(t)
are the z and y coordinates of the points P; and P;, respectively, at

time t, then

T;;(t) ==

ifz;(t) == z;(t) and y;(t) < Y;(t)
if z;(t) == z;(t) and y;(t) > Y;(t)

if z;(t) < z;(t)

if z;(t) > z;(t) and y;(t) < Y;(t)

if z;(t) > z;(t) and y;(t) > Y;(t)
ifz;(t) == z;(t) and y;(t) == Y;(t).

{ T.· ·(t)
Define G; '(t) == '1

1 undefined
if T;;(t) ~ 0
otherwise.

Define Bi'(t) == { T;;(t) ifT;;(t1 < O
1 undefined otherwise.

Define the functions a;, b;, c;, and d; as follows.

a;(t) == min{G;;(t)jO < j < n, if. j, G;;(t) is defined}.

b;(t) == max{G;;(t)jO < j < n,i f. j,G;;(t) is defined}.

c;(t) == min{B;;(t)jO < j < n, if j, B;;(t) is defined}.

d;(t) == max{B;;(t)jO < j < n, if j, B;;(t) is defined}.

If at time t, G;;(t) is undefined (respectively, B;;(t).is undefined)
for all j, then a;(t) and b;(t) (respectively, c;(t) and d;(t)) are unde­
fined.

Define T = {To;IO < j < n}.

Lemma 4.3 [Atal85], [Boxe87b] For a system of n points with k­
motion, each of the functions a0 , b0 , c0 , and d0 has at most >.(n, 4k)

pieces generated by T. •

Lemma 4.4 [Atal85] Given a set S of n points moving in the plane,
a point P0 is an eztreme point of hull(S) at time t if and only if

1. ao(t) - do(t) 2'. 7r, or

2. bo(t) - c0 (t) ~ 7r, or

3. a0(t) and b0(t) are undefined, or

4. co(t) and d0 (t) are undefined. •

Theorem 4.5 Let S = {Po, ... , Pn-1} be a set of points in the plane
with k-motion. Then the ordered intervals of time during which a
given point P0 is an eztreme point of hull{S) can be determined in

0(>.112 (n,4k)) time on a mesh of size >.m(n,4k); in 0(log8n) time
on a hypercube of size Ah (n, 4k); and in ezpected 0(log2 n) time on a

hypercube of size >.h(n, 4k).

Proof: For each j, 0 ~ j < n, let z;(t) be the z-coordinate of P; at
time t and let Y;(t) be they-coordinate of P; at time t. Observe that
solving To;(t) = Tom(t) me,ans finding instants at which the directed
line segment from Po to P; and the directed line segment from Po
to Pm have equal slopes and are similarly oriented. Finding instants
when the line segments have equal slopes can be determined by solving

[zm(t) - zo(t)][y;{t) - YO(t)] = [z; (t) - zo(t)][ym(t) - YO(t)],

a polynomial equation of degree at most 2k, which we assume can be
solved in 0(1) time by a single PE. Further, determining whether or

not two directed line segments with equal slopes are similarly oriented
can be accomplished in 0(1) serial time. It follows that To;(t)

Tom(t) can be solved by a single processor in 0(1) time.
Define

and

Ao(t) = {
0
1 if a0 (t) - do(t) 2'. 7r

otherwise,

Bo(t) = { 01 if bo(t) - co(t) ~ 7r
otherwise,

Co(t) = { 01 if both ao(t) and b0 (t) are undefined
otherwise,

D (t) = { 1 ifboth.co(t) and d0 (t) are undefined
0 0 otherwise.

Our general algorithm is given below.

1. It is shown in the proof of Lemma 4.3 [Boxe87b] that each
Go; (similarly, each Bo;) has at most k values of t that yield
jump discontinuities or transitions. Construct the functions

ao(t), bo(t), co(t)~ and do(t).

2. From Lemma 4.3 and Lemma 2.3, each of a 0(t) - do(t) and

bo(t)- c0 (t) has no more than 2>.(n,4k) = O(>.(n,4k)) pieces
generated by differences of members of T. Construct the ordered

328

pieces of the functions ao(t) - d0(t) and b0 (t) - eo(t). Similarly,
construct the O(>.(n, 4k)) ordered maximal intervals on which
a0(t) and b0 (t) are both undefined (respectively, on which c0 (t)
and d0 (t) are both undefined).

3. If 11 and 12 are intervals of pieces of ao and d0 , respectively,

where l = 11 n12 is nondegenerate, then (a0 - do)l1(t) = 7r im­
plies there are integers j and m determined by I1 and I2, respec­

tively, such that aol1 =To;, dol1 = T0m, and To;(t) - T0m(t) =
7r. There are at most 2k such instants, and they may be de­

termined in 0(1) time. It follows from Lemma 2.4 that ev­

ery piece of a0(t) - do(t) generated by differences of members
of T yields at most 2k + 1 pieces of A0 (t) generated by the

set of constant functions {O, 1 }. Therefore, Ao(t) has at most
(2k+l) 2>.(n, 4k) = O(>.(n, 4k)) pieces generated by {O, 1}. Sim­
il~rly, B0(t) has O(>.(n,4k)) pieces generated by {O, 1}. Con­
struct descriptions of the functions A0 (t) and B0(t) by using the

algorithm of Lemma 3.1. Similarly, construct the 0(>.(n, 4k))
ordered pieces generated by {O, 1} of each of the functions C0 (t)
and Do(t).

4. It follows from Lemma 2.4 that there are O(>.(n,4k)) pieces
generated by {O, 1} of

Ho(t) = max{Ao(t), Bo(t), Co(t), Do(t)}.

Describe H0(t) via a fixed number of applications of the algo­
rithm of Lemma 3.1. Note that Lemma 4.4 implies P0 is an

extreme point at time t if and only if Ho(t) = 1.

5. Pack the intervals for which H 0 (t) = 1 into a string by sorting
in order to obtain the desired sequence of intervals.

For the mesh: Step 1requires0(>.112(n, 4k)) time, by Theorem 3.4.
Steps 2, 3, and 4 each require 0(>.112 (n, 4k)) time, by Lemma 3.1.

Step 5 requires 0(>.112 (n, 4k)) time. Hence the running time of the

algorithm is 0(>.112(n, 4k)).
For the hypercube: Step 1 needs 0(log3 n) time, expected 0(log2 n)

time, by Theorem 3.4. Steps 2, 3, and 4 each needs 0(1og2 n) time,

by Lemma 3.1. Step 5 needs 0(log2 n) time. Hence the running time

of the algorithm is 0(log3 n), expected 0(log2 n). •

4.3 Containment Problems

In this section, we address a variety of problems concerning shapes
and sizes of containers into which a dynamic system of points will fit.

We assume k-motion in d-dimensional space, for fixed k and d.

Let J be the ordered list of intervals of time during which the
points P0 , ••• , Pn-l can be enclosed within a rectilinear, iso-oriented
hyperrectangle (a d-dimensional analog of a box with sides parallel or
perpendicular to each of the coordinate axes) of given fixed dimen­

sions.

Theorem 4.6 For a set of n points with k-motion in d-dimensional
space, the ordered aequence J can be constructed on a mesh of size

>-m(n, k) in 0(>.112 (n, k)) time; on a hypercube of size >.h(n, k) in
0(1og3 n) time; on a hypercube of size >.h(n,k) in ezpected 0(log2 n)

time.

Proof: For 1 ~ i ~ d, let p; : JRd -+ IR be the i'h coordinate

function. That is, for a point X = (z1, ... , zd), p;(X) = z;. Note
that for each i and j, a description of p;(f,(t)) is stored in the PE
containing a description of fj. Define

m;(t) = min{p;(fo(t)), ... ,p;(fn-1(t))},

and

M;(t) = ma.x{p;(fo(t)), ... ,p;(fn-1(t))}.

Our algorithm is given below.

1. Describe the functions m1(t), ... , md(t), M1(t), .. ., Md(t) using
the algorithm of Theorem 3.2, such that each of m; and M;,

1 ::;'. i ::;'. d, has at most A(n, k) pieces generated by F; =
{p;(fo(t)), ... ,p;(fn-1(t))}.

2. Construct descriptions ofa.11 the functions D;(t) = M;(t)-m;(t),
1 ::;'. i ::;'. d, (D; (t) is the maximum separation in the ;th coordi­

nate among the points {P0 , ••• , Pn-l} at time t), by the algo­
rithm of Lemma 3.1. It follows from Lemma 2.3 that each D;(t),

1 ::;'. i ::;'. d, has at most 2A(n, k) pieces generated by differences
of pairs of members of F;.

3. Let X; be the length of the hyperrectangle in the i'h coordinate,
1 ::;'. i ::;'. d. Then for each i, 1 ::;'. i ::;'. d, the function

W;(t) = { 1 if D;(t). ::;'. X;
0 otherwise

has at most 2{k + l)A(n,k) pieces generated by the set of con­
stant functions {O, 1}, by Lemma 2.4. Describe W1(t), ... , Wd(t)

by the algorithm of Lemma 3.1.

4. Let C(t) = min{W1(t), ... , Wd(t)}. Notice that C(t) = 1 if

and only if {Po, ... , Pn-1} will fit inside a hyperrectangle of
the given fixed dimensions at time t. Describe C(t) from de­
scriptions of the set of functions {W1 (t), ... , Wd(t)}. This is
accomplished by performing 0(logd) = 0(1) stages of the algo­
rithm of Lemma 3.1, where at each stage, pairs of functions are
combined.

5. The (ordered) intervals of the pieces of C(t) for which C(t) = 1
form the desired sequence J. Pack these intervals into a string
via a sorting operation.

For the mesh: Step 1 requires 0(A112(n,k)) time by Theorem 3.2.

Steps 2, 3, and 4 require 0(A112(n, k)) time, by Lemma 3.1. Step 5 re­
quires 0(A112 (n, k)) time. Thus the algorithm requires 0(A112(n, k))
time.

For the hypercube: Step 1 uses 0(log3 n) time, expected 0{log2 n)
time. Steps 2, 3, and 4 use 0(log2 n) time, by Lemma 3.1. Step 5 uses
0(log2 n) time. Thus the algorithm requires 0(1og3 n) time, expected

0 (log2 n) time. •

Define

W = {p;{!j(t))Jl ::;'. i ::;'. d, 0 ::;'. j < n}.

Theorem 4.7 Assume a system of points S = {Po,.-.,Pn-1} has

k-motion in d-dimensional space. The function D(t), whose value at

time t is the edgelength of the smallest iso-oriented rectilinear hyper­

cube that will contain S, has O(A(n, k)) pieces generated by differences

of members of W. A description of D(t) can be constructed in an or­

dered fashion on a mesh of size Am(n, k) in 0(A112(n, k)) time; on a

hypercube of size Ah(n, k) in 0(log3 n) time; and on a hypercube of

size Ah(n, k) in ezpected 0(log2 n) time.

329

Proof: We give a general algorithm of 2 steps.

1. Let D1(t), ... , Dd(t) be as in Theorem 4.6. Construct descrip­
tions of D1(t),, .. , Dd(t) via the algorithm of Theorem 4.6. It
was shown in the proof of Theorem 4.6 that each of these func­
tions has at most 2A(n, k) pieces generated by differences of

members of W.

2. Since D(t) = ma.x{D1(t), ... , Dd(t)}, observe D(t) can be de­

scribed from D 1(t), ... ,Dd(t) by performing 0(logd) = 0(1)
stages of the algorithm of Lemma 3.1, where at each stage, or­
dered pieces of pairs of functions are combined. If each func­
tion being combined has no more than cA(n, k) pieces, c a con­

stant, then the maximum of the two functions has no more than

2c(k + l)A(n,k) pieces, by Lemma 2.3 and Lemma 2.4.

Since each of the 0(1) combine steps increases the number of pieces

by no more than a constant factor, the number of pieces of D(t) is

O(A(n, k)).
Our claims concerning the running times follow from Theorem 4.6

and Lemma 3.1. •

We now show how to determine a smallest iso-oriented rectilinear

hypercube that can ever contain the set of points S ={Po, ... , Pn-1}.

Theorem 4.8 Let S be a system of n points with k-motion in Eu­

clidean d-dimensional space. Let Dmin = min{D(t)Jt 2:: O}, where

D(t) is as in Theorem 4. 7. Then Dmin and a time tmin at which

D(tmin) = Dmin can be computed in 0(A112 (n,k)) time on a mesh of

size Am(n, k); in 0(log3 n) time on a hypercube of size Ah(n, k); and

in ezpected 0(log2 n) time on a hypercube of size Ah (n, k).

Proof: We give a general algorithm of 4 steps.

1. Construct a description of D(t) by Theorem 4.7. The function
D(t) has O(A(n, k)) pieces generated by differences of members
ofW, so that responsibility for the pieces is divided evenly among
the PEs in that each PE is responsible for 0(1) pieces of D(t).

2. In parallel, each PE does the following. For each of the pieces
of D(t) for which the PE is responsible, compute the minimum

value of D(t) on the interval of the piece.

3. In parallel, each PE determines the minimum of its pieces' min­

ima, and a time when the minimum occurs.

4. Compute the minimum of all the PEs' minima, Dmin1 with a

minimizing time being recorded.

For the mesh: Step 1 requires 0(A112 (n, k)) time, by Theorem 4.7.
Step 2 may be done, using well-known principles of calculus, in 0(1)
time. Step 3 requires 0(1) time. Step 4 requires 0(A112 (n, k)) time.
Hence the algorithm requires 0(A112 (n, k)) time.

For the hypercube: Step 1 uses 0(log3 n) time, expected 0(log2 n)

time, by Theorem 4.7 .. As with the mesh, Step 2 requires 0(1) time.
Step 3 requires 0(1) time. Step 4 requires 0(log n) time. Hence the
algorithm requires 0(log3 n) and expected 0(1og2 n) time. •

5 Steady-State Computations

We use the term "steady-state" to refer to conditions as t (time)
approaches infinity. In this section, we give parallel algorithms for

determining steady-state properties of dynamic systems, mostly in

the plane. Due to space limitations, we omit the proofs.

The algorithms in this section are adapted from [Boxe87a, Mill86,

Mill88a, Mill88b, Mill88c, Sanz87, Sham75].

Theorem 5.1 Let k and d be fized integers such that k ?.: 0 and d > 0.
Given a set of points {Po, ... , P,._1} with k-motion ind-dimensional

space, a steady-state nearest (farthest) neighbor to a given point Po
can be determined on a mesh of size 4flog,nl in E>(n112) time and on

a hypercube of size 2flog,nl in E>(logn) time. •

Theorem 5.2 For a system ofn points with k-motion in the plane, a
steady-state closest pair can be identified by a mesh of size 4flog, "l in
E>(n112) time; by a hypercube of size 2flog,nl in E>(log2 n) time; and

by a hypercube of size 2fiog, nl in ezpected E>(log n) time. •

Theorem 5.3 For a system S ofn points with k-motion in the plane,

the steady-state hull(S) can be constructed by a mesh of size 4flog, nl

in E>(n112) time; by a hypercube of size 2fiog, n] in E>(log2 n) time; and

by a hypercube of size 2flog,n] in ezpected E>(logn) time. •

Theorem 5.4 Let an integer k?.: 0 be fized. Let S ={Po, ... , P,._1 }

be a set of point-objects moving in the plane with k-motion such that

when steady-state is reached, S is the set of distinct eztreme points of

a convez polygon C. The diameter function of C may be determined
in E>(n112) time by a mesh of size 4flog, n]; in E>(log2 n) time by a hy­

percube of size 2flog,n]; and in ezpected E>(logn) time by a hypercube
of size 2flog, nl. •

Corollary 5.5 For a set S of n pointa with k-motion in the plane, a
steady-state farthest pair can be determined by a mesh of size 4flog,"1

in E>(n112) time, by a hypercube of size 2flog, n] in 0(log2 n) time, and
by a hypercube of size 2flog,n] in ezpected E>(logn) time. •

Theorem 5.6 Let S = {P0 , P1 , ••. , P,,_1} be a system of point-objects

in k-motion, where k is a fized nonnegative integer, such that, in

steady-state, S is the set of distinct eztreme points of a convez poly­
gon C. A rectangle of minimum area enclosing all the points of C

may be determined by a mesh of size 4flog, n] in 0(n112) time; by a

hypercube of size 2flog, n] in E>(log2 n) time; and by a hypercube of

size 2flog,n] in ezpected E>(logn) time. •

Corollary 5. 7 Let k be a fized nonnegative integer. Let S be a system

of n point-objects in k-motion. Then a description of a steady-state
minimal-area rectangle enclosing all the points of S can be given by a
mesh of size 4flog,nl in 0(n112) time; by a hypercube of size 2flog,n]

in E>(log2 n) time; and by a hypercube of size 2fl0 82"l in ezpected

E>(logn) time. •

References

(Atal85J

[Batc68]

M.J. Atallah, Some dynamic computational geometry

problems, Comp. and Maths. with Appls. 11 (1985),

1171-1181.

K.E. Batcher, Sorting networks and their applications,

Proc. AFIPS Spring Joint Computer Conference, vol. 32

(1968), AFIPS Press, New Jersey, 307-314.

330

[Boxe87a] L. Boxer and R. Miller, Parallel algorithms for dy­

namic systems with known trajectories, Proc. IEEE

1987 Workshop on Computer Architecture for Pattern
Analysia and Machine Intelligence, 37-43.

[Boxe87b] L. Boxer and R. Miller, Parallel dynamic computational

geometry, Tech. Rept. 81-11, Dept. of Comp. Sci., SUNY
- Buffalo, 1987. '

[Dave65] H. Davenport and A. Schinzel, A combinatorial problem

connected with differential equations, Amer. J. Math. 81
(1965), 684-694.

[Hart86] S. Hart and M. Sharir, Nonlinearity of Davenport­

Schinzel sequences and of generalized path compression

schemes, Combinatorica 6 (1986), 151-177.

[Mill86] R. Miller and Q.F. Stout, Mesh computer algorithms

for computational geometry, Tech. Rept. 86-18, Dept. of

Comp. Sci., SUNY - Buffalo, 1986 (accepted for publi­

cation in IEEE T. on Computers).

[Mill88a]

[Mill88b]

[Mill88c]

[Reif87]

[Rein77]

(Sanz87]

(Sham75]

[Shar81]

[Yagl61]

R. Miller and Q.F. Stout, Parallel Algorithms for Reg­

ular Architecture•, MIT Press, Cambridge, Mass., 1988,
to appear.

R. Miller and Q.F. Stout, Convexity algorithms for par­

allel machines, Proceedings 1988 IEEE Conference on

Computer Vision and Pattern Recognition, to appear.

R. Miller and Q.F. Stout, Computational geometry on
hypercube computers, Proc. of The Third Conference

on Hypercube Concurrent Computers and Applications,

1988, to appear.

J.H. Reif and L.G. Valiant, A logarithmic time sort for

linear size networks, JACM 34 (1987), 60-76.

E.M. Reingold, J. Nievergelt, and N. Deo, Combinatorial
Algorithms, Prentice Hall, New York, 1977.

J.L.C. Sanz and R.E. Cypher, Data reduction and fast

routing: a strategy for efficient algorithms for parallel

message-passing computers, Tech. Rept., Computer Sci­

ence Dept., IBM Almaden Research Center, 1987.

M.I. Shamos, Geometric complexity, Proc. 7th Annual

ACM Symposium on Theory of Computing (1975), 224-

233.

M. Sharir, Almost linear upper bounds on the length of

general Davenport-Schinzel sequences, Combinatorica 1

(1987), 131-143.

I.M. Yaglom and V.G. Boltyanskii, Convez Figures,

Holt, Rinehart and Winston, New York, 1961.

* 1/0 EMBEDDING IN HYPERCUBES

AL.Narasimha Reddy, P.Ban.erjee

Computer Systems Graup
Coordinated Science Lab

University of Illinois
1101, W .Springfield Ave.

Urbana, IL 61801

ABSTRACT

Many multiprocessor systems based on the
hypercube or binary n-cube topology have been built
recently. In. such systems, 1/0 processors are used to
handle the data transfer between the processors and the
outside world or the host. In this paper, we propose a
method of embedding the 1/0 processors in such a
system. The proposed method is shown to require far
fewer links than the earlier methods. It is also shown
that the new method achieves a higher I/O adjacency,
and as a result higher degree of tolerance of I/O failures.
Necessary and sufficient conditions are derived to obtain
such an embedding. A generalization of the problem to
k-regular networks is presented and necessary conditions
are derived for 1/0 embedding in such a network. It is
shown that embedding in a general k-regular network is
NP-complete. An algorithm is presented for finding a
minimal embedding in a k-regular network.

1. INTRODUCTION

A binary n-cube consists of 2n processors intercon­
nected in an n-dimensional binary cube topology. Each
processor in such a system has its own memory and the
processors communicate by message passing. A processor
in an n-cube can be represented by an n-bit string,
P1P2 • • • Pn• Each processor is adjacent to a processor
along the n dimensions. Speciftcally, a processor
CP1P2 · • • Pn) is adjacent to CP1P2 • • • Pn), CP11'2 • • • Pn),
... ,(P1P2 • • • Pn). Binary cubes are known to have several
useful properties, namely a high degree of connectivity,
fault tolerance, low diameter, etc. Several problems such
as sorting, FFf are known to map well on to the hyper­
cubes. Different interconnections such as a linear array,
mesh are known to map easily onto the hypercube inter­
connection. Several hypercube systems are built recently
[1,2,3,4]. One issue that has not been addressed
effectively in the past is the support of efficient 1/0
operations in multiprocessors. The importance of balanc­
ing I/O bandwidth and computational power has been
pointed out by Kung [5].

This research wu supported in part by the National Science Foundation
Presidential Young Investigator Award under Grant NSP MIP 86-57563 PYI,
and in part by the Semiconductor Research Corporation under Contract SRC
86-12-109.

331

Santosh G. Abraham

Dept. of Elec. Engg. &Comp .. Sci,'
University of Michigan.

1301 Beal. Ave.
Ann Arbor, MI 48109

1/0 processors are used for transferring data
between the hypercube nodes and the outside world and
the host. This is to be distinguished from the 1/0
hardware that is required for communication between
the processors. 1/0 communication is required to distri­
bute data and code to the processors before the computa­
tion and to receive the results after the computation has
been completed. Each processor in the system is con­
nected to an I/O processor and the 1/0 processor handles
all the data transfer between that processor and the out­
side world. In this paper, we propose a method to connect
the I/O processors and processors together to build a sys­
tem with a higher degree of I/O adjacency and a higher
degree of fault tolerance. The Intel iPSC system uses 1/0
hardware within each processor for I/O communication
using the ethernet protoco1[2]. In the NCUBE system, an
I/O processor is connected• id' a. Subcube of 8 processors
and the I/O processors are the~selves interconnected par­
tially [1]. Our method uses the' system links efficiently
for both the I/O and processor-to-processor communica~
tion. The proposed method requires no explicit
processor-to-1/0 processor links. It is also shown that our
method achieves a higher processor-to-I/O processor adja­
cency and as a result higher tolerance of I/O failures. In
a related recent work, the hypernet architecture has been
proposed [6] for maintaining a constant node degree. The
hypernet architecture provides a set of nodes explicitly
meant for performing 1/0 operations in a concurrent
manner. However, that work on I/O embedding is appli­
cable only to the hypernet topology and the 1/0 embed­
ding itself has not been evaluated. Our method can be
directly used in the hypercubes with minor modiftcations
to the architecture.

Embedding general graphs onto the hypercube topol­
ogy is known to be an NP-complete problem [7]. Embed­
ding arbitrary meshes onto hypercubes is reported in [8].
Several numerical computations have been mapped onto
the hypercube topology [9, 10].

The new method of connecting 1/0 processors and
processors is presented in Section 2. Necessary and
sufficient conditions are derived for embedding 1/0 pro­
cessors in such a manner. Section 3 looks at the advan­
tages and disadvantages of the proposed method. In Sec­
tion 4, we consider a generalization of the proposed
method to a k-regular interconnection network and
derive some necessary conditions.

2. 1/0 EMBEDDING

DEFINITION 1: 1/0 embedding is the problem of
mapping I/O processors onto a multiprocessor system
such that each processor in the system is adjacent to at
least one I/O processor.

Consider embedding I/O processors in a k-cube mul­
tiprocessor. The 1/0 processors are embedded in the sys­
tem along with the processors. The system will then con­
sist of two types of nodes 1) processor nodes, P-nodes
and 2) 1/0 processor and processor nodes, I-nodes. The
processor and I/O processor share the links to the I-node
through a switch as shown in Fig.l. The switch can con­
nect any of the system links to the processor or I/O pro­
cessor and the processor to the I/O processor. The impli­
cations of sharing the links by 'tiie processor and the I/O
processor are discussed in Section 3. But we briefly note
that in a model of computation where each node receives
the data it has to operate on and after carrying out the
computation, sends the results back to the host, I/O com­
munication and interprocessor communication do not
overlap. Hence, sharing links does not result in conges­
tion. Since each I-node also contains a processor, the cube

1 2 .. k 1 2 .. k

Switch

Proc. 1/0 proc. Proc.

I-node P-node

Fig.1. Architecture of the nodes.

topology of the multiprocessor is not disturbed and hence
the proposed architecture will retain all the desirable
properties of a binary cube such as ease of problem map­
ping. Each node in a k-cube has k neighbors. Hence each
I-node is adjacent to k nodes. So an I/O processor in an
I-node can serve as an I/O processor to its k neighbors
and the processor in its node. A processor sends data
along the system links with an appropriate tag to indicate
whether the data is meant for the processor or the I/O
processor at that node. At an I-node, the data is appropri­
ately switched to the processor or the I/O processor
depending on the tag. By embedding enough I-nodes
through the hypercube, we can make sure that each pro­
cessor is adjacent to, at least .. one I/O processor. The
advantage of embedding the I/O processors in such a way

332

is that we do not require explicit processor-to-VO proces­
sor links. As a result, we can construct a larger size
hypercube given the same number of links for processor
communication. For example, in the Intel iPSC, there are
eight channels at each processing node, seven of which are
used to connect 128 processors, the eighth to connect
every node to the host. Using our scheme, we can connect
a 256 processor cube using the same number of channels.
Each node in the cube has a register associated with it
which indicates along which dimension it is adjacent to
an I/O processor. Whenever the processor has to transfer
I/O data, the processor sends the data along this dimen­
sion with an appropriate tag to indicate whether it is I/O
data or a message to the processor at that node. The
hypernet architecture [6] also uses two types of nodes,
but the I/O nodes in their architecture are only used for
I/O communication and the architecture is concerned
with maintaining a constant node degree.

DEFINITION 2: A network is said to have a
perfect embedding if it is possible to embed the I-nodes in
the network such that each processor in the system is
adjacent to exactly one I/O processor.

In the remainder of the section we will characterize
when a k-cube can have a perfect embedding.

LEMMA 1: For a k-cube to have perfect embedding,
k = 2! - 1, for some integer l.

PROOF: Each I-node in the system is adjacent to k
processors along the k dimensions of the cube. Moreover,
the I/O processor in an I-node also serves the processor in
its node. Hence, each I/O processor serves (k+l) proces­
sors in the cube. Then, if a perfect embedding exists,
(k+l) should divide the number of processors n = 2k in
the system. Since the number of processors in a hyper­
cube system is always a power of 2, the only factors of n
are some smaller powers of 2. This implies that (k+l) =
21, for some l. o

From Lemma l, for a perfect embedding to exist k =
3, 7, 15, ... A perfect embedding for a 3-cube is shown in
Fig.2. A perfect embedding for a 7-cube, with processors
numbered from 0 to 127, can be obtained by locating the
I-nodes at 0, 7, 25, 30, 42, 45, 51, 52, 75, 76, 82, 85, 97,
102, 120, 127. The next question one would like to ask
is, can we always find a perfect embedding in a k-cube
with k = 21-1. In other words, is this condition sufficient?
The answer to this que8tion is yes and this leads us to the
following lemma:

LEMMA 2: A perfect embedding exists in a k-cube
when k = 21-1.

PROOF: Consider two I-nodes a and b in a perfect
embedding. Then nodes a and b cannot be adjacent. If
they are adjacent, then the processors in nodes a and b are
each adjacent to two I/O processors. By a similar argu­
ment, the neighbors of a cannot be neighbors of b. This
implies that any two I-nodes in a perfect embedding have
to be at a Hamming distance of 3 or greater.

The result follows from the theory of single error
correcting Hamming codes. Each code word is at a Ham­
ming distance of 3 or greater from each other. Hamming
codes are known to be perfect codes [11], i.e., they attain

the upper bound of distance-3 codes that can be found in
a given space. With k=21-1 bits, the number of

2"
distance-3 code words is bounded by UCill and Ham-

ming codes achieve this bound. In such a code space, each
non-code word is adjacent to exactly one code word.
Now the hypercube can be seen as a le-dimensional space
and we can place I-nodes in the code word locations. Each
non-code word can be a P-node and we have the required
perfect embedding in the k-cube when le = 21-1. This
completes the proof. D

THEOREM 1: In a le-cube, k = 21-1 is a necessary and
sufficient condition to find a perfect embedding.

PROOF: From Lemmas 1 and 2. 0

3

7

OP-node O I-node

Fig.2. A perfect embedding in a 3-cube.

The constructive proof of Lemma 2 gives us a way
of finding a perfect embedding in a k-cube. One could also
use a method of sieves [12] to find the locations of the!­
nodes. In such a method, we choose a node in the hyper­
cube space and eliminate (sieve out) all its neighbors and
distance-2 neighbors from the list. Then pick another
node from the list and continue this process till the list is
empty. This method gives a similar embedding that is
obtained by the Hamming codes approach when a perfect
embedding exists. Moreover, this method gives an 1/0
embedding for any k-cube, even when k:;z!:21-1, the
obtained embedding is perfect only if le= 21-1.

By shifting each I-node location in a fixed direction,
we can obtain another perfect embedding of a given cube.
For example, 0 and 7 is a perfect embedding in a 3-cube.
If we shift the I-node along 1-dimension to location 1, by
suitably shifting 7 to location 6, we have another embed­
ding with 1 and 6. We can similarly shift the perfect
em bedding 1 and 6 to another perfect em bedding such as
3 and 4. Hence, we can find a perfect embedding that con­
tains a given node of a hypercube.

DEFINITION 3: If we specify that a particular node i
has to be in the 1/0 embedding, we call such an embed­
ding i-specifted embedding.

333

If we get a perfect embedding only for a few sizes of
the cube, how do we embed the 1/0 processors in cubes of
other sizes? For example, consider a 4-cube. We can view
the 4-cube as a union of two 3-cubes. Use perfect embed­
dings in each subcube to obtain an embedding in the 4-
cube. Such an embedding for a 4-cube is shown in Fig.3.
We notice from the figure that some of the nodes
(2,5,8,15) in the 4-cube are adjacent to two 1/0 proces­
sors. Though we still have the same ratio of 1/0 proces­
sors (1 for every 4 processors), we obtained a higher 1/0
adjacency for some of the processors. This is due to the
fourth dimension links in the 4-cube. Similarly, if we
embed processors in a 5-cube, more processors will have
an 1/0 adjacency of two. The higher I/O adjacency can be
useful in several ways: in increasing the tolerance of the
I/O failures and decreasing the possibility of congestion
at an I-node etc. We can carry out this procedure for any
size cube to obtain an I/O embedding. This leads us to
the question: can we embed the I/O processors systemat­
ically to get an I/O adjacency of two for each processor?
The answer to this question is yes and we give an algo­
rithm to obtain an I/O adjacency of two.

3

7

Fig. 3. An embedding in a 4-cube.

1 Consider I/O embedding in a 2k+l-cube, where k =

2-1. A 2k+l-cube consists of 21c+1 le-cubes. Let these
subcubes be represented by S0 ,S1 ,. • .,S2HL1 • When le =

21-1, we can obtain a perfect embedding of a le-cube. Let
the nodes in each subcube be numbered 0, 1,2 ... 2"-l, with
node i in subcube s1 being the node numbered i+j*2" in
the 2le+l-cube. Each subcube of size le can be embedded
perfectly by Lemmas 1and2. To obtain an embedding in
the 2le+l-cube with an 1/0 adjacency of two, get an i­
specified embedding of subcubes St and S1+2k, for i =

0, 1,. .. 2"-L Within each subcube, each node is adjacent
to exactly one I-node. Now consider nodes within So
with nodes numbered from 0,1,. .. 2". Node 1 is adjacent
to an I-node in the subcube S 1, since it is 1-specifted.
Similarly each P-node in the subcube So is adjacent to
one I-node within the subcube and one I-node in some
other subcube. Since the cube is symmetric, each subcube
has a similar property and hence each P-node in the
2le+l-cube is adjacent to two I-nodes. Since we have
similar embedding in C1.).bes. St. ,and S1+21:, each I-node is

adjacent to another I-node. This completes the proof that
the given algorithm generates an embedding with an I/O
adjacency of two. For each node to have an I/O adjacency
of two the size of the cube also has to be of the form
2z_l. For example, in a 7-cube, each subcube of size 3
has I-nodes along a diagonal and this diagonal is oriented
in different directions in different 3-cubes to get a sym­
metrical embedding with an I/O adjacency of two. A 0-
specified embedding of So gives (0,7), a 1-specifted

embedding of S 1 gives (9,14) and so on. By continuing a
detailed enumeration, we obtain the following I/O
embedding for the 7-cube with an I/O adjacency of two:
(0,7), (9,14), (18,21), (27,28), (36, 35), (45,42), (54,49),
(63,56) and (64,71), (73,78), (82,85), (91,92), (100,99),
(109,106), (118,113), (127,120). We can carry this idea
further to get embeddings with higher I/O adjacency.

Another simpler construction exists which gives an
I/O adjacency of two. Consider a k-cube with k = 21-1.
Find a perfect embedding of the k-cube. From Lemmas 1
and 2, such an embedding exists and we can find it by the
method of sieves or the Hamming code method. Each
node in the cube is adjacent to one of the I-nodes now.
Obtain a new embedding by shifting one of the I-nodes.
Each processor is again adjacent to one I-node in the
second embedding as well. Hence, by overlapping two
embeddings we can obtain an embedding where each node
in the cube is adjacent to two I-nodes in the cube.

It is to be noted that the two methods described
above obtain different embeddings, both with an I/O
adjacency of two. The difference in the two methods of
construction is that the first method starts building from
a subcube, whereas the second method treats the cube as
a whole. The first method is well suited for expanding an
existing system. It is also to be noted that with one I/O
processor for every four processors, a 3-cube has an I/O
adjacency of one and a 7-cube has an I/O adjacency of
two. If one interconnects I/O processors and processors in
the way as it is done in NCUBE, the adjacency remains
the same even in higher dimensional cubes.

3. PRACTICAL CONSIDERATIONS

By placing the I/O processor along with the proces­
sor in a node, we do not require explicit I/O processor­
to-processor links. Thus saved links can be utilized in
building a larger size cube~ For a given number of links
per processor, the proposed method enables connecting a
larger number of nodes together. As we observed, because
of utilizing the system links, as we go to higher dimen­
sions we can achieve a higher I/O adjacency. Higher adja­
cency implies higher tolerance of I/O failures. Each I/O
processor now needs links only for interconnecting with
other I/O processors. Since the I/O processors are
connected to the processors by the system links, we
would need fewer links per I/O processor compared to
other designs. The links on an I/O processor are only
needed for inter-I/O processor communication. In other
words, with the same number of links per 1/0 processor,
we can achieve a higher connectivity between the I/O

processors. Since each processor is adjacent to at least one
I/O processor, an I/O operation would involve a single
message transfer. By appropriately interconnecting the
I/O processors, we can reduce the inter I/O processor
traffic. This design can be seen as an integrated system
design consisting of the processors and the I/O processors.
This is to be contrasted with designing the multiprocessor
system separately and then connecting some I/O proces­
sors to it.

Utilizing the system links for I/O transfer requires
some consideration. We might create congestion along the
links when 1/0 and interprocessor communication have
io take place along the same link at the same time. There
are two reasons to believe that sharing the links for 1/0
and interprocessor communication does not lead to
congestion or a bottleneck. Most problems are solved on a
multiprocessor system in the following manner: 1) Dis­
tribute the data and code to each processor (2) carry out
the computation in a cooperative manner and (3) combine
the results together. Steps 1 and 3 are I/O communication
and Step 2 requires computation and interprocessor com­
munication. Within such a model of solving a problem,
we can see that the 1/0 communication and interproces­
sor communication do not overlap in time. And this leads
us to conclude that the system links can be efficiently
shared for both I/O communication and interprocessor
communication. Besides, the I/O bandwidth required for
most problems is about an order of magnitude smaller
than that of interprocessor communication. Hence, even
when I/O communication may overlap with interproces­
sor communication, this may not lead to a severe strain
on the resources. Another solution can be put forward
for this problem. Give m.tetptocessor communication
priority over I/O communication such that the computa­
tion may not be delayed even in the presence of I/O com­
munication. When the computation is completed, all the
processors need to send the data to an I/O processor. Since
each processor uses a distinct link for I/O communica­
tion, the links will not be congested. However, the 1/0
processor may not be able to receive all the computed
values from all its neighbors at the same time. This
bottleneck is unavoidable and exists in other designs as
well [1,2].

A perfect embedding of a 3-cube gives one 1/0 pro­
cessor for every four processors in the system and simi­
larly a perfect embedding of a 7-cube gives one 1/0 pro­
cessor for every eight processors. Higher ratios can be
easily obtained by superimposing two or more perfect
embeddings -as explained in Section 2. The ratio of I/O
processors to processors in other size cubes depends on
the subcube size (3 or 7) chosen for embedding such a
cube. Smaller ratios than 1 out of 4 cannot be obtained
for cubes of size smaller than 27 •

Since each subcube of size 3 or 7, depending on the
system size, looks like any other subcube, the design can
be made uniform by designing one board for a subcube.
The boards can be connected together to form higher size
cubes. The required design effort may be more than that
of the other designs because of the non-uniformity
among the nodes. The switch hardware needed in an I­
node is an overhead for this organization.

334

A comparison of different I/O embeddings in a /c­
cube is made in Table 1. In the NCUBE design, there
exists one I/O processor for every eight nodes. The
number of links in a le-cube - k2k-l, which is also the
number of links in the proposed method. In NCUBE and
iPSC designs, there is an extra link per processor for I/O
and hence the extra 2k links. The iPSC system uses a bus
to connect all the I/O processors and hence its I/O
bandwidth is a constant, whereas the NCUBE design and
the proposed method enable connecting multiple I/O dev­
ices to each I/O processor and hence the bandwidth is
equal to the number of 1/0 processors. It is seen from the
table that the proposed method achieves same or higher
bandwidth with fewer links. This is achieved by efficient
utilization of the links.

Table 1. Comparison of Different I/O embeddings

Method

iPSC

NCUBE

Prooosed

Node #of links #of

Degree 1/0 proc.

k+1 k2k-1+21: 1

k+l k21:-1+21: 2k-3

k k2k-1 21:-2

4. POSSIBLE PERFORMANCE
IMPROVEMENTS

1/0 BW

1

2k-3

2.t-2

In this Section, we will consider how the proposed
1/0 embedding may affect the performance of the system.
The performance improvements depend whether the
problem is I/O bound or computation bound. Clearly, the
performance improvements will be more pronounced in
an I/O bound problem. We consider an 1/0 bound prob­
lem, matrix-vector multiplication to show the possible
performance improvements by using concurrent 1/0.

Consider multiplying a matrix Anxn by a vector Bn
to generate Cn. Algorithm mapping depends on the
number of processors in the system, size of available
memory at each node and the size of the problem.
Assume that the size of the matrix and the system are
such that, p rows of A and the vector B are mapped to
each node. Assume that the maximum message size is
such that we can send at most k rows as a single message.
Then the total number of messages sent by the host is
given by l = IP /k]*m, where mis the number of processors
in the system. The number p is a function of various
parameters, available memory size at each node, number
of processors in the system, size of the problem etc. and
has to be chosen carefully to minimize the execution time
for the problem. If memory at the nodes is not a problem,
then we can make p = n/m. Then, the data distribution
time is given by, O(l). The computation time is given by,
O(n 2 /m). Once the computation is complete, in a single
host system, the data needs to be collected at one site and
this again incurs an O(l) cost. If m = n, then l = n. If the
relative cost of a message transmission is a compared to a
unit of computation Can addition and a multiplication
here), then the total cost of the algorithm is given by, n +

335

a (2n). When we use an I/O embedding as described in
the paper, the second term in the above cost can be
reduced significantly. Since, we have m/4 = n/4 I/O dev­
ices, the effective cost of th~ alg~rithm will be n +a (2 *
4). This is based on the a5Sumption that the data was
i.nitially distributed among. the.I/O devices such that all
the I/O devices can distribute data in parallel to their
neighboring processors. The speedu) obtained by con-

current I/O is then given by nn'.:dliD . With n - 128, a -
8, we get a speedup of 17 * 128 /192 - 11.33. This
speedup factor is an optimistic measure of improvement
because of concurrent I/O. However, this measure does
reflect the importance of using concurrent I/O.

It is to be noted that, in the above calculation, we
assumed that the data is initially stored on the I-nodes in
the desired way. This raises the important question of
data organization in such a system, with possibly a disk
at each I-node. The pattern of data access during the
algorithm dictates the way the data is to be stored on the
disks. The algorithm, in turn, depends on the way the
data is organized in the system. Hence, the algorithm
design and data distribution problems need to be con­
~idered together. Sometimes, the data needs to be organ­
ized in different ways during different phases of a com­
putation. It is possible to build a system where the I/O
nodes can carry out data reorganization in parallel while
the processors carry out the computation.

An embedding in a 4-cube that enables parallel I/O
operations is shown in Fig.8. We add an extra link
between the two I-nodes in a 3-cube. Thus the two I/O
processors in a 3-cube are directly connected and can
carry out any data transfer between the two I-nodes
while the nodes can communicate in parallel over th~
system links. In the Section 2, we aimed at obtaining an
embedding that utilized minimum number of I/O nodes
such that each processor is adjacent to at least one I/O
processor. As a result, the I/O processors are required to
be at a hamming distance of three or greater from one
another. With an extra link between the two I-nodes in a

3

7

Fig.8. An embedding in a 4-cube

3-cube as shown in Fig.8, the I-nodes can communicate in
an efficient manner. The I-nodes in a 3-cube are seen to be
connected in a 1-cube fashion. When two such 3-cubes
are connected together to form a 4-cube, the I-nodes are
connected in a 2-cube. In general, if an n-cube is built
out of the basic 3-cube, shown in Fig.8, the I-nodes are
connected as a (n-2)-cube. The advantage of such a
conftguration is that any algorithms developed for
efficient data movement over the cube can be used for
data reorganization among the I-nodes since they are now
connected in the form of a cube themselves. The data
reorganization issues are discussed in greater detail else­
where [13]. If the basic 3-cube is initially balanced with
respect to I/O and computation power, any resulting
larger conftguration is seen to have the same desirable
property.

5. GENERALIZATION TO REGULAR
INTERCONNECTION NETWORKS

In this section, we consider generalizing the I/O
embedding idea to a general interconnection network. An
interconnection network is normally regular and we can
represent such a network by a k-regular graph. A k­
regular graph is a graph in which each node has a degree
k. Let the number of nodes in such a graph be n. It is to
be noted that n"¢2k in a general k-regular graph and no
such simple relation exists between n and k. What are the
necessary conditions for a given k-regular graph to have a
perfect embedding?

LEMMA 3: For a given k-regular graph on n nodes to
have a ECrfect embedding, (k+l) should divide n and
nk(k-1)

(k + 1) has to be even.

PROOF: Each I-nod.e ir+ t,l).~ graph serves as an I/O
processor for (k+l) nodes. If· the graph has a perfect
embedding, each node is adjacent to exactly one I-node
and this implies that (k+l) should divide n. Now con­
sider a perfect embedding in a given graph. Since each
P-node is adjacent to exactly one I-node, and the graph is
t-regular, the partition containing only P-nodes has to be

(k-1) regular. There are n - (k:l) - (lc~l) nodes in
this partition. Now counting the degrees on each node, we
require n~i!7)) to be even which is equal to twice the

number of edges within this partition. o

For example, consider the cube-connected cycles [14]
in 3-dimensions. The network has 3* 8 - 24 nodes and
each node has degree of 3 i.e., n - 24 and k ... 3. The
numbers n and k satisfy the given necessary conditions
and a perfect embedding for this network is shown in
Fig.4. Are these necessary conditions sufficient? No. We
give a simple counter example in Fig.5. where n - 12 and
le - 3. Though this graph. satisfies the necessary condi­
tions, no perfect embedding exists.

336

Fig. 4. A perfect embedding in a
cube-connected cycles network.

Fig.5. A Counterexample with necessary conditions.

LEMMA 4: The problem of finding a perfect embed­
ding in a k-regular graph is NP-complete.

PROOF: Given a k-regular graph on n nodes, the
problem of finding a perfect embedding is same as that of
finding a dominating set in that graph. A dominating set
y•cy is a set of nodes such that every node vEV-V' is
adJ;cent to at least one node belonging to V' • A perf~t
embedding requires that every node in the graph be adja­
cent to exactly one I-node and hence the set of I-nodes
forms a dominating set. The perfect embedding problem
now can be seen as the problem of finding a dominating
set V' with IV'I - ~. A perfect embedding requires

\.1c+1,
that V' be both a dominating set and an independent set
and finding such a set is known to be NP-complete [15].
Hence, the problem of finding a perfect embedding in a
le-regular graph is NP-complete. D

However, some of the commonly used networks
such as ring, star, binary tree, and completely connected
networks have simple characterizations for a perfect
embedding. Networks that do not have simple characteri­
zations for a perfect embedding include meshes and
toroids.

DEFINITION 4: A minimal 1/0 embedding is defined
as an 1/0 embedding from which we cannot discard an
I-node and still obtain an 1/0 embedding of the graph.

It is noted that a minimal embedding may not be
minimum or perfect. A minimal embedding requires that
the set of vertices V be partitioned into two sets T, an
independent set and the set of its neighbors N(T) such
that T+N(T) - V. An independent set is a set of nodes
with no edges between them.

LEMMA 5: A graph can always be partitioned into
two sets T, an independent set and N(T), the set of its
neighbors such that T+N(T)- V.

PROOF: If we can partition the graph in such a
manner, then we can make T the set of I-nodes and N(T)
the set of P-nodes to obtain a minimal embedding of the
network. Proof by contradiction: assume that it is. not
possible to partition a graph in such a manner. Consider a
maximal independent set T. If T+N(T);t.V, then there
must exist a third set of vertices S such that T+N(T)+S
= V. The vertices in Sare not adjacent to any vertex in T,
otherwise they would be in N (T). Then we can choose a
vertex u from Sand augment T with it to obtain a larger
independent set contradicting that T is a maximal
independent set. Hence, by contradiction, we can always
find such a partition that gives a minimal embedding of a
given network. D

The proof of Lemma 3 gives us the following algo­
rithm to find a minimal embedding in a given graph.
Choose a node from the set of nodes V. Put this in the set
T and call the set of its neighbors N(T) as shown in
Fig.6. Let S - V-T-N(T). If possible, choose a node
from S that is not in N(N(T)). If not, choose any node in
S. Put this in T and continue as above till the set S is
empty. This algorithm gives a minimal embedding, not a
minimum or perfect embedding. For example, consider a
2-regular bipartite graph on 12 vertices as shown in Fig.7.

I-nodes

0

0

0

P-nodes

T N(T)
Independent Set

Fig.6. A minimal embedding of a graph.

337

Start with node 0 in T, then we have N(T) = {6,7} and S
= {1,2,3,4,5,8.9.10,11}. Choose a node, say 2, from S that
is not in N(N(T) (since it is possible). Now T = {0,2},
N(T) - {6,7,8,9} and S = {l,3,4,5,10,11}. Continuing like
this, we may get an embedding T = {0,2,10,5,l}, which is
minimal but not minimum or perfect. A perfect embed­
ding exists in this graph and it is given by {0,8,3,11}.

By carrying out all the choices, one could find all
the minimal embeddings and choose the minimum
embedding from them. The given graph may have a
number of minimal embeddings and hence considerable
effort may be needed to find the minimum embedding
this way. A perfect em~d~!lg in a k-regular graph
requires that there exist an iii.dependent set T such that
T+N(T) - V and IN(T)I = klTI, where IN(T)I and ITI are
the cardinalities of the two sets N(T) and T respectively.
One could use this condition to check if a minimal
embedding is a perfect embedding.

0

1

2

3

4

5

6

7

8

9

10

11

Fig.7. An example network for finding
a minimal embedding.

6. CONCLUSIONS

In this paper, we presented a new method of con­
necting I/O processors and processors in a hypercube
multiprocessor system. Necessary and sufficient condi­
tions are derived to obtain a perfect embedding. It is
shown that, the proposed method achieves a higher degree
of I/O adjacency and higher degree of fault tolerance
with the same number of 1/0 processors. The practical
implications of this method are discussed. The problem is
generalized to a k-regular interconnection network and it
is shown that the conditions derived for a hypercube are
necessary but not sufficient. It is shown that finding a
perfect embedding in a k-regular interconnection network
is NP-complete. We also presented an algorithm to find a
minimal embedding in a general interconnection network.
It would be interesting to see how concurrent 1/0 may
improve the performance of the numerous algorithms
developed for the hypercube.

References

[l] J.P.Hayes et al., "Architecture of a Hypercube
Supercomputer," Proc. of ICPP, pp. 653-660,
1986.

[2] "Intel IPSC System Product Summary," Intel,
Oregon.

[3] J.Tuazon, J.Peterson, M.Pniel, and D.Liberman,
"Caltech/JPL Mark II Hypercube Concurrent
Processor," Proc. of ICPP, pp. 666-673, 1985.

[4] J.C.Peterson et al., "The Mark III Hypercube­
Ensemble Concurrent Computer,'' Proc. of ICPP,
pp. 71-73, 1985.

[5] H.T.Kung, "Memory Requirements for Balanced
Computer Architectures," Proc. of 13th Annu. Int.
Symposiwn on Computer Architecture, pp. 49-54,
1986.

[6] Kai Hwang and J.Ghosh, "Hypernet: A
Communication-Efficient Architecture for
Constructing Massively Parallel Computers," IEEE
Trans. on Computers, vol. C-36, pp. 1450-1466,
Dec. 1987.

[7] D.W.Krumme, K.N.Venkataraman, and
G.Cybenko, "Hypercube Embedding is NP­
Complete," Proc. of 1st. Con/. on Hypercube
Multiprocessors, pp. 148-157, Aug. 1985.

[8] C.T.Ho and S.L.Johnsson, "On the Embedding of
Arbitrary Meshes in Boolean Cubes with
Expansion Two Dilation Two," Proc. of ICPP, pp.
188-191, 1987.

[9] T.F.Chan, Y.Saad, and M.H.Schultz, "Solving
Elliptic Partial Differential Equations on
Hypercubes,'' Proc. of 1st Con/. on Hypercube
Multiprocessors, pp. 196-210, Aug. 1985.

[10] G.C.Fox and S.W.Otto, "Algorithms for
Concurrent Processors," Physics Today, pp. 13-20,
May 1984.

[11] J. Wakerly, in ETfot' Detecting Codes, Self­
Checking Circuits and Applications. New York,
New York: Elsevier North Holland Inc., 1978.

[12] E.M.Reingold, J.Nievergelt, and N.Deo,
Combinatorial Algorithms: Thoery and Practice.
New Jersey: Prentice-Hall Inc., 1977.

[13] A.L.Narasimha Reddy and P.Banerjee, "I/O
Embedding in Hypercubes," in CSG Technical
Report, in preparaion, Univ. of Illinois, Urbana.

[14] F. P. Preparata and J. Vuillemin, "The Cube­
Connected Cycles: A Versatile Network For
Parallel Computation," Commun. Ass. Comput.
Mach., vol. 24, pp. 300-309, May 1981.

[15] M.R.Garey and D.S.Johnson, Computers and
Intractability: A Guide to the Theory of NP­
Completeness. New York: W.H.Freeman & co.,
1979.

338

A Unified Approach to Designing Fault-Tolerant Processor Ensembles
(Extended Abstract)

S. Chakravarty 1

Dept. of Computer Science
State University of New York

Buffalo, NY 14260

Abstract - Processor ensembles (abbrev. PEN) form part
of parallel processing systems. We present a unified approach to de­
signing fault-tolerant PENs. Our approach is illustrated by present­
ing fault-tolerant schemes for several commonly used interconnection
topologies. Our fault-tolerance scheme is shown to be "area-efficient",
unlike another fault-tolerance scheme viz. the Diogenes approach[7].
Unlike the. reliability analysis of fault-tolerant PENs that have ap­
peared in the literature our reliability analysis takes into account
switch failures along with processor and link failures.

1. Introduction

Processor ensembles (PEN) form part of parallel processing sys­
tems. The parallel processing system could be a parallel machine or
a special purpose VLSI chip. We assume that parallel processing sys­
tems using PENs consist of a control unit (CU) and a PEN with
N processing elements (PE). The N PEs in the PEN communicate
with each other through a set of communication links. The intercon­
nection topology of a PEN is represented by a graph where the nodes
of the graph represent the PEs and the edges represent the commu­
nication links between the PEs. There exists an edge between nodes
I and J if and only if there exists a communication link between the
corresponding pairs of processors.

The PEs could be very complex in which case each PE is integrated
on a seperate chip and are interconnected to form a PEN. In this case,
processor or link failures lead to low system availability. On the other
hand, the PEs could be very simple in which case the PEN can be
integrated on a single chip. In this case processor or link failures
lead to low yield. This motivates the need to design PEN s that can
tolerate link and/or processor failures. In this paper we address the
problem of designing fault-tolerant PEN s. It is assumed that the CU
can diagnose the faulty processors and it is capable of reconfiguring
the PEN by setting appropriate control signals.

We present a unified approach to designing fault-tolerant PENs.
Our approach is illustrated by presenting fault-tolerant schemes for
a number of commonly occurring interconnection topologies like the
Binary Tree, X-Tree, Mesh, Hypercube, Pyramid etc. These PENs
can be recursively defined and can be constructed by interconnecting
a number of copies of a basic module(abrrev. BM). There could
be a number of different BMs for each PEN and a number of copies
of any one of them could be suitably interconnected to construct the
PEN.

The proposed fault-tolerance scheme is based on the above prin­
ciple. We first determine a BM from which the given PEN can be
constructed. Based on the BM so determined we design a fault­
tolerant basic module (abbrev. FTBM). The fault-tolerant
PEN is then constructed by suitably interconnecting the FTBMs.

The problem of designing fault-tolerant Binary Trees has been ex­
tensively studied[3,6,7,9,10]. We show that the fault-tolerance scheme
for Binary Trees resulting from our approach is the same as the fault­
tolerance scheme for Binary Trees proposed in [3].

An attractive feature of the scheme proposed here is that it is
area-efficient. Let M be a PEN having N PEs; and Q be the
corresponding fault-tolerant PEN derived from M using a specific
fault-tolerance scheme. The fault-tolerance scheme is said to be area­
efficient if there exists a layout of size O(p(n)) for Q given that there
exists a layout of size O(p(n)) for M.

S. J. Upadhyaya 2

Dept. of Electrical and Computer Engineering
State University of New York

Buffalo, NY 14260

Not all fault-tolerance schemes are area efficient as illustrated by
the fault-tolerance scheme for Binary Trees proposed in [6]. It is
known that there exists a layont of size O(N) for a Binary Tree with
N nodes[4]. But, the fault-tolerant N node Binary Tree resulting from
the scheme proposed in [6] requires area equal to O(N Log(N))[3].
The Diogenes scheme[7] is also not an area efficient fault tolerant
scheme. For certain N node PENs the area could increase by a factor
of 0(VN) if the Diogenes approach is used.

We also present a different approach to analyzing the reliability of
fault-tolerant PENs. In our analysis we take into account the failure
of the switches required for reconfiguring the system, along with link
and processor failures. This is in contrast to the analysis in [3,5,6,8,9]
where switches are assumed to be fault-free. We believe that our
approach to reliability analysis of PENs is more accurate than the
approach in [3,5,6,8,9].

2. Fault-Tolerant Basic Modules

In our approach to designing fault-tolerant PENs we first define a
basic module (BM) for the PEN of interest. The BM should be
such that a number of copies of the BM could be interconnected to
construct the PEN. Figure 2.l(a) shows a BM for Meshes having even
number of rows and an even number of columns. The corresponding
FTBM is shown in Figure 2.l(b).

Given a BM we construct an FTBM as follows. The number n
of corners of the FTBM equals the number of PEs in the BM. The
corners of the FTBM are named C1 , ... , Cn. Every FTBM with n
corners has (n + 1) PEs, P E 1 , ... , P En , and SP E. SP Eis a spare
PE which is used to replace a faulty PE within the FTBM. Since our
scheme uses only one spare within an FTBM, our scheme can tolerate
only one processor failure within an FTBM. One can easily extend
the scheme to tolerate multiple failures within an FTBM by inserting
more than one spare processor per FTBM.

Given a PEN the number of neighbors of a processor in the PEN
i.e. the number k of ports per processor is known. For example, all
processors in a Mesh are connected to 4 other processors; so the num­
ber of ports per processor in a Mesh is 4. Every corner C, consists of

k cornerpoints P,.,, ... , Pi,k· For all 1 <::: i <::: n, processor PE, has
k ports L,,i, ... , Li,k· The SPE has k ports named SL1, ... , SLk.

FTBM also contains a number of switches which are used for re­
configuring the FTBM. Each switch can be either open or close. The
arrangement of the switches in FTBM is described below.

If PE, is fault free then it is placed in corner C,. For all 1 <::: i <::: n,
associated with PE, are a set of switches S., l > ••• , S;,k. To place PE,
in corner C; port L;,t is connected to the cornerpoint P;,t by closing
switch Si,h for all 1 <::: t <::: k. Note that in order to connect a port to a
cornerpoint we require a switch; and a link that connects the port to
the cornerpoint. In our discussion we consider such links to be part
of the switch itself. If PE, is faulty then P Ei is removed from corner
C, by opening all the switches associated with PE,.

SPE has associated with it n x k switches. These n X k switches are
divided into n groups G 1 , ... , Gn corresponding to the n corners of
the FTBM. Each group consist of k switches and for each port of the
SP Ewe have one switch in each of the groups. The switches in group
G, are named SW., 1 , . .• , SW.,k. For all 1 <::: t <::: k, switch SW;,t is
used for connecting/ disconnecting port SL, to /from the cornerpoint
P,,. If none of the PEs are faulty then all the switches associated
wi,th the SPE are open and the SPE is not used. If there exists an i

1 Research Supported by Grant No. RDF 150-9755-H from the Research Foundation of the State University
of New York

2Research Supported by Grant No. 220003-07 from NYS/UUP of the State University of New York

339

such that PE; is faulty then all the switches in group G; are closed
and the switches in all the other groups are opened. This places the
SPE in corner C;.

Figure 2.l(b) shows the naming of the various components of the
FTBM for the corner C1 . Observe that for each FTBM we can use n
control signals, E 1 , ... , En, for reconfiguring the FTBM as discussed
below. The switches that belong to group G; and the switches asso­
ciated with PE, are ganged. If E; is 1 (respectively 0) then all the
switches associated with PE; are closed (respectively open) and all
the switches in G, are open (respectively closed).

The interconnection topology within an FTBM is specified by pro­
viding a graph G(V,E). V is the set of cornerpoints and there exists
an edge between two nodes in the graph if and only if the two corner
points are connected. In the sequel, we refer to these links as intra­
FTBM links. The interconnection topology for an FTBM can be
derived from the BM of interest.

Note that FTBMs also have some external links which are used
to interconnect the copies of the FTBM while constructing the fault­
tolerant system. We refer to these external links as inter-FTBM
links. The inter-FTBM links for an FTBM can be derived from the
architecture of interest and the BM being used. In fact, the inter­
FTBM links are identical to the inter-BM links used for interconnect­
ing the BMs.

We next derive a set of identities which are used in the reliability
analysis to follow. Switches could be either stuck-dose, stuck-open
or normal and that switch-failures are independent. Let m be the
number of intra-FTBM links; p be the probability that a processor
is fault free; Pn be the probability that a switch is normal; p0 be the
probability that a switch is stuck-open; Pc be the probability that a
switch is stuck-close; PL be the probability that a link is fault-free;
and PM be the probability that we have a working FTBM.

Observe that we have a working FTBM if and only if one of the
following (n + 1) disjoint events occur. (i) PE1 , .•. ,PEn are fault­
free; all the switches associated with P E 1 , ... , P En are closed; and all
the switches associated with SP E are open. (ii) For each 1 :S i :S n
PE, is faulty; all switches associated with PE; are open; all switches
associated with P E1 , i # j, are closed; the switches in group G; are
closed; and all switches in group G1 , i # j, are open. From this we
can derive the following expression for PM.

PM [Pn x [(Pn + p,)k x (Pn + Po)kr] x P'L

+ n x (1 - p) x pn x [(Pn + p,)k x (Pn + Po)kr x P'L

PM pn x [(Pn + p,)k x (Pn + Polr x [l + n(l - p)] x p'£(1)

Let K be the number of FTBMs required and T the number of
inter-FTBM links required to construct the PEN. The reliability R
of the fault-tolerant PEN is given by the following equation.

(2)

The values of K and Tare computed for the PENs under consider­
ation and are dependent on the BMs used. It should be clear from
the above discussion that the values of n, k, m, K and T along with
equations (1) and (2) are sufficient for reliability analysis of the fault­
tolerant PEN.

3. Fault-Tolerant Pyramids

Pyramids have found extensive use in image-processing(8]. A Pyra­
mid of size 16 is shown in Figure 3.1. Each processor is connected to
as many as 9 neighbors. A PE in level i is connected to one PE in
level (i+l} using the up link, provided level (i+l} exists; to four PEs
in level i using the north, south, east and west links; and to four PEs
in level (i-1} using the downlinks. Note that every level, except the
level containing the apex, has an even number of PEs which is also a
perfect square.

Our fault-tolerant Pyramid uses the FTBM derived from the BM
of Figure 3.2, as discussed in Section 2. For this FTBM we haven=
4; m = 4; and k = 9. The inter-FTBM links are identical to the links

of the BM shown in Figure 3.2. N 1 and N 2 are the two north links.
E, and Ea are the two east links. S3 and S4 are its two south
links. W1 and W4 are the two west links. Each FTBM has one
up-neighbor. All corners of the FTBM are connected to exactly one
corner of its up-neighbor. Accordingly, each corner C; of the FTBM
has one up link U; which is used for connecting the corner C; of
the FTBM to its up-neighbor. Each corner C; has four down links,
D[, D2, D)i, D4, which are used for connecting the corner C; of the
FTBM to its four down neighbors.

Figure 3.1 shows how the FTBM of Figure 3.2 can be used to
construct the Pyramid. Note that the level containing the apex of
the pyramid contains only one processor. In our discussion we assume

that the root is also made up of one FTBM and only one of its corners
is used. In Figure 3.1 the FTBMs are demarcated using dashes.

We next present a sketch of the derivation of the reliability ex­
pression of the fault-tolerant PEN resulting from this scheme. For
a complete derivation refer to [2]. Consider a pyramid with L + 1
levels. Let N; be the number of FTBMs at level i; and K be the
total number of FTBMs. Then, for all 0 :S i :S L - 1, N; = 4L-i-t.

Therefore, K = 1 + L;f ; 0
1 N, = ~.

To compute the number T of inter-FTBM links the inter-FTBM
links are grouped into G1, G2. G1 consists of all the inter-level links
and G2 consist of all the intra-level links. Let T, = IG1 I; and T2 =

IG2I· T, = 4 x 4\- 1 .

There are no intra-level links for the level containing the root.
For all O :S i :S L - 1, let Ti be the number of intra-level links at
level i; TH be the number of horizontal links between the columns of
FTBM of level i; and Tv be the number of links between the rows
of FTBM of level i. We have, T'H = 2 x .,/N; x (.,/N; - 1); and

Ti =TH+ Tv = 2 x TH. Therefore, 12 = 4 x 4 L-;-' x [4 L-;-' - 1 J.
L-l i •x(2L-1)x(2L-2) _ ,,., _

Also, T2 = L;i=O T2 = 3 . Therefore, T - Ti + 12 -

~ X (2L - l) (zL+l - 1).
For this FTBM, n = 4, k = 9 and m = 4. The reliability expression

for the fault-tolerant PEN can now be computed using equation (2)
of Section 2.

4. Other Common Topologies

We discuss briefly the fault-tolerant schemes for Binary Trees, Meshes
and Hypercubes derived using our approach. The scheme for X-Tree
is very similiar to the Binary Tree and is discussed in [2].

The Binary Tree structure is well known. A BM for the Binary
Tree is shown in Figure 4.l(a). The corresponding FTBM for the
BM of Figure 4.l(a) can be derived as discussed in Section 2. Note
that the FTBM so derived is the module used in [3] for designing the
reconfigurable Binary Tree. Figure 4.l(b) shows how the FTBM can
be interconnected to form the Binary Tree.

For this FTBM we have n = 3; m = 2; and k = 3. Let K be the
number of FTBMs; 2M be the number of levels in the tree; and T be
the number of inter-FTBM. Therefore, as shown in [2], K = 4M 3_ 1

and T = 4 M3- 4 • From the values of n, m and k the expression for PM
can be derived using equation (1) of Section 2. From the values of
PM, T and K computed above, we can derive the reliability expression
for the Binary Tree using equation (2) of Section 2.

Meshes, as an interconnection topology, have been used in the
ILLIAC IV and studied in [l]. Figure 4.2(a) depicts a mesh whose
sides are of size n and we assume that n = 2M. Figure 2.l(a) depicts
a BM for the mesh. For the corresponding FTBM we have n = 4; k =
4; and m = 4. Figure 4.2(b) shows how the BM of Figure 2.l(a) can
be· interconnected to form a mesh whose sides are an even number.
We have T = M 2 ; and K = 4(M-l)[2]. From this and the model for
FTBM in Section 2 we can derive the reliability expressions for the
mesh.

The hypercube of size N, where N = 2q, is defined as follows.
Each PE is assumed to have a q(= log(N)) bit address. Two PEs
are connected if and only if their address differs in exactly one bit
position. A BM for the hypercube is shown in Figure 4.3(a) and a
method for constructing the hypercube from the BM of Figure 4.3(a)

340

is shown in Figure 4.3(b). We can view the BMs to be made up of the
four processors that have the q-2 most significant bits to be identical.
Accordingly, we can assign a q - 2 bit address to each of the FTBMs
used. Then, two FTBMs have an inter-FTBM link between them if
and only if their q - 2 bit address differ in atmost one bit position.
Therefore, K = 2q- 2 ; and T = (q - 2) x 2q- 1 [2].

5. Comparison with the Diogenes Approach

The Diogenes approach [7] has been shown to be applicable to a variety
of PENs. Here we compare our approach with the Diogenes approach.

The first figure of merit we use is the area required by the
fault-tolerant PENs designed using the two approaches. We had noted
earlier that the fault-tolerant Binary Tree resulting from our approach
is the same as the fault-tolerant Binary Tree of [3]. In [3] it was shown
that the fault-tolerant Binary Tree with N nodes has a layout of size
O(N). We next present a layout strategy for our fault-tolerant PENs
to shows that our scheme is area efficeint.

Define the corner layout graph (CLG) of the fault-tolerant
PEN as follows. For each FTBM used in constructing the PEN, CLG
has n nodes, where n is the number of corners of the FTBM. There
exists an edge between two nodes in the CLG if and only if there
exists either an inter-FTBM link or an intra-FTBM link between the
cornerpoints of the two corresponding corners.

Define the FTBM layout graph (FLG) of the fauli-tolerant
PEN as follows. For each FTBM used in constructing the PEN, FLG
has one node. There exists an edge between two nodes in the FLG if
and only ifthere exists an int.er-FTBM link between the correspond­
ing FTBMs. The following observation follows from the definition
of FLG. The FLG of the fault-tolerant Binary-Tree, X-Tree, Mesh,
Pyramid and Hypercubes presented in this discussion are respectively
Binary-Tree, X-Tree, Mesh, Pyramid and Hypercube.

The CLG can be derived from the FLG by replacing each node in
FLG by the corner graph of the FTBM which is defined as follows.
For each corner of the FTBM the CG contains a node. There exists an
edge between two nodes in the CG if and only if there exists an intra­
FTBM link between the cornerpoints of the corresponding corners.
The CGs of the different FTBMs used in this discussion are shown in
Figure 5.1. We next describe the basic steps of our layout scheme.
1. Construct the FLG H of the fault-tolerant PEN.
2. Layout H using the layout algorithm for the PEN.
3. Expand each node of H as follows. Let H; be the corner graph
of the FTBM in question. H; is said to be hamiltonian if and only if
there exists an acyclic path pin H; such that p traverses each of the
nodes of H,. An inspection of Figure 5.1 shows that the CGs of each
of the FTBMs used in this discussion are hamiltonian. In Figure 5.1
the hamiltonian paths are shown using dashed lines.

The node in H, corresponding to the corner Cj is henceforth re­
ferred to as node Cj. Without loss of generality let C1 , ... , Cn be the
hamiltonian path. Then, C1 contains the spare processor SP E; for all
j, CJ contains the switches 5J,l • ... , Sj,k and the processor P Ej; for
all j, CJ contains the switches in group Gj; and for all j, C1 contains
the cornerpoints of the corner C1 •

The edges between the nodes of the CG are expanded to include
the intra-FTBM links between the cornerpoints. The connection be­
tween the ports of the spare and the switches in the different groups
are run parallel to the hamiltonian path. For each switch there is a
link to it from the appropriate port of the SPE. Only n x k such links
between two adjacent nodes in the hamiltonian path are needed.

Asymptotically, the area required by the resultant layout will be
the same as the area required by the FLG constructed in the first step
provided the number of neighbors of a PE in a PEN is a constant. This
is because each of the nodes will be replaced by a constant number of
switches and processors and each edge will be replaced by a constant
number of edges. From this it follows that the fault-tolerant Binary­
Tree, X-Tree, Mesh, Pyramids are all area efficient.

The above layout strategy does not give an area efficient fault­
tolerant Hypercube because the number of neighbors of processors in
the Hypercube is not a constant. But, for the Hypercube we use a

341

different layout strategy which for area efficient layout and is discussed
in [2].

Unlike our fault-tolerant scheme, the Diogenes scheme is not area­
efficient. This is because, as stated in [7], the Diogenes approach uses
collinear layouts[4]. Collinear layouts suffer from the drawback that
they do not lead to optimal area. For example, there exists a layout
viz. the H-Layout[4] for the Binary Tree which requires area O(N) but
the area required by the collinear layout of a tree is O(N Log(N))[4].
Similiarly, the collinear layout for the Mesh requires area O(N VN)[4]
whereas, there exist layouts for the Mesh that require area O(N)[4].
Thus we see that the fault-tolerant PENs derived using the Diogenes
approach have an area overhead that is larger than the area overhead
of the fault-tolerant PENs derived using our approach. The ratio of
the areas required by the Diogenes approach and our approach could
be as high as 0(JN).

The second figure of merit we use is the fault tolerance of the
fault-tolerant PENs. It was stated in Section 2 that our scheme can
tolerate only one processor failure per FTBM. The Diogenes approach
is a globally fault-tolerant scheme in that it has the characteristic that
if S spares are used it can recover from any S processor failures. This
is often referred to as 100% spare utilization. Therefore, the Diogenes
approach has greater fault-tolerance than our approach.

6. Discussion

\Ilic presented an area efficient, locally redundant fault-tolerance scheme
for Pf:>.;, and showed it to he applicable to a variety of PENs. The
Diogenes approach which is a global redundancy scheme having 100%
spare utilization is not area efficient. These two schemes represent the
two extremes of the spectrum of fault-tolerance schemes for PENs.
For the Binary Tree a number of other fault-tolerant schemes [5,6,10]
has also been proposed. These schemes are either a combination of
local and global schemes[5,6] or local schemes using a varying number
of spares[lO].

A new approach to analyzing the reliability of PENs was pre­
sented. Our reliability analysis takes into account failure of switches
which are used for reconfiguring the system. This makes our reli­
ability analysis more accurate than the reliability analysis of fault
tolerant PENs that had appeared in the literature which does not
take into account switch failures.

References

1. M. J. Atallah and S. R. Kosaraju, "Graph Problems on a mesh­
connected processor array", JACM 31(1984), pp. 649-667.
2. S. Chakravarty and S. J. Upadhyaya, "A Unified Approach to De­
signing Fault-Tolerant Processor Ensembles", Tech. Rep. No. 87-18,
Dept. of Computer Science, State University of New York, Buffalo.
3. A. S. M. Hassan and V. K. Agrawal, "A Fault-Tolerant Modular
Architecture for Binary Trees", IEEE Trans. on Comput., Vol. C-35,
No. 4, pp. 356 - 361, April 1986.
4. C. E. Leiserson, "Area-Efficient VLSI Computation". PhD Dis­
sertation, Dept. of Computer Science, CMU, Pittsburgh, PA, 1981.
5. M. B. Lowrie and W. K. Fuchs, "Reconfigurable Tree Architectures
Using Subtree Oriented Fault Tolerance", IEEE Trans. on Comput.,
Vol. C-36, No. 10, 1986, pp. 1172 - 1182.
6. C. S. Raghavendra, A. Avizienis and M. D. Ercegovae, "Fault­
Tolerance in Binary-Tree Architectures", IEEE Trans. on Comput.,
Vol. C-33, No. 6, June 1984.
7. A. Rosenberg, "The Diogenes Approach to Testable Fault-Tolerant
Network of Processors", IEEE Trans. on Comput., Vol. C-32, pp.
902 - 910, Oct. 1983.
8. A. Rosenfeld, "Quadtrees and pyramids for pattern recognization
and image processing", in Proc. Fifth Int. Conj. Pattern Recogni­
tion, 1981, pp. 802 - 806.
9. A. D. Singh, "An Area Efficient Redundancy Scheme for Wafer
Scale Processor Arrays", in Proc. 1985 ICCD, Oct. 1985, pp. 505-
509.
10. A. D. Singh, "A Reconfigurable Modular Fault-Tolerant Binary
Tree Architecture", in Proc. 17th Fault-Tolerant Computing Sympo­
smm, 1987, pp. 298 - 304.

Figure 2. 1 (a): A Besic Module for Mesh.

Figure 2.1(b): A Fllult Tolerant Bllsic Module with One Spare

tcvel2

level 1

base levelO

Figure 3.1: A Pyramid of Size 16.

u,

Figure 3,.. 2.. A Basic Module for Pyramid

~
L2 R2 L3 p3

Figure 4. l(e): A Besic Module For Binery Tree.

342

Level 0

Leve! 3

Figure 4:1 (b): A 4cLevel mnery Tree.Fro.iri Besic Hoduies

• e

--~~£
('.0,}--{i'£f-'f-t<l~---~

UA'l--.fl!'!'l---ft=+-- - - ·qi

n-1~--@l
n-1

columns

Figure 4.2.(e): A Mesh of Size n.

~ Processing Element

C.ommunication Link

Figure 4.2.•(b): A Mesh of Size 4 From The Besic Modules.

q-2

q -2

2 Q-2

Figure 4.3 (e): A Besic Module for Hypercubes

Figure 4,3 ~):A Hypercube of Size 16 from The Besic Modules.

01n(lr\:1Tree JC-Tree

cr=4
~
Mesh& Pyremfd

Figure 5.1: Corner Graphs.

FAULT-TOLERANT SCHEDULING OF INDEPENDENT TASKS AND CONCURRENT
FAULT-DIAGNOSIS IN MULTIPLE PROCESSOR SYSTEMS

by

Seyed H. Hosseini
Department of Electrical Engineering and Computer Science

P.O. Box 784
University of Wisconsin--Milwaukee

Milwaukee, Wisconsin 53201

Abstract--The reliable execution of the
critical tasks on computing systems where faulty
responses can jeopardize human life or can cause
a vast loss of money are important design issues.

This work studies the reliable execution of
the tasks in an environment where processors and
interprocessor communication channels are subject
to failure. Every task is assigned to a group
of the processors for execution. The processors
of a group compare their outputs to obtain the
group output.

Performance is improved if the number of
concurrent tasks (i.e., the number of groups) is
maximized. In order to achieve that, a system
is mode 1 ed with the use of a graph where a node
and a link of the graph represent a processor and
a communication channel between two processors
in the system, respectively. A new concept
called group maximum matching, which is an ex­
tension to the classical maximum matching, is
introduced. In a group maximum matching the
nodes of a graph are grouped such that no two
groups share the same node, the nodes of a group
comprise a connected subgraph of the graph, and
the number of groups is maximum. A heuristic
algorithm is proposed to obtain a group maximum
matching.

A fault-tolerant scheduling algorithm based
on the group maximum matching is developed which
ensures the error-free execution of the tasks.
Furthermore, the proposed algorithm has the ca pa -
bility for the on-line fault-diagnosis of the
faulty processors and interprocessor communica­
tion channels. Fault--diagnosis is achieved as
system runs its normal tasks; hence, a diagnosis
program is not needed for that purpose.

I. Introduction

Reliable execution of critical tasks on
computing systems where faulty responses can
jeopardize human life or can cause a vast loss
of money are important design issues. The most
stringent requirement for reliability is in the
real time control systems where repair is not
possible and recovery time from faults must be
short. The design of fast, available, reliable,
and dependable computers has become possible
with the use of multiple processor systems.

Non-fault-tolerant scheduling of the tasks
are considered in [l)-[5), where it is assumed
that processors and interprocessQr communication
channels are fault-free.

System level fault diagnosis was introduced
in [6), where processors test each other for the

343

detection and location of the faults, and gener­
alized in [7]. The above techniques, in general,
require first diagnosis of the faults, then re­
covery from the faults. However, testing a pro­
cessor for the detectiQn of all kinds of faults
is debatable and is not an easy job; and also
subsequent error recovery takes time and is gen-­
era 11 y slow. Therefore, this has motivated the
introduction of another model called comparison
model where at least two processors are assigned
to execute the same task and their outputs are
compared.

Comparison model is employed in [8)-[16].
However, works in [8)-(14) are geared only toward
fault-diagnosis of the processors. As a result
the assignment of the jobs to the processors is
not based on any efficient job allocation scheme
which maximizes the system performance (i.e.,
the system throughput) while executing the jobs
reliably. For instance, in [8) in order to check
the status of every processor a minimum covering
algorithm for single fault-diagnosis is proposed.
Furthermore, in [8-10), it is assumed that a
faulty processor produces an incorrect output.
This does not hold true all the time unless the
programs running on the processors are diagnostic
programs rather than normal system or user pro~
grams. The works in [11)-(13) do not consider
assignment of jobs to the processors based on
any particular allocation scheme. The work in
[14) assign jobs to the processors in rounds
based on a permutation scheme in which processors
with short jobs finish early and remain idle
until the end of the current round of the execu­
tion.

In [8-14) only processor failure is consid­
ered, we consider both processor and interpro-­
cessor communication channel failures.

We consider a homogeneous system in which
every task can be assigned to any processor.
Examples of such systems are Intel IPSC System
[17), and several other systems [18)--[20]. We
assume that tasks are independent tasks, do not
communicate with each other, and are either in­
dependent subtasks of a job or independent jobs.
We further assume a non-preemptive scheduling
scheme where as soon as a task is scheduled to
run on a processor, it runs to the completion of
the task. We also assume that a faulty processor
does not have Byzantine malicious behavior and
its faulty behavior is solely caused by the
faults affecting its hardware circuitry. Final­
ly, we assume that when running a task on a
faulty processor, faults in that processor may
or may not affect the output of the task, which

depend on the task and the nature and place of
the faults in the processor. Thus, we consider
the tasks running on the processors are normal
user programs but not diagnostic programs which
are carefully written to force the faulty pro­
cessor to generate incorrect output.

In this work, we are only concerned with
fault-tolerant scheduling of the tasks and con­
current diagnosis of the faults. But, the pro­
posed algorithm may be combined with other
scheduling policies [21) such as first-come
first-served, shortest job first, round robin:
etc., under any type of constraint such as pri­
ority and deadline of the tasks. Hence, in our
work we do not specify how the next job from the
job ready queue is selected for the execution.

In the next section II, we propose an algo­
rithm for the effective pairing or grouping of
the processors. Then, in the section III, we
propose our fault-tolerant scheduling algorithm
based on the first algorithm.

A. System Model

A system is modeled by a graph G(V,E), where
V and E are the node set and the edge set of the
graph G, respectively. A node represents a pro­
cessor with its local memory, while an edge be­
tween two nodes represents a communication chan­
nel between their corresponding processors in the
system.

A comparison fault model is defined as fol­
lows: When two processors Pi and P· which
are assigned to execute the same task rk. then
they will do: First, each executes Tk inde­
pendently, then they exchange their outputs, next
Pi(Pj) will obtain its test outcome aij(aji) with
respect to Tk as follows:

l.

2.

If Pi(Pj) agrees with Pj(Pi) then aij = O
(aji = OJ
Else aij = l (aji = l)
Notice that:
a)
b)

c)

aij is not necessarily the same as aji·
Both a faulty processor or a faulty com­
munication channel could be the source
of the disagreement.
Pi and Pj may produce the same output and
agree with each other even if one or both
of them are faulty, which depends on
whether faults in the processors and
communication channel between them affect
their outputs or not. For instance, a
fault could be in a register of one of
the processors, but that fault cannot
affect the output of the Tk if that
register is not used in executing Tk.

II. Matching Cone~

In the classical graph theory the matching
concept is defined as follows:

· Definiti.Q!Ll [22]: Given a graph G(V,E). a
matching is a subset of edges F <;;;, E such that no
two edges of F are adjacent.

344

A matching which covers every node is a
perfect matching.

A matching is maximum if there is no other
matching which has more edges. A perfect match­
ing is always a maximum matching, while the con­
verse is not necessarily true.

The concept of the classical matching prob­
lem is used to pair or to group the nodes of a
graph into 2-node disjoint groups. A general­
ization to that concept is to group the nodes
into (t+l)-node disjoint groups. We refer to
the generalization matching problem as the group
matching problem. In the classical maximum
matching problem, nodes are paired such that the
number of pairs is maximum. Similarly, we define
group maximum matching as a problem where nodes
are grouped such that no two groups share the
same node, the nodes of every group comprise a
connected subgraph of the graph, and the number
of groups is maximum.

A. Group Maximum Matching Algorithm

·In the following we develop an algorithm to
find a group maximum matching for the graphs.
This algorithm which is a greedy heuristic algo­
rithm attempts to avoid the isolation of the
nodes such that they can be included in a group.
This is achieved by first including the nodes
with the lower degrees in the groups, then the
ones with the higher degrees. In this algorithm
every group is intended to have (t + l) nodes.
l. Initialize i = l, gl = •· g2 =•·and so

on
2. While system graph is non-empty do
2. l Find the node with the lowest degree.

In case of a tie, choose one of them
randomly. Call the node with the mini­
mum degree the current node.

2.2 Add the current-node to gi
2. 3 Sort the neighbors of the current node

with respect to their degrees in an in­
creasing order.

2.4 If the current-node(s) have some neigh­
bors then

2.4.l If the current-node(s) have t-lgil + l
or more neighbors then

2.4.l.l Choose the first t-lgil + l sorted
neighbors and add them to gi

2.4.l.2 Delete the nodes in gi from the system
graph

2 .4. 1 .3
2 .4. l .4
2.4.2
2 .4. 2. l

2.4.2.2

2.4.2.3
2.5
2. 5. l

2.5.2
2.5.3
2.6

i = i +
Go to 2
Else
Add all the neighbors of the current­
node(s) to gi
Sort the neighbors of the nodes in gi
with respect to their degrees in an in­
creasing order. Call the nodes in gi
the current nodes.
Go to 2.4
Else
Delete the nodes in gi from the system
graph
i = i + l
Go to 2
End while do

Example l: Figure l.a shows an example with
t = 2. Initially, every node is of degree 3.
Nodes are sorted with respect to their degrees.
Let the node P1 be l is teded on the top of the
list. Then, P1 is elected as the current node
and added to gl. Let the neighbors of P1 be
sorted as {P2, P12. Pal· Then the first two
neighbors are added to gland gl = {P1, P2 P12l.
Next the nodes in gl are deleted from the sys­
tem graph and the graph shown in Fig. l .b is ob­
tained. Then, the nodes in this graph are sorted
and the node P3 with the lowest degree of l
will be on the top of the list. P3 is elected
as the current node and added to g2· Then,
its only neighbor P4 is added to g2. The
sorted neighbors of the nodes in g2 are listed
as {Pll• P5}. Then, P11 is added to g2 and g2 =
{P3, P4, P11l. Nodes in g2 are deleted from the
graph and the graph shown in Fig. l.C is obtain­
ed. Let, after sorting the nodes in this graph,
P5 with the degree of 2 be on the top of the
list. Then, P5 is elected as the current node
and added to g3· Next, the sorted neighbors
of P5 are listed as {P10. P0}, both are added to
g3, and g3 = {P5, P0, P1ol. Nodes in g3 are de­
leted from the graph and the graph shown in Fig.
l.d is obtained. Subsequently, g4 = {P7, Pa, P9}
and algorithm terminates.

A group matching which groups the nodes
randomly, generally turns out to generate a group
matching with less number of groups than the
proposed algorithm. For instance, Fig. 2 shows
a matching with only three groups, gl, g2, and g3
for the same graph of Fig. l where, gl = {P1, P2,
P12l. g2 = {P4, P10. P11l. and g3 = {Po, Pa. P9}.
In this group non-maximum matching nodes P3, P5
and P7 are isolated because of the random
grouping of the nodes and not using any state
knowledge to group them effectively. For in­
stance, after the selection of the nodes of group
gl, the nodes of the group g2 are selected
randomly without the regard to the status of the
node P3 which can be grouped only with the
node P4. A better strategy is first to try to
include P3 in a group which has fewer neigh­
bors to group with, and then try to include other
nodes which have more neighbors to group with.
This strategy is used in the proposed heuristic
algorithm.

a. Time Complexity of the Algorithm

Assuming that sorting a list by the heap
sort takes n log n time, then the total time is
obtained as follows. The while-do loop and the
step 2.4 are repeated at most n and t times,
respectively. Thus, the total time is in the
order of n.(t.(n log n)) or n2.t,logn.

III. Fault-Tolerant Scheduling Algorithm

This algorithm is devised to execute tasks
reliably and also to achieve on-line fault­
diagnosis in the environment where processors and
communication channels are subject to failure.
For the reliable execution of the tasks each task
is assigned to a group of processors. Processors
are grouped with the use of group maximum match­
ing algorithm. A task is released if at least

345

(t + l) processors produce the same output with
the assumption that no more than t faulty pro­
cessors or communication channels exist.

In order to achieve on-line fault-diagnosis
the notion of a disagreement graph G(D,M) with
the node set D and the edge set M is introduced
as follows.

A. Disagreement Graph

A disagreement graph G(D,M) with respect to
a task T is obtained for a group of the nodes
which are assigned to execute the task T as fol­
lows: Every node Di of the disagreement graph
contains those nodes of the group such that for
every node Pj c Di and Pk c Di, Pj and Pk agree
with each other on the output for the task T,
i.e., ajk = akj = 0 if they are neighbors in
the system graph. An edge exists between two
nodes Di and Dj of the disagreement graph if
there exists a node Px c Di and a node Py c Oj
such that Px and Py are neighbors in the system
graph and they disagree with each other on the
output for the task T, i.e., either axy = l or
ayx = l.

In the following the formal description of
the fault--tolerant task scheduling algorithm is
given.

a. Fault-Tolerant Scheduling Algorithm

l.

2.

3.

3.1

3.2

3.3
3.3.l
3.3. l. l

3.3. l. 2
3.3.2
3.4

3.4.l
3.4. l. l

Run the maximum matching algorithm for
t = l or the group maximum matching
algorithm for t > l to group the nodes
of the system into groups gl, g2, ... ,
and so on.
Assign every task Ti to a group 9h
for the execution by all the nodes in
that group, where lghl > l and all the
nodes in gh are free.
Upon the completion of every task Ti
by all the nodes assigned Ti do
Ask the nodes which are assigned Ti
to exchange and compare their outputs
if they are neighbors in the system
graph, and then to obtain their test
outcomes with respect to the task Ti.
Obtain the disagreement graph G(O,M)
for the task Ti. Let 01, 02, ... ,and
so on be the nodes of the disagreement
graph with respect to Ti
For every Oi with 0 < IOil ~ t do
For every node Pj c Oi do
If the number of nodes Pj di sag reed
with in this round of execution of
Ti was more than t, then consider
Pj faulty, add it to the faulty set
Sf, and set Oi = oi - {Pjl
End for do
End for do
Find the first Oi 'with 0 < IOil ~ t
such that the nodes in Oi have some
neighbors Pj which are neither in
the faulty set Sf nor in Oi
If there exists at least a Oi then
If among the above neighbors in 3.4
there are some nodes which are idle
(i.e., not included in any group gk
with lgkl > t) then select them

3.4.1.2 Else
3.4.1.2.l Select a node Pj i!mong the above

neighbors in 3.4 which is running a
task Tj with the lowest priority. in
case of a tie, choose one of the neigh­
bors randomly

3.4.1.2.2 Abort the task Tj assigned to Pj
and to all of the nodes in its group.
Tj must be rescheduled for execution
by some other nodes as is done in the
step 2.

3.4.1.2.3 Select the node Pi and all of the
nodes in the group of Pj

3.4.1.3 Assign the task Ti to all of the
selected nodes in 3.4.1.l or 3.4.1.2.3
and also again to all of the nodes in
the current disagreement graph with
respect to Ti·

3.4.1.4 Go to 3.
3.5 If there are any IOil > t during the

above process then re 1 ease the output
of Ti executed by one node in Oi·

3. 6 Else abort Ti because can not find
at least t+l nodes to agree with each
other over Ti.

3. 7 The link between two fault-free pro­
cessors is considered faulty if they
disagree with each other.

3.a If no node or link has failed or there
are still some disagreements with re­
spect to some other tasks not yet re­
so 1 ved then go to 2

3.g Else
3.g.1 Finish the tasks already in progress

with the use of the old group maximum
matching and concurrently go to 1 to
get a new group maximum matching after
the deletion of the faulty nodes and
links from the system graph.

3.g.2 Assign the new tasks based on the new
group maximum matching.

Example 2.: Consider the system graph given
in Fig. 3.a. Assume that t = 1 and a maximum
matching, obtained by running the step-1 of the
algorithm, pairs the nodes into the groups gl =
{P1. P2}, g2 = {P3, P4}, g3 = {P5, P&}, g4 = {P7,
Pa} and g5 = {Pg, P10}. Assume that task Ti is
assigned to the nodes in gi for i = 1, 2, 3, 4,
and 5. Furthermore, assume that the node P2 and
the link P5 - P& are faulty. Upon the completion
of T1. the disagreement graph with respect to T1
shown in Fig. 3.b is obtained. Assuming that the
priority of T5 is greater than T2• then the task
T 2 is aborted and the nodes in gl v g2 are
assigned to perform T1. see Fig. 3.c. Then,
assume that nodes in g3 finish executing T3.
Figure 3.e shows the disagreement graph with re­
spect to T3. Assuming that the priority of
T1 is greater than that of T4, then the task
T4 is aborted and the task T3 is assigned to
the nodes in g3 v g4• see Fig. 3.f. Next,
assume that T5 finishes. Figure 3.g shows the
disagreement graph with respect to T5. Since
ID1I > t = 1, T5 is released and a new task T& is
assigned to the nodes in g5, see Fig. 3.h. Upon
the completion of T1. the disagreement graph with
respect to T1 is obtained, see Fig. 3.i. Since
ID1l = 1 ~ t, the lower priority task T& is

346

aborted and the nodes in gl u g2 v g5 are assign­
ed to execute T1, see Fig. 3.j. Then, assume
that T1 finishes and the disagreement graph
with respect to T1 shown in Fig. 3.k is ob­
tained. Since the number of nodes P2 has dis­
agreed with is greater than t = l; Pz is con­
cluded to be faulty. Then, task T1 is released
because there is at least a Di (i.e., either 01
or D3) with IDil ~ t = 1. Thereafter; since
there still exists disagreement with respect to
the task T3, tasks T2 and T& are assigned to the
freed nodes in g2 and g5, respectively; see Fig.
3.1. Next, assume that T3 completes and the dis­
agreement graph shown in Fig. 3. m is obtained.
Since ID2I > t =land ID1I ~ t = 1, the lower
priority task T2 is aborted, and task T3 is
assigned to the nodes in g2 ~ g3u g4; see
Fig. 3.n. Upon the completion of T3• the dis­
agreement graph in Fig. 3.p is obtained. Since
I01I = 1021>t=1, all the nodes in gz u g3
u g4 are fault free, but the link P5 - P& is

faulty. Then, task T3 is released. At this
time no disagreement exists. Hence, a new maxi­
mum matching pairs the nodes into the new pairs
gl = {P1. P10}. g2 ={Pa. Pg}, g3 = {P&, P7}, and
g4 = {P4, P5}. Task T& continue to complete
based on the old maximum matching by the nodes in
the old group g5 = {Pg, P10}. Tasks T2 and T4
are assigned based on the new maximum matching
to the nodes in the new group g3 and new g4,
respectively; see Fig. 3.r. Next, assume that
T& completes and the disagreement graph shown
in Fig. 5.s is obtained. Since I01I > t = 1, T&
is released and the use of the old maximum match-­
ing terminates, and the new tasks T1 and Ta are
assigned, based on the new maximum matching, to
the new groups gl and g2 as shown in Fig. 3.t.

Example 3: Consider the system shown in Fig.
4.a and assume that t = 2. Running the step-1
of the algorithm partitions the nodes into the
groups: gl = {P1. P2. P12>. g2 = {P3, P4, P11l.
g3 = {P5, P&, P1Q}, and g4 = {P7. Pa. Pg}. As­
sume that tasks T1, T2, T3, a.nd T4 are assigned
to gl• g2• g3, and g4; respectively. Further­
more, assume that the node P2 and the link P1 -
P12 are faulty. Upon the completion of T1, the
disagreement graph shown in Fig. 4.b is obtained.
Assume that task T2, because of low priority,
is aborted and nodes in gl u g2 are assigned
T1, see Fig. 4.c. Upon the completion of
T1. the disagreement graph shown in Fig. 4.d
is obtained. Then, assume that task T4, be­
cause of low priority is aborted and a 11 the
nodes in gl v g2 v g4 are assigned T1, see Fig.
4.e. Then disagreement graph shown in Fig. 4.f
is obtained. Since the number of nodes P2 has
di sag reed with is greater than t = 2, P2 is
concluded to be faulty. Also since ID1 = ID3I =
4 > t = 2, P1 and P12 are concluded to be fault­
free, but the link between P1 and P12 is faulty.
Then, task T1 is released. Next a new group
maximum matching is obtained which partitions the
nodes into the new groups gl = {P1. P7, Pa}. g2 =
{P3, P4, P12>. and g3 = {Pg, Pio. P11}. see Fig.
4.g. Task T3 continues to complete by the nodes
in the old group g3 based on the old group maxi­
mum matching. las.ks T2 and T4 are assigned to
the new groups g2 and gl, respectively, based on

the new group maximum matching, see Fig. 4.g.
Upon the completion of TJ, the use of old
group maximum matching terminates, and task Ts
is assigned to the nodes of the new group g3,
see Fig. 4.i, based on the new group maximum
matching.

Theorem 1: Every task Ti is executed
error-free if the proposed algorithm is employed
and the number of faculty processors and faulty
communication channels (both temporary and per­
manent faults) does not exceed an upper bound t
during any round of execution of the task Ti.

Proof: Every task Ti is released when at
least (t + 1) or more processors produce the same
output and agree with each other. Thus, as long
as for every round of the execution of the task
Ti their exists not more than t faults, then
when Ti is released and it is error-free. Q.E.D.

Theorem 2: The status of every processor
or communication channel is identified correctly
if a) the proposed algorithm is employed, b) the
number of faulty processors and communication
channels does not exceed t with respect to every
round of the execution of each task, and c) every
processor is in a connected subgraph of the sys­
tem graph with at least t + 1 fault-free proces­
sors which are connected to each other through
some fault-free links.

Proof: A processor is declared faulty if
it disagrees with at least t + 1 other processors
during the execution of a task Ti. As long as
the condition (b) holds true, a fault-free pro­
cessor will never be declared faulty. A faulty
processor will eventually be assigned a task
Ti to run for which it will produce an incor­
rect output. Then, as long as the conditions (b)
and (c) hold true, the faulty processor will
disagree with at least t + 1 fault-free proces­
sors in a connected subgraph of the system graph.
Hence, it will be declared faulty. The status
of a faulty communication channel between two
fault-free nodes is automatically considered
faulty because of their disagreement with each
other over that channel. Q.E.D.

Corollary 2: The status of every processor
and communication channel is identified correctly
if the conditions (a) and (b) of the Theorem 2
hold true, the system graph is at least (t + 1)
connected, and n ~ 2t + 1 (where n is the number
of processors in the system).

Proof: Deleting t faulty nodes and links
from the system graph will keep it still connect­
ed with at least t + 1 fault-free nodes. This
satisfies the condition (c) of Theorem 2. Q.E.D.

C. Discussion:

Faults are of two types --permanent and tem­
porary. Permanent faults describe permanent
damage to the system components. Temporary
faults are further subdivided into two classes-­
intermittent and transient. Intermittent faults
describe faults that are only occasionally pres-

347

ent due to unstable hardware and are caused by
factors such as loose connection, component
aging, poor design, chip contamination, etc.
Transient faults describe faults which are pres­
ent due to undesired environmental disturbances
such as radiation, humidity, temperature varia­
tion, power supply fluctuation, physical vibra­
tion, etc. Spillman [25] has studied the nature
of the temporary faults, their detection tech­
niques, and modeling their behavior.

The proposed algorithm identifies the faulty
processors and communication channels without
specifying the type of the faults. But it is
important to be able to differentiate permanent
and intermittent faults from the transient
faults. Because if the faults are permanent or
intermittent, then the faulty components should
not be reused any 1 anger. We propose the fo 1-
1 owing supplementary. off-line and modified on­
line testing techniques.

Supplementary off-line testing can be car­
ried on as follows: Every time a processor Pi
is declared faulty with respect to a task Tj
by the algorithm, then task Tj must be record­
ed. Then, at some later time when the system can
run Tj in a clean and nice environment, the
processor Pi must be asked to run Tl again.
If it produced an incorrect output again, then
it is either permanently or intermittently
faulty; otherwise, the sources of failure are
either intermittent or transient faults.

The modified on·-line testing technique is
based on the use of time redundancy. That is,
in the occasions when some processors disagree
with each other in executing a particular task
Tj, before expanding the disagreement graph by
asking some more processors to execute Tj, the
same processors should be asked to run Tj
again. If the same disagreement graph was ob­
tained, then expand the disagreement graph with
respect to Tj by asking more processors to
join in executing Tj. Otherwise, do not ex­
pand the disagreement graph and ask the same
group of processors to run Tj again.

IV. Conclusion

A fault-tolerant scheduling algorithm for
error-free execution of the reliability critical
programs was proposed. In that algorithm every
program was assigned to a group of neighboring
processors for execution. The conditions under
which programs are executed error-free were
given. A new concept called group maximum
matching was introduced. This concept was used
to maximize the system performance, i.e., to
maximize the number of concurrent groups or pro­
grams running in the system. A heuristic algo­
rithm for finding a group maximum matching was
given. It is important to notice that every
system is fault-free most of the time; hence, its
average performance is dominated by its fault­
free performance. The proposed group maximum
matching attempts to maximize the system perfor­
mance.

The proposed fault-tolerant scheduling algo­
rithm is geared toward fault-free execution of
the tasks while it attempts to achieve on-line
fault-diagnosis of the faulty processors or

interprocessor convnunication channels as system
runs its normal user programs. This is an
interesting feature and it frees the system
designers from the troubles of writing diagnostic
programs which can detect all kinds of faults in
the processors in an a~ceptable amount of time.

References

[l] E.G. Coffman, Jr., and R.L. Graham, "Opti­
mal Scheduling for Two Processor Systems,•
Acta Information l, 1972, pp. 200-213.

[2] M.J. Gonzalez, Jr., "Deterministic Proces­
sor Scheduling,• Computing Surveys, Vol. 9,
No. 3, Sept. 1977, pp. 173-204.

[3] G. Dobson, "Scheduling Independent Tasks
on Uniform Processors,• SIAM J. Computing,
Vol. 13, No. 4, 1984, pp. 705-716.

[4] C.P. Kruskal and A. Weiss, "Allocating In­
dependent Subtasks on Parallel Processors,•
IEEE Trans. on Software Engr., Vol. SE-11,
No. 10, Oct. 1985, pp. 1001-1016.

[5] H. Kasahara and S. Narita, "Practical
Multiprocessor Scheduling Algorithms for
Efficient Parallel Processing," IEEE Trans.
on Computers, Vol. C-33, No. 11, Nov. 1984,
pp. l 023-1029.

[6] F .P. Preparata, G. Metze and R. T. Chien,
"On the Connection Assignment Problem of
Diagnosable Systems," IEEE Trans. Electron
Comput., Vol. EC-18, Dec. 1967, pp.848-854.

[7] S.L. Hakimi and A.T. Amin, "Characteriza­
tion of the Connection Assignment of Diag­
nosable Systems," IEEE Trans. Comput.,
Vol. C-23, Jan. 1974, pp. 86-88.

[8] M. Malek, "A Comparison Connection Assign­
ment for Diagnosis of Multiprocessor Sys­
tems," The 7th Annual Symposium on Computer
Architecture, 1980, pp. 31-36.

[9] J. Maeng and M. Malek, "A Comparison
Connection Assignment for Self-Diagnosis
of Multiprocessor Systems," Fault-Tolerant
Computing Systems, FTCS-11, 1981,
pp. 173-175.

[10] M. Malek and J. Maeng, "Partitioning of
Large Multi computer Systems,• 12th Annual
International Symposium on Fault-Tolerant
Computing, FTCS-12, 1982, pp. 341-348.

[11] A. T. Dahbura and G.M. Masson, "Greedy Di­
agnosis as the Basis of an Intermittent­
Fault/Transient-Upset Tolerant System De­
sign," IEEE Tran. on Computers, Vol. C-32,
No. 10, Oct. 1983, pp. 953-957.

348

[12] A. T. Dahbura, K.K. Sabiani and L.L. King,
"The Comparison Approach to Multiprocessor
Fault-Diagnosis," The Fifteenth Annual In­
ternational Symposium on FaultTolerant
Computing, FTCS-15, 1985, pp. 260-265.

[13) C.L. Yang and G.M. Masson, "An Efficient
Algorithm for Multiprocessor Fault Diagno­
sis Using the Comparison Approach," The
Annual International Symposium on Fault­
Tolerant Computing Systems, FTCS-16, 1986,
pp. 238-243.

[14)

[15]

[16]

[17]

K.Y. Chwa and S.L. Hakimi, "Schemes for
Fault-Tolerant Computing~ A Comparison of
Modularly Redundant and t-Diagnosable Sys­
tems," Information and Control,· 49, 1981,
pp. 212-238.

C.M. Krishna and K.G. Shin, "On Scheduling
Tasks with a Quick Recovery from Failure,•
IEEE Trans. on Computers, Vol. C-35, No. 5,
May 1986, pp. 448-455.

D.P. Siewiorek et al., "C. vmp: A Voted
Multiprocessor," in the Theory and Prac­
tice of Reliable Systems Design, by D.P.
Siewiorek and R.S. Swarz, Digital Press,
1982.

"IPSC System," Intel Scientific Computers.

[18] K. Hwang, "Advanced Parallel Processing
with Supercomputer Architectures,• in
Proc. of IEEE, Oct. 1987, pp. 1348-1379.

[19) W.J. Karplus, Ed., Multiprocessors and
Array Processors. San Diego, CA: Simula­
tion Councils, Inc., Jan. 1987.

[20) K. Hwang and K.A. Briggs, Computer Archi­
tecture and Parallel Processing, McGraw
Hill, 1984.

[21] H.M. Deitel, An Introduction to Operating
Systems, Addison Wesley, 1984.

[22] M.N.S. Swamy and K. Thulasiraman, Graphs,
Networks, and Algorithms, John Wiley and
Sons, 1981.

[23] Z. Galil, "Efficient Algorithms for Finding
Maximum Matching in Graphs,• Computing
Surveys, Vol. 18, No. l, March 1986,
pp. 23-38.

[24] S. Micali and v.v. vazirani, "An
0(~1Vl.1El) Algorithm for Finding Maximum
Matching in General Graphs,• 21st Annual
Symp. on Foundations of Computer Science,
1980, pp. 17-27.

[25) R.J. Spillman, "A Continuous Time Model of
Multiple Intermittent Faults in Digital
Systems,• Comput. and Elec. Engng., Vol. 8,
1981, pp. 27-40.

12

11

10

8
(a)

• 3

11 • 4

10115

9 ~ 6

8 7
(c)

11,...--~-4

10~.;--~.,

2 .. 4

12.

11

10

8
(b)

12·

11.

1 o•

9~
e ,

(d)

Figure l

1

::lfll:
10 I I 5

I I

Figure 2

• 3

• 4

• 5

• 6

T 5 10

T5 9

13 8

349

D.G. for T3

(f)

3 r1
abort T 2

4 T1
abort T 2

~ Tl

4 T 1

T 3

Figure 3

D.G. for T1

T- 10
"

1s 9
4 r1

(d)

Dl

8
(g)

D.G. for T5

D.G. for T1

ldle

1 ----;\,,

(1)

Idle 1 ---)(
\

' 3 T 3

T6 9 4 r3

T3 8 5 r3

{n)

(r)

Figure 3

O.G. for T
1

01 02

0-8

o,

{m)

O.G. for T
3

02

8-0
(p)

O.G. for r3

01

8
{s)

O.G. for T
6

1 --~
'

'a 9

'a s

T2 7
{t)

350

)
r1 12~-f-~_J \

I 3 r2

T211 jio, -~.J, T

T3lOHJI I
2

5 r3

T49 6 r3

T 8 4 {a) 7T4

T112 3 Tl

T111

5 r3 _

6 r 3

{c)
7 r4

T1 1 '2)1

\ 3 T
1

T111 4 Tl

T 31 O 5 T 3

T1 9 6 T 3

{e)
7 T1

T4 1 x '%
T212 ' 3 T2

llr-t----1
Idle

Figure 4

{b)

O.G. for T 1

03

O.G. for T
1

01

8
(h)

D.G. for T3

T 4 1

'\)..'
x-

12 12~ '"~--I 3 ~2

's 11.--.---111 :;:2

T5 lOr-t--- .5 ldle

THE RESILIENCY TRIPLE IN MULTIPROCESSOR SYSTEMS

Miroslaw Malek and Kitty H. Yau

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, Texas 78712

Abs!ract: A multiprocessor system is represented by an
architecture graph G, where the nodes correspond to
process<;>rs. (or. computers) and the edges represent
co~mumcatlon lmks among them. A job executed on a system
G is represented by a computation graph H, which is a
subgraph of G, where the nodes correspond to one or more
tasks ass~gne? to a particular processor and the edges represent
commumcat10ns among tasks that are allocated on different
processors. I~ ~h~s paper we define three important
paramet~::s, multi~hcity, rob1;1stness, and configurability, called
the resiliency tnple, pertment to the fault tolerance in
~ultiprocessor systems. We will discuss how each parameter
is relat~ to fault t.olerance and fault recovery and how it is
de~ermmed for a given G and H. We present solutions for H
bemg a path and G being either a hypercube or a mesh.

Key Wor~~: Fault tolerance, multiplicity, robustness,
configurabihty, multiprocessor systems, hypercube, mesh.

1. INTRODUCTION

\he proliferation of ever more powerful and complex
multiprocessor systems has made fault tolerance a necessity in
today's computer design. Although a large amount of related
rese~rch work has been reported in the literature, and
considerable efforts ar~ still being made by many researchers to
~erfect the ~rt of multiprocessor fault tolerance, there is very
ht~le. analytical work done in the area of fault recovery. The
exis~mg. researc~ .on fault recovery is rather fragmented and
apphcat10n specific. Moreover, techniques requiring imposed
~o~po.nent redundancy have been widely proposed, while the
mtnnsic redundancy ass?ciated with multiprocessor systems
has ~en overlooked. Smee mapping application programs
prec~sely onto a system architecture is very difficult, a
m1.1:Itiprocessor system is often not fully utilized at all times.
!his means th~t some processors in the system are often left
idle at one time or another. This inherent component
redun~ancy should enable fault recovery to be achieved by
mappmg programs around faulty processors. Recently, Harary
and Malek have developed a graph theoretic framework for
fa~lt.recovery in mult~processor systems [l]. In their work,
ex1stmg graph theoretic models for system architecture and
program structure are referred to as the architecture graph (G)
and the computation graph (H) respectively and are used to
formalize the st:idies of fault recovery. Sever~! parameters that
affect the ~ffectiveness of a fault recovery technique in various
ways are mt;oduced to allow easier comparison of different
methodologies and to quantify the optimization of fault
recovery. Also introduced in their work is a set of three
parat?e~e~s called the resiliency triple. These include the
multiphcity, the robustness, and the configurability
~ollectively de~oted by (m, r, ?): T~ese parameters play a~
importa~t role. ~n the better utilization of a multiprocessor
system, Its resiliency to faults, and its suitability for various

This work was supported in part by DARPA under Grant No.
N00039-86-C-0167 and by ONR under Grant No
N0014-86-K-0554 under the SDIO/IST Program. ·

351

fault recovery strategies. This paper presents methods
developed to determine these parameters for an important
computation graph, the path (pipeline), on two well known
architecture graphs: the hypercube and the mesh. Without loss
of generality, we shall assume an sxs square mesh and denote
it by Ms, where s is the number of nodes on each side. We will
also use Qn to denote an n-dimensional hypercube and Pk to
denote a path that consists of k nodes.

In. the next se~~ion, th~ fa:ilt recovery model is briefly
~escnbed. The resiliency tnple is defined in Section 3, and its
imp~ct on task allocation and fault recovery is discussed.
Section 4 presents the methods for determining each parameter
in the resiliency triple for a pipeline computation structure (H)
on two important classes of multiprocessor systems: the
hypercube and the mesh (G). Section 5 gives the conclusions.

2. THE FAULT RECOVERY MODEL

In order to show how the parameters in the resiliency triple
are related to fault recovery, we would like to briefly introduce
the fault recovery model proposed by Harary and Malek [1].

In general, fault recovery models can be used in system
synthesis or analysis. The synthesis involves the construction
of an appropriate architecture with redundant components in
order to meet a. set of required conditions. An excellent example
of the synthes.is for fault recovery of cycles and binary trees
can be found m [2]. In the analysis, a prescribed architecture
graph such as a mesh or a hypercube is given and all fault
recovery measures must be taken within this framework. In
order to take adv~ntage of the inherent component redundancy
offered by a multiprocessor system, we decided to concentrate
on the latter, which requires no imposed hardware redundancy.
The fault recovery model is described as follows.

Let an ~chitecture graph G represent the physical architecture
of a multiprocessor system. Nodes in this graph represent
processors (or computers) and interface communication
modules while edges indicate the actual point-to-point
cot?munication links: Each node in this graph can be extended
t~ mclude memory, mput/output channels, and other devices.
Fig. 1 shows the architecture graph of an 8-processor
hypercube. Let a computation graph H represent an actual
computation Gob) where each node corresponds to a task and
each edge indicates the inter-task communications. The dark
line in Fig. la shows a computation graph of a 4-node path
mapped onto an architecture graph of an 8-processor
hypercube. Since the computation graph has to be mapped onto
the architecture graph, H is a subgraph of G. A faulty link
leads t~ the removal of an edge from G and a faulty processor
results m the removal of a node and the incident edges. When
oi:ie or both of these cases occur, there are two possibilities:
~i~er the r~sulting gr~ph G' contains another subgraph H' that
is ~somorphic to H or it does not. If it does not, then the system
G is called non-recoverable with respect to H and the particular
fault(s). On the other hand, when G' does contain a subgraph

H' isomorphic to H, and there are two or more such
subgraphs, then the one yielding the minimum cost (such as
some function of distance, time, or other parameters introduced
in [1]) will result in the most efficient fault recovery. Fig. 1
shows the recovery of a job on a hypercube system.

faulty node

A ~

§c A~~c
(a)t=t0 (b)t=t1

~
B~C

(c)t=t2

Fig. 1. The recovery of P 4 on a hypercube

We observe that in general case a computation graph His a
digraph representing a task graph and one-to-one mapping of H
onto G may not be possible. In such cases we resort to a
concept of dilation which allows mapping of nodes that are
adjacent in H onto Gin such a way that the distance between
nodes in G corresponding to adjacent nodes in His equal to or
longer than that in H. The general recoverability problem is
NP-complete. In this paper we restrict G to be a mesh or a
hypercube and H to be a path (pipeline).

3. THE RESILIENCY TRIPLE

The resiliency triple (m, r, c) consists of the following three
parameters: multiplicity (m), robustness (r), and configurability
(c).

(a) m=2 (c) c=2

~A~D
hamiltonian cycle B H C

1

A~~.~~D
~la B C B C

(b) r=8

Fig. 2. The multiplicity, robustness, and configurability
for P4 on Q3.

Multiplicity (Fig. 2a) is the maximum number of
node-disjoint embeddings of H onto G, denoted by m(G, H).

352

In graph theory [3], this is known as the node-disjoint packing
number pac0 (G, H) as introduced in [4]. When m=2, two
identical jobs can be run simultaneously on the system (with
some additional hardware) to allow single fault detection.
When m>2, any single fault can be masked by voting the
outputs of multiple copies of the same job. In other words, it
allows N Modular Redundancy (NMR) in space. Usually, we
are only interested in knowing whether m is equal to or greater
than a chosen number in the range of 2 to 9. Multiplicity is
also an indication of a system's fault tolerance. Given the
necessary hardware, a system can be (m-1)-fault-tolerant.
Higher multiplicity also allows more homogeneous jobs to be
run on the system simultaneously to achieve better system
utilization. Futhermore, testing can be performed by comparing
results of the same job executed on different subsets of
processors.

Robustness, denoted by r(G, H), is the number of
embeddings of a graph H onto a labeled graph G such that each
node of H is at a different label of G in each embedding (Fig.
2b). When r>l, fault recovery can be achieved through time
redundancy by executing each stage of the computation
(systolic array or pipeline) on two or more different processors
at a time [5]. This corresponds to duplex or NMR in time.
Again, we are usually concerned about whether r is equal to or
bigger than a chosen number within the range of 2 to 9. Since
multiplicity and robustness correspond to redundancy in space
and time, they are also useful in system diagnosis.

(1, 2, 1)
(a)

(2, 3, 2)
(b)

(3, 2, 3)
(c)

Fig. 3. Equivalent configurations (fixed-labeling).

Configurability (Fig. 2c) is the number of ways in which a
particular job H can be configured on a system G. If H is a
proper subgraph of G, there may be many ways to map H onto
G. Each particular mapping, represented by a graph He (c is a
positive integer), is called a configuration. Since all
configurations of H on G are isomorphic, the computation at
hand can be performed using any of them. However, some of
these isomorphic graphs are equivalent. Although isomorphism
among a collection of configurations is itself an equivalence
relation, we have, for reasons that will become obvious later,
defined equivalence in a stricter sense. If all configurations are
considered as "rigid" graphs, then two isomorphic
configurations may not possess the same properties such as
dimensionality and space occupancy. Two configurations H1
and Hz are equivalent if, after some necessary rotation and/or
translation, Hz either coincides with, or becomes a mirror
image of H 1. Fig. 3 shows some equivalent configurations of a
4-node path P 4 on an 8-node hypercube Q3. The number of
non-equivalent configurations of H on G is defined as the
configurability of Hon G and is denoted by c(G, H). Notice
that each set of equivalent configurations is counted as one in
deriving the configurability of a given computation graph on an
architecture graph. The parameter, configurability, is a measure
of several aspects of a multiprocessor system. Higher

configurability generally allows a better system utilization, a
greater resiliency to faults, and a higher efficiency in fault
recovery. The following examples demonstrate the importance
of this parameter in a fault-tolerant multiprocessor system.

Example 1:

Consider the computation graph H to be a S-node path P5 and
the architecture graph G to be a 16-node mesh M4. Fig. 4a
shows two nonequivalent configurations (H 1 and H2) of H on
G. If these are the only configurations available, then at most
two copies of H can be run simultaneously on the system G, as
shown in Figs. 4a, 4b, and 4c. However, if we include the
configuration H3 shown in Fig. 4d, then three copies of H can
be mapped onto G as depicted. This means that either more
jobs can be scheduled on the system to achieve better utilization
or more copies of the same job can be run concurrently to
obtain a higher degree of fault tolerance. In the above example,
configurations shown in Figs. 4a, 4b, and 4c allow two copies
of the same job to be run simultaneously so that any single fault
can be detected. However, the situation shown in Fig. 4d
allows three copies of the job to be executed simultaneously
and therefore, any single fault can be masked. Observably,
higher configurability results in higher multiplicity which
allows the system to be more efficiently utilized.

(a) (b) (c) (d)

Fig. 4. Mappings of P5 on M4.

Example 2:

Consider the same computation and architecture graphs used
in Example 1. If the two columns of processors on the left half
of the system G are unavailable and the job H must be
scheduled on the remaining processors, then H may be mapped
on 0 as shown in Fig. Sa. Since the left half of the system is
busy, fault recovery must be accomplished by reconfiguring
the job around faulty components while using only the right
half of the system. Fortunately, due to the existence of various
configurations, the job H can be reconfigured to bypass any
single faulty node. Figs. Sb through Sf show the possible
configurations when the faulty nodes are as indicated. Clearly,
higher configurability signifies a bigger chance of successful
job reconfiguration and is thus an indication of the system's
greater resiliency to faults.

Example 3:

Consider the same computation graph H (in previous
examples) embedded onto the architecture graphs 0 1 and02,
which are a 3- and a 4-dimensional hypercube, respectively.
The configurability of Hon 0 1 is two (c(G1, H) = 2) as shown

in Figs. 6a and 6b, and that of Hon 0 2 is three (c(G2 ,H) = 3)
as shown in Figs. 6a, 6b, and 6c. In Fig. 6a, if node A is
faulty on G1, then the task executed there can be transferred to
node B. All other nodes can remain stationary for the job to

353

continue. Any other reconfiguration will result in the
disturbance of more nodes. However, due to the existence of
an additional configuration of H on 0 2, if this node is faulty on
0 2, then the task assigned to that node can be transferred to
either node B or node C, depending on which node is available
at the time. This example shows that higher configurability also
indicates a more flexible system for reconfiguration.

unavailable processors

r~mrfil3
- - - - - .,

(a) (b) (c)

(d) (e) (t)

Fig. 5. Reconfiguration of P5 on M 4 with different faulty nodes.

(a) (b) (c)
Fig. 6. Non-equivalent configurations of P5 on Q3 and~.

Example 4:

Consider the same computation graph H and architecture
graphs 0 1 and G2 used in Example 3. If node A in Fig. 6b
becomes faulty on 0 1, then not only does node A have to be
transferred (to node B), but node D has to be moved (to node
E) also in order to maintain the S-node pipeline. However, if
this node becomes faulty on 0 2, only that node has to be
moved (to node F) to complete the reconfiguration. Therefore,
higher configurability may also increase the efficiency of fault
recovery.

Since each parameter in the resiliency triple has some impact
on the fault tolerance of a multiprocessor system, the study of
these parameters is not merely of theoretical interest, but it is
also useful in solving practical problems. Next, we present the
methods developed for determining each of these parameters
for a computation graph Hon an architecture graph 0.

4. DETERMINING THE RESILIENCY TRIPLE

The resiliency triple is dependent on both the computation
and the architecture graphs. Since the pipeline is a very widely
used computation structure, we have decided to start with the
pipeline (path) as the computation graph under consideration.
The binary n-cube (hypercube) and the mesh have both
received much research and commercial attention and are useful
for a wide range of problems. We therefore choose these two
systems as the architecture graphs.

4.1. Multiplicity

A systematic way to map multiple node-disjoint copies of a
path Pk on a mesh Ms or a hypercube Qn is to concatenate as
many Pk's as possible along a hamiltonian path. If a path P 6
is mapped onto a mesh M5 in such a manner, four
node-disjoint copies will result. The multiplicity is, therefore,
equal to four. Since a hamiltonian path exists in a hypercube or
a mesh of any size, the multiplicity m(G, H), where H
represents a path computation graph Pk and G represents either
a mesh Ms or a hypercube Qn system, is given by the following
expression.

m(G, H) = LN/kJ
Notice that l X J is the largest integer smaller than or equal to
x, N is the number of processors in the system, and k is the
number of tasks in the computation (pipeline). N=2n for Qn
and N=s2 for Ms. For a P6 on an Ms, N=25 and k=6.

Therefore, m= l 2 5 I 6 J = 4. Furthermore, we may easily
generalize and observe that for any architecture graph G with
N nodes that has a hamiltonian path, the multiplicity is given
by m(G, Pk)= LN/kJ.

4.2. Robustness

The maximum number of mappings of a path Pk on a mesh
Ms or a hypercube Qn, such that each node in a Pk is assigned
to a different node in an Ms or Qn, can be obtained in the
following manner. Starting with a mapping H1 (H1= P0, the
next mapping Hi can be obtained by moving each node in H1
to an adjacent node in the same direction along the hamiltonian
cycle. The different mappings, Hi's (lSiSr, where r is the
robustness) are obtained by sliding Pk along a hamiltonian
cycle in Ms or Qn, one node at a time, until we return to the
original mapping, H1. Fig. 2b shows such mappings of P 4 on
Q3. We observe that robustness is equal to the number of
nodes N in any system graph G if a hamiltonian cycle exists.
Since a hamiltonian cycle exists in all hypercubes and all
meshes with an even number of nodes, the robustness is
given by r(G, H) = N for a Pk on a Qn or an Ms where s is
even. However, if there are an odd number of nodes in a
mesh (s is odd), then a hamiltonian cycle does not exist. In
this case, we can choose one of the following alternatives
which are easy to implement.

(1) Find the largest cycle in Ms and use it to generate the
mappings as described above.

(2) Slide Pk along a hamiltonian path, one node at a time,

from one end to another.

If we choose option (2), then robustness will be given by
r(G, H) = N-k+l. Clearly, if we can find a cycle in Ms
such that N'>N-k+l, where N' is the number of nodes in this
cycle, then option (1) will give a better result

We may observe that the largest cycle in Ms with N nodes,
wheres is odd, contains N-1 nodes. Fig. 7 shows how such a
cycle is constructed on an arbitrary Ms (s is odd).
Consequently, using option (1), the robustness is given by
r(G, H) = N-1 for Pk on Ms when s is odd. This is
optimum (fork > 2) since a hamiltonian cycle does not exist.

354

I I l~::a

ffi .. 8
Ms

Fig. 7. The largest cycle on Ms when s is odd.

4.3. Configurability

4.3.1. Conjigurability of a Path on a Hypercube

In order to determine configurability, we need to generate
various non-equivalent configurations. Before presenting an
algorithm to accomplish this, we shall describe a scheme
which is suitable to represent a configuration of a path Pk on a
hypercube Qn. Since Pk has k-1 edges, a logical way to
represent the path is by a vector of k-1 positive integers. E~ch
integer indicate~ the dimensi?n in which the c~rrespondmg
edge resides. Smee non-eqmvalent configurations are not
distinguished by their positions or orientations in the system,
and the hypercube is a symmetric graph, we ne~ n~t adopt a
fixed coordinate system. Furthermore, it is more
advantageous not to assign a fixed inte~er to each dimension.
This can be demonstrated by the following example.

Example 5:

In a Q3 system, if the dimensions are labeled such that the
horizontal dimension (x-coordinate) is denoted by 1, the
vertical dimension (y-coordinate) is denoted by 2, and the
remaining dimension (z-coordinate) is denoted by 3, then the
configuration in Fig. 3a will be represented by the vector (1,
2 l) and those shown in Figs. 3b and 3c will be represented
by the vectors (2, 3, 2) and (3, 2, 3) respectively (for easier
reference, we have chosen the lower left node as the starting
point of the path). Obviously, all three configurations are
equivalent and should be counted as one. But many such
equivalent configurations will be generated as different vectors
if each dimension is assigned a fixed integer. However, if we
label every dimension dynamically, according to the order in
which they are traversed by the path, then all the above three
configurations will be represented by the vector (1, 2, 1). Fig.
8 shows all the non-equivalent configurations of P 6 on Q3
using this representation. Since there are four non-equivalent

configurations, the configurability of P 6 on Q3, c(Q3, P 6), is
equal to four.

The configurability of Hon G (Pk on Qn here) can be
obtained by enumerating all the non-equivalent configurations
of H on G. But since the distinct configurations themselves
are also very useful for task allocation and fault recovery, we
want to generate and save the vectors which represent them.
When there are many non-equivalent configurations of H on
G, we may decide to save only a chosen number, say x, of
them in order to save time and memory space. In this case, we
are only interested in knowing the exact number when
configurability is smaller than x.

@ 011
(1, 2, 1, 3, 2) (1, 2, 1, 3, 1)

(a) (b)

Jbil f!IJ
(1, 2, 3, 2, 1) (1, 2, 3, 1, 2)

(c) (d)

Fig. 8. Path representation using dynamic labeling.

Before presenting the algorithm for generating
non-equivalent configurations of Pk on Qn, let us discuss
some related issues. Firstly, we observe that when k=2 or
k=3, there is only one configuration, represented by the
vectors (1) and (1, 2) respectively. As a result, to find a vector
that represents a configuration of Pk (k-1 edges) on Qn,
where k>3, we only need to generate k-3 integers to be
appended to the vector (1,2). Secondly, for any path mapped
on a hypercube, no two adjacent edges can lie in the same
dimension. This means that in the vector representing a
configuration of Pk on Qn, adjacent integers cannot be equal.
Consequently, given an edge represented by an integer i, the
next edge in the path can only be represented by an integer j
such that l:::;j:::;n andJ;ti. In other words, we can only choose
from n-1 integers to represent this edge. Having observed
this, it is clear that we may generate up to (n-l)k-J" vectors to
be candidates for the configurations of Pk on Qn. Many of
these vectors represent configurations that contain cycles and
must thus be eliminated. Other vectors may represent
equivalent configurations and must thus be counted as one.
Fig. 9 shows two configurations with cycles. Observably,
these configurations are also equivalent. If we have to test
each of the (n-l)k-3 vectors for cycles and equivalence, the
O((logN)k-3) computing time may be excessive (N=2n is the
number of processors in Qn)· For a typical case of n=lO and

k=lO, the number of operations becomes 97=4,782,969.
However, if we take another approach by building the
configurations of Pk from those of Pk-l on Qn, then only

2(n-l)c(Qn' Pk_1) vectors will be generated. This is because
we can build a path of k nodes by appending a node either to
the front or to the end of a (k-1)-node path. Knowing that the
configuration of P3 is (1, 2), we can extend the path one edge
at a time until we reach Pk. As a result, only

355

k

L2(n-l)c(Qn, Pi_1) vectors need to be generated to obtain

i=4
all the configurations of Pk on Qn. If we put an upper bound,
x, on the c(Qn. Pi_1) 's, O(klogN) computation time is
required for the whole operation. The latter approach is also
more efficient in terms of memory re~irement. O(k) memory
space is required instead of O((logN) -3), which is necessary
for the former approach.

D

·=· 41.~.~ ,o;J,J
(a) (b)

Fig. 9. Configurations with cycles on a Q3 .

After generating the configuration vectors mentioned above,
we need to perform the eligibility test. This consists of testing
for the existence of cycles and equivalent configurations. In
order to detect cycles, let us observe that any cycle on Qn is
represented by a vector in which every integer appears for an
even number of times. Any vector that corresponds to a
configuration which contains a cycle must have a subvector
that exhibits the above characteristic. Let us scan a vector from
the left to the right and keep an n-bit binary number as a parity
indicator, in which the i-th bit (bi) indicates whether the
integer i has appeared for an even number of times. If it has,
bi is set to O; otherwise bi is set to 1. For example, if we
consider the vector (1, 2, 1, 2, 3) in Fig. 9b, the 3-bit parity
indicator (P=b1 b2b3) will be updated as follows when we
scan the vector from the left to the right one bit at a time:

step 1: 100
step 2: 110
step 3: 010
step 4: 000

(1 appeared once)
(2 appeared once)
(1 appeared twice)
(2 appeared twice)

After scanning the fourth integer in the vector, the parity
indicator becomes zero, indicating the detection of a cycle.
Notice that if the first edge in the configuration is part of a
cycle, as shown in Fig. 9b, then the parity indicator would
become zero as soon as a cycle is detected, even though there
is still another edge attached to the cycle. In this case, there is
no need to scan the rest of the vector. However, if the first
edge is not part of the cycle, as shown in Fig. 9a, then the
parity indicator would not go to zero if the vector is scanned
as a whole. In this case, the cycle will be detected when the
subvector (2, 3, 2, 3) is scanned. Thus, cycle detection
requires scanning the configuration vector and its subvectors
while updating and checking the parity indicator. This requires
O(k2) computations for Pk (O(k) if all the subvectors are
checked in parallel).

The way to test for equivalence is by observing that any
configuration can be traced from either end. Consider the
configuration in Fig. 9a. If the configuration is traced in the
order ABCDEB, , then we get the vector (1, 2, 3, 2, 3). But if
we traverse in the opposite direction starting with node B,
then the vector obtained would be (1, 2, 1, 2, 3). How do we
derive this vector from (1, 2, 3, 2, 3) and thus detect the

equivalence? The answer is by inverting the vector (i.e. listing
a given vector by starting with the last element) and
renumbering the resulting vector as follows.

H1 = (1, 2, 3, 2, 3)
H1'= INVERT (H1) = (3, 2, 3, 2, 1)
H2 = RENUMBER(H1') = (1, 2, 1, 2, 3)

:. H1 = H2

Observably, the operation RENUMBER performs the
following mapping:

3 ~ 1, 2 ~ 2, 1 ~ 3.

However, it may perform a different mapping in a different
situation. Its job is to scan the current vector and relabel each
integer according to the order in which it appears in the vector.
In H1', the integer 3 is the first label to appear in the vector,
and is thus given a new label 1. Similarly, the integer 2 is the
second label and 1 the third appearing in H 1 ', they are
therefore reassigned the new labels 2 and 3 respectively. Since
we have not assigned a fixed number to any particular
dimension in Q0 , inverting and then renumbering a vector
would not produce a new configuration, and is equivalent to
tracing the path from the opposite end. Renumbering is also
necessary when a configuration vector for Pk is generated by
appending an interger to the front of a vector of Pk-I· For
example, if we want to obtain a configuration for P 6 by
appending an edge to the front of the P 5 shown in Fig. lOa,
we can append an integer (either 2 or 3 in this case) to the
front of the vector that represents the P5. If we choose to
append a 2, the following vector is obtained: H'(P6) = (2, 1,
2, 3, 2). The corresponding configuration is shown in Fig.
lOb. H'(P 6) needs to be renumberred as follows:

2 ~ 1, 1 ~ 2, 3 ~ 3,
H(P6) =RENUMBER(H'(P6)) = (1, 2, 1, 3, 1).

ilI1
H(P5) = (1, 2, 3, 2)

(a)
H(P6) = (1, 2, 1, 3, 1)

(b)

Fig. 10. Extension of a 5-node path.

Having discussed the various issues involved in generating
the configurations of Pk on Qn, we are now ready to present
the algorithm which enumerates up to x non-equivalent
configurations of Pk on Q0 • The final configuration vectors
are stored in an x by (k-1) array, H(l:x, l:k-1), which
contains up to x vectors of k-1 integers, each of which
represents a unique configuration. Then H(m, l:k-1) would
correspond to the (k-1)-integer vector representing them-th
configuration enumerated. An array T(l:x, l:k-1) is used to
save the intermediary vectors (for Pi_1's). The algorithm is as
follows:

356

Algorithm 1:

Input: n, k, x.
1. If k=2, exit with H(l)=(l), c=l.
2. If k=3, exit with H(l)=(l, 2), c=l.
3. If k>3, set H(l,1)=1 and H(l,2)=2: h=2.

\ h keeps track of the largest integer in the vector and h~ \

4. Until H contains vectors of k-1 elements, set T = H, erase
H, and do the following:

A. For every vector v in T, do the following:
a. If h '# n, set h=h+ 1.
b. For every integer i such that 19~ and i '# j, do the

following: \ j is the last integer in v \
i. Append i to the end of v.
ii. Perform cycle detection. If positive, go to 4b.
iii. Invert and renumber the vector; check if the resulting

vector has been saved in H. If positive, go to 4b.
iv.Save the resulting vector in H. If IHI= x, go to 4;

otherwise go to 4b.
\ IHI is the number of vectors in H \

c. For every integer i such that 29.:S;h, do the following:
i. Append i to the front of v and renumber the vector.
ii. Check if vector exists in H. If positive, go to 4c.
iii. Perform cycle detection. If positive, go to 4c.
iv. Invert and renumber the vector; check if it exists in H.

If positive, go to 4c.
v. Save the resulting vector in H. If IHI = x, go to 4;

otherwise go to 4c.
5. If IHI< x, set c= IHI and output("c is equal to", c);

otherwise, output("c is at least", x).

In the above algorithm, Step 4 is executed k-3 times. For
each iteration of Step 4, Step 4A is invoked at most x (a
constant) times, each of which causes Steps 4b and 4c to be
performed h times. Steps 4b and 4c perform cycle detection
and vector renumbering, which require O(k2) computing time.
Consequently, the total time requirement for Algorithm 1 is
O(k3h). By observing that his O(k) if k~+l and is O(n) if
k;?:n+ 13 we conclude that the computation time is either O(k4)
or O(k logN). If we assume an upper bound on the size of the
pipeline so that k$X, where K is a chosen constant, then the
computation can be accomplished either in a constant (0(1))
time or O(logN) time, depending on the values of k and n.
Since two x by (k-1) arrays are used to store the final and the
intermediary results, the memory requirement for Algorithm 1
is O(k). Again, for k:S;K, this means 0(1) storage space.

4.3.2. Configurability of a Path on a Mesh

Before discussing the method of representation for a path Pk
on a square mesh system (Ms), it is helpful to observe the
following differences between a square mesh and a hypercube
(Qn):

1. The Q0 is a regular graph in which every node has the same
degree, n. But the Ms has four corner nodes, which are of
degree 2, and 4s - 8 boundary nodes, which are of degree 3.
The remaining nodes all have a degree 4.

2. A configuration of Pk in any particular position on Q0 can be
rotated.n-1 times before returning to its original orientation. A
configuration of Pk on Ms has only three rotations besides
itself. It also has two mirror images, one along the x-axis
(horizontal) and the other along the y-axis (vertical).

We have decided to ignore the boundary cases on Ms in order
to simplify the discussion. This requires that k~s, which is
usually satisfied. However, if k>s, then the number of edges
traversed in each direction must be counted so as not to exceed
s. Since each node under consideration has a degree of 4
regardless of s, and given an edge in a path, the next edge to be
traversed can only be oriented in one of three directions (two
adjacent edges cannot be traversed in opposite directions on a
mesh), we have chosen to assign a fixed integer to each of the
four directions, as shown in Fig. 1 la. Then a configuration of
Pk on Ms can be represented by a (k-1)-element vector as
shown in Fig. 1 lb. We may require that the first integer be 1
(first edge always heads to the right) for easier reference. When
k=2, there is only one configuration, which is represented by
(1). When k>2, we need to find an additional k-2 integers to
complete the (k-1)-edge path. Because each integer can assume
one of three values as mentioned earlier, up to 31C-2 vectors may
be generated. These include many cycle-bearing or equivalent
configurations. For a typical case of k=lO, 38=6561 operations
are required. Although this may be acceptable, we can improve
the time efficiency by using a method similar to the one
described in Section 4.1. A configuration for Pk can be
obtained from that of P2 by appending an edge to either end of
the latter, step by step until k-1 edges are accumulated. To
obtain Pi from Pi-l• 6c(Ms, Pi_1) vectors are generated. Thus,

k

L6c(Ms, Pi_1) operations are required for the complete

i=3
process. If we again put an upper bound on the number of
non-equivalent configurations for each Pi, where 2<i~, then
O(k) computing time is needed (0(1) ifkg(),

3 ~fm + (1,3,3, 1,2, 1,2,4)

4 1 (b) a path

2 ~
(a) labeling each direction tfjj

y = (1, 1, 1, 2, 4, 2, 4, 3, 4, 3)

(c) a cycle

Fig. 11. Representation of a path and a cycle on a mesh.

The eligibility test for configurations of Pk on Ms also
consists of cycle detection and equivalence test. However, the
particular methods to accomplish these are different from those
presented in Section 4.1. The following theorem can be used
for cycle detection.

Theorem 1: Given the labeling scheme in Fig. lla and a
vector v representing a configuration on a mesh Ms, if we let

357

sum denote the sum of all the integers in v and length denote
the number of integers in v, then the configuration is a cycle if!
sum = 2.5 x length.

Proof: If a cycle on a mesh is traversed starting from an
arbitrary node, each edge in the cycle would belong to a pair of
edges pointing in opposite directions. A cycle of length edges
consists of length/2 such pairs. Since in the introduced
labeling scheme (Fig. 1 la) each direction is numbered in such
a way that integers representing opposite directions add to 5,
each pair of these edges are denoted by integers adding to 5.
Since there are length/2 pairs, the sum of all the integers, each
representing an edge in the cycle, is 5xlength/2, or

2.5xlength. D

Fig. llc shows an example in which v=(l,1,1,2,4,2,4,3,4,3).
From this we get sum =1+1+1+2+4+2+4+3+4+3=25,
length=lO. Applying Theorem 1, a cycle is detected. A vector
corresponding to a cycle-bearing configuration would have a
subvector that demonstrates the above characteristic.

We have made the following observations on equivalent
configurations of Pk on Ms: Consider the example shown in
Fig. 12a. If the path is traced starting from node A, then the
following vector is obtained: H1 = (1, 2, 2, 4, 4, 3, 1). But if
node B is the starting point, then we would get
H 1' = (4, 2, 1, l, 3, 3, 4). We know that H1 and H1' are
equivalent, but how do we detect the equivalence? Since we
have chosen 1 to be the first integer in all vectors, H 1' needs to
be renumbered. In order to convert 4 to 1, we realize that the
edges heading left must be forced to head right. Since mirror
images are equivalent, we can convert H1' to its mirror image
along the y-axis, causing the horizontal edges to exchange
directions. As a result, the integers 1 and 4 are interchanged,

giving the vector H1" =H2=(1, 2, 4, 4, 3, 3, 1). Fig. 12b
shows the corresponding configuration. Similarly, the mirror
image of a configuration along the x-axis causes the vertical
edges to exchange directions, resulting in the interchanging of
2 and 3 in the corresponding vector. Fig 12c shows such a
mirror image (of the path in Fig.12a). Fig. 12d shows the path
in 12a reflected twice, once along the x-axis and once along the
y-axis. The corresponding vector is obtained by interchanging
1 and 4 as well as 2 and 3. This is equivalent to subtracting
each integer in the original vector from 5. Clearly,
interchanging 1 and 4 or 2 and 3 in a vector does not result in a
new (non-equivalent) configuration. Finally, let us observe the
configurations in Figs. 12e and 12f. These are both 90 °
rotations of Fig. 12a, one clockwise and the other
counterclockwise. When a configuration is rotated 90 °
clockwise, integers in the original vector must be renumbered
according to the following:

1 -+ 2, 2 -+ 4, 3 -+ 1, 4 -+ 3 (2)

When a configuration is rotated 90 ° counterclockwise, the
vector must be renumbered as follows:

1 -+ 3, 2 -+ 1, 3 -+ 4, 4-+ 2 (3)

Thus, renumbering a vector according to (2) or (3) would not
alter the configuration (all resulting configurations are
equivalent). After observing the above, it is readily seen that
whenever we have a vector whose first element (i) is not 1, the

vector can be renumbered (to begin with 1) as follows:

1. If i=2, then reassign integers according to (3).
2. If i=3, then reassign integers according to (2).
3. If i=4, then interchange 1 and 4.

As mentioned earlier, two adjacent edges cannot be in
opposite directions. Therefore, when appending an edge to the
front of an existing path (represented by a vector that begins
with 1), only three choices are available. The edge may be
represented by one of the following three integers: 1, 2, or 3.
Whenever a vector is inverted or extended at the front,
renumbering may be required. A configuration (H1 in Fig. 12a)
and its mirror image (H3 in Fig. 12c) along the x-axis both
have vectors that begin with 1. It is therefore necessary to
check for these equivalent configurations.

starting point
A A (•)Em (b)IE

H1 = (1, 2, 2, 4, 4, 3, 1) Hz= (1, 2, 4, 4, 3, 3, 1) (o)§m (d)E§§
H3= (1, 3, 3, 4, 4, 2, 1) 14= (4, 3, 3, 1, 1, 2, 4)

H5= (2, 4, 4, 3, 3, 1, 2) %= (3, l, 1, 2, 2,4, 3)

Fig. 12. Mirror images and rotations of a path on a mesh.

Now we are ready to present the algorithm for enumerating
up to x (a chosen constant) non-equivalent configurations of
Pk on Ms. As in Algorithm 1, two arrays, H(l:x, l:k-1) and
T(l:x, l:k-1), are used to store the final and the intermediary
vectors, respectively. The algorithm is as follows.

Algorithm 2:

Input: s, k, x.
1. If k=2, exit with H(l)=l, c=l.
2. If k>2, set H(l, 1)=1.
3. Until H contains vectors of k-1 elements, set T=H, erase

H, and do the following:
A. For every vector v in T, do the following:

a. For every integer i such that l:S;i::'A and i+j;e5, do the
following: \j is the last integer in v \

i. Append i to the end of v.
ii. Perform cycle detection. If positive, go to 3a.
iii. Invert and renumber the vector; check if it exists in H.

If positive, go to 3a.
iv. Interchange 2 and 3 in the vector; check if the resulting

vector exists in H. If positive, go to 3a.
v. Invert and renumber the vector; check if it exists in H.

If positive, go to 3a.
vi. Save the vector in H. If IHI = x, go to 3; otherwise, go

to 3a.

358

b. For every integer i such .that ls;is;3, do the following:
i. Append i to the front of v and renumber the resulting

vector. Check if it exists in H. If positive, go to 3b.
ii. Perform cycle detection. If positive, go to 3b.

iii. Invert and renumber the vector; check if it exists in H.
If positive, go to 3b.

iv. Interchange 2 and 3 in the vector; check if the resulting
vector exists in H. If positive, go to 3b.

v. Invert and renumber the vector; check if it exists in H.
If positive, go to 3b.

vi. Save the vector in H. If IHI = x, go to 3; otherwise, go
to 3b.

4. If IHI < x, set c = IHI, output("c is equal to'', c).
Otherwise, output("c is at least", x).

In Algorithm 2, Step 3 is repeated k-2 times. Each iteration of
Step 3 causes Step 3A to be executed up to x times, each of
which in tum performs Steps 3a and 3b three times. Steps 3a
and 3b each requires O(k2) computing time. As a result, the
total time requirement for Algorithm 2 is O(k3). If k s; K,
where K is a constant upper bound on k, this reduces to 0(1).
Like Algorithm 1, the memory requirement is O(k), or 0(1) ifk
is bounded.

5. CONCLUSIONS

We have defined three parameters (the resiliency triple) and
discussed their importance in the fault tolerance and diagnosis
of multiprocessor systems. We have also presented the
solutions for determining the first ~o parameters, multiplicity
and robustness, and two algorithms which determine the
configurability and enumerate various non-equivalent
configurations for a path computation graph mapped onto a
hypercube or a mesh architecture graph. The resiliency triple is
a good measure of a multiprocessor system's resiliency to
faults and its flexibility for job reconfiguration. It is also related
to the system utilization and fault recovery. The configurations
generated by the algorithms proposed in Section 4.3 are useful
for efficient task allocation as well as effective fault recovery.
The efficiencies of these algorithms have been improved by
carefully choosing a path representation scheme in each case,
and by selecting an effective approach to generating the
configurations. For bounded k, Algorithm 1 has O(logN)
computing time, and requires 0(1) storage space, and for
Algorithm 2, both time and memory requirements are constant.

REFERENCES

[1] F. Harary and M. Malek, "Fault recovery in multiprocessor
systems: a graph theoretic approach," Technical Report,
Department of Electrical and Computer Engineering, the
University of Texas at Austin, 1987.

[2] R. M. Yanney and J, P. Hayes, "Distributed recovery in
fault-tolerant multiprocessor networks," IEEE Trans. on
Computers, vol. C-35, no. 10, Oct. 1986, pp. 871-879.

[3] F. Harary, "Graph Theory," Reading, Mass.,
Addison-Wesley, 1969.

[4] F, Harary, "Covering and packing in graphs," I. Annals N.
Y. Acad. Sci. 175, pp. 195-208, 1970.

[5] Y. H. Choi and M. Malek, "A fault-tolerant FFT
processor," IEEE Trans; on Computers, vol. 37, no. 5, May
1988, pp. 617-621.

FAULT-TOLERANT ALGORITHMS AND ARCHITECTURES FOR REAL
TIME SIGNAL PROCESSING

Jing-Yang Jou
Jacob A. Abraham**

AT&T Bell Laborntories
Murray Hill. New Jersey 07974

Abstract- An encoding technique, the weighted checksum code
(WCC), is proposed to achieve concurrent error detection in matrix
arithmetic and signal processing on highly concurrent VLSI structures.
In order not to increase the roundoff errors when we incorporate the
WCC into the computation, a simple roundoff error analysis is used to
guide the construction of the WCC. A new data retry technique is then
proposed to locate the faulty processors and identify the correct outputs.
Such an approach provides rapid error detection with low hardware
overhead while system performance is not significantly degraded for the
sake of fault tolerance.

1. Introduction

Many algorithms for digital signal and image processing, such as Fast
Fourier Transform (FFT), Finite Impulse Response filters (FIR), 1-D
convolution, 2-D convolution [l], and feature extraction and pattern
classification [2], require large-scale matrix or vector computations in
their solutions. Fast matrix algorithms for solving large-scale matrix
computations have been proposed by Kant and Kimura [3], Sameh and
Kuck [4], Hwang and Cheng [5], and many other researchers. Also,
many existing architectures consisting of array-structured machines,
such as ILLIAC IV, MPP (Massively Parallel Processor) [6], and
systolic array processors [1, 7] have been proposed to solve these
problems effectively. A major difficulty with a high degree of
integration is that a single flaw in a chip can render an entire computing
system useless. It is, therefore, desirable to have a high-performance
system which can also tolerates physical failures in the system by
providing correct results, or one which can at least detect the error,
restructure the system, and retry the computation.

An encoding technique, the weighted checksum code (WCC), was
proposed in [8] to achieve both error detection and correction for matrix
operations using highly concurrent VLSI computing structures. This
technique is very cost-effective and valid when fixed-point number
systems are employed. Since roundoff errors may destroy the error
correction capability of wee. it may be difficult to apply this technique
alone on floating-point number systems. In this paper, the Weighted
Checksum Code (WCC) will be used to perform concurrent error
detection (CED) fast and cost-effectively. A simple roundoff error
analysis is used to guide the construction of the wee such that th•·
roundoff errors will not increase due to the incorporation of the wrc
into the computation. A new data retry technique is then proposed to
locate the faulty processors and identify the correct outputs. Such an
approach provides rapid error detection with low hardware and time
overhead compared with previous attempts at using hardware for error
correction [8]. Once an error is detected (a relatively rare event in
practice), additional time steps are used for fault location. Thus, system
performance is not significantly degraded for the sake of fault tolerance.
Large roundoff errors are detected and treated in the same manner as
functional errors. However, the data retry technique can also distinguish
between the roundoff errors and functional errors which are caused by
some physical failures. Tue proposed scheme, error detection by
hardware redundancy method and error correction by time redundancy
method, is thus cost-effective and valid for both fixed-point and
floating-point number systems.

* This research was supported by the Semiconductor Research Corporation under
Contract SRC-RSCH84.06-049.

** Professor Abraham is with Coordinated Science Laboratory. University of Illinois at
Urbana-Champaign.

For simplicity of treatment, this discussion will be based on linear array
architectures which are believed to hold the most promise in VLSI
computing structures for their flexibility, low cost, and applicability to
most of the interesting algorithms. A similar discussion clearly holds
for two-dimensional array architectures as well.

In Section 2, a module-level fault model applicable to VLSI is
described. In Section 3, the matrix encoding technique is reviewed.
Section 4 discusses the effect on the word length and the roundoff error
analysis. In Section 5, a concurrent error detection scheme using the
weighted checksum is proposed. Section 6 describes the faulty
processor identification and error correction procedures. In Section 7, a
procedure for obtaining correct data and identifying faulty processors is
described for systems with multiple faulty processors.

2. The Fault Model

In this paper, we allow a module (such as a processor or computation
unit in a multiple processor system) to produce any arbitrary logical
errors under failures. We also assume that, at most, one module is
faulty within a given period of time, which will be relatively short
compared to the mean time between failures. In Section 7, systems
with multiple faulty processors are also discussed.

Since effective error correcting schemes, such as Hamming codes [9]
and Alternate-data retry [10], exist for communication lines and
memories, we will assume that failures in the communication lines and
memories are detected and corrected by those methods. In this paper,
we will, therefore, focus on the fault tolerance of the processor array.

3. The Weighted Checksum Encoding Scheme

Let us denote a matrix H, the WCC-matrix, as

r·u w,,
w1. -1 0

JJ
W21 Wzz Wz. 0 -1

H=

w,1 w,2 w,. 0 0

Using this, a compact description for the Weighted Checksum Code
(WCC) can be given in terms of matrices. Readers can refer to [8] for
detail.

Definition 1: Let H be a t-by-(n+t) matrix of numbers. Then the set
of (n +t)-element vectors that satisfy the matrix equation HA = 0 is
called the code space of H, where A is a column vector.

Theorem 1: The code vector of a WCC-matrix H has at least d nonzero
elements (or is a distance-d code) if and only if every combination of
d-1 or fewer columns of Hare linearly independent.

From Theorem 1 and the construction principle of the WCC code, we
can construct a WCC with a suitable capability by suitably assigning the
weights of the matrix H. Since a single module level fault model
applicable to VLSI has been assumed, a WCC-matrix H, where
H = [l 1 . . 1 -1], will be used to demonstrate the encoding
technique and develop the theory. This specific distance-2 code which
is a subset of wee and is simply called the checksum code, will be
used to efficiently achieve concurrent error detection (CED). However,
the fact holds for the general distance-I+ l Weighted Checksum
Encoding Matrices whose WCC-matrices satisfy the requirement of
Theorem 1.

359

Assume in the following discussion that A is an n -by-m matrix. Since
n can be 1 or m can be l, vectors are defined in the same way as
matrices. Let us define:

eT = [1 1 · · · 1] and fT = [1 I · · · 1],

where e is a n-by-l column vector and f is a m -by-I column vector.

Definition 2: The column, row and full checksum matrix A A and
A1 of the matrix A are defined as: c, "

Ac = [e~A] A, = [A Af], Ar= [e~A e~~J.
It can be seen that five matrix operations exist which preserve the
checksum property: addition, multiplication, LU-decomposition,
transpose, and product of a matrix with a scalar. They are given in the
following theorems without proofs.

Theorem 2: If B 1 •• BnA = C, then B 1 •• BnA, = C,.

Theorem 3: If A + B = C, then A, + B, = C,, Ac + Be = Cc,
A1+ B1= C1.

Theorem 4: If sA = C, wheres is a scalar, then sA, = C,, sAc = Cc,
sA1 = C1.

Theorem 5: If AT= C, then A;= Cc, A~= C,, Aj = Cr.

Theorem 6: When the matrix A is LU decomposable, the full
checksum matrix of A, A1, can be decomposed into a column checksum
lower matrix and a row checksum upper matrix such that A1 = LcU,.

4. Effect On The Word Length

When processing the matrix with fixed-point systems, the definitions of
the summation elements may be modified to use residue arithmetic and,
thus, avoid very large checksums [8,11]. Then,

j=m

a;. m+I = I;a;,j mod M for I $ i $ n
;k,=I

an+I.j = :Ea;.j mod M for 1 $ j $ m,
i=l

where M = 2°. We assume that all the numbers lie in the range
-1$ a$ l.

In floating-point number systems, the modified definitions are:

- fiog1ml j= m
a;. m+ 1 = 2 I; a1• j for 1 $ i $ n

r l)=I
- Iog2n J= /1

an+l.j = 2 I;a;.j for 1 $ j $ m.
i= 1

The reason for the modified definitions of floating-point number systems
will be discussed later in this Section.

In floating-point arithmetic, each number x is represented in the form
x = m2', where m is called the mantissa and e the exponent. We
assume that l I 2 $ I m I < l for normalized floating-point arithmetic
operations, where I m I is the absolute value of m. We denote l as the
number of binary digits allocated both to a fixed-point number and the
mantissa of a floating-point number, and u as the machine-dependent
unit roundoff. For example, u = 2--<1+1> in a I-digit fixed-point system.

Following [12], we will use fi (.) to denote the computed fixed-point
result of the argument and fl(.) to denote the computed floating-point
result of the argument. The equivalence sign will be used to emphasize
that rounding errors have been taken into account. We have

360

fi(x±y)"' x±y, fl(x±y)"' x(l+£) ± y(l+e),
fi(xy)"' xy + o, fl<xy)"' xy(l+o).

where I £ I , I o I $ u. In the computations, we assume that the
computed results do not lie outside of the permitted range.

Let's discuss the case of fixed-point number systems first. Assume that
the equation we want to calculate is An+I. mXm. 1 = Bn+I. 1•

b; = fi(a;.1X1 + a,.,2X2 + · · · + a;, mXm)
"' a;.1X1 + a;.2X2 + .. + a;, ,.x,. + 01 + Oz+ .. + o,.

If we do the checksum verification for the vector B, the error bound E is

E = I ±b; - bn+I I $ (n +l)mu.
i=l

The error bounds of the fixed-point systems only depend on the size of
the problems.

Let's discuss the case of floating-point number systems.

b; = jf(a;, 1x 1 + a;,2X2 + · · · + a;, ,.x ..)
= a; 1X1(l+ Oi)(l+ £i)(l+ q) .. (l+ Em-I)

+ a,.· 2x2(l+ Oz)(l+ ei)(l+ Ei) .. (1+ Em- i)
+ . : . + a;, ,,,x,,,(1+ o ..)(l+ Em-~).

The error bound E of vector B is

E= I ±b,.- bn+I I $ (n+l)mu I !xi 12Ilamax112.

Thus, in floating-point systems, the error bound. is affected by
I I a,. I I 2. In order not to increase the roundoff error bound when we

incotp0rate checksum techniques into the computations, we can use

-fiog2nl n
an+I, j = 2 :Ea;, j

·'=I

because

-r1og,nl " I I I I I I 3n+I I I 2 = 2 I I :Ea; I I 2 $ 3max 2·
i=l

5. Concurrent Error Detection

We have seen in Section 3 that checksum matrix operations produce
code outputs which provide some degree of error-detecting or correcting
capability. However, a faulty module may cause more than one element
of the result to be erroneous if it is used repeatedly during a simple
matrix operation. This problem is solved by using multiple processors
and scheduling each processor to calculate only a few data elements.
The errors caused by a faulty processor are then confined either to a few
data elements or to only one element. In this manner, the checksum
technique incorporated into matrix operations can detect or correct
errors caused by a faulty module.

In this paper, weighted checksum technique is only used to achieve
concurrent error detection capability. An new data retry technique,
which will be described in Sections 6 and 7, will thus be used to
achieve error correction and faulty processor identification.

In the following discussion, the matrix-vector multiplication will be
used as an example to demonstrate the concurrent error detection
scheme. It is obvious that the concurrent error detection scheme can
apply to a variety of matrix operations and signal processing algorithm
as well.

When matrix operations are performed on a computer system or with
special-purpose hardware, roundoff errors due to finite word length are
hard to avoid whenever fixed-point or floating-point arithmetic is used.
A small difference, T), which can be decided by simulated results or
analytic error bounds, as discussed in the previous section, must be
allowed for when checking for equality. If the analytic error bounds are
used as T), then any functional errors whicli affect the outputs of the
computations more than the analytic error bounds will be detected. In
practice, Tl should be chosen between zero and the analytic error

bounds. Thus, large roundoff errors can also be detected and treated in
the same manner as a computing unit with a functional fault. The
functional errors which affect the outputs of the computations much less
than 11 will, of course, not be detected, but these will not affect the

results significantly. The best choice of 11 may depend on the
applications and will not be discussed in this paper. Thus, in the
following discussion, we will only outline the concurrent error detection
scheme.

Many signal and image processing algorithms such as FIR and DFT [1]
involving a "multiply-and-accumulate" type of expression can be
formulated as matrix-vector multiplication problems. Figure 1 shows a
linear processor array; the input data streams show the multiplication of
a 5-by-4 column checksum matrix with a 4-by-l vector. The operation
of the array is described as follows: we want to calculate the equation
An+l,. x •. 1 = Bn+t, 1• The matrix element a;.j is stored in the local
memory of the ith processor at the jth time step, and Xj is broadcast to
each processor at the jth time step, as shown in Figure I. Each
processor multiplies n pairs of a;,j and Xj and accumulates the products
in a register. Each processor thus calculates one element of the result
vector and the faulty processor affects only one element. Any error can,
therefore, be detected by using checksum scheme.

a 14 a 24 a 34 044 11 54

a 13 a 23 0 33 043 0 53

a 12 a 22 a 32 0 42 a 52

'u '" '~ ,., '[' J J_ . ·-"
%4 X3 X2 x, -{1}{(~ ~{l

Figure I. Checksum matrix-vector multiplication

After the result vector is obtained, one n-operand adder can be used 10

calculate the checksum. Define the overhead ratio as the ratio of ttw
time, hardware, or delay overhead required by the CED technique to the
time, hardware, or delay complexity of the original system without
CED. Since the whole computation, including the checking, is
pipelined, there is no time over,eld in terms of performance. However

the delay overhead ratio is 0(I T I n), and the hardware overhead ratio

is O((n/ l+ 1)/ n)), where l is the word length. If n = l, then the delay
overhead ratio is 0(l/n) and the hardware overhead ratio is 0(2/n). In
floating-point systems, since the execution time of addition is
conrarab'f to that of multiplication, the delay overhead ratio becomes

0(j log2nj I n).

6. Error Correction By Data Retry

In this section, we will propose a technique for the correction of
erroneous results using time redundancy. This technique also enables us
to distinguish between functional errors and large roundoff error<'

Assume we want to calculate the equation A •.• x •. 1 = B •. 1• Our
approach is that on the second try, we assign the computation step of
each element of the output vector B to a processor which is different
from the one used before. For example, in the first run, the
computation of b 1 is assigned to processor one, b2 to processor two ...
and bn to processor n. In the second try, the computation of b 1 is
assigned to processor 2, b2 to processor 3 ... and b. to processor I.
(In order to simplify the notation, we will use i + 1 to represent
i mod n + 1 in the following discussion.) After two tries, each

361

element of the vector has two results (not necessarily different). We
then compare the two results. If the two results of one element from
two tries are different, we say that this element has inconsistent results.

(1) If there are two elements which have inconsistent results, for
example b; and b;+ 1' we know that processor i + I is faulty. The
correct result of b; can be obtained from the first try and the correct
result of b; + 1 can be obtained from the second try.

(2) If there is only one element which has an inconsistent result, for
example b;, then either the processor i produced a transient error in the
first try or the processor i +I produced a transient error in the second
try. The correct result of b; can be obtained (i) by subtracting the
difference of the computed sum of elements of the vector and the
checksum to the erroneous element in the information part, or (ii) by
replacing the checksum by the computed sum of the information
elements in the summation vector, in the case where the checksum is
incorrect. This correction procedure can be based on the data either
from the first try or the second try.

(3) If there is no element which has an inconsistent result, then large
roundoff errors have been detected in the first try.

7. Error Correction For Multiple Faults

From Theorem 1 and the construction principle of the WCC, we can
construct a WCC with a distance (t + 1) such that the code can detect up
to t errors. A time redundancy method can then be used to perform the
error correction and identification of faulty units. The general theory of
the WCC has been reviewed in Section 3. In this section we will
concentrate on the error correction by using time redundancy.

There is assumed to be a set of jobs J = { h, h, .. } to be
performed, and a set of identical units U = { u 1' u 2 , .. } available to
perform them. For example, we want to calculate the equation
A., • x •. 1 = B •. 1 in a linear array with n processors. The computation
of each element of the result vector will be thought as a job. Once we
detect any errors with the WCC, each job will be reassigned to a unit
which is different from the units which have been assigned to do this
job during the previous computation. When the jobs have been
completed by the units, the results are compared to the previous results.
The outcomes of such comparisons are the basis for identifying faulty
units and obtaining correct data.

A system under a t-fault assumption refers to one in which up to t
faulty processors are permitted. It will be assumed that when two faulty
units perform the same job, they do not produce identical, incorrect
results [13]. This is also shown in Figure 2. The outcome "pass"
indicates that both units at this computation are fault-free, or the output
data calculated by these two units are reliable. The outcome "fail"
indicates that at least one of the units is faulty.

Unit 1 Unit 2 Comparison outcome

fault-free fault-free 0 (pass)
fault-free fault (fail)

fault fault-free (fail)
fault fault (fail)

Figure 2. The outcomes of a comparison of a pair of units

It is also assumed that there is a host computer which collects the
information on comparisons and, thus, derives the state of the whole
system. Here, we require that the diagnosis never be incorrect in the
sense that a fault-free unit is diagnosed as faulty.

Theorem 7: For a t-fault system, at most t+ 2 tries are required to
identify the correct data and the faulty processors.

In real situations, we may usually use only a small number of tries to
identify the correct data and faulty processors. For example, we have a
system with t = 4. Figure 3 shows an example with four faulty
processors and a hypothetic set of outcomes. The jobs which are
incorrectly performed are marked with *. The maximum number of
tries to locate the correct data and the faulty processors is 6. From

Figure 3. we obtain the correct results of j 4 and j 6 after two tries. But
we do not know the correct results of h, h, h, h and h· No units
can be identified as faulty. After the third try, we obtain the correct
results of ji, h and h, and we know that u1 and u3 are faulty. But
we still do not know the correct results of h and j 5 • After the fourth
try, we obtain the correct result of h and identify that u5 is faulty.
After the fifth try, we obtain the correct result of js and identify that u 6

is faulty. Thus, instead of six tries, we have only used five tries to
identify the correct results and the faulty processors. If we can replace
or repair the faulty processors right after they are identified, the number
of tries might be reduced further. In this particular example, if we
replace u 1 and u3 after the third try, we can get the correct results of
both h and h and identify the faulty processors u 5 and u 6 right after
the fourth try. Thus, instead of five tries, four tries are enough to locate
the correct results and identify the faulty processors.

tries u, Uz U3 U4 U5 U6 U7

1
..

h
..

j4
..

j6 h }I }3]5
2

..
h j; h j4

..
j6]7 }5

3 j6 h j, h j; h h
4

..
j6

..
j, h h j4 ls l7

5
..

h
..

h
.. ..

h]4]6]I]2

Figure 3. An example of job assignments and the results

The algorithm for determining correct data and identifying faulty
processors is described below:

(l) Assign each job to a unit which is different from the ones have
been assigned to execute this job in the previous tries.

(2) Check the results of each job with its previous results. If there is
an outcome "pass", then the correct output of that job is identified. All
the processors which produce the erroneous outputs of that job are

identified as faulty.
(Optional -- replace or repair the faulty processors)

(3) If there is any job for which we still do not know the correct
output, go to step (1). Else, exit.

If we obtain correct outputs of all jobs in the second try, we know that
large roundoff errors have been detected in the first try.

8. Conclusion

In this paper we proposed a concurrent error detection scheme using the
wee with low hardware overhead for matrix algebra and signal
processing with highly concurrent VLSI structures. A simple roundoff
error analysis is used to guide construction of the WCC. A new data
retry technique is used to locate the faulty processors, obtain the correct
results, and distinguish between roundoff errors and functional errors.
Such an approach provides rapid error detection with low hardware
overhead and solve the roundoff error problem in floating-point number
systems. System performance is also not significantly degraded for the
sake of fault tolerance.

362

References

[l) C. Mead and L. Conway, Introduction to VLSI Systems,
Addison-Wesley, 1980.

[2] F. A. Briggs, K. S. Fu, and B. W. Wah, "PUMPS: Architecture
for Pattern Analysis and Image Database Management," IEEE
Transactions on Computers, vol. C-31, pp. 969-983, October
1982.

[3] R. M. Kant and T. Kimura, "Decentralized Parallel Algorithms
for Matrix Computations," Proceeding 5th Annual Symposium on
Computer Architecture, Palo Alto, California, pp. 96-100, April
1978.

[4] A. Sameh and D. Kuck, "On Stable Parallel Linear System
Solvers," Journal of the Association for Computing Machinery,
vol. 25, pp. 81-91, January 1978.

[5) Kai Hwang and Yeng-Heng Cheng, "Partitioned Matrix
Algorithms for VLSI Arithmetic Systems," IEEE Transactions
on Computers, vol. C-31, pp. 1215-1224, December 1982.

[6] Kenneth E. Batcher, "Design of a Massively Parallel Processor,"
IEEE Transactions on Computers, vol. C-29, pp. 836-840,
September 1980.

[7) A. V. Kulkarni and D. W. L. Yen, "Systolic Processing and an
Implementation for Signal and Image Processing," IEEE
Transactions on Computers, vol. C-31, no. 10, pp. 1000-1009,
October 1982.

[8] Jing-Yang Jou and J. A. Abraham, "Fault-Tolerant Matrix
Arithmetic and Signal Processing on Highly Concurrent
Computing Structures," Proceedings of IEEE, May, 1986.

[9] R. W. Hamming, "Error Detecting and Error Correcting Codes,"
Bell System Technology Journal, vol. 29, no. 1, pp. 147-160,
January 1950.

[10) J. J. Shedletsky, "Error Correction by Alternate-Data Retry,"
IEEE Transactions on Computers, vol. C-27, pp. 106-114,
February 1978.

[11) K. H. Huang and J. A. Abraham, "Algorithm-Based Fault
Tolerance for Matrix Operations," IEEE Transactions on
Computers, vol. C-33, pp. 518-528, June 1984.

[12] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oarendon
Press, Oxford, 1965.

[13) F. Barsi, F. Grandoni and P. Maestrini, "A Theory of
Diagnosability in Digital Systems," IEEE Transactions on
Computers, vol. C-25, pp. 585-593, June 1976.

EFFICIENT DESIGNS OF PRIORITY QUEUE
Kam Hoi Cheng

Computer Science Department
University of Houston

Houston, TX 77004

ABSTRACT
VLSI designs are examined for the priority queue prob-.
!em. We develop designs with superior performance to
earlier designs.

Keywords and Phrases
VLSI architectures, systolic systems, priority queue

1. Introduction
VLSI architectures for a variety of problems have

been proposed by several authors. A bibliography of over
150 research papers dealing with this subject appears in
[8]. In this paper, we are concerned solely with the prior­
ity queue problem. Many applications require the ability
to insert records into a set and to retrieve from the set the
record having the smallest key according to some order­
ing. A data structure that provides such services is called
a priority queue.

In evaluating our designs, we assume that the VLSI
system will be attached to the host processor using a bus.
The evaluation of a VLSI design should take the following
into account:
1. Processors --- how many processors are used in the

VLSI system? This figure is denoted by P.
2. Bus bandwidth --- the maximum amount of data to be

transmitted between the host and the VLSI system in
any cycle. This figure is denoted by B.

3. Speed --- how much time does the VLSI system need to
complete its task and be ready to accept the next
operation? This time may be decomposed into two
non-overlapping times Tc (time for computations) and
Tv (time for data transmissions both within the VLSI
system and between the host and the VLSI system).

One may expect that by using a very high bandwidth
B and a large number of processors P, we can make Tc
and TD quite small. So, Tc and TD are not in themselves
a very good measure of the effectiveness with which the
resources B and P have been used. Let D denote the
total amount of data that needs to be transmitted
between the host and VLSI system. The ratio

Rv = B * TD ID

measures the effectiveness with which the bandwidth B
has been used. Clearly, RD ~ 1 for every VLSI design.

Let C denote the time spent for computation by a
single processor algorithm. The ratio

Rc=P*Tc!C
measures the effectiveness of processor utilization. Once
again, we see that Re ~ 1 for every VLSI design.

In evaluating a VLSI design, we shall be concerned
with Tc and TD and also with Re and RD. We would
like Re and RD to be close to 1. Finally, we may combine
the two efficiency ratios Re and RD into the single ratio
R = R c * RD. A design that makes effective use of the
available bandwidth and processors will have R close to 1.

The efficiency measure R as defined here is the same
as that used in [1]-[4] to evaluate VLSI designs for matrix
multiplication, finite impulse response filter, recursive
filter and back substitution. This measure is also quite
similar to that proposed in [6]. In fact, the two measures
become identical when Tc = TD.

363

For each of the designs considered in this paper, we
compute Re, RD and R. In all cases, our designs have
improved efficiency ratios than all earlier designs using the
same model. In comparing different architectures for the
same problem, one must be wary about over emphasizing
the importance of Re, RD and R. Clearly, using P = 1
and B = 1, we can get Re = RD = R = 1 and no speed
up at all. So, we are really interested in minimizing Tc
and TD while keeping R close to 1.

For the priority queue problem, the single processor
algorithm uses the heap data structure. When n records
are already in the heap, 1'oth insertion and delete-min
operations take 3 logn comparisons including the test for
the end of heap. So, for a single operation, C = 3 log n
and D = 1. For comparison among different designs, the
parameter n is used where n is the maximum number of
values that the designs can handle.

VLSI designs for this problem have been proposed
earlier in [5], [7] and [9]. All designs use a linear bidirec­
tional chain of PEs. The design of [5] permits an
insert/delete-min operation in every four cycles. In each
cycle, at least two comparisons have to be made, one to
determine whether neighboring elements are out of order
and the other to check the status of its three neighboring
PEs, two left and one right. The performance figures of
[5] is P = 3n, B = 2, Tc= 8, TD= 8, Re= 8n!logn,
RD = 16 and R = 128n/log n. The design of [9] is ready
to receive an operation in every 2 cycle with each cycle
requiring 1 data move and 3 key comparisons to order 3
numbers. Since PEs work in alternate cycle, the number
of PEs can be reduced by half. So P = n/2, B = 2,
Tc= 6, Tv = 2, Re= n!logn, RD= 4 and
R = 4n/log n. The design of [7] is ready to receive an
operation in every cycle but each cycle requires 6 key com­
parisons to order 5 numbers in a special order. Their
design has P = n/2, B = 3, Tc = 6, TD = 1,
Re= n!logn, RD= 3 and R = 3n!logn.

In between two priority queue operations, application
program usually performs some processing which is likely
to take times much longer than Tc+ TD. Since these
hardware designs operate continuously, an no-op opera­
tion is required when neither an insertion nor a delete-min
is necessary. None of the above designs handle no-op
explicitly. However both the designs of (7] and [9] can
perform no-op by the input of (00,-00), while the design of
(5] accomplish this by the input of oo. In all our designs,
an input operation (insert, delete-min, no-op) will be per­
formed when the designs are ready to accept a new opera­
tion. PEs are numbered from left to right with PE 1
being the leftmost PE.

2. New Designs
In our first design, a linear array of n PEs are

required. Each PE has three registers, a, s and /. Regis­
ter I contains the value input from its left neighboring PE
in the current cycle. For the leftmost PE, this is the input
to the design. Register s is the status variable. When
s = 0, the last operation performed is an insert and the
value of register a in the PE is to be used directly. How­
ever when s = 1, the last operation performed is a delete­
min. The value in register a has already been moved to
its left neighbor in the previous cycle and it will be

replaced by the value coming in from its right neighbor.
Initially for all PEs, s = 0 and the contents of registers a
and l are a (= oo - 1). Inserting a new value is simply
done by the input of the value to the leftmost PE.
Delete-min operation is done by the input of a special
largest value oo. No-op can be achieved by the input of a.
An example sequence of operations are shown in Figure l.
For each PE, the value of register s is shown above the
value of register a. The even and odd PEs execute alter­
nately as in the design of [9]. The exact workings for PE
i, when active, are formally described in Algorithm l.
From Algorithm 1 and Figure 1, the performance figures
of the first design are P = n, B = 1, Tc = 2, TD = 2,
Re = 2n/(3log n), RD = 2 and R = 4n/(3log n). Since
odd and even PEs execute alternately, the number of PEs
can be reduced to n/2 with Re = n/(3log n) and
R = 2n/(3log n).

loop
do in parallel

l; - l;-1
a; - a;+ 1 if s; = 1

end
do in parallel

a; - min(l;,a;); l; - max(l;,a;)
if I; = oo then s; - 1

else s; - 0
end

forever

Algorithm 1

The second design makes use of a linear chain of
o(n/3) PEs. In each PE, four registers a, b, c and d are
required. Register a is the value kept in the PE, registers
b and c are the values sent from its left neighbor and
satisfies the relation b :5 c. Register d is the value just
moved in from its right neighbor. In each cycle, after
values have been moved in from its left and right neigh­
bors, each PE will rearrange the contents of registers a, b,
c and d in such a way that d ::::: a ::::: b ::::: c. Since b ::::: c
originally, the above rearrangement process only requires
4 comparisons. To insert a value, simply input the tuple
(-oo,value) to the leftmost PE. Delete-min is performed
by the input of the tuple (oo,oo) and no-op is to input the
tuple (-oo,oo). An example sequence of operations are
shown in Figure 2. The exact workings for PE i are for­
mally described in Algorithm 2. The functions max2 and
min2 will find the second largest and second smallest
values in the given list respectively. From Algorithm 2
and Figure 2, we see that the performance figures for the
second design are P = f (n + 2)131, B = 3, Tc= 4,
TD = 1, Re = 4n/(91og n), RD = 3 and R = 4n/(3log n).

loop 1 si::::: p
do in parallel

b; - b;-1
Ci· - C£-l

d; - d;+1
end

{b 0 and c0 are input}
{where b;- 1 s c;-1}
0::::: i < p {d0 is output}

d; - min(a;,b;,c;,d;)
a; - min2(a;,b;,c;,d;)
b; - max2(a;,b;,c;,d;)
c; - max(a;,b;,c;,d;)

forever

Algorithm 2

364

Figure 1

All the previous designs have a R value of
0(n/log n). The third design improves . the ratio R to
0(1) by using a chain of only log n PEs. A fictitious PE,
PE 0, is assumed to handle the input and output of the
design. As in our first design, the even and odd PEs exe­
cute alternately. This design tries to simulate the action
of a min-heap which is a complete binary tree with the
property that the value of a node is not greater than its
two sons. A min-heap with n elements has pog n l levels.
Each PE in the chain will therefore be responsible to
maintain a level in the min-heap. Quinn [10] have shown

1-00,3)@ (7,oo) ~~~L.. ... (oo,oo) ~
00 00 00 00 ~

(-oo,8)@ (4,oo) B (oo,oo) s (oo,oo) ~,oo
<"! 3 <(00 I< "I 00 I< > . . . 00 -oo 7 00 00 00

(-oo,l){!J: (7,8) B (oo,oo) EJ: (oo,oo) > ... (oo,oo) _~
< -00 4 00 00 ~

1-00,6)0 (3,4) ffi (oo,oo) B (oo,oo)) ... (oo,ooJ ~
-00 7 00 00 ~

(-oo,2)0 (6,7) B (8,oo) E}(oo,oo)> ~,oo 00 <:>t 1 4 4 4 ...
--00 3 00 00 00

1-00 ,9)0 (2,3) {D: (7,oo) B(oo,oo),, ... (oo,oo)~
-oo 4 8 00 ~

(oo,oo) 0 (4,9) {!} (6,8) e (oo,oo) > ... (oo,oo) ~
< -00 I" 2 I" 7 00 ~
foo~ (oo oo) (7 9) (oo oo) ~oo _L~2'{!}'1!}'> ... ' 00

< 3 6 00 00 .

(oo,oo) ~ (oo,oo) :{!] (oo,oo) ~ (9,oo) > ~oo,oo
<(_31<: _61<: ".181<: .•. 00 2 4 7 00 00

(-oo,5):f4L (oo,oo) f7L (oo,oo) rool (oo,oo) > ... (oo,oo) _~
~3 LY6 L_'_lEg LYg ~

Figure 2

that a tightly coupled shared memory multiprocessor with r log n l processors can remove an element from an n­
element heap in constant time. However, besides using
shared memory, their design also requires all insertions to
be done before all deletions which fails to handle the case
of random insertions and deletions as required by priority
queue.

A single processor delete-min operation will delete
the minimum element from the root of the min-heap, re­
inserted the last element into the root and then reheapify.
However, in any design using a chain of processors, this
element may be in the process of getting to the last pro­
cessor and hence is not known immediately. Therefore, a
modification to the single processor algorithm is required.
Now suppose that the element which is moving up from
the next level to replace the deleted element is chosen to
be the minimum of its two sons. Repeating this process
all the way to the lowest level of the heap may create
empty locations in the data structure. One major draw­
back of this is that the number of processors required to
handle n elements will be greater than flog n l. Our
design is based on the observation on how to maintain a
min-heap in a linearly connected chain of processors.
When an element is deleted in the previous level, the ele­
ment that is moving up to replace it is chosen to be the
minimum of the following three numbers: its two sons and
the last (rightmost) element at the same level of the two
sons in the min-heap. The above process repeats with the
two sons of this minimum being used at the next level.

Let the elements of the min-heap be stored in the (!

arrays of each PE. PE i will require a memory of size 2'.
Since the amount of memory required in the worst case is
approximately n/2 for the last PE, so instead of using
registers to store these a values, random access memory
will be used because its cost is cheap and it is readily
available. The access time of random access memory will

365

only be a constant multiple of the access time when regis­
ters are used. Besides the storage for the a values, regis­
ters are required for the following variables: s, c, l, r, t,
e , pi, pn, pp, vl and vr. Register s has similar meaning
here as in our first design. When s = 0, the last operation
performed is an insert. However, when s = 1, the last
operation performed is a delete-min. Register l contains
the maximum ~umber of memory locations in this PE, so
for PE i, l = 21 • Register c indicates how many locations
of the a array are currently being used, so 1 s c s l.
Register r, t and e are responsible to keep track of which
path the next insertion is to go down the PE chain. The
element a [pi] is used to compare with the element input
from the previous PE on its left. As for register pn and
pp, if the element a [PP] of PE i - 1 is being deleted and
sent back to PE i -2, the index of its right son,
pn = 2 *pp, will be sent to PE i. The elements that PE i
sent back to PE i -1 will then be placed in a [pp] to
replace the deleted element. Register vl and vr contains
respectively the values sent from its left and right neigh­
boring PEs. As for initial configuration; the initial values
for the a arrays are a. The initial values for other regi~­
ters in PE i are as follows: s = c = 0, l = e = 2',
pi = r = t = 1 and register pn of PE 0 will always be set
to 2. Finally, the operation of inserting a value is simply
done by the input of the value to the leftmost PE.
Delete-min operation is done by the input of oo and no-op
can be done by the input of a.

An example sequence of operations for the third
design are shown in Figure 3. Here, only the contents of
the a arrays, vl and vr are shown. The exact workings of

~ a,a H a,a,a,a f4a,a,a,. . .,af-- ... --j a,. .. ,a

? 4,a rt a,a,a,a Ha,a,a,. .. ,af- ... 4 a,. . .,a

4 4,a H a,a,a,a f4a,a,a,. . .,af- ... --r=a, ... ,a

~ 4,7 rt a,a,a,a Ha,a,a,. .. ,af- ... 4 a, .. .,a

-1 4,7 ~ a,a,a,a f4a,a,a,. . .,af-- ... -{ a,. . .,a

~ 3,7 Pf a,a,a,a Ha,a,a,. .. ,af- ... 4 a, ... ,a

-4 3,7 fgf 4,cr,a,a f4a,a,a,. . .,crf-- ... --j a, ... ,a

~ 3,7 p:f 4,cr,cr,a Hcr,a,a, .. .,af- ... 4 a,. .. ,a

4 3,7 ~0 4,8,a,cr f4cr,a,a, ... ,af-- ... --j cr, ... ,cr

~ 3,1 H 4,8,cr,cr 1--{Q;cr,a, .. .,crf- ... 4 a, ... ,cr

-1 3,1 fsf 4,8,7,a f4a,a,a,. .. ,af-- ... -{ cr, ... ,a

~ 3,1 M 4,8,7,a Ha,a,a,. .. ,af- ... ~,. .. ,a

4 3,1 H 4,8,7,6 ~~ ... ~a=J
~ 2,1 Fl 4,8,7,6 Ha,a,a,. . .,af- ... ~~
-1 2,1 H 3,8,7,~a,a,a,. . .,aj- ... --{~ex]
--j 2·,1 ~~4,a,a, ... ,af- ... ~{ a,. . .,a

~ 2,1 H 3,8,7,6 ~~a}- ... --j a,. .. ,a

b1=Ff 3,8,7,6 H4,9,cr, ... ,af- ... 4 a, ... ,a J

~ 2,1 ~ 3,8,7,6 H4,9,cr, .. .,aj- ... ~~
~ 2,6 H 3,8,7,6 ~4,a,a, ... ,ap 4 a, ... ,a I
~ 2,6 P3f 3,8,7,9 H4,cr,a, .. .,af-- ... --j a, .. .,a]

~ 3,6 ~ . 3,8,7,9 ~,. . .,af-. ... 4 cr,. . .,a I
-1 3,6 ~ 9,8,7,a f4a,a,a, .. .,a~- ... --j a,. .. ,cr I
-1 4,5 M 9,8,7,a Ha,a,a,. .. ,af- ... ~_:_,_~

Figure 3

PE i during its active cycles are formally described in
Algorithm 3 where reg; is the reg register of PE i and its
subscript is dropped if it is understood to be of PE i.
From Algorithm 3 and Figure 3, the performance figures
of this design are P = O(log n), B = 0(1), Tc = 0(1),
TD = 0(1), Re = 0(1), RD = 0(1) and R = 0(1).

do in parallel

end

pn; - pn;_ 1
vi; - vl,-_ 1

a[pp] - vr;+ 1 ifs; = 1

{pn 0 = 2}
{ vl0 is input}
{i = 0 is output}

if vi; < a then {insert}
do in parallel

end

s; - O; t - (t + r - 2) mod r + 1
if c < l then

else

do in parallel
a [pi] - vi;; c - c + 1

end

do in parallel
a [pi] - min (a [pi], vi;)
vi; - max (a [pi], vi;)

end
endif

if t = r then
do in parallel

pi - pi mod l + 1
e - (e + l - 2) mod l + 1

end
if e = l then

do in parallel
t -2t; r -2r

end
endif

endif
elseif vi; = a then

S; -0
{no-op}

else {delete}
do in parallel

end

Let a[pp) = min(a[pn-1],a[pn],a[c])
vr; - a[pp]; pn - pp * 2
s; - 1; t - t mod r + 1

if vr; * a then

else

if t = 1 then
do in parallel

pi - (pi + l - 2) mod l + 1
e - e mod l +. 1

end
if e = 1 then r - r /2

endif
if r = 1 then

do in parallel
{rightmost active PE}

c - c - 1; a [pp] - a [c]
s; - O; vl; - a

end
a [c + 1] - a {to avoid conflict when pp= c}

endif

do in parallel
s; - O; vi; - a; t - 1

end
endif

endif

Algorithm 3

366

3. Summary
The performance figures of the various VLSI archi­

tectures for the priority queue problem are summarized in
Table 1. As can be seen, all our designs represent an
improvement over earlier designs. Our third design is the
first VLSI system that has attained an R value of 0(1).

Finally, we note that the comparisons among the
different designs are not entirely fair as our third design
requires different and considerable amount of memory for
each of the log n PEs. However, the total amount of
memory used in all designs are the same, namely 0(n).

Architecture
,

Bidirectional Chain
Perf

[5] [9] [7] Our

I II III

p 3n n/2 n/2 n/2 n/3 O(log n)

B 2 2 3 1 3 0(1)

Tc 8 6 6 2 4 0(1)

TD 8 2 1 2 1 0(1)
8n n n n 4n

0(1) Re -- --
logn log n logn 3logn 9log n

RD 16 4 3 2 3 0(1)
128n 4n 3n 2n 4n

0(1) R -- --
3log n logn logn log n 3log n

C = 3 log n, D = 1
Table 1

4. References
[1] K.H. Cheng and S. Sahni, VLSI Systems For Matrix

Multiplication, Springer-Verlag Lecture Notes in Com­
puter Science, 1985, pp. 428-456.

[2] K.H. Cheng and S. Sahni, VLSI Architectures for the
Finite Impulse Response Filter, IEEE Journal on
Selected Areas in Communications, January 1986,
pp. 92-100.

[3] K.H. Cheng and S. Sahni, A New VLSI System For
Adaptive Recursive Filtering, International Confer­
ence on Parallel Processing (ICPP), August 1986.

[4] K.H. Cheng and S. Sahni, VLSI Architectures For
Back Substitution, International Federation for Infor­
mation Processing Conference, September 1986.

[5] L.J. Guibas and F.M. Liang Systolic Stacks, Queues,
and Counters, Conference on Advanced Research in
VLSI, M.l.T., 1982, pp. 155-164.

[6] K.H. Huang and J.A. Abraham, Efficient parallel
algorithms for processor arrays, ICPP, 1982, pp. 271-
279.

[7] 0.H. Ibarra, M.A. Palis and S.M. Kim, Designing Sys­
tolic Algorithms Using Sequential Machines, IEEE
Transactions on Computers, June 1986, pp. 531-542.

[8] H.T. Kung, A Listing of Systolic Papers, Comp. Sci.
Dept., Carnegie-Mellon University, May 1984.

[9] C.E. Leiserson, Systolic Priority Queues, Caltech
Conference on VLSI, January 1979, pp. 200-214.

[lO]M.J. Quinn and Y.B. Yoo, Data Structures for the
Efficient Solution of Graph Theoretic Problems on
tightly-coupled MIMD computers, ICPP, August
1984, pp. 431-438.

ALGORITHMS FOR HIGH SPEED MULTI-DIMENSIONAL

ARITHMETIC AND DSP SYSTOLIC ARRAYS

Nam Ling and Magdy A. Bayoumi

The Center for Advanced• Computer Studies
University of Southwestern Louisiana

Lafayette, LA 70504, U.S.A.

Abstract - With the advent of 3-D VLSI and the
essentialness of CAD tool in design, the demand for
high speed computation in several arithmetic and digi­
tal signal processing (DSP) applications can be met by
having a systematic technique for transforming algo­
rithms to specific forms for mapping onto multi­
dimensional systolic arrays. This paper presents such a
technique (called ST AMS). The resulting multi­
dimensional systolic arrays derived from the technique
give significant improvements in computation time
compared to their 1-D counterparts, yet maintaining
the same number of processing cells. Two examples are
illustrated in the paper: the matrix-vector multiplica­
tion algorithm and the k-point Discrete Fourier
Transform (DFT) algorithm. The technique can also be
applied to other problems such as the FIR filter algo­
rithm and the 1-D convolution algorithm. An example
of an entire systematic transformation and mapping
procedure that can be incorporated into an integrated
CAD package suitable for user-friendly interactive
design is also given.

1. INTRODUCTION

Systolic arrays have been developed for the imple­
mentation of many arithmetic and digital signal pro­
cessing (DSP) algorithms in the past decade. With the
rising demand for high-speed computations in these
applications and the recognizing of three-dimensional
(3-D) VLSI chips [1,2], the need to speed up algorithm
computation by going beyond 1-D (and sometimes even
2-D) systolic networks has increased [3,4]. Many
throughput improvements have been shown by higher-

dimensional systolic array implementation. For exam­
ple, significant throughput improvements have been
shown by a 3-D systolic array implementation of
matrix-matrix multiplication [5] and simultaneous triple
matrix multiplication [6]. However, many of the exist­
ing methods in mapping algorithms onto multi­
dimensional networks are ad-hoc, which take long
design time and cannot be developed as part of the
CAD tool. The benefits of 3-D VLSI technology and the
improvements in timing by higher-dimensional struc­
tures can be fully exploited only if we can devise a sys­
tematic algorithm transformation and mapping tech­
nique, which is the scope of this paper.

With the advent of silicon-on-insulator (SOI) tech­
nologies, 3-D circuitry are being realized using tech­
niques such as laser recrystallization of polysilicon,
which allows fabrication of active devices stacked in
two or more layers. Some laboratories have already suc­
ceeded in producing 3-D circuit cells [7,8,91. With 3-D

367

VLSI, wire routing becomes easier, more systematic and
shorter, due to the use of the third dimension. The
interconnect wire length. increases at a much slower
rate than planar ones. Moreover, the gain in circuit
density, which results in saving of materials, has per­
mitted much larger networks to be implemented. The
increase in packing density, together with the improve­
ments in wire routing, lead to a decrease of parasitic
capacitances in circuit, and hence to an increase in
speed. Besides these benefits, design time can also be
minimized as wire-routing is easier and more sys­
tematic.

The benefits and the reality of 3-D VLSI necessi­
tate having efficient and systematic (automatic) imple­
mentation techniques. These technological advances
and opportunities, together with the essentialness of
CAD tools in array design and the need for high speed
computations, represent a challenge in systematic map­
ping of arithmetic and DSP algorithms onto multi­
dimensional arrays (10].

2. REVIEW OF PRIOR ART

The design of systolic arrays requires a fundamen­
tal understanding of application, algorithm, and archi­
tecture. A survey of literature with respect to sys­
tematic methods of mapping and transforming algo­
rithms onto systolic arrays reveals many stimulating
and efficient ideas. For example, S.Y.Kung (11,12] pro­
poses a mapping technique based on data dependence
graph, signal flow graph and its systolization. Moldo­
van [13,14] develops a mapping procedure for cyclic
loop algorithms based on mathematical linear transfor­
mation of index sets and data dependence vectors.
Capello [15,16] presents geometric transformation and
linear space-time transformation techniques in array
design and representation. This provides an insightful
look into how several systolic designs of the same algo­
rithm relate to each other. Leiserson [17] provides a
systolization scheme for minimizing the number of
delay elements. Quinton [18] produces a systematic
method for mapping algorithms that can be expressed
by a set of uniform recurrence equations. The method
uses a timing function and an allocation function to
map these equations onto a finite architecture.

Many of these authors have proposed procedures
for systematically mapping an iterative algorithm
defined over a multi-dimensional index-space onto a
lower-dimensional array of processors, using linear
transformations. They restrict their attention to one­
dimensional projection so that if the index-space is N­
dimensional, then the systolic array is (N-1)­
dimensional, with one dimension for time.

In this paper, an attempt is made to increase the
dimension of the index-space for certain class of itera­
tive algorithms in a systematic way in order to achieve
higher parallelism without increasing area (silicon chip
area) complexity. The method first transforms the algo­
rithm by increasing the index-space from N-dimension
to M-dimension (M>N). Mapping of the algorithm
with M-dimensional index-space can be obtained by
combining the systolic array for the same algorithm
with N-dimensional index-space, or can be realized by
many of the linear transforming techniques mentioned.
The technique is particularly suitable for many DSP
and arithmetic algorithms. The resulting systolic net­
work is (M-1)-dimensional (> N-1) usually. By doing
so, the computation time, which can be defined as the
time interval between loading the first input and
unloading the last output of a problem instance
into/from the array, and its order of complexity can be
significantly improved while keeping the number of
processing cells (which is the silicon chip area complex­
ity in many cases) constant. The price to be paid is the
small amount of additional circuitry (usually in the
form of adders and interconnection wires) required for
inter-row or inter-plane communications. The multi­
dimensional systolic network can be laid out by either
2-D or 3-D VLSI chip [1,2].

Most of the currently available methods that do
implement algorithms by high-dimensional systolic net­
works to achieve higher parallelism are based on ad-hoc
procedures. Having a systematic mapping algorithm for
multi-dimensional network is not an easy task and it
can be an NP-complete problem due to the diverse and
several factors and constraints controlling the mapping
process. However, it has the benefits of reducing design
time and producing efficient mappings. Moreover, it can
also be incorporated into an integrated CAD tool (an
array compiler [12], for example) for automated array
design. A systematic method to transform and map a
class of algorithms to high-dimensional network, called
STAMS (Systematic Transformation of Algorithms for
Multi-dimensional Systolic arrays), is presented in this
paper. STAMS technique is presented in Section 3.
Two application examples to illustrate this transforma­
tion technique are presented in Sections 4 and 5.

3. STAMS:
SYSTEMATIC TRANSFORMATION

OF ALGORITHMS FOR
MULTI-DIMENSIONAL SYSTOLIC ARRAYS

The kind of algorithms that is considered for
STAMS technique is especially common in many arith­
metic and DSP applications. It is of the form

k-1
Yr = I; f(w,i)*g(x,r,i)* ...

i=O
(1)

where "*" indicates multiplication, f(w,i) represents a
function f with a variable w and an index i of w (i can
form the subscript or the power of w), and g(x,r,i)
represents a function g with a variable x and indices r
and i associated with x (r and i can form the subscript
or the power of x). The index r is also the subscript of
y. Examples of such algorithms are:

k-1
(1) Matrix-vector multiplication: Yr= E ar,i+1*bi+l

i=O

368

k-1
(2) 1-D convolution: Yr= E wi+l*Xr+i

i=O

(3) k-point Discrete Fourier Transform (DFT):

k-1 .
Yr = I; X;*wr•1

i=O

(4) k-tap finite impulse response (FIR) filter:

k-1
Yr = E W;*Xr-i

i=O
Computation of these algorithms are conventionally
carried out by 1-D systolic arrays of k cells, as shown in
Fig.1. These 1-D systolic arrays can be obtained by
many linear mapping procedures listed in Section 2.
The 1-D systolic array realization of the matrix-vector
multiplication, the 1-D convolution, the k-point DFT
and the k-tap FIR filter problems are given in [12,19]~
[12,20], [21] and [21], respectively. STAMS technique tc
obtain the corresponding multi-dimensional systolic
arrays is described in the next three subsections.

k cells

-0-0--0-0-----------~

Fig. 1 A 1-D systolfc errey of k ceHs

3.1 Derivation of 2-D Arrays using STAMS
In Eq.(1), if k is not a prime number, it can then

be expressed as a product of two integers p and q (i.e. k
= p*q). Let ij = q*i+j and rt = p*r+t, Eq.(1) can
then be rewritten (transformed) as

p-1 q-1

Yrt = E E f(w,ij)*g(x,rt,ij)* ...
i=Oj=O

(2)

The index space is hence increased. If the original prob­
lem using Eq.(1) requires the computations of y., r =
0,1,. . .,k-1 (i.e. Yrt• rt = 0,1, ... ,k-1), the same problem
using Eq.(2) will require the computations of Yrt for r
= 0,1, ... ,q-1, and for each r, t = 0,1,. .. ,p-1. Different
mathematical expressions of Eq.(2) can be exploited to
select a suitable or efficient expression for implementa­
tion. Step by step sequential algorithm for computing
Eq.(2) can then be developed and mapped onto a 2-D
systofic array, usually of p rows, each with q cells, as
shown in Fig.2a. The position of each cell is indicated
by ij (ith row and jth column, starting from 0), and its
corresponding position in the 1-D array is indicated by
q*i+j. In the 2-D array, computations in the rows
and/or the columns can be carried out in parallel to
improve computation speed. The 2-D array consists of
p*q (=k) cells and therefore the area complexity is not
increased compared to that of the 1-D array, except
that a small amount of inter-row communication cir­
cuits are added.

q cells

T =&gg::::::=&f
rows : : : : :

I I I I I

: : : : :

l ~-------61
Fig. 2o A 2-D systolic omiy of k (, p*Q) cells

3.2 Derivation of 3-D Arrays using STAMS
If k can be expressed as a product of many

integers, the algorithm can then be directly mapped
onto a higher-dimensional systolic network. For exam­
ple, if k = p*q*s, let ijm = q*s*i+s*j+m and rtu =
q*p*r+p*t+u, Eq.(1) can be transformed to

~~ s-1
Yrtu = L, L, E f(w,ijm)*g(x,rtu,ijm)*···

i=Oj=Om=O
(3)

The index-space is thus increased further. If the origi­
nal problem using Eq.(1) requires the computations of
Yr• r = 0,1, ... ,k-1 (i.e. Yrt• rt = 0,1,. . .,k-1), the same
problem using Eq.(3) will require the computations of
Yrtu for r = 0,1, ... ,s-1, and for each r, t = 0,1, ... ,q-1,
and for each t, u = 0,1, ... ,p-1. Different mathematical
expressions of Eq.(3) can be exploited to select a
suitable or efficient expression for implementation.
Step by step sequential algorithm for computing Eq.(3)
can then be developed and mapped onto a 3-D systolic
array of p planes, each with q rows of s cells each, as
shown in Fig.2b. The position of each cell is indicated
by ijm (ith plane, jth row and mth column) with its
corresponding position in the 1-D array indicated by
q*s*i+s*j+m. Higher speed can be achieved by parallel
computations in the planes and in the rows. The 3-D
array consists of p*q*s (=k) cells and therefore the
area complexity is not increased compared to that of
the 1-D array.

/

I
rows

1
f--- s cells --4

Fig. 2b A 3-D systolic errey of k (=p*Q*s) cells

3.3 Other Considerations
4-D or higher-D systolic networks can also be

mapped by the similar extensions in STAMS technique
and by further ·increasing the index space dimension.
In general, systolic network with higher dimension pro­
duces higher computation speed at the expense of more
communication circuitry. Moreover, the number of pro­
cessing cells will not be a good measure of area com­
plexity since laying out a 4-D or higher-D systolic net­
work on 2-D or 3-D VLSI will have an area complexity
higher than the number of processing cells due to addi­
tional interconnections required. An optimal trade off
among area, time and layout complexity is thus neces­
sary to achieve an efficient network.

Besides these, different values of p, q, s, ... , can
also be used to achieve the best trade-off. On the
implementation- level, efficient techniques for laying out
multi-dimensional systolic arrays onto 2-D or 3-D VLSI
chips must be devised so that the length of interconnec­
tion wires, propagation delays, and synchronization
problems, can be kept to the minimum.

Combining the STAMS technique just discussed

369

with a standard mapping methodology (for example,
the canonical mapping method developed by S.Y.Kung
[11,12]), a complete procedure for mapping algorithms
(of Eq.(1) form) onto multi-dimensional systolic arrays
can be developed. An example is shown briefly in
Fig.3. The entire procedure is systematic and can be
incorporated into an integrated software CAD package
(array compiler) for user-friendly interactive design.

Select different
dimension, or different

values of p,Q, .. ,etc.

Produce sequential algorithm

Obtain parallel expression of the elgorithm

Generate dependence graph

Locelize dependence graph

Obtain signal flow graph
* processor llssignment
*scheduling

Systolize SFG to systolic errey

Processor Design irnd hardware implementation

Fig. 3 Procedure for mopping olgorithms onto multi-dimensional systolic tirreys

In this paper, the STAMS technique is applied to
the matrix-vector multiplication problem and the k­
point DFT problem. It can also be applied to many
other problems such as the 1-D convolution problem
and the FIR filter problem. In all cases, computational
times are improved without increasing the number of
processing cells.

4. MATRIX-VECTOR MULTIPLICATION

The matrix-vector multiplication problem A * b
for matrix A and vector b is defined as follows:

compute Y1,Y2, . · · , Yk

k-1
defined by Yr= E ~.i+1*bi+l (4)

i=O

The above algorithm has a 2-dimensional index space (r
and i). A linear 1-D systolic network for implementing
matrix-vector multiplication can be produced as given
in Fig.4 [12]. All y/s are initialized to zeros and all bi's
are preloaded into the cells.. a's inputs are skewed as
shown in the figure. Computations are pipelined and

the results start to appear at the output of cell bk k
cycles after the first input, followed by a new output
every cycle. The last result appears 2*k-1 cycles after
the first input, giving the total computation time of
2*k-1 cycles.

"'

"'1n~'lout
'"'in

'ik

Fig. 4 1-D systolic array for matrix-vector multiplication
and its cell definition

4.1 Derivation of 2-D Array using STAMS
If k is not a prime number and can be expressed as

k = p*q, using STAMS technique, we let ij = q*i+j
and rt= p*r+t and transform Eq.(4) to

p-1~

Yrt = I: L, ~t,ij+1*bij+l
i=Oj=O

(5)

It now has a 3-dimensional index space (rt, i, and j).
The result Yrt can be computed by the following algo­
rithm:

(1) Compute Yrti = E ~t,ij+1*bij+1;
j=O

which is the matrix-vector multiplication of size q.

(2) Compute Yrt = ~ Yrti;
i=O

which is the sum of (1) for i = 0,1,. . .,p-1.

Each Yrti can be computed by a linear 1-D systolic
array, same as that of Fig.4, except for a smaller size q.
The results are then summed up by adders to produce
Yrt· Thus a 2-D systolic array consists of p rows, each
with q columns, as shown in Fig.5 is obtained for exe­
cuting the algorithm. The position of each cell is given

by ij (ith row and jth column, starting from 0).
Computations in the rows are carried out in paral­

lel to improve computation speed. The first result will
appear q cycles after the first input. The last result
will appear q+k-1 cycles after the first input, giving a
computation time of q+k-1 cycles. Compared to the
original 1-D array of Fig.4, the 2-D array consists of the
same number of cells (k cells), i.e. same area complexity
of O(k), whereas the computation time is improved by
(k-q) cycles. The price paid is the small amount of area
and time overhead of the additional adders. To
improve the efficiency further, efficient multi-operand
carry save adders, for instance, can be used. We are
currently in the process of laying out such a 1-D and
the corresponding 2-D systolic array for matrix-vector
multiplication using NORA CMOS bit-parallel logic
structure and CMOS p-well process technology.

370

prows

~ Q cells

'
0,0, ... ,0 ----

"01,00+1 °
"02 00+1 a 01,01 +1
: ' 4 02,01+1

40p,00+1 a:
"11 00+1 Op,01+1

: , •1,1 ,01+1

•' ' q-1 p,OO+la •
q-1 p,01+1

o,o,,,,,o~---

"'01,10+1 ° .
01,11+1

o
401,0q-1+1

' •op,Oq-1+1

al 1,0q-1+1

'
.a'q-1 p,Oq-1+1

.
01,lq-1+1

i l
0,0,,,,,0 yo-----~Yk ,,yzY1 0,,,0

0,0,,,,,0~·---~
"01,p-1 0+1 .. 0 ~

01,p-11+1

.t 01,p-1 q-1+1

Fig. 5 2-D S!JSlolic array for matri:<-vector mult1plication

4.2 Derivation of 3-D Array using STAMS
If k = p*q*s, using STAMS technique, we let ijm

= q*s*i + s*j + m and rtu = q*p*r + p*t + u, and
transform Eq.(4) to

~~ s-1
Yrtu = L, L, I: ~tu,ijm+l*bijm+l

i=Oj=Om=O
(6)

This has a 4-dimensional index space (rtu, i, j, and m).
The result Yrtu can be computed by the following algo­
rithm:

s-1

(1) Compute Yrtuij = I; anu,ijm+1*biim+1;
m=O

which is the matrix-vector multiplication of sizes.

(2) Compute Yrtui = E Yrtuij;
j=O

which is the sum of (1) for j = 0,1,. .. ,q-1.

~
(3) Compute Yrtu = L, Yrtui;

i=O

which is the sum of (2) for i = 0,1, .. .,p-1.

Each Yrtuij can be computed by a 1-D systolic array of
size s. The results are summed by adders in parallel to
produce Yrtui's, which are further summed to produce
Yrtu· Thus a 3-D systolic array of p planes, each with q
rows of s cells each, as shown in Fig.6, can be obtained
to_ execute the algorithm. The position of each cell is
given by ijm (ith plane, jth row and mth column).

0,0, ... ,0

rows

o,o, ... ,o

o,o, ... ,o

-"----r
. ~ ---1
8 001,OOs-1+1

y
y-------~

s cells

I'
.... 1J2 1J1 0 ... 0

Fig. 6 3-D systolic ::irray for matnx- 1,1ector multlpl1cat1on

Computations in the planes and the rows are car­
ried out in parallel. The summing processes in the
planes are also carried out in parallel. These parallel­
isms improve the computation speed. The resulting
outputs start to appear s cycles after the first input.
The last output appears s+k-1 cycles after the first
input, giving a computation time of s+k-1 cycles.
Compared to the original 1-D array of Fig.4, the 3-D
array has the same area complexity (k cells) of O(k)
with computation time improvement of (k-s) cycles.
This is also faster than the 2-D array case, in general,
with more communication circuitry required.

4.3 Derivation of Higher-D Arrays using STAMS
Higher-D systolic networks can be similarly

obtained by the application of STAMS technique,
which will give further improvements in computation
time at the expense of more communication circuitry.
The final structure of the network can be the intercon­
nections of modules of 3-D or higher-D array. How­
ever, laying out a higher-D systolic network on 2-D or
3-D VLSI will give an area complexity higher than O(k)
due to additional interconnections, which may be
undesirable.

5. DISCRETE FOURIER TRANSFORM

The k-point Discrete Fourier Transform (DFT)
problem is defined as follows:

compute Yo,Y1, · · · , Yk-1

k-1
defined by Yr= I; Xi*wr•i

i=O

where w is an nth root of unity.

(7)

The k-point DFT can be viewed as that of evaluating
the polynomial

xk-1 *wk-1 + xk-2*wk-2 + . . . + x1 *w + Xo

371

by Horner's rule:

The computations of y0, y1, y2, ... , Yk-l are carried out
using the above formula with w replaced by 1, w
w2, ... , wk-l respectively. A linear 1-D systolic network
to implement k-point DFT is shown in Fig.7 \21J. The
1-D network consists of k-1 cells (area comp ex1ty =
O(k)). Computations are pipelined and the results
start to appear k-1 cycles after the first input, followed
by a new output every cycle. The total computation
time is 2*k-2 cycles or O(k) .

k-1 ~~ : : ~ '. >\-2 ~ >< k-Z -------- ~ x o y ... y y ...
k-1 k-1 k-1 k-1 1 0

win~Wout
Y;n~Yout

Wout t--Win

Y out t-- Yin* win+><

Fig. 7 1-0 systolic array fork-point OFT and its cell definition

5.1 Derivation of 2-D Array using STAMS
If k=p*q, using STAMS technique, we let

ij=q*i+j and rt=p*r+t and transform Eq.(7) into

r-1E1
Y = " X"*W(p•r+t)•(q•i+i) rt u 11

i=Oj=O

Different mathematical expressions of the above equa­
tion can be exploited to produce Eq.(8) for implementa­
tion, as shown below:

_ ~ ~ x··*wp•q•r•i*wq•t•i*w(p•r+t)•i Yrt- ~ ~ 11
i=Oj=O

= E ~ Xij*wq•t•i*W(p•r+t)•i
j=Oi=O

= E w(p•r+t)•i * ~ xii*wq•t•i
j=O i=O
q-1 . . p-1 .

= E wr•r•J * (wt•1 * (E Xij*wqot•1)) (8)
j=O i=O

The result Yrt can be computed by the following
algorithm, express informally as:

(1) Compute vti = ~ xij*wqot•i; a p-point DFT.
i=O

(2) Compute Ztj = wt•i*vtji a multiplication.

~ .
(3) Compute Yrt = ~ Ztj*wp•r•i; a q-point DFT.

j=O

A 2-D systolic array of p rows and q columns is thus
obtained to compute Yrt's. Each column corresponds to

a linear 1-D systolic array of size p, with similar struc­
ture as that of Fig.7, for computing the p-point DFT.
The multiplication is achieved through multipliers.
Registers are used for storing the resulting Ztj 's. Each
row of the 2-D network corresponds to a linear 1-D sys­
tolic array of size q, with similar structure as that of
Fig.7, for computing the q-point DFT.

The resulting 2-D systolic array of p rows and q
columns is shown in Fig.8. All communications are
local. The position of each cell is given by ij (ith row
and jth column, starting from 0). The cell definition is
given in Fig .. 9. The operation of the cell is controlled
by the control input Cin• It can perform the same func­
tion as that of the 1-D array cell in both the vertical
and horizontal directions. Initially all Cin's are set to
1 's, the DFT of the columns are first computed in
parallel by the left half of the ce\ls, which give the
results v0•s. Multiplications by wt•ps to form zt/s are
then pertormed at the bottom row and the results are
fed back and stored in the right half of the cells.
Finally, all Cin's are set to O's and the DFT of the rows
are computed in parallel to obtain Yrt's.

.JP-l?*q

w:~q

1
0 0 0

,Jp-i;+q

,.,
v vq

1
0 0 0

,.,
w w'

1
0 0 0

0 0

···Yaa"1cr· o o

···Yo,p-1

v p-1 :a ~
! zoo

YIO z.10

VO~ Z~-1,0

vp-1 ~1
0

~ z 01

Vil z,1 I

v 01 Z:~-1,1

• 0

vp-l:q-1b
! zO,q-1

:1,q-1 zz.:1,q-1

0,Q-.~ ~-1,q-I

8
0
0
1

:r~,q-1)
~p-1 ~(p-l)*(q-1)

Fig. 8 2-D systolic array fork-point OFT

0 0

0 0

0 0

The 2-D array consists of p*q=k cells with area
complexity O(k), which is the same as that of the origi­
nal 1-D array. However, the computation time has
been significantly improved. The first results Yot's
appear after 2*p+q+ 1 cycles, an improvement of k­
(2*p+q)-2 cycles. More importantly, total computation
time is improved to 2*(p+q) cycles, which is O(p) or
O(q), whichever is larger. Compared to the O(k) (=
O(p*q)) computation time of 1-D array, this is a
significant improvement. If p=~ k112, computation
time is improved from O(k) to O(k 12).

wlnvin z Caut woutwwin x z
Yout Yin

woutvoutzin Cin

vout+-- 11 in* win+ x;

wout+--Win;

Cautt-- Cin ;

z t-- Zin ;

Youtt-- O;

woutt-- win

C;n::: 0 : Yout~Yin*win + z;

woutt-- win ;

C out+-- cin ;
zt--z;

"out t-- O;

wout t-- win ;

Fig. 9 Cell definition for 2-D systolic array implementation
of k-point DFT

5.2 Derivation of 3-D Array using STAMS
If k = p*q*s, using STAMS technique, we let ijm

= q*s*i + s*j + m and rtu = q*p*r + p*t + u, and
transform Eq.(7) to

Y _ ~Cf:! ~ x .. *W{q•p•r+p•t+u)•{q•s•i+s•j+m) rtu - :L, :L, L..J 11m
i=Oj=Om=O

This ca~ be further expressed as:

~Cf:! s-1 = :L, :L, E Xijm*wq•s•u•i+p•s•t•j+s•u•j+p•q•r•m+p•t•m+u•m
i=Oj=Om=O

(since wp•q•s =wk = 1)

s-1 q-1 p-1 E E E Xjjm*wq•s•u•i+p•s•t•j+s•u•j+p•q•r•m+p•t•m+u•m
m=Oj=Oi=O
s-1

= E wp•q•r•m*(wp•t•m*wu•m*

372

m=O

(E wp•s•t•j*(ws•u•i*(~ Xijm *wq•s•u•i)))) (9)
j=O i=O

The result Yrtu can be computed by the following
algorithm expressed informally as:

(1)

(2)

(3)

(4)

(5)

p-1 .
C t - ~ * q•s•u•i. . t DFT ompu e aujm - 6 Xijm w , a p-pom .

i=O

Compute bujm = ws•u•j*3.uim; a multiplication.

Compute Vtum = E bujm*wp•s•t•i; a q-point DFT.
j=O

Compute Ztum wP•t•m*wu•m*V tum; a multiplica-

ti on.

s-1
Compute Yrtu E Ztum *wp•q•r•m; an s-point

m=O

DFT.

Similar to the 2-D systolic array shown, a 3-D systolic
array of p planes, each with q rows and s columns can
thus be obtained to compute Yrtu's. The 3-D array con­
sists of several 2-D arrays with similar structure as that
of Fig.8, for computing the p-point DFTs, the q-point
DFTs, the s-point DFTs and the multiplications.

The resulting 3-D systolic array of p planes, q rows
and s columns is shown in Fig.lOa, Fig.lOb and Fig.lOc.
All communications are local. The position of each cell
is given by ijm (ith plane, jth row and mth column,
starting from 0). The cell definition is given in Fig.11.
The operations of each cell are controlled by the con­
trol inputs Cli0 C2in· Each cell can perform the same
function as that of the 1-D array cell in all the three
directions. The operation of the array is a similar
extension of the 2-D case. Initially, all Cli0 C2i0 's are set
to 01 's, the DFTs along the direction perpendicular to
the planes are first computed in parallel by the left half
of the cells, ~hich give the results 8.ujm's. Multiplica­
tions by ws•u•ps to form bujm's are then performed and
the results are fed back ana stored in the right half of
the cells. These are shown in Fig.lOb. Cli0 C2i0 's are
then set to lO's and the DFT of the columns are then
computed in parallel by the right half of the cells to
give Vtum's. Multiplications by wP•t•m•s and wu•m•s to
form Ztum 's are then performed at the top of the net­
work and the results are fed back and stored in the left
half of the cells. Finally, Cli0 C2i0 's are set to H's, the
DFT along the rows are computed in parallel by the
left half of the cells to obtain Yrtu's. These are shown in
Fig.lOc.

Fig·. toe 3-D systol1c array fork-point OFT

(showing the structure)

The 3-D array consists of p*q*s=k cells with area
complexity O(k), which is the same as that of the 1-D
array. However, the computation time has been
significantly improved. The first parallel outputs Yotu's
appear after 2*p+2*q+s+2 cycles, an improvement of
k-(2*p+2*q+s)-3 cycles. More importantly, total com­
putation time is improved to 2*(p+q+s)+l cycles,
which is O(p), or O(q), or O(s), whichever is the largest.
Compared to the O(k) (=O(p*q*s)) computation time
of 1-D array, this is a significant improvement. If
p=q=s=k1f'S, the comput~tion time complexity is
improved from O(k) to O(k113). This is also faster than
implementing the algorithm by 2-D network, but more
communication circuitry are required.

373

Fig. 1 Ob 3-D systolJc array fork-point DFT
(showing forT= Oto 2*p+I cycles)

0 0 0
. I
:,,,,p*s

...,2*p*s

Fig. \Oc 3-D SIJslolic errey fork-point OFT
(showing for T = 2*p+2to.2*(p+q+s)•1 cycles)

: JL I .
:.r /L

/ /

//

0 0 0
'I
·,,..p*s
..,2*p*s

5.3 Derivation of Higher-D Arrays using ST AMS
4-D or higher-D systolic networks can be similarly

obtained by the application of STAMS technique,
which give further improvements in computation time
at the expense of more communication circuitry. How­
ever, laying out these networks on 2-D or 3-D VLSI will

give area complexities higher than O(k) due to a'.ddi­
tional interconnections, which may be undesirable.

' cell stora9e denoted by x when Ct inC2in= 01; denoted by z othenvise.

No Operation

8out -- ain * o1n + x ;
Oaut +- Oin ;

b - bin;

CloutC2out +- C1inC2in ;

no operation on other signals;

11 out+- ..,.in *win + b;

'ti.tout+- win;

z +-Zin;

CloutC2out+- ClinC2in;

no operation on other signals;

Yaut +- Yin,.. win + z ;

wout +- win;

CloutCZout+- ClinC2in;

no operation on other s1gnals;

Fig. 11 Cell definition for 3-D systolic array
implementation of k-point OFT

6. CONCLUSIONS

In general, there is no optimal interconnection
topology for all algorithms, but, it depends on several
factors such as the application, the data flow and the
available layout technology. Having a systematic map­
ping for algorithms onto multi-dimensional arrays is an
important asset for an efficient implementation and can
be developed as part of a CAD tool. The STAMS tech­
nique presented in this paper produces systolic arrays
with significant improvements in computation time and
its order of complexity while keeping the number of
processing cells constant.

The technique is useful in many arithmetic and
DSP applications. Two examples, the matrix-vector
multiplication problem and the k-point DFT problem
have been given to demonstrate the proposed transfor~
mation and mapping procedure. Significant improve­
ments in computation time are achieved. This pro­
cedure can also be applied to many other algorithms
such as the 1-D convolution and the FIR filter.

Even though better computation time can be pro­
duced by increasing the dimension of the network to go
beyond 3-D, the additional circuitry required for inter­
plane communications and the length of the intercon­
nection wires due to layout on a lower dimensional
VLSI are also increased. An optimal trade-off· (the
method of which is beyond the scope of this paper)
among area, time and layout complexity will be helpful
in producing reliable and efficient implementations.

374

[1]

References

A.L.Rosenberg, "Three-Dimensional VLSI: A Case
Study," Journal of the ACM,, July 1983.

[2] A.Terao and F.V.d.Wiele, "Purposes of Three-
Dimensional Circuits," IEEE Circuits and Devices
Mag., Nov. 1987.

[3]

[4]

[5J

[6]

[7]

[8J

[9]

[10]

[11]

[12]

[13]

[14]

[15J

[16]

R.P.Preparata and J.Vuillemin, "The Cube­
Connected Cycles: A Versatile Network for Paral­
lel Computation," Comm. of ACM, May 1981.
G.R.Nudd et al., "Three-Dimensional VLSI Archi­
tecture for Image Understanding," Journal of
Parallel and Distributed Computing, vol.2, 1985.
R.W.Linderman and W.H.Ku, "A Three Dimen­
sional Systolic Array Architecture for Fast Matrix
Multiplication," Proc. of the IEEE Int. Con/. on
Acoustics, Speech and Signal Processing, 1984.
G.Panneerselvam, "Three Dimensional Systolic
Cubic Architecture for Simultaneous Triple Matrix
Multiplication," Proc. of 1st Int. Con/. on Super­
computing Systems, Dec. 1985.
S.Akiyama et al., "Multilayer CMOS Device Fabri­
cated on Laser Recrystallized Silicon Islands,"
IEDM Tech. Dig., Dec 1983. .
Y.Inoue et al., "A Three-Dimensional Static
RAM," IEEE Electron Device Lett., May 1986.
K.Mitsuhashi, "Etch Back Planarization Technique
and Its Application to Multilayer Devices,'' Proc.
4th FED Symp., July 1985.
R.D.Etchelles et al., "Development of a Three­
Dimensional Circuit Integration Technology and
Computer Architecture," Proc. SPIE, April 1981.
S.Y.Kung, "VLSI Array Processors," IEEE ASSP
Mag., July 1985.
S.Y.Kung, VLSI Array Processors, Prentice-Hall,
Englewood Cliffs, New Jersey, 1988.
D.I.Moldovan, "On the Design of Algorithms for
VLSI Systolic Arrays," Proc. of the IEEE, Jan.
1983.
D.I.Moldovan, "ADVIS: A Software Package for
the Design of Systolic Arrays," Proc. of the IEEE
Int. Con/. on Computer Design, 1984.
P .R.Capello and K.Steiglitz, "Unifying VLSI Array
Design with Geometric Transformations," Proc. of
the IEEE Int. Con/. on Parallel Processing, 1983.

P .R.Capello and K.Steiglitz, "Unifying VLSI Array
Design with Linear Transformations of Space­
Time," Advances in Computing Research, vol.2,
1984.

[17] C.E.Leiserson, F.M.Rose, and J.B.Saxe, "Optimiz-
ing Synchronous Circuitry by Retiming," Proc .. of
the 3rd Caltech Conf on VLSI, 1983.

[18]

[19]

[20J

[21]

P .Quinton, "Automatic Synthesis of Systolic
Arrays from Uniform Recurrent Equations," Proc.
of the Annual Symp. on Comp. Arch., 1984.
C.Mead and L.Conway, Introduction to VLSI Sys­
tems, Addison-Wesley, Reading, Mass., 1980.
H.T.Kung, "Why Systolic Architectures?" IEEE
Computer Mag., Jan. 1982.
H.T.Kung, "Special Purpose Devices for Signal and
Image Processing: An Opportunity in Very Large
Scale Integration (VLSI)," Proc. of the SPIE,
Real-Time Signal Processing III, July 1980.

A HIGHLY EFFICIENT DESIGN FOR RECONFIGURING

THE PROCESSOR ARRAY IN VLSI

Hee Yong Youn and Adit D. Singh
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA 01003

Abstract - Wafer Scale Integration of processor arrays for
the parallel computation offers important advantages, specifi­
cally high performance, low power consumption and high relia­
bility. However, low yield due to the large silicon area is a major
problem that remains to be solved. This paper presents a highly
efficient design for reconfiguring both the rectangular and tree
architecture of processor array when a significant number of
processors in the host array are faulty. The proposed scheme
always allows the reconfiguration of the maximum size of array
with short maximum reconfigured edge length. It also works
consistently well even for clustered faulty processors. Compar­
isons of the proposed design with others in the literature reveal
that the improvements are quite substantial. The reconfigura­
tion overhead is also found to be very small.

1 Introduction

Parallel processing using processor arrays is being widely
investigated to overcome the performance limitations of tradi­
tional uniprocessor computer systems. Some inherent problems
with the traditional board level implementation of these sys­
tems are separate packaging cost, assembly cost on the printed
circuit boards, and low reliability due to the complex pin to
pin interconnections on the boards. While all these problems
are important, especially significant is the large signal propaga­
tion delay in MOS VLSI technology required to drive signals off
chip. Wafer Scale Integration(WSI)[l] promises a solution to
this problem by integrating the entire processor array and the
interconnection structure on a single wafer. Thus WSI makes
it possible to eliminate the off chip signal drivers within the
processor chips, and the complex board level interconnections
among the processors. As a result, signal delays can be sub­
stantially reduced. In addition, system reliability may also be
improved because of elimination of the mechanical and electri­
cal failures frequently observed at the pins and interconnections
in traditional designs.

Although WSI has many attractive features, the low yield
problem due to the large chip area [2] must be overcome before
such circuits can become practical. In conventional VLSI de­
signs, the entire circuit is discarded if it contains even a single
defect that is capable of causing a logical fault. For large area
circuits, which have a high likelihood of containing at least one
defect, this leads to extremely low yield. To overcome this prob­
lem, an on-chip fault tolerance scheme, employing redundant
components and a reconfigurable interconnection structure is
required. Such a scheme can allow proper operation even in
the presence of defects. This will increase the yield of 'good'

375

circuits at the manufacturing stage, and can perhaps also be
used to increase the reliability of the system in the operating
stage.

A number of fault tolerance schemes for VLSI processor
arrays[3-9] have been proposed by other researchers. The ob­
jective is to reconfigure the failure free processors in the physi­
cal array into a desired specific logical computational topology
to best match a given parallel algorithm. The effectiveness of
such a fault tolerance scheme is generally evaluated on follow­
ing three criteria.

• Processor utilization - defined by the ratio of the number
of processors actually utilized as the computing nodes in
the reconfigured array, to the total number of failure free
processors actually realized in the physical array. When
each processor is relatively large, almost all the chip area
is taken up by processors. Then this ratio also reflects the
chip area utilization. Because the cost of a VLSI circuit is
significantly influenced by the chip are11, this factor eval­
uates the cost effectiveness of the fault tolerance scheme.

• Maximum reconfigured edge length - defined by the max­
imum distance between any pair of two communicating
nodes after the reconfiguration. This factor limits the ex­
ecution speed of the system, and is particularly critical
in systolic designs where the processors operate in tight
synchronizations and the system clock must be slowed
to accommodate the longest delay. Since the most im­
portant benefit obtained from wafer scale integration is
perhaps increased performance (because of the elimina­
tion of the off chip delay), the maximum reconfigured
edge length should be as short as possible.

• Reconfiguration overhead - defined by the overhead re­
quired for the reconfiguration such as channel width, num­
ber of switches and their complexity.

In this paper, we present a new fault tolerance scheme
which enables the efficient embedding of two important compu­
tational topologies, namely the rectangular array and complete
binary tree on a host array of processors. The proposed scheme
maximizes the utilization of the failure free processors in the
host array with short maximum reconfigured edge length. It
also works consistently well even when the faulty processors
in the host array are severely clustered. The reconfiguration
overhead is found to be small considering the high efficiency.

The rest of the paper is organized as follows. In Section
2, we present a scheme for reconfiguring the rectangular array
when a significant number of processors in the host array are

faulty. Also, the interconnection structure of the host array
realizing the reconfiguration is presented. The proposed scheme
is compared with other designs in Section 3. Section 4 shows
how our scheme can also be used to reconfigure the complete
binary tree architecture. Section 5 concludes the paper.

2 Design for Rectangular Arrays

In this section, a reconfiguration scheme for embedding
the rectangular array on the 2-dimensional processor array with
faulty elements is proposed. Also, the interconnection structure
of the host array of processors which realizes the reconfiguration
is presented.

2.1 Reconfiguration Scheme

In reconfiguring a rectangular array, let us assume that the host
array is an N X N rectangular array and a rectangular array
with equal sides is desired to be reconfigured. The reconfigu­
ration scheme is now presented for two cases of the number of
the faulty processors(F) in the host array; i) F ~ 2N - 1, ii) F
>2N.

2.1.1 Case 1: F < 2N - 1 When the number of faulty
processors(F) in the host array is not greater than 2N - 1,
maximally (N - 1) X (N - 1) processor array can be reconfig­
ured because there exist at least N 2 - (2N - 1) = (N - 1)2

failure free processors. To obtain the desired (N -1) X (N -1)
rectangular array with optimum maximum restructured edge
length, the bipartite matching[lO] algorithm is employed. For
the matching, it is regarded that an (N - 1) x (N - 1) logical
grid is overlayed on the original host array. Figure 1 shows that
a 4 x 4 logical grid is overlayed on the 5 x 5 host processor array.
It is also assumed that only the four surrounding processors of
each grid point can be matched to it. The maximum bipartite
graph matching is then sought between the (N - 1)2 logical
grid points and their neighboring failure free processors in the
host array. When the complete matching is accomplished, the
(N - 1)2 failure free processors in the host array are assigned
the logical indices. The desired (N -1) X (N -1) processor ar­
ray can be obtained actually by realizing the interconnections
of the logically neighboring processors through the interconnec­
tion circuitry. The interconnection structure of the host array
which realizes the logical reconfiguration will be presented in
Section 2.2.

The best known bipartite matching algorithm finds the
matching in O(IVl112 • IEI) time. Here IVI and \El is the nwn­
ber of vertices and edges in the bipartite matching graph. Be­
cause each processor in the host array can be matched to four
surrounding logical points and each logical point has four pro­
cessors assignable to it, the matching is highly flexible. Con­
sequently, it is highly likely that a complete match can be
achieved. Computer simulations reveal that the likelyhood of
the complete matching (for reconfiguring an 8 x 8 array) is
98.7% when 10 processors are faulty in the 9 X 9 host array. It
is 93.8% and 28% when 13 and 17 processors are faulty, respec­
tively. Figure 2 demonstrates that a 4 X 4 array is reconfigured
out of a 5 x 5 host array where 9 processors are faulty. In the
figure, the boxes marked as 'X' denote the faulty processors.
Two digit number (ij) in each box indicates the row(i) and col­
umn(j) of the iogical node to which the processor is matched.

376

Note that the maximwn reconfigured edge length is very short
and bounded to be the length of one side of a processor when
the complete matching is possible because the logically neigh­
boring nodes are matched to the failure free processors which
are physically neighboring.

The complete matching is not possible when all four pro­
cessors surrounding a logical grid point are faulty, or the faulty
processors are clustered in such a way that all logical grid points
cannot be assigned even though there exist enough number of
failure free processors, as shown in Figure 3(a). Three logical
grid points - (2,2), (2,3) and (2,4) - are not matched the fail­
ure free processor due to such fault clustering. Observe that
three failure free processors in the fifth column of processors in
the host array are remained unused. When complete match­
ing is not possible, the desired size of rectangular array can
be reconfigured by increasing the maximum reconfigured edge
length as 2 (two times of the length of one side of a proces­
sor). Here, the unmatched grid point can be matched a failure
free processor by borrowing it from a neighboring logical grid
point whi.ch was matched a failure free processor. The neigh­
boring logical grid point is now required to borrow other one
to make up the processor lent to its neighbor. This process of
borrowing is propagated to the grid point which can now be
matched the unused failure free processor. We call this process
as assignment bo1"1'owing. When multiple assignment. borrow­
ings are required due to multiple unmatched logical grid points,
then the borrowing paths (horizontal and vertical) between the
logical grid points and the unused failure free processors are se­
lected with the constraint that they do not cross each other.
Note that the number of unused failure free processors is al­
ways greater or equal to that of the unmatched grid points.
Then, it is heuristically clear that such non crossing paths be­
tween these two sets of points always exist. Figure 3(b) shows
the assignment borrowings for three unmatched grid points in
Figure 3(a). Observe that the borrowing paths always pass
through physically neighboring processors and the faulty pro­
cessors which do not need to be connected. This ensures that
the assignment borrowing can always be realized by a fixed in­
terconnection structure which will be presented in Section 2.2.
A reconfigured 4 x 4 processor array is shown in Figure 3(c).

As can be seen in the examples, the proposed scheme for
reconfiguring the rectangular array based on bipartite match­
ing and assignment borrowing always enables us to reconfigure
the maximum size of rectangular array with short and bounded
maximum reconfigured edges when the nwnber of faulty pro­
cessors in the host array does not exceed 2N - 1.

2.1.2 Case 2: F > 2N - 1 When the nwnber of faulty
processors(F) exceeds 2N - 1, the maximwn size of array that
can be reconfigured from the host array can be easily seen to
be M x M where M is L .,/ N 2 - FJ. The desired M X M rect­
angular array is proposed to be reconfigured by overlaying M
rows and columns of logical grid appropriately on the N X N
host array and applying the same bipartite matching and as­
signment borrowing algorithm as for the Case 1. Recall that
an N x N array is regarded that it contains N - 1 rows and
columns of logical grid points. Therefore, selecting M rows and
columns of logical grid points to be matched out of (N -1) row
and columns of logical grid points in the host array is equiv­
alent to selecting (N - 1) - M rows and columns .. The rows
and columns to be selected and excluded from the matching

are determined by the number of the faulty processors along
with each row and column of logical grid points. Thus, for
each column of logical grid points, the faulty processors in the
column of processors to the left and right of it are counted up.
Similarly, for each row, the number is obtained by scanning
both the upper and lower row of processors. Then, the row or
column of logical grid points with the largest number of faulty
processors is first excluded. The faulty processors along with
the excluded row or column is now assumed to be failure free
because the faults have already been reflected by the exclusion.
Next, for each row and column except the excluded one, the
number of faulty processors is counted again and the row or
column of the largest number is excluded. This procedure is
repeated until (N - 1) - M rows and columns oflogical grid
points are excluded in the array. Figure 4(a) and (b) show such
exclusions when 16 processors are faulty in a 5 x 5 host array.
In this example, the largest reconfigurable rectangular array is
3 X 3, and one row and column are required to be excluded.

After the exclusions, the bipartite matching is applied be­
tween the selected M X M grid points and their neighboring
failure free processors. Also, the assignment borrowing is em­
ployed if the complete matching is not possible. Recall that
the assignment borrowings are always possible as long as more
unused failure free processors than the unmatched logical grid
points reside in the host array. This condition has already
been guaranteed by excluding (N - 1) - M rows and columns
of logical grid points in the matching. A 3 x 3 rectangular
array being reconfigured through the matching and borrowing
algorithm, after the exclusion of Figure 4(a) and (b), is illus­
trated in Figure 4(c) and (d). Here the logical grid point (33)
is matched a failure free processor by assignment borrowing
through the logical grid points (23) and (13). The maximum
reconfigured edge length, when some exclusions are necessary,
is bounded by the maximum size of consecutive exclusions of
row or column of logical grid points.

Another example of reconfiguration, where the faults are
clustered severely is shown in Figure 5. Here all 16 processors in
the half bottom of the 5 x 5 host array are faulty. This example
shows that the proposed scheme can allow us to reconfigure
the maximum size of rectangular array even for such extreme
clustering of faulty processors.

We have discussed the reconfiguration of the rectangular
array when some processors in the host array are faulty. As
shown in both cases of considerations, the proposed reconfig­
uration scheme can always reconfigure the maximum size of
array. The efficiency of the proposed scheme is not influenced
by the distribution of the faulty processors and this is one of
the most important characteristics of the proposed design.

Next we present the interconnection structure of the host
array which realizes the desired rectangular array.

2.2 Structure of Host Array

Each processor in the rectangular array requires four ports for
the four directional communications such as N orth(N), East (E),
South(S) and West(W). We put each port at each corner of the
processor block as shown in Figure 6. Figure 6 shows the struc­
ture of a processor block where an interconnection bus(dotted
line) is implemented around it. Recall that a processor can

377

be matched to one of the four neighboring logical grid points
reside at upper-right, upper-left, lower-right and lower-left of
it. Figure 6(a) shows the interconnection pattern when a pro­
cessor is matched to the logical grid point at upper-right. The
other three types of interconnection pattern are illustrated in
Figure 6(b),(c) and (d).

The actual interconnection for reconfiguring the rectan­
gular array is achieved by two steps. First, in each site of
processor which has been matched to a logical grid point, ap­
propriate interconnection pattern is realized according to the
type of matching. Then, the logically neighboring processors
are interconnected each other by connecting two proper ends
of connections which are made in the previous step. As shown
in Figure 6, a channel width of two is enough to realize almost
all kinds of interconnection patterns. One extra bus is required
only when two physically and horizontally(vertically) neigh­
boring processors are matched to two vertically(horizontally)
neighboring logical grid points between them as shown in Fig­
ure 7. The matching of two physically and horizontally neigh­
boring nodes which are matched to the logical grid points (31)
and (41), or (14) and (24) in Figure 2 are examples of those
requiring an extra vertical bus between processors. However,
the matching which requires an extra bus occurs only when
the fault distribution does not allow us to avoid such a pat­
tern. Therefore, a channel width of three is always sufficient
for realizing all interconnections. Figure 8-11 show the actual
interconnections realized for the reconfigured rectangular ar­
rays shown in Figure 2-5, respectively.

In the next section, we compare the efficiency of our design
with other classical designs presented in the literature.

3 Comparisons with Other Designs

In this section, the proposed scheme for reconfiguring the
rectangular array on the 2-dimensional processor array is eval­
uated and compared with the other classical designs such as
hierarchical scheme[5], column redundant scheme[6] and fault
stealing scheme[7]. These schemes are compared on the pro­
cessor utilization, maximum reconfigured edge length and the
reconfiguration overhead.

3.1 Comparison of Processor Utilization

In carrying out the comparison, the objective is to obtain a
computational array of fixed desired size(M x M). Therefore,
for each scheme, the optimum size of host array which gives
the best processor utilization are found for the given processor
yield(P; probability that each processor is failure free) from 0.4
to 0.9 in steps of 0.1.

3.1.1 Proposed Scheme As discussed in the previous
section, the proposed scheme can always reconfigure the desired
size(M x M) of array whenever at least M 2 processors in the
host array are failure free. Therefore, the yield of an M x M
array out of a R x C host array is readily seen to be

yield= L R ~ C pi(l _ P)RxC-i RxC ()

i=M•

The processor utilization(PU) is then obtained by

PU = M 2 x yield
RxCxP

(1)

(2)

The optimum size of host array, here R. and C, which gives
the best processor utilization(PU) for the given P(processor
yield) is found by the equation (1) and (2).

3.1.2 Hierarchical Scheme This scheme uses redun­
dant submodules[5] for extracting the desired rectangular ar­
ray. The objective is to ensure, through redundancy, a very
high probability that a failure free 2 X 2 submodule can be
reconfigured at each submodule site, so that row and column
exclusion[4], employed at a higher level to protect against such
failures is very rarely needed. Here we need to find the opti­
mum size of submodule (Rx C) that guarantees a 2 x 2 failure
free processor array. The yield and PU can be shown to be
given by

yield=(~ (R ~ C) pi(l - P)RxC-i)(M/2)2

PU = __!. x yield
RxCxP

(3)

(4)

3.1.3 Column Redundant Scheme An M x C(C >
M) array is used for the reconfiguration of an M x M rectan­
gular array in this scheme. A failure free linear array of size M
is reconfigured out of C processors in each row, and then the
desired rectangular array is finally obtained by connecting the
M failure free linear arrays vertically through the interconnec­
tion channels between each row of processors. The yield and
PU can be seen to be .given by

PU= M x yield
CxP

(5)

(6)

Similarly, the optimum size of column(C) is found using
these two equations.

3.1.4 Comparisons Table I(a) and (b) show that the
size of host array which gives the best processor utilization for
reconfiguring a desired size of array of 8 x 8 and 16 x 16, respec­
tively. Observe that the size of the host array of the proposed
scheme is always much smaller than that of the other schemes.
Therefore, it can be expected that the processor utilization is
much better. Figure 12(a) and (b) show the plots of the proces­
sor utilization for both sizes of array, respectively. As expected,
the processor utilization of the proposed scheme is much bet­
ter than that of other designs for the whole range of processor
yield and the size of array. It is about 30% and 40% more effi­
cient than the column redundant scheme and the hierarchical
scheme, respectively. Because the proposed scheme always re­
configure the maximum size of array, the processor utilization
can be said to be near optimal.

The fault stealing schemes proposed in [7] borrow failure
free processors from the upper row of processors to replace the
faulty processors which caJJ.Ilot be replaced by the redundant
processors in the same row. Simulation data from [7] demon­
strate that the yield for reconfiguring a 20 X 20 processor array

378

out of a 21 x 21 array is less than 10% when more than 30 pro­
cessors are faulty. Recall that the yield of proposed scheme is
always 100% as far as enough number of processors are failure
free (400 in this example).

3.2 Comparison of Maximum Edge Length

As we can see from Table I, the proposed scheme requires the
smallest size of the host array to reconfigure a desired size of
rectangular array. This means that the maximum reconfigured
edge length of our design is smaller than that of other designs
because each processor, which is matched to a logical grid point
(overl!!>yedon the host array regularly), is the physical neighbor
to it and thus they can be regarded to be layed out regularly on
the host array. Note that the maximum edge length of a rect­
angular array in a fixed area is minimal when nodes are equally
separated from each other. Also recall that the borrowing pro­
cess does not affect the reconfigured edge length substantially
because the borrowing occurs between two neighboring grid
points.

3.3 Comparison of Reconfiguration Overhead

For the proposed scheme, a channel width of three is enough
for reconfiguring the rectangular array irrespective of the num­
ber of faulty elements in the host array and its distribution.
Note that the processor utilization of the other schemes was
obtained with the assumption that the sufficient channel was
provided for the reconfiguration. For example, from Table I,
the column redundant scheme requires an 8 X 18 array to re­
configure an 8 x 8 array most efficiently when processor yield
is 0.7. Here, the channel width of at most 10 is required to
realize all patterns of the reconfiguration. If the channel width
is limited to three, then the yield and the processor utilization
decreases significantly.

Also, it can be argued that the channel width of three is
relatively small considering the high efficiency of the proposed
scheme. Even the simple bypassing scheme[4] requires one bus
around each processor (equivalent to a channel width of two)
even though its efficiency is known to be very poor. It can also
be expected that the efficiency of the proposed scheme will not
degrade significantly even with a channel width restricted two.

From the comparisons, we can see that the proposed scheme
can always reconfigure the desired size of rectangular array
from the smaller host array with high yield (efficiency) and
short maximum reconfigured edge length. Also the reconfigu­
ration overhead, measured in terms of channel width, is rela­
tively small. We next present a highly efficient fault tolerant
tree embedding scheme that uses the same reconfiguration al­
gorithm and interconnection structure that we have presented
for the rectangular array.

4 Design for Tree Architecture

4.1 Tree embedding O!!__Good Processors

A near optimal scheme for embedding a complete binary tree
in an array of failure free processors with planar interconnec-

tions was proposed in (12], which substantially improves the
efficiency of (13]. This scheme adopts a hierarchical strategy
such that any required size of tree larger than four levels is
embedded by connecting an appropriate number and type of
basic modules shown in Figure 13. Observe that all nodes at
adjacent levels (except for two nodes in basic module M2) are
physical neighbors and can be connected with short links. 15
out of the 16 processors in the basic module are utilized as the
tree nodes in each four level leaf subtree. The remaining unused
processor in each basic module is used as a tree node at some
higher level, when the basic modules are connected together to
build a larger tree. Figure 14 shows a 9 level tree embedded
using the basic modules. Because only one processor is always
left unutilized in the implementation for any size of tree, the
area efficiency quickly converges to 1003 as the size of the em­
bedded tree grows large. The propagation delay between the
root node and leaf node is also very short. It converges to the
theoreticallower bound as the size of tree grows large, as proven
in [12].

4.2 Fault Tolerant Tree Embedding

A tree architecture can be efficiently embedded in processor
array with faulty nodes when the reconfiguration scheme pro­
posed for rectangular array is combined with the tree embed­
ding scheme on failure free processors introduced in the previ­
ous subsection. As shown in Figure 14, the tree architecture
is constructed using a number of basic modules of a 4 x 4 pro­
cessor array containing a 4 level subtree. Here, we propose
to construct a tree of desired size by reconfiguring each basic

module of a 4 level tree efficiently and then connecting them
appropriately. To obtain the desired tree architecture, first, a
4 x 4 processor array is reconfigured from the host submodule
using the scheme proposed for the rectangular array. Then, the
interconnection pattern for each type of basic modules are re­
alized in each submodule. Figure 15 is an example that a basic
module of type 2 (M2) can be embedded in a 5 X 5 processor ar­
ray of host submodule assuming the same fault distribution and
the reconfiguration as in Figure 2. In the figure, for every pro­
cessor in the host submodule, the 1/0 port for the connection
to the parent node is located at the upper-left corner of each
processor site. Also, two other ports for children are located at
the lower-left and upper-right corner, respectively. Note that
this position needs to be shifted 90°, 180° or 270° all together
according to the orientation of the basic modules inside of the
host array to prevent the interconnections crossing over each
other. For instance, the basic module Ml at the upper-left cor­
ner of the host array of Figure 14 has 180° shifted 1/0 ports
such that the port for the parent node is located at the lower­
right corner of the processor module. The main reason why
the hierarchical scheme using submodules with different orien­
tation of ports is employed here is that some interconnections
can cross over each other if the three positions of I/ 0 port are
same for all the processors in the host array.

4.3 Comparison of Efficiency

Let's denote Y1e as the yield of a k level tree. Then the yield and
PU assuming same notations as used in the previous section can
be shown to be given by

379

PU= 21e x Y1c
R x C x 21c- 4 x P (B)

The optimum size of submodule which gives the best PU
is found from the above equations. Figure 16 shows the com­
parison of the processor utilization for embedding an eight level
tree with other two designs presented in (14] and (15], respec­
tively. The row exclusion scheme(14] excludes the entire row
of processors containing the faulty processor, where the host
array is CHiP[9] architecture. In the modular scheme(15], each
module which contains a spare processor for the replacement of
a faulty processor in that module constructs the whole tree ar­
chitecture. We can see that, from the figure, the improvement
is quite significant. The efficiency of the proposed scheme has
also been found to be better than that of other designs such
as SOFT(16] and Cluster Proof(l 7] design. The maximum re­
configured edge length and the reconfiguraion overhead is ex­
pected to be smaller than those of other designs due to the high
processor utilization and the compact layout of the processor
arrays.

5 Conclusion

A highly efficient design for reconfiguring the rectangular
array and the binary tree architecture in the presence of a sig­
nificant number of faults is presented. By employing bipartite
graph matching with an assignment borrowing algorithm, the
proposed scheme always allows reconfigurati9n of the maximum
possible size of array. Also the maximum reconfigured edge is
inherently short. The proposed scheme can reconfigure the de­
sired structure successfully even when the faulty processors in
the host array are severely clustered as might be realistically
expected.

A heuristic strategy which excludes some row and column
oflogical grid points on the host array is suggested. Also, multi­
ple paths for the assignment borrowing algorithm are suggested
based on planarity considerations. Reconfiguring other impor­
tant computational topologies using the algorithms proposed
in this paper is also under investigation.

References

(1] J.F. McDonald et al., "The Trials of WSI,'' IEEE Spec­
trum, pp. 32-39, Oct., 1984.

[2) C.H. Stapper et al., "Integrated Circuit Yield Statistics,"
in Proc. IEEE, vol. 71, April 1983.

[3] T. Leighton and C.E. Leiserson, "Wafer-Scale Integration
of Systolic Arrays," IEEE Trans. Comput. vol. c-34, pp.
448-461, May 1985.

[4] I. Koren, "A Reconfigurable and Fault-tolerant VLSI Mul­
tiprocessor Array,'' in Proc. 8th Annu. Syrop. Comput.
Arch., pp. 425-431, May 1981.

[5] K.S. Hedlund, "Wafer Scale Integration of Parallel Pro­
cessors,'' Tech. Rep. CSD-TR-422, Purdue Univ., 1982.

[6] J.W. Greene, "Configuration of VLSI Arrays in the Pres­
ence of Defects," Dissert. for Ph.D. submit. at Stanford
Univ., Dec. 1983.

[7] M. Sarni and R. Stefanelli, "Reconfigurable Architecture
for VLSI Processing Arrays,'' Proc. IBEE, vol. 74, pp.712-
722, May 1986.

[8] A.L. Rosenberg, "The Diogenes Approach to Testable
Fault-Tolerant Arrays of Processors," IEEE Trans. Com­
put., vol. C-32, pp. 902-910, 1983.

[9] L. Snyder, "Introduction to the Configurable Highly Par­
allel Computer," IEEE Computer, vol. 15, pp. 47-56, Jan.
1982.

[10] C.H. Papadimitriou and K. Steiglitz, "Combin.8.tional Op­
timization: Algorithms and Complexity", chap. 10, Pren­
tice Hall, NJ, 1982.

[11] J.I. Raffel et al., "A Wafer·Scale Digital Integrator Us­
ing Restructurable VLSI,'' IEEE J. of Solid-State Circuits,
vol. sc-20, pp. 399-406, Feb. 1985.

[12] H.Y. Youn and A.D. Singh, "Near Optimal Embedding of
Binary Tree Architectures In VLSI," to appear in Proc. of
the 8th Int'l Conf. Distributed Computing System, June
1988.

[13] H.Y. Youn and A.D. Singh, "On Area Efficient and Fault
Tolerant Tree Embedding In VLSI," in Proc. Int'l Conf.
Parallel Processing, pp. 171-178, 1987.

[14] H. Mizrahi and I. Koren, "Evaluating the Cost­
Effectiveness of Switches in Processor Array Architec­
tures,'' in Proc. Int'l Conf. Parallel Processing, pp. 480-
487, Aug. 1985.

[15] A.S. Mahmudul Hassan and V.K. Agarwal, "A Fault­
Tolerant Modular Architecture for Binary Trees," IEEE
Trans. Comput., vol. C-35, pp. 356-361, April 1986

[16] Matthew B. Lowrie and W.Kent Fuchs, "Reconfigurable
Tree Architectures Using Subtree Oriented Fault Toler­
ance,'' IEEE Transaction on Computers, Vol. C-36, pp.
1172-1182, Oct. 1987

[17] M.C. Howells and V.K. Agarwal, "Yield and Reliability
Enhancement of Large Area Binary Tree Architectures,''
Proc. of the 15th Annual Symposium on Fault Tolerant
Computing, pp. 290-295, June 1987.

DODOO
DODOO
DODOO
DODOO
0 DjD 0 0

lockal crld polnl

Figure 1. Overlaying a
4 x 4 logical grid on
a 5 x 5 host array.

@._ Lg] Lg] Lg] c>_<J

c>_<J @(g [0f ft]
g ~ 13 ~ c>_<J

g ftil fel 0 0
c>_<J c>_<J c>_<J 8 8

Figure 2. Reconfiguration
of a 4 x 4 array using

bipartite matching.

380

Processor Proposed Hierarchical Column redundant II
yield scheme scheme scheme

0.9 9 x 9(=81) 8 x 12(=96) 8 x 12(=96)
ct--o:8 9 x 1~=90J -12 x 1~=144) 8 x i4(=li~

0.7 10 x 1~=10'1: 12 x 1[=14-IT 8 x 1~=14'!2_
0.6 11 x 11(=121) 12 x 16(=192) 8 x 21(=16~

----~
12X·12(~14~r ie x 1[=21foT i--a-X27J:=2i~ 0.5

0.4 13 x 1K=1s~ 16 x 2~=32![8 x 3![=28'[

(a). For an 8 x 8 array.

Processor Proposed Hierarchical Column redundant
yield scheme scheme scheme

0.9 17 x lll{_=306J 24 x 24(=576) 16 x 2~(=368}
0.8 18 x 19(=342) ~~~(:=~!<JL ~6 x 27(=~~2}_ -0:1-- ·20 x 20(=4o~r 24 x 32(=768) 16 x 33(=528)
0.6 21 x 2~=4621 32 x 3~ =102'!2_ 16 x 4Q.{_=640l
0.5 24 x 24(=576) 32 x 40(=1280) __ l_(J_i::_5~(=ll_O_c>)_ __

--·~ 27 x 27(,,,;72~ - 4ox-4o(=i6ooY 0.4 16 x 64(=1024)

(b). For a 16 x 16 array.

Table I. Size of host array which gives the best processor
utilization for reconfiguring a rectangular array.

@)gl)i~ rm. 0
l8l l8l ~ l8l l8l
g~·~·~·~
u{gggo
ggggo

DODOO
DODOO

" ~ ~

D 0 Ep rp 0
DDQG··O
0 0 G--B--0

(a) Incomplete matching. (b) Assignment borrowing.

(c) Final reconfiguration.

Figure 3. Reconfiguration of a 4 x 4 array when the
complete matching is not pOl!ISible.

IZl D D IZl D
D IZl 0 D r8J
IZl ~ D 0 C8J

~ IZl IZl IZl C8J
8

IZJDDIZJD
D~DD!2?J

0~0!2?J0

~ ~ ~ IZl ~
00000

6

10

00000

(a) Exclusion of the third
row of logical grid points.

IZl .fill.@ 0 D
@l. IZl)!] lITJ r8J
0 ~ §0 0
~ IZl ~ 0 0
gg0·0 0

(c) Bipartite matching.

(b) Exclusion of the fourth
column of logical grid points.

IZl fol fel IZl 13

~~~fol IZJ 
l2?J ~ 3 3 t8J l2?J 

!Zl ~ ~ l2?J l2?J 
ggl2?J 0 0 

(d) Assignment borrowing. 

Figure 4. Reconfiguration of a 3 x 3 array out of a 5 x 5 
host array using all the failure free processors. 

Q 7 7 6 

DODOO 
D 0 IZl D D 
l2?J l2?J 0 0 ~ 

DODOO 
00000 
r8J C8J IZl 0 0 
0 C8J 0 0 0 
r8J0000 

(a) Exclusion of the fourth 
row of logical grid points. 

(b) Exclusion of the second 
column of logical grid points. 

~DDfelfol 
~ 0 IZl ffil foJ 
0 0 0 0 l2?J . . . 
0000r8J 
rg] r8J 0 0 r8J 

(c) Bipartite matching. (d) Assignment borrowing. 

Figure 5. Reconfiguration of a 3 x 3 array when all the 
processors in the bottom half of the host array are faulty. 

381 

~-:y· ......... ' ... -n· ':·1~:·:_-.'~ :'·7·= 
: W N : W N .. ,.. . .. • •• ·:·· 

_!__ S E .. ..: S E .-~-; : :- , ......... , ;-

-·t · i ~ ; . . . : . ~ ......... ·j·. i. 

op 

., ·:_ .nt4:.; ....... :..:. 
;- - W N : 

; S E ; 
~-- .. - .. . .. 

. . f .. : ~ : 
(<} To low~r-le(\. (d) To low<r--ri1h~ 

Figure 6. Four patterns of 
interconnection realization. 

Figure 7. Matchings requiring 
one extra channel. 

Figure 8. 
Interconnection 

for Figure 2. 

Figure 9. 
Interconnection 

for Figure 3. 

Figure IO. 
Interconnection 

for Figure 4. 



,,~ 

r~ m~-1t~-rr _&<l :r~1 

;1,11 i·l'f l·,il.1 

c 
0 

~ 
5 ... -··· 

---- Propo•ec:I Sc::h•rn• 
·-------------· Hlerorchlco• 
- - - - - - - COIU""" R•dundOn1 

(a) 8 x 8 array. 

----

.... ----------··· 

---- P~po••d Sct'iem• 
··········••••· Hl•.-o,.chlcol 
- - - - - - - Column R•dundont 

(b) 16 x 16 array. 

Figure 11. 
Interconnection 

for Figure 5. 

Figure 12. Comparison of ProceMor Utilization. 

382 

{c) M3 

(b) M2 

(d) ... 

Figure 13. 
Four types of 
basic module. 

Figure 14. 9 level tree embedding 
using basic modules. 

Figure 15. Reconfiguration of a four level tree 
for the same distribution of faults as in Figure 2. 

c 
0 

] 
5 

~ . . 
u 
0 

ct 

0.9 

o.e 

0.7 

o.o 

0.0 

0.• 

0.3 

0.2 

o.• 

Proposed ScherTle 
Modular 
Row Exclusion 

o.• o.s o.e o. 7 o.e 0.9 

Processor Yield 

Figure 16. Comparison of Processor Utilization 
for reconfiguring an eight level tree. 



A Parallel Processing Architecture for 

an Integrated Vision System 

Alok N. Choudhary and Janak H. Patel 

Computer Systems Group 
Coordinated Science Laboratory 

University of Illinois 
1101 W. Springfield Avenue 

Urbana, 1L 61801 
Abstract-

Computation requirements for an integrated vis10n system are 
tremendous and thus a need for parallel processing. There are several 
tasks which must be performed in a sequence repeatedly. Each of these 
tasks have a great potential for spatial and temporal parallelism. In 
general, the degree of exploitable parallelism is high but dynamically 
variable. Therefore, efficient utilization of resources in a multiprocessor 
vision system requires the system to be highly flexible and modular. In 
this paper we consider an architecture for an integrated vision system. 
Then we illustrate how various steps involved in an integrated vision 
system which consist of low level, high level and hybrid algorithms can 
be efficiently mapped in an integrated environment. In particular, we 
consider stereo vision algorithm to extract 3-D object description from a 
set of 2-D images. The emphasis is on using small number of powerful 
processors concentrated in clusters and connected via flexible, 
reconfigurable and programmable crossbar. The issues considered are 
mapping algorithms independent of problem size, minimize 
communication, efficient pipelining of tasks and load balancing to evenly 
distribute the computation. We argue why the architecture is efficient as 
an integrated vision system. Furthermore, we show how various steps of 
the algorithm can be mapped onto the architecture with a brief 
description of each step of the algorithm. 

I. Introduction 

Computer vision has been regarded as a very complex problem. 
Image analysis and understanding procedures employ a very broad 
spectrum of techniques from several areas such as signal processing, 
advanced mathematics, graph theory, and artificial intelligence. These 
algorithms are, in general, characterized by massive parallelism. For low 
level processing, spatial decomposition of an image provides a natural 
way of generating parallel tasks. For higher level analysis operations, 
parallelization may also be based on other image characteristics. The 
multi-dimensional divide-and-conquer paradigm [l] is an attractive 
mechanism for providing parallelism in both of the above cases. In [2], 
Ahuja and Swamy proposed multiprocessor pyramid architecture as a 
straight forward implementation of the divide-and-conquer based 
approach. Such pyramids are natural candidates for executing divide­
and-conquer algorithms as they most closely mirror the flow of 
information in these algorithms. However, design of an integrated vision 
system requires a greater flexibility, partitionability, and reconfigurability 
than is offered by regular array or pyramid structures[3]. 

Many multiprocessor architectures and parallel algorithms have 
been proposed to solve the problem of image understanding [4,5,6, 7,8]. 
Most architectures such as pyramid, array processors, and mesh have 
limited capabilities to implement an integrated system for image 
processing due to several reasons. First, they are mostly suitable for 
SIMD type of algorithms which only constitute low level vision 
operations. Second, the architectures are inflexible due to the rigid 
interconnections between processors and processors and memory. Third, 
the number of processors needed to solve a problem of reasonable size is 
hundreds or thousands. Such a large number of processors is not only 
cost prohibitive, but the processors themselves cannot be very powerful 
and can have only limited features due to technological limitations. 
Fourth, it is normally assumed that the problem size exactly matches the 
number of processors available. Most of the time it is not clear how to 
adapt algorithms so that problems of different sizes can be solved on the 
same number of processors efficiently. Finally, the problem of input­
output of data is rarely addressed in any of these architectures. It is 
important to note that no matter how fast or powerful a particular 

Tiris research was supported by the National Aeronautics and Space Administration 
under Contract NASA NAG-1-613. 

383 

architecture is, its utilization can be limited by the bandwidth of the 1/0. 
Significant research is being carried out in developing architectures and 
algorithms for image processing which are practically feasible. One good 
example is the CMU Warp processor [9, 10, 11, 12]. The machine has a 
programmable systolic array of linearly connected cells, each capable of 
10 MFLOPS. The array can efficiently perform local operations, in which 
each output depends on a small corresponding area of the input, since the 
connections between the cells are neighbor connections. It is also claimed 
that Warp is also suited for global·image operations. 

An integrated vision application contains several algorithms in a 
sequence with input of one dependent on the the output of the previous 
algorithm and externally supplied parameters. Some of the algorithms are 
suited for SIMD architectures, some for MIMD and systolic 
architectures. Several issues such as efficient parallel mapping of 
individual algorithms, communication between tasks, data transfer, 
scheduling tasks etc. must be addressed. For example, stereo vision 
algorithms to obtain 3-D surface information from 2-D images is one 
such application[13, 14, 15] consisting of tasks such as edge detection, 
matching, hough transform, fitting, surface interpolation. There is a scope 
of considerable parallelism within each task and of pipelining tasks. 

In this paper we consider an integrated vision architecture and 
describe its features. Then we argue why the architecture is efficient as an 
integrated vision system. Furthermore, we show how various steps of the 
algorithm can be mapped onto the architecture with a brief description of 
each step of the algorithm. 

This paper is organized as follows. Section 2 presents the 
architecture. In Section 3, the mapping of the various steps of the stereo 
vision algorithms is described. Finally, summary and a few remarks 
about future work are presented. 

II. Architecture 

Figure 1 shows an architecture (called NETRA) for a large high 
performance multiprogrammed multiprocessor for image analysis and 
understanding systems. The architecture consists of the following 
components :-
(1) A large number (100 - 10000) of Processing Elements (PEs), 

organized into clusters of, say, 16 to 64 PEs each. 

(2) A tree of Distributing-and-Scheduling-Processors (DSPs) that 
make up the task distribution and control structure of the 
multiprocessor. 

(3) A parallel pipelined shared Global Memory. 

(4) An Interconnection Network that links the PEs and DSPs to the 
Global Memory. 

The system is illustrated with a block diagram in Fig. 1. 

A. Processor Clusters 

The clusters consist of, say, 16 to 64 PEs, each with its own 
program and data memory. They form a layer below the DSP-tree, with a 
leaf DSP associated with each cluster. PEs within a cluster also share a · 
common data memory. The PEs, the DSP associated with the cluster, and 
the shared memory are connected together with a crossbar switch. The 
crossbar switch permits point-to-point communications as well as 
selective broadcast by the DSP or any of the PEs. 

Clusters can operate in an SIMD mode, a systolic mode, or an 
MIMD mode. Each PE is a general purpose processor with a high speed 
floating point capability. In an SIMD mode, PEs in a cluster execute 
identical instruction streams from private memories in a lock-step 
fashion. In the systolic mode, PEs repetitively execute an instruction or 
set of instruction on data streams from one or more PEs. In both cases, 



communication between PEs is synchronous. In the MIMD mode PEs 
asynchronously execute instruction streams resident in their private 
memories. The streams may not be identical. 

B. The DSP Hierarchy 

The DSP-tree is an n-tree with nodes corresponding to DSPs and 
edges to bi-directional communication links. Each DSP node is composed 
of a processor, a buffer memory, and a corresponding controller. 

The tree structure has two primary functions. First it represents the 
control hierarchy for the multiprocessor. A DSP serves as a controller for 
the subtree structure under it. Each task starts at a node on~an. appropriate 
level in the tree, and is recursively distributed at each level of the sub-tree 
under the node. At the bOttom of the tree, the sub-tasks are executed on a 
processor cluster in the desired mode (SIMD or MIMD) and under the 
supervision of the leaf DSP. 

The second function is that of distributing the programs to leaf 
DSPs and the PEs. Vision algorithms are characterized by a large number 
of identical parallel processes operating on different data sets. It would be 
highly wasteful if each PE issued a separate request for its copy of the 
program block to the global memory because it would result in large 
unnecessary traffic through the interconnection network. Under the DSP­
hiefarchy approach, one copy of the program is fetched by the controlling 
DSP (the DSP at the root of the task subtree) and then broadcast down the 
subtree to the selected PEs. 

C. Global Memory 

The multiport global memory is a parallel-pipelined structurl'l· 
Given a memory(chip)-access-time of Tprocessor-cycles, each line has T 
memory modules. It accepts a request in each cycle and responds after a 
delay of T cycles. Since an L-port memory has L lines, the memory can 
support a bandwidth of L words per cycle. 

Data and programs are organized in memory in blocks. Blocks 
correspond to "units" of data and programs. For example, in the case of a 
graph matching algorithm for a symbolic-matching task, each block may 
be a record containing all information corresponding to one node of the 
graph. The size of a block is, hence, variable and is determined by the 
size of a record for a task. A large ·number of blocks may together 
constitute an entire program or an entire image. Memory requests are 
made for blocks. The PEs and DSPs are connected to the Global 
Memory with a packet- switching multistage interconnection network. 

The global memory is capable of queuing requests made for blocks 
that have not yet been written into. Each line (or port) has a Memory-line 
Controller (MLC) which maintains a list of read requests to the line and 
services them when the block arrives. It maintains a table. o.f tokens 

SECONDARY MEMORY AND 110 

DSP : Dlstributlng-and-Schedullng Proaissor 
C: Processor Cluster 
M : Memory Module 

Fig 1 : Organization of NETRA 

corresponding to blocks on the line, togethet with their lengtli, virtual 
address and full/empty status. The MLC is also responsible for virtual 
memory management functions. 

III. Mapping the Stereo Vision Algorithm 

Assume that I is an input to an image processing task f and the 
output is 0. That is, 

0 = f(I) 
For example f may be edge detection, filtering, Fourier transform or 
object recognition. Therefore, f has several characteristics for parallel 
implementation. First, an identical, data independent, local operation is 
performed throughout an entire image on small quadrant of windows. 
This spatial characteristics implies that an image ma)' be divided into a 
set of subimages which can be processed in parallel. Second, often 
several such functions are applied in a sequence to an image. For 
example, stereo vision for 3-D object extraction which uses convolution, 
matching, Hough transform, fitting etc. These temporal characteristics 
suggest the use of a· pipeline environment to improve the processing· rate. 
In summary, an overall processing function can be partitioned into 
. several subfunctions which are pipelined yielding advantages of both 
spatial as well as temporal parallelism. 

Architecture and the Model 

( 1) Processor Allocation : Each stage of the image processing function­
can be performed on one or more clusters of processor. Spatial 
parallelism within each stage of the pipeline can be exploi~ using the 
flexible interconnect of the cluster and local DSP for schedulmg. 

384 

(2) Pipelining : Pipelining between various stages can be achieved using 
the macro dataflow feature of the architecture. Once an output data block 
is produced by the previous task, it is sent to the global memory with 
appropriate address of the next cluster needing this data (details are given 
in[3] 

(3) Task Scheduling : Scheduling of tasks can be performed locally in a 
cluster for MIMD mode by all processors sharing the load information in 
the common data memory. If more than one clusters are involved then an 
appropriate DSP can schedule tasks and dynamically allocate processors 
to various subtasks if the computation is heavily input data dependent and 
unevenly distributed. 

We now illustrate how the various algorithms that are part of stereo 
vision can be implemented in parallel on the proposed architecture. We 
discuss the computation, communication and scheduling issues along 
with the data structure and dataflow requirements. We consider various 
algorithms individually and describe their possible parallel version on 
NETRA and suggest how they can be integrated and pipelined. 

Figure 2 shows the data flow and main data structures for the 
integrated stereo vision . alg;orithm. The figure . only . illu~trates the 
computation and commumcauon n~. tor. the left mput 1mag~. Ex:ictly 
the same computation and commumcauon 1s also done for the nght mput 
image. The type of algorithm suited for each step (such as SIMD, MIMD 
or a mix of SIMD and MIMD) is also indicated with the task blocks. The 
following is a description of the tasks shown in Figure 2. 

Left Input 
7.ero Crossings Depth points 

hnage 
(left hnage) of image 

Edge Feature Hough 

Detection c1(n ,n Match Transform 
IM1( 

' (SIMD) (Hybrid) Depth 
(Hybrid) 

InitiaJ _Array(n,n, I) 
Parameters Zcr(n,n) Accum_Array(x,y ,z) 

Parameters for Link_Array(x,y,z) 
Finer Level 

3-DObject Plane 
Description 

Surface Patches Surface Parameter 
Computation Interpol•- Fitting 

(MIMD) tion(MIMD) Surface 
(MIMD) 

Description 

SIMD, MIMD and Hybrid indicate type of algorithm suitable for the step 

Exactly the same Computatioo is done for the right image in parallel 

Data How and Data Structures 

Fig.2 Computation, Communication and Data 
flow for Stereo Vision 



(1) Data Compression and Edge Detection : For Coarse-to-Fine 
processing, it is required to compress the input image data two or more 
:times depending on resolution of the image. Data compression involves 
computing the weighted average. Each pixel in the output (compressed) 
image is the weighted average of a certain size neighborhood in the 
original (uncompressed) image. Compression is a variation of 2-D 
convolution (except for the fact that unlike convolution, output is not 
18ken at each point, but every n tit point, where n depends on how much 
compression is needed). Both edge detection and data compression 
involve a variation of 2-D convolution, therefore, we describe a. 
convolution algorithm. A 2-D convolution is expressed as follows: 

G(ij)=Wij * /(ij) 
where, I(ij) is the image, W;j is the convolution window and G(ij) is the 
output of the convolution operation. 

Edges are used as features to be matcbed in left and right images. 
The matched edges will then result in depth points. This algorithms uses 
the zero crossings of the convolution of the image with the V2G operator 
to determine the edge location in the image. There are numerous parallel 
algorithms available for 2-D convolution on various architectures (16). 
Furthennore, there are special purpose integrated circuits available to 
perfonn convolution. We describe a parallel algorithm for edge detection 
on the processor clusters on NE1RA. 

The approach is to reduce 2-D convolution to a 1-D convolution 
without incurring additional steps. Each pixel is logically mapped onto a 
separate processor (as if there were as many processors available as there 
are pixels). Actually the image is folded and multiple pixels are mapped 
onto one processor. The image is folded in two dimensions in a wrap 
around fashion, both left to right, and top to bottom. If the image size is n 
· x n, and number of processors is p x p then each processor will have 
n 2/p 2 pixels in its local memory. In general, pixel (i j) ; 
<>si91~1, 0Sj91-1 will be mapped to processor ((i mod p), (j mod p)). 
Therefore, this mapping preserves the adjacency of any two pixels even 
though the image is folded. 

Assume that the window (or neighborhood) size is w x w and the 
convolution mask is stored in each PE's memory. A small window is 
embedded in a larger one and therefore, same connections can be used for 
a larger window size with the addition of new connections for extra steps. 
The algorithm performs the convolution by each processor distributing its 
pixel values to the neighborhood in a pipelined manner. 

·In the following algorithm North, South, East and West Neighbors 
are defined in wrapped around fashion. At any step all the processors 
have the same neighbor connection. All the processors will follow 
exactly the same pattern. It should be noted that the data values at each 
processor are stored in a linear array and subscript (ij) means the data 
value i in the connection number j. For a processor (ij), N,S,E,W 
neighbors are defined as follows. 

N = ((i-l)j), if (i-j).< 0, then N = ((i-1 + p),j) 
S = ((i+l) modp,j) 
E = (i, (j+ 1) mod p) 

w = (i, <.Fi)); if (i-1) < o, then w = (i, (F1+p)) 
Assuming that each processor has m pixels in its local memory, the 
algorithm works as follows. For an image of size 256 x 256 and a 
processor cluster of size 64, each processor has lK pixels. For a window 
size of 3 x 3, each processor performs 9K multiply-add operations. The 
interconnection needs to be reconfigured only eight times. It is important 
to note that the number of times the interconnection needs to be 
reconfigured only depends on the neighborhood window size. Also note 
that the algorithm can be easily adopted to any problem size and any 
processor cluster size. Once the convolution with the laplacian is. 
perfonned, each processor stores .the zero crossings by storing its (x,y) 
position and its orientation. 

The above algorithm illustrates that SIMD algorithms can be 
mapped efficiently on to the processor clusters using the flexibility and· 
programmability of the interconnection. Furthennore, the mapping is 
such that the interconnection reconfiguration is independent of the input 
image size. Following algorithms illustrate how MIMD and hybrid 
algorithms (algorithms needing both SIMD and MIMD type of 
computation such as Hough Transfonn) can be mapped and how 
pipelining of tasks can be achieved. h should be noted that each of these 
algorithms are executed on one or more different clusters. AlsO, there are 
two parallel stereo algorithms being executed at all time, one for left and 
one for right input image. 

385 

(2) Feature Matching : Feature· matching is requited in order to compute 
the depth points in the image. There are several sub tasks within this task. 
Fitstly, the output data of the previous step (i.e. edges) needs to be 
properly organized. 'secondly, since matching needs corresponding edges 
from the left(right) images, there is a need to be data transfer between 
processor clusters. Then there is a task of matching the properties of the 
edges within certain window along the epipolar lines. Epipolar lines are 

ALGORITHM CONVOLUTION; 
Input: IM(n,n), Output: Matrix of zero crossings z (n ,n) 

All the processors work in SIMD lock-step fashion. 
Set up Connection_array of size wxw by choosing 
first wxw connections from the set 
{N ,E,S,S,W:rW~,N,N ,E,E,E,s,s.s.w .w.w.w ,N,N,N,N,E, .. ). 

m:= ~ p 
For i = 1 to m do (in parallel) 

Result(i) := w;; * data (i) 
End_For 

For j = 1 to wxw do (in parallel) 
Set up appropriate connections on the crossbar as follows. 

connection(j) := connection_array(j) 
For i = 1 to m do (in parallel) 

Send data (pixels) on the output port to 
the connected neighbor. 
At the same time receive data from its input port. 
Result(i) :=Result(i) + W;j * data(i j) 

End for 
End for -

END_CONVOLUTION; 

normally assumed to be horizontal and therefore, the search is limited to 
one dimension. Therefore, the goal is to map data efficiently onto the 
processors such that the communication is minimized. We suggest the' 
following. 

Each processor P;J accumulates rows of zero crossing in such a 
way that communication is needed only in one direction without any need 
to change the interconnection. Therefore, the processors are organized 
into horizontal linear arrays in a wrapped around fashion as shown in 
Figure 3. The data is then pumped into one direction in systolic fashion 
'and each processor accumulates appropriate rows (of edges) according to 
·the following mapping. Processor P;j receives the rows 

(i modJ) + jp + kp2 fork= 0,1.... 
and accumulates at most n fp2 rows. 

The second subtask is that of data transfer between two clusters of 
processors which are working on the left and the right image respectively. 
This transfer is achieved by macro data flow using the global memory 
between corresponding processors in two clusters. Note that this can be 
perfonned at the same time when rows are being accumulated. Therefore, 
this is an example of how pipelining of tasks can be achieved. Once each 
processor accumulates appropriate rows, the next sub task is to find edges 
which have a match in the other image. This task is highly data dependent 
because the computational needs depend on the image, and how many 
edges are there to be matllhed. It is possible that some parts of the image 
.result in lot of edges where as other parts have relatively very few edges. 
Therefore, the processors that work on those rows having comparatively 
~~e number of edges may be heavily loaded and others may be under 
utilized. Therefore, there is a need for efficient task scheduling and 

~ .... ~ ...... [§] 
0 

~ ..... ED ..... [ti}J 
0 

Fig. 3: Reorgan,ization of Processors for Feature Matching 



dynarruc load balancmg; "Ihe above mappmg ot rows onto processors 
ensures that no processor has adjacent rows of edges, and in fact, no 
processor has p2 adjacent rows of edges. Thus the mapping itself tends to 
,evenly distribute the computation on the processors. The following 
algorithm sketches how the processors perform the task of feature 
matching in parallel. 

Each processor first works on rows allocated to it initially. Then if 
it finishes before others do, it selects rows allocated to other processors 
and performs the feature matching algorithms on them. Therefore, load 
balancing is achieved. Once the feature matching is finished, depth map 
of the image is available in both left and right image's coordinate system. 
The next task is to perform surface fitting. 
(3) Surface Fitting : The feature matching tasks provides part of the 
.depth points in each processor's local memory.First subtask is"to transfer 
the Depth_array to each processor's local memory. This can be done in 
macro data flow mode by connecting the processors in a circular array as 
before. 

Once each processor has the Depth_array, surface fitting can be 
done in parallel in MIMD mode. The synchronization, task scheduling 
and load balancing can be achieved using the shared common data 
memory, or the global memory if more than one cluster of processors are 
involved in this computation. The algorithm uses hough transform 
method to fit planes onto a set of points. 

The input to the following algorithm is a two dimensional array of 
points (e.g, zero crossings) in which line segments are to be detected. We 
will show how a parallel algorithm can-be implemented to compute these 
line s"gments using hough transform method. The computation is done 
in the (r ,0) parameter space. If there exists a line whose normal distance 
from the origin is r, the normal makes an angle 0 with the x-axis then if 
the point (x,y) lies on that line than the following equation is satisfied. 

r =xcos0 + ysin0 
First of all r, 0 are quantized. The quantization depends on how much 
accuracy is required in the final result Let's assume that maximum value 

ALGORITHM FEATURE MATCH; 
Each Processor P.r· J, If ::;p-::.1, lli;j~-1 (in parallel) do 

Row_count;J := ffe-1 
repeat 
If Row_count;J>O (more rows left in P;J'S local memory) 

Select a row(Row _count; J) from its local memory. 
Row_count;J :=Row_count;J -1. 

Else 

Mark row( Row_ count; .j) as selected in the 
common data memory of cluster. 
Update load information in the common data memory. 
For each edge (zero crossing) in the selected row Do 

Look for match in the corresponding 
row in the other image 

If match found Then 
Compute depth point z; for point (x; ,y,) 
Store in Depth_Array(x; y; ,z;) 

Else 
Store (x;yj) in the list of ambiguous edges 

End_ For 

If Row _countj.kct{) for some processors Pj.k Then 
Select a row from the processors with maximum Row _count 
Mark the selected row. 
Update load information in the common data memory 
End If 

Until finished (i.e., no more rows left to be selected) 
En~FEATURE_MATCH 

of r br r max maximuni value of 0 be 0max (generally 1t or 21t). Then if 
r,.., e,.. are the resolutions used for quantization then total number of 
accumulator cells in the computation are r max-em.Jr,.., .e,..,. The number 
of rows and columns in the accumulator array being R = 0maJ0,... and 
C = r ... Jr,.., respectively. The mapping is as follows. Each processor 
computes all r values for its share of 0 values. If there are p 2 processors 
then each processor gets n =Rfp20 values to work on. Therefore, 
processor i gets to work on n e values where, 1:'.!>i ::;p2. Figure 4 shows the 
accumulator array for processor i. The .main resons for such a mapping 

·are that ·when looking for peaks later no two processors need to 
communicate thereby reducing the communication overhead. Further, 

386 

the processor can store sin0, cose values for its allocated n 0 values in its 
registers resulting in saving memory access delays which would occur if 
all quantized sine and cos0 values are stored with each processor in its 
local memory. A brief explanation of the algorithm is as follows. Each 
processor begins working on a small part of the image. It computes the 
required r values for each of the e values stored in its registers. It then 
increments the appropriate count in the Acc_array. If the count increases 
beyond a certain tllreshold value, there exists a possibility of this being a 
local maxima. Therefore, another array called Link_array is updated 
marking this fact This step recJ,uces the search space tremendously when 
looking for local maxima since normally a very small fraction of the 
image· contributes to lines and entire accumulator array need not be 
searched when looking for local maxima. Figure 5 shows the Link_array. 
Once the above computation is finished for the entire image, the local 
maxima are computed in the Acc _array using the information available in 
Link_array as follows. Only those locations in the Acc_array need to be 
searched which are marked in Link_array because it contains only those 
locations which are candidates for local maxima. Therefore, the search 
space is reduced. 

The second subtask in surface fitting is that of fitting quadratic 
patches. This algorithm falls in the category of MIMD algorithm which 
works on a database of information produced by the previous steps. The 
output of this algorithm is dependent on the input data globally. Two. 
adjacent patches are compatible if there depth orientation do not differ 
by more than a certain threshold value. Compatibility criteria is an input 
parameter to the algorithm. The planar patches at each grid point are 
placed into sets of planes such that they are mutually compatible. Now a 
variation of relaxation algorithm is applied to the planes at each grid 
point to test for mutual compatibility. This task can be done in parallel 
using MIMD mode shared memory model for synchronization and load 
balancing of the subtasks. Shared memory model is preferred instead of 
message passing because the input data size is large. Therefore, there' 
may be large communication requirements at each stage of the algorithm 
because compatibility label may propagate a large distance. Further, task 
scheduling and load balancing is easier because the load information is 
available centrally. Therefore, scheduling of tasks can be done easily 
without having to transfer huge amount of data from one processor to 
another. Let's assume that there are a total of n grid points in the image 
on which quadratic patches are to be fitted. The following steps in the 
stereo vision algorithms also involve similar algorithms. Due to 
limitations on space we are omitting the descriptions of the algorithms. 
However, a brief description of what is involved in rest of the steps is 
provided. 
( 4) Locating Contours : Locating contours involves checking for 
discontinuities in the surfaces. This also can be done in parallel using the 
common data memory MIMD algorithm. A similar algorithm to the one 

Accum_array(ij) for one processor 

Fig. 4 : Accumulator array mapping for Hough Transform 
on each Processor 

ALGORITHM ACCUMULATE COUNT 
Each processor P;, l:'.!>i '.'.!>p 2 does the following (in parallel) 
Forj=ltondo 
For each (x,y) in the array such that (x,y) is significant do 

compute r(0;i) := xcos 0;j + ysin 0;j 
Acc_array(01j ,r(0;j )fr res) :=Acc_array 

(0;i ,r(0;j )fr,..)+ 1 
If Acc_array(0;i ,r(S;j )fr,,.)> threshold value then 

Link_array(0ij ;r(0;i )fr,.,) :':' true 
End if 

End For 
Transfer (x,y) value to next processor in the circular pipeline 

End For 
END~ACCUMULATE_COUNT 



above can be used easily with the main body being different. Instead of 
checking for the compatibility at each grid point, a bipartite circular pate!) 
is fit (in four directions) in order to detect edges due to discontinuity. If 
enough processing power is available then check for edges can be done in. 
more than four directions. 
(5) Surface Interpolation : Surface interpolation can be done in parallel 
for each point P on the surface by taking the weighted height of the point 
(where weight depends on the distance of the point from each surface 
within a distance of 2w from the point). Again the algorithm can be easily 
implemented in MIMD mode using the shared memory model. 
Essentially, the algori~m reduces to computing a weighted average 
within a three dimensional neighborhood window for each point. Familiar 
algorithms for weighted average can be used. However, the algorithms 
needs to be MIMD because unlike the standard SIMD neighborhood 
algorithms, the computation is data dependent and neighborhood size• 
itself depends on the data. Therefore, neighborhood for each point may 
be of different size depending on the number of different surfaces within 
a distance 2w from the point. 
(6) Computing Parameters for Next Level : This step requires 
computation opposite to that needed in data compression. In this step, 
data is expanded for the next finer level. Essentially, the grid is doubled 
ALGORITHM LOCAL MAXIMA 
Each processor does the following in MIMD mode 

For each entry Link_array(ij) do 
If (Acc_array(i,j) > Acc_array(i-kj)) AND 

(Acc_array(ij) > Acc_array(i+kj)) 
for all k s.t. l:Sk :Sw for a certain 
neighborhood of size w Then 

declare Acc_array(ij) as local maxima 
This gives a line with the (r ,0) parameters 

End If 
END LOCAL_ MAXIMA 

····{] 
····{] 
.... {] 

····{] 
lists of nodes indicating possible local maxima 

Fig. 5: Link_ Array data structure to reduce 
search space for computing maxi11_1a 

ALGORITHM QUAD PATCH; 
Each Processor P;.j, ~:SfJrl, °'fj:Sp-1 in parallel do 

Grid_point_count;J := ffe°I 
repeat 
If Grid _point_ count; pO (Local Grid_points with P; J) 

Select a row( Grid _point_ count; J) from its local memory. 
Mark Grid_points as selected in the common data memory. 
Update load information in the common data memory 
For each selected Grid_point Do 

Check the compatibility of the each plane in 
the neighborhood with the averaged parameters 
of each set. 
Choose the two most compatible sets make the 
plane member of these two sets. 

End For 
Else -

Check load information in the common data memory. 
If Grid _point _counti); #0 for some Pj ,t Then 
Select a Grid_point from the processors with 

maximum Grid_point_count. 
Mark the selected Grid_point. 

Update load information in the common data memory 
End If 

Until finished (i.e., no more Grid points left to be selected) 
End QUAD PATCH 
·in each direetion but preserving the surfaces in the present level. Then the 
quadratic patches are interpolated using the compatibility of the 
neighboring existing quadratic patches. This can be accomplished by 
relaxation algorithm used previously. 

387 

Once the parameters for the next finer level are computed, the 
entire algorithm (involving all the steps) is executed on a finer image and 
more accurate description of the 3-D surface is obtained. This iterative 
process is continued until the finest level of the image is reached which 
provides the most a~curate description of the object. 

IV. Summary 

In this paper we considered a multiprocessor architecture for 
integrated vision. Its processing power is concentrated in clusters of 
powerful processors connected through flexible and programmable 
crossbar. Its system control functions are ·distributed over a hierarchy of 
controllers. We considered a parallel image processing model and 
discussed the architecture as well as the 3-D stereo vision algorithm in 
the context of the model. We illustrated how various steps of the 
integrated system can be mapped in parallel, pipelined and what are the 
computation, communication, data flow, scheduling and load balancing 
requirements. Furthermore, we argued why the proposed mapping and 
integration of tasks is efficient. 

We are in the process of simulating the architecture and algorithms. 
both in an independent environment as well as in an integrated 
environment to investigate its performance in the light of various issues 
discussed earlier. Furthermore, we propose to compare performances of 
various low level, high level and hybrid algorithms mapped on 
architectures such as hypercube with the mapping on the proposed 
architecture. This performance study is also aimed at identifying other 
issues to be considered for an integrated vision system architecture which 
may have been overlooked and also suggest refinements in the 
architecture. 

REFERENCES 

[1] J. L Bentley, "Multidimensional Divide-and-Conquer," Comm. of the 
ACM, vol. 23, No. 4, pp. 214-229, April, 1980. 

[2] N. Ahuja and S. Swamy, "Multiprocessor Pyramid Architectures for 
Bottom-Up Image Analysis," IEEE Trans. on Pattern Analysis and 
Machine Intelligence, vol. PAMI-6, pp. 463-475, July, 1984. 

[3] M. Shanna, J. H. Patel, and N. Ahuja, "NETRA: An Architecture for a 
Large Scale Multiprocessor Vision System," in Workshop on Computer 
Architecture for Pattern Analysis ans Image Database Management, 
Miami Beach, Florida, pp. 92-98, Nov. 1985. 

[4] F. A. Briggs, K. S. Fu, J. H. Patel, and K. H. Huang, "PM4 - A 
Reconfigurable Multiprocessor System for Pattern Recognition and Image 
Processing," 1979 National Computer Conference, pp. 255-266. 

[5] H. J. Siegel et al., "PASM - a Partitionable SIMD/MIMD system for 
Image Processing and Pattern Recognition," IEEE Trans. on Comput., 
vol. _C-30, pp. 934-947, Dec. 1981. 

[6] Y. W. Ma and R. Krislmamurti, "The Architecture of REPLICA - A 
Special-Pwpose Computer System for Active Multi-Sensory Perception of 
3_Dimensional Objects," Proc. International Conference on Parallel 
Processing, pp. 30-37, 1984. 

[7] W. A. Perkins, "INSPECTOR -A Computer Vision System that Learns to 
Inspect Parts," IEEE Trans. on Pattern Analysis and Machine' 
Intelligence, vol. PAMI-5 No. 6, pp. 584-593, Nov., 1983. 

[8] M. J.B. Duff, Computing Structures for Image Processing. New York, N. 
Y.: Academic Press, 1983. 

.[9] H. T. Kung and J. A. Webb, "Global Operations on the CMU WARP 
Machine," Proceedings of 1985 A/AA Computers in Aerospace V 
Conference, OcL 1985. 

[10] T. Gross, H. T. Kung, M. Lam, and J. Webb, "WARP as a Machine for 
Low-Level Vision," in IEEE International Conference on Robotics and 
Automation, ST. Louis, Missouri, pp. 790-800, March, 1985. 

[11] H. T. Kung, "Systolic Algorithms for the CMU Warp Processor," in 
Tech. Rep. CMU-CS-84-158, Dept. of Comp. Sci., CMU, Pittsburgh, PA, 
Sept., 1984. 

[12] F. H. Hsu, H. T. Kung, T. Nishizawa, and A. Sussman, "LINC: The Link 
and Interconnection Chip," in Tech. Rep., Dept. of Comp. Sci., CMU, 
CMU-CS-84-159, Pittsburgh, May, 1984. 

[13] Marr D., Vision. San Fransisco: Freeman, 1982. 

(14] Hoff W. and Ahuja N., "Extracting Surfaces from Stereo Images : An 
Integrated Approach," CSL Tech. Rep. U!LU-ENG-87-2204, January, 
1987. 

(15] Marr D. and Poggio T., "A Theory of Human Stereo Vision," Proc.fo R. 
Soc.Lond., vol. B 207, pp. 187-217, 1980. 

[16] Z. Fang, X. Li, and L. Ni, "Parallel Algorithms for 2-D Convolution," 
IEEE, pp. 262-269, 1986. 



AN OPTIMAL SOLUTION FOR CONSENSUS PROBLEM 
IN AN UNRELIABLE COMMUNICATION SYSTEM 

K.Q. Yan and Y.H. Chin 
Institute of Computer & Decision Sciences 

National Tsing-Hua University 
Hsinchu, Taiwan 30043, R.O.C. 

Abstract Traditionally, consensus problem is 
solved in a fully connected network with node failure 
assumption. This paper discusses the consensus problem 
with the assumption of link failure. A simple and 
efficient protocol FLINK is proposed. The complexity of 
information exchange required by the protocol is O(n2). 
The protocol uses minimum number of rounds to 
achieve a consensus and can tolerate maximum number 
of allowable faulty components: 

1. Introduction 

To achieve an agreement on a predefined value 
in a distributed system, protocols are required so that 
the system will run even if certain components in the 
distributed system were failed. Such a unanimity 
problem was studied by Lamport [7,8], and it is called a 
Byzantine Agreement (BA)f2,3,4,6,7,8,9,10,11]. A 
closely related sub-problem, Consensus problem, has 
been studied extensively in the literature [1,7]. In the 
paper, we concern the solution of consensus problem. 
The definition of such a problem is to make the correct 
nodes in an n nodes fully-connected network to reach a 
common agreement. Each node chooses an initial value 
to start with, and communicates each other by means of 
message. The desired protocol is to solve the consensus 
problem if it satisfies the following constraints: 
(Agreement): All correct nodes agree on the 

same value. 
(Validity): If the initial value of all nodes is 

Vi, then all correct nodes shall 
agree on Vi. 

Many results in a Byzantine Agreement or 
consensus problem are based on the assumption of node 
failure in a fail-safe network [1-11]. Base on this 
assumption, a communication link fault is treated as a 
node fault, regardless the correctness of an innocent 
node; hence an innocent node does not involve an 
agreement. This is contradiction with the definition of a 
BA (or consensus problem) which requires all correct 
nodes to achieve an agreement. 

In this paper, we consider a distributed system 
whose nodes are reliable during the consensus execution; 
while message links may be disturbed by some noise or 
an intruder and results in the exchanged message 
maliciously. A new efficient and reliable protocol to 
achieve consensus in an unreliable communication 
environment is proposed first; then its efficiency and 
reliability are proved later. The common term round 
[1,6] is used to denote the interval of message exchange. 
The proposed protocol can tolerate I n/2J-1 faulty 
links, and requires only two rounds of message 
exchange. The amount of necessary information 
exchange is only O(n2) [4]. If a link fault is treated as a 
node fault, the number of rounds required by the 
protocol is better than the previous results [1,7]. 

In the subsequent sections, Section 2 defines the 
model and the concepts. Section 3 presents the proposed 
protocol and proves its correctness. Section 4 discusses 

388 

the impossible cases of an unreliable distributed system 
and the optimization of the protocol. Section 5 gives the 
conclusion and the future work. 

2. Model 

In a fully connected n-node network, if each 
node has at least n*n bytes memory; then a sender's 
message is always identifiable by a receiver; and the 
protocol's processing time can be negligible. If each 
node always works well during the execution of 
consensus protocol, but links may be damaged due to 
some noise or intruder, thus a link may be in faulty 
when its transferred message is changed or delayed. 
Conversely, a link is perfect when the transferred 
message is always received correctly and on time. 

Usually a node's computation time is faster than 
the message communication time through a link; hence 
a node's computation . time for protocol is ignored. 
Under such an assumption, the protocol can make the 
correct node in a fully-connected network to reach a 
predefined common value with the least number of 
rounds. 

Let MATi be the matrix set up at node i by the 
procedure MATRIX shown in Figure 1 for i=l, ... ,n. In 
the first round, node i receives the preset initial value 
from each other nodes, and Vi be the vector 
[vi,v2, ... ,vk,···,vn], where Vk represents the initial value 
received from node k or the initial value of node i itself, 
1$k$n. For simplicity, any value not identified or not 
received within the predefined time limit will be set to 
the complementary value -wk by the receiver. 

Procedure MATRIX (for node i with initial value Vi) 
Step 1: Receive the initial value Vj from node j, 

for 1$j$n and jj:i. 
Step 2: Construct the vector V1 [vi, v2, ... , Vj, ... , 

vn], 1$j$n. 
Step 3: Receive the vector Vj from node j, 1$j$n, 

jfi. 
Step 4: Construct a MATi. (Setting the vector Vj 

in column j, for 1$j$n.) 

Figure 1. The procedure for setting MATi on node i. 

In the second round, each node broadcasts its V 
vector to other nodes and receives n-1 vectors from the 
other nodes. MATi is established by using vector Vj as 
the j-th column in the matrix. Note that the i-th 
column in MATi is the vector constructed by node i in 
the first round. In the second round, node i can receive 
n-1 vectors from the rest n-1 nodes; therefore MATi is 
an n*n matrix. Each element Vjk in MATi represents 
the value of the node k received from node j in the first 
round. Let the majority value of (vi, v2, .. ., vn] in the 
k-th row to be MAJk=Vi if the number of Vi's is greater 
than n/2; otherwise MAJ k is set to ? . Figure 2 shows an 
example of six nodes and Vi = 1, for i=l, 2, 3, 4 and 5; 



and v6 = O. The vector V2 received by node 2 in the 
first round is shown in Figure 2(b), and the 
corresponding MAT2 is shown in Figure 2(c). The 
second column in MAT2 is the vector V2 shown in 
Figure 2(b), and the rest 5 columns are the vectors 
received by node 2 in the second round. If link 25 and 
link 26 are faults, the values v52 and v52, and the 
vectors V5 and V5 may have changed maliciously. The 
majority value of each row is shown in Figure 2(dJ. 

( 1) (2) 

·~~·, 
1 

Thevec1or V2 recet.ied 1 
In the first round = 1 

1 
1 

MAT • 
2 

(c) 

1 (5) 1 (4) 

V1 V2 

1 1 
1 1 
1 1 
1 1 
1 1 
0 1 

(a) 

V3V4V5Vll 

1 
1 

1 1 1 0 
1 1 0 1 
1 1 1 0 
0 0 1 1 

(b) 

1 
1 

Majority vak.te of eeeh row = 1 
of MAT2 : 

(d) ? 

Figure 2. A network with six nodes shows the way to 
construct MAT2 and get the majority value of each row. 
The two dash lines represent two faulty links. 

Based on the properties of the consensus 
problem, the initial value of node i (denoted as Vi) 
should be known by itself prior to the execution of 
consensus protocol. If node i makes a decision after 
executing the consensus protocol, it must determine 
whether or not a disagreement exists with the initial 
value, and it has to d~cide the initial value or a 
"default" ( <f>). In any case, a node with initial value Vi 
should not decide on the complementary value -iVi. 

As for multivalue consensus problem, Turpin and 
Coan [11] have already shown that the protocol of a 
binary value consensus problem can be extended to a 
multivalue consensus problem, therefore only binary 
initial value is discussed. 

3. Protocol 

In the section the proposed protocol based on the 
model developed in Section 2 is formally presented. The 
followin~ definitions make the protocol different from 
the previous results. 
Definition 1: Every correct node should always know 
the initial value of itself; and 
Definition 2: If the initial value is Vi, then the decision 
made must be .either Vi or <f>, but not -ivi. 

Figure 3 shows the protocol FLINK which can 
tolerate Ln/2j-1 fault links; and it achieves consensus 
by only two rounds of message exchange. Later, we will 
prove 1) the efficiency of the method, and 2) the 
necessary and sufficient conditions for the number of 
rounds and faults required by FLINK protocol. Let 
DECi be the value chosen by node i to agree on with 
others. 

Figure 4 shows the complete procedure and the 
result of the protocol FLINK for the six node example 
mentioned in Figure 2. Since node 2 has MAJ5=? in 
MAT2, and v52 =1 =v2. By step 3 in FLINK, DEC2 = 
<f>. Nodes 1, 3, 4 and 5 find that there is a MAJ5 = 0 
(=-ivi) in MATi, so DECi = <f> for i = 1, 3, 4 and 5 by 
step 2 in FLINK. For the same reason, node 6 has a 

389 

MAJ1 = 1 (= -iv6), so DEC5 = <f>. Therefore, all nodes 
agree on the same value <f>. Consensus achievement is 
done. 

Protocol FLINK ( For node i with initial value Vi ) 
Message Exchange Phase: 

Round 1: Broadcast (vi), then receive the 
initial value from the other nodes, 
and construct vector Vi· 

Round 2: Broadcast (Vi), then receive the 
vectors broadcasted by other nodes 
and construct MATi. 

Decision Making Phase: 
Step 1: Take the majority value of each 

row k of MATi to be MAJk. 
Step 2: Search for any MAJk. If (3 MAJk 

= -ivi), then DECi := </>; 
Step 3: else if (3 MAJk = ?) AND ( Vki = 

Vi), then DECi:=<f>; else DECi:= 
Vi, and halt. 

Figure 3. The FLINK protocol to achieve consensus. 

( 1) (2 \ 

·~~·:· The vector received 
In the first round = 

V1 V2 V3 V4 V5 VB 

1 1 1 1 1 1 
1 1 1 1 0 1 
1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 
010000 

MAT • 
5 

1 (5) 1 (4) 

0 
0 
0 
1 
0 
1 

(a) 

(C) 

1 
1 
1 
1 
1 
0 

1 
0 
1 
1 
1 
0 

1 
0 
0 
1 
0 
1 

1 
1 
1 
1 
1 
0 

(b) 

Majority value of each row = 
of MAT2 

1 
1 

Maj:>rityvalue of each row = ~ 
of MATi 1 

0 

1 
1 

Mapntyvalue of each row = ~ 
of MAT5 1 

0 

1 
1 

Majority value of each row • : 
of MAT5 1 

0 

(d) 

I• 1, 3, 4. 

DECi = <f>, ~for MAJ5 = 0 =-iVi & Vi= 1); i= 1,3,4,5; 
DEC2 = <f>, for MAJ5 = ? AND v52 = 1 = v2) . 
DEC6 = <f>, for MAJ i = 1 _ = -iv5 and v5 = 0 ); 1$J$5; 

Figure 4. The result of FLINK for the six node 
example in Figure 2. 



The following lemmas and theorems are used to 
prove the correctness and complexity of FLINK. 

Lemma 1: If there is a MAh = •Vi in MATi, 
then at least there is one node with an initial value 
which dis.agrees with Vi in the network. 

Proof: The majority value in the k-th row =•Vi 
means that there are at least rn+l/21 •Vi1S in the k-th 
row. Since the number of faulty links is at most 
ln/2J-1, there exists at least one value •Vi received 
from a perfect link. In other words, there is a node 
which has an disagreeable initial value .• 

Lemma 2: Let the initial value of node i be Vj 
and the link ij is in perfect, then the majority value at 
the i-th row in MATj should be Vi. 

Proof: Since link ij is perfect, the node j will 
receive Vi from node i in the first round and Vij = Vi in 
MAT·. Mean while, the value Vi of node i will be 
broad_lcasted to the other nodes. There are at most 
L n/2 J-1 faulty links in the system. In the second round, 
node j receives at least (n-1)-(Ln/2J-1) = rn/21 Vj1S 
in the i-th row of MATj. Hence, there are at least 
r n/21+1 Vj1S in the i-th row, and the majority values 
in the i-th row should be equal to Vi·• 

Lemma 3: If the initial value of node i is Vi, 
whether or not link ij is in perfect, the majority value at 
the i-th row of MATj, 15j5n, should be either Vi or be? 
with Vj·=•Vj. 

~roof: By Lemma 2, when link ij is perfect, the 
majority value of the i-th row in node j is Vi, for 15j5n. 
When link ij is faulty, we consider the following two 
cases in the first round. 

Case 1: Vij = Vi 
Since there are at most L n/2 J-1 faulty links 

connected with node j, there are at most I n/2 J-1 values 
that ma~ be •Vi's in the second round. The number Vi's 
is [(n-lJ-( l n/2J-1)]+1 = r n/21+1 in the i-th row; 
therefore, the majority of the i-th row in MATj is Vj. 

Case 2: Vij = •Vi 
There are at most ln/2J-1 faulty links. In the 

second round, the number of •Vi's is no more than !ln/2J-1)+1 = ln/2J and the number of Vi's is at least 
[n-1)-( ln/2~-1)]= jn/21. If n is an even number, then 
n/2 J = T n/2 , the majority of the i-th row in MATj is 

.. I£ n is an o d number, then Ln/2J < r n/21, hence the 
majority of i-th row in MATj is Vi·ll_ 

Lemma 4: If ( •3 MAh=•ViJ AND{ (3 MAh = 
?) AND ( Vki=Vi)} in MATi, then DECi := </> is 
correct. 

Proof: If there has a MAh = ? , there are 
exactly n/2 Vi's and n/2 •Vi's in the k-th row. If Vki = 
Vi in MATi, then all n/2 •Vi's should be received in the 
second round. There are L n/2 J-1 faulty links in the 
system. Therefore, in the second round, node i at least 
receives a value from node k without disturbance. The 
initial value of node k should disagree with the initial 
value of node i; hence it is correct to choose DECi = </>. 

If Vki = •Vi, we claim that •Vi ought to be 
passed by a faulty link from node k, and the initial 
value of node k should be •Vki = Vi. 

To prove, if link ki is perfect, then the initial 
value of node k should be •Vj. By Lemma 2, the 
majority value of the k-th row in MATi is •Vj. This is 
contradiction with the condition of ( -,3 MAh = •vi). 

If the initial value of node k was •Vi, then, by 
Lemma 3, MAh should be either •Vi or ? for Vki = Vi. 
It is a contradiction .• 

390 

Theorem 1: FLINK protocol is correct. 
Proof: By Lemma 1, 2, 3 and 4, the theorem is 

proved .• 
Theorem 2: FLINK protocol can achieve 

consensus. 
Proof: (1) Agreement: 
Part 1: If a correct node agrees on </>, all 

correct nodes should agree on </>. 
If the correct node m with initial value Vi agrees 

with </>, by Theorem 1, at least there is a correct node k 
with initial value •Vi in the network. By Lemma 4, the 
majority value in the k-th row of MATj, 15j5n, shoi:ld 
be either •Vi or ? for Vkj=Vj. All correct nodes with 
initial value Vi agree on <fi. Similarly, for the correct 
nodes with initial value •Vi, the majority value of the 
m-th row in MATj, 15j5n, should be either Vi or? with 
Vij = •Vi. All correct nodes with initial value •Vi agree 
on</>, too. 

Part 2: If a correct node agrees on Vi, all 
correct nodes should agree on Vj. 

If the correct node i with initial value Vi and 
DECi = Vi, but there exists some correct node j, j=Fi, has 
DECj :f Vi, then that is impossible. To show this, if 
DECj = </>, by Part 1, then DECi = <f>. This is a 
contradiction with the assumption as above. 

If DECj = •Vi, unless the initial value of node j 
is •Vi, otherwise it is impossible according to the 
Definition in Section 3. But if the initial value of node j 
is •Vi, by Lemma 4, MAJi is equal to •Vi or ? with Vji 
= Vi in MATi; then, DECj = </>. It is a contradiction; 
hence, all correct nodes should agree on the same value. 

(2) Validity: 
The initial value of all correct nodes should be 

the same. If there is a value •Vi in MATj, 15j5n, then 
the value must be caused by a faulty link. There are at 
most L n/2 J-1 faulty links, hence there are at most 
Ln/2J-1. faulty •Vi's in each row. Since th.e .value 
received m the first round may be •Vi, the maJonty of 
each row for all MATj, should be 

? if the value received in 
MAJj = { the ~irst round is •Vi, 15j5n. 

Vi otherwise . 
So, by step 3 of the FLINK protocol, all correct 

nodes should agree on Vi·• 
Theorem 3: The amount of information 

exchange by FLINK is O(n2). 
Proof: In the first round, each node sends out 

(n-1) copies of its initial value to other nodes. In the 
second round, an n--element vector is sent to the other 
n-1 nodes in the network; therefore, the total number of 
message exchange is (n-1) + (n*(n-1)). This result 
implies that the complexity of information exchange is 
O(n2) .• 

4. Impossibility 

In this section, some impossibility of the 
consensus problem is presented for the case of all perfect 
nodes on an unreliable message communication system. 
First we show that the completeness of a consensus by 
using less than two message exchanges is impossible. 
Next, when the number of the faulty links is greater 
than Ln/2J-1, it is impossible to obtain a consensus. 
Based on these results, we can show that the FLINK 
protocol is optimal in the sense that it uses the 



minimum number of rounds and can tolerate the 
maximum number of faulty components by the 
following theorems. 

Theorem 4: One round of message exchange to 
achieve consensus is impossible. 

Proof: Part 1: Message exchange is necessary. 
Without message exchange, a node can't know 

whether or not a disagreeable value exists in ·other 
nodes; hence consensus achievement is impossible. 
Part 2: One round message exchange is not enough to 
achieve consensus. 

If node i is connected with node j by faulty link 
ij. Node i may not know the initial value in node j by 
using only one round of message exchange. 

Therefore it is impossible to achieve consensus ' 
by using only one round message exchange .• 

Theorem 5: If the number of the faulty links t > 
l n/2 j-1, achieving consensus is impossible. 

Proof: When t > Ln/2j-1 and n is an even 
number, then each node has n-1 links in the system, it 
is possible that there is a node which has more faulty 
links than a perfect link. Regardless of the number of 
rounds of message exchange, this node will always be 
confused by the message transferred through those 
faulty links. The decision made by the node may 
conflict with other nodes. In this case, consensus 
achievement is impossible .• 

Theorem 6: Using the minimum number of 
rounds, FLINK can tolerate the maximum number of 
faulty links in a perfect node, fully-connected network. 

Proof: From Theorem 2, Theorem 4 and 
Theorem 5, the theorem is proved .• 

5. Conclusion 

Previous works about consensus problem are 
based on the assumption that nodes are the only fallible 
components in the network [1,7); however in a 
generalized case, both the nodes and links of a 
fully-connected network could be in faulty. The 
behavior of a faulty node can effect the other nodes in a 
fully-connected network; while the behavior of a faulty 
link will only effect the two adjacent nodes. If the 
number of allowable faulty components in the system is 
given; then in a generalized case, the correct nodes 
connected by faulty components is less than the correct 
nodes connected in a conventional case; therefore the 
consensus obtained in a generalized case will be reached 
earlier than that of a conventional case. For the similar 
reason, if the number of required rounds is fixed, the 
fault tolerant capability in a generalized case could be 
stronger than that in a conventional case. For a faulty 
link case, FLINK protocol solves the consensus problem 

391 

by using ln/2j-1 faulty links and two rounds of 
message exchange. The amount of message exchange is 
O(n2). 

In short, the faulty link case or the conventional 
faulty node case can be viewed as a special case for the 
generalized consensus problem in which both node and 
link can be in faulty. In a generalized case, FLINK 
protocol can still be used to solve consensus problem by 
using less rounds than that of a conventional faulty 
node case. In a generalized case, the number of faulty 
nodes is less than that of a conventional faulty node 
case, if the number of faulty components is the same. 

[1] 

[2] 

[3] 

[4) 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

[11] 

REFERENCES 

G. Bracha, and S. Toueg, "Asynchnorous 
Consensus and Broadcast Protocols," JACM, 
vol. 32, no. 4, pp. 824-840, Oct. 1985. 
D. Dolev, "Unanimity in an Unknown and 
Unreliable Environment," IEEE FOCS, 1981. 
D. Dolev, "The Byzantine Generals Strike 
Again," J. of Algorithm, vol. 3, pp. 14-30, 1982. 
D. Dolev, and R. Reischuk, "Bounds on 
Information Exchange for Byzantine 
Agreement," JACM, vol. 32, no. 1, pp. 191-204, 
Jan. 1985. 
M. Fischer, and N. Lynch, "A Lower Bound for 
the Assure Interactive Consistency," Information 
Processing Letters, vol. 14, no. 4, pp. 183-186, 
June 1982. 
M. Fischer, "The Consensus Problem in 
Unreliable Distributed Systems (A Brief 
Survey)," Lecture Notes in Computer Science, 
Proceeding of the 1983 International 
PCT-Conference, Borgholm, Sweden, pp. 
127-140, Aug. 1983. 
L. Lamport, R. Shostak, and M. Pease, "The 
Byzantine Generals Problem," ACM 
Transactions on Programing Languages and 
Systems, vol. 4, no. 3, pp. 382-401, July 1982. 
M. Pease, R. Shostak, and L. · Lamport, 
"Reaching Agreement in Presence of Faults," 
JACM, vol. 27, no. 2, pp. 228-234, April 1980. 
R. Reischuk, "A New Solution for the Byzantine 
Generals Problem," IBM Research Reoort, 
RJ-3673, Computer Science, 1982. 
H. Strong, and D. Dolev, "Byzantine 
Agreement," IBM Research Report, RJ-3714, 
Computer Science, 1982. 
R. Turpin, and B. Coan, "Extending Binary 
Byzantine Agreement to Multivalued Byzantine 
Agreement," Information Processing Letters, vol. 
18, no. 2, pp. 73-76, Feb. 1984. 



A RELIABILITY PREDICTOR 
FOR MIN-CONNECTED 

MULTIPROCESSOR SYSTEMS 

John J. Macaluso, Chita R. Das, and Woei Lin 

Computer Engineering Program 
Department of Electrical Engineering 

The Pennsylvania State University 
University Park, PA 16802 

ABSTRACT 

In the world of cost-effective supercomputing, the 
use of a multistage interconnection network (MIN) as a 
means of connecting' many processing elements to many 
memory modules is widespread. Whenever such a system 
is used in a critical environment, reliability becomes an 
important issue. Up to this point reliability evaluation 
methods for multiprocessor systems have been ad hoc, 
that is, designed for, and applicable to, only one or a few 
types of topology. . . 

This paper presents the first automated simulation 
package with the ability to perform the reliabilit;v simu­
lation of MIN-connected systems. The program 1s auto­
mated in that the required MIN topology is built by the 
program. The user need only specify the type of MIN 
and other system characteristics. The underlying strat­
egy of the program is to find the system reliability from 
the system reachability matrix, which is built by a search 
procedure requiring O(NS(N)) time, where S(N) is the 
number of switches in an (N x N) MIN. The package was 
used to simulate the reliabilities of many topologies pro­
posed in the literature. Some results are presented and 
used for a comparison of the systems. 

1. INTRODUCTION 

Multiprocessor systems using multistage intercon­
nection networks (MINs) have been an active area of 
research for more than a decade. A plethora of different 
MIN topologies have been proposed to provide commu­
nications among N processors (PEs) and N memory 
modules (MMs). These MINs are generally designed 
with stages of (n x m) switching elements (SEs), where 
n and m are small integers such as 2, 3, or 4. A good 
body of literature on MINs can be found in [1], and 
a survey of some fault-tolerant multipath MINs is re­
ported in [2]. 

The novelty of a multiprocessor lies in its ability to 
provide high computing power with assured reliability. 
Reliability becomes important especially when the sys­
tem is used in a critical application. While performance 
analyses of the MIN-based systems have been carried 
out extensively along with their design, relatively little 
attention has been paid to the reliability issues. Work 
on fault-tolerant MINs has been mostly confined to find­
ing alternate paths between source and destination sets. 

In the past, research pertaining to the reliability 
evaluation of MINs has addressed either full connectiv­
ity without degradation [3] or terminal reliability [4]. 

392 

A couple of papers have addressed the complete relia­
bility of MIN-based systems considering the failure of 
PEs, MMs, and SEs [5], [6]. However these works are 
restricted in a sense that either the system size is lim­
ited or the evaluation technique is not applicable to all 
types of MINs. Recently a combinatorial approach for 
reliability evaluation of multiprocessors using ( 4 x 4) 
SEs is given in [7]. This analysis is applicable to only 
unique-path MINs with (4 x 4) SEs. 

As more and more fault-tolerant MINs are pro­
posed, it is essential to develop a methodology for char­
acterizing and comparing one system with another from 
the reliability standpoint. This type of unified evalua­
tion technique will solve two. purposes. First, the relia­
bility of any existing or new MIN-based system can be 
predicted. Second, depending on the implementation 
requirements, a cost-effective MIN can be selected. The 
survey work in [2] has compared the fault-tolerant prop­
erty of various multipath MINs. However, the work is 
not complete in a sense that the usual evaluation crite­
rion such as the reliability /availability issue is not ad­
dressed. In this paper we are concerned with develop­
ing a unified reliability evaluation technique for various 
types of MIN-based systems. 

Analytical evaluation of system reliability consider­
ing the degradation of PEs, MMs, and SEs is very diffi­
cult due to the NP-hardness of the problem [8]. There­
fore, all the analytical evaluation techniques have been 
restricted to mostly unique-path MINs. As we are in­
terested in analyzing and comparing different multipath 
strategies, an analytical approach seems almost impos­
sible. Hence, simulation is used as the evaluation tool. 
This paper presents the first proposed automated simu­
lation package with the ability to perform the reliability 
evaluation of MIN-connected multiprocessor systems. 

The package takes from the user an input file con­
taining the specifications of the topology and the de­
tails of the type of analysis desired. The user is freed 
from the interconnection details because the program 
has the ability to automatically build the proper topol­
ogy. A search algorithm is employed during the course 
of the simulation to find the connectivity between PEs 
and MMs in the presence of component failures. While 
the size of the system is not limited by the program, the 
host machine environment and simulation time may be 
limiting factors. The reliability model used in this paper 
is known as task-based reliability [9), where a system re­
mains operational as long as a task can be executed on 
it. Results of (16 x 16) and (64 x 64) systems using the 



following topologies are analyzed in the paper with and 
without system cost factor involved. 

The topologies considered are (2 x 2) baseline [10], 
an extra-stage baseline, the (4 x 4) butterfly [11], the 
chained MIN [12], [13], the F network [14], the merged 
delta network (MDN) [15], the inverse augmented data 
manipulator (IADM) [16], and the interconnection net­
work designed for reliable architectures (INDRA net­
work) [4]. Although this selection covers almost the 
whole spectrum of MINs proposed in the literature, the 
program is not limited to only these topologies. It also 
has the ability to include virtually any MIN-based sys­
tem. We do not fully describe each of these systems; 
more complete system descriptions can be found in the 
literature cited. Since the topologies chosen are repre­
sentative of those surveyed in [2], this work could be 
considered a follow-up or extension of the work pre­
sented there. 

In Section 2 we present an overview of the topolo­
gies considered. The simulation techniques are ex­
plained in detail in Section 3, including algorithm time 
complexities. Section 4 gives the results of the sys­
tem simulations and offers a comparison between them. 
Concluding remarks are given in Section 5. 

2. SYSTEMS SURVEY 

This section briefly surveys the different MIN­
connected multiprocessor systems listed in the intro­
duction to this paper. We consider a tightly coupled 
multiprocessor environment where the PEs and MMs 
are connected through the MIN. The difference between 
the systems lies solely in the type of interconnection 
network used for communications among the processors 
and memories, and therefore each system will be de­
scribed by its MIN. 

2.1 Unique-Path MINs 

A unique-path MIN provides only one path be­
tween each processor and each of the memory units. The 
advantage of unique-path networks lies in the simplicity 
:>f their implementation. The network uses uncompli­
:ated selector or crossbar switches that require no look­
ahead capability (i.e., they need not be independently 
cognizant of the conditions of the other components in 
the system). Each switch, if operational, merely routes 
an input to the proper output link depending upon the 
value of the request tag bit corresponding to the switch's 
stage. This simplicity results in fewer internal compo­
nents and consequently a high average switch reliabil­
ity relative to more complicated switches, such as those 
used in the multiple-path systems described later. 

The disadvantage of unique-path networks lies in 
the fact that if any of the switches along a desired path 
fails, the entire path is eliminated, and the requesting 
module is unable to access the requested module. How­
ever' if a strategy exists whereby another path can be 
found to act as a detour around the failed element, this 
fault may be tolerated. These extra paths can be pro­
vided at the expense either of redundant passes through 
the network [17], [18] or of additional hardware; we will 
consider the latter. 

The baseline MIN is one example of an unique-

393 

path network. The topology of an (8 x 8) baseline MIN 
is shown in Fig. 1. The baseline network consists of 
n = log2 N switch stages, each containing N/2 (2 x 2) 
crossbar switches. The baseline MIN was chosen to rep­
resent other unique-path MINs proven to be topologi­
cally equivalent to the baseline by Wu and Feng [10]. 
We use the baseline in our explanations because of its 
simplicity of representation. 

Another unique~path network, comprised of (4 x 4) 
switches, is the butterfly MIN. The BBN Butterfly Par­
allel ProcessorT M is a commercially available system 
with up to 256 processors [11]. Bec~use of the ad­
ditional links in each switch, the butterfly MIN has 
only log4 N stages each consisting of only N / 4 switches. 
Thus, the communications delay of a butterfly MIN is 
only O(log4 N), whereas the baseline delay is O(log 2 N). 

(0) 
(0) 

(1) M 
0 

(2) (2) E 
c 

(3) 
M 

E (3) 
0 

s (4) (4) R 
s 

(5) (5) I 
0 

(6) E 
R (6) s 
s (7) (7) 

Fig. I. A (8 x 8) baseline system. 

2.2 Path Redundancy for Unique-path MINs 
It may be possible to provide redundant paths to 

an unique-path MIN by at least four methods. The first 
involves the addition of an extra stage of switches to the 
input of the MIN. This is done by duplicating the MIN 
input stage along with its output link interconnection 
pattern; this extra stage is .inserted between the proces­
sors and the previous input stage. This method is ex­
amined in this research by the addition of an extra stage 
to both the baseline and the butterfly MINs. A second 
redundancy method adds chaining links to each switch, 
partitions all the switches, and then chains together the 
switches in the same partition. The chained baseline 
MIN was examined as an example of this method. A 
third redundancy strategy consists of replicating r times 
a network consisting of (r x r) switches (e.g., the base­
line MIN consists of (2 x 2) crossbar switches, there­
fore 2 network copies would be provided). This INDRA 
technique is examined for the baseline network. Finally, 
the fourth technique crosslinks c copies of an ( f!- x f!-) 
unique path network. This technique can be applied to 
any of the topologically equivalent unique-path MINs, 
but traditionally, it is employed using the delta topology 
to form the MDN. 

2.3 Inherently Path-redundant MINs 
Anticipating the need for redundant paths in a 

MIN, some topologies have been designed to provide 
these multiple paths without a need for further mod­
ification. One example, the IADM, uses (log2 N) + 1 
switch stages, each consisting of N (3 x 3) switches. 
Another example, the F network, uses log2 N switch 
stages, each with N (4 x 4) switches. These two net-



works show most clearly the truism that statically re­
dundant paths require redundant hardware. 

3. SIMULATION TECHNIQUES 

In this research, it is assumed that the MIN of each 
of ~he systems considered has an input side and an out­
put side, and all communications between modules are 
carried out in one pass from an input position to an 
output position. Using the system of Fig. 1 as an ex­
ample, communications between processor 0 (node 20) 

and processor 3 (node 23) would follow the node path 
20 -> 16 --> 12 --> 9 --> 3 and not 20 --> 16 --> 12 --> 

17 --> 23. This example also illustrates the equivalence 
of input and output positions. 

Depending upon the implementation, each of the 
topologies can be operated under either a circuit­
switched or a packet-switched communications proto­
col. Under circuit switching, a physical link is estab­
lished between two modules, and is used for transmis­
sions in both directions. In contrast, packet switching 
is an asynchronous simplex protocol where information 
packets are exchanged via the network. The program 
has the ability to simulate either of these protocols. 

To use the program, the user need merely edit an 
already-existing input file. The information in the input 
file includes the following. 

a. The system size. 
b. The system type (from a menu list). 
c. The communications protocol. 
d. The failure rates of PEs, MMs, and SEs. 
e. Whether each PE is assigned a local MM. 
f. The number of copies of the MIN (for INDRA 

case). 
g. The output file name. 
At the beginning of the simulation, this informa­

tion is read into the program. The program then calls 
the appropriate procedure to build the desired topol­
ogy. The ability to build the topology automatically 
(described later) is especially important in the case of 
large systems, when hand entry of the interconnection 
pattern becomes very difficult. 

The simulator determines the system condition, 
whether operational (up) or failed (down), from R, the 
(N x N) system reachability matrix. R describes the 
connectivity between modules in the following way: if 
at least one path exists between processor p and mem­
ory m, then the matrix element R[p, m] = 1, otherwise 
R [p, m] = 0. In an unfailed system (at system startup), 
R=l. As components fail, the degree of system degra­
dation can be determined from R. If a system is defined 
as being up if it has at least i processors and j memories 
all being both operational and completely connected to 
each other, then the system condition can be determined 
by examining R to ascertain whether a submatrix of or­
der at least ( i x j) and with elements all of value 1 can 
be found in R. 

The simulator is based upon the following concept. 
The reliability evaluation of any system is dependent 
upon its reachability matrix. Therefore, if a program 

can be developed to find system reliability from R, and 
if any MIN-based system can be reduced to its reach­
ability matrix, then the reliability of any MIN-based 

394 

system can be simulated. 
The algorithm for simulating system reliability 

from R is as described in [5] and will not be detailed 
here. The remainder of this section will explain the 
program with respect to internal system representation 
and the characterization of a search-traversal algorithm 
capable of finding R. The serial version of the search 
algorithm is given, and possibilities for a parallel imple­
mentation are explained. 

3.1 System Representation 
The topology of each network is represented by cer­

tain constants and arrays as follows (all parenthesized 
examples correspond to the system of Fig. 1). The sys­
tem constant a is the total number of PEs, MMs, and 
SEs present in the system (e.g., a = 2N + ~ log2 N = 
28); the system constant off set ( = a - N) is the vertex 
number of processor 0 (e.g., off set = 20); finally, the 
system constant b is the maximum number of output 
links per node present in the system (e.g., b = 2). The 
vertices are numbered from 0 to a - 1 in column-major 
order beginning with the vertex corresponding to mem­
ory 0 and ending with that of processor N -1. The out­
put links (if any) are numbered from 0 to b- 1 from top 
to bottom. The (axb) matrix, T, describes the intercon­
nection pattern of each topology as follows: the element 
T[i,j] is the component connected to output link j of 
component i, where i E {O .. a - 1} and j E {O .. b - 1} 
(e.g., T[13,0] = 8). By convention, if T[i,j] = -1, 
then output link j does not exist for component i (e.g., 
T[3, 1] = -1). The one-dimensional boolean array liv­
ing represents the system component failure condition 
as follows: for all i = 1 ···a - 1, if living[i) then com­
ponent i is operational else i is failed. 

Since all the systems can be represented by this 
scheme, the user need only indicate the network topol­
ogy and size. The program calculates the system con­
stants and calls the appropriate procedure to build T. 

These representations are needed because the pro­
cedure which finds the reachability matrix of any sys­
tem is a search-traversal algorithm. A search-traversal 
strategy is necessary since the conventional methods of 
finding R reported in [5] do not work in the case of 
multipath systems such as those surveyed in [2]. 

3.2 A Serial Algorithm for Finding R 
As described in [19), a MIN-based multiprocessor 

system can be represented by a directed graph. Since 

this is true, it follows that an ( N x N) system can also be 
conceptualized as a grove of N search trees, where the 
root of each tree corresponds to an individual processor 
vertex, its leaves represent the memory units, and its 
shape depends upon the network topology. The search 
tree for the unfailed system of Fig. 1 can be seen in 
Fig. 2(a). The effect of a component failure will be to 
prune the tree at the appropriate position(s) held by 
that component in the tree. For example, if the switch 
cotresponding to node 12 of Fig. 1 fails, the resulting 
search tree is as seen in Fig. 2(b). 

The problem, then, of finding the connectivity be­
tween any processor p and any memory m at a given 
time reduces to: is m present in the search tree of 
p? This can be accomplished by initializing R to 0, 
and then performing a reverse preorder traversal of the 
search tree of p, setting to 1 the appropriate elements 



Fig. 2: 

,, 10 

(>) 

® 
i 
16 

11 10 

(b) 

Search tree for processor 0 of Fig. 1. (a) For 
an unfailed system. (b) Pruned after failure of 
node 12. 

of R each time a leaf vertex (memory) is reached .. The 
termination of the traversal search of the tree of proces­
sor p results in the completion of row p of R. Therefore, 
N such searches will complete the entire reachability 
matrix. The Search algorithm of Fig. 3 performs the 
search of one tree, and the Reach algorithm of Fig. 4 
uses Search to build the reachability matrix, R. 

The stack of Search is initially empty. At the be­
ginning of the search, the source vertex is pushed onto 
the stack. The following steps are repeated while the 
stack is not empty. 

1. A node is popped from the stack and checked 
if it is a leaf; if so, then the proper element of 
R is set to 1. 

2. The processed node is tagged "visited." 
3. The unvisited neighbors of node are each 

pushed onto the stack in birthright order. 
Birthright order is from leftmost child to rightmost 

child in the tree representation. For example, birthright 
order for vertex 16 of Fig. 1 is vertex 14 and then vertex 
12. This order ensures the depth-first traversal desired. 
The marking of the processed vertices as "visited" serves 
two purposes. . 

1. The algorithm is kept from infinitely traveling 
around any closed loops possibly inherent in a 
topology (such as the very visible loops of the 
chained baseline MIN structure). 

2. A mechanism is provided by which future con­
sideration of a vertex once processed is denied. 
This helps to reduce search time by ensur­
ing that each vertex is processed only once, 
thereby providing an extra stage of pruning in 

systems whose search trees have vertices hold­
ing multiple positions. It is important to note 

395 

that this pruning mechanism makes this algo­
rithm suitable only for finding whether at least 
one path exists to each memory-not for find­
ing the number of paths to each memory. 

procedure Search (source: integer) 
begin 

Mark each VPrtex "not visited"; 
Zero row s01irce - offset of R: 
Reset the local stack; 
Push source onto thP stack; 
while stack is not empty do begin 

node := stack pop; 
if node < N then begin 

(* node is a memory *) 
R[source - of fset,node] := 1 

end; ( * if *-) 
Mark node "visited"; 
for each of node's children i do 
begin 

if (i is not visited) 
and ((i < N) 
or ( i is living)) then begin 

Push i onto stack; 
end; (*if*) 

end; (* for *) 
end; (* while *) 

end; (* procedure *) 

Fig. 3. Tree-search algorithm. 

procedure Reach; 
procedure Search; 

begin 
11: for p := O to N - 1 do begin 

source := p +off set; 
Search (source): 

end; (*for*) 
if pack('t-switc hed protocol then 
begin (' packet adjust *) 

12: for p := 0 to N - 1 do begin 
form:= p + 1 to N - 1 do 
begin 

if R[p,m] = O 
or R[m,p] = 0 then 
begin 

R[p,m] := O; 
R[m,p] := O; 

end; (* if*) 
end; (* for *) 

end; (* for *) 
end; (* if*) . 

13: for each processor p do begm 
if p is failed then 

zero row p of R; 
end; (* for *) 

14: for each memory m do begin 
if m is failed then 

zero column m of R; 
end; (* for *) 

end; (* procedure *) 

Fig. 4. Algorithm for finding R. 



3.3 Algorithm Time Complexities 

It is important that the time complexities of Search 
and Reach be calculated since they are used frequently 
in the simulation program. In the calculations that fol­
low, the function S(N) gives the number of switches in 
the MIN as a function of N (e.g., S(N) = J¥- log2 N) 
for a ( N x N) baseline MIN). The relative growths of 
N and S(N) are topology dependent. In the case of 
the F network, for example, S(N) = N log2 N > N 
always. However, in the separate example of the but­
terfly network, S(N) = .Jt- log4 N, which is greater than 
N only for large N (i.e., N > 256). Since the asymp­
totic time complexities concern systems with large N, 
it is assumed in the derivations below that in all cases 
S(N) > N. 

3.3.I Time Complexity of the Search Procedure 

The Search procedure of Fig. 3 consists of two 
parts: the nonsearch statements (those before the while 
loop) and the statements of the search loop (those mak­
ing up the while loop). The time complexity of the 
nonsearch statements is O(S(N)) because the domi­
nating term is the Mark statement since it initializes 
all 2N + S(N) vertices, and S(N) grows faster than 
N. The search statements consist of: three assignment 
statements, each with constant time complexity, and a 
for loop of O(b) = O(I) time complexity since the max­
imum number of links per node, b, remains constant 
as the size of the system grows. Thus the statements 
within the while loop are all of constant time complex­
ity, and the time complexity of the entire loop is gov­
erned by the maximum number of iterations of the loop 
as follows. The marking as visited of each processed 
node ensures that each vertex is considered only once 
during each tree traversal. Since the maximum number 
of vertices that a single search can consider is the S ( N) 
switches plus the N memories plus the processor root, 
the time complexity of a search is O(S(N)). Therefore, 
the time complexity of procedure Search is 

Ts(N) = O(S(N)). (I) 
3.3.2 Time Complexity of the Reach Procedure 

Procedure Reach can be seen to consist of four 
loops labeled LI through L4 in Fig. 4. Loop LI per­
forms N successive calls on Search, and therefore has 
an O(NS(N)) time complexity. Loops L3 and L4 each 
perform N iterations of constant-time conditional as­
signment statements, so each has an O(N) time com­
plexity. Loop L2 performs constant-time conditional 
assignments as many times as there are elements of R 
abo".e the main diagonal, or t(N2 - N). Since LI is the 
dommant loop, the time complexity of Reach is 

Tn(N) = O(NS(N)). (2) 

3.4 A Parallel Algorithm for Finding R 

Time requirements for the searches can be lessened 
even further by performing them in parallel. The paral­
lelism of the Search algorithm is apparent; each search is 
completely independent of every other search (i.e., there 
are no data dependencies between the searches). This 

396 

parallelism can be easily exploited on an array of P pro­
cessors, where P = 2n for positive integer n. If N > P, 
the technique of loop concurrentization [20] could be 
used without much difficulty by partitioning the rows 
of R (searches) and assigning a different partition to 
each processor. For ease of explanation, however, we 
will consider the case where P = N, where each of the 
processors would be assigned a different row of R. 

When a packet-switched protocol is being simu­
lated, the execution of the packet-adjustment state­
ments in loop L2 of Fig. 4 introduces data dependencies, 
and communications between processors becomes nec­
essary. Specifically, each processor adjusts its row of R, 
but only the elements to the right of the main diagonal. 
Each of these elements R[i,j], where i > j, is compared 
to the element R[j, i] symmetrical to it with respect to 
the main diagonal. But before a processor i can prop­
erly examine an R[j, i] value, it must receive a signal 
from processor j that the search of row j is complete. 

The blocks labeled LI through L4 of Fig. 4 can each 
be reduced by a factor of N if the procedure is imple­
mented in parallel. In this case, the dominant execution 
sequence would be the Search procedure of LL There­
fore, if procedure Reach is performed in parallel with 
P = N, the time complexity is O(S(N)) by Eq. 1. 

4. RESULTS AND DISCUSSION 

This section compares the selected topologies with 
respect to their simulated reliabilities. In addition, since 

the design emphasis on MINs is inspired by a need 
for cost-effective communication networks, the systems 
were compared with respect to the ratio of system relia­
bility to system cost (or reliability-to-cost ratio, RCR). 
The program also has the ability to simulate a system 
with any given coverage factor, C [2I]. Results were ob­
tained for systems of different sizes under both circuit­
and packet-switched protocols and with different values 
of C. However only selected outputs are presented here. 

4.1 Elements of the Comparison 

For the comparisons to be valid, the processors as 
well as the memories were assumed to be homogeneous 
within each system, and the same processor and mem­
ory failure statistics were used in each type of system. 
In this way, each network differed from the others only 
in its type of MIN. 

The reliability of each system is directly related to 
the mean failure rates of the individual elements mak­
ing up the interconnection network. The mean failure 
rates for processors, Ap, and memories, Am, were each 
taken to be one per 104 hours. Since the systems dif­
fer only in the type of MIN used, any change in Ap 
or Am will affect all of the systems equally. Therefore, 
the comparison depends upon the failure rate of the 
MIN, which depends upon the failure rates of the indi­
vidual switching elements. In the absence of any prac­
tical failure data, switch failure rates were calculated 
using the MIL-HDBK-2I 7B reliability model for metal­
oxide-semiconductor integrated circuits [22]. Details of 
the assumed switch design and failure-statistic calcula­
tions can be found in [23]. The program considers the 
MIN to consist of three sets of switches: the input bank, 
the output bank, and the banks between the input and 



the output banks. Then the characteristic switch failure 
rate is assigned to the switches of each set. 

The network cost factor is the sum of the costs 
of all the individual switches comprising the network. 
The cost of each switch is calculated as a function of 
the number of its input links, n, and the number of its 
output links, m, using the equation of the cost function, 
C(n,m), ofEq. 3. 

C(n,m) = {nm 
n+m 

for a crossbar switch; 
for a selector switch. 

(3) 

Eq. 4 calculates CN, the cost of a MIN consisting of 
x different types of switch, each type i having a cost 
Ci and a population N;. The network cost factors are 
then calculated by dividing each network cost by the 
minimum cost of all the networks of the same size (in 
this case the baseline). 

x 

CN = LN;C; (4) 
i=l 

4.2 System Reliability Comparison 

The reliability curve for a task requiring 50% of 
the total number of PEs and 50% of the total number 
of MMs was obtained for each of the systems. 

Figs. 5 and 6 contain the (16 x 16) system curves 
for a circuit-switched protocol and a coverage factor of 
C = 1.0 and C = 0.8 respectively. The difference be­
tween the curves of Fig. 5 is noticeable, however when 
the system's ability to reconfigure itself is relatively 
weak as in Fig. 6, the fault-tolerant scheme has less 
of an effect on reliability. In fact, with a coverage factor 
of 0.8, the topology of the MIN seems to have almost 
no effect at all on reliability; the curves are almost in­
distinguishable from each other. This observation fol­
lows intuition: a topologically inherent fault-tolerance 
scheme is of benefit only if the maintenance processor 
is able to utilize it. 

The reliability curves for (64 x 64) systems under 
a circuit-switched protocol with C = 1.0 are shown in 
Fig. 7. As expected, the INDRA, F network, chained 
MIN, MDN, and extra-stage MINs give high reliability 
compared to the unique-path MINs. Also, as the system 
size increased, the reliability gain of multipath networks 
becomes more pronounced. 

Probably the most surprising curve, however, is 
that of the IADM system. It does not seem to agree 
with intuition that it would have a reliability consis­
tently below all the others, including the unique-path 
systems. However, upon further inspection, the rea­
sons become clear. The IADM has multiple paths, but 
they are not evenly distributed between all processor­
memory pairs. For example, there is only one path be­
tween processor i and memory j when i = j. However, 
probably the most significant reason for the low reliabil­
ity is that the IADM contains N(log 2 (N)+l) switches­
many more than the lf log2 N switches of the baseline 
or the l'j- log4 N switches in the butterfly. If the failure 
rate of an individual switch is A8 , then the failure rate 
of the switches in the system is given by UA 8 , where u 

397 

is the number of active switches at any time. Clearly, 
if u is very large (as in the IADM), then the switches 
will fail much more frequently than if u is small (as in 
the baseline, or especially the butterfly). Therefore, the 
combination of unevenly distributed paths and quick­
failing switches makes the IADM a less reliable system 
compared to the others. 

R 
E 
L 
I 
A 
B 
I 
L 
I 
T 
y 

Fig. 5. 

Time (hours) 

•.. 
f 

• 

R(t) for (16 x 16) circuit-switched systems with C = 1.0. 
(a) INDRA. 
(b) F network. 
(c) MDN. 
( d) Baseline w / extra stage. 
(e) Chained baseline. 
(f) Butterfly. 
(g) Butterfly w / extra stage. 
(h) Baseline. 
(i) IADM. 

4.3 System RCR Comparison 

When the cost of a system is to be considered along 
with its reliability, a useful measure is the reliability-to­
cost ratio (RCR), i.e., the reliability is divided by the 
system cost factor. This ratio serves as a comparison 
between the networks surveyed in Section 2. We ob­
served that for smaller (16 x 16) systems, the RCR puts 
the unique-path butterfly and baseline MIN systems at 
the top of the ranking. The increased reliability of the 
more complicated multiple-path MIN systems does not 
compensate for the extra system cost. However, as the 
size of the system grows, the curves for the unique-path 
systems fall below some of those with multiple-paths, 
as seen for a (64 x 64) system in Fig. 8. In these larger 
systems, the extra cost begins to be of some benefit, 
especially the addition of an extra stage to the baseline 
which takes the number one spot. When cost is con­
sidered, the F network falls from the upper positions of 
the R(t) curves to occupy the lower two positions along 
with the IADM system in the RCR curves. 

4.4 Summary of System Comparisons 

From the examination of the curves of Figs. 5 
through 8, the following system evaluation is offered. 



These observations are based upon the particular switch 
failure calculated as described above. 

The best overall reliability is offered by the extra­
stage baseline MIN. The reliability of this topology 
ranked in the top four. Its value is most clearly seen, 
however, in the RCR comparison of (64 x 64) systems, 
where it ranks in the number one spot. This indicates 
that for large systems where cost is a consideration, the 
best fault tolerance technique is the addition of an extra 
stage on a baseline (or topologically equivalent) system. 
The IADM system was the least reliable of the systems 
compared due to the reasons mentioned earlier. 

Although the simulation of large systems takes a lot 
of computer time, a comparison of Figs. 5 and 7 shows 
that the effect of the MIN topology on reliability has 
a greater effect as the size of the system grows. This 
indicates rather strongly that the algorithms described 
in this report should be implemented on a large-grain 
parallel processor. 

1.0 

0.8 

R 

f 0.6T 
! 0.4T 

0.2T 
0 • 0 -t1--r-• ,.,--,--;J-r-,.,-..,., -ilf-i-1 Tl ..,., -,,,+I ,, ..,.-,-,-h-..,.....,--,-1 

0 1000 2000 3000 

a,11,c 

Time (hours) 

Fig. 6. 

R(t) for (16 x 16) circuit-switched systems with C = 0.8. 
(a) Chained baseline. 
(b) Baseline w / extra stage. 
(c) INDRA. 
(d) Butterfly w/ extra stage. 
(e) Butterfly. 
(f) MDN. 
(g) Baseline. 
(h) F network. 
(i) IADM. 

R 
E 
L 
I 
A 
B 
I 
L 
I 
T 
y 

Fig. 7. 

Time {hours) 

R(t) for (64 x 64) circuit-switched systems with C = 1.0. 
(a) Chained baseline. 
(b) INDRA. 
( c) Baseline w / extra stage. 
(d) MDN. 
(e) Butterfly w/ extra stage. 
(f) F network. 
(g) Butterfly. 
(h) Baseline. 
(i) IADM. 

R 
c 
R 0.41 

... 

,, rs;:;;: :::;;; . 
o 0 1 I 1 I I 

398 

. I I I I I 
0 1000 2000 3000 4000 5000 

Time (hours) 

Fig. 8. 

RCR for (64 X 64) circuit-switched systems with C = 1.0. 
(a) Baseline w/ extra stage. 
(b) Butterfly w / extra stage. 
(c) Butterfly. 
(d) Chained baseline. 
(e) INDRA. 
(f) Baseline. 
(g) MDN. 
(h) F network. 
(i) IADM. 



5. CONCLUSIONS 

This paper reports the first automated package 
with the ability to simulate the system reliability of 
virtually any MIN-based multiprocessor system. The 
program accepts the type of MIN and various failure 
rates from the user. It builds the MIN automatically 
and stores the interconnection pattern in a matrix. A 
traversal-search algorithm is used to find the reacha-· 
bility matrix of the system with random faults. The 
reachability matrix in turn is used in the calculation 
of the system reliability. The unified approach of this 
package makes possible system reliability predictions as 
well as system comparisons with respect to reliability 
issues. 

The package in its present form provides the frame­
work around which many other features can be built. 
For example, one important extension could be the abil­
ity to measure system performance in the presence of 
faults. Addition of this performance predictor to the 
reliability model will give the program the capability to 
predict performance-related reliability measures. An­
other addition could be the capability to predict the 
coverage factor of the system from a model of the in­
dividual processors and the maintenance processor. In 
this way, the coverage factor, shown in this research to 
be so important to system reliability, could be calcu­
lated rather than estimated and provided by the user. 

REFERENCES 

[l] C. -1. Wu and T. -Y. Feng, ''A tutorial on intercon­
nection networks for parallel and distributed pro­
cessing," IEEE, 1984. 

[2] G. B. Adams III, D. P. Agrawal, and H. J. Siegel, 
"A survey and comparison of fault-tolerant mul­
tistage interconnection networks," IEEE Comput., 
vol. 20, pp. 14-27, June 1987. 

[3] J. T. Blake and K. S. Trivedi, "Multistage inter­
connection network reliability," submitted to IEEE 
Trans. Comput., 1988. 

[4] C. S. Raghavendraand A. Varma, "INDRA: a class 
of interconnection networks with redundant paths," 
in 1984 Real-Time Systems Symp., Computer So­
ciety Press, Silver Spring, MD, 1984, pp. 153-164. 

[5] C. R. Das and L. N. Bhuyan, "Reliability simula­
tion of multiprocessor systems," in Proc. 1985 Int. 
Conj. Parallel Processing, pp. 591-598. 

[6] J. T. Blake and K. S. Trivedi, "Comparing three in­
terconnection networks embedded in a multiproces­
sor system," Tech Report, Duke Univ. Oct. 1987. 

[7] L. Tien and C. R. Das, "Reliability evaluation of 
butterfly network based multiprocessor systems," 
submitted to 8th Int. Conj. on Distrz'buted Comput. 
Systems, June 1988. 

[8] M. 0. Ball, "Complexity of network reliability com­
putation," Networks, vol. 10, pp. 153-165, 1980. 

[9] A. D. Ingle and D. P. Siewiorek, "Reliability models 
for multiprocessor systems with and without peri­
odic maintenance," in Proc. 7th .Annu. Int. Conj. 
FTC, Los Angeles, CA, June 1977, pp. 3-9. 

399 

[10] 

[11] 

r12J 

[13] 

[14] 

I 15] 

[16] 

[17] 

[18] 

[19] 

[20] 

[21] 

[22] 

[23] 

C. -1. Wu and T. -Y. Feng, "On a class of mul­
tistage interconnection networks," IEEE Trans. 
Comput., vol. C-29, pp. 694-702, Aug. 1980. 
B. Thomas, "Overview of the Butterfly parallel 
processor," BBN Laboratories Incorporated, Aug 
1985. 
V. Kumar, and S. M. Reddy, "Augmented shuffie­
exchange multistage interconnection networks," 
IEEE Comput., vol. 20, pp. 30-40, June 1987. 
N. -F. Tzeng, P. -C. Yew, and C. -Q. Zhu, "The 
performance of a fault-tolerant multistage intercon­
nection network," in Proc. 19fi5 Int. Conj. Parallel 
Processing, pp. 458-465. 
L. Ciminiera and A. Serra, "A connecting network 
with fault tolerance capabilities,'' IEEE Trans. 
Comput., vol. C-35, pp. 578-580, June 1986. 

S. M. Reddy and .V. Kumar, "On fault-tolerant 
multistage interconnection networks," in 1984 Int. 
Conj. Parallel Processing, pp. 637-648. 
R. J. McMillen, Jr., and H. J. Siegel, "Perfor­
mance and fault tolerance improvements in the in­
verse augmented data manipulator network," in 9th 
Symp. Comp. Arch., Apr. 1982, pp. 63-72. 
J. P. Shen and J. P. Hayes, "Fault-tolerance of a 
class of connecting networks," in 7th Int. Symp. 
Comput. Architecture, May 1980, pp. 61-71. 
J.P. Shen and J.P. Hayes, "Fault-tolerance of dy­
namic full-access interconnection networks," IEEE 
Trans. Comput., vol. C-33, pp. 241-248, Mar. 1984. 
D. P. Agrawal, "Graph theoretical analysis and de­
sign of multistage interconnection networks," IEEE 
Trans. Comput., vol. C-32, pp. 637-648, July 1983. 
D. A. Padua and M. J. Wolfe, "Advanced com­
piler optimizations for supercomputers," Commun. 
.ACM, vol. 29, pp. 1184-1201, 1984. 
T. F. Arnold, "The concept of coverage and its ef­
fect on the reliability model of a repairable system," 
IEEE Trans. Comput., vol. C-22, pp. 251-254, Mar. 
1973. 
D.P. Siewiorek and R. Swarz, The Theory and 
Practice of Reliable System Design, Bedford, MA: 
Digital Press, 1982. 
.J. J. Macaluso, "On the reliability evaluation of 
multistage interconnection network based multi­
processor systems," M.S. Thesis, The Pennsylvania 
State University, 1988. 



ADAPTIVE CHECKPOINTING AND ROLLBACK 
IN MULTIPROCESSOR SYSTEMS 

Chung-Yang Chiang and Chuan-lin Wu 
Deparnnent of Electrical and Computer Engineering 

The University of Texas at Austin 
Austin, TX 78712 

Abstract -- An adaptive checkpointmg method and a 
companion rollback method which are mostly suitable for 
tightly-coupled multiprocessor systems, are proposed in this 
paper. An interprocess communication protocol is employed to 
synchronize checkpointing. Based on the checkpointing 
method, the companion rollback method restores the system to 
a recoverable state. Comparison of performance, in terms of 
checkpointing and recovery overheads, among our method, an 
existing unplanned method and an optimistic unplanned 
method which is mainly used as a performance index is 
provided to contrast these rollback recovery methods. Two 
comparison results are presented. The first result shows the 
performance level of the three methods at the same parameter 
values. The second result illustrates the optimum performance 
level of these methods. The performance evaluation reveals 
that our method is better than the existing unplanned method in 
most cases and sometimes better than the optimistic method. 
Performance breakpoints of these three methods are also 
depicted to investigate the constraints on individual methods. 

1. Introduction 

Rollback recovery methods [2]-[12] have been 
proposed to cope with reliability, availability and performance 
issues of computing systems. In a system with rollback 
recovery mechanism, a user or system program can be 
decomposed into recovery blocks. Recovery block [5] is a 
program structure consisting of checkpoint, primary process, 
alternate processes and acceptance tests for both primary and 
alternate processes. Rollback recovery methods can be 
categorized into two groups based on checkpointing policy. 
The first is the unplanned method which doesn't impose any 
constraints on processes regarding scheduling and 
communication among processes to establish checkpoints. The 
second method, termed planned or global method, on the 
contrary, does impose some constraints [6]. Unplanned 
recovery has the advantage of freeing processes for useful 
computation during checkpointing period, yet it suffers the 
domino effect [5] due to its lack of coordination among 
processes. Planned recovery observes opposite effects. 

An adaptive method is proposed here to improve 
rollback recovery performance. Our method, a mixture of 
planned and unplanned methods, is mostly suitable for 
tightly-coupled systems with centralized control due to low 
time overhead on checkpointing and recovery in such systems. 
The forthcoming performance comparison result shows our 
method is usually better than the FfMR2M method [2]-[3] and 
sometimes better than the optimistic method [3]. 

Section 2 describes the adaptive checkpointing and 
rollback methods along with their contrast to the two 
counterparts of the unplanned methods to be compared. 
Section 3 and 4 convey the analyses and comparisons on 
shared-memory and message-passing systems respectively. 
Last section envisions future research areas and concludes our 
observations. 

2. Adaptive Rollback Recovery Method 

The concept of rollback recovery is illustrated in Fig.1. 
Tp is the intercheckpointing interval. Trb is the time taken to 
establish a checkpoint. A set of checkpoints is consistel}t and 

thus constitutes a recoverable line if each process Pi after 
having established its checkpoint only communicates with 
other processes in the same subset that have also established 
their checkpoints [4]. 

2.1. Adaptive Checlgmintin~ Method 

The interprocess communication protocol we propose to 
enforce synchronization among processes is based on the 
following discussion. Fig. 2 illustrates a few cases regarding 
interprocess communication during checkpointing period to be 
resolved to avoid domino effect. lj and 2j are the instants that 
process 1 and 2 respectively recognize the checkpointing 
signal for recovery blockj. They establish checkpoints RPl(j) 
and RP2(j) at a later time. m(n,j,d) is the nth request message 
to the requested process d during recovery block j of the 
requesting process, and a(n,j,s) is the acknowledgement of the 
requested process to the nth request message from requesting 
process s in s's recovery block j. For all messages initiated 
before RP2(j) and after RPl(j), they must be rejected or 
delayed to avoid domino effect. For example, m(n+l,i,1) is 
issued by process 2 in its recovery block i and recognized by 
process 1 in its recovery block j, this request must be rejected 
by process 1 and reissued by process 2 after checkpoint 
RP2(j). m(n+l,i,1) in recovery block i thus becomes m(Oj,1) 
in recovery block j. For m(O,j,2), it will be received as a 
tentative message and processed after RP2(j). A tentative 
message in current recovery block will be committed as a 
permanent message in next recovery block. In a system where 
acknowledgement is supported the acknowledgement can be 
issued as a(O,i,l) in the old recovery block i or delayed as 
a(O,j,1) in the new recovery blockj. 

400 

In contrast to our checkpointing method, the global 
checkpointing method disallows initiation and recognition of 
such messages as m(n+l,i,l) and m(O,j,2) whereas the 
unplanned method allows all messages to be initiated and 
recognized at any time. 

Processes which have already established the 
checkpoint and involved in interprocess communication with 
processes yet to establish checkpoint form a global group, and 
those processes which have established the checkpoint and/or 
are not involved in interprocess communication form an 
unplanned group. 

Synchronization among processes can be implemented 
implicitly by interprocess communication protocol. No 
additional phases, such as the phases in the two-phase commit 
protocol [6], are needed to synchronize the processes. 
Messages can be sent with a sequence number specifying in 
which recovery block they are generated. In shared-memory 
system, the sequence number can be implemented by 
"checkpoint bits" in the address bus. 

2.2. Adaptive Rollback Method 

Our rollback method is based on the criteria founded by 
the checkpointing method. Rollback might seem deceptively 
simple if cares are ·not taken. Lack of synchronization 
regarding rollback results in a situation similar to the domino 
effect caused by lack of synchronization regarding 
checkpointing. 'Livelock' described in f121 is one example. 



We will analyze cases in Fig. 3 iii which rollback is 
performed between two processes. Extension to more than 
two processes can be achieved through rollback propagation 
and is not addressed here. 
~ P2 fails at t1 or P2 fails at t4 --- P2 rolls back to 
RP2(i-l) and Pl rolls back to either RPl(i-1) or RPl(i) 
depending on if it has communicated with P2 in RB2(i-l), 
even though Pl is already in RB 1 (i). It is the logical recovery 
block RB2(i-l) that we just referred to since it is the same as 
logical RBl(i-1). The physical boundaries of RBl(i-1) and 
RB2(i-l) are not the same. 
~ P2 fails at t5 or P2 fails while establishing RP2(i) --­
The message m(O,i,2) is recorded in Pl 's message log and 
received by P2 in RB2(i-l). Yet m(O,i,2) will not be 
committed until P2 has established RP2(i). P2 will then roll 
back to RP2(i-l) and Pl to either RPl(i) or RPl(i-1). 
~ P2 fails at t7 --- P2 rolls back to RP2(i) and Pl rolls 
back to RPl (i) since message m(O,i,2) is treated as the 
message after RP2(i) and recorded in both message logs in 
RBl(i) and RB2(i). 
~ Pl fails at t2 or Pl fails at t3 --- Pl rolls back to 
RPl(i) and P2 goes on as usual. 
~ Pl fails at t6 --- Pl rolls back to RPl(i) and P2 goes 
on as usual. 
.aw...6... Pl fails while establishing RPl(i) --- Pl rolls back to 
RPl(i-1) and P2 rolls back to RPl(i-1) if it has communicated 
with P2 in RBl(i-1). Otherwise P2 goes on as usual. 

2.3. Unplanned Recovety Methods 

Two unplanned recovery methods will be briefed to 
contrast the differences among our method and these methods 
to be compared. We first brief the optimistic method. This 
method rolls back only the necessary number of steps as 
determined by interprocess communication pattern. It is 
concluded in [3] that only a few checkpoints are needed 
depending on various system parameters. We present this 
method only to demonstrate its performance as an index in the 
performance comparison of the other two methods. This 
method isn't necessarily a better performer in all cases than 
the adaptive method. Obviously, it betters the FTMR2M 
method in all cases. 

FTMR2M method is another unplanned recovery 
method. It heavily relies on the assumption that probability of 
single-step rollback overwhelmingly dominates probabilities of 
multiple-step rollbacks. The system thus records only two 
checkpoints to rollback one step if single-step rollback is 
determined. Otherwise, the system simply rolls back to the 
origin of the task as if the failure is fatal. 

3. Shared Memozy Sysrem 

Based on the following assumptions, a mean value 
analysis will be given to compare the performances of these 
rollback recovery methods. 
(1) mean time to rollback to last checkpoint is Tr. 
(2) mean checkpointing time is Trb. 
(3) interprocess communications are uniformly distributed. 
(4) independent exponential failure distribution is assumed for 
all processing modules. 
(5) probabilities of fatal and nonfatal failures are constants Pf 
and Pnf respectively, and Pf+ Pnf = 1. They are independent 
of the underlying Poisson failure distribution 
(6) probability of i-step rollback is Prb(i), i = 1,2,. . .,M-l, and 
L Prb(i) =l for all i's. They are also independent of the 
underlying Poisson failure distribution. 

3, 1. Derivation of Mean Execution Time 

(A) Optimistic Unplanned Method --- The mean task execution 
time is: 

M-1 
TA =Tp*M+µA * {Pnf*[Tr*Prb(l)+ I,[Tr+ Tp*(([(i-l)*(i-2)]/2 

i=2 

401 

+(M-i+ l)*(i-1))/M)*Prb(i)]] + Pf*[Tr + Tp*(M-1)/2]} 
M-1 

=Tef+µA *(Tr+ Pnf *Tp* L Prb(i)*[([(i-l)*(i-2)]/2+ 
i=2 

(M-i+l)*(i-1))/M] +Pf*(Tef-Tp)/2} (1) 
µA is the mean number of failures during actual task execution 
time. Tef is Tp*M, the failure-free execution time including 
checkpointing overhead. 

(B) FTMR2M Method --- The mean task execution time is : 
TB= Tef+ µB*{Tr+ [(Tef-Tp)/2]*[1- (Prb(l)*Pnf)]} (2) 

(C) Adaptive Method --- The mean task execution time is : 
Tc= Tp*M+Trb*(Trb/Tp)*(Tcfl'p)+µc*{Pnf*[Tr* 

M-1 
L Prb(i)]+Pf*[Tr+Tp*(M-1)/2]} 
i=l 

={Tef + µc*[Tr + Pf*(Tef-Tp)/2] }/{ 1- (Trb/Tp)**2} (3) 

3.2. Comparison of Mean Execution Time 

For the simplicity of comparison, we assume the mean 
number of failures during task execution time is µ' and 
remains the same for all three models.µ' is µA, µBand µc 
for optimistic, FTMR2M and adaptive models respectively. 

3.2.1. Comparison of FMTRRM and Adaptive 
Methods. Two performance comparisons will be studied, 
optimum and nonoptimum comparisons. The speedup of the 
FTMR:t.M method over the adaptive method is derived from 
Eqns. (2) and (3) : 
dT=TB-Tc=[Tef(B)-Tef(C)*F]+µ'*[(Tef(B)-Tp(B))*(l-

Prb(l )*P nf)/2-(Tef(B)-Tp(B) )*Pf*F/2]+µ'* 
[Tr(B)-Tr(C)*F] ( 4) 

where Fis 1/(1-(Trb/Tp)**2). 

3.2.1.1 NonQPtimum Performance Comparison. We 
assume all parameters in Eqns. (2) and (3) are the same for 
both methods. The speedup can be approximated as : 
dT=Tef*[µ*((l-1/M)/2)*(1-Prb(l)) - ((Trb/Tp)**2)] (5) 
µ = µ'*Pnf• Le., number of nonfatal failures. 

Assumeµ is 1 for simplicity. For the FTMR2M method 
to better the adaptive method, Prb(l) must be at least 0.98 if 
checkpointing overhead (Trb/Tp) is 0.1. If the overhead is 
only 0.01, Prb(l) will be at least 0.9999. Fig. 4.b depicts the 
effect ofµ and Trb/Tp on min {Prb(l)}. Fig. 4.a illustrates the 
difference in task execution time between these two methods. 

3.2.1.2 Qptimum Performance Comparison. Some 
parameters aforementioned have to be adjusted so that 
optimum can be realized. This optimization has been studied in 
[9]-[11]. Based on this concern, Tp, Tr and M vary with 
recovery method since we assume Trb is the same for both 
systems. We use triplet {Tp(i), Tr(i), M(i)} to represent the 
triple elements {Tp, Tr, M} for different methods. 

To optimize system performance, the following equates 
must hold: 
Tp(C) -Trb =[ (2Trb * MTBF )112]/Pnf (6) 
Tp(B) - Trb =[ (2Trb * MTBF )112]/[Pnf*Prb(l)] (7) 



where MTBF is the mean time between failures. The above 
equations are derived in the same way as in [9]. In FTMR2M 
method, every failure requiring more than one rollback will 
retstart the system from the origin of the task. Thus, they are 
essentially the same as fatal failures. Pnf in Eqn. (6) should 
then be replaced by Pnf*Prb(l) to acquire Eqn. (7). 

Since (Tp-Trb)*M remains constant for both methods, 
we have M(B) ~ M(C). Tr's are: 
Tr(B) = MTBF - [Tp(B)*exp(-Tp(B)/MTBF)]/[1-

exp(-Tp(B)/MTBF)] (8a) 
Tr(C) = MTBF - [Tp(C)*exp(-Tp(C)/MTBF)]/[1-

exp(-Tp(C)/MTBF)] (8b) 
It is apparent that Tr(B) ~ Tr(C). 

Since Tp(B) varies as Prb(l) changes, we acquire the 
following: 
dTB=dTef+µB*{dTr+[(dTef-dTp)/2]*[1-(Prb(l)*Pnf)]+ 

[(Tef-Tp)/2]*Pnf*[-dPrb(l)]} (9) 
dTef < 0 and dTp > 0 improve, whereas dTr >0 and 
[-dPrb(l)] >O degrade performance of the FTMR2M method. 
The last item in the above equation dominates others, making 
the optimized performance of the FTMR2M method even 
worse than that of the adaptive method. As Prb(l) decreases, 
the probability of restarts is a lot higher even though Tef is 
slightly shorter. That is why the performance of the FTMR2M 
method is worse. 

3.2.2. Comparison of Optimistic Unplanned and 
Ad£ll1tive Methods. The execution time speedup is Tc -TA, 
i.e., dT: 

M-1 
dT=Tef*[µ * I. (([(i-l)*(i-2)]/2+(M-i+ l)*(i-1))/M)*Prb(i) -

i=2 
(1 +Pf*(Tef-Tp)/2)*((Trb/Tp)**2)] (10) 

We assume the distribution of Prb(i) is geometric. In the 
geometric distribution, Prb(l) dominates other Prb(i)'s and 
Prb(i) ~ PrbG) if i ~ j, which makes the optimistic unplanned 
method a superb performer. The total rollback overhead during 
task execution time is depicted in Fig. 5 for the three recovery 
models. 

4. Messa~e Passin~ System 

The difference among the three rollback recovery 
methods, in terms of rollback recovery overhead, between 
shared-memory and message-passing systems is none when 
there is no error. The difference surfaces when rollback 
recovery is needed. Due to this difference, the adaptive method 
is even better than the unplanned methods. 

The two unplanned methods require logging of 
interprocess communications, which in nature is the same as 
checkpointing synchronization in the adaptive method. 
Logging of interprocess communications requires that, upon 
checkpointing signal, outstanding interprocess 
communications be finished before other phases of 
'checkpointing can proceed. Otherwise it can't guarantee the 
correctness of received messages. For instance, if a process 
saves its internal states and executes the validation test while 
some interprocess communications are still outstanding, even 
if this process passes its validation test, that implies only that 
part of the interprocess communication occurred before the end 
of the validation test is valid. There is no guarantee on the later 
part of the interprocess communication. Hence, from the point 
that checkpointing is first recognized by one of the processes 
to the point that the checkpointing ends, all three methods 
behave identically. Only after this checkpointing period can we 
see the difference incurred by different recovery methods. 

4.1. Derivation of Mean Execution Time 

The equations remain much the same as those of 
shared-memory system except some minor modifications 
incurred by transmitting interprocess communication logs to all 
processes. 
(A) Optimistic Unplanned Method ---

M-1 
TA = Tef+µA *{Tr+ Pnf*Tcl+ Pnf *Tp* I. Prb(i) *[((i-1) 

i=2 
*(i-2)+(M-i+ l)*(i-1))/M] + Pf*(Tef-Tp)/2} (11) 

Tel is the time taken to form the global interprocess 
communication log from partial local logs recorded by each 
process. 

(B) FfMR2M Method ---
TB= Tef + µB*{Tr+ Pnf*Tcl + [(Tef-Tp)/2]*[1 - Prb(l) 

*Pnfll (12) 

(C) Adaptive Method.---
Tc={Tef+µc*[Tr+Pf*(Tef-Tp)/2] }/{ 1- (Trb/Tp)**2} (13) 
This is exactly the same as that of the shared-memory system 
since constructing global communication log is not required. 

5. Conclusion 

An adaptive rollback recovery system is proposed and 
compared to two other methods. Two essential components of 
this system, adaptive checkpointing and rollback methods are 
introduced and analyzed. Performances of these three rollback 
recovery methods have been analyzed and compared in terms 
of task execution time for both shared-memory and 
message-passing systems. The adaptive recovery method 
outperforms the other two methods whenever single-step 
rollback probability is low, checkpointing overhead is low and 
number of failures is high. Besides the comparison on the task 
execution time, we should also consider the fact that the 
adaptive recovery method indeed needs less hardware which 
implies less number of failures during task execution. We thus 
conclude that the above comparison is pessimistic, the 
performance advantage of the adaptive method is actually 
better than what is revealed in the above comparison. The 
adaptive rollback recovery method performs even better in a 
message-passing system. 

This adaptive method is mostly suitable for both 
shared-memory and message-passing systems with a 
centralized control mechanism. For sparsely distributed 
systems, the unplanned recovery method, such as the one in 
[7], is prone to domino effect, it has yet to be assessed which 
of the three methods is more efficient. Further research is 
necessary to compare these three different recovery methods 
on this type of system. 

6. References 

[1] R.J. Swan, S.H. Fuller, D.P. Siewiorek, "Cm* : a 
Modular Multi-Microprocessor", AFIPS Conf. Proc., (1977), 
pp. 637-644. 

[2] Y. H. Lee, K. G. Shin, "Rollback Propagation Detection 
and Performance Evaluation of FTMR2 -- A Fault-Tolerant 
Multiprocessor'', Symp. on Computer Architecture, (1982), 
pp. 171-180. 

402 

[3] ---, "Design and Evaluation of a Fault-Tolerant 
Multiprocessor Using Hardware Recovery Blocks", IEEE 
Trans. on Computers, (Feb. 1984), pp. 113-124. 



[4] T. Anderson, P.A. Lee, Fault Tolerance - Principles and 
Practices, MacGraw-Hill, (1981), 369 pp. 

[5] B. Randell, "System Structure for Software Fault 
Tolerance", IEEE Trans. on Software Engineering, (June 
1975 ), pp. 220-232. 

[6] J.N. Gray, "Notes on Database Operating Systems", pp. 
393-481 in "Lectures Notes in Computer Science 60", ed. R. 
Bayer, R.M. Graham and G. Seegmuller, Springer-Verlag, 
Berlin, (1978). 

[7] P.M. Merlin, B. Randell, "State Restoration in Distributed 
Systems", Conference on Fault Tolerant Computin~, (1978), 
pp. 129-134. 

[8] D. L. Russell, "State Restoration in Systems of 
Communicating Processes", IEEE Trans. on Software 
Enftineerin~, (Mar. 1980), pp. 183-194. 

[9] J.W. Young, "A First Order Approximation to the 
Optimum Checkpoint Interval", Communications of the 
A.C.M., (Sep. 1974), pp. 530-531. 

[10] E. Gelenbe, D. Derochette, "Performance of Rollback 
Recovery Systems under Intermittent Failures", 
Communications of the A.C.M., (June 1978), pp. 493-499. 

[11] E. Gelenbe, "On the Optimum Checkpoint Interval", 
Communications of the A.C.M., (Apr. 1979), pp. 259-270. 

[12] R. Koo, S. Toueg, "Checkpointing and 
Rollback-Recovery for Distributed Systems", IEEE Trans. on 
Software Enftineerin~. (Jan. 1987), pp. 23-31. 

intercheckpointing interval fault occurs 

14-- Tp -----..j t troll back 

~~ 11 xp .,time 

-..j j.- Tr b t Terror detected 

0 

I 
checkpoint 1 checkpoint 2 

Trb save internal states 

f g checkpointing invocation j.- Tr---j 
clean up outstanding operation 

1 execute acceptance test 
end of checkpointing 

time 

Fig. 1 Concept of checkpointing and rollback recovery 

checkpointing 
invocation m{p,i 2) 

a\n,i,2) 

a{O,j,1) 
m'{n+l,i,1) 
=m{O,j,1) 

Fig. 2 Cases of interprocess communication which should be 
resolved to avoid domino effect 

403 

RBl{i-1) t2 t3 RBl(i) t6 

process 1 
RPl(i) time 

m{O,i,2) 

proce_s_s_2~~~.,.__~-+-m_(_k_,i_-_1~,l-),.___...~R---1P2~(-i)...,,_~~ti_m~e~ 

tl RB2(i-1) t4 t5 t7 RB2(i) 

Fig. 3 Cases to consider regarding rollback involving two 
processes 

speedup by adaptive method over FTMRRM method 
unit in % Tef(failure-free task execution time) 

0.1 0 - Prb{l)=0.5 0 

' - Prb(l)=0.7 0 0 

0.1 • - Prb(l)=0.9 0 

0 
0 

0 
0.05 0 a 

0 D 

0 8 
0 D 0.1 . 0.2 0.3 0.4 0.5 0.6 

•number of nonfatal failures µ 

-0.0 

Fig. 4.a Speedup of task execution time, assuming Trb/Tp is 
10%, as a function ofµ and Prb(l) 

.... .··· •• ,a 
a 

0 

0 

0 

. 
a 

0 

. 
I 

0 

. . 
0 

• - Trb/Tp = 5% 
• - Trb/Tp = 10% 
0 - Trb/Tp = 15% 

0.1 0.2 0.3 0.4 0.5 0.6 µ 
Fig. 4.b min{Prb(l)}, minimum probability of single-step 

rollback, for FTMRRM methi>d to outperform 
adaptive method-as a function of checkpointing 

overhead and µ 
total rollback recovery overhead 
unit in % Tef(failure-free task execution time) 

• 
1.2 • • 
0.9 

0.6 

•= optimistic unplanned method 
• • = FTMRRM method 

• • • a = adaptive method 
• • • • • • 

Fig. 5.a Comparison of rollback recovery overhead assuming 
1 % checkpointing overhead, 0.02778 system failures, 
no fatal failure and geometric distribution of Prb(i)'s 

total rollback recovery overhead 
unit in % Tef(failure-free task execution time) 

1.2 

0.9 

0.6 

0.3 
0.2645 

• • • • 
• = optimistic unplanned method 
• = FTMRRM method 

• • •a= adaptive method 
• • 

• • • • • • 11a9,.1aa1a DD•D•DD 

• • • • • • • Prb(l) 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Fig. 5.b Comparison of rollback recovery overhead assuming 
5 % checkpointing overhead, 0.02778 system failures, 
Pf=0.0005 and geometric distribution of Prb(i)'s 



MEASUREMENT-BASED ANALYSIS OF MULTIPLE LATENT ERRORS AND 
NEAR-COINCIDENT FAULT DISCOVERY IN A SHARED MEMORY MULTIPROCESSOR 

S.G. Mitra• and R.K. Iyer 

Coordinated Science Laboratory and 
Center for Supercomputing Research and Development 

University of Illinois at Urbana-Champaign 
1101 W. Springfield Ave. 
Urbana, Illinois 61801 

ABSTRACT 

This paper presents a methodology to study multiple latent 
errors and near-coincident fault discovery in the memory of a 
shared memory multiprocessor. The delay between the generation 
of an error due to a fault and its detection (error latency) can cause 
multiple latent errors and near-coincident fault discove.ry in a 
system. The latter effect is widely known to be catastrophic to the 
continued operation of a system even in highly fault tolerant 
systems. The methodology is ilh.~strated on the Alliant ~8 und7r 
real concurrent workload conditions over a five-day penod. This 
study finds that for a conservative error rate of one error per day, 
one out of four errors may manifest itself as a multiple latent error. 
At the same error rate, 8% of the error discoveries are near­
coincident in nature for a time-window size of 50 microseconds 
(approximately 250 instruction cycles ). A strong co~elation 
between existences of multiple latent errors and their near­
coincident discovery is quantified. 

1. INTRODUCTION 

A prerequisite for designing high reliability systems is to 
understand the effect of faults and their manifestations. Behavior 
of faults in a computer system is not easy to comprehend. This is 
even more so in a multiprocessing environment, where the 
mannner in which faults manifest themselves is usually complex. 
Analytical models suffer from constraining assumptions and 
developmental complexity. An alternative are measurements and 
experiments on production multiprocessor systems. These aid the 
model building process and provide valuable insight for designing 
new systems. 

This paper studies the fault discovery process in a shared 
memory multiprocessor system. There is usually a delay between 
the generation of an error (caused by a fault) and its discovery by a 
detection mechanism. This time is commonly referred to as error 
latency. Long error latencies can potentially lead to accumulation 
of undiscovered errors (called latent or "lurking" errors) in the 
system. We define multiple latent errors as a condition within a 
system where two or more errors are yet undiscovered by the 
system. Latent errors can be major threats to the reliability of the 
system. This is because there exists a possibility that they can be 
discovered simultaneously, behaving as though multiple faults 
have occurred. Most recovery mechanisms however are not 
designed to handle multiple faults. There is also a possibility for 
multiple latent errors to be discovered close in time, thus stressing 
the error recovery mechanism. Such situations are referred to as 
near-coincident fault discovery and are known to be catastrophic 
in real systems [ 1,2]. 

The purpose of this experimental study is to quantify the 
characteristics of multiple latent errors and near-coincident fault 
discovery in a shared memory multiprocessor system under a real 

This work.was supported by NASA under Grant No. NAG-1-613. 
* Author is presently with SUN Microsystems Inc., Mt View, CA 

404 

concurrent workload1• A multiprocessing system presents a new 
dimension from the workload point of view, since a number of 
processes can be active at the same time. This casts a new 
perspective on the study of latent error behavior since the 
probability of error discovery is potentially higher. 

The experiment employs actual hardware measurements 
from an Alliant FX/8 system to simulate error occurrence in the 
system and to investigate multiple latent error occurrence and 
near-coincident fault discoveries. The Alliant FX/8 is a key 
component in the "Cedar" parallel supercomputer project at the 
Center for Supercomputing Research and Development in the 
University of Illinois at Urbana-Champaign [3]. The measured 
Alliant FX/8 runs the current version of "Xylem," the Cedar 
operating system. Specifically, the methodology is applied to the 
Alliant memory subsystem. The fault model used in this study 
assumes that a permanent error has occurred2. The physical 
mechanism causing the faults can be varied and do not affect the 
results. 

The results are unique in that they provide new insight into 
the behavior of multiple latent errors and near-coincident fault 
discovery in a complex parallel processing environment. At a 
conservative error occurrence rate of approximately one error per 
day, there is a 25% chance that errors cause multiple latent errors 
in the system. Thus one out of four errors may manifest itself as a 
multiple latent error. Further it was found that 8% of the error 
discoveries are near-coincident in nature with a time window size 
of 50 microseconds. It was also found that the probability of 
multiple latent errors tends to saturate after a threshold error 
occurrence rate of approximately one error per day. The 
probability of near-coincident fault discovery was found to 
saturate also, but at a slower rate. 

1.1 Related Research 

There is little or no research cited in the literature which 
experimentally investigates the occurrence of multiple latent 
errors or near-coincident fault discovery. Fault injection studies in 
the FTMP (Fault Tolerant Multiprocessor) showed that the most 
likely threat to system failure in the short run was arrival of two 
failures so close to each other that system reconfiguration was not 
possible [1,2]. These experiments used pin-level fault injection 
while running specific programs. An analytical model for near­
coincident faults in NMR systems with different voting schemes is 
presented in [4]. The general validity of such a model however is 
not established. 

Other related research consists of experiments conducted to 
measure fault/error latency. Experiments to measure fault latency 
via pin-level fault injections in FTMP are discussed in [5]. In this 
study, the researchers measured latency times for faults in 

1When two or more processors are active the system is said to be in 
concurrent operation. 
2 An error is that part of the system state which is liable to lead to failure. 
The cause - in its phenomenological sense - of an error is a fault. 



different system components and obtained a standard distribution 
fit to their measured fault latency distribution. CPU fault latency 
for the digital microprocessor in FfMP was studied in [6,7] via 
gate-level simulation. A set of specific programs was used to 
exercise the CPU to reveal faults injected into the simulation. 

The above approaches and results are, however, not 
applicable in general to multiuser systems. More recently, latent 
fault behavior in the memory of a VAX 111780 was studied in [8]. 
The memory system was instrumented for measurements, and 
fault/error latencies were calculated by simulated fault injection in 
the memory. Also the effect of workload on fault/error latencies 
was investigated in [10]. 

Although the above studies investigate the subject of latency 
quite systematically, the question of multiple latent errors or 
near-coincident fault discovery is not addressed. As mentioned 
earlier past measurements indicate these problems as usually 
catastrophic to the system. 

The next section describes the experimental methodology 
used to calculate multiple latent errors and near-coincident fault 
discovery probabilities. Section 3 presents the results and 
discusses the multiple latent error and near-coincident fault 
discovery behavior seen. Section 4 summarizes the important 
results of the paper. 

2. EXPERIMENTAL METHODOLOGY 

Figure 1 shows the Alliant FX/S components related to our 
study. Detailed information on the Alliant system is given in [9]. 
The system runs the current version of "Xylem," the Cedar 
operating system. Thus, from the software point of view, many 
features of the Cedar supercomputer are running on the Alliant 
FX/S. The workload on the Alliant FX/S consisted mostly of 
scientific applications such as circuit simulation, weather 
modeling, digital animation and fluid dynamics. 

This study concentrates on the error characteristics within 
the main memory of a system. An important reason for this is, 
measured field results show the largest number of failures occur in 
the memory [10]. A large number of CPU errors can also be 

Computational Complex 
r----------------------------------1 

:E?J EJ EJ El EJ EJ El EJ: 
L-----------------r----------------~ 

I Crossbar Interconnect I 
r---------L--------, 
1 .................................. I 

I '1w1 !vi' ·1v1 r;-i' I : : ~ CJ: :LJ LJ j: Shared Cache 
1 : ••.•.•••••••.•. :: ............... :I 
1 CPCO CPC! 1 

L---------,--------~ 
Main Memory 

Figure 1. Configuration of Measured Alliant FX/S 

traced to the memory [11]. Further, since shared memory is a 
common resource, the possibility of it being the source of failures 
can be significant. 

2.1 Hardware Measurements 

The Alliant FX/S backplane was sampled to collect data on 
memory access operations from the shared cache. A Tektronix 

405 

DAS 9200 with a 32K trace buffer was used for this purpose [12]. 
Hardware probes were attached primarily to the main memory 
address bus on the Alliant backplane. Other probes were used to 
monitor signals so that appropriate triggering could be performed. 

As mentioned in the Introduction, the measurements were 
performed while the system was executing concurrent workload. 
The measurements were conducted over a five-day period, 8am to 
5:30pm daily, Monday to Thursday and Sam to 3:45pm on Friday 
(primarily due to drop in concurrent operations). Samples were 
taken approximately every 4 minutes3, with each sample 
containing SK address references (representing SK machine 
cycles). The total measurement period was approximately 46 
hours. 

Table 1 shows the filtered version of the raw data output. 
The addresses represent memory block start addresses. The 
memory is accessed in blocks of 32 bytes (transfer size between 
the shared cache and memory). The fields cntlO and cntll provide 

Table 1. Concurrent Workload Memory Address Trace 

Line no. time stamp address cntlO cntll 
1 00033316579 OD3FFS F 0 
2 0003331666B 000230 F 4 
3 000333166BC 000232 F 4 
4 0003 3 31670D 000234 F 4 
5 000333167BB OD3FF7 F 0 
6 000333167CC 1AEOF7 F 8 
7 00033316869 OC2FF5 F 0 

additional status information about the state of the memory bus. 

2.2 Simulation 

The memory address trace obtained above was then used as 
input to a simulation system, which essentially reconstructed the 
address space into which simulated error injections were 
performed over the entire measurement period ( the simulator was 
driven by the address trace). An error was discovered when the 
time of error injection at an address location was less than or equal 
to the time of arrival of that address in the concurrent workload 
address trace. The simulation environment consisted of three 
simulators, ELS (Error Latency Simulator), MLEI (Multiple 
Latent Error Identifier) and NCFI (Near-Coincident Fault 
discovery Identifier). Detailed information on the simulation 
environment is given in [ 13]. 

For error injection purposes no distinction was made 
between specific locations within a block. Since the transfers from 
main memory occur in blocks of 32 bytes, an error in one location 
within the block is equivalent to an error in any other location in 
the block from a discovery point of view. This simplified the 
simulation somewhat and more importantly, smoothed out 
discontinuities arising out of the fact that the data were sampled. 

Simulated error injections were performed assuming an 
exponential distribution for error occurrence over the entire 
measurement period. The error injection rates (A.) were varied from 
0.009 to 0.05S ( times 6 error injections per hour or "x6 ei/hr"). 
Address locations for the error injection were chosen randomly. 
The exponentially distributed intervals between error injections 
were also chosen randomly. 

In order to obtain statistically consistent results, 
approximately 600 faults were injected at each error injection 

3 The sampling rate chosen reflects a compromise between an adequate 
sample size and delay in transferring data to a data logger. 



time. This is equivalent to the simulation being run 600 times for 
each error injection rate. In each run, a randomly chosen location 
is injected with an error. 

2.3 Measurement of Multiple Latent Errors 

Multiple latent errors occur when two or more errors are yet 
undiscovered in the system. In order to determine the probability 
of multiple latent errors at a given error injection rate, we first 
construct a latency profile for each injection. The latency profile 
for an injection is the profile of discovery times for all errors 
injected at that injection time. Once the time to discovery for each 
error injected is available, a latency profile can be plotted as in 
Figure 2. 

Error! 

Error2 Latency Profile 

Error3 

Error4 

Errors 

Error6 

Error? 

Errors 
1me 

Eiror Injection 

Figure 2. Example of a Latency Profile 

Consider for simplicity a case in which two error injections 
are made in a measurement period. Figure 3 shows the three 
possible overlap scenarios for the latency profile. The multiple 
latent error regions between the two error injections is shown. 
The multiple latent error region area versus the total latency 

4 4 
Error Injection 1 Error Injection 2 

Figure 3(a). No Overlap 

Multiple error rqlon 

' ' 

. + + Error Injection 1 Error Injection 2 

Figure 3(b). Type 1 Overlap 

406 

Multiple Error Rqlon .------, 

+ 4 
Error Injection 1 Error Injection 2 

Figure 3(c). Type 2 Overlap 

profile area of both injections give a rough view of the probability 
of multiple latent errors in the system. The probability of multiple 
latent errors is defined as the ratio of number of errors in the 
multiple latent error region to the total number of injected errors. 

Let E; represent the number of errors injected at error 
injection number i. Also let Me;i;.. represent the number of errors 
of error injection i that exist as multiple latent errors with error 
injection j at the error occurrence rate A. (e.g., Me 12;.. represents 
number of errors in injection 1 that exist as multiple latent errors 
with injection 2 at the error occurrence rate A. and Me 21 ;.. is the 
number of errors in injection 2 that exist as multiple latent errors 
with injection 1 at the error occurrence rate A.). Then between two 
error injections n and m where n <m ,the probability of multiple 
latent errors Mp,,,..;.. for an error occurrence rate of A. is 

In the complex case of more than two error injections within 
the measurement period, the multiple latent error probabilities can 
be individually calculated with respect to one particular error 
injection for the given error occurrence rate A. (i.e., Mp12;.. is a 
multiple latent error probability between fault injections 1 and 2, 
Mp 13;.. is multiple latent error probability between 1 and 3 etc.). 
For each Mp,..;,.. multiple latent errors may exist in either of the 
two forms shown in Figures 3(b) and 3(c). But given the 
definition of multiple latent errors ,where at least two errors must 
exist undiscovered in the system, only adjacent error injection 
probabilities need be considered. Thus only Mp 12;.., Mp 23;... Mp34.~ 
etc. values are used to give an overall multiple latent error 
probability (Mp,;) for the error occurrence rate chosen. Thus, if n,i 
represents the number of error injections achieved at the error 
occurrence rate A, the overall probability of multiple latent errors 
at error occurrence rate A. is 

i=n.,-1 

L Mp(i)(i+I)). 

2.4 Measurement of Near-Coincident Fault Discovery 

In order to measure the probability of near-coincident fault 
discoveries, we first choose an appropriate time window of size T. 
Next we move this window over the total measurement time in 
increments equal to T, each time observing the number of errors 
discovered within the time window. The ratio of total number of 
errors found in that time window to the total number of errors 
injected gives the probability of near-coincident faults in the 
system. Note that, if errors from the same error injection are 
discovered within the time window, they do not qualify as a near­
coincident fault discovery. 



The total measurement period is divided into n time slices t 1 
tn, each T long except one (if true integer division is not 

possible). The number of errors discovered (from different error 
injections) in each tk were Nk,A. at an error occurrence rate 'A where 
l:>k:>n. Again n,i represents the number of error injections 
achieved at error occurrence rate 'A. If the total number of errors 
injected into the system is E, then, the probability of near­
coincident faults (NC A.) for an error occurrence rate of 'A is 

3. RESULTS 

i=n 

"f:,Ni,). 

NC A=i=.!.__ 
E 

i=n..; 

whereE= "I:, Ei 
i=l 

This section presents the experimental results on multiple 
latent errors and near-coincident fault discoveries for the Alliant 
memory subsystem. Recall that errors were injected at 
exponentially distributed intervals (with an error injection rate 'A). 
The memory address trace was then used for determining multiple 
latent errors and near-coincident fault discovery probabilities. For 
purposes of this study, errors were injected in the high usage 
regions of the memory. The region of injection represented 93% of 
the address references in the real concurrent workload trace but 
occupied only an eighth of the memory address space available. 
Clearly, the behavior of faults in this region is critical for 
continued system operation. 

On the average, 14% of all errors injected remained 
undetected during the measurement period (approximately 5 
days). The choice of the error injection rate 'A for the experiment 
was chosen to reflect realistic error occurrence rates (see [10]). 
The range was chosen to be 0.009S'AS0.058 (x6 error occurrences 
per hour - approximately 2 to 16 error injections over 5 days). 
The timecwindow sizes chosen for analysis in the near-coincident 
fault discovery calculations represent reasonable error recovery 
times for a high performance system. The time-window range was 
varied from 1 microsecond to 250 microseconds (approximately 6 
to 1500 instructions on the Alliant FX/8 ). 

3.1 Multiple Latent Errors 

Figure 4 shows the variation in the probability of multiple 
latent errors Mp(iJ(i+IJ,o.043 during the measurement period for an 
error occurrence rate of approximately two errors per day (0.043 
x6 ei/hr). Figure 5 shows the probability of multiple latent errors 
being present in the system at different error occurrence rates. We 
find that the probability of multiple latent errors increases from a 
low of 0.04 at an error occurrence rate of approximately one error 

Probability 

0.5 p-

0.0 
0 

--./ 

A 
I \ 

\ 
\ 

10 

I 
I 

I 
I 

\ I 

\.. I 

' I 
' ' 

I 

20 

r", 
I I 

I 
I 
I 
I 
I 

A 
I 

I 
I I \ 
I I \ 

I ~' I 
I I \ 

v \ 

30 40 
Measurement Time in hours ( max. = 46.7 ) 

Figure 4. An Example of Multiple Latent Error Presence 

407 

every two days to a high of 0.50 which is more or less a saturation 
probability. The oscillatory behavior of the graph is primarily due 
to statistical variations. 

Figure 5 shows that, at a conservative error occurrence rate 
of approximately one error per day ('A=.022), there exists a 25% 
chance (Mp'A<:0.25) of multiple latent errors. This suggests that one 
out of four errors has the potential of manifesting itself as a 
multiple fault. On further examining of the plot in Figure 5 , we 
find at low error injection rates the plot has a higher slope than at 
high error injection rates. As expected the error occurrence rate (or 
the number of error injections) does have an impact on the 
multiple latent error probability, but this effect subsides as the 
error rate increases. The reason for this is that at higher error 
occurrence rates seemingly more latent errors tend to be 
discovered or "swept away", thereby resulting in a tapering effect 

Multiple Error Behavior 
with rcsp<..'Ct to the Error Occurrence Ra.te 

0.50 - - -- ---.-- --- -- -·- -- --- --·---- - -
' ' ' 

0.40 

' 
Prob.of MultlpleO.JO 
Errors CMp,) 

-------:--
' 

- ---:--------:-------~-------
' ' ' 

on the plot. 

0.20 

0.10 

' ----- --r-

' ' ' 

' I I I I -----. - ----- -,- ------.-------.,- -- ----
l I I I 

' ' ' ' ' ' 
' ' ' ' ' I t I l 

-- -- - -1-- --- - - -t-- -- --- -1- - ----- -1- -- -- --

' ' ' ' ' ' ' ' 
0.00 ................ ~ ................ ~ .................. ~ ................ ~ .................. ~~ ........ ~ 

0.000 0.010 0.020 0.QJO 0.040 0.050 0.060 

Error Occurrence Rate (x6 el/hour) 

Figure S. Probability of Mulitple Latent Errors 

To show in detail how the multiple latent error probability 
changes during the course of error injections, a plot of variation in 
probability of multiple latent errors for an error occurrence rate of 
0.031 (x6 ei/hour) is shown in Figure 6. There were nine error 
injections in the measurement period for this error occurrence rate. 
Each dotted line represents a multiple latent error probability plot 
with respect to a specific error injection number. L 1 represents 
multiple latent error probabilities for error injection 1 (E 1) with 
error injections E2, E3, E4 and Es. The Mp1z,o.03r. MP13,0.03h 
Mp140031 and Mp 150031 values are represented on this line. 
Simii~rly L 2 represe~ts multiple latent error probabilities of error 
injection two ( Mp 23,0.031 , Mp 24,0.031 and Mp 25,0.031 ) and so on. A 
downward behavior is seen for all the lines. This seems intuitive; 
say for Lr. the errors of E 1 will tend to be discovered as time 
progresses, thereby reducing the probability of multiple latent 
errors being present in the system when E 5 is introduced. 

To highlight one of the error discovery patterns in the 
system, the high multiple latent error probability of 0.9 for L 2 will 
be explained. We find that most of the errors injected in error 
injection 2 are discovered during the interval between error 
injections 3 and 4. This is because Mp 23,0.031=0.9 implies that both 



0.8 

0.6 

Prob.of Multiple 

Errors(Mh) 

0.4 

0.2 

Multiple Error Behavior with Sue:cessive Injections 

' ' ' ' 
' 

Error Injection Number 

Figure 6. Probability of Multiple Latent Errors at Diff. Injections 

Me 23,0.031 and Me 32,0.031 have high values. The multiple latent errors 
probability plot of error injection 2 continues till error injection 5. 
This shows that all errors discovered during the measurement time 
period are discovered before error injection 6. Thus the remaining 
errors injected at error injection 2 are discovered between error 
injections 2 and 3, error injections 4 and 5, and error injections 5 
and 6. 

3.2 Near-Coincident Fault Discovery 

Figure 7 shows the variation of probability of near­
coincident fault discovery with time-window sizes from 10 to 250 

Prob. of Near 
Coincident 
Faults(NC) 

0.20 

0.18 

0.16 

0.14 

0 

Near-Co.incident Fault Discovery Variation 
With Time-Window Size (Macroscopic) 

14el 

- - - - - - - - -.- - - - - - - - - ., - - - - - - - - - r - - - - - - - - -r-

' ' ' ' ' ' ' 
' ' ' ' ' ' . --~ ----- ----:- --------:- - ----- --- --:-- --- ---- ~ -----

' ' 

' -- ------:- ------- --:-- -
' ' ' ' ' ' ' ' l I I I 

- -- - '1 --- - - -- - -T- -- - - -- --,- --- - - -- - .,- --
1 I I I 
l I I I 

: : : : 
I I I l -- -------... __ ---- --_ .... _ ---- --- _._ ---- -- -_ .... __ -

' ' ' ' ' ' ' I I l I 

- - - - -:- - - - - - - - -1- - - - ---- -T- - - -- - - --:-- - - - - - - --:- - -
I I I I I 
I I I I I 

' ' ' ' ' ' I I I I I ---------1----------.---------t>---------t---------"'4---
50 100 150 200 250 

Time-Window Size (in microseconds) 

Figure 7. Macroscopic Time Window Size Variation of Probability 

408 

microseconds for three different error rates. As expected, the 
near-coincident fault probability increases monotonically with 
time window size. But however, the rate of increase in probability 
of near-coincident faults slowly decreases for larger time-window 
sizes. Figure 8 shows a microscopic view (1 to 10 microseconds) 
of the behavioral change in the near-coincident fault probabilities. 
The step function behavior is easily understood by the fact that if 
we have near-coincident faults in time-window size T, then those 
same near-coincident faults must exist in time-window size T + 1. 

The variation of probability of near-coincident faults ,for 
three time-window sizes (lOus, lOOus and 200us), is shown in 
Figure 9. The range of error rates used is 0.009::;A;<;;0.049 (x6 error 
injections per hour ), approximately 2 to 14 error injections over 

0.100 

0.090 

0.080 

Prob. of Near 
Coincident 0.070 
Faults (NC,) 

0.060 

0.050 

0.040 

0 

Near-Coincident Fault Discovery Variation 
With Time-Window Size (Microscopic) 

- - - - - - - - - - -r - - - - - - - - - - -r - - - - - - - - - - -,- - - - - - - - - - - -,- - - -
' ' 

14e1 

' ' -- -- --- -- -.-- - -- -- - -- - - -.- -- -

--- - --,.-~--"'-~-,._.~~~?-~-~, -- --- --- ---r- --------- ~----
' ' ' ' ' ' 
1 9ef ' 

' ' ' 
' 

. ' ---- --- - _,__ - -- - -- -- _...,._ - --
' ' 

-----------~ ------- -- __ : ----------+- ___ :~---- ~----
' ' ' 
' ' ' ---- -------~ -- ------- --:-
' ' ' ' ' ' 

' 
' 

' ' ---- -- --- -;- -- -------;----

' 
' 

' ' ' 
I I I I 

-----------:------------:------------:- -----------:----
5 10 IS 20 

Time-Window Size (In mJcroseconds) 

Figure 8. Microscopic Time Window Size Variation of Probability 

Prob. of Near 
Coincident 
Faults (NC,) 

Near-Coincident Fault Discovery Behavior 
with respect to the Error Occurrence Rate 

0.25~---~---~----~----.-------,., 

0.20 

0.15 

0.10 

0.05 

----- -- -~ -------- ~--- --- ---~-----
' ' ' ' ' 

' ' ' ' - - - - - - - - T- - -- - - -- .,-- - -

' ' ' ' ' 

' ' 

' ' ' ' ' ' r--------T---~----., 
' ' ' ' ' ' 
I f : 

o.ooa......~ .................... _ ....... ~,__,~ ....... -"-'-"~ ....... ~.....,~.....,~~ 
0.000 0.010 0.020 0.030 0.040 0.050 

Error Occurrence Rate (x6 el/hour) 

Figure 9. Probability of Near-Coincident Fault Discovery 



the measurement period. From Figure 9, the near-coincident fault 
probability values range from 0.003 to approximately 0.21, over 
the 10 to 250 microsecond time-window size. 

In comparing Figure 5 and Figure 9, we can see there exists 
a high correlation between the existence of multiple latent errors 
and their discoveries in near-coincidence. From Figure 9, the plot 
after an initial steep rise starts to taper as in the multiple latent 
error probability case. The saturation effect comes about more 
slowly in Figure 9 though, becoming more apparent at higher error 
occurrence rates than Figure 5. The reason for this is, as the rate of 
number of latent errors being "swept out" increases, the 
probability of near-coincident fault discovery also increases as a 
side effect. However after a certain error occurrence rate, the rate 
of removal of latent errors from the system has a more pronounced 
effect on the probability of near-coincident fault discovery. Thus 
the probability plot saturates slower as a result. 

4. CONCLUSIONS 

This paper has described a methodology to study the 
behavior of multiple latent errors and near-coincident fault 
discovery in the memory subsystem of a shared memory 
multiprocessor. Past studies have shown that these effects can 
seriously degrade the reliability of a system. The methodology 
was illustrated on a production multiprocessor system, the Alliant 
FX/8, running the operating system environment of the "Cedar" 
supercomputer. 

The results show that even with a conservative error 
occurrence rate of one error per day, there is a 25% chance that 
errors result in multiple latent errors. It was also found that 8 % of 
the error discoveries are near-coincident in nature with a time 
window size of 50 microseconds. It was also seen that the 
probability of multiple latent errors tends to saturate after a 
threshold error occurrence rate of approximately one error per day. 
The near-coincident fault discovery probability increases 
monotonically with larger time-window sizes. A strong 
correlation was found between the existence of multiple latent 
errors and their near-coincident discovery. The saturation effect 
on probability of near-coincident fault discovery was seen to take 
effect slower than that for the probability of multiple latent errors. 

Future work is expected to involve investigation of methods 
to use such experimental results to make reliability and 
availability predictions for measured systems. It is suggested that 
other parallel systems be similarily studied so that more 
information on error characterization is available. 

ACKNOWLEDGMENTS 

The authors would like to thank Prof. Ed Davidson for 
providing access to the Alliant FX/8 for experiment purposes. 
Many thanks to Mark Sloan, who wrote the core of the error 
latency simulator. Acknowledgments to Tracy Tilton, Mark 
Washburn, Madhu Sharma, Al Malony, Mike Haney and the other 
wonderful staff members at Center of Supercomputing Research 
and Development for their invaluable assistance. 

REFERENCES 

[1] A.L. Hopkins, T.B. Smith, J.H. Lala, "FTMP- A highly reli­
able fault-tolerant multiprocessor for aircraft," Proceedings 
of the IEEE, vol.66, No. 10, pp. 1221-1239, October 1978 

[2] J.H. Lala, "Fault detection, isolation and reconfiguration in 
FTMP: methods and experimental results," Proc. IEEE 
National Aerospace Electronics, vol.1, pp. 21.3.1-21.3.9, 
1984 

409 

[3] D. Kuck, D. Lawrie, A. Sameh and D. Gajski, "Cedar - A 
large scale multiprocessor," Proc. 1983 International 
Conference on Parallel Processing, pp.524-529, August 
1983 

[4] J. McGough, "Effects of near-coincident faults in multipro­
cessor systems," Proc. IEEE/A/AA Fifth Digital Avionics 
Systems Conf, pp. 16.6.1-16.6.7, 1983 

[5] K.G. Shin and Y.H. Lee, "Measurement and application of 
fault latency", IEEE Transactions on Computers, vol. C-35, 
No. 4, pp. 370-375, April 1986 

[6] F.L. Swem, S.J. Bavuso, A.L. Martensen and P.S. Miner, 
"The effects of latent faults on highly reliable computer sys­
tems", IEEE Transactions on Computers, vol. C-36, No. 8, 
pp. 1000-1005, August 1987 

[7] J. McGough and F.L. Swem, Measurement of Fault Latency 
in a Digital Avionic Miniprocessor part-II, NASA Contrac­
tor Report 3651, 1983 

[8] R. Chillarege and R.K. Iyer, "Measurement-Based analysis 
of error latency," IEEE Tranactions on Computers, vol. C-
36, No. 5, pp. 529-537, May 1987 

[9] Alliant FX!Series Product Summary, Alliant Computer Sys­
tems Corp., Littleton, MA., October 1986 

[10] R.K. Iyer, D.J. Rossetti and M.C. Hsueh, "Measurement and 
modeling of computer reliability as affected by system 
activity," ACM Transactions on Computer Systems, vol. 4, 
No. 3, pp. 214-237, August 1986 

[11] R.K. Iyer and D.J. Rossetti, "A statistical load dependency of 
CPU errors at SLAC," Proc. 12th International Sym. on 
Fault Tolerant Computing, pp. 363-372, 1982 

[12] DAS 9200 System and Module A60 User's Guide, Tektronix, 
Beaverton OR., 1987 

[13] S.G. Mitra, Masters Thesis, Dept. of Electrical and Com­
puter Engineering, University of Illinois at Urbana­
Champaign, Urbana IL., 1988 



A Distributed Architecture for the PEPSys Parallel Logic 
Programming System 

Uri Baron, Bounthara Ing, Michael Ratcliffe, Philippe Robert 

ECRC, Arabellastr. 17, 8000 Muenchen 81, West Germany 

Abstract 

The PEPSys project is concerned with the definition and 
evaluation of a parallel logic programming system 
addressing a complete spectrum of issues, from high-level 
language and applications to implementation on machine 
architectures. This paper discusses the design issues and 
trade-offs involved in the specification of a particular 
distributed architecture to support the sequential, OR , and 
Independent AND-parallel mechanisms of PEPSys. Of 
particular interest are the load balancing strategies adopted 
and their evaluation by simulation. The simulation oC the 
architecture has also produced many other results which are 
presented along with a discussion of their implications. 

1. Introduction 

The general goal of the PEPSys (Parallel ECRC Prolog 
System) project, which started in mid - 1984, is to study and 
evaluate new and practicable solutions to the problems of 
parallel logic programming which was found to be a useful 
vehicle for expressing parallelism [6]. The PEPSys 
language, [4] was designed to exploit the OR and 
Independent-AND parallelism inherent in declarative logic 
programming languages. Together with the language, a 
superset of conventional PROLOG, a new computational 
model [7] and an abstract machine were designed. Besides 
the authors, all members of the PEPSys team have 
contributed to this work: H. Westphal, D. Peterson, 
J. Chassin, JC Syre. 

Of particular interest, is the class of architectures most 
amenable to efficient execution of PEPSys. A class· of 
architectures which supports the basic characteristics of the 
language, its computational model and abstract machine has 
been identified. This paper describes the architecture, its 
features, the underlying design philosophy and presents 
some preliminary performance results obtained irom 
simulation of the architecture. The problems of kiad­
balancing in the machine are discussed. A more detailed 
description can be found in [l]. 

The PEPSys computational model provides efficient 
solutions to problems central in any parallel Prolog 
implementation: the management of variable bindings in a 
parallel environment and the control of the search space to 
produce all (wanted) solutions. Its main features, detailed in 
[7], are retro-active parallelisation at very little cost, 

shallow binding with an explicit time-stamping mechanism 
and full combination of OR and AND parallelism with 
sequential backtracking execution. The implications of such 
a model on this architecture are discussed in the next 
section. 

2. The PEPSys Architecture 

The overall goals of PEPSys have greatly influenced the 
specifications of this architecture. In this section, an 
overview of the major decisions made in the design of the 
architecture is presented including justification thereof. 

( cluster ) ( cluster ) 

communication network 

cluster cluster cluster 

Figure 1: PEPSys Multi-Cluster Architecture. 

Requirements of an Architecture 
The architecture must deliver a scalable performance as the 

computing power of the machine is increased. Therefore it 
was critical to restrict parallelism to where it is really useful 
and to limit the increased communication overhead. A 
further requirement was that the architecture be 'open­
ended' to allow for future modifications and extensions to 
be incorporated with relative ease. Finally, the architecture 
should be flexible enough to allow the machine to assume 
different roles, e.g. as a backend symbolic processor or as a 
front-end dedicated Prolog machine. To match the coarse­
grained parallelism of PEPSys with communication costs, a 
cluster based design was chosen. Figure 1 depicts the 
abstract view of the cluster architecture. 

2.1. Architectural Specifications 

Making use of the experience gained in the implementation 
of PEPSys on a shared-memory Siemens MX-500 machine 
[3], the number of PEs has been scaled up by adding more 

clusters, thereby introducing the notion of distance between 
PEs; when PEi of cluster j wishes to access a variable on 
PEk on cluster /, it induces two levels of communication: 
intra-cluster and inter-cluster. 

The PEPSys computational model solves the problem of 
maintaining multiple binding of variables in an OR-parallel 
environment through the use of hash windows. Combining 
(and nesting) AND-parallelism with OR-parallelism is done 
using an additional data-structure, join-cells together with 
hash-windows. From the architectural point of view - such a 
model does not impose the choice of memory used in the 
architecture (shared or unshared) as a process is an 
independent entity, identified by a process number, a hash-

410 



window and a root-frame [5], and accesses common 
variables by searching ancestor hash-windows. Thus the 
implementation of PEPSys using shared or private memories 
for each processing element is possible. 

2.2. The Structure of a Cluster 

A cluster is a small number of identical processing 
elements sharing a common memory and communicating 
with the shared memory through a high-speed bus (Figure 
2). Several successful attempts have been made to 
implement OR-parallel computational models on limited­
resources, shared memory machines [2] and therefore it was 
natural to extend this approach by connecting several such 
clusters to a communication network. A program's search 
space could then be divided between several clusters in 
order to improve performance and to be able to run much 
larger programs. 

shared CP 

memory I cache I 
t 

Bus 

1 
I cache I 

..... 

PE 

Network 

Interface 

I 
I 

f cache I 
PE 

14-1 r+ 
Communication 

Network 

Figure 2: A cluster connected to a communication 
network. 

It is clear that while increasing the processing power of the 
machine, its complexity has increased in the form of the 
extra level of communication between clusters. To alleviate 
this undesired consequence the problem was attacked on 
two levels: adding additional hardware and using 
sophisticated methods to reduce such communication.. Each 
cluster is augmented with a Cluster Processor (CP) whose 
primary function is to handle inter-cluster communication. 
Other CP functions include: servicing remote dereferencing 
requests, managing local load-balancing (acquiring remote 
work when necessary), servicing PE requests, aborting 
processes and local bookkeeping. 

The Inter-cluster Communication Network 
The CPs communicate with each other over a common bus 

via message passing. The decision to use message pasfing 
between clusters was based on the following factors: 

• message-passing is far more flexible and 
enables the implementation of different inter­
cluster communication networks 

• message-passing lends itself naturally to a 
distributed architecture in which individual 
components execute asynchronously. 

• messages are of a higher level of abstraction - it 
is possible to implement a global address space 
with messages. 

411 

At implementation level the distribution of work amongst 
clusters is restricted to avoid a communication bottleneck. 
This was corroborated by simulation results for fairly large 
programs, which show an average bus utilisation of between 
12%-30% of the total runtime, using a communication­
inducing configuration: 1 PE per cluster for 10 clusters. 

2.3. Cluster Processor (CP) 

The Cluster Processor is viewed as the cluster's "work­
horse" - a powerful processing unit perfonning a host of 
tasks, whose ultimate aim is to satisfy the local PEs' 
demands for work, values etc., while doing additional work 
in its idle time to speed up overall perfonnance. 

intra~cluster bu::. 

pereferencjng 

unit 

OUT-buffer 

LOCAL-buffer 

inter-cluster 
network 
interface 

dereferencing 
cache 

Figure 3: A Cluster Processor Block Diagram. 

The block diagram of a cluster processor (CP) is shown in 
Figure 3. The CP has four message queues managed by 
hardware as FIFOs. The size of these buffers is small as 
only a few messages are expected to be in a queue at any 
given time. Buffer overflow is handled by directing excess 
messages to the CP's private memory. The CP has a small 
private memory used for cluster bookkeeping, temporary 
scratchpad and overflow areas. It has a fairly large set of 
dedicated registers in addition to a set of general purpose 
registers. The dedicated registers are used for fast access to 
CP data tables and counters. The basic execution cycle of a 
CP is sketched below: 

loop: 
{ process a message from each buffer 
if all buffers are empty then 

do_idle_time_ work 

3. Load Balancing Strategies 

Work is distributed between processing elements at two 
levels: intra-cluster and inter-cluster. The intra-cluster work­
distribution strategy is an extension of [5] and is not 
discussed here; in this section the load balancing scheme 
implemented is described along with other possible schemes 
suitable for the architecture. 
A workpool containing potential pieces of work for OR­

branches and AND-branches is maintained in each cluster. 



As these workpools are global and can be accessed by any 
PE in the cluster and of course by the CP; mutual exclusion 
must be ensured when modifying the workpool. 

A PE executes a local-search{or-work procedure when it 
becomes idle, attempting to find work in one of the cluster's 
local workpools. If the PE finds work - it modifies the 
workpool and executes the work. On the other hand, if no 
work is available, the PE sends a message to the local CP 
asking for remote work. In other words, a lazy scheme for 
load-balancing, based on demand-driven activation by idle 
PEs is used. A backtracking PE can either wait for its 
children to terminate, or it can speed up their termination by 
taking work from their descendants (constrained remote 
work). The latter scheme was implemented and it was 
found that this operation must be severely restricted to 
prevent delocalizing computation (by the 'spreading of too 
small sized sub-trees) and thrashing of goals between 
clusters. Figure 4 depicts a simple example: 

goa.11 h,p, ••• 

pl 1- r,s. 
p2 1- q,t. 
p3 1- u. 

ql l­

q2 l­

q3 1-

h 

l 
/l~ 

~1 12 13 
(1 /l~ u 

s ql q2 q3 

Figure 4: A Load Balancing Example. 

p and q are or-parallel predicates and in the example their 
clauses are numbered pl ,ql ,p2 ,q2 ... for clarity. Assume the 
first clause of p is executed on cluster] by PEJ and the 
second clause is executed by PE2 on cluster2. PEJ executes 
h, followed by pl then r thens (Figure 4). Execution of s 
fails resulting in PE backtracking to pl, now PEJ cannot 
backtrack beyond this point until p2 has terminated on 
cluster2. At the same time p2 has spawned q, another 
parallel predicate which in turn may have alternative clauses 
'stolen' by other clusters. PEJ's decision to ask for work 
from p2 or rather to wait for p2's termination is extremely 
difficult to make, depending heavily on a particular 
program's behaviour. This kind of inter-cluster work 
distribution can be restricted by 'capturing' entire sub-trees 
in one cluster, or by refusing such a work request on the 
remote cluster. 

Only half the picture has been explained. The CPs play a 
crucial role in distributing the load over the entire machine. 
The CP maintains a queue of idle PEs which have requested 
'remote' work. Periodically, this queue is inspected by the 
CP and when local conditions are met - the CP selects a 
remote cluster and sends it a 'request_for_work' message. 
The CP manages a list of remote CPs to query for work, 
based on partial information it has obtained while polling 
these CPs and from messages received from them. 
Alternative approaches would be to remove polling CPs 
altogether and provide some random choice function instead 
or to monitor the bus. 

A CP receiving a request for work initiates the 

412 

search Jor _work procedure. If the cluster is too busy or 
alternately too idle, it can refuse the request immediately. 
When work is found it is sent to the requesting cluster and 
the local workpool structures are updated. 

This load-balancing strategy places the burden of finding 
work locally on th~ PE, which is idle anyway. The CPs 
control the amount of external work requests outstanding 
per cluster, even SO, requests for work must be kept to a 
minimum through the use of pragmas (at program level) and 
run-time information. On the receiving side - finding work 
for remote PEs is done by the CP without interrupting local 
PEs. •'1------.~....,-~-.-----.~-.-~-.-----.r---,-~~--, 

Figure S: 8 Queens problem with work distribution 
optimisation. 

By reserving branches high up in the search tree for remote 
clusters, additional performance gains averaging 20 per cent 
have been achieved. Figure 5 shows the performance for 
various configurations of the architecture running the 8 
queens, all solutions program with this improved, initial 
work distribution. The speedups delineated in the graphs 
below, are obtained by comparing against the performance 
of a uni-processor on the same benchmarks. 

4. Performance Analysis 

In this section some preliminary performance results 
obtained from architectural simulation are presented. A 
multitude of configurations with the number of clusters and 
PEs ranging between one to ten were simulated. For a 
single cluster architecture up to 30 PEs were simulated. No 
optimizations of any kind were included in these 
architectures, i.e. the CP was an ordinary processor running 
at .the same speed as a PE, it had no parallel sub-units and 
management of its message buffers was done by software. A 
simple Ioad-balancing scheme was employed: no restrictions 
were imposed on suspended PEs' requests for work from 
their (remote) children and a threshold equal to half the 
number of PEs in a cluster was used to control external 
requests for unconstrained work. In the implementation of a 
cluster none of . the important optimizations to PE 
dereferencing or local work management have been made. 
The graph in Fig. 6 shows the speedup obtained for the 8 
queens program, run on a particular set of configurations: 4 



PEs per cluster, 6 PEs per cluster, 8 PEs per cluster and 10 
PEs per cluster, for 1 to 10 clusters. The three factors 
mentioned below account for the less-than ideal speedups 
achieved: 

• simple load-balancing -
• the scheme should severely restrict the 

taking of remote work 

• the initial 'spreading' of work has to be 
improved 

• no optimizations were performed - the CP must 
execute faster than its local PEs and should 
have asynchronous, hardware sub-units. 

•the test-programs must be large enough with 
respect to the amount of sustainable parallelism 
they exhibit 

Detailed statistics were gathered from two representative 
configurations: a 100 PEs on 10 clusters, and 10 PEs on 10 
clusters. As expected, the inter-cluster bus does not cause a 
communication bottleneck. This is due largely to the 
process-oriented nature of PEPSys' computational. model 
which was discussed previously. 
201--~~---.---.---.--..--.--.--.--..-~~~--r---r--r-.......---.--. 

0 6 lD 16 20 25 30 36 40 46 SO 66 00 06 70 75 80 85 go U& 100 

&_queen• pe:rforms.n~• 1 X--.xi• • PE•, Y-axi• 1 Speed-.:ip 

Figure 6: Overall performance of 8 Queens for different 
cluster configurations. 

The distribution of communication (in the form of message 
passing) between any two clusters in a configuration is 
almost uniform, excluding the cluster initiating the 
computation which always has a heavier load. By dividing 
the work to be done at the highest possible level in the 
search tree, this additional overhead can be eliminated on 
the initiating cluster. 

5. Conclusion 

The architecture presented above fulfills the initial 
requirements -

• an increase in processing power is viable 

413 

through parallelism and is its implementation in 
hardware is feasible with state-of-the-art 
technology 

• flexibility - communication is limited and 
evenly distributed between clusters making 
replacement of the communication network 
easy, once the target environment of the 
machine is known. Adding complexity to the 
CP can be done in a straightforward and 
efficient manner. 

Partial answers to questions posed by the computational 
model such as the frequency of dereferencing, the 
availability of long sequential branches in PEPSys programs 
and hash-window chain lengths have been obtained. Many 
important questions regarding the implementation of 
PEPSys were investigated, in particular, work-distribution 
strategies which were found to influence performance 
immensely.. The concept of distance between processing 
elements was introduced, allowing greater processing power 
while not vitiating performance too severely. More "real" 
programs need to be measured to provide empirical 
validation of the design and performance must be boosted 
significantly. The existence of a large class of applications, 
generating sufficient amounts of parallelism to sustain the 
machine, must be ascertained. 

[l] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

References 

U. Baron, B. Ing, M. Ratcliffe, P. Robert 
A Distributed Architecture for the PEP Sys Parallel 

Logic Programming System. 
Technical Report 25, ECRC, Nov, 1987. 

R. Butler, E.L. Lusk, R. Olson, R.A. Overbeek. 
ANLWAM -A Parallel Implementation of the 

Warren Abstract Machine. 
Internal Report, Argonne National Laboratory, 1986. 

Chassin, J., Westphal, H. and Peterson, D. 
The Implementation of PEP Sys on a MX-500 

MultiProcessor .. 
Internal Repo~. ECRC, December, 1987. 

M. Ratcliffe, J.C. Syre. 
The PEPSys Parallel Logic Programming Language. 
lnIJCAI. ECRC, August, 1987. 

Philippe Robert. 
An Emulator for the PEP Sys Abstract Machine. 
Internal ReportPEPSy 17, ECRC, April, 1987. 

Akikazu Takeuchi and Koichi Furukawa. 
Parallel Logic Programming Languages. 
In Third International Conference on Logic 

Programming, pages 242-254. July, 1986. 

H. Westphal, P. Robert, J. Chassin, J.-C. Syre. 
The PEPSys Model: Combining Backtracking, 

AND- and OR-parallelism. 
In Proceedings - 1987 Symposium on Logic 

Programming, pages 436448. IEEE, 
September, 1987. 



A. v. s. Sastry and L. M. Patnaik 
Department of Computer Science and Automation 

Indian Institute of Science 
Bangalore 560012 

INDIA 

ABSTRACl' Logic programming languages have gained 
wide acceptance because of two reasons·. First 
is their clear declarative semantics and the 
second is the wide scope for parallelism they 
provide which can be exploited in parallel 
implementation. In this paper, a dataflow 
architecture (based on Manchester ring) to 
support OR-Paralleli• and k'gument Parallelism. 
is proposed. A new scheme for handling deferred 
read mechanism using the matching unit of the 
machine is suggested. The required data 
structures and the built-in dataflow procedures 
for OR-parallel execution are discussed. 
Multiple binding environments· are handled by a 
modified form of directory tree meth:xi that is 
suitable for dataflow implementation. This 
method is illustrated by an example. The 
dataflow graphs of the program clauses are calls 
to the built-in procedures, therefore they are 
modular and independent of argument co~lexity. 
This feature makes the compilation of the 
clauses very easy. 

Logic programming is a novel programming 
style with clear declarative semantics. It 
means that the user program is more like a 
specification of the problem than the 
specification of the algorithn - as is the case 
with conventional von Neumann languages. 
Therefore writing programs in this paradigm is 
very simple and elegant. Comparing logic 
languages with functional languages, we find 
that a logic program can be thought of as an 
equivalent of a set of functional programs, one 
functional program corresponding to one instance 
of the input-Outpµt mode of the arguments of the 
clause in the logic program. Hence logic 
programs are more compact as compared to 
functional programs. 

One important application of logic 
programming is in its use in knowledge 
representation and reasoning. Both declarative 
and procedural knowledge can be represented 
quite succinctly' in the form of clauses. Facts 
and rules can be represented with the same ease. 
Reasoning with knowledge can be done using the 
inference rule of first order logic called 
resolutim. This ability makes this language 
paradigm quite suitable for artificial 
intelligence applications. 

A promising feature of logic languages from 
iaple<nentation point of view is that they do not 
obscure any parallelism present in the program. 
Parallel architectures based on control flow, 
dataflow and reduction,{3,10 •• 15) have been 
proposed. The motivation for parallel architect­
ures is to speed up symbolic computation - where 
problems are quite unstructured and weak methods 

414 

of problem solving are applied. 
In this paper, we propose an extension of 

Manchester dataflow machine that can support OR­
Paralleli• of logic programs. In addition to 
that, our machine also supports Argument 
Parallelism. A new scheme for handling the 
deferred read mechanim , which permits a read 
request at an eapty merory location, using the 
matching unit of the machine is discussed. This 
siaplifies the design of the meRPry modules. We 
propose suitable data structures and explain how 
the OR-Parallel execution is possible on our 
machine. The rest of the paper is organized as 
follows. Section 2 contains a brief description 
of the definitions and the basic computational 
model of logic programs. Section 3 gives a 
description of our architecture and discusses 
the deferred read mechanism. Section 4 deals 
with the data structures, dataflow procydures 
and the scheme for handling the binding 
environments. Section 5 contains the 
preliminary simulation results of execution of a 
si~le logic program on this machine. 

2. PRELIMINARIFS 

2.1 Basic Definitions 

A logic program is a set of clauses 
expressed in first order logic. We restrict 
ourselves to a specific subset of first order 
logic called Hom clause logic. The syntax of a 
clause is given below: 

A:-Bl,82, ••• ,Bn 
where A,Bl,82, ••• ,Bn are called Predicates which 
are relations over the given domain, A is called 
the head of the clause and Bl, B2, ••• , Bn together 
constitute the body of the clause. Each 
predicate has a fixed arity. A predicate is 
represented as 

P(tl,t2,t3, ••• ,tn) 
where P is the predicate name and tl,t2, ••• ,tn 
are the arguments which are the terms of the 
first order logic l.:mguage. An exa~le of a 
predicate is Father(jotn,mary) which asserts the 
relationship between two terms jotn and mary of 
the domain. 

A term is recursively defined as 
1. A variable is a term, e.g. x,y and z 
2. A functor f(tl,t2, ••• ,tn) is a term where 
tl,t2, ••• ,tn are terms and f is the functor 
name. The arity of the functor is n. The 
constants of the domain are the functors with 0-
arity. 

There are three kinds of clauses. A ooit clause 
does not have a body. A definite clause has both 
head and body. A goal clause has body but no 
head. 



2.2 Interpretaticn of Logic Programs 

The declarative meaning of a clause A:­
Bl,B2, ••• ,Bn is that the predicate A is true if 
Bl,B2, ••• ,Bn are simultaneously true. A unit 
clause is unconditiomilly true as it does not 
have a body. Unit clauses form the facts of the 
program. Definite clauses are rules and goal 
clauses are the intended queries made on the 
logic program. In logic parlance, the set of 
clauses form the set of axioms. A goal clause 
is a theorem to be proved. The meaning of 
execution of a logic program is to find the 
instances of the goal clause implied by the 
given set of clauses. 

From the point of view of execution of 
logic programs, Kowalski has given a nice 
procedural interpretatioo to logic programs. In 
this view, each clause can be considered as a 
procedure. The body of the clause is nothing 
but a set of procedure calls. A goal clause can 
be considered as the initial set of calls to the 
various procedures in the programs. The passing 
of parameters from goal to body is done by a 
bidirectional syntactic pattern matching 
procedure called lB'lificatiai. 

2.3 Basic Calpltational Model 

The underlying model of computation is 
unification. Comparing it with re<ilction which 
is the computational model of functional 
languages, we find that in case of unification 
there is no commitment of the variables as input 
or output. Specification of a subset of 
variables of the goal clause and execution of 
the program result in the solution which 
specifies the values of the unspecified 
variables. In reduction, a set of variables is 
designated as input variables. Input variables 
have to be specified to get the output implying 
that reduction is unidirectional. The 
unification of two predicates results in a 
minimal set of variable bindings called the 
Binding Environment(BE). If the two predicates 
are unifiable, the BE created is unique and 
known as the most general unifier of the two 
predicates. If the two predicates are not 
unifiable than the result of unificati::m is a 
'fail' message. 

In order to solve a goal in a given logic 
pr·ogram, an inference rule called resolution is 
applied. The basic algorithm· for solving tha 
goal clause of a logic program is outlined 
below: 
Initialize goalset to the given goal 
While goalset not empty do 
Begin 
stepl : select a goal from goalset 
step2 : find the matching clause/clauses 
step3 : unify the .head of the clause and the 

goal to generate the BE 
step4 : pass the bindings to the body of 

the selected clause and include the 
body in the goalset 

End 

415 

2.4 Parallelism in Logic Programs 

In the above mentioned computational model, 
many steps can be performed in parallel. They 
are classified[2] as follows: 
Search Parallelism: Searching for the candidate 
clauses for unification and resolution can be 
clone in parallel by associative search. 
OR-Parallelism: When more than one candidate 
clause are present in the program, all of them 
can be attempted simultaneously in order to 
obtain alternative solutions. 
AND Parallelism: Solving a goal clause reduces 
to solving the subgoals in that clause. These 
subgoals can be solved simultaneously the only 
constraint being the consistency of the bindings 
generated by the subgoals. 
Ar~t Parallelism: The arguments of the two 
preieates can be unified in parallel. The 
parallel unification requires consistency check 
on the BE. The reason is that shared variables 
taking part in unification sh:>uld get bound to 
consistent values. 

The motivati·:>n to choose the dataflow 
architecture for executing logic programs is the 
inherent computational structure of the problem. 
A goal in a logic program initiates the 
computation, therefore the program is goal­
driven. Thus if the goal is considered as a 
data item, there is a direct correspondence 
between execution of logic programs and 
execution of dataflow graphs on a dataflow 
machine. 

Our architecture is based on the Manchester 
ring[4,5,6) which is shown in figure 1. The 
original architecture does not provide any 
special hardware for structure handling. Array 
data structures are supported by the matching 
unit using specialized matching functions[?]. 
Recently Manchester machine has been augmented 
with structure store[9] similar to Arvind's !­
Structure store[ l]. As the execution of logic 
programs requires efficient handling of 
structures, we also pr01Tide the structure memory 
(SM) modules in our machine. The structure 
memory is functionally same as Arvind' s !­
structure memory. The basic architecture of the 
proposed machine is sh:>wn in figure 2(a). We 
have added one more unit to the machine which we 
call the Definitioo Search Unit. 

A logic program is assumed to be compiled 
into a set of definitioos. A definition is the 
set of clauses having the same head. The goal 
predicate identifies its definition and attempts 
to unify its arguments with all the clauses in 
its definition. This function of selecting the 
candidate clauses for unification is 
accomplished by the definition search unit which 
is shown in figure 2(b). It has two memory 
units Definition Search Memory and Clause 
Address Memory. The clause address memory stores 
the starting address of the dataflow graphs of 
each of the program clauses such that addresses 
of all the clauses in a definition are stored 
contiguously. Starting address of each 



definition in the clause address memory is 
stored in Definition Search Memory. When a goal 
arrives at the definition search unit, it 
searches for the address of its definition in 
the definition search merrory. After getting the 
starting address of the definition, a copy of 
the goal is sent to all the clauses of that 
definition using clause address merrory. Thus 
th3 purpose of the definition search unit is to 
initiate computation in all the solution paths 
of the goal simultaneously. 

3.1 Deferred Read Mechanism 

In our architecture, we provide a new way 
of handling deferred read re~uests using the 
matching unit. The reason to do so is two-fold. 
First, it simplifies the design of the merrory 
units. Second, commun:kation between the 
processor and the memory is through a bus, 
minimizing control in the memory units would 
reduce the processing time of the memory unit 
thereby reducing the latency between the 
processor and the memory module. Another 
advanta.ge is that the hashing mechanism of the 
matching unit[4,5,6] can be used to support the 
deferred read mechanism without any extra 
hardware. 

A token in the machine can be represented 
as a tuple 

<data,c,i,destination,operand type,token type> 
The first three fields following the data field 
namely c, i and destination fields are required 
to identify an instruction of a particular 
invocation[S] where c and i called the color and 
the iteration count constitute the tag. The 
'operand type' decides whether the token 
requires matching. We define another field 
called token type. This is necessary for 
supporting deferred read mech:inisms. The various 
token types are 'ordinary' 'deferred ' and 
'signal release'. The 'or:dinary' tokens are the 
ones which are generated by the processor during 
the normal course of execution of the dataflow 
graph. The other two types of tokens namely 
'Deferred ' and 'Signal Release' are generated 
when a memory read operation at a particular 
location occurs before the memory write 
operation at th:it location. Their generation 
and use are described below: 

A memory location can be in one of the 
three states, pc:esent, absent, or waiting [ 1). 
When a memory read is requested at a particular 
location 'l', there are three possibilities. If 
the state of the memory location is present, tre 
read is said to be successful and tre result is 
routed to the destinations of the read 
instruction. If tre state is absent or waiting, 
the read instruction cannot be satisfied 
immediately because the location does not 
contain any data value. Such a read request is 
deferred(l]. Tre processo!'.' changes tre state of 
the memory word to waiting and generates a 
'deferred' token of tre format 
<dest-i, c, iter count, 1, op-i, "deferred•> 
wrere 'dest-i' and 'op-i' of tre deferred token 
are the destination and operand type of tre ith 
result token of the read inst!'.'uction. The 

416 

destination field is 'l' which is tre address of 
the memory location where the read was 
attempted, 'c' and 'iter count' are obtained 
from the tag of the read instruction. The 
number of 'deferred' tokens generated is equal 
to the number of destinations of the read 
instruction. These 'deferred' tokens wait in the 
matching unit for the 'signal release' token 
which is generated by some write instruction at 
too merrory location 'l'. 

Wren a write instruction into the memory 
location 'l' is executed, there are three 
possibilities. If the state is present, the 
write instruction is invalid[!]. If tre state 
is absent, the data is written into memory 
location 'l' and its state is changed to 
present. If tre state is waiting, tre data is 
written into tre memory location 'l', its state 
is changed to present and too a 'signal release' 
token of the format 

<dl, 0, O, 1, -, •signal release•> 
is generated by tre processor. Tre data field 
contains 'dl' which is tre value written in the 
memory location 'l'and the destination field 
contains '1' which is tre address of too memory 
location where write operation is performed. 
This 'signal release' token searches for a 
partner token present in tre matching store. A 
token 'i' is its partner if the destination 
field of 'i' matcres with tre destination field 
of the incoming 'signal release' token and tre 
token 'i' is 'deferred'. Tre 'signal release' 
token extracts all tre 'deferred' tokens from 
tre matching unit which match successfully with 
it. Corresponding to each matched token 'i' of 
tre matching store a new token 'k' of tre form 
<dl, c, itercount, dest-i, op-i, •ordinary"> 

is generated. This token is nothing but the 
result of the read instruction .at the memory 
location 'l'. Its data field contains dl, tre 
content of the memory location 'l' and is 
obtained from the data field of the 'signal 
release' token. The destination field of token 
'k' contains tre destination to which tre this 
'ordinary' token 'k' should be routed. The 
destination address of token 'k' is obtained 
from the data field of the matching deferred 
token 'i'. The color, iteration count and 
operand type fields of token 'k' are copied from 
tre corresponding fields of tre deferred token 
'i'. Depending on tre operand type, token 'k' 
is either put back in the matching unit 
distributor or is sent forward to the node 
store. Thus too 'si.gnal release' token releases 
all tre deferred read requests generated for the 
memory location 'l'. There are two ways of 
implementing this scheme. One is to provide a 
separate store in tre matching unit wrere only 
deferred tokens are stored. This sci-Erne does 
not af feet the search of ordinary tokens but 
effective utilization of the matching unit is 
reduced. Tre otrer screme does not allocate any 
separate memory and is based on tre assumotion 
that tre number of deferred tokens is a minor 
fraction of tre total number of tokens generated 
by the program, therefore the effect of the 
deferred tokens residing, in the matching store, 
on the ordinary tokens is insignificant. 



4. DATA STRUCTURES AND DATAFLCW PROCEOORE.5 

To execute logic programs, the machine has 
to support all the basic data types that are 
used in logic programs. These are constants, 
variables, lists and structures. In fact, list 
and constant types are special cases of 
structures but are treated separately in 
PROL03[3]. We also follow the same convention. 
We represent the BE as a list of <variable, 
binding value> pair. Apart from these data 
types, some structures are necessary for 
representing a goal, a context and a binding 
envircrnnent. These are goal node, context and 
binding node respectively. They are described as 
follows 
Goal Node: It is a 2-tuple <<predicate name, 
argument address>, context pointer>. The 
predicate name is used to identify the 
corresponding definition of the predicate in the 
definition search unit. The argument pointer 
points to the array containing the ar·guments of 
the goal. The context pointer points to the 
last context created. 
Binding E.nvironment: It is a list of binding 
nodes where each binding node is represented as 
a 3-tuple <variable,binding value,n·ext node> 
where variable and binding value fields are used 
to represent the bindings created during 
unification. Next node is used to form the list 
of bindings. 
Context: It is a record like data structure used 
to hold the BE along with other control 
information. The following are the fields in a 
context. 
Context number: Each context is identified by a 
unique number. This number is used in r•enaming 
the variables of a clause in order to 
distinguish the variables of the clause under 
different invocations. 
~ag: It is a <color, iteration count> pair which 
is used in restoring the tag of a data tok·en 
when it returns fro:n a clause. At the time of 
the creation of a context, the return tag of the 
token is stored in the 'tag' field. 
Destination: It gives the address in the 
dataflow graph to which the result token sh:luld 
return after exiting from the clause. 
Prev context: It is a pointer to the previous 
context. 
First: It is a pointer to the first element in 
the BE • 
Last: It points to the last element in the BE. 
Unify fail: A boolean variable that indicates 
the status of the envircnment which can be valid 
or invalid. 

4.1 Handling Multiple Binding Environments 

Jim Crammond[BJ has discussed three methods 
for handling multiple BEs for OR-parallel 
execution of logic programs. These are 
Directory tree, Hash windows and Variable 
importation. A modified form of directory tree 
method which is suitable for dataflow 
implementation is employed in our architecture. 
The advantage of our scheme is that no 
environment copying is done. Since we represent 

417 

the envirooment as a list of bindings, the time 
required to search for the value of a variable 
is O(n) where n is the number of elements in the 
BE. 

When a clause is invoked, a new context 
which is referred to as present context is 
allocated in the structure memory. The return 
address and the return tag are stored in the 
present context. The arguments of the clause 
head are unified with those of the goal and the 
BE is created. The prev context field of the 
present context is made to-point to the previous 
context. The pointer to the previous context is 
obtained from the context pointer field of the 
goal no::le. When the clause does not have any 
more goals to be solved, the BE of the previous 
context is appended to the BE created in the 
present context .and the new BE so creat>ed is 
stored in a new context called return o:xttext 
whose other fields are copied from the 
corresponding fields of the previous context. 
The return context is returned from the cl.;i.use 
to the destination indicated in the destination 
field of the present context. The two distinct 
advantages of doing so are, 
1. Search for a variable need be done only in 
one context. on the contrary, in case of the 
directory tree tecmique, search has to be done 
in a list of contexts. 
2. No copying of environment is required at any 
stage, but in the case of directory tree method, 
the uncommitted contexts which contain at least 
on unbound variable are to be copied and passed 
on to the subsequent contexts. 

We illustrate by a hypothetical example how 
envirooments are managed. Consider a progra:n 
having six clauses given below. 
(1) P:-Q,R. (2) P:-A. (3) Q, (4) Q. (5) A.(6) R. 
The goal is P. We assume that each predicate 
has some arguments. The goal P unifies with the 
clauses 1 and 2 to produce two contexts cl and 
c2 as shown in figure 3(a). The BE created 
context i is represented as ' ( bei) '. These two 
clauses 1 and 2 form the two alternative 
solution paths for the goal P. The subse~uant 
goals in the two solution paths are Q and A. 
The· goal <2 unifies with chuses 3 and 4 to 
generate two more contexts c3 and c4. Both these 
contexts have c 1 as their predecessor. The goal 
A unifies with clause 5 and creates context c5. 
Its predecessor is c2. The configuration of the 
contexts at this stage is sh:lwn in figure 3(b). 
The clauses 3, 4 and 5 ,being unit clauses, do 
not have any sub;ioals in their body, therefore 
the 'return' contexts rl, r2 and r3, sho;m in 
figure 3 (c), are returned to the destinations 
specified in contexts c3, c4 :i.nd c5 
respectively. Thia contexts rl and r2 from 
clauses 3 and 4 return to clause 1 and focm two 
new goals with the predicate R. The context r3 
from clause 5 returns to clause 2. As clause 2 
does not have any more goal, the BE in that 
context (r3) is returned as on•a of the three 
solutions as indicated in figure 3(c). The two 
goals R corresponding to the two 'return' 
contexts rl and r2 unify with clause 6 and 
create contexts c6 .and c7 as shown in figure 
3(d). Subsequently 'return' contexts r4 and r5 



are returned from clause 6 to give the other two 
solutions as shown in figure 3(e). Looking it 
another way, we find that during the process of 
execution of a goal, a tree of BE is created 
with each path corresponding to one alternative 
solution. Whenever a goal enters a clause, it 
increases the level of the tree grown so far by 
one. Whenever an exit is llB.de from a clause, 
the level of the tree is reduced by by one. 
Ulti11B.tely when all the goals are solved, the 
tree is converted into a set of BEs where each 
is an alternative solution to the goal. 

4.2 Dataflow Pr:ocedures 

As the user is relieved of the burden of 
specifying the algorittm, the machine must have 
some built-in mechanisms for controlling the 
execution of programs. In the case of 
sequential PIDI.m unification and backtracking 
are built into the machine[3J. Analogously, we 
provide the following built-in dataflow 
procedures for execution of logic programs. (i) 
UNIFY (ii) WRITE IN BE (iii)SEARCH (iv)COPY 
ARGUMEm'S (v) EXIT (vi )CALL COPY AND UNIFY 
(vii )PASS ARGUMENI'S. We describe below these 
procedures in a Pascal-like syntax and give 
explanations wherever necessary. 

procedure UNIFY( tl,t2,ct) :/* tl and t2 are the 
two terms to be unified and ct is the context */ 
begin 
if not ct.unify fail then 
begin . 
if tl.dtype=t2.dtype then 
begin 
if tl.dtype='atom' then 
begin 
if tl.val<>t2.val then 
ct.unify fail:=true: 

end: 
if tl.dtype='var' then 
WRrrE IN BE(tl, t2, ct): 
if tl.dtype='list' then 
begin 
UNIFY(tl.head,t2.head, ct): 
UNIFY(tl.tail,t2.tail, ct): 

end: 
if tl.dtype='struct' then 
begin 
if different struct names then 
ct.unify fail:=true else 
begin 
for i:= 1 ton do 
/* n:no. of arguments*/ 
UNIFY(tl.arg(i),t2.arg(i),ct): 
synchronize: · 

end: 
end: 

end 
else 
begin 
if tl='var' then 
WRITE IN BE(tl,t2, ct): 
else if t2='var' then 
WR!rE IN BE(t2, tl, ct): 
else ct.unify fail:=true 

en<b 

418 

endJ 
return ct: 

end. 
The procedure UNIFl unifies the two terms and 
calls the procedure WRITE IN BE to write the 
<variable,·value> pair in th3 BE. 

procedure WRITE IN BE(vl,dl,ct): /* vl:variable, 
dl: binding value, ct : context*/ 
begin 
if not ct.unify fail then 
begin 
bn:- request new binding nooe: 
bn.variable:-vl: 
bn.binding value:-dl; 
search for vl in BE, 
if vl is present then 
begin 
dl':-value of vl already present in BE: 
UNIFY(dl',dl,ct): 

end 
else put bn in the BE: 

endJ 
return ct: 

end. 
The procedure WRITE IN BE checks for the 
presence of a variable in the BE. If the 
variable is already present, it performs the 
consistency check on the BE by unifying the two 
values of the variable, one already present and 
other one the new binding value dl discussed 
above. If the variable is not present, the 
<variable, value> pair is written in BE. 

procedure SEARCH(al, dl, ct):/* al :the address 
of an empty memory location, dl : term and ct : 
the context */ 
begin 
stepl :if dl is ground or env=nil then write 
dl in address al: 
if dl is a variable then 
begin 
search for dl in BE; 
if not found then write dl in al: 
else 
begin 
new dl:-binding value of dl: 
new ct:-ct: 
new al:-al: 
goto stepl 

end: 
end7 
if dl is a list then 
begin 
al' :-request new list node: 
write al' in al: 
SEARCH(al'.head,al.head,ct): 
SEARCH(al'tail, al.tail, ct): 

end: 
if dl is a structure then 
begin 
fl':-request new structure: 
store functor name and number of arguments: 
for i:=l to number of arguments do 
SEARCH(fl'.arg(i), dl.arg(i),ct): 

end1 
endJ 
The procedure searches the environment for the 



given term and writes the result of the search 
process in address al. 

procedure COPY ARGUMENTS(al, dl, i);/* al 
address of a memory location, dl : term and i 
integer */ 
begin 
if dl is ground then write dl in al; 
if dl is variable then 
begin 
dl':=rename(dl,i); 
write dl' in al; 

end; 
if dl is a list then 
begin 
dl':-request new list node; 
COPY ARGUMENTS(dl',head, dl.head, i); 
(X)PY ARGll'1ENTS(dl'.tail, dl.tail, i); 

end; 
if dl is a structure then 
begin 
fl:- request new structure; 
store functor name and arguments 
for j:=l to number of arguments do 
COPY ARGUMENTS(fl.arg(i),dl.arg(i), i}; 

end; 
end. 
The procedure COPY ARGUMENTS writes the 
arguments into the address location specified. 
This procedure is required because each 
unification is performed on a new copy of the 
arguments. The instruction 'rename', renames a 
variable by tagging it with a number. The 
renaming is required to distinguish the 
variables of a clause under different 
invocations. 

procedure exit(ct); 
(k ct is a context pointer */ 
begin 
if ct.prev context=nil then 
begin -
return ct to the destination specified in its 
destination and set the t.ag of the return 
token with ct.tag; 

end 
else 
begin 
ct':-request new context; 
copy the four fields context name, tag, 
destination and i;>rev context of ct' from the 
corresponding four fl"elds of ct.prev context; 
return ct' to the address specified in the 
destination field of ct and set its tag (color 
and iteration count) using tag field of ct: 
if ct.first=nil then 
begin 
ct'.first:-ct.prev context.first; 
ct'.last:-ct.prev context.last; 

end -
else 
begin 
ct'.first:-ct.first; 
if ct.prev context.first=nil then 
ct'.last:-ct.last 
else 
begin 
ct'.last:-ct.prev_context.last; 

419 

ct.last.next node:-ct.prev-context.first; 
end: -

end; 
end; 

end. 
The procedure EXIT appends the BE of the 
previous context (ct.prev_context) to the BE of 
the present context and creates a return context 
ct' if the previous context is not nil , 
otherwise it returns ct. The return address and 
return tag are obtained from the present 
context(ct}. 

procedure CALL (X)py 'AND UNIFY(gl,ct,n,addr ,r); 
/* gl : goal node, ct the context, n : number of 
arguments in the head of a clause, addr : the 
address of array of arguments of th:! head, and 
r : return address */ 
begin 
al:-request new array(n}; 
a2:-re~uest new array(n); 
k:=ct.context nurrber; 
for i:=l to n do 
begin 

(X)py ARGU"IENfS(al(i),addr.arg(i), k}; 
COPY ARGUMENTS(a2(i),gl.arg addr.arg(i),0}; 
/* 0 indicates that renaming is not done*/ 
UNIFY(al(i}, a2(i}, ct} 

end; 
synchronize; 
return ct: 

end; 
The above procedure invokes unification of all 
the arguments of a clause head with those of the 
goal. The instruction 'synchronize' is used to 
wait till all the unifications of the arguments 
are complete which ensures the complete 
for:nation of the BE. 

procedure PASS ARGU1ENTS(al,dl, n, ct): /* al, 
dl : pointers to arrays, n : integer and ct : 
context */ 
begin 

for i:=l ton do 
SEARCH(al(i), dl(i), ct); 

end; 
The above procedure carries out the search for 
each aro;:iument of dl in the BE and writes the 
result of the search process in the 
corresponding element of array al. 

A clause is represented as a dataflow graph 
consisting of calls to procedures CALL COPY A.l\ID 
UNIFY, PASS ARGU1ENTS and EXIT. The dataflow 
graphs for a definite clause and unit clause are 
sh:>wn in figure 4(a) and 4(b) respectively. 
The opera tors 'split goal' , 'form goal' are used 
for manipulation and creating of the goal node. 
The main feature of the dataflow graphs of the 
clauses is their modularity. The complexity of 
the graphs is independent of the argument 
complexity which enables easy c0<~pilation of the 
program cl:iuses. 

5. SIMUIATIClll OF THE ARCHl1'0C'l'URE 

A simulator for this architecture is 
developed in SIMULA-67 on a DEC-1090 system with 
a view to studying the performance of the 



machine in terms of the speedup of the machine 
and utilization of various hardware units 
namely processor, matching unit, no:le store unit 
and memory mo:lules. The variables are, number 
of processors, number of matching units and the 
number of memory mo:lules. We have simulated the 
Grandparent relationship problem on our 
machine. The problem, though simple, captures 
all the features of a logic program. The 
relation between execution time and number of 
processors for this problem is shown in figure 
5(a). We find that for this particular problem, 
the maximum speedup achievable is 3 with eight 
processors. The variation of utilization of the 
matching unit and the processing element with 
the variation in processing elements is shown in 
figuce 5(b). The utilization of the matching 
unit is low (26%) for a single processor .;rnd 
reaches a maximu:n (67%) with eight processors. 
Further simulations of more complex problems are 
under pro;iress. 

6. CXNCLUSI~ 

A dataflow machine for executing logic 
pro;irarns is proposed. The machine supports OR­
parallelism and argument parallelism. A new 
scheme for handling deferred read mechanism is 
su9gested. The ::lataflow graphs for the program 
clauses are quite modular and are independent of 
the complexity of the arguments, hence the 
compilation of the clauses is easy. Work is in 
progress to devise better schemes for 
representing the BE with a view to minimizing 
search process. 

The authors th3.nk Mr s. Sundaram, Centre 
for Computer Aided Design, Indian Institute of 
Science, Bangalore for helping them in the 
preparation of the manuscript. 

[l] Arvind and R.E.Thomas, I-Structures:An 
Efficient Datatype for Functional Languages, 
Technical Memo TM-CSG-174, Laboratory for 
Computer Science, MIT, September 1980. 

[2] J.S.Conrey and D.Kibler, "Parallel Inter­
pretation of Logic Programming," Proceedings of 
the International Conference on Functional 
Programming and Computer Architecture, 1981. 

[3] D.H.D.Warcen, Implementing Prolog-Compiling 
Predicate Logic Programs, D.A.I., Research 
Report 39, Unfvers1ty of Edinburgh, 1977. 

[4] I.Watson and J.R.Gurd, "A Practical Data­
flow Computer", IEEE Computer, February 1982. 

[ 5] J. R .Gu rd, I. Wa ts:m and J. R. W .Glauert, A 
Multilayered Dataflow Architecture, Internal 
Report, Department of Computer Science, 
University of Manchester, 1980. 

[6] J.R.Gurd, C.C.Kirkham .and I.Watson, " The 

420 

Manchester Prototype Dataflow Computer", CACM, 
Vol. 28, No. l, January 1985. --

(7] J.Sargeant and C.C.Kirkham, ~·stored Data 
Structures on the ~nchaster Dataflow Machine"·, 
Proceedings of the 13th Annual Symposium on 
Computer Architecture, 1986. 

[ 8 J Jim Crammond, "A Comparative Study of 
Unification Algorithns for CR-Parallel Execution 
of Logic Langua9es 11 , IEEE Transactions on 
Computers, Vol. C 34, No. 10, 1985. 

[9} K.Kawakami and J.R.Gurd, "A Scalable Data­
flow Structure Store", Proceedings of the 13th 
Annual Symp. on Computer Architecture, 1986.--

[10} N.Ito et al., "The Architecture and Preli­
minary Evaluation Results of The Experimental 
Parallel Inference Machine PIM-D", Proceedings 
~f~~~...ll!~,,A~~~~l~~~E~-2.~..f~~E~~~ 
Architecture, 1906. 

[11] N.Ito et al., "Dataflow Based Execution 
Mechanisms of Parallel and Concurrent Prolog", 
New Generation Computing 3(1985). 

[12] R.Hasegawa and Makato A'namiya, "Parallel 
Execution of Logic Pro;irams Based on Dataflow 
Concept", Proceedings of the International 
Conference on Fifth Generation Computer Systems, 
1984. 

[13] R.Hasegawa et al, "An Architecture for 
List-Processing-Oriented Dataflow Machine", 
REVIEW of the Electrical Communication 
LaboratorTes, Vol. 32, No. 5, 1984. 

[14] s.umeyama and K.Tamura, "A Parallel 
Execution Model of Logic Programs", Proceedings 
of the 10th Annual Symposium on Computer 
Architecture,1983. 

[15] Zahrin Halim, "A Data-Driven Machine for 
OR-Parallel Evaluation of Logic Programs", New 
Generation Computing 4(1986). 

NOOE STCJlE 

MATCHING UNIT 

PE : Processing element 

SWITCH 

TO HOST FROM HoST 

FIG .1 THE MAN CHESTER RING 



DEFINITION 
SEARCH UNIT 

TO HOST FROM HOST 

PE - Proc.ssing etem•nt 
MU - Matching ooil 
SM - Structure- memory 

FIG. Zia) OAlAR.OW ARCHllEClURE 10 EXECUTE LOGIC PROGRAMS 

Oeofinition search 
memory 

OATAFLOW 
GRARi 
ADDRESSES OF 
THE Q.AUSES 
IN A OEFINITICJll 

Claus. address 
ml!'mory 

FIG. 2 (b) DEFINITIOH SEARCH UNll 

Goat token Goat token 

FIG.4(b) OATAFL.OW GRAPH 

• ~P is the goal ----------.. • 

n-(boll n. (bo2l ct~ c2~ 

c3 

rl~(bo3)(bol) 

R is the goal 

(bo3)(boll 
rl 

(be 6) 
c6 

(a) UNIFICATION WITH CLAUSES 1 AND 2 

A is the goal 

(bo4) 

cZ~bo2) 

cS~(boSl 
(b) UNIFICATION WITH CLAUSES. 3, 4 AND 5 

n (bo4)(bel) r2~ n (be5)(bo2) 
r3 t:3-

solution 1 

(c) RETURN FROM CLAUSES 3, 4 ANO 5 

R is the goal 

r2 t bo4)(bo1) 

be 7) 
c7 

(d) UNIFICATION WITH CLAUSE 6 

n (bo6)(bo3)(be1) 
r4 t::3- n (be7)( be4)( bol) ,5!::5-

solution 2 solution 3 

(e) RETURN FROM CLAUSE 6 

FIG.3 MULTIPLE BINDING ENVIRONMENTS N OR-PARALLEL EXECUTION 

100 

5 80 

~ 
~ 60 ... 
! 
z 40 g 
s 
~ ... 20 

100 

80 

OF LOGIC PROGRAMS 

1 'TIME UNrT i= 'IOO nonosecs 

GRANDPARENT RELATIONSHIP 

gpo.r(X~YJ :-por{X,2),por(Z,YJ 

par ( john,.mcl"Y) 
par { mary jill) 
- gpar (john.I) 

11 15 
(Q) 

D PROCESSOR 
O MAltHINC UNIT 

FOR A CLAUSE PCX,Y) 
i5 

FIG.4(a) DATAFLOW GRAPH FOR A CLAUSE 
P (X,Y) :-Q1X, Zl, R(Z1 Y) 

n : Number of arguments 

arg address : pointer to argument 
array 

ret address : return address 

421 

~ 
;; 
s .. 

60 

40 

20 

II 
NUMBER OF PROCESSORS 

(b) 

FIG 5 (al EXECUTION TIME vs. NUMBER OF PROCESSORS 

(b) UllLIZAllON -s. NUMBER OF PROCESSORS~ 



Storage Schemes for Efficient Computation of a Radix 2 FFf in a 
Machine with Parallel Memories 

D. T. Harper III and D. A. Linebarger 

Erik Jonsson School of Engineering and Computer Science 
The University of Texas at Dallas 

Richardson, Texas 75083-0688 
(214) 690-2974 

Abstract 

Efficient bit-reversed access of vectors is an important considera­
tion in designing architectures for use in signal processing applications. 
In particular, this type of access occurs in radix 2 FFT algorithms. 

In this paper two skewing schemes which permit efficient bit­
reversed access are discussed and compared in the context of a simple 
computer architecture such as might be designed around a low-cost, 
high performance specialized DSP chip. Performance measurements 
are shown for each scheme and simple address generation hardware is 
presented. 

Introduction 

Efficient algorithms for computation of the discrete Fourier 
transform have been studied intensely over the past 25 years. Most of 
these investigations centered around attempts to minimize the arith­
metic complexity of such algorithms. The motivation for this direction 
was the fact that the time consuming operations in the algorithms were 
the arithmetic ones. However, improvements in VLSI processing and 
architectural optimization now permit extremely fast arithmetic opera­
tions to be performed. Current commercial multipliers are capable of 
sub 50ns operation on 32-bit data and all indications are that that figure 
will continue to fall. One effect of these advances is that the process­
ing bottleneck has moved out of the arithmetic unit and into the 
memory. The limiting factor is now the rate at which data can be 
transferred to the arithmetic unit. 

There are several approaches to alleviating this bottleneck. The 
first approach is to use faster memory. The same technological 
advances that achieved fast arithmetic circuits also achieved fast 
memory circuits. The disadvantage of this approach is that for large 
amounts of memory the cost becomes prohibitive. Other concerns are 
the problems of dissipating the large quantities of heat generated by the 
fast memory devices and the additional space required by the lower bit 
densities of the fast memories. 

The second approach is to use a cache to achieve an apparent 
memory cycle time which is lower than the cycle time of the main 
memory. Disadvantages of this approach are the added complexity of 
hardware to implement the cache and the added complexity of the 
software or hardware to manage the cache. 

A third approach, and the one pursued here, is to use parallel 
banks of slower memory, each of which can operate independently, so 
that overlap between multiple banks, or modules, creates an effective 
memory cycle time which is low enough to support the data rates 
required by the arithmetic unit. This technique is particularly applica­
ble to systems which perform vector operations. The disadvantage of 
using parallel memory architectures is that severe performance degra­
dation results .ifreferences are directed to modules which are busy pro­
cessing prior references. This event is known as a memory collision. 
The rate at which collisions occur is determined by three factors: which 
data items are being referenced, the temporal order in which these 
items are accessed, and how the items are distributed over the parallel 
modules. Since the first and second factors are usually determined by 
the particular problem being solved it is useful to focus on the third 

422 

factor. 

The issues of determining a storage policy to allow efficient 
access to vectors using strides common to matrix operations and of 
how much performance degradation occurs when collisions do occur 
have been considered by several authors [l,2,3,4,5,6] with most 
conflict-free systems being based on a prime number of modules. 
Harper and Jump [7] have also considered the performance implica­
tions of using a composite number of modules. Melton and Norton [8] 
have proposed a storage scheme to solve the problem of vector 
accesses with strides equal to powers of 2 (S = 2s) for memory systems 
with a power of 2 number of modules (JV = 2n ). 

In this paper accessing patterns common to a typical Cooley­
Tukey radix 2 FFT algorithm are considered. The Cooley-Tukey radix 
2 FFT operates on a vector with a length equal to a power of 2 and 
accesses the input data with strides equal to powers of 2. The perfor­
mance of the proposed storage schemes with the FFT access patterns is 
discussed in the context of a simple architecture which does not have 
an expensive parallel interconnection network such as a multistage net­
work or a crossbar. 

Architecture 

In the architectural model considered in this paper, computation 
is performed by a processor which is assumed to be capable of process­
ing data at the bus rate. Equivalently, the system bottleneck is 
assumed to be caused by access conflicts in the memory. This is not an 
unreasonable assumption given the speed of current hardware and the 
prevalence of pipelining in execution units. This architecture differs 
sharply from the system considered in [8] which employed a highly 
parallel interconnection network. 

One important feature required of the processor is a decoupling 
of the data fetch and execute cycles. This allows the fetch hardware to 
generate a stream of addresses to the memory independently of the 
operation of the execution unit. After some delay, the data referenced 
by the address stream is returned to the execute unit of the processor. 
These two tasks operate asynchronously with each other. The data­
independent nature of vector accesses in the FFT algorithm makes this 
decoupling advantageous. Each memory module is assumed to have a 
bus interface register so that a reference transmitted to a memory does 

Figure 1: Butterfly 



not require the use of the bus for the entire memory cycle (subsequent 
transmissions can be overlapped with the memory cycle). 

FFT Algorithms 

The fast Fourier transform (FFI') is a computationally efficient 
way of computing the discrete Fourier transform - an operation that is 
often performed in signal-processing applications. The focus of this 
paper is on implementation of the standard radix 2 Cooley-Tukey FFT 
[9, 10] on a machine with parallel memories. Although FFT's have 
been developed that are faster than the radix 2 FFT, the radix 2 FFT is 
still widely used. It is assumed that the input sequence is of length 
L = 21• 

The fundamental operation in any FFT is known as a butterfly. A 
radix 2 butterfly has two inputs and two outputs. The butterfly compu­
tation consists of one complex multiplication and two complex addi­
tions as shown in Figure 1. Each node represents a complex addition 
with any indicated negations. we is notation often used with FFT's 
and is a symbol for exp(-j2rcnlL). We is a multiplicative constant for 
the branch it appears by. Each stage of a radix 2 FFT consists of L 12 
butterfly computations with the entire computation requiring log:zl, 
stages. The entire FFT is a sequence of butterfly computations. Each 
butterfly has two inputs and two outputs, but for the standard imple­
mentation of the Cooley-Tukey radix 2 FFT, the separation between the 
two inputs (and the two outputs) varies from one stage to the next. 
Hence, the accessing pattern is variable. 

The most commonly used algorithms for the radix 2 FFT are in­
place. The in-place algorithms have their input vectors in order and 
their output vector is produced in a scrambled order, or vice-versa. Fig­
ure 2a shows an algorithm where the input is in order. There are two 
important observations to be made concerning Figure 2a: 

(1) The output points for each butterfly are adjacent to its input 
points. This implies that the implementation can be calculated 
in-place. 

(2) The separation between the input (and output) points for each 
butterfly decreases in each successive stage of the FFT. This 
implies that the accessing pattern is different from one stage of 
the FFT to the next. 

The second characteristic of the in-place implementation of the radix 2 
FFT makes it difficult to develop an efficient algorithm for storing the 
input data across multiple memories. 

The nodes at a given stage of the FFT can be reordered without 
changing the function of the FFT as long as none of the connections are 
changed and the multiplicative constants move with the original con­
nection with which they are associated. Thus a rearrangement of the 
node ordering for the flow graph in Figure 2a can be considered which 
might be more efficient for an architecture with parallel memories. The 
implementation illustrated in Figure 2b is known as a constant 
geometry algorithm since all stages of the FFT have the same 

0 0 0 

W»14 
-1 

2 2 2 

3 W»16 
-1 

3 

4 1 4 

5 W»15 
-1 5 

6 3 6 

7 W»17 
-1 

7 

Figure 2: FFTflow graphs 

423 

connection pattern. The same computations are performed by the 
FFT' s illustrated in Figures 2a and 2b; only the order of computation 
has changed. The input and output vectors of the constant geometry 
FFT are in the same order as those for the in-place FFT only the inter­
mediate nodes have been reordered. However, it should be noted that 
the constant geometry implementation of the FFT cannot be calculated 
in-place. 

Since each stage of the constant geometry FFT is identical the 
number of accessing patterns to be considered is reduced. The butterfly 
inputs and outputs are accessed in pairs; on the output the pairs consist 
of consecutive, adjacent pairs (stride 1). The input pairs consist of ele­
ments separated by half the sequence length, L . At the last stage, the 
output appears in scrambled order. 

Storage Schemes 

Vector accesses in the constant geometry FFT algorithm [9] con­
sist of three different patterns. One is the stride 1 access which is 
easily handled by interleaving the addresses across the modules. The 
second is consecutive pairs separated by half the sequence length. The 
third access pattern is the pattern referred to in the previous section as 
"scrambled". The pattern is not truly random; it is a "bit-reversed" pat­
tern. In this pattern the sequence of elements required is equivalent to 
the binary numbers formed by reversing the order of the bits of a 
binary counter. The most significant bit of the counter becomes the 
least significant bit of the address, the least significant bit of the counter 
becomes the most significant bit of the address, etc. Figure 3 shows the 
order of elements required by a bit-reversed access of a length 16 vec­
tor. Unlike constant stride accessing patterns, bit-reversed accesses are 
dependent on the length of the vector being accessed. In-place FFT 
algorithms require bit-reverse access for vector lengths of all powers of 
2 less than or equal to L . The constant geometry implementation only 
requires bit-reverse access for length L and only performs this type of 
access after the final stage of computation is completed. 

Stride 1 0000 0001 0010 0011 0100 
(0) (1) (2) (3) (4) 

Bit-Reversed 0000 1000 0100 1100 0010 
(0) (8) (4) (12) (2) 

Figure 3: Stride 1 and Bit-Reversed Access Patterns 

It has been recognized by several authors [11] that generating 
bit-reversed sequences of addresses under software control is prohibi­
tively expensive. To reduce the penalty for these accesses it has been 
proposed that hardware support for bit-reversed address generation be 
added to the memory system (12] . While this improves performance 
by removing the address generating task from the software, only part of 
the problem is solved. The problem of memory contention in bit­
reversed accesses has not been considered. 

To address the problem of memory collisions in bit-reversed 
accesses the vector storage scheme of the system must be considered. 
It has been noted that interleaved schemes based on low-order inter­
leaving perform well only when the access stride is relatively prime to 
the number of memory modules. Referring to the bit-reversed 
sequence in figure 3, it seems as though there is no fixed stride 
involved. However, the sequence can be viewed as the concatenation 
of L 12 length 2 vector accesses each of which has a stride of L/2 but 
differs in their starting address. Thus, there are two accessing patterns 
involving pairs separated by L 12, the difference being the order that the 
pairs are accessed. Since the number of modules, N = 2n, is a power of 
2, and since the length of vectors in FFT algorithms is often also a 
power of 2, L = 21, system performance can be degraded due to the 
effects of memory collisions when low-order interleaving is used. 

A more desirable storage scheme therefore must provide for both 
stride 1 and stride L 12 accesses. If L is restricted to be a power of 2 



then Norton and Melton have proposed such a scheme based on a set of 
boolean transformations. For a system with N = 4 and L = 16 then 
their storage scheme maps the elements of the vector into the modules 
as shown in Figure 4. 

Mo M1 M2 M3 

m 5 I JI I] I] 
4 

Figure 4: Norton/Melton Storage Scheme 

Under this scheme all power of 2 stride accesses can be made in a 
conflict-free manner. Although they do not explicitly state the ability 
of their scheme to provide conflict-free access to bit-reversed patterns 
it is clear that the capability is present. These statements are true as 
long as the architecture has a parallel interconnection network between 
the processor and the memory so that an address can be delivered to 
each module simultaneously. In the architecture considered here that is 
not the situation. Since only a single address is delivered to the 
memory in each time period contention can occur due to references to 
the same module in a sliding window of N references rather than in a 
fixed window of N references. Figure 5 uses the sequence of module 
addresses generated for a stride l access in a 4 memory system with the 
Norton/Melton storage policy to show collisions due to the lack of a 
parallel interconnection network. Unfortunately, the scheme proposed 
by Norton and Melton produces multiple conflicts when used with a 
sequential network. An alternative scheme for storing vectors accessed 
in bit-reversed order can be constructed as follows. Note that this 
scheme does not eliminate conflicts but serves to reduce the frequency 
of their occurrence compared to the scheme of Norton and Melton. 

Begin by dividing the vector into N parts each of length LIN. 
Elements 0, l, ... ,LIN '-1 are placed in module 0. Elements 
LIN ,LIN+l, ... ,'2LIN-1 are placed in module l, etc. This storage 
scheme, shown in Figure 6a, permits conflict-free access for consecu­
tive L I 2 pairs and reduced conflict access for a bit-reversed pattern but 
does not permit efficient stride 1 access. To obtain the stride 1 access it 
is sufficient to skew each row by 1 module from the preceding row. 
The resulting patterns are shown in Figure 6b. 

Performance Comparison 

To evaluate the relative performance of the two schemes several 
simulation experiments were performed. Using a discrete-event simu­
lation package a model of the architecture was, developed. In the 

Parallel Network: conflict occurs if a single module is referenced 
more than once in each group of 4 references. 

0321 I 3012 i 2103 i 1230 : no conflicts 

Serial Network: conflict occurs if successive references to a 
module are separated by fewer than 3 references. 

0 3 2 1 3012 2103 1 2 3 0 : several conflicts 
t t 

Figure 5: Sequence of Module References To Demonstrate the Effects 
of the Interconnection Network - N = 4 

424 

performance measurements it was assumed that the bus cycle time, t6 , 

was matched to the memory cycle time, tb: tm = N · tb. Also, timing 
was normalized to the bus cycle time (tb = 1). The input to the simula­
tions was the sequence of module addresses required to fetch the par­
ticular vector elements. The simulation measures memory system 
throughput, TP, as a function of the sequence of module addresses. 
Figure 7 compares the performance of the scheme proposed by Norton 
and Melton with the scheme proposed here. The solid lines indicate 
performance for stride 1 accesses. The dotted line measures 
throughput for a bit-reversed access under the proposed scheme. Bit­
reversed access performance under the RP3 scheme perform identically 
to stride 1 accesses. The graphs indicated by the dashed lines represent 
performance on stride L 12 accesses. It is clear that for the three access 
patterns and the architecture considered here that the proposed scheme 
leads to better memory performance. It should also be noted that the 
proposed scheme requires L <!: N 2 to distribute vector elements 
correctly. This is not viewed as a strong constraint since in architec­
tures similar to the one discussed here N is typically on the order of 4 
to 16. Larger values of N are not required since the bus quickly 
becomes the bottleneck of the system. These values of N do not 
require a particularly large value of L . 

TP 

Mo 

0 
1 
2 
3 

Mo 

~ 

4 
5 
6 
7 

Figure 6a 

8 
9 

10 
11 

M2 

Figure 6b 

12 
13 
14 
15 

Figure 6: Proposed Storage Scheme 

1.00 
proposed 

0.75 ~-~·~·~·~·:.:::~~~~ -~ ------= 
0.50 

0.25 

lf I<, 
I ' 

I ' 

' ' 

256 

' ' ' ... ---
'")to- - -

512 

Vector Length 

Figure 7: Performance Comparison 

--"" RP3 

1024 



Other simulations have been performed by varying the value of 
N used. Results of these simulations are similar to those presented in 
Figure 7. 

Address Generation 

For any storage scheme to be practical the question of address 
generation must also be considered. Norton and Melton devised an 
elegant method for implementing their address mapping. In this sec­
tion a simple method is demonstrated which generates the address of 
the k'h element of a vector access (either stride 1 or bit-reversed). The 
hardware required to perform the mapping of k into the address of the 
appropriate vector element is shown to be inexpensive. In the follow­
ing discussion the length of the vector is given by L = 21 and the 
number of memory modules is given by N = 2". 

Equations (1.r) and (l.m) specify the row and module address of 
the k •h element referenced during a stride 1 access. The module 
address is the number of the module being referenced; the row address 
is the location of the reference within the module. 

L r1(k)=kmodN, 

m1 (k) = [ k + l k ~ j] mod N 

(l.r) 

(l.m) 

Let bits of a value be numbered from 0 at the least significant position 
and let Xi:j represent bits i through j of x. By using the fact that L 
and N are both powers of 2 equation (1.m) can be rewritten as: 

m1(k) =[ko:n-1+k1-n:1-1] modN 

Equations (2.r) and (2.m) specify the addresses for the bit-reversed 
access pattern. BR (x ) indicates the value of x after reversing its bits. 

rbr (k) =BR (kn:l-1), (2.r) 

mbr (k) = [BR (ko:n) +BR (k.:1-d] mod N (2.m) 

Circuits which compute the values of m1(k ), r1(k ), mbr(k ), 
and rb, (k ), are shown in Figure 8. Blocks labeled reverse perform 
bit-reversal on their inputs. This is achieved simply by mapping a per­
mutation of the input bits to the output bits. The additional hardware 
required to implement the storage scheme consists of two n bit adders. 

counter 

ko,1-1 

kn:l-1 koon-1 

ko:l-n-1 ko:n-1 k l-n:l-1 reverse 

l ¥ 
Ybr,O:n-1 

+ 

r1(k) m1(k) rbr(k) mb,(k) 

Figure 8: Address Generation Hardware 

Conclusions 

To summarize, advances in technology have permitted the fabri­
cation of extremely fast arithmetic units. This has served to move the 
bottleneck of computationally intensive problems, such as the FFT, 
from the ALU to the memory. One solution to this problem is to 

425 

provide parallel memories so that overlap can occur between succes­
sive references if the references are directed to different modules. 

For FFT algorithms designed for an architecture with a parallel 
memory system the constant geometry version of the radix 2 FFT will 
better utilize memory bandwidth. The proposed storage scheme allows 
for fast memory access in the patterns required for the constant 
geometry radix 2 FFT. This may be of particular importance in real­
time applications. 

The analysis was based on an architecture with a low-cost, serial 
interconnection network. Under these constraints it was shown that the 
proposed storage scheme provided better memory performance than 
the scheme proposed by Norton and Melton. The problem of generat­
ing addresses was also considered and it was shown that a simple cir­
cuit based on two adders is capable of generating the proper address 
sequence. 

References 

1. P. Budnik and D.J. Kuck, "The Organization and Use of Parallel 
Memories," IEEE Trans. Comp. C-20(12) pp. 1566-1569 
(1971). 

2. D.H. Lawrie, "Access and Alignment of Data in an Array Pro­
cessor," IEEE Trans. Comp. C-24(12) pp. 1145-1155 (1975). 

3. D.H. Lawrie and C.R. Vora, "The Prime Memory System for 
Array Access," IEEE Tran. Comp. C-31(5) pp. 435-442 (1982). 

4. H.D. Shapiro, "Theoretical Limitations on the Efficient Use of 
Parallel Memories," IEEE Trans. Comp. C-27(5) pp. 421-428 
(1978). 

5. H.A.G. Wijshoff and J. van Leeuwen, "The Structure of Periodic 
Storage Schemes for Parallel Memories," IEEE Trans. Comp. 
C-34(6) pp. 501-505 (June 1985). 

6. Wilfried Oed and Otto Lange, "On the Effective Bandwidth of 
Interleaved Memories in Vector Processing Systems," IEEE 
Trans. Comp. C-34(10) pp. 949-957 (Oct. 1985). 

7. D. T. Harper III and J. R. Jump, "Vector Access Performance in 
Parallel Memories Using a Skewed Storage Scheme," IEEE 
Trans. Comp. C-36(12) pp. 1440-1449 (Dec. 1987). 

8. A. Norton and E. Melton, "A Class of Boolean Linear Transfor­
mations for Conflict-Free Power-of-Two Stride Access," Proc. 
1987 Int. Conj. on Parallel Processing, pp. 247-254 (1987). 

9. Alan V. Oppenheim and Ronald W. Schafer, Digital Signal Pro­
cessing, Prentice-Hall (1975). 

10. C.S. Burrus and T.W. Parks, DFT!FFT and Convolution Algo­
rithms, Wiley-Interscience (1985). 

11. E. 0. Nwachukwu, "Address Generation in an Array Processor," 
IEEE Trans. Comp. C-34pp.170-173 (Feb.1985). 

12. P. T. Hulina and L. D. Coraor, "A Hardware Memory Mapping 
Unit for Efficient Address Computation," Proc. 1987 Int. Conj. 
on Parallel Processing, pp. 340-343 (1987). 



Distributed Instruction Set Computer 
Lingtao Wang and Chuan-lin Wu 

Department of Electrical and Computer Engineering 
· The University of Texas at Austin, 

Austin, Texas 78712. 

Abstract -- Distributed Instruction Set Computer 
(DISA) is a multiple functional-unit computer system. It 
employs a new architecture, Distributed Instruction Set 
Architecture (DISA) to explore the execution parallelism at 
the instruction level. DISA expands data flow concept to 
combine the operation and execution infonnation together. The 
execution information, such as data dependence, is detected 
with a post-compiler and attached to the opcode. DISA 
instructions are self-contained execution units which can be 
executed independently with one another in multiple 
functional units. This alleviates the perfonnance bottleneck in a 
conventional multiple functional-unit system which uses a 
large associate memory table to decode instructions. DISC and 
DISA together have demonstrated a new and efficient way to 
incorporate data flow concept into von Neumann computer 
architecture. 

Introduction 

The current thinking in speeding up the instruction 
execution in a multiple functional-unit system is to apply 
concurrent instruction issuing" [l], "out-of-order execution" 
[2] or "branch prediction" techniques[3]. Eaeh techniques has 
run into some difficulties when it is implemented in a von 
Neumann type instruction set. For instance, we need a large 
table to support a high degree of instruction issuing. The data 
tag search in a large table has contributed to a lengthy clock 
cycle. For the out-of-order execution, the system needs to 
repair the side effect of the execution whenever it encounters 
an exception[ 4]. This repair work becomes an overhead which 
slows down the processing speed. Our investigation into these 
techniques has shown the problem is not caused by the 
techniques but by the von Neumann type instruction set 
architecture. A von Neumann type instruction set architecture 
is designed for a sequential execution in a uni-processor 
system. It separates the operation information from the 
execution information. The operation information, such as 
opcode and operand, is given in the source code. The machine 
decodes the instruction to determine the execution information, 
such as data dependencies in the run time to execute the 
instruction. It is this run-time execution information detection 
that puts a tremendous burden on hardware design. It becomes 
a performance bottleneck when we intend to execute multiple 
instructions at the same time. A direct solution to this problem 
is to give up the von Neumann type instruction set architecture 
for a multiple functional-unit machine. 

In this paper, we introduce the concept of Distributed 
Instruction Set Architecture(DISA) to solve this problem. We 
first describe the concept of DISA. We then develop a generic 
hardware system based on DISA. The system which we call 
Distributed Instruction Set Computer(DISC) is modeled with 
software to study its performance. We report our initial 
evaluation of DISC by running several benchmark programs 
on the model. 

426 

Distributed Instruction Set Architecture 

There are three steps to issue an instruction: 1) fetch the 
instruction; 2) detect status of the execution unit; 3)decode and 
issue the instruction for execution. The concept of DISA is to 
speed up this procedure by eliminating the first two steps in a 
multiple functional-unit environment. We use software 
techniques to detect data dependence among instructions 
during compiling time. A post-compiler is used to detect the 
data dependencies among the instructions. It converts data 
dependence in the instruction into a data tag which shows the 
number of cycles the data needs to become "mature" in this 
instruction.The data tag is then attached to the instruction. By 
doing this, an instruction which is fetched from the memory 
can be immediately issued to a functional unit for execution. It 
is the responsibility of each functional unit to check the data 
tag before it pursues execution. This is the same concept as a 
tagged-token data flow architecture[S]. However, we detect 
the data dependence with a software which eliminates a 
lengthy table search in the conventional data flow approach. 

An example is given in Figure 1 to explain the idea. In 
Figure l, R3 has a dependence between the first and the 
second instruction. In DISA, we assign R3 in the first 
instruction with a 0 tag, and R3 in the second instruction with 
a 1 tag. When the first two instructions are sent to two 
functional units for execution in the same cycle, the second 
functional unit finds R3 with a non-zero tag. It decreases the 
tag by one and waits for one cycle. In the next execution 
cycle, it re-checks tag and finds a zero tag, it then proceeds to 
complete the execution. For an instruction that has unknown 
status during compiling time, such as memory instruction and 
conditional dependable instruction, we assign a flag bit to the 
instruction. The flag indicates that a conditional bit is required 
to be checked before the execution. When a functional unit 
receives the instruction, it checks the conditional bit in addition 
to the data tag checking. It only executes the instructions when 
both are satisfied. An example is R7 in instruction 4 and b. 
Both depend on the outcome of instruction 3. 

I.Add RI,R2,R3 /*RI +R2->R3* I 
2.0r R3,R4,R5 /*R3 OR R4 ->RS*/ 
3.CBra,= RS,0,#b /* jump to #b if RS=O*/ 
4.Sub R4,R6,R7 /* R4-R6->R7*/ 

b.Sub RI,R2,R7 /*Rl-R2->R7*/ 

Figure 1: Data dependence among instructions. 

The control flow of DISA is shown in Figure 2. A 
DISA processing cycle consists of a transmission sub-cycle 
and an execution sub-cycle as shown in Figure2a. The 
instruction dispatcher pre-fetches instructions. It then sends n 
instructions to n functional units in the forward routing phase 
of the transmission sub-cycle. A free functional unit accepts a 
new instruction. It checks the data tag and conditional bit in the 



instruction during the checking phase of the execution cycle. 
If tag shows an executable status, the functional unit pursues 
the execution in the second phase. Otherwise, it decreases the 
tag by 1 and idles for one cycle. In the next cycle, this 
functional unit refuses any new instruction and repeats the 
checking on the same instruction until it finishes the execution. 
Meanwhile, the unaccepted instructions are automatically 
routed back to the instruction dispatcher during the second 
backward sorting phase of the transmission cycle. They will 
be re-tried in the next transmission. 

Transmission sub-cycle Execution sub-cycle 
1-~~~~~~~---1 

Phase!: Phase 2: 
Forward routing Backward sorting Phase I: 

Phase 2: 
Tag checking Bxecutim 

Figure 2a: DISA Processing Cycle 

Backward D at a 

ID: Instruction Dispatcher. 
yes FU: Functional Unit. 

INET: Instruction Network. Execute the 
instruction 

Fiugre 2b: DISA System Control Flow Diagram 

Instruction Set Format 

U datin Phase 

DISA is a register intensive instruction set architecture 
with load and store as the only memory access instructions. 
Each register is associated with a data tag which shows the 
dependencies with other instructions. The instruction format 
is affected by the structure of its targeted machine. In our 
research, we characterize a multiple functional-unit DISC 
system with four factors, [c,n,m,b]. c is the number of 
execution cycle per instruction, n is the number of functional 
units in the system, m indicates the number of memory ports 
and b is the level of branch prediction. 

DISA has three instruction formats: one operand with 
long immediate, two operands with short immediate and three 
operands. Each operand in the instruction is assigned a tag, as 
shown in Figure 3. The tag(TAG) is an i-bit field. In a 
[l,n,m,b] system, the relation is i = log2(n). A dynamic 
tag(DTAG) field is defined to handle the dynamic flow 
information. Each bit in the DT AG corresponds to a 
conditional flag. It requires the functional unit to check the flag 
in addition to all the TAG fields. A good post-compiling 
detection algorithm is the key in this idea which is described in 
the following section. 

427 

I OPCODE I OPl I TAOll OP2 I TA021 OP3 I TAO~ DTAO 

Figure 3a: 3-operand tagged instruction format 

I OPCODE I OPl I TAOll OP2 I TA021 IMMEDIATE! DTAO 

Figure 3b: 2-operand tagged instruction format 

I OPCODE I OPl I TAOll IMMEDIATE DTAO 

Figure 3c: 1-operand tagged instruction format 

Post-compiling Algorithm 

The post-compiler is a piece of software. It reads the 
assembly source code, decodes the instruction and generates 
the data-tag DISA instructions for a specific DISC [c,n,m,b] 
system. An "active window" algorithm is used in calculating 
the data tag. The size of an active window, w, is defined as the 
number of instructions which can be active at one instance in 
the system. The post-compiler checks one window at a time to 
calculate tags. In the worst case, it needs to check p-n+ 1 
windows for a program with p instructions in a [1,n,m,b] 
DISC system. A general post-compiling algorithm is shown in 
the Algorithm 1. A detailed description is in another report[ 6]. 

Algorithm 1: Post-compiling scheme 
l) Scan one instruction. If it is a load instruction, we 

adjust its memory ports. If it is a branch-target 
instruction and not the first instruction in a new 
window, we adjust the instruction sequence to make it 
as the first instruction and jump to step (4). 

2) Calculate TAG and DTAG. 
3) Repeat steps 1 to 2 to scan a new instruction until we 

fill the current window. 
4) Calculate the instructions for next window. 
5) Repeat steps 1 to 3 to finish a new window. 
6) repeat step 1 to 5 to finish the program. 

Distributed Instruction Set Computer 

Based on DISA developed above, we propose a DISC 
system with 8 functional units. A [l,8,4,1] DISC system is 
shown in Figure 4. A processing cycle starts with the 
Instruction Dispatcher(ID) to fetch multiple instructions from 
the system instruction cache. ID cooperates the instruction 
issuing with the instruction network(INET) to send n 
instructions to n functional units(FU) every cycle. A free FU 
accepts a new instruction and checks the data tag. If the tag 
shows an operand is not ready at that moment, the FU 
updates the tag and holds the instruction for one cycle. 
Meanwhile, INET routes rejected instructions back to ID. In 
the next transmission cycle, the busied FU rejects a new 
coming instruction and checks the tag again. It repeats the 
same sequence until the operand is ready. It then fetches data 
from Register File(RF) through data network(DNET) and 
executes the instruction. If it is an ALU instruction, FU stores 
the result back into RF and becomes available to accept a new 
instruction in the next transmission cycle. 

Instruction Dispatcher 

ID is an interface logic between CPU and the instruction 
cache. It fetches multiple instructions from instruction cache 
and issues them to FUs through INET. 



Instruction Cache MMII 
Cache Contro1er 

Data Cache MMU 

Figure 4: DISC[l,8,4,1) System Organization 

Instruction Network 

INET is a multistage n by n, circuit switching, 
synchronous control network. The INET with n=8 is shown 
in Figure 5. Each 2*2 switch element has a third control port 
to the elements above and below it. A built-in logic enables the 
upper output to have a higher priority than the lower one. A 
switch element always tries to send an input instruction to the 
upper output port if it is available. The element in the last row 
has an internal buffer to hold blocked instructions. 

The INET provokes an automatic routing scheme that 
the network routes the instructions by itself to minimize the 
transmission overhead. It employs a three-step routing 
scheme. The first step is to detect the status of FU and set up 
the forward routing paths for each channel. A FU raises its 
input port low or high to indicate that it is able or unable to 
accept a new instruction in this cycle. The switch element next 
to it raises both input ports and control output high if it senses 
a "disable" FU. Then, each switch element detects the status of 
its previous elements and the element above it to set up its 
switch pattern. If both its outputs are high, it raises both input 
ports and control output high. It raises the lower input port and 
control output high, if only its control port is high. A high port 
indicates the path is blocked. An element with both its outputs 
high is unable to receive and transmit any instruction. In the 
second step, INET sends the instructions from ID to FUs by 
following the set-up physical paths. In the third step, INET 
routes un-accepted instructions which are blocked in INET 
back to channels of ID. 

Functional Unit 

A FU has a 32-bit ALU to provoke a three-stage 
pipelined execution. It fetches two data, executes the 
instruction and stores the data within one cycle. 

428 

STAOBl STAOE2 STAOE3 STAOB4 STAOB!I STAGB6 STAOE7 STAOB8 

___.. data port n'<•o-?~· control port CHi: the i-th channel of instruction 
dispatcher. 

Figure S: INET with n=8. 

Data Network 

DNET is a 32 by 8 cross-bar network. It transmits the 
data between RF and FUs. It supports one-to-one and 
many-to-one transaction for every execution cycle. 

Common Control Bus 

The common control bus(CCB) provides the inter-unit 
communication among FUs. It is used to support any running 
time information needed to execute the instructions, such as an 
exception or interrupt. Art interrupt or exception is detected 
and reported to ID through CCB by a FU. When ID receives 
an exception report, it holds the instruction issuing and sends 
status report instruction(SRI) to each FU to ask a status report. 
A FU executes SRI to report its status, either complete or 
incomplete. When ID sees an "incomplete" status report, it 
needs to repair the system to a re-startable point before it 
issues the exception handler instructions. The overall flow 
chart is shown in Figure 6. 

An exception reported to ID; 
ID atop• lnatructlon iaaulna. 

ID Hinda SRI to each FU, and 
••k• atatua report via CCB. 

Repair the ayatcrn to a. 
re-atartablo point. 

Each FU aenda ita Incomplete 
inatruction back to ID. 
ID latch• all tho "lncornploto" 
lnatructiona and marka Jt aa 
re-atartablo point. 

Start tho ox.coption handlina 
procedure. 

Yoo 

No repair work. ID mark.a the 
next isntruction aa re-atartable 
point. 

Figure 6. DISC Exception Procc .. ina Flow Chart. 



Evaluation 

Four programs are written in a generic DISC assembly 
language. The first program, Matrix, calculates matrix addition 
and subtraction on two linear arrays. Each array has 100 
elements. The second program, Matrix-I, is the same as Matrix 
but it is optimized for DISC system. The optimization 
techniques are: 1) unfold the loop, 2) register renaming and 3) 
instruction re-ordering. The third program, Bubble, is a 
non-numerical one which uses bubble sort algorithm to sort 10 
elements of a linear array in an ascending order. We only sort 
10 elements for an easy tabulation with other programs. The 
fourth program, Salesman, is a traveling salesman problem. It 
finds the minimal distance for a salesman who visits 6 cities 
once and returns to the starting city. 

Each program is traced in a DISC system with four 
configurations;[l,l,1,1], [1,2,l,l], [l,4,1,1] and [l,8,1,l]. 
Since we insert NOOP(no-operation) instructions into the 
program during the compiling time, Table la shows the size 
of program change in different system configuration. A 
[l,l,1,1] DISC system is equivalent to a conventional von 
Neumann type machine. Table lb shows a gradually 
performance improvement when the number of FU increases. 
During the trace analysis, a non-memory instruction takes one 
cycle and a memory instruction takes two cycles. The impact 
of memory latency is neglected by assuming no cache miss or 
TLB miss. It will be studied in the future. 

Table 1~ DISC programs lize in number of instructioDS 

~ - 1 2 4 

Matrix 19 19 19 

Matrix-I 32 32 32 

Bibbie :I) :I) 22 

Sde1m1n SS Ii) 11 

number of cxecttion cycles 

3000 

•Matrix 
# Matrix-I 
@Bubble 

2SOO \.. $ Salesman 

2000 I\.~ 
llOO \. ~ 
1000 ~ 
soo ~--lii---..(1!@ 

1234567& 

8 

19 

32 

Tl 

123 

Figure 7a: DISC ,programs etcution time 

Table lb: DISC program execution ume(cycles) lllCI, 

~ -
Matrix 

M11rix-l 

Bubble 

Salesman 

execution time of o=l 
Perfonnm:e ratio=-----

tucution time of n=2,4.& 

I 2 4 8 

l!Cll 1203 1102 1102 
1.00 us 1.13 1.13 
I ill llSJ 1052 1052 

'l.00 1.61 1.16 1.16 
114 532 469 424 
1.00 1.34 l.S2 1.68 
2674 :1)73 1909 1145 

1.00 1.29 1.40 1.4l 

performmco ralio 

l 2 3 4 S 6 1 B 

Figure 7b: DISC programs perfonnance ratio 

Figure 7a shows the total execution cycles for each four 
programs in a DISC system. Figure 7b shows the equivalent 
performance gain. The performance gain is not linearly 
proportional to the number of functional units in the system. 
An 80% improvement is gained for numerical programs and 

429 

60% for non-numerical programs. The numerical programs 
contain few control instructions and many computation 
instructions. They tend to have a better performance 
improvement than non-numerical programs. However, 
non-numerical programs show better performance 
improvement than numerical programs in a DISC[l,8,1,1] 
system. This is because non-numerical programs tend to have 
multiple branch instructions which can only be explored with a 
large number of functional units. 

Conclusion 

The concept of DISA is to apply the concept of data 
flow to a multiple functional-unit machine. It modifies von 
Neumann instruction set architecture to combine the operation 
and execution information together. Software techniques are 
applied to coordinate the data dependencies among the 
instructions. It minimizes the hardware complexity and system 
overhead in a distributed execution environment. These all 
together make DISA an ideal candidate for a distributed, 
parallel processing, multiple functional-unit machine. A 
generic system DISC has been proposed to study various 
aspects of DISA. The instruction streams and data streams are 
shown to be the most critical components in DISC. We invent 
INET which maintains a constant instruction stream into the 
multiple-FU engine. The regular cell and simple routing 
scheme have made INET very attractive in the real world. 

Two software simulation models are under construction. 
One is used to study INET issuing mechanism, the other is 
used to investigate DISC system. Our future effort is to set up 
a [1,8,m,1] DISC system model. Then, benchmark programs 
will be written or collected to study the system performance on 
the model. When DISA concept is proven, we will concentrate 
on writing a DISC compiler and post-compiler to translate a 
program from C-language into DISC assembly language. At 
this early stage of research, we feel that we have invented a 
simple way to incorporate the data flow concept into von 
Neumann computer architecture. DISA enables us to speed up 
the program execution at the instruction set level in a very nice 
and efficient way. 

Reference 

[l] R.D.Acosta, J.Kjelstrup and H.C.Torng,"An instruction 
issuing approach to enhancing performance in multiple 
functional unit processors", IEEE Tran. Com., vol.c-35, 
no.9, pp.815-828, Sep. 1986. 

[2] Y.N.Patt, W.M.Hwu and M.Shebanow,"HPS, A new 
microarchitecture: rationale and introduction", the Proc. of 
the 18th Microprogramming Workshop, pp.103-108, 
Dec. 1985. 

[3] J.E.Smith,"A study of branch prediction strategies", 8th 
Int. Symp. on Com. Arch., pp.135-148, May 1981. 

[4] W.W.Hwu and Y.N.Patt, " Checkpoint repair for 
high-performance out-of-order execution machines", IEEE 
Tran. on Com. v.C-36, n.12, pp.1496-1514, Dec. 1987. 

[5] Arvind and R.S.Nikhil," Executing a program on the MIT 
tagged-token dataflow architecture", the Proc. PARLE 
Conf., Eindhoven, The Netherlands, Jun. 1987. 

[6] L. Wang, D.C.Zu and J.M.Chai," DISC Post-compiler 
structure and algorithm", University of Texas, ECE 

Department, Internal Tech. Rep. No. DISC-H-88-01. 



An Improved Approximation Algorithm 
for Scheduling Pipelined Machines 

David Bernstein 

IBM Research 
T. J. Watson Research Center 
Yorktown Heights, NY 10598 

Abstract 

Consider a pipelined machine which can issue one instruction 
every machine cycle, but can use its result only d + 1 machine 
cycles after it has been issued. Instruction scheduling is an 
important phase of the compilation process whose goal is to 
generate optimized code for such machines. Since the problem 
of producing optimal instruction schedules for pipelines for 
arbitrary expressions, with possibly common subexpressions, is 
NP-complete (except of a few restricted cases), we concentrate 
on approximation solutions. A class of scheduling algorithms, 
called leveling algorithms, is defined and analyzed. The basic 
leveling algorithm sometimes yields bad schedules such that the 
ratio of their length over the length of an optimal schedule can 
be made arbitrarily close to 2 - 1/(d + 1) which is the upper 
bound of list schedules. We refine this algorithm to improve the 
worst case ratio to 2 - 2/(d + 1). The time complexity of the 
refined leveling algorithm is O(na(n) +e log n) where n is the 
number of instructions, e is the number of dependences among 
the instructions, and a(n) is a very slow-growing function. 

1. Introduction 

Pipelining is a common technique for building fast processors. 
In contrast to parallel processing, in which computational 
jobs can be initiated simultaneously, only one instruction can 
be issued every machine cycle in a pipelined machine; several 
instructions may be executed concurrently, one in every stage 
of the pipe. In general, recently designed computer 
architectures ([HB84], [K81]) include both pipelining and 
parallelism. In this paper we concentrate on the effect of 
pipelining which mostly characterizes recently proliferating 
RISC machines [R83], [K84], [P85]. 

Pipelining may cause the insertion of NOPs (No 
OPerations) into the sequence of machine instructions either 
by hardware or software. In both cases a certain penalty is 
paid in increased execution time. Minimizing the number of 
NOPs increases the effective speed of the machine. It is a 
task of the compiler that produces code for a pipelined 
machine to schedule the instructions as to get rid of maximum 
number of NOPs. Previously, this problem was tackled both 
in production compilers by implementing different (heuristic) 
algorithms and in theoretical scheduling papers. 

430 

Li assumed identical delays of all the instructions in the 
pipeline [L77]. In this case, assuming that the input is limited 
to tree expressions, an optimal computation can be 
constructed by executing first the instructions furthest from 
the root of the tree. Directed acyclic graphs ( dags) were 
considered by Bruno et. al. [BJS80]. They showed that if the 
delays of all the instructions are equal to one time unit, then 
Coffman-Graham's algorithm ([CG72]) can be used to 
produce an optimal solution. This result was generalized in 
[BG86] and [BRG87] where an optimal solution was given 
for dags for the case when the delays are either 1 or 0. 
However, if no bound is put on the maximal delay d then the 
problem of finding an optimal computation turns out to be 
NP-complete as was proved in [HG83] for dags. A recent 
survey on the complexity of scheduling for pipelined 
machines can be found in [LLM87]. Since it is unlikely to 
find a polynomial solution to the pipeline scheduling problem 
for arbitrary d, we turn to approximation algorithms and 
study their worst case behavior. 

In [AH82], [HG83], and [GM86] different heuristic 
algorithms were implemented in production compilers, but for 
none of them worst case bounds are known, even though 
satisfactory results were reported on average. In [BRG87] it 
was proved that an upper bound for list schedules ([C76]) on 
pipelined machines is 2 - l/(d + I). So, the question is how 
better than this upper bound we can do. 

We propose an algorithm that follows the critical path 
approach by assigning a level to each instruction. Then, a 
computation is constructed in such a way that instructions at 
higher levels are computed first. This has been a natural 
heuristic approach to multiprocessor scheduling ([CL75], 
[LS77], [S76b]). Unfortunately, there are examples in which 
this basic leveling algorithm can perform on dags as badly as 
the upper bound of list schedules. 

Then, we define a refined leveling algorithm that improves 
the worst case ratio of the length of the schedule produced by 
the algorithm over the length of an optimal schedule to 
2 - 2/(d +I). Also, we mention a family of examples that 
approaches this worst case ratio arbitrarily closely. In 
[BRG87] the same worst case ratio of 2 - 2/(d + I) was 



proved for Coffman-Graham's algorithm, but on average the 
refined leveling algorithm is advantageous. 

The time complexity of the refined leveling algorithm is 
O(na(n) +e log n) where n is the number of instructions, e is 
the number of dependences among instructions and a(n) is a 
very slow-growing function. However, the refined leveling 
algorithm (similarly to Coffman-Graham's algorithm) 
requires the given dag of dependences among instructions to 
be free of transitive edges. Usually, it can be assumed that 
the dag is given in that form, but if it is not true, the removal 
of transitive edges can dominate the time complexity of all 
the process since it takes time 0( min(en, n2 '61 )) to do that 
[G82]. 

In the next section we start with some preliminary 
definitions. Then, in Section 3 the leveling algorithm is 
described, and we conclude with directions for future 
research. 

2. Background 

The scheduling model we consider consists of a single 
processor P and a job system T = (J, D, G). T comprises a set 
of unit execution times jobs J = {J,, ... ,J0 }, a set of delays 
D = {D" ... ,D0 } where D; E {0, .•. , d} for some fixed 
integer d, and a directed graph G = (J,E) of precedence 
constraints. (The delays model the pipelined structure of P.) 
In this paper we limit ourselves to consider the case where for 
all i, D, = d. 

A legal schedule is defined as a one-to-one mapping S 
from the elements of J into the set N of positive integers 
(interpreted as time slots) such that for all (JJ,) E E, 
S(J,) - S(J,) > D,. A time slot of S, in which no job can be 
executed because of delay limitations, is called a NOP. 

We assume that G has no transitive edges since they do not 
impose additional restrictions on a schedule S of T. Also, the 
leveling algorithm which will be presented in Section 3 
requires to distinct transitive and non-transitive edges of G. 

For example, consider the job system of Figure 1 (a). The 
jobs are represented by circles, and their indices appear inside 
the circles. Also, it is assumed that d = 2. Two legal 
schedules for the job system are shown in Figure l(b), where 
i in column j means that J, is executed in time slot j. Notice 
that time slots 7 and 11 of S 1 are NOPs since D, = 2 and 
D8 = 2. 

The completion (maximum finishing) time c(S) of a 
schedule S is defined by max S(J,). For example, in Figure 
l(b), c(S 1) = 14 and c(S2)'= 13. In this work we will be 
interested in minimizing the completion time, which is 
equivalent to minimizing the number of NOPs. An optimal 
schedule S is a legal schedule for which c(S) is smallest. It 

431 

turns out that S2 of Figure 1 (b) is an optimal schedule for the 
job system of Figure 1 (a). 

3. Scheduling algorithms 

3.1. List schedules 
Let T = (J, D, G) be a job system with n jobs. If (J,,J,) E E 
we say that J1 is an immediate successor of J;, and J, is a.n 
immediate predecessor of JI° Given a schedule S for T, J1 1s 
ready in time slot k, if each of its immediate predecessors J, 
has been scheduled not later than time slot k - 1 - D;. 

Now we consider an important class of schedules, called 
list schedules ([C76]). Informally, given a priority list L of the 
jobs of J, the list schedule S that corresponds to L can be 
constructed by the following procedure: 

1. Iteratively schedule the elements of S starting in time slot 
1 such that during the i-th step, L is scanned from left to 
right, and the first ready job not yet scheduled is chosen 
to be executed in time slot i. 

2. If no such job is found, a NOP is inserted into S in time 
slot i. 

Consider a class of optimal schedules for T. Since all the jobs 
in T have unit execution times, there is no reason in optimal 
schedules to leave the processor P idle whenever a ready job 
exists. Therefore, for our problem, an optimal schedule can 
always be found among list schedules. The obvious question 
is how to obtain the right priority list L. 

Analyzing a class of list schedules, we would like to know 
how far from the optimum an arbitrary list schedule can be. 
Let us denote optimal schedules by S0 P, and arbitrary list 
schedules by S;;_,. The upper bound for list schedules was 
proved in [BRG87] to be as follows: R = c(S;;")/ c(S,,P,) 
::; 2 - 1 / (d + 1 ). In the next section, an algorithm that 
improves on this upper bound is presented. 

3.2. Leveled schedules 
In this section, a subclass of list schedules, called leveled 
schedules is considered. If J; E J has no immediate successors, 
we say that J; is a sink of G. Also, let /S(J) (or IS; for short) 
be the set of immediate successors of J,. 

First, the original leveling algorithm that was introduced at 
first in [BRG87] is described. The level l(J) of a job J, is 
defined as follows: 

l(J;) = { ~. + max l(X) 
I XE IS; 

J1 is a sink of G 
otherwise 

Notice that the total execution time of the jobs does not 
affect the levels as defined above. 



Let L be a priority list of the jobs in J constructed in a 
non-increasing order of their levels (the order among the jobs 
of the same level is arbitrary). A schedule S corresponding to 
such an L is called a leveled schedule. Intuitively, in leveled 
schedules we first schedule jobs whose delays are maximal, 
hoping that the NOPs induced by these jobs will be replaced 
by other jobs. 

However, it turns out that the leveling algorithm defined 
above is not successful enough. For example, in Figure l(a), 
for 9 :S i :S 12, l(J,) = 0, for 6 :S i :S 8, l(J,) = 2 and for 
1 :S i :S 5, l(J,) = 4. This may lead to a priority list 1,2, ... ,12 
that results in a non-optimal schedule S 1 of Figure l(b). In 
general, it was shown in [BRG87] that in the worst case the 
leveling algorithm described above does not improve on the 
upper bound of list schedules. 

In the sequel, a refined leveling algorithm (or RL for short) 
that improves on the upper bound of list schedules is defined. 
Let the refined level of J, be denoted by rl(J,) and let 
M; = rl(J,,), ... , rl(J,, .. ) be a sequence on non-negative 
integers constructed from the refined levels of the immediate 
successors of J, ordered in a way that rl(J,,) ;?: ..• ;?: rl(J,,.,)· 
Then, rl(J,) is defined recursively as follows: 

1. If J, is a sink of G then rl(J,) = 0. 
2. Otherwise, rl(J,) = D; + max(rl(J,),rl(J,,) +1, ... , 

rl(J,, .. ) + I IS; I - I). 

Apparently, the number of the immediate successors of a job 
and their refined levels are taken into consideration while 
computing the refined level of a job. A priority list L 
produced by RL is computed as follows: 

1. Compute the levels l(J,) for all i. 
2. Compute the refined levels rl(J,) for all i. 
3. Create a priority list L by first ordering J, in a 

non-increasing order of l, and then ordering the jobs with 
the same value of l in a non-increasing order of rl. The 
order among the jobs with the same values of l and rl is 
arbitrary. 

Using the refined levels of the jobs to create a priority list as 
described above, results in somewhat less arbitrary decisions 
which are made for the jobs of the same level as compared to 
the original leveling criterion. 

For example, consider the job system of Figure 1 (a), and 
let us demonstrate how the refined levels are computed. 
First, for 9 :S i :5 12, rl(J,) = 0. Then, M(J6 ) = M(J7 ) = 
M(J8 ) = {0,0,0}. Therefore, rl(J6 ) =rl(J7 ) =rl(J8 ) = 4. Then 
we get M(J1) =M(J2) =M(J3) = {4}. Therefore, rl(J1) = 
rl(J2 ) =rl(J,) = 6. On the other hand, M(J4) = 
M(J,) = {4,4}. Therefore, rl(J4 ) =rl(J5 ) = 7. This leads to a 
priority list 4,5,1,2,3,6, ... ,12 that results in an optimal 
schedule S2 of Figure 1 (b). 

432 

Because of lack of space we are not able to present the 
analysis of RL and only mention the two main results: 

1. The worst case ratio of the length of the schedule S,1 

produced by RL over the length of an optimal schedule 
S0P, is as follows: R = c(S,1)/c(S,,P,) :5 2 - 2/(d + 1). 

2. The time complexity of RL is O(a(n)n + e log n) where n 
is the number of instructions, e is the number of 
dependences among the instructions, and a(n) is a 
functional inverse of Ackermann's function. 

4. Conclusions 

In this paper we presented a refined leveling algorithm to 
schedule instructions under pipelined constraints whose worst 
case ratio is 2 - 2/(d + 1). This result is proved for the case 
when all the delays are exactly d machine cycles. One of the 
relaxations of our pipelined model is to allow the delays to be 
any integer between 0 and d. The question is how to extend 
RL to this case in order to achieve the worst case ratio of 
2 - 2/(d + 1). 

Another direction for further research is to search for a 
scheduling algorithm which improves on RL. RL 
asymptotically achieves its worst case bound of 
2 - 2/(d + 1) on a complex job system presented by Lam 
and Sethi in [LS77], Fig 10. One of the alternatives to 
improve RL is to construct a priority list L of jobs in the 
non-increasing order of their refined levels (without taking 
into consideration the basic levels I at all). This extended 
leveling algorithm can be shown to do better than 
2 - 2/ (d + I) on all known families of worst case examples 
including that of [LS77]. Our conjecture is that the worst 
case bound of this algorithm is not 2 anymore when d 
increases, however, we are not able to proof this claim at a 
moment. We conclude by demonstrating in Figure 2 a job 
system that, for the best of our knowledge, is worst for the 
extended leveling algorithm we propose. 

The job system T = (J, D, G) of Figure 2 consists of k + 1 
groups of jobs. The group t, 0 ::; t :S k, consists of d type-A 
jobs (A, 1, ••• , A,d) and d type-B jobs (B,1> ... , B,d). The 
precedence constraints described in Figure 2 are such that for 
all t, 1 ::; t ::; k, every type-A (type-B) job of group t - 1 is 
an immediate successor of every type-A (type-B) job of 
group t. Executing the jobs of group t in order A,1> ... ,A,d, 
Br1, ... ,B,d results in an optimal schedule with no NOPs. 
Thus, c(S,,P,) = n = 2d(k + 1). 

It turns out that by applying the extended leveling 
algorithm to T, we get that all the jobs of the same group 
have the same refined level. Thus, we might get a priority list 
L in which the jobs of group t, 0 :S t :S k, appear in order 
A,1> ... .Ard-I. B,1> ... ,B,d,Ard· By applying a list scheduling 
process to L, we get a schedule S that has d - I NOPs after 
each A,d job except of Aod· Thus, c(S) = n + k(d - 1) and 



R = c(S)/c(S,,P,) = 1 + k(d - 1)/2d(k + 1). By increasing 
k, R can be made arbitrarily close to 3/2 - l/2d. 

Acknowledgment. The author would like to thank M. 
Rodeh for many valuable discussions and observations. 

References 

[AH82] Auslander, M., and Hopkins, M., "An overview of 
the PL.8 compiler", Proceedings of the ACM 
Symposium on Compiler Construction (June 1982), 
22-31. 

[BG86] Bernstein, D., and Gertner, I., "Computing 
expressions on a pipelined processor with a small 
number of stages", EE PUB No. 594, Dept. of Elec. 
Eng., Technion, Haifa, Israel, (June 1986). 

[BRG87] Bernstein, D., Rodeh, M., and Gertner, I., 
"Approximation algorithms for scheduling arithmetic 
expressions on pipelined machines", TR-88.227, IBM 
Haifa Scientific Center, (July 1987). 

[BJS80] Bruno, J., Jones, J.W., and So, K., "Deterministic 
scheduling with pipelined processors", IEEE 
Transactions on Computers, C-29, 4 (Apr. 1980), 
308-316. 

[C76] Coffman, E.G., Computer and job-shop scheduling 
theory, John Wiley and Sons, New York, 1976. 

[CG72] Coffman, E.G., and Graham, R.L., "Optimal 
scheduling for two-processor systems", Acta 
Informatica, 1 (1972), 200-213. 

[CL75] Chen, N.F., and Liu, C.L., "On a class of scheduling 
algorithms for multiprocessors computing systems", 
Lecture notes in computer science, Vol. 24, 
Springer-Verlag, New York, 1975, 1-16. 

[G82] Gabow, H.N., "An almost-linear algorithm for 
two-processor scheduling", JACM 29, 3 (July 1982), 
766-780. 

d = 2 

(a) 

N 2 3 4 5 6 7 8 9 10 11 12 13 14 

51 2 3 4 5 6 7 8 9 10 1112 

52 4 5 1 2 3 7 8 6 12 9 10 11 

(b) 

Figure I. A job system and two legal 
schedules 

433 

[GM86] Gibbons, P., and Muchnick, S., "Efficient 
instruction scheduling for a pipelined architecture", 
Proceedings of the A CM Symposium on Compiler 
Construction (June 1986), 11-16. 

[HB84] Hwang, K., and Briggs, F.A., Computer architecture 
and parallel processing, McGraw-Hill, New York, 
1984. 

[HG83] Hennessy, J.L., and Gross, T.R., "Postpass code 
optimization of pipeline constraints", A CM 
Transactions on Programming Languages and Systems, 
5, 3 (July 1983), 442-448. 

[K84] Katevenis, G.H., Reduced instruction set computer 
architecture for VLSI, MIT Press, Cambridge, 1984. 

[K81] Kogge, P.M., The architecture of pipelined computers, 
McGraw-Hill, New York, 1981. 

[L77] Li, H.F., "Scheduling trees in parallel/pipelined 
processing environments", IEEE Transactions on 
Computers, C-26, 11 (Nov. 1977), 1101-1112. 

[LS77] Lam, S., and Sethi, R., "Worst case analysis of two 
scheduling algorithms", SIAM J. Computing, Vol. 6, 
No. 3, (Sep. 1977), 518-536. 

[LLM87] Lawler, E., Lenstra, J.K., Martel, C., Simons, B., 
and Stockmeyer, L., "The complexity of scheduling 
pipelined machines", RJ-5738, IBM Almaden 
Research Center, (July 1987). 

[P85] Paterson, D.A., "Reduced instruction set 
computers", Communication of the ACM 28, l (Jan. 
1985), 8-21. 

[R83] Radin., G., "The 801 minicomputer", IBM J. Res. 
Dev. 27, 3 (May 1983), 237-246. 

[S76a] Sethi, R., "Scheduling graphs on two processors", 
SIAM J. Computing, Vol. 5, No. 1, (Mar. 1976), 
73-82. 

[S76b] Sethi, R., "Algorithms for minimal length schedules", 
in Coffman, E.G., ed., Computer and job-shop 
scheduling theory, John Wiley and Sons, New York, 
1976, 51-99. 

A,, 

B., 

B,, 

Figure 2. A worst case example for 
extended RL 

s •• 

B., 



The Processor Partitioning Problem 
In Special-Purpose Partitionable Systems 

Ramesh Krishnamurti 
School of Computing Science 

Simon Fraser University 
Burnaby, B.C. V5A 1S6 

Canada 
(604) 291-4116 

Eva Ma 
Department of Computer Science 

University of Pennsylvania 
Philadelphia, PA 19104 

(215) 898-8549 
Abstract: 

We address the problem of processor partitioning in parti­
tionable systems used for special-purpose applications. We 
demonstrate that the partition size for a task should depend 
on the task characteristics, the workload, and the avail­
ability of resources. Thus, to maximize throughput, the 
partition sizes for a set of tasks should he determined at 
run time. Such an approach could be supported in special­
purpose applications since the set of tasks the system needs 
to support are usually known in advance. We first show 
that given a set of tasks and their characteristics, the prob­
lem of determining the optimal partition sizes for the set 

of tasks is NP-Complete. We then present a polynomial 
time approximation algorithm for this problem. We also 
derive a worst-case bound on the solution obtained by the 
algorithm as compared to the optimal solution. 

Section 1: Introduction 

Partitionable architectures, also called Multiple SIMD­
/MIMD architectures or MSIMD /MIMD architectures, con­
sist of a set of processors and controllers [NUT77, PRE80, 
SIE81). Such architectures can be partitioned into indepen­
dent subsystems, each comprising of a variable number of 
processors and a con troll er assigned to the execution of a 
task. Each of these subsystems may either be in the SIMD 
or MIMD mode of computation. In addition to the flexibil­
ity of supporting both SIMD and MIMD modes, the ability 
to form multiple independent subsystems to execute several 
tasks in parallel provides such a system with the potential 
of achieving better utilization of processing resource. 

An important problem that needs to be addressed in the 
partitioning of these systems is one of determining the num­
ber of processors allocated to each subsystem, that is, the 
partition size for each task. One possible approach to de-

This work has been supported by National Science Foun­
dation Grant DCR84-51408, National Science Foundation 
CER Grant MCS82-19196, AT&T Information System Re­
search Grant, Army Research Office Grant DAAG-29-84-K-
0061, and the President's Research Grant at Simon Fraser 
University. 

434 

termining this size is to first derive the maximum degree of 
parallelism available in the program, and then choose the 
partition size to be either this maximum degree of paral­
lelism or the maximum number of processors in the systeni 
that may be allocated to the task, whichever is smaller. 
Such an approach to determine the number of processors 
allocated to a task has been used widely in conventional 
SIMD and MIMD systems, and much work in the areas of 
programming languages and compiler design has been done 
to support this approach [KUC77]. 

Such an approach, however, may not be optimal from the 
standpoint of either minimizing the execution time for a 
task or the completion time for a set of tasks (we define 
completion time to be the least time by which all tasks 
in the set have completed execution). Since most parallel 
programs require communication among processors during 
their execution, for many parallel programs, the communi­
cation between processors may play a dominant role in the 
overall execution time with increasing partition size. As 
a result, the improvement in execution time may level off 
as the partition size increases. In other words, there is an 
effect of diminishing return in performance with larger par­
tition sizes. Furthermore, beyond a certain partition size, 
the execution time may actually increase. The optimal par­
tition size for a task depends on the computation and com­

munication structure of the program, the size and values 
of the input data, and the computation and communica­
tion support of the system [LIN81, NIC87, MA87, MA88]. 
This size could be smaller than both the maximum degree 
of parallelism in the program and the maximum number of 
processors that may be allocated to the task. 

In a partitionable system, due to the effect of diminish­
ing return in performance with larger partition sizes, when 
there is a multiple number of tasks ready for execution, us­
ing a smaller partition size for each task and executing as 
many tasks in parallel as possible could lead to a shorter 
completion time than using the partition size that gives the 
minimum execution time for each individual task. For ex­
ample, in a simulation study of a histogramming algorithm 
[KUE84], Kuehn and Siegel have shown that given a set of 
four histogramming tasks of the same size ready for exe-



cution and a partitionable system of 256 processors, using 
a subsystem of 64 processors for each task and executing 
the four tasks in parallel gives a shorter completion time 
than using a partition of 256 processors for each task and 
executing the four tasks sequentially. 

Given a set of tasks which are ready for execution, the op­
timal partition sizes for these tasks depend on the number 
of tasks in the set, their characteristics, and the amount 
of available resource. Since the information on what tasks 
are ready for execution, whi.ch we refer to as workload, and 
what resources are available for allocation cannot be de­
termined until run time, the optimal partition sizes can be 
determined only at run time, and not at program design 
time or at compile time. Furthermore, in order to deter­
mine at run time the optimal partition sizes for a set of 
tasks, it is necessary for the system to know the character­
istics of each individual task in the workload. Such char­
acteristics, however, could be difficult .to obtain for a sys­
tem designed for general purpose application because the 
tasks the system needs to support may vary widely. But 
for a system designed for a special-purpose application, the 
tasks the system needs to support are relatively fixed and 
known in advance. For example, for the application of im­
age processing, such tasks include FFT, Histogram ming, 
Convolution and Image Smoothing. It is thus possible to 
pre-analyze the characteristics of the tasks and make them 

available to the system. As a result, a partitionable system 
for special-purpose application can be designed with the 
ability to determine optimal partition sizes at run time. 
The feasibility and advantage of this approach is naturally 
determined by the overhead involved, which include the 
effort to pre-analyze the task characteristics, the storage 
required to record these characteristics in the system, and 
most importantly, the time it takes for the system to de­
termine these partition sizes. In this paper, we focus on 
analyzing the time complexity of using such an approach 
to determining optimal partition sizes, assuming that the 
required information on task characteristics can be made 
available to the system. We show the problem of deter­
mining such optimal partition sizes to be NP-Complete; we 
also propose a polynomial time approximation algorithm 
for this problem and derive the performance bound for the 
algorithm. 

In Section 2, we illustrate through a sequence of examples 
the impact of task characteristics and workload on optimal 
partition sizes. In Section 3, we formulate the processor 
partitioning problem, review the multiprocessor scheduling 
problems in the literature related to this problem, and es­
tablish the NP-completeness of this problem. In Section 
4, we propose a polynomial time approximation algorithm 
for the partitioning problem and derive its performance 
bound. In Section 5, we apply the approximation algo­
rithm on some examples to illustrate the possible reduction 
in completion time by using the partition sizes determined 
by the algorithm as opposed to using the partition sizes 
that minimize the execution time for each individual task. 

Section 2: Impact of Task Characteristics and Work­
load on Optimal Partition Size 

We illustrate the impact of task characteristics and work­
load on optimal partition sizes with some examples on the 
following model of a partitionable system. The system con­
sists of 512 processors interconnected as a linear array. The 
links in the array are bidirectional. The system can be par­
titioned into several subsystems, each of which consists of a 
subset of consecutive processors in the linear array, operat­
ing in the SIMD mode. Furthermore, the time to communi-

cate a data item between two adjacent processors equals the 
time to perform an arithmetic or logical operation over two 
data items. Note that the characteristics of the architec­
ture, particularly those of.the supporting interconnection 
network, have an important impact on task characteristics, 
and thus also affect the optimal partition sizes. More de­
tailed analyses of the impact of the characteristics of tasks, 
workload, and system on optimal partition sizes are given 
in [MA88]. 

In the following examples, let N denote the number of data 
items for a task, and K denote the partition size allocated 
for the task. To simplify our presentation, we restrict K 
to be those integers such that N is divisible by K. Let T 
denote the completion time for a set of tasks executed by 
the system, which is the least time by which all tasks in the 
set have completed execution. If the set consists of only one 
task, then Tis simply the execution time of the task, which 
is the sum of the computation and communication time for 
the execution of the task. 

2.1: Impact of Task Characteristics on Optimal 
Partition Size 

Example 1. Summing N Numbers 

435 

We use a recursive doubling algorithm to sum the N num­
bers. Initially all the processors are active, and each pro­
cessor is assigned f numbers. Each processor first forms 
the partial sum off num hers. These partial sums are then 
accumulated to form the final sum in log K iterations. In 
each iteration, starting from the leftmost active processor, 
every alternate processor sends its partial sum to the ac­
tive processor immediately to its right. An active processor 
that receives a data forms a new partial sum by adding the 
received data to its own partial sum. At the end of an iter­
ation, all the sending processors are disabled. This parallel 
algorithm takes ( f - 1) + log K additions and K - 1 com­
munication operations on the linear array. The completion 
time T is given by 

N 
T = - + K + log K - 2. 

K 



For 1 S K S N, the computation time, which is ff - 1 + 
log K, is a decreasing function of K, and the communica­
tion time, which is K - 1, is an increasing function of K; 
combining the effects of both, the execution time is concave 
upward with respect to K, with the minimum occuring at 
some K' between 1 and N. The variation between T and 
K for N = 512 is shown in Figure 1. For N = 512, the 
execution time has minimum at K = 16, and this is the 
optimal partition size for one summing task of size 512 on 
the given partitionable system. I 

I­
Q) 

E 
f= 
c: 
.Q 
Ci5 
0.. 
E 
0 

(.) 

0 2 4 6 8 

Partition Size K = 2 ** k 

Figure 1 Summing 512 Numbers 

Example 2. Sorting N Elements 

10 

k 

We use the parallel algorithm given in (BAU 78] to sort the 
N elements. The algorithm is a generalization of the odd­
even transposition sort. Each processor is assigned ff el­
ements. These elements are first sorted in each proces­
sor. The resulting subsequences are then merged and redis­
tributed for K iterations to form the final sequence. For all 
odd iterations, processor i + 1, where i = 1, 3, ... , 2l1}-J -1, 

first sends its subsequence to processor i, processor i then 
merges the two subsequences it has, retains the first half of 
the resulting subsequence (the ff smallest elements), and 

sends the second half of the subsequence (the ff largest 
elements) back to processor i + 1. For all even iterations, 
the same steps as the odd iterations are executed but for 
i = 2, 4, ... , 2 l K:; 1 J. After K such iterations, the final 
sorted sequence will be partitioned among the N proces­
sors, with each processor holding a subsequence of ff el­
ements. These subsequences are in increasing order from 
processor 1 to processor N. Since the initial sorting takes 
ff log ff comparisons and each iteration takes 2ff compar­

isons and 2ff communication operations on the linear array, 

the overall completion time is given by T = ff log ff + 4N. 

For 1 S JCS N, the computation time, which is ff log ff+ 
2N, is a decreasing function of K, and the communication 
time, 'which is 2N, is a constant with respect to K; as a 

436 

result, the execution time is a decreasing function of J(, 
with the minimum occuring at K = N. The variation 
between T and K for N = 512 is shown in Figure 2. For 
N = 512, the execution time has minimum at K = 512, 
and this is the optimal partition size for one sorting task of 
size 512 on the given partitionable system. 

As illustrated in the above two examples, the optimal par­
tition size for a task depends on the computation and com­
munication requirements of a task, which in turn are deter­
mined by the characteristics of the corresponding program, 
input data, and supporting architecture. For the task of 
summing, the optimal partition size is smaller than the 
maximum degree of parallelism in the task, but for sort­
ing, these two quantities are equal. 

2.2: Impact of Workload on Optimal Partition Size 

Due to the need for communication in most parallel pro­
grams, as we increase the number of processors allocated 
to a task by a factor of k, the execution time of the task 
is usually reduced by a factor less than k. For instance, 
for the summing task with N = 512 in Example 1, as the 
partition size increases from 1 to 16 by a factor of two each 
time (that is, from 1 to 2, 2 to 4, 4 to 8, and 8 to 16), the 

execution time decreases from 511 to 50 by factors of 1.988 
(511 to 257), 1.947 (257 to 132), 1.808 (132 to 73), and 
1.460 (73 to 50); when the partition size increases beyond 
16, the execution time increases. For the sorting task with 
N = 512 in Example 2, as the partition size increases from 
1 to 512 by a factor of two each time, the execution time de­
creases from 6656 to 2048 by factors of 1.625, 1.391, 1.210, 
1.101, 1.046, 1.019, 1.008, 1.003, and 1.001. Due to such di­
minishing return in performance with larger partition sizes, 
when there are a multiple number of tasks ready for exe­
cution in a partitionable system, using a smaller partition 
size for each task and executing as many tasks in parallel 
as possible could lead to a shorter completion time than 
using the partition size that gives the minimum execution 
time for each task. We illustrate this impact of workload 
on optimal partition size in the next example. 

I- 6000 
Q) 

E 
f= 5000 
c: 
0 

~ 
0.. 

4000 

E 
0 
(.) 3000 

2000 
0 2 4 6 8 

Partition Size K = 2 ** k 

Figure 2 Sorting 512 Elements 

1 0 

k 



Example 3. Multiple Sorting Tasks of N Elements 

Suppose we have eight sorting tasks to be executed, with 
each task having to sort N elements. Assume that each 
task is allocated a partition of size K. Since there are 512 
processors in the system, for K $ 64 the eight sorting tasks 
can be executed in parallel, and the completion time T for 
these eight sorting tasks is the same as the execution time 
of one sorting task of size N using a partition of size K. 
However, for K > 64, the eight sorting tasks have to be 
executed in multiple batches, with each batch, except pos­
sibly the last, having L 5J/ J tasks. The completion time T 
in this case is the product of r:~ l (the number of batches) 
and the execution time of one sorting task on a partition of 
size K. Figure 3 shows the variation between the comple­
tion time T and partition size K for N = 512. The least 
completion time for a set of eight tasks is obtained when 
K = 64, and this is the optimal partition size for each such 
task. The corresponding completion time T for the eight 
tasks is 2072. On the other hand, if we use a partition 
size of 512 for each of the eight tasks, which is the optimal 
partition size for the execution of one task, the completion 
time T is 16384 instead. 

The least completion time for a set of sixteen tasks is ob­
tained when K = 32, and this is the optimal partition size 
for each such task. The corresponding completion time T 
for the 16 tasks is 2112. If we use a partition size of 512 for 
each of the sixteen tasks, the completion time T is 32768 
instead. 

As illustrated in the above examples, determining the par­
tition sizes at run time based on task characteristics, work­
load, and amount of resource available could provide higher 
throughput than determining such partition sizes at either 
the program design time or compile time. For a parti­
tionable system designed for special purpose applications, 
since the set of tasks the system needs to support is usually 
known in advance, by pre-analyzing the characteristics of 
the tasks and making them available to the system, it is 
possible for it to determine the partition sizes at run time. 
The feasibility and advantage of such an approach is deter­
mined by the overhead involved. In the remainder of this 

I-
Q) 

E 
i= 
c: 
0 
~ 
Q) 

c.. 
E 
0 
() 

40000 

30000 

20000 

10000 

o.J.-~~~---.--.---.--.---.--..-..-..--r--..-, 

0 2 4 6 8 

Partition Size K = 2 ** k 

Figure 3 Multiple Sorting Tasks of Size 512 

10 

k 

437 

paper, we focus on analyzing the time complexity of the 
problem of determining optimal partition sizes at run time. 

Section 3: The Processor Partitioning Problem 

In multiprocessor scheduling problems, we are given a 
number of processors and a set of tasks, and the goal is 
to schedule the tasks on these processors such that some 
objective on the execution times of the tasks is optimized. 
These are variants of the general multiproce~sor schedul­
ing problem, and most of these problems are NP-Complete 
(GAR 79]. In the following, we first review the general mul­
tiprocessor scheduling problem and two of its variants most 
related to our problem. 

Let z+ denote the set of positive integers. Let n denote the 
number of processors and m the number of tasks, where n, 
m E z+. For any positive integer k, we use (k) to denote 
the set {1,···,k}. 

The general multiprocessor scheduling problem can be stated 
as follows (GAR 79): Given n processors and m tasks, where 
each task requires one processor for execution with a spe­
cific execution time and there is no precedence constraint 
among the tasks, the objective is to find a nonpreemptive 

schedule with the least completion time for all the tasks. 
This problem is NP-Complete in the strong sense for arbi­
trary n, but can be solved in pseudo-polynomial time for 
any fixed n. Tlie problem remains NP-Complete for n = 2. 

A variant of the general multiprocessor scheduling prob­
lem is the multiprocessor scheduling problem with nonfrag­
mentable resource constraint (GAR75). In a special-case of 
this problem, we are given n processors and m tasks, each 
task requiring one processor for execution with execution 
time equal to unity and no precedence constraints among 
the tasks. Further, we are given a resource R with a total 
amount B available, and a nonnegative resource require­
ment R(i) for each task i E [m]. The objective is to find a 
nonpreemptive schedule with the least completion time for 
all the tasks such that the sum of the resource requirements 
of all the tasks scheduled simultaneously does not exceed 
the total amount of the resource available. An important 
characteristic of the problem is that the resource does not 
have to be allocated in contiguous blocks since the resource 
does not suffer from fragmentation. This problem is shown 
to be NP-Complete by transforming the Three-Dimensional 
Matching problem to this problem (GAR75]. 

Yet another version of the scheduling problem is the mul­
tiprocessor scheduling problem with fragmentable resource 
con.{traint (BAK83]. In this, tasks share a resource such 
as memory, where such a resource may only be allocated 
in contiguous blocks. In this problem, we are given n pro­
cessors and m tasks. We are also given a resource R with 
a total amount B available, and a nonnegative resource 
requirement R(i) for each task i E (m]. Once again, the 
objective is to find a non preemptive schedule with the least 
completion time for all the tasks such that the sum of the 
resource requirements of all the tas}cs scheduled simulta­
neously does not exceed the total amount of the resource 



available. The distinguishing characteristic between this 
problem and the earlier problem is that the resource may 
only be allocated in contiguous blocks since the resource 
is fragmentable. This problem is NP-Complete since it is 
equivalent to the 2-D bin packing problem. 

In the processor partitioning problem, we are given n pro­
cessors, r controllers, and m tasks among which there are 
no precedence constraints. Each task can be executed by 

a number of different partition sizes. The partitions may 
comprise of processors which need not be contiguous in any 
address space. The objective is to choose partition sizes 
for the tasks and to find a nonpreemptive schedule with 
the least completion time for all the tasks such that the 
maximum number of tasks scheduled simultaneously does 
not exceed the number of controllers r and the sum .of the 
chosen partition sizes of all the tasks scheduled simulta­
neously does not exceed the total number of processors n. 
The above problem can be shown to be NP-Complete by 
transforming the multiprocessor scheduling problem with 
fragmentable resource constraint to a restricted version of 
the above problem. Details of the proof are omitted in this 
paper. 

The processor partitioning problem that we study in the 
remainder of this paper is a special version of the prob­
lem stated above. In this version, we are given n proces­
sors, r controllers, and m tasks among which there are no 
precedence constraints, and each of which can be executed 
by a number of different partition sizes. The partitions 
may comprise of processors which need not be contiguous 
in any address space. For all i. E (m], let q; denote the total 
number of such partition sizes for task i, and let the func­
tions p; : [q;] -+ [n] and t; : (q;]-+ z+' define respectively 
the partition sizes and the corresponding execution times 
for task i. The functions p; and f; have properties such that 
for all k,l E (q;] where k < l, we have the following: 

(a) p;(k) < p;(l) (the partition sizes defined by p; are in 
increasing order) 

(b) t;(k) > t;(l) (the execution time of a task decreases as 
the partition size increases) 

(c) p;(k) t;(k) < p;(l) t;(l) (the execution time of a task us­
ing a larger partition size decreases by a factor which is 
less than the increase in partition size since t;(l)/t;(k) > 
p;(k)/p;(l)) 

In addition, we have the assumption: 

(*) m $rand 2:~= 1 p;(l) $ n (all the tasks available for 
execution can be executed in parallel when using the 
smallest partition sizes for these tasks). 

The objective is to choose partition sizes (and their execu­
tion times, which obey the above three properties) for the 

tasks and to find a nonpreemptive schedule with the least 
completion time for all the tasks such that the maximum 
number of tasks scheduled simultaneously does not exceed 
the number of controllers rand the sum of the chosen parti­
tion sizes of all the tasks scheduled simultaneously does not 
exceed the total number of processors .n. This problem can 

438 

also be shown to be NP-Complete by transforming the mul­
tiprocessor scheduling problem with fragmentable resource 
constraint to a restricted version of the above problem. De­
tails of the proof are omitted in this paper. 

In a partitionable system, properties (a) and (b) imply or­
dering the partition sizes in increasing order of index and 
selecting only that part of the task characteristics where 
the execution time continues to decrease with increasing 
partition size. For example, for the tasks of summing and 
sorting discussed in Section 2.1, we only include five par­
tition sizes 1, 2, 4, 8, 16 for summing, while for sorting, 
we include all the ten partition sizes. Property (c) implies 
that speed-up in a parallel system is less than linear due 
to communication and control overhead. We make assump­
tion (*)to simplify the presentation of our solution to the 
problem. Our solution may be extended to the case where 
this assumption does not hold. 

Section 4: Solution Techniques for the Processor 

Partitioning Problem 

In this section, we first derive some lower bounds on the 
completion time for the processor partitioning problem. Us­
ing these lower bounds, we derive a condition on the pro­
cessor partitioning problem under which optimal solutions 
can be determined easily. We then present a polynomial 
time approximation algorithm for the processor partition­
ing problem. We also derive a worst-case bound on the 
solution obtained by the algorithm and the conditions un­
der which it gives optimal solutions. 

Let S 0 be an optimal schedule, and for each i E (m], let u; 
denote the index for the partition size for task i in schedule 
S 0 • Let T 0 be the completion time for schedule S 0 , which 
is the optimal completion time. 

4.1: Lower Bounds on Completion Time 

Lemma 1 provides us with a relation between the opti­
mal completion time T 0 and the partition sizes and respec­
tive execution times for the tasks in an optimal schedule 
So. 

Lemma 1. T 0 ~ 2:7:, 1 p;(u;)t;(u;)/n. 

Proof. The term l:;':, 1 p;(u;)t;(u;) represents the total 
time units that the allocated processors are busy in schedule 
S 0 • Since S 0 is a feasible schedule, at any time instant, each 
of the n processors is allocated to at most one task. Thus 
each processor is busy for at most T0 time units. Since 
the total number of processors allocated at any instance 
is bounded by n, we have l:;':, 1 p;(u;)t;(u;) $ nT0 • The 
Lemma follows consequently. I 

As per Property (c) stated in Section 3, in a partition­
able system, as we transit from a given partition size to 
a higher partition size, the execution time decreases by a 
factor which is less than the increase in partition size. This 
property asserts that as we increase the partition size for a 
task, the time to execute on the new partition cannot de-



crease below a certain limit. Based on this relationship be­
tween partition sizes and execution times, Lemma 2 derives, 
under certain conditions, a lower bound on completion time 
for the special case where all the tasks to be executed are 
of the same type. 

Lemma 2. Assume that there are m tasks of the same 
type to be executed on an n processor system. Let q denote 
the number of possible partition sizes for this type of task. 
In addition, let the functions p: (q] -t [m] and t: [q] -t z+ 
denote the partition sizes and the corresponding execution 
times respectively. Assume further that there exists some 
l E [q] such that p(l) 2:: r ! l Let l* be the smallest index 
in (q] such that p(l*) 2:: r!l· Then T 0 2:: t(l*). 

Proof. For each i E [m], let u; be the index in (q] such 
that p( u;) is the partition size for task i in some optimal 
schedule S 0 • For each i E [m], the completion time for task i 
is t(u;). If for some i E [m], u; ~ l* then T 0 2:: t(u;) ;:=: t(l*) 
from Property (b) and the lemma is trivially true. Thus 
assume that for every i E [ m], u; > l*. It follows from 

Property ( c) that 

for every i E [m], p(l*)t(l*) < p(u;)t(u;). 

The above implies that 

m 

m p(l*)t(l*) < L: p(u;)t(u;). 
i=l 

Since p(l*) ;::: r ! l, it follows that 

m 

mr2:lt(l*) < L: p(u;)t(u;). 
m 

i=l 

Since r ! l 2:: !• we have 

t(l*) < L: p(u;)t(u;)/n. 
i=l 

Since the optimal schedule S0 has completion time T0 , from 
Lemma 1, we have T0 > t(l* ). I 

For the special case where all the tasks to be executed are 
of the same type, Theorem 3 states a condition under which 
a parallel schedule with ! processors in each partition has 
the least completion time. 

Theorem 3. Assume there are m tasks of the same type 
to be executed on an n processor system. Let q denote the 
number of possible partition sizes for this type of task. In 
addition, let the functions p : [q] -t [m] and t : (q] -t z+ 
denote the partition sizes and the corresponding execution 
times respectively. Assume further that n is divisible by m 
and there exists some l* E [q] such that p(l*) ·= !· Then 
a parallel schedule with ;;. processors in each partition has 
the least completion time. 

Proof. Since the allocation is feasible, the theorem fol­
lows from Lemma 2. I 

439 

4.2: An Approximation Algorithm for Partition­
ing 

We now present an approximation algorithm which runs 
in O(min{n, E;: 1 q;} log m) time. This algorithm explores 

only parallel schedules and does not explore any serial­
parallel schedules. By assumption ( * ), there always exists 
a feasible, parallel schedule for the given set of tasks. We 
first give an informal description of the algorithm below. 

Initially, each task is allocated a number of processors equal 
to the smallest partition size for this task. By assumption 
( * ), such an allocation is always possible. Then, the task 
with the longest execution time is selected. As many pro­
cessors are allocated to this task as is neccessary to transit 
to the next larger partition size. This process is repeated 
until we run out of free processors. 

Intuitively, the algorithm allocates processors to tasks in 
an efficient manner. To account for the effect of diminish­
ing return with larger partition size, the algorithm starts 
with the smallest partition size for each task, and increases 
a partition size only if the execution time corresponding to 
such a partition size determines the completion time. Since 
the criterion to be minimized is completion time, the algo­
rithm isolates the task with the longest execution time at 
every iteration, since this is what determines the comple­
tion time in a parallel schedule. It then allocates as many 
processors as is neccessary to reduce the execution time of 
this task so as to reduce the overall completion time. If 
this additional allocation results in a different task having 
the longest execution time, the algorithm allocates addi­
tional processors to this task. Thus, it provides processors 
to tasks that need them the most, in some sense. Given 
below is a more formal statement of the algorithm. 

Approximation Algorithm: Partitioning 

Input: n, m, for every i E [m], q;, p;, t;. 

Output: a set of indexes {l;Jl; E [q;] for i E [ml}. 

begin 

remain:= n; 

for i := 1 to m do 

begin 

l; := 1; 

remain:= remain - p;(l) 

end; 

done := false; 

while (remain> 0) and (not done) do 

begin 

find j such that t;(l;) = max;e{i, ... ,m} t;(l;); 

if ( l; < qi) and (remain 2:: P;(l; + 1) 

-p;(l;)) 

then 



end 

end. 

begin 

end 

else 

l; := l; + 1; 

remain:= remain-(p;(l; + 1)-p;(l;)) 

done:= true 

In the above algorithm, the while loop will be executed no 
more than min { n, L: :':, 1 q;}. Inside the loop, we have to 
find the maximum of the t; 's, which can be done in time 
O(log m) if we use a priority queue to stor~ the t; 's. The 
rest of the algorithm can be done in 0 ( m) time. There­
fore, the approximation algorithm has complexity O(min 
{n,L:~=l q;} logm). Since L:~= 1 p;(l;) $ n, the partition 
sizes chosen from the approximation algorithm allow a par­
allel schedule. In the next section, we derive some bounds 
on the performance of the algorithm. 

4.3: Performance Analysis of the Approximation 
Algorithm 

Let s. be the schedule determined by the approximation 
algorithm. For each i E [m], let l; denote the index for 
the partition size for task i in schedule s •. Let T. be the 
completion time for schedules •. By definition, we have the 
following set of inequalities: T 0 $ T., and for all i E [m], 
t;(u;) $ T0 , t;(l;) $ T •. 

Lemma 4 derives a relationship between partition sizes in 
the schedule s. and partition sizes in a feasible schedule 

with completion time no greater than the completion time 
of s •. 
Lemma 4. Let S1 be a feasible schedule. For all i E [m], 
let r; denote the index for the partition size for task i in 
S1 . Let T1 denote the completion time due to schedule S1. 
Assume that T1 $ T •. Then, for all i E [m], r; ~ l;. 

Proof. Let i be an arbitrary element in [m]. We consider 
two cases. 

a) l; = 1. Since in any feasible schedule, every task needs 
at least as many processors as in the least-sized parti­
tion, we haver; ~ l;. 

b) l; > 1. In this case, we have t;(l; - 1) > T., otherwise 
the algorithm will not augment l; - 1 to l;. We thus 
have the following relationship: 

This implies that r; > l; - 1 from Property (b ). Thus, 
r; ~ l;. 1 

Lemma 5 derives a lower bound on the optimal completion 
time T0 in terms of the partition sizes and the execution 
times of the tasks in the schedule s •. 

440 

Lemma 5. T. ~ L::':, 1 p;(l;)t;(l;)/n. 

Proof. Since S0 is a feasible schedule and T0 $ T., from 
Lemma 4, we have, for all i E [m], u; ~ l;. Hence from 
Property ( c ), we have, for all i E [m ], 

Therefore, 

m 

E p;(u;)t;(u;) ~ E p;(l;)t;(l;). 
i=l i= l 

From Lemma 1, we .also have 

m 

nT0 ~ E p;(u;)t,(u;). 
i=l 

Thus, T0 ~ L::':, 1 p;(l;)t;(l;)/n.1 

Theorem 6 derives a worst-case bound on the completion 
time T •. 

Theorem 6. Let k be the index in [m] such that task 
k is the one that determines the completion of T.. Then 
T. $ (n/p&(l&))T. -(L: i5;5m p;(l;)t;(l;))/P&(l&)· 

i¢k 

Proof. From Lemma 5, we have 

E p;(l;)t;(l;) $ nT0 • 

Since tk ( lk) = T., we can rewrite the above expression as 

Thus, we have 

and the theorem follows. I 

Theorem 7 proves that the schedule due to the approxi­
mation algorithm is an optimal schedule among all parallel 
schedules. 

Theorem 7. The completion time T0 due to the approx­
imation algorithm is the optimal completion time among 
all parallel schedules. 

Proof. Assume to the contrary that there exists a parallel 
schedule SP with completion time Tp such that Tp < T 0 • 

For each i E [m ], let V; denote the index for the partition 
size for task i in Sp. Let k be th(! index in [m] such that 
task k is the one that the approximation algorithm tries to 
increase the partition size of before it terminates (in case 
two or more tasks are tied in determining the task with 
the longest execution time). We have tk(l&) = T0 • From 



Lemma 4, we have, 

for all i E [m],v; 2': l;. 

Consequently, for each i E [m],p;(v;) 2': P;(l;); 

Further, from our assumption that Tp < T 0 , we get it (Vt) < 
tt(lk)· This implies that vk > lk, and hence Vt 2': lk + 1. 

Therefore, Pt(vk) 2': pk(lk + 1). It follows that 

m 

Thus, 

m m 

i=l i=l 

When the algorithm terminates, the number of remaining 
processors is strictly less than Pk(lt + 1) - Pt(l1:) (task 
k determines the completion time). Otherwise, the algo­
rithm would have reduced the completion time T0 = tk (lk) 
by augmenting the partition size of task k from Pk ( lk) to 
pk(l1: + 1). Thus, we have, 

i= 1 

This implies that 

i= 1 

Combining inequalities (1) and (2), we have 2::;: 1 p;(v;) > 
n, which is a contradiction since SP is a parallel schedule 
and there are at most n processors. Thus, no parallel sched­
ule SP exists with completion time Tp such that Tp < T 0 • 

The completion time due to the approximation algorithm 
is therefore optimal among all parallel schedules. I 

Theorem 8 proves that the schedule due to the approxi­
mation algorithm is optimal under the condition that no 
processors remain to be allocated when the algorithm ter­
minates, and in addition, the execution times of the tasks 
for the partition sizes allocated by the approximation algo­
rithm are equal. 

Theorem 8. Assume that 2::;: 1 p;(l;) = n and for all 
i E [m],t;(l;) = T •. Then T. = T 0 • 

Proof. Assume to the contrary that T0 > T0 • From 
Lemma 5 we have 

m 

i=l 

By the assumption of the theorem, we have 

m 

To 2': L p;(l;)T0 /n. 
i= 1 

441 

Since I:~=l p;(l;) = n, the above implies that 

T 0 2': T0 , 

which is a contradiction. Thus, T 0 = T0 • I 

Corollary 9. Assume there are m tasks of the same type 
to be executed on an n processor system, and n is divisible 
by m. Assume further that there exists some r E [q] such 
that p(l*) = ;;. Then the approximation algorithm obtains 
an allocation with the optimal completion time, allocating 
partitions consisting of;; processors to each of them tasks. 

Proof. When the approximation algorithm terminates, 
it allocates a partition of size p(l;):::: ;;,for each i E [m]. 
Since every task is of the same type, t( l;) = T 0 , for each i E 
[m]. Since I:;': 1 p(l;) = n, the corollary follows from The­
orem 8. I 

The analyses in this subsection shows that under certain 
conditions (those stated in Theorem 8 and Corollary 9) 
the approximation algorithm produces an optimal sched­
ule. Further, if we constrain ourselves to strictly parallel 
schedules, then the schedule due to the approximation al­
gorithm is always optimal among all such schedules. In 
general, the performance of the schedule due to the ap­
proximation algorithm is always within the bound given in 
Theroem 6. 

Section 5: Applications of the Approximation Al­
gorithm 

We now give an example of using the approximation al­
gorithm in a typical application on the model of a parti­
tionable system described .in Section 2. The application we 
choose to illustrate the approximation algorithm is in the 
area of image processing. In image processing applications 
using stereo images, there is a need to compute the His­
togram and perform Image Smoothing for a pair of images. 
Since both these computations may be carried out in paral­
lel, the workload may then comprise of the following tasks: 
two Histogramming tasks and two Smoothing tasks (one 
for the right image, and one for the left image). 

Assume that the image is a square of -JN" x -JN" pixels, 
where -JN" is a positive integer. Let K denote the size of 
a partition, where VK is a positive integer. Assume also 
that N is divisible by K. 

We assume that the image is divided evenly over the K 
processors so that each processor has a square subimage of 
1}f pixels. In computing the histogram of an image, the fre­
quency count of each grey level is computed over the entire 
image. The final histogram is represented as an array of 
b elements, each element being a count of the number of 
pixels in the image with that grey level. Each processor 
first computes the histogram of the subimage local to it in 
time ljf. These partial histograms are then accumulated to 
form the total histogram in log K iterations using a recur­
sive doubling algorithm similar to the one for the summing 



task given in Section 2, Example 1. Computing the new 
partial histogram in each iteration takes b time units since 
it amounts to a vector addition of b elements. Communica­
tion in the first iteration takes b time units since an array 
of b elements is sent to an adjacent processor. In general, 
for all i = 1, ... , log K, communication in the i'h iteration 
takes b + 2i- l - 1 time units since an array of b elements is 
sent to a processor which is 2i-l away, and the array of b 
elements can be sent in a pipelined fashion. The total num­
ber of computation operations is f +blog J(, and the total 
number of communication operations is (b-1) log K +K -l. 
The execution time for Histogram computation is given by 

N 
T= J(+K-1+(2b-l)log2 K. 

For N = 512 x 512, b = 256, and J( varying from 1 to 
4096 as squares of powers of two, the variation of the ex­
ecution time T with partition size J( is shown in Figure 
4. 

K 1 4 16 64 256 1024 4096 
T 262144 66561 18443 7225 5367 6389 10291 

Figure 4 Histogramming 

In the problem of Image Smoothing, the grey value of each 
pixel in an image is averaged with the surrounding eight 
neighbouring points for a given number of iterations. In 
each iteration of the algorithm, each processor needs to 
perform sf additions and f divisions, and send a message 
to each of the eight processors operating on its surrounding 

subimages; four of these messages are of size V ~ elements, 

and four of size one element. If the subimages are mapped 
row by row into the linear array, each processor has to com­
municate with two processors at a distance of one, two at 
a distance of VK, two at a distance of VK + 1, and two at 
a distance of VK - 1. The net communication time on the 
linear array is thus: 

The total execution time for Smoothing is given by 

N N J-
T = 9 J( + 2 J( + 2VN + 4VK. 

For N = 512 x 512, the variation of the execution time T 
with partition size J( is shown in Figure 5. 

J( 1 4 16 64 256 1024 4096 
T 2361348 591368 148752 38048 10368 3488 1872 

Figure 5 Image Smoothing 

442 

Next we apply the approximation algorithm for the job mix 
of two Histogramming tasks and two Smoothing tasks, all 
of which are available for execution. The approximation 
algorithm stops after 18 iterations with a schedule whose 

overall completion time is 5367 time units. Table 6 shows 
the partition sizes for the tasks and the completion time. 
The table has one entry for every two iterations since the 
partition size has to increase for both Smoothing tasks or 
both Histogramming tasks to reduce completion time at 
each iteration. 

Smooth Size Hist Size Comp Time 
1 1 2361348 

4 1 591368 
16 1 262144 
16 4 148752 
64 4 66561 
64 16 38048 

256 16 18443 
256 64 10368 

1024 64 7225 
1024 256 5367 

Figure 6 Iterations in Approximation Algorithm 

If we use the maximum partition size consisting of all 4096 
processors for each task, and a strictly sequential sched­
ule to execute the tasks, then the overall completion time 
is 24326 time units, implying a factor of 4.5 improvement 
in the overall completion time with the parallel schedule 
obtained by the approximation algorithm. If, on the other 
hand, we use the partition size with the least execution time 
for each task (the optimal partition size for the execution 
of a single task) and the best schedule possible to execute 
the tasks, then the overall completion time is 9111 time 
units, implying a factor of 1.6 improvement in the overall 
completion time with the parallel schedule obtained by the 
approximation algorithm. 

Applying Theorem 6 to obtain a worst-case performance 
bound for the approximation algorithm in the above exam­
ple, we get 

4096 2 x 1024 x 3488 + 256 x 5367 
Ta < --T0 - ------------

- 256 256 ' 

which implies that 

T. ~ l6T0 - 33271, 

from which we can infer that T 0 ~ 2415. Using this bound, 
we can deduce that the approximation algorithm obtains a 
completion time which is less than 2.23 times the optimal 
completion time. 

'For this particular example, the schedule determined by 



the approximation algorithm is actually optimal among all 
possible schedules, that is, T. = T 0 = 5367. 

Section 6: Conclusion 

In this paper, we address the problem of processor par­
titioning in partitionable architectures. We demonstrate 
the importance of determining the partition sizes based on 
task characteristics, workload, and availability of resources. 
An underlying assumption is that the task characteristics 
are available. For a system designed for a special-purpose 
application, it is possible to pre-analyze the characteris­
tics of the tasks and make them available to the system 
since the set of tasks the system needs to support is usually 
known in advance. For such systems, we advocate deter­
mining the partition sizes at run time. To support such an 
approach, we investigate the design of an efficient approxi­
mation algorithm to determine the partition sizes based on 
task characteristics and workload. We derive the worst-case 
performance bound for the approximation algorithm, and 
conditions under which the algorithm is optimal. 

Other important issues that may affect the feasibility of 
such an approach such as the overhead involved and the 
fragmentation of the processing resources in such systems 
will be studied in the future. The fragmentation of proces­
sors in such systems is influenced by the network intercon­
necting the processors in the system. We have preliminary 
analysis [KRI87] on the physical subset of processors that 
may comprise a partition in a partitionable system. We 
plan to investigate further these and related issues in the 
future. 

Acknowledgements: The authors would like to thank the 
referees for carefully reading the paper and giving detailed 
comments that have helped improve the paper. 

Bibliography 

(BAK83] B. S. Baker, and J. S. Schwarz, "Shelf Algo­
rithms for Two-dimensional Packing Problems," SIAM 
J. Comput. Vol. 12, No. 3, August 1983, pp. 508 -

525. 

[BAU78] G. Baudet, and D. Stevenson, "Optimal Sorting 
Algorithms for Parallel Computers," IEEE Transac­
tions on Computers, Vol. C-27, January 1978, pp. 84 

- 87. 

[GAR75] M. R. Garey, and D. S. Johnson, "Complexity 
Results for Multiprocessor Scheduling under Resource 
Constraints," SIAM J. Com put. Vol. 4, No. 4, De­
cember 1975, pp. 397 - 411. 

[GAR79] M. R. Garey, and D. S. Johnson, Computers 
and Intractability: A Guide to the Theory of NP­
Completeness, W. H. Freeman and Company, 1979. 

443 

[KRI87J R. Krishnamurti, "Reconfigurable Parallel Archi­
tectures for Special Purpose Computing," PhD the­
sis, Department of Computer and Information Science, 
University of Pennsylvania, Philadelphia, PA, 1987 (also 
available as Technical Report MS-CIS-87-81). 

[KUC77] D. J. Kuck, "A Survey of Parallel Machine Or­
ganization and Programming," ACM Computing Sur­
veys, Vol. 9, No. 1, March 1977, pp. 29 - 59. 

[KUE84] J. T. Kuehn, and H.J. Siegel, "Simulation Studies 
of a Parallel Histogramming Algorithm for PASM," 
7th International Conference on Pattern Recognition, 
1984, pp. 646 - 649. 

[LIN81] B. Lint, and T. Agerwala, "Communication Issues 
in the Design and Analysis of Parallel Algorithms," 
IEEE Transactions on· Software Engineering, Vol. SE-
7, March 1981, pp. 174 - 188. 

[MA87] Y. W. Ma, R. Krishnamurti, L. Tao, D. G. Shea, 
B. Narahari, R. Varadarajan, "Reconfigurable Special­
Purpose Computers," Second International Conference 
on Supercomputing, 1987, pp. 343 - 351. 

(MA88] Y. W. Ma, and D. G. Shea, "Downward Scalability 

of Parallel Architectures," to appear in Third Interna­
tional Conference on Supercomputing, 1988. 

(NIC87] D. M. Nicol, and F. H. Willard, "Problem Size, 
Parallel Architecture, and Optimal Speedup," Proceed­
ings of 14th Annual International Symposium on Com­
puter Architecture, June 1987, pp. 347 - 354. 

(NUT77] G. J. Nutt, "Multiprocessor Implementation of a 
Parallel Processor", Proceedings of the Fourth Annual 
Symposium on Computer Architecture, 1977. 

(PRE80] U. V. Premkumar, R. Kapur, M. Malek, G.J.Lipovski, 
and P.Horne, "Design and implementation of the Banyan 
Interconnection Net work in TRAC," Proceedings of 
the National Computer Conference, 1980. 

[SIE81] H. J. Siegel L. L Siegel, F. C. Kemmerer, P. 
T. Mueller Jr., H. E. Smalley Jr., and S. D. Smith, 
"PASM: A Partitionable SIMD/MIMD System for Im­
age Processing and Pattern Recognition," IEEE Trans­
actions on Computers, Vol. C-30, December 1981, pp. 
934 - 947. 



Non-Deterministic Instruction Time 
Experiments on the P ASM System Prototype 

Samuel A. Fineberg, Thomas L. Casavant*, Thomas Schwederski 

Parallel Processing Laboratory 
School of Electrical Engineering 

Purdue University 
West Lafayette, IN 4 7907 

H.J. Siegel** 

Supercomputing Research Center 
4380 Forbes Blvd. 

Lanham, MD 20706 

Abstract 

Experimentation aimed at determining the minimum­
granularity at which variable-length SIMD operations 
may be decoupled into identical asynchronous MIMD 
streams for a performance benefit is reported. The exper­
imentation is based on timing measurements made on the 
P ASM system prototype at Purdue. The application used 
to measure and evaluate this phenomenon was matrix 
multiplication, which has feasible solutions in both SIMD 
and MIMD modes of computation, as well as in a hybrid 
of SIMD and MIMD modes. Matrix multiplication was 
coded in these three ways and experiments were per­
formed which examine the tradeoffs among all of these 
modes. 

1. Introduction 
While extensive past efforts have dealt with analyti­

cal and simulated performance analysis of SIMD and 
MIMD algorithms, computations, and machines, this work 
describes empirically-based research generated from 
experiments on a parallel machine. This research was 
performed in an attempt to gain insight into the effect of 
certain aspects of novel architectures on applications pro­
grams. Specifically, the performance of the P ASM proto­
type, a machine capable of both SIMD and MIMD modes 
of computation, is evaluated from the perspective of 
matrix multiplication. This application was chosen 
because it has obvious optimal solutions and a simple 
enough structure to permit analysis of architecture 
features through controlled measurements of program 
execution time. The experiments described are based on 
SIMD, MIMD, and hybrid S/MIMD algorithms for multi­
plying n x n matrices for values of n ranging from 4 to 
256. Operations were performed on 16-bit integers utiliz­
ing 16 processors in several 4, 8, and 16 processor 
configurations. 

The primary architecture feature being evaluated in 
this work is the ability to decouple small grains of vari­
able execution-time operations from SIMD sections of 
code into multiple asynchronous MIMD threads of con­
trol. This unique feature derives from the ability to 
dynamically reconfigure the parallelism mode of P ASM. 

Results indicate that when mode-changing operations 
induce a minimal overhead, benefits of such decoupling 
may be found even for relatively small amounts of varia­
tion in the execution-time of individual operations. This 
same low-overhead mode-changing feature was also used 

*Supported by the Supercomputing Research Center 
under contract number 6925. 
**Currently on leave from Purdue. 

444 

to greatly improve the performance of the inter•process 
communication components of parallel programs by using 
the implicit hardware synchronization of SIMD mode to 
reduce the complexity of message passing protocols 
through the P ASM interconnection network. Finally, 
experiments indicate that due to the existence of finite 
queues for issuing instructions from the control units to 
the processing elements in SIMD mode, superlinear 
speed-up is achievable. (We define superlinear speed-up 
as the condition in which the speed-up to number of PEs 
(processing elements) ratio is greater than 1.) 

Section 2 briefly describes generally related work, 
and Section 3 overviews P ASM and its prototype. Sec­
tion 4 describes the basic algorithm that was used. while 
Section 5 describes the programmed variations of . this 
algorithm as implemented on P ASM for use in the experi­
ments presented in Section 6. In Sections 7 through 11, 
the empirical results are discussed under special con­
sideration of the P ASM architecture as well as the central 
issue of decoupling variable-length SIMD operations into 
multiple asynchronous MIMD streams. 

2. Background and Related Work 
Related experimental research has been carried out 

on several machines through the use of .both simulation 
and experimental techniques. Simulation-based analysis 
was performed by Su and Thakore for the SM3 system 
and a hypercube architecture [SuT87]. Experimental work 
involving measurements on working machines has also 
been performed. Examples include work involving several 
machines: the BBN Butterfly [CrG85], Cm* [GeS87], the 
Encore Multimax [Hud88], the Intel Hypercube [Hud88], 
P ASM [FiC87], and the Warp system [AnA87]. In these 
efforts, matrix multiplication was normally employed as 
an example algorithm. Other reported work involving 
efficiency measurements and algorithm optimization on 
parallel machines includes work done on an Alliant FX/8 
[JaM86, Han88], a CRAY XMP [Cal84], and a combina­
tion of Apollo work-stations and an Alliant FX/8 
[KuN88]. 

3. Overview of P ASM and the P ASM Prototype 
The P ASM (partitionable SIMD /MIMD) system is a 

dynamically reconfigurable architecture in which the pro­
cessors may be partitioned to form independent virtual 
SIMD and/or MIMD machines of various sizes [SiS81]. A 
30-processor prototype has been constructed and was used 
in the experiments described in Section 6. This section 
discusses the P ASM architecture characteristics which are 
most relevant to the reported experimentation. For a 
more general description of the architecture, see [SiS87]. 



The Parallel Computation Unit of P ASM contains N 
PEs where N is a power of 2 (numbered from 0 to N-1), 
and an interconnection network. Each PE (processing 
element) is a processor/memory pair. The PE processors 
are sophisticated microprocessors that perform the actual 
SIMD and MIMD operations. The PE memory modules 
are used by the processors for data storage in SIMD mode 
and both data and instruction storage in MIMD mode. 
The Micro Controllers {MCs} are a set of Q=2q proces­
sors, numbered from 0 to Q-1, which act as the control 
units for the PEs in SIMD mode and orchestrate the 
activities of the PEs in MIMD mode. Each MC controls 
N/Q PEs. PASM has been designed for N=1024 and 
Q=32 (N=16 and Q=4 in the prototype). A set of MCs 
and their associated PEs form a virtual machine. In 
SIMD mode, each MC fetches instructions and common 
data from its associated memory module, executes the 
control flow instructions (e.g., branches), and broadcasts 
the data processing instructions to its PEs. In MIMD 
mode, each MC gets instructions and common data for 
coordinating its PEs from its memory. 

MC 
Memory 

MC CPU 

r------------------------, 
Fetch Unit 
Controller 

Mask 
Register 

FIFO 

I 
I 

Fetch Unit 1 

RAM : 

1-------~ 

I 
I 
I 
I 
I 

queue1-------~ 

Fetch Unit 0 PEs 
~------------------------J 

Figure 1: Simplified MC structure. 

The PASM prototype system was built for N=16 
and Q=4. This system employs Motorola MC68000 pro­
cessors as PE and MC CPUs, with a clock speed of 8 
MHz. The interconnection network is a circuit-switched 
Extra-Stage Cube network, which is a fault-tolerant vari­
ation of the multistage cube network. Because knowledge 
about the MC and the way in which SIMD instructions 
are implemented with standard MC68000 microprocessors 
is essential to the understanding of the behavior that was 
observed in the experiments, the SIMD instruction broad­
cast mechanism is overviewed below. 

Consider the simplified MC structure shown in Fig­
ure 1. The MC contains a memory module from which 
the MC CPU reads instructions and data. Whenever the 
MC needs to broadcast SIMD instructions to its associ­
ated PEs, it first sets the Mask Register in the Fetch 
Unit, thereby determining which PEs will participate in 
the following instructions. It then writes a control word 
to the Fetch Unit Controller which specifies the location 
and size of a block of SIMD instructions in the Fetch Unit 
RAM. The Fetch Unit Controller automatically moves 
this block word by word into the Fetch Unit Queue. 
Whenever an instruction word is enqueued, the current 
value of the Mask Register is enqueued as well. Because 
the Fetch Unit enqueues blocks of SIMD instructions 
automatically, the MC CPU can proceed with other 
operations without waiting for all instructions to be 
enqueued. 

445 

PEs execute SIMD instructions by performing an 
instruction fetch from a reserved memory area called the 
SIMD instruction space. Whenever logic in the PEs 
detects an access to this area, a request for an SIMD 
instruction is sent to the Fetch Unit. Only after all PEs 
that are enabled for the current instruction have issued a 
request is the instruction released by the Fetch Unit 
queue, and the enabled PEs receive and execute the 
instruction. Disabled PEs do not participate in the 
instruction and wait until an instruction is broadcast for 
which they are enabled. This way, switching from MIMD 
to SIMD mode is reduced to executing a jump instruction 
to the reserved memory space, and a switch from SIMD 
to MIMD mode is performed by sending a jump to the 
appropriate PE MIMD instruction address located in the 
PE main memory space. 

The SIMD instruction broadcast mechanism can also 
be utilized for barrier synchronization [LuBSO] of MIMD 
programs. Assume a program uses a single MC group, 
and requires the PEs to synchronize R times. First, the 
MC enables all its PEs by writing an appropriate mask to 
the Fetch Unit Mask Register. Then it instructs the 
Fetch Unit Controller to enqueue R arbitrary data words, 
and starts its PEs which begin to execute their MIMD 
program. If the PEs need to synchronize (e.g., before a 
network transfer), they issue a read instruction to access a 
location in the SIMD instruction space. Because the 
hardware in the PEs treats SIMD instruction fetches and 
data reads the same way, the PEs will be allowed to 
proceed only after all PEs have read from SIMD space. 
Thus, the PEs are synchronized. The R synchronizations 
require R data fetches from the SIMD space. Thus, the 
Fetch Unit Queue is empty when the MIMD program 
completes, and subsequent SIMD programs are not 
affected by this use of the SIMD instruction broadcast 
mechanism. 

In order to make comparisons of the speed of the 
P ASM prototype relative to other machines and to com­
pare the relative speeds of SIMD and MIMD instruction 
fetches, the actual raw performance of P ASM in SIMD 
and MIMD mode was measured on the prototype and is 
illustrated in Table 1 in MIPS (millions of integer instruc­
tions per second) for two different types of instructions. 
The difference in speed between SIMD and MIMD modes 
can be attributed to two factors. SIMD instructions are 
fetched from the Fetch Unit Queue in the MC, and the 
queue can deliver data with one less wait state than can 
the PEs' main memories. In addition, PEs' main 
memories are implemented with dynamic memories. 
While care was taken in the hardware design that all 
refresh operations occur simultaneously in all PEs, and 
are performed invisible to the PE CPU, some delay is still 
possible. No such delay occurs during SIMD instruction 
fetches because the Fetch Unit queue is implemented with 
static RAM components. Measurements were made with 
repeated blocks of straight line code which were large 
enough to make the loop control overlap insignificant. 

4. Matrix Multiplication Algorithms Used 
The parallel matrix multiplication algorithm used 

here had O(n3 /p) time and space complexity for multiply­
ing two nxn matrices employing p PEs. Figure 2 shows 
an O(n3 ) time and space complexity serial algorithm. 
This particular algorithm is provided to illustrate the ord­
ering of multiplications as they are done in the parallel 
version of Figure 3. Figure 4 demonstrates the progress 
of the serial algorithm for n=4. The two data-flow 
graphs illustrate what occurs during the first two itera­
tions of the second J. loop of Figure 3. The i loop of the 



Table 1: Prototype raw performance. 

Processing 
Mode Operation Rate 

SIMD 16-bit Reg.-to-Reg. add 22 MIPS 
MIMD 16-bit Reg.-to-Reg. add 18 MIPS 
SIMD 16-bit Reg.-to-Mem. add 6.4 MIPS 
MIMD 16-bit R~.-to-Mem. add 6.0 MIPS 

serial algorithm simulates the PE number in the parallel 
algorithm. The calculation of ((i+j) mod n) in the serial 
version allows the rows of the B matrix to be stepped 
through as the f loop proceeds with the initial B matrix 
row number being i. The serial algorithm used in the 
measurements on PASM, however, was optimized in 
order to permit accurate evaluation of speed-up, and 
therefore did not perform multiplies in this columnar 
manner. Rather, it followed a more straightforward row­
column order. 

for i=O to n-1 do 
for j=O to n-1 do 

Cj,j=Oi 
for i=O to n-1 do 

for j=O to n-1 do 
for k=O to n-1 do 

ck,i = ck,i + ak,((i+j) mod n) b((i+j) mod n),ii 

Figure 2: Serial matrix multiplication algorithm. 

for all i, O~i;;:;;n-1, do 
for v=O to (n/p)-1 do 

7r(v)=v; 
for j=O to n-1 do 

c· = O· vJ,V ' 
for j=U to n-1 do 

for v=O to (n/p)-1 do 
for k=O to n.-1 do begin 

ck,v = Ck/.v + ak,rr(v) b((i(n/p)+v+j) mod n),vi 
for v=l to (n1p)-1 do 

[change the pointer to column v-1 of the A 
matrix to point to column v*] 
7r(v-1)=7r(v); 

for k=O to n-1 do 
send ak rr(o) to PE (i-1) mod p; 
receive 'a value and move it into ak,rr((n/p)-I)i 

Figure 3: Parallel matrix multiplication algorithm. 

In the parallel algorithm, the outer for all loop 
represents iteration across space rather than time. Each 
PE contains n/p adjacent columns of each matrix as 
shown in Figure 5. Within each PE these columns are 
numbered from 0 to (n/p )-1 as shown in the algorithm of 
Figure 3. 7f is a vector of indices to the n/p columns of A 
(in the actual implementation address pointers are used 
for efficiency). This layout is similar to that used by Su 
and Thakore in their experiments for the SM3 system 

· * This effectively rotates all internal columns of 
the A matrix to tlie left without destroying the data 
in column 0 of the PE, or actually moving the data. 

446 

boo~ x 

aoo + coo coo 

b10 x a10 + C10 C10 

b20 x a20 + C20 C20 

b3o x a3o + C30 C30 

(a) 

boo~ x 

ao1 + coo coo 

b10 x au + C10 C10 

b20 x a21 + C20 Czo 

b3o x a31 + C30 C30 

(b) 

Figure 4: Two iterations of the serial algorithm for n=4. 
(a) i=O, j=O, o;;:;; k;;:;; 3. (b) i=O, j=l, o;;:;; k;;:;; 3. 

PE O ••• PE 3 

----
aoo ao1 boo bo1 coo Col aoB ao7 boB bo7 Co6 Co7 
a10 au b10 bu C10 Cu arn ai7 brn b17 C16 C17 
a20 a21 b20 b21 C20 C21 az5 az7 b26 bz7 C26 C27 
a3o a31 b3o b31 C30 C31 ••• a36 aa7 ba6 b37 C35 C37 
a4o a41 b4o b41 C41 a46 a47 b46 b47 C45 C47 
aso as1 b50 bs1 C51 as5 as7 b56 bs7 C56 C57 
a50 a51 b50 b51 C51 a55 a67 b55 b57 C56 C67 
a b b b b C:i1__0 

Figure 5: Data Layout for n=8, p=4. 

[SuT87]. Using the for v loop, each of these adjacent 
columns is stepped through by each PE in sequence, and 
each PE appears as if it has n/p virtual PEs within it. 
The virtual PE number is then defined as (n/p )i+v. 
Thus, the row subscript of B is calculated by repfacing i 
in Figure 2 with this virtual PE number. Data movement 
internal to each PE involves only a pointer adjustment. 
Only on the boundaries of the A matrix (i.e. the highest 
and lowest numbered columns of each PE) is the inter-PE 
network employed. 

This particular algorithm was chosen over ~ more 
standard parallel matrix multiplication algorithm (e.g., 
see Stone [Sto80]) for several reasons. First, if a broadcast 
approach is used to distribute the "a" coefficients to the 
PEs, p network set-up cycles are incurred in addition to 
n2 network transfer cycles (in the course of the algorithm 
each PE will have to broadcast its A matrix values (hence 
p settings) and the whole A matrix will have to be broad­
cast (hence n2 transfers)). In the chosen algorithm, the 
network remains in one configuration (i.e., PE i connected 
to PE (i-1) mod p), thus eliminating any recurring net­
work set-up costs, while not incurring any additional net­
work transfer costs. Also, this algorithm facilitates a 
columnar data format which was preferable for several 
reasons. First, because all matrices are stored in colum­
nar format, BxA may be calculated as well as AxB 
without rearrangement of the data. Second, each matrix 



may be used in subsequent multiplications without refor­
matting. Data uniformity is also desirable to facilitate 
parallel I/O transfers of large data sets from secondary 
memory. 

What follows is a semantic description of the pro­
gress o! the algorithm. During each of the n2 /p iterations 
of the mnermost loop of the algorithm shown in Figure 3, 
each of the elements of the columns of the A matrix is 
multiplied by an element of the B matrix. (Note that due 
to the columnar storage, the column of the B matrix 
matches the internal column number of the A matrix. 
The absolute row number of B will match the absolute 
column number of the A matrix.) This value is then 
added to an element of the C matrix. Therefore, there is 
a total of n multiplications and additions in the inner 
loop with this loop being executed n/p times. In the final 
k loop, the columns of the A matrix are shifted one 
column to the left. Within each PE this transfer involves 
a single memory move, because a' pointer to the entire 
column is changed rather than moving its elements. 
However, for the lowest numbered column of each PE 
the transfer employs the interconnection network. Thi~ 
column is transferred through the network and stored in 
the highe~t numbered column of PE ((i-1) mod p). The 
data received through the network is placed in the PEs 
memory as its highest numbered column. This transfer 
requires n network word operations (one for each element 
of the column). This procedure is repeated until all of the 
columns of the A matrix have been through each of the 
(n/p) positions of each PE for a total of n2 network word 
transfer operation times incurred. During each of these 
elemental time periods, p values are exchanged. 

Consider the time required for index calculation. 
The constant ix(n/p) was pre-calculated and placed in the 
programs data segment because it was constant in each 
PE for a given value of n and p. Also, the j+v operation 
involved in the B matrix row calculation was done outside 
the k loop and therefore only contributes O(n) time com­
plexity per PE. The calculation of the A and C matrix 
row indices was done with the MC68000's auto-increment 
mode. Due to the pipelined structure of the MC68000 
this does not add any extra execution time to the non­
autoincrement mode. Therefore, the index calculation, as 
a separate component of the execution time is not 
significant. ' 

The current implementation of the network in 
P ASM supports 8-bit data transfers. Because these exper­
iments involved 16-bit data, each element transfer 
required two shift operations (one for transmitting and 
one for receiving), an OR operation, and two network 
operations. Because no DMA block transfers were possi­
ble given the current implementation of P ASM each 
column transfer required n single-element transfer~ for a 
total of 2n network operations per column. 

Being circuit switched, setting up a path in the 
P ASM prototype network is a time consuming operation. 
How~ver, i~ this al~orithm only a single path set-up is 
required, (i.e. PE i always sends to PE (i-1) mod p). 
~hu.s the . measurements made do not reflect any 
s1gmficant mfluence from network reconfiguration over­
~ea~. ~ence, therf were ~°:2 network accesses, n3 /p mul­
tiplications, and n /p additions required. This resulted in 
a O(n3 /p) growth in execution time. 

5. Implementations of the Algorithm 
Three variations of the parallel algorithm as well as 

an efficient serial version, were programmed i~ MC68000 
assembly language for execution on the P ASM prototype. 
The parallel versions included a pure SIMD, a pure 

447 

MIMD, and a hybrid S/MIMD version. These three pro­
grams may be executed on 4, 8, or 16 processors simply 
by changing variables embedded in their data sections. 

5.1. SIMD 
The SIMD version executes all looping and control 

flow instructions in the MCs. Arithmetic, data move­
ment, and index calculation instructions are executed on 
the PEs in SIMD mode. The PE instruction stream is 
obtained through the MC's Fetch Unit Queue and is exe­
cuted synchronously on all PEs. 

In P ASM, the network appears to the PEs as two 
memory locations (transmit and receive registers). Net­
w~rk transfers are made directly to the transfer registers 
usmg memory-to-memory move instructions. 

For several reasons, the SIMD version appeared to be 
the most natural choice for implementation. First in the 
matrix multiplication algorithm used all PEs are' always 
enabled, thus eliminatill'g the need for enabling and disa­
bling the PEs. Second, the implicit synchronization 
inherent in SIMD mode allowed the network transfer 
operations to be carried out in a straightforward fashion 
requiring only two memory-to-memory move instructions. 
!hird, the only data-dependent portion of the algorithm 
is the actual multiplication instruction, which has a vari­
able execution length due to its microcoded implementa­
tion in the MC68000. A final advantage of the SIMD ver­
sion is due to the use of a FIFO queue in the Fetch Unit 
of the MCs. Because this queue buffers instructions being 
sent to the PEs, the execution of SIMD instructions by 
the PEs can be overlapped with the execution of control 
flow instructions by the MCs. 

In addition to these conceptual factors involved in 
the SIMD version, there are some factors that were 
present due to the implementation of the P ASM proto­
type. First, instructions may be accessed more quickly 
from the Fetch Unit Queue than from the PEs main 
memory. This is due to the use of faster memory technol­
ogy in the queue. Also, the overlap of the control flow 
instructions with PE instructions is only present if the 
queue remains non-empty. In other words, the PEs can 
only proceed if the MCs supply instructions faster than 
the PEs can remove them from the queue. 

5.2. MIMD 
The second version was a pure MIMD program in 

which the MCs were only used for initiating the PE pro­
:;rams: The PEs executed all instructions asynchronously 
i~cludmg all network, control flow, and arithmetic opera­
tions. Although the network hardware prevents overwrit­
ing of old data in the transfer register, the asynchronous 
network operations necessitated polling of the network 
buffer in order to determine whether it was ready to 
accept new data. After transmission, the network buffer 
must be polled to assure that the data is valid before a 
receive operation can be completed. 

The major advantage of the MIMD version was 
rooted in the variation of the execution time of the 
MC68000 multiply instruction. Multiply or divide 
instructions require an amount of time which is related to 
the number of l's in the binary representation of one 
operand. Assume an algorithm is executed on K PEs, 
each PE executes J instructions, and instruction j on PE 
k takes time T)k· Then the total execution time in SIMD 
mode ( Ts1MD) is the sum of the worst case times for each 
instruction as given by: 



J K 
TsIMD 2, maxrjk 

j=l k=O 

In MIMD mode each PE proceeds independently, and 
therefore the execution time ( 7MIMD) is the worst case sum 
of instruction execution times as given by: 

K J 
7MIMD = max 2, Tjk 

k=O j=l 

In general, 7MIMD ;;;::; TsIMD. 

5.3. S/MIMD 
The hybrid S /MIMD algorithm was developed to 

take advantage of the fast barrier synchronization 
mechanism described in Section 3 and to exploit the exe­
cution time advantage of the MIMD program (i.e. decou­
pling at low cost). In this version, the main program was 
the same as in the MIMD case. The difference was in the 
method of determining whether the network was ready to 
accept a transfer operation. Rather than polling the net­
work buffer, barrier synchronization was used to allow 
network operations to be carried out as simple memory­
to-memory move operations as in the SIMD version. This 
lowered the amount of network overhead to a level com­
parable but slightly greater than the SIMD version due to 
the mode switching time. The other advantages of SIMD 
mode (i.e., faster instruction fetch and control flow 
instruction overlap) could not be realized in this version. 

6. Experiments Performed 
Experiments were performed on nxn matrices and 

measurements were made of the execution times for n= 
4, 8, 16, 64, 128, and 256. The algorithm was imple­
mented for SIMD, MIMD, and S/MIMD mode and was 
run on p = 4, 8 and 16 PEs. All operations were 16-bit 
unsigned integer operations and overflow was ignored. To 
allow for varying machine and problem size, loops were 
utilized wherever possible. 

To measure the amount of asynchronous execution 
necessary to yield better performance by the hybrid ver­
sion over the Sl"MD version, the number of multiplies in 
each innermost loop of the algorithm was made to be a 
dependent variable. These multiplies were added as 
straight line code in order to prevent skewing of execution 
time data due to control flow overlap. The multiplies 
were added to study the effect on the total execution time 
and did not affect the values in the C matrix. Let T SIMD 
and Ts/MIMD be the total execution time for the SIMD 
and S/MIMD programs respectively. The performance of 
each of the components of the execution time was meas­
ured at points corresponding to quantities of inner loop 
multiplications where: 

TsIMD < Ts/MIMD' 
TsIMD =Ts/MIMD' and 
TsIMD > Ts/MIMD· 

Measurements were made with the internal system 
timers (MC68230). Experiments were performed for each 
version with the identity matrix in A and random data in 
B. While the value of the multiplier used in the MC68000 
multiplication instruction affects the execution time, the 
data value of the multiplicand has no effect. Therefore, 
the elements of the A matrix, which were always used as 
the multiplicand could be chosen as the identity matrix 
without affecting program performance. By using the 
identity matrix, matrix multiplication results could be 
easily verified, thereby simplifying the debugging process. 
Random data, produced from a uniformly distributed 

448 

random number generator, was chosen for these experi­
ments in order to represent the average case, and the 
same data sets were used on all versions of the algorithm 
with the same value of n and p. 

100000 

10000 

time 
[msec] 1000 

log scale 

100 

10 

16 64 128 
Problem Size (n) 

256 

Figure 6: Execution time vs. problem size for p=S 
and one multiply per inner loop. 

7. Speed-up & Overall Comparison 
Figure 6 illustrates execution time of matrix multipli­

cation vs. problem size observed in the parallel versions of 
the algorithm for p=S. The difference between the SISD 
time and that of the parallel versions represents an 
improvement by a factor ofapproximately p. 

Although not readily apparent in the graph, it 
should be noted that TMIMD/TsjMIMD decreases as n 
increases. The only difference between these two versions 
is attributed to the contribution to the execution time of 
communication. Note that for p fixed, and small n (e.g. 
n=8), the time complexity of the multiplications is 

£ or Lfil = n2 • This is the same order of contribu­

tfun as c~mmunication. Hence, for small n, the O(n2) 

communication contribution dominates the O(n3 ) arith­
metic. However, for larger n, the O(n3 ) component ulti­
mately dominates and all three curves converge. 

The third aspect of this graph is the apparent advan­
tage of the SIMD version over the S /MIMD version. The 
difference is caused by the ability of the MCs to execute 
control flow in parallel with arithmetic. However, the 
S /MIMD version has the potential for better performance 
due to the decoupling effect associated with MIMD execu­
tion of data-dependent execution time operations. In 
order to determine the point where these graphs cross, 
however, experiments were conducted which added more 
data-dependent instructions in a controlled way. 

8. Execution Time vs. Number of Variable Length 
Operations 

To determine the amount of asynchronous execution 
needed to achieve a benefit when executing a portion of a 
computation asynchronously in MIMD mode, additional 
multiplication operations were added to the innermost 
loop of the algorithm. Figure 7 plots total execution time 
for SIMD and S /MIMD programs with added multiplica­
tions vs. the number· of added multiply instructions for 
n=64 and p=4 with random data. The lines ·plotted 
include 3 different points with the number of multiplica­
tions ranging from 13 to 15. 



time 
[sec] 

7.5 

7 

I 
I 

I 

/ 
/ 

I 

I 
I 

I 

I 

SIM_:Q 
,S/MIMD 

13 14 15 
Number of Multiplies 

Figure 7: Execution time vs. number of 
inner loop multiplications for 

n=64 and p=4. 

These lines are disjoint at the endpoints with the SIMD 
version being faster for small numbers of added multiplies 
and S/MIMD being faster as the number of added multi­
plies is increased. The point at which TsIMD =Ts/MIMD 
was with approximately fourteen added multiplications. 
This was due to the increase in execution efficiency when 
the multiplications were executed asynchronously. i.e., 
fewer processors were idle while waiting for all multiplica­
tions to complete. 

9. Contributions to Execution Time 
To further demonstrate that the execution time 

advantage was manifested in the multiplication instruc­
tion execution time, the contributions of the total execu­
tion time of the hybrid and SIMD programs were broken 
down and plotted. Figures 8, 9, and 10 contain plots of 
execution tinie vs. problem size at each of the endpoints 
and at the crossover point of Figure 7. 
The times shown are broken down into: (i) multiplication 
time, (ii) communication time, and (iii) other contribu­
tions such as time for clearing the C matrix and shifting 
pointers for internal data movement. Multiplication and 
communication times include related address calculation 
operations. The multiplication time also includes the 
addition operation required to add the calculated value to 
the proper C matrix element. Figure 8 shows clearly that 
as problem size increases the time required for the multi­
plications increases faster than the communication time. 
This was mainly due to to the difference in the order of 
the communication time and the multiplication time (i.e. 
O(n2 ) vs. O(n3 /p)). Due to this difference in time com­
plexity, the time required for the multiplication instruc­
tions becomes the largest component of execution time, 
even without the added multiplication instructions. The 
S/MIMD program, however, does not execute faster than 
the SIMD version due to both the control unit instruction 
overlap and the faster memory access time of the Fetch 
Unit Queue unless extra data-dependent instructions are 

449 

10000 

1000 

time 
[msec] 100 

log scale 
10 

1 

16 

Multiplication 

--SIMD Other 

----S/MIMD 

64 128 
Problem Size (n) 

256 

Figure 8: Contributions to execution time for 
matrix multiplication with one multiply 

per inner loop and p=4. 

100000 

10000 

time 1000 
[msec] 100 

log scale 

10 

1 

Multiplication 

--SIMD Other 

----S/MIMD 
0.1 --,___,-~--~----~ 

16 64 128 
Problem Size (n) 

256 

Figure 9: Contributions to execution time for 
matrix multiplication with 14 multiplies 

per inner loop and p=4. 

100000 

10000 

time 1000 
[msec] 

log scale 100 

10 

1 

Multiplication 

--SIMD Other 

----S/MIMD 

0.1 '--,~-~--~----~ 
16 64 128 256 

Problem Size (n) 

Figure 10: Contributions to execution time for 
matrix multiplication with 30 multiplies 

per inner loop and p=4. 



added. 
In Figure 9, the execution times are equal at n=64. 

With the total time broken down, it is apparent that the 
matrix multiplication times are close for all values of n, 
and when n=64 the matrix multiplication time is less in 
the S /MIMD program than in the SIMD program. How­
ever, the matrix multiplication time was the same because 
the communication time in the S /MIMD version was 
slightly more than in the SIMD version. Also, it should 
be noted that this effect would be greater if the constant 
value representing the instruction fetch time advantage 
were removed. 

Figure 10 demonstrates the advantage provided by 
the asynchronous multiplication instructions when enough 
were added to make the other effects diminish in impor­
tance. In this version with 30 added multiplications per 
inner loop the S /MIMD version is faster for the larger 
values of n and this difference increases with n. 

10. Efficiency vs. Problem Size 
Figure 11 plots efficiency vs. problem size for the 

three modes of computation possible on P ASM with p=4 
as well as the serial case where efficiency is defined as: 

1.2 

1.0 

Effi . 0.8 
c1ency 

0.6 

0.4 

Tserial 
E=----

T parallel xp 

·································SIMD 
. . SISD 

••• ------------s/MIMD 
/ ,---- MIMD . , . , , , , 

16 64 1 8 256 
Problem Size (n) 

Figure 11: Efficiency vs. problem size for p=4 and one 
multiply per inner loop. 

The efficiency of the S /MIMD and MIMD versions 
increased with the problem size, and never reaches or 
exceeds unity. The reason for the increasing efficiency 
can be accounted for by the fact that the quantity of 
communication overhead increases as O(n2), and the com­
putation increases as O(n3 /p ). The best efficiency was, 
96% for the S/MIMD version and 87% for MIMD version 
(for. n=256 and no added multiplies). The MIMD 
efficiency was lower due to the extra overhead required 
for the MIMD communication. 

The SIMD version, however, was not only more 
efficient than the MIMD and S/MIMD versions, but was 
able to achieve an efficiency greater than unity when com­
pared only to the number of PEs employed. This 
difference can be attributed to the ability of the PEs to 
do computation while the MCs are doing looping and 
other control operations. If the queue can ·remain non­
empty and non-full at all times, it should be possible to 
eHminate all of the time required for the control opera­
tions. Because this amount increases with n, it is not 
surprising that the benefit also increases with n. This 

450 

amount of benefit is related to the the ratio of control 
operations versus computation and communication opera­
tions. This does, however, demonstrate that the overlap 
of control flow and computation is possible and does pro­
vide some efficiency benefits - especially for applications 
that strongly exhibit a large quantity of control flow 
operations that can be performed on the MCs. This effect 
was predicted earlier by Kuehn et al in [KuS86]. 

LO ~~--''"'7--------SISD 

······:······· ............. ,!MD 0.8 

Efficiency 
0.6 

0.4 

0.2 

''',S/MIMD 

MIMD 

4 16 
Number of Processors (p) 

Figure 12: Efficiency vs. number of processors for n=64 
and one multiply per inner loop. 

11. Efficiency vs. Number of PEs 
Figure 12 shows how efficiency drops as the number 

of processors utilized increases. This drop in efficiency is 
due to several factors. First, the value of n/p drops as p 
increases representing a decrease in the amount of compu­
tation done by each processor. While this does allow 
better parallelization of the algorithm, it makes the time 
consumed by inter-processor communication and other 
factors not present in the serial version become more 
significant compared to the time required by the compu­
tation portion of the algorithm. 

12. Summary 
Experiments designed to examine the tradeoffs 

among the SIMD, SISD, MIMD, and MIMD with barrier 
synchronized modes on the P ASM parallel processing sys­
tem prototype were described. In particular, the effects of 
instructions with data dependent execution times were 
considered. Tests were coded and executed on the proto­
type. Runtimes for different numbers of multiplies, 
numbers of processors, array sizes, and modes of parallel­
ism were collected. This data was evaluated and dis­
cussed, analyzing the effects of the various parameters in 
the tests. 

The experiments presented used an actual parallel 
system and pointed out some of the trade-offs among 
these modes of parallelism. Experiments such as these on 
working prototypes are important in order to begin to 
learn how to effectively harness the power of parallel pro­
cessing. 

Acknowledgements: The authors of this paper ack­
nowledge many useful discussions with Pierre Pero, Tom 
Pusateri, Ed Bronson, Henry Dietz, Wayne Nation, and 
the other members of the P ASM working group. 



FLEXIBLY COUPLED MULTIPROCESSORS FOR IMAGE PROCESSING* 

M. H. Sunwoo and J. K. Aggarwal 

Computer and Vision Research Center 
The University of Texas at Austin 

Austin, TX 78712 

ABSTRACT 

There exist two main schemes for data sharing among processing 
elements in multiprocessors: message passing in loosely coupled 
multiprocessors and shared memory in tightly coupled multiprocessors. 
However, the former has communication overhead and the latter has 
shared memory contention. In this paper, two Flexibly (Tightly/Loosely) 
Coupled Multiprocessors (FCMs) for image processing are proposed in 
order to alleviate these disadvantages. A variable space memory 
scheme in which a set of adjacent memory modules can be merged by 
a dynamically partitionable bus, is proposed to achieve the FCMs. 
These architectures are quantitatively analyzed and simulated on the 
Intel's Personal SuperComputer (iPSC), a hypercube multiprocessor. 
Parallel algorithms for region labeling and median filtering are 
simulated on the proposed architectures. The performance of the FCMs 
shows remarkable improvement over the existing hypercube machine. 

1. INTRODUCTION 

In existing multiprocessors, there are mainly two methods for 
data sharing among processing elements (PEs). The first one is the 
message passing scheme in loosely coupled multiprocessors, and the 
second one is the shared memory scheme in tightly coupled 
multiprocessors. The Cosmic Cube [l], iPSC, and Ncube are examples 
of loosely coupled multiprocessors and the PUMPS [2], PASM [3], and 
Ultracomputer [ 4] are examples of tightly coupled multiprocessors. 

However, both types of multiprocessors have major limiting 
factors towards speed-up and expansion. Loosely coupled 
multiprocessors have a communication overhead disadvantage due to 
message passing, whereas tightly coupled multiprocessors have a shared 
memory contention problem. Another limiting factor which is usually 
neglected, but is important, is the time to load input data and to unload 
output data. In many researches, it is often assumed that the data to be 
processed are already in processing structures. In other words, the time 
to load and unload data is ignored. However, it is not negligible 
because input and output may take longer than computation time in 
some cases on existing multiprocessors. 

In order to alleviate these disadvantages (communication 
overhead, memory contention, and data loading and unloading 
overhead), and to achieve higher speed compared with that of existing 
multiprocessors, two Flexibly (Tightly/Loosely) Coupled Multiprocessors 
(FCMs) with a variable space memory scheme in which a set of 
memory modules can be merged by a dynamically partitionable bus are 
proposed. 

Most image processing tasks require a considerable amount of 
computation [5] which results from the large amount of data to be 
processed. The throughput of the system must be very high to meet 
these computational demands. Specifically, the throughput should be 
much higher for the real-time applications where a sequence of image 
frames is required to be processed. 

*This research was supported in part by IBM. 

452 

Parallel architectures for image processing can be classified into 
two groups in terms of functionality [6]: general purpose architectures 
and special purpose architectures. General purpose architectures are 
flexible and programmable for performing a broad range of 
applications. However, the desired performance often cannot be 
achieved due to the communication overhead, memory contention for 
the exchange of data and control information, and the complicated 
control strategies. Special purpose architectures can achieve better 
performance at the cost of flexibility and versatility. 

The characteristics inherent to image processing which warrant 
the parallel processing approach are now discussed. First, a whole 
image processing task can be decomposed into a set of subtasks which 
are sequentially applied to an entire image domain. For example, the 
task of object recognition is composed of several subtasks which 
include preprocessing, boundary detection, region labeling, 
normalization and finally matching. Second, a sequence of images is 
usually processed for real-time image processing. These 
temporal characteristics can be exploited by pipelining (temporal 
parallelism). Third, the entire image is subjected to the same operation 
which is performed pixel by pixel (e.g., histogram calculation) or 
region by region (e.g., median filtering). This spatial characteristic, i.e., 
the spatial locality of the image data, suggests that a whole image may 
be partitioned into subimages which can be processed in parallel by a 
set of PEs. The spatial characteristic can be exploited by array 
processing or multiprocessing (spatial parallelism). 

The rest of this paper is organized as follows. In the next section, 
two FCMs for image processing are introduced. These architectures are 
then quantitatively analyzed. The applications for SIMD (single 
instruction stream - multiple data stream) algorithms and pipelined 
pseudoparallel algorithms are described. The analytical model of the 
hypercube multiprocessor is described for comparison with the FCMs. 
In Section 3, the applications of the proposed architectures for image 
processing are described. Parallel algorithms for region labeling and 
median filtering are implemented and simulated on the hypercube 
multiprocessor. In Section 4, the experimental results and a discussion 
of the implementation and the simulation are presented for performance 
comparison. The FCMs are MIMD (multiple instruction stream -
multiple data stream) machines which can exploit both types of 
parallelism for image processing. Some features of the FCMs proposed 
in this paper have several similarities to those of other architectures 
such as the VS [7], the SM3 [8] and the MP/C [9]. However, there 
exist several significant differences. Section 5 contains a discussion of 
the similarities and differences, and also some concluding remarks. 

2. TWO FLEXIBLY COUPLED MULTIPROCESSORS (FCMs) 

In this section, we describe the new architectures, and compare 
their features with those of the existing hypercube architecture. In 
general, the term tightly coupled is used for a multiprocessor which has 
shared memories, while the term loosely coupled is for a multiprocessor 
which has no shared memory. In contrast, as will be seen below, both 
terms may be used to describe the proposed architectures. 



[AnA87] 

[Cal84] 

[CrG85] 

[FiC87] 

[GeS87] 

[Han88] 

[Hud88] 

[JaM86] 

[KuN88] 

References 
M. Annaratone, E. Arnould, T. Gross, H. T. 
Kung, M. Lam, 0. Menzilcioglu, and J. A. 
Webb "The Warp computer: architecture, 
impler'nentation, and performance," IEEE 
Transactions on Computers, Vol. C-36, 
December 1987, pp. 1523-1538. 
D. A. Calahan, "Influence of task gran;i;ilarity 
on vector multiprocessor performance, 1984 
International Conference on Parallel Process­
ing, August 1984, pp. 278-284. 
W. Crowther, J. Goodhue, R. Thomas, W. 
Milliken, and T. Blackadar, ''Ferformance 
measurements on a 128-node butterfly parallel 
processor," 1985 International Conference on 
Parallel Processing, August 1985, pp. 531-540. 
S. A. Fineberg, T. L. Casavant, and T. 
Schwederski, "Mixed-mode computing with 
the P ASM prototype," 25th Allerton Confer­
ence on Control, Communications and Com­
puting, September 1987, pp. 258-267. 
E. F. Gehringer, D. P. Siewiorek, and Z. 
Segall, Parallel processing: the Cm* experi­
ence, Digital Press, Bedford, MA, 1987. 
F .B. Hanson, "Vector multiprocessor imple­
mentation for computational stochastic 
dynamic programming," IEEE Techni9al 
Committee on Distributed Processing 
Newsletter, Vol. 10, 1988, (to appear). 
P. Hudak, "Exploring parafunctional program~ 
ming: separating the what from the how, 
IEEE Software, Vol. 5, January 1988, pp. 54-
61. 
W. Jalby and U. Meier, "Optimizing matrix 
operations on a parallel multirrocessor with a 
hierarchical memory system, 1986 Interna­
tional Conference on Parallel Processing, 
August 1986, pp. 429-432. 
J. G. Kuhl, J. J. Norton, and S. R. Sataluri, 
"A large-scale application of coarse-grained 
parallel and distributed processing," IEEE 
Technical Committee on Distributed Process­
ing Newsletter, Vol. 10, 1988, (to appear). 

451 

[KuS86J 

[LuB80] 

[SiS81] 

[SiS87] 

[Sto80] 

[SuT87] 

J. T. Kuehn and H. J. Siegel, "Simulation 
based performance measures for SIMD /MIMD 
processing," in Evaluation of Multicomputers 
for Image Processing, L. Uhr, K. Preston, J~., 
S. Levialdi, and M. J. B. Duff, eds., Academic 
Press, Orlando, FL, 1986, pp. 139-158. 
S. F. Lundstrom and G. H. Barnes, "A con­
trollable MIMD architecture," 1980 Interna­
tional Conference on Parallel Processing, 
August 1980, pp. 165-173. 
H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. 
T. Mueller, Jr., H. E. Smalley, Jr., and S. D. 
Smith ''p ASM: a partitionable SIMD /MIMD 
syste~ for image processing and pattern 
recognition," IEEE Transactions on Comput­
ers, Vol. C-30, December 1981, pp .. 934-947. 
H. J. Siegel, T. Schwederski, J. T. Kuehn, and 
N. J. Davis IV, "An overview of the P ASM 
parallel proc~ssing system," in Computer 
Architecture, D. D. Gajski, V. M. Milutinovic, 
H. J. Siegel, and B. P. Fur ht, eds., IEEE 
Computer Society Press, Washington, D.C., 
1987, pp. 387-407. 
H. S. Stone, ''Farallel computers," in Introduc.­
tion to Computer Architecture (second edi­
tion), H. S. Stone, ed., Science Research Asso­
ciates, Inc., Chicago, IL, 1980, pp. 363-425. 
S.Y W. Su and A. K. Thakore, "Matrix opera­
tions on a multicomputer system with switch­
able main memory modules and dynamic con­
trol" IEEE Transactions on Computers, Vol. 
C-36, December 1987, pp. 1467-1484. 



2.1 The FCM Model I 

2.1.1 Architecture 

The Flexibly (Tightly/Loosely) Coupled Multiprocessor Model I 
(PCM l) is shown in Fig. 2.1.1. The FCM I consists of N PEs (PEi), 
where N = 2", N memory modules (Mi), a control unit (CU) and a 
programmable I/0 processor (IOP), where 0 ::;; i ::;; N-1. P Ei is 
connected to the CU through the communication bus and to the Mi 
through the dynamically partitionable address and data bus (ND BUS) 
with the partitionable arbiter described below. PE; contains its own 
local memory for program and intermediate results. M; is used only for 
data. 

110 

Control Bus 

Communication Bus 

• • • 

• • • 

Fig. 2.1.1 The Flexibly Coupled Multiprocessor Model I (FCM I) 

A set of switches, S;, which can connect and disconnect the ND 
Bus, is located between two memory modules, Mi and M;+i· All 
switches in Si are operated together (closed or opened together). The 
CU can handle each switch set Si independently. The IOP is directly 
connected to this memory and the CU. 

Any two successive memory modules (M;. Mi+l) can be formed 
into one contiguously addressable memory module with Si closed, in 
which case PE; and PE;+1 can access the module through the arbiter 
one at a time. Moreover, a set of consecutive memory modules can 
become one contiguously addressable memory module with all switch 
sets between these modules closed. When all switch sets are closed, all 
memory modules become one contiguously addressable memory 
module. Thus, any PE, or the high speed IOP using the direct memory 
access (DMA) scheme, can access all memory modules. In this case, 
the FCM I becomes a fully tightly coupled multiprocessor. With all 
switch sets closed, if more than one PE tries to access the memory at 
the same time, memory contentions occur. To reduce memory 
contention, the CU opens some switch sets. If all switch sets are 
opened, then any PE (PE;) can access its corresponding module (MJ 
without memory contention. 

Accordingly, when all switch sets are open, the variable space 
memory scheme becomes N memory modules. Therefore, each PE can 
access only its own memory module. Thus, the FCM I becomes a 
fully loosely coupled multiprocessor because there is no more shared 
memory. When some switch sets are closed and the other sets are 
open, the network is grouped into a set of disjoint partitions. If all sets, 
except Si, are open, PE; and PEi+I are referred as partially tightly 
coupled, and other PEs are referred as partially loosely coupled. The 
variable space memory becomes N-1 disjoint memory modules. 
Accordingly, the network forms N-1 partitions. When all switch sets, 
except Si, are closed, the variable space memory becomes two disjoint 

453 

memory modules, and the network forms two partitions. Each partition, 
PEi, 0::;; j::;; i, and PEk> i+ 1 ::;; k::;; N-1, is partially tightly coupled. The 
partitions are partially loosely coupled with respect to each other. 
Thus, the FCM I is a flexibly coupled multiprocessor. 

To prevent memory contention in tightly coupled partitions, a 
partitionable arbiter within the ND Bus is used between PEs and 
memory modules. One possible arbiter based on ripple carry logic is 
shown in Fig. 2.1.2 [10]. This arbiter can be modified to be a 
partitionable arbiter by using switches as shown. The lines Gi are for 
requests, Pi are for propagation of the requests from the previous 
stages, and Ci signal whether the request has been granted in the 
previous stages. The switches in the arbiter are operated in conjunction 
with the switch sets in the ND Bus. 

Fig. 2.1.2 The Partitionable Arbiter 

2.1.2 The Variable Space Memory Scheme 

For a more detailed observation, the connection scheme of PEs 
(PEi, PE;+1), memory modules (M;, Mi+t), and a set of switches (Si) is 
shown in Fig. 2.1.3. PEi and PEi+t are connected to Mi and Mi+!> 
respectively, via the partitionable ND Bus. S; is located between Mi 
and Mi+i-

The address space of each memory module is 

(2.1.1). 

Each module Mi, for 0::;; i::;; N-1, contains consecutive addresses from 
i2m to (i+ 1)2m-1. Thus, m address lines (a0, •.• ,am_1) are required for 
a module. Since there are N (= 2") memory modules, the total address 
space is expressed by 

N*K = 2<m+•l (2.1.2). 

The total number of address lines is m + n, namely, (a0, ••. ,am+.-1). 

Thus, every item has a unique and absolute address so that it can be 
accessed by any PE or the IOP through the ND Bus. The number of 
switches in a set is m + n + d + a, where d is the number of switches 
for the data bus, and a is the number of switches for the partitionable 
arbiter. The switches in a set can be operated in parallel by using the 
control bus, but any two sets may not be operated in parallel. 

( PE l 
ao a~+n:J) ( PE;+1 l 

ao ....,, 
a,J.. --.. .. ~ :...... .. . . 
ll_m_ :-_ 
am+n-1 :.... 

Data Bus (dl.,. 

S; 

M; Mi+! 

Fig. 2.1.3 The Connection Scheme of PEs and Memory Modules 



In multistage interconnection networks, ~ logiN switching 

elements (2 X 2) are required, while only N-1 switching sets are 
required in the FCM I. The switches in the set Si are simple switches, 
unlike the complicated switching elements with relatively complicated 
control strategy used in a multistage interconnection network [11]. 

2.1.3 Communications 

There are three different types of communication: CU-to-PE 
communication (bi-directional), PE-to-PE communication and broadcast 
from the CU or from any PE. CU-to-PE communication can be 
achieved via the communication bus. PE-to-PE communication can be 
achieved via the communication bus or the variable space memory. 
The broadcast from the CU or from any PE can be realized by the 
communication bus , in one cycle. For data sharing, the variable space 
memory can be used in tightly coupled partitions, and the 
communication bus can be used in loosely coupled partitions. Even in 
tightly coupled partitions, the communication bus can be used for 
message passing where messages are short (a few bytes). 

The variable space memory is advantageous for exchange of large 
amounts of data, while the communication bus is advantageous for 
exchange of small amounts of data. In order to combine two data in M, 
and Mi+!• only the switching time to close the switch set Si is needed 
instead of message passing. 

2.1.4 Control 

The control scheme of the FCM I is simpler than the control of a 
multiprocessor which uses a multistage interconnection network. The 
role of the CU is to control PEs, all switch sets and the IOP. 

An example of the control schemes for SIMD mode processing 
on the FCM I, configured as an MIMD machine, is described below. 

z) The CU closes all switch sets and sends a signal to the IOP to 
load input data into a set of memory modules. 

iz) The IOP can load input data by treating the collection of memory 
modules as a single module. After the IOP loads data, it sends 
the load completion signal to the CU. 

iii) The CU opens all switches and broadcasts the task start signal to 
the PEs employed to execute their tasks. 

iv) During execution, data sharing is achieved via the variable space 
memory and also via the communication bus. The CU mediates 
data sharing, when the variable space memory is used. 

v) After each PE finishes its task, it sends the task completion signal 
to the CU. 

vz) When the CU receives all task completion signals from the PEs 
employed, it closes all switch sets and sends a signal to the IOP 
to unload output data. 

As described above, PE-to-PE communications and CU-to-PE 
communications are not required to load and unload data, which is in 
sharp contrast to the hypercube machine described in 2.3.2. Instead, 
only the switching time and control time are required for the FCM 
machines. The CU-to-PE communication is used for control, not for 
data movement. In other words, the communications of the CU mainly 
consist of the control signals for PEs, switches, and the IOP. The 
control and synchronization schemes are simple. The CU issues control 
signals infrequently. Hence, the CU and the communication bus will 

454 

not cause bottlenecks. This will be discussed in greater detail in 
subsection 3.1.2 and Section 4. Since the size of input and output data 
can be predicted in image processing tasks, the IOP can load and 
unload data selectively. For more general tasks, the terminator which 
indicates the end of input data or output data can be used by the IOP 
and PEs. This type of procedure is well suited for SIMD algorithms, 
such as median filtering, convolution, edge detection, FFT (fast Fourier 
transform), region labeling, and so on. 

2.1.5 Analytical Model for Image Processing 

In the FCM I, the parallel image processing time mainly consists 
of six time components: input data acquisition time (tac) to digitize the 
image data from an input device, such as a camera and to store the 
digitized image into the variable space memory by the IOP, 
computation time Ctep), merging time to take the boundary consistency 
problem between subimages into account (tmg), switching time to close 
and open switches (t...,), control time to exchange control signals (teJ, 
and an output transfer time (ti/) to unload data to an output device. The 

parallel processing overhead includes tmg• t ... , and ten· 

lep and tmg are functions of the size of the image (I) and the 
number of the PEs employed (N). tac and lrt are functions of I and are 
independent of N. tsw and ten are functions of N and are independent of 
I. The time components may be expressed as follows 

tac= /1(1), (2.1.3.a) 

tep = fi(I, N), (2.1.3.b) 

tm8 = h(I, N), (2.1.3.c) 

t..., = i4(N), (2.1.3.d) 

ten= fs(N), (2.1.3.e) 

lrt= 16(1). (2.1.3.t). 

The functions,/2,!J,/4 and/5, are very dependent on algorithms. 

As discussed in the previous subsection, PE-to-PE 
communications are not needed for loading and unloading data. Only 
CU-to-PE communications are required for control. 

Thus, the total time to process an image frame on the FCM I can 
be expressed by 

Ti = tac + lep + tmg + tsw + ten + ttf 

On a single PE; it may be represented by 

T, = tac + cNtcp + ttf 

where c is a constant. 

(2.1.4). 

(2.1.5) 

Speed-up (SP1) is defined as the ratio of the time on a single PE 
to that on the FCM I 

(2.1.6). 

2.2 The FCM Model II with Buffering Capability 

This model is useful for MSIMD (multiple single instruction 
stream - multiple data stream) mode processing, which is composed of 
a set of SIMD mode processing. It is also useful for pipelined 
pseudoparallel algorithms [12] discussed in 2.2.3 as well as for SIMD 
algorithms. 



2.2.l Architecture 

The FCM with buffering capability (FCM II) is shown in Fig. 
2.2.1. There are two memory sets, MA and MB. The set MA consists of 
N memory modules {MAO• MAi. · · · , MAN-il and the set MB consists 
of N memory modules {MBo• M81 , · · · , MBN-il· The local memory 
in a PE can be used for storing program and intermediate results like in 
the FCM I. The IOP is connected to each memory set, with two ports 
for each set to load input data and unload output data from the 
modules, independently. 

Communication Bus 

Control Bus 

ND bus 

• • • 
SA! 

• • • 
Sm 

• • 

ND Bus 

Fig. 2.2.1 The Flexibly Coupled Multiprocessor Model II (FCM II) 

While PEs use MA for processing, the IOP can unload output 
results from and load input data into MB. When PEs start processing 
MB, the IOP can unload output data from and load input data into MA. 

The role of the CU in the FCM II is similar to that in the FCM I. 
The CU has three functions: to control the upper and lower switch sets 
separately, to control PEs, and to control the IOP. 

2.2.2 Analytical Model for Image Processing 

While PEs use MA, the CU sends a signal to the IOP to unload 
output data from MB and load another input data into MB, and vice 
versa. Thus tac, ttf, and some portions of t..,, and ten for one set of data 
can be overlapped with tep• tmg• and tsw and ten for the other set of data. 
For example, during processing in MA, the time for sending a signal to 
the IOP from the CU can be overlapped with computation time. 
Therefore, tac + ttf + Pit..,, + P2ten can be overlapped with 
tcp + tmg + (1 - P1)tsw + (1 - p,)tem where p1 and P2 are the overlapped 
portions of tsw and ten· 

The total time to process an image frame for the FCM II (Tu) is 
expressed as follows 

Tu= lcp+lmg+(l-p1)lsw+(l-p2)lcn , 

if lcp+lmg+(l-p1)l..,,+(l-p,)len :": lac+lg+P1lsw+P2lcn (2.2.1). 

Tu= tac+tg+p1tsw+P2lcn , 

otherwise 

Speed-up (SPJJ) is expressed as follows 

T, 
SPu= -T 

u 
(2.2.2). 

455 

2.2.3 Pipelined Pseudoparallel Algorithms on the FCM II 

Pipelined pseudoparallelism, where a serial algorithm is 
decomposed into a set of noninteractive independent subtasks so that 
parallelism can be used in each subtask level, is proposed in [12]. 

For an integrated computer vision system, pipelined 
pseudoparallelism is valuable, wherein temporal parallelism and spatial 
parallelism can be exploited. Spatial parallelism and temporal 
parallelism may be achieved by using multiprocessing and pipelining, 
respectively. Many computer vision tasks, such as pattern recognition 
and dynamic scene analysis, fall in the category of pipelined 
pseudoparallel algorithms. 

Pipelined pseudoparallel algorithms can be implemented 
conveniently on the FCM II. The FCM II can be partioned into a set 
of various-size MIMD machines (or SISD, single instruction stream -
single data stream, if the sizit is 1) by using the partitionable AID Bus 
as described below. 

For the sake of convenience, the FCM II with N = 4 is illustrated 
in Fig. 2.2.2. SAi and Sai denote that the switches are closed, and SAi 
and S Bi denote the switches as being open. Suppose that a whole task 8 
is decomposed into three subtasks (8i. 8z, 83), and 8t needs two PEs 
(PE0, PE1) and each of 82 and 83 needs one PE (PE2 and PE3). For 
example, a pattern recognition task (g) consists of three subtasks which 
are preprocessing (g1), feature extraction (8v and pattern classification 
(g3). Assume that a sequence of images is to be processed. For 
simplicity, the steps for switching and control between the CU, PEs and 
the IOP are omitted. 

Fig. 2.2.2 The FCM II (N = 4) 

In the first phase, PE0 and PE1 (81) process the image frame 
loaded by the IOP in MAo and MA1 with SAo and SAt· After processing, 
PE0 and PE1 write output into MAo and MAI· In the second phase, PE2 

(8v processes the intermediate results in MAo and MA 1 with SAo and f,;" 
and writes output into MA2• In the third phase, PE3 (83) processes the 
intermediate results in MA2 with SA2, and writes output into MA3. 
Finally, the IOP accesses output results from MA3• In other words, 8i 
reads input data from MAH (M8;_1), and writes output data into 
MA; (M8 /). When i=O, input data is loaded from the IOP. The above 
steps are interleaved between two memory sets as described below. 

z) While PE0 and PE1 (g1) process the image frame loaded by the 
IOP in MAo and MA1 with SAO• PE2 (8v processes the intermediate 
results generated by PE0 and PE1 in Mno and Mn1 with Sao and 
Sa 1• Also, PE3 (g3) processes the intermediate results generated 
by PE2 in MA2 with SA2. After processing, the processed frames of 
81> 82 and 83 are in (MAo and MA1). Mn2. and MA3• respectively. 
The IOP can directly access the final results in MA3 with SA2. 

ii) Similarly, while PE0 and PE1 (g1) process the image frame in 
M80 and M8" PE2 (8v accesses the previous output of 81 in MAo 
and MAi. and write its output in MAz· At the same time, PE3 (83) 
accesses the previous output of 82 in M 82• The IOP can directly 
access the final results in M83 with S82• 



As described above, PEs can process the data in two memory sets 
MA and M8, alternately. And the PEs of the current subtask write their 
outputs into corresponding memory modules which are used by the PEs 
of the next subtask. Thus, even data transfer time between stages 
which causes overhead in pipelined schemes can be reduced. During 
processing, there are only two connection patterns between PEs and the 
variable space memory modules shown in Fig. 2.2.3. There is no 
communication overhead. For synchronization, the stage transition 
between subtasks must be controlled by the CU. The processing time 
per output is max ( t;}. where t; is the processing time of the i-th stage. 
Any composition of subtasks in pipelined pseudoparallel algorithms, 
may be mapped into the PCM II without communication overhead. 

Fig. 2.2.3 Two Connection Patterns between PEs and Memory Modules 

2.3 IIypercube ?'viuitiprocessor 

In order to compare the performance of the FCMs with a 
hypercube multiprocessor, the architecture and the analytical model of a 
hypercube are briefly discussed. 

2.3.1 Architecture 

The system is composed of a controller and a hypercube structure 
which consists of N = 2• PEs. Each processor is connected to its n 
nearest neighboring PEs. The hypercube multiprocessor is a loosely 
coupled multiprocessor with no shared memory and no global 
synchronization. Thus, data sharing between PEs is achieved by 
message passing [l]. 

There are two different types of communication: controller-to-PE 
communication and PE-to-PE communication. The communication 
required to perform an image analysis task causes significant overhead 
which degrades performance [13]. 

2.3.2 Analytical Model for Image Processing 

In the hypercube multiprocessor, the parallel image processing 
time mainly consists of six time components: input data acquisition 
time (tac), input data distribution time (td,,) from the controller to PEs 
which may consist of controller-to-PE communications (tdsc) and PE­

to-PE communications (tds)• computation time (tcp), collection time to 

gather local results in PEs by using PE-to-PE communications (tc1P)• 

merging time to take the boundary consistency between subimages into 
account (tm8), collection time to send a whole result to the controller by 
using PE-to-controller communication (tc1pc), and output transfer time 

(ttf). The parallel processing overhead includes Ids"' tdsPP• tmg• tc1pp' and 

tclpc" 

Each time component, except tac and ttf, is a function of both the 
size of the image (I) and the number of the PEs employed (N). tac and 
ttf are functions only of I. Therefore, the time components are 
expressed as follows 

456 

lac= h1(I), 

tds = tds"' + fdspp = h2(/, N), 

fcp = h3(/, N), 

lei = fclpp + le/pc = h4(/, N), 

lmg = hs(l, N), 

ttf= ~(/). 

(2.3.1.a) 

(2.3.1.b) 

(2.3.1.c) 

(2.3.1.d) 

(2.3.1.e) 

(2.3.1.f). 

It was found that the functions can be represented as 
h; = Cm + C;1I + Cof, 2, where C/s are constants, I, is the size of a 

subimage [~].and 2 sis 4 [14]. These functions are very dependent 

on algorithms. 

The total time to process an image frame on the hypercube 
multiprocessor (l'h) is represented by 

(2.3.2). 

Speed-up (SP h) is defined as the ratio of the time on a single PE 
to that on the hypercube multiprocessor ' 

T, tac + cNtcp + ftf 
SPh = - = (2.3.3). 

Th lac + tds + fcp + fez + lmg + ttf 

The time to load data into and unload data from the hypercube 
includes tac, tas, tci a...TJ.d :,. tds and tc1 consist of controller-to~PE 
communications and PE-to-PE communications which may significantly 
degrade performance. As N increases, communication overhead 
increases, and efficiency sharply decreases. In contrast, to load and 
unload data on the PCM I, only tac, ttf and some portions of tsw and tco 

are needed. Furthermore, to load and unload data on the PCM II, even 
tac and ttf can be entirely overlapped, and hence only some portions of 
t.,. and ten are required. 

3. APPLICATIONS TO IMAGE PROCESSING 

We describe the simulations of some common image processing 
algorithms on the proposed architectures, and compare them with the 
implementation· of these on the hypercube machine. We illustrate the 
advantages of the proposed models over the hypercube model for such 
algorithms. In the next section, we provide experimental results that 
demonstrate the advantages of the new architectures. 

Region labeling and median filtering are chosen for performance 
evaluation. Median filtering is used for preprocessing in many image 
processing tasks. Region labeling is one of the basic operations in 
image processing. Once an image has been partitioned into regions, 
these regions can be studied, described and possibly identified. 
Applications where region labeling plays an integral part include cell 
classification, military target detection, parts inspection, object 
classification and character recognition. 

3.1 Region Labeling 

A parallel algorithm for region labeling has been implemented on 
the iPSC dS (32 PEs) and is described elsewhere [13]. The tracking 
method of Agrawala and Kulkarni [15] has been modified to overcome 
some of the limitations of the original scheme, and the merging 
algorithms for parallel implementation have been developed [13]. 

Two major limiting factors for speed-up on the hypercube 
multiprocessor . were discovered. One is the PE-to-PE communication 
overhead, the other is the controller-to-PE communication overhead. 
The same algorithm can be also implemented on the FCMs without 
communication overhead. Only switching time and control time 
contribute to the overhead as described below. 



3.1.1 Parallel Algorithm 

The parallel algorithm consists of three major operations; 
preprocessing, labeling, and merging. The original image is partitioned 
into N equal-size subimages, which are distributed to the PEs involved. 
Each PE is assigned a subimage. Each subimage is preprocessed in a 
raster scan manner, i.e., top to bottom, left to right, generating a 
reduced representation of the image, i.e., the transition point 
representation (TPR) [15]. The transition point pair (TPP) shown in Fig. 
3.1.l is composed of (XL;(k), XR,(k)), where XL;(k) and XR;(k), 

respectively, are the left point and the right point of the i-th region on 
scan line k. The TPP' s are obtained by preprocessing. After 
preprocessing, labeling operation is performed by using a set of 
boundary continuation conditions [13]. The local results are combined 
recursively through the pseudo binary tree structure described in the 
next subsection. It is necessary to merge two adjacent subimage 
regions with different labels into one region with the same label. The 
merging is performed first across vertical subimage borders 
(vertical merging) and then across horizontal subimage borders 
(horizontal merging). Finally, one PE labels regions based on merged 
TPP's. Using the algorithm, any digital image represented in a 2-
dimensional array can be labeled. Further details about algorithms are 
described in [13]. 

scan line 

1 
2 
3 

k-1 
k 

• 
• 
I-1 
I 

-xi11 
1 1 

l 

1 
T 

1 1 1 

x 1 x"llli 
1 T I 1 I 

I I 1 
I l l 

I l I 

2 

2 2 
2 2 2 2 2 2 

"1JL; x 2 2 x xfij 
2 2 2 2 

2 2 2 2 2 
2 2 2 

2 

Fig. 3.1.1 Regions and TPP's for scan line k 

3.1.2 Simulation on the FCM I 

A. Pseudo Binary Tree 

A pseudo binary tree (refer to Fig. 3.1.2 for a 4-level tree) is a 
binary tree structure which can be easily embedded into the hypercube 
topology such that a node in the hypercube may represent more than 
one node in a corresponding pseudo binary tree [14]. The pseudo binary 
tree is an efficient topology for distributing subimages and collecting 
the local results in the hypercube multiprocessors. The reason is that all 
PEs in the hypercube ·are utilized for the pseudo binary tree 
implementation while at most only half of PEs are utilized for a binary 
tree implementation. The pseudo binary tree can be embedded int:i 
not only the hypercube topology but also the FCM I and II. 

Level 

0 

2 

3 
0 

0 

2 3 4 5 6 7 

Fig. 3.1.2 The Pseudo Binary Tree 

i) 

B. Embedding the Pseudo Binary Tree into the FCM I 

The pseudo binary tree can be used for merging procedure on the 
FCMs. It is not required for distributing and collecting data. For the 
convenience of illustration, a 4-level pseudo binary tree shown in Fig. 
3.1.2 is used. The embedding the pseudo binary tree into the FCM I 
for merging procedure is shown in Fig. 3.1.3. The procedure is 
described below. 

b 0 

Mi h 4 

5 

ii) 

iii) 

457 

Fig. 3.1.3 Embedding the Pseudo Binary Tree into the FCM I 

i) When the switch set S0 is closed, two memory modules, 
(Mo, M1), become one contiguously addressable memory module 
where the parenthesis represents one contiguously addressable 
memory module. PE0 can access the modules like one memory 
module. Similarly, when S2, S4 and S6 are closed, (M2, M3), 

(M4, Ms) and (M6, M1) become three disjoint memory modules. 
·PE2, PE4 and PE6 are able to merge the local results. This 
procedure realizes the transition from level 3 to level 2 in the 4-
level pseudo binary tree. 

ii) In addition, when S1 and Ss are closed, PEo and PE4 can merge 
the local results in (M0, Mi. M2, M3) and (M4, Ms, M6' M7), 

respectively. 
iii) Finally, PE0 can merge all local 

(Mo, Mi. Mz, MJ, M4, Ms, M6> M1) with S3 closed. 
all switch sets are closed. 

results in 
In this case, 

As shown above, there is no communication overhead (no 
message passing) that can significantly limit speed-up as on the 
hypercube multiprocessor. In addition, there is no memory conflict 
because only one PE in each partition performs the merging procedure. 
Instead there exist only switching and control times. The steps for the 
FCM II in each memory set are the same as those for the FCM I. 
Thus, the pseudo binary tree may also be embedded into the FCM II. 
In addition, general tree topologies may also be embedded into the 
FCMs. The embedding procedure for general tree topologies into the 
FCMs is similar to that for the pseudo binary tree. 

C. Control Algorithm for Parallel Region Labeling on the FCM I 

The control algorithm for region labeling executed in the CU is 
described in Fig. 3.1.4. Consider PEr Let the binary representation of 
p be (a,,_1 · · · a; · · · ao) where a;= 0,1. Consider the switch set Sq. 
Let the q be denoted by the binary representation 
(b..-1 · · · b; · · · ho) where b; = 0,1. NI is the number of image 
frames to be processed and N is the number of PEs employed. 



begin 
close all switch sets; 
for i ~ 0 until NI - 1 do 

begin 

end 

if (i = 0, i.e., the first frame) then 
send a signal to the IOP to load the first image frame; 

else 
send a signal to the IOP to unload output results and 
load another frame; 

repeat wait until the CU receives the load completion 
signal from the IOP 
open all switch sets; 
broadcast the start signals to PEs to execute tasks; 
while the number of signals received from PEs i' N do 

wait; 
/* Implementation of the Pseudo Binary Tree */ 
NS~N; 
for j ~ 1 until log N do 

end 

begin 
close the switch set Sq where q is all possible 
values of (b._1, ... ,b0) obtained with the j least 
significant bits set to zero, i.e., 
bo = b1 = · · · = bi-1 = O; 
send the start signals to PEP to merge two local 
results, where p is all possible values of 
(a,....1, •.. ,a0) obtained with the j least significant 
bits set to zero, i.e., a0 = a1 = · · · =a· 1 = O; 
while the number of signals received from PEs i' 
NS do 

wait; 
NS~ NS> l; /*one bit right shift*/ 

end 

Fig. 3.1.4 The Overall Control Algorithm executed in the CU 

D. Time for Switching and Control on the FCM I 

As described before, the switches in a set can be operated in 
parallel by using the control bus, but two sets can not be operated in 
parallel. The time for operating one set of switches is represented by t1• 

The control signal can be issued by the CU, PEs and the IOP. The time 
for sending a control signal or for broadcast is represented by t2• The 
control procedure described in the previous subsection is used for 
estimating the time for switching and control. 

To send a signal to the IOP to unload output results and load 
another image frame, t2 is required. After loading, the IOP sends the 
completion signal to the CU, thus t2 is also required. When the CU 
opens all switches in all sets, (N-1)11 is needed. When the CU 
broadcasts the start signal to all PEs to execute their tasks, 12 is needed. 
After processing, all PEs send the task completion signal to the CU, it 
takes Nt2. The merging procedure using the pseudo binary tree was 
described in subsection 3.1.2.B. To combine two local results, the 

switches in the set between two modules should be closed. Hence, [~] 
switching times are needed for the bottom level in the pseudo binary 

tree (level logiN). Then the CU sends the start signal to [ ~] PEs to 

execute the merging procedure. After merging, [~] PEs send the 

completion signal to the CU. Accordingly, [~] switching times and 

2 [-I] control signals are required. For the next bottom level (level 

log.JV - 1), [~] switching times and 2 [ ~] control signals are needed. 

Since the height of the pseudo binary tree is log.JV, this procedure is 

458 

repeated log.JV times. Thus, th.e total number of switching times for 

logzN[ ]' [ logzN[ ]'l merging procedure is N ~ 1 , and it takes N ~ 1 J11. The total 

number of control signals for merging procedure is 2N1f [1 J. and it 

[ logzN [ 1 ]'] 
takes l2N ~ 2 t2. 

Therefore, the total time for switching in region labeling is 

r logzN[ 1 ]'] 
lsw = (N-l)t1 + t ~ z t1 = 2(N-l)t1 (3.1.1). 

and the total time for control is 

[ logzN[ 1 ]'] 1 •• = 3t2 + N12 + 2N ~ z 12 = 312 + Nl2 + 2(N-1)12 (3.1.2). 

As will be seen in Section 4, these times are much smaller than 
computation time. Hence, bottlenecks due to the CU, the 
communication bus and the control bus are minimal. 

3.1.3 Simulation on the FCM II 

Since the FCM II has a buffering capability, another image frame 
can be sent to the currently unused memory set even before the 
previous image has been processed. In ot.her words, we may try to 
overlap in time the data acquisition and the data transfer with the 
computation between successive images. This could improve 
performance especially when the data acquisition time and the data 
transfer time are considerably large. In contrast, there can be no overlap 
of the procedures in the FCM I. The former is referred to as an 
overlapping method while the latter as a non-overlapping method. 

The pseudo binary tree can be also embedded into the FCM II. 
The control algorithm in the FCM II is similar to that of the FCM I 
described in 3.1.2.C. While PEs process the data in one memory set, 
the CU sends a signal to the IOP to unload output results of the 
previous frame from the other set and load another frame into the set (it 
takes t2 for control). After the CU receives the load completion signal 
from the IOP (it takes also 1z), the CU opens all switches in all sets (it 
takes (N-1)11), and wait until PEs finish the current frame. Therefore, 
the time for switching, (N-1)11> and the time for control, 2t2 can be 
overlapped with computation time. Thus, the total switching time and 
control time are reduced as follows: 

[ log,JV[ l ]'] 
fsw = N ~ z 11 = (N-1)11 (3.1.3) 

[ logzN [ 1 ]'] 
1 •• = t2 + N12 + l2N ~ z t2 = t2 + Nt2 + 2(N-l)t2 (3.1.4). 

3.1.4 Implementation on the Hypercube Multiprocessor 

The system is composed of a controller and a hypercube 
containing 32 PEs (the Binary 5-cube ). The controller acquires an 
input image from an input device, and divides it into a set of equal size 
subimages, and sends them to the hypercube through the pseudo binary 
tree described in 3.1.2.A. After distribution, every PE processes a 
subimage concurrently. On completing, the local results are sent to the 
higher level PEs in the pseudo binary tree for collecting and merging. 
They are merged across vertical or horizontal borders through the 
pseudo binary tree until a PE obtains a whole result. The total number 
of vertical and horizontal merging steps is log:/{ where N is the number 



of PEs employed. The labeled image is sent back to the controller. 
Finally, the controller sends it to an output device. As described above, 
there are six steps in this procedure; acquisition of an image, 
distribution of an image to PEs, parallel computation, collection of 
local results, merging for boundary consistency, and transferring output 
result to an output device. There exist controller-to-PE communications 
and PE-to-PE communications for distribution and collection. We used 
a scheme for distribution of data, i.e., the rrwdified singlecast scheme in 
which the controller distributes a set of subimages to PEs on a certain 
level in a pseudo binary tree [14]. Every PE which receives a 
subimage divides it again into two subimages, sends one subimage to 
its child PE in the pseudo binary tree recursively until all leaf PEs 
receive their subimages. 

3.2 Median Filtering 

Median filtering is a neighborhood operation, which transforms 
the value of each pixel to a new value calculated from its neighboring 
pixels (the median of a 3 x 3 window is used). Convolution, edge 
detection, and smoothing are other examples of neighborhood 
operations. To avoid unnecessary communication due to the data 
partitioning, the overlapped partitioning method shown in Fig. 3.2.1 is 
used. In this case, merging time (t,.8) can be avoided. Therefore, the 
pseudo binary tree which is used only for the merging algorithm in 
region labeling, is not needed to implement median filtering on the 
FCMs. However, it is needed to distribute and collect data on the 
hypercube multiprocessor. The control algorithms of the FCMs are 
simpler than those of region labeling because there is no merging 
procedure, namely, no pseudo binary tree. Since the control steps for 
the pseudo binary tree are not required, the total times for switching 
and control on the FCM I are derived from equations (3.1.1) and (3.1.2) 

tsw = (N-l)t1 (3.2.1) 

(3.2.2). 

As described in 3.1.3, (N-l)t1 in tsw and 2t2 in ten can be 
overlapped with tcp on the FCM II. Therefore, on the FCM II the total 
time for switching can be totally overlapped, and the total time for 
control is 

Subimage 
forPEi 

Subimage 
for PE i+t 

Fig. 3.2.1 The Overlapped Partitioning Method of Image 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

(3.2.3). 

Parallel algorithms for region labeling and median filtering have 
been implemented on the iPSC and simulated on the FCMs by using 
the iPS C. The simulation results are based on the following 
conservative assumptions. Firstly, for simplicity and sufficiency, t1 and 
tz are assumed to be 1 msec. Secondly, the data acquisition time and 
the data transfer time are assumed to be 40 msec for all machines. 
Lastly, assume that the PEs of the FCMs have the same computing 

459 

capabilities as those of the iPSC. In practice, 11 and t2 are usually 
much smaller than 1 msec (nano second order), and the data acquisition 
time and the data transfer time for a 256 x 256 binary image 
(64Kbytes), are less than 40msec [16]. 

4.1 Region Labeling 

User-generated binary images (256 x 256) were used to test all 
aspects of the algorithm. The images have a variety of regions. A data 
set which resembles a mesh containing a variety of region types is used 
for performance evaluation. 

To evaluate the performance of the FCMs, each time component, 
the total time, and the speed-up are listed in Table 4.1.1. The speed-up 
is plotted in Fig. 4.1.1. As shown in this figure, the speed-up of the 
FCMs is better than that of the hypercube multiprocessor. The reason 
is that communication overhead increases as N increases on the 
hypercube multiprocessor. On the FCMs, there is no communication 
overhead that increases with N, only marginal overhead in switching 
and control. Even with the conservative assumptions, the switching and 
control times on the FCMs are much smaller than computation time. 
Hence, bottlenecks due to the CU, the communication bus and the 
control bus are minimal. 

The overlapping method (FCM II) achieves better performance 
than the non-overlapping method (FCM I) as expected. The FCM II 
can reduce even the data acquisition time and the data transfer time. If 
these times are large, the difference in performance is large. Even 
though the difference is small, the FCM II has more applicability as 
described in subsection 2.2.3. 

Even with no communication overhead, the speed-up is not 
linearly proportional to N because there are some necessary tasks that 
are independent of N. For instance, the amount of time to label regions 
based on merged 1PP's is fixed because it must 'be done by a single 
PE. This behavior can be observed in Table 4.1.1. 

4.2 Median Filtering 

The measured performance figures are tabulated in Table 4.2.1. 
The speed-up is plotted in Fig. 4.2.1. As shown in this figure, 
significant speed-up is achieved. The speed-up is better than that of 
region labeling. The reason is that there is no mering procedure, and 
computation time is larger than that for region labeling. In other words, 
the ratio of computation time to parallel processing overhead in median 
filtering is larger than the ratio for region labeling. The computation 
time (tcp) decreases linearly, as N increases. The speed-up of the FCMs 
is approximately linearly proportional to N because there is no 
communication overhead, no merging procedure, and no necessary task 
which must be done by a single PE. Accordingly, as N increases, more 
speed-up may be achieved. For many neighborhood operations, such 
significant speed-up may be expected. 

5. CONCLUSIONS 

In this paper, two Flexibly (Tightly/Loosely) Coupled 
Multiprocessors for image processing are proposed. These 
multiprocessors alleviate the disadvantages of existing multiprocessors, 
such as communication overhead due to message passing in loosely 
coupled multiprocessors, memory· contention due to shared memory in 
tightly coupled multiprocessors, and overhead due to inefficient loading 
and unloading data. 

Some features of the FCMs have several superficial similarities to 
those of other architectures, such as the VS [7], the SM3 [8] and the 
MP/C [9]. However, there exist several significant differences. The 



N Time [ms] lac ta,,, '"pp t,,, lei 
pp 

t.., t,., ten tc1 
pc '" Total Speedup 

1 Single 40 0 0 12880 0 0 0 0 0 40 12960 1.0 

Hypercube 40 1856 128 6720 224 560 0 0 1682 40 11250 1.152 
2 FCMI 40 0 0 6720 0 560 2 7 0 40 7369 1.759 

FCMII 0 0 0 6720 0 560 1 5 0 0 7286 1.779 

Hypercube 40 1872 192 3568 304 416 0 0 1664 40 8096 1.601 
4 FCMI 40 0 0 3568 0 416 6 13 0 40 4083 3.174 

FCMII 0 0 0 3568 0 416 3 11 0 0 3998 3.241 

Hypercube 40 1856 208 2736 480 544 0 0 1904 40 7808 1.660 
8 FCMI 40 0 0 2736 0 544 14 25 0 40 3399 3.813 

FCMII 0 0 0 2736 0 544 7 23 0 0 3310 3.915 

Hypercube 40 1872 240 2048 272 560 0 0 1832 40 6904 1.877 
16 FCMI 40 0 0 2048 0 560 30 49 0 40 2767 4.684 

FCMII 0 0 0 2048 0 560 15 47 0 0 2670 4.854 

Hypercu~ 40 1872 208 1776 448 656 0 0 1648 40 6688 1.938 
32 FCMI 40 0 0 1776 0 656 62 97 0 40 2671 4.852 

FCM 11 0 0 0 1776 0 656 31 95 0 0 2558 5.066 

Table 4.1.1 Time Components for Region Labeling 

N Time [ms] tac ta,,, ta 
pp 

t,,, tc),p t.., t,w ten tc1 
pc '" Total Speedup 

1 Single 40 0 0 70700 0 0 0 0 0 40 70780 1.0 

Hypercube 40 1678 81 35349 18 0 0 0 1612 40 38818 1.823 
2 FCMI 40 0 0 35349 0 0 1 5 0 40 35435 1.997 

FCMII 0 0 {) 35349 0 0 0 3 0 0 35352 2.002 

Hypercube 40 1678 119 17771 132 0 0 0 1550 40 21330 3.318 
4 FCMI 40 0 0 17771 0 0 3 7 0 40 17861 3.963 

FCMII 0 0 0 17771 0 0 0 5 0 0 17776 3.982 

Hypercube 40 1680 140 8883 150 0 0 0 1716 40 12649 5.596 
8 FCMI 40 0 0 8883 0 0 7 11 0 40 8981 7.881 

FCMII 0 0 0 8883 0 0 0 9 0 0 8892 7.960 

Hypercube 40 1676 156 4440 216 0 0 0 1514 40 8082 8.758 
16 FCMI 40 0 0 4440 0 0 15 19 0 40 4554 15.542 

FCMII 0 0 0 4440 0 0 0 17 0 0 4457 15.881 
Hypercube 40 1677 151 2220 206 0 0 0 1764 40 6098 11.607 

32 FCMI 40 0 0 2220 0 0 31 35 0 40 2366 29.915 
FCMII 0 0 0 2220 0 0 0 33 0 0 2253 31.416 

Table 4.2.1 Time Components for Median Filtering 

5 

-G- FCMII 
-+- FCMI ..... Hypercube 

2 

~ 
1-i-~....:;=--~~~~~~~~~~~~ 

0 2 3 4 5 6 
logN 

Fig. 4.1.1 Comparison of Speed-up for Region Labeling 

FCMs differ considerably from the VS in that the latter is a goal­
oriented architecture, being functionally dedicated, with inhomogeneous 
processors and memory modules. Other significant differences between 
the FCMs and the VS architecture are in the bus structures, switches, 
memory addressing scheme, and I/0 scheme. 

In the FCMs, a set of adjacent memory modules can be formed 
into one contiguously addressable module, while this feature is not 

460 

40 

30 

i 20 

<Zl 

-a- FCMII 
-+- FCMI 
-a- Hypercube 

10 

0 
0 2 3 4 5 6 

logN 

Fig. 4.2.1 Comparison of Speed-up for Median Filtering 

found in the SM3 and the MP/C. In the worst case, if the processor in 
the SM3 or the MP/C tries to repeatedly access data stored in two 
alternate memory modules, then module switching in the SM3 or 
computing an effective address by the switch controller in the MP/C 
must precede each memory access. In image processing, this situation 
occurs often. One example is the merging of subimages using 
boundary consistency. If two adjacent subimages in two different 



memory modules are to be combined into one subimage using boundary 
consistency, the alternate memory modules need to be repeatedly 
accessed for every boundary pixel processed by the MP/C and the SM3. 
In contrast, in the FCMs only one switching time is needed to connect 
the memory modules. 

The input/output processor is directly connected to the variable 
space memory in the FCMs. This scheme can minimize the overhead to 
load and unload data, which may be significant in the SM3 and the 
MP/C. In each partition of the MP/C, only one processor can be active, 
while in the FCMs, any PE in any partition can be active. Only one 
type of communication (processor-to-memory, no direct processor-to­
processor communication) is supported in the MP/C, while three 
different types of communication are supported in the FCMs. In 
addition, the switch controller in the MP/C and the three different 
control buses with switches in the SM3 are complicated. The FCMs 
use simple switches in one control bus. The SM3 is a multicomputer, 
in which each node is an independent computer system with its own 
secondary storage device, but the FCMs are multiprocessors. 

Parallel algorithms for region labeling and median filtering have 
been simulated on the proposed architectures by using the iPSC. The 
performance of the FCMs shows remarkable improvement over the 
existing hypercube multiprocessor. The FCMs can also be used for 
more general tasks. Image processing, MSIMD processing, SIMD 
processing, pipelined pseudoparallel algorithms including pipelined 
algorithms and tree-structured algorithms are a few examples. The 
FCMs are highly suited when data locality is guaranteed. 

Since the CU, the communication bus, and the control bus are 
mainly used for control, but not for the exchange of data, bottlenecks 
due to these components are minimal as described in subsection 4.1. In 
addition, the architectures are simple and modularized, and the control 
strategy is straightforward. Hence, the FCMs have good scalability. 
The granularities of the proposed architectures may be considered in the 
range from coarse to fine. The applications for more general tasks will 
be investigated in future research. 

Acknowledgment 

We would like to thank Dr. N. Nandhakumar for his valuable 
criticism and suggestions, and P. Song for his comments on the 
feasibility of this work. We thank H. Asar, J. Rodriguez and V. 
Chaudhary for reading and commenting. We are also grateful to the 
referees for their helpful suggestions and comments. 

461 

REFERENCES 

[1] C.L. Seitz, "The Cosmic Cube," Commun. ACM, vol. 28, pp. 22-
33, Jan. 1985. 

[2] F.A. Briggs, K.S. Fu, K. Hwang, and B.W. Wah, "PUMPS 
Architecture for Pattern Analysis and Image Database 
Management," IEEE Trans. Comput., vol. C-31, pp. 969-983, Oct. 
1982. 

[3] H.J. Siegel, L.J. Siegel, F.C. Kemmerer, P.T. Mueller, Jr, H.E. 
Smalley, Jr, and S.D. Smith, "PASM: A Partitionable 
SIMD/MIMD System for Image Processing and Pattern 
Recognition," IEEE Trans. Comput., vol. C-30, pp. 934-947, Dec. 
1981. 

[4] J.T. Schwartz, "Ultracomputer," ACM TOPLAS, vol. 2, pp. 484-
521, Oct 1980. 

[5] IEEE Computer, "Special Issue on Computer Architecture for 
Image Processing," Jan. 1983. 

[6] S. Yalamanchili, K.V. Palem, L.S. Davis, A.J. Welch, and J.K. 
Aggarwal, "Image Processing Architectures: A Taxonomy and 
Survey," Progress in Pattern Recognition, vol. Il, pp. 1-37, North 
Holland, 1985. 

[7] J.D. Dessimoz, J. Birk, R. Kelley, and J. Hall, "A Vision System 
with Splitting Bus," in Proc 1981 IEEE Comput. Soc. Workshop 
Comput. ArcAftect. for Pattern Analysis and Image Database 
Management," Hot Springs, VA, pp. 62-66, Nov. 1981. 

[8] C.K. Baru, and S.Y.W. Su, "The Architecture of SM3: A 
Dynamically Partitionable Multicomputer System," IEEE Trans. 
Comput., vol. C-35, pp. 790-802, Sep. 1986. 

[9] B.W. Arden, and R. Ginosar, "MP/C: A Multiprocessor/Computer 
Architecture," IEEE Trans. Comput. vol. C-31, pp. 455-473, May 
1982. 

[IO] G.J. Lipovski, and M. Malek, "Parallel Computing," Wiley, New 
York, 1987. 

[11] W. Lin, and C.-1. Wu, "Design of a 2 x 2 Fault-Tolerant 
Switching Element," in Proc the 9th Int. Symp. Comput. 
Architect., pp. 181-189, 1982. 

[12] D.P. Agrawal, and R. Jain, "A Pipelined Pseudoparallel System 
Architecture for Real-Time Dynamic Scene Analysis," IEEE 
Trans. Comput. vol. C-31, pp. 952-962,'0ct. 1982. 

[13] M.H. Sunwoo, B.S. Baroody, and J.K. Aggarwal, "A Parallel 
Algorithm for Region Labeling," in Proc. 1987 IEEE Comput. 
Soc. Workshop Comput. Architect. for Pattern Analysis and 
Machine Intelligence, Seattle, WA, pp. 27-34, Oct. 1987. 

[14] S.Y. Lee, and J.K. Aggarwal, "Exploitation of Image Parallelism 
via the Hypercube," the Second Conf. Hypercube Multiprocessors, 
Knoxville, 1N, Sep. 1986. 

[15] A.K. Agrawala, and A.V. Kulkarni, "A Sequential Approach to 
the Extraction of Shape Features," Computer Graphics and Image 
Processing, vol. 6, pp. 538-557, 1977. 

[16] G.C. Nicolae, and K.H. Hohne, "Multiprocessor System for the 
Real-Time Digital Processing of Video-Image Series," 
Eleklronische Rechenanlagen, No. 21, pp. 171-183, 1979. 


