
MICROPROCESSOR
SOFTWARE & HARDWARE

Workbook/Text Volume2

(
I

1

Self-Study Course
Course 525A:

MICROPROCESSOR
SOFTWARE & HARDWARE

Workbook/Text

, DEVELOPED & PUBLISHED BY:
INTEGRATED COMPUTER SYSTEMS

Course Development Division
© Copyright 1980

SENIOR AUTHOR:
Edward Dillingham, M.E., M.S.E.E.

ASSISTED BY:
Dr. Daniel M. Forsyth

Dr. Rudolf Hirschmann
Ms. Ruth H. Savoie
Dr. David C. Collins

EDUCATION IS OUR BUSINESS™
All materials © copyright 1980 by Integrated Computer Systems,

Not to be reproduced without prior written consent

Volume II

© Copyright 1980 by INTEGRATED COMPUTtR SYSTEMS.
All rights reserved.

No part of this publication may be reproduced. stored in a retrieval system, or transmitted In any form or
by any means. electronic. mechanical. photocopying. recording or otherwise. or translated Into any

language. without the prior written permission of the publisher.

MICROPROCESSOR SOFTWARE & HARDWARE
Two Volumes

ISBN 0-89438-009-5
Volume I

ISBN 0-89438-010-9
Volume II

ISBN 0-89438-011-7

TABLE OF CONTENTS

VOLUME I

I INSTRUCTIONS - SYSTEM SETUP AND TEST PROCEDURE

I. l
I.2
I.3
I.4
I.5
I.6
I.7
I.8
I.9
I.10

RECEIVING INSPECTIONS
ASSEMBLY
POWER CONNECTION
INITIAL TEST
KEYBOARD TEST
PROGRAM LOADING TEST
SINGLE STEP TEST
PROM CHECKSUM TEST
READ-WRITE MEMORY TEST
SYSTEM EXPANSION

1 HARDWARE AND SOFTWARE FUNDAMENTALS

1.1
1.1.1
1.1.2
1. 1. 3
1.1.4

1. 2
1. 2 .1
1. 2. 2
1. 2. 3
1.2.4
1. 2. 5
1.3
1. 3. 1
1.3.2
1. 3. 3
1. 3.4
1.4
1. 4. 1
1.4.2
1. 4. 3
1. 4.4
1. 4.5
1. 4. 6
1.4. 7

BASIC CONCEPTS
Definition of a Computer
Basic Hardware Structure of a Computer
Basic Software Concepts
The ICS Self-Study Microcomputer
Training Course
NUMBER SYSTEMS AND REPRESENTATIONS
The Representation of Numbers
The Decimal Number System
The Binary Number System
Binary Addition and Counting
Hexadecimal Representation
THE ORGANIZATION OF MEMORY
Memory Words
Memory Module
Memory Access
Varieties of Memory
STRUCTURE OF THE CPU
Functional Units
The Execution of Instructions
Instruction Cycles
The Program Counter
The Instruction Register
The Accumulator
The Clock

I-1
I-1
I-2
I-2
I-3
I-4
I-5
I-6
I-7
I-10

1-2
1-2
1-2
1-6

1-9
1-10
1-10
1-12
1-14
1-16
1-19
1-22
1-22
1-24
1-26
1-28
1-31
1-31
1-33
1-34
1-35
1-37
1-38
1-38

i

TABLE OF CONTENTS

1.5
1. 5. 1
1. 5. 2
1. 5. 3
1. 5 .4
1.5.5
1.6
1. 6.1
1.6.2
1. 6. 3
1. 6.4
1. 6. 5
1. 6. 6
1. 6. 7
1.7

THE MTS MONITOR
Monitor Software
The MTS Keyboard and Display
Using the MTS
Inspecting Memory Contents
Changing Memory Contents
PREPARING A PROGRAM
Instructions to Be Used
Program Specification
Writing (Coding) the Program
Loading Your Program in the MTS
Verifying and Correcting the Stored Program
Executing Your Program
Instruction Execution: Detailed Examination
SUMMARY

2 TWO AND THREE BYTE INSTRUCTIONS

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2. 1. 5
2.2
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5

PROGRAM EXERCISE 2
The ADI Instruction
The STA Instruction
Instruction Execution Details
Writing the Program
Loading and Executing the Program
DATA STORAGE CONVENTIONS
PROGRAM EXERCISE 3
The LDA Instructions
The JMP Instruction
Writing the Program
SUMMARY OF INSTRUCTIONS
REVIEW OF COMMAND KEYS

3 PROGRAM LOOPS

ii

3.1
3.1.1
3.1.2
3.1. 3
3.2
3.3
3.4
3.5
3.6

PROGRAM LOOPS AND FLOW CHARTS
The Monitor RUN Command
The Conditional Jump
Flow Charts
PROGRAMMED MONITOR ENTRY
ADDITION BY COUNTING
EXERCISE
SUMMARY
SUMMARY OF INSTRUCTIONS

1-41
1-41
1-43
1-45
1-46
1-48
1-50
1-51
1-53
1-53
1-55
1-57
1-58
1-61
1-65

2-1
2-1
2-2
2-3
2-10
2-11
2-15
2-16
2-16
2-20
2-23
2-28
2-29

3-1
3-1
3-2
3-7
3-9
3-13
3-19
3-20
3-21

4 OTHER REGISTERS AND MEMORY ADDRESSING
THE MOV INSTRUCTION

THE
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.5
4.6
4.6.1
4.6.2
4.7
4.7.1
4.7.2
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6
4.8.7
4.8.8
4.9
4.9.1
4.9.2
4.9.3
4.10
4.10.1
4.10.2
4.10.3
4.10.4
4.11
4.11.1
4.11.2
4.11.3
4. 11. 4
4.12
4.12.1
4.12.2
4.12.3
4.12.4
4.12.5

THE ADD INSTRUCTIONS
THE CARRY AND ZERO FLAGS
Carry
Multiple Precision - The ADC Instruction
Exercise
Subtraction - SUB and SBB
Review and Self Test
IMMEDIATE INSTRUCTIONS
Move Immediate Instruction (MVI r)
Immediate Arithmetic Instructions
Multiplication by Repetitive Addition
Multiplication - Exercise
Table of Instructions
CONDITIONAL JUMPS
TRANSFER NOTATION
Instruction Definitions
Review and

1

Sel f Test
THE MTS DISPLAY
Displaying a Bit Pattern
Display Digit Addresses
REGISTER PAIRS AND MEMORY ADDRESSING
The LDAX and STAX Instructions
Copy a List to Display - Exercise
Display of Eight Characters
Register Pair Loading - LXI
Register Pair Counting - INX, DCX
Delay Loops
Breakpoints
Review and Self Test
USE OF A MEMORY LOCATION AS A REGISTER
Memory Reference Instructions
Four Bye Addition Exercise
Counting in the Display - Exercise
INDIRECT ADDRESSING
Load and Store HL Direct
LHLD and SHLD - Example
Examining a Register Pair
Review and Self Test
COMPARISONS AND CONDITIONAL JUMPS
Comparison Instructions - CMP
Compare Immediate Instruction - CPI
Moving Message - Exercise
List of Intructions
SENSOR CORRECTION EXERCISE, VERSION 1
Sensor Characteristics
Organizing the Data Structure
Organizing the Program
Testing Sensor Correction
Review

TABLE OF CONTBNTS

4-1
4-2
4-4
4-6
4-7
4-11
4-16
4-18
4-23
4-25
4-25
4-28
4-30
4-34
4-36
4-40
4-43
4-44
4-48
4-53
4-53
4-55
4-57
4-59
4-63
4-67
4-69
5-71
4-73
4-77
4-84
4-87
4-88
4-91
4-95
4-96
4-97
4-99
4-103
4-106
4-110
4-111
4-112
4-113
4-118
4-125
4-126
4-130
4-131
4-136
4-139

iii

TABLE OF CONTENTS

4.13
4.13.1
4.13.2
4.13.3
4.13.4
4.13.5
4.14
4.15

MULTIPLE TABLES WITH A DIRECTORY
Directory .to Data Structures
Organizing the Program
Testing Sensor Numbers
Using the Directory
Testing Multiple Sensor Correction
SUMMARY
INSTRUCTION CHART

5 MEMORY AND CONTROL HARDWARE

5. 1
5.1.1
5.1. 2
5 .1. 3
5.1.4
5 .1. 5
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4
5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.2
5.5.3
5.5.4

SYSTEM CONTROLLER
Control Signa 1 s
Status Byte
Decoded Control Signals
MTS System Controller Logic
Intel 8228 System Controller
MEMORY TECHNOLOGY
CHIP SELECT LOGIC
Memory Enabling
RAM Chip Selection
ROM Chip Selection
Partial Decoding
Alternative Memory Addresssing
DATA BUS CONNECTIONS
Tri-State Circuits
Read-Write Control
DMA and Interrupts - Introduction
MEMORY SIGNALS AND TIMING
Machine States and Transitions
First State (Tl)
Second State (T2) and Wait (TW)
States T3, T4 and T5

6 MODULES, SUBROUTINES AND THE STACK

iv

6.1
6.1.1
6.1. 2
6.1. 3
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

PROGRAM MODULES
In-Line Programming
Creating Program Modules
Module Specification
SUBROUTINES
Subroutine Entry and Return
Tracing Subroutine Entry and Return
CALL Execution
Return lnstructionn
Subroutine Nesting

4-140
4-141
4-142
4-145
4-148
4-153
4-157
4-158

5-3
5-3
5-5
5-6
5-9
5-9
5-11
5-17
5-19
5-19
5-20
5-23
5-25
5-26
5-26
5-27
5-28
5-31
5-31
5-31
5-32
5-32

6-1
6-2
6-3
6-6
6-12
6-12
6-14
6-16
6-20
6-24

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.3.11
6.4
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.7
6.8
6.8.1

6.8.2
6.8.3
6.8.4
6.8.5
6.9
6.9.1
6.9.2
6.9.3
6.9.4
6.9.5
6.10
6.10.1
6.10.2
6.10.3
6.10.4
6.10.5
6.10.6

6.10.7

6.10.8
6.10.9

TABLE OF CONTENTS

SUBROUTINE SPECIFICATION
Program Development - Sensor Correction
Main Program
Input Subroutine
Conditional Calls
Subroutine DISPLAYRESULT
Subroutine SEARCHDIRECTORY
Program Data Initialization
Subroutine TABLELOOKUP
Stubs for Subroutines
Register Pair Addition
Program Integration
REVIEW AND SELF TEST
ADDITIONAL EXERCISES
Clear Result Display
Store and Recover Table Address
Two Byte Table Addresses
Empty Sensor Numbers
USING THE STACK FOR DATA
Testing Stack Usage
Using the Stack Inside a Subroutine
Processor Status Word (PSW)
Exchange Instructions
TEST DRIVER FOR MULTIPLY-EXERCISE
STACK POINTER INSTRUCTIONS AND RULES
Instructions that Affect Only the
Stack Pointer
Stack Operation Rules
Monitor Usage of the Stack
The Growing Stack Problem
Review and Self Test
SUBROUTINE CLASSIFICATION
Global Subroutines
Local Subroutines
Re-Entrant Suroutines
Interrupt Service Routine
Subroutine Transparency
MONITOR SUBROUTINES
Monitor Keyboard Scan Subroutine (SCAN)
Monitor Key Entry Subroutine (GETKY)
Monitor Data Byte Input Subroutine (ENTBY)
Monitor Data Word Input Subroutine (ENTWD)
Monitor Display Digit Subroutine (DISPR)
Monitor Display Byte Subroutine -
DMEM, DBYTE, DBY2
Monitor Display Word Subroutine -
DWORD DWD2
Monitor Subroutine CLRGT, CLEAR, CLRLP
Monitor Subroutine DELAY, DELYA

6-29
6-29
6-33
6-36
6-51
6-61
6-64
6-67
6-73
6-75
6-78
6-83
6-84
6-88
6-97
6-97
6-98
6-98
6-99
6-100
6-104
6-105
6-107
6-110
6-116

6-116
6-119
6-120
6-125
6-128
6-133
6-133
6-134
6-134
6-134
6-134
6-136
6-137
6-138
6-140
6-141
6-142

6-144

6-146
6-147
6-148

V

TABLE OF CONTENTS

7

vi

LOGIC
7.1
7 .1.1
7 .1. 2
7 .1. 3
7 .1. 4
7 .1.5
7.2
7.3
7. 3. 1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.4.10
7.4.11
7.4.12
7.5
7.6
7.6.1
7.6.2
7.6.3
7.6.4

AND BIT MANIPULATION
ROTATE COMMANDS
Rotate Exercise
Rotate Instructions for Control Functions
If-Then-Else Construct
Arithmetic Substitutes for RAL
Logical Rotate
BINARY ENTRY AND DISPLAY EXERCISE
LOGIC FUNCTIONS
Complement (CMA)
AND (ANA)
Inclusive OR (ORA)
Exclusive OR (XRA)
Immediate Logic Functions
Set and Complement Carry
LOGIC FUNCTIONS EXERCISE
Data Byte and Bit Marker
Keyboard Functions
Register Assignments
Subroutines for Logic Functions Exercise
Main Program for Logic Functions Exercise
Stubs for COMMAND and FUNCTION
Logic Functions DISPLAY Subroutine
Logic Functions DATA Subroutine
Additional Specifications for DATA
Logic Functions COMMAND Subroutine
Subroutine FUNCTION
Exercising Logic Functions
FLOW CONTROL TECHNIQUES
REVIEW AND ADDITIONAL EXERCISES
Traffic Control Exercise
Extended Traffic Control Exercises
Fire and Burglar Alarm
Model Railroad Simulator

7-1
7-1
7-3
7-9
7-11
7-17
7-18
7-22
7-29
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-37
7-39
7-40
7-40
7-43
7-45
7-49
7-52
7-56
7-60
7-65
7-69
7-72
7-78
7-79
7-85
7-88
7-88

TABLE OF CONTENTS

VOLUME II

8 INPUT/OUTPUT TECHNIQUES

8.1
8. 1. 1
8.1.2
8.1. 3
8.1.4
8.1.5
8.1.6
8.2
8.3
8.3.1
8.3.2
8.4
8.4.1
8.4.2
8.4.3
8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6

8.6.7
8.6.8

ISOLATED INPUT/OUTPUT
1/0 Ports
Programmable 1/0 Ports
Keyboard Input
Subroutine KYIN
Keyboard Display Exercise
Other 1/0 Interfaces
MEMORY MAPPED INPUT/OUTPUT
DIRECT MEMORY ACCESS
Repetitive Direct Memory Access
DMA Input and Output
1/0 INITIATION
Programmed I /0
Interrupt Driven 1/0
The MTS Interrupt System
INTERRUPT SERVICE ROUTINES
Preserving the Environment
Identifying the Source of the Interrupt
Vectored Interrupt Systems
Priority Interrupt Systems
Timed Interrupt Systems
USING INTERRUPTS WITH THE MTS
Interrupt Dispatch
Interrupt Service Routine Exercise
Interrupt Service Routine Test
Memory Change Breakpoints
Interrupt Service Operation
Combining Interrupt Service with
monitor Functions
External Interrupt
Interrupt Hand 1 ing -Summary

9 DATA FORMAT

9.1
9. 1. 1
9.1. 2
9.2
9.2.1
9.2.2
9.2.3

PARALLEL INPUT/OUTPUT
Paper Tape Reader Example
Computer to Computer Interface
SERIAL INPUT/OUTPUT
Signal Coding
Synchronous Communication
Asynchronous Communication

TABLE OF CONTENTS

8-2
8-2
8-9
8-15
8-16
8-26
8-33
8-35
8-39
8-41
8-45
8-49
8-49
8-52
8-66
8-73
8-73
8-75
8-75
8-76
8-76
8-77
8-77
8-81
8-83
8-88
8-91

8-99
8-100
8-101

9-3
9-3
9-7
9-14
9-14
9-16
9-17

vii

TABLE OF CONTENTS

9.3
9.3.1
9.3.2
9.3.3
9.3.4
9.4
9.4.1
9.4.2
9.4.3
9.5
9.5.1
9.5.2
9.5.3
9.6
9.6.1
9.6.2
9.6.3
9.6.4
9.6.5
9.7

ASYNCHRONOUS TRANSMITTING AND RECEIVING
Serial Transmission Exercise
Character Data Pattern
Interrupt Service Routine
Main Program
ASYNCHRONOUS RECEIVING
Wait for Start Bit
Receive Data Bits
Receive Main Loop
MONITOR TAPE PROGRAMS AND SUBROUTINNES
Tape Recording Program
Tape Reading Program
Error Checking Character (LRC)
MONITOR SEND AND RECEIVE SUBROUTINES
SOTBT (0382)
Program Entry and Removal of Brekpoints
Subroutine BKMEM (01D3)
Subroutine SINWS (03CF)
Transmit/Receive with Monitor Subroutines
CALCULATING DELAY TIMES

10 BINARY AND DECIMAL ARITHMETIC

10.1
10.1.1
10.2
10.3
10.4
10.5
10.6
10.7
10.7.1
10.7.2
10.7.3
10.7.4

11 REVIEW

viii

11. 1
11. 2
11. 3
11.4
.11.4.1
11. 5
11. 6
11. 7
11. 8
11.8.1
11.8.2
11. 8. 3

BINARY ADDITION
Multiple Precision
FOUR BYTE ADDITION
BINARY SUBTRACTION
DECIMAL ADDITION AND SUBTRACTION
BINARY MULTIPLICATION
DECIMAL MULTIPLICATION
OTHER REPRESENTATIONS OF NUMBERS
Negative Binary Numbers
Change Sign, Add, Subtract Exercise
Signed Decimal Numbers
Fractional Numbers

DATA TRANSFER
COUNTING INSTRUCTIONS
ACCUMULATOR/CARRY INSTRUCTIONS
ARITHMETIC AND LOGICAL INSTRUCTIONS
The Flags
BRANCH INSTRUCTIONS
INPUT/OUTPUT
UNDEFINED INSTRUCTIONS
OTHER MICROPROCESSORS
NEC 808A and NEC 8080AF
IN'l'EL 8085
ZILOG Z-80

9-20
9-21
9-23
9-25
9-27
9-33
9-35
9-37
9-39
9-44
9-44
9-45
9-46
9-47
9-47
9-49
9-51
9-52
9-54
9-61

10-2
10-2
10-6
10-13
10-25
10-33
10-39
10-44
10-45
10-53
10-59
10-83

li-2
11-5
11-7
11-9
11-10
11-13
11-15
11-16
11-17
11-17
11-17
11-18

TABLE OF CONTENTS

APPENDIX A THE !CS MONITOR

APPENDIX B BINARY/DECIMAL CONVERSIONS

APPENDIX C CALCULATING TRIGONOMETRIC FUNCTIONS

APPENDIX D THE S-100 ADAPTER CARD

APPENDIX E AMTS SCHEMATICS

APPENDIX F DIGITAL LOGIC

ix

LIST OF ILLUSTRATIONS

FIGURE

I-1

1-1
1-2
1-3

2-1
2-2
2-3
2-4
2-5

3-1
3-2
3-3

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19

X

LIST OF ILLUSTRATIONS

VOLUME I

TITLE

Read-Write Memory Test

MTS Board Layout
MTS Board Layout
MTS Board Layout

LDA Instruction Cycle
LDA Instruction Cycle (continued)
LDA Instruction Cycle (continued)
JMP Instruction Cycle
JMP Instruction Cycle (continued)

Conditional Jumps Flow Chart
Addition by Counting - Flow Chart
Addition by Counting - Program

Double Precision Addition
Double Precision Subtraction
MVI Instruction Cycle
Multiplication by Repetitive Addition
Bit Patterns for MTS Display
Instruction Cycle for STAX D Instruction
Hex Codes and Characters
Copy List to Display
Copy List to Display
Gradual Display with Clear
Four Byte Addition in Memory - Flow Chart
Four Byte Addition in Memory - Program
Counting in the Display
Moving Message - Flow Chart
Moving Message - Program
Sensor Calibration Curves
Sensor Correction
Multiple Sensor Correction - Flow Chart
Correcting Multiple Sensors - Program

PAGE

1-8

1-5
1-30
1-42

2-17
2-18
2-19
2-21
2-22

3-10
3-14
3-15

4-17
4-22
4-27
4-38
4-52
4-61
4-62
4-66
4-72
4-76
4-90
4-93
4-94
4-116
4-122
4-129
4-134
4-144
4-150

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18

LIST OF ILLUSTRATIONS

Micro~omputer Tiaining System Configuration
MTS System Controller
Memory Addressing
Internal Address Decoding in a Memory Device
Chip Select Logic
MTS Memory Addresses
Minimum Chip Select
Memory Access Timing

Modular Sensor Correction - Flow Chart
Do Nothing Program with Do Nothing Module
Do Nothing Program
Call Instructions
Call Instructions (continued)
Return Instruction
Return Instruction (continued)
Nested Subroutines
Nested Do Nothing Subroutines
Sensor Correction with Subroutines
Sensor Correction - MAIN
Test GETKY and DBY2
Sensor Correction - INPUT (not complete)
Sensor Correction - :NPUT ~complete)
Sensor Correction - NEXTSENSOR
Sensor Correction - DIRECTORY AND DATA
Sensor Correction - DISPLAYRESULT
Sensor Correction - SEARCHDIRECTORY
Sensor Correction - MAIN and INITIALIZE
Sensor Correction - TABLELOOKUP
Sensor Correction - MULTIPLY
Complete Sensor Correction Program
Test Driver for MULTIPLY
Test Driver Program

Test Driver for SHIFT Subroutines
SHIFT Subroutines
Left and Right Shift Program
Sixteen Bit Logical Rotates
Binary Entry and Display Flow Diagram
Binary Entry and Display Program
Logic Functions - Main Program
Stubs for COMMAND and FUNCTION
Logic Functions DISPLAY Subroutine - Flow
Logic Functions - Subroutine DISPLAY
Logic Functions - Subroutine DATA
Logic Functions - Revised DATA
Logic Functions - Subroutine COMMAND
Logic Functions - Subroutine FUNCTION
Logic Functions - Self Test
Logic Functions with Dispatch Table
Traffic Control Program
Timer and Keyboard Scanner

5-2
5-8
5-12
5-14
5-18
5-22
5-24
5-30

6-5
6-9
6-10
6-17
6-19
6-21
6-23
6-25
6-26
6-30
6-:_..'*
6-40
6-49
6-58
6-59
6-60
6-63
6-66
6-72
6-77
6-81
6-89
6-111
6-112

7-7
7-8
7-15
7-21
7-24
7-27
7-46
7-47
7-48
7-51
7-55
7-59
7-64
7-66
7-71
7-76
7-83
7-87

xi

LIST OF ILLUSTRATIONS

FIGURE

8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8;...16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33

9-1
9:...2
9-3
9.-4
9-5
9-6
9-7
9-8

xii

LIST OF ILLUSTRATIONS

VOLUME II

TITLE

From INTEL Manual
Array of Input/Output Ports
Isolated Input/Output with the 8255
8255 Mode O Combinations
MTS 8255 and Key Input Scanning Circuit
Subroutine KYIN
First test for KYIN
KPRG, KTST, KYIN with Debugging Features
KPRG, KTST, KYIN with Debugging Removed
Keyboard Display Program - Flow Chart
Keyboard Display Program
Keyboard Display Program
Typical I/0 Interfaces
Memory Mapped Input/Output with the 8255
Memory Mapped Display
DMA Circuit
DMA timing
Display Circuit
Keyboard Testing in the Monitor
Programmed Input/Output
Coding and Effect of RST Instructions
Interrupt Processing
Interrupt Processing (continued)
Interrupt Processing (continued)
(From INTEL Manual)
Restart Port with 8212
Vectored Restart Port
Vectored Interrupt Using Resistors
MTS Interrupt Circuit and Timing
Interrupt Service Exercise - Main
Interrupt Service Routine
Test for Interrupt Se·rv ice
Interrupt Service Exercise

8255 Mode 1 Input
High Speed Paper Tape Reader Interface
8255 Mode 2 - Bidirectional I/0
Interprocessor Communication Using 8255
Logic and Timing for Shared Memory
Serial Data Transmit Interrupt Service Routine
Serial Transmit - Main
Serial Transmit - Data Entry

PAGE

8-3
8-4
8-8
8-10
8-14
8-22
8-23
8-24
8-25
8-27
8-29
8-30
8-32
8-34
8-38
8-40
8-40
8-42
8-48
8-50
8-56
8-57
8-58
8-59
8-60
8-62
8-63
8-64
8-68
8-80
8-82
8-84
8-93

9-2
9-4
9-8
9-10
9-12
9-24
9-26
9-29

9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
10"'."23
10-24

10-25
10-26
10-27
10-28
10-29
10-30

LIST OF ILLUSTRATIONS

Transmit - Receive Data Entry
Wait for Start Bit
Receive Data Bits
Receive Main Loop
Transmit - Receive
Transmit/Receive with Monitor Subroutines
Transmit Interrupt Service with SOTBT
Transmit Main Loop with Breakpoint Entry
Receive Main Loop with SINWS
Instruction Timing

Main Programs for Four Byte Add and Display
Multi-Byte Add Subroutine
Main Program for 4 Byte Add and Display
Multi-Byte Addition Subroutine
Modify Main to Display Halt
Multi-Byte Subtract Suroutine
Main Program for 4 Byte Subtract
Display Halt
Multi-Byte Subtraction Subroutine
Program Modify Module
Modify Subroutine by Key Input
Multi-Byte Add/Subtract Subroutine
Modify Subroutine by Key Input
Modify Subroutine by Key Input (continued)
For Experiment with DAA
Binary Multiplication
Binary Multiply - Two Byte Product
Decimal Multiply Subroutine
Data Entry and Display for Decimal Multiply
Change Sign of Number
Change Sign by CMA, INR A
Binary and Decimal Arithmetic
Change Sign, Add, Subtract Exercise
Change Sign Exercise - Data Entry and
Command Interpretation
Command Execution
Change Sign Subroutine
Decimal Arithmetic
Two Byte Hundreds Complement
CHSIGN
SIGNMAG

9-32
9-34
9-36
9-38
9-40
9-53
9-55
9-56
9-58
9-60

10-7
10-8
10-9
10-10
10-12
10-17
10-18
10-19
10-20
10-22
10-23
10-24
10-26
10-27
10-32
10-35
10-36
10-40
10-41
10-47
10-50
10-54
10-55

10-56
10-57
10-58
10-65
10-75
10-78
10-82

xiii

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 8

INPUT/OUTPUT TECHNIQUES

8. INPUT/OUTPUT TECHNIQUES

Various techniques and peripheral devices may be used with the 8080

to provide input and output capabilities. This chapter

describes the common methods of implementing 1/0 and provides

exercises in the use of those that are readily carried out with the

MTS.

The techniques differ from each other in three major respects: how

the input

transfer of

latter will

or output device is addressed; what event initiates the

information; and what form the data are in. (The

be treated in Chapter 9.)

Addressing

Isolated Input/Output

Memory Mapped Input/Output

Direct Memory Access

Initiation

Programmed Input/Output

Interrupt Driven Input/Output

Timed Input/Output

Repetitive Direct Memory Access

The MTS includes facilities for all of these in one form or another,

so you can learn each of the processes. For some, however, you

must add external hardware.

8-1

INPUT/OUTPUT TECHNIQUES

8.1 ISOLATED INPUT/OUTPUT

The address and data buses are used to address input and output

devices and transfer data between them and the CPU. The control bus

from the system controller includes 1/0 Read and 1/0 Write commands

in addition to the Memory Read and Memory Write commands. It is the

use of these command signals, and the instructions that generate

them, that distinguish 1/0 usage from memory usage of the buses.

8.1.1 1/0 Ports

Any device with suitable electrical characteristics can be attached

to the buses. In general such devices should have high impedance

inputs from the bus and tri-state outputs to drive the bus. Intel

and others provide the 8212 Input/Output Port for this purpose. The

MTS includes one in the LED display circuit. A functional

description is given in Figure 8-1; more detail is provided in the

Intel 8080 Microcomputer System User's Manual. The principal

features are low leakage currents of the inputs and outputs when the

device is not selected, data latches, and control gating.

8-2

SCHOTTKY BIPOLAR 8212

Functional Description

Data Latch

The 8 flip-flops that make up the data latch are of a
"D" type design. The output (Q) of the flip-flop will
follow the data input (D) while the clock input (C) is
high. Latching will occur when the clock (C) returns
low.
The data latch is cleared by an asynchronous reset
input (CLR). (Note: Clock (C) Overides Reset (CLR).)

Output Buffer

The outputs of the data latch (Q) are connected to
3-state, non-inverting output buffers. These buffers
have a common control line (EN); this control line
either enables the buffer to transmit the data from
the outputs of the data latch (Q) or disables the
buffer, forcing the output into a high impedance
state. (3-state)

This high-impedance state allows the designer to
connect the 8212 directly onto the microprocessor
bi-directional data bus.

Control Logic

The 8212 has control inputs DS1, DS2, MD and
STB. These inputs are used to control device selec
tion, data latching, output buffer state and service
request flip-flop.

DS1, DS2 (Device Select)
These 2 inputs are used for device selection. When
DS1 is low and DS2 is high (DS1 · DS2) the device is
selected. In the selected state the output buffer is
enabled and the service request flip-flop (SR) is
asynchronously set.

MD (Mode)
This input is used to control the state of the output
buffer and to determine the source of the clock input
(C) to the data latch.

When MD is high (output mode) the output buffers
are enabled and the source of clock (C) to the data
latch is from the device selection logic (DS1 · DS2):

When MD is low (input mode) the output buffer state
is determined by the device selection logic (DS1 •
DS2) and the source of clock (C) to the data latch is
the STB (Strobe) input.

STB (Strobe)
This input is used as the clock (C) to the data latch
for the input mode MD = 0) and to synchronously
reset the service request flip-flop (SR).

Note that the SR flip-flop is negative edge triggered.

INPUT/OUTPUT TECHNIQUES

Service Request Flip-Flop

The (SR) flip-flop is used to generate and control
interrupts in microcomputer systems. It is asyn
chronously set by the CLR input {active low). When
the (SR) flip-flop is set it is in the non-interrupting
state.

The output of the (SR) flip-flop (Q) is connected to
an inverting input of a "NOR" gate. The other input
to the "NOR" gate is non-inverting and is connected
to the device selection logic (DS1 • DS2). The output
of the "NOR" gate {INT) is active low {interrupting
state) for connection to active low input priority
generating circuits.

SERVICE REQUEST FF

CT]:> DS2

(ACTIVE LOW)

5TB MD (OS,·DS2I DATA OUT EOUALS

0 0 0 3-STATE
1 0 D 3-STATE
0 1 D DATA LATCH
1 1 0 DATA LATCH
0 0 1 DATA LATCH
1 D 1 DATA IN
0 1 1 DATA IN
1 1 1 DATA IN

CLR - RESETS DATA LATCH
SETS SR FLIP-FLOP
(NO EFFECT ON OUTPUT BUFFER!

\

CLR

D
D
1
1
1
1

Figure 8-1

<i>§;·DS2I STB
0 D
1 D
1 ""\.._

1 0
D 0
1 '-

OUTPUT
BUFFER

-SR INT

1 1
1 D
D D
1 0
1 1
1 0

"INTERNAL SR FLIP·FLDP

From INTEL Manual 8-3

INPUT/OUTPUT TECHNIQUES
Vee

DATA IVS

RP RP

STB STB
11 PORT 1 PORT 4 01
I2 02

DATA
I3

?1 ;1 03
DATA 14 04

IN IS ' OS OUT I

I6 08 18 06
17 07
18 ~ RP CLR CLR
DS2 MD DS1

ABS ABU
RP

STI RP

STB STB

PORT 2 PORT 5

RP
INT

DS2
AB9 AB12 __ _,

RP
..._ ___ STB

STB

PORT 3 PORT 6

INT
DS2

ABlO -+--+-----' RP

DATA REQUEST DATA READY

I/0 READ _ __,
I/0 WRITE ---------·-- ____________________ __.

8-4

Array of Input/Output Ports

Figure 8-2

INPUT/OUTPUT TECHNIQUES

A suitable arrangement for using several 8212's as input and
I

output ports is shown in Figure 8-2. Each is selected by a single

bit of the high address bus to the non-inverting select input DS2,

so no additional decoding is necessary. The input ports are enabled

by the I/0 READ command and the outputs by the I/0 WRITE command,

to the inverting select input DS1. Output data from the CPU

enters an output port when the device is selected by DS1 and DS2, and

latched by the 8212 when it is de-selected; the 8212 outputs are

always enabled. This behavior is set by the MODE input being pulled

high.

The STROBE input is unused for Output Ports 4 and 5. Output Port

6 receives a strobe from some external hardware to indicate a need

for new data. With the MODE input high this has no effect on the

data outputs, but it sets the INT output low, indicating a need

for service. The diagram shows that signal being input to the

processor through Input Port 3. When the CPU loads new data

to Port 6 INT will be set high again to indicate that the requested

data are ready.

8-5

INPUT/OUTPUT TECHNIQUES

Input Ports 1 and 3 are direct paths from their inputs onto the data

bus when they are selected, because their strobe inputs are

pulled high. This makes them suitable for stable data. Input Port 2

is designed to receive a fleeting input, which may be gone

before the processor can service it. An external strobe is provided

to latch the data in the 8212 and set INT low, requesting service

from the CPU when it reads Port 3.

The CPU accesses these ports with the commands:

DB IN Input from port

xx port address to Register A

High address <- (Byte 2)

Low address <- (Byte 2)

(A) <- (Data bus)

No flags are affected

D3 OUT Output to port

xx port address from Register A

High Address <- (Byte 2)

Low Address <- (Byte 2)

(A) <- (Data Bus)

No flags are affected.

These are the only instructions for isolated input and output.

They alone create the I/0 Read and 1/0 Write commands to the ports.

8-6

INPUT/OUTPUT TECHNIQUES

Note that the port address is only one byte, not two. In response

to one of these instructions the CPU places that byte on the low

eight bits of the address bus, and duplicates it on the high eight

bits.

This duplication permits the 1/0 devices to be selected from the

high address bus, which is typically less heavily loaded by memory

devices than the low address bus.

The addressing shown here, where a single bit on the address bus

selects a device, is called linear select. It is economical of

hardware but restricts the system size. Port addresses for the

devices in Figure 8-2 are:

Input Port 1 01 00000001

Input Port 2 02 00000010

Input Port 3 03 00000100

Output Port 4 08 00001000

Output Port 5 10 00010000

Output Port 6 20 00100000

For a larger system some decoding of the address is necessary.

8-7

INPUT/OUTPUT TECHNIQUES

8-8

SYSTEM
CONTROLLER t,------------------------

I/0 READ

I/0 WRITE

SYSTEM DATA BUS

.,_ ___ _..,RD

to------·• WR

RESET

ADDRESS
BUS

0 1

AO Al

Port B

8255

ADDRESS
DECODER

CE

Port C Port A

Because the 8255 occupies four addresses, it receives

and internally decodes the two low bits of the address

bus. The I/0 port address decoder examines only six

bits of the address bus (AB2-AB7) to select the 8255.

Isolated Input/Output With the 8255

Figure 8-3

INPUT/OUTPUT TECHNIQUES

8.1.2 Programmable I/0 Ports

The MTS includes one 8255 Programmable Peripheral Interface Adapter

(Figure 8-3). It has 24 external connections which can be programmed

as inputs or outputs in various combinations. It is connected to the

microprocessor and system controller via the data bus, I/0 Read, 1/0

Write, Reset, two address bits (ABO and AB1) and a chip select input

from the address decoder.

The 8255 accepts data from the data bus when its chip select input

and I/0 Write are both low. It delivers signals to the data bus when

chip select and 1/0 Read are both low.

Four 1/0 port addresses are occupied by one 8255. Three of these

correspond to the three groups of 8 bits provided by its 24 external

connections. The fourth address is used to write control information

to the 8255. For the 8255 on the MTS the addresses are:

00

01

02

03

Port A

Port B

Port C

Control

(PORTOA)

(PORTOB)

(PORTOC)

(CNTO)

The ICS Interface Training System contains two additional 8255's

whose ports are referred to as PORTlA, PORT2C, etc. Therefore, all

references to the MTS 8255 include O in the port name.

8-9

INPUT/OUTPUT TECHNIQUES

Notes Control Byte

Hex Binary

(3) 80 1000 0000

(3) 81 1000 0001

(3) 82 1000 0010

(3) 83 1000 0011

88 1000 1000

89 1000 1001

8A 1000 1010

SB 1000 1011

(1) 90 1001 0000

(1) 91 1001 0001

(1,2) 92 1001 0010

(1) 93 1001 0011

98 1001 1000

99 1001 1001

9A 1001 1010

9B 1001 1011

' ' 't

Port A Port C

Bits 4-7

Out Out

Out Out

Out Out

Out Out

Out In

Out In

Out In

Out In

In Out

In Out

In Out

In Out

In In

In In

In In

In In

Port C Bi ts 0-3

Port B

Port C Bits 4-7

Port A

8255 Mode O Combinations
Figure 8-4

Port C Port B

Bits 0-3

Out Out

In Out

Out In

In In

Out Out

In Out

Out In

In In

Out Out

In Out

Out In

In In

Out Out

In Out

Out In

In In

Notes: (1) Only the four combinations marked are suitable for use
with the MTS if the keyboard is to be used. (2) This combination is
set by the monitor whenever it controls the keyboard and display.
(3) Port A and Port C (bits 4-7) should not both be programmed for
output, since the keyboard would then short them together.

8-10

INPUT/OUTPUT TECHNIQUES

In addition to the three external ports, the 8255 has a "control

port" addressed by 11 in the low bits of the address. This is used

to program the external ports for input or output, and to

select the mode

with the instructions:

3E

92

MVI A,92

D3 OUT CNTO

03

of operation. The monitor programs the 8255

Write 10010010

to the control port.

This sets Ports A and B for input and Port C for output. Ports A and

Bare each eight bit ports and can be programmed independently of

each other. In the basic mode of operation (Mode 0) Port C is

divided into two four-bit ports which can be independently

programmed for input or output. Thus 16 different combinations of

input and output assignments are available in Mode O. The bits in

the control byte are defined as follows:

7 6 5 4 3 2 1 0

1 0 0 0
~,.....-

~ t ~

Port C Bits 0-3 ,..__
Port B Input or

Port C Bits 4-7

Port A Input or

Mode 0 in Port B

Mode 0 in Port A

Set Mode

Figure 8-4 shows all 16 combinations.

Input or Output

Output

Input or Output

Output

8-11

INPUT/OUTPUT TECHNIQUES

This page intentionally left blank.

8-12

INPUT/OUTPUT TECHNIQUES

The 8255 provides a second mode of operation for Port A or Port B

or both, in which certain bits of Port C are used for

"handshaking" with external devices. For input in this mode the

external device places its data at the input port and gives a

strobe pulse to one bit of Port C. This stores the data in an eight

bit latch associated with the eight bit input port, and generates

other status bits in Port C which are accessible both to the CPU

(by reading Port C) and to the external world at the Port C

outputs. This allows transient signals to be input and read

subsequently by the program at its convenience. For details the

student is referred to the Intel 8080 Microcomputer System User's

Manual.

In the basic input mode which we have been discussing, the data

latches follow their inputs whenever the port is addressed.

If a port is programmed for input the IN instruction wi 11 read the

current state of the input. When a port is programmed for

output, its data latch is cleared, setting all outputs low.

Thereafter, the data latch is loaded by an uUT instruction, and the

data remain stable until the next OUT. These data can be read back

by the processor; IN will always read the content of the data latch.

This does not apply to the control port, for which the IN instruction

is not effective.

A third mode of operation is available for Port A only, in which it

is both an input and an output port suitable for connection

to a bi-directional data bus.

8-13

INPUT/OUTPUT TECHNIQUES

IOR

row
RESET

8-14

Address
Decoder

DB7 ..-----______ DBo

Ao A1
RD

D7 Ds D5 D4 D3 D2 D, Do

Vee +5V

w'R
RESET

µPD8255
GND

+5V

DISPLAY
.,_,1-+-+-+-+-+-lf---++-+-11-+-+-+-+---------• INHIBIT

CONTROL

PORT B PORT C PORT A

MTS 8255 and Key Input Scanning Circuit

Figure 8-5

INPUT/OUTPUT TECHNIQUES

8.1.3 Keyboard Input

To acquire familiarity with the 8255 we will develop a keyboard

input program. You have been using the MTS monitor subroutines

for this purpose. The subroutines to be developed here will be

different in design.

Figure 8-5 shows the connections between the 8255 and the keyboard.

The keyboard is a 3 x 8 matrix. Reset is not in the matrix but is

directly connected to the reset input. The other keys form three

columns: keys O through 7· , 8 through F; and the command keys. Each

row has three keys and a pullup resistor and is connected to an input

bit of Port A. If no key in the row is pressed that bit of Port A

will be 1 because of the resistor. If a key is pressed the input bit

of Port A is connected through the key to one of three output

bits of Port ·C. If that output is high the input to Port A wi 11

still be 1, but if it is low the input will be O. Thus by setting

one bit of Port Clow and reading port A we can tell which, if any,

key is pressed. We can make a quick test to see whether any key in

the keyboard is pressed if we set all three outputs (C4, C5 and C6)

low and read Port A; if the result is 1111 1111 no key is pressed.

There may be a circumstance where we are interested only in a

particular key. This can be tested by setting the

corresponding column low, reading the input, and masking to exclude

all keys except the desired one. Subroutine KYIN is specified to

permit any of these functions.

8-15

INPUT/OUTPUT TECHNIQUES

8.1.4 Subroutine KYIN

Function:

Call

Test the keyboard for any desired key or keys being pressed.
Set one or more of output bits C4, C5, C6 low (without
affecting any other bits of Port C) according to a parameter
passed in the call. Read the keyboard and mask with
another byte passed as a parameter. Return with the Zero
flag set if no desired key is pressed; otherwise with Zero
cleared and the binary input data in Register C. Restore
the column select bit (C4, C5, or C6) to 1 before returning.

Two alternate
parameters to
8255.

CD CALL KPRG

entries provide
test for any key,

40 Program the 8255
82 and continue to KTST

CD CALL KTST
44 Test for any key
82

CD CALL KYIN
48 Test for specified key
82 or keys in specified

column or columns

for setting the input
and for programming the

Inputs

KPRG: None
KTST: None
KYIN:
a) Key column select in Register B

contains O for each desired column.
Bits 0, 1, 2, 3 and 7 must be 1

b) Key mask in Register C
contains 1 for each desired key

8-16

INPUT/OUTPUT TECHNIQUES

Outputs

Zero flag set if no desired key
Zero flag clear if desired key is pressed
Keyboard input (00 if no keys) in Register C
Key column select in Register Bis preserved
(8F for KTST).

Registers

A, B, C, Dare used.

Constraints

If KPRG is called, 8255 will be programmed as follows:
CO - C3 Output
Port B Output, mode O
C4 - C7 Output
Port A Input, mode 0

Outputs of all ports are cleared by KPRG.
If KTST or KYIN is called, C4 - C7 and Port A must
be programmed as shown above.

8-17

INPUT/OUTPUT TECHNIQUES

We have discussed programming the 8255 by writing to the control

port. There is another function in the control port: you can set or

reset any individual bit of Port C.

from Register A to the control port:

This is done by writing a byte

3E MVI A (A) <- Selected command

xx

D3 OUT CNTO

03

This sequence applies to both programming the 8255 and setting bits

in Port C. The command bytes are distinguished by the high order

bit as shown below:

Command Bytes to Control Port

90 1 0 0 1 0 0 0 0 Program the 8255

t

1 1 t
t Set co - C3 for output

I Set Port B for output

I
Set Port B to mode O
Set C4 - C7 for output
Set Port A fol' input
Set Port A for mode O
Mode set flag

08 0 8 0

°' L!--3 0 Reset C4 to 0
..,,

t
1 1 Bit reset

Bit 4
Don't Care
Bit set/reset flag

OA 0 0 0 0 1 0 1 0 Reset cs to 0

oc 0 0 0 0 1 1 0 0 Reset C6 to 0

8-18

INPUT/OUTPUT TECHNIQUES

This provides a technique for altering one output bit without

changing others.

output data latch:

Another technique is to read the content of the

DB

02

IN PORTC

will read the data latch of the port into register A even though

the port is programmed for output. Then you can use "ORA r" or

"ORI data" to set desired bi ts to 1; "ANA r" or "ANI data" to set

desired bits too. For instance, to set C7, C6 and C5 to 1 and

C4 to zero, use this program segment:

06 MVI B,11101111 Set up for C4 low

EF

DB IN PORTC Read old output data

02

F6 ORI 11110000 Set C7, C6, C5, C4 to 1

FO

AO ANA B Set selected bit to 0

D3 OUT PORTC Write to Port C

02

Wherever several bits must be controlled this takes less program

space than the individual bit set and reset instructions.

Caution: Reading from an output port is no~ included in the

manufacturer's specification for the 8255. That it will work is

predictable from the design of the 8212, and proven by experiment

with the 8255. A redesigned 8255 might not allow it.

8-19

INPUT/OUTPUT TECHNIQUES

Programs that write to the display or to Port C, or that program

the 8255, are always difficult to debug because whenever the

monitor actuates the keyboard and display it destroys whatever your

program has done. Suggestion: at each point in the program

when an output is written, first store the data in memory. When

you read an input, immediately store the data. Being able

to recover the data at a subsequent breakpoint makes debugging

immensely easier. The additional instructions can be deleted

when the program works properly.

Keyboard reading introduces another problem: at return from the

monitor the keys are always released. You can simulate a key input

by placing a breakpoint just after the IN instruction. When it is

executed you can load some value other than FF in the A register

to make sure that the rest of your program functions correctly.

If any peculiar condition arises while you have a key pressed, you

can press RST while the other key is held down. The program

counter will be saved. Press ADDR T MEM to see the program counter.

This is the last value observed by the ~onitor (your program must

have been running in Breakpoint mode). If your program was

executing a subroutine when you pressed RESET, the return address can

be found at (83DE, 83DF), provided no breakpoints had been entered.

8-20

iNPUT/OUTPUT TECHNIQUES

Draw the flow chart and write the program for KYIN. Test it

initially with a very simple calling program. To ease debugging,

call KYIN, not KTST. The monitor leaves the 8255 programmed with

Port C for output and Port A for mode O input.

LXI

CALL

...,c-JZ

RST 4

JMP

B,8FFF

KYIN

Enable all keys

Read keys

Repeat until

key is found

Then call monitor

This will return to the monitor as soon as you press a key. Then

you can look in the storage locations where you have saved the

input~ and outputs to see if they are what you expect.

When you call the monitor with a key pressed, hold the key down

until you see what you have. If you are displaying PC and the

instruction, a numeric key will give the Err display as soon as you

release it. If you are displaying a register, a numeric key

will be entered into the register when you release it.

retrieve the old value by pressing CLR, however.

You cah

Figures 8-6 to 8-9 provide a flow chart, test program, and two

versions of KYIN, one with debugging code included.

8-21

INPUT/OUTPUT TECHNIQUES

8-22

KPRG

P:ooGRAM 8255
CNTPI' 90

KTST

ENABLE ALL COLUMNS
(B}..-SF

ENABLE ALL KEYS
(C}~FF

KYIN

READ OLD OUI'PUI'S

SET ALL COLUMNS HIGH
AND SAVE FOR EXIT

SET DESIRED COLUMNS IDiJ

READ KEYS I INVERI'
AND MASK 'IO RErA1N

ONLY DESIRED KEYS

SET ALL COLUMN'S HIGH

Subroutine KYIN

Figure 8-6

1-
UJ
UJ
I
(/)

c.,
z
0
0
u

:'2;
w
I
C/)

>-
. (/)

c.,
z
z
<(
a:
l
a:
w
1-
::J
Cl..
:'2;
0 u
0
a:
u
2

(/)

~
w
I
C/)

>
(/)

a:
w
1-
::J
Cl..
~
0 u
Cl
w

~
a:
(!)
w
1-
z

'

A D O R

8 o'J() 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

- 6

7

8

CODE

0 I
F F
? F
(!_ l)

14 IP
j' :2.
e II
CJ t)

.P :i
E '7
(!, 3
C) CJ
R {J

FIRST TEST FOR KYIN

L X. I R J' F F ,,

e It L L I< y I tJ

::5 ~ p tJ. I/J ~

I~ s T L/
::r M p ? ~ 0: t)

1,

:

Figure 8-7

8-23

8-24

1-
UJ
UJ
I
(J)

(.9
z
0
0
t)

~
UJ
1-
(J)

>
(J)

(.9
z -z
<(
a:
l
a:
UJ
1-
::J
a..
~
0
t)

0
a:
t)

>-

(J)

~
UJ
1-
(J)

>
(J)

a:
UJ
1-
::J
a..
~
0
t)

0
UJ

~
a:
(.9
UJ
1-
z

A D D R

8 oP.i/ 0

1

2

3

4

5

6

7

8

9

A

B

C

[)

E

F

s o2s-'o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

s~/,, o
1

2

3

4

5

6

7

8

CODE

f E
9 0
]) 3
I) .3
{) 0
j) l,C
{) ~
~ F
1> B
t) ~
8 1..1
{;) 0
? 3
F t:,
F 0
0 7
If ()

d ~
(') I
p 3
]) 3
CJ :2

:D k3
{!} 0
3 ~
{) ~
I 3
t5? F
Ill- I
4 !=
7 fl
I]) 3
() bl
(J_ q

KTST, KYIN WITH DEBUGGING FEATURES

M V I /.I 9 0 l<PRG
-A _1""\ ;'lA ,. ~) p ~ J:j" -5'

0 u T C N 7 () 'ffi..,, -r ~ /3 (1_ 0. -,_ +
'-fltrl± f}

I
.J - ..,.

M V I 8 R F J<Ts, 7

,;

(/3)'=:-a_ll~

M \I 1-r c_ F F (C)'--a...LR J.. __ ,
()

I N p C) R 'I 0 C 1< Y:LN
~,.,,,/J J,,(),,., r- +-_.

8 T f} f 3 0 t) I. - u{) _A_ I , -- . • -

tf' ~p (7

{) R T F r) J, ,J-_ ,.... ,1 /J_ A • ,I• -~

J..· -L .I~~ /'I- ~ .
/VI I) v' lJ . ft

('/

L) -"~ A.A-·' . .L •

A- IV ,4 Br, .J. ~ .,, { A,. - -r;-,,I,

s 7 fJ f 3 0 / ,,, - ~) 4. .

~ -- ~· L.
J4 /,

.-o - - . ,.

() u , p 0 R T () C tl tl (I

I !J I p 0 R r 0 A 'lf?e4...e:f h. ,

8 T /J, J? =? () :2 J. . /.._,.A,,A
-- -- ~. A,

II (/ Q q

C ;VI A I A + -· • _/) - A Jo j

IJ.. (\) f}- C All J)A~ :L. -I) J, ~.,.,,

M l/ C. 1.4 7/
{) =I ,;~ -.l.- lJ

;Yl fl-
7

l) .J~.± ,,, /)1_1) A~;. .) 0 V
/) u T p 0 R T {) C -1. ·,.~ j

r1

R £ 7

Figure 8-8

I
LU
LU
I
ti)

c.,
z
0
0
u

2
LU
I
t/)

>
ti)

c.,
z
z
<(
a:
l
a:
LU
I
:)
a.
2
0
u
0
a:
u
2

Cl)

2
UJ
I
t/)

>
ti)

a:
LU
I
:)
a.
2
0 u
0
LU

~
a:
(!)
LU
1-z

A D D R

a c::? ;I/ o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 c:) ,.j-' 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

cooE KRPG, KTST, KYIN WITH DEBUGGING REMOVED

3 G M I) I /-/- 9 0 KPR6-
9 0

,
~ __ ,,,, .,i.-..,,,, ,J?oiSJ

J) 3 0 u r C. Iv -r 0 -/J,,., ~ 1.3 e (J~

{) l3 ...fJ!Y'd It J,v

t) 6 fr1 v 1 B 9 F J<TST
? F

I

(!3)1.:-- /Ip~,,._ .J --
{) E M V '.I C. F ,= / (') ~ t:.t.ll.- ~

F F
,I ,

]J L3 I. N p 0 R T 0 C KYL/\J
t') ,:; '-A,: ,,,,/ A..J L A ...,_ , r: J

r &; 0 R F I() .J, :J- ,r; /J ~ A - ~ ,

,

:r: -
r 0 A,· - /.) A.- ,d, /'}.,-. ,, .J

0 7 M D \,) f) A • 17
,,4 /J ..ra :lJ ~--

If () Pr tJ A 13
I

J_ +. - - £,., -n 1d

:J) 3 0 t) ,- 'P 0 R T 0 C /?.6'_/, - ..- -- J ~~.I

CJ :2..
J) B I rJ p 0 R T 0 /; --A,_ ,I) ~ - ~ - ~
~· 0 • ,, , T ~II j, A ,

I~ t= C M A .,.,J.,,.,,_,,.,I) =/ I

/I I A Iv 14 C ..f?t._1,J ,,,_ l- -nel.,
14 F f() 0 \I C. A J, __ ,_J,,..,_,4,~~~

'7 /} M D V r+ :D ..J.J/11'~ /'.,.J, - - J

J) 3 () u T p 0 R T a C ~~L
CJ :2

17

(! CJ IR £ T

.

Figure 8-9

8-25

INPUT/OUTPUT TECHNIQUES

8.1.5 Keyboard Display Exercise

Now we can make more interesting use of KYIN. The following

program takes any key from O - 7 (which appears as a single bit= 1

in register C) and OR's it into a display location at the

corresponding display segment bit. By pressing successive keys,

you may "paint" a character. It also tests for CLR and NXT, either

clearing the presently addressed display location or moving to

the next location. This demonstrates one requirement of keyboard

input: you must distinguish between a key being held down for a long

time versus repetitive depressions of the same key. The numeric

keys and CLR don't care in this program, but if you do not test

for release of NXT it will step across the display many times before

you can let go of the key.

Keyboard input

Many electrical

programs

switches

normally

do not

provide for "debouncing".

change from closed to open

perfectly, but "bounce" between the two states for some milliseconds.

This can occur in the switch contact itself, or it can be

created by a TTL circuit sensing the contact. To avoid seeing a

single closure as multiple operations there is usually a time

delay circuit or program used to require that the key be open for 10

to 30 milliseconds before it is accepted again. Such a

provision is included in the MTS monitor subroutine GETKY, even

though the MTS keys seem to be completely free of bounce. Before

referring to Figures 8-10 through 8-12, try designing the program

yourself, all the way from a specification and flow charts through

the detailed coding.

8-26

KEYBOARD DISPIAY PRJGRAM

ADDRESS DISPI.AY
(HL)- 83FB

CALL KPRG

CALL KYTST

Bi-------<

B

SET 'IO READ 0-8
(BC)-EFFF

CALL KYlN

YES

ENTER IN DISPIAY
(Ml- (M) + (C)

SET 'IO READ NEXT
(BC)-BF 20

CALL KYIN

NEST DISPI.AY ADDRESS
(L)-(L) + 1

NO

YES

A ---------'

Figure 8-lOa

INPUT/OUTPUT TECHNIQUES

8-27

INPUT/OUTPUT TECHNIQUES

8-28

KEYBOARD DISPLAY PR)GRAM (CCNT ID)

SET 'IO READ CLR
(BC)1--BF80

CALL KYIN

NO

(M)~O

Figure 8-lOb

I
LU
LU
I
(/'J

(!:)
z
0
0 u

2:
LU
1-
(/'J

>
(/'J

(:J
z
z
<!
a:
l
a:
LU
1-
::,
a..
2:
0
u
0
a:
u
~

(/'J

2:
LU
1-
(/'J

>
(/'J

a:
LU
1-
::,
a..
2:
0
u
0
LU

~
a:
(!)
LU
1-
z

A D D R

a o<O 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

a o2 I o

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

cJ 0
0 0
(} 0
e:. I
F jl
f 3
e lJ
4 0
cf l2
C '])

"I ¥
p ,!2

11_ :l
6 9
p :;_
CJ 0
cJ I
F F
E r-
(:_ l)

-'I F
p 62.
(1_ Ii
ot ~
? ;)

7 £
8 I
7 ~
e .3
0 9
J? :1.
CJ 0

KEYBOARD DISPLAY PROG.l:{AJ.Vl

N 0 p
iJ 0 p
Iv 0 p
L 'I,.. I l+ R 3 F g ar1,,1. _,,. ... J,,....A ~ ~ ,.., A- • 1

I (/

c_ A- L L I<' p R 6 4-A A _,1J ?e:2~-S
"

-t:J. - - ,. I 1 ,
C A L L I< T s T Y. ,1-/-J ~~,I ~-~_..

0 r ,

"'S {\) ~ R dJ. {) 9 /Al.. ':J .A_• .l,_ ,)

,,.{ ~~ ,A ;J ~,._,_ "',,/J.

/\} 0 p ...:lh'_j ~,.,, - - J. --· .. r
L X I B E F F F .L:.t, _A A " :. ~

/

J,. - CJ - ?'
(f

C A L L I< y I tJ

::y ~ J' ~ ~ () Q,. - :, / - '~ -~
~ .L'_ -~ tJ-7(/'

I

M 0 v A- M rJR .A. • ~ y-_

{) R A- C JJ • . - I'...
M 0 V .Nl A

,
(I

0 M p ? ~ () 9 ,,Id,, -·~ ~
/

~o--"

N 0 p

Figure 8-11

8-29

8-30

f
w
w
I
(/'J

(.9

z
0
0
u

~
w
f
(/'J

>
(/'J

(.9
z
z
<{
a:
f-
a:
w
f
:::::>
a..
2
0
u
0
a:
u
~

(/'J

2
w
f
(/'J

>
V"J
a:
u.l
f
:::::>
a..
2
0
u
0
UJ

~
a:
(.9
UJ
f
z

A D D R CODE

8 d~ 0 C) /
1 ~ V,
2 8 F
3 e Z>
4 J./ f'
5 jJ :2
6 C /-}
7 3 CJ
8 i :J
9 c:1 e
A e :;
B tJ CJ
C f :;
D (! .3
E C) t)

F R :)_

8 ~30 CJ /
1 p a
2 t3 F
3 (!_ 1)
4 .t/ f?
5 f' ,2
6 {!_ /)
7 / tJ
8 I' ,;;
9 3 (o
A cJ 0
B 0 0
C {!_, 3
D 0 9
E J? ;)

F I) CJ
8 0

1

2

3

4

5

6

7

8

L

C

3"

I
u

J"

L

C

~

M

/J
J"

Iv

KEYBOARD DISPLAY PROGRAM

X. I B. 8
I

F eJ. () .J,. ± A J. IJ ,. ,I)_ A IPXT

ft L L K IV l rv

c3:. ? c2 3 t) :a~ . _, ,: /Jf..<X, ,f JJ=vr
~ ' V

N R L '/Z,~/ -A • . - ,,_ .. -· ./LA, A - •

N ~ R d. cJ 9 , , J~ J./..,..., I \.,,.. ~ j A ... ,I,. .,. • IJ

fv'l p R ~ {) 0 1111 J?..-.d d . .A• _' - I)_ • I

~ ~ !!~J. -j-7
(/

?

'A I 13 B F ? CJ J~± ;h. j,.,,.,, -11 C!.LR
I

ff L L k y ..L tv

2 p ~ I t) Q ·-- i'"l ~·-.J -- - ~ CLR
II/ .A~ ,.,.,. ~ --~ .. , J,. 1

"
v I M 0 0 ('j) .. ,,.J, J _A ~ - /}_ -A ·- . *

I , 77 (/

0 p
M p R c< 0 q Ji .. d~~.L) .A A '1,.- "' ., ,

0 p

Fiqure 8-12

INPUT/OUTPUT TECHNIQUES

This page intentionally left blank.

8-31

INPUT/OUTPUT TECHNIQUES

SERIAL DATA
COMMUNICATION

!
#2

8251 8255

D7·Do CE C/D D,-D0 cs A0 A1

I/OR I/OW 1/0 R I/OW

DATA BUS

CONTROL BUS

ADDRESS BUS

A7 As

DS2 DS2

8212 8212
#3 #2

MD MD

Vee Vee

Figure 3-16. Typical 1/0 Interface.

8-32

(From INTEL 8080 User's Manual)

Figure 8-13

#1
8255

RDWFi D7-o0 CS Ao A1

1/0 R I/OW

As

DS2

8212
:ti

MD

Vee

INPUT/OUTPUT TECHNIQUES

8.1.6 Other 1/0 Interfaces

Isolated input/output is by no means restricted to the 8255; it

is defined by the use of the IN and OUT instructions and the I/0

Read and 1/0 Write commands. The necessary interface to the data

bus, address bus and the comma d signals can be built with

TTL and Tri-State circuits. Als , Intel and others offer several

other devices made for this interfa e.

Many computer terminalf? the 8251 Programmable

Communication Interface for serial data communications. This has an

interface to the 8080 system quite similar to that of the 8255,

_except that it needs the system clock. The student is again

referred to the Intel 8080 User's Manual for detailed descriptions of

these devices. Figure 8-13 shows how a number of devices can be

connected to the system buses.

8-33

INPUT/OUTPUT TECHNIQUES

8-34

SYSTEM
CONTROLLER

I/0 READ
I/0 WRITE

RESET

SYSTEM DATA BUS

Address
bus

0 1

From
Address
Decoder

RD AO Al CE

WR 8255

PORI' B PORI' C

Memory Mapped Input/Output With the 8255

Figure 8-14

PORI' A

INPUT/OUTPUT TECHNIQUES

8.2 MEMORY MAPPED INPUT/OUTPUT

An alternative to isolated input/output is "memory mapped I/0".

The input or output device is connected to the Memory Read and/or

Memory Write command signals from the system controller, instead of

the I/0 Read and I/0 write commands. Figure 8-14 shows such a

connection. Here the IN and OUT instructions are not used, since the

device is not connected to the command signals they generate.

Instead any memory read or write command can be used. LDA may be

used in place of IN, STA in place of OUT. All the convenience of

register addressing and transfer becomes available. Suppose that Port

A is addressed as memory location FFF8 and Port Bas memory location

FFF9, and both are programmed for inputs. Then they can be read by:

LXI H,FFF8 Address Port A

MOV E,M (E) <- (Port A)

INX H Address Port B

MOV D,M (D) <- (Port B)

Alternately, they can both be rea~y a single instruction:

LHLD FFF8

8-35

INPUT/OUTPUT TECHNIQUES

The arithmetic and logic instructions become available for direct

use with the input port. If you want to wait for a change in the

input data you could use this:

LXI

MOV

C CMP

JZ

H,FFF8

A,M

M

Address Port A

(A) <- (Port A)

(A) = (Port A) ?

Wait until equal

Or you can test for an input of 1111 1111:

LXI H,FFFS

INR M

r-JZ

The INR M command is only partially effective. If Port A is

programmed for input, you cannot effectively write to it.

Nevertheless the flags will be set as though you incremented the

data.

This sequence will set zero and jump if the input is 1111 1111,
I

because the flags are set as if 1111 1111 is increased to 0000 0000.

It is, of course, not possible to complete the INR M instruction, and

store 0000 0000 because Port A is programmed for INPUT and not for

OUTPUT.

While memory mapped 1/0 has some definite advantages, it sacrifices

the two byte IN and OUT instructions. LOA and STA are

three byte instructions; only by maintaining the I/0 address in a

register pair do you reduce the program length.

8-36

INPUT/OUTPUT TECHNIQUES

Note that with memory mapped I/0 the 8255 must occupy addresses that

will not conflict with any real memory. A typical scheme in small

systems is to use all addresses from 8000 to FFFF for input/output,

and 0000 to 7FFF for memory. Now address bus bit 15 indicates

whether an 1/0 device is to be selected. If only a few 1/0 devices

are to be used it is not necessary to fully decode the address. A

single chip 1/8 decoder can select eight different devices.

Memory mapped 1/0 is probably overused in hardware design. For most

applications isolated I/0 is more efficient in both hardware and

program space but the difference is very small. The one severe

restriction on isolated 1/0 is that the port address is fixed by the

instruction, f\O it cannot be changed under program control if the

instruction is in ROM.

8-37

INPUT/OUTPUT TECHNIQUES

SYSTEM ADDRESS BUS

83F8

CUrrent
Drivers

DECODER

SYSTEM DATA BUS

8

83FF

ME[-fi __ --w......_ ______ --,w _____________ __,

8-38

Memory Mapped Display

Figure 8-15

INPUT/OUTPUT TECHNIQUES

8.3 DIRECT MEMORY ACCESS

The third method of input and output is direct memory access, in

which data are written to the processor's memory, or read from it, by

external hardware as well as by the CPU. This is very efficient for

the program, but typically it demands more external hardware than

input and output ports require. In a Direct Memory Access system the

DMA hardware ("channel") seizes control of the address and data buses

whenever it is ready to read or write to the computer's memory. This

briefly suspends the computer's operation, accomplishes the data

transfer, and then allows normal computer operation to continue. We

will describe in detail the OMA system used in the MTS for its

display.

Let us suppose for a moment that we did not have memory devices at

addresses 83F8 - 83FF in the MTS, but a set of 8212 output latches,

as shown in Figure 8-15. Now to display a digit we would use memory

mapped I/0, addressing 83F8, 83F9, etc. and write to those apparent

memory locations. The data would be stored in the 8212 latches and

would drive the LED displays. This demands eight latches and eight

current drivers.- Direct Memory Access provides an alternative which

in this case takes less external hardware and appears almost

identical to the program.

8""'.'39

INPUT/OUTPUT TECHNIQUES

8-40

S100 HOLD -------------------d

MONITOR INTERRUPT-----------.........,.

PORTOC7 -----~------.o

555
TIMER

~,
a

HOLD

Q. ...
S Q.~-~-----<>---- OMA ENABLE

RESET

HLOA

L574

A Q~----...... --

DMA Circuit
Figure 8-16

0 2 CLOCK---------

OMA ENABLE

SSSTIMER~

01----'

HOLD----'

HLDA------../

02-----------'

DMA Timing
Figure 8-17

INPUT/OUTPUT TECHNIQUES

8.3.1 Repetitive Direct Memory Access

In using the seven segment displays of the MTS you have been

operating a repetitive direct memory access system. Data are written

into a fixed set of addresses, and the OMA hardware periodically

obtains data from these addresses and displays it. This is a very

attractive scheme for displays of the kind used here, and also for

video displays and some kinds of control systems. In each case the

same data need to be accessed repetitively because very little

external storage is provided. For the seven segment displays of the

MTS, only one digit is stored externally, while that digit is

illuminated. Then the OMA channel obtains the next digit and

displays it.

Figure 8-16 shows the circuit connections to the 8080 that are

involved in the OMA operation. The 555 timer periodically generates

a pulse which sets the flip flop Ql, provided that the enabling

signal from PORTOC7 is high. The output of this flip flop generates

a HOLD request to the 8080. It is gated with the monitor interrupt

signal to give priority to the interrupt, because internally the 8080

gives priority to the HOLD request, which is undesirable here.

At receipt of HOLD the 8080 suspends its operitions, gives HLDA {hold

acknowledge) and floats the address and data buses.

8-41

INPUT/OUTPUT TECHNIQUES

w
...I
m
c(
z
w
c(
:::&
C

8-42

N
m
c(

ai
c(

i.n
+

a:
w

I') t-o,z
~::::,

8

a:
w

i.n ::::e
i.n-
int-

0
m
c(

a:
w

N C
.... &e 0
Cl) ... u
...I w

C

i.n
+

Display Circuit

Figure 8-18

" m
C

>
:5
ll..
ti)

0
t-a
0
Cl)

co It)
m m
0 0

ti)
::::,
...It-
ll..Z

~~ z...,
we(
:E :E
(!) -wu tl>w
r,.C

a:
Cl) w
0, > ;,; -
" a: C

N ::C ... ()

&15

.... I')
m m
C C

m
t-
ti)

w
...I
m
c(
z
w

N ai 0 c(
m m ::::e
0 0 0 0

INPUT/OUTPUT TECHNIQUES

HLDA becomes true just before a ~2 (Phase 2) clock. (See Figure

8-17.) Ql, HLDA and,02 clock are gated to set Q2 when all are true.

The inverted output cf Q2 goes low and immediately resets Ql,

terminating the HOLD request. The processor keeps HLDA high for one

clock cycle, and then regains control of the buses.

During

the DMA

the single clock cycle (0.5 microsecond) that HLDA is high,

channel controls the address bus. Figure 8-18 shows the

connections to the display. A three-bit counter receives the timing

pulse from the 555 timer, so at each DMA cycle it counts. Its output

selects among the digits and memory locations~ When the second flip

flop in Figure 8-16 generates DMA ENABLE,~ indicating that the

processor has released the buses, the counter data are connected to

Bits O, 1 and 2 of the address bus. Bits 3 through 9 are pulled high

by resistors, and other logic (not shown) forces the chip select to

the memory chips representing addresses 8000 - 83FF. Thus one of the

data bytes 83F8 - 83FF is selected and is read onto the data bus.

DMA ENABLE strobes the data from the selected memory byte into an

eight-bit latch. Thus the data byte from the selected memory

locations has been copied into the single latch, and is ready to be

displayed. The DMA channel no longer needs access to the memory, and

the processor can resume its operation.

8-43

INPUT/OUTPUT TECHNIQUES

The outputs of the three-bit counter drive a 1/8 decoder, turning on

one transistor to apply power to one of the eight digits. The data

latch and an eight-bit power driver allow current to flow in those

segments for which the data bit is 1. The selected digit is

illuminated in the appropri~te pattern to show the desired character.·

At the next DMA cycle this digit is turned off and the next digit is

turned on, so that each digit operates for one eighth of the time. To

make a display that does not flicker visibly, each digit must be

turned on about 30 times per second or more. The MTS DMA channel

actually operates at about 1400 cycles per second, so each digit is

on 175 times per second.

8-44

INPUT/OUTPUT TECHNIQUES

8.3.2 DMA Input and Output

Direct memory access is commonly used in computer systems for both

input and output if a

writing to magnetic disc

Microcomputer Development

operates at 250,000 bits

byte. The 8080 could not

high data rate is required. Reading or

memory is a typical example; Intel's

System/Diskette Operating System

per second or

keep up with

about 30 microseconds per

such a data rate on. a

programmed or interrupt driven input system. In fact Intel uses

their series 3000 Bipolar Microprocessor for the disc controller.

The disadvantage

hardware required.

of

It

DMA is

should

the significant amount

seldom be used unless

of external

high data

rates are mandatory, or in specialized situations such as repetitive

DMA where the hardware is minimized.

the following:

The hardware always includes

a) Address counter to store and alter the memory address to

be read or written (represented by the 74LS93 Counter in the

MTS)

b) Address Bus buffer to isolate the DMA address from the

system bus (the 74LS367 Tri-state Buffers)

c) Data Bus buffer to isolate the DMA data from the system

bus (the 8212)

8.,,..45

INPUT/OUTPUT TECHNIQUES

This page intentionally left blank.

8-46

INPUT/OUTPUT TECHNIQUES

d) Gating circuits to appropriately command memory read or

memory write. The MTS is only concerned with memory read,

for the DMA channel, so this feature is not required in this

instance.

e) Timing or signal input to initiate the hold request

(the 555).

In any DMA system other than a repetitive OMA there must be some

means for the processor to inform the DMA channel that output data

are ready, and for the DMA channel to inform the processor that

input data have been stored or output data accepted. This can be

handled as a separate programmed 1/0, with the processor and

channel exchanging discrete signals. If DMA input and output

are both provided it can be done by writing a control byte into a

specified memory location as the last operation in the DMA

sequence; then the processor and channel both sample that location

periodically. The most common practice, however, is to use a

discrete output from the processor to initiate output and enable

input, and an interrupt from the channel when data transfer is

complete.

Sophisticated DMA systems generally provide for reading and writing

to variable areas of memory. For output the processor will send a

memory address and a byte count to the channel, which thereafter

takes data from the given and succeeding addresses until the

designated number of bytes have been read. For input the channel may

interrupt to request a memory address where data are to be stored.

8-47

INPUT/OUTPUT TECHNIQUES

8-48

NO

YES

M:>NI'IDR P:roGRAM

ENTER

S'IDRE USER REGISTER
PKX;RAM CX)tNI'ER

AND STACK POlNTER

DISPLAY ProGRAM
COUNTER AND .MEM>RY
OR REGIS'IER CONTENT

READ THE
KEY BOARD

S'IDRE THE KEY

READ THE
KEYBOARD

PFOCESS THE a:MWID
OR DATA RECEIVED

UPDATE THE DISPLAY

Keyboard Testing in the Monitor

Figure 8-19

8.4 I/0 INITIATION

8.4.1 Programmed 1/0

Because a computer operates

always ready to receive an

INPUT/OUTPUT TECHNIQUES

in sequential fashion, it is not

input or produce an output. If it

is fast in comparison to the input device or the output requirement,

which it often is, the computer can sample the input or produce the

output at its own convenience. This is called "Programmed I/0". It

is used in the MTS for the keyboard input. When the computer is

slow compared to the input or output requirement, as in a magnetic

disc system, we use direct memory access, but typically with

either programmed or interrupt 1/0 to initiate and/or terminate the

DMA operation. Interrupts are discussed in the following sections

of this chapter.

Consider the MTS keyboard input. When the monitor is in

control (running), almost all of its time is spent waiting for

keyboard input. (See Figure 8-19.) The program has nothing better to

do with its time. It can process any command you give it and

get back to reading the keyboard long before you can press another

key.

R-49

INPUT/OUTPUT TECHNIQUES

8-50

C S'mRT)

CAICaLATE
PARI'IAL RESULT

CALL INPur
SUBKXJI'INE

CALL INPUl'
SUBKXJI'INE

FlNM,

CALCULATICN

CALL INPur
StlB:EOUl'll'lE

PRJDOCE
oorPur

<--~-w_ro...,~,....INE ____)

Programmed Input/Output

Figure 8-20

INPUT/OUTPUT TECHNIQUES

The processor can tell whether you have pressed a key because a

unique state exists (all inputs high) when no key is pressed. It

tests for this state after each new key input before processing the

key, to

be able

input

avoid processing a single key stroke repetitively, and yet

to react to multiple operations of the same key. In many

applications there is no special state which has a

significance different from all others,

by other means whether a particular

There are, of course, applications

and the processor must know

input has been processed.

where it does not matter; a

digital voltmeter will process the input as fast as it can update its

display whether the data has changed or not.

In some systems the processor has lengthy functions to perform,

which must be interrupted to handle input or output. This can

be done by repeatedly calling an input subroutine during the main

processing, as suggested in Figure 8-20. This tends to be time

wasting, and it demands that the programmer consider how long his

processing will take in comparison to the input requirement.

We have seen that the strobed input feature of the 8212 enables

fleeting and asynchronous data to be latched, until the program is

ready to deal with it. Thi~ is very suitable for infrequent inputs

such as may exist in control systems.

Sometimes, however, the system may demand a very prompt response to

its occasional inputs, or it may give many inputs during the course

of other calculations, each demanding some degree of processing or at

least storage before the next input is delivered. It is for this

kind of requirement that interrupt driven systems were invented.

s~51

INPUT/OUTPUT TECHNIQUES

8.4.2 Interrupt Driven I/0

When an external event occurs that demands the processor's

immediate attention, hardware is used to cause a branch in the

program. Instead of repeated calls to an input (or output)

subroutine at predetermined intervals, as suggested in Figure

8-20, that call is created when and only when it is needed. The 8080

and most other microprocessors include interrupt handling capability.

We will discuss the internal and external logic required to create

an interrupt; the MTS interrupt system; and the design of interrupt

service subroutines.

8.4.2.1 Interrupt Logic

The following signals of the 8080 system are involved in the logic

handling an interrupt:

INT Interrupt. Request input to the 8080. It is driven

high by external hardware to request service.

INTE Interrupt Enable. A flip flop in the 8080 and

also an external output, signifying that an interrupt will

be accepted.

INT F/F Interrupt Accept. A flip flop in the 8080 signifying

that an interrupt has been accepted.

8-52

INPUT/OUTPUT TECHNIQUES

INTA Interrupt Acknowledge. A signal passed in the status

byte to the system controller, and also an output signal from

the controller available to external hardware.

To create an interrupt the external logic must (in general) perform

two functions: request an interrupt by raising INT, and respond to

INTA by giving the 8080 an instruction. The instruction is usually

one of the special one-byte restart calls: RSTO, RSTl, etc. These

are essentially identical to the CALL instruction except that the

address is implied by the op-code. Thereafter the processor

executes an interrupt service subroutine just as it would any other

subroutine.

Some systems have a requirement to test INTE to be sure that

an interrupt will be accepted. In other systems it can be used

as an indication that an interrupt has been accepted. It is not

generally necessary to use this signal externally. It is

internally gated with the interrupt request, so that interrupts will

not be honored unless the interrupt system is enabled.

The interrupt system is enabled by a RESET, or by the instruction:

FB EI

This instruction

arranged to be

interrupted. It

RETurn from the

before another

Enable Interrupt

sets the INTE flag high, but it is carefully

too late for the next instruction to be

is guaranteed that one instruction

interrupt service subroutine) will

interrupt is accepted.

(usually a

be executed

8-53

INPUT/OUTPUT TECHNIQUES

The interrupt system is disabled by execution of an interrupt.

This ensures that the interrupt service subroutine can

accomplish its functions without itself being interrupted. It can

also be disabled by the instruction:

F3

This is

executed

DI

commonly

and must

Disable Interrupt

used

not

when

be

some time dependent task

delayed by interrupts,

is to be

or when a

process is being performed that will affect the results of the next

interrupt.

Provided that INTE is set, the INT input sets the internal INT Flip

Flop at the end of the current instruction, which is completed before

any other action occurs.

When the next instruction cycle starts with INT F/F set, some special

events occur. The CPU starts its normal cycle, sending out the PC

content and status data. The status includes INTA, a bit on the data

bus during status strobe time which commands the system controller to

issue the INTA command instead of the MEMR command. Then an

instruction is placed on the data bus by external logic so that this

is loaded into the instruction register in place of the next

programmed instruction. During this cycle the 8080 does not

increment the program counter, so the address of the instruction that

has been interrupted is preserved. The 8080 clears the INT F/F and

the Interrupt Enable Flag, so that the next instruction will not be

interrupted.

8-54

8.4.2.2 Restart Instructions

It is usual (but not necessary) that

data bus in response to INTA is one

INPUT/OUTPUT TECHNIQUES

the instruction placed on the

of the special one-byte call

instructions, RSTO to RST7. These are equivalent to normal CALL's

except that the call address is implied by the op-code, as shown in

Figure 8-21. The diagrams of Figure 8-22 through 8-24 show the

process, and Figure 8-25 (from the INTEL 8080 User's Manual) shows

the timing.

8-55

00 I.
01
O')

HEX
CX)])E lliSTR

C::J RS T 0

CF RS T 1

D 7 RS T 2

DF RS T 3

E 7 RS T 4

EF RSTS

F 7 RS T 6

FF RS T 7

BrnARY OODE O)RRESPONDS 'ID NE.W PROGRAM

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

'--'

0 0 0 1 1 1 CALL 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 CALL 0 0 O 8 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 CALL 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 CALL 0 0 1 8 0 0 0 0 0 0 0 0 0 0

1 O 0 1 1 1 CALL 0 0 2 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 CALL 0 0 2 8 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 1 CALL 0 0 3 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 CALL 0 0 3 8 0 0 0 0 0 0 0 0 0 0
I '-- /

.________ These three bi ts enter the PC

These five bits signify RST Instruction

The other bits in the PC are set to 0

Coding and Effect of RST Instructions

Figure 8-21

.....
z
'i:I
c::
1-,3

.........
0
c::::
1-,3
'i:I
c::

COUN'IER 1-,3

1-,3
t::rj
(')
::i::

0 0 0 0 0 0 z
0 0 1 0 0 0 .0 c::

t::rj

0 1 0 0 0 0 en

0 1 1 0 0 0

1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

• __, .. J

A

p C

A

p C

A

p C

INPUT/OUTPUT TECHNIQUES

PROCESSOR MEMORY

3E

8206

3E

8207

3E

8207

Interrupt: occurs as CPU starts to
execute instruction at 8205

/ PC is incremented

Instruction 3E is u-.o bytes
(MVI A} so PC is sent out
again

Instruction is ccmpleted and PC
rncremented is

/
I

INT F/F is set at end of instruction cycle.

PC is sent out again Bur MEMR canmand is
not given

Interrupt Processing

Figure 8-22

3E
12

8 2 0 0

8 2 0 1

8 2 0 2

8 2 0 3

8 2 0 4

8 2 0 5

8 2 0 6

8 2 0 7

8 2 0 8

8 2 0 9

8 2 0 A

8 2 0 B

8 2 0 C

8 2 0 D

8 2 F F

8 3 0 0

8 3 0 1

8-57

INPUT/OUTPUT TECHNIQUES

8-58

A

p C

s p

p

s

A

C

p

A

p C

s p

PROCESSOR

CF

8207
83D3

\

8207

,.__8_3_0_2_~,,

- -
CF

,/

/ Again

8207

83Dl

Instead of MEMR the
controller sends INTA

External logic
places an instruction
on the data bus, which
is loaded into Register
I.

'·
PC is NOT incremented

CF is interpreted as
one byte CALL

PC (high) is sent as data

MEMORY

3E

12

-

...-........

is decrerrented and sent as address

Address

07

82

Figure 8-23

8 2 0 0

8 2 0 1

8 2 0 2

8 2 0 3

8 2 0 4

8 2 0 5

a 2 0 6

8 2 0 7

8 2 0 8

8 2 0 9

8 2 0 A

8 2 0 B

8 2 0 C

8 2 0 D

8 2 F F

8 3 0 0

8 3 0 1

8 3 D E

8 3 D F

A

p C

s p

A

p C

s p

A

p C

s p

INPUT/OUTPUT TECHNIQUES

PROCESSOR

~
~-.. ~----

CF One byte CALL loads
PC with special address

0008

83Dl

Execution continues from 0008

CF

0008
83Dl

When interrupt service
subroutine is finished,
retum will be to the
instruction that
was not executed

MEMORY

FS

0009 ---{BE
83Dl

Figure 8-24

0 0 0

8 2 F F

8 3 0 0

8 3 0 1

83DE

8 3 D F

8

8-59

INPUT/OUTPUT TECHNIQUES

INTERRUPT SEQUENCES

The 8080 has the built-in capacity to handle external
interrupt requests. A peripheral device can initiate an inter
rupt simply by driving the processor's interrupt (INT) line
high.

The interrupt (INT) input is asynchronous, and a
request may therefore originate at any time during any
instruction cycle. Internal logic re-clocks the external re
quest, so that a proper correspondence with the driving
clock is established. As Figure 2-8 shows, an interrupt
request (INT) arriving during the time that the interrupt
enable line (INTE) is high, acts in coincidence with the ¢2
clock to set the internal interrupt latch. This event takes
place during the last state of the instruction cycle in which
the request occurs, thus ensuring that any instruction in
progress is completed before the interrupt can be processed.

The INTERRUPT machine cycle which follows the
arrival of an enabled interrupt request resembles an ordinary
FETCH machine cycle in most respects. The M1 status bit
is transmitted as usual during the SYNC interval. It is
accompanied, however, by an INTA status bit (Do) which
acknowledges the external request. The contents of the
program counter are latched onto the CPU's address lines
during T 1, but the counter itself is not incremented during
the INTERRUPT machine cycle, as it otherwise would be.

o,

02

A1s-o PC-1 PC

I !

In this way, the pre-interrupt status of the program coumer
is preserved, so that data in the counter may be restored by
the interrupted program after the interrupt request has been
processed.

The interrupt cycle is otherwise indistinguishable from
an ordinary FETCH machine cycle. The processor itself
takes no further special action. It is the responsibility of the
peripheral logic to see that an eight-bit interrupt instruction
is "jammed" onto the processor's data bus during state T3.
In a typical system, this means that the data-in bus from
memory must be temporarily disconnected from the pro
cessor's main data bus, so that the interrupting device can
command the main bus without interference.

The 8080's instruction set provides a special one-byte
call which. facilitates the processing of interrupts (the ordi
nary program Call takes three bytes). This is the REST ART
instruction (AST). A variable three-bit field embedded in
the eight-bit field of the AST enables the interrupting device
to direct a Call to one of eight fixed memory locations. The
decimal addresses of these dedicated locations are: 0, 8, 16,
24, 32, 40, 48, and 56. Any of these addresses may be. used
to store the first instruction (s) of a routine designed to
service the requirements of an interrupting device. Since
the (RST) is a call, completion of the instruction also
stores the old program counter contents on the STACK.

.....,....,_ _ _; ___ ,_ -
07.0 Do RST !

(INTA)

SYNC

OBIN

WR

RETURN M1
(INTERNAL)

INTE

INT

INT F/F
I INTERNAL)

INHIBIT STORE OF
PC+1 !INTERNAL)

STATUS
INFORMATION © © ©

NOTE: @ Refer to Status Word Chart on Page 2-6.

8-60 Figure 8-2 5
(From INTEL Manual)

INPUT/OUTPUT TECHNIQUES

8.4.2.3 Interfaces for RST Instruction

The restart (or other) instruction that is to be placed on the data

bus during INTA must not interfere with the data bus at other times.

It is best to buff~r the data bus with a tri-state device such as the

Intel or NEC 8212, or two 74125 Quad Buffers. Figure 8-26

shows an 8212 generating RST6 in response to an external interrupt.

When more than one device is to interrupt the 8080, it is often

useful to use vectored interrupts. Each device creates a

different RST instruction, thereby calling a different service

routine. Figure 8-27 shows an arrangement with which two

independent interrupts can create three different restarts: RST5 for

INTl, RST6 for INT2, and RST4 for both at once.

In a small system, the data bus can tolerate some resistive pullup,

and tri-state or open collector inverters or gates can be used to

pull down specific bits. Figure 8-28 shows such a configuration.

8-61

INPUT/OUTPUT TECHNIQUES

8-62

External
Interrupt

Vee

Note 1

Note 2

8212

I7 07

I6 06

IS 05

I4 04 Data Bus
Note 2

I3 03

I2 02

Il 01

IO 00

STB INT (Note 1)

DS2 DS1

INTA

INT (Note 1)

If the external interrupt is a continuous
signal it should provide the interrupt
to the 8080. If it is a pulse, the 8212
can store it and provide the interrupt
request.

The configuration shown places RST 6 (F7)
on the data bus during INTA.

Restart Port With 8212

Figure 8-26

-1\
L/

INPUl'S:

INT 1

INT 2

INT A

ourPurs:

INT

BUS

Z = High Impedance
State

EF = RST 5
F7 = RST 6
E7 = RST 4

Vee

)

INPUT/OUTPUT TECHNIQUES

8212 _,
I7 07

I6 06

IS 05
I4 04 Data Bus
I3 03

I2 02

Il 01

IO 00

STB

D52 MD DS1

I T INTA

~ -
INT

FUNCI'ION

NOOE INT 1 INT 2 Balli OI'HER

1 0 0 1 1 0 0 1

1 1 1 0 0 0 0 1

1 1 0 1 0 1 0 0

0 1 1 1 1 1 1 0

z z EF z F7 z E7 z

Vectored Restart Port

Figure 8-27
8-63

INPUT/OUTPUT TECHNIQUES

8-64

Vee

15K
74125

Vectored Interrupt Using Resistors

Figure 8-28

Data Bus

INTA

INI'

INPUT/OUTPUT TECHNIQU~S

8.4.2.4 Generating RST7

For systems that need only one kind of interrupt, it is easiest to

use RST7 (code FF). Simply pulling the data bus high with resistors

will enter this instruction when the data bus is floated during INTA.

No gates or buffers are needed provided that all other devices on the

data bus are able to pull this resistive load down.

In systems that use the 8228 system controller the RST7 interrupt can

be generated by pulling the INTA output of the 8228 to tl2 volts

through a lK ohm resistor.

8.4.2.5 HALT Instruction

Many

they

microprocessor based systems have

are waiting for input. The

indefinitely in one place with:

8200 C3

00

82

JMP 8200

no function to perform while

program can be made to cycle

Now an interrupt with an RST instruction will call an interrupt

service routine which handles all of the processing, and the return

will go back to 8200. An alternative is the instruction:

76 HLT Halt at this address until

an interrupt occurs.

8-65

INPUT/OUTPUT TECHNIQUES

When this instruction is executed the processor enters a WAIT state

until an interrupt occurs. Now if INTA is OR'ed with MEMR, the next

instruction in the program will be read and program execution will

continue:

Program Flow:

..---1.EI

HLT

NOP

Next instruction

JMP

Enable interrupt

Wait for interrupt

Process interrupt

Go wait for next interrupt

This avoids the need for placing a special instruction on the data

bus. Note, however, that the byte following HLT will be read twice

because the program counter is not incremented during INTA.

Therefore, this instruction should be NOP.

8.4.3 The MTS Interrupt System

When the MTS

started with

executes your program in STEP mode (whether it was

the STEP or RUN key) an interrupt is generated by the

MTS hardware as each of your instructions is executed, causing a RST7

that calls the monitor program. The monitor then operates as an

interrupt service routine, which we will describe later. The

hardware involved will show something of the timing relations of an

interrupt system.

8-66

INPUT/OUTPUT TECHNIQUES

8.4.3.1 Interrupt Circuit Details

Figure 8-29 shows the interrupt circuit and timing. Recall that an

8080 instruction cycle comprises one to five machine cycles. Each

machine cycle includes three to five clock periods, or states. The

first state of each machine cycle is identified by a status strobe

signal from the 8224; this is shown in the timing diagram as STSTB.

During the first state of each machine cycle the 8080 sends out

signals on the data bus to identify the operations to be carried out.

These are latched by the system controller and provide the

information to generate all the control signals - MEMR, MEMW, I/0

READ, I/0 WRITE and INTA. Status strobe identifies the time at which

the status data can be latched by the system controller.

Two of the status bits from the 8080 are used in the interrupt

system. Ml identifies the first (or only) machine cycle of an

instruction cycle, and appears on data bus bit 5 during status

strobe. INTA signifies that the processor acknowledges an interrupt,

and appears on data bus bit O. These are latched by the system

controller to be available as continuous signals, as shown in Figure

8-29. INTE (interrupt enable) is available as a continuous signal

from the 8080 itself.

8-67

00
I

0)
00

+5

r----- ENABLE DISPLAY HOLD
INT

PORTOC1 ID a
AUTO +5

Ml C QI ,,
S'TIEP

INTE-----'

ITS INTR • l <)I l e INT (TO 8080)

S100 INTR -----------------------•------a

1-- El --1 • RET MVI A RST 7 -------

STSTB ~ u u LI u LI U LI lJ
INTE-----....

D5(M1) :n~=~=~rr_-_-_-~.:u-~~--u--~_-rr_-_-_-_-_u_-_-_-~n-_-_-_-_-_-_-_u_-_~--u~~--n=
-u----u----u---u---u----:u---n-------u---u---u::-

DO(INTA) __ ------ ------ ----· ----- ------ ---- ------ ---- ---- __

Ml_J I I I I I I

INTA ----------------------------

0 --------------------,

INT-------------------....

MTS Interrupt Circuit and Timing

Figure 8-29

H

z
"'o
c::
~

........
0
c:::
~
"'o
c:::
~

~
t;,:j
()
::i:: z
H
,0
c:::
trJ
Cl.l

INPUT/OUTPUT(TECHNIQUES

The timing diagram of Figure 8-29 starts with the monitor in control.

INTE has been set low at entry to the monitor. The STEP or RUN key

has been pressed, so the monitor restores the registers, enables

interrupts, and returns to the user's program. The timing diagram

shows EI and RET of the monitor program, one user instruction (MVI A)

and the RST7 that reenters the monitor.

At the end of the EI instruction the 8080 sets INTE high. Even if an

interrupt were already present, however, the RET instruction would

not be interrupted, because the 8080 demands that both INTE and INT

be true before the end of an instruction to allow the next to be

interrupted.

exit from

This insures that EI, RET can always be executed at the

an interrupt service routine. The monitor has an

additional requirement: one user instruction must also be executed.

The flip flop provides for this.

The flip flop is held reset while INTE is low. When INTE goes high

the flip flop is ready to set when Ml goes from low to high, provided

that PORTOCl, which is the monitor enable signal, is also high. Ml

does not change at the start of the RET instruction, however, because

it was already set high by the single instruction EI. During the

second and third machine cycles of RET, the Ml signal goes low. Then

at the start of the user instruction (shown as MVI A), Ml goes high,

clocks the flip flop, and generates an interrupt. This is too late

to interrupt the MVI A instruction. At the end of MVI A the 8080

acknowledges the interrupt by sending INTA

status strobe, and by setting INTE low.

on data bus bit O during

The flip flop is reset by

INTE low, removing the INT input to the 8080, until once again the

8-69

INPUT/OUTPUT T.ECHNIQUES

monitor exec~tes EI and RET. Thus every user instruction is

.interrupted before being executed.

Note that when the toggle switch AUTO/STEP is set to AUTO the monitor

interrupt is not generated. This allows you to write instructions

into experimental programs that enable breakpoint operation in parts

that need debugging, but to operate other portions in automatic mode.

This may be important in "real time" programs -- where program

running time is critical. Section 8.6.4 describes how to disable and

enable the monitor. Most of the monitor input subroutines disable

monitor interrupts while they are running and enable monitor

interrupts before they return.

Referring again to Figure 8-29, you will see that there are other

ways that you can cause an interrupt. At the upper right corner of

the MTS circuit board there are eight test points. One of these,

INT, is connected to the interrupt circuit. We will use this in the

following experiment.

8.4.3.2 External Interrupt Experiment

Enter this trivial program

8200 C3 JMP8200

8201 00

8202 82

Set the toggle switch to AUTO and press STEP (not RUN). Since the

monitor interrupts do not reach the 8080, the program will run

continuously, but an external interrupt will enter the monitor and

8-70

stop program execution. Connect a test lead

INPUT/OUTiUT,,TECHNIQUES

to INT Jnd
I
touch it to

ground. This will create the interrupt and stop your program.

8.4.3.3 Effect of DI and EI

Experiment with the DI and EI instructions. Enter this:

8200

01

02

03

04

05

06

07

08

09

F3

3C

C2

01

82

FB

00

C3

00

82

DI

INR A

JNZ 8201

EI

NOP

JMP 8200

The DI instruction prevents the external interrupt from being

effective until the EI at 8205 enables interrupts again. When you

operate this, again using STEP to initiate it but in AUTO mode, your

external interrupt with the test lead will always return you to the

monitor at address 8207. The interrupt cannot affect the instruction

immediately following the EI.

You will find that if you try to operate this program in STEP mode,

the monitor will not interrupt it. It is a requirement of the MTS

interrupt logic (not of the 8080) that the interrupt is not generated

until a multi-cycle instruction has been completed and the next

instruction has started. In normal operation this allows the

8-71

INPUT/OUTPUT lECHNIQUES

I

monitor's return and one user ~nstruction to be executed before the

monitor is called again. With this test program the single-cycle NOP

does not create an interrupt. The JMP is executed, the monitor

initiates the interrupt, but the instruction being processed at that

time is Disable Interrupt, Which makes the interrupt ineffective even

though it had already been received.

at 8206 from NOP to:

8206 77 MOV M,A

If you change the instruction

or any other instruction requiring two memory cycles, then the

interrupt will occur as the JMP is executed and the monitor will be

called before DI is executed at 8200.

8-72

8.5 INTERRUPT SERVICE ROUTINES

INPUT/OUTP.UT TECHNIQUES

"""

When an interrupt occurs the interrupt instruction generally calls

an interrupt service routine. This is a subroutine, but it has two

special requirements. It must:

a) Preserve the environment.

b) Find out why it was called.

8.5.1 Preserving the Environment

An interrupt service routine does not use the registers to exchange

data with a calling program. On the contrary, it must preserve the

contents of all registers and flags, and restore those contents

before returning to the instruction that was interrupted. The

interrupted program module makes no special provisions for the

interrupt, and except for the time taken by the interrupt

service its functions must not be interfered with. It may be

interrupted but not disrupted, and the service

transparent.

routine must be

The first several instructions in any interrupt service routine

are almost invariably PUSH instructions to save the registers:

PUSH

PUSH

PUSH

PUSH

PSW

B

D

H

Save A and flags

Save B,C

Save D,E

Save H,L

8-73

INPUT +UTPUT TECHNIQUES

The ro~tine c:in now use all of the registers to perform its functions

- typi~ally input and/or output. When finished it restores

the ehvironment that existed before the interrupt by popping the

registtrs in reverse order:

bop
I
POP
I

POP

I
POP

I
EI
I

RET

H

D

B

PSW

Rememblr that the interrupt itself disabled the interrupt system, so
I

to reJtore the environment, allowing for another interrupt, there

must Je u an EI in the service routine. If this is placed immediately

before I the return, it is guaranteed that the return will be

execut~d. Pla.cing it earlier in the interrupt routine will

allow [another interrupt to interrupt the interrupt routine! This

is somJtimes done, but usually with priority interrupt systems (which

are di\scussed below), and requires special consideration. Many

interrJpt service routines cannot tolerate being interrupted. This

is the case with the MTS monitor, for instance. Other program

modules[may also be intolerant of interrupts. They must be protected

by a DI instructions, and at some point must also include EI.

8-74

INPUT/OUTPUT TECHNIQUES

8.5.2 Identifying the Source of the Interrupt

Commonly a system will

service routine to

have

handle a

only one

variety

instance an "intelligent" communications

generalized interrupt

of interrupts. For

terminal might be

signal, or by an interrupted by a transmit next character

operator's keystroke. Hardware can be provided to call different

interrupt service routines, as we showed earlier. This adds

cost and

different

it is

providing

introduces

sources.

problem of simultaneous the

If there is not a severe

costly to use programmed

priority interrupts. We

usually

for

less

vectored

interrupts from

time constraint

i/O rather than

will define these

termr but otherwise in this course will not be concerned with them.

8.5.3 Vectored Interrupt Systems

This is a combination of hardware and software such that each

different source of interrupt calls a service routine specific to

the device that created the interrupt.

The prior discussion of RST instructions showed how vectored

interrupts can be created by placing different instructions on

the data bus in response to INTA. Other schemes are possible, for

instance the program may store the address of a module to process

the next interrupt, if a particular sequence is expected.

8-75

INPUT/OUTPUT TECHNIQUES

8.5.4 Priority Interrupt Systems

A priority interrupt system is a combination of hardware and software

guaranteeing that an interrupt from one source is given priority

over another; the higher priority can interrupt the lower, or, if

they arrive simultaneously, will be handled first. This can be

extended to many levels if necessary.

Specific hardware devices (LSI chips)

this function. In combination with

create a priority interrupt system.

are available to perform

software the 8255 can also

8.5.5 Timed Interrupt Systems

Systems that need to know the time of day often use a hardware

counter,

interrupt

operating on the computer's crystal

once every millisecond (or

clock, to generate an

any other desirable

interval).

address in

operations

An interrupt service routine increments

memory. The service routine may also

at this time, checking each input port

a "clock"

conduct 1/0

to see if

any service is needed. This scheme provides frequent service to

all I/0 ports without requiring each I/0 device to create

interrupts, and is called "polling".

8-76

INPUT/OUTPUT TECHNIQUES

8.6 USING INTERRUPTS WITH THE MTS

The MTS provides for vectored interrupts using any of the RST

instructions except RSTO, which is the same as RESET The data bus

is pulled high by resistors, so that if no external device places an

instruction on the data bus, the 8080 will receive FF during

interrupt acknowledge. This is the RST7 instruction, which normally

enters the monitor program for a STEP or a breakpoint test. You can

connect an external device to enter a different RST instruction,

using any of the schemes described earlier.

8.6.1 Interrupt Dispatch

The RST instructions enter the monitor program at these locations:

RSTl

RST2

RST3

RST4

RST5

RST6

RST7

0008

0010

0018

0020

0028

0030

0038

Since all of these locations are in Read Only Memory you cannot enter

interrupt service routines here. The monitor provides for your

interrupt service by loading an address from RAM and jumping to that

location when an interrupt occurs.

8-,77

INPUT/OUTPUT TECHNIQUES

The actual instruction sequence at the RST location (for RST7) is:

0038

0039

E5

2A

003A EB

003B 83

003C

003D

E3

C9

PUSH H

LHLD 83E8

XTHL

RET

The RST instruction pushes the program counter into the stack. PUSH

H places (HL) into the stack. Now the jump address is loaded into

(HL), using LHLD, i.e. the content of location 83E8 is loaded into

Register L and the content of location 83E9 into Register H. XTHL

exchanges the content of (HL) with the top two bytes of the stack, so

the original value of (HL) is restored and the stack now contains the

.jump address followed by the address of the interrupted instruction.

RET pops the jump address into the program counter, so the program

continues at the address that was stored at 83E8 and 83E9. The same

instructions, except for different addresses in the LHLD instruction,

exist for each of the seven RST instructions. Your program can store

a jump address in the appropriate RAM location, and the RET

instruction will then jump to that address. Note that it arrives

there with the stack top containing the address of the interrupted

instruction, and the registers unchanged, exactly as though the RST
I

location had contained a JMP. (RST 4 also contains DI because it is

used for programmed calls to the monitor, which must not be

interrupted.)

8-78

INPUT/OUTPUT TECHNIQUES

At RESET the monitor loads all the jump addresses. In general your

program must replace one or more of these to use interrupts. RST5

and RST6, however, are preloaded to jump into your program area.

Refer to Appendix A, Section A.4.2, for the storage location and

preset values.

In the following exercise we will develop an interrupt service

routine which will be called instead of the monitor when the RST7

interrupt occurs. This can be exercised by operating in breakpoint

mode, so that the MTS interrupt circuit will invoke your service

routine after each instruction in your main program. We will

demonstrate enabling and disabling the monitor interrupt system.

8-79

INPUT/OUTPUT TECHNIQUES

8-80

MAIN PROGRAM

Clear Counter

Store jump address

for Interrupt Service

Test for BRK Key

Not BRK

Enable Monitor Interrupts

Test for CLR Key

Not CLR

Disable Monitor Interrupts

Display High Digit of Count

Interrupt Service Exercise - Main

Figure 8-30

INPUT/OUTPUT TECHNIQUES

8.6.2 Interrupt Service Routine Exercise

The program to be developed uses the monitor interrupt circuit to

generate repeated interrupts, much like a timed interrupt system.

The interrupt will call a service routine to increment a two-byte

counter in memory. The main program will display the high digit of

the count, and test the keyboard. In response to the BRK key it will

enable the monitor interrupt system, and in response to CLR, it will

disable the monitor interrupts.

When the monitor interrupt circuit is enabled, each instruction in

your program will be interrupted, and your interrupt service routine

will be called. The dispatch program in the monitor plus your

interrupt service will take about 100 microseconds, so the fourth

digit of the count (the high digit of the second byte) will count at

about 0.4 second intervals.

The solution given used the following memory assignments:

8200 - 820F Initialize

8210 - 823F Main Loop

8248 - 8258 KYIN (Figure 8-9)

8260 - 8270 Interrupt Service

8300 - 8301 Counter

83E8 - 83E9 Store Interrupt Service Address

8-81

INPUT/OUTPUT TECHNIQUES

8-82

INTERRUPT SERVICE ROUTINE

Save All Registers

,

(HL) - Count

Increment Count

Store Count

Restore Registers

EI, RET

Interrupt Service Routine

Figure 8-31

INPUT/OUTPUT TECHNIQUES

8.6.3 Interrupt Service Routine Test

Figure 8-31 shows the interrupt service routine. This is to be

located at 8260, and the two byte counter will occupy addresses 8300,

8301. For a preliminary test of the service routine, use a trivial

main program that calls this subroutine repeatedly. This will allow

you to step through it and check the stack usage. Write the service

routine and test program. (A solution is given in Figure 8-32.)

Step through the program. After incrementing and storing the count,

examine the stack. It is convenient to load the registers with some

easily recognized data so you can identify the stack. The pages

following the program solution show a testing procedure and the

expected results.

8-83

8-84

f
UJ
UJ
I
Cf)

(.'.)
z
Cl
0
u

~
UJ
f
en
>
Cf)

(.'.)
z
z
<(
a:
f-
a:
UJ
f
:::,
a..
~
0
u
0
a:
u
?-

Cf)

~
UJ
f
en
>
Cf)

a:
UJ
I
::,
a..
~
0 u
0
UJ

~
a:
(.'.)
UJ
1-z

A D D R CODE

a dlO o C. l)
1 ~ CJ
2 I? :2
3 C g
4 {) CJ
5 f ,:;
6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

TEST FOR INTERRUPT SERVICE

{!_, ft L L I AJ T s

J /'11 p 2 cf) {) k'.J

Figure 8-32a

I-
LU
w
I
f.fl
{!)
z
0
0
CJ

~
w
I-
en
>en
(.'.)
z
z
<(
er.
I-
er.
LU
I
=>
a..
~
0
CJ
0
er.
CJ

>-

en
~
w
I-en
>en
er.
UJ
I
=>
a..
~
0
CJ
0
w

~
er.
{!)
w
1-z

A D D R CODE

a o:26 o F 5
1 e c_l)
2 ~ L~
3 £ l5
4 ~ //
5 CJ tJ
6 R 3
7 c1 3
8 d :!
9 t} {)

A f 3
B £ I
C 7) I
D C I
E r I
F F B

8 0 (; q
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

INTERRUPT SERVICE ROUTINE

p u s 1-1- /J s r.,J _J~ -./{£'··· Ti> ..
p u s !-I /3 ~

p u s ;-I-])

? u s 1-1- fl

L I-+ L n ? 3 () 0 ~-IJ l'I~·- +,,,,)

I /I) i ff L ... 1.. . ~~
s H L l> J' 3 CJ 0 ATA-11., (?,.. •• -1 -,-,..,,)

p {) p H ~ - -;-_ ,6 ,A lfJ - ' _A ~ I ~
p 0 p 2> . ~ Al

~~ .,4A ,,., _,,,'1)111"7.. '6A.)

p () p B
p a p p s LJ
E I ,,/) .. - ,I. d . . ·./;,,,, _;

R £ T ~~•L J_) f-;_
,

·~ -J;,.. . - -r,, _/J •• --hu ~-· ,

Figure 8-32b

8-85

INPUT/OUTPUT TECHNIQUES

Testing Procedure

REG A A 8200 A-OA

NEXT B 8200 B-OB

NEXT C 8200 c-oc

NEXT D 8200 D-OD

NEXT E 8200 E-OE

NEXT 7 8200 F-07

NEXT 8 8200 H-08

NEXT 9 8200 L-09

ADDR, MEM 8200 .CD

STEP 8260 F5

STEP 8261 C5

STEP 8262 D5

STEP 8263 E5

STEP 8264 2A

STEP 8267 23

STEP 8268 22

STEP 826B El

The displays above assume the coding shown in Figure 8-32. Examine

the stack after storing the new count.

8-86

INPUT/OUTPUT TECHNIQUES

Testing Procedure (continued)

ADDR 1/P MEM 83D6 SP.09 Register L

NEXT 83D7 08 Register H

NEXT 83D8 OE Register E

NEXT 83D9 OD Register D

NEXT 83DA OC Register C

NEXT 83DB. OB Register B

NEXT 83DC 07 Register F

NEXT 830D OA Register A

NEXT 83DE 03 Return

NEXT 83DF 82

If you have pushed the registers in some different order, their data

will be in a different sequence in the stack.

Check the registers again. Note that only Hand L have been changed,

since the interrupt service routine used no others. Change the data

in the registers.

etc.

REG A

0

NEXT

0

826B

826B

826B

826B

A-OA

A-00

B-OB

B-00

8-87

INPUT/OUTPUT TECHNIQUES

Now step to the return instructions.

ADDR, MEM

STEP

STEP

STEP

STEP

STEP

826B

826C

826D

826E

826F

8270

El

Dl

Cl

Fl

FB

C9

Check the registers again to be sure that they have been restored

properly, and check the stack top to be sure it contains the return

address.

ADDR 2/T MEM

STEP

8203 ST.C3

8203 C3

Whenever you write an interrupt service routine, it is a good idea to

test it this way. Debugging an interrupt service routine in real

time operation is difficult because the monitor is disabled when an

interrupt has occurred.

8.6.4 Memory Change Breakpoints

Before going on to the main program, we will use this test program to

demonstrate the memory change breakpoint system in the monitor.

RESET

ADDR 8300

BRK

8200 CD

8300 ??

8300 BP

Since 8300 contains data rather than an instruction, the program

counter should never reach this value. Your program will change the

8-88

INPUT/OUTPUT TECHNIQUES

data stored here, however, and the monitor breakpoint system will

stop your program when that occurs.

ADDR

RUN

8200 CD

826B El

The SHLD instruction has changed the content of 8300, and your

program is stopped after that has happened. Check the breakpoint.

BRK 8300 BP.00

Note that the 00 displayed here is not the content of 8300, but is

the breakpoint count. Display the memory content by:

ADDR 8300 MEM 8300 .01

NEXT

0

8301 ??

8301 00

Press ADDR O BRK. This automatically enters a breakpoint at the

current memory address. The display should show 8301 BP.

Now we have breakpoints at both data locations.

RUN 826B El

8-89

INPUT/OUTPUT TECHNIQUES

The program has stopped again when (8300) was changed. Remove this

breakpoint.

BRK

CLR

RUN

8300

8301

836B

BP.00

BP.00

El

Now your program has run until the data was changed at 8301.

BRK 8301 BP.00

MEM 8301 01

MEM 8300 00

The content of 8301 changed when the count went from OOFF to 0100.

The

that

memory

use

change breakpoint is very useful in debugging programs

interrupts. Since most interrupt service routines store

results in specified memory locations, you can enter a breakpoint at

such a location. Now program execution will stop after return from

your interrupt service routine.

Another use of the memory change breakpoint protects against

unbalanced stack usage, which is one of the common errors in coding

complicated programs. If you have more PUSH's than POP's in a

repetitive loop, the program will fill the stack until it writes over

the program and destroys itself. When you have loaded a lengthy

program by hand, this can be extremely annoying. To protect against

this, enter a breakpoint at the highest location in your program.

Now if the stack destroys the data at that point, program execution

will stop before the rest of the program is destroyed.

8-90

INPUT/OUTPUT TECHNiQUES

8.6.5 Interrupt Service Operation - Main Program

Write

8-30.

the main program to fulfill the

Use your KYIN program (Figure 8-9)

design described in Figure

to test for the keys that

we want to recognize.

LXI B, BF40

CALL KYIN

Test for BRK

Returns Not Zero if BRK

If not Zero enable monitor interrupts.

LXI B, BF80 Test for CLR

CALL KYIN Returns Not Zero if CLR

If not Zero disable monitor interrupts.

Since no other interrupts are being used, we could use El and DI to

enable or disable the interrupts. In many real systems, however, it

is necessary to selectively enable or disable certain interrupts

while allowing others to occur. The MTS hardware allows you to

switch the monitor interrupt circuit on or off by setting PORTOCl

high or low.

or

MVI

OUT

A, 03

CNTO

MVI A, 02

OUT CNTO

Set PORTOCl high

To Enable Monitor

Set PORTOCl low

To Disable Monitor

Use this procedure here. Note that the solution given for KYIN

(Figure 8-9) carefully preserves all of the low bits of PORTOC so

that it will not affect the monitor enablement. THIS IS NOT TRUE OF

THE MONITOR 1/0 SUBROUTINES.

8-91

INPUT/OUTPUT TECHNIQUES

To display the high digit of the count we will use the only monitor

display subroutine that does not affect monitor interrupts:

DISPR (02A6)

DISPR displays the low digit of (A) at the display position addressed

by (DE). Call with:

(A) = digit to be displayed, right justified

(DE)= display position

Copies (A) into (C). Loads (HL) with a table address (02B2) and adds

(A) into (HL). Copies a seven-segment code from this table into (A)

and ((DE)).

entry value.

Decrements (DE). Copies (C) into (A) to restore the

Since we want to display the high digit of (8301) we must right

justify that digit. This can be done by:

LDA 8301 Load high byte

RRC Move high digit

RRC To low digit

RRC

RRC

CALL DISPR (02A6)

The program solution given in Figure 8-33 follows the flow chart of

Figure 8-30.

8-92

1-
UJ
UJ
I
U)

(.!)
z
0
0 u

~
UJ
1-
U)

>
U)

(.!)
z
z
<l'.
a:
l-
a:
UJ
1-
:J
c...
~
0
u
0
a:
u
2

U)

~
UJ
1-
U)

>
U)

a:
w
1-
:J
c...
~
0 u
0
w

~
a:
(.!)
w
1-z

A D D R

a c:?o o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

a ot / o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE INTERRUPT SE.KV .lC.t; .t.,,'\..t.,!<.\.....LC>.u - ,

o2_ I L x' I H. 0 0 a CJ aet,U~
~ t)

0 ~
t) {)_ s fl L D JJ 3 l) 0 J--h.." ~ J

CJ c) ~· .. ~.f A -f- A A A •• - ti ,

? 3
I

d(_ I L 'i- I. fl ,i cJ.. h ~ t2d"'~ AA A_)~

6 0
/ - th I ~~ .l.1 - .,,.AAJ.. . - .,. '

? :?
,

t:X :2. s J-1 L D R .3 £ p .Jh" n j EA/T 7
£ j) L 1.JJ · .,._-1--,.~. d

? 3 1Rsr7'
CJ CJ /r) 0 p
{) 0 IV 0 p
() I) IJJ 0 p
CJ 0 I\) 0 p
C) I L)(I B 13 ;= .t/ t:J .:it-± ~__.) ~ R *'
4 0 ~

13 F
C b C fl- L L k V I #
I/ p
IP ~
e ;:; :r 2. ? d t2. ()

~ 0
..

? :2
.'? E M I/ I A- t) 3 IJJ,,L BR I< :::t-
() 3

,
1

PC)fi> r~ C / ~~
l) 3 0 u -,- C. A) T t)

V

-:h. ... - ;,, .I!). ,

C> 3 - ~ -- ; .h..,,. 7. .. ·- -r-

6 C) Al 0 p ,
() 0 N 0 p
0 CJ N () p

Figure 8-33a

8-93

1-
UJ
LU
I
U)

(.9
z
0
0
u

~
LU
I-
Cf)

>
Cf)

(.9
z
z
<(
CI:
l
a:
UJ
I
:)
a.
~
0
u
0
a:
u
~

U)

~
LU
I-
Cf)

>
Cf)

CI:
LU
I
:)
a..
~
0 u
0
LU

t:
a:
(.9
LU
1-
z

A O O R

8 _J~ 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 o?..3 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

INTERRUPT SERVICE EXERCISE - MAIN (continued) CODE .

cJ I L '/.. I. 8 13 F i' ii) ~ '"LJ t"' LI?.
J) 0 I ti

/3 F
e D (!_ It- L L J< y I. N
¥ R
R c2
C /l :s- ~ ? ;; 3 0
g 0
f :2.
3 E M V I II-- 0 :l I, }ii (!L,f ~ D1

.:2
I

v'PoRroc I ~ C)

2) 3 0 l) T C. Iv T 0 ~~
C) 3 -· .. r-J : ~~ • __ ...,. J

CJ 0 Al {) p /

CJ 0 Al 0 p
CJ C) N {) p
c.3 It L 1) A- ? 3 t) I ~ A J ·,.../; f1 .~

C) I h'ff" I' - " - hA
p'

R 8 Cl

t) F R R C ~--L ~ ·' -+J

CJ F R R C. VJ'-~ ~.-:.~
0 F R. R C,

(/ f/

·o ,c R R C
I I L "' I 1) p 3 F F /J .A~. - - - J ..l ·,.._ J ~

F- F
/ g

A . _ · - I _.,, • A.·...., · J-

R 3
, V (I

c..]) C fl- L L l) I s p R 11/J _ :_ A. A.'.,,:,·_/-

/f 7
V (/

t) ,:2
{! 3 ::r M p J' ,:2 I CJ ~- ~A~

I 0 ~. I,... A AJ .)

f' :2 (I

Figure 8-33b

1-
w
w
I
en
~
z
0
0
u

~
w
I-
en
>en
~
z -z
<(
a:
l
a:
UJ
I
:)
a..
~
0
u
0
a:
u
>-

en
~
w
I-
en
>en
a:
w
I
:)
a..
~
0 u
0
w

ti
a:
~
w
1-
z

A D D R

set~ o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

a o!....,-'o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

cooE KPRG, KT::i'l', KY . .Ll\l W.l.Tn u.i:.nu\."2u..1.~-.u J.'-U•··''-' • ~~

3 E M v I II- 9 0 KPR&
19

,
'-f}/U)q,i_~ Rc:!.SS-CJ

]) 3 0 u T {: N T 0
V

{) 3
CJ 6 ;\1 V I 8 . J F l(TS1
~ F

,
/ 13) i:;- a-'1 ~

0 E fr1 J I C F F (c)'=-- aP- "· -~)

/ V

F F
]) B I 7v p 0 R T 0 G l(VLAI
() ,2 £..a.JL ,l~h,• 7"::. A #A

~ .,..
F ~ 0 R r F 0 .../1,' - I, 4. ;; j}/) (JI,•

,
-)

r=- {) 1.§. I
,. . ,I .. l /,·. +

s 17' M D V]) . ,4 ~ ~tttf Ae
/} I!? ff N' fl- 8'' tY r-:: .I. ~- ~ A ~ I. - * .A

]) 3 {) u r p 0 R T a C _l,. ~ ~-I)_. - .
CJ 2 V

1) B I ,J p 0 R T 0 t1 ,~A A2. J, • - Ja-u:L,

tJ CJ ~ . ~.1.:r' A~ J,,

c:l F (!_, M Pr i!J A_ -/u

1ft I A- Al fl C I~- J.1 ... ~1,)~d,
J./ ,c M 0 V c_ A J,. - ,_ A~h

7 /l M 0 l/ fl- ,]) (I

·J) 3 0 u ' p tJ R T CJ C ••IL~ A /,j} J J.. A -. I

e; e:2 ~ .. - ~~.,)
; __ , . /. -~

(! q IR ~ 7 ~ ~±,:JC
(/

I._ b ~ rv T I C Pr L Tn F16URE: ~-9
J' ~ 1../ 0 - p ~ '-/. 7 !vt>T !v'EEl)E.l)

F 0 R T H I ~ EXc'RC :C.S E

Figure 8-33c

8-95

f
w
w
I
en
c.,
z
0
0
u

>w
f
en
>en
c.,
z
z
<(
a:
f
a:
w
f
:)
a..
>-
0
u
0
a:
u
>-

en
~
w
f
en
>en
a:
w
f
:)
a..
>-
0 u
0
w

~
a:
c.,
w
f
z

8-96

A D D R

8 o?t:, 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 c::,/J 7 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

F
__ LI

.j

C ,;:;-
]) ~

£ • ..f"' 17

1:1 11
tJ 0
tf 3
~ 3
d ~
CJ 0
j) LB
£ I
]) I
C I
F I

F I]
(!_ q

INTERRUPT SERVICE ROUTINE

p V s 1-1 p s w 1 -J·--·-7;_

p l) s H g ,
p u s 1-1 7:)

p /) s ~ fl

L H L 1) f 3 0 0 L ./) ;?,- - . h.

1 N x H L .. 1..A _.,, .'7 ~

s H L 1) !' 3 () () A k_ • /?J6 • ~ -Ji;,- ,

p D p H 1-A -~,, 1,,.-. ~ r;, .. _.. 1

p 0 p :J:> • Cl dvi..J _,__.~- .. ,~ _,,Jd"t_

p 0 'P 18
p CJ p p s uJ
£ 1 ~ ... A - A. /J.) . "7,o J A/:;,.

!R E 7
V

Figure 8-33d

INPUT/OUTPUT TECHNIQUES

For an initial test of your program, start after the initialization

sequence by:

ADDR 8210 STEP

This permits normal monitor operation instead of using your interrupt

service routine. You can step through to test program flow and the

display function. Observe Register A as you step through 8230 - 823A

and DISPR. Then RUN (still avoiding the initialization) and observe

the display. Since your interrupt service routine is not called the

count will not change.

Reset, and set a breakpoint at each of the OUT CNTO instructions in

the main program. Then ADDR 8210 RUN, again avoiding initialization.

ADDR 821B BRK 821B BP.

ADDR

ADDR

822B

8210

BRK

RUN

822B BP.

The program will be stopped the first time you press BRK, and if you

press BRK repeatedly it will stop each time. Because you will still

be pressing BRK when the monitor keyboard functions are enabled, the

breakpoint will be displayed.

BRK 821B BP.00

Now RUN and press CLR. The monitor will give the usual display.of

the program counter instruction.

CLR

REG

822B D3

822B A-02

8-97

INPUT/OUTPUT TECHNIQUES

When your program writes 02 to CNTO at the next instruction, the

monitor interrupt system will be disabled, just as if you had

switched to AUTO mode. Press STEP, and observe that your program

runs continuously. CLR will no longer stop at the breakpoint,

because the monitor is not enabled to test for the breakpoint. BRK

will reenable the monitor and your program will be stopped.

Now that both the main program with its monitor controls and the

interrupt service routine have been tested, they can be operated

together.

RESET

ROO

The interrupt system is enabled, your interrupt service routine is

called to count in the memory locations 8300 and 8301, and the count

is displayed. CLR will disable the interrupts and counting will

stop. BRK will enable interrupts and counting will proceed.

8-98

INPUT/OUTPUT TECHNIQUES

8.6.6 Combining Interrupt Service with Monitor Functions

In the preceding exercise the monitor breakpoint functions are not

available, since the monitor interrupt has called your interrupt

service instead of calling the monitor. You can have both functions,

however. Replace the EI, RET instructions in your interrupt service

routine with JMP 006A. Now after your interrupt service has been

processed

functions

and the registers have

will be resumed. You can

been restored, normal monitor

step through your main program,

or enter breakpoints in your main program (but not in your interrupt

service routine), or enter breakpoints at data storage locations. Set

a breakpoint at 8301. The program will be stopped each time the high

byte of your counter is incremented. The monitor will show the

address of the interrupted instruction as the program counter. The

address will vary because the program is only stopped after 256

instructions have been executed. Clear the breakpoint and observe

that counting is much slower than it was with only your own interrupt

service. This illustrates the amount of time required by the monitor

in checking for breakpoints.

8-99

INPUT/OUTPUT TECHNIQUES

8.6.7 External Interrupt

You can introduce an external interrupt instead of using the monitor

interrupt soutce. Switch to AUTO mode and connect a clip lead to the

INT pin at the upper right corner of the circuit board. Each time

you ground it your interrupt service routine will be called. Modify

your program to display the entire two-byte counter.

8230 2A LHLD 8300

8231 00

8232 83

8233 CD CALL DWORD

8234 Dl

8235 02

8236 C3 JMP 8230

8237 30

8238 82

You will see a number of different counts ~~ch time you ground the

clip lead. The grounding will not make a single clean connection,

but will open and close many times.

8-'100

INPUT/OUTPUT TECHNIQUES

8.6.s· Interrupt Handling - Summary

In this exercise you have written and tested an interrupt service

routine, and used three important monitor features related to

interrupt operations:

a) Storing a jump address for dispatch of an

interrupt to your service routine. This is

available for any of seven RST instructions.

b) Enabling and disabling monitor interrupts

while leaving other interrupts enabled.

c) Entering a data change breakpoint. This

permits stopping program execution whenever

an interrupt has been serviced.

Other !CS courses deal much more extensively with interrupt systems,

and are recommended for students concerned with more detailed

treatment of interrupt hardware and programming.

8-101

INPUT/OUTPUT TECHNIQUES

This page intentionally left blank.

8-102

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 9

DATA FORMAT

9. DATA FORMAT

In Chapter 8 you used only discrete inputs and outputs, each bit being

essentially independent of all others. An output at C4, C5 or CS

selects a column of the keyboard; an input at any bit of Port A comes

from one key. The timing of inputs and outputs, apart from their

sequence, has no meaning. We will now consider parallel I/0, where a

data byte representing a number is transferred, and serial I/0, where

the timing of signals carries information.

9-1

DATA FORMAT

SILICON GATE MOS 8255

Input Control Signal Definition

STB (Strobe Input)

A "low" on this input loads data into the input latch.

IBF (Input Buffer Full F/F)

A "high" on this output indicates that the data has been
loaded into the input latch; in essence, an acknowledgement
IBF is set by the falling edge of the STB input and is reset
by the rising edge of the RD input.

INTR (Interrupt Request)

A "high" on this output can be used to interrupt the CPU
when an input device is requesting service. I NT R is set by
the rising edge of STB if IBF is a "one" and INTE is a
"one". It is reset by the falling edge of RD. This procedure
allows an input device to request service from·the CPU by
simply strobing its data into the port.

INTE A

Control led by bit set/reset of PC 4.

INTE B

Controlled by bit set/reset of PC 2.

IBF
(INPUT BUFFER FULL)

DATA
INPUT

INTERNAL
INPUT LATCH

INTR

MODE 1 (STROBED INPUT)

BASIC TIMING

CONTROL WORD

CONTROL WORD

Mode 1 Input

~
NO PROTECTION
FOR THIS OPERATION

\.... ________ _

9-2 Figure 9-1

Basic Timing Input
5-105

MODE 1 (PORT Al

PA7-PA0

r- - -,
1 INTE I

~~-J
PC4

Q_

MODE 1 (PORT Bl

DATA FORMAT

9.1 PARALLEL INPUT/OUTPUT

Clearly the 8255 data ports are principally intended for 8-bit, parallel

data transfer. Such data might come from a paper tape reader, an analog

to digital converter, another computer, a keyboard that includes

built-in scanning and decoding, or a communications device that includes

serial to parallel conversion. A usual characteristic of such devices

is that they generate a strobe signal indicating that an input byte is

ready for the computer. When Port A or Port B of the 8255 is programmed

to Input Mode 1, it uses some bits of Port C to handle the strobe and

give an interrupt to the 8080, and responds with an acknowledgement to

the input device when the computer has accepted the data. Some input

devices are designed to demand such an acknowledgement before entering

the next byte, or to recognize an error condition if it is not received.

9.1.1 Paper Tape Reader Example

Figure 9-1 shows bit assignments and timing for Mode 1 input through an

8255. Consider how this would be used with a high-speed paper tape

reader.

9-3

DATA FORMAT

PAPER DATA PORT B SYSTEM DATA BUS

TAPE 8255

READER
STROBE

C2
Cl ADDRESS

IBF co

INTR

SPROCKET

BRAKE
BUFFER
·FULL MOTOR RUN

D Q STROBE

C Q ALARM \J
_f

MOTOR
RUN \~ __ c_o_A_s_T_ /--R-U-N----11~,--~,~--c_o_A_s_T ________ ~~

BRAKE --------------<4'j---------'/ STOP '--1,
sPRocKET I DATA PRESENT \ s~ DATA PRESENT \ f~A PRESENT
READER ---v ---------------. r- --v -- --------.,,- - ----ff
DATA __ J\ VALID ---------------''l."--1t-,./\ VALID _________]•._ ______ ,,

STE

8255
DATA

IBF

INTR

INTA

I/0 RD

9-4

V sr---v ,~ARM

-
-_-_-_-_-vVALID -------,,----v VALID ---~, ?? ./\ ______ ----- -- -~r ---"---------- -11
---.-.1/BUFFER FULL \~_R_E_AD_Y __ ...

111
__ ...,/ BUFFER FULL '--4---

___ ..-/INTERRUPT \~------tl~f ___ ,,:--=-=-=-=::::=~'---ff
V ss v 11

r;.READ ------v v-11

High Speed Paper Tape Reader Interface

Figure 9-2

DATA FORMAT

The photoelectric reader senses holes in the paper tape. The sprocket

hole (which is present at every character position even though there may

be no other holes) is sensed to indicate that the data holes are in

position to be read. The sprocket hole signal provides the strobe to

latch data into the 8255. The logic and timing diagram of Figure 9-2

shows the sprocket hole signal clocking a D flip-flop. The IBF signal

is taken into the D input. Since it is (presumably) low, indicating

that the buffer is ready to take data, the flip-flop is reset. Its

output is the strobe signal; this enters the data into the 8255 data

latch and sets IBF high. IBF high sets the D flip-flop through the

asynchronous set input, ending the strobe pulse and latching the data.

The end of strobe sets the 8255's interrupt request output. The 8080

acknowledges the interrupt, calls the interrupt service routine, and

reads the data from the 8255.

The act of reading (I/0 RD) resets IBF, indicating that the buffer is

again available. All of this is normally accomplished while the

sprocket hole is still visible to the reader. (At 1000 characters per

second it lasts for about 200 microseconds, time enough for a reasonable

interrupt service routine). While the IBF signal is high the reader's

motor is allowed to coast; when IBF is reset it runs again.

9-5

DATA FORMAT

This page intentionally left blank.

9-6

DATA FORMAT

In the second segment of the timing diagram the CPU is not available to

read the data promptly. Either it has disabled the 8255 interrupt, or

its program has disabled all interrupts. The !BF signal stays high

beyond the sprocket hole signal. This signals the paper tape reader

that, although the 8255 has accepted and latched the present character,

it may not be ready in time for the next. The mechanism now applies a

brake to stop paper motioa before the next character. When the data are

finally accepted by the CPU by an I/0 Read, the motor can run ag-ain.

The final segment of the timing diagram shows a failure: !BF is not set

by the strobe (perhaps the 8255 has been reprogrammed). Strobe goes low

but fails to rise again. This can generate a visible alarm signal to

indicate a loss of data.

9.1.2 Computer to Computer Interface

Some applications overburden a microprocessor, particularly when two or

more tasks require fast interrupt service response. One solution, of

course, is to use a faster or more powerful computer such as a bipolar

bit-slice machine, whose instruction time may be a small fraction of the

8080's. Often it is more economical to divide the task between two

microprocessors. They will then need to communicate with each other.

This can be handled in three ways:

a) Through input/output ports

b) Direct memory access

c) Memory sharing

9-7

DATA FORMAT

SILICON GATE MOS 8255

CONTROL WORD

D7 D6

PCz-0
1 = INPUT
0 = OUTPUT

PORTB

1 • INPUT
0 = OUTPUT

GROUPBMODE
O=MODEO
1 = MODE 1

Mode 2 Control Word

Operating Modes

Mode 2 (Strobed Bi-Directional Bus 1/0)

This functional configuration provides a means for com
municating with a peripheral device or structure on a single
8-bit bus for both transmitting and receiving data (bi-direc
tional bus 1/0). "Handshaking" signals are provided to main
tain proper bus flow discipline in a similar manner to Mode
1. Interrupt generation and enable/disable functions are
also available.

Mode 2 Basic Functional Definitions:
• Used in Group A only.
• One 8-bit, bi-directional bus Port (Port A) and a 5-bit

control Port (Port C).
• Both inputs and outputs are latched.
• The 5-bit control port (Port C) is used for control

and status for the 8-bit, bi-directional bus port (Port
A).

Bi-Directional Bus 1/0 Control Signal Definition

INTR (Interrupt Request)

A high on this output can be used to interrupt the CPU for
both input or output operations.

r;;~i

L~-J

r l~T~j

L_2_J

WR-

RD~

Mode 2

Output Operations

OBF (Output Buffer Full)

OBFA

PC6 ACKA

PC4 STBA

PC5 IBFA

J

PC2-0 1/0

The OBF output will go "low" to indicate that the CPU has
written data out to Port A.

ACK (Acknowledge)

A "low" on this input enables the tri-state output buffer of
Port A to send out the data. Otherwise, the output buffer
will be in the high-impedance state.

INTE 1 (The INTE Flip-Flop associated with OBF)

Controlled by bit set/reset of PC6.

Input Operations

STB (Strobe Input)

A "low" ·on this input loads data into the input latch.

IBF (Input Buffer Full F/F)

A "high" on this output indicates that data has been loaded
into the input latch.

INTE 2 (The INTE Flip-Flop associated with IBF)

Controlled by bit set/reset of PC4.

9-8 Figure 9-3

DATA FORMAT

9.1.2.1 1/0 Port Interface

One computer can write to a data latch (such as the 8212) and create

an interrupt to another computer, which can read the data through a

similar port or through a tri-state buffer. The 8255 can operate

Port A as a tri-state, bi-directional bus interface, avoiding the

need for a second device between the systems. The 8255 is connected

as an 1/0 port to one 8080 (the master) and Port A is connected to

the data bus of the other (the slave). Five bits of Port Care used

for handshaking between the processors; the slave needs additional

gating to enable Port A to interact with its bus.

Figure 9-3 defines Mode 2 of the 8255, and Figure 9-4 shows the

connection between two processors through the 8255. The master

writes and reads Ports A and Bas in any other use of the device.

The slave is connected to Port A. It can address the 8255 through an

1/0 Read or Write with a port address that gives the "Select" signal.

1/0 Write and Select generate an STB input to C4, latching the

slave's data bus content into the Port A input latch, to be read by

the master. 1/0 Read and Select generate an ACK input to C6, which

places the output latch content onto the port A outputs and so onto

the slave's data bus. Otherwise Port A is in the high impedance

state. IBF (Port C5) goes low when the input buffer is empty. OBF

(Port C7) goes low when the output buffer is full. Either of these

will generate an interrupt to the slave CPU to indicate that the 8255

needs service. These two signals may also be taken to other input

ports of the slave, so that it can determine which kind of service is

needed.

9-9

(.0
I

0

"'rj
crq
s::
'1
(1)

(.0

I
..i:,.

H
::,
C'T
CD
1-1

>c,
1-1
0
0
CD
rn
rn
0
1-1

()
0
8
8
s::
i:,
I-'·
0
p)
C'T
0
i:,

C: rn
::s
oq

00
I:\:>
01
01

SYSTEM 1
MASTER

Data Bus

1NTR

~s {-----..

I/0 RD

I/0 WR

Bus

C3

AO

Al

Cs

RD

WR

8255

Port A

C4

C6

cs
C7

I OBF

ACK

IBF

l

SYSTEM 2
SIAVE

Data Bus

n

I/0 WR

Select

I/0 RD

INTR

I/0

PORI'S

c:,
:i>

~
"tj

~
a::
:i>
1-3

DATA FORMAT

9.1.2.2 Direct Memory Access Interface

Clearly a DMA channel can be established between two processors. It

may be handled by 1/0 ports with one processor given direct memory

access to the other processor, or there may be separate hardware to

operate OMA to both processors. This subject will not be covered

further since OMA has been extensively discussed.

9.1.2.3 Shared Memory

A powerful but somewhat expensive technique for interfacing

two processors is shown in Figure 9-5. Some part of memory

is fully accessible to both processors, and either can address it at

any

512

time. As the figure shows, ten

bytes (four chips) of RAM. The

logic chips are needed to share

interesting point is the ready

access each processor has to the data: it is simply addressed like

any other part of memory. The timing diagram in Figure 9-5 shows what

happens if both processors address the memory at the same

time. Whoever gets there first has immediate access, while the other

must enter a WAIT state for one clock period. If the first

processor uses the memory for two consecuti.ve reads or writes (with

an INR Mor SHLD instruction, for instance), the other must wait

for two machine cycles. It is guaranteed access within one full

instruction cycle, however, unless the other processor is

executing a program stored in the shared memory. (That operation is

not unreasonable. A master CPU might pass some lengthy task to a

slave by loading a program into the shared memory).

9-11

DATA FORMAT

9-12

CS2 CS1

:·
1 E:--!R

:[E~{W --=====l
l.OW
a.\DDRESS
~us

C:Nl

DATA
BVS

SYS TEX

SYS TEX

l

2

CSl

CS2

CS1

CS2

C'..K 01

CLK itl2

SEL F/F
SYST!ll1 l

STATE

REQ

i\EADY

• . .;;.IT

SYSTEM 2
STATE

~Eq
EAJY

:::; 1 CS2

REQ

REQ 2

Tl T2

cs
DATA

7 ~71)

Q

CK s
Q

T3

,r-....-....... ---1----l---

Tl

f-----+-.,_, '--4---...;

RA'!

REAL'Y 1

EN2

READY '

Logic and Timing for Shared Memory

Figure 9-5

LUW
ADDRE~S
3l'SS

EN2

DATA
5US

DATA FORMAT

The shared memory is accessible to both processors, but it is vitally

important that one does not alter data that the other is using, or

unforeseen results are likely to occur. A typical convention is to

reserve certain locations for flags and addresses to be passed

between the two processors. System 1 writes (in a reserved location)

a byte that indicates: "I have stored a message for you to process".

The next two bytes identify the starting location of the message, and

another two bytes indicate its length. Once having written these

data, System 1 must not alter the data until System 2 responds by

writing (in the same reserved location) a byte that indicates "I have

finished processing this message''. Thereafter System 2 must not

alter the data in that message until it has been acknowledged by

System 1.

In general one of the two systems must be responsible for allocating

storage areas, or else each system must have some portion of the

shared memory allocated to it. In a typical system, however, only

one of the processors initiates messages, while the other always

responds. In this case the initiator would generally be responsible

for eontrol of memory allocation.

9-13

DATA FORMAT

9.2 SERIAL INPUT/OUTPUT

We can attach a meaning to the time of arrival of a data bit, just as

we attach a meaning to its position in a binary number. To

communicate an eight bit number from one machine to another, the

sender outputs a discrete signal on one bit of ~ data port,

thereafter sending successive bits at fixed time intervals. In the

early days of computers it was common to send a data signal and

two timing signals as discrete outputs.

IDRD MARK

DATA I __ _
0 1 1 0 1 1 1 0

9.2.1 Signal Coding

These signals are easy to generate and interpret. The sender

switches the clock signal at some convenient time interval.

Each time it is switched low, a new data bit is sent on a separate

line. The receiver observes the clock

the clock switches high. The first

accompanied by a word mark. This

that if an occasional bit is lost the

garbled.

9-14

and reads the data bit when

bit of each word is

delineates characters so

entire message will not be

DATA FORMAT

This scheme is simple, but transmitting it over long distances

is extravagant as the timing signals carry very little

information. If both transmitter and receiver have accurate ~iming

sources, the bit clock is unnecessary. The receiver can recreate

it, starting from the edge of the word mark. There are· several ways

of transmitting the word mark on the same wires with the data,

thereby greatly reducing the cost.

-u u
LJ LJ LJ LJl \

0 1 1 n 1 1 1 0 1 1 1 1 n 1 () 0

We can put time intervals between words on the data line and fit

the word marks irito the intervals. If they can be distinguished

from the data bits (by a narrower or wider pulse, or a different

frequency, for instance) they will still serve the same function.

9-15

DATA FORMAT

9.2.2 Synchronous Communication

A technique which is in common use is to send word marks

only infrequently, maintaining a well synchronized clock over a long

message. The word mark is now transmitted not as a _single pulse for

each word, but as a special, recognizable pattern called an Idle

character.

rnLEIIIIIIIII 111111111

DATA_Jj 111111111111111111111111111111111

This is merged into the normal data stream as though it were part of

the message. It fulfills the

controlling

boundary

synchronization of the bit

of a character. When

role of a

and in

word mark in

marking the clock

the receiver is seeking

synchronization, it collects eight bits and compares the pattern with

that of the known idle. If the pattern is wrong it discards the

oldest bit and shifts in the next. This continues until the idle

pattern is recognized, indicating that synchronization has been

achieved and communication can begin. It is common in such systems

to have at least some degree of reverse communication or

feedback from the receiver to the sender, which is used to say "OK"

or "HELP". This is called a supervisory channel and is only used to

operate the communication system, not to transmit messages.

9-16

DATA FORMAT

This

the

method is referred to as "synchronous communication" because of

requirement for continuously synchronized send and receive

signals. After the initial period of seeking synchronization, the

receiver stays synchronized by observing signal transitions in

the data stream. Its crystal clock is able to maintain sync even if

long strings of data are a 11 ones or a 11 zeros, of if the si gna 1

is temporarily lost. Thus all the signals on the communications line

are part of the message being sent. If there is a break in

the message, the sender must fill the spaces with idle characters so

that the time from the beginning of one word to the beginning of

the next is always exactly one word time.

9.2.3 Asynchronous Communication

An alternative method is especially suited to devices such as

the . te 1 etype, whose characters are transmitted and received

asynchronously. There may be long pauses between characters, but

occasionally one character will quickly follow another.

The transmission rate for a teletype is usually 10 characters per

second or approximately 120 words per minute (a very fast typing

speed). The same signal format has been adopted for faster

electronic communication devices.

9-17

DATA FORMAT

In asynchronous communication each character is independent and

carries its own word mark. The adopted convention is for each data

character to be preceded by a zero, followed by one or more bit-times

(intervals) of the "one" signal.

LJ LJ

J 1 1 1 0 0

STARI'

1 1 oj J
STOP

STARI'

0 0 1 1 1 1
1 1 J

STOP

After some period of time with no data, (i.e. constant "one"

signals) the receiver will see a transition to zero. This signals

the start of a character, and the receiver synchronizes its clock.

(TRANSITION DETECTED

~ ST O 1 1 0 1

I ___ _..

J~\ '\. (
CIOCK CHECK ~ READ DATA
SYNCHOONIZED STARI' BIT BIT

9-18

1 1 0 STOP

CHECK .
STOP_-/'
BIT

DATA FORMAT

One half bit-time later the receiver checks the start bit. If it is

not zero, an error has been made. Thereafter the receiver

accepts eight bits, reading them at one

tests the stop bit to see that it is a "one".

bit-time intervals, then

Now the receiver waits

until another transition to zero marks the start of next character.

Within a character the data are transmitted least significant bit

first, so the sequence is:

Start Bit

Bit 0

Bit 7

Stop Bit

(optional addiitional stop bits)

This data format has been adopted for asynchronous communication by

the American National Standards Institute and by CCITT. The data

content is also coded in a standardized form. These standards were

promulgated by the American Standards Committee on Information

Interchange (ASCII).

9-19

DATA FORMAT

9.3 ASYNCHRONOUS TRANSMITTING AND RECEIVING

A special purpose communications device, the 8251, is available as a

peripheral to the 8080. This is a "Universal Synchronous

Asynchronous

device, and

Receiver - Transmitter" (UART). It is a very capable

in any busy system its use is well justified. Often,

the microprocessor has little enough to do that it can

handle serial communications by "bit banging" - processing

hOW«3Ver,

readily

and timing each bit under

exercises we will program

asynchronous format.

program control. In this and the next

the MTS to send and receive in the

The tape cassette modem circuit on the MTS provides for recording and

reading serial data. Connect an audio cable from the IN connector to

the earphone connector of a cassette recorder, and from the OUT

connector of the MTS to the microphone or auxiliary connection of the

recorder. The programs to be developed will then record and read

tapes in the same format used by the monitor read and record program.

The output from the writing program must be at PORTOCO (the least

significant bit of port address 02) and the input is received at

PORTOBO (the least significant bit of port address 01).

9-20

9.3.1 Serial Transmission Exercise

For practice in handling interrupts,

service routine that will transmit one

DATA FORMAT

we will write an interrupt

bit each time it is entered.

If a timer were available we could use it to generate the interrupt

at the appropriate intervals. In this program we wi 11 ca 11 a timing

loop subroutine to g·enerate the time delay, and use a programmed call

to the interrupt service at the end of the delay period.

The main program loads successive bytes from memory and passes them

to the interrupt service routine. Since in a real interrupt system

the main program has no knowledge of when an interrupt occurs, the

data must be passed through some fixed location in memory, and

interrupt service must indicate when it has finished with one byte

and needs another.

The interrupt service routine must send start and stop bits as well

as data bits. A simple way of handling this is to store the full

data pattern in 12 bits. This will be shifted out, one bit at a

time, by the interrupt service routine. When the pattern is empty

(0000), both the interrupt service routine and the main program will

know that the character has been sent. No more bits will be sent

until the main program stores a new pattern.

9-21

DATA FORMAT

This page intentionally left blank.

DATA FORMAT

9.3.2 Character Data Pattern

The data pattern is stored as two bytes, as follows:

High byte Low byte

O O O O 1 1 1 h g f e d c b a o
\ ~--~~~~~~--...,--~~~~~---'

Stop Data byte

This is loaded and stored by the main program by:

MOV L,A

MVI H,07

DAD H

Data byte

Stop bits

Enters start bit

Start

Interrupt service will shift the data pattern rig.ht and output each

successive bit until the data pattern is empty (all zero).

9-23

DATA FORMAT

9-24

ENTER

Save Registers

Load data pattern

Test for empty pattern

Empty

Shift pattern right
(MSB) .__ 0 CY ._. LSB

Store pattern

Move ~arry to bit O and
to bit 2. Set bit 1.

Output Data to PORTOCO

Restore registers

EI, RET

Serial Data Transmit Interrupt Service Routine

Figure 9-6

DATA FORMAT

9.3.3 Interrupt Service Routine

The interrupt service routine is shown in Figure 9-6. Write this

routine and test it as described in Section 8.6.2. Note that the

output is to be PORTOCO, which is connected to the tape cassette

modem. Also copy the data bit to PORTOC2, which controls the Carry

Indicator.

9F SBB A Copy CY to all bits

E6 AN! 05 Mask for bits 0,2

05
to enable monitor F6 ORI 02 Set Bit 1

02
D3 OUT PORTOC
02

This will cause the carry indicator to display each bit as it is

transmitted.

We will use RST5 to call the interrupt service routine. You can

store a jump address at 83EC,ED.

LXI H

SHLD

(interrupt service address)

83EC

Since the monitor automatically stores the address 8228 as a jump

address for RST5, you can avoid the need for these instructions by

locating your interrupt service routine at 8228.

9-25

DATA FORMAT

9-26

(START

- I
-i

CALL ENTWD for memory address
Store address at 83E4,E5

CALL ENTWD for byte count
(DE) -- (HL) byte count
(C) -- 7D delay time

I
~i Jump past i nterrupt service

MAIN LOOP

Load memory address
(A) .--data byte

Increment and store address
(L) -data byte
(H) ._ stop bits

l
Shift data pattern left to
insert start bit

Store data pattern at 8300,01

I
,l.

Call Interrupt Service (RSTS)

Call Delay Subroutine (03EB)

l
Load data pattern

Test for empty

Not Zero 0
Decrement byte count, test
for zero

Not Zero <> IRST4 I

I

Serial Transmit - Main

Figure 9-7

DATA FORMAT

9.3.4 Main Program

After testing your interrupt service routine, write the main program

shown in Figure 9-7. This will not fit in the space from 8200 -

8227, and the following locations are used by interrupt service. It

is convenient to place initialization functions (in this case the two

data entry calls) before interrupt service, and the main loop beyond

it, say at 8250.

We can save both effort and program space by sharing a delay

subroutine between this transmit program and the receive program of

the next exercise. The monitor contains a suitable delay subroutine,

which includes data input:

DELYT (03EB)

Delays for a time set by Register C.

106 i 148(C) system clocks, including CAIJ.,

All registers preserved. Zero Set.

Returns Carry= input bit from PORTOBO.

Load Register C with 7D to make this delay compatible with the tape

cassette program of the monitor.

9-27

DATA FORMAT

The solution given in Figure 9-8 also uses another monitor

subroutine:

SHLRT (022D)

This tests the content of (HL) and then shifts (HL) right one bit. It

returns the least significant bit of (HC) in Carry. Zero is set if

the entry value of (HL) was 0000.

You can use your program to record a tape, which the monitor tape

reading program can then read back. In the next exercise we will

create a serial input program which will read tapes recorded by this

program or by the monitor.

9-28

I
LU
LU
J:
C/'J
(!)

z
0
0 u

~
LU
1-
C/'J
>
C/'J
(!)
z
z
<(
a:
l
a:
LU
1-
::>
Cl.
~
0 u
0
a:
u
~

C/'J
~
LU
1-
C/'J
>
(/)

a:
LU
1-
::>
Cl.
~
0 u
0
w

~
a:
(!)
LU
1-z

A D D F<

a~o 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

(!])

// t
111 3
~ 2
£ ¥
J' 3
(! l)

4 ~
0 .:3
.£ Id
t} £
7 D
(! 3
s ()
f :l

SERIAL TRANSMIT - DA'l'A .t:;N'l'J:<Y

(!_ ,4 L L £ I\) T w' D 11. -I- A""ha J. ~ 0 • riJ

/) JJ~ ,. p

s H L]) 9 .3 £ J.j. .lb I , _A '7A~ J-; .:.. A

n ,,J,;1h,. .A _.
()

(' A L L E Al T w' o ll. 1-: J~ f.; ,,,,,. . -I:
(/

)(C. !-I G Q)EJ ~LIL "A· . -/-

ill V I C 7]) fe)k- ..A,,'tJ,,,. ~
F (/

0 M p R c2 0 a n ~ ... +
II , , .

, · .. ·,;;AJ,.,.I")-,, AAA •-A I 1 ,

Figure 9-8a

9-29

I
LU
w
I
U)

(.9
z
0
0
u

>w
1-
U)

>
U)

(.9
z
z
<{
a:
l
a:
w
1-
::,
a..
>-
0
u
0
a:
u
>-

U)

>-w
1-
U)

>
U)

a:
w
1-
::,
a..
>-
0 v
0
w

~
a:
(.9
w
1-
z

9 .. 30

A D D R CODE

8 0

1

2

3

4

5

6

7

f'c:1 ,,2 8 F 3
9 F s
A £ 1.1""
B c1 fl
C {J ()

D J1 3
E C, .7J
F t2-])

8 o23 0 c:J ()_

1 C fl
2 3 C
3 J' c:2
4 ct ~
5 cJ t)

6 jJ 3
7 9 l.c
8 E t
9 0 IS
A F- h
B cJ Q
C :I) 3
D () ~
E £ I
F F I

8 0 F- 8
1 <!. 9
2

3

4

5

6

7

8

SERIAL TRANSMIT - INTERRUPT SERVICE

[D I J,.}() p ..,J . • ... ~ - -+~ :I-:
p () s)I p s w)_ • A J. A - ', fl h A .A)

p {) 5 !I H l(A r,_ n / ~ /u,. --1.l
L H- L D f 3 0 0 ~~ A,,.~ fJA~J

'
C ft L L s /-/ L R r 1, 'i. + I. 1 • -- - r,

I d(J./ A-,1/ A ,

v'

0 -2 f j 3 C --1/_/) . -. --r= -*
p

,·J_/ --"'~
I / II

s H L J) J 3 0 0)-1:::,.IJ ,r, ,- 17/"';A -~)
I

s 13 B fl (!(' J.J.. I/~*"' ,1/J d 'r:

ff /,/ 1- D 15 -fl/- (/,, ,/,,._ /~ 'r:,
/),;;_/Al~

I() R .L () ~ _},, :I- /, .. :f-- / ..-z;
~ /. ,tr j ---_ /. /"==.

() u T p 0 I< T 0 ~ l!O.-~ ·'*~~ 7
h -· ~ t!.. y' _/..,,;.,,b_,>,. 7::.'

f () p II ,C!., / "*
p 0 p p s w r

E 1
R E T

Figure 9-Bb

1-
UJ
LU
I
Cf)

(!)

z
0
0
u

~
LU
1-
Cf)

>
Cf)

(!)
z
z
<{
a:
I
CC
LU
1-
::J
a..
~
0
u
0
a:
u
~

Cf)

~
UJ
f
Cf)

>
Cf)

a:
UJ
f
::J
a..
~
0 u
0
UJ

t:
a:
(!)
UJ
fz

A D D R

s c:J~o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 ~ &, 0
1

2

3

4

5

6

7

8

9

A

B

C

D

E.

F

8 d70
1

2

3

4

5

6

7

8

CODE

~ It
£ "-I
t! 3
7 E
~ 3
~ ~
E 'f
R 3
6 F
c2 &,
c) 7
~ 9
~ ~
CJ 0

I .3
CJ 0
E F
(!_ l)

E t3
t) 3
cQ I)

CJ 0
f' 3
7 C
B s
C, .J.
~ 0
? ·,Q

/ 'B
'7 Ii-
13 3
e :2
r.5 0
p ~
£ 7
(!. 3
& 0
R' :)

SERIAL TRANSMIT - ~.AIN LOOP

L H L D f 3 £ .t/ ~ .,1 ~A ,,, ~
J

_.,., /J~ L - ,.

M 0 II A- /V1 ';(}- .,...A L,J-r:.
JJ x /-/

,
.Ld,, _,,v_..,_.,.,_.,#_ I

s H L J) J' 3 £ 4 "1°h1 IL., .r, ..I} AL I A d

}11 D ti L ft- I-/J,. 1";n L~
M V I I+ ' CJ 7 }/:,.) 1,V.r.,\

,
'

]) It ']) H p ~ -/;,. ,,,-,.. ,,. ,. -t ""'~ J:
s J-1 L D f 3 0 ~ .In.,. J ,,,_-H_ -) ,LMJ

I;_, I", I'/ .
1• 'AJ.J.-~,11,a .A~J... • ~~J

I

N a p
R .s T s-· & tJJ • ·- P#J.·• , 11 7:., A • • ~ - n

(!_ ,4 L L l) £ L y T 'l'),,I) __ . ~ 'l~-J z.~....v
(I

L H L]) f' 3 C) 0 ~~J _A - 71-: \ it...... 77':;"-,. ~) ,

/v1 0 ti fJ. H :-I. - + __J llrf_ J I
,, 71"_

0 R I}- L' / I 0

:y (\) 2 J' c.2 6 {) .J~ A _,. ~ ,./'/ /~ :I':
-

., - ~ .. ,. ... r.
I r

1) C. ')(rh ~II A.I. ,. 7. J ,t,, "'·· .7'

M 0 I) f}- 1) 1...1,,,. i- J.h"U /1 ~ .. ~
R. fl-

,
/ 0

0 E
:r Iv 73 j' d s ii) .J,I d -f: _,. ,, / I- ~~~

, , _, /J,) J, '.., ."~ 4 , .. % ,
/

R s T 4 gh. --- - ·~ r~)
:s- fvl p R ~ 0 (:) :J-. ,,, __ .,11...L ·~ J

\ "IJA) JLJO ,., J., J ~ ~a.Ai;
-

Figure 9-8c
9 ... 31

DATA FORMAT

9-32

MAIN - DATA ENTRY

Return from Main Loop

CALL ENTWD for starting address

Store address at 83E4,E5

CALL ENTWD for byte count

(DE).__ byte count

(HL) .,__ starting address

(C)_ bit time

Byte Count Entered

No Byte Count
entered

To Receive
Main Loop

Transmit - Receive Data Entry

Figure 9-9

To Transmit
Main Loop

DATA FORMAT

9.4 ASYNCHRONOUS RECEIVING

Modify the keyboard data entry section of the previous main program

to select between recording and receiving according to whether a byte

count is entered at the second call to ENTWD (Note that ENTWD

returns the Zero flag set if no hex keys are entered.) Figure 9-9

shows this program segment. It will allow you to record data from

memory to tape, then stop and rewind the tape and read it back.

It is somewhat more complex to receive than to transmit in the serial

format because two input functions are needed:

a) Wait for a start bit

b) Receive successive data bits

The start bit is initially detected when the received data bit

changes from one to zero

start bit. This must be

from a stop or no data condition to a

recognized promptly in order to obtain

synchronization between the incoming data and the receiver's timing

device or programmed timing loop.

To use interrupts for receiving data we would need to generate an

interrupt at the leading edge of the start bit to obtain

synchronization, delay one half bit time to the middle of the start

bit, and then delay one bit time to the middle of each successive bit

until the entire character has been received. In this exercise we

will use a loop that repeatedly tests the input until it becomes low.

Then a timing loop will be used to accept successive bits.

9-33

DATA FORMAT

9-34

HIGH

HIGH

ENTER

Read Input

Delay half bit time

Read input to carry

LOW

RETURN

Wait for Start Bit

Figure 9-10

DATA FORMAT

9.4.1 Wait for Start Bit

The subroutine shown in Figure 9-10 repeatedly reads the input from

PORTOBO and waits for a start bit:

[

IN PORTOBO

RAR

JC

The three instructions above take 24 clock times or about 12

microseconds. This gives adequate precision for detecting the edge

of the start bit at low data rates.

Now we delay one half bit time and check to be sure that the input is

sti 11 low. This avoids synchronizing the receive timing to a

momentary "glitch". There is good confidence that if the falling

edge has been seen and the signal is low half a bit time later, the

signal received is a legitimate start bit.

Recall from Section 9.3.4 that the delay subroutine DELYT delays for

one bit time and returns with the input bit in Carry. An alternate

entry delays half a bit time:

DELYC (03FO)

Delays for a time set by Register C:

48 + 74 (C) system clocks, including CALL.

All registers preserved. Zero set.

Returns Carry= input bit from PORTOBO.

Using the DELYC entry avoids any need for -0hanging the entry value in

(C) between the half bit time and full bit time delays.

9-35

DATA FORMAT

9-36

ENTER

Clear (A)

Set Carry for bit mark

Shift new bit into MSB

CY

Delay full bit time

Read data bit to Carry

Data byte complete

Delay full bit time

Read stop bit to Carry

RETURN

Receive Data Bits

Figure 9-11

DATA FORMAT

9.4.2 Receive Data Bits

After the start bit has been recognized we must receive and store

eight successive data bits at full bit time intervals. Figure 9-11

shows a suitable process. Register A is used both for saving the

received data and for counting bits. The start bit is marked by

shifting a one into Bit 7. When that bit is shifted out from Bit 0

we know that the eight data bits have been shifted in.

It is possible to misread the start bit and synchronize improperly.

If this happens, the data received will be garbage. Some protection

against this is obtained by testing to make sure that a proper stop

bit is received. If characters are received at lengthy intervals, as

from a manually operated keyboard, this test has little, if any,

value. When a continuous string of characters is being received,

however, any timing error is likely to propagate to the following

characters. Now synchronization will occur, not on a start bit but

when a one- zero transition occurs in the data. Fairly soon this is

likely to result in a zero data bit appearing when the program

expects a stop bit. The stop bit test detects such an error.

The subroutine of Figure 9-11 returns with the data byte in (A) and

the stop bit in Carry. Thus, if Carry is not set at return, an error

has been detected. The Zero flag is set by DELYT, and so returned by

the receive subroutine.

9-37

DATA FORMAT

9-38

ENTER

CALL WAITS

to wait for start bit

CALL RCV for data

byte and stop bit

Not Carry - Error

Compare with stored data

Not Equal

Increment memory address

Store memory address

at 83E4, ES

Enter monitor (RST4)

Receive Main Loop

Figure 9-12

DATA FORMAT

9.4.3 Receive Main Loop

In the previous exercise we recorded a program on a tape cassette.

Now we will read it back. Rather than storing the program, however,

we will compare it with the program already in memory. Thus, if the

recording or receiving program is bad, or if the two are not

compatible, we will not have destroyed the programs and will quickly

detect the problem.

If an error is detected, either by lack of a stop bit or by

disagreement between the received data and the previously stored

data, store the memory address and enter the monitor by RST4, as

shown in Figure 9-12.

The monitor uses the content of 83E4, 83E5 as the memory address, so

MEM will display ·the location and the data byte that was recorded or

r~read incorrectly. REG A displays the received data byte.

Since the delay subroutine returns with Zero set, if the error was

detected by a missing stop bit the Zero indicator will be on. If the

error was detected by the comparison, Zero will be off.

As long as data bytes or a continuous "one" input signal are

received, there is no exit from the receive loop. When the tape

reaches the place where you stopped it during recording, an error is

bound to occur. MEM will display the address beyond the last byte

that was recorded.

9-39

1-
UJ
UJ
I
CfJ
(.!J

z
0
0
(.)

~
UJ
1-
CfJ
>
CfJ
(!)
z
z
<!
cc
I
CC
UJ
I
::>
c..
~
0
(.)

0
cc
(.)

~

(./)

~
UJ
1-
CfJ
>
(./)

cc
UJ
I
::>
c..
~
0
(.)

0
UJ

~
cc
(!)
UJ
1-z

9-40

A D D R

8 c:20 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 o2 / 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

(!_ 2)
',;./ ~
() a
d< t:.?
E 4'
IP 3

(!_,, "]>

14 (..t:,

0 3
E ~
t;? ft

£ t/
R 3

CJ I
7 1)

() c)

(!.. It
? CJ

R :)

C 3
IS 0
p t2

N 0

/

TRANSMIT - RECEIVE DATA ENTRY

(!_ It L L £ Al T w J) _Jk;t, -7n 1. +,· ~ /;
/l ,,/L,/h ,, ,.,. _...) ~

s 1-1 L n f 3 £ J/ .Jr- ~ . A '7,,.-' ~ •. -
atl~ fl

C A- L L £ IN T w J) .Jid. Lt., ~ t;
~h .) ~ ~ - -- • ; I-.

1../l r.. • - J.A • A. .A ; / ~ - JoTo.,~
>(C H Cr (1)1;-) ~ ..l~t, .,, - I! ~
L H- L D ? 3 £ 4 { /-1-L)._ - -h .. I: eu:I.~

L X I f< () 0 7])
' (C)i:--)S..:.t ~

:r ~ p d R t) I .JI ,n,v ~1-~~ A -
.,.

V

- .,/{ A ~ e t. i ~~ ~·
"'

,

3 l"I p f> :2 6 --()

TE • II- '- s 0 R E Q UIRES .
I !J T E R R. u p T SE'RvI.CE
A- 'IJ D T R A- N s M IT LOc:>?

F 1 G- u R ~ s q - 2h 9-Pc. ,,

Figure 9-13a

f
w
w
I
en
(.9

z
0
0
CJ

2
w
f
en
>en
(.9
z -z
<(
er.
f
er.
w
f
::J
a..
2
0
CJ
0
er.
CJ

>-

en
2
w
fen
>en
er.
w
f
::J
a..
2
0
CJ
0
w

~
er.
(.9
w
fz

A D D R

a olP o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 ~ CJ 0

Xc::l9,
2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

5

7

8

CODE

~ Z> C
/I- 0
IP Q
{!_ .2) C
13 ~
p e2
2) tl 0
c; I
R .,2

A E C
C, ~ ::s
/1 I
IP ~
c2.. 3 I
e 3 J
J' 0
? :l

~ tJ.. .f
E 14
.P 3
£ 7 R
~ 3 J
() ~

R ,2_

RECEIVE MAIN LOOP

It L L w Pr I T s /1L;-# k...,
/1-1-!' .. .;: /~A

A L L R e \) t1A-.--1~~~ ,
V

rJ C R c:l 9 I (',. .L ~~ : ./

_ ... 1'\ ~7. - ;_ . ~
,

M p M /1_ -· ...,_1_" •da ~I

N 2. f ;;_ q I ~~
V

-• A ::I • ;//.. . .17

I

IJ)(fl l'-11,,,,.11,' ~
M p R :;_ R 0 J.i A A" - A~ '..a.e

- A./~ ~~11;
V

ff L D /v1 A lb D R h ..__.._

,,)y-;..., • , /. .11 A .1.. • ~

s T ~ ,~. ~~ ---~ - : ,. __
M p f cf/.. tJ tJ iA.,. • J. ..;6; A-:/-;. .A. T,

Figure 9-13b

9 ... 41

I
LU
LU
I
en
C!)

z
Cl
0
<.)

~
LU
I
C/)

>
(/)

(.!)
z
z
<{
cc
I-
CC
LU
I
:::>
Cl.

~
0
<.)

0
cc
<.)

>-

en
~
LU
I
C/)

>en
cc
LU
I
:::>
Cl.

~
0 u
Cl
LU

~
cc
(.!)
LU
1-z

A D D R

8 ,J/f 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

:l> g
/) I

I :1=
]) /}

IA- ()

? ti
(!_ 2)

& £
0 3
']) fl
I} ()

!' :i.
C 9

WAIT FOR START BIT (WAITS)

T Iv' p 0 R T {) L3

I(ft f

:r C p c2 It ()

{!, fJ L L D E L y C

J C f ~ II- ()

R £ 7

Figure 9-13c

1-
UJ
LU
I
(/'J

(!)
z
0
0
u

~
LU
I
C/)

>
(/'J

(!)
z
z
4:
cc
I
CC
UJ
1-
:::J
0..
~
0
u
0
a:
u
~

Cl)

~
LU
I
C/)

>
Cl)

cc
LU
I
::>
0..
~
0 u
0
LU

~
a:
(!)
LU
1-z

A D D R

8 c:2/-? 0

1

?c:28 2

3 -
4

5

6

7

8

9

A

B

Pdl/3 C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

II F X
3 '7 s
/ ,c ~
l) I} J
It-? C!
f' o2
C :l> C
E 8
0 ..E
C 8 0
8 ~
J> 62
(!_ l> (!_
E 6
{) :3
C CJ R

RECEIVE DATA (RCV)

R ft A .) ,. i-. ·•A A. J.1 ~

T C ,J~k~__La_.:r ~~'r.
,4 R J 1 ·.Ir _,b.d ~ !".II)
C ! o2 13 (! I') :J-. P,, __ ,,L =- ~

~ -~-- /._ ~
p ,

f}- L L D E L y T .../)" ~ /' • -· a..,.,,,..d.. .A. • - ~
-A ,!r,.,. l / ~ -:I:.

M p p d (3 d ...?! ~j -
:.,. / /'I, /~ . >-

It L L l) £ L y 7 i./),, '- • --~ .A.. IIA 1j_

A~.--.;, 1--L_± ,

E r

.Figure 9-13d

9-43

DATA FORMAT

9.5 MONITOR TAPE PROGRAMS AND SUBROUTINES

The modules you have developed in the preceding exercises are

available in differe~~ form in the monitor. We have already used

DELYT, DELYC, and SHLRT. Before defining the other subroutines we

will describe the use of the monitor tape recording functions.

9.5.1 Tape Recording Program

The normal monitor function of recording a program on the tape is

accomplished by:

Set toggle switch to AUTO.

Turn recorder on.

RESET

ADDR (starting address) MEM

ADDR (stopping address) BRK

ADDR 0371 RUN

The tape recording program uses the breakpoint system to terminate

the transmission. It is important that no other breakpoints be

entered while this is running.

While the program is running, the display is disabled. When the data

have been recorded, the display will show: 0382 CD. Wait about two

seconds before turning the recorder off. Note that the content of

the stopping address is not recorded on the tape. Instead, an error

check character is recorded. Therefore, the stopping address must be

the next location past the end of the program you want to record.

When you read the program back, the error check character will be

9-44

DATA FORMAT

written to this location. When you have finished recording you can

observe this character by pressing BRK. It will display the stopping

address, the BP. symbol, and the error check character.

The tape is recorded at a data rate of 110 baud. This means 110 bit

intervals per second. Since the tape program sends 12 bits per

character, the data rate is 9.17 bytes per second. Each page (256

bytes) of memory recorded takes 28 seconds. If you wish, you may

increase the data rate by loading a different delay count in Register

C~ and enter the program at 0373. A value of 2D in Register C

generates 300 baud or 25 characters per second.

If you operate this program in STEP mode the tape will be recorded

correctly but the final display of the breakpoint count will not show

the recorded check character accurately.

9.5.2 Tape Reading Program

To read back and store in memory a program that has been recorded on

tape, listen to the tape until you hear the steady tone that was

recorded before you started the recording program. Stop the tape,

connect the recorder earphone output -to the modem input, set the

toggle switch to AUTO, and enter:

ADDR (starting address) MEM

AOOROME

Start the tape player

RUN

9-45

DATA FORMAT

It is important that the recorded tape have a few seconds of

continuous tone before the data starts, to give you time enough to

hear it, stop the recorder, and press RUN after starting it again.

The tape must be giving the continuous tone when you press RUN. If

data has already started before RUN, an error will be detected and

the display will show Err.

While the tape is being read the display will be disabled. At the

end of the tape the display will show 03CF C5. ~egister pair HL will

contain the stopping address. ADDR 8/H MEM will display the error

check character recorded when the tape was made. The reading program

has also calculated the error check character, and if the two agree,

Register A will contain 00. If it does not, an error has occurred.

9.5.3 Error Check Character (LRC)

The error check character, also called "longitudinal redundancy

check" (LRC) character, is the exclusive OR of all data bytes sent or

received. The reading program receives each data byte from a

subroutine, stores it, and calculates the LRC.

MOV M, A

INX H

XRA E

MOVE, A

Store data byte

Address next byte

Calculate LRC

Save LRC

The last character recorded is the LRC of all preceding characters.

This character is included in the LRC calculated in receiving, which

therefore must be zero if no errors have occurred.

9-46

\

DATA FORMAT

9.6 MONITOR SEND AND RECEIVE SUBROUTINES

The subroutine used by the monitor for sending and receiving are also

available to your programs. We have already defined the delay

subroutines DELYT and DELYC (see Sections 9.3.4 and 9.4.1).

Addition~! subroutines are defined here. In the exercise of Section

9.6.5 we will use these monitor subroutines to record and read

cassette tapes.

9.6.1 SOTBT (0382)

This monitor subroutine combines the testing and shifting function

for the data pattern with the process of loading the next byte when

the pattern is empty. You can call this subroutine from an interrupt

service routine or at intervals set by a programmed timing loop. It

must be entered with the data pattern in (HL). It returns with the

data pattern shifted right, and the data bit to be output in bit O of

Register A. Carry and Zero flags are both cleared. When the

pattern is empty SOTBT loads the memory address from (83E4, 83E5) and

tests whether this address has been entered as a breakpoint. If not,

it loads the content of this address to the data pattern, stores the

next memory address, and returns a start bit. This is marked by Zero,

Not Carry.

SOTBT also calculates an LRC character (see Section 9.5.3) for the

message being transmitted. When the

encountered, SOTBT loads the LRC instead of

breakpoint address is

the data byte into the

data pattern. When the LRC has been transmitted, SOTBT returns Carry,

Not Zero, and (A)= FF to indicate the end of transmission.

9-47

DATA FORMAT

The starting address must be stored at (83E4, 83E5). The stopping

address may be entered as a breakpoint either by monitor command or

by calling a monitor subroutine. Section 9.6.2 describes entry and

removal of breakpoints under program control.

Enter with

Return

SOTBT Data Entry and Return

(HL) = data pattern
(83DE-83E3) loaded by entering stopping address as a

breakpoint.
(83E4-83E5) memory address for data byte.

(a) If the data pattern (HL) was not empty (zero)
at entry, SOTBT returns:

(b)

(A) O O O O O 1 OX where Xis the data
bit to be output.

(HL) shifted right
Not Carry, Not Zero.

If the data pattern (HL)
and more data remains to
(A)= O O O O O O O O
(L) data byte
(H) = 0 0 0 0 0 1 1 1
Not Carry, Zero

was empty at entry,
be sent, SOTBT returns:
to send start bit

to send 3 stop bits

(c) If the data pattern (HL) was empty and the stopping
address has been reached, return as in (b) except
that
(L) = LRC for message
(83EO) changed to mark end of message

(d) After the LRC has been transmitted SOTBT returns
(A) = FF
(L) = FF
(H) = 07
Carry, Not Zero

In all cases SOTBT preserves (BC).

9-48

DATA FORMAT

Note that during data transmission the data returned in (A) by SOTBT,

which will be written to PORTOC, disables monitor interrupts. At the

end of transmission SOTBT returns (A)= FF which enables monitor

interrupts when written to PORTOC. lf the AUTO/STEP toggle switch is

set to STEP a RST7 interrupt will occur.

9.6.2 Program Entry and Removal of Breakpoints

The breakpoint system can be controlled by user programs. This might

be used in debugging a complicated program, to enter a breakpoint

within some subroutine only when it is called by one of several

modules. Another use is to let the breakpoint system terminate a

memory search, as is done in the serial output module of the monitor.

Three monitor subroutines are used in such a process. BKLOC finds a

breakpoint that exists in the table. BKENT enters a breakpoint into

the table, and BKRMV deletes it from the table. It is important that

BKLOC be used in conjunction with the other two subroutines, and that

monitor interrupts be disabled while these subroutines are in use.

Their addresses are:

BKLOC

BKENT

BKRMV

01C3

01A3

0186

9-49

DATA FORMAT

Given an address in (HL), it can be entered as a breakpoint by:

DI

XRA A

CALL BKLOC

CNC BKENT

EI

The address can be removed by:

DI

XRA A

CALL BKLOC

cc BKRMV

EI

Subroutine BKLOC finds the location in the breakpoint table of the

given address, and returns Carry set if the address exists. Then it

can be entered or removed. The conditional calls to BKENT and BKRMV

prevent duplicating an existing breakpoint or removing a non-existing

breakpoint. Since these subroutines lengthen or shorten the stack it

is vital that they not be used improperly. The procedures shown

above protect against stack errors. BKLOC must be entered with Carry

clear.

9-50

DATA FORMAT

9.6.3 Subroutine BKMEM (01D5)

This is the subroutine used by the monitor breakpoint system to test

for a change in the data stored at a memory location that has been

entered as a breakpoint. SOTBT marks the end of transmission of the

message by changing the data stored in the breakpoint memory table

(rather than that in the main memory), which allows BKMEM to detect

the end of transmission.

To be effective, BKMEM must be entered with Carry cleared.

If no breakpoint data has changed, BKMEM returns:

Not Carry, Not Zero

(A) = Data byte from oldest breakpoint

(BC)= Address of oldest breakpoint

(DE) Preserved

(HL) = Address of count byte of oldest breakpoint

If breakpoint data has been changed, BKME.M returns:

Carry, Not Zero

(A) = Data byte that has changed

(BC) = Address of data byte that has changed

(DE) Preserved

(HL) = Address of count byte for breakpoint

whose data has changed

9-51

DATA FORMAT

9.6.4 Subroutine SINWS (03CF)

This subroutine waits for a start bit and then for successive data

bits. It includes calls to the delay subroutine. SINWS returns with

the received data byte in (A), stop bit in Carry, and Not Zero if a

character has been received. If a long delay expires without a start

bit SINWS returns with Zero set.

The delay times must be loaded to Registers C and B before the call

to SINWS.

(C) = Bit time delay count

Bit time= 106 + 148 (C) system clocks

(B) = Delay to wait for start bit

Delay 9.375 milliseconds for each count in (B).

All registers except (A) are preserved.

9-52

START

Accept starting address

CALL ENTWD

Store starting address

(83E4, ES) ..,__ (HL)

Accept stopping address

or command

CALL ENTWD

To Transmit

Zero

To Receive

Transmit/Receive With Monitor Subroutines

Figure 9-14

DATA FORMAT

9-53

DA'rA FORMAT

9.6.5 Transmit/Receive with Monitor Subroutines

This exercise uses the subroutine described above to record data on

tape and read it back, comparing the received data with that

recorded.

A starting

Another call

but if none

address must be entered via ENTWD. (See Figure 9-14.)

to ENTWD accepts a stopping address for transmission,

is entered the receive function is performed. ENTWD

returns Zero set after a command.

9.6.5.1 Transmission

Monitor subroutine SOTBT is called by an interrupt service routine,

activated by a programmed RST6 after the time delay subroutine DELYT.

At the end of the transmission the service routine stores FF as the

high byte of the data pattern, indicating completion as a signal to

the main loop. Interrupt service and the transmit loop. are shown in

Figures 9-15 and 9-16.

9-54

Sa~e all registers

Load Data Pattern

CALL SOTBT

CY Set - Finished

Output to PORTOC

Store Data Pattern

Restore Registers

EI, Return

(H)- (A}

Transmit Interrupt Service With SOTBT

Figure 9-15

DATA f.ORMAT

9-55

DATA· FORMAT

9-56

Enter if Stopping Location Entered

Enter stopping location

as breakpoint

Load time delay to (C)

CALL DELYT

RST 6

Test for end

(A) - (8301)

Not End

(8301) = FF

DI

Display LRC (83E1)

Display symbol Lr

Display final address

Remove breakpoint

EI

START

Transmit Main Loop With Breakpoint Entry

Figure 9-16

DATA. FORMAT

The main transmit loop uses the procedures of Section 9.6.2 to enter

the stopping address as a breakpoint and remove it when transmission

is finished (Figure 9-16). It recognizes the end of the message by

finding FF at address 8301, which otherwise contains stop bits or

zeros. The final address and the LRC generated by SOTBT are

displayed, along with a symbol, Lr. Since the display subroutines

enable monitor interrupts, it is necessary here to disable interrupts

until the breakpoint has been removed. Otherwise the monitor will

detect a data change at the breakpoint, because SOTBT changes the

data in the breakpoint table to indicate that the LRC has been sent.

9.6.5.2 Receiving

The receive loop calls SINWS in three different places (Figure 9-17).

The first call is repeated indefinitely until a data byte is

received. Data bytes are compared with successive data locations in

memory, and the address and data are displayed until one of two

possible events terminates the operation.

a) SINWS returns Zero set, to indicate the end of the

recording.

b) Received data is different from the memory data.

In the latter case, there may be an error, or the LRC recorded on

tape may have been received. If an error has occurred, more data

will be received, but if the LRC has been received SINWS should

return Zero set. This is tested by the final call to SINWS. If there

is an error, Err is displayed. If the end of message is found, Lr is

displayed to signify the LRC character.

9-57

DATA FORMAT

9-58

Enter if No Stopping Location Entered

Not

Disable Interrupts

Load memory address

(HL) - 83E4, ES

Load Timing Data

(BC) - 207D

Wait for first input

CALL SINWS

Zero

Display Received Data

Save Received Data

Display Address

Recover Received Data

Compare Memory

Increment Address

Receive next input

CALL SINWS

Zero

Receive Main Loop With

Figure 9-17a

Not Equal

Zero

SINWS

A

Zero

Set symbol LR

Di-splay symbol left

of received data

EI

Data Entry

Test for end

CALL SINWS

Set symbol= Er

Receive Main Loop With SINWS

Figure 9-17b

DATA FORMAT

End of Message

Data Not Equal

to Memory

9-59

DATA FORMAT

INSTRUCTION TIMING

9-60

MOV r,r
MOV r,M; MOV M,r
MVI r
MVI M
LXI rp
LDA; STA
LDAX; STAX
LHLD; SHLD
SPHL; PCHL
XCHG
XTHL
POP
PUSH
INR r; DCR 4
INR M; DCR M
INX rp; DCX rp
DAD rp
ADD r; ADC r; SUB r; SBB r
ANA r; XRA r; ORA r, CMP r
ADD M, etc
ADI etc
RLC; RRC; RAL; RAR
DAA; CMA; STC; CMC
JMP; JNZ; etc
CALL
CNZ etc - executed

- not executed
RET
RNZ etc - executed

- not executed
HLT (if interrupted inunediately}
NOP
IN; OUT
EI; DI
RST

Figure 9-18

Clock Periods

,5
7
7

10
10
13

7
16

5
4

18
10
11

5
10

5
10

4

7
7
4

10
17
17
11
10
11

5
7
4

10
4

11

9.7 CALCULATING DELAY TIMES

In

and

the previous exercises we have

DELYC. When you design

DATA FORMAT

used the monitor subroutine DELYT

delay loops with critical time

requirements, it is necessary to calculate the timing. Figure 9-15

lists the number of clocks for each 8080 instruction. As an exercise

design a delay subroutine to replace DELYT in the transmit program.

Calculate the timing and the necessary delay value.

9-61

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 10

BINARY AND DECIMAL ARITHMETIC

10. BINARY AND DECIMAL ARITHMETIC

A number of

included some

4) addition,

the exercises presented in earlier chapters have

arithmetic functions, including (in Chapter

subtraction and multiplication. In this chapter we

review the basic concepts of binary arithmetic and the arithmetic

instructions. We shall write programs for decimal arithmetic and

signed numbers. The multiplication by repetitive addition technique

used in Chapter 4 would be very slow for multi-byte numbers; we shall

write a fast multiplication program using shifting. Fractions and

floating point numbers are also discussed.

10-1

BINARY AND DECIMAL ARITHMETIC

10.1 BINARY ADDITION

The rules for binary addition were presented in Chapter 1,

Section 1.2.4, and a quick review of that material is suggested.

The complete addition table for binary arithmetic is:

0 +

0 +

1 +

1 +

0 = 0

1 = 1

0 = 1

1 = 10

Addition of two bit numbers produces carries into

position. This extends to full eight bit addition:

1111 1111

+ 1111 1111

= 11111 1110

the third

Eight bit addition can generate a carry into the ninth position.

The addition of two numbers of any size may produce a carry into

the next bit position. When a carry is generated, however, the sum

never has ones in all positions. The example above shows the

addition of the two largest possible eight bit numbers. A carry is

generated but the least significant bit is zero. This is of

fundamental importance for multiple precision addition.

10.1.1 Multiple Precision:

The use of more than one word to represent a number is termed

multiple precision. If the number is an integer, this permits a

10-2

BINARY AND DECIMAL ARITHMETIC

greater value than can be represented in a single word. If the

number is a fraction it permits greater precision than can be

represented in a single word. The number of words used often serves

to describe the operation. Thus, double precision refers to

arithmetic operations using two words, triple precision to three

words, etc.

Consider a double precision addition in which each number is

represented by two memory words (or bytes in an eight bit machine):

More Significant Byte

01100110

+ 1 1 0 1 0 0 1 0

Less Significant Byte

1 1 1 0 0 0 1 0

1 0 0 0 1 1 0 1

1 o o 1 1 1 o o 1 "-=o 1 1 o 1 1 1 1

We add the two less significant bytes, and if a carry is generated,

as above, it must be added in with the more significant bytes.

Even if every bit in all four bytes was one, only a single

carry bit is generated from the complete addition. This permits a

multiple precision addition to proceed as follows:

a) Add the two less significant bytes.

b) Add the next two bytes, and if a carry resulted from the

preceding addition add it into the sum.

c) Repeat (b) for as many bytes as are required.

10-3

BINARY AND DECIMAL ARITHMETIC

The ADC instruction is used for multiple precision arithmetic. As

with the other arithmetic and logical instructions there is a

version of ADC using each of the registers as a source:

BF

88

89

BA

SB

ADC A

ADC B

ADC C

ADC D

ADC E

SC ADC H

A

D,E

SD

BE

double

could

MOV

ADD

MOV

MOV

ADC

MOV

10-4

ADC L

ADC M

precision add

be done by:

A,C

E

E,A

A,B

D

D,A

Add the content of the

named register and the

Carry flag to the content

of Register A, and place

the result in Register A.

All flags are set or reset

according to the result.

of the content of register

(A) <- Less significant byte

Ignore previous carry on first

Store less significant byte

(A) <- More significant byte

Add with carry

Store more significant byte

pairs B,C

addition

and

The 8080

however,

includes

allowing

a separate

two register

BINARY AND DECIMAL ARITHMETIC

double precision add function~

pairs to be added directly. The

above could have been performed by:

XCHG

DAD

XCHG

B

Move (D,E) into (H,L)

Add (B,C) to (H,L)

Put the result in (D,E)

Of course if one number had been in HL originally and we wanted

the result in HL, a single DAD instruction would do the job.

Therefore, double precision is usually done with DAD rather than ADC.

For convenience in discussing these functions we will refer to

the augend (a number to which another will be added to generate a

sum) and the addend (a number to be added to an augend to generate a

sum).

10-5

BINARY AND DECIMAL ARITHMETIC

10.2 FOUR BYTE ADDITION

We will use the following specification for this exercise:

a) To a four byte number in memory locations 8380 - 8383 add

the four byte number in 8390 - 8393.

b) Place the result in 8380 - 8383 and clear 8390 - 8393.

c) Display the result.

Write a subroutine for the addition, to be called with addresses

and byte count already loaded. Note that you can modify addresses

and count bytes without affecting the Carry flag, because INR and DCR

affect all flags except carry.

Figures 10-1 through 10-4 present flow charts and coding sheets for

this exercise.

10-6

BINARY AND DECIMAL ARITttMETIC

c STARI')

ID.AD ADDRESSES
I.DAD BYTE CDUNT

CALL MBADD

(BL).-- 8380
(DE)..- 83FF

(A)...,..._((HL))

CALL DBY2

(HL)- (HL) + 1
TEST DISPLAY ADDRESS

E ~ F8

E < FB

HALT

Main Programs for Four Byte Add and Display

Figure 10-1
10-7

BINARY AND DECIMAL ARITHMETIC

10-8

ENTER

CLEAR CARRY

(A)- AUGEND BYTE
(A)-- (A} + (CY} +

ADDEND BY'IE

RESULT BYTE .._(A}

INCREMENT ADDRESSES
DECREMENT BYTE COUNT

YES

(DE} = AUGEND ADDRESS
(HL} = ADDEND ADDRESS

(C) = BYTE COUNT

Multi Byte Add Subroutine

Figure 10-2

1-
w
w
I
Cf)

c.,
z
0
0
u

2
w
I
en
>
Cf)

c.,
z
z
<(
a:
l
a:
w
1-
::J
a..
2
0
u
0
a:
u
2

Cf)

2
w
I
en
>
Cf)

a:
w
1-
::J
a..
2
0 u
0
w

~
a:
c.,
w
1-
z

A D D R

ac::>< c) 0
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

ao2,Jo
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

sc?,20
1

2

3

4

5

6

7

8

CODE MAIN PROGRAM FOR 4 BYTE ADD ANU U~bt'LAI

a 0 /V 0 IP
() 0 N 0 p
t) 0 IJ 0 p
I I L 'I. I]) f 3 ? D /),-,1~, .. ,, ... L,)
cf D

, rI ,, ·- ..All/}__,,,,#_ ,(••. ,.,r
1 3 -;;
)) IS' p V 5 fl-]) l ,A• ../,_ J ,,.A • - t1,,.. .,,I

c2. J /_ X I II- f 3 9 0 1/J~,,AL~.-,,_..) JAA/) I

9 t) IJAA ,/1_ / r,. Ju~
f 3 /I ~• - I A ,,.,I
C) £ M V I (! 0 ti- :/l, ;f; A" . .+

¥-
.,

t~_) /I ~ Al. ·,h _ _;_/ . 0
~]) {!. II- L L /v1 8 ft]) D 0J .. J~,; -A.:i;, t1~A
F 0 /J • A. .L - I (-t-;, .:. (j .J

p .;;
E I p 0 p H (f!L) '-- ;/l -t;.) ,~ /I A, I - ...

I I L x I 7) Jl 3 ;= F lr.2)£)~ 1r : .. /).,._ . /JAAh. ... ,. ,,

;:= F
I ,

17'

Jl 3

7 E fV1 {) II I+ M (IJ)'=- w.~i;_,
C!. J) C fl l l]) B y :l fl ... _ - ,,, __ '~ ~~' .,-f;,

9 p ,: 1.f.. .-/ ._ t:?

{) tR
c2 3 J._ tJ x H /J .-4 -'· - ~ ...) - ~ £1.L.o,,T,

7 g {'I} 0. V 1-1 £ 7,,,,-J- ~. ·.-II.- , .ii£,,,,, -
;:= l.E (!,, p I r '? * AAA

7
: . .!!'./~ ~,A I A

F p J _ . Al~ -'1- • A..t!•
}J c2 0 N C f' J. I .3 V?. -~ •. A ~-~~11

/ .3 /J • .,/+ /) o..-: r ..J • I, lln 'I ,,.1) •

f ,2. I ff , (T

{) CJ Iv c:'.) p
() 0 IV 0 p
7 ~ fl L T
(!_ 3 J M p f' c:i. tJ 0

0 C)

? ;;

Figure 10-3

10-9

10-10

t
LU
LU
:r:
en
(!)
z
Cl
0
(.)

2:
LU
t
en
> en
(!)
z
z
~
cc
t
a:
LU
t
::::>
a..
2:
0
(.)

0
cc
(.)

;;;E

en
2:
LU
t
U)

> en
cc
LU
t
::::>
a..
2:
0 u
Cl
LU

~
a:
(!)
LU
tz

A D D R

a r2F o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

cooE MULTI-BYTE ADDITION SUBROUTINE

8 7 C> R A A
I II L]) A-)(J)

f E A D C. M
I :; s T A- IX D

1,:; 6 M \} .I M . 0 ()
' {) {)

I 3 ::c.. N)(D
o< 3 r. tJ 'A H
CJ l> rD C. R C
(!_ e2 3" N c ? ;). F I
F I
ti t1.,

,c /] E I
e. q R E. T

JJ () (E .
E tv T E= •

(D E J - A- 1h 1) R
A tJ J)

(/-1 L) = A J) l) R
T 0 B

(C) ;;:. N V M 8

f lJ--.)/1/. >,,. ,
Im).1;- /} ~ ,11_ ~ _,I,/

11,,/)~ a£_ .-I_,

l//..z>r \)1.:--- 1 -
(" !'),, ,, ; , .I/},,/) A A ~ ,,/) ~

li111Aff" A . ,A.,.. .JdL A - _}

v},,..// ,,. ~~- ·- _/ A Al.,,11 - A .A

I~ . _-1- ~ :r,;;_)
~--,. //,/·_,,,,. 44A1

7 ~

I.e .. - J. IL L t;;-.,, ,. /17.

~ ./ . __ ,,A /,..:,d,
I. t: . ,. r ,, ,/:" ,. ,,, _ · ,,, .J

I /

R ,,,.ITH
ES S FoR AUG1=Nb
RESl)Lr
ES S FD R A-DD E ~1-"D
E: C. L E Pt 'R Eb
f- 'R 6F :B'/TES

Figure 10-4

BINARY AND DECIMAL ARITHMETIC

The calling program uses a feature that is seldom convenient with

the monitor - the HLT instruction. After displaying the result, your

taskis finished until you load new data, so it is reasonable to HLT

until an interrupt occurs. As long as the STEP/AUTO toggle switch

is in the STEP position, however, the monitor interrupts at every

instruction, so you cannot really halt. You will be interrupted,

go back to the start and do the addition and display again. Since

the augend now contains the result and the addend 18 cleared,

the result will be the same and the display will be fixed, as though

the halt had been effective. Now if you turn the switch to

AUTO, the processor will indeed halt until you press RST or introduce

an interrupt some other way. The difference is not visible

unless you watch with an oscilloscope. The modification shown in

Figure 10-5 uses a trick to make it visible. We turn on the

decimal point at the right hand digit just before the halt, and turn

it off immediately afterward, so it is only illuminated during the

halt. Try it in both STEP and AUTO modes.

10-11

10-12

f-
w
w
I
Cf)

(..9
z
0
0 u

~
w
f-
C/)

>
(/)

(..9
z -z
<(
a:
f
ee
w
f-
::::>
Cl..
~
0
u
0
cc
u
~

Cf)

~
w
f-
C/)

>
(/)

a:
w
f-
::::>
Cl..

~
0
u
0
w

~
a:
(.9
w
f-
z

A D D R

8 o:Jc:2 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

o< I
r F
R 2
7 E
£ £
t1 0
7 7
7 h
7 E
£ E
R {)

? 7
~ 3
D 0
p ~

MODIFY MAIN TO DISPLAY HALT

L)(I /-/- I
f 3 F F (J.1i .AL A • A - J. ';r 1, -/-, J. A A-d,J

' d• • .;,//! _J ,.,J .. ~A• ~ ,
fl ~

/VI () ti A M ~ .. -I":. L ..A . .,. tJ _

X R I R {) 't.L ..) AJ,.,.: ~,,,, ~
,.,_. _-/-~

M 0 V "11 I fl 0. _.,, ~-,,. I

H L T -ti~~+ V

M 0 t/ .4 1/\1 ::L.-;6J A1. _·,,, tJ,,., • ,

x R I f 0 , u~ i. 1). d) ~ A A ~ -• - ,r t1
r, ~ •· .. + tH4i.,

M D V M. fJ .If . tJ p'/
,,. .A 'A .,I

3" M p ~ ~ 0 cJ (t ~ . ..r1 (IL .. ,,,, J 1

I/ I

Figure 10-5

BINARY AND DECIMAL ARITHMETIC

10.3 BINARY SUBTRACTION

The process of subtr~ction is defined by these equations:

If A = B + C

then

and

A

A

B = C

C = B

This can be expressed in terms of 8080 instructions:

MOV A,B

ADD

SUB

C

B

(A) <- (B) t (C)

(A) <- (A) (B) result is equal to C

Successive ADD and SUB of the same values cancel each other, except

that flags may be affected. The subtract instruction is again one

of a set which includes one for each register:

97 SUB A Subtract the content of the named

90 SUB B register from the content of

91 SUB C Register A. If the content of the

92 SUB D named register was greater than

93 SUB E Register A, set the carry flag. Set

94 SUB H or clear the other flags according

95 SUB L to the results of the subtraction.

96 SUB M

10-13

BINARY AND DECIMAL ARITHMETIC

Like ADD, SUB ignores and destroys the previous content of the Carry

flag. Another set of instructions SBB r, includes the Carry flag:

Example: 98

SBB r

SBB B

(A)

(A)

(A) <- (r)

(A) <- (B)

(CY)

(CY)

The result of SUB or SBB sets or clears the Carry flag, which is

meant to be passed to the next more significant byte. In

subtraction, it becomes a borrow flag. It is set if the subtrahend (

(B, in the example) is greater than the minuend (A), and in

multi-byte subtraction the borrow is subtracted from A when the next

byte is processed.

instruction:

9F SBB A

98 SBB B

99 SBB C

9A SBB D

98 SBB E

9C SBB H

9D SBB L

9E SBB M

10-14

This is done by the subtract with borrow

Subtract from the content

of the Regi~ter A

content of the Carry

flag and the content

of the named register.

Place the result in

Register A. Set or clear

all flags according to the result.

BINARY AND DECIMAL ARITHMETIC

A double precision subtraction can be done by:

MOV A,C

SUB L

MOV E,A

MOV A,B

SBB H

MOV D,A

(E) <- (C) - (L)

(D) <- (B) - (H) - (CY)

The result in (DE) is (BC) ~ (HL). Multiple precision subtraction

would use the SBB M instruction:

LDAX B

SBB M

STAX D

INX B

INX D

INX H

((DE))<- ((BC)) - ((HL)) - (CY)

next addresses

10-15

BINARY AND DECIMAL ARITHMETIC

Note that we have used three register pairs for addresses, and

Register !A for the subtraction, leaving no register available to

count bytes. We can keep a byte counter in a fixed memory location
I

I

and use iLDA, OCR A, STA to count, or we can use the stack. But be

careful: IPOP PSW to bring a counter into Register A will destroy the
'

Carry I

fl~g, which is needed. This is a place where the XTHL

instruction is very useful. Write a subroutine for a general purpose
i

mul ti-byt~ subtraction, entering with:
I

I

I

I (A)

(B,C)

(D,E)

(H,L)

=

=

=

=

number of bytes

address for minuend

address for difference

address for subtrahend

We can use the same calling program as for the addition, except that

we must ~oad an address to (B,C) and initialize a byte counter in A,
i

and the ~all will be to the subtract subroutine at 82DO. Place the

minuend (!from which the subtrahend wi 11 be subtracted) at 8370 - 73;
I

I

I

the diffe:rence at 8380 - 83, and the subtrahend at 8390 - 93. Since
I

they are ito be kept separate, do not clear any of these areas during
' i

the opera1ti on. For convenience in an exercise of the following
I

section, l~ave a NOP immediately after the SBB M instruction.

10-16

BINARY AND DECIMAL ARITHMETIC

C ENTER)

f
CIBAR CARRY AND j
'!EST BYTE a>UNT

FOR ZEID
~-

LOAD MINUEND
SUBTRACT SUBTRAHEND
STORE DIFFERENCE

LEAVE NOP HERE

l

RETURN

____ rnc_REMENT __ ~AD_n_RE_s_SE_s __ J

..___DEC __ REMENT ___ B-rYTE __ m_UNT ___ .I

Multi-Byte Subtract Subroutine
Figure 10-6

10-17

10-18

i

1

A D D R cooE MAIN PROGRAM FOR 4 BYTE SUBTRACT

CJ I L X' I 1.3 J' 3 7 0 l/1 11..11. - . - l ./...,._ J
! 1 7 t)

I/ . .I,.
--- - ~ £ - - ..I)

:
2 f 3

~ t----'i_3 -¥/~/-+--+:L=::::+.:)(:..:.+=I=-+-,--F"]>-+~,~~3===....µJ'~()--+~/l./L"=/J,~ 'i;,g--~-~)~~U:___ __ ---1

~ I------+-' _4_~?-F-tJ-+---+---+---+--+---+--+---l-+-+-+-+.--..J~..,..f'JeydJ.;a_,~· ~-:;.,!I~---~

~ i----,-i _s_---+-::J?c....+=3-+---+--+--+--+--+--+--+--+----+----+----+-----~'-'----------1
z I 6 1>5 p £) Ls ff l> 1 _),/,)~--~,A ~
o~--+----1F-1~---l~~::::'...+~--J.=-+----+----+------+--i=~~~~~~~'=------l
8 f------'-! _1_-¥e;:l=+-=/-+----+-L~)(:+7.==+-t1/f:.L....+-,..........µ:tf~3!.....j....L9--l--!::::::cJ=-+!/1=::£.,~ --"~·1... ,~~-W!!ill"£)=1l/.~/~)_1 __ ---1

i s tJ t) ' r1 • 1. 77 ~J, ,._,. A1

i 9

: A 3E MV ..L A ot/
! B

IJ ti

i C C fiL L tJIB Sv B
~ ! D J lJ
I- i-------:----tF-f=----t---;--;--t---t---+---+---+-+-+-+-+------------1
r.n \ E ? d >- i----~----;----11-"--t--t---t---+--+--+--+--+--+-+-+--+--+-------------l

~ 1----+-: _F _~£~1-+-_~P--J..:::'.o~P-+--...J.!H-=--l----+---+--+--+--t:0LL~)./~.L~)~t!:--=..Ll,,.~~ ... ~#~~11~.Jl~'~~,A~)__j

~ s o2 / i o / / L)(1 h J' =? P F i /7J;) 1:----fJ · _ ,, 11 /1.-A I. J
<! i 1 ;:=- F I .,, ,

a: i---------1r---t--t---t---+--+--+--+--+--+-+--+---+--+-------------l
I- :2 J',3
a: i----------;-----1,----+-i--i--+--+--+--+--+--+-+--+---+--+-------'---------l

~ t-----+-i 3_--f-!-:7:-FE::--1---+M~o~v-+--+A-~'--+-fY-+-1-+-+-tl.-1L!.'II-..L.·)~~~~~--r:-... !..__--~

~ t-------:-i _4 -~C==¥"=l>~-+C==-f-A...!.-FL~L:..+--+D==-+=B~Y!.....+.=~.:+---+~Ylri.J· "'ull&-~v~ ../-l.C-L.~~-----1

8 t-------;.-5---+-'9~?-+---t---+--l---+--+--!---+--i---1---+---J-..,,,:!jWo,C,4 -'.-_,AA=-4-0(..:.,· u;'T;,e.,.,·~~--..1c:"'..o::_-1 ___ ----l

~ 6 6~ (.) i-------,---i----t--'-t----t---t ___________ ---+---+-----------1

>- 7 :I.. 3 I ~ X II- /) A '' •) ~ •• # /~,,z:

8

9

en 1----,--A---1-F--i=!--1----1---1--+--1---+--+--1---+--+--1---+------------1

~ t----+[_s_+))--+-~-'-+--~J'---+'--'-N-+C.--+--+=.:P=--+-~-+"l--+""d!<..+--+---+-------------1
~ t--__]_c _ __,_._/--+2=-f---t--t--+--+--+--+--+-+-+--+--+-----------i
r.n io t?'~
a: t---------if-"-(1-+--+---+--+--l---+--+--1---+--+--+--t---+------------i

~ t--__ :_E_--+-"-{)~O-+---+-N-+-0-+=-P-+--+--+--+--+--+--t---+------------i
:::) I ,;t) /VO p ~ i-----j_F_-'""-l/---+-=t)'--l-------+--"---+-'--1---1---1---1---+---+---+---+--------------1

0 8] 0
(.) 1-----'----i----4--4---4--4--1--4-4-4-4--+--+---+---+------------t

0 '11
w f----'-------11--1--t---l--t--+--+--+--+--+-+-+--+--+-----------i

~ ! 2
a: 1-----'----i----4--4---4--4--1--4--l---l----+--+---+---+------------t

I

(.9 i 3
w f----'-------11--1--t---1--t--+--+--+--+--+-+-+--+--+-----------i
I- I
z]4

is

Is Figure 10-7

1-
UJ
UJ
I
(fJ

<.9
z
0
0
<..)

2
UJ
1-
(fJ

>
(fJ

<.9
z
z
<(
a:
l
a:
UJ
1-
:::J
a..
2
0
<..)

0
a:
<..)

>-

(fJ

2
UJ
1-
(fJ

>
(fJ

a:
UJ
1-
:::J
a..
2
0
<..)

0
w

~
a:
<.9
w
1-z

A D D R

8 o?c:l 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

e/1. I L
;:= F
J7 3
7 E M
£ £ X
f {)

7 I? M
7 ~ 1-1-
7 £ irvl
£. E X
!' t)

'7 '7 /VI
f 3 "J
tJ c;)

f ~

x I /-/- ? 3 r F "' • l ~ - A .7°.
II

• - J -A - .J. /W 1:Jl)h_~

0 v' fl- fl/
R I. ? ID

() v M A
L T

I

() v I+ M
R I R !)

0 ,; M I/ ','J

M p J' ~ 0 0 ~ /. _ - 1.. J ~ A-1-,4 J.. ~

Figure 10-8

10-19

10-20

I-
LU
LU
I
CJ)

~
z
0
0
u

~
LU
I
C/)

>
(/)

~
z -z
<(
a:
l-
a:
LU
I
:)
0..
~
0
u
0
a:
u
>-

CJ)

~
LU
I
C/)

>
C/)

0::
LU
I
:)
0..
~
0 u
0
LU

~
a:
~
LU
1-z

A D : D R

8 ~Jl) 0

I 1
!

i 2

3
:

I 4

I 5
:
i 6
I

'
7

I

I
8

' 9

I
A

l
i B
I

l
C

i

D
I

E
:

F

8 0

1

i 2

i 3

I 4
I
I 5

! 6
:

: 7

8

' 9

i A

I

!

B

i
C

I
I D
I

E

F

8 0

i
1

2

i 3

! 4
I

1 5

i
6

i 7

I 8 I

cooE MULTI-BYTE SUBTRACTION SUBROUTINE

13 7 0 R A IA l'/J. - • iCYra ~..A To~*~ J

C ? R 2- --~,- /,_7. ,,,_ .A~

r 6" p t) 'S H- -p s w c:1 j • ~I. -~ /IA r
0 Ii L 1) A- X B _ ,;I) - .A. .a_,:,,, , I~ ~;

ICJ E s B B M I 1-d; , .• -,. J 1.-:r; __ 1 .JJ,

t) () JJ t) p I;../. J.~ ,, A A_,J I~ r. A'

I :2. s T A '/. CT) /~,. A.·h/~,,. ~

t1 .3 .I 1J X B '-IJ~,/T_ ,.'IJ~A1,•AA?
3 I. N x [D

-/

I
c1. 3 I. rv X fl

c 3 'I. T II- L (sr)~r;-!L) ~
7 ~ M {) v A- /-/ (I}) I:- -/.?_ ;n - I' - .-f

E I 'P 0 p H .p,. ft_,, I ~ A_ ,J ,..T,u J,

3 "/) 1) C R A '17,. - .. • -. - -r ,, .,. i.
(!; 3 J M p .f ~]) I ,.,L 7.. -+,, ~ J,,.,,)
J) I - • J.. ,- ;'J - ..11 ,,..!. I;: j A

R b2 C:, ,__i ,u J / ·• • . L,, tt£
tf

Figure 10-9

BINARY AND DECIMAL ARITHMETIC

The subroutine can be changed from subtraction to addition by

altering one instruction (at 82D4):

9E

SE

SBB M

ADC M

to subtract

to add

We now introduce a scheme that is not available to programs stored

in ROM but can be very convenient for programs in RAM. The

program can modify itself by altering the instruction in response

to an input. After the display, and before jumping back to the

start, take a key input for a command to add or subtract. Use NEXT

(=15) for add; STEP (=13) for subtract. For any undefined key

enter NOP instead of either ADC or SBB. Use the monitor subroutine

GETKY, which waits for a key

10-12 show a coding example.

to be entered. Figures 10-10 through

10-21

I

BINARY ANp DECIMAL ARITHMETIC

NO

10-22

ENTER

CALL GETKY

NO

SET NOP

ENTER INSTRUCl'IOO
IN SUBROUI'INE

Program Modify Module

Figure 10-10

AFTER DISPLAY

SE!' AOC M '----·

SET SBB M

f
w
w
I
en
(.'.J
z
0
0
u

>-
w
f
en
>
en
(.'.J
z -z
~
cc
f
ee
w
f
:::)
0..

>-
0
u
0
cc
u
>-

en
>w
f
en
>en
cc
w
f
:::)
0..
~
0
u
0
w

~
cc
(.'.J
w
f
z

A D D R

8 dc:J 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 ,....;;J,3 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

(!_])

,«?])

/) ~
]) IJ.
~ 0
J' ;;;
~ I
]) if
tf t2
I') &,

!! E
;:= E
/ ~
(!_ 17
3 /I
tf ~
c) b
9 £
p E
I 3
(! II
3 fl

? :1.
t} 0
t) 0
CJ 0
7 cJ
e 3
tJ 0
I' ~

C I+ L L

3" C

L X i

M I/ I

C p L

3 2:.

M ti L

C p I

3 -2

M II I

N () p
M () V
:s M p

6 E T k y ()/IA 11 II t-. ,J.J.
V (I

t? d1. ~ 0 -A·~,.,; J /1.J/ j,A I ~)
~ ~

II- R ~ J> 4 /')AAA AA~)~~L, ,

I
(H_) A 1, ,1.~ /: A -r.
~·~ ~ TJ. , A 7,,, :._.,

A i E l.t:~. 19..l)e M
/

I s ... 1 _,.. J ,J, .J ~ I A/Ex rt?
//l

R d< 3 A I• / J-"" _, {;1,-') - """'T:J. ,

foloe. 1
M ~_J

,,,, ./~- ., - ,e,

f? 9 E l..c' 1,_.,, .,BS /\1
/

/ 3 J,Li). ii .. STEPF
~

J' c:l. 3 I} ,. /JI' AA '2A /l;;. f0

ti cf AB(/ ,N1 I.__
.. ~J..-. 71 ·_,,

R () 0 ~ ,,v~,P
I

~Jt'J.-1~.J A.7°~A~) 1J_ I

p # p

M B ~ .. - 71. . ,,.-f . . _ -)

i ~ 0 tJ 1~ A
,/.,,._ 7= ·,,)

~ ~./,,,,.,,1 7;,

Figure 10-11

10-23

I
A D ID R

MULTI-BYTE ADD/SUBTRACT SUBROUTINE
CODE

8 ,.3>12) 0
I
i 1
I

! 2 r ~ p LJ s 1-1 p s W '1_ ··. / -I-; II-. 7:

9 ~3 IN'/.. 1-f

: A £ .a >< TH L (sr)1:-!'IIL-),·

~ I D c3 2> 1) C R A ./1. A'·~ - .-r <!.k,,.,,...z
1- I-----'-, ---+=::....+=-+------J.::!:::::.+-=-+.:....=...+-~+--+., J\c-+---+-+----l~~~!U&,,~~~~-------1

~ 1--~-:----E ----1f..-==e::...+=3+--l--=3::...+-:--M:....i--:-P+--.µR~c1..-=-+.v=--+-/--l----l--l-,:!l,Jl.~~Q--,:L"h&,,!~-r~~~~----I
~ l------+--F--J...=}):..,J..-/---1----+---+--+~-1--+---l--~-l--l-__J...L:.,.,~·:,,1,:Q A-"-..J~ -IJ!.JJ~~l..,t.,,,."-J;-::~.:..C.·~ J.·":::::)_------1
~ 8 0 / :? 7:/;, ~.) ./' ~' ~ H.t:£
~ 1 /
a: t-----'----+--+----t----+----+--+--+---il--+--+--+---+---+--+--------------f
I- 2
a: 1-----;-----+--+----t----+----+--+--+--1--+--+--+---+---+--+--------------f
w 3
I- t-------+--+---+----+---+----+----4-l--+--+---l----+---l----1--------------1 ::J
a.. 4
~1-----'----+--+----t----+----+--+--+-l--+--+--+---+---+--+--------------f
0 5
u t------'----+--+---+----+---+----+--+-l--+--+---l----+---+--1--------------1
0 6 a: u 1-----,-----+--+----t----+----+--+--+-l--+--+--+---+---+--+--------------f

~ 7

8

9

A
Cf) t----'----+---+--+---+-----+----4-----l-+--+--+---+---+--+---+----------~
~ B
wt-----+----+--+--+---+-----+--+-----l-'-+--+--+---+---+--+---+----------~
t; C
>- 1------,----+--+---t----+----+--+--+---'l--+--+--+---+---+--+-----~--------f
en D
a: l------'----+--+---+----+---+----+----4-1--+--~-l----+---+--+--------------f
w E
~t------'----+--+---+----+---+----+----4-----ll--+--~-l----+---+--+--------------f
a.. F
~t-------,----+--+---+----+----+--+----4---il--+--+--+---+---+--+--------------f

·o U 8 0

0 1
W1-----'----+----+---+----+----+---+-+-1---+--+--+---+---+----+--------~------4
~ 2
a: t-------+--+---t----+----+--+--+-1--+--+--+---+---+--+--------------f
(9 3
Wt-------'----+--+---+----+---+----+----4-l--+--+---l----+---l----1--------------f
~ 4

5

10-24 6

7

8 Figure 10-12

10.4 DECIMAL ADDITION AND SUBTRACTION

microprocessor

results, and

wi 11 have

decimal

BINARY AND DECIMAL ARITHMETIC

a human

input and

interface

output

for

will

its

be

Often the

arithmetic

required. The 8080 provides an instruction to convert a binary

result to a decimal result:

27 DAA Decimal Adjust Accumulator

·This tests the result of an arithmetic instruction and corrects

the content of the accumulator to create a "packed decimal" result,

in the form of two decimal digits. Befo~e exploring the operation in

detail we will insert the instruction into the subroutine of

the previous exercise. To compare results of decimal versus binary

arithmetic, we will provide for inserting or deleting this

instruction under keyboard control as we did the ADC and SBB

instructions. Use the key RUN to invoke .binary and ADDR to

invoke decimal results, and interpret them as you did NEXT or STEP.

Insert NOP after ADC or SBB for binary, DAA for decimal. As

before, any undefined key should place a NOP in place of the ADC or

SBB.

If the

results

numbers used

are alike.

generate no carries, the binary and decimal

Try putting 33 33 33 33 at 8370 - 73 for

the augend or minuend and 22 22 22 22 at 8390-93 for the addend or

subtrahend. Then addition wi 11 produce 55 55 55 55; subtraction,

11 11 11 11. Try your program with those numbers to make sure it

works. Coding examples are shown in Figures 10-13 and 10-14.

10-25

10-26

I

I
I

A D G R CODE MODIFY SUBROUTINE BY KEY INPUT

8 c:;j 0 C ff LL
I

I ,
, (!

2 () ti.

UJ
t-1--------'-: _3_~])~/l4---_ _j_..=:Y~C~-+-_Jg.?~e:?~.:l.~()::...i-----i.-----1i£J~1~~·Jl.A~ A~~,J,1.4A~',,/L....d!J,;:;.f::,_~· ~-~l-----1

/T I I
UJ : 4 c:<tJ V
I i------~~.f.------~~~~--1-----1---1-----1-----1----+-------------1

~ 1------'-I _s_--+=f''-+-(}-+----+---+--+--+--+--+---+---+---+---+--+-----~-------1
z i 6 .:2. / L ')(I_ II- I ;i]) 'f-,t'l_A,J,.,.A ~ ,,,11..lj

: 9
I

I A
I

: B

i C

: 8
!

!g
I

FE
/ j

B IE

CP'tE

!~311
,$})11" fl, ,, ~.IJ

/7 'IA • I : A}

B CJ E I~~ sA/3 M

Cl) I----'-! _A_--+-!--7-+=C)~---+-fll----+-={)-+.:-v'-+--+-,Nl-+-,i-+=-='B--+---+-+--+-----------;

~ 1----· _s -+-=e.J....:3=-+-----i--=::r~M.:..+-:----P-+--l-f'-=--+-j....:....i-::0---+-ZJ--+--+--+-----------t
t; :c t)tJ
>-1-------1-=-.i-:--l-'--+---+-+-+--+--+---+---+---+---+---+-------------1
(/)

1
o I'd

cc 1-----'-----.µl.-.i.;:::..:.._~-+-+-+-+-+--+----+----+---+-+-+-------------t
UJ : E
t-l-----"-----+-+--+---+-+-+-+--+----+---+-+-+-+-+-------------t
~ !F
~ 1-----.;....--+-+--+---+-+-+-+--+---+-+-+-+-+--+-------------t
0 8 :I 0
(.) L-----'---.___~.___-+---+---+---+---+---+---+---+---+---+---+-----------1

81----__ .;._il_-+----+--+---4--+-+-+--+-+-+-+-+-+-+-----------t
~ !2
CC 1---__ .L_I --+----+--+---4----1----l----l----l---+-+-+-+-+---+-----------t
(9 i 3
UJ 1-----_;__-+-+--+--+---+----+--+--+---+-+-+-+-+--+-----------i
tz

I

4

is
I

[6

is Figure 10-13

1-
w
w
I
U)

(.9

z
Cl
0 u

2
w
1-
U)

>
U)

(.!)
z
z
~
a:
l
a:
w
I
:::,
c..
2
0 u
0
a:
u
~

U)

2
w
1-
U)

>
U)

a:
w
I
:::,
c..
2
0 u
Cl
w

~
a:
(.9
w
1-z

,-.. u u n

a c))/o
1

2

3

4

5

6

7.

8

9

A

B

C

D

E

F

8 o?s-"O
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

\.,'-Ji..,,-.

~ 3 I Al
t) 6 M v
~ {)

;=- E C p
/ ¢
e fl 3 e.
3 fl

? r2
tJ 6 M ti
kt '1
;=- ;; C p
I ~
(!, ,4 :r ~
3 I}
p rt}

c1. /3 1) C
c:J b M V
t) <J
(?_ 3 J /v1

a ft
i' ~

)(H (J,.J1..JL •A~ ?~~

I (3 111 tJ £ "17,,. ,,Vt:)/J ,

L I '-f ~ .l,, ,, RoA/<
(,,

p
/IEX) - - ..-.J"I

? :2 q I+ A A -h~ ~ A/~;0

1. {j c2. 7 £'_ 77_., 'J)l}f}
,

I. / &,(1~) J,,, . /JlXbR?
(,,...A-~ Ab .. · .. _tJ)

y :;_ 3 /I Ji. ~ ~~ JJ/1-A

X H ll'J .ti.AL.,, - - ,?,;;.l) ¥
L (j 0 t) l~:t;,. AldP.. ,,:.... ,

... tJ,,. ~ A~ rl' /J}){!. tYl-1 Si/j
p J" ,;; a /J

, (.)

Figure 10-14

10-27

i

BINARY AN~ DECIMAL ARITHMETIC

!

Now compa~e the binary and decimal operations. Enter these data:

I

8370 43 low byte

n 65 Augend or

7~ 87 Minuend

7~ 09 high byte

8390 78 low byte

911 77 Addend or
I

9~ 77 Subtrahend
I

93 07 high byte
I

I

Run
I

your program using the steps shown below:
I

RUN,NEXT Augend 0 9 8 7 6 5 4 3

(binary adci) Addend 0 7 7 7 7 7 7 8

Sum 1 0 F E D C B B

I

I

No carriesi have occurred except for 09 + 07.

i

ADDR,NEXT 1 Augend 0 9 8 7 6 5 4 3
i

(decimal add) Addend 0 7 7 7 7 7 7 8

Sum 1 7 6 5 4 3 2 1

Carries
I

have occurred from all digits.

RUN, STEP Minuend 0 9 8 7 6 5 4 3

(binary subtract) Subtrahend 0 7 7 7 7 7 7 8

Difference 0 2 0 F E D C B

Borrows have occurred
I

from the first and second bytes.

10-28

BINARY AND DECIMAL ARITHMETIC

ADDR, STEP

(decimal subtract)

Minuend

Subtrahend

0 9 8 7 6 5 4 3

0 7 7 7 7 7 7 8

Correct difference O 2 O 9 8 7 6 5

The computer generats an incorrect result! Decimal Adjust only works

for addition, not for subtraction. We will see what is necessary for

decimal subtraction in Section 10.7.3.

The binary to decimal correction process for addition works as

follows: the addition is performed, and a flag called Auxiliary

Carry is set if a carry occurs from Bit 3 to Bit 4 - that is' from

the first digit to the second. When DAA is executed, the content of

the Accumulator and both Carry (CY) and Auxiliary Carry (AC) flags

are tested. Then the following is done:

If the value of the low four bits exceeds 9, or if the AC is set, add

06 to the Accumulator. These corrections occur:

ADC 07 + 08 -> OF no carry

DAA OF+ 06 -> 15

ADC 08 + 08 -> 10 AC set

DAA 10 + 06 -> 16

10-29

BINARY AND DECIMAL ARITHMETIC
I
:

After th1.s correction to the low digit, if the val11e of the high

four bit* exceeds 9 or if CY is set, add 60 to the Accumulator.

These corfections are made:

ADC 70 + 80 -> FO no carry

DAA FA i 60 -> 50 CY set

ADC 80 + 80 -> 00 CY set

DAA 00 + 60 -> 60 CY sti 11 set

I

Note that when 60 is added it may set the CY but wi 11 not clear it.
I

The folldwing examples taken from the experiment with the program
i

show the ciorrec tion process in operation:
I

I

ADC 43 + 78 -> BB no carry

DAA BB i 06 -> Cl

Cl i 60 -> 21 sets CY

ADC 65 + 77 + CY - DD qo carry

DAA DD+ 06 -> E3 sets AC

E3 + 60 -> 43 sets CY

ADC 87 i 77 i CY - FF no carry

DAA FF+ 06 -> 05 sets CY

05 i 60 -> 65 CY sti 11 set

ADC 09 + 07 + CY - 11 sets AC

DAA 11 + 06 -> 17

10-30

BINARY AND DECIMAL ARITHMETIC

Caution: The DAA instruction only works correctly while the CY and

AC flags are still set or cleared in response to the arithmetic

instruction that produced the binary result. Any intervening

arithmetic

operation.

or logical

The safe

instruction, or

procedure is always

INR or DCR, affects its

to place DAA immediately

after the instruction whose result is to be corrected.

Note that DAA corrects the result of addition of decimal numbers to

give a deci~al result.

decimal equivalent.

It does NOT convert a binary number to a

If you want to investigate the DAA command further, the program shown

in Figure 10-15 will let you try different instructions and view the

results.

10-31

!
I

A D b R CODE FOR EXPERIMENT WITH DAA

a o<1o o 7lJ Mo v A L ... o,,. 'J -L - • _. AM'-~ J

A I" I
I I 1 3<!_ IN R

i 2 00 NOP ~lt111111J.. ..,. ... ;-/
7 ,,

1. . t;,_ . .--r, :_ .) Jltd-J.,

' 8

9

] A C ff LL
I B tf ll
I

i C

~ i o]) :2. J N C, % c1 {) 0 Ct. '° _J. _./.,. - • _ . • ,A
1-
(./) IE tJt} ltJ f p
>- 1--~--,----+=--+-4---+--+--+--+---1---1--+--+--+--+--+-----------I
(.I) ! F O {2
~ I ~

! 8 o2. j O I{;::: MO \) L A 1 -~ A~ ~
<i , 1 /J- F X R A fJ l"o',-, .J rJ.,, .//,,.~- 1
~ l------;--

2
---l--!--L7+-))-l--+/V1:....:..µ...{)~V-!----¥-,4~+--L+---J~_.µf;.~_ ~~;_~A., ..s;..-.,1(_~~~

~ ! 3 C 3 :r M 'P t! c:i.. <'.? IS ~ ~ :l>A-/J. " .
I- l------'----+---+-4---+--+--+--+---1---+---+--+--+--+--+-.e...-c=------=..L.L-.<<-,L------f

~ ' 4 (J 16'
~ l-----'------1--=---+-4---+--+--+--+---l---+---+--+--+--+--+-----------f

8 i----'--!s_-l-='?-+-"-'£?o.....+---+--+--+--+--+--+--+--+---+---+---+--------------1
o I 6
a: I------'--! --+--+---+---+---l---l--+--+----+--+-+-+--+---1-----------i (_)

I 7
~ 1,-_ _;_ __ __,___-+-4---+--+--+--+---1---1--l--+--+--+--+-----------i

: 8

! 9

; A
en I-----'--' ---+---+--+---+--+--+--+---1---1--+--+--+--+--+-----------i
~ !. B
w l-----'-----+---+-4---+--+--+--+---1---1--+---+-+--+--+-----,--------f
tn i C >- l-----'-----+---+-4---+--+--+--+---1---1---+---+--+--+--+-----------f
(./) : D
a: l...----'-----+---+---+----1---+--+--+--+---1---1---1--+---+---+-------------I
w '
I- I E
~ I...----'--' -F---i-----'---+-~----l----ll---1---+--+-+--+---+--+--+--------""'-----f

~l------'----+---+---+---l---+--+--+--+---l---l---+---+--+--+--------~----1
0 8 ' 0
(_) 1---__..!_i ---1---l--+-----l---+--+---l--+--+----+----+--+--+---+-----------i

~ I,_.. _ _..!..! _1_---'----'---+-~----l----ll--l--+--+-+--+---+--+--+------------f
~ I 2 a: l------2...--..J..--+---l------l--~-+--+---4--+----+----+---+---+---+-----------i
~ 3
w1--_--2... __ ..J..---i---1------l---+--l--l--l---+----+----+---+---+---+-----------i
I- 4
zl.-..---'-----+---+---'-----1---+--+--+--+---l--+--+--+-+--+------"-------t

5

10-32 6

7

8 Figure 10-15

BINARY AND DECIMAL ARITHMETIC

10.5 BINARY MULTIPLICATION

Multiplication of integers is a process of repeated addition, or a

substitute process that gives the same results.

3 + 3 + 3 + 3 = 12

4 X 3 = 12

We have

addition.

previously performed

This is the easiest way,

multiplication by repetitive

and the required program can be

very short and easy to write, but it is very slow when the multiplier

is large. The usual computer multiplication process is similar to

what we do by hand.

Multiplicand

Multiplier

Product

In

the

our familiar

multiplicand

X

362

426

1972

7240

144800

= 6

= 20

= 400

X 362

X 362

X 362

154012 = 426 X 362

multiplication process

by each component of the

individual products. Multiplication becomes

we simply multi ply

multiplier and add the

trivially easy if

the multiplier happens to comprise only ones and zeros:

10-33

i

BINARY ANP DECIMAL ARITHMETIC

I

362

X 101

362

0

36200

36562

1 X 362

0 X 362

100 X 362

With bihary numbers, of course, multiplication is that easy.
!

According 1 to whether each bit in the multiplier is zero or one, the
I
I

multiplicand, appropriately shifted, is added into a partial
I

I

product. i Figure 10-16 shows the process, with an example of two

8-bit i
nu~bers.

!

The flow chart shows one approprite procedure. The

only difference from paper and pencil multiplication is that the

addition is performed after each shift, instead of writing the

numbers down and adding the column later. Write a program to
I

implement the process. A solution is provided in Figure 10-17a.

10-34

MULTIPLICAND

MULTIPLIER

BINARY AND DECIMAL ARITHMETIC

0 1 1 0 0 O 1 0

00100110;-i

0 1 1 0 0 0 1 O

0 1 1 0 0 0 1 0

0

0

0 1 1 0 0 0 1 0

0

0

0 0

1

1

0

0

1

0

0

O O O 1 1 1 0 1 0 0 0 1 1 0 0

START

SHIFT NEXT BIT
OF MULTIPLIER
mro CARRY

AID MULTIPLICAND
'ID PARI'IAL PIDDUCT

SHIFT MILTIPLICAND
LEFT ONE BIT

S'IDP

Binary Multiplication
Figure 10-16

10-35

10-36

i

A D b R CODE
BINARY MULTIPLY TWO BYTE PRODUCT

s o?O o CALL EJl78V J/1-J_, /J#c·,,._, A

1 31/n /

i

3 £ 0 p u s H If 1-. ,A • ~

* ~===~==4==~:{!,::1>~===~:e~:fl~~L~~L~=~~E~=;t1==7==1.3==v~:.~:1L:~:,,A'/:.:. ,:-/-:.-: : ~:-A:A=J=====:
~ l------'-;_s_----i.:=c.3::....j....=:t:,--+----+---+---+---+---+---+--+--+--+--+---+-----7--------,

Z 6 t>l5
01----_:_l __ ---+-=~--+----+---+--+--+--+--+--+--+---+--+---+---------------1

g L--_...'...., ___:_1_J._7~.2>::::...i-_......¥-:-tv1~D~~v4---~l)-:.!.._j....,~·L::...i----i---1-....i.L..!r;'IJ.!....t.l)~k-::___La~-~ ,,,, 1-.~-~ _."" /J. ·.2.·;,~ ··--~
I"?\/ LJ p])' I s i,P r CJ (E)~ 7J1.. /Jr.·~ / · ·--~~

i 9

i A

B

I C
I

kS"i./. MDV]) JI {) 1

~ L----'-' __:::D:__-l.L/~F~_~R~ft~R--1----1---1./-----!----l----l----l-___:_j..adj'.L:i., 1~·f:::. ./~~-~-~A&: ,'-.!¢ . .:Y::/J~~~· ',,L__--1

~ I--~-.:_' _E ----l~J)-+:):::::....i._~3::'._j.'...:.tJ-+C,::::._i____µ,:'.%:___+=::c1.~/+o2:=.+--+----+-"'J~r1,"""11? _,~, A::.z...,,/J~,,,1, ,-=---e..-;,·· J~L::!,e:."l:=-·-=-~0::..._--1
~ I----'-: _F_--i,L/....+-=,t;_~---+---+--+--+--+--+--+-+-+-+-+--'-__ tf __ ,---------1

~8,J/0 ?~
~ l--_:___:__....:._1 --l.c/(_' +.-'9L!-_~])~1J.~1)~!-...j...:D~--1--l----l-----l---lJI t1~'/E..J. ;/' ;J~~~ /JI~~/~·-~ ,I. "d!'.:

0

-""'-~ ~~=--------1

~ L--...:...' _.=_2_---l.f::E~B'.:::.!.. __ .i..:)(~C~H~G~--+--l----+---l---l---l--....f:6,~f!!!.-~ ·~~-~A~,T~---~

~ L-_ _;_: -----=3-~c/<~9~_~])::....i. :..:.A----+D~----+f!~·-1---1----+---+---+--+'ltJ~..,.J,'~·~~-~J'-']'JU.,r."~' J-~·-1.-4/d.. ce:::;· - .. - ~L'J!.:!...--1

~ 1----_ _:___4_-"l=::::.:.......j.B=---+--___.+-:X:....:.+C=-+-;l--=--+-=&=--+--+--+---+--+--+--+------'-------t

8 L---'----.:.....5 --1~8~7_J___~o~R=--l-!--'.-/J-1---1Lfl~--+--+---l--t----1~$~.,~~~-a-~A-,l,~,-4-·ICl..d_/)~:..e'.I.., ·::__·----1

~ 1----_ _'._: _s_~e::::.i=c:l:..i..-_----i-:::J"~N'....+-=Z.=1--~?-1-dl.~.==D-i:JJ=--+-+-+-----:::&L~,L,.)-,g,..t.i.lJ. .. ,I/Z. ..

7

=---_j------1
u , 7 OD / o
>- 1---_:__----J~-=---l-~~-----+----+-----+----+----+--+--+-+--+------------1

I 8 JT:l
9 7 Z> M O ti I}- . L -/1 · - 17.,.. . .,.., .. . J •. fl-r

I A (!_,]) C ft L L J) ,B y TE ~- . f' I --~
Cf) L-----'--. --~~:....t....-------t..:::::....J_.:_.:+=~=-i--~~~--t-=-+::--t-----C.~~~{/~~-----1

~ l---_:___B _ _µr?-12:::::_____i_~~----+----+----+----+-+--+--+--+--+-----------i

~ I----'-: _c_~t)~tfl.:.+----+--+---+--+---+--+--+-+-+--+-+-------------1
~ '----1

~

0:__---l-i7~e:._J___~1v1*0~v----1--+LlA-q._~1+~----+----+----+1'4'J~¥·_~114 A.~-·~,,~-~~ J,e., -~-1:------1
~ ~-

1

---=-E -~c__::::i])~--1-(:~/}~L+L=-+-~l)~B~Y+:2~-+-~'~1~--~J~f..d"~~r.·.,!!_. ----1
~ Q ~
~ 1-----'--i _F_-I--L9~f'-+----+---+--+--+--+--+--+--+--+--+--+--------------1
8 a o?J:2. o tJR
~ j__ _ _:__....:...., -+e~s~_~:J~M~P--l---+.!g~~~o~o-+-+--f-!'-.Ji""',11.~d:::i;;;jLAt..:£,"'~~=)-=;J~. -:i..:~J-----1

~ L-_ _..!__: __:2_-U::CJ~O:....t....--~-l------1--1---1---1---1----+---+-+---+-----<,j:.&-~·~ -.:.£,+.L.__tf ____ ----,

~ 1------'-----3--i-e?~t2=-t---+--+--o--+--+---+--+--+-+-+--+-+---'----------1
!z i 4

: 5

I s
I

I 7

8 Figure 10-17a

BINARY AND DECIMAL ARITHMETIC

There is an alternate scheme, sometimes more convenient, in which

the multiplication is done backwards:

DAD H Double Product

ADD A Next MSB to CY [.J~C Skip add if bit = 0

DAD D Add multiplicand

DCR C Count bits

JNZ

The product is developed from most significant position toward

least significant, and instead of shifting the multiplicand we

shift the product. The result is identical. This requires a bit

counter, since the product must be shifted eight times, whereas

the previous program can stop as soon as the multiplier reaches ·a

value of zero. Figure 10-17b shows the program.

10-37

1-
UJ
UJ
I
U'J
(!)
z
0
0
u

~
UJ
I
(/)

>
U'J
(!)

z
z
<(
a:
l
a:
UJ
I
=> a..
~
0
u
0
a:
u
~

U'J
~
UJ
1-
U)

>
CJ)

a:
UJ
I
::,

10-38

a..
~
0 u
0
UJ

~
a:
(!)
UJ
1-z

A D D R

8 c:2/J 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

A' c2 {) F

s ,..,1. / o
1

2

3

4

tf o2 I 5

6

7

8

9

A

B

C

D

E

F

a ~o< o
1

2

3

4

5

6

7

8

CODE

C])

c3 ~
{J ,3

E f*'
(!_])

3 6
IJ 3
7])
.]) I
dl I
tJ CJ
t1 tJ
lS 14
CJ E
0 J'

cP.- 9
? 7
]) ,1.

/ 0
J' r:2
I 9
CJ :?>
e t2_

C) F
~ ~
17 2)

(!))

9 lJ
/) ~

7 (!_

<!. J)

9 'J7
& IR
(!_ 3
t) 0
R f).

ALTERNATE BINARY MULTIPLY

C R L L E N T 13 y Jl± , ,1-,., 'A ",, - ,
./}

I

p l) s JI II J~_;.,,t
C ff L L E tJ T 8 y A.-r .IJ ""'- ·._ ti. ,;, ~ J ,

/v1 0 V A- L (f}) k--7)!..- 11,J-.'_ /} ~ A J

p iJ p lJ)
I

(£.)~n_ ./Jf f_A '-- /)

L X 1 JI () C) 0 {) ' (' £ILi/LiV - L - ~,. A 7/':
' a.-vL,, , L . - / L1. .?;

i:7 V
J ~ • J-i-. • - J ,' A -· , .,.(}_

ti }) fl t/
,

M 0

M v I cl/ CJ ! (c.,) I:- -A i, /J - , --71-.
/

'J) A- l) fl J .l ,· .If 1'\A, --' • ·A-#

ff]) 1> f} J1 ·/r !. . . 11~ ·- ~- :... ,

3 (\} (!_ ' f c2_ I ,.j-~ _jf . .,, - .hi , .~

, / ~~ ,H •,.;. •- I' • r. = /) ,
[Z) R- J) [2) 1/J;J,,,/ ,, .,J.. :... " ._ - - .A

]) C. R. ~ /
...±.,, - ~ - II • • --r

~ tJ z J' c1. 0 F -~ _:., -- +·IJ p /.·.-r...

A~_,, J_ -:f: _,/
,

JV! 0 V A- J 'l'L:-1.,,.., .. " ... 71-

C f} L L 7) B y T E '/,,_. ~·1., n.
p

/'.A. 0 V If fl tJ · .i'I dn ,,, - L - _A _..,.

(!_ I+ L L J) B y ~ '_/;.= L) I/},.,~
(/ ~

'

J M p R 6(0 () Ji. J~,.J,1./~

.. ~ .,,,.,±,~ ,

Figure 10-17b

BINARY AND DECIMAL ARITHMETIC

10.6 DECIMAL MULTIPLICATION

Basically the same procedure is used for decimal multiplication, but

it must be done digit by digit instead of a byte at a time, and

since decimal adjustment is necessary the additions must take place

in the Accumulator. It is common, but not necessary, to use

unpacked decimal arithmetic (one decimal digit per byte) if

multiplication and division are to be done, because it is

more efficient. The decimal multiplication subroutine developed

here is for packed decimal, with two digit multiplier and

multiplicand and four digit result. This is the largest value that

can be handled without storing data in the memory.

Figure 10-18 shows a flowchart of the subroutine, and Figure

10-19 the code. Like the first binary multiplication method, this

shifts the multiplier right and doubles the multiplicand for each

bit, stopping when the multiplier reaches zero. It also requires a

bit counter, initialized to four bits, because after the first digit

of the multiplier has been handled the original multiplicand must

be recovered and multiplied by ten for the second digit.

The program used for the binary multiplication provides the input

and display functions, calling this subroutine instead of

doing the arithmetic itself.

10-39

BINARY AND DECIMAL ARITHMETIC

10-40

c Em'ER) ... ,
CLE.AR CARRY

TEST MILTIPLIER FOR ZEID

(ST)- MDL'i'IPLICA::lD
(C)-BIT COl1NI' = 4

SEITFT MULTIPLIER RIGHT
(B)- MULTIPLJER

MUI.Jl'IPLIE..~
BIT= 0

ADD MUill'IPLICAND
TO ProOOCT WI':H
DECIMIU. ADJUST

('Im BYTE AOOITION)

ADD MULTIPLICAND
'IO ITSELF WI'lli
DECIW\L ADJUST
('Im BYTE ADDITION)

CLFAR CARRY
(A) MUll'IPLIER

NO

DFARCMENI' BIT a:lUNT.

(D;)- ORIGINAL
MULTIPLICAND

(m) HL)
DAD H FOUR TIMES
'IO MULTIPLY BY 10
(DE) HL)

(HL)
(D)
(E)
(A)

Decimal Multiply Subroutine

Figure 10-18

0000
00
Multiplicand
Multiplier

1-
UJ
UJ
I
Cf)

(.'.)
z
0
0
u

~
UJ
I-
Cf)

>
Cf)

(.'.)
z -z
<i
a:
I
CC
UJ
1-
::J
CL

~
0
u
0
a:
u
>-

Cf)

~
w
I-
Cf)

>
Cf)

a:
UJ
I
::>
CL

~
0
u
0
UJ

tc
a:
(.'.)
UJ
1-
z

A D D R

8~()0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 c.2 / 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8c:JcJO
1

2

3

4

5

6

7

8

DATA ENTRY AND DISPLAY FOR DECIMAL MULTIPLY
CODE

C]) C fJ L L f N T B \J J/,1: - /}J-_·_11;.,._,. _A

. .:l h
I

0 ,3

£ Is' p u s fJ }i _Ja.,,)V~
{!_, l) C fl L L E Al -,- 8 y JI~ -- , /)I~·.,... A :, ~

3 6
,

{) 3
7 l) fv1 () V fJ L (A-)f-/ll If .t.·_ /}, ·;u

1

]) I p t) fJ J) ' (E)~7!l A~:../}· __ ,§_J

I L 'X I If 0
,

~ 0 0 0 Ua..v - ,. ... J, _-t-
~ t> a-,.d..,, lj .__ /) ./~?;_

tJ () J ---
- v'

/),h_•_ ,l,;_.A ~ _A,

..j-14 M 0 ii £J fl () ,

(!];) C If l L IX> E C. M u ./}, A • • - A t1 - /Jh--/J.

1./ 0 .,., .. /).r, T .. A'
, ti

p :l.
(! 8 3" M p rf c:2 I 9
I q
? J..

7 l> {V1 () LI I+ L ../J .. ·- _,J -L 1_ .,.7

(!_]> (' ,4 L L D B y T E ~11~~-n
ti ,j_, (/

C) c:l
7 e. /v1 0 ti fl- f/ ..,/J. • - ,_ ~ /Jh __ /, A.,..

e.. 7) ~ ft L L 'J) 8 y c:; '.1 ,, 7: .,·-L.,1 L~ -~
9 p c7 /T

C) tJ.
(!_ 8 3 M p cf c:l {) {) ..IL. .I. - ,. ~) ,__/.__A)

CJ 0 ~- p
? 61 /

Figure 10-19a

10-41

1-
w
w
I
U)

(..'.)
z
0
0
u

~
w
1-
U)

>
U)

(..'.)
z
z
<t:
a:
l
a:
w
I
:)
a..
~
0
u
0
a:
u
::?!

U)

~
w
1-
U)

>
U)

a:
w
I
:)
a..
~
0
u
0
w

~
a:
(..'.)
w
1-
z

10-42

A D D R

a r/..1/o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 o2 6/ 0

1

cf' c2~ 2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

cooE Packed Decimal Multiply Sub

8 7 0 /€ ft fJ
{!_ f R 2
.]) I~ p u s 1-l])
II) £ M II L C () 'I
1/) t/

/

I ~ R ,4 I<.
1/ 7 M 0 V 8 A
i ~ J N C. f ;2 16 ~
1S ~
? :l
7 lZ> /VJ 0 V II- L
!' 3 fJ- "])]) E
a< 7 "]) ff A
~ F /vi 0 V L A
'7 C. M D V fl- ~ ti
R fl /-}]) C 7)

,

o< 7 7) A- A
~ 7 IM () /) II- fJ
7 ,8 fv1 D \/ If £
J' .3 fl-]) L1) £

j

c1 7 [7) A- A
16 ;= /v1 {) ti £ IA
7 fl #1 D II A- I J)

J> fl It- J) C]) '

~ 7 J) ft A
16" 7 /V1 {) LI b A
Ir F x R A- fl-

I

7 I' M {) v A- f;
G) J> 'J) e R. C!..

I

(! J ::r tJ c R c:l. 1/, ~
1./ ,,.,-
j1 c?

C: 0 A) T I N l.) E rn

Ji;. A -t: ./1 ·-: -I -.,I)_ - -

1-At;,L •) • (I I

A~·-.1.:. t)

(sr)1r- A

O 11-th"A ~ -~~
IC J+-.--1 · .. · r. 1

L; I: ,,,. - +
I/

A~ t-: /. -t- /~.,,J
(13)~ ,- ,1,1--:..: ~ .. ,/
J h :,, a d.d., ':;_/

- , #~
JI-,.._~ ;... -~1: =cJ

I

I IJ ,IJ-' _/ - . A~;.,, ~ :.. . A
I ...a> _,. . .A. ,.,r. ,

..f)-1:> /.~, 1-A. A1H- ~ ._ - A

'

I' fl,,.,. './ /1 r, I J. • ~

i(/1-)4--'fll- %J._"A,I :. .-

1--/J. - .. 1 .,tJ;. .- . 1
. -r

~ ~ /.:. J-: ,I,.-~
t/ /

NEXT -:PA G-1="

Figure 10-19b

1-
w
w
I
U)

(.9
z
0
0 u

~
w
1-
U)

>
U)

(.9
z
z
<(
a:
l
a:
w
I
::,
a..
~
0
u
0
a:
u
>-

U)

~
w
1-
U)

>
U)

a:
w
I
::,
a..
~
0
u
0
w

~
a:
(.9
w
1-z

A D D R

8 c:20 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

3 0

1

2

3

4

5

6

7

8

CODE PACKED DECIMAL MULTIPLY SUBROUTIN~ lCOn~inueaJ

7) I p 0 .p J:> ~ hJ.,,J -- . /).J..·_,,_. __ -~

c A 'x. C fl G
,

c:2. 9]J It ']) ·fl ~ ,11:".II ~ /~~~ /{?

~ 9]) ,4 U) fl J. .. ,' / '_.i/.1,,..J . - . t-:

c!). 9 J) Pr tD H I t? (I

:;_ 9 7) A-]) J-1
£ g X (!, ft G
{!, 3 :r M p i,f c1 I/ {)

I/ 0
,I' ~

Figure 10-19c

10-43

BINARY AND DECIMAL ARITHMETIC

10.7 OTHER REPRESENTATIONS OF NUMBERS

There are many ways of storing numeric values in a computer, and we

have used only two: binary unsigned integer and packed decimal

unsigned integer. There are numerous others, including:

Binary Number Representations

Unsigned integer

Twos complement (signed binary)

Fractional, fixed binary point

Floating point

Decimal Number Representation

Packed, unsigned integer

Unpacked, unsigned integer

Sign and magnitude (packed or unpacked)

Hundreds complement (signed decimal)

Tens complement (signed, unpacked)

Fractional, fixed decimal point

Floating Point

We will discuss the representation of signed numbers using twos

or hundreds complement, and both fixed and floating point fractions.

10-44

BINARY AND DECIMAL ARITHMETIC

10.7.1 Negative Binary Numbers

When we represent. negative numbers on paper, we use a separate sign

indicator attached to the corresponding positive value: e.g. - 232.

This procedure is sometimes used in computers. It is called "sign and

magnitude"

efficient

complement".

representation. For integer arithmetic it is more
I

to use a different representation, called "twos

Consider the sequence of hexadecimal values generated by decrementing

a register, and the corresponding signed values that would be

generated by repeatedly subtracting 1 from a number:

Count Signed Value

03 +3

02 -+2

01 -+1

00 0

FF -1

FE -2

Here we can see that a hexadecimal value with O in the high digit can

be considered positive, and an Fin the high digit somehow represents

a negative number.

10-45

BINARY AND DECIMAL ARITHMETIC

If we add two numbers in this representation according to tq.e rules

of binary addition, we will obtain a correct result:

0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 0

= 0 0 0 0 0 0 0 1

03

+ FE

= 01

i3

.. (-2)

= + 1

This is the advantage of

numbers: They can be

considering their signs.

"twos complement" representation of signed

added (or subtracted) wlthotit separately

10.7.1.1 Changing the Sign

A positive number ls changed to a negative nw:nber by subtracting it

from zero:

00 - 02 = FE which represents -2

Similarly:

00 - FE= 02

The following program accepts a number and changes its sign. Try it,

and find the representations for various negative numbers.

10-46

I
LU
w
:::c:
(/)

(!)
z
a
0
(.)

~
w
1-
(/)

>
(/)

(!)
z
z
<(
a:
I
CC
w
I
:::>
c..
~
0
(.)

0
a:
(.)

~

(/)

~
w
1-
(/)

>
(/)

a:
w
I
:::>
c..
~
0
(.)

0
w

~
a:
(!)
w
1-z

A D D R

a o10 o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

B 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

(!, .])

.3 b
C) 8
a £
~ L)

q 1
e Q)

11? L,
t) ~
(! 3
tJ t)

? .~

CHANGE SIGN .OF NUMBER

t I+ L L ~ IJ T B y (),.,. .. + ~ . luA) ,

iM v 1 A I) t) I ,. r. ~ __.I. -- zJ
' #

8 u 8 L
C fl L L j) B y T E ../J.~ _,_ •. _,.,,_ - h .. "1

, L. .J1 A,_ };,ti.- --;,_h
7 17

J M p p ~ t) ()

Figure 10-20

10-47

BINARY AND DECIMAL ARITHMETIC

10.7.1.2 Range of Signed Numbers

Since we only need a single bit to indicate the sign of a number, we

can define the most significant bit to represent the sign, and the

other seven bits to represent the magnitude.

0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

+7F (+127 decimal)

+01

0

-01

-7F (-127 decimal)

-80 (-128 decimal)

The list above demonstrates that a single byte can represent a signed

number from -80 through +7F.

Note that the twos complement of zero is still zero. Also, the twos

complement of 80 (hex) is still 80, but all other values change from

positive to negative (or vice versa) when subtracted from zero.

Numbers expressed in this form can be added or subtracted provided

that the result can be expressed in seven bits.

10-48

BINARY AND DECIMAL ARITHMETIC

10.7.1.3 Changing Sign by Complementing

A different procedure for changing the sign of a number is more

convenient in many instances: Complement the number and increment

the result:

0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

fl

Complement

Increment

The result is the same as obtained by subtracting from zero. The

advantage appears when the value was already in the Accumulator,

since no other register needs to be used. Also, the Carry flag is not

affected. Satisfy yourself that the following program gives the same

result as the preceding program.

10-49

A D D R CODE CHANGE SIGN BY CMA, INR A

a o2/J 0 CA-LL
1

I

2 /J3
I-

3 MDV fl- , L
L.I.J

4 L.I.J
I
Cf.) 5
(.9
z 6
0

CMA
:r.JJ R A
t A- L L

0 7
(.)

8 I (7

9 (]3
A ,~o
B

C

2 D L.I.J
I-
U) E r
U)

F (.9
z

8 0 z
<(1
a:
I- 2
C:
L.I.J 3 I-
:)
a. 4
2
0 5
(.)

0 6 C:
(.)

~
7

8

9

A
U)

2
L.I.J

B

I-
C U)

r
U) D
C:
L.I.J E I-
:)

F a.
2
0 8 0
(.)

0 1
L.I.J

~ 2
C:
(.9 3
L.I.J
I- 4 z

5

10-50 6

7

8 Figure 10-21

BINARY AND DECIMAL ARITHMETIC

10.7.1.4 Sign Flag

Using twos complement representation, negative and positive numbers

can be added and subtracted to obtain a signed result in twos

complement notation. The sign of the result is also available in

the Sign flag. This is set if the high bit of the result of an

arithmetic, logical or counting operation is 1, reset if the result

is zero. Like the Zero flag and the Carry flag, it wi 11

control the action of several conditional instructions.

F2 JP Jump if Plus

xx low address (if high bit is 0)

yy high address

FA JM Jump if Minus

xx low address (if high bit is 1)

yy high address

F4 CP Call if Plus

xx low address

yy high address

FC CM Call if Minus

xx low address

yy high address

FO RP Return if Plus

F8 RM Return if Minus

Like the other conditional instructions, these respond to a flag set

10-51

BINARY AND DECIMAL ARITHMETIC

by one of the arithmetic or logical instructions (also DAA, INR and

DCR), not to the present content of the Accumulator.

10.7.1.5 Overflow

Twos complement representation permits addition, subtraction,

multiplication and division of signed numbers, giving correct results

in twos complement form, correctly signed, provided that the

magnitude of the result does not exceed the allowed range for the

number of bits used (-128 to il27 for one byte). In many

applications the programmer can be certain that the limits will

not be exceeded. If results reach the limits, however, an

"arithmetic overflow" wi 11 occur.·

40

i 40

0 1 0 0

0 1 0 0

0 0 0 0

0 0 0 0

-80 1 0 0 0 0 0 0 0

Lnegative

There are two ways of treating this problem. One is simply to

provide additional capacity. If two byte numbers are used, only the

highest bit of the high byte represents the sign, and values from 0

to i 32767 and - 1 to - 32768 can be represented.

10-52

40

i 40

0 0 0 0 0 0 0 0 O 1 O O O O O O

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

80 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

t____ still positive

BINARY AND DECIMAL ARITHMETIC

With multiple precision arithmetic this can be carried to as many

bytes as are necessary.

Another way of handling arithmetic overflow is to test for it. If

two positive numbers are added and the result is negative, an

overflow has occurred. If two negative numbers are added producing a

positive

numbers

result, an overflow has occurred. Subtraction of

with the same sign or addition of numbers with different

signs cannot produce overflow. In most cases where only

addition and subtraction are required, it is easier to provide

additional storage capacity so that overflow cannot occur, but

for multiplication and division the test for overflow is likely to

be necessary.

10.7.2 Change Sign, Add, Subtract Exercise

Write a program that will accept a binary number of two bytes, and

on command do one of the following:

NEXT key: Store the number as entered.

STEP key: Change the sign of the number and store it.

RUN key: Subtract the number from the previously

stored value.

ADDR key: Add the number to the previously stored value.

CLR key: Clear the stored value.

After each entry display the result. If the result is negative,

display its twos complement with a minus sign. A flow chart and

coding sheets are presented in Figure 10-22 through 10-26.

10-53

BINARY AND DECIMAL ARITHMETIC

10-54

CLEAR
KEY

c STARr)

CLE'AR H,L EOR :rnl'rIM..

fA'r------VAL-:cJE-0
1
R-CLF.l\R REY ,.: . ../ ,

S'roRE (HL) Nr 8300, 01
CLEI\R DISPLAY

LOAD (HL) FR:M 8300, 01
TEST EOR MlNU5

OILL CB1!NGE SI~ SUBR:lur~
RE'l'!Jm S 'IWJS aJMPLEMENT

IN H,L ; 40 in A

SAVE SIQ.J ((ST)- (A))
(A)-(L) ; CALL DBYTE
(A)-(H) ; CALL DBY2
(Al-RECOVER SIGN

DISPUiY- SIQl

CALL EN'IWD EOR
W\LUE IN H,L AND

aM-!AND IN A

I.COK UP JtlMP ADDmS5
IN TABLE

UW> PREVIOUS RESULT
'IO DE

JUMEI 'IO EXECOI'E a»M\ND

(A).-00

C NEXT KEY)-----· G
C STEP KEY)

I i - f"':\
.__CALL __ CEmN __ GE_SI_Q,1 ____ ~~

ADDR KEY

(HL)~(DE) + (HL)

t..--(HL_>~ __ <_IE_>_-_(_HL_> ___ Kv
C RLN KEY)

+

Figure 10-22

1-
UJ
UJ
I
C/)

c.9
z
0
0
u

~
UJ
I
C/)

>
C/)

c.9
z -z
<{
a:
l
a:
UJ
I
::,
a..
~
0
u
0
a:
u
?-

C/)

~
w
I
C/)

>
C/)

a:
w
I
::,
a..
~
0
u
0
w

~
a:
c.9
w
1-
z

A D D R

8 oZ c:; 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 c.t./ 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

3 0

1

2

3

4

5

6

7

8

CODE

c2. I
(/ 0
{) t)

t9 ~
{) {)

f' 3
e Z>
f 7
{) :;
d. 11
tJ tJ
i' 3
1/f F
J7 w:
3 E
0 {)

0 0
F c_

9 ()

I' d
r-1~1
7 lZ>
e l>
tJ <J
() d
7 e
(!, 2)

Cf ?
r) ~

F /

I tl
0 {)

L X I..

s fl- L])

{!, II- L L

L fl L J)

X R fl
ff]> J)

M V J_

Iv {) p
e 11 .C

p () s Ii-
M a V
e fl- L L

l'-1 D V
C fl- L L

.p 0 p
s T ff X
;r/ 0 p

II- , tJ 0 0 CJ ~ t' ,.ILi/A) I • • * J
V

Au'9,1, J?~

? 3 0 0 ~,.J_A A I• .!..J.

C L E fl. R ('J /J~,,, _,, J ,,,; . - .,,.. •
/ f'

f 1..5 {) 0 ~~.J .I. I I //*

f} 'I,. 7:_JA-? J - • O 111 ...)

fl ti
fJ- 0 0 -AJ- .I I,) • fl 1o-·.-J: ', A)

' I) I

1-f 1 T G N ,£y-:,.,. A • J -7":: • ~- '
~-~" _.,._7: Jr!L
/, _, ,.J //l) = ¢'H

p g uJ ~
-j /J.,J . -~ ,I. A/ J A ·- -,A

IA- L ~')~ /,,() ~ . ~
,

11:0 t y T E ~ I /I., , ,1A f' I ~ r,,
I' rf /'

I+ /-/ /11-)~ I',..,} _L_n"TA,
J) B y ~ o/2 -... ,I A. .. (7 L _ ·- fJLJ ... n

f ~ t? /'

p s w ~-- Al) A ., • ,r __ .,. l

]:) 'IJ~~·-,A~,1 ,.,:-_... .)
f I' #

Figure 10-23

10-55

f
UJ
UJ
I
(/)

(.9

z
0
0
u

~
w
f
C/)

>
C/)

(!)
z
z
<(
a:
f
a:
UJ
f
::J
a..
~
0
u
0
a:
u
~

10-56

C/)

~
UJ
f
C/)

>
C/)

a:
UJ
f
::J
a..
~
0
u
0
UJ

~
a:
(.9
UJ
f
z

CHANGE SIGN EXERCISE - DATA ENTRY AND COMMAND INTERPRETATION
A D D R CODE

8 ~ _') 0 (!_ .J> (' A L L £ If) T w D
1 4 fR
2 0 :3
3 E 13 X C, H G (n E ') '=- Va;G__;
4

~. I L)(I)I- f c2 cJ 0 Q . .-:'._,, ~-1,l /]_,A~L~d'J
/ It' I

5 ct () -/t!)
6 I c1
7 f lo Pr D]> L (/,,,/Al, .),~1 AM#, ,A~

8 I~ F JY1 0 V L. A (/t)-f7)
9 rp E M 0 V L- I/ \V1 11~+ ·, --·-A ,,,IAJ.A ,A)
A £ 5 p u s H !-I &r'f k- I----/) A d.-JA
B c2 11 L H L J) R 3 0 tJ r/lL)J~ ~,, 77.)
C () 0
D cf 3 fJJ.E)'=- _,1/J ..J/.~l

E E g)((!_ H & (/IL)~ ~r4f A 'JI::)
F (!, 9 R E T 0 -- r\ z A ,/A A , , 7n

a ,..,13 o rj /n M f= M f },;2_1,.._i,~) A~ d

1 () 6 I~ £ G1 J~~~,,) /1.~ //

2 7 &, LD f ID R (A- 1) lD) t' 7
3 7 ~ s 7 £ p (C H A N 6 E ~ I.6-1\l\
4 f' r2 R u N ('~ \J 13 T R A-CT)
5 0 3 N E x T (s T 0 R E)
6 tJ 6 (3 R K I ..>,A) , . -r.-, ,
7 rJ ~ (!, L R (C L E A- R) t' (I

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8 Figure 10-24

t
UJ
UJ
I
en
(.!)
z
0
0
CJ

~
UJ
t
en
>en
(.!)
z
z
<(
a:
t
a:
UJ
t
:J
c..
~
0
CJ
0
a:
CJ

>-

en
~
UJ
t
en
>en
a:
UJ
t
:J
CL.
~
0
CJ
0
UJ

~
a:
c.9
UJ
tz

A D D R

8 c.J7 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 c:ZJ' 0

1

j) ol ti' 2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

C lv G
C/ 0
f ;;
e 3 J"
D 3
R ~
7 8 !M
R ~ A-
0 () N
(p ~ IM
7 ;:; rv1
f' e Ir
() 0 Iv
la 7 M
{!_ 3 J
{) 3
? ~
() 0 /J
17 IJ /V1
9 ~ 3
CJ 0 tJ
6 F M
7 ,t; M
CJ e. s
CJ 0 N
~ '7 M
(!.. 3 J"
l) 8
p /{
() () N
0 0 JJ
(J 0 N

A L L c_ H s I 6- N ~ 1E'P i,,, ~
(J

M p f ~ () 3 Ji-,. _A-/;;;; 4, ;I. A A , ;r;

() V 4 E ,4J)])
J) J) L' NtJT£ .' 'l)fi])])

0 p C.,OUL 1) "'l'i/) ALL
0 V L A THT '9. TN.:STEPrD

v' ft
,

J) 0
]) {!. JI-
() p
() LI JI- A
M p ! ~ {) 3

{) p
0 V ,4- E SUBTRA-C..T ,

L) B L
0 p
0 V L A

\) !+
.

]) 0
B B H

,

c) p
() l) fl- l}
M p J' t2 tJ d

() p
0 p
0 p -

i
Figure 10-25

10-57

I-
LU
LU
I
U)

(!)
z
C
0
(.)

:?!
LU
I
C/)

>
CJ)

(!)
z
z
~
a:
l
a:
LU
I
::,
0..
:?!
0
(.)
0
a:
(.)

~

U)

:?!
LU
I
C/)

>
CJ)

a:
LU
I
::,
0..
:?!
0
(.)

C
LU

~
a:
(!)
LU
1-z

10-58

A D D R

ao<tJo
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

7 lo
c2. F
(; ~
0 I
0 ,c
7 e
d ,c
t £
t) {)

~ 7
c3 E
I/ {)
e. q

CHANGE SIGN SUBROUTINE

JV1 0 V ft- L C 1-tSI.G-N
e /11 A r>~ .,.. A- - A ,-;

~ D 1 ·o I (1,J~ / _ir&, J "- d ~
A,' - - jf,,,. -f ~~--Jf,-.;

M () V l fl (L)I~ L'S B (I

M !) LI fl. : II- (A)1.- MS B
t M A

f

ff ~ II 0 c:J ~ ey

""
0 v' H A (1-1) c--/v1S8

M V I A- 4 t) (Pr) k-~ . . • -) A ,· __ ,)

I

R E T

......

Figure 10-26

BINARY AND DECIMAL ARITHMETIC

10.7.3 Signed Decimal Numbers

Decima,l numbers are commonly represented in "sign and magnitude" form

in computers as well as on paper. Often one bit in a number

occ1~ying two or mdre bytes is used to designate the sign:

t 1327

- 1327

0 001 0011

1 001 0011

0010 0111

0010 0111

A signed two byte packed decimal number then has a possible range of

t 7999 to -7999.

This representation is convenient for several reasons. A number

expressed in sign and magnitude form is easily displayed, with the

sign bit controlling only the display of a minus sign. Similarly at

data entry, if a minus key or change sign key is pressed it is easy

to complement the high bit. Also, multiplicaton is easy, since the

magnitudes can be multiplied without regard to sign and the signs

combined by the exclusive OR function.

Unfortunately, this representation is not convenient for addition and

subtraction of signed decimal numbers. The Decimal Adjust

Accumulator (DAA) instruction of the 8080 does not work correctly for

the result of a subtraction. Therefore, it is necessary to convert

signed decimal numbers into "hundreds complement" form before

addition. Subtraction is performed by changing the sign of the

number to be subtracted, and adding the negative number.

"Hundreds complement" properly should refer only to a two digit

number: It is the sum of 100 (decimal) plus or minus the number,

10-59

BINARY AND DECIMAL ARITHMETIC

with the carry discarded:

100 t 16

100 16

= 16

= 84

In this form signed numbers can be added, giving correct results in

hundreds complement form.

36

- 14

= 22

= 100 t 36

= 100 - 14

= 100 + 22

= 36

= 86

= (1) 22

This is also effective when the result is negative:

- 36

f 14

= - 22

= 100 - 36

= 100 t 14

= 100 - 22

=

64

14

78

Provided that 78 is recognized as a negative value, this answer is

correct. Because of the limited range of a one byte signed number,

decimal values almost always require more than one byte; typically at

least three and often as many as seven bytes are used.

A two byte decimal number in "hundreds complement" form is really

10000 plus or minus the number. A three byte number in hundreds

complement is 1,000,000 plus or minus the number.

1327 = 1000000 t 1327 = 00 00 13 27

- 6564 = 1000000

= - 5237 = 1000000

6564 = 99 99 33 36

5237 = 99 99 46 63

When enough bytes are allocated for the number it becomes reasonabl~

10-60

BINARY AND DECIMAL ARITHMETIC

to define as negative any number whose high bit is one. This gives

an unbalanced range of possible values:

t 799999 to - 199999

In general, hundreds complement numbers must occupy one more byte

than their sign and magnitude representation. Sometimes this byte is

assigned in memory and used for the sign; then the other bytes can

have a full range of decimal values:

t 999999 to 999999

10.7.3.1 Signed Decimal Arithmetic Exercise

We shall develop a program to accept a six digit decimal number from

the keyboard, change its sign if desired, add it to a previously

stored valueJ and display the result.

The new data and the result will be stored in memory in this form:

Result

8300

8301

8302

8303

New Data

8304

8305

8306

8307

Sign Byte

High Byte

Mid Byte

Low Byte

Note that we have reversed the usual storage sequence here. The only

disadvantage to this is that LHLD and SHLD would not load these data

into HL in the normal high-low sequence; with multi-byte numbers we

would be unlikely to load variable data that way. The sequence given

is sometimes more convenient than the normal sequence.

10-61

BINARY AND DECIMAL ARITHMETIC

We shall define a group of subroutines to handle the data process

requirements. Most of these operate on only one set of data; they

are to be entered with (HL) addressing the sign byte of the number to

be processed and must return that address unchanged.

CLRMEM:

SIXKEY:

Clear the four bytes of memory from (HL) through (HL) + 3.

Accept and display six decimal keys. Pack the entered data

into three bytes from (HL) + 1 through (HL) + 3. Ignore keys

A-F. Return when a command is entered with (A)= command

key.

DISPLAY: Display a three byte packed decimal number. If the

sign byte is negative display a minus sign.

CHSIGN:

HUNCP:

DECADD:

Change the sign of a number in sign and magnitude form by

complementing the high bit of its sign byte.

Convert a three byte magnitude with a one byte sign into a

four byte hundreds complement.

Add two decimal numbers in four byte hundreds complement form,

replacing the augend with the sum:

(HL) addresses the augend

(DE) addresses the addend

SIGNMAG: Convert a four byte hundreds complement numer to three byte

sign with one byte magnitude.

10-62

BINARY AND DECIMAL ARITHMETIC

The main program will provide the addresses to be used by the subroutines,

exchanging (HL) ~ith the stack top as required. The main program is shown

in a functional form below.

START:

LOOP:

CALL CLRMEM (addressing result)

CALL SIXKEY (addressing new data)

IF COMMAND = STEP

CALL CHSIGN (addressing new data)

IF COMMAND= CLR

CALL CLRMEM (addressing result)

CALL HUNCP (addressing result)

CALL HUNCP (addressing new data)

CALL DECADD (addressing both)

CALL SIGNMAG (addressing result)

CALL DISPLAY (addressing result)

JMP LOOP

Use the top down approach, coding and testing the main program first,

and then each of the subroutines. It is suggested that DISPLAY be

the first subroutine, since it can be used by SIXKEY to display the

new data.

We have not yet described the process for generating a hundreds

complement;

display and

programming

development:

this is covered in Section 10.7.3.2. The data entry,

addition subroutines require only reasonably familiar

techniques. Two hints that may be useful in your

Entering keys: Use GETKY (023D) to obtain a key. This returns Not

10-63

BINARY AND DECIMAL ARITHMETIC

Carry if a command is entered; use RNC or JNC after GETKY. The key

value is returned in Register A and in C; Register Bis cleared.

Shift the old data left four bits and enter the new key. You can

keep the data in registers while it is being entered, and store it

only at the command key, but the given solution always keeps the data

in memory.

Displaying data: Address the low byte and the right display digit.

Load the byte, decrement HL, and call DBY2 (0298) three times to

display the three data bytes. Register B can be used as a counter.

At exit from this loop, register pair DE addresses the next blank

digit, and HL again addresses the sign byte. Its high bit is 1 if

the number is negative. This will display a minus sign or a blank:

MOV A,M

RAR

AN! 40

STAX D

Without subroutine CHSIGN, HUNCP and SIGNMAG this program will work

for positive numbers. Develop the program using stubs for these

three subroutines. A solution is given on the following pages.

10-64

1-
w
w
I
Cf)

(.'.)
z
0
0 u

~
w
I-
Cf)

>
Cf)

CJ
z
z
<l:
a:
l
a:
w
I
::>
a..
~
0
u
0
a:
u
2

Cf)

~
w
I-
Cf)

>
Cf)

a:
w
I
::>
a..
2
0 u
0
w

~
a:
(.'.)
w
1-z

A D D R

8 d /) 0

1

2

3

4·

5

Yd!C 6

7

8

9

A

B

C

D

E

F

s~/ ci

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 cJc2 0

1

2

3

4

5

6

- 7

8

CODE

~ I
Ct 0
.f .__..q

(!_, I>
. ,g 0

,'? ;}_

£ -~ ...
-~ I
c, ¥
y .-,

... '.)

(!_ Jj
~- {)

IR' a
F E
I '? __ .,
C C
~ [)

)' ~
E 3
F E
I 7
{!__ C:

.3 0
? 2
c_,])

C CJ
f ,:l

E- s
C J)

C 0
Jl ~
E /3
~ I

L -1.

(} ll

fJ u
L I._

{! A

(_t p

{! z

)(T
C /J

{2 z

{_I I)

X T
(! If

X (!,
f1 0

{ C

L /I .? 3 D {J (! p7R' dV 'kk /y-;
·'

L L C L R /V/ E (Vl

s i+ /-{

L I+ '
,P ,,

-----1 0 JI- l(Z-1,I)'-, ;.J.A_A) /71 h j r' c:L:~
/

L L 8 I X: K f. y

L s T E- p

C If s T G Jv'

I+ L (HL)~p300
. ·, C L f?.

c L R fv1 f M tL.e// .A J ~ fl j)7/).A ,I/ tJ--1:

L /._ f-f u N C- p

H L (HL)'==--P30¥
L L)+ LA tJ C p

,

I-I- (r (JJG)k-f.5'01/--
p II (f/-L)k--;f/300

0 iJ T I (V v(G:-- I) \

Fiqure l0-27a

10-65

10-66

I-
LU
LU
I
(/)

(!)
z
0
0
u

~
LU
I
(/)

>
(/)

(!)
z
z
<(
0::
l-
o:
LU
1-
::J
a..
~
0
u
0
0::
u
~

(/)

~
LU
I
(/)

>
(/)

0::
LU
1-
::J
a..
~
0 u
0
LU

~
0::
(!)
LU
1-
z

A D D R

Pd~1
2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

cooEDECIMAL ARITHMETIC (continued)

C :I) C A- L L D 6 C A- 1) J)

c; 0
1? :2
C J) ~ ff L L s I G IV JV\ AG
E- 0
y ~
(!_]) (] f} L L /) L s p L AY
4 t)

IR ;2

C 3 .J M p J7 ~ 0 h
0 &;
? t2.

Fiaure l0-27b

1-
w
w
I
CfJ

(.9

z
0
0
u

~
w
I
C/)

>
CfJ

(.9
z -z
<{
a:
l
a:
w
I
:,
a..
~
0
u
0
a:
u
>-

(/')

~
w
1-
CfJ

>
(/')

a:
w
I
:,
a..
~
0 u
0
w

~
a:
(.9
w
1-z

A D D R

8 c:? '<._q 0

1

2

3

4

d"2-3 5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

(~ ·-" ·. . .!;

0 /
I) 4-
{) ()

{J 9
~'I 8 :;,(..

3 l~
C) c)

0 7)

C .2
d -.:)

J? i;2
C I

C 9

CLfilllliJ.Vl

p u s /-1- !3
L i_ .L 15 {) C) 0 L/ r'/J,:J_/),/,j 4 -/1'. .fr_)

/ /

l) 1-t]) /3 ,/J ,.lrJ J... ,, ,,, ... ?3o ¢ t1'1.., P~"'t)j
J) /i X /-J. ~~// /~,.,.....JJ L~~ 7,;,

M l/ L M I
() {) L;t;;:t JLJ ~/)

/'

tu C /(C I !'1/ . - r .J,l'U./:,_
:r ,v z ? J q l5" tf

F 0 p ,8
/(E- T

Fiaure 10-27c

10-68

1-
UJ
UJ
::r:
Cl)

(!J
z
0
0
(.)

~
UJ
I
C/)

>
Cl)

(.!)

z
z
<(
a:
l-
a:
UJ
I
::,
CL.
~
0
(.)

0
a:
(.)

~

Cl)

~
UJ
I
C/)

>
Cl)

a:
UJ
I
::,
CL.
~
0
(.)

0
UJ

!;i:
cc
(!J
UJ
1-z

A D D R

sJ.,1/o
1

2

3

4

5

6

7

8

9

A

f,d?~B
C

D

E

F

8 r-..2._/j- 0

1

2

3

4

5

6

7

8

9

A

B
C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

l)==" 5
J) j-

C [j
0 I
{) 3

0 {)

0 CJ
~· I
I J
~ F
2 3

7 E:
(:._, J)

c/ p
t) c2
dJ.. 13
1/J :j-
(; c2.
4 B
J7 a
·7 £
I F
l~ 6
1J [)

I 2
C I
J) I
;=:- I
(! CJ

f) v1
p L-1
p Ll
L ·>I_

:J) fi-
M 0
L I

/1 {)

C A

]) C
l7) c_

J Al

/vi ()

f It
IA- tJ

8 T
p {)
p 0
p 0
R ~-

DISPLAY

s 1-f p 3 vJ
s H D
s ;-I B
.I 8 u {) 0 3

/

LD /3 (), " -1 ~ ,; /:; u ·'(!.J., "' ,A _, • • ,_.Y #. . ,? ,

\/ 13 C lrA)L..-..fu.Jh, 1~~
I.]:) , J

....,
F F ~l.d? ,LA~ ;..~,,.-.~ *-:.,

/

/~/); ;/-'.
,:?

,f?

V A M l'-7"!1 ·n~~-~, q,/,.,,/-;-a..,/
L L ;[) 8 y ;). / (7 ,,;{I

x J-1
R II)
z 3 b1 t/ t3

v /-l- M ~/-. j ~ .. 7'7

I? .11 :.~,,-J J A ~.-~ /,
L JJ l) ff J_h/,J,)~J-' ,_~ ·;1-: .

r'i,,. /L-/t, ~ ,.., IJ,,.. • ,

A-- X 1) JJ t __ ,, 1,
I' 'k' hf~ J •-" / J A

I

p B
p :D
·p p 'S \A)
T

Figure 10-27d

I
LU
LU
I
(/)

(!)
z
0
0
u

~
LU
1-
(/J

>
(/)

(!)
z
z
<{
a:::
l
a:::
LU
I
:)
a..
~
0
u
0
a:::
u
~

(/)

~
UJ
I
C/)

>
(/)

a:
UJ
I
:)
a..
~
0 u
0
UJ

~
0:
(!)
UJ
1-z

A D D R CODE

8 ,..1 ~ 0 C, j)
1 _ _g [)

2 y ~
,J?,.;? ho 3 C :I>

4 ,3 J)

5 0 2
6 :J) /j
7 r e
8 {) ft

9 J) ,?._
A 6 3
B ,,P ;)_
C c2 ,3
D 7 £
E c2. 3
F '-5- ·1o

a~7 o ;2._ 3
1 s· E
2 E 13
3 ~ 9
4 I ;7
5 .:~ 9
6 J I/
7 r.J_. 9
8 I !/
9 ,;)_ a

7
A I 1'
B () 9
C E /3
D 7 s
E l:? 13
F /J' c1

a c2..P 0 h? (3
1 '7 7
2 k2 ~
3 {: .. ~
4 14 {)
5 J' 1;2..
6 (I_ ~
7 6 3
8 I.? b2

(~ I-}

{7 fl

R N
C -p

J tJ

lI ;V
{vi ()

L J.)

M ()

L tJ
M D
'I-. C
]) Pt

IR (.}
7) A
R r+
n A-
R ft
7) It
-1?
A /+
[]) ,4
r)(C
1/4 10
:/) C
/V1 {J

]) C
l"l D
]> C
Q Pr

0 M

SIXKEY

L L (!__ L ~ M I= IV\
10"c.vu J>3o¥· - P 307 ·

L L G E T g V

C
T /) /~

t .. f d)_ 0 3

"'I-. I-I J ~ '..r1 .,,c;u:c.,~ ~ ·17•-; J

v I+ M (A-J~ 1: -/, \,: r;;,
X N

/ / /

\) l) . M CD) c;--~ ,,,,;V!,· , /,, ,/;;,

i
I 0

l-f
-J -- M 1(£)k- .Jf~__,.y /., 7;; , I::.

!+ Cr
.)

(!-fL)~ a,-JA LI ~ AL,,,-... - .
]) /-I f/,,-~ ~_t: fA/fL)
L)/'/:1- ¥./~
{) J-1 ti

L
]) H
L
]) J-1-
L
]) B 11~vdZ · Ail/ -r. j~ ,./"Jt.-'., .,;/_ . ., .,,., - ,

!-I- G
v fll I £" (j 307) 1c--, j',,,.. ,, - ~ .7.1;

X /-I /

v M I lD (P3ut.o)'=-,,,- -- jJ ~-]'; ~
X /.j

I -
~

"'
\) M A .(f 1 cJ s)i:a:- L · -/ I/ . . ·-n ,
;,(/-I

,
/]// ,J,t,17 A.) ~ /., ' y

L L]') I- s p L AY /

·p f l~ & 3

Figure 10-27e

10-69

10-70

f
w
w
I
(./)

(9

z
0
0
u

2
w
f
(./)

>
(./)

(9
z -z
<(
a:
f
a:
w
f
:::J
a..
2
0
u
0
a:
u
'.2:

(./)

2
w
f
(./)

>
(./)

a:
w
f
:::J
a..
2
0 u
0
w

~
a:
(9
w
f
z

A D D R

8 o2 9 0

1

2

3

4

5

6

7

A'::2 9 a
9

A

B

C

D

E

F

8 c2 /-t 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

0 I L
0 I/,

0 0
0 9 J)

E 13 >(

0 CJ D
F L3 x
17 F)(

I 8
L,

1r-:l 8 I)
I ;.; l-
J' £ A-

10{ 7])

1'7 7 M
0 J)])

C 62 3
Cf p
IR a
{! q R.

DECADD

'/ I. IA 0 0 0 Lj
/ e).i-L-IZL ~t-

- ,:7

It]) 8 (} /'i ,,;ll J.. p A _J 7r..e~.-I ~. Jl_;
C I+ G- /...<ij,l.-~ jl /;-.I'~

A-]) /3 i. /
-" ./t.-t'~)_ ---- ~,

'l, . , ,,,.0

C /-I G
R A A I l'A.cv,...) /? 'j -i A • ,

C X 1) rLi-c,:..n ·- a11£~
C X fl _,,-yf ,{/ t /,,,.:J-u_k/L) ~ , ~?';'-

D A >(b ((/i L))1.:-- 1()-J L)) 1-((])£)'
']) C M ~)~ .. A_)_}, 77_

A- ,q / /I 7

D l/ /V\ ' A
C R C

}

/V z fl ;l 9 ff

f T

Figure l0-27f

1-
w
w
::c
Cl)

(!)
z
0
0 u

2
w
1-
(./)

>
Cl)

(!)
z
z
<(
cc:
I
CC:
w
I
~
0..
2
0
u
0
a:
u
~

Cl)

2
w
1-
(./)

>
(./)

cc:
w
I
~
0..
2
0 u
0
w

~
cc:
(.!J
w
1-
z

A D D R

sc:2/3 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

B.:::,<CO
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

sc::2_G o
1

2

3

4

5

6

7

8

CODE STUBS

C :Cl R f T C!-1.:iI&tJ

c C) R. & T /--JUJJ(!.~

C q f E:' r SIG-/Vf/J /-)-Cr

Figure 10-27g

10-71

BINARY AND DECIMAL ARITHMETIC

This page intentionally left blank.

10-72

BINARY AND DECIMAL ARITHMETIC

10.7.3.2 Hundreds Complement

The decimal arithmetic program as developed so far is useful for

demonstrating hundreds complement arithmetic. Run the program and

en t,er a number :

RUN

1 2 2 NEXT 00 0122

Add 1 to this number:

1 NEXT 00 0123

Now add 999999 to this result:

9 9 9 9 9 9 NEXT 00 0122

We can see here that 999999 is equivalent to -1. Try other values

close to this. You can see that a negative number is equivalent to

1,000,000 minus the magnitude of the number.

The reason for using hundreds complement is in part the fact that the

8080 cannot do a decimal subtraction. Therefore we cannot perform

the conversion in the simple way that we did a twos complement.

The conversion of a negative decimal

form involves a series of steps.

number to hundreds complement

First the decimal number is

subtracted from decimal 100, represented as 9A (= 90 t 10). Now to

make the following DAA correct we must add zero to this value,

because the subtraction has improperly set the Auxiliary Carry flag,

wh!lch controls the DAA operation. Adding zero clears the flag and DAA

generates a correct hundreds complement decimal value. If the value

10-73

BINARY AND DECIMAL ARITHMETIC

is greater than 99 a carry is generated.

For successive bytes the carry is added to 99 (without DAA) to give

99 or 9A. Then the next byte is subtracted from this value; once

again zero is added and DAA is executed. The program segment below

makes the conversion for a four digit (two byte) decimal number in

(HL).

MVI A,9A (A) < - 100 decimal

SUB L Subtract low byte

ADI 00 Correct flags

DAA Decimal adjust

MOV L,A (L) < - low byte

MVI A,99 (A) < - 99

AC! 00 (A) < - 9A if Carry

SUB H Subtract high byte

ADI 00 Correct flags

DAA Decimal adjust

MOV H,A (H) < - high byte

This is coded, with calls to data entry and display subroutines, in

Figure 10-28. You may want to experiment with this before going on

to a multi-byte subroutine for the decimal arithmetic program.

10-74

1-
UJ
w
I
C/')

(..9
z
0
0 u

2
w
I
C/)

>
C/')

(..9
z
z
<{
er:
l
a:
w
I
::>
a..
2
0
u
0
er:
u
>-

C/')

2
w
I
C/)

>
C/')

er:
w
I
::>
a..
2
0 u
0
w

~
er:
(..9
w
1-z

A D D R

acJo 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

s /JI 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

TWO BYTE HUNDREDS COMPLEMENT
CODE

c. .Z ·- (', Ii L L £ A) T vJ
4 9
0 ,q

z

e '.D C, 14- L L]) vJ D I< ~
J> J
0 ~ _, l£ /VI V I I+ I

q A
q A
q _·:r \' L,\ B L
C 0 A- t) I. D D
/) /)

I~ 7 J) A- A
lt0 F I"\ D J l- ,g
.j E M I A- ' c; 9 V
q 1'1 I

C E Ir C L /) t)

tJ ()

19 ~ s IL 1 0 -H
C ~ Pt D .I 0 0
t) {)

~ It tD A Ii
c_; 1 f'I\ D J /-J , f}
I I L ''/... I .J)

II g 3 F F l

F F I

p '-:,
C]) C, A- L L D vJ :D ~
0 If/-
0 ~
(!_ 3 3 M '° 9 b {) D
tJ {)

F u

(/IL) i:.- ~ -
iJ/./>,,..,- --~ _,/ ij, ~ , . -
r'!fL) :, ~ /J J. -·l •,(A_,__.,£ - /

I ·-IL~ /I ~- 1 A a± _/., ./_;r,
;,.J _,,ff2 /) ,? -·p ~ ,. ,;;l LI,
ti . /ii!,. . rJ .:: /00 ',1 ~ -uri 'J

JI /, 77,._ad::, ?iu ,) ~ 7,;";
(' /, ~~--~..t..,.1 _J~,'}/ ~ -)/

I J

_Jl±c~./~

I,
~ q9 .J L /1f../J /IA ,J,,L,/

I CJ A_ t,/,, (!_.ti.,~~: ~
j t7 !l
A/ A-L /1, ~ ·-r; 1 -~/.I l -;-.
f/.,1'1-Vi /) _({) * J;:'-- /

t7 #

llo /"' c.i.L AJ , ~,.., /I I) ,(L,,. d ., ,t _/

I-./J.,__::,..ri/.,..-.,..,1 l.,, _,,J.(.~,;JA)
/? .:__.. .n i£ ..,.,,., d J /-: a1

ti;/,, :I-,
~ 1 C. '-"' ;

o'

Figure 10-28

10-75

BINARY AND DECIMAL ARITHMETIC

10.7.3.3 Subroutine HUNCP and CHSIGN

Now let us see how this technique will be applied for the data

structure we have adopted for the decimal arithmetic program. First

we shall test the sign byte; if it is positive no conversion is

needed except that the sign byte must be set to zero. If the number

is marked negative we must make the conversion; here also the sign

byte should be set to zero, to be converted to 99 in the four byte

hundreds complement number.

MOV

MVI

RAL

RNC

A,M

M,00

(A) < - Sign byte

Clear for highest byte

Sign bit to Carry

Exit if positive

We shall use a loop to make the conversion, so we must load a

counter. We also must address the least significant byte.

LXI B,0004

DAD B

Now Register C contains the count to convert four bytes, and (HL)

· addresses the byte beyond the least significant. We shall decrement

the address as the first step in the loop, so the conversion will be

done for the appropriate four bytes and at the end the original

content of HL will be restored.

Since we have loaded Register B with zero for the DAD B we can ADD B

and ADC B instead of ADI 00 and ACI 00. By setting Carry before

entering the loop we can use MVI A,99; ADC B for the least

10-76

BINARY AND DECIMAL ARITHMETIC

significant byte as well as for the higher bytes.

STC

DCX H

MVI A,99

ADC B

SUB M

ADD B

DAA

MOV M,A

DCR C

JNZ

RET

To use negative numbers we must also provide subroutine CHSIGN. This

is entered with HL addressing the sign byte; we are to complement the

most significant bit. Recall that the main program makes another

test on the command in Register A after calling CHSIGN, so this

subroutine must preserve Register A.

These two subroutines are given in Figure 10-29. HUNCP also performs

the function defined for SIGNMAG, properly converting a four byte

hundreds complement number to sign and magnitude. Figure 10-29 shows

a jump from 82EO to 82CO to use the same subroutine.

Experiment with the program to show that it correctly adds and

subtracts decimal numbers, provided that the sum or difference has a

magnitude no greater than 999,999.

10-77

10-78

1-
w
w
I
(/)

C!)
z
0
0
C.)

~
w
1-
(/)

>
(/)

C!)
z -z
<X:
a:
l
a:
w
I
:)
a..
2:
0
C.)

0
cc
C.)

~

(/)

2:
w
1-
(/)

>en
a:
w
I
:)
a..
2:
0
C.)

0
w

~
a:
C!)
w
1-z

A D D R CODE

8 1..J./3 O IF 5
1 7 £
2 E E"
3 :? tJ
4 7 17
5 p J
6 e 9
7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

fl L,{
M ()

"K R

iY1 D
p 0
R IE-

C H·
F {)
:p R

CHSIGN

'S' J-1 F s w
v I+ M

.P
,

I u

v /\l\. I A
p 7 p :s vJ

7

f} tJ 6- £ 8 I G- A) SUB'ROL\TTtJE
R D E- e T M I+ L ARITI-\M~T.IC
0 6- R A- M () ~ F-IG-U RE- 10-:J.'?

Figure 1C>-29a

r
w
w
I
CJ)

(.!)
z
0
0
u

2
w
r
CJ)

>
CJ)

(.!)
z
z
~
a:
r
a:
w
r
:::)
a..
2
0
u
0
er.
u
~

CJ)

2
w
r
CJ)

>
CJ)

er.
w
r
:::)
a..
2
0 u
0
w
!;:
er.
(9
w
r
z

A O D R CODE

sotC o // E
1 , ·::? ,:
2 {) 0
3 I ~/
4 }) D
5 0 I
6 {) J/,
7 'I) 0
8 0 9
9 3 7

2~C A o2.. .13
B 3 E
C q CJ
D ,? f
E 9 0
F .Y 0

8 :::2-L> 0 di. 7
1 7 7
2 I""> J>
3 (} I~
4 /') /-l
5 p 2
6 ·II, 9
7

8

9

A

B

C

D

E

F

Br..J £ 0 e :3
1 e 0
2 ? [),

3

4

5

6

7

8

/vi (J

/vi ,J

fl /}
R A)

L)(

]) fl-
8 T
]) C
M ti

A- '])

8 u\
I+ J)

1·.n ft

M D
]) C
1-l tJ

R E:

I+ L,,f
~ u
In I~
p ~

J" f"l

HUNCP

v It M
I I"

" D 0
I

L
c
.L ,--:i., /) 0 !J it/ ,,

J) 8
C
y... J-1
.I. 4 CJ C)

'
C ..B
B IV\
D I,
A
v /Vi, . :A
R (.

I

z ? :;? e II

T

A)]) R & .D s C O~'PLE MENT
R R D u IT I /0 E- i=:nR
C :(_ ~ A- L A R l TH 1"1 fTlC...
n Cr R A , . .1, r, ~ r.:. T & U Rf;. I fJ-J..'7

p J? c:2. C 0 8-rG-/J MAG-
n .. -· ·- :h H ll AIC P

f,j' .Jl SL&N H /-1&
I

Figure l0-29b

10-79

BINARY AND DECIMAL ARITHMETIC

10.7.3.4 Decimal Overflow

The possibility of overflow was discussed in Section 10.7.1.5. The

same problem obviously exists in decimal ~rithmetic, since we still

have a limit to the range of a number. Since we are using one more

byte for the arithmetic than for storing numbers, the highest byte

will always have a value of either 00 or 99 unless overflow has

occurred.

If the sum (or difference) is within the three byte range HUNCP will

not change the sign byte. If the sum is between zero and +999999 the

highest byte of the sum is zero; HUNCP inserts zero. If the sum is

negative, but not more negative than -999999, then the highest byte

is 99. HUNCP inserts zero but then converts it back to 99.

Now consider three cases where overflow occurs.

a) Addition of two positive numbers:

00 50

t 00 50

= 01 00

00 00

00 00

00 00

Here the highest byte is 1; HUNCP makes it O.

10-80

BINARY AND DECIMAL ARITHMETIC

b) Addition of two negative numbers; sum 0:

99 50

+ 99 50

= 99 00

00 00

00 00

00 00

(-500000)

(-500000)

(-0)

:Here the highest byte is 99. HUNCP makes it zero and converts this

number to all zeros.

c) Addition of two negative numbers; swn > 0:

99 50 00 00

+ 99 49 99 99

= 98 99 99 99

(-500000)

(-500001)

(-1000001)

Now the highest byte is 98. HUNCP inserts zero and converts this

number to -1, stored as 99 00 00 01.

For each case of overflow, HUNCP has changed the content of the

highest byte in converting the number to sign and magnitude. Figure

10-30 shows a test for this change. If there is no overflow a blank

is displayed in the left digit, but if a change occurs a symbol (E.)

is displayed to indicate "Error."

10-81

1-
w
w
I
Cf)

(.9
z
0
0 u

~
w
I-
Cf)

>
U)

(.9
z
z
<(
C:
I
C:
w
I
:)
a..
~
0
u
0
a:
u
~

Cf)

~
w
I
C/)

>
Cf)

C:
w
I
:)
a..

10-82

~
0 u
0
w

~
C:
(.9
w
1-
z

A D D R CODE

aJE 0 7 £
1 F j~

2 C })
3 (! t)
4 Jl ..2.
5 F I
6 9 6
7 C fl
8 ;;- C
9 F Jl.
A 3 E
B F 9

Ro2£ C .3 ;2
D F £'
E R

,.,
<?

F C CJ
8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

Ill) 0 v
p IA .S
~ I+ L

p D e
s u B
-.T z

1\1\ v I

s T fl

R £ T

C 0 /v
C. 0 {Vt

Pr l,J])
.) E ~

SIGNMAG

It ; (V} Ac_,~,_ J, I C·j ~- I., .I,, ·.1-~

i-1 'p s ·vJ 7 ,fl

L /-I LI jJ C p _j,//J. ,V;J(i ~'w , /7 j'.c.J .-.1/~ o ,

/' .#. /_,; (/ . A 1/'-" Jc}.,v1/ ·

_/'YY/ /))L .. ; ;-;-.,c.?f...u
p s w H ii IVC f' ~~ ,a_,,i /?1 .c.:I:
M /lkhxc..~ j L,,_ 7. _i? ,1 .,;t-:

y :2 E C J/ ~ .~/ I ',/ , ~ ., ,/ _/ AJ '.144._,/

~), lt1~., ,,r-J:" -)
-~ I /re, j ./ VZ..l.!..L-V

/f F 9 ~ /' J/Yh ./~~
F

C ~ ·7/ F /1'. J _,., . /1. ~

s 3 F ; -11 ;, r, ;f /1, LJ .o;_ /J~:i _., A J

/1.,(, c ~ ?_:;· /; fl., .Jr
/

V i::: R T 1+ LA Iv Df{l:= bS
p L E- Jv'j E (v T Tf) ,0..IG-fV

lfrl I+ G tJ I T IA bf- 1t.lTT H
{ F In R (i u F J:/ F L{)\l\/

···--

Figure 10-30

BINARY AND DECIMAL ARITHMETIC

10.7.4 Fractional Numbers

A fractional value in the decimal number system is expressed by

digits to the right of a decimal point:

0.1 = 1/10

0.01 = 1/100

0.11 = 1/10 t 1/100 = 11 / 100

In the binary number system fractional values are

by digits to the right of a b.inary point:

0.1 = 1/2 = 1/10

0.01 = 1/4 = 1/100

0.11 = 1/2 t 1/4 = 3/4 = 11 /100

The beauty of this representation is that all

operations of integer numbers apply equally

numbers and mixed

3 10/16

t 4 7/16

= 8 1/16

numbers:

0 0 1 1 • 1 0 1 0

t O 1 0 0 • 0 1 1 1

= 1 0 0 0 0 0 0 1

Twos complement still works with fractional values:

- 3 10/16 1 1 0 0 0 1 1 0

t 4 7/16 0 1 0 0 . 0 1 1 1

= 0 13/16 0 0 0 0 1 1 0 1

also expressed

the arithmetic

to fractional

Computers use two binary point systems, fixed point and floating

point. The examples above are fixed point. Each number has its

10-83

BINARY AND DECIMAL ARITHMETIC

binary point

is needed

in the same place.

in real problems, and

Generally multi-byte precision

the binary point lies between

two of the bytes. A four byte number can represent any value from

- 32768.0 to 32767.9999847 with a precision of .0000152 (one part

in 65536).

For many

satisfactory.

purposes

This is

floating point numbers

equivalent to scientific

are much more

notation with the

number represented as a fraction times the number system base raised

to a power:

4
0.9876 X 10 = 9876

To avoid the difficulties of showing exponents in print this is

often shown as:

0.9876 E04

where E represents "10 with exponent".

Scientific notation is very convenient for

division. The two fractions are multiplied

exponents are added (or subtracted):

10-84

0.9000 E04

x 0.2000 E02

= 0.1800 E06

multiplication and

(or divided) and the

BINARY AND DECIMAL ARITHMETIC

For addition -nd subtra~tion, however, the numbers must be converted

tri fixed point format:

0.9000 E04 = 9000.0000

t 0.2000 E02 = 0020.0000

= 0.9020 E04 = 9020.0000

These same techniques apply to binary numbers in the computer. In a

computer as on paper, the fraction (or mantissa) must be stored

separately from the exponent. Each can be positive or negative, and

expressed in twos complement or sign and magnitude form. Generally a

computing system that is doing floating point arithmetic will operate

in binary form, _converting from decimal at input and to decimal at

output. Decimal/binary/decimal conversions are treated in Appendix B.

10-85

BINARY AND DECIMAL ARITHMETIC

This page intentionally left blank.

10-86

MICROCOMPUTER TRAINING WORKBOOK

CH.~PTER 11

REVIEW

11. REVIEW

You have now met all of the instructions of the 8080, and actually

used most of them. We will review the instruction set and look at

the code structure and flags. The instructions can be divided

into several categories:

a) Data Transfer Instructions

b) Counting Instructions

c) Accumulator/Carry Instructions

d) Arithmetic and Logical Instructions

e) Branch Instructions

f) Input/Output Instructions

11-1

REVIEW

11.1 DATA TRANSFER

Data transfer instructions include MOV, MVI, STA, etc. All register

reference instructions in the 8080 conform to a pattern in which

three bits identify a source, or else a different three bits

identify a destination, or both.

0 1 0 1 1 1 0 1 50 MOV E,L
L-v-1 '-y--1 "--y--J t Lource Register L

Destination Register E

~~MOV Instruction

0 0 0 1 1 1 1 0 lE MVI E,data
"'-v-' "-v--' ~

~estination Register E

~~~~~~~-IMMVI Instruction 

Other data transfer instructions are the 

load and store the accumulator and register 

3A LOA yyxx 32 STA 

OA LDAX B 02 STAX 

lA LDAX D 12 STAX 

2A LHLD yyxx 22 SHLD 

11-2 

eight 

pair 

yyxx 

B 

D 

yyxx 

instructions that 

H,L: 



The four LXI instructions: 

01 

11 

21 

31 

LXI 

LXI 

LXI 

LXI 

B 

D 

H 

SP 

The stack instructions: 

The 

C.5 

D5 

E5 

F5 

PUSH 

PUSH 

PUSH 

PUSH 

register pair 

EB XCHG 

E3 XTHL 

F9 SPHL 

E9 PCHL 

B 

D 

H 

PSW 

transfer 

Cl 

Dl 

El 

Fl 

POP 

POP 

POP 

POP 

instructions: 

(DE) <-> 

(ST) <-> 

(SP) <-

(PC) <-

(HL) 

(HL) 

(HL) 

(HL) 

B 

D 

H 

PSW 

REVIEW 

11-3 



REVIEW 

The 8080 has an abundance of data transfer instructions, yet is 

lacking three needed functions that therefore require multiple 

instructions: 

a) Exchange BC with HL 

PUSH B (BC) <-> (HL) 

PUSH H 

POP B 

POP H 

b) Initialize the stack to a new location and push the old 

stack 

LXI 

DAD 

LXI 

PUSH 

pointer into the new stack. 

H,0000 

SP 

SP,new location 

H 

It is easier to restore the old value: 

POP H 

SPHL 

c) Save all registers and flags. 

Some microprocessors 

registers into the 

have a single command that pushes all 

stack; others, such as the Intel 8048 have a 

duplicate set of registers. In the 8080 four instructions are 

needed. Data instructions do not affect any flags (Except POP PSW, 

which restores the flags· to the state when PUSH PSW was executed). 

11-4 



REVIEW 

11.2 COUNTING INSTRUCTIONS 

The INR and DCR instructions use the same register identification 

that appears in MOV. 

The 

~,0,1~~ 

+ ..... --t---....... •----INR 

lC INR E 

l Destination Register E 

~~~ 2D OCR L 

t t~-___l_~~~-DCR l_ Destination Register L

04

structure is modified for

~~'of 1,
03

t t

~\.2...g_l)~ OB

INR B

INR

Destination Register B

register pair instruction

INX B

INX

Destination Pair BC

DCX B

t ___ ---1-t -~t.,___~DCX

l Destination Pair BC

- 11-5

REVIEW

The counting instructions affect flags as follows:

INX:

DCX:

INR:

OCR:

No flags

No flags

Set or clear zero, sign, parity

Does not affect carry

Set or clear auxiliary carry

Set or clear zero, sign, parity

Does not affect carry

Set or clear auxiliary carry

Zero, sign and parity flags may be used to cause a conditional branch

as a result of INR or DCR. INR or DCR may be used in a loop with

ADC or SBB instructions, since carry is preserved.

11-6

REVIEW

11.3 ACCUMULATOR/CARRY INSTRUCTIONS

These instructions affect only the accumulator and flags. The

instruction format is:

~xxxL_!-J

1--~~~~~~J...__~_Accumulator/Carry Group

0 0 0 0 0 1 1 1 07 RLC

0 0 0 0 1 1 1 1 OF RRC

0 0 0 1 0 1 1 1 17 RAL

0 0 0 1 1 1 1 1 lF RAR

0 0 1 0 0 1 1 1 27 DAA

0 0 1 0 1 1 1 1 2F CMA

0 0 1 1 0 1 1 1 37 STC

0 0 1 1 1 1 1 1 3F CMC

11-7

REVIEW

The rotate instructions shift the accumulator left or right.

RLC Copies bit 7 to bit O and CY and shifts other bits left.

RRC Copies bit Oto bit 7 and CY and shifts other bits

right. Previous carry is lost.

RAL Copies bit 7 to CY, CY to bit O and shifts other bits

left

RAR Copies bit Oto CY, CY to bit 7 and shifts other bits

right

STC Sets carry

CMC Complements carry

These instructions do not affect any flags except carry, even

though execution may result in the accumulator containing zero

or having a different sign or parity condition. To set or clear

the flags to correspond to the content of the accumulator you must

execute a logical or arithmetic instruction.

CMA complements the accumulator but affects no flags.

DAA corrects the result of an addition to decimal. It affects sign,

zero, parity and carry flags. It may set carry but never clears

carry.

11-8

REVIEW

11. 4 ARITHMETIC AND LOGICAL INSTRUCTIONS

There are eight types of instructions and each has nine possible

sources: the seven registers, the memory location addressed by (HL),

and the program memory (the immediate instructions). As in the MOV

instructions the thre~ low bits designate the source. The next

three bits specify which of the instructions is intended:

1 0 y y y X X X
'-,--J '--.r-' . '-v---1

A ! L-.Source register

~ I~ Operation

~Arithmetic/Logic group

1 1 y y y 1 1 0
~ '-v--' '-v--'

t •
f

Operation

Immediate Arithmetic/Logic

The operations designated by bits 5, 4, 3, are:

1 0 0 0 0 X X X ADD (A) <- (A) + (r)

1 0 0 0 1 X X X ADC (A) <- (A) + (r) + (CY)

1 0 0 1 0 X X X SUB (A) <- (A) - (r)

1 0 0 1 1 X X X SBB (A) <- (A) - (r) - (CY)

1 0 1 0 0 X X X ANA (A) <~ (A) AND (r)

1 0 1 0 1 X X X XRA (A) <- (A) XOR (r)

1 0 1 1 0 X X X ORA (A) <- (A) OR (r)

1 0 1 1 1 X X X CMP (see below)

The same coding for the operation applies to the immediate

inst rue tions.

11-9

REVIEW

CMP r (or CMP M) performs a subtract operation and sets or clears

the flags appropriately, but discards the result instead of storing

it in the accumulator.

The four DAD instructions are also included in the arithmetic group.

They are:

09

19

29

39

DAD B

DAD D

DAD H

DAD SP

(HL) <- (HL) + (BC)

(HL) <- (HL) + (DE)

(HL) <- (HL) + (HL)

(HL) <- (HL) + (SP)

These instructions affect only the carry flag. They can be used

both for double precision arithmetic and to index a memory address.

The latter is especially useful when operations are to be performed

on bytes that are spaced from each other by some fixed or variable

distance.

11. 4.1 The Flags

The flag register (Processor Status Word, PSW) contains 5 bits. These

are arranged as indicated below.

Bit 7 6 5 4 3 2 1 0

Flag Sign Zero 0 AC 0 Par 1 CY

11-10

REVIEW

The fol.lowing 11st summarizes how these are

various instructions:

affected by the

Sign: Set if the high bit of the result is 1, cleared if 0, by

the following instructions:

INR, OCR , DAA

Any arithmetic or logical instruction (except DAD).

Not affected by shift or complement instructions.

Zero: Set if the result is zero, cleared if not, by:

INR, DCR, DAA

Any arithmetic or logical instruction (except DAD).

Not affected by shift or complement instructions.

Parity: Set if parity of the result is even, cleared if odd, by:

INR, DCR, DAA

Any arithmetic or logical instruction (except DAD).

Not affected by shift or complement instructions.

11-11

REVIEW

Auxiliary Carry: Set if a carry or borrow occurs from bit 3

as a result of:

ADD, ADC, ADI, INR; cleared if the digit carry does not occur.

Also, set if no borrow occurs from bit 3 to bit 4 as a result

of SUB, SBB, SUI, SB!, CMP, CPI, DCR; cleared if borrow

occurs.

It is cleared by logical instructions (ANA, XRA, ORA, AN!,

XRI, ORI).

Not affected by shift instructions.

Carry: Set or cleared by any shift or arithmetic operation,

including:

11-12

CMP, DAD and DAA. Cleared by any of the logical instructions

ANA, ORA, XRA.

Set by STC; complemented by CMC.

Not affected by count instructions.

'-r

~

~

REVIEW

11.5 BRANCH INSTRUCTIONS

Jump, Cal~ Return, Restart and PCHL are the branch instructions.

1 1 0 0 0 0 1 1 C3 JMP

1 1 0 0 1 0 0 1 C9 RET

1 1 0 0 1 1 0 1 CD CALL

1 1 1 0 1 0 0 1 E9 PCHL

All of the branch instructions include 11 as the two high bi ts

(bits 7 and 6) of the instruction. The three low bits distinguish

among the branch, conditional branch, and various non-branching

instructions. The conditional branches use bits 5 and 4 to

determine which flag is to be tested and bit 3 to indicate whether

the

clear.

jump is to be executed when the flag is set or when it is

1 1 X X X 0 1 0 Conditional Jump

1 1 X X X 1 0 0 Conditional Call

1 1 X X X 0 0 0 Conditional Return

0 0 0 If Not Zero

0 0 1 If Zero

0 1 0 If not Carry

0 1 1 If Carry

1 0 0 If Parity Odd

1 0 1 If Parity Even

1 1 0 If Plus

1 1 1 If Minus

11-1.3

REVIEW

The Restart instructions use the three bits 5, 4 and 3 as part of

the address for the single byte CALL. They are copied into the

corresponding three bits of the

remaining

0028:

bits are all set to zero.

EF RST 5

program counter while the

For instance, RST 5 jumps to

11101111

1 1 1
0 0 1 0 1 0 O 0

Note that a programmed RST instr·uction does not affect the interrupt

enable flip flop. Interrupts are disabled by acknowledgement of an

external interrupt, not by the instruction.

No flags are affected by any branch instruction.

11-14

\

REVIEW

11.6 INPUT/OUTPUT

DB IN

xx port address

D3 OUT

xx port address

The port address is copied to both the high eight bits and the low

eight bits of the address bus. I/0 Read or I/0 Write is

activated. The CPU copies the data bus to (A) on input; copies

(A) to the data bus on output. No flags are affected.

FB Enable Interrupt

F3 Disable Interrupt

Set or clear the internal interrupt enabled flip-flop. EI is not

effective until one instruction following EI has been executed. No

flags are affected.

11-15

REVIEW

11. 7 UNDEFINED INSTRUCTIONS

Twelve operation codes are "undefined" in the sense that Intel has

not specified meanings for them. In fact they all translate into

defined instructions because the instruction decoder ignores certain

bits.

The following are all treated as NOP.

0 0

0 8

1 0

1 8

2 0

2 8

3 0

3 8

0 0 0 0 0 0 0 0 Defined as NOP

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 0

0 0 1 0 0 0 0 0 (See 11.8.2)

0 0 1 0 1 0 0 0

0 0 1 1 0 0 0 0 (See 11. 8. 2)

O O 1 1 1 0 0 0

11:r -+-~~-'-~~~~~-Defines NOP

~~~~~~~-Ignored 

CB acts as C3, JMP (Bit 3 is ignored). 

D9 acts as C9, RET (Bit 4 is ignored). 

DD, ED and FD all act as CD, CALL. (Bits 4 and 5 are ignored.) 

11-16 



REVIEW 

11. 8 OTHER MICROPROCESSORS 

Various manufacturers other than Intel make exact equivalents of the 

8080. In addition, there are several microprocessors that use the 

8080 instruction set but are not equivalent. 

11.8.1 NEC 8080A and NEC 8080AF 

Nippon Electric manufactures the NEC 8080AF as an exact equivalent 

to the Intel 8080A. The NEC 8080A has a useful added feature that 

permits DAA to be effective for decimal subtraction as well as 

addition. It also executes the MOV instructions in four clock 

periods instead of five. Although these are desirable features the 

designer must recognize that if he uses them he will have no 

alternate source of supply for the microprocessor. 

11.8.2 INTEL 8085 

The 8085 uses the 8080 instruction set, and any program developed 

for the 8080 can be used without change. The 8085 includes the 

functions of the clock generator (8224) and system controller (8228) 

in the microprocessor chip. Hardware interfaces are different. In 

the 8085 the data bus is time multiplexed with the low eight bits of 

the address bus. This requires either special memory chips or 

additional interface hardware. 

11-17 



REVIEW 

The 8085 has five separate interrupt 

equivalent to the 8080 interrupt input. 

inputs. One is exactly 

The other four are directly 

vectored, and have a defined priority sequence, so RST instructions 

need not be used. The interrupts can be masked independently of 

each other. Two of the undefined instructions in the 8080 set (op 

codes 20 and 30) are used to read and set the masks, and also to 

read and transmit serial data through separate pins. 

The 8085 operates with a 1.3 microsecond clock, the same speed as 

the fastest version of the 8080A, but does not require high speed 

memory devices. It requires only a single power supply(+ 5 volts.) 

All of these features make the 8085 very attractive, especially for 

small systems. Having learned to program the 8080, you are fully 

prepared to use the 8085. Only the two additional instructions 

mentioned above, and the use of the additional interrupt inputs, 

will be new. 

11.8.3 ZILOG Z-80 

This is a very sophisticated microprocessor that greatly extends the 

addressing capability of the 8080 instruction set. It is software 

compatible, in that it will execute programs written for the 8080. 

The undefined 8080 op-codes are used in the Z-80, in some cases for 

four byte instructions. Although there are a number of features 

that will be new to the 8080 programmer, use of the extended 

instruction set greatly simplifies programming of arithmetic 

functions. One of the most popular uses of the Z-80 is in personal 

computers with BASIC interpr·eters. 

11-18 



MICROCOMPUTER TRAINING WORKBOOK 

APPENDIX A 

THE ICS MONITOR 





A.1 res ADVANCED MICROCOMPUTER TRAINING SYSTEM DESCRIPTION 

1) The ICS Microcomputer Training System uses the INTEL 8080A 

microprocessor, or an exact equivalent. 

2) There are lK bytes of ROM (addresses 0000 to 03FF), 

expandable on the board to 4K or 8K bytes using lK by 8 or 2K by 

8 chips, and 2K bytes of RAM (addresses 8000 to 87FF), 

expandable on the board to 4K bytes. With the optional S-100 

bus, memory may be expanded to 64K bytes (any combination of RAM 

or ROM chips). 

3) An 8255 Programmable Peripheral Interface chip is provided 

for Input/Output. 

4) A Keyboard is 

signal to the 8080A. 

provided with 25 keys. RESET gives a reset 

Other switches provide input to the 8255. 

5) A display is provided with eight digit positions. This is 

driven by DMA using the contents of addresses 83F8 through 83FF 

for digit positions 1 through 8. 

6) Two LED's display the user's carry and zero flags. 

7) The complete instruction set for the 8080A is given in the 

8080 Microcomputer System User's Manual, together with detailed 

specifications of the machine's internal state during instruction 

execution and a description of all registers. 

8) The MTS board layout is shown in Figure A-1. A block diagram 

is presented in Figure A-2. 

A-1 



THE ICS MONITOR 

~ INTEGRilTED COV1PlJfER svsrFMS, lf\C. 
FULLY ASSEMBLED AND TESTED MICROCOMPUTER AND POWER SUPPLY 

PROCESSOR 
HARDWARE 
8080A Microprocessor 
and Control Logic 

DMA 
Direct Memory 
Access (OMA) 
Channel 

A-2 

RAM MEMORY AUDIO CASSETTE 
INTERFACE 2048 Bytes of RAM Memory for 

Programs and Data. Expandable 
On-Board to 4K Bytes. 

Audio Cassette Interface and 
Associated Software for Easy 
Program Storage and Retrieval 

DISPLAY 
On-Board B-Digit 
LED Display 

PROM MEMORY 
Eraseable PROM Memory 
(containing the Educational Monitor 
Program) - 1024 Bytes. 
Expandable On-Board to SK Bytes. 

FREE AREA 
Space for User's 
Hardware Additions 

PROGRAMMABLE PERIPHERAL INTERFACE 
Programmable 1/0 Device Including Three 8-Bit Ports. 

MTS Board Layout 
Figure A-1 

KEYBOARD 
On-Board Keyboard 
with 25 Keys for 
Program and Data 
Entry. 



AUTO/STEP 
SELECT 

n 
I 
,l 

C 

-

~ 

....c 
CJ 
-c. 

rC 

... ... 
: .. 

b.~ RESET J T 
KEY lm 

> 
I 

t,) 

r;::> 

WAIT Ao -
A15 

ADY 
WR;= 

OBIN 

HLDA 

HOLD f+-
8080A 

INT 
Do . -

,c -:: 
INTE D7 -05 

, 

</>1 </>2 ... 
RESET 

·~ 
SYNC 

8224 

--
RESIN 

STSTB 
IJ 

+ ' 
INTERRUPT . 
GENERATOR -

-

CHIP 
SELECT 

-n-------------- --------------

{} {} lJ 
cs cs CE1 

! 1w 

PROM PROM RAM 

~ 
2708/271( Q708/2716 211i OD /W 

t { .. ' 
MEMR 

,_-, 
... I - ~ ~ ' " ' I, 

,c 

- I 
MEMW - AB0 AB1 ' I, 1 ~ 

I I \, 
SYSTEM 

_ Ao A1 cs Do 7 CONTROi DATA 
~ 

RD 8255 
r+ LATCH 

LER p-.c WR 8212 - PBo 7 PCo 7 PAo STST 7 
,, 

' I\ Tl ,, (t . ~ . ~ 

~ 

l~ ....,,,. 

--- ~ 24 KEYS 
~ 

- -- -• 
• I, ' I, ' I, 

" " " ' 1/0 
CVTCDl\l'I\ 

PERIPHERAL 

Microcomputer Training System Configuration 
·Figure A-2 

-
~ 

-lJ "' 

CE1 
RAM 

2114 
OD R/1 V 

t ' 11 .. 
' ii 

' :> ., 

DECODER 
.---

-----
' I, 

LED DISPLAY 

7401 

DMA 0-
TRANSFER 

I~ CONTROL 

0--
O.C. 

HLDA 

ABo 15 

DBo 7 

ABo 

AB1 

1-3 
::i::: AB2 t:,:j 

..... 
("') 
Cf.I 

is:: 
0 z ..... 
~ 
0 
;:o 



THE res MONITOR 

A.2 GENERAL MONITOR FUNCTIONS 

The monitor provides five general functions: 

A.2.1 

Load memory from keyboard 

Store program on tape 

Load program from tape 

Operate program in debug mode 

Run user program 

Load Memory from keyboard 

A.2.1.1 To select a memory address, press 

ADDR 

MEM 

n n n n 

(where nnnn is the address: e.g. ADDR 8300 MEM) 

The address will appear in the left four digits, and its present 

contents will appear in the right two digits preceded by a decimal 

point. 

A.2.1.2 To enter data to memory after pressing MEM, key in one or 

two digits. They will replace the contents of the memory location 

whose address is displayed, and the new data will appear on the 

right. 

A-4 



THE res MONITOR 

A.2.1.3 If an error is made, it can be corrected by pressing additional 

digits. The last two digits keyed in will be stored and displayed. 

Pressing CLR will restore the original value that was stored, 

provided that no other command key has been pressed. 

A.2.1.4 To proceed to the next higher memory location, press NEXT. 

It is not necessary to press MEM again. 

A.2.1.5 Press MEM again to access the next lower memory location. 

A.2.1.6 A decimal point to the left of the two right hand digits 

indicates tlut MEM has been pressed and data entry is enabled. If no 

symbol is displayed in this position data will not be accepted. 

A.2.1.7 If data entry is attempted without being enabled, or if the 

memory location is in ROM or does not exist, the display will show 

Err. Press MEM to restore the address and enable entry. 

A-5 



THE !CS MONITOR 

A.2.2 Store program on tape. 

The monitor program SEROT copies binary data from memory to a serial 

recording medium such as an audio tape cassette. The MTS circuit 

board includes an oscillator and modulator which are driven by this 

program. Data are recorded in serial synchronous format as described 

in Chapter 9. 

A typical program will occupy 30 seconds to two minutes of tape. 

Several programs may be recorded on one tape; it is advisable to 

identify each program with a voice message preceding it. Then 

connect a cable from the MTS audio connector labeled with an outward 

arrow to the recorder Microphone or Auxiliary Input. 

A.2.2.1 Operating Procedure 

Press RESET. Now the modem will record a continuous tone. Let this 

continue for five tote~ seconds while you do the following. 

Set the STEP/AUTO toggle switch to AUTO. 

Store the starting address by: 

ADDR (starting address) MEM 

If the starting address is 8200, this step is not necessary because 

RESET sets the memory address to 8200. 

A-6 



THE ICS MONITOR 

Then store the stopping address by: 

ADDR (stopping address) BRK 

(If this step is omitted, the serial output program will continue 

forever.) Note that the content of the stopping address is not 

recorded, so it must be the location of the next byte beyond the end 

of the program. 

Start the program by: 

ADDR 0371 RUN 

The display will be blank. The Carry indicator will flicker, showing 

that data are being transmitted. This indicator is on during all 

data and stop bits; off during the start bit only. When the block of 

memory specified has all been transmitted, an error check character 

is recorded on the tape. Then the program reenters the monitor and 

the display will show: 0382 CD. Let the recorder run for another two 

or three seconds, then turn it off. 

You can observe the error check character by pressing BRK. The 

stopping address and the error check character will be displayed. 

There is no need to observe this character, however. 

A-7 



THE ICS MONITOR 

A.2.2.2 Data Rate for Recording 

The monitor program records data at 110 baud: That is, 110 bit 

intervals per second. (This rate is compatible with Teletype paper 

tape punches and readers.) Since the program records 12 bits per 

character, the resulting data rate is 9.17 characters per second. A 

256 byte program will occupy 28 seconds of tape. 

You can record at "· higher data rate by entering the recording 

program with a delay count in register C. A value of 2D (hex) 

generates 300 baud. The procedure to use this feature is: 

Turn recorder on 

RESET 

REG C (delay count) 

ADDR (starting address) MEM 

ADDR. (stopping address) BRK 

ADDR 0373 RUN 

Note that the entry address is different, to avoid the monitor 

instruction that loads register C with 7D for 110 baud. 

A-8 



THE res MONITOR 

A.2.3 Load Program from Tape 

The program SERIN loads binary data from a serial recording medium 

into memory. It is complementary to SEROT: it receives data in the 

· format described above. A demodulator circuit is provided for 

reading from an audio tape cassette. 

A.2.3.1 Operating Procedure 

Before connecting the tape player to the MTS, listen to the tape and 

wait for the continuous tone. Now stop it promptly, so that when you 

turn it on again the continuous tone will appear again. Connect the 

recorder Earphone output to the MTS audio connector labeled with an 

inward arrow. Enter the starting address by: 

ADDR (starting address) MEM 

(This step may be replaced by RESET if the program is to start at 

8200.) 

Now load the program address: 

ADDR 03AE 

Turn the recorder 

Indicators labeled 

received. If the 

pressed RUN, the 

procedure. 

on and press RUN. The display will go blank. 

AUDIO and DATA will flicker while data is being 

continuous tone was not present the moment you 

display will show Err. Then you must repeat the 

A-9 



THE !CS MONITOR 

When the tape has been read successfully the program will reenter the 

monitor and display 03CF CS. Press MEM to display the stopping 

address. The error check character resorded on the tape is stored 

here. Now press REG A. The display will show 03CF A-00. 

If the content of register A is not zero, there is a discrepancy 

between the error check character calculated and recorded by the 

output program and that calculated by the reading program. This means 

that an error exists somewhere in the data read back, but there is no 

indication of which byte is incorrect. 

A.2.3.2 Alternate Data Rate 

If you have recorded a tape at a different data rate than 110 baud, 

as described in A.2.2.2, you must again load register C for that data 

rate before entering the reading program. 

It is also necessary to load register B with a constant. This 

determines the delay time before the reading progra,n recognizes the 

end of the recording. A value of 20 H gives a 0.3 second delay. 

The procedure is: 

A-10 

REG B 20 

NEXT (data rate constant) 

ADDR 03Bl 

turn tape player on 

RUN 



THE !CS MONITOR 

A.2.4 Operating in Debug Mode 

The monitor provides for tracing the flow and results of a user's 

program. The STEP/AUTO toggle switch must be set to STEP; after each 

user instruction is executed a hardware interrupt is generated. This 

causes an entry to the monitor. 

A.2.4.1 Step and Run 

Operation of the user's program is initiated by the STEP command or 

the RUN command. A flag byte (SFLAG) is stored by the monitor 

when the STEP or the RUN key is operated. This flag determines 

the procedure to be followed at the next interrupt entry to the 

monitor. With the Mode toggle switch at STEP, either command will 

result in the user's program being interrupted at each instruction, 

but in RUN the return to the user program is automatic unless a 

Breakpoint is encountered. With the Mode toggle switch at STEP, 

the STEP key results in the monitor activating the keyboard and 

display after each user instruction is executed. With the Mode 

toggle switch at AUTO, the user's program runs without interruption, 

with either command. 

A.2.4.2 Breakpoint Operation 

If the initiating command was RUN, the monitor tests any breakpoints 

entered by the user. Two tests are made: 

a) Is the user's program counter equal to any breakpoint entered? 

b) Has the data changed at any memory location entered as a 

breakpoint? 

A-11 



THE JCS MONITOR 

If neither condition is true, the monitor returns control to the 

user's program. 

associated with 

If either test is true, the monitor tests a counter 

that breakpoint. If non-zero, it decrements the 

_counter and returns to the user's program, but if the counter is 

zero, the keyboard and display are activated. 

Note that a breakpoint stops the user's program before executing an 

instruction whose address is entered as a breakpoint, but after data 

has been changed at a breakpoint. If any breakpoint is encountered, 

no other breakpoint will be tested until the next instruction in the 

user's program has been executed. 

The breakpoint system can also be used to stop execution after a 

specified number of instructions have been executed, rather than at a 

specific instruction. The process of entering and removing 

breakpoints is covered in Section A.3.3.8 of this appendix. 

A.2.4.3 Monitor Display 

When the display is active under monitor control, it shows an address 

in display positions 1-4 (the left four digits) and a data byte in 

positions 7 and 8 (the right two digits). At entry to the monitor 

the address displayed is the program counter, and the data are either 

the next instruction or the contents of a register. The latter is 

identified in digits 5 and 6. 

The user may request many other displays, such as another register, 

another address in memory, a register pair and the contents of the 

addressed location, the stack pointer, or the user's stack top. 

A-12 



THE ICS MONITOR 

A.3 MONITOR COMMANDS 

The major sections of the monitor operate as an interrupt service 

routine entered by a hardware interrupt automatically generated as 

each user instruction is executed, provided that the AUTO/STEP switch 

is in the STEP position. 

The user may program entry to the monitor by including the RST4 

instruction (E7) in his program. 

used by the monitor through 

He may alter addresses and flags 

his own program, thereby affecting 

monitor functions. Various monitor subroutines are accessible to the 

user by normal subroutine calls. 

A.3.1 Monitor Entry 

When the monitor is entered by interrupt (RST7) or by programmed call 

(RST4) the user's registers, program counter, and stack pointer are 

saved in memory and may be accessed by monitor commands. 

The RESET key causes a hardware reset to the 8080. In general, the 

user's register contents and stack are lost. The user's memory 

address and program counter are set to 8200, and the user's stack 

pointer is set to 83EO. All interrupt entry addresses are 

initialized and all breakpoints are cleared. Some data, including 

the user's program counter, may be recovered as described in Section 

A.3.4. 

A-13 



THE res MONITOR 

A.3.2 Monitor Data Storage 

At entry 

the stack 

to the monitor, the user's program counter is popped from 

and stored at PCADR. The registers are pushed onto the 

stack. If the STEP Key was used or a breakpoint is encountered, the 

Carry and Zero flags are shown in two LED's. Neither these nor the 

hexadecimal display are changed unless STEP was used or a breakpoint 

is encountered. 

The monitor stores the following data in fixed memory locations: 

BKLOW (83E2) is a one byte pointer to the oldest breakpoint in the 

breakpoint table. If no breakpoints have been entered, it contains 

E2, pointing to itself. 

BKPOS (83E3) is a one byte pointer to the breakpoint most recently 

encountered. 

MADOR (83E4, E5) The address of the last memory location accessed 

via the MEM or NEXT command. 

PCADR (83E6, E7) The user's program counter. 

SFLAG (83F6) indicates whether the user's program was last initiated 

by RUN or STEP. If it contains zero, breakpoints are tested; 

otherwise, the monitor keyboard and display functions are enabled at 

entry to the monitor. 

A-14 



THE res MONITOR 

RGNAM (83F7) The name of the register displayed by REG command, or 

zero if MEM command has been used since the last REG command. If 

this value is non-zero when the monitor keyboard and display 

functions are activated, the named register is displayed. 

When the monitor is awaiting a command or data, register pair H,L 

generally contains a display address, which points to either the 

memory address, the user's program counter, a breakpoint, or an 

address just keyed in by the user following the ADDR command. 

Operation of the monitor commands can be described in large part by 

reference to these addresses: 

PCAD.R 

MADDR 

(the user's program counter) 

(the memory location most recently addressed 

with MEM or NEXT) 

and the display address in (HL). 

A-15 



THE ICS MONITOR 

A.3.3 Monitor Commands 

Monitor commands are issued by pressing one of the eight command 

keys: ADDR, MEM, NEXT, CLR, REG, STEP, RUN, BRK. These are discussed 

below in the order listed. 

A.3.3.1 ADDR 

Recalls the user's program counter and makes it the display address. 

The PC is displayed in the left four digits, and the content of 

memory at that address in the right two digits. 

If ADDR is followed by hexadecimal keys, the display address is 

cl~ared and the hex characters are entered as the display address. In 

general four characters must be entered, but this depends on the 

command which follows ADDR. A count of the number of keys is 

complemented and stored in register D for use by the monitor in 

executing the next command. 

Contents of D: 

00 ADDR not used 

FF ADDR used, no hex keys 

FE one hex key 

FD two hex keys 

FC three hex keys 

FB four hex keys 

A-16 



THE res MONITOR 

When the first hex key is pressed, the left display digit shows that 

key with three leading zeros, and the right hand display is blanked. 

Additional keys are shifted into the left hand display. When four 

keys have been entered, they represent an address, and the memory 

content of that address is displayed at the right. 

When another command key is pressed, the displayed address is passed 

to the appropriate command processing module. In some cases fewer 

than four hex keys will be accepted as an address or converted to an 

address. 

details. 

A.3.3.2 MEM 

See the sections describing MEM, BRK, STEP and RUN for 

Calls for display of a memory address and its contents. If the 

preceding command was not ADDR, the previously stored memory address 

is used. 

address. 

address. 

If ADDR was used, the address in H,L becomes the memory 

This may be the user's program counter or a newly keyed 

If exactly one hex key followed ADDR, that is taken as the 

name of a register pair, the stack pointer, or the stack top, and the 

two bytes referred to thereby become the memory address. 

Key Register Pair 

1/SP Stack pointer 

2/ST Stack top 

8/H H,L 

B B,C 

D D,E 

Other single key entries are errors. 

A-17 



THE ICS MONITOR 

With a memory address determined, it is displayed in the four left 

digits and the contents of that location are displayed in the right 

two digits. If the address was derived from a register pair, a label 

identifying that pair is displayed. 

After the MEM command has been issued, the contents of the displayed 

location can be altered by keying in one or two (or more) hex digits. 

A decimal point in digit 6 indicates that data can be altered. 

The NEXT command increments the memory address and displays the new 

address and contents. Again, the contents can be altered. 

Note that ADDR causes display of a memory address, but the contents 

cannot be altered until the MEM command has been given. Assume that 

the present memory address is 8300: 

MEM 8300 .AF 

Recalls and displays previous memory address and contents with a 

decimal point. Contents can be altered by hex keys. 

4 4 8300 .44 

ADDR 8200 01 

Recalls and displays user's PC and instruction. Contents cannot be 

altered. No decimal point is shown. 

A-18 



THE ICS MONITOR 

ADDR MEM 8200 .01 

Now contents can be altered. 8200 is now the stored memory address. 

NEXT 8201 .so 

Displays the next byte in memory. 8201 is the stored memory address. 

Contents can be altered. 

ADDR 8 3 0 0 8300 44 

Displays 8300 again and its contents again, but contents are protected • 

MEM 8300 • 44 

Now 8300 is the stored memory address and its contents can be 

altered, as indicated by the decimal point: 

3 2 8300 .32 

MEM 82FF .oo 

Repeated use of MEM with no other command intervening displays the 

address and content of the next lower memory location. By using NEXT 

or MEM, the memory content can be reviewed (and altered if desired) 

in either ascending or descending order. 

A-19 



THE res MONITOR 

Register pair display 

ADDR B MEM BC.35 

BC contains 

Label ac~~~~~~~~__. 

Contents of 8381~~~~~~-• 

When a register pair is displayed, its contents are stored as the 

memory address, and the data addressed can be altered. The address 

can be incremented or decremented by NEXT or MEM, but this changes 

only the memory address, not the content of the register pair. The 

register pair symbol is removed when the address is changed. 

A.3.3.3 NEXT 

This increments the memory address if a memory location is being 

displayed. If MEM has not previously been pressed, NEXT increments 

the display address and stores it as the current memory address, but 

does not enable data entry. 

A-20 



THE res MONITOR 

If a register pair is displayed, the content of that pair is the 

memory address. NEXT will display the next higher address, and 

remove the register pair symbol. 

When a register is displayed NEXT selects the next register in 

sequence: A, B, C, D, E, F, H, L, A - - - (See A.3.3.5) 

When a breakpoint 

breakpoint in the 

is displayed NEXT calls for display of the next 

list. If there is only one breakpoint in the 

table; NEXT has no effect. (See A.3.3.8) 

A.3.3.4 CLR 

· If CLR follows entry of data (to a register or a memory location) the 

previous data are restored and displayed. 

If a memory location was being displayed and MEM had been pressed, 

the address, pair label (if any) and data are still displayed. Data 

entry is still enabled. 

If a memory location was being displayed without MEM having been 

pressed, CLR restores the display of the program counter. The memory 

location can be recovered by MEM. 

If an address was being entered, CLR restores the display of the 

program counter and permits an address to be entered. (ADDR need not 

be pressed again.) MEM will recover the previous memory address. CLR 

is also used to remove a breakpoint. See A.3.3.8. 

A-21 



THE !CS MONITOR 

A.3.3.5 REG 

REG is followed by a hex key naming the register desired. 

REG n displays the current contents of the user's program counter 

and the contents of register n, with a label. 

REG 8/H H-6E 

User's 

Label H ~~~~~~~--1 

Contents of H ~~~~~--, 

Legal register names are A, B, C, D, E, F, H (Key 8) and L (Key 9). 

If followed by any hexadecimal key or keys the contents of the 

displayed register are altered: 

REG 8/H 3 2 8224 H-32 

If followed by NEXT, the next register (alphabetically) is displayed: 

NE.XT 8224 L-13 

A-22 



THE ICS MONITOR 

The name 

subsequent 

displayed. 

of the register selected for display is retained, and at 

entry to the monitor the selected register will be 

When the MEM key is used, the register name is cleared; 

then further entries to the monitor will display the contents of the 

current address. A register name is stored (as one byte at RGNAM) 

when a register is selected by REG 

being displayed. 

nor by NEXT while a register is 

If REG follows an ADDR command the effect of the ADDR command is 

lost. REG always shows the program counter in the left hand four 

digits. 

A.3.3.6 STEP 

STEP sets (SFLAG) = 

display functions are 

1 to indicate that 

to be activated 

the monitor keyboard and 

at the next entry to the 

monitor. All user registers are restored, the interrupt system is 

enabled, and control is returned to the user's program at the 

location stored in PCADR. The user's program is interrupted upon 

execution of the next instruction and the monitor is reactivated. 

If the STEP (or RUN) command immediately follows an ADDR command with 

four (or more) hexadecimal keys, then the address entered becomes the 

user's program counter, and control is passed to that location. 

A-23 



THE ICS MONITOR 

A.3.3.7 RUN 

RUN sets (SFLAG) =Oto indicate that the RUN command was issued 

and then returns to the user's program exactly as in STEP. The 

user's program is interrupted at each instruction to test for 

breakpoints, but the keyboard and display are not activated unless a 

breakpoint is encountered and its count reaches zero. When this 

occurs the monitor behaves as though STEP had been used. 

A.3.3.8 Breakpoints 

BRK displays the address of the current breakpoint. If a 

breakpoint has been encountered during execution of the user's 

program, it will be displayed in response to BRK. 

Symbol and count 

8222 
'-v--' 

BP.00 
'-v--' 

l 
A breakpoint is "encountered" either when the user's program counter 

is equal to the breakpoint, or when the user's program changes the 

content of a memory location whose address has been set as a 

breakpoint. 

If no breakpoints have been entered, the BP. symbol will be displayed 

with all other digits blank. 

A-24 



THE ICS MONITOR 

A breakpoint is entered by: 

ADDR 8 2 1 0 8210 3C 

BRK 8210 BP.00 

4 (optional count) 8210 BP.04 

When RUN is pressed, this address will be encountered and executed 

four times, stopping on the fifth. 

program counter and instruction: 

BRK 

Then the display shows the 

8210 3C 

8210 BP.00 

BRK shows the breakpoint, now counted down to zero. It may be left 

with a zero count, or a new count may be entered: 

2 4 8210 BP.24 

Certain addresses can be entered as breakpoints by abbreviated 

entries, as listed below. 

User's program counter ADDR BRK 
Current memory address ADDR 0 BRK 
User's stack pointer ADDR 1/P BRK 
User's stack top ADDR 2/T BRK 
Content of BC ADDR B BRK 
Content of DE ADDR D BRK 
Content of HL ADDR 8/H BRK 

A-25 



THE ICS MONITOR 

When a breakpoint is displayed it can be cleared. 

8210 BP.24 

CLR BP. 

The blank display shows that no breakpoints exist. If other 

breakpoints are still stored, the next one in the list would now be 

displayed. If more than one breakpoint is stored NEXT will display 

each in turn. Whenever a breakpoint is displayed it may have a new 

count entered or it may be cleared. RST clears all breakpoints. 

The breakpoint system can also be used to stop execution after a 

specified number of instructions have been executed, rather than at a 

specific instruction: 

ADDR 83E6 BRK (count) 

This sets a breakpoint at the location where the monitor stores the 

user's 

changed 

after 

program counter. Since the content of this location is 

at each monitor entry, the breakpoint will be encountered 

every instruction. When the count is decremented to zero, 

program execution will stop. 

A-26 



THE !CS MONITOR 

Each breakpoint entered occupies four bytes of memory. These data 

are entered above the user's stack, which is pushed down in memory. 

The data are: 

Breakpoint address (two bytes) 

Breakpoint data 

Breakpoint count 

The oldest breakpoint is stored immediately above the user's stack 

area, and BKLOW points to the low byte of its address. The 

breakpoint data is a copy of the data stored in the memory location 

addressed by the breakpoint; it is updated each time the breakpoint 

is tested. The count is zero unless another value is entered when 

the breakpoint is displayed. 

The number of breakpoints that can be entered is limited only by the 

space available in page 8300 of memory. However, it is seldom useful 

to have more than four breakpoints in operation at one time. 

Note that when a breakpoint is entered or removed, the entire stack 

from 83El down is moved. If the user's program reinitializes the 

stack pointer, no breakpoints should be added or removed 

subsequently. 

Breakpoints can be entered or removed by the user's program. See 

Section 9.6.2 in the text for a description of this process. 

A-27 



THE res MONITOR 

A.3.3.9 Error Display 

Err 

ADDR 

MEM 

may 

will 

will 

be displayed fo~ any of the reasons listed below. CLR or 

restore the display of program counter and instruction. 

recover and display the memory address and its content. 

Error conditions are: 

a) Attempt to write to a non-existent or ROM memory locationi 

or to enter data when data entry is not enabled. 

b) REG x where xis not a register name (A, B, C, D, E, F, 

H, L). 

c) ADDR x MEM where xis not a register pair name 

(B, D, H, P, T). 

d) ADDR x BRK where xis not a register pair name nor O. 

e) Attempt to enter a breakpoint count when no breakpoint 

exists. 

f) Numeric key pressed without a preceding legitimate 

command key (ADDR, MEM, REG, BRK). 

g) Attempt to STEP or RUN after entering a one, two or 

three byte adQress. 

The error display can be generated by the user's program using a call 

to monitor subroutine ERRDS. See A.5.4.6. 

A-28 



THE res MONITOR 

A.3.4 Recovering Data after RESET 

Occasionally a program which has not been fully debugged will enter 

an endless loop, with no input or output accomplished. Control can be 

restored to the monitor by pressing RESET. 

The fixed data locations 83E8 through 83F7 are initialized with the 

interrupt dispatch addresses. MADOR and PCADR are loaded with 8200. 

RGNAM and SFLAG are cleared, and all breakpoints are cleared. 

Provided that the program was running in breakpoint mode (toggle 

switch at STEP), some useful data can be recovered. 

Before PCADR is initialized, its content is copied to 83EO, El. 

During RESET initialization, this is treated as a fixed address, but 

it is subsequently treated as part of the stack. It can be viewed by 

pressing ADDR 2/T MEM after a reset. 

Eight bytes of the stack (83D8 - 83DF) are also preserved. If no 

breakpoint had been entered and the user's stack was empty, these 

contain the user's registers as last stored while the user's program 

was running, and can be observed as register contents by REG A, NEXT, 

etc. If the user's program was executing a subroutine when RESET was 

pressed, its return address will be found at 83DE, DF. If a 

breakpoint had been entered, then four 

area will be occupied by useless data, 

stack or registers will be preserved. 

bytes of the preserved stack 

but four bytes of the user's 

If two breakpoints had been 

entered, no useful data except the program counter can be recovered. 

The following table shows the content of this area under several 

conditions • 

A-29 



THE res MONITOR 

I 

I 
NO BREAKPOINTS 

8308 

09 

DA 

DB 

DC 

DD 

DE 

DF 

I 

User Stack 
"Empty 

F 

A 

E 

D 

C 

B 

L 

H 

j User 
I Subroutine I 

E 

D 

C 

B 

' L 
i 

I 
H 

! Return 

Address 

! 
I ONE BREAKPOINT j 
I User Stack User i 

Empty Subroutine 

I 
C L 

I B H 

I L Return i 
I 

I 
.H Address 

Previous last 

program counter 

Breakpoint Address 

83EO 

El 

~ Last observed user program counter 

L 

A-30 



THE ICS MONITOR 

A.4 PROGRAM CONTROL OF MONITOR FUNCTIONS 

A.4.1 Output Port OC 

The keyboard, diGplay, modem output, and the monitor interrupts are 

controlled by outputs at Port C of the 8255. (This is referred to as 

PORTOC to distinguish it from ports of the ICS Interface Training 

System.) The bit assignments and effects are listed below. 

These can 

PORTOC: 

PORTOC Zero 

Bit 0 Modem frequency low 

Bit 1 Monitor disabled 

Bit 2 Carry LED o:ff 

Bit 3 Zero LED off 

Bit 4 Keys 0-7 enabled 

Bit 5 Keys 8-F enabled 

Bit 6 Command keys enabled 

Bit 7 Display disabled 

be controlled by the user's program, 

3Exx 

D302 

MVI 

OUT 

A,xx 

PORTOC 

or by setting or resetting a single bit: 

3Eyy 

D303 

MVI 

OUT 

A,yy 

CNTO 

One 

High 

Enabled 

On 

On 

Disabled 

Disabled 

Disabled 

Enabled 

either by writing to 

A-31 



THE res MONITOR 

The table below gives values to be loaded to (A) for the bit 

set/reset function (using MVI A, xx; OUT CNTO). 

00 Set modem frequency low 

01 Set modem frequency high 

02 Disable monitor 

03 Enable monitor 

04 Carry LED off 

05 Carry LED on 

06 Zero LED off 

07 Zero LED on 

08 Enable keys 0-7 

09 Disable keys 0-7 

OA Enable keys 8-F 

OB Disable keys 8-F 

oc Enable command keys 

OD Disable command keys 

OE Disable display 

OF Enable display 

All of these bits are controlled by the monitor when its keyboard and 

display functions are enabled. They are also affected by certain 

monitor subroutines which may be called by the user. 

The monitor sets the modem frequency high, enables monitor 

interrupts, shows the user's carry and zero flags in the LED's, 

enables all rows of the keyboard, and enables the display. 

A-32 



THE ICS MONITOR 

Monitor subroutines DBYTE, DWORD, ENTBY, ENTWD, ENMEM, KEYS and GETKY 

enable the monitor, the display and all rows of the keyboard. The 

modem and LED's are not affected. During execution of all keyboard 

input subroutines, the monitor interrupts are disabled to avoid 

slowing the debounce delay by repeated interrupts. 

Monitor subroutine SCAN reads the keyboard once. If any key is 

pressed, it returns with the row containing that key enabled. If no 

key is pressed, all keys are disabled. Monitor interrupts are 

disabled. 

A.4.2 Interrupt Entry Points 

The MTS provides for external interrupts as well as the monitor 

interrupt. All of the 8080 RST instructions except RSTO (which is 

also RESET) are available, although RST7 is required for monitor 

debug opera ti on. 

RSTl through RST7 are treated identically when they are detected. 

Each loads a dispatch address from a different location in memory and 

jumps to that address with a 11 registers and the stack intact. The 

stack top con ta ins the address of the interrupted instruction. The 

instruction sequence is: 

RSTX: PUSH H 

LHLD ENTX 

XTHL 

RET 

A-33 



THE res MONITOR 

Except for timing, this is equivalent to JMP xxxx. RST4 precedes the 

above sequence with DI, because it is used for programmed calls to 

the monitor which must not be interrupted. The other RST entry points 

do not disable interrupts, but if invoked by an external interrupt, 

that action will have disabled interrupts. 

The dispatch address locations and initial values set by the monitor 

at RESET are listed below. 

Interrupt Dispatch Initial 

Vector Location Value 

RSTl 83F4, F5 0000 

RST2 83F2, F3 0000 

RST3 83FO, Fl 0000 

RST4 83EE, EF 0063 

RST5 83EC, ED 8228 

RST6 83EA, EB 8230 

RST7 83E8, E9 006A 

The user may change these values either by monitor commands or by 

program instructions. The latter is recommended since RESET will 

restore the values listed above. If it is possible for an interrupt 

to occur before initialization, the user's program should disable 

interrupts as its first instruction. 

Note that changing the dispatch address for RST7 allows the user to 

write his own monitor functions (See Section 8.6.2 in the text). 

A-34 



THE !CS MONITOR 

A.5 INPUT/OUTPUT AND MONITOR SUBROUTINES 

The hexadecimal and command keys of the MTS and the eight digit 

display are accessible to the user either by direct input and output 

or memory operations or through monitor subroutines. Refer to 

Chapter 8 for a discussion of input and output techniques and 

exercises. 

A.5.1 Keyboard Input 

The keyboard is connected as a 3 x 8 matrix. A row of eight keys is 

enabled by setting one bit at output port OC low. 

Port OC4 Low enables keys 0-7 

Port OC5 Low enables keys 8-F 

Port OC6 Low enables command keys. 

If one row is enabled and the other two rows are disabled, the eight 

keys in that row can be sensed at input port OA. 

.Input Bit Key 

OAO 0 8 MEM 

OAl 1 9 REG 

OA2 2 A ADDR 

OA3 3 B STEP 

OA4 4 C RUN 

OA5 5 D NEXT 

OA6 6 E BRK 

OA7 7 F CLR 

A-35 



THE ICS MONITOR 

If a key is pressed and its row is enabled, the corresponding input 

bit will be low. Otherwise, the input bit wlll be high. 

When the monitor returns control to the user's program after STEP or 

RUN, all three rows of the keyboard are enabled. Several of the 

monitor I/0 subroutines also enable all three rows. In this state no 

single key can be recognized, but it is easy to test whether the 

keyboard is idle or in use. 

DBOO 

3C 

IN PORTOA 

INR A 

sets the zero flag if no key is pressed. This function can be 

followed by a conditional jump or a conditional call to an input 

subroutine. 

A.5.2 Monitor Input Subroutines 

Six monitor subroutines are provided for keyboard input. These are 

described below. Any of them can be called by user programs. Each is 

identified by a name and by its address. The descriptions specify 

the data returned by the subroutine, and entry data where required. 

A-36 



THE res MONITOR 

A.5.2.1 SCAN (0257) 

Disables monitor interrupts. Tests each row of the keyboard in turn, 

until all have been tested or until an active key is found. If no 

key is pressed, all keyboard rows are disabled. If a key is pressed, 

its row is left enabled, and the others are disabled. It tests 

command keys first, then 8-F, and finally 0-7. If two keys in 

different rows are pressed, SCAN detects the key from the higher 

valued row. 

the lower 

If two keys in the 

valued key. If more 

same row are pressed, SCAN returns 

than two keys are pressed, an 

erroneous value may be returned, but it will still lie in the range 

of allowed values, 00-17. 

If no key is pressed, SCAN returns (A)= 00, Zero Set, No Carry. 

If a key is pressed, SCAN returns (A)= key value (00-17), Carry Set. 

Zero is set if the key is O. 

All registers except A are preserved. 

No entry data are required. 

The stack is used for one level in addition to the return address. 

Timing depends on the input detected: 

No keys 

Maximum (Key 7) 

Minimum (MEM key) 

457 clocks 

553 clocks 

200 clocks 

Add 5432 clocks if the monitor was enabled at entry. 

A-37 



THE ICS MONITOR 

A.5.2.2 GETKY (023D) 

GETKY waits indefinitely for a key to be pressed, and then waits 

until all keys are released for a time of 26 milliseconds to protect 

against contact bounces. 

GETKY calls SCAN to read the keyboard. Comments under SCAN regarding 

multiple key depressions apply to GETKY. The first key detected is 

returned by GETKY. 

Returns (A) = (C) = Key 

(B) = 00 

All other registers preserved 

Carry is cleared for command keys, set for hexadecimal keys. 

Zero is set for MEM, cleared for all others. 

At exit monitor interrupts, display, and all rows of the keyboard are 

enabled. 

No entry data are required. 

A-38 



THE ICS MONITOR 

A.5.2.3 KEYS (0365) 

Subroutine KEYS accepts successive hexadecimal keys by calling GETKY 

and shifting the hexadecimal values into register pair HL, to return 

the last four hexadecimal digits packed into two bytes. It increments 

register D and returns to the calling program after each key. KEYS 

does not demand any entry data, but is usually called with (HL) 

containing previous data and (D) containing the key count. Usually 

(HL) is cleared and (D) = FF at the first call. The following 

assumes that initialization: 

Return (A) = (C) = last key pressed 

(B) = 00 

(D) : count of hexadecimal keys, provided 

(D) was initialized to FF before the first call 

(E) preserved 

(HL) last four hexadecimal keys pressed, 

with leading zeros if cleared before the first call. 

Carry set if the last key is hexadecimal, clear 

if command. 

Zero is cleared, except zero is set after the 

first key if D was initialized to FF. 

A-39 



THE res MONITOR 

A.5.2.4 MENAB (0222) 

Enables the monitor, display, and all rows of the keyboard, by 

writing to PORTOC. Zero indicator, carry indicator, and modem 

control bits are preserved. At return: 

All registers and flags are preserved. 

PORTOC = 1 0 0 0 XX 1 X --- t l....Modem (preserved) 

Monitor (enabled) 

Z, CY indicators (preserved) 

'-~~~~~-Keyboard (enabled) 

'--~~~~~~~-Display (enabled) 

The following monitor subroutines exit via MENAB: 

All display subroutines except DISPR 

GETKY, which is called by all input subroutines except SCAN 

A-40 



THE !CS MONITOR 

A.5.2.5 ENTBY (0336) 

ENTBY is intended for entry of one byte. It initializes (D) = FF and 

(HL) = 0000. It then calls KEYS repeatedly until Not Carry is 

returned indicating that a command key has been entered. After each 

hexadecimal key it calls DBYTE to display the last two keys. 

At return: 

(A) = (C) = command 

(B) = 00 

(D) = count of hex:adecimal keys 

(E) preserved 

(HL) = last four hex keys 

Carry clear 

Zero clear, except if no hex keys 

entered then Zero is set. 

A-41 



THE ICS MONITOR 

A.5.2.6 ENTWD (0346) 

ENTW2 (0349) 

ENTWD is intended for entry of two bytes of data as a memory address. 

AT ENTWD, (HL) is cleared. Alternate entry ENTW2 preserves (HL) if 

no hex keys are entered. Register Dis initialized to FF. 

ENTWD calls KEYS to accept keyboard entry, and returns when a command 

is entered. 

When the first hex key is entered, it is placed in (HL) as the low 

digit, with higher digits cleared. The right hand display digits are 

cleared. 

Subsequent hex keys are shifted into (HL) by KEYS. ENTWD calls DWORD 

to display (HL) at the left after each hex key. After four or more 

hex keys have been entered, representing a memory address, ENTWD 

calls DMEM to display the content of the memory location. 

A-42 

At return: 

(A) = (C) = command 

(B) = 00 

(D) = count of hex keys 

(E) preserved 

(HL) = keyed data. If no hex keys entered, ENTWD 

entry clears (HL), but ENTW2 preserves (HL). If one, two 

three or four hex keys entered, (HL) contains leading zeros. 

Carry and Zero clear, except Zero set if no hex keys. 



THE res MONITOR 

Return from ENTW2 if no hex keys entered: 

(A) = (C) = command 

(B) = 00 

(D) = 00 

(E) = preserved 

(HL) preserved 

Carry clear, Zero set 

A.5.2.7 E.NMEM (OlFF) 

ENME2 (0200) 

ENMEM accepts keyboard entry and stores the last two hexadecimal keys 

entered into the memory location addressed by (HL). After each 

hexadecimal key is entered it calls DMEM to display the data. 

If entry is at ENMEM (OlFF) the existing data at (HL) are displayed 

before any key is entered. If entry is at ENME2 (0200) and the carry 

is set, this initial display is omitted. 

ENMEM returns when a command is entered. If no hexadecimal keys 

precede the command, the data byte at (HL) is preserved. Also, if 

RESET is pressed with no hex keys having been entered, the data have 

not been changed. 

When the first hex key is pressed, it is stored and displayed as the 

low digit of the data byte with the high digit set to zero. 

Successive keys are shifted into the data byte. The data byte is 

stored in memory as each hex key is entered, so RESET following a hex 

key leaves the data entered in the designated memory location. 

A-43 



THE !CS MONITOR 

When a command key is pressed, it is tested for CLR. If the command 

is CLR, the original data found at (HL) is restored before return. 

A-44 

Entry Data: 

Return 

(HL) = memory address 

For entry at ENME2, carry set to suppress 

initial display. 

Data, after command key: 

(A) = (C) = command 

(B) = 00 

(D) = new data entered 

(E) = original data from ( (HL)) 

(HL) preserved 

If command key is not CLR: 

((HL)) = new data if entered, 

otherwise ((HL)) preserved 

Not Zero. Carry set, except Not Carry 

if command is BRK. 

If command key is CLR: 

((HL)) = original data 

Zero Set, Not Carry 

Error Detection: See next page. 



THE ICS MONITOR 

If data entry is attempted to a ROM or non-existent memory location, 

returns via ERRDS to display Err, with: 

(A) = (B) = 00 

(C) = (D) = hex key 

(E) = F7 

(HL) preserved 

Zero Set, Not Carry 

Note that the flags do no~ distinguish the error return from the 

CLEAR return. The content of A can be tested for the error 

condition: (A) = 00 only if an error return has been made. The 

memory address which could not be written to is preserved in (HL). 

A-45 



THE !CS MONITOR 

A.5.3 Display 

Data stored in memory locations 83F8 - 83FF are displayed by the DMA 

channel, provided the display is enabled by a high output at Port 

OC7. The content of 83F8 controls the left digit, 83FF controls the 

right digit. The data must be stored in seven segment code, with 

each bit controlling one segment. 

Figure A-3, are: 

Bit assignments, as shown in 

Bit 0 Top horizontal 

Bit 1 Upper right 

Bit 2 Lower right 

Bit 3 Bottom horizontal 

Bit 4 Lower left 

Bit 5 Upper left 

Bit 6 Middle horizontal 

Bit 7 Decimal point 

Monitor subroutines are available for displaying hexadecimal data. A 

table of hexadecimal symbols is in ROM at 02B3. 

A-46 



DIGIT 

Pos ITION 

THE ICS MONITOR 

1 2 3 4 5 6 7 8 

DODD DODD 
ADDRESS 

83F8 83F9 83FA 83FB 83FC 83FD 83FE 83FF 

I 
2 

10 4 

LS_JQ 
~ 

Hexadecimal Codes for LED Segments 

Figure A-3 

A-47 



THE ICS MONITOR 

A.5.4 Monitor Display Subroutines 

Four display subroutines are described: 

DISPR 

DBYTE 

DWORD 

DOD 

displays one digit 

displays one byte 

displays two bytes 

displays a memory address and its content. 

Several alternate entries are also identified. In addition, a 

subroutine is provided to right justify the high digit of a byte to 

make it ready for display by DISPR. Another subroutine clears all or 

part of the display. 

A.5.4.1 DISPR (02A6) 

Displays one digit at a specified location. 

obtain the low digit, adds this to a 

It masks register A to 

table address to find a 

corresponding seven segment code, and stores the result at the memory 

location specified by (DE). It then decrements (DE) to address the 

next leftward display position. 

A-48 

Entry (A) = digit to be displayed, right justified 

(High bits need not be clear) 

(DE) = display digit address 

Return (A)= (C) = byte entered 

(B) preserved 

(DE) decremented 

(HL) = table address for seven segment code 



A.5.4.1.1 DIGHI (02C3) 

DIGSW (02C5) 

THE ICS MONITOR 

DIGHI clears the low digit of the byte entered in (A) and right 

justifies the high ~igit. DIGSW switches the two digits of the byte 

entered in (A). 

All other registers are preserved. 

A.5.4.2 DBYTE (0295) 

DMEM (0294) 

uB Y2 ( 0298) 

DBYTE displays the content of register A, after loading (DE) with the 

address of the right display digit, so that the data are displayed in 

the two right positions. 

DMEM loads the data stored at the memory location addressed by (HL) 

to be displayed. 

DBY2 

(DE) 

displays 

and the 

the content of register A in the digit addressed by 

next digit to the left. The translation and memory 

write are done by: 

CALL DISPR 

CALL DIGHI 

CALL D1SP2 

Display low digit 

Get high digit 

Display high digit 

A-49 



THE !CS MONITOR 

After the second digit is displayed, the subroutine exits via MENAB 

to enable the monitor, display, and all rows of the keyboard. 

A-50 

Entry data 

DMEM (HL) addressing memory location 

DBYTE (A) contains byte to be displayed 

DBY2 (A) contains byte to be displayed 

. (DE) addresses display digit for low 

digit 

Return (via MENAB) 

(A) = (C) = digit displayed 

(B) preserved 

(DE) addressing next digit to left of high 

digit displayed; for DMEM and DBYTE (DE)= 83FD. 

(HL) preserved 

Not zero, Not carry 

Display, monitor and all rows of the keyboard are enabled. 



THE res MONITOR 

A.5.4.3 DWORD (02Dl) 

DWD2 (0204) 

DWORD displays the content of register pair HL as four digits at the 

left, by loading pair DE with 83FB, the address of the •fourth display 

location. DWD2 displays the content of register pair HL as four 

digits, placing the low digit at the location addressed by (DE). 

The procedure is: 

DWORD: 

DWD2: 

LXI D, 83FB 

MOVA, L 

CALL DBY2 

MOV A,.H 

JMP DB¥2 

Note. that the exit is from DBY2 via MENAB. See the summary of entry 

and return data in Section A.5.4.4.1. 

A.5.4.4 DMWD (02CE) 

DMWD displays a memory address and its coritent. It comprises a 

single instruction, CALL DMEM, immediately preceding DWORD. The 

address contained in (HL) is displayed at the left and the memory 

content, ((HL)) is displayed at the right. See A.5.4.4.1 for entry 

and return data. 

A-51 



THE ICS MONITOR 

A.5.4.4.1 DYPC (02CB) 

DYPC loads (HL) with the data stored at 83E6, E7 and enters DMWD. 

These data represent the last recorded user program counter when 

operating in breakpoint mode with interrupts enabled, so DYPC would 

always display its own address and instruction. It is useful as a 

debugging and analysis tool if called by an interrupt service 

routine, because it will then display the interrupted instruction and 

its address. 

The table below summarizes entry and return data for DYPC, DMWD, 

DWORD and DWD2. 

En try Data 

(DE) 

(HL) 

Return Data 

(A) 

(B) 

(C) 

(DE) 

(HL) 

A-52 

DYPC 

=(H) 

=(H) 

83F7 

(PCADR) 

DMWD DWORD DWD2 

Digit Address 

~~~~ Memory Address~~~~~~ 

=(H)

=(H)

83F7

=(H)

=(H)

83F7

=(H)

=(H)

(DE)-2

.~~~~~ Preserveo-~~~~~-

A.5.4.5 Clear Display and Memory

CLRGT (0282)

CLEAR (0287)

CLRHI (0289)

CLRLP (028C)

THE ICS MONITOR

CLRGT clears the right hand four digits of the display; CLEAR clears

the entire display. Neither of these needs any entry data.

CLRHI starts at 83FF, the right hand display digit, and clears the

number of bytes specified by the content of register B, working

downward.

CLRLP starts at the memory location addressed by (HL) and clears the

number of bytes specified by (B), working downward. CLRLP is not

restricted to the display, but can be used to clear any desired part

of memory, up to 256 bytes.

All return with (B) = 00 and (HL) addressing the byte below the

lowest byte cleared. For CLEAR this addresses RGNAM.

Zero is set. Carry is preserved.

Registers A, C, D and E are preserved.

A-53

THE res MONITOR

A.5.4.6 ERRDS (OOBC)

Displays Err in three left hand digits of the displays, the clears

the remaining digits. No entry data required.

Returns

Zero, Not

(A) = (B)

(E) = F7

C, D, H,

A.5.5 Time Delay Subroutines

A.5.5.1 DELAY (0236)

DELYA (0238)

Carry

= 00

L Preserved

DELYA counts down in register A and returns at Zero. DELAY loads

register A with 83H to delay slightly less than one millisecond.

Return (A)= 00, Zero set. Carry and all other registers preserved.

Each count in (A) represents 15 clocks. Including CALL and RET, the

delay generated is given by:

t = (15 (A)+ 27) system clocks

A-54

THE res MONITOR

Some sample values calculated from the system clock frequency of

2048000 clocks per second:

A

00

87H

83H

42H

20H

OCH

A.5.5.2 DELYT (03EB)

DELYC (03EE)

Time (milliseconds)

1.888

1.002

0.973

0.497

0.248

0.101

Subroutine DELYC delays for a time period set by the content of (C)

and returns with the input from PORTOBO in the carry.

DELYT calls DELYC and then exits into DELYC, thereby doubling the

delay period. These subroutines are used in serial data transmission

and receiving, where DELYC gives a half bit time delay and DELYT a

full bit time. They are also useful for giving longer delay times

than are available from DELYA. Some delay times are tabulated below.

A-55

THE res MONITOR

Enter with (C) = delay count

Return Carry= PORTOBO

Zero set

All registers preserved

The delay time is given by:

DELYC 48 + 74 X (C) system clocks

DELYT 106 + 148 X (C) system clocks

These counts include 17 clocks for the user's call to the subroutine.

Some typical values are:

DELYC DELYT

(C) Clocks Time Clocks Time

(msec) (msec)

01 122 .06 254 .12

lB 2046 1.00 4102 2.00

37 4118 2.01 8246 4.03

53 6190 3.02 12390 6.05

6E 8118 4.00 16386 8.00

70 9298 4.54 18606 9.08

SA 10260 5.01 20530 10.02

FF 18918 9.24 37846 18.48

A-56

A.5.6 Shift HL Subroutine

SHLRT (0220)

SHLRZ (022E)

SHLRC (022F)

THE res MONITOR

Shift the content of register pair HL right one bit, returning the

previous least significant bit in carry. SHLRZ shifts zero into the

high bit; SHLRC enters carry into the high bit. SHLRT tests the

content of (HL) before shifting, and returns Zero set if the value

was zero. These subroutines are useful in double precision

multiplication and division.

A.5.7

· Enter (HL) = two byte value to be shifted

Return (HL) shifted right one bit

(A) = (L)

Carry= previous LSB of (HL)

Breakpoint System Subroutines

BKLOC (01C3)

Tests whether a memory location exists in the

breakpoint table. See Section 9.6.2

BKENT (01A3)

Enters a breakpoint. See Section 9.6.2.

BKRMV (0186)

Removes a breakpoint. See Section 9.6.2.

A:-57

THE !CS MONITOR

A.5.8 Move Memory

A monitor function allows copying the contents of a memory area

either to a higher overlapping area or to a non-overlapping area.

A.5.9

A-58

Enter COPYL (0059) with:

(C) = number of bytes to be moved

(DE) = address of the highest byte to be moved

(HL) = new address for the highest byte.

Return is to the monitor at NORUN. Press RESET

when finished. If more than 256 bytes are to

be moved the registers must be loaded again

and a new entry made.

Serial Data Communications

SOTBT (0382)

Returns successive bits for serial data transmission.

Refer to Chapter 9, Section 9.6.2 for details

SINWS (03CF)

Receives serial data, returning after each character.

Refer to Chapter 9, Section 9.6.3 for details.

MICROCOMPUTER TRAINING WORKBOOK

APPENDIX B

BINARY/DECIMAL CONVERSIONS

Appendix B

BINARY/DECIMAL CONVERSIONS

Several programs are presented for conversion of decimal data to

binary data. All of these are written as subroutines; generally the

data to be converted (or a memory address for the data) are entered

in register pair HL and the result is returned in the same, with all

other registers preserved.

8.1 DECIMAL TO BINARY INTEGER

The conversion from decimal data to binary can be done by calculating

and summing the values of the su·ccessi ve bits. Figure B-1 lists the

values of the bits.

procedure:

These can be calculated by the following

Bit zero value= 1 (1)

Next bit = double the value (2)

Next bit = double the value (4)

Next bit = double the value (8)

Next bit = add one fourth (10)

to previous value,

or multiply by 5/8.

B-1

BINARY/DECIMAL CONVERSIONS

Bit

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

20

24

28

Values of

B-2

Decimal

Value

1

2

4

8

10

20

40

80

100

200

400

800

1000

2000

4000

8000

10,000

100,000

1,000,000

10,000,000

Bits in a Decimal

Figure B-1

Hex

Value

0001

0002

0004

0008

OOOA

0014

0028

0050

0064

OOC8

0190

0320

03E8

07DO

OFAO

1F40

2710

186AO

F4240

989680

Number

BINARY/DECIMAL CONVERSIONS

The bit value can be calculated and added into the sum representing

the binary value as each bit of the decimal value is processed, or

they can be pre-calculated and stored. It is faster and simpler to

store a table of the bit values, but this requires memory for the

storage, as shown in the program of Figure B-2. The procedure of

Figure B-3 calculates the values and pushes them into the stack; then

recovers each bit value as the decimal value is shifted. Thus no

memory is permanently allocated to the bit value. The stack is used

for 38 bytes - six to save registers and 32 for bit values. Either

subroutine meets the same specification, except for length.

DECBN Convert four digit packed decimal value to two

byte binary.

Enter with decimal value in (HL)

Return with binary value in (HL)

All other registers are preserved.

The programs of Figure B-4 can be used to test either of these

programs.

B-3

1-
w
w
I
en
(.9
z
0
0
u

2
w
I
en
>en
(.9
z
z
<t
C:
I
C:
w
I
=>
a..
2
0
u
0
C:
u
2

en
2
w
I
en
>en
a:
w
I
=> a..
2
0
u
0
w

~
C:
(.9
w
1-
z

A D D R

8 dc!J 0

1

2

3

4

5

6

7

8

cf a? c:,/ 9

A

B

C

D

E

F

8 c:.P, ::j) 0

1

2

3

?23 4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

r S'
:I> l1
(! l5"
I I
0 !)

{) 0

0 I
L/ ()

J' :;,
r) ll
tJ 3
d. 9
2J :l
3 t/-
f ~
fl 3
5 F
{) II
? It
lS 7
t) 3
7 7>
8 1
(! c1
bt 9
IP ~
£ g
(!, I
l]) I
F I
C q

DECIMAL TO BINARY WITH TABLE

p u s H f-> s w
1) u s H IT)

·-p l) 5' J+· B
L X T]) 0 0 0 0

,,

L ~ I R ! ~ 4 a I ·-L J. /J. /l .d.~L ,, - .A .bL)
/ ~ .. , d.. T.; ~ /. __ +

.,., .,·-- ~·-- ~-I. ~:. :I-.
L rD Pr x B 1Af1.:- &.. ~ .,_,"/;, ., ,_ ,1 ,n

I lV x B ./.a-. ft/Is Bt? ~ ~ f,

7) A-]) H /J1 -./:; ..J,,_ . - .,, --/ ,,~

J N C i ~ 3 14 .J 1:/'I A~_,,/-~~

,/; A ! ·. /. 1 ,1, _.1 - tJ

fl-])]) E /),,I~ h 1,4 A J..-,a J, ,,A•

M D V £ A CiddA··-- A.I.- ,1, 41

L D ft)(B 1 ~- /.z>E)
I+)) C J>

..

/V) 0 V 1)
I A ,

I N 'X B ,;J,_/.,,1).,_ • - •) •• - /J. I ~J

/VI D V A L _,,,,, # I.. ,, ;_J~--1#.-16 -I

0 R A fl
I

/._ :.~..t • ,_ /) I J A- J /)

J tJ ~ x' () 61. q rY~ f! .-h~ ;?~

-· - ~ ~ h A-' .I. . 7:

j_ -- C//,4 • .) /1 • A.-h- .II.

X C H 6- l/'.1/L) i:--A • - H:

p 0 'P B ~ -b" ,f ,,,,.J·-~ ")

r,p 0 p D II

IP () p p s w
R E 7

E N T E R w I IT t4
(J-1 L J -=- p A- C. K t:1) J)EC.:I MAL

L.J. D ~ 6-TT C:::.

R E T u R N
(I+ L) - B I N A- R-'I EQ u::rvAL.c.N T

A L L 0 T I+ E R °REGI.STE~S
p R E s .E R \) I;: I)

Figure B-2a

1-
w
w
I
C/)

(!)

z
0
0
u

~
w
I
C/)

>
C/)

(!)
z
z
<(
a:
l
a:
w
1-
::J
a..
~
0
u
0
a:
u
>-

C/)

~
w
I
C/)

>en
a:
w
1-
::J
a..
~
0 u
0
w

~
a:
(!)
w
1-z

A D D R

a c;;;do
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 o<7~0
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

.If 0
I ~
I}- !)

0 ,F
.7J ()

0 7
£ JJ
0 8
,:2 t)

{) 3
CJ 0
CJ I
(1 J7
0 t)

t, 4
tJ t)

,3 0
() CJ
,;;;. p
0 CJ

I "I
tJ c)

"(;) It
0 ()

() !
tJ cJ
CJ 4
() tJ
~ :2
CJ 0
/) I
t) {)

TABLE OF Bl'l' VALU.t.ib

'1~ ~~-"'-~ i . 7. /5"
/

~ /,¥

~/3
.

v:l·J': /.2

~//

0{-~ /~

yq_. 7'- 9

--A·~ i'

~·r,7

'-A;:/: ~

iA'_·~-<
~-~¥

~3

'-A~·f. ~

t.A~·~ I

c.A~~ ~ t:J

Figure B-2b

B-6

I
L.LI
w
I
Cl)

~
z
0
0
(.)

~
LU
I
C/)

>
U')

~
z
z
<t:
0:
l
o:
LU
1-
:J
Q.

~
0
(.)

0
0:
u
~

U)

~
LU
1-
U')

>
Cl)

0:
LU
1-
:J
Q.
~
0
(.)

0
LU

~
0:
~
LU
1-z

A D D R

8 de:/ 0

1

2

3

4

5

6

7

8

R c2c2 9

A

B

C

D

E

F

8 ot 3 0

1

2

3

4

5

6

7

8

9

A

B

C

c? e:23 D

E

F

a :2 .,t./ o

Rc:2¥,
2

3

4

5

6

7

8

CODE

r=- 5
2) L,'
(2 S'
E .,8
:? £
0 ,t.j

~ I
0 I

CJ 0
E 1,'J

~ 9
E s
L/ l2)

~ 4
cf2_ 9
£ L5"'
~ 9
£ 15
0 q
3])

(;. ~
L;2 9
·J' ~
£ .8
I I
/) tJ
() ~

i.3 E
/ CJ
(!_ I
cf_ 9
J_) c;J

4 a
t' c;)

DECIMAL TO BINARY WITH STACK

p u s f+ p s w
p u s 14 rb
p l) s H-· B
X. C H 6- f:DE)J::-Ao_~~,...A •

M V I /-}- 0 J/ "/_ :t #;-A . _. T..
I (I

L)(.I H () {) c) I
,

,,,/7_. ,, "'"--· jJ ~
p I J s H H I /,C) /Oe'J / &::>e'Jo

D A-]) I-I .,;; ,J /_) ,t'lao. o'<L),t,O

p u s H H
!M /J l/ L, L
/Y1 D V 8

I

H
D It]) H'
:p u ..s f-1 fl d ¥LJ 4-L)cJ ~C),Oe'J

I}) A- 1) H
p u s H fl p J" t:7 J>c)~ ,?t!)C)L'

1) A-]) B
rn (_ R A
"3" N 2. IJ' /) dl 9

'/.. ~ ft 6 ()IL)i:-Af.A,_· __ ~/J ,LA/} Al

L '/.. I "!:;
I 0 0 0 0 !1ti ,.A J ,l • .- ~ ,.
,

AfaA J_ ,, ~
f

M J II A- I D I~,,,_ ~- /b /,. r-)
I

p 0 p B (~!',)~ tJ. . ~ ~A-. A A

J) f+ b 1-t l(('V)~ i ·-~) /:_ :,-_
J N C, ! c:J. /./ ,S' 1;1 ~~ ·,. d L ~ .L

~ ~ . -" _d_./,t. -a

I=- /\} T £ R w I T fl
(!-1- L) = p A- c... K E-:b DECI. t--..\AL

4]) I 6-T TS
R E T u R rJ

(H- L .) = ~ I. N f\- RV Ft~HJI\l ALE/VT
I

Figure B-3a I

f-
UJ
UJ
I
(f)

(.'.)

z
0
0
u

~
UJ
f-
(f)

>
(/)

(.'.)
z -z
<(
a:
f
a:
UJ
f-
::J
a.
~
0
u
0
a:
u
~

(f)

~
UJ
f-
(f)

>
(/)

a:
UJ
1-
::J
a.
~
0
u
0
UJ

~
a:
(.'.)
UJ
f-
z

A D D R

? ,.J.c./2
3

4

/7d.t/ 5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

COOE

E 6 X
tJ 9 1)

E 8 X
3 tD J)

e '1 0
8 l)

i' d
E /j -/..
C I 'P
:lJ I p
~ I -p
{! 9 R

C H G-· 'J.)LJ~ I. .. '.-· . ·-~ .. ,I.
A- J) B t2:id, J._·:, .-d ~ , A

C. 1-J & {f/L)'=-.AA_ • _t? 1-/J. A

C f< Ii tz.~ ·- :;_ .I .. r)

N 2 f' d 3 J) ~ - ,711 --;-A A L..
.J

AA:._ .. ,L,~ Aef~
.t1 • 71: A.LA~. ,. -

C, I+ 6
l> 'P B ~ ,,,J>-111 A(!,

0 p]) ~ .""TM IJ d),C'

0 p p S' w ~ ... _TA.A,, /}F

E T

Figure B-3b

B-7

B-8

f
w
w
I
en
t9
z
0
0
u

~
LU
f
en
>en
t9
z -z
~
a:
f
a:
LU
f
:)
c..
~
0
u
0
a:
u
~

en
~
w
fen
>en
a:
w
f
:)
c..
~
0 u
0
w
!;;:
a:
t9
w
f
z

A D D R

a o!O o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

(!_ J)

4 (p
() 3
~ D

,l 0
J' ,;i
I I
r F
f' lS1
{!. :I>
JJ J/
t) :;
e LS'
() 0
f ::J...

TEST FOR DECIMAL TO BINARY

c_ A- L L £ Iv T w])

C: fJ- L L r.I) £ C B 1\/

L X I D
I R 3 F F .,

C A- L L 1) w rb ::l

0 M p cf ~ 0 ()

Figure B-4

BINARY/DECIMAL CONVERSIONS

A single byte conversion can use either of the foregoing procedures,

but a simpler method results from separating the two decimal digits.

The low digit, with a value from Oto 9, is already in binary as well

as binary coded decimal form. The high digit, 00 to 90, can be

converted by a binary multiplication by 5/8, which only takes five

steps.

RAR

MOV E,A

RAR

RAR

ADD E

(A)

(C)

(A)

(A)

(A)

X/2

X/2

X/4

X/8

X/2 + X/8

Figure B-5 shows the complete subroutine, which accepts the two digit

decimal number in (L) and returns the binary equivalent in (L).

B-9

1-
UJ
LU
:::i::
U)

(!)
z
0
0
(.)

~
LU
1-
(/)

>
(/)

(!)
z
z
<t:
a:
I
CC
LU
I-
=>
a..
:E
0
(.)
0
a:
(.)

>-

B-10

U)

~
LU
1-
U)

>
(/)

a:
LU
I-
=>
a..
:E
0
(.)

0
LU

!;i:
a:
(!)
LU
1-z

A D D R

aotot o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

F IS-
7 Lo
& 6
0 IF
ilh 7
If b
I F
I~ p
I ;:=
I F

/ Lr
? 4
~ F
F /
{!, 9

DECBI - DECIMAL TO BINARY INTEGER - ONE BYTE

IP {J s H p s w
M 0 V A- L
ff Iv I ·o F (ff)'--#A. ,~·-•r. ,
fv\ {) V /.J. A I Jl-)k- _#Ah) ,;J.·- -~

R A
I

(A-)1c- 1:-~ #_J._.f-x L
R A 1< ~ I'/

M /) \/ J_ A (L)~ ~ j ·-/) d· ~---;

R A R ~
,

R A- R (/1-)~h / ·- ') ..,(, : .. .- -r;

A- 1) 1) L (/1)1:;-~ L. '..,./ dfc,;__t;
A-1) J) 1-J //i)~ ~ • • ~ • A~,1 I)

M D l/ L A (L) '=- /. ." • _,.,A./',,_ J ,J " j , ..,
tr p 0 p p s w

R £ 7

E N T E R w .I -r H
(L) - p A- C K E D "n1=C.IMAL

rJ. J) I 6- I-TS
R F T u R }J

(L) - io I tJ A R \/- Et.) u .i\JALE: NT
l) s 1=- s IR E. G _I s TE R. 1--1

A- L L 0 T H £. R s. P RESER\) E~

Figure B-5

BINARY/DECIMAL CONVERSIONS

The procedure of Figure B-5 can also be used with multi-byte values.

Almost any realistic program that requires decimal to binary

conversion will also have a binary multiplication subroutine, which

can be used to multiply the value of the two digit number by an

appropriate

stored in

power of 10 expressed in binary.

a table, or they can also be

These values can be

calculated by binary

multiplication. This scheme is by far the best when more than four

digits are involved.

B.2 DECIMAL FRACTION TO BINARY FRACTION

Surprisingly, the conversion of a decimal fraction to a binary

fraction is significantly simpler than the conversion of integers.

The decimal fraction is repeatedly doubled: if a carry out of the

fraction results, a one is shifted into the binary value; if no carry

occurs, a zero is shifted in. Figure B-6 shows a 16 bit conversion

program. For larger numbers of bits, the data would be kept in

memory, and the procedure can then be extended to any desired

precision.

B-11

I-
LU
LU
I
Cl)

(!)
z
0
0
u

~
LU
I
C/)

>
Cl)

(!)
z -z
<(
a:
l
a:
LU
1-
:J
a..
~
0
u
0
a:
u
~

B-12

Cl)

~
LU
I
C/)

>
Cl)

a:
LU
1-
:J
a..
~
0 u
0
LU

~
a:
(!)
LU
1-
z

A D D R

8 o<~ 0

1

2

3

4

?c:20 5

6

7

8

9

A

B

C

D

E

F

8 J7 0

1

2

3

4

5

6

7

8

Rc:27 9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

cooE DCFBF - DECIMAL FRACTION TO BINARY FRACTION

p IS p u .s H p s ~ 1.. IA '.A:..t. / .. _ ~ I -

:1) l, :p u s H J) ~

I I L x l ·J) {) 0 0 I I'd._ J "- - -'·· l,_.)
{) I

,

/,,:.7/ .J!',J M
() 0 ~ • • 1 _/_u ·A

7 lo H M D V fl- L ~ ./1.#- ~-A ~- /

R 7 4])]) f) I A AApj:;-,,.) ~~, I /-IL)

o2 7 J) ft fl tf

0 ~ /v1 t) [/ L. (}

7 e M /I-
r

Jl () V
JJ F fr]) C A
c:l 7 "J) A- A
h 7 /V1 IJ V I-I A
7 11 M D V f}- : E J 1,,-.//-: l',r. J, J. I A A-d)

I 7 R A
,

_,/ rJ ,,/ •.• A ;j ./). _/,, ~ : •) L
s F f'-'i () i) £ /J ,;.,;;, #,_:..., ,,d. ~ L.--r.~~
7 /I /vi 0 \) I+ J) t!'/

7 R A- L
I

I
'S 7 M 0 V J)

I
f)

J ~ - "3" (\) e.. f 62. (p ~ ~-- ~ 7'. "d - /. J. J. • A

6 6' __1: ~ -L :.l,h /LJ~ 7,

? ~ ti

E 8 K C, I+ & (1-1-L) Ir,- _/._ • A J. • J. A - 7: _.)

.]) / p 0 p b l~___.-ko ~£/,
F / p 0 p p s u) A,.,.,.;_ 'IA._...)

e 9 R E T /

Figure B-6

BINARY/DECIMAL CONVERSIONS

B.3 BINARY TO DECIMAL CONVERSION

Since each bit in a binary number, either integer or fraction, has

twice the value of the preceding bit, this conversion starts with a

decimal value for the least significant bit and repeatedly doubles

that value for succeeding bits. The successive bits of the binary

value are tested, and each time a one is encountered, the bit value

is summed into the decimal value.

The program of Figure B-7 operates

registers, and allows conversion of

in memory rather than

any number of bytes.

in

It

demonstrates passing parameters to a subroutine through memory with a

command and address table. Five areas in memory are required:

Binary Data

Decimal Result

Temporary Bit Value

Value of Least Significant Bit

Command and Address Table

The conversion subroutine is entered with (HL) = address of the

command and address table, which contains (in this order):

Number of binary bytes to be converted

Number of decimal bytes

Binary data address

Result address address

Temporary bit value address

LSB value address

for least

significant

byte

B-13

BINARY/DECIMAL CONVERSIONS

The conversion program alters only the result and the temporary bit

value. None of the other data are changed, so the binary value

remains available for further processing and the other data could be

stored in ROM.

A subroutine, RECAD, recovers these addresses and places them in

registers for use in initialization and in the repetitive conversion

loop. In the initialization, the least significant bit value is

copied from its permanent location to the temporary bit value area,

and the result area is closed.

In the loop, RECAD is called with a byte count in register C

(initially set to 00), and RECAD adds this value to the binary data

address from the table, returning the address of the binary data byte

now being processed. The data byte addressed is masked by the

content of register B (initially set to 01 and subsequently shifted

left), giving the value of the current bit.

If the current bit is one, another subroutine, DCADM, is called to

add the decimal value of the bit (addressed by BC) to the ~ecimal

result (addressed by HL). Then the bit value address is duplicated

in HL and another call to DCADM adds the bit value to itself, giving

the value of the next higher bit.

B-14

BINARY/DECIMAL CONVERSIONS

At the end of the loop, the bit mask and byte count are recovered,

and the bit mask in register B is rotated left before repeating the

loop. When it shifts from bit 7 back to bit 0, the byte count is

incremented and compared with the number of bytes to be converted.

The command table shown is suitable for conversion of a four byte

binary value with 16 integer bits and 16 fractional bits. The coding

given is for locations 8280 to 82F4, with the command table, LSB

value and scratch pad in 8300-831F; binary data and decimal result

are in 8320-832E.

B-15

f
UJ
UJ
I
(/)

(.:J
z
0
0
u

2;
w
f
(/)

>
(/)

(.:J
z -z
<(
a:
f
a:
UJ
f
:::>
0..
2;
0
u
0
a:
u
?-

(/)

2;
UJ
f
(/)

>
(/)

c::
UJ
f
::J
0..
2;
0
u
0
UJ

~
a:
(.:J
UJ
f-. z

B-16

A D D R

a o2P 0

1

2

3

4

5

6

7

8

9

A

B

C

D

J?c:)J} E

F

8 o29 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

F §'

e 5'
l2) ~
~ 5
c2. ..3
I/ 6
(J £
0 0
r:1 3
:; 3
6(3
(! .])

C C
? :;;

7 7
c) II
I <R
7 E
.3 6
~ 0
c2 3
I 3

0 8
d J)

e ttl.
tf E
J' ~
£ I
tJ I
0 0
{) I
() C)

BINARY TO DECIMAL CONVERSION - INITIALIZE

p u s I+ p s u) L •-6) IA..:.. -r,~.AJ

1) <) s 14 B If

p u s H· 1)

p l) ~ 14- 1-\ },, A /1. A - .A a:d~J

I tJ X H
M 0 v B M (1!.,)1.:- ~.A • - 11 J, • 77. J

M t/ I C. , 0 t) .,,l..;t: cJ ,:;J ~-. ?' I'
/

~.r,.) ,Ile /1.J>
I Al)' f-} U.A ·- ~ J1..1. - - .drU
I tJ '/.. 1-l j_ -~,..A., -J,.-r;. (

I. tJ x H 1/J~.JAA.(;,l,A•. ,JT t:i...A.JA • .A.A)

~ fl L L R E C A- b f/L)'--.A ..,_ ,1~ /J ,.,1..A .. • - •

lb&)+-.JL-~ ,u I • .. .,-,,A.,/,.

(/0._)'- L5/3 ,.I,,,_, I • • ,,. .J,,JA. J

r7 /vi 0 I) /II I A (M)~ ~,,,.
.
·- tl /. .~

L 1) A X B ~ ·-
,,

L-S .6 , L, II • A ,

8 T ft)(]) . , ~ /, -~ ·- ,1 ...

M {) \) I+ /\-1 '11-)""-~L~
/'4. ii

,

It? ,t:?..,/ 1A 11A ~ ,1
17 I M (J 0

I

AA-, ,I~

I ,J 'J H
I tJ '/... 1)

I N '/... 8
1) (_ R R

,__ :! tJ ~ ? ~ R E

p {) p ff iA.-LA A - .A~
L 'x I. .1< 0 I CJ CJ

I

I/ (c)~.Lt A .• • '* - c}C)

c 8)1.:-_L__:t ,__.. - J. = c; /
N 0

-p

Figure B-7a

f
w
w
I
CJ)

(.'.)

z
0
0
u

~
w
f
U)

>
CJ)

(.'.)
z
z
<(
a:
r
a:
w
r
:::::>
c..
~
0
u
0
a:
u
~

CJ)

~
w
r
U)

>
CJ)

a:
w
f
:::::>
c..
~
0
u
0
w

~
a:
(.'.)
w
r
z

A D D R

8 ,..2/t- 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

a o.?8 o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

3 ~ ~ 0

1

2

3

4

J'C:ZCs
6

7

8

CODE

~ ~-"

C Is'
~ ~

E l,
iJ. 3

C 7)

C C
? c2.
IJ- h
£ J
7 lE
E B
C J../.
£ 0
f ~
C 9
6 a
C J)

E ()

J7 ~
{; I
£ I

7 f
CJ 7
L/ //
]) cf<.

IJ ()

J' ~
0 {!,

7 E
tJ 9
2J o2
If t)

? ~
[2) I
{! I
p I

{!_ 9

~ u s
p u s
.I N x
"P u s
I N X
~ A- L

f}- tJ It
'"P 0 p
M 0 V
)(C H
C N 2

fl\ 0 V
.N\ 0 \/
C A- L

p I() p
p D p
M D \)

rR L C
M 0 V
3" A} C

I. tJ R
M D \)

C M p

0 N C.

p () ?
'P 0 'P
-;:p 0 p
R E T

H H J_ u,)A - ~ ~ ti. _J_J,._ - ••)

1-t 13 L ·-, --,._ " t!./kt. .,c:;t
·H (),,1..A,.,-)~A • II~~~

H H
,

H
L R E C, ,4- D (J..IL Jc.-A • - :__tf ~ A' ,ILA,

rJ>G, 1:- /'i,, A • 1:1-. ~d.-' ...
I/Al' 11,,-..J,..;..t: , . ~ . ,!; .A .A. . • ,, '

,vt '7lll'vlj,~ d,..,J A,. J L - -- T /~.1!-
H 1/~,,J,,. .#,,. Ll~,u ·_.,, ,1_ A + >

1-1- M (A-)1.:- -'"'--. -- ti L~ J

&
I

I/IL)1.::- ,1, A A
A-/ ,,.,- ,,11!,h

1) C Pr "J) M '11 /·-; ~-/ d. _,.
,J--/;; ~;ti/: ,l)A1 I:. I (/"

"''--~1~A J5. A,A_._H

L C l'-12 ri A.·,,,._~ /1..,'J; ,,_~-.A
I

1-1- ' B ,.-i~~~f#L)
L. t: C A 1) fV1 tldd, L·__I: ., - .i. - ,,, , ~

. £,,,/_/i
/

8 1~-)- ... JJ,~

H ~A
_, A _' __ .JJ A .JI ,,11,. 1

I+ /3
lif?_#,;1; ~-f.~

t3 fJ d, ,/:,I. A.-~ L A .-r:.. ~ J

9 :2 I} t) ..:r'!'. - 1 - 17. • .A

--~ - J. AA ... ~,,~J~

d_A ·-Lr~.:.~
C r? (/-~ ~ :*-
I} /'11 /J

- J.. of;_,:.. H
C

/

.../.' ·,., ~ tl~.J~J ,,_ .. -f

x 1...2 /t {) ~~~~-~---
/,~/, L /.. 71. ./_ -·_ /.eJ

itl ~ ?I
0) £;(r.r A, A "JI:".. ,J 0

B .I, 0 =~:. DI~ •} /! A , -~

p S' w 11 J: \ L ; T~ ",,,: d~ ·_ 111

t:7

Figure B-7b
B-17

B.-18

1-
UJ
UJ
I
C/)

c.,
z
0
0 u

~
UJ
I
C/)

>
C/)

C)
z
z
<(
CI:
l
a:
UJ
1-
::J
Cl..
~
0
u
0
CI:
u
~

C/)

~
UJ
I
C/)

>
C/)

CI:
UJ
1-
::J
Cl..
~
0
u
0
UJ

~
CI:
c.,
UJ
1-
z

A D D R CODE

8 0

1

2

3

4

5

6

7

8

9

A

B

?~~c 7 E
D J' I
E IS- F
F ~ 8

8 c:2._.7) 0 7 £
1 (! E
2 CJ CJ
3 l., r-7
4 J) IS-
5 7 f'
6 kt{ l3
7 IS E
8 dl 3
9 .,-&,
A ~ 3
B J.j £
C c:l. 3
D 4 (p
E £ I
F (!_ 9

8 0

1

2

3

4

5

6

7

8

RECAD - RECOVER ADDRESS FROM MEMORY

£ ;,J T £ R A ' R '1C,C WITfl
(II- L) ::: f}- J) J) R ESS OF AnhRESSE~
{ C _) . = 0 F F s ET FROM F, R~T

R E T L) R.. tJ
(H L J ::. F L 'R. s T Pt1)b'Re.SS

'P L u s OFFSET (c)
(1) E) - ~ I:: c_ 0 ~ A~"S:)~£ s cs.
(B r J .::: T 1-t I ~ rt') f+!)~~E.SS
C A-) .:: E N T R. I\/ C.O tvT E:.lJT

0 F R E6-I.STE~ ~

M {) V A- t'v1 ' A J)]) C,,

M {) \) E
I A ' /} J,,,/ - ./ / .. 7.

I tJ x H- ' ... ~ ct.JIJ ~ I

JV) () V A-- IM
I • J '> .~~ -T. A .J'J-1 A A

A C I 0 0 I

M () v l)
I A u

p u s H: :I) j l,d

,,_ ..lL::ic. Jz.)
M {) V A- B ~r:-~ c& J _...~ /A.)

H
,

" I A))l

' ~ D V E M ,' (J)E) ~,.,,, ,.,_,, -11

I N '/.. H > ad~ j

M {) v b . M
I ;,J 'I- H I,
M D V C.

' M I (13e.,) ~ ~-d
I fJ >(t+

,
...... _.,/)_,,1,,,._ __ ,,, I

M 0 I) B I M
p C) f:: H l#L) "=- /~ - .,.

R E -r "_/),J; II _ _,.f -j- ~.,, +
#tl

Figure B-7c

1-
w
w
I
(/)

(.9
z
0
0
u

~
w
I
(/)

>
(/)

(.9
z
z
<{
a:
l
a:
w
1-
::J
a..
~
0
u
0
a:
u
~

(/)

~
w
I
(/)

>
(/)

a:
w
1-
::J
a..
~
0
u
0
w

~
a:
(.9
w
1-
z

A D D R

So(£ 0
1

2

3

4

5

tfd<E 6

7

8

9

A

B

C

D

E

F

ac::RFo
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0
1

2

3

4

5

6

7

8

CODE LJCALJM - LJ~CiMAL ADD iN MEMORY

£ 6-~ p v s ~ (-\-
J) .Ji" p t) s; /-t J)

e s p V s /-+· B
~-~ fV1 D V £ f+
s- 7 M D V 1) A
;:; F X R A A'
{) fl L D A- x B
f E A- 1) C M

c:2 7 1) Pr Pr
? ~ {V1 D V M I I}
{) 3 I Iv '/.. B
c:l 3 I (\) X H
I 1) D C R E
C, :; 3 Iv z tf & £ ~
1£ b
R ;;
7 /l- fl(D \) A- J)

(!,_ I p D ? B
]) I p D p D
£ I p ~ p H
(' t7 'R E. T

E 1V T E R A- tJ l)

(H- L J - A u G E
(R C) - A- 1) D E.
(~) = R '/ T E

A [D D E rJ 1) p R E
A- u G- E ~]) 'R. E t:>

A L L R F cr .I. s T
f- X c.. E ? r F L

C. y s E.. T L F
ft :I 6- J-l 8 y T 6

(F ') 4::-- i .7- /I - - -:r:
(.7))4:- 1/d ~~, /}- --r.

r

l(',4)4- ~ ~ ~ l'7 - --r.
- V

"RFTI J~\\) 1,)7 TH
,J"b Prn:DRESS
tv"b Al>DRESS

C..D1) rJT

St:R\JE"b
1-.AcED t'JY SOM

E'RS -:PRESERVE~
Pr&S

CPrR~'/ t-RDM
Al)DI T::C.ON

Figure B-7d

B-19

1-
w
w
I
U)

(.9
z
0
0 u

~
w
1-
U)

>
U)

(.9
z -z
<(
a:
I-
C:
w
1-
:J
a..
~
0
(.)
0
C:
u
>-

U)

~
w
1-
U)

>
U)

a:
w
1-
:J
a..
~
0
u
0
w

~
a:
(.9
w
1-z

B-20

A D D R

s, f O o
1

2

3

4

5

6

7

8

9

tf3t) A

B

C

D

E

F

8. _p / 0

1

2

3

4

R.-?/ 5

6

7

8

9

A

B

C

D

E

F

8 3c:2. 0

1

2

3

%'c3~ 4

5

6

7

8

CODE COMMAND TABLE AND LSB VALUE

/J t./
/) !3
cf< r)

R .3
~ ;./
? 3
I ~--....
f 3
t) II
I' 3
& tr
t) h
? 9
p 7

lr.2 IS
/ lo
I) b
0 t)

C) 0
& CJ

'"' t)

CJ e)

0 0
0 0
0 0
I') 0
t} 0
() 0
0 0
/) tJ
0 CJ
0 ()

() 0
() 0
0 0
() {)
I) tJ
r) 0
I) {)

C> D

'f EIAJltRV H"/TE.S
JI])EC1 MltL. BYTES
BI.Al II R Y "])IJ-T 11

A-J)])RESS

VECIMf+L.. ~ES ULT

A 1\"t\ RE.s~
~C RA-Tr~ 1>~1)

A"~~~ss
A:DD"RESS t=:oR

LSB VPrLVt
1/AL\JE l"\f' LSB

LJI ~YTES)

, I/

Sc., ~f\TC' rt '+>~~
CI\ "°"?,.' TES)

,v

fl"INP.rR'. D~TR

,i.,

lnEC..I.MAL °l<Es I lLT

... ~

Figure B-7e

BINARY/DECIMAL CONVERSIONS

B.4 BINARY FRACTION TO DECIMAL FRACTION

The program of Figure B-8 is a shortened version of the binary to

decimal conversion, taking a two byte binary fraction in (HL) and

returning the two byte decimal equivalent in (HL). For economy of

program

the two

space it does not save the other registers, and returns only

high bytes of the result in (HL). The other bytes of the

conversion are stored in memory, with the least significant at 8308

and most significant at 830F. It requires that its scratch pad and

result area occupy the lowest 16 bytes of the page immediately

following the least significant bit value, which is stored at

82F8-82FF. The program would work for integers or mixed

integer/fraction values if a different LSB value were stored in that

location.

B-21

B-22

f
l.LI
w
I
Cf.)

(!)
z
0
0
u

~
LU
f
Cf.)

>
Cf.)

(!)
z
z
<(
a:
f
a:
LU
f
::,
a.
~
0
u
0
a:
u
~

Cf.)

~
LU
f
Cf.)

>
Cf.)

a:
LU
f
::,
a.
~
0
u
0
LU

~
a:
(!)
LU
f
z

A D D R

8 ~{!_; 0

1

2

3

4

5

6

7

8

9

A

B

C

?d-CJ. D

E

F

8 o2._.]) 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

a of) E o
1

2

3

4

5

6

7

8

C ODE

E 8
o(I
I 0
! 3
Ir F
e;;,1..])

7 7
(? ~
{!,, 5'
I' tl
() I
F- f
f bl
C.])

E ~
? ,2

7 ;:J.

I F
15 7
'7 8
I /:"'

16 ,c
J) C,
E- 5'
!' t;
~ 9
7 I)

13 .3
{!, ctl
(!_, l)

! ~
c2 It
t) £
I? 3
e q
0 {)

tJ CJ

BFDCF - BINARY FRACTION TO DECIMAL FRACTION

x C /i G- (])£)~ j. -'-· ./.. --A-· ,,J

L x I II- R 3 I 0 (l,..4..1. -) ,1. 777 ,/},
,

v'
/I A • _,. -J-;; ,J - - ..,1 t:Ln. ,,II,

I
,4 AT.,..,,.,,.)

x R A /1 I~.&) A - • A~ - ' ./)r. .A.

]) C R L
f

,., _A A" .II+

/.1 0 V JV1 I A (? 3t)?) -,?c3t:]p)

3 N ~ R ~ e 15 ;t,_ -~ , ..: ,!-/

cHLJ=J13tJO

L X: I B ,f ~ f=. ~ /JJ..J. ,._.J.,/.,, __ 7
I

,,., ·- - .'J ·- - -J:- i~~~
J L!r/1 A1-A ~,,

t A- L L p d. £ IS (fHL)) ~ frr/L) J t- (fi3C'J)

~-) JJ fl~ ztJ
lf{]_r,-, .1. ,, i f .B~ ") = P 8cJO

II ft b
~

M 0
R A R

I
.,/,/, ',,/r I : ... -'.,

M t) V]) f-) \ A.__~ .- d ,, A , ';: 1/,. 1
M 0 i) A" £ I ,._, ~ _,/ /,,_· ;;-, t1"

R f1 R
I

l

tv1 D v' £ IA I

IJ

C C fl j £ l, l'u~ LSI?-/ /J~d
~ ~·r. · - A - /R.._-?t)I') -R3~7·

-/i. ,.,.,_ ~r f/.3tJJ'-R..3cJF)

M D v' L (I (NL)~ ?8~c;

I+
I

J> ~ /.. ·-~ • ,,..__/_ ,A M () V
A-

,
./~) ~u,J .o R E

~ N ~ i' :2 C, J) Id_ - C7 7':. -/ .,.. "' h J.,.-,J , t:1

L H L 1) R .3 i/) E V#L) ~A - - •• .,/7-:

b~ _j 1. · - ; '~ ,, 7';;-.,.. J)
(?P-- _.,, ;,,,# ,(,,_ /'~~

R E T .,.:.u~ ~d't1JtP-e?attJr)
fJ 0 :p
tJ 0 ?
E- N T £ ~ (I+ L,) -= ~ 1 tJ ~R\/ t:~C..T InN
R E T 0 'R 1') (H- L) =t)E:C:T \'/\AL i=~k TI/)~'
A L L 'R E G- I. s T E~S. l')S.~

Fiqure B-8a

1-
UJ
UJ
I
U)

(.'.J

z
0
0
u

~
w
1-
(,/)

>
U)

(.'.J
z -z
<(
a:
l
a:
UJ
I
::>
c..
~
0
u
0
a:
u
>-

U)

~
UJ
1-
U)

>
U)

a:
UJ
I
::>
c..
~
0
u
0
w

~
a:
(.'.J
UJ
1-
z

A D D R

cf ~.E 5

6

7

8

?d?E 9

A

B

C

D

E

F

8 o!) p 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

3 ..?0 0

1

2

3

4

5

6

7

8

CODE

]J s
I E
rJ p
I} F
{) /l
? I:
~ /'/
7 7

b? 8
{) 3
I J)

e :2
£ 9
f ~
4 i/
L/ 8
J) J
e 9
t<) CJ
c2 16'"'
t) ~
J7 9
R 7
c1 I.,'
I .:;-

tJ 0
tJ 0

ur:..\....l.1'.l.tUJ i\LJLJ .J.l\J 1•1~1v1UKY .t'"U.K .tS.t''lJC.t<'

-p u s H l) L ·-} J.. ~,.,,A A,4.)

M I) I E [) f 111 r
I .+ ?_d :*-
' p'

)(R R A II'/,,,,.,, eY .L. J ./.: r. .L.~
L l) R X B /~)~ .. ----:2,, /~A-·/
ff J) C M /J .-1 ""1 j ~,I, .,JA ~ ' A j

J) A A h ,~,', ~J.,,./), n ~

/Vl 0 II M I A A A - Ar
I tJ x H \
I rJ "' B
J) C R E >--P,, - A-+ ~A./1 __A~ *A
J" rv 6 p c1 £ 9 ' (/

M {) V B t4)A7;:. ,, r'3e.)- j{~/)t)

I) (2
I

~f/1-L) ·_. - • '· j,_~~ R M 0 E
p p 1)

I -/:?. "fu A I._. A .I. r:; Al.Jo/). , / 0
R E. T (7'

tJ 0 ~
J),,1 ~, J LS&

7)

'ii

J,. . -- .L ' _/1,, ~ J/2 -- ./J.

A "- 1-/:-.,,:~n/

a. ,,_ ~
R 3() o - E'dt!J,t=

' I/

Figure B-Bb

B-23

BINARY/DECIMAL CONVERSIONS

This page intentionally left blank.

B-24

MICROCOMPUTER TRAINING WORKBOOK

APPENDIX C

CALCULATING TRIGONOMETRIC FUNCTIONS

'

Appendix C

CALCULATING TRIGONOMETRIC FUNCTIONS

The sine of an angle (in radians) is calculated from:

(a)
3 5

sin X =X- X + X
3! 4!

x7
7T + ---

The cosine is generated by a similar series:

(b) COS X

6
X 6T + ---

The exponential function ex is:

(c)
x2 x3 x4

= 1 + X + + ---).' + ~ + ---2! 4!

All three functions can be generated simultaneously by a procedure

that calculates each successive term in the series for ex ; adds

the terms into a sum for ex and adds or subtracts each term to a

sine or cosine sum. Each term is calculated from the preceding

term, the term number, and the value of x.

t. = xt. 1/i 1 1-

C-1

CALCULATING TRIGONOMETRIC FUNCTIONS

Starting with t = 1' this gives:

Term Value Disposition

0 1 Enter to cosine

1 x/1 Enter to sine

2 X /2 Subtract from cosine

3 X /3.2 Subtract from sine

4 X /4.3.2 Add to cosine

5 X /5.4.3.2 Add to sine

6 X /6.5.4.3.2 Subtract from cosine

The value of x must be expressed in radians, and for reasonably

rapid convergence of the series large values of x should be avoided.

Since the sine of an angle is equal to the cosine of its complement:

sin x = cos (1(- x)
2

it is easy to restrict the angle to less than 45, or 0.785 radians.

With this limit terms beyond 6 are not needed for 16 bit precision.

In this Appendix, we present a subroutine to calculate the sine and

cosine, given x as a value between 0.0 and 0.785 radians. A main

program (Figure C-1) will accept an angle in decimal degrees and

convert it to binary radians, call SINCOS, and display the results

in decimal.

C-2

CALCULATING TRIGONOMETRIC FUNCTIONS

The program also uses a binary multiplication subroutine and a twos

complement subroutine, presented in the following pages; the single

byte decimal to binary integer conversion of Figure B-5 and the two

byte binary fraction to decimal fraction conversion of Figure B-8, in

Appendix B. These are also duplicated here.

Memory assignments for the program are:

MAIN 8200-823F

SINCOS 8250-827F

TERM 8280-82AF

DECBI 82B0-82BF

BFDCF 82C0-82FF

Variable Data 8300-830F

BMULT 8310-8330

TWOSC 8336-833F

C-3

CALCULATING TRIGONOMETRIC FUNCTIONS

C-4

-. ,
CALL ENTBY

(L)._ decimal angle
I

CALL DECBI

(L)- binary angle
I

(A)- co-angle
(co-angle= 90°-angle)

Compare with angle

<>·angle ~co-angle

Replace angle-with
co-angle

' -.~
Save comparison (cy)

I

Multiply angle by 1"(/180
(=0438 hex) for fraction
of radian

I

CALL SINCOS

I
Recover comparison flag
Exchange sine and cosine
if flag is set

I

Display sine and cosine

I

Main Program

Figure C-1

1-
w
w
I
U)

(.9

z
0
0
C)

2
w
1-
U)

>
Cl)

(.9
z
z
<{
a:
l
a:
w
1-
::J
a..
2
0
C)

0
a:
C)

>-

U)

2
w
1-
U)

>
U)

a:
w
1-
::J
a..
2
0
C)

0
w

~
a:
(.9
w
1-
z

A D D R

s c<'O 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

P<ilOF
8 o2 I o

1

2

3

4

5

6

7

8

9

A

B

C

D

E

?c:2/ F

3 0

1

2

3

4

5

6

7

8

cooEMAIN - ACCEPT DECIMAL ANGL~, v~~PLAY. ~iN, cu~

e J) - C A L L £_ Iv T (3 V (L)k-~ -i -~ .~

.3 0 - " ~,,. / -'--- - .

t) 3
p

(:_ .l) (!_ A L L]) E C J3 I l(L)~.... _,1 .. J., - • J
,

"'-1 ,L,.,.,) 13 0 "" ·-~ -- ~
cf eZ II'

,
~ IF M \) I Ii- 1,'1 fl / /1-)k- q /) 0 ~ • • - L ,

is- '1-
,

(/

9 ~ s u 13 L fl)i.- ri,,.,_/7 -· - /,,

B l) C. tv1 p L
- /_

-.1.~ e.Y . ../A -- - #,. >
t:= ~ 1) u s 1-f p s w J_ c,P /

JJ J J N C f ;; 0 F n. - •· ,/,
() ,c I~-· ... ~,, / L. "'~ - - - ,4,, _J

R d 1/!J.!: A" -d.,. A A "
ft, ,c M D \/ L f} /; _1/,.j', ._·,-./ A,,,_ - _A" ,

~ 6 M v L fl-
I

0 0 I (1 _t?;,., . ..J J ~--/. ~ ,, .. r, ('/
-J # t? c) 0

C) I L x J_ 'B 0 4' ·7 f i/Jl, .1-Z -· ~ • J~ 7(_jRt:>

7 f' I/ ~ , .i , /
(,A,,) A ·" ..., ., ;.,J, I- - _A. : • -

C) 4 I (/

{!_]) C. R L L B M L) L T (JJE)~,., _;_ a--)

/ 0 J. '... - -~,,__+:.',

I' 3 J ,,0...., [J I h ... _,,_ ·-

E 8 'I.. c.. f+ G- ti

(!, 1> e A L L s I N C () s. {HL)k- - . ·"

.2 tJ r1>.Ji') 1::- A - - • - ,.

f' r.51 ~A- • ••) /1,11-A -• -~A

p I p () p p s w J;,,,. __ 1./.;, .. 7. (/

l2> r2 "J"" N C J' c2 :;_ 0 I/, ~- V . /J 1/ A - - n ' A , i •

,2 0 Id ,.
/1._ A-A " ,.,../

i' ~ l'.LJ - A ,,. ,J/J ~ _}
{I

£ 8)(~ ff 6 t!IL)L .,._. ·.,, I

-

Figure C-2a

c-s

C.-6

f
w
w
I
C/)

(.9
z
0
0
(.)

2
w
f
C/)

>
C/)

(.9
z -z
<t:
a:
f
a:
w
f
:::,
a..
2
0
u
0
a:
(.)

2

C/)

2
w
f
C/)

>
C/)

a:
w
f
:::,
a..
2
0
(.)

0
w

~
a:
(.9
w
f
z

A D D R CODE

a ofd o)) 5
1 ("> o
2 C 0
3 f r2
4 {!_])

5]J I
6 t) :;_
7 £ I
8 (! p
9 (!_ ()

A I ;;
B I I
C ;=- F
D ? .3
E ~ 'J)

F J) I/
8 0 tJ ~

1 C 3
2 6 CJ
3 tf ~
4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

p t)

C ff

C A

f= 0
C A-

L '/.

C 11

J M

,S H· CD .J~.,, ·_,,
L L 13 r-]) C F 11 - ~. - ,M

.h.. .,.A,, 4 • • ~ 17

L L 1) u) 0 R r:D ..fJ~ -·.,. I,. .., :* t!~ .J~ ,
~ (I

p /.I
L L B F]) C. F ()> .~.., -.f" .,, • -A,

~ A1-,. ~,.,,~

I D I 3 F ,: ~ ._ /},,., A, ~ ',, 1 :f
I ,

~ t?

L L }) w]) 2:.

p ? ~ {) a

Figure C-2b

CALCULATING TRIGONOMETRIC FUNCTIONS

Subroutines SINCOS and TERM are defined in the text below and

depicted in Figures C-3 and C-4. SINCOS adds or subtracts successive

terms, as discussed early in this Appendix. TERM generates the

terms, addressing a table of coefficients according to the term

number. These coefficients are nominally 1/2, 1/3, 1/4, 1/5, etc.

Adjustments to the coefficients for terms 5 and 6 are made as shown

in the table of Figure C-5 to correct for rounding errors and absent

higher order terms.

The table of Figure C-5 shows the results returned by this program.

Note that the adjusted coefficients affect only the least significant

digit, for angles between 40 and 50 degrees. The adjustment may be

important in some instances, to make sin 450 = cos 45°.

C-7

CALCULATING TRIGONOMETRIC FUNCTIONS

SINCOS Find the sine and cosine of X

Enter with (HL) = X

Return with (BC) = X

(DE) = sin X

(HL) = cos X

Constraints: X must be a fractional value (i.e. less than 1). The

cosine of zero is returned as FFFF.

TERM

Enter with

Return with

F d t Of e
x

in successive erms

(A)= term number 1 to 8

(BC)= X

(HL) = previous term

(A)= next term number

(BC)= X

(HL) = new term

Requires a table of values of 1/(A). Term is always positive.

C-8

CALCULATING TRIGONOMETRIC FUNCTIONS

ENTER (HL) =X

(BC)- X for multiplicand
(ST)- (DE)._ FFFF for cosine
(DE)- 0000 for sine

(A) - 01 to mark term 1

(ST)-- (HL) save positive term
Test for term 2,3,6,7
Take two's complement to
subtract these terms

I
{DE) .--(HL)
{HL)-· (DE) + (HL)
Add term to function in {HL)
(DE)- (ST) Positive term
(HL)-(ST) Exchange sine
and cosine in {HL) , { ST)
(DE)-(HL) {DE)- function

{HL) ._ term
I

CALL TERM
{A)-- (A) + 1

(HL)- (BC) X (HL) x Coe£
Set zero flag if term = 0

fO

~o
{HL) - {ST) Sine or cosine
If term number is odd exchange
sine and .cosine

Subroutine SINCOS

Figure C-3

C-9

CALCULATING TRIGONOMETRIC FUNCTIONS

C-10

(A)-(A) + 1
Test for term beyond table
and return with zero flag
set if it is reached.

I
(ST)-(DE) Save registers
(ST)- (A,F) Save term no.
(ST)-(BC) Save X

I
Add 2X term number to table
address
(BC)-coefficient

I
CALL BMULT
(HL-a. t.-1

l l

I
(BC)-(ST) Restore X

CALL BMULT
(HL)-t. = X c. t.-1

l l l

Test result for zero
to return flag when further
terms= 0

I
(A)-(D)-ST
To restore term number but
preserve zero flag
(DE)- (ST) Restore registers
Return

Subroutine Term

Figure C-4

Term

Angle

0
1
2
3
4
5

10
15
20
25
30
35
40
44
45
46
50
60
75
90

*Values

CALCULATitfG TRIGONOMETRIC FUNCTIONS

Coefficients for Successive Terms

Nominal Value Adjusted

Decimal Hex Decimal Hex

1.0000 1. 0000
0.5000 8000 0.5000 8000
0.3333 5555 0.3333 5555
0.2500 4000 0.2500 4000
0.2000 3344 0.1953 3200
0.1667 2AAD 0.0937 1800
0.1429 2498 0 0
0.1250 2000 0 0
0.1111 1C72 0 0

Results of Sine/Cosine Calculation

Cosine Sine

0.9999 0.0000
.9998 .0174
.9993 .0349
.9986 .0523
.9975 .0697
. 9961 .0871
.9847 .1736
.9658 .2588
.9396 With .3420 With
.9062 adjusted .4266 adjusted
.8659 coefficients .5000
.8191 .5736
.7661* .7660 .6428
. 7195 * .7193 .6949*
.7073* .7071 .7072*
.6949* .6947 .7195*
.6428 .7661*
.5000 .8659
.2588 .9658

0.0000 0.9999

with error least significant digit

Results in Sine/Cosine Calculation

Figure C-5

coefficients

.6947

.7071

.7193

.7660

c-11

I
LU
LU
I
(fJ

(!)
z
0
0
u

~
LU
1-
(/)

>en
(!)
z
z
<(
er:
1-
cr:
LU
I
~
a..
2
0
u
0
er:
u
~

(fJ

~
LU
1-
(/)

>en
er:
LU
I
~
a..

c..-12

~
0 u
0
LU

~
er:
(!)
LU
1-z

A D D R

8 o!~ 0

1

2

3

4

5

6

7

8

?o2~9
A

B

C

D

E

F

8 o2 &, 0

1

2

3

4

5

6

7

8

9
A

B

C

D

I:

F

sc:;;7 o
1

2

3

4

5

6

7

8

cooE SINCOS - SINE AND COSINE OF X (X < 1 RADIAN)

4 l) M {) V c_ L (BC) b:-~

4 14 tv1 6 V i3 , 1-\
J I . .l)

,
I L x F i:: F F .AA I'! /, --A _,, J .,~ J • _/

.,t;: F
I

.,,/ *1. j A.-o • ·_. ~ J

F F I

J) ·" rP u s H 1) G1T)c-~
I 3 I tJ i n (:Z>.E) 1.:- A • ' • A = c>o
3 E M V ll fJ- Q I ~J, ,h) h . J /

() I '
E s· IP l) s f-\ H 1. IA A•-·, If: : A, 7i.• . .J)

() F R \(C ..:k.J; ~- ~ I ~:I:~ __ ,')
{) I=" ~ R e., I~ .. , ti ,A

]) C. C C T LL) 0 s C ;J,/ h,A-,J., ~ c2 3 ~ 7
b f::-J.. ,I -

.,,
d r.~- ,,._ -1'. A -:7:

jl 3 dE ~, * - 1z ~ _;-
t) 7 R L C {A__ "& tJ ~, ·")

(;) ""I R L c., - /,AA,

E /j X C., 1-f & I (.J)E) '=:- in . ,.,.-u A~ ,/")

9 J) A- D]) (!-IL)~·../ __ ,.7 .. ~
,

I
L2> I p 0 p D (l>E)~ -- _;17. ~ +,;. .)
£_ 3 x T H L ~,-J,.,,

, . L.
-•)A A - ~,

Id '1 C f-1 6- (;,z')~ 74.· _,, ' £
C l) C, A- L L T £ R M (r11J~- .. ./it .;;. _,,
f {) r 1r 51::-, _,,,, :d-,,-- /,~A

p ;;
(!. ~ :r N 2 ! o? s ~q

-/, J .~J A,O"T.. A AJ ... ,h_ -
s- 9/,n 1- .--r f;A/_.J),

? h< !:.,. J -~ .1-n -~ J - /)

£ I p 0 p t1" i111!) '= A
O

- A - A. - • • A

0 F :R 'R c.., I~* . - . . /, ..)

LJ ! 'R.. C ~ "M ,h;,r. J. .,

E s X. c.. H 6- l,1'~ /J J, .. JA ~ A • _, J

C CJ 11< E T _J A

,.
A -1 .r. . ",

E N , E R l).) I T H
(H- L) = rt

rR E T u R tJ
(B c..) =- ri,
(1) E-) - s I rv ,?
(1-f L) - C () s .-it

Figure C-6

1-
w
w
I
en
(.'.)
z
0
0
u

2
w
I-
Cf)

>en
(.'.)

z
z
<(
a:
l
a:
w
1-
::J
a..
2
0
u
0
a:
u
2:

en
2
w
I-
Cf)

>en
a:
w
1-
::J
a..
2
0 u
0
w

ti:
a:
(.'.)
w
1-
z

A D D R

8 ~j) 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 o! 9 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

3 0

1

2

3

4

5

6

7

8

CODE

3 G
p E
tJ 9
C fl
J) IS
~ s
C ~
f' 7
I I

I<? e
J? c2
jJ 3
,!F ;=
I ,4-

'-I F
I 3
/ 4
4 7
(! l)

/ t)

tP l.3
{!. /
e D
/ tJ
J' 8
7 (;

B i.:;-
JJ I
7 /I

l2> I
{!_ 9
tJ t}

TERM - GENERATE SUCCESSIVE 'l'E.KJ.VJ.b Ul" e

I ::z: ;ti R /} ../l~d *~ ., - / ..)

C p I 0 q ~ -0,,) .,.,_ . -t-

_IA ~ :h./ •)
7< ~ ~~ , •) - A .I. A ,, T
p L) s !-I l) '1 J,t! ,. :r; :.__,,) ..., - .0

p l) s 1H p s w ,11/ h 1 • J - ·- / .,

p u s J-1 B ,,,
- A 1 ,,,_ 11 _. • J Ab

4]> 1) /} -12. /.,l ,/ *· __ ,, °-· , -/.,,~
L 'I I 1) J) r2 C/ C lt1 .A.,1.1. AA,,,.,) -,t./_/--,~

I
/iJjA .J~ • A ./g •,,.,,•A • --r J

;J /J _j)__ j#h_ ,,.,,J

It J)]) E b/J.,,/ --~_, ~

M D V £ f) (f ,Af,,Jk .IA ,,J /} '
L D fJ- x 1) \
M 0 v (!_ A
I- tV x]) >(~{!,J"--tl .·
L]) It X])

,

M {) v' f3 A
C f} L L 8 M u L T (!-IL)~ a.· :I-;-/

p {) p fl (i3C) 4:---- A£
C ff L L 8 /vl u L T (fl'-) i::-_L.t:,

; /2 _. 7,: -I _d,
,

M 0 LI I/./- I-) -I.A~ ~
0 R f) L

I
- A A,/.v A,, - . ~+

p 0 p J:) rfJ)1:-~ - I. AA

J.-1 0 V II- D -
p 0 p D rJJE J k- ./ · ... -t-,, .:_.,

R E T - l
IA! a p

Figure C-7a

c 13

1-
LlJ
LU
:c
U)

(!)
z
0
0 u

2
LU
I
C/)

>
(/)

(.!)
z
z
<!
0::
l
o::
LU
I
::,
a..
2
0
u
0
a:
u
2

U)

2
LlJ
1-
U)

>
(/)

0::
LlJ
I
::,
a..
2
0
u
0
LlJ

~
0::
(.!)
LlJ
1-
z

C-14

A D D R

8 o?,4 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

p

E

F

8 0

1

2

3

4

5

6

7

8

CODE COEFFICIENTS FOR TERM

cJ C)
1J) 0
IS 5
15 .-" ,.?

CJ t)
,// {)

~ 1¢ {')CJ
,3 3 3tl
I}} D OtJ
~ ft ;!
9 jl t)c}

c2 I.ti tJt?
() () otJ
c:l C) &O
7 :) {)t)

I C t)O

1'
L ·A- [) \) L) s T E tD

1,t,
I E- x A- C. T C 0

(J .:J . .:: ~c,2

0 .. = Is -

O . .J ~ ~""
ct-r- ; ~

a~- = ~

t2 "I ::: y~

a. .P :;.. Y/1

11'.2."' = j'9

C. OE Ft-IC.I.1t NTS:

E F FI.C I..El\JTS

Figure C-7b

1-
UJ
w
I
(/)

(!)
z
0
0
u

2
w
I
C/)

~
(/)

(!)
z -z
~
cc
I
CC
UJ
1-
::J
a..
2
0
(.)

0
cc
u
2

(/)

2
UJ
I
C/)

~
(/)

cc
UJ
1-
::J
a..
2
0 u
0
UJ

~
cc
(!)
UJ
1-z

A D D R

a o2l3 o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2-

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE DECBI - DECIMAL TO BlNAKY .LN'.l'.1:.1..::rtn - vm.c, i..,.1.

F 15" -p u s H p s w
7 l) /v1 0 V I+ L
E lo It N 1 ·o ~ (f}J~~~l~·r-;

, V

I) F
~ 7 M 0 V fl- A (/I)~ I~ I 'dc,·c,;1;

If/- D x R A L { /J)J.- J . .__ / al,·a~ A

F 'R A R
Cl

I
(j;) F M C) V L

' A (L)~~ .L·~/) _,, .,,.,·r-,
F R A-

, - t:7 V

I R
I ,c. 1<. Pr R (If) it:- !IA ~1:-.. /) _J --- . .r.
tf' 5" Pr ~ :0 L {//)~ % J~L J A,·:_ ·f-;

J' I.£/ A- J) b H (fl)~I~: _f ~L• l.,,,,,1
UJ F M 0 V L f-). v' .
!=- I p 0 p p 'S u:
(! 9 R E T
l'J 0

E Iv T E R u.J I. T H
(L) - p A- C K E"b f)EC°'M f\L ~'/TE -

rR E T (.) R Al w .I T H
(L) .::. B T N A R\/ INTEGER

~ E 6- I s T E ~ I-+ USED
0 T J+ E R R £ 6- I STE~ 7R ESE R\J E1::

Duplicate

Figuer B-5

C-15

1-
w
w
I
tf)

(!)
z
Cl
0
u

~
w
1-
(/)

>
(/)

(!)
z
z
<!
cc:
I
CC:
w
1-
::>
c..
~
0
u
0
cc:
u
~

en
~
w
I
V)

>
(/)

cc:
w
1-
::>
c..
~
0 u

c.-16

Cl
w
!;j:
cc:
(!)
w
1-z

A D D R

8 o?(!, 0

1

2

3

4

5

6

7

8

9

A

B

C

J' d_ (!. D

E

F

8 c..7.1) 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8~FO

1

2

3

4

5

6

7

8

cooE BFDCF - BINARY FRACTION TO DECIMAL FRACTION

£ 8)(C /-I &
o<. I '- X. I //- R 3 I {)

t}
(

/
p 3
f} ~ x R f}- f)

c2 }) D C R L

7 7 M D II /v1 . f}

C ~ 0 N ~ i ~ e IS-
{!_ .~
,? t1
CJ I L X 1 A J> ~ F J1
;= ?

I/

? 61
(!_ ')) (!_ II L p :J.

II

L E IL")

E s""
R :l.
7 1,4 M 0 v A- .])

/ F £ fl R
IS '7 /\1 0 v'))

I
fl

I] {'II V fJ-
,

£ 7 {)

I F k I+ R.
IS ;= /\1 {) I/ E II
1) C. c__ ~ ,,f) t2 £ ~-"'
£ s"
JJ ~
~ 9 f'/1 0 V L C (HLJ4:-9cJOc:J

M fl- I })
. .,

.7 /} 0 V
,B .3 0 R A E
(!_ ~ 3 rv 6 p c2. C- r.D
(!_ L)

? ~
IJ /l L f+ L I) i 3 0 E
/J E
J> 3
{! q ~ E T
CJ 0 IV () ~

~ 0 (\) 0 p

Duplicate
Figure B-8a

I
LU
LU
I
(/)

(.9

z
D
0
u

2
LU
I
C/)

>
(/)

(.9
z -z
4'.
cc
f
ee
LU
1-
::J
Q..

2
0
u
0
cc
u
>-

(/)

2
LU
I
C/)

>
(/)

cc
LU
1-
::J
Q..

2
0
u
D
LU

~
cc
(.9
LU
1-z

A D D R

Pc:?£ 5

6

7

8

cf' c!l E 9

A

B

C

D

E

F

8 oZ.!= 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

3 0

1

2

3

4

5

6

7

8

CODE

l) 5
I E
0 I
If F
C) /J
,J) E.
d{ 7
7 ;;
~ 3
t) ~

I])
(J bf'

£ 9
I {)

Jj t/
L/ 13
]) I
/? q
t) 0
cft '11
t) p
? 9
p '1
~ s
I .j-

t) 0
() 0

p LJ s J-+ I':
M V I £ () i ,

'>(R A A
L D A- X B
fJ- 1) C M
'J) ,4 A
/Vt 0 V /vl I ,4.
I N x ff
T JI X B
]) C R £
::r N z f 62. £ q

M 0 I) B H
M 0 \/ C.

I

E
rP 0 p rD

,

R E T
N {) p

Duolicate
Figure B-8b

C-17

I-
LU
LU
I
C/'J
(!)
z
0
0
u

~
LU
1-
C/'J
>
C/'J
(!)
z
z
<(
a:
l-
a:
LU
I
::>
0...
~
0
u
0
a:
u
~

C/'J
~
LU
1-
C/'J
>
C/'J

a:
LU
I
::>
0...
~
0 u
0
LU

~
a:
(!)
LU
1-z

C-18

A D D R

a3/ 0

1

2

3

4

5

6
-·-
P3/ 7

8

9

A

B

J?.3/c
D

E

F

8 if:/ 0

1

2

3

4

5

6

7

8

J> c.3 ;;_ g

A

B

C

D

E

F

8 03 0

1

2

3

4

5

6

7

8

CODE

E ,8
I} F
{; ,c
&; 7
E Li'
~ E
I I

E 3
]) ~
I e
? 3
() CJ
(! J)

~ 9
R 3
(!_ l)

c:. 9
R 3
E 3
~])

e ti
I 7
f 3
£. I
e 9
7 (!.

I F
~ 7
7 l)

I F
UJ ,c
£ .i
e q

BMULT (HL) x (BC) --> (H,L,D,E)

)(C /-i (j (DE)~---,.,.. ~d .:_ .J

X R Pr A
- ,,

f'./~,. • A"- A. , ,I

M D V ·L A ~ /I~ ~J ,.r,

M 0 V /-/- ' A
,

J

p l) ~ 1-l H
/v1 II I L I I (L)i=-~

/

X T II- L I f/L)~ /}, ~ -'~. -1r.
0 N C p 3 I C 'l

,
- ~·/- I ,1/.o .__; A,d

17 /.!-~ #= 0 I

1) Pr 1) B tud_,- Ir-· ~·,.,,._~
{!_ ff L L f 3 ~ 9 _}/ • ./ f- AL - ~, --1-

~1-::J.,.;J ,:.,.J /2)£)
-

(!_ 1-1 L L R 3 ,Q q J L · /r __ .I~·-/ : _,

~A-,, - ~;.,__, ~.1)£J

x T 1-1- L
1) C R L
J w ~ J' 3 I 7

-:p 0 p 1-1 (;-IL)~£·_/. /JAh,,J, ,.7:

'R E T
V /

M 0 V ft H
R A R

I

M 0 V I+ A
M \) A

,
L D

~ A-
~

R
M 0 II L I A
'i C. ~ G- '

R E.. T

E tJ T E R w I.. T H-
("B C. I) = M L) L T I PLIC..f\-tvb
{ H- L) ::::_ M u L T I""PLLE~

R E T L) R tv
{ H- L) :::- /t I G- H- -Pw.D bl)C. T
C "D £) = L 0 w ~01)L)C\
(i:> C. D p R E s ER\JE:1) Figure C-8

I
LU
LU
I
(.fJ

t!J
z
0
0 u

~
w
1-
(./J

>en
t!J
z
z
<(
er:
l
a:
UJ
1-
::J
0.
~
0
u
0
a:
u
~

en
~
w
I
en
>
U)

er:
w
1-
::J
0.
~
0 u
0
w

~
er:
t!J
w
1-z

A D D R CODE

8 0

1

2

3

4

5

p.3...3 s ,F 0"
7 7 C
8 d<. F
9 ~ 7
A 7))

B c5t ,c
C 6 v=
D c/1. 3
E ~ J

d'c.33 F e 9
B 0

1

2

3

4

5

6

7

B

9

A

B

C

D

E

F

3 0

1

2

3

4

5

6

7

8

TWOSC - TWOS COMPL.t:;MJ:!;N'.L' u.r \Il.1..JJ

p lJ ,<:; 14 p s c.J
M () V ,4 fJ :

C A
,

I M I
I

JV} D \/ 1-1- A I

{\I\ D V A. L
c._ A

,

M
M () V L-

\ A
1 /\I '/.. /-I
p 0 p p s w
R E T

E tJ T E R w I. T H
(,-+ L J - 'B I N A 1<"/ Nu t--1\ ~E. 'R

'R E T 0 R N
(,-+ L) ::::_ T w 0 s CnM ?\.-.t:: ME.NT
0 T H- E R R f: G :tS: TE'RS

p R E s E R \) E~

Figure C-9

C..-19

CALCULATING TRIGONOMETRIC FUNCTIONS

This page intentionally left blank.

C-20

MICROCOMPUTER TRAINING WORKBOOK

ADDENDIX D

EXPANDI~G YOUR MICROCOMPUTER TRAINING SYSTEM

WITH THE S-100 BUS ADAPTER

EXPANDING YOUR MICROCOMPUTER TRAINING SYSTEM

Your Microcomputer Training System (MTS) can be easily expanded to a

more complete system with floppy disk drives, printers, CRT terminals

and other peripherals as illustrated in Figure D-1. This is easily

accomplished via the S-100 Adapter Card which interfaces the MTS to

any standard S-100 mainframe, into which

compatible circuit cards. The S-100

you can insert other S-100

bus has rapidly become the

industry standard for personal computers and as a result, has

nurtured the explosion of many compatible peripherals.

To expand your system, you will need an S-100 bus mainframe to house

the S-100 compatible cards. The mainframe should contain at least 12

16 slots to allow ample room for expansion. Each slot will hold

one card, for example a 16K RAM card, a disk controller card, or a

serial interface card. Note also that in addition to allowing one

slot for each card you have planned, it is wise to leave one empty

slot between each of the RAM cards for thermal stability. This is

especially true for static RAM cards, which dissipate considerable

heat.

D-1

THE S-100 ADAPTER CARD

.M T S

MICRO
COMPUTER

TRAINING
SYSTEM

D-2

ADAPTE

3 X 16K
STATIC

RAM

TU-ART
RS232
SERIAL/
PARALLEL

DIABLO
TERMINAL/

PRINTER

PROM/RAM

CRT

TERMINAL

Typical Expanded MTS-S100 System Configuration

Figure D-1

FLOPPY
DISK

DRIVES

FLo:,py
DISK

CONT ROLLE_

THE S-100 ADAPTER CARD

Generally the mainframe will contain a built-in power supply. Note

that the S-100 power supplies furnish unregulated DC power on the bus

and that each individual card in the system, including the MTS S-100

Bus Adapter, has its own on-board regulators to create the necessary

regulated voltages for that board. You should be certain that the

mainframe has a large enough power supply to power the S-100 cards.

Typical current and voltage outputs are: +SV@ 30A, tlSV@ 15A, -18V

@ 15A.

TEI manufactures a mainframe which has been used in testing the MTS

S-100 adapter. (For list of distributor addresses, see Table I.)

What S-100 compatible cards and peripherals should you buy? The

answer of course is dependent on your application requirements, which

will determine the extent of memory and type of peripherals

necessary. However, almost any expanded system will involve adding

more than the 4K bytes of RAM and SK bytes of PROM available on the

MTS itself. Thus, the first boards you will probably buy are RAM

memory cards. Most operating systems that run Basic, Fortran,

Editors, and Assemblers, require at least 32K bytes of RAM, so plan

on buying at least two 16K RAM boards.

RAM cards from many different manufacturers can be used. However, you

should select one that responds to the S-100 bus control signal named

'PHANTOM.' As described in detail later, the PHANTOM signal is

issued by the S-100 Adapter card whenever a RESET occurs. The

purpose of the PHANTOM signal is to disable all memory cards and

thereby allow the S-100 adapter to force a 'JMP XXXX' instruction

onto the bus as the first instruction to be executed after the RESET.

D-3

THE S-100 ADAPTER CARD

You can specify the jump address, XXXX, in switch settings on the

S-100 adapter card as described later in this section.

The PHANTOM signal thus allows the S-100 adapter card to override the

RAM memory at address O after a RESET, so that the processor can

automatically jump to a specified address (other than 0000) to begin

program execution. This is especially important since most S-100

disk operating systems have a 'Bootstrap Loader' program in a ROM

located at a high memory address. Such Bootstrap Loaders are

designed to be executed automatically following RESET. They read the

Disk Operating System itself into the memory from the disk. To

implement this function, the RAM cards you select must respond to the

PHANTOM signal.

You will probably want to communicate with the microcomputer using an

ASCII keyboard entry device and a CRT (Cathode Ray Tube) display

(also commonly referred

terminals communicate

to as a

through

VDU - Video Display Unit).

the standard EIA RS232C

Most

serial

convention; therefore you will need a serial/parallel I/0 card.

Cromemco manufactures an S-100 card called the TU-ART which has two

RS232C serial ports and two parallel 1/0 ports as well. You can

connect any RS232C compatible VDU terminal, printer or modem to the

TU-ART since it has software programmable communication rates. The

TU-ART has been tested with a DIABLO printer/terminal and a Lear

Siegler ADM-3A CRT terminal. Newbury Labs, a manufacturer in England,

also manufactures a low cost VDU suitable for connection.

D-4

To efficiently

languages, you

develop and execute

will ultimately need

THE S-100 ADAPTER CARD

programs

a Disk

using higher-level

Operating System and

therefore, disk drives. Micropolis Corporation has a diskette drive

system which includes an S-100 compatible controller card and a disk

operating system called MDOS. This system runs well with the MTS.

The MDOS software is rather powerful, and includes utility programs

to read and write files on the disk, keep a directory and other

'housekeeping' functions. The system also includes a text editor, an

assembler and a reasonably powerful version of BASIC.

Finally, you might want to include video monitors with controllers

employing memory mapped techniques for use in word processing and

limited graphics displays. You may even add speech recognition and

synthesizing capabilities are S-100 compatible Digital to

Analog/Analog to Digital converter cards, multi-channel data

acquisition systems, musical synthesizers, relay controllers and

other interesting new devices constantly appearing in the Personal

Computer market. You are limited only by your imagination, since you

can even design your 'better mouse-trap' onto blank S-100 card-size

printed circuit boards.

D-5

THE S-100 ADAPTER CARD

To keep up-to-date on these developments, you may want to subscribe

to one of the many magazines now devoted to covering the personal

computer field. Two of the leading magazines are:

D-6

BYTE MAGAZINE

BYTE Subscriptions

P.O. Box 590

Martinsville, New Jersey 08836

INTERFACE AGE MAGAZINE

13913 Artesia Blvd.

Cerritos, California 90701

S-100-Module/Hardware

Micro System Main-Frame
MCs - 112

TU-ART Digital Interface
Contains: 2 channels of
duplex data exchange. 2
cha~nels of parallel data
exchange. 10 interval
timers.

16K Dynamic RAM Memory

16K Static RAM Memory
Module

VDM-1 Video Display
Module

Disk Storage
Module - Model 1023 11
and Controller

CRT Terminal

U.S. Distributor

TEI, Inc.
5636 Etheridge
Houston, Texas 77087
(713) 738-2300
TWX: 1-910-881-3639

CROMEMCO, Inc.
2400 Charleston Rd.
Mountain View, CA. 94043
(415) 964-7400

DYNABYTE, Inc.
4020 Fabian Way
Palo Alto, CA. 94303
(415) 965-1010

PROBLEM SOLVER SYSTEMS
20834 Lasseh Street
Chatsworth, CA. 91311
(213) 998-5100

PROCESSOR TECHNOLOGY
7100 Johnson Industrial
Pleasanton, CA. 94566
(415) 829-2600_

MICROPOLIS CORP.
7959 Deering ~venue
Canoga Park, :CA. 91304
(213) 703-1121

-------------! ---

THE S-100 ADAPTER ~ARD

European Distributor

(Sub-Distributor) 01C Marketing
(Dealer) Abacus Computers
62 New Cavendish Street
London, England WIM7LD

Hiltrup 4400, Munster, W. Germany
BASIS MICROCOMPUTER VERTRIEB
Von-Flotow-Strabe 5
02501-4800

BELVEDERE COMPUTERS
9 Belvedere Place
Scarborough North Yorkshire
England Y01122X

Fil1ECA FA
Avenue Albert 125
1060 Brussels, Belgium
Phone: (02) 345-98-37

SPA Tlu,TEC
Square Larousse, 5
1060 Bruxells
Phone: (02) 345-98-95

WERNOR ELECTRONICS
Torsvagen 61
Box 72, S-133 01
Saltsjobaden
Stock..~olm, Sweden
Phone: 08717-6288

TEKELEC-AIRTRONIC
Cite des Bruyeres
rue Carle Vernet
92310 Sevres, France
Phone: (1) 027-75-35

:IEWBURY I...AEORA'IORIES :.TD.
King Street
Odiham
Hampshire RG25 HIN, UK
Telex: 858815

Manufacturers and Distributors of

Representative S-100 Compatible Equipment

Table I

D-7

THE S-100 ADAPTER CARD

S-100 ADAPTER DESIGN

The S-100 bus was originally specified by MITS, a company in

Albuquerque, New Mexico, when they designed the first computer aimed

at hobbyists - the Altair 8800A. Soon after the introduction of the

8800A, other manufacturers began producing compatible memory and

peripheral boards which would operate on the 8800A bus. Various

unused lines in the 100 line structure soon began to be defined by

those

defined

manufacturers, sometimes in conflicting ways. MITS themselves

new signals in their 8800B, the successor to the model A.

Despite these occasional conflicts, the S-100 is so close to a

universal standard that literally dozens of manufacturer's equipment

and software can be used together.

To achieve optimum compatibility, the S-100 Bus Adapter Card has been

designed not only to emulate the Altair 8800B definition of the S-100

bus, but also to incorporate additional signals used by other

manufacturers (such as the PHANTOM), where these are compatible with

the 8800B and are generally useful. While some manufacturer's

equipment may not meet these standards, most will. You should have

little difficulty if you follow the guidelines presented in this

section.

The basic difference between the MTS microcomputer bus and the S-100

bus is that the MTS uses a single bi-directional data bus, as do most

8080 systems. The S-100 bus involves two separate 8-bit data buses;

one for outbound and one for inbound data. The other key difference

in the S-100 bus involves the status byte, placed on the data bus by

the 8080 during the first clock cycle of each bus cycle. In most

D-8

THE S-100 ADAPTER CARD

8080 systems, including the MTS, this status byte is decoded either

with an 8228 or with discrete logic, and this logic then produces

!OR, and !OW signals. Therefore, in most systems the

itself is 'discarded' following decoding. However, in

MEMR, MEMW,

status byte

the S-100 bus definition, this status byte must be stored in a

register and made available on eight separate S-100 control lines, so

that each external card can decode it. Your S-100 Bus Adapter Card

does produce these status signals even though most external cards do

not actually require them.

Table III at the conclusion of this section describes the S-100

signals emulated by the MTS S-100 Adapter. You will notice on the

'comments' heading that some signals are delayed. These signals are

actually double-buffered. They are buffered once before they leave

the MTS board, via the ribbon cable, and again are buffered on the

S-100 Bus Adapter. This is to minimize the length of any

single-driven signal path to eliminate noise problems. While the

double buffering results in signal delays of 20 - 40 nano-seconds

compared to the standard S-100 definition, this minimal delay should

present no timing problems.

A few signals are not emulated by the Adapter. These were unique to

the original Altair design. In particular, they were used with front

panel switch operation of the Altair computer. Since most S-100

systems today are operated through a CRT or printing terminal, they

have no front panel switches at all, except for RESET. Therefore,

those front panel related signals have not been emulated.

In addition to creating the control signals specified in the S-100

D-9

THE S-100 ADAPTER CARD

bus definition and splitting the data bus into separate in/out buses,

the Adapter Card performs several other necessary functions. First,

the Adapter Card has on it eight switches which emulate the eight

'sense' switches on the front panel of an Altair 88008. These are

attached to an input port with device address FF. Some programs

available for S-100 systems read these switch settings to learn the

configuration

is available

located in

(labeled '1'

significant

of the peripherals (i.e. whether a CRT, printer, etc.

for 1/0). If you want to use the switches, they are

position 22 on the Adapter Card. The topmost switch

on the switch itself) is data bit 7 (the most

bit) and the bottom switch (labeled '8' on the switch

itself) is data bit O (the least significant bit). These are marked

on the PCB itself as D7 and DO respectively. Moving a switch to the

'on' position grounds the associated bit and creates a logic O.

Switching it to 'off' (to the left) creates a logic 1. Thus, to

create a Hexadecimal 83, the switch positions would be set as in

Figure D-2.

D-10

THE S-100 ADAPTER CARD

~ zo

I] I-'
D7

[I N

[I w

[I ~

[I L/1

[I C'

CJ -...J

CJ 00 DO

Sense Switch Positions to Create

Hexadecimal 83 on Input Port FF

Figure D-2

D-11

THE S-100 ADAPTER CARD

The Adapter Card also has on it a circuit to cause the microprocessor

to jump to a selected address upon RESET. This address is selectable

by setting six switches located in position 31 on the Adapter Card.

You can specify a starting address at the first location of any lK

page, i.e. memory locations O, 1024, 2048, 3072, etc. (decimal), or

in hexadecimal, 000, 0400, 0800, OCOO, 1000, etc.

The jump start address is selected using switches 1 through 6.

Switches 7 and 8 are unused. Switch 1 corresponds to address bit 10,

switch 2 corresponds to address bit 11, etc. (Address bits 0-9 are

always set to 0). To specify an address bit as 0, move the switch to

on. To specify an address as 1, move the switch to off. As an

example, for a jump start address Jf AOOO, the binary equivalent is

1010 0000 0000 0000. Thus the switch settings should be 101000 as

shown in Figure D-3.

D-12

~ zo

Cl

[I~
t-,3
Cf.I

CIN

CIL,)

I]~

[lui

I]"'

D'-J
o~

Switch Settings

for

AlO

Al5

Jump Start Address AOOO

Figure D-3

THE S-100 ADAPTER CARD

D-13

THE S-100 ADAPTER CARD

HOW TO IMPLEMENT AN EXPANDED SYSTEM

USING THE S-100 BUS ADAPTER

The first step in implementing an expanded system is .to plan the

memory and I/0 device addresses. We assume there are two general

categories of expanded systems: those that incorporate disks and use

a disk operating system as the fundamental software for interfacing

with the user, and those that do not have a disk and rely on the

Microcomputer Training System's Monitor program.

Most monitor-based expanded systems simply involve additional RAM

memory. In these cases the memory on the training system can be left

in the original addresses assigned to it, and the expansion memory

assigned to other unused locations as illustrated in Figure D-4.

Most disk-based systems, however, require RAM memory at address O.

Therefore, the MTS PROMs must be relocated, and in some cases, the

MTS RAM should be relocated as well. Instructions for relocating

these memories are given in STEP 10 below. Note that if you move

either the MTS PROM or RAM, the monitor will no longer function since

it relies on being located in address O and having the display RAM at

locaton 83F8-83FF. A typical arrangement of memory for a disk-based

system is shown in Figure D-5.

D-14

THE S-100 ADAPTER CARD

0001)

} 4K
MTS

2708

OFFF PROMS

1000

}12,
3FFF

4000

16 K L RA'-1
CARD

I } 7FFF

8000 l 4K

MTS
RAM

BFFF
9000

16 K
1 61<

RAM

CFFF

0000

l12K
FFFF

Typical Expanded Memory Configuration

with a total of 36K RAM plus 4K PROM. To

be used with the MTS MONITOR in PROM at

location 0

Figure D-4

D-15

THE S-100 ADAPTER CARD

D-16

0000

3FFF
4000

7FFF
8000

8FFF
9000

9FFF
AOOO

AFFF
BOOO

DFFF
EOOO
EFFF
FOOO
FFFF

16 K
RAM

16 K
RAM

AM.TS
RAM

UNUSED

Al\1TS
2708

PROMS

UNUSED

DISK
BOOTSTR.A.P RAM

UNUSED

} 16K

} 16K

} 4K

l 4K

} 4K

} 12K

} 4K

} 4K

A typical disk operating system memory

organization containing 36K RAM plus 4K

PROM on MTS board. The bootstrap PROM's

for disk operating system begin at EOOO

and are physically located on the disk

controller card itself.

Figure D-5

; - 16

THE S-100 ADAPTER CARD

After designing the memory space, you can start installing the

hardware. We suggest the following steps:

STEP 1

Do not yet change the memory addresses on the MTS. Leave the monitor

in location O and the RAM at 8000. Remove all cards from the S-100

chassis. Turn on the S-100 power and check the voltages on bus lines

1, 2, 51 and 52, relative to line 50 (ground). They should be within

a few volts of +8, +18, -8 and -18V respectively (Remember, this is

an unregulated supply). Turn the S-100 power off. Turn the MTS

power off. BEFORE CONTINUING, HEED THE FOLLOWING WARNING:

CAUTION: NEVER REMOVE OR INSERT CHIPS, S-100 CARDS, OR THE

STEP 2

RIBBON CABLES WHILE THE POWER IS ON. FIRST TURN POWER OFF,

WAIT 5 - 10 SECONDS FOR THE CAPACITORS TO DISCHARGE, THEN

REMOVE OR INSERT THE DEVICE.

Set the 'Jump Start' address to 0000 by switching all the A - A

address select switches (in position 31 of the Adapter Card) to 'ON',

which represents logic O.

STEP 3

Plug the ribbon connector into socket J2 on the MTS. This connector

is labeled 'S-100'. Both this connector and the connector labeled

'ITS' are keyed to prevent accidentally plugging the cable into the

wrong connector, or plugging it in backwards.

D-17

THE S-100 ADAPTER CARD

Insert the Adapter Card into the first (front) slot in your S-100

mainframe. Turn on power for both the S-100 and MTS. Verify that

the monitor functions normally. Try entering and executing the

following program to verify that the MTS can read the sense switch~s.

If you have set the sense switches to '55', you should see a pattern

of in the leftmost display on the MTS.

8000 D3 IN FF

8001 FF

8002 32 STA 83F8

8003 F8

8004 83

8005 C3 JMP 8000

8006 00

8007 80

Next, try pressing the RESET switch on the front of the S-100. It

should cause the monitor to RESET just as if you had pressed the RST

switch on the MTS keyboard.

STEP 4

Set the address on an Expansion RAM card to 4000 by following the

directions supplied by the manufacturer of the card. Also, set the

control switch on the RAM card to enable it to recognize the PHANTOM

signal (Not all cards have this switch). Finally, set the control

switch(es) to allow you to write into the RAM, i.e., set the WRITE

D-18

THE S-100 ADAPTER CARD

PROTECT switch to the 'unprotect' position. Again, some cards don't

have this switch either.

An example of setting up a typical RAM card is shown in Figure D-6

for the 16K Static RAM manufactured by Problem Solvers, Inc.

Referring to the manufacturer's documentation, the following switch

settings would activate the RAM at address 4000.

Sl

Board P
Address Wait H

~ - a a a I a o
~2 3 4 5 6 7 8
I

I_~------ 1

Set At Address
4000 (HEX}

Phantom
Line Enabled

S2

Protect
Boundary

4 3 2 1

••• ~
No Boundary
Protected

S3

Switch positions to enable the PROBLEM

SOLVER 16K RAM at address 4000

NOTE: Refer to

documentation for details

Figure D-6

manufacturer's

Protect

• •

I
~

Memory
Unprotected

D-19

THE S-100 ADAPTER CARD

STEP 5

Turn off all power (both MTS and S-100). Insert the RAM card into

any open slots; however, in most S-100 mainframes, it is a good idea

~o leave a vacant slot on each side of a RAM card for better cooling.

STEP 6

Turn on power for both the S-100 and the MTS. Using the monitor,

store data in the S-100 RAM at address 4000, 5000, 6000 and 7000, and

then check that the data is there. First, store 55, then repeat with

AA. Turn off the MTS and S-100 system power. Remove the RAM card.

STEP 7

Repeat steps 4, 5 and 6 for each RAM card you have purchased to

verify that you can store and retrieve data in it.

STEP 8

If you have

TU-ART, read

purchased an RS232C serial interface card such as the

the manufacturer's directions carefully. Set up the

switches on the card as directed. Turn. off all power. Insert the

TU-ART card in the S-100 frame and connect the cable to the 25-pin

'D' shaped connector, commonly used for RS232C cables (Figure D-7a).

The TU-ART to 'D' connector cable is available from Cromemco (the

TU-ART manufacturer). Now write a simple program to output characters

to the terminal. An example program is shown in Figure D-7b.

D-20

I

I
i'

THE S-100 ADAPTER CARD

TERMINAL TO TU-ART CABLE

Pin~ Pin#

TXD I 2 2 TXD
3 --1...------------1-. - 3 RXD

4 RXD R 4RTS
5 ! 5 CTS

6 GND I 6 DSR
7 I t 7 GND
8

1
8 DCD

I ------20DTR

DB 25P

I
i
:
I

Male Connector
(Connects to Computer)

15 ft.
(length optional)

DB 25P
Male Connector
(Connects to Terminal)

This is a diagram of the cable required to connect a
serial RS-232 1/0 device (such as a CRT terminal) from
the DB 25-S socket of the TU-ART cable (model TRT
CB L) to the DB 25-S connector of the RS-232 device.

The jumper connection between pins 4, 5, 6, 8 and
20 may not be required since some terminals have
internal pullups on these lines.

Terminal to TU-ART Cable

Figure D-7a

D-21

THE S-100 ADAPTER CARD

ASM80 :Ft:TIJART,SRC DEBIJG SYMBOLS PAGEW1DTH(100) An exal'lple program--!
for TU-ART card.

ISIS-II 8080/8085 MACRO ASSEMBLER, V2.0 l'UART PAGE

LOC 00._1

8000
800(1 3E84
8002 [1310
8004 3E20
8006 D313
3(108 3E41
800A 3E08
800C D312
800E 3E41
8010 D:311
8012 FB
8013 C31380
0028
0028 C32882
8228
8228 3E41
822A D311
822C FD
0220 C9

8000

F'IJBLIC SYMBOLS

EXTERNAL SYMBOLS

IJSER SYMBOLS
IN1'5 A 0028

SEQ SOURCE STATEMENT

1 I SAMPLE PROGRAM TO UTILIZE·CROMENCO TU=ART SERIAL/PARALLEL S100 CARD
2 THIS PROGRAM WILL CONFIOURE A SERIAL OUPUT PORT DEVICE A FOR
3 TRANSMITTINO A SEQUENCE OP "A"S ONTO THE RS232C DEVICE.
4
5 NAME TUART
6 ORO 8000H

A;10000100B
10H
A,00100000B
13H

--7 TIJART: MVI
8
9

10
11
12
13
14
15

OUT
MVI
OUT
MVI
MVI
OUT --
MVI
OUT
EI
JMP
ORO

; 1 STOP BI T,--300 · BAUD- - --- · · - · ·
;DEVICE A BAUD RATE REGISTER
;ALLOW ONLY DEVICE A, TBE
;TO INTERRUPT

16
17 SELF:
18
19· INT5:- -- ;JMP
20 ORG
21 IRST5i MVI
22 OUT
23 EI
24 RET
25
26 END

IRST5 A 8228 SELF

A,'A'
A,08H
12H
A,'A'
11H

SELF
028H

;CHARACTER "A"
;ENABLE INTA

... ---------,coMMAND REGISTER
;CHARACTER "A"
;TRANSMITTER DATA REGISTER

; WA IT FOR INTERRUPT

· IRSTs·-- ---- ----rnsT5 VECTOR--
8228H

tOUTPUT A 'A'
:DEVICE A, SERIAL TRANS DATA REGISTER

TUART

A 8013 TUART A 8000

ASSEMBLY COMPLETE, NO ERRORS

D-22

An Example Program for the TU-ART Card

Figure D-7b

THE S-100 ADAPTER CARD

STEP 9

Now you're ready to integrate the system. Set up the S-100 RAM

card(s) to the addresses you initially designed. Turn off all power.

Insert the cards. If you're not planning to add a disk, the system

is ready to use. If you are going to add a disk system, you should

now thoroughly study the manufacturer's hardware and software

manuals.

STEP 10

Should you want to locate an S-100 RAM in memory address 0000, as

required with most disk systems, you will need to relocate the ICS

monitor and any other PROMs which currently occupy addresses 0000 -

03FF. To do this you will need to modify certain jumpers on the

decoding circuitry of the MTS. If you do, the MTS monitor will not

execute properly due to the non-relocatable code.

The MTS has the facility to locate the PROM and the RAM at any 8K

page of memory in the 64K address space, as well as to locate the

8255 at any 32 block increment of 1/0 in the 256 1/0 address range

from 00 - FF (Refer to Figures D-8 and D-9 and Table II).

For example, in order to relocate the address of the MTS PROMs to

COOO - CFFF, you will need to cut the existing jumper trace between

pin 16 marked '0000' on the silk-screen and pin 4 marked 'PROM'.

Next, insert a jumper wire from pin 11 marked 'COOO' to pin 4 marked

'PROM' (as shown in Figure D-9). You can also perform the same type

of operation for moving the RAM or 1/0 devices, if necessary for your

memory system design.

D-23

THE S-100 ADAPTER CARD

D-24

.
• .

'74LS00 ·s 4049 s
19 zo C:J

Z!

-t=J-
AR6 £ 0 R2.~

,,. -(CJD .. '',
' , -' ' ,

. •

I .,, _s:'"' ~ 1- ~4LS1!~ ~
I~ 14 ,~

,, ,. ,.. :,:- /, r'1111 1
I ~ :a, ';.' \ •

~UM?'!~ : ~~-•••

0

SJ·.... ': I I I I LJ ~0. D
TR jl\Q!.,S i--. I I I I I ;:;; I <
~o ,a~ c:.,..,! • • • • • • // I I I I ~ V _1

\ gggggg§§ r

'1.Lt.iJW¢.O"l::rNCJ / • --------- ,,. ~
~ .

74 LSH ~ • I!!!~ - i
z.

MTS STANDARD MEMORY AND I/0 CONFIGURATION

MTS Standard Memory and I/0 Configuration

Figure D-8

(

..

-

O=

THE S-100 ADAPTER CARD

EOOO RAM

cooo

AOOO

8000

6000 PROM

4000
n
<=
--l

2000

°L 0

OOOu) PIO

Address Decoder Jumper Tracess

Figure D-9

D-25

THE S-100 ADAPTER CARD

MTS ADDRESS DECODER JUMPER SETTINGS

MTS DEVICE ADDRESS JUMPERS

EPROM 0000 lFFF "PROM" to pin 16
2000 - 3FFF II to pin 15
4000 - SFFF II to pin 14
6000 - 7FFF 11 to pin 13
8000 - 9FFF II to pin 12
AOOO - BFFF II to pin 11
cooo - DFFF II to pin 10
EOOO - FFFF II to pin 9

RAM 0000 - lFFF "RAM" to pin 16
2000 - 3FFF to pin 15
4000 - SFFF to pin 14
6000 - 7FFF to pin 13
8000 - 9FFF to pin 12
AOOO - BFFF to pin 11
cooo - DFFF to pin 10
EOOO - FFFF to pin 9

8255A 00 - 03 "PIO" to pin 16
20 - 23 to p_;_n 15

Control register = XO 40 - 43 to pin 14
Port A = Xl 60 - 63 to pin 13
Port B = X2 80 - 83 to pin 12
Port C = X3 AO - A3 to pin 11

co - C3 to pin 10
EO - E3 to pin 9

TABLE II

D-26

0 THE s~lOO ADAPTER CARD

STEP 11

Set the Jump Start address on the S-100 Adapter Card to the address

of the Disk System bootstrap PROM.

STEP 12

Set up the disk controller card according to the manufacturer's

directions. Turn off all power. Insert the card, connect the

cables, and the hardware is configured. Note, however, that you will

probably have to configure the disk operating system software, i.e.,

to create a version of the disk operating system that uses your

addresses for inputs and outputs to CRT terminals and printers. This

procedure will be described in the manual for your disk system.

The key elements in bringing up a complete system are:

(1) to test only one new card at a time,

(2) to read the manufacturer's literature prior to using their card,

and

(3) to carefully follow the step-by-step procedure given above.

D-27

THE S-100 ADAPTER CARD

SUMMARY FOR CONFIGURING A SYSTEM

(1) Connect the MTS to the S-100 mainframe using the adapter

card and run the ICS monitor.

(2) Draw a memory and I/0 map of the proposed system.

(3) Remove any addressing conflicts via the jumper connections

n the decoding circuit of the MTS.

(4) Verify that the low address 0000 memory cards can recognize

the PHANTOM LINE. If so, set the appropriate switches by

referring to the manufacturer's documentation.

USE.

IF NOT, DO NOT

(5) Configure switch 31 'Jump Address' to vector to the appropriate

address upon power-up or a master reset.

(6) Connect J4 of the S-100 Adapter to socket J2 on the MTS.

(7) Insert the 100 pin edge connector J5 into the S-100 system.

(8) Power-up the S-100 system.

(9) Power-up the MTS.

D-28

THE S-100 ADAPTER CARD

IMPORTANT CONSIDERATIONS

(1) If the MTS monitor is moved from starting location 0000

to another SK page, the monitor program will not execute

properly.

(2) If RAM locations 8000 - 8FFF are moved and the MTS

monitor is not, the MTS monitor will still not function because

the display locations from 83F8 to· 83FF will follow the 8000 -

8FFF block whenever it is moved; i.e., if 8000 - 8FFF is moved

to AOOO - AFFF, display locations will now be at locations A3F8

to A3FF. The monitor assumes they will be at 83F8 - 83FF.

(3) To use the MTS S-100 Adapter with any S-100 memory card,

the automatic Jump Address Vector switches U31 must be

configured. In addition, the lower address 0000 of any S-100

RAM card must be capable of disabling itself should the PHANTOM

signal be generated upon a master RESET or power-up.

(4) If any memory or 1/0 address conflicts occur, the MTS memory

will

have highest priority and therefore will be selected over S-100

memory with the same address.

D-29

t:, TABLE III ~
I ::i:: c:., t:z:J

0
SlOO BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B rn

I
& EMULATED BY THE SlOO BUS ADAPTER 0

0

P>
t:,

PIN AMTS SlOO ADAPTER P>

NUMBER SYMBOL NAME FUNCTION IMPLEMENTATION COMMENTS 'c
~
t,:j
::0

1 +av +8 VOLTS UNREGULATED VOLTAGE ON BUS, YES VOLTAGE
(")

SUPPLIED TO PC BOARDS AND NOT SUPPLIED P>
REGULATED TO Sv. ::0

t:,

2 +18v +18 VOLTS POSITIVE PRE-REGULATED YES VOLTAGE
VOLTAGE. NOT SUPPLIED

3 XRDY EXTERNAL READY EXTERNAL READY INPUT TO CPU YES DELAYED
BOARD'S READY CIRCUITRY.

4 VIO VECTORED INTERRUPT NO
LINE IIO I THESE SIGNALS ARE

GENERATED BY I/0
5 vu VECTORED INTERRUPT NO \ BOARDS AND ARE TO

LINE 111 BE PROCESSED BY A
SEPARATE PRIORITY

6 VI2 VECTORED INTERRUPT NO \ INTERRRUPT BOARD
LINE 112 WHICH THEN GENERATES

A SINGLE INTERRUPT
7 VI3 VECTORED INTERRUPT NO , REQUEST (ON LINE 73)

LINE //3 TO THE ADAPTER CARD

8 VI4 VECTORED INTERRUPT NO
LINE /14

9 VIS VECTORED INTERRUPT NO
LINE 115

10 VI6 VECTORED INTERRUPT NO
LINE 116

All materials copyright by lnteg·rated Computer Svstems, Inc. Not to be reproduced without prior written consent.

PIN
NUM11ER SYMBOL

11 VI7

12 *XRDY2

13 TO BE
TO DEFINED
17

18 STAT DSB

19 C/C DSB

20 UNPROT

21 55

22 ADD DSB

23 DO DBS

t1
I
~
~

TABLE III

SlOO BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED BY THE SlOO BUS ADAPTER

AMTS SlOO ADAPTER
NAME FUNCTION IMPLEMENTATION

VECTORED INTERRUPT NO
LINE //7

EXTERNAL READY 1/2 A SECOND EXTERNAL READY YES
LINE SIMILAR TO XRDY

STATUS DISABLE ALLOWS THE BUFFERS FOR YES
THE 8 STATUS LINES TO BE
TRI-STATED

COMMAND/CONTROL ALLOWS THE BUFFERS FOR THE YES
6 OUTPUT COM}1AND/CONTROL
LINES TO BE TRI-STATED

UNPROTECT INPUT TO THE MEMORY PROTECT NO
FLIP-FLOP ON A GIVEN MEMORY
BOARD

SINGLE STEP INDICATES THAT THE MACHINE IS NO
IN THE PROCESS OF PERFORl1ING
A SINGLE STEP (i.e. THAT SS
FLIP-FLOP ON D/C IS SET)

ADDRESS DISABLE ALLOWS THE BUFFERS FOR THE 16 YES
ADDRESS LINES TO BE TRI-STATED

DATA OUT DISABLE ALLOWS THE BUFFERS FOR THE 8 YES
DATA OUTPUT LINES TO BE TRI-
STATED

All ma1eriills co1,ydgh1 hy lntegraleci Cornpuler Systems, Inc. Not to he ,eprollucell wilhout prior wriuen consmll.

COMMENTS

II

DELAYE[

MOST MEMORY BOARDS
HAVE SOFTWARE CON- 1-3
TROLLABLE FLIP-FLOPS ::r::

t"l

NOT USED Cl.l
I

0
0

>
t::1
> - '1j
1-3
t,:j

:::0

- (")

>
::ti
t::1

t:I
I

ul
~

PIN
NIDIDER

24

25

26

27

28

SYMBOL

v'2

~1

PHLDA

PWAIT

PINTE

TABLE III

S100 BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED BY THE SlOO BUS ADAPTER

NAME

PHASE 2 CLOCK

PHASE 1 CLOCK

HOLD ACKNOWLEDGE

WAIT

INTERRUPT ENABLE

FUNCTION
AMTS SlOO ADAPTER

IMPLEMENTATION

PROCESSOR COMMAND/CONTROL
OUTPUT SIGNAL THAT APPEARS
IN RESPONSE TO THE HOLD
SIGNAL; INDICATES THAT THE
DATA AND ADDRESS BUS WILL GO
TO THE HIGH IMPEDANCE STATE
AND PROCESSOR WILL ENTER
HOLD STATE AFTER COMPLETION
OF THE CURRENT :M'ACHINE CYCLE.

YES

YES

YES

PROCESSOR COMMAND/CONTROL YES
SIGNAL THAT APPEARS IN
RESPONSE TO THE READY SIGNAL
GOING LOW; INDICATES PROCES-
SOR WILL ENTER A SERIES OF
.5 MICROSECOND WAIT STATES
UNTIL READY AGAIN GOES HIGH.

PROCESSOR COMMAND/CONTROL YES
OUTPUT SIGNAL; INDICATES
INTERRUPTS ARE ENABLED, AS
DETERMINED BY THE CONTENTS
OF THE CPU INTERNAL INTERRUPT
FLIP-FLOP. WHEN THE FLIP-FLOP
IS SET (ENABLE INTERRUPT INSTRUC
TION), INTERRUPTS ARE ACCEPTED BY
THE CPU; WHEN IT IS RESET (DISABLE
INTERRUPT INSTRUCTION), INTERRUPTS

All materials copyright by lntegralecJ Computer Systems, Inc. Nol to be reproduced wilhout poior written consent.

8
p::
tr::1

Cf.)

I
0
0

>
b

COMMENTS >
"'o
8
t,:,j

DELAYED ::0

()

DELAYED >
::0
b

DELAYED

DELAYED

DELAYED

TABLE III

SlOO BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED BY THE S100 BUS ADAPTER

PIN AMTS SlOO ADAPTER

N~ SYMBOL NAME FUNCTION IMPLEMENTATION COMMENTS

29 AS ADDRESS LINE 115 YES DELAYED

30 A4 ADDRESS LINE 114 YES DELAYED

31 A3 ADDRESS LINE 113 YES DELAYED

32 Al5 ADDRESS LINE 1115 (MSB) YES DELAYED

33 A12 ADDRESS LINE 1112 YES DELAYED

34 A9 ADDRESS LINE 119 YES DELAYED

35 DOl DATA OUT LINE #1 YES

36 DOO DATA OUT LINE 110 (LSB) YES

37 AlO ADDRESS LINE 1110 YES DELAYED

38 D04 DATA OUT LINE 114 YES
1-3
~

39 DOS DATA OUT LINE 115 YES - l:E:1

C/.l

40 D06 DATA OUT LINE 116 YES - I
0
0

41 DI2 DATA IN LINE 112 YES -
>
t::::i

42 DI3 DATA IN LINE 113 YES - >
"'d
1-3

43 DI7 DATA IN LINE /17 (MSB) YES - l:E:1
::,;,

(')

>
ll:J
t::::i

t::::i All materials copy, ight by Integrated Computer Systems, Inc. Not to be reproduced without prior written consent.
I w
w

TABLE III 1-3
::z::

t::I t.:c:1
I SlOO BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B Cl.) c..,
~ I -& EMULATED BY THE SlOO BUS ADAPTER 0

0

>
AfffS S 100 ADAPTER t::I PIN >

NillffiER SYMBOL NAME FUNCTION IMPLEMENTATION COMMENTS '"c
- ---···--· -t.a--

t.:c:1
----- 44- -- ::.:,

SMl MACHINE CYCLE 1 STATUS OUTPUT SIGNAL THAT YES DELAYED
(') INDICATES THAT THE PRO- >

CESSOR IS IN THE FETCH ::.:,
0 CYCLE FOR THE FIRST BYTE

OF AN INSTRUCTION.

45 sour OUTPUT STATUS OUTPUT SIGNAL THAT YES DELAYED
INDICATES THE ADDRESS BUS
CONTAINS THE ADDRESS OF
AN OUTPUT DEVICE AND THE
DATA BUS WILL ·CONTAIN THE
OUTPUT DATA WHEN PWR IS
ACTIVE.

46 SINP INPUT STATUS OUTPUT SIGNAL THAT YES DELAYED
INDICATES THE ADDRESS BUS
CONTAINS THE ADDRESS OF
AN INPUT DEVICE AND THE INPUT
DATA SHOULD BE PLACED ON THE
DATA BUS WHEN PDBIN IS ACTIVE.

47 S}lEMR MEMORY READ STATUS OUTPUT SIGNAL THAT YES DELAYED
INDICATES THE DATA BUS WILL
BE USED TO READ MEMORY DATA.

48 SHLTA HALT STATUS OUTPUT SIGNAL THAT YES DELAYED
ACKNOWLEDGES A HALT
INSTRUCTION.

49 CLOCK CLOCK INVERTED OUTPUT OF THE ~2 YES DELAYED
CLOCK

All materials copyright by Integrated Computer Systems, Inc. Not to be reprnduc~d without prior written consent.

PIN
NUMBER

50

51

52

53

54

0
I

C,i)

CTI

SYMBOL

GND

+av

-18v

SSWI

EXT CLR

TABLE III

SlOO BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED BY THE SlOO BUS ADAPTER

AMTS SlOO ADAPTER
NAME FUNCTION IMPLEMENTATION

GROUND YES

+8 VOLTS UNREGULATED INPUT TO 5 YES
VOLT REGULATORS

-18 VOLTS NEGATIVE PRE-REGULATED YES
VOLTAGE

SENSE SWITCH INPUT INDICATES THAT AN INPUT NO
DATA TRANSFER FROM THE
SENSE SWITCHES IS TO TAKE
PLACE. THIS SIGNAL IS USED
BY THE DISPLAY/CONTROL LOGIC
TO:

A) ENABLE SENSE SWITCH
DRIVERS

B) ENABLE THE DISPLAY/
CONTROL BOARD DRIVERS
DATA INPUT (FDI0-FDI7

C) DISABLE THE CPU BOARD
DATA INPUT DRIVERS
(DI0-DI7)

EXTERNAL CLEAR CLEAR SIGNAL FOR I/0 NO
DEVICES (FRONT PANEL
SWITCH CLOSURE TO GROUND)

All materials copyright by Integrated Computer Systems, Inc. Not to be reproduced without prior written consent.

COMMENTS

VOLTAGE NOT SUPPLIED
BY AMTS

VOLTAGE NOT SUPPLIED
BY AfITS

FRONT PANEL RELATED
FUNCTION

1-3
l:J::
t:Ej

Cl.l
I ,_.

0
0

>
0

MOST SlOO CARDS NOW >
ltj

USE MASTER SYSTEM RESET 1-3
t:Ej

~

()

> ::c
0

0
I

(.I)
0)

-
PIN
~R

55

56

57

58

59 - 66

. 67

SYMBOL

RTC

STSTB

·nIGl

FRDY

TO BE
DEFINED

PHANTOM

TABLE III

SlOO BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED BY THE SlOO BUS ADAPTER

NAME

REAL TIME CLOCK

STATUS STROBE

DATA INPUT GATE
Ill

FRONT PANEL
READY

PHANTOM

AMTS SlOO ADAPTER
FUNCTION IMPLE}IBNTATION

60Hz SIGNAL USED AS TIMING

OUTPUT STROBE SIGNAL SUPPLIED
BY THE 8224 CLOCK GENERATOR.
PRIMARY PURPOSE IS TO STROBE
THE 8212 STATUS LATCH SO THAT
STATUS IS SET UP AS SOON IN
THE MACHINE CYCLE AS POSSIBLE.
THIS SIGNAL IS ALSO USED BY
DISPLAY/CONTROL LOGIC.

OUTPUT SIGNAL FROM THE DISPLAY/
CONTROL LOGIC THAT DETERMINES
~IBICH SET OF DATA INPUT DRIVERS
HAVE CONTROL OF THE CPU BOARD'S
BIDIRECTIONAL DATA BUS. IF .
DIGl IS HIGH, THE CPU DRIVERS
HAVE CONTROL; IF IT IS LOW THE
DISPLAY/CONTROL LOGIC DRIVERS
HAVE CONTROL.

OUTPUT SIGNAL FROM D/C LOGIC
THAT ALLOWS THE FRONT PANEL
TO CONTROL THE READY LINE TO

. --
THE CPU.

SIGNAL FROM ADAPTER CARD TO
DISABLE MEMORIES AFTER RESET
TO ALLOW JUMP START TO ADDRESS
Sl'EClFIED ON ADAPTER CARD,

NO

YES

YES

YES

YES

COMMENTS

NOT NEEDED

DELAYED

DELAYED

f-3
::i::
t,:j

Cl.l
I

0
0

>
t:J
>
"d
f-3
t:<:1
::0

()

>
::0
b

PIN
NUMBER

68

69

70

71

72

73

t:,
I

(,I)

"

SYMBOL

MWRITE

PS

PROT

RUN

PRDY

PINT

TABLE III

SlOO BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED. BY THE SlOO BUS ADAPTER

AMTS SlOO ADAPTER
NAME

MEMORY WRITE

FUNCTION IMPLE}IENTATION

INDICATES THAT THE DATA YES
PRESENT ON THE DATA OUT
BUS IS TO BE WRITTEN INTO
THE MEMORY LOCATION CUR-
RENTLY ON THE ADDRESS BUS.

PROTECT STATUS INDICATES THE STATUS OF THE NO

PROTECT

RUN

MEMORY PROTECT FLIP-FLOP ON
THE MEMORY BOARD,

INPUT TO THE MEMORY PROTECT
FLIP-FLOP ON THE MEMORY BOARD
CURRENTLY ADDRESSED.

INDICATES THAT THE STOP/RUN
FLIP-FLOP IS RESET; i.e.
MACHINE IS IN RUN MODE.

PROCESSOR READY MEMORY AND 1/0 INPUT TO THE
CPU BOARD WAIT CIRCUITRY

INTERRUPT REQUEST THE PROCESSOR RECOGNIZES AN
INTERRUPT REQUEST ON THIS
LINE AT THE END OF THE
CURRENT INSTRUCTION OR WHILE
HALTED. IF THE PROCESSOR IS
IN THE HOLD STATE OR THE INTER
RUPT ENABLE FLIP-FLOP IS RESET,
IT WILL NOT HONOR THE REQUEST.

NO

NO

YES

YES

Alt materials copyright by Integrated Computer Systems; Inc. Not to be reproduced without prior written consent.

COMMENTS

DELAYED

NO FRONT PANEL LAMPS
ON WHICH TO INDICATE
STATUS

MEMORY PROTECT USUALLY
IS SWITCH SELECTABLE
ON THE RAM CARD ITSELF

NOT USED

DELAYED·

DELAYED

1-3
::i::
t%j

OJ
I

0
0

tJ:,,
~
tJ:,,
I'd
1-3
t%j

::0

(')
tJ:,,
::0
~

0
I

c..:,
00

PIN
NmIBER

74

75

76

77

78

SYMBOL

PHOLD

PRESET

PSYNC

PWR

PDBIN

TABLE III

SlOO BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED BY THE SlOO BUS ADAPTER

NAME

HOLD

RESET

SYNC

WRITE

DATA BUS IN

FUNCTION
AMTS SlOO ADAPTER

IMPLEMENTATION

PROCESSOR COMMAND/CONTROL YES
INPUT SIGNAL THAT REQUESTS
THE PROCESSOR ENTER THE HOLD
STATE; ALLOWS AN EXTERNAL
DEVICE TO GAIN CONTROL OF
ADDRESS AND DATA BUSES AS
SOON AS THE PROCESSOR HAS
COMPLETED ITS USE OF THESE
BUSES FOR THE CURRENT MACHINE
CYCLE.

PROCESSOR CO~...AND/CONTROL
INPUT; WHILE ACTIVATED, THE
CONTENT OF THE PROGRAM
COUNTER IS CLEARED AND THE
INSTRUCTION REGISTER IS SET
TOO.

PROCESSOR COMMAND/CONTROL
OUTPUT; PROVIDES A SIGNAL
TO INDICATE THE BEGINNING
OF EACH MACHINE CYCLE.

YES

YES

PROCESSOR COMMAND/CONTROL YES
OUTPUT; USED fOR MEMORY WRITE
OR I/0 OUTPUT CONTROL. DATA ON
THE DATA BUS IS STABLE WHILE THE
PWR IS ACTIVE.

PROCESSOR COMMAND/CONTROL OUTPUT; YES
INDICATES TO EXTERNAL CIRCUITS
THAT THE DATA BUS IS IN THE INPUT
MODE.

All materinls copyright liy Integrated Com1>uter Syslems, Inc. Not to he repro<.luccd without prior written conse111.

COMMENTS

DELAYED

DELAYED

DELAYED

DELAYED

~
::i::
t:i::l

tn
I

-~
0
0

>
0
>
'.:I
t-3
t:cl
:::0

C":)

>
:::0
ti

TABLE III

SlOO BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED BY THE SlOO BUS ADAPTER

PIN ANTS SlOO ADAPTER
NUMBER SYMBOL NAME FUNCTION IMPLEMENTATION COMMENTS

79 AO ADDRESS LINE /10 (LSB) YES DELAYED

80 Al ADDRESS LINE Ill YES DELAYED

81 A2 ADDRESS LINE 112 YES DELAYED

82 A6 ADDRESS LINE 116 YES DELAYED

83 A7 ADDRESS LINE 117 YES DELAYED

84 AB ADDRESS LINE 118 YES DELAYED

o.:; A13 ADDRESS LINE /113 YES DELAYED

86 A14 ADDRESS LINE 1/14 YES DELAYED

87 All ADDRESS LINE 1111 YES DELAYED

88 DOZ DATA OUT LINE #2 YES
t-3

89 D03 DATA OUT LINE #3
J:I:

YES - t<l

en
90 D07 DATA OUT LINE #7 YES - I -0

91 DI4 DATA IN LINE 1/4 YES - 0

:t>

92 DIS DATA IN LINE If 5
0

YES - ~
"Cl
t-3

93 DI6 DATA IN LINE 116 YES - t:tj

~

94 DI7 DATA IN LINE Ill YES - (')
:t>
:::0
0

0
All materials copyright by lntegraterl Computer Systems, Inc. Not to be reproduced without prior written conse111.

I
t.)
<.D

TABLE III ~ -Cl [:Ij

I SlOO BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B ti.) ii::.
0 I

& EMULATED BY THE SlOO BUS ADAPTER 0
0

>
PIN AMTS SlOO ADAPTER ti

>
NUMBER SYMBOL NAME FUNCTION IMPLEMENTATION COMMENTS t-c,

~
[:Ij

95 DIO DATA IN LINE itO (LSB) YES
~

(")

>
96 SINTA INTERRUPT ACKNOWL- STATUS OUTPUT SIGNAL; YES DELAYED ~

EDGE ACKNOWLEDGES SIGNAL FOR ti

INTERRUPT REQUEST,

97 swo WRITE OUT STATUS OUTPUT SIGNAL; YES DELAYED
INDICATES THAT THE OPER-
ATION IN THE CURRENT
MACHINE CYCLE WILL BE A
WRITE MEMORY OR OUTPUT
FUNCTION.

98 SSTACK STACK STATUS OUTPUT SIGNAL YES DELAYED
INDICATES THAT THE ADDRESS
BUS HOLDS THE PUSHDOWN STACK
P.nDRESS FROM THE STACK POINTER.

99 POC POWER-ON CLEAR YES

100 GND GROUND YES

All ITlaterials copyright by Integrated Computer Systems, Inc. Nol to be reproduced without prior written consent.

MICROCOMPUTER TRAIN I fl!G wnRKBOnK

APPENDIX E

AMTS SCHEMATICS

029-8
AR6-4

030-8
AR&-8

037-11
020-7

037-10
020-9

037-4

037-1
024-13
017-35

U3B-2, 0

UlB-14,0

038-10,0

m-12.0

U54
80801' P

HOLD
13

HOLD

INT
14

INT

22
81

111 CLK

15 112
82 CLK

23
READY

READY

12 RESET
RESET

24-3 HLDA

37-5 SYNC

l 3- 4 WAIT
50-1

INT£
-025 5

OMA ENABLE

Al5 36

Al4 39

Al3
38

Al2 37

All 40

AlO. l

A9 35

AB
34

A7 33

A6 32

AS 31

A4 30

A3 29

A2 27

Al 26

AO
25

D7
6

D6 S

OS 4

D4
3

D3 1

D2
8

D1 9

DO 10

WR _18
~

DBIN 17

HLDA 21

StNC 19

WAIT 24

INT£
16

'

10 U47
2

74LS367

4

6

Cl
Y1

10 USG

4
4

74LS367
2

6 3

12 5
14

6
2 1

Cl C2

Y1 YlS

6
U55

3 74LS367
4 2

2 1

14 &
12 5
10 4

Cl C2
Yl Y 15

2 U38
14 74LS367
10

12

4
~

6
~

Cl C2 rl rs

9 ...
3
1

s

9

5

1

11

13

3

1

5

3

l

11

9 ..,

3 Sl HLDA

13 S1 SYNC

9 Sl WAIT

11 Sl INTE

5 SlWR

1 S1 OBIN

> ADDRESS
BUS
AO-A15

D

D6

D5

D4

D3

D2

Dl

DO

WR

OBIN

" 12- 44

, 12 30

J2 - 43

< 12 47

, I 2 -46

, J2 -48

AMTS SCHEMATIC

E - 1

0461- 5

U46B-ll

U46B-14

0461-2

0461-5

0461-2

046 B-14

0461-11

046B-15

023-9

CENTRAL PROCESSING UNIT
PAGE 1 OF 10 05/79/0132

J2 - 41 sr=liiiID

::~ 025- 9 =~------=--------~T~P4~~ =-=======~.=~~ +5

INT
REQ 4 AUTO

AR&-7
21 s -16 o"

u11-1s-----=-1 D USO Q ss
O _ __._ ______ r~+SV

IK
LS74

U46D-5 Ml 3 IC R Q IS

Jl- ": I ITS INTI
J2- 28 silNfR

ARH ~ARH ;;$,
IK IK +sv

t • O +SV

AR&-3
IK

12-40) ~ SIRDY I I c~

U37
8224

ll'DY 4

8

+SV

+SV

AR6-B
IK

054 -13

INT 054-14

INTE 054-16
038-12

82 CLK (TTLl _,,, J3-12

82 CLK · 030- 3

RFADY
054 -23
017-35
024-13

WAIT

054-24- bjRESIN

' ' + 5 o--J\1\/\, •
RIO
m

\

I

C2

1 3.3,.1

RFSH
054-12

81 CLK 054 - 22

82 CLK 054-15
.... l I .:: :: : 1 j ----

038-14
054 -19

,to< 0 kl
IN914

NC -NO

-=- RESET
~ SYNC

- XI X2

STSTB

15 14

YI

D
18.432 mHZ

CRYSTAL
USO -11
0460-9

2A 2Yr5
Sllll (J2-36

U39
5182 9 .,, J2-32

SI CLK .,, 12-34

Sl STSTB
(12-38 r

AMTS SCHEMATIC
CLOCK AND INTERRUPT CIRCUIT
PAGE 2 OF 10 05/79/0132

t:i:::I

I\.)

7

1s DI
D7 DO U46B 054-6

9 DI 8216
~ D6 DO U54- 5

12 DI
D5 U4 DO 4 U54 -

4 DI
D4 LJ DO 3 054-

DIEN cs
15j r

054

7 DI
D3 15 DO U46A -1

4 8216
l2 DI

D2 DO -8 U54
12

114 DI
01

DO -9 054
9

l1l DI
DO

DO -10 054
DIEN cs
15 r

U54- 18
WR

3 D

11 D U46D

6 D LS174

14 D

4 D

3 D
CLK CLR

u 37-7 STSTB 91 r
+5

u 25 - 6 BOSEN

x+5
10 1

U23
+5 ~ 12

D USO Q 9 2

u

u

.__!! C

.!.i \... 54-17 OBIN _iJ 23 8
' 10 U

54-21 -
HLDA

LS74
9 Q 8

10 U13

r1"

DB 6

DB 10

DB. 13

DB l

DB
6

DB
3

DB l3

DB
10

~ U46C
2 LS368

'14 C

---i _115

Q 2
U46C 6 Q 10

LS368
2 Q 7

Q 15 4
C oh I J

Q~

--
5

6 U23 3 4

8
·-

"'11

""'13

b-,
_7 -

3

i.-5
,-

-

E - 3

D7 -.,

D6

DS

D4

D3

D2

Dl

DO

D
,..B

...

ATA
us

MEMW _....,

Tow

TOR
MEMR

INTA

Ml

IOR

IOW

MEMW

MEMR

-

...

> CONTROL
BUS

-::J 3- 31

50- 3

J3- 33

J3-43

J3- 30

J3 -26

-u

-

AMTS SCHEMA TIC
NTROL DATA BUS CO

PAGE 3 OF 10 05/79/0132

CHIP SELECTS

UIS-12 DEC 0

UIS-11
DEC 4 OR 8

UIS-10
DEC 8 OR 10

UIS - 9
DEC C OR 18

DATA BUS

ADOR
BUS

AO - A9

U9-4 PROM~

U9-5 PROM Vo

20
cs

U4
D7

2708 --

Ve

21

Vp I 18
Vo

19 21

20
cs

UlO
2708

Va
Vpl18

Vo

19

Ve

21

20
cs

U16
2708

Vp 118
Vo

19

_!!
cs

U21 07 l7
2708 06 16

OS 15

04 14

03 13

02 11

DI 10

DO 9

V

Ve
p I 18

Vo

21 I I 19

t".I

AMTS SCHEMATIC ~
ROM MEMORY
PAGE 4 OF 10 05/79/0132

ADDR
BUS
AO-AIS

DATA
BUS

UIS- l DEC &COO

UIS- 6 JIEC HO(

UIS- S DEC 8400

UI3 _ 3 DEC 8000

CONTROL MEMW
BUS

~ cs
8

K:.:!!111

026
2114

WE I I

-'U'+ nl..!-../1

HAO

N!ln

U27
2114

cs WE I

2114

04 .14

I HAO cs

U31
2114

WE I NAO cs

oo· 14

U32
2114

04

WE

14

tij

AMTS SCHEMATIC U1

RAM MEMORY
PAGE 5 OF 10 05/79/0132

125-6

111-11$
II

U2-45
SIPIIANlOM

ADDR
BUS .

DIA (NIILE
+5 ..

PHE
DECODE

12 uz
D LS4Z

7
11

6
AiS - 13 C 5

4

m-----1!1 B 3

z
113~1 I

112

All

110

CONTROL ________ _,
BUS

UI
I& PIN

OIP PATTERN

MEMW lZ)o!!f-J J 013 MEMI 13 I

+12

-5

-=-

z

9 ~ I 10 Ht• I
9 -·

11

09
2708/16
r---:i. 4.-0---

ol h
111 --- 15

5

4

cW.!-o+5 .. ___ .J

16 PIN
DIP PATTERN
(JUMPER)

SELECT

lZ

I 11~ 030)12 SIMEMSH < J2- 42

RAM
SELECT

UIS
EN 3

I LS139 2
6 ..,

3 B I ,_5 ,..
Z A ok)L

15 UIS
3

9
EN

LS139 z 10

13 B 11

A ft lZ
14

PROM
SELECT

PROM Vo

PROM Va

111.V QUVV 026,27- I
DEC BBDO 031,32-B
DEC 1400 040,41-8

OEC 8000
041,49 -a

DEC C OR 11

DEC B OR 10

DEC 4 OR I
DECO

04 zo
014-20

016-2D

OZI-ZO

04.10, l&, zo
PIN 19
04,10,16,20
PIN Zl

bll SI PIOSEL 017 &

AMTS SCHEMATIC
ADDRESS DECODING
PAGE 6 OF 10 05/79/0132

t<:I

0\

017-10 IOPC7
019-9

+sv
I R9

100K

71 O U3 Q 3
555 0

OMA

~ nTR CLOCK A

TP14
K

B

I R CV I Cl ..L

X4
5

.olr' I
-

+5V
TPIO

037- 6
82 CLK

HLOA
3~ I I 054-21

038-2 4 U29

13 U24 1 I

054-12
RESET ~ 037-1

017-35

+sv

~ R26
470

JO

U25
Q 19 LS74

OMA
REQUEST

ij 8

R 4
13 s

2 o LS74
OMA

ENABLE
+sv 3 C U25

R

1 I
""'" ll'>R

V" ~

Q 5

ij 16

1

047-1
056-1
056-15

OMA ENABLE 055-1
055-15

OMA ENABLE
023- 5 r 013-2
030-2
047-15
039-15

OMA 5TB 043-11.

OMA CLK 2 011-1
OMA CLK 1

019-10
RESET

~ J3-27
SlRESET

J2 -27

AMTS SCHEMATIC
OMA CLOCK
PAGE 7 OF 10 05/79/0132

ttj

-..J

OMA
ADDRESS

+sv 039
LS367

14
62

15

12 047
LS367

14

62

025-6
OMA ENABLE

DIGIT
025-12 8 SELECT
017-10

022
12 LS42

m-s D
TP-10 OMA CLK I
03- 3

011 D II 13 C
OMA CLK 2 I LS93

020- 2 BC
C B 14

B
14

AC
B 9 15

A

A 12

052-3

11

13

11

13

7
9

6

5 6

4
5

3
4

2 3

I
2

A3

AZ

Al

AO

I I
I 22A

I Ii&
2 Its
3 114

4 1 u
5 112
6 111
7 110
8 9
L __ _,

AM'TS SCHEMATIC
DMA SELECT

E - 8

ADDRESS
BUS

QI ARl-3
QZ ARl-4
Q3 ARI -5
Q4 ARI -6
qs ARI - 7
Q& ARI - 8
Ql ARI-9
QB ARI - 10

PAGE 8 OF 10 05/79/0132.

DATA
BUS

~

D7

D6

OS

D4

D3

D2

DI

'-°o
U29-6

AR 1-3

AR 1-4

AR 1-5

AR 1-6

AR 1-7

AR 1-8

AR 1-9

ARI -10

OMA STB

Ql

Q2

Ql

Q4

QS

Q6

Q7

QB

+5¥~

+SV

~14 A23
CLR INT

22 U43 21 D17 07
20

D16 06
19

B
DIS 05

17

16 D14 04
15

9 D13 03
10

7
D12 02

B

5
OIi 01 6

3
DID 00

4

II
STB

8212
OSI DS2 MD

r1 g3 r2

· +sv ·

10 9 B 7 6 5 4 3 r:---- ,_ -- 1 c> 4> > > ii :> - - - - - - - - - :> I
~------

U34
14 75498 •• ..1 17 07 r-

19 16 06 i.-2

18
15 OS i.-3

12
14 04

_9
r-

II 13 03
~10
r-

13 12 02 i.-B

16
II 01

_s
17

10 00
,_4
,-

+sv
DIGIT)

DRIVERS
2N346~' TYP

QI

so·
QfQ'
Qp·
so·
Qp·
Qp·
SD

E - 9
T IL 321
DISPLAY

• "A A Rl
V' vv ... DP

• ,. ,. .. R2 g
vvv - RJ

6 AAA f vvv-

..... R4 e vv--

• A A A RS d
.., ___

• A A A R6
vv v - C

...... R7 b

.-.. - - - RS
vvv - 39~HVPICAL

a

B

7

6

5

4

3

2

-I

a

r/ g /b
e/ /c - .

AMTS SCHEMATIC
DISPLAY DRIVERS

d DP

PAGE 9 OF 10 05/79/0132

Ul7
8255
PIO

27 07
28 06
29

05
30

DATA 04
BUS 31 03

32 02

33 01

34 DO

ADDR{
Al

8
Al

BUS AO 9
AO

12 49 SlPIDSEL 6
Ul 9 - 11 cs

037 - 1 RESET 35
RESET

COIITIGL{ Iii
36 ,ow

Bl\S IOR 5
IDR

PA7
37

PA& 38

PAS 39

PA4
40

PA3 1

PA2 2

PAI 3

PAO
4

PB7 25

PB6 24
PBS 23

PB4 22

PB3 21

TP9
PIO 18

PBO

PC 7 10

PC6
11

PCS 12

PC4 13

PC3 17

PC2 16

PCl 15

PCO
14

PA7

PA&

PAS
Jl:-28
044-6

U19- 9 PA4
025-12

P!!l

U 60-13

060-11

USO- 2 PA2

JJ- 29
060-2

PAl

PAO

6

5

4

2

3

8

9

AMTS SCHEMATIC
KEYBOARD CONTROLLER

E - 10

+sv
AR2

lOK TYP

PAGE 10 OF 10 05/79/0132

MICROCOMPUTER TRAINING WORKBOOK

APPENDIX F

A PRIMER TO DIGITAL LOGIC

WHAT IS THE MOST BASIC LOGIC DEVICE?

Answer: a wire

Logical property of a wire:

Any voltage potential that is placed on the "A" input of the wire will

soon (very soon) appear at the "B" output. In other words, a wire can be used

to transmit voltage states from any node "A" to any node "B".

F-1

F-2

WHAT INFORMATICN 'MAY BE TRANSMITTED CN A WIRE?

First Answer: A voltage representing a number (an analog signal)

Here's an example,

An electrical reading scale:

1. Person steps on scale

2. Platform sags in response to person standing on scale

3. Causing metal wiper to change position along a resistive

material

4. That is connected as a potentiometer in a voltage

divider network

S. Whose wiper output is connected via a wire to cause a

voltage that is proportional to the weight of the person:

6. To be transmitted to a voltmeter that indicates the

weight of the person

Second Answer: A wire can also transmit a voltage representing one of

two condition.s:

RES ISTOI<. ___,
rWIRE

5y,.11TCH

If switch is up, voltage at end of wire will be equal to battery voltage

If switch is down, voltage at end of wire will be zero (or nearly so,

Let's look more at this setup in which the wire must carry a voltage

that represents one of two conditions:

For many kinds of electronic devices that are classified as digital

devices, the two possible conditions ar~ defined as follows:

1st condition:

Wire is defined to be~ when voltage between wire arid grounn is between

+2.Sv and +5.25v.

2nd condition:

Wire is defined to be OFF when voltage between wire and ground is

between - 0.Sv and +0.Sv.

F-3

F-4

Bl.11' WHAT ABOUT VOLTAGES 'I'HAT ARE NOT WITHIN ABOVE RANGES?

Answer: they are not allowed. Voltages between +~.Sv and +2.Sv are

unclear and therefore not to be trusted. Voltages below -r.~v or above+~.,~

volts are hazardous (may cause smoke and firen anc are therefore expressJy

forbidden!

CAN WE SIMPLIFY THE DEFINITICN OF "ON" AND "OFF" WHEN TALKIN3 ABOlll' VOLTAGES O,..T

WIRES?

Answer: certainly. For sake of c'liscussion we wiJ] simply nefine the OJ

state as +5 volts between the wire and ground.

The OFF state we will define as r volts between the wire anc grounn.

Definition: Digital electronics: That branch of electrionics

specializing in circuits whose signals are defined as "on" and "off" voltages.

Actually, let's go further and define what 5 volts and 0 volts are

really equivalent to:

5 volts=~= True= One= High= "I"

0 volts= OFF= False= Zero= Low="<""

So now, when we talk about the signal on a wire being CJlll, true, one, or

high we mean that there is approximately 5 volts on it. And when the signal is

OFF, false, zero, or low we mean the voltage is zero. (Actually, there is c1n

exception to these assignments but we'll talk about that late~.

r

Definition: the schematic symbol for a wire is as follows:

(schematic symbol for a wire)

Variations on the schematic symbol of a wire:

F-5

Other variations on the schematic symbols for a wire:

a.(2 wires crossing but not touching each other)

r
b.same as a. (less commonly seen)

j
c.2 wires connected together

d. a wire in hiding

OKAY. 8111' WHAT'S SO GREAT ABOUT A WIRE? AFTER ALL, IT'S JUST A WIRE.

Answer: yes, true. What's exciting is what we can ~o with·more than

one of them.

WHAT?

Answer: well, take one wire.

Quiz (1) : WHAT CAN r VOLTS REPRESENT?

Answer (1) (you fill in\ : ___ , ___ , ___ , or

AND WHAT CAN 5 VOLTS REPRESENT?

Answer (2): __ , ___ , ___ , or

Let's use the terms "one and "zero" to define 5 volts and 0 volts

respectively in conjunction with the voltage on a wire. On the following

schematic drawing of a wire, how many different combinations of "one" and "zero"

can be true over a period of time?

Answer (3) :

O.tq "(

qSJH io 'auo 'ani1 'No ·z

"10'1 · io 'oiaz 'aste4 '.i.iO • 1 : sia"1SUV

Now, add another wire:

(Wire A)

(Wire B)

NOW, HOW MANY COMBINATIONS OF VOLTAGES CAN BE APPLIED TO TWO WIRES?

Answer (~):

WHAT ARE THE COMBINATIONS?

F-8

Answer (5): (fill in 11 111 or "0" in the table:)

1st combination

2nd combination

3rd combination

4th combination

Wire A Wire B

• ..1ap..10 lue u,: LL pue 'OL 'LO '00 Moqs 01 paau no.x

·s..taMsue 1oa..1..100 a1q,:ssod 9L JO 1no £ Moqs aAOQV

0 0 0

0 0 0
.IO .IO

0 0

0 0 0 0

..tno,:1 • tr

Let's assign numeric values to each combination:

Combination

0 0

0

0

So now, our two wires:

(Wire A)

(Wire B)

can define any number between O and 3.

Number

0

2

3

HOW ABOUT 3 WIRES? HOW MANY COMBINATIONS OF "1" AND "O" CAN THERE BE FOR 3

WIRES?

Answer (6):

WHAT ARE THEY?(7)

(Hint: one answer is 000)

llL 'OlL 'LOl 'OOl 'llO 'OLO '1:00 '000 s1 ..1aMSU\f "l

F-9

Let's again assign numeric values to the combinations. As a quiz, fi 11

in the combinations for 3 and 6:

Combination Number

0 0 0 0

0 0

0 0 2

0
, ~~a·) 3

0 0 4

0 5

! 0 (9) 6

1 1 7

Definition: a bundle of wires bunched together to define a number is

called a bus.

0 This bus has the combination 011

or the number 3.

LLO s1 ~aMSUV ·9

F-10

Other schematic symbol~ for a bus:

3

~<.;=====3======>~>- Schematic often found in block diagrams

Indicates bus has 3 wires

Wire f/1

Wire f/2

Wire 113

How to divide the schematic symbol

for a bus into its individual wires

3

F-11

WHAT OTHER THINGS CAN YOU DO WITH WIRES?

Answer: hook electronic circuits to them

LIKE WHAT KIND OF ELECTRONIC CIRCUITS?

Answer: well, one of the simplest is an inverter. An inverter has 2

wires connected to it: one wire to its input and one to its output. The

schematic drawing is as follows;

They can also be drawn with the little circle or bubble at the left like

this:

OKAY. WHAT'S AN INVERTER DO FOR A LIVING ANYWAYS?

Answer: simple. A "1" at the input causes an "0" at the output and a

"0" at the input causes a "1" at the output.

F-12

Quiz question: fill in the table for the output of an inverter:

(Called a "truth table·~

Input Output

0 (10)

(11)

HOW EXCITING! WHAT DO YOU USE INVERTERS FOR, FOR PETE'S SAKES?

Answer: lots of things. Some digital circuits need signals to be

inverted. Those cases will be shown later.

(L L) 0 : ...1aMSUV • LL

(0 L) I 0 : ...laMSU\I' "0 L

~ndur.

F-13

WHAT OTHER CIRCUITS ARE USED?

Answer: cin AND gate for one. Two wires are connected to its in put and

it has one output. Here's its schematic.

'WIRE A
WIRE 8

This circuit has the following properties:

A. When both A and Bare "1", the output is one.

WtR..E C

B. If either A or B is "0", or if they are both "0", then the

-output is "O".

Quiz (12): Fill in the truth table for the AND circuit:

A B Output

0 0

0

0

I

0 0

0 0

0 0 0
: ..loMSUlj

-:ind'.lno a V

F-14

·c: L

CAN THE AND CIRCUIT HAVE MORE THAN TWO INPUTS?

Answer: yes. Here is the schematic for an AND gate with three inputs:

-----11)i----
The property of the circuit is as follows:

A. If all three inputs are 11 111 , the output is "1"

B. If any one or more inputs are low, the output is "0"

Quiz (13): Fill in the truth table for a 3-input AND circuit:

A 0 0 0 0

8 0 0 0 0

C 0 0 0 0

Output

0 0 0 0 0 0 0 ~nd~no

0 0 0 0 :::l

0 0 0 0 a

0 0 0 0 V : .JaMSUlf ·n

...

F~lS

HOW ABOUT OTHER CIRCUITS?

Answer: sure, the OR circuit. It's schematic for two inputs and one

output is as follows:
WIRE 4

WIRE B D ovT/Jr/r
/NPIIT

Its electrical property is as follows:

A. If both A and B are 11 0 11 , the output is 11 0 11

B. If either A or Bis 11 111 , or if both A and Bare 11 111 ,

then the output is 11 111

Quiz (14): Fill in the truth table for an OR gate:

A 0 0

B 0 0

Output

I 1 0
0 0 8

0 0 'If

F-16

: .laMSU'lf • f7 L

,

GAN AN "OR" CIRCUIT HAVE MORE THAN TWO INPUTS?

Answer: yes, it can. Here is a schematic symbol of a 3-input OR

circuit: _____,D-
Its electrical property is similar to a 2-input OR circuit:

A. If all three inputs are "O", then the output is 11 0 11

B. In all other cases, the output is "1"

Quiz (15): Fill in the truth table for a 3-input OR gate:

A 0 0 0 0

B 0 0 0 0 0

G 0 0 0 0

Output

0
0 0 0 0

0 0 0 0 0 a

0 0 0 0 V : ..taMSU1f 'SL

F-17

ANY OTHER CIRCUITS WE HAVEN'T SEEN?

Answer: one more. It's called an EXCLUSIVE-OR circuit, sometimes called

an XOR circuit. Its schematic symbol is as follows:

WIREA~D-0 1Nf'V, ou7"'1'vT
WftE o

Its characters are as follows:

A. If A and Bare different; that is, if A.,. is 11 0 11 when B is

11 111 , or A is "1" when 8 is "0", then the output is "1"

B. If A and Bare the same; that is, A and Bare both "0" or A

and Bare both 11 111 , then the output is "0"

Quiz (16): Fill in the truth table for the XOR circuit:

A 0 0

8 0 0

Output -

IS THERE A 3-INPUT XOR CIRCUIT?

Answer: yes, but you don't see them very often and we won't go into them

here.

0

0 0 El

0 0 V : .l9MSU1f • 9 L

F-18

Definition: All of the circuits discussed so far, that is, the AND, OR, and XOR

circuits are called "gates."

AS OPPOSED TO WHAT?

Answer: as opposed to another circuit called a "flip-flop".

WHAT IS A FLIP-FLOP? IS THAT A MANEUVER EXECUTED BY AN ACROBAT?

Answer: No. It is a device that stores the logic con0ition of a wire

("1" or "0'" •

WHY WOULD YOU WANT TO STORE ANYTHING?

Answer: two reasons:

A. To remember the condition of a wire at a specified time.

B. So the wire can be used for something else.

ALL RIGHT THEN. WHAT IS A FLIP-FLOP?

Answer: there are several different kinds of flip-flops. The commonest

one is the D-flip-flop and its schematic symbol is as follows:

PRESET

-~DATA G--

CLOCK
Q

RESET

F-19

Most of tLi,,; time it is drawn without the words as follows:

CAN YOU BRFAK IT CCWN SOMEWHAT 'IO SHCM WHAT IT DOES?

Answer: sure. The idea of a flip-flop is to be able to capture the "J"

or "0" state of a wire at any time electronically. There are three components

needed to do this:

A. The data line. This input line is attached to the wire that

you want to capture the "J" or"~" state on.

B. The clock line. This input line tells you when to capture

the state of the data line.-

c. The output. 'This output line holc'ls the state "capturec'l" on

the data line when "told" to by the clock line.

OVTPVT

---f:> C C.Oc.(

In the following illustration, you will see that the output of the flip-flop

depends on what the data line was doing at the time the clock changes from a zero to

a one. At event A, the clock changes (transitions) from "O" to "l", and at that

time the data line happens to be "l", so the output becomes "l" also. Note: The

output is not affected by a "l" to "O" transition in the clock; the output remains

the same. So the output does not change at event B, the clock's "l" to "O" transition.

Event C is a "O" to "l" clock transition when the data is "O", hence the output

becomes "O" also. Finally, note that the output does not change at event D even

though the data line is a "l". This is again because of the fact that clock i'l" to

"O" transitio{ls do not affect the output.

In suIIIlll8.ry~ the flip-flop's clock feature is simple; the output changes to be

come the same as the data·· line whenever the clock transitions from a "O" to a "i"..

DATA

CLOC K _____ I LJ
A 8 C D

0 VT ~l/T _____ _.,..

Quiz (17): Fill in the table below for whether the output is 11 011 or "1" based on

the behavior of the data line and the transtions of the clock ·line. The first
. ' '.

two time points are done for you.

D~

CLOCK
EVENT

I
A BC I) E F rJ KL MN.OP QR

A B C D E F G H I J K L M N O P Q R

1 :

00 O o O O O O I I Q O l l lfidJ.fiO

H O d O N W 1 ~ r I H D ~ 3 a ~ 8 V

F-21

\.

WHAT ARE THE LITTLE CIRCLES (i.e. THE BUBBLES) FOR?

-

-t>

Answer: the little bubbles indicate that the lines connected to the

bubbles are inverted - that is, instead of a "1", a "O" either appears or causes

something to happen. For example: there are usually two outputs to a flip-flop:

one is a "normal" otitput while the other is connected to a bubble and is

therefore the inverted output, the opposite of the "normal" output.

Example of normal vs. inverted output

Normal_ __ n _ __. LJ
Inverted LJ

Quiz (18): Fill in the values for the inverted output for a flip-flop whose

output is given. The first two are done for you.

Time interval 2 3 4 5 6 7 8

Output 0 0 0

Inverted Output 0 0

0 0 0 0 0

0 0 0 ~nd~no

9 L 9 £ G : ..loMS Ul;f • 8 L

F-22

I NOTICED THAT THE PRESET AND RESET LINES WERE ALSO CONNECTED TO BUBBLES. WHAT

DO THEY DO?

- OUTPUT

Q- 1NVf;RTEb ouT/JVT

RE~Er

y
Answer: "Preset" causes. the output to immediately change to a n 1 II,

regardless of its previous ·State or what the data and clock lines de,. In t,he

same manner, "Reset" causes the output to immediately change to a "zero".

The output is left in that condition when "Preset" or "Reset" is removecl

and remains there until a clock or another preset or reset occurs. Note that in

this flip-flop the "Preset" and "Reset" signals are inverted; that is, the

bubble indicates that the "preset" or "reset" function occurs when the 1 ine is

low or 11 0 11
•

F--23

Now note the response of the flip-flop to the following stimulus:

J/IIVE.RTe!J Pf(.eSET---

OA7A \l~ORMAL" OVTPVT

l.LOCI< ''1NVERTEI:> t1 OUT/JIIT

INVE.~Tcf:, RESET---'

l>A,A

'1'I CLO ,.c n n n
:>
.J u :)

/NV/;,eTE.tJ t>~ese-r I
~ ,~.N Elf. ret; ~Eser Li

n \L) OVTl"V,-
V)

<:
()

LJ Q,. 1Nv£~ ,eL, ovr;ot.1r
VI
UJ
a! f'/DT&S A B C. D E F 6

NOTES: A. "Preset" = 0 causes output to go high.

B. "Reset" = 0 causes output to go low.

C. "Data"= 1 and "Clock" cause output to go high.

D. 11 Reset" causes output to go low.

E. "Data"= 1 and "Clock" have no effect because "Reset"

is still low.

F. "Reset" is released ("Reset" = 1),

G. Now "Data" = 1 and "Clock" cause output to go high.

F-24

Quiz (19): Fill in the values for the output of a flip-flop from the following

diagram (called a "timing diagram"). (The first 2 are done for you).

/Nv'EJe.TE/j l'IU5~7-

~
/)ArA- ~ Our/NT'

(.1.,0CK :)--

JiN£~T£0 R.ESe7. i

DATA I

CLOCK n n n -~n fL
INVERTED PRESET LI I I

INVERTED RESET LI I I
I I I I I J EVENT A 8 C b le F

I I I
G 14 r

I ~ent

Output
: I: IC ID IE IF I GI HI I I

0 0 0 0 I O L 0

I H D 3 3 a J 8 i

F-25

ARE BUBBLES EVER USED WITH GATED LOGIC? THAT IS, "AND" GATES, "OR" GATES, E'T'C?

AnsWer: yes, as follows:

Definition: A "NAND" gate is equivalent to an "AND" gate followed by an

inverter in series. Schematically:

-1)----- -1)------~-
The truth table for a "NAND" gate yields the opposite state for the output as

for an "AND" gates:

A 0 0

B 0 0

Output 0

Definition: A "NOR" gate is equivalent to an "OR" gate followed by an inverter

in series. Schematically:

)
'--

Quiz (20): Fill in' the truth table for the output of a "NOR" gate as follows:

A 0 0

B 0 0

Output

0 0 0

0 0 a

0 0 'V

F-26

I SEE THAT A BUBBLE PLACED ON THE OUTPUT OF A GATE CAUSES THE "NORMAL" OUTPUT OF

THAT GATE TO BE INVERTED. IS A BUBBLE EVER PLACED ON THE !.liE1!I OF A GATE?

Answer: yes. As one would guess, it causes the input to be inverted

going into the gate. For example:

Its truth table looks as follows:

A 0 1 0 1

B 0 0 1 1

Output 1 0 0 0

which is the same as that for a "NOR" gate.

F-27

Quiz (21): Examine the following schematic symbol:

=

one of the following schematic diagrams has the same circuit behavior as the

above symbol: (Hint: draw a truth table for each circui~

a. =1>- =

b. =D-

c. =r=>- =

d.

WHICH ONE IS IT?

Answer:

p : .:lill'\SUV "lZ

F-28

Quiz (22): Fill in the truth table for the output of the symbol whose schematic

is as follows:

A 0 1 0 1

B 0 0 1 1
--:-·-

Output ' I I

DO SCHEMATIC SYMBOLS EVER USE BUBBLES ON BOTH THE INPUTS AND THE OUTPUTS?

Answer: yes. For example, the following schematic

=D- is equivalent to

Quiz (23): Fill in the truth table for the previous schematic symbol:

A 0 1 0 1

B 0 0 1 1

Output

c·.iiz (24): What previous logic gate is equivalent to the above symbol?

(multiple choice)

a. An "OR" gate

b. An "AND" gate

c. A "NOR" gate

d. A II NANO" gate

I 0 0 0 ,:ind-;ino 0 I I I ,:ind,:ino

L L 0 0 a L L 0 0 a
q : .laMS Ulf • t7G L 0 L 0 V L 0 L 0 V

F-29

WHY WOULD ANYONE DRAW A SYMBOL WITH BUBBLES ON ALL INPUTS AND OUTPUTS WHEN THERE

IS AN EQUIVALENT SYMBOL THAT DOESN'T REQUIRE ANY BUBBLES AT ALL?

Answer: to clarify the intention of the circuit. For example; on the

flip-flop, "preset" and "reset" are inverted inputs.

If a normal signal is intended to preset the fliP-flop when it is high, it must

have an inverter placed between it and the preset input.

NoRM4L S /{..Al4L

Such a signal is called an "active high" signal because it causes an

action when its state is "1".

F-30

BUT WHAT IF THE SIGNAL CAUSES AN EFFECT WHEN IT IS "0"?

Answer: such a signal is called "active low" and is denoted on a

schematic diagram in any of the following ways (presume the signal name is

"SIGNAL'') •

a) With a bar over it or a slash in front of it

SIGNAL

b) With a 11
-

11 or "*" before it

-SIGNAL

F-31

Now, say that either of two active low signals can preset .our fliP-flop.

This is an "OR" function of two active low signals as follows:

St6NAL1.

S 16NAL2

The above schematic directly states that'if either SIGNAL1 or SIGNAL2 is

11 011 ("true" in an active low sense), then the fliP-flop will be preset. This is

more straightforward than using the active high symbol.

L

S I G NA l .1. ------1

Sl6NAL2 ------

This schematic is functionally identical to the previous one, but its

meaning is obscured by having to switch from active low signals to an active

high device back to an active low preset. In this,case, the AND gate indicates

that the preset is not activated when both STGNALl and SIGNAL? are i,J", which is

logically accurate but does not .really communicate the intention of the

designer.

F-32

, , - --

Quiz (24): (multiple choice) ..., Given the following truth table for the inverted

NAND:

. :_\

A 0 . 1 0 1

·B 0 0 1 1

Output 0 1 1 1

what is the design intention of the following schematic?

Choose one:

[

[

[

]

]

]

[\ J

, I

a) The flip-flop is preset if either *CTI.1 or *CTL2 is 11 111
•

b) The flip-flop is preset if either *CTL 1 or *CTL2 is 11 0 11
•

c) The flip-flop is preset if both *CTL 1 and *CTL2 are 11 111
•

d) The flip-flop is preset if both *CTL 1 and *CTL2 are 11 0 11
•

F-33

SPECIAL INSTRUCTIONS TO STUDENT:

Take a breather. In the next section we are going to look at devices that

connect to busses.

F-34

r

COULD YOU REFRESH ME ON WHAT A BUS IS?

Answer:.certainly. A bus is simply a bundle of wires upon ~hich

information may be transmitted. This information is implemented as 11 111 and· "0"

voltages on the wire that represent a number: . "011"
'3

¢--/
I -/

I

Above Bus has number "011" on it.

ARE THERE DEVICES THAT CONNECT TO BUSSES?

Answer: you bet. One of the most conmen devices is the multiplexer.

WHAT'S THAT?

Definition: A multiplexer is a digital electronic circuit that has the ability

to choose one of several bus inputs.

p ... 35

F-36

GIVE ME AN EXAMPLE OF A MULTIPLEXER

Okay: Here is a schematic that chooses orflof two 4-wire husses:

I AtNl>IIT
'{

11 Oc:, I I ''

OVT"'1, ' . '(

' 81Nl'vr

"
OVTPVT

"IOI O ''

SELEc.T SELEc.T
/

If SELECT= "O", the output will contain the A input1 in this

example "0011".

If SELECT = "1", the output will contain the B input, in this

example "1010".

Notice that multiplexers are more complex than gates or flip-flops.

'Ihe above multiplexer, not including power connections, requires 13

wires total connected to it as follows:

SELECT

AINPUT

BINPUT

OUTPUT

TOTAL

l line

4 lines

" lines

LJ J.ines

13 lines

-

There are several ways to draw a multiplexer in a block

diagram. For instance, the previous exampJe could be drawn as

follows:

-,, A IN Pr/T I 'O . '-J ''I
I OUTPI/T

''I
8/NPIIT I I

'</ 1 SELECT

Quiz (25): If A INPUT = 11 101011 and BIN PUT = "0010", and SELECT = 110 11
,

what will OUTPUT be?

Answer:.

Bubbles may be used on multiplexers just as in gates ano

flip-flops. For example, a bubble placed on the output means that alJ

4 output lines are inverted:

010/ I 0
I&.(

'"" I

0011 - I"{

1100 I I
''(

I I

Quiz (26): If the select line in the above example is equfal to 0,

then what is the output?

Answer:

uOLOLu Sl JaMSUV ·sz

F-37

F-38

WHAT ABOUT FLIP-FLOPS? ARE ANY OF THEM EVER CONNECTED TO A BUS IN

SUCH A WAY AS TO BE ABLE TO STORE A NUMBER ON THE BUS?

Answer: you bet. As a matter of fact, flip-flops connected in

such a fashion form a circuit called a register. A register schematic

symbol can look like the following:

/NPuT(o
tt<JJ1ur(1)

tN,.vr (z.
1NJDur(3

.\

)
)

{)o

C> I

Ot
1)3

Go

ao;:
QI

(j/ I '-
'"'

QZ.
a .. -... ,....
Q3

Q3~

OVTPc.JT(o)

ourPvr(o)
OUTl'vr(1)

ourpvr(1J

OVTPUT(Z.)

oVTJdut(l..)

ovr;,vr(:,)
ovr,-vr(3)

e1::i1=r

i

which internally is an array of flip-flops hooked up as follows:

-f5V.

INl'flT(o) -----,t-----t 1----0VTPVT (o)

t---ovr,avr(,)

11(/'Vr(z.)---t--t---- 1----0 VTPIIT {;!)

t----OVT,PVT(3)

IDET----1,__ ___ _,

Note the following about the flip-flops connected as a register:

1) All of the clock inputs are connected together

2) All of the reset inputs are connected together

3) The preset inputs are internally connected to a logic

"1" so that they are deactivated. Therefore, the 'User

does not have access to the preset lines, they are

al ways disabled.

Quiz (27\: How many flip-flops would the register in the schematic circuit be

likely to contain?

Answer: ,: ..

~~--100 QOl---

----l DI Qo r;:-
Q11---

Q/ r::;i--

y

·z si .IaMSUV • a

F-39

Registers, multiplexers and busses can be shown interconnected as in the

following schematic

I , rUSSES \
'"' \ ,.... ,-

\
I ' h_ __ t>-....,

REG. REG. \ -
'"' tr \ MUX. -v---

I -
-

"" " - ~

1-:"" -,

IJ IJ

CLOCK

SELECT-

On a block diagram or simplified schematic, the above schematic would be

drawn as:

.
0

1 l ~

~
, ,, ,

~ .~

I - ' ,- ,

~

IJ \J

CLOC.K

SELECT

There are many kinds of digital circuits that are used with busses:

registers, multiplexers, counters, and arithmetic logic units to name a few.

For example, a circuit to route one of two 4-bit busses (A and B to a register

might be drawn as follows:

F-40

A --...--,o
l(

0 --+-.'{,-----4 "

ClOC.K --------

Quiz (28) : One of the following circuits selects one of two register outputs.

Which is it?

---'l--1D Q.---,1,,.,.---1D Gi----1-.,----10

2.
~--1-2----io Q--+2-

a
b 2

,,
8 B ,, ,,

C
0

d ,,
·I

B
8 8 " '" "

Answer:

That completes the preparation for the course in which you are enrolled.

'Ihank you for reading it, and for working out the quizzes. Your knowledge of

digital fundamentals is now up to speed for the course. Please bring this

material with you when you come to the course.

• ::> SJ .lo/t\SUV • t:3Z

F-41

8085 Microprocessor
8212 I/0 Port
8251 USART
8255 Mode 1
8255 Mode 2
8255 PIA

Accumulator
Accumulator/Carry Instructions
ACI Instruction
ADC A as Shift Left
ADC Instruction
ADD Instruction
Addend
Addition by Counting
ADDR Command
Address Bus
Address Size
Addresses, Input/Output Ports
ADI Instruction
Alternate Subroutine Entries
Alternative Memory Addressing
AMTS Description
AMTS Setup
AMTS Test
ANA Instruction
AND Function (ANA)
ANI lnstruc ti on
A-Register
Arithmetic and Logic Unit
Arithmetic lntructions
Arithmetic Overflow
Arithmetic Shift
Array of Input/Output Ports
ASCII
Asynchronous Communication
Asynchronous Receiving Exercise
Augend
Auxiliary Carry Flag

INDEX

11-17
8-2
8-33, 9-20
9-3
9-9
5-28, 8-9

1-38, 1-51
11-7
4-28, 11-9
7-17
4-12, 10-4
4-4, 4-46, 11-9
10-5
3-13
1-59, 2-11, 2-29, A-16
1-27
1-23
8-9
2-1, 2-28, 4-29
6-68, 6-70
5-25
A-1
1-1
1-2
7-30
7-30
7-33
1-51
1-31
4-121, 11-9
10-52 , 10-80
7-2, 7-17 ,
8-5, 8-33
9-19
9-17
9-33
10-5
10-29, 11-12

i-1

INDEX

Base
Basic Concepts
Binary Addition
Binary Entry and Display Exercise
Binary Multiplication
Binary Number System
ainary Subtraction
Binary to Decimal Conversion
Bit
Bit Manipulation
Bit Masking
Bit Position
Bit String
BKENT Subroutine
B.KLOC Subroutine
BKMEM Subroutine
BKRMV Subroutine
Branch Instructions
Breakpoints

Clearing
Data Change
Entering
Program Counter
Program Entry and Rem.oval
Protection from Growing Stack
Repetition Count
Stack Usage
To Count Instructions

BRK Command
Bus
Byte

1-12
1-2
1-16, 10-2
7-22
10-33, 10-:n
1-10, 1-14, 10-44
10-13
B-1
1-18
7-1
7-34
1-18
1-18
9-49
9-49
9-51
9-49
11-13
A-24
4-82, A-26
6-125, 8-88, A-11, A~24
4-77, A-11, A-24
A-11
9-49
6-125
A-25
6-120
A-26
4-77, A-24
1-27
1-22

Calculating Delay Times
Call if Minus Instruction
Call if Plus Instruction
CALL Instruction
Cailing Program
Carry
Carry and Zero Flags
Carry Flag
CC Instruction
Change Sign, Add, Subtract Exercise
Change Sign Exercise
Chip Select Logic
CLEAR Subroutine
Clear Carry
Clearing Breakpoints
Clock
CLR Command
CLRGT Subroutine
CLRHI Subroutine
CLnLP Subroutine
CM Instruction
CMA Instruction
CMC Instruction
CMP Instruction
CNC Instruction
CNZ Instruction
Codes, Hex
Coding
Command Keys
Comments
Communication, Serial

Asynchrono 1.ts
Synchronous
Word Mark in Serial Communication

Comparison Instructions
Complement
Computer, Definition of
Computer to Computer Interface
Conditional CALL and RET
Conditional Jump
Control of Monitor Functions
Control Ports, 8255
Control Signals
Cosine
Count Instructions by Breakpoint
Counting Instructions
CP Instruction
CPE Instruction
CPO Instruction
CPU
Cycle, Machine
CZ Inst rue ti on

9-61
10-51
10-51
6-13, 6-16, 11~13
6-12
4-6
4-6, 11-10

INDEX

4-6, 1~1, 7~34, 11-7, 11-12
6-52, 11-13
10-53
10-45, 10-49, 10-53
5-17
6-147, A-53
4-47, 7-32, 7-34
4-82, A-26
1-38
4-82, A-21
6-147, A-53
A-53
6-147, A-53
10-51
7-29
7-34
4-111
6-52, 11-13
6-52, 11-13
4-159, 11-1
1-53
2-29, A-11
1-53
9-14
n-11, 9-54
9-16
9-14
4-110
7-29, 7-34
1-2
9-7
6-52
3-2, 4-40
A-31
8-18
5-3
C-1
A-26
11-5
10-51
11-13
11-13
1-2, 1-31
2-2
6-52, 11-13

i-3

INDEX

DAA Instruction
DAD In true tion
DAD SP Instruction
Data Bus
Data Change Breakpoints
Data Format
Data Rate for Recording
Data Structure
Data Transfer Instructions
OBIN Signal
DBYTE and DBY2 Subroutines
DCR Instruction
DCX Instruction
DCX SP Instruction
De bouncing
Debug Mode
Debugging I/0 Programs
Decimal Addition and Subtraction
Decimal Mul tipl ica tion
Decimal Number System
Decimal, Packed
Decimal to Binary Conversion
Decoded Control Signals
Decoder
Decrement
Delay Loops
DELAY Subroutine
Delay Times, Calculation of
DELYA Subroutine
DELYC Subroutine
DELYT Subroutine
DI Instruction
DIGHI Subroutine
Digit
Digital Logic
DIGSW Subroutine
Direct Memory Access
Directory
Disabling Monitor Interrupts
Dispatch Table
Display Codes for Characters
Display MTS
Display Register Pair
DISPR Subroutine
DMA and Interrupts
DMA Enable Signal
DMEM Subroutine
DMWD Subroutine
Do Nothing Program
Double Precision
Double Precision Multiply
Drivers
DWORD Subroutine

i-4

10-25 I 11-8
6-78, 10-5
6-116
1-27, 5-26
6-125, 8-88, A-24
9-1, 9-18
A-8
4-130
11-2, 4-119
5-4
6-38, 6-144, A-49
3-13, 3-21, 4-121, 11-5
4-71
6-116
8-26
A-11
8-20
10-25
10-39
1-12
10-25
B-1
5-6
1-26
3-13, 4-71, 4-121
4-73
6-148, A-54
9-61
6-148, A-54
A-55
A-55
8-54, 8-71
A-49
1-12
F-1
A-49
5-20, 5-28, 8-39, 8-45
4""'.141
8-91, A-31
7-73
4-62
4-53, 8-41, A-12, A-46, A-48
4-103
6-142, 8-92, A-48
5-28
5-20, 8-43
6-144, A-49
A-51
6-8
4-11, 4-16, 6-78, 10-2
6-48, 6-56, 10-35
6-83, 6-110
6-146, A-51

Effect of DI and EI
EI Instruction
Enabling Monitor Interrupts
ENMEM Subroutine
ENTBY Subroutine
Entering Breakpoints
ENTWD Subroutine
ERRDS Subroutine
Error Checking Character
Error Display
Exchange Instructions
Exchange Stack Top
Exclusive or (XRA)
Execution
Exercise 1
Exercise 2
Exercise 3
Exercises (see sequential listing,
Experiment with DAA
Exponential Function
External Interrupt Exercise
External Interrupt Experiment

Fetch
Fetch Cycle
Fixed Point
Flag Register
Flags
Flags Affected by Instructions
Floating Point
Flow Charts
Flow Control Techniques
Format, Data
Four Byte Addition Exercise
Four Byte Subtraction Exercise
Fractional Numbers

GETKY Subroutine
Global Subroutines
Growing Stack Problem

8-71
8-53
8-91, A-31
A-43
6-140, A-41
6-34, 6-63, A-25
6-141, A-42
A-54
9-46
A-28
6-107
6-108
1-52, 7-32
1-58
1-53
2-1, 2-10
2-16, 2-23

page i-15 of index)
10-31
C-1
8-100
8-70

1-35
5-31
10-69
11-10
3-2, 4-6, 4-44, 11-10
11-11
10-69
3-7
7-72
9-1
10-6
10-16
10-68

6-37, 6-138, A-38
6-133
6-125

INDEX

i-5

INDEX

HALT Instruction
Handshaking, 8255
Hardware
Hex Codes for 8080 Instructions
Hexadecimal
HLDA Signal
HLT Instruction
HLTA Signal
HOLD Signal
Hundreds Complement

If-Then-Else Construct
Immediate Instructions
Immediate Instructions - Arithmetic
Immediate Instructions - Logical
Im.mediate Instructions - LXI
Immediate Instructions - MVI
IN Instruction
Inclusive Or (ORA)
Increment
Indirect Addressing
Initiation of 1/0
In-Line Programming
!NP Signal
Input/Output
Input/Output Instructions
Input/Output Ports

8212 I/0 Port
8251 USART
8255 Mode 1
8255 Mode 2
8255 PIA
Addresses
Array of Input/Output ,Ports

Input/Output Techniques
Direct Memory Access
Initiation if 1/0
Interrupt Driven I/0
Isolated I/0
Memory Mapped 1/0
Parallel 1/0
Programmed I/0
Repetitive OMA
Serial Input/Output
Timed Input/Output

i-6

8-65
8-13
1-2
4-159
1-19
5-4, 8-43
8-65, 10-11
5-6
5-29, 8-41
10-59

7-11
4-25, 4-28
2-1, 4-28, 4-46, 4-47, 11-9
7...;,33
4-69
4-25, 4-46, 11-2
8-6
7-32
1-52, 4-71, 4-121
4-96
8-1, 8-49
6-2
5-6
1-3, 8-1, A-35
8-6, 11-15
8-2
8-2
8-33, 9-20
9-3
9-9
5-28, 8-9
8-9
8-5, 8-33
8-1
5-20, 5-28, 8-39, 8,-45
8-1, 8-49
8-52
8-2, 8-8
8-35
9-3
8-49
8-41
9-14
8-76

INR Instruction
Instruction
Instruction Codes
Instruction Cycle
Instruction Effects on Flags
Instruction Execution
Instruction Register
Instruction Timing
Instructions (see page i-18 of index for
Instructions, Hex Codes
Instri.tc tions. Summary
INT Signal
INTA Signal
INTE Signal
Intel 8085 Microprocesscir
Intel 8228 System Controller
Internal Address Decoding, Figure 5-4
Interrupt Driven 1/0
Interrupt Entry Points
Interrupt Logic
Interrupt Service - Combined with

Monitor
Interrupt Service - Main Program
Interrupt Service Routine Exercise
Interrupt Service Routines
Interrupt Service Testing
Interrupt System, MTS
Interrupts
Interrupts and DMA - Introduction
Interrupts, Priority
Interrupts, Timed
Interrupts, Vectored
Interrupts, with MTS
INX Instruction
INX SP Instruction
I/0 Devices
I/0 Instructions
I/0 Ports (see also Input/Output Ports)
1/0 Techniques (see Input/Output)
IOR Signal
IOW signal
Isolated I/0

JC Instruction
JM Instruction
JMP Instruction
JNC Instruction
J.NZ Instruction
JP Instruction
JPE Instruction
JPO Instruction
JZ Instruction

1-52, 2-28, 4-121, 11-5
1-34
1-50, 4-159
1-34
11-10
1-58, 2-3
1-37
9-61
alphabetic listing)
4-159
11-1
8-52
5-6, 5-:7, 8-52
8-52, 8-67
11-17
5-9
5-14
8-52
A-33
8-52

8-99
8-91
8-81
6-134, 8-73, 9-21
8-83
8-67
5-28, 8-52
5-28
8-76
8-76
8-75
8-77
4-71
6-116
1-3, 8-2, 8-9
8-6
8-2
a.:..1
5-7
5-7
8-2, 8-8

4-40, 4-45
10-51
2-20, 2-28
4-40, 4-45
3-3, 3-22
10-51
11-13
11-13
4-40, 4-45

INDEX

i-7

INDEX

Keyboard Display Exercise
Keyboard Input
Keyboard Input Exercise
KEYS Subroutine

LDA Instruction
LDAX Instruction
Least Significant Bit
LHLD Instruction
Linear Select
Load Memory from Keyboard
Load Program from Tape
Loading a Program
Local Subroutines
Logic Functions
Logic Functions Exercise
Logic Functions - Immediate
Logic Instructions
Logical Rotate
Longitudinal Redundancy Check
Loops
LRC Character
LXI Instruction
LXI SP Instruction

Ml Signal
Machine Cycle
Machine States and Transitions
Masking
MEM Command
Memory
Memory Access
Memory Access Timing, Figure 5-8
Memory Address
Memory Addressing
Memory Change Breakpoints
Memory Contents, Changing
Memory Contents, Inspecting
Memory Enabling
Memory Location
Memory Location, Use as a Register
Memory Mapped 1/0
Memory Reference Instructions
Memory, Shared
Memory Signals and Timing
Memory Size
Memory Technology
Memory Write Cycle
MEMR Signal
MEMW Signal
MENAB Subroutine
Minimum Chip Select, Figure 5-7

i-8

8-26
8-15, A-35
8-15
A-39

2-16, 2-28
4-59
1-18
4-97
8-7
A-4
A-9
1-55, A-
6-134
7-1, 7-29.
7-35
7-33
7-29, 11-9
7-18
9-46
3-1
9-46
4-69
6-116

5-6, 5-7, 8-67
2-2
5-31
7-34
1-48, 2-29, A-17
1-2, 1-~o, s-1
1-26
5-30
1-23,
4-57,
8-88,
1-48,
1-46,
5-19,
1-23
4-87
8-35
4-88
9-11
5-31
1-23
5-11
5-33

A-14,
4-87,
A-24
A-17
A-17
A-17

5-6, 5-7
5-7
A-40
5-24

A-15, A-17
4-88, 5-12

Minuend
MINUS - see Sign Flag
Mnemonic
Module Specification
Modules, Program
Monitor
Monitor Breakpoints
Monitor Commands
Monitor Data Storage
Monitor Effect on Program Speed
Monitor Enable/Disable
Monitor Entry
Monitor Functions

ADDR Command
Breakpoint Entry
Breakpoint Operation
Breakpoint Removal
BRK Command
CLR Command
Control of Monitor Functions
Data Rate for Recording
Debug Mode
Display
Error Display
Interrupt Entry Points
Load Memory from Keyboard
Load Program from Tape
MEM Command
Monitor Commands
Monitor Data Storage
NEXT Command
REG Command
Register Pair Display
RESET, Data Recovery
RUN Command
STEP Command
Store Program on Tape

Monitor Subroutines
(see also alphabetic listing, page

Monitor Tape Programs
Most Significant Bit
MOV Instructions
M-Register
MTS Configuration, Figure 5-1
MTS Display
MTS Interrupt System
MTS System Controller Logic
Multiple Precision
Multiplicand
Multiplication and Division by 2
Multiplication by Addition
Multiplier
MVI Instruction

10-16
10-:-51
1-50
6-6
6.;..1
1-41, A-4
4-77, 6-124, A-11, A-25
A-13
6-124, A-14
4-83
8-91, A-31
3-9
A-4
1-59, 2-11, 2-29, A-16
4-77, 9-49, A-25
A-11
4-82, 9-49, A-26
4-77, A-24
4-82, A-21
A-31
A-8
A-11
1-43, A-46, A-48
A-28
A-33
A-4
A-9
1-48, 2-29, A-17
A-13
6-124, A-14
1-46, 2-30, A-20
1-58, 2-29, A-22
4-103, A-20
A-29
2-12, 3-1, A-11, A-24
1-58, 3-1, A-11, A-23
A-6
6-136

i-17 of index)
9-44
1-18
4-2, 4-119
4-87
5-2
4-53, 8-41, A-46
8-67
5-9
4-11, 4-91, 10-2
4-30
7-3
4-30
4-30
4-25, 4-46, 11-2

INDEX

i-9

INDEX

NEC 8080 Microprocessor
Negative Numbers
Nested Do Nothing Subroutines
NEXT Command
NOP Instruction
Number Representations

Decimal, Packed
Fixed Point
Floating Point
Fractional Numbers
Hundreds Complement
Negative Numbers
Packed Decimal
Sign and Magnitude
Signed Binary Numbers
Signed Decimal Numbers
Twos Complement

Number System

Operands
OR, Exclusive
OR, Inclusive
ORA Instruction
ORI Instruction
OUT Instruction
OUT Signal
Overflow, Arithmetic

Packed Decimal
Paper Tape
Parallel Input/Output
Parity Flag
Partial Decoding
PCHL Instruction
Peripheral Interface
PLUS - see Sign Flag
Pol ling
POP Instruction
POP PSW Instruction
Port Addresses
Power

Adaptor

Priority Interrupt Systems
Processor Status Word

Counter

11-17
10-45, 10-59
6-24
1-46, 2-30, A-20
1-51
10-44
10-25
10-69
10-69
10-68
10-59
10-45, 10-59
10-25, 10-59
10-45
10-45
10-59
10-45
1-10, 1-21

4-1
7-32
7-31
7-32
7-33
8-6
5-6
10-52

10-25,
9-3
9-3
11-11
5-23
6-8
5-27
10-51
8-76
6-99
6-105
8-9
1-12
8-76
6-105
1-7
1-35

10-59

Program
Program
Program
Program
Program
Program

Exercises (see sequential listing, page i-15 of index)
Loops 3-1
Modification by Input Data 10-21
Modules 6-21

i-10

Program Specification
Program Timing
Programmed I/0
Programmed Monitor Entry
PSW
PUSH Instruction
PUSH PSW Instruction

RAL Instruction
RAM
RAM Chip Selection
Range of Signed Numbers
RAR Instruction
RC Instruction
Read-Write Control
READY Signal
Receiving, Asynchronous
Reentrant Subroutines
REG Command
Register
Register M
Register Pair
Register Pair Addition
Register Pair Display
Register Pair HL
Register Pair Instructions
Repetition Count, Breakpoints
Repetitive DMA
Representations of Numbers
RESET Command
RESET, Data Recovery
RET Instruction
Return if Minus Instruction
Return if Plus Instruction
RLC Instruction
RM Instruction
RNC Instruction
RNZ Instruction
ROM
ROM Chip Selection
Rotate Exercise
Rotate Instructions
RP Instruction
RPE Instruction
RPO Instruction
RRC Instruction
RST 4 Instruction 3-9, 3-22,
RST 7 Generation of
RST Command
RST Instructions
RST Interfaces
RUN Command
RZ Instruction

1-53
9-61
8-49
3-9
6-105
6-99
6-105

7-1
1-28
5-19
10-48
7-2
6-52
5-27
5-4
9-20, 9-33, 9:57
6-134
1-58, 2-29, A-22
1-33, 4-1
4-87
4-57, 4-69
6-78
4-103, A-20
4-87, 4-97

INDEX

4-69, 4-87, 4-97, 6-78, 6-107
A-26
8-4
10-44
1-46
A-29
6-13, 6-20
10-51
10-51
7-18
10-51
6-52
6-52
1-28
5-20
7-3
7-1, 7-18, 11-8
10-51
11-13
11-13
7-18
4-47, 4-118, A-33, A-34
8-65
1-46
8-55
8-61
2-12, 3-1, A-11, A-24
6-52

i-11

INDEX

S-100 Bus
SBB Instruction
SB I Instruction
SCAN Subroutine
Sensor Correction, Version 1
Sensor Correction, Version 2
Sensor Correction, Version 3
Serial Communication
Serial Transmission Exercise
Set Carry
Shared Memory
Shift Instructions
SHLD Instruction
SHLRT Subroutine
Sign and Magnitude
Sign Flag
Signals, 8080

DBIN Signal
DMA Enable Signal
HLDA Signal
HLTA Signal
HOLD Signal
INP Signal
INT Signal
INTA Signal
INTE Signal
IOR Signal
IOW Signal
Ml Signal
MEMR Signal
MEMW Signal
OUT Signal
READY Signal
STACK Signal
STSTB Signal
SYNC Signal
WAIT Signal
WO Signal
WR Signal

Signed Binary Numbers
Signed Decimal Numbers
Signed Decimal Arithmetic Exercise
Sine
SINWS Subroutine
Software
SOTBT Subroutine
Specification, Module
SPHL Instruction
STA Instruction

i-12

D-1
4-18, 4-21, 4-47, 10-14
4-29, 11-9
6-137, A-37
4-125
4-140
6-29, 6-89
9-14
9-21
7-34
9-11
7-2, 11-8
4-97
A-57
10-45
10-51, 11-11

5-4
5-20, 8-43
5-4, 8-43
5-6
5-29, 8-41
5-6
8-52
5-6, 5-7, 8-52
8-52, 8-67
5-7
5-7
5-6, 5-7, 8-69
5-6, 5-7
5-7
5-6
5-4
5-6
5-5, 8-67
5-4
5-4
5-6
5-4
10-45
10-59
10-59
C-1
9-52
1-7
9-47
6-6
6-116
2-2 , 2-28, 11-2

Stack
Stack Operation Rules
Stack, Monitor Usage of
Stack Pointer
Stack Pointer Display
Stack Pointer Instructions
STACK Signal
Stack Top
Stack, Using for Data
Start Bit
Status Byte
STAX Instruction
STC Instruction
STEP Command
Store Program on Tape
Structure, Data
STSTB Signal
SUB Instruction
Subroutines

Alternate En try
Classification
Global
Interrupt
Local
Monitor

(see alphabetic listing, page i-17
Reentrant
Transparent

Subtraction
Subtrahend
SUI Instruction
SYNC Signal
Synchronous Communication
System Controller

Table Lookup
Tape Programs and Subroutines
Tape Recording
Tens Complement
Timed Input/Output
Timed Interrupt Systems
Top Down Programming
Transfer Notation
Transmit/Receive with Monitor

Subroutines
Transmitting, Asynchronous
Transparency of Subroutine
Tri State Cicuits
Trigonometric Functions
Twos Complement

6-13, 6-99
6-119, 6-125
6-120
6-13, 6-116
6-14
6-116
5-6
6-15, 6-108
6-99
9-19, 9-33
5-5
4-60
7-34
1-58, 2-29, A-11, A-23
A-6
4-130
5-5, 8-67
4-18, 4-21, 4-47, 10-13
6-1, 6-12
6-68, 6-70
6-133
6-133
6-134
6-134
6-136, A-35
of index)
6-134
6-134
4-18
10-16
4-29, 11-9
5-4
9-16
5-3, 5-9

4-130, 6-73
9-14, 9-47, 9-52
9-44
10-60
8-76
8-76
6-33
4-43

9-47
9-20, 9-54
6-134
5-26
C-1
10-45

INDEX

i-13

INDEX

Unbalanced Usage of the Stack
Undefined Instructions
Unpacked Decimal
Unsigned Integer

Vectored Interrupt Systems

W, Z Registers
WAIT Signal
Wait State
WO Signal
Word
Word Mark in Serial Communication
WR Signal

XCHG Instruction
XRA Instruction
XRI Instruction
XTHL Instruction

Zero Flag
ZILOG Z-80 Microprocessor

6-119
11-16
10-59
10-44

8-75, 8-77

2-5
5-4
5-32
5-6
1-22
9-14
5-4

6-107
1-52, 2-28, 4-47, 7-33, 11-9
7-33
6-108

3-2, 11-10
11-18

PROGRAM EXERCISES - LISTED IN SEQUENCE

Exercise 1
Exercise 2
Exercise 3
Addition by Counting
Double Precision Addition
Review and Self Test
Multiplication by Repetitive Addition
Review and Self Test
Display Bit Pattern
Copy List to Display
Display Eight Characters
Delay Loops
Review and Self Test
Four Byte Addition
Counting in the Display
Review and Self Test
Moving Message
Do Nothing Program with PCHL
Nested Subroutines
Sensor Correction, Version 3
Input Subroutine
Nextsensor Subroutine
Displayresult Subroutine
Searchdirectory Subroutine
Tablelookup Subroutine
Multiply Subroutine
Clear Result Display
Store and Recover Table Address
Two Byte Table Address
Empty Sensor Numbers
Testing Stack Usage
Test Driver for Multiply
Rotate (Arithmetic Shift)
Logical Rotate
Sixteen Bit Rotate
Binary Entry and Display
Logic Functions

Display
Data
Command
Function

Logic Functions Self Test
Dispatch Table
Traffic Control
Extended Traffic Contrql
Fire and Burglar Alarm i

Model Railroad Simulattjr

1-50
2-1, 2-10
2-16, 2-23
3-13
4-11, 4-16
4-23
4-34
4-48
4-56
4-63
4-67
4-73
4-84
4-91
4-95
4-106
4-113
6-9
6-24
6-29
6-36, 6-44
6-54
6-61
6-64
6-73
6-79
6-97
6-97
6-98
6-98
6-100
6-110
7-3
7-19
7-19
7-22
7-35
7-49
7-52, 7-56
7-60
7-65
i-69
7-75
7-79
7-85
7-88
7-88

INDEX

i-15

INDEX

PROGRAM EXERCISES - Continued

Keyboard Input Exercise
Keyboard Display Exercise
External Interrupt Experiment
Effect of DI and EI
Interrupt Service Routine Exercise
Interrupt Service Testing
Interrupt Service - Main Program
Interrupt Service - Combined with

Monitor
External Interrupt Exercise
Serial Transmission Exercise
Asynchronous Receiving Exercise
Transmit/Receive with Monitor

Subroutines
Four Byte Addition Exercise
Four Byte Subtraction Exercise
Program Modification by Input Data
Decimal Addition and Subtraction
Experiment with DAA
Binary Multiplicaton Exercise
Binary Multiplication - Reversed
Change Sign Exercise
Change Sign by Complementing
Change Sign, Add, Subtract Exercise
Signed Decimal Arithmetic Exercise

i-16

8-15
8-26
8-70
8-71
8-81
8-83
8-91

8-99
8-100
9-21
9-33

9-47
10-6
10-16
10-21
10-25
10-31
10-35
10-37
10-46
10-49
10-53
10-59

INDEX

MONITOR SUBROUTINES

BKENT Subroutine 9-49
BKLOC Subroutine 9-49
BKMEM Subroutine 9-51
BKRMV Subroutine 9-49
CLEAR Subroutine 6-147, A-53
CLRGT Subroutine 6-147, A-53
CLRHI Subroutine A-53
CLRLP Subroutine 6-147, A-53
DBYTE Subroutine 6-144, A-49
DELAY Subroutine 6-148, A-54
DELYA Subroutine 6-148, A-54
DELYC Subroutine A-55
DELYT Subroutine A-55
DIGHI Subroutine A-49
DIGSW Suroutine A-49
DISPR Subroutine 6-142, 8-92, A-48
DMEM Subroutine 6-144, A-49
DMWD Subroutine A-51
DWORD Subroutine 6-146, A-51
ENMEM Subroutine A-43
ENTBY Subroutine 6-140, A-41
ENTWD Subroutine 6-141, A-42
ERRDS Subroutine A-54
GETKY Subroutine 6-138, A-38
KEYS Subroutine A-39
MENAB Surou tine A-40
SCAN Subroutine 6-137, A-37
SHLRT Subroutine A-57
SINWS Subroutine 9-52
SOTBT Subroutine 9-47

i-17

INDEX

ACI Instruction
ADC Instruction
ADD Instruction
ADI Instruction
ANA Instruction
ANI Instruction
CALL Instruction
CC Intruction
CM Instruction
CMA Instruction
CMC Instruction
CMP Instruction
CNC Instruction
CNZ Instruction
CP Instruction
CPE Instruction
CPI Instruction
CPO Instruction
CZ Instructiion
DAA Instruction
DAD Instruction
DAD SP Instruction
DCR Instruction
DCX Instruction
DI Instruction
EI Instruction
HLT Instruction
IN Instruction
INR Instruction
INX Instruction
JC Instruction
JM Instruction
JMP Instruction
JNC Instruction
JNZ Instruction
JP Instruction
JPE Instruction
JPO Instruction
JZ Instruction
LDA Instruction
LDAX Instruction
LHLD Instruction
LXI Instruction
LXI SP Instruction
MOV Instruction
MVI Instruction
NOP Instruction
ORA Instruction
ORI Instruction
OUT Instruction

i-18

MACHINE INSTRUCTIONS

4-28, 4-121, 11-9
4-12, 4-121, 10-4,. 11-9
4-4, 4-46, 4-121, 11-9
2-1, 2-28, 4-29, 4-121
7-30, 11-9
7-33, 11-9
6-13, 6-16, 11-13
6-52, 11-13
10-51, 11-13
7-29, 11-7
7-34, 11-7
4-111, 11-9
6-52, 11-13
6-52, 11-13
10-51, 11-13
11-13
4-112, 11-9
11-13
6-52, 11-13
10-25, 11-7
6-78, 10-5
6-116
3-13, 3-21, 4-121, 11-5
4-79, 4-120, 6-116, 11-5
8-54, 8-71
8-53, 8-71
8-65, 10-11
8-6, 11-15
1-52, 2-28, 4-121, 11-5
4-71, 4-120, 6-116, 11-5
4-40, 4-45, 11-13
10-51, 11-13
2-20, 2-28, 11-13
4-40, 4-45, 11-13
3-3, 3-22, 11-13
10-51, 11-13
11-13
11-13
4-40, 4-45, 11-13
2-16, 2-28, 4-119, 11-2
4-59, 4-119, 11-2
4-97, 4-120, 11-2
4-69, 4-120, 11-3
6-116
4-2, 4-119, 11-2
4-25, 4-46, 4-119, 11-2
1-51, 11-15
7-32, 11-9
7-33, 11-'-9
8-6, 11-15

INDEX

MACHINE INSTRUCTIONS - continued

PCHL Instruction
POP Instruction
PUSH Instruction
RAL Instruction
RAR Instruction
RC Instruction
RET Instruction
RLC Instruction
RM Instruction
RNC Instruction
RNZ Instruction
RP Instruction
RPE Instruction
RPO Instruction
RRC Instruction
RST 4 Instruction
RST Instruction
RZ Instruction
SBB Instruction
SBI Instruction
SHLD Instruction
SPHL Instruction
STA Instruction
STAX Instruction
STC Instruction
SUB Instruction
SUI Instruction
Undefined Instructions
XCHG Instruction
XRA Instruction
XRI Instruction
XTHL Instruction

6-8, 11-3
6-99, 6-105, 11-3
6-99, 6-105, 11-3
7-1, 11-7
7-2, 11-7
6-52, 11-13
6-13, 6-16, 11-13
7-18, 11-7
10-51, 11-13
6-52, 11-13
6-52, 11-13
10-51, 11-13
11-13
11-13
7-18, 11-7

3-9, 3-22, 4-47, 4-118, A-33, A-34
3-9, 8-55, 11-14, A-33
6-52, 11-13

4-18, 4-21, 4-47, 4-121, 10-14, 11-9
4-29, 4-121, 11-9
4-97, 4-120, 11-2
6-116, 11-3
2-2, 2-28, 4-119, 11-2
4-50, 4-119, 11-2
7-34, 11-7

4-18, 4-21, 4-47, 4-121, 10-13, 11-9
4-29, 4-121, 11-9
11-16
6-107, 11-3
1-52, 2-28, 4-47, 7-33, 11-9
7-33, 11-9
6-108, 11-3

i-19

'

INTEGRL1TED CIYVlFUfER SYSft!ll1S

EDUCATION IS OUR BUSINESS ...

NORTH AMERICAN HEADQUARTERS
Integrated Computer Systems, Inc.
3304 Pico Boulevard
P.O. Box 5339
Santa Monica. California 90405 USA

Telephone: (213) 450-2060
TWX: 910-343-6965

FRANCE
ICS France
90 Ave Albert ler
92500 Rueil-Malmaison
France

Telephone: (01) 749 40 37
Telex: 204593

NORTH AMERICA - EASTERN REGION
Integrated Computer Systems, Inc.
300 North Washington Street
Suite 103
Alexandria, Virginia 22314 USA

Telephone: (703) 548-1333
TWX: 710-832-0045

GERMANY
ICSDGmbH
Leonrodstrabe 54
8000 Munich 19
West Germany

Telephone: (089) 19 80 66
Telex: 521550 8

EUROPEAN HEADQUARTERS
ICSP- U.K.
Pebblecoombe, Tadworth
Surrey KT20 7PA
England

Telephone: Leatherhead (03723) 79211
Telex: 915133

SCANDINAVIA
ICSP Inc. - Scandinavia
Utbildningshuset AB
Box 1719
S-221 01 Lund, Sweden

Telephone: (046) 30 70 70
Telex: 33345

